3R - 434

JUN 2010 GWMR

06/10/2011

3R4346121 Indian School Rd. NE Suite 200
Albuquerque, NM 87110
(505) 237-8440

June 10, 2011

Mr. Glen von Gonten
State of New Mexico Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

RE:

ConocoPhillips Company Faye Burdette No. 1 - June 2010 Groundwater Monitoring

Report

San Juan County, New Mexico

Dear Mr. von Gonten:

Enclosed please find one copy of the above-referenced document as compiled by Tetra Tech, Inc. for this San Juan County area site.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly E. Blanchard

Project Manager/Geologist

Kelly & Blanchard

Enclosures (1)

Cc: Brandon Powell, NMOCD (hardcopy)

Terry Lauck, ConocoPhillips Company (electronic)

2011 JUN 15 P 2: 52

QUARTERLY GROUNDWATER MONITORING REPORT JUNE 2010 SAMPLING EVENT

FAYE BURDETTE NO. I AZTEC, NEW MEXICO

API NO. 30-045-09725

Prepared for:

420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 9690127.100

July 2010

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	I.I Site History	1
2.0	METHODOLOGY AND RESULTS	
	2.1 Groundwater Sampling Methodology	
	2.2 Groundwater Sampling Analytical Results	2
3.0	CONCLUSIONS	2
	·	•

FIGURES

- I. Site Location Map
- 2. Site Layout Map
- 3. Geologic Cross Section
- 4. Groundwater Contour Map June 2010

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Data Summary
- 3. Groundwater Laboratory Analytical Results Summary

APPENDICES

Appendix A. Groundwater Sampling Field Forms

Appendix B. Groundwater Laboratory Analytical Report

QUARTERLY GROUNDWATER MONITORING REPORT CONOCOPHILLIPS FAYE BURDETTE NO. 1, AZTEC, NEW MEXICO

1.0 INTRODUCTION

This report presents the results of quarterly groundwater monitoring completed by Tetra Tech, Inc. (Tetra Tech) on June 9, 2010, at the ConocoPhillips Company Faye Burdette No. I natural gas well site located on private land in Aztec, New Mexico (Site). This event represents the eighth quarter of groundwater sampling conducted by Tetra Tech at the Site.

The Site is located near the intersection of Highway 550 and Pioneer Avenue in Aztec, NM. The Site consists of a gas production well head and associated equipment and installations. The location and general features of the Site are presented as **Figures I** and **2**, respectively. A generalized cross section of the site is included as **Figure 3**.

1.1 Site History

The Faye Burdette No. I wellhead was spudded by Southwest Production Company in April 1962. Ownership was transferred to Beta Development Company in September 1963 and again to Mesa Operating Limited Partnership in August 1988. Conoco Inc., predecessor to ConocoPhillips Company, acquired the well in July 1991. A release occurred in May 2007 from a rusted portion of the on-site produced water tank. Evidence of pre-existing hydrocarbon impacted soil was encountered during excavation; possibly related to a former earthen pit. Temporary Monitor Well, MW-1, was drilled by Envirotech in September 2007. Groundwater samples from MW-1 indicate that benzene, toluene, ethylbenzene, and xylenes (BTEX) were below the New Mexico Water Quality Control Commission (NMWQCC) standards. Subsequently, Envirotech recommended plugging and abandoning MW-1 (Envirotech, 2007).

To complete additional investigation and sampling of the Site, Monitor Wells MW-2, MW-3, and MW-4 were installed under the supervision of Tetra Tech during January 2009 at the request of the New Mexico Oil Conservation Division (OCD). All four monitor wells have been incorporated into a quarterly monitoring program that was initiated on January 29, 2009. Site history is outlined in **Table 1**.

2.0 METHODOLOGY AND RESULTS

2.1 Groundwater Monitoring Methodology

Groundwater Elevation Measurements

On June 9, 2010, groundwater elevation measurements were recorded in Monitor Wells MW-1, MW-2, MW-3, and MW-4 using a dual interface probe. Groundwater elevations are detailed in **Table 2**. A groundwater elevation contour map is presented as **Figure 4**. Based on June 2010 monitoring event

Quarterly Groundwater Monitoring Report Faye Burdette No. 1, Aztec, New Mexico

data, groundwater flow is to the northwest and is consistent with historic records at this site. The Animas River is approximately 1/3 mile from the site and flows west.

Groundwater sampling

Monitor Wells MW-1, MW-2, MW-3, and MW-4 were sampled, representing the eighth round of consecutive quarterly groundwater monitoring at the Site. Approximately three well volumes were purged from each monitor well with a dedicated polyethylene I.5-inch disposable bailer. Purge water was placed in the on site produced water tank. Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain of custody documentation to Southern Petroleum Laboratories in Houston, Texas. The samples were analyzed for the presence of BTEX in accordance with Environmental Protection Agency (EPA) Method 8260B and dissolved manganese according to EPA Method 6010B. Groundwater sampling field forms are included as **Appendix A**.

2.2 Groundwater Sampling Analytical Results

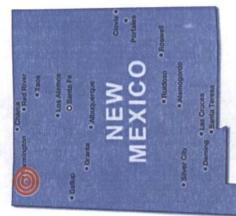
Groundwater quality samples collected during the June 9, 2010 monitoring event indicate that Monitor Well MW-1 exceeds NMWQCC standard for manganese at 1.61 milligrams per liter (mg/L). The NMWQCC standard for manganese is 0.2 mg/L. BTEX concentrations were below laboratory detection limits for all monitor wells. **Table 3** summarizes the laboratory analytical results for the June 2010 groundwater sampling event. The corresponding laboratory analysis report is included in **Appendix B**.

3.0 CONCLUSIONS

Tetra Tech recommends continued quarterly groundwater sampling at the Site in order to provide sufficient data for Site closure. Site closure will be requested when groundwater quality results begin to indicate that all constituents of concern are consistently below NMWQCC groundwater quality standards; or are representative of background conditions at the Site. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

REFERENCES

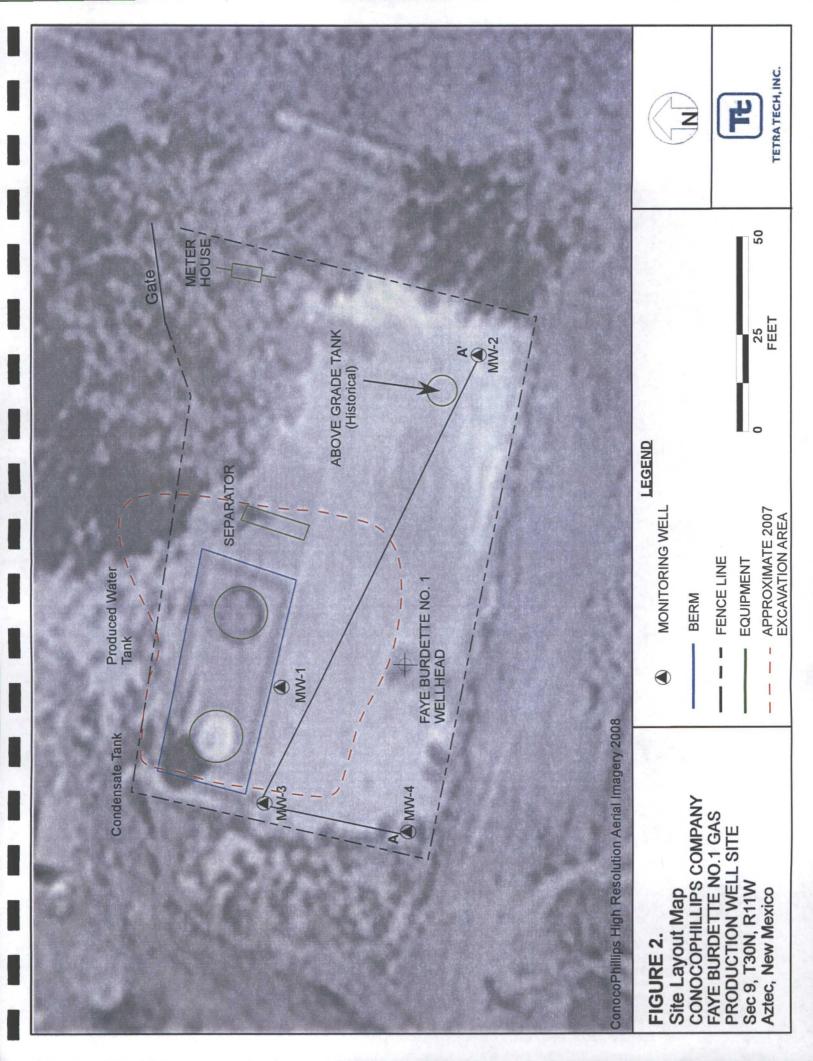
Envirotech, Inc. (2007). Drilling and Groundwater Sampling Report at Faye Burdette No. 1 Aztec, NM. Prepared for ConocoPhillips, dated December 12, 2007.

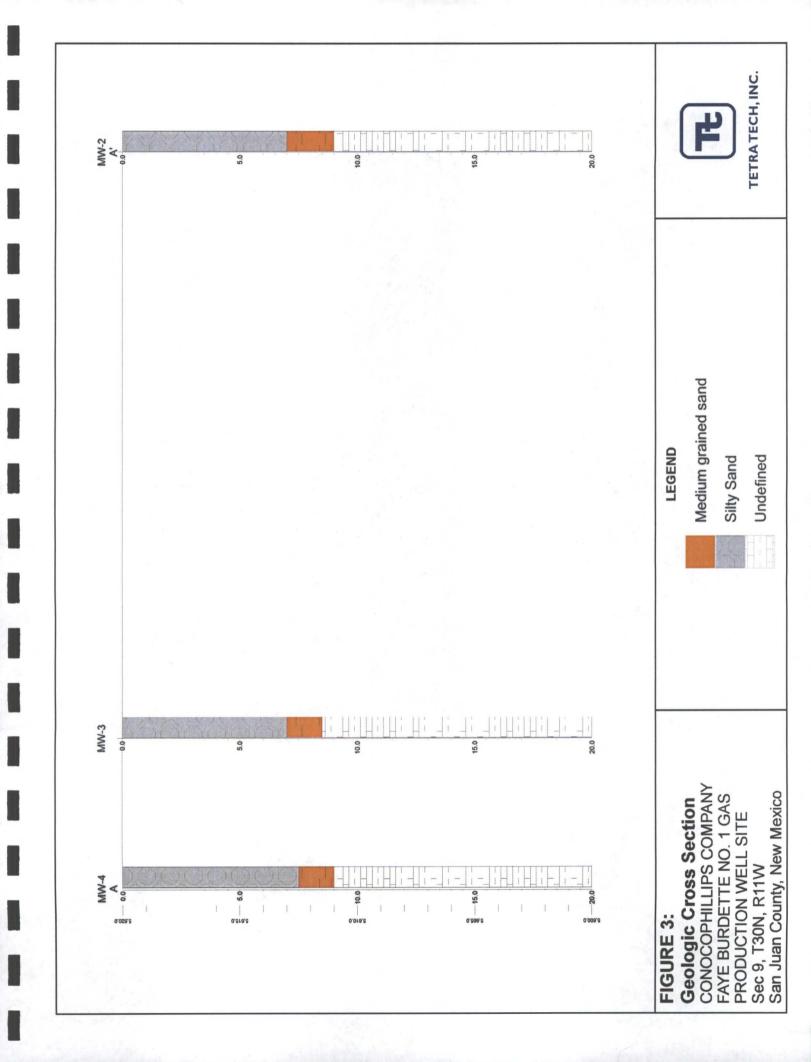

FIGURES

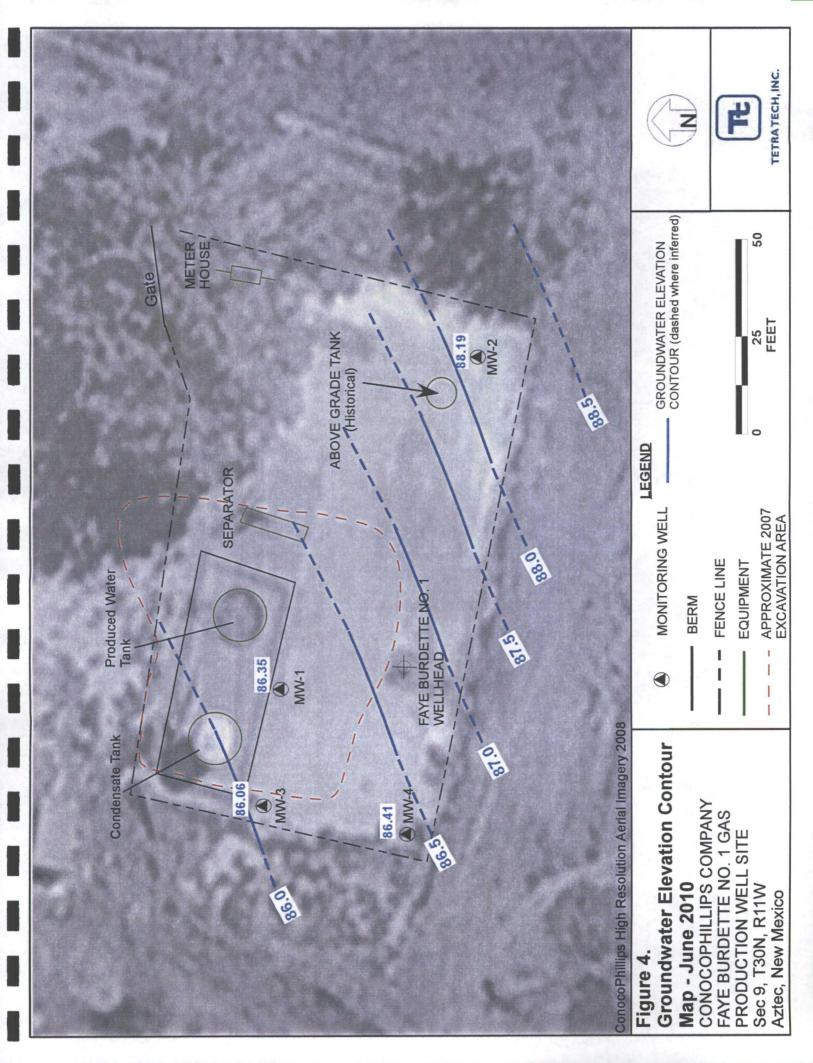
- 1. Site Location Map
 - 2. Site Layout Map
- 3. Geologic Cross Section
- 4. Groundwater Contour Map April 2010

FIGURE 1.

Site Location Map
CONOCOPHILLIPS COMPANY
FAYE BURDETTE NO.1 GAS
PRODUCTION WELL SITE
Sec 9, T30N, R11W
Aztec, New Mexico




Approximate ConocoPhillips Faye Burdette No.1 Site location



TETRA TECH, INC.

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Data Summary
- 3. Groundwater Laboratory Analytical Results Summary

Table 1. Site History Timeline - ConocoPhillips Company Faye Burdette No. 1

DATE	ACTIVITY
29-Apr-1962	Well was spudded by Southwest Production Company.
1-Sep-1963	Ownership of well transferred to Beta Development Company.
21-Feb-1983	NMOCD inspection noted a leaky 2-inch valve on a storage tank.
15-Aug-1988	Ownership of well transferred to Mesa Operating Limited Partnership.
1-Jul-1991	Ownership of well transferred to Conoco Inc.
24-May-2007	A small (<25 gallons) release occurred from the produced water tank after a rusty spot was scraped off. Follow-up excavation encountered evidence of pre-existing hydrocarbon-impacted soil, apparently related to a former earthen pit beneath the tank.
Jul-07	Contaminated soil excavated from the Site. Two ground water samples were obtained at the time of this excavation, and one (1) of these samples was found to contain total xylenes above the State of New Mexico drinking water standard.
26-Sep-07	Ground water monitoring well installed to a depth of 15 feet below ground surface (bgs) by Envirotech Inc. of Farmington, NM (Envirotech). A soil sample obtained from the well boring was analyzed for benzene, BTEX and total petroleum hydrocarbons (TPH). Results were below NMOCD regulations of 10 parts per million (ppm), 50 ppm, and 100 ppm, respectively.
·	A ground water sample was collected from the temporary monitoring well (MW-1) and analyzed for BTEX; results were below the State of New Mexico drinking water standard for this constituent. Depth to ground water recorded at 9.5 feet bgs.
Nov-07	Envirotech report recommends plugging and abandonment of the temporary ground water monitoring well and a no further action determination for the Site (Envirotech, 2007).
Apr-08	Oil Conservation Division of NM Energy, Minerals, and Resources Dept. indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn Von Gonten.
22-Oct-08	1st quarter sampling of MW-1 by Tetra Tech.
Jan-09	WDC installed additional Monitoring Wells MW-2, MW-3 and MW-4 under the supervision of Tetra Tech.
29-Jan-09	Second quarter sampling of MW-1 by Tetra Tech. Initial sampling of Monitoring Wells MW-2, MW-3, and MW-4.
31-Mar-09	Third consecutive quarter of sampling MW-1 by Tetra Tech. Second quarter sampling of Monitoring Wells MW-2, MW-3, and MW-4.
17-Jun-09	Fourth consecutive quarter of sampling MW-1 by Tetra Tech. Third quarter of sampling Monitoring Wells MW-2, MW-3, and MW-4.
22-Sep-09	Fifth consecutive quarter of sampling MW-1 by Tetra Tech. Fourth consecutive quarter of sampling Monitoring Wells MW-2, MW-3, and MW-4. Sampling for total metals discontinued as requesting by NMOCD. Sampling for select dissolved metals based on total metals analyses begins since standards are based on these.
16-Dec-09	Sixth consecutive quarter sampling of MW-1 by Tetra Tech. Fifth consecutive quarter sampling of Monitoring Wells MW-2, MW-3, and MW-4 for BTEX and dissolved manganese only.
1-Apr-10	Seventh consecutive quarter sampling of MW-1 by Tetra Tech. Sixth consecutive quarter sampling of Monitoring Wells MW-2, MW-3, and MW-4 for BTEX and dissolved manganese only.
9-Jun-10	Eighth consecutive quarter sampling of MW-1 by Tetra Tech. Seventh consecutive quarter sampling of Monitoring Wells MW-2, MW-3, and MW-4 for BTEX and dissolved manganese only.

Table 2. Groundwater Elevation Data Summary - ConocoPhillips Company Faye Burdette No. 1

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				10/22/2008	10.91	86.75
				1/29/2009	11.72	85.94
				3/31/2009	11.88	85.78
MW-1	17.52	48-148	97 66	6/17/2009	11.24	86.42
	70.	2	3	9/22/2009	10.87	86.79
		-	·	12/16/2009	11.56	86.1
٠			•	4/1/2010	11.91	85.75
				6/9/2010	11.31	86.35
				1/29/2009	10.91	87.63
			•	3/31/2009	11.12	87.42
			•	6/17/2009	10.48	88.06
MW-2	19.45	5.0 - 20.0	98.54	9/22/2009	10.76	87.78
				12/16/2009	10.61	87.93
				4/1/2010	11.2	87.34
				6/9/2010	10.35	88.19
			•	1/29/2009	11.44	85.72
				3/31/2009	11.62	85.54
				6/17/2009	10.97	86.19
MW-3	22.96	5.0 - 20.0	97.16	9/22/2009	10.57	86.59
				12/16/2009	11.32	85.84
				4/1/2010	11.66	85.50
			,	6/9/2010	. 11.1	90.08
				1/29/2009	11.02	86.04
				3/31/2009	11.18	85.88
				6/17/2009	10.59	86.47
MW-4	22.28	5.0 - 20.0	90'.26	9/22/2009	10.16	86.90
,				12/16/2009	10.87	86.19
				4/1/2010	11.04	86.02
				6/9/2010	10.65	86.41

tt = Feet

TOC = Top of casing

bgs = below ground surface

* Elevation relative to an arbitrary point set at 100 feet

Table 3. Groundwater Laboratory Analytical Results - ConocoPhillips Company Faye Burdette No. 1

				, ,				
Well ID	Date	Aluminum (mg/L)	ron (mg/L)	Manganese (mg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)
	10/22/2008	NA	3.74*	2.09*	< 5	<5	< 5	< 5
	1/29/2009	2.14*	2.77*	1.41*	< 5	< 5	< 5	< 5
	3/31/2009	3.64*	4.83*	1.24*	< 5	< 5	< 5	< 5
1700	6/17/2009	2.5*	5.58*	2.47*	< 5	< 5	< 5	< 5
	9/22/2009	0.443	0.445	1.44	1 >	<1	\<	۲
	12/16/2009	NA	NA	0.732	1>	<1	<1	<1
	4/1/2010	NA	NA	1.71	< 1	<1	<1	<1
	6/9/2010	NA	NA	1.61	۲>	-	<1	<1
	1/29/2009	NA	NA	NA	< 5	< 5	< 5	< 5
	3/31/2009	NA	ΑĀ	NA	< 5	< 5	< 5	< 5
	6/17/2009	2.83	6.13*	2.52*	< 5	< 5	< 5	< 5
MW-1 Duplicate	9/22/2009	NA	Y V	NA	۲	₹	₽	7
	12/16/2009	NA	NA	NA	۲>	٧	>	\
	4/1/2010	NA	NA	NA	ا	1>	<1	<1
	6/9/2010	NA	NA	NA	۲>	L>	<1	<1
	1/29/2009	4.15*	3.15*	1.79*	< 5	S >	< 5	< 5
	3/31/2009	1.17*	1.02*	0.326*	< 5	< 5	< 5	<5
,	6/17/2009	3.4*	2.8*	1.37*.	. 9>	S >	< 5	< 5
MW-2	9/22/2009	<0.1	<0.02	0.0264	L>	L>	<1	<1
	12/16/2009	NA	NA	0.0654	-1>	<1	<1	<1
	4/1/2010	NA	NA	0.16	۲>	<1	. <1	<1
	6/9/2010	NA	NA	0.0323	<1	<1	<1	<1.
	1/29/2009	1.82*	2.24*.	0.374*	S >	< 5	5 >	< 5
,	3/31/2009	1.64*	1.91*	0.271*	< 5	< 5	< 5	< 5
	6/17/2009	1.68*	2.14*	0.628*	< 5	< 5	< 5	< 5
MW-3	9/22/2009	<0.1	0.0291	0.0201	-1>	۲>	<1	. <1
	12/16/2009	NA	NA	0.0607	۲>	1>	< 1	<1
	4/1/2010	NA	NA	0.0232	^	^ 1	<1	<1
	6/9/2010	NA	NA	< 0.005	1>	^ 1	<1	<1
	1/29/2009	6.92*	3.17*	4.15*	< 5	< 5	G >	< 5
	3/31/2009	4.21*	3.22*	1.45*	< 5	< 5	< 5	< 5
	6/17/2009	2.43*	2.05*	0.854*	< 5	< 5	G >	< 5
MW-4	9/22/2009	<0.1	0.108	0.476	1 >	<1	L>	<1
	12/16/2009	NA	NA	0.0149	1 >	<1>	<1	<1
	4/1/2010	NA	NA	< 0.005	<1	<1	1>	<1
	6/9/2010	NA	ΑN	< 0.005	۲۷	<1	<1	<1
Method		SW6010B	SW6010B	SW6010B	8260B	8260B	8260B	8260B
NMWQCC Groundwater Quality	r Quality Standard	5.0	1.0	0.2	10	750	750	620

Notes:

MW = monitoring well

NMWQCC = New Mexico Water Quality Control Commission

Constituents in BOLD exceed NMWQCC groundwater quality standards

mg/L = miligrams per liter

ug/L = micrograms per liter

NA = not analyzed

55 = result below laboratory detection limit

Total Metals analysis run for all samples through June 2009; September 2009 dissolved metals analysis run in order to compare to standards

* = total metals analysis result (NMWQCC standards do not apply)

APPENDIX A

TETRATECH, INC.	TH	TETRA TECH, INC.
-----------------	----	------------------

Project Name	Faye Burdette No. 1			Page	1 of	4
ect No.			·	•		•
Site Location	Aztec, NM	·				
Site/Well No.	MW-1	Coded/ Replicate No.	p@114	Dete <u>1/9/</u>	10	· .
Weather	Junny, hot	Time Sampling 1125		Time Sampling Completed	1135	
Ī		EVACUA	TION DATA			
Description of	Measuring Point (MP) To	p of Casing				
Height of MP A	Above/Below Land Surface	· · · · · · · · · · · · · · · · · · ·	MP Elevation			
Total Sounded	Depth of Well Below MP	_ -17.52 17,50	Water-Level Ele	evation		
Held	Depth to Water Below N	AP 11.31	Diameter of Car		· · · · · · · · · · · · · · · · · · ·	
Wet	Water Column in W	ell <u>6,19</u>	Gallons Pumpe Prior to Samplir		(U)	
	Gallons per Fo	oot <u>0.16</u>				
	Gallons in W	ell_, 9964 y3=	Sampling Pump (feet below land	Intake Setting I surface)		
Purging Equip	ment Purge pump /Ba	2197				
		SAMPLING DATA/F	IELD PARAMETER	$\frac{2}{2}$.04	
Time	Temperature (°C)	pH Conductivity (μS/cr			O % ORP (mV)	Volume (gal.)
1128	13,86	7,39 1,329	-		18.2 -2.0	2
1129	13,38	7,31 1,316		1,24	1210-11	2,5
1131	13,16	7,20 1,345		1103	1.8 0.5	3,0
Sampling Equi	ipment Pu	irge Pump/Bailer				
■ Consti	tuents Sampled	Container Descrip	tion		Preservative	·
BTEX		3 40mL VOA's		HCI		
Dissolved Mn		16 oz Plastic		None		
					·	· · · · · ·
i			م اسم	delecte	t	
Remarks	/\\	tun; no sheen	or over	murcale	1	·
Sampling Pers	sonnel 1/1/3	LD				
		Well Casi	ng Volumes			
l	Gal./ft. 11/4" = 0.0				= 0.65	
ľ	1 ½" = 0.1	$0 2\frac{1}{2}" = 0.24$	3° 1/2 =	0.50 6"	= 1.46	

Tt	TETRATECH, INC.
----	-----------------

Project Name Faye Burdette No. 1	Page 2 of 4
ject No.	
Site Location Aztec, NM	
Site/Well No. MW-2 Coded/ Replicate No. Time Sampling	Date 6/9/10 Time Sampling
Weather SUNNING Began 1096	Completed
EVACUATION I	DATA
Description of Measuring Point (MP) Top of Casing	
Height of MP Above/Below Land Surface	IP Elevation
Total Sounded Depth of Well Below MP 19.45	Vater-Level Elevation
Held Depth to Water Below MP 10, 35	Diameter of Casing 2"
	Callons Pumped/Bailed 4.5
Gallons per Foot 0.16	·
	ampling Pump Intake eet below land
Purging Equipment Purge pump/Bailer $\chi 3 = 4.3$	<u>68</u>
SAMPLING DATA/FIELD	
Time Temperature (°C) pH Conductivity (μS/cm³)	TDS (g/L) DO (mg/L) DO % ORP (mV) Volume (gal.) 204 200 133.0 33.5
11:01 276 694 6129	= 209 200 124 C 40
11:03 3:65 6:70 1.24	2.23 21.4 126.7 4.5
Sampling Equipment Purge Pump/Bailer	·
Constituents Sampled Container Description	<u>Preservative</u>
BTEX 3 40mL VOA's	HCI
Dissolved Mn 16 oz Plastic	None
1 1 Della	
Remarks Unit Syntage Swirls Mould &	P Solts from FPIA in the buck
00 × 00	CI O-OND HOLLI BY IT IT IS
Sampling Personnel CN12 CD	
Well Casing Vo	
Gal./ft. $1 \frac{1}{4}$ " = 0.077 2 " = 0.16 $1 \frac{1}{2}$ " = 0.10 $2 \frac{1}{2}$ " = 0.24	3" = 0.37
172 0110 272 0121	- 1 -

Tt	TETRATECH, INC.
----	-----------------

Project Name Faye Burdette No. 1			Page_	3 of	4
ject No.					
Site Location Aztec, NM				cfm	•
Site/Well No. MW-3	Coded/ Replicate No.	·	Date	6/8/10	3
Weather SUMM, hot	Time Sampling Began		Time Sampling Completed	114	\int
JAN 11 VY) CO	EVACUATIO	N DATA			-
		NUAIA			
Description of Measuring Point (MP) T	op of Casing				
Height of MP Above/Below Land Surface	<u> </u>	MP Elevation			
Total Sounded Depth of Well Below MP	22.96	Water-Level Ele	vation		
Held Depth to Water Below	MP_//.LO	Diameter of Cas			
Wet Water Column in V	Vell 11.86	Gallons Pumpe Prior to Samplin			
Gallons per F	oot <u>0.16</u>	Consultan Duna	latalia Oattia a		
Gallons in V	Vell 6976	Sampling Pump (feet below land			
Purging Equipment Purge pump /8	$\widehat{\text{ailer}} \qquad (3-5)$.693		-	
	SAMPLING DATA/FIEL	D DADAMETEDS			
Time Temperature (°C)	pH Conductivity (µS/cm ³		DO (mg/L)	DO % ORP (mV)	Volume (gal.)
1136 1293	7.13 1.185		1,21	11.5 642	4.5
1138 12.97	7.10 688		1.38	13.0 79.2	5.0
1291	7.19 1.188		1.17	11. 83.3	5.5
			,		
Sampling Equipment P	urge Pump/Bailer			·	
Constituents Sampled	Container Description	<u>on</u>		Preservative	•
BTEX	3 40mL VOA's		HCI		
Dissolved Mn	16 oz Plastic	,	None		
•,					
Remarks					
Sampling Personnel ME(B				
	Well Casing	Volumes			
Gal./ft. 1 1/4" = 0.0	_		0.37 4	" = 0.65	
$1\frac{1}{2}$ = 0.		3" ½ =		" = 1.46	

Project Name Faye Burdette No. 1	Page 4 of 4
ect No.	· · · · · · · · · · · · · · · · · · ·
Site Location Aztec, NM	
Coded/ Site/Well No. MW-4 Replicate No.	
Weather Sum Began 1645	Time Sampling 1115:
EVACUATIO	ON DATA
Description of Measuring Point (MP) Top of Casing	
Height of MP Above/Below Land Surface	MP Elevation
Total Sounded Depth of Well Below MP 22.28	Water-Level Elevation
Held Depth to Water Below MP / 0,65	Diameter of Casing 2"
Wet Water Column in Well	Gallons Pumped/Bailed Prior to Sampling 5, 75
Gallons per Foot 0.16	
Gallons in Well	Sampling Pump Intake Setting (feet below land surface)
Purging Equipment Purge pump / Bailer \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	58
SAMPLING DATA/FIE	I D PARAMETERS
Time Temperature (°C) pH Conductivity (µS/cm	
1112 13.02 7.42 1.292	<u> </u>
113 13,03 7,35 1,307	- 2,10 19,7 142,7 5,0
1114 12197 7,22 1,323	1,72 15,9 1412 5,5
Sampling Equipment Purge Pump/Bailer	
Constituents Sampled Container Description	on <u>Preservative</u>
BTEX 3 40mL VOA's	HCI
Dissolved Mn 16 oz Plastic	None
112 10 0 1 1 2 1 1	Assessment of
Remarks Water is bottom and Site	() NO CINIT OY SHEET
Sampling Personnel UNG CB	
Well Casing	Volumes
Gal./ft. 1 1/4" = 0.077 2" = 0.16	3" = 0.37 4" = 0.65
$1 \frac{1}{2}$ " = 0.10 $2 \frac{1}{2}$ " = 0.24	$3^{\circ} \frac{1}{2} = 0.50$ $6^{\circ} = 1.46$

APPENDIX B

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

June 24, 2010

Workorder: H10060286

Cassandre Brown Tetra Tech, Inc. 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Project: Faye Burdette No. 1

Project Number: Faye Burdette No. 1

Site: Aztec, NM

PO Number: ENFOS

NELAC Cert. No.: T104704205-09-1

This Report Contains A Total Of 19 Pages

Excluding Any Attachments

Report ID: H10060286_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

June 24, 2010

Cassandre Brown Tetra Tech, Inc. 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Workorder: H10060286

Project: Faye Burdette No. 1

Project Number: Faye Burdette No. 1

Site: Aztec, NM

PO Number: ENFOS

NELAC Cert. No.: T104704205-09-1

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

There were no exceptions noted.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

Printed: 06/24/2010 19:58

Report ID: H10060286 6125 Page 2 of 19

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

June 24, 2010

Cassandre Brown Tetra Tech, Inc. 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Workorder: H10060286

Project: Faye Burdette No. 1

Project Number: Faye Burdette No. 1

Site: Aztec, NM

PO Number: ENFOS

NELAC Cert. No.: T104704205-09-1

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Erica Cardenas, Senior Project Manager

Enclosures

Report ID: H10060286_6125 Page 3 of 19

Phone: (713) 660-0901 Fax: (713) 660-8975

SAMPLE SUMMARY

Workorder: H10060286 : Faye Burdette No. 1

Project Number: Faye Burdette No. 1

Lab ID	Sample ID	Matrix	COC ID	Date/Time Collected	Date/Time Received	_
H10060286001	MW-1	Water		6/9/2010 11:35	6/11/2010 09:15	
H10060286002	MW-2	Water		6/9/2010 11:05	6/11/2010 09:15	
H10060286003	MW-3	Water		6/9/2010 11:45	6/11/2010 09:15	
H10060286004	Duplicate	Water	•	6/9/2010 11:40	6/11/2010 09:15	
H10060286005	Trip Blank	Water	•	6/10/2010 08:20	6/11/2010 09:15	
H10060286006	MW-4	Water		6/9/2010 11:15	6/11/2010 09:15	

Report ID: H10060286_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060286: Faye Burdette No. 1

Project Number: Faye Burdette No. 1

Lab ID:

H10060286001

Date/Time Received: 6/11/2010 09:15

Matrix:

Water

Sample ID: MW-1

Date/Time Collected: 6/9/2010 11:35

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:		39				
	Batch: 1822 SW-846 3010	A on 06/11/2010	0 13:30 by R_\	/			
	Analytical Batches:					11	
	Batch: 1461 SW-846 6010	B on 06/22/201	0 23:07 by EB	G :			
				14.5			
4	Results	97		4-17		Batch Info	mation
Parameters	mg/l Qual	Report Limit	MDL	DF, I	RegLmt	Prep A	Inalysis
Manganese .	1.61	0.00500	0.000300	1 ·		1822	1461

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Bat	ches:			
	Batch: 2055 SW-846 8260	B on 06/18/2010 (02:00 by JM0		
	The second secon			5.5	4.1
A COLUMN TO SERVICE	Results				Batch Information
Parameters	ug/j - Qual †	Report Limit	MDL	DF RegLmt	Prep Analysis
Benzene	. ND	1.0	0.10	· 1	2055
Ethylbenzene	ND	1.0	0.15	1	2055
Toluene	ND	1.0	0.29	1	2055
m,p-Xylene	ND	1.0	0.18	1	2055
o-Xylene	ND	1.0	0.13	1	2055
Xylenes, Total	ND	1.0	0.13	1	2055
4-Bromofluorobenzene (S)	90.4 %	74-125		1	2055
1,2-Dichloroethane-d4 (S)	84.9 %	70-130		1	2055
Toluene-d8 (S)	101 %	82-118		1	2055

Report ID: H10060286_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060286: Faye Burdette No. 1

Project Number: Faye Burdette No. 1

Lab ID:

H10060286002

Date/Time Received: 6/11/2010 09:15

Matrix:

Water

Sample ID: MW-2

Date/Time Collected: 6/9/2010 11:05

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:					
	Batch: 1822 SW-846 3010	A on 06/11/2010	13:30 by R_\	/ L		
	Analytical Batches:			P. C.		
	Batch: 1461 SW-846 6010	B on 06/22/2010	0 23:13 by EB	G		
A CONTRACTOR OF THE CONTRACTOR						
🖟 😘 i 🚾 i Santa Callagail Santa ann a	Results					formation
Parameters	mg/l Qual	Report Limit	MDL	UDF Rec	jLmt Prep	Analysis
Manganese	0.0323	0.00500	0.000300	1	1822	1461

VOLATILES -

Analysis Desc: SW-846 82608	SW-846-5030Analytical Babach: 2055 SW-846-826)2:28 by JM	р С/		3777 - A-AAN 2777 - A-AAN
Parameters:	Results ug/l Qual	-Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Benzene	, ND ·	1.0	0.10	1	•	2055
Ethylbenzene	ND	1.0	0.15	, 1		2055
Toluene	ND	1.0	0.29	1		2055
m,p-Xylene	ND	1.0	0.18	1		2055
o-Xylene	ND	1.0	0.13	1		. 2055
Xylenes, Total	ND	1.0	0.13	1		2055
4-Bromofluorobenzene (S)	90.1 %	74-125		1		2055
1,2-Dichloroethane-d4 (S)	84.2 %	70-130		1		2055
Toluene-d8 (S)	102 %	82-118		1		2055

Report ID: H10060286_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060286 : Faye Burdette No. 1

Project Number: Faye Burdette No. 1

Lab ID:

H10060286003

Date/Time Received: 6/11/2010 09:15

Matrix:

Water

Sample ID: MW-3

Date/Time Collected: 6/9/2010 11:45

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B; Pro	eparation Batches:						
Ba	tch: 1822 SW-846 3010	A on 06/11/2010	13:30 by R_V				
An An	alytical Batches:		6.0				
Ba	tch: 1461 SW-846 6010	B on 06/22/2010	23:19 by EBC	;			
Wag Taranga Maranga Ma	300	au Win	1. 186 2. 187	3		6	
	Results		16.0			Batch Info	
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep A	malysis
Manganese	. ND	0.00500	0.000300	1		1822	1461

VOLATILES

Analysis Desc: SW-846 8260B	SW-846-5030Analytical Ba Batch: 2055 SW-846-826	100	12 ⁵ 56 by 1M0	W. Tarana	
Parameters:	Results # ug/l Qual	Report Limit	MDL		Batch Information Prep Analysis
Benzene	ND	1.0	0.10	1 .	2055
Ethylbenzene	ND .	1.0	0.15	1	2055
Toluene	ND	1.0	0.29	1	2055
m,p-Xylene	ND	1.0	0.18	1	2055
o-Xylene	ND	1.0	0.13	1	2055
Xylenes, Total	, ND	1.0	0.13	1	2055
4-Bromofluorobenzene (S)	90.4 %	74-125		1	2055
1,2-Dichloroethane-d4 (S)	84.3 % -	70-130		1	2055
Toluene-d8 (S)	102 %	82-118		1	2055

Printed: 06/24/2010 19:58

Report ID: H10060286_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060286: Faye Burdette No. 1

Project Number: Faye Burdette No. 1

Lab ID:

H10060286004

Date/Time Received: 6/11/2010 09:15

Matrix:

Water

Sample ID: Duplicate

Date/Time Collected: 6/9/2010 11:40

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical B	atches:			
9.734	Batch: 2055 SW-846 826	30B on 06/18/2010 0	3:24 by JM(3	
2004 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		ere en	91	2.	
Parameters	Results ug/I Qual	Report Limit	MDL	DF R	Batch Information egLmt Prep Analysis
Benzene	ND	1.0	0.10	1	2055
Ethylbenzene	ND	1.0	0.15	1	2055
Toluene	, ND	1.0	0.29	1	2055
m,p-Xylene	ND	1.0	0.18	1	2055
o-Xylene	ND	1.0	0.13	1	2055
Xylenes, Total	ND	1.0	0.13	1	2055
4-Bromofluorobenzene (S)	91.5 %	74-125		1 .	2055
1,2-Dichloroethane-d4 (S)	85.7 %	70-130		· 1	2055
Toluene-d8 (S)	101 %	82-118	•	1	2055

Report ID: H10060286_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060286: Faye Burdette No. 1

Project Number: Faye Burdette No. 1

Lab ID:

H10060286005

Date/Time Received: 6/11/2010 09:15

Matrix: Water

Sample ID: Trip Blank

Date/Time Collected: 6/10/2010 08:20

VOLATILES

Analysis Desc. SW-846 8260B	SW-846 5030Analy					
	Batch: 2057 SW-8	46 8260B o	n 06/18/2010	11:44 by JM	C (1)	
Parameters	Results ug/l	Qual R	epart Limit	MDL	DF Reg	Batch Information Lmt Prep Analysis
Benzene	ND		1.0	0.10	1	2057
Ethylbenzene	ND		1.0	0.15	. 1	2057
Toluene	ND		1.0	0.29	1 ,	2057
m,p-Xylene	ND.		1.0	0.18	1	2057
o-Xylene	. ND		1.0	0.13	1	2057
Xylenes, Total	ND	•	. 1.0	0.13	1 .	2057
4-Bromofluorobenzene (S)	90.7 %		74-125		1 .	2057
1,2-Dichloroethane-d4 (S)	85.2 %	÷	70-130	• •	1	2057
Toluene-d8 (S)	102 %		82-118		1	2057

Report ID: H10060286_6125 Page 9 of 19

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060286: Faye Burdette No. 1

Project Number: Faye Burdette No. 1

Lab ID:

H10060286006

Date/Time Received: 6/11/2010 09:15

Matrix:

Water

Sample ID: MW-4

Date/Time Collected: 6/9/2010 11:15

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:					
	Batch: 1822 SW-846 3010	OA on 06/11/2010	13:30 by R_1	V		
	Analytical Batches:					
	Batch: 1461 SW-846 6010	OB on 06/22/201	0 23:25 by EB	G		
(a) Produce and the		Secretary Control				
A American	Results		200			formation
Parameters	mg/I Qual	Report Limit	MDL	DF Reg	Lmt Prep	Analysis
Manganese .	ND	0.00500	0.000300	1 .	1822	1461

VOLATILES

Analysis Desc; SW-846 8260B	SW-846 5030Analytical Ba		12:12 by JM	JMC			
Parameters	Results ug/l Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis	
Benzene	ND .	. 1.0	0.10	1		2057	
Ethylbenzene	ND .	1.0	0.15	1		2057	
Toluene	ND	1.0	0.29	1		2057	
m,p-Xylene	ND	1.0	0.18	1		2057	
o-Xylene	ND	1.0	0.13	1		2057	
Xylenes, Total	ND	1.0	0.13	1		2057	
4-Bromofluorobenzene (S)	89.6 %	74-125		1		2057	
1,2-Dichloroethane-d4 (S)	84.7 %	70-130		1		2057	
Toluene-d8 (S)	101 %	82-118		1		2057	

Report ID: H10060286_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060286: Faye Burdette No. 1

Project Number: Faye Burdette No. 1

QC Batch:

Analysis Method:

SW-846 6010B

QC Batch Method:

DIGM/1822 SW-846 3010A

Preparation:

06/11/2010 13:30 by R_V

Associated Lab Samples:

H10060283001 H10060284003 H10060283002 H10060286001 H10060283003 H10060286002 H10060283004 H10060286003 H10060284001 H10060286006 H10060284002

METHOD BLANK: 50489

Analysis Date/Time Analyst:

06/21/2010 16:22 EBG

Blank

ND

Reporting

Parameter

Units

Result Qualifiers

Limit

Manganese

mg/l

0.00500

LABORATORY CONTROL SAMPLE: 50490

Analysis Date/Time Analyst:

06/21/2010 16:28 EBG

Doromotor

LCS

LCS

% Rec

Parameter

Units

Spike Conc.

Result

% Rec

Limits

Manganese

mg/l

0.10

0.0963

96.3

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 50491

50492

Original: H10060283004

MS Analysis Date/Time Analyst:

06/21/2010 16:40 EBG

MSD Analysis Date/Time Analyst:

06/21/2010 16:46 EBG

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	
Manganese	mg/l	. 1.06	0.10	1.11	1.115	. NC	NC	75-125	NC	20	_

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060286_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060286: Faye Burdette No. 1

Project Number: Faye Burdette No. 1

QC Batch:

Analysis Method:

QC Batch Method:

MSV/2054 SW-846 5030

Preparation:

06/17/2010 00:00 by JMC

SW-846 8260B

H10060284001

H10060284002

H10060284003 H10060284004

H10060284005

H10060286001

Associated Lab Samples:

H10060286002

H10060286003

H10060286004

METHOD BLANK: 51692

Analysis Date/Time Analyst:

06/17/2010 18:07 JMC

Parameter	Units	Blank Result Qualifiers	Reporting Limit	
Benzene	ug/l	ND	1.0	
Ethylbenzene	ug/l	ND .	. 1.0	•
Toluene	ug/l	ND	1.0	
m,p-Xylene	ug/l	ND	1.0	
o-Xylene	ug/l	ND	1.0	
Xylenes, Total	ug/l	ND	1.0	
4-Bromofluorobenzene (S)	. %	89.9	74-125	•
1,2-Dichloroethane-d4 (S)	% .	84.5	70-130	
Toluene-d8 (S)	%	103 .	82-118	

LABORATORY CONTROL SAMPLE: 51693

Analysis Date/Time Analyst:

.06/17/2010 17:39 JMC

	•	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	
Benzene	ug/l	. 20	17.1	85.3	74-123	
Ethylbenzene	ug/l	20	20.6	103	72-127	
Toluene	ug/l	20	22.6	113	74-126	
m,p-Xylene	ug/l	40 .	41.5	104	71-129	
o-Xylene	ug/l	20	21.2	106	74-130	
Xylenes, Total	ug/l	60	62.76	105	71-130	
4-Bromofluorobenzene (S)	%			99.4	74-125	
1,2-Dichloroethane-d4 (S)	%			81.7	70-130	
Toluene-d8 (S)	%			105	82-118	*

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 51694

51695

Original: H10060398003

MS Analysis Date/Time Analyst:

06/17/2010 21:23 JMC

MSD Analysis Date/Time Analyst:

06/17/2010 21:51 JMC

Parameter	Units	Original Result	Spike Conc.	MS _. Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Benzene	ug/l	· 1	20	17.3	17.3	86.3	86.4	70-124	0.1	20
Ethylbenzene	ug/l	. 1	20	20.5	20.1	102	101	35-175	1.6	20
Toluene	ug/l	1	20	22.3	22.6	112	113	70-131	1.3	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060286_6125

Page 12 of 19

Printed:

06/24/2010 19:58

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060286: Faye Burdette No. 1

Project Number: Faye Burdette No. 1

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 51694

51695

Original: H10060398003

MS Analysis Date/Time Analyst:

06/17/2010 21:23 JMC

MSD Analysis Date/Time Analyst:

06/17/2010 21:51 JMC

Parameter ·	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
m,p-Xylene	ug/l	1	40	. 41.7	40.8	104	102	35-175	2.2	20.
o-Xylene	ug/l	1	20	21.0	20.8	105	104	35-175	0.6	20
Xylenes, Total	ug/l	1	60	62.69	61.65	104	103	35-175	1.7	20
4-Bromofluorobenzene (S)	%	ND				99.8	99.7	74-125		30
1,2-Dichloroethane-d4 (S)	%	ND	i	•		82.9	81.4	70-130		30
Toluene-d8 (S)	%	ND		÷		105	105	82-118		. 30
									٠.	

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060286: Faye Burdette No. 1

Project Number: Faye Burdette No. 1

QC Batch:

MSV/2056

Analysis Method:

SW-846 8260B

QC Batch Method:

SW-846 5030

Preparation:

06/18/2010 00:00 by JMC

Associated Lab Samples:

H10060283001 H10060284004 H10060283002 H10060286005 H10060283003 H10060286006 H10060283004 H10060430001 H10060283005

H10060284003

METHOD BLANK: 51942

Analysis Date/Time Analyst:

06/18/2010 11:15 JMC

		Blank	Reporting		•		
Parameter	Units	Result Qualifiers	Limit	٠			
Benzene	ug/l	ND	1.0				
Ethylbenzene	. ug/l	ND	1.0	•			
Toluene	ug/l	ND	1.0		•		
m,p-Xylene	ug/l	ND .	1.0				
o-Xylene	ug/l	ND	1.0	•	•		
Xylenes, Total	. ug/l	ND	· 1.0				
4-Bromofluorobenzene (S)	%	90.6	74-125		•		
1,2-Dichloroethane-d4 (S)	%	83.1	70-130		•	•	
Toluene-d8 (S)	%	103	82-118		•	,	

LABORATORY CONTROL SAMPLE: 51943

Analysis Date/Time Analyst:

. 06/18/2010 10:48 JMC

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	
Benzene	ug/l	20	16.7	83.6	74-123	
Ethylbenzene	ug/l	20	20.1	101	72-127	
Toluene	ug/l	20	21.5	107	74-126	
m,p-Xylene	ug/l	40	40.4	101	71-129	
o-Xylene	ug/l	20	20.9	104	74-130	
Xylenes, Total	ug/l	60	61.34	102	71-130	
4-Bromofluorobenzene (S)	%			98.1	74-125	
1,2-Dichloroethane-d4 (S)	%			81.3	70-130	
Toluene-d8 (S)	%			103	82-118	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 51944

51945

Original: H10060283005

MS Analysis Date/Time Analyst:

06/18/2010 15:52 JMC

MSD Analysis Date/Time Analyst:

06/18/2010 16:20 JMC

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MṢ % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Benzene	ug/l	ND	20	17.3	16.6	86.3	82.8	70-124	4.1	20
Ethylbenzene	ug/l	ND	20	19.6	19.5	97.9	97.7	35-175	0.3	20
Toluene	ug/l	ND	20	. 21.9	21.7	109	108	70-131	1.1	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060286_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060286: Faye Burdette No. 1

Project Number: Faye Burdette No. 1

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 51944

51945

Original: H10060283005

MS Analysis Date/Time Analyst:

06/18/2010 15:52 JMC

MSD Analysis Date/Time Analyst:

06/18/2010 16:20 JMC

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max · RPD
m,p-Xylene	ug/l	ND	.40	39.3	39.4	98.2	98.6	35-175	0.3	. 20 .
o-Xylene	ug/l	ND	20	20.1	19.8	101	98.8	35-175	1.8	20
Xylenes, Total	ug/l	ND	60	59.42	59.19	99.0	98.6	35-175	0.4	20
4-Bromofluorobenzene (S)	%	92.6				97.8	96.5	74-125		30
1,2-Dichloroethane-d4 (S)	%	85.8				81.1	82.2	70-130		30
Toluene-d8 (S)	%	. 102		•		103	103	82-118	•	30

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060286_6125 Page 15 of 19

Phone: (713) 660-0901 Fax: (713) 660-8975

Legend

(S) - Indicates analyte is a surrogate

Qualifier	Qualifier Description
MI.	Matrix Interference
1	Estimated value, between MDL and PQL (Florida)
JN	The analysis indicates the presence of an analyte
C .	MTBE results were not confirmed by GCMS
NC	Not Calculated - Sample concentration > 4 times the spike
*	Recovery/RPD value outside QC limits
E	Results exceed calibration range
Н	Exceeds holding time
J	Estimated value
Q	Received past holding time
В	Analyte detected in the Method Blank
N	Recovery outside of control limits
D	Recovery out of range due to dilution
NC	Not Calculable (Sample Duplicate)
Р	Pesticide dual column results, greater then 25%
TNTC	Too numerous to count

Report ID: H10060286_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: H10060286: Faye Burdette No. 1

Project Number: Faye Burdette No. 1

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
H10060286001	MW-1	SW-846 3010A	DIGM/1822	SW-846 6010B	ICP/1461
H10060286002	MW-2	SW-846 3010A	DIGM/1822	SW-846 6010B	ICP/1461
H10060286003	MW-3	SW-846 3010A	DIGM/1822	SW-846 6010B	ICP/1461
H10060286006	MW-4	SW-846 3010A	DIGM/1822	SW-846 6010B	ICP/1461
	· ·		•	•	
H10060286001	MW-1	SW-846 5030	MSV/2054	SW-846 8260B	MSV/2055
H10060286002	MW-2	SW-846 5030	MSV/2054	SW-846 8260B	MSV/2055
H10060286003	MW-3	SW-846 5030	MSV/2054	SW-846 8260B	MSV/2055
H10060286004	Duplicate	SW-846 5030	MSV/2054	SW-846 8260B	MSV/2055
H10060286005	Trip Blank	SW-846 5030	MSV/2056	SW-846 8260B	MSV/2057
H10060286006	MW-4	SW-846 5030	MSV/2056	SW-846 8260B	MSV/2057
		· ·			

Report ID: H10060286_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

Sample Receipt Checklist

WorkOrder:	H10060286	Received By	LOG
Date and Time	06/11/2010 09:15	Carrier Name:	FEDEXS
Temperature:	2.0°C	Chilled By:	Water Ice
1. Shipping container/coole	r in good condition?		YES
2. Custody seals intact on s	shipping container/cooler?		YES
3. Custody seals intact on s	sample bottles?		Not Present
4. Chain of custody present	?		YES
5. Chain of custody signed	when relinquished and received?		YES
6. Chain of custody agrees	with sample labels?		YES
7. Samples in proper contain	iner/bottle?		YES
8. Samples containers intac	xt?		YES
9. Sufficient sample volume	for indicated test?		YES
10. All samples received with	nin holding time?		YES
11. Container/Temp Blank te	mperature in compliance?		YES
12. Water - VOA vials have z	ero headspace?		YES
13. Water - Preservation che	cked upon receipt(except VOA*)?	· .	Not Applicable
*VOA Preservation Chec	ked After Sample Analysis		
SPL Representative:		Contact Date & Time:	

Report ID: H10060286_6125

Client Name Contacted: Client Instructions:

Phone: (713) 660-0901 Fax: (713) 660-8975

A STATE OF THE STA			and the second s	
Aging Agin	Requested IAI	Municipal Control of the Control of	Mic Decision: P2/2/2/1/N	Citest Name: 12 170 120 (Autority Name: 12 170 170 170 170 170 170 170 170 170 170
(Relinguistical by: 5. Relinguistical by: Drive (Noto: 19901) (Scott, L.X. 7088)	Special Reporting Regularization (Regularization) Special Reporting Regularization (Regularization) Stong Stong Advanced Control of Control o		CONTRACTOR CON	SPL Inc. Sequest & Chain of Custour Record
1100 075 S 775	TO 10 10 10 10 10 10 10 10 10 10 10 10 10		SL=sludg P=plastic G=glass	A=amber glass 5 V=vial X=other 5 4=4oz 40=vial 2 =16oz X=other 5 2=HNO3 3 X=other 5
CAMPANAM New Delver Transfer City Wilder 1974 1977 1977 1977 1977 1977 1977 1977	Interior No. 10 Per le l'annon le			OO60286 Requestral Analysis
	5 44	The second of th		

Report ID: H10060286_6125

Printed: 06/24/2010 19:58

Page 19 of 19