District 1 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

						OPERA	ГOR		X Initia	al Report	Final Re
Name of C	ompany T	arga Midstro	eam Servi	ces.L.P.	Same 1	Contact Ch	nuck Tolsma			a management	
Address P.	O. Box 190	09, Eunice,N	lew Mexi	co 88231	1000	Telephone]	No. 575-394-25	16	12.18		
Facility Na	me Parks 4	inch]	Facility Typ	pe Natural Gas	gatherin	g system		
Surface Ov	vner Irvin I	Boyd		Mineral O	wner C	Chevron			API No	. Near 30-025	5-10434
				LOCA	TION	OFRE	LEASE				
Unit Letter E	Section 23	Township 22S	Range 37E	Feet from the	North/	South Line	Feet from the	East/W	Vest Line	County Lea	
		L	atitude 3	2.37946NAT	L URE	ongitude_ OF REL	103.13977 EASE	d <u> </u>			
Type of Rele	ease Natura	1 Gas			19.3	Volume of	f Release 600mcf	f I	Volume F	Recovered none	:
Source of Re	elease Steel	Pipeline (corr	rosion)		- K	Date and H unkown	Hour of Occurrent	ce	Date and	Hour of Discov	very 2/4/2013
Was Immed	iate Notice (Given?]Yes N	40 🔀 Manual	and i	If YES, To	Whom?				
By Whom?			16.11	<		Date and H	lour			-	
Was a Water	course Read	ched?] Yes 🕅	No		If YES, Ve	olume Impacting	the Wate	rcourse.		, sec
f a Waterco Describe Ca	urse was Im	em and Reme	dial Action	n Taken.*	nd sector	n of line real	aced with poly n	ne Soil	Was excave	ated to anorovia	mately 16'
f a Waterco Describe Ca Corrosion in below grout	urse was Im use of Probl 4" steel pip nd surface ar	em and Reme eline caused l nd disposed at	dial Action leaks. Pipe t Sundance	n Taken.* line was shut-in ar Services(Parabo)	nd secto Eunice,	n of line repl , New Mexic	laced with poly pi	pe. Soil	was excava	ated to approxin	mately 16'
f a Waterco Describe Ca Corrosion in below groun Describe Arn Soil was exc for BTEX, T	urse of Probl 4" steel pip ad surface ar ea Affected avated from PH, and chl	em and Reme eline caused l and disposed at and Cleanup <i>J</i> area (75 ² x75 oride by labor	dial Action leaks. Pipe t Sundance Action Tak '). On July ratory met	n Taken.* line was shut-in ar Services(Parabo) ten.* '31,2013, Larson a hods SW-8021B,	and secto Eunice, and Ass SW-801	n of line repl , New Mexic sociates colle 15 AND E30	laced with poly pi co. cted several samp 0, resectively.	pe. Soil	was excava	ated to approxin d sidewalls of t	mately 16'
If a Waterco Describe Ca Corrosion in below groun Describe Ard Soil was exc for BTEX, T hereby cert regulations a public health should their or the enviro federal, state	urse was Im use of Probl 4" steel pip ad surface ar avated from PH, and chl ify that the i Il operators or the envir operations h nment. In a , or local law	em and Reme eline caused l and Cleanup / area (75'x75 oride by labor information g are required t ronment. The vave failed to iddition, NMC ws and/or regr	Action Tak '). On July ratory met iven above acceptanc adequately DCD accep ulations.	n Taken.* line was shut-in ar Services(Parabo) en.* '31,2013, Larson a hods SW-8021B, is true and compl d/or file certain re te of a C-141 repor investigate and re tance of a C-141 r	and secto Eunice, and Ass SW-801 lete to the elease no rt by the emediate report do	n of line repl , New Mexic ociates colle 15 AND E30 ne best of my otifications a e NMOCD me e contaminations of the set o	laced with poly pi to. cted several samp 0, resectively. r knowledge and u nd perform correct narked as "Final R ion that pose a the re the operator of	pe. Soil oles from understar ctive acti ceport" d reat to gr responsi	was excava bottom an od that purs ons for reli- ound water bility for c	ated to approxin d sidewalls of t suant to NMOC cases which ma ieve the operator r, surface water ompliance with	mately 16' the excavation D rules and ay endanger or of liability , human healt any other
Describe Ca Corrosion in below grout Describe Arr Soil was exc for BTEX, T hereby cert egulations a bublic health should their or the enviro cederal, state	urse was Im use of Proble 4" steel pip ad surface ar avated from PH, and chl ify that the i ll operators or the envir operations h nment. In a , or local law	em and Reme eline caused l and disposed at and Cleanup A area (75'x75 oride by labou information g are required t ronment. The lave failed to ddition, NMC ws and/or regu	Action Tak '). On July ratory met iven above to report are acceptance adequately DCD accep ulations.	n Taken.* line was shut-in ar Services(Parabo) ren.* '31,2013, Larson a hods SW-8021B, is true and compl id/or file certain re se of a C-141 repor investigate and re tance of a C-141 r	and sector Eunice, and Ass SW-801 lete to the elease no rt by the emediate report de	n of line repl , New Mexic cociates colle 15 AND E30 ne best of my polifications a e NMOCD m e contaminati poes not reliev	laced with poly pi to. cted several samp 0, resectively. r knowledge and u nd perform correct narked as "Final R ion that pose a thur re the operator of OIL CON	pe. Soil oles from inderstar ctive acti ceport" d reat to gr responsi <u>SERV</u>	was excava bottom an od that purs ons for rele ound water bility for c ATION	ated to approxin d sidewalls of the suant to NMOC eases which ma ieve the operator r, surface water ompliance with <u>DIVISION</u>	mately 16' the excavation D rules and ay endanger or of liability , human healt any other
f a Waterco Describe Ca Corrosion in below groun Describe Ard Soil was exc or BTEX, T hereby cert egulations a ublic health hould their r the enviro ederal, state	urse was Im use of Probl 4" steel pip ad surface ar ea Affected avated from PH, and chl ify that the i Il operators or the envir operations h nment. In a , or local law	em and Reme eline caused I and Cleanup A area (75'x75 oride by labor information g are required to ronment. The lave failed to iddition, NMC ws and/or regu	Action Tak adial Action leaks. Pipe t Sundance Action Tak '). On July ratory met iven above to report ar acceptance adequately DCD accep ulations.	n Taken.* line was shut-in ar Services(Parabo) en.* '31,2013, Larson a hods SW-8021B, is true and compl id/or file certain re- te of a C-141 report investigate and re- tance of a C-141 r	and secto Eunice, and Ass SW-801 lete to the elease no rt by the emediate report do	n of line repl , New Mexic cociates colle 15 AND E30 ne best of my potifications a e NMOCD m e contaminations of the second pot reliev Approved by	laced with poly pi to. cted several samp 0, resectively. r knowledge and u nd perform correct narked as "Final R ion that pose a thi ve the operator of <u>OIL CON</u> r Environmental S	pe. Soil oles from inderstar ctive acti teport" d reat to gr responsi SERV opecialist	was excava bottom an od that purs ons for reli- ound water bility for c ATION	ated to approxin d sidewalls of the suant to NMOC eases which ma ieve the operator r, surface water ompliance with DIVISION	mately 16' the excavation D rules and ay endanger or of liability , human health any other
The environment of a Watercon Describe Car Corrosion in below ground the provided and the p	urse was Im use of Probl 4" steel pip ad surface ar avated from PH, and chl ify that the i Il operators or the envir operations h nment. In a , or local law e: Chuck To Supervisor	em and Reme eline caused I and Cleanup <i>J</i> area (75'x75 oride by labor information g are required t ronment. The ave failed to a ddition, NMC ws and/or regu	Action Tak '). On July ratory met iven above to report ar adequately DCD accep ulations.	n Taken.* line was shut-in ar Services(Parabo) ren.* 31,2013, Larson a hods SW-8021B, is true and compl ad/or file certain re te of a C-141 repoi investigate and re tance of a C-141 r	and secto Eunice, and Ass SW-801 lete to the elease no rt by the emediate report do	n of line repl , New Mexic ociates colle 15 AND E30 ne best of my otifications a e NMOCD m e contaminations of the second bes not reliev Approved by	laced with poly pi to. cted several samp 0, resectively. r knowledge and u nd perform correct narked as "Final R ion that pose a the re the operator of <u>OIL CON</u> Environmental S te:	pe. Soil oles from anderstar ctive acti teport" d reat to gr responsi SERV Specialist	was excava bottom an od that purs ons for reli- ound water bility for c ATION	ated to approxin d sidewalls of the suant to NMOC cases which ma ieve the operator r, surface water ompliance with <u>DIVISION</u> Date:	mately 16' the excavation D rules and ay endanger or of liability , human healt any other

DUE TO LIMITED EXTENT OF RESIDUAL CONTAMINATION AND PERCEIVED EXTREME DEPTH TO GUU PROVED BY BORINGS EXCENATION BACKFILLING IS APPROVED

HOBBS OCD

NOV 2 2 2013

RECEIVED

Environmental Specialist NMOCD-DISTI 11/22/13

RELEASE INVESTIGATION REPORT

Parks 4 – Inch Pipeline 1RP-9-13-2956 Lea County, New Mexico

LAI Project No. 13-0116-01

October 2013

Prepared for:

Targa Midstream Services, LLC 6 Desta Drive, Suite 3300 Midland, Texas 79705

Prepared by:

Larson & Associates, Inc. 507 North Marienfeld, Suite 200 Midland, Texas 79701

Mark J. Larson Certified Professional Geologist No. 10490

Table of Contents

1.0	EXECUTIVE SUMMARY	. 1
2.0	INTRODUCTON	. 2
2.1	Initial Response	. 2
2.2	Setting	. 2
3.0	INVESTIGATION	.3
3.1	Soil Samples	.3
3.2	Soil Borings	.3
4.0	CONCLUSIONS	.4
5.0	RECOMMENDATION	. 4

List of Tables

Table 1	Excavation Soil Sample Analytical Data Summary
Table 2	Borehole Soil Sample Analytical Data Summary

List of Figures

Figure 1	Topographic Map
Figure 2	Aerial Map
Figure 3	Site Drawing
Figure 4	Soil Sample and Boring Location Map

List of Appendices

Appendix A	Laboratory Reports
Appendix B	Boring Logs
Appendix C	Photographs
Appendix D	Initial C-141

October 24, 2013

VIA EMAIL: GeoffreyR.Leking@state.nm.us

Mr. Geoffrey R. Leking Environmental Engineer New Mexico Oil Conservation Division - District 1 1625 N. French Drive Hobbs, New Mexico 88240 HOBBS OCD

RECEIVED

Re: 1RP-9-13-2956 - Release Investigation Report, Parks 4-Inch Pipeline, Targa Midstream Services, LLC Unit E (SW/4, NW/4), Section 23, Township 22 South, Range 37 East, Lea County, New Mexico, October 2013

Dear Geoffrey:

The enclosed report is submitted to the New Mexico Oil Conservation Division (OCD) on behalf of Targa Midstream Services, LLC (Targa) by Larson & Associates, Inc. (LAI), to present the investigation and remediation of a natural gas liquids release from 4-inch pipeline ("Parks 4") d east) in Unit E (SW/4, NW/4), Section 23, Township 22 South, Range 37 East in Lea County, New Mexico. Your approval for closing the excavation is requested. The initial C-141 is presented in Appendix D. The final C-141 will be submitted after filling the excavation. Kindly forward the approved closure request to Mr. Cal Wrangham, 6 Desta Drive, Suite 3300, Midland, Texas 79705. You may contact Mr. Wrangham by phone at 432-688-0542 or by email at <u>CalvinWrangham@targaresources.com</u>. I may be reached at (432) 6876-0901 or by email at mark@laenvironmental.com.

Sincerely,

Larson & Associates, Inc.

Mark J. Larson, P.G. (432) 687-0901 mark@laenvironmental.com

cc: Cal Wrangham - Targa David McQuade - Targa

Encl.

507 North Marienfeld, Suite 200 Midland, Texas 79701 Ph. (432) 687-0901 Fax (432) 687-0456

1.0 EXECUTIVE SUMMARY

This report is submitted to the New Mexico Oil Conservation Division (OCD) District 1, in Hobbs, New Mexico, on behalf of Targa Midstream Services, LLC (Targa), to present the investigation and remediation of a natural gas liquid (NGL) release from the Parks 4 inch pipeline (Site). The Site is located in Unit E (SW/4, NW/4), Section 23, Township 22 South, Range 37 east, in Lea County, New Mexico. The geodetic position is north 32° 22′ 46.56″ and west 103° 08′ 23.65″. The release was discovered on February 4, 2013. The initial C-141 was submitted to the OCD on August 8, 2013. The estimated volume of the release was approximately 600 mcf of natural gas and was caused by external corrosion of the steel pipe. Targa personnel replaced the steel pipe with approximately 100 feet of poly pipe. Approximately 700 cubic yards of soil was excavated from the Site and disposed at Sundance Services located east of Eunice, New Mexico. Remediation project (RP) number 1RP-9-13-2956 was assigned to the release by OCD.

On July 31, 2013, personnel from Larson & Associates, Inc. (LAI) collected bottom and sidewall samples from the excavation. The samples were delivered under preservation and chain of custody to Permian Basin Environmental Laboratory (PBELAB) and analyzed for benzene, toluene, ethyl benzene, xylenes (BTEX) by method SW0846-8021B, total petroleum hydrocarbons (TPH), including gasoline (GRO), diesel (DRO) and oil (ORO) range organics by method SW-846-8015 and chloride by method E300. Benzene and BTEX were below the method detection limit (MDL) and TPH was 3,354 milligrams per kilogram (mg/Kg) in sample SWW-10 collected from the west sidewall at about 10 feet below ground surface (bgs). Chloride was 786 mg/kg and 255 mg/Kg in sidewall samples SWN-6 and SWW-6, respectively, and 282 mg/kg in bottom sample BSPLS-5.

On September 4, 2013, Scarborough Drilling, Inc. (SDI) used an air rotary rig and jam tube sampler to collect soil samples from two borings (BH-1 and BH-2) that were drilled near the west side of the excavation (BH-1) and about 20 feet west of the excavation (BH-2). The soil samples were collected about every 5 feet (0, 5, 10, 15, 20, 25, 30, 40 and 50) for field headspace and analysis. The headspace analysis was performed with a calibrated Thermo Model 580 photoionization detector (PID). PID readings exceeded 100 parts per million (ppm) in samples BH-1, 10 (232 ppm), 15 (272 ppm) and 20 (170 ppm) feet bgs and were analyzed for BTEX by method SW-846-8021B. Samples were analyzed for TPH by method SW-846-8015 and chloride by E300. Benzene and BTEX were below the OCD recommended remediation action levels (RRAL) of 10 and 50 mg/Kg, respectively. TPH exceeded the RRAL of 5,000 mg/Kg in samples BH-1, 15 feet (5,820 mg/Kg) and BH-1, 20 feet (6,490 mg/Kg). Groundwater was not observed in the borings after about 48 hours therefore it is concluded the groundwater is not present in the Ogallala formation at this location. The borings were plugged with bentonite.

Targa requests permission to fill the excavation with clean soil. The surface will be seeded to a seed blend recommended for the area. A final report will be submitted to the OCD upon completion of the excavation backfilling.

2.0 INTRODUCTION

Larson & Associates, Inc. (LAI) submits this report to the New Mexico Oil Conservation Division (OCD) on behalf of Targa Midstream Services, LLC (Targa) to present the analysis of soil samples collected from an excavation and borings (BH-1 and BH-2) at the Parks 4 inch pipeline release (Site). The volume of the release was estimated at 600 mcf of natural gas. Targa submitted an initial C-141 August 8, 2013. The OCD assigned remediation project number 1RP-9-13-2956 to the release. The Site is located in Unit E (SW/4, NW/4), Section 23, Township 22 South, Range 37 east, in Lea County, New Mexico. The geodetic position is north 32° 22' 46.56" and west 103° 08' 23.65". Figure 1 presents a location and topographic map. Figure 2 presents an aerial map.

2.1 Initial Response

Targa personnel discovered the release on February 4, 2013 which was caused by external corrosion of the 4" steel pipe. The steel pipe was replaced with about 100 feet of poly pipe. Environmental Plus, Inc., located in Eunice, New Mexico, excavated approximately 770 cubic yards of soil which was disposed at Sundance Services (NM-1-0003) located east of Eunice, New Mexico. Soil was excavated to a maximum depth of about 16 feet below ground surface (bgs) from an area measuring about 75 x 75 feet. Figure 3 presents a Site drawing.

2.2 Setting

The Site is located about 3.5 miles southeast of Eunice, New Mexico. The surface elevation is approximately 3,345 feet above mean sea level (MSL) and slopes gently to the southeast. The soil is designated "Berino-Cacique loamy sands, 0 to 3 percent slopes (Be)" with an "A" horizon of brown to reddish brown loamy and fine loamy sand. The "B" horizon is reddish brown to yellowish red heavy fine sandy loam to sandy clay loam. The "C" horizon, between about 29 and 60 inches, is soft to strongly cemented caliche. The soil is typically used for range and wildlife habitat.

According to the *Geologic Map of New Mexico* and the *Geologic Atlas of Texas, Hobbs Sheet* the surface geology is comprised of Holocene to mid-Pleistocene age wind-blown sand. This material was derived principally from reworking the underlying Blackwater Draw and Ogallala formations. The Ogallala formation is comprised of fluvial sand, silt, clay and localized gravel, with indistinct to massive crossbeds. In the Eunice area, the Ogallala formation consists mainly of unconsolidated to poorly consolidated, very fine to medium-grained quartz sand and gravel, with minor amount of silt and clay.

An upper-most unit, the Blackwater Draw formation, consists of reddish brown, very fine to fine grained eolian sand with minor amounts of clay and caliche. Locally the "C" horizon of the Berino-Cacique loamy sands, 0 to 3 percent slopes, is called the caprock or caliche. The caliche forms a hard, erosion resistant, pedogenic calcrete that is about 22 feet thick. The Ogallala formation is underlain by the Chile formation (Triassic) of the Dockum Group. The Chinle formation is comprised of clay, silty clay, shale and sandstone and is the lower boundary for groundwater in the Ogallala formation.

On September 4, 2013, LAI personnel supervised drilling two (2) soil borings (BH-1 and BH-2) at the Site. The borings were drilled to about 51 feet bgs and encountered the Chinle formation at about 48 bgs. The borings were gauged for groundwater which was not observed approximately 48 hours after drilling therefore it is concluded that groundwater is not present in the Ogallala formation at this location.

3.0 INVESTIGATION

3.1 Soil Samples

On July 31, 2013, LAI personnel used a stainless steel hand auger to collect soil samples from the excavation sidewalls and bottom. Sixteen (16) sidewall and five (5) bottom samples were collected in 4 ounce glass jars that were submitted under preservation and chain of custody to Permian Basin Environmental Lab (PBELAB), a National Environmental Laboratory Accreditation Programs (NELAP) accredited laboratory, located in Midland, Texas. The laboratory analyzed the samples for benzene, toluene, ethyl benzene, xylenes (BTEX) by method SW-846-8021B, total petroleum hydrocarbon (TPH) including gasoline (GRO), diesel (DRO) and oil (ORO) range hydrocarbons by method SW-846-8015 and chloride by method E300. Table 1 presents an analytical data summary. Figure 4 presents a soil sample location map. Appendix A presents the laboratory report.

Referring to Table 1, BTEX was not reported at concentrations above the method detection limit (MDL). TPH was below the method detection limit (MDL) except sample SWW-10 which was collected from the west sidewall at about 10 feet bgs and reported TPH at 3,354 milligrams per kilogram (mg/Kg). Chloride exceeded 250 mg/Kg in sidewall samples SWN-6 (786 mg/Kg) and SWW-6 (255 mg/Kg) and bottom sample BSPLS-5 (282 mg/Kg).

3.2 Soil Borings

On September 4, 2013, Scarborough Drilling, Inc. (SDI) used an air rotary rig and jam tube sampler to collected soil samples from two (2) locations near the west edge of the excavation (BH-1) and about 20 feet west of the excavation (BH-2). The borings were drilled to approximately 51 feet bgs and the Chinle formation (redbed) was encountered at 48 feet bgs. Groundwater was not observed in the borings after about 48 hours therefore it is concluded that groundwater is not present in the Ogallala formation at this location. The borings were plugged with bentonite. Soil boring logs were prepared according to the Unified Soil Classification System (USCS). Figure 4 presents the boring locations. Appendix B presents the boring logs.

Soil samples were collected at ground surface and about every 5 feet thereafter (5, 10, 15, 20, 25, 30 40 and 50 feet bgs). The samples were collected in 4 ounce glass sample jars that were labeled and delivered under preservation and chain of custody to PBELAB. Duplicate samples were collected in 8 ounce glass jars for headspace analysis which was performed with a calibrated Thermo Model 580 photoionization detector (PID). PID readings exceeded 100 parts per million (ppm) in samples BH-1 at 10 (232 ppm), 15 (272 ppm) and 20 (170 ppm) feet which were analyzed by the laboratory for BTEX and TPH. Samples from BH-1 (5 feet) and BH-2 (10, 15 and 20 feet) were also analyzed for TPH. All samples were analyzed for chloride. Table 2 presents the analytical data summary. Appendix A presents the laboratory report.

Referring to Table 2, benzene was 0.00274 and 0.00170 mg/Kg, in samples BH-1, 10 and 15 feet. Benzene was less than the MDL in sample BH-1, 20 feet. BTEX was 0.05630, 0.06160 and 0.01262 mg/Kg in samples BH-1, 10, 15 and 20 feet. TPH was less than the MDL (<30 mg/Kg), 4,750, 5,820, 6,490 and 240 mg/Kg in samples BH-1, 5, 10, 15, 20 and 25 feet, respectively. Chloride ranged from 15.1 mg/Kg (BH-2, 15 feet) to 205 mg/Kg (BH-2, 25 feet).

4.0 CONCLUSIONS

Remediation action levels were calculated for benzene, BTEX and TPH using criteria established by the OCD (*Guidelines for Remediation of Leaks, Spills and Releases, August 13,* 1993) based on the following:

Ranking Criteria	Result	Ranking Score
Depth-to-Groundwater	>100 feet	0
Wellhead Protection Area	No	0
Distance to Surface Water Body	>1000 Horizontal Feet	0
	Total Score:	0

The remediation action levels for benzene, TBTEX and TPH are 10 mg/kg, 50 mg/kg and 5,000 mg/kg (TPH), respectively.

The following conclusions are based on the OCD recommended remediation action level (RRAL):

- Benzene and BTEX are below the RRAL in all soil samples;
- TPH exceeds the RRAL (5,000 mg/Kg), in samples BH-1, 15 feet (5,820 mg/Kg) and BH-1, 20 feet (6,490 mg/Kg);
- Chloride was delineated vertically and horizontally to 250 mg/Kg.

5.0 RECOMMENDATIONS

Targa requests no further action for the release and permission to fill the excavation with clean soil. The surface will be seeded to a seed blend recommended for the area. A final report, including final C-141, will be submitted to the OCD upon completion of the excavation backfilling. Appendix C presents photographs. Appendix D presents the initial C-141.

Table 1

Targa Midstream Services, L.P., Parks 4" Pipeline Release Unit K (NE/4, SW/4), Section 23, Township 22 South, Range 37 East Lea County, New Mexico Excavation Soil Sample Analytical Data Summary

Location	Sample	Depth	Date	Status	Chloride	Benzene	втех	GRO	DRO	Oil	Total TPH
		Feet BGS			(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
OCD RRAL:						10	50				5,000
Sidewall - North	SWN-2	2	7/31/2013	In-Situ	104	<0.00102	<0.00204	<25.5	<25.5	<25.5	<25.5
	SWN-6	9	7/31/2013	In-Situ	786	<0.00102	<0.00204	<25.5	<25.5	<25.5	<25.5
	SWN-10	10	7/31/2013	In-Situ	52.6	<0.00114	<0.00227	<28.4	<28.4	<28.4	<28.4
Sidewall - South	SWS-2	2	7/31/2013	In-Situ	123	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0
	SWS-6	9	7/31/2013	In-Situ	15.2	<0.00111	<0.00222	<27.8	<27.8	<27.8	<27.8
	SWS-10	10	7/31/2013	In-Situ	133	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6
	SWS-15	15	7/31/2013	In-Situ	24.1	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0
-						1	1				
Sidewall - East	SWE-2	2	7/31/2013	In-Situ	12.4	<0.00115	<0.00230	<28.7	<28.7	<28.7	<28.7
	SWE-6	9	7/31/2013	In-Situ	12.6	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6
	SWE-10	10	7/31/2013	In-Situ	71.0	<0.00108	<0.00215	<26.9	<26.9	<26.9	<26.9
	SWE-15	15	7/31/2013	In-Situ	40.9	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6
Sidewall-	SWNE-6	9	7/31/2013	In-Situ	23.0	<0.00110	<0.00220	<27.5	<27.5	<27.5	<27.5
Northeast											
Sidewall -	ESE-17	17	7-31-103	In-Situ	23.1	<0.00116	<0.00233	<29.1	<29.1	<29.1	<29.1
East-Southeast					1	n de la composition de la comp			ni Ng P		
Sidewall - West	SWW-2	2	7/31/2013	In-Situ	32.6	<0.00103	<0.00206	<25.8	55.6	<25.8	<26.0
	SWW-6	9	7/31/2013	In-Situ	255	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0
	SWW-10	10	7/31/2013	In-Situ	142	<0.00101	<0.00202	96.5	2,910	347	3,354
and a set of the		P. I.									

Table 1 Excavation Soil Sample Analytical Data Summary Targa Midstream Services, L.P., Parks 4" Pipeline Release Unit K (NE/4, SW/4), Section 23, Township 22 South, Range 37 East Lea County, New Mexico

Location	Sample	Depth	Date	Status	Chloride	Benzene	BTEX	GRO	DRO	oil	Total TPH
		Feet BGS			(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
OCD RRAL:						10	50				5,000
Bottom - West	BSW-10	10	7/31/2013	In-Situ	140	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6
Bottom - Pipeline North	NPL	9	7/31/2013	In-Situ	14.8	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3
South	BSPLS-5 BSPL-8	ъ ø	7/31/2013 7/31/2013	In-Situ In-Situ	282 14.6	<0.00111 <0.00106	<0.00222 <0.00213	<27.8 <26.6	<27.8 <26.6	<27.8 <26.6	<27.8 <26.6
	BSPL-17	17	7/31/2013	In-Situ	18.7	<0.00110	<0.00220	<27.5	<27.5	<27.5	<27.5
Matac: All camples	od vy pozviene	rminn Bacin En	ci letananani	buching di d	Tovac						

Notes: All samples analyzed by Permian Basin Environmental Lab, LP, Midland, Texas

Samples analyzed via EPA method SW-8021B (BTEX), SW-8015M (TPH) and E-300 (chloride). Depth measurements are in feet below ground surface (bgs).

All concentrations are in milligrams per kilogram (mg/Kg) equivalent to parts per million (ppm). Bold denotes analyte detected at concentration above the test method detection limit Table 2 Borehole Soil Sample Analytical Data Summary Targa Midstream Services, L.P., Parks 4" Pipeline Release Unit K (NE/4, SW/4), Section 23, Township 22 South, Range 37 East Lea County, New Mexico

Total TPH	(mg/Kg)	5,000	1	<30.5	4750	5820	6490	240	I	I	1		1	i L	<79.8	<77.3	<80.6	1	1	1	1
C28-C35	(mg/Kg)	Land and a second	1	<30.5	469	583	695	79	1	1	1		1	1	<26.6	<25.8	<26.9	1	1	1	, I
C12-C28	(mg/Kg)		1	<30.5	4000	4680	5520	124	1	1	l I		1	7	<26.6	<25.8	<26.9	1	1	1	I
C6-C12	(mg/Kg)		1	<30.5	284	553	276	37	1	1	1	14.	1	1	<26.6	<25.8	<26.9	I	1	I	I
BTEX	(mg/Kg)	50	1	1	0.05630	0.06160	0.01262	I	1	1	1		1	1	1	1	1	1	1	1	1
Benzene	(mg/Kg)	10	1	l	0.00274	0.00170	<0.00122	1	1	1	1		1	ſ	1	.1	I	1	1	1	1
Chloride	(mg/Kg)		22.7	23.1	60.8	32.0	38.5	47.0	62.6	24.2	35.0		17.6	160.0	75.7	15.1	25.9	205.0	54.8	72.6	33.8
	Status		In-situ		In-situ																
PID	(mdd)	100	1.8	0.0	232	272	170	80.1	0.0	0.0	0.0		1.7	1.4	1.3	1.3	1.1	1.0	1.1	1.0	1.1
Date			9/4/2013	9/4/2013	9/4/2013	9/4/2013	9/4/2013	9/4/2013	9/4/2013	9/4/2013	9/4/2013	a constant	9/4/2013	9/4/2013	9/4/2013	9/4/2013	9/4/2013	9/4/2013	9/4/2013	9/4/2013	9/4/2013
Depth	Feet BGS		0-1	5-6	10-11	15-16	20-21	25-26	30-31	40-41	50-51	-	0-1	5-6	10-11	15-16	20-21	25-25	30-31	40-41	50-51
Location		OCD RRAL:	BH-1										BH-2								

Notes: All samples analyzed by Permian Basin Environmental Lab, LP, Midland, Texas Samples analyzed via EPA method SW-8021B (BTEX), SW-8015M (TPH) and E-300 (chloride).

Depth measurements are in feet below ground surface (bgs).

All concentrations are in milligrams per kilogram (mg/Kg) equivalent to parts per million (ppm).

Bold and highlighted denotes analyte detected at concentration above OCD recommended remediation action level (RRAL) Bold denotes analyte detected at concentration above the method detection limit

Page 1 of 1

PERMIAN BASIN ENVIRONMENTAL LAB, LP 10014 SCR 1213 Midland, TX 79706

Analytical Report

Prepared for:

Coty Woolf Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Parks 4/Targa Project Number: 13-0116-01 Location:

Lab Order Number: 3G31004

NELAP/TCEQ # T104704156-12-1

Report Date: 08/06/13

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710	Project: Parks 4/Targ Project Number: 13-0116-01 Project Manager: Coty Woolf	a		Fax: (432) 687-0456
	ANALYTICAL REPORT FOR SAM	PLES		4
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SWW-6	3G31004-01	Soil	07/31/13 09:50	07-31-2013 16:10
SWW-10	3G31004-02	Soil	07/31/13 09:45	07-31-2013 16:10
SWW-2	3G31004-03	Soil	07/31/13 09:55	07-31-2013 16:10
SWS-10	3G31004-04	Soil	07/31/13 10:00	07-31-2013 16:10
SWN-6	3G31004-05	Soil	07/31/13 10:15	07-31-2013 16:10
SWS-6	3G31004-06	Soil	07/31/13 10:05	07-31-2013 16:10
SWS-2	3G31004-07	Soil	07/31/13 10:10	07-31-2013 16:10
SWN-10	3G31004-08	Soil	07/31/13 10:15	07-31-2013 16:10
SWE-6	3G31004-09	Soil	07/31/13 10:35	07-31-2013 16:10
SWE-10	3G31004-10	Soil	07/31/13 10:30	07-31-2013 16:10
SWNE-6	3G31004-11	Soil	07/31/13 10:25	07-31-2013 16:10
BSW-10	3G31004-12	Soil	07/31/13 11:10	07-31-2013 16:10
SWN-2	3G31004-13	Soil	07/31/13 10:20	07-31-2013 16:10
SWE-2	3G31004-14	Soil	07/31/13 10:40	07-31-2013 16:10
NPL	3G31004-15	Soil	07/31/13 10:45	07-31-2013 16:10
ESE-17	3G31004-16	Soil	07/31/13 10:50	07-31-2013 16:10
BSPL-17	3G31004-17	Soil	07/31/13 10:52	07-31-2013 16:10
BSPL-8	3G31004-18	Soil	07/31/13 11:05	07-31-2013 16:10
SWS-15	3G31004-19	Soil	07/31/13 11:00	07-31-2013 16:10
SWE-15	3G31004-20	Soil	07/31/13 10:57	07-31-2013 16:10
BSPLS-5	3G31004-21	Soil	07/31/13 11:15	07-31-2013 16:10

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

Project: Parks 4/Targa Project Number: 13-0116-01 Project Manager: Coty Woolf

SWW-6

		3G31	004-01 (Soil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Peri	nian Basin H	Environment	al Lab, 1	L.P.				
Organics by GC					1.1		1.1.1		
Benzene	ND	0.00104	mg/kg dry	1	P3H0105	08/01/13	08/01/13	EPA 8021B	
Toluene	ND	0.00208	mg/kg dry	1	P3H0105	08/01/13	08/01/13	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3H0105	08/01/13	08/01/13	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3H0105	08/01/13	08/01/13	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3H0105	08/01/13	08/01/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		49.0 %	75-125	5	P3H0105	08/01/13	08/01/13	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		81.8 %	75-125	5	P3H0105	08/01/13	08/01/13	EPA 8021B	
General Chemistry Parameters by EPA	Standard Metho	ds							
Chloride	255	1.04	mg/kg dry	1	P3H0202	08/01/13	08/02/13	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3H0201	08/01/13	08/02/13	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M		e 11					
C6-C12	ND	26.0	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M	
Surrogate: 1-Chlorooctane		85.9 %	70-130)	P3H0203	08/01/13	08/01/13	TPH 8015M	
Surrogate: o-Terphenyl		94.1%	70-130)	P3H0203	08/01/13	08/01/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	78.1	mg/kg dry	1	[CALC]	08/01/13	08/01/13	calc	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 3 of 34

Larson & Associates, Inc.			Project: Park	s 4/Targa				Fax: (432) 6	587-0456
P.O. Box 50685		Project	Number: 13-0	116-01					
Midland TX, 79710		Project 1	Manager: Coty	Woolf					
			SWW-10)				X	
		3	G31004-02 (Soil)					
		Repo	rting	1.4				1	1
Analyte	Result	1	imit Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Р	ermian Ba	sin Environn	nental Lab,	L.P.				
Organics by GC									
Benzene	ND	.00	101 mg/kg dry	y . I	P3H0105	08/01/13	08/01/13	EPA 8021B	
Toluene	ND	0.00	202 mg/kg dr	y l	P3H0105	08/01/13	08/01/13	EPA 8021B	
Ethylbenzene	ND	0.00	101 mg/kg dr	y 1	P3H0105	08/01/13	08/01/13	EPA 8021B	
Xylene (p/m)	ND	0.00	202 mg/kg dr	y 1	P3H0105	08/01/13	08/01/13	EPA 8021B	
Xylene (o)	ND	0.00	101 mg/kg dr	y 1	P3H0105	08/01/13	08/01/13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		86	5% 7.	5-125	P3H0105	08/01/13	08/01/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		74	9% 7.	5-125	P3H0105	08/01/13	08/01/13	EPA 8021B	S-GO
General Chemistry Parameters by EF	A / Standard Met	hods							
Chloride	142		1.01 mg/kg dr	y 1	P3H0202	08/01/13	08/02/13	EPA 300.0	
% Moisture	1.0		0.1 %	1	P3H0201	08/01/13	08/02/13	% calculation	
Total Petroleum Hydrocarbons C6-C	35 by EPA Method	8015M	1. A.						
C6-C12	96.5		25.3 mg/kg dry	y 1	P3H0203	08/01/13	08/01/13	TPH 8015M	
>C12-C28	2910		25.3 mg/kg dry	y 1	P3H0203	08/01/13	08/01/13	TPH 8015M	
>C28-C35	347		25.3 mg/kg dry	y I	P3H0203	08/01/13	08/01/13	TPH 8015M	
Surrogate: 1-Chlorooctane		90	7% 70	0-130	P3H0203	08/01/13	08/01/13	TPH 8015M	
Surrogate: o-Terphenyl		87	5 % 70	0-130	P3H0203	08/01/13	08/01/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	3350		75.8 mg/kg dry	y 1	[CALC]	08/01/13	08/01/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 4 of 34

Larson & Associates, Inc.		Project: Parks 4/Targa								
P.O. Box 50685		Project Num	ber: 13-0116-0	01						
Midland TX, 79710		Project Mana	ger: Coty Wo	olf						
		5	SWW-2							
		3G31	004-03 (Soil)							
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	Peri	mian Basin F	Invironment	al Lab, l	L. P .					
Organics by GC										
Benzene	ND	0.00103	mg/kg dry	1	P3H0105	08/01/13	08/01/13	EPA 8021B		
Foluene	ND	0.00206	mg/kg dry	1	P3H0105	08/01/13	08/01/13	EPA 8021B		
Ethylbenzene	ND	0.00103	mg/kg dry	1	P3H0105	08/01/13	08/01/13	EPA 8021B		
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P3H0105	08/01/13	08/01/13	EPA 8021B		
Xylene (o)	ND	0.00103	mg/kg dry	1	P3H0105	08/01/13	08/01/13	EPA 8021B		
Surrogate: 1,4-Difluorobenzene		75.9 %	75-125	5	P3H0105	08/01/13	08/01/13	EPA 8021B		
Surrogate: 4-Bromofluorobenzene		54.4 %	75-125	5	P3H0105	08/01/13	08/01/13	EPA 8021B	S-G(
General Chemistry Parameters by EPA	Standard Metho	ds						14		
Chloride	32.6	1.03	mg/kg dry	1	P3H0202	08/01/13	08/02/13	EPA 300.0	2	
% Moisture	3.0	0.1	%	1	P3H0201	08/01/13	08/02/13	% calculation		
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M						1. 11. 1.		
C6-C12	ND	25.8	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M		
>C12-C28	55.6	25.8	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M		
>C28-C35	ND	25.8	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M		
Surrogate: 1-Chlorooctane		96.6 %	70-130)	P3H0203	08/01/13	08/01/13	TPH 8015M		
Surrogate: o-Terphenyl		107 %	70-130)	P3H0203	08/01/13	08/01/13	TPH 8015M		
Total Petroleum Hydrocarbon C6-C35	ND	77 3	mg/kg dry	1	[CALC]	08/01/13	08/01/13	calc		

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 5 of 34

Larson & Associates, Inc.		Proj	ect: Parks 4/T	arga				Fax: (432) 68	7-0456
P.O. Box 50685		Project Num	ber: 13-0116-	01					
Midland TX, 79710		Project Mana	ger: Coty Wo	olf					
		5	SWS-10						
		3G31	004-04 (Soil)						
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perr	nian Basin F	Environment	al Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00106	mg/kg dry	1	P3H0105	08/01/13	08/01/13	EPA 8021B	
Foluene	ND	0.00213	mg/kg dry	1	P3H0105	08/01/13	08/01/13	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3H0105	08/01/13	08/01/13	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3H0105	08/01/13	08/01/13	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3H0105	08/01/13	08/01/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		59.1%	75-12	5	P3H0105	08/01/13	08/01/13	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		83.9 %	75-12:	5	P3H0105	08/01/13	08/01/13	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Metho	ds							
Chloride	133	1.06	mg/kg dry	1	P3H0202	08/01/13	08/02/13	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3H0201	08/01/13	08/02/13	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M						1.1	
C6-C12	ND	26.6	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M	
Surrogate: 1-Chlorooctane		91.2 %	70-13	0	P3H0203	08/01/13	08/01/13	TPH 8015M	
Surrogate: o-Terphenyl		98.8 %	70-13	0	P3H0203	08/01/13	08/01/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	79.8	mg/kg dry	1	[CALC]	08/01/13	08/01/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Larson & Associates Inc.		Deal	anti Darks 4/T				Fax: (432) 6	87-0456	
Larson & Associates, Inc.		Project Num	bor: 12.0116.	arga					
P.O. B0X 50085 Midland TV 70710		Project Num	ger: Coty Wo	olf					
Wildiand TX, 79710		Floject Mana	ger. Coty wo	on					
			SWN-6						
		3G31	004-05 (Soil)						
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pe	rmian Basin E	Invironment	al Lab, l	L.P.				
Organics by GC									
Benzene	ND	0.00102	mg/kg dry	1	P3H0105	08/01/13	08/02/13	EPA 8021B	
Foluene	ND	0.00204	mg/kg dry	1	P3H0105	08/01/13	08/02/13	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3H0105	08/01/13	08/02/13	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P3H0105	08/01/13	08/02/13	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P3H0105	08/01/13	08/02/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		67.7 %	75-125	5	P3H0105	08 01 13	08/02/13	EPA 8021B	S-G(
Surrogate: 1,4-Difluorobenzene		79.5 %	75-125	5	P3H0105	08/01/13	08/02/13	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Meth	ods							
Chloride	786	1.02	mg/kg dry	1	P3H0202	08/01/13	08/02/13	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3H0201	08/01/13	08/02/13	% calculation	
Total Petroleum Hydrocarbons C6-C3	5 by EPA Method	8015M						-	
C6-C12	ND	25.5	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M	
Surrogate: 1-Chlorooctane		92.9 %	70-130)	P3H0203	08/01/13	08/01/13	TPH 8015M	
Surrogate: o-Terphenyl		101 %	70-130)	P3H0203	08/01/13	08/01/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	76.5	mg/kg drv	1	[CALC]	08/01/13	08/01/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

								and the second second second	
Larson & Associates, Inc.		Proj	ect: Parks 4/1	arga				Fax: (432) 68	7-0456
P.O. Box 50685		Project Num	ber: 13-0116-	01					
Midland TX, 79710		Project Mana	ger: Coty Wo	oolf	т <u>и</u>				
			SWS-6						
4		3G31	004-06 (Soil))					
		Reporting		122					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Perm	nian Basin E	Invironment	al Lab, l	L.P.				
Organics by GC						<u> </u>	11		
Benzene	ND	0.00111	mg/kg dry	1	P3H0503	08/02/13	08/03/13	EPA 8021B	
Toluene	ND	0.00222	mg/kg dry	1	P3H0503	08/02/13	08/03/13	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P3H0503	08/02/13	08/03/13	EPA 8021B	
Xylene (p/m)	ND	0.00222	mg/kg dry	51	P3H0503	08/02/13	08/03/13	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P3H0503	08/02/13	08/03/13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		81.9%	75-12	5	P3H0503	08/02/13	08/03/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		56.2 %	75-12.	5	P3H0503	08/02/13	08/03/13	EPA 8021B	S-G
General Chemistry Parameters by EPA /	Standard Metho	ds							
Chloride	15.2	1.11	mg/kg dry	1	P3H0202	08/01/13	08/02/13	EPA 300.0	
% Moisture	10.0	0.1	%	1	P3H0201	08/01/13	08/02/13	% calculation	
Total Petroleum Hydrocarbons C6-C35 I	by EPA Method 8	015M	1	1.12			1		
C6-C12	ND	27.8	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M	h.,
Surrogate: 1-Chlorooctane		101 %	70-13	0	P3H0203	08/01/13	08/01/13	TPH 8015M	
Surrogate: o-Terphenyl		112 %	70-13	0	P3H0203	08/01/13	08/01/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	83.3	mg/kg dry	1	[CALC]	08/01/13	08/01/13	calc	11

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 8 of 34

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Proj Project Num Project Mana		Fax: (432) 68	37-0456				
			SWS-2						
1.1		3G31	004-07 (Soil)			2			
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Peri	mian Basin F		al Lab, l	L.P.				
Organics by GC							8	*	
Benzene	ND	0.00104	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Foluene	ND	0.00208	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		81.8 %	75-12.	5	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		56.1 %	75-12.	5	P3H0503	08/02/13	08/02/13	EPA 8021B	S-G(
General Chemistry Parameters by EPA	Standard Metho	ds							
Chloride	123	1.04	mg/kg dry	1	P3H0202	08/01/13	08/02/13	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3H0201	08/01/13	08/02/13	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	8015M					1.5.6	·	
C6-C12	ND	26.0	mg/kg dry	1,	P3H0203	08/01/13	08/01/13	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3H0203	08/01/13	08/01/13	TPH 8015M	
Surrogate: 1-Chlorooctane		87.5 %	70-13	0	P3H0203	08/01/13	08/01/13	TPH 8015M	
Surrogate: o-Terphenyl		93.8 %	70-13	0	P3H0203	08/01/13	08/01/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	78 1	mg/kg dry	1	[CALC]	08/01/13	08/01/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 9 of 34

									and the second s
Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Proj Project Numl Project Mana	ect: Parks 4/Ta ber: 13-0116-0 ger: Coty Wo	arga)1 olf	44			Fax: (432)	687-0456
		S 3G31	5WN-10 004-08 (Soil)					i i	
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perr	n <mark>ian Basin</mark> E	Invironmenta	al Lab, l	L.P.				
Organics by GC									
Benzene	ND	0.00114	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	1
Toluene	ND	0.00227	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Ethylbenzene	ND	0.00114	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (p/m)	ND	0.00227	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (o)	ND	0.00114	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		57.2 %	75-125	5	P3H0503	08/02/13	08/02/13	EPA 8021B	S-GO
Surrogate: 1,4-Difluorobenzene		82.1 %	75-125		P3H0503	08/02/13	08/02/13	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Metho	ds					5 7		
Chloride	52.6	1.14	mg/kg dry	1	P3H0202	08/01/13	08/02/13	EPA 300.0	
% Moisture	12.0	0.1	%	1	P3H0201	08/01/13	08/02/13	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M							
C6-C12	ND	28.4	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
>C12-C28	ND	28.4	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
>C28-C35	ND	28.4	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
Surrogate: 1-Chlorooctane		89.0 %	70-130)	P3H0204	08/01/13	08/02/13	TPH 8015M	
Surrogate: o-Terphenyl		97.5 %	70-130)	P3H0204	08/01/13	08/02/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	85.2	mg/kg dry	1	[CALC]	08/01/13	08/02/13	calc	

Page 10 of 34

Larson & Associates, Inc.		Proj	Fax: (432) 687-0456						
P.O. Box 50685		Project Num	ber: 13-011	5-01					
Midland TX, 79710		Project Mana	ger: Coty V	Voolf					
			SWE-6						
		3G31	004-09 (So	il)					
		Reporting					Υ		
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Peri	mian Basin F	Invironme	ntal Lab, 1	L.P.				
Organics by GC									
Benzene	ND	0.00106	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Toluene	ND	0.00213	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		56.8 %	75-1	25	P3H0503	08/02/13	08/02/13	EPA 8021B	S-G(
Surrogate: 1,4-Difluorobenzene		82.1 %	75-1	25	P3H0503	08/02/13	08/02/13	EPA 8021B	
General Chemistry Parameters by EPA	Standard Metho	ds							1
Chloride	12.6	1.06	mg/kg dry	1	P3H0202	08/01/13	08/02/13	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3H0201	08/01/13	08/02/13	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M							1
C6-C12	ND	26.6	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
Surrogate: 1-Chlorooctane		85.0 %	70-1	30	P3H0204	08/01/13	08/02/13	TPH 8015M	
Surrogate: o-Terphenyl		94.9 %	70-1	30	P3H0204	08/01/13	08/02/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	70.8	ma/ka dry	1	ICAL CI	08/01/12	08/07/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Project: Parks 4/Targa Project Number: 13-0116-01 Project Manager: Coty Woolf						Fax: (432) 68	37-0456
		S 3G31	6WE-10 004-10 (Soil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Per	ermian Basin Environmental Lab, L.P.							
Organics by GC				2			2		X
Benzene	ND	0.00108	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Foluene	ND	0.00215	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		46.7 %	75-12.	5	P3H0503	08/02/13	08/02/13	EPA 8021B	S-G
Surrogate: 1,4-Difluorobenzene		79.1 %	75-12.	5	P3H0503	08/02/13	08/02/13	EPA 8021B	
General Chemistry Parameters by EPA	Standard Metho	ds							
Chloride	71.0	1.08	mg/kg dry	1	P3H0202	08/01/13	08/02/13	EPA 300.0	
% Moisture	7.0	0.1	%	1	P3H0201	08/01/13	08/02/13	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	8015M					1.1		
C6-C12	ND	26.9	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
Surrogate: 1-Chlorooctane		87.1 %	70-13	0	P3H0204	08/01/13	08/02/13	TPH 8015M	
Surrogate: o-Terphenyl		101 %	70-13	0	P3H0204	08/01/13	08/02/13	TPH 8015M	
Fotal Petroleum Hydrocarbon C6-C35	ND	80.6	mg/kg dry	1	[CALC]	08/01/13	08/02/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 12 of 34

Larson & Associates, Inc.		Proj	ect: Parks 4	/Targa			r	Fax: (432) 68	7-0456
P.O. Box 50685		Project Numl	ber: 13-011	5-01					
Midland TX, 79710		Project Manag	ger: Coty V	Voolf					
		S	WNE-6						
		3G31	004-11 (So	il)				÷	
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perr	nian Basin E	nvironme	ntal Lab, 1	P.				
Organics by GC									
Benzene	ND	0.00110	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Toluene	ND	0.00220	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Ethylbenzene	ND	0.00110	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Kylene (p/m)	ND	0.00220	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Kylene (o)	ND	0.00110	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
urrogate: 4-Bromofluorobenzene		49.4 %	75-1	25	P3H0503	08/02/13	08/02/13	EPA 8021B	S-G0
Surrogate: 1,4-Difluorobenzene		82.2 %	75-1	25	P3H0503	08 02 13	08/02/13	EPA 8021B	
General Chemistry Parameters by EPA /	Standard Metho	ds							· · · · ·
Chloride	23.0	1.10	mg/kg dry	1	P3H0202	08/01/13	08/02/13	EPA 300.0	
% Moisture	9.0	0.1	%	1	P3H0201	08/01/13	08/02/13	% calculation	
Fotal Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M					_		
C6-C12	ND	27.5	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
>C12-C28	ND	27.5	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
Surrogate: 1-Chlorooctane		87.4 %	70-1	30	P3H0204	08/01/13	08/02/13	TPH 8015M	
Surrogate: o-Terphenyl		94.0 %	70-1	30	P3H0204	08/01/13	08/02/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	87 4	mg/kg dry	1	[CALC]	08/01/13	08/07/13	calc	

Larson & Associates, Inc.		Project: Parks 4/Targa								
P.O. Box 50685		Project Num	ber: 13-011	6-01						
Midland TX, 79710		Project Mana	ger: Coty V	Voolf						
2			2SW 10					1.1		
		2021	004 12 (50	(I)						
		3631	004-12 (30							
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	Peri	nian Basin F	nvironme	ntal Lab.	.P.					
				, .						
Organics by GC	ND	0.00107		,	D2110502	00/00/10	00/00/10	ED4 8021D		
Benzene	ND	0.00106	mg/kg dry		P3H0503	08/02/13	08/02/13	EPA 8021B		
Toluene	ND	0.00213	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B		
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B		
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B		
Xylene (o)	ND	0.00106	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B		
Surrogate: 1,4-Difluorobenzene		85.9%	75-1	25	P3H0503	08 02 13	08/02/13	EPA 8021B		
Surrogate: 4-Bromofluorobenzene		51.9%	75-1	25	P3H0503	08/02/13	08/02/13	EPA 8021B	S-G(
General Chemistry Parameters by EPA	/ Standard Metho	ds								
Chloride	140	1.06	mg/kg dry	1	P3H0202	08/01/13	08/02/13	EPA 300.0		
% Moisture	6.0	0.1	%	1	P3H0201	08/01/13	08/02/13	% calculation		
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M	1.12				1.1			
C6-C12	ND	26.6	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M		
>C12-C28	ND	26.6	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M		
>C28-C35	ND	26.6	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M		
Surrogate: 1-Chlorooctane		87.3 %	70-1	30	P3H0204	08/01/13	08/02/13	TPH 8015M		
Surrogate: o-Terphenyl		93.1%	70-1	30	P3H0204	08/01/13	08/02/13	TPH 8015M		
Total Petroleum Hydrocarbon C6-C35	ND	79.8	mg/kg dry	1	[CALC]	08/01/13	08/02/13	calc		

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 14 of 34

Larson & Associates, Inc.		Project: Parks 4/Targa						Fax: (432) 6	87-0456
P.O. Box 50685		Project Num	ber: 13-0116-0)1					
Midland TX, 79710		Project Mana	ger: Coty Wo	olf					
			SWN-2						
		3G31	004-13 (Soil)			-			
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Peri	mian Basin E	Invironmenta	al Lab, 1	L.P.				
Organics by GC					_				
Benzene	ND	0.00102	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
ſoluene	ND	0.00204	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Kylene (p/m)	ND	0.00204	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Kylene (o)	ND	0.00102	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		80.2 %	75-125	5	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		48.8 %	75-125	ī	P3H0503	08/02/13	08/02/13	EPA 8021B	S-GC
General Chemistry Parameters by EPA	Standard Metho	ds						da ser	
Chloride	104	1.02	mg/kg dry	1	P3H0202	08/01/13	08/02/13	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3H0201	08/01/13	08/02/13	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	8015M						5. 4	
C6-C12	ND	25.5	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
Surrogate: 1-Chlorooctane		93.4 %	70-130)	P3H0204	08/01/13	08/02/13	TPH 8015M	
surrogate: o-Terphenyl		102 %	70-130)	P3H0204	08/01/13	08/02/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	76.5	ma/ka dry	1	[CALC]	08/01/13	08/02/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 15 of 34

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710			Fax: (432) 687-0456						
		3G31	SWE-2 004-14 (Soi	D					
		Departing		-,					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Peri	nian Basin F	nvironmen	tal Lab, 1	L.P.				
Organics by GC									
Benzene	ND	0.00115	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Toluene	ND	0.00230	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Ethylbenzene	ND	0.00115	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (p/m)	ND	0.00230	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (o)	ND	0.00115	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		53.1%	75-12	25	P3H0503	08/02/13	08/02/13	EPA 8021B	S-G
Surrogate: 1,4-Difluorobenzene		84.5 %	75-12	25	P3H0503	08/02/13	08/02/13	EPA 8021B	
General Chemistry Parameters by EPA	Standard Metho	ds		3					
Chloride	12.4	1.15	mg/kg dry	1	P3H0202	08/01/13	08/02/13	EPA 300.0	
% Moisture	13.0	0.1	%	1	P3H0501	08/05/13	08/05/13	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M	7.					e	
C6-C12	ND	28.7	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
>C12-C28	ND	28.7	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
>C28-C35	ND	28.7	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
Surrogate: 1-Chlorooctane		90.3 %	70-1	30	P3H0204	08/01/13	08/02/13	TPH 8015M	
Surrogate: o-Terphenyl		98.1 %	70-1.	30	P3H0204	08/01/13	08/02/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	86.2	mg/kg dry	1	[CALC]	08/01/13	08/02/13	calc	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Page 16 of 34

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Proj Project Numl Project Manag	ect: Parks 4/T ber: 13-0116-(ger: Coty Wo	arga)1 olf				Fax: (432) 687	2-0456
5		3C21	NPL	9					
		3631	004-15 (3011)				2-		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pe	rmian Basin E	Invironment	al Lab, l	L.P.				
Organics by GC									
Benzene	ND	0.00101	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Toluene	ND	0.00202	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Ethylbenzene	ND	0.00101	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (p/m)	ND	0.00202	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (o)	ND	0.00101	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		83.7 %	75-125	5	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		50.5 %	75-125	5	P3H0503	08/02/13	08/02/13	EPA 8021B	S-GC
General Chemistry Parameters by EPA	Standard Meth	ods						-	
Chloride	14.8	1.01	mg/kg dry	1	P3H0202	08/01/13	08/02/13	EPA 300.0	
% Moisture	1.0	0.1	%	1	P3H0501	08/05/13	08/05/13	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method	8015M							
C6-C12	ND	25.3	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
>C12-C28	ND	25.3	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
>C28-C35	ND	25.3	mg/kg dry	1	P3H0204	08/01/13	08/02/13	TPH 8015M	
Surrogate: 1-Chlorooctane		94.1 %	70-130)	P3H0204	08/01/13	08/02/13	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-130)	P3H0204	08/01/13	08/02/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	75.8	mg/kg dry	1	[CALC]	08/01/13	08/02/13	calc	

.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Larson & Associates, Inc.		Proj	ect: Parks 4/T	arga				Fax: (432)	687-0456
P.O. Box 50685		Project Num	ber: 13-0116-0	01					
Midland TX, 79710		Project Mana	ger: Coty Wo	olf					
		1	ESE-17						
		3G31	004-16 (Soil)						
		Reporting						47	
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pe	rmian Basin E	nvironment	al Lab, I	L. P .				
Organics by GC									
Benzene	ND	0.00116	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Toluene	ND	0.00233	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Ethylbenzene	ND	0.00116	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (p/m)	ND	0.00233	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (o)	ND	0.00116	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		83.9%	75-12	5	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		54.4 %	75-125	5	P3H0503	08/02/13	08/02/13	EPA 8021B	S-G(
General Chemistry Parameters by EPA	Standard Meth	ods							
Chloride	23.1	1.16	mg/kg dry	I	P3H0202	08/01/13	08/02/13	EPA 300.0	
% Moisture	14.0	0.1	%	1	P3H0501	08/05/13	08/05/13	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method	8015M		_					
C6-C12	ND	29.1	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
>C12-C28	ND	29.1	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
>C28-C35	ND	29.1	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
Surrogate: 1-Chlorooctane		84.8 %	70-130)	P3H0506	08/02/13	08/02/13	TPH 8015M	
Surrogate: o-Terphenyl		88.4 %	70-130)	P3H0506	08/02/13	08/02/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	87.2	mg/kg drv	1	[CALC]	08/02/13	08/02/13	calc	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Proj Project Num Project Mana	ect: Parks 4/ ber: 13-0116 ger: Coty W	/Targa 5-01 Voolf				Fax: (432) 68	37-0456
,,			CDI 17						
		3G31	004-17 (Soi	il)					
5		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Per	mian Basin H	nvironmen	ital Lab,	L.P.				
Organics by GC									
Benzene	ND	0.00110	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Foluene	ND	0.00220	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Ethylbenzene	ND	0.00110	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (p/m)	ND	0.00220	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (o)	ND	0.00110	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		83.2 %	75-1	25	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		52.6 %	75-1	25	P3H0503	08 02/13	08/02/13	EPA 8021B	S-GC
General Chemistry Parameters by EPA	Standard Meth	ods				_			
Chloride	18.7	1.10	mg/kg dry	1	P3H0205	08/02/13	08/05/13	EPA 300.0	
% Moisture	9.0	0.1	%	1	P3H0501	08/05/13	08/05/13	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method	8015M							
C6-C12	ND	27.5	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
>C12-C28	ND	27.5	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
Surrogate: 1-Chlorooctane		97.4 %	70-1	30	P3H0506	08/02/13	08/02/13	TPH 8015M	
Surrogate: o-Terphenyl		103 %	70-1	30	P3H0506	08/02/13	08/02/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	82.4	mg/kg dry	1	[CALC]	08/02/13	08/02/13	calc	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Proj Project Num Project Mana	ect: Parks 4/T ber: 13-0116-0 ger: Coty Wo	arga)1 olf				Fax: (432) 68	87-0456
		1	BSPL-8			1			
		3G31	004-18 (Soil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pe	rmian Basin F	Invironmenta	al Lab, l	L.P.				
Organics by GC									
Benzene	ND	0.00106	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Toluene	ND	0.00213	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		82.4 %	75-125	5	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		54.2%	75-125	7	P3H0503	08/02/13	08/02/13	EPA 8021B	S-GO
General Chemistry Parameters by EPA	Standard Meth	ods							
Chloride	14.6	1.06	mg/kg dry	1	P3H0205	08/02/13	08/05/13	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3H0501	08/05/13	08/05/13	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method	8015M		1					
C6-C12	ND	26.6	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	1.1.1
>C12-C28	ND	26.6	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
Surrogate: 1-Chlorooctane		89.3 %	70-130)	P3H0506	08 02 13	08/02/13	TPH 8015M	
Surrogate: o-Terphenyl		97.9%	70-130)	P3H0506	08/02/13	08/02/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	79.8	mg/kg drv	1	[CALC]	08/02/13	08/02/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Larson & Associates, Inc.		Fax: (432) 687-0456							
P.O. Box 50685									
Midland TX, 79710		Project Manag	ger: Coty Wo	olf					
		5	SWS-15						
		3G31	004-19 (Soil)						
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Perr	nian Basin E	nvironment	al Lab, 1	L.P.				
Organics by GC									
Benzene	ND	0.00104	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Toluene	ND	0.00208	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Kylene (p/m)	ND	0.00208	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P3H0503	08/02/13	08/02/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		56.4 %	75-125	5	P3H0503	08/02/13	08/02/13	EPA 8021B	S-G
Surrogate: 1,4-Difluorobenzene		84.7 %	75-125	5	P3H0503	08/02/13	08/02/13	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Metho	ds							
Chloride	24.1	1.04	mg/kg dry	1	P3H0205	08/02/13	08/05/13	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3H0501	08/05/13	08/05/13	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M				_			
C6-C12	ND	26.0	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
Surrogate: 1-Chlorooctane		92.6 %	70-130)	P3H0506	08/02/13	08/02/13	TPH 8015M	
Surrogate: o-Terphenyl		102 %	70-130)	P3H0506	08/02/13	08/02/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	78 1	mg/kg dry	1	ICALCI	08/02/13	08/02/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Page 21 of 34
Larson & Associates, Inc.		Proi	ect: Parks 4/T	arga				Fax: (432)	687-0456
P.O. Box 50685		Project Num	ber: 13-0116-	01					
Midland TX, 79710		Project Mana	ger: Coty Wo	olf					
×			WF-15				2		
		3G31	004-20 (Soil)						
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	nian Basin F	Invironment	al Lab, 1	L.P.				
Organics by GC									
Benzene	ND	0.00106	mg/kg dry	1	P3H0503	08/02/13	08/03/13	EPA 8021B	
Foluene	ND	0.00213	mg/kg dry	1	P3H0503	08/02/13	08/03/13	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P3H0503	08/02/13	08/03/13	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P3H0503	08/02/13	08/03/13	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P3H0503	08/02/13	08/03/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		58.9 %	75-12	5	P3H0503	08 02 13	08/03/13	EPA 8021B	S-GO
Surrogate: 1,4-Difluorobenzene		91.2 %	75-12	5	P3H0503	08/02/13	08 03 13	EPA 8021B	
General Chemistry Parameters by EPA	Standard Metho	ds					100		-
Chloride	40.9	1.06	mg/kg dry	1	P3H0205	08/02/13	08/05/13	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3H0501	08/05/13	08/05/13	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M		14					
C6-C12	ND	26.6	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
Surrogate: 1-Chlorooctane		93.6%	70-13	0	P3H0506	08/02/13	08/02/13	TPH 8015M	
Surrogate: o-Terphenyl		101 %	70-13	0	P3H0506	08/02/13	08/02/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	79.8	mg/kg dry	1	[CALC]	08/02/13	08/02/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Page 22 of 34

Larson & Associates, Inc.		Proj	ect: Parks 4/T	arga				Fax: (432) 68	37-0456
P.O. Box 50685		Project Num	ber: 13-0116-0	01					
Midland TX, 79710		Project Mana	ger: Coty Wo	olf					
		В	SPLS-5						
		3G31	004-21 (Soil)	0		-			
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Per	mian Basin E	nvironment	al Lab, I	L. P .				
Organics by GC									
Benzene	ND	0.00111	mg/kg dry	1	P3H0503	08/02/13	08/03/13	EPA 8021B	
oluene	ND	0.00222	mg/kg dry	1	P3H0503	08/02/13	08/03/13	EPA 8021B	
Ethylbenzene	ND	0.00111	mg/kg dry	1	P3H0503	08/02/13	08/03/13	EPA 8021B	
Kylene (p/m)	ND	0.00222	mg/kg dry	1	P3H0503	08/02/13	08/03/13	EPA 8021B	
Xylene (o)	ND	0.00111	mg/kg dry	1	P3H0503	08/02/13	08/03/13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		85.1 %	75-125	5	P3H0503	08 02/13	08/03/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		54.3 %	75-125	5	P3H0503	08 02 13	08/03/13	EPA 8021B	S-GC
General Chemistry Parameters by EPA	Standard Metho	ds							
Chloride	282	1.11	mg/kg dry	1	P3H0205	08/02/13	08/05/13	EPA 300.0	
% Moisture	10.0	0.1	%	1	P3H0501	08/05/13	08/05/13	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	8015M							
C6-C12	ND	27.8	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
>C12-C28	ND	27.8	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
>C28-C35	ND	27.8	mg/kg dry	1	P3H0506	08/02/13	08/02/13	TPH 8015M	
Surrogate: 1-Chlorooctane		77.6%	70-130)	P3H0506	08/02/13	08/02/13	TPH 8015M	
Surrogate: o-Terphenyl		83.3 %	70-130)	P3H0506	08/02/13	08/02/13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	83.3	ma/ka dry	1	ICAL CI	08/02/13	08/02/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project Number: 13-0116-01 Project Manager: Coty Woolf

Project: Parks 4/Targa

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Annalise	D	Reporting		Spike	Source	0/000	%REC	DDD	RPD	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3H0105 - General Preparation (GC)							*****			
Blank (P3H0105-BLK1)				Prepared &	analyzed	: 08/01/13				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00200								
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00200								
Xylene (o)	ND	0.00100								
Surrogate: 4-Bromofluorobenzene	38.2		ug kg	60.0		63.7	75-125			
Surrogate: 1,4-Difluorobenzene	47.1		"	60.0		78.5	75-125			
LCS (P3H0105-BS1)				Prepared &	2 Analyzed	: 08/01/13				
Benzene	0.105	0.00100	mg/kg wet	0.100		105	80-120			
Toluene	0.0953	0.00200	**	0.100		95.3	80-120			
Ethylbenzene	0.0960	0.00100	**	0.100		96.0	80-120			
Xylene (p/m)	0.210	0.00200	**	0.200		105	80-120			
Xylene (o)	0.0810	0.00100		0.100		81.0	80-120			
Surrogate: 1,4-Difluorobenzene	51.5		ug kg	60.0		85.8	75-125			
Surrogate: 4-Bromofluorobenzene	49.6		"	60.0		82.6	75-125			
LCS Dup (P3H0105-BSD1)				Prepared &	2 Analyzed	: 08/01/13				
Benzene	0.105	0.00100	mg/kg wet	0.100		105	80-120	0.0955	20	
Toluene	0.0938	0.00200		0.100		93.8	80-120	1.65	20	
Ethylbenzene	0.0978	0.00100	**	0.100		97.8	80-120	1.80	20	
Xylene (p/m)	0.216	0.00200	"	0.200		108	80-120	2.89	20	
Xylene (o)	0.0834	0.00100		0.100		83.4	80-120	2.85	20	
Surrogate: 1,4-Difluorobenzene	51.2		ug kg	60.0		85.3	75-125			
Surrogate: 4-Bromofluorobenzene	53.1		"	60.0		88.6	75-125			
Matrix Spike (P3H0105-MS1)	Sou	irce: 3G31004	4-01	Prepared: (08/01/13 A	nalvzed: 0	8/02/13			
Benzene	0.0444	0.00104	mg/kg dry	0.104	ND	42.6	80-120			QM-0
Toluene	0.0388	0.00208	"	0.104	ND	37.3	80-120			QM-0
Ethylbenzene	0.0302	0.00104		0.104	ND	29.0	80-120			QM-0
Xylene (p/m)	0.0493	0.00208		0.208	ND	23.7	80-120			QM-0
Xylene (o)	0.0189	0.00104	"	0.104	ND	18.2	80-120			QM-0
Surrogate: 4-Bromofluorobenzene	30.6		ug kg	60.0		50.9	75-125			S-G
Surrogate: 1,4-Difluorobenzene	45.0		"	60.0		75.0	75-125			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Larson & Associates, Inc.	Project:	Parks 4/Targa	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	13-0116-01	
Midland TX, 79710	Project Manager:	Coty Woolf	

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3H0105 - General Preparation (GC)

Matrix Spike Dup (P3H0105-MSD1)	Sour	rce: 3G31004	4-01	Prepared: 0	8/01/13	Analyzed: 0	8/02/13			
Benzene	0.0686	0.00104	mg/kg dry	0.104	ND	65.8	80-120	42.8	20	QM-07
Toluene	0.0546	0.00208		0.104	ND	52.4	80-120	33.7	20	QM-07
Ethylbenzene	0.0453	0.00104		0.104	ND	43.5	80-120	40.1	20	QM-07
Xylene (p/m)	0.0959	0.00208	"	0.208	ND	46.1	80-120	64.3	20	QM-07
Xylene (o)	0.0358	0.00104	"	0.104	ND	34.4	80-120	61.6	20	QM-07
Surrogate: 4-Bromofluorobenzene	45.5		ug kg	60.0		75.9	75-125			
Surrogate: 1,4-Difluorobenzene	52.1		"	60.0		86.8	75-125			

Batch P3H0503 - General Preparation (GC)

Blank (P3H0503-BLK1)				Prepared & Ana	lyzed: 08/02/13		
Benzene	ND	0.00100	mg/kg wet				
Toluene	ND	0.00200	**				
Ethylbenzene	ND	0.00100	**				
Xylene (p/m)	ND	0.00200	"				
Xylene (o)	ND	0.00100	"				
Surrogate: 1,4-Difluorobenzene	0.0479		"	0.0600	79.9	75-125	
Surrogate: 4-Bromofluorobenzene	0.0328		"	0.0600	54.7	75-125	S-GC
LCS (P3H0503-BS1)				Prepared & Ana	lyzed: 08/02/13		
Benzene	0.0975	0.00100	mg/kg wet	0.100	97.5	80-120	
Toluene	0.0876	0.00200	"	0.100	87.6	80-120	
Ethylbenzene	0.0880	0.00100		0.100	88.0	80-120	
Xylene (p/m)	0.193	0.00200		0.200	96.3	80-120	
Xylene (o)	0.0816	0.00100		0.100	81.6	80-120	
Surrogate: 4-Bromofluorobenzene	0.0508		**	0.0600	84.7	75-125	
Surrogate: 1,4-Difluorobenzene	0.0557		"	0.0600	92.8	75-125	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: Parks 4/Targa Project Number: 13-0116-01 Project Manager: Coty Woolf

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting	Units	Spike	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Patch D2U0502 Concern Dressonation (CC)										
Batten F3H0505 - General Preparation (GC)		9								
LCS Dup (P3H0503-BSD1)				Prepared &	Analyz	ed: 08/02/13				
Benzene	0.0978	0.00100	mg/kg wet	0.100		97.8	80-120	0.287	20	
Toluene	0.0878	0.00200		0.100		87.8	80-120	0.251	20	
Ethylbenzene	0.0895	0.00100		0.100		89.5	80-120	1.67	20	
Xylene (p/m)	0.196	0.00200		0.200		97.9	80-120	1.61	20	
Xylene (o)	0.0828	0.00100	"	0.100		82.8	80-120	1.48	20	
Surrogate: 1,4-Difluorobenzene	0.0559		"	0.0600		93.2	75-125			
Surrogate: 4-Bromofluorobenzene	0.0519		н	0.0600		86.4	75-125			
Matrix Spike (P3H0503-MS1)	Sou	irce: 3G31004	4-21	Prepared: 0	8/02/13	Analyzed: 08	3/03/13			
Benzene	0.0696	0.00111	mg/kg dry	0.111	ND	62.6	80-120			QM-0
Toluene	0.0558	0.00222		0.111	ND	50.2	80-120			QM-0
Ethylbenzene	0.0271	0.00111		0.111	ND	24.4	80-120			QM-0
Xylene (p/m)	0.0966	0.00222	"	0.222	ND	43.5	80-120			QM-0
Xylene (o)	0.0419	0.00111		0.111	ND	37.8	80-120			QM-0
Surrogate: 1,4-Difluorobenzene	0.0591		"	0.0667		88.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.0504		"	0.0667		75.6	75-125			
Matrix Spike Dup (P3H0503-MSD1)	Sou	irce: 3G31004	4-21	Prepared: 0	8/02/13	Analyzed: 08	8/03/13			
Benzene	0.0462	0.00111	mg/kg dry	0.111	ND	41.6	80-120	40.4	20	QM-0
Toluene	0.0370	0.00222		0.111	ND	33.3	80-120	40.6	20	QM-0
Ethylbenzene	0.0165	0.00111		0.111	ND	14.8	80-120	48.8	20	QM-0
Xylene (p/m)	0.0611	0.00222		0.222	ND	27.5	80-120	45.0	20	QM-0
Xylene (o)	0.0292	0.00111		0.111	ND	26.3	80-120	35.8	20	QM-0
Surrogate: 4-Bromofluorobenzene	0.0466	1	"	0.0667		69.9	75-125			QM-0
Surrogate: 1.4-Difluorobenzene	0.0566		"	0.0667		84.8	75-125			_

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Larson & Associates, Inc. P.O. Box 50685		Project Numl	ect: Parl	ks 4/Targa 0116-01					Fax: (432)	687-0450
Midland TX, 79710		Project Manag	ger: Cot	y Woolf						
General	Chemistry Para	meters by F	EPA / S	Standard	l Meth	ods - Qua	lity Con	trol		s.
	Permi	ian Basin E	nviron	imental	Lab, L	.P.				
Analyte	Result	Reporting Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch P3H0201 - *** DEFAULT PRE	p ***								1	
Blank (P3H0201-BLK1)				Prepared:	08/01/13	Analyzed: 0	8/02/13			
% Moisture	ND	0.1	%							
Duplicate (P3H0201-DUP1)	Sour	ce: 3H01006-01	I	Prepared:	08/01/13	Analyzed: 0	8/02/13			
% Moisture	37.0	0.1	%		39.0			5.26	20	
Duplicate (P3H0201-DUP2)	Sour	ce: 3H01009-03	3	Prepared:	08/01/13	Analyzed: 03	8/02/13			
6 Moisture	13.0	0.1	%		14.0			7.41	20	
Batch P3H0202 - *** DEFAULT PRE	p ***									
Blank (P3H0202-BLK1)				Prepared:	08/01/13	Analyzed: 0	8/02/13			
Chloride	ND	1.00 m	g/kg wet							
LCS (P3H0202-BS1)				Prepared:	08/01/13	Analyzed: 0	8/02/13			
Chloride	106	1.00 m	g/kg wet	125		85.0	80-120			
CS Dup (P3H0202-BSD1)				Prepared:	08/01/13	Analyzed: 0	8/02/13			
Chloride	106	1.00 m	g/kg wet	125		85.2	80-120	0.188	20	
Duplicate (P3H0202-DUP1)	Sour	ce: 3G31004-01	1	Prepared:	08/01/13	Analyzed: 0	8/02/13			
Chloride	256	1.04 m	g/kg dry	1	255			0.464	20	
Matrix Spike (P3H0202-MS1)	Sour	ce: 3G31004-01	I	Prepared:	08/01/13	Analyzed: 0	8/02/13			
Chloride	271	1.04 m	g/kg dry	13.0	255	119	80-120			
Matrix Spike (P3H0202-MS2)	Sour	rce: 3G31004-11	1.1	Prepared	08/01/13	Analyzed: 0	8/02/13			
Thloride	144	1 10 m	a/ka dry	137	23.0	88.2	80-120			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: Parks 4/Targa Project Number: 13-0116-01 Project Manager: Coty Woolf

Fax: (432) 687-0456

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	C Limits	RPD	Limit	Notes
Batch P3H0205 - *** DEFAULT PREP ***										
Blank (P3H0205-BLK1)				Prepared:	08/02/13	Analyzed:	08/05/13			
Chloride	ND	1.00	mg/kg wet							
LCS (P3H0205-BS1)				Prepared:	08/02/13	Analyzed:	08/05/13			
Chloride	10.8		mg/kg Wet	10.0		108	80-120			
LCS Dup (P3H0205-BSD1)				Prepared	08/02/13	Analyzed:	08/05/13			
Chloride	10.8		mg/kg Wet	10.0		108	80-120	0.121	20	
Duplicate (P3H0205-DUP1)	Sou	irce: 3G31004	-17	Prepared:	08/02/13	Analyzed:	08/05/13			
Chloride	20.4	1.10	mg/kg dry		18.7			8.49	20	
Duplicate (P3H0205-DUP2)	Sou	rce: 3H01011	-04	Prepared:	08/02/13	Analyzed:	08/05/13			
Chloride	158	1.04	mg/kg dry		161			1.42	20	
Matrix Spike (P3H0205-MS1)	Sou	rce: 3G31004	-17	Prepared:	08/02/13	Analyzed:	08/05/13			
Chloride	184	1.10	mg/kg dry	137	18.7	120	80-120			
Ratch D3H0501 - *** DFFAIR T DDFD ***										
Bach 15110301 - DEFAULT I KEI				D 11	0 4 1	1 00/05/1	2			
Blank (P3H0501-BLK1)				Prepared a	& Analyze	ed: 08/05/1.	3			
% Moisture	ND	0.1	%							
Duplicate (P3H0501-DUP1)	Sou	rce: 3G31004	-14	Prepared &	& Analyze	ed: 08/05/1	3			
% Moisture	12.0	0.1	%		13.0			8.00	20	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Larson & Associates, Inc.		P	Project: Parl	ks 4/Targa					Fax: (432)	687-0450
P.O. Box 50685		Project N	umber: 13-0	0116-01						
Midland TX, 79710		Project Ma	anager: Cot	y Woolf						
Total Petrole	eum Hydroca Perm	rbons C6- uan Basin	C35 by I Environ	EPA Met	hod 801 .ab. L.P	5M - Qu	ality Co	ontrol		
	I CI II	Reporting	LIIVII ON	Spike	Source	•	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3H0203 - TX 1005										
Blank (P3H0203-BLK1)				Prepared &	Analyzed	08/01/13				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0								
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	154		"	200		77.0	70-130			
Surrogate: o-Terphenyl	88.4		"	100		88.4	70-130			
LCS (P3H0203-BS1)				Prepared &	Analyzed	: 08/01/13				
C6-C12	936	25.0	mg/kg wet	1000		93.6	75-125			
>C12-C28	1040	25.0	"	1000		104	75-125			
Surrogate: 1-Chlorooctane	160		"	200		80.0	70-130			
Surrogate: o-Terphenyl	81.3		"	100		81.3	70-130			
LCS Dup (P3H0203-BSD1)				Prepared &	Analyzed	08/01/13				
C6-C12	885	25.0	mg/kg wet	1000		88.5	75-125	5.61	20	
>C12-C28	994	25.0	н.	1000		99.4	75-125	4.83	20	
Surrogate: 1-Chlorooctane	152		"	200		75.9	70-130			
Surrogate: o-Terphenyl	76.6		"	100		76.6	70-130			
Matrix Spike (P3H0203-MS1)	Sou	irce: 3G31004	4-01	Prepared &	Analyzed	: 08/01/13				
C6-C12	941	26.0	mg/kg dry	1040	ND	90.4	75-125			
>C12-C28	963	26.0		1040	ND	92.5	75-125			
Surrogate: 1-Chlorooctane	98.9		"	104		95.0	70-130			
Surrogate: o-Terphenyl	44.1		"	52.1		84.6	70-130			
Matrix Spike Dup (P3H0203-MSD1)	Sou	irce: 3G31004	4-01	Prepared &	Analyzed	: 08/01/13				
C6-C12	883	26.0	mg/kg dry	1040	ND	84.8	75-125	6.39	20	
>C12-C28	985	26.0	"	1040	ND	94.6	75-125	2.26	20	
Surrogate: 1-Chlorooctane	105		"	104		101	70-130			
Surrogate: o-Terphenyl	47.8		"	52.1		91.8	70-130			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: Parks 4/Targa Project Number: 13-0116-01 Project Manager: Coty Woolf

Fax: (432) 687-0456

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source	0/220	%REC	DEE	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3H0204 - TX 1005							19 - 14 14	C		
Blank (P3H0204-BLK1)				Prepared: (08/01/13 A	nalyzed: 08	3/02/13			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0								
·C28-C35	ND	25.0								
Surrogate: 1-Chlorooctane	113		п	100		113	70-130			
urrogate: o-Terphenyl	60.0		"	50.0		120	70-130			
LCS (P3H0204-BS1)				Prepared &	Analyzed:	08/01/13				
C6-C12	988	25.0	mg/kg wet	1000		98.8	75-125			
>C12-C28	1120	25.0		1000		112	75-125			
Surrogate: 1-Chlorooctane	117		"	100		117	70-130			
Surrogate: o-Terphenyl	54.3		11	50.0		109	70-130			
LCS Dup (P3H0204-BSD1)				Prepared &	2 Analyzed:	08/01/13				
C6-C12	939	25.0	mg/kg wet	1000		93.9	75-125	5.16	20	
C12-C28	1090	25.0	н	1000		109	75-125	3.22	20	
Surrogate: 1-Chlorooctane	112		"	100		112	70-130			
Surrogate: o-Terphenyl	51.1		"	50.0		102	70-130			
Duplicate (P3H0204-DUP1)	Sou	rce: 3H0100	9-01	Prepared: (08/01/13 A	nalyzed: 08	8/02/13			
C6-C12	3060	140	mg/kg dry		2590			16.5	20	
C12-C28	9230	140	**		10100			8.80	20	
>C28-C35	911	140			1030			12.1	20	
Surrogate: 1-Chlorooctane	126		"	112		112	70-130			
Surrogate: o-Terphenyl	57.8		"	56.2		103	70-130			
Batch P3H0506 - TX 1005										
Blank (P3H0506-BLK1)				Prepared &	Analyzed:	08/02/13				
C6-C12	ND	25.0	mg/kg wet							
C12-C28	ND	25.0								
>C28-C35	ND	25.0	**							
Surrogate: 1-Chlorooctane	101		"	100		101	70-130			
Surrogate: o-Terphenyl	53.0		"	50.0		106	70-130			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 30 of 34

Project: Parks 4/Targa Project Number: 13-0116-01 Project Manager: Coty Woolf

Fax: (432) 687-0456

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3H0506 - TX 1005										
LCS (P3H0506-BS1)				Prepared &	Analyzed:	08/02/13				
C6-C12	947	25.0	mg/kg wet	1000		94.7	75-125			
>C12-C28	1100	25.0	"	1000		110	75-125			
Surrogate: 1-Chlorooctane	118		**	100		118	70-130			
Surrogate: o-Terphenyl	51.9		**	50.0		104	70-130			
LCS Dup (P3H0506-BSD1)				Prepared &	Analyzed:	08/02/13				
C6-C12	918	25.0	mg/kg wet	1000		91.8	75-125	3.20	20	
>C12-C28	1010	25.0		1000		101	75-125	8.58	20	
Surrogate: 1-Chlorooctane	113		"	100		113	70-130			
Surrogate: o-Terphenyl	50.2		"	50.0		100	70-130			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Larson & A P.O. Box 5	Associates, Inc. 50685	Project: Project Number:	Parks 4/Targa 13-0116-01		Fax: (432) 687-0456
Midland T	TX, 79710	Project Manager:	Coty Woolf		
		Notes and De	finitions		
S-GC	Surrogate recovery outside of control limit	s. The data was accepted base	ed on valid recovery of the remaining su	urrogate.	
QM-07	The spike recovery was outside acceptance recovery.	limits for the MS and/or MS	D. The batch was accepted based on ac	cceptable LCS	
QM-05	The spike recovery was outside acceptance within acceptance limits showing that the l	limits for the MS and/or MS aboratory is in control and th	D due to matrix interference. The LCS e data is acceptable.	and/or LCSD were	
DET	Analyte DETECTED				
ND	Analyte NOT DETECTED at or above the report	ting limit			
NR	Not Reported				

Report Approved By:

dry RPD

LCS MS

Dup

Sun Barron

Date: 8/6/2013

Brent Barron, Laboratory Director/Technical Director

Sample results reported on a dry weight basis

Relative Percent Difference Laboratory Control Spike

Matrix Spike

Duplicate

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

RELANQUISHED BY:(Signatu	RELIVERTSHED BY:(Signatu	TOTAL			12- S-S7458	SWE-15 -20	21-5 SWS-15 -1	BSPL-8 -18	1- 11 JAS	ESE -17 -11	Field Sample I.D. Lab	TIME ZONE: Time zone/State:	TRRP report? S=SC	Environmental Con: Data Reported to:	A pream &
					Va1/13 11:15	0 7/31/13 10:57	9 1/31/13 11:00	8 7/81/13 11: 05	7 7/31/13/10:52	05:01 51/2/2 10:50	# Date Time	OI=OIHER	ML P=PAINT	Inc. sultants 363	
IIII 3:45	13 12:55				-	1	1	1	1	-	Matrix # of Conta	iners		1004	507 N
VED BY: (Signature)	VED BY: (Signature)										HCI HNO ₃ H ₂ SO ₄ ICE UNPRESE	NaOH 🗔 RVED	PRESERVATION	lidland, TX 79701 432-687-0901	Marienfeld Ste
33:45	mpa				~ ~ ~	~ ~ ~	111	~ ~ ~	VVV	< < < < <	ANA	cs .		PO # PROJE	200 DATE:
1 DAY [] 2 DAY [] OTHER []					-							100 100 100 100 100 100 100 100 100 100		CT LOCATION OR N	7/3/13
CUSTODY SEALS - CARRIER BILL # HAND DELIVERED	LABORATORY USE ON				~	~	~	~	V.		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AME: PARKS 4	
BROKEN I INTACT I NOT US	NLY: J THERM #										FIELD NOTES			NDER#: 1/Targa DLLECTOR: ML/SK	PAGE 2 OF

PERMIAN BASIN ENVIRONMENTAL LAB, LP 10014 SCR 1213 Midland, TX 79706

Analytical Report

Prepared for:

Coty Woolf Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Targa Parks 4 Project Number: 13-0116-01 Location: New Mexico

Lab Order Number: 3105005

NELAP/TCEQ # T104704156-12-1

Report Date: 09/11/13

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710	Project: Targa Parks Project Number: 13-0116-01 Project Manager: Coty Wool	: 4 f		Fax: (432) 687-0456
	ANALYTICAL REPORT FOR SAM	IPLES		
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH1 0-1	3105005-01	Soil	09/04/13 13:00	09-05-2013 16:4
BH1 5-6	3I05005-02	Soil	09/04/13 13:07	09-05-2013 16:4
BH1 10-11	3I05005-03	Soil	09/04/13 13:11	09-05-2013 16:4
BH1 15-16	3105005-04	Soil	09/04/13 13:17	09-05-2013 16:4
BH1 20-21	3105005-05	Soil	09/04/13 13:29	09-05-2013 16:4
BH1 25-26	3105005-06	Soil	09/04/13 13:37	09-05-2013 16:4
BH1 30-31	3105005-07	Soil	09/04/13 13:42	09-05-2013 16:4
BH1 40-41	3105005-08	Soil	09/04/13 13:53	09-05-2013 16:4
BH1 50-51	3105005-09	Soil	09/04/13 14:15	09-05-2013 16:4
BH2 0-1	3105005-10	Soil	09/04/13 14:38	09-05-2013 16:4
BH2 5-6	3105005-11	Soil	09/04/13 14:42	09-05-2013 16:4
BH2 10-11	3I05005-12	Soil	09/04/13 14:48	09-05-2013 16:4
BH2 15-16	3I05005-13	Soil	09/04/13 14:54	09-05-2013 16:4
BH2 20-21	3I05005-14	Soil	09/04/13 14:56	09-05-2013 16:4
BH2 25-26	3I05005-15	Soil	09/04/13 15:03	09-05-2013 16:4
BH2 30-31	3105005-16	Soil	09/04/13 15:10	09-05-2013 16:4
BH2 40-41	3105005-17	Soil	09/04/13 15:21	09-05-2013 16:4
BH2 50-51	3105005-18	Soil	09/04/13 15:40	09-05-2013 16:4

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 2 of 27

Larson & Associates, Inc.		Proj	ect: Targa I	arks 4				Fax: (432) 68	87-0456
P.O. Box 50685	I	Project Numb	ber: 13-011	5-01					
Midland TX, 79710	Р	roject Manag	ger: Coty V	Voolf					
		E	BH1 0-1						
		31050)05-01 (Soi	l)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permi	an Basin E	nvironme	ntal Lab, I	L. P .				
General Chemistry Parameters by H	CPA / Standard Methods								
Chloride	22.7	1.04	mg/kg dry	1	P3I0604	09/06/13	09/06/13	EPA 300.0	
% Moisture	4.0	0.1	%	1	P3I0901	09/09/13	09/09/13	% calculation	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 3 of 27

Larson & Associates, Inc.		Proj	ect: Targa Pa	urks 4				Fax: (432) 6	87-0456
P.O. Box 50685		Project Num	ber: 13-0116	-01					
Midland TX, 79710		Project Mana	ger: Coty W	oolf				1	
		I	BH1 5-6						
	н. 	3105	005-02 (Soil)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
General Chemistry Parameters by EPA Chloride	/ Standard Method 23.1	ls 1.22	mg/kg dry	1	P3I0604	09/06/13	09/06/13	EPA 300.0	
Chloride % Moisture	23.1	1.22	mg/kg dry %	1	P3I0604 P3I0901	09/06/13	09/06/13	EPA 300.0 % calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80	015M							
C6-C12	ND	30.5	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
>C12-C28	ND	30.5	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
>C28-C35	ND	30.5	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
Surrogate: 1-Chlorooctane		67.4 %	70-13	80	P311002	09/09/13	09/09/13	TPH 8015M	S-GO
Surrogate: o-Terphenyl		71.4 %	70-13	80	P311002	09 09 13	09 09 13	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	91.5	mg/kg dry	1	[CALC]	09/09/13	09/09/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 4 of 27

Larson & Associates, Inc.		Proi	ect: Targa Par	rks 4				Fax: (432) 6	87-0456
P.O. Box 50685		Project Num	ber: 13-0116-0	01					
Midland TX, 79710		Project Mana	ger: Coty Wo	olf					
		B	H1 10-11						
		3105	005-03 (Soil)						
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	nian Basin E	nvironment	al Lab, I	P.				
Organics by GC									
Benzene	0.00274	0.00106	mg/kg dry	1	P3I1004	09/09/13	09/09/13	EPA 8021B	
Toluene	0.00646	0.00213	mg/kg dry	1	P3I1004	09/09/13	09/09/13	EPA 8021B	
thylbenzene	ND	0.00106	mg/kg dry	1	P3I1004	09/09/13	09/09/13	EPA 8021B	
Kylene (p/m)	0.0471	0.00213	mg/kg dry	1	P3I1004	09/09/13	09/09/13	EPA 8021B	
Kylene (o)	ND	0.00106	mg/kg dry	1	P3I1004	09/09/13	09/09/13	EPA 8021B	
urrogate: 1,4-Difluorobenzene		78.2 %	75-12	5	P311004	09 09 13	09/09/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		81.7 %	75-12	5	P311004	09 09 13	09/09/13	EPA 8021B	
General Chemistry Parameters by E	PA / Standard Metho	ds							
Chloride	60.8	1.06	mg/kg dry	1	P310604	09/06/13	09/06/13	EPA 300.0	
% Moisture	6.0	0.1	%	1	P3I0901	09/09/13	09/09/13	% calculation	
Fotal Petroleum Hydrocarbons C6-C	35 by EPA Method 8	015M							
C6-C12	284	26.6	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
C12-C28	4000	26.6	mg/kg dry	Ι	P3I1002	09/09/13	09/09/13	TPH 8015M	
>C28-C35	469	26.6	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
Surrogate: 1-Chlorooctane		75.2 %	70-13	0	P311002	09/09/13	09/09/13	TPH 8015M	
Surrogate: o-Terphenyl		73.7%	70-13	0	P311002	09/09/13	09/09/13	TPH 8015M	
Fotal Petroleum Hydrocarbon C6-C35	4750	79.8	mg/kg dry	1	[CALC]	09/09/13	09/09/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 5 of 27

Larson & Associates, Inc.		Proi	ect: Targa Pa	rks 4				Fax: (432) 68	37-0456
P.O. Box 50685		Project Num	ber: 13-0116-	01					
Midland TX, 79710		Project Mana	ger: Coty Wo	oolf					
		D	U1 15 16						
		3105	005-04 (Soil)						
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin F	nvironment	al Lab, I	P.				
Organics by GC			*						
Benzene	0.00170	0.00110	mg/kg dry	1	P3I1004	09/09/13	09/09/13	EPA 8021B	
Foluene	0.00810	0.00220	mg/kg dry	1	P3I1004	09/09/13	09/09/13	EPA 8021B	
Ethylbenzene	ND	0.00110	mg/kg dry	1	P3I1004	09/09/13	09/09/13	EPA 8021B	
Xylene (p/m)	0.0227	0.00220	mg/kg dry	1	P3I1004	09/09/13	09/09/13	EPA 8021B	
Xylene (o)	0.0291	0.00110	mg/kg dry	1	P3I1004	09/09/13	09/09/13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		90.5 %	75-12	5	P311004	09 09 13	09 09 13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		94.4 %	75-12	5	P311004	09 09 13	09 09 13	EPA 8021B	
General Chemistry Parameters by E	PA / Standard Metho	ls							
Chloride	32.0	1.10	mg/kg dry	1	P3I0604	09/06/13	09/06/13	EPA 300.0	
% Moisture	9.0	0.1	%	1	P3I0901	09/09/13	09/09/13	% calculation	
Total Petroleum Hydrocarbons C6-0	C35 by EPA Method 8	015M						*	
C6-C12	553	27.5	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
>C12-C28	4680	27.5	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
>C28-C35	583	27.5	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
Surrogate: 1-Chlorooctane		78.8 %	70-13	0	P311002	09 09 13	09/09/13	TPH 8015M	
Surrogate: o-Terphenyl		73.6%	70-13	0	P311002	09/09/13	09/09/13	TPH 8015M	
Fotal Petroleum Hydrocarbon C6-C35	5820	82.4	mg/kg dry	1	[CALC]	09/09/13	09/09/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 6 of 27

Larson & Associates, Inc.		Proj	ect: Targa Par	ks 4				Fax: (432) 68	87-0456
P.O. Box 50685		Project Num	ber: 13-0116-0	01					
Midland TX, 79710	1	Project Mana	ger: Coty Wo	olf					
		В	H1 20-21						
		3105	005-05 (Soil)						
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin H	Environment	al Lab, 1	L.P.				
Organics by GC									
Benzene	ND	0.00122	mg/kg dry	1	P3I1004	09/09/13	09/09/13	EPA 8021B	
foluene	ND	0.00244	mg/kg dry	1	P3I1004	09/09/13	09/09/13	EPA 8021B	
Ethylbenzene	ND	0.00122	mg/kg dry	1	P3I1004	09/09/13	09/09/13	EPA 8021B	
Xylene (p/m)	0.00777	0.00244	mg/kg dry	1	P3I1004	09/09/13	09/09/13	EPA 8021B	
Xylene (o)	0.00485	0.00122	mg/kg dry	1	P3I1004	09/09/13	09/09/13	EPA 8021B	
surrogate: 1,4-Difluorobenzene		97.9%	75-125	5	P311004	09 09 13	09 09 13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		82.4 %	75-125	5	P311004	09 09 13	09 09 13	EPA 8021B	
General Chemistry Parameters by E	PA / Standard Method	s					1.1		
Chloride	38.5	1.22	mg/kg dry	1	P3I0604	09/06/13	09/06/13	EPA 300.0	
% Moisture	18.0	0.1	%	1	P3I0901	09/09/13	09/09/13	% calculation	
Total Petroleum Hydrocarbons C6-0	C35 by EPA Method 80	15M							
C6-C12	276	30.5	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
>C12-C28	5520	30.5	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
>C28-C35	695	30.5	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
Surrogate: 1-Chlorooctane		89.9 %	70-130)	P311002	09/09/13	09/09/13	TPH 8015M	
Surrogate: o-Terphenyl		86.5 %	70-130	0	P311002	09 09 13	09/09/13	TPH 8015M	
Fotal Petroleum Hydrocarbon C6-C35	6490	91.5	mg/kg dry	1	[CALC]	09/09/13	09/09/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 7 of 27

Larson & Associates, Inc.		Proj	ect: Targa Pa	rks 4				Fax: (432) 68	7-0456
P.O. Box 50685		Project Num	ber: 13-0116-	01					
Midland TX, 79710		Project Mana	ger: Coty Wo	oolf					
		B	H1 25-26						
		3105	005-06 (Soil)						
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
General Chemistry Parameters by EP	A / Standard Method 47.0	1.19	mg/kg dry	1	P3I0604	09/06/13	09/06/13	EPA 300.0	
General Chemistry Parameters by EP	A / Standard Method	ls	malka dari		D210604	00/06/112	00/06/112	EDA 200.0	
% Moisture	16.0	0.1	%	1	P3I0901	09/09/13	09/09/13	% calculation	
Fotal Petroleum Hydrocarbons C6-C3	5 by EPA Method 80)15M							
C6-C12	37.0	29.8	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
>C12-C28	124	29.8	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
>C28-C35	79.0	29.8	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
Surrogate: 1-Chlorooctane		68.4 %	70-13	0	P311002	09 09 13	09 09 13	TPH 8015M	S-GC
Surrogate: o-Terphenyl		71.2 %	70-13	0	P311002	09 09 13	09/09/13	TPH 8015M	
Fotal Petroleum Hydrocarbon C6-C35	240	89.3	mg/kg dry	1	[CALC]	09/09/13	09/09/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 8 of 27

Larson & Associates, Inc.		Projec	t: Targa	Parks 4				Fax: (432) 68	87-0456
P.O. Box 50685	F	Project Numbe	r: 13-011	6-01					
Midland TX, 79710	Р	roject Manage	r: Coty V	Woolf					
		BH	1 30-31						
		310500	5-07 (So	il)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permi	an Basin En	vironme	ntal Lab, I	P.				
General Chemistry Parameters by	EPA / Standard Methods								
Chloride	62.6	1.04	ng/kg dry	1	P3I0604	09/06/13	09/06/13	EPA 300.0	
% Moisture	4.0	0.1	0/0	1	P3I0901	09/09/13	09/09/13	% calculation	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 9 of 27

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710	I	Project Project Number Project Manager	Targa H 13-011 Coty V	Parks 4 6-01 Voolf				Fax: (432) 68	37-0456
×.		BH1	40-41						
		3105005	5-08 (Soi	I)			2		
Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin Env	ironme	ntal Lab, I	P .	s'			
General Chemistry Parameters by	EPA / Standard Method	5							
Chloride	24.2	1.10 m	ng/kg dry	1	P3I0604	09/06/13	09/06/13	EPA 300.0	
% Moisture	9.0	0.1	%	1	P3I0901	09/09/13	09/09/13	% calculation	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 10 of 27

	Pern	ian Basin En	vironme	ental Lab, L	P.				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		BH 310500	1 50-51 5-09 (So	il)					
Midland TX, 79710		Project Manage	r: Coty	Woolf					
Larson & Associates, Inc. P.O. Box 50685		Project Project Number	t: Targa	Parks 4				Fax: (432) 68	87-0456

Chloride	35.0	1.09 m	g/kg dry	1	P3I0604	09/06/13	09/06/13	EPA 300.0
% Moisture	8.0	0.1	%	1	P3I0901	09/09/13	09/09/13	% calculation

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 11 of 27

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Proje Project Numb Project Manag	ct: Targa er: 13-01 er: Coty	Parks 4 16-01 Woolf				Fax: (432) 6	87-0456
		В	H2 0-1						
		31050	05-10 (S	oil)					
		Reporting							
Analyte	Res	sult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Permian Basin E	nvironm	ental Lab, I	P.				
General Chemistry Param	neters by EPA / Standard	Methods				N			
Chloride	1'	7.6 1.05	mg/kg dry	1	P3I0604	09/06/13	09/06/13	EPA 300.0	
% Moisture		5.0 0.1	%	1	P3I0901	09/09/13	09/09/13	% calculation	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Larson & Associates, Inc.		Proj	ect: Targa I	Parks 4				Fax: (432) 6	87-0456
P.O. Box 50685	- I	Project Num	ber: 13-011	6-01					
Midland TX, 79710	Р	roject Manag	ger: Coty V	Voolf					
		F	BH2 5-6						
		3105)05-11 (So	il)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permi	an Basin E	nvironme	ntal Lab, I	P .				
General Chemistry Parameters by	EPA / Standard Methods								
Chloride	160	1.02	mg/kg dry	1	P3I0604	09/06/13	09/06/13	EPA 300.0	
% Moisture	2.0	0.1	%	1	P3I0901	09/09/13	09/09/13	% calculation	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Larson & Associates, Inc.		Projec	et: Targa Pa	arks 4				Fax: (432) 68	7-0456
P.O. Box 50685		Project Numbe	er: 13-0116	-01					
Midland TX, 79710		Project Manage	er: Coty W	oolf					
		BH	2 10-11						
		310500)5-12 (Soil)					
		Reporting							
Analyte R	lesult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
General Chemistry Parameters by EPA / Standard	d Metho	ods							
General Chemistry Parameters by EPA / Standard	1 Metho	ods							
Chloride	75.7	1.06	mg/kg dry	1	P3I0604	09/06/13	09/06/13	EPA 300.0	
Chloride % Moisture	75.7 6.0	1.06 0.1	mg/kg dry %	1 1	P3I0604 P3I0901	09/06/13 09/09/13	09/06/13 09/09/13	EPA 300.0 % calculation	
Chloride % Moisture Fotal Petroleum Hydrocarbons C6-C35 by EPA M	75.7 6.0 Iethod 8	1.06 0.1 8015M	mg/kg dry %	1	P3I0604 P3I0901	09/06/13 09/09/13	09/06/13 09/09/13	EPA 300.0 % calculation	
Chloride % Moisture <u>Fotal Petroleum Hydrocarbons C6-C35 by EPA M</u> C6-C12	75.7 6.0 Iethod 8	1.06 0.1 8015M 26.6	mg/kg dry % mg/kg dry	1 1	P3I0604 P3I0901 P3I1002	09/06/13 09/09/13 09/09/13	09/06/13 09/09/13 09/09/13	EPA 300.0 % calculation TPH 8015M	
Chloride % Moisture <u>Fotal Petroleum Hydrocarbons C6-C35 by EPA M</u> 26-C12 >C12-C28	75.7 6.0 Iethod 8 ND ND	1.06 0.1 8015M 26.6 26.6	mg/kg dry % mg/kg dry mg/kg dry	1 1 1 1	P3I0604 P3I0901 P3I1002 P3I1002	09/06/13 09/09/13 09/09/13 09/09/13	09/06/13 09/09/13 09/09/13 09/09/13	EPA 300.0 % calculation TPH 8015M TPH 8015M	
Chloride % Moisture <u>Fotal Petroleum Hydrocarbons C6-C35 by EPA M</u> C6-C12 >C12-C28 >C28-C35	75.7 6.0 Iethod 8 ND ND ND	1.06 0.1 8015M 26.6 26.6 26.6	mg/kg dry % mg/kg dry mg/kg dry mg/kg dry	1 1 1 1 1	P3I0604 P3I0901 P3I1002 P3I1002 P3I1002	09/06/13 09/09/13 09/09/13 09/09/13 09/09/13	09/06/13 09/09/13 09/09/13 09/09/13 09/09/13	EPA 300.0 % calculation TPH 8015M TPH 8015M TPH 8015M	
Chloride % Moisture Fotal Petroleum Hydrocarbons C6-C35 by EPA M C6-C12 >C12-C28 >C28-C35 Surrogate: 1-Chlorooctane	75.7 6.0 ND ND ND ND	1.06 0.1 8015M 26.6 26.6 26.6 69.1 %	mg/kg dry % mg/kg dry mg/kg dry mg/kg dry 70-1.	1 1 1 1 1 30	P3I0604 P3I0901 P3I1002 P3I1002 P3I1002 P3I1002	09/06/13 09/09/13 09/09/13 09/09/13 09/09/13 09/09/13	09/06/13 09/09/13 09/09/13 09/09/13 09/09/13 09/09/13	EPA 300.0 % calculation TPH 8015M TPH 8015M TPH 8015M TPH 8015M	S-GC
Chloride % Moisture <u>Fotal Petroleum Hydrocarbons C6-C35 by EPA M</u> 26-C12 >C12-C28 >C28-C35 Surrogate: 1-Chlorooctane Surrogate: o-Terphenyl	75.7 6.0 Iethod 8 ND ND ND	1.06 0.1 8015M 26.6 26.6 26.6 69.1 % 72.6 %	mg/kg dry % mg/kg dry mg/kg dry mg/kg dry 70-1. 70-1.	1 1 1 1 30 30	P3I0604 P3I0901 P3I1002 P3I1002 P3I1002 P3I1002 P3I1002	09/06/13 09/09/13 09/09/13 09/09/13 09/09/13 09/09/13 09/09/13	09/06/13 09/09/13 09/09/13 09/09/13 09/09/13 09/09/13 09/09/13	EPA 300.0 % calculation TPH 8015M TPH 8015M TPH 8015M TPH 8015M TPH 8015M	S-GC

1

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 14 of 27

Larson & Associates, Inc.		Proj	ect: Targa P	arks 4				Fax: (432) 68	37-0456
P.O. Box 50685		Project Numb	ber: 13-0116	6-01					
Midland TX, 79710	1	Project Manag	ger: Coty W	Voolf					
		BI	H2 15-16						
		31050)05-13 (Soi	l)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
General Chemistry Parameters by FPA / St	Perm andard Method	ian Basin E	nvironmer	ital Lab, 1	L.P.				
Chloride	15.1	1.03	mg/kg dry	1	P3I1006	09/10/13	09/10/13	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3I0901	09/09/13	09/09/13	% calculation	
Fotal Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	25.8	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P3I1002	09/09/13	09/09/13	TPH 8015M	
Surrogate: 1-Chlorooctane		128 %	70-1	30	P311002	09 09 13	09/09/13	TPH 8015M	
urrogate: o-Terphenyl		130 %	70-1	30	P311002	09 09 13	09 09 13	TPH 8015M	
Fotal Petroleum Hydrocarbon C6-C35	ND	77.3	mg/kg dry	1	[CALC]	09/09/13	09/09/13	calc	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 15 of 27

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710	1	Proj Project Num Project Mana	ect: Targa Pa ber: 13-0116- ger: Coty Wo	rks 4 01 polf				Fax: (432) 68	37-0456
		B	H2 20-21						
		3105	005-14 (Soil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
<u>General Chemistry Parameters by EPA /</u> Chloride	Standard Method 25.9	s 1.08	mg/kg dry	1	P3I1006	09/10/13	09/10/13	EPA 300.0	
General Chemistry Parameters by EPA / Chloride % Moisture	25.9 7.0	1.08 0.1	mg/kg dry %	1	P3I1006 P3I0901	09/10/13 09/09/13	09/10/13 09/09/13	EPA 300.0 % calculation	
<u>General Chemistry Parameters by EPA /</u> Chloride % Moisture <u>Total Petroleum Hydrocarbons C6-C35 </u> C6-C12	25.9 7.0 by EPA Method 80	1.08 0.1 015M	mg/kg dry %	1	P3I1006 P3I0901 P3I1002	09/10/13	09/10/13	EPA 300.0 % calculation	
<u>General Chemistry Parameters by EPA /</u> Chloride % Moisture <u>Total Petroleum Hydrocarbons C6-C35 </u> C6-C12 >C12-C28	<u>Standard Method</u> 25.9 7.0 by EPA Method 80 ND ND	1.08 0.1 115M 26.9 26.9	mg/kg dry % mg/kg dry mg/kg dry	1 1 1	P3I1006 P3I0901 P3I1002 P3I1002	09/10/13 09/09/13 09/09/13 09/09/13	09/10/13 09/09/13 09/09/13 09/09/13	EPA 300.0 % calculation TPH 8015M TPH 8015M	
<u>General Chemistry Parameters by EPA /</u> Chloride % Moisture Total Petroleum Hydrocarbons C6-C35 C6-C12 >C12-C28 >C28-C35	<u>Standard Method</u> 25.9 7.0 by EPA Method 80 ND ND ND	s 1.08 0.1 15M 26.9 26.9 26.9 26.9	mg/kg dry % mg/kg dry mg/kg dry mg/kg dry	1 1 1 1	P3I1006 P3I0901 P3I1002 P3I1002 P3I1002	09/10/13 09/09/13 09/09/13 09/09/13 09/09/13	09/10/13 09/09/13 09/09/13 09/09/13 09/09/13	EPA 300.0 % calculation TPH 8015M TPH 8015M TPH 8015M	
General Chemistry Parameters by EPA / Chloride % Moisture Fotal Petroleum Hydrocarbons C6-C35 C6-C12 >C12-C28 >C28-C35 Surrogate: 1-Chlorooctane	Y Standard Method 25.9 7.0 by EPA Method 80 ND ND ND	s 1.08 0.1 115M 26.9 26.9 26.9 26.9 26.9 26.9	mg/kg dry % mg/kg dry mg/kg dry mg/kg dry 70-13	1 1 1 1 1 0	P311006 P310901 P311002 P311002 P311002 P311002	09/10/13 09/09/13 09/09/13 09/09/13 09/09/13 09/09/13	09/10/13 09/09/13 09/09/13 09/09/13 09/09/13 09/09/13	EPA 300.0 % calculation TPH 8015M TPH 8015M TPH 8015M TPH 8015M	S-GC
General Chemistry Parameters by EPA / Chloride % Moisture Total Petroleum Hydrocarbons C6-C35 C6-C12 >C12-C28 >C28-C35 Surrogate: 1-Chlorooctane Surrogate: o-Terphenyl	<u>Standard Method</u> 25.9 7.0 by EPA Method 80 ND ND ND	s 1.08 0.1 15M 26.9 26.9 26.9 69.2 % 70.1 %	mg/kg dry % mg/kg dry mg/kg dry mg/kg dry 70-13 70-13	1 1 1 1 1 0 0	P311006 P310901 P311002 P311002 P311002 P311002 P311002	09/10/13 09/09/13 09/09/13 09/09/13 09/09/13 09/09/13 09/09/13	09/10/13 09/09/13 09/09/13 09/09/13 09/09/13 09/09/13 09/09/13	EPA 300.0 % calculation TPH 8015M TPH 8015M TPH 8015M TPH 8015M TPH 8015M	S-GC

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 16 of 27

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710	I	Proje Project Numb Project Manag	ct: Targa I er: 13-011 er: Coty V	Parks 4 6-01 Voolf				Fax: (432)	687-0456
		BF 31050	12 25-26 05-15 (Soi	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Perm	ian Basin E	nvironme	ntal Lab, I	P .				
<u>General Chemistry Parameters by E</u> Chloride	205	1.25	mg/kg dry	1	P3I1006	09/10/13	09/10/13	EPA 300.0	

%

0.1

20.0

P3I0901

09/09/13

09/09/13

% calculation

1

Permian Basin Environmental Lab, L.P.

% Moisture

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 17 of 27

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710	P	Project roject Number oject Manager	: Targa l : 13-011 : Coty V	Parks 4 6-01 Woolf				Fax: (432) 68	87-0456
		BH2 310500	30-31 5-16 (So	il)					
				,					
		Reporting			-				
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	an Basin Env	ironme	ntal Lab, I	P .				
General Chemistry Parameters by	EPA / Standard Methods	,							
Chloride	54.8	1.03 m	g/kg dry	1	P3I1006	09/10/13	09/10/13	EPA 300.0	
% Moisture	3.0	0.1	%	1	P3I0901	09/09/13	09/09/13	% calculation	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 18 of 27

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710	F	Projec Project Numbe Project Manage	et: Targa H er: 13-011 er: Coty V	Parks 4 6-01 Voolf				Fax: (432) 68	37-0456
		BH	2 40-41						
		310500	05-17 (Soi	il)					
Appleta	Pacult	Reporting	Unite	Dilution	Patab	Dranarad	Applyzed	Mathod	Notes
Anaryte	Perm	ian Basin Er	vironme	ntal Lab. I	P	riepareu	Anaryzeu	Method	Notes
General Chemistry Parameters by H	CPA / Standard Methods	5						6 ¹	
Chloride	72.6	1.08	mg/kg dry	1	P3I1006	09/10/13	09/10/13	EPA 300.0	
% Moisture	7.0	0.1	%	1	P3I0901	09/09/13	09/09/13	% calculation	

1

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 19 of 27

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Proje Project Numb Project Manag	et: Targa er: 13-011 er: Coty V	Parks 4 6-01 Woolf				Fax: (432) 68	7-0456
		BF 31050	12 50-51 05-18 (So	il)			×		
			00 10 (50						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Pe	rmian Basin E	nvironme	ntal Lab, l	P.				
General Chemistry Parameter	s by EPA / Standard Meth	ods					7	A.	
Chloride	33.8	1.09	mg/kg dry	1	P3I1006	09/10/13	09/10/13	EPA 300.0	
% Moisture	8.0	0.1	%	1	P3I0901	09/09/13	09/09/13	% calculation	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Midland TX, 79710		Project Ma	anager: Coty	y Woolf		-				
	Or	ganics by	GC - Q	uality Co	ontrol					
	Perm	ian Basin	Environ	mental I	Lab, L.P					
	Derik	Reporting		Spike	Source	A/DEC	%REC	DDD	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3I1004 - General Preparation	1 (GC)							-		
Blank (P3I1004-BLK1)				Prepared &	Analyzed:	09/09/13				
Benzene	ND	0.00100	mg/kg wet							
Foluene	ND	0.00200								
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100								
Surrogate: 4-Bromofluorobenzene	47.9		ug kg	60.0		79.9	75-125			
Surrogate: 1,4-Difluorobenzene	51.8		"	60.0		86.4	75-125			
LCS (P3I1004-BS1)				Prepared &	Analyzed:	09/09/13				
Benzene	0.118	0.00100	mg/kg wet	0.100		118	80-120			
Toluene	0.0973	0.00200		0.100		97.3	80-120			
Ethylbenzene	0.0933	0.00100	"	0.100		93.3	80-120			
Xylene (p/m)	0.191	0.00200	"	0.200		95.6	80-120			
Xylene (o)	0.0854	0.00100	"	0.100		85.4	80-120			
Surrogate: 1,4-Difluorobenzene	56.2		ug kg	60.0		93.7	75-125			
Surrogate: 4-Bromofluorobenzene	52.1		"	60.0		86.8	75-125			
LCS Dup (P3I1004-BSD1)				Prepared &	Analyzed:	09/09/13				
Benzene	0.119	0.00100	mg/kg wet	0.100		119	80-120	0.253	20	
Toluene	0.0935	0.00200		0.100		93.5	80-120	3.95	20	
Ethylbenzene	0.0873	0.00100	**	0.100		87.3	80-120	6.65	20	
Xylene (p/m)	0.188	0.00200		0.200		94.1	80-120	1.52	20	
Xylene (o)	0.0823	0.00100		0.100		82.3	80-120	3.76	20	
Surrogate: 4-Bromofluorobenzene	50.1		ug kg	60.0		83.5	75-125			
Surrogate: 1,4-Difluorobenzene	60.8		**	60.0		101	75-125			

Larson & Associates, Inc.

P.O. Box 50685

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 21 of 27

Fax: (432) 687-0456

Project: Targa Parks 4 Project Number: 13-0116-01

Project Manager: Coty Woolf

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source	÷	%REC	×	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3I0604 - *** DEFAULT PREP ***						1.1		42	2	
Blank (P3I0604-BLK1)				Prepared &	Analyzed	: 09/06/13				
Chloride	ND	1.00	mg/kg wet							
LCS (P3I0604-BS1)				Prepared &	Analyzed	: 09/06/13				
Chloride	10.5		mg/kg Wet	10.0	1	105	80-120			
LCS Dup (P3I0604-BSD1)				Prepared &	2 Analyzed	: 09/06/13				
Chloride	10.6		mg/kg Wet	10.0		106	80-120	1.34	20	
Duplicate (P3I0604-DUP1)	Sou	rce: 3105001-	-01	Prepared &	z Analyzed	: 09/06/13				
Chloride	238	1.16	mg/kg dry		243			1.68	20	
Batch P3I0901 - General Preparation (Prep)										
Blank (P310901-BLK1)				Prepared &	Analyzed	: 09/09/13				
% Moisture	ND	0.1	%							
Duplicate (P310901-DUP1)	Source: 3106001-01			Prepared & Analyzed: 09/09/13						
% Moisture	ND	0.1	%		0.0				20	
Batch P3I1006 - *** DEFAULT PREP ***					N.				Ĵ.	
Blank (P3I1006-BLK1)				Prepared &	Analyzed	: 09/10/13				
Chloride	ND	1.00	mg/kg wet							
LCS (P3I1006-BS1)				Prepared &	Analyzed	: 09/10/13				
Chloride	10.9		mg/kg Wet	10.0		109	80-120			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 22 of 27

Project: Targa Parks 4 Project Number: 13-0116-01 Project Manager: Coty Woolf Fax: (432) 687-0456

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch P3I1006 - *** DEFAULT PREP ***											
LCS Dup (P3I1006-BSD1)	Prepared & Analyzed: 09/10/13										
Chloride	11.0	mg/kg Wet	10.0		110	80-120	1.37	20			
Duplicate (P311006-DUP1)	Source: 3109002-01		Prepared & Analyzed: 09/10/13								
Chloride	476	1.09 mg/kg dry		455			4.60	20			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 23 of 27
Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

Project: Targa Parks 4 Project Number: 13-0116-01 Project Manager: Coty Woolf

Fax: (432) 687-0456

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3I1002 - TX 1005										
Blank (P3I1002-BLK1)				Prepared &	& Analyzed:	09/09/13				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0								
Surrogate: 1-Chlorooctane	143		"	200		71.5	70-130			
Surrogate: o-Terphenyl	72.8		"	100		72.8	70-130			
LCS (P3I1002-BS1)				Prepared &	& Analyzed	: 09/09/13				
C6-C12	962	25.0	mg/kg wet	1000		96.2	75-125			
>C12-C28	1110	25.0		1000		111	75-125			
Surrogate: 1-Chlorooctane	123		"	100		123	70-130			
Surrogate: o-Terphenyl	62.1		"	50.0		124	70-130			
LCS Dup (P3I1002-BSD1)				Prepared &	& Analyzed	: 09/09/13				
C6-C12	967	25.0	mg/kg wet	1000		96.7	75-125	0.512	20	
>C12-C28	1110	25.0		1000		111	75-125	0.0398	20	
Surrogate: 1-Chlorooctane	129		"	100		129	70-130			
Surrogate: o-Terphenyl	62.4		"	50.0		125	70-130			
Matrix Spike (P3I1002-MS1)	Sou	rce: 3109003	-01	Prepared: (09/09/13 A	nalyzed: 09	9/10/13			
C6-C12	1060	27.2	mg/kg dry	1090	76.0	90.5	75-125			
>C12-C28	4030	27.2		1090	3140	82.0	75-125			
Surrogate: 1-Chlorooctane	242		"	217		111	70-130			
Surrogate: o-Terphenyl	111		"	109		102	70-130			
Matrix Spike Dup (P3I1002-MSD1)	Sou	Source: 3109003-01 Prepared: 09/09/13 Analyzed: 09/10/13								
C6-C12	1160	27.2	mg/kg dry	1090	76.0	99.8	75-125	9.76	20	
>C12-C28	4020	27.2		1090	3140	80.7	75-125	1.60	20	
Surrogate: 1-Chlorooctane	279		**	217		128	70-130			
Surrogate: o-Terphenyl	124		"	109		114	70-130			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

10014 SCR 1213 Midland, TX 79706 432-686-7235

Page 24 of 27

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710 Project: Targa Parks 4 Project Number: 13-0116-01 Project Manager: Coty Woolf Fax: (432) 687-0456

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

- DET Analyte DETECTED
 ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Bun Barron

9/11/2013

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Page 25 of 27

10014 SCR 1213 Midland, TX 79706 432-686-7235

Date:

A second of a special of the loss of	HAND DELIVERED		02:1	1	\rangle	7	HZX	9112			
LEN LI INTACT LI NOT USED	CUSIODY SEALS - LI BROK		3	gnature)	BY: (Si	CEIVEL	R	DATE/TIM		lignature)	RELINQUISHED BY:(S
THERM #:	RECEIVING TEMP: S. L	1 DAY		ignature)	BY: (Si	CEIVEL	R	DATE/TIM		ignature)	RELINQUISHED BY:(S
	LABORATORY USE ONLY:	TURN AROUND TIME		ignature)) BY: (SI	N W	E RI	1 STETIM	D	ignature)	RELINGOISHED BY:(S
								(1) (1) (1) (1) (1) (1) (1) (1)	言語を知	and the start with the start of	TOTAL
	7		42	5		-	Soil	15.03	21/1/13	5	13H2 25-26
	ę		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5		-	5011	4:SA	1/4/13/	14	At2 20-21
	5		5	7		-	5011	IN:SA (N4/13	N	SH2 15-16
	<		X	7		-	Soil	14:48	VH/13	17	3H2 10-11
	<		2	7			Son	14:42	9/4/13	11	3H2 5-6
	5		44	5			Soll	14:38	9/H/13	lo	1-0 2HR
	<		The phil	5		-	Soil	14:15	V4/13	2	11 20-01
		·)	(6 ,7	5	-	-	Soul	13:53	Yu/13	2	11-05. 14
	<		X	S.			Soil	13:42	CI HN	2	3H1 30-31 :
	5		X N X	5		-	Soll	13:37	2/4/12	6	SH1 25-25
	<		5	2		-	1105	13:29	1/4/13	v	5H1 20-21
	5			7		-	8	13:17	VIIIIS	4	41 15-16
			No and the second secon	5			1001	13:11	9/4/13	Ø	BH1 10-11
				۲		-	202	13:07 2	9/H/12	02	9-S 14
			1 AT	<	-		1100	13:00	9/4/15	12	×1 0-1
FIELD NOTES	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		AAAAAAAAAAAAA	ICE UNPRE	HNO ₃ H ₂ SO ₄	# of Co HCI	Matrix	Time	Date	Lab #	Field Sample I.D.
	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1000 000 000 000 000 000 000 000 000 00	A Color	SERVED	NaOH	ntainers		(5005	310	TIME ZONE: Time zone/State:
A CONTRACTOR	20 01 02 02 02 02 02 02 02 02 02 02 02 02 02	177 130 / 100 S						THER	OT=O	A=AIR	Yes VNo
11/10/100	1000 000 100 100 000 000	1/0/1		ATION	ESERV	PR		NT	P=PAI	S=SOIL	TRRP report?
TOR: LA1	-0 I COLLEX	ROJECT #: 18-0116-	LAI PI			ł					Data Reported to:
# Parks 4 Page	VAME: 13-0116-01 Tayo	ECT LOCATION OR N	PROJ	79701	ind, TX	Midle			3.1	es, Inc	Ssociate
PAGE OF 26		9/11/2013	200 DATE	ld, Ste.	arienfe	ZN.M	50				A arson &
-OF-CUSIOUS	UININ										

NUISHED BY:(Signature)	UISHED BY:(Signature) DATE	USAED BX(Signature) 9(4) DATE	2					N'SI 51(111- 8) 29-90	40-41 17 14413 15.2	30-31 14 914/15 15:10	Tield Tield Tiple I.D. Lab # Date Time	AFAIR OTFOTHER	S=SOIL P=PAINT	teported to:	arson & ssociates, Inc. Environmental Consultants
TIME	TIME	TIME						0 5011	1:05-1	1:98	Matrix				(
RECEIVED BY: (Signatu	RECEIVED BY: (Signatu	RECEIVED BY: (Signatu						-	-	-	# of Con HCI HNO ₃ H ₂ SO ₄	NaOH 🖸	PRESERVATIO		507 N. Marienteld, S Midland, TX 7971 432-687-0901
	÷							XX	1	4 2	UNPRES BILL BILL RADIALIS CASOLA	SERVED	Ŭ	LAIP	01 PO # PRO.
TURN AROUND TIME NORMAL TIME 1 DAY CI 2 DAY CI 0 THER CI											A1 43 5 5 5 6 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	0000	ROJECT #: 3-0110	JECT LOCATION OR N	
CUSTODY SEALS - CI BKC	CUSTODY SEALS - D BRO	RECEIVING TEMP:S.2						~			100 100 100 100 100 100 100 100 100 100		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-1 COLLEC	LAB WORK ORDER
	THERM #:										FIELD NOTES			TOR: LAN	# 3TOSOOS

ľ

Depth (Feet)	Lithologic Description		-			
		Soil	Log	ding	Well Completion Detail	
		Inified assifica	raphic	D Rea		
0		20	Ċ	F		0
0	Sand: Strong Brown (7.5YR 4/6),	SP				0
_	Well Softed, quartz sand		888			
5	Condi Brown (EVP E/9) friable	CD				5
_	unconsolidated, silt, quartz,	SP	888			
8.0	round to subrounded, dry very fine grained sand	Caliche	/			
10	Caliche: Pink (5YR 8/4), angular, fine					10
	to course grained, sand sized, poorly sorted, some quartz sand		4			
			//_			
15	Caliche: Pinkish White (7.5YR 8/2),	Caliche	_///			15
	sand sized, caliche sand to pebbles, poorly sorted, quartz,		<u>//</u>			
20	subrounded to rounded					20
20			/			20
			//_			
25	Calicha: Dink (7 EVD 0/2) achilest	Caliche	_///	-		25
2	sand sized, quartz, poorly sorted,	canche	//			
	silt sized, angular					
30	Caliche: Pink (5YR 7/4), subangular	Caliche	///			30
	to subrounded, silt, sand, nebbles, caliche, poorly sorted	1.00	//_	¹		
0.5	pessies, callere, poorly soliced					0.5
35						35
			_//			
40	colliche cand quarte mix poorly			-		40
	sorted, mostly fine grained to					
- 1. S	very fine grained caliche, some caliche pebbles, subangular					
45						45
47.0	Clay: Reddish Vellow to Vellowish	CL	7/1/1/			
	Red (5YR 6/6 to 4/6), redbed,					1.1
50 51.0	clay, consolidated but blocky,		//////			50
	friable, subangular	/	1			
55	Total Depth: 51'					55
5	E					1. Sugar
60						60
-						
65						65
_						
					Targa Midstream Services, L.P.	1
ater Table (Time of Boring) Date Dri	lled - Method	9/4/2 - Air R	2013 otary	Parks 4" Pipeline Release	
Lief Tuble (Drilled B	y -	S.D.R	hman	Lea County, New Mexico Sec. 23, T-22-S, R-37-E	
	Checked	By -	S. Re M. La	arson	N 32° 22' 46.56" W 103° 09' 33 65"	
					Aarson &	-
	5 8.0 10 15 20 25 30 35 40 45 47.0 55 60 65 60 65 atter Table (5 Sand: Brown (SYR 5/8), friable, unconsolidated, silt, quartz, round to subrounded, dry very fine grained sand 10 Caliche: Pink (SYR 8/4), angular, fine to course grained, sand sized, poorly sorted, some quartz sand 15 Caliche: Pink (SYR 8/4), subangular, fine to course grained, caliche sand to pebbles, poorly sorted, quartz, subrounded to rounded 20 25 25 Caliche: Pink (7.5YR 8/3), pebbles to sand sized, quartz, poorly sorted, silt sized, angular 30 Caliche: Pink (SYR 7/4), subangular to subrounded, silt, sand, pebbles, caliche, poorly sorted 35 240 40 caliche, sand quartz mix, poorly sorted, mostly fine grained to very fine grained caliche, some caliche pebbles, subangular 45 47.0 45 60 50 course grained to pebble sized clay, consolidated but blocky, friable, subangular 55 Total Depth: 51' 60 65 61 Drilling I Drilled B Logged B 62 Date Dri	5 Sand: Brown (SYR 5/8), friable, unconsolidated, silt, quartz, round to subrounded, dry very fine grained sand SP 10 Caliche: Pink (SYR 8/4), angular, fine to course grained, sand sized, poorly sorted, caliche sand to sand sized, caliche sand to pebbles, poorly sorted, quartz, subrounded to rounded Caliche 20 Caliche: Pink (7.5YR 8/3), pebbles to sand sized, quartz, poorly sorted, silt sized, angular Caliche 30 Caliche: Pink (SYR 7/4), subangular to subrounded, silt, sand, pebbles, caliche, poorly sorted Caliche 35 Caliche: Pink (SYR 7/4), subangular to subrounded, silt, sand, pebbles, caliche, poorly sorted Caliche 35 Caliche: Sand quartz mix, poorly sorted, mostly fine grained to very fine grained caliche, some caliche pebbles, subangular Caliche 40 Caliche (SYR 6/6 to 4/6), redbed, course grained to pebble sized clay, consolidated but blocky, friable, subangular CL 55 Total Depth: 51' Date Drilled - Drilling Method Drilled By - Logged By - Checked By -	5 Sand: Brown (SYR 5/8), friable, unconsolidated, silt, quartz, round to subrounded, dry very fine grained sand SP 10 Caliche: Pink (SYR 8/4), angular, fine to course grained, sand sized, poorly sorted, some quartz sand Caliche 15 Caliche: Pink (SYR 8/4), angular, fine to course grained, sand sized, poorly sorted, guartz, subrounded Caliche 20 Caliche: Pink (7.5YR 8/3), pebbles to sand sized, quartz, poorly sorted, silt sized, angular Caliche 20 Caliche: Pink (7.5YR 8/3), pebbles to sand sized, quartz, poorly sorted, silt sized, angular Caliche 30 Caliche: Pink (SYR 7/4), subangular to subrounded, silt, sand, pebbles, caliche, poorly sorted Caliche 35 Caliche externative, some caliche pebbles, subangular Caliche 40 caliche, sand quartz mix, poorly sorted, mostly fine grained to very fine grained caliche, some caliche pebbles, subangular Caliche 45 Clay: Reddish Yellow to Yellowish Red (SYR 6/6 to 4/6), redbed, course grained to pebble sized sto CL 55 Total Depth: 51' Date Drilled - Drilling Method - Sto 9/4/2 60 Caliche externative, some chacked By - S. Re Checked By - M. La S. Re	5 Sand: Brown (SYR 5/8), friable, unconsolidated, silt, quartz, round to subrounded, dry very fine grained sand SP 10 Caliche: Pink (SYR 8/4), angular, fine to course grained, sand sized, poorly sorted, some quartz sand Caliche: ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	5 Sand: Brown [SYR 5/8], friable, unconcolledated, site, quart, mund to subrounded, for very, mund to subrounded, for very pagends and the period subrounded in the point of the priod subrounded in the point of the poin

BH-2 Boring Log

RP-9-13-2956 Parks 4-Inch Pipeline Release Investigation Targa Midstream Services, LLC Lea County <new Mexico

PHOTOGRAPHS

Excavation Viewing East, July 11, 2013

Excavation Viewing West, July 11, 2013

Page 1 of 2

RP-9-13-2956 Parks 4-Inch Pipeline Release Investigation Targa Midstream Services, LLC Lea County <new Mexico

PHOTOGRAPHS

1

Excavation Viewing North, July 11, 2013

West End of Excavation Viewing Southwest, July 11, 2013

Page 2 of 2