3R - 427

APRIL 2010 QUARTERLY GWMR

02/23/2011

3R 427
6121 Indian School Rd. NE Suite 200
Albuquerque, NM 87110
(505) 237-8440

February 23, 2011

Mr. Glenn von Gonten
State of New Mexico Oil Conservation Division
1220 South St. Francis Dr.
Santa Fe, New Mexico 87505

RE: ConocoPhillips El Paso No. 1A April 2010 Quarterly Groundwater Monitoring Report Blanco, New Mexico

Dear Mr. von Gonten:

Enclosed please find a copy of the above-referenced document as compiled by Tetra Tech, Inc., formerly Maxim Technologies, for this Blanco area site.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly & Blanchard

Kelly E. Blanchard Project Manager/Geologist

Enclosures (1)

Cc: Brandon Powell, NMOCD
Terry Lauck, ConocoPhillips (electronic)

QUARTERLY GROUNDWATER MONITORING REPORT APRIL 2010 SAMPLING EVENT

CONOCOPHILLIPS COMPANY EL PASO NO.1A SAN JUAN COUNTY, NEW MEXICO

API # 30-045-22778

Prepared for:

420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110

Tetra Tech Project No. 96900122.100

May 2010

TABLE OF CONTENTS

1.0	INTR	ODUCTIONI Site History
2.0	METI	HODOLOGY AND RESULTS
	2.1	Monitoring Summary 1
,	2.2	Groundwater Monitoring Methodology
	2.3	Groundwater Sampling Analytical Results2
3.0	CON	CLUSIONS2
FIG	URES	
١.	Site Locat	ion Map
2.	Site Layou	it Map
3.	Site Cross	Section
4.	Groundwa	ater Elevation Contour Map
5.	Groundw	ater Quality Standard Exceedences Concentration Map
TA	BLES	
١.	Site Histo	ry Timeline
2.	Groundwa	ater Elevation Data Summary
3.	Groundwa	ater Laboratory Analytical Results Summary
API	PENDICE	S
Арр	endix A.	Groundwater Sampling Field Forms
Арр	endix B.	Groundwater Laboratory Analytical Report

QUARTERLY GROUNDWATER MONITORING REPORT CONOCOPHILLIPS COMPANY EL PASO NO.1A, SAN JUAN COUNTY, NEW MEXICO

1.0 INTRODUCTION

This report details the results of quarterly groundwater monitoring completed by Tetra Tech, Inc. (Tetra Tech) on April 28, 2010 at the ConocoPhillips Company El Paso No. I A site in San Juan County, New Mexico (Site). This sampling event represents the seventh quarter of groundwater monitoring conducted by Tetra Tech at the Site.

The Site is located on BLM land east of Blanco, NM near the intersection of New Mexico Highway 64 and County Road 4450 in Section 20, Township 29 North, Range 9 West. The Site can be accessed by turning southeast on County Road 4450 and traveling approximately 300 feet before veering south. Veer south again after traveling 0.1 miles and continue 0.4 miles to the Site. The Site consists of well head El Paso No. 1S and well head El Paso No. 1A; with associated equipment and installations. The location and general features of the Site are presented as **Figures 1** and **2**, respectively. A generalized cross section of the Site is included as **Figure 3**.

1.1 Site History

The history of the Site is outlined in **Table 1**.

2.0 METHODOLOGY AND RESULTS

2.1 Groundwater Monitoring Methodology

Groundwater Elevation Measurements

On April 28, 2010 groundwater elevation measurements were recorded in Monitor Wells MW-1, MW-2, MW-3, and MW-4 using a dual interface probe. Groundwater elevations are detailed in **Table 2**. A groundwater elevation contour map is presented as **Figure 4**. Based on April 2010 monitoring event data, groundwater flow is southwest and consistent with historic records at this site. The San Juan River is approximately 1 mile from the site and flows west.

Groundwater sampling

Each monitor well was sampled after approximately 3 well casing volumes had been purged; or until measured groundwater parameters including temperature, pH, conductivity, total dissolved solids (TDS), oxidation-reduction potential (ORP), and dissolved oxygen (DO) had stabilized. Parameters were collected using a YSI 556 multi-parameter sonde and were recorded on Tetra Tech Groundwater Sampling Field Forms (**Appendix A**).

Purged groundwater was disposed of in the Site produced water tank (**Figure 2**). A 1.5-inch polyethylene dedicated bailer was used to purge and collect groundwater samples. The samples were then placed in laboratory prepared bottles, packed on ice, and shipped with chain of custody documentation to Southern Petroleum Laboratory located in Houston, Texas. The samples were

Quarterly Groundwater Monitoring Report El Paso No. 1A, San Juan County, New Mexico

analyzed for presence of volatile organic compounds (VOC) including benzene, toluene, ethylbenzene, and xylenes (BTEX) by Environmental Protection Agency (EPA) Method 8260B, ion chromatography by EPA Method E300.0, total dissolved solids (TDS) by EPA Method 2540C, and dissolved metals for manganese by EPA Method 6010B.

Total metals testing was conducted during prior events as requested by the Oil Conservation Division (OCD) in April of 2008; however, since all New Mexico Water Quality Control Commission (NMWQCC) drinking water standards pertain to dissolved metals concentrations, Tetra Tech requested and received approval from the OCD on September 8, 2009 to run dissolved metals analyses for only those metals which had exceeded the NMWQCC drinking water standards. Dissolved metals testing will continue for metals exceeding NMWQCC drinking water standards.

2.3 Groundwater Sampling Analytical Results

The December 2009 analysis of the collected groundwater samples indicates that all BTEX constituents are below NMWQCC groundwater quality standards. Groundwater laboratory analytical results are summarized in **Table 3**. A figure showing all NMWQCC standard exceedences is provided as **Figure 5**.

Fluoride

The groundwater quality standard for fluoride is 1.6 milligrams per liter (mg/L). Groundwater collected from Monitor Wells MW-1, MW-2, and MW-4 were found to contain fluoride at concentrations of 2.14 mg/L; 2.18 mg/L; and 2.38 mg/L; respectively.

Sulfate

The groundwater quality standard for sulfate is 600 mg/L. Groundwater collected from Monitor Wells MW-1, MW-2, MW-3 and MW-4 were found to contain sulfate at concentrations of 8,100 mg/L; 8,350 mg/L; 5,680 mg/L; and 4,820 mg/L; respectively.

Manganese

The groundwater quality standard for dissolved manganese is 0.2 mg/L. Groundwater collected from Monitor Wells MW-1, MW-2, and MW-3 were found to contain manganese at concentrations of 2.37 mg/L; 0.941 mg/L; and 0.519 mg/L; respectively.

Total Dissolved Solids

The groundwater quality standard for TDS is 1,000 mg/L. Groundwater collected from monitor wells MW-1, MW-2, MW-3 and MW-4 were found to contain TDS at concentrations of 10,300 mg/L; 12,300 mg/L; 6,610 mg/L; and 8,320 mg/L; respectively.

The laboratory analysis report for the April 2010 groundwater sampling event is included as **Appendix B**.

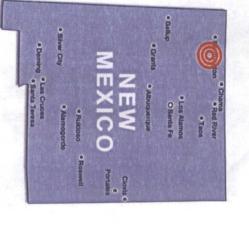
3.0 CONCLUSIONS

Tetra Tech recommends continued quarterly groundwater sampling at the Site in order to provide sufficient data for Site closure. Site closure will be requested when groundwater quality results indicate that all constituents of concern are consistently below NMWQCC groundwater quality standards or

Quarterly Groundwater Monitoring Report El Paso No. 1A, San Juan County, New Mexico

have reached Site-specific background levels. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

Tetra Tech 3 May 2010


FIGURES

- I. Site Location Map
 - 2. Site Layout Map
 - 3. Site Cross Section
- 4. Groundwater Elevation Contour Map
 - 5. Groundwater Concentration Map

FIGURE 1.

Company El Paso No. 1A San Juan County, NM Site Location Map ConocoPhillips

Directions from HW 64 to ConocoPhillips El Paso No. 1A Site Location

Approximate ConocoPhillips El Paso No. 1A
Site location

TETRA TECH, INC.

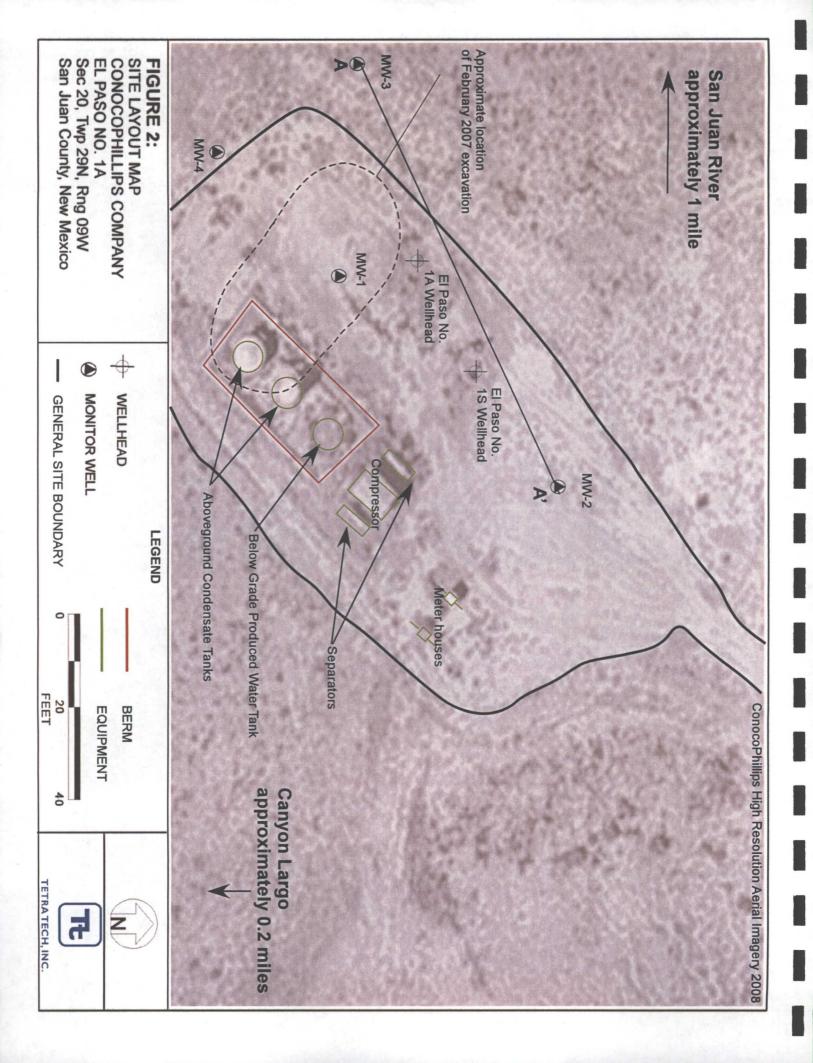
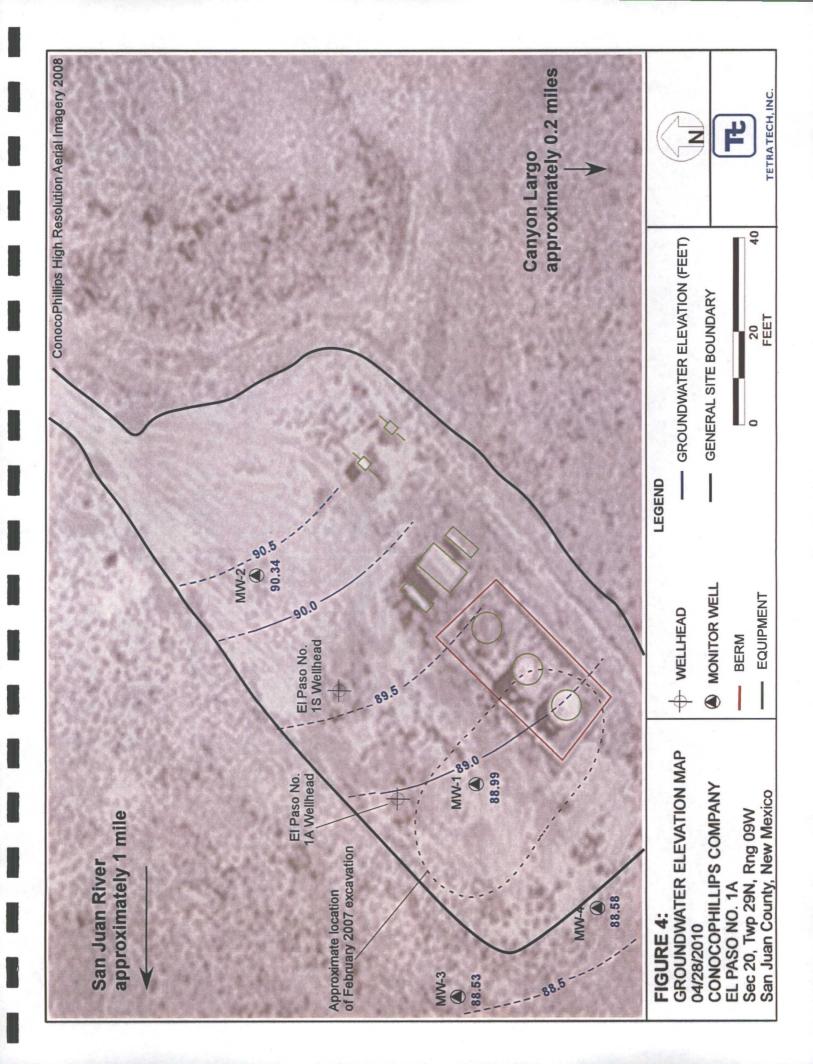
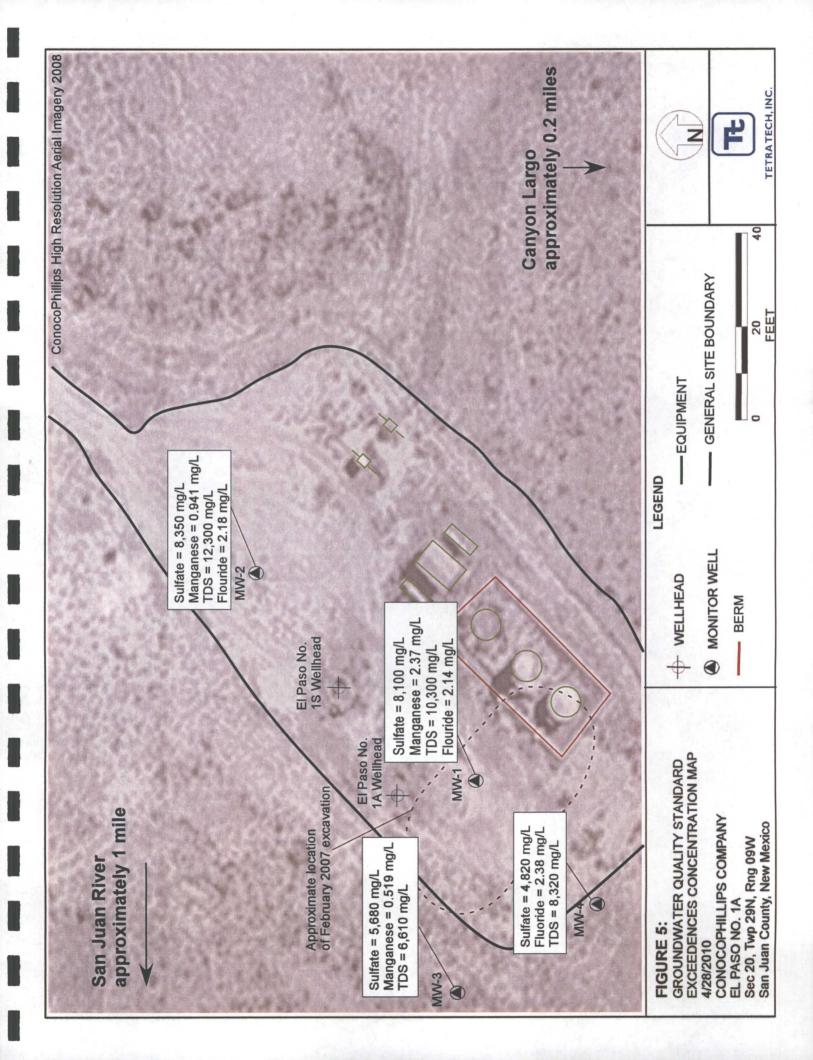




Figure 3
El Paso No. 1A - Cross-Section A-A'

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Data Summary
- 3. Groundwater Laboratory Analytical Results Summary

DATE	ACTIVITY
5-Jan-78	Well spudded by El Paso Natural Gas Co.
1-Nov-86	Meridian Oil, Inc. becomes the operator under El Paso Production Company
31-Dec-00	Operator name change from Burlington Resources Oil and Gas Company to Burlington Resources Oil and Gas Company LP.
31-Mar-06	ConocoPhillips Company completed the aquistion of Burlington Resources.
Feb-07	Hydrocarbon-impacted soils discovered during trench work being conducted for a new flowline. Original source contamination is unknown.
Feb-07	Contaminated soil excavated from the Site. Soil samples collected and analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) were below NMOCD regulations.
21-Sep-07	Ground water monitoring well installed to a depth of ten (10) feet below ground surface (bgs) by Envirotech Inc. of Farmington, NM (Envirotech). A soil sample obtained from the well boring was analyzed for benzene, BTEX and total petroleum hydrocarbons (TPH). Results were below NMOCD regulations of 10 parts per million (ppm), 50 ppm, and 100 ppm, respectively.
21-Sep-07	A ground water sample was collected from the temporary monitoring well and analyzed for BTEX; results were below the State of New Mexico drinking water standard for this constituent.
27-Sep-07	Depth to groundwater measured at seven (7) feet bgs.
Sep-07	Envirotech report recommends plugging and abandonment of the temporary ground water monitoring well and a No Further Action determination for the Site (Envirotech, 2007).
Apr-08	Oil Conservation Division of NM Energy, Minerals, and Resources Dept. indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn Von Gonten
25-Oct-08	1st quarter sampling of MW-1 by Tetra Tech
Jan-09	Attempt to install additional monitoring wells; roads inaccessible by drill rig due to winter weather conditions.
28-Jan-09	2nd quarter groundwater sampling of MW-1 by Tetra Tech. Groundwater samples were reported missing by Southern Petroleum Laboratory. No data was received for January 2009 sampling event.
3-4-March-09	Monitoring wells MW-2, MW-3, MW-4 installed and developed by WDC overseen by Tetra Tech. Soil samples were collected from MW-3 and MW-2 boring locations.
2-Apr-09	3rd quarter groundwater sampling conducted by Tetra Tech. First quarter of sampling to include all 4 monitoring wells. A baseline suite was collected for MW-1, MW-2, MW-3 and MW-4.
18-Jun-09	2nd quarter groundwater sampling conducted by Tetra Tech to include wells MW-1, MW-2, MW-3 and MW-4.
29-Sep-09	3rd quarter groundwater sampling conducted by Tetra Tech to include wells MW-1, MW-2, MW-3 and MW-4. Samples collected for dissolved metals exceeding standards that were previously run by the total metals test method; AI, Mn, Fe.
15-Dec-09	4th quarter groundwater sampling conducted by Tetra Tech to include wells MW-1, MW-2, MW-3 and MW-4. Analytical results for flouride are inconclusive.
28-Apr-10	1st quarter 2010 groundwater sampling conducted by Tetra Tech.

Table 2. Groundwater Elevation Data Summary - ConocoPhillips Company El Paso 1A

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				9/21/2007	7.00	92.52
				10/25/2008	10.92	88.60
				1/30/2009	MN	NM
MW-1	13 55	"8,5".	00 52	4/2/2009	10.33	89.19
	2	0	20:00	6/18/2009	10.65	88.87
				6/29/2009	10.96	88.56
				12/15/2009	10.99	88.53
				4/28/2010	10.53	88.99
				4/2/2009	8.49	90.23
				6/18/2009	8.71	90.01
MW-2	20.75	3-17.9	98.72	9/29/2009	8.70	90.02
	-		; .`	12/15/2009	8.75	89.97
				4/28/2010	8.38	90.34
			-	4/2/2009	9.71	88.47
				6/18/2009	9.75	88.43
MW-3	21.15	3.1-18.1	98.175	9/29/2009	10.10	88.08
				12/15/2009	10.07	88.11
				4/28/2010	9.66	88.52
				4/2/2009	9.74	88.54
				6/18/2009	9.78	88.50
MW-4	20.83	2.9-17.9	98.28	9/29/2009	10.04	88.24
				12/15/2009	10.06	88.22
				4/28/2010	9.70	88.58

ft = Feet

TOC = Top of casing

bgs = below ground surface

* Elevation relative to wellhead, set at an arbitrary elevation of 100 feet above mean sea level

NM = Not Measured

Tetra Tech

Table 3. Groundwater Laboratory Analytical Results Summary - ConocoPhillips Company El Paso 1A

0.201 6500 0.198 8320	S &	AN AN	4820	2.38	۲.		۲	V	4/28/2010	
	VA.									
	<u> </u>	ΑN	2660	<50	٢	٢	. ₹	۲	12/15/2009	
0.134 6760	0.393	0.943	5340	2.26	٢	۲	۲	٢	9/29/2009	MW-4
0.333* NA	6.91*	5.52*	5300	2.25	<5	^ 5	\$	<5	6/18/2009	
0.396* 6660	2.12*	2.1*	4750	2.42	<0.5	<0.5	<0.5	<0.5	4/2/2009	
0.519 6610	NA	NA	5680	1.53	124	15	۲۶	2	4/28/2010	
0.583 9230	NA	NA	7490	<50	24	3	۲۰	<1	12/15/2009	
0.432 8630	0.14	0.224	6890	. 1.47	20	2.7	۲	. 1	9/29/2009	MW-3
0.454* NA	5.3*	3.75*	5750	1.68	87	15	<5	<5	6/18/2009	
0.788* 7530	9.31*	5.47*	4090	1.68	362	52	<0.5	<0.5	4/2/2009	
0.941 12300	NA	NA	8350	2.18	<1	<1	۲۷	<1	4/28/2010	
1.54 25100	NA	NA	22100	<100	<1	<1	<٦	<1	12/15/2009	
2.03 31800	<0.02	<0.1	29800	<0.5	<1	<1	۲	<1	9/29/2009	MW-2
1.92* NA	1.23*	1.49*	17000	0.67	<5	<5	<5	<5	6/18/2009	
1.16* 22500	0.751*	0.705*	15900	<0.5	<0.5	<0.5	<0.5	<0.5	4/2/2009	
2.37 10300	NA	NA	8100	2.14	<1	. <1	1>	<1	4/28/2010	
1.68 10400	NA	NA	10100	<50	<1	-1	-	<1	12/15/2009	
1.42 10600	0.0237	<0.1	8030	1.56	<1	7	۲۰	د ا	9/29/2009	
3.06* NA	7.66*	2.1*	7970	2.04	<5	<5	5>	<5	6/18/2009	
3.14* 10000	29.6*	2.21*	7580	1.92	<0.5	<0.5	<0.5	<0.5	4/2/2009	MW.4
NA NA	NA	NA	NA	NA	NA	NA	NA	NA	1/30/2009	
5.49* NA	26*	SN	6400	<2	<0.5	<0.5	<0.5	<0.5	10/25/2008	
NS NA	SN	SN	SN	SN	0.3	<0.2	6.0	1.4	9/21/2007	
Total Manganese Dissolved (mg/L) Solids (mg/L)	lron (mg/L)	Aluminum (mg/L)	Sulfate (mg/L)	Fluoride (mg/L)	Xylenes (μg/L)	Ethylbenzene (µg/L)	Toluene (µg/L)	Benzene (µg/L)	Date	Well ID

Explanation

ND = Not Detected

NMWQCC = New Mexico Water Quality Control Commission

mg/L = milligrams per liter (parts per million)·
µg/L = micrograms per liter (parts per billion)
NA = Not Analyzed due to laboratory error

40.7 = Below laboratory detection limit of 0.7 ug/L

 Bold = concentrations that exceed the NMWQCC limits
 = Results reported for total metals analysis, results can not be compared to NMWQCC Standards for dissolved metals

APPENDIX A
GROUNDWATER SAMPLING FIELD FORMS

	·	
TETRA TECH, INC.	WATER SAMPLING	FIELD FORM
Project Name El Paso 1A		Page1_ of4
Project No.		<u>_</u>
Site Location Blanco, NM		4.6)
Site/Well No. MW-1	Coded/ Replicate No. duplicate	Date <u>4-28-10</u>
Weather Cloudy, 60	Time Sampling . Began	Time Sampling 100
. •	EVACUATION DATA	
Description of Measuring Point (MP)	Top of Casing	
Height of MP Above/Below Land Sur	face MP Elev	ation
Total Sounded Depth of Well Below	MP 13.58 Water-Le	evel Elevation
Held Depth to Water Below	Gallons	r of Casing 2"
Wet Water Column in		sampling
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		g Pump Intake Setting ow land surface)
Purging Equipment Purge pump) / Bailer	
~	SAMPLING DATA/FIELD PARAMETEI	RS
Time Temperature (°C)	pH Conductivity (μS/cm³) TDS 8-33 1-2 1.74 8.10	
1052 11.32		6 299 -720 29.0 23 313 -75.9 30.1
4478		
Sampling Equipment	Purge Pump/Bailer	
Constituents Sampled	Container Description	<u>Preservative</u>
BTEX	3 40mL VQA's	HCI
JOSAIMETAIS DISSOLVED MY	plastic (16 02)	none Altered@ lab

Flouride, Sulfate DS plastic 32 oz	none
Remarks Chimal hav and black sedernery in he	U wher.
Sampling Personnel (B)	

j			V	Well Casing Volumes			
Gal./ft.	1 1/4"	= 0.077	2"	= 0.16	3"	= 0.37	4" = 0.65
•	1 1/2"	= 0.10	2 1/2"	= 0.24	3" 1/2	= 0.50	6" = 1.46

EP1A 4-28-10 Qu. Sampling · purge vol= DTW = 8.32 TO = 20.7 MW-2

OO ORP Q0 % Temp on Conductivity TDS 577 -88.6 11.32 810 13524° 8.780 5.77 -88.6 11.28 815 13680° 8.950 5.44 -89.9 55.0 52.1 1128 5.32 -91.2 11.29 8.15 13760 51.1 8.968 1130

Time Sampled: 1130

TETRATECH, INC.	WATER SAMPLI	NG FIELD FORM
Project Name El Paso 1A		Page 3 of 4
Project No.		
Site Location Blanco, NM		
Site/Well No. MW-3	Coded/ Replicate No.	Date 4-28-10
Weather Cloudy, 60°	Time Sampling Began UUU	Time Sampling Completed 1155
	EVACUATION DATA	
Description of Measuring Point (MP) Top	o of Casing	
Height of MP Above/Below Land Surface	e MF	Elevation
Total Sounded Depth of Well Below MP		ater-Level Elevation
Held Depth to Water Below M	IP Dia	ameter of Casing 2" llons Pumped/Bailed
Wet Water Column in We	ell Pri	or to Sampling
		mpling Pump Intake Setting et below land surface)
Purging Equipment Purge pump / E	,	
	SAMPLING DATA/FIELD PARAM	METERS
Time Temperature (°C)	pH Conductivity (µS/cm³)	TDS (g/L) DO (mg/L) ORP (mV) DO
1142 11.49	1.63 10624	1.786 3.69 -202.4 44-6 1.786 3.69 -206.3 38.1
		7.651 3.72 -2084 39.4
Sampling Equipment Pu	rge Pump/Bailer	
Constituents Sampled	Container Description	Preservative
BTEX	3 40mL VOA's	HCI:
Total Metals Dissolved Mn	plastic ((box)	none filtered@lab

Remarks water 15 gray, Sulfum color.

Sampling Personnel

none

 $1 \frac{1}{4}$ = 0.077

 $1\frac{1}{2}$ " = 0.10

Flouride, Sulfate

Gal./ft.

TE	TETRA TECH, INC.
----	------------------

WATER SAMPLING FIELD FORM

							•	
	Project Name	El Paso 1A			··	Page	4	of <u>4</u>
	Project No.							
	Site Location	Blanco, NM						
	Site/Well No.	MW-4	Coded/ Replicate	No		Date	+28-1	0
	Weather	cloudy, 60	Time Sar Began	mpling ++++	1215	Time Samplin Completed	9 123	35
	•			EVACUATION DAT	·A			
	Description of	Measuring Point (MP)	Top of Casing			 	- <u>-</u>	
	Height of MP A	above/Below Land Sur	face		MP Elevation			
	Total Sounded	Depth of Well Below I	MP	<u> </u>	Water-Level Ele	evation		,
		Depth to Water Below		<u> </u>	Diameter of Cas Gallons Pumpe	d/Bailed	<u> </u>	
	Wet	. Water Column in			Prior to Samplin	ng		
j	: (1944 - 1	Gallons per Gallons in	Foot Well		Sampling Pump (feet below land			
	Purging Equipr	nent Purge pump	/ Bailer	· · · · · · · · · · · · · · · · · · ·				ر يونونونونونونونونونونونونونونونونونونون
		-	SAMPI	ING DATA/FIELD PA	RAMETERS			0.00
	Time	Temperature (°C)	pΗ	Conductivity (µS/cm³)		DO (mg/L)	ORP (mV)	000/0
	1220	11.57	8.65	80.90	5.454	428	-102.8	38.7
	1228	11.58	8-75	X390	5.434	3.80	195.8	36.0
								· passerses
nu., 746.	<u> </u>		<u> </u>		<u></u>	<u> </u>		·
	Sampling Equip	pment	Purge Pump/B	ailer				
	<u>Constitu</u>	uents Sampled		Container Description	<u>1</u>		Preservative	
	BTEX		3 40mL \	/OA's		HCI		
	Total Metals	Dissolved M	n plastic	((6 05)		none -11+0	red@lab	
	Flouride, Sulfa	te, TDS	plastic	(3202)		none		
	Remarks							
	Sampling Pers	onnel <u>M</u>	····					
				Well Casing Vol	umes			
		Gal./ft. 1½" = (0.077	2" = 0.16	3" =	0.37	4" = 0.65	
	, 	1).10	2 ½" = 0.24	3" ½ =		6" = 1.46	ļ

APPENDIX B

GROUNDWATER LABORATORY ANALYTICAL REPORT

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

May 14, 2010

Workorder: H10040613

Christine Matthews Tetra Tech, Inc. 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Project: El Paso #1A

Project Number: El Paso #1A

Site: El Paso #1A / Blanco, NM (San Juan County)

PO Number: ENFOS

NELAC Cert. No.: T104704205-09-1

This Report Contains A Total Of 25 Pages

Excluding Any Attachments

Report ID: H10040613_6124

Printed: 05/14/2010 17:35

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

May 14, 2010

Christine Matthews Tetra Tech, Inc. 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Workorder: H10040613

Project: El Paso #1A

Project Number: El Paso #1A

Site: El Paso #1A / Blanco, NM (San Juan County)

PO Number: ENFOS

NELAC Cert. No.: T104704205-09-1

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

There were no exceptions noted.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

Report ID: H10040613 6124

Printed: 05/14/2010 17:35

Page 2 of 25

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

May 14, 2010

Workorder: H10040613

Christine Matthews Tetra Tech, Inc. 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Project: El Paso #1A

Project Number: El Paso #1A

Site: El Paso #1A / Blanco, NM (San Juan County)

PO Number: ENFOS

NELAC Cert. No.: T104704205-09-1

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for cother than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Erica Cardenas, Senior Project Manager

Enclosures

Report ID: H10040613_6124

Printed: 05/14/2010 17:35

Phone: (713) 660-0901 Fax: (713) 660-8975

SAMPLE SUMMARY

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

Lab ID	Sample ID	. Matrix	COC ID	Date/Time Collected	Date/Time Received
H10040613001	MW-1	Water		4/28/2010 11:00	4/29/2010 09:15
H10040613002	MW-2	Water		4/28/2010 11:30	4/29/2010 09:15
H10040613003	MW-3	Water		4/28/2010 11:55	4/29/2010 09:15
H10040613004	MW-4	Water		4/28/2010 12:35	4/29/2010 09:15
H10040613005	Duplicate	Water		4/28/2010 11:15	4/29/2010 09:15
H10040613006	Trip Blank	Water		4/28/2010 00:00	4/29/2010 09:15

Report ID: H10040613_6124

Printed: 05/14/2010 17:35

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

Lab ID:

H10040613001

Date/Time Received: 4/29/2010 09:15

Matrix:

Water

. . ._

Sample ID: MW-1

Date/Time Collected: 4/28/2010 11:00

Analysis Desc: EPA 300.0	Analytical Batches:	4.4			
	Batch: 1281 EPA 300.0 or	05/04/2010 16:49	by CFS D	F = 1.	
	Batch: 1281 EPA 300.0 or	05/04/2010 23:25	by CFS D	F = 1000	
Set Opposite	Results				Batch Information
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt Prep Analysis
Fluoride	2.14	0.500	0.0430	1	1281
Sulfate	8100	500	43.5	1000	1281

WET CHEMISTRY

Analysis Desc: SM 2540 C	Analytical Batches:						
A Company of the Comp	Batch: 1585 SM 2540 C on	05/03/2010 19:44	by CFS				
				100			
	Results						formation
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
Residue, Filterable (TDS)	10300 %	100	39.4	10			1585

ICP DISSOLVED METALS

Analysis Desc: SW-846,6010B	Preparation Batches:						e.
Harris Service	Batch: 1708 SW-846 3010	A on 04/29/2010	20:00 by R_\	/			d.
	Analytical Batches:						
	Batch: 1384 SW-846 6010	B on 05/11/2010	21:28 by EBO	3			
Parameters	Results img/li. Qual	Report Limit	MDL	DE:	RegLmt	Batch Info Prep	
Manganese	2.37	0.00500	0.000300	1		1708	1384

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	atches:				
	Batch: 1841 SW-846 826	0B on 04/30/2010	12:29 by JM	C	23.14	
Parameters	Results ug/j Qual	Report Limit	S is	DF	RegLmt	Batch Information Prep Analysis
Benzene	ND ND	1.0	0.10	1		1841
Ethylbenzene	ND	1.0	0.15	1		1841
Toluene	ND	1.0	0.29	1		1841
m,p-Xylene	ND	1.0	0.18	1		1841
o-Xylene	ND	1.0	0.13	1		1841
Xylenes, Total	ND	1.0	0.13	1		1841
4-Bromofluorobenzene (S)	101 %	74-125		1		1841

Report ID: H10040613_6124

Printed: 05/14/2010 17:35

Page 5 of 25

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder; H10040613 : El Paso #1A

Project Number: El Paso #1A

Lab ID:

H10040613001

Date/Time Received: 4/29/2010 09:15

Matrix:

Water

Sample ID: MW-1

Date/Time Collected: 4/28/2010 11:00

•	Results					Batch I	nformation
Parameters	Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
1,2-Dichloroethane-d4 (S)	99 %	70-130		1			1841
Toluene-d8 (S)	101 %	82-118		1			1841

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

Lab ID:

H10040613002

Date/Time Received: 4/29/2010 09:15

Matrix: Water

Sample ID: MW-2

Date/Time Collected: 4/28/2010 11:30

Analysis Desc: EPA 300.0	Analytical Batches:					
	Batch: 1281 EPA 300.0	on 05/04/2010 17:0	8 by CFS D	F = 1.		TO Approximate
	Batch: 1281 EPA 300.0	on 05/04/2010 23:4	4 by CFS D	F = 1000	110	
Parameters	Results ma/l Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Fluoride :	mg/l Qual	0.500	0.0430	1	жедын	1281
Sulfate	8350	500	43.5	1000		1281

WET CHEMISTRY

Analysis Desc: SM 2540 C	Analytical Batches: Batch: 1585 SM 2540 C on (05/03/2010 19:44	by CFS		APP CONTRACTOR	
Parameters	Results mg/l Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Residue, Filterable (TDS)	12300	100	39.4	10		1585

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:	11-12-					
	Batch: 1708 SW-846 3010	A on 04/29/2010	0.20:00 by R_V				
	Analytical Batches:						
	Batch: 1384 SW-846 6010	B on 05/11/2010	21:34 by EBC)			
	Results	Report Limit	MDL	DF	RegLmt	Batch Info	ormation Analysis
Parameters	mg/I Qual	Report Limit	MDL	DF	Regimi	riep	Analysis
Manganese	0.941	0.00500	0.000300	1		1708	1384

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	itches:					
	Batch: 1841 SW-846 826	0B on 04/30/2010 1	2:57 by JM	C .			
Parameters.	Results ug/i Qual	Report Limit	MDL	DF	RegLmt	Batch Info	ormation Analysis
Benzene	ND ND	1.0	0.10	1			1841
Ethylbenzene	ND	1.0	0.15	1			1841
Toluene	ND	1.0	0.29	1			1841
m,p-Xylene	ND	1.0	0.18	1			1841
o-Xylene	ND	1.0	0.13	1			1841
Xylenes, Total	ND	1.0	0.13	1			1841
4-Bromofluorobenzene (S)	94.1 %	74-125		1			1841

Report ID: H10040613_6124

Printed: 05/14/2010 17:35

Page 7 of 25

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

Lab ID:

H10040613002

Date/Time Received: 4/29/2010 09:15

Matrix:

Water

Sample ID: MW-2

Date/Time Collected: 4/28/2010 11:30

Parameters	Results	Qual	Report Limit	MDL	DF	RegLmt	Batch II Prep	nformation Analysis
1,2-Dichloroethane-d4 (S)	103 %		70-130		1			1841
Toluene-d8 (S)	99.5 %		82-118		1			1841

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040613: El Paso #1A

Project Number: El Paso #1A

Lab ID:

H10040613003

Date/Time Received: 4/29/2010 09:15

Water

Matrix:

Sample ID: MW-3

Date/Time Collected: 4/28/2010 11:55

Analysis Desc: EPA 300.0 Ana	lytical Batches:					
Bate	ch: 1281 EPA 300.0 d	n 05/04/2010 17:27	7 by CFS DI	== 1.		12.00
Bate	ch: 1281 EPA 300.0 d	n 05/05/2010 00:0:	3 by CFS D	= 1000	i.	N. Vingson
Parameters	Results mg/I Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Fluoride	1.53	0.500	0.0430	1		1281
Sulfate	5680	500	43.5	1000		1281

WET CHEMISTRY

Analysis Desc: SM 2540 0		Analytical Batches:						
-		Batch: 1585 SM 2540 C or	05/03/2010 19:44	by CFS				11/2
er er er er er			100					
		Results					Batch Information	1
Parameters	Sept. Committee	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep Analysis	5
Residue, Filterable (TDS)	1	6610	40.0	15.8	4		158	5

ICP DISSOLVED METALS

Manganese	0.519	0.00500	0.000300	1		1708	1384
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
TO THE STATE OF TH	Results					Batch Info	
	Batch: 1384 SW-846 6010	B on 05/11/2010	21:40 by EBC	}			
	Analytical Batches:						
The second second second	Batch: 1708 SW-846 3010	A on 04/29/2010	20:00 by R_V	1			
Analysis Desc: SW-846 6010B	Preparation Batches:						

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Batches: Batch: 1841 SW-846 8260B on 04/30/2010 13:24 by JMC							
Parameters	Results ug/j Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis		
Benzene	2.0	1.0	0.10	1		1841		
Ethylbenzene	. 15	1.0	0.15	1		1841		
Toluene	. ND	1.0	0.29	· 1		1841		
m,p-Xylene	110	1.0	0.18	1		1841		
o-Xylene	14	1.0	0.13	1		1841		
Xylenes, Total	124	1.0	0.13	1		1841		
4-Bromofluorobenzene (S)	99.2 %	74-125		1		1841		

Report ID: H10040613_6124

Printed: 05/14/2010 17:35

Page 9 of 25

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

Lab ID:

H10040613003

Date/Time Received: 4/29/2010 09:15

Water

Matrix:

Sample ID: MW-3

Date/Time Collected: 4/28/2010 11:55

	Results					Batch I	nformation
Parameters	Qua	al Report Limit	MDL	DF	RegLmt	Ргер	Analysis
1,2-Dichloroethane-d4 (S)	97.7 %	70-130		1			1841
Toluene-d8 (S)	99 %	82-118		1			1841

Report ID: H10040613_6124

Printed: 05/14/2010 17:35

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040613: El Paso #1A

Project Number: El Paso #1A

Lab ID:

H10040613004

Date/Time Received: 4/29/2010 09:15

Water

Matrix:

Sample ID: MW-4

Date/Time Collected: 4/28/2010 12:35

Analysis Desc: EPA 300.0 Analytical Batches: Batch: 1281 EPA 300.0 on 05/04/2010 17:46 by CFS DF = 1. Batch: 1281 EPA 300.0 on 05/05/2010 00:21 by CFS DF = 1000. **Batch Information** Results **Parameters** mg/l Qual Report Limit MDL DF RegLmt Prep Analysis 2.35 0.0430 1281 Fluoride 0.500 1 Sulfate 4820 500 43.5 1000 1281

WET CHEMISTRY

Analysis Desc: SM 2540 C	Analytical Batches:				
	Batch: 1585 SM 2540 C on	05/03/2010 19:44	y CFS		
	4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4				
Parameters	Results mg/l Qual	Report Limit	MDL	DF	Batch Information RegLmt Prep Analysis
Residue, Filterable (TDS)	8320	50.0	19.7	5	1585

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:						Sapara de la composición dela composición de la composición dela composición de la c
	Batch: 1708 SW-846 3010	A on 04/29/2010	20:00 by R_V				
	Analytical Batches:						
	Batch: 1384 SW-846 6010	0B on 05/11/2010	21:46 by EBC	3	100		
	Results				- 100 - 100	Batch Inf	formation
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
Manganese	0.198	0.00500	0.000300	1		1708	1384

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	tches:				10.00
	Batch: 1841 SW-846 826	0B on 04/30/2010	13:52 by JM	Ċ		
Parameters		Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Benzene	ND	1.0	0.10	1		1841
Ethylbenzene	ND .	1.0	0.15	1		1841
Toluene	ND	1.0	0.29	. 1		1841
m,p-Xylene	ND	1.0	0.18	1		1841
o-Xylene	ND	1.0	0.13	1		1841
Xylenes, Total	ND ⁻	1.0	0.13	1		1841
4-Bromofluorobenzene (S)	92.8 %	74-125		1		1841

Report ID: H10040613_6124

Printed: 05/14/2010 17:35

Page 11 of 25

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

Lab ID:

H10040613004

Date/Time Received: 4/29/2010 09:15

Water

Matrix:

Sample ID: MW-4

Date/Time Collected: 4/28/2010 12:35

	,							
	Results						Batch In	nformation
Parameters		Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
1,2-Dichloroethane-d4 (S)	99.1 %		70-130	1 111	1			1841
Toluene-d8 (S)	101 %		82-118		1			1841

Report ID: H10040613_6124

Printed: 05/14/2010 17:35

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

Lab ID:

H10040613005

Date/Time Received: 4/29/2010 09:15

Matrix: Water

Sample ID: Duplicate

Date/Time Collected: 4/28/2010 11:15

VOLATILES

Analysis Desc: SW-846 8260	3	Analytical Batches:					
	***	Batch: 1845 SW-846 826	0B on 05/01/2010 (1:16 by JM	3		N. Carlotte
Parameters		Results ug/I Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Benzene	1	ND :	1.0	0.10	1	×	1845
Ethylbenzene	ı	ND 3	1.0	0.15	1		1845
Toluene		ND	1.0	0.29	1 -		1845
m,p-Xylene		ND ii	1.0	0.18	1		1845
o-Xylene		ND :	1.0	0.13	1		1845
Xylenes, Total	,	ND +	1.0	0.13	1		1845
4-Bromofluorobenzene (S)	1	95.5 % 🤥	74-125		1		1845
1,2-Dichloroethane-d4 (S)	:	99.5 %	70-130		1		1845
Toluene-d8 (S)		102 % j	82-118		1		1845

Report ID: H10040613_6124

Printed: 05/14/2010 17:35

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

Lab ID:

H10040613006

Date/Time Received: 4/29/2010 09:15

Water

Matrix:

Sample ID: Trip Blank

Date/Time Collected: 4/28/2010 00:00

VOLATILES

Analysis Desc: SW-846 8260B		SW-846 5030Anal	ytical Batches:				
ill salimite sa sa							
Parameters (Fig. 1)		Results ug/l	Qual Report Limi	MDL	DF	RegLmt	Batch Information Prep Analysis
Benzene `		ND	1.0	0.10	1		1845
Ethylbenzene	i	ND	1.0	0.15	1		1845
Toluene	• •	ND	1.0	0.29	- 1		1845
m,p-Xylene		ND	1.0	0.18	1		1845
o-Xylene		ND	1.0	0.13	1		1845
Xylenes, Total	1	ND	, 1.0	0.13	1		1845
4-Bromofluorobenzene (S)	Į.	95.3 %	74-125	j	1		1845 -
1,2-Dichloroethane-d4 (S)	t	103 %	70-130)	1		1845
Toluene-d8 (S)	;	98.6 %	. 82-118	1	1		1845

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

QC Batch:

DIGM/1708

Analysis Method:

SW-846 6010B

QC Batch Method:

SW-846 3010A

Preparation:

04/29/2010 20:00 by R V

Associated Lab Samples: .

H10040613001

H10040613002 H10040613003

H10040613004

METHOD BLANK: 42177

Analysis Date/Time Analyst:

05/11/2010 19:28 EBG

Blank

Reporting

Parameter

Units

Result Qualifiers

Limit

Manganese

mg/l

ND

0.00500

LABORATORY CONTROL SAMPLE: 42178

Analysis Date/Time Analyst:

05/11/2010 19:34 EBG

Parameter

Spike

LCS

LCS

% Rec

Paramete

Units

Conc.

Result

% Rec

Limits

Manganese

mg/l

0.10

0.1064

106

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 42179

42180

Original: H10040590003

MS Analysis Date/Time Analyst:

05/11/2010 19:46 EBG

MSD Analysis Date/Time Analyst:

05/11/2010 19:52 EBG

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	
Manganese	mg/l	0.0178	0.10	0.1234	0.119	106	101	75-125	3.6	20	

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040613_6124 Printed: 05/14/2010 17:35 Page 15 of 25

8880 Interchange Drive Houston, TX 77054 Phone: (713) 660-0901

Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

QC Batch:

M

MSV/1840

Analysis Method:

SW-846 8260B

QC Batch Method:

SW-846 5030

Preparation:

04/30/2010 00:00 by JMC

Associated Lab Samples:

H10040574001 H10040613004 H10040574002 H10040595002

H10040613001

H10040613002

H10040613003

METHOD BLANK: 42658

Analysis Date/Time Analyst:

04/30/2010 09:45 JMC

Parameter	;	Units	Blank Result Qualifiers	Reporting Limit	
Benzene	.)	· ug/l	ND	1.0	
Ethylbenzene	J	ug/l	· ND	1.0	
Toluene)	ug/l	ND ·	1.0	
m,p-Xylene)	ug/l	ND	1.0	
o-Xylene	j	ug/l	ND	1.0	
Xylenes, Total)	ug/l	ND	1.0	•
4-Bromofluoroben	zene (S)	%	96.4	74-125	
1,2-Dichloroethand	e-d4 (S)	. %	99.4	70-130	
Toluene-d8 (S)	;	%	100	82-118	•

LABORATORY CONTROL SAMPLE: 42659

Analysis Date/Time Analyst:

04/30/2010 09:18 JMC

•	· · · · · · · · · · · · · · · · · · ·				•	
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	
Benzene	ug/l	20	20.3	102	74-123	
Ethylbenzene	ug/l	20	20.6	103	72-127	
Toluene	ug/l	20	20.9	104	74-126	
· m,p-Xylene	ug/l:	40	43.4	108	71-129	
o-Xylene	ug/l	20	22.0	110	74-130	
Xylenes, Total	ug/l	60	65.34	109	71-130	
4-Bromofluorobenzene (S)	%			99.4	74-125	
1,2-Dichloroethane-d4 (S)	%			91.2	70-130	
Toluene-d8 (S)	%			99.6	82-118	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE. 42660

42661

Original: H10040574002

MS Analysis Date/Time Analyst:

04/30/2010 10:40 JMC

MSD Analysis Date/Time Analyst:

04/30/2010 11:07 JMC

Parameter	Units .	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Benzene	ug/l	ND	20	21.3	21.2	107	106	70-124	0.7	20
Ethylbenzene	ug/l	ND	20	18.6	17.7	93.1	88.3	35-175	5.3	20
Toluene	ug/l	3.2	20	22.5	22.0	96.2	93.7	70-131	2.2	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040613_6124

Printed: 05/14/2010 17:35

Page 16 of 25

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 42660

42661

Original: H10040574002

MS Analysis Date/Time Analyst:

04/30/2010 10:40 JMC

MSD Analysis Date/Time Analyst:

04/30/2010 11:07 JMC

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
m,p-Xylene	ug/l	0.93	40	37.8	35.6	92.1	86.6	35-175	6.0	20
o-Xylene	ug/l	ND	20	18.8	18.4	93.9	92.0	35-175	2.0	20
Xylenes, Total	ug/l	ND	60	56.56	53.98	94.3	90.0	35-175	4.7	20
4-Bromofluorobenzene (S)	%	94.6)			98.4	96.6	74-125		30
1,2-Dichloroethane-d4 (S)	%	97				99.5	97.6	70-130		30
Toluene-d8 (S)	%	98	1			95.2	97.1	82-118		30

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040613_6124

Printed: 05/14/2010 17:35

Page 17 of 25

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

QC Batch:

MSV/1844

Analysis Method:

SW-846 8260B

QC Batch Method:

SW-846 5030

Preparation:

04/30/2010 00:00 by JMC

Associated Lab Samples:

H10040574002

H10040613006

H10040616001

METHOD BLANK: 42704

Analysis Date/Time Analyst:

04/30/2010 23:53 JMC

Parameter	•	Units	Blank Result Qualifiers	Reporting Limit	
Benzene	,	ug/i	ND	1.0	
Ethylbenzene	;	ug/l	ND	1.0	•
Toluene	,	ug/l	ND	1.0	
m,p-Xylene		ug/l	ND	1.0	
o-Xylene	,	ug/l	ND .	1.0	
Xylenes, Total)	ug/l	ND	1.0	
4-Bromofluorobenze	ne (S)	%	95.9	74-125	
1,2-Dichloroethane-c	14 (S)	%	94.7	70-130	
Toluene-d8 (S)	}	%	101	82-118	

LABORATORY CONTROL SAMPLE: 42705

Analysis Date/Time Analyst:

04/30/2010 23:26 JMC

		, ,	Spike	LCS	LCS	% Rec	
Parameter	Units		Conc.	Result	% Rec	Limits	
Benzene	ug/l		20	20.1	101	74-123	
Ethylbenzene	ug/l	1	20	20.3	101	72-127	
Toluene	ug/l	1	20	20.6	103	74-126	
m,p-Xylene	ug/l	;	40	42.4	106	71-129	
o-Xylene	ug/l)	. 20	22.1	111	74-130	
Xylenes, Total	ug/l)	60	64.59	108	71-130	
4-Bromofluorobenzene (S)	%				101	74-125	
1,2-Dichloroethane-d4 (S)	%				97.3	70-130	
Toluene-d8 (S)	%			•	97.8	82-118	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 42706

42707

Original: H10040613005

MS Analysis Date/Time Analyst:

05/01/2010 01:43 JMC

MSD Analysis Date/Time Analyst:

05/01/2010 02:11 JMC

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS %·Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Benzene	ug/l	· ND	20	19.0	20.1	95.2	101	70-124	5.6	20
Ethylbenzene	ug/l	ND	20	17.7	18.9	88.3	94.6	35-175	7.0	20
Toluene	ug/l	ND	20	18.7	19.6	93.4	97.8	70-131	4.6	20
m,p-Xylene	ug/l	ND	40	36.2	39.6	90.5	98.9	35-175	8.8	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040613_6124

Printed: 05/14/2010 17:35 Page 18 of 25

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 42706

42707

Original: H10040613005

MS Analysis Date/Time Analyst:

05/01/2010 01:43 JMC

MSD Analysis Date/Time Analyst:

05/01/2010 02:11 JMC

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	
o-Xylene	ug/l	ND	20	19.2	20.3	95.8	101	35-175	5.6	20	-
Xylenes, Total	ug/l	ND	60	55.39	59.82	92.3	99.7	35-175	7.7	20	
4-Bromofluorobenzene (S)	%	95.5	1			100	98.8	74-125		30	
1,2-Dichloroethane-d4 (S)	%	. 1 99.5	.1.			97.8	96.8	70-130		30	
Toluene-d8 (S)	%	102	١			96.9	95.9	82-118		30	

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040613_6124

05/14/2010 17:36

Page 19 of 25

Printed:

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

QC Batch:

WETS/1585

Analysis Method:

SM 2540 C

QC Batch Method:

SM 2540 C

H10040613001 H10040613002 H10040613003 H10040613004

H10040630001

Associated Lab Samples: METHOD BLANK: 42865

Analysis Date/Time Analyst:

05/03/2010 19:44 CFS

Blank

Reporting

Parameter

Units

Result Qualifiers

Limit

Residue, Filterable (TDS)

mg/l

ND

10.0

LABORATORY CONTROL SAMPLE & LCSD: 42866

42868

LCS Analysis Date/Time Analyst: 05/03/2010 19:44 CFS LCSD Analysis Date/Time

05/03/2010 19:44 - CFS

Spike

LCS

LCSD LCS LCSD

% Rec

Max

Parameter

Units Conc. Result

Result % Rec

% Rec

Limit

RPD

Residue, Filterable (TDS)

mg/l

200 202.0

201.0

101

95-107 100

RPD 0.5

10

SAMPLE DUPLICATE: 42867

Original: H10040613001

Parameter	Units :	Originai Result	Result	RPD	Max RPD	DF	
WET CHEMISTRY Residue, Filterable (TDS)	mg/l),	10300	10300	0.2	10	10 10	

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040613_6124 Printed: 05/14/2010 17:36

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

QC Batch:

IC/1281

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

H10040613001

H10040613002

H10040613003

H10040613004

H10050054001

METHOD BLANK: 43247

Associated Lab Samples:

Analysis Date/Time Analyst:

05/04/2010 09:41 CFS

 Parameter
 Units
 Blank Result Qualifiers
 Reporting Limit

 Sulfate
 mg/l
 ND
 0.500

 Fluoride
 mg/l
 ND
 0.500

LABORATORY CONTROL SAMPLE & LCSD:

43248

43249

LCS Analysis Date/Time Analyst: 05/04/2010 10:00 CFS

LCSD Analysis Date/Time

05/04/2010 21:51 CFS

Parameter		Units	Spike Conc.	LCS Result	LCSD LCS Result % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD	
Sulfate Fluoride	-	mg/l ; mg/l /	10 10	10.73 10.99	10.67 107 10.81 110	107 108	85-115 85-115	0.5 1.7	20 20	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 43250

43251

Original: H10050054001

MS Analysis Date/Time Analyst:

05/04/2010 19:20 CFS

MSD Analysis Date/Time Analyst:

05/04/2010 19:39 CFS

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Sulfate	mg/l	ND	10	10.44	9.526	104	95.3	80-120	9.1	20
Fluoride	mg/l	ND	10	10.62	9.769	106	97.7	80-120	8.3	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10040613_6124

Printed: 05/14/2010 17:36

Phone: (713) 660-0901 Fax: (713) 660-8975

Legend

(S) - Indicates analyte is a surrogate

Qualifier	Qualifier Description
MI	Matrix Interference
1	Estimated value, between MDL and PQL (Florida)
JN	The analysis indicates the presence of an analyte
С	MTBE results were not confirmed by GCMS
NC	Not Calculated - Sample concentration > 4 times the spike
*	Recovery/RPD value outside QC limits
E	Results exceed calibration range
, H	Exceeds holding time
J	Estimated value
Q	Received past holding time
. В	Analyte detected in the Method Blank
N	Recovery outside of control limits
D	Recovery out of range due to dilution
NC	Not Calculable (Sample Duplicate)
· P	Pesticide dual column results, greater then 25%
TNTC	Too numerous to count

Report ID: H10040613_6124

Printed: 05/14/2010 17:36

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: H10040613 : El Paso #1A

Project Number: El Paso #1A

Lab ID		Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
H10040613001		MW-1	SW-846 3010A	DIGM/1708	SW-846 6010B	ICP/1384
H10040613002		MW-2	SW-846 3010A	DIGM/1708	SW-846 6010B	ICP/1384
H10040613003		MW-3	SW-846 3010A	DIGM/1708	SW-846 6010B	ICP/1384
H10040613004		MW-4	SW-846 3010A	DIGM/1708	SW-846 6010B	ICP/1384
H10040613001		MW-1	SW-846 5030	MSV/1840	SW-846 8260B	MSV/1841
H10040613002		MW-2	SW-846 5030	MSV/1840	SW-846 8260B	MSV/1841
H10040613003		MW-3	SW-846 5030	MSV/1840	SW-846 8260B	MSV/1841
H10040613004		MW-4	SW-846 5030	MSV/1840	SW-846 8260B	MSV/1841
H10040613006		Trip Blank	SW-846 5030	MSV/1844	SW-846 8260B	MSV/1845
H10040613005	j	Duplicate	SW-846 8260B	MSV/1845	·	
H10040613001		MW-1	SM 2540 C	WETS/1585		
H10040613002	. *	MW-2	SM 2540 C	WETS/1585		
H10040613003	•	MW-3	SM 2540 C	WETS/1585		
H10040613004	;	MW-4	SM 2540 C	WETS/1585		
H10040613001		MW-1	EPA 300.0	IC/1281		
H10040613002		MW-2	EPA 300.0	IC/1281		
H10040613003	1	MW-3	EPA 300.0	IC/1281		
H10040613004		MW-4	EPA 300.0	IC/1281	ı	

Report ID: H10040613_6124

'Printed: 05/14/2010 17:36

Phone: (713) 660-0901 Fax: (713) 660-8975

Sample Receipt Checklist

Wor	rkOrder:	H10040613	Received By	LOG
Date	e and Time	04/29/2010 09:15	Carrier Name:	FEDEXS
Tem	perature:	2.5°C	Chilled By:	Water Ice
1.	Shipping container/cooler	in good condition?		YES
2.	Custody seals intact on sh	ipping container/cooler?		YES
3.	Custody seals intact on sa	imple bottles?		Not Present
4.	Chain of custody present?			YES
5.	Chain of custody signed w	then relinquished and received?		YES
6.	Chain of custody agrees w	vith sample labels?		YES
7.	Samples in proper contain	er/bottle?		YES
8.	Samples containers intact	?)		YES
9.	Sufficient sample volume t	for indicated test?		YES
10.	All samples received within	n holding time?		YES
11.	Container/Temp Blank tem	perature in compliance?		YES
12.	Water - VOA vials have ze	ro headspace?		YES
13.	Water - Preservation chec	ked upon receipt(except VOA*)?		Not Applicable
	*VOA Preservation Check	ed After Sample Analysis		
	SPL Representative:		Contact Date & Time:	

Report ID: H10040613_6124

Client Name Contacted: Client Instructions:

Printed: 05/14/2010 17:36

Phone: (713) 660-0901 Fax: (713) 660-8975

Time Caffery Parkway Solution Comp Preserved by: Solution Comp	Reling		Standard	I ontract	Clienu Consultant Remarks F 100			o blank) F4	みと つ	MW-2	wolling	W-1	SAMPLE ID	\J#	Project Name No.: アードルンの H Site Name: だ)ののか井 A	College,	Thomes Fax: 505-237-84	121 Indian Se	Client Name: Tetra, Tech to	Analysis Re	
Terr Parkway Terr Parkway Terr		, Relinquished by:	allegan		bothe before any tobe living Labor					_					(San) van compy)	Grandwise OR H	mall: 1 Colly	5-237-86	Т	for Conoca Primips	Analysis Request & Chain of Custody Record	CDI Inc
The recial Defection Limits of Containers The recial Defetion Limits of Containers The recipion Limits of Co	mbaccador Caffer Pa	Vate	28-1	·	atory remarks:			3	3	3).) X	X E	W= SL=			oit O en o	*************				•
Received by: Received by: Recei		1 may 1 m	300	Special Detection				1			ų	1 4 El 2		1=1 8=86 1=H	litér oz 16 C1	4=4 =160 2=	vial oz 4 z X= HNO	X=oth 10=via other 3	er il	size		
and the second of the contract		ved by:	Recei					2 X		S X X X	5 X X)	3 ×	5×1	B	ΈΣ	(521	O L	2	Requested Analysis	⊓ IOO¥oo i o	L10040613