RECR - 11

LIMITED PHASE II ENVIORNMENTAL SITE ASSESSMENT REPORT

DATE: 02/28/12

February 28, 2012 File No.: 124547.1-ALB12RP001

Mr. Jim Griswold New Mexico Oil Conservation Division 1200 South St. Francis Drive Santa Fe, New Mexico 87505

Subject: Limited Phase II Environmental Site Assessment Hutcherson No.1 Pit Site Southwest of Milnesand, New Mexico

Dear Mr. Griswold:

Kleinfelder West, Inc. (Kleinfelder) is pleased to submit this letter report to the New Mexico Oil Conservation Division (NMOCD). This letter report describes the scope of work, results, and conclusions of the limited Phase II Site Assessment (limited Phase II) performed at the above referenced property (Subject Site).

The Subject Site is located in Unit Letter E of Section 21, Township 8 south, Range 34 east, just southwest of Milnesand, New Mexico (See Figure 1, Site Location Map). The Subject Site consists of an abandoned crude oil pit. The depth to ground water at the Subject Site has been reported to be approximately 120 feet (ft) below ground surface (bgs).

Excavation activities were performed in June 2007 at this pit in an initial effort to remove drilling cuttings. The potential contaminants of concern (COCs) associated with this pit were: benzene, toluene, ethylbenzene, and xylene (BTEX); total petroleum hydrocarbons (TPH); and chlorides. Work that was previously performed at the site consists of:

- A naturally occurring radioactive material (NORM) survey. The results indicated that NORM was not present.
- Approximately 4,700 cubic yards of petroleum- and chloride- impacted materials were excavated from the Hutcherson No. 1 pit. Following excavation, the pit dimensions were approximately 114 ft by 80 ft by 19 ft deep.

Upon completion of pit excavation, soil samples were collected and analyzed for TPH and chlorides. The results were analyzed and found to contain:

Page 1 of 5

	N Pit Sidewall	E Pit Sidewall	S Pit Sidewall	W Pit Sidewall	Pit Bottom
Depth					
Benzene	<0.050	<0.050	<0.050	<0.050	<0.050
BTEX	<0.25	<0.25	<0.25	<0.25	<0.25
ТРН	140	<65	<65	<65	<65
Chloride	1300	3700	160	17	5900

Concentrations in milligrams/kilogram (mg/kg)

In addition, a test pit was excavated in the bottom of the excavation after removal of materials. The test pit was excavated to assess the vertical profile of chloride concentrations. Soil samples were collected from the bucket as the excavation was advanced to the full reach of the trackhoe. The samples were analyzed for chlorides and reported to contain the following concentrations:

		all the second se	68
	5 ft Below	10 ft Below	19 ft Below
	Pit Floor	Pit Floor	Pit Floor
Total Depth (ft)	19	24	33
Chloride (mg/kg)	8600	4600	ິ3000
		1930 AN	

The data indicates that the majority of TPH impacted soils have been excavated. However, chloride concentrations above the NMOCD guideline concentration (1000 mg/kg) in the soil remain in the north sidewall, east sidewall, and pit bottom. The pit bottom samples indicate that the chlorides concentrations are decreasing with depth.

LIMITED PHASE II SUBSURFACE ASSESSMENT

It is the intent of the NMOCD to complete remedial activities at the Subject Site and close out this pit. The purpose of this limited Phase II ESA was to:

- Assess the horizontal and vertical extent of remaining COCs associated with the pit; and
- Provide recommendations to complete the closure of the pit.

Four soil borings were advanced at the Subject Site to assess the horizontal and vertical profile of chloride and TPH concentrations. Soil borings were drilled at the northern, southern, eastern, and western edges of the pit (see Figure 2, Boring Location Map).

Project Preparation

Prior to site mobilization, Kleinfelder prepared a project-specific Health and Safety Plan (HASP). New Mexico One-Call was notified approximately 4 days prior to drilling services to facilitate the location of underground utilities and pipelines. NMOCD staff were notified several days in advance of field activities to arrange for site access.

124547.1-ALB12RP001 Copyright 2012, Kleinfelder

Page 2 of 5

February 28, 2012 Rev. A

KLEINFELDER 9019 Washington St. NE Building A. Albuquerque, NM 87113 pl 505.344.7373 fl 505.344.1711

Field Program

A Kleinfelder field engineer observed the advancement of the soil borings at the site. Drilling services were provided by EnviroDrill, Inc. of Albuquerque, New Mexico. Soil borings were drilled using a CME-75 hollow stem auger (HSA) drill rig and 8-inch outside diameter hollow stem augers. Each soil boring was advanced to a depth of 50 ft below ground surface (bgs). Samples will be collected at 10 ft bgs and every 10 ft thereafter using a split spoon sampler. Cuttings and samples were logged according to the Unified Soil Classification System.

Soil samples were submitted under chain of custody to Hall Environmental Analytical Laboratory in Albuquerque, New Mexico. Five samples per boring were analyzed for chlorides by EPA Method 300. Two samples per boring (total of 8 samples) were submitted and analyzed for TPH gasoline range organics (GRO) and diesel range organics (DRO, that includes motor oil range organics) by EPA method 8015B modified. Samples selected for TPH analysis consisted of the two deepest (40-ft and 50-ft depth) samples from each boring.

Kleinfelder also collected a soil sample from a small (less than 10 cubic yards) soil pile located near the southeastern corner of the pit. The soil sample collected from the soil pile was analyzed for chlorides by EPA Method 300 and TPH-GRO, DRO by EPA Method 8015 B modified.

Investigation Derived Waste (IDW) Management

Cuttings from borings were placed in labeled DOT-approved fifty-five gallon drums. Drums were left on site for future disposal.

RESULTS

Soils at the site consisted predominately of fine- to medium-grained, dense to very dense, moist to dry, tan to reddish-brown, silty sand from the ground surface to the total depth of most of the borings. A clayey sand unit was observed overlying the silty sand in soil boring B-4. This unit was fine- to medium-grained, moist, reddish-brown, and extended from ground surface to a depth of 7 ft bgs. See Attachment 1 for the soil boring logs.

Sample Location	Depth (Ft BGS)	Chloride (Mg/Kg)	TPH (Mg/Kg)
B-1	10	<1.5	Not Sampled
	20	110	Not Sampled
	30	2.0	Not Sampled
······	40	<7.5	<65.8
	50	1.5	<63.5
B-2	10	650	Not Sampled
	20	720	Not Sampled
	30	1500	Not Sampled

The following table presents the results of the soil analytical data:

124547.1-ALB12RP001 Copyright 2012, Kleinfelder

KLEINFELDER 9019 Washington St. NE Building A. Albuquerque, NM 87113 pl 505.344.7373 fl 505.344.1711

40	1100	
	1100	<65.9
50	650	<63.4
10	340	Not Sampled
20	910	Not Sampled
30	45	Not Sampled
40	130	<63.3
50	93	<63.8
10	3200	Not Sampled
20	940	Not Sampled
30	27	Not Sampled
40	23	<63.7
50	33	<62.5
N/A	<7.5	<66.8
N/A	33	224
	10 20 30 40 50 10 20 30 40 50 N/A	10 340 20 910 30 45 40 130 50 93 10 3200 20 940 30 27 40 23 50 33 N/A <7.5

The results of the soil boring laboratory data indicates that chloride concentrations drop to below the NMOCD guideline concentration at a maximum depth of 50 ft bgs (or shallower) in each of the soil borings. Concentrations of TPH were not present above the laboratory reporting limit in the soil boring laboratory data. See Attachment 2 for the laboratory analytical report.

The results of the soil pile laboratory data indicates that chloride concentrations are below the NMOCD guideline concentration. However, the TPH concentration exceeds the regulatory limit of 100 mg/kg.

CONCLUSIONS AND RECOMMENDATIONS

The current and historical laboratory data obtained from soil samples collected from the site do not indicate the presence of TPH associated with the pit. Chloride concentrations are present above the NMOCD guideline concentration. However, the reported concentrations appear to decrease with depth to below the NMOCD guideline concentration at depths no greater than 50 ft bgs.

The data suggests that it is unlikely for the observed chloride concentrations to impact the ground water table. This is based on the arid climate of the area and reported depth to ground water (120 ft bgs). Due to this, Kleinfelder recommends the pit be backfilled with clean soil to ground surface. The area should be reseeded with a native seed mixture.

Kleinfelder recommends that an engineered liner be added within the pit area prior to the completion of backfilling. The liner will provide an additional level of protection to the groundwater.

Kleinfelder recommends that the soil pile located near the southeast corner of the pit be removed and properly disposed of at a landfill or landfarm.

Page 4 of 5

Kleinfelder will prepare a work plan for the above referenced scope of work. The work plan will be submitted as an addendum to this report.

LIMITATIONS

Kleinfelder offers various levels of investigative and engineering services to suit the varying needs of different clients. It should be recognized that definition and evaluation of geologic and environmental conditions are a difficult and inexact science. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies. Although risk can never be eliminated, more detailed and extensive studies yield more information, which may help understand and manage the level of risk. Since detailed study and analysis involves greater expense, our clients participate in determining levels of service that provide adequate information for their purposes at acceptable levels of risk. More extensive studies, including subsurface studies or field tests, should be performed to reduce uncertainties. Acceptance of this report will indicate that NMOCD has reviewed the document and determined that it does not need or want a greater level of service than provided.

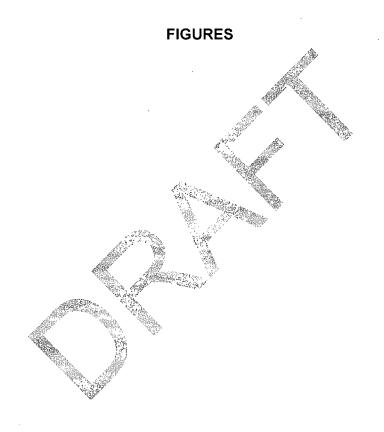
During the course of the performance of Kleinfelder's services, hazardous materials may have been discovered. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury that results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials. Nothing contained in this report should be construed or interpreted as requiring Kleinfelder to assume the status of an owner, operator, or generator, or person who arranges for disposal, transport, storage, or treatment of hazardous materials within the meaning of any governmental statute, regulation, or order. The NMOCD is solely responsible for directing notification of all governmental agencies, and the public at large, of the existence, release, treatment, or disposal of any hazardous materials observed at the project site, either before or during performance of Kleinfelder's services. The NMOCD is responsible for directing all arrangements to lawfully store, treat, recycle, dispose, or otherwise handle hazardous materials, including cuttings and samples resulting from Kleinfelder's services.

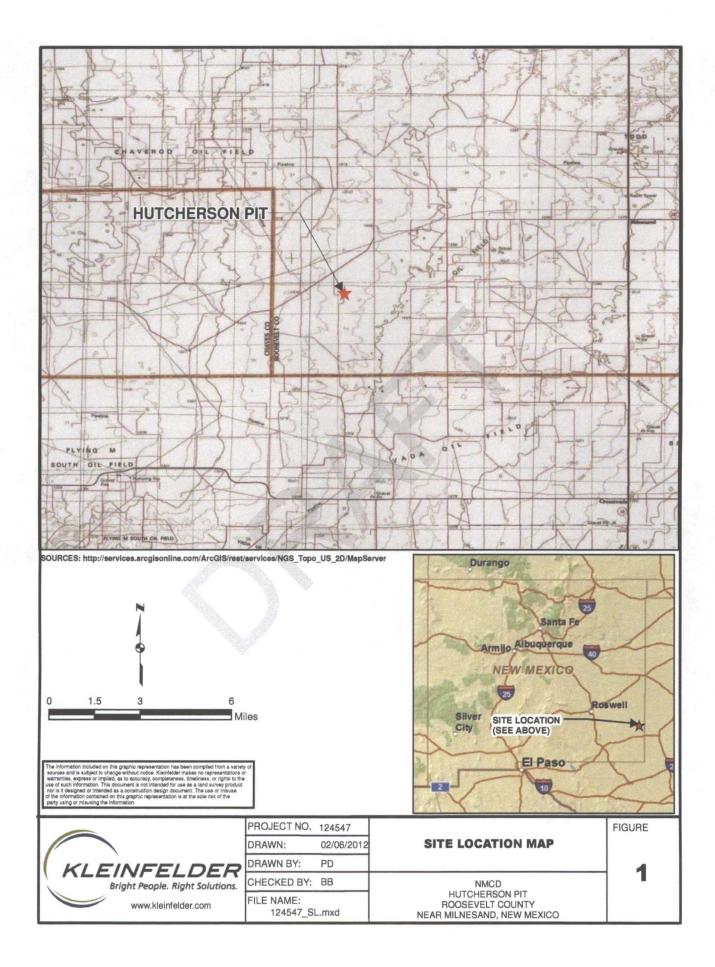
We appreciate the opportunity to provide these services to NMOCD. Should any questions arise concerning this work plan, we will be pleased to discuss them with you.

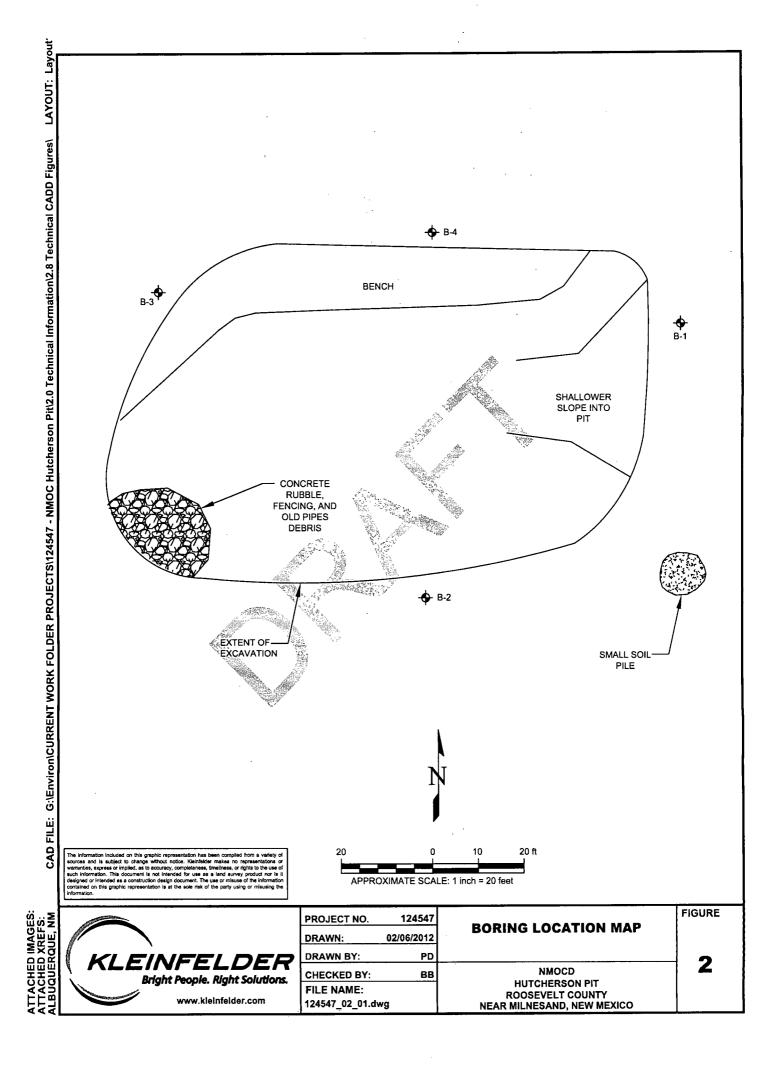
Respectfully submitted,

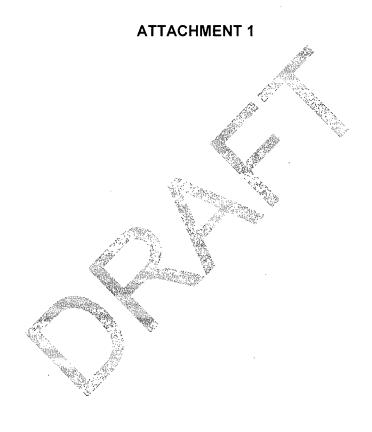
KLEINFELDER WEST, INC.

Reviewed by:

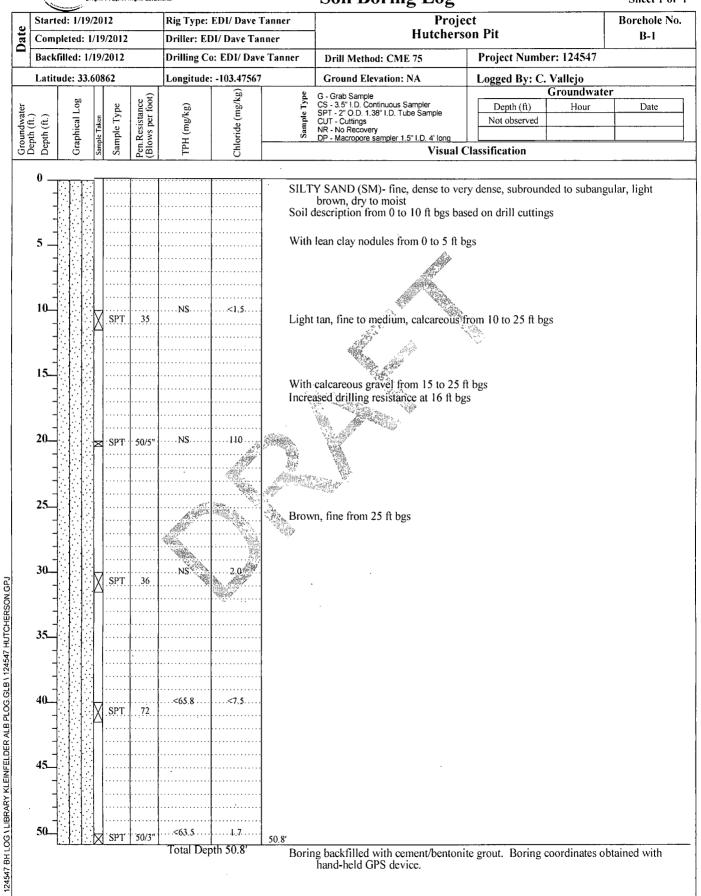

Bernard Bockisch, PMP Senior Project Manager Eileen Shannon, PG Project Professional

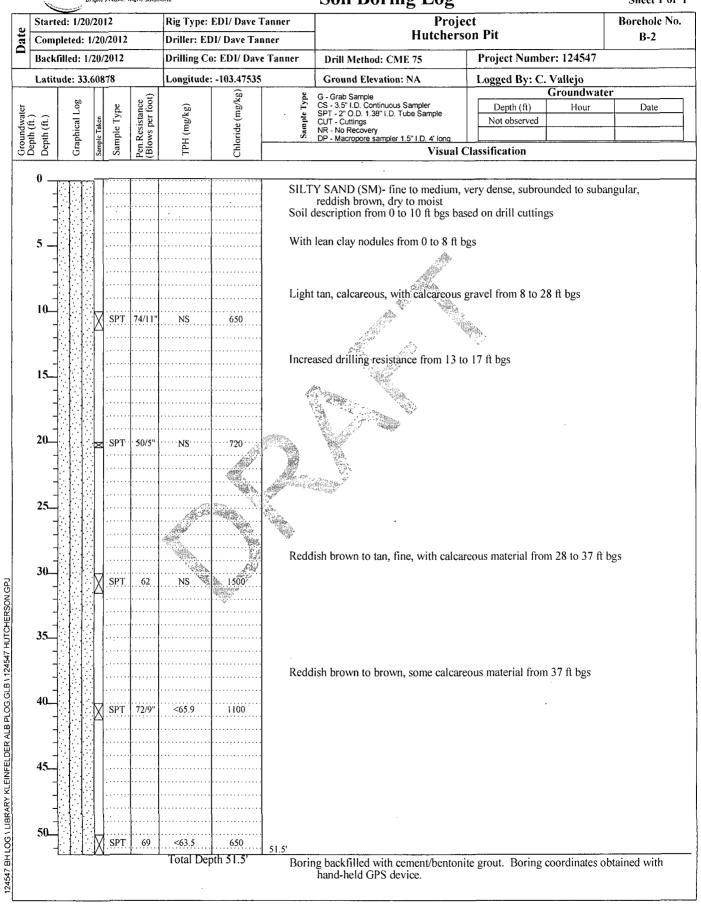

124547.1-ALB12RP001 Copyright 2012, Kleinfelder

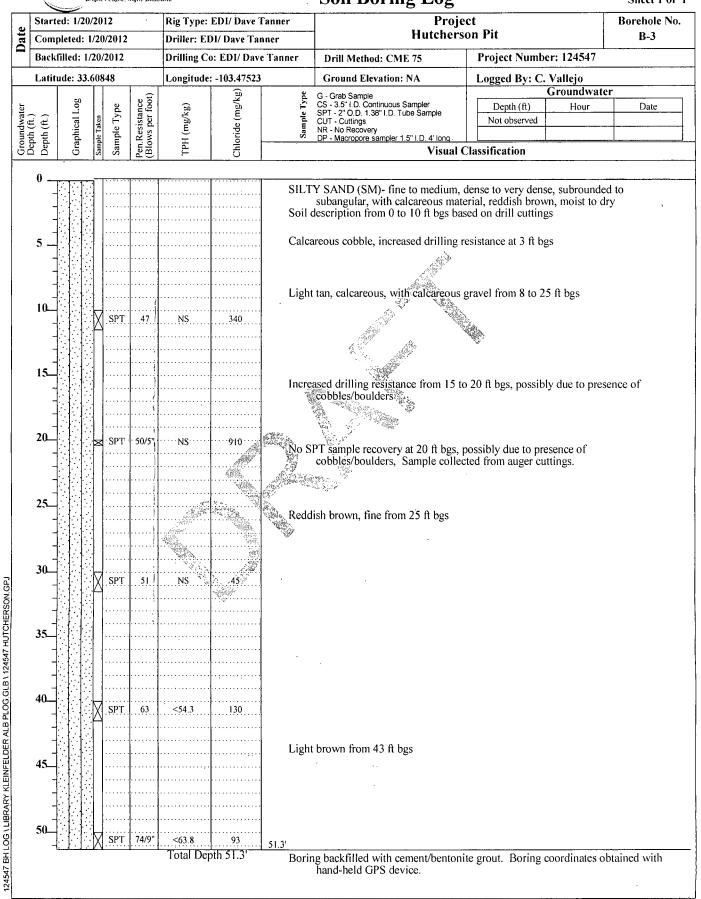

Page 5 of 5

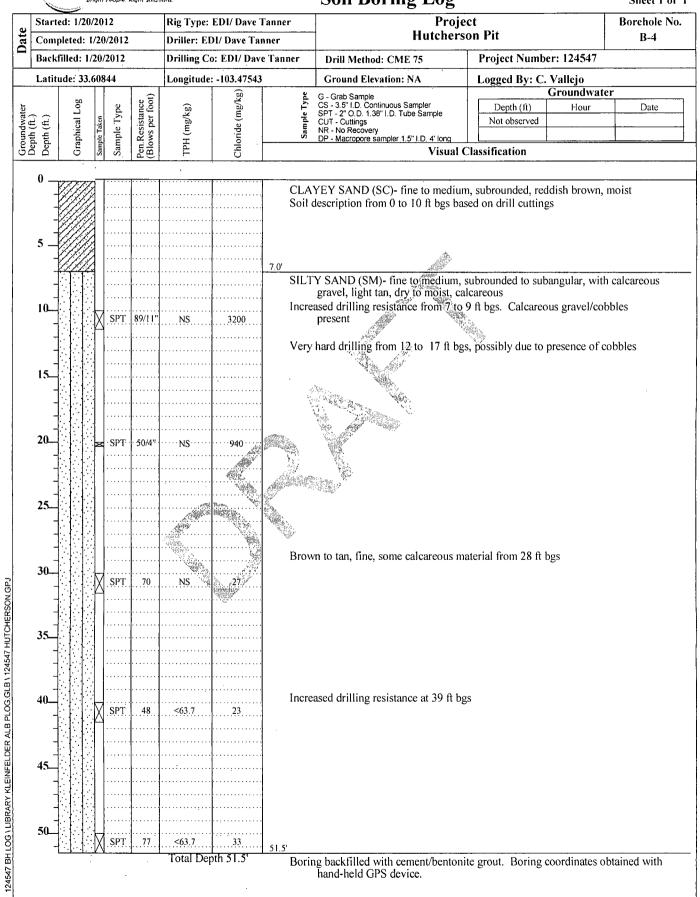

February 28, 2012 Rev. A

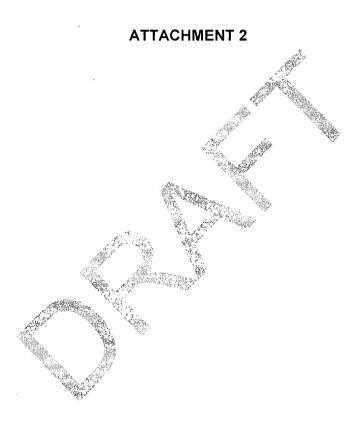
KLEINFELDER 9019 Washington St. NE Building A. Albuquerque, NM 87113 pl 505.344.7373 fl 505.344.1711











L

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

January 31, 2012

Bernie Bockisch Kleinfelder 9019 Washington NE Building A Albuquerque, NM 87113 TEL: (505) 344-7373 FAX (505) 344-1711

RE: Hutcheson Pit

OrderNo.: 1201639

Dear Bernie Bockisch:

Hall Environmental Analysis Laboratory received 22 sample(s) on 1/23/2012 for the analyses presented in the following report.

There were no problems with the analytical events associated with this report unless noted in the Case Narrative. Analytical results designated with a "J" qualifier are estimated and represent a detection above the Method Detection Limit (MDL) and less than the Reporting Limit (PQL). These analytes are not reviewed nor narrated as to whether they are laboratory artifacts.

Quality control data is within laboratory defined or method specified acceptance limits except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Anal	Lab Order 1201639 Date Reported: 1/31/2012				
CLIENT: Kleinfelder			Client Sample	e ID: B-3, 1	0' bgs-
Project: Hutcheson Pit	Collection Date: 1/20/2012 9:45:00 AM				
Lab ID: 1201639-001	Matrix: S	OIL	Received I	Date: 1/23/2	012 11:10:00 AM
Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: BRM
Chloride	340	30	mg/Kg	20	1/25/2012 2:14:29 PM

- */X Value exceeds Maximum Contaminant Level. Ε Value above quantitation range
- J Analyte detected below quantitation limits
- RPD outside accepted recovery limits
- R
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank

Analytical Report

- н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 1 of 25

Hall En	vironmental A	nalysis Laborat	ory, Inc.		Lat	alytical Report Order 1201639 Re Reported: 1/31/2012	
CLIENT: Kleinfelder Project: Hutcheson Pit Lab ID: 1201639-002		Matrix: S	Coll		Client Sample ID: B-3, 20' bgs Collection Date: 1/20/2012 9:54:00 AM Received Date: 1/23/2012 11:10:00 AM		
Analyses		Result	RL Qu	al Units	DF	Date Analyzed	
EPA METH Chloride	10D 300.0: ANIONS	910	30	mg/Kg	20	Analyst: BRM 1/25/2012 2:49:17 PM	
			ۍ ۱۰ ولو. ۱۰ ولو.				
		sti ⁿ te.					

- */X Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range l
- Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 2 of 25

· 7

Hall Environmental Analysis Laboratory, Inc. Date Reported: 1/31/2012 **CLIENT:** Kleinfelder Client Sample ID: B-3, 30' bgs **Project:** Hutcheson Pit Collection Date: 1/20/2012 10:00:00 AM Lab ID: 1201639-003 Matrix: SOIL Received Date: 1/23/2012 11:10:00 AM Analyses Result RL Qual Units DF **Date Analyzed** EPA METHOD 300.0: ANIONS Analyst: BRM Chloride 45 1/25/2012 3:06:41 PM 1.5 mg/Kg 1

Qualifiers:

- */X Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits \mathbf{S}
- В Analyte detected in the associated Method Blank

Analytical Report Lab Order 1201639

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- **Reporting Detection Limit** RL

Page 3 of 25

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Kleinfelder Project: Hutcheson Pit Lab ID: 1201639-004	Matrix:			ate: 1/20/2	0' bgs 012 10:18:00 AM 012 11:10:00 AM
Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E ORGANICS				Analyst: JMP
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	1/25/2012 11:57:22 AM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	1/25/2012 11:57:22 AM
Sun: DNOP	116	77.4-131	%REC	1	1/25/2012 11:57:22 AM
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	1/24/2012 6:24:43 PM
Surr: BFB	94.3	69.7-121	%REC	1	1/24/2012 6:24:43 PM
EPA METHOD 300.0: ANIONS					Analyst: BRM
Chloride	130	30	mg/Kg	20	1/25/2012 5:08;33 PM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level, Value above quantitation range
- Е J
- Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- s Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 4 of 25

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Kleinfelder			Client Sample		-
Project: Hutcheson Pit					012 10:28:00 AM
Lab ID: 1201639-005	Matrix:	SOIL	Received D	Date: 1/23/2	012 11:10:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RAN	GE ORGANICS				Analyst: JMP
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	1/25/2012 1:40:18 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	1/25/2012 1:40:18 PM
Surr: DNOP	127	77.4-131	%REC	1	1/25/2012 1:40:18 PM
EPA METHOD 8015B: GASOLINE F	ANGE				Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	1/24/2012 6:53:28 PM
Surr: BFB	94.7	69.7-121	%REC	1	1/24/2012 6:53:28 PM
EPA METHOD 300.0: ANIONS				:	Analyst: BRM
Chloride	93	30	mg/Kg	<u></u> 20	1/25/2012 5:43:21 PM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level. Ε Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Reporting Detection Limit RL

Page 5 of 25

CLIENT: Project: Lab ID:	Kleinfelder Hutcheson Pit 1201639-006	Matrix: S	SOIL	Collection D	Client Sample ID: B-4, 10' bgs Collection Date: 1/20/2012 11:29:00 AM Received Date: 1/23/2012 11:10:00 AM		
Analyses	· · · · · · · · · · · · · · · · · · ·	Result	RL Qu	al Units	DF	Date Analyzed	
EPA MET Chloride	HOD 300.0: ANIONS	3,200	300	mg/Kg	200	Analyst: BRM 1/26/2012 12:34:17 PM	
					angara. Angara		
				And			
	<i>م</i> ،		φ - τ _μ δηματικής Διαγτή Στης της Γιατικής δηματικής Γιατικής της της Γιατικής της της				
					·		

- E Value above quantitation range
- J Analyte detected below quantitation limits

*/X Value exceeds Maximum Contaminant Level.

- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- ${\bf B} \quad \ \ {\rm Analyte\ detected\ in\ the\ associated\ Method\ Blank}$

Analytical Report Lab Order 1201639

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 6 of 25

Hall Er	ivironmental A	nalysis Laborato	ory, Inc.		Lat	alytical Report Order 1201639 te Reported: 1/31/2012
CLIENT: Project: Lab ID:	Kleinfelder Hutcheson Pit 1201639-007	Matrix: SC			Date: 1/20/2	0' bgs 012 12:04:00 PM 012 11:10:00 AM
Analyses		Result	RL Qual	Units	DF	Date Analyzed
EPA MET Chloride	HOD 300.0: ANIONS	940	30	mg/Kg	20	Analyst: BRM 1/25/2012 6:52:59 PM
					∎ ∦an 1	
				4.警行		

- */X Value exceeds Maximum Contaminant Level.E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 7 of 25

	Kleinfelder Hutcheson Pit 1201639-008	Matrix: S				0' bgs 012 12:17:00 PM 012 11:10:00 AM
Analyses		Result	RL Qua	Units	DF	Date Analyzed
EPA MET Chloride	HOD 300.0: ANIONS	27	1.5	mg/Kg	1	Analyst: BRM 1/25/2012 7:10:24 PM
					a. 1995 - Mary Day	
			,			
				an a		
			· .			
		e fait e a				
	ي الم					

- */X Value exceeds Maximum Contaminant Level. Е Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- s Spike Recovery outside accepted recovery limits
- в Analyte detected in the associated Method Blank

Analytical Report Lab Order 1201639

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 8 of 25

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Kleinfelder Project: Hutcheson Pit Lab ID: 1201639-009	Matrix:	SOIL		ate: 1/20/2	0' bgs 012 12:30:00 PM 012 11:10:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	GE ORGANICS				Analyst: JMP
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP	ND ND 128	9.8 49 77.4-131	mg/Kg mg/Kg %REC	1 1 1	1/25/2012 2:14:42 PM 1/25/2012 2:14:42 PM 1/25/2012 2:14:42 PM
EPA METHOD 8015B: GASOLINE R	ANGE				Analyst: RAA
Gasolin e Range Organics (GRO) Surr: BFB	ND 94.1	4.9 69.7-121	mg/Kg %REC	1 1	1/24/2012 7:22:19 PM 1/24/2012 7:22:19 PM
EPA METHOD 300.0: ANIONS				* .	Analyst: BRM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level.E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 9 of 25

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Project: Lab ID:	Kleinfelder Hutcheson Pit 1201639-010	Matrix:	SOIL		ate: 1/20/2	0' bgs 012 12:41:00 PM 012 11:10:00 AM
Analyses		Result		ual Units	DF	Date Analyzed
	HOD 8015B: DIESEL RANG		· · · · · ·			Analyst: JMP
Diesel R Motor Oi	ange Organics (DRO) I Range Organics (MRO) DNOP	ND ND 110	9.7 48 77.4-131	mg/Kg mg/Kg %REC	1 1 1	1/25/2012 2:48:49 PM 1/25/2012 2:48:49 PM 1/25/2012 2:48:49 PM
	HOD 8015B: GASOLINE RA	ANGE				Analyst: RAA
Gasoline Surr: E	Range Organics (GRO) BFB	ND 95.4	4.8 69.7-121	mg/Kg %REC	1 1	1/24/2012 7:51:10 PM 1/24/2012 7:51:10 PM
EPA MET	HOD 300.0: ANIONS				and the second	Analyst: BRN
Chloride		33	1.5	mg/Kg		1/25/2012 8:54:51 PM
			1 2 2 2 2		·	

Qualifiers:

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 10 of 25

Hall Environmental Analysis Laboratory, Inc.

	Kleinfelder			Client Sample		
Project:	Hutcheson Pit		0.017			012 3:30:00 PM
Lab ID:	1201639-011	Matrix:	SOIL	Received D	Date: 1/23/2	012 11:10:00 AM
Analyses		Result	RL Qı	al Units	DF	Date Analyzed
EPA MET	HOD 8015B: DIESEL RAN	GE ORGANICS				Analyst: JMP
Diesel R	ange Organics (DRO)	64	9.6	mg/Kg	1	1/26/2012 7:40:21 AM
Motor Oi	Range Organics (MRO)	160	48	mg/Kg	1	1/26/2012 7:40:21 AM
Surr: I	NOP	93.6	77.4-131	%REC	1	1/26/2012 7:40:21 AM
EPA MET	HOD 8015B: GASOLINE R	ANGE				Analyst: RAA
Gasoline	Range Organics (GRO)	ND	4.8	mg/Kg	1	1/24/2012 8:20:00 PM
Sun: E	3FB	95.2	69.7-121	%REC	1	1/24/2012 8:20:00 PM
EPA MET	HOD 300.0: ANIONS					Analyst: BRM
Chloride		33	7.5	mg/Kg	5	1/25/2012 9:29:40 PM
				منتخب المنتخب ا		
			نمر		hitay).	
				n generalisti Antonia serie Magina Serie		
				. 2010 - 44. 		
		s afraing		n af leaning		
			ي من المركز ا من المركز الم			
	et en		ļie.			
		201				

Qualifiers:

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- $B \quad \ \ Analyte \ detected \ in \ the \ associated \ Method \ Blank$
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 11 of 25

Analytical Report Lab Order 1201639

Date Reported: 1/31/2012

Hall Environmental Analysis Laboratory, Inc.

	Kleinfelder Hutcheson Pit		· · · ·	Client Sample Collection D		mple 012 3:35:00 PM
Lab ID:	1201639-012	Matrix:	SOIL			012 11:10:00 AM
Analyses		Result	RL Q	ual Units	DF	Date Analyzed
EPA MET	HOD 8015B: DIESEL RAN	NGE ORGANICS				Analyst: JMP
	inge Organics (DRO)	ND	10	mg/Kg	1	1/26/2012 7:18:31 AM
	Range Organics (MRO)	ND	52	mg/Kg	1	1/26/2012 7:18:31 AM
	NOP .	87.8	77.4-131	%REC	1	1/26/2012 7:18:31 AM
	HOD 8015B: GASOLINE					Analyst: RAA
	Range Organics (GRO)	ND	4.8	mg/Kg	1	1/24/2012 8:48:51 PM
Surr: B		94.9	69.7-121	%REC	1	1/24/2012 8:48:51 PM
EPA MET	HOD 300.0: ANIONS	ND	7.5	mg/Kg	<u>بۇ</u> 5	Analyst: BRM 1/25/2012 10:04:29 PM
			:.			
		ہ				
. •						

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range J

Analyte detected below quantitation limits

- R. RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

RŁ Reporting Detection Limit

Page 12 of 25

Hall En	vironmental An	alysis Laborat	ory, Inc.			Order 1201639 te Reported: 1/31/2012
	Kleinfelder Hutcheson Pit 1201639-013	Matrix: S			ate: 1/19/2	0' bgs 012 2:25:00 PM 012 11:10:00 AM
Analyses		Result	RL Qual	Units	DF	Date Analyzed
EPA MET Chloride	HOD 300.0: ANIONS	ND	1.5	mg/Kg	1	Anaiyst: BRM 1/25/2012 10:39:18 PM
		·				
				, ч.у.		

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

Analytical Report

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 13 of 25

TIFNT.	Kleinfelder			Client Sample	а ПО ТР 11.12/)' hos
Project:	Hutcheson Pit			-		012 2:37:00 PM
Lab ID:	1201639-014	Matrix: SO	JIL			012 11:10:00 AM
Analyses	<mark></mark>	Result	RL Qu	al Units	DF	Date Analyzed
EPA MET	HOD 300.0: ANIONS					Analyst: BRM
Chloride		110	30	mg/Kg	20	1/26/2012 12:06:20 AM
					2944	
					2000 B	
	N					

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

Analytical Report

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 14 of 25

Hall Environmental Anal	ysis Laborat	ory, Inc.	Date Reported: 1/31/2012			
CLIENT: Kleinfelder	· .		Client Sample	e ID: B-1, 3	0' bgs	-
Project: Hutcheson Pit			Collection I	Date: 1/19/2	012 2:49:00 PM	
Lab ID: 1201639-015	Matrix: S	OIL	Received I	Date: 1/23/2	012 11:10:00 AM	
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	
EPA METHOD 300.0: ANIONS					Analyst:	BRM
Chloride	2.0	1.5	mg/Kg	1	1/26/2012 12:23:4	4 AM

Analytical Report Lab Order 1201639

Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- s Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 15 of 25

.

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Kleinfelder		· .	Client Sample		
Project: Hutcheson Pit			Collection I	Date: 1/19/2	012 3:00:00 PM
Lab ID: 1201639-016	Matrix:	SOIL	Received I	Date: 1/23/2	012 11:10:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	GE ORGANICS				Analyst: JMP
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	1/25/2012 11:23:06 AM
Motor Oil Range Organics (MRO)	ND	51	mg/Kg	1	1/25/2012 11:23:06 AM
Sur: DNOP	129	77.4-131	%REC	1	1/25/2012 11:23:06 AM
EPA METHOD 8015B: GASOLINE R	ANGE				Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	1/24/2012 9:17:39 PM
Sun: BFB	94.8	69.7-121	%REC	1	1/24/2012 9:17:39 PM
EPA METHOD 300.0: ANIONS					Analyst: BRM
Chloride	ND	7.5	mg/Kg	5	1/26/2012 12:58:33 AM
·					
		en se de segure			

Qualifiers:

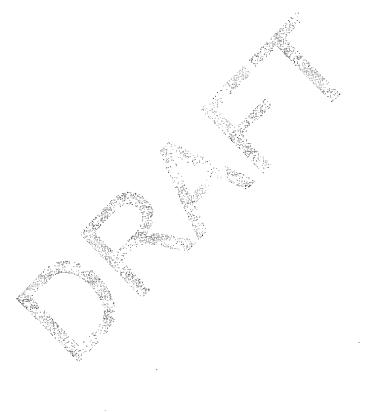
- E Value above quantitation range
- J Analyte detected below quantitation limits

*/X Value exceeds Maximum Contaminant Level.

- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 16 of 25

Hall Environmental Analysis Laboratory, Inc.


CLIENT: Kleinfelder Client Sample ID: B-1, 50' bgs Hutcheson Pit **Project:** Collection Date: 1/19/2012 3:14:00 PM 1201639-017 Matrix: SOIL Lab ID: Received Date: 1/23/2012 11:10:00 AM Result Analyses **RL** Qual Units DF **Date Analyzed EPA METHOD 8015B: DIESEL RANGE ORGANICS** Analyst: JMP Diesel Range Organics (DRO) ND 9.8 1/25/2012 5:11:52 PM mg/Kg 1 Motor Oil Range Organics (MRO) ND 49 mg/Kg 1/25/2012 5:11:52 PM 1 Sun: DNOP 91.8 77.4-131 %REC 1/25/2012 5:11:52 PM 1 EPA METHOD 8015B: GASOLINE RANGE Analyst: RAA Gasoline Range Organics (GRO) ND 4.7 mg/Kg 1/24/2012 9:46:27 PM 1 Surr: BFB 94.7 69.7-121 %REC 1/24/2012 9:46:27 PM 1 **EPA METHOD 300.0: ANIONS** Analyst: BRM Chloride 1.7 1.5 mg/Kc 1 1/26/2012 1:33:23 AM

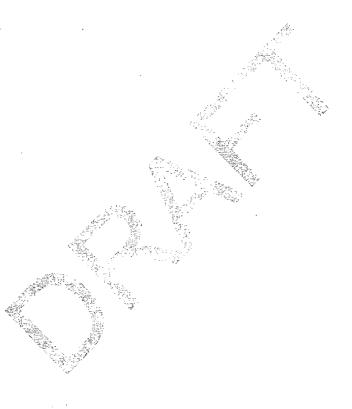
Qualifiers:

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 17 of 25

Hall Environmental Anal	ysis Laborat	ory, Inc.			o Order 1201639 te Reported: 1/31/2012
CLIENT: Kleinfelder	· · ·		Client Sample	ID: B-2, 1	0' bgs
Project: Hutcheson Pit			Collection E	ate: 1/20/2	012 7:38:00 AM
Lab ID: 1201639-018	Matrix: S	OIL	Received D	ate: 1/23/2	012 11:10:00 AM
Analyses	Result	RL Q	ial Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: BRM
Chloride	650	30	mg/Kg	20	1/26/2012 3:35:16 AM

*/X Value exceeds Maximum Contaminant Level.


- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

Analytical Report

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 18 of 25

Hall Environmental Anal	ysis Laborat	ory, Inc.			b Order 1201639 te Reported: 1/31/2012
CLIENT: Kleinfelder			Client Sample	e ID: B-2, 2	0' bgs
Project: Hutcheson Pit			Collection I	Date: 1/20/2	012 7:57:00 AM
Lab ID: 1201639-019	Matrix: S	OIL	Received I	Date: 1/23/2	012 11:10:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: BRM
Chloride	720	30	mg/Kg	20	1/26/2012 1:09:07 PM

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

Analytical Report

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 19 of 25

CLIENT: Project: Lab ID:	Kleinfelder Hutcheson Pit 1201639-020	Matrix: SC	DIL			ate: 1/20/20)' bgs)12 8:13:00 AM)12 11:10:00 AM
Analyses		Result	RL	Qual	Units	DF	Date Analyzed
EPA MET Chloride	HOD 300.0: ANIONS	1,500	75		mg/Kg	50	Analyst: BRM 1/27/2012 5:52:34 PM

- E Value above quantitation range
- J Analyte detected below quantitation limits

*/X Value exceeds Maximum Contaminant Level.

- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

Analytical Report

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 20 of 25

Hall Environmental Analysis Laboratory, Inc.

.

CLIENT: Kleinfelder Project: Hutcheson Pit			Client Sample Collection D		0' bgs 012 8:23:00 AM
Lab ID: 1201639-021	Matrix:	SOIL	Received D	ate: 1/23/2	012 11:10:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E ORGANICS				Analyst: JMP
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	1/25/2012 5:33:20 PM
Motor Oil Range Organics (MRO)	ND	51	mg/Kg	1	1/25/2012 5:33:20 PM
Surr: DNOP	87.6	77.4-131	%REC	1	1/25/2012 5:33:20 PM
EPA METHOD 8015B: GASOLINE RA					Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	1/25/2012 12:10:30 AM
Surr: BFB	95.2	69.7-121	%REC	1	1/25/2012 12:10:30 AM
EPA METHOD 300.0: ANIONS			đ		Analyst: BRM
Chloride	1,100	75	mg/Kg	50	1/27/2012 6:44:48 PM

Qualifiers:

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 21 of 25

Hall Environmental Analysis Laboratory, Inc.

	Kleinfelder			Client Sample	ID: B-2, 5	0' bgs
Project:	Hutcheson Pit					012 8:34:00 AM
Lab ID:	1201639-022	Matrix:	SOIL			012 11:10:00 AM
Analyses		Result		ual Units	DF	Date Analyzed
EPA MET	HOD 8015B: DIESEL RANG					Analyst: JMP
	inge Organics (DRO)	ND	9.8	mg/Kg	1	1/25/2012 5:55:00 PM
	Range Organics (MRO)	ND	49	mg/Kg	1	1/25/2012 5:55:00 PM
Surr: D		96.7	77.4-131	%REC	1	1/25/2012 5:55:00 PM
EPA MET	HOD 8015B: GASOLINE RA	ANGE				Analyst: RAA
	Range Organics (GRO)	ND	4.6	mg/Kg	1	1/25/2012 12:39:16 AM
Surr: B		94.7	69.7-121	%REC	1	1/25/2012 12:39:16 AM
EPA MET	HOD 300.0: ANIONS				:	Analyst: BRM
Chloride		650	30	mg/Kg	20	1/26/2012 3:45:49 PM
				್ಷ ಕ್ಷೇತ್ರಗಳು ಸ್ಥಾನಗಳು		
					Sector Se	
				1. • 1.		
			da tos			
	, etter					
						· ·
						· ·
						· ·
			2			· · ·
						· · ·
			7			
	·					

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

Page 22 of 25

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

1201639 *31-Jan-12*

WO#:

Client: Project:	Kleinfeld Hutcheso					·					
Sample ID			ype: Mi					300.0: Anion	B		
Client ID:	PBS		n ID: 42		(RunNo:	589				
Prep Date:	1/25/2012	Analysis D	ate: 1/	25/2012	:	SeqNo: 1	6774	Units: mg/K	g		
Analyte		Result		SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5			<u>.</u>					
Sample ID	LCS-429	SampT	ype: LC	S	Tes	stCode: E	PA Method	300.0: Anion	5		
Client ID:	LCSS	Batch	1D: 42	9	I	RunNo: 5	589				
Prep Date:	1/25/2012	Analysis D	ate: 1/	25/2012	:	SeqNo: 1	6775	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	93.8	90	्रू <u>1</u> 10			
Sample ID	MB-451	SampT	ype: ME	BLK	Tes	stCode: E	PA Method	300.0: Anion	5		
Client ID:	PBS	Batch	1D: 45	1	រ	RunNo: 6	508 <u> </u>				
Prep Date:	1/26/2012	Analysis D	ate: 1/	26/2012	:	SeqNo: 1	17273	Units: mg/K	9		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5			·····	N. M. AN	<u> </u>			
Sample ID	LCS-451	SampT	vpe: LC	:S	Tes	tCode: E	PA Method	300.0: Anion	 B	<u> </u>	
Client ID:	LCSS	Batch	D: 45	1	1,5	RunNo: 6			-		
Prep Date:	1/26/2012	Analysis D	ate: 1/	26/2012		9.4G	7274	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	93.7	90	110			
						3 . ye ⁿ					

Qualifiers:

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#: 1201639

31-Jan-12

Client: Kleinfel Project: Hutches				-						
Sample ID MB-409 Client ID: PBS	Bato	Type: MB h ID: 409	9	F	RunNo: 5	17	8015B: Dies		Organics	
Prep Date: 1/24/2012	Analysis I				SeqNo: 1		Units: mg/M			
Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Surr: DNOP	Result ND ND 11	PQL 10 50	SPK value 10.00	SPK Ref Val	%REC 114	LowLimit 77.4	HighLimit 131	%RPD	RPDLimit	Qual
Sample ID LCS-409	Samo	Type: LC:	s	Tes	tCode: E	PA Method	8015B: Dies	al Rance (Droanice	
Client ID: LCSS		h ID: 409			RunNo: 5		00100. 0.00	ai i tailiga (Jiganica	
Prep Date: 1/24/2012	Analysis I	Date: 1/2	25/2012	Ś	SeqNo: 1		Units: mg/h			
Analyte Diesel Range Organics (DRO)	Result 43	PQL 10	SPK value 50.00	SPK Ref Val	%REC 86.4	LowLimit 62.7	HighLimit 139	%RPD	RPDLimit	Qual
Surr: DNOP	8.7		5.000		174	77.4	131			S

Qualifiers:

- */X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits J
- R RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded ND
 - Not Detected at the Reporting Limit
- Page 24 of 25

RL Reporting Detection Limit

QC SUMMARY REPORT	
Hall Environmental Analysis Laboratory, Inc.	

WO#: 1201639

31-Jan-12

Analyte Gasoline Range Organics (GRO) Surr: BFB Sample ID LCS-401 Client ID: LCSS Prep Date: 1/23/2012 A	Batch Analysis Da Result ND 940 SampTy	PQL 5.0 /pe: LCS ID: 401 ate: 1/2	24/2012 SPK value 1,000 3 3	SPK Ref Val	RunNo: 5 SeqNo: 1 %REC 94.1 stCode: El RunNo: 5 SeqNo: 1	59 5864 LowLimit 69.7 PA Method 59	8015B: Gasc Units: mg/K HighLimit 121 8015B: Gasc Units: mg/K HighLimit	kg %RPD	RPDLimit	Qual
Casoline Range Organics (GRO) Surr: BFB Sample ID LCS-401 Client ID: LCSS Prep Date: 1/23/2012 A Analyte Casoline Range Organics (GRO)	ND 940 SampTy Batch Analysis Da Result 29	5.0 ype: LCS ID: 401 ate: 1/2 PQL	1,000 3 24/2012 SPK value 25.00	Tes SPK Ref Val	94.1 stCode: El RunNo: 5 SeqNo: 1 %REC 118	69.7 PA Method 59 5868 LowLimit	121 8015B: Gaso Units: mg/K HighLimit	line Rang	e	
Client ID: LCSS Prep Date: 1/23/2012 A Analyte Gasoline Range Organics (GRO)	Batch Analysis Da Result 29	ID: 401 ate: 1/2 PQL	24/2012 SPK value 25.00	SPK Ref Val	RunNo: 5 SeqNo: 1 %REC 118	59 5868 LowLimit	Units: mg/K HighLimit	ģ		
Analyte Gasoline Range Organics (GRO)	Result 29	PQL	SPK value 25.00	SPK Ref Val	%REC 118	LowLimit	HighLimit	-		
Gasoline Range Organics (GRO)	29		25.00		118			7014110	RPINImit	Qual
						69.7	132			

Qualifiers:

- X Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- ${\bf B} \quad \ \ {\rm Analyte\ detected\ in\ the\ associated\ Method\ Blank}$
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Page 25 of 25

RL Reporting Detection Limit

ENVIRONMENTAL ANALYSIS LABORATORY TEL: 505-345-393	al Analysis Laboratory 4901 Hawkins NE Ibuquerque, NM 87105 75 FAX: 505-345-410; hallenvironmental.com	Sample Log-In Check List
Client Name: Klein	Work Order Number: 1	201639
Logged by: Lindsay Mangin 1/23/2012 11:10:00 A	M C	mby Allago
Completed By: Lindsay Mangin 1/23/2012 11:27:19 A	AM Sta	why Hopp
Reviewed By: A 1/23/12	V	
Chain of Custody		
1. Were seals intact?	Yes 🗌 No 🗌	Not Present 🗹
2. Is Chain of Custody complete?	Yes 🗹 No 🗌	Not Present
3. How was the sample delivered?	Client	
Log In		1
4. Coolers are present? (see 19. for cooler specific information)	Yes 🗹 No 🗌	
5. Was an attempt made to cool the samples?	Yes 🗹 No 🗖	
6. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🗹 No 🖸	NA 🗆
7. Sample(s) in proper container(s)?	Yes 🗹 No 🗆	
8. Sufficient sample volume for indicated test(s)?	Yes 🗹 No 🖸	
9. Are samples (except VOA and ONG) properly preserved?	Yes 🗹 No 🗋	
10. Was preservative added to bottles?	Yes 🗋 No 🗹	NA 🗍
11. Is the headspace in the VOA vials less than 1/4 inch or 6 mm?	Yes 🗌 No 🗌	No VOA Vials 🗹
12. Were any sample containers received broken?	Yes 🗌 No 🗹	# of proceeded
13. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗹 No 🗌	# of preserved bottles checked for pH:
14. Are matrices correctly identified on Chain of Custody?	Yes 🔽 No 🗌	(<2 or >12 unless noted)
15. Is it clear what analyses were requested?	Yes 🗹 No 🗌	Adjusted?
16. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹 No 🗌	Checked by:
<u>Special Handling (if applicable)</u>		
17. Was client notified of all discrepancies with this order?	Yes 🗌 No 🗌	NA 🔽
Person Notified: Date:		
By Whom: Via:	⊧ □ eMail □ Phone	Fax In Person
Regarding:		
Client Instructions:	in the second	

19. Cooler Information

ļ	Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
[1	3.8	Good	Not Present			

Page 1 of 1

			stody Record	Turn-Arour	id Time:] 🛛			L	AL			NI V	/те	20			NT	ГАІ	
Client:	Klein	felder		12 Standa	rd 🗆 I	Rush																
			· · · · · · · · · · · · · · · · · · ·	Project Na	ne:	6	D.I	ANALYSIS LABORATORY													•	
Mailing	Address	: 9019 h	lashington St NEBIdy A	-	TOTCI	11 850	N PIT	4901 Hawkins NE - Albuquerque, NM 87109														
	<u>_</u>	Albran	ergine, N/M 87/13	Project #:	12454			1) 25-34						-345				•	
Phone #	#: (a	50593	44-7373				-			01. 01	000		_				uesi		•			
email or		BBack	isch Dkleinfelder. com	Project Manager: Bernie Bockisch					<u>}</u>	šel)					04)				-			T
QA/QC Package:						54175	- Doc ersch	TMB's (8021)	as of	(Gas/Diesel)					04, S(CB's						
⊠ Stan	dard		Level 4 (Full Validation)	- <u></u> Autoba	- <u></u>			3's ((Ő	Gas					PO	2 P(
Accreditation:				Sampler Courfrey Vallejo				I H	+ TPH (Gas only)		3.1)	504.1)	Î		Anions (FCCINO3,NO2,PO4,SO4)	8081 Pesticides / 8082 PCB'		·			·	:
			· · · · · · · · · · · · · · · · · · · ·	Sample Te				+ 		TPH Method 8015B	TPH (Method 418.1)	1 50	r PAH)	als	N0.	les /		(Semi-VOA)	÷			
			۲۵۹ بر ۲. مکر ۳. مر					+ MTBE	BTEX + MTBE	pou	athoc	(Method	VA or	RCRA 8 Metals	Q	sticid	8260B (VOA)	-ime				
Date	Time	Matrix	Sample Request ID	Containe Type and	1 239267	- 18.Dec 16	HEALNO	+ ×	+ ×	Met	(Me	(Me	8310 (PNA	KA 8	l) su	Ъ	B (\	S) (Se				
				Type and	# Type	6		втех	BTE	ТРН	TPH	EDB	831(RCF	Anio	808	826(8270				
ilzola	0945	soil	B-3, 10' bas	402 g/45	s ice										\square							
1/20/12	0954	5071	B-3, 20' bys	Yoz glas	W		2			·					\square			·				\top
ilada	1000	soil	B-3, 30' bas	402 glas	C \	set ≤ .	3								\square				·			
1/2012	1018	soil	B-3, 40' bys	yoz glas			- 4															T
ilaolia	1028	soil	B3, 50' bgs	402 glass		ľ	5	(a).											-			
12dia	1129	soil	B-4, 10' bys	407 glas			-6	- 10 C														\neg
Vada	1204	soil	B-4, 20' bys	yoz glas	s ice		-7		· ×	A.C.											T	T
1/20/2	1217	soil	B-4, 30' 695	Hoz glas			-8															
ilada	1230	soil	B-4, 40' bys	Hoz glas	ice		-9															-
Hadia	1241	soil	B-4, 50' bas	40zglass	ice		-10_			\setminus												
iligha	1530	soil	SE Soil Pile	HBOZ glass	ice		-11								\setminus							
Iligha		soil		BOE glass	ice		-12								/							
Date:	Time:	Relinquish	1	Received by:	10	<u>_</u>	Date Time	Ren	nark	s: 🧷	hla	vid e,	s by	ŗ Ē	PA	me	the	dE	300.	6		
1/23/12			Callie .	Roccing	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			4					9									
Date:	Time:	Relinquish	еа ру:	Received by:			Date Time													•		
		<u> </u>						<u> </u>														

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

.

. C	hain	-of-Cu	istody Record	Turn-Around Time:				•				ri i		J TI	20			: B I 7	FA (• •
Client:	Kleint	Felder		Standard	🗆 Rush	L. ·	- HALL ENVIRONMENTAL													
			· · ·	Project Name	ə.		1 🖿						enviro							* •
Mailing	Address	ania	Washington St NE Bldg A		Hotchers	son Pit		404				-								
		10/11	Vashington J-NC Diag H	Project #:	<u> </u>								Albuq					'		
Phone	· ()	TIMINA TOST	040 NM 87113 14-7373		24547-2	2		IE	1. 50	5-34	5-39		alysi			i-410	1:			
				Project Manager: Bernie Bockisch				<u></u> ()	6				Ť			Ĩ				
	Package:			i roject mana	Demic	Bockisch	TMB's (8021)	luo s	Dies				C S	PCB's						
⊡√ Stan	-		Level 4 (Full Validation)					(Ga	(Gas/Diesel)				G	2						
Accredi	tation:			Sampler Cowfney Vallejo				+ TPH (Gas only)		,	,	<u>_</u>	ģ	3082						Î
				Onde	7 Yes	ENCLOSE A SECOND	р + Ш	+	015	418.1)	504	HA HA	<u>ه</u> ا م			(Yo	÷			or N)
	(Type)	<u> </u>		Sampellem	berature		MTBE	+ MTBE	S po	ğ	B	ō	Metals		1	li-				ک در
Data	Time		Sample Request ID	Container	Preservative	HEALNOL	+	≥ +	TPH Method 8015B	TPH (Method	EDB (Method 504.1)	(PNA or I	RCRA 8 Metals Anions (F/CINO, NO, PO, SO.)	8081 Pesticides / 8082	8260B (VOA)	(Semi-VOA)				Air Bubbles (Y
Date	Time	Matrix		Type and #	Туре	E CALLER CALLER	BTEX	BTEX	H	H	B	8310	RCRA 8 I Anions (F	6	260E	8270	:	•		E E
	100-		RI IN' I	11 15			B	<u>m</u>		F	<u> </u>				60	80		$\left - \right $		
orligha		Soil	B-1, 10' bas	407 glass	ice	-13	·			_	-+	+	+	+	<u> </u>	<u> </u>				
111/12		soil	B-1, 20 bgs	407 g/455	ice	<u></u>					-+	+	+							
1/19/12	1449	soil	B-1, 30' bys	402 glass	ice	50							4				·.	\square		
1/19/12	1500	soil	B-1, 40' bgs	402 glass	ice	-16			4						ļ	ļ	:			
1/19/12	1514	soil	B-1, 50' bas	402 g/45	ice		<u></u>		4						<u> </u>	<u> </u>				
1/20/12	0738	ا زمع	B-2, 10' bas	402 glass	ice	-18									1					
Ilada	0757	soil	B-2, 20' bas	402 glass	ice	-19		an a	у 134.					1			:			
1/20/12	0813	soil	B-2, 30' bas	407 glass	ice	20	2,927 4 1							1						
Ilada	0823	soil	B-2, 40' bas	402 9/455	ice	-71			\land											
1/20/12	0834	soil	B-2,50' bas	Hoz glass	ice	-22			\land											
· .					11														·	
Date:	Time:	Relinquish	ed by:	Received by:		Date Time	Ren	narks	5: <i>C</i>]	hor	des	by	EPA	2 ner	Phoc	1 30	0.0	>		
1/23/12	1110	C-1	allin .	Tranger And	May	S1/22/12-1110						U .								
Date:	Time:	Relinquish	ed by:	Réceived by:	· ····	Date Time											, :			
						· · ·														

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

.....