Administrative/Environmental Order

AE Order Number Banner

Report Description

This report shows an AE Order Number in Barcode format for purposes of scanning. The Barcode format is Code 39.

App Number: pJXK1604730468

1RP - 2722

SOUTHERN UNION GAS SERVICES LTD

2/25/2016

HOBBS OCD		
District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue Artesia NM 88210 DEC Energy Minerals	f New Mexico s and Natural Resources	GIAIJON Form C-141 Revised October 10, 2003
District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Coll Conse Coll Conse Coll Conse Coll Conse Coll Conse Coll Conse Santa Fe, NM 87505	ervation Division th St. Francis Dr. Fe, NM 87505	E I Julian & Copies to appropriate Bistrict Office in accordance with Rule 116 on back side of form
Release Notificatio	on and Corrective Actio	n
	OPERATOR	☐ Initial Report ☐ Final Report
Name of Company Southern Union Gas Services	Contact Rose Slade	
Address 801 South Loop 464, Monahans, TX 79756	Telephone No. 432-940-5147	
Facility Name Trunk "M" (King Road)	Facility Type Natural Gas Pipe	line
Surface Owner State of New Mexico (Corrected) Mineral C)wner	API No 30-025-28822
LOCATIO	N OF RELEASE	
Unit Letter HSection 25Township 22SRange 36EFeet from the Nort	h/South Line Feet from the Eas	t/West Line County Lea
Latitude 32 degrees 21.77	6' Longitude 103 degrees 12.6	11'
NAIUKI	Volume of Release 30 BBI S	Volume Recovered 4 BBI S
Source of Release 20-Inch Steel Pipeline (Low Pressure)	Date and Hour of Occurrence June 27, 2011 – Unknown	Date and Hour of Discovery June 27, 2011 – 2020 hrs
Was Immediate Notice Given?	If YES, To Whom? Geoffrey Leking – NMOCD Hob	bs District Office
By Whom? Rose L. Slade	Date and Hour June 28, 2011 –	1143 hours (MDT)
Yes No	If TES, volume impacting the w	atercourse.
If a Watercourse was Impacted, Describe Fully.*		
De la Constitución Teles *	*	
Failure of a segment of the twenty (20) inch low-pressure steel pipeline and produced water. The cause of the failure was attributed to internal of Following discovery of the release, a temporary pipeline clamp was emp four (4) barrels of the released mixture.	resulted in the release of approximate orrosion. An unknown volume of natu ployed to mitigate the release. A vacu	ly thirty (30) barrels of a mixture of crude oil ral gas was released to the atmosphere. Im truck was able to recover approximately
Describe Area Affected and Cleanup Action Taken.* An area along the pipeline ROW measuring approximately 1,450 feet in affected area was limited to the pipeline ROW two-track road. Please re- remediation details. Approximately 2,226 cubic yards of impacted soil w material was purchased from the grazing lessee.	length and one (1) to ten (10) feet in ference <i>"Remediation Summary and S</i> vas transported to Sundance Services,	width was affected by the release. The Site Closure Request" dated October 2011 for Inc. in Eunice, New Mexico and backfill
I hereby certify that the information given above is true and complete to regulations all operators are required to report and/or file certain release public health or the environment. The acceptance of a C-141 report by t should their operations have failed to adequately investigate and remedia or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations.	the best of my knowledge and unders notifications and perform corrective a the NMOCD marked as "Final Report ate contamination that pose a threat to does not relieve the operator of respo	tand that pursuant to NMOCD rules and actions for releases which may endanger " does not relieve the operator of liability ground water, surface water, human health nsibility for compliance with any other
Signature: Rose L. Slade	OIL CONSER ENV SPECIAL Approved by District Supervisor :	ST: Jeoff Selainz
Title: EHS Compliance Specialist	Approval Date: 12/14/11	Expiration Date:
E-mail Address: rose.slade@sug.com	Conditions of Approval:	Attached
Date: December 12, 2011 Phone: 432-940-5147		IRP-6-4-2722

* Attach Additional Sheets If Necessary

Basin Environmental Service Technologies, LLC

3100 Plains Highway P. O. Box 301 Lovington, New Mexico 88260 bjarguijo@basinenv.com Office: (575) 396-2378 Fax: (575) 396-1429

-	3
Effective	Solutions
	-

REMEDIATION SUMMARY &

SITE CLOSURE REQUEST

SOUTHERN UNION GAS SERVICES TRUNK "M" (KING ROAD) Lea County, New Mexico Unit Letter "H" (SE/NE), Section 25, Township 22 South, Range 36 East Latitude 32° 21.776' North, Longitude 103° 12.611' West

Prepared For:

Southern Union Gas Services 801 S. Loop 464 Monahans, TX 79756

Prepared By:

Basin Environmental Service Technologies, LLC 3100 Plains Highway Lovington, New Mexico 88260

October 2011

HOBBS OCD

DEC 1 3 2011

RECEIVED

Ben J. Arguijo Project Manager

1.0 INTRODUCTION & BACKGROUND INFORMATION

Basin Environmental Service Technologies, LLC (Basin), on behalf of Southern Union Gas Services (Southern Union), has prepared this *Remediation Summary & Site Closure Request* for the release site known as Trunk "M" (King Road). The legal description of the release site is Unit Letter "H" (SE/NE), Section 25, Township 22 South, Range 36 East, in Lea County, New Mexico. The geographic coordinates of the release site are 32° 21.776' North latitude and 103° 12.611' West longitude. The property affected by the release is owned by the State of New Mexico and administered by the New Mexico State Land Office (NMSLO). The NMSLO Right of Entry permit number is ROE-2062 (Remediation). A "Site Location Map" is provided as Figure 1.

On June 27, 2011, Southern Union discovered a release had occurred on the Trunk "M" pipeline. The release was reported to the New Mexico Oil Conservation Division (NMOCD) Hobbs District Office on June 28, 2011. The "Release Notification and Corrective Action" (Form C-141) indicated failure of a segment of the twenty-inch (20") low-pressure Trunk "M" steel pipeline resulted in the release of approximately thirty barrels (30 bbls) of a mixture of crude oil and produced water. An unknown volume of natural gas was also released to the atmosphere. The cause of the failure was attributed to internal corrosion. Following discovery of the release, a temporary pipeline clamp was employed to mitigate the release. A vacuum truck was utilized to recover approximately four barrels (4 bbls) of the released mixture. Hydrocarbon saturated soil was excavated from the affected area and transported to Sundance Services, Inc. (NMOCD Permit # NM-01003), for disposal.

The release affected an area of land along the Southern Union right-of-way measuring approximately one thousand, four hundred and fifty feet (1,450') in length and one foot (1') to ten feet (10') in width. The affected area was limited to the pipeline right-of-way two-track road.

General photographs of the release site are provided as Appendix A. The Form C-141 is provided as Appendix D.

2.0 NMOCD SITE CLASSIFICATION

A search of the New Mexico Water Rights Reporting System (NMWRRS) database maintained by the New Mexico Office of the State Engineer (NMOSE) indicated information was unavailable for Section 25, Township 22 South, Range 36 East. A depth-to-groundwater reference map utilized by the NMOCD indicates groundwater should be encountered at approximately one hundred and fifteen feet (115') below ground surface (bgs). Based on the NMOCD ranking system, zero (0) points will be assigned to the site as a result of this criterion.

A search of the NMWRRS database indicated there are no water wells within 1,000 feet of the release. Based on the NMOCD ranking system, zero (0) points will be assigned to the site as a result of this criterion.

There are no surface water bodies within 1,000 feet of the release. Based on the NMOCD ranking system, zero (0) points will be assigned to the site as a result of this criterion.

NMOCD guidelines indicate the Trunk "M" (King Road) release site has an initial ranking score of zero (0) points. The soil remediation levels for a site with a ranking score of zero (0) points are as follows:

- Benzene 10 mg/Kg (ppm)
- BTEX 50 mg/Kg (ppm)
- TPH 5,000 mg/Kg (ppm)

The New Mexico Administrative Code (NMAC) does not currently specify a remediation level for chloride concentrations in soil. Chloride remediation levels are set by the NMOCD on a site-specific basis.

3.0 SUMMARY OF SOIL REMEDIATION ACTIVITIES

On June 28, 2011, following initial response activities, excavation of impacted soil commenced at the site. Hach Quantab Chloride Low Range (30-600 mg/Kg) Titrators were used to field-screen the horizontal and vertical extent of impacted soil and to guide the excavation. As a safety and environmental precaution, Southern Union requested and received NMOCD approval to leave in-place soil beneath the pipeline to support the pipeline during remediation activities.

From June 28 through July 26, 2011, approximately two thousand two hundred and twenty-six (2,226) cubic yards (cy) of impacted soil was excavated and transported to Sundance Services, Inc., for disposal. Soil disposal manifests are provided as Appendix C.

On July 14, 2011, nineteen (19) soil samples (Samples #1 through #19) were collected from the floor and sidewalls of the excavation. Samples were collected at seventy-five foot (75') horizontal intervals, beginning with Sample #1 in the northwest wall of the excavation and ending with Sample #19 in the west wall, approximately one hundred and fifty feet (150') south-southwest of the release point. The soil samples were submitted to Xenco Laboratories, Inc., in Odessa, Texas, for analysis of benzene, ethylbenze, toluene, and xylene (BTEX), total petroleum hydrocarbons (TPH), and/or chloride concentrations using EPA Methods SW 846-8021b, SW 846-8015M, and 300.1, respectively. Table 1 summarizes the "Concentrations of Benzene, BTEX, TPH & Chlorides in Soil". Soil sample locations are depicted in Figure 2, "Site & Sample Location Map". Laboratory analytical reports are provided as Appendix B.

Laboratory analytical results indicated benzene concentrations were less than the appropriate laboratory method detection limit (MDL) in all soil samples submitted. BTEX concentrations ranged from less than the laboratory MDL in soil samples Sample #1 and Sample #11 through #14 to 0.0030 mg/Kg in soil sample Sample #2. TPH concentrations ranged from less than the laboratory MDL in soil samples Sample #3 through #11 and Samples #13 through #19 to 76.7 mg/Kg in soil sample Sample #1. Chloride concentrations ranged from 12.0 mg/Kg in soil sample Sample #3 to 1,300 mg/Kg in soil sample Sample #13. Review of laboratory analytical results indicated TPH, benzene, and BTEX concentrations were less than NMOCD regulatory standards in all submitted soil samples.

On July 19, 2011, eighteen (18) soil samples (Samples #20 through #37) were collected from the floor and sidewalls of the excavation. Samples were collected at seventy-five foot (75') horizontal intervals, beginning with Sample #20 in the west wall of the excavation, approximately one hundred and fifty feet (150') to the south-southwest of the release point, and ending with Sample #37 in the west wall, approximately four hundred and fifty feet (450') south-southwest of the release point. The soil samples were submitted to the laboratory for analysis of TPH and chloride concentrations. Laboratory analytical results indicated TPH concentrations were less than the appropriate laboratory MDL in all soil samples submitted. Chloride concentrations ranged from 5.01 mg/Kg in soil sample #37 to 622 mg/Kg in soil sample Sample #20. Review of laboratory analytical results indicated TPH concentrations were less than NMOCD regulatory standards in all submitted soil samples.

On July 24, 2011, twenty-five (25) soil samples (Samples #38 through #62) were collected from the floor and sidewalls of the excavation. Samples were collected at seventy-five foot (75') horizontal intervals, beginning with Sample #38 in the west wall of the excavation, approximately five hundred and twentyfive feet (525') to the south-southwest of the release point, and ending with Sample #62 in the south wall, approximately one thousand, one hundred and twenty-five feet (1,125') south-southeast of the release point. The soil samples were submitted to the laboratory for analysis of TPH and chloride concentrations. Laboratory analytical results indicated TPH concentrations ranged from less than the appropriate laboratory MDL in soil samples Sample #38 through #57 and Sample #62 to 19.7 mg/Kg in soil samples Sample #60 and #61. Chloride concentrations ranged from 6.67 mg/Kg in soil samples Sample #60 and #61 to 1,090 m/Kg in soil sample Sample #50. Review of laboratory analytical results indicated TPH concentrations were less than NMOCD regulatory standards in all submitted soil samples.

Per NMOCD request, on August 4, 2011, five (5) additional samples (Sample #11A, Sample #20A, Sample #50A, Sample #51A, and Sample #56A) were collected in the areas represented by soil samples Sample #11, #20, #50, #51, and #56. The soil samples were submitted to the laboratory for analysis of chloride concentrations. Laboratory analytical results indicated chloride concentrations ranged from 7.62 mg/Kg in soil sample Sample #51A to 244 mg/Kg in soil sample Sample #56A. Review of laboratory analytical results indicated chloride concentrations were less than NMOCD regulatory standards in all submitted soil samples.

On August 5, 2011, based on laboratory analytical results, Southern Union requested and received NMOCD approval to backfill the excavation with locally purchased, non-impacted soil.

From August 5 through August 11, 2011, the excavation was backfilled in eighteen inch (18") lifts, compacted, and contoured to fit the surrounding topography. Prior to backfilling, final dimensions of the excavation were approximately one thousand, four hundred and twenty-five feet (1,425') in length, approximately six feet (6') to ten feet (10') in width, and ranging in depth from approximately four feet (4') to twelve feet (12') bgs.

The release site will be seeded with an NMSLO-approved seed mixture during the 2012 and 2013 calendar years.

4.0 QA/QC PROCEDURES

4.1 Soil Sampling

Soil Samples were delivered to Xenco Laboratories, Inc., in Odessa, Texas, for analysis of BTEX, TPH, and/or chloride concentrations using the methods described below. Soil samples were analyzed for BTEX, TPH, and/or chloride concentrations within fourteen (14) days following the collection date.

The soil samples were analyzed as follows:

- BTEX concentrations in accordance with EPA Method SW 846-8021b
- TPH concentrations in accordance with modified EPA Method SW 846-8015M
- Chloride concentrations in accordance with EPA Method 300.1

4.2 Decontamination of Equipment

Cleaning of the sampling equipment was the responsibility of the environmental technician. Prior to use, and between each sample, the sampling equipment was cleaned with Liqui-Nox® detergent and rinsed with distilled water.

4.3 Laboratory Protocol

The laboratory was responsible for proper QA/QC procedures after signing the chain-of-custody form(s). These procedures were either transmitted with the laboratory analytical reports or are on file at the laboratory.

5.0 SITE CLOSURE REQUEST

Soil samples collected from the floor and sidewalls of the Trunk "M" (King Road) excavation were analyzed by an NMOCD-approved laboratory, and concentrations of benzene, BTEX, TPH, and chlorides were less than the remediation action levels established for the site. Based on these laboratory analytical results, Basin recommends Southern Union provide the NMOCD Hobbs District Office and the NMSLO a copy of this *Remediation Summary & Site Closure Request* and request the NMOCD grant site closure to the Trunk "M" (King Road) release site.

6.0 LIMITATIONS

Basin Environmental Service Technologies, LLC, has prepared this *Remediation Summary & Site Closure Request* to the best of its ability. No other warranty, expressed or implied, is made or intended. Basin has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Basin has not conducted an independent examination of the facts contained in referenced materials and statements. Basin has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Basin has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Southern Union Gas Services. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC, and/or Southern Union Gas Services.

7.0 DISTRIBUTION:

- Copy 1: Geoffrey Leking New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (District 1) 1625 French Drive Hobbs, NM 88240 GeoffreyR.Leking@state.nm.us
 Copy 2: Myra Harrison New Mexico State Land Office
- 2827 N. Dal Paso, Ste. 117 Hobbs, NM 88240 mharrison@slo.state.nm.us
 Copy 3: Rose Slade and Curt Stanley Southern Union Gas Services 801 S. Loop 464 Monahans, Texas 79756 rose.slade@sug.com curt.stanley@sug.com
 Copy 4: Basin Environmental Service Technologies, LLC
 - opy 4: Basin Environmental Service Technologies, LLC P.O. Box 301 Lovington, New Mexico 88260

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH & CHLORIDES IN SOIL

SOUTHERN UNION GAS SERVICES TRUNK "M" (KING ROAD) LEA COUNTY, NEW MEXICO NMOCD REFERENCE NO: 1RP-06-11-2722

	Г	115	-		<u> </u>			-	—																				-												-
E 300		CHLORIDE	(mg/Kg)	13.3	27.9	12.0	12.9	15.1	17.1	119	53.9	321	25.9	1,030	501	1,300	80.3	261	235	202	13.3	858		622	12.1	12.7	12.6	15.6	10.4	10.8	15.0	20.9	458	15.0	6.79	5.80	6.31	6.47	49.2	46.5	5.01
TOTAL	HdT	Ce-Cas	(mg/Kg)	76.7	20.2	<16.0	<16.1	<16.2	<16.7	<15.5	<15.5	<15.7	<15.4	<16.9	30.7	<16.5	<16.3	<16.3	<16.4	<16.3	<15.9	<16.8		<16.3	<15.9	<16.0	<15.9	<15.7	<15.7	<15.2	<16.0	<16.0	<15.8	<16.5	<15.4	<15.5	<16.1	<16.2	<15.7	<15.6	<15.4
5M	OKO	C28-C35	(mg/Kg)	<16.0	<15.8	<16.0	<16.1	<16.2	<16.7	<15.5	<15.5	<15.7	<15.4	<16.9	30.7	<16.5	<16.3	<16.3	<16.4	<16.3	<15.9	<16.8	Providence in	<16.3	<15.9	<16.0	<15.9	<15.7	<15.7	<15.2	<16.0	<16.0	<15.8	<16.5	<15.4	<15.5	<16.1	<16.2	<15.7	<15.6	<15.4
THOD: 801	DRO	C 12-C28	(mg/Kg)	76.7	20.2	<16.0	<16.1	<16.2	<16.7	<15.5	<15.5	<15.7	<15.4	<16.9	<17.1	<16.5	<16.3	<16.3	<16.4	<16.3	<15.9	<16.8		<16.3	<15.9	<16.0	<15.9	<15.7	<15.7	<15.2	<16.0	<16.0	<15.8	<16.5	<15.4	<15.5	<16.1	<16.2	<15.7	<15.6	<15.4
ME	GRO	C6-C12	(mg/Kg)	<16.0	<15.8	<16.0	<16.1	<16.2	<16.7	<15.5	<15.5	<15.7	<15.4	<16.9	<17.1	<16.5	<16.3	<16.3	<16.4	<16.3	<15.9	<16.8		<16.3	<15.9	<16.0	<15.9	<15.7	<15.7	<15.2	<16.0	<16.0	<15.8	<16.5	<15.4	<15.5	<16.1	<16.2	<15.7	<15.6	<15.4
19	TOTAL	BTEX	(mg/Kg)	<0.0021	0.0030									<0.0023	<0.0023	<0.0022	<0.0022						「日本の一人」という	-						-		-							•	•	
0	0	XYLENE	(mg/Kg)	<0.0011	<0.0011									<0.0011	<0.0011	<0.0011	<0.0011					-	A STATE OF A						•												
6-8021B, 503	M.P	XYLENES	(mg/Kg)	<0.0021	<0.0021						-			<0.0023	<0.0023	<0.0022	<0.0022						Contraction of the	· · · · · · · · · · · · · · · · · · ·													· · · · · · · · · · · · · · · · · · ·		•	•	
D: EPA SW 84	ETHYL-	BENZENE	(mg/Kg)	<0.0011	0.0030	100 million 100								<0.0011	<0.0011	<0.0011	<0.0011					-			1. S					-									-		
METHOI		TOLUENE	(mg/Kg)	<0.0021	<0.0021		,							<0.0023	<0.0023	<0.0022	<0.0022						「「「「「「」」」」」															1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		•	
10 M		BENZENE	(mg/Kg)	<0.0011	<0.0011									<0.0011	<0.0011	<0.0011	<0.0011							· · · ·					•	•					· · · · ·		1 Carlor - Carlor				
	SOIL	STATUS		In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ		In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ	In-Situ
14 14 1 M	SAMPLE	DATE		7/14/2011	7/14/2011	7/14/2011	7/14/2011	7/14/2011	7/14/2011	7/14/2011	7/14/2011	7/14/2011	7/14/2011	7/14/2011	7/14/2011	7/14/2011	7/14/2011	7/14/2011	7/14/2011	7/14/2011	7/14/2011	7/14/2011	Sector States	7/19/2011	7/19/2011	7/19/2011	7/19/2011	7/19/2011	7/19/2011	7/19/2011	7/19/2011	7/19/2011	7/19/2011	7/19/2011	7/19/2011	7/19/2011	7/19/2011	7/19/2011	7/19/2011	7/19/2011	7/19/2011
LICENCO	SAMPLE	DEPTH	(BGS)	3.5'	3.5'	3.5'	5'	5	3.5'	3.5'	5'	5'	3.5'	3.5'	12'	12'	3.5'	3.5'	5'	5'	3.5'	3.5'		5'	5'	3.5'	2.5'	4'	2.5'	2.5'	4'	2.5'	2.5'	4'	2.5'	2.5'	4'	2.5'	2.5'	4'	2.5'
	SAMPLE	LOCATION		Sample #1	Sample #2	Sample #3	Sample #4	Sample #5	Sample #6	Sample #7	Sample #8	Sample #9	Sample #10	Sample #11	Sample #12	Sample #13	Sample #14	Sample #15	Sample #16	Sample #17	Sample #18	Sample #19		Sample #20	Sample #21	Sample #22	Sample #23	Sample #24	Sample #25	Sample #26	Sample #27	Sample #28	Sample #29	Sample #30	Sample #31	Sample #32	Sample #33	Sample #34	Sample #35	Sample #36	Sample #37

Page 1 of 2

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH & CHLORIDES IN SOIL

SOUTHERN UNION GAS SERVICES TRUNK "M" (KING ROAD) LEA COUNTY, NEW MEXICO NMOCD REFERENCE NO: 1RP-06-11-2722

	CAMPLE				METHC	D: EPA SW 84	46-8021B, 50:	30		ME	THOD: 801.	5M	TOTAL	E 300
SAMPLE	SAMPLE	SAMPLE	SOIL			ETHYL-	M.P	0	TOTAL	GRO	DKO	OKO	HdT	
LOCATION	DEPTH	DATE	STATUS	BENZENE	TOLUENE	BENZENE	XYLENES	XYLENE	BTEX	C6-C12	C 12-C28	C28-C35	C6-C35	CHLORIDE
	(608)			(By/Bu)	(Byidu)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
Sample #38	2.5'	7/25/2011	In-Situ							<15.0	<15.0	<15.0	<15.0	13.8
Sample #39	4.	7/25/2011	In-Situ	-						<15.0	<15.0	<15.0	<15.0	9.35
Sample #40	2.5'	7/25/2011	In-Situ							<15.0	<15.0	<15.0	<15.0	7.58
Sample #41	2.5'	7/25/2011	In-Situ							<15.0	<15.0	<15.0	<15.0	7.99
Sample #42	4'	7/25/2011	In-Situ							<15.3	<15.3	<15.3	<15.3	9.43
Sample #43	2.5'	7/25/2011	In-Situ							<15.5	<15.5	<15.5	<15.5	13.2
Sample #44	4.5'	7/25/2011	In-Situ							<15.5	<15.5	<15.5	<15.5	7.42
Sample #45	.9	7/25/2011	In-Situ							<15.6	<15.6	<15.6	<15.6	33.8
Sample #46	4.5'	7/25/2011	In-Situ							<15.4	<15.4	<15.4	<15.4	7.81
Sample #47	4.5'	7/25/2011	In-Situ		1 - N					<15.7	<15.7	<15.7	<15.7	60.2
Sample #48	.9	7/25/2011	In-Situ	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					<15.6	<15.6	<15.6	<15.6	30.3
Sample #49	4.5'	7/25/2011	In-Situ							<15.3	<15.3	<15.3	<15.3	73.3
Sample #50	4.5'	7/25/2011	In-Situ		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				<16.2	<16.2	<16.2	<16.2	1,090
Sample #51	.9	7/25/2011	In-Situ				1 · · · ·			<16.0	<16.0	<16.0	<16.0	707
Sample #52	4.5'	7/25/2011	In-Situ							<16.2	<16.2	<16.2	<16.2	7.82
Sample #53	4.5'	7/25/2011	In-Situ							<15.4	<15.4	<15.4	<15.4	7.97
Sample #54	.9	7/25/2011	In-Situ		- 18 C					<15.7	<15.7	<15.7	<15.7	8.11
Sample #55	4.5'	7/25/2011	In-Situ		1	1	1		194 - 185	<15.4	<15.4	<15.4	<15.4	7.00
Sample #56	4.5'	7/25/2011	In-Situ	1. S S S.	10 - The State					<15.8	<15.8	<15.8	<15.8	612
Sample #57	.9	7/25/2011	In-Situ		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					<15.8	<15.8	<15.8	<15.8	13.6
Sample #58	4.5'	7/25/2011	In-Situ			•		-		<15.6	18.1	<15.6	18.1	627
Sample #59	4.5'	7/25/2011	In-Situ	1					-	<15.6	18.7	<15.6	18.7	651
Sample #60	6'	7/25/2011	In-Situ		-	-	-	-		<15.3	19.7	<15.3 -	19.7	6.67
Sample #61	4.5'	7/25/2011	In-Situ		-					<15.4	19.7	<15.4	19.7	6.67
Sample #62	4.5'	7/25/2011	In-Situ							<15.3	<15.3	<15.3	<15.3	6.70
	Birther and a state					国内部の中心になる	の一部であるのです	and the second second	and the second second		Section of the section of the	and the second second		
Sample #11A	4'	8/4/2011	In-Situ											8.79
Sample #20A	6.5'	8/4/2011	In-Situ		-		1							7.80
Sample #50A	5'	8/4/2011	In-Situ			-								101
Sample #51A	6.5'	8/4/2011	In-Situ		8			-						7.62
Sample #56A	5'	8/4/2011	In-Situ	1			-			-		-		244
			No. of the second		and the second						The second second	a farmer and the	a support and a support	Service Service
NMOCD Criteria				10					50				5,000	

- = Not analyzed.

Trunk "M" (King Road) - Release Site

Trunk "M" (King Road) - Release Site

Trunk "M" (King Road) - Release Site (Initial Response)

Trunk "M" (King Road) - Excavation

Trunk "M" (King Road) - Excavation (Following Backfill)

Analytical Report 423201

for

Southern Union Gas Services- Monahans

Project Manager: Rose Slade Trunk M King Road 6-27-11 Southern Union Gas 26-JUL-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL01273): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

26-JUL-11

Project Manager: Rose Slade Southern Union Gas Services- Monahans 1507 W. 15th Street Monahans, TX 79756

Reference: XENCO Report No: 423201 Trunk M King Road 6-27-11 Project Address: Eunice, NM

Rose Slade:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 423201. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 423201 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

BATA

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 423201

Southern Union Gas Services- Monahans, Monahans, TX

Trunk M King Road 6-27-11

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Sample # 1	S	07-14-11 10:00		423201-001
Sample # 2	S	07-14-11 10:05		423201-002
Sample # 3	S	07-14-11 10:10		423201-003
Sample # 4	S	07-14-11 10:15		423201-004
Sample # 5	S	07-14-11 10:20		423201-005
Sample # 6	S	07-14-11 10:25		423201-006
Sample # 7	S	07-14-11 10:30		423201-007
Sample # 8	S	07-14-11 10:35		423201-008
Sample # 9	S	07-14-11 10:40		423201-009
Sample # 10	S	07-14-11 10:45		423201-010
Sample # 11	S	07-14-11 10:50		423201-011
Sample # 12	S	07-14-11 10:55		423201-012
Sample # 13	S	07-14-11 11:00		423201-013
Sample # 14	S	07-14-11 11:05		423201-014
Sample # 15	S	07-14-11 11:10		423201-015
Sample # 16	S	07-14-11 11:15		423201-016
Sample # 17	S	07-14-11 11:20		423201-017
Sample # 18	S	07-14-11 11:25		423201-018
Sample # 19	S	07-14-11 11:30		423201-019

CASE NARRATIVE

Client Name: Southern Union Gas Services- Monahans Project Name: Trunk M King Road 6-27-11

Project ID: Southern Union Gas Work Order Number: 423201 Report Date: 26-JUL-11 Date Received: 07/15/2011

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Analytical non nonformances and comments:

Batch: LBA-864376 Anions by E300 RPD recovered outside QC limits between the sample and sample duplicate for Chloride.

Certificate of Analysis Summary 423201 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

Date Received in Lab: Fri Jul-15-11 08:15 am Report Date: 26-JUL-11

			A State of the sta		Project Manager:	Brent Barron, II	
	Lab Id:	423201-001	423201-002	423201-003	423201-004	423201-005	423201-006
Austrain Damandad	Field Id:	Sample # 1	Sample # 2	· Sample # 3	Sample # 4	Sample # 5	Sample # 6
naisanhay sistinuv	Depth:						
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jul-14-11 10:00	Jul-14-11 10:05	Jul-14-11 10:10	Jul-14-11 10:15	Jul-14-11 10:20	Jul-14-11 10:25
Anions by E300	Extracted:	Jul-18-11 10:30	Jul-18-11 10:30	Jul-18-11 10:30	Jul-18-11 10:30	Jul-18-11 10:30	Jul-18-11 10:30
	Analyzed:	Jul-19-11 12:10	Jul-19-11 12:10	Jul-19-11 12:10	Jul-19-11 12:10	Jul-19-11 12:10	Jul-19-11 12:10
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride		13.3 8.96	27.9 8.85	12.0 8.98	12.9 9.05	15.1 9.14	17.1 9.38

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use the interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warmany to the end use of the data hereby presented. Our liability is limited to the amount invoced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Breht Barron, II

Certificate of Analysis Summary 423201 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

Date Received in Lab: Fri Jul-15-11 08:15 am Report Date: 26-JUL-11

		10010000	000 10000F	10001 000	Troject Manager.		
	Lab Id:	423201-001	423201-002	423201-003	423201-004	42320	1-005
Analysis Dogustad	Field Id:	Sample # 1	Sample # 2	Sample # 3	Sample # 4	Sample	# 5
naicanhaw ciclimur	Depth:						
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	
	Sampled:	Jul-14-11 10:00	Jul-14-11 10:05	Jul-14-11 10:10	Jul-14-11 10:15	Jul-14-11 10	:20
BTEX by EPA 8021B	Extracted:	Jul-22-11 09:02	Jul-22-11 09:02				
	Analyzed:	Jul-22-11 14:53	Jul-22-11 15:16				
	Units/RL:	mg/kg RL	mg/kg RL				
Benzene		ND 0.00106	ND 0.00105				
Toluene		ND 0.00213	ND 0.00211				
Ethylbenzene		ND 0.00106	0.00300 0.00105				
m_p-Xylenes		ND 0.00213	ND 0.00211	-			
o-Xylene		ND 0.00106	ND 0.00105				
Total Xylenes		ND 0.00106	ND 0.00105				
Total BTEX		ND 0.00106	0.00300 0.00105				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENO Laboratories. XENO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing. Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Brent Barron, II

Certificate of Analysis Summary 423201 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

Date Received in Lab: Fri Jul-15-11 08:15 am

Report Date: 26-JUL-11

	and the second se		Sand a series		Project Manager: I	Srent Barron, II	
a start of a start of the start of the	Lab Id:	423201-001	423201-002	423201-003	423201-004	423201-005	423201-006
Auducic Docurrend	Field Id:	Sample # 1	Sample # 2	Sample # 3	Sample # 4	Sample # 5	Sample # 6
noiconhow ciclinity	Depth:						
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jul-14-11 10:00	Jul-14-11 10:05	Jul-14-11 10:10	Jul-14-11 10:15	Jul-14-11 10:20	Jul-14-11 10:25
Percent Moisture	Extracted:						
	Analyzed:	Jul-15-11 08:20	Jul-15-11 08:20	Jul-15-11 08:20	Jul-15-11 08:20	Jul-15-11 08:20	Jul-15-11 08:20
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		6.26 1.00	0 5.12 1.00	6.45 1.00	7.15 1.00	8.07 1.00	10.4 1.00
TPH By SW8015 Mod	Extracted:	Jul-15-11 11:00	Jul-15-11 11:00	Jul-15-11 11:00	Jul-15-11 11:00	Jul-15-11 11:00	Jul-15-11 11:00
	Analyzed:	Jul-15-11 15:32	Jul-15-11 16:02	Jul-15-11 16:31	Jul-15-11 17:01	Jul-15-11 17:31	Jul-15-11 18:01
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C12 Gasoline Range Hydrocarbons		ND 16.	0 ND 15.8	ND 16.0	ND 16.1	ND 16.2	ND 16.7
C12-C28 Diesel Range Hydrocarbons		76.7 16.0	0 20.2 15.8	ND 16.0	ND 16.1	ND 16.2	ND 16.7
C28-C35 Oil Range Hydrocarbons		ND 16.(0 ND 15.8	ND 16.0	ND 16.1	ND 16.2	ND 16.7
Total TPH		76.7 16.0	0 20.2 15.8	ND 16.0	ND 16.1	ND 16.2	ND 16.7

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and reasts expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes to responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for his work order unless otherwise agreed to it writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Brent Barron, II

Project Id: Southern Union Gas

Contact: Rose Slade

Certificate of Analysis Summary 423201 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

Date Received in Lab: Fri Jul-15-11 08:15 am Report Date: 26-JUL-11

Project Location: Funice, NM					Keport Date:	11-10-97	
	Sales - and	and the second second		and the second se	Project Manager:	Brent Barron, II	
	Lab Id:	423201-007	423201-008	423201-009	423201-010	423201-011	423201-012
Auntrale Downseted	Field Id:	Sample # 7	Sample # 8	Sample # 9	Sample # 10	Sample # 11	Sample # 12
naisanhay sistinuy	Depth:						
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jul-14-11 10:30	Jul-14-11 10:35	Jul-14-11 10:40	Jul-14-11 10:45	Jul-14-11 10:50	Jul-14-11 10:55
Anions by E300	Extracted:	Jul-18-11 10:30	Jul-18-11 10:30	Jul-18-11 10:30			
	Analyzed:	Jul-19-11 12:10	Jul-19-11 12:10	Jul-19-11 12:10	Jul-20-11 00:45	Jul-20-11 00:45	Jul-20-11 00:45
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride		119 8.69	53.9 8.66	321 8.83	25.9 8.60	1030 9.45	501 9.57

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use the interpretations and results expressed throughout this analytical report represent the best judgment of XERNO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Brent Barron, II

Project Id: Southern Union Gas Project Location: Eunice, NM Contact: Rose Slade

Southern Union Gas Services- Monahans, Monahans, TX Certificate of Analysis Summary 423201 Project Name: Trunk M King Road 6-27-11

Date Received in Lab: Fri Jul-15-11 08:15 am Report Date: 26-JUL-11

			A ALTER AND A		Project Manager:	Brent Barron, II	
	Lab Id:	423201-007	- 423201-008	423201-009	423201-010	423201-011	423201-012
Australia Documented	Field Id:	Sample # 7	Sample # 8	Sample # 9	Sample # 10	Sample # 11	Sample # 12
naisanhay sistinut	Depth:						
	Matrix:	SOIL	SOIL	SOIL	TIOS	SOIL	SOIL
	Sampled:	Jul-14-11 10:30	Jul-14-11 10:35	Jul-14-11 10:40	Jul-14-11 10:45	Jul-14-11 10:50	Jul-14-11 10:55
BTEX by EPA 8021B	Extracted:					Jul-25-11 11:39	Jul-22-11 09:02
	Analyzed:					Jul-25-11 16:44	Jul-22-11 15:39
	Units/RL:					mg/kg RL	mg/kg RL
Benzene						ND 0.00113	ND 0.00113
Toluene						ND 0.00226	ND 0.00227
Ethylbenzene						ND 0.00113	ND 0.00113
m_p-Xylenes						ND 0.00226	ND 0.00227
o-Xylene				A STATE OF		ND 0.00113	ND 0.00113
Total Xylenes						ND 0.00113	ND 0.00113
Total BTEX						ND 0.00113	ND 0.00113

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughing analytical report represent the best jugment of XEINCO Laboratories. XEINCO Laboratories assumes no responsibility and makes no warmany to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Breht Barron, II

Certificate of Analysis Summary 423201 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

Date Received in Lab: Fri Jul-15-11 08:15 am

Report Date: 26-JUL-11

	1	South States					Project Manager:	Brent Barron, II			
	Lab Id:	423201-007		423201-008	423201-00	6	423201-010	423201-011		423201-012	
Auchicie Docusedad	Field Id:	Sample # 7		Sample # 8	Sample # 9		Sample # 10	Sample # 11		Sample # 12	
naisan han sistimur	Depth:										
	Matrix:	SOIL		SOIL	SOIL		NIOS	SOIL		SOIL	
	Sampled:	Jul-14-11 10:	30	Jul-14-11 10:35	Jul-14-11 10	:40	Jul-14-11 10:45	Jul-14-11 10:5	20	Jul-14-11 10:5	55
Percent Moisture	Extracted:							-			
	Analyzed:	Jul-15-11 08:	20	Jul-15-11 08:20	Jul-15-11 08	:20	Jul-15-11 08:20	Jul-15-11 08:2	50	Jul-15-11 08:2	0
	Units/RL:	%	RL	% RL	%	RL	% RL	%	RL	%	RL
Percent Moisture		3.36	1.00	3.03 1.00	4.92	1.00	2.37 1.00	11.1	1.00	12.2	1.00
TPH By SW8015 Mod	Extracted:	Jul-15-11 11:	00	Jul-15-11 11:00	Jul-15-11 11	00:	Jul-15-11 11:00	Jul-15-11 11:0	00	Jul-15-11 11:0	0
	Analyzed:	Jul-15-11 18:	30	Jul-15-11 19:00	Jul-15-11 19	:29	Jul-15-11 20:28	Jul-15-11 20:5	12	Jul-15-11 21:2	9
	Units/RL:	mg/kg	RL	mg/kg RL	mg/kg	RL	mg/kg RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	15.5	ND 15.5	ND	15.7	ND 15.4	DN	16.9	ND	17.1
C12-C28 Diesel Range Hydrocarbons		ND	15.5	ND 15.5	ND	15.7	ND 15.4	ND	16.9	ND	17.1
C28-C35 Oil Range Hydrocarbons		QN	15.5	ND 15.5	QN	15.7	ND 15.4	ND	16.9	30.7	17.1
Total TPH		ND	15.5	ND 15.5	ND	15.7	ND 15.4	ND	16.9	30.7	17.1

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is litticed to the amount invoced for this work order unless otherwise agreed to in writing. Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Breht Barron, II

Certificate of Analysis Summary 423201 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

Date Received in Lab: Fri Jul-15-11 08:15 am Report Date: 26-JUL-11

	State of the	Participant of the second		States and a second	Project Manager:	Brent Barron, II	
	Lab Id:	423201-013	423201-014	423201-015	423201-016	423201-017	423201-018
Auntrais Downseted	Field Id:	Sample # 13	Sample # 14	Sample # 15	Sample # 16	Sample # 17	Sample # 18
Anutysis nequesieu	Depth:						
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jul-14-11 11:00	Jul-14-11 11:05	Jul-14-11 11:10	Jul-14-11 11:15	Jul-14-11 11:20	Jul-14-11 11:25
Anions by E300	Extracted:						
	Analyzed:	Jul-20-11 00:45	Jul-20-11 00:45	Jul-20-11 00:45	Jul-20-11 00:45	Jul-20-11 00:45	Jul-20-11 00:45
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride		1300 23.2	80.3 9.15	261 9.15	235 9.18	202 9.12	13.3 8.91

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use in interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoced for this work order unless otherwise agreed to in writing. Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Breht Barron, II

Certificate of Analysis Summary 423201 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

Date Received in Lab: Fri Jul-15-11 08:15 am Report Date: 26-JUL-11

				N. S. S. S. S. S.			Project Manager:	Brent Barron, II	
	Lab Id:	423201-013	3	423201-014	2	423201-015	423201-016	423201-017	423201-018
Australia Damandad	Field Id:	Sample # 13	3	Sample # 14		Sample # 15	Sample # 16	Sample # 17	Sample # 18
naisanhay sistimuy	Depth:						100		
	Matrix:	SOIL		SOIL	<u>.</u>	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jul-14-11 11:	00	Jul-14-11 11:05	JL	ul-14-11 11:10	Jul-14-11 11:15	Jul-14-11 11:20	Jul-14-11 11:25
BTEX by EPA 8021B	Extracted:	Jul-22-11 09:	:02	Jul-22-11 09:02					
	Analyzed:	Jul-22-11 16:	10:	Jul-22-11 16:24					
	Units/RL:	mg/kg	RL	mg/kg I	RL				
Benzene		ND 0	01100	ND 0.00	109				
Toluene		ND 0	.00220	ND 0.00	1218				
Ethylbenzene		ND 0	001100	ND 0.00	601				
m_p-Xylenes		0 QN	.00220	ND 0.00	1218				
o-Xylene		ND 0	001100	ND 0.00	109				
Total Xylenes		ND 0	.00110	ND 0.00	109				
Total BTEX		ND 0	.00110	ND 0.00	109				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and retains expressed throughout this analytical report represent the best juggment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing. Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Breht Barron, II

Project Id: Southern Union Gas

Contact: Rose Slade

Certificate of Analysis Summary 423201 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

 Date Received in Lab:
 Fri Jul-15-11 08:15 am

 Report Date:
 26-JUL-11

Project Location: Funice NM					Inchoi chair.	11-706-0	
		and the second second			Project Manager: E	trent Barron, II	
	Lab Id:	423201-013	423201-014	423201-015	423201-016	423201-017	423201-018
Australia Damardad	Field Id:	Sample # 13	Sample # 14	Sample # 15	Sample # 16	Sample # 17	Sample # 18
naisanhay sistinuy	Depth:					and the second s	
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jul-14-11 11:00	Jul-14-11 11:05	Jul-14-11 11:10	Jul-14-11 11:15	Jul-14-11 11:20	Jul-14-11 11:25
Percent Moisture	Extracted:						
	Analyzed:	Jul-15-11 08:20	Jul-15-11 08:20	Jul-15-11 08:20	Jul-15-11 08:20	Jul-15-11 08:20	Jul-15-11 08:20
	Units/RL:	% RL	% RL	% RL	% RL	% RL	%
Percent Moisture		9.30 1.00	8.20 1.00	8.22 1.00	8.46 1.00	7.91 1.00	5.75 1
TPH By SW8015 Mod	Extracted:	Jul-15-11 11:00	Jul-15-11 11:00	Jul-15-11 11:00	Jul-15-11 11:00	Jul-15-11 11:00	Jul-15-11 11:00
	Analyzed:	Jul-15-11 21:55	Jul-15-11 22:24	Jul-15-11 22:53	Jul-15-11 23:23	Jul-15-11 23:52	Jul-16-11 00:21
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg
C6-C12 Gasoline Range Hydrocarbons		ND 16.5	ND 16.3	ND 16.3	ND 16.4	ND 16.3	UD I
C12-C28 Diesel Range Hydrocarbons		ND 16.5	ND 16.3	ND 16.3	ND 16.4	ND 16.3	ND 1
C28-C35 Oil Range Hydrocarbons		ND 16.5	ND 16.3	ND 16.3	ND 16.4	ND 16.3	ND
Total TPH		ND 16.5	ND 16.3	ND 16.3	ND 16.4	ND 16.3	ND

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use in interpretations and results expressed throughout this analytical report represent the besi judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our flability is limited to the amount invoiced for this work order unless otherwise agreed to in writing. Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Breht Barron, II

Certificate of Analysis Summary 423201 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

Date Received in Lab: Fri Jul-15-11 08:15 am Report Date: 26-JUL-11

				Project Manager:	Brent Barron, II	
	Lab Id:	423201-019				
Auntrain Donnortad	Field Id:	Sample # 19	No.			
naisanhay sistinuty	Depth:					
The second se	Matrix:	SOIL				
	Sampled:	Jul-14-11 11:30				
Anions by E300	Extracted:					
	Analyzed:	Jul-20-11 00:45				
	Units/RL:	mg/kg RL				
Chloride		858 9.42				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes to responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Brent Barron, II

Certificate of Analysis Summary 423201 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

Date Received in Lab: Fri Jul-15-11 08:15 am Report Date: 26-JUL-11

		010101000		
	Lab Id:	423201-019		
Auchicie Docused	Field Id:	Sample # 19		
Anutysis hequesieu	Depth:			
	Matrix:	SOIL		
	Sampled:	Jul-14-11 11:30		
Percent Moisture	Extracted:			
	Analyzed:	Jul-15-11 12:40		
	Units/RL:	% RL		
Percent Moisture		10.8 1.00		
TPH By SW8015 Mod	Extracted:	Jul-15-11 11:00		
	Analyzed:	Jul-16-11 00:50		
	Units/RL:	mg/kg RL		
C6-C12 Gasoline Range Hydrocarbons		ND 16.8		
C12-C28 Diesel Range Hydrocarbons		ND 16.8		
C28-C35 Oil Range Hydrocarbons		ND 16.8		
Total TPH		ND 16.8		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes to responsibility and makes to warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing. Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Breht Barron, II

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.

F RPD exceeded lab control limits.

J The target analyte was positively identified below the quantitation limit and above the detection limit.

U Analyte was not detected.

- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit
----------------------------	----------------------------

LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, Tx 77477
9701 Harry Hines Blvd, Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
5757 NW 158th St, Miami Lakes, FL 33014
12600 West I-20 East, Odessa, TX 79765
6017 Financial Drive, Norcross, GA 30071
3725 E. Atlanta Ave, Phoenix, AZ 85040

Fax Phone (281) 240-4200 (281) 240-4280 (214) 902 0300 (214) 351-9139 (210) 509-3334 (210) 509-3335 (813) 620-2000 (813) 620-2033 (305) 823-8555 (305) 823-8500 (432) 563-1800 (432) 563-1713 (770) 449-8800 (770) 449-5477 (602) 437-0330

Project Name: Trunk M King Road 6-27-11

/ork Orders : 423201, Lab Batch #: 864022 Sample: 423201-001 / SMP	Bate	Project I h: 1 Matrix	D: Southern U	Union Gas	
Units: mg/kg Date Analyzed: 07/15/11 15:32	SU	RROGATE R	ECOVERY	STUDY	S
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	99.9	99.7	100	70-135	1.15
o-Terphenyl	54.3	49.9	109	70-135	1 2
Lab Batch #: 864022 Sample: 423201-002 / SMP	Bato	h: 1 Matrix	:Soil	ust has	Sele E.
Units: mg/kg Date Analyzed: 07/15/11 16:02	SU	RROGATE R	ECOVERY	STUDY	14 14
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	101	100	101	70-135	
o-Terphenyl	55.7	50.0	111	70-135	12.1
Lab Batch #: 864022 Sample: 423201-003 / SMP	Bate	h: 1 Matrix	: Soil	1.1.1.1.1.1	1999
Units: mg/kg Date Analyzed: 07/15/11 16:31	SU	RROGATE R	ECOVERY	STUDY	1
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	102	100	102	70-135	1000
o-Terphenyl	55.4	50.0	111	70-135	199
Lab Batch #: 864022 Sample: 423201-004 / SMP	Bato	h: 1 Matrix	:Soil	Service and	1. S. S.
Units: mg/kg Date Analyzed: 07/15/11 17:01	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	97.2	99.8	97	70-135	1999 - C
o-Terphenyl	52.2	49.9	105	70-135	
Lab Batch #: 864022 Sample: 423201-005 / SMP	Bato	h: 1 Matrix	x:Soil	Salar Salar	3.00
Units: mg/kg Date Analyzed: 07/15/11 17:31	SU	RROGATE R	ECOVERY	STUDY	30.90
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	102	99.5	103	70-135	1
o-Terphenyl	54.5	49.8	109	70-135	Sec.

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Trunk M King Road 6-27-11

Vork Orders : 423201, Lab Batch #: 864022 Sample: 423201-006 / SMP	Bate	Project I h: 1 Matrix	D: Southern U	Union Gas	
Units: mg/kg Date Analyzed: 07/15/11 18:01	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	105	100	105	70-135	
o-Terphenyl	56.5	50.0	113	70-135	
Lab Batch #: 864022 Sample: 423201-007 / SMP	Batc	h: 1 Matrix	c: Soil	1	
Units: mg/kg Date Analyzed: 07/15/11 18:30	SU	RROGATE R	ECOVERY	STUDY	2 .
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	115	99.9	115	70-135	1. 27
o-Terphenyl	61.6	50.0	123	70-135	1.1.2
Lab Batch #: 864022 Sample: 423201-008 / SMP	Batc	h: 1 Matrix	:Soil		1-14
Units: mg/kg Date Analyzed: 07/15/11 19:00	SU	RROGATE R	ECOVERY	STUDY	1
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	106	100	106	70-135	20.00
o-Terphenyl	56.9	50.2	113	70-135	d'al
Lab Batch #: 864022 Sample: 423201-009 / SMP	Batc	h: 1 Matrix	:Soil	19 J. C.	
Units: mg/kg Date Analyzed: 07/15/11 19:29	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	106	99.7	106	70-135	10 18
o-Terphenyl	56.5	49.9	113	70-135	State.
Lab Batch #: 864022 Sample: 423201-010 / SMP	Bato	h: 1 Matrix	c:Soil	1. 1. 2.	- The
Units: mg/kg Date Analyzed: 07/15/11 20:28	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	105	101	104	70-135	Sec.
o-Terphenyl	55.7	50.3	111	70-135	1.4.4

* Surrogate outside of Laboratory QC limits
** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Project Name: Trunk M King Road 6-27-11

Vork Orders : 423201, Lab Batch #: 864022 Sample: 423201-011 / SMP	Bate	Project l ch: 1 Matri	D: Southern U x: Soil	Union Gas	
Units: mg/kg Date Analyzed: 07/15/11 20:57	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	106	100	106	70-135	
o-Terphenyl	57.6	50.1	115	70-135	
Lab Batch #: 864022 Sample: 423201-012 / SMP	Batc	ch: 1 Matrix	k:Soil		
Units: mg/kg Date Analyzed: 07/15/11 21:26	SU	RROGATE R	ECOVERY	STUDY	11 30
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	104	100	104	70-135	
o-Terphenyl	56.9	50.1	114	70-135	199
Lab Batch #: 864022 Sample: 423201-013 / SMP	Batc	h: 1 Matrix	: Soil		12.15
Units: mg/kg Date Analyzed: 07/15/11 21:55	SU	RROGATE R	ECOVERY S	STUDY	1 Mart
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	105	99.7	105	70-135	
o-Terphenyl	57.1	49.9	114	70-135	April 1
Lab Batch #: 864022 Sample: 423201-014 / SMP	Batc	h: 1 Matrix	:Soil	L. S. L.	1. 3.
Units: mg/kg Date Analyzed: 07/15/11 22:24	SU	RROGATE R	ECOVERY S	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	104	100	104	70-135	1
o-Terphenyl	56.2	50.0	112	70-135	145.7
Lab Batch #: 864022 Sample: 423201-015 / SMP	Bate	h: 1 Matrix	:Soil	n hit	
Units: mg/kg Date Analyzed: 07/15/11 22:53	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	107	99.8	107	70-135	18.000
o-Terphenyl	57.5	49.9	115	70-135	n Maria

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Trunk M King Road 6-27-11

Vork Orders : 423201, Lab Batch #: 864022	Sample: 423201-016 / SMP	Bate	Project I h: 1 Matrix	D: Southern U c: Soil	Union Gas	
Units: mg/kg	Date Analyzed: 07/15/11 23:23	SU	RROGATE R	ECOVERY	STUDY	×
ТРН В	y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		98.1	99.8	98	70-135	
o-Terphenyl	10 - 10 · · · ·	54.5	49.9	109	70-135	1.52 51
Lab Batch #: 864022	Sample: 423201-017 / SMP	Bate	h: 1 Matrix	: Soil	14.11	11. 24
Units: mg/kg	Date Analyzed: 07/15/11 23:52	SU	RROGATE R	ECOVERY	STUDY	
ТРН В	y SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		99.6	99.8	100	70-135	24 . H
o-Terphenyl		55.0	49.9	110	70-135	14,53
Lab Batch #: 864022	Sample: 423201-018 / SMP	Bate	h: 1 Matrix	:Soil	STUDY	
ТРН В	y SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		96.8	100	97	70-135	S. M.
o-Terphenyl	A COMPANY AND A SAME	54.1	50.0	108	70-135	1.54
Lab Batch #: 864022	Sample: 423201-019 / SMP	Bate	h: 1 Matrix	:Soil	STUDY	1
Units: mg/kg	Date Analyzed: 07/16/11 00:50	SU	KRUGATE R	ECOVERY	STUDY	100
ТРН В	Sy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	and the second sec	95.6	99.8	96	70-135	1
o-Terphenyl		51.0	49.9	102	70-135	
Lab Batch #: 865128	Sample: 423201-001 / SMP	Bato	h: 1 Matrix	:Soil	13 1 1 1	
Units: mg/kg	Date Analyzed: 07/22/11 14:53	SU	RROGATE R	ECOVERY	STUDY	
BTEX	by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0279	0.0300	93	80-120	625
4-Bromofluorobenzene		0.0280	0.0300	93	80-120	Charles -

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Project Name: Trunk M King Road 6-27-11

Vork Orders : 423201, Lab Batch #: 865128 Sample: 423201-002	/ SMP Batc	Project I h: 1 Matrix	D: Southern U	Union Gas	
Units: mg/kg Date Analyzed: 07/22/11 15:	:16 SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0270	0.0300	90	80-120	3000
4-Bromofluorobenzene	0.0296	0.0300	99	80-120	
Lab Batch #: 865128 Sample: 423201-012	/ SMP Batc	h: 1 Matrix	: Soil		
Units: mg/kg Date Analyzed: 07/22/11 15:	:39 SU	RROGATE R	ECOVERY	STUDY	Sec.
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0289	0.0300	96	80-120	
4-Bromofluorobenzene	0.0279	0.0300	93	80-120	
Lab Batch #: 865128 Sample: 423201-013	/ SMP Batc	h: 1 Matrix	: Soil		114
Units: mg/kg Date Analyzed: 07/22/11 16:	:01 SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0285	0.0300	95	80-120	4.50
4-Bromofluorobenzene	0.0321	0.0300	107	80-120	1177 B.
Lab Batch #: 865128 Sample: 423201-014	/ SMP Bate	h: 1 Matrix	: Soil		UNG A
Units: mg/kg Date Analyzed: 07/22/11 16:	:24 SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0277	0.0300	92	80-120	1
4-Bromofluorobenzene	0.0287	0.0300	96	80-120	1. 1. 1.
Lab Batch #: 865293 Sample: 423201-011	/ SMP Batc	h: 1 Matrix	: Soil	S	55
Units: mg/kg Date Analyzed: 07/25/11 16:	:44 SU	RROGATE R	ECOVERY	STUDY	- 18
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0299	0.0300	100	80-120	
4-Bromofluorobenzene	0.0321	0.0300	107	80-120	1997

* Surrogate outside of Laboratory QC limits
 ** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Trunk M King Road 6-27-11

Jork Orders: 423201, Lab Batch #: 864022 Sample: 607991-1-BLK / B	LK Bate	Project I	D: Southern U	Union Gas	
Units: mg/kg Date Analyzed: 07/15/11 14:33	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	98.2	100	98	70-135	
o-Terphenyl	52.4	50.1	105	70-135	
Lab Batch #: 865128 Sample: 608656-1-BLK / B	LK Bate	ch: 1 Matrix	s:Solid		
Units: mg/kg Date Analyzed: 07/22/11 12:58	SU	RROGATE R	ECOVERY	STUDY	1.0
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0264	0.0300	88	80-120	1.18
4-Bromofluorobenzene	0.0260	0.0300	87	80-120	1
Lab Batch #: 865293 Sample: 608750-1-BLK / B	LK Bate	h: 1 Matrix	:Solid		army.
Units: mg/kg Date Analyzed: 07/25/11 13:45	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0280	0.0300	93	80-120	
4-Bromofluorobenzene	0.0287	0.0300	96	80-120	
Lab Batch #: 864022 Sample: 607991-1-BKS / B	KS Bate	ch: 1 Matri	: Solid	41.16	
Units: mg/kg Date Analyzed: 07/15/11 13:33	SU	RROGATE R	ECOVERY	STUDY	1
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	116	100	116	70-135	- 16g
o-Terphenyl	52.6	50.1	105	70-135	Sec. 18
Lab Batch #: 865128 Sample: 608656-1-BKS / B	KS Bate	ch: 1 Matri	x:Solid	No.	19
Units: mg/kg Date Analyzed: 07/22/11 11:27	SU	RROGATE R	ECOVERY	STUDY	199
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0298	0.0300	99	80-120	1.1
4-Bromofluorobenzene	0.0305	0.0300	102	80-120	1. 1945

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Trunk M King Road 6-27-11

Lab Batch #. 000235 Sample. 000750-1-	BK5/BK5 Bate	h: 1 Matri	k: Solid	17.	
Units: mg/kg Date Analyzed: 07/25/11 1	15:03 SU	RROGATE R	ECOVERY	STUDY	de la
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0293	0.0300	98	80-120	
4-Bromofluorobenzene	0.0327	0.0300	109	80-120	
Lab Batch #: 864022 Sample: 607991-1-	BSD / BSD Bate	h: 1 Matri	: Solid		
Units: mg/kg Date Analyzed: 07/15/11 1	4:03 SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	96.8	99.9	97	70-135	- C
o-Terphenyl	49.7	50.0	99	70-135	
Lab Batch #: 865128 Sample: 608656-1-	BSD / BSD Bate	h: 1 Matrix	:Solid		
Units: mg/kg Date Analyzed: 07/22/11 1	1:50 SU	RROGATE R	ECOVERY	STUDY	1. N.
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0306	0.0300	102	80-120	
4-Bromofluorobenzene	0.0301	0.0300	100	80-120	
Lab Batch #: 865293 Sample: 608750-1-	BSD / BSD Bate	h: 1 Matri	:Solid	Reality	1
Units: mg/kg Date Analyzed: 07/25/11 1	2:37 SU	RROGATE R	ECOVERY	STUDY	120
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0305	0.0300	102	80-120	1903
4-Bromofluorobenzene	0.0319	0.0300	106	80-120	
Lab Batch #: 864022 Sample: 423201-01	19 S / MS Bate	h: 1 Matri	x:Soil	1.5	
Units: mg/kg Date Analyzed: 07/16/11 0	01:18 SU	RROGATE R	ECOVERY	STUDY	-
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	114	99.9	114	70-135	
	52.6	50.0	105	70 125	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Trunk M King Road 6-27-11

Vork Orders : 423201, Lab Batch #: 865128 Sample: 423850-001 S / MS	Bate	Project I	D: Southern U	Union Gas	
Units: mg/kg Date Analyzed: 07/22/11 17:10	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0279	0.0300	93	80-120	1919
4-Bromofluorobenzene	0.0324	0.0300	108	80-120	
Lab Batch #: 865293 Sample: 424110-001 S / MS	Bato	h: 1 Matrix	: Soil	and the	
Units: mg/kg Date Analyzed: 07/25/11 20:08	SU	RROGATE R	ECOVERY	STUDY	2.6
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0305	0.0300	102	80-120	5.00
4-Bromofluorobenzene	0.0334	0.0300	111	80-120	6 6
Lab Batch #: 864022 Sample: 423201-019 SD / N	ISD Bate	h: 1 Matrix	s:Soil		123
Units: mg/kg Date Analyzed: 07/16/11 01:47	st	RROGATE R	ECOVERY	STUDY	13.5
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	115	99.9	115	70-135	
o-Terphenyl	52.2	50.0	104	70-135	2.74.8
Lab Batch #: 865128 Sample: 423850-001 SD / M	ISD Bate	h: 1 Matrix	: Soil	30 . 17	
Units: mg/kg Date Analyzed: 07/22/11 17:32	SU	RROGATE R	ECOVERY	STUDY	1.4
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0295	0.0300	98	80-120	1.9
4-Bromofluorobenzene	0.0324	0.0300	108	80-120	
Lab Batch #: 865293 Sample: 424110-001 SD / M	ISD Bate	ch: 1 Matrix	x:Soil	1 4	
Units: mg/kg Date Analyzed: 07/25/11 20:31	SL	RROGATE R	ECOVERY	STUDY	1.40
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0293	0.0300	98	80-120	182.4
4-Bromofluorobenzene	0.0319	0.0300	106	80-120	1.8

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: Trunk M King Road 6-27-11

Work Order #: 423201 Analyst: ASA Lab Batch ID: 865128 Sample: 608656-1-BKS Units: mg/kg

Date Prepared: 07/22/2011 Batch #: 1

Project ID: Southern Union Gas Date Analyzed: 07/22/2011 Matrix: Solid

X
0
D
-
0
N
(T
5
0
-
U
[+]
2
1-1
1
-
()
\leq
5
2
5
-
[-]
$\mathbf{\Sigma}$
3
1
1×
2
5
E CO
-
[-]
1X
0
03
1
1×
17
15
. 1
100
1.4
1X
17
14
1 CO
-

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	BIK. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00100	0.100	0.102	102	0.100	0.100	100	2	70-130	35	
Toluene	<0.00200	0.100	0.0963	96	0.100	0.0936	94	3	70-130	35	
Ethylbenzene	<0.00100	0.100	0.105	105	0.100	0.105	105	0	71-129	35	
m_p-Xylenes	<0.00200	0.200	0.202	101	0.200	0.200	100	0.1	70-135	35	
o-Xylene	<0.00100	0.100	0.100	100	0.100	0.100	100	0	71-133	35	
Analyst: ASA	ñ	ate Prepar	ed: 07/25/201	-			Date AI	nalyzed: 0	7/25/2011		
Lab Batch ID: 865293 Sample: 608750-1-1	BKS	Batcl	1 #: 1					Matrix: >	pilo		

Units: mg/kg		BLAN	K/BLANK S	PIKE / B	LANKS	PIKE DUPL	ICALE	GECOVE	TAL STUD	X	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00100	0.100	0.109	109	0.100	0.109	109	0	70-130	35	
Toluene	<0.00200	0.100	0.103	103	0.100	0.101	101	2	70-130	35	
Ethylbenzene	<0.00100	0.100	0.114	114	0.100	0.112	112	2	71-129	35	
m_p-Xylenes	<0.00200	0.200	0.221	111	0.200	0.216	108	2	70-135	35	
o-Xylene	<0.00100	0.100	0.107	107	0.100	0.107	107	0	71-133	35	

Relative Percent Difference RPD = 200*((C-F)/(C+F) Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Trunk M King Road 6-27-11

Flag Flag Flag Project ID: Southern Union Gas Limits %RPD Limits %RPD Limits Control %RPD Control Control 20 20 **BLANK / BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY** BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY **BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY** Date Analyzed: 07/19/2011 Control Limits %R Control Limits %R Control Limits %R 75-125 Date Analyzed: 07/20/2011 75-125 Date Analyzed: 07/15/2011 Matrix: Solid Matrix: Solid Matrix: Solid RPD % RPD % RPD % 6 Blk. Spk Blk. Spk Blk. Spk Dup. %R Dup. %R 107 Dup. %R [G] 26 **Spike Duplicate** Result [F] Duplicate Duplicate Result [F] Result [F] Spike Blank Spike Blank Blank 21.4 19.4 Spike Spike Spike 20.0 20.0 Ξ E Ξ Blank Spike %R [D] Blank Spike %R [D] Blank Spike %R [D] 105 106 Date Prepared: 07/18/2011 Date Prepared: 07/15/2011 Date Prepared: 07/20/2011 Blank Spike Result Blank Spike Result Spike Result 21.0 Blank 21.2 [C] C C Batch #: Batch #: Batch #: Spike Spike Spike 20.0 20.0 B B [B] Blank Sample Result Sample Result Sample Result <0.840 <0.840 Blank Blank P [Y] P Sample: 608194-1-BKS Sample: 864508-1-BKS Sample: 607991-1-BKS **TPH By SW8015 Mod** Anions by E300 Anions by E300 Work Order #: 423201 Lab Batch ID: 864376 Lab Batch ID: 864508 Lab Batch ID: 864022 Units: mg/kg Units: mg/kg Units: mg/kg Analyst: BRB Analyst: BRB Analyst: BEV Analytes Analytes Analytes Chloride Chloride

Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes Relative Percent Difference RPD = 200* (C-F)/(C+F)

Final 1.000

35

35

70-135 70-135

5 3

83 86

825 858

666

84 89

839

1000

<15.0

C6-C12 Gasoline Range Hydrocarbons

C12-C28 Diesel Range Hydrocarbons

666

885

1000

<15.0

Form 3 - MS Recoveries

Project Name: Trunk M King Road 6-27-11

Work Order #: 423201							
Lab Batch #: 864376				Pro	oject ID	: Southern U	nion Gas
Date Analyzed: 07/19/2011	Date P	repared: 07/1	8/2011	А	nalyst: E	BRB	
QC- Sample ID: 423201-001 S		Batch #: 1		N	Aatrix: S	Soil	
Reporting Units: mg/kg		MAT	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride		13.3	213	213	94	75-125	24
Lab Batch #: 864508						1.1.18	
Date Analyzed: 07/20/2011	Date P	repared: 07/2	0/2011	A	nalyst: E	BRB	
QC- Sample ID: 423201-010 S		Batch #: 1		N	Aatrix: S	Soil	
Reporting Units: mg/kg		MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride		25.9	205	223	96	75-125	

Matrix Spike Percent Recovery [D] = $100^{\circ}(C-A)/B$ Relative Percent Difference [E] = $200^{\circ}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

۲

Project ID: Southern Union Gas

QC- Sample ID: 423850-001 S Date Prepared: 07/22/2011

Date Analyzed: 07/22/2011 Lab Batch ID: 865128

Work Order #: 423201

Matrix: Soil 1 ASA Batch #: Analyst:

Reporting Units: mg/kg		M	ATRIX SPIKI	C/MATH	IIX SPII	KE DUPLICAT	TE RECO	DVERY S	STUDY		
BTEX by EPA 8021B Analytes	Parent . Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00101	0.101	0.0892	88	0.101	0.0842	83	6	70-130	35	
Toluene	<0.00202	0.101	0.0822	81	0.101	0.0785	78	5	70-130	35	
Ethylbenzene	<0.00101	0.101	0.0931	92	0.101	0.0883	87	5	71-129	35	
m_p-Xylenes	<0.00202	0.202	0.175	87	0.201	0.167	83	5	70-135	35	
o-Xylene	<0.00101	0.101	0.0884	88	0.101	0.0814	81	8	71-133	35	
Lab Batch ID: 865293	C- Sample ID:	424110	-001 S	Bat	ch #:	1 Matrix	: Soil			4	

865293	07/25/2011	
Batch ID:	Analyzed:	
Lab	Date	

QC- Sample ID:	424110-001 S	Batch #:	1	
Date Prepared:	07/25/2011	Analyst:	ASA	

Reporting Units: mg/kg	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	M	ATRIX SPIKI	E / MATI	RIX SPII	KE DUPLICA	FE RECO	DVERY	STUDY		
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Kesult [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	<0.00101	0.101	0.0869	86	0.101	0.0862	85	1	70-130	35	
Toluene	<0.00202	0.101	0.0799	42	0.101	0.0792	. 78	1	70-130	35	
Ethylbenzene	<0.00101	0.101	0.0861	85	0.101	0.0836	83	. 3	71-129	35	
m_p-Xylenes	<0.00202	0.202	0.164	81	0.201	0.159	19	3	70-135	35 .	
o-Xvlene	<0.00101	0.101	0.0797	79	0.101	0.0786	78	-	71-133	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Final 1.000

Page 28 of 33

Form 3 - MS / MSD Recoveries

Project ID: Southern Union Gas

QC- Sample ID: 423201-019 S Date Prepared: 07/15/2011

Date Analyzed: 07/16/2011 Lab Batch ID: 864022 Work Order #: 423201

1 Matrix: Soil BEV Analyst: Batch #:

Reporting Units: mg/kg		M	ATRIX SPIKI	E / MAT	RIX SPI	KE DUPLICAT	FE RECO	VERY S	STUDY		
TPH By SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	<16.8	1120	940	84	1120	946	84	1	70-135	35	
C12-C28 Diesel Range Hydrocarbons	<16.8	1120	950	85	1120	851	76	11	70-135	35	
										-	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*[(C-F)/(C+F)]

ND = Not Detected. J = Present Below Reporting Limit. B = Present in Blank. NR = Not Requested. I = Interference. NA = Not ApplicableN = See Narrative. EQL = Estimated Quantitation Limit

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Sample Duplicate Recovery

Project Name: Trunk M King Road 6-27-11

Work Order #: 423201						
Lab Batch #: 864376 Date Analyzed: 07/19/2011 12:10 QC- Sample ID: 423201-001 D	Date Prepar Batch	ed:07/18/2011	Ana Ma	Project II alyst:BRB trix: Soil	D: Southern	Union Ga
Reporting Units: mg/kg		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Anions by E300 Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		13.3	18.7	34	20	F
Lab Batch #: 864508 Date Analyzed: 07/20/2011 00:45 QC- Sample ID: 423201-010 D Reporting Units: mg/kg	Date Prepar Batch	ed: 07/20/2011	Ana Ma SAMPLE	lyst:BRB trix: Soil DUPLIC	ATE REC	OVERY
Anions by E300 Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		25.9	26.9	4	20	
Lab Batch #: 864030 Date Analyzed: 07/15/2011 08:20 QC- Sample ID: 423158-001 D Reporting Units: %	Date Prepar Batch	ed: 07/15/2011	Ana Ma SAMPLE	llyst: WRU trix: Soil DUPLIC	ATE REC	OVERY
Percent Moisture Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture		8.11	7.35	10	20	
Lab Batch #: 864031 Date Analyzed: 07/15/2011 12:40 QC- Sample ID: 423201-019 D Reporting Units: %	Date Prepar Batcl	ed: 07/15/2011 n #: 1 SAMPLE /	Ana Ma SAMPLE	alyst: WRU trix: Soil DUPLIC	ATE REC	OVERY
Percent Moisture Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture		10.8	11.5	6	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Xenc	o Laboratorie	S	9	2	N			126	V 005	Vest	HAI	N OI East	CU	STO	λ	REC	ORL	AN	DAI	Pho	YSIS ne: 4	RE(132-5	QUE: 63-18 63-17	5T 00 13			
ď	niert Manager Ben J. Argu	oiio						3	0000		2		12		۵.	rojec	t Nai	ne:	F	LAN -	X	3	I K	54	Roo	00	.27.
: ර	mpany Name Basin Envi	ronmental Serv	ce Tech	polonh	ies, LLC							3.5	125	1		đ	rojec	#	VA	5	F	2051	DC	うえ	2	5	S
ö	impany Address: P.O. Box 3	01									1			- 1		Proj	ect L	ö		C Z	1.in		N.N				
Ö	ly/State/Zip: Lovington,	NM 88260									1			1			P	#						-			1
Te	ephone No: (575) 396-2	37,8		1		Fax No:	5	75) 3	96-1	129				I	Repo	nt Fo	rmat		N N	andar	P		TRF	д,		NPDE	S
Se	mpler Signature:	() and is	ŧ.	D	٨	e-mail:	Ы	n@b	asine	nv.ce	E																
(lab use only		6					5	26	P	ad	3	3	5	S	X				TOLF	A I	Jalyz	For	F			S prs	
CRDER #	L7 Z7 (1)							L	Prese	vation	8 # 0	Conta	iners	-	Aatrix	09				9		0		,	_	7 ,84	
(4)	000		ч	÷.			SJ		1.1.1				1	agbui2=12	bilo2/lio2=	HSM 801	9001 X1	a. K)	(ผานแลง)	Cr Pb Hg S		or BTEX 826		008		Schedule) 24,	YAG #
no seu del) # 8A			teginning Dept	ttq Depth	Date Sampled	bəlqms2 əmiT	ield Filtered	jce	^c ONH	HCI	HOBN	CO2S26N	900N	Other (specify)	GW = Groundwater S	12 9108304-001-418	2001 X1 HU	Cations (Ca, Mg, N	SAR / ESP / CEC) 68 gA 2A .elsi9M	Volatiles	BTEX 8021B/5030	BCI	CHLORIDES)		Pre-9/9) TAT HRUR	TAT brebnest
Ē	toursto # 2			3	11-11-1-	10:00	-	\succ						2	1.10	\times						\square		\geq			×
8	ample #2				11-11-2	So:al	-	X		-	-		_	_	1:00	X			_			-		-		-	~
18	Sample # 3			-	1-14-11	10:10	F	~							1.oc	\times								-		+	~
100	Sample #4			-	1-H-L	10:15	-	~		+	-		+	4	100	>			+			+		7		+	~>>
005	Sample #5			-	1-4-1	10:20	-	~		+	+		+	7	1:0	~		+	+			+	_			+	~>
300	Sample # 6		1		1-11-1	10:25		~ >		+	+		+	7	10	~ >			+		1	+		~ ~		+	<>
LOD	Sample #7	~	1		11-11-1	10:30		<>		+	+		+	no	1:0	$\overset{\sim}{\vdash}$		-	+			+		1		+	
202	Sample 70		T	Ē	11-11-6	04:01	F	×	8	\vdash	-			1 M	1:0	×.								F			X
300	Sample #10		T	Ì	11-41-1	10:45	-	×		\square				5	1.	X			-			-					×
Special Ins	tructions:	Hold +	1 70	376	A		12	$(-1)_{ij}$						- /4	15.0			Sam	ple C	y Co ontair ontair	mme ners l	nts: ntact	~ ~	-	Q>	z	(2
Relinquished	M. Lall	Date	1:1	2 B)	XX			1				1 è	T	E.	:N	er Sy	Cust	is on ody s	conta eals d	ainer(on co	s) ntaine oler(s	er(s)		APP	z	SP.
Balinguist		Date/	001	° N	Received by:	D	r	1			2.1		1	Date	1	μ	e	Sam	y Cou	and D pler/	Client	Rep.	DHL	L a	É APA	P z z S	far 9
Relinquisher	1 22	Date	Tim	8	Received by EL	inda h		·		1. Carl	1		1-L	5-1	-	TIT 8-1.	e 5	Tem	perat	Solar	Prond	ecel	ot:		N	°	
				1	1 11111	1000000																					

Page 31 of 33

Xenco	Labor	atories		V	200	1					CH	AIN	OF	cus	TOD	Y RE	COR	DAI	VD A	NAL	VSIS	RE(SINES	T			
									1260 Ddes	0 We isa, 1	st I-2	20 E	ast 765							Fa	X:	132-5	63-18 63-17	13			
Projec	t Manager:	Ben J. Arguijo	2						2				2			Proj	ect N	ame:	H	MN	7	X	King	So	po	62	1-1
Comp	any Name	Basin Environmenta	I Service	Techno	ologies, LLC					1		Line					Proje	# to	S	BC	140	25	2	2	20	5	F
Comp	anv Address	P.O. Box 301			1.000						14					P	oject	Loc:	1	E	iur	2	N.	M.			
2000	totol/Zio.	Red MN actoria									5.5	2		314				**					- 1	80	~		
Telent	hone No:	(575) 396-2378	<			Fax N	:0	(575) 396	-1426					Re	port	orm	ţ	X	tanda	P		TRR	۵.		APDES	
Samp	ller Signature:	(log) w	KJ.		Λ	e-m	ail:	bm(Das	inenv	/.com	_															
(lab use only)		AI	4				00	No	S	la.	ap	0	SUS	5	Dut	_			TOT	Ā i	nalyze			-		15 14.8	
ORDER #:	42320							Ч	Pre	serva	tion & t	# of C	ontaine	e	Mat	×	85			es	t	09)		. 48, 1	[
(Ájuo					p	pə		sjani						(egbul2=12 19 bilo2\lo2=2 19	Specify Uther	108 WS108	(, Na, K)	(vinitalia)	a Cd Cr Pb Hg		030 or BTEX 82	~	and a		re-Schedule) 24,	YAG & T
əeu del) # 8A	E	LD CODE	20 oninging 8	hged print	Date Sample	olqms2 əmiT	Field Filtered	Total #. of Conta	HNO- eol	HCI	POS₅H	HOBN	Pune CO ² S ² 6N	Other (Specify	teW gnixining=Wg	elds)oq-noN=qN	1.814 .H9T	28 (Cations (Ca, Mg	Anions (CI, SO4	B pA 2A : 21619M	Volatiles	BTEX 80218/50	BCI	CHLORIDES	0	9) TAT HRUR	AT brebnet2
110	the phil	1			7-14-1	05:01 1		-	1						Sol	-	Х			_		-		X		-	R
212 20	1 # 01000	2		3	-11-2	11 10:55		-	X	-	1				Soi	-	X							×			X
012 50	# alon	(3	2		-11-6	20:11 //		-	×						Soi	-	×			-		-		~		-	~
Old Se	ample #	14	-		-h1-L	11:0S		-	×	-			-		Soi	-				-		+				-	~
015 500	mole # 1	2		-	-HI-L	Q1:11 11	-	-	×	-			+		Sol	-	7		1	-		+			1	-	
Ollo Sa.	mple # 16				-h1-L	11:15	-	-	X			+	+		Sei		×		+	+		+		< P		-	< >
OLT Sa	mple #1	2	-	+	-H1-L	11:20	+	-	×	-		-	+		Sol		*		+	+		-	1	< /		+	2
018 Sa.	mple # 1	8	-	+	-11-6	11 11:25	+		X	+		1	+		Š,	_	×Þ			+		+	1			+	
09 50	mple H 1	6	-	+	-11-12	11 11.50	+	-	x	-		-	+		100	1	2		1	-		+		-		-	<
Special Instruct	tions:	1	1171	-4	1×1 0	2	-				1							San	orato	ry Co	mers I	nts: ntact?		Ĭ	A	z	
/	~		2101	10	5	1 Ja										ľ		Š.	CS Fr	se of t	Heads	pace	0		>6	3	n
Relinquished by:	A	hi-L c	-11-	2.45	Received b	k			12.5			1014		Da	e		ae	Susse	tody tody	seals seals	ainer(on co	s) ntaine bler(s	r(s)	00	APA		2×
Magenshiputed	J	S/L		Time	Received b	'n:		1		3		1.5		Da	e	-	ime	San	by Sa	mpler/ urier?	Client	Rep.	DHL			N N P	i ii
Relinquished by.	5	ed /	e	Time	Received t	WELOT: NULLER	for	V				1.214	1	1-15 1-15	te	po	D me	Ten	Thera	une U	5 Dad	C eceip	t:		M	°.	
Contraction of the second seco																											

Page 32 of 33

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa Document Title: Sample Receipt Checklist Document No.: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client:	Basin Env.	
Date/Time:	7-15-11 8:15	
Lab ID # :	423201	
Initials:	RM	

Sample Receipt Checklist

1. Samples on ice?	Blue	(Water)	No	
2. Shipping container in good condition?	Yes	No	None	1.2.3
3. Custody seals intact on shipping container (cooler) and bottles?	(Yes)	No	N/A	
4. Chain of Custody present?	Yes	No	10 - 1 - 1 - C	
5. Sample instructions complete on chain of custody?	Tes	No	SV	in the
6. Any missing / extra samples?	Yes	No		$\mathcal{X} = \mathcal{X}$
7. Chain of custody signed when relinquished / received?	Yes	No	Sec. March 4	6 1 A
8. Chain of custody agrees with sample label(s)?	Yes	No		S. Tra
9. Container labels legible and intact?	(Yes)	No		
10. Sample matrix / properties agree with chain of custody?	Yes	No		
11. Samples in proper container / bottle?	Yes	No	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
12. Samples properly preserved?	Yes	No	N/A	14192
13. Sample container intact?	Yes	No	1. 18 18 13	
14. Sufficient sample amount for indicated test(s)?	(Yes)	No		
15. All samples received within sufficient hold time?	Tes	No		
16. Subcontract of sample(s)?	Yes	Nð	N/A	
17. VOC sample have zero head space?	Yes	No	(N/A)	See.
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4 No).	Cooler 5 No.	48-1
Ibs 3 C Ibs °C Ibs	°C Ibs	°C	lbs	°C

Nonconformance Documentation

Contact:	Contacted by:	Date/Time:	-
Regarding:			
Corrective Action Take	n:		
			_
Check all that apply:	□ Cooling process has begun shortly after sa	npling event and out of temperature	

k all that apply: Cooling process has begun shortly after sampling event and out of temperature condition acceptable by NELAC 5.5.8.3.1.a.1.

Client understands and would like to proceed with analysis

Analytical Report 423624

for Southern Union Gas Services- Monahans

> Project Manager: Rose Slade Trunk M King Road 6-27-11 Southern Union Gas 26-JUL-11

> > Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL01273): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

26-JUL-11

Project Manager: Rose Slade Southern Union Gas Services- Monahans 1507 W. 15th Street Monahans, TX 79756

Reference: XENCO Report No: 423624 Trunk M King Road 6-27-11 Project Address: Eunice, NM

Rose Slade:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 423624. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 423624 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

BATTO

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 423624

Southern Union Gas Services- Monahans, Monahans, TX

Trunk M King Road 6-27-11

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Sample #20	S	07-19-11 10:00		423624-001
Sample #21	S	07-19-11 10:05		423624-002
Sample #22	S	07-19-11 10:10		423624-003
Sample #23	S	07-19-11 10:15		423624-004
Sample #24	S	07-19-11 10:20		423624-005
Sample #25	S	07-19-11 10:25		423624-006
Sample #26	S	07-19-11 10:30		423624-007
Sample #27	S	07-19-11 10:35		423624-008
Sample #28	S	07-19-11 10:40		423624-009
Sample #29	S	07-19-11 10:45		423624-010
Sample #30	S	07-19-11 10:50		423624-011
Sample #31	S	07-19-11 10:55		423624-012
Sample #32	S	07-19-11 11:00		423624-013
Sample #33	S	07-19-11 11:05		423624-014
Sample #34	S	07-19-11 11:10		423624-015
Sample #35	S	07-19-11 11:15		423624-016
Sample #36	S	07-19-11 11:20		423624-017
Sample #37	S	07-19-11 11:25		423624-018

CASE NARRATIVE

Client Name: Southern Union Gas Services- Monahans Project Name: Trunk M King Road 6-27-11

Project ID: Southern Union Gas Work Order Number: 423624 Report Date: 26-JUL-11 Date Received: 07/19/2011

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Analytical non nonformances and comments:

Batch: LBA-864671 TPH By SW8015 Mod SW8015MOD_NM

Batch 864671, o-Terphenyl recovered above QC limits . Matrix interferences is suspected; data not confirmed by re-analysis Samples affected are: 423624-001,423624-018,423624-003,423624-004,423624-005,423624-006,423624-007,423624-008,423624-009,423624-010,423624-011,423624-012,424-012

013,423624-014,423624-015,423624-016,423624-017,423624-002.

Project Id: Southern Union Gas Contact: Rose Slade Project Location: Eunice, NM

Certificate of Analysis Summary 423624 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

Date Received in Lab: Tue Jul-19-11 04:15 pm Report Date: 26-JUL-11

		and a second			Project Manager: E	Srent Barron, II	
	Lab Id:	423624-001	423624-002	423624-003	423624-004	423624-005	423624-006
Analysis Requested	Field Id: Depth:	Sample #20	Sample #21	Sample #22	Sample #23	Sample #24	Sample #25
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jul-19-11 10:00	Jul-19-11 10:05	Jul-19-11 10:10	Jul-19-11 10:15	Jul-19-11 10:20	Jul-19-11 10:25
Anions by E300	Extracted:						
	Analyzed:	Jul-21-11 17:02	Jul-21-11 17:02	Jul-21-11 17:02	Jul-21-11 17:02	Jul-21-11 17:02	Jul-21-11 17:02
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride		622 9.10	12.1 8.87	12.7 8.95	12.6 8.92	15.6 8.80	10.4 8.84
Percent Moisture	Extracted:						
	Analyzed:	Jul-20-11 09:30	Jul-20-11 09:30	Jul-20-11 09:30	Jul-20-11 09:30	Jul-20-11 09:30	Jul-20-11 09:30
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		7.74 1.00	5.35 1.00	6.12 1.00	5.78 1.00	4.58 1.00	4.95 1.00
TPH By SW8015 Mod	Extracted:	Jul-20-11 11:00	Jul-20-11 11:00	Jul-20-11 11:00	Jul-20-11 11:00	Jul-20-11 11:00	Jul-20-11 11:00
	Analyzed:	Jul-20-11 18:55	Jul-20-11 19:25	Jul-20-11 19:54	Jul-20-11 20:23	Jul-20-11 20:53	Jul-20-11 21:21
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C12 Gasoline Range Hydrocarbons		ND 16.3	ND 15.9	ND 16.0	ND 15.9	ND 15.7	ND 15.7
C12-C28 Diesel Range Hydrocarbons		ND 16.3	ND 15.9	ND 16.0	ND 15.9	ND 15.7	ND 15.7
C28-C35 Oil Range Hydrocarbons		ND 16.3	ND 15.9	ND 16.0	ND 15.9	ND 15.7	ND 15.7
Total TPH		ND 16.3	ND 15.9	ND 16.0	ND 15.9	ND 15.7	ND 15.7

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and reactine sequescied invoughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order nuless otherwise agreed to in writing. Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Breht Barron, II

Project Id: Southern Union Gas Contact: Rose Slade

Certificate of Analysis Summary 423624 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

Date Received in Lab: Tue Jul-19-11 04:15 pm Report Date: 26-JUL-11

Project Location: Funice NM					keport Date:	11-TOF-07	
			1 P. P. M. M. B. M. B.		Project Manager:	Brent Barron, II	
	Lab Id:	423624-007	423624-008	423624-009	423624-010	423624-011	423624-012
Andrain Dammand	Field Id:	Sample #26	Sample #27	Sample #28	Sample #29	Sample #30	Sample #31
Anutysis Kequesieu	Depth:						
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jul-19-11 10:30	Jul-19-11 10:35	Jul-19-11 10:40	Jul-19-11 10:45	Jul-19-11 10:50	Jul-19-11 10:55
Anions by E300	Extracted:						
	Analyzed:	Jul-21-11 17:02	Jul-21-11 17:02	Jul-21-11 17:02	Jul-21-11 17:02	Jul-21-11 17:02	Jul-22-11 03:33
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RI
Chloride	-	10.8 8.57	15.0 8.99	20.9 8.99	458 8.82	15.0 9.23	6.79 4.3
Percent Moisture	Extracted:	×					
	Analyzed:	Jul-20-11 09:30	Jul-20-11 09:30	Jul-20-11 09:30	Jul-20-11 09:30	Jul-20-11 09:30	Jul-20-11 09:30
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		2.03 1.00	6.58 1.00	6.59 1.00	4.77 1.00	9.00 1.00	2.62 1.00
TPH By SW8015 Mod	Extracted:	Jul-20-11 11:00	Jul-20-11 11:00	Jul-20-11 11:00	Jul-20-11 11:00	Jul-20-11 11:00	Jul-20-11 11:00
	Analyzed:	Jul-20-11 21:50	Jul-20-11 22:19	Jul-20-11 22:48	Jul-20-11 23:47	Jul-21-11 00:17	Jul-21-11 00:46
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C12 Gasoline Range Hydrocarbons		ND 15.2	ND 16.0	ND 16.0	ND 15.8	ND 16.5	ND 15.4
C12-C28 Diesel Range Hydrocarbons		ND 15.2	ND 16.0	ND 16.0	ND 15.8	ND 16.5	ND 15.
C28-C35 Oil Range Hydrocarbons		ND 15.2	ND 16.0	ND 16.0	ND 15.8	ND 16.5	ND 15.4
Total TPH		ND 15.2	ND 16.0	ND 16.0	ND 15.8	ND 16.5	ND 15.

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warrany to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Breht Barron, II

Project Id: Southern Union Gas Contact: Rose Slade Project Location: Eunice, NM

Certificate of Analysis Summary 423624 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

Date Received in Lab: Tue Jul-19-11 04:15 pm Report Date: 26-JUL-11

					Project Manager: E	Srent Barron, II	
	Lab Id:	423624-013	423624-014	423624-015	423624-016	423624-017	423624-018
Principal Strategy	Field Id:	Sample #32	Sample #33	Sample #34	Sample #35	Sample #36	Sample #37
naisanhay sistinu V	Depth:						
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jul-19-11 11:00	Jul-19-11 11:05	Jul-19-11 11:10	Jul-19-11 11:15	Jul-19-11 11:20	Jul-19-11 11:25
Anions by E300	Extracted:						
	Analyzed:	Jul-22-11 03:33	Jul-22-11 03:33	Jul-22-11 03:33	Jul-22-11 03:33	Jul-22-11 03:33	Jul-22-11 03:33
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride		5.80 4.36	6.31 4.50	6.47 4.53	49.2 4.39	46.5 4.38	5.01 4.30
Percent Moisture	Extracted:						
	Analyzed:	Jul-20-11 09:30	Jul-20-11 09:30	Jul-20-11 09:30	Jul-20-11 09:30	Jul-20-11 09:30	Jul-20-11 09:30
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		3.72 1.00	6.57 1.00	7.21 1.00	4.25 1.00	4.17 1.00	2.41 1.00
TPH By SW8015 Mod	Extracted:	Jul-20-11 11:00	Jul-20-11 11:00	Jul-20-11 11:00	Jul-20-11 11:00	Jul-20-11 11:00	Jul-20-11 11:00
	Analyzed:	Jul-21-11 01:16	Jul-21-11 01:45	Jul-21-11 02:14	Jul-21-11 02:43	Jul-21-11 03:12	Jul-21-11 03:42
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C12 Gasoline Range Hydrocarbons		ND 15.5	ND 16.1	ND 16.2	ND 15.7	ND 15.6	ND 15.4
C12-C28 Diesel Range Hydrocarbons		ND 15.5	ND 16.1	ND 16.2	ND 15.7	ND 15.6	ND 15.4
C28-C35 Oil Range Hydrocarbons		ND 15.5	ND 16.1	ND 16.2	ND 15.7	ND 15.6	ND 15.4
Total TPH		ND 15.5	ND 16.1	ND 16.2	ND 15.7	ND 15.6	ND 15.4

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing. Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Breht Barron, II

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.

F RPD exceeded lab control limits.

J The target analyte was positively identified below the quantitation limit and above the detection limit.

U Analyte was not detected.

- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

- **RL** Reporting Limit
- MDL Method Detection Limit SDL Sample Detection Limit

LOD Limit of Detection

LOQ Limit of Quantitation

PQL Practical Quantitation Limit MQL Method Quantitation Limit

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, Tx 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West 1-20 East, Odessa, TX 79765 6017 Financial Drive, Norcross, GA 30071 3725 E. Atlanta Ave, Phoenix, AZ 85040

Fax (281) 240-4280 (281) 240-4200 (214) 902 0300 (214) 351-9139 (210) 509-3334 (210) 509-3335 (813) 620-2000 (813) 620-2033 (305) 823-8555 (305) 823-8500 (432) 563-1800 (432) 563-1713 (770) 449-8800 (770) 449-5477 (602) 437-0330

Project Name: Trunk M King Road 6-27-11

Jork Orders : 423624, Lab Batch #: 864671 Sample: 423624-001 / SMP	Bate	Project I h: 1 Matrix	D: Southern U c: Soil	Jnion Gas	
Units: mg/kg Date Analyzed: 07/20/11 18:55	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	122	100	122	70-135	2.2
o-Terphenyl	68.4	50.1	137	70-135	*
Lab Batch #: 864671 Sample: 423624-002 / SMP	Bate	h: 1 Matrix	r:Soil		
Units: mg/kg Date Analyzed: 07/20/11 19:25	st	RROGATE R	ECOVERY	STUDY	6.5
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	128	100	128	70-135	19.5
o-Terphenyl	71.4	50.2	142	70-135	*
Lab Batch #: 864671 Sample: 423624-003 / SMP	Bato	h: 1 Matrix	:Soil		-
Units: mg/kg Date Analyzed: 07/20/11 19:54	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	126	99.9	126	70-135	
o-Terphenyl	70.0	50.0	140	70-135	*
Lab Batch #: 864671 Sample: 423624-004 / SMP	Bate	h: 1 Matrix	: Soil	1.5	Sec.
Units: mg/kg Date Analyzed: 07/20/11 20:23	SU	RROGATE R	ECOVERY	STUDY	1
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	133	99.6	134	70-135	1.6.27
o-Terphenyl	73.0	49.8	147	70-135	*
Lab Batch #: 864671 Sample: 423624-005 / SMP	Bate	ch: 1 Matrix	:Soil	1.	10
Units: mg/kg Date Analyzed: 07/20/11 20:53	SU	RROGATE R	ECOVERY	STUDY	Ash a
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctane	131	100	131	70-135	1.5 1.0
o-Terphenyl	73.5	50.0	147	70-135	*

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Trunk M King Road 6-27-11

Vork Orders : 423624, Lab Batch #: 864671 Sample: 423624-006 / SMP	Batc	Project I	D: Southern U x: Soil	Union Gas	
Units: mg/kg Date Analyzed: 07/20/11 21:21	SU	RROGATE R	ECOVERY	STUDY	L.
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	133	99.7	133	70-135	
o-Terphenyl	75.7	49.9	152	70-135	*
Lab Batch #: 864671 Sample: 423624-007 / SMP	Batc	h: 1 Matrix	s:Soil		1.4
Units: mg/kg Date Analyzed: 07/20/11 21:50	SU	RROGATE R	ECOVERY	STUDY	200
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	126	99.5	127	70-135	X
o-Terphenyl	70.1	49.8	141	70-135	*
Lab Batch #: 864671 Sample: 423624-008 / SMP	Batc	h: 1 Matrix	s:Soil	8.82	1.1
Units: mg/kg Date Analyzed: 07/20/11 22:19	SU	RROGATE R	ECOVERY	STUDY	1.1.1
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	126	99.6	127	70-135	51 - T
o-Terphenyl	72.5	49.8	146	70-135	*
Lab Batch #: 864671 Sample: 423624-009 / SMP	Bate	h: 1 Matrix	:Soil		
Units: mg/kg Date Analyzed: 07/20/11 22:48	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	130	99.9	130	70-135	0.26
o-Terphenyl	74.6	50.0	149	70-135	*
Lab Batch #: 864671 Sample: 423624-010 / SMP	Batc	h: 1 Matrix	:Soil		
Units: mg/kg Date Analyzed: 07/20/11 23:47	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	129	100	129	70-135	
o-Terphenyl	74.6	50.0	149	70-135	*

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Trunk M King Road 6-27-11

/ork Orders : 423624, Lab Batch #: 864671 Sample: 423624	I-011 / SMP Bate	Project I th: 1 Matrix	D: Southern U	Union Gas	
Units: mg/kg Date Analyzed: 07/21/1	11 00:17 SU	RROGATE R	ECOVERY	STUDY	19 J.
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	127	100	127	70-135	1.00
o-Terphenyl	74.5	50.2	148	70-135	*
Lab Batch #: 864671 Sample: 423624	-012 / SMP Bate	h: 1 Matrix	: Soil	1.1.1	and a second
Units: mg/kg Date Analyzed: 07/21/1	1 00:46 SU	RROGATE R	ECOVERY S	STUDY	1 de
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	128	99.9	128	70-135	- 18
o-Terphenyl	72.0	50.0	144	70-135	*
Lab Batch #: 864671 Sample: 423624	-013 / SMP Bate	h: 1 Matrix	:Soil	100 100	51.26
Units: mg/kg Date Analyzed: 07/21/1	1 01:16 SU	RROGATE R	ECOVERY S	STUDY	1.1.
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	128	99.8	128	70-135	100
o-Terphenyl	72.3	49.9	145	70-135	*
Lab Batch #: 864671 Sample: 423624	-014 / SMP Bate	h: 1 Matrix	:Soil		
Units: mg/kg Date Analyzed: 07/21/1	1 01:45 SU	RROGATE R	ECOVERY S	STUDY	1. 1. 1
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	133	100	133	70-135	
o-Terphenyl	77.1	50.0	154	70-135	*
Lab Batch #: 864671 Sample: 423624	-015 / SMP Bate	h: 1 Matrix	: Soil	1.14	
Units: mg/kg Date Analyzed: 07/21/1	11 02:14 SU	RROGATE R	ECOVERY	STUDY	4.2
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	130	100	130	70-135	12
o-Terphenyl	75.4	50.0	151	70-135	*

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Trunk M King Road 6-27-11

Lab Batch #: 864671 Sample: 423624-016 / SMP	Bato	ch: 1 Matri	x:Soil		3
Units: mg/kg Date Analyzed: 07/21/11 02:43	st	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	133	100	133	70-135	5
o-Terphenyl	76.7	50.0	153	70-135	*
Lab Batch #: 864671 Sample: 423624-017 / SMP	Bato	h: 1 Matri	x:Soil	Change .	
Units: mg/kg Date Analyzed: 07/21/11 03:12	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	127	99.9	127	70-135	1.0.14
o-Terphenyl	73.0	50.0	146	70-135	*
Lab Batch #: 864671 Sample: 423624-018 / SMP	Bate	h: 1 Matri	x: Soil	14-14-18	
Units: mg/kg Date Analyzed: 07/21/11 03:42	SU	RROGATE R	ECOVERY	STUDY	1.00
TPH By SW8015 Mod Analytes	TPH By SW8015 Mod Amount Found [A] True Amount [B] True Amount [B] Control Limits %R [D] Flags Analytes 128 100 128 70.125				
1-Chlorooctane	128	100	128	70-135	
o-Terphenyl	69.9	50.0	140	70-135	*
Lab Batch #: 864671 Sample: 608381-1-BLK / BL	K Bate	h: 1 Matrix	x: Solid	1.1.1.1.	
Units: mg/kg Date Analyzed: 07/20/11 17:56	SU	RROGATE R	ECOVERY	STUDY	1 er 1
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	115	100	115	70-135	199
o-Terphenyl	64.4	50.0	129	70-135	
Lab Batch #: 864671 Sample: 608381-1-BKS / BK	S Bate	h: 1 Matri	k:Solid		
Units: mg/kg Date Analyzed: 07/20/11 16:56	SU	RROGATE R	ECOVERY	STUDY	per la compañía de la Compañía de la compañía
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	114	99.7	114	70-135	
	50.5	40.0	110	70 125	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Trunk M King Road 6-27-11

Jork Orders : 423624, Lab Batch #: 864671 Sample: 608381-1-BS	BD / BSD Bate	Project I h: 1 Matrix	D: Southern U x: Solid	Union Gas	
Units: mg/kg Date Analyzed: 07/20/11 17:2	26 SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	113	100	113	70-135	1
o-Terphenyl	58.6	50.2	117	70-135	100
Lab Batch #: 864671 Sample: 423624-018	S/MS Batc	h: 1 Matri	x: Soil	1.4.4.	Section .
Units: mg/kg Date Analyzed: 07/21/11 04:	11 SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	124	. 99.6	124	70-135	
o-Terphenyl	67.0	49.8	135	70-135	and and
Lab Batch #: 864671 Sample: 423624-018	SD / MSD Bate	h: 1 Matrix	x:Soil	2.42	
Units: mg/kg Date Analyzed: 07/21/11 04:4	40 SU	RROGATE R	ECOVERY	STUDY	1
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	123	99.6	123	70-135	THE A
o-Terphenyl	67.4	49.8	135	70-135	241.48

* Surrogate outside of Laboratory QC limits
 ** Surrogates outside limits; data and surrogates confirmed by reanalysis
 *** Poor recoveries due to dilution
 Surrogate Recovery [D] = 100 * A / B
 All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: Trunk M King Road 6-27-11

Work Order #: 423624 Lab Batch ID: 865110 Analyst: BRB

Date Prepared: 07/21/2011 Batch #: 1

Sample: 865110-1-BKS

Project ID: Southern Union Gas Date Analyzed: 07/21/2011 Matrix: Solid

X
0
in
X
~
9
5
5
0
C
2
_
[]
2
-
13
-
-
4
5
-
5-1
-
$\mathbf{\Sigma}$
2
\mathbf{Z}
5
-
i
-
1
5-1
-
\mathbf{Z}
2
0
\mathbf{v}
-
4
. 1
H
-
Y
4
. 1
H

Units: mg/kg		BLAN	K /BLANK S	PIKE / I	SLANK S	PIKE DUPI	ICATE	RECOVE	RY STUD	Y	
Anions by E300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	BIK. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<0.840	20.0	21.4	107	20.0	21.0	105	2	75-125	20	
Analyst: BRB	Da	te Prepar	ed: 07/22/201	_			Date A	nalyzed: 0	7/22/2011		
Lab Batch ID: 865135 Sample: 865135-1-1 Units: mg/kg	RKS	BLAN	K/BLANKS	PIKE / H	SLANK S	PIKE DUPI	ICATE 1	RECOVE	RY STUD	Y	
Anions by E300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	BIK. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<4.20	100	102	102	100	101	101	1	75-125	20	

BLANK / BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Date Analyzed: 07/20/2011 Matrix: Solid Date Prepared: 07/20/2011 Batch #: 1 Sample: 608381-1-BKS Lab Batch ID: 864671 Units: mg/kg Analyst: BEV

TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	<15.0	266	848	85	1000	827	83	3	70-135	35	
C12-C28 Diesel Range Hydrocarbons	<15.0	266	857	86	1000	862	86	-	70-135	35	

Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes Relative Percent Difference RPD = 200* (C-F)/(C+F)

Form 3 - MS Recoveries

Project Name: Trunk M King Road 6-27-11

Work Order #: 423624						
Lab Batch #: 865110			Pro	ject ID	Southern U	nion Ga
Date Analyzed: 07/21/2011	Date Prepared: 07/2	1/2011	А	nalyst: B	RB	
QC- Sample ID: 423344-001 S	Batch #: 1		N	Aatrix: S	oil	
Reporting Units: mg/kg	MATH	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes		1=1				
Chionde	108	219	338	105	75-125	
Lab Batch #: 865135						
Date Analyzed: 07/22/2011	Date Prepared: 07/2	2/2011	A	nalyst: E	RB	
QC- Sample ID: 423624-012 S	Batch #: 1		N	Aatrix: S	oil	
Reporting Units: mg/kg	MATH	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300	Parent Sample	Spike	Spiked Sample Result	%R	Control Limits	Flag
Analytes	[A]	Added [B]		[D]	%R	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B) All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Work Order #: 423624 Lab Batch ID: 864671

Form 3 - MS / MSD Recoveries

Project ID: Southern Union Gas

QC- Sample ID: 423624-018 S Date Prepared: 07/20/2011

Matrix: Soil 1 BEV Batch #: Analyst:

Date Analyzed: 07/21/2011 Reporting Units: mg/kg TPH By SW8015 Mod Analytes	Date Prepared: Parent Sample Result [A]	07/20/20 M Spike Added [B]	011 ATRIX SPIK Spiked Sample Result [C]	Ant E / MAT Spiked Sample %R [D]	alyst: RIX SPI Spike Added [E]	BEV KE DUPLICA Duplicate Spiked Sample Result [F]	TE RECO Spiked Dup. %R [G]	DVERY S	STUDY Control Limits %R	Control Limits %RPD	Fla
C6-C12 Gasoline Range Hydrocarbons	<15.3	1020	852	84	1020	847	83	-	70-135	35	
C12-C28 Diesel Range Hydrocarbons	<15.3	1020	<i>TTT</i>	76	1020	795	78	2	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected. J = Present Below Reporting Limit. B = Present in Blank. NR = Not Requested. I = Interference, NA = Not ApplicableN = See Narrative. EQL = Estimated Quantitation Limit

Page 16 of 20

Sample Duplicate Recovery

Project Name: Trunk M King Road 6-27-11

Work Order #: 423624

Lab Batch #: Date Analyzed:	865110 07/21/2011 17:02	Date Prepar	ed: 07/21/2011	Ana	Project I	D: Southern	Union Ga
QC- Sample ID:	423344-001 D	Batch	#: 1	Ma	trix: Soil		
Reporting Units:	mg/kg		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
	Anions by E300 Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		1. 1. 1.	108	109	1	20	s
Lab Batch #: Date Analyzed: QC- Sample ID:	865135 07/22/2011 03:33 423624-012 D	Date Prepar Batch	ed:07/22/2011	Ana Ma	alyst:BRB trix: Soil		
Reporting Units:	mg/kg		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
	Anions by E300 Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride	South States		6.79	7.80	14	20	11-52
Lab Batch #: Date Analyzed: QC- Sample ID: Reporting Units:	864662 07/20/2011 09:30 423624-001 D %	Date Prepar Batel	ed: 07/20/2011 n#: 1 SAMPLE	Ana Ma / SAMPLE	alyst: BRB trix: Soil DUPLIC	ATE REC	OVERY
	Percent Moisture Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture			7.74	7.85	1	20	1.1.1.1.1.1.1

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Xenco Laboratorio	es	+	A	, DC,	1 do				Ĩ	CHAI	IN OI	no:	STO	DYA	ECOI	RD A	ND	ANAI	L YSI	S RE	QUES	T			
							õ 4	600 Jess	Vest a, Te:	1-20 xas 7	East 9765							f	one: ax:	432-432-	563-18	13			
Project Manager: Ben J. Arg	guijo								6					P	oject h	lame	H	(un)	7	M	Kine	2	ad	[od	11-1
Company Name Basin Env	vironmental Serv	ce Tech	polon	gies, LLC							2		1		Proj	ect #	1	DW	Kei	2	Anie	2	Fa		
Company Address: P.O. Box :	301		2					-		-			1		Projec	t Loc	1	E C	nich		N	W.			
City/State/Zip: Lovington	1, NM 88260												1			PO #	1		-	1	1				
Telephone No: (575) 396	2878		1.40		Fax No:	-	(515)	396-1	429				Ĩ.	Sepor	t Form	lat:	×	Stand	ard	_	TRR	d.		NPDE	(0
Sampler Signature:	at in la	\langle	1		> e-mail:	-	m@t	asin	env.c	E				1											
((lab use only)						CU	Se	Sla St	de (s c	5. P. C	NON					Ĕ	i	Analy	te For	F	-	F	, pre	
h()'2-17	>					•	L	0	- interest	0 4 0	Conto			otriv	5	$\left \right $		AL:	+	1	1			27.8	
ORDER #:	_	ŀ				F	+	Prese	rvation	0#8	r Conta	uers	Σ	atrix	8910			95.0	20.6	000	007			34 .4	
(גוטי		ц					512						abinis=15	S=Soul/Suid	08 (WSLO	() X 1000	(viinileall)	CA CC Ph Ho	6					Schedule) 24	YAG M
o əen dal) #		qəQ gaiani	ting Depth	bəiqme2 əli	oelqms2 em	t Filtered	UIR)000 10 .4 II	103		HO	^c O ^z S ²	(Viper(, Specify)	=Drinking Water	= Groundwater	8) 1.814 1	2001 X 1	ons (Cl, SO4, 1	SIS: As Ad Ba	selite	zelitelovin	COC/21700 V	ORIDES)		-919) TAT HS	TAT brebu
FIELD CODE		6əg	End	eQ	лТ	Field	901	NH	нс	PN 24	BN	IN	EM3	MD CM	Het >	Cat	oinA	1A2 IAM	Nois	N92	BCI	CHI N'O		กษ	ets>
(DOV) Sample #20				1-61-2	10:00	+			+	+		+	R	-		+		+	-		1	7		+	<
(02 Sample # 21				11-61-2	10:05	+	~		+	-		+	20	_	>	+		+	-	1	1	~		+	×
COS Sample#22			İ	11-61-2	01:01	-	X	_	+	+	1	+	ŝ		>	+		+	-	+	-	7		+	>
OCH Sample #23				11-51-2	10:15	1	4	-		+		+	2	-	~	+		+		+	1	7		+	~
CCF Sample #24			İ	11-61-6	10.30	+	~	_	+	+		+	3	1	~	-			_			7		+	\geq
OCU Sample # 25		-		11-61-C	10:25	+		_	-	-	1	+	N	~	×	+		+	-	1	-	7		+	X
(X)7 Sample # 26				7-19-11	10:30	+				-		+	3	-	\times	+		+	-		1	7		+	
CO3 Sample #27			1	11-61-6	10:35	+		_	1	+		+	50	-	< >	+	-	+	-		-	7		+	×Þ
CCA Sample #28		1	Ì	7-19-11	10:40	+		-	1	+	1	+	3	-		+		+	-	1	1	4		+	<
CIC Sample#29			÷	11-61-6	54:01	-	<	_		-		-	S	1	~	+		-	_			4		-	2
Special Instructions:	intl	4	c	RTEX												S S	mple	Conta Conta	ommo	Intact	6	0/	Ø	ZZ	
Relinquished by:	Date	Time		Repeived by: /	6	1	0			1		1	ate)	-	Time	100	bels	on con	itaine on c	(s) ontain	er(s)	2	Œ	ZZ	
100KU ADA	11-91-1	1:16	0	5	K	1	1	1				7	3	-		N	istod	seals	ouc	poler(())>6		~
Relinduished by	7/15/11	iul.	5	Received by:)			0	4	122			alte	-		ñ	h	ample)/Cliei	nt Rep UPS	2 DHL	L.	Dé	N N N	tar
Relinquished by:	Date	Time	a	Received by EL	PT:		1-1-	1.14			1	1/10)ate	-	Time U.	H L	mper	ature	Upon	Rece	pt:	-	-	°	
			1				h											1							

Final 1.000

	Xenco Labi	oratories	7	AC	EZC	N C ¹		12 0 d	600 M essa,	Cl lest l	HAIN -20 Ea	OF OF	LSNC	YDO'	REC	ORD	AND	PI	L YSI	S RI 432 432	563- 563-	EST 1800 1713				
	Project Manage	sr. Ben J. Arguijo						5			-				rojec	t Nam	H	LAN	K	Z	X	8	Co	-Dr	2.0	N
	Company Name	e Basin Environmental S	Service T	echnol	ogies, LLC			SA			2				Pr	oject	*	MOC	F	RA	-	25	20	5	~	1
	Company Addre	ess: P.O. Box 301						200	R.						Proje	ect Lo	::	B	4	T	ice		X	M.	~	1
	City/State/Zip:	Lovington, NM 88260						1								PO	#									1
	Telephone No:	(575) 396 2378				. Fax No:	-	75) 3	96-14	29			1	Rep	ort Fo	rmat:	×	Stan	dard			KP		ž	DES	
	Sampler Signat	ture: () 11)	X	$\left \right $	\cap	e-mail:	٩	n@b	asinel	UV.CO	ε															
		Nor Hal	8				10-	050	Sla	000	SL	19.0	WO		Ц				Analy	ze Fo	ų.			╎╎		
	(lab use only)	0 /						N	+.	Stal	nloy	0 S	or Sn	WO	1		101	CLP: TAL:	-		×				Z PL	
	ORDER #:	624						L	Preserv	vation 8	& # of C	ontaine	Ľ	Matrix	99		-		90		09		-	-	48,	1
	(Vino seu dai) #		dinning Depth	dłąde Denit	belqms2 əle	bəlqms2 əm	d Fillered		103	*os	НО	oue د0یدی	her (Specify)	= Groundwater SL=Sludge	Hon-Potable Specify Other 801:	9001 XT 2001 XT .H	ons (Cl, SO4, Alkalinity)	B \ ESP \ CEC		selitelovin	EX 80518/2030 or BTEX 826	.W.B.C	TORIDER		SH TAT (Pre-Schedule) 24,	
	C C	FIELD CODE	Beg	End	7.10.11	12.CI	Field	< Ice	NH	H ² H	eN	ON EN	40			IGT	IBO	IAS		nə2	BTB	O'N	CHI	+	กษ	ne
	amp 110	0 #30	+		11-01-6	10:55		~~		+		-		1:05			+		-		+			+-		T
	CIT Cran	10 4.57			11-61-6	ed:11		×		-				Soil	×								×			
	Oly Same	le # 33			11-61-6	11:05		×						So:1	\times								×			\sim
	015 Samo	12 #34			11-61-6	11:10	-	×		-		-		Sail	\prec		-		-		-		~	-		\geq
	Ollo Samp	1e #35	-		11-61-6	11:15		~	-	+		-		Soil	4		-		-		+		<	+		X
	MAS LIO	010 #136			1-19-1	11:20		\times		-		-		50:1	7		-		-		+	_	~	+		2 h
	C18 Samo	1e#37	-		11-61-2	11:25		<		+	1	+		20:1	~		-		-		+		<	+		
At	010							-		+	1	+			+		+	1	+		+		+	+	+	
5	130		_					_		-		-			-	1	_		_		-		-	-		
4	Special Instructions:	Hald for	2	N	REV											< N L	ample	Cont	ainers	Intac	515	111	S	0.	z 2	
	Reinquished by	Date Date		ime	Rependent	P		0			1	-	Dat	0	Tim 1, 1	000	abels	on co y seal	ntaine s on c	r(s) ontai	ner(s)		.00	~	z z (
	Reinguished by	Date	-	Ime	Received by:	7	3	A			1	-	Dat	- 0	Tim	No.	ample	Hand	L Deliv	ered nt Re	(0)		-02	00	z)z z	
	Relinquished by:	7151 Date	110	1 emi	Received by EL	OT:		1.4				-	7 Pat	1	Tim I	-	by	courie	Upon	UPS Rece	eipt:	-	Fede	- Lor	°C	
			-		11.11	UNNIU	2	5				-			10.1	2								-		
								5																		

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia

Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist Document No.: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client: S	authurn	Union	- the	Services
Date/Time:	7/19/11	16:15		
Lab ID # :	42362	4	Nº .	
Initials: _	H.	· · · · · · · · · · · · · · · · · · ·		

Sample Receipt Checklist

1. Samples on ice?	Blue	(Water)	No	
2. Shipping container in good condition?	(Yes)	No	None	
3. Custody seals intact on shipping container (cooler) and bottles?)	(Yes)	No	N/A	1 (A. 2014)
4. Chain of Custody present?	Yes	No		Ser the
5. Sample instructions complete on chain of custody?	Yes	No		18 ton
6. Any missing / extra samples?	Yes	NO		
7. Chain of custody signed when relinquished / received?) No	1.1.1	a la rei
8. Chain of custody agrees with sample label(s)?		No	12 41 1	and the second
9. Container labels legible and intact?		No	28. 1 ke of	
10. Sample matrix / properties agree with chain of custody?	(Yes)	No		1.1.14
11. Samples in proper container / bottle?	Yes	No		A second
12. Samples properly preserved?	Yes	No	N/A	199
13. Sample container intact?	Yes	No		
14. Sufficient sample amount for indicated test(s)?	Yes	No		
15. All samples received within sufficient hold time?		No		C. Nord
16. Subcontract of sample(s)?		No	(N/A)	ST NAT
17. VOC sample have zero head space?	Yes	No	(N/A)	
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.	Cooler 4	No.	Cooler 5 No.	
Ibs /. (°C Ibs °C Ibs	°C Ib	s °(C Ibs	°C

Nonconformance Documentation

Contact:	Contacted by:	Date/Time:		
Regarding:				
Corrective Action Taken:				
S. M. D. Daniel Service			1 # 1 S & T S	
the state of the second	1. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			
AND AND ANY NELLAN	90.	Sec. Last	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

Check all that apply:
Cooling process has begun shortly after sampling event and out of temperature condition acceptable by NELAC 5.5.8.3.1.a.1.
Initial and Backup Temperature confirm out of temperature conditions
Client understands and would like to proceed with analysis

Analytical Report 424157

for Southern Union Gas Services- Monahans

> Project Manager: Rose Slade Trunk M King Road 6-27-11

27-JUL-11

Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL01273): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

27-JUL-11

Project Manager: Rose Slade Southern Union Gas Services- Monahans 1507 W. 15th Street Monahans, TX 79756

Reference: XENCO Report No: 424157 Trunk M King Road 6-27-11 Project Address: Lea County, NM

Rose Slade:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 424157. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 424157 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

BATA

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 424157

Southern Union Gas Services- Monahans, Monahans, TX

Trunk M King Road 6-27-11

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Sample # 38	S	07-25-11 10:00		424157-001
Sample # 39	S	07-25-11 10:05		424157-002
Sample # 40	S	07-25-11 10:10		424157-003
Sample # 41	S	07-25-11 10:15		424157-004
Sample # 42	S	07-25-11 10:20		424157-005
Sample # 43	S	07-25-11 10:25		424157-006
Sample # 44	S	07-25-11 10:30		424157-007
Sample # 45	S	07-25-11 10:35		424157-008
Sample # 46	S	07-25-11 10:40		424157-009
Sample # 47	S	07-25-11 10:45		424157-010
Sample # 48	S	07-25-11 10:50		424157-011
Sample # 49	S	07-25-11 10:55		424157-012
Sample # 50	S	07-25-11 11:00		424157-013
Sample # 51	S	07-25-11 11:05		424157-014
Sample # 52	S	07-25-11 11:10		424157-015
Sample # 53	S	07-25-11 11:15		424157-016
Sample # 54	S	07-25-11 11:20		424157-017
Sample # 55	S	07-25-11 11:25		424157-018
Sample # 56	S	07-25-11 11:35		424157-019
Sample # 57	S	07-25-11 11:30		424157-020
Sample # 58	S	07-25-11 11:40		424157-021
Sample # 59	S	07-25-11 11:45		424157-022
Sample # 60	S	07-25-11 11:50		424157-023
Sample # 61	S	07-25-11 11:55		424157-024
Sample # 62	S	07-25-11 12:00		424157-025
CASE NARRATIVE

Client Name: Southern Union Gas Services- Monahans Project Name: Trunk M King Road 6-27-11

Project ID: Work Order Number: 424157 Report Date: 27-JUL-11 Date Received: 07/25/2011

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None
Analytical non nonformances and comments:

Batch: LBA-865450 TPH By SW8015 Mod SW8015MOD_NM

Batch 865450, o-Terphenyl recovered above QC limits . Matrix interferences is suspected; data not confirmed by re-analysis Samples affected are: 424157-001.

Project Id:

Certificate of Analysis Summary 424157 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

roject Location: Lea County, NM					Project Manager:	Brent Barron. II	
	Lab Id:	424157-001	424157-002	424157-003	424157-004	424157-005	424157-006
Auntralia Dammand	Field Id:	Sample # 38	Sample # 39	Sample # 40	Sample # 41	Sample # 42	Sample # 43
naisanhay sistinuty	Depth:						
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jul-25-11 10:00	Jul-25-11 10:05	Jul-25-11 10:10	Jul-25-11 10:15	Jul-25-11 10:20	Jul-25-11 10:25
Anions by E300	Extracted:						
	Analyzed:	Jul-26-11 15:39	Jul-26-11 15:39	Jul-26-11 15:39	Jul-26-11 15:39	Jul-26-11 15:39	Jul-26-11 15:39
	Units/RL:	mg/kg R	L mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride		13.8 4.	.39 9.35 4.39	7.58 4.56	7.99 4.34	9.43 4.31	13.2 4.35
Percent Moisture	Extracted:						
	Analyzed:	Jul-26-11 17:00	Jul-26-11 17:00	Jul-26-11 17:00	Jul-26-11 17:00	Jul-26-11 12:20	Jul-26-11 12:20
	Units/RL:	% R	RL % RL	% RL	% RL	% RL	% RL
Percent Moisture		4.35 1.	.00 4.42 1.00	7.88 1.00	3.28 1.00	2.66 1.00	3.38 1.00
TPH By SW8015 Mod	Extracted:	Jul-26-11 11:30	Jul-26-11 11:30	Jul-26-11 11:30	Jul-26-11 11:30	Jul-26-11 11:30	Jul-26-11 11:30
	Analyzed:	Jul-26-11 15:39	Jul-26-11 16:09	Jul-26-11 16:38	Jul-26-11 17:08	Jul-26-11 17:38	Jul-26-11 18:08
	Units/RL:	mg/kg R	UL mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C12 Gasoline Range Hydrocarbons		ND 15	5.0 ND 15.0	ND 15.0	ND 15.0	ND 15.3	ND 15.5
C12-C28 Diesel Range Hydrocarbons		ND 15	5.0 ND 15.0	ND 15.0	ND 15.0	ND 15.3	ND 15.5
C28-C35 Oil Range Hydrocarbons		ND IS	5.0 ND 15.0	ND 15.0	ND 15.0	ND. 15.3	ND 15.5
Total TPH		ND IS	5.0 ND 15.0	ND 15.0	ND 15.0	ND 15.3	ND 15.5

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. In interpretations and results expressed introughout throughout throughout the base judgment of XENOC Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Breht Barron, II

Project Id:

Certificate of Analysis Summary 424157 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

Date Received in Lab: Mon Jul-25-11 04:30 pm Report Date: 27-JUL-11

roject Location: Lea County, NM					Project Manager:	Srent Barron. II	
	Lab 1d:	424157-007	424157-008	424157-009	424157-010	424157-011	424157-012
	Field Id:	Sample # 44	Sample # 45	Sample # 46	Sample # 47	Sample # 48	Sample # 49
Analysis Kequested	Depth:			ALL AND			
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jul-25-11 10:30	Jul-25-11 10:35	Jul-25-11 10:40	Jul-25-11 10:45	Jul-25-11 10:50	Jul-25-11 10:55
Anions by E300	Extracted:						
	Analyzed:	Jul-26-11 15:39	Jul-26-11 15:39	Jul-26-11 15:39	Jul-26-11 15:39	Jul-26-11 15:39	Jul-26-11 15:39
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride		7.42 4.36	33.8 4.36	7.81 4.32	60.2 4.37	30.3 4.36	73.3 4.29
Percent Moisture	Extracted:						
	Analyzed:	Jul-26-11 12:20	Jul-26-11 12:20	Jul-26-11 12:20	Jul-26-11 12:20	Jul-26-11 12:20	Jul-26-11 12:20
in which is	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		3.64 1.00	3.66 1.00	2.73 1.00	3.91 1.00	3.70 1.00	2.13 1.00
TPH By SW8015 Mod	Extracted:	Jul-26-11 11:30	Jul-26-11 11:30	Jul-26-11 11:30	Jul-26-11 11:30	Jul-26-11 11:30	Jul-26-11 11:30
	Analyzed:	Jul-26-11 18:37	Jul-26-11 19:07	Jul-26-11 19:36	Jul-26-11 20:05	Jul-26-11 21:03	Jul-26-11 21:32
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C12 Gasoline Range Hydrocarbons		ND 15.5	ND 15.6	ND 15.4	ND 15.7	ND 15.6	ND 15.3
C12-C28 Diesel Range Hydrocarbons		ND 15.5	ND 15.6	ND 15.4	ND 15.7	ND 15.6	ND 15.3
C28-C35 Oil Range Hydrocarbons	1	ND 15.5	ND 15.6	ND 15.4	ND 15.7	ND 15.6	ND 15.3
Total TPH		ND 15.5	ND 15.6	ND 15.4	ND 15.7	ND 15.6	· ND 15.3

This analytical report, and the entire data package if represents, has been made for your exclusive and confidential use. The interpretations and reusine expressed invoughout in advictal report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the annount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Breht Barron, II

Project Id:

Certificate of Analysis Summary 424157 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

Project Manager: Rent Barron, II Project Manager: Rent Barron, II Audysis Requested Lab /lt $24157-013$ $24157-015$ $424157-015$ 4261111220 $4125-1111220$ $4125-1111220$ $4125-1111220$ $4125-1111220$ $4125-111220$ $4125-111220$ $4125-111220$ $4125-111220$ $4125-111220$ $4125-111220$ $4125-111220$ $4125-111220$ $4125-111220$ $4125-111220$ $4125-111220$ $4125-111220$ </th <th>rolect Location: Lea County, NM</th> <th></th> <th></th> <th></th> <th></th> <th>Keport Date:</th> <th>11-10F-/2</th> <th></th>	rolect Location: Lea County, NM					Keport Date:	11-10F-/2	
Lab lat Lab lat 24157-013 424157-015 424157-015 424157-017 424157-017 424157-015 Analysis Requested Endd ld: Market Sample # 50 Sample # 51 Sample # 52 Sample # 53 Sample # 54 Sample # 54 Market Soft Lab L Soft Lab L Soft Lab L Soft						Project Manager: 1	Brent Barron , II	
Hadysis Requested Field Id: Depti. sample # 50 sample # 51 sample # 52 sample # 53 sample # 54 sample # 55 Analysis Requested Depti. so(1 so(1 </th <th></th> <th>Lab Id:</th> <th>424157-013</th> <th>424157-014</th> <th>424157-015</th> <th>424157-016</th> <th>424157-017</th> <th>424157-018</th>		Lab Id:	424157-013	424157-014	424157-015	424157-016	424157-017	424157-018
Anturyos requested Depti Solt Solt<	Auntralia Damanda	Field Id:	Sample # 50	Sample # 51	Sample # 52	Sample # 53	Sample # 54	Sample # 55
	Anulysis Kequesieu	Depth:			と見いた			
		Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sampled:	Jul-25-11 11:00	Jul-25-11 11:05	Jul-25-11 11:10	Jul-25-11 11:15	Jul-25-11 11:20	Jul-25-11 11:25
	Anions by E300	Extracted:						
		Analyzed:	Jul-26-11 15:39	Jul-26-11 15:39	Jul-26-11 15:39	Jul-26-11 15:39	Jul-26-11 15:39	Jul-26-11 15:39
		Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Percent Moisture Extracted: Jul-26-11 12:20 Jul-26-11 11:30 Jul-26-11 21:301 Jul-26-11 21:301 Jul-26-11 21:301 Jul-26-11 21:301 Jul-26-11	Chloride		1090 18.1	707 8.92	7.82 4.53	7.97 4.31	8.11 4.41	7.00 4.30
	Percent Moisture	Extracted:						
		Analyzed:	Jul-26-11 12:20	Jul-26-11 12:20	Jul-26-11 12:20	Jul-26-11 12:20	Jul-26-11 12:20	Jul-26-11 12:20
Percent Moisture 6.93 1.00 5.87 1.00 7.21 1.00 2.58 1.00 2.42 1.00 TPH By SW8015 Mod Extracted: Jul-26-11 11:30 Jul-26-11 12:31 Jul-26-11 12:31 Jul-26-11 12:31 Jul-26-11 12:31 Jul-27-11 00:01 Jul-27-11 00:30 Jul-27-11 01:31 Jul-27-11 01:31 Jul-27-11 01:31 Jul-27-11 01:31 Jul		Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
TPH By SW8015 Mod Extracted: Jul-26-11 11:30 Jul-26-11 23:31 Jul-27-11 00:01 Jul-27-11 00:30 C6-C12 Gasoline Range Hydrocarbons ND I6.0 ND I6.2 ND I6.2 ND I5.4 ND	Percent Moisture		6.93 1.00	5.87 1.00	7.21 1.00	2.58 1.00	4.73 1.00	2.42 1.00
	TPH By SW8015 Mod	Extracted:	Jul-26-11 11:30	Jul-26-11 11:30	Jul-26-11 11:30	Jul-26-11 11:30	Jul-26-11 11:30	Jul-26-11 11:30
		Analyzed:	Jul-26-11 22:01	Jul-26-11 22:31	Jul-26-11 23:01	Jul-26-11 23:31	Jul-27-11 00:01	Jul-27-11 00:30
C6-C12 Gasoline Range Hydrocarbons ND 16.2 ND 16.2 ND 15.4 ND 15.7 ND 15.4 C12-C28 Dissel Range Hydrocarbons ND 16.2 ND 16.0 ND 16.2 ND 15.4 ND 15.7 ND 15.4 C12-C28 Dissel Range Hydrocarbons ND 16.2 ND 16.2 ND 15.4 ND 15.4 ND 15.4 C28-C35 Oil Range Hydrocarbons ND 16.0 ND 16.2 ND 15.4 ND 15.7 ND 15.4 C0al TPH ND 16.0 ND 16.2 ND 15.4 ND 15.7 ND 15.4		Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C12-C28 Diesel Range Hydrocarbons ND 16.2 ND 16.2 ND 16.2 ND 15.4 ND 15.7 ND 15.4 C28-C35 Oil Range Hydrocarbons ND 16.2 ND 16.0 ND 16.2 ND 15.4 ND 15.7 ND 15.4 Total TPH ND 16.2 ND 16.2 ND 15.4 ND 15.7 ND 15.4	C6-C12 Gasoline Range Hydrocarbons		ND 16.2	ND 16.0	ND 16.2	ND 15.4	ND 15.7	ND 15.4
C28-C35 Oil Range Hydrocarbons ND 16.2 ND 16.0 ND 16.2 ND 15.4 ND 15.7 ND 15.4 Total TPH ND 16.2 ND 16.0 ND 16.2 ND 15.4 ND 15.7 ND 15.4	C12-C28 Diesel Range Hydrocarbons		ND 16.2	ND 16.0	ND 16.2	ND 15.4	ND 15.7	ND 15.4
Total TPH - ND 16.2 ND 16.0 ND 16.2 ND 15.4 ND 15.4 ND 15.4 ND 15.4 ND 15.4	C28-C35 Oil Range Hydrocarbons		ND 16.2	ND 16.0	ND 16.2	ND 15.4	ND 15.7	ND 15.4
	Total TPH		ND 16.2	ND 16.0	ND 16.2	ND 15.4	ND 15.7	ND 15.4

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed involgiout this analytical report represent the besi judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warrany to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Breht Barron, II

Project Id:

Southern Union Gas Services- Monahans, Monahans, TX Certificate of Analysis Summary 424157 Project Name: Trunk M King Road 6-27-11

Date Received in Lab: Mon Jul-25-11 04:30 pm

Analysis Requested Lab le Analysis Requested Depil Matrix Samplee Anions by E300 Extracted	ld: Id:				Project Manager: F	Srent Barron. II		
Lab la Analysis Requested Analysis Requested Dept Matrix Anions by E300 Extracted	Id: Id:				Quinter and for a			
Analysis Requested Efield Ic Deplimation Samplee Samplee Extracted Extracted	:pI	424157-019	424157-020	424157-021	424157-022	424157-023	424157-024	
Anutysis Acquested Depti Matrix Sample Anions by E300 Extracted		Sample # 56	Sample # 57	Sample # 58	Sample # 59	Sample # 60	Sample # 61	
Matrix Anions by E300 Extracted	th:							
Sample Anions by E300 Extracted	ix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
Anions by E300 Extracted	ed: J	ul-25-11 11:35	Jul-25-11 11:30	Jul-25-11 11:40	Jul-25-11 11:45	Jul-25-11 11:50	Jul-25-11 11:55	
	ed:							
Analyze	ed: J	ul-27-11 14:39	Jul-27-11 14:39	Jul-27-11 14:39	Jul-27-11 14:39	Jul-27-11 14:39	Jul-27-11 14:39	
Units/RI	:72	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	-
Chloride		612 17.7	13.6 8.82	627 8.71	651 8.74	6.67 4.29	6.67 4.30	_
Percent Moisture Extracte	ed:							1
Analyze	ed: J	ul-26-11 12:20	Jul-26-11 12:40	Jul-26-11 12:40	Jul-26-11 12:40	Jul-26-11 12:40	Jul-26-11 12:40	-
Units/RI	:T2	% RL	% RL	% RL	% RL	% RL	% RL	
Percent Moisture		4.92 1.00	4.74 1.00	3.57 1.00	3.84 1.00	2.01 1.00	2.35 1.00	_
TPH By SW8015 Mod Extracted	ed: J	ul-26-11 11:30	Jul-26-11 11:30	Jul-26-11 09:45	Jul-26-11 09:45	Jul-26-11 09:45	Jul-26-11 09:45	1
Amalyzee	ed: J	ul-27-11 00:59	Jul-27-11 01:28	Jul-26-11 19:28	Jul-26-11 19:56	Jul-26-11 20:23	Jul-26-11 20:50	-
Units/RI	:T2	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	
C6-C12 Gasoline Range Hydrocarbons	2	ND 15.8	ND 15.8	ND 15.6	ND 15.6	ND 15.3	ND 15.4	
C12-C28 Diesel Range Hydrocarbons		ND 15.8	ND 15.8	18.1 15.6	18.7 15.6	19.7 15.3	19.7 15.4	-
C28-C35 Oil Range Hydrocarbons		ND 15.8	ND 15.8	ND 15.6	ND 15.6	ND 15.3	ND 15.4	-
Total TPH		ND 15.8	ND 15.8	18.1 15.6	18.7 15.6	19.7 15.3	19.7 15.4	-

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warmany to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Breht Barron, II

Project Id:

Certificate of Analysis Summary 424157 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk M King Road 6-27-11

 Date Received in Lab:
 Mon Jul-25-11 04:30 pm

 Report Date:
 27-JUL-11

 Project Manager:
 Brent Barron II

Analysis Requested								
Analysis Requested	Lab Id:	424157-02	25		ngement where	ti function and the second sec		
vinuity very sustained	Field Id:	Sample # (62					
	Depth:							
	Matrix:	SOIL						
S	Sampled:	Jul-25-11 12	2:00					
Anions by E300 Ex	Sxtracted:							
W	Analyzed:	Jul-27-11 14	4:39					
CI CI CI CI CI CI CI CI CI CI CI CI CI C	Units/RL:	mg/kg	RL					
Chloride		6.70	4.28					
Percent Moisture Ex	Extracted:							
W States	Analyzed:	Jul-26-11 12	2:41					
C.	Units/RL:	%	RL					
Percent Moisture		1.85	1.00					
TPH By SW8015 Mod Ex	Extracted:	Jul-26-11 0	9:45					
W	Analyzed:	Jul-26-11 2	1:19					
0	Units/RL:	mg/kg	RL					
C6-C12 Gasoline Range Hydrocarbons		ND	15.3					
C12-C28 Diesel Range Hydrocarbons		ND	15.3					
C28-C35 Oil Range Hydrocarbons		ND	15.3	12			~	
Total TPH		ND	15.3					

٦

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Brent Barron, II

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. D Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.

F RPD exceeded lab control limits.

- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

+ Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, Tx 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West I-20 East, Odessa, TX 79765 6017 Financial Drive, Norcross, GA 30071 3725 E. Atlanta Ave, Phoenix, AZ 85040

Phone Fax (281) 240-4280 (281) 240-4200 (214) 351-9139 (214) 902 0300 (210) 509-3334 (210) 509-3335 (813) 620-2000 (813) 620-2033 (305) 823-8500 (305) 823-8555 (432) 563-1800 (432) 563-1713 (770) 449-8800 (770) 449-5477 (602) 437-0330

Quantitation

Project Name: Trunk M King Road 6-27-11

Vork Orders : 424157, Lab Batch #: 865450 Sample: 424157-001 / SMP	Batc	Project I h: 1 Matrix	D: x: Soil			
Units: mg/kg Date Analyzed: 07/26/11 15:39	SU	RROGATE R	ECOVERY	STUDY		
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	133	100	133	70-135		
o-Terphenyl	73.2	50.0	146	70-135	*	
Lab Batch #: 865450 Sample: 424157-002 / SMP	Batc	h: 1 Matrix	: Soil	A. Bart		
Units: mg/kg Date Analyzed: 07/26/11 16:09	SU	RROGATE R	ECOVERY	STUDY		
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	109	99.7	109	70-135		
o-Terphenyl	60.5	49.9	121	70-135	1	
Lab Batch #: 865450 Sample: 424157-003 / SMP	Batc	h: 1 Matrix	: Soil	120 320	art and	
Units: mg/kg Date Analyzed: 07/26/11 16:38	SU	RROGATE R	ECOVERY	STUDY	1	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	111	100	111	70-135	1992	
o-Terphenyl	60.5	50.1	121	70-135	Regard	
Lab Batch #: 865450 Sample: 424157-004 / SMP	Batc	h: 1 Matrix	:Soil		11 - N	
Units: mg/kg Date Analyzed: 07/26/11 17:08	SU	RROGATE R	Matrix: Soil TE RECOVERY STUDY			
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	107	100	107	70-135		
o-Terphenyl	56.8	50.0	114	70-135		
Lab Batch #: 865450 Sample: 424157-005 / SMP	Batc	h: 1 Matrix	s:Soil			
Units: mg/kg Date Analyzed: 07/26/11 17:38	SU	RROGATE R	ECOVERY	STUDY		
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	107	99.5	108	70-135		
o-Terphenyl	58.0	49.8	116	70-135		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Trunk M King Road 6-27-11

Vork Orders : 424157, Lab Batch #: 865450	Sample: 424157-006 / SMP	Batc	Project I h: 1 Matrix	D: Soil		
Units: mg/kg	Date Analyzed: 07/26/11 18:08	SU	RROGATE R	ECOVERY	STUDY	
TPH By S Ana	W8015 Mod alytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		112	100	112	70-135	199
o-Terphenyl		59.6	50.1	119	70-135	
Lab Batch #: 865450	Sample: 424157-007 / SMP	Batc	h: 1 Matrix	:Soil	T BEAK	Real
Units: mg/kg	Date Analyzed: 07/26/11 18:37	SU	RROGATE R	ECOVERY	STUDY	1.46
TPH By S Ans	W8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		110	99.8	110	70-135	1
o-Terphenyl	1. C.	59.1	49.9	118	70-135	1. The second
Lab Batch #: 865450	Sample: 424157-008 / SMP	Bate	h: 1 Matrix	: Soil		See.
Units: mg/kg	Date Analyzed: 07/26/11 19:07	SU	RROGATE R	ECOVERY	STUDY	
TPH By S Ana	W8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		117	101	116	70-135	1.1.1
o-Terphenyl		63.4	50.3	126	70-135	
Lab Batch #: 865404	Sample: 424157-021 / SMP	Batc	h: 1 Matrix	:Soil	S 2. 18	
Units: mg/kg	Date Analyzed: 07/26/11 19:28	SU	RROGATE R	ECOVERY	STUDY	14.25
TPH By S Ana	W8015 Mod alytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	h	109	100	109	70-135	
o-Terphenyl	A Contraction of the second	53.1	50.0	106	70-135	1.6
Lab Batch #: 865450	Sample: 424157-009 / SMP	Batc	h: 1 Matrix	:Soil	AL SAL	
Units: mg/kg	Date Analyzed: 07/26/11 19:36	SU	RROGATE R	ECOVERY	STUDY	
TPH By S Ana	W8015 Mod alytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	1.2	116	99.6	116	70-135	100
o-Terphenyl		62.5	49.8	126	70-135	4 1 1

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Trunk M King Road 6-27-11

Vork Orders : 424157, Lab Batch #: 865404 Sample: 424157-022 / SMP	Bate	Project I h: 1 Matrix	D: x: Soil			
Units: mg/kg Date Analyzed: 07/26/11 19:56	SU	RROGATE R	ECOVERY	STUDY		
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	110	100	110	70-135		
o-Terphenyl	54.1	50.0	108	70-135		
Lab Batch #: 865450 Sample: 424157-010 / SMP	Batc	h: 1 Matrix	s:Soil	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	11.	
Units: mg/kg Date Analyzed: 07/26/11 20:05	SU	RROGATE R	ECOVERY	STUDY		
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	112	100	112	70-135	1.1	
o-Terphenyl	61.2	50.2	122	70-135	Sect	
Lab Batch #: 865404 Sample: 424157-023 / SMP	Batc	h: 1 Matrix	:Soil		1.1	
Units: mg/kg Date Analyzed: 07/26/11 20:23	SU	RROGATE R	ECOVERY	STUDY	12.12	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	109	100	109	70-135	1. Alla	
o-Terphenyl	52.4	50.0	105	70-135	3 15	
Lab Batch #: 865404 Sample: 424157-024 / SMP	Batc	h: 1 Matrix	:Soil	147 (18 S. 1	1 18	
Units: mg/kg Date Analyzed: 07/26/11 20:50	SU	RROGATE R	ECOVERY	Soil COVERY STUDY		
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	106	100	106	70-135	20.2	
o-Terphenyl	51.2	50.0	102	70-135	Sher	
Lab Batch #: 865450 Sample: 424157-011 / SMP	Bate	h: 1 Matrix	:Soil	122.15	12	
Units: mg/kg Date Analyzed: 07/26/11 21:03	SU	RROGATE R	ECOVERY	STUDY		
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	112	100	112	70-135		
o-Terphenyl	60.4	50.2	120	70-135	1.45	

* Surrogate outside of Laboratory QC limits
** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Trunk M King Road 6-27-11

Vork Orders: 424157, Lab Batch #: 865404 Sample: 424157-025 / SMP	Bate	Project I th: 1 Matrix	D: x:Soil		
Units: mg/kg Date Analyzed: 07/26/11 21:19	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	103	100	103	70-135	
o-Terphenyl	50.1	50.0	100	70-135	1.
Lab Batch #: 865450 Sample: 424157-012 / SMP	Bate	h: 1 Matrix	:Soil		1.3.2
Units: mg/kg Date Analyzed: 07/26/11 21:32	SU	RROGATE R	ECOVERY	STUDY	N. C.
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctane	114	100	114	70-135	1
o-Terphenyl	60.8	50.0	122	70-135	
Lab Batch #: 865450 Sample: 424157-013 / SMP	Batc	h: 1 Matrix	:Soil		
Units: mg/kg Date Analyzed: 07/26/11 22:01	SU	RROGATE R	ECOVERY	STUDY	A state
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctane	113	100	113	70-135	N 1
o-Terphenyl	62.4	50.2	124	70-135	1 and
Lab Batch #: 865450 Sample: 424157-014 / SMP	Batc	h: 1 Matrix	:Soil	12-24-3	1
Units: mg/kg Date Analyzed: 07/26/11 22:31	SU	RROGATE R	ECOVERY	STUDY	1
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	108	101	107	70-135	1. 3.8
o-Terphenyl	60.1	50.3	119	70-135	
Lab Batch #: 865450 Sample: 424157-015 / SMP	Batc	h: 1 Matrix	c:Soil	1 Carton	s fri hay
Units: mg/kg Date Analyzed: 07/26/11 23:01	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	108	100	108	70-135	
o-Terphenyl	57.8	50.2	115	70-135	6.53

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Trunk M King Road 6-27-11

Work Orders : 424157, Lab Batch #: 865450 Sample: 424157-010	6 / SMP Bate	Project I h: 1 Matrix	D: c:Soil		
Units: mg/kg Date Analyzed: 07/26/11 2	3:31 SU	RROGATE R	ECOVERY	STUDY	28
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	106	99.8	106	70-135	
o-Terphenyl	57.4	49.9	115	70-135	A 13 1
Lab Batch #: 865450 Sample: 424157-01	7 / SMP Bate	h: 1 Matrix	c: Soil		WY THE
Units: mg/kg Date Analyzed: 07/27/11 00	0:01 SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	113	99.7	113	70-135	No.
o-Terphenyl	60.2	49.9	121	70-135	11.5
Lab Batch #: 865450 Sample: 424157-013	8 / SMP Bate	h: 1 Matrix	:Soil	de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda	2.843
Units: mg/kg Date Analyzed: 07/27/11 00	0:30 SU	RROGATE R	ECOVERY S	STUDY	1. I
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	105	100	105	70-135	
o-Terphenyl	55.7	50.1	111	70-135	2.14
Lab Batch #: 865450 Sample: 424157-019	9 / SMP Batc	h: 1 Matrix	:Soil	1.14.39	
Units: mg/kg Date Analyzed: 07/27/11 00	0:59 SU	RROGATE R	ECOVERY S	STUDY	i sin
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	111	100	111	70-135	
o-Terphenyl	61.1	50.1	122	70-135	5. 12
Lab Batch #: 865450 Sample: 424157-020	0 / SMP Batc	h: 1 Matrix	:Soil	1111	
Units: mg/kg Date Analyzed: 07/27/11 0	1:28 SU	RROGATE R	ECOVERY S	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	112	100	112	70-135	111
o-Terphenyl	61.3	50.1	122	70-135	1000

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Trunk M King Road 6-27-11

Vork Orders: 424157, Lab Batch #: 865404 Sample: 608798-1-BLK / BI	K Bate	Project I	D: x: Solid		
Units: mg/kg Date Analyzed: 07/26/11 12:53	SU	RROGATE R	ECOVERY	STUDY	1
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	98.8	100	99	70-135	10.1
o-Terphenyl	47.8	50.0	96	70-135	
Lab Batch #: 865450 Sample: 608836-1-BLK / BI	.K Bate	ch: 1 Matrix	s:Solid	al work	
Units: mg/kg Date Analyzed: 07/26/11 15:08	SU	RROGATE R	ECOVERY	STUDY	Sec. 1
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	103	99.7	103	70-135	
o-Terphenyl	57.5	49.9	115	70-135	
Lab Batch #: 865404 Sample: 608798-1-BKS / Bk	S Bate	h: 1 Matrix	:Solid		1. 1.
Units: mg/kg Date Analyzed: 07/26/11 11:57	SU	RROGATE R	ECOVERY	STUDY	Sec.
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	98.5	100	99	70-135	
o-Terphenyl	44.9	50.0	90	70-135	Sel and
Lab Batch #: 865450 Sample: 608836-1-BKS / BK	S Bate	h: 1 Matrix	:Solid		T. C.P.
Units: mg/kg Date Analyzed: 07/26/11 14:08	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	116	101	115	70-135	1.50.1
o-Terphenyl	53.6	50.3	107	70-135	
Lab Batch #: 865404 Sample: 608798-1-BSD / BS	D Bate	h: 1 Matrix	x:Solid	Se ren	0.18
Units: mg/kg Date Analyzed: 07/26/11 12:25	SU	RROGATE R	ECOVERY	STUDY	10.15
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	105	100	105	70-135	
o-Terphenyl	48.3	50.0	97	70-135	1.

* Surrogate outside of Laboratory QC limits
 ** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Trunk M King Road 6-27-11

Vork Orders : 424157, Lab Batch #: 865450 Sample: 608836-1-BSI	D/BSD Bate	Project I	D: x:Solid		
Units: mg/kg Date Analyzed: 07/26/11 14:33	8 SU	RROGATE R	ECOVERY	STUDY	19.30
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	113	100	113	70-135	
o-Terphenyl	52.6	50.2	105	70-135	213
Lab Batch #: 865404 Sample: 424176-004 S	/ MS Batc	h: 1 Matrix	:Soil	a Ca	
Units: mg/kg Date Analyzed: 07/26/11 22:40	0 SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	114	100	114	70-135	1 State
o-Terphenyl	49.0	50.0	-98	70-135	
Lab Batch #: 865450 Sample: 424157-020 S	/MS Bate	h: 1 Matrix	: Soil	in the sea	64 82
Units: mg/kg Date Analyzed: 07/27/11 01:5	7 SU	RROGATE R	ECOVERY	STUDY	2.8
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	118	99.7	118	70-135	1
o-Terphenyl	52.7	49.9	106	70-135	14.9 F.
Lab Batch #: 865404 Sample: 424176-004 S	D/MSD Bate	h: 1 Matrix	:Soil	and the	1
Units: mg/kg Date Analyzed: 07/26/11 23:00	8 SU	RROGATE R	ECOVERY	STUDY	14
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	113	100	113	70-135	1.1.1.1.1
o-Terphenyl	49.3	50.0	99	70-135	
Lab Batch #: 865450 Sample: 424157-020 S	D / MSD Bate	h: 1 Matrix	x:Soil		
Units: mg/kg Date Analyzed: 07/27/11 02:20	6 SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	117	99.7	117	70-135	2
o-Ternhenyl	52.9	49.9	106	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: Trunk M King Road 6-27-11

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERV STUDY Spike 20.0 E Blank Spike %R [D] 109 Date Prepared: 07/26/2011 Date Prepared: 07/27/2011 Blank Spike Result 21.8 Batch #: Batch #: Spike 20.0 B Sample Result <0.840 Blank [Y] Sample: 865391-1-BKS Sample: 865468-1-BKS Anions by E300 Work Order #: 424157 Lab Batch ID: 865391 Lab Batch ID: 865468 Units: mg/kg ma/ka Analyst: BRB Analyst: BRB Analytes Tuite Chloride

Flag

Limits %RPD

Control Limits %R

RPD %

Dup. %R

Duplicate

Spike

Blank

Result [F]

Blk. Spk

20

75-125

107

21.3

Date Analyzed: 07/27/2011

Matrix: Solid

Control

Date Analyzed: 07/26/2011

Project ID:

Matrix: Solid

Units: IIIg/Kg											
Anions by E300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[8]	[C]	[0]	[E]	Result [F]	[G]			1	
Chloride	<0.840	20.0	19.8	66	20.0	21.2	106	7	75-125	20	
Analyst: BEV Lab Batch ID: 865404 Sample: 60879	Da 198-1-BKS	ite Preparo Batch	ed: 07/26/20	11			Date A	nalyzed: 0 Matrix: S	17/26/2011		

Sample: 608798-1-BKS

Lab Batch ID: 865404

٦

Flag Limits %RPD Control 35 35 BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Control Limits %R 70-135 70-135 RPD % 9 8 Blk. Spk Dup. 102 93 %R [G] Result [F] Duplicate Spike Blank 1020 931 Spike 1000 1000 Ξ Blank Spike %R [D] 96 86 Blank Spike Result <u>[</u>] 962 860 Spike 1000 1000 B Blank Sample Result <15.0 <15.0 [Y] TPH By SW8015 Mod C6-C12 Gasoline Range Hydrocarbons C12-C28 Diesel Range Hydrocarbons Units: mg/kg Analytes

Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes Relative Percent Difference RPD = 200*|(C-F)/(C+F)|

BS / BSD Recoveries

Project Name: Trunk M King Road 6-27-11

 Work Order #: 424157
 424157

 Analyst: BEV
 608836-1-BKS

 Lab Batch ID: 865450
 Sample: 608836-1-BKS

Units: mg/kg

Date Prepared: 07/26/2011

Batch #: 1

Project ID: Date Analyzed: 07/26/2011 Matrix: Solid

N	
8	
2	
5	
5	
2	
(F)	
>	
0	
0	
2	
H	
E	
E	
A	
S	
T	
4	
Z	
H	
9	
Ě	
P	
0	
X	
Z	
Y	
B	
7	
1	
X	
Ы	
5	
Y	
Z	
A	
1	
8	
Y	
Z	
A	
I	
B	
1	

TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	<15.1	1010	853	84	1000	826	83	3	70-135	35	
C12-C28 Diesel Range Hydrocarbons	<15.1	1010	763	76	1000	859	86	12	70-135	35	

Relative Percent Difference RPD = 200*(C-F)/(C+F) Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[F] All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: Trunk M King Road 6-27-11

Work Order #: 424157							
Lab Batch #: 865391				Pro	ject ID	:	
Date Analyzed: 07/26/2011	Date Pr	epared: 07/2	6/2011	А	nalyst: E	BRB	
QC- Sample ID: 424224-001 S	1	Batch #: 1		N	Aatrix: S	Soil	
Reporting Units: mg/kg	ſ	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	JDY
Inorganic Anions by EPA 300		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride		137	209	342	98	75-125	
Lab Batch #: 865468	1. 1. 1.	-					
Date Analyzed: 07/27/2011	Date Pr	epared: 07/2	7/2011	А	nalyst: E	BRB	
QC- Sample ID: 424157-020 S	1	Batch #: 1		N	Aatrix: S	Soil	
Reporting Units: mg/kg	ſ	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	JDY
Inorganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride		13.6	210	214	95	75-125	

Matrix Spike Percent Recovery [D] = $100^{*}(C-A)/B$ Relative Percent Difference [E] = $200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Work Order #: 424157

Form 3 - MS / MSD Recoveries

٢

Project ID:

Lab Batch ID: 865404	0	C- Sample ID:	424176	-004 S	Ba	tch #:	1 Matriy	k: Soil				
Date Analyzed: 07/26/2011	Q	ate Prepared:	07/26/2	011	An	alyst:	BEV					
Reporting Units: mg/kg	1		M	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE RECO	OVERY (STUDY		
TPH By SW8015 Mod Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons		<15.4	1030	866	67	1030	1020	66	2	70-135	35	
C12-C28 Diesel Range Hydrocarbons		16.5	1030	918	88	1030	932	89	2	70-135	35	
Lab Batch ID: 865450 Date Analyzed: 07/27/2011	8 a -	C- Sample ID: ate Prepared:	424157.07/26/2	-020 S 011	Ba An	tch #: alyst:	l Matris BEV	k: Soil				
Keporting Units: mgkg			M	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE RECO	OVERY	STUDY		
TPH By SW8015 Mod Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	1	<15.7	1050	898	86	1050	206	86	1	70-135	35	
C12-C28 Diesel Range Hydrocarbons	1	<15.7	1050	911	87	1050	811	77	12	70-135	35	

C12-C28 Diesel Range Hydrocarbons

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)

ND = Not Detected. J = Present Below Reporting Limit. B = Present in Blank. NR = Not Requested. I = Interference. NA = Not ApplicableN = See Narrative. EQL = Estimated Quantitation Limit

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Final 1.000

Page 21 of 27

Sample Duplicate Recovery

Project Name: Trunk M King Road 6-27-11

Work Order #: 424157

Lab Batch #: 865391 Date Analyzed: 07/26/2011 15:39 OC- Sample ID: 424224-001 D	Date Prepared: 0 Batch #:	07/26/2011 1	Ana Mat	Project I lyst:BRB trix: Soil	D:	
Reporting Units: mg/kg	SA	MPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Anions by E300 Analyte	Pare	nt Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		137	137	0	20	
Lab Batch #: 865468 Date Analyzed: 07/27/2011 14:39 QC- Sample ID: 424157-020 D	Date Prepared: 0 Batch #:	7/27/2011 1	Ana Mat	lyst:BRB rix: Soil	. de	
Reporting Units: mg/kg	SA	MPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Anions by E300 Analyte	Pare	nt Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		13.6	14.4	6	20	1. S.L.
Lab Batch #: 865396 Date Analyzed: 07/26/2011 17:00 QC- Sample ID: 424177-001 D Reporting Units: %	Date Prepared: 0 Batch #:	7/26/2011 1 MPLE /	Ana Mat SAMPLE	lyst: WRU rix: Soil DUPLIC	ATE REC	OVERY
Analyte	Pare	nt Sample Result [A]	Duplicate Result [B]	RPD	Limits %RPD	Flag
Percent Moisture	Mary marks from	6.09	6.08	0	20	
Lab Batch #: 865428 Date Analyzed: 07/26/2011 12:20 QC- Sample ID: 424157-005 D	Date Prepared: 0 Batch #:	7/26/2011 1	Ana Mat	lyst: WRU rix: Soil	ATE DEC	OVEDY
Reporting Units: 70	SA	INIPLE /	SAMPLE	DUPLIC	ATE REC	UVERY
Percent Moisture Analyte	Pare	nt Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	2	2.66	2.68	1	20	10

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Sample Duplicate Recovery

Project Name: Trunk M King Road 6-27-11

Work Order #: 424157

Lab Batch #: 865432 Date Analyzed: 07/26/2011 12:41 QC- Sample ID: 424157-025 D	Date Prepared: 07/26/2011 Batch #: 1	Ana Ma	Project I alyst: WRU trix: Soil	D:	
Reporting Units: %	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Percent Moisture	1.85	1.83	1	20	6.195

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Xenco L	aboratori	es	C!	5	= 19	M		20	600 dess	Wes a, Te	CHA t1-20	VIN East	SS OF	SUS	TODY	REC	OR	AN	A DY	Pho	YSI YSI	S R 432 432	563- 563-	1713	, k	Z N		-
Project N	Aanager: Ben J. Ar	rguijo	2				1								6	rojec	st Na	me:	Sou	ther	5	noi	Gas				9	35
Compan	y Name Basin En	ivironmental Serv	vice Te	chno	logies, LLC				-			1		-		₽.	rojec	#	1					14				1
Compan	v Address: P.O. Box	301					4	3-4	1		N.	in the	-	2.		Pro	ect l	:00	Lea	oun	IV, N	Σ			ACry.		2	
Citv/Stat	a/Zin-	D NM 88260		in the				1	-12				1				P	#0										
Telephoi	ne No: (575) 396	-2378			* *	Fax No:		575)	396-1	429					Repo	nt Fo	orma		X	tanda	P			RP			PDE	0
Sampler	Signature:	Jul Le HA	A			e-mail:	-	Om	asin	env.	COM								- 1									
	Del -		-				0	0.0	ade.	50	60	00	5			Ц			104	۲ i	ylan	Ze Fo	-				-	_
(lab use only)		-					3		1av	eyte	Su	0.0	¥			4			TOT				×			-	12 14	_
して # Sadad	L SIHZ						ł	4	reser	vatio	n & #	ofCC	ntair	ers	Matrix	891	-		F	əS			09			-	·87 '	٢
(Vino eeu de			thqəO pri	Depth	pəldme	belqmeč	sted	SJAUIBINGT						Specify)	nking Water SL = Sludg	181 181 180 180 WSL08 190	9001 X1 9001 X	(X '6N '6M '6)	CI, SO4, Alkalinity)	As Ag Ba Cd Cr Pb Hg	1	səlite	0518/2030 of BTEX 82		E SIO		TAT (Pre-Schedule) 24	YAG & TAT by
H) # 84.	FIELD CODE		nnigə8	6ulbn3	Date S	? əmiT	Field Filte	10[9] # 0	^c ONH	нсі	*OS ² H	HOEN	None	Other (cw - cr	P Hdl	T :HqT	Cations () anoinA	Metals: 4	volatiles	slovime2	BTEX 80	M.A.O.N	RHTOBI	-	HSUR	epuets
001 8	MAID # 38				1-25-11	10:00		-	-		-	-			Soil	1									X			×
5. 200	NO # 59				1-35-1	10:05		1 1	_		-	-			lia?	~	_			-	-				>	-	_	X
002 Qu	04 # 010m				7.25-11	10:10		1				-	_		Soil	~	_			-			-			-	-	4
D NOO	16 # diam				1-22-1	10:15		-	_		-	-	_		5011	-	_		-	-			-		×	-	-	×
000	2H#dom				7-25-11	10:20		-	2		-	-	_		Soil	~	-		-	-			-		×	-	-	
006 300	molo # 43				11-52-2	10:25		-	-		1	-	-		Soil	~	-		-	-			+		X	+	-	~
2 L20	44 # 91 dm				7-25-11	10:30		1	-		+	+	-		Soi/	4	-		1	+			+	1	1	+	+	4
005 30	male #45				7-25-11	10:35		~	-		+	+	-		50:1	-	_		+	+			+	1	×	+	+	×
and Se	mple #46				7-25-1/	05:01	1	~	+		+	+	-	T	Soil	7	-			+	1		+	T	×	+	+	×P
0101	My thy	F CHILDREN			7-25-11	CA.01		5	-		-	-	-		1ion	1	-			-			-		2	-	-	×
Special Instructio	us:	Hold For		S	EK	(1 mg							1	VOC	Diple Os Fr	Contai Contai	Head	Intar	es t		04	3.0	zZ	(4)
Relinquished by	A A	Date 7-25-1	±	e M	Received by:	Kit	1		pag	2	1	1	r	NO N	te/1/	1. 1	N N	ous Sus	tody tody	seals seals	onconc	r(s) ontai	ner(s) (s)	1	9-2	1.	zzz	0
Reinduished Priv	T	Date		S C	Received by:	1	h	1	1)	1		199	-	Da	te	F.	he	San	by Co	mpler	/Clier	ered ups	D. 2	Ļ		m	ZZ	ar
Reinquished by.	K	1 Date	i -	eE	Received by E	Alund on l	~	1.21	122	1.5		S.S.S.	L	-7 c	ite 5. //	F	e C	Ten	bera	ture	Nod	(Je)	Jin		2	2	S	

Page 24 of 27

Xei	nco Labor	atories	7	5	No No	N		126	N 00	C	HAI	N OF	201	ISTO	DYF	RECO	ORD	AN	DAI	Phoi	SIS /	RE 32.	QUE:	100				
	Postore Manager							Ö	0553	Iex	as 7	6976			6	olect	Nan		Sout	Tax Terr	Cuni	on o	as l	Lun	E.	King	22	03
	Froject Manager.	Den J. Arguijo							1					1				1							6	1		1
	Company Name	Basin Environmental	Service Te	chnolo	ogies, LLC									1		Pr	oject	#					1	1				1
	Company Address:	P.O. Box 301						5						1		Proje	oct Lo	C:	eac	ounty	NW .							1
	Citv/State/Zip:	Lovinaton, NM 88260						-									P	#										1
	Telephone No:	(575) 396-2378/	. MI			Fax No:	(2	15) 39	96-14	29				1	Repo	rt Fo	rmat:		St.	andar	P	-	TRF	٩ د		NPI	ES	
	Sampler Signature:	110/10	All "	1	1	e-mail:	ud	1@ba	sine	UV.CC	E	2		-				1									1	
		11/1	2 417				F	156.	Slac	60	Sug.	CON	1		1					Ā	alyze	For				Τ	s	
(lab use	s only)	>					IJ じ	1-1	Sta	rley	NS M	20	F						TOTAL		+	F	F				12 10	
ORDE	R#:							ă	serv	tion	8 1 01	Cont	ainei	2	Aatrix	891			\vdash	əS	\vdash	09				_	'81	5
ųA)			ч				S.							6ipnis=1s Ji	IOS/IIOS = S	NSI WSI	9001 XT	3' K)	(Annue)	d Cr Pb Hg		C8 X318 10					chedule) 24,	
no seu dal) # 8			łq∍ପ pninnię	ding Depth	bəlqms2 əts	belqms2 emi	Id Filtered Isl #. of Container	Э	[£] ON	20°	HOP	°O ^z S ^z e	ene	V - Drinking Wate	v = Croundwate	03 1.814 He	9001 X1 :He	N '6W 'eD) suone	AR / ESP / CEC	O 68 6A 2A : slote	seliteles	Seminorial	IC	.M.R.O	CONIDES		2-arg) TAT H2U	
TE	Po po to the	LD CODE	98	En	7.25-11	10:50	Fie	a 🗡	н	н	N	N	N	Na S	X CA	<u>н</u> >	Η	20	1A AS	W	DA	96	в	N			8	
33	Completing	49			1.2.1	10:55	-	×		-				5	-:0	X			-					-	×		X	-
NE	Sample #	50			7.25-11	00:11	-	X		-				5		X									×		×	
NO	Jample #	51			11-52-1	11:05	-	X						5		>		-	-		1	-		1	×		\leq	-
0 Y	Samole #	52			7.25-11	01:11	-	\times		-	-			S	1:0	\times		+	+		+	-	_	1	×		7	
010	Sample #	53			9-25-11	11:15	-	×		-	-		-	5		7		+	-+		-+	+		1			×	- 1
017	Sample #	54			11-52.2	11.20	-	\times		-	-		+	5	1.0	4		+	+	1	+	+	1	1	-		\leq	-
013	Samole #.	55			7-25-11	11:25	-	X		+	+	1	+	5	1:0	×		+	+	1	+	+	-	7			4	
010	Samole #	56			1.25-11	11:39	-	\times		+	+		1	2	1:0	7		+	+		+	+		-	~		7	
020	Sample #	57			9-25-11	11:30	-	~		-	-			2	10	×			-			-		-	-		9	
Specia	I Instructions: ¹	IL) (. a.	R	TEX												1	Sam	ple C	y Col	ers ir	nts: nact	~ ~	V	(>)>	0	ZX	
Relindy	ished by	Date Date	TT I		Received by	2-1	K	1	1	1.0		1	10	Date	1	EN	. 1	Custo	ls on sho	conta eals d	iner(s) Itain	er(s)	V	5>>	JU.	26	
Reference	Man Andrews	Date			Received by.	P	1	1	1.	1	-		-	Date	-	E	Ð	Sam	ple H y Sar	and Dand	eliver	Rep	~	U.	-17-1-1-	2.1	ZZ	
Reimdo	lished by:	Date	2	S a	Received by EL	QT And	1		110				1	Date	=	Tim /	00	Temp	perati	Ine Ut	- Caro	2 13	507		ų.	lo Lon	C otal	
			-		1146 1	MUTUCYCH		1	1			1				3	Į		I			1			·			٦

Page 25 of 27

1-0	1-22-11				DES			4 22	48'	AG & TAT HZUS (Pre-Schedule) کا، ۲۹۳۲ AG AT AT ADA	×	R	X	×	×				-	ZX	zá	N N N	ç
. N.	24				ž			-	-		-	-		-	_	+	-	+	-	(2)×	dy >>	AQ	7.2
0		-								HLORIDES	×	X	×	×	X	1	+			V	0.	V	-
ST 800	ŝ				5			_		.M.A.O.M												_	
QUE 63-1 63-1	Sas				TH					SCI	-		_			-+	-	+	-	~ ~	er(s)	CHO CHO	, H
RE(32-5	u u					- 14	For:	F	09	STEX 80218/5030 of BTEX 820	-					+	-	+	-	its: lact	() Itaine	Rep.	- Con
e: 4	ini		NN	1			lyze	Н		Seineloviero				-	-	+	+	+		imer ins in adsig	ner(s	liver lient U	NE
hon Fax:	E		inty,		dard		Ana	Η	əs	Metals: As Ag Ba Cd Cr Pb Hg				-		+	+			Com taine of He	ls or ls or	d De	09
ANA	Ith		S		Stan		à	AL		SAR / ESP / CEC							+			Con	sea sea	Han	ature
Q	So		Lea		×		F	TOT		Anions (CI, SO4, Alkalinity)	1									nple Cs F	tody stody	by S by C	uper
INC	me:	**	ö	# 0						(X , 6M , 6M , 6C) snote										San	Cus	San	Ten
ORI	t Na	ojec	ect L	ď	mai					9001 XT 3005 XT 3H97											M a	e	0
EC	ojec	ď	Proje		t Fo				99	108 WS108 1.814 .Hd1		X	×	×	×	_	-		_		E M	E	Tim
YR	P		-		epor		1		trix	NP ~ NOR-POTABLE Specify Oth	-	-	1.	-	-								-
00					R				Ма	W = Drinking Water 5 = Sludg	S	S	Se	S	20						1		0 =
ISU	1	1	1						S	Other (Specify)						+	+	+		- 23	N O	Date	Dati
L C					1			1	aine	anoN						1	+				~		1
V OI iast			1				200		Cont	CO2S26N			1										
1AIN 20 E 5 79				1		5	5.5	,	# Of	HOBN							1					1.0	1.2
Ch St I-				-14		100.	SO		8 UO	[₽] OS ^z H									-	1 4 4 14	1.8	1.	14
We a, T			1	100	1429	nenv	ale		rvati	HCI						_	_	\square	_	1	1.20		
600 dess		1			-965	asir	Sla 34		reser	\$ONH						-	-	+	_	14.5			
0 1			1		75)	- DE	22		٩	106			X	×	~	\rightarrow	-	+				1/	
		160		2.2	5	Ъ	100	•		olal #. of Containers	1-	-	-	-	_	-	+	+			- 1	Y	2
										baratii3 blai			-	-	-	-	+		-	(X		1
M J					Fax No	e-ma				bəlqms2 əmiT	04:11	Sh:11	11:50	11:55	00:21	•				(X	þ	T. Jan
N V		gies, LLC								Date Sampled	11-52-6	11-52-4	11-52-1	7-25-11	1-52-1				1 2 2 1	K	Repeived by:	Received by:	Received by ELO
Je		olor								under Briton:						1	-	+	_	12	-	1	-
1º		echi				0				digo logita	-					-	-	+	_	N	m i	n in	ime
1		Ce T								dtqaDening Depth	3									1	L	[]	
+		Serv				K										1	-		-	for	-		
		tal	-	09		Lo			_											2	Sel	ate 1	ate
		men		88	_	5					6-					Y			1	Z	~ ~	5 J	-
ŝ	oling	iron	201	NN	2378	1	H				50	1										12	-
E	Arg	Env	XO	gton	396-	1	T			u u	200	1	0								1.5		
2	C La	asin	0.8	oving	75)		N			100	N.	3	10	19	62		X				1		1
a	m)	m	0	Ľ	(2)		1			9	Ħ	T	#	Ħ	#	1.							V
ō	er.	e	ress		1	ture					00	10	a	a	10		1	X		-	IR	14	1
å	nag	Van	Add	Zip:	No	igna	1			1		3	1 2	- de	- 2	-					AN		1)
	Ma	ny l	, Ku	ate/	one	er S					S	S	S	20,	So					suo	13	V.	V
0	ject	npa	npa	//Ste	eph	nple								5						ucti	1 AC	1×	py:
Ŭ	Pro	Cor	Cor	City	Tel	Sar	(vint	1	#										1	/	Per 1	1	hed
u a							C BSI	2	ER	16	12	2	N	5	2					cial	indu	Sind	duis
×							- del		ORI	(vino sau del) # 8A	10	2	0	20	8					Spe	Relir	A	Relin
1000								-	-		-		-					-			-		

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa. Philadelphia Document Title: Sample Receipt Checklist Document No.: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Phoenix, San Antonio, Tampa

Prelogin / Nonconformance Report - Sample Log-In

Client:	SUGS	
Date/Time:	7-25-11 16:30	
Lab ID # :	424157	
Initials:	2M	

Sample Receipt Checklist

1. Samples on ice?		Blue	Water	No	188 (3.5)
2. Shipping container in good condition?		Yes	No	None	
3. Custody seals intact on shipping container (cooler) and bottles?		Yes	No	(NTA)	1100
4. Chain of Custody present?		Yes	No		
5. Sample instructions complete on chain of custody?		Yes	No	1.1.1.1.1.1	Sec. 1
6. Any missing / extra samples?		Yes	No		
7. Chain of custody signed when relinquished / received?		Yes	No		and the
8. Chain of custody agrees with sample label(s)?		Yes	No		1999
9. Container labels legible and intact?		Yes	No		
10. Sample matrix / properties agree with chain of custody?		Yes	No		
11. Samples in proper container / bottle?		Yes	No	1. 1. 1. 1. 1.	1 2 1 2 4
12. Samples properly preserved?		Yes	No	N/A	
13. Sample container intact?		Yes.	No		
14. Sufficient sample amount for indicated test(s)?	1	Yes	No		
15. All samples received within sufficient hold time?		Yes	No		1.1.1.1
16. Subcontract of sample(s)?		Yes	No	N/A	
17. VOC sample have zero head space?		Yes	No	(N/A)	-
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.		Cooler 4 No	D .	Cooler 5 No.	Section 2
Ibs 4.6 °C Ibs °C Ibs	°C	lbs	°C	lbs	°C

Client understands and would like to proceed with analysis

Analytical Report 425131

for Southern Union Gas Services- Monahans

> Project Manager: Rose Slade Trunk "M" King Road Southern Union Gas 05-AUG-11

> > Collected By: Client

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL01273): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

05-AUG-11

Project Manager: Rose Slade Southern Union Gas Services- Monahans 1507 W. 15th Street Monahans, TX 79756

Reference: XENCO Report No: 425131 Trunk "M" King Road Project Address: Lea County, NM

Rose Slade:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 425131. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 425131 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

ATA

Brent Barron II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 425131

Southern Union Gas Services- Monahans, Monahans, TX

Trunk "M" King Road

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Sample #11A	S	08-04-11 10:10		425131-001
Sample #20A	S	08-04-11 10:30		425131-002
Sample #50A	S	08-04-11 11:00		425131-003
Sample #51A	S	08-04-11 11:15		425131-004
Sample #56A	S	08-04-11 11:30		425131-005

CASE NARRATIVE

Client Name: Southern Union Gas Services- Monahans Project Name: Trunk "M" King Road

Project ID: Southern Union Gas Work Order Number: 425131 Report Date: 05-AUG-11 Date Received: 08/04/2011

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Project Id: Southern Union Gas Contact: Rose Slade Project Location: Lea County, NM

Certificate of Analysis Summary 425131 Southern Union Gas Services- Monahans, Monahans, TX Project Name: Trunk "M" King Road

Date Received in Lab: Thu Aug-04-11 03:53 pm Report Date: 05-AUG-11

					Project Manager:	Brent Barron II	
	Lab Id:	425131-001	425131-002	425131-003	425131-004	425131-005	
Analysis Domostad	Field Id:	Sample #11A	Sample #20A	Sample #50A	Sample #51A	Sample #56A	
naisanhay sistinuy	Depth:						
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	
	Sampled:	Aug-04-11 10:10	Aug-04-11 10:30	Aug-04-11 11:00	Aug-04-11 11:15	Aug-04-11 11:30	
Anions by E300	Extracted:						
	Analyzed:	Aug-04-11 16:21	Aug-04-11 16:21	Aug-04-11 16:21	Aug-04-11 16:21	Aug-04-11 16:21	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	
Chloride		8.79 4.45	7.80 4.52	101 4.50	7.62 4.52	244 4.44	
Percent Moisture	Extracted:						
	Analyzed:	Aug-04-11 16:05	Aug-04-11 16:05	Aug-04-11 16:05	Aug-04-11 16:05	Aug-04-11 16:05	
	Units/RL:	% RL	% RL	% RL	% RL	% RL	
Percent Moisture		5.72 1.00	7.00 1.00	6.76 1.00	7.11 1.00	5.35 1.00	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout the application represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes to responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager Breht Barron II

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantition limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

- **RL** Reporting Limit
- MDL Method Detection Limit SDL Sample Detection Limit

LOD Limit of Detection

LOO Limit of Quantitation

PQL Practical Quantitation Limit MQL Method Quantitation Limit

DL Method Detection Limit

- NC Non-Calculable
- + Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Miami - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, Tx 77477 9701 Harry Hines Blvd, Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 5757 NW 158th St, Miami Lakes, FL 33014 12600 West I-20 East, Odessa, TX 79765 6017 Financial Drive, Norcross, GA 30071 3725 E. Atlanta Ave, Phoenix, AZ 85040

Phone Fax (281) 240-4200 (281) 240-4280 (214) 902 0300 (214) 351-9139 (210) 509-3334 (210) 509-3335 (813) 620-2000 (813) 620-2033 (305) 823-8500 (305) 823-8555 (432) 563-1800 (432) 563-1713 (770) 449-8800 (770) 449-5477 (602) 437-0330

BS / BSD Recoveries

Project Name: Trunk "M" King Road

Work Order #: 425131 Analyst: BRB Lab Batch ID: 866421 Units: mg/kg

Date Prepared: 08/04/2011

Batch #: 1

Project ID: Southern Union Gas Date Analyzed: 08/04/2011 Matrix: Solid

	1
	1
	1
	1
>	I
-	Ш
	1
D	I
-	
	1
5	
>	I
~	
	1
9	I
>	I
-	1
0	1
T)	1
~	1
9	I
~	1
	н
	1
T	ß
-	Į,
-	ß
P.	I
C	p
1	Į,
-	1
	ß
	ш
5	Ш
-	1
	1
	Ш
9	Ш
~	I
	Ш
-	1
	ш
2	ш
	I
Y	I
K	
NK	
ANK	
LANK	
BLANK	
BLANK	
/ BLANK	
C/BLANK	
E / BLANK	
KE / BLANK	
IKE / BLANK	
PIKE / BLANK	
SPIKE / BLANK	
SPIKE / BLANK	
K SPIKE / BLANK	
IK SPIKE / BLANK	
NK SPIKE / BLANK	
ANK SPIKE / BLANK	
ANK SPIKE / BLANK	
LANK SPIKE / BLANK	
BLANK SPIKE / BLANK	
/BLANK SPIKE / BLANK	
/BLANK SPIKE / BLANK	
K /BLANK SPIKE / BLANK	
NK /BLANK SPIKE / BLANK	
NK/BLANK SPIKE/BLANK	
ANK /BLANK SPIKE / BLANK	
LANK /BLANK SPIKE / BLANK	
BLANK / BLANK SPIKE / BLANK	
BLANK /BLANK SPIKE / BLANK	
BLANK /BLANK SPIKE / BLANK	
BLANK /BLANK SPIKE / BLANK	
BLANK/BLANK SPIKE/BLANK	
BLANK/BLANK SPIKE/BLANK	
BLANK /BLANK SPIKE / BLANK	
BLANK / BLANK SPIKE / BLANK	
BLANK /BLANK SPIKE / BLANK	
BLANK /BLANK SPIKE / BLANK	
BLANK /BLANK SPIKE / BLANK	

Anions by E300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		5	5		2		Σ				
Chloride	<0.840	20.0	21.8	109	20.0	22.0	110	1	75-125	20	
		-									

Relative Percent Difference RPD = 200*((C-F)/(C+F) Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: Trunk "M" King Road

Work Order #: 425131					
Lab Batch #: 866421		Pr	oject ID	Southern U	nion Gas
Date Analyzed: 08/04/2011	Date Prepared: 08/04/20	11 A	Analyst: B	BRB	
QC- Sample ID: 425048-001 S	Batch #: 1		Matrix: S	oil	
Reporting Units: mg/kg	MATRIX	/ MATRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300	Parent Sample S Result A	pike Spiked Sample Result	%R [D]	Control Limits %R	Flag
Analytes	[A]	[B]			
Chloride	417	625	103	75-125	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $[E] = 200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Project Name: Trunk "M" King Road

Work Order #: 425131

Lab Batch #: 866421 Date Analyzed: 08/04/2011 16:21 QC- Sample ID: 425048-001 D Reporting Units: mg/kg	Date Prepar Bate	red: 08/04/2011 h #: 1 SAMPLE	Ana Mat SAMPLE	Project I lyst: BRB trix: Soil DUPLIC	D: Southern	Union Gas
Anions by E300 Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		417	418	0	20	1000
Lab Batch #: 866401 Date Analyzed: 08/04/2011 10:47 QC- Sample ID: 425037-001 D Reporting Units: %	Date Prepar Bate	red: 08/04/2011 h #: 1 SAMPLE	Ana Mat SAMPLE	lyst: BRB trix: Soil DUPLIC	ATE REC	OVERY
Percent Moisture Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	. Ť . A	<1.00	<1.00	0	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

3
(D)
-
0
÷
0
-
0
×
0
3
1
-
0
×
9
2
D
5
~

							00 13	600 M lessa	lest I-	4AIN 20 Ea	OF OF	COST	A00.	REC	NO	ANI	AN	AL Y	SIS F 8: 43 43	2-56:2-56:2-56:2-56:2-56:2-56:2-56:2-56:	UES1 3-180 3-171	. 00			
Project Manager: Ber	n J. Arguijo					1						1		roje	ct Nar	ne: T	Ink	.W.	King	Ro	ad				
Company Name Ba	isin Environmental Ser	vice Te	chnolo	gies, LLC	N. N.							1			rojec	14	10	5	HH	VA)	5	10	2	3
Company Address: P.C	0. Box 301											1		Pro	ject L	C: L	a Co	unty,	WN						
City/State/Zip: Lov	vington, NM 88260											1			PO	#									
Telephone No: (57)	15)396-2378			9	Fax No:	9	575) 3	96-14	29			1	Rep	ort F	ormat	Ľ	Sta	ndard			TRRF			PDE	s
Sampler Signature:	Colle 16	and and	whee	\mathbf{i}	e-mail:		m@b	asinel	nv.con	E				11.			14				-				
b use only)	6					60	st	N.Y	lad	le la	N 3	5	in a	2			TCLP	Ana	lyze	ii I	-	-		S Pre	
RDER #: 425131)	Ľ	Presen	ation &	# of Co	ontaine	2	Matri			1	OIAL	95	+	< 09		05		1 ,84	
(vino esu dei) # 8A		dîqeD eninniget	ding Depth	E paidwes are	bəlqms2 əmiT	ield Fillered		°ONH	*OS ^z H	HOEN	None	Other (Specify)	blio2/ling Water SL=Sludge	vP=Non-Potable Specify Other	9001 X1 2001 X1 Hq1	Cations (Ca. Mg. Va. K)	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb Hg S	Sembrovines	BTEX 80218/5030 or BTEX 826	BCI BCI			AS Jeiuberto2-erg) TAT HRUR	YAG & TAT bisbrist
11#SHAIPLE#11	4	3	3	418	1010	4	X						521									×		A	
2 SHIPLE # 2	tot.			-	1030		-	2			-		+			-			-			-	1	7	+
DS SANDLE #	SUA				1100		-				-	-	-	-					-		1	1		+	-
H SAMPLE #	SIA		1		1115		-				-			-		+		-	-		1	-		7	-
5 SAMPLE #	Scot			>	021	-	2		-	+	-	1	>	-	-	+	_	+	+		+	>	1	7	-
											+++								+++			+++		+++	
									-		+			+		+	-		-			-		+	+
I scial Instructions: ase e-mail a copy of the analytical	I results to Rose Slade (Rose.SI	ade@S	SUG.com) and (Curt Stanley (C	urt.Sta	Inley	SUG	com).					1.1.8		Samp	atory Free	Com ntaine	ment rs int adsp	s: act? ace?		ľ	(>)>1	ZZ	A
mayered by A half and	Date Date	Time 2	82:	Received by:	NAC.	X	1	15	1		a	Patter H	1	N	e 20	Custo	dy se	ontair als on	cont cont	ainer er(s)	(s)	0 1	A>+	ZZZ	Aa
hpuished by how when the	- Bald		· M	Received by:		P						Dail		-	e	Samp b)	Sam Sam	nd De pler/C	livere lient R UP	P	BH		HA M	N N ano-	Star
uquished by:	Date	Ē	0	Received by ELC	Murdark			10%			8	U-1	0	1 10	5	Temp	eratul	0D P	C Le	Coipt				0.	0

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist Document No .: SYS-SRC Revision/Date: No. 01, 5/27/2010 Effective Date: 6/1/2010 Page 1 of 1

Prelogin / Nonconformance Report - Sample Log-In

Client	Southern Unich Girs
Date/Time:	8-4-11 15:55
Lab ID # :	425131
Initials:	xel

Sample Receipt Checklist

1. Samples on ice?		Blue	Water	No	
2. Shipping container in good condition?		Yes	No	None	
3. Custody seals intact on shipping container (cooler) and bottles?		Yes	No	NA	
4. Chain of Custody present?		Yes	No		19 S. M.
5. Sample instructions complete on chain of custody?		Yes	No		1000
6. Any missing / extra samples?		Yes	Ng		
7. Chain of custody signed when relinquished / received?		Yes	No		
8. Chain of custody agrees with sample label(s)?		Yes	No		
9. Container labels legible and intact?		Tes	No		-10-12-12-12-12-12-12-12-12-12-12-12-12-12-
10. Sample matrix / properties agree with chain of custody?		Nes	No		
11. Samples in proper container / bottle?		Yes	No		1
12. Samples property preserved?		Yes	No	N/A	5
13. Sample container intact?		(Yes)	No		
14. Sufficient sample amount for indicated test(s)?		Yes	No	1.0	
15. All samples received within sufficient hold time?		Yes	No		
16. Subcontract of sample(s)?		Yes	(No)	N/A	
17. VOC sample have zero head space?		Yes	No	NA	1. 1. 1.
18. Cooler 1 No. Cooler 2 No. Cooler 3 No.		Cooler 4 No. Cooler 5 No.		1.	
Ibs Am/2 °C Ibs °C Ibs	°C	lbs	°C	lbs	°C

Nonconformance Documentation

Contact:	Contacted by:	Date/Time:	
Regarding:			
Corrective Action Taken:			
Check all that apply:	Cooling process has begun shortly after s	ampling event and out of temperature	

□Initial and Backup Temperature confirm out of temperature conditions □Client understands and would like to proceed with analysis