O3 DATE	64 16	03 SUSPENS	07/16	ENGINEER PAG	UDGGED IN 07	116	TYPE SUD	PP NO.	G161523:	540
·]	NEW M 1220	EXICO OIL C - Engine South St. Franci	CONSERVAT CONSERVAT Pering Bureau S Drive, Santa Fe	ION DIV - e, NM 875	Closs I ISION 505		Assigned 30-045	API 5-35747
·				VISTRATI	/E APPLIC	CATIO	N CHEC	KLIS	Т	
т	'HIS CHECK	LIST IS MA		FOR ALL ADMINISTR	ATIVE APPLICATION		EPTIONS TO DIV	/ISION RUI	ES AND REGULA	ATIONS
мрри	(NSL-N [DH	ion-Star IC-Dowr [PC-Po]R-Qual	s: Indard Loc Inhole Com of Commi [WFX-Wat [SW] ified Enha	ation] [NSP-Non nmingling] [C ngling] [OLS terflood Expansi D-Salt Water Dis anced Oil Recov	n-Standard Pror TB-Lease Comm Off-Lease Stora Ion] [PMX-Pre posal] [IPI-Inj ery Certification	ation Unit ningling] age] (O essure Mai jection Pre n] [PPR	[SD-Simul [PLC-Pool/I LM-Off-Lease intenance Ex essure Incre -Positive Pro	taneous Lease Co e Measu xpansion ase] oduction	Dedication] ommingling] rement]] Response]	
[1]	TYPE	OF AP [A]	PLICAT Location	ION - Check The n - Spacing Unit L NSP [ose Which Appl - Simultaneous I SD	y for [A] Dedication		Americ	led Applia	cotion
		Check [B]	One Only Commir	/ for [B] or [C] ngling - Storage - IC [] CTB	Measurement	PC	ols	OLM	Notice in Origina	Provided al Application
		[C]	Injection	n - Disposal - Pre X 📋 PMX	ssure Increase -	Enhanced	Oil Recover EOR	y PPR	PMAM 160 Fincluded i	00432778
		[D]	Other: S	pecify Class I	Non-hazardo	us Inject	ion Well	<	package (R97
[2]	NOTII	F ICATI [A]	ON REQ	UIRED TO: - O orking, Royalty o	Check Those Wh r Overriding Roy	iich Apply yalty Intere	, or Does N est Owners	Not Appl	y' 0	041
		[B]	🕅 Off	set Operators, Le	easeholders or Su	urface Ow	ner			
		[C]	🗶 Apj	plication is One '	Which Requires	Published	Legal Notice	e		
		[D]	Not U.S. F	tification and/or (Bureau of Land Managem	Concurrent Appi ent - Commissioner of Pi	roval by B ublic Lands, Sta	LM or SLO			
		[E]	🗌 For	all of the above,	Proof of Notific	cation or P	ublication is	Attached	1, and/or,	
		[F]	[] Wa	ivers are Attache	d					

÷ .

[3] SUBMIT ACCURATE AND COMPLETE INFORMATION REQUIRED TO PROCESS THE TYPE OF APPLICATION INDICATED ABOVE.

[4] **CERTIFICATION:** I hereby certify that the information submitted with this application for administrative approval is **accurate** and **complete** to the best of my knowledge. I also understand that **no action** will be taken on this application until the required information and notifications are submitted to the Division.

Note: Statement must be completed by an individual with managerial and/or supervisory capacity.

Bruce D. Davis	Bruce D. P-	Director	3-2-16
Print or Type Name	Signature	Title	Date
		e-mail Address	is @WNR. Com

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

	APPLICATION FOR AUTHORIZATION TO INJECT
1.	PURPOSE: Secondary Recovery Pressure Maintenance X Disposal Storage Application qualifies for administrative approval? Yes No
11.	OPERATOR:Western Refining Southwest, Ina [248440] - Western Refining Sathwest LP / Transporter
	ADDRESS: #50 County Road 4990 (PO Box 159), Bloomfield, NM 87413
	CONTACT PARTY: <u>Ron Weaver</u> PHONE: <u>505-632-8013</u>
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project?YesNo If yes, give the Division order number authorizing the project:
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
VII.	Attach data on the proposed operation, including:
	 Proposed average and maximum dury fate and volume of nations of materies to be injected, Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
*VⅢ.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	NAME: Bruce D. Davis TITLE: Director
	SIGNATURE: Brind Pate: 3-2-16
u .	E-MAIL ADDRESS: bruce. davis @ WNR. com

* If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.
- XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,

(4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

INJECTION WELL DATA SHEET

anded in packer

Western Refining Southwest, Inc.

Waste Disposal Well (WDW) #2

C-108 Data Sheet

V. Maps identifying all wells within 2 ½ miles of proposed injection well and Area of Review (AOR) of 1mile radius.

The maps are below.

VI. Tabulation of data of all wells of public record within the AOR which penetrate the proposed injection zone.

The only well that penetrates the proposed injection zone is the Ashcroft SWD #1 (API# 30-045-30788) located approximately 3/4 miles to the east. The Ashcroft is a SWD well operated by XTO iv Energy Resources and is completed in the Entrada and Bluff formations.

Tabulation of wells within the 1-mile AOR is below.

VII. Operation Data

- A. Average Daily Injection Rate = 3,500 bbls.
 B. Maximum Daily Injection Rate = 8,500 bbls.
- 2. The system is closed (water will be collected onsite as part of the Bloomfield Terminal's process and pumped over to the injection well).
- 3. Proposed pressures
 - A. The average and maximum injection pressures will be determined from a step rate test run after the well is completed. The anticipated injection pressures are ~ 2000 psi.
- 4. The fluid to be disposed in the proposed injection well will be Waste Water Treatment System effluent, Evaporation Ponds contact storm water and Injection Well Stimulation and Maintenance fluids. Table 1 contains information about the injection fluid including source, waste type, frequency and discharge volume. Table 2 contains information about the sources on Waste Water Treatment Plant influent. An Analytical Summary of the fluids disposed in Disposal #1 2014 Annual report is presented in Table 3. This summary best characterizes the fluid to be disposed.

				Well	Base Mar	D		La Line			
	. * *	4 *	¢	6. 1. 1	* 8#	A A PRETTYU	25 36 36 M 10 45 M 10	° 31 5 2°	22	, H F	3
	SUNCO DISPOSAL II K# # 2	****		1° 1° 10			2 H H H H H H H H H H H H H H H H H H H	· · · · · · · · · · · · · · · · · · ·	***	· · · · · · · · · · · · · · · · · · ·	• k
* * *, * * *,	******	00 V 9 F 1 00 C	· · · · · · · · · · · · · · · · · · ·	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.12	MAR VISTA SWO 97		· · · · · · · · · · · ·	***	*** \$. #	₽# 0 0 0 0
* / 0 * * 17 18 8 ** 3**	* * * * * * * * * * * * * * * * * * *	** 60" 1 0 14 0 * 2* 0 * 2*	0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X	5 0 5 10 x 17 24 5 x	*****			· · · · · · · · · · · · · · · · · · ·	** #/ # 00 fo ¹⁷ 0.4 3 # 0	* **** *** ***	8 20 -
27, 27, 27, 27, 27, 27, 27, 27, 27, 27,		PEDERAL B 12 # 21 # * * * * * * * * *	8 a8 a 2 4 a 2 4 a 2 4 a 4 a 4 a 4 a 4 a 4 a 4 a 4 a 4 a 4 a		· · · · · · · · · · · ·	22 *** ASHCROF	24 X M + 207		* d , , , , , , , , , , , , , , , , , ,	21 21 21 21 21 21 21 21 21 21 21 21 21 2	Dane w
0 / # 40 20 25 40 6 00/	** ***	0 x 30 20 + 0 5 5	*********************	· · · · · · · · · · · · · · · · · · ·	* * *	ILPOSAL #		30 50 40 40 40 40 40 40 40 40 40 40 40 40 40	2 A.*	ту 6 а 1 ₂ жо 28 8 ж 9 ж 9 ж	**
* * * * 32 33 * * * *	**************************************	* * *	и м т. м т. м т. м т. м т. м т. м т. м т.	* * * *	· · · · · · · · · · · · · · · · · · ·	**************************************	25 × 25 × 25 × 25 × 25 × 25 × 25 × 25 ×	5 0 0 0 31 0 0 0 0	* * * * ** * * ** * *	23 23 23 23 23 20 20 20 20 20 20 20 20 20 20 20 20 20	000 0 000 000 0 000 000 0 000
*** ×	¥ • • • "	¢ *# 12	* 7 B	* . * * * * \$	× × 10 °	· · · · ·	· · · · · ·	**** • ****	** * ***	e . e 10	a 2 ^N
8 Age 16 <u>0ALLEGOS</u> 17 R 18 X	4 0 CAUNYON \$250 6 0 7 14 7 2	* 7 · · · · · · · · · · · · · · · · · ·	6. 	G ≠ 0 G ≠ 0 0 0 17 16 + 2 0 B 0 0 u ^K	* * * * 5 * + *			* * * * * * * * * * * * *	**************************************	**************************************	• • •
28Ň 12	22. 23 W * *	* * ** * ** * ** **		· * * * 2	8N 11W	0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	* * * * * * * * * * * *	* 1 21 > * * 20	3N 10W	а . Ка С
y Ø	# 9	* * *		1 0	1	2	3 mi				

Western Refining Southwest Inc.

Area of Review 1 mile radius

Enerdeq Browser Date: Jan 29, 2016 Author: JOHN THOMPSON

	Data	Not I	Reviewed 812 Entrodue 812 - A Monti- 812 - A Monti- 812 - A B B D - 812 B B	By and at	Applicent - re entrada entrada	edundant DHC & Plug P&A wells Bloomfield Waste Disposal N List for 1-Mile A	well (southwest Southwest Terminal Well (WDW rea of Revi	bunt included included t, Inc. v) #2 ew (AOR)	edited	tached	000) Compile	d list	t		Property of II 731	utera
Induty	Production ID	Primary API	Lease Name	Well Num	Operator Name	Location	Latitude	Longitude	Field Name	County Name	Status Name	Prod Zone Name	Lease Code	Oll Cum	Gas Cum	Wir Cum	TD
11	1004 2045 25 1 050 2 200	30045351050000	CALVAN	2		2011 1111 20 000 00 00	BE 60044745	-107 05 49384	ADAJENTA	PAN IIIAN	ACTINE	CALLUE MOV	0000000	66 157	714 781	1 201	020
1	300430452561202290	30045256120000	CALVIN	3	BURLINGTON RESOURCES ONG CO LP	29N 11W ZOK SE NE SW	36.69445794	-107.9618893	ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/	696883	65,478	602,470	1,472	5,970
11	300430452565702290	30045256570000	CONGRESS	16	BURLINGTON RESOURCES O&G CO LP BURLINGTON RESOURCES O&G CO LP	29N 11W 34A C NE NE 29N 11W 27K NW NE SW	36.68790014	-107.9716743 -107.9808835	ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/	006918	36,820	464,380	1,283	6,200
-	00045049250797720	90049250750001	CONGRESS	10	BUALINGTON RESOLUTION OR OLD	25H 11W 27K NW NE 5W	30.09549300	-107:5808855	FULCHER KUTZ	SAN JUAN	ACTIVE	HCTORED COPPS			95,178	1,058	- 1-
1	300430452567502290	30045256750000 30045250020000	DISPOSAL	15	BURLINGTON RESOURCES OBG CO LP SAN JUAN REFINING COMPANY	29N 11W 35C SE NE NW 29N 11W 27I NW NE SE	35.69540689 35.69540689	-107.9620225	SWD	SAN JUAN	ACTIVE	GALLUP /SD/ MESAVERDE	006918	7,534	255,800	1,172	6,030
- 2	300430439070890702		ASHCROPT SWO	1	KTO ENERGY INCORPORATED	2911 11W 200 5W WW NE	38.70119333	-107.9580723	SWO	SAN NAN	ACTIVE	MORNOW	-	-		-	
2	300430450773371599	30045077330000	SULLIVAN GAS COM D	1	INTO ENERGY INCORPORATED	29N 11W 268 W NW NE	36.70149705	-107.9598183	BASIN	SAN JUAN	INACTIVE	DAKOTA	022839	22,497	2,820,296	4,546	6,260
2	300430450783571599	30045078350000	MANGUM	1	BURLINGTON RESOURCES O&G CD LP	29N 11W 27L NE NW SW	36.69567609	-107.9834612	BASIN	SAN JUAN	INACTIVE	DAKOTA	007282	15,187	2,646,060		6,350
2	300430450786871200	30045078550001	SULLIVAN	2	HOLCOMB OIL & GAS INCORPORATED	29N 13W 27L NE NW 5W	36.69953096	-107.9541780	AZTEC	SAN JUAN	INACTIVE	FRUITLAND	015829		368,487	716	1.487
2	300430450790377200	30045079030000	GARLAND 8	1	SOUTHERN UNION PRODUCTION COMPANY	29N 11W 27M NE SW SW	36.69234828	-107.9841029	FULCHER KUTZ	SAN JUAN	INACTIVE	PICTURED CUFFS	251550	10	355,978		1,747
2	300430450794071599 300430450795971200	30045079400000	GRACE PEARCE	1	MANANA GAS INCORPORATED	29N 11W 22N SW 5E 5W	36.70608404	-107.9811408	BASIN	SAN JUAN	INACTIVE	DAKOTA	006258	41,071	4,343,480	6,176	6,314
2	300430450796171599	30045079610000	HARTMAN	1	MANANA GAS INCORPORATED	29N 11W 22P SE SE	36.70664763	-107.97276	BASIN	SAN JUAN	INACTIVE	DAKOTA	006262	45,556	5,456,777	9,059	6,309
2	300430450798571200	30045060090000	PAN AMERICAN STATE COM	1	COOK ROY L	29N 11W 23K NE SW	36.71005755	-107.9637284	AZTEC	SAN JUAN	INACTIVE	FRUITLAND	570540	12 640	31,853	2 187	6.774
2	300430451200371599	30045120030000	CALVIN	1	BURLINGTON RESOURCES D&G CO LP	29N 11W 26M SW SW	36.6929968	-107.965504	BASIN	SANJUAN	ACTIVE	DAKOTA	006883	25,759	3,648,517	7,541	6,450
2	300430451308971200	30045130890000	COOK LEA ANN	2	MANANA GAS INCORPORATED	29N 11W 22N SE SW	36.70619366	-107.981141	AZTEC	SAN JUAN	ACTIVE	FRUITLAND	006258		845,491	650	1,440
2	300430452145782329	30045214570000	DELO	10	SOUTHLAND ROYALTY COMPANY LLC	29N 11W 26 SW NE SE	36.69480938	-107.954321	OTERO	SAN JUAN	ACTIVE	CHACRA	021202		966,707	30	5000
2	300430452173277200	30045217320000	GARLAND 8	18	BURLINGTON RESOURCES D&G CO LP	29N 11W 27M NE SW SW	36,69179563	-107.984549	FUICHER KUTZ	SAN JUAN	INACTIVE	PICTURED CUFFS	007039	10	863,208	053	In
2	300430452316382329	30045231630000	EARL & SULLIVAN	1	XTO ENERGY INCORPORATED	29N 11W 26B SE NW NE	36.70182344	-107.957226	OTERO	SAN JUAN	ACTIVE	CHACRA	022841	102	745,746	966	2,861
2	300430452355071629	30045235500001	STATE GAS COM BS	1	HOLCOMB OIL & GAS INCORPORATED	29N 11W 23K SW NE SW	36.7079731	-107.963404	BASIN	SAN JUAN	ACTIVE	FRUITLAND COAL	022826	-	672,850	2,934	2,954
2	300430452355482329	30045235540000	DAVIS GAS COM G	1	XTO ENERGY INCORPORATED	29N 11W 27I SW NE SE	36.69465987	-107.973291	OTERO	SAN JUAN	INACTIVE	CHACRA	022685		337,989	747	2,951
2	300430452408271599	30045240820000	PEARCE GAS COM	IE	XTO ENERGY INCORPORATED	29N 11W 23J SE NW SE	36.70815961	-107.956582	BASIN	SAN JUAN	ACTIVE	DAKOTA	022629	3,328	474,351	5,412	6,365
2	300430452408471599	30045240840000	DAVIS GAS COM F	IE	XTO ENERGY INCORPORATED	29N 11W 27H NW SE NE	36.69983513	-107.973190	BASIN	SAN JUAN	ACTIVE	DAKOTA	023416	4,262	905,546	8,035	6,386
2	30013045245228282	30045245720200	DAVIS GAS COM P	SE .	KTO ENERGY INCORPORATED	29N 22W 27H NW SE NE	50.09983519	-107.979190	OTERO	SAN JUAN	ACTIVE	CHACRA	023416		451,277	2,457	3,386
2	300430452457382329	30045245730000	GARLAND	3	SOUTHLAND ROYALTY COMPANY LLC	29N 11W 27M NE SW SW	36.69270239	-107.984495	OTERO	SAN JUAN	ACTIVE	CHACRA	021914		305,435	1,140	2,905
2	300430452457482329	30045245740000	SUMMIT	9	BURUNGTON RESOURCES O&G CO LP	25N 11W 34A 5W NE NE	36.687182	-107.972265	OTERO	SAN JUAN	ACTIVE	CHACRA	007557	45%	350,082	1,220	2,992
2	300430452477271599	30045247720000	CALVIN	16	BURLINGTON RESOURCES ONG CO LP	29N 11W 26 NW SE NW	36.69192559	-107.981539	BASIN	SAN JUAN	ACTIVE	DAKOTA	006883	2,986	1,095,534	8,346	6,502
2	300430452483771599	30045248370000	CONGRESS	48	BURLINGTON RESOURCES O&G CO LP	29N 11W 3SE NE SW NW	36.6849902	-107.965940	BASIN	SAN JUAN	ACTIVE	DAKOTA	006918	370	160,434	1,661	6,508
2	300430452532971629	30045253290000	DAVIS GAS COM J	1	HOLCOMB OIL & GAS INCORPORATED	29N 11W 35E NE SW NW 29N 11W 26F NW SE NW	36.69991548	-107.965940	BASIN	SAN JUAN	ACTIVE	FRUITLAND COAL	000918		330,236	27,028	bi
2	200420463523673216	000085826220008	DAME GAS COMI	1	SP AMERICA PRODUCTION COMPANY	29W 11W 26F NW SE NW	36.69991548	~107.964458	BLANCO	SAN JUAN	INACTIVE	MESAVERDE	000412	150	613	1.350	1.11
2	300430452562102290	30045255210000	EARL & SULLIVAN	2	HOLCOMB OIL & GAS INCORPORATED	29N 11W 26F NW 3E NW 29N 11W 26H SE SE NE	36.69991548	-107.9525.80	ARMENTA	SAN JUAN	INACTIVE	GALLUP /SD/	022841	2.476	181,392	657	5,760
- 9		30045256310001	EARL & SULLIVAN	2	HOLEOMS OIL & CAS INCORPORATED	25H 11W 26H SE SE NE	36.69824062	-107.952589	BASIN	SAN JUAN	ACTIVE	PRUTLAND COAL		-		2,127	
2	300430452570702290	30045257070000	SUMMIT NANCY HARTMAN	15	SOUTHLAND ROYALTY COMPANY LLC	29N 11W 34C NE NE NW	36.68874761	-107.980404	ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/	021407	5,765	142,149	1,247	2.830
2	300430452673182329	30045267310000	MARYJANE	1	MANANA GAS INCORPORATED	29N 11W 22N 5W 5E 5W	36.70553482	-107.981070	OTERO	SANJUAN	ACTIVE	CHACRA	006270	Contraction of	434,028	1,556	2,850
2	300430452736171200	30045273610000	LAUREN KELLY	1	MANANA GAS INCORPORATED	29N 11W 27F NW SE NW	36.69985569	-107.982055	AZTEC	SAN JUAN	ACTIVE	FRUITLAND	006268		151,744	1,120	2 540
2	300430453078896436	30045307880000	ASHCROFT SWD	1	XTO ENERGY INCORPORATED	29N 11W 26B 5W NW NE	36.70129353	-107.958672	SWD	SAN JUAN	ACTIVE	ENTRADA	000103		100,581	4,000	
2	300430453083302290	30045308330001	DAVIS GAS COM F	18	XTO ENERGY INCORPORATED	29N 11W 27! SW NE SE	35,69461272	-107.972132	ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/		3,850	46,691	8,53	
2	300430453111871629	30045311180000	CALVIN	100	BURUNGTON RESOURCES ORG CO LP	29N 11W 26N NW SE SW	36,69257114	-107.963220	7 BASIN	SAN JUAN	ACTIVE	FRUITLAND COAL	1000	625	200,914	9,115	
2	300430453309371599	30045330930000	CALVIN	1F	BURUNGTON RESOURCES O&G CO LP	29N 11W 26J SW NW SE	36,6942192	-107,958709	5 BASIN	SAN JUAN	ACTIVE	DAKOTA	-	2,525	300,103	15,362	1000
2	300430453440971629	30045344090000	JACQUE	2	HOLCOMB OIL & GAS INCORPORATED	29N 11W 22N W2 5E 5W 29N 11W 27H NW SE NE	36.70572753	-107.960815	4 BASIN	SAN JUAN	ACTIVE	FRUITLAND COAL	-	-	62,853	3,225	1,897
2	300430453446371629	30045344630000	LACOUE	1	HOLCOMB ON & GAS INCORPORATED	29N 11W 27I	36 69410423	-107 972185	RASIN	SAN ILIAN	ACTIVE	LEBUIT AND COAL	State State	a manufacture of the	75 121	8 922	1.890

Repetrations - Imile - SWDO

Bloomfield Terminal Western Refining Southwest, Inc. Proposed Waste Disposal Well (WDW) #2 Sources of Injection Fluids Table 1

Waste Water Source	Description	Waste Type	Frequency	Discharge Volume
Waste Water Treatment System Effluent	The waste water treatment system processes waste water from terminal. The system consists of three stages : an API Separator, Benzene Strippers and Aeration Lagoons (aka. Aggressive Biological Treatment). ¹²	Non-Exempt	Routine	October to April - 20 to 50 GPM April to October - 50 to 100 GPM
Contact Storm Water - Evaporation Ponds	Precipitation (storm water) that falls into the evaporation ponds is contained and discharged directly to the WDW #2 injection well.	Non-Exempt	Non-Routine	Dependent on Precipitation
Injection Well Stimulation and Maintenance	Fluids produced from the injection well during stimulation and maintenance operations.	Non-Exempt	Non-Routine	Dependent on scope of work

.

1. Final waste water treatment consists of Aggressive Biological Treatment (ABT).

2. Process Sewer System conveys waste water from various collection points to the waste water treatment system.

-

Bloomfield Terminal Western Refining Southwest, Inc. Proposed Waste Disposal Well (WDW) #2 Waste Water Treatment Plant Influent Table 2

Waste Water Source	Description	Waste Type	Frequency	Discharge Volume
Recovered Ground Water	Ground water remediation efforts includes pump and treat remedies. Hydrocarbon impacted water is recovered from multiple recovery wells and the Hammond Ditch French Drain Recovery System. Recovered water containing trace hydrocarbons is discharged to the process sewer system. ^{1,2}	Non-Exempt	Routine	October to April - 15 to 45 GPM April to October - 30 to 90 GPM
Boiler	Boiler blowdown waste water containing dissolved solids is discharged to the terminal process sewer system.	Non-Exempt	Routine	1,200 gallons per day
Heater Treater at Terminals	Steam is used to separate water from crude oil. Waste water containing trace hydrocarbons and dissolved solids is discharged to process sewer system.	Non-Exempt ³	Routine	150 gallons per day
Boiler Feed Water Treatment System	Raw water is treated by this system to remove impurities before being supplied as feed water to the boiler system. Waste water from water softening units containing dissolved solids is routinely discharged to the process sewer system. ¹	Non-Exempt	Routine	280 gallons per day
Storage Tanks	Crude and product storage tanks are occasionally drained of bottom/decanted water. Waste water containing trace hydrocarbons and dissolved solids is discharged to the process sewer system.	Non-Exempt ³	Non-Routine	Dependent on Crude/Product Quality
Recoverable Material	The recoverable material is processed by the API Separator to recover the oil from water.	Non-Exempt ³	Non-Routine	Dependent of Water Fraction
Process Equipment Cleaning	Wash water used in maintenance of process equipment. Waste water containing trace hydrocarbons and dissolved solids is discharged to the process sewer system.	Non-Exempt	Non-Routine	Dependent on Maintenance Scope and Schedule
Hydrotest Water	Water used for Mechanical Integrity Testing (MIT) of equipment such as Tanks, piping, etc. Waste water containing trace hydrocarbons and dissolved solids is discharged to the process sewer system.	Non-Exempt ³	Non-Routine	Dependent of MIT Scope and Schedule
Contact Storm Water	Storm water exposed to contaminants by contact with process equipment is contained and discharged to the process sewer system. Contact storm water may contain trace hydrocarbons and dissolved solids.	Non-Exempt	Non-Routine	Dependent on Precipitation

1. Process Sewer System conveys waste water from various collection points to the waste water treatment system

2. The River Terrace recovered groundwater is treated using a Granular Activated Carbon (GAC) System . The GAC effluent is recycled in the terminal process water system.

3. Bloomfield Terminal is a transportation facility. The exemption of oil and gas exploration and production wastes does not apply to transportation facilities.

Injection Well 2014 Quarterly Analytical Summary

	Toxicity				
	Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Volatile Organic Compounds (ug/L)	در	1/23/2014		7/28/2014	10/1/2014
1,1,1,2-Tetrachloroethane		< 10	па	< 2.0	< 5.0
1,1,1-Trichloroethane		< 10	na	< 2.0	< 5.0
1,1,2,2-Tetrachloroethane		< 20	па	< 4.0	< 10
1,1,2-Trichloroethane		< 10	па	< 2.0	< 5.0
1,1-Dichloroethane		< 10	na	< 2.0	< 5.0
1,1-Dichloroethene		< 10	па	< 2,0	< 5.0
1,1-Dichloropropene		< 10	па	< 2.0	< 5.0
1,2,3-Trichlorobenzene		< 10	na	< 2.0	< 5.0
1,2,3-Trichloropropane		< 20	na	< 4.0	< 10
1,2,4-Trichlorobenzene		< 10	na	< 2.0	< 5.0
1,2,4-Trimethylbenzene		< 10	na	< 2.0	< 5.0
1,2-Dibromo-3-chloropropane		< 20	па	< 4.0	< 10
1,2-Dibromoethane (EDB)	·	< 10	na	< 2.0	< 5,0
1,2-Dichlorobenzene		< 10		< 2.0	< 5.0
1,2-Dichloroethane (EDC)	500	< 10	na	< 2.0	< 5.0
1,2-Dichloropropane	·	< 10	na	< 2.0	< 5.0
1,3,5-Trimethylbenzene		< 10	<u>na</u>	< 2.0	< 5.0
1,3-Dichlorobenzene	{	< 10	па	< 2.0	< 5.0
1,3-Dichloropropane		< 10	па	< 2.0	< 5.0
1,4-Dichlorobenzene	7500	< 10	па	< 2.0	< 5.0
I-Methylnaphthalene		< 40	па	< 8.0	<u> </u>
2,2-Dichloropropane		< 20	na	< 4.0	< 10
2-Butanone		200		< 20	< 50
2-Chlorotoluene		< 10	na	< 2.0	< 5.0
2-Hexanone		< 100	<u></u>	< 20	< 50
2-Methylnaphthalene		< 40	na	< 8.0	< 20
4-Chlorotoluene	·····	< 10		< 2.0	
4-Isopropyiroluene		< 100	<u>na</u>	< 20	< 5.0
4-Methyl-2-pentanone		1400		~ 20	120
Reman		< 10		~ 20	
Brownhangerte		< 10	na	< 2.0	
Bromodiablasamethane	(< 10		< 2.0	<50
Bromeferm		< 10		< 2.0	< 5.0
Bromomethana		< 10		< 6.0	< 15
Cathon disulfide	·····	< 100		< 20	< 10
Carbon Tetrachloride	500	< 10	na	< 2.0	<50
Chlorobenzene	100000	< 10		< 2.0	< 5.0
Chloroethane		< 20	па	< 4.0	< 10
Chloroform	6000	< 10	na	< 2.0	< 5.0
Chloromethane		< 30	па	< 6.0	< 15
cis-1.2-DCE		< 10	na	< 2.0	< 5.0
cis-1.3-Dichloropropene	······································	< 10	na	< 2.0	< 5.0
Dibromochloromethane		< 10	па	< 2.0	< 5.0
Dibromomethane	······································	< 10	na	< 2.0	< 5,0
Dichlorodifluoromethane		< 10	na	< 2.0	< 5.0
Ethylbenzene		< 10	na	< 2.0	< 5.0
Hexachlorobutadiene	500	< 10	па	< 2,0	< 5.0
Isopropylbenzene		<10	па	< 2.0	< 5.0
Methyl tert-butyl ether (MTBE)		< 10	na	< 2.0	< 5.0
Methylene Chloride		< 30	<u>11)3</u>	< 6 0	< 15
Naphthalenc		< 30	na	< 4.0	< 10
n-Butylbenzene		< 10	na	< 6.0	<15
n-Propylbenzene		< 20	na	< 2.0	< 5.0
sec-Butylbenzene		< 10	na	< 2.0	< 5,0
Styrene		< 10	na	< 2.0	< 5.0
tert-Butylbenzene		< 10	na	< 2.0	< 5.0
Tetrachloroethene (PCE)		< 10	па	< 2.0	< 5.0
Toluene		< 10	па	< 2.0	< 5.0
trans-1,2-DCE		< 10	na	< 2.0	< 5.0
trans-1,3-Dichloropropene		< 10	na	< 2.0	< 5.0
Trichloroethene (TCE)		< 10	na	< 2.0	< 5.0
Trichlorofluoromethane		< 10	na	< 2.0	< 5.0
Vinyl chloride	200	< 10	na	< 2.0	< 5.0
Xylenes, Total		<15	na	< 3.0	< 7.5

Injection Well 2014 Quarterly Analytical Summary

	Toxicity				
	Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Semi-Volatile Organic Compounds (ug/L)	· · · · · · · · · · · · · · · · · · ·		· · · ·		
1,2,4-Trichlorobenzene		< 50	na	< 100	< 10
1,2-Dichlorobenzene		< 50		< 100	< 10
1,3-Dichlorobenzene	7500	< 50	<u>[18</u>	< 100	< 10
1,4-Dichlorobenzene	/300	< 50		< 100	< 10
1-Methylnaphthalene		< 50	 	< 100	< 10
2,4,5-1 inchiorophenol	2000	· < 50	na	< 100	< 10
2.4.Dichlorophenol		< 100	na	< 200	< 20
2.4-Dimethylphenol		< 50	ла	< 100	< 10
2.4-Dinitrophenol		< 100	na	< 200	< 20
2,4-Dinitrotoluene	130	< 50	ກສ	< 100	< 10
2,6-Dinitrotoluene		< 50	na	< 100	< 10
2-Chloronaphthalene		< 50	na	< 100	< 10
2-Chlorophenol		< 50	ла	< 100	< 10
2-Methylnaphthalene		< 50	na	< 100	< 10
2-Methylphenol		< 50	nà	< 200	< 20
2-Nitroaniline		< 50	<u>na</u>	< 100	< 10
2-Nitrophenol		< 50		210	< 10
3,3 -Dichlorobenzidine		< 50	- 114	< 100	< 10
3+4-Methylphenol	{	< 50		< 100	< 10
3-initro 2 methylphenol		< 100	710	< 200	< 20
4.8-Diniu 0-2-methylphenor		< 50	118	< 100	< 10
4-biomophenyt phenys enter		< 50		< 100	< 10
4-Chloroaniline		< 50	ла	< 100	< 10
4-Chlorophenyl phenyl ether		< 50	ла	< 100	< 10
4-Nitroaniline		< 50	na	< 100	< 10
4-Nitrophenol		< 50	ла	< 100	< 10
Acenaphthene		< 50	na	< 100	< 10
Acenaphthylene		< 50	na	< 100	< 10
Aniline		< 50	na	< 100	< 10
Anthracene	<u> </u>	< 50	na	< 100	< 10
Azobenzene	<u> </u>	< 50	na	< 100	< 10
Benz(a)anthracene	<u> </u>	< 50	па	< 100	< 10
Benzo(a)pyrene	[< 50	na	< 100	< 10
Benzo(b)fluoranthene	· · · · · · · · · · · · · · · · · · ·	< 50	na	< 100	< 10
Benzo(g,h,i)perylene		< 50	1181	< 100	< 10
Benzo(k)fluoranthene		< 100	11d	< 200	< 40
Benzoic acid		< 50	na	< 100	< 10
Bis(2-chloroethory)methane		< 50	па	< 100	< 10
Bis(2-chloroethyl)ether		< 50	na	< 100	< 10
Bis(2-chloroisopropyl)ether		< 50	na	< 100	< 10
Bis(2-ethylhexyl)phthalate		< 50	na	< 100	< 10
Butyl benzyl phthalate		< 50	na	< 100	< 10
Carbazole		< 50	na	< 100	< 10
Chrysene		< 50	na	< 100	< 10
Dibenz(a,h)anthracene		< 50	na	< 100	< 10
Dibenzofuran		< 50	na	< 100	< 10
Diethyl phthalate		< 50	па	< 100	<u> </u>
Dimethyl phthalate		< 50	<u> </u>	< 100	< 10
Di-n-butyl phthalate		< 50	11 <u>21</u>	< 100	< 20
Elugranthene		< 50	114 	< 100	< 10
Fhorene		< 50	nat	< 100	< 10
Hexachlorobenzeue	130	< 50	na	< 100	< 10
Hexachlorobutadiene	500	< 50	na	< 100	< 10
Hexachlorocyclopentadiene	1	< 50	па	< 100	< 10
Hexachloroethane	3000	< 50	na	< 100	< 10
Indeno(1,2,3-cd)pyrene		< 50	па	< 100	< 10
Isophorone	ļ	< 50	na	< 100	< 10
Naphthalene		< 50	na	< 100	< 10
Nitrobenzene	2000	< 50	па	< 100	< 10
N-Nitrosodimethylamine		< 50	na	< 100	< 10
N-Nitrosodi-n-propylamine	·····	< 50	na	< 100	< 10
N-Nitrosodiphenylamine	100000	< 100		< 100	< 20
Pentachlorophenol	10000	< 100	na	< 100	< 10
Phonol		< 50		< 100	< 10
Pureno		< 50		< 100	< 10
I yielle Puridine	5000	< 50		< 100	< 10

Injection Well 2014 Quarterly Analytical Summary

	Toxicity				
	Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
General Chemistry (mg/L unless otherw	ise stated)				
Specific Conductance (umhos/cm)		7100	na	1900	1100
Chloride		2400	na	510	220
Sulfate		35	na	41	26
Total Dissolved Solids		5240	па	1380	742
pH (pH Units)		6.25	na	7.10	7.08
Bicarbonate (As CaCO3)		380	na	220	150
Carbonate (As CaCO3)		<2.0	па	<2.0	<2.0
Calcium		490	na	480	110
Magnesium		75	na	99	23
Potassium		37	na	36	8.2
Sedjum		1000	na	1100	220
Total Alkalinity (as CaCO3)	·····	380	กล	220	150
Total Metals (mg/L)				· · ·	
Arsenic	5.0	< 0.020	па	< 0.020	< 0.020
Barium	100.0	0,56	na	0.63	0.20
Cadmium	1.0	< 0.0020	па	< 0.0020	< 0.0020
Chromium	5.0	< 0.0060	na	< 0.0060	< 0.0060
Lead	5	< 0.0050	na	< 0.0050	< 0.0050
Selenium	1	< 0.050	na	< 0.050	< 0.050
Silver	5	< 0.0050	na	< 0.0050	< 0.0050
Mercury	0.2	< 0.0010	па	< 0.00020	< 0.00020
Ignitability, Corrosivity, and Reactivity				-	
Reactive Cyanide (mg/L)		<1.0	na	<1.0	<1.0
Reactive Sulfide (mg/kg)		1.6	na	<1.0	3.0
Ignitability (°F)	< 140° F	>200	na	>200	>200
Corrosivity (ph Units)	≤2 or ≥ 12.5	6.25	па	7.44	6.82

Notes: $na \approx A$ water sample was not collected during the 2nd quarter of 2014 because the well was not operational.

.

5. A water sample and corresponding water analysis will be provided once the well is perforated and a water sample can be obtained. The closest off set is the Ashcroft SWD #1 (API# 30-045-30788) located approximately 3/4 miles to the east. The Ashcroft is a SWD well operated by XTO Energy Resources and is completed in the Entrada and Bluff formations. The NMOCD records did not containing any data regarding the in-situ water quality found in the Ashcroft SWD #1 prior to injection.

VIII. Geology

Underground Drinking Water Sources

The known fresh water zones for the immediate area of the injection well are the Nacimiento and Ojo Alamo Formations of the Tertiary Age. The Nacimiento occurs at the surface and is about 570 feet thick in the immediate area. The Ojo Alamo is about 165 feet thick at an approximate depth of 569 to 734 feet.

Most of the water wells in the surrounding area are concentrated along the San Juan River flood plain and terraces north of the river and Bloomfield Terminal. These wells are completed in the Quaternary sand and gravels at depth of approximately 25 to 75 feet. These sand and gravels rest upon the Nacimiento.

One well (POD# SJ 02148) in the SE quarter of Section 27, T29N, R11W was drilled to a depth of 305 feet intersecting a water bearing sand within the Nacimiento at 225 to 285 feet with an estimated yield of 10gpm. The surface elevation is approximately 20 feet above the surface at proposed injection well location. The total depth of the well is at an approximate elevation of 5,250 feet. This is the deepest water well drilled in the study area according to the NM State Engineer's Office online records. The Point of Diversion Summary for the well is included (below).

Ojo Alamo fin also identified as protectable waters - Sources: Store \$ OTR:566

New Mexico Office of the State Engineer Point of Diversion Summary

		(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest)) (NAD83 U	1			
P	Q64	Sec	Tws	Rng	X	Y	<i>7</i>			
S.	J 02148		2 4	27	29N	11W	234448	4065184*	<u> </u>	
Driller License:	847									
Driller Name:	SAVAGE, BOB									
Drill Start Date:	10/20/1987	Drill Finish Date:			11/:	16/1987	Plug	Plug Date:		
Log File Date:	11/19/1987	PCW Rcv Date:					Sou	rce:	Shallow	
Pump Type:		Pipe Dis	charge	Size:			Estir	Estimated Yield: 10 GPM		
Casing Size:	7.00	Depth W	ell:		305	feet	Dept	th Water:	186 feet	
Wate	r Bearing Stratific	cations:	Тор	Bott	om	Descrip	tion			
			225	2	285	Sandsto	ne/Gravel	/Conglome	rate	
	orations:	Bottom								
			266	3	305					

No sample available - on record as part of remediation project for facility

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Injection Zone

The Entrada Sandstone formation is Jurassic in age and is described as a wind blown deposit with fine to coarse-grained sandstone particles, clean and well sorted. Generally, the Entrada Sandstone formation is 200 to 280 ft thick throughout the San Juan Basin. Natural fractures are few to nonexistent. The overlaying formation is the Todilto Limestone. Cores from the oil bearing portion of the Entrada formation indicate high porosities and permeability's with averages ranging from 22 – 26 percent and 150 – 450 millidarcies respectively.

The Bluff Sandstone maybe considered as a future injection zone and is not part of this application.

The geologic prognosis and a cross section showing the regional thickness and log characteristics are included (below).

Waste Disposal Well (WDW) #2						
Geologic Prognosis	Entrada 8	Bluff WDW, San J	uan County			
Header Well Name & Number; Waste Disposal V	Vell (WDW) #2					
API: Pending Lat	litude (NAD 83):	36.698499 Objective;	Entrada & Bluff FM W	ater Disposal Longdude (NAD 83)	: -107.971156 Location: T	WP: 29 N - Range: 11 W -
Sec. 27 Field; Surface Location Footabe: 1980 ENL 33(Basin	County	San Juan			
Bottom Hole Location Footage: Same as S	Зипасе	Stat	e: New Mexico	Lease:	GL Ele	evation:
5538 Surface Owner	ĸ	B Elevation:	5550			
Тура:	Proposed TD	7500		November 25, 201	5	
Expiration Date:	Proposed	i Plugback:		Geologist: Pe	iter Kondrät Depth:	
			····	T		
Formation Tops	Top MD (KB)	Top Subsea (KB)	Thickness (FT)	Rock Type	Drilling Notes	Environment
Quaternary Alluvium	0	5550	10	Unconsolidated Gravels	Boulders, water, lost	Continental Rivers
Naclemento FM	10	5540	505	Shale & Sandstone	Water, gas	Continental Rivers
Ojo Alamo Sandstone	515	5035	110	Sandstone & Shale	Water, gas	Continental Rivers
Kirtland Shale	625	4925	578	Interbeddded Shale, sandstone	Water, gas	Coastal to Alluvial Plain
Fruilland FM	1203	4347	515	Interbeddded Shale, sandstone &	Coalbed methane	Coastal Plain
Pictured Cliffs Sandstone	1718	3832	162	Sandstone	Gas, water	Regressive Marine Beach
Lewis Shale	1880	3670	780	Shale, thin limestones	Gas	Offshore Marine
Huerfanito Bentonte Bed	2660	2890	28	Alterted volcanic ash, bentonite	Swelling clay	Volcanic Ash Layers
Chacra FM	2688	2862	189	Sandstone, sitstone	Gas, Water	Offshore Marine Sands
Lower Lewis Shale	2877	2673	458	Shale, thin limestones	Gas, Water	Offshore Marine
Cliff House Sandstone	3335	2215	59	Sandstone	Gas, Water, Oil	Transgressive Marine Reach
Mensfee Member	3394	2156	643	Interbeddded Shale, sandstone &	Gas, Water, Oit	Coastal Plain
Point Lookout Sandstone	4037	1513	386	Sandstone	Gas, Water, Oil	Regressive Marine Beach
Mancos Shale	4423	1127	869	Shale, thin sandstones & silistones	Gas, Water, Oil	Offshore Marine
Niobrara A	5292	258	102	Interbeddded Shale, sandstone	Qil, Gas, Water	Offshore Marine Sands
Niobrara B	5394	156	123	Interbeddded Shale, sandstone	Oil, Gas, Water	Offshore Marine Sands
Niobrara C	5517	33	82	Interbeddded Shale, sandstone	Oil, Gas, Water	Offshore Marine Sands
Gattup FM	5599		243	Interbedided Shale, sandstone	Oil, Gas, Water	Regressive Marine to Coastal Deonsit
Juana Lopez FM	5842	-292	123	Shale, thin limestones	Oil, Gas, Water	Offshore Marine
Carlile Shale	5965	-415	95	Shale, thin limestones	Oll, Gas, Water	Offshore Marine
Greenhorn Limestone	6060	-510	56	Limestone	Oil, Gas, Water	Offshore Marine
Graneros Shale	6116	-566	33	Shale	Oll, Gas, Water	Offshore Marine
Dakota FM	6149	-599	216	Sandstone, shale & coals	Oil, Gas, Water	Transgressive Coastal Plain to Marine
Burro Canyon FM	6365	-815	46	Sandstones, some conglomerate	Oil, Gas, Water	Braided Fluvial Fill
Marrison FM	6411	-861	635	Mudstones, sandstone	Oil, Gas, Water	Continental Rivers
Bluff Sandstone (aka Junction Creek Sandstone), Morrison FM	7046	-1496	118	Sandstone	Oil, Gas, Water	Alluvial Plain and Eolian
Member						
Wanakah FM	7164	-1614	123	Silistone, Sandstone	Oil, Gas, Water	Alluvial Plain and Eolian
Todito Limestone & Anhydrite	7287	-1737	28	Interbedded Limestone &	Oil, Gas, Water, Anyhydrite	Alluvial Plain and Eolian
Entrada Sandstone	7315	-1765	168	Sandstone	Oll, Gas, Water	Eolian Sand Dunes
Chinle FM	7483	-1933	17	Interbeddded Shale, sandstone	Oil, Gas, Water	Continental Rivers
Proposed TD	7500	-1950		TD designed for complete log co	vergage over Entrada Sands	stone.
Notes: Any significant flow rates, abnormal	pressures, lost circulation	, sticking, fluid loss or g	ain immediately notify o	ompany man, drilling superintender	nt and/or drilling engineer.	<u></u>
		-			-	

Regional Bluff & Entrada Sandstones Cross-Section Western

IX. After the well is drilled, cased and perforated an injectivity test will be performed. If the injection rate is less than 6 BPM prior to parting pressure, the well will be stimulated w/ approximately 222,000 lbs of 20/40 white sand in 110,000 gals of 30# cross linked gel at 50 bpm. Note: actual job design (if needed) will be based on actual results of the injectivity test.

X. All open hole and cased hole logs will be filed with NMOCD once the well is drilled and completed.

XII. Available geologic and engineering data has been examined and no evidence of open faults or any other hydrological connection between the disposal zone, the Entrada Formation, and any underground sources of drinking water, the Nacimiento Formation.

XIII. Based on the information available online as well as information from the "Four Corners Geological Society" there are no known faults located in the area of the proposed well. Natural fractures are few to nonexistent in the Entrada formation. The overlaying formation is the relatively impermeable Todilto Limestone. The closest off set is the Ashcroft SWD #1 (API# 30-045-30788) located approximately ¾ of mile to the east of the proposed injection well. The Ashcroft SWD #1 is a SWD well operated by XTO Energy and is completed in the Bluff and Entrada formations and has no evidence of water migrating out of the injection zones.

XIII. Public Notice will follow NMOCD review of this application.] for Class I (NH) Class II provide in initial application in 12/2016.

Ad No. 72205

STATE OF NEW MEXICO County of San Juan:

SAMMY LOPEZ, being duly sworn says: That he IS the PUBLISHER of THE DAILY TIMES, a daily newspaper of general circulation published in English at Farmington, said county and state, and that the hereto attached Legal Notice was published in a regular and entire issue of the said DAILY TIMES, a daily newspaper duly qualified for the purpose within the meaning of Chapter 167 of the 1937 Session Laws of the State of New Mexico for publication and appeared in the Internet at The Daily Times web site on the following day(s):

Monday, December 14, 2015

And the cost of the publication is \$60.13

ON 12/15/15 SAMMY LOPEZ appeared before me, whom I know personally to be the person who signed the above document.

Christine Sellers

COPY OF PUBLICATION

	line and the second
Western	Refining
Cauthurant	Inc. rop.
Southwest,	inc., rep-
resented	by John
Thomoson -	(505) 327
4002 bac	applied to
4052, 1105	applied to
the New I	viexico Uli
Conservatio	n Division I
for adminic	trative ans
proval to	be author
ized to in	nject non-
hazardous f	reated wa-
tor genora	tod from
the Discust	ald Tarmi
The Bloomin	lein Terrin-
nal (forme	· Refinery)
into the	proposed
Class	(non-
	disposal
nazardous)	disposal
well. The	proposed
SWD #2 w	ill be locat
od 2010' I	MI & 110'
eu 2015 i	07 7000
FEL, Section	1 ZI, 129N,
R11W, San	Juan Coun- i
ty New Me	xico.
cy, non mo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	1. 1.1.1.1
The propo	sed injec-
tion zone	is the
Entrada	formation.
The cetim	stod inigo
The estimate	aleu injec
tion depth:	s are (315
to 7.483'	and the
maximum	anticipated
inization w	to ic 9000
injection ra	
BPD. The	maximum
iniection p	ressure will
ha determi	ned from a
De uccento	toct Intor-
step rate	test. inter-
ested pa	irties can
make cor	nments to
this applies	ation to the
	anon to the
	unservation
Division,	1220 St.
Francis Dr	., Santa Fe.
NM 975	05 Com-
. NIVI 073	ut ha ra
ments m	ust be re-
ceived wit	hin 15 days
of the da	ate of this
publication	1
publication	
,	

Legal No. 72205 published in The Daily Times on Dec 14, 2015 December 10, 2015

VIA CERTIFIED MAIL

Attn: Crystal Walker (Regulatory Coordinator) Burlington Resources Oil & Gas Company LP 3401 E. 30th Street Farmington, NM 87402

Re: Application of Western Refining Southwest, Inc. for Authorization to Inject in the proposed SWD #2, San Juan, New Mexico.

Dear Ms. Walker,

Western Refining Southwest, Inc. has applied to the New Mexico Oil Conservation Division to dispose of non-hazardous treated water generated from the Bloomfield Terminal (former Refinery) into the Entrada formation in the proposed SWD #2. The SWD #2 will be located 2019' feet from the North line and 110' feet from the East in Section 27, Township 29 North, Range 11 West, San Juan County, New Mexico. As an offset operator (the Calvin #1 is within a half mile of the proposed SWD #2) you are being notified of this application pursuant to NMOCD rules

If you have no objection to this Application then no further action is required on your part. If you would like to file an objection or to request a hearing please notify the NMOCD at 1220 South St. Francis, St., Santa Fe, NM 87505 within 20 days of receipt of this notice.

If you have any questions or need additional information please feel free to call me at (505) 327-4892.

Sincerely,

John Thompson Walsh Engineering & Production Agent/Engineer for Western Refining Southwest

December 10, 2015

VIA CERTIFIED MAIL

Attn: Diane Montano (Regulatory Compliance Mgr.) XTO Energy, Inc. 382 Road 3100 Aztec, NM 87410

Re: Application of Western Refining Southwest, Inc. for Authorization to Inject in the proposed SWD #2, San Juan, New Mexico.

Dear Ms. Montano,

Western Refining Southwest, Inc. has applied to the New Mexico Oil Conservation Division to dispose of non-hazardous treated water generated from the Bloomfield Terminal (former Refinery) into the Entrada formation in the proposed SWD #2. The SWD #2 will be located 2019' feet from the North line and 110' feet from the East in Section 27, Township 29 North, Range 11 West, San Juan County, New Mexico. As an offset operator of the Sullivan Gas Com D #1E, Davis Gas Com F #1E, Davis Gas Com F #1R, all of which are within a half mile of the proposed SWD #2, you are being notified of this application pursuant to NMOCD rules

If you have no objection to this Application then no further action is required on your part. If you would like to file an objection or to request a hearing please notify the NMOCD at 1220 South St. Francis, St., Santa Fe, NM 87505 within 20 days of receipt of this notice.

If you have any questions or need additional information please feel free to call me at (505) 327-4892.

Sincerely,

John Thompson Walsh Engineering & Production Agent/Engineer for Western Refining Southwest

December 10, 2015

VIA CERTIFIED MAIL

Attn: Regulatory Coordinator Holcomb Oil & Gas Inc. 512 W. Arrington Farmington, NM 87402

Re: Application of Western Refining Southwest, Inc. for Authorization to Inject in the proposed SWD #2, San Juan, New Mexico.

Dear Mr. Holcomb,

Western Refining Southwest, Inc. has applied to the New Mexico Oil Conservation Division to dispose of non-hazardous treated water generated from the Bloomfield Terminal (former Refinery) into the Entrada formation in the proposed SWD #2. The SWD #2 will be located 2019' feet from the North line and 110' feet from the East in Section 27, Township 29 North, Range 11 West, San Juan County, New Mexico. As an offset operator of the Davis Com J#1, Jacque #1, Jacque #2, all of which are within a half mile of the proposed SWD #2, you are being notified of this application pursuant to NMOCD rules

If you have no objection to this Application then no further action is required on your part. If you would like to file an objection or to request a hearing please notify the NMOCD at 1220 South St. Francis, St., Santa Fe, NM 87505 within 20 days of receipt of this notice.

If you have any questions or need additional information please feel free to call me at (505) 327-4892.

Sincerely,

John Thompson Walsh Engineering & Production Agent/Engineer for Western Refining Southwest

SENDER COMPLETENTISSECTION	COMPLETENTISCECTIONONDELLERA
 Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. 	A. Signature A. Agent Addressee B. Received by (Printed Nerne) UMUTH Dee 13-17-15
1. Article Addressed to:	D. Is delivery address different from item 1? Yes
Burlington Resources Oil+Gras Attn: Chustal Walkow	
Farmington, NM 8740	3. Service Type □ Certified Mail □ Express Mail □ Registered □ Return Receipt for Merchandise □ Insured Mail □ C.O.D.
· · ·	4. Restricted Delivery? (Extra Fee)
2. Article Number 7011 15 (Transfer from service label)	70 0001/10594/4465 1
PS Form 3811, February 2004 Domestic Retu	urn Receipt 102595-02-M-1540

SENDER COMPLETENTISSECTION	COMPUTIENTISSECTIONONDERVERY
 Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. Article Addressed to: XTO Energy, CINC AH: Diane Montano 	A. Signature A. Signature A. S
3 82 Rd. 3100 Aztec, NM 87410	3. Service Type Certified Mail Express Mail Registered Return Receipt for Merchandise Insured Mail C.O.D. 4. Restricted Delivery? (Extra Fee) Yes
2. Article Number	20 0001 0594 4441]
PS Form 3811; February 2004	urn Receipt 102595-02-M-1540

Appendix C Injection Fluid Analytical

.

Injection Well 2014 Quarterly Analytical Summary

·	Toxicity	xicity				
	Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	
Volatile Organic Compounds (ug/L)		1/23/2014		7/28/2014	10/1/2014	
1,1,1,2-Tetrachloroethane		< 10	па	< 2.0	< 5.0	
1,1,1-Trichloroethane		< 10	na	< 2.0	< 5.0	
1,1,2,2-Tetrachloroethane		< 20	па	< 4.0	< 10	
1,1,2-Trichloroethane		< 10	па	< 2.0	< 5.0	
1,1-Dichloroethane		< 10	na	< 2.0	< 5.0	
1,1-Dichloroethene		< 10	na	< 2.0	< 5.0	
1,1-Dichloropropene		< 10	па	< 2.0	< 5.0	
I,2,3-Trichlorobenzene		< 10	na	< 2.0	< 5.0	
1,2,3-Trichloropropane		< 20	na	< 4.0	< 10	
1,2,4-Trichlorobenzene		< 10	na	< 2.0	< 5.0	
1,2,4-Trimethylbenzene		< 10	na	< 2.0	< 5.0	
1,2-Dibrome-3-chloropropane		< 20	na	< 4.0	< 10	
1,2-Dibromoethane (EDB)		< 10	na	< 2.0	< 5.0	
1,2-Dichlorobenzene		< 10	na	< 2.0	< 5.0	
1,2-Dichloroethane (EDC)	500	< 10	па	< 2.0	< 5.0	
1,2-Dichloropropane		< 10	na	< 2.0	< 5.0	
1,3,5-Trimethylbenzene	·	< 10	na	< 2.0	< 5.0	
I,3-Dichlorobenzene		< 10	na	< 2.0	< 5.0	
1,3-Dichloropropane		< 10	<u>na</u>	< 2.0	< 3.0	
1,4-Dichlorobenzene	7500	< 10	f1a	< 2.0	< 3.0	
1-Methyinaphthalene		< 40	na	< 8.0	< 20	
2,2-Dichloropropane		< 20	na	< 4.0	< 10	
2-Butanone		200	па	< 20	< 50	
2-Chlorotoluene		<10	па	< 2.0	< 5.0	
2-Hexanone		< 100	na	< 20	< 50	
2-Methymaphthalene		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u></u>	< 3.0	<u>~~~~</u>	
4-Chlorotoluene		< 10	<u>IIa</u>	< 2.0	< 5.0	
4-isopropynoluene				< 2.0	< 5.0	
4-Methyl-2-pentanone			<u>na</u>	85	120	
Bauzana	500	<10	11d	<20	< 5.0	
Bromohenzene		<10		< 2.0	< 5.0	
Bromodichloromathana		210		< 2.0	250	
Bromoform	· · · · · · · · · · · · · · · · · · ·	< 10	na	< 2.0	< 5.0	
Bromomethane		< 30		< 6.0	<15	
Carbon disulfida		< 100	na	< 20	< 50	
Carbon Tetrachloride	500	< 10	na	< 2.0	< 5.0	
Chlombenzene	100000	< 10	na	< 2.0	< 5.0	
Chloroethane		< 20	<u>па</u>	< 4.0	< 10	
Chloroform	6000	< 10	na	< 2.0	< 5.0	
Chloromethane		< 30	na	< 6.0	<15	
cis-1.2-DCE		< 10	па	< 2.0	< 5.0	
cis-1,3-Dichloropropene		< 10	na	< 2.0	< 5,0	
Dibromochloromethane		< 10	na	< 2,0	< 5.0	
Dibromomethane		< 10	ла	< 2.0	< 5.0	
Dichlorodifluoromethane		< 10	na	< 2.0	< 5.0	
Ethylbenzene		< 10	па	< 2.0	< 5.0	
Hexachlorobutadiene	500	< 10	па	< 2,0	< 5.0	
Isopropylbenzene		< 10	па	< 2.0	< 5.0	
Methyl tert-butyl ether (MTBE)		< 10	ла	< 2.0	< 5,0	
Methylene Chloride		< 30	па	< 6.0	< 15	
Naphthalene		< 30	па	< 4.0	< 10	
n-Butylbenzene		< 10	па	< 6.0	<]5	
n-Propylbenzene		< 20	па	< 2.0	< 5.0	
sec-Butylbenzene		< 10	na	< 2.0	< 5.0	
Styrene		< 10	na	< 2.0	< 5.0	
tert-Butylbenzene		< 10	na	< 2.0	< 5.0	
Tetrachloroethene (PCE)		< 10	па	< 2.0	< 5.0	
Toluene		<10	na	< 2.0	< 5.0	
trans-1,2-DCE		< 10	па	< 2.0	< 5,0	
trans-1,3-Dichloropropene		< 10	na	< 2.0	< 5.0	
Trichloroethene (TCE)			na	< 2,0	< 5.0	
Trichlorofluoromethane		< 10	na	< 2.0	< 5.0	
Vinyl chloride	200	<u> </u>	na	< 2.0	< 5.0	
Xylenes, Total		<15	na	< 3.0	< 7.5	

L

Injection Well 2014 Quarterly Analytical Summary

.

.

	Toxicity				
	Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Semi-Volatile Organic Compounds (ug/L)		· •		· · · · · · · · · · · · · · · · · · ·	· · ·
1,2,4-Trichlorobenzene		< 50	па	< 100	< 10
1,2-Dichlorobenzene		< 50	ла	< 100	< 10
1,3-Dichlorobenzene		< 50	па	< 100	< 10
1,4-Dichlorobenzene	7500	< 50	па	< 100	< 10
1-Methylnaphthalene		< 50	па	< 100	< 10
2,4,5-Trichlorophenol		< 50	па	< 100	< 10
2,4,6-Trichlorophenol	2000	< 50	па	< 100	< 10
2,4-Dichlorophenol		< 100	па	< 200	< 20
2,4-Dimethylphenol		< 50	na	< 100	< 10
2,4-Dinitrophenol		< 100	na	< 200	< 20
2,4-Dinitrotoluene	130	< 50	na	< 100	< 10
2,6-Dinitrotoluene		< 50	na	< 100	< 10
2-Chloronaphthalene		< 50	па	< 100	< 10
2-Chlorophenol		< 50	na	< 100	< 10
2-Methylnaphthalene		< 50	na	< 100	< 10
2-Methylphenol		< 50	na	< 200	< 20
2-Nitroaniline		< 50	па	< 100	< 10
2-Nitrophenol		< 50	na	< 100	< 10
3,3'-Dichlorobenzidine		< 50	na	210	< 10
3+4-Methylphenol		< 50	na	< 100	< 10
3-Nitroaniline		< 50	na	< 100	< 10
4,6-Dinitro-2-methylphenol		< 100	па	< 200	< 20
4-Bromophenyl phenyl ether		< 50	na	< 100	< 10
4-Chloro-3-methylphenol		< 50	<u></u>	< 100	< 10
4-Chloroaniline		< 50	na	< 100	< 10
4-Chlorophenyl phenyl ether		< 50	na	< 100	< 10
4-Nitroaniline		< 50	na	<100	< 10
4-Nitrophenol		< 50	na	< 100	< 10
Acenaphthene		< 50		< 100	< 10
Acenaphthylene		< 50	na	< 100	< 10
Amline		< 50	na	< 100	< 10
Anthracene		< 50	na	< 100	< 10
Azobenzene		< 50	<u>nà</u>	<100	< 10
Benz(a)anthracene		< 50	<u>na</u>	<100	< 10
Benzo(a)pyrene		< 50	na	< 100	< 10
Benzo(b)fluoranthene		< 50	na	<100	< 10
Benzo(g, n, i)perviene	·	< 50	na	< 100	< 10
Benzo(k)Iluoranthene		< 100		< 100	< 10
Benzoic acid	·	< 100	<u>na</u>	< 200	< 40
Benzyl alconol		< 50	na	< 100	< 10
Dis(2-choroethoxy)methane		< 50	<u>na</u>	< 100	< 10
Bis(2-chloroiangromullather		< 50	118	< 100	< 10
Bis(2 ethu[howd])ehthe[sta				< 100	< 10
Bis(2-entymexy)philialate		< 50	114	< 100	< 10
Carbazola		< 50		< 100	< 10
Chrysene		< 50	na	< 100	< 10
Dibenzía hlanthracene		< 50		< 100	< 10
Dibenzofuran		< 50		< 100	< 10
Diethyl phthalate		< 50		< 100	< 10
Dimethyl ohthalate		< 50	ла	< 100	< 10
Di-n-butyl phthalate		< 50	па	< 100	< 10
Di-n-octyl phthalate		< 50	па	< 100	< 20
Fluoranthene		< 50	na	< 100	< 10
Fluorene		< 50	na	< 100	< 10
Hexachlorobenzene	130	< 50	па	< 100	< 10
Hexachlorobutadiene	500	< 50	па	< 100	< 10
Hexachlorocyclopentadiene		< 50	na	< 100	< 10
Hexachloroethane	3000	< 50	na	< 100	< 10
Indeno(1,2,3-cd)pyrene		< 50	ņa	< 100	< 10
Isophorone		< 50	na	< 100	< 10
Naphthalene		< 50	na	< 100	< 10
Nitrobenzene	2000	< 50	na	< 100	< 10
N-Nitrosodimethylamine		< 50	па	< 100	< 10
N-Nitrosodi-n-propylamine		< 50	na	< 100	< 10
N-Nitrosodiphenylamine		< 50	na	< 100	< 10
Pentachlorophenol	100000	< 100	па	< 200	< 20
Phenanthrene		< 50	па	< 100	< 10
Phenol		< 50	na	< 100	< 10
Pyrene	·····	< 50	па	< 100	< 10
Pyridine	5000	< 50	па	< 100	< 10

Injection Well 2014 Quarterly Analytical Summary

	Toxicity				
	Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
General Chemistry (mg/L unless otherwis	se stated)				
Specific Conductance (umhos/cm)		7100	פת	1900	1100
Chloride		2400	na	510	220
Sulfate		35	па	41	26
Total Dissolved Solids		5240	па	1380	742
pH (pH Units)		6.25	па	7,10	7.08
Bicarbonate (As CaCO3)		380	па	220	150
Carbonate (As CaCO3)		<2.0	na	<2.0	<2.0
Calcium		490	na	480	110
Magnesium		75	na	99	23
Potassium		37	ла	36	8.2
Sodium		1000	па	1100	220
Total Alkalinity (as CaCO3)		380	па	220	150
Total Metals (mg/L)	、 、				
Arsenic	5.0	< 0.020	па	< 0.020	< 0.020
Barium	100.0	0.56	na	0.63	0.20
Cadmium	1,0	< 0.0020	na	< 0.0020	< 0,0020
Chromium	5.0	< 0.0060	па	< 0,0060	< 0.0060
Lead	5	< 0.0050	na	< 0.0050	< 0.0050
Selenium	3	< 0.050	пâ	< 0.050	< 0.050
Silver	5	< 0.0050	na	< 0.0050	< 0.0050
Mercury	0.2	< 0.0010	па	< 0.00020	< 0.00020
Ignitability, Corrosivity, and Reactivity					
Reactive Cyanide (mg/L)		<1.0	na	<1.0	<1.0
Reactive Sulfide (mg/kg)		1.6	na	<1.0	3.0
Ignitability (° F)	< 140° F	>200	ла	>200	>200
Corresivity (ph Units)	<u>≤</u> 2 or <u>≥ 12</u> .5	6.25	па	7.44	6,82

na = A water sample was not collected during the 2nd quarter of 2014 because the well was not operational.

.

.

HALL ENVIRONMENTAL ANALÝSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenyironmental.com

February 13, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: Injection Well 1-23-2014

OrderNo.: 1401A07

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 1/24/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analy	sis Laborat	tory, Inc.			Date Reported: 2/13/20	14
CLIENT: Western Refining Southwest Project: Injection Well 1-23-2014	t, Inc.		Client Samp Collection	le ID: Inje Date: 1/2	ection Well 3/2014 8:35:00 AM	
Lab ID: 1401A07-001	Matrix: 4	AQUEOUS	Received	Date: 1/2	4/2014 10:15:00 AM	
Analyses	Result	RL Qua	l Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst:	JRR
Chloride	2400	100	mg/L	200	1/27/2014 7:14:18 PM	R16337
Sulfate	35	5.0	mg/L	10	1/24/2014 8:01:43 PM	R16313
EPA METHOD 7470: MERCURY					Analyst:	DBD
Mercury	ND	0.0010	ma/L	5	1/30/2014 1·52:43 PM	11463
EDA COADD. TOTAL DECOVEDADLE	METALO			•	Apolyat	ELE
EPA 6010B: TOTAL RECOVERABLE	IVIE ALS				Analyst.	ELO
Arsenic	ND	0.020	mg/L	1	1/29/2014 11:20:46 AM	11432
Barium	0.56	0.020	mg/L	1	1/29/2014 11:20:46 AM	11432
	ND	0.0020	mg/∟	1	1/29/2014 11:20:46 AM	11432
Calcium	490	5.0	mg/L	5	1/29/2014 11:22:17 AM	11432
Chromium	ND	0.0060	mg/∟	1	1/29/2014 11:20:46 AM	11432
Lead		0.0050	mg/L	1	1/29/2014 11:20:46 AM	11432
Retractive	/5	1.0	mg/L	1	1/29/2014 11:20:46 AM	11432
Polassium	37	1.0	mg/∟ mg/l	1	1/29/2014 11:20:46 AM	11432
Steenum	ND	0.050	mg/L	1	1/29/2014 11:20.40 AM	11432
Sodium	1000	0.0050	mg/L	20	1/29/2014 11:20:46 AM	11432
	=9	20	ngre	20	Analyst:	DAM
		50		4	4/20/2014 7:14:20 DM	41400
Acenaphthelee		50	µg/L µg/l	1	1/30/2014 7,14.30 FW	11420
Apilino		50	µg/L µg/l	1	1/30/2014 7.14.30 FW	11420
Anthracene		50	µg/L	1	1/30/2014 7.14.30 FM	11420
		50	µg/L	1	1/30/2014 7.14.30 FW	11420
Reparter and the second		50	µg/L µg/l	1	1/30/2014 7.14.30 P.M	11420
Benze(a)antinacene		50	µg/L	1	1/30/2014 7.14.30 FM	11420
Benzo(a)pyrene Roozo(b)fluorapitopo	ND	50	µg/L	1	1/30/2014 7.14.30 PM	11420
		50	µg/L µg/l	1	1/30/2014 7,14,30 F M	11420
Benzo(k)fluorantheno		50	µg/∟ ug/l	1	1/30/2014 7.14.30 FW	11420
Benzoic acid		100	ug/L	1	1/30/2014 7:14:30 PM	11420
Benzyl alcohol		50	րց/ե սց/l	1	1/30/2014 7:14:30 PM	11420
Bis(2-chloroethow)/methane		50	µg/⊏ ug/l	1	1/30/2014 7:14:30 PM	11420
Bis(2-chloroethyl)ether	ND	50	19/L	1	1/30/2014 7:14:30 PM	11420
Bis(2-chloroisapropyl)ether	ND	50	ug/l	1	1/30/2014 7:14:30 PM	11420
Bis(2-ethylhexyl)phthalate	ND	50	ua/L	1	1/30/2014 7:14:30 PM	11420
4-Bromophenyl phenyl ether	ND	50	ua/L	1	1/30/2014 7:14:30 PM	11420
Butvl benzvl ohthalate	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Carbazole	ND	50	ua/L	1	1/30/2014 7:14:30 PM	11420
4-Chloro-3-methylphenol	ND	50	ua/L	1	1/30/2014 7:14:30 PM	11420
4-Chloroaniline	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
				-		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND Page 1 of 17
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical Report Lab Order 1401A07

Hall Er	nvironmental Analys	is Laborat	ory, Inc.	<u></u>		Lab Order 1401A07 Date Reported: 2/13/201	14
CLIENT: Project: Lab ID:	Western Refining Southwest, Injection Well 1-23-2014 1401A07-001	Inc. Matrix: A	QUEOUS	lient Samp Collection Received	De ID: Inje Date: 1/2 Date: 1/2	ection Well 3/2014 8:35:00 AM 4/2014 10:15:00 AM	
Analyses	· · · · · · · · · · · · · · · · · · ·	Result	RL Qual	Units	DF	Date Analyzed	Batch
EPA MET	HOD 8270C: SEMIVOLATILE	s				Analyst	DAM
2-Chlaroi	naphthalene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
2-Chloro	phenol	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
4-Chloro	phenyl phenyi ether	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Chrysene	3	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Di-n-buty	l phthalate	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Di-n-octy	l phthalate	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Dibenz(a	h)anthracene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Dibenzof	uran	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
1,2-Dichi	orobenzene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
1,3-Dichl	orobenzene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
1,4-Dichl	orobenzene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
3,3'-Dich	lorobenzidine	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Diethył pl	hthalate	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Dimethyl	phthalate	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
2,4-Dichle	orophenol	ND	<u>,</u> 100	µg/L	1	1/30/2014 7:14:30 PM	11420
2,4-Dime	thylphenol	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
4,6-Dinitr	o-2-methylphenol	ND	100	μg/L	1	1/30/2014 7:14:30 PM	11420
2,4-Dinitr	ophenol	ND	100	µg/L	1	1/30/2014 7:14:30 PM	11420
2,4-Dinitr	otoluene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
2,6-Dinitr	otoluene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Fluoranth	iene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Fluorene		ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Hexachlo	robenzene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Hexachlo	robutadiene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Hexachlo	rocyclopentadiene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Hexachio	roethane	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Indeno(1,	2,3-cd)pyrene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Isophoror	ıe	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
1-Methylr	aphthalene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
2-Methylr	haphthalene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
2-Methylp	phenol	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
3+4-Meth	ylphenol	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
N-Nitroso	di-n-propylamine	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
N-Nitroso	dimethylamine	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
N-Nitroso	diphenylamine	NÐ	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Naphthale	ene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
2-Nitroani	line	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
3-Nitroani	line	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
4-Nitroani	line	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Qualifiers: * Value exceeds Maximum Contaminant Level.
 - E Value above quantitation range
 - J Analyte detected below quantitation limits
 - O RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 2 of 17

Analytical Report

- P Sample pH greater than 2.
- RL Reporting Detection Limit
| Hall Environmental Analysis | Lab Order 1401A07
Date Reported: 2/13/2014 | | | | | |
|---|---|-----------|--------------------------------|----------------------------|-----------------------------------|---------|
| CLIENT: Western Refining Southwest, In
Project: Injection Well 1-23-2014 | | | Client Sample
Collection Da | ID: Inj
ate: 1/2 | ection Well
23/2014 8:35:00 AM | |
| Lab ID: 1401A07-001 | Matrix: | AQUEOUS | Received Da | ate: 1/2 | 24/2014 10:15:00 AM | |
| Analyses | Result | RL Qu | ual Units | DF | Date Analyzed | Batch |
| EPA METHOD 8270C: SEMIVOLATILES | | | | | Analyst | DAM |
| Nitrobenzene | ND | 50 | μg/L | 1 | 1/30/2014 7:14:30 PM | 11420 |
| 2-Nitrophenol | ND | 50 | µg/L | 1 | 1/30/2014 7:14:30 PM | 11420 |
| 4-Nitrophenol | ND | 50 | μg/L | 1 | 1/30/2014 7:14:30 PM | 11420 |
| Pentachlorophenol | ND | 100 | µg/L | 1 | 1/30/2014 7:14:30 PM | 11420 |
| Phenanthrene | ND | 50 | μg/L | 1 | 1/30/2014 7:14:30 PM | 11420 |
| Phenol | ND | 50 | μg/L | 1 | 1/30/2014 7:14:30 PM | 11420 |
| Pyrene | ND | 50 | μg/L | 1 | 1/30/2014 7:14:30 PM | 11420 |
| Pyridine | ND | 50 | μg/L | 1 | 1/30/2014 7:14:30 PM | 11420 |
| 1,2,4-Trichlorobenzene | ND | 50 | μg/L | 1 | 1/30/2014 7:14:30 PM | 11420 |
| 2.4.5-Trichlorophenol | ND | 50 | µg/L | 1 | 1/30/2014 7:14:30 PM | 11420 |
| 2.4.6-Trichlorophenol | ND | 50 | μg/L | 1 | 1/30/2014 7:14:30 PM | 11420 |
| Surr: 2-Fluorophenol | 66.2 | 22.7-98 | %REC | 1 | 1/30/2014 7:14:30 PM | 11420 |
| Surr: Phenol-d5 | 54.5 | 23.4-74.9 | %REC | 1 | 1/30/2014 7:14:30 PM | 11420 |
| Surr: 2.4.6-Tribromophenol | 97.6 | 23.3-111 | %REC | 1 | 1/30/2014 7:14:30 PM | 11420 |
| Surr: Nitrobenzene-d5 | 86.5 | 36.8-111 | %REC | 1 | 1/30/2014 7:14:30 PM | 11420 |
| Surr: 2-Fluorobiphenvi | 86.4 | 38.3-110 | %REC | 1 | 1/30/2014 7:14:30 PM | 11420 |
| Surr: 4-Terphenyl-d14 | 73.7 | 52.1-116 | %REC | 1 | 1/30/2014 7:14:30 PM | 11420 |
| EPA METHOD 8260B: VOLATILES | | | | | Analyst | DJF |
| Benzene | ND | 10 | ua/L | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Toluene | ND | 10 | F9/=
⊔0/l | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Ethylbenzene | ND | 10 | na/l | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Methyl tert-butyl ether (MTBE) | ND | 10 | ⊢s/=
uc/l | 10 | 1/31/2014 3:25:28 PM | R16441 |
| 1.2.4-Trimethylbenzene | ND | 10 | ⊢9!-
uo/L | 10 | 1/31/2014 3:25:28 PM | R16441 |
| 1 3 5-Trimethylbenzene | ND | 10 | µg/L | 10 | 1/31/2014 3:25:28 PM | R16441 |
| 1 2-Dichloroethane (EDC) | ND | 10 | р <u>9</u> /- | 10 | 1/31/2014 3:25:28 PM | R16441 |
| 1 2-Dibromoethane (EDB) | ND | 10 | µg/1 | 10 | 1/31/2014 3·25·28 PM | R16441 |
| Naphthalene | ND | 20 | P9/# | 10 | 1/31/2014 3:25:28 PM | R16441 |
| 1-Methylnanhthalene | ND | 40 | µg/L
µo/l | 10 | 1/31/2014 3:25:28 PM | R16441 |
| 2-Methylnaphthalene | ND | 40 | µg/L
µ0/l | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Acetone | 1400 | 100 | 49± | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Bromohenzene | ND | 10 | µ9/L | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Bromodichloromethane | | 10 | P9/= | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Bromoform | ND | 10 | uo/l | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Bromomethane | ND | 30 | uo/l | 10 | 1/31/2014 3:25:28 PM | R16441 |
| 2-Butanone | 200 | 100 | µ9/0 | 10 | 1/31/2014 3-25-28 PM | R16441 |
| Cathon disulfide | ND | 100 | µo/l | 10 | 1/31/2014 3·25·28 PM | R16441 |
| Carbon Tetrachloride | ND | 10 | uo/l | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Chlorobenzene | | ,0
10 | 292-
110/1 | 10 | 1/31/2014 3:25:28 PM | R16441 |
| Chloroethane | | 20 | на-
110/1 | 10 | 1/31/2014 3:25:28 PM | R16441 |
| | | | -w- | , | | 1110441 |

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Qualifiers:

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 3 of 17

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Fa	nvironmental Analys	is Laborate	ary Inc			Lab Order 1401A07	14
							14
CLIENT:	: Western Refining Southwest,	Inc.	0	lient Sam	ple ID: Inj	ection Well	
Project:	Injection Well 1-23-2014			Collection	Date: 1/2	3/2014 8:35:00 AM	
Lab ID:	1401A07-001	Matrix: A	QUEOUS	Received	l Date: 1/2	4/2014 10:15:00 AM	
Analyses		Result	RL Qual	Units	DF	Date Analyzed	Batch
EPA ME	THOD 8260B: VOLATILES					Analyst	DJF
Chlorofo	orm	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
Chlorom	lethane	ND	30	µg/L	10	1/31/2014 3:25:28 PM	R16441
2-Chloro	otoluene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
4-Chloro	otoluene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
cis-1,2-0	DCE	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
cis-1,3-D	Dichloropropene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,2-Dibro	omo-3-chloropropane	ND	20	µg/L	10	1/31/2014 3:25:28 PM	R16441
Dibromo	chloromethane	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
Dibromo	methane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,2-Dich	lorobenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
1,3-Dich	lorobenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,4-Dich	lorobenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
Dichloro	difluoromethane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,1-Dich	loroethane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,1-Dich	loroethene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,2-Dich	loropropane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,3-Dich	loropropane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
2,2-Dich	loropropane	ND	20	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,1-Dich	loropropene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
Hexachle	probutadiene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
2-Hexan	one	ND	100	µg/L	10	1/31/2014 3:25:28 PM	R16441
lsopropy	lbenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
4-Isoproj	pyltoluene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
4-Methyl	-2-pentanone	ND	100	µg/L	10	1/31/2014 3:25:28 PM	R16441
Methyler	ne Chloride	ND	30	µg/L	10	1/31/2014 3:25:28 PM	R16441
n-Butylbe	enzene	ND	30	µg/L	10	1/31/2014 3:25:28 PM	R16441
n-Propyil	benzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
sec-Buty	lbenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
Styrene		ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
tert-Buty	lbenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,1,1,2-T	etrachloroethane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,1,2,2-T	etrachloroethane	ND	20	µg/L	10	1/31/2014 3:25:28 PM	R16441
Tetrachlo	proethene (PCE)	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
trans-1,2	-DCE	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
trans-1,3	-Dichloropropene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,2,3-Tric	chlorobenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,2,4-Tric	chlorobenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,1,1-Tric	chloroethane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,1,2-Tric	chloroethane	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441

Qualifiers: * Value exceeds Maximum Contaminant Level.

E Value above quantitation range

•

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 4 of 17

- P Sample pH greater than 2.
- RL Reporting Detection Limit

CLIENT: Project: Lab ID:	Western Refining Southwest, Injection Well 1-23-2014 1401A07-001	Inc. Matrix:	AQUEOUS	C	Client Sample ID: Injection Well Collection Date: 1/23/2014 8:35:00 AM Received Date: 1/24/2014 10:15:00 AM				
Analyses		Result	RL (Qual	Units	DF	Date Analyzed	Batch	
EPA MET	HOD 8260B: VOLATILES						Analyst	DJF	
Trichloro	ethene (TCE)	ND	10		μg/L	10	1/31/2014 3:25:28 PM	R16441	
Trichloro	fluoromethane	ND	10		µg/L	10	1/31/2014 3:25:28 PM	R16441	
1,2,3-Trie	chloropropane	ND	20		µg/L	10	1/31/2014 3:25:28 PM	R16441	
Vinyl chlo	oride	ND	10		µg/L	10	1/31/2014 3:25:28 PM	R16441	
Xylenes,	Total	ND	15		µg/L	10	1/31/2014 3:25:28 PM	R16441	
Surr: 1	,2-Dichtoroethane-d4	100	70-130		%REC	10	1/31/2014 3:25:28 PM	R16441	
Surr: 4	I-Bromofluorobenzene	86.4	70-130		%REC	10	1/31/2014 3:25:28 PM	R16441	
Surr: D	Dibromofluoromethane	98.8	70-130		%REC	10	1/31/2014 3:25:28 PM	R16441	
Surr: 1	Foluene-d8	101	70-130		%REC	10	1/31/2014 3:25:28 PM	R16441	
SM2510B	SPECIFIC CONDUCTANCE						Analyst:	SRM	
Conducti	vity	7100	0.010		µmhos/cm	1	1/24/2014 5:53:17 PM	R16304	
SM4500-	H+B: PH						Analyst:	SRM	
рН		6.25	1.68	Н	pH units	1	1/24/2014 5:53:17 PM	R16304	
SM2320B	: ALKALINITY						Analyst:	SRM	
Bicarbon	ate (As CaCO3)	380	20		mg/L CaCO3	1	1/24/2014 5:53:17 PM	R16304	
Carbonat	e (As CaCO3)	ND	2.0		mg/L CaCO3	1	1/24/2014 5:53:17 PM	R16304	
Total Alka	alinity (as CaCO3)	380	20		mg/L CaCO3	1	1/24/2014 5:53:17 PM	R16304	
SM2540C	MOD: TOTAL DISSOLVED S	OLIDS					Analyst:	KS	
Total Dis	solved Solids	5240	100	*	mg/L	1	1/28/2014 5:33:00 PM	11406	

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	Е	Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 5 of 17
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1401A07 Date Reported: 2/13/2014

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anatekiabs.com 504 E Sprague Ste, D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anatekiabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	140128036
Address:	4901 HAWKINS NE SUITE D	Project Name:	1401A07
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Sample Number Client Sample ID	140128036-001 1401A07-001E / INJE	Sam CTION WELL	piing Date	1/23/2014	Date/ Samp	Time Receiv Diing Time	ed 1/28/2014 8:35 AM	12:18 PM
Matrix Comments	Water	Sample Location						
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide (reacti	ve)	ND		1	2/12/2014	CRW	SW846 CH7	
Flashpoint		>200	۴F		2/4/2014	KFG	EPA 1010	
pН		5,89	ph Units		1/31/2014	AJT	EPA 150.1	
Reactive sulfide	9	1.57	mg/L	1	1/29/2014	AJT	SW846 CH7	

Authorized Signature

John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cen00095; FL(NELAP): E871099

Hall Environmental Analysis Laboratory, Inc. Ξ

Client: Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

Sample (D	MB	SampType: MBLK	TestCode: EP	A Method	300.0: Anions	•		
Client ID:	PBW	Batch ID: R16313	RunNo: 16	5313				
Prep Date:		Analysis Date: 1/24/2014	SeqNo: 47	70380	Units: mg/L			
Analyte		Result PQL SPK v	alue SPK Ref Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate		ND 0.50						
Sample ID	LCS	SampType: LCS	TestCode: EP	A Method	300.0: Anions		······································	
Client (D:	LCSW	Batch ID: R16313	RunNo: 16	5313				
Prep Date:		Analysis Date: 1/24/2014	SeqNo: 47	70381	Units: mg/L			
Analyte		Result PQL SPK v	alue SPK Ref Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate		9.6 0.50 1	0.00 0 96.0	90	110			
Sample ID	MB	SampType: MBLK	TestCode: EP	A Method	300.0: Anions			
Sample ID Client ID:	MB PBW	SampType: MBLK Batch ID: R16337	TestCode: EP RunNo: 16	A Method	 300.0: Anions			
Sample ID Client ID: Prep Date:	MB PBW	SampType: MBLK Batch ID: R16337 Analysis Date: 1/27/2014	TestCode: EP RunNo: 16 SeqNo: 47	A Method 3337 1000	300.0: Anions Units: mg/L			
Sample ID Client ID: Prep Date: Analyte	MB PBW	SampType: MBLK Batch ID: R16337 Analysis Date: 1/27/2014 Result PQL SPK v	TestCode: EP RunNo: 16 SeqNo: 47 alue SPK Ref Val %REC	PA Method 3337 21000 LowLimit	300.0: Anions Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride	MB PBW	SampType: MBLK Batch ID: R16337 Analysis Date: 1/27/2014 Result PQL SPK v ND 0.50	TestCode: EP RunNo: 16 SeqNo: 47 alue SPK Ref Val %REC	PA Method 3337 21000 LowLimit	300.0: Anions Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride	MB PBW LCS	SampType: MBLK Batch ID: R16337 Analysis Date: 1/27/2014 Result PQL SPK v ND 0.50 SampType: LCS	TestCode: EP RunNo: 16 SeqNo: 47 alue SPK Ref Val %REC TestCode: EP	A Method 3337 1000 LowLimit	300.0: Anions Units: mg/L HighLimit 300.0: Anions	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID:	MB PBW LCS LCSW	SampType: MBLK Batch ID: R16337 Analysis Date: 1/27/2014 Result PQL SPK v ND 0.50 SampType: LCS Batch ID: R16337	TestCode: EP RunNo: 16 SeqNo: 47 alue SPK Ref Val %REC TestCode: EP RunNo: 16	A Method 3337 1000 LowLimit A Method 337	300.0: Anions Units: mg/L HighLimit 300.0: Anions	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date:	MB PBW LCS LCSW	SampType: MBLK Batch ID: R16337 Analysis Date: 1/27/2014 Result PQL SPK v ND 0.50 SampType: LCS Batch ID: R16337 Analysis Date: 1/27/2014	TestCode: EP RunNo: 16 SeqNo: 47 alue SPK Ref Val %REC TestCode: EP RunNo: 16 SeqNo: 47	24 Method 3337 21000 LowLimit 24 Method 337 1001	300.0: Anions Units: mg/L HighLimit 300.0: Anions Units: mg/L	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date: Analyte	MB PBW LCS LCSW	SampType: MBLK Batch ID: R16337 Analysis Date: 1/27/2014 Result PQL SPK v ND 0.50 SampType: LCS Batch ID: R16337 Analysis Date: 1/27/2014 Result PQL SPK v	TestCode: EP RunNo: 16 SeqNo: 47 alue SPK Ref Val %REC TestCode: EP RunNo: 16 SeqNo: 47 alue SPK Ref Val %REC	A Method 337 1000 LowLimit A Method 337 1001 LowLimit	300.0: Anions Units: mg/L HighLimit 300.0: Anions Units: mg/L HighLimit	%RPD %RPD	RPDLimit	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Р Sample pH greater than 2.
 - Reporting Detection Limit RL

Page 6 of 17

=========

WO#: 1401A07 13-Feb-14

Client: Western Refining Southwest, Inc.

Injection Well 1-23-2014

Project:

Sample ID 5ml rb	SampT	ype: MBLK	Tes	stCode: EPA N	lethod 8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R16441		RunNo: 16441	1			
Prep Date:	Analysis D	ate: 1/31/2014		SeqNo: 47420	09 Units: µg/L			
Analyte	Result	PQL SPK val	ue SPK Ref Val	%REC Lo	wLimit HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0	· · · · · · · · · · · · · · · · · · ·					
Toluene	NÐ	1.0						
Ethylbenzene	ND	1.0						
Methyl tert-butyl ether (MTBE)	ND	1.0						
1,2,4-Trimethylbenzene	ND	1.0						
1,3,5-Trimethylbenzene	ND	1.0						
1,2-Dichloroethane (EDC)	ND	1.0						
1,2-Dibromoethane (EDB)	ND	1.0						
Naphthalene	ND	2.0						
1-Methylnaphthalene	ND	4.0						
2-Methylnaphthalene	ND	4.0						
Acetone	ND	10						
Bromobenzene	ND	1.0						
Bromodichloromethane	ND	1.0						
Bromotorm	ND	1.0						
Bromomethane	ND	30						
2-Butanone	ND	10						
Carbon disulfide	ND	10						
Carbon Tetrachloride	ND	10						
Chlotobenzene	ND	10						
Chloroethane	ND	20						
Chloroform	ND	1.0						
Chlotomethage	ND	30						
2-Chlorotoluene	ND	1.0						
4-Chlorotoluene	ND	1.0						
cis-1.2-DCF	ND	1.0						
cis-1.3-Dichloropronene	ND	1.0						
1.2-Dibromo-3-chloropropene	ND	20						
Dibromochloromethane	ND	10						
Dibromomethane	ND	10						
1.2-Dichlorobenzene	ND	1.0						
1.3-Dichlombenzene	ND	10						
1.4-Dichlorobenzene	ND	10						
Dichlorodifluoromethane	ND	1.0						
1.1-Dichlomethane	ND	10						
1.1-Dichlomethene	ND	1.0						
1.2-Dichlompropane	ND	1.0						
1.3-Dichloropropane	ND	1.0						

Qualifiers:

2,2-Dichloropropane

* Value exceeds Maximum Contaminant Level.

ND

2.0

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 7 of 17

1401A07 *13-Feb-14*

Client: Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

Sample ID 5ml rb	SampT	Type: Mi	BLK	TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batcl	h ID: R1	6441	F	RunNo: 1	6441				
Prep Date:	Analysis D	Date: 1	/31/2014	ş	SeqNo: 4	74209	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichtoropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
isopropyibenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachioroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	8.4		10.00		84.4	70	130			
Surr: Dibromofluoromethane	9.3		10.00		93.4	70	130			
Sur: Toluene-d8	9.3		10.00		93.0	70	130			
Sample ID 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	1 ID: R1	6441	F	RunNo: 10	6441				
Prep Date:	Analysis D	ate: 1/	31/2014	S	eqNo: 47	74213	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	107	70	130			
Toluene	20	1.0	20.00	0	101	82.2	124			
Chlorobenzene	18	1.0	20.00	0	92.5	70	130			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 8 of 17

1401A07 *13-Feb-14*

Client: Western Refining Southwest, Inc.

Project:

Injection Well 1-23-2014

Sample ID 100ng Ics	SampTy	/pe: LC	S	TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch	ID: R1	6441	F	RunNo: 1	6441				
Prep Date:	Analysis Da	ate: 1 /	31/2014	5	SeqNo: 4	74213	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	24	1.0	20.00	0	119	83.5	155			
Trichloroethene (TCE)	19	1.0	20.00	0	93.4	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130			
Surr: 4-Bromofluorobenzene	8.8		10.00		88.1	70	130			
Surr: Dibromofluoromethane	8.1		10.00		80.7	70	130			
Sur: Toluene-d8	10		10.00		101	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- \$ Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 9 of 17

1401A07 13-Feb-14

=

Client: Western Refining Southwest, Inc.

-

Project: Injection Well 1-23-2014

Sample ID mb-11420	SampT	уре: М	BLK	TestCode: EPA Method 8270C: Semivolatiles						
Client ID: PBW	Batch	ID: 11	420	F	RunNo: 1	6402				
Prep Date: 1/27/2014	Analysis D	ate: 1	/30/2014	5	SeqNo: 4	73422	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10		*						
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	20								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyl)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	ND	10								
4-Bromophenyi phenyi ether	ND	10								
Butyl benzyl phthalate	ND	10		,						
Carbazole	ND	10								
4-Chloro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chioronaphthalene	NÐ	10								
2-Chlorophenol	ND	10								
4-Chlorophenyl phenyl ether	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	ND	10								
Di-n-octyl phthalate	ND	10								
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								
3,3'-Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	20								
2.4-Dimethylphenol	ND	10								
4.6-Dinitro-2-methylphenol	ND	20								

Qualifiers:

2,4-Dinitrophenol

Value exceeds Maximum Contaminant Level. *

ND

20

- Ε Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Р Sample pH greater than 2.
 - Reporting Detection Limit RĽ

Page 10 of 17

WO#: 13-Feb-14

1401A07

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Sample ID mb-11420	SampTy	/pe: MBL	ĸ	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBW	Batch	ID: 1142	20	R	tunNo: 1	6402				
Prep Date: 1/27/2014	Analysis Da	ate: 1/30	0/2014	S	SeqNo: 4	73422	Units: µg/L			
Analyte	Result	PQL S	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10								
2,6-Dinitrotoluene	ND	10								
Fluoranthene	ND	10								
Fluorene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	10								
Hexachlorocyclopentadiene	ND	10								
Hexachloroethane	ND	10								
indeno(1,2,3-cd)pyrene	ND	10								
Isophorone	ND	10								
1-Methylnaphthalene	ND	10								
2-Methylnaphthalene	ND	10								
2-Methylphenol	ND	10								
3+4-Methylphenol	ND	10								
N-Nitrosodi-n-propylamine	ND	10								
N-Nitrosodimethylamine	ND	10								
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	[,] 10								
Phenol	ND	10								
Pytene	ND	10								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								
Surr: 2-Fluorophenol	120		200.0		60.4	22.7	98			
Surr: Phenol-d5	91		200,0		45.4	23.4	74.9			
Surr: 2,4,6-Tribromophenol	150		200.0		74.9	23.3	111			
Surr: Nitrobenzene-d5	81		100.0		80.7	36.8	111			
Surr: 2-Fluorobiphenyl	77		100.0		76.6	38.3	110			
Surr: 4-Terphenyl-d14	74		100.0		73.9	52.1	116			

.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- $\ensuremath{\mathbb{S}}$ Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 11 of 17

1401A07 13-Feb-14

Client: Western Refining Southwest, Inc.

Ξ

Project: Injection Well 1-23-2014

Sample ID Ics-11420	SampT	ype: LC	s	TestCode: EPA Method 8270C: Semivolatiles						
Client ID: LCSW	Batci	h ID: 11	420	F	RunNo: 1	6402				
Prep Date: 1/27/2014	Analysis D	Date: 1/	30/2014	\$	SeqNo: 4	73423	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	72	10	100.0	0	72.4	48	101			
4-Chloro-3-methylphenol	130	10	200.0	0	67.2	47.9	109			
2-Chlorophenol	70	10	200.0	0	35.0	40	105			S
1,4-Dichlorobenzene	60	10	100.0	0	60.3	40.8	94.3			
2,4-Dinitrotoluene	63	10	100.0	0	63.2	28.3	131			
N-Nitrosodi-n-propylamine	80	10	100.0	0	79.7	46.2	119			
4-Nitrophenol	16	10	200.0	٥	8.02	10.5	67.9			S
Pentachlorophenol	31	20	200.0	0	15.5	22.4	81.1			S
Phenol	67	10	200.0	0	33.4	21.4	72.9			
Pyrene	66	10	100.0	0	65.9	46.9	109			
1,2,4-Trichlorobenzene	68	10	100.0	٥	67.8	43.1	98.4			
Sum: 2-Fluorophenol	36		200.0		18.0	22.7	98			S
Surr: Phenol-d5	65		200.0		32.3	23.4	74.9			
Surr: 2,4,6-Tribromophenol	72		200.0		36.2	23.3	111			
Surr: Nitrobenzene-d5	74		100.0		73.5	36.8	111			
Surr: 2-Fluorobiphenyl	74		100.0		73.9	38.3	110			
Surr: 4-Terphenyl-d14	80		100.0		80.0	52.1	116			
Sample ID mb-11513	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8270C: Semi	volatiles	<u> </u>	
Sample ID mb-11513 Client ID: PBW	SampT Batch	ype: ME	<u></u> 3LK 513	Tes	tCode: Ef	PA Method 6496	8270C: Semi	volatiles		
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014	SampT Batch Analysis D	ype: ME 1D: 11: ate: 2/	3LK 513 3/2014	Tes F S	tCode: EF RunNo: 10 SeqNo: 41	PA Method 6496 75097	8270C: Semin Units: %REC	volatiles		
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Anatyte	SampT Batch Analysis D Result	ype: ME DD: 11 pate: 2/ PQL	3LK 513 3/2014 SPK value	Tes F SPK Ref Val	tCode: EF RunNo: 10 SeqNo: 4 %REC	PA Method 6496 75097 LowLimit	8270C: Semin Units: %REC HighLimit	volatiles	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol	SampT Batch Analysis D Result 110	ype: ME DD: 11 Pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0	Tes F S SPK Ref Val	tCode: EF RunNo: 11 SeqNo: 4 %REC 54.9	PA Method 6496 75097 LowLimit 22.7	8270C: Semin Units: %REC HighLimit 98	volatiles %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5	SampT Batch Analysis D Result 110 93	ype: ME DD: 11 Pate: 2/ PQL	BLK 513 3/2014 SPK value 200.0 200.0	Tes F SPK Ref Val	tCode: EF RunNo: 11 SeqNo: 4 %REC 54.9 46.5	PA Method 6496 75097 LowLimit 22.7 23.4	8270C: Semin Units: %REC HighLimit 98 74.9	volatiles	RPDLimit	Qual
Satmple ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Sur: 2-Fluorophenol Sur: Phenol-d5 Sur: 2,4,6-Tribromophenol	SampT Batch Analysis D Result 110 93 130	ype: ME D ID: 111 Pate: 2/ PQL	BLK 513 3/2014 SPK value 200.0 200.0 200.0	Tes F SPK Ref Val	tCode: Ef RunNo: 11 SeqNo: 4 %REC 54.9 46.5 65.6	PA Method 6496 75097 LowLimit 22.7 23.4 23.3	8270C: Semin Units: %REC HighLimit 98 74.9 111	volatiles	RPDLimit	Qual
Satmple ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Anatyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5	SampT Batch Analysis D Result 110 93 130 77	ype: ME 1 ID: 111 9ate: 2/ PQL	BLK 513 3/2014 SPK value 200.0 200.0 200.0 100.0	Tes F SPK Ref Val	tCode: Ef RunNo: 11 SeqNo: 4 %REC 54.9 46.5 65.6 77.3	PA Method 6496 75097 LowLimit 22.7 23.4 23.3 36.8	8270C: Semin Units: %REC HighLimit 98 74.9 111 111	volatiles	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl	SampT Batch Analysis D Result 110 93 130 77 71	ype: ME DD: 111 Pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0	Tes F SPK Ref Val	tCode: Ef RunNo: 1 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6	PA Method 6496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3	8270C: Semin Units: %REC HighLimit 98 74.9 111 111 111	volatiles	RPDLimit	Qual
Satmple ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14	SampT Batch Analysis D Result 110 93 130 77 71 71 72	ype: ME DD: 111 Pate: 2/ PQL	BLK 513 3/2014 200.0 200.0 200.0 200.0 100.0 100.0 100.0	Tes F SPK Ref Val	tCode: Ef RunNo: 11 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6	PA Method 6496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1	8270C: Semin Units: %REC HighLimit 98 74.9 111 111 110 116	volatiles %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Anatyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513	SampT Batch Analysis D Result 110 93 130 77 71 71 72 SampT	ype: ME DID: 111 PQL PQL ype: LC	BLK 513 3/2014 200.0 200.0 200.0 200.0 100.0 100.0 100.0 S	Tes F SPK Ref Val	tCode: EF RunNo: 11 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: EF	PA Method 6496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1 PA Method	8270C: Semin Units: %REC HighLimit 98 74.9 111 111 110 116 8270C: Semin	volatiles %RPD	RPDLimit	Qual
Satmple ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch	ype: ME 1D: 111 PQL PQL ype: LC	BLK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 5513	Tes F SPK Ref Val Test R	tCode: EF RunNo: 11 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: EF tunNo: 16	PA Method 6496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 6496	8270C: Semin Units: %REC HighLimit 98 74.9 111 111 110 116 8270C: Semin	volatiles %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D	ype: ME 1D: 111 PQL PQL ype: LC 1D: 115 ate: 2/3	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 513 3/2014	Tes SPK Ref Val Tes R S	tCode: EF RunNo: 11 SeqNo: 4 54.9 46.5 65.6 77.3 70.6 71.6 tCode: EF tunNo: 16 teqNo: 47	PA Method 6496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 6496 75098	8270C: Semin Units: %REC HighLimit 98 74.9 111 111 110 116 8270C: Semin Units: %REC	volatiles %RPD volatiles	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Sur: 2-Fluorophenol Sur: Phenol-d5 Sur: 2,4,6-Tribromophenol Sur: Nitrobenzene-d5 Sur: 2-Fluorobiphenyl Sur: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014 Analyte	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D Result	ype: ME 1D: 111 PQL PQL ype: LC 1D: 115 ate: 2/3 PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 5 513 3/2014 SPK value	Tes F SPK Ref Val Test R SPK Ref Val	tCode: EF RunNo: 11 SeqNo: 4 54.9 46.5 65.6 77.3 70.6 71.6 tCode: EF RunNo: 16 SeqNo: 47 %REC	PA Method 5496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 5496 75098 LowLimit	8270C: Semix Units: %REC HighLimit 98 74.9 111 111 110 116 8270C: Semix Units: %REC HighLimit	volatiles %RPD volatiles %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Sur: 2-Fluorophenol Sur: Phenol-d5 Sur: 2,4,6-Tribromophenol Sur: Nitrobenzene-d5 Sur: 2-Fluorobiphenyl Sur: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014 Analyte Sur: 2-Fluorophenol	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D Result 100	ype: ME 1D: 111 PQL PQL ype: LC 1D: 115 ate: 2/3 PQL	BLK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 513 3/2014 SPK value 200.0	Tes SPK Ref Val Tes SPK Ref Val	tCode: EF RunNo: 11 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: EF RunNo: 16 seqNo: 47 %REC 49.8	PA Method 5496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 5496 75098 LowLimit 22.7	8270C: Semin Units: %REC HighLimit 98 74.9 111 111 110 116 8270C: Semin Units: %REC HighLimit 98	volatiles %RPD volatiles %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Anatyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D Result 100 85	ype: ME 1D: 111 PQL PQL ype: LC 1D: 115 ate: 2/3 PQL	BLK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0 513 3/2014 SPK value 200.0 200.0 200.0 200.0	Tes SPK Ref Val Tes SPK Ref Val	tCode: EF RunNo: 11 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: EF cunNo: 16 seqNo: 47 %REC 49.8 42.3	PA Method 5496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 5496 75098 LowLimit 22.7 23.4	8270C: Semin Units: %REC HighLimit 98 74.9 111 111 110 116 8270C: Semin Units: %REC HighLimit 98 74.9	volatiles %RPD volatiles %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Anatyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D Result 100 85 150	ype: ME 1D: 111 Pate: 2/ PQL Ype: LC 1D: 115 ate: 2/3 PQL	BLK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0 513 3/2014 SPK value 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Tes SPK Ref Val Tes SPK Ref Val	tCode: EF RunNo: 11 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: EF cunNo: 16 seqNo: 47 %REC 49.8 42.3 77.3	PA Method 6496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 6496 75098 LowLimit 22.7 23.4 23.3	8270C: Semin Units: %REC HighLimit 98 74.9 111 111 110 116 8270C: Semin Units: %REC HighLimit 98 74.9 111	volatiles %RPD volatiles %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D Result 100 85 150 82	ype: ME 1D: 11 Pate: 2/ PQL ype: LC 1D: 115 ate: 2/3 PQL	BLK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0 S 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 200.0 200.0 100.0 200.0 200.0 10	Tes SPK Ref Val Tesi R SPK Ref Val	tCode: EF RunNo: 11 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: EF tunNo: 16 SeqNo: 47 %REC 49.8 42.3 77.3 81.7	PA Method 6496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 6496 75098 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1	8270C: Semin Units: %REC HighLimit 98 74.9 111 111 110 116 8270C: Semin Units: %REC HighLimit 98 74.9 111 111	volatiles %RPD volatiles	RPDLimit	Qual

Qualifiers:

Value exceeds Maximum Contaminant Level. *

Е Value above quantitation range

Analyte detected below quantitation limits J

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

Page 12 of 17

- Sample pH greater than 2. Р
- Reporting Detection Limit RL

13-Feb-14

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc.

Project:	Injection Well 1-2	3-2014								
Sample ID Ics-11	513 Sam	Type: Li	cs		tCode: El	PA Method	8270C: Sem	ivolatiles		
Client ID: LCSW	Bat	ch ID: 11	513	Я	RunNo: 1	6496				
Prep Date: 1/31/2	2014 Analysis	Date: 2	/3/2014	S	SeqNo: 4	75098	Units: %RE	C		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Terphenyl-d14	61		100.0		61.4	52.1	116			
Sample ID Icsd-11	1513 Samp	Type: LO		Tes	tCode: El	PA Method	8270C: Sem	ivolatiles		
Client ID: LCSS0	2 Bat	ch ID: 11	513	F	lunNo: 1	6496				
Prep Date: 1/31/2	2014 Analysis	Date: 2	/3/2014	5	SeqNo: 4	75099	Units: %RE	C		
Analyte	Deevilt	_								
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sur: 2-Fluorophenol	110	PQL	SPK value 200.0	SPK Ref Val	%REC 54.1	LowLimit 22.7	HighLimit 98	0	RPDLimit0	Qual
Surr: 2-Fluorophenol Surr: Phenol-d5	110 90	PQL	SPK value 200.0 200.0	SPK Ref Val	%REC 54.1 44.9	LowLimit 22.7 23.4	HighLimit 98 74.9	0 0	RPDLimit 0 0	Qual
Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromoph	110 90 nenol 160	PQL	SPK value 200.0 200.0 200.0	SPK Ref Val	%REC 54.1 44.9 79.0	LowLimit 22.7 23.4 23.3	HighLimit 98 74.9 111	<u>%RPD</u> 0 0 0	RPDLimit 0 0 0	Qual
Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromoph Surr: Nitrobenzene-d5	110 90 nenol 160 89	PQL_	SPK value 200.0 200.0 200.0 100.0	SPK Ref Val	%REC 54.1 44.9 79.0 88.8	LowLimit 22.7 23.4 23.3 36.8	HighLimit 98 74.9 111 111	%RPD 0 0 0 0	RPDLimit 0 0 0 0	Qual
Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromoph Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl	110 90 nenol 160 89	PQL_	SPK value 200.0 200.0 200.0 100.0 100.0	SPK Ref Val	%REC 54.1 44.9 79.0 88.8 83.1	LowLimit 22.7 23.4 23.3 36.8 38.3	HighLimit 98 74.9 111 111 111	<u>%RPD</u> 0 0 0 0 0	RPDLimit 0 0 0 0 0	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 13 of 17

WO#: 1401A07

13-Feb-14

=

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc. n • 4

Project:	Injection	Well 1-2	3-2014								
Sample ID	MB-11463	Samp	Туре: М	BLK	Tes	tCode: E	PA Method	7470: Mercu	у		
Client ID:	PBW	Bate	ch ID: 1	463	F	RunNo: 1	6401				
Prep Date:	1/29/2014	Analysis	Date: 1	/30/2014	ę	SeqNo: 4	73049	Units: mg/L			
Analyte	_	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		ND	0.00020								
Sample ID	LCS-11463	Samp	Type: L	cs	Tes	tCode: E	PA Method	7470: Mercu	у		
Client ID:	LCSW	Bate	ch ID: 1/	463	F	RunNo: 1	6401				ļ
Prep Date:	1/29/2014	Analysis	Date: 1	/30/2014	5	SegNo: 4	73050	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0047	0.00020	0.005000	0	94.3	80	120			
Sample ID	1401A07-001CMS	Samp	Туре: М	s	Tes	tCode: El	PA Method	7470: Mercur	у		
Client ID:	Injection Well	Bate	ch ID: 11	463	F	RunNo: 1	6401				1
Prep Date:	1/29/2014	Analysis	Date: 1	/30/2014	S	eqNo: 4	73069	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Мегсилу		0.0046	0.0010	0.005000	0	91.0	75	125			
Sample ID	1401A07-001CMSI	D Samp	Туре: М	SD	Tes	Code: El	PA Method	7470: Mercur	у		
Ciient ID:	Injection Well	Bato	ch iD: 11	463	F	tunNo: 1	6401				
Prep Date:	1/29/2014	Analysis	Date: 1	/30/2014	S	eqNo: 4	73070	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Мегсигу		0.0045	0.0010	0.005000	0	90.1	75	125	1.02	20	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

Value above quantitation range Ε

- l Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Р Sample pH greater than 2.
 - **Reporting Detection Limit** RL

,

Page 14 of 17

13-Feb-14

WO#: 1401A07

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Sample ID MB-11432	Samp	SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals								
Client ID: PBW	Bate	ch ID: 11	432	R	RunNo: 1	6372				
Prep Date: 1/28/2014	Analysis	Date: 1/	29/2014	S	SeqNo: 4	72096	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	0.020				_				
Barium	ND	0.020								
Cadmium	ND	0.0020								
Calcium	ND	1.0								
Chromium	ND	0.0060								
Lead	ND	0.0050								
Magnesium	ND	1.0								
Potassium	ND	1.0								
Selenium	ND	0.050								
Silver	ND	0.0050								
Sodium	ND	1.0								
Sample ID LCS-11432	Samp	Type: LC	s		Code: El	PA 6010B: 1	Total Recover	able Meta	lis	
Sample ID LCS-11432 Client ID: LCSW	Samp Bato	Type: LC :h ID: 114	S 432	Tesl	Code: El	PA 6010B: ⁻ 6372	Total Recover	able Meta	lis	
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014	Samp Bato Analysis	Type: LC :h ID: 114 Date: 1/	S 432 29/2014	Tesl R S	Code: El unNo: 10 eqNo: 4	PA 6010B: ⁻ 6372 72097	Total Recover	able Meta	lis	
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte	Samp Bato Analysis Result	Type: LC :h ID: 114 Date: 1/ PQL	S 432 29/2014 SPK value	Test R SPK Ref Val	Code: El unNo: 10 eqNo: 4 %REC	PA 6010B: ⁻ 6372 72097 LowLimit	Total Recover Units: mg/L HighLimit	able Meta	RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic	Samp Bato Analysis Result 0,43	Type: LC ih ID: 11 Date: 1/ PQL 0.020	\$ 432 29/2014 SPK value 0.5000	Test R S SPK Ref Val 0	Code: El unNo: 10 eqNo: 4 %REC 85.6	PA 60108: 6372 72097 LowLimit 80	Total Recover Units: mg/L HighLimit 120	able Meta	RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium	Samp Bato Analysis Result 0.43 0.43	Type: LC :h ID: 114 Date: 1/ PQL 0.020 0.020	S 432 29/2014 SPK value 0.5000 0.5000	Test R SPK Ref Val 0 0	Code: El unNo: 10 eqNo: 4 %REC 85.6 85.5	PA 6010B: 6372 72097 LowLimit 80 80	Total Recover Units: mg/L HighLimit 120 120	able Meta	RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium	Samp Bato Analysis Result 0.43 0.43 0.43 0.42	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.020 0.0020	S 432 29/2014 SPK value 0.5000 0.5000 0.5000	Test R SPK Ref Val 0 0 0	Code: El unNo: 10 eqNo: 4 %REC 85.6 85.5 84.3	PA 6010B: - 6372 72097 LowLimit 80 80 80 80	Units: mg/L HighLimit 120 120 120	able Meta	RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Calcium	Samp Bato Analysis Q.43 Q.43 Q.43 Q.42 45	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.020 0.0020 1.0	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 50.00	Test R S SPK Ref Val 0 0 0 0 0	Code: El unNo: 10 eqNo: 4 %REC 85.6 85.5 84.3 89.1	PA 6010B: - 6372 72097 LowLimit 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120	able Meta	RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Calcium Chromium	Samp Bato Analysis Result 0.43 0.43 0.43 0.42 45 0.43	Type: LC th ID: 11 Date: 1/ 0.020 0.020 0.0020 1.0 0.0060	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 50.00 0.5000	Test R S SPK Ref Val 0 0 0 0 0 0	Code: El unNo: 10 %REC 85.6 85.5 84.3 89.1 85.3	PA 6010B: * 6372 72097 LowLimit 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120	able Meta	RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Calcium Chromium Lead	Samp Bate Analysis 0.43 0.43 0.43 0.42 45 0.43 0.42	Type: LC th ID: 11 Date: 1/ PQL 0.020 0.0020 1.0 0.0060 0.0050	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	Test R S SPK Ref Val 0 0 0 0 0 0 0 0	Code: El unNo: 10 %REC 85.6 85.5 84.3 89.1 85.3 84.4	PA 6010B: - 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120	able Meta	RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Calcium Chromium Lead Magnesium	Samp Bate Analysis 0.43 0.43 0.43 0.42 45 0.43 0.42 45 0.43 0.42 45	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.0020 1.0 0.0050 0.0050 1.0	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 50.00	Test R S SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: El unNo: 10 %REC 85.6 84.3 89.1 85.3 84.4 90.0	PA 6010B: ⁻ 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120	%RPD	RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Calcium Chromium Lead Magnesium Potassium	Samp Bate Analysis 0.43 0.43 0.43 0.42 45 0.43 0.42 45 0.42 45 44	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.020 0.0020 1.0 0.0050 1.0 1.0 1.0	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00 50.00	Test R SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: El unNo: 10 eqNo: 4 %REC 85.6 85.5 84.3 89.1 85.3 89.1 85.3 84.4 90.0 88.6	PA 6010B: - 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80 80 80	Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	%RPD	RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Cadmium Calcium Chromium Lead Magnesium Potassium Selenium	Samp Bato Analysis 0.43 0.43 0.43 0.43 0.42 45 0.43 0.42 45 44 0.42	Type: LC th ID: 11 Date: 1/ PQL 0.020 0.020 0.0020 1.0 0.0050 1.0 1.0 1.0 0.050	SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00 50.00 0.5000	Test R SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: El unNo: 10 %REC 85.6 85.5 84.3 89.1 85.3 89.1 85.3 84.4 90.0 88.6 83.4	PA 6010B: - 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80 80 80 80	Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	%RPD	RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Cadmium Calcium Chromium Lead Magnesium Potassium Selenium Silver	Samp Bato Analysis 0.43 0.43 0.43 0.42 45 0.43 0.42 45 0.43 0.42 45 44 0.42 0.089	Type: LC th ID: 11 Date: 1/ PQL 0.020 0.020 0.0020 1.0 0.0050 1.0 1.0 1.0 0.050 0.0050	S 432 29/2014 SPK value 0.5000 00	Test R S SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: El unNo: 1 %REC 85.6 85.5 84.3 89.1 85.3 84.4 90.0 88.6 83.4 88.7	PA 6010B: - 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80	Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	able Meta	RPDLimit	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 15 of 17

1401A07 *13-Feb-14*

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc.

Project:	Injection Well 1-23-2014

Sample ID mb-1	SampT	уре: МІ	BLK	Tes	tCode: S I	M2320B: AI	kalinity				
Client ID: PBW	Batch	1D: R1	6304	F	RunNo: 1	6304					
Prep Date:	Analysis D	ate: 1	24/2014	SeqNo: 470197			Units: mg/L CaCO3				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
otal Alkalinity (as CaCO3)	ND	20									
Sample ID Ics-1	SampT	ype: LC	:s	 Tes	tCode: SI	W2320B: AI	kalinity				
Client ID: LCSW	Batch	1D: R1	6304	F	tunNo: 1	5304					
Prep Date:	Analysis D	ate: 1/	24/2014	6	eqNo: 4	70198	Units: mg/L	CaCO3			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
			00.00		400		440				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDImit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 16 of 17

1401A07 *13-Feb-14*

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Sample ID MB-11406	SampType: MBLK	SampType: MBLK TestCode: SM2540C MOD: Total Dissolved S				
Client ID: PBW	Batch ID: 11406	RunNo: 16349				
Prep Date: 1/27/2014	Analysis Date: 1/28/2014	SeqNo: 471302	Units: mg/L			
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual			
otal Dissolved Solids	ND 20.0					
Sample ID LCS-11406	SampType: LCS	TestCode: SM2540C M	DD: Total Dissolved Solids			
Client ID: LCSW	Batch ID: 11406	RunNo: 16349				
Prep Date: 1/27/2014	Analysis Date: 1/28/2014	SeqNo: 471303	Units: mg/L			
Analvte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 17 of 17

1401A07

WO#:

13-Feb-14

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental A Albug TEL: S05-345-3975 F Website: www.hall	nalysis Laborata 4901 Hawkins l werque, NM 871 AX: 505-345-41 environmental.co	ve 09 Sam 07	ple Log-In Ch	eck List
Client Name: Western Refining Southw	Work Order Number:	1401A07		RcptNo:	·
Received by/date: LM G	hay iy				· · · · ·
Logged By: Michelle Garcia	1/24/2014 10:15:00 AM		minu Gar	un	
Completed By: Michelle Garcia	1/24/2014 12:54:49 PM		Minute Gan	ua	
Reviewed By: AT0/127/14	l				
Chain of Custody					
1. Custody seals intact on sample bottles?		Yes	No 🛄	Not Present 🖌	
2. Is Chain of Custody complete?		Yes 🕢	No	Not Present	
3. How was the sample delivered?		<u>Courier</u>			
Log in					
4. Was an attempt made to cool the samples?		Yes 🗹	No 🗌	na 🗆	
5. Were all samples received at a temperature	of >0° C to 6.0°C	Yes 🗹	No 🛄	NA 🗍	
6. Sample(s) in proper container(s)?		Yes 🗹	No []]		
7. Sufficient sample volume for indicated test(s)	?	Yes 🗹	No 🗔		
8. Are samples (except VOA and ONG) properl	y preserved?	Yes 🔽	No [.]		
9. Was preservative added to bottles?		Yes	No 🗹	NA	
10.VOA vials have zero headspace?		Yes 🗹	No 🗌	No VOA Vials 📋	
11. Were any sample containers received broke	n?	Yes 🗀	No 🗹 [# of preserved	•
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🔽	No []]	for pH:	12 unless noted)
13. Are matrices correctly identified on Chain of	Custody?	Yes 🔽	No	Adjusted	NO
14. Is it clear what analyses were requested?		Yes 🗹	No		
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No 🛄	Checked by:	
Special Handling (If applicable)					
16. Was client notified of all discrepancies with ti	ls order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified:	Date:	· · · · · · · · · · · · · · · · · · ·	and the second second		
By Whom:	Via:	eMail 📋 Ph	one Fax	i in Person	
Regarding:					
Client Instructions:					
17. Additional remarks:					
18. <u>Cooler Information</u> Cooler No Temp C. Condition Se 1 1.2 Good Yes	al Intact Seal No. Se	al Date	Signed By		

:

Page 1 of 1

.

Ċ	hain-	of-Cu	stody Record	Turn-Around	Time:							NT	A	L								
Client:	Weste	n Refin	ing	X Standard	🗆 Rush					A	N	AL'	YS	IS	L	AB	O	R/	11)F	Y.	
				Project Name	: Injection	Well					****	.haii	envia	noniñ	hent	ai.co	m			•		
Mailing	Address	50 CR	4990	1	1-23-6	2014		49	01 H	awki	ns N	1E -	Albi	uque	erqui	e, Ni	VI 87	7109	J			
•	Bloom	field. N	M 87413	Project #:	<u></u>		1	Te	al. 50)5-34	5-39	975	F	ax	505-	345	410	7				
Phone	#: 605 -	632-413	5	1			Analysis Request															
email o	Fax#:			Project Mana	iger:	······································					ΣŢ	3	<u> </u>	- 1			ľ					
QA/QC I	Package:						TMB's (802 TPH (Gas o 0 / DRO / MI 0 / DRO / MI 4.1) Back-ul			S	- H H	ЧЧ К-		Na I	S S	8						
X Stan	dard		Level 4 (Full Validation)		····					Ba	IMS	Ч <u></u> б,	ă	2	ļ	ł				5		
	er			Sampler:	06					70S	a.	S.	õ	ļ	~		siviț	ਹ	ੱਮੂ5			
X EDU	(Type)			Sample Tem	Sample Temperature: 1.7			+ . <u></u> .	GR	4	3	82	als (ĝ	les		δ		Ê	¥	비원	
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservativ e Type	HEAL NO.	BTEX + MTB	BTEX + MTB	TPH 8015B (TPH (Methoc	EDB (Method	PAH (8310 o	RCRA 8 Met	Anians (F,Cl,	8081 Pesticic	8260B (VOA	8270 (Semi-V	Ignitability	Reactivity, C	Ec, pH, SO4,	Bulfates S Air Bubbles (
1-23-4	8:35	H ₂ 0	Injection Well	5-VOA	HCI	-001	T									x					শ্ব	
	1	H₂0	Injection Well	1 - liter	Amber	- 001								-1			x				<u>ټ</u>	
1		H ₂ O	Injection Well	1-500 ml	Amber	-001	<u>†</u>			x			-+			-	-1	x			· •	
-		H ₂ 0	Injection Well	1-500 ml	Amber	-001	†							-1						x		
		H ₂ 0	Injection Well	1-250 ml	H₂SO₄	-001	1—				x			-+		-†	-					
		H ₂ 0	Injection Well	1-500 ml	HNO ₃	- 00	1						x	+								
-		H ₂ 0	Injection Well	1-500 ml	Na OH		<u> </u>						-	<u> </u>	أ ``				x			
		H ₂ 0	Injection Well	1-500 mi	Zn Acutate										·						x	
		ļ																				
	}	┝────		-}	<u> </u>		╆━╴			┝─┥		\vdash	-1					┟╌┥	┝╌┥	⁻	┢╍╍┾╼╸	
	<u> </u>			┫━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━	<u>}</u>		+	╏───		┝╼┥							_	┟╌─┥	┝╼┥	├	┢╼╉╼	
Date: -23-14 Date:	Time: JS/D Time:	Relinquish	ed by: ect Krakow	Received by:	u Maile	Date Time 1/23/14 /510 Date Time	Remarks:				L	<u></u>										
1/23/14	1710	CAN	stu hall		F_	01/24/14/1015	015															
វ	nécessary,	samples subr	nitted to Hall Environmental may be sub	contracted to other	acdredited laboratori	ies. This serves as notice of t	his pos	sibility	. Any	sub-cc	ntract	ed data	a wiil b	e dea	arly no	tated o	on the	analy	tical re	pert.		

....

.

. . . .

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

August 15, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4166 FAX (505) 632-3911

RE: Injection Well 7-28-14 3rd QTR

OrderNo.: 1407D12

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/29/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andig

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

	T . I	4		Lab Order 1407D12
Hall Environmental Analysis	Labora	atory, Inc.		Date Reported: 8/15/2014
CLIENT: Western Refining Southwest, Inc	 >.	(Client San	nple ID: Injection Well
Project: Injection Well 7-28-14 3rd OTR			Collectio	on Date: 7/28/2014 9:30:00 AM
Lab ID: 1407D12 001	Matrix	AOUEOUS	Receive	ad Date: 7/29/2014 7:55:00 AM
Lab ID: 1407D12-001		AQUEUUS		
Analyses	Result	RL Qual	Units	DF Date Analyzed Batch
EPA METHOD 300.0: ANIONS				Analyst: LGP
Chloride	510	25	mg/L	50 8/4/2014 5:04:09 PM R20363
Sulfate	41	2.5	mg/L	5 7/29/2014 4:17:43 PM R20236
EPA METHOD 7470: MERCURY				Analyst: MMD
Mercury	ND	0.00020	mg/L	1 8/4/2014 2:43:32 PM 14571
EPA 6010B: TOTAL RECOVERABLE MET	ALS			Analyst: ELS
Arsenic	ND	0.020	mg/L	1 8/2/2014 2:09:02 PM 14549
Barium	0.63	0.020	mg/L	1 8/2/2014 2:09:02 PM 14549
Cadmium	ND	0.0020	mg/L	1 8/2/2014 2:09:02 PM 14549
Calcium	480	5.0	mg/L	5 8/2/2014 2:10:49 PM 14549
Chromium	ND	0.0060	ma/L	1 8/2/2014 2:09:02 PM 14549
lead	ND	0.0050	ma/L	1 8/2/2014 2:09:02 PM 14549
Maanesium	99	1.0	ma/L	1 8/2/2014 2:09:02 PM 14549
Potassium	36	1.0	ma/L	1 8/2/2014 2:09:02 PM 14549
Selenium	ND	0.050	ma/L	1 8/2/2014 2:09:02 PM 14549
Silver	ND	0.0050	ma/L	1 8/2/2014 2:09:02 PM 14549
Sodium	1100	20	mg/L	20 8/2/2014 3:24:50 PM 14549
EPA METHOD 8270C: SEMIVOLATILES			•	Analyst: DAM
Acenaphthene	ND	100	ua/L	1 7/31/2014 8:37:47 PM 14520
Acenaphthylene	ND	100	ua/L	1 7/31/2014 8:37:47 PM 14520
Aniline	ND	100	μα/L	1 7/31/2014 8:37:47 PM 14520
Anthracene	ND	100	ua/L	1 7/31/2014 8:37:47 PM 14520
Azobenzene	ND	100	μα/L	1 7/31/2014 8:37:47 PM 14520
Benz(a)anthracene	ND	100	ua/L	1 7/31/2014 8:37:47 PM 14520
Benzo(a)pyrene	ND	100	ua/L	1 7/31/2014 8:37:47 PM 14520
Benzo(b)fluoranthene	ND	100	-σ- uα/l	1 7/31/2014 8:37:47 PM 14520
Benzo(g,h.i)pervlene	ND	100	ua/L	1 7/31/2014 8:37:47 PM 14520
Benzo(k)fluoranthene	ND	100	ua/L	1 7/31/2014 8:37:47 PM 14520
Benzoic acid	ND	200	ua/L	1 7/31/2014 8:37:47 PM 14520
Benzvi alcohol	ND	100	ua/L	1 7/31/2014 8:37:47 PM 14520
Bis(2-chloroethoxy)methane	ND	100	ua/L	1 7/31/2014 8:37:47 PM 14520
Bis(2-chloroethyl)ether	ND	100	µa/L	1 7/31/2014 8:37:47 PM 14520
Bis(2-chloroisopropyl)ether	ND	100	ua/L	1 7/31/2014 8:37:47 PM 14520
Bis(2-ethylhexyl)phthalate	ND	100	μα/L	1 7/31/2014 8:37:47 PM 14520
4-Bromophenyl phenyl ether	ND	100	μg/L	1 7/31/2014 8:37:47 PM 14520
Butyl benzyl phthalate	ND	100	μg/L	1 7/31/2014 8:37:47 PM 14520
Carbazole	ND	100	μ α /L	1 7/31/2014 8:37:47 PM 14520
4-Chloro-3-methylphenol	ND	100	μα/L.	1 7/31/2014 8:37:47 PM 14520
4-Chloroaniline	ND	100	μg/L	1 7/31/2014 8:37:47 PM 14520
			10-	

Qualifiers: * Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 1 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall E	nvironmental Ana	lvsis Laborato	rv. Inc.			Lab Order 1407D12 Date Reported: 8/15/201	14
CLIENT:	Western Refining Southw	est, Inc.	C	hent Samp	ple ID: Inj	ection Well	
Project:	Injection Well 7-28-14 3r	d QTR		Collection	Date: 7/2	28/2014 9:30:00 AM	
Lab ID:	1407D12-001	Matrix: AQ	UEOUS	Received	Date: 7/2	29/2014 7:55:00 AM	
Analyses		Result	RL Qual	Units	DF	Date Analyzed	Batch
EPA MET	THOD 8270C: SEMIVOLAT	ïles				Analyst	DAM
2-Chloro	naphthalene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
2-Chloro	phenol	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
4-Chioro	phenyl phenyl ether	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Chrysen	e	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Di-n-buty	yl phthalate	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Di-n-octy	yl phthalate	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Dibenz(a	a,h)anthracene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Dibenzot	furan	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
1,2-Dich	lorobenzene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
1,3-Dich	lorobenzene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
1,4-Dich	lorobenzene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
3,3'-Dich	nlorobenzidine	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Diethyl p	hthalate	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Dimethyl	I phthalate	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dich	lorophenol	ND	200	µg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dim€	ethylphenol	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
4,6-Diniti	ro-2-methylphenol	ND	200	µg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Diniti	rophenol	ND	200	µg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dinite	rotoluene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2,6-Diniti	rotoluene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Fluoranti	hene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Fluorene		ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Hexachic	probenzene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Hexachlo	probutadiene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Hexachio	procyclopentadiene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Hexachio	proethane	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Indeno(1	,2,3-cd)pyrene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Isophoro	ne	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
1-Methyl	naphthalene	NĎ	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2-Methyli	naphthalene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
2-Methyl	phenol	ND	200	μg/L	1	7/31/2014 8:37:47 PM	14520
3+4-Meth	hylphenol	210	100	µg/L	1	7/31/2014 8:37:47 PM	14520
N-Nitroso	odi-n-propylamine	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
N-Nitrosc	odimethylamine	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
N-Nitrosc	odiphenylamine	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Naphthai	ene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2-Nitroan	iline	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
3-Nitroan	iline	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
4-Nitroan	illine	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520

- Qualifiers: * Value exceeds Maximum Contaminant Level.
 - E Value above quantitation range
 - J Analyte detected below quantitation limits
 - O RSD is greater than RSD1imit
 - R RPD outside accepted recovery limits
 - S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 2 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis	Labora	atory. Inc				Lab Order 1407D12 Date Reported: 8/15/20	14		
			_						
CLIENT: Western Refining Southwest, Inc		Client Sample ID: Injection Well							
Project: Injection Well 7-28-14 3rd QTR				Collection	Date: 7/2	8/2014 9:30:00 AM			
Lab ID: 1407D12-001	Matrix:	AQUEOUS		Received	Date: 7/2	9/2014 7:55:00 AM			
Analyses	Result	RL Q	lual	Units	DF	Date Analyzed	Batch		
EPA METHOD 8270C: SEMIVOLATILES			-	_		Analyst	: DAM		
Nitrobenzene	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520		
2-Nitrophenol	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520		
4-Nitrophenol	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520		
Pentachlorophenol	ND	200		µg/L	1	7/31/2014 8:37:47 PM	14520		
Phenanthrene	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520		
Phenol	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520		
Pyrene	NÐ	100		µg/L	1	7/31/2014 8:37:47 PM	14520		
Pyridine	NĎ	100		µg/L	1	7/31/2014 8:37:47 PM	14520		
1,2,4-Trichlorobenzene	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520		
2,4,5-Trichlorophenol	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520		
2,4,6-Trichlorophenol	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520		
Surr: 2-Fluorophenol	0	12.1-85.8	s	%REC	1	7/31/2014 8:37:47 PM	14520		
Surr: Phenol-d5	0	17.7-65.8	S	%REC	1	7/31/2014 8:37:47 PM	14520		
Surr: 2,4,6-Tribromophenol	0	26-138	S	%REC	1	7/31/2014 8:37:47 PM	14520		
Surr: Nitrobenzene-d5	0	47.5-119	s	%REC	1	7/31/2014 8:37:47 PM	14520		
Surr: 2-Fluorobiphenyl	0	48.1-106	s	%REC	1	7/31/2014 8:37:47 PM	14520		
Surr: 4-Terphenyl-d14	0	44-113	S	%REC	1	7/31/2014 8:37:47 PM	14520		
EPA METHOD 8260B: VOLATILES						Analyst	DJF		
Benzene	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298		
Toluene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298		
Ethylbenzene	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298		
Methyl tert-butyl ether (MTBE)	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298		
1,2,4-Trimethylbenzene	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298		
1,3,5-Trimethylbenzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298		
1,2-Dichloroethane (EDC)	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298		
1,2-Dibromoethane (EDB)	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298		
Naphthalene	ND	4.0		µg/L	2	7/31/2014 1:41:17 PM	R20298		
1-Methylnaphthalene	ND	8.0		μg/L	2	7/31/2014 1:41:17 PM	R20298		
2-Methylnaphthalene	ND	8.0		µg/L	2	7/31/2014 1:41:17 PM	R20298		
Acetone	85	20		µg/L	2	7/31/2014 1:41:17 PM	R20298		
Bromobenzene	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298		
Bromodichloromethane	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298		
Bromoform	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298		
Bromomethane	ND	6.0		µg/L	2	7/31/2014 1:41:17 PM	R20298		
2-Butanone	ND	20		µg/L	2	7/31/2014 1:41:17 PM	R20298		
Carbon disulfide	ND	20		µg/L	2	7/31/2014 1:41:17 PM	R20298		
Carbon Tetrachloride	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298		
Chlorobenzene	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298		
Chloroethane	ND	4.0		µg/L	2	7/31/2014 1:41:17 PM	R20298		

Qualifiers: * Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
 - J Analyte detected below quantitation limits
 - O RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 3 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis	Labore	ntory Inc		Lab Order 1407D12
				Date Reported: 8/15/2014
CLIENT: Western Refining Southwest, In-	с.	C	Client Sa	mple ID: Injection Well
Project: Injection Well 7-28-14 3rd QTR	L		Collecti	on Date: 7/28/2014 9:30:00 AM
Lab ID: 1407D12-001	Matrix:	AQUEOUS	Receiv	ed Date: 7/29/2014 7:55:00 AM
Апаlyses	Result	RL Qual	Units	DF Date Analyzed Batch
EPA METHOD 8260B: VOLATILES				Analyst: DJF
Chloroform	ND	2.0	μg/L	2 7/31/2014 1:41:17 PM R20298
Chloromethane	ND	6.0	μg/L	2 7/31/2014 1:41:17 PM R20298
2-Chlorotoluene	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
4-Chiorotoluene	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
cis-1,2-DCE	NĎ	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
cis-1,3-Dichloropropene	ND	2.0	μg/L	2 7/31/2014 1:41:17 PM R20298
1,2-Dibromo-3-chloropropane	ND	4.0	µg/L	2 7/31/2014 1:41:17 PM R20298
Dibromochloromethane	NÐ	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
Dibromomethane	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
1,2-Dichlorobenzene	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
1,3-Dichlorobenzene	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
1,4-Dichlorobenzene	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
Dichlorodifluoromethane	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
1,1-Dichloroethane	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
1,1-Dichloroethene	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
1,2-Dichloropropane	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
1,3-Dichloropropane	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
2,2-Dichloropropane	ND	4.0	µg/L	2 7/31/2014 1:41:17 PM R20298
1,1-Dichloropropene	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
Hexachlorobutadiene	ND	2.0	μg/L	2 7/31/2014 1:41:17 PM R20298
2-Hexanone	ND	20	µg/L	2 7/31/2014 1:41:17 PM R20298
lsopropylbenzene	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
4-Isopropyltoluene	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
4-Methyl-2-pentanone	ND	20	µg/L	2 7/31/2014 1:41:17 PM R20298
Methylene Chloride	ND	6.0	µg/L	2 7/31/2014 1:41:17 PM R20298
n-Butylbenzene	ND	6.0	μg/L	2 7/31/2014 1:41:17 PM R20298
n-Propylbenzene	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
sec-Butylbenzene	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
Styrene	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
tert-Butylbenzene	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	2 7/31/2014 1:41:17 PM R20298
1,1,2,2-Tetrachloroethane	ND	4.0	µg/L	2 7/31/2014 1:41:17 PM R20298
Tetrachloroethene (PCE)	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
trans-1,2-DCE	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
trans-1,3-Dichloropropene	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
1,2,3-Trichlorobenzene	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
1,2,4-Trichlorobenzene	ND	2.0	hð\r	2 7/31/2014 1:41:17 PM R20298
1,1,1-Trichloroethane	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298
1,1,2-Trichloroethane	ND	2.0	µg/L	2 7/31/2014 1:41:17 PM R20298

Qualifiers: * Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
 - J Analyte detected below quantitation limits
 - O RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 4 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis	Labora	tory, In	c			Lab Order 1407D12 Date Reported: 8/15/20	[4
CLIENT: Western Refining Southwest, In	 c.		C	lient Sample I	D: Inj	ection Well	
Project: Injection Well 7-28-14 3rd QTF	2			Collection Da	te: 7/2	28/2014 9:30:00 AM	
Lab ID: 1407D12-001	Matrix:	AQUEOUS	5	Received Da	te: 7/2	9/2014 7:55:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	DJF
Trichloroethene (TCE)	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
Trichlorofluoromethane	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
1,2,3-Trichloropropane	ND	4.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
Vinyl chloride	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Xylenes, Total	ND	3.0		µg/Ľ	2	7/31/2014 1:41:17 PM	R20298
Surr: 1,2-Dichloroethane-d4	92.4	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
Surr: 4-Bromofluorobenzene	95.4	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
Surr: Dibromofluoromethane	100	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
Surr: Toluene-d8	93.6	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
SM2510B: SPECIFIC CONDUCTANCE						Analyst	JRR
Conductivity	1900	0.010		µmhos/cm	1	7/29/2014 12:08:01 PM	R20245
SM4500-H+B: PH						Analyst	JRR
рН	7.10	1.68	н	pH units	1	7/29/2014 12:08:01 PM	R20245
SM2320B: ALKALINITY						Analyst:	JRR
Bicarbonate (As CaCO3)	220	20		mg/L CaCO3	1	7/29/2014 12:08:01 PM	R20245
Carbonate (As CaCO3)	ND	2.0		mg/L CaCO3	1	7/29/2014 12:08:01 PM	R20245
Total Alkalinity (as CaCO3)	220	20		mg/L CaCO3	1	7/29/2014 12:08:01 PM	R20245
SM2540C MOD: TOTAL DISSOLVED SOL	.ID\$					Analyst:	KS
Total Dissolved Solids	1380	200	*	mg/L	1	7/30/2014 5:19:00 PM	14475

Analytical Report

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: *		Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Meth	od Blank
	Е	Value above quantitation range	н	Holding times for preparation or analys	is exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Doge 5 of 20
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	Fage 5 01 20
	R.	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	Spike Recovery outside accepted recovery limits			

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	140730036
Address:	4901 HAWKINS NE SUITE D	Project Name:	1407D12
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	140730036-001 1407D12-001E / INJEC Water	Sam; TION WELL	pling Date	7/28/2014	Date/ Sam	12:25 PM		
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide (reacti	ve)	ND	mg/L	1	8/12/2014	CRW	SW846 CH7	
Flashpoint		>200	۴F		8/5/2014	KFG	EPA 1010	
pН		7.44	ph Units		8/5/2014	AЛ	SM 4500pH-B	
Reactive sulfide	3	ND	mg/L	1	8/1 /2014	AJT	SW846 CH7	

Authorized Signature

John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Cartifications held by Anatek Labs WA: EPA:WA0D169; ID:WA00169; WA:C585; MT:Cert0085; FL(NELAP): E871099

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	140730036
Address:	4901 HAWKINS NE SUITE D	Project Name:	1407D12
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Quality Control Data

Lab Control Sa	mple					-						
Parameter		LCS Resul	t Units	LCS	5 Spike	%Rec	AR	%Rec	Prep	Date	Analysis Date	
Reactive sulfide		D.16	mg/L		0.2 80.0		70-130		8/1/2014		8/1/2014	
Cyanide (reactive)		0.505	mg/L		0.5	101.0 8		0-120	8/12	/2014	8/12/2014	
Lab Control Sa	mple Duplicate	· ,	 ,									
		LCSD		LCSD	~~	~ ~ ~ ~ ~		AR			•!!- D-4-	
Parameter		Result	Units	Spike	%Kec	%RPU	, ,	%RPD	PrepL		Analysis Date	
Reactive sulfide		0.18		0.2	90.0	11.8		0-25	8/1/20		8/1/2014	
Matrix Spike												
Samola Number	Paramotor		Sample	MS Booult	Linit	۸ ۵	1S Nika	%Rec	AR M Rec	Pren Date	Analysis Nata	
140730036-001	Reactive sulfide		ND	n 22	mali	a of U) ク	110.0	70-130	8/1/2014	8/1/2014	
140730036-001	Cyanide (reactive)		ND	0.919	mg/l		1	91.9	80-120	8/12/2014	8/12/2014	
Matrix Spike Di	uplicate		<u> </u>									
B		. MSD		MSD				AR		- 0-4-	America Deta	
Parameter		Result	Units	Spike	%K	ec %ł	(PD	%RPL) Pre		Analysis Date	
Cyanide (reactive)		0.906	mg/L	1		.6 1	.4	0-25		2/2014	8/12/2014	
Method Blank		·					<u> </u>					
Parameter			Re	sult	Ur	its		PQL	Pr	ep Date	Analysis Date	
Cyanide (reactive)			N	D	ការ	3/L		1	8/1	2/2014	8/12/2014	
Reactive sulfide			N	D	mo	ν/L		1	8/	1/2014	8/1/2014	

AR Acceptable Range

ND Not Detected

PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

Certifications held by Anstek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E67893; ID:ID00013; MT:CERT8028; NM: ID00013; OR:ID200001-002; WA:C585 Certifications held by Anstek Labs WA: EPA:WA00159; ID:WA00169; WA:C585; MT:Cert0085; FL(NELAP): E671099

Hall Environmental Analysis Laboratory, Inc.

Result

Result

9.7

ND

Analysis Date: 7/29/2014

SampType: LCS

PQL

Batch ID: R20236

PQL

0.50

Analysis Date: 7/29/2014

SampType: MBLK

Batch ID: R20236

0.50

Client: Western Refining Southwest, Inc. **Project:** Injection Well 7-28-14 3rd QTR Sample ID MB SampType: MBLK Client ID: PBW Batch ID: R20236

Prep Date:

Prep Date:

Sample ID MB

PBW

Client ID:

Prep Date: Analyte Sulfate

Sample ID Client ID: Prep Date: Analyte Sulfate

Sample ID Client ID: Prep Date: Analyte Chloride

Analyte

Sulfate

Sample ID LCS

Client ID: LCSW

Analyte

Sulfate

SPK value SPK Ref Val

10.00

97.4 90 110 TestCode: EPA Method 300.0: Anions

Units: mg/L

HighLimit

Units: mg/L

HighLimit

TestCode: EPA Method 300.0: Anions

TestCode: EPA Method 300.0: Anions

LowLimit

RunNo: 20236

SeqNo: 588153

RunNo: 20236

SeqNo: 588154

RunNo: 20236

%REC

SPK value SPK Ref Val %REC LowLimit

0

	Analysis [Date: 7/	29/2014	8	SeqNo: 5	88211	Units: mg/L			
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	ND	0.50								
LCS	Samp1	Type: LC	S	Tes	tCode: El	PA Method	300.0: Anions	;		
LCSW	Batcl	h 1D: R2	0236	F	RunNo: 2	0236				
	Analysis [Date: 7/	29/2014	5	SeqNo: 5	88212	Units: mg/L			
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	9.6	0.50	10.00	0	95.6	90	110			
MB	Samp	Гуре: МЕ	3LK	Tes	tCode: El	PA Method	300.0: Anions	;		
PBW	Batcl	h ID: R2	0363	Я	tunNo: 2	0363				
	Analysis E	0ate: 8 /	4/2014	S	eqNo: 5	92146	Units: mg/L			
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	ND	0.50								

Sample ID LCS	SampTy	ne: LC		Tes	tCode: E	PA Method	300.0: Anion	9			-
Client ID: LCSW	Batch	ID: R2	0363	F	tunNo: 2	0363		•			
Prep Date:	Analysis Da	ite: 8/	4/2014	S	eqNo: 5	92147	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride	4.7	0.50	5.000	0	94.2	90	110				

Oualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2. P
- Reporting Detection Limit RL

Page 6 of 20

15-Aug-14

Qual

Qual

WO#:

RPDLimit

RPDLimit

%RPD

%RPD

Hall Environmental Analysis Laboratory, Inc.

4.7

0.50

5.000

Client: Western Refining Southwest, Inc. **Project:** Sample ID Client ID:

Qualifiers:

Analyte

Chloride

- ¥ Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded н
- ND Not Detected at the Reporting Limit
 - Sample pH greater than 2. Р
 - RL **Reporting Detection Limit**

Project:		Injection Well 7-28-14	3rd QTR							
Sample ID	MB	SampType:	MBLK	Tes	tCode: EPA Method	1 300.0: Anion	s			
Client ID:	PBW	Batch ID:	R20363	F	RunNo: 20363					
Prep Date:		Analysis Date:	8/5/2014	S	SeqNo: 592208	Units: mg/L				
Analyte		Result PC	L SPK value	SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		ND 0	.50							
Sample ID	LCS	SampType:	LCS	 Tes	tCode: EPA Method	300.0: Anion	s			
Client ID:	LCSW	Batch ID:	R20363	F	RunNo: 20363					
Prep Date:		Analysis Date:	8/5/2014	S	SeqNo: 592209	Units: mg/L				
Analvte		Result PC	L SPK value	SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual	

93.8

90

110

0

1407D12 15-Aug-14

WO#:

Page 7 of 20

Hall Environmental Analysis Laboratory, Inc.

Client: Weste Project: Injecti	rn Refining So on Well 7-28	outhwe -14 3rd	st, Inc. QTR
Sample ID 5mL rb	SampT	ype: Mi	BLK
Client ID: PBW	Batch	ID: R2	20230
Prep Date:	Analysis D	ate: 7/	29/201
Analyte	Result	PQL	SPK
Surr: 1.2-Dichlorpethane-d4	91		1

Prep Date:	Analysis [Date: 7	/29/2014	5	SeqNo: 5	87928	Units: %RE	С		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	9.1		10.00		91.3	70	130			
Surr: 4-Bromofluorobenzene	9.3		10.00		93.2	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.7		10.00		96.7	70	130			
Sample ID 100ng Ics	SampT	ype: Lt	cs	Tes	tCode: El	PA Method	8260B; VOL	ATILES		
Client ID: LCSW	Batci	n ID: R	20230	F	RunNo: 2	0230				
Prep Date:	Analysis D	ate: 7	/29/2014	5	SeqNo: 5	87930	Units: %RE	C		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.6	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.4	70	130			
Surr: Dibromofluoromethane	11		10.00		107	70	130			
Sum: Toluene-d8	9.4		10.00		94.3	70	130			
Sample ID 5ml rb	Samp'T	ype: M	BLK	Tes	tCode: El	PA Method	8260B; VOL	ATILES		
Client ID: PBW	Batch	i ID: Ra	20298	F	RunNo: 2	0298				
Prep Date:	Analysis D	ate: 7	/31/2014	5	BeqNo: 5	89943	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methyinaphthalene	NĎ	4.0								
2-Methyinaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								

TestCode: EPA Method 8260B: VOLATILES

RunNo: 20230

Qualifiers:

Chlorobenzene

Carbon Tetrachloride

Value exceeds Maximum Contaminant Level.

ND

ND

1.0

1.0

Ę Value above quantitation range

J Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

Sample pH greater than 2. Р

Reporting Detection Limit RL

Page 8 of 20

1407D12

WO#:

Client: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

					+Code: =			ATUEC		
Sample IU 5mi rb	Sampi	ype: Mi	SLK	les	icode: E	PA Method	8260B: VOL	AILLES		
Client ID: PBW	Batch	1 ID: R2	0298	F	RunNo: -2	0298				
Prep Date:	Analysis D	ate: 7	31/2014	5	GegNo: 5	89943	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chioroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1.3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2.Hexanone	ND	10								
lsopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
- RL Reporting Detection Limit

WO#: 1407D12

Client:Western Refining Southwest, Inc.Project:Injection Well 7-28-14 3rd QTR

Ξ

Sample ID 5ml rb	SampT	ype: Mi	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batcl	h ID: R2	20298	F	RunNo: 2	0298				
Prep Date:	Analysis E)ate: 7/	31/2014	5	SeqNo: 5	89943	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1,2-Trichloroethane	ND	1.0							·	_
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyi chloride	ND	1.0								
Xytenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.8		10.00		88.2	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		98.9	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.9		10.00		98.9	70	130			
Sample ID 100ng Ics	 SampT	iype: LC	 S	TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch	1 ID: R2	0298	RunNo: 20298						
Prep Date:	Analysis D	ate: 7/	31/2014	S	SeqNo: 5	89945	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130			
Toluene	21	1.0	20.00	D	107	80	120			
Chlorobenzene	20	1.0	20.00	0	99.3	70	130			
1,1-Dichloroethene	22	1.0	20.00	0	110	82.6	131			
Trichloroethene (TCE)	21	1.0	20.00	0	103	70	130			
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.6	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.4		10.00		94.3	70	130			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 10 of 20

WO#: 1407D12

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc.

 \equiv

Project: Injection Well 7-28-14 3rd QTR

Sample ID mb-14520	SampT	ype: MI	BLK	TestCode: EPA Metho		PA Method	8270C: Semi			
Client ID: PBW	Batch	Batch ID: 14520			RunNo: 2	0300				
Prep Date: 7/31/2014	Analysis D	ate: 7	/31/2014	٤	SeqNo: 5	90031	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC_	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10						-		
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	20								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyl)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	ND	10								
4-Bromophenyl phenyl ether	ND	10								
Butyl benzyl phthalate	ND	10								
Carbazole	ND	10								
4-Chloro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chloronaphthalene	ND	10								
2-Chlorophenol	ND	10								
4-Chlorophenyl phenyl ether	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	ND	10								
Di-n-octyl phthalate	ND	10								
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								
3,3'-Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	20								
2.4-Dimethylphenol	ND	10								
4.6-Dinitro-2-methylphenol	ND	20								

Qualifiers:

2,4-Dinitrophenol

* Value exceeds Maximum Contaminant Level.

ND

20

Value above quantitation range Е

- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
 - Р Sample pH greater than 2.
- RL Reporting Detection Limit

1407D12 15-Aug-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

Sample ID mb-14520	SampT	ype: Mi	3LK	TestCode: EPA Method 8270C: Semivolatiles						
Client ID: PBW	Batch	1D: 14	520	F	RunNo: 2	0300				
Prep Date: 7/31/2014	Analysis D	ate: 7/	31/2014	S	SeqNo: 5	90031	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	<u>%R</u> PD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10							-	
2,6-Dinitrotoluene	ND	10								
Fluoranthene	ND	10								
Flugrene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	10								
Hexachlorocyclopentadiene	ND	10					•	•		
Hexachioroethane	ND	10								
Indeno(1,2,3-cd)pyrene	NÐ	10								
Isophorone	ND	10								
1-Methylnaphthalene	ND	10								
2-Methylnaphthalene	ND	10								
2-Methylphenol	ND	20								
3+4-Methylphenol	ND	10								
N-Nitrosodi-n-propylamine	ND	10								
N-Nitrosodimethylamine	ND	10								
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	NÐ	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								
Surr: 2-Fluorophenol	130		200.0		66.7	12.1	85.8	•		
Surr: Phenol-d5	95		200.0		47.4	17.7	65.8			
Surr: 2,4,6-Tribromophenol	170		200.0		86.4	26	138			
Surr: Nitrobenzene-d5	84		100.0		83.6	47.5	119			
Surr: 2-Fluorobiphenyl	84		100.0		83.7	48.1	106			
Surr: 4-Terphenvl-d14	94		100.0		94.5	44	113			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- $E \qquad \text{Value above quantitation range}$
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- ${\bf B}$ Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 12 of 20

WO#: 1407D12

Client: Western Refining Southwest, Inc.

Ξ

Project: Injection Well 7-28-14 3rd QTR

Sample ID Ics-14520	SampType: LCS TestCode: EPA Method 8270C: Semivolatiles									
Client ID: LCSW	Batch	h ID: 14	520	F	RunNo: 2	0300				
Prep Date: 7/31/2014	Analysis D	Date: 7/	31/2014	5	SeqNo: 590032					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	87	10	100.0	0	87.0	50.3	109			
4-Chloro-3-methyiphenol	200	10	200.0	Û	99.0	51.2	113			
2-Chlorophenol	190	10	200.0	0	94.9	48.5	10 4			
1,4-Dichlorobenzene	80	10	100.0	0	79.5	39.5	106			
2,4-Dinitrotoluene	82	10	100.0	٥	82.3	45.4	107			
N-Nitrosodi-n-propylamine	91	10	100.0	0	91.0	50.4	119			
4-Nitrophenol	110	10	200.0	0	53.6	15.5	62.2			
Pentachlorophenol	150	20	200.0	0	72.7	23.5	93.5			
Phenol	110	10	200.0	0	54.8	26.8	65.6			
Pyrene	96	10	100.0	0	95.5	54.4	108			
1,2,4-Trichlorobenzene	78	10	100.0	0	78.0	39.9	106			
Surr: 2-Fluorophenol	140		200.0		72.4	12.1	85.8			
Surr: Phenol-d5	100		200.0		52.5	17.7	65.8			
Surr: 2,4,6-Tribromophenol	170		200.0		87.0	26	138			
Surr: Nitrobenzene-d5	100		100.0		101	47.5	119			
Surr: 2-Fluorobiphenyl	96		100.0		96.0	48.1	106			
Surr: 4-Terphenyl-d14	91		100.0		90.9	44	113		<u> </u>	

Sample ID Icsd-14520	SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles									
Client ID: LCSS02	Batch	1 ID: 145	520	R	tunNo: 2()300				
Prep Date: 7/31/2014	Analysis D	ate: 7/3	31/2014	S	eqNo: 5	90033	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	77	10	100.0	0	76.5	50.3	109	12.8	27.2	
4-Chioro-3-methyiphenol	190	10	200.0	0	93.8	51.2	113	5.37	25.9	
2-Chlorophenol	170	10	200.0	0	84.4	48.5	104	11.7	22.5	
1,4-Dichlorobenzene	73	10	100.0	0	73.3	39.5	106	8.19	24.6	
2,4-Dinitrotoluene	73	10	100.0	0	73.1	45.4	107	11.9	25.3	
N-Nitrosodi-n-propylamine	85	10	100.0	0	84.9	50.4	119	6.98	23.6	
4-Nitrophenol	110	10	200.0	0	52.7	15.5	62.2	1.69	34.7	
Pentachiorophenol	150	20	200.0	0	72.9	23.5	93.5	0.275	32.8	
Phenol	100	10	200.0	0	51.6	26.8	65.6	6.05	25.5	
Pyrene	89	10	100.0	0	88.8	54.4	108	7.31	31.4	
1,2,4-Trichlorobenzene	68	10	100.0	0	68.4	39.9	106	13.1	25.9	
Surr: 2-Fluorophenol	140		200.0		68.8	12.1	85.8	0	0	
Surr: Phenol-d5	110		200.0		53.9	17.7	65.8	0	0	
Surr: 2,4,6-Tribromophenol	170		200.0		86.5	26	138	Ο	0	
Surr: Nitrobenzene-d5	88		100.0		88.1	47.5	119	0	0	
Surr: 2-Fluorobiphenyl	90		100.0		89.9	48.1	106	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- P Sample pH greater than 2.
- RL Reporting Detection Limit

WO#: 1407D12 15-Aug-14

Client:	Western Refining Southwest, Inc.
Project:	Injection Well 7-28-14 3rd QTR

==____

Sample ID Icsd-14520	SampType: LCSD Tes			tCode: E	de: EPA Method 8270C: Semivolatiles						
Client ID: LCSS02	Batch	ID: 14520		ਜ	RunNo: 2	0300					
Prep Date: 7/31/2014	Analysis Da	ate: 7/31/2)14	SegNo: 590033			Units: µg/L				
Analyte	Result	PQL SPI	(value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: 4-Terphenyl-d14	90		100.0		90.0	44	113	0	0		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 14 of 20

15-Aug-14

WO#: 1407D12

Client:	Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

Sample ID 1407d12-001b du	p SampType	: DUP	Test	Code: SM251	0B: Specific Condu	uctance		
Client ID: Injection Well	Batch ID	: R20245	R	tunNo: 20245				
Prep Date:	Analysis Date	: 7/29/2014	s	eqNo: 58840 3	3 Units: μmho	os/cm		
Analyte	Result P	QL SPK value	SPK Ref Val	%REC Low	/Limit HighLimit	%RPD	RPDLimit	Qual
Conductivity	1800 0	.010				4.30	20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level...
- Value above quantitation range Е
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
 - Р Sample pH greater than 2.
- RL Reporting Detection Limit

Analyte detected in the associated Method Blank

1407D12

.

WO#:

Page 15 of 20
Client:Western Refining Southwest, Inc.Project:Injection Well 7-28-14 3rd QTR

==

Sample ID MB-14571	SampType: MBLK	TestCode: EPA Method 7470: Mercury	
Client ID: PBW	Batch ID: 14571	RunNo: 20345	
Prep Date: 8/4/2014	Analysis Date: 8/4/2014	SeqNo: 591482 Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD	RPDLimit Qual
Mercury	ND 0.00020		
Sample ID LCS-14571	SamoType: LCS		
Campiono Eco-14071	oamprype. Loo	lestCode: EPA Method 7470; Mercury	
Client ID: LCSW	Batch ID: 14571	RunNo: 20345	
Client ID: LCSW Prep Date: 8/4/2014	Batch ID: 14571 Analysis Date: 8/4/2014	RunNo: 20345 SeqNo: 591483 Units: mg/L	
Client ID: LCSW Prep Date: 8/4/2014 Analyte	Batch ID: 14571 Analysis Date: 8/4/2014 Result PQL SPK value	RunNo: 20345 SeqNo: 591483 Units: mg/L SPK Ref Val %REC LowLimit HighLimit %RPD	RPDLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 16 of 20

WO#: 1407D12

15-Aug-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

Sample ID	MB-14549	Samp	Туре: М	BLK	TestCode: EPA 6010B: Total Recoverable Metals						
Client ID:	PBW	Bate	ch ID: 14	549	F	RunNo:	20323				
Prep Date:	8/1/2014	Analysis	Date: 8	/2/2014	5	SeqNo: 4	590696	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND	0.020								
Barium		ND	0.020								
Cadmium		ND	0.0020								
Calcium		' ND	1.0								
Chromium		ND	0.0060								
Lead		NĎ	0.0050								
Magnesium		NĎ	1.0								
Potassium		ND	1.0								
Selenium		ND	0.050								
Silver		ND	0.0050								
Sodium		ND	1.0								
Sample ID	LCS-14549	Samp	Type: LC	s	Tes	tCode: E	PA 6010B:	Total Recover	able Meta	als	
Client ID:	LCSW	Bate	h ID: 14	549	F	RunNo: 2	20323				
Prep Date:	8/1/2014	Analysis	Date: 8/	2/2014	S	SeqNo: 5	590697	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		0.50	0.020	0.5000	0	101	80	120			
Barlum		0.50	0.020	0.5000	0	99.7	80	120			
Cadmium		0.50	0.0020	0.5000	0	99.7	80	120			
Calcium		ND	1.0	50.00	0	0	80	120			S
Chromium		0.50	0.0060	0.5000	0	100	80	120			
Lead		0.50	0.0050	0.5000	0	99.5	80	120			
Magnesium		ND	1.0	50.00	0	0	80	120			S
Potassium		ND	1.0	50.00	0	σ	80	120			S
Selenium		0.52	0.050	0.5000	0	105	80	120			
Silver		0.085	0.0050	0.1000	0	84.9	80	120			
Sodium		ND	1.0	50.00	0	0	80	120			S
Sample ID	LCS Cat-14549	Samp	Type: LC	S	Test	Code: E	PA 6010B: "	Total Recover	able Meta	lls	
Client ID:	LCSW	Bato	:h ID: 14	549	R	unNo: 2	0323				
Prep Date:	8/1/2014	Analysis I	Date: 8/	2/2014	S	iegNo: 5	90698	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium		51	1.0	50.00	0	102	80	120			
Magnesium		51	1.0	50.00	0	101	80	120			
Potassium		49	1.0	50.00	0	97.3	80	120			
Sodium		50	1.0	50.00	0	101	80	120			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- $S \quad \ \ S pike \ Recovery \ outside \ accepted \ recovery \ limits$
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
- RL Reporting Detection Limit

WO#: 1407D12

15-Aug-14

Page 17 of 20

Client: Project:	Western R Injection	lefining S Well 7-28	outhwe -14 3rd	st, Inc. QTR						, <u></u> _, . <u>_</u>	
Sample ID	1407d12-001b dup	SampT	ype: DL	JP	Tes	tCode: SI	M4500-H+B	; pH	· · · · · ·]
Client ID:	Injection Well	Batch	1 ID: R2	0245	F	RunNo: 2	0245				
Prep Date:		Analysis D	ate: 7/	29/2014	S	SeqNo: 5	88388	Units: pH u	nits		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
рH		7.11	1.68			_					н

 \equiv

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for prej Н
- ND Not Detected at the Reporting Limit
 - Р Sample pH greater than 2.
- RLReporting Detection Limit

paration or analysis	exceeded
----------------------	----------

Page 18 of 20

1407D12 15-Aug-14

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client:Western Refining Southwest, Inc.Project:Injection Well 7-28-14 3rd QTR

Sample ID mb-1	SampType: ME	3LK	Tes	tCode: SI	W2320B: AI	kalinity			
Client ID: PBW	Batch ID: R2	0245	F	lunNo: 20	0245				
Prep Date:	Analysis Date: 7/	29/2014	S	SeqNo: 58	88355	Units: mg/l	CaCO3		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3)	ND 20						- <u>.</u>		
Sample ID Ics-1 SampType: LCS TestCode: SM2320B: /									
Client ID: LCSW	Batch ID: R2	0245	R	lunNo: 20	0245				
Prep Date:	Analysis Date: 7/	29/2014	s	eqNo: 58	38356	Units: mg/L	. CaCO3		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3)	80 20	80.00	0	100	90	110			
				-					
Sample ID mb-2	SampType: ME	 3LK	Test	Code: SA	/12320B: Al	kalinity		<u> </u>	
Sample ID mb-2 Client ID: PBW	SampType: MB Batch ID: R2	 BLK 0245	Test R	Code: Si unNo: 20	12320B: Al 0245	kalinity	<u> </u>		
Sample ID mb-2 Client ID: PBW Prep Date:	SampType: MB Batch ID: R2 Analysis Date: 7/2	 3LK 0245 29/2014	Test R S	Code: SM unNo: 20 eqNo: 58	//2320B: A()245 38376	kalinity Units: mg/L	. CaCO3		
Sample ID mb-2 Client ID: PBW Prep Date: Analyte	SampType: MB Batch ID: R2 Analysis Date: 7/ Result PQL	8LK 0245 29/2014 SPK value	Test R S SPK Ref Val	Code: SM JunNo: 20 JeqNo: 58 %REC	//2320B: A()245 38376 LowLimit	kalinity Units: mg/L HighLimit	. CaCO3 %RPD	RPDLimit	Qual
Sample ID mb-2 Client ID: PBW Prep Date: Analyte Total Alkatinity (as CaCO3)	SampType: ME Batch ID: R2 Analysis Date: 7/ Result PQL ND 20	3LK 0245 29/2014 SPK value	Test R SPK Ref Val	Code: SM JunNo: 20 JeqNo: 58 %REC	72320B: A()245 38376 LowLimit	kalinity Units: mg/L HighLimit	- CaCO3 %RPD	RPDLimit	Qual
Sample ID mb-2 Client ID: PBW Prep Date: Analyte Total Alkatinity (as CaCO3) Sample ID tcs-2	SampType: ME Batch ID: R2 Analysis Date: 7/2 Result PQL ND 20 SampType: LC	BLK 0245 29/2014 SPK value	Test R SPK Ref Val Test	Code: SM JunNo: 20 JeqNo: 58 %REC Code: SM	12320B: A1 0245 38376 LowLimit 12320B: All	kalinity Units: mg/L HighLimit kalinity	. CaCO3 %RPD	RPDLimit	Qual
Sample ID mb-2 Client ID: PBW Prep Date: Analyte Total Alkatinity (as CaCO3) Sample ID tcs-2 Client ID: LCSW	SampType: ME Batch ID: R2 Analysis Date: 7/2 Result PQL ND 20 SampType: LC Batch ID: R2	BLK 0245 29/2014 SPK value S S	Test R SPK Ref Val Test R	Code: SM unNo: 20 eqNo: 58 %REC Code: SM unNo: 20	12320B: A1 0245 38376 LowLimit 12320B: All 0245	kalinity Units: mg/L HighLimit kalinity	. CaCO3 %RPD	RPDLimit	Qual
Sample ID mb-2 Client ID: PBW Prep Date: Analyte Total Alkalinity (as CaCO3) Sample ID tcs-2 Client ID: LCSW Prep Date:	SampType: ME Batch ID: R2 Analysis Date: 7/: Result PQL ND 20 SampType: LC Batch ID: R2 Analysis Date: 7/:	8LK 0245 29/2014 SPK value S 0245 29/2014	Test R SPK Ref Val Test R S	Code: SM JunNo: 20 JeqNo: 58 %REC Code: SM UnNo: 20 eqNo: 58	A2320B: A1 3245 38376 LowLimit A2320B: A1 9245 38377	kalinity Units: mg/L HighLimit kalinity Units: mg/L	. CaCO3 %RPD	RPDLimit	Qual
Sample ID mb-2 Client ID: PBW Prep Date: Analyte Total Alkatinity (as CaCO3) Sample ID tcs-2 Client ID: LCSW Prep Date: Analyte	SampType: ME Batch ID: R2 Analysis Date: 7/2 Result PQL ND 20 SampType: LC Batch ID: R2 Analysis Date: 7/2 Result PQL	SLK 0245 29/2014 SPK value S 0245 29/2014 SPK value	Test R SPK Ref Val Test R SPK Ref Val	Code: SM JunNo: 20 %REC Code: SM UnNo: 20 eqNo: 58 %REC	12320B: A1 0245 38376 LowLimit 12320B: All 1245 38377 LowLimit	kalinity Units: mg/L HighLimit kalinity Units: mg/L HighLimit	. CaCO3 %RPD . CaCO3 %RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 19 of 20

1407D12 15-Aug-14

-

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client:Western Refining Southwest, Inc.Project:Injection Well 7-28-14 3rd QTR

Sample ID MB-14475	SampType: MBLK	TestCode: SM2540C M	OD: Total Dissolved Solids
Client ID: PBW	Batch ID: 14475	RunNo: 20257	
Prep Date: 7/29/2014	Analysis Date: 7/30/2014	SeqNo: 588640	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Total Dissolved Solids	ND 20.0		
Sample ID LCS-14475	SameType: LCS	T	
	Samptype, LCS	lestcode: Swi2540C wit	DD: Total Dissolved Solids
Client ID: LCSW	Batch ID: 14475	RunNo: 20257	DD: Total Dissolved Solids
Client ID: LCSW Prep Date: 7/29/2014	Batch ID: 14475 Analysis Date: 7/30/2014	RunNo: 20257 SeqNo: 588641	Units: mg/L
Client ID: LCSW Prep Date: 7/29/2014 Analyte	Batch ID: 14475 Analysis Date: 7/30/2014 Result PQL SPK value	RunNo: 20257 SeqNo: 588641 SPK Ref Val %REC LowLimit	DD: Total Dissolved Solids Units: mg/L HighLimit%RPDRPDLimitQual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 20 of 20

WO#: 1407D12

15-Aug-14

HALL Environmental Analysis Laboratory	Hall Environmental Analysis L 4901 Ha Albuquerque, I TEL: 505-345-3975 FAX: 505- Website: www.hallenvironm	aboratory twkins NE NM 87109 Sam 345-4107 ental.com	Sample Log-In Check List						
Client Name: Western Refining Southw We	ork Order Number: 1407D1	2	RcptNo: 1						
Received by/date: A=07/29/19									
Logged By: Anne Thorne 7/29/	2014 7:55:00 AM	anni Im	-						
Completed By: Anne Thorne 7/29/	2014	anne Am	-						
Reviewed By: MG 07/2	9/14								
Chain of Custody	l		•						
1. Custody seals intact on sample bottles?	Yes [] No 🗍	Not Present						
2. Is Chain of Custody complete?	Yes 🔽	No 🗌	Not Present						
3. How was the sample delivered?	Courier								
Log In									
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗆							
5. Were all samples received at a temperature of >0)°C to 6.0°C Yes 🗹	No 🗆	na 🗔						
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗌							
7. Sufficient sample volume for indicated test(s)?	Yes 🗹] No 🗆							
8. Are samples (except VOA and ONG) properly pres	served? Yes 🗹	No 🗌	_						
9. Was preservative added to bottles?	Yes 🗌	No 🗹	NA 🗌						
10.VOA vials have zero headspace?	Yes 🗹) No 🗌	No VOA Viais 🗌						
11. Were any sample containers received broken?	· Yes	No 🗹	# of preserved						
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗹	No 🗌	for pH:						
13. Are matrices correctly identified on Chaln of Custo	ody? Yes 🗹	N₀ []	Adjusted? NO						
14. Is it clear what analyses were requested?	Yes 🗹		Chapked but 08						
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹								

Special Handling (if applicable)

16.V	Vas client notified of all o	liscrepancies with this order?	Yes 🗋	No 🗌	NA 🗹
·	Person Notified:		Date	- Company of the Comp	
	By Whom:		Via: 🔲 eMail 📋 F	hone 🗌 Fax 📋	In Person
1	Regarding:		میں میں اور میں اور		المستخدمة المراجع المستخدمة المستخدمة المستخدمة المستخدمة المستخدمة المستخدمة المستخدمة المستخدمة المستخدمة ال
	Client Instructions:		م مراجع المراجع المراجع الم المراجع الم		1

17. Additional remarks:

18. Cooler Information

Ī	Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
	1	1.0	Good	Yes			

Ç	hain-	of-Cu	stody Rec	ord	Turn-Around	Time:											TP	~		a 🗠 1	8.1 ~ T	- 4 1	
Client	Weste	ina)	RECNING	7	Standard	🗆 Rush	-			╞═┥]]	н А	iai N/	LL Bl.'	er Ys	IV.	IK Il			ric: Ra	NI I	AL DR	Y
	<u></u>				Project Name	:	7-28	-14						halle	envir	ronm	enta	il coi	m				-
Mailing	Address:	125	CR 49	90	Twiez	ionli	el 3rd	STR		490)1 H	awkii	ns N	E -	Albı	Jane	raue	. NN	1 87 [.]	109			
RIM	m		NINN 8741	(?	Project #:					Те	I. 50	5-34	5-39	75	Fa	ax 5	i05-3	, 45-4	4107	,			
Phone #	#: 50:	5-63	2-41.35	·									Ar	naly	sis F	Requ	iest						
email o	r Fax#:				Project Manager:				(ylı	ĝ		ð	.	Y	5 ⁴)			T	2	\neg	\Box	Τ	
QA/QC I	Package:								3021	is oi	ž	M	¥	ŝ	र्स्	Š,	Bis			2		J.	
Stan	dard		Level 4 (Full \	/alidation)					3) s,	Ŭ	8	F	Ř	SIM	्रि	6 0	2 2 2			10.0		Y	
Accredi	screditation Sam			Sampler: B	ob			INB	H				570	2	0 Z	808		_	ي		A	Î	
			er	<u> </u>	OALCE:	Yes at			+ +	+	R N			8	S	ĝ	es/		Ø	यौ	<u>ل</u> د ۱	đ	W S
	(<u>iype)</u>				Sampleviem	oerature:			ITBI	IB I	B			10	leta	อี	ticid	S	- - -	1	Ŧ	<u>M</u> ,	es ()
Date	Time	Motrix	Sampla Do	auget ID	Container	Preservative	initian Initian		2	≥ +	3015			83	8 8	s (F	Pes	Ξ	(Ser	1	Ē	Ħ	ज़ॾॕ
Dale		WIGULX		questin	Type and #	Туре		erenen Nisteren	ТЕX	臣	HH			AH's	S.	ligi	8	260	270	, ŝ	ea.	1.9	بر¥¤ ≣
7.44	0.7	41. m		<u>ь)</u> Л			n ta Selenik	建設 構成		<u> </u>	Е		UR.	<u> </u>	<u>~</u>	4	م ا		<u>- 20</u>	η	벽		<u>* </u>
(<u>-28-14</u>	7:50	#20	LOJECLION	well	3-VOA	HC.	5	<u> </u>							{		-	× (-+	<u> </u>	-
	├_ <u></u> <u></u>		· [<u>l-liter</u>	amber	D	<u> </u>	<u> </u>					<u> </u>					Хļ			\dashv	
_ _	<u>↓ </u>				1-500m		7	<u>v1</u>												X			<u> </u>
	·		<u> </u>		1-500ml		2	<u>ଧା</u>	<u> </u>			X						$ \rightarrow $				X	
					1-250ml	H2 504	7	ral					X										
					1-500ml	HNO3	~	<u>201</u>							X								
					1-500 ml	NoOH	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	201													X		
					1-500m	Acetate	7	201															X
																	-						
	<u> </u>									T													
Date:	Time;	Relinquist	ned by:		Received by:	. 1	Date T	me	Re	mark	s:												
-28-14	1452	Roo	ent Krake	on	Vinist	Flipeto	128/M	1452	2												•		
Date:	Time:	Relinquist	ned by:		Received by:	1 1	Date T	me															•
128 14	1721	Y Shu	stru Walle		Y Ul	in	07 07	55				•		•									<u> </u>

If necessary samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

HALL ENVIRONMENTAL ANALÝSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 23, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4166 FAX (505) 632-3911

RE: Injection Well 4th QTR 10-1-14

OrderNo.: 1410102

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 10/2/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

Case Narrative

WO#: 1410102 Date: 10/23/2014

CLIENT:Western Refining Southwest, Inc.Project:Injection Well 4th QTR 10-1-14

Analytical Notes Regarding EPA Method 8260: The injection well sample was diluted due to a foamy matrix.

Hall Environmental Analysis	Labora	tory, Inc.		Lab Order 1410102 Date Reported: 10/23/2014					
CLIENT: Western Refining Southwest, Inc Project: Injection Well 4th QTR 10-1-14 Lab ID: 1410102-001	Matrix:	Client Sample ID: Injection Well Collection Date: 10/1/2014 10:00:00 A Matrix: AQUEOUS Received Date: 10/2/2014 6:50:00 A							
Analyses	Result	RL Qual	Units	DF Date Analyzed Batch					
EPA METHOD 300.0; ANIONS				Analyst: LGP					
Chloride	220	10	mg/L	20 10/2/2014 4:07:13 PM R2164					
Sulfate	26	2.5	mg/L	5 10/2/2014 3:54:49 PM R2164					
EPA METHOD 7470: MERCURY				Analyst: MMD					
Mercury	ND	0.00020	mg/L	1 10/8/2014 3:02:49 PM 15770					
EPA 6010B: TOTAL RECOVERABLE MET	ALS			Analyst: ELS					
Arsenic	ND	0.020	ma/L	1 10/10/2014 9:26:53 AM 15825					
Barium	0.20	0.020	mg/L	1 10/10/2014 9:26:53 AM 15825					
Cadmium	ND	0.0020	mg/L	1 10/10/2014 9:26:53 AM 15825					
Calcium	110	5.0	mg/L	5 10/10/2014 9:28:28 AM 15825					
Chromium	ND	0.0060	mg/L	1 10/10/2014 9:26:53 AM 15825					
Lead	ND	0.0050	mg/L	1 10/10/2014 9:26:53 AM 15825					
Magnesium	23	1.0	mg/L	1 10/10/2014 9:26:53 AM 15825					
Potassium	8.2	1.0	mg/L	1 10/10/2014 9:26:53 AM 15825					
Selenium	ND	0.050	mg/L	1 10/10/2014 9:26:53 AM 15825					
Silver	ND	0.0050	mg/L	1 10/10/2014 9:26:53 AM 15825					
Sodium	220	5.0	mg/L	5 10/10/2014 9:28:28 AM 15825					
EPA METHOD 8270C: SEMIVOLATILES				Analyst: DAM					
Acenaphthene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
Acenaphthylene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
Aniline	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
Anthracene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
Azobenzene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
Benz(a)anthracene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
Benzo(a)pyrene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
Benzo(b)fluoranthene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
Benzo(g,h,i)perylene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
Benzo(k)fluoranthene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
Benzoic acid	ND	40	µg/L	1 10/9/2014 9:16:21 PM 15747					
Benzyl alcohol	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
Bis(2-chloroethoxy)methane	NÐ	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
Bis(2-chloroethyl)ether	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
Bis(2-chloroisopropyl)ether	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
Bis(2-ethylhexyl)phthalate	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
4-Bromophenyl phenyl ether	ND	10	µg/Ľ	1 10/9/2014 9:16:21 PM 15747					
Butyl benzyl phthalate	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
4-Unioro-3-methylphenol	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					
4-Unioroaniline	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747					

- Qualifiers: * Value exceeds Maximum Contaminant Level.
 - E Value above quantitation range
 - J Analyte detected below quantitation limits
 - O RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 2 of 18

Analytical Report

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis	Labora	tory, Inc.		Lab Order 1410102 Date Reported: 10/23/2014
CLIENT: Western Refining Southwest, Ind Project: Injection Well 4th QTR 10-1-14 Lab ID: 1410102-001	o. Matrix:	C	lient San Collectio Receive	nple ID: Injection Well on Date: 10/1/2014 10:00:00 AM ed Date: 10/2/2014 6:50:00 AM
Analyses	Result	RL Qual	Units	DF Date Analyzed Batch
EPA METHOD 8270C: SEMIVOLATILES	-			Analyst: DAM
2-Chloronaphthalene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
2-Chlorophenol	ND	10	μg/L	1 10/9/2014 9:16:21 PM 15747
4-Chlorophenyl phenyl ether	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
Chrysene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
Di-n-butyl phthalate	ND	10	μg/L	1 10/9/2014 9:16:21 PM 15747
Di-n-octyl phthalate	ND	20	µg/L	1 10/9/2014 9:16:21 PM 15747
Dibenz(a,h)anthracene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
Dibenzofuran	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
1,2-Dichlorobenzene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
1,3-Dichlorobenzene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
1,4-Dichlorobenzene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
3,3 -Dichlorobenzidine	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
Diethyl phthalate	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
Dimethyl phthalate	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
2,4-Dichlorophenol	ND	20	µg/L	1 10/9/2014 9:16:21 PM 15747
2,4-Dimethylphenol	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
4,6-Dinitro-2-methylphenol	ND	20	µg/L	1 10/9/2014 9:16:21 PM 15747
2,4-Dinitrophenol	ND	20	µg/L	1 10/9/2014 9:16:21 PM 15747
2,4-Dinitrotoluene	ND	10	µg/L	. 1 10/9/2014 9:16:21 PM 15747
2,6-Dinitrotoluene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
Fluoranthene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
Fluorene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
Hexachlorobenzene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
Hexachlorobutadiene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
Hexachlorocyclopentadiene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
Hexachloroethane	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
Indeno(1,2,3-cd)pyrene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
Isophorone	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
1-Methylnaphthalene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
2-Methylnaphthalene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
2-Methylphenol	ND	20	µg/L	1 10/9/2014 9:16:21 PM 15747
3+4-Methylphenol	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
N-Nitrosodi-n-propylamine	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
N-Nitrosodimethylamine	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
N-Nitrosodiphenylamine	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
Naphthalene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
2-Nitroaniline	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
3-Nitroaniline	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747
4-Nitroaniline	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15747

- Qualifiers: * Value exceeds Maximum Contaminant Level.
 - E Value above quantitation range
 - J Analyte detected below quantitation limits
 - O RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 3 of 18

Analytical Report

- P Sample pH greater than 2.
- RL Reporting Detection Limit

					Analytical Report	
Hall Environmental Analysis	Labora	tory, Inc.			Date Reported: 10/23/20)14
CLIENT: Western Refining Southwest Inc			Client Samp	e ID: Ini	ection Well	
Broject: Injection Well 4th OTP 10.1.14	•		Collection	Data: 10	/1/2014 10:00:00 AM	
				Date. 10/	(1/2014 10:00:00 AM	
Lab ID: 1410102-001	Matrix:	AQUEOUS	Received)	Date: 10/	2/2014 6:50:00 AM	
Analyses	Result	RL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst	DAM
Nitrobenzene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
2-Nitrophenol	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
4-Nitrophenol	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Pentachlorophenol	ND	20	µg/L	1	10/9/2014 9:16:21 PM	15747
Phenanthrene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Phenoi	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Pyrene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Pyridine	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
1,2,4-Trichlorobenzene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
2,4,5-Trichlorophenol	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
2,4,6-Trichlorophenol	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Surr: 2-Fluorophenol	59.4	12.1-85.8	%REC	1	10/9/2014 9:16:21 PM	15747
Surr: Phenol-d5	52.8	17.7-65.8	%REC	1	10/9/2014 9:16:21 PM	15747
Surr: 2,4,6-Tribromophenol	83.8	26-138	%REC	1	10/9/2014 9:16:21 PM	15747
Surr: Nitrobenzene-d5	76.3	47.5-119	%REC	1	10/9/2014 9:16:21 PM	15747
Surr: 2-Fluorobiphenyl	68.0	48.1-106	%REC	1	10/9/2014 9:16:21 PM	15747
Surr: 4-Terphenyl-d14	69.3	44-113	%REC	1	10/9/2014 9:16:21 PM	15747
EPA METHOD 8260B: VOLATILES					Analyst:	RAA
Benzene	ND	5.0	րց/Լ	5	10/3/2014 10:52:10 PM	R21653
Toluene	ND	5.0	μg/Լ	5	10/3/2014 10:52:10 PM	R21653
Ethylbenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
Methyl tert-butyl ether (MTBE)	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
1,2,4-Trimethylbenzene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
1,3,5-Trimethylbenzene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
1,2-Dichloroethane (EDC)	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
1,2-Dibromoethane (EDB)	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
Naphthalene	ND	10	µg/L	5	10/3/2014 10:52:10 PM	R21653
1-Methylnaphthalene	ND	20	µg/L	5	10/3/2014 10:52:10 PM	R21653
2-Methylnaphthalene	ND	20	µg/L	5	10/3/2014 10:52:10 PM	R21653
Acetone	120	50	μg/L	5	10/3/2014 10:52:10 PM	R21653
Bromobenzene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
Bromodichloromethane	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
Bromoform	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
Bromomethane	ND	15	μg/L	5	10/3/2014 10:52:10 PM	R21653
2-Butanone	NÐ	50	µg/L	5	10/3/2014 10:52:10 PM	R21653
Carbon disulfide	ND	50	µg/L	5	10/3/2014 10:52:10 PM	R21653
Carbon Tetrachloride	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
Chlorobenzene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
Chloroethane	ND	10	µg/L	5	10/3/2014 10:52:10 PM	R21653

- Qualifiers: * Value exceeds Maximum Contaminant Level.
 - E Value above quantitation range
 - J Analyte detected below quantitation limits
 - O RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 4 of 18
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis	s Labora	tory, Inc.		Lab Order 1410102 Date Reported: 10/23/2014
CLIENT: Western Refining Southwest, In Project: Injection Well 4th QTR 10-1-1 Lab ID: 1410102-001	nc. 4 Matrix:	AQUEOUS	lient Sar Collectio Receive	mple ID: Injection Well on Date: 10/1/2014 10:00:00 AM ed Date: 10/2/2014 6:50:00 AM
Analyses	Result	RL Qual	Units	DF Date Analyzed Batch
EPA METHOD 8260B: VOLATILES				Analyst: RAA
Chloroform	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
Chloromethane	ND	15	μg/L	5 10/3/2014 10:52:10 PM R21653
2-Chlorotoluene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
4-Chlorotoluene	ND	5.0	μg/L	5 10/3/2014 10:52:10 PM R21653
cis-1,2-DCE	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
cis-1,3-Dichloropropene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
1.2-Dibromo-3-chloropropane	ND	10	μg/L	5 10/3/2014 10:52:10 PM R21653
Dibromochloromethane	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
Dibromomethane	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
1,2-Dichlorobenzene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
1,3-Dichlorobenzene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
1,4-Dichlorobenzene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
Dichlorodifluoromethane	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
1,1-Dichloroethane	NÐ	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
1,1-Dichloroethene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
1,2-Dichloropropane	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
1,3-Dichloropropane	ND	5.0	µg/l.	5 10/3/2014 10:52:10 PM R21653
2,2-Dichloropropane	ND	10	μg/L	5 10/3/2014 10:52:10 PM R21653
1,1-Dichloropropene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
Hexachlorobutadiene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
2-Hexanone	ND	50	µg/L	5 10/3/2014 10:52:10 PM R21653
lsopropylbenzene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
4-Isopropyltoluene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
4-Methyl-2-pentanone	NÐ	50	µg/L	5 10/3/2014 10:52:10 PM R21653
Methylene Chloride	ND	15	µg/L	5 10/3/2014 10:52:10 PM R21653
n-Butylbenzene	ND	15	µg/L	5 10/3/2014 10:52:10 PM R21653
n-Propylbenzene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
sec-Butylbenzene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
Styrene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
tert-Butylbenzene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	5 10/3/2014 10:52:10 PM R21653
1,1,2,2-Tetrachloroethane	ND	10	µg/L	5 10/3/2014 10:52:10 PM R21653
Tetrachloroethene (PCE)	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
trans-1,2-DCE	NÐ	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
trans-1,3-Dichloropropene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
1,2,3-Trichlorobenzene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
1,2,4-Trichlorobenzene	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
1,1,1-Trichloroethane	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653
1,1,2-Trichloroethane	ND	5.0	µg/L	5 10/3/2014 10:52:10 PM R21653

Qualifiers: * Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

Analytical Report

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 5 of 18
- P Sample pH greater than 2.
- RL Reporting Detection Limit

			<u></u>	•			Date Reported: 10/23/20	J14
CLIENT: Project: Lab ID:	Western Refining Southwest, Inc Injection Well 4th QTR 10-1-14 1410102-001	c. Matrix:	AQUEOUS	Clie Clie Co F	ent Sample l ollection Da Received Da	1 D: Inj te: 10/ te: 10/	ection Well /1/2014 10:00:00 AM /2/2014 6:50:00 AM	
Analyses		Result	RL Q	ual U	nits	DF	Date Analyzed	Batch
EPA MET	HOD 8260B: VOLATILES						Analyst	RAA
Trichloro	ethene (TCE)	ND	5.0	μ	ıg/L	5	10/3/2014 10:52:10 PM	R21653
Trichloro	fluoromethane	ND	5.0	μ	ig/L	5	10/3/2014 10:52:10 PM	R21653
1,2,3-Tric	chloropropane	ND	10	μ	ıg/L	5	10/3/2014 10:52:10 PM	R21653
Vinyl chlo	pride	ND	5.0	μ	ig/L	5	10/3/2014 10:52:10 PM	R21653
Xylenes,	Total	ND	7.5	μ	g/L	5	10/3/2014 10:52:10 PM	R21653
Surr: 1	,2-Dichloroethane-d4	82.3	70-130	9	6REC	5	10/3/2014 10:52:10 PM	R21653
Surr: 4	-Bromofluorobenzene	84.8	70-130	9	6REC	5	10/3/2014 10:52:10 PM	R21653
Surr: D	Dibromofluoromethane	79.9	70-130	9	6REC	5	10/3/2014 10:52:10 PM	R21653
Surr: T	oluene-d8	84.8	70-130	9	6REC	5	10/3/2014 10:52:10 PM	R21653
SM2510B	SPECIFIC CONDUCTANCE						Analyst:	JRR
Conduction	vity	1100	0.010	μ	mhos/cm	1	10/6/2014 5:51:56 PM	R21715
SM4500-H	1+B: PH						Analyst:	JRR
pН		7.08	1.68	Н р	H units	1	10/6/2014 5:51:56 PM	R21715
SM2320B	: ALKALINITY						Analyst:	JRR
Bicarbona	ate (As CaCO3)	150	20	rr	ng/L CaCO3	1	10/6/2014 5:51:56 PM	R21715
Carbonat	e (As CaCO3)	ND	2.0	n	ig/L CaCO3	1	10/6/2014 5:51:56 PM	R21715
Total Alka	alinity (as CaCO3)	150	20	n	ng/L CaCO3	1	10/6/2014 5:51:56 PM	R21715
SM2540C	MOD: TOTAL DISSOLVED SOL	IDS					Analyst:	KS
Total Diss	solved Solids	742	40.0	* m	ng/L	1	10/8/2014 4:42:00 PM	15759

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Meth	od Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysi	s exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 6 of 18
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	1 age 0 01 10
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	Spike Recovery outside accepted recovery limits			•

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1410102 Date Reported: 10/23/2014

,

Anatek Labs, Inc.

1282 Álturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	141003043
Address:	4901 HAWKINS NE SUITE D	Project Name:	1410102
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Sample Number Client Sample ID	141003043-001 1410102-001E / INJEC	Samp CTION WELL	ling Date	10/1/2014	Date/ Samp	Time Receiv bling Time	ed 10/3/2014 10:00 AM	1:30 PM
Matrix Comments	Water	Samp	e Location	r				
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide (reacti	ve)	ND	mg/L	1	10/15/2014	CRW	SW846 CH7	
Flashpoint		>200	۴F		10/15/2014	KFG	EPA 1010	
рН		8.82	ph Units		10/6/2014	KJS	SM 4500pH-B	
Reactive suifid	3	3.01	mg/L	1	10/15/2014	HSW	SW848 CH7	

Authorized Signature

John Coddingtoy, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soli/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications he'd by Anatek Labs ID: EPA:ID00013; A2:0701; CO:ID00013; FL(NELAP):E87593; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C598 Certifications held by Anatek Lebs WA: EPA:WA00169; ID:WA00169; WA:C598; MT:Cert0025; FL(NELAP): E871099

.

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Parameter	i CS Becult	le I CS Snike %Rec	AR %Rec	Pren Date	Analysis Date
Lab Control S	Sample				
	Analytical Re Quality Co	esults Report			
Attn:	ANDY FREEMAN				
	ALBUQUERQUE, NM 87109			۲	
Address:	4901 HAWKINS NE SUITE D	Project N	ame: 14	10102	
Client:	HALL ENVIRONMENTAL ANALYSIS L	AB Batch #:	14	1003043	

Parameter	LCS Result	Units	LCS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
Reactive sulfide	0.180	mg/L	0.2	90.0	70-130	10/15/2014	10/15/2014
Cyanide (reactive)	0.519	mg/L	0.5	103.8	80-120	10/15/2014	10/15/2014

Matrix Splke									•	
Sample Number	Parameter		Sample Result	MS Result	Units	MS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
141003043-001	Reactive sulfide		3.01	3.77	mg/L	0.767	99.1	70-130	10/15/2014	10/15/2014
141003043-001	Cyanide (reactive)		ND	2.41	mg/L	2.5	96.4	80-120	10/15/2014	10/15/2014
Matrix Spike D	uplicate				` <u>_</u>					
Parameter		MSD Result	Units	MSD Spike	%Rec	·%RPD	AR %RPI) Pre	p Date	Analysis Date
Cyanide (reactive)	i 	2.41	mg/L	2.5	96.4	0.0	0-25	10/*	15/2014	10/15/2014
Method Blank					<u> </u>					
Parameter			Re	esult	Units		PQL	P	rep Date	Analysis Date
Cyanide (reactive)			1	٧D	mg/L		1	10/	15/2014	10/15/2014
Reactive sulfide			ľ	D	mg/L		1	10/	15/2014	10/15/2014

AR Acceptable Range

ND Not Detected

PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

Certifications held by Artatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP);E87893; ID:ID00013; MT:CERT0028; Ni/: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C565; MT:Cent0096; FL(NELAP): E871099

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Western Refining S Injection Well 4th	Southwe QTR 10	st, Inc. -1-14							
Sample ID MB	Samp`	fype: MI	BLK	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID: PBW	Batc	h ID: R2	1640	F	RunNo: 2	1640				
Prep Date:	Analysis [Date: 1	0/2/2014	5	SeqNo: 6	34799	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50			-					<u></u>
Sulfate	ND	0.50								
Sample ID LCS	Samp	Type: LC	s	Tes	tCode: El	PA Method	300.0: Anion	5		
Client ID: LCSV	V Batc	h ID: R2	1640	F	RunNo: 2	1640				
Prep Date:	Analysis (Date: 10)/2/2014	5	SeqNo: 6	34800	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.7	0.50	5.000	0	94.0	90	110			_
Sulfate	9.7	0.50	10.00	0	96.8	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- $R = RPD \ \text{outside accepted recovery limits}$
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 7 of 18

1410102 23-Oct-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-1-14

Sample ID 5ml-rb	SamoT	vpe: MF	<u></u>	 Tesi	Code: El	PA Method	8260B: VOL	ATILES			
Client ID: DPW	Dotor		4662	,03	RunNo: 21653						
		. RZ	1000		UIINO. 2						
Prep Date:	Analysis D	ate: 10	/3/2014	5	eqNo: 6	36225	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Toluene	ND	1.0									
Ethylbenzene	ND	1.0									
Methyl tert-butyl ether (MTBE)	ND	1.0									
1,2,4-Trimethylbenzene	ND	1.0									
1,3,5-Trimethylbenzene	ND	1.0									
1,2-Dichloroethane (EDC)	ND	1.0									
1,2-Dibromoethane (EDB)	ND	1.0									
Naphthalene	ND	2.0									
1-Methylnaphthalene	ND	4.0									
2-Methylnaphthalene	ND	4.0									
Acetone	ND	10									
Bromobenzene	ND	1.0									
Bromodichloromethane	ND	1.0									
Bromoform	ND	1.0									
Bromomethane	ND	3.0									
2-Butanone	ND	10									
Carbon dísulfide	ND	10									
Carbon Tetrachloride	ND	1.0									
Chlorobenzene	ND	1.0									
Chloroethane	ND	2.0									
Chloroform	ND	1.0									
Chloromethane	ND	3.0									
2-Chlorotoluene	ND	1.0									
4-Chlorotoluene	ND	1.0									
cis-1,2-DCE	ND	1.0									
cis-1,3-Dichloropropene	ND	1.0									
1,2-Dibromo-3-chloropropane	ND	2.0									
Dibromochloromethane	ND	1.0									
Dibromomethane	ND	1.0									
1,2-Dichlorobenzene	ND	1.0									
1.3-Dichlorobenzene	ND	1.0									
1.4-Dichlorobenzene	ND	1.0									
Dichlorodifluoromethane	ND	1.0									
1,1-Dichloroethane	ND	1.0									
1.1-Dichloroethene	ND	1.0									
1.2-Dichloropropane	ND	1.0									
1,3-Dichloropropane	ND	1.0									

Qualifiers:

2,2-Dichloropropane

* Value exceeds Maximum Contaminant Level.

ND

2.0

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 8 of 18

1410102 23-Oct-14

Client: Western Refining Southwest, Inc.

_

Project: Injection Well 4th QTR 10-1-14

			The second se							
Sample ID 5ml-rb	Samp	Туре: М	BLK	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batc	h ID: R	21653	F	RunNo: 2	1653				
Prep Date:	Analysis I	Date: 1	0/3/2014	:	SeqNo: 6	36225	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
lsopropylbenzene	ND	1.0								
4-Isopropyitoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	NÐ	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinvl chloride	ND	1.0								
Xvlenes, Total	ND	1.5								
Sur: 1.2-Dichlomethane-d4	8.0		10.00		80.4	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	8.0		10.00		80.5	70	130			
Surr: Toluene-d8	8.9		10.00		89.4	70	130			
Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	1)D: R2	1653	7	RunNo: 2	1653				
Prep Date:	Analysis D	ate: 1)/3/2014	S	eqNo: 6	36227	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.4	70	130			
Toluene	20	1.0	20.00	0	98.8	80	120			
Chlorobenzene	20	1.0	20.00	0	97.9	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 9 of 18

1410102 23-Oct-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-1-14

Sample ID 100ng Ics	SampT	ype: LC	:S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	h ID: R2	1653	F	RunNo: 2	1653				
Prep Date:	Analysis E	Date: 1)/3/2014	S	SeqNo: 6	36227	Units: µg/L			
Anatyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	21	1.0	20.00	0	105	82.6	131			
Trichloroethene (TCE)	19	1.0	20.00	0	96.9	70	130			
Surr: 1,2-Dichloroethane-d4	8.5		10.00		84.9	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		97.7	70	130			
Surr: Dibromofluoromethane	8.0		10.00		79.7	70	130			
Surr: Toluene-d8	9.1		10.00		91.1	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 10 of 18

1410102

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-1-14

Sample ID mb-15747	SampT	ype: M	 BLK	 Tes	tCode: E	PA Method	8270C: Semi	/olatiles		
Client ID: PBW	Batch	n ID: 15	747	F	RunNo: 2	1803				
Prep Date: 10/7/2014	Analysis D	ate: 1	0/9/2014	S	SeqNo: 6	40784	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acehaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	40								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyl)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	ND	10								
4-Bromophenyl phenyl ether	ND	10								
Butyl benzyl phthalate	ND	10								
Carbazole	ND	10								
4-Chioro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chioronaphthalene	ND	10								
2-Chioropheno!	ND	10								
4-Chlorophenyl phenyl ether	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	ND	10								
Di-n-octyl phthalate	ND	20								
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								
3,3'-Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	20								
2,4-Dimethylphenol	ND	10								
4,6-Dinitro-2-methylphenol	ND	20								

Qualifiers:

2,4-Dinitrophenol

* Value exceeds Maximum Contaminant Level.

ND

20

- E Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 11 of 18

1410102 23-Oct-14

Client: Western Refining Southwest, Inc.

-

Project: Injection Well 4th QTR 10-1-14

Sample ID mb-15747	SampTy	/pe: MBLK	Tes	tCode: EPA Meth	nod 8270C: Semi	ivolatiles		
Client ID: PBW	Batch	ID: 15747	F	RunNo: 21803				
Prep Date: 10/7/2014	Analysis Da	ate: 10/9/2014	\$	SeqNo: 640784	Units: µg/L			
Analyte	Result	PQL SPK value	e SPK Ref Val	%REC LowLir	nit HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10						
2,6-Dinitrotoluene	ND	10						
Fluoranthene	ND	10						
Fluorene	ND	10						
Hexachlorobenzene	ND	10						
Hexachlorobutadiene	ND	10						
Hexachlorocyclopentadiene	ND	10						
Hexachloroethane	NÐ	10						
Indeno(1,2,3-cd)pyrene	ND	10						
Isophorone	ND	10						
1-Methylnaphthalene	ND	10						
2-Methyinaphthalene	ND	10						
2-Methylphenol	ND	20						
3+4-Methylphenol	ND	10						
N-Nitrosodi-n-propylamine	ND	10						
N-Nitrosodimethylamine	ND	10						
N-Nitrosodiphenylamine	ND	10						
Naphthalene	ND	10						
2-Nitroaniline	ND	10						
3-Nitroaniline	ND	10						
4-Nitroaniline	ND	10						
Nitrobenzene	ND	10						
2-Nitrophenol	ND	10						
4-Nitrophenol	ND	10						
Pentachlorophenol	ND	20						
Phenanthrene	ND	10						
Phenol	ND	10						
Pyrene	NÐ	10						
Pyridine	ND	10						
1,2,4-Trichlorobenzene	ND	10						
2,4,5-Trichlorophenol	ND	10						
2,4,6-Trichlorophenol	NÐ	10						
Surr: 2-Fluorophenol	140	200.0)	68.8 12	.1 85.8			
Surr: Phenol-d5	130	200.0)	64.5 17	.7 65.8			
Surr: 2,4,6-Tribromophenol	130	200.0)	66.6 2	26 138			
Surr: Nitrobenzene-d5	79	100.0)	79.4 47	.5 119			
Surr: 2-Fluorobiphenyl	75	100.0)	75.3 48	.1 106			
Surr: 4-Terphenyl-d14	74	100.0)	74.3	14 113			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 12 of 18

1410102 23-Oct-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-1-14

Sample ID Ics-15747	 SampT	ype: LC	:s	Tes	stCode: E	PA Method	8270C: Semi	ivolatiles		
Client ID: LCSW	Batch	1 ID: 15 '	747	F	RunNo: 2	.1803				
Prep Date: 10/7/2014	Analysis D	ate: 10	0/9/2014	5	SegNo: 6	40785	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Quai
Acenaphthene	77	10	100.0	0	76.7	47.9	114			
4-Chloro-3-methylphenol	180	10	200.0	0	88.1	51.7	122			
2-Chlorophenol	170	10	200.0	0	83.0	40.7	113			
1,4-Dichlorobenzene	70	10	100.0	0	70.4	39.6	99.9			
2,4-Dinitrotoluene	69	10	100.0	0	68.9	40.8	113			
N-Nitrosodi-n-propylamine	81	10	100.0	0	81.2	51.2	11 1			
4-Nitrophenol	130	10	200.0	0	64.1	15.7	86.9			
Pentachlorophenol	120	20	200.0	0	59.2	21.6	104			
Phenol	140	10	200.0	0	71.0	28.6	71.7			
Pyrene	73	10	100.0	0	73.1	54.2	128			
1,2,4-Trichiorobenzene	71	10	100.0	0	71.2	40.9	101			
Sun: 2-Fluorophenol	150		200.0		73.2	12.1	85.8			
Surr: Phenol-d5	140		200.0		71.8	17.7	65.8			S
Surr: 2,4,6-Tribromophenol	140		200.0		70.9	26	138			
Surr: Nitrobenzene-d5	83		100.0		83.4	47.5	119			
Surr: 2-Fluorobiphenyl	0.46		100.0		0.460	48.1	106			S
Sun; 4-Terphenyl-d14	75		100.0		75.1	44	113			
Sample ID Icsd-15747	SampT	ype: LC	SD	Test	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSS02	Batch	i ID: 157	747	R	≀unNo: 2 ′	1803				
Prep Date: 40/7/2014	Apolygia D		00/2044	ç	SonNo: 6	40796	Lipite: un/l			

10///2014	Analysis L	Jate. H	1912014		equivo. o	40700	Othio. µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	79	10	100.0	0	78.8	47.9	114	2.60	27.2	
4-Chlaro-3-methylphenol	190	10	200.0	0	94.7	51.7	122	7.26	25.9	
2-Chloropheno!	160	10	200.0	0	80.2	40.7	113	3.52	22.5	
1,4-Dichlorobenzene	74	10	100.0	0	73.7	39.6	99.9	4.50	24.6	
2,4-Dinitrotoluene	73	10	100.0	0	73.1	40.8	113	6.00	25.3	
N-Nitrosodi-n-propylamine	79	10	100.0	0	79.0	51.2	111	2.82	23.6	
4-Nitrophenol	140	10	200.0	0	69.4	15.7	86.9	7.95	34.7	
Pentachlorophenol	120	20	200.0	0	61.6	21.6	104	4.01	32.8	
Phenol	140	10	200.0	0	68.3	28.6	71.7	3.88	25.5	
Pyrene	79	10	100.0	0	78.8	54.2	128	7.56	31.4	
1,2,4-Trichlorobenzene	76	10	100.0	0	75.7	40.9	101	6.10	25.9	
Sun: 2-Fluorophenol	150		200.0		73.3	12.1	85.8	0	0	
Surr: Phenol-d5	140		200.0		72.3	17.7	65.8	0	0	S
Surr: 2,4,6-Tribromophenol	140		200.0		70.9	26	138	0	0	
Surr: Nitrobenzene-d5	88		100.0		88.0	47.5	119	0	0	
Surr: 2-Fluorobiphenyl	83		100.0		83.2	48.1	106	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- P Sample pH greater than 2.
- RL Reporting Detection Limit

1410102

WO#:

23-Oct-14

Client:Western Refining Southwest, Inc.Project:Injection Well 4th QTR 10-1-14

Sample ID Icsd-15747	SampTyp	pe: LCSD	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSS02	Batch I	D: 15747	F	RunNo: 2	1803				
Prep Date: 10/7/2014	Analysis Dat	le: 10/9/2014	S	SeqNo: 6	40786	Units: µg/L			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr. 4-Terphenyl-d14	81	100.0		80.9	44	113	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSD]imit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2,
 - RL Reporting Detection Limit

Page 14 of 18

1410102 23-Oct-14

WO#: 1410102

23-Oct-14

Client: Western Refining Southwest, Inc. Project: Injection Well 4th QTR 10-1-14

Sample ID MB-15770	SampType: MBLK	TestCode: EPA Method	17470: Mercury		
Client ID: PBW	Batch ID: 15770	RunNo: 21753			
Prep Date: 10/7/2014	Analysis Date: 10/8/2014	SeqNo: 639033	Units: mg/L		
Analyte	Result PQL SPK value	SPK Ref Val %REC · LowLimit	HighLimit %RPD	RPDLimit	Qual
Mercury	ND 0.00020				_
Sample ID LCS-15770	SamaType: LCS				
	Samp Type, LOS	Testoque. EFA Method	7470: Mercury		
Client ID: LCSW	Batch ID: 15770	RunNo: 21753	7470: Mercury		
Client ID: LCSW Prep Date: 10/7/2014	Batch ID: 15770 Analysis Date: 10/8/2014	RunNo: 21753 SeqNo: 639034	Units: mg/L		
Client ID: LCSW Prep Date: 10/7/2014 Analyte	Batch ID: 15770 Analysis Date: 10/8/2014 Result PQL SPK value	RunNo: 21753 SeqNo: 639034 SPK Ref Val %REC LowLimit	Units: mg/L HighLimit %RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page	15	of	18
1 ugo	15	01	τŲ

Client: Western Refining Southwest, Inc.

=

Project: Injection Well 4th QTR 10-1-14

Sample ID MB-15825	Samp	Туре: М	 BLK	Tes	tCode: E	PA 6010B:	Total Recover	able Meta	als	
Client (D: PBW	Bate	ch ID: 15	825	F	RunNo: 2	1801				
Prep Date: 10/9/2014	Analysis	Date: 10	0/10/2014	8	SeqNo: 6	40639	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	0.020								
Barium	ND	0.020								
Cadmium	ND	0.0020								
Calcium	ND	1.0								
Chromium	ND	0.0060								
Lead	ND	0.0050								
Magnesium	ND	1.0								
Potassium	ND	1.0								
Selenium	ND	0.050								
Silver	0.010	0.0050								
Sodium	ND	1.0								
Sample ID LCS-15825	Samp	Type: LC	s	Test	tCode: El	PA 6010B: 1	Fotal Recover	able Meta	lls	
Sample ID LCS-15825 Client ID: LCSW	Samp Bate	Type: LC	 S 825	Tesi R	tCode: El RunNo: 2	PA 6010B: ⁻ 1801	Fotal Recover	able Meta	lls	
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014	Samp Bato Analysis	Type: LC h ID: 15 Date: 10	S 825 0/10/2014	Tesi R S	tCode: El RunNo: 2 SeqNo: 6	PA 6010B: ⁻ 1801 40640	Fotal Recover Units: mg/L	able Meta	 ils	
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Anatyte	Samp Bato Anatysis Result	Type: LC ch ID: 15 Date: 10 PQL	S 825 0/10/2014 SPK value	Test R S SPK Ref Val	tCode: El RunNo: 2 SeqNo: 6 %REC	PA 6010B: [•] 1801 40640 LowLimit	Fotal Recover Units: mg/L HighLimit	able Meta %RPD	IIS RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic	Samp Bato Analysis Result 0,52	Type: LC ch ID: 15 Date: 10 PQL 0.020	825 0/10/2014 SPK value 0.5000	Test R S SPK Ref Val 0	tCode: Ei tunNo: 2 SeqNo: 6 %REC 104	PA 6010B: ^ 1801 40640 LowLimit 80	Fotal Recover Units: mg/L HighLimit 120	able Meta %RPD	RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium	Samp Bato Analysis Result 0.52 0.49	Type: LC ch ID: 15 Date: 10 PQL 0.020 0.020	S 825 9/10/2014 SPK value 0.5000 0.5000	Test R S SPK Ref Val 0 0	tCode: El tunNo: 2 SeqNo: 6 %REC 104 98.9	PA 6010B: 7 1801 40640 LowLimit 80 80	Fotal Recover Units: mg/L HighLimit 120 120	able Meta %RPD	RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Anatyte Arsenic Barium Cadmium	Samp Bato Analysis Result 0.52 0.49 0.49	Type: LC ch ID: 15 Date: 10 PQL 0.020 0.020 0.0020	S 825 9/10/2014 SPK value 0.5000 0.5000 0.5000	Test R S SPK Ref Val 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9	PA 6010B: ⁻ 1801 40640 LowLimit 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120	able Meta %RPD	RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Anatyte Arsenic Barium Cadmium Cadmium Calcium	Samp Bato Analysis Result 0.52 0.49 0.49 52	Type: LC ch ID: 15 Date: 10 PQL 0.020 0.020 0.0020 1.0	S 825 9/10/2014 SPK value 0.5000 0.5000 0.5000 50.00	Test R SPK Ref Val 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 104	PA 6010B: ⁻ 1801 40640 LowLimit 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120	able Meta	RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Calcium Chromium	Samp Bato Analysis Result 0.52 0.49 0.49 52 0.48	Type: LC th ID: 15 Date: 10 0.020 0.020 0.0020 1.0 0.0060	S 825 9/10/2014 SPK value 0.5000 0.5000 0.5000 50.00 0.5000	Test R SPK Ref Val 0 0 0 0 0 0 0	tCode: Ei RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 104 96.8	PA 6010B: 7 1801 40640 LowLimit 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120	able Meta %RPD	RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Anatyte Arsenic Barium Cadmium Calcium Chromium Lead	Samp Bato Analysis Result 0.52 0.49 0.49 52 0.48 0.49	Type: LC th ID: 15 Date: 10 PQL 0.020 0.0020 1.0 0.0060 0.0050	S 825 9/10/2014 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	Test R SPK Ref Val 0 0 0 0 0 0 0 0 0	tCode: Ei RunNo: 2 %REC 104 98.9 98.9 104 96.8 97.6	PA 6010B: 7 1801 40640 LowLimit 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120	able Meta	RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Cadmium Chromium Lead Magnesium	Samp Bato Analysis 0.52 0.49 0.49 52 0.48 0.49 51	Type: LC th ID: 15 Date: 10 PQL 0.020 0.020 0.0020 1.0 0.0050 1.0	S 825 0/10/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 50.00	Test R S SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 104 96.8 97.6 103	PA 6010B: 7 1801 40640 LowLimit 80 80 80 80 80 80 80 80 80 80 80	Fotal Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120	able Meta	RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Anatyte Arsenic Barium Cadmium Cadmium Calcium Chromium Lead Magnesium Potassium	Samp Bato Analysis 0.52 0.49 0.49 52 0.48 0.49 51 49	Type: LC th ID: 15 Date: 10 PQL 0.020 0.020 0.0020 1.0 0.0060 0.0050 1.0 1.0 1.0	S 825 0/10/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00 50.00	Test R SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 98.9 104 96.8 97.6 103 98.8	PA 6010B: 7 1801 40640 LowLimit 80 80 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120	able Meta	RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Anatyte Arsenic Barium Cadmium Calcium Chromium Lead Magnesium Potassium Selenium	Samp Bato Analysis 0.52 0.49 0.49 0.49 52 0.48 0.49 51 49 0.50	Type: LC th ID: 15: Date: 10 PQL 0.020 0.020 0.0020 1.0 0.0060 0.0050 1.0 1.0 0.050	S 825 0/10/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00 50.00 0.5000	Test R S SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 3%REC 104 98.9 98.9 104 96.8 97.6 103 98.8 100	PA 6010B: 7 1801 40640 LowLimit 80 80 80 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	able Meta	RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Anatyte Arsenic Barium Cadmium Cadmium Catcium Chromium Lead Magnesium Potassium Selenium Silver	Samp Bato Analysis 0.52 0.49 0.49 0.49 52 0.48 0.49 51 49 0.50 0.10	Type: LC th ID: 15: Date: 10 PQL 0.020 0.020 0.0020 1.0 0.0050 1.0 1.0 0.050 0.050 0.0050	S 825 9/10/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00 50.00 50.00 0.5000 0.5000 0.1000	Test R S SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 3%REC 104 98.9 98.9 104 96.8 97.6 103 98.8 100 102	PA 6010B: 7 1801 40640 LowLimit 80 80 80 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	able Meta	RPDLimit	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit R
- RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
 - Р Sample pH greater than 2.
 - RL, Reporting Detection Limit

Page 16 of 18

1410102 23-Oct-14

QC SUMMARY REPORT

Ξ

Client:	Western Refining South	west, Inc.							
Project:	Injection Well 4th QTR	10-1-14							
Sample ID mb-1	SampType:	MBLK	Tes	tCode: SM2	320B: All	kalinity	-		
Client ID: PBW	Batch ID:	R21715	F	RunNo: 217 1	15				
Prep Date:	Analysis Date:	10/6/2014	S	GeqNo: 6374	458	Units: mg/L	CaCO3		
Analyte	Result PC	L. SPK value	SPK Ref Val	%REC L	.owLimit	HighLimit	%RPD	RPDLimit	Quai
Total Alkalinity (as CaC	D3) ND	20							
Sample ID Ics-1	SampType:	LCS	Tes	tCode: SM2	320B: All	calinity			
Client ID: LCSW	Batch ID:	R21715	F	RunNo: 2171	15				
Prep Date;	Analysis Date:	10/6/2014	8	GeqNo: 6374	459	Units: mg/L	CaCO3		
Analyte	Result PC	L SPK value	SPK Ref Val	%REC L	.owLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaCo	03) 83	20 80.00	0	103	90	110			
Sample ID mb-2	SampType:	MBLK	Tes	tCode: SM2	320B: All	alinity			
Client ID: PBW	Batch ID:	R21715	я	RunNo: 2171	15				
Prep Date:	Analysis Date:	10/6/2014	S	GegNo: 6374	474	Units: mg/L	CaCO3		
Analyte	Result PC	L SPK value	SPK Ref Val	%REC L	owLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaCO	03) ND	20							
Sample ID Ics-2	SampType:	LCS	Tes	Code: SM2	320B: All	alinity	<u> </u>		
Client ID: LCSW	Batch ID:	R21715	R	lunNo: 2171	15				
Prep Date:	Analysis Date:	10/6/2014	S	eqNo: 6374	175	Units: mg/L	CaCO3		
Analida	Beault BC		SPK Pof Val	% PEC L	owl imit	Highl imit	%RPD	RPDI imit	Qual
Analyte	Result Fu	a SPR value	OF KINCE Val	MILLO LL	OWLINI	- ngi izinini	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		dedda

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 17 of 18

Client: Western Refining Southwest, Inc.

Project:	Injection Well 4th QTR 10-1-14	
----------	--------------------------------	--

Sample ID MB-15759	SampType: MBLK	TestCode: SM2540C MOD; Total I	issolved Solids
Client (D: PBW	Batch (D: 15759	RunNo: 21752	
Prep Date: 10/7/2014	Analysis Date: 10/8/2014	SeqNo: 638741 Units: m	J/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimi	%RPD RPDLimit Qual
T-+-ID) (IO # I			
Total Dissolved Solids	ND 20.0		
Sample ID LCS-15759	ND 20.0 SampType: LCS	TestCode: SM2540C MOD; Total D	issolved Solids
Sample ID LCS-15759	ND 20.0 SampType: LCS Batch ID: 15759	TestCode: SM2540C MOD; Total E RunNo: 21752	issolved Solids
Sample ID LCS-15759 Client ID: LCSW Prep Date: 10/7/2014	ND 20.0 SampType: LCS Batch ID: 15759 Analysis Date: 10/8/2014	TestCode: SM2540C MOD; Total E RunNo: 21752 SeqNo: 638742 Units: mg	issolved Solids
Sample ID LCS-15759 Client ID: LCSW Prep Date: 10/7/2014 Analyte	ND 20.0 SampType: LCS Batch ID: 15759 Analysis Date: 10/8/2014 Result PQL SPK value	TestCode: SM2540C MOD; Total E RunNo: 21752 SeqNo: 638742 Units: mg SPK Ref Val %REC LowLimit HighLimi	issolved Solids j/L %RPD RPDLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- $R \qquad \text{RPD outside accepted recovery limits}$
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 18 of 18

1410102 23-Oct-14

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

-

Client Name:	Western Refining Southw	Work Order Number:	1410102		RcptNo:	1
Received by/da	te: [M10/02,	1/4				
Logged By:	Anne Thorne	10/2/2014 6:50:00 AM		am Am	_	
Completed By:	Anne Thorne	10/2/2014		Don A.		
Reviewed By:	Not-	10/02/14		Carra John		
Chain of Cus	stody					
1. Custody sea	als intact on sample bottles?		Yes 🗌	No 🗀	Not Present 🗹	
2. Is Chain of	Custody complete?		Yes 🗹	No 🗋	Not Present 🗌	
3. How was th	e sample delivered?		<u>Courier</u>			
<u>Log In</u>						
4. Was an atte	empt made to cool the sample	\$?	Yes 🗹	No 🗀	na 🗋	
5. Were all sa	mples received at a temperatu	re of >0° C to 6.0°C	Yes 🗹	No 🗌	na 🗆	
6. Sample(s) i	n proper container(s)?		Yes 🗹	No 🗍		
7. Sufficient sa	ample volume for indicated test	(s)?	Yes 🗹	No 🗔		
8. Are samples	s (except VOA and ONG) prop	erly preserved?	Yes 🗹	No 🗀		
9. Was preser	vative added to bottles?		Yes 🗌	No 🗹	na 🗆	
10.VOA vials h	ave zero headspace?		Yes 🗹	No 🗔	No VOA Vials	
11. Were any s	ample containers received bro	ken?	Yes 🗆	No 🗹	# of preserved	00
12. Does paper (Note disco	work match bottle labels?		Yes 🗹	No 🗔	botties checked for pH:	JIC T12 unless noted)
13 Are matrice	s correctly identified on Chain	of Custody?	Yes 🗸	No 🗆	Adjusted	NID
14 Is it clear wh	nat analyses were requested?		Yes 🗹	No 🗍	~	
15. Were all hol	ding times able to be met?		Yes 🗹	No 🗔 🛛	Checked by:	K
(11 110, 110(II)						0

Special Handling (if applicable)

16. Was client notified of all c	liscrepancies with this order?	Yes 📋	No 🗋 ·	NA 🔽
Person Notified:		Date		
By Whom:		Via: 🗌 eMail 🛄 P	hone 🗌 Fax 📋 I	n Person
Regarding:		a a line tara téres de la secola de	4	······································
Client Instructions:		·····		-1

.

17. Additional remarks:

18. Cooler Information

Coole	r No Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.3	Good	Yes			

.

(<u>Chain-</u>	of-Cu	stody Record	Turn-Around	Time:					٩.			c	NI 17	то		n i R.	4 - F		N II	
Client:	Weste	na) 1	Refining	Standard	🗆 Rush			ــــا ۳			LA LN	<u>г</u> .	YS	TS	: 1 / TR			RA'	TO	۹L R۱	7
				Project Name	:	10-1	-14					v hai	lenvi	ironn	nentz	al.co	m				
Mailing	Address:	# 5	2 AR 4992	Tuiec	tion h	lell IT	1	•	4901	Hawl	ins f	NF -	Alb	Unue	aroue	ΝΛ	л. И 87 [.]	109			
RI	m	ald a	NM 87413	Project #:					Tel.	505-3	45-3	975	F	ayus	505-3	345-4	4107	,,			
Phone	#: <i>5</i> 05	-633	- 4/35	-					1011	000 0		A	naly	sis i	Requ	iest					
email	or Fax#:			Project Mana	ger:				Ξ	5	٩			0 ₄)				1. th	·		Τ
QA/QC	Package:				-			021		ξ (γ	3	<u>ଚ</u>	식	, N	B's		.	2	1	3	
🗆 Sta	ndard	······	Level 4 (Full Validation)			<u></u>		3) S,	0)	2 e	R.	SIN	2	<u> </u>	2 Z			Ĩ		7	
Accrea	litation			Sampler:	iop	a se		E E	E 5]′≆	8	072	2	Ŝ	808			q	Ĩ	Ŧ	E
			<u>۳</u>	On lce				+				ы 8,	<u> </u>	စ္နီ	es/		S	Ŕ	2	17	ฟอิ
	J (Type)			Saublearen			anna anna anna anna anna anna anna ann	IEL				310,	Meta	ธิ์	ticid	S	-iel	-a	βļγ	- ۲	
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type			IEX + N	TEX + N			4H's (8:	CRA 8	nions (F	181 Pes	260B (V	270 (Sei	Puite	= =	2 E L	
****	10100	11 >	<u> </u>	7.440	1/0/			<u> </u>		<u>+ </u>	196	4	Ř	<u>₹</u>	8		8	11	떡~	<u>a y</u>	<u>V</u> ą
09-14	10.00	ΠΔΟ	IN. well	J-VOA	<u>#C1</u>		7				<u> </u>					<u>×</u>					+
	+		<u>├</u>	1-Liter	amber	. 00	4	_			-				<u>.</u>		시	_		_ _	+
		┝		1-500m		-76				_	<u> </u>						$ \rightarrow $	<u>X</u>		_	4-
	<u> </u>		· · · · · · · · · · · · · · · · · · ·	1-500ml		-71	<u> </u>			<u> X</u>	·	<u> </u>						.	<u> </u>	<u>(</u>	
·		<u> </u>		1-125 m	H2504.	-a					<u> </u> X	_				\leq	÷	$ \bot$	\perp		\perp
				1-500 ml	HN03	-00	7						X								
				1-500 ml	NaOH	-77	à												X		
l				1-500 ml	ZN-ACETATE	65														X	
											T										
													1				•				Т
		· ·																			Τ
Date:	Time:	Relinquish	ed by: fut Krakon	Received by:	That		21	Ren	narks:			- -		•				·			
	Time:	Relinquish	ust Wheler	Received by:	A	Date Time	650							•							

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Appendix D Closure Plan

Western Refinery Southwest Inc. Bloomfield Terminal Waste Disposal Well (WDW) #2

Closure Plan

In accordance with Rule 19.15.25 NMAC the following information describes the possible closure plan which would entail plugging and abandoning the proposed well bore and reclaiming the surface location to pre-drill status. This is Western's standard closure procedure.

All closure activities will include proper documentation and be available for review upon request. All required paperwork (sundry notices) will be submitted to NMOCD for approval prior to any field work taking place. All plug and abandon activities are intended to protect fresh water, public health and the environment.

General Plan

- 1. Notify NMOCD
- 2. Note: verify all cement volumes based on actual slurry to be pumped.
- 3. Review any COA's from NMOCD

Procedure

- 1 Move-in, rig up pulling unit. Pump & pit. Half tank for cement returns.
- 2 Hold safety meeting with rig crew and related personnel explaining the procedure and outlining potential hazards.
- 3 ND WH & NU BOP
- 4 TIH w/ CICR & set at ~ 7265'.
- 5 Load hole and circulate clean with fresh water.
- 6 Load tubing and pressure test tubing to 1000 psi.
- 7 Pull stinger out of CICR enough to load hole w/ water and circulate clean. Test casing to 500 psi.
- 8 Plug #1 (7265'-7483'). Mix & pump 85 sx (100 cf) of Class B neat cement. Sting out of retainer leaving 50' of cement on top of retainer. Note. Cement volumes will be adjusted if alternate but comparable cement is used (based on vendor selection). Volumes estimated using 100% excess.
- 9 Pull up hole.
- 10 Spot plug #2 in a balanced plug. Plug #2 Dakota: (6099'–6199'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.

- 11 Pull up hole & WOC. TIH & tag TOC.
- 12 Spot plug #3 in a balanced plug. Plug #3 Gallup (5549'-5649'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 13 Pull up hole & WOC. TIH & tag TOC.
- 14 Spot plug #4 in a balanced plug. Plug #4 Mesaverde (3285'-4087'). Mix & pump 150 sx (177 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 15 Pull up hole & WOC. TIH & tag TOC.
- 16 Spot plug #5 in a balanced plug. Plug #5 Chacra (2638'-2738'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 17 Pull up hole & WOC. TIH & tag TOC.
- 18 Spot plug #6 in a balanced plug. Plug #6 Pictured Cliffs (1668'-1768'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 19 Pull up hole & WOC. TIH & tag TOC.
- 20 Spot plug #7 in a balanced plug. Plug #7 Fruitland (1153'-11253'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 21 Pull up hole & WOC. TIH & tag TOC.
- 22 Spot plug #8 in a balanced plug. Plug #8 Surface Plug (350'-surface). Mix & pump 66 sx (77.9 cf) of Class B neat cement.
- 23 Fill up inside of casing w/ additional cement as needed to top off.
- 24 ND BOP & cut off well head.
- 25 Install P&A marker and cut off anchors.
- 26 RD & release rig and related equipment.
- 27 Remove all surface/production equipment.
- 28 Re-contour and re-claim surface/location as per NMOCD approved Reclamation plan.

Injection String	, iu.s ppr, Js	כ	
	Length	Тор	Bottom
KB Adjustment	15.00	0	15.00
4-1/2" PL casing/tubing		15.00	15.00

WALSH ENGINEERING & PRODUCTION CORP.

Workover Cost Estimate

Western Refinery Southwest, Inc. AUTHORITY FOR EXPENDITURE

11

			Date: 2/2	20
Well Name : WDW #2	Ohiantika	Dermenentli	D9 A Mallhoro	
Location: Sec 27, 129N, R11W, San Juan, NM	Objective :	Permanentry	Paa wendore	
	Tangible	Intangible	Total	
I. Workover Costs				
Anchors, and Misc.				
Completion Rig (18 hrs @ \$250/hr, includes Mob-de-Mob, crew travel)		29,500	29,500	
Cased Hole Services (Including CICR)		7 200	7.200	
Cement		24.650	24.650	
Tubing Head and Well Connection Fittings				
Tubing (480 ft @ 3.30 \$/ft.)				
Sucker Rods (50 rods @ 60 \$/rod)				
Down hole pump				
Pumping equipment (Polish rod, tbg anchor, ect)				
Rentals (tanks, etc)		1,720	1,720	
Trucking		5,100	5,100	
Surface Facility Installation				
Restore Location				
Well Site Supervision		4,100	4,100	
Engineering		1,000	1,000	
Bits				
Labor & Trucking to remove surface equipment				
Pipelines and Installation				
Tank and Fillings		1 050	1 350	
Disposal Costs Mater		1,250	1,200	
WEICH Surface Reclamation		5 125	5 125	
DIALE REGardation		135	135	
r an marker		100	00	
Workover Costs	0	79,780	7 9 ,780	
10% Contingency	0	7,978	7,978	
Total Workover Costs	0	87,758	87,758	

Prepared By: John C. Thompson Date: 2/2/2016

Working Interest Owners

ESTIMATED COSTS ONLY--Each participating Owner to pay Proportionate Share of Actual Well Costs Subject to Operating Agreement

OBLI First, (-108 Application	021.1
C-108 Review Checklist: Received Add. Request:	Reply Date:	Suspended:6 [Ver 16]
ORDER TYPE: WFX / PMX SWD Number: 1629 Order D	ate: <u>06/01/2016</u> Legacy Permits. With WOCC c	Orders: In Conjunction
Well No. 2 Well Name(s): Waste Disposal Well	Class I (Non	Mazardous) Disposal
API : 30-0 45-35747 Spud Date: TBD Ne	w or Old: <u>New</u> (UIC Class II I	Primacy 03/07/1982)
Footages 2028 FNL/ III' FEL Lot or Unit H Sec 27	Tsp <u>29N</u> Rge <u>11 W</u>	_County San Juan_
O First Application fortages: 2019 FUL/110 FEL-change General Location: At decomissioned Bloomfield Refinery. Pool: SU	es did not impact notice D; Entrada	OF AOK Wells Pool No.: 96436
BLM 100K Map: Naurio Reservoir Operator: Western Refining Southwest 1	COGRID: 26755 Contac	t: Allen Hund, Refining
COMPLIANCE RULE 5.9: Total Wells: Inactive: Fincl Assur:	Compl. Order? IS 5.	9 OK? 100 Date: 06/01/2016
WELL FILE REVIEWED () Current Status: APD ponding; Class I (non-)	naz) permit pending	、
WELL DIAGRAMS: NEW: Proposed or RE-ENTER: Before Conv. O After Con	av. O Logs in Imaging:	
Planned Behab Work to Well: NA- New well	•	
	Cement	Cement Top and
Well Construction Details Borehole / Pipe Depths (ft)		Determination Method
Planned or Existing Surface 17 1/2/13 3/8 0 to 350	Stage Tool 394	Cir. to Surf
Planned_or Existing_(Interm)Prod 12'/4 95/3	DV tool 857	not to suit (Ta)
Planned_or Existing_Interm/Prod 83/11 7 0 to 7500	CBL AUS	Cir to suft (OV BK)
Plagned or Existing Prod/Liner	tec Tinel	
	lai Lenath	
Planned V or Existing OH (PERF) 844 7 7315 to 7483	168 <u>Completion</u>	Operation Details:
Injection Lithostratigraphic Units: Depths (ft) Injection or Confining	Tops Drilled TD	PRTD
Units	7 1441 NEW TD 7500	
Adjacent Unit: Litho. Struc. Por. Morrison	[04[]] NEW 10 10-0	
Confining Unit: (Atho. Ostruc) Por. +0 1001/20 L3		or NEW Peris ()
Proposed inj interval IOP: 1315		in. Inter Coated? <u>PS</u>
Proposed Inj Interval BOTTOM: 197483 Market and 1974	Proposed Packer De	
Confining Unit Either Struc. Por. 10 Chinle	Min. Packer Depth	<u>1213</u> (100-ft limit)
Adjacent Unit: Litho. Struc. Por. 201 SDA Hadres	Proposed Max. Surf	Ace Presspsi
	Admin. Inj. Press	
POTASH: R-111-PNA Noticed? NA BLM Sec Ord B WIPP (MWoticed?NA	_ Salt/Salado ⊤: <u>_N/t</u> _B: <u>N/t</u> _	<u>NW</u> : Cliff House fth 333
FRESH WATER: Aquifer Allwiel (Jun R) Ojo Alamo Max Depth < 100	_ HYDRO AFFIRM STATEMEN	NT By Qualified Person
NMOSE Basin: Son Juyan (CAPITAN REFE thru addit NA V No	GW Wells in 1-Mile Radius?	EW Analysis?
	Vec	
Disposal Fluid: Formation Source(s) Onsite - treatment and Analysis?	On Lease () Operato	or Only (or Commercial ()
Disposal Interval: Inject Rate (Avg/Max BWPD): 3300 8000 Protectable Wa	ite/s?prob. Source: No miles	Systemy Closed or Open
HC Potential: Producing Interval? Ko_Formerly Producing? No_Method: Lo	pgs/DST/P&A/Other Historical	2-Mile Radius Pool Map
AOR Wells: 1/2-M Radius Map? Yes. Well List? Yes Total No. Wells Pen	hetrating Interval:	lorizontals? 2. mule
Penetrating Wells: No. Active Wells $\mathcal{A}_{\mathcal{A}}^{2}$ Num Repairs? on which well(s)? $\mathcal{U}_{\mathcal{A}}^{2}$	SWD/ () I'mile # /Ashcraft SWD#1	Diagrams? NA
Penetrating Wells: No. P&A Wells		Diagrams? NA
NOTICE: Newspaper Date 12/14/15 Mineral Owner Applicant	Surface Owner Applicant	N. Date 12 14 15
RULE 26.7(A): Identified Tracts? Yas_Affected Persons: Burlington a	ind XTO; Holcomb Gil E	Gas N. Date 12/17/15
Order Conditions: Issues: Unknown water quality of injection	interval; site specific	HC potntial
Add Order Cond: - Added to COA for APD - 'TOG' sample of .	formation anter/mud	log SRT after
any well workover - stimulation 1/1	CBL for prod. C	estily (DV tool)
P&A Well List (One-mile Radius +) - Western Refining SW, Inc. C-108 Application and Class I (non-haz) Application

2

ι

.

API WELL #	Well Name	Well #	Operator Name	Type	Stat	Sur Owner	ŲĹ	Sec	Twp	ĨN∕S	Rng	W/E	Footage	N/S	Footage	Ę.W	TVD (ft)	Comment
30-045-08125-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Ρ	Р	В	21	29	N	11	W	850	N	1750	E	1693	
30-045-07972-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Ρ	Р	м	21	29	N	11	W	990	S	560	w	1703	i
30-045-08024-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Р	Р	F	21	29	N	11	w	2515	N	1410	w	704	
30-045-08025-00-00	PRE-ONGARD WELL	002	PRE-ONGARD WELL OPERATOR	0	Р	Р.,	F	21	29	N	11	W	2440	N	1520	W	660	
30-045-08027-00-00	PRE-ONGARD WELL	009	PRE-ONGARD WELL OPERATOR	0	Р	P	G	21	29	N	11	W	2430	N	1920	E	700	
30-045-08051-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Р	P	F	21	29	N	11	w	1650	N	1830	W	1915	
30-045-30587-00-00	SATEGNA	001R	BURLINGTON RESOURCES OIL & GAS COMPANY LP	G	Ρ_	P	м	21	29	N	11	w	1040	S	770	w	1744	
30-045-08036-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Ρ	Ρ	Е	21	29	N	11	w	1650	Ν	330	E	630	
30-045-08137-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Р	P	Α	21	29	N	11	W	568	N	301	E	795	
30-045-08162-00-00	PRE-ONGARD WELL	_001	PRE-ONGARD WELL OPERATOR	W	P	P	в	21	29	N	11	W	100	N	2100	W	300	
30-045-08136-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Ρ	<u>Р</u>	A	22	29	N	11	W	660	N	785	E	767	
30-045-08166-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Р	Ρ.	С	22	29	N	11	W	175	N	1570	W	700	
30-045-08169-00-00	PRE-ONGARD WELL	003	PRE-ONGARD WELL OPERATOR	G	P	P	D	22	29	N	11	W.	200	N	200	W	540	
30-045-08109-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	P	P	D	22	29	N	11	W	905	N	1155	W	700	
30-045-32453-00-00	PRE-ONGARD WELL	007	PRE-ONGARD WELL OPERATOR	G	Ρ	Ρ	G	22	29	<u>N</u>	11	W	2400	N	2310	E	1036	
30-045-08086-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Р	P	Ð	22	29	N	11	W	1278	N	1027		1350	
30-045-07959-00-00	GRACE PEARCE	001	JOHN C PICKETT	G	Ρ	<u>Р</u>	0	22	29	N	11	W	990	S	1650	E	1620	
30-045-07961-00-00	HARTMAN	001	MANANA GAS INC	G	Ρ	P	Р	22	29	N	11	W	990	S	990	E	6310	Dakota target
30-045-08138-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Р	Р	В	22	29	N	11	W	500	N	1800	E	620	
30-045-08045-00-00	HARE	001	KENDALL & ASSOCIATES	0	P	P	G	23	29	<u>N</u>	11	W	1980	N	1650	E	730	
30-045-08120-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Р	Р	D_	23	29	N	11	W	990	N	990	W	1130	
30-045-08010-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Ρ	Р	I	23	29	N	11	W	2275	S	685	E	1478	
30-045-08116-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Ρ	Ρ	С	23	29	N	11	W	990	N	1650	w	1490	
30-045-08165-00-00	PRE-ONGARD WELL	002	PRE-ONGARD WELL OPERATOR	G	P.	P	в	23	29	N.	11	W	150	N	1980	E	800	
30-045-08110-00-00	PRE-ONGARD WELL	004	PRE-ONGARD WELL OPERATOR	0	Ρ	P	В	23	29	Ň	11	W	990	N	1650	E	802	
30-045-08064-00-00	PRE-ONGARD WELL	005	PRE-ONGARD WELL OPERATOR	G	р	P	E	23	29	N	11	W	1620	N	300	W	650	
30-045-25887-00-00	EARL B SULLIVAN GAS COM B	001	BP AMERICA PRODUCTION COMPANY	G	Ρ	P	1	23	29	N	11	W	1650	S	1190	E	2858	
30-045-08061-00-00	HARE	001	BURLINGTON RESOURCES OIL & GAS COMPANY LP	G	Ρ	Ρ	G	23	29	N	11	W	1650	N	1650	E	1766	
30-045-07985-00-00	PEARCE GAS COM	001	BP AMERICA PRODUCTION COMPANY	G	Р	s	к	23	29	N	11	W	1470	S	1775	W	6274	Dakota target
30-045-08009-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Ρ	S	к	23	29	N	11	W	2210	S	1660	W	1507	
30-045-08056-00-00	HARE	003	KENDALL & ASSOCIATES	0	Ρ	Р	G	23	29	Ν	11	W	1686	N	2239	E	735	
30-045-08034-00-00	HARE	002	KENDALL & ASSOCIATES	0	Ρ	Р	G	23	29	N	11	W	2310	N	1650	E	738	
30-045-08032-00-00	SEITZINGER	001	ALLEN ORION	0	Р	Р	н	23	29	N	11	W	2310	N	990	E	750	
30-045-24517-00-00	HARE	004	KENDALL & ASSOCIATES	0	Р	Р	G	23	29	N	11	W	2020	N	2140	E	1000	
30-045-08047-00-00	HARE GAS COM B	001	XTO ENERGY, INC	G	Р	Р	G	23	29	N	11	W	1825	N	2330	E	6382	Dakota target
30-045-07776-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Р	S	м	26	29	N	11	W	330	S	330	W	1758	
30-045-07870-00-00	PRE-ONGARD WELL	00X	PRE-ONGARD WELL OPERATOR	G	Р	Р	G	26	29	N	11	W	1782	N	1570	E	1442	
30-045-29107-00-00	PRE-ONGARO WELL	001X	PRE-ONGARD WELL OPERATOR	G	P	P	G	26	29	N	11	W	1806	N	1570	E	850	Junk in hole; P&A
30-045-22639-00-00	DELO	011	GENERAL MINERALS CORP	G	Р	F	P	26	29	N	11	W	790	S	790	E	1945	
30-045-07883-00-00	PRE-ONGARD WELL	002	PRE-ONGARD WELL OPERATOR	G	Р	Р	н	27	29	N	11	w	1450	N	1120	E	1701	
30-045-07903-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	P	F	M	27	29	N	11	W	990	S	990	W	1747	
30-045-07825-00-00	DAVIS GAS COM F	001	BP AMERICA PRODUCTION COMPANY	G	Ρ	P	11	27	29	N	11	W	1850	s	1190	E	6365	Dakota target
30-045-07812-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Р	Р	1	27	29	N	11	W	1650	S	990	E	1804	
30-045-23553-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Р	P	н	27	29	N	11	W	1545	N	1140	E	NA	Never spud
30-045-07896-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Р	P	C	27	29	N	11	W	920	N	1520	W	800	
30-045-21732-00-00	GARLAND B	001R	BURLINGTON RESOURCES OIL & GAS COMPANY LP	G	Ρ	F	м	27	29	N	11	W	790	S	860	W	1810	
30-045-23554-00-00	DAVIS GAS COM G	001	XTO ENERGY, INC	G	P	P	1	27	29	N	11	W	1605	S	1135	ε	2951	
30-045-07849-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	P	P	E	29	29	N	11	W	2310	N	990	w	1645	r
30-045-07895-00-00	PRE-ONGARD WELL	002	PRE-ONGARD WELL OPERATOR	G	Р	Р	A	28	29	Ň	11	W	1000	N	885	E	1623	
30-045-07762-00-00	PRE-ONGARD WELL	003	PRE-ONGARD WELL OPERATOR	G	Р	S	A	28	29	N	11	W	1080	N	940	Ē	670	
30-045-34466-00-00	MASDEN GAS COM	001F	XTO ENERGY, INC	G	P	P	F	28	29	N	11	W	1975	N	2275	w	710	_
30-045-07862-00-00	PRE-ONGARD WELL	003	PRE-ONGARD WELL OPERATOR	G	Р	S	G	28	29	N	11	W	1650	N	1650	E	1610	/
30-045-07810-00-00	MANGUM	003	BURLINGTON RESOURCES OIL & GAS COMPANY LP	G	P	Р	IJ	28	29	N	11	W	1650	S	1650	E	1748	[

r when the control of the control	P&A Well List (One-mile Radius +)	- Western Refining SW, Inc.	C-108 Application and Class I	(non-haz) Application
---	-----------------------------------	-----------------------------	-------------------------------	-----------------------

.

API WELL #	Well Name	Well #	Operator Name	Туре	Stat	Sur Owner		Sec	Twp	N/S	Rng	W/E	Footage	N/S	Footage	Έ/Ψ	TVD (ft)	Comment
30-045-25268-00-00	SUMMIT	010	ENERGEN RESOURCES CORPORATION	G	Р	F	G	33	29	N	11	W	1650	N	1690	E	1564	
30-045-28407-00-00	PRE-ONGARD WELL	500	PRE-ONGARD WELL OPERATOR	G	Р	۴	н	33	29	N	11	W	1825	N	1100	E	NA	Aband location
30-045-07725-00-00	SUMMIT	004	BURLINGTON RESOURCES OIL & GAS COMPANY LP	G	P	F	А	33	29	N	11	W	990	N	990	E	1752	
30-045-07621-00-00	WITT	001	DUGAN PRODUCTION CORP	G	P	P	Ν	33	29	Z	11	W	860	s	1840	W	1595	
30-045-07648-00-00	PRE-ONGARD WELL	002	PRE-ONGARD WELL OPERATOR	Ģ	Р	F	3	34	29	Ν	11	w	1520	S	1520	£	1792	
30-045-07674-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	P_	F	J	34	29	И	11	w	2640	s	2300	Ē	1910	
30-045-07675-00-00	PRE-ONGARD WELL	002	PRE-ONGARD WELL OPERATOR	G	Ρ	F	Ŧ	34	29	2	11	W	2440	N	1520	w	1800	
30-045-07633-00-00	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	G	Р	F	Ň	34	29	N	11	W	1070	S	2390	w	2002	
30-045-20752-00-00	LEA ANN	001	CHAPARRAL OIL & GAS CO	G	P	F	Е	35	29	N	11	W	1850	N	790	W	1900	
30-045-25658-00-00	CONGRESS	014	BURLINGTON RESOURCES OIL & GAS COMPANY LP	0	P	F	Α	35	29	Ы	11	W	445	N	953	E	6013	Gallup target

New Mexico Office of the State Engineer Active & Inactive Points of Diversion

(with Ownership Information)

	(acre ft per a	(R=POD has been replaced and no longer serves this file, C=the file is closed)	(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters)								
WR File Nbr	Sub basin Use Diversio	n_Owner	Count	/ POD Number	Code Grant	Source 6	i∍q .q' 416_4_S	eciaTws	Rng	X	
SJ 00394	DOM	0 PABLO D. QUINTANA	SJ	<u>SJ 00394</u> - Expired			112	7 29N	11W	233260	4066010*
SJ 00700	DOM	3 EDD H. BROWN	SJ	SJ 00700 70-30'		Shallow 3	3312	7 29N	11W	233147	4065507* 🌍
SJ 01804	DOM	3 KENNETH W. LARSEN	SJ	<u>SJ 01804</u> - NG inf	0	3	3332	7 29N	11W	233119	4064713* 🌍
SJ 01808	POL	0 PLATEAU INC	SJ	<u>SJ 01808 0-1</u>		Shallow 2	2422	7 29N	11W	234561	4065683* 🌑
			SJ	<u>SJ 01808 0-2</u>		Shallow 3	3422	7 29N	11W	234361	4065483* 🌍
			SJ	SJ 01808 0-3	toring wells / region	Shallow 4	4 2 2	7 29N	11W	234561	4065483* 🌍
			SJ	<u>SJ 01808 0-4</u>	11 mile	Shallow 3	3322	7 29N	11W	233956	4065491* 🎧
			SJ	<u>SJ 01808 0-5</u>	25'orless	Shallow 1	132	.6 29N	11W	234753	4065274 🎧
			SJ	<u>SJ 01808 0-6</u>		Shallow 7	1242	27 29N	11W	234347	4065283* 🏠
SJ 01845	DOM	3 JOHN SCHLISSIGEN	SJ	SJ 01845 - No infe)		112	27 29N	11W	233260	4066010* 🚱
SJ 02121	DOM	3 HUSKIE CHATTO	SJ	<u>SJ 02121</u> - TD - 30	s'	Shallow	112	27 2 9N	11W	233260	4066010* 🤪
SJ 02148	DOM	3 CARROLL W. WOOTEN	SJ	<u>SJ 02148</u> in	application	Shallow	242	27 29N	l 11W	234448	4065184* 🏈
SJ 02210	DOM	3 DONALD C. LOONEY	SJ	SJ 02210 - TD - 37	21	Shallow	112	27 29N	l 11W	233260	4066010* 🎲
SJ 02227	DOM	3 YOGI B. CHAVEZ	SJ	<u>SJ 02227</u> - TD - 2	271	Shallow	4112	27 29N	I 11W	233359	4065909* 🛞
SJ 02231	DOM	3 DANIEL YELINEK	SJ	<u>SJ 02231</u>			4 1 1 2	27 291	I 11W	233359	4065909* 🎡
SJ 02664	POL	0 BLOOMFIELD REFINING CC	MPANY SJ	SJ 02664	à na	Shallow	232	27 2 9N	I 11W	233639	4065202* 🎧
			SJ	SJ 02664 S Monit	oring recovery wells	Shallow	232	27 29N	I 11W	233639	4065202* 🌍
			SJ	<u>SJ 02664 S-10</u>	at facility	Shallow	232	27 291	I 1 1 W	233639	4065202* 🎧

*UTM location was derived from PLSS - see Help

(acre ft p	er annum)			(R≈POD has been replaced and no longer serves this file, C=the file is closed)	(quarter	rs are 1:	=NW:	2=NE 3≈SW	4=SE)	(in motors)		
Sub					- (quanter	a a a		, ,	(11/003 01)	(in meters)		
basin Use Diver	sion Owner	Count	v POD Number	Code Grant	Source	64164	Sec	Tws Rna	X	Y		
		SJ	SJ 02664 S-2	na anti-programma and an	Shallow	23	27	29N 11W	233639	4065202*		
		SJ	SJ 02664 S-3		Shallow	23	27	29N 11W	233639	4065202* 🌍		
		SJ	SJ 02664 S-4		Shallow	23	27	29N 11W	233639	4065202* 🏈		
		SJ	SJ 02664 S-5	-D(3), -43'	Shallow	23	27	29N 11W	233639	4065202* 🌍		
		SJ	SJ 02664 S-6		Shallow	23	27	29N 11W	233639	4065202* 💮		
		SJ	SJ 02664 S-7		Shallow	23	27	29N 11W	233639	4065202* 🚱		
		SJ	SJ 02664 S-8		Shallow	23	27	29N 11W	233639	4065202* 🎲		
		SJ	SJ 02664 S-9	/	Shailow	23	27	29N 11W	233639	4065202* 🕥		
STK	3 ROBERTA HENDE	RSON SJ	<u>SJ 03588</u> —	16'TD	Shallow	211	27	29N 11W	233359	4066109* 🌍		
DOM	0 GARY WOODALL	SJ	SJ 03590 🗕	Expired		211	27	29N 11W	233359	4066109* 🏠		
28 <u>:</u> n: San Juan <u>h:</u>): 26, 27 ïle Number	Township: 29N	Range: 11W										
	(acre ft p Sub basin_Use_Diver STK DOM 8 : n: San Juan h:): 26, 27 ile Number	(acre ft per annum) Sub basin_Use_Diversion_Owner STK 3 ROBERTA HENDER DOM 0 GARY WOODALL 8 1 n: San Juan h: b: 26, 27 Township: 29N ile Number	(acre ft per annum) Sub basin_Use_Diversion_Owner Count SJ SJ SJ SJ SJ SJ SJ SJ SJ SJ	(acre ft per annum) Sub basin_Use_Diversion_Owner SJ_SJ_02664_S-2 SJ_SJ_02664_S-3 SJ_SJ_02664_S-4 SJ_SJ_02664_S-4 SJ_SJ_02664_S-5 SJ_SJ_02664_S-6 SJ_SJ_02664_S-6 SJ_SJ_02664_S-7 SJ_SJ_02664_S-8 SJ_SJ_02664_S-9 STK 3_ROBERTA HENDERSON DOM 0_GARY WOODALL SJ_SJ_03590 8 1 1: 1: 1: San Juan hi 1: San Juan hi 1: San Juan	Image: series of the per annum) Image: series of the per annum) Sub * Sub Sub Sub Sub<	(are it per annum) (are i	(are ft per anum) (are ft per anum) (are ft per anum) Sub Cathe file is closed) (quarters are file (quarters are file) Sub Cathe file is closed) (quarters are file) Sub Cathe file is closed) (quarters are file) Sub Cole Grant Source 64154 Sub Sub <th colspan<="" td=""><td>(acre ft per annum) County POD Number Code Grant Source 64164 See S</td><td>(are finger annum) (quarters are 1=NW 2=NE 3=SW C=the file is closed) Sub Quarters are smallest to largest) Sub Quarters are smallest to largest) Sub Quarters are smallest to largest) Sub Sub Cole Grant Source 6416 4 Source 6416 4 Sub Sub Sub 20264 5-2 Sub Sub Sub 20264 5-3 Sub Sub Sub 202664 5-4 Sub Sub Sub 202664 5-6 Sub Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub <th cols<="" td=""><td>Substration County POD Number Code Grant Source_6416 4 Sec_tws_Rng X Sub Sub</td></th></td></th>	<td>(acre ft per annum) County POD Number Code Grant Source 64164 See S</td> <td>(are finger annum) (quarters are 1=NW 2=NE 3=SW C=the file is closed) Sub Quarters are smallest to largest) Sub Quarters are smallest to largest) Sub Quarters are smallest to largest) Sub Sub Cole Grant Source 6416 4 Source 6416 4 Sub Sub Sub 20264 5-2 Sub Sub Sub 20264 5-3 Sub Sub Sub 202664 5-4 Sub Sub Sub 202664 5-6 Sub Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub <th cols<="" td=""><td>Substration County POD Number Code Grant Source_6416 4 Sec_tws_Rng X Sub Sub</td></th></td>	(acre ft per annum) County POD Number Code Grant Source 64164 See S	(are finger annum) (quarters are 1=NW 2=NE 3=SW C=the file is closed) Sub Quarters are smallest to largest) Sub Quarters are smallest to largest) Sub Quarters are smallest to largest) Sub Sub Cole Grant Source 6416 4 Source 6416 4 Sub Sub Sub 20264 5-2 Sub Sub Sub 20264 5-3 Sub Sub Sub 202664 5-4 Sub Sub Sub 202664 5-6 Sub Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub Sub 202664 5-6 Sub <th cols<="" td=""><td>Substration County POD Number Code Grant Source_6416 4 Sec_tws_Rng X Sub Sub</td></th>	<td>Substration County POD Number Code Grant Source_6416 4 Sec_tws_Rng X Sub Sub</td>	Substration County POD Number Code Grant Source_6416 4 Sec_tws_Rng X Sub Sub

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

McMillan, Michael, EMNRD

From:	John Thompson <john@walsheng.net></john@walsheng.net>
Sent:	Monday, January 04, 2016 10:23 AM
To:	McMillan, Michael, EMNRD
Subject:	RE: Western Refining Southwest Refining Co. SWD Well No.2 San Juan Co.

Western owns the surface.

From: McMillan, Michael, EMNRD [mailto:Michael.McMillan@state.nm.us]
Sent: Monday, January 04, 2016 9:31 AM
To: john@walsheng.net
Subject: Western Refining Southwest Refining Co. SWD Well No.2 San Juan Co.

John:

I could not figure out who owns the surface-have they been notified for the Western Refining Southwest Refining Co. SWD Well No.2?

Thank You

Michael A. McMillan

Engineering and Geological Services Bureau, Oil Conservation Division 1220 South St. Francis Dr., Santa Fe NM 87505 O: 505.476.3448 F. 505.476.3462 <u>Michael.mcmillan@state.nm.us</u> TOWNSHIP 29 NORTH, RANGE II WEST, OF THE NEW MEXICO PRIN. MERIDIAN, NEW MEXICO,

TOWNSHIP 29 NORTH, RANGE 11 WEST, OF THE NEW MEXICO PRIN. MERIDIAN, NEW MEXICO.

11

.

ί η

Goetze, Phillip, EMNRD

From:Goetze, Phillip, EMNRDSent:Friday, May 20, 2016 4:23 PMTo:'Allen Hains'Cc:Griswold, Jim, EMNRD; Chavez, Carl J, EMNRD; John Thompson (john@walsheng.net)Subject:Notification of Affected Persons; C-108 Application for WDW No. 2

Mr. Hains:

Per our conversation today, I was conducting a assessment of the amended C-108 application for the Waste Disposal Well No. 2 for Western Refining Southwest's facility near Bloomfield. For this application, I found no attached copies of notification for affected persons as required under NMAC. However, at your suggestion, I revisited the original C-108 application prepared by Walsh Engineering and submitted in the original effort in December 2015 (Application No. pMAM1600432778; logged in 01/04/216). For the record, the notification provided in this first submittal is sufficient to satisfy the notification requirements. Though the surface location between the two applications (as described in the published notice and letters to effected persons) has slightly changed (from 2019' FNL/110' to FEL 2028' FNL/111' FEL), this is not significant and does not impact either the parties to be noticed or AOR wells. Additionally, the published notice is accurate to those major items that are deemed critical to proper notification such as injection interval, rate of injection, applicant, and contact information. Thank you for your patience in this matter. PRG

Phillip R. Goetze, PG
Engineering Bureau
Oil Conservation Division
New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive
Santa Fe, NM 87505
Direct: 505.476.3466
E-mail: phillip.goetze@state.nm.us

Goetze, Phillip, EMNRD

From:	Powell, Brandon, EMNRD
Sent:	Wednesday, May 18, 2016 3:04 PM
То:	Perrin, Charlie, EMNRD; Griswold, Jim, EMNRD; Chavez, Carl J, EMNRD; Goetze, Phillip, EMNRD
Subject:	FW: Proof of Public Notice for Western Refining SW, Inc. WDW-2 Class 1 Injection Well Discharge Permit Application (UICI-011)
Attachments:	Western approval cover sheet.docx

Gentlemen-

We are in the process of finalizing the APD approval for this well and hope to have it completed and scanned possibly tomorrow. Attached is the conditions page we are planning on attaching. Please review and provide any concerns or comments. The API for the well will be 30-045-35747.

Thank You

Brandon Powell Office: (505) 334-6178 ext. 116 "He who wishes to gain knowledge is wiser than he who thinks he has knowledge (unknown)"

From: Perrin, Charlie, EMNRD Sent: Tuesday, May 17, 2016 2:37 PM To: Vermersch, Amy H, EMNRD <AmyH.Vermersch@state.nm.us>; Powell, Brandon, EMNRD <Brandon.Powell@state.nm.us> Subject: FW: Proof of Public Notice for Western Refining SW, Inc. WDW-2 Class 1 Injection Well Discharge Permit Application (UICI-011)

From: Chavez, Carl J, EMNRD Sent: Tuesday, May 17, 2016 2:13 PM To: Hains, Allen <<u>Allen.Hains@wnr.com</u>> Cc: Gallegos, Denise, EMNRD <<u>Denise.Gallegos@state.nm.us</u>>; Griswold, Jim, EMNRD <<u>Jim.Griswold@state.nm.us</u>>; Perrin, Charlie, EMNRD <<u>charlie.perrin@state.nm.us</u>>; Goetze, Phillip, EMNRD <<u>Phillip.Goetze@state.nm.us</u>> Subject: RE: Proof of Public Notice for Western Refining SW, Inc. WDW-2 Class 1 Injection Well Discharge Permit Application (UICI-011)

Allen:

Hi. A few things Western needs to begin acting on are provided below.

- Western needs to obtain the API# for the well from Brandon Powell in the Aztec District Office so OCD may post in its Public Notice. Once you get it, forward the number over to me as I am working with Jim G to get the draft DP posted in Newspapers on or before COB Friday on 5/20 with requested post in Albuq. Journal and Farmington Daily for Sunday 5/22.
- 2) Brandon needs to issue an approval of the C-101 and C-102 Forms and include a Condition of Approval in the C-101 Form that the Entrada Fm. must be tested for TDS to determine water quality before OCD can authorize injection. There is scarce water quality information for the Entrada in San Juan County. OCD has incorporated language in the Draft DP to also highlight this requirement.

3) Once numbers 1 and 2 above are satisfied, Western needs to submit its financial bond. The amount provided in the Application Closure Plan is acceptable. Please procure a WQCC Well Bond (click <u>here</u>) for the approved amount and submit to OCD Santa Fe (Denise Gallegos at (505) 476-3453 or E-mail: <u>Denise.Gallegos@state.nm.us</u>).

Thank you.

Carl J. Chavez, CHMM Environmental Engineer Oil Conservation Division- Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Phone: (505) 476-3490 Main Phone: (505) 476-3440 Fax: (505) 476-3462 E-mail: <u>Carl J. Chavez@state.nm.us</u> Website: <u>www.emnrd.state.nm.us/ocd</u> Why not prevent pollution, minimize waste, reduce operation costs, and move forward with the rest of the Nation? To see how, go to "Publications" and "Pollution Prevention" on the OCD Website.

From: Hains, Allen [mailto:Allen.Hains@wnr.com] Sent: Tuesday, May 17, 2016 1:40 PM To: Chavez, Carl J, EMNRD <<u>CarlJ.Chavez@state.nm.us</u>>; Griswold, Jim, EMNRD <<u>Jim.Griswold@state.nm.us</u>> Cc: Schmaltz, Randy <<u>Randy.Schmaltz@wnr.com</u>>; Robinson, Kelly <<u>Kelly.Robinson@wnr.com</u>> Subject: RE: Proof of Public Notice for Western Refining SW, Inc. WDW-2 Class 1 Injection Well Discharge Permit Application (UICI-011)

Carl,

We appreciate your help with this permit.

Looking forward, are there requirements that Western can be working on during the OCD public notice period?

Thank you,

Allen S. Hains Manager Remediation Projects

Western Refining 123 W. Mills Ave. El Paso, Texas 79901 915 534-1483 915 490-1594 (cell)

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us] Sent: Tuesday, May 17, 2016 7:22 AM To: Donnelly, Patti <<u>Patti.Donnelly@wnr.com</u>> Cc: Schmaltz, Randy <<u>Randy.Schmaltz@wnr.com</u>>; Hains, Allen <<u>Allen.Hains@wnr.com</u>>; Robinson, Kelly

<<u>Kelly.Robinson@wnr.com</u>>; Griswold, Jim, EMNRD <<u>Jim.Griswold@state.nm.us</u>> **Subject:** RE: Proof of Public Notice for Western Refining SW, Inc. WDW-2 Class 1 Injection Well Discharge Permit Application (UICI-011)

This email was sent by an external sender. Please use caution when opening attachments, clicking web links, or replying until you have verified this email sender.

Patti:

Received.

FYI: 1 am working with Jim Griswold to begin OCD's public notice in the newspapers soon.

Thank you.

Carl J. Chavez, CHMM Environmental Engineer Oil Conservation Division- Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Phone: (505) 476-3490 Main Phone: (505) 476-3440 Fax: (505) 476-3462 E-mail: <u>Carl J. Chavez@state.nm.us</u> Website: <u>www.emnrd.state.nm.us/ocd</u> Why not prevent pollution, minimize waste, reduce operation costs. and move forward with the rest of the Nation? To see how, go to "Publications" and "Pollution Prevention" on the OCD Website.

From: Donnelly, Patti [mailto:Patti.Donnelly@wnr.com] Sent: Monday, May 16, 2016 1:08 PM To: Chavez, Carl J, EMNRD <<u>CarlJ.Chavez@state.nm.us</u>> Cc: Schmaltz, Randy <<u>Randy.Schmaltz@wnr.com</u>>; Hains, Allen <<u>Allen.Hains@wnr.com</u>>; Robinson, Kelly <<u>Kelly.Robinson@wnr.com</u>> Subject: Proof of Public Notice for Western Refining SW, Inc. WDW-2 Class 1 Injection Well Discharge Permit Application (UICI-011)

Good afternoon! This is our submittal of proof of Public Notice for the WDW-2 Class 1 Injection Well Discharge Permit Application. The originals will be mailed to you Certified via the US Postal Service. If you have any questions or concerns, please do not hesitate to contact myself, Randy Schmaltz or Kelly Robinson.

Thank you, Patti Donnelly

Patti Donnelly Logistics, HSER Western Refining 111 CR 4990 Bloomfield, NM 87413 (505) 632-4005 patti.donnelly@wnr.com