3R-340

Initial Spill Clean Up Report

Date 2009

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

SPILL CLEANUP REPORT

LOCATED AT: BURLINGTON RESOURCES RANDLEMAN #1 WELL SITE SECTION 13, TOWNSHIP 31N, RANGE 11W SAN JUAN COUNTY, NEW MEXICO

For:

District Copy For Scanning Only Has NOT been processed.

MR. GREGG WURTZ CONOCOPHILLIPS 3401 EAST 30TH STREET FARMINGTON, NEW MEXICO 87401

PROJECT NO. 92115-0768 FEBRUARY 2009

5796 U.S. HIGHWAY 64 • FARMINGTON, NM 87401 • (505) 632-0615

April 8, 2009

Project No. 92115-0768

Mr. Gregg Wurtz Burlington Resources 3401 East 30th Street Farmington, New Mexico 87401

Phone (505) 326-9537 Cell (505) 320-2653

RE: SPILL CLEANUP REPORT AT THE RANDLEMAN #1 WELL SITE, LOCATED IN SECTION 13, TOWNSHIP 31N, RANGE 11W, SAN JUAN COUNTY, NEW MEXICO

Dear Mr. Wurtz,

Attached please find one (1) original and two (2) copies of the *Spill Cleanup Report* at Randleman #1 well site, located in Section 13, Township 31N, Range 11W, San Juan County, New Mexico. The cleanup took place on February 26 & 27 and on March 3, 2009.

We appreciate the opportunity to be of service. If you have any questions or need additional information, please contact our office at (505) 632-0615.

Sincerely, ENVIROTECH, INC.

Scott Gonzales Sr. Environmental Technician sgonzales@envirotech-inc.com

Enclosures: One (1) Original and Two (2) Copies of Spill Cleanup Report

CC: Ms. Gwen Frost, ConocoPhillips Client File 92115

SPILL CLEANUP REPORT LOCATED AT RANDLEMAN #1 SECTION 13, TOWNSHIP 31N, RANGE 11W SAN JUAN COUNTY, NEW MEXICO

TABLE OF CONTENTS

INTRODUCTION	
ACTIVITIES PERFORMED	1
SUMMARY AND CONCLUSIONS	
STATEMENT OF LIMITATIONS	

Figures:	Figure 1, Vicinity Map
	Figure 2, Site Map

- Tables:Table 1, Soil Analytical ResultsTable 2, Water Analytical Results
- Appendices: Appendix A, Site Photography Appendix B, Analytical Results

Burlington Resources Randleman #1 Well Site February, 2009 Project No. 92115-0768 Page 1

INTRODUCTION

Envirotech, Inc. of Farmington, New Mexico, was contracted by Burlington Resources to provide environmental response and cleanup services for a release of condensate at the Randleman #1 well site, located in Section 13, Township 31N, Range 11W, San Juan County, New Mexico; see *Figure 1, Vicinity Map*. Cleanup activities included removal of contaminated material, sampling and analysis, site restoration, documentation, and reporting.

ACTIVITIES PERFORMED

On February 26, 2009, Envirotech, Inc. was contacted with a request to respond to a spill that occurred at the above-referenced location. Upon arrival onsite, a job safety meeting and a brief site assessment were conducted. Due to depth to ground water being less than 50 feet below ground surface (BGS) and due to a wash being located less than 100 feet from the site, the closure standards were determined to be 100 ppm total petroleum hydrocarbons (TPH) and 100 ppm organic vapors, pursuant to New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills, and Releases.

The area of release was excavated to approximately 42' x 45' x 2.5 - 3' deep; see Figure 2, Site Map. Six (6) composite samples were collected from the excavation. One (1) composite sample was collected from each of the walls and two (2) composite samples were collected from the bottom of the excavation. One (1) bottom composite sample was collected from the east side of the excavation at 2.5 feet BGS and one (1) bottom composite sample was collected from the west side of the excavation at 3 feet BGS. The samples were analyzed in the field for TPH using USEPA Method 418.1 and for organic vapors using a Photo Ionization Detector (PID). The sample collected from the north wall was below the regulatory limit of 100 ppm TPH; however, the sample was above the regulatory limit of 100 ppm organic vapors; see Table 1, Soil Analytical Results. The samples collected from the bottom west side at 3 feet BGS and the samples collected from the west and east walls were below the regulatory limits of 100 ppm TPH and 100 ppm organic vapors. The samples collected from the bottom east side at 2.5 feet BGS and from the south wall were above the regulatory limits of 100 ppm TPH and 100 ppm organic vapors. Therefore, excavation continued on the north wall, the bottom on the east side, and on the south wall. Additionally, due to visual contamination, excavation continued on the bottom of the west side. Excavation extents were approximately 42' x 51' x 7' deep. A sample was collected from the north wall and analyzed in the field for organic vapors. The sample was below the regulatory limits of 100 ppm organic vapors. Additionally, a sample was collected from the bottom on the west side at seven (7) feet BGS. The sample was analyzed in the field for TPH using USEPA Method 418.1 and for organic vapors using a PID. The sample was below the regulatory limit of 100 ppm organic vapors; however, the sample was above the regulatory limit of 100 ppm TPH; see Table 1, Soil Analytical Results and Appendix B, Analytical Results.

Envirotech, Inc. returned to the site on February 27, 2009, to continue excavation and sampling activities. Excavation continued on the south wall, the south-east wall, and on the bottom of the south-east corner to extents of $81' \times 42 - 43' \times 8'$ deep. Four (4) composite samples were collected from the excavation. One (1) composite sample was collected from the bottom on the

Burlington Resources Randleman #1 Well Site February, 2009 Project No. 92115-0768 Page 2

west side at eight (8) feet BGS, one (1) composite sample was collected from the south-east wall, one (1) composite sample was collected from the south wall, and one (1) composite sample was collected from the bottom south-east corner at eight (8) feet BGS. The samples were analyzed in the field for TPH using USEPA Method 418.1 and for organic vapors using a PID. The samples were below the regulatory limit of 100 ppm TPH. The samples collected from the bottom west side and the south wall were below the regulatory limit of 100 ppm organic vapors; however the sample collected from the south-east wall was above the regulatory limit of 100 ppm organic vapors. Therefore, excavation continued on the south-east wall for an additional two (2) feet, where an additional sample was collected and analyzed in the field for organic vapors using a PID. The sample was below the regulatory limit of 100 ppm organic vapors. The sample collected from the bottom south-east corner at eight (8) feet BGS was above the regulatory limits of 100 ppm TPH and 100 ppm organic vapors; therefore, the south-east corner was excavated to approximately 13 feet BGS, where a composite sample was collected. The sample was analyzed in the field for TPH using USEPA Method 418.1 and for organic vapors using a PID. The sample was above the regulatory limits of 100 ppm TPH and 100 ppm organic vapors; therefore, excavation continued on the south-east corner to approximately 15 feet BGS. The sample was analyzed in the field for TPH using USEPA Method 418.1 and for organic vapors using a PID. The sample was above the regulatory limits of 100 ppm TPH and 100 ppm organic vapors; therefore, excavation continued to approximately 20 feet BGS where a composite sample was collected. The sample was analyzed in the field for TPH using USEPA Method 418.1 and for organic vapors using a PID. The sample was below the regulatory limits of 100 ppm TPH and 100 ppm organic vapors; therefore, additional excavation was not required; see Table 1, Analytical Results and Appendix B, Analytical Results...

Envirotech, Inc. returned on March 2, 2009, because ground water was seeping through the bottom of the south-east corner of the excavation at 20 feet BGS. Approximately 5-10 gallons had collected on the bottom of the excavated area. A Rock Springs vacuum truck was contracted by Envirotech, Inc. to collect ground water contained inside the excavation. A soil sample was then collected from the south-east corner at 20 feet BGS. The sample was analyzed in the field for TPH using USEPA Method 418.1 and for organic vapors using a PID. The sample was above the regulatory limits of 100 ppm TPH and 100 ppm organic vapors. The water in the bottom was vacuumed out and the bottom of the south-east corner was excavated an additional five (5) to ten (10) feet BGS in an effort to vacuum more water. After additional digging, a ground water sample was collected approximately 25 - 30 feet BGS. After the water sample was collected, the excavation caved in, making it impossible to vacuum more water. Because ground water was encountered, maximum reasonable extents of excavation had been reached at 81' x 42' x 25 - 30' deep. The water sample was transported on ice under chain of custody to be analyzed in Envirotech's laboratory for VOC using USEPA Method 8260. Laboratory results showed that the ground water was impacted by the release of condensate. Results were above regulatory standards set forth by the New Mexico Water Quality Control Commission (WQCC). The sample was above the regulatory standards for benzene, xylenes, and total naphthalene; see Table 2, Water Analytical Results and Appendix B. Analytical Results.

Burlington Resources Randleman #1 Well Site February, 2009 Project No. 92115-0768 Page 3

Approximately 611 cubic yards of contaminated soil were removed from the location and transported to IEI's NMOCD-permitted landfarm remediation facility. Clean fill was obtained from the land owner and used to restore the site to pre-incident condition.

RECOMMENDATIONS

Based on the analytical results of the groundwater impacted by the release of condensate, Envirotech, Inc. recommends that the NMOCD be contacted and groundwater monitoring wells be installed under the guidance of the NMOCD.

SUMMARY AND CONCLUSIONS

Approximately 611 cubic yards of contaminated soil were removed from the Randleman #1 well site, located in Section 13, Township 31N, Range 11W, San Juan County, New Mexico and transported to IEI's NMOCD permitted landfarm remediation facility. Envirotech, Inc. recommends that the NMOCD be contacted and the groundwater analytical results be discussed. Envirotech, Inc. recommends that groundwater monitoring wells be installed under the guidance of the NMOCD.

STATEMENT OF LIMITATIONS

Envirotech, Inc. has completed the removal of soil impacted by a release of condensate at the Randleman #1 well site, San Juan County, New Mexico. The work and services provided by Envirotech were under the current guidelines of the NMOCD. All observations and conclusions provided here are based on the information and current site conditions found at the time of the incident.

The undersigned has conducted this service at the above referenced site. This work has been conducted and reported in accordance with generally accepted professional practices in geology, engineering, environmental chemistry, and hydrogeology.

We appreciate the opportunity to be of service. If you have any questions or require additional information, please contact our office at (505) 632-0615.

Respectfully Submitted,

ENVIROTECH, INC.

Scott Gonzales Sr. Environmental Technician sgonzales@envirotech-inc.com

Reviewed by:

Kyle Kerr, CHMM

Senior Environmental Scientist/Manager kpkerr@envirotech-inc.com

FIGURES

Figure 1, Vicinity Map

Figure 2, Site Map

TABLES

Table 1, Soil Analytical Results

Table 2, Water Analytical Results

Table 1, Soil Analytical Results Burlington Resources Randleman #1 Well Site Sec. 13, Twp. 31N, Rng. 11W San Juan County, New Mexico Project No. 92115-0768

Sample Description	Sample Number	Date	USEPA Method 418.1 TPH (ppm)	MVO (mqq)
NMOCD Standards	NA	NA	5000	100
North Wall Comp	1	02/26/09	8	274.0
North Wall Comp 2	2	02/26/09	NS	6.8
Bottom West Side Comp 1	3	02/26/09	36	51.2
Bottom West Side Comp 2	4	02/26/09	104	48.8
West Wall Comp	5	02/26/09	36	38.7
East Wall Comp	6	02/26/09	44	74.8
Bottom East Side Composite	7	02/26/09	772	641.0
South Wall Composite	8	02/26/09	1080	898.0
West Bottom at 8' BGS	1	02/27/09	12	3.5
South-East Wall Comp	2	02/27/09	32	186.0
South-East Wall Comp 2	3	02/27/09	NS	53.9
South Wall Composite	4	02/27/09	40	64.3
South-East Corner Bottom at 8'	5	02/27/09	5220	1079.0
South-East Corner Bottom at 13'	6	02/27/09	7970	1236.0
South-East Corner Bottom at 15'	7	02/27/09	200	878.0
South-East Corner Bottom at 20'	8	02/27/09	ND	21.2
Bottom Composite at 20' BGS	1	03/02/09	512	664.0

ND = Non-Detect

NS = Not Sampled

* Values in BOLD above regulatory standards

Table 2, Water Analytical Results Burlington Resources Randleman #1 Well Site Sec. 13, Twp. 31N, Rng. 11W San Juan County, New Mexico Project No. 92115-0768

	Sample		USEPA Method 8260				
Sample Description	Number	Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Xylenes (mg/l)	Napthalene (mg/l)
NMED Standards	NA	NA	0.010	0.750	0.750	0.620	0.0300
GW 25 - 30' Deep	1	3/2/2009	0.523	0.282	0.391	0.935	0.0344

*Values in **BOLD** are above regulatory standards

APPENDIX A

57

Site Photography

.

Photo 1: Visible Staining under Aboveground Storage Tank

Photo 2: Contamination under liner

Photo 3: During Excavation

Photo 4: During Excavation

Photo 5: Groundwater impacted

Photo 6: Collecting groundwater

Photo 7: Backfilling Excavation

Photo 8: Backfilling Excavation

APPENDIX B

.

Analytical Results

Senvirotech

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:	Burlington	Project #:	92115-0768
Sample No.:	1	Date Reported:	3/18/2009
Sample ID:	north wall	Date Sampled:	2/26/2009
Sample Matrix:	Soil	Date Analyzed:	2/26/2009
Preservative:	Cool	Analysis Needed:	TPH-418.1
Condition:	Cool and Intact		

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons85.0

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: Randleman #1

Instrument calibrated to 200 ppm standard. Zeroed before each sample

a lat Review

Scott Gonzales Printed

Greg Crabtree

Client:	Burlington	Project #:	92115-0768
Sample No.:	3	Date Reported:	3/18/2009
Sample ID:	3' bottom westside	Date Sampled:	2/26/2009
Sample Matrix:	Soil	Date Analyzed:	2/26/2009
Preservative:	Cool	Analysis Needed:	TPH-418.1
Condition:	Cool and Intact		

	Det.
Concentration	Limit
(mg/kg)	(mg/kg)
	Concentration (mg/kg)

Total Petroleum Hydrocarbons	36	5.0
------------------------------	----	-----

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: Randleman #1

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

114 Review

Scott Gonzales Printed

Client:	Burlington	Project #:	92115-0768
Sample No.:	4	Date Reported:	3/18/2009
Sample ID:	7' bottom westside	Date Sampled:	2/26/2009
Sample Matrix:	Soil	Date Analyzed:	2/26/2009
Preservative:	Cool	Analysis Needed:	TPH-418.1
Condition:	Cool and Intact		

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)
Total Petroleum Hydrocarbons	104	5.0

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: Randleman #1

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

10-Review

Scott Gonzales Printed

Client:	Burlington	Project #:	92115-0768
Sample No.:	5	Date Reported:	3/18/2009
Sample ID:	west wall comp 1st half	Date Sampled:	2/26/2009
Sample Matrix:	Soil	Date Analyzed:	2/26/2009
Preservative:	Cool	Analysis Needed:	TPH-418.1
Condition:	Cool and Intact		

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons365.0

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: Randleman #1

Instrument calibrated to 200 ppm standard. Zeroed before each sample

nalvst

Review

Scott Gonzales Printed

Client:	Burlington	Project #:	92115-0768
Sample No.:	6	Date Reported:	3/18/2009
Sample ID:	East wall comp	Date Sampled:	2/26/2009
Sample Matrix:	Soil	Date Analyzed:	2/26/2009
Preservative:	Cool	Analysis Needed:	TPH-418.1
Condition:	Cool and Intact		

	Det.
Concentration	Limit
(mg/kg)	(mg/kg)
	Concentration (mg/kg)

Total Petroleum Hydrocarbons445.0

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: Randleman #1

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Review

Scott Gonzales Printed

Greg Crabtree Printed

Client:	Burlington	Project #:	92115-0768
Sample No.:	7	Date Reported:	3/18/2009
Sample ID:	3' bottom eastside	Date Sampled:	2/26/2009
Sample Matrix:	Soil	Date Analyzed:	2/26/2009
Preservative:	Cool	Analysis Needed:	TPH-418.1
Condition:	Cool and Intact		

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)
	140 -	18
Total Petroleum Hydrocarbons	772	5.0

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: Randleman #1

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Review

Scott Gonzales Printed

Client:	Burlington	Project #:	92115-0768
Sample No.:	8	Date Reported:	3/18/2009
Sample ID:	South wall	Date Sampled:	2/26/2009
Sample Matrix:	Soil	Date Analyzed:	2/26/2009
Preservative:	Cool	Analysis Needed:	TPH-418.1
Condition:	Cool and Intact		

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons	1,080	5.0
------------------------------	-------	-----

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: Randleman #1

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Scott Gonzales Printed

Review

Greg Crabtree	
Printed	

Cal. Date:	26-Feb-09		
Devenden	Standard Concentration	Concentration Reading	
Parameter	mg/L	mg/L	
ТРН	100 200 500 1000	198	

The accepted percent relative deviation (%RSD) of the calibration factor is less than 20% over the working range.

901 Analyst

, maryor

Scott Gonzales Print Name

Review

3-24-09

Date

3/24/04

Date

Greg Crabtree Print Name

Senvirotech

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:	Burlington	Project #:	92115-0768
Sample No.:	1	Date Reported:	3/18/2009
Sample ID:	Bottom @ 7'	Date Sampled:	2/27/2009
Sample Matrix:	Soil	Date Analyzed:	2/27/2009
Preservative:	Cool	Analysis Needed:	TPH-418.1
Condition:	Cool and Intact		

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons125.0

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: Randleman #1

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

ing Calt Review

Scott Gonzales Printed

Greg Crabtree

Client:	Burlington	Project #:	92115-0768
Sample No.:	2	Date Reported:	3/18/2009
Sample ID:	East wall comp 2nd half	Date Sampled:	2/27/2009
Sample Matrix:	Soil	Date Analyzed:	2/27/2009
Preservative:	Cool	Analysis Needed:	TPH-418.1
Condition:	Cool and Intact		

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons325.0

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: Randleman #1

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

his Calt Review

Scott Gonzales Printed

Greg Crabtree

3envirotech

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:	Burlington	Project #:	92115-0768
Sample No.:	4	Date Reported:	3/18/2009
Sample ID:	South wall comp	Date Sampled:	2/26/2009
Sample Matrix:	Soil	Date Analyzed:	2/26/2009
Preservative:	Cool	Analysis Needed:	TPH-418.1
Condition:	Cool and Intact		

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons405.0

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: Randleman #1

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Anatys

CIL Review

Greg Crabtree Printed

envirotech

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:	Burlington	Project #:	92115-0768
Sample No.:	5	Date Reported:	3/18/2009
Sample ID:	Southeast corner @ 8'	Date Sampled:	2/27/2009
Sample Matrix:	Soil	Date Analyzed:	2/27/2009
Preservative:	Cool	Analysis Needed:	TPH-418.1
Condition:	Cool and Intact		

Concentration		Det. Limit	
Parameter	(mg/kg)	(mg/kg)	
Total Petroleum Hvdrocarbons	5.220	5.0	

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Randleman #1 Comments:

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analy

Review

Scott Gonzales Printed

Senvirotech

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:	Burlington	Project #:	92115-0768
Sample No.:	6	Date Reported:	3/18/2009
Sample ID:	Southeast corner @ 13'	Date Sampled:	2/27/2009
Sample Matrix:	Soil	Date Analyzed:	2/27/2009
Preservative:	Cool	Analysis Needed:	TPH-418.1
Condition:	Cool and Intact		

Parameter	Concentration (mg/kg)	Det. Limit (mg/kg)
Total Petroleum Hydrocarbons	7,970	5.0

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: Randleman #1

Instrument calibrated to 200 ppm standard. Zeroed before each sample

111 Analy

Call Review

Scott Gonzales Printed

envirotech

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:	Burlington	Project #:	92115-0768
Sample No.:	7	Date Reported:	3/18/2009
Sample ID:	Southeast corner @ 15'	Date Sampled:	2/27/2009
Sample Matrix:	Soil	Date Analyzed:	2/27/2009
Preservative:	Cool	Analysis Needed:	TPH-418.1
Condition:	Cool and Intact		

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)
Total Petroleum Hydrocarbons	200	5.0

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: Randleman #1

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

LIL Review

Scott Gonzales Printed

3envirotech

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:	Burlington	Project #:	92115-0768
Sample No .:	8	Date Reported:	3/18/2009
Sample ID:	Southeast corner @ 20'	Date Sampled:	2/27/2009
Sample Matrix:	Soil	Date Analyzed:	2/27/2009
Preservative:	Cool	Analysis Needed:	TPH-418.1
Condition:	Cool and Intact		

	Det.
Concentration	Limit
(mg/kg)	(mg/kg)
	Concentration (mg/kg)

Total Petroleum Hydrocarbons	ND	5.0
------------------------------	----	-----

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: Randleman #1

Instrument calibrated to 200 ppm standard. Zeroed before each sample

ies Calt Review

Scott Gonzales Printed

Cal. Date:	27-Feb-09		
Parameter	Standard Concentration mg/L	Concentration Reading mg/L	
ТРН	100 200 500 1000	199	

The accepted percent relative deviation (%RSD) of the calibration factor is less than 20% over the working range.

00

Analyst

Scott Gonzales Print Name

Review

3-24-09 Date

3/24/09 Date

Greg Crabtree Print Name

Benvirotech

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:	Burlington	Project #:	92115-0768
Sample No.:	1	Date Reported:	3/18/2009
Sample ID:	Bottom comp hole #2	Date Sampled:	3/2/2009
Sample Matrix:	Soil	Date Analyzed:	3/2/2009
Preservative:	Cool	Analysis Needed:	TPH-418.1
Condition:	Cool and Intact		

	Concentration	Det. Limit
Parameter	(mg/kg)	(mg/kg)
Total Petroleum Hydrocarbons	512	5.0

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: Randleman #1- hole #2 tested after draining contaminated water Excavation could not continue due to cave in dangers Instrument calibrated to 200 ppm standard. Zeroed before each sample

Muy Call

Scott Gonzales Printed

Analyst

Cal. Date:	2-Mar-09		
Parameter	Standard Concentration mg/L	Concentration Reading mg/L	
ТРН	100 200 500 1000	200	

The accepted percent relative deviation (%RSD) of the calibration factor is less than 20% over the working range.

Analyst

Scott Gonzales Print Name Review

3-24-09

Date

3/24/09

Date

Greg Crabtree Print Name

EPA Method 8260B Volatile Organic Compounds by GC/MS

Client:	Burlington	Project #:	92115-0768
Sample ID:	GW 25 - 30' Deep	Date Reported:	03-04-09
Chain of Custody:	6437	Date Sampled:	03-02-09
Laboratory Number:	49170	Date Received:	03-02-09
Sample Matrix:	Aqueous	Date Analyzed:	03-02-09
Preservative:		Analysis Requested:	8260 VOC
Condition:	Cool and Intact		

	Concentration		Det.	Dilution
Parameter	(ug/L)	Units	Limit	Factor
Benzene	523	(ug/L)	1.0	10
Toluene	282	(ug/L)	1.0	10
Ethylbenzene	391	(ug/L)	1.0	10
Xylenes, Total	935	(ug/L)	1.0	10
Methyl tert-butyl ether (MTBE)	ND	(ug/L)	1.0	1
1,2,4-Trimethylbenzene	240	(ug/L)	1.0	10
1,3,5-Trimethylbenzene	272	(ug/L)	1.0	10
1,2-Dichloroethane (EDC)	ND	(ug/L)	1.0	1
1,2-Dibromoethane (EDB)	ND	(ug/L)	1.0	1
Naphthalene	34.4	(ug/L)	1.0	1
1-Methylnaphthalene	ND	(ug/L)	2.0	1
2-Methylnaphthalene	ND	(ug/L)	2.0	1
Bromobenzene	178	(ug/L)	1.0	1
Bromochloromethane	ND	(ug/L)	1.0	1
Bromodichloromethane	ND	(ug/L)	1.0	1
Bromoform	183	(ug/L)	1.0	1
Bromomethane	ND	(ug/L)	1.0	1
Carbon Tetrachloride	ND	(ug/L)	1.0	1
Chlorobenzene	ND	(ug/L)	1.0	1
Chloroethane	ND	(ug/L)	2.0	1
Chloroform	ND	(ug/L)	1.0	1
Chloromethane	ND	(ug/L)	1.0	1
2-Chlorotoluene	ND	(ug/L)	1.0	1
4-Chlorotoluene	ND	(ug/L)	1.0	1
cis-1,2-Dichloroethene	ND	(ug/L)	1.0	1
cis-1,3-Dichloropropene	ND	(ug/L)	1.0	1
1,2-Dibromo-3-chloropropane	ND	(ug/L)	2.0	1
Dibromochloromethane	ND	(ug/L)	1.0	1
Dibromoethane	ND	(ug/L)	2.0	1
1,2-Dichlorobenzene	88.1	(ug/L)	1.0	1
1,3-Dichlorobenzene	ND	(ug/L)	1.0	1
1,4-Dichlorobenzene	ND	(ug/L)	1.0	1
Dichlorodifluoromethane	ND	(ug/L)	1.0	1
1,1-Dichloroethane	ND	(ug/L)	1.0	1
1,1-Dichloroethene	ND	(ug/L)	1.0	1
1,2-Dichloropropane	ND	(ug/L)	1.0	1
1,3-Dichloropropane	ND	(ug/L)	1.0	1
2.2-Dichloropropane	ND	(ug/L)	1.0	1

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Analytical Laboratory

EPA Method 8260B Volatile Organic Compounds by GC/MS

Client:	Burlington				
Sample ID:	GW 25 - 30' Deep				page 2
Laboratory Number:	49170				
		Concentratio	n	Det.	Dilution
Parameter		(ug/L)	Units	Limit	Factor
		ND	((1.))	4.0	4
1,1-Dichloropropene		ND	(ug/L)	1.0	1
Hexachlorobutadiene		ND	(ug/L)	1.0	1
Isopropylbenzene		183	(ug/L)	1.0	1
4-Isopropyltoluene		83.8	(ug/L)	1.0	1
Methylene Chloride		ND	(ug/L)	3.0	1
n-Butylbenzene		82.5	(ug/L)	1.0	1
n-Propylbenzene		ND	(ug/L)	1.0	1
sec-Butylbenzene		82.7	(ug/L)	1.0	1
Styrene		ND	(ug/L)	1.0	1
tert-Butylbenzene		124	(ug/L)	1.0	1
Tetrachloroethene (PCE)		ND	(ug/L)	1.0	1
1,1,1,2-Tetrachloroethane		ND	(ug/L)	1.0	1
1,1,2,2-Tetrachloroethane		ND	(ug/L)	1.0	1
trans-1,2-Dichloroethene		ND	(ug/L)	1.0	1
trans-1,3-Dichloropropen	e	ND	(ug/L)	1.0	1
Trichloroethene (TCE)		ND	(ug/L)	1.0	1
Trichlorofluoromethane		ND	(ug/L)	1.0	1
1,2,3-Trichlorobenzene		112	(ug/L)	1.0	1
1,2,4-Trichlorobenzene		43.8	(ug/L)	1.0	1
1,1,1-Trichloroethane		ND	(ug/L)	1.0	1
1,1,2-Trichloroethane		ND	(ug/L)	1.0	1
1,2,3-Trichloropropane		ND	(ug/L)	2.0	1
Vinyl Chloride		ND	(ug/L)	2.0	1
Surrogates:				Rec. Limits	
Dibromofluoromethane		101	% Recovery	78.6-115	1
1,2-Dichloroethane-d4		82.2	% Recovery	74.6-123	1
Toluene-d8		93.6	% Recovery	84.2-115	1
4-Bromofluorobenzene		108	% Recovery	78.6-115	1

ND = Parameter not detected at the stated detection limit.

References:

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992. Method 8260,Volatile Organic Compounds by Gas Chromatography / Mass Spectrometry,Test Methods for Evaluating Solid Waste,SW-846, USEPA, July 1992

Comments:

Randelman #1.

Analyst

Misthen Walters Beview

QUALITY ASSURANCE / QUALITY CONTROL

DOCUMENTATION

EPA Method 8260B Volatile Organic Compounds by GC/MS Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	Laboratory Blank	Date Reported:	03-03-09
Laboratory Number:	03-03 VOA	Date Sampled:	N/A
Sample Matrix:	Water	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	03-03-09
Condition:	N/A	Analysis Requested:	8260 VOC

	Concentration		Det.	Dilution
Parameter	(ug/L)	Units	Limit	Factor
Benzene	ND	(ug/L)	1.0	1
Toluene	ND	(ug/L)	1.0	1
Ethylbenzene	ND	(ug/L)	1.0	1
Xylenes, Total	ND	(ug/L)	1.0	1
Methyl tert-butyl ether (MTBE)	ND	(ug/L)	1.0	1
1,2,4-Trimethylbenzene	ND	(ug/L)	1.0	1
1,3,5-Trimethylbenzene	ND	(ug/L)	1.0	1
1,2-Dichloroethane (EDC)	ND	(ug/L)	1.0	1
1,2-Dibromoethane (EDB)	ND	(ug/L)	1.0	1
Naphthalene	ND	(ug/L)	1.0	1
1-Methylnaphthalene	ND	(ug/L)	2.0	1
2-Methylnaphthalene	ND	(ug/L)	2.0	1
Bromobenzene	ND	(ug/L)	1.0	1
Bromochloromethane	ND	(ug/L)	1.0	1
Bromodichloromethane	ND	(ug/L)	1.0	1
Bromoform	ND	(ug/L)	1.0	1
Bromomethane	ND	(ug/L)	1.0	1
Carbon Tetrachloride	ND	(ug/L)	1.0	1
Chlorobenzene	ND	(ug/L)	1.0	1
Chloroethane	ND	(ug/L)	2.0	1
Chloroform	ND	(ug/L)	1.0	1
Chloromethane	ND	(ug/L)	1.0	1
2-Chlorotoluene	ND	(ug/L)	1.0	1
4-Chlorotoluene	ND	(ug/L)	1.0	1
cis-1,2-Dichloroethene	ND	(ug/L)	1.0	1
cis-1,3-Dichloropropene	ND	(ug/L)	1.0	1
1,2-Dibromo-3-chloropropane	ND	(ug/L)	2.0	1
Dibromochloromethane	ND	(ug/L)	1.0	1
Dibromoethane	ND	(ug/L)	2.0	1
1,2-Dichlorobenzene	ND	(ug/L)	1.0	1
1,3-Dichlorobenzene	ND	(ug/L)	1.0	1
1,4-Dichlorobenzene	ND	(ug/L)	1.0	1
Dichlorodifluoromethane	ND	(ug/L)	1.0	1
1,1-Dichloroethane	ND	(ug/L)	1.0	1
1,1-Dichloroethene	ND	(ug/L)	1.0	1
1,2-Dichloropropane	ND	(ug/L)	1.0	1
1,3-Dichloropropane	ND	(ug/L)	1.0	1
2,2-Dichloropropane	ND	(ug/L)	1.0	1

5796 US Highway 64, Farmington, NM 87401

Analytical Laboratory

QA/QC

EPA Method 8260B Volatile Organic Compounds by GC/MS Quality Assurance Report

Sample ID:	Laboratory Blank				page 2
Laboratory Number:	03-03 VOA				
		Concentratio	n	Det.	Dilution
Parameter		(ug/L)	Units	Limit	Factor
1,1-Dichloropropene		ND	(ug/L)	1.0	1
Hexachlorobutadiene		ND	(ug/L)	1.0	1
Isopropylbenzene		ND	(ug/L)	1.0	1
4-Isopropyltoluene		ND	(ug/L)	1.0	1
Methylene Chloride		ND	(ug/L)	1.0	1
n-Butylbenzene		ND	(ug/L)	1.0	1
n-Propylbenzene		ND	(ug/L)	1.0	1
sec-Butylbenzene		ND	(ug/L)	1.0	1
Styrene		ND	(ug/L)	1.0	1
tert-Butylbenzene		ND	(ug/L)	1.0	1
Tetrachloroethene (PCE)		ND	(ug/L)	1.0	1
1,1,1,2-Tetrachloroethane		ND	(ug/L)	1.0	1
1,1,2,2-Tetrachloroethane		ND	(ug/L)	1.0	1
trans-1,2-Dichloroethene		ND	(ug/L)	1.0	1
trans-1,3-Dichloropropene)	ND	(ug/L)	1.0	1
Trichloroethene (TCE)		ND	(ug/L)	1.0	1
Trichlorofluoromethane		ND	(ug/L)	1.0	1
1,2,3-Trichlorobenzene		ND	(ug/L)	1.0	1
1,2,4-Trichlorobenzene		ND	(ug/L)	1.0	1
1,1,1-Trichloroethane		ND	(ug/L)	1.0	1
1,1,2-Trichloroethane		ND	(ug/L)	1.0	1
1,2,3-Trichloropropane		ND	(ug/L)	2.0	1
Vinyl Chloride		ND	(ug/L)	2.0	1
Surrogates:				Rec. Limits	
Dibromofluoromethane		107	% Recovery	78.6-115	1
1,2-Dichloroethane-d4		118	% Recovery	74.6-123	1
Toluene-d8		104	% Recovery	84.2-115	1
4-Bromofluorobenzene		101	% Recovery	78.6-115	1

ND = Parameter not detected at the stated detection limit.

References:

Client:

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992. Method 8260,Volatile Organic Compounds by Gas Chromatography / Mass Spectrometry,Test Methods for Evaluating Solid Waste,SW-846, USEPA, July 1992

Comments:

QA/QC for Samples 49170 and 49175.

Analyst

Muster Waters

EPA Method 8260B Volatile Organic Compounds by GC/MS Daily Calibration Report

Client:	QA/QC	Project #:	N/A
Sample ID:	Daily Calibration	Date Reported:	03-01-09
Laboratory Number:	02-27 QA/QC	Date Sampled:	N/A
Sample Matrix:	Water	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	02-27-09
Condition:	N/A	Analysis Requested:	8260 VOC

	Concentration			% Recovery
Parameter	(ug/L)	Result	% Recovered	Limits
Benzene	100	115	115	80 - 120
Toluene	100	120	120	80 - 120
Ethylbenzene	100	112	112	80 - 120
Xylenes, Total	100	111	111	80 - 120
Methyl tert-butyl ether (MTBE)	100	105	105	80 - 120
1,2,4-Trimethylbenzene	100	108	108	80 - 120
1,3,5-Trimethylbenzene	100	105	105	80 - 120
1,2-Dichloroethane (EDC)	100	111	111	80 - 120
1,2-Dibromoethane (EDB)	100	105	105	80 - 120
Naphthalene	100	100	100	80 - 120
1-Methylnaphthalene	100	80.9	80.9	80 - 120
2-Methylnaphthalene	100	99.4	99.4	80 - 120
Bromobenzene	100	108	108	80 - 120
Bromochloromethane	100	119	119	80 - 120
Bromodichloromethane	100	114	114	80 - 120
Bromoform	100	111	111	80 - 120
Bromomethane	100	104	104	80 - 120
Carbon Tetrachloride	100	104	104	80 - 120
Chlorobenzene	100	112	112	80 - 120
Chloroethane	100	111	111	80 - 120
Chloroform	100	117	117	80 - 120
Chloromethane	100	120	120	80 - 120
2-Chlorotoluene	100	113	113	80 - 120
4-Chlorotoluene	100	106	106	80 - 120
cis-1,2-Dichloroethene	100	102	102	80 - 120
cis-1,3-Dichloropropene	100	113	113	80 - 120
1,2-Dibromo-3-chloropropane	100	104	104	80 - 120
Dibromochloromethane	100	105	105	80 - 120
Dibromoethane	100	113	113	80 - 120
1,2-Dichlorobenzene	100	96.2	96.2	80 - 120
1,3-Dichlorobenzene	100	98.5	98.5	80 - 120
1,4-Dichlorobenzene	100	98.3	98.3	80 - 120
Dichlorodifluoromethane	100	114	114	80 - 120
1,1-Dichloroethane	100	107	107	80 - 120
1,1-Dichloroethene	100	110	110	80 - 120
1,2-Dichloropropane	100	111	111	80 - 120
1,3-Dichloropropane	100	107	107	80 - 120
2,2-Dichloropropane	100	112	112	80 - 120

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

EPA Method 8260B Volatile Organic Compounds by GC/MS **Quality Assurance Report**

page 2

% Recovery Limits

80 - 120

Client:	QA/QC			
Sample ID:	Daily Calibration			
Laboratory Number:	02-27 QA/QC			
		Concentration		
Parameter		(ug/L)	Result	% Recovered
1,1-Dichloropropene		100	118	118
		100	00 5	00 5

Hexachlorobutadiene	100	90.5	90.5	80 - 120
Isopropylbenzene	100	111	111	80 - 120
4-Isopropyitoluene	100	102	102	80 - 120
Methylene Chloride	100	104	104	80 - 120
n-Butylbenzene	100	100	100	80 - 120
n-Propylbenzene	100	93.9	93.9	80 - 120
sec-Butylbenzene	100	104	104	80 - 120
Styrene	100	108	108	80 - 120
tert-Butylbenzene	100	98.3	98.3	80 - 120
Tetrachloroethene (PCE)	100	116	116	80 - 120
1,1,1,2-Tetrachloroethane	100	108	108	80 - 120
1,1,2,2-Tetrachloroethane	100	99.3	99.3	80 - 120
trans-1,2-Dichloroethene	100	102	102	80 - 120
trans-1,3-Dichloropropene	100	108	108	80 - 120
Trichloroethene (TCE)	100	115	115	80 - 120
Trichlorofluoromethane	100	110	110	80 - 120
1,2,3-Trichlorobenzene	100	100	100	80 - 120
1,2,4-Trichlorobenzene	100	95.7	95.7	80 - 120
1,1,1-Trichloroethane	100	114	114	80 - 120
1,1,2-Trichloroethane	100	109	109	80 - 120
1,2,3-Trichloropropane	100	98.9	98.9	80 - 120
Vinyl Chloride	100	114	114	80 - 120

Surrogates:			Rec. Limits	
Dibromofluoromethane	104	% Recovery	78.6-115	
1,2-Dichloroethane-d4	120	% Recovery	74.6-123	
Toluene-d8	103	% Recovery	84.2-115	
4-Bromofluorobenzene	109	% Recovery	78.6-115	

ND = Parameter not detected at the stated detection limit.

envirotech Analytical Laboratory

References:

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992. Method 8260, Volatile Organic Compounds by Gas Chromatography / Mass Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

Comments:

QA/QC for Samples 49170 and 49175.

Analyst

"Mustur Waters Review

EPA Method 8260B Volatile Organic Compounds by GC/MS Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	Matrix Spikes	Date Reported:	03-01-09
Laboratory Number:	02-27-VOA - 49142	Date Sampled:	N/A
Sample Matrix:	Aqueous	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	02-27-09
Condition:	N/A	Analysis Requested:	8260 VOC

Spike		Units: uG/L	-		Recovery	Det.
Spike Analyte Benzene Toluene Chlorobenzene 1,1-Dichloroethene Trichloroethene (TCE)	Sample	Added	Result	%Recovery	Limits	Limit
Benzene	523	100.0	531	85.3%	85.3 - 120	1.0
Toluene	282	100.0	397	104%	73 - 123	1.0
Chlorobenzene	ND	100.0	91.2	91.2%	84.7 - 119	1.0
1,1-Dichloroethene	ND	100.0	102	102%	83.4 - 122	1.0
Trichloroethene (TCE)	ND	100.0	94.1	94.1%	76.1 - 126	1.0
Spike Duplicate		Units: uG/L			Recovery	Det.

opine Dupileate	,	onnto. u ort	-		Recovery	Det.
Analyte	Sample	Added	Result	%Recovery	Limits	Limit
Benzene	523	100.0	566	90.8%	85.3 - 120	1.0
Toluene	282	100.0	453	119%	73 - 123	1.0
Chlorobenzene	ND	100.0	104	104%	84.7 - 119	1.0
1,1-Dichloroethene	ND	100.0	102	102%	83.4 - 122	1.0
Trichloroethene (TCE)	ND	100.0	122	122%	76.1 - 126	1.0

ND = Parameter not detected at the stated detection limit.

References:

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992. Method 8260,Volatile Organic Compounds by Gas Chromatography / Mass Spectrometry,Test Methods for Evaluating Solid Waste,SW-846, USEPA, July 1992

Comments:

QA/QC for Samples 49170 and 49175.

Analyst

Mester milalters

CHAIN OF CUSTODY RECORD

Client: Birline	jon	P	roject Name / L	ocation	: ≠ 1									ANAL	YSIS	/ Par	AME	TERS					
Client Address:	<u>V-dec</u>	S	ampler Name:	lan .	2 / 25				015)	8021)	3260)												
Client Phone No.:		C	lient No.: 92115-	07	68				Method 8	(Method	Method 8	8 Metals	I / Anion		with H/P		418.1)	RIDE				le Cool	lo Intart
Sample No./ Identification	Sample Date	Sample Time	Lab No.	5	Sample Matrix	No./Volume of Containers	Prese HgCl ₂ H	rvative	I) HAT	BTEX	VOC (RCRA	Cation	RCI	TCLP	PAH	HdT (CHLO				Samp	Como
AW 25-30'deep	3-2-09	15:30	49170	Soil Solid	Sludge	2-10A					V											V	4
				Solid Solid	Aqueous Sludge			_															
				Solid Soil Solid	Aqueous Sludge Aqueous																		
				Soil Solid	Sludge Aqueous																		
				Soil Solid	Sludge Aqueous																		
				Solid Solid	Aqueous Sludge			_															
				Solid Soil	Aqueous Sludge																		
				Soil Solid	Sludge Aqueous																		
Relinguished by: (Sign	ature				Date 3-2-09	Time	Re	eceive	ed by:	(Sig)	nature)	3						1.2	3/2	ate 109	Ti 17.	me
Belinquished by: (Sign	ature)						Re	eceive	of by:	Sigr	nature)			C	>							
Relinquished by: (Sign	ature)	r File Ti Je		1			Re	eceive	ed by:	(Sigr	nature)				8							
					ENV	ROT	ΓE	Cł		IN	C.			t ole della stra		2000 - 100 -							
			5796 U.	S. Hig	hway 64 •	Farming	yton,	NM	8740	01 •	Tel	505	-632 [.]	-0615	5								