3R - 427

MAR 2010 GWMR

06/15/2011

MARCH 2010 QUARTERLY GROUNDWATER MONITORING REPORT

CONOCOPHILLIPS COMPANY

EL PASO NO.1A NATURAL GAS PRODUCTION SITE SAN JUAN COUNTY, NEW MEXICO

API # 30-045-22778

Prepared for:

420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

TETRATECH, INC.

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 96900122.100

June 2011

TABLE OF CONTENTS

INTRODUCTION.....1

	1.1	Site Historyl
2.0	METH	HODOLOGY AND RESULTSI
	2.1	Monitoring Summary I
	2.2	Groundwater Monitoring Methodology
	2.3	Groundwater Sampling Analytical Results2
3.0	CON	CLUSIONS 3
FIG	URES	
1.	Site Locat	ion Map
2.	Site Layou	t Map
3.	Generalize	ed Geologic Cross Section
4.	Groundwa	ater Elevation Contour Map (March 2010)
5.	Groundwa	ater Quality Standard Exceedences Concentration Map (March 2010)
6.	USGS Gau	iging Station Location Map
TA	BLES	
١.	Site Histor	ry Timeline
2.	Groundwa	ater Elevation Data Summary (September 2007 through March 2010)
3.	Groundwa	ater Laboratory Analytical Results Summary (September 2007 through March 2010)
4.	USGS Ga	uging Station 0935656, Canyon Largo NR Blanco, NM - Historical Analytical Data
	Summary	
AP	PENDICE	s

March 2010 Quarterly Groundwater Sampling Field Forms

Supply Assessment, Volume III. Figure 1-6 (September 2003)

March 2010 Quarterly Groundwater Laboratory Analytical Report

San Juan Water Commission, San Juan Hydrologic Unit Regional Water Plan, Water

Appendix A.

Appendix B.

Áppendix C.

1.0

QUARTERLY GROUNDWATER MONITORING REPORT CONOCOPHILLIPS COMPANY EL PASO NO. I A SAN JUAN COUNTY, NEW MEXICO

1.0 INTRODUCTION

This report details the results of quarterly groundwater monitoring completed by Tetra Tech, Inc. (Tetra Tech) on March 14, 2011 at the ConocoPhillips Company El Paso No. IA site in San Juan County, New Mexico (Site). This sampling event represents the tenth quarter of groundwater monitoring conducted by Tetra Tech at the Site, nine of which include all four Site monitor wells.

The Site is located on BLM land east of Blanco, NM near the intersection of New Mexico Highway 64 and County Road 4450 in Section 20, Township 29 North, Range 9 West. The Site consists of the El Paso No. IS and El Paso No. IA natural gas production wellheads and includes all associated equipment and installations. A site location map is included as **Figure 1**, a site detail map is included as **Figure 2**, and a generalized geologic cross section is included as **Figure 3**.

1.1 Site History

The history of the Site is outlined in **Table 1**.

2.0 METHODOLOGY AND RESULTS

2.1 Groundwater Monitoring Methodology

Groundwater Elevation Measurements

On March 14, 2011 groundwater elevation measurements were recorded in Monitor Wells MW-1, MW-2, MW-3, and MW-4 using a dual interface probe. Groundwater elevations are detailed in **Table 2**. A groundwater elevation contour map is presented as **Figure 4**. Based on March 2011 monitoring event data, groundwater flow is to the southwest and consistent with historical records of this site. The San Juan River is approximately 1 mile from the site and flows west.

Groundwater sampling

Each monitor well was sampled after three well casing volumes had been purged; or until measured groundwater parameters including temperature, pH, conductivity, total dissolved solids (TDS), oxidation-reduction potential (ORP), and dissolved oxygen (DO) had stabilized. Parameters were collected using a YSI 556 multi-parameter sonde and were recorded on Tetra Tech Groundwater Sampling Field Forms (**Appendix A**).

Purged groundwater was disposed of in the Site produced water tank (**Figure 2**). A dedicated 1.5-inch polyethylene bailer was used to purge and collect groundwater samples. The samples were then placed in laboratory prepared bottles, packed on ice, and shipped with chain of custody documentation to Accutest Laboratories (Accutest) located in Houston, Texas. The samples were analyzed for presence of

benzene, toluene, ethylbenzene, and xylenes (BTEX) by Environmental Protection Agency (EPA) Method 8260B, fluoride and sulfate by EPA Method E300.0, total dissolved solids (TDS) by EPA Method 2540C, and dissolved manganese by EPA Method 6010B.

2.3 Groundwater Sampling Analytical Results

Groundwater samples collected from Site monitoring wells during the March 2011 monitoring event were below the New Mexico Water Quality Control Commission (NMWQCC) standards for BTEX. Exceedances of NMWQCC standards were detected for the following constituents:

• Fluoride

The NMWQCC groundwater quality standard for fluoride is 1.6 milligrams per liter (mg/L). Groundwater collected from MW-I contained a fluoride concentration of 2.44 mg/L; groundwater collected from MW-2 contained a fluoride concentration of 2.1 mg/L; groundwater collected from MW-3 contained a fluoride concentration of 1.67 mg/L; while groundwater collected from MW-4 contained a fluoride concentration of 2.35 mg/L.

Sulfate

The NMWQCC groundwater quality standard for sulfate is 600 mg/L. Groundwater collected from Monitor Well MW-1 contained sulfate at 6,520 mg/L; groundwater collected from MW-2 contained sulfate at 12,200 mg/L; groundwater collected from MW-3 contained sulfate at 6,290 mg/L; and groundwater collected from MW-4 contained sulfate at 4,920 mg/L. The highest concentration of sulfate was found in groundwater collected from MW-2, the up-gradient monitoring well.

Manganese

The NMWQCC groundwater quality standard for dissolved manganese is 0.2 mg/L. Groundwater collected from Monitor Well MW-1 contained dissolved manganese at 1.19 mg/L, groundwater collected from MW-2 contained dissolved manganese at 1.82 mg/L, and groundwater collected from MW-3 contained dissolved manganese at 0.437 mg/L. Groundwater collected from MW-4 was found to contain dissolved manganese below the NMWQCC standard.

Total Dissolved Solids

The NMWQCC groundwater quality standard for total dissolved solids (TDS) is 1,000 mg/L. Groundwater collected from Monitor Well MW-1 contained TDS at 14,200 mg/L; groundwater collected from MW-2 contained a concentration of 18,500 mg/L; groundwater collected from MW-3 contained a concentration of 9,750 mg/L; and groundwater collected from MW-4 contained a concentration of 7,040 mg/L. The highest concentration of TDS was found in groundwater collected from MW-2, the up-gradient monitoring well.

Groundwater laboratory analytical results are summarized in **Table 3**. A NMWQCC standard exceedances map is presented as **Figure 5**. The laboratory analytical report for the March 2011 groundwater sampling event is included as **Appendix B**.

3.0 CONCLUSIONS

To date, groundwater samples collected from Site monitor wells have never exceeded NMWQCC groundwater quality standards for BTEX. Furthermore, BTEX concentrations have consistently been below the minimum laboratory detection limits in Monitor Wells MW-1, MW-2 and MW-4 since monitoring began. Monitoring Wells MW-1, MW-2, MW-3, and MW-4 were found to have concentrations exceeding the NMWQCC standard for fluoride, sulfate and total dissolved solids. Groundwater collected from Monitoring Wells MW-1, MW-2, and MW-3 were also found to exceed the NMWQCC standard for dissolved manganese. The concentrations of sulfate and TDS appear to come from an up-gradient location since MW-2 consistently contains the highest levels of these constituents. Fluoride concentrations appear to be stable.

Based on information obtained from the United States Geological Survey (USGS), specifically data from USGS Gauging Station 0935656 located approximately three miles up-gradient of the El Paso No. I A site (Figure 6), historical analytical data shows elevated concentrations of sulfate, dissolved manganese and TDS above NMWQCC standards in the Canyon Largo area. A summary of the USGS historical analytical data has been included and summarized on Table 4. It is likely that the elevated concentrations of sulfate, manganese and TDS that have been reported in El Paso No. I A site monitoring wells are associated with regional background levels of these constituents. In addition, the document San Juan Hydrologic Unit Regional Water Plan Water Supply Assessment, Volume III, groundwater in the vicinity of the El Paso No. I A site is noted in figure 1-6 (Appendix C) as having levels of TDS above 1,200 mg/L (San Juan Water Commission, 2003).

Since BTEX is below standards in all four monitoring wells, and the other constituents of concern that are above NMWQCC standards appear to be coming from up-gradient of the site, are at background levels, or are stable; Tetra Tech recommends the discontinuation of quarterly groundwater monitoring and requests no further action status be granted for the Site. The same request was made in the December 2010 Quarterly groundwater Monitoring Report dated April 13, 2011. Groundwater sampling activities have ceased at the site. Plugging and abandonment of site monitor wells will be pursued once the NMOCD has responded to this request for no further action. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

References

San Juan Water Commission, September 2003. San Juan Hydrologic Unit Regional Water Plan, Water Supply Assessment, Volume III.

FIGURES

- 1. Site Location Map
 - 2. Site Layout Map
- 3. Generalized Geologic Cross Section
- 4. Groundwater Elevation Contour Map (March 2011)
- 5. Groundwater Quality Standard Exceedences Concentration Map
 - 6. USGS Gauging Station Location Map

FIGURE 1.

Site Location Map ConocoPhillips Company El Paso 1A San Juan County, NM

Approximate ConocoPhillips El Paso 1A Site location

Lat = 36.716599 Lon = -107.804353

TETRA TECH, INC.

TE TETRATECH 0.098,8 Figure 3
El Paso No. 1A - Cross-Section A-A' 249,529 4,067,090 Surface Distance in Feet Silty Sand ithology Index · Sand Shale 249,502 5/24/2010 Feet Below Ground Surface 1997 ni noitsvel∃ 0.098,8 0.088,8

FIGURE 6.

USGS Gauging Station Location Map ConocoPhillips Company El Paso 1A San Juan County, NM

Approximate ConocoPhillips El Paso 1A Site location

Approximate USGS Gauging Station 0935656 Location, Canyon Largo, NR Blanco, NM

TETRA TECH, INC.

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Data Summary (September 2007 through March 2011)
- Groundwater Laboratory Analytical Results Summary (September 2007 through March 2011)
 USGS Gauging Station 0935656, Canyon Largo NR, Blanco, NM Historical Analytical Data Summary

DATE	ACTIVITY
5-Jan-78	Well spudded by El Paso Natural Gas Co.
1-Nov-86	Meridian Oil, Inc. becomes the operator under El Paso Production Company
31-Dec-00	Operator name change from Burlington Resources Oil and Gas Company to Burlington Resources Oil and Gas Company LP.
31-Mar-06	ConocoPhillips Company completed the aquistion of Burlington Resources.
Feb-07	Hydrocarbon-impacted soils discovered during trench work being conducted for a new flowline. Original source of contamination is unknown.
Feb-07	Contaminated soil excavated from the Site. Soil samples collected and analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) were below NMOCD regulations.
21-Sep-07	Groundwater monitoring well installed to a depth of ten (10) feet below ground surface (bgs) by Envirotech Inc. of Farmington, NM (Envirotech). A soil sample obtained from the well boring was analyzed for benzene, BTEX and total petroleum hydrocarbons (TPH). Results were below NMOCD regulations of 10 parts per million (ppm), 50 ppm, and 100 ppm, respectively.
21-Sep-07	A ground water sample was collected from the temporary monitoring well and analyzed for BTEX; results were below the State of New Mexico drinking water standard for this constituent.
27-Sep-07	Depth to groundwater measured at seven (7) feet bgs.
Sep-07	Envirotech report recommends plugging and abandonment of the temporary ground water monitoring well and a No Further Action determination for the Site (Envirotech, 2007).
Apr-08	Oil Conservation Division of NM Energy, Minerals, and Resources Dept. indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn von Conten.
25-Oct-08	1st quarter sampling of MW-1 by Tetra Tech.
Jan-09	Attempt to install additional monitoring wells; roads inaccessible by drill rig due to winter weather conditions.
3 and 4-March-09	Monitoring wells MW-2, MW-3, MW-4 installed and developed by WDC overseen by Tetra Tech. Soil samples were collected from MW-3 and MW-2 boring locations.
2-Apr-09	First quarter of sampling to include all 4 monitoring wells. A baseline suite was collected for MW-1, MW-2, MW-3 and MW-4. BTEX constituents under NMWQCC standards in all site monitor wells.
18-Jun-09	2nd quarter of groundwater sampling conducted by Tetra Tech to include wells MW-1, MW-2, MW-3 and MW-4. Second consecutive quarter of BTEX constituents being under NMWQCC standards in all site monitor wells.
29-Sep-09	3rd quarter of groundwater sampling conducted by Tetra Tech to include wells MW-1, MW-2, MW-3 and MW-4. Samples collected for dissolved metals exceeding standards that were previously run by the total metals test method; Al, Mn, Fe. Dissolved manganese was found in concentrations above NMWQCC standard. Third consecutive quarter of BTEX constituents being under NMWQCC standards in all site monitor wells.
15-Dec-09	4th quarter groundwater sampling conducted by Tetra Tech to include wells MW-1, MW-2, MW-3 and MW-4. Analytical results for fluoride are inconclusive. Fourth consecutive quarter of BTEX constituents being under NMWQCC standards in all site monitor wells.
28-Apr-10	5th quarter groundwater sampling conducted by Tetra Tech to include wells MW-1, MW-2, MW-3 and MW-4. Fifth consecutive quarter of BTEX constituents being under NMWQCC standards in all site monitor wells.
8-Jun-10	6th quarter groundwater sampling conducted by Tetra Tech to include wells MW-1, MW-2, MW-3 and MW-4. Sixth consecutive quarter of BTEX constituents being under NMWQCC standards in all site monitor wells.
23-Sep-10	7th quarter groundwater sampling conducted by Tetra Tech to include wells MW-1, MW-2, MW-3 and MW-4. Seventh consecutive quarter of BTEX constituents being under NMWQCC standards in all site monitor wells.
15-Dec-10	8th quarter groundwater sampling conducted by Tetra Tech to include wells MW-1, MW-2, MW-3 and MW-4. Eighth consecutive quarter of BTEX constituents being under NMWQCC standards in all site monitor wells.
14-Mar-11	9th quarter groundwater sampling conducted by Tetra Tech to include wells MW-1, MW-2, MW-3 and MW-4. Ninth consecutive quarter of BTEX constituents being under NMWQCC standards in all site monitor wells.
13-Apr-11	Results of the Decebmer 2010 groundwater sampling event were reported to the NMOCD with a request for remediation project closure and No Further Action status.

Table 2. Gi	ounuwater El	evalion Data	Sullillary - C	onocoriiiiip	s Company El Paso No. 1A	
Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				9/21/2007	7.00	92.52
				10/25/2008	10.92	88.60
				1/30/2009	NM	NM
				4/2/2009	10.33	89.19
			1 .	6/18/2009	10.65	88.87
MW-1	13.55	4.75-9.75	99.52	9/29/2009	10.96	88.56
14144-1	10.00	4.75-5.75	33.32	12/15/2009	10.99	88.53
				4/28/2010	10.53	88.99
				6/8/2010	10.48	89.04
,				9/23/2010	10.47	89.05
				12/15/2010	10.36	89.16
		ı		3/14/2011	10.32	89.20
			,	4/2/2009	8.49	90.23
	•			6/18/2009	8.71	90.01
				9/29/2009	8.70	90.02
				12/15/2009	8.75	89.97
MW-2	20.75	3-17.9	98.72	4/28/2010	8.38	90.34
				6/8/2010	8.30	90.42
				9/23/2010	8.39	90.33
				12/15/2010	8.34	90.38
				3/14/2011	8.29	90.43
				4/2/2009	9.71	88.47
				6/18/2009	9.75	88.43
				9/29/2009	· 10.10	· 88.08
	; .			12/15/2009	10.07	88.11
MW-3	21.15	3.1-18.1	98.175	4/28/2010	9.66	88.52
			-	6/8/2010	9.62	88.56
				9/23/2010	9.59	88.59
				12/15/2010	9.48	88.70
				3/14/2011	9.44	88.74
				4/2/2009	9.74	88.54
				6/18/2009	9.78	88.50
				9/29/2009	10.04	88.24
	,			12/15/2009	10.06	88.22
MW-4	20.83	2.9-17.9	98.28	4/28/2010	9.70	88.58
				6/8/2010	9.61	88.67
				9/23/2010	9.45	88.83
				12/15/2010	9.41	88.87
				3/14/2011	9.43	88.85

ft = Feet

TOC = Top of casing

bgs = below ground surface

NM = Not Measured

^{*} Elevation relative to wellhead, set at an arbitrary elevation of 100 feet above mean sea level

Table 3. Groundwater Laboratory Analytical Results Summary - ConocoPhillips Company El Paso No. 1A

Date	Benzene (µg/L)	Toluene (µg/L)	Emylipenzene (μg/L)	λγιστισε (μg/L)	(mg/L)	Sulfate (mg/L)	Aluminum (mg/L)	tron (mg/L)	Manganese (mg/L)	Dissolved Solids (mg/L)
9/21/2007	1.4	9.0	z·0>'	0.3	SN	SN	SN	SN	SN	Ϋ́
10/25/2008	<0.5	<0.5	<0.5	<0.5	\$	6400	SN	26.	5.49*	Ϋ́
4/2/2009	<0.5	<0.5	5.0>	<0.5	1.92	7580	2.21	29.6*	3.14*	10000
6/18/2009	\$>	<5	<5	<5	2.04	7970	2.1	7.66*	3.06*	ΑN
9/29/2009	۲۷	. <1	1>	<1	1.56	0008	. <0.1	0.0237	1.42	10600
12/15/2009	<1	<1	<1	<1	<50	10100	NA	NA	1.68	10400
4/28/2010	۲	۲	۲۶	۲	2.14	8100	Ϋ́	ΑN	2.37	10300
6/8/2010	<1	<1	دا	<1	< 5.0	0699	VA	NA	2.17	10600
9/23/2010	۲>	۲>	1>.'	⊽	2.46	7080	Ą	ΝA	1.8	10400
12/15/2010	1>.	<1	1>	<1	2.02	7140	NA	NA	1.36	9980
3/14/2011	۲>	۲۶	۱۷	₹	2.44	6520	Ą	ΑN	1.19	14200
4/2/2009	<0.5	<0.5	<0.5	<0.5	<0.5	15900	0.705	0.751*	1.16*	22500
6/18/2009	\$	\$	\$>	<5	. 79.0	17000	1.49*	1.23*	1.92*	Ā
9/29/2009	٥	۲	₹	۲۰	<0.5	29800	<0.1	<0.02	2.03	31800
12/15/2009	۲	₹	₹	₹	<100	22100	¥	AN	1.54	25100
4/28/2010	۲	۲	۲	₹	2.18	. 8350	ΑN	AN	0.941	12300
6/8/2010	۲>	۲۶	1> -	<۱ -	2.0	12200	ΑN	Ą	1.38	19000
9/23/2010	۲>	- <1	1>	. <1	2.09	12400	ΑN	AA	1.74	19500
12/15/2010	<1	<1	-1	<۱	< 0.5	14500	ΑN	NA	1.34	20300
3/14/2011	۲۰	<1	<1	<1	2.1	12200	NA	NA	1.82	18500
4/2/2009	<0.5	<0.5	25	362	1.68	4090	5.47*	9.31*	0.788*	7530
6/18/2009	<5	<5 ·	15	. 87	1.68	5750	3.75	5.3*	0.454*	NA
9/29/2009	۱>	<1	2.7	20	. 1.47	0689	0.224	0.14	0.432	8630
12/15/2009	<1	<1	ε	24	<50	7490	. VN	ΝΑ	0.583	9230
4/28/2010	2	۲۰	15	124	1.53	2680	νA	NA	0.519	6610
6/8/2010	₹	<1	5.4	45.7	< 5.0	4740	NA	NA	0.409	6620
9/23/2010	₹	<1	1.3	10.5	2.52	4490	NA	NA	0.385	12600
12/15/2010	۲>	<1	< 1.0	3.7	1.56	6950	. VN	ΝA	0.423	9480
3/14/2011	۲۷	<1	<1	2.5	1.67	6290	NA	NA	0.437	9750
4/2/2009	<0.5	<0.5	<0.5	<0.5	2.42	4750	2.1*	2.12*	0.396*	0999
6/18/2009	\$	<5	<5	<5	2.25	5300	5.52*	6.91*	0.333*	NA
9/29/2009	۲۷	<1	<1	<1	2.26	. 5340	0.943	0.393	0.134	6760
12/15/2009	۲	<1	1>	. 1>	<50	2660	NA N	Ą	0.201	6500
4/28/2010	<۱	<1	٠ <١	<1 .	2.38	4820	NA	NA	0.198	8320
6/8/2010	٦	<1	<1	. <1 ·	2.78	3910	NA	NA	0.177	3380
9/23/2010	₹	₹.	٧	<1	1.8	6200	NA	NA	0.157	8600
12/15/2010	₹	۲>	<1	<1	2.37	4870	NA	NA	0.143	4380
3/14/2011	₹	۸1	<1	<1	2.35	4920	NA	NA	0.185	7040
NMWQCC Standards	1 11000	1000								

Explanation

No No In Discolor Care Mew Mexico Water Quality Control Commission

No No In Discolor Care Mew Mexico Water Quality Control Commission

mg/L = mitigrams per liter (parts per militon)

Mg/L = mitigrams per liter (parts per militon)

NA = Not Analyzed

NA = Not Analyzed

NA = Not Analyzed

O T ug/L

Boal a concentrations that exceed the MWMQCC limits

- Results reported for total metals analysis, results can not be compared to NMWQCC Standards for dissolved metals

Table 4. USGS Gauging Station 0935656, Canyon Largo NR Blanco, NM - Historical Water Quality Analytical Data Summary

Sample Date and	Sulfate (Filtered)	Fluoride (Filtered)	Dissolved Solids (Filtered)	Dissolved Solids Sum of Constituents
Time (MST) 1979-10-31 13:45	mg/L 5800	mg/L 1.60	mg/L 8920	mg/L 8640
1979-11-08 12:30	6000	1.20	10200	9410
1979-12-03 11:30	4800	1.60	8890	7480
1980-01-04 13:00	3600	1.40	6990	5840
1980-02-05 11:30	4000	1.20	6670	6200
1980-03-03 12:30	390	0.90	729	643
1980-04-04 11:30	4400	1.40	7540	6750
NMWQCC Standards	600 (mg/L)	1.6 (mg/L)	1000 (mg/L)	1000 (mg/L)

Sample Date and Time (MST)	Manganese (Filtered) mg/L
9/14/1958 15:00	0
5/2/1978 14:30	0.02
7/19/1979 12:00	< 0.010
8/15/1979 10:15	< 0.010
1/13/1981 9:35	0.18
3/3/1981 15:45	0.41
7/1/1981 20:00	1.9
7/1/1981 20:15	4.4
7/2/1981 15:00	. 0
7/15/1981 7:00	2.7
7/26/1981 20:15	3.5
9/9/1981 10:15	< 0.001
NMWQCC Standards	0.2 (mg/L)

Notes:

NMWQCC = New Mexico Water Quality Control Commission mg/L = milligrams per liter (parts per million)

Bold = concentrations that exceed the NMWQCC Standards

All data was obtained from the United States Geological Survey, National Water Information System, at http://waterdata.usgs.gov/nwis/qwdata. All available data points were included in the historical summary.

APPENDIX A

MARCH 2011GROUNDWATER SAMPLING FIELD FORMS

Tt TETRA	TECH, INC.		WATER S	AMPLING F	IELD FOR	M		·
Project Name	El Paso 1A				Page	1	of	4
act No.		· · · · · · · · · · · · · · · · · · ·						
Site Location	Bianco, NM							
Site/Well No.		Coded/ Replicat		<u> 35_</u>	Date	3.1	4.11	
WeatherSU	my Follows	70° Time Sa Began	mpling 102)	Time Samplin Completed	g 	1630	· •
		.,	EVACUATION	N DATA			v	
Description of	Measuring Point (MP)	Top of Casing	• .					
	Above/Below Land Su			MP Elevation				99.52
Total Sounded	Depth of Well Below	MP13.58	3	Water-Level Ele	vation			
Held	Depth to Water Belo	WMP (0.	32	Diameter of Cas	ing 2"			
Wet	Water Column is		3.26	Gallons Pumped Prior to Sampling	l/Balled	ped/bailed) 4	.5 gal.
	Gallons pe	r Foot	0.16					O
	Gallens in	n Well	.5216	Sampling Pump (feet below land		-		
Purging Equip	ment Purge pum	p (Bailer)	¥3= 1.5	565				
			SAMPLING DATA/FIEL	D PARAMETER	5			
Time	Temperature (°C)	рН	Conductivity (µS/cm³)	TDS (g/L)	DO (mg/L)	DO %	ORP (mV)	Volume (gal.)
015 175	9.69	1844	7910	3-907.2	3810	35.0	-105.6	1.75
1627	9.70	8.37	7919	7.272	2.87	25.2	-/30./	2.25
1628	9.70	8.38	7920	7,272	2.00	18.2	-138.9	2,50
				·	<u> </u>			
Sampling Equi	pment	Purge Pump/B	ailer)					
Constitu	uents Sampled		Container Description			Prese	rvative	
BTEX	~	3 40mL	VOA's	· · · · · · · · · · · · · · · · · · ·	HCI			
	Dissolved	M plastic			none			
Flouride, Sulfat	te, TDS	plastic			none			
Remarks	Ho is	dark br	aun-blact. (w sulfur	odar,	10 S	heen o	bserved

	<u> </u>		Well Casing	Volumes			, , , , , , , , , , , , , , , , , , ,
Gal./ft	1 1/4" = 0.077	2 "	= 0.16	3"	= 0.37	4" = 0.65	
	1 1/2" = 0.10	2 1/2"	= 0.24	3" 1/2	= 0.50	6" = 1.46	

Sampling Personnel Cassle Brown, Christine Mathews

TETRATECH, INC.	WATER S	AMPLING F	IELD FOR	VI		
Project Name El Paso 1A			Page	2	of	4_
ct No.						
Site Location Blanco, NM						
Coded Site/Well No. MW-2 Replic	/ ate No.		Date	3.1	4.11	
Time S	Sampling ////		Time Sampling		7	
Weather Sunny, Wirm 700 Began		2	Completed	1	100	
•	EVACUATIO	N DATA				
Description of Measuring Point (MP) Top of Casin	g					
Height of MP Above/Below Land Surface	·	MP Elevation		``		98.72
Total Sounded Depth of Well Below MP 20	25-20.67	Water-Level Ele	vation		7,	
Held Depth to Water Below MP		Diameter of Cas			,	······································
Wet Water Column in Well		Gallons Pumper	/Bailed/		7	
		Prior to Samplin	<u>pump</u>	ed/bailed	· · · · · · · · · · · · · · · · · · ·	
Gallons per Foot	0.16	Sampling Pump	Intake Setting	6,0		
Gallons in Well	1.981	(feet below land	surface)	 	-	
Purging Equipment Purge pump (Bailer)	<u> </u>	14				· · ·
	SAMPLING DATA/FIE		· S			
Time Temperature (°C) pH	Conductivity (µS/cm³		DO (mg/L)	DO %	ORP (mV)	Volume (gal.)
16.56 11.00 8.20	9499	8.392	2.01	18.9	-151.8	50
1657 11.12 8.18	99.28	8.779	1.65	15.6	<u>-153, 9</u>	5.5
168 11.33 8.14	10986	9.721	1.47	14.2	-155.4	60
Sampling Equipment Purge Pump	Baller		· · · · · · · · · · · · · · · · · · ·	· · · · · ·		
Constituents Sampled	Container Description	<u>n</u>		Prese	rvative	
BTEX 3 40ml	. VOA's		HC1			
Dissolute mn plastic			none			
Flouride, Sulfate , TDS plastic			none			
<i>,</i>	-	****	,			

Well Casing Volumes

Gel./ft. 1 ¼° = 0.077 2" = 0.16 3" = 0.37 4" = 0.65
1 ½" = 0.10 2 ½" = 0.24 3" ½ = 0.50 6" = 1.46

Sampling Personnel

Cassie Brown, Christine Mathews

TE TETRA	ATECH, INC.		WATER S	AMPLING F	IELD FOR	M		
Project Name	El Paso 1A			<u> </u>	Page	3	of	4
ect No.								
Site Location	Blanco, NM							
Site/Well No.	MW-3	Coded/ Replicate	• No.		Date	3.14	1-11	
Weather SU	nny warm	70 Time Sar Began	mpling 16	10	Time Sampling Completed	g [[025	
	1)		EVACUATIO	Ν ΠΑΤΑ	•	337		
Description of	Measuring Point (MP)	Top of Casing						
Height of MP	Above/Below Land Sur	rface		MP Elevation				98.175
Total Sounded	Depth of Well Below	MP	21.00	Water-Level Ele	vation			
Held	Depth to Water Belo	w MP	9.44	Diameter of Cas	lag 2"			•.
,	_ Water Column ir		1,56	Gallons Pumper Prior to Samplin	/Bailed	ped/bailed		
-	- Galions pe		0.16		<u> </u>		5.75	
	Gallons in		1.92496	Sampling Pump (feet below land		_	<i>y. C</i>	
Purging Equip	•		x3=5.	55				
	(SAMPLING DATA/FIE	LD PARAMETER	.S	•*		• .
Time	Temperature (°C)	На	Conductivity (µS/cm3	TDS (g/L)	DO (mg/L)	DO %	ORP (mV)	Volume (gal.)
- He18	10.70	8.62	7897	7.008	2.28	21.1	-1305	4.75
1620	10.25	8.65	7847	7.102	2:32	21.6	-169.8	5.25
1622	16.13	8.68	7843	7.119	2.16	19.9	-1725	5.75
				· .				
1	1 .	1						1

- He18	10.70	8.62	7897	7.008	2.28	21.1	-1905	4.75
1420	16.25	8.65	7847	7.102	2:32	21.6	-169.8	5.25
1622	16.13	8,108	7843	7.119	2.16	19.9	-17/25	5.75
	•	·						
			3		· · · · · · · · · · · · · · · · · · ·			

Sampling Equipment

Purge Pump/Bailer

Constitue	ents San	1DIEQ

Container Description

<u>Preservative</u>

BTEX

3 40mL VOA's

HCI

Dissolved mn

Flouride, Sulfate

plastic plastic none none

Remarks

Sampling Personnel

Cassie Brown, Christine Mathews

Well Casing Volumes

Gal/ft. 1 1/4" = 0.077 2" = 0.16 = 0.37

= 0.65

1 1/2" = 0.10

2 1/2" = 0.24

3" 1/2 = 0.50

6" = 1.46

TE TETRATECH, INC.		V	/ATER S	SAMPLING F	IELD FOR	M		
Project Name El Paso 1A				<u>.</u> .	Page		<u>4</u> of	4
,act No.	· · · · · · · · · · · · · · · · · · ·				•			
Site Location Blanco, NM				·				
Site/Well No. MW-4	Coded/ Replicate	e No.			Date	3.1	4.1)	
Weather Sunny, Warm	70° Time Sa Began	mpling ———	[610	·	Time Samplin Completed	9 16	45	
••		E	VACUATIO	ON DATA	·			
Description of Measuring Point (MP)	Top of Casing							
Height of MP Above/Below Land Sur	face			MP Elevation				98.28
Total Sounded Depth of Well Below	MP20.86	20.4	54	Water-Level Ele	vation	•		
Held Depth to Water Beld	w MP	1.43		Diameter of Cas	iri 2"			
Wet Water Column is		1.1		Gallons Pumpe(Prior to Samplin	/Bailed)	ped/bailed)	
Gallons pe	r Foot	0.16				5	.5	
Gallons in	Well	1777	1	Sampling Pump (feet below land				
Purging Equipment Purge pum	p / Bailer	X3	= 5.3	33				
				LD PARAMETER	s		-	
Time Temperature (°C)	pH	Conductiv	ity (µS/cm³)		DO (mg/L)	00 %	ORP (mV)	Volume (gal.)
1639 4.21	8,55	42,2	5 <u>0 </u>	5.496	3.93	30.7		4/15
1640 11.46	8-5A	19/2	<u> 103</u>	5.488	3.43	33.9	79619	5.0
1642 11.18	8.53	(221	<u>le</u>	5.488	3.62	33.9	-91.8	5.5
	L	<u></u>						
Sampling Equipment	Purge Pump/B	ailer)						
Constituents Sampled		Containe	r Descriptio	<u>n</u>		Prese	<u>ervative</u>	
BTEX	3 40mL \	/OA's			HCI			
Dissalved mn	_plastic				none			

Sampling Personnel Cassie Brown, Christine Mathews

Well Casing Volumes

Gal./ft. 11/4" = 0.077 2" = 0.16 3" = 0.37 4" = 0.65

11/2" = 0.10 21/2" = 0.24 3" 1/2 = 0.50 6" = 1.46

plastic

Flouride, Sulfate

Remarks

APPENDIX B

MARCH 2011 GROUNDWATER LABORATORY ANALYTICAL REPORT

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Certificate of Analysis Number:

11030373

Report To: COP ElPaso1A **Project Name:** Site: Blanco, NM Tetra Tech, Inc. **Kelly Blanchard** Site Address: 6121 Indian School Road, N.E. Suite 200 PO Number: Albuquerque State: **New Mexico** 87110-State Cert. No.: ph (505) 237-8440 fax: (505) 881-3283 **Date Reported:** 3/22/2011

This Report Contains A Total Of 18 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

3/22/2011

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: Conoco Phillips

Certificate of Analysis Number:

11030373

Report To: COP ElPaso1A **Project Name:** Site: Blanco, NM Tetra Tech, Inc. Kelly Blanchard Site Address: 6121 Indian School Road, N.E. Suite 200 PO Number: **Albuquerque** State: **New Mexico** NM 87110-State Cert. No.: ph (505) 237-8440 fax: (505) 881-3283 **Date Reported:** 3/22/2011

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by

50 a Ovidenas

11030373 Page 1

3/22/2011

Erica Cardenas

Project Manager

Test results meet all requirements of NELAC, unless specified in the narrative.

Date

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: Conoco Phillips

Certificate of Analysis Number:

11030373

his designee, as verified by the following signature.

50 a Ovidenas

11030373 Page 2

3/22/2011

Date

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Certificate of Analysis Number:

11030373

Report To:

Fax To:

Tetra Tech, Inc.

Kelly Blanchard

6121 Indian School Road, N.E.

Suite 200

Albuquerque

87110-

ph (505) 237-8440

fax: (505) 881-3283

Project Name:

COP ElPaso1A

Site:

Blanco, NM

Site Address:

PO Number:

State:

New Mexico

State Cert. No.:

Date Reported:

3/22/2011

Lab Sample ID	Matrix	Date Collected	Date Received	COCID	HOLD
11030373-01	Water	03/14/2011 16:30	3/16/2011 9:10:00 AM	297388	
11030373-02	Water	03/14/2011 17:00	3/16/2011 9:10:00 AM	297388	
11030373-03	Water	03/14/2011 16:25	3/16/2011 9:10:00 AM	297388	
11030373-04	Water	03/14/2011 16:45	3/16/2011 9:10:00 AM	297388	
11030373-04	Water	03/14/2011 16:45	3/16/2011 9:10:00 AM	302624	
11030373-05	Water	03/14/2011 16:35	3/16/2011 9:10:00 AM	302624	
11030373-06	Water	03/14/2011 22:00	3/16/2011 9:10:00 AM	302624	
	11030373-01 11030373-02 11030373-03 11030373-04 11030373-04 11030373-05	11030373-01 Water 11030373-02 Water 11030373-03 Water 11030373-04 Water 11030373-04 Water 11030373-05 Water	11030373-01 Water 03/14/2011 16:30 11030373-02 Water 03/14/2011 17:00 11030373-03 Water 03/14/2011 16:25 11030373-04 Water 03/14/2011 16:45 11030373-04 Water 03/14/2011 16:45 11030373-05 Water 03/14/2011 16:35	11030373-01 Water 03/14/2011 16:30 3/16/2011 9:10:00 AM 11030373-02 Water 03/14/2011 17:00 3/16/2011 9:10:00 AM 11030373-03 Water 03/14/2011 16:25 3/16/2011 9:10:00 AM 11030373-04 Water 03/14/2011 16:45 3/16/2011 9:10:00 AM 11030373-04 Water 03/14/2011 16:45 3/16/2011 9:10:00 AM 11030373-05 Water 03/14/2011 16:35 3/16/2011 9:10:00 AM	11030373-01 Water 03/14/2011 16:30 3/16/2011 9:10:00 AM 297388 11030373-02 Water 03/14/2011 17:00 3/16/2011 9:10:00 AM 297388 11030373-03 Water 03/14/2011 16:25 3/16/2011 9:10:00 AM 297388 11030373-04 Water 03/14/2011 16:45 3/16/2011 9:10:00 AM 297388 11030373-04 Water 03/14/2011 16:45 3/16/2011 9:10:00 AM 302624 11030373-05 Water 03/14/2011 16:35 3/16/2011 9:10:00 AM 302624

la Cordinas

3/22/2011

Date

Erica Cardenas

Project Manager

Kesavalu M. Bagawandoss Ph.D., J.D. **Laboratory Director**

> Ted Yen Quality Assurance Officer

Version 2.1 - Modified February 11, 2011

11030373 Page 3 3/22/2011 12:39:19 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-1 Collected: 03/14/2011 16:30 SPL Sample ID: 11030373-01

Site:	Blance	NM c
JILE.	Dianc	J. 14181

Analyses/Method	Result	QUAL	Rep.Limit	Dil	l. Fact	or Date Ana	lyzed Analys	st . Seq.#
ION CHROMATOGRAPHY	· · · · · · · · · · · · · · · · · · ·		•	MCL	·	E300.0	Units: mg	/L
Fluoride	2.44	-	0.5		1	03/17/11	15:14 ESK	5746662
Sulfate	6520	-	500	1	1000	03/17/11	17:24 ESK	5746670
METALS BY METHOD 6010B, [DISSOLVED		· · · · · · · · · · · · · · · · · · ·	MCL	;	SW6010B	Units: mg	/L
Manganese	1.19		0.005		1	03/18/11	15:25 R V	5747856

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3005A	03/16/2011 11:45	M_W	1.00

TOTAL DISSOLVED SOLIE	OS	MCI	_ S	M2540 C	Units: mg/L	
Total Dissolved Solids	14200	100	10	03/16/11	14:30 MM1	5745719
(Residue,Filterable)	·					

NETHOD 8260B		•		MCL		SW8260B	Units: ug/L	
ND			1		1	03/16/11 1	6:57 JC	5745218
ND			1		1	03/16/11 1	6;57 JC	5745218
ND	•		1	1	1	03/16/11 1	6:57 JC	5745218
ND	•		2	•.	_1	03/16/11 1	6:57 JC	5745218
ND			1		. 1	03/16/11 1	6:57 JC	5745218
ND			1	· · ·	1	03/16/11 1	6:57 JC	5745218
94.1		%	70-130		1	03/16/11 1	6:57 JC	5745218
89.0		%	74-125		1	03/16/11 1	6:57 JC	5745218
95.5		%	82-118		1	03/16/11 1	6:57 JC	5745218
	ND ND ND ND ND ND 94.1	ND ND ND ND ND ND ND 94.1	ND ND ND ND ND ND 94.1 %	ND 1 ND 1 ND 1 ND 2 ND 1 ND 1 ND 1 94.1 % 70-130 89.0 % 74-125	ND 1 ND 1 ND 1 ND 2 ND 1 ND 1 ND 1 ND 1 94.1 % 70-130 89.0 % 74-125	ND 1 1 ND 1 1 ND 1 1 ND 2 1 ND 1 1 ND 1 1 94.1 % 70-130 1 89.0 % 74-125 1	ND 1 1 03/16/11 1 ND 1 1 03/16/11 1 ND 1 1 03/16/11 1 ND 2 1 03/16/11 1 ND 1 1 03/16/11 1 ND 1 1 03/16/11 1 94.1 % 70-130 1 03/16/11 1 89.0 % 74-125 1 03/16/11 1	ND 1 1 03/16/11 16:57 JC ND 1 1 03/16/11 16:57 JC ND 1 1 03/16/11 16:57 JC ND 2 1 03/16/11 16:57 JC ND 1 1 03/16/11 16:57 JC ND 1 1 03/16/11 16:57 JC 94.1 % 70-130 1 03/16/11 16:57 JC 89.0 % 74-125 1 03/16/11 16:57 JC

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

11030373 Page 4 3/22/2011 12:39:27 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-2

Collected: 03/14/2011 17:00

SPL Sample ID:

03/16/11 17:26

03/16/11 17:26

03/16/11 17:26

03/16/11 17:26

03/16/11 17:26

JC

JC

JC

JC

5745219

5745219

5745219

5745219

5745219

1

1

1

11030373-02

Site: Blanco, NI	И
------------------	---

			Site: Biar	1CO, NIVI			•	
Analyses/Method	Result	QUAL	Rep.Limit	D	il. Factor	Date Anal	yzed Analyst	Seq.#
ION CHROMATOGRA	APHY			MCL		E300.0	Units: mg/L	
Fluoride	2.1		0.5		1	03/17/11	16:03 ESK	5746665
Sulfate	12200		1000		2000	03/17/11	17:40 ESK	5746671
METALS BY METHO	D 6010B, DISSOLVED			MCL	SV	V6010B	Units: mg/L	
Manganese	1.82		0.005		1	03/18/11	15:31 R_V	5747857
Prep Method	Prep Date	Prep Initials	Prep Factor					
SW3005A	03/16/2011 11:45	M_W	1.00					
TOTAL DISSOLVED	SOLIDS			MCL	SM	12540 C	Units: mg/L	
Total Dissolved Solids (Residue, Filterable)	18500		100	٠.	10	03/16/11	14:30 MM1	5745721
VOLATILE ORGANIC	S BY METHOD 8260B)		MCL	SV	V8260B	Units: ug/L	
Benzene	ND		1		1	03/16/11	17:26 JC	5745219
Ethylbenzene	ND		1	*	1	03/16/11	17:26 JC	5745219
Toluene	ND		1		. 1	03/16/11	17:26 JC	5745219
m,p-Xylene	ND		2		1	03/16/11	17:26 JC	5745219

%

%

%

70-130

74-125

82-118

Qualifiers:

o-Xylene

Xylenes, Total

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

ND

ND

95.7

90.5

98.6

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

11030373 Page 5 3/22/2011 12:39:27 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-3

Surr: Toluene-d8

Collected: 03/14/2011 16:25

SPL Sample ID:

03/16/11 17:55 JC

11030373-03

Site:	Blanco.	١	4	٨	۱
-------	---------	---	---	---	---

Analyses/Method	Result	QUAL	Rep.Limit	Dil. Fac	ctor Date An	alyzed Analyst	Seq.#
ION CHROMATOGRAPHY	1		· ·	MCL	E300.0	Units: mg/L	
Fluoride	1.67		0.5	1	03/17/11	16:19 ESK	5746666
Sulfate	6290		500	1000	03/17/11	17:56 ESK	5746672
METALS BY METHOD 6010B, 0	DISSOLVED		4.	MCL	SW6010B	Units: mg/L	
Manganese	0.437		0.005	1	03/18/11	15:37 R_V	5747858

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3005A	03/16/2011 11:45	M_W	1.00

99.5

TOTAL DISSOLVED SOLIDS				MCL		SM2540 C	Units:	mg/L
Total Dissolved Solids (Residue,Filterable)	9750		50		5	03/16/11	14:30 MM	1 5745722
VOLATILE ORGANICS BY ME	THOD 8260B			MCL		SW8260B	Units:	ug/L
Benzene	ND		1		1	03/16/11	17:55 JC	5745220
Ethylbenzene	ND		1		1	03/16/11	17:55 JC	5745220
Toluene	ND		1		1	03/16/11	17:55 JC	5745220
m,p-Xylene	2.5		2		1	03/16/11	17:55 JC	5745220
o-Xylene	ND		1		1	03/16/11	17:55 JC	5745220
Xylenes,Total	2.5		1		1	03/16/11	17:55 JC	5745220
Surr: 1,2-Dichloroethane-d4	89.2	%	70-130		1	03/16/11	17:55 JC	5745220
Surr: 4-Bromofluorobenzene	96.6	. %	74-125		1	03/16/11	17:55 JC	5745220

82-118

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

11030373 Page 6 3/22/2011 12:39:28 PM

5745220

8880 INTERCHANGE DRIVE-HOUSTON, TX 77054 (713) 660-0901

Analyses/Method	Result	QUAL	Rep.Limit	Dil. Facto	or Date Ana	lyzed Analyst	Seq.#
ION CHROMATOGRAPHY				MCL	E300.0	Units: mg/L	
Fluoride	2.35		0.5	1	03/17/11	16:35 ESK	5746667
Sulfate	4920		1000	2000	03/17/11	18:12 ESK	5746673
METALS BY METHOD 6010B, I	DISSOLVED	•	·	MCL	SW6010B	Units: mg/L	
Manganese	0.185	•	0.005	1	03/18/11	15:43 R V	5747859

L DISSOLVED S				MCL	SM2540 C	Units: mg/L
SW3005A	03/16/2011 11:45	M_W	1.00			<u> </u>
Prep Method	Prep Date	Prep Initials	Prep Factor			

Total Dissolved Solids (Residue,Filterable)	. 7040	·	· 40 ·		4	03/16/11	14:30	MM1	5745723
VOLATILE ORGANICS BY ME	THOD 8260B	•		MCL		SW8260B	Ur	its: ug/L	·
Benzene	ND		1		1	03/16/11	18:24	JC	5745221
Ethylbenzene	ND		1		1	03/16/11	18:24	JC	5745221
Toluene	ND		1.		1	03/16/11	18:24	JC .	5745221
m,p-Xylene	ND	٠	2		1	03/16/11	18:24	JC ,	5745221
o-Xylene	. ND	•	1		1	03/16/11	18:24	JC	5745221
Xylenes,Total	ND	t	1		1	03/16/11	18:24	JC	5745221
Surr: 1,2-Dichloroethane-d4	93.4	%	70-130		1	03/16/11	18:24	JC	5745221
Surr: 4-Bromofluorobenzene	90.5	%	74-125 .		1	03/16/11	18:24	JC	5745221

% 82-118

Qualifiers:

Surr: Toluene-d8

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

98.9

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

03/16/11 18:24

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

11030373 Page 7 3/22/2011 12:39:29 PM

5745221

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID Duplicate

Collected: 03/14/2011 16:35

SPL Sample ID:

11030373-05

Site:	Blanco,	NM
-------	---------	----

Analyses/Method	Result	QUAL	R	ep.Limit	Dil.	Facto	or Date Ana	lyzed	Analyst	Seq.#
VOLATILE ORGANICS BY MET	HOD 8260B				MCL S		SW8260B U		its: ug/L	
Benzene ·	ND			1		1	03/16/11	18:53	JC	5745222
Ethylbenzene	ND			1		1	03/16/11	18:53	JC	5745222
Toluene	ND			1		.1	03/16/11	18:53	JC	5745222
m,p-Xylene	ND			2		1	03/16/11	18:53	JC	5745222
o-Xylene	ND			1		1	03/16/11	18:53	JC	5745222
Xylenes,Total	. ND			1	·	1	03/16/11	18:53	JC	5745222
Surr: 1,2-Dichloroethane-d4	94.4		%	70-130		1	03/16/11	18:53	JC	5745222
Surr: 4-Bromofluorobenzene	91.8		%	74-125		1	03/16/11	18:53	JC	5745222
Surr: Toluene-d8	97.9		%	82-118		1	- 03/16/11	18:53	JC	5745222

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

11030373 Page 8 3/22/2011 12:39:29 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID Trip Blank

Collected: 03/14/2011 22:00

SPL Sample ID:

11030373-06

Site: Blanco, N	MI
-----------------	----

Analyses/Method	Result	QUAL	Re	p.Limit	Dil. Facto	or Date Anal	yzed	Analyst	Seq.#
VOLATILE ORGANICS BY MET	HOD 8260B				MCL S	SW8260B	Un	its: ug/L	-
Benzene	ND			1	1	03/16/11	19:22	JC	5745223
Ethylbenzene	ND			1	1	03/16/11	19:22	JC	5745223
Toluene	ND			1	1	03/16/11	19:22	JC	5745223
m,p-Xylene	ND			2	1	03/16/11	19:22	JC	5745223
o-Xylene	ND			1	1	03/16/11	19:22	JC	5745223
Xylenes,Total	· ND			1	1	03/16/11	19:22	JC	5745223
Surr: 1,2-Dichloroethane-d4	88.3		%	70-130	1	03/16/11	19:22	JC	5745223
Surr: 4-Bromofluorobenzene	90.6		%	74-125	1	03/16/11	19:22	JC	5745223
Surr: Toluene-d8	97.1		%	82-118	1	03/16/11	19:22	JC	5745223

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

- * - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

11030373 Page 9 3/22/2011 12:39:29 PM

Quality Control Documentation

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Quality Control Report

Conoco Phillips COP ElPaso1A

Analysis:

RunID:

Metals by Method 6010B, Dissolved

Method:

SW6010B

WorkOrder:

Samples in Analytical Batch:

11030373

Lab Batch ID:

105503

Method Blank

ICP2_110318A-5747845

Units:

mg/L

Lab Sample ID

Analysis Date:

03/18/2011 14:12

Analyst:

R_V

11030373-01B

Client Sample ID

Preparation Date: 03/16/2011 11:45 Prep By:

Method SW3005A

11030373-02B

MW-1

M_

11030373-03B

MW-2

MW-3

11030373-04B

MW-4

Analyte	Result	Rep Limit
Manganese	ND	0.005

Laboratory Control Sample (LCS)

RunID:

ICP2_110318A-5747846

Units:

mg/L R_V

 M_{-}

Analysis Date: Preparation Date: 03/18/2011 14:18 03/16/2011 11:45 Analyst: Prep By:

Method SW3005A

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Manganese	0.1000	0.1015	101.5	80	120

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

11030370-02

RunID:

ICP2_110318A-5747848

Units:

mg/L

Analysis Date: Preparation Date: 03/18/2011 14:30 03/16/2011 11:45

Analyst:

R_V

Prep By: Method SW3005A

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Manganese	0.06240	0.1	0.1626	100.2	0.1	0.1620	99.60	0.3697	20	75	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected in The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11030373 Page 11 3/22/2011 12:39:31 PM

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Quality Control Report

Conoco Phillips COP ElPaso1A

Analysis:

Volatile Organics by Method 8260B

Method:

Analysis Date:

SW8260B

Samples in Analytical Batch:

11030373

WorkOrder: Lab Batch ID:

R317150

Method Blank

RunID: Q_110316B-5745214

03/16/2011 13:05

Units: Analyst:

ug/L

JC

Client Sample ID

11030373-01C 11030373-02C

Lab Sample ID

MW-1 MW-2

11030373-03C 11030373-04C 11030373-05C

11030373-06C

MW-3 MW-4 Duplicate

Trip Blank

. Analyte	Result	Rep Limit
Benzene	ND	1.0
Ethylbenzene	ND	1.0
Toluene	· ND	1.0
m,p-Xylene	ND	. 2.0
o-Xylene	ND	1.0
Xylenes,Total	ND	1.0
Surr: 1,2-Dichloroethane-d4	91.1	70-130
Surr: 4-Bromofluorobenzene	89.4	74-125
Curr. Toluono de	00 5	90 449

Laboratory Control Sample (LCS)

RunID:

Q_110316B-5745213

Units:

ug/L

Analysis Date:

03/16/2011 12:36

Analyst: JC

: Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	18.8	94.2	. 74	123
Ethylbenzene	20.0	20.6	103	72	127
Toluene	20.0	20.4	102	74	126
m,p-Xylene .	40.0	41.4	104	71	129
o-Xylene	20.0	20.3	102	74	130
Xylenes,Total	60.0	61.7	103	71	130
Surr: 1,2-Dichloroethane-d4	50.0	42.3	84.5	70	130
Surr: 4-Bromofluorobenzene	. 50.0	46.8	93.6	. 74	125
Surr: Toluene-d8	50.0	47.9	95.8	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11030373 Page 12

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Version 2.1 - Modified February 11, 2011

3/22/2011 12:39:31 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

> 11030373 R317150

WorkOrder:

Lab Batch ID:

Quality Control Report

Conoco Phillips COP ElPaso1A

Analysis:

Volatile Organics by Method 8260B

Method: SW8260B

Sample Spiked:

11030370-02

RunID: Analysis Date: Q_110316B-5745216 03/16/2011 15:01

Units: Analyst:

ug/L

JC

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene	ND	20	18.5	92.6	20	18.1	90.6	2.17	22	70	124
Ethylbenzene	ND	20	20.4	102	20	19.7	· 98.7	3.42	20	76	122
Toluene	ND	20	20.7	104	20	20.8	104	0.385	24	80	117
m,p-Xylene	ND	40	41.1	103	40	41.2	103	0.262	20	69	127
o-Xylene	· ND	20	20.8	104	20	20.3	102	2.10	20	84	114
Xylenes,Total	ND	60	61.9	.103	60	61.5	· 103	0.523	20	69	127
Surr: 1,2-Dichloroethane-d4	ND	50	38.3	76.6	50	44.1	88.2	14.1	30	70	130
Surr: 4-Bromofluorobenzene	ND	50	- 47.8	95.6	50	. 47.0	94.0	1.72	30	74	125
Surr: Toluene-d8	. ND	50	48.7	97.5	50	48.3	96.5	0.971	30	82	118

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

MI - Matrix Interference

D - Recovery Unreportable due to Dilution * - Recovery Outside Advisable QC Limits

TNTC - Too numerous to count

11030373 Page 13

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

3/22/2011 12:39:31 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Quality Control Report

Conoco Phillips COP ElPaso1A

Analysis:

Total Dissolved Solids

Method:

SM2540 C

WorkOrder:

11030373

Lab Batch ID:

R317179

Method Blank

RunID: WET_110316N-5745713

Units:

Lab Sample ID

Client Sample ID

Analysis Date:

03/16/2011 14:30

mg/L Analyst: MM1

11030373-01A

Samples in Analytical Batch:

11030373-02A

MW-1

11030373-03A

MW-2

MW-3

11030373-04A

MW-4

Analyte	Result	Rep Limit
Total Dissolved Solids (Residue Filterable)	ND	10

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

WET_110316N-5745715

mg/L

Analysis Date:

03/16/2011 14:30

Units: MM1 Analyst:

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
Total Dissolved Solids (Residue, Filterabl	200.0	199.0	99.50	200.0	198.0	99.00	0.5	10	95	107

Sample Duplicate

Original Sample:

11030373-01

RunID: Analysis Date: WET_110316N-5745719

03/16/2011 14:30

Units: Analyst:

mg/L MM1

Analyte	Sample Result	DUP Result	RPD	RPD Limit
Total Dissolved Solids (Residue,Filterabl	14200	14030	1.06	10

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL E - Estimated Value exceeds calibration curve MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11030373 Page 14

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

3/22/2011 12:39:31 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Quality Control Report

Conoco Phillips COP ElPaso1A

Analysis:

Ion Chromatography

Method:

E300.0

WorkOrder:

11030373

Lab Batch ID:

R317237A

Method Blank

RunID: IC1_110317B-5746656

Units: Analyst:

mg/L **ESK**

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

03/17/2011 9:52

11030373-01A 11030373-02A MW-1

11030373-03A

MW-2

11030373-04A

MW-3 MW-4

Analyte	Result	Rep Limit
Fluoride	ND	0.50
Sulfate	ND	0.50

Laboratory Control Sample (LCS)

RuniD:

IC1_110317B-5746657

Units:

mg/L

Analysis Date:

03/17/2011 10:08

Analyst: ESK

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit	
Fluoride	10.00	10.43	104.3	90	110	
Sulfate	10.00	10.23	102.3	90	110	

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

11030373-01

RunID:

IC1_110317B-5746663

Units:

mg/L

Analysis Date:

03/17/2011 15:31

ESK Analyst:

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Fluoride	2.437	5	7.506	101.4	· 5	7.311	97.48			80	120

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11030373 Page 15 3/22/2011 12:39:32 PM

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID

11030373

R317237B

Quality Control Report

Conoco Phillips COP ElPaso1A

Analysis:

Ion Chromatography

Method:

Analysis Date:

E300.0

RunID: IC1_110317B-5746656

Method Blank Units:

mg/L

03/17/2011 9:52 Analyst:

ESK

Samples in Analytical Batch:

Lab Sample ID 11030373-01A

11030373-02A

11030373-03A

11030373-04A

MW-2 MW-3

MW-1

WorkOrder:

Lab Batch ID:

MW-4

Analyte	Result	Rep Limit
Fluoride	ND	0.50
Sulfate	ND	0.50

Laboratory Control Sample (LCS)

RunID:

IC1_110317B-5746657

Units:

mg/L

Analysis Date:

03/17/2011 10:08

Analyst: **ESK**

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Fluoride	10.00	10.43	. 104.3	90	110
Sulfate	10.00	10.23	102.3	. 90	110

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

11030373-01

RunID:

IC1_110317B-5746678

Units:

mg/L

Analysis Date:

03/17/2011 19:33

Analyst: **ESK**

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Sulfate	6524	5000	12070	111.0	5000	12010	109.7	0.5253	15	80	120

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11030373 Page 16

3/22/2011 12:39:32 PM

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Sample Receipt Checklist And Chain of Custody

SPL ENVIRONMENTAL 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Sample Receipt Checklist

Date	korder: e and Time Received: operature:	11030373 3/16/2011 9:10:00 AM 2.0/2.0°C		Received By: Carrier name: Chilled by:	NB Fedex-Standard Overnight Water Ice
1.	Shipping container/	cooler in good condition?	Yes 🔽	No 🗌	Not Present
2.	Custody seals intac	t on shippping container/cooler?	Yes 🗹	No 🗆	Not Present
3.	Custody seals intac	t on sample bottles?	Yes 🗌	No 🗆	Not Present 🗹
4.	Chain of custody pr	esent?	Yes 🗹	No 🗆	
5.	Chain of custody sig	gned when relinquished and received?	Yes 🗹	No 🗆	
6.	Chain of custody ag	rees with sample labels?	Yes 🗹	No 🗆	
7.	Samples in proper c	ontainer/bottle?	Yes 🗸	No 🗌	
8 . ³	Sample containers i	ntact?	Yes 🗹	No 🗀	
9.	Sufficient sample vo	plume for indicated test?	Yes 🗹	No 🗆	
10. ⁴	All samples received	d within holding time?	Yes 🗹	No 🗆	
11. '	Container/Temp Bla	nk temperature in compliance?	Yes 🗹	No 🗌	
12. ՝	Water - VOA vials ha	ave zero headspace?	Yes 🗹	No □ VOA	Vials Not Present
13. ՝	Water - Preservation	checked upon receipt (except VOA*)?	Yes 🗌	No 🗆	Not Applicable
,	*VOA Preservation (Checked After Sample Analysis			
	SPL Representa		Contact Date &	k Time:	
ı	Non Conformance Issues:	,			
C	Client Instructions:				

'M review (initial) 459 Hughes Drive Traverse City MI 49686 (231) 947-5777 297388 Requested Analysis Intact Ice? Temp: orace) NAWAC Stantants Provided page SPL Workorder No. Special Detection Liquits (specify) 2. Received by: 4. Received by: 6 Received 3 W) Number of Containers pres. 7 111 010 27.87 40 9 19410=X z001=01 z08=8 size ZO+=+ liter 500 Ambassador Caffery Parkway Scott, LA 70583 (337) 237-4775 time V=vial P=plastic G=glass bottle W=water S=soir O=c SL=sludge E=encore Email PDF X=other TX TRRP L LA RECAP あるの <u>ح</u> <u>مع</u> grab date Laboratory remarks: Email: Kelly, blancharte phanel comp With torklounde Special Reporting Requirements Results: Fax 1630 25 1630 626 150V 8 025 Standard OC Level 3 QC Level 4 QC 200 18 TIME Analysis Request & Chain of Custody Record HACK PROSUR スカ 3.14 3.14 5141 3.14 7 5.14 1374 cl DATE 3.14 State N. C. 2000 5. Relinquished by: 3. Relinquished by SPL, Inc. FIPUSO NO. 1A election **4** 8880 Interchange Drive Hojston, TX 77054 (713) 660-0901 I. Reli⁄ 1267.8445 SAKMAG Site Location: Blanco, NM Standard Contract Rush TA Preguires prior notice S S S SAMPLE ID Requested TAT 2 Z WW-4 MW-S MW-S MW-2 2 Business Days 25-5 3 Business Days I Business Day Project Name/No.: --3/ Client Contact: / 3 -N W Client Name: Phone/Fax: Invoice To: Other Address: П

302624	5 page 2 of 2	Requested Analysis					<u> </u>			X	×	×				Intact?	7	cc Sandads			Am Jun	1 450 Huches Drive
SPL Workorder No.	505011	pres.	M	Jət	Ponte in the control of the control	7(52C CI	H=£ H=I	\ - 2	3	0 3	1 2					n Limits	SCIENT THE SCIENT OF THE SCIEN	2. Received by:	4. Received by:	6. Received by Lab	
		matrix bottle size	X=other glass other vial	Aber g	=50i -50i -50i -50i -70i	1ge 10 1	sluc lassi lassi	8=80 = 1 = 1 b=b M=i M=i	MM	メダック		× 5 7 4				arks:		LA RECAP	date 15 time 2	dafe time	1 July	
	cord		200年 200 100 中 200 100 e	M. Dlanchag	יא ישור וומק			Ph: Comp	1045	1045	16%	1200				5	Sesults.	HA QC TX TRRP	73M.IV			
	SPL, Inc. Analysis Request & Chain of Custody Record		State NY	AAV Kinail La	NO. 1. A			DATE	15.14 1	3 14 1	514 11	1.4.1			-	8 41 Hall pres	Special Reporting Reconitements	Simplant OC Level 3 QC Level 4 QC	Kelinguisted by Santilles	3. Relinquished by:	5. Relinquished by:	
	Analysis Ro	Client Name: PSTCA PC	Address: (0 2.1 Inclided City All	Phone/Fax: 525, 237, C	Project Name/No.: EVE	W	Site Location: A Call O N	Invoice To: SAMPLE ID	NW-4	MW-4	dustick	TAN DIGMK				Clien/Consultant Remarks: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	च्	Requested TAT Leusiness Day Contract S	2 Business Days Standard	ess Days	Other Rush TAK reguires prior notice	X coop I I

APPENDIX C

SAN JUAN WATER COMMISSION, SAN JUAN HYDROLOGIC UNIT REGIONAL WATER PLAN, WATER SUPPLY ASSESSMENT, VOLUME III. FIGURE I-6 (SEPTEMBER 2003)

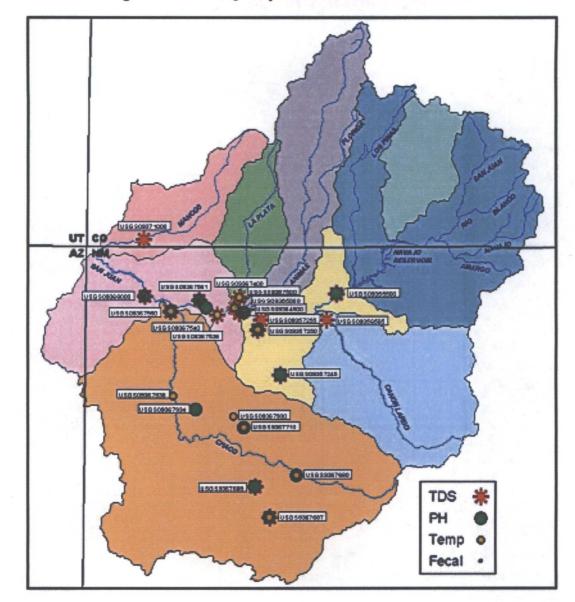


Figure 1-6 Water Quality Standards Exceedance Locations

The exceedances for pH, temperature, fecal coliform, and turbidity are included in Appendix B. Phosphorus standards were not exceeded.

1.3.3. Total Dissolved Solids

Total Dissolved Solids (TDS) is a frequently used parameter for evaluating water quality. Municipal uses are typically limited to waters with less than 1,000 mg/l TDS. Agricultural uses are frequently limited to 800 to 1,200 mg/l depending on the ability of the soils to drain and move salts away from root zones. Crop types determine the root zone depths.

The water quality issues section of the 1994 40-Year Regional Water Plan, Planning and Development District 1 identifies salinity as a "long-term water quality issue." Much of this long-term issue is related to the salt loading (1.2 million tons per year) at Bluff, Utah.

However, there is a difference between loading and concentration. Loading has significance to downstream uses but concentration has significance to the uses within the San Juan Hydrologic Unit. Although there are instances of extremely high concentrations associated with return flows from NIIP lands in the Gallegos and Ojo Amarillo Washes (3,000 mg/l) and the Hogback area (15,000 mg/l), the principal surface water supplies – San Juan, Animas, and La Plata Rivers, have exhibited few instances of moderate to high salinity concentrations. Implementation plans to mitigate pollutants from these return flow areas should be included in the TMDL study to be completed in 2004.

A review of the water quality data identified the stations that experience TDS readings greater than 1,200 mg. Figure 1.6 shows the location of those stations.

The frequency of the TDS exceedance represents 7.5% of the TDS measurements (249 of 3,334 records).

1.3.4. Polynuclear Aromatic Hydrocarbon (PAH)

Because of the significant oil and gas industry in the San Juan Hydrologic Unit, there have been questions about the impact of PAH from these industries on the water quality of the region. The Bureau of Land Management (BLM) issued a draft Resource Management Plan and Environmental Impact Statement on oil and gas leasing. This document resulted in an on-going PAH study being conducted by the BLM Farmington Field Office. The fiscal year 2002 project proposal for this study states:

"The sediment and water sampling program has been relatively ineffective. The Reasons for this may be attributed to the short life of PAHs, which are quickly partitioned either to sediment or biota, sediment cycling and removal, the complete absence of PAHs from the San Juan or Animas Rivers, or a combination of all these factors."

It was concluded by the study participants that monitoring of the rivers will be discontinued and their efforts focused on storm water collection and air monitoring. Therefore, it can be concluded for this regional plan that the principal water supplies for the San Juan Hydrologic Unit are not impaired by PAH.

1.3.5. Surface Water Quality Summary

The following conclusions were developed from the data evaluated for this study:

- The surface water quality throughout the San Juan Hydrologic Unit supports all uses except for fisheries according to 303(d) List for assessed streams.
- The State of New Mexico Standards for Surface Waters are exceeded primarily in the San Juan River below the confluence with the Animas River.
- TDS exceeds 1,200 mg/l at several locations but their frequency of exceedance is only 7.5 percent of the samples.
- Generally, the water quality of surface water supplies do not impair the uses in the basin and do not reduce the available water supply.