SITE INFORMATION

Report Type: Closure Report

			Type: Close	ure nep						
General Site Info	rmation:									
Site:		State I #16								
Company:	-	COG Opera	ting LLC							
Section, Townsh	nip and Range	Sec 29	T17S	R29E ·						
Lease Number:		API-30-015-	03187							
County:		Eddy Count	ty							
GPS:			32.80083° N		104.08898° W					
Surface Owner:		State								
Mineral Owner:										
Directions:		From Hwy 82	and Hagerman Cutor	ff Rd. in Loco	o Hills travel 6.5 miles west on Hwy 82, turn left					
		onto lease roa	ad and travel 0.9 mile	es, turn left a	nd travel 100 feet to site.					
Release Data:										
Date Released:		4/6/2011								
Type Release:		Produced W	ater							
Source of Contam	nination:	Flowline failu	ure							
Fluid Released:		60 bbls								
Fluids Recovered		0 bbls								
Official Commun	ication:			大·小学生的"						
Name:	Pat Ellis				Ike Tavarez					
Company:	COG Operating, LL	С			Tetra Tech					
Address:	550 W. Texas Ave.									
P.O. Box	550 W. Texas Ave.	Ste. 1300			1910 N. Big Spring					
City:	Midland Texas, 797	01			Midland, Texas					
Phone number:	(432) 686-3023				(432) 682-4559					
Fax:	(432) 684-7137									
Email:	pellis@conchoreso	urces.com			ike.tavarez@tetratech.com					
Ranking Criteria				、水理時代型						
Depth to Groundwa	ater:		Ranking Score		Site Data					
<50 ft	·		20							
50-99 ft			10							
>100 ft.			0		0					
WellHead Protection	on:		Ranking Score		Site Data					
	00 ft., Private <200 ft	t.	20							
	00 ft., Private >200 ft		0		0					
Surface Body of W	ater:		Ranking Score		Site Data					
<200 ft.	_		20							
200 ft - 1,000 ft.			10							
>1,000 ft.			0		0					
Tota	al Ranking Score:									
		z mezzefe (n.z.) ∎tten z americanza		Service States and the service of th						
			able Soil RRAL (m							
		Benzene	Total BTEX	TPH						
		10	50	5,000						

January 9, 2012

Mr. Mike Bratcher Environmental Engineer Specialist Oil Conservation Division, District 2 1301 West Grand Avenue Artesia, New Mexico 88210

Re: Closure Report for the COG Operating LLC., State I #16 Flow Line, Unit P, Section 29, Township 17 South, Range 29 East, Eddy County, New Mexico.

Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating LLC. (COG) to assess a spill at the State I #16 Flow Line located in Unit P, Section 29, Township 17 South, Range 29 East, Eddy County, New Mexico (Site). The spill site coordinates are N 32.80083°, W 104.08898°. The site location is shown on Figures 1 and 2.

Background

On April 6, 2011, COG discovered the flow line leak and released approximately sixty (60) barrels of produced fluids into the pasture. To alleviate the problem, COG personnel repaired the flow line. Zero (0) barrels of standing fluids were recovered. The spill initiated east of the pad affecting an area in the pasture 105' x 70' (tapering to 40'). The initial C-141 form is enclosed in Appendix A.

Groundwater

The Geology and Groundwater Resources of Eddy County, New Mexico (Report 3) did show one well in Section 29 with a depth to groundwater of 210' below surface. According to the NMOCD groundwater map, the average depth to groundwater in this area appears to be around 150' below surface. The well data are shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5,000 mg/kg.

Soil Assessment and Analytical Results

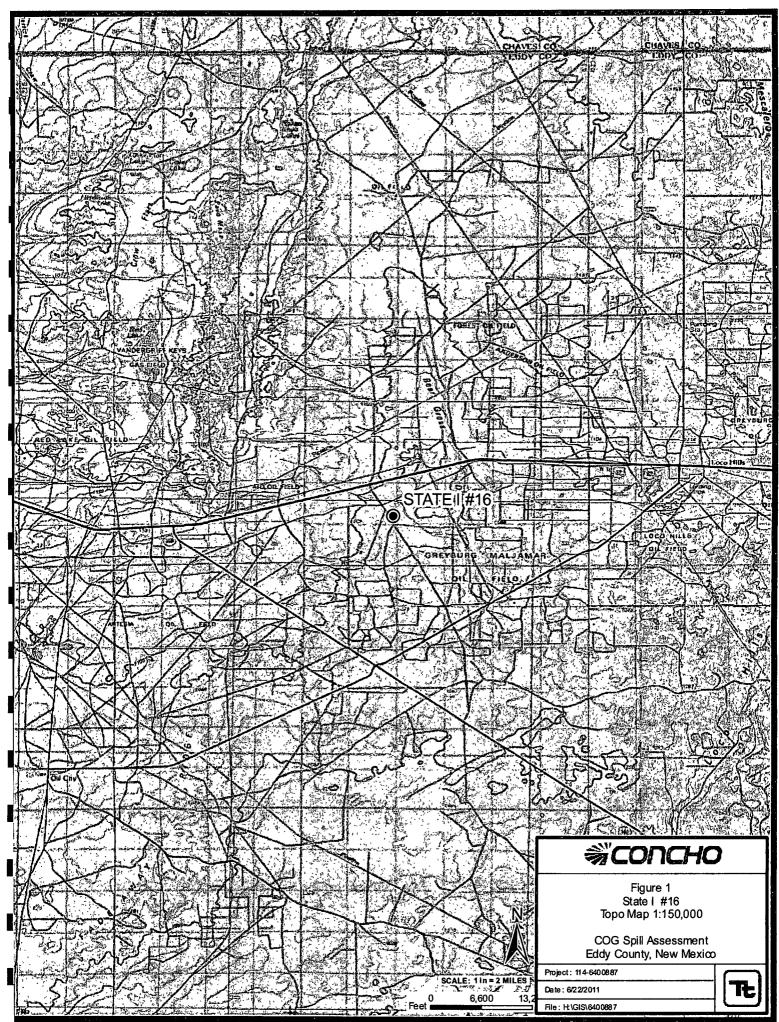
On February 19, 2011, Tetra Tech personnel inspected and sampled the spill area. A total of five (5) auger holes (AH-1 through AH-5) were installed using a stainless steel hand auger to assess the impacted soils. Select samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The auger hole locations are shown on Figure 3.

Referring to Table 1, all auger hole samples were below the RRAL for TPH and BTEX. Elevated chloride concentrations were detected in majority of the auger holes. Auger holes (AH-1 and AH-5) showed the deepest chloride impact at the site, with chloride declining at 7.0' to 9.0' below surface. The areas of auger holes (AH-3 and AH-4) showed a shallow impact (0-1') to the soils, with chloride concentration of 20,500 mg/kg and 4,830 mg/kg, respectively. Auger hole (AH-2) did not show a significant chloride impact the soils.

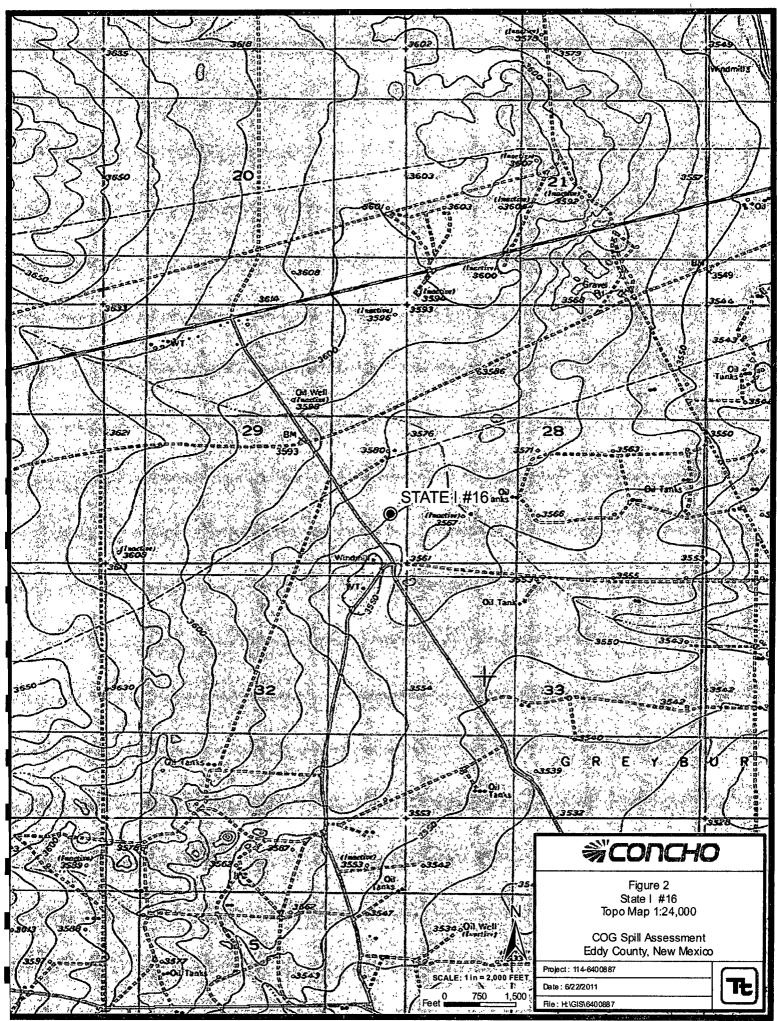
Closure Activities

Based on the approved work plan, Tetra Tech personnel supervised the excavation of the site. The final excavation depths of the soil remediation were met or exceeded as stated in the approved work plan. A total of 1,780 cubic yards of soil were excavated and hauled to proper disposal. The excavation depths are highlighted in Table 1 and shown on Figure 4.

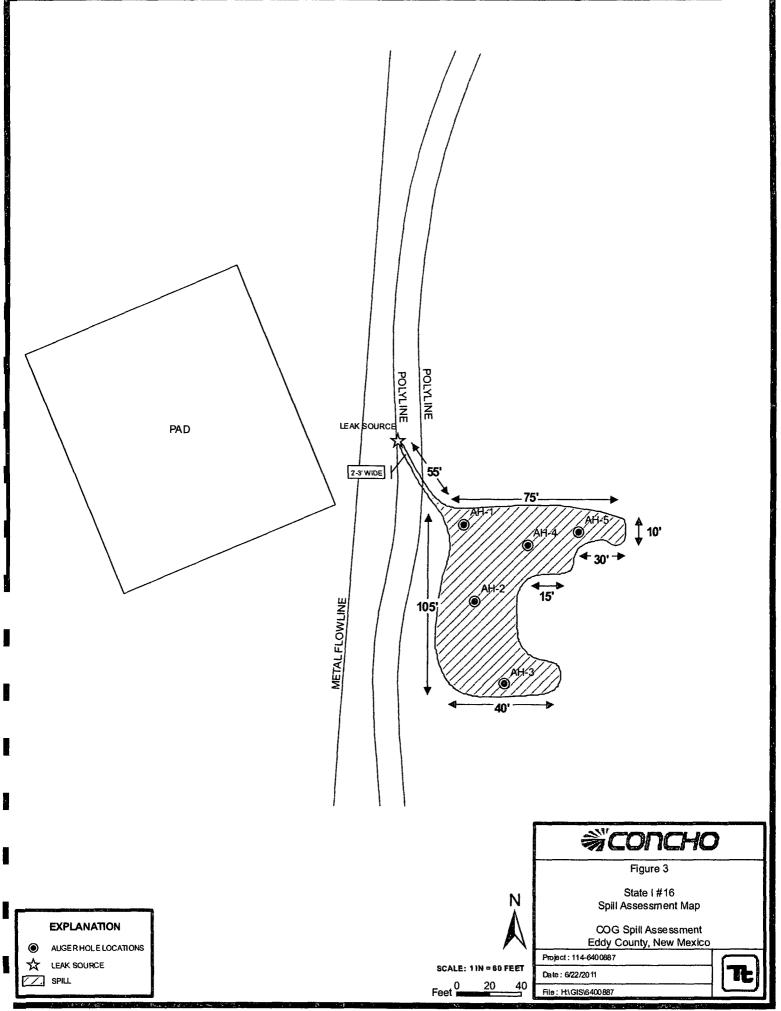
As recommended in the work plan, a trench was installed in the area of AH-1 to define vertical extent of the chloride impact at 9.0' of 1,550 mg/kg. Once excavated to the appropriate depth, a trench was installed using a backhoe to a depth of 23.0' below surface. Referring to Table 1, the chloride concentrations declined with depth. Once excavated to the appropriate depths, the excavations were backfilled with clean soil to grade.

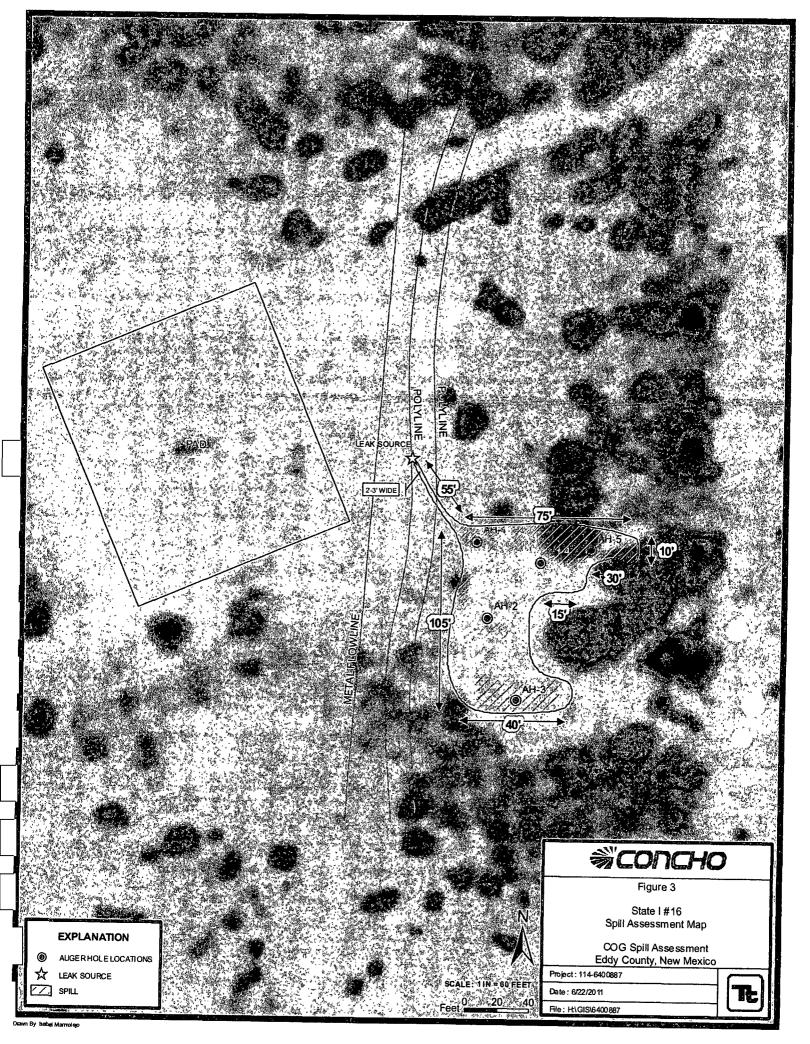

Based on the remedial activities performed, COG request closure of the site. A copy of the C-141 (Final) is included in Appendix A. If you have any questions or comments concerning the remedial activities, please call me at (432) 682-4559.

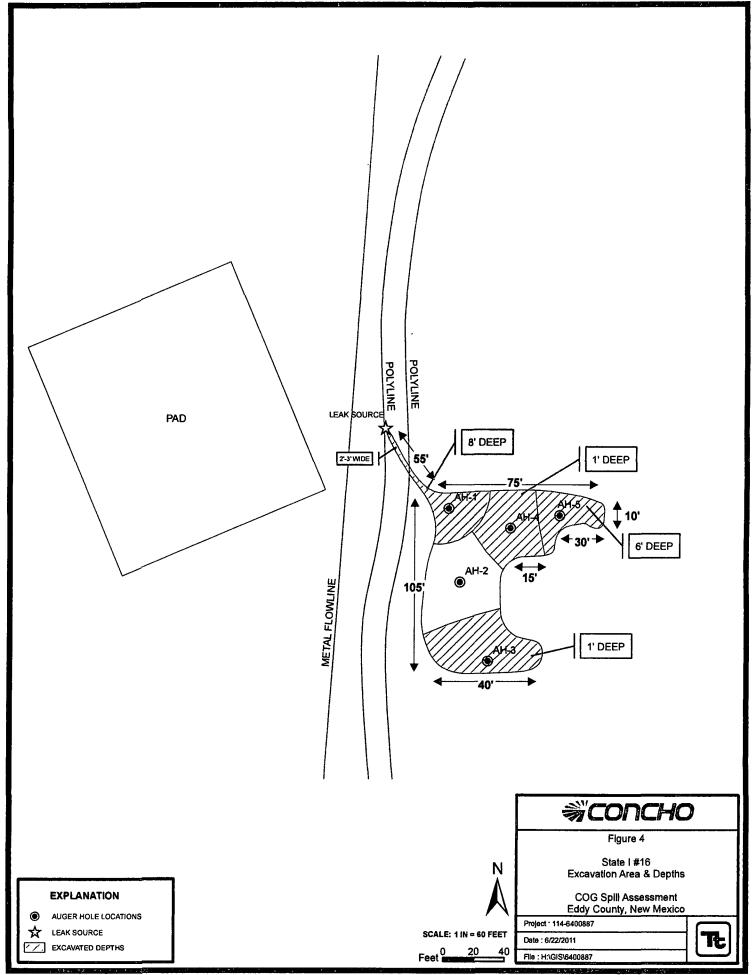
Respectfully submitted,


TETRÁ TECH ke Tavarez, J

Project Manager


cc: Pat Ellis – COG cc:


. Drawn By: Isabel Marmolejo



Drawn By: Isabel Marmotojo

Drawn By Isabel Mannologo

Drawn By' issbel Marmolejo

Tables

.

•

Table 1 COG Operating LLC. STATE 1 # 16

Eddy County, New Mexico

Sample	Sample	Sample	Depth	Soil	Status	Т	PH (mg/k	(g)	Benzene	Toluene	Ethlybenzene	Xylene	Chloride
ID	Date	Depth (ft)	(BEB)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-1	4\19\11	<u>-</u> 0-1'	1. A.	· • • •	X	<2.00	<50.0	<50.0	<.0200	< 0200	<.0200	< 0200	2,550
	12	៍ 1-1.5			X		۲. المراجع المراجع المراجع	1.1					10,400
	II	2-2.5		2544 - 15. 15. 18.	X .	-			40 1		، بار ۲۰ روم می او می شو و بود می کرد. و در می و بود می کرد.	5 θ. Β. Β.	6,910
	61	3-3.5'		1	X	-	· · · · ·			1			5,300
	u	4-4.5			Χ.		ته بر این	40 B					12,000
	n	5-5.5'			X			: کی 			* 1-x* 4 (m. * 1-x* 4 (m. * 1-x* 4 (m. * 1-x* 4 (m. *		5,550
	11	6-6.5	•r• e•		. X						· · · · ·		6,480
	12	7-7.5	و مع می		X	بر بر مربع ایر بر مربع مربع		, - ,	بر : مرب : مرب : م			a ata	3,340
		8-8.5			X	-					e= ^		2,040
	"	9-9.5'		Х		-	-	-	-	-	-	-	1,550
Trench-1	12/16/11	11		Х		-	-	-	-	-	-	-	641
	**	13		Х		-	-	-	-	-	-	-	945
	17	15		Х		-	-	-	_	-	-	-	839
	11	17		Х		-	-	-	-	-	-	-	660
	81	19		Х		-	-	-	-	-	-	-	617
	11	21		Х		-	-	-	-	-	-	-	463
	14	23		Х			-	-	-	-		-	506
					······································			<u></u>	••••••			•	•

Table 1 COG Operating LLC. STATE 1 # 16

Eddy County, New Mexico

Sample	Sample	Sample	Depth	Soil	Status	Т	PH (mg/k	g)	Benzene	Toluene	Ethlybenzene	Xylene	Chloride
ID	Date	Depth (ft)	(BEB)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-2	4\19\11	0-1'		Х		<2.00	<50.0	<50.0	<.0200	<.0200	<.0200	<.0200	451
	u	1-1.5'		X		-	-	-	-	-	-	-	<200
	"	2-2.5'		Х		-	-	-	-	-		-	<200
		3-3.5'		Х		-	-	-	-	-		-	<200
AH-3	4\19\11	0-1'				17.0	77.8	94.8	.<.0200	0.11	0.126	0.395	20,500
	11	1-1.5'		X		-	-	-	-	-	-	-	451
	ti .	2-2.5'		Х	· · · · · · · · · · · · · · · · · · ·	-	-	-	-	-	-	-	313
	u	3-3.5'		Х		-	-	-	-	_	-	-	<200
	n	4-4.5'		X		-	-	-	-	-		-	<200
	1	5-5.5'		Х		-	-	-	-	-		-	<200
	1	6-6.5'		Х		-	-	-	-	-	-	-	<200
	11	7-7.5'		Х		-	-	-		-		-	<200
	43	8-8.5'		Х		-	-	-	-	-		-	<200
		9-9.5'		Х		-	_	-		-	-	-	<200

Table 1 COG Operating LLC. STATE 1 # 16

Eddy County, New Mexico

Sample	Sample	Sample	Depth	Soi	I Status	Т	PH (mg/k	g)	Benzene	Toluene	Ethlybenzene	Xylene	Chloride
ID	Date	Depth (ft)	(BEB)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-4	4\19\11	0-1'			X	<2.00	<50.0	<50.0	<.0200	<:0200	<.0200	< 0200	4,830
	(1	1-1.5'		Х		-	-	-	-	-	-	-	592
	"	2-2.5'		Х		-	-	-	-	-	-	-	864
	11	3-3.5'		X		-	-	-	-	1	-	-	540
	"	4-4.5'		Х		-	-	-	-	-	-	-	512
	11	5-5.5'		X		-	-	-	-	-	-	-	615
	u	6-6.5'		Х		-	-	-		-	_	-	606
	11	7-7.5'		X		-	-	-	-	-	-	-	451
	11	8-8.5'		Х		-	-	-	-	-	_		310
	11	9-9.5'		Х		-	-	-	-		-	· <u>-</u>	414
AH-5	4\19\11	0-1'			X	<2.00	<50.0 [°]	<50.0	<.0200	<.0200	<.0200	< 0200	6,830
	11	. 1-1.5'			X	°		. . .				1	5,850
	11	2-2.5'		* *	λ. Χ			-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				7,580
	n	3-3.5		1	X			1. I.					7,500
	#	4-4.5'		· · · ·	X			· -					7,590
	n	5-5.5'	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		X			1					12,600
	11	6-6.5	14 14 14 14 14 14 14 14 14 14 14 14 14 1										3,130
	11	7-7.5'		X		-	-	-	-	-	_	-	684

BEB Below Excavation Bottom

(--) Not Analyzed

Excavated Material and Depth

Appendix A

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

		OPERATOR	\boxtimes	Initial Report		Final Report
Name of Company	COG OPERATING LLC	Contact	Pat Ellis		_	
Address 550 V	V. Texas, Suite 100, Midland, TX 79701	Telephone No.	432-230-0077			
Facility Name	State I #16	Facility Type	Flowline			

Surface Owner State Mineral Owner Lease No. API#(30-015-03187)

LOCATION OF RELEASE

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
Р	29	17S	29E					Eddy

Latitude 32 48.055 Longitude 104 05.356

NATURE OF RELEASE

Type of Release Produced water	Volume of Release 60bbls	Volume Recovered Obbls
Source of Release Flowline	Date and Hour of Occurrence	Date and Hour of Discovery
	04/06/2011	04/06/2011 11:00 a.m.
Was Immediate Notice Given?	If YES, To Whom?	
Yes 🛛 No 🗋 Not Required	Mike	Bratcher-OCD
By Whom? Josh Russo	Date and Hour 04/08/2011 1:04	4 p.m.
Was a Watercourse Reached?	If YES, Volume Impacting the Wa	tercourse.
🗌 Yes 🖾 No		
If a Watercourse was Impacted, Describe Fully.*		
The Watercourse was impleted, Describe Funy.		
Describe Cause of Problem and Remedial Action Taken.*		
The State I #16 poly flowline ruptured. The line has been fused and retur	ned to service.	
		· · · · · · · · · · · · · · · · · · ·
Describe Area Affected and Cleanup Action Taken.*		
Initially 60bbls of produced water was released from the poly flowline. W	/a wara unable to recover any fluid T	he shill area measured 100' x 150' in the
pasture to the east of the location. Tetra Tech will sample the spill site are		
remediation work plan to the OCD for approval prior to any significant re		
the second s		
I hereby certify that the information given above is true and complete to t	he best of my knowledge and understa	and that pursuant to NMOCD rules and
regulations all operators are required to report and/or file certain release n		
public health or the environment. The acceptance of a C-141 report by th		
should their operations have failed to adequately investigate and remedial		
or the environment. In addition, NMOCD acceptance of a C-141 report d	loes not relieve the operator of respon-	sibility for compliance with any other
federal, state, or local laws and/or regulations.	OU COMERN	
	OIL CONSERV	VATION DIVISION
Signature:		
	Approved by District Supervisor:	
Printed Name: Josh Russo	Approved by Disalici Supervisor.	
Title: HSE Coordinator	Approval Date:	Expiration Date:
E-mail Address: jrusso@conchoresources.com	Conditions of Approval:	Attached
Date: 04/15/2011 Phone: 432-212-2399		

* Attach Additional Sheets If Necessary

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised October 10, 2003

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Lease No. API 30-015--3187

Release Notification and Corrective Action

OPERATOR	Initial Report	Final Report
ontact Pat Ellis		
elephone No. (432) 230-0077		
acility Type Flow line		
e	ontact Pat Ellis Elephone No. (432) 230-0077	elephone No. (432) 230-0077

Surface Owner: State

LOCATION OF RELEASE

Mineral Owner

					LOCE	IION OF REA			
ſ	Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
	Р	29	17S	29E					Eddy

Latitude N 32 48.055 Longitude W 104 05.356

NATURE OF RELEASE

Type of Release: Produced water	Volume of Release 60 bbls	Volume R	ecovered 0 bbls
Source of Release: Water Flow line	Date and Hour of Occurrence		lour of Discovery
	4/6/11	4/6/11 11	:00 a.m.
Was Immediate Notice Given?	If YES, To Whom?		
🛛 Yes 📋 No 🔲 Not Required	Mike Bratcher OCD		
By Whom?	Date and Hour 4/8/11 1:04 pm		
Was a Watercourse Reached?	If YES, Volume Impacting the Wa	itercourse.	
🗌 Yes 🛛 No			
If a Watercourse was Impacted, Describe Fully.*			
N1/4			
N/A			
Describe Cause of Problem and Remedial Action Taken.*			
The State I #16 poly line flow line ruptured. The line has been fused and	returned to serviced.		
Describe Area Affected and Cleanup Action Taken.*			
Tetra Tech inspected and assessed the spill area for extents. A work plan	was prepared and submitted to NMO	CD for appro	val. Soils exceeding the
RRAL were removed and transported to proper disposal. Once excavated	l to the appropriate depths, the excava	tion was back	cfilled with clean soil. Tetra
Tech prepared closure report and submitted to NMOCD for review.			
I hereby certify that the information given above is true and complete to t	he heat of my knowledge and underst	and that nurse	unt to NMOCD sules and
regulations all operators are required to report and/or file certain release r			
public health or the environment. The acceptance of a C-141 report by the	e NMOCD marked as "Final Report"	does not relie	eve the operator of liability
should their operations have failed to adequately investigate and remedia			
or the environment. In addition, NMOCD acceptance of a C-141 report c			
federal, state, or local laws and/or regulations.		-	
ner	OIL CONSER	VATION	DIVISION
		-	
Signature:			
Printed Name: Ike Tavarez (agent for COG)	Approved by District Supervisor:		
Finited Ivalite. INC Tavalez (agent for COO)			
Title: Project Manager	Approval Date:	Expiration E	Date:
		•	
E-mail Address: ike.tavarez@tetratech.com	Conditions of Approval:		Attached
Date: //0-/7 Phone: (432) 682-4559			

* Attach Additional Sheets If Necessary

Appendix B

Water Well Data Average Depth to Groundwater (ft) COG - State I #16 Eddy County, New Mexico

	16 \$	South	:	28 East	t		16 S	outh		29 East	1		16	South		30 Eas
3	5	4	3	2	1	6	5	4	3	2	1	6	5	4	3	2
	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11
8	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14
9	20	21 61	22	23	24	19	20	21	22	23	24	19	20	21	22	23
0	29	28	27	26	25	110 30	29	28	27	26	25	30	29	28	27	26
1	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35
	17 :	South	<u>-</u>	28 East			17 S	outh		29 East			17	South		 30 Eas
	5	4	3	2	1	6	5	4	3	2	1	6	5	4	3	2
	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11
3	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14
9	20	21	22 79	23	24	19	20	21	22 80	23	24	19	20	21	22	23
0	29	28	27	26	25	30	29SITE	28	27	26	25	30	29	28	27	26
1	32	33	34 53	35	36	31	32	33	34	35	36	31	32	33	34	35
	18 :	South	2	28 East		L	18 Se	outh		29 East		L	18	South		30 Eas
	5	4	3	2	1	6	5	4	3	2	1	6	5	4	3	2
	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11
5	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14
	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23
)	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26
	32	33	34	35 65	36	31	32	33	34	35	36	31	32	33	34	35

New Mexico State Engineers Well Reports

USGS Well Reports

Geology and Groundwater Conditions in Southern Eddy, County, NM

NMOCD - Groundwater Data

LOCATION	OWNER	DATE	TOPOGRAPHIC	ALTITUDE ABOVE SEA	DEPTH OF	DIAMETER	PRINCIPAL WATE	R-BEARING BED
NUMBER	OR NAME	COM- PLETED	SITUATION	LEVEL (feet)	WELL (feet)	OF WELL (inches)	CHARACTER OF MATERIAL	GEOLOGIC UNIT
17.28.2.240	Hal Bogle		Flat between mesas		-	6 (?)	Redbeds (?)	Dockum (?)
14.220	do.	_	Rolling		-	7	do.	do.
19.200	do.		do.		-	8	Redbeds, gypsum (?)	Chalk Bluff or Rustler
22.230	-	-	Flat between mesas	_	-	6	Redbeds (?)	Rustler or Dockum (?)
17.29.22.110	-	-	Bear Grass draw	3,550	-	6	do.	Dockum (?)
29.400	Bishop (?)	-	Flat	-		7	do.	do.
17.31.34.000	<u> </u>		Rolling	_		6 (?)	Redbeds	Dockum
18.21.13.310	Andy Teel	1915	-	4,100	520	8``	Limestone	San Andres
27.440	do.	1947	Broad valley	4,200	667	10	do.	do.
32.430	George Teel	1946	Rolling	4,300	815	6	do.	do.
18.23.6.140	Couhape Bros.	1941	S. of Rio Penasco	4,060	500	10	do.	do.
18.25.23.111	G. M. Phelps	-	Blackdom Terrace	-	-	-	Alluvium (?)	Quaternary (?)

TABLE 1. RECORDS OF WELLS IN EDDY COUNTY, NEW MEXICO. (Continued)

	WAT	ER LEVEL				
LOCATION NUMBER	BELOW LAND SURFACE (feet)	DATE OF MEASUREMENT	YIELD (g.p.m.)	METHOD OF LIFT	USE OF WATER	REMARKS
	LAND			OF	OF	REMAR

. ..

WATER LEVEL				
DATE OF MEASUREMENT	YIELD (g.p.m.)	METHOD OF LIFT	USE OF WATER	REMARKS
Dec. 1, 1948	3	w	S	Depth to water measured while pump- ing.
-	61	w	S & D	Driller: Cy Hinshaw. See analysis, Table
Dec. 2, 1948	1.2	w	S	Depth to water measured while pump- ing.
Dec. 1, 1948	_	N	N	Abandoned stock well.
Nov. 29, 1948	3 E.	W	S	Depth to water measured while pump- ing.
Dec. 3, 1948	1.1	w	S	do.
Dec. 6, 1948	3.5	Ŵ	š	do. See analysis, Table 3.
_	10 R.	Ŵ	S&D	Formerly C.C.C. well. Cased to 30 ft.
_	-	W	S	Cased to 120 ft.
-	12 R.	W	S & D	Lowered cylinder 5 ft. in 1948 because water level declined. Cased to 380 ft.
Jan. 12, 1950	-	w	S&D	
Jan. 1950	-	Ŵ	s	

See explanation at beginning of table. 1 Measured Dec. 3, 1948.

BELOW

LAND

SURFACE (feet)

27.6

80

224.3

45.5 79.7

440 117.8

LOCATION

NUMBER

17.28.2.240

22.230 17.29.22.110

29.400 17.31.34.000 18.21.13.310 27.440 32.430

18.23.6.140 18.25.23.111

14.220

19.200

RESOURCES

Appendix C

.

.

.

1

Summary Report

Kim Dorey Tetra Tech 1910 N. Big Spring Street Midland, TX 79705

Project Location:	Eddy Co., NM
Project Name:	COG/State I #16
Project Number:	114-6400887

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
264445	AH-1 0-1'	soil	2011-04-19	00:00	2011-04-21
264446	AH-1 1-1.5'	soil	2011-04-19	00:00	2011-04-21
264447	AH-1 2-2.5'	soil	2011-04-19	00:00	2011-04-21
264448	AH-1 3-3.5'	soil	2011-04-19	00:00	2011-04-21
264449	AH-1 4-4.5'	soil	2011-04-19	00:00	2011-04-21
264450	AH-1 5-5.5'	soil	2011-04-19	00:00	2011-04-21
264451	AH-1 6-6.5'	soil	2011-04-19	00:00	2011-04-21
264452	AH-1 7-7.5'	soil	2011-04-19	00:00	2011-04-21
264453	AH-1 8-8.5'	soil	2011-04-19	00:00	2011-04-21
264454	AH-1 9-9.5'	soil	2011-04-19	00:00	2011 - 04 - 21
264455	AH-2 0-1'	soil	2011-04-19	00:00	2011-04-21
264456	AH-2 1-1.5'	soil	2011-04-19	00:00	2011-04-21
264457	AH-2 2-2.5'	soil	2011-04-19	00:00	2011-04-21
264458	AH-2 3-3.5'	soil	2011-04-19	00:00	2011-04-21
264459	AH-3 0-1'	soil	2011-04-19	00:00	2011-04-21
264460	AH-3 1-1.5'	soil	2011-04-19	00:00	2011-04-21
264461	AH-3 2-2.5'	soil	2011-04-19	00:00	2011-04-21
264462	AH-3 3-3.5'	soil	2011-04-19	00:00	2011-04-21
264463	AH-3 4-4.5'	soil	2011-04-19	00:00	2011-04-21
264464	AH-3 5-5.5'	soil	2011-04-19	00:00	2011-04-21
264465	AH-3 6-6.5'	soil	2011-04-19	00:00	2011-04-21
264466	AH-3 7-7.5'	soil	2011-04-19	00:00	2011-04-21
264467	AH-3 8-8.5'	soil	2011-04-19	00:00	2011-04-21
264468	AH-3 9-9.5'	soil	2011-04-19	00:00	2011-04-21
264469	AH-4 0-1'	soil	2011-04-19	00:00	2011-04-21
264470	AH-4 1-1.5'	soil	2011-04-19	00:00	2011-04-21
264471	AH-4 2-2.5'	soil	2011-04-19	00:00	2011-04-21
264472	AH-4 3-3.5'	soil	2011-04-19	00:00	2011-04-21
264473	AH-4 4-4.5'	soil	2011-04-19	00:00	2011-04-21
264474	AH-4 5-5.5'	soil	2011-04-19	00:00	2011-04-21

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

Report Date: May 3, 2011

Work Order: 11042214

Report Date	: May	-3,	2011
-------------	-------	-----	------

Work Order: 11042214

Page Number: 2 of 7

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
264475	AH-4 6-6.5'	soil	2011-04-19	00:00	2011-04-21
264476	AH-4 7-7.5'	soil	2011-04-19	00:00	2011-04-21
264477	AH-4 8-8.5'	soil	2011-04-19	00:00	2011-04-21
264478	AH-4 9-9.5'	soil	2011-04-19	00:00	2011-04-21
264479	AH-5 0-1'	soil	2011-04-19	00:00	2011-04-21
264480	AH-5 1-1.5'	soil	2011-04-19	00:00	2011-04-21
264481	AH-5 2-2.5'	soil	2011-04-19	00:00	2011-04-21
264482	AH-5 3-3.5'	soil	2011-04-19	00:00	2011-04-21
264483	AH-5 4-4.5'	soil	2011-04-19	00:00	2011-04-21
264484	AH-5 5-5.5'	soil	2011-04-19	00:00	2011-04-21
264485	AH-5 6-6.5'	soil	2011-04-19	00:00	2011-04-21
264486	AH-5 7-7.5'	soil	2011-04-19	00:00	2011-04-21

	BTEX			TPH DRO - NEW	TPH GRO	
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
264445 - AH-1 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0	<2.00
264455 - AH-2 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0	<2.00
264459 - AH-3 0-1'	< 0.0200	0.110	0.126	0.395	77.8	17.0
264469 - AH-4 0-1'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0	<2.00
264479 - AH-5 0-1'	< 0.0200	< 0.0200	< 0.0200	<0.0200	<50.0	<2.00

Sample: 264445 - AH-1 0-1'

Param	Flag	Result	Units	RL
Chloride		2550	mg/Kg	4

Sample: 264446 - AH-1 1-1.5'

Param	Flag	Result	Units	RL
Chloride		10400	mg/Kg	4

Sample: 264447 - AH-1 2-2.5'

Param	Flag	Result	Units	RL
Chloride		6910	mg/Kg	4

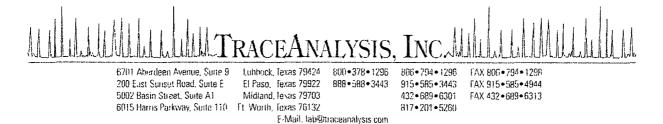
Sample: 264448 - AH-1 3-3.5'

Param	Flag	Result	Units	\mathbf{RL}
Chloride		5300	nıg/Kg	4

Report Date: May 3, 2011		Work Order: 11042214	Page 1	Number: 3 of 7
Sample: 264449 - A	H-1 4-4.5'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride	· · · · · · · · · · · · · · · · · · ·	12000	mg/Kg	4
Sample: 264450 - A	H-1 5-5.5'			
Param	Flag	Result	Units	RL
Chloride		5550	mg/Kg	4
Sample: 264451 - A	H-1 6-6.5'			
Param	Flag	Result	Units	RL
Chloride		6480	mg/Kg	4
Sample: 264452 - A	H-1 7-7.5'			
Param	Flag	Result	Units	RL
Chloride	·	3340	nıg/Kg	4
Sample: 264453 - A	H-1 8-8.5'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride		2040	mg/Kg	4
Sample: 264454 - A	H-1 9-9.5'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride		1550	mg/Kg	4
Sample: 264455 - A	H-2 0-1'			
Param	Flag	Result	Units	RL
Chloride	0	451	mg/Kg	4
Sample: 264456 - A	H-2 1-1.5'			
Param	Flag	Result	Units	RL
Chloride	<u>`</u>	<200	mg/Kg	4

Report Date: May	3, 2011	Work Order: 11042214	Page N	Number: 4 of 7
Sample: 264457	- AH-2 2-2.5'			
Param	Flag	Result	Units	RL
Chloride	8	<200	mg/Kg	4
Sample: 264458 ·	- AH-2 3-3.5'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride		<200	ıng/Kg	4
Sample: 264459 -	- AH-3 0-1'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride		20500	mg/Kg	4
Sample: 264460 ·	- AH-3 1-1.5'			
Param	Flag	Result	' Units	\mathbf{RL}
Chloride		451	mg/Kg	4
Sample: 264461 •	- AH-3 2-2.5'			
Param	Flag	Result	Units	RL
Chloride		313	mg/Kg	4
Sample: 264462 -	- AH-3 3-3.5'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride		<200	mg/Kg	4
Sample: 264463 -	- AH-3 4-4.5'			
Param	Flag	\mathbf{Result}	Units	RL
Chloride	· · · · · · · · · · · · · · · · · · ·	<200	ıng/Kg	4
Sample: 264464 -	· AH-3 5-5.5'			
Param	Flag	Result	Units	RL
Chloride	<u> </u>	<200	mg/Kg	4

- .


,

Report Date: May 3, 2011		Work Order: 11042214	Page 1	Number: 5 of 7
Sample: 264465 - AH-3 6-6	.5'			
Param	Flag	Result	Units	RL
Chloride		<200	mg/Kg	4
Sample: 264466 - AH-3 7-7	.5'			
Param H	lag	Result	Units	\mathbf{RL}
Chloride		<200	mg/Kg	4
Sample: 264467 - AH-3 8-8	.5'			
Param F	lag	Result	Units	RL
Chloride		<200	mg/Kg	4
Sample: 264468 - AH-3 9-9	.5'			
Param F	lag	Result	Units	RL
Chloride		<200	mg/Kg	4
Sample: 264469 - AH-4 0-1	,			
Param F	lag	Result	Units	RL
Chloride		4830	mg/Kg	4
Sample: 264470 - AH-4 1-1.	.5'			
Param F	`lag	Result	Units	RL
Chloride		592	mg/Kg	4
Sample: 264471 - AH-4 2-2.	5'			
Param F	lag	Result	Units	RL
Chloride		864	mg/Kg	4
Sample: 264472 - AH-4 3-3.	.5'			
Param F	`lag	Result	Units	RL
Chloride		540	mg/Kg	4

Report Date: May 3, 2011	Work Order: 11042214	Page	Number: 6 of 7
Sample: 264473 - AH-4 4-4.5'			
Param Flag		Units	RL
Chloride	512	mg/Kg	4
Sample: 264474 - AH-4 5-5.5'			
Param Flag	Result	Units	\mathbf{RL}
Chloride	615	mg/Kg	4
Sample: 264475 - AH-4 6-6.5'			
Param Flag	Result	Units	RL
Chloride	606	mg/Kg	4
Sample: 264476 - AH-4 7-7.5'			
Param Flag	Result	Units	\mathbf{RL}
Chloride	451	nıg/Kg	4
Sample: 264477 - AH-4 8-8.5'			
Param Flag	Résult	Units	RL
Chloride	310	mg/Kg	4
Sample: 264478 - AH-4 9-9.5'			
Param Flag	Result	Units	RL
Chloride	414	mg/Kg	4
Sample: 264479 - AH-5 0-1'			
Param Flag	Result	Units	RL
Chloride	6830	mg/Kg	4
Sample: 264480 - AH-5 1-1.5'			
Param Flag	Result	Units	RL
Chloride	5850	mg/Kg	4

Report Date: May 3	, 2011	Work Order: 11042214	Page	Number: 7 of 7
Sample: 264481 -	AH-5 2-2.5'			
Param	Flag	Result	Units	RL
Chloride		7580	mg/Kg	4
Sample: 264482 -	AH-5 3-3.5'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride		7500	mg/Kg	4
Sample: 264483 -	AH-5 4-4.5'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride		. 7590	mg/Kg	4
Sample: 264484 -	AH-5 5-5.5'			
Param	Flag	Result	Units	RL
Chloride		12600	mg/Kg	4
Sample: 264485 -	AH-5 6-6.5'			
Param	Flag	Result	Units	RL
Chloride	· · · · · · · · · · · · · · · · · · ·	3130	mg/Kg	4
Sample: 264486 -	AH-5 7-7.5'			
Param	Flag	Result	Units	\mathbf{RL}
Chloride		684	mg/Kg	4

•

Certifications

WBENC: 237019

HUB:1752439743100-86536NCTRCAWFWB38444Y0909

DBE: VN 20657

NELAP Certifications

Lubbock: T104704219-08-TX LELAP-02003 Kansas E-10317 El Paso: T104704221-08-TX LELAP-02002 Midland: T104704392-08-TX

Analytical and Quality Control Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX, 79705

Report Date: May 2, 2011

Work Order: 11042214

Project Location:Eddy Co., NMProject Name:COG/State I #16Project Number:114-6400887

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

		Date	Time	Date
Description	Matrix	Taken	Taken	Received
AH-1 0-1'	soil	2011-04-19	00:00	2011-04-21
AH-1 1-1.5'	soil	2011-04-19	00:00	2011-04-21
AH-1 2-2.5'	soil	2011-04-19	00:00	2011-04-21
AH-1 3-3.5'	soil	2011-04-19	00:00	2011-04-21
AH-1 4-4.5'	soil	2011-04-19	00:00	2011-04-21
AH-1 5-5.5'	soil	2011-04-19	00:00	2011-04-21
AH-1 6-6.5'	soil	2011-04-19	00:00	2011-04-21
AH-1 7-7.5'	soil	2011-04-19	00:00	2011-04-21
AH-1 8-8.5'	soil	2011-04-19	00:00	2011-04-21
AH-1 9-9.5'	soil	2011-04-19	00:00	2011-04-21
	AH-1 0-1' AH-1 1-1.5' AH-1 2-2.5' AH-1 3-3.5' AH-1 4-4.5' AH-1 5-5.5' AH-1 5-6.5' AH-1 6-6.5' AH-1 7-7.5' AH-1 8-8.5'	AH-1 0-1' soil AH-1 1-1.5' soil AH-1 2-2.5' soil AH-1 3-3.5' soil AH-1 4-4.5' soil AH-1 5-5.5' soil AH-1 6-6.5' soil AH-1 7-7.5' soil AH-1 8-8.5' soil	DescriptionMatrixTakenAH-1 0-1'soil2011-04-19AH-1 1-1.5'soil2011-04-19AH-1 2-2.5'soil2011-04-19AH-1 3-3.5'soil2011-04-19AH-1 4-4.5'soil2011-04-19AH-1 5-5.5'soil2011-04-19AH-1 6-6.5'soil2011-04-19AH-1 7-7.5'soil2011-04-19AH-1 8-8.5'soil2011-04-19	AH-1DoiAH-1boldA

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
264455	AH-2 0-1'	soil	2011-04-19	00:00	2011-04-21
264456	AH-2 1-1.5'	soil	2011-04-19	00:00	2011-04-21
264457	AH-2 2-2.5'	soil	2011-04-19	00:00	2011-04-21
264458	AH-2 3-3.5'	soil	2011-04-19	00:00	2011-04-21
264459	AH-3 0-1'	soil	2011-04-19	00:00	2011-04-21
264460	AH-3 1-1.5'	soil	2011-04-19	00:00	2011-04-21
264461	AH-3 2-2.5'	soil	2011-04-19	00:00	2011-04-21
264462	AH-3 3-3.5'	soil	2011-04-19	00:00	2011-04-21
264463	AH-3 4-4.5'	soil	2011-04-19	00:00	2011-04-21
264464	AH-3 5-5.5'	soil	2011-04-19	00:00	2011-04-21
264465	AH-3 6-6.5'	soil	2011-04-19	00:00	2011-04-21
264466	AH-3 7-7.5'	soil	2011-04-19	00:00	2011-04-21
264467	AH-3 8-8.5'	soil	2011-04-19	00:00	2011-04-21
264468	AH-3 9-9.5'	soil	2011-04-19	00:00	2011-04-21
264469	AH-4 0-1'	soil	2011-04-19	00:00	2011-04-21
264470	AH-4 1-1.5'	soil	2011-04-19	00:00	2011-04-21
264471	AH-4 2-2.5'	soil	2011-04-19	00:00	2011-04-21
264472	AH-4 3-3.5'	soil	2011-04-19	00:00	2011-04-21
264473	AH-4 4-4.5'	soil	2011-04-19	00:00	2011-04-21
264474	AH-4 5-5.5'	soil	2011-04-19	00:00	2011-04-21
264475	AH-4 6-6.5'	soil	2011-04-19	00:00	2011-04-21
264476	AH-4 7-7.5'	soil	2011-04-19	00:00	2011-04-21
264477	AH-4 8-8.5'	soil	2011-04-19	00:00	2011-04-21
264478	AH-4 9-9.5'	soil	2011-04-19	00:00	2011-04-21
264479	AH-5 0-1'	soil	2011-04-19	00:00	2011-04-21
264480	AH-5 1-1.5'	soil	2011-04-19	00:00	2011-04-21
264481	AH-5 2-2.5'	soil	2011-04-19	00:00	2011-04-21
264482	AH-5 3-3.5'	soil	2011-04-19	00:00	2011-04-21
264483	AH-5 4-4.5'	soil	2011-04-19	00:00	2011-04 -2 1
264484	AH-5 5-5.5'	soil	2011-04-19	00:00	2011-04-21
264485	AH-5 6-6.5'	soil	2011-04-19	00:00	2011-04-21
264486	AH-5 7-7.5'	soil	2011-04-19	00:00	2011-04-21

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 35 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael about

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Page 2 of 35

Standard Flags

 ${\bf B}$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project COG/State I #16 were received by TraceAnalysis, Inc. on 2011-04-21 and assigned to work order 11042214. Samples for work order 11042214 were received intact at a temperature of 9.4 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	\mathbf{QC}	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	68447	2011-04-25 at 09:04	80636	2011-04-25 at 09:04
Chloride (Titration)	SM 4500-Cl B	68435	2011-04-25 at 11:20	80754	2011-04-28 at 11:57
Chloride (Titration)	SM 4500-Cl B	68515	2011-04-27 at 13:40	80827	2011-04-29 at 14:50
Chloride (Titration)	SM 4500-Cl B	68515	2011-04-27 at 13:40	80828	2011-04-29 at 14:51
Chloride (Titration)	SM 4500-Cl B	68515	2011-04-27 at 13:40	80829	2011-04-29 at 14:52
Chloride (Titration)	SM 4500-Cl B	68515	2011-04-27 at 13:40	80830	2011-04-29 at 14:53
TPH DRO - NEW	S 8015 D	68456	2011-04-25 at 09:52	80646	2011-04-25 at 09:52
TPH DRO - NEW	S 8015 D	68529	2011-04-27 at 10:16	80739	2011-04-27 at 10:16
TPH GRO	S 8015 D	68447	2011-04-25 at 09:04	80637	2011-04-25 at 09:04

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 11042214 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

l

114-6400887	L-6400887 COG/State			e I #16	***,··· • <u></u>	E	ddy Co., NM
		Analy	tical	Report			
Sample: 264445 - AH-1 0-1'							
Laboratory: Midland							
Analysis: BTEX		Analytical 1	Method:	S 8021B		Prep Meth	od: S 5035
QC Batch: 80636		Date Analy	zed:	2011-04-25		Analyzed	By: ME
Prep Batch: 68447		Sample Pre	paration:	2011-04-25		Prepared 1	By: ME
		RL					
Parameter Flag		Result		Units	Di	lution	\mathbf{RL}
Benzene	·	< 0.0200		mg/Kg		1	0.0200
Toluene		< 0.0200		mg/Kg		1	0.0200
Ethylbenzene		< 0.0200		mg/Kg		1	0.0200
Xylene		< 0.0200		mg/Kg		1	0.0200
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.64	mg/Kg	1	2.00	82	52.8 - 137
4-Bromofluorobenzene (4-BFB)		1.81	mg/Kg		2.00	90	38.4 - 157

Work Order: 11042214

Page Number: 5 of 35

Sample: 264445 - AH-1 0-1'

Report Date: May 2, 2011

Chloride		2550	mg/Kg	100	4.00
Parameter	Flag	RL Result	Units	Dilution	RL
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 80754 68435	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2011-04-28 2011-04-27	Prep Method: Analyzed By: Prepared By:	ÁR

Sample: 264445 - AH-1 0-1'

Laboratory:	Midland				
Analysis:	TPH DRO - NEW	Analytical M	fethod: S 8015 D	Prep Method:	N/A
QC Batch:	80646	Date Analyz	ed: 2011-04-25	Analyzed By:	kg
Prep Batch:	68456	Sample Prep	paration: 2011-04-25	Prepared By:	kg
		\mathbf{RL}			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
DRO		<50.0	mg/Kg	1	50.0

Report Date 114-6400887	Report Date: May 2, 2011 14-6400887			Work Order: 11042214 COG/State I #16				Page Number: 6 of 35 Eddy Co., NM		
Surrogate	Flag	Result	Units	Dilu	ition	Spike Amount	Percent Recovery	Recovery Limits		
n-Tricosane		91.5	mg/Kg		1	100	92	70 - 130		
Sample: 26	4445 - AH-1 0-1'									
Laboratory:	Midland									
Analysis:	TPH GRO		Analytical		S 8015 D		Prep Metl			
QC Batch: Prep Batch:	80637 68447		Date Anal	v	2011-04-25 2011-04-25		Analyzed Prepared	U		
Thep Daten.	00441		Sample PI	reparation:	2011-04-20		r iepaieu	by: ME		
			\mathbf{RL}							
Parameter	Flag		Result		Units		Dilution	\mathbf{RL}		
GRO			<2.00		mg/Kg		1	2.00		
						Spike	Percent	Recovery		
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits		
Trifluorotolu			1.60	mg/Kg	1	2.00	80	48.5 - 152		
4-Bromofluor	obenzene (4-BFB)		1.60	mg/Kg	1	2.00	80	42 - 159		
Sample: 26 Laboratory: Analysis:	4446 - AH-1 1-1. Midland Chloride (Titratio		Analvi	tical Metho	d: SM 45	00-Cl B	Prep Me	ethod: N/A		

QC Batch: Prep Batch:	80754 68435	. ,	Date Analyzed: Sample Preparation:	2011-04-28 2011-04-27	Analyzed By: Prepared By:	
			RL			
Parameter		Flag	Result	Units	Dilution	\mathbf{RL}
Chloride			10400	mg/Kg	100	4.00

Sample: 264447 - AH-1 2-2.5'

Chloride		6910	ng/Kg	100	4.00
Parameter	Flag	RL Result	Units	Dilution	RL
Prep Batch:	68435	Sample Preparation:	2011-04-27	Prepared By:	AR
QC Batch:	80754	Date Analyzed:	2011-04-28	Analyzed By:	AR
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland				

Report Date: May 2, 2011 114-6400887		Work Order: 11042214 COG/State I #16		Page Number: 7 of 35 Eddy Co., NM	
Sample: 26	64448 - AH-1 3-3.5'				
Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	•
QC Batch:	80827	Date Analyzed:	2011-04-29	Analyzed By:	AR
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		5300	ng/Kg	100	4.00
Sample: 26	64449 - AH-1 4-4.5'				
Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	80827	Date Analyzed:	2011-04-29	Analyzed By:	AR
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		12000	ng/Kg	100	4.00
Laboratory: Analysis: QC Batch: Prep Batch:		Analytical Method: Date Analyzed: Sample Preparation: RL	SM 4500-Cl B 2011-04-29 2011-04-27	Prep Method: Analyzed By: Prepared By:	N/A AR AR
Laboratory: Analysis: QC Batch: Prep Batch: Parameter	Midland Chloride (Titration) 80827	Date Analyzed: Sample Preparation: RL Result	2011-04-29 2011-04-27 Units	Analyzed By: Prepared By: Dilution	AR AR RL
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 80827 68515	Date Analyzed: Sample Preparation: RL Result	2011-04-29 2011-04-27	Analyzed By: Prepared By:	AR AR
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride	Midland Chloride (Titration) 80827 68515	Date Analyzed: Sample Preparation: RL Result	2011-04-29 2011-04-27 Units	Analyzed By: Prepared By: Dilution	AR AR RL
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory:	Midland Chloride (Titration) 80827 68515 Flag 64451 - AH-1 6-6.5' Midland	Date Analyzed: Sample Preparation: RL Result 5550 r	2011-04-29 2011-04-27 Units ng/Kg	Analyzed By: Prepared By: Dilution 100	AR AR RL 4.00
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory: Analysis:	Midland Chloride (Titration) 80827 68515 Flag 64451 - AH-1 6-6.5' Midland Chloride (Titration)	Date Analyzed: Sample Preparation: RL Result 5550 r Analytical Method:	2011-04-29 2011-04-27 Units ng/Kg SM 4500-Cl B	Analyzed By: Prepared By: Dilution 100 Prep Method:	AR AR RL 4.00
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory: Analysis: QC Batch:	Midland Chloride (Titration) 80827 68515 Flag 64451 - AH-1 6-6.5' Midland Chloride (Titration) 80827	Date Analyzed: Sample Preparation: RL Result 5550 r Analytical Method: Date Analyzed:	2011-04-29 2011-04-27 Units ng/Kg SM 4500-Cl B 2011-04-29	Analyzed By: Prepared By: Dilution 100 Prep Method: Analyzed By:	AR AR RL 4.00 N/A AR
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory: Analysis:	Midland Chloride (Titration) 80827 68515 Flag 64451 - AH-1 6-6.5' Midland Chloride (Titration) 80827	Date Analyzed: Sample Preparation: RL Result 5550 r Analytical Method:	2011-04-29 2011-04-27 Units ng/Kg SM 4500-Cl B	Analyzed By: Prepared By: Dilution 100 Prep Method:	AR AR RL 4.00
Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 80827 68515 Flag 4451 - AH-1 6-6.5' Midland Chloride (Titration) 80827 68515	Date Analyzed: Sample Preparation: RL Result 5550 r Analytical Method: Date Analyzed: Sample Preparation: RL	2011-04-29 2011-04-27 <u>Units</u> ng/Kg SM 4500-Cl B 2011-04-29 2011-04-27	Analyzed By: Prepared By: Dilution 100 Prep Method: Analyzed By: Prepared By:	AR AR RL 4.00 N/A AR AR
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory: Analysis: QC Batch:	Midland Chloride (Titration) 80827 68515 Flag 64451 - AH-1 6-6.5' Midland Chloride (Titration) 80827	Date Analyzed: Sample Preparation: RL Result 5550 r Analytical Method: Date Analyzed: Sample Preparation: RL Result	2011-04-29 2011-04-27 Units ng/Kg SM 4500-Cl B 2011-04-29	Analyzed By: Prepared By: Dilution 100 Prep Method: Analyzed By:	AR AR RL 4.00 N/A AR

Report Date: May 2, 2011 114-6400887 		Work Order: 11042214 COG/State I #16		Page Number: 8 of 35 Eddy Co., NM	
Sample: 26	4452 - AH-1 7-7.5'				
Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	80827	Date Analyzed:	2011-04-29	Analyzed By:	
Prep Batch:		Sample Preparation:		Prepared By:	AR
-		 D7			
Parameter	Flag	RL Result	Units	Dilution	RL
Chloride	I lag		mg/Kg	100	4.00
Sample: 26	4453 - AH-1 8-8.5'				
Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	
QC Batch:	80827	Date Analyzed:	2011-04-29	Analyzed By:	
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR
		\mathbf{RL}			
		D14	Units	Dilution	RL
Parameter	Flag	Result	Q 111 00	Diration	1010
Chloride			mg/Kg	100	4.00
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch:	4454 - AH-1 9-9.5' Midland Chloride (Titration) 80827 68515	2040 Analytical Method: Date Analyzed: Sample Preparation: RL	mg/Kg SM 4500-Cl B 2011-04-29 2011-04-27	100 Prep Method: Analyzed By: Prepared By:	4.00 N/A AR AR
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter	4454 - AH-1 9-9.5' Midland Chloride (Titration) 80827	2040 Analytical Method: Date Analyzed: Sample Preparation: RL Result	mg/Kg SM 4500-Cl B 2011-04-29 2011-04-27 Units	100 Prep Method: Analyzed By: Prepared By: Dilution	4.00 N/A AR AR RL
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter	4454 - AH-1 9-9.5' Midland Chloride (Titration) 80827 68515	2040 Analytical Method: Date Analyzed: Sample Preparation: RL Result	mg/Kg SM 4500-Cl B 2011-04-29 2011-04-27	100 Prep Method: Analyzed By: Prepared By:	4.00 N/A AR AR
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride	4454 - AH-1 9-9.5' Midland Chloride (Titration) 80827 68515	2040 Analytical Method: Date Analyzed: Sample Preparation: RL Result	mg/Kg SM 4500-Cl B 2011-04-29 2011-04-27 Units	100 Prep Method: Analyzed By: Prepared By: Dilution	4.00 N/A AR AR RL
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory:	4454 - AH-1 9-9.5' Midland Chloride (Titration) 80827 68515 Flag	2040 Analytical Method: Date Analyzed: Sample Preparation: RL Result 1550	mg/Kg SM 4500-Cl B 2011-04-29 2011-04-27 Units mg/Kg	100 Prep Method: Analyzed By: Prepared By: Dilution	4.00 N/A AR AR RL
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory: Analysis:	4454 - AH-1 9-9.5' Midland Chloride (Titration) 80827 68515 Flag 4455 - AH-2 0-1' Midland BTEX	2040 Analytical Method: Date Analyzed: Sample Preparation: RL Result 1550 Analytical Method: S 8	mg/Kg SM 4500-Cl B 2011-04-29 2011-04-27 Units	100 Prep Method: Analyzed By: Prepared By: Dilution 100 Prep Method:	4.00 N/A AR AR RL
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory: Analysis:	4454 - AH-1 9-9.5' Midland Chloride (Titration) 80827 68515 Flag 4455 - AH-2 0-1' Midland	2040 Analytical Method: Date Analyzed: Sample Preparation: RL Result 1550 Analytical Method: S 8	mg/Kg SM 4500-Cl B 2011-04-29 2011-04-27 Units mg/Kg	100 Prep Method: Analyzed By: Prepared By: Dilution 100 Prep Method:	4.00 N/A AR AR RL 4.00
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Chloride Sample: 26 Laboratory: Analysis: QC Batch:	4454 - AH-1 9-9.5' Midland Chloride (Titration) 80827 68515 Flag 4455 - AH-2 0-1' Midland BTEX	2040 Analytical Method: Date Analyzed: Sample Preparation: RL Result 1550 Analytical Method: S 8 Date Analyzed: 201	mg/Kg SM 4500-Cl B 2011-04-29 2011-04-27 Units mg/Kg	100 Prep Method: Analyzed By: Prepared By: Dilution 100 Prep Method: Analyzed By:	4.00 N/A AR AR RL 4.00
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory: Analysis: QC Batch:	4454 - AH-1 9-9.5' Midland Chloride (Titration) 80827 68515 Flag 4455 - AH-2 0-1' Midland BTEX 80636	2040 Analytical Method: Date Analyzed: Sample Preparation: RL Result 1550 Analytical Method: S 8 Date Analyzed: 201	mg/Kg SM 4500-Cl B 2011-04-29 2011-04-27 Units mg/Kg 021B 11-04-25	100 Prep Method: Analyzed By: Prepared By: Dilution 100 Prep Method: Analyzed By:	4.00 N/A AR AR RL 4.00 S 5035 ME
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Prep Batch:	4454 - AH-1 9-9.5' Midland Chloride (Titration) 80827 68515 Flag 4455 - AH-2 0-1' Midland BTEX 80636	2040 Analytical Method: Date Analyzed: Sample Preparation: RL Result 1550 Analytical Method: S 8 Date Analyzed: 201 Sample Preparation: 201	mg/Kg SM 4500-Cl B 2011-04-29 2011-04-27 Units mg/Kg 021B 11-04-25	100 Prep Method: Analyzed By: Prepared By: Dilution 100 Prep Method: Analyzed By:	4.00 N/A AR AR RL 4.00 S 5035 ME
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride	4454 - AH-1 9-9.5' Midland Chloride (Titration) 80827 68515 Flag 4455 - AH-2 0-1' Midland BTEX 80636 68447	2040 Analytical Method: Date Analyzed: Sample Preparation: RL Result 1550 Analytical Method: S 8 Date Analyzed: 201 Sample Preparation: 201 RL	mg/Kg SM 4500-Cl B 2011-04-29 2011-04-27 Units mg/Kg 021B 11-04-25 11-04-25	100 Prep Method: Analyzed By: Prepared By: Dilution 100 Prep Method: Analyzed By: Prepared By:	4.00 N/A AR AR RL 4.00 S 5035 ME ME

.

·

Report Date: May 2, 2011 114-6400887				Work Order: 11042214 COG/State I #16				Page Number: 9 of 35 Eddy Co., NM		
sample 2644	55 continued									
			\mathbf{RL}							
Parameter		Flag	Result		Units]	Dilution	RL		
Ethylbenzene	e		< 0.0200		mg/Kg		1	0.0200		
Xylene			< 0.0200		mg/Kg		1	0.0200		
						Spike	Percent	Recovery		
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits		
Irifluorotolu	ene (TFT)	<u> </u>	2.36	mg/Kg	1	2.00	118	52.8 - 137		
	robenzene (4-B	FB)	2.56	mg/Kg	1	2.00	128	38.4 - 157		
	4455 ATT 0	0.11								
Sample: 26	4455 - AH-2	0-1'								
Laboratory:	Midland									
Analysis:	Chloride (Tit	ration)	Analy	tical Method:	SM 4500-	CI B	Prep M	ethod: N/A		
QC Batch:	80827			Analyzed:	2011-04-2	9	Analyze	ed By: AR		
rep Batch:	68515		Sample	e Preparation:	2011-04-2	7	Prepare	ed By: AR		
			\mathbf{RL}							
Parameter	I	Flag	\mathbf{Result}		Units		Dilution	RL		
Chloride			451		mg/Kg		50	4.00		
Sample: 26 Jaboratory: Analysis: QC Batch: Prep Batch:	4455 - AH-2 Midland TPH DRO - 80739 68529		Date	rtical Method: Analyzed: le Preparation	2011-04-3	27	Prep M Analyza Prepara	ed By: kg		
			\mathbf{RL}							
Parameter	I	Flag	Result		Units		Dilution	RL		
DRO			<50.0		mg/Kg		1	50.0		
					S	pike	Percent	Recovery		
			TT 1.	T> 1		-	ъ	-		
urrogate	Flag	Result	Units	Dilution	n Ar	nount	Recovery	Limits		

Sample: 264455 - AH-2 0-1'

Laboratory:		Analytical Method:	C 9015 D	Duran Matha A	a roor
Analysis:	TPH GRO	Analytical Method:	S 8015 D	Prep Method:	\$ 5035
QC Batch:	80637	Date Analyzed:	2011-04-25	Analyzed By:	ME
Prep Batch:	68447	Sample Preparation:	2011-04-25	Prepared By:	ME

Report Date: May 2, 2011 114-6400887			Work Order: 11042214 COG/State I #16				Page Number: 10 of 35 Eddy Co., NM		
Parameter	Flag		RL Result		Units	Г	Dilution	\mathbf{RL}	
GRO	1 1005		<2.00		mg/Kg		1	2.00	
Surrogate Trifluorotoluene (7 4-Bromofluoroben:	'	Flag	Result 2.30 2.23	Units mg/Kg mg/Kg	Dilution 1 1	Spike Amount 2.00 2.00	Percent Recovery 115 112	Recovery Limits 48.5 - 152 42 - 159	
Sample: 264456				<u> </u>					
Laboratory: Mid	land								

Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	80827	Date Analyzed:	2011-04-29	Analyzed By:	AR
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		<200	mg/Kg	50	4.00

Sample: 264457 - AH-2 2-2.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 80827 68515	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2011-04-29 2011-04-27	Prep Method: Analyzed By: Prepared By:	AR
Donomotor	Diam	RL	TT:: to	Dilution	זמ
Parameter	Flag	Result	Units	Dilution	RL
Chloride		<200	mg/Kg	50	4.00

Sample: 264458 - AH-2 3-3.5'

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	80828	Date Analyzed:	2011-04-29	Analyzed By:	AR
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride	· · · · · · · · · · · · · · · · · · ·	<200	mg/Kg	50	4.00

Report Date: May 2, 2011	Work Order: 11042214	Page Number: 11 of 35
114-6400887	COG/State I #16	Eddy Co., NM

Sample: 264459 - AH-3 0-1'

Laboratory:	Midland								
Analysis:	BTEX			Analytical I	Method:	S 8021B		Prep Meth	od: S 5035
QC Batch:	80636			Date Analy	zed:	2011-04-25		Analyzed 2	By: ME
Prep Batch:	68447			Sample Pre	paration:	2011-04-25		Prepared 1	By: ME
				\mathbf{RL}					
Parameter	F	lag		Result		Units	D	ilution	RL
Benzene				< 0.0200		mg/Kg		1	0.0200
Toluene				0.110		mg/Kg		1	0.0200
Ethylbenzene				0.126		mg/Kg		1	0.0200
Xylene				0.395		mg/Kg		1	0.0200
							Spike	Percent	Recovery
Surrogate			Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolue	ne (TFT)			2.59	mg/Kg	1	2.00	130	52.8 - 137
4-Bromofluor	obenzene (4-BFE	3)		2.64	mg/Kg		2.00	132	38.4 - 157

Sample: 264459 - AH-3 0-1'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 80828 68515	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2011-04-29 2011-04-27	Prep Method: Analyzed By: Prepared By:	AR
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		20500	mg/Kg	100	4.00

Sample: 264459 - AH-3 0-1'

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
DRO			77.8	mg	/Kg	1	50.0
Parameter	F	ag	RL Result		Inits	Dilution	RL
Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - N 80646 68456	ТЕW	Date A:	nalyzed:	S 8015 D 2011-04-25 2011-04-25	Prep M Analyz Prepare	• •

Report Date: May 2, 2011	Work Order: 11042214	Page Number: 12 of 35
114-6400887	COG/State I #16	Eddy Co., NM

Sample: 264459 - AH-3 0-1'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH GRO 80637 68447		Analytical Date Anal Sample Pr		S 8015 D 2011-04-25 2011-04-25	v		d By: ME	
			\mathbf{RL}						
Parameter	Flag		Result		Units	D	vilution	\mathbf{RL}	
GRO			17.0		mg/Kg		1	2.00	
						Spike	Percent	Recovery	
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits	
Triffuorotolu	ene (TFT)		2.49	mg/Kg	1	2.00	124	48.5 - 152	
4-Bromofluor	obenzene (4-BFB)		2.41	mg/Kg	1	2.00	120	42 - 159	

Sample: 264460 - AH-3 1-1.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 80828 68515	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2011-04-29 2011-04-27	Prep Method: Analyzed By: Prepared By:	ÁR
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		451	mg/Kg	50	4.00

Sample: 264461 - AH-3 2-2.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 80828 68515	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2011-04-29 2011-04-27	Prep Method: Analyzed By: Prepared By:	ÁR
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		313	mg/Kg	50	4.00

Sample: 264462 - AH-3 3-3.5'

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	80828	Date Analyzed:	2011-04-29	Analyzed By:	AR
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR

Report Date: May 2, 2011 114-6400887			er: 11042214 tate I #16	5	ber: 13 of 35 ddy Co., NM
Demonster	Flore	RL Result	The	Dilution	RL
Parameter	Flag	nesuit	Units	Dilution	L
Chloride		<200	mg/Kg	50	4.00

Sample: 264463 - AH-3 4-4.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 80828 68515	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2011-04-29 2011-04-27	Prep Method: Analyzed By: Prepared By:	ÁR
		RL			
Parameter	\mathbf{Flag}	Result	Units	Dilution	\mathbf{RL}
Chloride	······································	<200	mg/Kg	50	4.00

Sample: 264464 - AH-3 5-5.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 80828 68515	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2011-04-29 2011-04-27	Prep Method: Analyzed By: Prepared By:	AR
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		<200	mg/Kg	50	4.00

Sample: 264465 - AH-3 6-6.5'

Chloride		<200	mg/Kg	50	4.00
Parameter	Flag	RL Result	Units	Dilution	RL
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR
QC Batch:	80828	Date Analyzed:	2011-04-29	Analyzed By:	AR
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland				

Sample: 264466 - AH-3 7-7.5'

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	80828	Date Analyzed:	2011-04-29	Analyzed By:	AR
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR

Report Date: May 2, 2011 114-6400887			er: 11042214 tate I #16		ber: 14 of 35 idy Co., NM
Parameter	Flag	RL Result	Units	Dilution	RL
Chloride		<200	mg/Kg	50	4.00

Sample: 264467 - AH-3 8-8.5'

1

Chloride	1 168		mg/Kg	50	4.00
Parameter	Flag	RL Result	Units	Dilution	RL
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR
QC Batch:	80828	Date Analyzed:	2011-04-29	Analyzed By:	AR
Laboratory: Analysis:	Midland Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A

Sample: 264468 - AH-3 9-9.5'

Laboratory: Analysis:	Midland Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	80829	Date Analyzed:	2011-04-29	Analyzed By:	
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		<200	mg/Kg	50	4.00

Sample: 264469 - AH-4 0-1'

Analysis: QC Batch:	Midland BTEX 80636 68447			Analytical I Date Analy Sample Pre	zed:	S 8021B 2011-04-25 2011-04-25		Prep Metho Analyzed H Prepared E	By: ME
				\mathbf{RL}					
Parameter	F	lag		Result		Units	Di	lution	\mathbf{RL}
Benzene				< 0.0200		mg/Kg		1	0.0200
Toluene				< 0.0200		mg/Kg		1	0.0200
Ethylbenzene				< 0.0200		mg/Kg		1	0.0200
Xylene				< 0.0200		mg/Kg		1	0.0200
							Spike	Percent	Recovery
Surrogate		F	lag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluer	ne (TFT)			2.48	mg/Kg	1	2.00	124	52.8 - 137
4-Bromofluoro	benzene (4-BFE	<u>s)</u>		2.56	mg/Kg	1	2.00	128	38.4 - 157

Report Date: May 2, 2011 114-6400887			Work Order: 11042214 COG/State I #16			Page Number: 15 of 35 Eddy Co., NM		
Sample: 26	4469 - AH-4 0	-1'						
Laboratory:	Midland							
Analysis:	Chloride (Titra	ation)	Analytica	l Method: SN	M 4500-Cl B	Prep M	ethod: N/A	
QC Batch:	80829		Date Ana	lyzed: 20	11-04-29	Analyz		
Prep Batch:	68515 ·		Sample P	reparation: 20	11-04-27	Prepare	ed By: AR	
			RL					
Parameter	Fl	ag	Result	Ur	nits	Dilution	\mathbf{RL}	
Chloride			4830	mg/	Kg	100	4.00	
QC Batch: Prep Batch:	80646 68456		RL	Preparation: 2	011-04-25 011-04-25	Analyz Prepare	ed By: kg	
Parameter	Fl	ag	Result		nits	Dilution	RL	
DRO			<50.0	mg/	Kg	1	50.0	
					Spike	Percent	Recovery	
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits	
n-Tricosane		110	mg/Kg	1	100	110	70 - 130	
Sample: 26	64469 - AH-4 0	-1'						

Analysis:	TPH GRO		Analytical	Method:	S 8015 D		Prep Meth	nod: S 5035
QC Batch:	80637		Date Anal	lyzed:	2011-04-25		Analyzed By:	
Prep Batch:	68447	47 Sample Preparation:		2011-04-25		Prepared By:		
			\mathbf{RL}					
Parameter	Flag		Result		Units	E	ilution	\mathbf{RL}
GRO			<2.00		mg/Kg		1	2.00
						Spike	Percent	Recovery
Surrogate		Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
Trifluorotolu	ene (TFT)		2.39	mg/Kg	1	2.00	120	48.5 - 152
4-Bromofluor	robenzene (4-BFB)		2.25	mg/Kg	1	2.00	112	42 - 159

Report Date: May 2, 2011 114-6400887		Work Order: 1104 COG/State I #		Page Number: 1 Eddy C	
Sample: 26	4470 - AH-4 1-1.5'				
Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	80829	Date Analyzed:	2011-04-29	Analyzed By:	AR
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	\mathbf{AR}
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		592	mg/Kg	50	4.00
Sample: 26 Laboratory:	4471 - AH-4 2-2.5' Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	80829	Date Analyzed:	2011-04-29	Analyzed By:	ÁR
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		864	mg/Kg	100	4.00
Sample: 26 Laboratory: Analysis: QC Batch:	4472 - AH-4 3-3.5' Midland Chloride (Titration) 80829 68515	864 Analytical Method: Date Analyzed: Sample Preparation:	mg/Kg SM 4500-Cl B 2011-04-29 2011-04-27	100 Prep Method: Analyzed By: Prepared By:	4.00 N/A AR AR
Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 80829 68515	Analytical Method: Date Analyzed: Sample Preparation: RL	SM 4500-Cl B 2011-04-29 2011-04-27	Prep Method: Analyzed By: Prepared By:	N/A AR AR
Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	Midland Chloride (Titration) 80829	Analytical Method: Date Analyzed: Sample Preparation: RL Result	SM 4500-Cl B 2011-04-29 2011-04-27 Units	Prep Method: Analyzed By: Prepared By: Dilution	N/A AR AR RL
Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	Midland Chloride (Titration) 80829 68515	Analytical Method: Date Analyzed: Sample Preparation: RL Result	SM 4500-Cl B 2011-04-29 2011-04-27	Prep Method: Analyzed By: Prepared By:	N/A AR AR
Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 26	Midland Chloride (Titration) 80829 68515 Flag 4473 - AH-4 4-4.5'	Analytical Method: Date Analyzed: Sample Preparation: RL Result	SM 4500-Cl B 2011-04-29 2011-04-27 Units	Prep Method: Analyzed By: Prepared By: Dilution	N/A AR AR RL
Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory:	Midland Chloride (Titration) 80829 68515 Flag 4473 - AH-4 4-4.5' Midland	Analytical Method: Date Analyzed: Sample Preparation: RL Result 540	SM 4500-Cl B 2011-04-29 2011-04-27 Units mg/Kg	Prep Method: Analyzed By: Prepared By: Dilution 50	N/A AR AR RL 4.00
Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory: Analysis:	Midland Chloride (Titration) 80829 68515 Flag 4473 - AH-4 4-4.5' Midland Chloride (Titration)	Analytical Method: Date Analyzed: Sample Preparation: RL Result 540 Analytical Method:	SM 4500-Cl B 2011-04-29 2011-04-27 Units mg/Kg SM 4500-Cl B	Prep Method: Analyzed By: Prepared By: Dilution 50 Prep Method:	N/A AR AR 4.00
Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory: Analysis: QC Batch:	Midland Chloride (Titration) 80829 68515 Flag 4473 - AH-4 4-4.5' Midland Chloride (Titration) 80829	Analytical Method: Date Analyzed: Sample Preparation: RL Result 540 Analytical Method: Date Analyzed:	SM 4500-Cl B 2011-04-29 2011-04-27 Units mg/Kg SM 4500-Cl B 2011-04-29	Prep Method: Analyzed By: Prepared By: Dilution 50 Prep Method: Analyzed By:	N/A AR AR 4.00 N/A AR
Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory: Analysis: QC Batch:	Midland Chloride (Titration) 80829 68515 Flag 4473 - AH-4 4-4.5' Midland Chloride (Titration)	Analytical Method: Date Analyzed: Sample Preparation: RL Result 540 Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2011-04-29 2011-04-27 Units mg/Kg SM 4500-Cl B	Prep Method: Analyzed By: Prepared By: Dilution 50 Prep Method:	N/A AR AR 4.00
Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 80829 68515 Flag 4473 - AH-4 4-4.5' Midland Chloride (Titration) 80829 68515	Analytical Method: Date Analyzed: Sample Preparation: RL Result 540 Analytical Method: Date Analyzed: Sample Preparation: RL	SM 4500-Cl B 2011-04-29 2011-04-27 Units mg/Kg SM 4500-Cl B 2011-04-29 2011-04-27	Prep Method: Analyzed By: Prepared By: Dilution 50 Prep Method: Analyzed By: Prepared By:	N/A AR AR 4.00 N/A AR AR
Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Chloride Sample: 26 Laboratory: Analysis: QC Batch:	Midland Chloride (Titration) 80829 68515 Flag 4473 - AH-4 4-4.5' Midland Chloride (Titration) 80829	Analytical Method: Date Analyzed: Sample Preparation: RL Result 540 Analytical Method: Date Analyzed:	SM 4500-Cl B 2011-04-29 2011-04-27 Units mg/Kg SM 4500-Cl B 2011-04-29	Prep Method: Analyzed By: Prepared By: Dilution 50 Prep Method: Analyzed By:	N/A AR AR RI 4.00
Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory: Analysis:	Midland Chloride (Titration) 80829 68515 Flag 4473 - AH-4 4-4.5' Midland Chloride (Titration) 80829	Analytical Method: Date Analyzed: Sample Preparation: RL Result 540 Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2011-04-29 2011-04-27 Units mg/Kg SM 4500-Cl B 2011-04-29	Prep Method: Analyzed By: Prepared By: Dilution 50 Prep Method: Analyzed By:	N/A AR AR 4.00 N/A AR

Report Date 114-6400887	: May 2, 2011	Work Order: 11042 COG/State I #1		Page Number: 17 of 38 Eddy Co., NM		
Sample: 26	4474 - AH-4 5-5.5'					
Laboratory:	Midland					
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A	
QC Batch:	80829	Date Analyzed:	2011-04-29	Analyzed By:	AR	
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR	
		RL				
Parameter	Flag	Result	Units	Dilution	RL	
Chloride		615	ng/Kg	50	4.00	
Sample: 26	4475 - AH-4 6-6.5'					
Laboratory:	Midland					
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A	
QC Batch:	80829	Date Analyzed:	2011-04-29	Analyzed By:	AR	
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR	
	_	RL				
Parameter	Flag	Result	Units	Dilution	RL	
Chloride		606 1	ng/Kg	50	4.00	
Sample: 26	4476 - AH-4 7-7.5'					
Laboratory:	Midland					
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A	
QC Batch:	80829	Date Analyzed:	2011-04-29	Analyzed By:	ÁR	
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR	
_		RL				
Parameter	Flag	Result	Units	Dilution	RL	
Chloride	· · · · · · · · · · · · · · · · · · ·	451 r	ng/Kg	50	4.00	
Sample: 26	4477 - AH-4 8-8.5'					
Laboratory:	Midland					
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A	
QC Batch:	80829	Date Analyzed:	2011-04-29	Analyzed By:	AR	
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR	
		RL Result	TT 1/		D 7	
	k'log	Rocult	Linito	Dilution	RL	
Parameter Chloride	Flag		Units ng/Kg	50	4.00	

Report Date: May 2, 2011 14-6400887			Work Order: 11042214 COG/State I #16				Page Number: 18 of 3 Eddy Co., NM		
Sample: 26	4478 - AH-4 9-9.5'								
Laboratory:	Midland								
Analysis:	Chloride (Titration)			ical Meth			Prep Method: N		
QC Batch:	80830			Analyzed:		2011-04-29		ed By: AR	
Prep Batch:	68515		Sample	e Preparat	ion: 2011-04-2	27	Prepare	ed By: AR	
			\mathbf{RL}						
Parameter	Flag		Result		Units	I	Dilution	RL	
Chloride			414		mg/Kg		50	4.00	
Analysis:	BTEX 80636		Analytical M Date Analy:		S 8021B 2011-04-25		Prep Met Analyzed		
Analysis: QC Batch:				zed:			Prep Met Analyzed Prepared	By: ME	
Analysis: QC Batch: Prep Batch:	80636		Date Analys Sample Pre	zed:	2011-04-25	D	Analyzed	By: ME	
Analysis: QC Batch: Prep Batch: Parameter	80636 68447		Date Analy Sample Prep RL	zed:	2011-04-25 2011-04-25 Units mg/Kg	D	Analyzed Prepared ilution 1	By: ME By: ME RL 0.0200	
Analysis: QC Batch: Prep Batch: Parameter Benzene Toluene	80636 68447 Flag		Date Analy: Sample Prep RL Result <0.0200 <0.0200	zed:	2011-04-25 2011-04-25 Units mg/Kg mg/Kg	D	Analyzed Prepared	By: ME By: ME RL	
Analysis: QC Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene	80636 68447 Flag		Date Analy: Sample Prep RL Result <0.0200 <0.0200 <0.0200	zed:	2011-04-25 2011-04-25 <u>Units</u> mg/Kg mg/Kg mg/Kg	D	Analyzed Prepared ilution 1 1 1	By: ME By: ME RL 0.0200 0.0200 0.0200	
Analysis: QC Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene	80636 68447 Flag		Date Analy: Sample Prep RL Result <0.0200 <0.0200	zed:	2011-04-25 2011-04-25 Units mg/Kg mg/Kg	D	Analyzed Prepared ilution 1 1	By: ME By: ME RL 0.0200 0.0200	
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene Xylene	80636 68447 Flag		Date Analy: Sample Prep RL Result <0.0200 <0.0200 <0.0200	zed:	2011-04-25 2011-04-25 <u>Units</u> mg/Kg mg/Kg mg/Kg	D Spike	Analyzed Prepared ilution 1 1 1	By: ME By: ME RL 0.0200 0.0200 0.0200	
Analysis: QC Batch: Prep Batch: Benzene Toluene Ethylbenzene Xylene	80636 68447 Flag	Flag	Date Analy: Sample Prej RL Result <0.0200 <0.0200 <0.0200 <0.0200 Result	zed: paration: Units	2011-04-25 2011-04-25 <u>Units</u> mg/Kg mg/Kg mg/Kg	Spike Amount	Analyzed Prepared ilution 1 1 1 1 Percent Recovery	By: ME By: ME 0.0200 0.0200 0.0200 0.0200 0.0200 Recovery Limits	
Analysis: QC Batch: Prep Batch: Parameter Benzene Toluene Ethylbenzene Xylene Surrogate Trifluorotolue	80636 68447 Flag	Flag	Date Analy: Sample Prej RL Result <0.0200 <0.0200 <0.0200 <0.0200	zed: paration:	2011-04-25 2011-04-25 mg/Kg mg/Kg mg/Kg mg/Kg	Spike	Analyzed Prepared ilution 1 1 1 1 Percent	By: ME By: ME	

Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	80830	Date Analyzed:	2011-04-29	Analyzed By:	AR
Prep Batch:	68515	Sample Preparation	: 2011-04-27	Prepared By:	AR
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		6830	mg/Kg	100	4.00

Report Date: May 2, 2011 114-6400887		Work Order: 110422 COG/State I #16	Page Number: 19 of 3 Eddy Co., NM		
Sample: 26	4479 - AH-5 0-1'				
Laboratory: Analysis:	Midland TPH DRO - NEW	Analytical Method:	S 8015 D	Prep Method:	N/A
QC Batch:	80646	Date Analyzed:	2011-04-25	Analyzed By:	'
Prep Batch:	68456	Sample Preparation:	2011-04-25	Prepared By:	kg
		RL			

Parameter	F	lag	Result	Un	its	Dilution	\mathbf{RL}
DRO	·····		<50.0	mg/l	mg/Kg		50.0
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Tricosane		94.0	mg/Kg	1	100	94	70 - 130

Sample: 264479 - AH-5 0-1'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH GRO 80637 68447		Analytical Date Anal Sample Pr		S 8015 D 2011-04-25 2011-04-25		Prep Metl Analyzed Prepared	By: ME
			\mathbf{RL}					
Parameter	Flag		Result		Units	D	ilution	\mathbf{RL}
GRO			<2.00		mg/Kg		1	2.00
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolu	ene (TFT)	<u>_</u>	2.36	mg/Kg	1	2.00	118	48.5 - 152
	obenzene (4-BFB)		2.28	mg/Kg	1	2.00	114	42 - 159

Sample: 264480 - AH-5 1-1.5'

Chloride		5850	mg/Kg	100	4.00
Parameter	Flag	RL Result	Units	Dilution	RL
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR
QC Batch:	80830	Date Analyzed:	2011-04-29	Analyzed By:	AR
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland				

Report Date: May 2, 2011 114-6400887		Work Order: 11042 COG/State I #1	Page Number: 20 of 35 Eddy Co., NM		
Sample: 26	4481 - AH-5 2-2.5'				
Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	80830	Date Analyzed:	2011-04-29	Analyzed By:	AR
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR
		\mathbf{RL}			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		7580	mg/Kg	100	4.00
Sample: 26	4482 - AH-5 3-3.5'				
Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	80830	Date Analyzed:	2011-04-29	Analyzed By:	AR
Prep Batch:	68515	Sample Preparation:	2011-04-27	Prepared By:	AR
		RL			
	Flag	Result	Units	Dilution	\mathbf{RL}
	Tiag				
Parameter Chloride	Г ю <u></u>		ng/Kg	100	4.00
Chloride Sample: 26 Laboratory: Analysis: QC Batch:	4483 - AH-5 4-4.5' Midland Chloride (Titration) 80830 68515				
Chloride Sample: 26 Laboratory: Analysis: QC Batch:	4483 - AH-5 4-4.5' Midland Chloride (Titration) 80830	7500 n Analytical Method: Date Analyzed:	ng/Kg SM 4500-Cl B 2011-04-29	100 Prep Method: Analyzed By:	4.00 N/A AR
	4483 - AH-5 4-4.5' Midland Chloride (Titration) 80830	7500 Analytical Method: Date Analyzed: Sample Preparation:	ng/Kg SM 4500-Cl B 2011-04-29	100 Prep Method: Analyzed By:	4.00 N/A AR
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch:	4483 - AH-5 4-4.5' Midland Chloride (Titration) 80830 68515	7500 Analytical Method: Date Analyzed: Sample Preparation: RL Result	ng/Kg SM 4500-Cl B 2011-04-29 2011-04-27	100 Prep Method: Analyzed By: Prepared By:	4.00 N/A AR AR
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 26	4483 - AH-5 4-4.5' Midland Chloride (Titration) 80830 68515	7500 Analytical Method: Date Analyzed: Sample Preparation: RL Result	ng/Kg SM 4500-Cl B 2011-04-29 2011-04-27 Units	100 Prep Method: Analyzed By: Prepared By: Dilution	4.00 N/A AR AR RL
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory:	4483 - AH-5 4-4.5' Midland Chloride (Titration) 80830 68515 Flag 4484 - AH-5 5-5.5'	7500 Analytical Method: Date Analyzed: Sample Preparation: RL Result	ng/Kg SM 4500-Cl B 2011-04-29 2011-04-27 Units	100 Prep Method: Analyzed By: Prepared By: Dilution	4.00 N/A AR AR RL
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory: Analysis:	4483 - AH-5 4-4.5' Midland Chloride (Titration) 80830 68515 Flag 4484 - AH-5 5-5.5' Midland	7500 n Analytical Method: Date Analyzed: Sample Preparation: RL Result 7590 n	ng/Kg SM 4500-Cl B 2011-04-29 2011-04-27 Units ng/Kg	100 Prep Method: Analyzed By: Prepared By: Dilution 100	4.00 N/A AR AR RL 4.00
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory: Analysis: QC Batch:	4483 - AH-5 4-4.5' Midland Chloride (Titration) 80830 68515 Flag 4484 - AH-5 5-5.5' Midland Chloride (Titration)	7500 n Analytical Method: Date Analyzed: Sample Preparation: RL Result 7590 n Analytical Method:	ng/Kg SM 4500-Cl B 2011-04-29 2011-04-27 Units ng/Kg SM 4500-Cl B	100 Prep Method: Analyzed By: Prepared By: Dilution 100 Prep Method:	4.00 N/A AR AR RL 4.00
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride Sample: 26 Laboratory: Analysis: QC Batch:	4483 - AH-5 4-4.5' Midland Chloride (Titration) 80830 68515 Flag 4484 - AH-5 5-5.5' Midland Chloride (Titration) 80830	7500 n Analytical Method: Date Analyzed: Sample Preparation: RL Result 7590 n Analytical Method: Date Analyzed:	ng/Kg SM 4500-Cl B 2011-04-29 2011-04-27 Units ng/Kg SM 4500-Cl B 2011-04-29	100 Prep Method: Analyzed By: Prepared By: Dilution 100 Prep Method: Analyzed By:	4.00 N/A AR AR RL 4.00 N/A AR
Chloride Sample: 26 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Chloride	4483 - AH-5 4-4.5' Midland Chloride (Titration) 80830 68515 Flag 4484 - AH-5 5-5.5' Midland Chloride (Titration) 80830	7500 n Analytical Method: Date Analyzed: Sample Preparation: RL Result 7590 n Analytical Method: Date Analyzed: Sample Preparation:	ng/Kg SM 4500-Cl B 2011-04-29 2011-04-27 Units ng/Kg SM 4500-Cl B 2011-04-29	100 Prep Method: Analyzed By: Prepared By: Dilution 100 Prep Method: Analyzed By:	4.00 N/A AR AR RL 4.00 N/A AR

Report Date: May 2, 2011 114-6400887 				rk Order: 1104 COG/State I #			Page Nun E	nber: 2 Iddy Co	
Sample: 264	4485 - AH-5	6-6.5'							
Laboratory:	Midland								
Analysis:	Chloride (Ti	tration)		tical Method:	SM 4500-		Prep M		N/A
QC Batch:	80830			Analyzed:	2011-04-2		Analyze		AR
Prep Batch:	68515		Samp	le Preparation	2011-04-2	7	Prepare	d By:	AR
			\mathbf{RL}						
Parameter		Flag	Result		Units	r	Dilution		RL
Chloride			3130	· - · · · · ·	mg/Kg		100		4.00
Sample: 264 Laboratory: Analysis:	4486 - AH-5 Midland Chloride (Ti		Analu	tical Method:	SM 4500-	CI B	Prep M	ethod.	N/A
QC Batch:	80830		•	Analyzed:	2011-04-2		Analyze		AR
Prep Batch:	68515			le Preparation:			Prepare		AR
rop Daton.	00010		Samp		2011-04-2	r	Tiepare	u Dy.	1110
		-	RL			_			
Parameter		Flag	Result		Units	L	Dilution		RL
Chloride			684		mg/Kg		50		4.00
Method Bla	unk (1)	QC Batch: 80636							
QC Batch:	80636		Date Ana	lyzed: 2011-	-04-25		Analyz	ed By:	ME
Prep Batch:	68447		QC Prepa		04-25		Prepare		ME
-							-	·	
				MDL					
Parameter		Flag		Result		Unit	ts		\mathbf{RL}
Benzene		<u></u>		< 0.0118		mg/l	Kg		0.02
Toluene				< 0.00600		mg/l			0.02
Ethylbenzene				< 0.00850		mg/l	Kg		0.02
Xylene				< 0.00613		mg/l	Kg		0.02
						Spike	Percent	Rec	overy
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery		mits
Jan Bano	ma (TTEYT)		2.08	mg/Kg	1	2.00	104	66.6	- 122
Trifluorotolue	obenzene (4-E								

Method Blank (1) QC Batch: 80637

QC Batch:	80637	Date Analyzed:	2011-04-25	Analyzed By:	ME
Prep Batch:	68447	QC Preparation:	2011-04-25	Prepared By:	ME

SurrogateFlagResultUnitsDilutionAmountRecoveryLimitsTrifluorotoluene (TFT)2.02 mg/Kg 12.0010167.6 - 1504-Bronoffuorobenzene (4-BFB)1.93 mg/Kg 12.009652.4 - 130Method Blank (1)QC Batch: 80646QC Batch:80646Date Analyzed: 2011-04-25Analyzed By: kgPrep Batch:68456QC Preparation:2011-04-25Prepared By: kgParameterFlagResultUnitsRIDRO<15.7 mg/Kg 50SurrogateFlagResultUnitsRecoveryim Tricosane104 mg/Kg 1100104ParameterFlagResultDate Analyzed: 2011-04-27Analyzed By: kgMethod Blank (1)QC Batch: 80739Date Analyzed: 2011-04-27Analyzed By: kgPrep Batch:68529QC Preparation: 2011-04-27Prepared By: kgPrep Batch:68529QC Preparation: 2011-04-27Prepared By: kgParameterFlagResultUnitsRIDRO<15.7 mg/Kg 50SurrogateFlagResultUnitsRIDRO<15.7 mg/Kg 50SurrogateFlagResultUnitsRIDRO<15.7 mg/Kg 50SurrogateFlagResultUnitsNIDRO<15.7 mg/Kg 50SurrogateFlagResult <td< th=""><th>Report Date: May 2, 201 114-6400887</th><th></th><th></th><th>Order: 110 G/State I</th><th></th><th></th><th>-</th><th>nber: 22 of 3 Eddy Co., NM</th></td<>	Report Date: May 2, 201 114-6400887			Order: 110 G/State I			-	nber: 22 of 3 Eddy Co., NM
GRO <0.753								
SpikePercent Percent AmountRecovery LimitsSurrogateFlagResultUnitsDilutionAmount AmountRecovery RecoveryLimitsTrifluorotoluene (TFT)2.02mg/Kg12.0010167.6 - 1544-Bromofluorobenzene (4-BFB)1.93mg/Kg12.009652.4 - 130Method Blank (1)QC Batch:80646Date Analyzed:2011-04-25Analyzed By:kgPrep Batch:68456Date Analyzed:2011-04-25Prepared By:kgParameterFlagResultUnitsRIDRO<15.7		Flag						
SurrogateFlagResultUnitsDilutionAmountRecoveryLimitsTriffuorotoluene (TFT)2.02 mg/Kg 12.0010167.6 · 1564-Bromofluorobenzene (4-BFB)1.93 mg/Kg 12.009652.4 · 130Method Blank (1)QC Batch:80646QC Preparation:2011-04-25Analyzed By: kgPrep Batch:68456Date Analyzed:2011-04-25Prepared By: kgParameterFlagResultUnitsRIDRO<15.7	GRO			< 0.753		mg/	Kg	2
Trifluorotoluene (TFT) 2.02 mg/Kg 1 2.00 101 67.6 - 150 4-Bromofluorobenzene (4-BFB) 1.93 mg/Kg 1 2.00 96 52.4 - 130 Method Blank (1) QC Batch: 80646 Date Analyzed: 2011-04-25 Analyzed By: kg Prep Batch: 68456 QC Preparation: 2011-04-25 Prepared By: kg Parameter Flag Result Units RI DRO <15.7	Surrogate	Flag	Result	Units	Dilution	-		Recovery Limits
4-Bromofluorobenzene (4-BFB) 1.93 mg/Kg 1 2.00 96 52.4 - 130 Method Blank (1) QC Batch: 80646 Date Analyzed: 2011-04-25 Analyzed By: kg Prep Batch: 68456 QC Preparation: 2011-04-25 Prepared By: kg Parameter Flag Result Units RI DRO <15.7		······································	2.02	mg/Kg	1	2.00	101	67.6 - 150
QC Batch: 80646 Prep Batch: Date Analyzed: 2011-04-25 QC Preparation: Analyzed By: kg Parameter Flag Result Units RI DRO <15.7	4-Bromofluorobenzene (4	-BFB)	1.93	mg/Kg	1	2.00	96	52.4 - 130
Prep Batch: 68456 QC Preparation: 2011-04-25 Prepared By: kg Parameter Flag Result Units RI DRO <15.7	Method Blank (1)	QC Batch: 80646						
MDL MDL Parameter Flag Result Units RI DRO <15.7	•			-				
ParameterFlagResultUnitsRIDRO<15.7	Prep Batch: 68456		QC Prepar	ration: 20	11-04-25		Prepa	red By: kg
DRO <15.7 mg/Kg 50 Surrogate Flag Result Units Dilution Amount Recovery Limits n-Tricosane 104 mg/Kg 1 100 104 70 - 130 Method Blank (1) QC Batch: 80739 Date Analyzed: 2011-04-27 Analyzed By: kg Prep Batch: 68529 QC Preparation: 2011-04-27 Prepared By: kg Parameter Flag Result Units RL DRO <15.7				MDL				
Surrogate Flag Result Units Dilution Amount Recovery Limits n-Tricosane 104 mg/Kg 1 100 104 70 - 130 Method Blank (1) QC Batch: 80739 Date Analyzed: 2011-04-27 Analyzed By: kg Prep Batch: 68529 QC Preparation: 2011-04-27 Prepared By: kg Parameter Flag Result Units RL DRO <15.7		Flag						RL
Surrogate Flag Result Units Dilution Amount Recovery Limits n-Tricosane 104 mg/Kg 1 100 104 70 - 130 Method Blank (1) QC Batch: 80739 Date Analyzed: 2011-04-27 Analyzed By: kg Prep Batch: 68529 QC Preparation: 2011-04-27 Prepared By: kg Parameter Flag Result Units RL DRO <15.7	DRO		<u> </u>	<15.7		mg/	Kg	50
n-Tricosane 104 mg/Kg 1 100 104 70 - 130 Method Blank (1) QC Batch: 80739 Date Analyzed: 2011-04-27 Analyzed By: kg Prep Batch: 68529 QC Preparation: 2011-04-27 Prepared By: kg MDL Parameter Flag Result Units RL DRO <15.7	Sumo acta Ela a	Decult	IInita	D:1.4	ion.	•		Recovery
Method Blank (1) QC Batch: 80739 Date Analyzed: 2011-04-27 Analyzed By: kg Prep Batch: 68529 QC Preparation: 2011-04-27 Prepared By: kg MDL Parameter Flag Result Units RL DRO <15.7								
ParameterFlagResultUnitsRLDRO<15.7mg/Kg50SurrogateFlagResultUnitsDilutionAmountRecoverySurrogateFlagResultUnitsDilutionAmountRecoveryLimitsn-Tricosane101mg/Kg110010170 - 130Method Blank (1)QC Batch: 80754Date Analyzed: 2011-04-28Analyzed By: ARPrep Batch:68435QC Preparation: 2011-04-25Prepared By: ARMDLMDLResultUnitsRL	QC Batch: 80739	QC Batch: 80739	-					
DRO <15.7 mg/Kg 50 Surrogate Flag Result Units Dilution Amount Recovery Limits n-Tricosane 101 mg/Kg 1 100 101 70 - 130 Method Blank (1) QC Batch: 80754 Date Analyzed: 2011-04-28 Analyzed By: AR Prep Batch: 68435 QC Preparation: 2011-04-25 Prepared By: AR Parameter Flag Result Units RL								
Surrogate Flag Result Units Dilution Amount Recovery Limits n-Tricosane 101 mg/Kg 1 100 101 70 - 130 Method Blank (1) QC Batch: 80754 Date Analyzed: 2011-04-28 Analyzed By: AR Prep Batch: 68435 QC Preparation: 2011-04-25 Prepared By: AR MDL Parameter Flag Result Units RL		Flag						RL
Surrogate Flag Result Units Dilution Amount Recovery Limits n-Tricosane 101 mg/Kg 1 100 101 70 - 130 Method Blank (1) QC Batch: 80754 Date Analyzed: 2011-04-28 Analyzed By: AR Prep Batch: 68435 QC Preparation: 2011-04-25 Prepared By: AR MDL MDL Parameter Flag Result Units RL	DRO			<15.7		mg/.	Kg	50
n-Tricosane 101 mg/Kg 1 100 101 70 - 130 Method Blank (1) QC Batch: 80754 QC Batch: 80754 Date Analyzed: 2011-04-28 Analyzed By: AR Prep Batch: 68435 QC Preparation: 2011-04-25 Prepared By: AR MDL Parameter Flag Result Units RL			TT 11			-		Recovery
Method Blank (1) QC Batch: 80754 QC Batch: 80754 Date Analyzed: 2011-04-28 Analyzed By: AR Prep Batch: 68435 QC Preparation: 2011-04-25 Prepared By: AR MDL Parameter Flag Result Units RL					on			
Parameter Flag Result Units RL	QC Batch: 80754	QC Batch: 80754	Date Analy				Analyza	ed By: AR
	Parameter	Flag				Uni	s	RI.
		* 1005						

Report Date: May 2, 2 114-6400887	2011	Work Order COG/Sta			Page Number: 23 Eddy Co	
Method Blank (1)	QC Batch: 80827					
QC Batch: 80827		Date Analyzed:	2011-04-29		Analyzed By:	AR
Prep Batch: 68515		QC Preparation:	2011-04-27		Prepared By:	AR
		M	DL			
Parameter	Flag	Res		Units		RL
Chloride		<3	.85	mg/Kg		4
Method Blank (1)	QC Batch: 80828					
QC Batch: 80828		Date Analyzed:	2011-04-29		Analyzed By:	AR
Prep Batch: 68515		QC Preparation:	2011-04-27		Prepared By:	AR
		M	DL			
Parameter	Flag	Res	ult	Units		RL
Chloride		<3	.85	mg/Kg		4
Method Blank (1)	QC Batch: 80829					
QC Batch: 80829		Date Analyzed:	2011-04-29		Analyzed By:	AR
Prep Batch: 68515		QC Preparation:	2011-04-27		Prepared By:	AR
		MI				
Parameter	Flag	Res		Units		RL
Chloride		<3.	85	mg/Kg	u ¹	4
Method Blank (1)	QC Batch: 80830					
QC Batch: 80830		Date Analyzed:	2011-04-29		Analyzed By:	AR
Prep Batch: 68515		QC Preparation:	2011-04-27		Prepared By:	AR
		МІ	DL			
Parameter	Flag	Res		Units		RL
Chloride		<3.	85	mg/Kg		4

Laboratory Control Spike (LCS-1)

QC Batch:	80636	Date Analyzed:	2011-04-25	Analyzed By:	ME
Prep Batch:	68447	QC Preparation:	2011-04-25	Prepared By:	ME

Report Date: May 2, 2011 114-6400887					der: 110422 State I #16					Page Nu		24 of 35 Co., NM
	\mathbf{LC}	s				Sp	oike	Ma	trix			Rec.
Param	Resu	ılt	Uni	ts	Dil.	Am	ount	Re	sult	Rec.		Limit
Benzene	1.6	4	mg/l	Kg	1	2	.00	<0.	0118	82	8	.9 - 108
Toluene	1.9	8	mg/l	Kg	1	2.	00	<0.0	0600	99	81	1.9 - 110
Ethylbenzene	2.0	9	mg/l	Χg	1	2	.00	<0.0	0850	104	78	3.4 - 115
Xylene	6.3	0	mg/l	Kg	1	6.	.00	<0.0	0613	105	79).1 - 116
Percent recovery is based on the s	pike result.	RPD) is bas	ed o	n the spike	and	spike du	plicate	e result			
	LCSD				Spike	М	latrix		F	Rec.		RPD
Param	Result	Uni	its I	Dil.	Amount	R	esult	Rec.	\mathbf{L}_{i}	imit	RPD	Limit
Benzene	1.68	_mg/	Kg	1	2.00	<().0118	84	81.9) - 108	2	20
Toluene	2.10	mg/	<u> </u>	1	2.00	<0	.00600	105	81.9) - 110	6	20
Ethylbenzene	2.06	mg/		1	2.00		.00850	103	78.4	- 115	1	20
Xylene	6.40	_mg/	Kg	1	6.00	<0	.00613	107	79.1	- 116	2	20
Percent recovery is based on the s	pike result.	RPD) is bas	ed o	n the spike	and	spike du	plicate	e result.			
	\mathbf{LC}	S	LCSD				Spi	ke	LCS	LCSE)	Rec.
Surrogate	Resu		Result		Units	Dil.	Amo		Rec.	Rec.		Limit
Trifluorotoluene (TFT)	2.1		2.11		mg/Kg	1	2.0		105	106		.2 - 114
4-Bromofluorobenzene (4-BFB)	2.3	8	2.41		mg/Kg	1	2.()0	119	120	69	.8 - 121
Laboratory Control Spike (LC	CS-1)											
QC Batch: 80637			e Analy							v	zed By	
Prep Batch: 68447		QC	Prepara	atio	n: 2011-04	-25				Prepa	red By	: ME
	$^{\rm LC}$	G				q	pike	Мо	trix			Rec.
Param	Rest		Uni	ts	Dil.		nount		sult	Rec.		Limit
GRO	17.		mg/		1		20.0		753	85		9 - 95.4
Percent recovery is based on the s												J JU.1
v	LCSD				Spike		atrix			ec.		RPD
Param	Result	Un	its	Dil.	Amount		esult	Rec.			RPD	Limit
GRO	16.7	mg/		1	20.0		0.753	84		- 95.4	$\frac{10}{2}$	20
Percent recovery is based on the s												
-			LCSD		-		- Spi	-	LCS	LCSD	I	Rec.
Surrogate	Resu		Result		Units	Dil.	Amo		Rec.	Rec.		Limit
Trifluorotoluene (TFT)	2.07		1.95		mg/Kg	1	2.0		104	98		.9 - 142
4-Bromofluorobenzene (4-BFB)	2.09		2.00		mg/Kg	1	2.0		104	100		.2 - 132
										100		

Laboratory Control Spike (LCS-1)

QC Batch:	80646	Date Analyzed:	2011-04-25	Analyzed By:	kg
Prep Batch:	68456	QC Preparation:	2011-04-25	Prepared By:	kg

Report Date: May 2, 2 114-6400887	2011				er: 1104221 ate I #16	4	1872tr	Page Nu		25 of 35 Co., NM
		\mathbf{LC}	S			Spike	Matrix	ĸ		Rec.
Param	-	Resu	ılt U	Jnits	Dil.	Amount	Result	t Rec.		limit
DRO		218	3 m	g/Kg	1	250	<15.7	87	47.5	- 144.1
Percent recovery is bas	ed on the s	pike result.	RPD is b	oased on	the spike	and spike d	uplicate re	esult.		
		LCSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO		213	mg/Kg	1	250	<15.7	85 4	7.5 - 144.1	2	20
Percent recovery is bas	ed on the s	pike result.	RPD is b	pased on	the spike	and spike d	uplicate re	esult.		
	LCS	LCSD				Spike	LCS	LCSD		Rec.
Surrogate	Result	Result	U	nits	Dil.	Amount	Rec.	. Rec.		Limit
n-Tricosane	106	106	mg	/Kg	1	100	106	106		70 - 130
Prep Batch: 68529		LC	-	paration	: 2011-04	Spike	Matrix	-	pared B	By: kg Rec.
Param		Resu		Jnits	Dil.	Amount	Result			Rec. Limit
DRO				g/Kg	1	250	<15.7			- 144.1
Percent recovery is bas	ed on the s				·····	10 Voteland				
		LCSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO		246	mg/Kg	1	250	<15.7	98 4	7.5 - 144.1	10	20
Percent recovery is bas	ed on the s	pike result.	RPD is t	oased on	the spike	and spike d	uplicate re	esult.		
	LCS	LCSD				Spike	LCS	LCSD		Rec.
Surrogate	Result	Result		nits	Dil.	Amount	Rec.	Rec.		Limit
n-Tricosane	115	120	mg	/Kg	1	100	115	120		70 - 130
	110		8	/**8						
Laboratory Control QC Batch: 80754 Prep Batch: 68435	N.1 ·	<u>.</u>	Date An QC Prep	alyzed:	2011-04- 2011-04-	28			zed By ared By	
Laboratory Control QC Batch: 80754	N.1 ·	<u>.</u>	Date An QC Prep	alyzed:		28	Mat	Prepa		
Laboratory Control QC Batch: 80754	N.1 ·	CS-1)	Date An QC Prep S	alyzed:		28 25		Prepa	ared By	r: AR

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

114-6400887	: May 2, 2011				: 11042214 te I #16				age Ni	ımber: Eddy (Co., NN
Param		LCSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec Lim		RPD	RPD Limit
Chloride		102	mg/Kg	1	100	<3.85	102	85 - 1	115	8	20
Percent recov	ery is based on the	spike result.	RPD is ba	sed on t	the spike and	d spike du	plicate r	esult.			
Laboratory	Control Spike (L	CS-1)									
QC Batch:	80827		Date Ana	lyzed:	2011-04-29				Anal	yzed By	: AR
Prep Batch:	68515		QC Prepa		2011-04-27				-	ared By	
		LC	ĊS			Spike	Ma	trix			Rec.
Param		Res		Jnits	Dil.	Amount		sult	Rec		Limit
Chloride		96	.6 m	g/Kg	1	100	<3	3.85	97		35 - 115
Percent recov	ery is based on the	spike result.	RPD is ba	sed on t	the spike and	d spike duj	plicate r	esult.			
					Spike	Matrix		Rec			RPD
_		LCSD			•		_				
		Result	Units mg/Kg	Dil.	Amount	Result	Rec.	Lim	it	RPD	Limit
Chloride Percent recov	ery is based on the	Result 104 spike result.	mg/Kg	1	Amount 100	Result <3.85	104	Lim 85 - 1	it	RPD 7	
Chloride Percent recov Laboratory QC Batch:	ery is based on the Control Spike (L 80828 68515	Result 104 spike result.	mg/Kg	1 used on t	Amount 100	Result <3.85 d spike du	104	Lim 85 - 1	it 15 Analy		Limit 20
	Control Spike (L 80828	Result 104 spike result.	mg/Kg RPD is ba Date Anal QC Prepa	1 used on t	Amount 100 the spike and 2011-04-29	Result <3.85 d spike du	104 plicate r	Lim 85 - 1	it 15 Analy	7 yzed By	Limit 20
Chloride Percent recove Laboratory QC Batch: Prep Batch:	Control Spike (L 80828	Result 104 spike result.	mg/Kg RPD is ba Date Anal QC Prepa	1 used on t	Amount 100 the spike and 2011-04-29	Result <3.85 d spike du	104 plicate r Ma	Lim 85 - 1 esult.	it 15 Analy	7 yzed By ared By	Limit 20 : AR : AR
Chloride Percent recov Laboratory QC Batch: Prep Batch: Param	Control Spike (L 80828	Result 104 spike result. CS-1)	mg/Kg RPD is ba Date Anal QC Prepa CS ult U	1 used on t lyzed: uration:	Amount 100 the spike and 2011-04-29 2011-04-27	Result <3.85 d spike dup Spike	104 plicate r Ma Re:	Lim 85 - 1 esult. trix	it 115 Analy Prepa	7 yzed By ared By	Limit 20 : AR : AR Rec. Limit
Chloride Percent recov Laboratory QC Batch: Prep Batch: Param Chloride	Control Spike (L 80828	Result 104 spike result. (CS-1) LC Res 96	mg/Kg RPD is ba Date Anal QC Prepa 2S ult U .2 mg	1 sed on t lyzed: tration: Units g/Kg	Amount 100 the spike and 2011-04-29 2011-04-27 Dil. 1	Result <3.85 d spike du spike du Amount 100	104 plicate r Ma Re <3	Lim 85 - 1 esult. trix sult 85	it 115 Analy Prepa Rec	7 yzed By ared By	Limit 20 : AR : AR Rec. Limit
Chloride Percent recov Laboratory QC Batch: Prep Batch: Param Chloride	Control Spike (L 80828 68515	Result 104 spike result. (CS-1) LC Res 96	mg/Kg RPD is ba Date Anal QC Prepa 2S ult U .2 mg	1 sed on t lyzed: tration: Units g/Kg	Amount 100 the spike and 2011-04-29 2011-04-27 Dil. 1	Result <3.85 d spike du spike du Amount 100	104 plicate r Ma Re <3	Lim 85 - 1 esult. trix sult 85	it 15 Analy Prepa Rec 96	7 yzed By ared By	Limit 20 : AR : AR Rec. Limit 25 - 115
Chloride Percent recove Laboratory QC Batch: Prep Batch: Param Chloride Percent recove	Control Spike (L 80828 68515	Result 104 spike result. CS-1) LC Res 96 spike result.	mg/Kg RPD is ba Date Anal QC Prepa 2S ult U .2 mg	1 sed on t lyzed: tration: Units g/Kg	Amount 100 100 the spike and 2011-04-29 2011-04-27 Dil. 1 the spike and	Result <3.85 d spike duy Spike Amount 100 d spike duy	104 plicate r Ma Re <3	Lim 85 - 1 esult. trix sult .85 esult.	it 15 Analy Prepa Rec 96	7 yzed By ared By	Limit 20 : AR : AR : AR Rec. Limit 35 - 115 RPD
Chloride Percent recove Laboratory QC Batch: Prep Batch: Param Chloride Percent recove Param	Control Spike (L 80828 68515	Result 104 spike result. (CS-1) LCC 96 spike result. LCSD	mg/Kg RPD is ba Date Anal QC Prepa 2S ult U .2 mi RPD is ba	1 sed on t lyzed: tration: <u>Juits</u> <u>g/Kg</u> sed on t	Amount 100 the spike and 2011-04-29 2011-04-27 Dil. 1 the spike and Spike	Result <3.85 d spike duy Spike Amount 100 d spike duy Matrix	104 plicate r Ma Re <3 plicate r	Lim 85 - 1 esult. trix sult 85 esult. Rec	it 15 Analy Prepa Rec 96	7 yzed By ared By	Limit 20 : AR : AR : AR Rec.
Chloride Percent recove Laboratory QC Batch: Prep Batch: Param Chloride Percent recove Param Chloride Percent recove	Control Spike (L 80828 68515 ery is based on the ery is based on the	Result 104 spike result. (CS-1) LC Res 96 spike result. LCSD Result 105 spike result.	mg/Kg RPD is ba Date Anal QC Prepa 2S ult U .2 ma RPD is ba Units mg/Kg	1 sed on t lyzed: uration: g/Kg sed on t Dil. 1	Amount 100 the spike and 2011-04-29 2011-04-27 Dil. 1 the spike and Spike Amount 100	Result <3.85 d spike dup Spike Amount 100 d spike dup Matrix Result <3.85	104 plicate r Ma Res 3 plicate r Rec. 105	Lim 85 - 1 esult. trix sult .85 esult. Rec Lim 85 - 1	it 15 Analy Prepa Rec 96	7 yzed By ared By	Limit 20 : AR : AR Rec. Limit 35 - 115 RPD Limit
Chloride Percent recove Laboratory QC Batch: Prep Batch: Param Chloride Percent recove Param Chloride Percent recove Laboratory	Control Spike (L 80828 68515 ery is based on the ery is based on the Control Spike (L	Result 104 spike result. (CS-1) LC Res 96 spike result. LCSD Result 105 spike result.	mg/Kg RPD is ba Date Anal QC Prepa 2S ult U .2 ma RPD is ba Units mg/Kg RPD is ba	1 sed on t lyzed: tration: <u>Jnits</u> <u>g/Kg</u> sed on t <u>Dil.</u> 1 sed on t	Amount 100 the spike and 2011-04-29 2011-04-27 Dil. 1 the spike and Spike Amount 100	Result <3.85 d spike dup Spike Amount 100 d spike dup Matrix Result <3.85	104 plicate r Ma Res 3 plicate r Rec. 105	Lim 85 - 1 esult. trix sult .85 esult. Rec Lim 85 - 1	it 15 Analy Prepa Rec 96	7 yzed By ared By	Limit 20 : AR : AR : AR Rec. Limit 25 - 115 RPD Limit 20
Chloride Percent recove Laboratory QC Batch: Prep Batch: Param Chloride Percent recove Param Chloride Percent recove Laboratory QC Batch:	Control Spike (L 80828 68515 ery is based on the ery is based on the	Result 104 spike result. (CS-1) LC Res 96 spike result. LCSD Result 105 spike result.	mg/Kg RPD is ba Date Anal QC Prepa 2S ult U .2 ma RPD is ba Units mg/Kg	1 sed on t lyzed: uration: Jnits g/Kg sed on t Dil. 1 sed on t	Amount 100 the spike and 2011-04-29 2011-04-27 Dil. 1 the spike and Spike Amount 100	Result <3.85 d spike dup Spike Amount 100 d spike dup Matrix Result <3.85	104 plicate r Ma Res 3 plicate r Rec. 105	Lim 85 - 1 esult. trix sult .85 esult. Rec Lim 85 - 1	it 15 Analy Prepa Rec 96	7 yzed By ared By	Limit 20 : AR : AR Rec. Limit 35 - 115 RPD Limit 20 : AR

Report Date: May 2, 2011 114-6400887			Order: 1 G/State				Pa		ber: 27 of idy Co., N
control spikes continued		_							_
Param	LCS Resu		its	Dil.	Spike Amount	Mat		Dee	Rec. Limit
	nesu	n 01	1165		Amount	Res	<u>uit</u>	Rec.	
	LCS	3			Spike	Mat	rix		Rec.
Param	Resu	_	its	Dil.	Amount	Res		Rec.	Limit
Chloride	96.3	s mg	/Kg	1	100	<3.	85	96	85 - 11
Percent recovery is based on the	spike result. I	RPD is bas	ed on the	spike an	d spike duj	olicate re	sult.		
	LCSD			Spike	Matrix		Rec.		RPI
Param	Result	Units	Dil. A	mount	Result	Rec.	Limit	R	PD Lim
Chloride	102	mg/Kg	1	100	<3.85	102	85 - 11		6 20
Percent recovery is based on the	spike result. I	RPD is base	ed on the	spike an	d spike duj	olicate re	sult.		
Laboratory Control Spike (I	CCS-1)								
QC Batch: 80830	1	Date Analy	zed· 20	011-04-29				Analyze	d By: AF
Prep Batch: 68515		QC Prepara		011-04-27				Prepare	•
•		• •							
	T CS	ų			Q::lio	Ма			Dee
Param	LCS		ite	Dil	Spike A mount	Mat		Bac	Rec. Limit
	Resu	lt Un		Dil.	Amount	Res	ult	Rec.	Limit
Chloride	Resu 96.7	lt Un mg,	/Kg	1	Amount 100	Res <3.	ult 85	Rec. 97	
Chloride	Resu 96.7 spike result. H	lt Un mg,	/Kg	1	Amount 100	Res <3.	ult 85		Limit 85 - 11
Chloride Percent recovery is based on the	Resu 96.7 spike result. F LCSD	lt Un <u>mg</u> RPD is base	/Kg ed on the	1 spike and Spike	Amount 100 d spike dup Matrix	Res <3. olicate re	ult 85 sult. Rec.	97	Limit 85 - 11 RPI
Param Chloride Percent recovery is based on the Param	Resu 96.7 spike result. F LCSD Result	lt Un mg, RPD is base Units	/Kg ed on the Dil. A	1 spike and Spike Amount	Amount 100 d spike dup Matrix Result	Res <3. blicate re Rec.	ult 85 sult. Rec. Limit	97 . RI	Limit 85 - 11 RPJ PD Lim
Chloride Percent recovery is based on the Param Chloride	Resu 96.7 spike result. F LCSD Result 105	lt Un mg/ RPD is base Units mg/Kg	/Kg ed on the Dil. A 1	1 spike and Spike Amount 100	Amount 100 d spike dup Matrix Result <3.85	Res <3. olicate re Rec. 105	ult 85 sult. Rec. Limit 85 - 11	97 . RI	Limit 85 - 11 RPI
Chloride Percent recovery is based on the Param	Resu 96.7 spike result. F LCSD Result 105	lt Un mg/ RPD is base Units mg/Kg	/Kg ed on the Dil. A 1	1 spike and Spike Amount 100	Amount 100 d spike dup Matrix Result <3.85	Res <3. olicate re Rec. 105	ult 85 sult. Rec. Limit 85 - 11	97 . RI	Limit 85 - 11 RPJ PD Lim
Chloride Percent recovery is based on the Param Chloride	Resu 96.7 spike result. F LCSD Result 105	lt Un mg/ RPD is base Units mg/Kg	/Kg ed on the Dil. A 1	1 spike and Spike Amount 100	Amount 100 d spike dup Matrix Result <3.85	Res <3. olicate re Rec. 105	ult 85 sult. Rec. Limit 85 - 11	97 . RI	Limit 85 - 11 RPJ PD Lim
Chloride Percent recovery is based on the Param Chloride Percent recovery is based on the	Resu 96.7 spike result. F LCSD Result 105	lt Un mg/ RPD is base Units mg/Kg RPD is base	/Kg ed on the Dil. A 1	1 spike and Spike Amount 100	Amount 100 d spike dup Matrix Result <3.85	Res <3. olicate re Rec. 105	ult 85 sult. Rec. Limit 85 - 11	97 . RI	Limit 85 - 11 RPI PD Lim
Chloride Percent recovery is based on the Param Chloride Percent recovery is based on the Matrix Spike (MS-1) Spike	Resu 96.7 spike result. F LCSD Result 105 spike result. F ed Sample: 264	lt Un mg/ RPD is base Units mg/Kg RPD is base 496	/Kg ed on the Dil. A 1 ed on the	1 spike and Spike amount 100 spike and	Amount 100 d spike dup Matrix Result <3.85 d spike dup	Res <3. olicate re Rec. 105	ult 85 sult. Limit 85 - 11 sult.	97 5 RI 5 8	Limit 85 - 11 RPI PD Lim 3 20
Chloride Percent recovery is based on the Param Chloride Percent recovery is based on the Matrix Spike (MS-1) Spike QC Batch: 80636	Resu 96.7 spike result. F LCSD Result 105 spike result. F ed Sample: 264	lt Un mg/ RPD is base Units mg/Kg RPD is base 496 Date Analy:	/Kg ed on the Dil. A 1 ed on the zed: 20	1 spike and Spike amount 100 spike and 011-04-25	Amount 100 d spike dup Matrix Result <3.85 d spike dup	Res <3. olicate re Rec. 105	ult 85 sult. Limit 85 - 11 sult.	97 RI 5 8	Limit 85 - 11 PD Lim 3 20 d By: MF
Chloride Percent recovery is based on the Param Chloride Percent recovery is based on the Matrix Spike (MS-1) Spike QC Batch: 80636	Resu 96.7 spike result. F LCSD Result 105 spike result. F ed Sample: 264	lt Un mg/ RPD is base Units mg/Kg RPD is base 496	/Kg ed on the Dil. A 1 ed on the zed: 20	1 spike and Spike amount 100 spike and	Amount 100 d spike dup Matrix Result <3.85 d spike dup	Res <3. olicate re Rec. 105	ult 85 sult. Limit 85 - 11 sult.	97 5 RI 5 8	Limit 85 - 11 PD Lim 3 20 d By: MF
Chloride Percent recovery is based on the Param Chloride Percent recovery is based on the Matrix Spike (MS-1) Spike QC Batch: 80636	Resul 96.7 spike result. F LCSD Result 105 spike result. F ed Sample: 264	lt Un mg/ RPD is base Units mg/Kg RPD is base 496 Date Analy:	/Kg ed on the Dil. A 1 ed on the zed: 20	1 spike and Mount 100 spike and 011-04-25 011-04-25	Amount 100 d spike dup Matrix Result <3.85 d spike dup	Res <3. olicate re <u>Rec.</u> 105 olicate re	ult 85 sult. Limit 85 - 11 sult.	97 RI 5 8	Limit 85 - 11 PD Lim 3 20 d By: MF d By: MF
Chloride Percent recovery is based on the Param Chloride Percent recovery is based on the Matrix Spike (MS-1) Spike QC Batch: 80636	Resul 96.7 spike result. F LCSD Result 105 spike result. F ed Sample: 264 I C MS	lt Un mg/ RPD is base Units mg/Kg RPD is base 496 Date Analy: QC Prepara	/Kg ed on the Dil. A 1 ed on the zed: 20 ation: 20	1 spike and Mount 100 spike and 011-04-25 011-04-25	Amount 100 d spike dup Matrix Result <3.85 d spike dup	Res <3. olicate re Rec. 105 olicate re	ult 85 sult. Limit 85 - 11 sult.	97 RI 5 8 Analyze Preparec	Limit 85 - 11 PD Lim 3 20 d By: MF d By: MF Rec.
Chloride Percent recovery is based on the Param Chloride Percent recovery is based on the Matrix Spike (MS-1) Spike QC Batch: 80636 Prep Batch: 68447	Resul 96.7 spike result. F LCSD Result 105 spike result. F ed Sample: 264	lt Un mg/ RPD is base Units mg/Kg RPD is base 496 Date Analy QC Prepara Unit	/Kg ed on the Dil. A 1 ed on the zed: 20 ation: 20 s D	1 spike and Mount 100 spike and 011-04-25 011-04-25 011-04-25	Amount 100 d spike dup Matrix Result <3.85 d spike dup	Res <3. olicate re <u>Rec.</u> 105 olicate re	ult 85 sult. Limit 85 - 11 sult.	97 RI 5 8	Limit 85 - 11 PD Lim 3 20 d By: MF d By: MF Rec. Limit
Chloride Percent recovery is based on the Param Chloride Percent recovery is based on the Matrix Spike (MS-1) Spike QC Batch: 80636 Prep Batch: 68447 Param	Resu 96.7 spike result. F LCSD Result 105 spike result. F ed Sample: 264 I C MS Result	lt Un mg/ RPD is base Units mg/Kg RPD is base 496 Date Analy: QC Prepara	/Kg ed on the Dil. A 1 ed on the zed: 20 stion: 20 s D cg	1 spike and Spike 100 spike and 011-04-25 011-04-25 011-04-25 11. A	Amount 100 d spike dup Matrix Result <3.85 d spike dup Spike mount	Res <3. olicate re Rec. 105 olicate re Matriz Result	ult 85 sult. Limit 85 - 11 sult.	97 RI 5 8 Analyzee Preparec Rec.	Limit 85 - 11 PD Lim 3 20 d By: MF d By: MF Rec.
Chloride Percent recovery is based on the Param Chloride Percent recovery is based on the Matrix Spike (MS-1) Spike QC Batch: 80636 Prep Batch: 68447 Param Benzene	Resul 96.7 spike result. F LCSD Result 105 spike result. F ed Sample: 264 I C MS Result 1.67	lt Un mg/ RPD is base Units mg/Kg RPD is base 496 Date Analy QC Prepara Unit mg/K	/Kg ed on the Dil. A 1 ed on the zed: 20 stion: 20 s D teg 1	1 spike and Mount 100 spike and 011-04-25 011-04-25 011-04-25	Amount 100 d spike dup Matrix Result <3.85 d spike dup Spike mount 2.00	Res: <pre></pre>	ult 85 sult. Limit 85 - 11 sult.	97 RI 5 8 Analyzee Prepared Rec. 84	Limit 85 - 11 PD Lim 3 20 d By: MF d By: MF d By

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

 1 Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control. 2 Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

Report Date: May 2, 2011 114-6400887		W		ler: 1104221 tate I #16	14			F	Page Nu		28 of 38 Co., NM
	MSD			Spike	Matr	ix		Re	c.		RPD
Param	Result	Units	Dil.	Amount	Resu	ılt	Rec.	Lin		RPD	Limit
Benzene 3	1.50	mg/Kg	1	2.00	< 0.01		75	80.5 -	112	11	20
Toluene	1.93	mg/Kg		2.00	< 0.00	600	96	82.4 -	113	9	20
Ethylbenzene	2.11	mg/Kg	1	2.00	< 0.00	850	106	83.9 -	114	9	20
Xylene	6.40	mg/Kg	1	6.00	<0.00	613	107	84 -	114	9	20
Percent recovery is based on the s	pike result.	RPD is	based o	n the spike	and spil	ce du	plicate	result.			
	М	S 1	MSD			Sp	ike	MS	MSD		Rec.
Surrogate	Res	ult F	Result	Units	Dil.	Amo		Rec.	Rec.	1	Limit
Trifluorotoluene (TFT)	4 2.4	40	2.08	mg/Kg	1	2	2	120	104	41.	3 - 117
4-Bromofluorobenzene (4-BFB)	⁵ 2.6	54	2.31	mg/Kg	1	2	2	132	116	35.	.5 - 129
Matrix Spike (MS-1) Spiked QC Batch: 80637 Prep Batch: 68447	l Sample: 2	Date A	nalyzed: eparation							zed By: red By:	
	2.0	~			~						n
D	M		** **	DU	Spik		Mat		5		Rec.
	Res	ult	Units	Dil.	Amou	int	Res	ult	Rec.	I	Limit
GRO	Res 15.	ult 0	mg/Kg	1	Amou 20.0	int)	Res <0.	ult 753	Rec. 75	I	Limit
GRO	Res 15.	ult 0	mg/Kg	1	Amou 20.0	int)	Res <0.	ult 753		I	Limit
Param GRO Percent recovery is based on the s	Rest 15. pike result.	ult 0	mg/Kg	1 n the spike	Amou 20.(and spik	int) ke duj	Res <0.	ult 753 result.	75	I	Limit 8 - 114
GRO Percent recovery is based on the s	Res 15.	ult 0	mg/Kg	1	Amou 20.0 and spil Matr	int) ke duj	Res <0.	ult 753	75	61.	Limit 8 - 114 RPD
GRO Percent recovery is based on the s Param	Rest 15. pike result. MSD	ult 0 RPD is Units	mg/Kg based o Dil.	1 n the spike Spike	Amou 20.0 and spik Matr Resu	int) ke duj tix ilt	Res <0. plicate	rult 753 result. Rec Lim	75 c. .it	I	Limit 8 - 114 RPD
GRO Percent recovery is based on the s Param GRO	Resu 15. pike result. MSD Result 17.0	ult 0 RPD is Units mg/Kg	mg/Kg based o Dil. g 1	1 n the spike Spike Amount 20.0	Amou 20.0 and spil Matr Resu <0.7	int) ke duj tix ilt 53	Res <0. plicate Rec. 85	result. Rec Lim 61.8 -	75 c. .it	I 61. RPD	Limit 8 - 114 RPD Limit
GRO Percent recovery is based on the s Param GRO	Resu 15. pike result. MSD Result 17.0	ult 0 RPD is Units mg/Kg RPD is	mg/Kg based o Dil. g 1	1 n the spike Spike Amount 20.0	Amou 20.0 and spil Matr Resu <0.7	int) ce duj fix ilt 53 ce duj	Res <0. plicate Rec. 85 plicate	result. Rec Lim 61.8 - result.	75 c. it 114	1 61. RPD 12	Limit 8 - 114 RPD Limit
GRO Percent recovery is based on the s Param GRO Percent recovery is based on the s	Resu 15. pike result. MSD Result 17.0 pike result.	ult RPD is Units mg/Kg RPD is S I	mg/Kg based o Dil. g 1 based o	1 n the spike Spike Amount 20.0	Amou 20.0 and spil Matr Resu <0.7	int) ce duj fix ilt 53 ce duj SI	Res <0. plicate Rec. 85	result. Rec Lim 61.8 -	75 c. .it	I 61. RPD 12 D	Limit 8 - 114 RPD Limit 20
GRO Percent recovery is based on the s Param GRO Percent recovery is based on the s Surrogate	Resu 15. pike result. MSD Result 17.0 pike result.	ult RPD is Units mg/Kg RPD is S M ult R	mg/Kg based o Dil. g 1 based o MSD	1 n the spike Spike Amount 20.0 n the spike Units	Amou 20.0 and spil Matr Resu <0.7 and spil	int) ce duj fix llt 53 ce duj SI Am	Res <0. plicate Rec. 85 plicate plicate	result. Red Lim 61.8 - result. MS	75 c. .it 114 MS	I 61. RPD 12 D	Limit 8 - 114 RPD Limit 20 Rec. Limit
GRO Percent recovery is based on the s Param GRO Percent recovery is based on the s Surrogate Trifluorotoluene (TFT)	Resu 15. pike result. MSD Result 17.0 pike result. Ma Resu	ult RPD is Units mg/Kg RPD is S I ult R 6	mg/Kg based o Dil. g 1 based o MSD Result	1 n the spike Spike Amount 20.0 n the spike	Amou 20.0 and spik Matr Resu <0.7 and spik Dil.	int ce duj cix ilt 53 ce duj SI Am	Res <0. plicate Rec. 85 plicate plicate	result. Rea Lim 61.8 - result. MS Rec.	75 114 MS Rec	I 61. RPD 12 D 2. 3 5	Limit 8 - 114 RPD Limit 20 Rec. Limit 0 - 162
GRO Percent recovery is based on the s Param GRO Percent recovery is based on the s Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)	Result pike result. MSD Result 17.0 pike result. Ma Result 2.1	ult RPD is Units mg/Kg RPD is S I ult R 6 2 64479 Date A	mg/Kg based o Dil. g 1 based o MSD cesult 2.32	1 n the spike Amount 20.0 n the spike Units mg/Kg mg/Kg : 2011-04	Amou 20.0 and spik Matr Resu <0.7 and spik Dil. 1 1	int ce duj cix ilt 53 ce duj SI Am	Res <0. plicate Rec. 85 plicate plicate pike count 2	result. Rec Lim 61.8 - result. MS Rec. 108	75 c. it 114 MS Rec 116 118	I 61. RPD 12 D 2. 3 5	Limit 8 - 114 RPD Limit 20 Rec. Limit 0 - 162 0 - 162 y: kg
GRO Percent recovery is based on the s Param GRO Percent recovery is based on the s Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Matrix Spike (MS-1) Spiked QC Batch: 80646	Resi 15. pike result. MSD Result 17.0 pike result. Mi Resi 2.1 2.2	ult RPD is Units mg/Kg RPD is S N ult R 6 2 64479 Date A QC Pr	mg/Kg based o Dil. g 1 based o MSD tesult 2.32 2.37	1 n the spike Amount 20.0 n the spike Units mg/Kg mg/Kg : 2011-04	Amou 20.0 and spik Matr Resu <0.7 and spik Dil. 1 1 1	int D ce duj rix ult 53 ce duj Sp Am	Res <0. plicate 85 plicate bike count 2 2	result. Rec Lim 61.8 - result. MS Rec. 108 111	75 c. it 114 MS Rec 116 118	I 61. RPD 12 D 2. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Limit 8 - 114 RPD Limit 20 Rec. Limit 0 - 162 0 - 162 y: kg y: kg
GRO Percent recovery is based on the s Param GRO Percent recovery is based on the s Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Matrix Spike (MS-1) Spiked QC Batch: 80646	Result pike result. MSD Result 17.0 pike result. Ma Result 2.1 2.2	ult RPD is Units mg/Kg RPD is S M ult R 6 6 6 6 4 4 7 Date A QC Pr	mg/Kg based o Dil. g 1 based o MSD tesult 2.32 2.37	1 n the spike Amount 20.0 n the spike Units mg/Kg mg/Kg : 2011-04	Amou 20.0 and spik Matr Resu <0.7 and spik Dil. 1 1	int D ice duj rix ult 53 ice duj SI Am	Res <0. plicate Rec. 85 plicate plicate pike count 2	nult 753 result. 61.8 - result. MS Rec. 108 111	75 c. it 114 MS Rec 116 118	I 61. RPD 12 D 2. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Eimit 8 - 114 RPD Limit 20 Rec. Limit 0 - 162 0 - 162 y: kg

,

³MSD analyte out of range. MS/MSD has a RPD within limits. Therfore, MS shows extraction occured properly. ⁴High surrogate recovery due to peak interference. ⁵High surrogate recovery due to peak interference.

Report Date: May 2 114-6400887	2, 2011				er: 11042214 ate I #16	1]	-		29 of 35 Co., NM
Param		MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec Lim	it	RPD	RPD Limit
DRO		236	mg/Kg	1	250	<15.7	94	11.7 - 1	152.3	13	20
Percent recovery is b	based on the s	pike result.	RPD is	based on	the spike ε	and spike d	uplicat	e result.			
	MS	MSD				Spike		MS	MSD		Rec.
Surrogate	Result	Result	τ	Jnits	Dil.	Amount		Rec.	Rec.		Limit
n-Tricosane	102	110		g/Kg	1	100		102	110	·,	70 - 130
Matrix Spike (MS QC Batch: 80739 Prep Batch: 68529	FI) Spiked	l Sample: 26	Date A	nalyzed: eparation	2011-04- 1: 2011-04-					yzed E ared B	
Param		MS Resu		Units	Dil.	Spike Amount		trix sult	Rec.		Rec. Limit
DRO		233		ng/Kg	<u> </u>	250		5.7	93		- 152.3
Percent recovery is b Param DRO		- MSD Result 224	Units mg/Kg	Dil.	Spike Amount 250	Matrix Result <15.7	Rec.	Rec Lim 11.7 - 1	it	RPD	RPD Limit 20
Percent recovery is b	ased on the s										
- v	-	-			F	-	-	MS	Map		D
	MS	MSD				Spike		MIS	MSD		
Surrogate	Result		D	nite	Dil						Rec. Limit
	Result 103	Result 106		Inits g/Kg	Dil.	Amount 100]	Rec. 103	Rec. 106	7	Rec. Limit 70 - 130
Surrogate n-Tricosane Matrix Spike (MS QC Batch: 80754 Prep Batch: 68435	103	Result	mg 64447 Date An	g/Kg	1 2011-04-2	Amount 100]	Rec.	Rec. 106 Analy	zed By red By	Limit 70 - 130 r: AR
n-Tricosane Matrix Spike (MS QC Batch: 80754 Prep Batch: 68435	103	Result 106 Sample: 26	mg 54447 Date An QC Prep 5	g/Kg nalyzed: paration:	1 2011-04-2 2011-04-2	Amount 100 28 25 Spike] 	Rec. 103 Matrix	Rec. 106 Analy: Prepa	zed By	Limit 70 - 130 7: AR 7: AR 8: AR Rec.
n-Tricosane Matrix Spike (MS QC Batch: 80754 Prep Batch: 68435 Param	103	Result 106 Sample: 26	mş 54447 Date An QC Prep 5 ılt	g/Kg nalyzed:	1 2011-04-2	Amount 100 28 25] 	Rec. 103	Rec. 106 Analy	zed By red By	Limit 70 - 130 7: AR 7: AR
n-Tricosane Matrix Spike (MS QC Batch: 80754 Prep Batch: 68435 Param Chloride	103 -1) Spiked	Result 106 Sample: 26 MS Resu 1670	mg 54447 Date An QC Prep 5 1lt 20 r	g/Kg nalyzed: paration: Units mg/Kg	1 2011-04-2 2011-04-2 Dil. 100	Amount 100 28 25 Spike Amount 10000] M 	Rec. 103 Matrix Result 6910	Rec. 106 Analy: Prepar Rec.	zed By red By	Limit 70 - 130 7: AR 7: AR 8: AR Rec. Limit
n-Tricosane Matrix Spike (MS QC Batch: 80754	103 -1) Spiked	Result 106 Sample: 26 MS Resu 167(pike result.	mg 54447 Date An QC Prep 5 1lt 20 r	g/Kg nalyzed: paration: Units mg/Kg	1 2011-04-2 2011-04-2 Dil. 100 the spike a	Amount 100 28 25 Spike Amount 10000 .nd spike du] M 	Aetrix Aesult 6910 e result.	Rec. 106 Analy: Prepa Rec. 98	zed By red By	Limit 70 - 130 7: AR 7: AR 8: AR 8: AR 8: AR 80 - 120
n-Tricosane Matrix Spike (MS QC Batch: 80754 Prep Batch: 68435 Param Chloride	103 -1) Spiked	Result 106 Sample: 26 MS Resu 1670	mg 54447 Date An QC Prep 5 1lt 20 r	g/Kg nalyzed: paration: Units mg/Kg	1 2011-04-2 2011-04-2 Dil. 100	Amount 100 28 25 Spike Amount 10000] M 	Rec. 103 Matrix Result 6910 e result. Re	Rec. 106 Analy: Prepa Rec. 98	zed By red By	Limit 70 - 130 7: AR 7: AR 8: AR Rec. Limit

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: May 2, 2011 114-6400887			rk Order COG/Sta	: 11042214 te I #16			Page	e Number Eddy	: 30 of 35 Co., NM
Matrix Spike (MS-1) Spi	ked Sample: 26	4457							
QC Batch: 80827 Prep Batch: 68515		Date An QC Prep	-	2011-04-29 2011-04-27				nalyzed H repared H	-
	MS	ļ			Spike	Ma	trix		Rec.
Param	Resu	lt	Units	Dil.	Amount	Res	sult	Rec.	Limit
Chloride	9820) n	ng/Kg	100	10000	<3	85	98	80 - 120
Percent recovery is based on th	e spike result. I	RPD is b	ased on t	the spike an	d spike du	plicate r	esult.		
	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	10000	mg/Kg	100	10000	<385	100	80 - 120		20
Percent recovery is based on th	e spike result. I	RPD is b	ased on t	the spike an	d spike du	plicate re	esult.		
Matrix Spike (MS-1) Spi	ked Sample: 26	4467							
	in sample. Do								
QC Batch: 80828		Date An	alyzed:	2011-04-29)		A	nalyzed E	
QU Daten. 00020									
Prep Batch: 68515		QC Prep	aration:	2011-04-27	7			repared E	y: AR
		QC Prep	aration:	2011-04-27	7			repared E	y: AR
			aration:	2011-04-27	7 Spike	Mat	Р	repared B	y: AR Rec.
	MS Resu	lt	aration: Units	2011-04-27 		Mat Res	P trix	repared E Rec.	-
Prep Batch: 68515 Param	MS	lt			Spike	Res	P trix	-	Rec.
Prep Batch: 68515	MS Resu 975(lt 0n	Units ng/Kg	Dil. 100	Spike Amount 10000	Res <3	P trix sult 85	Rec.	Rec. Limit
Prep Batch: 68515 Param Chloride	MS Resu 9756 ne spike result. I	lt 0n	Units ng/Kg	Dil. 100 the spike an	Spike Amount 10000 d spike duj	Res <3	P trix sult 85 esult.	Rec.	Rec. Limit 80 - 120
Prep Batch: 68515 Param Chloride Percent recovery is based on th	MS Resu 9756 te spike result. T MSD	lt 0n	Units ng/Kg	Dil. 100 the spike an Spike	Spike Amount 10000 d spike duj Matrix	Res <3 plicate re	P trix sult 85 esult. Rec.	Rec. 98	Rec. Limit 80 - 120 RPD
Prep Batch: 68515 Param Chloride	MS Resu 9756 ne spike result. I	lt 0 n RPD is b Units	Units ng/Kg pased on t	Dil. 100 the spike an	Spike Amount 10000 d spike duj	Res <3	P trix sult 85 esult.	Rec. 98 RPD	Rec. Limit 80 - 120
Prep Batch: 68515 Param Chloride Percent recovery is based on th Param	MS Resu 975 e spike result. MSD Result 10100	lt 0 n RPD is b Units mg/Kg	Units ng/Kg pased on 1 Dil. 100	Dil. 100 the spike an Spike Amount 10000	Spike Amount 10000 d spike duy Matrix Result <385	Res <3 plicate re Rec. 101	P trix sult 885 esult. Rec. Limit 80 - 120	Rec. 98 RPD	Rec. Limit 80 - 120 RPD Limit
Prep Batch: 68515 Param Chloride Percent recovery is based on th Param Chloride Percent recovery is based on th	MS Resu 975 e spike result. MSD Result 10100	lt 0 n RPD is b Units mg/Kg RPD is b	Units ng/Kg pased on 1 Dil. 100	Dil. 100 the spike an Spike Amount 10000	Spike Amount 10000 d spike duy Matrix Result <385	Res <3 plicate re Rec. 101	P trix sult 885 esult. Rec. Limit 80 - 120	Rec. 98 RPD	Rec. Limit 80 - 120 RPD Limit
Prep Batch: 68515 Param Chloride Percent recovery is based on th Param Chloride Percent recovery is based on th Matrix Spike (MS-1)	MS Resu 9750 e spike result. MSD Result 10100 e spike result. ked Sample: 264	lt D n RPD is b Units mg/Kg RPD is b 4477	Units ng/Kg ased on f Dil. 100 ased on f	Dil. 100 the spike an Spike Amount 10000 the spike an	Spike Amount 10000 d spike duy Matrix Result <385 d spike duy	Res <3 plicate re Rec. 101	P trix sult 85 esult. Rec. Limit 80 - 120 esult.	Rec. 98 RPD 4	Rec. Limit 80 - 120 RPD Limit 20
Prep Batch: 68515 Param Chloride Percent recovery is based on th Param Chloride Percent recovery is based on th Matrix Spike (MS-1) Spi QC Batch: 80829	MS Resu 9750 e spike result. MSD Result 10100 e spike result. ked Sample: 260	lt D n RPD is b Units mg/Kg RPD is b 4477 Date Ana	Units ng/Kg Pased on t Dil. 100 Pased on t alyzed:	Dil. 100 the spike an Spike Amount 10000 the spike an 2011-04-29	Spike Amount 10000 d spike duj Matrix Result <385 d spike duj	Res <3 plicate re Rec. 101	P trix sult 85 esult. Rec. Limit 80 - 120 esult.	Rec. 98 RPD 0 4 nalyzed E	Rec. Limit 80 - 120 RPD Limit 20
Prep Batch: 68515 Param Chloride Percent recovery is based on th Param Chloride Percent recovery is based on th Matrix Spike (MS-1)	MS Resu 9750 e spike result. MSD Result 10100 e spike result. ked Sample: 260	lt D n RPD is b Units mg/Kg RPD is b 4477 Date Ana	Units ng/Kg Pased on t Dil. 100 Pased on t alyzed:	Dil. 100 the spike an Spike Amount 10000 the spike an	Spike Amount 10000 d spike duj Matrix Result <385 d spike duj	Res <3 plicate re Rec. 101	P trix sult 85 esult. Rec. Limit 80 - 120 esult.	Rec. 98 RPD 4	Rec. Limit 80 - 120 RPD Limit 20
Prep Batch: 68515 Param Chloride Percent recovery is based on th Param Chloride Percent recovery is based on th Matrix Spike (MS-1) Spi QC Batch: 80829 Prep Batch: 68515	MS Resu 9750 e spike result. MSD Result 10100 e spike result. ked Sample: 264	lt D n RPD is b <u>Units</u> mg/Kg RPD is b 4477 Date Ana QC Prep	Units ng/Kg ased on f Dil. 100 ased on f alyzed: aration:	Dil. 100 the spike an Spike Amount 10000 the spike an 2011-04-29 2011-04-27	Spike Amount 10000 d spike duy Matrix Result <385 d spike duy Spike	Res olicate re Rec. 101 olicate re Mat	P trix sult 85 esult. Rec. Limit 80 - 120 esult. A Pr	Rec. 98 RPD 4 nalyzed E repared B	Rec. Limit 80 - 120 RPD Limit 20 Ey: AR y: AR y: AR y: AR
Prep Batch: 68515 Param Chloride Percent recovery is based on th Param Chloride Percent recovery is based on th Matrix Spike (MS-1) Spi QC Batch: 80829 Prep Batch: 68515	MS Resu 9750 e spike result. MSD Result 10100 e spike result. ked Sample: 264 MS Resu	lt D n RPD is b Units mg/Kg RPD is b 4477 Date An QC Prep	Units ng/Kg ased on f Dil. 100 ased on f alyzed: aration: Units	Dil. 100 the spike an Spike Amount 10000 the spike an 2011-04-29 2011-04-27 Dil.	Spike Amount 10000 d spike duy Matrix Result <385 d spike duy Spike Amount	Res olicate re Rec. 101 olicate re Mat Res	P trix sult 85 esult. Rec. Limit 80 - 120 esult. A Pr crix sult	Rec. 98 RPD 4 nalyzed E repared B Rec.	Rec. Limit 80 - 120 RPD Limit 20 iy: AR y: AR y: AR y: AR Rec. Limit
Prep Batch: 68515 Param Chloride Percent recovery is based on th Param Chloride Percent recovery is based on th Matrix Spike (MS-1) Spi QC Batch: 80829 Prep Batch: 68515	MS Resu 9750 e spike result. MSD Result 10100 e spike result. ked Sample: 264	lt D n RPD is b Units mg/Kg RPD is b 4477 Date An QC Prep	Units ng/Kg ased on f Dil. 100 ased on f alyzed: aration:	Dil. 100 the spike an Spike Amount 10000 the spike an 2011-04-29 2011-04-27	Spike Amount 10000 d spike duy Matrix Result <385 d spike duy Spike	Res olicate re Rec. 101 olicate re Mat	P trix sult 85 esult. Rec. Limit 80 - 120 esult. A Pr crix sult	Rec. 98 RPD 4 nalyzed E repared B	Rec. Limit 80 - 120 RPD Limit 20 Ey: AR y: AR y: AR y: AR
Prep Batch: 68515 Param Chloride Percent recovery is based on th Param Chloride Percent recovery is based on th Matrix Spike (MS-1) Spi QC Batch: 80829 Prep Batch: 68515	MS Resu 975 e spike result. MSD Result 10100 e spike result. ked Sample: 26 MS Resu 1050	lt 0 n RPD is b Units mg/Kg RPD is b 4477 Date Ana QC Prep lt 1	Units ng/Kg pased on 1 100 pased on 1 alyzed: aration: Units ng/Kg	Dil. 100 the spike an Spike Amount 10000 the spike an 2011-04-29 2011-04-27 Dil. 100	Spike Amount 10000 d spike duj Matrix Result <385 d spike duj d spike duj	Res <pre> Rec. 101 Dicate re Mat Res <3 </pre>	P trix sult 85 esult. Rec. Limit 80 - 120 esult. A P crix sult 85	Rec. 98 RPD 4 nalyzed E repared B Rec.	Rec. Limit 80 - 120 RPD Limit 20 iy: AR y: AR y: AR y: AR Rec. Limit
Prep Batch: 68515 Param Chloride Percent recovery is based on th Param Chloride Percent recovery is based on th Matrix Spike (MS-1) Spi QC Batch: 80829 Prep Batch: 68515 Param Chloride	MS Resu 975 e spike result. MSD Result 10100 e spike result. ked Sample: 26 MS Resu 1050	lt 0 n RPD is b Units mg/Kg RPD is b 4477 Date Ana QC Prep lt 1	Units ng/Kg pased on 1 100 pased on 1 alyzed: aration: Units ng/Kg	Dil. 100 the spike an Spike Amount 10000 the spike an 2011-04-29 2011-04-27 Dil. 100	Spike Amount 10000 d spike duj Matrix Result <385 d spike duj d spike duj	Res <pre> Rec. 101 Dicate re Mat Res <3 </pre>	P trix sult 85 esult. Rec. Limit 80 - 120 esult. A P crix sult 85	Rec. 98 RPD 4 nalyzed E repared B Rec.	Rec. Limit 80 - 120 RPD Limit 20 iy: AR y: AR y: AR y: AR Rec. Limit
Prep Batch: 68515 Param Chloride Percent recovery is based on th Param Chloride Percent recovery is based on th Matrix Spike (MS-1) Spi QC Batch: 80829 Prep Batch: 68515 Param Chloride	MS Resu 9754 e spike result. MSD Result 10100 e spike result. ked Sample: 264 MS Resu 1050 e spike result.	lt 0 n RPD is b Units mg/Kg RPD is b 4477 Date Ana QC Prep lt 1	Units ng/Kg pased on 1 100 pased on 1 alyzed: aration: Units ng/Kg	Dil. 100 the spike an Spike Amount 10000 the spike an 2011-04-29 2011-04-27 Dil. 100 the spike an	Spike Amount 10000 d spike dug Matrix Result <385 d spike dug Spike Amount 10000 d spike dug	Res <pre> Rec. 101 Dicate re Mat Res <3 </pre>	P trix sult 85 esult. Rec. Limit 80 - 120 esult. A P trix ault 85 esult.	Rec. 98 RPD 4 nalyzed E repared B Rec.	Rec. Limit 80 - 120 RPD Limit 20 Ry: AR y: AR y: AR y: AR kec. Limit 80 - 120

114-6400887	y 2, 2011				r: 11042214 ate I #16			F	Page N		31 of 35 Co., NM
Matrix Spike (N	/ IS-1) S _I	oiked Sample: 2	64486								
QC Batch: 808 Prep Batch: 685			Date Ana QC Prepa	-	2011-04-29 2011-04-29					yzed By ared By	
		М	S			Spike	Ma	ıtrix			Rec.
Param		Res		Units	Dil.	Amount		sult	Re		Limit
Chloride		105	00 m	ng/Kg	100	10000	6	84	98	}	80 - 120
Percent recovery i	s based on t	he spike result.	RPD is ba	ased on	the spike an	id spike dup	licate 1	esult.			
		MSD			Spike	Matrix		Re			RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Lin		RPD	Limit
Chloride		11000	mg/Kg	100	10000	684	103	80 -		5	20
Percent recovery i	s based on t										
Standard (CCV	-1)										
QC Batch: 80636			Date Ana CCVs True	lyzed:	2011-04-25 CCVs Found	CCVs Percent		Perce Recove	ent	yzed By	7: ME Date
•		Units	$\rm CCVs$	lyzed:	CCVs				ent ery		
QC Batch: 80636	3	mg/Kg	CCVs True Conc. 0.100	-	CCVs Found Conc. 0.0894	Percent		Recove Limit 80 - 1	ent ery ts .20	A1 201	Date nalyzed 11-04-25
QC Batch: 80636 Param Benzene Toluene	3	mg/Kg mg/Kg	CCVs True Conc. 0.100 0.100	-	CCVs Found Conc. 0.0894 0.109	Percent Recovery 89 109		Recove Limi 80 - 1 80 - 1	ent ery ts 20 20	A1 201 201	Date nalyzed 11-04-25 11-04-25
QC Batch: 80636 Param Benzene Toluene Ethylbenzene	3	mg/Kg mg/Kg mg/Kg	CCVs True Conc. 0.100 0.100 0.100	-	CCVs Found Conc. 0.0894 0.109 0.115	Percent Recovery 89 109 115		Recove Limit 80 - 1 80 - 1 80 - 1	ent ery ts 20 20 20	A1 201 201 201	Date nalyzed 11-04-25 11-04-25 11-04-25
QC Batch: 80636 Param Benzene Toluene	3	mg/Kg mg/Kg	CCVs True Conc. 0.100 0.100	-	CCVs Found Conc. 0.0894 0.109	Percent Recovery 89 109		Recove Limi 80 - 1 80 - 1	ent ery ts 20 20 20	A1 201 201 201	Date nalyzed 11-04-25 11-04-25
QC Batch: 80636 Param Benzene Toluene Ethylbenzene	Flag	mg/Kg mg/Kg mg/Kg	CCVs True Conc. 0.100 0.100 0.100	-	CCVs Found Conc. 0.0894 0.109 0.115	Percent Recovery 89 109 115		Recove Limit 80 - 1 80 - 1 80 - 1	ent ery ts 20 20 20	A1 201 201 201	Date nalyzed 11-04-25 11-04-25 11-04-25
QC Batch: 80636 Param Benzene Toluene Ethylbenzene Xylene	5 Flag	mg/Kg mg/Kg mg/Kg	CCVs True Conc. 0.100 0.100 0.100		CCVs Found Conc. 0.0894 0.109 0.115	Percent Recovery 89 109 115		Recove Limit 80 - 1 80 - 1 80 - 1	ent ery ts 20 20 20 20 20	A1 201 201 201	Date halyzed 11-04-25 11-04-25 11-04-25 11-04-25
QC Batch: 80636 Param Benzene Toluene Ethylbenzene Xylene Standard (CCV	5 Flag	mg/Kg mg/Kg mg/Kg	CCVs True Conc. 0.100 0.100 0.100 0.300	lyzed:	CCVs Found Conc. 0.0894 0.109 0.115 0.349 2011-04-25 CCVs	Percent Recovery 89 109 115 116 CCVs		Recov. Limit 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1	ent ery ts 20 20 20 20 20 20 Anal ent	Ai 201 201 201 201 201	Date halyzed 11-04-25 11-04-25 11-04-25 11-04-25
QC Batch: 80636 Param Benzene Toluene Ethylbenzene Xylene Standard (CCV	5 Flag	mg/Kg mg/Kg mg/Kg	CCVs True Conc. 0.100 0.100 0.300 Date Ana CCVs	lyzed:	CCVs Found Conc. 0.0894 0.109 0.115 0.349 2011-04-25	Percent Recovery 89 109 115 116		Recov Limi 80 - 1 80 - 1 80 - 1 80 - 1	ent ery ts 20 20 20 20 20 20 Anal ent ery	Ai 201 201 201 201 201	Date nalyzed 11-04-25 11-04-25 11-04-25 11-04-25
QC Batch: 80636 Param Benzene Toluene Ethylbenzene Xylene Standard (CCV QC Batch: 80636	Flag -2)	mg/Kg mg/Kg mg/Kg mg/Kg	CCVs True Conc. 0.100 0.100 0.300 Date Ana CCVs True	lyzed:	CCVs Found Conc. 0.0894 0.109 0.115 0.349 2011-04-25 CCVs Found	Percent Recovery 89 109 115 116 CCVs Percent		Recov Limit 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1	ent ery ts 20 20 20 20 20 Anal ent ery ts	An 201 201 201 201 201 yzed By	Date nalyzed 11-04-25 11-04-25 11-04-25 11-04-25 r: ME Date
QC Batch: 80636 Param Benzene Toluene Ethylbenzene Xylene Standard (CCV QC Batch: 80636 Param	Flag -2)	mg/Kg mg/Kg mg/Kg mg/Kg Units	CCVs True Conc. 0.100 0.100 0.300 Date Ana CCVs True Conc.	lyzed:	CCVs Found Conc. 0.0894 0.109 0.115 0.349 2011-04-25 CCVs Found Conc.	Percent Recovery 89 109 115 116 CCVs Percent Recovery		Recov Limit 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1 Perce Recov Limit	ent ery 20 20 20 20 20 Anal ent ery ts 20	An 201 201 201 201 201 yzed By yzed By An 201	Date nalyzed 11-04-25 11-04-25 11-04-25 11-04-25 r: ME Date nalyzed
QC Batch: 80636 Param Benzene Toluene Ethylbenzene Xylene Standard (CCV QC Batch: 80636 Param Benzene	Flag -2)	mg/Kg mg/Kg mg/Kg Mg/Kg	CCVs True Conc. 0.100 0.100 0.300 Date Ana CCVs True Conc. 0.100	lyzed:	CCVs Found Conc. 0.0894 0.109 0.115 0.349 2011-04-25 CCVs Found Conc. 0.0806	Percent Recovery 89 109 115 116 CCVs Percent Recovery 81		Recov Limit 80 - 1 80 - 1 80 - 1 80 - 1 80 - 1	ent ery 20 20 20 20 20 20 Anal ent ery ts 20 20 20 20 20	An 201 201 201 201 201 201 201 201 201 201	Date nalyzed 11-04-25 11-04-25 11-04-25 11-04-25 7: ME Date nalyzed 11-04-25

Standard (CCV-3)

QC Batch: 80636

Date Analyzed: 2011-04-25

Analyzed By: ME

114-6400887	May 2, 2011			Order: 110422 OG/State I #16		Page N	umber: 32 of 35 Eddy Co., NM
			$\rm CCVs$	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0853	85	80 - 120	2011-04-25
Toluene		mg/Kg	0.100	0.105	105	80 - 120	2011-04-25
Ethylbenzene		mg/Kg	0.100	0.109	109	80 - 120	2011-04-25
Xylene		mg/Kg	0.300	0.327	109	80 - 120	2011-04-25
Standard (C	CV-1)						
QC Batch: 8	80637		Date Analy	vzed: 2011-04-	25	Anal	yzed By: ME
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO	0	mg/Kg	1.00	0.998	100	80 - 120	2011-04-25
Standard (C QC Batch: 8	,		Date Analy	zed: 2011-04-	25	Anal	yzed By: ME
			\mathbf{CCVs}	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
		mg/Kg	1.00	0.898	90	80 - 120	2011-04-25
GRO							
GRO Standard (C	CV-3)						
	ŕ		Date Analy	zed: 2011-04-	25	Anal	yzed By: ME
Standard (C	ŕ		Date Analy CCVs	zed: 2011-04- CCVs	25 CCVs	Anal	yzed By: ME
Standard (C	ŕ						yzed By: ME Date
Standard (C	ŕ	Units	CCVs	CCVs	CCVs	Percent	-
Standard (C QC Batch: 8 Param	00637	Units mg/Kg	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Standard (C QC Batch: 8 Param GRO Standard (C	50637 Flag CV-1)		CCVs True Conc. 1.00	CCVs Found Conc. 1.08	CCVs Percent Recovery 108	Percent Recovery Limits 80 - 120	Date Analyzed 2011-04-25
Standard (C QC Batch: 8 Param GRO	50637 Flag CV-1)		CCVs True Conc. 1.00 Date Analy	CCVs Found Conc. 1.08 yzed: 2011-04-	CCVs Percent Recovery 108	Percent Recovery Limits 80 - 120 Ana	Date Analyzed
Standard (C QC Batch: 8 Param GRO Standard (C	50637 Flag CV-1)		CCVs True Conc. 1.00 Date Analy CCVs	CCVs Found Conc. 1.08 yzed: 2011-04- CCVs	CCVs Percent Recovery 108 -25 CCVs	Percent Recovery Limits 80 - 120 Ana Percent	Date Analyzed 2011-04-25 lyzed By: kg
Standard (C QC Batch: 8 Param GRO Standard (C QC Batch: 8	50637 Flag CV-1) 50646	mg/Kg	CCVs True Conc. 1.00 Date Analy CCVs True	CCVs Found Conc. 1.08 yzed: 2011-04 CCVs Found	CCVs Percent Recovery 108 -25 CCVs Percent	Percent Recovery Limits 80 - 120 Ana Percent Recovery	Date Analyzed 2011-04-25 lyzed By: kg Date
Standard (C QC Batch: 8 Param GRO Standard (C	50637 Flag CV-1)		CCVs True Conc. 1.00 Date Analy CCVs	CCVs Found Conc. 1.08 yzed: 2011-04- CCVs	CCVs Percent Recovery 108 -25 CCVs	Percent Recovery Limits 80 - 120 Ana Percent	Date Analyzed 2011-04-25 lyzed By: kg

.

Report Da 114-640088	te: May 2, 201 37	1		k Order: 11042 OG/State I #1		Page N	umber: 33 of 35 Eddy Co., NM
Standard	(CCV-2)						
QC Batch:	80646		Date Ana	alyzed: 2011-0	4-25	An	alyzed By: kg
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	230	92	80 - 120	2011-04-25
Standard	(CCV-2)						
QC Batch:	80739		Date Ana	alyzed: 2011-0	4-27	Ana	alyzed By: kg
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	294	118	80 - 120	2011-04-27
Standard	(CCV-3)						
QC Batch:	80739		Date Ana	alyzed: 2011-0	4-27	Ana	alyzed By: kg
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	274	110	80 - 120	2011-04-27
Standard	(ICV-1)						
QC Batch:	80754		Date Ana	lyzed: 2011-04	L-28	Anal	yzed By: AR
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride	1.008	mg/Kg	100	101	101	85 - 115	2011-04-28
<i>a</i> . . .							
Standard	(009-1)						
QC Batch:	80754		Date Ana	lyzed: 2011-04	-28	Anal	yzed By: AR
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
			#1 GO				
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed

Report Da 114-640088	te: May 2, 2011 37			k Order: 11042 OG/State I #1		Page N	umber: 34 of 35 Eddy Co., NM
Standard	(ICV-1)						
QC Batch:	80827		Date Ana	lyzed: 2011-04	4-29	Anal	yzed By: AR
_			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	98.1	98	85 - 115	2011-04-29
Standard	(CCV-1)						
QC Batch:	80827		Date Ana	lyzed: 2011-04	1-29	Anal	yzed By: AR
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	102	102	85 - 115	2011-04-29
Standard	(ICV-1)						
QC Batch:	80828		Date Anal	lyzed: 2011-04	L-29	Anal	yzed By: AR
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride	· · · · · · · · · · · · · · · · · · ·	mg/Kg	100	101	101	85 - 115	2011-04-29
Standard	(CCV-1)						
QC Batch:	80828		Date Anal	lyzed: 2011-04	-29	Anal	yzed By: AR
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	99.1	99	85 - 115	2011-04-29
Standard	(ICV-1)						
QC Batch:	80829		Date Anal	yzed: 2011-04	-29	Anal	yzed By: AR
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
		mg/Kg	100	101	101	85 - 115	2011-04-29

·

Report Da 114-640088	te: May 2, 2011 37			k Order: 11042 OG/State I #1		Page N	umber: 35 of 35 Eddy Co., NM
Standard	(CCV-1)						
QC Batch:	80829		Date Ana	yzed: 2011-04	L-29	Anal	yzed By: AR
			CCVs	CCVs	CCVs	Percent	_
_			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	98.8	99	85 - 115	2011-04-29
Standard	(ICV-1)						
QC Batch:	80830		Date Anal	yzed: 2011-04	-29	Anal	yzed By: AR
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	97.9	98	85 - 115	2011-04-29
Standard	(CCV-1)						
QC Batch:	80830		Date Anal	yzed: 2011-04	-29	Anal	yzed By: AR
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
D	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Param	1 1006						

			ò	X	L	NO #: 11	042214				_												_						× • **	
An	alys	sis F	Re	e	lU	est of Ch	ain of Custo	ody	R	leo	CO	ord	ł										GE:				C	DF:	5	
			(<u></u>	······································							-					(0	A Circle			-	EQU Met).J			
			l		Ŗ	1910 N. Big Midland, Te: (432) 682-4559	Spring St.									be (Exit to C35)	Cd Cr Pb Hg Se	Vr Pd Hg										TDS		
CLIENT NAN	AE:					SITE MANAGE		ga	ŝ	יך		SER		E		AUULAL LUUM	Ba C	B			0/824	8270/625						E		
PROJECT NO	0.:		P	ROJ	ECT	The Ta	varez			\vdash	T			\neg			R	8 B		e la	0/826	1 827						Bitions		
114-645	0887	[Ļ	<u>^</u>	to	te I the			3	Ē						ž	A sta	als A	iles.	Sola	. 824	Ň	809/0	g			stos)	na/C		
LAB I.D. NUMBER	DATE	TIME	MATRIX	COMP	GRAB	Edd SAMP	မှ င်ာ ယက Le identification	NI IMBED OF		HCL HCL	EONH	ñ	NONE	Ì		PAH 8270	RCRA Metals Ag /	TCLP Metals Ag	TCUP Volatiles	TCLP Semi Volatiles RCI	GC.MS Vol	GC.MS Sel	PCB's 808	Pest. 808/608	Chlonde	Ainha Beta (Ain)	PLM (Asbestos)	Major Anions/Cations,		
264445	4/19		5		X	AH-1	0-1	١				X			K)	(X					
446			Ш		Ш	AH-I	1-1.5																		$\ $					
447						AH-1	2-2.5																							
448						AH-1	3-3.5					Ι													\prod					
449						<u>AH-1</u>	4-4.5								T											Τ		Π		T
450			\prod			AH-I	5-5.5																		Π			\prod	Τ	T
451						AH-I	6-6.5								Τ										T			Π		
452						4H-1	7-7.5		I						Τ	T								Π	Ι			\prod		\prod
453						AH-1	8-85								Τ															\prod
454 RELINQUISHED	a	0.44	V		7	AH-1	9-9-5					\downarrow	/ 6											ľ	V					
	1ml	Lin				Date: <u>4-19-11</u> Time: <u>17:6-D</u>	RECEIVED BY: (Signature)				Date: Time:	5	17				τ	Ē		int & I K.C	<u>َ</u>						Date: Time:	_4	- H	<u></u>
RELINQUISHED						Date:	RECEIVED BY: (Signature)				Date: Time:	_					FEDS	×	-	Ď BY:	BUS	5					BILL			
RELINQUISHED						Date: Time:	RECEIVED BY: (Signature)				Date: Time:	_								NTACT	UPS PER		:				HER:	suits b		
RECEIVING LABO	DRATORY:	STATE:		x		ZiP:	RECEIVED BY: (Signature)									1	I	La	7.	āva	re	て					RU. Aut	SH CH thorize	harges ed:	, ;
CONTACT:	ION WHEN I	RECEIVED			IONE	:	DATE:	5000	IME		4	~	~	d	<u>an</u>	1												Yes		No
9,4%	cin	tac	. 1	L	/	1 24 1	TEX exceeds 50										n	vn	0	les	e.									

Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy.

					9	:# aux	11042214																						
An	alvs	sis F	Re) ()			ain of Custo	odv F	Re	C	0	rd									PAG	iE:	2			OF:	5		
						501 01 011				_				1				(C			/SIS Speci				Vo.)				
			l		R	TETRA 1910 N. Big Midland, Tex (432) 682-4559	Spring St.							11	D5 (Ext. to C35)	Cd Cr Pb Hg Se	Vr Pd Hg										2		
CLIENT NAM	Æ:						R:	ERS		PF		RVAT] [TX1005	8	8			50/624	70/626					Ŧ	1 5		
PROJECT N			PF		ECT	NAME:	andre ?	CONTAIN	Ę	Τ	T	Τ	T		8015 MOB?	A9 A9	Ag As	18 Olatilee		240/826	Vol. 82	8			5	03) /Cation			
LAB I.D. NUMBER	DATE	TIME	MATRIX	Γ	GRAB		Eddy Co NM LE IDENTIFICATION	NUMBER OF CONTAINERS	FILTERED (Y/N)	HG	HN03	ICE NONE		124	TPH 8015 PAH 8270	RCRA Metals Ag /	TCLP Metals	TCLP Volatiles TCLP Semi Volatiles	RCI	GC.MS Vol. 8240/8260/624	GC.MS Semi. Vol. 8270/825 DCP's R080/608	Pest. 808/60	Chloride	Gamma Spec	Alpha Beta (Air)	PLM (Asbestos) Mainr Aninne/Cations nH TDS			
264455	4/19		5		x	A14 - 2	0-1'	1			,	K		X	X								X				Γ		
456	1					AH-2	1-1.5'																h						
457			\parallel			AH-2	2-2.5																						
458						AH-2	3.3.5	/																					
459						AH-3	0-1							K	X													\square	
460				L		AH-3						Ш																	
461						AH-3	2.5																						
462				L		AH-3	3-3.5														\bot								
463						AH-3	4-4.5																<u> </u>			\bot			
464	4	han	V		N	AH-3	5-5-5	V_			ŀ	4	J.										V						
RELINQUISHED		<u>All</u>				Date: 4-24-11 Tane: 17:00	CIIC			Da Tin	ne:	71	71	20		77	2	Contraction of the local division of the loc	LD						Tin	n o :	<u>स-</u> ह		
RELINQUISHED						Date:	RECEIVE(Signature)			Da Tin						FEDE	K		_	BUS					AIRBI OTHE	lL£.#:. :			
RELINQUISHED						Date:	RECEIVED BY: (Signature)			Da Tin	te: ne:						_	IVERI		UPS PER						Resul	ts by:		
RECEIVING LAB ADDRESS: CITY: CONTACT:		STATE:		Ç	HON	ZIP:	RECEIVED BY: (Signature)	······································							-	I	Eke	: 7	áv	a -N	ez					Autho		-	
SAMPLE CONDI				P		REMARKS:	DATE:		AE:																	Ye			No

Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy.

					0	XWO #:	1/042214																							
An	alvs	sis F	Re	eO			ain of Cust	tody	R	e	CC	ora	ł										GE:		3		C)F:	5	
			-																{(A Circle	NAL 9 or -					-).)			
						1910 N. Big Midland, Tex (432) 682-4559	Spring St.									5 (Ext to C35)	d Cr Pb Hg Se	Vr Pd Hg										TDS		
CLIENT NA	ME:					SITE MANAGE		1	ę	Τ		SER	ATIV	E		13(1005	Ba Cd	Ba Q			/624	0/625								
CDG PROJECT N	0.:		IP F	10J	ECT	NAME:	avarez		¥		T		T	_		· a	\$	8		8	/8260	. 827						tions		
114-640	083	7		3	ta				3	ŝ					2	Non Non	ds Ag	ls Ag	89	Volat	B240	<u>ک</u>	/608	8		Ail .	stos)	S.		
LAB I.D. NUMBER	DATE	TIME	MATRIX	COMP:	GRAB	EA	Le identification		NUMBER OF CONTAINERS	FILTERED (Y/N) HCL	HN03	30	NONE		211	PAH 8270	RCRA Metals Ag	TCLP Metals Ag	TCLP Volatiles	RCI Semi	GC.MS Vol. 8240/8260/624	GC.MS Semi. Vol. 8270/625	PCB's 8080/608	Pest. 808/6	anionde	Ainha Rata (Ain)	PLM (Asbestos)	Major Anions/Cations, pH,		
264465	4/19		5		X	AH-3	6-6.5		l			X													Í					
466						<u>kh-3</u>	7-7.5		l			1																Ш		
467						AH-3	8-8.5		1																			Ш		
468						AH-3	9-9.5'		$\ $																					
469			Ш		Ц	AH-4	0-1								XII	K														
410			Ш		Ц	AH-4	1-1.5																							
471			Ш			AH-4	<u>\$-2.5</u> `		\parallel																					
472						Ан-4	3.35																							
473					Ц	AH-4	ચ-ય.૬`																							
474 RELINQUISHED	V	- 7	V		ł	AH-4 Date: 4-21-11	S=5.5		4			Y												ŀ	И					
4						Time: 17:00				1	Date: Time:		17.	00						int & I D						1	îme:	_4.		4
RELINQUISHED						Date:	RECEIVED BY: (Signature)			1	Dat o : Time:						FEDE	Υ			BUS	í.					BILL HER:	#: <u> </u>		
RELINQUISHED		•				Date: Time:	RECEIVED 8Y: (Signature)				Date: Time:									VTACT					<u> </u>			sults b	y:	
RECEIVING LAB	oratory:	STATE:			100.17	ZIP:	RECEIVED BY: (Signature)										I	Le		Tau	an	×.						SH Ch horize	arges d:	
SAMPLE CONDI		RECEIVED:	-	_ PH	IONE	REMARKS:	DATE:	T	IME																		<u> </u>	Yes		No

Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Plnk copy - Accounting receives Gold copy.

XW0 #:164	2214																			
Analysis Request of Chain of		Rei	CO	rd									PAG	iE:	4		(OF:	5	
										(0			(SIS ipeci				o.)			
TETRATEC 1910 N. Big Spring S Midland, Texas 79704 (432) 682-4559 • Fax (432)	5.					11	35 (Ext. to C36)	Cd Cr Pb Hg Se	Vr Pd Hg									TDS		
CLIENT NAME: SITE MANAGER:	22			ERV/	TIVE	1	TX1005	Ba C)/824	0/625					, pH, TDS		
COLA IVE TOWATEZ PROJECT NO.: PROJECT NAME:		+]		2	2	1		/826(<u>8</u>					tions		
114-6400887 State I # 16	CON	Ę				2	8015 MOD.	la Ag	BA 8	8		8240	2			2		S S		
LAB I.D. NUMBER 2011 UME TIME HEL SAMPLE IDENTIFIE 2011 UME DATE TIME		FILTERED (Y/N) HCL	RONH	B	NONE	191	PAH 8270	RCRA Metals Ag /	TCLP Meta	TCLP Volatiles	RCI	GC.MS Vol. 8240/8260/624	GC.MS Semi. Vol. 8270/625 PCP*s Anno/Rn8	Pest. 808/608	Chientry	Bamfila Spec.	Alpha beta (Air) PLM (Asbestos)	Major Anions/Cations,		
2141475 419 5 X AH-4 6-6.3	5`\\			X			1					Ц			Ш					
476 / AH-4 7-7.4	5`			\prod											Ш		_			
4777 AH-4 8-8	5			1																
478 AH-4 9-9.	5`			Ш																\downarrow
479 44-5 0-1	、					X	X	Ц				\square		\downarrow	Ш			Ш		$\downarrow\downarrow$
480 AH-5 1-1.4	5`			Д	_												\downarrow			_↓_↓_
481 AH-5 2-2				Ш								\square								
482 AH-5 3-3	,5'			\prod			⊥			\square		\square		1	Ш					<u>_</u>
483 AH-5 4-4	.5`			\prod									\square					\square		
HELINGUISHED BY (Stinature)	5.5'		Date:	1				AMPL							V	′⊥				
			Time:		14	20		T	7	1	ND					_	Time		<u>vr</u> 7	
RELINQUISHED BY: (Signature) Date: RECEIVED BY: Time: RECEIVED BY			Date: Time:					AMPL PEPE HANI	*			Circle BUS UPS					RBILL			
Time:	IY: (Signature)		Date: Time:									PERS						esults	by:	
RECEIVING LABORATORY: Nac. C. RECEIVED BY: I ADDRESS: CITY: Mudland STATE: The ZIP: CONTACT:							-		I١	Le	To	~~~	بمو	ح			RI A	USH C uthoriz	harge ed:	
SAMPLE CONDITION WHEN RECEIVED:	TiN	ME:					<u>-</u>										_L_	Yes		No
9.4° cintact							-											_		

Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy.

			<u>ک</u>	SW0#	Noyaaly					-														
Analys	is R	ec	าน	est of Ch	ain of Custod	lv R	e	CC	oro	t								_	iE: 🔺	2		OF:	5	
		-		-							-1				(0					UES [*] ethod	T d No.;	1		
			R	1910 N. Big Midland, Te								6 (Ext. to C35)	:	d Cr Pb Hg Se d Vr Pd Hg Se								TDS		
CLIENT NAME:				SITE MANAG	ER: avarez	ERS	T		SER	VATIVE		TX1005		Ba Cd Ba			50/624	8270/625				s. aH.		
PROJECT NO .: 114-640088		-		NAME:		CONTAIL	ε Γ	Γ		Π				5 A9 A9 3 A9 A3	92	Clames	240/82	. Vol. 82	8		E ;	os) v/Catior		
LAB I.D. NUMBER DATE		MATRIX COMP:		Ę	Lddy Co NM PLE IDENTIFICATION	NUMBER OF CONTAINERS	HCL HCL	EONH	ICE	NONE	BTEV MOLE	Sios Hat	PAH 8270	TCLP Metals Ag	TCLP Volatiles	RCI Semi V	GC.MS Vol. 8240/8260/624	GC.MS Semi	Pest. 808/608	Chloffde Gemen Sner	Alpha Beta (Air)	PLM (Asbestos) Maior Anions/C		
264485 4/19		5	X	AH.5	6-6.5	1			X		Ť		T							X				
486 1/19		\$	X	AH-5	7-7.5	i			X											V				
							\downarrow				4		_			1					\downarrow			┵┼
		+	\square				+-	_			+		4			╞	$\left \right $				\downarrow	+		╇
		_	┼┤			-+-}	+				+	+	+	_	$\left \right $	╞	$\left \cdot \right $	+			+	_	┼╌┼	╉╂
		╋	$\left\{ \right\}$	······		╶┼┼	+		_		+	┼┤	+		$\left \right $	+-	$\left \right $	+		-	┼┨	_	╀╀	╇
		╉	┢┤			╶╁╀	+				╉	┽╂	╉		$\left \cdot \right $	+	$\left \cdot \right $	╉		+	+	+	┝┼	++
			┟╴┨			╺╉╁	╀				╉	┼╀	╉	╀	$\left \right $	+	$\left \right $	╉	+		+	+	++	++
			$\left \right $	<u>.</u>	<u>~</u>	╾╁╄	\dagger		2		╋	╋	╋		┝╶╊	+-	$\left \right $	╋	\dagger		+	+	╞┼	++
RELINQUISHED BY SUBatur	20		н	Date: 4-21-11 Time: 17:00	RECEIVED BR (Stenature)			Date: Time:	-7	14	Å.	<u>-</u> †	SAM	PLED	BY: (Pr		nitial) KO				Da Tin		2-19	<u>-1</u>
RELINQUISHED BY: (Signature	3)			Date:	Cherre (Verter visignature)			Date: Nime:				-1		PLE SI	(IPPE)						AIRB	ILL #: _		
RELINQUISHED BY: (Signature	8)			Date:	RECEIVED BY: (Signature)		1	Date: Time:				=	(HA	ND DE			UPS		····		отна	R: Result:	by:	
RECEIVING LABORATORY:] ADDRESS; CTY:	STATE:			ZIP:	RECEIVED BY: (Signature)			, (1118:				_		IV					e.			RUSH Author	Charge ized:	
CONTACT: SAMPLE CONDITION WHEN R 7.4°C inta		P	HONE	REMARKS:	DATE:	TIME	<u> </u>	<u> </u>				- 1					-		. <u> </u>		I	Ye:	,	No

Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy,

Summary Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX 79705

Project Location:Eddy Co., NMProject Name:COG/State I #16Project Number:114-6400887

Date Time Date Description Matrix Taken Taken Received Sample 285488 Trench-1 @ 11' (AH-1) 2011-12-16 00:00 2011-12-29 soil 285489 Trench-1 @ 13' (AH-1) soil 2011-12-16 00:00 2011-12-29 Trench-1 @ 15' (AH-1) 285490 soil 2011-12-16 00:00 2011-12-29 Trench-1 @ 17' (AH-1) 285491 soil 2011-12-16 00:00 2011-12-29 Trench-1 @ 19' (AH-1) 285492 soil 2011-12-16 00:00 2011-12-29 Trench-1 @ 21' (AH-1) 285493 soil 2011-12-16 00:00 2011-12-29 Trench-1 @ 23' (AH-1) soil 2011-12-16 00:00 2011-12-29 285494

Sample: 285488 - Trench-1 @ 11' (AH-1)

Param	Flag	Result	Units	RL
Chloride		641	mg/Kg	4

Sample: 285489 - Trench-1 @ 13' (AH-1)

Param	Flag	Result	Units	\mathbf{RL}
Chloride		945	mg/Kg	4

Sample: 285490 - Trench-1 @ 15' (AH-1)

Param	Flag	Result	Units	\mathbf{RL}
Chloride		839	mg/Kg	4

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

Report Date: January 5, 2012

Work Order: 11122916

 TIOHOH I	8 40	(111 1)	bom

Report Date: Janu	ary 5, 2012	Work Order: 11122916	Page	Number: 2 of 2
Sample: 285491	- Trench-1 @ 17' (AH	-1)		
Param	Flag	Result	Units	\mathbf{RL}
Chloride		660	mg/Kg	4
Sample: 285492	- Trench-1 @ 19' (AH	-1)		
Param	Flag	Result	Units	RL
Chloride		617	mg/Kg	4
Sample: 285493	- Trench-1 @ 21' (AH	-1)		
Param	Flag	Result	Units	\mathbf{RL}
Chloride		463	mg/Kg	4
Sample: 285494	- Trench-1 @ 23' (AH	-1)		
Param	Flag	Result	Units	RL
<u></u>				

506

mg/Kg

4

Chloride

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Kansas Oklahoma ISO 17025

Analytical and Quality Control Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX, 79705

Report Date: January 5, 2012

Work Order: 11122916

Project Location:Eddy Co., NMProject Name:COG/State I #16Project Number:114-6400887

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
285488	Trench-1 @ 11' (AH-1)	soil	2011-12-16	00:00	2011-12-29
285489	Trench-1 @ 13' (AH-1)	soil	2011-12-16	00:00	2011-12-29
285490	Trench-1 @ 15' (AH-1)	soil	2011-12-16	00:00	2011-12-29
285491	Trench-1 @ 17' (AH-1)	soil	2011-12-16	00:00	2011-12-29
285492	Trench-1 @ 19' (AH-1)	soil	2011-12-16	00:00	2011-12-29
285493	Trench-1 @ 21' (AH-1)	soil	2011-12-16	00:00	2011-12-29
285494	Trench-1 @ 23' (AH-1)	soil	2011-12-16	00:00	2011-12-29

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 12 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael abel

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

.

Report Contents

Case Narrative	4
Analytical Report	5
Sample 285488 (Trench-1 @11' (AH-1))	5
Sample 285489 (Trench-1 @13' (AH-1))	5
Sample 285490 (Trench-1 @15' (AH-1))	5
Sample 285491 (Trench-1 @17' (AH-1))	5
Sample 285492 (Trench-1 @19' (AH-1))	6
Sample 285493 (Trench-1 @21' (AH-1))	6
Sample 285494 (Trench-1 @23' (AH-1))	6
Method Blanks	8
QC Batch 87597 - Method Blank (1)	8
QC Batch 87598 - Method Blank (1)	8
Laboratory Control Spikes	9
QC Batch 87597 - LCS (1)	9
QC Batch 87598 - LCS (1)	9
QC Batch 87597 - MS (1)	9
QC Batch 87598 - MS (1)	10
Calibration Standards	11
QC Batch 87597 - ICV (1)	11
QC Batch 87597 - CCV (1)	11
QC Batch 87598 - ICV (1)	11
QC Batch 87598 - CCV (1)	11
Appendix	12
	12
Laboratory Certifications	12
Standard Flags	12
Attachments	12

.

Case Narrative

Samples for project COG/State I #16 were received by TraceAnalysis, Inc. on 2011-12-29 and assigned to work order 11122916. Samples for work order 11122916 were received intact at a temperature of 4.0 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	\mathbf{QC}	Analysis
Test	Method	Batch	Date	Batch	Date
Chloride (Titration)	SM 4500-Cl B	74350	2012-01-03 at 09:57	87597	2012-01-04 at 13:58
Chloride (Titration)	SM 4500-Cl B	74350	2012-01-03 at 09:57	87598	2012-01-04 at 13:59

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 11122916 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: January 5, 2012 114-6400887

`

Analytical Report

Sample: 285488 - Trench-1 @ 11' (AH-1)

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 87597 74350	Date An	al Method: alyzed: Preparation:	SM 4500-Cl B 2012-01-04 2012-01-03	Prep Method: Analyzed By: Prepared By:	ÁR
			\mathbf{RL}			
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}
Chloride			641	mg/Kg	50	4.00

Sample: 285489 - Trench-1 @ 13' (AH-1)

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 87597 74350	Date An	al Method: alyzed: Preparation:	SM 4500-Cl B 2012-01-04 2012-01-03	Prep Method: Analyzed By: Prepared By:	ÁR
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Chloride			945	mg/Kg	50	4.00

Sample: 285490 - Trench-1 @ 15' (AH-1)

Chloride			839	mg/Kg	50	4.00
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	74350	Sample 1	Preparation:	2012-01-03	Prepared By:	AR
QC Batch:	87597	Date An	alyzed:	2012-01-04	Analyzed By:	,
Laboratory: Analysis:	Midland Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A

Report Date 114-6400887	: January 5, 2012		COrder: 111 OG/State I ;	Page Number: 6 of 12 Eddy Co., NM		
Sample: 28	5491 - Trench-1 @ 17' (AF	I- 1)				
Laboratory:	Midland					
Analysis:	Chloride (Titration)	Analytica	l Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	87597	Date Ana	lyzed:	2012-01-04	Analyzed By:	AR
Prep Batch:	74350	Sample P	reparation:	2012-01-03	Prepared By:	AR
			\mathbf{RL}			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			660	mg/Kg	50	4.00
Sample: 28	5492 - Trench-1 @ 19' (AE	I-1)				
Laboratory:	Midland					
Analysis:	Chloride (Titration)	Analytica	l Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	87597	Date Ana		2012-01-04	Analyzed By:	ÁR
Prep Batch:	74350		reparation:	2012-01-03	Prepared By:	AR
			RL			

Parameter	Flag	Cert	Result	Units	Dilution
Chloride			617	mg/Kg	50

RL 4.00

Sample: 285493 - Trench-1 @ 21' (AH-1)

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 87597 74350	Date An	al Method: alyzed: Preparation:	SM 4500-Cl B 2012-01-04 2012-01-03	Prep Method: Analyzed By: Prepared By:	,
			\mathbf{RL}			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			463	mg/Kg	50	4.00

Sample: 285494 - Trench-1 @ 23' (AH-1)

Laboratory:	Midland				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	87598	Date Analyzed:	2012-01-04	Analyzed By:	AR
Prep Batch:	74350	Sample Preparation:	2012-01-03	Prepared By:	AR

Report Date: January 114-6400887	7 5, 2012		rk Order: 111229 OG/State I #16	-	Page Numb Eddy	er: 7 of 12 y Co., NM
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}
Chloride			506	mg/Kg	50	4.00

Report Date: January 5, 2012 114-6400887

Work Order: 11122916 COG/State I #16

.

Method Blanks

Method Blank (1)	QC Batch: 87597				
QC Batch: 87597 Prep Batch: 74350		Date Analyzed: QC Preparation:	2012-01-04 2012-01-03	Analyzed By: Prepared By:	AR AR
Parameter	Flag	Cert	MDL Result	Units	RL
Chloride			<3.85	mg/Kg	4
Method Blank (1)	QC Batch: 87598				
QC Batch: 87598		Date Analyzed:	2012-01-04	Analyzed By:	AR
Prep Batch: 74350		QC Preparation:	2012-01-03 MDL	Prepared By:	AR
Parameter	Flag	Cert	Result	Units	\mathbf{RL}
Chloride			<3.85	mg/Kg	4

Report Date: January 5, 2012 114-6400887 Work Order: 11122916 COG/State I #16

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:	87597 74350	Date Analyzed: QC Preparation:			Analyzed By: Prepared By:	
		LCS	Snike	Matrix		Rec

Param F	C	D	TT 1					
1 (01 (011) 1	0	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride		97.0	mg/Kg	1	100	<3.85	97	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	F	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride			104	mg/Kg	1	100	<3.85	104	85 - 115	7	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:	87598	Date Analyzed:	2012-01-04	Analyzed By:	AR
Prep Batch:	74350	QC Preparation:	2012-01-03	Prepared By:	AR

			LCS			Spike	Matrix		Rec.
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride			96.5	mg/Kg	1	100	<3.85	96	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride			105	mg/Kg	1	100	<3.85	105	85 - 115	8	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike	e (MS-1)	Spiked Sample: 285493			
QC Batch:	87597	Date Analyzed:	2012-01-04	Analyzed By:	AR
Prep Batch:	74350	QC Preparation:	2012-01-03	Prepared By:	AR

Report Date: January 5, 2012 114-6400887				Work Order: 11122916 Page No COG/State I #16					umber: 10 of 12 Eddy Co., NM			
				MS			Spike		atrix			lec.
Param		F	_	Result	Units	Dil.	Amount	-	esult	Rec.		mit
Chloride				10300	mg/Kg	100	10000	4	463	98	79.4	- 120.6
Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.												
			MSD			Spike	Matrix		R	ec.		RPD
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Li	mit	RPD	Limit
Chloride			10600	mg/Kg	100	10000	463	101	79.4 -	120.6	3	20
	-				r on the	Spike und	spine dup					
Percent recovery is based on th Matrix Spike (MS-1) Spil QC Batch: 87598 Prep Batch: 74350	-		e: 28550 Dat		ed: 20)12-01-04)12-01-03	spike dup				yzed By ared By:	
Matrix Spike (MS-1) Spil QC Batch: 87598 Prep Batch: 74350	-	mpl	e: 28550 Dat QC	5 Te Analyz Preparat MS	ed: 20 ion: 20)12-01-04)12-01-03	Spike	М	atrix	Prepa	ared By: F	AR Lec.
Matrix Spike (MS-1) Spil QC Batch: 87598 Prep Batch: 74350 Param	-		e: 28550. Dat QC	5 Preparat MS Result	ed: 20 ion: 20 Units	D12-01-04 D12-01-03 Dil.	Spike Amount	M Ra	atrix esult	Prepa Rec.	ared By: F	AR Lec. mit
Matrix Spike (MS-1) Spil QC Batch: 87598 Prep Batch: 74350	-	mpl	e: 28550. Dat QC	5 Te Analyz Preparat MS	ed: 20 ion: 20	D12-01-04 D12-01-03 Dil.	Spike	M Ra	atrix	Prepa	ared By: F	AR Lec.
Matrix Spike (MS-1) Spil QC Batch: 87598 Prep Batch: 74350 Param	ked Sa	mpl F	e: 28550 Dat QC <u>C</u>	5 Preparat MS Result 31100	ed: 20 ion: 20 Units mg/Kg	012-01-04 012-01-03 Dil. 100	Spike Amount 10000	M Ru 21	atrix esult 1200	Prepa Rec.	ared By: F	AR Lec. mit
Matrix Spike (MS-1) Spil QC Batch: 87598 Prep Batch: 74350 Param Chloride	ked Sa	mpl F	e: 28550 Dat QC <u>C</u>	5 Preparat MS Result 31100	ed: 20 ion: 20 Units mg/Kg	012-01-04 012-01-03 Dil. 100	Spike Amount 10000	M Ru 21	atrix esult 1200 result.	Prepa Rec.	ared By: F	AR Lec. mit
Matrix Spike (MS-1) Spil QC Batch: 87598 Prep Batch: 74350 Param Chloride	ked Sa	mpl F	e: 28550 Dat QC 	5 Preparat MS Result 31100	ed: 20 ion: 20 <u>Units</u> mg/Kg l on the Dil.	012-01-04 012-01-03 Dil. 100 spike and	Spike Amount 10000 spike dup	M Ru 21	atrix esult 1200 result. R	Prepa Rec. 99	ared By: F	AR dec. mit - 120.6

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: January 5, 2012 114-6400887 Work Order: 11122916 COG/State I #16

Calibration Standards

Standard (ICV-1)

QC Batch:	87597			Date A	nalyzed:	2012-01-04		Analy	zed By: AR
					ICVs	ICVs	ICVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride				mg/Kg	100	100	100	85 - 115	2012-01-04

Standard (CCV-1)

QC Batch:	87597			Date A	Analyzed:	2012-01-04		Analy	zed By: AR
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride				mg/Kg	100	99.6	100	85 - 115	2012-01-04

Standard (ICV-1)

QC Batch:	87598			Date A	nalyzed:	2012-01-04		Analy	zed By: AR
					ICVs	ICVs	ICVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride				mg/Kg	100	101	101	85 - 115	2012-01-04

Standard (CCV-1)

QC Batch:	87598			Date A	Analyzed:	2012-01-04		Analy	zed By: AR
					CCVs True	CCVs Found	CCVs Percent	Percent	Date
			-				rercent	Recovery	
Param		Flag	\mathbf{Cert}	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride				mg/Kg	100	99.5	100	85 - 115	2012-01-04

Report Date: January 5, 2012 114-6400887 Work Order: 11122916 COG/State I #16 Page Number: 12 of 12 Eddy Co., NM

Appendix

Report Definitions

Name	Definition
MDL	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
С	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	NELAP	T104704392-11-3	Midland

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

Attachments

The scanned attachments will follow this page.

Please note, each attachment may consist of more than one page.

DIEM TETRA TECH 1910 N. Big Spring St. Millind, Texas 79705 (132) B82-4569 * Fax (432) B82-3946 DIEM T NAME: COORDINATION: PROJECT NO.: PROJ	An	alys	is F	Rec	ju	est of Chain of Custod	y F	Re	eC (or	d					((YSIS	GE: S REO city N				OF:			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946								1	Cr Pa Ha Vr Pa Ha								T	TDS			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CLIENT NAM		$\overline{O}G$, ,		SITE MANAGER:	LERS					/E	1X10		Ba C			50/624	70/62					s, pH,			
28548 12/1611 S × Trench-1@13'(AH-1) 1 × × × 489 12/1611 S × Trench-1@13'(AH-1) 1 × × × 490 12/1611 S × Trench-1@15'(AH-1) 1 × × × 490 12/1611 S × Trench-1@15'(AH-1) 1 × × × 491 12/1611 S × Trench-1@15'(AH-1) 1 × × × 492 12/1611 S × Trench-1@19'(AH-1) 1 × × × × 493 12/1611 S × Trench-1@23'(AH-1) 1 × × × × × 493 12/1611 S × Trench-1@23'(AH-1) 1 × <t< td=""><td></td><td></td><td><u>~</u></td><td></td><td></td><td>NAME:</td><td>ONTAIN</td><td>Ē</td><td>T</td><td>Τ</td><td>T</td><td></td><td>QO QD</td><td></td><td>Ag As Ag As</td><td></td><td>latiles</td><td>40/82</td><td>Vol. 82</td><td>8</td><td></td><td></td><td>EI</td><td>Cation</td><td></td><td></td><td></td></t<>			<u>~</u>			NAME:	ONTAIN	Ē	T	Τ	T		QO QD		Ag As Ag As		latiles	40/82	Vol. 82	8			EI	Cation			
28548 12/161/l S X Trench-1@13'(AH-1) 1 X X 480 12/161/l S X Trench-1@13'(AH-1) 1 X X X 490 12/161/l S X Trench-1@15'(AH-1) 1 X X X 490 12/161/l S X Trench-1@15'(AH-1) 1 X X X 491 12/161/l S X Trench-1@15'(AH-1) 1 X X X X 492 12/161/l S X Trench-1@21'(AH-1) 1 X	LAB I.D.					Lea. County	NUMBER OF C	FILTERED (Y/	HCL		NONE		TPH 8015	PAH 8270	RCRA Metals TCLP Metals	TCLP Volatile:	TCLP Semi Vo	GC.MS Vol. 8	GC.MS Semi.	PCB's 8080/6 Pest 808/608	Chloride	Gamma Spec	Alpha Beta (A DI M /Asheste	Major Anions			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28548 12/16/11 S × Trench-1@11'(AH-1) 489 12/16/11 S × Trench-1@13'(AH-1)									X	:		T		T	\prod							T				ſ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $)	2		1			Π		1			×		T			Π	Γ
471 121611 5 * Trench-1@17' (AH-1) 1 X X X 472 121611 5 * Trench-1@19' (AH-1) 1 X X X X 473 121611 5 * Trench-1@21' (AH-1) 1 X X X X 473 121611 5 * Trench-1@21' (AH-1) 1 X X X X 474 121611 5 * Trench-1@23' (AH-1) 1 X X X X 474 121611 5 * Trench-1@23' (AH-1) 1 X X X X 474 121611 5 * Trench-1@23' (AH-1) 1 X X X X 474 121611 5 * Trench-1@23' (AH-1) 1 X <td< td=""><td>420</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1,</td><td>\langle</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>x</td><td></td><td>T</td><td></td><td></td><td>Π</td><td>Γ</td></td<>	420						1			1,	$\langle $										x		T			Π	Γ
H92 121.6111 S X Tr.on.ch-1 @ 21' (A H-1) 1 X	491 12/16/11 5 × Trench-1@17 (AH-1)																1	+-		\uparrow			+				Γ
93 1218111 5 X Trench-1@21' (A H-1) 1 X X X 99 121611 5 X Trench-1@23' (A H-1) 1 X X X X 99 121611 5 X Trench-1@23' (A H-1) 1 X X X X 99 121611 5 X Trench-1@23' (A H-1) 1 X X X X RELEXANSHED BY: (Signature) Date: 12/23/11 RECEIVED BY: (Signature) Date: 12/23/11 Date:				┼╌╀╌	X					+			1					1-				11	T			$\uparrow \uparrow$	ſ
90/4 1.21/5/u S X Trench-1 @ 2.3 (A 14-1) X	493	21/10			x		1		1	-			╈	Ħ							×		T			\square	ſ
RELEGENSHED B#: (Signature) Date: 12/23/11 RECEIVED BY: (Signature) Date: 12/23/11 Date: 12/20/11 RELEGENSHED B#: (Signature) Date: 12/23/11 RECEIVED BY: (Signature) Date: 12/23/11 Date: 12/20/11 RELEGENSHED B#: (Signature) Date: 12/23/11 RECEIVED BY: (Signature) Date: 12/23/11 Date: 12/20/11 RELEGENSHED BY: (Signature) Date: 12/23/11 RECEIVED BY: (Signature) Date: 06/30 OV 1/4 No Chave (B/NS) Date: 12/20 RELENCLISHED BY: (Signature) Date: 12/23/11 RECEIVED BY: (Signature) Date: Mate: SAMPLED BY: (Drub (B/NS) AIRBILL #:				╋╌╋╸			1						1	<u>†</u> -†	-†	\dagger	-	\uparrow		-†-	2		+			\square	ſ
Vrice Office Time: GGO Time: 1200 Refinquished BY: (Signature) Date: 12/23/1/ Received BY: (Signature) Date: SAMPLE SHIPPED BY: (Crole) AIRBILL #:	/	1211014		FT			Ť		Ť	+-			1-	┋╌╉	+	$\uparrow \uparrow$		+				╞╌┼	╋	+		11	Γ
Virtuan Office Time: GCO Time: 1200 RefinQUISHED BY: (Signature) Date: 12/23/1/ RECEIVED BY: (Signature) Date: SAMPLE SHIPPED BY: (Crole) AIRBILL #:			·										+-	\uparrow	-	┢┟	╈	+		+		╞─╂	╈	+	-	$\uparrow \uparrow$	
Virtuan Office Time: GCO Time: 1200 RefinQUISHED BY: (Signature) Date: 12/23/1/ RECEIVED BY: (Signature) Date: SAMPLE SHIPPED BY: (Crole) AIRBILL #:	_						+		+	╈	\uparrow					\uparrow	╈			+			+	$\uparrow \uparrow$		\square	
Date: 12/23/1/ RECEIVED BY: (Signature) Date: SAMPLE SHIPPED BY: (Circle) AIRBILL #: Time: 12:05 Image: 12:05 Image: Image: <t< td=""><td>RELIGENSHED</td><td>BY: (Signatur</td><td>Aa</td><td>ve</td><td>2</td><td>Date: 12/23/11 RECEIVED BY: (Signature) Time: 600</td><td></td><td>11</td><td></td><td></td><td>12/2</td><td>3/11</td><td></td><td>SAB</td><td>IPLED</td><td>Б<u>ү:</u>(Р</td><td>Tint &</td><td>Initial</td><td><u>ا ا</u></td><td>Te</td><td>500</td><td>5</td><td>Date Time</td><td></td><td>120</td><td></td><td></td></t<>	RELIGENSHED	BY: (Signatur	Aa	ve	2	Date: 12/23/11 RECEIVED BY: (Signature) Time: 600		11			12/2	3/11		SAB	IPLED	Б <u>ү:</u> (Р	Tint &	Initial	<u>ا ا</u>	Te	500	5	Date Time		120		
Helinduiste Date: Late: Lat		e de	· h			Date: 12/23/1/ RECEIVED BY: (Signature) Time: 12:00 1			Tim	ie:				SAN FE	IPLE S DEX	HIPPE	D BY	: (Cırcl BU	e) S	/		A					
ADDRESS:		1	D.	≥_		Time: 1121 OKOAL					13	30	<u>/</u>	TET	RA TEC	сн со	NTAC	T PEF	SON:						by:		-
	ADDRESS:		STATE:		PHON	ZIP:	 Tu	 ME:			<u></u>			[]	-	-	. 🖵	1		•			Ri A	uthoriz	harges ed:		
SAMPLE CONDITION WHEN RECEIVED: REMARKS:		TION WHEN	RECEIVED:			REMARKS:								L				_									-