SITE INFORMATION

.A. T. D. --

		пероп	Type: Cio	sure nep	JOIL
General Site Info	ormation:	is transf	加入公司中国行		
Site:		White Oak S	tate Tank Batte	ry	1 1
Company:		COG Operat	ing LLC		
Section, Townsl	hip and Range	Unit P	Sec 23	T17S	R28E
Lease Number:		API-30-015-2	9749		
County:		Eddy County	/		
GPS:	, 		32.81503° N		104.13927° W
Surface Owner:		State			
Mineral Owner:					
Directions:		and travel for (torn the intersection to onto CR 209 and 0.1 miles, turn righ	n of Haggerri I travel for 1.1 I to site.	miles, turn right and travel for 0.5 miles, turn righ
Release Data:				1.45 . 829.4	
Date Released:		3/2	5/2012		HEUEIVLU
Type Release:		Produ	ced Water		NOV 0 1 2012
Source of Contar	nination:	Wa	ter Tank		NUVULENE
Fluid Released:		2	0 bbls		
Fluids Recovered	7: 	2	U DDIS	1987 - 20 AV	
Official Commu					
Name:	Pat Ellis				Ike Tavarez
Company:	COG Operating, LL	.C			Tetra Tech
Address:	550 W. Texas Ave.	Ste. 1300			1910 N. Big Spring
P.O. Box					
Citv:	Midland Texas, 797	'01		1	Midland, Texas
Phone number:	(432) 686-3023	•ī			(432) 682-4559
Fav	(432) 684-7137			<u> </u>	
Fmail:			···· ·····		ike tavarez@tetratech.com
	Ipenis e conchoreso	dices.com	an an an tha ann an Anna an Anna an Anna	and the second second second second second	INC. LAVAICE & LETI ALCON.COM
Ranking Criteria					
Depth to Groundw	vater:		Ranking Score	T	Site Data
<50 ft			20	1	
50-99 ft	· · · · · · · · · · · · · · · · · · ·		10		
>100 ft.			0		0
WollHood Protocti		· · · · · · · · · · · · · · · · · · ·	Panking Cooro	1	Cita Data
Water Source <1 (00. 00 ft Private <200 f	+	Pranking Score		Sile Data
Water Source >1,0	000 ft., Private >200 f	t.	0		0
				1	
Surface Body of V	Vater:		Ranking Score		Site Data
<200 ft.		-	20		
200 ft - 1,000 ft.			10		0
~1,000 II.			LU		U
Tot	al Ranking Score	ho fa Zakiji		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
		Accenta	ble Soil BRAIN	ma/ka)	
		Benzene	Total BTFX	TPH	
		10	50	5.000	
		B			u da

October 19, 2012

Mr. Mike Bratcher Environmental Engineer Specialist Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report for the COG Operating LLC., White Oak State Tank Battery, Unit P, Section 23, Township 17 South, Range 28 East, Eddy County, New Mexico.

Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating LLC. (COG) to assess a spill from the White Oak State Tank Battery located in Unit P, Section 23, Township 17 South, Range 28 East, Eddy County, New Mexico (Site). The spill site coordinates are N 32.81503°, W 104.13927°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on March 25, 2012, and released approximately twenty (20) barrels of produced water from the water tank. To alleviate the problem, COG personnel returned power to the CVE. Eighteen (18) barrels of standing fluids were recovered from the release. The spill remained inside the firewalls of the facility and measured approximately 5' X 30'. The initial C-141 form is enclosed in Appendix A.

Groundwater

No water wells were listed within Section 23. According to the USGS, a well located in Section 22 reported a depth to groundwater at 79' below surface. In addition, the NMOCD groundwater map showed the groundwater depth in this area of approximately at 100' below surface. The groundwater data is shown on Figure B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5,000 mg/kg.

Soil Assessment and Analytical Results

On April 18, 2012, Tetra Tech personnel inspected and sampled the second release. One (1) auger hole (AH-1) was installed using a stainless steel hand auger to assess the impacted soils. Selected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory reports and chain-of-custody documentation are included in Appendix C. The sampling results are summarized in Table 1. The auger hole location is shown on Figure 3.

The area of AH-1 showed TPH and BTEX concentrations above the RRAL, but declined at a depth of 5.5' below surface. Elevated chloride concentrations were present and were not vertically defined.

Remediation and Conclusions

On May 17, 2012, Tetra Tech personnel supervised the excavation of the site. The excavation depths are highlighted in Table 1 and shown on Figure 4. Approximately 20 yards of impacted material was removed and disposed of properly at the R360 facility. The excavated area measured approximately 5' x 30' and a depth 5.0' below surface. Tetra Tech collected a bottom hole samples (5.0') and installed a backhoe trench to define the chloride extents. Referring to Table 1, the bottom hole samples did not show TPH or BTEX concentrations exceeding the RRAL. The trench (T-1) samples did not show a significant impact to the soils.

Once excavated, a clay material was installed in the excavation bottom and backfilled with clean material to surface grade.

Based on the remediation activities performed at this location, COG request closure for site. The C-141 (Final) is included in Appendix A. If you have any questions or comments concerning the assessment or the remediation activities performed at the site, please call me at (432) 682-4559.

Respectfully submitted, TETRA/DECH

Îke Tavaréz, PG Senior Project Manager

l

cc: Pat Ellis - COG

Figures

- Stadmill		Windmill	Maindmille 3000	
The Art is -	Windmin	Wind mill S	\$	
24/9/2 Windmill		Bindmill		
	and the second second		17-512	
Windmills		Worker Ishu		
e ze- i- Windmill	24 E			EDDY
Rench	Alada	A latic Late		
OM GNOMAIG	UND	Pland Sector		
		Numcrous, smail) it	akes 3737. 444 2 3 4	
	-3775 PAVO	(MISA 2500)		<u>1</u>
		Cii? Se field	Oil and Casif	
O Phaindestruen			Wareheuse S	
Windmit				1140.200
	effe Rinca	Ranch Z	-4-1	Ou and G
	Gil tool:			Hillstower
-CAN ORA W	Writehouse .	Slope		irlls
Gil Fining	Tio towar		e di t and Qa	Field
niping station			Plant	
	acomp	Watehouse		
iagin				A
Rance (Dill)	udoping statica i vol		Rama	Teres
			01	£
Camp - Camp - Purru	ing Station V			S.S.S.
hand the second se				
Winom II	e) Is smalf läkes			
Sector Sector				
		all a second and a s)
		Numerous small deves	Figure 1 White Oak State TB	
			Iopo Map 1:200,000	ł
	- P 12275	dmill - Baach	Eddy County, New Mexico Project : 114-6401145	
wantile	Ranch	SCALE: 1 In = 16,667 fee	Date : 2/10/2012	R
LANG A TOMAS TOTALS	自己的复数建筑和设备		1 HE . FI. 131310401140	

Drawn By: faabel Marmolejo

Drewn By: Isabel Marmolejo

Tables

Table 1 COG Operating LLC. White Oak State #1 Eddy County, New Mexico

0	Comple Date	Sample	Soil	Status	1	[PH (mg/l	<g)< th=""><th>Benzene</th><th>Toluene</th><th>Ethlybenzene</th><th>Xylene</th><th>Total</th><th>Chloride</th></g)<>	Benzene	Toluene	Ethlybenzene	Xylene	Total	Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-1	4/18/2012	3-3.5		X	5,490	1,110	6,600	3.92	45.9	50.3	93:2(193	7,780
		4-4.5		X	5,920	2,050	7,970	6.43	65.2	71.2	127	270	2,690
		5-5.5		X	<2.00	<50.0	<50.0	<0.200	<0.200	<0.200	<0.200	- <0:200	4,870
	11	6-6.5	Х		<2.00	<50.0	<50.0	<0.200	<0.200	<0.200	<0.200	<0.200	3,250
	F/17/0010										[
Trench-1	5/1//2012	6	X		-	-	-	-	-	-	-	-	24.9
	0	8	X		-	-	-	-	-	-	-	-	<20.0
	R.	10	X		-	-	-	-	-	-	-	-	<20.0
Bottom Hole	5/17/2012	5	X		<2.00	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	-
8													

Not Analyzed

Excavated Depths

Clay Liner

Photos

View of T-1

COG Operating LLC White Oak State Tank Battery Eddy County, New Mexico

Installation of clay material

View West - Backfill

Appendix A

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

			Rele	ase Notific	ation	and Co	orrective A	ction		
						OPERA	ror	🔲 Initi	al Report 🛛 Fii	nal Report
Name of Co	mpany	CO0	G Operat	ting LLC	(Contact	P	at Ellis		
Address	550 W. Te	exas, Suite 1	300 Mid	land, Texas 79'	701 1	Felephone N	No. (432)	230-0077		
Facility Nan	ne	Wh	ite Oak	State #1		Facility Typ	e Tanl	k Battery		
Surface Own	ner: State			Mineral C)wner			Lease N	No. (API#) 30-015-29	9749
				LOCA	TION	N OF REI	LEASE			
Unit Letter P	Section 23	Township 17S	Range 28E	Feet from the	North/	South Line	Feet from the	East/West Line	County Eddy	
			1	Latitude N 32.8 NAT	31503° <u>'URE (</u>	Longitud <u>OF RELI</u>	e W 104.13927 E ASE	70		
Type of Relea	ase: Produce	ed Water				Volume of	Release 20 bbls	Volume I	Recovered 18 bbls	
Source of Rel	ease: Water	r Tank				Date and H 03/25/2012	our of Occurrence	e Date and 03/25/20	Hour of Discovery 12 4:00 a.m.	
Was Immedia	te Notice C	iiven?	Yes 🛛	No 🛛 Not Re	equired	If YES, To	Whom?			
By Whom?						Date and H	our		·····	
Was a Watero	course Reac	hed?	Yes 🛛	No		lf YES, Vo N/A	lume Impacting th	he Watercourse.		
If a Watercou	rse was Imj	pacted, Descri	be Fully.*			1		RE	CEIVED	
Describe Cau	se of Proble	m and Reme	tial Action	1 Taken *						
Water tank ra	n over due	to loss of pow	er at the fa	acility. CVE retu	rned pow	ver.		NO NMOC	V 0 1 2012	
Describe Area	Affected a	Ind Cleanup A	ction Tak	en.*						
Tetra Tech pe proper dispos NMOCD for	ersonnel ins al. The site review.	pected the site was then brou	and colle ight up to	cted samples to d surface grade wit	efine the h clean b	spills extent backfill mater	. Soil that exceede ial. Tetra Tech pr	ed RRAL was rem epared a closure re	oved and hauled to R3 eport and submitted it t	60 for o
I hereby certi- regulations al public health should their o or the environ federal, state,	fy that the in l operators a or the envir perations ha iment. In a or local law	nformation gi are required to onment. The ave failed to a ddition, NMO vs and/or regu	ven above o report an acceptanc dequately CD accep lations.	is true and compl d/or file certain re e of a C-141 repo investigate and re tance of a C-141 r	lete to th elease no ort by the emediate report do	e best of my otifications ar NMOCD ma contaminationes not relieve	knowledge and un ad perform correct arked as "Final Re on that pose a thre e the operator of r	nderstand that purs tive actions for rel port" does not rel eat to ground wate esponsibility for c	suant to NMOCD rules eases which may endar ieve the operator of lial r, surface water, human ompliance with any oth	and nger bility n health ner
Signature: Z	JV.	1 q	\supset	t our			OIL CONS	SERVATION	DIVISION	
Printed Name	: Ike Tavar	z AZ	UT O	h COp		Approved by	District Superviso	or:		
Title: Project	Manager					Approval Date	e:	Expiration	Date:	
E-mail Addre	ss: Ike.Tava	uez@TetraTe	ch.com	· · · · · · · · · · · · · · · · · · ·	0	Conditions of	Approval:		Attached	
Date: /0-	-18_1	2	Phone:	(432) 682-4559						
Attach Addit	ional Shee	ts If Necess	ary							

District 1 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 1 16 on back side of form

Release Notification and Corrective Action

						OPERA	FOR		🛛 Initi	ial Report		Final Repor
Name of Co	ompany	COG OP	ERATIN	IG LLC		Contact	Pi	at Ellis				
Address	550 W.	Texas, Suite	: 100, Mi	dland, TX 79701	1	Telephone 1	No. 432-	230-00	77			
Facility Na	me	White (Dak State	#]		Facility Typ	e Tan	k Batte	ry			
Surface Ow	ner State	B		Mineral O	wner				Lease 1	No. (API#	30-01	5-29749
				LOCA	TIO	N OF REI	LEASE					
Unit Letter P	Section 23	Township 17S	Range 28E	Feet from the	North	South Line	Feet from the	East/	West Line	County	Eddy	
	•	.		Latitude 32.	.8150	Longit	ude 104.1392					
				NAT	URE	OF REL	EASE					
Type of Rele	ase Produc	ed water				Volume of	Release 20bbls		Volume	Recovered	8bbls	
Source of Re	icase wau	EL IBINY				03/25/2012	tour of Occurrenc	ę	03/25/20	12 4:00 a.m	covery	
Was Immedi	ate Notice (Given?	Yes 🛛	No 🛛 Not Re	quired	If YES, To	Whom?					
By Whom?						Date and H	lour					
Was a Water	course Read	ched?	Yes 🛛	No		If YES, Vo	olume Impacting t	he Wat	ercourse.			
If a Watercou	irse was Im	pacted, Descri	ibe Fully."	y			<u></u>	<u></u>				******
Describe Cau	ise of Proble	em and Reme	tial Action	n Taken.*				<u></u>				
Water tank ra	n over due	to loss of pow	er at the f	acility. CVE retur	med pov	wer.						~
Describe Are	a Affected a	and Cleanup A	ction Tak	en.*							•	
Initially 20bb measured and submit a work	is were rele l area of rou k plan for aj	ased from the ighly 5° x 30°. pproval prior t	water tan Tetra Te to any sign	k and we were able ch will sample the lificant remediation	e to rece spill si n work.	over 18bbls w te area to deli	vith a vacuum true neate any possibl	ck. The e contai	fluids rele nination fr	ased inside t om the relea	he dike se and v	erea and we will
I hereby certi regulations al public health should their o or the environ federal, state,	fy that the in l operators a or the envir perations ha ment. In a or local law	nformation given are required to comment. The ave failed to a ddition, NMO vs and/or regu	ven above o report an acceptanc dequately CD accept lations.	is true and completed of the certain re- e of a C-141 report investigate and re- tance of a C-141 re-	ete to th lease no rt by the mediate eport do	te best of my otifications and NMOCD ma contaminationes not relieve	knowledge and un ad perform correct arked as "Final Re on that pose a three the operator of n	nderstar live acti port" d at to gr esponsi	ed that purs ons for rele oes not reli ound water bility for co	want to NM eases which eve the open r, surface wa compliance w	DCD ru may en ator of ter, hun ilh any	les and danger liability nan health other
Signature:	/	2	$\overline{7}$	2			OIL CONS	SERV	ATION	DIVISIC	N	
Printed Name	: 6	Josh	Russo	\geq		Approved by I	District Superviso	τ: 	· · · · · · · · · · · · · · · · · · ·			
Title:		HSE Co	ordinator		A	Approval Date	D:		Expiration	Date:		
E-mail Addre	SS:	jrusso@concl	ioresource	25.0010		Conditions of	Approval:			Attached		
Date: 04/	05/2012	Pl	ione:	432-212-2399								

* Attach Additional Sheets If Necessary

Appendix B

Water Weil Data Average Depth to Groundwater (ft) COG - White Oal State Tank Battery Eddy County, New Mexico

	16 9	South		27 East			16	South	:	28 East			16 Se	outh	:	29 Ea
6	5	4	3	2	1	6	5	4	3	2	1	6	5	4	3	5
7	B	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14
19	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23
	_	_	_					61				110		I		
30	29	28	27 70	26	25	30	29	28	27	26	25	30	29	28	27	26
31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35
	17 :	South		27 East			17	South		28 East		L	17 S	outh		 29 E
6	5	4	3	2	1	6	5	4	3	2	1	6	5	4	3	2
7 318	8	9	10	11 54	12	7	8	9	10	11	12	7	8	9	10	-11
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	-14
86	283	194														
19	20	21	22	23 40	24	19	20	21	22 79	23 SITE	24	19	20	21	22	80 2
30	29	28	27	26	25	30	29	28	27	26	25	30	29 210	28	27	26
31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	3
	120								53							15
	18 :	South		27 East			18	South	2	28 East			18 Se	outh		29 E
6	5	4	3	2	1	6	5	4	3	2		6	5	4	3	2
7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14
9	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	2
30	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26
31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	-3
	1	1	1	1	1 1		1		1	177			1	1 [*]	1	Ľ

New Mexico State Engineers Well Reports

USGS Well Reports

Field water level

New Mexico Water and Infrastructure Data System

SITE

Appendix C

.

Summary Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX 79705

Project Location:Eddy Co., NMProject Name:COG/White Oak State #1Project Number:114-6401363

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
295157	AH-1 3-3.5'	soil	2012-04-18	00:00	2012-04-24
295158	AH-1 4-4.5'	soil	2012-04-18	00:00	2012-04-24
295159	AH-1 5-5.5'	soil	2012-04-18	00:00	2012-04-24
295160	AH-1 6-6.5'	soil	2012-04-18	00:00	2012-04-24

			BTEX	TPH DRO - NEW	TPH GRO	
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
295157 - AH-1 3-3.5'	3.92	45.9	50.3	93.2	1110 Q8	5490 Qr,Qs
295158 - AH-1 4-4.5'	6.43	65.2	71.2	127	2050	5920 Qr,Qs
295159 - AH-1 5-5.5'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0	<2.00 Qr.Qs
295160 - AH-1 6-6.5'	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0	<2.00 qr,qs

Sample: 295157 - AH-1 3-3.5'

Param	Flag	Result	Units	RL
Chloride		7780	mg/Kg	4

Sample: 295158 - AH-1 4-4.5'

Param	Flag	Result	Units	RL
Chloride		2690	mg/Kg	4

Sample: 295159 - AH-1 5-5.5'

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

Report Date: May 4, 2012

Work Order: 12042422

Report Date: May	4, 2012	Work Order: 12042422	Pa	ge Number: 2 of 2
Param	Flag	\mathbf{Result}	Units	RL
Chloride		4870	mg/Kg	4
Sample: 295160 ·	· AH-1 6-6.5'			
Param	Flag	Result	Units	RL
Chloride		3250	mg/Kg	4

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100

Midland. Texas 79703 Carroliton. Texas 75006

972-242-7750 E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

Certifications

WBE HUB NCTRCA DBE NELAP DOD LELAP Kansas Oklahoma ISO 17025

Analytical and Quality Control Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX, 79705

Report Date: May 4, 2012

Work Order: 12042422

Project Location: Eddy Co., NM COG/White Oak State #1 **Project Name:** Project Number: 114-6401363

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
295157	AH-1 3-3.5'	soil	2012-04-18	00:00	2012-04-24
295158	AH-1 4-4.5'	soil	2012-04-18	00:00	2012-04-24
295159	AH-1 5-5.5'	soil	2012-04-18	00:00	2012-04-24
295160	AH-1 6-6.5'	soil	2012-04-18	00:00	2012-04-24

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 27 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael Alla

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Report Contents

Case Narrative	4
Analytical Report Sample 295157 (AH-1 3-3.5') Sample 295158 (AH-1 4-4.5') Sample 295159 (AH-1 5-5.5') Sample 295160 (AH-1 6-6.5')	5 6 7 9
Method Blanks 1 QC Batch 90553 - Method Blank (1) 1 QC Batch 90586 - Method Blank (1) 1 QC Batch 90611 - Method Blank (1) 1 QC Batch 90612 - Method Blank (1) 1 QC Batch 90687 - Method Blank (1) 1 QC Batch 90687 - Method Blank (1) 1 QC Batch 90687 - Method Blank (1) 1 QC Batch 90686 - Method Blank (1) 1 QC Batch 90689 - Method Blank (1) 1 QC Batch 90712 - Method Blank (1) 1 QC Batch 90866 - Method Blank (1) 1	 11 11 11 12 12 12 13 13
Laboratory Control Spikes I QC Batch 90553 - LCS (1) I QC Batch 90586 - LCS (1) I QC Batch 90611 - LCS (1) I QC Batch 90612 - LCS (1) I QC Batch 90687 - LCS (1) I QC Batch 90586 - LCS (1) I QC Batch 90566 - MS (1) I QC Batch 90586 - MS (1) I QC Batch 90586 - MS (1) I QC Batch 90687 - MS (1) I QC Batch 90686 - MS (1) I QC Batch 90866 - MS (1) I	14 14 14 15 16 17 17 18 18 19 20 20 21 21
Calibration Standards 2 QC Batch 90553 - CCV (3) 2 QC Batch 90553 - CCV (4) 2 QC Batch 90586 - CCV (2) 2 QC Batch 90586 - CCV (3) 2 QC Batch 90586 - CCV (3) 2 QC Batch 90611 - CCV (1) 2 QC Batch 90611 - CCV (2) 2 QC Batch 90612 - CCV (1) 2 QC Batch 90612 - CCV (2) 2 QC Batch 90612 - CCV (2) 2 QC Batch 90612 - CCV (2) 2 QC Batch 90612 - CCV (1) 2 QC Batch 90612 - CCV (2) 2 QC Batch 90687 - CCV (1) 2	 23 23 23 23 23 24 24 24 25

Page 2 of 27

QC Batch 90687 - CCV (2) .					 			•			•							 				 •				
QC Batch 90689 - CCV ((1) .					 													 				 •				
QC Batch 90689 - CCV ((2) .					 													 			• •	 •				
QC Batch 90712 - CCV ((2) .					 													 							. ,	
QC Batch 90712 - CCV ((3) .					 																					
QC Batch 90866 - CCV (1).								•			• •															
QC Batch 90866 - CCV ((2) .	••	 •	• •	•	 •	•		•	•••	•	• •	• •		•	• •	•	 •	 •	• •				•	•		•
ppendix																											
Report Definitions						 																					
Laboratory Certifications						 			•										 •								
Standard Flags						 																					
Attachments						 																					

Case Narrative

Samples for project COG/White Oak State #1 were received by TraceAnalysis, Inc. on 2012-04-24 and assigned to work order 12042422. Samples for work order 12042422 were received intact at a temperature of 1.4 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	\mathbf{QC}	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	76879	2012-04-25 at 10:55	90611	2012-04-25 at 11:11
BTEX	S 8021B	76942	2012-04-27 at 09:13	90687	2012-04-27 at 09:28
Chloride (Titration)	SM 4500-Cl B	77061	2012-05-01 at 08:50	90866	2012-05-03 at 15:13
TPH DRO - NEW	S 8015 D	76815	2012-04-24 at 13:11	90553	2012-04-24 at 14:58
TPH DRO - NEW	S 8015 D	76854	2012-04-25 at 13:34	90586	2012-04-25 at 13:36
TPH DRO - NEW	S 8015 D	76960	2012-04-30 at 14:38	90712	2012-04-30 at 14:40
TPH GRO	S 8015 D	76879	2012-04-25 at 10:55	90612	2012-04-25 at 11:39
TPH GRO	S 8015 D	76942	2012-04-27 at 09:13	90689	2012-04-30 at 09:56

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 12042422 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: May 4, 2012 114-6401363 Work Order: 12042422 COG/White Oak State #1 Page Number: 5 of 27 Eddy Co., NM

Analytical Report

Sample: 295157 - AH-1 3-3.5'

Laboratory:	Midland BTEX		Analytic	al Methor	1. 5.80	91R		Pren Met	thod	S 5035
Analysis.	00611		Data An	al memor	2012	-04-25		Δ nalvzed	Bw	te
Pren Batch	76870		Sample I	aryzeu. Prenaratic	2012	-04-25		Prepared	By.	te
i tep Daten.	10015		Dampie	reparation		01 20		rioparea	. 29.	00
					\mathbf{RL}					
Parameter	Fl	ag	Cert	t	Result	U	nits	Dilution		\mathbf{RL}
Benzene			1		3.92	mg/	/Kg	50		0.0200
Toluene			1		45.9	mg/	′Kg	50		0.0200
Ethylbenzene	9		1		50.3	mg/	/Kg	50		0.0200
Xylene			1		93.2	mg/	/Kg	50		0.0200
							Spike	Percent	Rec	covery
Surrogate		Flag	Cert	Result	\mathbf{Units}	Dilution	Amount	Recovery	Li	mits
Trifluorotolue	ene (TFT)			44.1	mg/Kg	50	50.0	88	75 -	135.4
4-Bromofluor	obenzene (4-BFB)			58.8	mg/Kg	50	50.0	118	63.6	- 158.9
Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 90866 77061	Ŧ	Ana Dat San Cart	alytical M se Analyzo nple Prep	ethod: ed: aration: RL Begult	SM 4500-Cl 2012-05-03 2012-05-01	B	Prep M Analyz Prepar Dilution	fethod: ed By: ed By:	N/A AR AR BL
Chlorido	r laį	3	Cert		7780			10		<u></u>
Sample: 29 Laboratory: Analysis: QC Batch: Prep Batch:	5157 - AH-1 3-3.5' Midland TPH DRO - NEW 90553 76815		Ar Da Sa	nalytical M ate Analy: mple Prej	Method: zed: paration: RL	S 8015 D 2012-04-24 2012-04-24		Prep M Analyz Prepar	fethod: ed By: ed By:	N/A DA DA
Parameter	Fla	g	Cert		Result	τ	Jnits .	Dilution		\mathbf{RL}
DRO	Qs	• 	1		1110	mg	/Kg	5		50.0

Report Date: 114-6401363	May 4,	2012		CO	Vork Order: G/White Oa	Page N	umber: 6 of 27 Eddy Co., NM		
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane	Qar	Qar		186	mg/Kg	5	100	186	49.3 - 157.5

Sample: 295157 - AH-1 3-3.5'

Laboratory:	Midland									
Analysis:	TPH GRO			Analyti	cal Metho	od: S8	8015 D		Prep Met	thod: S 5035
QC Batch:	90612			Date A	nalyzed:	201	12-04-25		Analyzed	By: tc
Prep Batch:	76879			Sample	Preparat	ion: 201	12-04-25		Prepared	By: tc
						\mathbf{RL}				
Parameter		Flag		Cert		Result		Units	Dilution	\mathbf{RL}
GRO		Qr,Qs		1		5490	m	g/Kg	50	2.00
								Spike	Percent	Recovery
Surrogate			Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolue	ene (TFT)				47.1	mg/Kg	<u>50</u>	50.0	94	58.5 - 155.1
4-Bromofluor	obenzene (4-BFB)				61.9	mg/Kg	<u>50</u>	50.0	124	45.1 - 162.2

Sample: 295158 - AH-1 4-4.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland BTEX 90611 76879		Analytics Date Ans Sample F	al Method: alyzed: Preparation	S 8021 2012-0 n: 2012-0	1B 14-25 14-25		Prep Meth Analyzed I Prepared I	od: S 5035 By: tc By: tc
					\mathbf{RL}				
Parameter		Flag	Cert	;	Result	Un	its	Dilution	\mathbf{RL}
Benzene			1		6.43	mg/	Kg	50	0.0200
Toluene			1		65.2	mg/l	Kg	50	0.0200
Ethylbenzene	9		1		71.2	mg/l	Kg	50	0.0200
Xylene			1		127	mg/	Kg	50	0.0200
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolue	ene (TFT)			51.0	mg/Kg	50	50.0	102	75 - 135.4
4-Bromofluor	obenzene (4-BFB)			61.7	mg/Kg	50	50.0	123	63.6 - 158.9

114-6401363	: May 4, 2012			ork Order: 1204 G/White Oak St	2422 ate #1		Page N	umber: Eddy C	7 of 2' 0., NM
Sample: 29	5158 - AH-1 4	-4.5'							
Laboratory:	Midland								
Analysis:	Chloride (Titr	ation)	Anal	ytical Method:	SM 4500	D-Cl B	Prep N	Method:	N/A
QC Batch:	90866		Date	Analyzed:	2012-05-	-03	Analyz	zed By:	AR
Prep Batch:	77061		Sam	ble Preparation:	2012-05-	.01	Prepar	rea By:	AR
				RL					
Parameter		Flag	Cort	Result		Units	Dilution		RL
		1.100	Oer t	1000 010			Dilution		
Chloride Sample: 29 Laboratory:	5158 - AH-1 4 Midland	-4.5'		2690	S 8015	mg/Kg		(othod)	4.00
Chloride Sample: 29 Laboratory: Analysis: QC Batch: Prep Batch:	5158 - AH-1 4 Midland TPH DRO - N 90586 76854	-4.5' EW	Ana Dat Sarr	lytical Method: e Analyzed: ple Preparation	S 8015 2012-04 : 2012-04	mg/Kg D I-25 I-25	Prep M Analyz Prepar	Method: zed By: red By:	4.00 N/A DA DA
Chloride Sample: 29 Laboratory: Analysis: QC Batch: Prep Batch:	5158 - AH-1 4 Midland TPH DRO - N 90586 76854	-4.5' EW	Ana Dat Sarr	lytical Method: e Analyzed: ple Preparation RL	S 8015 2012-04 : 2012-04	mg/Kg D I-25 I-25	Prep M Analyz Prepar	Method: zed By: red By:	4.00 N/A DA DA
Chloride Sample: 29 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	5158 - AH-1 4 Midland TPH DRO - N 90586 76854	-4.5' EW Flag	Ana Dat Sarr Cert	lytical Method: e Analyzed: ple Preparation RL Result	S 8015 2012-04 : 2012-04	mg/Kg D I-25 I-25 Units	Prep M Analyz Prepar Dilution	Method: zed By: red By:	4.00 N/A DA DA RL
Chloride Sample: 29 Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO	5158 - AH-1 4 Midland TPH DRO - N 90586 76854	-4.5' EW Flag	Ana Dat Sarr Cert	lytical Method: e Analyzed: ple Preparation RL Result 2050	S 8015 2012-04 : 2012-04	mg/Kg D L-25 L-25 Units mg/Kg	Dilution 5	Method: zed By: red By:	4.00 N/A DA DA RL 50.0
Chloride Sample: 29 Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO	5158 - AH-1 4 Midland TPH DRO - N 90586 76854	-4.5' EW Flag	Ana Dat Sarr Cert	lytical Method: e Analyzed: ple Preparation RL Result 2050	S 8015 2012-04 : 2012-04	mg/Kg D I-25 I-25 Units mg/Kg Spike	Dilution Dilution	Method: zed By: red By: Reco	4.00 N/A DA DA RL 50.0
Chloride Sample: 29 Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO Surrogate	5158 - AH-1 4 Midland TPH DRO - N 90586 76854 Flag	-4.5' EW Flag	Ana Dat Sam Cert	2690 lytical Method: e Analyzed: .ple Preparation RL Result 2050 Units I	S 8015 2012-04 : 2012-04 Pilution	mg/Kg D I-25 I-25 Units mg/Kg Spike Amount	Dilution Dilution Recovery	Method: zed By: red By: Reco Lin	4.00 N/A DA DA RL 50.0 overy nits

Analysis: QC Batch: Prep Batch:	TPH GRO 90612 76879			Analytic Date Ar Sample	cal Metho nalyzed: Preparat	od: S 8 201 ion: 201	015 D 2-04-25 2-04-25		Prep Met Analyzed Prepared	thod: S 5035 By: tc By: tc
						\mathbf{RL}				
Parameter		Flag		Cert		Result	τ	Jnits	Dilution	\mathbf{RL}
GRO		Qr,Qs		1		5920	mį	g/Kg	50	2.00
Surrogate			Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolue	ene (TFT)				52.3	mg/Kg	50	50.0	105	58.5 - 155.1
4-Bromofluor	obenzene (4-BFB)				68.7	mg/Kg	50	50.0	137	45.1 - 162.2

Report Date: May 4, 2012	Work Order: 12042422	Page Number: 8 of 27
114-6401363	COG/White Oak State #1	Eddy Co., NM

Sample: 295159 - AH-1 5-5.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland BTEX 90687 76942			Analytica Date Ana Sample P	al Method alyzed: reparatio	l: S 8021 2012-0 n: 2012-0	lB)4-27)4-27		Prep Met Analyzed Prepared	hod: By: By:	S 5035 tc tc
						\mathbf{RL}					
Parameter		Flag		Cert		Result	U	nits	Dilution		\mathbf{RL}
Benzene		U		1		< 0.0200	mg	/Kg	1		0.0200
Toluene		υ		1		< 0.0200	mg	/Kg	1		0.0200
Ethylbenzene	•	U		1		< 0.0200	mg	/Kg	1		0.0200
Xylene		υ		1		<0.0200	mg	/Kg	1		0.0200
								Spike	Percent	Re	covery
Surrogate]	Flag	Cert	Result	Units	Dilution	Amount	Recovery	L	imits
Trifluorotolue	ene (TFT)				2.00	mg/Kg	1	2.00	100	75	- 135.4
4-Bromofluor	obenzene (4-BFB)				1.93	mg/Kg	1	2.00	96	63.6	- 158.9

Sample: 295159 - AH-1 5-5.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 90866 77061	Analyt Date A Sample	cical Method: Analyzed: e Preparation:	SM 4500-Cl B 2012-05-03 2012-05-01	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			\mathbf{RL}			
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}
Chloride			4870	mg/Kg	10	4.00

Sample: 295159 - AH-1 5-5.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NI 90712 76960	EW	An Da Sar	Analytical Method: Date Analyzed: Sample Preparation:			D 4-30 4-30	Prep M Analyz Prepar	Prep Method: Analyzed By: Prepared By:	
					RL					
Parameter		Flag	Cert		Result		Units	Dilution		\mathbf{RL}
DRO	······································	υ	1		<50.0		mg/Kg	1		50.0
Surrogate	Flag	Cert	Result	Units	Dilu	tion	Spike Amount	Percent Recovery	Reco Lin	overy nits
n-Tricosane			131	mg/Kg	1		100	131	49.3 -	157.5

Report Date: May 4, 2012 114-6401363			Work COG/W	Order: 1 hite Oak	2042422 State #1		Page Number: 9 of 27 Eddy Co., NM		
Sample: 29	5159 - AH-1 5	-5.5'							
Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH GRO 90689 76942		Analytical M Date Analyze Sample Prepa	ethod: ed: eration:	S 8015 D 2012-04-30 2012-04-27		Prep Method: Analyzed By: Prepared By:	S 5035 tc tc	
Parameter		Flag	Cert	Res	RL	Units	Dilution	\mathbf{RL}	

GRO	Qr,Qs,U	1		<2.00	mg/Kg		1	2.00	
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
Trifluorotoluene (TFT)			2.10	mg/Kg	1	2.00	105	58.5 - 155.1	
4-Bromofluorobenzene (4-BFB)			1.86	mg/Kg	1	2.00	93	45.1 - 162.2	

Sample: 295160 - AH-1 6-6.5'

Laboratory: Analysis: QC Batch: Prep Batch:	Midland BTEX 90687 76942		Analytica Date Ana Sample P	al Method alyzed: reparatio	l: S 8021 2012-0 m: 2012-0	B)4-27)4-27		Prep Met Analyzed Prepared	hod: S 5035 By: tc By: tc
					RL				
Parameter		Flag	Cert		Result	U	nits	Dilution	\mathbf{RL}
Benzene		U	1		< 0.0200	mg/	′Kg	1	0.0200
Toluene		U	1		< 0.0200	mg/	′Kg	1	0.0200
Ethylbenzene	•	U	1		< 0.0200	mg/	′Kg	1	0.0200
Xylene		υ	1		<0.0200	mg/	′Kg	1	0.0200
Surrogate		Fla	g Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolue	ene (TFT)			2.17	mg/Kg	1	2.00	108	75 - 135.4
4-Bromofluor	obenzene (4-BFB)			2.11	mg/Kg	1	2.00	106	63.6 - 158.9

Sample: 295160 - AH-1 6-6.5'

Laboratory: Analysis:	Midland Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	90866	Date Analyzed:	2012-05-03	Analyzed By:	ÁR
Prep Batch:	77061	Sample Preparation:	2012-05-01	Prepared By:	AR

continued ...

Report Date 114-6401363	: May 4, 2012		V CO	Vork Order: G/White O	Page Number: 10 of 27 Eddy Co., NM				
sample 29510	60 continued								
					\mathbf{RL}				
Parameter		Flag	Cert	F	lesult	Units	Dilution	R	۲۲ ۲
D			a .		RL				
Parameter		Flag	Cert	HH	lesult	Units	Dilution	R	$\frac{\alpha}{\alpha}$
Chloride					3250	mg/Kg	10	4.(00
Analysis: QC Batch: Prep Batch:	TPH DRO - NE 90712 76960	EW	Ar Da Sa	alytical Me te Analyzec mple Prepar	thod: S 8(l: 2011) ration: 2011 RL	015 D 2-04-30 2-04-30	Prep 1 Analy Prepa	Method: N/ zed By: DA red By: DA	'A 4 4
Parameter		Flag	Cert	R	lesult	Units	Dilution	R	۱۶
DRO			1	<	<50.0	mg/Kg	1	50).0
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	y
n-Tricosane			134	mg/Kg	1	100	134	49.3 - 157	'.5
Sample: 29	5160 - AH-1 6-	6.5'							

Sample: 295160 - AH-1 6-6.57 Laboratory: Midland

Laboratory:	Midiand										
Analysis:	TPH GRO			Analyti	cal Metho	od: S 80	15 D		Prep Met	hod:	S 5035
QC Batch:	90689			Date A	nalyzed:	2012	2-04-30		Analyzed	By:	tc
Prep Batch: 76942				Sample	Preparat	ion: 2012	2-04-27		Prepared	By:	tc
						RL					
Parameter		Flag		Cert		Result	U	nits	Dilution		\mathbf{RL}
GRO		Qr,Qs		1		<2.00	mg	/Kg	1		2.00
								Spike	Percent	Rec	overy
Surrogate			Flag	Cert	Result	Units	Dilution	Amount	Recovery	Li	mits
Trifluorotolue	ene (TFT)				2.30	mg/Kg	1	2.00	115	58.5	- 155.1
4-Bromofluor	obenzene (4-BFB)				2.07	mg/Kg	1	2.00	104	45.1	- 162.2

Report Date: May 4, 2012 114-6401363

Method Blanks

Method Blank (1) QC B	atch: 90553						
QC Batch: 90553			Date	Analyzed:	2012-04-24		Analyz	ed By: DA
Prep Batch: 76815			QC P	reparation:	2012-04-24		Prepare	ed By: DA
						MDL		
Parameter		Flag		Cert		Result	Units	RL
DRO				1		<14.5	mg/Kg	50
						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilutior	n Amount	Recovery	Limits
n-Tricosane			118	mg/Kg	1	100	118	52 - 140.8
Method Blank (1) QC B	atch: 90586						
	-		D .					10 04
QC Batch: 90586 Prop Botch: 76854			Date	Analyzed:	2012-04-25		Analyze	d By: DA
Tiep Daten. 70004			QU I		2012-04-20		riepare	u by. DA
						MDL		
Parameter		Flag	· ··	Cert	<u></u>	Result	Units	RL
DRO				1		<14.5	mg/Kg	50
						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilutior	Amount	Recovery	Limits
n-Tricosane			110	mg/Kg	1	100	110	52 - 140.8
Method Blank (1) QC B	atch: 90611						
OC Pataby 00611			Data	Anolwood	2012 04 25		Anoly	and Day to
Prep Batch: 76879			OC F	reparation:	2012-04-25		Prepa	red By: tc
Trop Dates in Poorto			40.	10p 01 0010111	2022 01 20		110pt	iou Dy. io
						MDL		
Parameter		Fla	g	Cert		Result	Units	RL
Benzene				1	<	0.00470	mg/Kg	0.02
Ethylhenzene				1		0.00980	mg/Kg	0.02
Xvlene				1	~	< 0.0170	mg/Kg	0.02
	<u> </u>						0/ ~ 0	

Report Date: May 4, 2012 114-6401363	CO	Work Orden OG/White (Page Number: 12 of 27 Eddy Co., NM						
Surrogate	g Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits		
Trifluorotoluene (TFT)		1.61	mg/Kg	1	2.00	80	78 - 12	23.6	
4-Bromofluorobenzene (4-BFB)			1.58	mg/Kg	1	2.00	79	55.9 - 1	12.4
Method Blank (1) QC Ba QC Batch: 90612 Prep Batch: 76879	tch: 90612	Date QC P	Analyzed: reparation:	2012-04 2012-04	1-25 1-25		Anal Prep	yzed By: ared By:	tc tc
			-		MDL				
Parameter	Flag		Cert		Result		Units		RL
GRO			1		<1.22		mg/Kg		2
S	D 1	0	Descript	TT::4a	Dilution	Spike	Percent	Reco	very

Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.70	mg/Kg	1	2.00	85	78.6 - 121
4-Bromofluorobenzene (4-BFB)			1.52	mg/Kg	1	2.00	76	55 - 120

Method Blank (1) QC Batch: 90687

QC Batch: 90687		Date	Analyzed:	2012-04	1-27		Anal	yzed By: tc
Prep Batch: 76942		QC P	reparation:	2012-04	1-27		Prep	ared By: tc
					MDL			
Parameter	Flag		Cert		Result		Units	\mathbf{RL}
Benzene	·····		1		< 0.00470		mg/Kg	0.02
Toluene			1		<0.00980		mg/Kg	0.02
Ethylbenzene			1		< 0.00500		mg/Kg	0.02
Xylene			1		< 0.0170		mg/Kg	0.02
						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.83	mg/Kg	1	2.00	92	78 - 123.6
4-Bromofluorobenzene (4-BFB)			1.81	mg/Kg	1	2.00	90	55.9 - 112.4

Report Date: May 4, 2012 114-6401363	Work Order: 12042422 COG/White Oak State #1				Page Number: 13 of 27 Eddy Co., NM				
Method Blank (1) QC Ba	tch: 90689								
QC Batch: 90689		Date A	Analyzed:	2012-04-30			Analyzed By: tc		
Prep Batch: 76942		QC Pr	reparation:	2012-04-27			Prepar	ed By: tc	
					MDL				
Parameter	Flag		Cert		Result		Units	\mathbf{RL}	
GRO		,	1		<1.22		mg/Kg	2	
						Spike	Percent	Recovery	
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits	
Trifluorotoluene (TFT)		1.96	mg/Kg	1	2.00	98	78.6 - 121		
4-Bromofluorobenzene (4-BFB)		1.77	mg/Kg	1	2.00	88	55 - 120		

Method Blank (1)		QC E	Batch: 907	12					
QC Batch: Prep Batch:	90712 76960			Date A QC Pi	Analyzed: reparation:	2012-04-30 2012-04-30		Analy: Prepa	zed By: DA red By: DA
Parameter			Fla	Ag	Cert	MDL Result		Units	RL
DRO					1		<14.5		50
Surrogate		Flag	Cert	Result	Units	Dilution	Spike n Amount	Percent Recovery	Recovery Limits
n-Tricosane				109	mg/Kg	1	100	109	52 - 140.8

Method Blank (1)		QC Batch: 90866					
QC Batch: Prep Batch:	90866 77061		Date Analyzed: QC Preparation:	2012-05-03 2012-05-01		Analyzed By: Prepared By:	AR AR
					MDL		
Parameter		Flag	Cert		Result	Units	\mathbf{RL}
Chloride					<3.85	mg/Kg	4
Report Date: May 4, 2012 114-6401363

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch: 90553			Date	Analyzed	d: 20	12-04-24			Analy	zed By	: DA
Prep Batch: 76815			QC	Preparatio	on: 20	12-04-24			Prepa	ared By:	DA
				LCS			Spike	Ma	atrix		Rec.
Param		F	C H	Result	Units	Dil.	Amount	Re	sult Rec	. I	Limit
DRÓ			1	242	mg/Kg	<u>; 1</u>	250	<	14.5 97	62	- 128.3
Percent recovery is based on the	spike	resu	lt. RPD	is based	on the	spike and	spike dupli	cate re	sult.		
			LCSD			Spike	Motrix		Rec		RDD
Param	F	С	Result	Units	Dil	Amount	Result	Rec	Limit	RPD	Limit
DRO		1	262	mg/Kg	1	250	<14.5	105	62 - 128.3	8	20
Percent recovery is based on the	spike	resu	lt. RPD	is based of	on the s	spike and	spike dupli	cate re	sult.		
U U	л т ст	-	T COD			r -		T CO	T COD	-	
Second mate	LCS	5	LCSL	, TT_3		נית	Spike	LCS	LCSD	н Т.	lec.
Surrogate		,	195	5 Uni		<u></u>	Amount	117		L/	
n-Tricosane					0						
n-Tricosane											
n-Tricosane Laboratory Control Spike (L QC Batch: 90586	CS-1))	Date	Analyzed	ł: 20	12-04-25			Analy	zed By	: DA
n-Tricosane Laboratory Control Spike (L QC Batch: 90586 Prep Batch: 76854	CS-1))	Date QC 1	Analyzed	l: 20 on: 20	12-04-25 12-04-25			Analy Prepa	vzed By	: DA DA
n-Tricosane Laboratory Control Spike (L QC Batch: 90586 Prep Batch: 76854	.CS-1))	Date QC 1	Analyzed Preparatic	l: 20 on: 20	12-04-25 12-04-25			Analy Prepa	vzed By ared By:	: DA DA
n-Tricosane Laboratory Control Spike (L QC Batch: 90586 Prep Batch: 76854	.CS-1)	Date QC 1	Analyzed Preparatio	l: 20 on: 20	12-04-25 12-04-25	Snike	M٤	Analy Prepa	vzed By ared By:	: DA DA Rec.
n-Tricosane Laboratory Control Spike (L QC Batch: 90586 Prep Batch: 76854 Param	. CS-1])	Date QC I C F	Analyzed Preparatic LCS Result	l: 20 on: 20 Units	12-04-25 12-04-25 Dil.	Spike Amount	Ma Re	Analy Prepa atrix sult Rec	vzed By: ared By:	: DA DA Rec. .imit
n-Tricosane Laboratory Control Spike (L QC Batch: 90586 Prep Batch: 76854 Param DRO	. CS-1)) F	Date QC I C F	Analyzed Preparatic LCS Result 261	l: 20 on: 20 Units mg/Kg	12-04-25 12-04-25 Dil. 1	Spike Amount 250	Ma Re	Analy Prepa atrix sult Rec 14.5 104	vzed By: sred By: I 62	DA DA Rec. Jimit - 128.3
n-Tricosane Laboratory Control Spike (L QC Batch: 90586 Prep Batch: 76854 Param DRO Percent recovery is based on the	CS-1) F resul	Date QC I C = F $\frac{1}{1}$	Analyzed Preparatio LCS tesult 261 is based o	l: 20 on: 20 Units mg/Kg on the s	12-04-25 12-04-25 Dil. 1 spike and	Spike Amount 250 spike duplic	Ma Re <1 cate res	Analy Prepa sult Rec 14.5 104 sult.	vzed By sred By: I 62	DA DA Rec. Jimit - 128.3
n-Tricosane Laboratory Control Spike (L QC Batch: 90586 Prep Batch: 76854 Param DRO Percent recovery is based on the	CS-1) F resul	Date QC I <u>C</u> F I It. RPD	Analyzed Preparatio LCS Result 261 is based o	l: 20 on: 20 Units mg/Kg on the s	12-04-25 12-04-25 Dil. 1 spike and	Spike Amount 250 spike duplic	Ma Re <2 cate res	Analy Prepa sult Rec 14.5 104 sult.	vzed By: ared By: I 62	: DA DA Rec. Jimit - 128.3
n-Tricosane Laboratory Control Spike (L QC Batch: 90586 Prep Batch: 76854 Param DRO Percent recovery is based on the Param	,CS-1) spike) F resul	Date QC I <u>C</u> F It. RPD LCSD Result	Analyzed Preparatic LCS Result 261 is based of Units	l: 20 on: 20 Units mg/Kg on the s	12-04-25 12-04-25 Dil. 1 spike and Spike	Spike Amount 250 spike duplic Matrix Besult	Ma Re cate res	Analy Prepa sult Rec 14.5 104 sult. Rec. Limit	rzed By: ared By: 1 62 BPD	E DA DA Rec. Jimit - 128.3 RPD Limit
n-Tricosane Laboratory Control Spike (L QC Batch: 90586 Prep Batch: 76854 Param DRO Percent recovery is based on the Param DRO	,CS-1) spike F) F resul	Date QC 1 C F 1 It. RPD LCSD Result 271	Analyzed Preparatio LCS Result 261 is based o Units mg/Kg	l: 20 on: 20 <u>Units</u> mg/Kg on the s Dil. 1	12-04-25 12-04-25 Dil. 1 spike and Spike Amount 250	Spike Amount 250 spike duplic Matrix Result <14.5	Ma Re cate res Rec. 108	Analy Prepa atrix sult Rec 14.5 104 sult. Rec. Limit 62 - 128.3	rzed By rred By: I 62 RPD 4	DA DA Rec. Jimit - 128.3 RPD Limit 20
n-Tricosane Laboratory Control Spike (L QC Batch: 90586 Prep Batch: 76854 Param DRO Percent recovery is based on the Param DRO Percent recovery is based on the	,CS-1 j spike F) F resul	Date QC I LCSD Result 271	Analyzed Preparatio LCS tesult 261 is based o Units mg/Kg	l: 20 on: 20 Units mg/Kg on the s Dil. 1	12-04-25 12-04-25 Dil. 1 spike and Spike Amount 250	Spike Amount 250 spike duplic Matrix Result <14.5 spike duplic	Ma Re cate res Rec. 108	Analy Prepa sult Rec 14.5 104 sult. Rec. Limit 62 - 128.3 sult.	rzed By: II 62 RPD 4	DA DA Rec. Jimit 128.3 RPD Limit 20
n-Tricosane Laboratory Control Spike (L QC Batch: 90586 Prep Batch: 76854 Param DRO Percent recovery is based on the Param DRO Percent recovery is based on the	,CS-1) spike F spike) F resul	Date QC I t. RPD LCSD Result 271 t. RPD	Analyzed Preparatic LCS Result 261 is based o Units mg/Kg is based o	l: 20 on: 20 <u>Units</u> <u>mg/Kg</u> on the s <u>Dil.</u> 1 on the s	12-04-25 12-04-25 Dil. 1 spike and Spike Amount 250 spike and	Spike Amount 250 spike duplic Matrix Result <14.5 spike duplic	Ma Re cate res <u>Rec.</u> 108 cate res	Analy Prepa sult Rec. 14.5 104 sult. Rec. Limit 62 - 128.3 sult.	rzed By: ared By: <u>1</u> 62 <u>RPD</u> 4	E DA DA Rec. Jimit - 128.3 RPD Limit 20
n-Tricosane Laboratory Control Spike (L QC Batch: 90586 Prep Batch: 76854 Param DRO Percent recovery is based on the Param DRO Percent recovery is based on the	CS-1) F resul	Date QC I 1 t. RPD LCSD Result 271 t. RPD LCSD	Analyzed Preparatio LCS Result 261 is based o Units mg/Kg is based o	$\frac{1}{20}$ on: 20 Units mg/Kg on the s Dil. 1 on the s	12-04-25 12-04-25 Dil. 1 spike and Spike Amount 250 spike and	Spike Amount 250 spike duplic Matrix Result <14.5 spike duplic Spike	Ma Re cate res Rec. 108 cate res LCS	Analy Prepa sult Rec. 14.5 104 sult. Rec. Limit 62 - 128.3 sult. LCSD	rzed By: red By: <u>1</u> 62 <u>RPD</u> 4	E DA DA Rec. Jimit - 128.3 RPD Limit 20 Rec.
n-Tricosane Laboratory Control Spike (I. QC Batch: 90586 Prep Batch: 76854 Param DRO Percent recovery is based on the Param DRO Percent recovery is based on the Surrogate	,CS-1) spike F spike LCS Resul) F resul resul S It	Date QC 1 C F 1 LCSD Result 271 t. RPD LCSD Result	Analyzed Preparatio LCS Result 261 is based o Units mg/Kg is based o Units	l: 20 on: 20 Units mg/Kg on the s Dil. 1 on the s	12-04-25 12-04-25 Dil. 1 spike and Spike Amount 250 spike and Dil.	Spike Amount 250 spike duplic Matrix Result <14.5 spike duplic Spike Amount	Ma Re cate res 108 cate res LCS Rec.	Analy Prepa atrix sult Rec 14.5 104 sult. Rec. Limit 62 - 128.3 sult. LCSD Rec.	rzed By: II 62 RPD 4 FF Li	DA DA Rec. Jimit - 128.3 RPD Limit 20 Rec.

114-6401363		- <u>.</u>		Work COG/W	Order: /hite Oa	12042422 uk State ≢	-1			Page Nu	mber: Eddy (15 of 27 Co., NM
Laboratory Control Spike	(LCS-1	L)										
QC Batch: 90611			D	ate Anal	vzed:	2012-04-2	25			Ana	lvzed E	v: tc
Prep Batch: 76879			Q	C Prepa	ration:	2012-04-2	25			Prep	pared B	y: tc
-												
				LCS			Snike	Ms	triv		Ŧ	2ec
Param	1	F	C	Result	Units	Dil.	Amount	Re	sult	Rec.	L	imit
Benzene	·······		1	2.06	mg/Ke	1	2.00	<0.0	0470	103	86.5	- 124.9
Toluene			1 .	2.04	mg/Kg	g 1	2.00	<0.0	00980	102	84.7	- 122.5
Ethylbenzene			1	1.99	mg/Ka	, 1	2.00	<0.0	00500	100	79.4	- 118.9
Xylene			1	5.95	mg/Kg	, , 1	6.00	<0.	0170	99	79.5	- 118.9
Percent recovery is based on t	he spike	rest	ult. RP	D is bas	ed on th	e spike ar	d spike dup	licate	result.			
			LCSD			Spike	Matrix		F	lec.		RPD
Param	F	С	Result	Units	Dil.	Amount	Result	Rec.	\mathbf{L}	imit	RPD	Limit
Benzene		1	2.14	mg/K	g 1	2.00	< 0.00470	107	86.5	- 124.9	4	20
Foluene		2	2.10	mg/Kg	g 1	2.00	<0.00980	105	84.7	- 122.5	3	20
Ethylbenzene		1	2.03	mg/Kg	g 1	2.00	< 0.00500	102	79.4	- 118.9	2	20
				- •							~	00
Kylene Percent recovery is based on th	he spike	res	6.06 ult. RP	mg/Kg D is base	g 1 ed on th	6.00 e spike ar	<0.0170 d spike dup	101 licate	79.5 result.	- 118.9	2	20
Xylene Percent recovery is based on t Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB	he spike	ı resi	6.06 ult. RP L' Re 1. 1.	mg/Ki D is base CS L sult R 61 65	g 1 ed on th CSD esult 1.88 1.89	6.00 e spike ar Units mg/Kg mg/Kg	<0.0170 ad spike dup Dil. Amo 1 2.0 1 2.0	101 licate ke ount 00 00	79.5 result. LCS Rec. 80 82	- 118.9 LCSD Rec. 94 94	2 F L 73.9 70.4	20 Rec. imit - 127 - 119.9
Xylene Percent recovery is based on t. Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB Laboratory Control Spike QC Batch: 90612 Prep Batch: 76879	he spike	1 rest	6.06 ult. RP Re 1. 1. 2. Q	mg/Ki D is base CS L sult R 61 65 65 C Prepar	g 1 ed on th CSD esult 1.88 1.89 yzed: ration:	6.00 e spike ar Units mg/Kg mg/Kg 2012-04-2 2012-04-2	<0.0170 d spike dup Dil. Amo 1 2.0 1 2.0 55	101 licate ke bunt 00 00	79.5 result. LCS Rec. 80 82	- 118.9 LCSD Rec. 94 94 94 Prep	F L 73.9 70.4 byzed B bared B	20 Rec. imit - 127 - 119.9 y: tc y: tc
Xylene Percent recovery is based on t. Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB Laboratory Control Spike QC Batch: 90612 Prep Batch: 76879	he spike	1 rest	6.06 ult. RP L Re 1. 1. 2 Q	mg/Ki D is base CS L sult R 61 65 C Prepar LCS	g 1 ed on th CSD esult 1.88 1.89 yzed: ration:	6.00 e spike ar Units mg/Kg mg/Kg 2012-04-2 2012-04-2	<0.0170 d spike dup Dil. Amo 1 2.0 1 2.0 55 55	101 licate ke bunt 00 00 00	79.5 result. LCS Rec. 80 82	- 118.9 LCSD Rec. 94 94 94	2 F L 73.9 70.4	20 Rec. imit - 127 - 119.9 y: tc y: tc y: tc
Xylene Percent recovery is based on t. Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB Laboratory Control Spike QC Batch: 90612 Prep Batch: 76879	he spike	Trest	6.06 ult. RP L. Re 1. 1. 2. Q	mg/Ki D is base CS L sult R 61 65 C Prepar LCS Result	g 1 ed on th CSD esult 1.88 1.89 yzed: ration:	6.00 e spike ar Units mg/Kg mg/Kg 2012-04-2 2012-04-2 2012-04-2	<0.0170 d spike dup Dil. Amo 1 2.0 1 2.0 5 5 5 5	101 licate ke bunt 00 00 00 Ma Ra	79.5 result. LCS Rec. 80 82	- 118.9 LCSD Rec. 94 94 94 Rec.	2 F L 73.9 70.4 Byzed B bared B	20 Rec. imit - 127 - 119.9 y: tc y: tc tec. imit
Kylene Percent recovery is based on t. Surrogate Trifluorotoluene (TFT) HBromofluorobenzene (4-BFB Laboratory Control Spike QC Batch: 90612 Prep Batch: 76879 Param GRO	he spike	Tress (L)	6.06 ult. RP L. Re 1. 1. Q	mg/Ki D is base CS L sult R 61 65 C Prepar LCS Result 17.1	g 1 ed on th CSD esult 1.88 1.89 yzed: ration: 	6.00 e spike ar Units mg/Kg mg/Kg 2012-04-2 2012-04-2 s Dil. g 1	<0.0170 Id spike dup Spi Dil. Amo 1 2.0 1 2.0 5 5 5 Spike Amount 20.0	101 licate ke bunt 00 00 00 M. Ra	79.5 result. LCS Rec. 80 82 82 82 82 82 82 82 82 82 82 82 82 82	- 118.9 LCSD Rec. 94 94 94 Rec. 86	P L 73.0 70.4 byzed B bared B F L 68.3	20 Rec. imit - 127 - 119.9 y: tc y: tc y: tc kec. imit - 105.7
Xylene Percent recovery is based on t. Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB Laboratory Control Spike QC Batch: 90612 Prep Batch: 76879 Param SRO Percent recovery is based on th	he spike) (LCS-1	Tress (1) F ress	6.06 ult. RP L ⁱ Re 1. 1. 2. 2. 2. 1. 1. 2. 2. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	mg/Ki D is base CS L sult R 61 65 4 C Prepar LCS Result 17.1 D is base	g 1 ed on th CSD esult 1.88 1.89 yzed: ration: Unit mg/K ed on th	6.00 e spike ar Units mg/Kg mg/Kg 2012-04-2 2012-04-2 s Dil. g 1 e spike an	<0.0170 d spike dup Spi Dil. Amo 1 2.0 1 2.0 5 5 5 5 5 5 5 5 5 5 5 5 5	101 licate ke punt 00 00 00 Mi Ra Licate	79.5 result. LCS Rec. 80 82 82 82 82 82 82 82 82 82 82 82 82 82	- 118.9 LCSD Rec. 94 94 94 Rec. 86	2 F L 73.9 70.4 byzed B bared B F L 68.3	20 Rec. imit - 127 - 119.9 y: tc y: tc y: tc kec. imit - 105.7
Xylene Percent recovery is based on t. Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB Laboratory Control Spike QC Batch: 90612 Prep Batch: 76879 Param SRO Percent recovery is based on th	he spike	Tress	6.06 ult. RP L ⁱ Re 1. 1. 1. D ⁱ Q C 1 ult. RP LCSD	mg/Ki D is base CS L sult R 61 65 C Prepar LCS Result 17.1 D is base	g 1 ed on th CSD esult 1.88 1.89 yzed: ration: Unit. mg/K ed on th	6.00 e spike an Units mg/Kg mg/Kg 2012-04-2 2012-04-2 s Dil. g 1 e spike an Spike	<0.0170 d spike dup Spi Dil. Amo 1 2.0 1 2.0 5 5 5 5 5 5 5 5 5 5 5 5 5	101 licate ke sunt 00 00 M. Ra Licate	79.5 result. LCS Rec. 80 82 82 82 82 82 82 82 82 82 82 82 82 82	- 118.9 LCSD Rec. 94 94 Anal Prep Rec. 86 ec.	2 F L 73.9 70.4 byzed B bared B F L 68.3	20 Rec. imit) - 127 - 119.9 y: tc y: tc y: tc Rec. imit - 105.7
Xylene Percent recovery is based on t. Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB Laboratory Control Spike QC Batch: 90612 Prep Batch: 76879 Param SRO Percent recovery is based on th Param	he spike	Tress F ress C	6.06 ult. RP L ⁱ Re 1. 1. 1. D. Q C 1 ult. RP LCSD Result	mg/Ki D is base CS L sult R 61 65 C Prepar LCS Result 17.1 D is base Unit	g 1 ed on th CSD esult 1.88 1.89 yzed: ration: Unit mg/K ed on th s Dil.	6.00 e spike an Units mg/Kg mg/Kg 2012-04-2 2012-04-2 s Dil. g 1 e spike an Spike Amoun	<0.0170 d spike dup Spi Dil. Amo 1 2.0 1 2.0 5 5 5 5 5 5 5 5 5 5 5 5 5	101 licate ke punt 00 00 M Ra c licate n Rec.	79.5 result. LCS Rec. 80 82 82 82 82 82 82 82 82 82 82 82 82 82	- 118.9 LCSD Rec. 94 94 Anal Prep Rec. 86 ec. mit	2 F L 73.9 70.4 eyzed B bared B bared B F Li 68.3 RPD	20 Rec. imit - 127 - 119.9 y: tc y: tc y: tc tec. imit - 105.7 RPD Limit

Report Date: May 4, 2012 114-6401363			COG	ork O VWhi	rder: te Oa	12042422 ak State #	¥1				Page Nu	mber: Eddy (16 o Co., 1
control spikes continued													
		I	LCS	LCS	SD			\mathbf{Spik}	æ	LCS	LCSD	I	Rec.
Surrogate		R	\mathbf{esult}	Res	ult	Units	Dil.	Amou	int	Rec.	Rec.	L	imit
		I	CS	LCS	SD			Spik	æ	LCS	LCSD	1	Rec.
Surrogate		R	esult	Rest	ılt	Units	Dil.	Amou	int	Rec.	Rec.	L	imit
Trifluorotoluene (TFT)		1	L.91	1.9	7	mg/Kg	1	2.00)	96	98	80 -	- 111
4-Bromofluorobenzene (4-BFB)]	1.78	1.8	3	mg/Kg	1	2.00	0	89	92	66.4	- 10
Laboratory Control Spike (I QC Batch: 90687 Prep Batch: 76942	.CS-1)	E G	Date A QC Pre	nalyze eparat	ed: ion:	2012-04-2 2012-04-2	27 27				Ana Prep	lyzed E bared B	By: Sy:
_		-	LCS				Sp	oike	Ma	atrix		I	Rec.
Param	F	<u> </u>	Result	; 1	Units	Dil	Am	ount	Re	esult	Rec.	L	imit
Benzene		1	2.09	n	ig/Ki	g l	2	.00	<0.0	00470	104	86.5	- 12
Toluene		1	2.04	n	ig/Kį	g 1	2	.00	<0.	00980	102	84.7	- 12
Ethylbenzene Valene		1	2.00	n	1g/K	g 1	2.	.00	<0.0	00500	100	70.5	- 11
Percent recovery is based on the	spike re	sult. RI	2D is 1	n Dased	on th	ne spike ar	nd spil	ke dupli	icate	result.		19.0	- 11
		LCSD	· ···			Snike	M	atriv		Ţ	?ec		RI
Param	FC	Result	tur	uts	Dil.	Amount	Re	esult	Rec.	Ĺ	imit	RPD	Li
Benzene	1	2.11	mg	/Kg	1	2.00	<0.	00470	106	86.5	- 124.9	1	2
Toluene	1	2.06	mg	/Kg	1	2.00	<0.	00980	103	84.7	- 122.5	1	2
Ethylbenzene	1	2.02	mg	/Kg	1	2.00	<0.	00500	101	79.4	- 118.9	1	2
Xylene	1	6.02	mg	/Kg	1	6.00	<0	.0170	100	79.5	- 118.9	1	2
Descent recovery is based on the	spike re	sult. RH	PD is l	based	on tł	ne spike ar	nd spil	ke dupli	icate	result.			
recent recovery is based on the			ac	LCS	D			Spik	e	LCS	LCSD	F	Rec.
r ercent recovery is based on the		I		n	1.	TT **	TD 11						
Surrogate		I Re	esult	Resi	ilt	Units	Dil.	Amou	int	Rec.	Rec.	L	imit
Surrogate Trifluorotoluene (TFT)		I R 1		Rest	ılt 6	Units mg/Kg	Dil.	Amou 2.00	int	Rec. 87		L 73.9	imit) - 12

Laboratory Control Spike (LCS-1)

QC Batch:	90689	Date Analyzed:	2012-04-30	Analyzed By:	\mathbf{tc}
Prep Batch:	76942	QC Preparation:	2012-04-27	Prepared By:	tc

Report Date: May 4, 2012 114-6401363			(Work O COG/Wh	rder: 1 ite Oal	2042422 c State #1	1			Page Nu	imber: 1 Eddy (17 of 27 Co., NM
_		-	a	LCS	T T •,	12.11	Spike	M	atrix		F	lec.
Param		F,	<u> </u>	tesult	Units		Amount		esult	Rec.	L	imit
GRO		·	1	17.4	mg/Kg	<u>g 1</u>	20.0	<	1.22	87	68.3	- 105.7
Percent recovery is based on the	spike	e res	ult. RPD) is based	on the	e spike and	d spike dup	licate	result.			
			LCSD			Spike	Matrix		R	lec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Li	mit	RPD	Limit
GRO		1	15.2	mg/Kg	1	20.0	<1.22	76	68.3	- 105.7	14	20
Percent recovery is based on the	spike	e res	ult. RPD	is based	on the	spike and	d spike dup	licate	result.			
			\mathbf{LC}	S LC	SD		Sp	ike	LCS	LCSD	F	Rec.
Surrogate			Resi	ilt Res	ult	Units I	Dil. Amo	ount	Rec.	Rec.	L	imit
Trifluorotoluene (TFT)			1.8	0 1.7	75 n	ng/Kg	1 2.0)0	90	88	80 -	111.2
4-Bromofluorobenzene (4-BFB)			1.6	9 1.6	64 n	ng/Kg	1 2.0)0	84	82	66.4	- 106.6
Prep Batch: 76960				Preparati	ion: 2	012-04-30	Spike	N	/atrix	Prepa	red By:	DA DA Rec.
Param		F	CI	Result	Units	s Dil.	Amour	nt I	Result	Rec.	1	imit
DRO			1	278	mg/K	g 1	250		<14.5	111	62	- 128.3
Percent recovery is based on the	spike	res	ult. RPD	is based	on the	spike and	ł spike dup	licate 1	esult.	_		
Demons	Ţ.	n	LCSD	Tinita	D:I	Spike	Matrix	Dee	t r	lec.	חחח	RPD Limit
DRO	r	<u> </u>	280	mg/Kg	<u>DII.</u>	250	<115	112	62 62	128.3	1	20
Percent recovery is based on the	enike		ult BPD	is based	$\frac{1}{0}$ on the	spike and	t spike dun	licate	- 02 -	120.0		
Tercent recovery is based on the	- apire	. 103		13 04304	on me	spike and			court.		_	
G	LC	S	LCSI) • 11-	. : 4	Dil	Spike	LC	S 1	LCSD	F	lec.
n Tricosone	12	<u>111</u>	119 119		$\frac{111S}{/K\sigma}$	<u></u>	Amount		:. 	118	58.6	$\frac{140.6}{140.6}$
		<u> </u>			/118		100		<u> </u>	110	00.0	- 140.0
Laboratory Control Spike (I	-CS-1	L)										
QC Batch: 90866			Date	e Analyze	d: 20	012-05-03				Analy	zed By:	AR
Prep Batch: 77061			QC	Preparati	on: 20	012-05-01				Prepa	red By:	AR

continued ...

_

			C	OG/White	oak S	tate #1				Eddy	Co., N
control spikes continued				LCS			Spike	М	atrix		Rec
Param		\mathbf{F}	С	Result	Units	Dil.	Amount	c Re	esult l	Rec.	Limit
		_				<u>.</u>					
D		-	0	LCS	TT	Dil	Spike	M	atrix	D	Rec.
Chlorido		F	<u> </u>	2200	$\frac{\text{Units}}{ma/ka}$	<u></u>	Amount		esuit 1	<u>16</u>	$\frac{\text{Limit}}{95 11}$
Demont recovery is based on t				2390	ng/ng	ilio and a	2000	<u>`</u>	J.00	90	00 - 11
rercent recovery is based on t	ne spike	resu	II. KPD	is based of	n the s	Jike and s	ріке апріс	ate rest	uit.		
			LCSD			Spike	Matrix		Rec.		RPI
Param	F	C	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limi
Chloride			2490	mg/Kg	1	2500	<3.85	100	85 - 115	4	20
Matrix Spike (MS-1) Sp QC Batch: 90553 Prep Batch: 76815	viked Sar	nple:	Date OC I	Analyzed: Preparation	201: 1: 201	2-04-24 2-04-24			Ana Pre	lyzed By pared By	y: DA
Matrix Spike (MS-1) Sp QC Batch: 90553 Prep Batch: 76815	viked Sar	nple:	Date QC I	Analyzed: Preparation MS	2013 n: 2013	2-04-24 2-04-24	Spike	Mat	Ana Prej rix	llyzed By pared By	y: DA 7: DA Rec.
Matrix Spike (MS-1) Sp QC Batch: 90553 Prep Batch: 76815 Param	viked Sar	nple: F	Date QC H	Analyzed: Preparation MS esult	2011 n: 2011 Units	2-04-24 2-04-24 Dil.	Spike Amount	Mat Res	Ana Prej crix ult Re	lyzed By pared By c.	y: DA 7: DA Rec. Limit
Matrix Spike (MS-1) Sp QC Batch: 90553 Prep Batch: 76815 Param DRO	iked Sar	nple: F	$\frac{\text{Date}}{\text{QC I}}$	Analyzed: Preparation MS esult 2340 n	2011 n: 2011 Units ng/Kg	2-04-24 2-04-24 Dil. 5	Spike Amount 250	Mat Res 221	Ana Pre arix ult Re 10 5	lyzed By pared By ec. 2 45	y: DA y: DA Rec. Limit .5 - 12
Matrix Spike (MS-1) Sp QC Batch: 90553 Prep Batch: 76815 Param DRO Percent recovery is based on t	he spike	resul	$\frac{C}{1}$	Analyzed: Preparation MS esult 2340 n is based on	201: n: 201: Units ng/Kg n the sp	2-04-24 2-04-24 Dil. 5 Dike and s	Spike Amount 250 pike duplic	Mat Res 221 ate resi	Ana Pre ult Re 10 5 ult.	lyzed By pared By ec. 2 45	y: DA 7: DA Rec. Limit 5.5 - 12
Matrix Spike (MS-1) Sp QC Batch: 90553 Prep Batch: 76815 Param DRO Percent recovery is based on t	he spike	F resul	Date QC H <u>C</u> R <u>1</u> t. RPD MSD	Analyzed: Preparation MS esult 2340 n is based on	201: n: 201: Units ng/Kg n the sp	2-04-24 2-04-24 Dil. 5 Dike and s Spike	Spike Amount 250 pike duplic Matrix	Mat Res 221 ate rest	Ana Prej orix <u>ult Re</u> 10 5 ult. Rec.	lyzed By pared By ec. 2 45	y: DA r: DA Rec. Limit .5 - 12 RPI
Matrix Spike (MS-1) Sp QC Batch: 90553 Prep Batch: 76815 Param DRO Percent recovery is based on t Param	he spike	F resul	Date QC H <u>C R</u> <u>1</u> It. RPD MSD Result	Analyzed: Preparation MS esult 2340 m is based on Units	2011 n: 2011 Units ng/Kg n the sp Dil.	2-04-24 2-04-24 Dil. 5 Dike and s Spike Amount	Spike Amount 250 pike duplic Matrix Result	Mat Res 221 ate resu Rec.	Ana Prej ult Re 10 5 ult. Rec. Limit	lyzed By pared By cc. 2 45 RPD	y: DA r: DA Rec. Limit .5 - 12 RPI Limi
Matrix Spike (MS-1) Sp QC Batch: 90553 Prep Batch: 76815 Param DRO Percent recovery is based on t Param DRO	he spike	F resul	Date QC I 1 2 It. RPD Result 2700	Analyzed: Preparation MS esult 2340 n is based on Units mg/Kg	2011 n: 2011 ng/Kg n the sp Dil. 5	2-04-24 2-04-24 Dil. 5 Dike and s Spike Amount 250	Spike Amount 250 pike duplic Matrix Result 2210	Mat Res 221 ate resu Rec. 196	Ana Pre ult Re 10 5 ult. Rec. Limit 45.5 - 127	lyzed By pared By cc. 2 45 RPD 7 14	y: DA r: DA Rec. Limit .5 - 12 RPI Limi 20
Matrix Spike (MS-1) Sp QC Batch: 90553 Prep Batch: 76815 Param DRO Percent recovery is based on t Param DRO Param DRO Param DRO Param DRO Percent recovery is based on t	he spike F 90 90 he spike	resul	Date QC H 1 t. RPD MSD Result 2700 t. RPD	Analyzed: Preparation MS esult 2340 m is based on Units mg/Kg is based on	$\begin{array}{c} 201\\ \text{m} & 201\\ \text{m} & 201\\ \text{m} & 1\\ \frac{\text{m}}{\text{s}} \\ \frac{\text{m}}{\text{s}} \\ \text{m} & 1\\ \frac{\text{m}}{\text{s}} \\ \frac{1}{\text{s}} \\ \frac{1}{$	2-04-24 2-04-24 Dil. 5 Dike and s Spike Amount 250 Dike and s	Spike Amount 250 pike duplic Matrix Result 2210 pike duplic	Mat Res 221 ate resu Rec. 196 ate resu	Ana Prej ult Re 10 5 ult. Rec. Limit 45.5 - 127 ult.	lyzed By pared By 2 45 <u>RPD</u> 7 14	y: DA r: DA Rec. Limit .5 - 12 RPI Limi 20
Matrix Spike (MS-1) Sp QC Batch: 90553 Prep Batch: 76815 Param DRO Percent recovery is based on t Param DRO Percent recovery is based on t	he spike F 90 90 he spike	F resul resul MS	Date QC I QC I 1 2 It. RPD MSD Result 2700 It. RPD MS	Analyzed: Preparation MS esult 2340 n is based on Units mg/Kg is based on D	2011 n: 2011 ng/Kg n the sp Dil. 5 n the sp	2-04-24 2-04-24 Dil. 5 Dike and s Amount 250 Dike and s	Spike Amount 250 pike duplic Matrix Result 2210 pike duplic Spike	Mat Res 221 ate resu Rec. 196 ate resu MS	Ana Pre ult Re 10 5 ult. <u>Rec.</u> Limit 45.5 - 127 ult. MSD	lyzed By pared By cc. 2 45 RPD 7 14	y: DA r: DA Rec. Limit .5 - 12 RPI Limi 20 Rec.
Matrix Spike (MS-1) Sp QC Batch: 90553 Prep Batch: 76815 Param DRO Percent recovery is based on t Param DRO Percent recovery is based on t Surrogate	he spike F Q= Q= he spike I Re	F resul resul MS ssult	Date QC F QC F 1 1 t. RPD MSD Result 2700 t. RPD MS Resu	Analyzed: Preparation MS esult 2340 n is based on Units mg/Kg is based on D Ilt Un	2011 n: 2011 ng/Kg n the sp Dil. 5 n the sp n the sp	2-04-24 2-04-24 Dil. 5 Dike and s Amount 250 Dike and s Dil.	Spike Amount 250 pike duplic Matrix Result 2210 pike duplic Spike Amount	Mat Res 221 ate resu Rec. 196 ate resu MS Rec.	Ana Pre ult Re 10 5 ult. Limit 45.5 - 127 ult. MSD Rec.	lyzed By pared By 2 45 <u>RPD</u> 7 14	r: DA r: DA Rec. Limit .5 - 12 RPI Limi 20 Rec.

114-6401363			(COG/Wh	ite Oa	ak State #1	<u> </u>				Eddy (Co., NM
Percent recovery is based on th	ie spike	rest	ult. RPC	is based	l on th	e spike and	l spike dı	plicate	result.			
Param	F	С	MSD Result	Units	Dil	Spike Amoun	Matr t Resu	x t Rec.	. 1	Rec. Limit	RPD	RPD Limit
DRO		1	288	mg/Kg	g 1	250	120	67	45.	.5 - 127	5	20
Percent recovery is based on th	ie spike	rest	ult. RPD	is based	l on th	e spike and	l spike du	plicate 1	result.			
	MS	3	MSI)			Spike	М	S	MSD	I	Rec.
Surrogate	Resu	ılt	Resu	lt U	nits	Dil.	Amoun	t Re	ec.	Rec.	L	imit
n-Tricosane	126	6	121	mį	g/Kg	1	100	12	26	121	45.4	- 145.8
rep Batch: 76879			QC	Prepara MS	tion:	2012-04-25	Spike	Ma	atrix	Pre	pared B	y: tc Rec.
Param	I	F	C R	esult	Units	Dil.	Amour	t Re	sult	Rec.	\mathbf{L}	imit
Benzene			1	56.8	mg/K	g 50	50.0	3.	918	106	69.3	- 159.2
Foluene			1	108	mg/K	g 50	50.0	45	.884	124	68.7	7 - 157
Sthylbenzene			1	110	mg/K_{i}	g 50	50.0	50.	3205	119	71.6	- 158.2
Aylene Percent recovery is based on th	ne spike	res	ult. RPD	is based	$\frac{mg}{R}$	g ou e spike and	150 I spike du	93. plicate r	1734 	113	70.8	- 159.8
· · · · · · · · · · · · · · · · · · ·			MSD			Snike	Matrix	1	1	Rec		RPD
Param	F	С	Result	Units	Dil.	Amount	Result	Rec.	L	imit	RPD	Limit
Benzene		1	56.9	mg/Kg	50	50.0	3.918	106	69.3	- 159.2	0	20
Foluene		1	101	mg/Kg	50	50.0	45.884	110	68.7	7 - 157	7	20
Ethylbenzene		1	102	mg/Kg	50	50.0	50.3205	103	71.6	- 158.2	8	20
		1	247	mg/Kg	50	150	93.1734	102	70.8	- 159.8	6	20
Xylene		rest	ult. RPD	is based	on th	e spike and	l spike du	plicate 1	esult.			
Xylene Percent recovery is based on th	ie spike			S MS	SD	TT 14		pike	MS	MSD	F	lec.
Xylene Percent recovery is based on th	ie spike		Mi Der	14 D	14		/1 1	HOURT	nec.	nec.	L	umu
Xylene Percent recovery is based on th Surrogate Drifluorotoluene (TET)	ie spike			ult Res	sult	Units mg/Kg	50 A	50	82	80	71 /	. 122.0
Xylene Percent recovery is based on th Surrogate Trifluorotoluene (TFT) 4 Bromefluerebengene (4 BED)	e spike		M Res 40.	ult Res 9 44	sult 1.3	mg/Kg	50 50	50	82	89	71.4	- 133.9
Xylene Percent recovery is based on th Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)	e spike		M Res 40. 53.	ult Res 9 44 2 55	sult 1.3 5.3	mg/Kg mg/Kg	50 50	50 50	82 106	89 111	71.4 72.6	- 133.9 - 144.1

QC Batch:	90612	Date Analyzed:	2012-04-25	Analyzed By:	\mathbf{tc}
Prep Batch:	76879	QC Preparation:	2012-04-25	Prepared By:	\mathbf{tc}

·

Report Date: May 4, 2012 114-6401363				Wo COG	ork Orde /White	r: 120 Oak S	042422 State #1		. <u>-</u>			Page Nui	mber: 5 Eddy C	20 of 27 Co., NM
Param		F	С	MS Resul	t Ur	nits	Dil.	Sp Ame	ike ount	Mat Res	trix	Rec.	F L	lec. imit
GRO			1	6340	mg	/Kg	50	50	00	5923	5.95	83	28.2	- 157.2
Percent recovery is based on th	ne spi	ke res	ult.	RPD is t	based on	the s	pike and	spike	e dupli	cate re	esult.			
				MSD			Spike	Μ	a trix]	Rec.		RPD
Param		\mathbf{F}	С	Result	Units	Dil.	Amoun	t R	esult	Rec.	L	imit	RPD	Limit
GRO	Qr,Qs	Qr,Qs	1	7790	mg/Kg	50	500	59	25.95	373	28.2	- 157.2	20	20
Percent recovery is based on th	ne spi	ke res	ult.	RPD is t	based on	the s	pike and	spike	dupli	cate re	sult.			
				MS	MSI	0			Spi	ike	MS	MSD	F	lec.
Surrogate				Result	t Resu	lt	Units	Dil.	Amo	ount	Rec.	Rec.	\mathbf{L}	imit
Trifluorotoluene (TFT)				51.2	51.0) 1	ng/Kg	50	5	0	102	102	75.5	- 122.3
4-Bromofluorobenzene (4-BFB) Q#	r Qs	r	66.2	65.4	4 r	ng/Kg	50	5	D	132	131	77.9	- 122.4

Matrix Spike (MS-1) Spiked Sample: 295646

QC Batch:	90687	Date Analyzed:	2012-04-27	Analyzed By:	tc
Prep Batch:	76942	QC Preparation:	2012-04-27	Prepared By:	\mathbf{tc}

			MS			Spike	Matrix		Rec.
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene		1	2.04	mg/Kg	1	2.00	< 0.00470	102	69.3 - 159.2
Toluene		1	2.05	mg/Kg	1	2.00	< 0.00980	102	68.7 - 157
Ethylbenzene		1	2.05	mg/Kg	1	2.00	< 0.00500	102	71.6 - 158.2
Xylene		ı	6.17	mg/Kg	1	6.00	< 0.0170	103	70.8 - 159.8

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene		1	1.95	mg/Kg	1	2.00	< 0.00470	98	69.3 - 159.2	4	20
Toluene		1	1.96	mg/Kg	1	2.00	<0.00980	98	68.7 - 157	4	20
Ethylbenzene		1	2.01	mg/Kg	1	2.00	< 0.00500	100	71.6 - 158.2	2	20
Xylene		1	6.03	mg/Kg	1	6.00	< 0.0170	100	70.8 - 159.8	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MS	MSD			Spike	MS	MSD	Rec.
Surrogate			Result	\mathbf{Result}	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	Qsr	Qsr	1.30	1.95	mg/Kg	1	2	65	98	71.4 - 133.9
4-Bromofluorobenzene (4-BFB)	Qar	Qar	1.27	1.86	mg/Kg	1	2	64	93	72.6 - 144.1

Report Date: May 4, 2012 114-6401363						ork Orc 3/White	e Oak	042422 State #	1			ł	age Nu	mber: 2 Eddy C	o., NM
Matrix Spil	ke (MS-1)	Spiked S	ample	e: 298	5426										
QC Batch: Prep Batch:	90689 76942				Date A QC Pre	nalyzed	l: 20 on: 20	012-04-3 012-04-2	0 7				Ana Prep	lyzed B bared B	y: tc y: tc
Param			F	С	MS Resu	lt (Units	Dil.	A	Spike mount	Ma Res	trix sult	Rec.	R Li	.ec. mit
GRO				1	16.5	6 m	ıg/Kg	1		20.0	<1	.22	82	28.2	- 157.2
Percent recov	verv is based o	on the spil	ce rest	ılt. I	RPD is	based o	n the s	spike an	d spi	ke dupli	cate re	esult.			
			10 100		MSD	outou o		Snik	e opr	Matrix		Juin	Rec		RPD
Param			F	С	Result	Units	i Dil	. Amoi	int	Result	Rec.	L	imit	RPD	Limit
GRO		Qr,Qs	Qr,Qs	1	2.24	mg/K	g 1	20.0)	<1.22	11	28.2	- 157.2	152	20
Percent recor	very is based o	n the spil	ce resi	ılt. I	RPD is l	hased o	n the s	spike an	d sni	ke dunlie	nate re	sult			
l elcent lecov	very is based (m une apri	te reat	110. 1		Dascu U	n one a	spike an	u spr	ke uupin	.a.c 10	suit.			
					MS	MSI)			Spik	æ	MS	MSD	R	.ec.
- ·					Result	Resu	lt U	Jnits	Dil.	Αποι	int	Rec.	Rec.	Li	mit
Surrogate															
Surrogate Trifluorotolu	ene (TFT)				2.21	2.00	m	g/Kg	1	2		110	100	75.5	- 122.3
Surrogate Frifluorotolu 4-Bromofluor	ene (TFT) robenzene (4-I	3FB)			2.21 1.95	2.00 1.79	m m	g/Kg g/Kg	1	2 2		110 98	100 90	75.5 77.9	- 122.3 - 122.4
Surrogate Trifluorotoluo 4-Bromofluor Matrix Spil QC Batch: Prep Batch:	ene (TFT) robenzene (4-1 ke (MS-1) 90712 76960	3FB) Spiked S	ample	: 295	2.21 1.95 5160 Date Ar QC Prej	2.00 1.79 nalyzed: paration) m) m : 201 n: 201	g/Kg g/Kg 12-04-30 12-04-30	1	2 2		110 98	100 90 Analy Prepa	75.5 77.9 zed By: red By:	- 122.3 - 122.4 DA DA
Surrogate Trifluorotolud 4-Bromofluor Matrix Spil QC Batch: Prep Batch:	ene (TFT) robenzene (4-1 ke (MS-1) 90712 76960	3FB) Spiked S	ample	: 295	2.21 1.95 5160 Date Ar QC Prej MS	2.00 1.79 nalyzed: paration) m) m : 201 n: 201	g/Kg g/Kg 12-04-30 12-04-30	1	2 2 Spike	М	110 98 atrix	100 90 Analy Prepa	75.5 77.9 zed By: red By:	- 122.3 - 122.4 DA DA Rec.
Surrogate Trifluorotoluo 4-Bromofluor Matrix Spil QC Batch: Prep Batch: Prep Batch:	ene (TFT) robenzene (4-1 ke (MS-1) 90712 76960	3FB) Spiked S	ample F	:: 29t	2.21 1.95 5160 Date Ar QC Prej MS Resu	2.00 1.79 nalyzed: paration	0 m m : 201 n: 201 Units	g/Kg g/Kg 12-04-30 12-04-30 Dil.	1	2 2 Spike Amount	MR	110 98 atrix esult	100 90 Analy Prepa Rec.	75.5 77.9 zed By: red By: l	- 122.3 - 122.4 DA DA Rec. .imit
Surrogate Trifluorotoluo 4-Bromofluor Matrix Spil QC Batch: Prep Batch: Prep Batch: Param DRO	ene (TFT) robenzene (4-1 ke (MS-1) 90712 76960	3FB) Spiked S	ample F	:: 295 	2.21 1.95 5160 Date Ar QC Prej MS Resu 32:	2.00 1.79 nalyzed: paration S ilt 3 r	m m 201 n: 201 Units ng/Kg	g/Kg g/Kg 12-04-30 12-04-30 Dil. 1		2 2 Spike Amount 250	M R	110 98 atrix esult 8.2	100 90 Analy Prepa Rec. 118	75.5 77.9 zed By: red By: l L 45.	DA DA DA DA Eec. imit 5 - 127
Matrix Spil QC Batch: Prep Batch: Param DRO Percent recov	ene (TFT) robenzene (4-F ke (MS-1) 90712 76960 very is based o	3FB) Spiked S	ample F	:: 295 	2.21 1.95 5160 Date Ar QC Prej MS Resu 323 RPD is 1	2.00 1.79 halyzed: paration 3 hlt 3 r based o	m m 201 n: 201 Units ng/Kg n the s	g/Kg g/Kg 12-04-30 12-04-30 Dil. 1 spike and	1 1 d spii	2 2 Spike Amount 250 ke duplio	M R 2 cate re	110 98 atrix esult 28.2 esult.	100 90 Analy Prepa Rec. 118	75.5 77.9 zed By: red By: l L 45.	DA DA DA DA Rec. imit 5 - 127
Surrogate Trifluorotolue 4-Bromofluor Matrix Spil QC Batch: Prep Batch: Prep Batch: Param DRO Percent recov	ene (TFT) robenzene (4-1 ke (MS-1) 90712 76960 very is based o	3FB) Spiked S	ample F ce rest	:: 295 	2.21 1.95 5160 Date Ar QC Prej MS Resu 32: RPD is I	2.00 1.79 nalyzed: paration 3 1lt 3 r based o	m m m m 201 n: 201 n: 201 n: 201 n: 201 n: 201 n: 201 n: 201 n: 201	g/Kg g/Kg 12-04-30 12-04-30 Dil. 1 spike and Spike	1 1 1 spil	2 2 Spike Amount 250 ke duplic Matrix	M R 2 cate re	110 98 atrix esult 8.2 sult.	100 90 Analy Prepa Rec. 118	75.5 77.9 zed By: red By: l L 45.	DA DA DA DA Rec. imit 5 - 127 RPD
Surrogate Trifluorotolud 4-Bromofluor Matrix Spil QC Batch: Prep Batch: Prep Batch: Param DRO Percent recov	ene (TFT) robenzene (4-1 ke (MS-1) 90712 76960 very is based o	3FB) Spiked S on the spik	ample F ce rest	C 1 Mi Res	2.21 1.95 5160 Date Ar QC Prej MS Rest 323 RPD is I SD sult U	2.00 1.79 nalyzed: paration 3 1lt 3 r based o Juits	m m m m m m m m m m m m m m m m m m m	g/Kg g/Kg 12-04-30 12-04-30 Dil. 1 spike and Spike Amoun	1 1 1 spil	2 2 Amount 250 ke duplic Matrix Result	M R cate re Rec.	110 98 atrix esult 8.2 sult. R Li	100 90 Analy Prepa Rec. 118 Rec. imit	75.5 77.9 zed By: red By: l 45. RPD	DA DA DA DA Rec. iimit 5 - 127 RPD Limit
Surrogate Trifluorotolue 4-Bromofluor Matrix Spil QC Batch: Prep Batch: Prep Batch: Param DRO Percent recov Param DRO	ene (TFT) robenzene (4-1 ke (MS-1) 90712 76960 very is based o	3FB) Spiked S on the spik	ample F ce rest	:: 295 C 1 11t. H M: Res 32	2.21 1.95 5160 Date Ar QC Prej MS Resu 32: 32: 32: 32: 32: 32: 32: 32: 32: 32:	2.00 1.79 nalyzed: paration 3 llt 3 r based o Units g/Kg	0 m m : 201 n: 201 ns: 201 ng/Kg n the s Dil. 1	g/Kg g/Kg 12-04-30 12-04-30 Dil. 1 spike and Spike Amoun 250	1 1 d spil	2 2 Spike Amount 250 ke duplic Matrix Result 28.2	M R cate re Rec. 118	110 98 atrix esult 8.2 esult. R Li 45.5	100 90 Analy Prepa Rec. 118 cec. imit - 127	75.5 77.9 zed By: red By: I L 45., <u>RPD</u> 0	DA DA DA DA Rec. imit 5 - 127 RPD Limit 20
Surrogate Trifluorotolue 4-Bromofluor Matrix Spil QC Batch: Prep Batch: Prep Batch: Param DRO Percent recov Param DRO Percent recov	ene (TFT) robenzene (4-F ke (MS-1) 90712 76960 very is based o	3FB) Spiked S on the spik	ample F ce rest	C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.21 1.95 5160 Date Ar QC Prej MS Resu 325 RPD is I SD sult U 24 m RPD is I	2.00 1.79 halyzed: paration 3 hat based o Juits g/Kg based o	0 m m 201 n: 201 <u>Units</u> ng/Kg n the s <u>Dil.</u> 1 n the s	g/Kg g/Kg 12-04-30 12-04-30 Dil. 1 spike and Spike and 250 spike and	1 1 1 spil 1 spil	2 2 Spike Amount 250 ke duplic Matrix Result 28.2 ke duplic	M R 2 cate re Rec. 118 cate re	110 98 atrix esult 28.2 sult. R Li 45.5 sult.	100 90 Analy Prepa <u>Rec.</u> 118 tec. imit - 127	75.5 77.9 zed By: red By: l L 45. RPD 0	DA DA DA DA Sec. imit 5 - 127 RPD Limit 20
Surrogate Trifluorotolud 4-Bromofluor Matrix Spil QC Batch: Prep Batch: Prep Batch: Param DRO Percent recov Param DRO Percent recov	ene (TFT) robenzene (4-1 ke (MS-1) 90712 76960 very is based o	3FB) Spiked S on the spik F on the spik	ample F C C 1 te rest	:: 295 C 1 11t. H M: Res 32 11t. H	2.21 1.95 5160 Date Ar QC Prej MS Resu 32: RPD is I SD Sult U 24 m RPD is I MSD	2.00 1.79 halyzed: paration S ilt 3 r based o Units g/Kg based o	0 m m 201 n: 201 n: 201 ns: 20	g/Kg g/Kg 12-04-30 12-04-30 Dil. 1 spike and Spike Amoun 250 spike and	1 1 1 spil t spil d spil S	2 2 Spike Amount 250 ke duplic Matrix Result 28.2 ke duplic pike	M R cate re Rec. 118 cate re MS	110 98 atrix esult 8.2 sult. R Li 45.5 sult.	100 90 Analy Prepa Rec. 118 cec. imit - 127 MSD	75.5 77.9 zed By: red By: l L 45., RPD 0 R	DA DA DA DA Eec. iimit 5 - 127 RPD Limit 20 ec.
Surrogate Trifluorotolue 4-Bromofluor Matrix Spil QC Batch: Prep Batch: Prep Batch: Param DRO Percent recov Param DRO Percent recov	ene (TFT) robenzene (4-1 ke (MS-1) 90712 76960 very is based o	3FB) Spiked S on the spik on the spik	ample F ce resu ce resu AS esult	295 C 1 11t. H MS Res 32 11t. H I R	2.21 1.95 5160 Date Ar QC Prej MS Resu Resu RPD is 1 SD Sult U 24 m RPD is 1 MSD tesult	2.00 1.79 1.79 halyzed: paration 3 ilt 3 r based o Units <u>g/Kg</u> based o Uni	m m m m m m m m m m m m m m m m m m m	g/Kg g/Kg 12-04-30 12-04-30 Dil. 1 spike and 250 spike and Dil.	1 1 1 spil 1 spil 1 spil S An	2 2 Spike Amount 250 ke duplic Matrix Result 28.2 ke duplic pike nount	M R 2 cate re 118 cate re MS Rec	110 98 atrix esult 8.2 sult. R Li 45.5 sult.	100 90 Analy Prepa Rec. imit - 127 MSD Rec.	75.5 77.9 zed By: red By: I L 45., RPD 0 R Li	DA DA DA DA Eec. <u>iimit</u> 20 ec. mit

J

Report Date: May 4, 2012 114-6401363	Work Order: 12042422 COG/White Oak State #1							Page Number: 22 of 27 Eddy Co., NM			22 of 27 Co., NM	
Matrix Spike (MS-1) Spi	ked Sa	mple	e: 29516	57								
QC Batch: 90866 Prep Batch: 77061			Da QC	te Analyz Preparat	ed: 20 tion: 20)12-05-03)12-05-01				Analy Prepa	zed By red By:	AR AR
•			•	•						-		
				MS			Spike	Ma	atrix		F	lec.
Param		\mathbf{F}	С	\mathbf{Result}	Units	Dil.	Amount	\mathbf{Re}	sult	Rec.	\mathbf{L}	imit
Chloride				2730	mg/Kg	5	2500	2	80	98	79.4	- 120.6
Percent recovery is based on th	e spik	e res	ult. RP	D is based	l on the	spike and	spike dup	licate r	esult.			
			MSD			Spike	Matrix		Re	c.		RPD
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Lin	nit	RPD	Limit
Chloride			2810	mg/Kg	5	2500	280	101	79.4 -	120.6	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: May 4, 2012 114-6401363

Calibration Standards

Standard (CCV-3)

QC Batch:	90553			Date	Analyzed:	2012-04-24		Analy	zed By: DA
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param	Fla	ıg	Cert	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
DRO			1	mg/Kg	250	253	101	80 - 120	2012-04-24

Standard (CCV-4)

QC Batch:	90553			Date	Analyzed:	2012-04-24		Analy	zed By: DA
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param	Fla	g	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO			1	mg/Kg	250	257	103	80 - 120	2012-04-24

Standard (CCV-2)

QC Batch:	90586			Date .	Analyzed:	2012-04-25		Analy	zed By: DA
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO			1	mg/Kg	250	272	109	80 - 120	2012-04-25

Standard (CCV-3)

QC Batch:	90586			Date .	Analyzed:	2012-04-25		Analyzed By: DA		
					CCVs	CCVs	CCVs	Percent	Dete	
					Irue	rouna	Percent	Recovery	Date	
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
DRO			1	mg/Kg	250	250	100	80 - 120	2012-04-25	

Report Date: May 4, 2 114-6401363	- Weitz	Wo COG	rk Order: 1 /White Oak	Page Number: 24 of 27 Eddy Co., NM				
Standard (CCV-1)								
QC Batch: 90611			Date An	alyzed: 20	12-04-25		Anal	yzed By: tc
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		1	mg/kg	0.100	0.0925	92	80 - 120	2012-04-25
Toluene		1	mg/kg	0.100	0.0912	91	80 - 120	2012-04-25
Ethylbenzene		1	mg/kg	0.100	0.0883	88	80 - 120	2012-04-25
Xylene		11	mg/kg	0.300	0.266	89	80 - 120	2012-04-25

Standard (CCV-2)

QC Batch:	90611			Date An	alyzed: 20	12-04-25		Analyzed By: tc			
					CCVs	CCVs	CCVs	Percent			
					True	Found	Percent	Recovery	Date		
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed		
Benzene			1	mg/kg	0.100	0.104	104	80 - 120	2012-04-25		
Toluene			1	mg/kg	0.100	0.105	105	80 - 120	2012-04-25		
Ethylbenzer	ie		1	mg/kg	0.100	0.0991	99	80 - 120	2012-04-25		
Xylene			1	mg/kg	0.300	0.295	98	80 - 120	2012-04-25		

Standard (CCV-1)

QC Batch:	90612			Date	Analyzed:	2012-04-25		Ana	lyzed By: tc
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO			1	mg/Kg	1.00	1.07	107	80 - 120	2012-04-25

Standard (CCV-2)

QC Batch:	90612			Date	Analyzed:	2012-04-25		Ana	lyzed By: tc
D					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO			1	mg/Kg	1.00	1.18	118	80 - 120	2012-04-25

Report Date: May 4, 114-6401363	2012		Wor COG/	rk Order: 1 White Oak	Page Number: 25 of 27 Eddy Co., NM			
Standard (CCV-1)								
QC Batch: 90687			Date An	alyzed: 20	12-04-27		Anal	yzed By: tc
				CCVs	\mathbf{CCVs}	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		1	mg/kg	0.100	0.108	108	80 - 120	2012-04-27
Toluene		I	mg/kg	0.100	0.106	106	80 - 120	2012-04-27
Ethylbenzene		1	mg/kg	0.100	0.103	103	80 - 120	2012-04-27
Xylene		1	mg/kg	0.300	0.309	103	80 - 120	2012-04-27

Standard (CCV-2)

QC Batch:	90687			Anal	Analyzed By: tc				
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene			1	mg/kg	0.100	0.110	110	80 - 120	2012-04-27
Toluene			1	mg/kg	0.100	0.107	107	80 - 120	2012-04-27
Ethylbenzer	e		1	mg/kg	0.100	0.102	102	80 - 120	2012-04-27
Xylene			1	mg/kg	0.300	0.309	103	80 - 120	2012-04-27

Standard (CCV-1)

QC Batch:	90689			Date	Analyzed:	2012-04-30		Ana	lyzed By: tc
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param	H	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO			1	mg/Kg	1.00	1.05	105	80 - 120	2012-04-30

Standard (CCV-2)

QC Batch:	90689			Date	Analyzed:	2012-04-30		Ana	lyzed By: tc
					CCVs	CCVs	CCVs	Percent	_
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO			1	mg/Kg	1.00	1.01	101	80 - 120	2012-04-30

Report Date: May 4, 2012 114-6401363			C	Work Orde OG/White	er: 12042422 Oak State #1		Page Number: 26 of 27 Eddy Co., NM				
Standard (CCV-2)										
QC Batch:	90712		Date	Analyzed:	2012-04-30		Analy	zed By: DA			
Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed			
DRO		1	mg/Kg	250	271	108	80 - 120	2012-04-30			
QC Batch:	90712		Date	Analyzed:	2012-04-30		Analy	zed By: DA			
				CCVs	CCVs Found	CCVs Percent	Percent	Data			
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed			
DRO		1	mg/Kg	250	280	112	80 - 120	2012-04-30			
Standard (CCV-1)										
QC Batch:	90866		Date	Analyzed:	2012-05-03		Analy	zed By: AR			

				CCVs	CCVs Faund	CCVs Democrat	Percent	Data
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Date Analyzed
Chloride			mg/Kg	100	100	100	85 - 115	2012-05-03

Standard (CCV-2)

QC Batch:	90866			Date A	nalyzed:	2012-05-03		Analy	zed By: AR
					CCVs	CCVs Found	CCVs Percent	Percent	Data
Daram		Flor	Cort	Unite	Cone	Conc	Bacovary	Limite	Analyzad
		Tiag	Oert		100	100	10000019	Diffito	Allayzed
Chloride				mg/Kg	100	100	100	85 - 115	2012-05-03

Work Order: 12042422 COG/White Oak State #1 Page Number: 27 of 27 Eddy Co., NM

Appendix

Report Definitions

NameDefinitionMDLMethod Detection LimitMQLMinimum Quantitation LimitSDLSample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
С	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	NELAP	T104704392-11-3	Midland

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

Attachments

The scanned attachments will follow this page.

Please note, each attachment may consist of more than one page.

Ar	nalvs	sis	Re	ea	U	est of C	hain of Cust	odv l	Re	ec	0	rd					····-			<u>۽</u>	PAG	E:	L		OF:	
														-				(Ci	۸۱ ircle	IALY or Sp	SIS I pecil	REQI fy Me	JEST athod	I No.)	
						TETR 1910 N. B Midland, 7 (432) 682-456	A TECH ig Spring St. Texas 79705 59 • Fax (432) 682-3946								b (Ext. to C35)	d Cr Pb Hg Se	d Vr Pd Hg Se								SUL	
	ME:					SITE MANA	GER:	NERS	T	P	RES	ERVA	TIVE D			Ba C	Ba C			60/624 270/625					Ha st	
PROJECT N	10136	. <i>ک</i>	PI	ROJE	ECT	NAME:	State #1	CONTAIL	N.			T			i N	s Ag As	s Ag As	Volatiles		8240/82 i Vol 8	608	8		(Air)	tos) s/Catio	
LAB I.D. NUMBER	DATE	TIME	MATRIX	COMP	GRAB	E SAN	ALL CONM IPLE IDENTIFICATION	NUMBER OF	FILTERED (НСГ	HN03	ICE	NONE	BTEX 8021B	PAH 8270	RCRA Meta	TCLP Meta	TCLP Semi	RCI	GC.MS Vol. GC.MS Serr	PCB's 8080	Pest. 808/6	Chloride Gamma Spe	Alpha Beta	PLM (Asbes Maior Anior	
295157	4/18		5		×	AH-1	3-3.5	1			ľ	x		X	4								\Box	Π		L
158					1	·	4-4.5'																			
159							5-5.5																			
160			Ŷ	ļ	$\overline{\mathbf{V}}$		6-2.5	ĺ.				/														
																								$\downarrow \downarrow$		\downarrow
					_	<u> </u>						\downarrow			-	$\left - \right $		ļ			-			$\downarrow \downarrow$		ļ
						·····					_				1			<u> </u>		_			_	\square	-	
			+		+									┝╌┠╴	-		_	-		-	$\left \right $			\square		╞
					+						_	╞	+	┝╌┠╴			+		\square		$\left \right $		+	$\left \right $	+	-
RELANDISHED	BY: (Signatur	e)				Data ufzeft2	PRECEIVED BY (Signature)			De		12	Ha		SA	MPLE	DIBY:	(Print	& Init	ial)				Dat	e:	5
RELINGUISHED	BY: (Signatur	e)				Date:	RECEIVED BY (Signature)			Da Tic	ne: te: ne:	<u>[]</u>	_2_		SA F		SHIP	PED E	3Y: (Ci	rcie) 3US			1	AIRBII	e:	
RELINQUISHED	BY: (Signature	e)				Date: Time:	RECEIVED BY: (Signature)			Da Tin	te:					IRA T	ECH C	ERED		JPS ERSOI	N:			OTHEI	२: Tesuits	by:
	and	STATE	x 	РНС	ONE:	ZIP:	_ RECEIVED BY: (Signature)	TIN	1E:							IL	e	Ta		אהע פ	2			F	IUSH C luthori: Yes	iharg zed:
SAMPLE CONDIT	TION WHEN F	ECEIVED	;			REMARKS:	1	7	<u> </u>		70	11			4											

Then deeper payle of bengere precede 10 mallay - total BREY access Som

Summary Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX 79705

Report Date: May 29, 2012

Work Order: 12052116

Project Location:Eddy Co., NMProject Name:COG/White Oak State #1Project Number:114-6401363

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
298016	Trench-1 6' (AH-1 Second Spill)	soil	2012-05-17	00:00	2012-05-21
298017	Trench-1 8' (AH-1 Second Spill)	soil	2012-05-17	00:00	2012-05-21
298018	Trench-1 10' (AH-1 Second Spill)	soil	2012-05-17	00:00	2012-05-21
298019	Bottom Hole 5' (AH-1 Second Spill)	soil	2012-05-17	00:00	2012-05-21
298020	Trench-2 4' (AH-4 First Spill)	soil	2012-05-18	00:00	2012-05-21

		E	BTEX	TPH DRO - NEW	TPH GRO	
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
298019 - Bottom Hole 5' (AH-1 Second Spill)	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0	<2.00
298020 - Trench-2 4' (AH-4 First Spill)	< 0.0200	< 0.0200	< 0.0200	< 0.0200	<50.0	<2.00

Sample: 298016 - Trench-1 6' (AH-1 Second Spill)

Param	Flag	Result	Units	RL
Chloride		24.9	mg/Kg	4

Sample: 298017 - Trench-1 8' (AH-1 Second Spill)

Param	Flag	Result	Units	RL
Chloride		<20.0	mg/Kg	4

Sample: 298018 - Trench-1 10' (AH-1 Second Spill)

Report Date: May 2	9, 2012	Work Order: 12052116	Page I	Number: 2 of 2
Param	Flag	Result	Units	RL
Chloride		<20.0	mg/Kg	4

Sample: 298020 - Trench-2 4' (AH-4 First Spill)

Param	Flag	Result	Units	RL
Chloride		781	mg/Kg	4

,

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Kansas Oklahoma ISO 17025

Analytical and Quality Control Report

Ike Tavarez Tetra Tech 1910 N. Big Spring Street Midland, TX, 79705

Report Date: May 29, 2012

Work Order: 12052116

Project Location:Eddy Co., NMProject Name:COG/White Oak State #1Project Number:114-6401363

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
298016	Trench-1 6' (AH-1 Second Spill)	soil	2012-05-17	00:00	2012-05-21
298017	Trench-1 8' (AH-1 Second Spill)	soil	2012-05-17	00:00	2012-05-21
298018	Trench-1 10' (AH-1 Second Spill)	soil	2012-05-17	00:00	2012-05-21
298019	Bottom Hole 5' (AH-1 Second Spill)	soil	2012-05-17	00:00	2012-05-21
298020	Trench-2 4' (AH-4 First Spill)	soil	2012-05-18	00:00	2012-05-21

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 17 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

lan fotura

Dr. Blair Leftwich, Director Dr. Michael Abel, Project Manager

Report Contents

Case Narrative	3
Analytical Report	4 4 4 4 4 6
Method Blanks Alignmethod Blank (1) Ali	8 8 8 9
Laboratory Control Spikes 10 QC Batch 91445 - LCS (1) 11 QC Batch 91448 - LCS (1) 12 QC Batch 91449 - LCS (1) 14 QC Batch 91596 - LCS (1) 14 QC Batch 91445 - MS (1) 14 QC Batch 91448 - MS (1) 14 QC Batch 91449 - MS (1) 14 QC Batch 91449 - MS (1) 14 QC Batch 91449 - MS (1) 14 QC Batch 91596 - MS (1) 14	0 .0 .1 .1 .1 .2 .3 .3
Calibration Standards 14 QC Batch 91445 - CCV (1) 14 QC Batch 91445 - CCV (2) 14 QC Batch 91448 - CCV (1) 14 QC Batch 91448 - CCV (2) 14 QC Batch 91448 - CCV (2) 14 QC Batch 91449 - CCV (1) 14 QC Batch 91449 - CCV (2) 14 QC Batch 91449 - CCV (2) 14 QC Batch 91596 - CCV (1) 14 QC Batch 91596 - CCV (2) 14 QC Batch 91596 - CCV (2) 14 QC Batch 91596 - CCV (2) 14	4 4 4 4 5 5 5 5
Appendix 14 Report Definitions 11 Laboratory Certifications 11 Standard Flags 11 Attachments 11	7 7 7

Case Narrative

Samples for project COG/White Oak State #1 were received by TraceAnalysis, Inc. on 2012-05-21 and assigned to work order 12052116. Samples for work order 12052116 were received intact at a temperature of 3.8 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	\mathbf{QC}	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	77584	2012-05-22 at 08:20	91448	2012-05-22 at 09:19
Chloride (Titration)	SM 4500-Cl B	77707	2012-05-21 at 10:21	91596	2012-05-29 at 10:23
TPH DRO - NEW	S 8015 D	77583	2012-05-22 at 08:20	91445	2012-05-22 at 09:20
TPH GRO	S 8015 D	77584	2012-05-22 at 08:20	91449	2012-05-22 at 09:45

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 12052116 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: May 29, 2012 114-6401363

Analytical Report

Sample: 298016 - Trench-1 6' (AH-1 Second Spill)

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 91596 77707	Analytic Date An Sample I	al Method: alyzed: Preparation:	SM 4500-Cl B 2012-05-29 2012-05-21	Prep Method: Analyzed By: Prepared By:	N/A AR AR
D (a 1	RL	TT 1 4		ы
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride			24.9	mg/Kg	5	4.00

Sample: 298017 - Trench-1 8' (AH-1 Second Spill)

Chloride	υ		<20.0	mg/Kg	5	4.00
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	77707	Sample I	Preparation:	2012-05-21	Prepared By:	AR
QC Batch:	91596	Date An	alyzed:	2012-05-29	Analyzed By:	AR
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Midland					

Sample: 298018 - Trench-1 10' (AH-1 Second Spill)

Laboratory:	Midland					
Analysis:	Chloride (Titration)	Analytic	al Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	91596	Date An	alyzed:	2012-05-29	Analyzed By:	AR
Prep Batch: 77707		Sample 1	Preparation:	2012-05-21	Prepared By:	ed By: AR
			\mathbf{RL}			
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}
Chloride	U		<20.0	mg/Kg	5	4.00

Report Date: May 29, 2012	Work Order: 12052116	Page Number: 5 of 17
114-6401363	COG/White Oak State #1	Eddy Co., NM

Sample: 298019 - Bottom Hole 5' (AH-1 Second Spill)

Laboratory: Midland Analysis: BTEX QC Batch: 91448		Analytica Date Ana	al Method alyzed:	: S 8021 2012-0	1B)5-22		Prep Met Analyzed Propored	bod: S 5035 By: AG Bw: AC
Prep Batch: 77384		Sample F	reparatio	n: 2012-0	10-22		Prepared	Dy: AG
				\mathbf{RL}				
Parameter	Flag	Cert		Result	Ui	nits	Dilution	\mathbf{RL}
Benzene	υ	1		< 0.0200	mg/	Kg	1	0.0200
Toluene	υ	1		< 0.0200	mg/	ΊKg	1	0.0200
Ethylbenzene	U	1		< 0.0200	mg/	ΊKg	1	0.0200
Xylene	U	1		<0.0200	mg/	Kg	1	0.0200
		a i		T T '.		Spike	Percent	Recovery
Surrogate	Flag	g Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			2.29	mg/Kg	1	2.00	114	75 - 135.4
4-Bromofluorobenzene (4-BFB)			1.78	mg/Kg	1	2.00	89	63.6 - 158.9

Sample: 298019 - Bottom Hole 5' (AH-1 Second Spill)

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - 91445 77583	NEW		Ana Dat Sarr	lytical M e Analyz pple Prep	lethod: ed: aration:	S 8015 1 2012-05 2012-05	D -22 -22	Prep Me Analyze Prepare	ethod: N d By: A d By: A	∛/A \G \G
						RL					
Parameter		\mathbf{Fl}	ag	Cert		Result		Units	Dilution		\mathbf{RL}
DRO				1		<50.0		mg/Kg	1	Ę	50.0
Surrogate	Fla	ıg C	ert R	esult	Units	Dilu	tion	Spike Amount	Percent Recovery	Recove Limit	ery S
n-Tricosane				92.2	mg/Kg	-		100	92	49.3 - 18	57.5

Sample: 298019 - Bottom Hole 5' (AH-1 Second Spill)

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH GRO 91449 77584		Analytical M Date Analyz Sample Prep	ethod: 5 ed: 5 aration: 5	S 8015 D 2012-05-22 2012-05-22		Prep Method: Analyzed By: Prepared By:	S 5035 AG AG
				R	L			
Parameter		Flag	Cert	Resu	lt	Units	Dilution	\mathbf{RL}
GRO		U	1	<2.0	0	mg/Kg	1	2.00

.

Report Date: May 29, 2012 114-6401363		C	Page Number: 6 of 17 Eddy Co., NM					
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		<u> </u>	2.12	mg/Kg	1	2.00	106	58.5 - 155.1
4-Bromofluorobenzene (4-BFB)			1.80	mg/Kg	1	2.00	90	45.1 - 162.2

Sample: 298020 - Trench-2 4' (AH-4 First Spill)

Laboratory: Analysis: QC Batch: Prep Batch:	Midland BTEX 91448 77584			Analytica Date Ana Sample F	al Method alyzed: Preparatio	l: S 802 2012-(on: 2012-(1B)5-22)5-22		Prep Met Analyzed Prepared	thod: By: By:	S 5035 AG AG
						\mathbf{RL}					
Parameter		Flag	S	Cert		Result	U	nits	Dilution		\mathbf{RL}
Benzene		U		1		< 0.0200	mg/	'Kg	1		0.0200
Toluene		υ		1		< 0.0200	mg/	ΊKg	1		0.0200
Ethylbenzene)	U		1		< 0.0200	mg	ΊKg	1		0.0200
Xylene		U		1		< 0.0200	mg/	Kg	1		0.0200
Surrogate			Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Re L	covery imits
Trifluorotolue	ene (TFT)				2.18	mg/Kg	1	2.00	109	75 -	- 135.4
4-Bromofluor	obenzene (4-BFB)				1.76	mg/Kg	1	2.00	88	63.6	- 158.9

Sample: 298020 - Trench-2 4' (AH-4 First Spill)

Laboratory: Analysis: QC Batch: Prep Batch:	Midland Chloride (Titration) 91596 77707	Analytic Date An Sample I	al Method: alyzed: Preparation:	SM 4500-Cl B 2012-05-29 2012-05-21	Prep Method: Analyzed By: Prepared By:	N/A AR AR
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	\mathbf{RL}
Chloride			781	mg/Kg	5	4.00

Sample: 298020 - Trench-2 4' (AH-4 First Spill)

Laboratory:	Midland				
Analysis:	TPH DRO - NEW	Analytical Method:	S 8015 D	Prep Method:	N/A
QC Batch:	91445	Date Analyzed:	2012-05-22	Analyzed By:	AG
Prep Batch:	77583	Sample Preparation:	2012-05-22	Prepared By:	AG

Report Date: May 2 114-6401363		CC	Work Order DG/White		Page Number: 7 of 17 Eddy Co., NM			
Parameter		Flag	Cert	I	RL Result	Units	Dilution	\mathbf{RL}
DRO			1		<50.0	mg/Kg	1	50.0
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane			107	mg/Kg	1	100	107	49.3 - 157.5

Sample: 298020 - Trench-2 4' (AH-4 First Spill)

.

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH GRO 91449 77584			Analytic Date An Sample	cal Metho nalyzed: Preparat	od: S 80 2012 ion: 2012	15 D 2-05-22 2-05-22		Prep Met Analyzed Prepared	hod: S 5035 By: AG By: AG
						\mathbf{RL}				
Parameter		Flag		Cert		Result	U	nits	Dilution	RL
GRO		U		1		<2.00	mg	/Kg	1	2.00
Surrogate			Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolue	ene (TFT)				1.96	mg/Kg	1	2.00	98	58.5 - 155.1
4-Bromofluor	obenzene (4-BFB)				1.70	mg/Kg	1	2.00	85	45.1 - 162.2

Report Date: May 29, 2012 114-6401363 :

Method Blanks

Method Diank (1) QC I	Batch: 91445								
QC Batch: 91445	i		Date A	Analyzed:	2012-05-	22		Analy	zed By:	AG
Prep Batch: 77583			QC Pi	eparation:	2012-05-	22		Prepa	red By:	AG
						MD	L			
Parameter		Flag		Cert		Resu	lt	Units		\mathbf{RL}
DRO				1		<14	.5	mg/Kg		50
							Spike	Percent	Reco	overy
Surrogate	Flag	Cert	Result	Units	Dilu	ition	Amount	Recovery	Lir	nits
n-Tricosane			106	mg/Kg]	1	100	106	52 -	140.8
Method Blank (1) QC I	Batch: 91448								
QC Batch: 91448 Prep Batch: 77584			Date A QC Pi	Analyzed: reparation:	2012-05- 2012-05-	22 22		Analyz Prepar	zed By: red By:	AG AG
QC Batch: 91448 Prep Batch: 77584	5		Date A QC Pr	Analyzed: reparation:	2012-05- 2012-05-	22 22 MI	DL	Analyz Prepar	zed By: red By:	AG AG
QC Batch: 91448 Prep Batch: 77584 Parameter	} 	Flag	Date A QC Pr	Analyzed: reparation: Cert	2012-05- 2012-05-	22 22 MI Resu	DL ilt	Analyz Prepar Units	zed By: red By:	AG AG RL
QC Batch: 91448 Prep Batch: 77584 Parameter Benzene	l 	Flag	Date A QC Pr	Analyzed: reparation: Cert	2012-05- 2012-05-	22 22 MI <u>Rest</u> <0.004	DL 1lt	Analyz Prepar Units mg/Kg	zed By: red By:	AG AG RL 0.02
QC Batch: 91448 Prep Batch: 77584 Parameter Benzene Toluene	l 	Flag	Date A QC Pr	Analyzed: reparation: Cert	2012-05- 2012-05-	22 22 MI Rest <0.004 <0.009	DL 1lt 70 80	Analyz Prepar Units mg/Kg mg/Kg	zed By: red By:	AG AG RL 0.02 0.02
QC Batch: 91448 Prep Batch: 77584 Parameter Benzene Toluene Ethylbenzene Xulona	5 1 	Flag	Date A QC Pr	Analyzed: reparation: Cert	2012-05- 2012-05-	22 22 MI Rest <0.004 <0.009 <0.005	DL 11t 70 80 00 70	Analyz Prepar <u>Units</u> mg/Kg mg/Kg mg/Kg	zed By: red By:	AG AG RL 0.02 0.02 0.02 0.02
QC Batch: 91448 Prep Batch: 77584 Parameter Benzene Toluene Ethylbenzene Xylene	s 	Flag	Date A QC Pr	Analyzed: reparation: Cert 1 1 1 1	2012-05- 2012-05-	22 22 MI Rest <0.004 <0.009 <0.005 <0.01	DL 1lt 70 80 00 70	Analyz Prepar Units mg/Kg mg/Kg mg/Kg mg/Kg	zed By: red By:	AG AG RL 0.02 0.02 0.02 0.02 0.02
QC Batch: 91448 Prep Batch: 77584 Parameter Benzene Toluene Ethylbenzene Xylene		Flag	Date A QC Pr	Analyzed: reparation: Cert 1 1 1	2012-05- 2012-05-	22 22 MI Rest <0.004 <0.009 <0.005 <0.01	DL 1lt 70 80 00 70 Spike	Analyz Prepar Units mg/Kg mg/Kg mg/Kg mg/Kg Percent	zed By: red By: Recov	AG AG RL 0.02 0.02 0.02 0.02 very
QC Batch: 91448 Prep Batch: 77584 Parameter Benzene Toluene Ethylbenzene Xylene Surrogate		Flag	Date A QC Pr	Analyzed: reparation: Cert 1 1 1 1 1 Result	2012-05- 2012-05- Units	22 22 MI Resu <0.004 <0.009 <0.005 <0.01 Dilution	DL 1lt 70 80 00 70 Spike 1 Amount	Analyz Prepar Units mg/Kg mg/Kg mg/Kg mg/Kg Percent Recovery	zed By: red By: Recor Lim	AG AG 0.02 0.02 0.02 0.02 very its
QC Batch: 91448 Prep Batch: 77584 Parameter Benzene Toluene Ethylbenzene Xylene Surrogate Trifluorotoluene (T)	6 	Flag Flag	Date A QC Pr	Analyzed: reparation: Cert 1 1 1 1 Result 2.25	2012-05- 2012-05- Units mg/Kg	22 22 MI Resu <0.004 <0.009 <0.005 <0.01 Dilution 1	DL 11t 70 80 00 70 Spike 1 Amount 2.00	Analyz Prepar Units mg/Kg mg/Kg mg/Kg mg/Kg Percent Recovery 112	zed By: red By: Reco Lim 78 - 1	AG AG RL 0.02 0.02 0.02 0.02 0.02 very its 23.6

Method Blank (1)	QC Batch: 91449				
QC Batch: 91449		Date Analyzed:	2012-05-22	Analyzed By	r: AG
Prep Batch: 77584		QC Preparation:	2012-05-22	Prepared By	r: AG

Report Date: May 29, 2012 114-6401363	С	Work Order: 12052116 COG/White Oak State #1				Page Number: 9 of 17 Eddy Co., NM		
Parameter Flag	5	Cert		MDL Result		Units	\mathbf{RL}	
GRO		1		<1.22		mg/Kg	2	
Surrogate Fla Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)	g Cert	Result 2.04 1.58	Units mg/Kg mg/Kg	Dilution 1 1	Spike Amount 2.00 2.00	Percent Recovery 102 79	Recovery Limits 78.6 - 121 51 - 120	
Method Blank (1) QC Batch: 9159	6							
QC Batch: 91596 Prep Batch: 77707	Date . QC P	Analyzed: reparation:	2012-05-2 2012-05-2	29 21		Analyze Prepare	d By: AR d By: AR	

			MDL		
Parameter	Flag	Cert	Result	Units	\mathbf{RL}
Chloride			<3.85	mg/Kg	4

Report Date: May 29, 2012 114-6401363

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch:	91445			Date	Analyze	d: 201	12-05-22			An	alyzed By	y: AG
Prep Batch:	77583			QC 1	Preparati	on: 20	12-05-22			Pre	pared By	7: AG
					LCS			Spike	Ma	atrix		Rec.
Param			F	C F	Result	Units	Dil.	Amount	Re	esult R	ec.	Limit
DRO				1	232	mg/Kg	1	250	<	14.5 9	03 62	2 - 128.3
Percent recov	ery is based on th	e spike	rest	lt. RPD	is based	on the s	pike and	spike dupli	cate re	sult.		
				LCSD			Spike	Matrix		Rec.		RPD
Param		\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO			1	249	mg/Kg	1	250	<14.5	100	62 - 128.	3 7	20
Percent recov	ery is based on th	e spike	resu	ilt. RPD	is based	on the s	pike and	spike dupli	cate re	sult.		
		LC	5	LCSD				Spike	LCS	LCSD		Rec.
Surrogate		Resu	ılt	Result	. Un	its	Dil.	Amount	Rec.	Rec.	I	Limit
n-Tricosane	· · · · · · · · · · · · · · · · · · ·	107	/	109	mg/	′Kg	1	100	107	109	58.6	6 - 149.6

Laboratory Control Spike (LCS-1)

QC Batch:	91448	Date Analyzed:	2012-05-22	Analyzed By:	\mathbf{AG}
Prep Batch:	77584	QC Preparation:	2012-05-22	Prepared By:	AG

			\mathbf{LCS}			Spike	Matrix		Rec.
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene		1	2.03	mg/Kg	1	2.00	< 0.00470	102	86.5 - 124.9
Toluene		1	2.07	mg/Kg	1	2.00	< 0.00980	104	84.7 - 122.5
Ethylbenzene		1	2.08	mg/Kg	1	2.00	< 0.00500	104	79.4 - 118.9
Xylene		1	6.26	mg/Kg	1	6.00	< 0.0170	104	77.5 - 119

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene		1	2.06	mg/Kg	1	2.00	< 0.00470	103	86.5 - 124.9	2	20
Toluene		ı	2.08	mg/Kg	1	2.00	< 0.00980	104	84.7 - 122.5	0	20
Ethylbenzene		ı	2.14	mg/Kg	1	2.00	< 0.00500	107	79.4 - 118.9	3	20
Xylene		1	6.36	mg/Kg	1	6.00	< 0.0170	106	77.5 - 119	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: May 29, 2012 114-6401363				Work C COG/Wł	Order: 12 nite Oak	052116 State 7	#1 			I	Page Nu	mber: Eddy (11 of 17 Co., NM
0				S LCS	SD		Dil	Spik	e L	CS	LCSD]	Rec.
Surrogate				$\frac{11}{2}$ $\frac{11}{2}$	uit U	nits	$\frac{D_{\text{II}}}{1}$			$\frac{100}{104}$	<u>102</u>	73 (11116
A Bromofluorobengene (4.BFB)			2.0	9 2.0 D 10	$10 m_{\rm e}$	/Kg	1	2.00	, 1 1	04	08	65.4	- 110 0
					<u> </u>	<u>,0</u>							
Laboratory Control Spike (L	∕CS- :	L)											
QC Batch: 91449			Date	Analyze	d: 201	2-05-2	2				Analy	zed Bv	: AG
Prep Batch: 77584			QC	Preparati	ion: 201	2-05-2	$\frac{1}{2}$				Prepa	red By	AG
				~~~~				a				-	
P		-	а т	LCS	TT	D:1		Spike	Mat		<b>D</b>	ł	lec.
CPO		F	<u> </u>	esuit	Units mg/Kg	<u>1</u>	<i>P</i>	20 0	$-\frac{\text{Res}}{1}$	uii 22	83	67.3	$\frac{11110}{1057}$
Percent recovery is based on the	spike	rest	ılt. RPD	is based	on the s	pike ar	nd spi	ike dupli	cate re	sult.		01.0	- 100.1
·	-		LCSD			Spike	- M	- Iatrix		R	ec.		RPD
Param	$\mathbf{F}$	С	Result	Units	Dil.	Amour	nt R	lesult	Rec.	Li	mit	RPD	Limit
GRO		1	18.3	mg/Kg	1	20.0	<	<1.22	92	67.3 -	105.7	10	20
Percent recovery is based on the	spike	resu	ılt. RPD	is based	on the s	pike ar	ıd spi	ke dupli	cate re	sult.			
Ū	•				~	-	•	- -		<b>a</b> a	t dap	-	
<b>G</b>				S LC	5D		D:1	Spike	e L	CS	LCSD	ł T	lec.
Surrogate			Rest	ut Res	unt U	nus	$D_{II}$ .	Amou	nt n	Lec.	nec.	L	111.0
			10	1 90	11 m	·/Va	1	2 00		00	100	00	
4-Bromofluorobenzene (4-BFB)			1.8 1.6	2.0 4 $1.8$	)1 mg 86 mg	;/Kg ;/Kg	1 1	2.00 2.00		90 82	100 93	80 - 56.4	- 106.6
4-Bromofluorobenzene (4-BFB)	(CS-:	L)	1.8 1.6	) 2.0 4 1.8	)1 mg 36 mg	;/Kg ;/Kg	1 1	2.00 2.00		90 82	100 93	80 - 56.4	- 106.6
4-Bromofluorobenzene (4-BFB)	CS-	L)	1.8 1.6	0 2.0 4 1.8	)1 mg 36 mg	;/Kg ;/Kg	1 1	2.00 2.00		90	100 93	80 - 56.4	- <u>106.6</u>
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 91596 Prep Batch: 77707	.CS-:	L)	1.8 1.6 Date QC	0 2.0 4 1.8 9 Analyze Preparati	)1 mg 36 mg cd: 201 ion: 201	;/Kg ;/Kg 12-05-2 12-05-2	1 1 9	2.00 2.00		90 82	100 93 Analy Prepa	80 - 56.4 rzed By red By:	- 106.6 - AR AR
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 91596 Prep Batch: 77707	CS-:	L)	1.8 1.6 Date QC	0 2.0 4 1.8 9 Analyze Preparati LCS	)1 mg 36 mg 2d: 201 ion: 201	;/Kg ;/Kg 12-05-2 12-05-2	1 1 9 1	2.00 2.00 Spike	Ν	90 82 1atrix	100 93 Analy Prepa	80 - 56.4 zed By red By	- 106.6 - AR AR Rec.
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 91596 Prep Batch: 77707	.CS-:	L) F	1.8 1.6 Date QC	0 2.0 4 1.8 9 Analyze Preparati LCS Result	01 mg 36 mg 36: 201 ion: 201 Units	;/Kg ;/Kg 12-05-2 12-05-2 12-05-2 D	1 1 9 1 il.	2.00 2.00 Spike Amoun	N t F	90 82 Aatrix Tesult	100 93 Analy Prepa	80 - 56.4 zed By red By: c.	- 106.6 - AR AR Rec. Limit
4-Bromofluorobenzene (4-BFB) 4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 91596 Prep Batch: 77707 Param Chloride	(CS-:	l) F	1.8 1.6 Date QC	2 2.0 4 1.8 • Analyze Preparati LCS Result 2600	01 mg 36 mg 36 mg 36 mg 36 mg 36 mg 40 mg	;/Kg ;/Kg 12-05-2 12-05-2 12-05-2 D	1 1 9 1 il. 1	2.00 2.00 Spike Amoun 2500	N t F	90 82 Aatrix Lesult <3.85	100 93 Analy Prepa Re 10	80 - 56.4 rzed By red By c. 4 8	111.2         - 106.6         : AR         AR         AR         Sec.         Limit         5 - 115
4-Bromofluorobenzene (4-BFB) 4-Bromofluorobenzene (4-BFB) QC Batch: 91596 Prep Batch: 77707 Param Chloride Percent recovery is based on the	CS-:	l) F resu	1.8 1.6 Date QC C	20 2.0 4 1.8 9 Analyze Preparati LCS Result 2600 is based	$\frac{11 \text{ mg}}{36 \text{ mg}}$ $\frac{16 \text{ mg}}{201}$ $1000000000000000000000000000000000000$	/Kg ;/Kg 2-05-2 2-05-2 2-05-2 pike ar	1 1 9 1 1 1 1 nd spi	2.00 2.00 Spike Amoun 2500 ike duplie	N t F cate res	90 82 Aatrix Cesult <3.85 sult.	100 93 Analy Prepa	80 - 56.4 rzed By red By c. 4 8	AR AR AR Limit 5 - 115
4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 91596 Prep Batch: 77707 Param Chloride Percent recovery is based on the	cS-:	L) F rest	1.8 1.6 QC C Ilt. RPD LCSD	2 2.0 4 1.8 • Analyze Preparati LCS Result 2600 is based	$\frac{11 \text{ mg}}{36 \text{ mg}}$ $\frac{16 \text{ mg}}{36 \text{ mg}}$ $1000000000000000000000000000000000000$	//Kg ;/Kg 2-05-2 2-05-2 2-05-2 D g pike ar Spil	1 1 9 1 1 nd spi ke	2.00 2.00 Spike Amoun 2500 ike duplie Matrix	N t F cate re	90 82 Aatrix Result <3.85 sult.	100 93 Analy Prepa Re 10 Rec.	80 - 56.4 rzed By red By: c. 4 8	AR AR AR Limit 5 - 115 RPD
4-Bromofluorobenzene (4-BFB) 4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (L QC Batch: 91596 Prep Batch: 77707 Param Chloride Percent recovery is based on the Param	.CS-: spike F	l) F resu	1.8 1.6 QC C lt. RPD LCSD Result	2) 2.0 4 1.8 9 Analyze Preparati LCS Result 2600 is based Units	$\frac{11 mg}{36 mg}$ $\frac{13}{36 mg}$ $\frac{13}{36}$ $\frac{13}{3$	;/Kg ;/Kg ;/Kg 2-05-2 2-05-2 2 2-05-2 D 5 pike ar Spil Amo	1 1 9 1 1 nd spi ke unt	2.00 2.00 2.00 Spike Amoun 2500 ke duplie Matrix Result	N t F cate res Rec.	90 82 Aatrix Cesult <3.85 sult. I L	100 93 Analy Prepa Rec. imit	80 - 56.4 rzed By red By c. 4 8 RPD	- 106.6           - 106.6           - AR           AR           Rec.           Limit           SPD           Limit

Matrix Spike (MS-1)       Spiked         QC Batch:       91445         Prep Batch:       77583         Param       DRO         Percent recovery is based on the sp         Param       DRO         Percent recovery is based on the sp         Param       DRO         Percent recovery is based on the sp         Surrogate       F         n-Tricosane       F         Matrix Spike (MS-1)       Spiked         QC Batch:       91448         Prep Batch:       77584         Param       Benzene	F ike res F C ike res MS tesult 108	e: 29802 Dat QC <u>1</u> sult. RPI MSD Result 228 sult. RPI MS Result 10	0 te Anal Prepar MS Result 237 D is bas t Uni mg/ D is bas D ult 7	yzed: ration: Unit mg/F sed on th its Dil Kg 1 sed on th Units mg/Kg	2012-05-22 2012-05-22 55 Dil. 6 spike and Spike . Amour 250 e spike and Dil. 1	Spike Amoun 250 d spike dup Matrix at Result <14.5 d spike dup Spike Amount 100	Ma t Re icate re Rec. 91 icate re MS Rec. 108	atrix sult 14.5 sult. R Li 45.5 sult.	Analy Prepa Rec. 95 ec. mit - 127 MSD Rec.	rzed By: red By: I 45. RPD 4 R Li	AG AG Rec. imit 5 - 127 RPD Limit 20 ec. mit
QC Batch: 91445 Prep Batch: 77583 Param DRO Percent recovery is based on the sp Param DRO Percent recovery is based on the sp Surrogate F n-Tricosane Matrix Spike (MS-1) Spiked QC Batch: 91448 Prep Batch: 77584 Param Benzene	F ike res F C ike res MS Cesult 108	Dat QC 1 sult. RPI MSD Result 228 sult. RPI MS Resu 10	te Anal Prepar Result 237 D is bas t Uni mg/ D is bas D ult 7	yzed: ration: Unit mg/H sed on th its Dil Kg 1 sed on th Units mg/Kg	2012-05-22 2012-05-22 2012-05-22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Spike Amoun 250 d spike dup Matrix at Result <14.5 d spike dup Spike Amount 100	Ma t Re c icate re Rec. 91 icate re MS Rec. 108	atrix esult 14.5 sult. R Li 45.5 sult.	Analy Prepa Rec. 95 ec. mit - 127 MSD Rec.	rzed By: red By: Li RPD 4 R Li	AG AG Rec. imit 5 - 127 RPD Limit 20 ec. mit
Prep Batch: 77583 Param DRO Percent recovery is based on the sp Param DRO Percent recovery is based on the sp Surrogate F n-Tricosane Matrix Spike (MS-1) Spiked QC Batch: 91448 Prep Batch: 77584 Param Benzene	F ike res F C ike res MS Result 108	QC 1 sult. RPI MSD Result 228 sult. RPI MS Resu 10	MS Result 237 D is bas t Uni mg/ D is bas D ult	Unit mg/F sed on th its Dil Kg 1 sed on th Units mg/Kg	2012-05-22 s Dil. kg 1 e spike and Spike Amour 250 e spike and Dil. 1	Spike Amoun 250 d spike dup Matrix t Result <14.5 d spike dup Spike Amount 100	Ma t Red icate re Rec. 91 icate re: MS Rec. 108	atrix sult 14.5 sult. R Li 45.5 sult.	Prepa Rec. 95 ec. mit - 127 MSD Rec.	red By: I 45 RPD 4 R Li	AG Rec. imit 5 - 127 RPD Limit 20 ec. mit
Param DRO Percent recovery is based on the sp Param DRO Percent recovery is based on the sp Surrogate F n-Tricosane Matrix Spike (MS-1) Spiked QC Batch: 91448 Prep Batch: 77584 Param Benzene	F ike res F C ike res MS tesult 108	C 1 sult. RPI MSD Result 228 sult. RPI MS Resu 10'	MS Result 237 D is bas t Uni mg/ D is bas D ult 7	Unit mg/E sed on th its Dil Kg 1 sed on th Units mg/Kg	s Dil. <u>Kg 1</u> e spike and Spike <u>Amour</u> 250 e spike and Dil. <u>1</u>	Spike Amoun 250 d spike dup Matrix at Result <14.5 d spike dup Spike Amount 100	Ma t Re c icate re Rec. 91 icate re MS Rec. 108	atrix esult 14.5 sult. R Li 45.5 sult.	Rec. 95 ec. mit - 127 MSD Rec.	I 45. RPD 4 REL	Rec. imit 5 - 127 RPD Limit 20 ec. mit
Param         DRO         Percent recovery is based on the sp         Param         DRO         Percent recovery is based on the sp         Surrogate         n-Tricosane         Matrix Spike (MS-1)         Spiked         QC Batch:       91448         Prep Batch:       77584         Param         Benzene	F ike res F C ike res MS Cesult 108	C isult. RPI MSD Result 228 sult. RPI MS Resu 10	MS Result 237 D is bas t Uni mg/ D is bas D ult 7	Unit mg/F sed on th its Dil Kg 1 sed on th Units mg/Kg	s Dil. <u>Kg</u> 1 e spike and Spike Amour 250 e spike and Dil. 1	Spike Amoun 250 d spike dup Matrix t Result <14.5 d spike dup Spike Amount 100	Ma t Re c icate re Rec. 91 icate re MS Rec. 108	atrix sult 14.5 sult. R Li 45.5 sult.	Rec. 95 ec. mit - 127 MSD Rec.	I L 45. RPD 4 R Li	Rec. imit 5 - 127 RPD Limit 20 ec. mit
Param         DRO         Percent recovery is based on the sp         Param         DRO         Percent recovery is based on the sp         Surrogate       F         n-Tricosane         Matrix Spike (MS-1)       Spiked         QC Batch:       91448         Prep Batch:       77584         Param       Benzene	F ike res F C ike res MS Result 108	C isult. RPI MSD Result 228 sult. RPI MS Resu 10	Result 237 D is bas t Uni mg/ D is bas D ult 7	Unit mg/F sed on th its Dil Kg 1 sed on th Units mg/Kg	s Dil. <u>kg</u> 1 e spike and Spike <u>Amour</u> 250 e spike and Dil. 1	Amoun 250 d spike dup Matrix t Result <14.5 d spike dup Spike Amount 100	t Rec. Rec. 91 icate re: MS Rec. 108	esult 14.5 sult. R Li 45.5 sult.	Rec. 95 ec. 127 MSD Rec.	Li RPD 4 R Li	imit 5 - 127 RPD Limit 20 ec. mit
DRO Percent recovery is based on the sp Param DRO Percent recovery is based on the sp Surrogate F n-Tricosane Matrix Spike (MS-1) Spiked QC Batch: 91448 Prep Batch: 77584 Param Benzene	ike res F C ike res MS tesult 108	¹ Sult. RPI MSD Result 228 Sult. RPI MS Resu 10	237 D is bas t Uni mg/ D is bas D ult 7	mg/H sed on th its Dil Kg 1 sed on th Units mg/Kg	kg 1 e spike and Spike . Amour 250 e spike and Dil. 1	250 d spike dup Matrix t Result <14.5 d spike dup Spike Amount 100	<pre>classificate re Rec. 91 icate re MS Rec. 108</pre>	14.5 sult. R Li 45.5 sult.	95 ec. mit - 127 MSD Rec.	45. RPD 4 RLi	RPD Limit 20 ec. mit
Percent recovery is based on the sp Param DRO Percent recovery is based on the sp Surrogate F n-Tricosane Matrix Spike (MS-1) Spiked QC Batch: 91448 Prep Batch: 77584 Param Benzene	ike res F C ike res MS tesult 108	sult. RPI MSD Result 228 sult. RPI MS Resu 10	D is bas t Un mg/ D is bas D ult	its Dil Kg 1 ied on th Units mg/Kg	e spike and Spike . Amour 250 e spike and Dil. 1	d spike dup Matrix at Result <14.5 d spike dup Spike Amount 100	Rec. 91 icate res MS Rec. 108	sult. R Li 45.5 sult.	ec. mit - 127 MSD Rec.	RPD 4 R Li	RPD Limit 20 ec. mit
Param DRO Percent recovery is based on the sp Surrogate F n-Tricosane Matrix Spike (MS-1) Spiked QC Batch: 91448 Prep Batch: 77584 Param Benzene	F C ike res MS Result 108	MSD Result 228 sult. RPI MS Resu 10	t Un mg/ D is bas D ult 7	its Dil Kg 1 sed on th Units mg/Kg	Spike Amour 250 e spike and Dil. 1	Matrix t Result <14.5 d spike dupl Spike Amount 100	Rec. 91 icate res MS Rec. 108	R <u>Li</u> 45.5 sult.	ec. mit - 127 MSD Rec.	RPD 4 R Li	RPD Limit 20 ec. mit
Param DRO Percent recovery is based on the sp Surrogate F n-Tricosane Matrix Spike (MS-1) Spiked QC Batch: 91448 Prep Batch: 77584 Param Benzene	F C 1 ike res MS tesult 108	Result 228 sult. RPI MS Resu 10	t Uni mg/ D is bas D ult 7	its Dil Kg 1 sed on th Units mg/Kg	Amour 250 e spike and Dil. 1	t Result <14.5 d spike dupl Spike Amount 100	Rec. 91 icate res MS Rec. 108	Li 45.5 sult.	mit - 127 MSD Rec.	RPD 4 R Li	Limit 20 ec. mit
DRO Percent recovery is based on the sp Surrogate F n-Tricosane Matrix Spike (MS-1) Spiked QC Batch: 91448 Prep Batch: 77584 Param Benzene	ike res MS tesult 108	228 sult. RPI MS Resu 10'	mg/ D is bas D alt 7	Kg 1 sed on th Units mg/Kg	250 e spike and Dil. 1	<14.5 d spike dupl Spike Amount 100	91 icate res MS Rec. 108	45.5 sult.	- 127 MSD Rec.	4 R Li	20 ec. mit
Percent recovery is based on the sp Surrogate F n-Tricosane Matrix Spike (MS-1) Spiked QC Batch: 91448 Prep Batch: 77584 Param Benzene	ike res MS Lesult 108	sult. RPI MS Resu 10'	D is bas D ult 7	units mg/Kg	e spike and Dil. 1	d spike dupl Spike Amount 100	icate re MS Rec.	sult.	MSD Rec.	R Li	ec. mit
Surrogate F n-Tricosane Matrix Spike (MS-1) Spiked QC Batch: 91448 Prep Batch: 77584 Param Benzene	MS lesult 108	MS Resu 10'	D ult 7	Units mg/Kg	Dil.	Spike Amount 100	MS Rec. 108	]	MSD Rec.	R Li	ec. mit
Surrogate F n-Tricosane Matrix Spike (MS-1) Spiked QC Batch: 91448 Prep Batch: 77584 Param Benzene	lesult 108	Rest 10'	ult 7	Units mg/Kg	Dil.	Amount 100	Rec.		Rec.	Li	mit
n-Tricosane Matrix Spike (MS-1) Spiked QC Batch: 91448 Prep Batch: 77584 Param Benzene	108	10'	7	mg/Kg	1	100	108		105	1= 1	
Matrix Spike (MS-1) Spiked QC Batch: 91448 Prep Batch: 77584 Param Benzene									107	45.4	- 145.8
ParamBenzene		Dat QC	te Anal; Prepar	yzed: 2 ation: 2	2012-05-22 2012-05-22				Analy Prepa	red By: red By:	AG AG
Param Benzene			MS			Spike	Matr	iv		R	ec
Benzene	F	C R	lesult	Units	Dil.	Amount	Resu	lt	Rec.	Li	mit
		1	2.43	mg/Kg	1	2.00	< 0.00	470	122	69.3	159.2
Toluene		1	2.58	mg/Kg	1	2.00	< 0.00	980	129	68.7	- 157
Ethylbenzene		1	2.87	mg/Kg	1	2.00	< 0.00	500	144	<b>71.6</b> ·	158.2
Xylene		1	8.55	mg/Kg	1	6.00	< 0.01	70	142	70.8	159.8
Percent recovery is based on the sp	ike res	ult. RPI	D is bas	ed on the	e spike and	l spike dupl	icate res	sult.			
		MSD			Spike	Matrix	-	Re	ec.		RPD
Param H	· C	Result	Units	Dil.	Amount	Kesult	Hec.		mit	<u>KPD</u>	Limit
Benzene	1	2.34 9.49	mg/K	g 1 ~ 1	2.00	<0.00470	117	69.3 - 69.7	159.2	4	20
Ethylbenzene	1	2.40	mg/K	ь і σ1	2.00		138	00.7 71.6 -	158.2	-+ 4	20
Xvlene	1	8.22	mg/K	б. г 1	6.00	< 0.0170	137	70.8 -	159.8	4	20
Percent recovery is based on the sp	ike res	ult. RPI	D is bas	ed on the	e spike and	l spike dupl	icate res	sult.			
	5	 7/	19	MGD	• · · · · · ·	C	lro 1	MC	MGD	п	~~
Surrogate		Res	io sult I	Result	Units	Dil Ame	ne I unt I	Rec	Rec	к Ц	ee. mit
Trifluorotoluene (TFT)		2.1	27	2.69	mg/Kg	1 2		114	134	71.4	133.9

continued ...

Report Date: May 29, 2012 114-6401363		Wor COG/	rk Orde /White	er: 1 Oak	2052116 x State #	1			]	Page Nu	mber: Eddy (	13 of 17 Co., NM		
matrix spikes continued				<b>6</b>					a	••	MG	MOD		~
Gurragata			N Da	15 mit	MSD		Unito	ъя	Sp Am	ike	MS	MSD	ן ד	tec. imit
A-Bromofluorobenzene (4-BFB)				<u>94</u>	2 56	n	$\frac{0 \text{ mbs}}{\alpha \sigma/K\sigma}$	1	AIII	<u>5</u>	112	128	72.6	_ 144 1
					2100									
Matrix Spike (MS-1) Spike	d Sa	ampl	e: 29802	0										
OC Batch: 91449			Dat	- Ano	wred	20	12-05-22					Anala	zed Ry	· AG
Prep Batch: 77584			QC	Prepa	aration:	20	)12-05-22					Prepa	red By	: AG
				MS				S	pike	M	latrix		]	Rec.
Param	_	F	C	Result	Ur	nits	Dil.	Ar	nount	R	esult	Rec.	L	imit
GRO			1	24.4	mg	/Kg	1	2	20.0	<	(1.22)	122	28.2	- 157.2
Percent recovery is based on the	spik	e res	ult. RP	D is ba	ased on	the	spike an	d spik	e dup	licate	result.			
			MGD				Spike	Ме	triv		D	00		חספ
Param	ਸ	С	Result	Un	ita T	11	Amount	Re	gult	Rec	Li	mit	RPD	Limit
GBO	Ľ		24.2	01	Κσ	<u>1</u>	20.0	<	1.22	121	28.2	- 157.2	1	20
Percent recovery is based on the	snik	- res	ult RPI	D is he	sed on	- the	snike an	1 snik	e dun	licate	result			
Toronic receivery is based on the	opin	0 100	410. 101 1		0001 011	0110	Spine an	a opin	o uup	10000	repure			
~			_M	IS	MSD				Sp	ike	MS	MSD	F	lec.
Surrogate			Re	sult	Result		Units	Dil.	Ame	ount	Rec.	Rec.		imit
A Dram August hanges (4 DED)			2.	22 95	2.39	n	ng/Kg	1	-	2	111	120	75.5	- 122.3
4-Bromondorobenzene (4-BFB)			۷.		2.29	1	iig/ Kg				112	114		- 122.4
Matrix Spike (MS-1) Spike	d Sa	ample	e: 29802	0										
QC Batch: 91596			Dat	e Ana	lyzed:	20	)12-05-29					Analy	zed By	: AR
Prep Batch: 77707			QC	Prepa	ration:	20	)12-05-21					Prepa	red By	AR
				MS				S	pike	Μ	latrix		F	lec.
Param		F	<u>C</u> 1	Result	Ur	nits	Dil.	An	nount	R	esult	Rec.	L	imit
Chloride				2850	mg	/Kg	5	2	2500		781	83	79.4	- 120.6
Percent recovery is based on the	spik	e res	ult. RPI	D is ba	sed on	the	spike and	l spik	e dup	licate	result.			
			MSD				Spike	Ma	trix		R	lec.		RPD
Param	F	С	Result	Uni	its D	)il.	Amount	Re	sult	Rec.	Li	$_{ m mit}$	RPD	Limit
Chloride			2800	mg/	Kg	5	2500	7	81	81	79.4 -	- 120.6	2	20

٠

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: May 29, 2012 114-6401363

# **Calibration Standards**

Standard (CCV-1)

QC Batch:	91445			Date	Analyzed:	2012-05-22		Analy	zed By: AG
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO			1	mg/Kg	250	244	98	80 - 120	2012-05-22

#### Standard (CCV-2)

QC Batch:	91445			Date	Analyzed:	2012-05-22		Analy	zed By: AG
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO			1	mg/Kg	250	259	104	80 - 120	2012-05-22

# Standard (CCV-1)

QC Batch: 91448				Date Ana	alyzed: 201	Analyzed By: AG			
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene			1	mg/kg	0.100	0.103	103	80 - 120	2012-05-22
Toluene			1	mg/kg	0.100	0.106	106	80 - 120	2012-05-22
Ethylbenzen	e		1	mg/kg	0.100	0.112	112	80 - 120	2012-05-22
Xylene			1	mg/kg	0.300	0.343	114	80 - 120	2012-05-22

Standard (CCV-2)

QC Batch: 91448

Date Analyzed: 2012-05-22

Analyzed By: AG

Report Date: May 114-6401363	29, 2012		Wo COG	ork Order: 1 /White Oal	2052116 « State #1	• • • • • • • • • • • • • • • • • • •	Page Nur	mber: 15 of 17 Eddy Co., NM
Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene		1	mg/kg	0.100	0.0963	96	80 - 120	2012-05-22
Toluene		1	mg/kg	0.100	0.0956	96	80 - 120	2012-05-22
Ethylbenzene		1	mg/kg	0.100	0.0940	94	80 - 120	2012-05-22
Xylene		1	mg/kg	0.300	0.281	94	80 - 120	2012-05-22

# Standard (CCV-1)

QC Batch:	91449		Date	Analyzed:	2012-05-22		Analy	zed By: AG
				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	$\mathbf{Cert}$	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		1	mg/Kg	1.00	1.07	107	80 - 120	2012-05-22

## Standard (CCV-2)

QC Batch:	91449			Date	Analyzed:	2012-05-22		Analy	zed By: AG
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	F	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO			1	mg/Kg	1.00	0.946	95	80 - 120	2012-05-22

## Standard (CCV-1)

QC Batch:	91596			Date A	analyzed: 2	2012-05-29		Analy	zed By: AR
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride				mg/Kg	100	100	100	85 - 115	2012-05-29

## Standard (CCV-2)

QC Batch: 91596

Date Analyzed: 2012-05-29

Analyzed By: AR

Report Date: M 114-6401363	May 29, 2012		CC	Work Order: OG/White O	12052116 ak State #1		Page Nu	mber: 16 of 17 Eddy Co., NM			
				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date			
Param	Flag	$\operatorname{Cert}$	Units	Conc.	Conc.	Recovery	Limits	Analyzed			
Chloride			mg/Kg	100	100	100	85 - 115	2012-05-29			

Work Order: 12052116 COG/White Oak State #1 Page Number: 17 of 17 Eddy Co., NM

# Appendix

# **Report Definitions**

Name	Definition
MDL	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

# Laboratory Certifications

	Certifying	Certification	Laboratory
С	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	NELAP	T104704392-11-3	Midland

# Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL

## Attachments

The scanned attachments will follow this page.

Please note, each attachment may consist of more than one page.

Analysis Request of Chain of Custody Record																											1	
			(			7		·					-	ANALYSIS REQUEST (Circle or Specify Method No.)														
			and the second second			TETRA TECH 1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946							ŧ.	5 Ext. to C35)	Cr Ph Ho Sa	d Vr Pd Hg Se									DS			
CLIENT NAM	AE:	· · · · · · · · · · · · · · · · · · ·				SITE MANAGER:	Ŀ	2	F	RES	ERV	ATIVE		ŝ		S S			624	629/					H.			
DRO JECT N	<u></u>	<u> </u>	The Toward							M	ETH(	<u>о</u> с	_			As I	9	ŝ	/8260	22					tions,			
114-6		e <b>3</b>	["	.001	201	G/ Libits Dale St TB		NO S	Ê				6	P	0 P P	ġ	es Volati	AOIG	8240/	1. Vol	8		Air	tos)	s/Ca			
LAB I.D. NUMBER	DATE	TIME	MATRIX	COMP.	GRAB	SAMPLE IDENTIFICATION			HCL	HNO3	ICE	NONE	3TEX 8021B	5108 (Hai	PAR 8298	TCLP Metal	TCLP Volati	RCI	GC.MS Vol.	PCB's 8080/	Pest. 808/60	Chloride Gamma Sno	Alpha Beta (	PLM (Asbes	Major Anion	Hold		
298016	~1.2		<		V	Treat-1 1' louiser ( e 11			╈							Ť		╀	┝╌╀			×	1				╎	
017	1		1			Treachil R' (AHI Samuel Sail	3	it i					$\uparrow$		╈					╎		X	$\uparrow$		╡		╈	
018			$\prod$			Trench-1 10' (AH-1 Second Spill)		$\parallel$	T											T		X					1	
019						, (Second Spill) Bottom Hole 5 (AH-1)								X														
020	5/18					Trench - 2 4' (AH-4 Just Sould)	$\Box$	$\prod$			$\prod$		X	X								X						
021	-					Tecrat-2 6 (AH-4 Just Sp. 11)		$\parallel$														×	1		)		$\downarrow$	
072			1		1	Trench 2 B' (AH4 fast Spill)		₩			¥			$\left  \right $					Ø			×	1			$\square$		
							_		_								_		{	1			-		_			
						: : 		-		Ľ			_	$\square$			-			_						$\left  \right $	_	
	BY: (Signatur	e) /	Ļ			Date:				Date:	5/	21			SAME		IY: (Pri	nt & In	itial)					ate:			72	
ELINQUISHED I	BY: (Signatur	I'lle Tille				Time:		e.L		lime: Date;<	72	<del>80(</del> 1 1,	<u>7</u>	2	SAMF FER	CE SH		BY: (	Circle) BUS	7			AIRE	me: 31LL #:		00		
RELINGUISHED	BY: (Signatur	e)	<b>`</b>			Date:				Date:		<del></del> +	<u></u>	=	TETR	ID DE	IVERI	D TACT	UPS	ON:			отн	ER:	Its by:			
ECEIVING LABO	DRATORY: _	7.	~			RECEIVED BY: (Signature)										I	ke		122	,				RUSI	I Cha	rges		
ONTACT:	Valand p	STATE:	7	E X	IONE	ZIP: DATE;	TIME;																Authorized: Yes No					

				) (	<u> </u>	252116												_								$\overline{}$			
An	aivs	sis F	<b>?e</b>	ea	IU	est of Ch	ain of Cus	stodv	F	?e	CC	orc	k								PA	GE:		ł				1	
												ANALYSIS REQUEST (Circle or Specify Method No.)																	
<b>TET</b> 1910 N. Midland (432) 682-							<b>XATECH</b> Big Spring St. I, Texas 79705 4559 • Fax (432) 682-3946								06 VEAL to C35)	d Cr Pb Ha Se	d Vr Pd Hg Se				10					TDS			
CLIENT NA	ME:					SITE MANAG	ER:		ERS		PRE	SER\	ATIVE		1X10	Ba	Ba			0/624	70/62!					s, pH,			
PROJECT N	<i>COG</i> 10.:	·	PF	RON	ECT	NAME:	Laurez Z		NTAIN	╞╴┝╴	T	1		-	Ř	As	g As		tilles	0/826	ol. 82					ation			
114-0	<u>640130</u>	<u>ع</u>	$\vdash$	т{	60	of white Oak	SE TB		F CO	(N)				6	Ž 9	tals A	tals A	ttiles	i Vola	ı. 824	mi. V	30/60	3	pec.	a (Air) estos	ons/C			
LAB I.D. NUMBER	DATE	TIME	MATRIX	COMP	GRAB	\$ SAMF	LE IDENTIFICATION		NUMBER (	FILTERED	HN03	UE	NONE	GTEX 802	08 (Hall	PAR 8240 RCRA Mai	TCLP Me	TCLP Vola	TCLP Sen	GC.MS Vo	GC.MS Se	PCB's 806	Chloride	Gamma S	PLM (Asb	Major Ani	Hald		
298016	~/.z		5		V	Treach-1	1 104-18	15.11)	1			Y											X					T	-
ON	1		li		1 1	Trackil	R' (AULIS	150 11)	i		T						T			T			×		T	Π		TT	-
018			11		$\dagger$	Trenkel	Aller Sac	150-11)			1			T	$\square$		T			Τ	$\square$		X		Τ	$\square$			
019		<u> </u>	╢			Battom Hel	, (Second Sp	1.57811 <u>7</u> ,773 H-13				$\prod$		,			1								T	$\square$			
020	5/10		$\parallel$		Π		4' (AH-4 ).	50.11)			T	Π		Ţ,	X								X		Τ	ŀ			
021	1		$\prod$			Trench-2	6' CAHA Just	5,11)	$\prod$		T	T		Ţ				Π		Τ			×	H			Х		
072			1		ŢĮ,	Trench 2	8 CANA List	50.11)	J	T		Ŧ								E	X		X	$\square$			X		
			Γ								Τ	<u> </u>					Τ				θ								
				Γ						Π	Τ	Γ			ŀ		T			Τ									
	•											Γ						Π		T									_
RELINQUISHED	) BY: (Signatu	re) La				Date: 5/21/12 Time:	RECEIVED/Rec (Signative)	barre 7	it.	<u>ь</u>	Date Time	5	Bal	512		SAM	ELED La	BY: (	Print 8	Initia	17				Date Time	); 2:	5-1	8-72	_
RELINQUISHED	BY: (Signatu	Tites	<u>-</u>			Date: 5-21-/2 Time: 1112.	A RECEIVED BY: (Skinature)	$\mathbf{)}$			Date. Time	5	211	3	2	SAM	PLE S DEX	HIPP	ED BY	: (Circ BL	le) IS			A	RBIL	L #:			_
RELINGUISHED	) BY: (Signatu	ne)	_			Date:	RECEIVED BY: (Signature)				Date. Time	;				TETR	ND D	ELIVE	BED	UP CT PE	'S RSON	:	<u>-</u>	0	THER	esults	by:		
RECEIVING LAN	BORATORY:	-7,	suc	2			RECEIVED BY: (Signature)										I	ke		-	,				R	USH C	harge	25	
CITY:	Midlin	STATE:		<b>_</b>	Y PHON	Zip:	DATE:		1	VE:						 	~	2	1 0.						A	uthoriz Yes	red:	No	
SAMPLE CONE	ntion when	RECEIVED:				REMARKS: all textsh	udland																					4	
	Please	fill out all	cot	oiøs	- 1	Laboratory retains Yello	w copy - Return Orgina	al copy to Tetr	a Te	- ch	Pro	ject	Manag	jer n	etain	s Pin	k co	py .	- Ac	cour	nting	reci	eives	Gold	d co	ру.		$\overline{\mathbf{O}}$	