3R - 427

SEP 2007 GWMR

09/28/2007

September 28, 2007

CTICAL SOLUTIONS FOR A BETTER

Project No. 92115-250

Mr. Gregg Wurtz ConocoPhillips 3401 East 30th Street Farmington, New Mexico 87401

V 51 5

Phone: (505) 326-9537 Fax: (505) 599-4005

RE: MONITOR WELL INSTALLATION AND GROUNDWATER SAMPLING REPORT

Dear Mr. Wurtz:

Enclosed please find one (1) original of the report entitled, Monitor Well Installation and Groundwater Sampling Report. This report details the drilling, monitor well installation, and groundwater sampling for the El Paso #1A well site in San Juan County, New Mexico.

We appreciate the opportunity to be of service. If you should have any questions or require additional information, please contact our office at (505) 632-0615.

Respectfully Submitted, ENVIROTECH, INC.

Greg W. Crabtree, EIT

Greg W. Crabtree, EIT Environmental Engineer

Enclosure: One (1) original

Cc: Client file 92115

MONITOR WELL INSTALLATION AND GROUNDWATER SAMPLING REPORT

AT: BURLINGTON RESOURCES EL PASO #1A SEC 20 TWP 29N RNG 9W SAN JUAN COUNTY, NEW MEXICO

For:

MR. GREGG WURTZ CONOCOPHILLIPS 3401 EAST 30th Street Farmington, New Mexico 87401

PROJECT NO. 92115-250 SEPTEMBER 2007

5796 U.S. HIGHWAY 64 • FARMINGTON, NM 87401 • (505) 632-0615

BURLINGTON RESOURCES DRILLING AND GROUNDWATER SAMPLING REPORT EL PASO #1A

TABLE OF CONTENTS

Activities Performed	Introduction	•••••••••••••••••••••••••••••••••••••••	•••••	• • • • • • • • • • • • • • • • • • • •		1
Summary and Conclusions	Activities Performed				· · · · · · · · · · · · · · · · · · ·	
Statement of Limitations	Summary and Conclusion	2				
	Statement of Limitations	· · · · · · · · · · · · · · · · · · ·	*****	······		2

Figures:	Figure 1, Vicinity Map
	Figure 2, Burlington Site Map
	Figure 3, Site Map

 Table:
 Table 1, Summary of Analytical Results

Sections: Section 1: Historical Analytical Results Section 2: Lithology Logs Section 3: Analytical Results Section4: Field Notes

INTRODUCTION

Envirotech, Inc. has completed the installation of a temporary monitor well at the El Paso #1A well site in San Juan County, New Mexico; *see Figure 1, Vicinity Map.* The drilling was completed to assess the potential for groundwater contamination at the site. Contaminated soil was excavated from the sites in late February of 2007. Envirotech was not present during this portion of the project. Two samples were collected from the excavation and analyzed by Envirotech's Laboratory for Benzene, Ethylbenzene, Toluene and Total Xylenes (BTEX) via USEPA Method 8021B and Total Petroleum Hydrocarbons (TPH) via USEPA Method 8015. Results showed that all contaminants of concern analyzed, were below the most stringent NMOCD regulations. The analytical results are presented in *Section 1, Historical Analytical Results* and are also summarized in *Table 1, Summary of Analytical Results*. Water samples were not collected at the time of excavation.

DRILLING AND SOIL SAMPLING PERFORMED

On September 21, 2007 Envirotech personnel mobilized to the site to perform monitor well installation at the El Paso #1A well site. One (1) temporary monitor well was installed near the previously excavated area. A drawing of the area excavated was provided to Envirotech by Burlington and the placement of the monitor well was based on this drawing. A copy of this drawing is presented as *Figure 2*. Samples were taken every five (5) feet using a split spoon sampler. The samples were then analyzed with the use of an Organic Vapor Meter (OVM). A soil sample was also collected from the cuttings at the estimated soil water interface. A lithology log was completed on the boring and is included in *Section 2, Lithology Logs*. An updated site map with the estimated area of excavation and monitor well location was also completed and is presented as **Figure 3** in this document.

During the drilling process it appeared the soil water interface was at approximately 9.5-10 feet. The sample at this depth had the highest OVM at 15.5 ppm and was turned into the lab for analysis via USEPA Method 8015 for TPH and Method 8021B for BTEX. The sample was collected from the split spoon at a depth of 10 feet Below Ground Surface (BGS). All contaminants of concern from the analysis were below the most stringent OCD regulations of 100 ppm TPH, 10 ppm Benzene, and 50 ppm for Total BTEX. Laboratory Certificates are presented in *Section 3, Analytical Results* and summarized in *Table 1, Summary of Analytical Results*.

The aquifer in this area appears to be a perched aquifer with a shale layer acting as the aquitard. The perched aquifer is could be connected hydraulically to the aquifer associated with Largo Wash when the regional water table is high. The anticipated groundwater flow direction would therefore be to the West-Northwest following the flow of Largo wash.

GROUNDWATER SAMPLING

Envirotech returned to the site on the afternoon of September 21, 2007 to sample the well. Prior to sampling the well the water level was measured. The water level had come up to approximately seven (7) feet BGS. Three (3) well volumes were then bailed from the well using a new disposable bailer. Prior to sampling the temperature, conductivity, and pH was recorded; see Section4, Field Notes. A water sample was then collected in 40-mL VOA vials and capped headspace free. The samples were placed on ice and transported to Envirotech's laboratory for

BTEX analysis. All contaminants of concern were below the drinking water standards set forth by the NMED. Benzene was present in the water sample at 1.4 ppb which is below the 10 ppb regulatory standard. Laboratory Certificates are presented in *Section 3, Analytical Results* and summarized in *Table 1, Summary of Analytical Results*.

SUMMARY AND CONCLUSIONS

Envirotech has completed the installation of a temporary monitor well at the El Paso #1A well site. One temporary monitor well was completed to a depth of 10 feet BGS in the down gradient direction from the excavated area. Soil and water samples were collected from this well and analyzed at Envirotech's laboratory for TPH and BTEX constituents. None of the contaminants of concern analyzed for were above the regulatory limits set forth by either the NMOCD or the NMED. Envirotech recommends plugging of the temporary monitor well and a no further action determination be granted with regards to this incident.

STATEMENT OF LIMITATIONS

The undersigned has conducted this service at the above referenced site. This work has been conducted and reported in accordance with generally accepted professional practices in geology, engineering, environmental chemistry, and hydrogeology.

We appreciate the opportunity to be of service. Should you have any questions or require additional information, please contact our office at (505) 632-0615.

Respectfully submitted,

ENVIROTECH, INC.

Greg Crabtree, EIT Environmental Engineer gcrabtree@envirotech-inc.com Reviewed By:

HILL V. KERR CLE LEWN MELAND 299 READING SCIENTIS

Kyle P. Kerr Chief Environmental Scientist/Manager NMCES #299 kpkerr@envirotech-inc.com

FIGURES

Figure 1, Vicinity Map Figure 2, Burlington Site Map

e

Figure 3, Site Map

Burlington Resources El Paso # 1 A 500' FNL & 1840' FWL Sec. 20, Twn 29 N, Rng 9 W Lease # NM 0560422 36°43.0' & 107°48.3'

Diagram:

Surface Gradient

North

* Please Note : Not to Scale

.

• • •

•

. {

Table 1: Summary of Analytical Results

Soil Samples

	(1						I
	Total BTEX (ppn	20	0.045	0.0022		0.069	
	Benzene (ppm)	10	DN	, QN		DN	
	(mqq) HTT	100	UN	UN	· · · ·	3.2	
1	Date		2/27/2007	2/27/2007		9/21/2007	
	Sample ID	NMOCD Regulations	SW corner @ 8'	4-wall com @ 6'		10' BGS	

Water Sample

Sample ID	Date	Benzene (ppb)	Toluene (ppb)	Ethylebenzene (ppb)	Total Xylenes (ppb)
NMOCD Regulations		10	750	750	620
MW-1	9/21/2007	ND	15.2	9	47.8

1

SECTION 1

Historical Analytical Results

PRACTICALESOLUTIONS FOR A BETWEINTOWORROW

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

		, · · · ·			
Client:	Burlington	Project #:	92115-001-2133		
Sample (D:	4 - Wall Comp @ 6'	Date Reported:	02-28-07		
Laboratory Number:	40210	Date Sampled:	02-27-07		
Chain of Custody No:	2133	Date Received:	02-27-07		
Sample Matrix:	Soil	Date Extracted:	02-27-07		
Preservative:	Cool	Date Analyzed:	02-28-07		
Condition:	Cool and Intact	Analysis Requested:	8015 TPH		

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments: El Paso 1S.

alters Analyst

Wull Review

1796 U.S. Highway 64 • Farmington, NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 1865

IBRACTICALISOLUTION SHEORTA BEINTERMOMOR BOW

VIROTEC

EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Quality Assurance Report

Client:	04/00		Project #		N/A
Sample ID:	02-28-07 04/		Data Reported	•	13/C
Laboratory Number:	A0101	20	Date Reported.		02-20-07
Cabolatory Number	40191		Date Sampled.		N/A
Sample Matrix:	Methylene Chiol	lae	Date Received:		N/A
Preservative:	N/A		Date Analyzed:		02-28-07
Condition:	N/A		Analysis Reques	ted:	TPH
	Cal Date 1/		Cical RE:	% Differênce	Accept
Gasoline Range C5 - C10	07-11-05	1.6567E+003	1.6583E+003	0.10%	0 - 15%
Diesel Range C10 - C28	07-11-05	1.8753E+003	1.8791E+003	0.20%	0 - 15%
Blank Concx (mg/IL-mg/Kg)		Concentration		Detection	I.
Gasoline Range C5 - C10	ang yan at for an a for an a for the f	ND	a and a fair of the second	0.2	. ای ر
Diesel Range C10 - C28		ND		0.1	
Total Petroleum Hydrocarbons	·	ND		0.2	
Duplicate Concix(mg/Kg)	Samples	M Dupicate	1% Difference	AcceptoRange	бі 1
Gasoline Range C5 - C10	1.0	1.0	0.0%	0 - 30%	2 2
Diesel Range C10 - C28	4.6	4.5	2.2%	0 - 30%	:
Shika Concernment (Concernment)		INSERTS AND IN		SP/D	
Gasoline Pance C5 C10		250	240	8/6/NeGOVENY	ZE ADEN
Dissol Pango C40 C29	4.6	200	24J 945	JJ.2 70	10-120%
Diesei Kange CIU-C20	4.0	200 -	240	90.1%	/5 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 40191, 40193 - 40194 and 40210.

Jalles

uh Wull

Review

IRRACTICALISOLUTIONS/EORIA BEITTERTOMORROW

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

	· ·		•
Client:	Burllington	Project #:	92115-001-2133
Sample ID:	4 - Wall Comp @ 6'	Date Reported:	02-28-07
Laboratory Number:	40210	Date Sampled:	02-27-07
Chain of Custody:	2133	Date Received:	02-27-07
Sample Matrix:	Soil	Date Analyzed:	02-28-07
Preservative:	Cool	Date Extracted:	02-27-07
Condition:	Cool & Intact	Analysis Requested:	BTEX

Parameter	Concentr (ug/Kg)		Det. Limit (ug/Kg)	
Benzene		ND	1.8	
Toluene		ND	1.7	
Ethylbenzene	·	2.2	1.5	
p,m-Xylene		ND	2.2	
o-Xylene	• •	ND	1.0	
Total BTEX		2.2		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	97.0 %
	1,4-difluorobenzene	97.0 %
	Bromochlorobenzene	97.0 %

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments:

El Paso 1S.

Wall

Review

ERACTICALISONUMONS FOR A BETMERMOMORIHOW

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client: Sample ID: Laboratory Number:	N/A 02-28-BTEX QA/Q0 40189	ו כ ו	Project #: Date Reportèd: Date Sampled:		N/A 02-28-07 N/A
Sample Matrix:	Soil	r	Date Received:		N/A
Preservative:	N/A	ſ	Date Analyzed:	•••	02-28-07
Condition:	N/A		Analysis:		BTEX
Calibration and United Internation	ICAIREA IOI	Accept Rang	%Diff- je`0\\$15%; 1	Blank Concs	iDolect Limit.
Benzene	2.5906E+007	2.5958E+007	0.2%	ND	0.2
Toluene	3.6223E+007	3.6296E+007	0.2%	ND	0.2
Ethylbenzene	1,91 82E+ 007	1.9221E+007	0.2%	ND	0.2
p,m-Xylene	7.6713E+007	7.6866E+007	0.2%	ND	0.2
o-Xylene	3.2464E+007	3.2529E+007	0.2%	ND	0.1
Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene	(g) 29.6 29.6 18.0 33.4 137 51.4	28.6 28.6 17.0 32.4 136 50.4	3.4% 5.6% 3.0% 0.7% 1.9%	0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	1.8 1.7 1.5 2.2 1.0
Spike Conc- (ug/Ka)	The second se	Amount/Solked	SolkediSamula	MRecovery	Acceptinance
Spike Conce (ug/Kg)	Sample A	Amount Spiked	SpikediSampla		Acceptinances
Spike Conce (ug/Kg) Benzene Tolungo	29.6	Amount Spiked	SpikediSamplar	99.6%	AccentiRanges
Spike Conc (ug/Kg)) Benzene Toluene Ethylbonzono	29.6 18.0	Amount Spiked 50.0	50/KediSampla 79.3 65.0	99.6% 95.6%	39 - 150 46 - 148
Spike Conc (ug/Kg)) Benzene Toluene Ethylbenzene	29.6 18.0 33.4	Amount Spiked 50.0 50.0 50.0	50/KediSampla 79.3 65.0 75.0	99.6% 95.6% 89.9%	39 - 150 46 - 148 32 - 160
Spike Conc ² (ug/Kg) Benzene Toluene Ethylbenzene p,m-Xylene	29.6 18.0 33.4 137	Amount Spiked 50.0 50.0 50.0 100	50/Ked Sampla 79.3 65.0 75.0 230	99.6% 95.6% 89.9% 97.1%	39 - 150 46 - 148 32 - 160 46 - 148
Spike Conce (ug/Kg) Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene	29.6 18.0 33.4 137 51.4	Amount Spiked 50.0 50.0 50.0 100 50.0	50/Kedi/Sampla 79.3 65.0 75.0 230 90.0	99.6% 95.6% 89.9% 97.1% 88.8%	39 - 150 46 - 148 32 - 160 46 - 148 46 - 148
Spike Conc- (ug/Kg) Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene	29.6 18.0 33.4 137 51.4	Amount Spiked 50.0 50.0 50.0 100 50.0	50/Ked/Sampla 79.3 65.0 75.0 230 90.0	99.6% 95.6% 95.8% 97.1% 88.8%	39 - 150 46 - 148 32 - 160 46 - 148 46 - 148

ND - Parameter not detected at the stated detection limit.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996. Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments: QA/QC for Samples 40189 - 40191, 40193 - 40194 and 40210.

Analyst

Vull

Review

	Relinquished by: (Signature)	Relinquished by: (Signature)	Relinguisfied by Signature)				() () () () () ()	4-WW State 1020 4040	Sample No./ Sample Sample Lab Number	Sampler: Client No. 92.115- 1. M & Davia 4 Client No. 92.115- Hubbe 62-62	Client LProject Name Project Location	
TVIROT ECH INC. 5796 U.S. Highway 64 Farmington, New Mexico 87401 (505) 632-0615	Received by: (Signature)	The 10-25 (1 Mile the M) Wold	ate Time Received by: (Signature)					Son/ 1 x x	Matrix No Control BTZ Dec	2133 . of ainers	se 15 8 ANALY	
Sample Receipt Received Intact		ten 2/27/67 /	Date					· · · · ·		Remarks	YSIS / PARAMETERS	

FRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

		• •	
Client:	Burlington Resources	Project #:	92115-001-2123
Sample ID:	SW Corner @ 8'	Date Reported:	02-26-07
Laboratory Number:	40182	Date Sampled:	02-26-07
Chain of Custody No:	2123	Date Received:	02-26-07
Sample Matrix:	Soil	Date Extracted:	02-26-07
Preservative:	Cool	Date Analyzed:	02-26-07
Condition:	Cool and Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments: El Paso 1S Spill.

ature m la la leter nalyst

Wall

Review

PRACINICAL SOLUTIONS FOR A BEIMER NOMORROW

EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Quality Assurance Report

					•
Client:	QA/QC		Project #:	•	N/A
Sample ID:	02-26-07 QA/Q	C	Date Reported:		02-26-07
Laboratory Number:	40174		Date Sampled:		N/A
Sample Matrix:	Methylene Chlori	de	Date Received:	• •	N/A
Preservative:	N/A		Date Analyzed:	٠,	02-26-07
Condition:	N/A		Analysis Reques	ted:	ТРН
POPULAR FLATER STORES	MilleCallDate	HUPCall RE-VIT	CCALRE2U	:%Difference	Accept Railine
Gasoline Range C5 - C10	07-11-05	1.3013E+003	1.3026E+003	0.10%	0 - 15%
Diesel Range C10 - C28	07-11-05	1.4456E+003	1.4485E+003	0.20%	0 - 15%
				A TREACTOR OF T	40.0
Blank Conc. (mg/L=mg/Kg)	CARLO AND	Concentration		Detection	
Gasoline Range C5 - C10		ND		0.2 -	
Diesel Range C10 - C28	•	ND		0.1	
Total Petroleum Hydrocarbons		ND ·		0.2	
DUDIE 348 (PODE // MAILON		THE REAL PROPERTY OF		AN A	31
Duplicate Concerting/Agr				Acceptionance	51
Gasoline Range C5 - C10	47.9	47.6	0.6%	•0 - 30%	
Diesel Range C10 - C28	122	. 121 /	0.6%	0 - 30%	
Chile (Concertmontko)		CALL AND AND AND AND	620-02-04	0/ Decaular	
Casolino Panga C5, C10	A7 0	200010000000000000000000000000000000000	207	DO 99/	
Discol Dange C40 C29	41.3	200	231	97.0% 400.0%	13-123%
Diesei Kange CIV-CZO	144	200	312	100.0%	19 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 40174 - 40180 and 40182

Analvst

lul Stull

Review

RRACTICAL SOLUTIONS FOR A BEITTER TOMORROW

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Burlington Resources	Project #:	92115-001-2123
Sample ID:	SW Corner @ 8'	Date Reported:	02-26-07
Laboratory Number:	40182	Date Sampled:	02-26-07
Chain of Custody:	2123	Date Received:	02-26-07
Sample Matrix:	Soil	Date Analyzed:	02-26-07
Preservative:	Cool	Date Extracted:	02-26-07
Condition:	Cool & Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	1.8	
Toluene	6.1	1.7	
Ethylbenzene	ND	1.5	
p,m-Xylene	21.8	2.2	
o-Xylene	17.8	1.0	•.
Total BTEX	45.7		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	99.0 %
	1,4-difluorobenzene	99.0 %
	Bromochlorobenzene	99.0 %

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments: El Paso 1S Spill.

Muster on Walles Analyst

In Wall

ENVIROTEC

PRACTICAL SOLUTIONS FOR BETTER TOMORFOW

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Sample ID:						
•		02-26-BTEX Q	A/QC	Date Réported:		02-26-07
aboratory Number:	e ¹	40174		Date Sampled:		N/A
Sample Matrix:		Soil		Date Received:		N/A
'reservative:		N/A		Date Analyzed:	• .	02-26-07
condition:		N/A		Analysis:	• ·	BTEX
alibration cand Detection Limits	(up/L)	CallRF.	Accept Re	nge)0≈15%	Elank Couc	Détect
2000 8 81/2 31 2 10 10 10 10 10 10 10 10 10 10 10 10 10	N,7 ≌NG (µUN2) Aliyana		<u>, and an </u>	nist of an and the second		
senzene		3.1113E+007	3.1176E+007	0.2%	ND	0.2
		5.0741E+007	5.0843E+007	0.2%	ND	0.2
unyidenzene		2.3975E+007	2.4023E+007	0.2%	ND	0.2
, m-Aylene		1.0385E+008	1.0406E+008	0.2%	NU	0.2
-луюпе		4.6898E+007	4.6992E+007	0.2%	ND	0.1
Mplicate)Concilu	aka)	Samole	Duolicate	%Dff	AcceptiRance	
2						
Senzene		50	5.4 57.4	1.7%	0 - 30%	1.8
Studionzono			J.U 79.U	1.3%	0 - 30%	1.7
		9(7.0 89.0 AA		0 - 30%	1.5
Yulana		3	20 300	0.0%	0 - 30%	2.2
-Aylone		•	30 127	2.3%	0 - 30%	1.0
	,	<i>.</i> .				
ipike)conc. (ug/kg		ZSamplez (Amount Spiked	Spiked Sample;	%Recovery:	W MACCEPtiRange
Benzene		51	3.4 50.0	108	99.7%	39 - 150
oluene		80).0 50.0	120	92.3%	46 - 148
thylbenzene		90).0 50.0	130	92.9%	32 - 160
,m-Xylene		. 9	00 100	990	99.0%	46 - 148
>-Xylene		1	30 50.0	170	94.4%	46 - 148
•		•				•
		·	, č			,
, ·	·					•
ID - Parameter not de	tected at the stat	ed detection limit.				
•		• • •			•	

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 40174 - 40178 and 401

Analyst

h Wull Review

) ^ }	i 1 1 1 1	 	-	
Client / Project Name Burlington Resources		Project Location EI Pase	15		ANALYSIS / PAR	METERS	
Sampler: F. mcDenald		Client No. 92115 -	001-2123	of ainers		Remai	ST ST
Sample No./ Sample to the second seco	Sample Time	Lab Number	Sample Matrix	No No No No No	18		
2/11/2/ CM = 2/21/12/	900	40182	Soil	-		2 Hind	
Conver @ 81						5	
						-	
						·	
						-	
Relinquished by: (Signature)	00		Date Time	Received by: (Signature)		Date	Time
1 + JU M SUST	ľ		2/24/13- 940	Mutu	m Noeten	mata	07 940
Refréquished by: (Signature)				Received by: (Signature)		•	
Relinquished by: (Signature)				Received by: (Signature)			
						Sample Rece	ipt -
8500-78L							Y N N/A
· · .			5796 U.S	S. Highway 64		Received Intact	
			(505)	632-0615	.	Cool - Ice/Blue Ice	
						uppn) (upps)	reproduction 578-129

CHAIN OF CUSTODY RECORD

2123

SECTION 2

Lithology Log

r									
	LOCIONS PL	w			AB	OVE DIA(GR/ GRAM	ADE WELL COMPLETION M / LITHOLOGY LOG MW	_
	STEEL WELL - PHOTECITOR	∖ ┟╴╱	₽		Cap P of Casing	•		SB	_
		N		 3,3 strew	(UP (FT.)		Ĵ. Ĉ		
6	efter				THE SAMP	E HEADS	PAR	SAMPLE DESCRIPTION	2
0.0	тор ябит	目				<u>.</u>	Ě	sand/silt, slightly moist light brown no odor	Û
			111					8	
·								3	
				0915	SS	0.7		sand/silt, slightly moist light brown no odor	<u>۲</u>
2	O NON PVC FLIGH						5077 	WL on 9/27/07 at 1354	
							337		
				0000	C	0.9		sand/silt, dark gray/black, wet slight odor	10
21 61				0230		15.5		Shine, data glay, wet slight odol.	U
	TOP SAND						 		
4.8"	TOP SCREEN			•					
	SCHO 40 PLUEN JAT THEADED SCHEDL					[ļ		_
								· · · · · · · · · · · · · · · · · · ·	
<u>9' 8"</u> 10'	STM SCREEN								
10'	1017al Depth	:::						· · · · · · · · · · · · · · · · · · ·	
	Well Mate	rials	Us	ed:					
	4.5 Sks 10)-12	Silic	a Sand					
	<u>1/2</u> Sks Be Sks Clo	enton ass	nite () "A" ()	Chips Cement					
	Sks Qu _ <u>10</u> Ft Blar	iicko nk C	retë asing			ļ			
	<u>5</u> Ft Scre	en							
	Well Develo	pmei iiled	nt:						
·	Pi <u>15</u> Go	impe illons	ed s of	Water					
	Remarks:						ļ	·····	
					·				_
	L PD. Dann	v Da	4;11-			0.75	י 7 7/א		
	LPER: Rober	rt Sa	lazar		_ BIT _ TO1	SIZE: TAL BO	DRING	LOCATION: DI Faso #1A DEPTH: 10 ELEVATION:	-
DR	LLING COMP	ANY	En	virotech		te sta	RTED:		•
DR	LLING METH	OD: .	<u>HS</u>	<u>A</u>	_ SAN	IPLER	TYPE:	: Split Spoon/Cuttings GEOLOGIST: Greg Crabtree	•
	Burlin	ngtoi	n Res	sources		F /	זוער		
	Sec 20	Twp	29N	Rng 9W				MW-1	
~	REVISIONS					ENN	ARONMEN	ENTAL SCIENTISTS & ENGINEERS 796 U.S. HIGHWAY 64 DATE <u>9/27/07</u> DRAWN GWC PAGE	1
BY			JO	юв <u># 9211</u>	<u>5-2</u> 50		rakmini	(505) 632-0815 SCALE OF	ĺ

Sea

SECTION 3

Analytical Results

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

		•	
Client:	Burlington	Project #:	92115-250
Sample ID:	10' BGS	Date Reported:	09-25-07
Laboratory Number:	43139	Date Sampled:	09-21-07
Chain of Custody No:	3420	Date Received:	09-21-07
Sample Matrix:	Soil	Date Extracted:	09-24-07
Preservative:	Cool	Date Analyzed:	09-25-07
Condition:	Cool & Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	0.7	0.2
Diesel Range (C10 - C28)	2.5	0.1
Total Petroleum Hydrocarbons	3.2	0.2

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments: Elpaso #1A

Analyst

Review

PRACTICAL SOLUTIONS FOR A BETALERBIOMORROW

EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Quality Assurance Report

•	``		• · · · · ·		
Client:	QA/QC		Project #:	• •	N/A
Sample ID:	09-25-07 [,] QA/	QC	bate Reported:		09-25-07
Laboratory Number:	43138		Date Sampled:		N/A
Sample Matrix:	Methylene Chlo	ride	Date Received:		N/A
Preservative:	N/A		Date Analyzed:		09-25-07
Condition:	N/A		Analysis Reques	ted:	TPH
		Call REAL	C CaliRE	% Difference	Accept Range
Gasoline Range C5 - C10	05-07-07	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Diesel Range C10 - C28	05-07-07	9.9960E+002	1.0000E+003	0.04%	0 - 15%
-Blank Conc. (mg/Limg/Kg)		Concentration		Detection Lim	
Gasoline Range C5 - C10		ND .		0.2	
Diesel Range C10 - C28		ND		0.1	
Total Petroleum Hydrocarbons		ND		0.2	· .
Duplicate Conc. (mg/Kg)	Sample 54	Duplicate/	₩®Difference	Accept/Range	1
Gasoline Range C5 - C10	25.6	25.4	0.8%	0 - 30%	
Diesel Range C10 - C28	8.4	8.4	0.0%	0 - 30%	
Spike/Conc. (mg/Kg)	Sample	Spike:Added	Spike Result	% Recovery	Accept Range
Gasoline Range C5 - C10	25.6	250	275	99.9%	75 - 125%
Diesel Range C10 - C28	8.4	250	258	99.9%	75 - 125%
)		· .		
	•		,		

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 43138 - 43139, 43141

Analyst

0 Review

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW.

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Burlington	Project #:	92115-250
Sample ID:	10' BGS	Date Reported:	09-25-07
Laboratory Number:	43139	Date Sampled:	09-21-07
Chain of Custody:	3420	Date Received:	09-21-07
Sample Matrix:	Soil	Date Analyzed:	09-25-07
Preservative:	Cool	Date Extracted:	09-24-07
Condition:	Cool & Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	<u>.</u>
	· · · ·	· ·	
Benzene	ND	0.9	
Toluene	15.2	1.0	
Ethylbenzene	6.0	1.0	
p,m-Xylene	37.7	1.2	
o-Xylene	10.1	0.9	
Total BTEX	69.0		· ·

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter		Percent Recovery	
	Fluorobenzene		98.0 %	
· · · ·	1,4-difluorobenzene	•	98.0 %	
	Bromochlorobenzene		98.0 %	

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments:

Elpaso #1A

Analyst

Review

PRINCTLEAUSOLULIONS FOR AVBEITER TOMORBOW

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	N/A	F	Project #:		N/A
Sample ID:	09-25-BTEX QA/Q	C . [Date Reported:		09-25-07
_aboratory Number:	43138	C	Date Sampled:		N/A .
Sample Matrix:	Soll	£	Date Received:		N/A
Preservative:	N/A		Date Analyzed:	• •	09-25-07
Condition:	N/A	4	Analysis:		BTEX
Callbration and		C C Cal RE	S/2000	Blank	Detect. de
Detection Limits (ug/L)		Accept Rang	e107-115%	Conc	Limit,
Benzene	1.2169E+008	1.2194E+008	0.2%	ND	0.1
Foluene	1.0804E+008	1.0825E+008	0.2%	ND	0.1
Ethylbenzene	8.5790E+007	8.5962E+007	0.2%	ND	0.1
o,m-Xylene	1.6633E+008	1.6666E+008	0.2%	ND	0.1
o-Xylene	7.9506E+007	7.9666E+007	0.2%	ND	0.1
		Some Service	3 107 D 20 5 105 0		79.3 5 33233
Duplicate(Conc (ug/Kg) Benzene Foluene Ethylbenzene o,m-Xylene >-Xylene	5.4 303 188 1,330 444	5.4 302 (187 1,320 443	0.0% 0.3% 0.5% 0.8% 0.2%	Accept:Range 0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.0 1.2 0.9
Duplicate:Conc ((ug/Kg) Benzene Toluene Ethylbenzene o.m-Xylene o-Xylene	Sample 5.4 303 188 1,330 444 Sample	5.4 302 (187 1,320 443	0.0% 0.3% 0.5% 0.8% 0.2%	AcceptiRange 0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	Detect Elmit 0.9 1.0 1.0 1.2 0.9
Duplicate:Conc. (ug/Kg) Benzene Foluene Ethylbenzene o,m-Xylene o-Xylene	5.4 303 188 1,330 444 Sample 5.4	5.4 302 (187 1,320 443 Amount(Spiked) (1	%Diff 0.0% 0.3% 0.5% 0.8% 0.2% Spiked!Sample 55.3	AcceptiRange 0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30% % Recovery 99.8%	0.9 1.0 1.0 1.2 0.9 MAccept Range* 39 - 150
Duplicate.Conc./(ug/Kg) Benzene Foluene Ethylbenzene o.m-Xylene o-Xylene Ppike:Conc. (ug/Kg) Benzene Foluene	5.4 303 188 1,330 444 Sample 5.4 303	5.4 302 (187 1,320 443 Amount(Spiked) 50.0 50.0	%Diff 0.0% 0.3% 0.5% 0.8% 0.2% Spiked!Sample 55.3 352	AcceptiRange 0 - 30% 0 - 30% 0 - 30% 0 - 30% % Recovery 99.8% 99.8%	39 - 150 46 - 148
Duplicate.Conc. (ug/Kg) Benzene Foluene Ethylbenzene o.m-Xylene o-Xylene D-Xylene Boike:Conc. (ug/Kg) Benzene Foluene Ethylbenzene	5.4 303 188 1,330 444 Sample 5.4 303 188	5.4 302 (187 1,320 443 Amount(Spiked) 50.0 50.0 50.0	%Diff 0.0% 0.3% 0.5% 0.8% 0.2% Spiked!Sample 55.3 352 238	AcceptiRange 0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30% % Recovery 99.8% 99.8% 99.8%	0.9 1.0 1.0 1.2 0.9 •••••••••••••••••••••••••••••••••••
Duplicate.Conc. (ug/Kg) Benzene Foluene Ethylbenzene o.m-Xylene o-Xylene Boike:Conc. (ug/Kg) Benzene Foluene Ethylbenzene o.m-Xylene	5.4 303 188 1,330 444 Sample 5.4 303 188 1,330	5.4 302 (187 1,320 443 Amount(Spiked) 50.0 50.0 50.0 100	0.0% 0.3% 0.5% 0.8% 0.2% Spiked!Sample 55.3 352 238 1,420	AcceptiRange 0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30% % Recovery 99.8% 99.8% 99.8% 99.8% 99.3%	0.9 1.0 1.0 1.2 0.9 30 Accept Ranget 39 - 150 46 - 148 32 - 160 46 - 148
Duplicate:Conc ((ug/Kg)) Benzene Foluene Ethylbenzene o.m-Xylene o-Xylene Dike:Conc ((ug/Kg)) Benzene Foluene Ethylbenzene o.m-Xylene o.m-Xylene	5.4 303 188 1,330 444 Sample 5.4 303 188 1,330 444	5.4 302 (187 1,320 443 Amount(Spiked) 50.0 50.0 50.0 100 50.0	0.0% 0.3% 0.5% 0.8% 0.2% Spiked!Sample 55.3 352 238 1,420 493	AcceptiRange 0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30% % Recovery 99.8% 99.8% 99.8% 99.8% 99.8%	0.9 1.0 1.0 1.2 0.9 ▲ Accept Ranges 39 - 150 46 - 148 32 - 160 46 - 148 46 - 148
Duplicate:Conc //ug/Kg) Benzene Toluene Ethylbenzene o.m-Xylene o-Xylene Spike Conc //ug/Kg) Benzene Foluene Ethylbenzene o.m-Xylene o-Xylene	5.4 303 188 1,330 444 Sample 5.4 303 188 1,330 444	5.4 302 (187 1,320 443 Amount Spiked 50.0 50.0 50.0 100 50.0	©Diff 0.0% 0.3% 0.5% 0.8% 0.2% Spiked/Sample 55.3 352 238 1,420 493	AcceptiRange 0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30% 8% 99.8% 99.8% 99.8% 99.8% 99.8% 99.8%	O.9 1.0 1.0 1.2 0.9 39 - 150 46 - 148 32 - 160 46 - 148 46 - 148 46 - 148

ND - Parameter not detected at the stated detection limit.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Decentioer 1980.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photolonization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments: QA/QC for Samples 43138 - 43139 Analyst

Review

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW.

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Burlington	Project #:	92115-250
Sample ID:	MW - 1	Date Reported:	09-25-07
Chain of Custody:	3420	Date Sampled:	09-21-07
Laboratory Number:	43140	Date Received:	09-21-07
Sample Matrix:	Water	Date Analyzed:	09-25-07
Preservative:	Cool/ HCL	Analysis Requested:	BTEX
Condition:	Cool & Intact		

Parameter	Concentration (ug/L)	Dilution Factor	Det. Limit (ug/L)
	• • •		
Benzene	1.4	1	0.2
Toluene	0.5	1	0.2
Ethylbenzene	ND	1	0.2
p,m-Xylene	0.3	1	0.2
o-Xylene	ND	1	0.1

Total BTEX

2.2

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:		Parameter	······	Percent F	Recovery
		fluorobenzene		97	%
		1,4-difluorobenze	ne	97	%
		4-bromochlorobe	nzene	97	%
References:	Method 50: December	30B, Purge-and-Trap, Test 1996.	Methods for Evaluating S	iolid Waste, SW-8	46, USEPA,
	Method 80 Photoioniza	21B, Aromatic and Halogen ation and/or Electrolytic Cor	ated Volatiles by Gas Ch nductivity Detectors, SW-	romatography Us 846, USEPA Dece	ing ember 1996.
Comments:	Elpaso #	1A		•	· · ·
Deren	e Al		Christ		Jaeten
Analyst			Review	<u> </u>	· ·

RRACHICAL SOLUTIONS FOR A BELTER TOMORHOW

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS QUALITY ASSURANCE REPORT

Client: Sample ID: Laboratory Number: Sample Matrix:	N/A 09-25-BTEX QA/Q0 43140 Water	C .	Project #: Date Reported: Date Sampled: Date Received:	• • · ·	N/A 09-25-07 N/A N/A
Preservative:	N/A		Date Analyzed:	• ·	09-25-07
Condition:	N/A		Analysis:		BTEX
Calibration and	II-CaliRE	C CaliRE () Accept Ran	(%Diff# gei0::15%	Blank Concr	Detect., M Lumit
Benzene	1.2157E+008	1.2194E+008	0.30%	ND	0.2
Toluene	1.0793E+008	1.0825E+008	0.30%	ND	0.2
Ethylbenzene	8.5704E+007	8.5962E+007	0.30%	ND	0.2
p,m-Xylene	1.6616E+008^	1.6666E+008	0.30%	ND	0.2
o-Xylene	7.9427E+007	7.9666E+007	0.30%	ND	0.1
Duplicate:Conc:(ug/I=) Benzene Toluene Ethylbenzene p.m-Xylene o-Xylene	1.4 0.5 ND 0.3 ND	1.4 0.5 ND 0.3 ND	0.0% 0.0% 0.0% 0.0% 0.0%	0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	
Spike(Conc.//ug/L)	Samplel	AmountiSpiked	SpikediSample	2% Recovery	VACCEPI Limits
Benzene	1.4	50.0	51.3	99.8%	39 - 150
Toluene	0.5	50.0	50.4	99.8%	46 - 148
Ethylbenzene	ND	50.0	50.1	100.1%	32 - 160
p,m-Xylene	0.3	100	100	99.8%	46 - 148
o-Xylene	ND	50.0	50.0	100.0%	46 - 148
· · · ·					

ND - Parameter not detected at the stated detection limit.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996. Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments: QA/QC for sample 43139 Analyst

N

0			e Cool e Intact	Iqms2 Iqms2	7 7									Time USY S					duction 578-129
342				·						· · ·				1/21/07					san juan repro
				· ·				 											
	METERS		(1.814	[,]) H9T									•	 					
	PARA	- 		ная				 											
	YSIS /		H Hiw	тсгь															
	ANAL			ICI	· ·					<u> </u>				13				-0615	
С С			noinA \	Cation									-	3)5) 632	
5		s	8 Metal	Аяря										at de le	ature)	ature)	Q	01 • (5 0	
Ш		(0928	borteM	1) DOV				 					_	Sign	(Sign:	(Sign		0 874	
		(12081	borteM)	XƏT8	7	7.				 	 	 			ved by	/ed by	동	<i>i</i> Mexic	ļ
Ď		(3108) bontelv	191 (N	1			 		ļ	ļ		ļ		Heõej	Recei	Щ	n, New	
2				Servativa 2 HMO3	174	> 						<u> </u>	-	ي ۽			5	mingto	
<u>ິ</u>				ers Hack		1		 			-			<u></u>			<u> </u>	t • Fan	
5				No./Volt of Contain	4-1	2-40	1							Date 4/6-1			5	way 64	
0 L	ation:	9		Sample ^I Matrix	s: -	WATER								<u></u>				i U.S. Hìgh	
HAIN	ct Name / Loc	pler Name: Crabbre	it No.: 115-250	Lab No.	13139	43140						-				-		2796	
さ	Ū ^g	C Sam	Clier Clier	Sample Time	05-00	1430								R					
				Sample Date	7/2/07	9/21/07								(effi	ature)	ature)			
	Client:	Client Address: 3401 E. 30th	Client Phone No.: 32.6 - 9700	Sample No./ Identification	10'B65	Mw-1								Relinquished by: (Sign,	Relinquished by (Signi	Relinquished by: (Sign:			

3420

SECTION 4

Field Notes

ENVIROTECH INC. FARMINGTON, NM 5796 HIGHWAY 64 MONITOR WELL DATA

MONITOR WELL DATA

Date: 9/21/07

Project No: 9245-250

Project Name:

Chain of Custody No:

Sampler: Goe

Location: El PASO 14-

Project Manager: G: Craffran

WELL #	TIME	D.O. mg/L	рн	COND. µS	TEMP. °C	DEPTH TO WATER FT.	TOTAL DEPTH FT.	WATER COLUMN FT.	BAILED Water Gal.	PRODUCT Ft.	WATEP LEVEL FT.
1	1354		7.61	11.48	73.7	10.54	13,3		10		
				·							
											1
		·									
								-			
			L		ļ						· · · ·
			·							· · · · · · · · · · · · · · · · · · ·	
	 -	ļ									
	 			 		<u> </u>					
· .			ļ	ļ						 	
	 	<u> </u>	 		ļ		<u> </u>	·	ļ	[
L		L			L	L			<u> </u>		

Notes: TOC = Top of Casing Bailed = 3 well volummes: 1.25" well = 0.19 gal/ft. 2.00" well = 0.49 gal/ft. 4.00" well = 1.96 gal/ft. Note well diameter if not one of the above.