SITE INFORMATION

1

			port Type:		re 🛛		
General Site In	formation:		and the second			the analysis of the second secon	
Site:			ank Battery				
Company:		COG Operat	ting LLC		······		
Section, Town	ship and Range	Unit B	Sec 34	T22S	R27E		
Lease Number		API-30-015-	35789				
County:		Eddy Count	у				
GPS:			32.35320° N			104.17399° W	
Surface Owner		State					
Mineral Owner	•						
			om the intersectio Turn right on to lo			ay 62, travel South on Highway 285	
Release Data:			M. 1423 A.B.				
Date Released:		7/9/2013					
Type Release:		Oil and produ	uced water				
		Drain Line Fa	ailure				
Fluid Released:			16 bbls Produce				
			d Produced Wate				
Official Comm	unication:			調査にいいましたの			
Name:	Robert McNeill				Ike Tavarez		
Company:	COG Operating, LL	С	1		Tetra Tech		
Address:	One Concho Cente		1		4000 N. Big S	pring St	
Auuress.					4000 N. DIY S	pring St.	
0.1	600 W. Illinois Ave						
City:	Midland Texas, 797	/01		Midland, Texas			
Phone number:	(432) 686-3023		(432) 682-4559			9	
Fax:	(432) 684-7137						
Email:	rmcneill@concho	resources.com	<u>1</u>		ike.tavarez@	tetratech.com	
Ranking Criter	ia 🦾 🖓						
Depth to Ground	lwater:		Ranking Score	1		Site Data	
<50 ft			20				
50-99 ft			10		<u></u>	10	
>100 ft.		· · · · · · · · · · · · · · · · · · ·	0				
WellHead Protec			Ranking Score			Site Data	
	,000 ft., Private <200 f		20				
Water Source >1	,000 ft., Private >200 f	<i>t.</i>	0	1		0	
Surface Body of	Water:		Ranking Score		5	Site Data	
<200 ft.			20				
200 ft - 1,000 ft.			10				
>1,000 ft.		·	0			0	
Te	otal Ranking Score		10			RECEIVED	
			ble Soil RRAL (ma/ka)	8 · · 3		
		Benzene	Total BTEX	TPH		MAR 05 2014	
		10	50	1,000	-1		
			L	.1 ,,000		NMOCD ARTESIA	

November 19, 2013

Mr. Mike Bratcher Environmental Engineer Specialist Oil Conservation Division, District 2 811S. First Street Artesia, New Mexico 88210

Re: Closure Report for the COG Operating LLC., Weems #1 Tank Battery, Unit B, Section 34, Township 22 South, Range 27 East, Eddy County, New Mexico.

Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating LLC. (COG) to assess a spill from the Weems #1 Tank Battery located in Unit B, Section 34, Township 22 South, Range 27 East, Eddy County, New Mexico (Site). The spill site coordinates are N 32.35320°, W 104.17399°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on July 09, 2013, and released approximately one hundred fifty four (154) barrels of oil and sixteen (16) barrels of produced water from 1 inch nipple that failed on a drain line due to corrosion. To alleviate the problem, COG personnel replaced the nipple to prevent a reoccurrence. Zero (0) barrels of oil or produced water was recovered. The spill initiated inside a lined tank battery, but then ran onto the pad affecting an area approximately 85' X 15' and 55' x 20'. The initial C-141 form is enclosed in Appendix A.

Groundwater

According to the NM State Engineers Well Report, two (2) water wells were listed in Section 34 with depth to groundwater of approximately 60' below surface. The Geology and Groundwater Conditions in Southern Eddy County, New Mexico Resource shows groundwater depth of approximately 53' below surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 1,000 mg/kg.

Soil Assessment and Analytical Results

On August 14, 2013, Tetra Tech personnel inspected and sampled the spill area. Three (3) auger holes (AH-1, AH-2 and AH-3) were installed using a stainless steel hand auger to assess the impacted soils. Selected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The sampling results are summarized in Table 1. The auger hole locations are shown on Figure 3.

Referring to Table 1, a hydrocarbon impact was detected in the subsurface soils. The BTEX concentrations detected were all below the RRAL. Auger holes (AH-1 and AH-3) showed a shallow impact to the soils at 0'-1', but declined below the TPH RRAL at 1'-1.5' below surface. The area of auger hole (AH-2) showed a deeper impact to the subsurface soils and not vertically defined. The bottom auger hole sample showed a TPH concentration of 22,500 mg/kg at 6'-6.5' below surface. Deeper samples were not collected due to the dense formation at the site.

In addition, the chlorides detected ranged from <20.0 mg/kg to 340 mg/kg. The chloride concentrations detected do not appear to be an environmental concern.

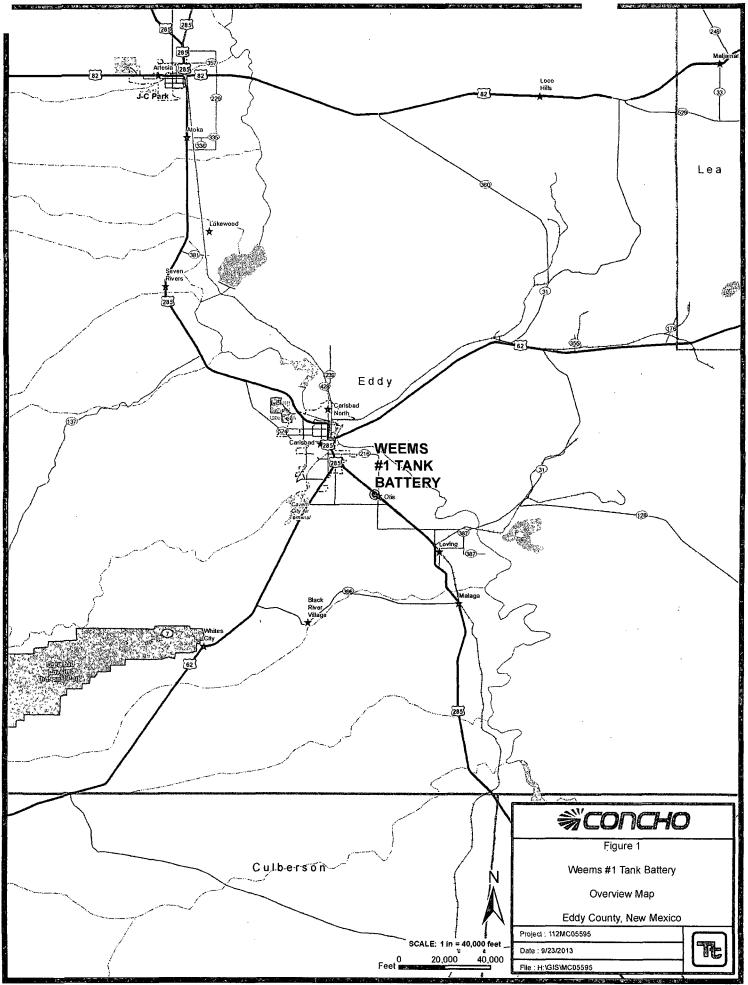
Remedial Activities and Conclusion

COG excavated the impacted material as highlighted (green) in Table 1 and shown on Figure 4. The areas of AH-1 and AH-3 were excavated to a depth of approximately 1.0' below surface to remove the hydrocarbon impacted soil above the RRAL.

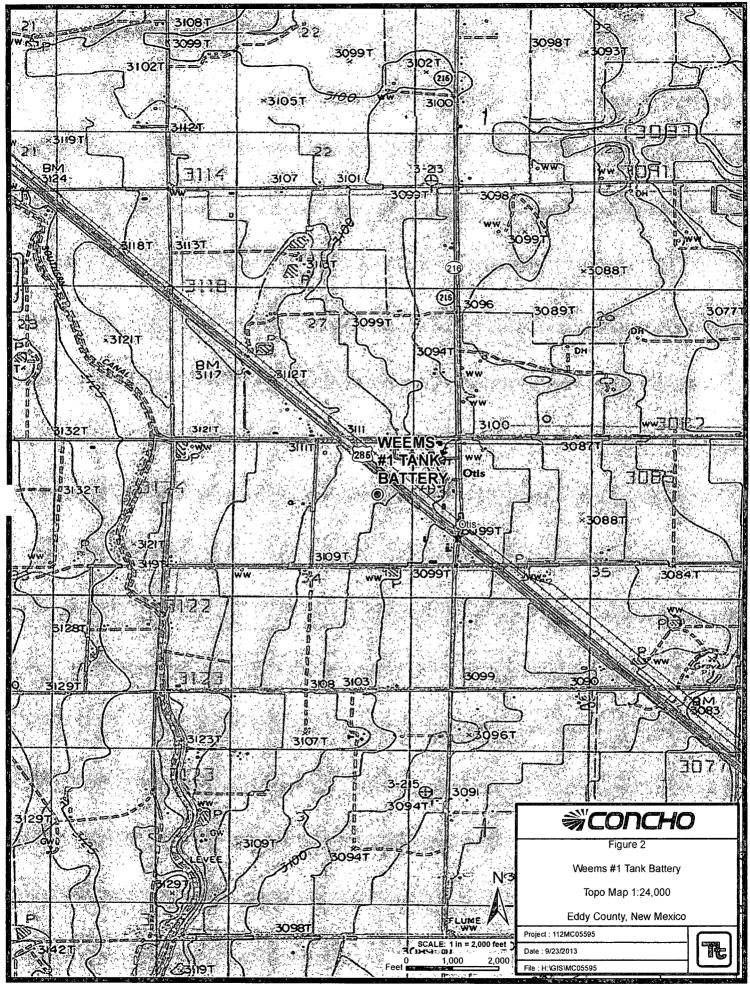
In the area of AH-2, a backhoe trench was installed to vertically define the hydrocarbon extents. Based on the results, the area was excavated to approximately 8.0' below surface where the hydrocarbon impact decreased below regulatory levels. Approximately 0000 cubic yards of soil was transported to proper disposal and the excavation was backfilled with clean soil to grade.

COG proposes to close the site due to the remedial actions taken following the approved work plan. The final C-141 is included in Appendix A. If you have any questions or comments concerning the assessment or the proposed remediation activities for this site, please call me at (432) 682-4559.

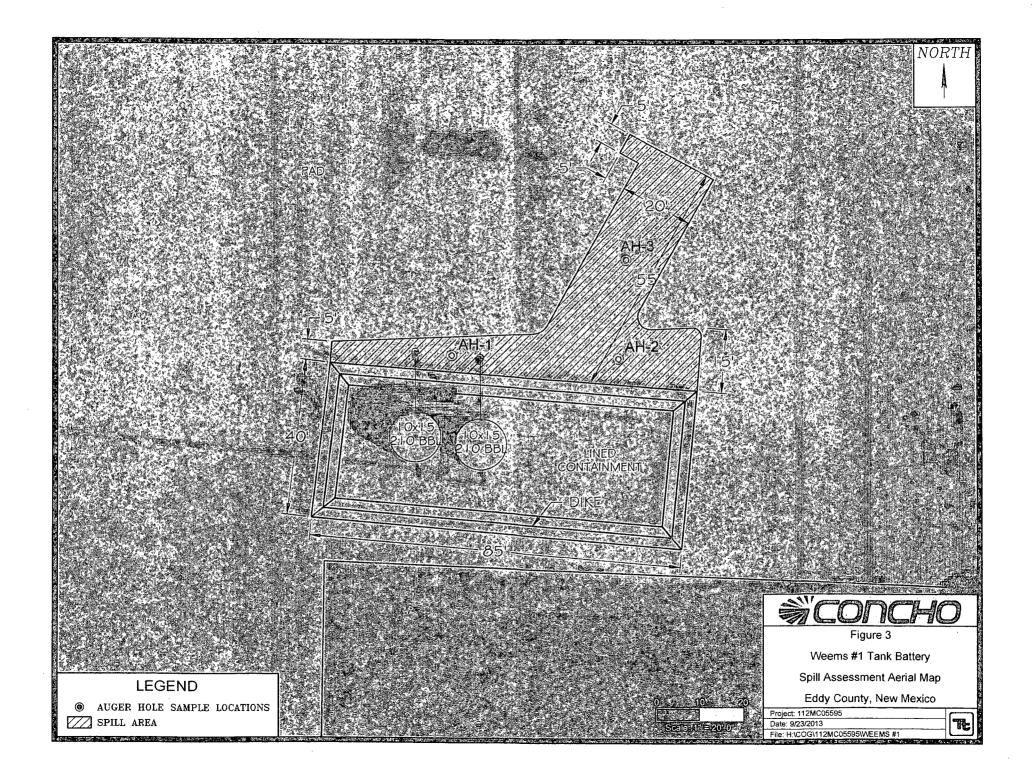
Respectfully submitted, TETRA TECH

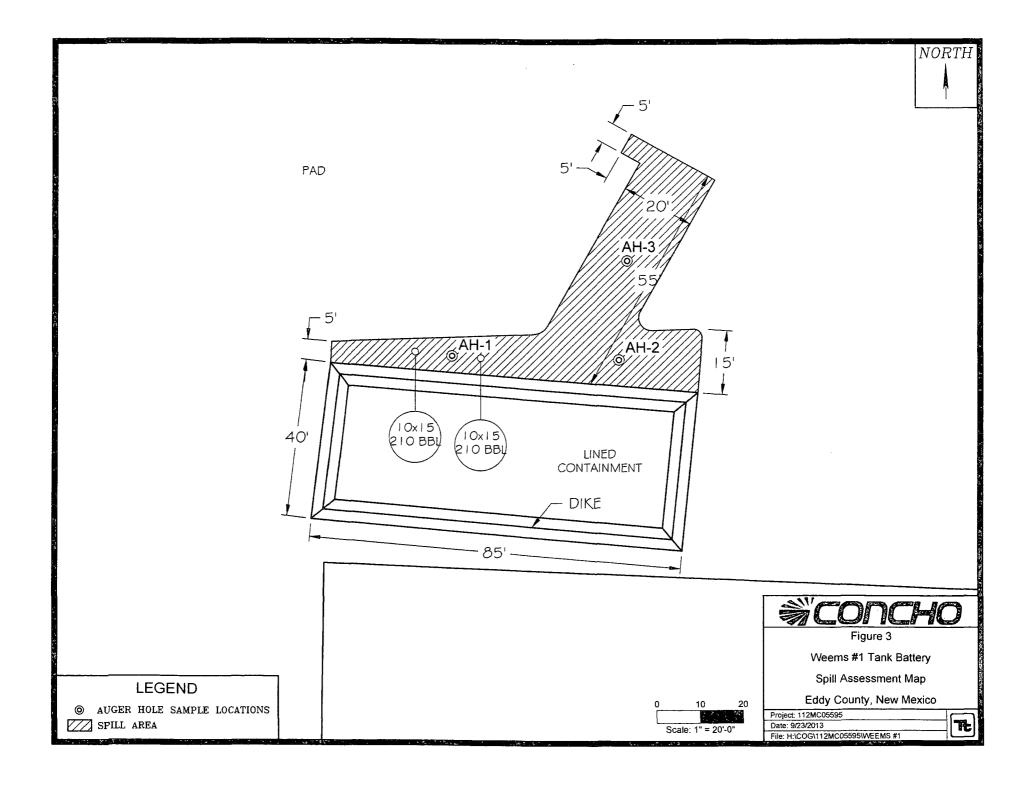

no Vin

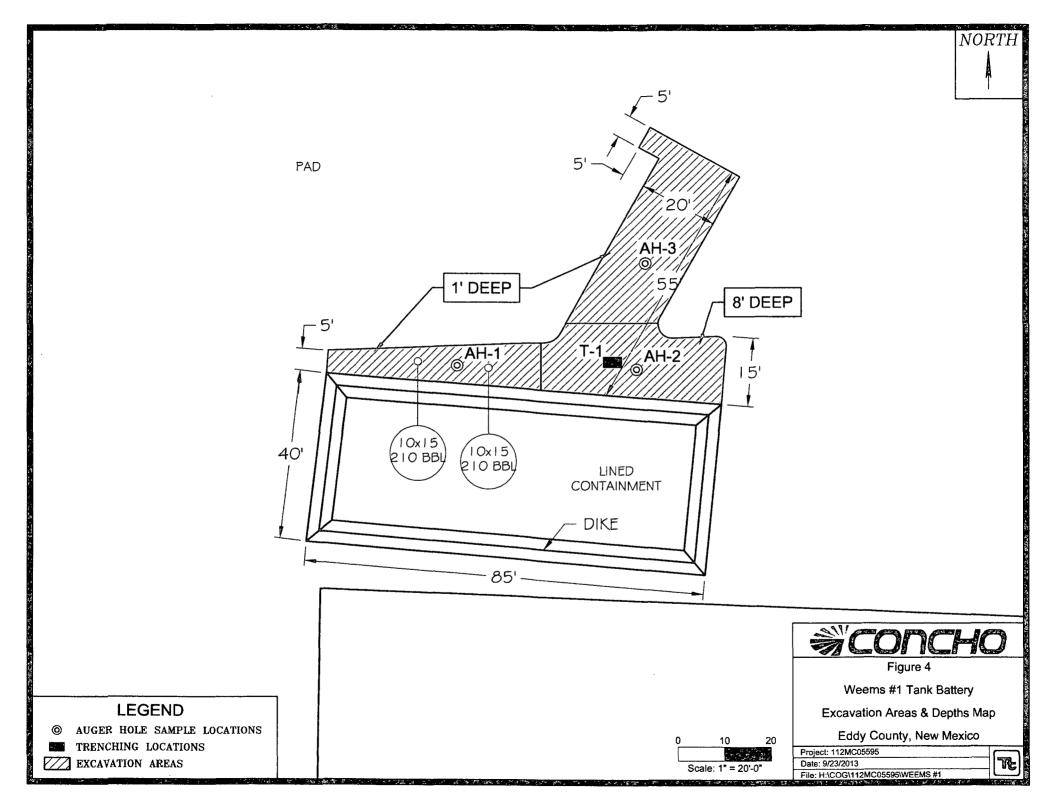
Marcus Kujawski Staff Scientist


cc: Robert McNeill - COG

ŧ


Figures




Drawn By: Alan McClanahan

Drawn By: Alan McClanaban

Tables

Table 1 COG Operating LLC. Weems #1 Tank Battery Eddy County, New Mexico

Comercia ID	Commis Data	BEB	Excavation Bottom	Soil	Status	1	PH (mg/k	g)	Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Sample Date	Sample Depth (ft)	Depth (ft)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-1	8/14/2013	0-1	0		X	1,650	93:4	1,743	<0:0200	0.294	.2.82	2.61	5.43	<20.0
	11	1-1.5	It	Х		24.7	<50.0	24.7	-	_	-	-		<20.0
	11	2-2 <i>.</i> 5	11	Х		-	-	-	-	-	-	-	-	<20.0
	"	3-3.5	14	х		-	-	-	-	-	-	-	-	98.5
	"	4-4.5	н	Х _.		-	-	-	-	-	-	-	-	73.9
AH-2	8/14/2013	0-1	0		X	2;560	561	3,121	<0.100	<0.100	7.75	37.6	45.4	<20.0
	A	1-1.5			X	3,790	2,140	5,930						<20.0
	11	2-2.5	27550		X	3,740	3,950	7,690						217
	0	3-3.5			× X 🐔	6,360	6,500	12,860		建建				340
	11	4-4.5			X	6,970	8,670	15,640						271
	n	5-5.5		C.	X	6,530	8,780	15,310						212
Trench	14	6-6.5 ≥ ⁱ	$\{ \begin{matrix} \mathbf{u} \\ \mathbf{v} \\ v$		X	10,300	12,200	22,500						98.7
T-1	11/11/2013	sex 0 ;	4		X	6840	8,670	15,510	<5.00	57.5	-29.4	349	436	
	n	2	6		⊂ X ⊂	444.	1,510	1,954	<0.500	1.03 <	2.25	15.2	18.4	
		4	8	Х		<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	-
	11	6	10	Х		<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	-
	R	8	12	Х		<10.0	<10.0	<10.0	<0.050	0.084	<0.050	<0.150	<0.300	-
	u	10	14	Х		<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	-
AH-3	8/14/2013	0-1	0		X	3130	412 -	3,542	<0.400	<0.400	8.69	24.2	32.9	<20.0
	0	1-1.5	11	X	The first of the second statement of the second	24.7	<50.0	24.7	-	-	-	-	-	24.7
	a)	2-2.5	11	Х		-	-	-		-	-	-	-	59.2
		3-3.5	11	x		-	-	-	-	· -	-	-	-	187
	18	4-4.5	u	Х		-	-	-	-	-		-	-	197
	п	5-5.5	U	Х		-	-	-	-	-	-	-	-	78.9
	n	6-6.5	11	Х		-	-	-	_	-	-	-	-	143

Trench

(-)

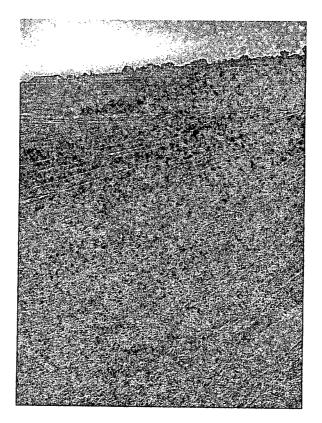

Trench to Define

Not Analyzed

Excavation Depths


Photos

COG Operating LLC Weems #1 Tank Battery Eddy County, New Mexico


TETRA TECH

View East – AH-2 area at 4.0'

View East - T-1 in the area of AH-2 at 10.0'

COG Operating LLC Weems #1 Tank Battery Eddy County, New Mexico

View Southeast – AH-2 and AH-3 areas backfilled

Appendix A

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

			Rele		the transformer state	$\frac{1}{1}$ and Co	orrective A	ction		ningen en skal i sjolfenske oper kommenser		anna ann an an an an ann an an an an an
			11010			OPERA7		001011		al Report	\boxtimes	Final Report
Name of Co	mpany C	COG Operat	ing LLC	····			bert McNeill			<u></u>	<u> </u>	
		ois Ave, Mic					No. (432) 685-4	332	· · · · · · · · · · · · · · · · · · ·			
Facility Nar						Facility Type Tank Battery						
		· · · · · · · · · · · · · · · · · · ·				· · · · ·	· · · · ·	.*			20.01	E 1525790
Surface Ow	ner: State			Mineral C			····		Lease	NO. (AP1#)	30-01	5-1535789
						N OF REI	r					
Unit Letter B	Section 34	Township 22S	Range 27E	Feet from the	North	/South Line	Feet from the	East/V	Vest Line	County		
				Latitude 32.35		Ū.	le 104.17399° V	V				
				NAT	URE	OF RELI						
Type of Rele	ase: Oil and	Produced Wa	nter			1	Release 154 bbls s Produced Water	1		Recovered (ced Water) bbls o	f Oil, 0 bbls
Source of Re	Source of Release: One inch nipple					Date and H 7/09/2013	lour of Occurrence	e		Hour of Dis 3 9:00 am	covery	
Was Immediate Notice Given?					equired	If YES, To	Whom? cher - NMOCD	4				
By Whom? N	fichelle Mu						lour 7/11/2013 8	:40 am				
Was a Water		hed?		····			blume Impacting t		rcourse.			
🗌 Yes 🖾 No						N/A						
If a Watercou	rse was Imp	pacted, Descri	be Fully.*									
		em and Remec			d the nip	ple with a new	w one to prevent a	a reoccu	B 2 B 7	MAR 05	2014	
Describe Are	Affected a	and Cleanup A	ction Tak	en.*								
is located on	the pad and hauled away	the adjacent p y for proper d	oasture. Te	tra Tech inspecte	ed site ar	id collected si	one inch nipple t amples to define s e with clean back	pills ext	ent. Soil t	hat exceeded	I RRAI	was
regulations al public health should their c or the environ	l operators a or the envir perations ha ment. In ag	are required to onment. The ave failed to a	o report an acceptanc dequately CD accept	d/or file certain re e of a C-141 repo investigate and re	elease no ort by the emediate	otifications ar NMOCD ma contamination	knowledge and un ad perform correct arked as "Final Re on that pose a thre e the operator of r	tive acti eport" de eat to gre	ons for rel bes not rel bund wate	eases which ieve the ope r, surface wa	may er rator of ater, hu	idanger liability man health
		1, SF	\prec				OIL CONS	SERV	ATION	DIVISIO	DN	
Signature: Printed Name	: Ike Tavara		Hent	fu col	$\overline{)}$	Approved by District Supervisor:						
Title: Project			/			Approval Dat	e:	E	Expiration	Date:		
E-mail Addre	ss: Ike.Tava	arez@TetraTe	ch.com			Conditions of	Approval:			Attached		
Date: 11/19/2 Attach Addit		ts If Necessa		ne: (432) 682-455	59							

.

 \sim

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification	on and Corrective Act	tion	Nan (2012)
	OPERATOR	🛛 Initia	l Report 🛛 Final Repor
Name of Company COG OPERATING LLC	Contact Pat I	Ellis	
Address 600 West Illinois Avenue, Midland, TX 79701	Telephone No. 432-230	0-0077	
Facility Name Weems #001	Facility Type Tank B	Battery	
Surface Owner State Mineral Owner	ſ	Lease N	lo. (AP1#) 30-01535789
LOCATIO	ON OF RELEASE		
	·		
Unit Letter Section Township Range Feet from the Nor B 34 22S 27E	th/South Line Feet from the E	East/West Line	County EDDY
Latitude 32.35320	Longitude 104.17399		
	E OF RELEASE		
Type of Release Oil and produced water	Volume of Release 154bbls of		
Severa of Bolesce One indusingly	I6bbls of produced wa		Obbls of produced water
Source of Release One inch nipple	Date and Hour of Occurrence 07-09-2013		Hour of Discovery 3 9:00am
Was Immediate Notice Given? Xes No Not Require	d If YES, To Whom? d Mike	e Bratcher - NM	OCD
By Whom? Michelle Mullins	Date and Hour 07-11-2013 8		
Was a Watercourse Reached?	If YES, Volume Impacting the	Watercourse.	
If a Watercourse was Impacted, Describe Fully.*		····	
Describe Cause of Problem and Remedial Action Taken.*			
A one inch nipple failed on drain line due to corrosion. Replaced one in	ch nipple with a new one to prevent	a reoccurrence.	
Describe Area Affected and Cleanup Action Taken.*			<u>, an </u>
Initially an estimated 154bbls of oil and 16bbls of produced water was r	alward due to a new inch simple that	• 6-11-11 W	
The spill area is located on the pad and the adjacent pasture. Tetra Tech release and we will present a work plan to the NMOCD for approval pri-	will sample the spill site area to deli	ineate any possil	se contamination from the
I hereby certify that the information given above is true and complete to regulations all operators are required to report and/or file certain release public health or the environment. The acceptance of a C-141 report by should their operations have failed to adequately investigate and remedi or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations.	notifications and perform corrective the NMOCD marked as "Final Repo ate contamination that pose a threat	e actions for rele ort" does not relie to ground water,	ases which may endanger eve the operator of liability , surface water, human health
	OIL CONSE	RVATION	DIVISION
Signature: Rolat Mark			
Printed Name: Robert Grubbs Jr	Approved by District Supervisor:		
Title: Senior Environmental Coordinator	Approval Date:	Expiration D	Date:
E-mail Address: rgrubbs@concho.com	Conditions of Approval:		Attached
Date: 07-12-2013 Phone: 432-661-6601			

* Attach Additional Sheets If Necessary

.

.

.

Appendix B

Water Well Data Average Depth to Groundwater (ft) COG - Weems #1 Eddy County, New Mexico

	21 So	uth	26		
6	5 65	4	3 140	2 120	1 89
7 66 ^{Arte}	8 Sinado	9 150	10 115	11	12
18 150	17 174	16 139	15 93	14	13 76
240	178 35	65	65		170
19 254	20	21 70	22 55	23 36	24 50
	210			34	43
30	29 220	28 7 5	27	26 40	25 41
115	ŀ	190			40
31 200	32	33 45	34	35 90	36 23
	164	120			26

	22 South			26 East			
6	5	4 68	3 140	2 105	1 32		
			135		41		
7	8.	9 73	10 95	11 60	12 32		
				60	45		
18	17	16	15	14 68	13 45		
				30	60		
19	20 180	21	22	23 78	24 85		
					108		
30	29	28 140	27 96	26 71	25 96		
31 105	32	33	34	35 1 50	36 115		

	23 Sc	outh	26		
6	5	4	3 220	2	1
7	8 267	9	10	11	12
18	17	16	15	14	13
19	20	21	22 224	23	24
30 99	29	28	27	26	25
31	32 223	33	34	35	36

	21 So	outh	27	East	
6 34	5	4	3	2	1 12
175	350				186
7	8	981	10	11	12
		78		1	
18	17	16	15	14	13
19 30	20	21 Site	22	23	24
3627		75			
30 15	29 11	28 40	27	26	25 12
16	31 30	46		70 32	
31 15	32 15	33	34	35	36
17	16			30	

	22 So	outh	27		
6	585	4 46	3	2	1 40
7	8 22 40	9 40 40	10 11 40	11	12
18 84	17 28 29	16 70	15 15 20	14	13
19	20 52 53	21 60 55	22 34 100	23 45	24 15
30 99 100	29 85 90	28 66 84	27 47 112	26 38 40	25 40
31 112 145	32 81 170	33 66 1 50	34 53. 80Site,		36 28 57

	21 Sc	outh _	28	East	
6	5	4 80	3	2	1
7	8	9	10	11	12
189 19	17 37	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	22 So	outh _	28	28 East		
6	5	4 131	3	2	1	
7	8	9	10	11	12	
18	17	16	15	14	13	
19	20	21	22	23	24	
30 12 10	29	28	27	26	25	
31 42	32 35	33	34	35	36	

		23 Sc	outh	27		
Carls	6 bad	583	4 90	3	2 70	1 17
	7	8	9	10	11	12 40
	18	17	16	15	14 76	13
	19	20	21	22	23 23	24 90
	30	29 103	28	27	26	25
	31	32	33	34	35	36

	23 Sc	outh	28	East	
6 1 6.5	5	4	3	2	1
7 26.5	8	9	10	11 30.5	12 20
18 63	17	16	15 14	14	13 12 33
19	20 56	21	22 39	23	24 36
30	29 28.7	28 oving	27	26	25 44
31	32	33	34	35	36

New Mexico State Engineers Well Reports

USGS Well Reports

Geology and Groundwater Conditions in Southern Eddy, County, NM

Appendix C

ζ

Summary Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX 79705

Report Date:	September	3,	2013
--------------	-----------	----	------

Work Order: 13082238

253 263 263 263 263 263 263 263 263 263

Project Location:Eddy Co., NMProject Name:COG/Weems #1 TBProject Number:112MC05595

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
339579	AH-1 ()-1'	soil	2013-08-14	00:00	2013-08-22
339580	AH-1 1-1.5'	soil	2013-08-14	00:00	2013-08-22
339581	AH-1 2-2.5'	soil	2013-08-14	00:00	2013-08-22
339582	AH-1 3-3.5'	soil	2013-08-14	00:00	2013-08-22
339583	AH-1 4-4.5'	soil	2013-08-14	00:00	2013-08-22
339584	AH-2 0-1'	soil	2013-08-14	00:00	2013-08-22
339585	AH-2 1-1.5'	soil	2013-08-14	00:00	2013-08-22
339586	AH-2 2-2.5'	soil	2013-08-14	00:00	2013-08-22
339587	AH-2 3-3.5'	soil	2013-08-14	00:00	2013-08-22
339588	AH-2 4-4.5'	soil	2013-08-14	00:00	2013-08-22
339589	AH-2 5-5.5'	soil	2013-08-14	00:00	2013-08-22
339590	AH-2 6-6.5'	soil	2013-08-14	00:00	2013-08-22
339591	AH-3 0-1'	soil	2013-08-14	00:00	2013-08-22
339592	AH-3 1-1.5'	soil	2013-08-14	00:00	2013-08-22
339593	AH-3 2-2.5'	soil	2013-08-14	00:00	2013-08-22
339594	AH-3 3-3.5'	soil	2013-08-14	00:00	2013-08-22
339595	AH-3 4-4.5'	soil	2013-08-14	00:00	2013-08-22
339596	AH-3 5-5.5'	soil	2013-08-14	00:00	2013-08-22
339597	AH-3 6-6.5'	soil	2013-08-14	00:00	2013-08-22

	BTEX			TPH DRO - NEW	TPH GRO	
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
339579 - AH-1 0-1'	< 0.0200	0.294	2.82	2.61	93.4	1650 Qs
339580 - AH-1 1-1.5'					<50.0	24.7 Qs
339584 - AH-2 0-1'	< 0.100	< 0.100	7.75	37.6	561	2560 Q∞
339585 - AH-2 1-1.5'					2140 ¹	3790 Qs

continued ...

¹Sample run out of hold time.

... continued

]	BTEX	1	TPH DRO - NEW	TPH GRO
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
339586 - AH-2 2-2.5'					3950 ²	3740 Je,Qs
339587 - AH-2 3-3.5'			•		6500 Jo	6360 Qs
339588 - AH-2 4-4.5'					8670 Je	6970 Qs
339589 - AH-2 5-5.5'					8780 Je	6530 Qs
339590 - AH-2 6-6.5'					12200 Je	10300 Je,Q
339591 - AH-3 0-1'	< 0.400	< 0.400	8.69	24.2	412	3130 Qs
339592 - AH-3 1-1.5'					<50.0	24.7 Qs

Sample: 339579 - AH-1 0-1'

Param	Flag	Result	Units	RL
Chloride		<20.0	mg/Kg	4

Sample: 339580 - AH-1 1-1.5'

Param	Flag	Result	Units	RL
Chloride		<20.0	mg/Kg	4

Sample: 339581 - AH-1 2-2.5'

Param	Flag	Result	Units	RL
Chloride		<20.0	mg/Kg	4

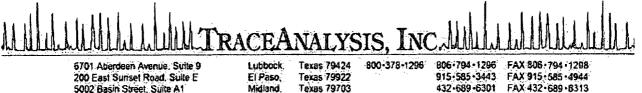
Sample: 339582 - AH-1 3-3.5'

Param	Flag	Result	Units	RL
Chloride		98.5	mg/Kg	4

Sample: 339583 - AH-1 4-4.5'

Param	Flag	Result	Units	RL
Chloride		73.9	mg/Kg	4

Sample: 339584 - AH-2 0-1'


continued ...

²Sample run out of hold time.

Report Date: Sept	ember 3, 2013	Work Order: 13082238	Page	Number: 3 of 4	
sample 339584 con	tinued				
Param	Flag	Result	Units	RL	
Param	Flag	Result	Units	RL	
Chloride		<20.0	mg/Kg	4	
Sample: 339585	- AH-2 1-1.5'				
Param	Flag	Result	Units	RL	
Chloride		<20.0	mg/Kg	4	
Sample: 339586	- AH-2 2-2.5'				
Param	Flag	Result	Units	RL	
Chloride		217	mg/Kg	4	
Sample: 339587 Param Chloride	- AH-2 3-3.5' Flag	Result 340	Units mg/Kg	RL 4	
Sample: 339588	- AH-2 4-4.5'				
		Result	Units	RL	
Param	- AH-2 4-4.5' Flag	Result 271	Units mg/Kg	RL 4	
Sample: 339588 Param Chloride Sample: 339589	Flag				
Param Chloride Sample: 339589	Flag - AH-2 5-5.5'	271	mg/Kg	4	
Param Chloride Sample: 339589	Flag				
Param Chloride Sample: 339589 Param	Flag - AH-2 5-5.5' Flag	271 Result	mg/Kg Units	4 RL	
Param Chloride Sample: 339589 Param Chloride	Flag - AH-2 5-5.5' Flag	271 Result	mg/Kg Units	4 RL	

Sample: 339591 - AH-3 0-1'

Report Date: September 3, 2013		Work Order: 13082238	Page Number: 4 of 4	
Param	Flag	\mathbf{Result}	Units	RL
Chloride		<20.0	mg/Kg	4
Sample: 339592	- AH-3 1-1.5'			
Param	Flag	Result	Units	RL
Chloride		24.7	nıg/Kg	4
Sample: 339593	- AH-3 2-2.5'			
Param	Flag	Result	Units	RL
Chloride		59.2	mg/Kg	4
Sample: 339594	- AH-3 3-3.5'			
Param	Flag	Result	Units	RL
Chloride		187	nıg/Kg	4
Sample: 339595	- AH-3 4-4.5'			
Param	Flag	Result	Units	RL
Chloride	······································	197	mg/Kg	4
Sample: 339596	- AH-3 5-5.5'			
Param	Flag	Result	Units	RL
Chloride		78.9	mg/Kg	4
Sample: 339597	- AH-3 6-6.5'			
Sample: 339597 Param	- AH-3 6-6.5' Flag	Result	Units	RL

5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100

Midland. Texas 79703 Texas 75006 Carroliton. E-Mail: lab@traceanalysis.com

432-689-6301 972-242-7750 WEB: www.traceanalysis.com

Certifications

NELAP DoD LELAP DBE Kansas Oklahoma ISO 17025 WBE HUB NCTRCA

Analytical and Quality Control Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX, 79705

Report Date: September 3, 2013

Work Order: 13082238

Project Location: Eddy Co., NM Project Name: COG/Weems #1 TB Project Number: 112MC05595

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc. Ďate

	ne may near negros o and	• • • •	Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
339579	AH-1 0-1'	soil	2013-08-14	00:00	2013-08-22
339580	AH-1 1-1.5'	soil	2013-08-14	00:00	2013-08-22
339581	AH-1 2-2.5'	soil	2013-08-14	00:00	2013-08-22
339582	AH-1 3-3.5'	soil	2013-08-14	00:00	2013-08-22
339583	AH-1 4-4.5'	soil	2013-08-14	00:00	2013-08-22
339584	AH-2 0-1'	soil	2013-08-14	00:00	2013-08-22
339585	AH-2 1-1.5'	soil	2013-08-14	00:00	2013-08-22
339586	AH-2 2-2.5'	soil	2013-08-14	00:00	2013-08-22
339587	AH-2 3-3.5'	soil	2013-08-14	00:00	2013-08-22
339588	AH-2 4-4.5'	soil	2013-08-14	00:00	2013-08-22
339589	AH-2 5-5.5'	soil	2013 - 08 - 14	00:00	2013-08-22
339590	AH-2 6-6.5'	soil	2013-08-14	00:00	2013-08-22
339591	AH-3 0-1'	soil	2013-08-14	00:00	2013-08-22
339592	AH-3 1-1.5'	soil	2013-08-14	00:00	2013-08-22
339593	AH-3 2-2.5'	soil	2013-08-14	00:00	2013-08-22
339594	AH-3 3-3.5'	soil	2013-08-14	00:00	2013-08-22
339595	AH-3 4-4.5'	soil	2013-08-14	00:00	2013-08-22
339596	AH-3 5-5.5'	soil	2013-08-14	00:00	2013-08-22

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
339597	AH-3 6-6.5'	soil	2013-08-14	00:00	2013-08-22

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 39 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Miebael april

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Report Contents

Case Narrative	5
Analytical Report	6
	6
Sample 339580 (AH-1 1-1.5')	7
	8
	8
Sample 339583 (AH-1 4-4.5')	9
Sample 339584 (AH-2 0-1')	9
Sample 339585 (AH-2 1-1.5')	0
Sample 339586 (AH-2 2-2.5')	1
Sample 339587 (AH-2 3-3.5 ²)	2
Sample 339588 (AH-2 4-4.5')	3
Sample 339589 (AH-2 5-5.5')	4
Sample 339590 (AH-2 6-6.5')	5
Sample 339591 (AH-3 0-1')	3
Sample 339592 (AH-3 1-1.5') 15	3
Sample 339593 (AH-3 2-2.5')	9
Sample 339594 (AH-3 3-3.5'))
Sample 339595 (AH-3 4-4.5'))
Sample 339596 (AH-3 5-5.5'))
Sample 339597 (AH-3 6-6.5'))
Method Blanks 22	
QC Batch 104431 - Method Blank (1) 2: QC Batch 104452 - Method Blank (1) 2:	
\mathbf{v}	-
QC Batch 104453 - Method Blank (1) 2: QC Batch 104454 - Method Blank (1) 2:	
-	
QC Batch 104527 - Method Blank (1) 22 QC Batch 104535 - Method Blank (1) 22	-
QC Batch 104535 - Method Blank (1)	
QC Batch 104635 - Method Blank (1) 22 QC Batch 104635 - Method Blank (1) 23	
QC Datch 104055 - Method Diank (1)	,
Laboratory Control Spikes 24	ł
QC Batch 104431 - LCS (1)	ł
QC Batch 104452 - LCS (1)	Ĺ
QC Batch 104453 - LCS (1)	Ł
QC Batch 104454 - LCS (1))
QC Batch 104527 - LCS (1)	;
QC Batch 104535 - LCS (1)	;
QC Batch 104631 - LCS (1)	;
QC Batch 104635 - LCS (1)	,
QC Batch 104431 - MS (1)	,
QC Batch 104452 - MS (1)	3
QC Batch 104453 - MS (1)	;
QC Batch 104454 - MS (1))

Page 3 of 39

	QC Batch	104527 -	MS (1).																													29
	QC Batch	104535 -	MS (1	L) .																													-30
	QC Batch	ı 104631 -	MS (1	Ĺ).																													30
	QC Batch	104635 -	MS (1	Ú,																													31
	•		`	<i>.</i>																													
Ca	libration	Standar	ds																														32
	QC Batch	ı 104431 [°] -	· CCV	(1)					•															•					•••				32
	QC Batch	ı 104431 -	· CCV	(2)																													32
	QC Batch	104431 -	CCV	(3)									·																				32
	QC Batch	104431 -	CCV	(4)																													32
	QC Batch	104452 -	CCV	(1)																													32
	QC Batch	104452 -	CCV	(2)																													33
	QC Batch	104453 -	CCV	(1)																													33
	QC Batch	104453 -	· CCV	(2)																													33
	QC Batch	104454 -	CCV	(1)																													33
	QC Batch	104454 -	CCV	(2)																													34
	QC Batch	104527 -	CCV	(1)																													34
	QC Batch	104527 -	CCV	(2)																													34
	QC Batch			• •																					·								34
	QC Batch			• •																													35
	QC Batch			• •																													35
	QC Batch	104631 -	CCV	(1)																													35
	QC Batch			• •																													35
	QC Batch			• •																													36
	QC Batch			• •																													36
	QC Batch			· ·																													36
	QC Batch			• •																		• •										•	36
	Co Duitin	101000	001	(2)	• •	• •	•••	•••	• •	•	• •	•••	• •	•••	••	• •	• •	• •	•••	•	•••	• •	• •	·	•••	•	• •	•	•••	• •	•	·	00
Ap	pendix																																38
	Report De	efinitions																															38
	Laborator																																38
	Standard	•																															38
	Result Co																																38
	Attachme																																39

Page 4 of 39

•

Case Narrative

Samples for project COG/Weems #1 TB were received by TraceAnalysis, Inc. on 2013-08-22 and assigned to work order 13082238. Samples for work order 13082238 were received intact at a temperature of 5.2 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	$\rm QC$	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	88565	2013-08-28 at 12:00	104527	2013-08-29 at 09:20
Chloride (Titration)	SM 4500-Cl B	88453	2013-08-26 at 10:05	104452	2013-08-27 at 16:08
Chloride (Titration)	SM 4500-Cl B	88453	2013-08-26 at 10:05	104453	2013-08-27 at 16:24
Chloride (Titration)	SM 4500-Cl B	88453	2013-08-26 at 10:05	104454	2013-08-27 at 16:32
TPH DRO - NEW	S 8015 D	88492	2013-08-26 at 10:32	104431	2013-08-27 at 10:33
TPH DRO - NEW	S 8015 D	88645	2013-08-30 at 14:00	104631	2013-09-03 at 09:27
TPH DRO - NEW	S 8015 D	88651	2013-08-30 at 14:00	104635	2013-08-30 at 10:35
TPH GRO	S 8015 D	88572	2013-08-28 at 12:00	104535	2013-08-29 at 11:13

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 13082238 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: September 3, 2013 112MC05595 Work Order: 13082238 COG/Weems #1 TB Page Number: 6 of 39 Eddy Co., NM

Analytical Report

Sample: 339579 - AH-1 0-1'

Laboratory: Midland Analysis: BTEX QC Batch: 104527 Prep Batch: 88565		D	Date Ana	l Method: lyzed: reparation:	S 8021E 2013-08 : 2013-08	-29		Prep Method Analyzed By Prepared By:	KC
					RL				
Parameter	Flag		Cert		Result	Units		Dilution	\mathbf{RL}
Benzene	υ		1	<	0.0200	mg/Kg		1	0.0200
Toluene			1		0.294	mg/Kg		1	0.0200
Ethylbenzene			1		2.82	mg/Kg		1	0.0200
Xylene			1		2.61	mg/Kg		1	0.0200
							Spike	Percent	Recovery
Surrogate	H	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)				2.31	mg/Kg	1	2.00	116	70 - 130
4-Bromofluorobenzene (4-BFB)				1.83	mg/Kg	1	2.00	92	70 - 130

Sample: 339579 - AH-1 0-1'

Laboratory:	Midland					
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	104452	Date An	alyzed:	2013-08-27	Analyzed By:	AR
Prep Batch:	88453	Sample .	Preparation:	2013-08-26	Prepared By:	\mathbf{AR}
			RL			
Parameter	Flag	Cert	Result	\mathbf{Units}	Dilution	\mathbf{RL}
Chloride	υ		<20.0	mg/Kg	5	4.00

Sample: 339579 - AH-1 0-1'

Laboratory:	Midland		1			
Analysis:	TPH DRO - NEW	Anal	ytical Method:	S 8015 D	Prep Method:	N/A
QC Batch:	104431	Date	Analyzed:	2013-08-27	Analyzed By:	CW
Prep Batch:	88492	Samj	ple Preparation:	2013-08-26	Prepared By:	CW
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
DRO	В	1	93.4	mg/Kg	1	50.0

Report Date: Sep 112MC05595	otember 3, 20			Work Ord COG/We	Page Number: 7 of 39 Eddy Co., NM			
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane			105	mg/Kg	1	100	105	76.3 - 192.6

Sample: 339579 - AH-1 0-1'

Laboratory: Midland Analysis: TPH GRO QC Batch: 104535 Prep Batch: 88572		Da	te Anal	Method: yzed: eparation:	S 8015 1 2013-08 2013-08	-29		Prep Metho Analyzed By Prepared By	7: KC
					RL				
Parameter	Flag		Cert	Re	sult	Units	3	Dilution	RL
GRO	Qs		1	1	650	mg/Kg	S	20	4.00
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)	l Q#r	Qsr		1.67	mg/Kg	20	40.0	4	70 - 130
4-Bromofluorobenzene (4-BFB)				44.2	mg/Kg	20	40.0	110	70 - 130

Sample: 339580 - AH-1 1-1.5'

Laboratory:	Midland						
Analysis:	Chloride (Titration	n)	Analytics	d Method:	SM 4500-Cl B	Prep Method	: N/A
QC Batch:	104453		Date Ana	lyzed:	2013-08-27	Analyzed By:	AR
Prep Batch:	88453	453		reparation:	2013-08-26	Prepared By:	AR
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	\mathbf{RL}
Chloride		U		<20.0	mg/Kg	5	4.00

Sample: 339580 - AH-1 1-1.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Analysis: TPH DRO - NEW QC Batch: 104635		Date A	cal Method: nalyzed: Preparation:	S 8015 D 2013-08-30 2013-08-30	Prep Method: Analyzed By: Prepared By:	N/A CW CW
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
DRO		Jb	1	<50.0	mg/Kg	1	50.0

Report Date: September 3, 2013 112MC05595				Work Ord COG/We	Page Number: 8 of 39 Eddy Co., NM			
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane			115	mg/Kg	1	100	115	76.3 - 192.6

Sample: 339580 - AH-1 1-1.5'

Laboratory: Midland Analysis: TPH GRO QC Batch: 104535 Prep Batch: 88572			Date An	al Method alyzed: Preparatio	2013-0	8-29		Prep Metho Analyzed By Prepared By	y: KC
					\mathbf{RL}				
Parameter	Flag		Cert	I	Result	Uni	ts	Dilution	RL
GRO	Q*		1		24.7	mg/K	g	1	4.00
							Spike	Percent	Recovery
Surrogate		\mathbf{F} lag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)				1.50	mg/Kg	1	2.00	75	70 - 130
4-Bromofluorobenzene (4-BFE	3)			1.69	mg/Kg	1	2.00	84	70 - 130

Sample: 339581 - AH-1 2-2.5'

Laboratory:	Midland						
Analysis:	Chloride (Titra	ution)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	104453		Date An	alyzed:	2013-08-27	Analyzed By:	AR
Prep Batch:	88453		Sample I	Preparation:	2013-08-26	Prepared By:	AR
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	\mathbf{RL}
Chloride		U		<20.0	mg/Kg	5	4.00

Sample: 339582 - AH-1 3-3.5'

Prep Batch:	88453	Sample Preparation:	2013-08-26	Prepared By:	AR
QC Batch:	104453	Date Analyzed:	2013-08-27	Analyzed By:	AR.
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland				

continued ...

112MC05595	September 3, 201;	3		Work Order: 1 COG/Weems		Page Number: 9 of 39 Eddy Co., NM			
sample 33958.	2 continued								
				RL	J				
Parameter		Flag	Cert	Result	; Unit	s D	ilution	R.L	
				RI					
Parameter		Flag	Cert	Result		s Di	ilution	\mathbf{RL}	
Chloride		¥		98.5	mg/K	g	5	4.00	
Sample: 339 Laboratory:	9583 - AH-1 4-4. Midland	5'							
Analysis:	Chloride (Titratio	n)		tical Method:	SM 4500-Cl B 2013-08-27		Prep Method: N/A		
QC Batch:	104453			Analyzed:	Analyzed By: AR				
Prep Batch:	88453		Sample	e Preparation		Prepared By: AR			
				RL	,				
Parameter		Flag	Cert	RL Result		s Di	ilution	RL	
Parameter Chloride		Flag	Cert		; Unit		ilution 5	RL 4.00	
Chloride Sample: 339 Laboratory: Analysis: QC Batch:	9584 - AH-2 0-1' Midland BTEX 104527 88565	Flag	Cert Analytical I Date Analy Sample Prej	Result 73.9 Method: S & zed: 20	; Unit	g P A		4.00	
Chloride Sample: 339 Laboratory: Analysis: QC Batch: Prep Batch:	Midland BTEX 104527		Analytical I Date Analy Sample Pre	Result 73.9 Method: S & zed: 20 paration: 20 RI	Unit mg/K 021B 13-08-29 13-08-28	g P A P	5 rep Method: nalyzed By: repared By:	4.00 S 5035 KC KC	
Chloride Sample: 339 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	Midland BTEX 104527	Flag	Analytical I Date Analy Sample Pre Cert	Result 73.9 Method: S & zed: 20 paration: 20 RI Result	Unit mg/K 021B 13-08-29 13-08-28	g P A P Dih	5 rep Method: nalyzed By: repared By: ition	4.00 S 5035 KC KC RL	
Chloride Sample: 339 Laboratory: Analysis: QC Batch: Prep Batch: Parameter Benzene	Midland BTEX 104527	Flag	Analytical I Date Analy Sample Prej Cert	Result 73.9 73.9 Method: S & zed: 20 paration: 20 RI Result <0.100	COLLE COLE CO	g P A P Dih	5 rep Method: nalyzed By: repared By: ition 5	4.00 S 5035 KC KC RL 0.0200	
Chloride Sample: 339 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Benzene Toluene	Midland BTEX 104527	Flag	Analytical I Date Analy Sample Prej Cert	Result 73.9 73.9 Vethod: S & zed: 200 paration: 200 paration: 201 RI Result <0.100 <0.100	COU21B 13-08-29 13-08-28 COU21B 13-08-29 13-08-28 COU21B 13-08-28 COU21B 13-08-28 COU21B 13-08-28 COU21B 13-08-29 13-08-28 COU21B 13-08-29 13-08-29 13-08-28 COU21B 13-08-29 13-08-29 13-08-28 COU21B 13-08-29 13-08-29 13-08-28 COU21B 13-08-29 13-08-29 13-08-28 COU21B 13-08-29 13-08-29 13-08-28 COU21B 13-08-29 13-08-28 COU21B 13-08-29 COU21B 13-08-29 COU21B 13-08-29 COU21B 13-08-29 COU21B 13-08-29 COU21B 13-08-28 COU21B 13-08 COU21B 13-08 COU218	g P A P Dih	5 rep Method: nalyzed By: repared By: ition 5 5	4.00 S 5035 KC KC RL 0.0200 0.0200	
Chloride Sample: 339 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Senzene Foluene Ethylbenzene	Midland BTEX 104527	Flag	Analytical M Date Analy Sample Pre Cert	Result 73.9 73.9 73.9 Zed: 201 paration: 201 RI Result <0.100	Unit mg/K 021B 13-08-29 13-08-28 5 Units 0 mg/Kg 0 mg/Kg 0 mg/Kg	g P A P Dih	5 rep Method: nalyzed By: repared By: ition 5	4.00 S 5035 KC KC RL 0.0200 0.0200 0.0200	
Chloride Sample: 339 Laboratory: Analysis: QC Batch: Prep Batch: Prep Batch: Parameter Benzene Foluene Ethylbenzene Xylene	Midland BTEX 104527	Flag	Analytical I Date Analy Sample Prej Cert	Result 73.9 73.9 73.9 73.9 Yethod: S & zed: 200 paration: 201 RI Result <0.100	Unit mg/K 021B 13-08-29 13-08-28 Units 0 mg/Kg 0 mg/Kg 0 mg/Kg	g P A P Dih Spike	5 rep Method: nalyzed By: repared By: tion 5 5 5 5 5 5 5	4.00 S 5035 KC KC 0.0200 0.0200 0.0200 0.0200 0.0200 Recovery	
Chloride Sample: 339 Laboratory: Analysis: QC Batch:	Midland BTEX 104527 88565	Flag	Analytical M Date Analy Sample Pre Cert	Result 73.9 73.9 73.9 73.9 Method: S & zed: 200 paration: 201 RI Result <0.100	Unit mg/K 021B 13-08-29 13-08-28 5 Units 0 mg/Kg 0 mg/Kg 0 mg/Kg	g P A P Dih Spike	5 rep Method: nalyzed By: repared By: tion 5 5 5 5 5 5	4.00 S 5035 KC KC RL 0.0200 0.0200 0.0200 0.0200	

.

Report Date: September 3, 2013 112MC05595				Work Ord COG/W		Page Number: 10 of 39 Eddy Co., NM			
Sample: 33	9584 - AH-2 0-1'								
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titratic 104453 88453	911)	D	nalytical Met ate Analyzed ample Prepar	: 20	4 4500-Cl B 13-08-27 13-08-26		Prep Me Analyzec Prepared	l By: AR
					\mathbf{RL}				
Parameter		Flag	Cei		Result	Units		Dilution	RL
Chloride		U			<20.0	mg/Kg		5	4.00
Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NEV 104431 88492	I	Analytical Method:S 8015 DDate Analyzed:2013-08-27Sample Preparation:2013-08-26					thod: N/A l By: CW l By: CW	
Parameter		Flag	Cei	rt. I	RL	Units		Dilution	RL
DRO			1		561	mg/Kg		1	50.0
Surrogate	Flag	Cert	Result	Units	Dilutic	Spike on Amour		ercent ecovery	Recovery Limits
n-Tricosane			111	mg/Kg	1	100		111	76.3 - 192.6
Sample: 33 Laboratory: Analysis: QC Batch: Prep Batch:	9584 - AH-2 0-1' Midland TPH GRO 104535 88572		Date .	tical Method Analyzed: e Preparation	2013-0	8-29		Prep Meth Analyzed I Prepared E	By: KC
Parameter		Flag	Cer	t F	RL Result	Units		Dilution	RL
GRO		Qs	1		2560	mg/Kg		20	4.00
Surrogate	/mmm)			ert Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
	ono l'EUTIT								
Trifluorotolu	cobenzene (4-BFB)	O Qsr	Qsr	$1.58 \\ 39.5$	mg/Kg mg/Kg	$\frac{20}{20}$	$\begin{array}{c} 40.0\\ 40.0\end{array}$	$\frac{4}{99}$	70 - 130 70 - 130

	Report Date: September 3, 2013 112MC05595			Work Order: 13082238 COG/Weems #1 TB					
585 - AH-2 1-1	1.5'								
Midland									
	sion)							N/A	
								AR.	
88453		San	ipie Preparat	51011: 1	2013-08-26	Prepare	ed By:	\mathbf{AR}	
				RL					
	Flag	Cert				Dilution		RI	
			<	20.0	mg/Kg	5		4.00	
	Flag		R	RL	Units	Dilution	eu by:	CW RJ	
4		1	2	2140	mg/Kg	1		50.0	
					Spike	Percent	Reco	overy	
Flag	Cert	Result	Units	Dilu	tion Amount	Recovery	Lin	nits	
		159	mg/Kg	1	100	159	76.3 -	192.0	
)	Chloride (Titrat 104453 88453 585 - AH-2 1- Midland TPH DRO - NE 104631 88645	Chloride (Titration) 104453 88453 585 - AH-2 1-1.5' Midland TPH DRO - NEW 104631 88645 Flag 4	Chloride (Titration) Ana 104453 Dat 88453 San Flag Cert 585 - AH-2 1-1.5' Midland TPH DRO - NEW An 104631 Da 88645 San Flag Cert 4 1 Flag Cert Result	Chloride (Titration)Analytical Meth Date Analyzed: Sample Preparat 104453 Date Analyzed: Sample Preparat 88453 Sample PreparatFlagCertRe $585 - AH-2 1-1.5'$ Analytical Meth Date Analyzed: 88645 104631 Date Analyzed: Sample Preparat 88645 Sample Preparat 104631 Date Analyzed: Sample Preparat 104631 Date Analyzed: Sa	Chloride (Titration)Analytical Method:104453Date Analyzed:88453Sample Preparation:88453RLFlagCertResult < 20.0 585 - AH-2 1-1.5'Sample Preparation:MidlandDate Analytical Method:104631Date Analyzed:88645Sample Preparation:RLFlagCertResult412140FlagCert	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Parameter	Flag			R	Result		Units		$\mathbf{R}\mathbf{L}$
GRO	Qs			3790		mg/Kg		20	4.00
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)	5 Qsr	Qsr		1.73 47.4	mg/Kg mg/Kg	20 20	40.0 40.0	4 118	70 - 130 70 - 130

Report Date 112MC05595		3, 201	3			Work Orde COG/Wee					Page Number: 12 of 39 Eddy Co., NM		
Sample: 33	9586 - AH-	-2 2-2.	5'										
Laboratory: Analysis: QC Batch: Prep Batch:	Chloride (Titration) : 104453 h: 88453				Date	ytical Meth Analyzed: de Prepara	2	5M 45 2013-0 2013-0			Prep Me Analyze Prepare	d By:	N/A AR AR
Parameter Chloride	Flag				Cert	Re	RL esult 217		Unit: mg/Kg		Dilution 5		RL 4.00
Sample: 33 Laboratory: Analysis: QC Batch: Prep Batch:	9586 - AH- Midland TPH DRO 104631 88645				Date	lytical Met 9 Analyzed 19 Prepara	:	S 801 2013- 2013-	09-03		Prep Ma Analyze Prepare	d By:	N/A CW CW
Parameter DRO			Flag		Cert		RL esult 3950		Unit mg/K		Dilution 1		RL 50.0
Surrogate n-Tricosane	Q _{FF}	Flag	Cert	Res	sult 210	Units mg/Kg	Dilu 1		Spil Amo 100	unt I	Percent Recovery 210		overy nits 192.6
Sample: 33 Laboratory: Analysis: QC Batch: Prep Batch:	9586 - AH- Midland TPH GRO 104535 88572		5'	Da	ate Ana	l Method: lyzed: 'reparation:		.5 D 08-29 08-28			Prep Metl Analyzed Prepared	By: I	5035 (C (C
Parameter GRO			Flag		Cert		RL sult 5740		Units mg/Kg		Dilution 20		RL 4.00
Surrogate Trifluorotolue 4-Bromofluor		-BFB)	7 Qsr	Flag _{Qsr}	Cert	Result 1.20 41.8	Units mg/K mg/K	g	Dilution 20 20	Spike Amount 40.0 40.0	Percent t Recovery 3 104	<u>/ Ĺi</u> 70	covery mits - 130 - 130

.

i.

	Report Date: September 3, 2013 112MC05595			Work Orde COG/Wee			Page Number: 13 of 39 Eddy Co., NM			
Sample: 33	9587 - A	H-2 3-3	3.5'							
Laboratory: Analysis: QC Batch: Prep Batch:	sis: Chloride (Titration) atch: 104453 Batch: 88453			Date	ytical Metho Analyzed: ple Preparat	2013-0		Prep Method Analyzed By: Prepared By:		N/A AR. AR.
	Flag					RL				
Parameter Chloride			Cert		sult 340	Units mg/Kg	Dilution 5		RL 4.00	
		587 - AH-2 3-3.5'					mg/ ng			4.00
Sample: 33	9587 - A	H-2 3-3	3.5'							
Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DF 104631 88645		W	Dat	dytical Metl e Analyzed: 1ple Prepara	2013-	09-03		4ethod: ed By: ed By:	N/A CW CW
Parameter			Flag	Cert	Ba	RL sult	Units	Dilution		RL
DRO			Je T. TUB	1		500	mg/Kg	1		50.0
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery		overy nits
n-Tricosane	Qar	Qsr	Oert	299	mg/Kg	1	100	299		192.6
Sample: 33	9587 - A	H-2 3-3	3.5'							
Laboratory:	Midland			A 1	13473	0.0015 5			(1 J	0 r00r
Analysis: QC Batch:	TPH GF 104535	(U)		Analytic Date An	al Method:	S 8015 D 2013-08-29	1	Prep Me Analyzec		S 5035 KC
Prep Batch:	104555 88572				Preparation:			Prepared		KC
						RL				
Parameter			Flag	Cert		sult	Units mg/Kg	Dilution 20		RL
GRO	L Tag Us		1	6	20.00				4.00	

Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)	8 Qsr	Qsr		1.16	mg/Kg	20	40.0	3	70 - 130
4-Bromofluorobenzene (4-BFB)				29.3	mg/Kg	20	40.0	73	70 - 130
					0, 0				

Report Date 112MC05595	: September 3, 20	13		Work Order: 13 COG/Weems		Page Number: 14 of 39 Eddy Co., NM		
Sample: 33	9588 - AH-2 4-4	5'						
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titrati 104453 88453	on)	Date	lytical Method: e Analyzed: ple Preparation:	2013-0		Prep M Analyze Prepare	ed By: AR
				RL				
Parameter		Flag	Cert	Result		Units	Dilution	R
1 mmonor				271		mg/Kg	5	4.0
Chloride	9588 - AH-2 4-4							
Chloride	9588 - AH-2 4-4 Midland TPH DRO - NE [*] 104631 88645		Dat	alytical Method: a Analyzed: aple Preparation	S 801 2013-0 : 2013-0	5 D 19-03	Prep M Analyze Prepare	ed By: CW
Chloride Sample: 33 Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NE' 104631	W	Dat San	dytical Method: a Analyzed: aple Preparation RL	2013-0	5 D 19-03 18-30	Analyze Prepare	ed By: CW ed By: CW
Chloride Sample: 33 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	Midland TPH DRO - NE' 104631		Dat	dytical Method: le Analyzed: aple Preparation RL Result	2013-0	5 D)9-03)8-30 Units	Analyze Prepare Dilution	ed By: CW ed By: CW R
Chloride Sample: 33 Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NE' 104631	W	Dat San	dytical Method: a Analyzed: aple Preparation RL	2013-0	5 D 19-03 18-30	Analyze Prepare	ed By: CW ed By: CW
Chloride Sample: 33 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	Midland TPH DRO - NE' 104631	W Flag	Dat San Cert	alytical Method: le Analyzed: aple Preparation RL Result 8670	2013-0	5 D)9-03)8-30 Units	Analyze Prepare Dilution	ed By: CW ed By: CW R

Sample: 339588 - AH-2 4-4.5'

Laboratory:MidlandAnalysis:TPH GROQC Batch:104535Prep Batch:88572		Da	te [°] Anal	Method: yzed: eparation	S 8015 1 2013-08 : 2013-08	-29		Prep Metho Analyzed By Prepared By	y: KC
					RL				
Parameter	Flag		Cert	Re	esult	Units		Dilution	\mathbf{RL}
GRO	Qs		1	6	597 0	mg/Kg		50	4.00
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)	9 Qar	Qar		1.37	mg/Kg	50	100	1	70 - 130
4-Bromofluorobenzene (4-BFB)	Qsr	Qsr		40.1	mg/Kg	50	100	40	70 - 130

: Septemb	er 3, 201	3		Work Order COG/Wee			Page Number: 15 of 39 Eddy Co., NM			
9589 - Al	H-2 5-5.	5'								
Midland	(175)	,					D	(NI / A	
	(Titratic	m)						N/A AR		
104455 88453									AR	
	Flag				RL					
		Flag	Cert			Units	Dilution		RL	
					212	mg/Kg	5		4.00	
$104631 \\ 88645$									CW CW	
								0.11		
		Flag	Cert	Re	sult	Units	Dilution		RL	
		Flag	Cert		sult 780	Units Mg/Kg	Dilution 1			
								Reco	\mathbf{RL}	
	Flag					mg/Kg	1	Lin	RL 50.0	
	9589 - Al Midland Chloride 104453 88453 9589 - Al Midland TPH DR 104631	9589 - AH-2 5-5. Midland Chloride (Titratic 104453 88453 9589 - AH-2 5-5. Midland TPH DRO - NEW 104631	9589 - AH-2 5-5.5' Midland Chloride (Titration) 104453 88453 Flag 9589 - AH-2 5-5.5' Midland TPH DRO - NEW 104631	9589 - AH-2 5-5.5' Midland Chloride (Titration) Anal; 104453 Date 88453 Samp Flag Cert 9589 - AH-2 5-5.5' Midland TPH DRO - NEW Anal; 104631 Date	9589 - AH-2 5-5.5' Midland Chloride (Titration) Analytical Method 104453 Date Analyzed: 88453 Sample Preparation Flag Cert Reg 9589 - AH-2 5-5.5' Midland TPH DRO - NEW Analytical Method 104631 Date Analyzed: 88645 Sample Preparation	9589 - AH-2 5-5.5' Midland Chloride (Titration) Analytical Method: SM 45 104453 Date Analyzed: 2013-0 88453 Sample Preparation: 2013-0 RL Flag Cert Result 212 9589 - AH-2 5-5.5' Midland TPH DRO - NEW Analytical Method: S 801 104631 Date Analyzed: 2013- 88645 Sample Preparation: 2013-	9589 - AH-2 5-5.5' Midland Chloride (Titration)Analytical Method: Date Analyzed: 2013-08-27 Sample Preparation: 2013-08-26RL FlagCert ResultImage: PlagCert ResultPose - AH-2 5-5.5'Midland TPH DRO - NEW 104631Analytical Method: Date Analyzed: 2013-08-26Sample Preparation: 212Cert ResultSample Preparation: 212Sample Preparation: 212Sample Preparation: 212Sample Preparation: 212Sample Preparation: 2013-08-30	9589 - AH-2 5-5.5' Midland Chloride (Titration) Analytical Method: SM 4500-Cl B Prep M 104453 Date Analyzed: 2013-08-27 Analyz 88453 Sample Preparation: 2013-08-26 Preparation: RL RL Inits Dilution 212 mg/Kg 5 9589 - AH-2 5-5.5' Midland Prep M TPH DRO - NEW Analytical Method: S 8015 D Prep M 104631 Date Analyzed: 2013-09-03 Analyzed: 88645 Sample Preparation: 2013-08-30 Preparation	9589 - AH-2 5-5.5' Midland Chloride (Titration) Analytical Method: SM 4500-Cl B Prep Method: 104453 Date Analyzed: 2013-08-27 Analyzed By: 88453 Sample Preparation: 2013-08-26 Prepared By: RL Flag Cert Result Units Dilution 212 mg/Kg 5 9589 - AH-2 5-5.5' Midland TPH DRO - NEW Analytical Method: S 8015 D Prep Method: 104631 Date Analyzed: 2013-09-03 Analyzed By:	

Analysis: TPH GRO QC Batch: 104535 Prep Batch: 88572		Dat	te Analy	Method: yzed: eparation:	S 8015 I 2013-08- 2013-08-	29		Prep Methoc Analyzed By Prepared By	: KC
					\mathbf{RL}				
Parameter	Flag	(Cert	Re	sult	Units		Dilution	\mathbf{RL}
GRO	Qs		1	6	530	mg/Kg		50	4.00
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)	10 _{Qsr}	Qsr		1.01	mg/Kg	50	100	1	70 - 130
4-Bromofluorobenzene (4-BFB)	Qsr	Qsr		31.5	mg/Kg	50	100	32	70 - 130

Report Date 112MC05595	eport Date: September 3, 2013 12MC05595					Vork Order COG/Weei 				Page Number: 16 of 39 Eddy Co., NM		
Sample: 33	9590 - A	H-2 6-6	.5'									
Laboratory:	Midland											
Analysis:	Chloride	(Titrati	on)			tical Metho		4500-Cl B		Prep M		N/A
QC Batch:	104454					Analyzed:		3-08-27		Analyze		AR AR
Prep Batch:	88453				Sample	e Preparat	011: 201	3-08-26		Prepare	id Dy:	AU.
							RL					
Parameter			Flag	(Cert		sult	Units		Dilution		RL
Chloride				98.7 mg/Kg						5		4.00
Sample: 33			.5'			·						
Laboratory:	Midland				A 1		1 (1)			D 14		NT / A
Analysis:	TPH DF	(O - NE	W			tical Meth		8015 D		Prep M		N/A
QC Batch: Prep Batch:	104631					Analyzed: le Prepara		13-09-03 13-08-30		Analyze Prepare		CW CW
r rep batch:	88645				Samp	ne riepara	51011. ZU	19-00-90		riepare	а by.	C W
							\mathbf{RL}					
Parameter			Flag	(Cert		sult	Units		Dilution		RL
DRO			Je		1	12	200	mg/Kg		1		50.0
								Spik	æ	Percent	Reco	very
Surrogate		Flag	Cert	Rest	lt	Units	Dilutio			Recovery	Lin	•
n-Tricosane	Qsr	Qsr		4	36	mg/Kg	1	100)	486	76.3 -	192.6
Sample: 33 Laboratory: Analysis: QC Batch: Prep Batch:	9590 - A Midland TPH GF 104535 88572		5.5'	Dat	e Anal	Method: yzed: eparation:	S 8015 2013-08 2013-08	-29		Prep Met Analyzed Prepared	By: F	5035 CC C
D			-		ч ,	D	RL	TT **				DI
Parameter GRO			Flag	(<u>Cert</u>		sult 300	Units mg/Kg		Dilution 50		$\frac{\text{RL}}{4.00}$
J11()		· · · ·	Je,Qs		1	10.		ing/itg				4.00
Surrogate				Flag	Cert	Result	Units	Dilution	Spike Amount	Percent t Recovery		overy mits
Trifluorotolue	ene (TFT)	II Qar	Qsr		0.911	mg/Kg	50	100	1	70	- 130
4-Bromofluor							mg/Kg					

١

Report Date: September 3, 112MC05595	2013		ork Order: 130822 OG/Weems #1 T	Page Number: 17 of 39 Eddy Co., NM		
Sample: 339591 - AH-3	0-1'					
Laboratory: Midland						
Analysis: BTEX		Analytical Me	ethod: S 8021B	3	Prep Method:	S 5035
QC Batch: 104527		Date Analyze	d: 2013-08	-29	Analyzed By:	KC
Prep Batch: 88565		Sample Prepa	ration: 2013-08	-28	Prepared By:	\mathbf{KC}
			\mathbf{RL}			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Benzene	υ	1	< 0.400	mg/Kg	20	0.0200
Toluene	U	1	< 0.400	mg/Kg	20	0.0200

Toluene	U		1	<().400	mg/Kg		20	0.0200
Ethylbenzene			1		8.69	mg/Kg		20	0.0200
Xylene			1		24.2	mg/Kg		20	0.0200
							Spike	Percent	Recovery
Surrogate		Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Triffuorotoluene (TFT)	12 _{Qsr}	Qsr		2.33	mg/Kg	20	40.0	6	70 - 130

27.5

mg/Kg

20

40.0

69

70 - 130

Qsr

QFT

Sample: 339591 - AH-3 0-1'

4-Bromofluorobenzene (4-BFB)

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 104454 88453	Date A	ical Method: .nalyzed: e Preparation:	SM 4500-Cl B 2013-08-27 2013-08-26	Prep Method: Analyzed By: Prepared By:	ÁR
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride	U		<20.0	mg/Kg	5	4.00

Sample: 339591 - AH-3 0-1'

Laboratory: Analysis: QC Batch: Prep Batch:	alysis: TPH DRO - N Batch: 104431		Da	alytical Me te Analyzec nple Prepa	l: 20	8015 D 13-08-27 13-08-26	Analyz	1ethod: N/A aed By: CW ed By: CW
Deserveter		El- a	Cont	r	RL	TT :/		DI
Parameter		Flag	Cert	I1	lesult	Units	Dilution	RL
DRO			1		412	mg/Kg	1	50.0
Surrogate	Flag	Cert	Result	Units	Dilution	Spike n Amount	Percent Recovery	Recovery Limits
n-Tricosane			110	mg/Kg	1	100	110	76.3 - 192.6

Report Date: September 3, 201 112MC05595	Work Order: 13082238 COG/Weems #1 TB					Page Number: 18 of 39 Eddy Co., NM			
Sample: 339591 - AH-3 0-1'									
Laboratory:MidlandAnalysis:TPH GROQC Batch:104535Prep Batch:88572		Dat	te Analy	Method: yzed: eparation:	S 8015 I 2013-08- 2013-08-	-29		Prep Metho Analyzed B Prepared By	y: KC
					RL				
Parameter	Flag	(Cert	Re	sult	Units		Dilution	RL
GRO	QF		1	3	130	mg/Kg		20	4.00
Commente		Elem	Cunt	David		Dilution	Spike	Percent	Recovery
Surrogate	13	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		Qsr		1.66	mg/Kg	20	40.0	4	70 - 130
4-Bromofluorobenzene (4-BFB)	Qsr	QHF		25.0	mg/Kg	20	40.0	62	70 - 130

Sample: 339592 - AH-3 1-1.5'

•						
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 104454 88453	Analytical 1 Date Analy Sample Pre		SM 4500-Cl B 2013-08-27 2013-08-26	Prep Method: Analyzed By: Prepared By:	ÁR.
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
1 arameter	1 lag	Cat	nesuit	Omes	Dittion	11,12
Chloride			24.7	mg/Kg	5	4.00

Sample: 339592 - AH-3 1-1.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NH 104635 88651	EW	Da	alytical Me te Analyzec nple Prepar	l: 2013-	15 D -08-30 -08-30	•	fethod: N/A zed By: CW ed By: CW
					\mathbf{RL}			
Parameter		Flag	Cert	R	lesult	Units	Dilution	RL
DRO		Jh	l	<	<50.0	mg/Kg	1	50.0
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane			115	mg/Kg	1	100	115	76.3 - 192.6

Report Date: September 3, 2013 112MC05595			Work Order: 13082238 COG/Weems #1 TB						Page Number: 19 of 39 Eddy Co., NM	
Sample: 339592 - AH-3 1-1.	5'									
Laboratory:MidlandAnalysis:TPH GROQC Batch:104535Prep Batch:88572			Date An	al Metho alyzed: Preparatio	2013-0	8-29		Prep Metho Analyzed B Prepared B	y: KC	
					RL					
Parameter	Flag		Cert		Result	Unit	ts	Dilution	RL	
GRO	Qs		1		24.7	mg/K	g	1	4.00	
							Spike	Percent	Recovery	
Surrogate		Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits	
Trifluorotoluene (TFT)				1.41	mg/Kg	1	2.00	70	70 - 130	
4-Bromofluorobenzene (4-BFB)				1.81	mg/Kg	1	2.00	90	70 - 130	

Sample: 339593 - AH-3 2-2.5'

Chloride			59.2	mg/Kg	5	4.00
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	88453	Sample I	Preparation:	2013-08-26	Prepared By:	AR
QC Batch:	104454	Date An	alyzed:	2013-08-27	Analyzed By:	\mathbf{AR}
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland					

Sample: 339594 - AH-3 3-3.5'

•						
Laboratory:	Midland					
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	104454	Date Analyzed:		2013-08-27	Analyzed By:	AR
Prep Batch:	88453	v		2013-08-26	Prepared By:	AR,
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			187	mg/Kg	5	4.00

112MC0559	: September 3, 2013 5		k Order: 13 G/Weems #		Page Number: 20 of 39 Eddy Co., NM		
Sample: 33	9595 - AH-3 4-4.5'						
Laboratory:	Midland						
Analysis:	Chloride (Titration)	••	l Method:	SM 4500-Cl B	Prep Method:	N/A	
QC Batch:	104454	v		2013-08-27	Analyzed By:	AR.	
Prep Batch:	88453	Sample P	reparation:	2013-08-26	Prepared By:	AR	
			RL				
Parameter	Flag	Cert	Result	Units	Dilution	RL	
		197		nur/Ka	5	4.00	
Chloride			197	mg/Kg	J	4.00	
Sample: 33	9596 - AH-3 5-5.5' Midlaud		197_	nig/ Kg		4.00	
Sample: 33	Midland	Analytica					
		•/	l Method:	SM 4500-Cl B 2013-08-27	Prep Method:	N/A AR	
Sample: 33 Laboratory: Analysis: QC Batch:	Midland Chloride (Titration)	Date Ana	l Method:	SM 4500-Cl B		N/A	
Sample: 33 Laboratory: Analysis:	Midland Chloride (Titration) 104454	Date Ana	l Method: lyzed:	SM 4500-Cl B 2013-08-27	Prep Method: Analyzed By:	N/A AR	
Sample: 33 Laboratory: Analysis: QC Batch:	Midland Chloride (Titration) 104454	Date Ana	l Method: lyzed: reparation:	SM 4500-Cl B 2013-08-27	Prep Method: Analyzed By:	N/A AR	

Sample: 339597 - AH-3 6-6.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 104454 88453	Date An	al Method: alyzed: Preparation:	SM 4500-Cl B 2013-08-27 2013-08-26	Prep Method: Analyzed By: Prepared By:	AR
~			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			143	mg/Kg	5	4.00

Report Date: September 3, 2013 112MC05595 Work Order: 13082238 COG/Weems #1 TB

Method Blanks

n-Tricosane				102	mg/Kg	1	100	102	64.1 - 164.4
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
DRO					1		14.1	mg/Kg	50
Parameter			Fl	ag	Cert		MDL Result	Units	RL
QC Batch: Prep Batch:	$104431 \\ 88492$				Analyzed: reparation:	2013-08-27 2013-08-26		-	zed By: CW red By: CW
Method Bl	ank (1)	QC I	Batch: 104	431					

Method Blank	(1)	QC Batch: 104452
--------------	-----	------------------

QC Batch: Prep Batch:		Date Analyzed: QC Preparation:		Analyzed By: Prepared By:	
			MDL		
Parameter	\mathbf{Flag}	Cert	Result	Units	RL
Chloride	 		<3.85	mg/Kg	4

Method Blank (1) QC Batch: 104453

QC Batch: Prep Batch:		Date Analyzed: QC Preparation:		Analyzed By: Prepared By:	
			MDL		
Parameter	Flag	Cert	Result	Units	\mathbf{RL}
Chloride	 		<3.85	mg/Kg	4

Report Date: Septembe 112MC05595	r 3, 2013			ler: 13082 eems #1 7			Page Numb Ede	er: 22 of 39 dy Co., NM
Method Blank (1)	QC Batch: 104454	1						
QC Batch: 104454			Analyzed:	2013-08-			Analyzed	
Prep Batch: 88453		QC P	reparation:	2013-08-	26		Prepared	l By: AR
					MDL			
Parameter	Flag		Cert		Result		Units	RL
Chloride					<3.85		mg/Kg	4
Method Blank (1)	QC Batch: 10452'	7		,				
			Analwody	2012 00	20		Analway	
QC Batch: 104527 Prep Batch: 88565	ţ.	Date	Analyzed: reparation:	2013-08- 2013-08-			Analyzed Prepared	
QC Batch: 104527		Date	•		28			
QC Batch: 104527		Date QC P	reparation:				Prepared	By: AK
QC Batch: 104527 Prep Batch: 88565	Fla	Date QC P	•		28 MDL		Prepared Units	
QC Batch: 104527 Prep Batch: 88565 Parameter		Date QC P	reparation: Cert		28 MDL Result		Prepared Units mg/Kg	l By: AK RL
QC Batch: 104527 Prep Batch: 88565 Parameter Benzene		Date QC P	Preparation: Cert		28 MDL Result <0.00810		Prepared Units mg/Kg mg/Kg	By: AK RL 0.02
QC Batch: 104527 Prep Batch: 88565 Parameter Benzene Toluene		Date QC P	reparation: Cert 1		28 MDL Result <0.00810 <0.00750		Prepared Units mg/Kg	By: AK RL 0.02 0.02
QC Batch: 104527 Prep Batch: 88565 Parameter Benzene Toluene Ethylbenzene		Date QC P	reparation: Cert		28 MDL Result <0.00810 <0.00750 <0.00730		Prepared Units mg/Kg mg/Kg mg/Kg	By: AK RL 0.02 0.02 0.02
QC Batch: 104527 Prep Batch: 88565 Parameter Benzene Toluene Ethylbenzene		Date QC P	reparation: Cert		28 MDL Result <0.00810 <0.00750 <0.00730		Prepared Units mg/Kg mg/Kg mg/Kg mg/Kg	RL 0.02 0.02 0.02 0.02 0.02
QC Batch: 104527 Prep Batch: 88565 Parameter Benzene Toluene Ethylbenzene Xylene	Fla	Date QC P	Cert 1 1 1 1 1	2013-08-	28 MDL Result <0.00810 <0.00750 <0.00730 <0.00700	Spike	Prepared Units mg/Kg mg/Kg mg/Kg mg/Kg Percent	By: AK RL 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Method Blank (1) QC Batch: 104535

QC Batch: 104535 Prep Batch: 88572			analyzed: eparation:	2013-08-2 2013-08-2			•/	l By: KC By: AK
Parameter	Elect		Cant		MDL		T	DI
	Flag		Cert		Result		Units	RL
GRO			1		<2.32		mg/Kg	4
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)			1.51	mg/Kg	1	2.00	76	70 - 130
4-Bromofluorobenzene (4-BFB)			1.65	mg/Kg	1	2.00	82	70 - 130

Report Date: Septem 112MC05595	ber 3, 20	013			der: 13082238 7eems #1 TB		Page Number: 23 of Eddy Co., N		
Method Blank (1)	QC	Batch: 104	4631						
QC Batch: 104631			Date .	Analyzed:	2013-09-03		Analy	zed By: CW	
Prep Batch: 88645			QC P	reparation:	2013-08-30		Prepa	red By: CW	
						MDL			
Parameter		F	lag	Cert		Result	Units	RL	
DRO				1		16.6	mg/Kg	50	
						Spike	Percent	Recovery	
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits	
n-Tricosane			94.2	mg/Kg	1	100	94	64.1 - 164.4	

Method Bla	ank (1)	QC I	Batch: 104	635					
QC Batch: Prep Batch:	$\frac{104635}{88651}$				e Analyzed: Preparation:	2013-08-30 2013-08-30		v	zed By: CW red By: CW
Parameter			Fl	ıg	Cert		MDL Result	Units	\mathbf{RL}
DRO					1		10.8	mg/Kg	50
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane				106	mg/Kg	1	100	106	64.1 - 164.4

Report Date: September 3, 2013 112MC05595 Work Order: 13082238 COG/Weems #1 TB Page Number: 24 of 39 Eddy Co., NM

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch: 104431 Prep Batch: 88492		Date An QC Prei	•	13-08-27 13-08-26				zed By: red By:	CW CW
	_	LCS			Spike	Matri			Rec.
Param	F	C Resu		Dil.	Amount				Limit
DRO		1 258	0/0		250	14.1	98	53.	8 - 129
Percent recovery is based on the	e spike res	ult. RPD is b	ased on the	spike and	spike dupli	icate result			
		LCSD		Spike	Matrix		Rec.		RPD
Param	FC		nits Dil.	Amount		Rec.	Limit	RPD	Limit
DRO	1	273 m	g/Kg 1	250	14.1		3.8 - 129	6	20
Percent recovery is based on the	e spike res			spike and					
U.	-			•	•				
C	LCS	LCSD	Their	וית	Spike	LCS	LCSD		lec.
Surrogate	Result	Result	Units		Amount	Rec.	Rec.		imit
n-Tricosane	96.4	98.4	mg/Kg	1	100	96	98	61.3	- 170.4
Laboratory Control Spike (QC Batch: 104452	LCS-1)	Date An	alyzed: 20	13-08-27			Analy	zed By	: AR
Prep Batch: 88453		QC Prep	paration: 20	13-08-26			Prepa	red By	AR
Param	·	LCS C Result	t Units	Dil.	Spike Amount	Matrix Result	Rec.		lec. imit
Chloride		2360	mg/Kg	1	2500	<3.85	94		- 115.9
Percent recovery is based on the	e spike res							00.1	
		LCSD		Spike	Matrix		Rec.		RPD
Param	FC		nits Dil.	Amount			Rec. Limit	RPD	Limit
Chloride	<u> </u>		$\frac{103}{\text{Kg}}$ 1	$\frac{10000}{2500}$			7 - 115.9	$\frac{11D}{7}$	20
			10 -	2000	~0.00		110.0		

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: September 3, 201- 112MC05595	3					13082238 as #1 TB	3		Page Nu	mber: 2 Eddy C	
Laboratory Control Spike (l	CCS-:	1)									
QC Batch: 104453 Prep Batch: 88453				te Analy: Prepara		013-08-27 013-08-26				zed By wed By:	
Param Chloride		F	C	LCS Result 2360	Units mg/Kg	Dil.	Spike Amount 2500	Matrix Result <3.85	t Rec.	L	Rec. imit - 115.9
Percent recovery is based on the	spike	e res	ult. RPI) is based	l on the	spike and	spike dupl	licate resu	lt.		
Param Chloride	F	С	LCSD Result 2460	Units mg/Kg	Dil.	Spike Amount 2500	Matrix Result <3.85	Rec. 98 89	Rec. Limit .7 - 115.9	RPD 4	RPD Limit 20
Percent recovery is based on the	spike	e res	ult. RPI) is based	l on the	spike and	spike dupl	licate resu	lt.		
Laboratory Control Spike (I QC Batch: 104454 Prep Batch: 88453	LCS-1	1)		te Analyz Prepara		013-08-27 013-08-26				vzed By wred By:	
Param		F	CJ	LCS	Units	וית	Spike	Matriz			lec. imit
Chloride		г	<u> </u>	Result 2570	mg/Kg	 1	Amount 2500	Result <3.85			- 115.9
Percent recovery is based on the	spike	res	ult. RPI			spike and					
Param	F	С	LCSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Chloride Rement recovery is based on the	anileo		2460	mg/Kg		2500	<3.85		.7 - 115.9	4	20
Percent recovery is based on the	spike	resi	lit. KPI	J IS DASEC	i on the	spike and	spike aupi	icate resu	15.		
Laboratory Control Spike (I	CS-1	l)			·						
QC Batch: 104527 Prep Batch: 88565				te Analyz Prepara)13-08-29)13-08-28				zed By: .red By:	
Param		F	С	LCS Result	Units	Dil.	Spike Amount	Mat Res		ec.	Rec. Limit
Benzene Toluene Ethylbenzene			1	2.06 2.06 1.96	mg/Kg mg/Kg mg/Kg	1	$2.00 \\ 2.00 \\ 2.00$	<0.00 <0.00 <0.00)750 10)3 7	0 - 130 0 - 130 0 - 130
antinued				2.00		±	2.00			<u> </u>	., <u>100</u>

continued ...

Report Date: September 3, 2013	Work Order: 13082238	Page Number: 26 of 39
112MC05595	COG/Weems #1 TB	Eddy Co., NM
control soluce continued		

control spikes continued ... LCS

Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit
Xylene		I	5.96	mg/Kg	1	6.00	< 0.00700	99	70 - 130
Percent recovery is based of	on the spike res	ult. R	PD is base	ed on the sp	ike and	spike duplica	ate result.		
		TO	מי		Colleg	Motnin	Day		מממ

Spike

Matrix

Rec.

			LCSD			Spike	Matrix		Rec.		RPD
Param	F	С	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit	RPD	Limit
Benzene		1	2.09	mg/Kg	1	2.00	< 0.00810	104	70 - 130	1	20
Toluene		ı	2.06	mg/Kg	1	2.00	< 0.00750	103	70 - 130	0	20
Ethylbenzene		1	1.99	$\mathrm{mg/Kg}$	1	2.00	< 0.00730	100	70 - 130	2	20
Xylene		1	5.96	mg/Kg	1	6.00	< 0.00700	99	70 - 130	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	2.06	2.08	mg/Kg	1	2.00	103	104	70 - 130
4-Bromofluorobenzene (4-BFB)	2.08	2.10	mg/Kg	1	2.00	104	105	70 - 130

Laboratory Control Spike (LCS-1)

4-Bromofluorobenzene (4-BFB)

QC Batch: Prep Batch:	104535 88572				e Analyz Preparat		13-08-29 13-08-28				Analyzed E Prepared B	0
Param			F	С	LCS Result	Units	Dil.	Spike Amou		latrix Result	Rec.	Rec. Limit
GRO				3	16.0	mg/Kg	; 1	20.0	<	<2.32	80	70 - 130
Percent recov	very is based on the s	pike	resu	lt. RPD	is based	on the s	pike and s	pike dupl	icate re	sult.		
				LCSD			Spike	Matrix	2	\mathbf{Re}	ec.	RPD
Param		F	С	LCSD Result	Units	Dil.	Spike Amount			Re Lin		
Param GRO		F	C		Units mg/K				Rec.		nit RPD	
GRO	very is based on the s		1	Result 15.3	mg/K	g 1	Amount 20.0	Result <2.32	Rec. 76	Lin 70 -	nit RPD	Limit
GRO	very is based on the s		1	Result 15.3	mg/K is based	g 1	Amount 20.0	Result <2.32 pike dupl	Rec. 76	Lin 70 -	nit RPD	Limit
GRO	very is based on the s		1	Result 15.3 lt. RPD L0	mg/K is based CS LO	g 1 on the s	Amount 20.0 pike and s	Result <2.32 pike dupl S	Rec. 76 icate res	Lin 70 - sult.	nit RPD 130 4	Limit 20

1.85

mg/Kg

1

2.00

98

92

70 - 130

1.96

Report Date: September 3, 2 112MC05595	013					13082238 is #1 TB			P	4.1.	mber: 2 Eddy C	27 01 05 20., NM
Laboratory Control Spike	(LCS-1	L)										
QC Batch: 104631 Prep Batch: 88645				e Analyze Preparat		13-09-03 13-08-30					zed By: red By:	CW CW
2		-	a	LCS	TT T .		Spike		atrix	T		Rec.
Param		F		Result	Units	Dil.	Amount		sult	Rec.		Limit
DRO			1	291	mg/Kg		250		6.6	110	53.	8 - 129
Percent recovery is based on t	the spike	rest	ılt. RPI) is based	on the	spike and	spike dupli	cate res	sult.			
			LCSD			Spike	Matrix		\mathbf{R}	ec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Li	mit	RPD	Limit
DRO		1	286	mg/Kg	1	250	16.6	108	53.8	- 129	2	20
Percent recovery is based on t	the spike	rest	ılt. RPI) is based	on the	spike and	spike dupli	cate res	sult.			
	LC	Q	LCSI)			Spike	LCS	т	CSD	n	Rec.
							opice					
Surrogate					its	Dil	Amount	Rec	1	Rec	1.3	imit
Surrogate n-Tricosane	Rest 96.	ılt	Resul 98.9	t Ur	iits /Kg	Dil. 1	Amount 100	<u>Rec.</u> 96		Rec. ⁻ 99		imit - 170.4
n-Tricosane Laboratory Control Spike QC Batch: 104635	Rest 96.	1lt4	Resul 98.9 Dat	t Ur mg,	/Kg d: 20	1 13-08-30				99 Analyz	61.3 zed By:	- 170.4
n-Tricosane Laboratory Control Spike QC Batch: 104635	Rest 96.	1lt4	Resul 98.9 Dat	t Ur mg, e Analyze Preparati	/Kg d: 20	1	100	96		99 Analyz	61.3 zed By: red By:	- 170.4 CW CW
n-Tricosane Laboratory Control Spike QC Batch: 104635 Prep Batch: 88651	Rest 96. (LCS-1	11t 4	Resul 98.9 Dat QC	t Ur mg, e Analyze Preparati LCS	/Kg d: 20 on: 20	1 13-08-30 13-08-30	100 Spike	96 Ма	utrix	99 Analyz Prepar	61.3 zed By: red By:	- 170.4 CW CW Rec.
n-Tricosane Laboratory Control Spike QC Batch: 104635 Prep Batch: 88651 Param	Rest 96. (LCS-1	1lt4	Resul 98.9 Dat QC	t Ur mg, e Analyze Preparati LCS Result	/Kg d: 20 on: 20 Units	1 13-08-30 13-08-30 Dil.	100 Spike Amount	96 Ma Re	utrix sult	99 Analyz Prepar Rec.	61.3 zed By: red By:	- 170.4 CW CW Rec.
n-Tricosane Laboratory Control Spike QC Batch: 104635 Prep Batch: 88651 Param DRO	Rest 96. (LCS-1	<u>llt</u> 4 	Resul 98.9 Dat QC	t Ur mg, e Analyze Preparati LCS Result 271	/Kg d: 20 on: 20 Units mg/Kg	1 13-08-30 13-08-30 Dil. 1	100 Spike Amount 250	96 Ma Re 10	ttrix sult 0.8	99 Analyz Prepar	61.3 zed By: red By:	- 170.4 CW CW Rec.
n-Tricosane Laboratory Control Spike QC Batch: 104635 Prep Batch: 88651 Param DRO	Rest 96. (LCS-1	<u>llt</u> 4 	Resul 98.9 Dat QC	t Ur mg, e Analyze Preparati LCS Result 271	/Kg d: 20 on: 20 Units mg/Kg	1 13-08-30 13-08-30 Dil. 1	100 Spike Amount 250	96 Ma Re 10	ttrix sult 0.8	99 Analyz Prepar Rec.	61.3 zed By: red By:	- 170.4 CW CW Rec.
n-Tricosane Laboratory Control Spike QC Batch: 104635 Prep Batch: 88651	Rest 96. (LCS-1	<u>llt</u> 4 	Resul 98.9 Dat QC	t Ur mg, e Analyze Preparati LCS Result 271	/Kg d: 20 on: 20 Units mg/Kg	1 13-08-30 13-08-30 Dil. 1	100 Spike Amount 250	96 Ma Re 10	ttrix sult 0.8 sult.	99 Analyz Prepar Rec.	61.3 zed By: red By:	- 170.4 CW CW Rec.
n-Tricosane Laboratory Control Spike QC Batch: 104635 Prep Batch: 88651 Param DRO	Rest 96. (LCS-1	<u>llt</u> 4 	Resul 98.9 Dat QC <u>C</u>	t Ur mg, e Analyze Preparati LCS Result 271	/Kg d: 20 on: 20 Units mg/Kg	1 13-08-30 13-08-30 Dil. 1 spike and	100 Spike Amount 250 spike duplic Matrix	96 Ma Re 10	ttrix sult).8 sult. R	99 Analyz Prepar Rec. 104	61.3 zed By: red By:	- 170.4 CW CW Rec. jimit 8 - 129
n-Tricosane Laboratory Control Spike QC Batch: 104635 Prep Batch: 88651 Param DRO Percent recovery is based on t	Resu 96. (LCS-1	Ilt 4 (1) F resu	Resul 98.9 Dat QC LCSD	t Ur mg, e Analyze Preparati LCS Result 271 is based	/Kg d: 20 on: 20 Units mg/Kg on the s Dil.	1 13-08-30 13-08-30 Dil. 1 spike and Spike	100 Spike Amount 250 spike duplic Matrix	96 Ma Re 1(cate res	ttrix sult).8 sult. Ra Lii	99 Analyz Prepar Rec. 104 ec.	61.3 zed By: red By: I 53.	- 170.4 CW CW Rec. .imit 8 - 129
n-Tricosane Laboratory Control Spike QC Batch: 104635 Prep Batch: 88651 Param DRO Percent recovery is based on t Param DRO	Rest 96. (LCS-1	Ilt 4 F resu C 1	Resul 98.9 Dat QC LCSD Result 275	t Ur mg, e Analyze Preparati LCS Result 271) is based Units mg/Kg	/Kg d: 20 on: 20 Units mg/Kg on the s Dil. 1	1 13-08-30 13-08-30 Dil. 1 spike and Spike Amount 250	100 Spike Amount 250 spike duplic Matrix Result 10.8	96 Ma Re 10 cate res Rec. 106	utrix sult D.8 sult. Ra Lin 53.8	99 Analyz Prepar Rec. 104 ec. mit	61.3 zed By: red By: I 53. RPD	- 170.4 CW CW Rec. jimit 8 - 129 RPD Limit
n-Tricosane Laboratory Control Spike QC Batch: 104635 Prep Batch: 88651 Param DRO Percent recovery is based on t Param DRO	Rest 96. (LCS-1 the spike	Ilt 4<	Resul 98.9 Dat QC LCSD Result 275 lt. RPD	t Ur mg, e Analyze Preparati LCS Result 271 is based Units mg/Kg is based	/Kg d: 20 on: 20 Units mg/Kg on the s Dil. 1	1 13-08-30 13-08-30 Dil. 1 spike and Spike Amount 250	100 Spike Amount 250 spike duplic Matrix Result 10.8 spike duplic	96 Ma Re 10 Cate res Rec. 106 Cate res	etrix sult).8 sult. Ra Lin 53.8 sult.	99 Analyz Prepar Rec. 104 ec. mit - 129	61.3 zed By: red By: I 53. RPD 2	- 170.4 CW CW Rec. .imit 8 - 129 Limit 20
n-Tricosane Laboratory Control Spike QC Batch: 104635 Prep Batch: 88651 Param DRO Percent recovery is based on t Param	Rest 96. (LCS-1	Ilt 4 	Resul 98.9 Dat QC LCSD Result 275	t Ur mg, e Analyze Preparati LCS Result 271) is based Units mg/Kg) is based	/Kg d: 20 on: 20 Units mg/Kg on the s Dil. 1 on the s	1 13-08-30 13-08-30 Dil. 1 spike and Spike Amount 250 spike and	100 Spike Amount 250 spike duplic Matrix Result 10.8	96 Ma Re 10 cate res Rec. 106	utrix sult D.8 sult. E3.8 sult. L	99 Analyz Prepar Rec. 104 ec. mit	61.3 zed By: red By: I 53. RPD 2	- 170.4 CW CW Rec. jimit 8 - 129 RPD Limit

Matrix Spike (MS-1) Spiked Sample: 339617

QC Batch:	104431	Date Analyzed:	2013-08-27	Analyzed By:	CW
Prep Batch:	88492	QC Preparation:	2013-08-26	Prepared By:	CW

112MC05595				c Order: G/Weem	Page Number: 28 of 39 Eddy Co., NM						
Param	F	7		MS Result	Units	Dil.	Spike Amount	Mat Res			Rec. – Jimit
DRO	.			264	mg/Kg		250	35			- 168.5
Percent recovery is based on the	snike r	resul								20	- 100.0
	opinio i			il: baboa		-					DDD
Param	F	С	MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
DRO	*****	<u> </u>	259	mg/Kg		250	35.7		29 - 168.5	2	20
Percent recovery is based on the											
·	MS		MSD			1		MS	MSD	Б	lec.
Surrogate	Resul	l+	Resul		nits	Dil.	Spike Amount	Rec.	Rec.		imit
n-Tricosane	<u>101</u>		103		g/Kg	1	$\frac{100}{100}$	101	103		- 168.9
Matrix Spike (MS-1) Spike QC Batch: 104452 Prep Batch: 88453		-	QC	e Analyze Preparat		13-08-27 13-08-26	0.1		Prepa	zed By: red By:	AR
Param	F	,		MS lesult	Units	Dil.	Spike Amount	Mat Res			Rec. Jimit
Chloride	_			2510	mg/Kg	5	2500	<19			9 - 121
	spike r	esul									
Percent recovery is based on the	- P		ι. KPD	is based	on the s	pike and a	spike dupik	cate resi	ult.		
	_		MSD			Spike	Matrix	ate resi	Rec.		RPD
Param	_		MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	Limit
Param Chloride	F (С	MSD Result 2400	Units mg/Kg	Dil.	Spike Amount 2500	Matrix Result <19.2	Rec. 96	Rec. Limit 78.9 - 121	RPD 4	
Param Chloride Percent recovery is based on the	F (C	MSD Result 2400 t. RPD	Units mg/Kg	Dil.	Spike Amount 2500	Matrix Result <19.2	Rec. 96	Rec. Limit 78.9 - 121		Limit
Param Chloride Percent recovery is based on the Matrix Spike (MS-1) Spike QC Batch: 104453	F (C	MSD Result 2400 t. RPD 339589 Date	Units mg/Kg	Dil. 5 on the s ed: 20	Spike Amount 2500	Matrix Result <19.2	Rec. 96	Rec. Limit 78.9 - 121 alt. Analy		Limit 20 AR
QC Batch: 104453	F (C result	MSD Result 2400 t. RPD 339589 Date QC	Units mg/Kg is based	Dil. 5 on the s ed: 20	Spike Amount 2500 pike and s 13-08-27	Matrix Result <19.2	Rec. 96	Rec. Limit 78.9 - 121 alt. Analy Prepa	4 zed By: red By:	Limit 20 AR

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

,

Report Date: September 3, 2013 112MC05595	2013 Work Order: 13082238 Page Number: 29 of 39 COG/Weems #1 TB Eddy Co., NM											
			MSD			Spike	Matrix		Rec			RPD
Param	F		Result	Units	Dil.	Amount	Result	Rec.	Limi		PD	Limit
Chloride			2660	mg/Kg	<u>5</u>	2500	212	98	78.9 -	121	5	20
Percent recovery is based on the	spiko	e rest	ılt. RPE) is based	on the	spike and s	spike dupli	cate re	sult.			
Matrix Spike (MS-1) Spike	d Sa	mple	: 339617	,								
QC Batch: 104454			Dat	e Analyz	ed: 20	013-08-27			1	Analyze	d By:	AR.
Prep Batch: 88453				Preparat		13-08-26				Prepareo		\mathbf{AR}
Param		F	C I	MS Result	Units	Dil.	Spike Amount	Re	atrix esult	Rec.	L	Rec. imit
Chloride				2420	mg/Kg	5	2500	<	19.2	97	78.9) - 121
Percent recovery is based on the	spike	e rest	ılt. RPD) is based	on the s	spike and s	pike dupli	cate re	sult.			
			MSD			Onthe	Madulas		Π			ממת
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec Limi		PD	RPD Limit
Chloride			2290	ng/Kg		2500	<19.2	92	78.9 -		$\frac{1}{6}$	20
Percent recovery is based on the Matrix Spike (MS-1) Spike	-		ılt. RPD :: 338954		on the s	spike and s	pike dupli	cate re	sult.			
QC Batch: 104527				e Analyz		13-08-29				Analyzeo		KC
Prep Batch: 88565			ųС	Preparat	aon: 20	13-08-28			ŀ	Prepared	ву:	AK
				MS			Spike	М	atrix			Rec.
Param		F		Result	Units	Dil.	Amount		esult	Rec.		Limit
Benzene				1.97	mg/Kg	1	2.00		.00810	98) - 130
Toluene				1.94	mg/Kg	1	2.00		.00750	97) - 130
Ethylbenzene Xylene				1.94	mg/Kg	1	2.00		.00730	97) - 130
			1	5.75	mg/Kg	1	6.00	<0	.00700	96	- 70	- 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	$\mathbf{A}\mathbf{m}\mathbf{o}\mathbf{u}\mathbf{n}\mathbf{t}$	Result	Rec.	Limit	RPD	Limit
Benzene		1	2.01	mg/Kg	1	2.00	< 0.00810	100	70 - 130	2	20
Toluene		1	2.02	mg/Kg	1	2.00	< 0.00750	101	70 - 130	4	20
Ethylbenzene		1	2.03	mg/Kg	1	2.00	< 0.00730	102	70 - 130	4	20
Xylene		L	6.11	mg/Kg	1	6.00	< 0.00700	102	70 - 130	6	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: September 3, 2013 112MC05595		Vork Orde COG/Wee	Pag	Page Number: 30 of 39 Eddy Co., NM				
	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	2.14	2.07	mg/Kg	1	2	107	104	70 - 130
4-Bromofluorobenzene (4-BFB)	1.99	2.04	mg/Kg	1	2	100	102	70 - 130

Matrix Spike (MS-1) Spiked Sample: 338954

QC Batch:	104535	Date Analyzed:	2013-08-29	Analyzed By:	\mathbf{KC}
Prep Batch:	88572	QC Preparation:	2013-08-28	Prepared By:	AK

				\mathbf{MS}			Spike	Matrix		Rec.
Param		F	С	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	Qs	\mathbf{Qs}	1	10.0	mg/Kg	1	20.0	<2.32	50	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

				MSD			Spike	Matrix		Rec.		RPD
Param		F	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	R.PD	Limit
GRO	Qs	Qs	1	10.4	mg/Kg	1	20.0	<2.32	52	70 - 130	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Triffuorotoluene (TFT)	1.50	1.39	mg/Kg	1	2	75	70	70 - 130
4-Bromofluorobenzene (4-BFB)	1.87	1.76	mg/Kg	1	2	94	88	70 - 130

Matrix Spike (MS-1) Spiked Sample: 339762

QC Batch: 104631 Prep Batch: 88645		Analyzed By: CW Prepared By: CW								
Param	F	C I	MS Result	Units	Dil.	Spike Amount	Mat Res			Rec. Limit
DRO		3	269	mg/Kg	1	250	<1	0.2 108	29	- 168.5
Percent recovery is based on t	he spike res	ult. RPD	is based	on the s	spike and s	pike dupli	cate res	ult.		
		MSD			Spike	Matrix		Rec.		RPD
Param	F C	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	1	271	mg/Kg	1	250	<10.2	104	29 - 168.5	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: September 3, 201 112MC05595	.3		Work Order COG/Wee	()	Page Number: 31 of 39 Eddy Co., NM			
Surrogate	MS Result	MSD Result	Units	Dil.	Spike Amount	MS Rec.	MSD Rec.	Rec. Limit
n-Tricosane	103	98.8	mg/Kg	1	100	103	99	59.5 - 168.9

Matrix Spike (MS-1) Spik	ed Samp	ole: 339580								
QC Batch: 104635 Prep Batch: 88651			e Analyzed: Preparation		3-08-30 3-08-30				zed By: red By:	
			MS			Spike	Mat	trix		Rec.
Param	\mathbf{F}	I	Result	Units	Dil.	Amount	Res	ult Rec	.]	Limit
DRO		1	231 n	ng/Kg	1	250	22	.3 83	29	- 168.5
Percent recovery is based on the Param	spike ro F C	MSD	is based of Units	-	ike and s Spike Amount	spike duplie Matrix Result	cate rest Rec.	ult. Rec. Limit	RPD	RPD Limit
DRO	1	236	mg/Kg	1	250	22.3	85	29 - 168.5	2	20
Percent recovery is based on the	spike re MS	sult. RPD MSI		n the spi	ike and s	spike dupli Spike	cate resi MS	ult. MSD	T	Rec.
Surrogate	Result			ts T	Dil.	Amount	Rec.	Rec.		imit
n-Tricosane	91.2	89.5			1	100	91	90		- 168.9

Report Date: September 3, 2013 112MC05595

Calibration Standards

Standard (CCV-1)

QC Batch:	104431		Date	Analyzed:	2013-08-27		Analyz	zed By: CW
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		1	mg/Kg	250	256	102	80 - 120	2013-08-27

Standard (CCV-2)

QC Batch:	104431		Date	Analyzed:	2013-08-27		Analyzed By: CW		
				CCVs	CCVs	CCVs	Percent		
				True	Found	Percent	Recovery	Date	
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
DRO		1	mg/Kg	250	261	104	80 - 120	2013-08-27	

Standard (CCV-3)

QC Batch:	104431		Date	Analyzed:	2013-08-27		Analyz	zed By: CW
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		1	mg/Kg	250	273	109	80 - 120	2013-08-27

Standard (CCV-4)

QC Batch:	104431		Date	Analyzed:	2013-08-27		Analyz	zed By: CW
				CCVs	CCVs	CCVs	Percent	_
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		1	mg/Kg	250	258	103	80 - 120	2013-08-27

Report Date: September 3, 2013 112MC05595				Work Or COG/V		Page Number: 33 of 39 Eddy Co., NM		
Standard (C								
QC Batch: 10	04452		Date 4	Analyzed:	2013-08-27		Analy	zed By: AR
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	\mathbf{Flag}	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			mg/Kg	100	99.4	99	85 - 115	2013-08-27
Standard (C	CV-2)							
QC Batch: 10	04452		Date A	Analyzed:	2013-08-27		Analy	zed By: AR
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			mg/Kg	100	101	101	85 - 115	2013-08-27

Standard (CCV-1)

QC Batch:	104453			Date A	Analyzed:	2013-08-27		Analy	zed By: AR
					CCVs	CCVs	CCVs	Percent	D. I
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride				mg/Kg	100	100	100	85 - 115	2013-08-27

Standard (CCV-2)

QC Batch:	104453			Date A	Analyzed:	2013-08-27		Analy	zed By: AR
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride				mg/Kg	100	100	100	85 - 115	2013-08-27

Standard (CCV-1)

QC Batch: 104454

Date Analyzed: 2013-08-27

Analyzed By: AR

Report Date: September 3, 2013 112MC05595					er: 13082238 ems #1 TB	Page Number: 34 of 39 Eddy Co., NM		
Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Chloride			mg/Kg	100	100	100	85 - 115	2013-08-27

Standard (CCV-2)

QC Batch:	104454			Date A	Analyzed:	2013-08-27		Analy	zed By: AR
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride				mg/Kg	100	100	100	85 - 115	2013-08-27

Standard (CCV-1)

QC Batch: 104527			Analyzed By: KC					
				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		1	mg/kg	0.100	0.102	102	80 - 120	2013-08-29
Toluene		1	mg/kg	0.100	0.0992	99	80 - 120	2013-08-29
Ethylbenzene		1	mg/kg	0.100	0.0951	95	80 - 120	2013-08-29
Xylene		1	mg/kg	0.300	0.288	96	80 - 120	2013-08-29

Standard (CCV-2)

QC Batch: 104527			Analyzed By: KC					
				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		1	mg/kg	0.100	0.108	108	80 - 120	2013-08-29
Toluene		1	mg/kg	0.100	0.105	105	80 - 120	2013-08-29
Ethylbenzene		1	mg/kg	0.100	0.102	102	80 - 120	2013-08-29
Xylene		<u> </u>	mg/kg	0.300	0.304	101	80 - 120	2013-08-29

Report Date: September 3, 2013 112MC05595				Work O COG/V	Page Number: 35 of 39 Eddy Co., NM			
Standard (C	CV-1)							
QC Batch: 10	04535		Date	Analyzed:	2013-08-29		Analy	zed By: KC
_				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		1	mg/Kg	1.00	0.933	93	80 - 120	2013-08-29
Standard (C	CV-2)							·
QC Batch: 1	04535		Date	Analyzed:	2013-08-29		Analy	zed By: KC
				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		1	mg/Kg	1.00	1.14	114	80 - 120	2013-08-29
Standard (C								
QC Batch: 10	04535		Date	Analyzed:	2013-08-29		Analy	zed By: KC
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		1	Mg/Kg	1.00	0.911	91	80 - 120	2013-08-29
Standard (C	CV-1)							
QC Batch: 10	04631		Date	Analyzed:	2013-09-03		Analy	zed By: CW
				CCVs True	CCVs Found	CCVs	Percent	D-t-
	Flag	Cert	Units	Conc.	Found Conc.	Percent Recovery	Recovery Limits	Date Analyzed
Param		00+0	C III W.	Conc.	COHO	TUCOVOLY	171111003	TTTOT Y SCO

Standard (CCV-2)

.

QC Batch: 104631

Date Analyzed: 2013-09-03

Analyzed By: CW

Report Date 112MC05595	: September 3,	2013		Work O COG/V	Page Number: 36 of 39 Eddy Co., NM			
Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
DRO		1	mg/Kg	250	278	111 .	80 - 120	2013-09-03
Standard (,		D .	4 , ,				
QC Batch:	104631		Date	Analyzed:	2013-09-03		Analy	zed By: CW
				· CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		1	mg/Kg	250	275	110	80 - 120	2013-09-03

Standard (CCV-4)

QC Batch:	104631		Date	Analyzed:	2013-09-03		Analy	zed By: CW
				CCVs	CCVs From d	CCVs	Percent	Data
				True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		1	mg/Kg	250	279	112 ·	80 - 120	2013-09-03

Standard (CCV-1)

QC Batch:	104635		Date	Analyzed:	2013-08-30		Analyz	zed By: CW
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		1	mg/Kg	250	280	112	80 - 120	2013-08-30

Standard (CCV-2)

QC Batch: 104635

Date Analyzed: 2013-08-30

Analyzed By: CW

Report Date: 112MC05595	2013			ler: 13082238 eems #1 TB	Page Nu	Page Number: 37 of 39 Eddy Co., NM				
-		~		CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date		
Param	\mathbf{F} lag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed		
DRO		1	m mg/Kg	250	294	118	80 - 120	2013-08-30		

Report Date: September 3, 2013 112MC05595 Work Order: 13082238 COG/Weems #1 TB Page Number: 38 of 39 Eddy Co., NM

Appendix

Report Definitions

Name	Definition
MDL	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
\mathbf{C}	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	NELAP	T104704392-12-4	Midland

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

Result Comments

Report Date: September 3, 2013 112MC05595

Work Order: 13082238 COG/Weems #1 TB

Page Number: 39 of 39 Eddy Co., NM

- 1 Surrogate diluted out of the sample.
- 2 Surrogates were diluted out of the sample. 3
- Surrogate diluted out of sample. 4
- Sample run out of hold time.
- 5 Surrogate diluted out of sample.
- 6 Sample run out of hold time.
- 7 Surrogate diluted out of sample.
- 8 Surrogates diluted out of sample.
- 9 Surrogates diluted out of sample.
- 10 Surrogates diluted out of sample.
- 11 Surrogates diluted out of sample.
- 12 Surrogate diluted out of the sample.
- 13Surrogates are diluted out of sample.

Attachments

The scanned attachments will follow this page.

Please note, each attachment may consist of more than one page.

			/	30	822	38																						
An	alvs	sis F	Re	au	iest	of C	Cha	in of Custo	dv F	?e	CC	orc		L							PAC				(DF:	2	
		·	P											-				(0					QUES Aetho		o.)			
						910 N. /Iidland	Big S I, Texa	TECH Spring St. as 79705 Fax (432) 682-3946							06 (Ext. to C35)	Pb Hg	Pd ≯									pH, TDS		
	ME: 1					SITE MA	T	Ke Tavarez	NERS			SERV	ATIVE DD		TX1005	Ba	B			60/624	270/62					ns, pH,		
PROJECT N	0. 055	95	PR	OJEC	TNAME:	eem	s Ħ	1 TB	CONTAI	(N)	Τ			-*	MOD	s Ag As	s Ag As	BS Matatilas		8240/82	i. Vol. 8	8 8		. 1	tos)	s/Catio		
LAB I.D. NUMBER	date 2013	TIME		COMP. GRAB				Eddy Co, NM IDENTIFICATION	NUMBER OF CONTAINERS	FILTERED (Y/N) HCI	HNO3	Щ	NONE	BTEX 8021B	TPH B015 MOD	RCRA Metal	TCLP Metal	TCLP Volatiles	RCI	GC.MS Vol. 8240/8260/624	GC.MS Sem	PCB's 8080/608 Pest. 808/608	Chloride	Gamma Spe	PLM (Asbestos)	Major Anlon		
399.54	8/14		S	X	AH	- }	(0-	-1)	1			X		X									Ň					
586]		[1-	1.5)				\mathbb{K}											X					
581							2-	2,5)	. 1			X											N.					
582							13-	3.5)	1			χ											X					
583							(4-	4,5)	١		T	X				Ţ		T					X					
584					AH	- 2	10)-1)	ł			X		X	X								Y					
ইগ্র							Ĭ1.	-1.5)	1			Ŷ											K					
586			Ш				12	-2,5)	J			χ											X					
581					<u> </u>		(3.	- 3.5)	1			χ											N					
588	J			J			(4-	- 4 <i>.5</i>)	۱			-XL											X					
	uron	-D	<u>D/(</u>	ليد		535		Receiver Bry (Signature)	······································		Time:	15	:35	2		AL						n			Date: Time:		14[1];	<u> </u>
RELINQUISHED		· · · · · · · · · · · · · · · · · · ·			Date: Time:			RECEIVED BY: (Signature)			Date: Time:					FEDE	x			BUS					RBILL 'HER:			
RELINQUISHED					Date: Time:	······································		RECEIVED BY: (Signature)			Date: Time:					HANI				UPS					-	sults b	y:	
CONTACT:	lonat	STATE: _		PHON	ZIP:		RE	CEIVED BY: (Signature)	тім	E:						TK	e .	To	⊼√ 6	an	22	Ţ			RU Au	SH Ch thorize Yes	d:"	No
SAMPLE CONDI 5.2					, Itt	TPH	ts >	1000 Run deeper; If	Benze				STEX	_	_	_vŋ	dea	2pe1	-;	rur	_		chi					

Tease fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy.

13082238		
Analysis Request of Chain of Custody Rec	Cord PAGE: 2 OF: 2	
	ANALYSIS REQUEST (Circle or Specify Method No.)	
TETRATECH 1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946	005 (Ext to C35) C4 Cr Pb Hg Se C4 Vr Pd Hg Se C5 C4 Vr Pd Hg Se	
CLIENT NAME: COG SITE MANAGER: TAVAREZ	PRESERVATIVE METHOD DH' 11 (ous, PH, 12 (ous, PH, 12 (ous, PH, 12 (ous, PH, 12 (ous, PH, 12) (ous, P	
CLIENT NAME: COG PROJECT NO.: 112 MCO 5595 COG - Weems #2 TB Eddy Co. NM NUMBER 2013 NUMBER 2013 SAMPLE IDENTIFICATION	B Ag als Ag als Ag als Ag bec. bec. bec. bec.	
	HN03 ICE NONE NONE NONE NONE NONE RCI RCI RCI RCI RCI RCI Pest. 808/vola RCI RCI RCI RCI RCI RCI RCI Pest. 808/vola RCI RCI RCI RCI RCI RCI RCI RCI RCI RCI	\square
509 8/14 S XAH-2 (5-5,5) 1		\square
590 1 1 (6-6,5) 1		
591		
592 (1-1.5)	X	\square
593 (2-2.5)		T
594 (3-3,5)		\Box
595 [[] [] [] [] [] [] [] [] []		
596 [5-5,5]		
$597 \sqrt{10} \sqrt{10} \sqrt{10} \sqrt{10}$	X	
advas Dan Time: 1935 1. Mm Tin	Date: 0122112 SAMPLED BY: (Print & Initial) Date: \$/14/13 Time: 15.35 Alon Maclanahon Time:	_
Time:	Date: SAMPLE SHIPPED BY: (Circle) AIRBILL #: Time: FEDEX BUS OTHER:	
Time: 1 Time:	Date: OTHER: OTHER: Time: TETRA TECH CONTACT PERSON: Results by:	=
RECEIVING LABORATORY: Midlond Trace Athalysis RECEIVED BY: (Signature) ADDRESS: Midlond STATE: ZIP: DATE: TIME: CONTACT: PHONE: DATE: TIME: TIME:	Ike Tavarez RUSH Charges Authorized: Yes No	
ADDNESS ADDNESS ZIP:	Ex>50 run deeper ; run all charides	

Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy.

November 12, 2013

IKE TAVAREZ TETRA TECH 1910 N. BIG SPRING STREET MIDLAND, TX 79705

RE: WEEMS #1TB

Enclosed are the results of analyses for samples received by the laboratory on 11/11/13 12:30.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-11-3. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celez D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH IKE TAVAREZ 1910 N. BIG SPRING STREET MIDLAND TX, 79705 Fax To: (432) 682-3946

Received:	11/11/2013	Sampling Date:	11/11/2013
Reported:	11/12/2013	Sampling Type:	Soil
Project Name:	WEEMS #1TB	Sampling Condition:	Cool & Intact
Project Number:	112MC05595	Sample Received By:	Jodi Henson
Project Location:	NONE GIVEN		

Sample ID: T-1 (AH2) 0' (4'EB) (H302741-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	8S	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<5.00	5.00	11/11/2013	ND	1.97	98.4	2.00	0.377	
Toluene*	57.5	5.00	11/11/2013	ND	1.99	99.7	2.00	1.22	
Ethylbenzene*	29.4	5.00	11/11/2013	ND	2.00	99.8	2.00	1.66	
Total Xylenes*	349	15.0	11/11/2013	ND	5.91	98.6	6.00	2.32	
Total BTEX	436	30.0	11/11/2013	ND					
Surrogate: 4-Bromofluorobenzene (PIL	132	% 89.4-12	6						
TPH 8015M	mg	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	6840	10.0	11/11/2013	ND	170	84.9	200	11.6	
DRO >C10-C28	8670	10.0	11/11/2013	ND	169	84.5	200	6.55	
Surrogate: 1-Chlorooctane	223	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	173	% 63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be timited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 2 of 9

		TETRA TE	СН		
		IKE TAVA	REZ		
		1910 N. B	IG SPRING STREET		
		MIDLAND	TX, 79705		
		Fax To:	(432) 682-3946		
Received:	11/11/2013			Sampling Date:	11/11/2013
Reported:	11/12/2013			Sampling Type:	Soil
Project Name:	WEEMS #1TB			Sampling Condition:	Cool & Intact
Project Number:	112MC05595			Sample Received By:	Jodi Henson
Project Location:	NONE GIVEN				

Sample ID: T-1 (AH2) 2' (4'EB) (H302741-02)

βTEX 8021B	mg	/kg	Analyze	d By: MS				S-04	
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.500	0.500	11/11/2013	ND	1.97	98.4	2.00	0.377	
Toluene*	1.03	0.500	11/11/2013	11/2013 ND		99.7	2.00	1.22	
Ethylbenzene*	2.25	0.500	11/11/2013	ND	2.00	99.8	2.00	1.66	
Total Xylenes*	15.2	1.50	11/11/2013	ND	5.91	98.6	6.00	2.32	
Total BTEX	18.4	3.00	11/11/2013	ND					
Surrogate: 4-Bromofluorobenzene (PIL	154	% 89.4-12	6						
TPH 8015M	mg,	'kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	444	10.0	11/11/2013	ND	170	84.9	200	11.6	
DRO >C10-C28	1510	10.0	11/11/2013	ND	169	84.5	200	6.55	
Surrogate: 1-Chlorooctane	143 9	% 65.2-14	0					a da anti a constante da seconda s	
Surrogate: 1-Chlorooctadecane	1149	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kune

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH IKE TAVAREZ 1910 N. BIG SPRING STREET MIDLAND TX, 79705 Fax To: (432) 682-3946

Received:	11/11/2013	Sampling Date:	11/11/2013
Reported:	11/12/2013	Sampling Type:	Soil
Project Name:	WEEMS #1TB	Sampling Condition:	Cool & Intact
Project Number:	112MC05595	Sample Received By:	Jodi Henson
Project Location:	NONE GIVEN		

Sample ID: T-1 (AH2) 4' (4'EB) (H302741-03)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result Reporting Lim		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/12/2013	ND	1.97	98.4	2.00	0.377	
Toluene*	<0.050	0.050	11/12/2013	ND	1.99	99.7	2.00	1.22	
Ethylbenzene*	<0.050	0.050	11/12/2013	ND	2.00	99.8	2.00	1.66	
Total Xylenes*	<0.150	0.150	11/12/2013	ND	5.91	98.6	6.00	2.32	
Total BTEX	<0.300	0.300	11/12/2013	ND					
Surrogate: 4-Bromofluorobenzene (PIL	107	% 89.4-12	6						
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	11/11/2013	ND	170	84.9	200	11.6	
DRO >C10-C28	<10.0	10.0	11/11/2013	ND	169	84.5	200	6.55	
Surrogate: 1-Chlorooctane	90.5	% 65.2-14	0				9. 1 may 200 10 10 1		
Surrogate: 1-Chlorooctadecane	99.3	% 63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim ansing, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be lable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 4 of 9

TETRA TECH IKE TAVAREZ 1910 N. BIG SPRING STREET MIDLAND TX, 79705 Fax To: (432) 682-3946

	Received:	11/11/2013	Sampling Date:	11/11/2013
•	Reported:	11/12/2013	Sampling Type:	Soil
	Project Name:	WEEMS #1TB	Sampling Condition:	Cool & Intact
	Project Number:	112MC05595	Sample Received By:	Jodi Henson
	Project Location:	NONE GIVEN		

Sample ID: T-1 (AH2) 6' (4'EB) (H302741-04)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Anałyte	Result Reporting Limit		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/12/2013	ND	1.97	98.4	2.00	0.377	
Toluene*	<0.050	0.050	11/12/2013	ND	1.99	99.7	2.00	1.22	
Ethylbenzene*	<0.050	0.050	11/12/2013	ND	2.00	99.8	2.00	1.66	
Total Xylenes*	<0.150	0.150	11/12/2013	ND	5.91	98.6	6.00	2.32	
Total BTEX	<0.300	0.300	11/12/2013	ND				-	
Surrogate: 4-Bromofluorobenzene (PIL	106	% 89.4-12	6						a mangan ng pang ng pan
TPH 8015M	mg/	/kg	Analyze	d By: MS		, 	····		
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	11/11/2013	ND	170	84.9	200	11.6	
DRO >C10-C28	<10.0	10.0	11/11/2013	ND	169	84.5	200	6.55	
Surrogate: 1-Chlorooctane	91.9	% 65.2-14)						
Surrogate: 1-Chlorooctadecane	99.4	% 63.6-15	<i>4</i> .						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other rause whatsoever shall be deemed waived unles made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Kune

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH IKE TAVAREZ 1910 N. BIG SPRING STREET MIDLAND TX, 79705 Fax To: (432) 682-3946

Received:	11/11/2013	Sampling Date:	11/11/2013
Reported:	11/12/2013	Sampling Type:	Soil
Project Name:	WEEMS #1TB	Sampling Condition:	Cool & Intact
Project Number:	112MC05595	Sample Received By:	Jodi Henson
Project Location:	NONE GIVEN		

Sample ID: T-1 (AH2) 8' (4'EB) (H302741-05)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte '	Result Reporting Limit		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/12/2013	ND	1.97	98.4	2.00	0.377	
Toluene*	0.084	0.050	11/12/2013	ND	1.99	99.7	2.00	1.22	
Ethylbenzene*	<0.050	0.050	11/12/2013	ND	2.00	99.8	2.00	1.66	
Total Xylenes*	<0.150	0.150	11/12/2013	ND	5.91	98.6	6.00	2.32	
Total BTEX	<0.300	0.300	11/12/2013	ND					
Surrogate: 4-Bromofluorobenzene (PIL	107	% 89.4-12	6				4445-1		et maar het het het het het gemaan gevon maargem
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	11/11/2013	ND	170	84.9	200	11.6	
DRO >C10-C28	<10.0	10.0	11/11/2013	ND	169	84.5	200	6.55	
Surrogate: 1-Chlorooctane	101 9	65.2-14	0						
Surrogate: 1-Chlorooctadecane	1129	63.6-15	4						•

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed walved unless made in writing and received by Cardinal within thirty (30) days after competion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above statel reasons or otherwise. Results cale only to the sample identified above. This report shall not be reproduced scores in full with written approval of Cardinal laboratories.

Celey D. Kuna

Celey D. Keene, Lab Director/Quality Manager

Page 6 of 9

TETRA TECH IKE TAVAREZ 1910 N. BIG SPRING STREET MIDLAND TX, 79705 Fax To: (432) 682-3946

Received:	11/11/2013	Sampling Date:	11/11/2013
Reported:	11/12/2013	Sampling Type:	Soil
Project Name:	WEEMS #1TB	Sampling Condition:	Cool & Intact
Project Number:	112MC05595	Sample Received By:	Jodi Henson
Project Location:	NONE GIVEN		

Sample ID: T-1 (AH2) 10' (4'EB) (H302741-06)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/12/2013	ND	1.97	98.4	2.00	0.377	
Toluene*	<0.050	0.050	11/12/2013	ND	1.99	99.7	2.00	1.22	
Ethylbenzene*	<0.050	0.050	11/12/2013	ND	2.00	99.8	2.00	1.66	
Total Xylenes*	<0.150	0.150	11/12/2013	ND	5.91	98.6	6.00	2.32	
Total BTEX	<0.300	0.300	11/12/2013	ND					
Surrogate: 4-Bromofluorobenzene (PIL	107	% 89.4-12	6						
TPH 8015M	mg/	kg	Analyze	d By: MS	·				
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	11/11/2013	ND	170	84.9	200	11.6	
DRO >C10-C28	<10.0	10.0	11/11/2013	ND	169	84.5	200	6.55	
Surrogate: 1-Chlorooctane	98.0	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	109 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Ltability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whitsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incidental by Cardinal by client for any affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laborations.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 7 of 9

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other rause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for invidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kene

Celey D. Keene, Lab Director/Quality Manager

Page 8 of 9

† Cardinal o	Delivered By: Sampler - UPS		Relinquished By:	A Consumbiliary	analyses. All claims including thos service. In no event shall Cardinal afflates or successors arising out	PLEASE NOTE: Liability and			6	8	ę	W	2		H302741	Lab I.D.			Sampler Name:	Project Location:	Project Name:	Project #: Weens	Phone #: (1/32	City:	Address:	Project Manager:	Company Name:		
Cardinal cannot accept verbal changes. Please fax written changes to (575) 393-3826	(Circle One) - Bus - Other:		-	D	aralyses. All claims including those for negigence and any other cause whatsoever shall be doemed where in writing and received by Cardinal within 30 days etter competion of the expletable arrives. In no event shall cardinal be liable for incidental damages, including without limitation, business interruptions, less of use, or loss of profits including client, its subsidiares, artification or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise.	PLEASE NOTE: Lability and Damages. Cardinal's lability and client's exclusive remedy for any claim afsing whether based in contract or lost shall be limited to the amount pad by the client for the			TI (AND) II	T-1(1442) 8'	T-1 (AHA)6'	T-1 (AH2) 4'	T-1(A42)2'	T-&1/AH2)		Sample I.D.		19-	R	5	112105595	The HIR	250-0680			IK Towned	604	101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476	
changes. Please fax	5.4.2		Date: Re	Time: / 72	cause whatsoever shall be deeme equental damages, including withoute e of services hereunder by Candinal	ient's exclusive remedy for any dai		~	9 S3. P.	(4-EB) 6	1 (83, 4)	(4'EB) 6	14'24) 6	2' 14'EB) 6	(G)RAB)OMP.					Project Owner:	Fax #:	State: Zip:		67		Hobbs, NM 88240 ((575) 393-2476	
t written changes to	Cool Infact		deived By:	ndi 1	d waived unless made in writing an ut fimitation, business interruptions, I, regardless of whether such dasim	m arising whether based in contract									# CONT GROUN WASTEN SOIL OIL SLUDGE	DWAT WATEF	ER R	H MATRIX		i		(olin						-	
14-54 14-54			(hunder	Hase made in writing and received by Castrinal within 30 days efter completion of the ep business interruptione, hos of use, or loss of profits incurred by client, its subsidiaries, of whether such claim is based upon any of the above stated reasons or otherwise.	t or tort, shall be limited to the arrou								11/11/	OTHER ACID/BA ICE / CC OTHER DATE	ASE: DOL		SERV	Fay #	*	State: Zip:	city:	Address:	Attn:	Company:	P.O. #:	1111811-1		
	ive to	د_	- Shricht		a efter completion of the applicable of by client, its subsidiantes, led reasons or otherwise.	nt paid by the client for the			×	K.;	~			13 2	TIME	Н		SAMDI ING										•	CHAIN-OF-CU
	tavarez	(export	Sam Rold	D Yes D No A					×	×	X	×~		<u>ل</u> ار ا	BÍ	Tex											A		
	wavez a tetratech. com	in a tetra tech lan		Add'l Fax #:																-	P .					- 1	ANALYSIS REQUEST		STODY AND ANALYSIS REQUEST
	Jech. Ce	r .com																									IEST		IS REQUES
	M						$\left \right $												<u> </u>										[-1

Page 9 of 9

Laboratories