August 19, 2011

Mr. Mike Bratcher Oil Conservation Division Artesia, NM

Re: Allison CQ Fed. #6

30-015-23211

Section 13, T19S-R24E Eddy County, New Mexico

Dear Mr. Bratcher:

Yates Petroleum Corp. would like to submit for your consideration the enclosed work plan for the above captioned well. The plan is being submitted in response to the C-141 report dated August 1, 2011.

If there are no objections with the scope of work described in the plan, Yates will have a contractor begin work on or after the week of August 30, 2011.

If you have any questions call me at 575-748-4311

Thank you.

Yates Petroleum Corporation

Jeremy Haass Environmental Regulatory Agent

Enclosure(s):

Map to location

Analytical Report 425343 Analytical Report 425344 Yates Petroleum Corporation

Allison CQ Fed. #6 Work Plan

Section 13, T19S-R24E

Eddy County, New Mexico

August 19, 2011

I. Location

Go south on 285 to Rocking R Red Road, turn west go 8.7 miles . Turn north 1.1 miles just past the turn off for the Allison #8. Map included in packet.

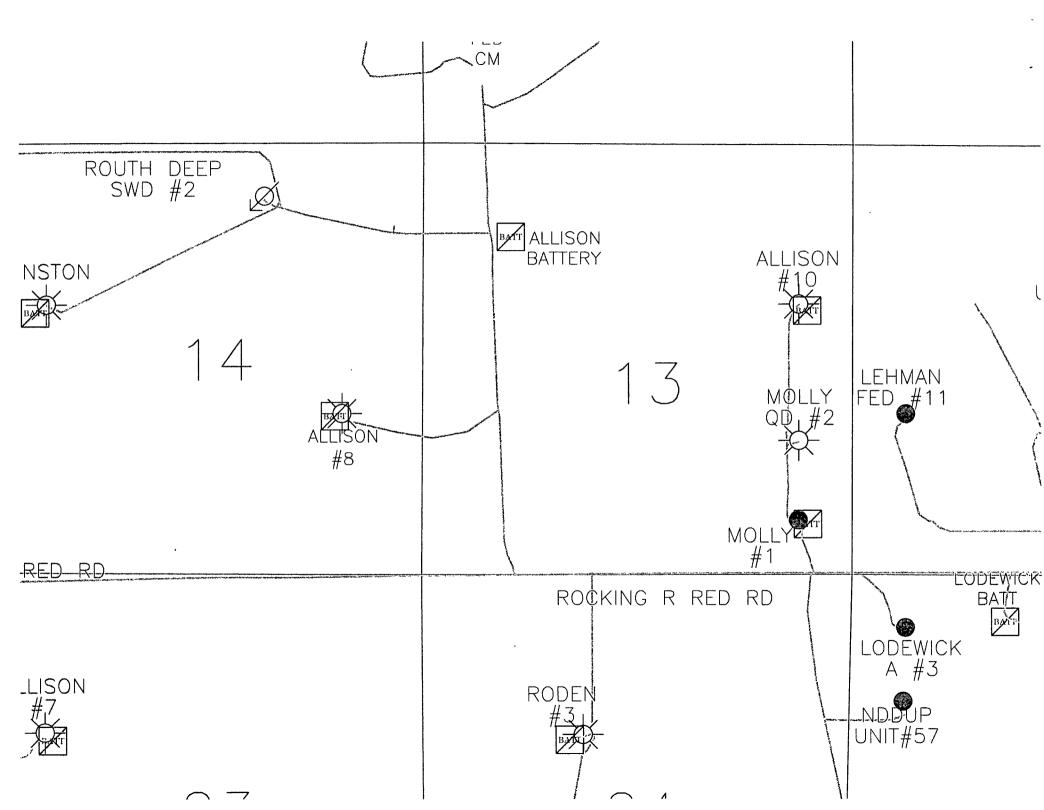
II. Background

On July 30, 2011 a release occurred of 40 B/PW of which 28 B/PW was recovered. Yates submitted a C-141 on August 4, 2011 to the NMOCD District II office. The total affected area was 30 yards x 90 yards. Initial delineation samples were taken (8/4/11) and sent to an NMOCD approved laboratory (8/17/11 results enclosed).

III. Surface and Ground Water

Area surface geology is Cenozoic. The nearest Depth to Groundwater record listed on the New Mexico Office of the State Engineer (Section 12, T19S-R24E) shows depth of groundwater to be approximately 265 feet making the site ranking for this site a zero (0). Watercourses in the area are dry except for infrequent flows in response to major precipitation events.

The ranking for this site is zero (0) based on the as following:


Depth to ground water > 100'
Wellhead Protection Area > 1000'
Distance to surface water body > 1000'

IV. Soils

The area consists of soils that are caliche and interspersed with clay seams providing a low permeability barrier to retard vertical percolation of contaminants into the subsurface.

V. Scope of Work

Upon approval of this work plan and based on the enclosed analytical results, Yates Petroleum Corp. will have a contractor excavate 8" of impacted soil (total excavation will be 300" x 90" x 8" deep), impacted soils will be taken to an NMOCD approved facility for disposal, and a four foot cap will be placed over the excavation site and contoured to flow with the surrounding area. With the analytical results being within RRAL's for BTEX (50 ppm) and TPH (5000 ppm) for the Total Ranking Score of zero (0) Yates Petroleum Corporation will submit a C-141 Final Report, analytical results and request closure of the site.

Analytical Report 425343

for Yates Petroleum Corporation

Project Manager: Jeremy Haass
Allison CQ Federal
30-015-23211
17-AUG-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046):

Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Project Location: Eddy

Certificate of Analysis Summary 425343

Yates Petroleum Corporation, Artesia, NM

Project Name: Allison CQ Federal

Project Id: 30-015-23211 Contact: Jeremy Haass

Date Received in Lab: Tue Aug-09-11 10:15 am

Report Date: 17-AUG-11

Project Manager: Brent Barron II

	·							Project Manager:	
	Lab Id:	425343-0	01	425343-0	102	425343-0)03		
Analysis Requested	Field 1d:	Comp-1.	.0	Comp-2	.0	Comp-3	0.1		
Analysis Requesieu	Depth:	I-l fi		2-2 ft		3-3 ft			-
	Matrix:	SOIL		SOIL	ļ	SOIL			
	Sampled:	Aug-04-11 1	2:00	Aug-04-11	12:28	Aug-()4-11	13:00		
BTEX by EPA 8021B	Extracted:	Aug-12-11	13:45	Aug-12-11	13:45	Aug-12-11	13:45		
	Analyzed:	Aug-12-11	23.08	Aug-12-11	23.31	Aug-12-11	23:53		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		ND	0.00106	ND	0.00106	ND	0.00104		
Toluene		ND	0,00212	ND	0.00213	0.00285	0 00207		
Ethylhenzene		0.00154	0.00106	9,00337	0.00106	0.00352	0,00104		
m_p-Xylenes		0,00452	0.00212	0.0107	0.00213	0 00794	0.00207		
o-Xylene		0.00200	0,00106	0,00512	90100.0	0.00382	0.00104		
Total Xylenes		0 00652	0.00106	0.0158	0,00106	0.0118	0,60104		
Total BTEX		0 00806	0,00106	0 0192	0,00106	0.0181	0,001641		
Percent Moisture	Extracted:								
	Analyzed:	Aug-09-11	15.35	Aug-(19-11	15:35	Aug-09-11	15:35		
	Units/RL:	%	RL	0.0	RL	%	RL		
Percent Moisture		6.47	1.00	5.13	1.00	4.15	1,00		
TPH By SW8015B Mod	Extracted:	Aug-09-11	14.45	Aug-09-11	14:45	Aug-09-11	14:45		
	Analyzed:	Aug-09-11	19.43	Aug-09-11	20:11	Aug-09-11	20:39		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
C6-C10 Gasoline Range Hydrocarbons		ND	150	ND	15.0	ND	149		
C10-C28 Diesel Range Hydrocarbons		85.6	150.	278	15.0	192	14.9		The state of the s
Total TPH .		, 85.6	150	` 278	15.0	192	14.9		

This analytical report, and the entire data package it represents, has been made for your exclusive and compdential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XFNCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our hability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi,

Brent Barron II Odessa Laboratory Manager

Flagging Criteria

- N In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix/chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J. The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- 1. The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting
- K. Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample
- BRL Bélow Reporting Limit.
- RL-Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit 1.0Q Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and OUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

Phone Fax 4143 Greenbriar Dr. Stafford. I's 77477 (281) 240-4200 (281) 240-4280 9701 Harry Hines Blvd , Dallas, TX 75220 (214) 351-9139 (214) 902 0300 5332 Blackberry Drive, San Amonio TX 78238 (210) 509-3334 (210) 509-3335 2505 North Faikenburg Rd, Fampa, FL 33619 (813) 620-2000 (813) 620-2033 5757 NW 158th St. Miami Lakes, Fl. 33014 (305) 823-8500 (305) 823-8555 12600 West I-20 East, Odessa, TX 79765 (432) 563-1500 (432) 563-1713 6017 Financial Drive Norcross, GA 30071 (770: 449-8300 (770) 449-5477 3725 E. Athana Ave. Phoenix, AZ 85040 (602) 437-0330

Page 14 of 15

XENCO-Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Jeremy Haass														_	Pro	jec	t Na	me:	Al	lisc	on (CO	Fe	de	rai					
	Company Name	Yates Petroleum Corpora	tion			-										-		Pr	oje	:t#:	30	-015	5-23	211	<u> </u>							
	Company Address.	105 South 4th Street	···					<u> </u>								_	F	roje	ect l	oc:	Edd	ју										
	City/State/Zip	Artesia, NM 88210														_			P	O#:	103	3-260	36		.,		···					
	Telephone No:	575-748-4311				Fax No:	•									_	Repor	l Fo	rma	t:	<u>(</u>	Sta	ndare	đ	[ı	TRRF	,		NPD	ES	
	Sampler Signature:	J	<u>. </u>	>		e-mail:			jha	as	s@	yat	esr	oet	role	um.	com	_														1
(lap use	onivì																	\vdash				CLP;	An	31y20	e Fo	-:: 		_	Т	\dashv	1	ı
l	1#:425343	/425344						ľ	р	reser	vation	n & #	of Co	ontai	uoi 7	I N	1atrix	100	T			I AL;	63	=	丰	\exists					72 hrs	:
	T		T	T			Γ	П	٦	٦	T	Т	T	T	T	╁		80158	1036				Sfi			6260					7. E.	_
LAB # (lab use only)	FIE	LD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	Field Fittered	Total #, of Containurs	ice	HNOs	HCI	H ₂ SO.	Neox	Na;S ₂ O ₃	None Other (Specify)	DWKDrawng Water St. Skidge	GW = Groundwater S=Sou'Sold NP=Non-Potable Specify Other	TP-4: 418 1 8015M	TX 1005 TX	Cations (Ca. Mg, Na. K)	Anions (Cl. SO4 Aikalinity)	SAR / ESP / CEC	Metals At Ag Ba Cd Cr Pt hig Se	Votalites	Semivolaties	BTEX 8021B/5030 to 87EX	ROIN	Chlorides			e-Schedute	Standard TAT
01 V2	Co	omp-1.0	1ft	1ft	8/4/2011	12:00pm			х								s	x								x	$oxed{oxed}$	x			-	х
	C	omp-2.0	2ft	2ft	8/4/2011	12;28pm	L		x				\perp			L	s	x								х		Х				×
<i>V3</i>	Co	omp-3.0	3ft	3ft	8/4/2011	1.00pm		Ш	x			\perp		_			S	X							_	x	\perp	X		Ц	1	×
				ļ			_	Ш				\downarrow		\perp	\perp	L			_					_	_	\bot	\bot	\perp			1	
				<u> </u>			L	Ц			_	_	_	1		L								_	_	\bot	\perp	丄			1	
							L	Ц		_	\perp		1	_		L		<u> </u>	L					_	_	\perp	\perp	\perp	\perp		4	
			<u> </u>			ļ	<u>L</u>		_	_	4	_	1	4		<u> </u>		_	_					_	\downarrow	_	_ _	1		_ -	1	
				ļ			_	\sqcup	4	_	4	_	_	4	_	L	······································	<u> </u>	<u> </u>					_	\dashv	4	\bot	\bot	\perp	\sqcup	4	
				ļ			_	\square	_	_	4	-	+	+	- -	<u> </u>		_	_	_			\dashv	-	4	-	4	4	\sqcup	\vdash	4	
			┼	├ ─			-	\sqcup	\dashv	4	-	+	-	+	+			\vdash	-				-	-	\dashv	+	\dashv	+	\vdash	\vdash	+	
							<u>'</u>		-	-	-	\dashv	+	\dashv		┞		\vdash	┝	ļ.,		\vdash	-	+	\dashv	+	+	+	-	\vdash	+	
				 			\vdash	╁┪	-	-	\dashv	\dashv	+	+	+	├		-	-	H			\dashv	\dashv	+	+	+	÷	-			_
		PUT CHLORIDES	- 	 -			-	\vdash	-{	\dashv	+	┽	+	+	╅	-		\vdash	├			\vdash	\dashv	\dashv	+	┿	+	+	+-		+	_
Special I	ON SEPA	RATE REPORT TPH: 8015B, B	TEX: 8	021B	& Chlorides	Please show	v B	LEX TEX	res	ults	ası	ma/	ko.	Tha	ank v	QU.			Ц.,	Lab	ora	tory	Cor	nme	nts:	<u></u>		Ш				
		11 11. 00 100, =					٠,					J.	·		,					San	nple	Cor	ntain	ers t	intac	:1?		5	3	N	ļ	
Relinquist	hed by:	Date	Ti	imé	Received by									i	D.	ale:		Tan	e e	Lab	els (on c	ontai	inerí				(立	, N	ŀ	
		08/08/11	2.2	5 PM								_					_								ntair oler(-)	(である	2/2/2 2 2 2	5	
Relinquis	hed by:	Dato	-Ti	mô	Received by:										Di	ate		Time	e	Saņ	nple by S	Har	nd De pler/C	elive Stent	red ! Reu). 7)HL (Fe	の診	N N Lone	1	r
Relinguis	hed by: Fedex	Date	Ti	me	Received by EL	drea	E	H	20	m					8 6	ale -	νù	Timi		Ten	nper	U alur	∂? e Up	<i>51</i> 4 ion F	JPS Pece	, iipt		i	-1		3.	

XENCO Laboratories

Atama, Boca Razon, Corpus Christi, Dallas Houston, Marrit, Odessa, Philadelphia Phoenix, San Antonio, Tampa Document Title: Sample Receipt Checklist

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 5/1/2010 Page ! of 1

Prelogin / Nonconformance Report - Sample Log-In

client Vales	Petroleum			•		
Date/Time:	111 10:15					
Lab ID#: 43534	13 / 425	344				
Initials:	·Az					
		Saminla Bassint Ch	a a delia e			
	•	Sample Receipt Ch	ieckist			
1. Samples on ice?			Blue	Water	No	
2. Shipping container in	good condition?		(ES)	No	None	
3. Custody seals intact of	on shipping container (d	cooler) and bottles?	(Yes)	No	, N/A	
4. Chain of Custody pres	sent?		Yes	No		<u> </u>
5. Sample instructions c	complete on chain of cu	stody?	Yes	No		
6. Any missing / extra sa	amples?		Yes	(No)		
7. Chain of custody sign	ed when relinquished /	received?	(Yes)	No		
8. Chain of custody agre	es with sample label(s))?	(Yes)	No		
9. Container labels legib	ile and intact?		(Yes)	. No		<u> </u>
10. Sample matrix / prop	erties agree with chain	of custody?	'Yes'	No .		
11. Samples in proper co	ontainer / bottle?	*	(res)	No		
12. Samples property pr	eserved?	**************************************	Yes	. No	N/A	
13. Sample container int	lact?	•	(Yes)	No		
14. Sufficient sample am	nount for indicated test	(s)?	(Yes)	No		
15. All samples received	l within sufficient hold t	time?	Yes	No		
16. Subcontract of same	ole(s)?		(Ve)	No	NA	Kenic-Haus
17. VOC sample have ze	ro head space?		(Yes)	No	N/A	
18. Cooler 1 No.	Cooler 2 No.	Cooler 3 No.	Cooler 4 No).	Cooler 5 No	·-
lbs /. \ °C	lbs °	C lbs	°C lbs	°င	lbs	°c
	Non	conformance Doc	umentation			
Contact:				Duite (Times		
	Contacted i	by:	•	Date/ lime:_		
Regarding:						
Corrective Action Taken	1:					
Taribaria Managari Turker	••					
						
		· · · · · · · · · · · · · · · · · · ·		<u></u>		
Check all that apply:		begun shortly after san		out of temper	rature	

□Initial and Backup Temperature confirm out of temperature conditions

□Client understands and would like to proceed with analysis

Analytical Report 425344

for Yates Petroleum Corporation

Project Manager: Jeremy Haass
Allison CQ Federal
30-015-23211
17-AUG-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046):

Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tanpa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Certificate of Analysis Summary 425344

Yates Petroleum Corporation, Artesia, NM

Project Name: Allison CQ Federal

Date Received in Lab: Tue Aug-09-11 10:15 am

Report Date: 17-AUG-11

Contact: Jeremy Haass Project Location: Eddy

Project Id: 30-015-23211

								Project Manager:	Brent Barron II	
	Lab 1d:	425344-00)]	425344-00)2	425344-(K				
tout win Dansantal	Field Id:	Comp-1:	กั	Comp'-2	0:	Comp-3.	o ,			
Analysis Requested	Depth:	1-1 11:		2-2 A		3-3, ft				
	Matrix:	SOIL		SOIL		SOIL				
	Sampled:	Aug-04-11 1	2:00	Aug-04-11 1	2.28	Aug-04-11 1	3:00			
Inorganic Anions by EPA 300/300.1	Extracted:	Aug-14-11 1	5:05	Aug-14-11 1	5:23	Aug-14-11 I	5:41			
SUB: E871002	Analyzed:	Aug-14-11 1	5.05	Aug-14-11 I	5:23	Aug-14-11 1	5.41			
	Units/RL:	mg/kg	RĮ.	mg/kg	RL	mg/kg	RL			
Chloride		4400	5.35	4400	5.27	- 2640 -	5 22			
Percent Moisture	Extracted:									
	Analyzed:	Aug-09-11 1	5:35	Aug-09-11 I	5:35	Aug-09-11 1	5:35			
	Units/RL:	%	RĹ	0; 70	RL.	%	RL.			
Percent Moisture		6.47	1 00	5.13	1.00	4.15	1 00			and the second s

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. AENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is lamited to the amount involced for this work order unless otherwise agreed to in writing

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron II Odessa Laboratory Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample
- E. The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J. The target analyte was positively identified below the quantiation limit and above the detection limit,
- U Analyte was not detected.
- L. The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL. Method Detection Limit

NC Non-Calculable

+ Outside NENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

Fax (281) 240-4200 4143 Greenbriar Dr. Stafford, Tx 77477 (281) 240-4280 (214) 902 0300 970) Harry Hines Blvd., Dallas, TX 75220 (214) 351-9139 5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 509-3335 (813) 620-2006 (\$13) 620-2933 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St. Miami Lakes, Ft. 33014 (305) \$23-8500 (305) 823-8555 12600 West F20 East, Odessa, TX 79765 (432) 563-1300 (432) 563-1713 (770) 449-8800 6017 Financial Drive, Norcross, GA 30071 (776) 449-5477 3725 E. Atlanta Ave. Phoenix, AZ 85040 (6012) 437-0330

Page 10 of 11

XENCO-Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Jeremy Haass														-	Pro	oject	Nac	ne.	All	iso	n C	Q:Q	Fe	de	ral		-			
	Company Name	Yates Petroleum Corporat	ion													_		Pr	ojec	t#: ˌ	30-	015	-232	211								
	Company Address:	105 South 4th Street														_	F	roje	ct L	oc:	Edd	у										
	Citý/State/Zip:	Artesia, NM -88210														_			PC)#: _.	103	-263	6									
	Telephone No:	575-748-4311				Fax No:	٠									- R	epor	l Fo	mat	:	x	Star	ıdard	i	[<u></u>	TRR	₹P	[Jи	PDE	s
	Sampler Signature	J 1/11/3	<u>. </u>	<u> </u>		e-mail:		j	ha	ass	<u>:@</u>	<u>yat</u>	est	etro	oleu	ım.	com	_						1								7
(lab use	only)																				10		Ana	1,26	e Fo	Ϊ	Т	_	\top	Т	┥.	
ORDEF	x#.425343	1475344							Pr	osen	vation	8.#	of Co	อกไอโกด	s S	M:	atrix	182 183		\neg	T 01		as	+	+	-	ĺ				18, 72 hz	
LAB # (lab use only)	FIE	LD CODE	Beginning Depth	Ending Depth	Date Sampled	Time Sampied	Field Futered	Fotal #, of Containers	Ice	HNO3	HO	Hyso.	NaOH	NeyS,O3	Other (Specify)		GW & Groundwarer 5=Soy/Soxid RPetton-Polygie Spoot, Orner	TPH, 418 1 8015M 8015B	TPH TX 1005 TX 1006	Cations (Ca., Mg, Na. 4)	Ambris (Cl. SO4, Affialinity)		La Ag Ba Co Or Pt Hg	Volatiles		BTEX 80218/5035 or 9TEX 6200	P.O.	и О.Я.М	Chlorides		RUSH TAT (Pre-Schedule) 24, 4	Standard TAT
01	Co	omp-1.0	1ft	1ft	8/4/2011	12:00pm			x								s	х					I	I		х			х	I		×
02	Co	omp-2.0	2ft	2ft	8/4/2011	12:28pm			x.			\perp					s_	x								x			х	\perp		×
03	Co	omp-3 0	3ft	3ft	8/4/2011	1 00pm			x	\perp		\perp	1		Ĺ	_	s	X						_	_	x		_	Х		L	×
										_	_	\bot			\perp			_				_	_	\perp	\perp	\perp	_	\perp	_		1	
			<u> </u>	<u> </u>					4	4		4	_		$oldsymbol{oldsymbol{\perp}}$	<u> </u>				\perp		4	\bot	\perp	\downarrow	\downarrow	\bot	\bot	\bot	\bot	\bot	_
]	<u> </u>				\Box	\perp	\perp	\perp	\bot	1	\perp	_	_				_	\perp	_	_	_ _	\perp	\downarrow	\perp	\bot	_		_	L
			<u> </u>	<u> </u>					\perp	\perp	\perp	\perp	1		上	_				1		_[_	_	\perp	_		_		_	_	L
			ļ	<u> </u>					_	\downarrow		_	1		↓_	_					_	4	\bot	\downarrow	\downarrow	_	\downarrow	_	\dashv	\perp	_	L
				<u> </u>				ot	4	_		1	_ _		ــــــــــــــــــــــــــــــــــــــ			_		\perp	_	\downarrow	4	1	_	4	\bot	_		\perp	Ŀ	
		, , , , , , , , , , , , , , , , , , ,		<u> </u>	<u> </u>			\sqcup	\perp	4	_	\bot	4		<u> </u>					_	_	_	4	1	1	_	_	_	4	\perp		
			<u> </u>					1	\downarrow	4	_	4	- -	4	1_	_		_			_		 -	+	1	4	\dashv	_	+		┦—	_
			ļ	<u> </u>					\dashv	4	+	4	-		┼	 		L	\sqcup	_		4	\dashv	4	4	\dashv	_	4	- -	+	-	
	PLEASE P	UT CHLORIDES	ļ	ļ				1	-	-	4	\perp	- -	\bot	╀	<u> </u>					4	_	4	4	+	4	-	+	4	_	4	H
C		RATE REPORT	- 14 0	1	1			بل	_	1				71-		<u> </u>			\sqcup	121			<u> </u>			ユ	ᆚ	_				Щ
apecial l	Instructions:	TPH: 8015B, BT	EX: 8	U.21B (a Uniorides.	mease snow	<i>,</i> ロ l	EX.I	est	IIIS	as n	ng/l	٠y.	ınar	ік ус	JU.							Com taine						(X	\Q	N	
Darling da	1	Date	T 77	me	Received by									1	Da	it.	-	Time	_				of He ontain			e?			X	3	N	
Relinquis	nuo oy;	08/08/11	1	5 PM	LCCCGIVGO DV										U.		1	.,,,,,		Cusi	tody	sea	ls on	CON	ntain		\$}		G	2	2 20 2	ļ
Relinguis	hed by.	Date	Ti	imo	Received by:			·_								ate		Time	•	Sam	ıple by S	Han amol	Is on d Dei ler/Cli er?_	liver lient	red Rop	5. 7	DHL ,	F	(X) X X X X X X X X X X X X X X X X X X) ا ا	N N ne Si	lar
Relinquisi	Fedex	Date	Ťi	me	Received by EL	or:	E	lo	22	27				ŝ	3 9	ito -	100	Time	5	Tem	pera	dure).7 ().7 ().0pc	514 on R	シラ lecei	ipt:			j. '	١	•c	

XENCO Laboratories

Adanta, Soca Ratin, Corpus Christ, Dallas Houston, Miami, Colessa, Philadelphia Phoenix, San Antonio, Tampa Document Title: Sample Receipt Checklist

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client	Yate	5	Retroleus	ń							
Date/Time:		05 6	1-11 10:1	5							
Lab ID#:	43	53L	13 / 4	35	344						
Initials:			Æ		44.4						
				S	ample Receipt Cl	hecki	ist				
1. Samples	on ice	?					Blue	(Wate)	No		
2. Shipping	conta	iner in	good condition?				(es	No	None .		
3. Custody	seals i	intact o	n shipping contai	er (c	ooler) and bottles?	1	(Yes)	No	N/A	1	
4. Chain of	Custo	dy pres	ent?			!	Yes	No			
5. Sample	instruc	tions c	omplete on chain	of cus	tody?		(Yée)	No_			
6. Any mis	sing / e	xtra sa	mples?				Yes	No>		<u> </u>	
7. Chain of	custo	ty sign	ed when relinquis	red / r	eceived?		(Yes)	No .		 	
8. Chain of	custo	dy agre	es with sample lat	el(s)?	· · · · · · · · · · · · · · · · · · ·		(Yes)	No			
9. Contain	er label	s legib	e and intact?				Yes)	No	<u> </u>		
10. Sample	matrix	(prop	erties agree with o	hain d	of custody?		7€s')	No :			<u> </u>
11. Sample	es in pr	орег со	ntainer / bottle?				(Yes)	No	<u> </u>	1	
12. Sample	≋ prop	erty pn	served?				(Yes)	No	N/A	 	
13. Sample	e conta	iner int	act?				(Yes)	No	<u> </u>	-	
14. Suffick	ent san	iple an	ount for indicated	test(s	i)?		(Yes)	No		1	
15. All san	nples re	ceived	within sufficient l	old ti	me?		(Yes)	No		<u> </u>	
16. Subcor	ntract o	f same	le(s)?				Yes	No	N/A	Xenco.	-tur
17. VOC sa	ample h	ave ze	ro head space?		,		(Yes)	No	N/A	<u> </u>	
18. Cooler	1 No.		Cooler 2 No.		Cooler 3 No.		Cooler 4 No). 	Cooler 5 N	o.	
	bs .) °c	lbs	್ರಿ	lbs	ာိင	lbs	°c	lb.	s	°c
				None	conformance Doc	ume	ntation				
Contact:					y:			Date/Time:		•	
				, D	7 *			2022 (2010)			
Regarding	r:										
			·							·	
Corrective	Action	Taken	· :							•	
			** /			·····			······································		
											
					· · · · · · · · · · · · · · · · · · ·						
							······································				
Check all t	that app	ply: [egun shortly after san able by NELAC 5.5.8.3			out of temper	rature		

□Initial and Backup Temperature confirm out of temperature conditions

□Client understands and would like to proceed with analysis