3R - 071

2009 AGWMR

MAY 2010

3R071

2009 ANNUAL GROUNDWATER MONITORING REPORT

CONOCOPHILLIPS COMPANY

JOHNSTON FEDERAL NO. 4 METERING STATION SAN JUAN COUNTY, NEW MEXICO

OCD # 3RP-71 API 30-045-10130

Prepared for:

Risk Management and Remediation 420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

TETRA TECH, INC.

6121 Indian School Rd. NE, Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 114-690129

May 2010

TABLE OF CONTENTS

0.1		
	I.I. Site BackgroundI	
2.0	MONITORING SUMMARY AND SAMPLING METHODOLOGY / RESULTS2	
	2.1 Groundwater Sampling Methodology2	
	2.2 Groundwater Sampling Analytical Results	
3.0	CONCLUSIONS AND RECOMMENDATIONS	

FIGURES

- I. Site Location Map
- 2. Site Detail Map
- 3. Generalized Geologic Cross Section
- 4. Groundwater Elevation Map September 2009
- 5. BTEX Concentration Map September 2009

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Data Summary
- 3. Groundwater Laboratory Analytical Results Summary

APPENDICES

- Appendix A. Groundwater Sampling Field Forms
- Appendix B. Groundwater Laboratory Analysis Report

ANNUAL GROUNDWATER MONITORING REPORT JOHNSTON FEDERAL NO. 4 METERING STATION, SAN JUAN COUNTY, NEW MEXICO

1.0 INTRODUCTION

This report presents the results of an annual groundwater monitoring event conducted by Tetra Tech, Inc. (Tetra Tech) in September 2009 at the ConocoPhillips Company Johnston Federal No. 4 Metering Station located on Bureau of Land Management (BLM) land, approximately 13 miles east-northeast of Aztec, San Juan County, New Mexico in Unit Letter M, Section 27, Township 31N, Range 9W (**Figure 1**). A Site detail map is included as **Figure 2**. The Johnston Federal No. 4 wellhead, API # 30-045-10130, is located approximately one-half mile to the southwest of the metering station. A Site detail map is included as **Figure 2**.

I.I Site Background

A historical timeline for the Site is presented in **Table 1**, and is discussed in more detail below.

Burlington Resources (Burlington) conducted initial site assessments of two Burlington production pits in August 1998. Soil from the separator pit was collected and analyzed for total petroleum hydrocarbons (TPH). The concentration of TPH in separator pit (Production Pit #1, Figure 2) soils was found to be below New Mexico Oil Conservation Division (OCD) recommended action levels for this constituent, and this pit was subsequently granted a closed status by OCD. Soil from the tank drain pit (Production Pit #2, Figure 2) was collected and analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and for TPH. Concentrations of these constituents were found to be above OCD recommended action levels. Following these laboratory results, excavation of approximately 3,055 cubic yards of hydrocarbon-impacted soil occurred in December 1998. Once complete, the excavation was backfilled with clean fill material, and this pit was closed by OCD. In May 1999, a groundwater monitoring well was installed at the Site to a depth of 50 feet below ground surface (bgs); the screened interval was placed from 35 to 50 feet bgs and groundwater was encountered at a depth of approximately 43 feet bgs. From May 1999 to August 2008, the existing monitor well network consisted of this single Monitor Well MW-1, which was sampled on a quarterly basis by Burlington Resources (Burlington Resources was acquired by ConocoPhillips in March of 2006). It should be noted that there are three additional monitoring wells on-site that are owned by El Paso Natural Gas that are not sampled by Tetra Tech, and the monitoring schedule of these wells is unknown. In August 2008, three additional groundwater monitoring wells (MW-2, MW-3 and MW-4) were installed by WDC Exploration and Drilling of Peralta, NM (WDC), under the supervision of Tetra Tech. Monitoring Wells MW-2, MW-3 and MW-4 were first sampled on October 24, 2008, and have been incorporated into an annual monitoring schedule along with Monitoring Well MW-I. A generalized geologic cross section for the Site is presented as Figure 3.

2.0 MONITORING SUMMARY AND SAMPLING METHODOLOGY / RESULTS

Annual groundwater sampling of Monitor Wells MW-1, MW-2, MW-3 and MW-4 was conducted by Tetra Tech in September 2009. Prior to sampling, depth to groundwater in each well was determined, and results are displayed in **Table 2**. The casings for all ConocoPhillips Company monitoring wells at the Site were surveyed in April 2009, with the top of casing for MW-1 assigned an arbitrary reference elevation of 100 feet above mean sea level (amsl). Depth to groundwater in each monitor well was coupled with the Site survey data to create a groundwater elevation map (**Figure 4**). Using these data, it was determined that the groundwater flow direction at the Site is to the east/southeast. The groundwater sampling methodology and analytical results from the September 2009 sampling event are summarized in the following sections.

2.1 Groundwater Sampling Methodology

During the annual groundwater monitoring event, Site monitoring wells were purged of at least 3 casing volumes of groundwater using a 1.5-inch diameter, poly-vinyl chloride disposable bailer. While bailing each well, groundwater parameter data such as temperature, pH, conductivity, total dissolved solids (TDS), oxidation-reduction potential (ORP) and dissolved oxygen (DO) were collected using a YSI 556 multi-parameter sonde. Field parameter data was recorded on a Tetra Tech Water Sampling Field Form (**Appendix A**). Collected groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped with chain-of-custody documentation. Analysis of all groundwater samples collected during the September 2009 groundwater monitoring event was performed by Southern Petroleum Laboratory (SPL) of Houston, Texas. All excess groundwater generated during purging and collecting of analytical samples was disposed of in the on-site produced water tank.

During the September 2009 sampling event, groundwater samples collected from MW-1, MW-2, MW-3 and MW-4 were analyzed for the presence of BTEX and naphthalene by EPA Method 8260B, for sulfate by EPA Method 300.0, and for dissolved iron and dissolved manganese by EPA Method 6010B. Results of these analyses are displayed in **Table 3**.

2.2 Groundwater Sampling Analytical Results

The New Mexico Water Quality Control Commission (NMWQCC) mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use.

Groundwater concentrations exceeded the New Mexico Water Quality Control Commission (NMWQCC) standard for:

 benzene (10 micrograms per liter [μg/L]), toluene (750 μg/L), and total xylenes (620 μg/L) in Monitor Well MW-1;

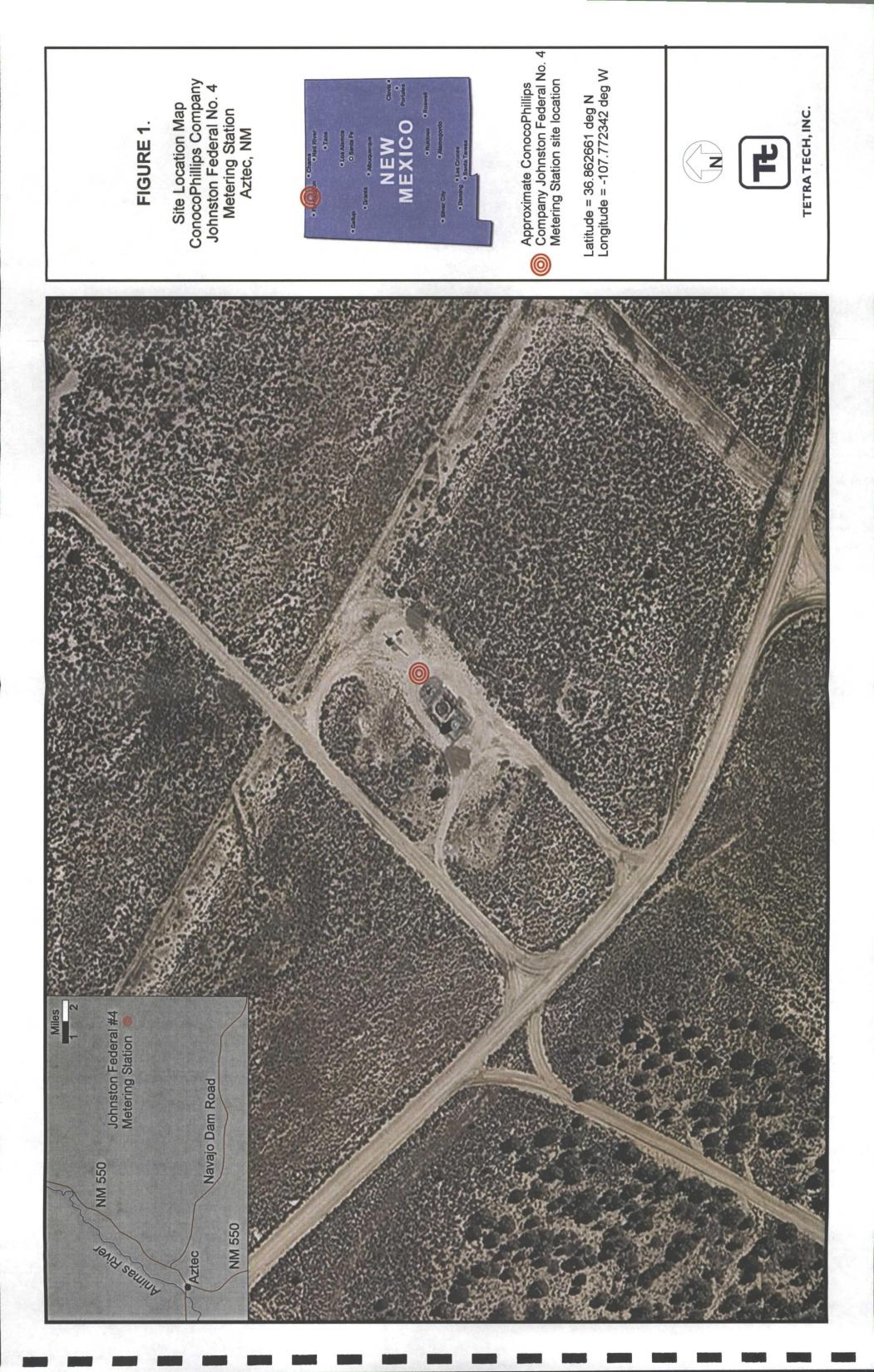
- naphthalene (40 μ g/L) in Monitor Well MW-I;
- o dissolved manganese (0.2 mg/L) in MW-1, MW-3 and MW-4;
- o and sulfate (600 mg/L) in MW-2, MW-3 and MW-4.

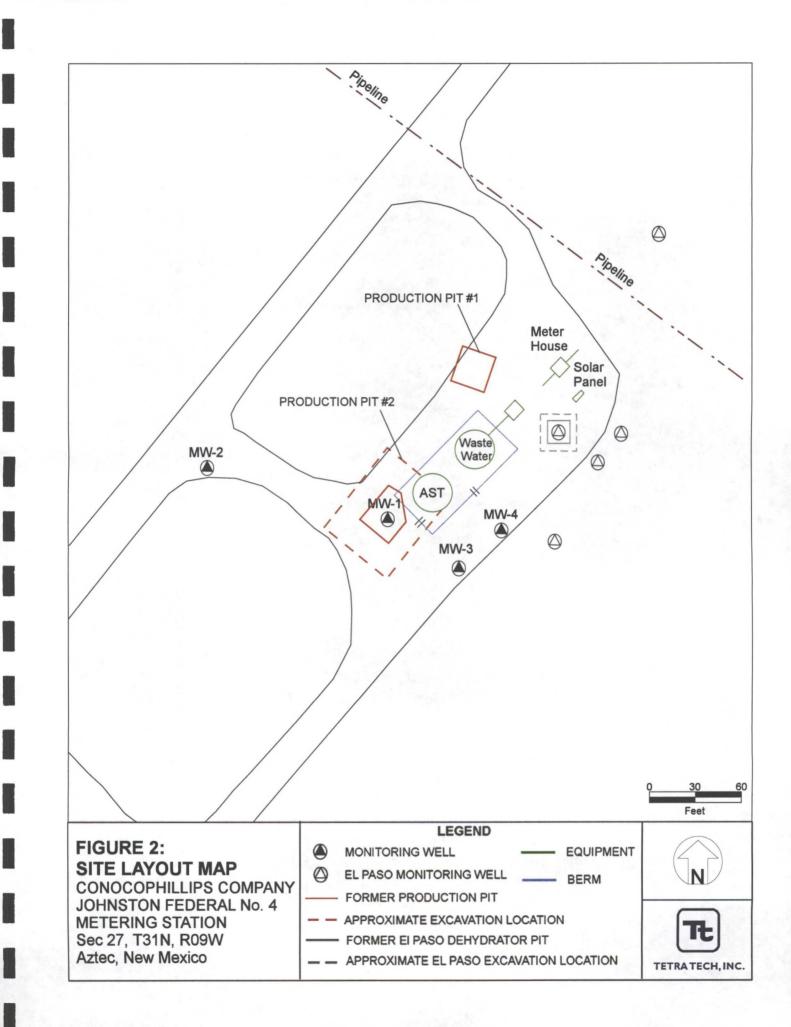
The corresponding laboratory analysis report for the September 2009 sampling event, including quality control summaries, are included in **Appendix B**. A BTEX concentration map for the September 2009 sampling event is included as **Figure 5**.

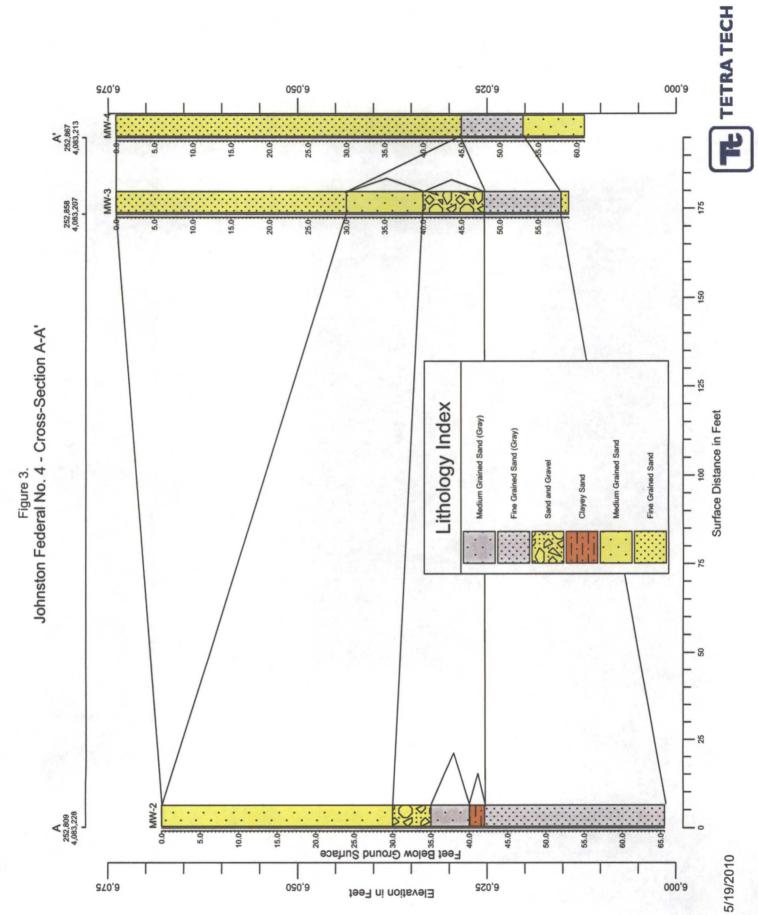
3.0 CONCLUSIONS AND RECOMMENDATIONS

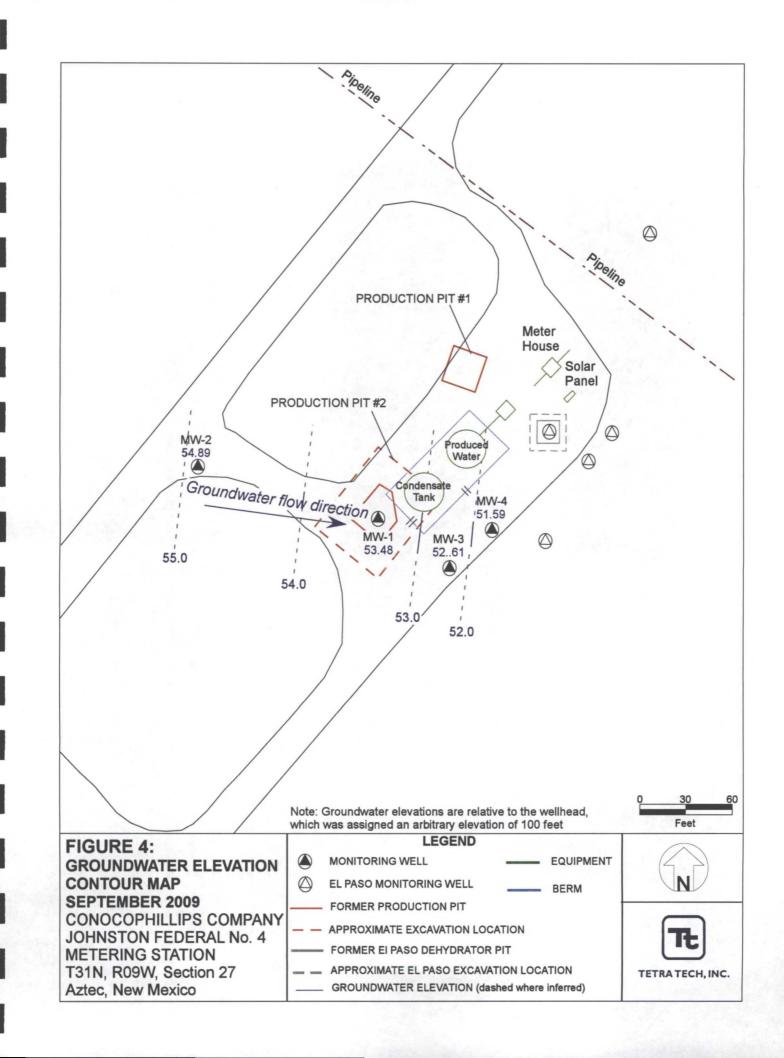
BTEX concentrations did not exceed NMWQCC groundwater quality standards in Monitor Wells MW-2, MW-3, or MW-4, while MW-1 continues to reveal evidence of hydrocarbon impacts. Tetra Tech will continue to collect groundwater samples from these wells in order to move toward Site closure. Concentrations of sulfate, dissolved manganese, and naphthalene have been detected above NMWQCC groundwater quality standards in Site monitor wells. As a result, Tetra Tech recommends that sulfate, dissolved manganese, and naphthalene be incorporated into the annual monitoring program for all Site groundwater monitor wells.

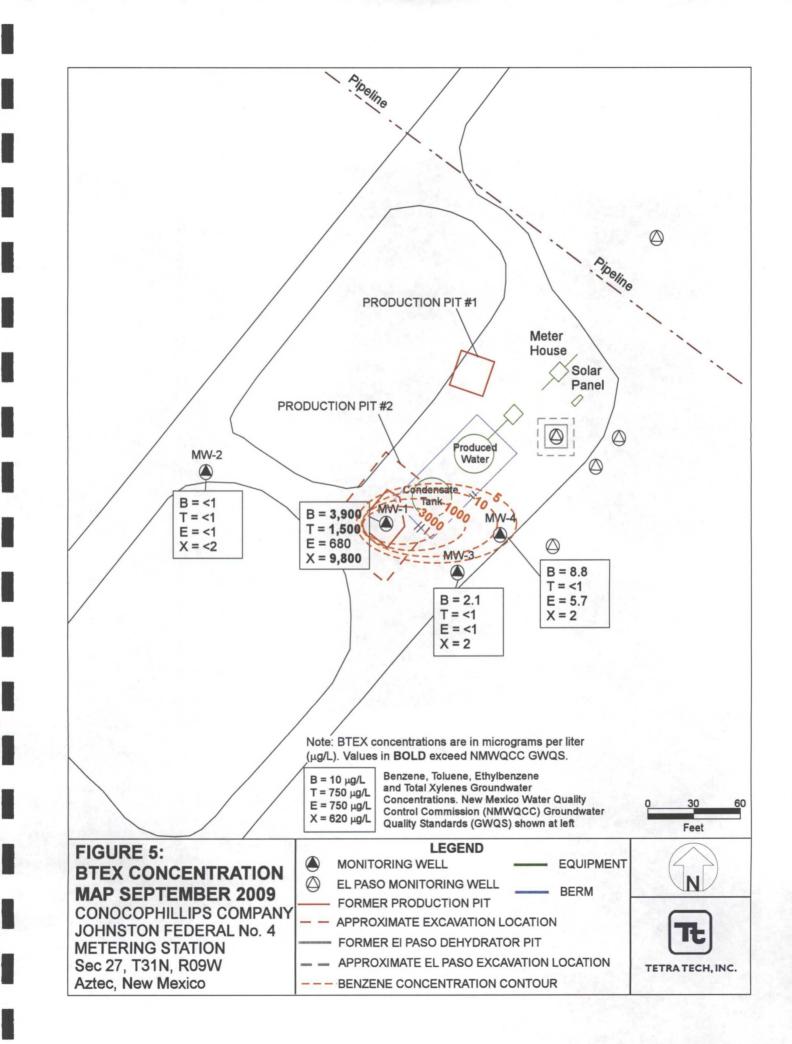
As stated in the Johnston Federal No. 4 Metering Station Annual 2008 Groundwater Monitoring Report, if a constituent of concern other than BTEX was found to be below NMWQCC groundwater quality standards during the 2009 annual sampling event, sampling of these constituents will be discontinued. Since results for dissolved iron in all site monitoring wells was below the NMWQCC standard, this constituent will not be analyzed during future sampling events.


The next monitoring event at the Johnston Federal No. 4 Metering Station is scheduled to take place during September of 2010 and will include analyses for BTEX, naphthalene, dissolved manganese and sulfate.


Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.


- .


7


FIGURES

TABLES

Johnston Federal No. 4 Metering Station Table 1 - Site History Timeline

Date/Time Period	Event/Action	Description/Comments
August 1952	Well Spudded	Well was spudded by Anderson-Prichard Oil Corp. on August 21, 1952.
April 1961	Transfer of Well Ownership	Ownership of the well transferred from Anderson-Prichard Oil Corp. to Union Texas Natural Gas Corporation on April 26, 1961.
September 1971	Transfer of Well Ownership	Meridian Oil Inc. (a wholly-owned subsidiary of Burlington Resources) took over operation of well from Union Texas Petroleum Corp. on September 17, 1991.
August 1994	Initial Site Assesment	El Paso Energy conducted a site assessment of a former unlined pit near the metering station in August of 1994.
September 1994	Pit Excavation	El Paso Energy excavated ~60 cy of soil from their former unlined pit in September 1994.
August 1995	Monitoring Well Installation	EI Paso contracted Philip Environmental Services Corp. to install a monitor well in the vicinity of their former pit on August 9, 1995.
December 1995	Monitoring Well Installation	El Paso contracted Philip Env. Svcs. to install two downgradient MW's between December 12 and 15, 1995.
August 1997	Product Removal	El Paso Energy commenced product removal from their MW-1 on August 26, 1997.
September 1997	Piezometer Installation	EI Paso contracted Philip Services to install 3 temporary piezometers on September 15, 1997.
July 1998	NMOCD Communication With Site Operators	New Mexico Oil Conservation Division (NMOCD) issued response letter to EI Paso Field Services (EPFS) on July 8, 1998, indicating that they would be sending letters to the operators of the sites (including Burlington Resources) and that EPFS should work cooperatively with the operators on investigation and remediation activities.
July 1998	NMOCD Requests Groundwater Investigation by Burlington Resources	NMOCD issued letter to Burlington Resources on July 9, 1998, references work done at the site by EPFS and requires Burlington Resources to immediately implement their previously approved pit closure plan. The letter also requires BR to submit a comprehensive GW investigation and remediation plan for all pit closure sites in the SJB that encounter GW.
August 1998	Burlington Resources Granted Closure of Pit #1	Burlington Resources sampled Pit #1 on August 10, 1998 and laboratory analytical results indicated a clean closure was warranted.
August 1998	Initial Site Assessment	Initial site assessment conducted on the site separator pit. Soil from this area was collected and analyzed for total petroleum hydrocarbons (TPH) and was found to contain TPH below NMOCD recommended action levels. The pit was subsequently granted closed status by NMOCD.
August 1998	Initial Site Assessment	Initial site assessment conducted on the tank drain pit. Soil from this area was collected and analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and for TPH. Concentrations of these constituents were found to be above NMOCD recommended action levels.
December 1998	Pit Excavation	Burlington Resources excavated ~3,055 CY of hydrocarbon-impacted soil from Pit #2 (58 ft x 45 ft x 30 ft deep), starting on December 17, 1998. The excavation extended to ~30 ft bgs (practical extent). The bottom of the excavation was sampled on December 28, 1998.
May 1999	Monitoring Well Installation	Monitor Well MW-1 installed to a depth of 50 feet below ground surface (bgs); the screened interval was placed from 35 to 50 feet bgs, and was installed in the center of pit #2. Burlington Resources begins monitoring MW-1 on a quarterly basis.

Tetra Tech

1 of 2

• • Johnston Federal No. 4 Metering Station Table 1 - Site History Timeline

Date/Time Period	Event/Action	Description/Comments
June 1999	Confirmation of Groundwater Impacts	Laboratory analysis of groundwater from MW-1 shows levels of benzene, toluene, and total xylenes in excess of New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards. Burlington Resources notified NMOCD via E-mail on June 1, 1999.
July 2001	NMOCD Communication With Site Operators	07/18/2001 NMOCD response letter sent to EPFS on July 18, 2001 again urges EPFS to work cooperatively with the operators to investigate and remediate contaminated groundwater.
April 2003	NMOCD Requests Monitoring Well Installation	NMOCD response letter to EPFS sent on April 3, 2003, requires EPFS to install additional monitoring wells to determine the real extent of groundwater contamination.
March 2006	Acquisition of Burlington Resources by ConocoPhilips Company	ConocoPhillips Company acquired Burlington Resources on March 31, 2006.
November 2007 and January 2008	3rd and 4th Quarter 2007 Groundwater Monitoring	Johnston Federal No. 4 Monitoring Station groundwater sampled during Nov. 2007 and Jan. 2008 by Tetra Tech.
March 2008	Reporting	2007 Annual Groundwater Monitoring Report submitted to NMOCD.
March 2008	Groundwater Monitoring	Tetra Tech conducts quarterly groundwater monitoring at the site for BTEX.
April 2008	NMOCD Requests Further Investigation	NMOCD indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn Von Gonten
April 2008	1st quarter 2008 Groundwater Monitoring	Tetra Tech conducts quarterly groundwater monitoring at the site for BTEX in MW-1 on April 30, 2008. Note: Prior to this date, however, the location of MW-1 was not clear and the wrong well was subsequently sampled. This was the first quarter that ConocoPhillips MW-1 was sampled. BTEX constituents were found to be above NMWQCC standards in MW-1.
July 2008	2nd Quarter 2008 Groundwater Monitoring	Tetra Tech conducts quarterly groundwater monitoring at the site for BTEX in MW-1.
August 2008	Groundwater Monitoring Well Installation	Monitoring Wells MW-2, MW-3, and MW-4 installed at the site by WDC.
October 2008	3rd Quarter 2008 groundwater Monitoring	Tetra Tech conducts quarterly monitoring at the site for MW-1 through MW-4. MW-2, MW-3 and MW-4 groundwater samples are analyzed for baseline parameters including major ions, total metals, semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs) including BTEX, diesel range organics, and gasoline range organics as requested by the NMOCD. In addition, an expanded list (beyond BTEX analysis) of VOCs were included for MW-1.
January 2009	4th Quarter 2008 groundwater Monitoring	Tetra Tech conducts quarterly monitoring at the site for MW-1 through MW-4. The groundwater sample obtained for MW-1 is analyzed for baseline parameters including major ions, total metals, SVOCs, VOCs, diesel range organics, and gasoline range organics. As of January 2009, baseline parameters have been collected for all 4 groundwater monitoring wells at the site.
September 25, 2009	2009 annual groundwater monitoring	Tetra Tech conducts annual groundwater monitoring at the site for MW-1 through MW-4 including analyses for BTEX, naphthalene, dissolved Fe and Mn and sulfate.

2 of 2

Table 2. Monitoring Well S	pecifications and Groundwater Elevation Table

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				5/25/1999	NM	NM
				9/1/1999	47.02	52.98
				12/1/1999	46.96	53.04
				1/18/2000	44.05	55.95
	Į			5/17/2000	46.90	53.10
				9/8/2000	46.91	53.09
				12/20/2000	46.88	53.12
				3/27/2001	NM	NM
				6/27/2001	47.05	52.95
				9/17/2001	46.93	53.07
				12/19/2001	46.97	53.03
				3/25/2002	46.99	53.01
				6/25/2002	47.01	52.99
				9/24/2002	46.98	53.02
				12/30/2002	47.40	52.60
				3/27/2003	NM	NM
				6/27/2003	NM	NM
				10/10/2003	NM ·	NM
MW-1				12/10/2003	NM	NM
	51.79	35.0 - 50.0	100	3/16/2004	47.28	52.72
				6/22/2004	47.06	52.94
				9/30/2004	47.24	52.76
				12/13/2004	47.14	52.86
				3/23/2005	46.91	53.09
				6/22/2005	46.93	53.07
				10/28/2005	46.87	53.13
				12/14/2005	46.72	53.28
				3/20/2006	46.75	53.25
				6/21/2006	46.84	53.16
				10/20/2006	46.89	53.11
				12/13/2006	46.92	53.08
				11/9/2007	NM	NM
				1/15/2008	NM	NM
				4/30/2008	46.45	53.55
				7/23/2008	46.63	53.37
		+		10/24/2008	46.60	53.40
				1/29/2009	46.57	53.43
				4/23/2009	46.40	53.60
				9/25/2009	46.52	53.48
				10/24/2008	42.85	54.86
MW-2	65.50	41.5 - 61.5	97.71	1/29/2009	42.83	54.88
				4/23/2009	42.75	54.96
_				9/25/2009	42.82	54.89

•

Table 2. Monitoring Well Specifications and Groundwater Elevation Table

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				10/24/2008	43.91	50.74
MW-3	59.00	35.0 - 55.0	94.65	1/29/2009	41.97	52.68
10100-3		33.0 - 33.0		4/23/2009	41.87	52.78
				9/25/2009	42.04	52.61
			94.79	10/24/2008	43.11	51.68
MW-4	61.00	37.0 - 57.0		1/29/2009	43.11	51.68
10100-4	01.00	37.0 - 57.0		4/23/2009	43.06	51.73
				9/25/2009	43.20	51.59

ft = Feet

TOC = Top of casing

bgs = below ground surface

* Elevation relative to the TOC of MW-1, set at arbitrary 100 feet.

NM - Not measured

ConocoPhillips Johnston Federal No. 4 Metering Station

Weli ID	Date	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Totai Xylenes (μg/L)	Napthalene (µg/L)	Dissolved Manganese (mg/L)	Dissolved Iron (mg/L)	Sulfate (mg/L)
	5/25/1999	8,700	2,900	2,800	2,900				
	9/1/1999	Free Pha	se Product Deter	cted - No Sample	Collected				
	12/1/1999	4,700	1,300	900	10,000	1			
	1/18/2000	3,600	820	840	7,500]			
	5/17/2000	6,900	1,100	1,500	17,000	1			
	9/8/2000	4,600	620	930	10,000]			
	12/20/2000	< 0.2	1	34	61]			
	3/27/2001	5,430	641	991	9,830]			
	6/27/2001	5,870	900	990	10,400				
	9/17/2001	5,910	750	980	10,700	1			
	12/19/2001	7,200	650	1,020	11,300	1			
	3/25/2002	5,520	830	1,190	10,500	1			
	6/26/2002	516	66	79	863	1 ·			
	9/24/2002	5,310	8,000	880	13,960				
	12/30/2002	7,660	10,200	760	14,140	1			
	3/27/2003	Free Pha	se Product Deter	cted - No Sample	Collected	1			
	6/27/2003	Free Pha	se Product Deter	cted - No Sample	Collected	1			
	10/10/2003	Free Pha	se Product Deter	cted - No Sample	Collected	1			
	12/10/2003	Free Pha	se Product Deter	cted - No Sample	Collected	1	NO	DATA	
	3/16/2004	Free Pha	se Product Deter	cted - No Sample (Collected	1			
MW-1	6/22/2004	6,160	8,100	470	15,840				
	9/30/2004	Free Pha	se Product Deter	cted - No Sample	Collected				
	12/13/2004	Free Pha	se Product Deter	cted - No Sample	Collected	1			
	3/23/2005	Free Pha	se Product Deter	cted - No Sample	Collected	1			
	6/22/2005	Free Pha	se Product Deter	cted - No Sample (Collected	1			
	10/28/2005	Free Pha	se Product Deter	ted - No Sample	Collected	1			
	12/14/2005	Free Pha	se Product Deter	ted - No Sample	Collected	1			
	3/20/2006	3,170	3,740	1,060	30,130	1			
	6/21/2006	4,900	3,280	448	2,390	1			
	10/20/2006			ted - No Sample	Collected	1			
	12/13/2006	5,300	7,200	870	15,450	1			
	3/27/2007	6,870	5,720	210	12,160	1			
	6/25/2007	5,680	1,830	400	9,480	1			
	11/9/2007	NA	NA	NA	NA	1			
	1/15/2008	NA	NA	NA	NA	1			
	4/30/2008	6,300	1,800	280 J	8,600	1			
	7/23/2008	7,100	2,200	450	10,600	1.			
	10/24/2008	6,000	2,100	400	9,000	44	NA	NA	NA
	1/29/2009	6,700	2,200	630	14,500	61	1.1*	0.347*	315
	9/25/2009	3,900	1,500	680	9,800	40	1.11	<0.02	429

.

ConocoPhillips Johnston Federal No. 4 Metering Station

Well ID	Date	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	Napthalene (μg/L)	Dissolved Manganese (mg/L)	Dissolved Iron (mg/L)	Sulfate (mg/L)
	10/24/2008	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	<5	0.337*	2.08*	974
MW-2	1/29/2009	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA	NA	NA
	9/25/2009	<1	<1	<1	<2	<1	0.04	<0.02	1,260
	10/24/2008	20	< 0.5 U	< 0.5 U	24	<5	1.43*	0.542*	714
MW-3	1/29/2009	12	< 0.5	< 0.5	5	NA	NA	NA	NA
	9/25/2009	2.1	<1	<1	<2	<1	1.24	<0.02	1,070
	10/24/2008	24	< 0.5 U	6	10	<5	0.977*	1.16*	678
MW-4	1/29/2009	110	6	9	· 147.	<5	NA	NA	NA
	9/25/2009	8.8	<1	5.7	2	<1	1.24	0.508	968
	undwater Quality dards	10	750	750	620	30	0.2	1	600

Table 3. Groundwater Laboratory Analytical Results Summary

Explanation

NMWQCC = New Mexico Water Quality Control Commission

mg/L = milligrams per liter (parts per million)

µg/L = micrograms per liter (parts per billion)

<0.7 = Below laboratory detection limit of 0.7 ug/L J = Estimated value between MDL and PQL

U = Analyte was analyzed for but not detected at the indicated MDL

Bold = concentrations that exceed the NMWQCC groundwater quality standard

NA - not analyzed. Incorrect well sampled during these dates for MW-1

* Results are shown for total metals analysis and can not be compared to the NMWQCC standard for dissolved metals

APPENDIX A

Groundwater Sampling Field Forms

TE TETRA	TECH, INC.	WATER	SAMPLING FIE	LD FORM	
Project Name	Johnston Federal #4			Page	e1 of4
Project No.	·			-	
Site Location	San Juan County, Hwy 1	73 near Aztec, NM			
Site/Well No.		Coded/ Replicate No. Time Sampling Began <u>102</u>	Duplicate	Time Samplir	9/25/09
Weather	Smuggelarm no wind	Began <u>107</u>	8		-415
	ho wind	EVACUA	TION DATA	DP	2 (130
Description of	Measuring Point (MP_Top	of Casing		10	
Height of MP /	Above/Below Land Surface		MP Elevation		0
	Depth of Well Below MP		. Water-Level	Elevation	22.48
Held	Depth to Water Below Mi	P_46,52	Diameter of C Gallons Pum	ped/Bailed	. ···
Wet	Water Column in We	<u>5,19</u>	Prior to Sam		2,5
	Gallons per Foo	ot0.16		mp Intake Setting	· ·
	Gallons in We		(feet below la		······································
Purging Equip	ment Purge pump	bailer $\chi 3 = 0$	2.41		
, 			ELD PARAMETERS		
	Temperature (°C)	pH Conductivity			ORP (mV) TULB
1050		6.84 214	1.374	3.32	-302.941.69
Sampling Equi	ipment <u>Pur</u>	ge Pump/Bailer			
Constitu	uents Sampled	Container I	Description	1	Preservative
BTEX	laphthalene	3 40mL VOA's			
Sulfa	<u>K</u>	16.02. plast	10	None	
Dissolut	ed Fe, Mn	16 02. pla	shc	none(-	to be tillereds
	SL,		11 -1		preserved @
Remarks	KNOUE ME	- odlar, sp	otty Sheen	., <u>919y co</u>	lor hab
Sampling Pers	sonnel <u>CD</u> , A	rM	· ·		
		Well C	asing Volumes]
	Gal./ft. 1 ¼" = 0.07			= 0.37	4" = 0.65
	1 ½" = 0.10			= 0.50	6° = 1.48
R:\Share	Maxim Forms\Field Forms\JF#4	Water Sampling Field Forms.	.xis		

i

ł

		TECH, INC.		WATER SAMP	LING FIELD			
	Project Name	Johnston Federal #4				Page	2	of
	Project No.			·	····			
	Site Location	San Juan County, Hwy '		c, NM	· · · · · · · · · · · · · · · · · · ·			
	Site/Well No.	<u>MW-2</u>	Coded/ Replicate N	lo		Date	125/19	
	Weather	clear, 105	Time Samp Began	pling n945		Time Samplin Completed	103	30
				EVACUATION DAT	A			
	Description of	Measuring Point (MP; To	o of Casing					
		Above/Below Land Surface		·······	MP Elevation	97	.71	· · · · · · · · · · · · · · · · · · ·
	Total Sounded	i Depth of Weil Below MP	6 5.5	(oy.UD	Water-Level Elev	ration	54.8	9
		_Depth to Water Below M			Diameter of Casi			
		Water Column In We	\wedge	58	Galions Pumped Prior to Sampling		10.5	gallons
		Gallons per Fo		<u>0.16</u> x3=10.35	Sampling Pump			<u> </u>
		Gallons in Wo	ell <u>,,,,,</u> ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>k.). (</u> 0.3)	(feet below land	SUITACE)		
	Purging Equip	ment Purge pump / I	Bailer	<u> </u>	<u> </u>			
VS	Time			NG DATA/FIELD PA			ORP (mV)	tub
Ħ	Time 1006	Temperature (°C)	pH (6.97	Conductivity (µS/cm³) 귀와(비)	TDS (g/L)	DO (mg/L)	3.7	253.9
57	1017	13.90	6.86	2250	1.462	4.16	207	377,5
1 95	1023	13.81	6.86	1250	1.462	4,39	39.6	202,8
	L							
	Sampling Equi		rge Pump/Bail					
	Constitu	uents Sampled	-	Container Description	<u>1</u>	E	Preservative	
	BTEX 4	Naphaline_	3 40mL VC)A's				
			<u>le c</u>	re. plastic		none		teo Porte a l
	Dissolved	FR, Ma	160	2 plastic		non	5/10	DR. HIMPrea
				•			199	Sustained
	Remarks		A . A				·····	ab
	Sampling Pers	sonnel <u>G()</u>	API_		····			\sim J
				Weil Casing Vol	umes			1
		Gal./ft. 1 ¼" = 0.07	77 2	-		0.37	4° = 0.65	
		1 1/2" = 0.10		$1/2^{\pi} = 0.24$	3° ½ =		6" = 1.46	
	R1Shan	elwaxim Forms/JFa	4 Water Samplin	g Field Forms.xls				I

-

Protect Name	Johnston Federal #4				Page	93	of 4
Project No.					-9-		
	San Juan County, Hw	y 173 near Azte	· · · · · ·				
Site/Well No.	MW-3	Coded/ Replicate I	ło		Date	9/20/0	9
Weather	Sunny Corst	Time Sam Began	011ng 0930		Time Samplin Completed	<u>" 100</u>	5
	no breeze		EVACUATIÓN DAT	A			
Description of	Measuring Point (MP)	Top of Casing					
Height of MP	Above/Below Land Surf	face		MP Elevation	C	14.65	-)
Total Sounder	Depth of Well Below N	WP 58	57,58	Water-Level Ele	vation	52.1	0)
	_Depth to Water Below			Diameter of Cas	~		
				Gallons Pumper	/Bailed)	61	
vvet	_ Water Column in \			Prior to Samplin		176	
	Gallons per l		0.16	Sampling Pump	Intake Setting		-
	Gallons in \	Well <u>Z.</u>	19	(feet below land			
			· · · · ·				
Purging Equip	ment Purge pump	Bailer	X 3=7.4	16			
Purging Equip		SAMPLI	NG DATA/FIELD PA				
Time	Temperature (°C)	SAMPLII	NG DATA/FIELD PA	TDS (g/L)	DO (mg/L)		TURB
		SAMPLII pH C Logi	NG DATA/FIELD PA Conductivity (µS/cm ³) 2056 7 //59		DO (mg/L)	-41.9	65.17 HIST
Time 1940	Temperature (°C)	SAMPLII pH C Logi	NG DATA/FIELD PA Conductivity (µS/cm ³)	TDS (g/L)	3.52	-41.9	65.17 HIST
Time 1940 095	Temperature (°C)	SAMPLII pH C Logi	NG DATA/FIELD PA Conductivity (µS/cm ³) 2056 7 //59	TDS (g/L)	3.52	-41.9	65.17 HIST
Time 1940 095	Temperature (°C) 15, 15	SAMPLII pH C Logi	VG DATA/FIELD PA Conductivity (µS/cm ³) ZOSIA <u>Z</u> /759 2074	TDS (g/L)	3.52	-41.9	65.17 HIST
Time 1940 0951 1052 Sampling Equ	Temperature (°C) 15, 15	SAMPLII pH ((a.91 (a.95 (a.95 Purge Pump Bai	VG DATA/FIELD PA Conductivity (µS/cm ³) ZOSIA <u>Z</u> /759 2074	TDS (g/L) 1.3% 1.3%	3.57 7.81 2.15	-41.9	65.17 Prist 11:23
Time 1940 195 1 0951 Sampling Equ	Temperature (°C) 15.2 15.1% 15.1% 15.1% 15.1% 15.1% 15.1%	SAMPLII pH (0.91 (0.95 (0.95 Purge Pump Bai	VG DATA/FIELD PAR Conductivity (µS/cm ³) ZOSIA <u>Z</u> /759 2014 Ner Container Description	TDS (g/L) 1.3% 1.3%	3.57 7.81 2.15	-41.9	65.17 Prist 11:23
Time 1940 0951 1052 Sampling Equ	Temperature (°C) 15,2 15,1%	SAMPLII pH C G.91 CO.95 Purge Pump/Bai	VG DATA/FIELD PAI Conductivity (µS/cm ³) 2056 2056 2056 2059 2074	TDS (g/L) 1.3% 1.3%	3.57 7.81 2.15	-41.9	65.17 Prist 11:23
Time 1940 195 1 0951 Sampling Equ	Temperature (°C) 15,2 15,1%	SAMPLII pH (0.91 (0.95 (0.95 Purge Pump Bai	VG DATA/FIELD PAI Conductivity (µS/cm ³) 2056 2056 2056 2059 2074	TDS (g/L) 1.3% 1.3%	3.97 7.82 2.75 HCI MONU	-41.9	65.17 Prist 11:23
Time 1940 195 1 0951 Sampling Equ	Temperature (°C) 15,2 15,1%	SAMPLII pH C G.91 CO.95 Purge Pump/Bai	VG DATA/FIELD PAI Conductivity (µS/cm ³) 2056 2056 2056 2059 2074	TDS (g/L) 1.3% 1.3%	3.57 7.81 2.15	-41.9 -44.9 -34.7	A Hered
Time 1940 995 Lest 20 Sampling Equ <u>Constitu</u> <u>Bitex</u> 4 <u>Suff</u> Disso	Temperature (°C) 15.21 15.18 15.18 ipment uents Sampled Aphily Welling Table Med Te, My	SAMPLII pH C G.91 CO.95 Purge Pump/Bai	VG DATA/FIELD PAI Conductivity (µS/cm ³) 2056 2056 2056 2059 2074	TDS (g/L) 1.3% 1.3%	3.97 7.82 2.75 HCI MONU	-41.9 -44.9 -34.7	65.17 Prist 11:23
Time 0940 095 Lest Remarks	Temperature (°C) 15.21 15.18 15.18 15.18 10 10 10 10 10 10 10 10 10 10	SAMPLII pH C G.91 CO.95 Purge Pump/Bai	VG DATA/FIELD PAI Conductivity (µS/cm ³) 2056 2056 2056 2059 2074	TDS (g/L) 1.3% 1.3%	3.97 7.82 2.75 HCI MONU	-41.9 -44.9 -34.7	A Hered
Time 1940 995 Lest 20 Sampling Equ <u>Constitu</u> <u>Bitex</u> 4 <u>Suff</u> Disso	Temperature (°C) 15.21 15.18 15.18 15.18 10 10 10 10 10 10 10 10 10 10	SAMPLII pH Co.95 Co.95 Purge Pump/Bai	VG DATA/FIELD PAI Conductivity (µS/cm ³) 2056 2056 2056 2059 2074	TDS (g/L) 1.3% 1.3%	3.97 7.82 2.75 HCI MONU	-41.9 -44.9 -34.7	A Hered
Time 0940 095 Lest Remarks	Temperature (°C) 15.21 15.18 15.18 15.18 10 10 10 10 10 10 10 10 10 10	SAMPLII pH Co.95 Co.95 Purge Pump/Bai	VG DATA/FIELD PAI Conductivity (µS/cm ³) 2056 2056 2056 2059 2074	TDS (g/L) 1.346 1.348 1.348	3.97 7.82 2.75 HCI MONU	-41.9 -44.9 -34.7	A Hered
Time 0940 095 Lest Remarks	Temperature (°C) 15.21 15.18 15.18 15.18 10 10 10 10 10 10 10 10 10 10	SAMPLII pH Q	VG DATA/FIELD PAI Conductivity (µS/cm ³) 2056 2/59 2074 2074 2074 2074 2076	TDS (g/L) 1.346 1.3488 1.3488 1.3488 1.3488 1.3488 1.3488 1.3488 1.348	3.37 2.15 2.15 1 HCI NONE (Strong	-41.9 -44.9 -34.7	Altered clar_Lo

•

Í

	TE TETRA	TECH, INC.	WATE	RSAMP	LING FIELD	FORM		
	Project Name	Johnston Federal #4				Pag	je 4	of 4
	Project No.							
	Site Location	San Juan County, Hy	vy 173 near Aztec, NM					
	Site/Weil No.	<u>MW-4</u>	Coded/ Replicate No.			Date	125 0	7
	Weather	<u>Clear, 40°</u>	Time Sampling Began	900		Time Sampl Completed	ing D9	30
		·	EVACU	IATION DAT				
	Description of	Measuring Point (MP)	Top of Casing		<u> </u>			
	Height of MP /	Above/Below Land Sur	face		MP Elevation	(74.79	
	Total Sounded	Depth of Well Below I	MP61_4		Water-Level Ele	evation	51.5	9
	Held	Depth to Water Below			Diameter of Ca Gailons Pumpe		~	
	Wet	Water Column in	Well 18.2		Prior to Samplin		<u>Y qa</u>	11cms
		Gallons per			Sampling Pump	Intake Settin	J	
		Gallons in	Well 2.91 x3=	8.75	(feet below land			•
	Purging Equip	ment Purge pump	o / Bailer					
ы	Time	Temperature (°C)	PH Conduct	VFIELD PAR vity (µS/cm ³)		DO (mg/L)	ORP (mV)	Turk
	907	1539		986 49 3	1.291	13.60 3.40		42.01
5.7 8.5	926	15.74		998	1.292	3.31	-15.8	34.40 19.45
	Sampling Equi		Purge Pump/Bailer			. <u></u>		
	. N.	uents Sampled WolfWalleve		er Description	ב		Preservative	
	BTEX 4 IV	uppraixin_	<u>3 40mL VOA's</u>	lastic.		HCI MOT	N.	
	Dissiding	FP. Min	ILE DE DIA	chic		INTV	12/10	bo fitterel
	Remarks	Slight HC	_ alor lide	f arou	A in C	SUSV	Ép	reserved
	Sampling Pers	ionnel <u>GD</u>	Am J					
÷				I Casing Vol	umes			
		Gal./ft. 1 ¼" = 0).077 2" ≃	0.16		0.37	4" = 0.65	
	R:\Share	1 ½° = 0 Maxim Forms\Field Forms).10 2 ½" = IJF#4 Water Sampling Field Fi	0.24 prms.xis	3" ½ =	0.50	6° = 1.46	

APPENDIX B

Groundwater Laboratory Analysis Report

Conoco Phillips

Certif	icate of Analysis Number: <u>09091282</u>
Report To:	Project Name: COP Johnston Fed4
Tetra Tech, Inc.	Site: Aztec, NM
Kelly Blanchard	Site Address:
6121 Indian School Road, N.E.	
Suite 200 Albuquerque	PO Number:
NM	<u>State:</u> New Mexico
87110-	State Cert. No.:
ph: (505) 237-8440 fax:	Date Reported: 10/6/2009

This Report Contains A Total Of 18 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

10/7/2009

Test results meet all requirements of NELAC, unless specified in the narrative.

Case Narrative for: Conoco Phillips

Certificate of Analysis Number: <u>09091282</u>									
Report To:	Project Name:	COP Johnston Fed4							
Tetra Tech, Inc.	<u>Site:</u>	Aztec, NM							
Kelly Blanchard	Site Address:								
6121 Indian School Road, N.E.									
Suite 200 Albuquerque	PO Number:								
NM .	<u>State:</u>	New Mexico							
87110-	State Cert. No.:								
ph: (505) 237-8440 fax:	Date Reported:	10/6/2009							

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

a Cardinas

09091282 Page 1 10/7/2009

Erica Cardenas Project Manager

Test results meet all requirements of NELAC, unless specified in the narrative.

Conoco Phillips

		Certific	ate of Analysis Numbe 09091282	er:	
<u>Report To:</u>	Tetra Tech, Inc. Kelly Blanchard 6121 Indian School Roa Suite 200 Albuquerque	ıd, N.E.	 <u>S</u>	Project Name: lite: lite Address:	COP Johnston Fed4 Aztec, NM
<u>Fax To:</u>	NM 87110- ph: (505) 237-8440	fax: (505) 881-3283	<u>s</u>	<u>'O Number:</u> i <u>tate:</u> i <u>tate Cert. No.:</u> Date Reported:	New Mexico 10/6/2009

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
MW-1	09091282-01	Water	9/25/2009 11:15:00 AM	9/26/2009 9:30:00 AM	331739	
MW-2	09091282-02	Water	9/25/2009 10:30:00 AM	9/26/2009 9:30:00 AM	331739	
MW-3	09091282-03	Water	9/25/2009 10:05:00 AM	9/26/2009 9:30:00 AM	331739	
MW-4	09091282-04	Water	9/25/2009 9:30:00 AM	9/26/2009 9:30:00 AM	331739	
Duplicate	09091282-05	Water	9/25/2009 11:30:00 AM	9/26/2009 9:30:00 AM	331739	
Trip Blank	09091282-06	Water	9/25/2009 2:30:00 PM	9/26/2009 9:30:00 AM	331739	

- On Cardinas ε 5

Erica Cardenas Project Manager 10/7/2009

Date

Kesavalu M. Bagawandoss Ph.D., J.D. Laboratory Director

> Ted Yen Quality Assurance Officer

> > 09091282 Page 2 10/7/2009 3:16:10 PM

.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:MW-	·1		Colle	ected: 0	9/25/2009	9 11:15	SPL San	nple I	D : 0909	1282-01
			Site	: Azte	c, NM					
Analyses/Method	Result	QUAL	Rep	o.Limit	C	il. Factor	Date Ana	lyzed	Analyst	Seq. #
ION CHROMATOGRAI	PHY				MCL		E300.0	Un	its: mg/L	
Sulfate	429			25		50	09/28/09	13:00	BDG	5222026
METALS BY METHOD	6010B, DISSOLVED)			MCL	SI	V6010B	Un	its: mg/L	
í Iron	ND			0.02		1	10/06/09	10:27	AB1	5233403
Manganese	1.11			0.005		1	10/06/09	10:27	AB1	5233403
Prep Method	Prep Date	Prep Initials	Prep F	actor						
SW3005A	09/28/2009 10:00	R_V	1.00							
VOLATILE ORGANICS	BY METHOD 8260E	3			MCL	SI	N8260B	Un	its: ug/L	
Benzene	3900			50		50	10/02/09			5230040
Ethylbenzene	680			50		50	10/02/09	16:16	E_G	5230040
Naphthalene	40			1		1	09/29/09	10:30	E_G	5222635
Toluene	1500			50		50	10/02/09	16:16	E_G	5230040
m,p-Xylene	8100			100		50	10/02/09	16:16	E_G	5230040
o-Xylene	1700			50		50	10/02/09	16:16	E_G	5230040
Xylenes,Total	9800			50		50	10/02/09	16:16	E_G	5230040
Surr: 1,2-Dichloroethan	ne-d4 96.6		%	78-116		50	10/02/09	16:16	E_G	5230040
Surr: 1,2-Dichloroethan	ne-d4 103		%	78-116		1	09/29/09	10:30	E_G	5222635
Surr: 4-Bromofluorober	nzene 111		%	74-125		50	10/02/09	16:16	E_G	5230040
Surr: 4-Bromofluorober	nzene 92.3		%	74-125		1	09/29/09	10:30	E_G	5222635
Surr: Toluene-d8	101		%	82-118		50	10/02/09	16:16	E_G	5230040

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09091282 Page 3 10/7/2009 3:16:25 PM

8880 INTERCHANGE DRIVE HOUSTON, TX.77054

(713) 660-0901

Client Sample ID:MW-	2		Collec	ted: 09/2	25/200	09 10:30	SPL Sar	nple	D : 0909	1282-02
			Site:	Aztec,	, NM					
Analyses/Method	Result	QUAL	Rep.	Limit		Dil. Factor	Date Ana	lyzed	Analyst	Seq. #
ION CHROMATOGRA	РНҮ		· · · ·		MCL		E300.0	Ur	nits: mg/L	
Sulfate	1260			100		200	09/28/09	13:16	BDG	5222027
METALS BY METHOD	6010B, DISSOLVED)			MCL	SI	N6010B	Ur	nits: mg/L	
Iron	ND			0.02		1	10/06/09			5233404
Manganese	0.04		(0.005		1	10/06/09	10:31	AB1	5233404
Prep Method	Prep Date	Prep Initials	Prep Fa	ctor						
SW3005A	09/28/2009 10:00	R_V	1.00							
VOLATILE ORGANICS	BY METHOD 8260E	3			MCL	SI	N8260B	Ur	nits: ug/L	
Benzene	ND			1		1	09/29/0			5222630
Ethylbenzene	ND			1		· 1 · '	09/29/0	9 3:00	E_G	5222630
Naphthalene	ND			1		1	09/29/0	9 3:00	E_G	5222630
Toluene	ND			1		1	09/29/0	9 3:00	E_G	5222630
m,p-Xylene	ND			2		1	09/29/0	9 3:00	E_G	5222630
o-Xylene	ND			1		1	09/29/0	9 3:00	E_G	5222630
Xylenes,Total	ND			1		1	09/29/0	9 3:00	E_G	5222630
Surr: 1,2-Dichloroethan	e-d4 98.0		% 78	3-116		1	09/29/0	9 3:00	E_G	5222630
Surr: 4-Bromofluorober	nzene 110		% 74	-125		1	09/29/0	9 3:00	E_G	5222630
Surr: Toluene-d8	101		% 82	2-118		1	09/29/0	9 3:00	E_G	5222630

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve
- TNTC Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 09091282 Page 4 10/7/2009 3:16:26 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:MW-	3		Colle	ected: 09)/25/20(09 10:05	SPL Sar	nple	D: 0909	1282-03
			Site	: Azte	c, NM					
Analyses/Method	Result	QUAL	Re	p.Limit		Dil. Factor	Date Ana	lyzed	Analyst	Seq. #
ION CHROMATOGRAF	РНҮ				MCL		E300.0	Ur	nits: mg/L	
Sulfate	1070			100	•	200	09/28/09	13:33	BDG	5222028
METALS BY METHOD	6010B, DISSOLVED)			MCL	SI	W6010B	Úr	nits: mg/L	
Iron	ND	,	•	0.02		1	10/06/09	10:35	AB1	5233405
Manganese	1.24			0.005		1	10/06/09	10:35	AB1	5233405
Prep Method	Prep Date	Prep Initials	Prep	Factor						
SW3005A	09/28/2009 10:00	R_V	1.00							
VOLATILE ORGANICS	BY METHOD 8260E	3			MCL	SI	W8260B	Ur	nits: ug/L	
Benzene	2.1			1		1	09/29/0	9 4:11	E_G	5222633
Ethylbenzene	ND			1		1	09/29/0	9 4:11	E_G	5222633
Naphthalene	ND			1		1	09/29/0	9 4:11	E_G	5222633
Toluene	· ND			1		1	09/29/0	9 4:11	E_G	5222633
m,p-Xylene	ND			2		1	09/29/0	9 4:11	E_G	5222633
o-Xylene	ND			1		1	09/29/0	9 4:11	E_G	5222633
Xylenes,Total	ND			1		1	09/29/0	9 4:11	E_G	5222633
Surr: 1,2-Dichloroethane	e-d4 96.4		%	78-116		1	09/29/0	9 4:11	E_G	5222633
Surr: 4-Bromofluoroben:	zene 110		%	74-125		1	09/29/0	9 4:11	E_G	5222633
Surr: Toluene-d8	101		%	82-118		1	09/29/0	9 4:11	E_G	5222633

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09091282 Page 5 10/7/2009 3:16:26 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID:MW	-4 ·		Coll	ected: 0	9/25/20	09 9:30	SPL Sar	nple l	D: 0909	1282-04
			Site	e: Azte	c, NM					
Analyses/Method	Result	QUAL	Re	p.Limit		Dil. Factor	Date Ana	lyzed	Analyst	Seq. #
ION CHROMATOGRA	РНҮ	·			MCL		E300.0	Ur	nits: mg/L	
Sulfate	968			100		200	09/28/09	13:50	BDG	5222029
METALS BY METHOD	6010B, DISSOLVED)			MCL	S	W6010B	Ur	nits: mg/L	
Iron	0.508			0.02		1	10/06/09	10:40	AB1	5233406
Manganese	1.24			0.005		1	10/06/09	10:40	AB1	5233406
Prep Method	Prep Date	Prep Initials	Prep	Factor						
SW3005A	09/28/2009 10:00	R_V	1.00							
VOLATILE ORGANICS	S BY METHOD 8260	3			MCL	S	W8260B	Ur	nits: ug/L	
Benzene	8.8			1		1	09/29/0			5222634
Ethylbenzene	5.7			1 -		1	09/29/0	9 4:35	E_G	5222634
Naphthalene	ND			1		1	09/29/0	9 4:35	E_G	5222634
Toluene	ND			1		1	09/29/0	9 4:35	E_G	5222634
m,p-Xylene	2			2		1	09/29/0	9 4:35	E_G	5222634
o-Xylene	ND			1		1	09/29/0	9 4:35	E_G	5222634
Xylenes,Total	2			1		1	09/29/0	9 4:35	E_G	5222634
Surr: 1,2-Dichloroethar	ne-d4 98.7		%	78-116		1	09/29/0	9 4:35	E_G	5222634
Surr: 4-Bromofluorobe	nzene 110		%	74-125		1	09/29/0	9 4:35	E_G	5222634
Surr: Toluene-d8	100		%	82-118		1	09/29/0	9 4:35	EG	5222634

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09091282 Page 6 10/7/2009 3:16:27 PM

8880 INTERCHANGE DRIVE

HOUSTON, TX 77054

(713) 660-0901

	Client	: Samp	le ID:C)upli	cate
--	--------	--------	---------	-------	------

Collected: 09/25/2009 11:30

SPL Sample ID: 09091282-05

			Sit	e: Azte	ec, NM				
Analyses/Method	Result	QUAL	Re	p.Limit	Dil. Factor	Date Ana	lyzed	Analyst	Seq. #
VOLATILE ORGANICS BY MET	HOD 8260B				MCL SV	V8260B	Ur	nits: ug/L	
Benzene	4100			· 50	50	10/02/09	16:40	E_G	5230041
Ethylbenzene	660			50	50	10/02/09	16:40	E_G	5230041
Naphthalene	. 41			1	1	09/29/09	10:53	E_G	5222636
Toluene	1700			50	50	10/02/09	16:40	E_G	5230041
m,p-Xylene	8100			100	50	10/02/09	16:40	E_G	5230041
o-Xylene	1700			50	50	10/02/09	16:40	E_G	5230041
Xylenes,Total	9800			50	50	10/02/09	16:40	E_G	5230041
Surr: 1,2-Dichloroethane-d4	94.9		%	78-116	50	10/02/09	16:40	E_G	5230041
Surr: 1,2-Dichloroethane-d4	105	· · · · · · · · · · · ·	%	78-116	1	09/29/09	10:53	E_G	5222636
Surr: 4-Bromofluorobenzene	110		%	74-125	50	10/02/09	16:40	E_G	5230041
Surr: 4-Bromofluorobenzene	91.7		%	74-125	1	09/29/09	10:53	E_G	5222636
Surr: Toluene-d8	99.3		%	82-118	50	10/02/09	16:40	E_G	5230041
Surr: Toluene-d8	114		%	82-118	1	09/29/09	10:53	E_G	5222636

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B/V Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

> 09091282 Page 7 10/7/2009 3:16:27 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054

(713) 660-0901

Client Sample ID: Trip Blank	Client Sample ID: Trip Blank			: ted: 09	9/25/2009 14:30	SPL Sample ID: 090912			1282-06
			Site:	Azte	c, NM				
Analyses/Method	Result	QUAL	Rep.	Limit	Dil. Factor	Date Analy	/zed	Analyst	Seq. #
VOLATILE ORGANICS BY MET	HOD 8260B				MCL SV	V8260B	Unit	s: ug/L	
Benzene	ND		•	1	1	09/29/09	2:13 E	_G	5222629
Ethylbenzene	ND			1	1	09/29/09	2:13 E	_G	5222629
Naphthalene	ND			1	1	09/29/09	2:13 E	<u>_G</u>	5222629
Toluene	ND			1	1	09/29/09	2:13 E	_G	5222629
m,p-Xylene	ND			2	1	09/29/09	2:13 E	_G	5222629
o-Xylene	ND			1	1	09/29/09	2:13 E	_G	5222629
Xylenes,Total	ND			1	1	09/29/09	2:13 E	_G	5222629
Surr: 1,2-Dichloroethane-d4	97.4		% 7	8-116	1	09/29/09	2:13 E	_G	5222629
Surr: 4-Bromofluorobenzene	110		% 7	4-125	1	09/29/09	2:13 E	_G	5222629
Surr: Toluene-d8	103		% 8	2-118	1	09/29/09	2:13 E	_G	5222629

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- $\ensuremath{\mathsf{B/V}}\xspace$ Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09091282 Page 8 10/7/2009 3:16:28 PM

Quality Control Documentation

09091282 Page 9 10/7/2009 3:16:28 PM

Quality Control Report

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP Johnston Fed4

Analysis: Method:	Metals by Method 6 SW6010B	010B, Dissolv	ved			WorkOrder: Lab Batch ID:	09091282 94143
	Met	hod Blank			Samples in Analytic	cal Batch:	
RunID: ICP2_09	1006A-5233393	Units:	mg/L		Lab Sample ID	Client Sar	nple ID
Analysis Date:	10/06/2009 9:44	Analyst:	AB1		09091282-01C	MW-1	
Preparation Date:	09/28/2009 10:00	Prep By:	R_V M	lethod SW3005A	09091282-02C	MW-2	
					09091282-03C	MW-3	
	Analyte	I	Result	Rep Limit	09091282-04C	MW-4	
Iron			ND	0.02			
Mano	anese		ND	0.005			

Laboratory Control Sample (LCS)

RunID: Analysis Date: Preparation Date:

ICP2_091006A-5233394 10/06/2009 9:48 : 09/28/2009 10:00 Units: mg/L Analyst: AB1 Prep By: R_V Method SW3005A

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Iron	1.000	1.053	105.3	80	120
Manganese	1.000	1.067	106.7	80	120

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:	09091275-02		
RunID:	ICP2_091006A-5233396	Units:	mg/L
Analysis Date:	10/06/2009 9:57	Analyst:	AB1
Preparation Date:	09/28/2009 10:00	Prep By:	R_V Method SW3005A

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Iron	0.3398	1	1.416	107.6	1	1.413	107.3	0.2121	20	75	125
Manganese	0.02860	1	1.092	106.3	1	1.092	106.3	0	20	75	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09091282 Page 10 10/7/2009 3:16:30 PM

Surr: 1,2-Dichloroethane-d4

Surr: Toluene-d8

Surr: 4-Bromofluorobenzene

Quality Control Report

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP Johnston Fed4

Analysis: Method:	Volatile Organics by SW8260B	y Method 826	60B			WorkOrder: Lab Batch ID:	09091282 R284934
	Method Blank				Samples in Analytic	al Batch:	
RunID: L_0909	28E-5222628	Units:	ug/L		Lab Sample ID	Client Sa	mpie ID
Analysis Date:	09/29/2009 1:49	Analyst:	E_G		09091282-01A	MW-1	
-	•	-	_		09091282-02A	MW-2	
					09091282-03A	MW-3	
					09091282-04A	MW-4	
	Analyte			<u></u>	09091282-05A	Duplicate	
	vibenzene				09091282-06A	Trip Blank	
	ohthalene		ND			•	
Tol	uene		ND	1.0			
m,p	-Xylene		ND	2.0			
<u>o-X</u>	ylene		ND	1.0			
Xyle	enes,Total		ND				
1 6	Numeral O. Diskisses attacks and a		00.0	70 440			

78-116

74-125

82-118

	Laboratory Control Sample (LCS)						
RunID:	L_090928E-5222627	Units:	ug/L				
Analysis Date:	09/29/2009 1:02	Analyst:	E_G				

98.0

109.8

102.5

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	18.7	93.6	74	123
Ethylbenzene	20.0	20.0	99.8	72	. 127
Naphthalene	20.0	16.9	84.6	33	148
Toluene	20.0	19.3	96.6	74	126
m,p-Xylene	40.0	40.8	102	71	129
o-Xylene	20.0	20.4	102	74	130
Xylenes, Total	60.0	61.2	102	71	130
Surr: 1,2-Dichloroethane-d4	50.0	48.1	96.2	78	116
Surr: 4-Bromofluorobenzene	50.0	52.4	105	74	125
Surr: Toluene-d8	50.0	50.5	101	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

	Sample Spiked: RunID: Analysis Date:	09091282-02 L_090928E-5222631 09/29/2009 3:24	Units: Analyst:	ug/L E_G	
Qualifiers:	ND/U - Not Detected at the Repor	ting Limit	MI - Matrix I	nterference	
	B/V - Analyte detected in the asso	ciated Method Blank	D - Recover	y Unreportable due to Dilutio	n
	J - Estimated value between MDL	and PQL	* - Recovery	Outside Advisable QC Limi	its
	E - Estimated Value exceeds calib	ration curve			
	N/C - Not Calculated - Sample cor	centration is greater that	in 4 times the a	mount of spike added. Conti	rol limits do not apply.
	TNTC - Too numerous to count	-			09091282 Page 11
	ented on the QC Summary Report have e SPL LIMS system are derived from Q				10/7/2009 3:16:30 PM

Conoco Phillips

COP Johnston Fed4

Analysis: Method:								WorkOrder: Lab Batch II		91282 84934		
	Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene		ND	20	18.8	93.8	20	19.4	96.9	3.34	22	70	124
Ethylbenzene		ND	20	19.6	98.2	20	20.1	101	2.34	20	76	122
Naphthalene	-	ND	20	15.5	77.7	20	16.2	81.0	4.20	20	42	140
Toluene		ND	20	19.3	96.5	20	19.8	99.0	2.63	24	80	117
m,p-Xylene		ND	40	40.9	102	40	42.3	106	3.55	20	69	127
o-Xylene		ND	20	21.1	106	20	21.4	107	1.16	20	84	114
Xylenes,Total		ND	60	62	100	60	64	110	2.7	20	69	127
Surr: 1,2-Dich	loroethane-d4	NĎ	50	48	96.0	50	47.8	95.6	0.436	30	78	116
Surr: 4-Bromo	fluorobenzene	ND	50	54.2	108	50	53.3	107	1.63	30	74	125
Surr: Toluene-	-d8	ND	50	50.6	101	50	50.7	101	0.0592	30	82	118

Qualifiers: ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

Blank D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09091282 Page 12 10/7/2009 3:16:30 PM

Quality Control Report

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips COP Johnston Fed4

Analysis: Method:	Volatile Organics by SW8260B	Method 826	0B		WorkOrder: Lab Batch ID:	09091282 R285393	
	Meth	nod Blank		Samples in Analytica	al Batch:		
RunID: L_091	002B-5230036	Units:	ug/L	Lab Sample ID	Client Sar	nple ID	
Analysis Date:	10/02/2009 13:08	Analyst:	E_G	09091282-01A	MW-1		
				09091282-05A	Duplicate		

Analyte	Result	Rep Limit
Benzene	ND	1.0
Ethylbenzene	ND	1.0
Toluene	ND	1.0
m,p-Xylene	ND	2.0
o-Xylene	ND	1.0
Xylenes,Total	ND	1.0
Surr: 1,2-Dichloroethane-d4	98.2	78-116
Surr: 4-Bromofluorobenzene	110.3	74-125
Surr: Toluene-d8	103.6	82-118

	Laboratory Control Sample (LCS)						
RunID:	L_091002B-5230035	Units:	ug/L				
Analvsis Date:	10/02/2009 12:10	Analyst:	ΕG				

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	21.3	106	74	123
Ethylbenzene	20.0	22.6	113	72	127
Toluene	20.0	21.7	109	- 74	126
m,p-Xylene	40.0	47.3	118	71	129
o-Xylene	20.0	23.6	118	74	130
Xylenes,Total	60.0	70.9	118	71	130
Surr: 1,2-Dichloroethane-d4	50.0	48.8	97.6	78	116
Surr: 4-Bromofluorobenzene	50.0	53.9	108	74	125
Surr: Toluene-d8	50.0	49.9	99.8	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:	09091216-03		
RunID:	L_091002B-5230038	Units:	
Analysis Date:	10/02/2009 15:29	, Analyst:	

Qualifiers:

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

ND/U - Not Detected at the Reporting Limit

D - Recovery Unreportable due to Dilution

MI - Matrix Interference

ug/L

E_G

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09091282 Page 13 10/7/2009 3:16:30 PM

Conoco Phillips

COP Johnston Fed4

Analysis: Volatile C Method: SW8260E	Organics by Method 826	by Method 8260B							9091282 285393		
Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene	ND	20	17.6	88.2	• 20	19.1	95.6	8.05	22	70	124
Ethylbenzene	ND	20	18.7	93.5	20	20.0	100	6.84	20	76	122
Toluene	ND	20	18.2	90.9	20	19.7	98.6	8.06	24	80	117
m,p-Xylene	ND	40	39.3	98.3	40	42.3	106	7.26	20	69	127
o-Xylene	ND	20	19.7	98.5	20	21.1	106	7.11	20	84	114
Xylenes,Total	ND	60	59	98	60	63	110	7.2	20	69	127
Surr: 1,2-Dichloroethane-d4	ND	50	47.8	95.6	50	47.2	94.4	1.35	30	78	116
Surr: 4-Bromofluorobenzene	ND	50	54.7	109	50	54.4	109	0.702	30	74	125
Surr: Toluene-d8	ND	50	50.1	100	50	50.1	100	0.0579	30	82	118

Qualifiers: ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09091282 Page 14 10/7/2009 3:16:30 PM

Conoco Phillips COP Johnston Fed4

Analysis: Method:	Ion Chromatograpi E300.0	ıy						Work(Lab Ba	Drder: atch ID:		91282 84904		
	Me	thod Blank				Samples	in Analytic	al Batch:					
RunID: IC2_09 Analysis Date:	09928A-5222022 09/28/2009 9:56	Units: Analyst:	mg/L BDG			<u>ab Sam</u>)909128)909128)909128	2-01B 2-03B		<u>Client S</u> MW-1 MW-3 MW-4	Sample ID	<u>)</u>		
Su	Analyte		Result ND	Rep Limit 0.50									
			La	boratory C	ontrol Samp	le (LCS	1		-				
	Runi): sis Date:	IC2_09092	28A-5222023 09 10:12	Units: Analyst:	mg/L BDG							
	עושורא												
		Analyl			Spike Res			ower Limit	Upper Limit	1			
	Sulfate				Spike Res Added				Upper Limit 115				
		Analy	e		Spike Res Added	0.25	ecovery 102.5	Limit	Limit				
	Sulfate San Run	Analyl <u>Matrix</u> nple Spiked:	e Spike (M 090912 IC2_090	A IS) / Matrix	Spike Res Added 10.00 1 Spike Dupli	0.25	102.5 5D)	Limit	Limit]			
	Sulfate San Run	Analyl <u>Matrix</u> nple Spiked: ID:	e Spike (M 090912 IC2_090	/ Matrix 282-01 2928A-522204	Spike Res Added 10.00 1 Spike Duplic	0.25	102.5 5D)	Limit	Limit 115	RPD	RPD Limit	Low Limit	High Limi

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

09091282 Page 15 10/7/2009 3:16:30 PM

Conoco Phillips COP Johnston Fed4

				COP Jo	ohnston Fed	4						
Analysis: Method:	lon Chromatograph E300.0	Y		,				WorkOrder Lab Batch I		91282 34904A		
	Met	hod Blank			5	Samples	in Analytica	Batch:				
RunID: IC2_090	928A-5222022	Units:	mg/L		L	.ab Sam	ple ID	Clier	nt Sample ID)		
Analysis Date:	09/28/2009 9:56	Analyst:	BDG			9091282		MW-	· · · · · · · · · · · · · · · · · · ·	-		
	Analyte		Result	Rep Limit								
Sulfa			ND	0.50								
			1.01	hanatama Ca	antral Cana							
					ontrol Samp	IC (LUS)						
	RunID		_	8A-5222023	Units:	mg/L						
	Analys	is Date:	09/28/200	09 10:12	Analyst:	BDG						
		Analy	е		pike Res			wer Uppe				
				A	dded	Re	ecovery L	imit Limit				
	Sulfate				10.00 1	0.25	102.5	85 1	15			
		Matrix	Spike (M	S) / Matrix	Spike Dupli	ato (MS						
		<u>Intati i A</u>	Spike (in			Late (mo	<u>o</u> 1					
	Sam	ole Spiked:	090912	82-02								
	Runl			928A-522204		•						
	Analy	/sis Date:	09/28/2	009 18:35	Analys	st: BD0	G					
					1.10.0/							
Ą	unalyte	Sample Result	MS Spike	MS Result	MS % Recovery	MSD Spike	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	
ASulfate	unalyte				Recovery			Recovery	RPD 0.9856			High Limi 12
	nalyte	Result	Spike Added	Result	Recovery	Spike Added	Result	Recovery		Limit	Limit	Lim

Qualifiers: ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

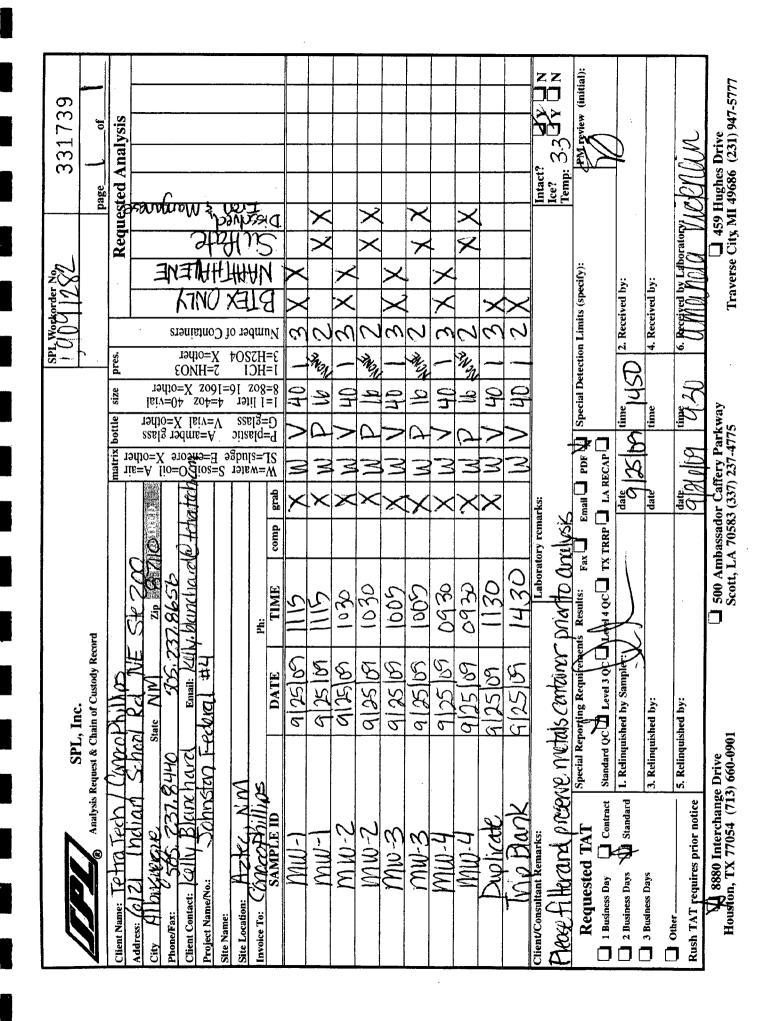
ciated Method Blank D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.


09091282 Page 16 10/7/2009 3:16:31 PM Sample Receipt Checklist And Chain of Custody

> 09091282 Page 17 10/7/2009 3:16:31 PM

Sample Receipt Checklist

Workorder: 09091282		Received By:	AMV
Date and Time Received: 9/26/2009 9:30:00 AM Temperature: 3.3°C		Carrier name: Chilled by:	Fedex-Priority Water Ice
1. Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present
2. Custody seals intact on shippping container/cooler?	Yes 🗹	· No 🗌	Not Present
3. Custody seals intact on sample bottles?	Yes	No 🗌	Not Present
4. Chain of custody present?	Yes 🗹	No 🗌	
5. Chain of custody signed when relinquished and received?	Yes 🗹	No 🗀	
6. Chain of custody agrees with sample labels?	Yes 🗹	No 🗌	
7. Samples in proper container/bottle?	Yes 🗹	Νο	
8. Sample containers intact?	Yes 🔽		
g. Sufficient sample volume for indicated test?	Yes 🗹	Νο	
10. All samples received within holding time?	Yes 🗹	No 🗌	
11. Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗔	
12. Water - VOA vials have zero headspace?	Yes 🗹		/ials Not Present
13. Water - Preservation checked upon receipt (except VOA*)?	Yes 🗹	No 🗌	Not Applicable
*VOA Preservation Checked After Sample Analysis			
SPL Representative:	Contact Date	& Time:	
Client Name Contacted:			
Non Conformance Issues:			-
Client Instructions:			

