March 29, 2012

Southern Unio

Gas Services

Mr. Edward Hansen L. Lowe New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505 RECEIVI

Re: 2011 Annual Groundwater Monitoring Reports Southern Union Gas Services, Ltd Boyd Compressor Station (GW-269) House Compressor Station (GW-243) Lea County, New Mexico

Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, NM 87505

Mr. Hansen,

Enclosed are the 2011 Annual Groundwater Monitoring Reports for the following

Boyd Compressor Station (GW-269) Unit Letter "J", Section 26, Township 22 South, Range 37 East, NMPM

House Compressor Station (GW-243) Unit Letter "O", Section 11, Township 20 South, Township 38 East, NMPM

I have personally reviewed these documents, prepared by Basin Environmental Services Technologies, LLC, on behalf of Southern Union Gas Services, and believe the facts are true and accurate to the best of my knowledge and ability. If you have any questions or comments, please contact me at 432-940-5147 or by email at rose.slade@sug.com

Respectfully submitted,

) OSe 7 Rose L. Slade

EHS Compliance Specialist Southern Union Gas Services, Ltd rose.slade@sug.com

Cc: Geoffrey R. Leking, NMOCD Hobbs District Office SUG Environmental Files Enclosures

801 South Loop 464 Monahans, Texas 79756

432.943.1100 Fax: 432.943.1101

Basin Environmental Service Technologies, LLC

3100 Plains Highway P. O. Box 301 Lovington, New Mexico 88260 bjarguijo@basinenv.com Office: (575) 396-2378 Fax: (575) 396-1429

RI

2011 **ANNUAL MONITORING REPORT**

2 2012 APR

Oil Conservation Division 1220 S. St. Francis Drive

SOUTHERN UNION GAS SERVICES HOUSE COMPRESSOR STATION Lea County, New Mexico "J" (NW/SE), Section 11, Township 20 South, Range 38 East Santa Fe, NM 87505 New Mexico Discharge Plan & Permit #GW-243

Prepared For:

Southern Union Gas Services 801 S. Loop 464 Monahans, TX 79756

Prepared By:

Basin Environmental Service Technologies, LLC 3100 Plains Highway Lovington, New Mexico 88260

March 2012

Ben J. Arguijo

Project Manager

TABLE OF CONTENTS

INTRODUCTION	1
SITE DESCRIPTION AND BACKGROUND INFORMATION	1
FIELD ACTIVITIES	3
LABORATORY RESULTS	3
SUMMARY	4
ANTICIPATED ACTIONS	5
LIMITATIONS	5
DISTRIBUTION	6

FIGURES

Figure 1 – Site Location Map

Figure 2A – Groundwater Elevation Map – 3Q2011 Figure 2B – Groundwater Elevation Map – 4Q2011

Figure 3A – Groundwater Concentration Map – 3Q2011 Figure 3B – Groundwater Concentration Map – 4Q2011

TABLES

Table 1 – 2011 Groundwater Elevation Data

Table 2 - 2011 Concentrations of Benzene, BTEX & Chloride in Groundwater

Table 3 - Concentrations of RCRA & NMWQCC Metals in Groundwater

Table 4 - Concentrations of Volatile Organic Compounds Groundwater

Table 5 - Concentrations of Semi-Volatile Compounds in Groundwater

APPENDICES

Appendix A – Laboratory Analytical Reports

INTRODUCTION

Basin Environmental Service Technologies, LLC (Basin), on behalf of Southern Union Gas Services (Southern Union), is pleased to submit this *Annual Monitoring Report* in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an Annual Monitoring Report by April 1st of each year. This report is intended to be viewed as a complete document with text, figures, tables, and appendices. This report presents the results of the quarterly groundwater monitoring events conducted in calendar year 2011 only.

Groundwater monitoring was conducted during the third and fourth quarters of 2011 to assess the levels and extent of dissolved phase constituents and Phase-Separated Hydrocarbon (PSH). The groundwater monitoring events consisted of measuring static water levels in the monitor wells, checking for the presence of PSH, and purging and sampling of each well exhibiting sufficient recharge.

SITE DESCRIPTION AND BACKGROUND INFORMATION

The legal description of the House Compressor Station site is Unit Letter "J" (NW/SE), Section 11, Township 20 South, Range 38 East in Lea County, New Mexico. The facility is covered by a New Mexico Discharge Plan & Permit (GW-243). For reference, a "Site Location Map" is provided as Figure 1.

On July 14, 2008, the New Mexico Oil Conservation Division (NMOCD) conducted a facilities inspection at the House Compressor Station. The facilities inspection was in response to a New Mexico Discharge Plan/Permit renewal application submitted by Southern Union. In correspondence dated September 10, 2008, the NMOCD requested a timeline for removal of two (2) aboveground storage tanks and a below grade sump tank located on the northwest and north sides of the House Compressor Station, respectively.

On October 7, 2008, the two (2) aboveground storage tanks and the below grade sump tank were removed. On October 9, 2008, soil samples were collected from beneath the tanks. The analytical results indentified areas of hydrocarbon impact beneath the aboveground tanks

On November 17, 2008, based on laboratory analytical results, three (3) soil borings (SB-1 through SB-3) were advance at the House Compressor Station site. Soil boring SB-1 was located beneath the southernmost storage tank and was advanced to a total depth of approximately thirty-five feet (35') below ground surface (bgs). Soil samples were collected at selected drilling intervals and submitted to the laboratory for analysis. Laboratory analytical results identified hydrocarbon impact throughout the soil column.

Soil boring SB-2 was advanced northeast of the aboveground storage tanks and south of a decommissioned Copper Compressor. The soil boring was advanced to a total depth of approximately twenty feet (20') bgs. Soil samples were collected at selected drilling intervals and submitted to the laboratory for analysis. Laboratory analytical results indicated the soil was non-impacted.

1

Soil boring SB-3 was advanced south of the southernmost aboveground storage tank. The soil boring was advanced to a depth of approximately fifteen feet (15') bgs. Soil samples were collected at selected drilling intervals and submitted to the laboratory for analysis. Laboratory analytical results indicated the soil was non-impacted. Based on the results of the soil investigation, the installation of monitor wells was warranted.

Following the advancement of soil boring SB-1, a "raw" groundwater sample was collected from the open uncased borehole and submitted to the laboratory for analysis. Laboratory analytical results indicated BTEX constituent concentrations were present in the sample at levels less than NMOCD and New Mexico Water Quality Control Commission (NMWQCC) regulatory levels. The analytical results further indicated elevated levels of chloride were present in the groundwater.

On November 17 and 18, 2008, three (3) monitor wells (MW-1, MW-2, and MW-3) were installed at the House Compressor Station. Monitor well MW-1 was installed northwest of the aboveground storage tanks to a total depth of approximately forty feet (40') bgs. Laboratory analytical results of submitted soil samples indicated soils were non-impacted.

On November 19, 2008, an initial groundwater sample was collected from monitor well MW-1 and submitted to the laboratory for analysis. Laboratory analytical results indicated groundwater impact, but less than NMOCD/NMWQCC regulatory levels.

Monitor well MW-2 was installed south of the aboveground storage tanks to a total depth of approximately forty feet (40') bgs. Laboratory analytical results of submitted soil samples indicated soils were non-impacted.

On November 19, 2008, an initial groundwater sample was collected from monitor well MW-2 and submitted to the laboratory for analysis. Laboratory analytical results indicated chloride groundwater impact.

Monitor well MW-3 was installed southeast of the aboveground storage tanks to a total depth of approximately forty feet (40') bgs. Laboratory analytical results of submitted soil samples indicated soils were non-impacted.

On November 19, 2008, an initial groundwater sample was collected from monitor well MW-3 and submitted to the laboratory for analysis. Laboratory analytical results indicated chloride groundwater impact.

Based on the analytical results of the initial groundwater sampling event, the monitor wells were placed on a quarterly monitoring and sampling schedule.

On November 20, 2008, decommissioned pipelines were removed from the impacted area identified during the soil investigation. On November 26, 2008, excavation of impacted soil identified during the soil investigation began and continued until March 23, 2009. Laboratory analytical results of soil samples collected from the floor and sidewalls of the excavation

2

indicated contaminant concentrations exceeding NMOCD/NMWQCC regulatory level remained in the floor and east sidewall of the excavation.

Currently, there are three (3) groundwater monitor wells (MW-1, MW-2, and MW-3) on-site. Monitor wells MW-1, MW-2, and MW-3 are gauged and sampled on a quarterly schedule.

FIELD ACTIVITIES

The on-site monitor wells were gauged and sampled on September 28 (3Q2011) and December 1, 2011 (4Q2011). During these quarterly sampling events, the monitoring wells were purged of a minimum of three (3) well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos pump. Groundwater was allowed to recharge, and samples were obtained using disposable Teflon bailers. Water samples were stored in clean, glass or plastic containers provided by the laboratory and placed on ice in the field. Purge water was collected in a trailer-mounted polystyrene tank and disposed of at an NMOCD-approved disposal facility near Monument, New Mexico.

Locations of the groundwater monitoring wells and the inferred groundwater elevations were constructed from the measurements collected during the quarterly monitoring events and are depicted in Figures 2A and 2B. Groundwater elevation data is provided as Table 1. An inferred groundwater gradient map cannot be constructed from the observed groundwater elevation data derived from the three (3) on-site monitor wells. An obstruction approximately twenty-two feet (22') bgs in MW-3 precluded measurement of the groundwater elevation in the monitor well. An inferred groundwater gradient map requires elevation data from a minimum of three (3) monitor wells to calculate an accurate groundwater gradient direction and magnitude. Review of New Mexico State Engineers Office (NMOSE) records indicate a general southeast groundwater gradient in this area of Lea County, New Mexico. The corrected groundwater elevations ranged from 3,537.45 to 3,537.78 feet above mean sea level, in monitor well MW-2 and MW-1, respectively, on September 28, 2011.

No PSH was detected in any of the on-site monitor wells during the 2011 reporting period.

LABORATORY RESULTS

Groundwater samples collected from the monitor wells during the quarterly sampling events (3Q2011 and 4Q2011) were delivered to Xenco Laboratories in Odessa, Texas, for determination of chloride, and/or benzene, toluene, ethylbenzene, and total xylenes (BTEX) constituent concentrations by EPA Methods E300 and SW846-8021b, respectively. A summary of benzene, BTEX, and chloride concentrations is presented in Table 2, "2011 Concentrations of Benzene, BTEX & Chloride in Groundwater". Laboratory analytical reports are provided as Appendix A. "Groundwater Concentration" maps are provided as Figures 3A and 3B.

Laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in section 20.6.2.3103 of the New Mexico Administrative Code (NMAC).

Monitor well MW-1

Monitor well MW-1 is sampled on a quarterly schedule. Laboratory analytical results indicated chloride concentrations ranged from 287 mg/L in 3Q2011 to 312 mg/L in 4Q2011. Chloride concentrations exceeded NMOCD regulatory standards in all submitted groundwater samples. Benzene, toluene, ethylbenzene, and total xylene concentrations were both less than the appropriate laboratory method detection limit (MDL) and less than NMOCD regulatory standards in all submitted groundwater samples.

Baseline sampling of monitor well MW-1 was conducted on September 28, 2011. Laboratory analytical results from the baseline monitoring event are summarized in Tables 3 through 5.

Monitor well MW-2

Monitor well MW-2 is sampled on a quarterly schedule. Laboratory analytical results indicated chloride concentrations ranged from 247 mg/L in 4Q2011 to 263 mg/L in 3Q2011. Chloride concentrations exceeded NMOCD regulatory standards during 3Q2011. Benzene, toluene, ethylbenzene, and total xylene concentrations were both less than the appropriate laboratory MDL and less than NMOCD regulatory standards in all submitted groundwater samples.

Baseline sampling of monitor well MW-2 was conducted on September 28, 2011. Laboratory analytical results from the baseline monitoring event are summarized in Tables 3 through 5.

Monitor well MW-3

An obstruction approximately twenty-feet feet (22') bgs in monitor well MW-3 precluded sample collection during 3Q2011 and 4Q2011.

SUMMARY

This report presents the results of monitoring activities for the 2011 monitoring period. Currently, there are three (3) groundwater monitoring wells (MW-1, MW-2, and MW-3) on-site. Monitor well MW-1 and MW-2 are sampled on a quarterly basis. Monitor well MW-3 is obstructed and was unable to be sampled during the 2011 reporting period.

Review of NMOSE records indicate a general groundwater gradient to the southeast.

No PSH was detected in any of the on-site monitor wells during the 2011 reporting period.

Laboratory analytical results indicated chloride concentrations exceeded NMOCD regulatory standards during 3Q2011 (MW-1 and MW-2) and 4Q2011 (MW-1). Benzene, toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards in all submitted groundwater samples.

ANTICIPATED ACTIONS

Monitor wells MW-1 and MW-2 will be monitored and sampled quarterly. Monitor well MW-3 will be inspected by an NMOSE-certified well driller, and quarterly monitoring and sampling of the monitor well will commence after any required maintenance or repairs have been completed.

Southern Union will conduct an investigation to identify potential 3rd Party offsite contributors to the chloride plume. The analytical results of groundwater samples collected from the on-site monitor wells appear to indicate a chloride concentration which exceeds the chloride concentration of the release site vadose zone soil samples. In addition, the analytical results indicate the upgradient monitor well exhibits chloride concentrations in excess of the down gradient monitor well as the soil chloride concentrations. Southern Union will submit the results of the investigation to the NMOCD if potential contributors are identified.

A 2012 Annual Monitoring Report will be submitted to the NMOCD by April 1, 2013.

LIMITATIONS

Basin Environmental Service Technologies, LLC, has prepared this *Annual Monitoring Report* to the best of its ability. No other warranty, expressed or implied, is made or intended. Basin has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Basin has not conducted an independent examination of the facts contained in referenced materials and statements. Basin has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Basin has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Southern Union Gas Services. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC, and/or Southern Union Gas Services.

5

DISTRIBUTION

Copy 1: Edward J. Hansen New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 edwardj.hansen@state.nm.us

Copy 2:

Geoffrey Leking New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (District 1) 1625 French Drive Hobbs, NM 88240 GeoffreyR.Leking@state.nm.us

Copy 3: Rose Slade and Curt Stanley Southern Union Gas Services 801 S. Loop 464 Monahans, Texas 79756 rose.slade@sug.com

Copy 4:

Basin Environmental Service Technologies, LLC P.O. Box 301 Lovington, New Mexico 88260

6

Figures

Tables

TABLE 1

GROUNDWATER ELEVATION DATA

SOUTHERN UNION GAS SERVICES HOUSE COMPRESSOR STATION LEA COUNTY, NEW MEXICO

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	TOTAL DEPTH	CORRECTED GROUNDWATER ELEVATION
MW-1	9/28/2011	3,570.93	-	33.15	-	41.68	3,537.78
	12/1/2011	3,570.93		33.17	-	41.68	3,537.76
				T Barris E Sport			
MW-2	9/28/2011	3,570.30	-	32.85	-	41.48	3,537.45
	12/1/2011	3,570.30	-	32.85	-	41.48	3,537.45
MW-3	9/28/2011	3,569.25			Obstruct	od.	
	12/1/2011	3,569.25			Obstructe	a	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second second	and the second	and an a start		in the second second		به المرجوع في المح

TABLE 2

2011 CONCENTRATIONS OF BENZENE, BTEX & CHLORIDE IN GROUNDWATER

SOUTHERN UNION GAS SERVICES HOUSE COMPRESSOR STATION LEA COUNTY, NEW MEXICO

				METHC	DDS: EPA S	W 846-8021b			E 300
SAMPLE	SAMPLE	BENZENE	TOLUENE	ЕТНҮС-	M,P-	O-XYLENES	TOTAL	TOTAL	CHLORIDE
LUCATION	DAIE	(mg/L)	(mg/L)	BENZENE (mg/L)	XYLENES (mg/L)	(mg/L)	XYLENE (mg/L)	BTEX (mg/L)	(mg/L)
h-1	9/28/2011	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.010	<0.010	287
and the second	12/1/2011	<0=0010	<0.0020	 <0.0010 	~ <0.0020		<0.0020	<0:0020	312
	Cast of the	A START		K. S. S. S. S.	and the second secon				
MW-2	9/28/2011	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.010	<0.010	263
	12/1/2011	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020	247
MW-3	9/28/2011					tetri otod			
	12/1/2011				õ	nered	•		
		うていまで、あしまう		Casta and					
NMOCD CRITERI	B	0.01	0.75	0.75	TOTAL XY	LENES 0.62			250

TABLE 3

CONCENTRATIONS OF RCRA & NMWQCC METALS IN GROUNDWATER

SOUTHERN UNION GAS SERVICES

HOUSE COMPRESSOR STATION

LEA COUNTY, NEW MEXICO

All water concentrations are reported in mg/L

				Ë	PA SW846	-6020A, E	PA 7470	A		
SAMPLE LOCATION	SAMPLE DATE	munimulA	Boron	tledoD	Copper	lron	อรอนธุญกรพ	munəbdyloM	Nickel	Sinc
MW-1	9/28/2011	6.13	0.387	0.0240	0.0375	15.8	1.40	<0.0020	0.0365	0.0384
MW-2	9/28/2011	15.5	0.364	0.0301	0.0808	23.5	6.75	0.00213	0.221	0.0797
MW-3	9/28/2011				0	bstructed				
Maximum Conta from NM WQCC water standards 101.UU and 3-10	minant Levels : Drinking Sections 1- 33.A.	J\gm 0.ð	J\₽m ∂7.0	ე/ɓ ш <u>\$</u> 0∙0	J/ፀm 0.t	J/ይm 0. t	J\0m S.0	J\քm 0.1	J\gm 2.0	. J\gm 01

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER SOUTHERN UNION GAS SERVICES HOUSE COMPRESSOR STATION LEA COUNTY, NEW MEXICO

Table 4

All water concentrations are in mg/L	

Chloroethane	<0.01	<0.01		-
Chlorobenzene	<0.005	<0.005		
Carbon Tetrachloride	<0.005	<0.005		_
Carbon Disulfide	<0.05	<0.05		-
tert-Butylbenzene	<0.005	<0.005		-
sec-Butylbenzene	<0.005	<0.005		-
n-Butyibenzene	<0.005	<0.005		-
Batm'	<0.005	<0.005	q	-
2-Butanone	<0.05	<0.05	bstructe	-
Bromomethane	<0.005	<0.005	0	-
Bromoform	<0.005	<0.005		-
Bromodichloromethane	<0.005	<0.005		-
Bromochloromethane	<0.005	<0.005		-
Bromobenzene	<0.005	<0.005		•
əuəzuəg	<0.005	<0.005		-Մքա ԻՕ.Օ
Acrylonitrile	<0.05	<0.05		-
enotecA	<0.1	<0.1		-
Date Sampled	9/28/2011	9/28/2011	9/28/2011	inant Levels from 3 water standards JU and 3-103.A.
Sample Location	MW-1.	MW-2	MW-3	Maximum Contam NMWQCC Drinking Sections 1-101.1

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER SOUTHERN UNION GAS SERVICES HOUSE COMPRESSOR STATION LEA COUNTY, NEW MEXICO

Table 4

All water concentrations are in mg/L

<0.005	<0.005		J\ըm1.0
<0.005	<0.005		၂/Ցա ՇՕՕ.Օ
<0.005	<0.005 <0.005		.0.0 1\քm
<0.005	<0.005		പ\ ളന. 0
<0.005	<0.005		-
<0.005	<0.005		-
<0.005	<0.005		-
<0.005	<0.005		-
<0.005	<0.005	ucted	-
<0.005	<0.005	Obstru	ר/8m 1000.0
<0.005	<0.005		-
<0.005	<0.005		
<0.005	<0.005		-
<0.005	<0.005		-
<0.005	<0.005		-
<0.01	<0.01		. =.
<0.005	<0.005		ղ/Ցալ․Օ
<0.005	<0.005		-
9/28/2011	9/28/2011	9/28/2011	inant Levels from g water standards UU and 3-103.A.
MW-1	MW-2	MW-3	Maximum Contar. NMWQCC Drinkin Sections 1-101.1
	WW-1 9/28/2011 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <	MW-1 9/28/2011 <0.005	MW-1 9/28/2011 <0.005

Page 2 of 4

Table 4 CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER SOUTHERN UNION GAS SERVICES HOUSE COMPRESSOR STATION LEA COUNTY, NEW MEXICO

LEA COUNTY, NEW MEXICO All water concentrations are in mg/L

1,1,1,2-Tetrachloroethane	<0.005	<0.005		-
Styrene	<0.005	<0.005		-
n-Propylbenzene	<0.005	<0.005		_
ənəlshinqsV	<0.01	<0.01		J\ըm £0.0
4-Methyl-2-pentanone (MIBK)	<0.05	<0.05		-
Methylene chloride	0.00543	0.00544		J\gmt.0
jsopropylbenzene	<0.005	<0.005		-
2-Hexanone	<0.05	<0.05	p	-
Hexachlorobutadiene	<0.005	<0.005	Obstruct∈	-
ensznsdiγή∃	<0.005	<0.005		-Մքm ՇՆ.Օ
trans-1,3-Dichloropropene	<0.005	<0.005		-
eis-1,3-Dichloropropene	<0.005	<0.005		-
1,1-Dichloropropane	<0.005 <	<0.005		•
2,2-Dichloropropane	<0.005	<0.005		-
1,3-Dichloropropane	<0.005	<0.005		-
1,2-Dichloropropane	<0.005	<0.005		-
trans-1,2-Dichloroethene	<0.005 <0.005	<0.005		
Date Sampled	9/28/2011	9/28/2011	9/28/2011	ninant Levels from g water standards UU and 3-103.A.
Sample Location	1-WW	MW-2	WW-3	Maximum Contar NMWQCC Drinkin Sections 1-101.

Page 3 of 4

Table 4

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER SOUTHERN UNION GAS SERVICES HOUSE COMPRESSOR STATION LEA COUNTY, NEW MEXICO

All water concentrations are in mg/L

Vinyl Chloride	<0.0020	<0.0020		J\gm †00.0
ənəlyX-q,m	<0.010	<0.010		-Մ <u>გ</u> m 28.0
o-Xylene	<0.005	<0.005		Total Xylene
ənəznədlydtəminT-2,5,1	<0.005	<0.005		-
ənəznədlyntəminT-4,2,1	<0.005	<0.005		-
1,2,3-Trichloropropane	<0.005	<0.005		-
Trichlorofluoromethane	<0.005	<0.005		-
Trichloroethene (TCE)	<0.005	<0.005	structed	ן א ג <u>0.</u> 0 ל
9nst13eoroltoinT-Ω,1,1	<0.005	<0.005	б	-
9nst13eorolficiT-1,1,1,1	<0.005	<0.005		-Մ <u>Ե</u> Ր 90.0
anəznədoroldərin7-4,2,1	6600.0>	<0.0099		-
1,2,3-Trichlorobenzene	6600.0>	<0.0099		-
ənəuloT	40.005	<0.005		၂/ ɓա ՏՆ.0
Tetrachloroethene (PCE)	<0.005	<0.005		•
anartechloroethane	<0.005	<0.005		-Մքm 20.0
Date Sampled	9/28/2011	9/28/2011	9/28/2011	inant Levels from 3 water standards JU and 3-103.A.
Sample Location	MW-1	· MW-2	MW-3	Maximum Contam NMWQCC Drinking Sections 1-101.1

Page 4 of 4

Page 1 of 1

TABLE 5

CONCENTRATIONS OF SEMI-VOLATILE COMPOUNDS IN GROUNDWATER SOUTHERN UNION GAS SERVICES

HOUSE COMPRESSOR STATION LEA COUNTY, NEW MEXICO

EPA SW846-8270C, 3510 All water concentrations are reported in mg/L

	_	_	_	
Pyrene	<0.005	<0.005		いたい 読 部 はない
Phenanthrenet	<0.005	<0.005		
ənəlertiriqeN	<0.005	<0.005		1. 2. 2. A. W. Pr
ənəıyq(bɔ-£,2,t]onəbni	<0.005	<0.005		
Fluorene	<0.005	<u>≺0.005</u>		
Fluoranthene	<0.005	<0.005		1. A. A. A.
Dibenz(a,h]anthracene	<0.005	<0.005		1. A
Chrysene	<0.005	<0.005	cted ·	· · · · · · · · · · · · · · · · · · ·
Benzo[k]fluoranthene	<0.005	<0.005	Obstru	A The second second
Benzo[g,ħ,i]perylene	<0.005	<0.005		
Benzolbjfluoranthene	<0.005	<0.005		26.9 4 The W
Benzo[a]pyrene	<0.005	<0.005		
Benzo[a]anthracene	<0.005	<0.005		
ənəɔsıttınA	<0.005	<0.005		1. S.
9n9lγเป็กไดธก9⊃A	<0.005	<0.005		
ہ AnshridensکA	<0.005	<0.005		A CONTRACTOR
SAMPLE DATE	9/28/2011	9/28/2011	9/28/2011	
SAMPLE LOCATION	MW-1	MW-2	MW-3	

Appendices

Appendix A

Laboratory Analytical Reports

· · ·

Analytical Report 428605

for

Southern Union Gas Services- Monahans

Project Manager: Rose Slade House Compressor Station

14-OCT-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AAL11), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

14-OCT-11

Project Manager: **Rose Slade Southern Union Gas Services- Monahans** 1507 W. 15th Street Monahans, TX 79756

Reference: XENCO Report No: 428605 House Compressor Station Project Address: Lea County, NM

Rose Slade:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 428605. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 428605 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 428605

Southern Union Gas Services- Monahans, Monahans, TX

House Compressor Station

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-1	W	09-28-11 10:50		428605-001
MW-2	W	09-28-11 10:15		428605-002

CASE NARRATIVE

Client Name: Southern Union Gas Services- Monahans Project Name: House Compressor Station

Project ID: Work Order Number: 428605 Report Date: 14-OCT-11 Date Received: 09/29/2011

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Analytical non nonformances and comments:

Batch: LBA-871619 Anions by E300 E300MI

Batch 871619, Chloride recovered below QC limits in the Matrix Spike. Samples affected are: 428605-001, -002. The Laboratory Control Sample for Chloride is within laboratory Control Limits

CASE NARRATIVE

Client Name: Southern Union Gas Services- Monahans Project Name: House Compressor Station

Project ID: Work Order Number: 428605 Report Date: 14-OCT-11 Date Received: 09/29/2011

Batch: LBA-871684 VOAs by SW-846 8260B SW8260B

Batch 871684, Bromochloromethane RPD was outside QC limits. Samples affected are: 428605-001, -002

SW8260B

Batch 871684, 1,1,1,2-Tetrachloroethane, 1,1,1-Trichloroethane, 1,1-Dichloropropene, 1,2,4-Trimethylbenzene, 1,3,5-Trimethylbenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, 2-Chlorotoluene, Bromochloromethane, Bromodichloromethane, Chloroform, Sec-Butylbenzene, n-Propylbenzene, o-Xylene, p-Cymene (p-Isopropyltoluene), tert-Butylbenzene, trans-1,2dichloroethene recovered above QC limits in the Matrix Spike. Carbon Tetrachloride, Trichlorofluoromethane recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate.

Samples affected are: 428605-001, -002.

The Laboratory Control Sample for Bromodichloromethane, 1,3-Dichlorobenzene, Bromochloromethane, 2-Chlorotoluene, tert-Butylbenzene, 1,4-Dichlorobenzene, Chloroform, 1,3,5-Trimethylbenzene, 1,2,4-Trimethylbenzene, Sec-Butylbenzene, o-Xylene, 1,1,1-Trichloroethane, 1,1,1,2-Tetrachloroethane, trans-1,2-dichloroethene, n-Propylbenzene, p-Cymene (p-Isopropyltoluene), 1,1-Dichloropropene is within laboratory Control Limits

SW8260B

Batch 871684, Carbon Tetrachloride recovered above QC limitsTrichlorofluoromethane recovered above QC limits in the Blank Spike and Duplicate. Samples affected are: 428605-001, -002.

Batch: LBA-872310 ICP-MS Metals by SW 6020A SW6020

Batch 872310, Zinc recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 428605-001, -002. The Laboratory Control Sample for Zinc is within laboratory Control Limits

100000000000000000000000000000000000000	
	-
	.
-	
	.
-	
.	

Contact: Rose Slade

Project Id:

Certificate of Analysis Summary 428605 Southern Union Gas Services- Monahans, Monahans, TX

Project Name: House Compressor Station

Date Received in Lab: Thu Sep-29-11 08:46 am Report Date: 14-OCT-11

roject Location: Lea County, NM							Keport Date	: 14-0CI-11		
						4	roject Manager	: Brent Barron II		
	Lab Id:	428605-001		428605-002						
And Decorded	Field Id:	I-WM		MW-2						
Anarysis Nequesieu	Depth:									
	Matrix:	WATER		WATER						
	Sampled:	Sep-28-11 10:5	s 0	ep-28-11 10:	15					
Anions by E300	Extracted:					_				
	Analyzed:	Oct-04-11 17:4	0 6	ct-04-11 17:	49	<u>.</u>			•	
	Units/RL:	mg/L	RL	mg/L	RL					
Chloride		287	12.5	263	12.5					
ICP-MS Metals by SW 6020A	Extracted:	Oct-06-11 17:0	0	ct-06-11 17:	00					
SUB: E871002	Analyzed:	Oct-13-11 15:3	4	ct-13-11 15:	46					
	Units/RL:	mg/L	RL	mg/L	RL					
Aluminum		6.13 0	0010	15.5	00100					
Boron		0.387 0	0100	0.364	00100					
Cobalt		0.0240 0.0	0500	0.0301 0.	00500					
Copper		0.0375 0.0	0200	0.0808 0.	00200					
Iron		15.8	0.150	23.5	0.150					
Manganese		1.40 0.0	0200	6.75 0	00200			•		1
Molybdenum		0.0 UN	0200	0.00213 0.	00200					
Nickel		, 0.0365 0.0	0500	0.221 0	00500					
Zinc		0.0384 0.0	0300	0.0797 0.	00300					

This analytical report, and the entire data package it represents has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report transcan the best judgment of XENCO Laboratorics. XENCO Laboratorics assumes neceponsibility and makes no warmany to the end use of the data hereby presented. Our liability is limited to the arrount invoiced for this work order unless otherwise agreed to in writing. Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager

· Final 1.000

Page d

Brent Barron II

Ð

0 3	
1	
Wå	
تغيما	

Project Id:

Southern Union Gas Services-Monahans, Monahans, TX Certificate of Analysis Summary 428605 **Project Name: House Compressor Station**

Contact: Rose Slade					Date Received in Lab:	Thu Sep-29-11 08:46 a	m
Project Location: Lea County, NM		•		•••	Report Date:	14-OCT-11	
					Project Manager:	Brent Barron II	
	Lab Id:	428605-001	428605-002				
Analysis Ponnostad	Field Id:	I-WM	MW-2				
noicon hour ciclimit	Depth:	-					
· ·	Matrix:	WATER	WATER				
	Sampled:	Sep-28-11 10:50	Sep-28-11 10:15				
VOAs by SW-846 8260B	Extracted:	Oct-03-11 13:15	Oct-03-11 13:16		1		
SUB: E871002	Analyzed:	Oct-03-11 19:10	Oct-03-11 19:32				
	Units/RL:	mg/L RL	mg/L RL				
1,1,1,2-Tetrachloroethane		ND 0.00500	ND 0.00500				
1,1,1-Trichloroethane		ND 0.00500	ND 0.00500	8		к јј	
1,1,2,2-Tetrachloroethane		ND 0.00500	· ND 0.00500				
1,1,2-Trichloroethane		ND 0.00500	ND 0.00500				
1,1-Dichloroethane		ND 0.00500	ND 0.00500				
1,1-Dichloroethene		ND 0.00500	ND 0.00500				
1,1-Dichloropropene		ND 0.00500	ND 0.00500				
1,2,3-Trichlorobenzene		ND 0.00500	ND 0.00500				
1,2,3-Trichloropropane		ND 0.00500	ND 0.00500				
1,2,4-Trichlorobenzene		ND 0.00500	ND 0.00500				
1,2,4-Trimethylbenzene		ND 0.00500	ND 0.00500				
1,2-Dibromo-3-Chloropropane		ND 0.00500	ND 0.00500				
1,2-Dibromoethane		ND 0.00500	ND 0.00500				
1,2-Dichlorobenzene		ND 0.00500	ND 0.00500				
1,2-Dichloroethane		ND 0.00500	ND 0.00500	-			
1,2-Dichloropropane		ND 0.00500	ND 0.00500				
1,3,5-Trimethylbenzene		ND 0.00500	ND 0.00500				
1,3-Dichlorobenzene		ND 0.00500	ND 0.00500				
1,3-Dichloropropane		ND 0.00500	ND 0.00500				
1,4-Dichlorobenzene		ND 0.00500	ND 0.00500				
2,2-Dichloropropane		ND 0.00500	ND 0.00500				
2-Chlorotoluene		ND 0.00500	ND 0.00500			-	
4-Chlorotoluene		ND 0.00500	ND 0.00500		-		
Benzene		ND 0.00500	ND 0.00500				

. :

This smalytical report, and the emite data package it represents, has been made for your exclusive and confidential use. The interpretations and revults expressed involution the analytical report represent the best juggment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Bromobenzene

0.00500

g

ND 0.00500

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Final 1.000

Page 7 of 26

Brent Barron II

Odessa Laboratory Manager

	n
0	9
V	ō
23	2
W	ğ
	9

Contact: Rose Slade

Project Id:

Certificate of Analysis Summary 428605 Southern Union Gas Services- Monahans, Monahans, TX Project Name: House Compressor Station

Date Received in Lab: Thu Sep-29-11 08:46 am

Project Location: Lea County, NM				ď.	oject Manager: Br	rent Barron II	
	:pI qe7	428605-001	428605-002				
Analisis Damadad	Field Id:	I-WM	MW-2		•		
naisanhan sistimuv	Depth:		-				
	Matrix:	WATER	WATER				
	Sampled:	Sep-28-11 10:50	Sep-28-11 10:15				
VOAs by SW-846 8260B	Extracted:	Oct-03-11 13:15	Oct-03-11 13:16				
SUB: E871002	Analyzed:	Oct-03-11 19:10	Oct-03-11 19:32				
	Units/RL:	mg/L RL	mg/L RL				
Bromochloromethane		ND 0.00500	ND 0.00500				
Bromodichloromethane		ND 0.00500	ND 0.00500				
Bromoform		ND 0.00500	ND 0.00500				
Bromomethane		ND 0.00500	ND 0.00500			-	
Carbon Tetrachloride		ND 0.00500	ND 0.00500				
Chlorobenzene		ND 0.00500	ND 0.00500			-	
Chloroethane		ND 0.0100	ND 0.0100				
Chloroform		ND 0.00500	ND 0.00500				
Chloromethane		ND 0.0100	ND 0.0100				
cis-1,2-Dichloroethene		ND 0.00500	ND 0.00500				
cis-1,3-Dichloropropene		ND 0.00500	ND 0.00500				
Dibromochloromethane		ND 0.00500	ND 0.00500				
Dibromomethane		ND 0.00500	ND 0.00500				
Dichlorodifluoromethane		ND 0.00500	ND 0.00500		-		
Ethylbenzene		ND 0.00500	ND 0.00500				
Hexachlorobutadiene		ND 0.00500	ND 0.00500				
isopropylbenzene		ND 0.00500	ND 0.00500				
m,p-Xylenes		ND 0.0100	ND 0.0100				
Methylene Chloride		0.00543 0.00500	0.00544 · 0.00500				
MTBE		ND 0.00500	ND 0.00500				
Naphthalene		ND 0.0100	ND 0.0100				
n-Butylbenzene		ND 0.00500	ND 0.00500				
n-Propylbenzene		ND 0.00500	ND 0.00500				
o-Xylene		ND 0.00500	ND 0.00500				
p-Cymene (p-lsopropyltoluene)		ND 0.00500	ND 0.00500	-			
his analytical report, and the entire data nackage it represents, has been ma	de for vour exclusive	and confidential use.				(

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed introughout this madyical report represent the best jugnent of XENCO Laboratories. XENCO Laboratories assumes no responsibility and marks no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron II Odessa Laboratory Manager

Page 6

Contact: Rose Slade

Project Id:

Certificate of Analys Summary 428605 Southern Union Gas Services-Monahans, Monahans, TX Project Name: House Compressor Station

Date Received in Lab: Thu Sep-29-11 08:46 am Report Date: 14-OCT-11

roject Location: Lea County, NM	•				
				Project Man	lager: Brent Barron
	Lab Id:	428605-001	428605-002		
Analysis Donnestad	Field Id:	I-WM	MW-2		
northan the sector	Depth:				
	Matrix:	WATER	WATER		
	Sampled:	Sep-28-11 10:50	Sep-28-11 10:15		
VOAs by SW-846 8260B	Extracted:	Oct-03-11 13:15	Oct-03-11 13:16		
SUB: E871002	Analyzed:	Oct-03-11 19:10	Oct-03-11 19:32		
	Units/RL:	mg/L RL	mg/L RL	•	
Sec-Butylbenzene		ND 0.00500	· ND 0.00500		
Styrene		ND 0.00500	ND 0.00500		
tert-Butylbenzene		ND 0.00500	ND 0.00500		
Tetrachloroethylene		ND 0.00500	ND 0.00500		
Toluene		ND 0.00500	ND 0.00500		
trans-1, 2-dichloroethene		ND 0.00500	ND 0.00500		
trans-1, 3-dichloropropene		ND ** 0.00500	ND 0.00500		
Trichloroethene		ND 0.00500	ND 0.00500	-	
Trichlorofluoromethane		ND 0.00500	ND 0.00500		
Vinyl Chloride		ND 0.00200	. ND 0.00200		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this mariytical root represent the best judgement of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warmany to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron II

Odessa Laboratory Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit

LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, Tx 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West 1-20 East, Odessa, TX 79765 6017 Financial Drive, Noreross, GA 30071 3725 E. Atlanta Ave, Phoenix, AZ 85040

Phone Fax (281) 240-4200 (281) 240-4280 (214) 902 0300 (214) 351-9139 (210) 509-3334 (210) 509-3335 (813) 620-2000 (813) 620-2033 (305) 823-8500 (305) 823-8555 (432) 563-1800 (432) 563-1713 (770) 449-8800 (770) 449-5477 (602) 437-0330

Form 2 - Surrogate Recoveries

Project Name: House Compressor Station

prk Orders : 428605	, Sample: 428605-001 / SMP	Bate	Project I	D: Water		
Units: mg/L	Date Analyzed: 10/03/11 19:10	SU	RROGATE R	ECOVERY S	STUDY	
VOAs I	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0476	0.0500	95	74-124	
Dibromofluoromethane		0.0565	0.0500	113	75-131	
1,2-Dichloroethane-D4	•	0.0515	0.0500	103	63-144	
Toluene-D8		0.0459	0.0500	92	80-117	
Lab Batch #: 871684	Sample: 428605-002 / SMP	Batc	h: 1 Matrix	:Water		
Units: mg/L	Date Analyzed: 10/03/11 19:32	SU	RROGATE R	ECOVERY S	STUDY	
VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0490	0.0500	98	74-124	
Dibromofluoromethane		0.0542	0.0500	108	75-131	
1,2-Dichloroethane-D4		0.0478	0.0500	96	63-144	
Toluene-D8	· · · · · · · · · · · · · · · · · · ·	0.0475	0.0500	95	80-117	
Lab Batch #: 871684	Sample: 612285-1-BLK / B	LK Batc	h: 1 Matrix	:Water		,
Units: mg/L	Date Analyzed: 10/03/11 13:12	SU	RROGATE R	ECOVERY S	STUDY	
VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0482	0.0500	96	74-124	
Dibromofluoromethane		0.0543	0.0500	109	75-131	
1,2-Dichloroethane-D4	· · · · · · · · · · · · · · · · · · ·	0.0495	0.0500	99	63-144	
Foluene-D8	 	0:0461	0.0500	92	80-117	
ab Batch #: 871684	Sample: 612285-1-BKS / B	KS Batc	h: ¹ Matrix	:Water	. 1	
Units: mg/L	Date Analyzed: 10/03/11 11:44	SU	RROGATE R	ECOVERY S	STUDY	
VOAsl	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0474	0.0500	95	74-124	
Dibromofluoromethane		0.0552	0.0500	110	75-131	
1,2-Dichloroethane-D4		0.0489	. 0.0500	98	63-144	
		0.0476	0.0500	95	80-117	

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: House Compressor Station

Vork Orders : 428605 Lab Batch #: 871684	, Sample: 612285-1-BSD / E	SD Bate	Project I ch: ¹ Matrix	D: :Water		
Units: mg/L	Date Analyzed: 10/03/11 12:05	SU	JRROGATE R	ECOVERY	STUDY	
VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0479	0.0500	96	74-124	
Dibromofluoromethane	· · · · · · · · · · · · · · · · · · ·	0.0555	0.0500	111	75-131	
1,2-Dichloroethane-D4	······································	0.0494	0.0500	99	63-144	
Toluene-D8	· · ·	0.0471	0.0500	94	80-117	
Lab Batch #: 871684	Sample: 428104-009 S / M	S Bate	ch: ¹ Matrix	Ground Wate	г	
Units: mg/L	Date Analyzed: 10/03/11 14:02	SU	JRROGATE R	ECOVERY S	STUDY	
VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R {D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0462	0.0500	92	74-124	
Dibromofluoromethane		0.0557	0.0500	111	75-131	
1,2-Dichloroethane-D4		0.0464.	0.0500	93	63-144	
Toluene-D8		0.0471	0.0500	94 ·	80-117	
Lab Batch #: 871684	Sample: 428104-009 SD / I	MSD Bate	ch: ¹ Matrix	:Ground Wate	r	
Units: mg/L	Date Analyzed: 10/03/11 14:23	SU	JRROGATE R	ECOVERY S	STUDY	
VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene		0.0457	0.0500	91	74-124	. <u>.</u>
Dibromofluoromethane		0.0540	0.0500	108	75-131	
1,2-Dichloroethane-D4		0.0456	0.0500	91	63-144	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Toluene-D8

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

0.0473

0.0500

95

80-117

Project Name: House Compressor Station

Work Order #: 428605

Project ID:

Lab Batch #: 872310	San	nple: 612364-	1-BKS	Matrix	Water	•	
Date Analyzed: 10/13/2011	Date Prepa	red: 10/06/20		Analyst	AMB		
Reporting Units: mg/L	Bate	ch #: 1	BLANK /I	BLANK SPI	KE REC	OVERY S	STUDY
ICP-MS Metals by SW 6020A		Blank Result	Spike Added	Blank Spike Domit	Blank Spike	Control Limits	Flags
Analytes		[A]	נסן	[C]	[D]	70 K	
Aluminum	•	<0.0100	1.00	0.861	86	80-120	
Boron		<0.0100	0.200	0.204	102	80-120	
Cobalt		<0.00500	0.200	0.188	94	80-120	
Copper		<0.00200	0.200	0.189	95	80-120	
Iron		<0.150	· 1.00	0.946	95	80-120	
Manganese		<0.00200	0.200	0.190	95	80-120	
Molybdenum		<0.00200	0.200	0.203	102	80-120	
Nickel		<0.00500	0.200	0.189	95	80-120	
Zinc		<0.00300	0.200	0.187 .	94	80-120	•

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes.

Below Reporting Limit

BS / BSD Recoveries

Project Name: House Compressor Station

-	:			
/BLANK SP	BLANK			Units: mg/L
#: 1	Batch #	KS	Sample: 871619-1-B	Lab Batch ID: 871619
l: 10/04/2011	ate Prepared	A		Analyst: BRB
				Work Order #: 428605

Project ID: Date Analyzed: 10/04/2011 Matrix: Water

		TAX AND	A CITA A MULT	T I T I T	T A NITZ O	TOTA NTA					
Units: mg/L		BLAN	VIBLANK S	rine / B	TANAS	LINE DUFL	ICALE	KELUVE	KY STUD	X	
Anions by E300	Blank Samule Recult	Spike	Blank Snike	Blank Snike	Spike	Blank Snike	BIK. Spk Dun	uau	Control Limits	Control Limite	Flao
	[A]	name.	Result	%R	שתתה	Duplicate	%R	%	%R	%RPD	0
Analytes		[8]	[c]	[D]	E	Result [F]	[G]				
Chloride	<0.500	10.0	10.6	106	10.0	10.3	103	3	80-120	20	

Relative Percent Difference RPD = 200*(C-F)/(C+F) Blank Spike Recovery [D] = 100*(C)/[**B**] Blank Spike Duplicate Recovery [G] = 100*(F)[E] All results are based on MDL and Validated for QC Purposes

Page 1

BS / BSD Recoveries

Project Name: House Compressor Station

Work Order #: 428605 Lab Batch ID: 871684 Analyst: CYE

Date Prepared: 10/03/2011

Batch #: 1

Sample: 612285-1-BKS

Project ID: Date Analyzed: 10/03/2011 Matrix: Water

Units: mg/L		BLAN	K /BLANK S	SPIKE / B	LANK S	PIKE DUPL	ICATE	RECOVE	RY STUD	Y	
VOAs by SW-846 8260B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
1,1,1,2-Tetrachloroethane	<0.00500	0.0500	0.0571	114	0.0500	0.0568	114	1	75-125	20	
1,1,1-Trichloroethane	<0.00500	0.0500	0.0603	121	0.0500	0.0586	117	3	75-125	20	
1,1,2,2-Tetrachloroethane	<0.00500	0.0500	0.0421	84	0.0500	0.0469	94	11	50-130	31	
1,1,2-Trichloroethane	<0.00500	0.0500	0.0440	88	0.0500	0.0470	94	7	75-127	20	
1,1-Dichloroethane	<0.00500	0.0500	- 0.0558	112	0.0500	0.0527	105	6	60-130	20	
1,1-Dichloroethene	<0.00500	0.0500	0.0578	116	·0.0500	0.0550	110	5	59-172	22	
1,1-Dichloropropene	<0.00500	0.0500	0.0563	113	0.0500	0.0537	107	5	75-125	20	
1,2,3-Trichlorobenzene	<0.00500	0.0500	0.0454	16	0.0500	0.0481	96	6	75-137	20	
1,2,3-Trichloropropane	<0.00500	0.0500	0.0524	105	0.0500	0.0571	114	· 6	75-125	20	
1,2,4-Trichlorobenzene	<0.00500	0.0500	0.0466	93	0.0500	0.0483	26	4	75-135	20	
1,2,4-Trimethylbenzene	<0.00500	0.0500	0.0554	111	0.0500	0.0534	107	4	75-125	20	
1,2-Dibromo-3-Chloropropane	<0.00500	0.0500	0.0409	82	0.0500	0.0487	26	. 17	59-125	28	
1,2-Dibromoethane	<0.00500	0.0500	0.0482	96	0.0500	0.0508	102	5	73-125	20	
1,2-Dichlorobenzene	<0.00500	0.0500	0.0542	108	0.0500	-0.0537	107	1	75-125	20	
1,2-Dichloroethane	<0.00500	0.0500	0.0541	108	0.0500	0.0538	108	1	68-127	20	
1,2-Dichloropropane	<0.00500	0.0500	0.0463	63	0.0500	0.0459	92	1	74-125	20	
1,3,5-Trimethylbenzene	<0.00500	0.0500	0.0549	110	0.0500	0.0535	107	3	70-125	20	
1,3-Dichlorobenzene	< <0.00500	0.0500	0.0558	112	0.0500	0.0551	011	1	75-125	20	
1,3-Dichloropropane	<0.00500	0.0500	0.0461	92	0.0500	0.0477	- 56	3	75-125	20.	
1,4-Dichlorobenzene	<0.00500	0.0500	0.0560	112	0.0500	0.0541	108	m	75-125	20	

Relative Percent Difference RPD = 200*((C-F)/(C+F)) Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

XENCO Laboratories

BS / BSD Recoveries

Project Name: House Compressor Station

Work Order #: 428605 Analyst: CYE

Lab Batch ID: 871684 Units: mg/L

· Date Prepared: 10/03/2011 Batch #: 1

Sample: 612285-1-BKS

Project ID: Date Analyzed: 10/03/2011 Matrix: Water

VOAs by SW-846 8260B	Blank Sample Result	Spike Addeđ	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Dunlicate	Bik. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[[B]	[c]	a	[E]	Result [F]	5	2			•
2,2-Dichloropropane	<0.00500	0.0500	0.0571	114	0.0500	0.0546	109	4	60-140	20	
2-Chlorotoluene	<0.00500	0.0500	0.0566	113	0.0500	0.0551	110	3	73-125	20	
4-Chlorotoluene	<0.00500	0.0500	0.0531	106	0.0500	0.0518	104	2	74-125	20	
Benzene	<0.00500	0.0500	0.0483	26	0.0500	0.0475	95	2	66-142	21	
Bromobenzene	<0.00500	0.0500	0.0520	104	0.0500	0.0526	105	-	60-130	. 20	
Bromochloromethane	<0.00500	0.0500	0.0587	117	0.0500	0.0597	119	2	73-125	20	
Bromodichloromethane	<0.00500	0.0500	0.0559	112	0.0500	0.0557	111	0	75-125	20	
Bromoform	<0.00500	0.0500	0.0509	102	0.0500	0.0546	109	7	75-125	20	
Bromomethane	<0.00500	0.0500	0.0539	108	0.0500	0.0522	104	3	10-130	20	
Carbon Tetrachloride	<0.00500	0.0500	0.0644	129.	0.0500	0.0619	124	4	62-125	20	н
Chlorobenzene	<0.00500	0.0500	0.0523	105	0.0500	0.0516	103	1	60-133	21	
Chloroethane	<0.0100	0.0500	0.0475	95	0.0500	0.0444	68	7	70-130	20	
Chloroform .	<0.00500	0.0500	0.0564	113	0.0500	0.0550	110	3	74-125	20	
Chloromethane	<0.0100	0.0500	0.0439	88	0.0500	0.0414	83	6	70-130	20	
cis-1,2-Dichloroethene	<0.00500	0.0500	0.0536	107	0.0500	0.0523	105	2	061-09	20	
cis-1,3-Dichloropropene	<0.00500	0.0500	0.0475	95	0.0500	0.0477	95	0	60-140	20	
Dibromochloromethane	<0.00500	0.0500	0.0556	111	0.0500	0.0557	111	0	60-130	20	
Dibromomethane	<0.00500	0.0500	0.0506	101	0.0500	0.0514	103	2	69-127	23	
Dichlorodifluoromethane	<0.00500	0.0500	0.0498	100	0.0500	0.0456	16	6	10-130	23	
Ethylbenzene	<0.00500	0.0500	0.0503	101	0.0500	0.0499	100	1	75-125	20	

Relative Percent Difference RPD = 200*(C-F)/(C+F) Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Final 1.000

Page 1

X X C C C C Laboratorics

BS / BS Recoveries

Project Name: House Compressor Station

 Work Order #: 428605

 Analyst: CYE

 Lab Batch ID: 871684

 Ti-ite. mg/L

Sample: 612285-1-BKS

Date Prepared: 10/03/2011 Batch #: 1

Project ID: Date Analyzed: 10/03/2011 Matrix: Water

Units: ugu		•									
VOAs by SW-846 8260B	Blank Sample Result IAI	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Dunlicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]		a	[8]	Result [F]	5	2			
Hexachlorobutadiene	<0.00500	0.0500	0.0484	<i>L</i> 6 ⁻	0.0500	0.0477	95	1	75-125	20	
isopropylbenzene	<0.00500	0.0500	0.0532	106	0.0500	0.0508	102	5	75-125	20	
m,p-Xylenes	<0.0100	0.100	0.107	107	0.100	0.104	104	e N	75-125	20	
Methylene Chloride	<0.00500	0.0500	0.0515	103	0.0500	0.0504	101	2	75-125	35	
MTBE	<0.00500	0.100	0.105	. 105	0.100	0.109	109	4	75-125	20	
Naphthalene	<0.0100	0.0500	0.0500	100	0.0500	0.0559	112	=	65-135	20	
n-Butylbenzene	<0.00500	0.0500	0.0514	103	0.0500	0.0500	100	m	75-125	20	
n-Propylbenzene	<0.00500	0.0500	0.0558	112	0.0500	0.0548	110	7	75-125	20	
o-Xylene	<0.00500	0.0500	0.0542	108	0.0500	0.0531	106	2	75-125	20	
p-Cymene (p-lsopropyltoluene)	<0.00500	0.0500	0.0573	115	0.0500	0.0547	109	s	75-125	20	
Sec-Butylbenzene	<0.00500	0.0500	0.0535	107	0.0500	0.0520	104	3	75-125	20	
Styrene	<0.00500	0.0500 -	0.0520	, 10 4	0.0500	0.0511	102	2	60-130	51	
tert-Butylbenzene	<0.00500	0.0500	0.0561	112	0.0500	0.0539	108	4	75-125	20	
Tetrachloroethylene	<0.00500	0.0500	0.0530	106	0.0500	0.0504	101	5	60-130	20	
Toluene	<0.00500	0.0500	0.0497	66	0.0500	0.0478	96	4	59-139	21	•
trans-1,2-dichloroethene	<0.00500	0.0500	0.0565	113	0.0500	0.0551	110	3	60-130	20	
trans-1,3-dichloropropene	<0.00500	0.0500	0.0425	85	0.0500	0.0442	. 88	4	66-125	20	
Trichloroethene	<0.00500	0.0500	0.0545	109	0.0500	0.0532	106	2	62-137	24	
Trichlorofluoromethane	<0.00500	0.0500	0.0662	132	0.0500	0.0630	126	. 5	67-125	20	Н
Vinyl Chloride	<0.00200	0.0500	0.0499	100	0.0500	0.0466	93	7	75-125	20	

Relative Percent Difference RPD = 200*((C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Final 1.000

Form 3 - MS Recoveries

Project Name: House Compressor Station

Work Order #: 428605 **Project ID:** Lab Batch #: 871619 Date Prepared: 10/04/2011 Analyst: BRB Date Analyzed: 10/04/2011 QC- Sample ID: 428605-001 S Batch #: 1 Matrix: Water MATRIX / MATRIX SPIKE RECOVERY STUDY Reporting Units: mg/L Parent Spiked Sample Control **Inorganic Anions by EPA 300** Sample Spike Result %R Limits Flag Result Added [C] [D] %R [A] [B] Analytes 80-120 Chloride 287 250 529 97

Matrix Spike Percent Recovery $[D] = 100^{+}(C-A)/B$ Relative Percent Difference $[E] = 200^{+}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MC MSD Recoveries

Project Name: House Compressor Station

Project ID:

QC-Sample ID: 428612-001 S Date Prepared: 10/06/2011

Date Analyzed: 10/13/2011

Work Order #: 428605 Lab Batch ID: 872310

1

Matrix: Water

Batch #: 1 Analyst: AMB

Reporting Units: mg/L		M	ATRIX SPIKI	E/MAT	RIX SPII	KE DUPLICA'	re reco	VERY S	STUDY		
ICP-MS Metals by SW 6020A Analytes	Parent Sample Result {A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Aluminum	<0.0100	1.00	0.830	83	1.00	0.833	83	.0	75-125	25	
Boron	0.267	0.200	0.489	111	0.200	0.492	113	1	75-125	25	
Cobalt-	<0.00500	0.200	0.182	- 16	0.200	0.185		2	75-125	25	
Copper	0.00757	0.200	0.188	60	0.200	0.191	92	2	75-125	25	
lron	<0.150	1.00	0.935	94	1.00	0.949	95	-	75-125	25	
Manganese	0.00468	0.200	0.190	93	0.200	0.192	94	-	75-125	25	
Molybdenum	0.00498	0.200	0.209	102	0.200	0.215	105	'n	75-125	25	
Nickel	<0.00500	0.200	0.182	- 16	0.200	0.184	92	ŗ.	75-125	25	
Zinc	0.612	0.200	0.747	. 68	0.200	0.740	64	1	75-125	25	×

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference. RPD = 200*((C-F)/(C+F))

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected. J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested. I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Final 1.000

Form 3 - MS / MSD Recoveries

Work Order #: 428605

Date Analyzed: 10/03/2011 Lab Batch ID: 871684

Renarting Units, ma/L

Project ID:

QC- Sample ID: 428104-009 S Date Prepared: 10/03/2011

L

Matrix: Ground Water -CYE Batch #:

Analyst:

Kepering Units: mg L		W	ATRIX SPIK	E / MAT	RIX SPH	KE DUPLICA	LE RECO	VERY S	TUDY		
VOAs by SW-846 8260B	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]		n % [0]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	D -
1,1,1,2-Tetrachloroethane	<0.00500	0.0500	0.0659	132	0.0500	0.0549	110	18	75-125	20	x
1,1,1.Trichloroethane	<0.00500	0.0500	0.0713	143	0.0500	0.0597	119	18	75-125	20	×
1,1,2,2-Tetrachloroethane	<0.00500	0.0500	0.0502	100	0.0500	0.0438	88	14	50-130	31	
1,1,2-Trichloroethane	<0.00500	0.0500	0.0522	104	0.0500	0.0444	68	16	75-127	20	
1,1-Dichloroethane	<0.00500	0.0500	0.0632	126	0.0500	0.0531	106	17	60-130	20	
1,1-Dichloroethene	<0.00500	0.0500	0.0689	138	0.0500	0.0571	114	19	59-172	22	
1,1-Dichloropropene	<0.00500	0.0500	0.0659	132	0.0500	0.0556	111	17	75-125	20	x
1,2,3-Trichlorobenzene	<0.00500	0.0500	0.0564	113	0.0500	0.0498	100	12	75-137	20	
1,2,3-Trichloropropane	<0.00500	0.0500	0.0574	115	0.0500	0.0509	102	12	75-125	20	
1,2,4-Trichlorobenzene	<0.00500	0.0500	0.0570	114	0.0500	0.0503	101	12	75-135	20	
1,2,4-Trimethylbenzene	<0.00500	0.0500	0.0643	129	0.0500	0.0531	106	19	75-125	20	х
1,2-Dibromo-3-Chloropropane	<0.00500	0.0500	0.0475	95	0.0500	0.0423	85	12	59-125	28	
1,2-Dibromoethane	<0.00500	0.0500	0.0558	112	0.0500	0.0490	86	13	73-125	20	
1,2-Dichlorobenzene	<0.00500	0.0500	0.0626	125	0.0500	0.0543	109	14	75-125	20	
1,2-Dichloroethane	<0.00500	0.0500	0.0616	123	0.0500	0.0520	104	17	68-127	20	
1,2-Dichloropropane	<0.00500	0.0500	0.0523	105	0.0500	0.0453	91	14	74-125	20	
1,3,5-Trimethylbenzene	<0.00500	0.0500	0.0645	129	0.0500	0.0533	107	19	70-125	20	х
1,3-Dichlorobenzene	<0.00500	0.0500	0.0670	134	0.0500	0.0562	112	18	75-125	20	х
1,3-Dichloropropane	<0.00500	0.0500	0.0519	104	0.0500	0.0454	91	13	75-125	20	
1,4-Dichlorobenzene	<0.00500	0.0500	0.0652	130	0.0500	0.0554	111	16	75-125	20	х
2,2-Dichloropropane	<0.00500	0.0500	0.0684	137	0.0500	0.0568	114	19	60-140	20	
2-Chlorotoluene	<0.00500	0.0500	0.0663	133	0.0500	0.0557	111	17	73-125	20	x
4-Chlorotoluene	<0.00500	0.0500	0.0623	125	0.0500	0.0527	105	17	74-125	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)

ND - Not Detected, J = Przsent Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA - Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Final 1.000

Page 2

MSD Recoveries Form 3 - M

Project Name: House Compressor Station

Work Order #: 428605

Date Analyzed: 10/03/2011 Lab Batch ID: 871684 **Reporting Units:** mg/L

QC- Sample ID: 428104-009 S Date Prepared: 10/03/2011

Batch #: 1 Analyst: CYE

Matrix: Ground Water -

Project ID:

VOAs by SW-846 8260B	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]		B] %	Added [E]	Result [F]	[G] %R	%	%К	%RPD	•
Benzene	<0.00500	0.0500	0.0565	113	0.0500	0.0476	95	17	66-142	21	
Bromobenzene	<0.00500	0.0500	0.0602	120	0.0500	0.0511	102	16	60-130	20	
Bromochloromethane	<0.00500	0.0500	0.0685	137.	0.0500	0.0554	111	21	73-125	20	XF
Bromodichloromethane	<0.00500	0.0500	0.0640	128	0.0500	0.0523	105	20	75-125	20	×
Bromoform	<0.00500	0.0500	0.0580	116	0.0500	0.0484	67	18	75-125	20	
Bromomethane	<0.00500	0.0500	0.0524	105	0.0500	0.0498	100	5	70-130	20	
Carbon Tetrachloride	<0.00500	0.0500	0.0759	152	0.0500	0.0629	126	19	62-125	20	×
Chlorobenzene	<0.00500	0.0500	0.0613	123	0.0500	0.0520	104	16	60-133	21	
Chloroethane	<0.0100	0.0500	0.0472	94	0.0500	0.0463	93	2	70-130	20	
Chloroform	<0.00500	0.0500	0.0649	130	0.0500	0.0537	107	19	74-125	20	×
Chloromethane	<0.0100>	0.0500	0.0426	85	0.0500	0.0415	83	3	70-130	20	
cis-1,2-Dichloroethene	<0.00500	0.0500	0.0633	127	0.0500	0.0529	106	18	60-130	20	
cis-1,3-Dichloropropene	<0.00500	0.0500	0.0537	107	0.0500	0.0449	90	18	60-140	20	
Dibromochloromethane	<0.00500	0.0500	0.0620	124	0.0500	0.0519	104	18	60-130	20	
Dibromomethane	<0.00500	0.0500	0.0581	116	0.0500	0.0483	67	18	69-127	23	
Dichlorodifluoromethane	<0.00500	0.0500	0.0505	101	0.0500	0.0491	86	3 .	20-130	23	
Ethylbenzene	<0.00500	0.0500	0.0600	120	0.0500	0.0507	101	17	75-125	20	
Hexachlorobutadiene	<0.00500	0.0500	0.0599	120	0.0500	0.0522	104]4	75-125	20	
isopropylbenzene	<0.00500	0.0500	0.0619	124	0.0500	0.0530	106	15	75-125	20	
m,p-Xylenes	<0.0100	0.100	0.125	125	0.100	0.106	106	16	75-125	. 20	
Methylene Chloride	0.00765	0.0500	0.0663	117	0.0500	0.0559	. 97	17	75-125	35	
MTBE	<0.00500	0.100	0.104	104	0.100	0.101	101	3	75-125	- 20	
Naphthalene	<0.0100	0.0500	0.0603	121	0.0500	0.0537	107	12	65-135	20	

•

Matrix Spike Percent Recovery [D] = 100*(C.A)/B Relative Percent Difference RPD = 200*((C.F)/(C+F))

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected. J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested. I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Final 1.000

Form 3 - MS / MSD Recoveries

Work Order #: 428605

Date Analyzed: 10/03/2011 Lab Batch ID: 871684

9

Reporting Units: mg/L

QC- Sample ID: 428104-009 S Date Prepared: 10/03/2011

CYE

Batch #: Analyst:

Project ID:

Ground Water	
Matrix:	
1	

VOAs by SW-846 8260B	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	-
n-Butylbenzene	<0.00500	0.0500	0.0622	124	0.0500	0.0526	105	17	75-125	20	
n-Propylbenzene	<0.00500	0.0500	0.0671	134	0.0500	0.0566	113	17	75-125	20	×
o-Xylene	<0.00500	0.0500	0.0636	127	0.0500	0.0532	106	18	75-125	20	×
p-Cymene (p-Isopropyltoluene)	<0.00500	0.0500	0.0675	135	0.0500	0.0575	115	16	75-125	20	x
· Sec-Butylbenzene	<0.00500	0.0500	0.0648	130	0.0500	0.0550	110	16	75-125	20	×
Styrene	<0.00500	0.0500	0.0580	116	0.0500	0.0468	94	21	60-130	51	
tert-Butylbenzene	<0.00500	0.0500	0.0668	134	0.0500	0.0559	112	18	75-125	20	×
Tetrachloroethylene	<0.00500	0.0500	0.0635	127	0.0500	0.0555	111	13	60-130	20	
Toluene	<0.00500	0.0500	0.0577	115	0.0500	0.0488	98	17	59-139	21	
trans-1,2-dichloroethene	<0.00500	0.0500	0.0665	133	0.0500	0.0556	111	18	60-130	20	×
trans-1,3-dichloropropene	<0.00500	0.0500	0.0494	66	0.0500	0.0413	83	18	66-125	20	
Trichloroethene	<0.00500	0.0500	0.0647	129	0.0500	0.0545	109	17	62-137	24	
Trichlorofluoromethane	<0.00500	0.0500	0.0656	131	0.0500	0.0672	134	2	67-125	20	х
Vinyl Chloride	<0.00200	0.0500	0.0489	98	0.0500	0.0503	101	3	75-125	20	
				:							

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)

ND = Not Detected. J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I – Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Final 1.000

Page 2

Sample Duplicate Recovery

Project Name: House Compressor Station

Work Order #: 428605

Lab Batch #: 871619 Date Analyzed: 10/04/2011 17:49 QC- Sample ID: 428605-001 D	Date Prepar Batch	ed: 10/04/2011	Anal Mat	Project I lyst:BRB rix: Water	D:	
Reporting Units: mg/L		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Anions by E300		Parent Sample Result [A]	Sample Duplicate Result (B)	RPD	Control Limits %RPD	Flag
Analyte			נשן			
Chloride		287	286	0	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

000.1 lisning

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa

Document Title: San	nple Receipt Checklist
Document No.: SYS-	SRC
Revision/Date: No. (1, 5/27/2010
Effective Date: 6/1/2	010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client: Southern Union Date/Time: 9/29/11 8:46 Das 428605 Lab ID # Initials:

Sample Receipt Checklist

1. Samples on ice?		Blue	Water	No	
2. Shipping container in good condition?		Yes	No	None	
3. Custody seals intact on shipping conta	iner (cooler) and bottles?)	Yes	No	N/A	
4. Chain of Custody present?		(Yes ⁺)	No		
5. Sample instructions complete on chain	of custody?	Yes	No		
6. Any missing / extra samples?		Yes	No		
7. Chain of custody signed when relinquis	hed / received?	Yes	No		
8. Chain of custody agrees with sample la	bel(s)?	Yes	No		•
9. Container labels legible and intact?	· · · · · · · · · · · · · · · · · · ·	Yes	No		
10. Sample matrix / properties agree with	chain of custody?	Yes	No		
11. Samples in proper container / bottle?		Yes	No		
12. Samples properly preserved?		Yes	No	N/A	
13. Sample container intact?		Yes	No		
14. Sufficient sample amount for indicated	l test(s)?	(Yes)	No		
15. All samples received within sufficient	hold time?	Yes	No		
16. Subcontract of sample(s)?		(Yes)	No	N/A	
17. VOC sample have zero head space?		Yes	No	N/A	
18. Cooler 1 No. Cooler 2 No.	Cooler 3 No.	Cooler 4 No.	.	Cooler 5 No.	3
lbs 5 °C lbs	°C Ibs	°C lbs	°	C Ibs	°C

Nonconformance Documentation

Contact:	Contacted by:	Date/Time:		
Regarding:			<u> </u>	
			<u> </u>	
Corrective Action Tak	en:	· · · · · · · · · · · · · · · · · · ·	. <u> </u>	
	·			
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Check all that apply:	□ Cooling process has begun shortly after san condition acceptable by NELAC 5.5.8.3 □ Initial and Backup Temperature confirm out □ Client understands and would like to procee	upling event and out of temperature .1.a.1. of temperature conditions d with analysis		

Analytical Report 433033

for

Southern Union Gas Services- Monahans

Project Manager: Rose Slade

House Compressor Station

20-DEC-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330).
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco Tucson (EPA Lab code: AZ00989): Arizona (AZ0758)

20-DEC-11

Project Manager: Rose Slade Southern Union Gas Services- Monahans 1507 W. 15th Street Monahans, TX 79756

Reference: XENCO Report No: 433033 House Compressor Station Project Address: Lea County, NM

Rose Slade:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 433033. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 433033 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 433033

Southern Union Gas Services- Monahans, Monahans, TX

House Compressor Station

Sample Id	Matrix	Date Collected Sample Depth	Lab Sample Id
MW-1	• W •	12-01-11 10:25	433033-001
MW-2	W	12-01-11 10:55	433033-002

Page 3 of 14

CASE NARRATIVE

Client Name: Southern Union Gas Services- Monahans Project Name: House Compressor Station

Project ID: Work Order Number: 433033 Report Date: 20-DEC-11 Date Received: 12/09/2011

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Project Id:

Southern Union Gas Services-Monahans, Monahans, TX Certificate of Analysis Summary 433033 **Project Name: House Compressor Station**

Date Received in Lab: Fri Dec-09-11 12:30 pm

Contact: Rose Slade				Date Received in Lab:	Fri Dec-09-11 12:30 pm	
roiect Location: Lea County. NM				Report Date:	20-DEC-11	
				Project Manager:	Brent Barron II	
	Lab Id:	433033-001	433033-002			
Amalucic Domoctod	Field Id:	MW-1	MW-2			
naisanhay sistimity	Depth:					
	Matrix:	WATER	WATER		-	
	Sampled:	Dec-01-11 10:25	Dec-01-11 10:55	•		
Anions by E300	Extracted:				-	
	Analyzed:	Dec-14-11 12:18	Dec-14-11 12:18			
	Units/RL:	mg/L RL	mg/L RL			
Chloride		312 12.5	247 12.5			
BTEX by EPA 8021B	Extracted:	Dec-09-11 15:45	Dec-09-11 15:45	· · · · · · · · · · · · · · · · · · ·	J F	
	Analyzed:	Dec-10-11 07:30	Dec-10-11 07:53			
	Units/RL:	mg/L RL	mg/L RL			
Benzene		ND 0.00100	ND 0.00100			
Toluene		ND 0.00200	ND 0.00200			
Ethylbenzene		ND 0.00100	ND 0.00100			
m_p-Xylenes		ND 0.00200	ND 0.00200			•
o-Xylene		ND 0.00100	00100 ^{.0} UN			
Total Xylenes		ND 0.00100	ND 0.00100			
Total BTEX		ND 0.00100	ND 0.00100			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the bart jubbarned of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brent Barron II Odessa Laboratory Manager

Final 1.000

Page 5 of 14

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.

F. RPD exceeded lab control limits.

J The target analyte was positively identified below the quantitation limit and above the detection limit.

U Analyte was not detected.

- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

* Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit	LOD Limit of Detection
---	------------------------

POL Practical Quantitation Limit **MOL** Method Quantitation Limit

LOO Limit of Ouantitation

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

^ NELAC or State program does not offer Accreditation at this time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477
9701 Harry Hines Blvd , Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
5757 NW 158th St, Miami Lakes, FL 33014
12600 West I-20 East, Odessa, TX 79765
6017 Financial Drive, Norcross, GA 30071
3725 E. Atlanta Ave, Phoenix, AZ 85040

Phone	Fax
(281) 240-4200	(281) 240-428
(214) 902 0300	(214) 351-913
(210) 509-3334	(210) 509-333
(813) 620-2000	(813) 620-203
(305) 823-8500	(305) 823-855
(432) 563-1800	(432) 563-171
(770) 449-8800	(770) 449-547
(602) 437-0330	

Final 1.000

Form 2 - Surrogate Recoveries

Project Name: House Compressor Station

Units: mg/L Date Analyzed: 12/10/11 07:30 BTEX by EPA 8021B Amount Found [A] Analytes 0.0285 1,4-Difluorobenzene 0.0276	RROGATE RE True Amount [B]	Recovery %R [D]	STUDY Control Limits	Flags						
BTEX by EPA 8021B Amount Found [A] Analytes 0.0285 1,4-Difluorobenzene 0.0276	True Amount [B]	Recovery %R [D]	Control Limits	Flage						
Analytes 1,4-Difluorobenzene 0.0285 4-Bromofluorobenzene 0.0276	IDJ /or /or 0.0285 0.0300 95 80-120 0.0276 0.0200 02 80.100									
1,4-Difluorobenzene 0.0285 4-Bromofluorobenzene 0.0276	0.0300									
4-Bromofluorobenzene 0.0276		95	80-120							
0.0270	0.0300	92	80-120							
Lab Batch #: 876848 Sample: 433033-002 / SMP Batch	: 1 Matrix:	Water								
Units: mg/L Date Analyzed: 12/10/11 07:53 SUF	RROGATE RE	ECOVERY	STUDY							
BTEX by EPA 8021B Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags						
Analytes		[0]								
1,4-Difluorobenzene 0.0301	0.0300	100	80-120	ļ						
4-Bromotiuorobenzene 0.0258	0.0300	86	80-120							
Lab Batch #: 876848 Sample: 615303-1-BLK / BLK Batch	: 1 Matrix:	Water								
Units: mg/L Date Analyzed: 12/10/11 05:17 SUF	RROGATE RE	ECOVERY	STUDY							
BTEX by EPA 8021B Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
,4-Difluorobenzene 0.0280	0.0300	93	80-120							
4-Bromofluorobenzene 0.0266	0.0300	89	80-120							
Lab Batch #: 876848 Sample: 615303-1-BKS / BKS Batch	: 1 Matrix:	Water								
Units: mg/L Date Analyzed: 12/10/11 03:47 SUF	ROGATE RE	ECOVERY	STUDY							
BTEX by EPA 8021B Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1,4-Difluorobenzene 0.0299	0.0300	100	80-120							
4-Bromofluorobenzene 0.0280	0.0300	93	80-120							
Lab Batch #: 876848 Sample: 615303-1-BSD / BSD Batch	: 1 Matrix:	Water	<u>I</u>							
Units: mg/L Date Analyzed: 12/10/11 04:09 SUF	RROGATE RE	ECOVERY	STUDY							
BTEX by EPA 8021B Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1,4-Difluorobenzene 0.0276	0.0300	92	80-120							
4-Bromofluorobenzene 0.0261	0.0300	87	80-120							

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: House Compressor Station

Vork Orders : 433033	, Sample: 433031-001 S / M	S Bate	Project II	D: • Water		
Units: mg/L	Date Analyzed: 12/10/11 09:44	SU	URROGATE RI	ECOVERY	STUDY	
BTE	K by EPA 8021B Analytes	Ámount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	· · · · · · · · · · · · · · · · · · ·	0.0280	0.0300	93	80-120	
4-Bromofluorobenzene		0.0263	0.0300	88	80-120	
Lab Batch #: 876848	Sample: 433031-001 SD / N	MSD Bate	ch: ¹ Matrix:	Water		
Units: mg/L	Date Analyzed: 12/10/11 10:06	SU	RROGATE RI	ECOVERY	STUDY	
BTE	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	·	0.0301	0.0300	100	80-120	
4-Bromofluorobenzene	<u>,</u>	0.0275	0.0300	92	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

ľ	•	C.
C		ō
() e
		6
L	Ā	3

BS / BSD Recoveries

Project Name: House Compressor Station

Work Order #: 433033 Analyst: ASA

Date Prepared: 12/09/2011

Batch #: 1

Sample: 615303-1-BKS

Lab Batch ID: 876848

Date Analyzed: 12/10/2011 Matrix: Water

Project ID:

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Units: mg/L			BLAN	K /BLANK S	PIKE / B	LANK S	PIKE DUPL	ICATE 1	RECOVE	ERY STUD	Y	
BTEX by EP.	A 8021B	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup. 27 p	RPD	Control Limits	Control Limits	Flag
Analytes		۲.	[8]	[C]	(<u>d</u>)	[E]	Dupucate Result [F]	<u>[6]</u>	•	N 0/		
Benzene		<0.00100	0.100	0.116	116	0.100	0.112	112	4	70-125	25	
Toluene		<0.00200	0.100	0.115	115	0.100	0.112	112	3	70-125	25	
Ethylbenzene		<0.00100	0.100	0.118	118	0.100	0.118	118 ·	0	71-129	25	
m_p-Xylenes		<0.00200	0.200	0.228	114	0.200	0.229	115	0	70-131	25	
o-Xylene		<0.00100	0.100	0.115	115	0.100	0.115	115	0	71-133	25	
Analyst: BRB	•	Da	te Prepare	d: 12/14/201	1			Date AI	alyzed: 1	2/14/2011		
Lab Batch ID: 877276	Sample: 877276-1-B	KS	Batch	#: 1					Matrix: V	Vater		

									•	
Anions by E300 Blank Sample Result A [A]	Spike It Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride <0.500	10.0	10.9	109	10.0	11.0	110	1	80-120	20	

Relative Percent Difference RPD = 200*((C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Page 9 of 14

Form 3 - MS Recoveries

Project Name: House Compressor Station

Work Order #: 433033 Lab Batch #: 877276 **Project ID:** Date Prepared: 12/14/2011 Analyst: BRB Date Analyzed: 12/14/2011 QC- Sample ID: 433232-001 S Batch #: 1 Matrix: Water Reporting Units: mg/L **MATRIX / MATRIX SPIKE RECOVERY STUDY** Parent **Inorganic Anions by EPA 300** Spiked Sample Control Sample Spike %R Limits Result Flag Result Added [D] %R [C] [A] [B] Analytes Chloride 82.0 200 285 102 80-120

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference $[E] = 200^{\circ}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

MSD Recoveries Form 3 - M

Work Order #: 433033

Date Analyzed: 12/10/2011 Lab Batch ID: 876848 Reporting Units: mg/L

Project Name: House Compressor Station

Project ID:

QC-Sample ID: 433031-001 S Date Prepared: 12/09/2011

Matrix: Water -

Batch #:

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY Analyst: ASA

		ſ									ſ
BTEX by EPA 8021B Analytes	Pareut Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene .	<0.00100	0.100	0.105	105	0.100	0.110	110	5	70-125	25	
Toluene	<0.00200	0.100	0.105	105	0.100	0.110	110	5	70-125	25	
Ethylbenzene	≤0.00100	0.100	٥.109	109	0.100	0.114	114	4	71-129	25	
m_p-Xylenes	<0.00200	0.200	0.210	105	0.200	0.223	112	6	70-131	25	
o-Xylene	<0.00100	0.100	· 0.105	105	0.100	0.112	112	6	71-133	25	
											I

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*((C-F)/(C+F))

ND = Not Detected. J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Sample Duplicate Recovery

Project Name: House Compressor Station

Work Order #: 433033

.

Lab Batch #: 877276 Date Analyzed: 12/14/2011 12:18 QC- Sample ID: 433232-001 D Penerting Units: mg/I	Date Prepared: 12/14/2011 Batch #: 1	Ana Ma / SAMPLE	Project I lyst:BRB trix: Water	D:	OVERV
Anions by E300	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Chloride	82.0	83.6	2	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

		•			ŝ			11.77		Standard T	×	×			_	\neg	-		_	· .		Star	0
		}			NPDE		Τ			- TAT USIIG	-			-+	-+	+	+-	┝─┦	-	2 Z	<i>~ L</i> Z	Lone Lone	•
	ł		ľ		\Box				·····											66	999	Q (Àŭ	Q
	n						╽┟									_					:		
JES1 -171:	Stat				RRP					CHLORIDES	×	×				-		\square				ž	
EQU 563	Sor						ų –		030 pt BTEX 826	BTEX 80218/5	X	×			-+	+	+	┟─┤		: 55 Se	ner(s	ں ہے۔ بنہ ک	eipt:
IS R 432 432	bres		Σ				ZG FG			selitslovime2										lents Intak Ispac	r(s) ontai	rered UPS	Rec
L YS ione: ax:	E S		IY. N		ard		<u></u> naly			Volatiles						\downarrow				omm tiners Head	taine i on c	Cle Cle C	nodU
ANA 1	Ise (Sour		Stand		à			30 \ 923 \ AA2 I Metals: As Ao						\rightarrow	+			ory C Conta Tee of	n con seals	Hand	Iture
Ŋ	된		Lea		Ň			Þ	(ViinileylA ,	OS (D) shoinA										porati nple Cs Fr	stody stody	t t de t de t de t de t de t de t de t d	npera
A O	ame:	# 5	ö	;# 0	ij			1 4	(X 'eN '6	M ,63) anoite0										V Sar Lat	<u> </u>	Na .	Ter
COF	sct N	Proje	oject	4	, E O U				9001 X1 9	TPH: TX 100				\vdash		\rightarrow		\vdash			e L	Ê	
RE	Proje		Ĕ		ortF				Specify Other	extero-ron=qu	/	/			-+	+	+	\vdash			F	Ļ	<u>م</u> 1
100					Rep			Matr	pgos/ios≈s ia	ewbruor0 = WD	S	NO NO	:										_
UST	1	1	1	1	1			┢	()	Other (Specify BW≂Drinking Wa					-+	+		┞─┤			Date	Date	Date
S + C	ĺ			·			1	ainers		9noN													30
IN C Eas 7976			- 1			Eoo	[Cont	L	^{COZ} S ^Z EN					_	-	·	\square	•				
CHA ti-20 xas						env.		8 # 0		HOPN CS2H					-+	-+	_					1	
West a, Te					429	basir		rvation	10001	~10h DH	×	×											
600 \ less;				·	96-1	00		Prese		^c ONH									·				
0 1 3					75) 3	argu		Ļ	Virgi !	258 001	×	×			_	_			_	-			
					ŝ	Ā	1	ž	ainers	rield Hillered Total #. of Cont.	4	4				-+	_	┞╴┨					Le La
					ğ	iii				1.1.1.1				-	-	╡		╞╌┨					S
					-ax I	Ę			pəj	qms2 əmiT	5	23										1	
					Ľ						2	2										1	হ
					l		1	: .			-	-			-+	+			1				ELOI
	1	Ľ							00	nare samp	/201	/201									in Dy:	Aq p	No P
	1	ies, I									12/1	12/1									9Ceive	eceive	C ^{ei}
		Golog				1	h				-	_			-	+		┼╌┨			ž	ž –	<u>8</u>
		echn				T			41	iqeQ pribr3						_					جَ الله	E	e
		vice				. }		÷	ytdə) pninnig98												.]	-
		Ser	1			<u>`</u>																	
		renta		8826(A	łг														2 Cale	Date	Date
S O	ui o	Lon Lon	5	WN	378	٦ ک															<u> </u>		
, L	Arg.	Ē	ox 3	gton,	96-2	Ž		_		. u					·	1							· ·
to i	3en J	Basin	0	ovin	575)3	F		5		COD	N-1-	N-2									{	1.	
ra	ωl	ωl	<u>ا</u> ـــ	-1	ઞ	ë	1	Ĉ		IELD	M	M		1.	l					•	Z		
po	ager	ame	ldres	ä	ö	natui		6		ш											17		ŀ
a	Mana	Ň	ıy Ac	te/Zi	ne N	. Sig		J	1 .									[[:5	5		
0	lect 1	npar	npar	/Stat	ohq	npler		•												ction	1.11		2
Č	Pro	Con	Sol	Cit	Tele	San	(Muc													nstru	d pat	hed ^y by	d ber
Ū.							1 Sec	DER	{Ajuo əs	iu del) # BA J	5	7			T	T				ocial I	nquisi	nquist	nquist
×				•			(lah	, NO			\mathcal{I}								L.,	Spe	Reli	Reli	Re

AND A STANDARD AND A STANDARD

بجافيه وجامع وجوار والم

KENCO Laboratoring Boca Ratan, Corrus Christi, Dallas, ni, Odesea, Philadelphia

San Antonio, Tampa

Document Tills: Sample Receipt Chucklist Document No.: SYS-SRC Revision/Date: No. 01, 5/27/2010 Eliactive Date: 6/1/2010 Page 1 of 1

÷...

Prelogin / Nonconformance Report - Sample Log-In

. • . .

client: R	ANN ENJ.	
Date/Time:	12911 12:30	
Lab 10 #:	433033	
Inifficie:	······································	

Sample Receipt Checklist

1. Samples on ice?	Etue	(Hatit>	No	
2. Shipping container in good condition?	To	. No	None	
3. Custody seels intact on shipping container (cooler) and bottles?	(III)	No	NA	
4. Chain of Custody procent?		No		
5. Semple instructions complete on chain of custody?	Yes	No		
6, Any missing / extra camples?	Yes	162		
7. Chain of coutody signed when relinguished / received?		No		
8. Chain of custody agrees with sample label(s)?		No		
8. Container labels legible and intact?		No		
10. Sample matrix / properties agree with chain of custody?		No .		
11. Samples in proper container / bottle?		No		
12. Samples property preserved?		No	N/A	
18. Sample container Intact?		No		
14. Sufficient sample amount for indicated tast(s)?		No		
15. All samples received within sufficient hold time?		No		
18. Subcontract of sample(s)?		No	(NA)	
17. VOC sample have zero head space?	Tes	No	NA	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 IN	<u>.</u>	Cooler 5 No	<u>.</u>
	C Be	°	Ba	°C

Nonconformance Documentation

I

Cont

Regarding:

Corrective Action Taken:

Check all that apply: Cooling process has begun shortly after sampling event and out of temperature condition acceptable by NELAC 5.5.8.1.a.1. Unitial and Backup Temperature confirm out of temperature conditions Client understands and would like to proceed with analysis

Contacted by:

Page 14 of 14

• •••••

Final 1.000

Data/Time