3R - 087

CLOSURE REPORT

07/22/2010

Terry S. Lauck Site Manager

ConocoPhillips Company Risk Management & Remediation 420 South Keeler Avenue Bartlesville, OK 74004 Phone: 918.661.0935 E-mail: terry.s.lauck@conocophillips.com

ConocoPhillips

Mr. Glenn von Gonten State of New Mexico Oil Conservation Division Environmental Bureau 1220 South Saint Francis Drive Santa Fe, NM 87505

July 22, 2010

Re: Formal Request for Site Closure and No Further Action Status Site Name: Federal No. 15 OCD Number: 3R-087 API Number: 30-045-20078 RECEIVED OCD

Dear Mr. von Gonten:

ConocoPhillips Company (ConocoPhillips) submits this letter as a formal request for site closure and no further action status for the ConocoPhillips–operated Federal No. 15 natural gas production well site (Site), located on private property in Farmington, San Juan County.

A steady decrease in BTEX concentrations in Monitor Well MW-2 from January 2005 to June 2010 suggests quarterly pumping events at the Site have been successful. The most recent sampling event on June 11, 2010 represents the eighth consecutive quarter in which all analyzed constituents were present in concentrations either below New Mexico Water Quality Control Commission (NMWQCC) standards or below laboratory detection limits. Further information can be referenced in the June 2010 quarterly groundwater monitoring report included as an attachment to this letter.

ConocoPhillips requests no further action be granted by NMOCD. Upon approval of closure by the NMOCD, ConocoPhillips will plug and abandon all monitoring wells at the Site.

Sincerely,

Terry S. Lauck

Cc: Brandon Powell, NMOCD Kelly Blanchard, Tetra Tech, Inc.

Attachments (1)

QUARTERLY GROUNDWATER MONITORING AND SITE CLOSURE REPORT JUNE 2010

CONOCOPHILLIPS COMPANY FEDERAL NO.15 FARMINGTON, SAN JUAN COUNTY, NEW MEXICO

OCD # 3R087 API # 30-045-20078

Prepared for:

420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 114-690110.100

July 2010

Quarterly Groundwater Monitoring Report Federal No.15, Farmington, San Juan County, New Mexico OCD # 3R087

TABLE OF CONTENTS

1.0	INT	RODUCTION	I
	1.1	Site History	I
2.0	MET	HODOLOGY AND RESULTS	
	2.1	Groundwater Monitoring Methodology	
	2.2	Groundwater Sampling Analytical Results	
3.0	CON	NCLUSIONS	

FIGURES

- I. Site Location Map
- 2. Site Layout Map
- 3. Groundwater Elevation Contour Map
- 4. Geologic Cross Section

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Summary (January 2005 June 2010)
- 3. Groundwater Laboratory Analytical Results Summary (January 2005 June 2010)

APPENDICES

Appendix A. Groundwater Sampling Field Forms

Appendix B. Laboratory Analytical Report

QUARTERLY GROUNDWATER MONITORING AND SITE CLOSURE REPORT CONOCOPHILLIPS COMPANY FEDERAL NO. 15 FARMINGTON, SAN JUAN COUNTY, NEW MEXICO

I.0 INTRODUCTION

This report presents the results of quarterly groundwater monitoring completed by Tetra Tech, Inc. (Tetra Tech) on March 29, 2010, at the ConocoPhillips Company Federal No.15 site in Farmington, New Mexico (Site). This event represents the tenth consecutive quarter of groundwater monitoring conducted by Tetra Tech at the Site; and the eighth consecutive quarter of sample results below the New Mexico Water Quality Control Commission (NMWQCC) standards. On behalf of ConocoPhillips, Tetra Tech requests no further action at the Site, and requests approval to plug and abandon all monitoring wells.

The Site is located on private property, on the north side of Gila Street between Washington Avenue and English Road. New Mexico 516 (Main Street) is located approximately 0.5 miles to the west. The Site consists of a gas production well and associated equipment and installations. The location and general features of the Site are shown as **Figures I** and **2**, respectively.

I.I Site History

The history of the Site is outlined on **Table I** and discussed in more detail in the following paragraphs.

On October 23, 2004, a release of roughly 15 barrels of condensate was discovered at the Site. Approximately 1,500 cubic yards of affected soil were excavated and replaced with clean fill during the week of October 25, 2004.

Following soil remediation activities, Monitor Wells MW-1, MW-2, MW-3, and MW-4 were installed using 2-inch polyvinyl chloride (PVC) pipe on November 16 and 17, 2004 by Biosphere Environmental Sciences and Technologies, LLC. An additional, down-gradient monitor well (MW-5) was installed on property south of the Site on October 19, 2005 by Spectrum Drilling under the supervision of Tetra Tech.

Monitor Wells MW-1 through MW-4 were initially sampled on January 18, 2005 and again on October 18 and 19, 2005. Monitor Well MW-5 was initially sampled on October 19, 2005.

Due to the presence of light non-aqueous phase liquid (LNAPL) and constituent of concern (COC) concentrations, Tetra Tech conducted quarterly groundwater removal events at Monitor Well MW-2. A vacuum truck was used to pump a total of 4,343 gallons from MW-2 between July 2005 and January 2008. Pumped water was disposed of in an on-site produced water tank (**Figure 2**).

Tetra Tech conducted annual groundwater sampling of Monitor Wells MW-1, MW-2, MW-3, MW-4, and MW-5 in November of 2006 and 2007. The details of each sampling event can be found in the 2006 and 2007 Annual Groundwater Monitoring and Site Activities Reports, dated January 2, 2007 and January 30, 2008, respectively.

Quarterly groundwater monitoring events began in March 2008. Most recently a quarterly sampling event took place on March 29, 2010. This event marks the eighth consecutive quarterly groundwater monitoring event at the Site in which groundwater quality results for benzene, toluene, ethylbenzene and total xylenes (BTEX) were below NMWQCC groundwater quality standards (GWQS) contained in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC).

2.0 METHODOLOGY AND RESULTS

2.1 Groundwater Monitoring Methodology

Groundwater Elevation Measurements

On June 11, 2010, groundwater elevation measurements were recorded for Monitor Wells MW-1, MW-2, MW-3, MW-4, and MW-5. **Table 2** presents the monitor well specifications and groundwater level data. A groundwater elevation contour map is presented as **Figure 3**, which illustrates that groundwater at the Site flows to the south-southwest at an approximate gradient of 0.02 feet/feet (ft/ft) toward the Animas River, located approximately 3,200 feet south of the Site.

Groundwater sampling

Groundwater quality samples were collected from Monitor Wells MW-1, MW-2, MW-3, MW-4, and MW-5 during the July 11, 2010 groundwater sampling event. Three well volumes were purged from each monitor well prior to sampling. A 1.5-inch polyethylene disposable bailer was used in each well to purge and collect groundwater samples. Purged groundwater was disposed of in the on-site produced water tank (**Figure 2**). Samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain-of-custody documentation to Southern Petroleum Laboratory located in Houston, Texas. The samples were analyzed for presence of BTEX by Environmental Protection Agency (EPA) Method 8260B.

2.2 Groundwater Sampling Analytical Results

The July 11, 2010 analysis of collected groundwater samples indicates that all analyzed constituents are present in concentrations either below NMWQCC standards or were not detected above their respective laboratory reporting limits. Groundwater samples collected from MW-1, MW-3, MW-4 and MW-5 did not reveal BTEX in concentrations above the laboratory reporting limit of 1 microgram per liter ($\mu g/l$) for each individual BTEX component. Benzene concentrations in MW-2 were detected at 2.7 $\mu g/L$; a duplicate sample collected from MW-2 contained concentrations of BTEX below NMWQCC standards. Historical laboratory analytical data are summarized on **Table 3**. The field groundwater

2

sampling forms are presented in **Appendix A** and the laboratory analytical report is presented in **Appendix B**. A geologic cross section of the Site is included as **Figure 4**.

3.0 CONCLUSIONS

Tetra Tech conducted quarterly pumping events in Monitor Well MW-2 from July 2005 to January 2008. The concentrations of BTEX measured in this well have decreased steadily from January 2005 to June 2010 and are summarized below.

- MW-2 benzene concentrations have decreased from 1,200 μ g/L to 2.7 μ g/L.
- MW-2 toluene concentrations decreased from 3,300 µg/L to less than the laboratory reporting limit of 1 µg/L.
- MW-2 ethylbenzene concentrations decreased from 380 μg/L to less 1.3 μg/L.
- MW-2 total xylenes concentrations decreased from 3,500 μg/L to 1.7 μg/L.

The decrease in BTEX concentrations in MW-2 suggests that pumping events were effective. Benzene in MW-3 decreased from 190 μ g/L in January 2005 to less than the laboratory reporting limit of 1 μ g/L in June 2010, while benzene in MW-4 decreased from 36 μ g/L in November 2007 to less than the laboratory reporting limit of 1 μ g/L in June 2010. Additionally, chloride has never been detected above NMWQCC standards in any Site monitor well. Therefore, analysis of this constituent was discontinued beginning with the January 2009 sampling event. Napthalene was detected above the standard in MW-2 during January 2005, but was below the laboratory detection limits during subsequent sampling events and therefore discontinued.

The March 2010 sampling event represents the eighth sampling event in which all analyzed constituents are present in concentrations either below NMWQCC standards or were not detected above their respective laboratory reporting limits. Because eight consecutive quarters of results have been below NMWQCC standards, Tetra Tech recommends no further action at the Site. Upon approval of closure by the NMOCD, ConocoPhillips will plug and abandon all monitoring wells at the Federal No. 15 Site.

If you have any questions or need additional information, please contact Kelly Blanchard at (505) 237-8440 or at kelly.blanchard@tetratech.com.

FIGURES

I. Site Location Map

2. Site Layout Map

3. Groundwater Elevation Contour Map

9

4. Geologic Cross Section

TABLES

I. Site History Timeline

2. Groundwater Elevation Summary (January 2005 – June 2010)

3. Laboratory Analytical Data Summary (January 2005 – June 2010)

Date/Time Period	Event/Action	Description
October 23, 2004	Release Discovered	Estimated that 15 barrels of condensate was released to the subsurface soil and groundwater
October 25-29, 2004	· Soil Excavation	Approximately 1500 cubic yards of affected soil excavated and replaced with clean fill
November 16-17, 2004	Monitor Well Installation	Monitor wells MW-1, MW-2, MW-3, and MW-4 installed to depths of approximately 20 ft BGS
January 18, 2005	Monitor Well Sampling	Initial sampling of Monitor Wells MW-1, MW-2, MW-3, and MW-4
July 7, 2005	Groundwater Removal from Monitor Well MW-2	First removal of groundwater - 145 gallons removed
October 18-19, 2005	Monitor Well Sampling	Second sampling of monitor wells MW-1, MW-2, MW-3, and MW-4
October 19, 2005	Monitor Well Installation	Monitor well MW-5 installed to a depth of 17.5 ft BGS
October 19, 2005	Groundwater Removal from Monitor Well MW-2	558 gallons removed
October 20, 2005	Monitor Well Sampling	Initial sampling of monitor well MW-5
February 16, 2006		236 gallons removed
May 15, 2006	Groundwater Removal from	296 gallons removed
August 2, 2006	Monitor Well MW-2	380 gallons removed
November 14, 2006		440 gallons removed
November 14, 2000		Third sampling of Monitor Wells MW/-1, MW/-2, MW/-3, and MW/-4;
November 14-15, 2006	Monitor Well Sampling	second sampling of monitor wells MW-1, MW-2, MW-3, and MW-4,
February 20, 2007		346 gallons removed
May 15, 2007	Groundwater Removal from	474 gallons removed
August 21, 2007	Monitor Well MW-2	528 gallons removed
November 7, 2007		575 gallons removed
November 7, 2007	Monitor Woll Sampling	Fourth sampling of Monitór Wells MW-1, MW-2, MW-3, and MW-4;
	Groundwater Removal from	third sampling of monitor well MW-5
January 16, 2008	Monitor Well MW-2	365 gallons removed
March 18, 2008	Groundwater Removal from Monitor Well MW-2	278 gallons removed
March 18, 2008	Groundwater Removal from Monitor Well MW-4	288 gallons removed
March 18, 2008	Monitor Well Sampling	Initiation of quarterly sampling for Monitor Wells MW-1, MW-2, MW-3, MW-4, and MW-5
July 21, 2008	Monitor Well Sampling	Continuation of quarterly sampling for Monitor Wells MW-1, MW-2, MW-3, MW-4, and MW-5
October 21, 2008	Monitor Well Sampling	Continuation of quarterly sampling for Monitor Wells MW-1, MW-2, MW-3, MW-4, and MW-5. First quarter of compliance with all COCs below NMWQCC standards.
January 22, 2009	Monitor Well Sampling	Continuation of quarterly sampling for Monitor Wells MW-1, MW-2, MW-3, MW-4, and MW-5. Second quarter of compliance with all COCs below NMWQCC standards.
March 30, 2009	Monitor Well Sampling	Continuation of quarterly sampling for Monitor Wells MW-1, MW-2, MW-3, MW-4, and MW-5. Third quarter of compliance with all COCs below NMWQCC standards.
June 16, 2009	Monitor Well Sampling	Continuation of quarterly sampling for Monitor Wells MW-1, MW-2, MW-3, MW-4, and MW-5. Fourth quarter of compliance with all COCs below NMWQCC standards.
September 28, 2009	Monitor Well Sampling	Continuation of quarterly sampling for Monitor Wells MW-1, MW-2, MW-3, MW-4, and MW-5. Fifth quarter of compliance with all COCs below NMWQCC standards.
December 16, 2009	Monitor Well Sampling	Continuation of quarterly sampling for Monitor Wells MW-1, MW-2, MW-3, MW-4, and MW-5. Sixth quarter of compliance with all COCs below NMWQCC standards.
March 29, 2010	Monitor Well Sampling	Continuation of quarterly sampling for Monitor Wells MW-1, MW-2, MW-3, MW-4, and MW-5. Seventh quarter of compliance with all COCs below NMWQCC standards.
June 11, 2010	Monitor Well Sampling	Continuation of quarterly sampling for Monitor Wells MW-1, MW-2, MW-3, MW-4, and MW-5. Eight quarter of compliance with all COC's below NMWQCC standards.

Table 1. Site History Timeline - ConocoPhillips Company Federal No. 15

Well ID	Date Installed	Total Depth (ft bgs)	Screen Interval (ft)	Date Measured	Groundwater Level (ft TOC)	Elevation (ft msl) (TOC)	Groundwater Elevation (ft msl)
				1/18/2005	8.92		5429.07
				7/7/2005	9.33		5428.66
				10/19/2005	8.03		5429.96
				2/16/2006	8.84		5429.15
				5/15/2006	8.96		5429.03
				8/2/2006	8.35		5429.64
				11/14/2006	8.10		5429.89
				2/20/2007	8.76		5429.23
				5/15/2007	9.67 ⁽¹⁾		5428.32
	•			8/21/2007	NM		NM
NAVA/ 4	11/17/2004	20	E 00	11/7/2007	AM	5427.00	AM
	11/17/2004	20	5 - 20	1/16/2008	7.10	5437.99	5430.89
				3/18/2008	7.61		5430.38
				7/21/2008	4.82		5433.17
				10/21/2008	4.72		5433.27
				1/22/2009	7.12		5430.87
				3/30/2009	7.98	-	5430.01
				6/16/2009	8.78		5429.21
				9/28/2009	9.51		5428.48
				12/16/2009	9.31		5428.68
				3/29/2010	9.47		5428.52
				6/11/2010	9.61		5428.38
				1/18/2005	9.49		5427.84
				7/7/2005	9.55		5427.78
				10/19/2005	8.66		5428.67
				2/16/2006	9.01		5428.32
				5/15/2006	9.00		5428.33
				8/2/2006	8.52		5428.81
				11/14/2006	8.28		5429.05
				2/20/2007	8.87		5428.46
				5/15/2007	8.59		5428.74
•				8/21/2007	6.67		5430.66
MAN 2	11/17/2004	20	5 20	11/7/2007	AM	5437 33	AM
10100-2	11/17/2004	20	5-20	1/16/2008	7.41	0407.00	5429.92
				3/18/2008	8.00		5429.33
				7/21/2008	4.63		5432.70
				10/21/2008	4.37		5432.96
				1/22/2009	7.39		5429.94
				3/30/2009	8.23		5429.10
			• *	6/16/2009	8.73		5428.60
				9/28/2009	9.48		5427.85
				12/16/2009	9.49		5427.84
				3/29/2010	9.62		5427.71
				6/11/2010	9.53	1	5427.80

Table 2. Groundwater Elevation Summary (January 2005 - March 2010) - ConocoPhillips Company Federal No.15

Well ID	Date Installed	Total Depth (ft bgs)	Screen Interval (ft)	Date Measured	Groundwater Level (ft TOC)	Elevation (ft msl) (TOC)	Groundwater Elevation (ft msl)
			` <i>`</i>	1/18/2005	8.54		5426.59
				7/7/2005	8.51		5426.62
				10/19/2005	7.75	•	5427.38
				2/16/2006	NM		NM
				5/15/2006	8.42	÷	5426.71
				8/2/2006	7.99		5427.14
				11/14/2006	7.72		5427.41
· ·				2/20/2007	8.23		5426.90
	,			5/15/2007	7.90		5427.23
	· .			8/21/2007	NM		NM
	11/00/0001		F 00	11/7/2007	AM	5405 40	AM '
MVV-3	11/22/2004	20	5 - 20	1/16/2008	7.20	5435.13	5427.93
L.				3/18/2008	7.73		5427.40
			. •	7/21/2008	5.00		5430.13
		•		10/21/2008	4.12		5431.01
				1/22/2009	7.17		5427.96
				3/30/2009	7.91		5427.22
				6/16/2009	8.23		5426.90
				9/28/2009	8.85		5426.28
		ж. С		12/16/2009	8.94		5426.19
	•			3/29/2010	9.05		5426.08
				6/11/2010	8.82		5426.31
				1/18/2005	8.65		5426.03
				7/7/2005	8.50		5426.18
				10/19/2005	7.72		5426.96
T				2/16/2006	8.35		5426.33
				5/15/2006	8.40		5426.28
				8/2/2006	7.96		5426.72
				11/14/2006	7.74		5426.94
				2/20/2007	8.18		5426.50
MW-4	11/22/2004	20		5/15/2007	7.91		5426.77
				8/21/2007	NM -		NM
				11/7/2007	AM	5424 69	AM
			5-20	1/16/2008	. 7.37	5454.00	-5427.31
				3/18/2008	7.73		5426.95
				7/21/2008	5.90		5428.78
			·	10/21/2008	5.53		5429.15
		· ·		1/22/2009	7.36		5427.32
				3/30/2009	7.88		5426.80
				6/16/2009	8.18		5426.50
				9/28/2009	8.71		5425.97
	;			12/16/2009	8.72		5425.96
				3/29/2010	8.72		5425.96
. ·				6/11/2010	8 40	1	5426.28

Table 2. Groundwater Elevation Summary (January 2005 - March 2010) - ConocoPhillips Company Federal No.15

2 of 3

Well ID	Date Installed	Total Depth (ft bgs)	Screen Interval (ft)	Date Measured	Groundwater Level (ft TOC)	Elevation (ft msl) (TOC)	Groundwater Elevation (ft msl)
				10/20/2005	9.11		5425.05
				2/16/2006	10.62		5423.54
				5/15/2006	10.47		5423.69
				8/2/2006	9.42		5424.74
				11/14/2006	9.05		5425.11
				2/20/2007	9.84		5424.32
				5/15/2007	8.93		5425.23
			•	8/21/2007	NM		NM ·
			3 5-17 5	11/7/2007	AM		AM
	10/10/2005	47.5		1/16/2008	NM	E404 16	NM
C-VVIVI	10/19/2005	17.5	3.5-17.5	3/18/2008	10.21	5454.10	5423.95
				7/21/2008	7.55		5426.61
				10/21/2008	6.18		5427.98
				1/22/2009	9.20		5424.96
				3/30/2009	10.30		5423.86
				6/16/2009	9.89		5424.27
				9/28/2009	10.53		5423.63
				12/16/2009	11.46		5422.70
				3/29/2010	11.81		5422.35
				6/11/2010	10.52		5423.64

Table 2. Groundwater Elevation Summary (January 2005 - March 2010) - ConocoPhillips Company Federal No.15

Explanation

 $^{(1)}$ = Water level near bottom of monitor well AM = Anomolous measurement due to meter malfunction - reading not recorded

bgs = Below ground surface

ft = Feet

msl = Mean sea level

NM = Not measured

TOC = Top of casing

Table 3. Groundwater Laboratory Analytical Results Summary (January 2005 - June 2010) - ConocoPhillips Company Federal No. 15

Well ID	Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	2-Mețhylnaphthalene (µg/L)	1-Methylnaphthalene (µg/L)	Naphthalene (µg/L)	Total Naphthalene (μg/L)	Chloride (mg/L)
	1/18/2005	7 10	41.0 V	41.0 0	<2.0	<10	<10	<10	<10 10	85
	11/15/2006	<1.0	<1.0	<1.0	20	<10	<10	<10	<10 <10	36
,	11/7/2007	<1.0	<1.0	<1.0	<2.0	<10	<10	<10	<10	44
	3/18/2008	<5.0	<5.0	<5.0	<5.0	NA	NA	NA	NA	AN
	1/21/2008	0.65	0.62	45.0	0.02 20.0	<5.0	<5.0	<5.0	<2:0	3 2
MW-1	10/2/12/00	<25.0 <5.0	0.65	25.0	\$5.0 \$5.0	0.62	0.62	0.02	0.65	8.70
	3/30/2009	<25.0	22.0 25.0	<50	29.0 25.0	0.62	D.G2	0.62	0.62	NA
	6/16/2009	\$5.0	<5.0	<0.5 <5.0	<5.0 <5.0	AN	AN	AN	AN AN	AN
	9/28/2009	<1.0	<1.0	<1.0	<1.0	AN	NA	NA	NA	NA
	12/16/2009	<1.0	-	<1.0	<1.0	NA	AN	NA	NA	AN
	3/29/2010	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA	NA
	6/11/2010	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	AN	NA
	1/18/2005	1200	3300	380	3500	72	34	51	157	41
	Duplicate	1300	3700	410	3800	AN S	AN	AN	AN	AN
	10/19/2005	1100	410	160	4/0	8	11	15	44	60
	Duplicate	1100	200	150	610	AN	NA	A	AN	A
	11/14/2006	23	29	6.6	120	<10	<10	<10	<10	20
	UUDIICATE	6	10	71	77	AN V	AN OF A	NA 240	AN 1	NA
	Dunlicate	3.0	70.0	24	60 60	NA NA		0L>	01->	CE MA
	3/18/2008	2	<5.0	<5.0	3 or	NA	NA	NA	AN	AN
	7/21/2008	<5.0	<5.0	13	27	<5.0	<5.0	<5.0	NA	42.7
	Duplicate	<5.0	<5.0	13	27	NA	AN	NA	NA	AN
	10/21/2008	<5.0	<5.0	<5.0	5	<5.0	<5.0	<5.0	NA	71.3
MW-2	Duplicate	<5.0	<5.0	<5.0	<5.0	NA	AN	NA	NA	NA
	1/22/2009	<5.0	<5.0	7	17	<5.0	<5.0	<5.0	<5.0	36.1
	Duplicate	<5.0	<5.0	5	12	AN	AA	NA	NA	AN
	3/30/2009	5.7	<5.0	1	22	NA	NA	NA	NA	AN
	6/16/2009	<5.0	<5.0	<5.0	5.1	AN	AN	AN	NA	AN
	Duplicate	<5.0	<5.0	<5.0	<5.0	AN	AN	AN	AN	Ą
	9/28/2009	<1.0	10.0	<1.0	<1.0	AN	AN	NA	NA	AN N
	10/16/2010	*;; ¥		0-	9.4 2 1	AN	AN	NA		
	Dunlicate	, ¢	10	6; I 10 12	<10	AN	AN	AN	AN	AN
	3/29/2010	1.8	<1.0	<1.0	<1.0	NA	NA	NA	AN	AN
	Duplicate	<1.0	<1.0	<1.0	<1.0	NA	AN	NA	NA	AN
	6/11/2010	2.7	< 1.0	1.3	1.7	NA	NA	NA	NA	NA
	Duplicate	2.9	<1.0	1.5	2	NA	NA	NA	NA	NA
	1/18/2005	190	<5.0	<5.0	<10	<10	<10	<10	<10	34
	10/19/2005	<1.0	<1.0	<1.0	<2.0	<10	<10	<10	<10	42
	11/14/2006	<1.0	<1.0	<1.0	<2.0	<10	<10	<10	<10	39
	11/7/2007	10	<1.0	<1.0	20	<10	40	<10	410	34
	3/18/2008	0.0	0.62	<0.0 2.0	0.65	AN	NA	NA 	AN	A
	7/21/2008	<2.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	AN	22
WM-3	10/21/2008	0.0	0.02	45.0	0.65 A	45.0	\$P.0	<5.0	AN	20.6
	1/22/2009	0.0	0.0	<0.0 2 2 2 2 2	0. 0 .0	0.6>	0.6>	<5.0	0.65	52
	3/30/2009	0:02	0.65	<0.0	0.65 2	NA	AN	NA	AN	AN .
	6/16/2009	22:0	22:0	<5.0	25.0	AN	NA	NA	AN	AN :
	12/16/2009	, (2 I S	v. ^ 0. ^	200	AN N	AN	VN N	AN N	AN N
	3/29/2010	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA	NA.
	6/11/2010	<1.0	<1.0	<1.0	<1.0	NA	AN	NA	AN	AN

Tetra Tech, Inc.

1 of 2

Table 3. Groundwater Laboratory Analytical Results Summary (January 2005 - June 2010) - ConocoPhillips Company Federal No. 15

Well ID	Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	2-Methylnaphthalene (µg/L)	1-Methylnaphthalene (µg/L)	Naphthalene (µg/L)	Total Naphthalene (µg/L)	Chloride (mg/L)
	1/18/2005	2.8	<1.0	<1.0	<2.0	<10	<10	<10	<10	37
	10/19/2005	23	2.2	<1.0	4.3	<10	<10	<10	<10	51
	11/14/2006	1.1	<1.0	<1.0	<2.0	<10	. <10	<10	<10	44
	11/7/2007	36	<1.0	22	<2.0	<10	<10	<10	<10	24
	3/18/2008	<5.0	<5.0	<5.0	<5.0	NA	NA	AN	AN	AN
	7/21/2008	35	<5.0	18	<5.0	<5.0	<5.0	<5.0	AN	22
	10/21/2008	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	25.1
4 MW	1/22/2009	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	42.1
	3/30/2009	<5.0	<5.0	<5.0	<5.0	NA	NA	NA	NA	AN
	Duplicate	<5.0	.<5.0	<5.0	<5.0	NA	NA	NA	AN	AN
	6/16/2009	<5.0	<5.0	<5.0	<5.0	NA	NA	NA	AN	AN
	9/28/2009	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	AN	AN
	12/16/2009	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	AN	NA
	3/29/2009	<1.0	<1.0	<1.0	<1.0	NA	NA	AN	NA	AN
	6/11/2010	<1.0	<1.0	<1.0	o.t>	- NA	NA	NA	AN	NA
	10/20/2005	<1.0	<1.0	<1.0	<2.0	<10	<10	<10	<10	73
	11/14/2006	<1.0	<1.0	<1.0	<2.0	<10	<10	<10	<10	. 79
	11/7/2007	<1.0	<1.0	<1.0	<2.0	<10	<10	<10	<10	58
	3/18/2008	. <5.0	<5.0	<5.0	<5.0	NA .	NA	AN	AN	. AN
	7/21/2008	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	27.6
	10/21/2008	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	34.5
MW-5	1/22/2009	<5.0	<5.0	<5.0	. <5.0	<5.0	<5.0	<5.0.	<5.0	35.8
	3/30/2009	<5.0	<5.0	<5.0	<5.0	NA	NA	NA	AN	NA
	6/16/2009	<5.0	<5.0	<5.0	<5.0	NA	NA	NA	AN	AN
	9/28/2009	<1.0	<1.0	<1.0	≤1.0	٨A	NA	AN	AN	AN
	12/16/2009	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA	NA
	3/29/2010	<1.0	<1.0	<1.0	<1.0	AN	NA	NA	AN	NA
	6/11/2010	<1.0	<1.0	<1.0	<1.0	NA	NA	NA	NA	AN
NMWQCC	Groundwater Standards	10 (µg/L)	750 (µg/L)	750 (µg/L)	620 (µg/L)	Ч	Ш. И	W Z	30 (µg/L)	250 mg/L

•

Explanation

mg/L = milligrams per liter (parts per million) ug/L = micrograms per liter (parts per billion) NE=Not established NMWQCC = New Mexico Water Quality Control Commission NAA = Not analyzed CAT 0 = Not detected at the reporting limit Constituents in excess of NMWQCC groundwater quality standards are in BOLD

APPENDIX A

GROUNDWATER SAMPLING FIELD FORMS

TETRA	TECH, INC.		WATER	SAMPLING		RM		. ·
Project Name	Federal #15				Pa	ge	10f	5
ect No.								
Site Location	Farmington, NM				SAMMI K			050
Site/Well No.	<u>MW-1</u>	Coded/ Replicat	e No.		AAA _	COLLEC	ED (C)	
Weather S	unny, not	_ Began)40	Completed	19 6	<u> </u>)
	ι.		EVACUA	TION DATA	\mathcal{P}_{Λ}			
Description of I	Measuring Point (MP)	Top of Casing				AL-		
Height of MP A	bove/Below Land Surf	ace		MP Elevation	n			
Total Sounded	Depth of Well Below M	1P2)	Water-Level	Elevation		. *	
Held	Depth to Water Belo	w MP	, (1)	Diameter of	Casing2"			
Wet	Water Column ir	n Well	0.39 .	Gallons Purr Prior to Sam	pling			
	Gallons pe	r Foot	0.16	. (" .			••	
	Gallons ir	1 WelL	1.6624	Sampling Pu (feet below la	imp Intake Settin and surface)	ġ 🚤		
Purging Equipn	nent Purge pump	/ Bailer	X3=4	9817		* ;		
• • • • •		<u> </u>	SAMPLING DATA/F		ERS			<u></u>
Time	Temperature (°C)	pH	Conductivity (µS/c	cm ³) TDS (g/L) DO (mg/L) DO %	ORP (mV)	Volume (gal.)
104/	11,89	6,83	4,513		<u> </u>	10.9	135,3	40
1016	11,44	0,00	9.410		$-\frac{1}{0.24}$	4 19.1	1122	50
-1045		- Of Cer				1116		210
								· · ·
Sampling Equip	oment	Purge Pump/B	ailer					·
Constitu	uents Sampled		Container Descri	ption		Pres	ervative	
BTEX		<u>3 40mL \</u>	VOA's		HCI			
		. <u> </u>	. <u></u>		<u>.</u>			<u> </u>
Remarks	Water	13 L	ight bre	um and	silty u	with or	ang bi	acteria
Sampling Perso		<u>i (B</u>	U			<u> </u>	··	
[Well Casi	ng Volumes		······································		
	Gal./ft. 1 ¼" =	0.077	2" = 0.16	3"	= 0.37	4" = 0.6	5	
	1 ½" =	0.10	2 1/2" = 0.24	3" ½	= 0.50	6" = 1.46	3	
•								
	·							
							·	
								81
						·		

TETRA TECH, INC.	WATER SA	MPLING FIEL	D FORM		
Project Name Federal #15			Page	<u>2</u> of	5
əct No.					
Site Location Farmington, NM			MOLT CO	FCTED	
Site/Well No. <u>MW-2</u>	Coded/ Replicate No. <u>135</u> Time Sampling			1130	
Weather SWNW, NOT	Began UGD	¢¥		6/11/10	
	EVACUATION	DATA	DIFIE	l	
Description of Measuring Point (MP) Top	of Casing		- <u></u>		
Height of MP Above/Below Land Surface		MP Elevation		• .	
Total Sounded Depth of Well Below MP	20	Water-Level Elevation	on		<u>.</u>
Heid Depth to Water Below MP	9,63	Diameter of Casing	2"		
Wet Water Column in Wei	10.47	Gallons Pumped/Bal Prior to Sampling			
Gallons per Foot	0.16				
Gallons in Well	1.6152	feet below land surf	ike Setting face)	······	
Purging Equipment Purge pump / Bail	D X3=5.02	56			
	SAMPLING DATA/FIELD	PARAMETERS			
Time Temperature (°C) 1101 - 12 + c(1 - 7)	pH Conductivity (µS/cm ³)	TDS (g/L)	DO (mg/L) D	0% ORP (mV)	Volume (gal.)
1140 15104 1 197 (2,50 -	100 21400		3710 3	117-91	4
1129 3139	6.98 21410		3,39 3	2,5 -99,1	5,0
					~ 1 ~
		·			<u> </u>
Sampling Equipment Purg	e Pump/Bailer	;		·	
Constituents Sampled	Container Description			Preservative	
BTEX	3 40mL VOA's		ж		
					
· · ·		· ·			
Remarks Hopis Ar	an with white	harterier			
Sampling Personnel	B		<u></u>		
	Well Casing V	olumes			
Gal./ft. 1 ¼" = 0.077	2 ⁿ = 0.16	3" = 0.37	7 4"	= 0.65	
1 ½" = 0.10	2 1/2" = 0.24	$3'' \frac{1}{2} = 0.50$) 6"	= 1.46	
		1		*	
			-		

TETRATECH, INC.	WATER S	AMPLING FIELD FORM
roject Name Federal #15	· · · · · · · · · · · · · · · · · · ·	Page 3 of5
ect No.		
te Location Farmington, NM		
te/Well No. <u>MW-3</u>	Coded/ Replicate No.	SHUDDE COLLECTED @ 110
leather <u>Sunny hot</u>	Time Sampling Began	45 Time Sampling
	EVACUATIO	DN DATA DIFTE
escription of Measuring Point (MP) To	of Casing	
eight of MP Above/Below Land Surface		MP Elevation
otal Sounded Depth of Well Below MP	20	Water-Level Elevation
eld Depth to Water Below M	P	Diameter of Casing 2"
et Water Column in We	ell <u>[]</u>	Prior to Sampling 515
Gallons per Fo	ot0.16	Occurelles During Intelle Octification
Gallons in W	11/198	(feet below land surface)
urging Equipment Purge pump / Ba	iler X13=5	3664
	SAMPLING DATA FIE	LD PARAMETERS
Time Temperature (°C)	pH Conductivity (µ8/cm ³	TDS (g/L) DO (mg/L) DO % ORP (mV) Volume (gal.)
111 13,29	$\frac{1}{2} \frac{1}{2} \frac{1}$	3.24 31 1025 6 5
113 13,41	7100 21130	- 3130 3211 108,2 5
1114 13,40	0,90 21139	- 3,52 34,2 113,2 5,5
ampling Equipment Pu	ge Pump/Bailer	······································
Constituents Sampled	Container Description	on <u>Preservative</u>
TEX	3 40mL VOA's	HCI
		· · · · · · · · · · · · · · · · · · ·
1		
emarks HSD is hrow	n and sitter 1	with red plant nots. No oclar
ampling Personnel	B	OV SPEED
		Observed
	Well Casing	Volumes
Gal./ft. $1 \frac{1}{2}$ = 0.00 $1 \frac{1}{2}$ = 0.10	2'' = 0.16 $2''_2 = 0.24$	3'' = 0.37 $4' = 0.653'' \frac{1}{2} = 0.50 6'' = 1.46$

TE TETRA TECH, INC. WATER	SAMPLING FIELD FORM
Project Name Federal #15	Page 65
,ect No.	
Site Location Farmington, NM	
Site/Well No. MW-4 Coded/	SHAPLE (DILLETED @, 1145
Weather SUMMI hot Began 120	Arrestantolling 6/11/10
EVACUAT	ION DATA DITIE / /
Description of Measuring Point (MP) Top of Casing	
Height of MP Above/Below Land Surface	MP Elevation
Total Sounded Depth of Well Below MP20	Water-Level Elevation
Held Depth to Water Below MP	Diameter of Casing 2"
Wet Water Column in Well	Gallons Pumped/Bailed 5.75
Gallons per Foot0.16	
Gallons in Well	Sampling Pump Intake Setting (feet below land surface)
Purging Equipment Purge pump / Bailer X.355	.568
SAMPLINGDATA)) ELD PARAMETERS
Time Temperature (°C) pH Conductivity (p6/cm	n ³) TDS (g/L) DO (mg/L) DO % ORP (mV) Volume (gal.)
131 13131 015 2403 139 1217 692 7077	
141 13.12 6.87 3496	2.12 202 281 5.75
Sampling Equipment <u>Purge Pump/Bailer</u>	
Constituents Sampled Container Descrip	tion Preservative
BTEX 3 40mL VOA's	HCI
·	
	·
Remarks H20 is brown and si	Hy, no oderorsheen observed
Sampling Personnel	
Well Casin	ig Volumes
Gal./ft. $1 \frac{1}{4}$ "= 0.077 2 "= 0.16 $1 \frac{1}{2}$ "= 0.10 $2 \frac{1}{2}$ "= 0.24	3'' = 0.37 $4'' = 0.653'' \frac{1}{2} = 0.50 6'' = 1.46$
· · · · · · · · · · · · · · · · · · ·	

TETRATECH, INC. WATER S	SAMPLING FIELD FORM
Project Name Federal #15	Page 5 of5
,ect No.	
Site Location Farmington, NM	(h,m0)=
Site/Well No. MW-5 Coded/	MANA COLLECTED @ 1,220
Weather SIMMU, hot Began	pomplexed 6/1/10
EVACUATIO	DHTE / /
Description of Measuring Point (MP) Top of Casing	
Height of MP Above/Below Land Surface	MP Elevation
Total Sounded Depth of Well Below MP 17.5	Water-Level Elevation
Held Depth to Water Below MP0162	Diameter of Casing 2"
Wet Water Column in Well (2, 2, 3)	Gallons Pumped/Bailed Prior to Sampling
Gallons per Foot 0.16	
Gallons in Well 1 1108 v 3-	Sampling Pump Intake Setting (feet below land surface)
Purging Equipment Purge pump / Bailer (3,35)	
SAMPLING DATA/FIE	LD PARAMETERS
Time Temperature (°C) pH Conductivity (μ S/cm ³	TDS (g/L) DO (mg/L) DO % ORP (mV) Volume (gal.) \sim $2/1/2$ $3d$ $1/7 < 7.5$
1214 13.74 (0.84 7.349	3.19 31.4 113.9 3.0
1215 1370 1087 2347	- 3,22 31,1 1101 3,5
Sampling Equipment Purge Pump/Bailer	
Constituents Sampled Container Description	on Preservative
BTEX <u>3 40mL VOA's</u>	HCI
	·
Remarks the is light torran and	esitty,
Sampling Personnel M 3 CB	- y
	Volumes
Gai./rt. $1\frac{9}{4}^{*} = 0.077$ $2 = 0.16$ $1\frac{1}{2}^{*} = 0.10$ $2\frac{1}{2}^{*} = 0.24$	3 = 0.37 $4 = 0.053'' \frac{1}{2} = 0.50 6'' = 1.46$
Terry 11/2	
tola viola	, , , , , , , , , , , , , , , , , , ,
10.59	ΛΛ
The from well read; The	tromtence
	·.

. •

.

.

·

APPENDIX B

LABORATORY ANALYTICAL REPORT

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis <u>ы</u> с. ίς. Υ · · · · · June 25, 2010 Workorder: H10060338 Kelly Blanchard Tetra Tech Project: COP - Federal #15 Project Number: COP - Federal #15 6121 Indian School Road NE Suite 200 Site: COP - Federal #15, Farmington, NM Albuquerque, NM 87110 PO Number: NELAC Cert. No.: T104704205-09-1

This Report Contains A Total Of 17 Pages

Excluding Any Attachments

Phone: (713) 660-0901 Fax: (713) 660-8975

June 25, 2010 Workorder: H10060338 Kelly Blanchard Project: COP - Federal #15 Tetra Tech Project Number: COP - Federal #15 6121 Indian School Road NE Suite 200 Site: COP - Federal #15, Farmington, NM Albuquerque, NM 87110 PO Number: NELAC Cert. No.: T104704205-09-1 I. SAMPLE RECEIPT: All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist. II: ANALYSES AND EXCEPTIONS: Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time. There were no exceptions noted. **III. GENERAL REPORTING COMMENTS:** Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg/kg-dry ' or " ug\kg-dry "). Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process. Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD. Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s). Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number. Page 2 of 17 Report ID: H10060338_6089 Printed: 06/25/2010 17:35

Certificate of Analysis

Phone: (713) 660-0901 Fax: (713) 660-8975

	Certificate of Analysis
June 25, 2010	Workorder: H10060338
	, ·
Kelly Blanchard	Project: COP - Federal #15
6121 Indian School Road NE	Project Number: COP - Federal #15
Suite 200 Albuquerque, NM 87110	Site: COP - Federal #15, Farmington, NM
	PO Number:
	NELAC Cert. No.: T104704205-09-1

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Erica Cardenas, Senior Project Manager

Enclosures

Phone: (713) 660-0901 Fax: (713) 660-8975

SAMPLE SUMMARY

Workorder: H10060338 : COP - Federal #15

Project Number: COP - Federal #15

Lab ID	Sample ID	Matrix	COC ID	Date/Time Collected	Date/Time Received
H10060338001	MW-1	Water		6/11/2010 10:50	6/15/2010 09:00
H10060338002	MW-2	Water		6/11/2010 11:30	6/15/2010 09:00
H10060338003	MW-3	Water		6/11/2010 11:15	6/15/2010 09:00
H10060338004	MW-4	Water		6/11/2010 11:45	6/15/2010 09:00
H10060338005	MW-5	Water		6/11/2010 12:20	6/15/2010 09:00
H10060338006	DUPLICATE	Water		6/11/2010 11:35	6/15/2010 09:00
H10060338007	TRIP BLANK	Water		6/11/2010 11:00	6/15/2010 09:00

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060338 : COP - Federal #15

Project Number: COP - Federal #15

Lab ID: H10060338001

Date/Time Received: 6/15/2010 09:00

Matrix: Water

Sample ID: MW-1

Date/Time Collected: 6/11/2010 10:50

Analysis Desc: SW-846 8260B (GCVMS	SW-846 5030Analytical B	atches:			
Analysis).	Batch: 1420 SW-846 82	60B (GCVMS Anal	ysis) on 06/	8/2010 04:05	by DLY*
	Results		2 20° 9 2 3 5 5 5		Batch Information
Parameters	uo/I Quak	· Report Limit	MDL	ÛF. Re	gLmt Prep Analysis
La the wind the state of the st		The Market Starts	and the second		And a state of the state of the
Benzene	' ND	1.0	0.17	1	• 1420
Ethylbenzene	ND	1.0	0.097	1	1420
Toluene	ND	1.0	0.12	1	1420
m,p-Xylene	ND	1.0	0.30	1	1420
o-Xylene	ND	1.0	0.11	1	1420
Xylenes, Total	ND	1.0	0.11	1	1420
4-Bromofluorobenzene (S)	95 %	70-130		1	1420
1,2-Dichloroethane-d4 (S)	86.4 %	71-140		1	1420
Toluene-d8 (S)	94.1 %	61-121		1	1420
Preservation pH	<2			1	1420

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060338 : COP - Federal #15

Project Number: COP - Federal #15

Lab ID: H10060338002 Date/Time Received: 6/15/2010 09:00 Matrix:

Water

Date/Time Collected: 6/11/2010 11:30

Sample ID: MW-2

Analysis Desc: Sw-846 82608 (GCVMS) Analysis)	Sw-846 5030Analytical (Batch: 1420 SW-846 82	260B (GCVMS Analy	sis) on 06/1	8/2010 02:14	by DLY
Parameters	Results ug/l⊧ Qual	Report Limit	MDL	DF. Re	egLmt Prep Analysis
Benzene	2.7	1.0	0.17	1	1420
Ethylbenzene	1.3	1.0	0.097	1	1420
Toluene	ND	1.0	0.12	1	1420
m,p-Xylene	1.7	1.0	0.30	1	1420
o-Xylene	ND	1.0	0.11	1	1420
Xylenes, Total	1.7	. 1.0	0.11	[·] 1	1420
4-Bromofluorobenzene (S)	95.5 %	70-130		1	1420
1,2-Dichloroethane-d4 (S)	85.4 %	71-140		1	1420
Toluene-d8 (S)	94.2 %	61-121		. 1	1420
Preservation pH	<2			1	1420

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060338 : COP - Federal #15

Project Number: COP - Federal #15

H10060338003 Lab ID:

Date/Time Received: 6/15/2010 09:00 Date/Time Collected: 6/11/2010 11:15

Water Matrix: ١

Sample ID: MW-3

Analysis Desc: SW-846 8260B (GCVMS	SW-846 5030Ana	lytical Batches:	10 - 4 17 18 - 19 11 - 19 - 19 - 19 - 19 - 19 - 19 -	Royan Carelon	
Analysis)	Batch: 1420 SW	846.8260B (GCVMS An	alysis).on 06/	18/2010 02::	36 by DLY
	Results	5.00			Batch Information
Parameters	ug/l	Qual 🐟 Report Limit	MDL	DF	RegLmt. Prep Analysis
La contra la la contra contra con contra contr			<u></u>	Alternation in the second s	1420
Benzene	ND	1.0	0.17	1	1420
Ethylbenzene	· ND	1.0	0.097	1	1420
Toluene	ND	·1.0	0.12	1	1420
m,p-Xylene	ND	1.0	0.30	1	1420
o-Xylene	ND	1.0	0.11	1	1420
Xylenes, Total	ND	1.0	0.11	1	1420
4-Bromofluorobenzene (S)	94.5 %	70-130		1	1420
1,2-Dichloroethane-d4 (S)	85.4 %	71-140		1	1420
Toluene-d8 (S)	94.6 %	61-121		1	1420
Preservation pH	<2			1	1420

Phone: (713) 660-0901 Fax: (713) 660-8975

Sec. 2 6 3

ANALYTICAL RESULTS

Workorder: H10060338 : COP - Federal #15

Project Number: COP - Federal #15

Lab ID: H10060338004

Matrix: Water

Sample ID: MW-4

Date/Time Received: 6/15/2010 09:00 Date/Time Collected: 6/11/2010 11:45

Analysis Desc: SW-846/82608 (GCVMS Analysis)	SW-846 SUJUAnalytical	Batches	الله المجروبية المراجعية المراجعية المحروبية المحروبية المحروبية المحروبية المحروبية المحروبية المحروبية المحر المحروبية المحروبية ال محروبية المحروبية الم		
	Batch: 1420 SW-846 8	260B (GCVMS Analys	is) on 06/1	8/2010.02:58 by	/DLY
	Results				Batch Information
Parameters	ug/l_Qua	I Report Limit	MDL	+ DF Reg	Lmt Prep Analysis
Benzene	ND	1.0	0.17	1	1420
Ethylbenzene	ND	. 1.0	0.097	1	1420
Toluene	ND	1.0	0.12	1	1420
m,p-Xylene	ND	1.0	0.30	1	1420
o-Xylene	ND	1.0	0.11	1	1420
Xylenes, Total	ND	1.0 ⁻	0.11	1	1420
4-Bromofluorobenzene (S)	95.1 %	70-130		1	1420
1,2-Dichloroethane-d4 (S)	85.6 %	71-140		1	1420
Toluene-d8 (S)	94.5 %	61-121		1 .	1420
Preservation pH	<2			1	. 1420

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060338 : COP - Federal #15

Project Number: COP - Federal #15

Lab ID: H10060338005

Sample ID: MW-5

Date/Time Received: 6/15/2010 09:00

Matrix: Water

Date/Time Collected: 6/11/2010 12:20

Analysis Desc. SW-846 8260B (GCVMS	Svy-846 5030Analytical t	satches:		1월 16일	
Analysis)	Batch: 1420 SW-846 82	60B (GCVMS Analysis	s) on 06/18	2010-03:21 by DLY	
	Results				Batch Information
Parameters	ug/l Qual	Report Limit	MDL [*]	DF ,, ⇒RegLmt	Prep Analysis
Benzene	ND	1.0	0.17	. 1	1420
Ethylbenzene	ND	1.0	0.097	1	1420
Toluene	ND	1.0	0.12	1	1420
m,p-Xylene	ND	1.0	0.30	1	1420
o-Xylene	ND	1.0	0.11	1	1420
Xylenes, Total	ND	1.0	0.11	1	1420
4-Bromofluorobenzene (S)	94.3 %	70-130		1	1420
1,2-Dichloroethane-d4 (S)	85 %	71-140		· 1 ·	1420
Toluene-d8 (S)	95 %	61-121		1	1420
Preservation pH	<2			1	1420

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060338 : COP - Federal #15

Project Number: COP - Federal #15

Lab ID: H10060338006 Date/Time Received: 6/15/2010 09:00 Matrix:

Water

Sample ID: DUPLICATE

Date/Time Collected: 6/11/2010 11:35

	VOLATILES				
ï	Analysis Desc.	SIA/S	16 826	OB (CC	VAAS

Analysis Desc. 300 340 3200 (SCOMS Analysis)	Batch: 1420 / SW-846 826(DB (GCVMS Analys	iis):on 06/18	3/2010 03	9:43 by D⊵Y
Parameters	ug/I Qual	Report Limit	MDL	DF'	RegLint Prep Analysis
Benzene	2.9	1.0	0.17	1	1420
Ethylbenzene	1.5	1.0	0.097	1	1420
Toluene	ND	1.0	0.12	1	1420
m,p-Xylene	2.0	1.0	0.30	1	1420
o-Xylene	ND	1.0	0.11	1	1420
Xylenes, Total	2	_. 1.0	0.11	1	1420
4-Bromofluorobenzene (S)	94.6 %	70-130		· 1	1420
1,2-Dichloroethane-d4 (S)	86.9 %	71-140		1	1420.
Toluene-d8 (S)	95.3 %	61-121		1	1420
Preservation pH	<2			1	1420

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060338 : COP - Federal #15

Project Number: COP - Federal #15

Lab ID: H10060338007

Sample ID: TRIP BLANK

Date/Time Received: 6/15/2010 09:00 Matrix:

Water

Date/Time Collected: 6/11/2010 11:00

Analysis Desc: SW-846 8260B (GCVMS	SW-846 5030Analytical Bat	ches:			
(Analysis)	Batch: 1420 SW-846 8260	B (GCVMS Analys	is) on 06/18	/2010.01:06 b	y DLY
Descention	Results	Denert			Balch Information
- Calameters	ug/i, Quai	 Report Limit 			jumi riep Analysis
Benzene	ND	1.0	0.17	1 .	1420
Ethylbenzene	ND	1.0	0.097	1	1420
Toluene	ND	1.0	0.12	1	1420
m,p-Xylene	ND	1.0	0.30	1	1420
o-Xylene	ND	1.0	0.11	1	1420
Xylenes, Total	ND	1.0	0.11	1	1420
4-Bromofluorobenzene (S)	94.5 %	70-130		1	1420
1,2-Dichloroethane-d4 (S)	94.2 %	71-140	•	1	1420
Toluene-d8 (S)	95.7 %	61-121		1	1420
Preservation pH	<2			[*] 1	1420

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060338 : COP - Federal #15 Project Number: COP - Federal #15 QC Batch: GVMS/1419 Analysis Method: SW-846 8260B (GCVMS Analysis) Preparation: 06/17/2010 22:09 by MSV SW-846 5030 QC Batch Method: H10060338001 Associated Lab Samples: H10060222001 H10060235009 H10060235010 H10060235011 H10060338002 H10060338007 H10060338003 H10060338004 H10060338005 H10060338006 METHOD BLANK: 51760 Analysis Date/Time Analyst: 06/17/2010 23:37 DLY Blank Reporting Parameter Units **Result Qualifiers** Limit ND 1.0 Benzene ug/l Ethylbenzene ug/l ND 1.0 Toluene ND 1.0 ug/l m,p-Xylene ug/l ND 1.0 o-Xylene ND 1.0 ug/l Xylenes, Total ND 1.0 ug/l 4-Bromofluorobenzene (S) 94.3 70-130 % 1,2-Dichloroethane-d4 (S) 92 71-140 % Toluene-d8 (S) % 94.9 61-121

LABORATORY CONTROL SAMPLE: 51761

Analysis Date/Time Analyst: 06/17/2010 22:31 DLY

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	
Benzene	ug/l	20	20.3	101	70-130	
Ethylbenzene	ug/l	20	21.1	105	70-130	
Toluene	ug/l	20	· 20.8	104	73-130	
m,p-Xylene	·ug/l	40	43.4	109	70-130	
o-Xylene	ug/l	20	21.8	109	70-130	
Xylenes, Total	ug/l	60	65.22	109	70-130	
4-Bromofluorobenzene (S)	%			96.3	70-130	
1,2-Dichloroethane-d4 (S)	%			88.0	71-140	
Toluene-d8 (S)	%			95.5	61-121	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 51762

Original

Original: H10060338002

MS Analysis Date/Time Analy	06/18/2010 04:2	27 DLY ,								
MSD Analysis Date/Time Ana	06/18/2010 04:4	16/18/2010 04:49 DLY								
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Benzene	ug/l	2.7	20	22.3	20.3	98.0	87.9	67-202	9.6	20
Ethylbenzene	ug/l	1.3	20	21.6	20.0	101	93.4	49-165	7.5	20
Toluene	ug/l	ND	20	19.8	18.1	98.9	90.7	48-162	8.7	20

51763

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060338_6089

Printed: 06/25/2010 17:35

Page 12 of 17

Phone: (713) 660-0901 Fax: (713) 660-8975

30

QUALITY CONTROL DATA

Workorder: H10060338 : COP - Federal #15

%

94.2

Toluene-d8 (S)

Project Number: COP - Federal #15

					<u> </u>					
MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 51762		51763		Original:	H10060338002			
MS Analysis Date/Time Analys	st:	06/18/2010 04:27	DLY							
MSD Analysis Date/Time Anal	lyst:	06/18/2010 04:49	DLY							
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
m,p-Xylene	ug/l	1.7	40	42.4	39.3	102	94.0	44-167	7.4	20
o-Xylene	ug/l	ND	20	20.8	19.4	104	96.8	54-158	7.2	20
Xylenes, Total	ug/l	1.75	60	63.17	58.7	102	94.9	44-167	7.4	20
4-Bromofluorobenzene (S)	%	95.5				96.5	96.3	70-130		30
1,2-Dichloroethane-d4 (S)	%	85.4				,85.5	82.9	71-140		30

94.9

95.0

61-121

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060338_6089

Printed: 06/25/2010 17:35

Phone: (713) 660-0901 Fax: (713) 660-8975

Legend

(S) - Indicates analyte is a surrogate

Qualifier	Qualifier Description
MI	Matrix Interference
I	Estimated value, between MDL and PQL (Florida)
JN	The analysis indicates the presence of an analyte
Ċ	MTBE results were not confirmed by GCMS
NC	Not Calculated - Sample concentration > 4 times the spike
*	Recovery/RPD value outside QC limits
. E	Results exceed calibration range
н	Exceeds holding time
J	Estimated value
Q	Received past holding time
В	Analyte detected in the Method Blank
Ν	Recovery outside of control limits
D	Recovery out of range due to dilution
NC	Not Calculable (Sample Duplicate)
P	Pesticide dual column results, greater then 25%
TNTC	Too numerous to count

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: H10060338 : COP - Federal #15

Project Number: COP - Federal #15

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
H10060338001	MW-1	SW-846 5030	GVMS/1419	SW-846 8260B (GCVMS Analysis)	GVMS/1420
H10060338002	MW-2	• SW-846 5030	GVMS/1419	SW-846 8260B (GCVMS Analysis)	GVMS/1420
H10060338003	MW-3	SW-846 5030	GVMS/1419	SW-846 8260B (GCVMS Analysis)	GVMS/1420
H10060338004	MW-4	SW-846 5030	GVMS/1419	SW-846 8260B (GCVMS Analysis)	GVMS/1420
H10060338005	MW-5	SW-846 5030	GVMS/1419	SW-846 8260B (GCVMS Analysis)	GVMS/1420
H10060338006	DUPLICATE	SW-846 5030	GVMS/1419	SW-846 8260B (GCVMS Analysis)	GVMS/1420
H10060338007	TRIP BLANK	SW-846 5030	GVMS/1419	SW-846 8260B (GCVMS Analysis)	GVMS/1420

Phone: (713) 660-0901 Fax: (713) 660-8975

Sample Receipt Checklist

WorkOrder:	H10060338	Received By	LOG
Date and Time	06/15/2010 09:00	Carrier Name:	FEDEXS
Temperature:	3.0°C	Chilled By:	Water Ice
1. Shipping container/coole	r in good condition?		YES - ·
2. Custody seals intact on s	hipping container/cooler?		YES
3. Custody seals intact on s	sample bottles?		Not Present
4. Chain of custody present	? ·		YES
5. Chain of custody signed	when relinquished and received?		YES
6. Chain of custody agrees	with sample labels?		YES
7. Samples in proper contain	ner/bottle?		YES
8. Samples containers intac	xt?		YES
9. Sufficient sample volume	for indicated test?		YES
10. All samples received with	nin holding time?		YES
11. Container/Temp Blank te	mperature in compliance?		YES
12. Water - VOA vials have z	ero headspace?		YES
13. Water - Preservation che	cked upon receipt(except VOA*)?		Not Applicable

*VOA Preservation Checked After Sample Analysis

SPL Representative: Client Name Contacted:

Client Instructions:

Contact Date & Time:

Phone: (713) 660-0901 Fax: (713) 660-8975

		F		R	お	لا :	C	Ę				4						nonce	jures prior-	
	$\left\ \hat{X} \right\ $	\sum	7	23	- International		Receiv		Ä		느		•	arina		l þy	tclinquishe	5		
÷ 6				\bigcirc	~	sd by:	Receiv			lin		date	•	1	, .	1. Sel	<u>telinquishe</u>	س:	SAEr	i saursa i
aler.						ed by:	Receive	<u>ر</u> ۲	8	tim	4/12	danc/	:		M		artintania en	andard I. I		U Jusiness I
14			1 . 		, 4						CAR CAR					Level X Q	nd dor [utraci Sta		Kequje
	iew dini	∑ R O	Temp:			specify	Limits	lection	cial De	Spe		₹		kesults: 7	ments	ng Require	cial Report	Sp		
Z,Z		3* 1	Intact? Ice?	4			,	i				: K	lê û î.	Laborato		2	4		at Remarks:	lient/Consulta
	<u>.</u>		 		· •	; , ;	 1		; • • •	;	- - -	-					:			
		;			<u> </u>						<u> </u>									
						. <u>.</u>			-			: 1.								
		-		· ·		\vdash	1	-	0	<	Ś		, ,	00		114110	2		Hank	L D
	· 				1 1	\Rightarrow			6	<	2	\geq		¢Ç	Ē		70	5	Kate	Jup
1			;	· · · ·	* <u></u>	⋞≃	JV V		6	· <	5	\geq		07.7		11/110	6		<u>ب</u>	Mu):
		e C	1	· •	4 . 1				6	15	8	\succ		AS			6		4	MW
	 	<u> </u>				\geq			0		٢	\geq		5			0		22	MW
			-	 	<u> </u>				0	\leq	Ċ	\geq	 	8		211112	6		2	Mw-1
					<u> </u>		5		0	\leq		\geq	-	8	1	11110	6			1127-1
							Nu	1= 3=	1= 8=:	ιΡ= G=	₩. SL	deri 1	çûmpi	TIME .	-	DATE		IJ,	SAMPLE	1
	**			• . •	<u> </u>	<u>) [</u>	mber	HCI H2SO	l liter Soz 1	plasti glass	=wate =slud						F	tan - A	Winning	ite Lucation: "
					<u> </u>	27	of C	4 J	 6=1(° v	r S= Ige I									ite Nanie:
	<u>.</u>		- 1e			<u> </u>	ontair 7	=HNG	=4oz 5oz - X	A=am =vial	=soil ==effc	κ. 4	Chark	(N'harele)	in his	Email: K	<u>+</u> +	eral ha	Kully L	Thent Contact: Project Name/Ne
	<u></u>					abbuu	iers	03- er 🦕	40= (=ou	ber X=	O=0 bre	4					3440	-37-8	(C)	hone/Fax: U
•	<u>.</u> .	· · _ ·				•			vial' her	glass other	il A= X=ol		Ŋ	111.00 117		Z Z	State		hallan c	IN Allow
	SIS	nalys	Ted A	ques	Re	<u>-</u>		pres	SIZE	pottle	=ur E			4 2	T		Tahar H	11/2/11	marsth	hent Name: []/
			uge	P								ļ		,	Record	of Custody	est & Chain	nalysis Requ	V 0	
; 	1	and a straight of the straight		4		33	0600		•.							<u>,</u> 2	SPL, It			
			j.									1	?	; ; ;				,1 1		· ·
		A PER LAN	the second second	ĺ					•								See	An owner of the second s		

.

Page 17 of 17