

AE Order Number Banner

Report Description

This report shows an AE Order Number in Barcode format for purposes of scanning. The Barcode format is Code 39.

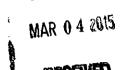
App Number: pENV00001RP204

1RP - 204

PRIDE ENERGY COMPANY

.

8/12/2016


.

USPS Priority Mail® 9405 5118 9956 2498 7768 70

February 27, 2015

Mr. Jim Griswold New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

HOBBSOCD

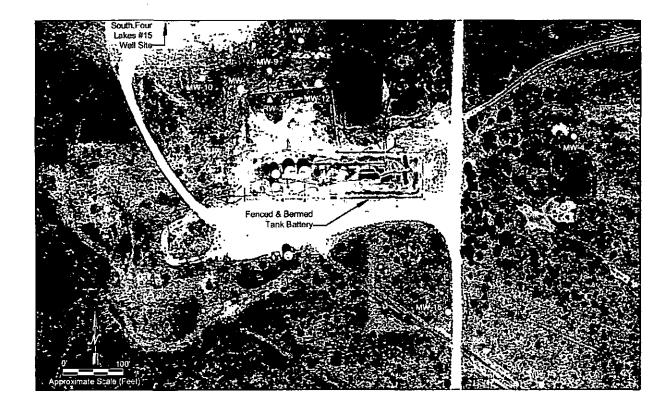
RE: 2014 ANNUAL GROUNDWATER MONITORING REPORT PRIDE ENERGY COMPANY SOUTH FOUR LAKES TANK BATTERY (1RP-0204) T12S, R34E, SECTION 2, UNIT LETTER G LEA COUNTY, NEW MEXICO

Mr. Griswold:

As agent for Pride Energy Company, Trident Environmental submits the attached 2014 Annual Groundwater Monitoring Report for the South Four Lakes Tank Battery Site (1RP-204) located approximately 10 miles west of Tatum in Lea County, New Mexico. This 2012 Annual Groundwater Monitoring Report documents the annual sampling event performed by Trident on July 2-3, 2014, and site remediation activities conducted between May 6, 2008 and December 11, 2014. This report also contains historical groundwater elevation and analytical data for the onsite monitoring wells that was obtained from the OCD Online database. The monitoring and sampling program was conducted in accordance with the monitoring plan specified by Mr. William C. Olson of the New Mexico Oil Conservation Division (NMOCD) in his letter dated July 14, 1997.

Thank you for your attention concerning this annual summary of groundwater monitoring activities. If you have any questions, please contact me at (432) 638-8740 or Matt Pride at (918) 524-9200.

Sincerely,


Gilbert J. Van Deventer, REM, PG Trident Environmental – Project Manager

cc: Matt Pride (Pride Energy Co.) Tomas Oberding (NMOCD – District 1)

February 27, 2015

2014 Annual Groundwater Monitoring Report

SOUTH FOUR LAKES TANK BATTERY SITE (1RP-204) T12S, R34E, SECTION 2, UNIT LETTER G LEA COUNTY, NEW MEXICO

Prepared for:

Pride Energy Company

P. O. Box 701950 Tulsa, Oklahoma 74170 Prepared by:

P. O. Box 12177 Odessa, Texas 79768

TABLE OF CONTENTS

1.0	Executive Summary
2.0	Chronology of Events
3.0	Site Description and Background Information
4.0	Procedures
5.0	Groundwater Elevations, Gradient and Flow Direction10
6.0	Groundwater Quality Conditions11
6.1	Distribution of Hydrocarbons in Groundwater11
6.2	Distribution of Chloride and TDS in Groundwater11
7.0	Monitoring Natural Attenuation12
8.0	Free Product Recovery and LNAPL Thickness
9.0	Conclusions
10.0	Recommendations
11.0	Limitations

FIGURES

- Figure 1 Site Topographic Map
- Figure 2 Site Map
- Figure 3 Groundwater Elevation Map
- Figure 4 Groundwater Elevations Versus Time
- Figure 5 BTEX Concentration and LNAPL Thickness Map
- Figure 6 Chloride and TDS Concentration Map
- Figure 7 Biodegradation Parameter Map
- Figure 8 Benzene and Biodegradation Parameter Concentrations Versus Distance from Source
- Figure 9 Diagram of Windmill Recovery System
- Figure 10 LNAPL Thicknesses Versus Time Graph
- Figure 11 Cumulative LNAPL Recovery Volumes Versus Time Graph

TABLES

- Table 1
 Summary of Groundwater Elevations
- Table 2
 Summary of Regulated Constituent Concentrations (BTEX, Chloride, and TDS)
- Table 3
 Summary of Monitoring Natural Attenuation Parameters
- Table 4
 Biodegradation Capacity of Electron Acceptors/Byproducts
- Table 5
 LNAPL Thickness Measurements
- Table 6Product Recovery Volumes

APPENDICES

- Appendix ANMOCD CorrespondenceAppendix BLaboratory Analytical Reports and Chain-of-Custody Documentation
- Appendix C Monitoring Well Sampling Data Form

1.0 Executive Summary

Trident Environmental (Trident) was retained by Pride Energy Company (Pride) to perform the annual groundwater monitoring at the South Four Lakes Tank Battery which is located approximately 10 miles west of Tatum, New Mexico. The legal description of the site is described as being in township 12 south, range 34 east, section 2, unit letter G, in Lea County, New Mexico. This 2014 Annual Groundwater Monitoring Report documents the annual sampling event performed by Trident at the South Four Lakes Tank Battery on July 2-3, 2014. This report also contains historical groundwater elevation and analytical data for all monitoring wells on site. The monitoring and sampling program was conducted in accordance with the monitoring plan specified by Mr. William C. Olson of the New Mexico Oil Conservation Division (NMOCD) in his letter dated July 14, 1997 (Appendix A).

Based on the sampling and monitoring data to date, the following conclusions relevant to groundwater conditions at the South Four Lakes Tank Battery are evident:

- Benzene concentrations in monitoring wells MW-5, MW-7, MW-9, MW-10, MW-14, MW-15, and MW-16 were below the New Mexico Water Quality Control Commission (WQCC) standard of 0.010 mg/L.
- The benzene levels in monitoring wells MW-13 (1.89 mg/L) and RW-1d (0.904 mg/L) exceeded the WQCC standard. Toluene, ethylbenzene, and xylene concentrations in all sampled wells were below the WQCC standards with the exception of the 0.75 mg/L standard for xylenes in MW-15 (1.141 mg/L).
- Light non-aqueous phased liquids (LNAPL) are present in the groundwater and have the characteristics of a light crude oil or natural gas liquid (condensate). The LNAPL thicknesses have been reduced significantly over the last 6 years due to operation of the windmill recovery system and passive recovery activities in affected wells. LNAPL is localized between RW-2 and MW-6. As of December 11, 2014, measurable LNAPL was only present in RW-2s (0.14 ft), MW-6 (0.03 ft) and MW-12 (0.14 ft).
- The windmill-driven LNAPL recovery system at RW-2s performed well since being put back into operation on July 20, 2008. The system operated in total fluids mode so it is not known how much LNAPL has been removed; however, approximately 612,595 gallons (14,586 barrels) of hydrocarbon-impacted groundwater has been removed, since July 2008.
- The windmill at RW-2s was severely damaged beyond repair from strong winds sometime between late November and early December in 2013. LNAPL recovery has since been accomplished using a passive bailer and hand-bailing technique.
- Approximately 100.8 gal of LNAPL has been removed from MW-1, MW-6, MW-7, MW-9, MW12, MW-13, RW-1s, and RW-2s since May 2008 by use of passive bailers, oil absorbent socks, hand bailing, and windmill recovery.
- Chloride concentrations in MW-13, MW-14, MW-16, and RW-1s exceed the WQCC standard of 250 mg/L.
- TDS concentrations in MW-9, MW-13, MW-14, MW-15, MW-16, and RW-1d exceed the WQCC standard of 1,000 mg/L.

- Although iron and manganese concentrations may periodically exceed WQCC standards in some monitoring wells, increased levels of these constituents indicate intrinsic bioremediation processes are active.
- Source control has been implemented with the removal of contaminated soils beneath the closed EXXON production pit (December 1995) and the ongoing LNAPL and groundwater recovery operations. Given these source control measures, contaminant loading to groundwater has diminished through time, and the groundwater plume has stabilized and shown indications of decreased concentrations and areal extent over time.
- There are no indications that the hydrocarbon plume in the groundwater has migrated beyond the boundaries of the facility and there are no potential receptors (water wells) within a half-mile of the site. Given local and regional groundwater use, the groundwater plume in its current extent poses no risk to human health or the environment.

Recommendations for the South Four Lakes Tank Battery are as follows:

- Continue the sampling and monitoring program on an annual basis in accordance with the July 14, 1997 NMOCD approval letter. Continued annual sampling is necessary to monitor plume stability and to evaluate the effectiveness of natural attenuation in limiting the downgradient migration of the plume. The next sampling event is scheduled during the second quarter of 2015.
- Continue LNAPL recovery, if present, in RW-1s, RW-2s, MW-1, MW-6, MW-7, MW-9, MW-12, and MW-13 using passive bailers or absorbent socks with monthly inspections.
 Obtain the annual groundwater samples from these wells if the LNAPL thickness is less than 0.01 feet.
- The above recommended LNAPL recovery effort will improve the effectiveness of biological attenuation of the dissolved hydrocarbon plume as observed with the continued uptake of electron acceptors, production of biological reaction by-products, and the reduction in BTEX concentrations and areal extent of the dissolved hydrocarbon plume.

2.0 Chronology of Events

November 13, 1987	EXXON Company U. S. A. (Exxon) reported a crude oil spill to the NMOCD which resulted in a loss of 600 barrels from a ruptured line at the South Four Lakes Tank Battery. No record of corrective actions appear to be on file however, Exxon stated that the tank battery would be redesigned and that old buried piping would be replaced with new above-ground piping.
November 1990	Phillips Petroleum Company (Phillips) acquired the South Four Lakes Unit from Exxon. As part of Phillips' due diligence effort during the acquisition, a Phase I and II environmental assessment was completed on the lease and associated facilities by Law Environmental, Inc. This assessment included the installation of four monitoring wells (MW-1 through MW-4).
September 1994	As part of a second environmental due diligence effort for the sale of the Unit, monitoring wells MW-1 through MW-4 were sampled again by SECOR International Incorporated (SECOR). Upon detection of LNAPL in MW-1, Phillips initiated a source identification effort which included evaluation of production storage tank integrity, excavation of an adjacent Amoco crude oil pipeline, a comparative analysis (fingerprinting) of crude oil produced from the unit with the LNAPL discovered within MW-1, and a focused soil and groundwater assessment in the area of the closed EXXON production pit.
December 13-16, 1994	SECOR supervised the installation of nine monitoring wells (MW-5 through MW-13).
January 17-18, 1995	SECOR performed groundwater sampling of all wells at the site with the exception of MW-1, MW-6, RW-11, and MW-12 in which LNAPL was observed.
March 13, 1995	SECOR submitted a <i>Soil and Groundwater Assessment</i> report in which they concluded that two historic hydrocarbon release mechanisms existed at the tank battery. The first and primary mechanism was a subsurface release to soil and ground-water from the closed production pit located north of the tank battery. The second mechanism was a relatively shallow subsurface release to soil from historic surface spills of crude oil and produced water.
May 15, 1995	NMOCD requested submission of a soil and groundwater remediation work plan and additional delineation of the dissolved-phase hydrocarbons in groundwater at the site.
July 27, 1995	Phillips submitted a <i>Remedial Action Plan for the South Four Lakes Unit</i> to the NMOCD. The plan proposed soil and groundwater remediation and delineation of dissolved-phase hydrocarbons at the site.
August 18, 1995	The NMOCD gave Phillips conditional approval for the Remedial Action Plan.

2014 Annual Groundwater Monitoring Report South Four Lakes Tank Battery Site (1RP-204)

October 9-11, 1995	SECOR conducted the installation and sampling of three monitoring wells (MW-14 through MW-16) to delineate the downgradient extent of the dissolved hydrocarbons in groundwater at the site.
November 27, 1995	Ritter Environmental & Geotechnical Services (REGS) initiated closure of the former production pit under contract with Phillips. REGS excavated the former pit to a depth of approximately 23 ft below ground surface (bgs). The excavated soils were removed for treatment by solidification in three treatment cells. The solidified material (~1,835 yd ³) was allowed two to three weeks time to cure prior to covering the excavated production pit and treatment cells. Wells MW-8 and RW-11 had to be removed as they were in the footprint of the excavated area.
January 4-5, 1996	SECOR supervised the installation of recovery wells RW-1s, RW-1d, RW-2s, and RW-2d for subsequent use to recover LNAPL.
January 15-16, 1996	BASCOR Environmental, Inc. (BEI) supervised the installation of the windmill-driven pump system for LNAPL recovery and conducted a well performance test for recovery wells RW-2s and RW-2d.
January 31, 1996	Phillips submitted the <i>Final Closure Report - Unlined Surface Impoundment Closure</i> report prepared by REGS (December 1995) to the NMOCD.
January 31, 1996	Phillips submitted the Supplemental Environmental Investigation – Downgradient Assessment report prepared by SECOR (November 28, 1995) to the NMOCD.
January 31, 1996	Phillips submitted the <i>Recovery Well Installation Report</i> prepared by SECOR (January 29, 1996) to the NMOCD.
January 31, 1996	Phillips submitted the Free Phase Hydrocarbon Recovery System Installation Report prepared by BEI (January 30, 1996) to the NMOCD.
March 22, 1996	NMOCD approved Phillips' actions to date and added conditions for a long- term groundwater monitoring plan.
May 6, 1997	Phillips submitted the <i>Quantification of Natural Attenuation of Petroleum</i> <i>Hydrocarbons in Groundwater</i> report prepared by SECOR (April1997) to the NMOCD with a request that MW-2, MW-3, MW-4, and metals analysis for all monitoring wells be eliminated from future monitoring events. In addition, Phillips requested that groundwater monitoring for the on site wells be reduced to an annual frequency.
July 14, 1997	NMOCD conditionally approved Phillips' May 6, 1997 request.
December 3-5, 1997	CH2M Hill conducted the 1997 groundwater sampling event at the South Four Lakes Unit.

2014 Annual Groundwater Monitoring Report South Four Lakes Tank Battery Site (1RP-204)

October 1998	Phillips sold South Four Lakes Unit to Pride Energy Company.
December 1, 1998	After the sale of the South Four Lakes Unit to Pride, Phillips sent a disclosure letter that included reports of previous investigations at the site. In the letter Phillips stated they would finalize the 1998 annual monitoring report for submission to the NMOCD.
February 15, 2000	NMOCD requested Phillips to submit required annual reports by March 17, 2000.
March 15, 2000	Phillips submitted the 1997 annual monitoring report and requested NMOCD to acknowledge the submission as its final action for the site.
May 26, 2000	NMOCD denied Phillips request for final action. Although Pride contractually accepted responsibility for site remediation, the NMOCD stated that contractual arrangement between Phillips and Pride does not relieve Phillips of liability or responsibility for remediation.
March 13, 2008	Trident Environmental conducted the 2008 groundwater monitoring event at the South Four Lakes tank battery site on behalf of Pride. Trident also acquired site documentation from various reports available from the OCD Online database to incorporate into the forthcoming annual monitoring report.
May 6, 2008	Trident supervised the inspection and trouble-shooting of the windmill-driven LNAPL recovery system at RW-2 which included removal of worn components. Passive bailers were installed in MW-6 and RW-1s to augment LNAPL recovery efforts.
May 28, 2008	Trident supervised the repair of the windmill-driven LNAPL recovery system at RW-2 which included repair and replacement of downhole components.
June 30, 2008	The discharge line was installed to direct LNAPL recovery from the windmill at RW-2s to the South Four Lakes tank battery.
July 24, 2008	The pump rod on the windmill at RW-2s was repaired and the system put back into operating status for total fluids recovery. Also, hydrophobic bailers were placed in monitoring wells MW-1, MW-7, MW-12 and MW-13, for passive recovery of LNAPL.
August 12, 2009	Hydrophobic bailer was installed in monitoring well MW-6. Wells showing steady decline in LNAPL thicknesses due to recovery system in operation.
September 17, 2009	Oil absorbent sock was placed in monitoring well MW-9. The hydrophobic bailer in MW-7 was replaced with a hydrophobic sock, due to reduced LNAPL.
October 8, 2009	The hydrophobic bailer in MW-13 was replaced with an oil absorbent sock, due to reduced LNAPL.

December 23, 2009	Lewis Windmill on site to re-install new sump in RW-2s; windmill set in product-only mode for winter operation.
January 15, 2009	Adjusted sump; windmill set in product-only mode for winter operation.
February 27, 2009	Lowered sump in windmill to pump total fluids. The hydrophobic bailer in MW-1 was replaced with an oil absorbent sock, due to reduced LNAPL. Wells showing steady decline in LNAPL thicknesses due to recovery system in operation.
April 28, 2009	Re-attached loose bracket on windmill which was loose from pump on arrival (probably caused by high winds). Totalizer indicates windmill pumped at 1.7 gpm (average) over past month which is significantly higher than normal.
May 18-19, 2009	Conducted annual groundwater monitoring event. Added monitoring wells MW-1, MW-7, MW-9, and MW-13 to sampled well list due to lack of LNAPL.
October 15 & 19, 2009	Piñon Well Service on site to repair windmill (replaced leather cups, new coupling, and stabilizer tower) and put back in service.
October 21, 2009	Replaced passive bailer in RW-1s with oil absorbent sock due to reduced LNAPL thickness.
December 10, 2009	Turned windmill off to avoid winter freeze up problems.
February 25, 2010	Re-activated windmill
April 1, 2010	Windmill not operational (tophead plunge rod threads stripped)
April 28, 2010	Repaired windmill (replaced tophead plunger rod) and installed new GPI totalizer meter.
May 25-26, 2010	Completed annual groundwater sampling activities.
July 14, 2010	Replaced passive bailer in MW-12 with oil absorbent sock due to reduced LNAPL thickness.
February 24, 2011	Windmill out of service (stuffing box rod broken at threads).
March 17, 2011	Windmill operational after replacing stuffing box rod.
May 17-18, 2011	Completed annual groundwater sampling activities.
September 28, 2011	Installed new GPI totalizer meter.
April 23, 2012	Ray Hardy (Pińon Water Well Service) repaired windmill to operational status by replacing threaded rod and adding gearbox oil.
June 19-20, 2012	Completed annual groundwater sampling activities.

July 12, 2012	Installed electronic EDD totalizer meter.
June 12-13, 2013	Completed annual groundwater sampling activities.
December 10, 2013	Windmill at RW-2s not operational due to severe wind damage.
April 14, 2014	Two man crew removed windmill recovery components from RW-2s and replaced with a passive bailer to resume LNAPL recovery.
July 2-3, 2014	Completed annual groundwater sampling activities.

Although not itemized in the chronology of events listed above, operation and maintenance of the LNAPL recovery system was conducted every month since May 2008. These operations included the following:

- Repairs and replacements for the windmill system at RW-2s, when necessary
- Emptying and installation of hydrophobic bailers and oil absorbent socks
- Gauging wells to determine depth to groundwater and presence of LNAPL
- Disposal of recovered fluids into the SWD tank battery system
- Recording all information for tabulation and inclusion into the annual groundwater monitoring reports.

3.0 Site Description and Background Information

Pride Energy Company (Pride) owns and operates the South Four Lakes Unit located in Lea County, New Mexico, just north of U.S. Highway 380, approximately 10 miles northwest of the town of Tatum (Figure 1). The Unit is an oil and gas lease on State land containing several active producing wells, one saltwater disposal well, and associated production tank battery. The tank battery is situated on approximately 5 acres and is surrounded by relatively flat grazing lands. Regionally, topography gently slopes to the east-southeast and is sparsely vegetated. The nearest water well (L-3005) is located approximately 0.35 miles north and is currently out of service but has been used periodically as a rig supply well for oil and gas operations. An active windmill (L-0656) used for livestock watering is located approximately 0.4 miles east-northeast of the site. Figure 2 presents the facility layout, as well as the location of all site monitoring wells.

Pride acquired the Unit from Phillips Petroleum Company (Phillips) in October 1998. Phillips acquired the Unit from EXXON Company, U.S.A. in November 1990. EXXON (formerly Humble Oil Co.) had operated the unit since the 1950's. As part of Phillips' due diligence effort during the acquisition, Phase I and Phase II environmental assessments were completed on the lease and associated facilities. Eight soil borings were drilled for the purposes of soil screening and sampling. Four monitoring wells (MW-1 through MW-4) were installed in four of the eight soil borings. The four monitoring wells were sampled for benzene, toluene, ethylbenzene, and total xylenes (BTEX) in mid-October 1990. Low levels of dissolved toluene, ethylbenzene, and xylene were detected in the groundwater sample collected from MW-1, located adjacent to the northwest comer of an abandoned EXXON production pit. No other monitoring well contained detectable levels of BTEX or light non-aqueous phase liquids (LNAPL). Upon acquiring the lease from EXXON, Phillips dismantled the old EXXON tank battery and constructed a new tank battery in its place. As part of a second environmental due diligence effort for the sale of the Unit, the four monitoring wells were sampled again in September 1994. During this sampling event, approximately 2.5 feet of LNAPL was present in MW-1. No other monitoring well contained detectable levels of dissolved BTEX or measurable LNAPL. Upon detection of the LNAPL in MW-1, Phillips initiated a source identification effort that included four tasks:

- 1. A production storage tank integrity evaluation
- 2. Excavation of an adjacent Amoco crude oil pipeline
- 3. A comparative analysis (fingerprinting) of crude oil produced from the Unit with the LNAPL discovered in MW-I
- 4. A focused soil and groundwater assessment in the area of the abandoned EXXON production pit

Internal inspection of the two crude storage tanks indicated that the tanks had not leaked. Furthermore, excavation of the Amoco crude oil pipeline indicated that the Amoco pipeline had not leaked. The comparative analysis of the crude oil samples produced from the Unit with the LNAPL encountered at MW-I indicated that the oils were essentially the same. One minor but expected difference between the produced crude oils and the LNAPL from MW-I is that the MW-I oil has experienced minor evaporation, water washing, and/or biodegradation as suggested by the loss of light-end petroleum hydrocarbons (C4-C8).

Based on the results of second due diligence effort, it was determined that LNAPLs in soils beneath the abandoned EXXON production pit were the source of the dissolved BTEX in groundwater and the LNAPL at MW-I.

SECOR performed soil and groundwater assessment activities in December 1994 which included the installation of nine monitoring wells (MW-5 through MW-13) as documented in the report titled "Soil And Groundwater Assessment", dated March 13, 1995. In October 1995, SECOR conducted the installation and sampling of three additional monitoring wells (MW-14 through MW-16) to delineate the downgradient extent of the dissolved hydrocarbons in groundwater at the site.

Soils beneath the abandoned EXXON production pit were excavated and solidified onsite by Ritter Environmental on behalf of Phillips in December 1995. Wells MW-8 and RW-11 had to be removed as they were in the footprint of the excavated area.

In January 1996, SECOR supervised the installation of two 4-inch diameter recovery well clusters, RW-l and RW-2, in areas with thickest accumulations of LNAPL.

Construction of a total fluids removal system consisting of dual pumps installed in recovery well cluster RW-2s (shallow) and RW-2d (deep) was completed by Bascor Environmental in January 1996. A conventional 8-foot diameter windmill placed on a 27-foot high tower provided the energy necessary to operate the dual pump system. According to the *1997 Natural Attenuation of Petroleum Hydrocarbons Monitoring Report* (December 1997), the windmill "recovery system recovered 2,700 gallons [~64 barrels] of natural gas condensate and 190,000 to 200,000 gallons [~4600 barrels] of water" during 1997. In the 1997 report, Phillips demonstrated that biological attenuation of petroleum hydrocarbons is actively occurring, that the dissolved hydrocarbon plume has only migrated a few hundred feet beyond the LNAPL release, and the extent of the plume appears to be stable.

Figure 2 depicts the locations of the on site monitoring wells and recovery wells over a 2014 aerial photograph of the facility.

Pride resumed monitoring activities and authorized Trident Environmental to conduct the annual groundwater monitoring and sampling event on March 13, 2008. Between May 6, 2008 and July 24, 2008 the windmill fluids recovery system at RW-2s was repaired and put back into service, and passive bailers were placed in monitoring wells with LNAPL present. Passive bailers were eventually replaced with oil absorbent socks when significantly reduced thicknesses of LNAPL were achieved. Operation and maintenance of the groundwater recovery system has continued on a monthly basis with annual groundwater sampling events as updated herein.

4.0 Procedures

During the annual sampling event conducted by Trident on July 2-3, 2014, all on-site monitoring wells were gauged for depth to groundwater using a clean, decontaminated electronic water/oil interface probe. Groundwater samples were collected from monitoring wells with less than 0.01 ft of LNAPL (MW-5, MW-7, MW-9, MW-10, MW-13, MW-14, MW-15, MW-16, RW-1d, and RW-2d).

A minimum of three volumes was purged from the wells MW-5, MW-7, MW-9, MW-10, MW-13, and MW-14 by hand-bailing using a dedicated bailer prior to collecting groundwater samples. Wells MW-15, MW-16, RW-1d, and RW-2d were purged with a 12-volt submersible pump that was thoroughly decontaminated between sampling points. Groundwater samples for volatile organic compound (BTEX) analysis were collected using dedicated or new, clean, disposable bailers. Groundwater parameters, including pH, conductivity, temperature, and dissolved oxygen (DO) were measured at the completion of purging using a Milwaukee Model SM600 DO meter, and a Hanna Model 98130 pH, conductivity, and temperature meter. At the end of purging, ferrous iron (Fe⁺²) was also measured in the field using a Hach DR890 spectrophotometer (Hach Method 8146).

Water samples for BTEX analysis using EPA Method 8021B were transferred into air-tight, septumsealed, 40-ml glass VOA sample vials with zero head space. Water samples for analysis of sulfate (SO₄), total iron (Fe), and total manganese (Mn) were transferred into unpreserved plastic containers to assess the efficacy of intrinsic bioremedial activity currently taking place. Water samples were also collected for analysis of chloride, nitrate (NO₃), and total dissolved solids (TDS). Chain-of-custody (COC) forms documenting sample identification numbers, collection times, and delivery times to the laboratories were completed for each set of samples. The water samples were placed in an ice-filled cooler immediately after collection and delivered to Permian Basin Environmental Laboratories in Midland TX, on July 4, 2014, for analysis using EPA standard methods.

5.0 Groundwater Elevations, Hydraulic Gradient and Flow Direction

Based on the most recent gauging data collected by Trident on July 2, 2014, the groundwater conditions at the South Four Lakes Tank Battery are characterized below.

- The depth to the water table varies from approximately 23 to 27 feet below ground surface across the site.
- The hydraulic gradient is approximately 0.002 feet/foot.
- o Direction of groundwater flow is to the southeast (~24° south of due east).
- The direction of groundwater flow and hydraulic gradient are consistent with previous gauging events and the prevailing regional gradient.
- Water table elevations have declined approximately 1.3 feet across the site since monitoring began in 1995.

A groundwater elevation map depicting the water table elevation and direction of groundwater flow using the gauging data obtained on July 2, 2014, is presented in Figure 3. Historical groundwater elevations and depth to water measurements are summarized on Table 1, and depicted graphically in Figure 4.

6.0 Groundwater Quality Conditions

6.1 Distribution of Dissolved-phase Hydrocarbons in Groundwater

A historical listing of BTEX concentrations obtained from the on site monitoring wells is summarized in Table 2. Hydrocarbon concentration maps depicting the BTEX concentrations for the July 2-3, 2014 sampling event is presented in Figure 5. The laboratory reports and COC documentation are included in Appendix B.

Based on the analytical results obtained from the July 2-3, 2014 sampling event, the distribution of dissolved-phase hydrocarbons at the South Four Lakes Tank Battery is described below.

- Benzene concentrations in monitoring wells MW-5, MW-7, MW-9, MW-10, MW-14, MW-15, and MW-16 were below the New Mexico Water Quality Control Commission (WQCC) standard of 0.010 mg/L.
- The benzene levels in monitoring wells MW-13 (1.89 mg/L) and RW-1d (0.904 mg/L) exceeded the WQCC standard.
- Toluene, ethylbenzene, and xylene concentrations in all sampled wells were below the WQCC standards with the exception of the 0.75 mg/L standard for xylenes in MW-15 (1.141 mg/L).
- The dissolved-phase hydrocarbons in groundwater are localized within the boundaries of the facility. The dissolved hydrocarbon plume in the groundwater has remained stable and shows no indications of further downgradient migration.

6.2 Distribution of Chloride and TDS in Groundwater

Historical chloride and TDS concentrations in groundwater are also listed in Table 2. Constituents with concentrations above the WQCC standards are highlighted in boldface type. Figure 6 is a map depicting the chloride and TDS concentration for the July 2-3, 2014 sampling event. The laboratory reports and COC documentation are included in Appendix B.

- Chloride concentrations in MW-13 (2,420 mg/L), MW-14 (290 mg/L), MW-16 (459 mg/L), and RW-1d (1,700 mg/L exceed the WQCC standard of 250 mg/L. The chloride concentrations in monitoring wells MW-5, MW-7, MW-9, MW-10, MW-15, and RW-1d were below the WQCC standard.
- TDS concentrations in MW-9 (1,260 mg/L), MW-13 (4,480 mg/L), MW-14 (1,220 mg/L), MW-15 (1,570 mg/L), MW-16 (1,480 mg/L), and RW-1d (1,820 mg/L) exceed the WQCC standard of 1,000 mg/L. TDS concentrations in monitoring well MW-5, MW-7, MW-10, and RW-2d were below the WQCC standard.

7.0 Monitoring Natural Attenuation

The following biological parameters are being monitored to assess the efficacy of the biodegradation of the dissolved hydrocarbon (BTEX) plume:

- o Electron Acceptors: dissolved oxygen (DO), nitrate (NO₃), sulfate (SO₄), and
- \circ Biodegradation by-products: ferrous iron (Fe⁺²), total iron (Fe), and total manganese (Mn).

Decreased levels of electron acceptors indicate uptake of these constituents in which biological processes are actively degrading dissolved hydrocarbons in groundwater. Thus, oxygen is consumed during aerobic respiration, nitrate is transformed to nitrite through denitrification, and sulfate decreases from the sulfate reduction process.

Increased levels of biodegradation byproducts (ferrous iron, total iron, and total manganese) are also indicators of naturally occurring biodegradation of the dissolved hydrocarbons. The uptake of hydronium ions associated with specific biodegradation processes mentioned above and/or the dissolution of soil minerals (iron and manganese) results from reaction with acids generated in hydrocarbon degradation. Insoluble forms of iron (Fe⁺³) and manganese (Mn⁺⁴) are then used as an electron acceptors producing highly soluble ferrous iron (Fe⁺²) and manganese (Mn⁺²). The historical summary of these parameters are listed in Table 3. The electron acceptor and biodegradation byproduct data collected on July 2-3, 2014, are presented graphically in Figure 7.

One approach to analyzing the efficacy of biodegradation of dissolved hydrocarbons in groundwater is to compare the concentrations of various biological parameters based on their upgradient and downgradient location, to evaluate if any trends are evident. These trends are depicted graphically in Figure 8 in which the concentrations of benzene, electron acceptors, and biodegradation byproducts are plotted versus the distance from the source of hydrocarbons along the axis of the plume and extending from upgradient monitoring well MW-10 to downgradient monitoring well MW-16. With this analysis the following relationships in the electron acceptor and biodegradation by-product data are observed at the South Four Lakes Tank Battery site:

- Generally, DO values are lower downgradient and within the plume indicating that oxygen is being utilized as an electron acceptor (aerobic respiration).
- Nitrate and sulfate concentrations also exhibit decreasing tendencies in the downgradient direction (within the plume) as they are being utilized as electron acceptors indicating denitrification and sulfate reduction processes are occurring.
- Dissolved iron concentrations increase within the BTEX plume and downgradient indicating the insoluble ferric iron (Fe⁺³) is being used as an electron acceptor producing highly soluble ferrous iron (Fe⁺²).
- Manganese concentrations are higher within the plume indicating that manganese in solute form is a metabolic byproduct resulting from anaerobic biodegradation processes.
- Downgradient wells MW-14 and MW-16, which are outside the dissolved hydrocarbon plume, are perhaps the most obvious locations displaying the above relationships when compared to upgradient monitoring wells RW-2s, RW-1d, MW-13, and MW-15 within the dissolved hydrocarbon plume.

In another approach, using stoichiometric derivations, the mass of benzene degraded per unit mass of electron acceptor utilized and metabolic byproduct produced was calculated to determine the biodegradation capacity of these constituents relative to the highest and average benzene concentration observed on site. This comparison is summarized in Table 4.

The calculated biodegradation capacity of electron acceptors and metabolic byproducts (31.6 mg/L) exceeds the highest benzene concentration (1.43 mg/L) currently observed on site by a factor of 22 to 1. The biodegradation capacity of electron acceptors and metabolic byproducts further exceeds the average benzene concentration (0.35 mg/L) currently observed within the plume by a ratio of 90 to 1. This indicates that the necessary nutrients and by-products are present for the continued biodegradation of dissolved hydrocarbons.

The geochemical data for the site provides clear evidence of uptake of electron acceptors and production of biological reaction by-products, such that dissolved petroleum hydrocarbon biodegradation is occurring. Based on the analysis of electron acceptors and biodegradation by-products, it is concluded that biological processes continue to stabilize the hydrocarbon plume by actively reducing the BTEX constituents in both the downgradient dissolved plume and in the areas where LNAPL is present.

8.0 Free Product Recovery and LNAPL Thickness

Construction of a total fluids removal system consisting of dual pumps installed in recovery well cluster RW-2s (shallow) and RW-2d (deep) was completed by Bascor Environmental in January 1996. A conventional 8-foot diameter windmill placed on a 27-foot high tower provides the energy necessary to operate the dual pump system. According to the *1997 Natural Attenuation of Petroleum Hydrocarbons Monitoring Report* (December 1997), the windmill "recovery system recovered 2,700 gallons [~64 barrels] of natural gas condensate and 190,000 to 200,000 gallons [~4,600 barrels] of water" during 1997. A diagram of the windmill recovery system scanned from the *Free Phase Hydrocarbon Recovery System Installation Report* (January 30, 1996) prepared by BEI is shown in Figure 9. The system is also pictured on the cover of this report.

During the July 2-3, 2014 sampling event, monitoring well MW-1 (0.24 ft), MW-12 (0.26 ft), and RW-2s (0.20 ft) had the only measurable LNAPL thickness on site as listed in Table 1 and displayed in Figure 5. The steady declining trend in LNAPL thickness across the site, which is attributable to the product recovery efforts to date, is displayed in Figure 10. It should be recognized that measured thicknesses of LNAPL in wells exaggerates true thicknesses in the formation.

On May 6, 2008, and May 28, 2008, Trident supervised the inspection and trouble-shooting of the windmill-driven LNAPL recovery system at RW-2 which included removal of worn components. In late June 2008, the discharge line was installed to direct total fluids (LNAPL and recovered groundwater) from the windmill at RW-2s to the South Four Lakes tank battery. On July 24, 2008, the pump rod and wellhead seal on the windmill at RW-2s was repaired and the system put back into operating status with period repairs made thereafter. A totalizing meter records the cumulative volume of total fluids recovered by the windmill. With a 5 to 10 mile per hour wind the windmill pumps approximately 0.5 gallons per minute. According to the totalizer readings, the windmill has pumped approximately 612,572 gallons (14,585 barrels) of total fluids from RW-2s since July 24, 2008, at an average rate of 0.25 gal/min over the period of record. A higher volume of total fluids have been recovered compared to what has been recorded due to periods when the totalizer meter was not operational or intermittently clogged. In some cases due to totalizer malfunction total fluids were estimated at 0.25 gal/min over the period of record between maintenance visits. A new digital EDD totalizer meter was installed on July 12, 2012. The windmill was severely damaged beyond repair from strong winds sometime between late November and early December in 2013. LNAPL recovery has since been accomplished using a passive bailer and hand-bailing technique at RW-2s.

Passive bailers with hydrophobic filters were installed in MW-12 and RW-1s on May 6, 2008, to augment LNAPL recovery efforts. An oil-absorbent sock was installed in MW-9 due to minimal presence of LNAPL. On July 24, 2008, additional custom-made passive bailers were placed in monitoring wells MW-1, MW-6, MW-7, and MW-13. Due to subsequent declines in LNAPL thickness, the passive bailers in MW-1, MW-7, MW-13 and RW-1s, have since been replaced with oil-absorbent socks. Continued LNAPL recovery from MW-1, MW-7, MW-9, MW-13, and RW-1s was successful in reducing LNAPL thickness to 0.00 ft such that they could be included in the groundwater sampling program. Because of the minimized LNAPL thicknesses across the site, recoverable LNAPL has declined considerably as depicted in Figure 11.

A minimum of 100.2 gallons of LNAPL has been recovered since May 6, 2008 using a combination of the windmill pump system, passive bailers, oil absorbent socks, and hand bailing. The LNAPL from RW-2s is not separated from the total fluids; therefore LNAPL recovery in RW-2s cannot be measured and total LNAPL recovery volumes are underestimated. LNAPL thickness and product recovery volumes measurements are listed in Table 5 and Table 6, respectively. Operation and maintenance of the windmill recovery system, passive bailers, and oil absorbent socks continues on a monthly basis.

9.0 Conclusions

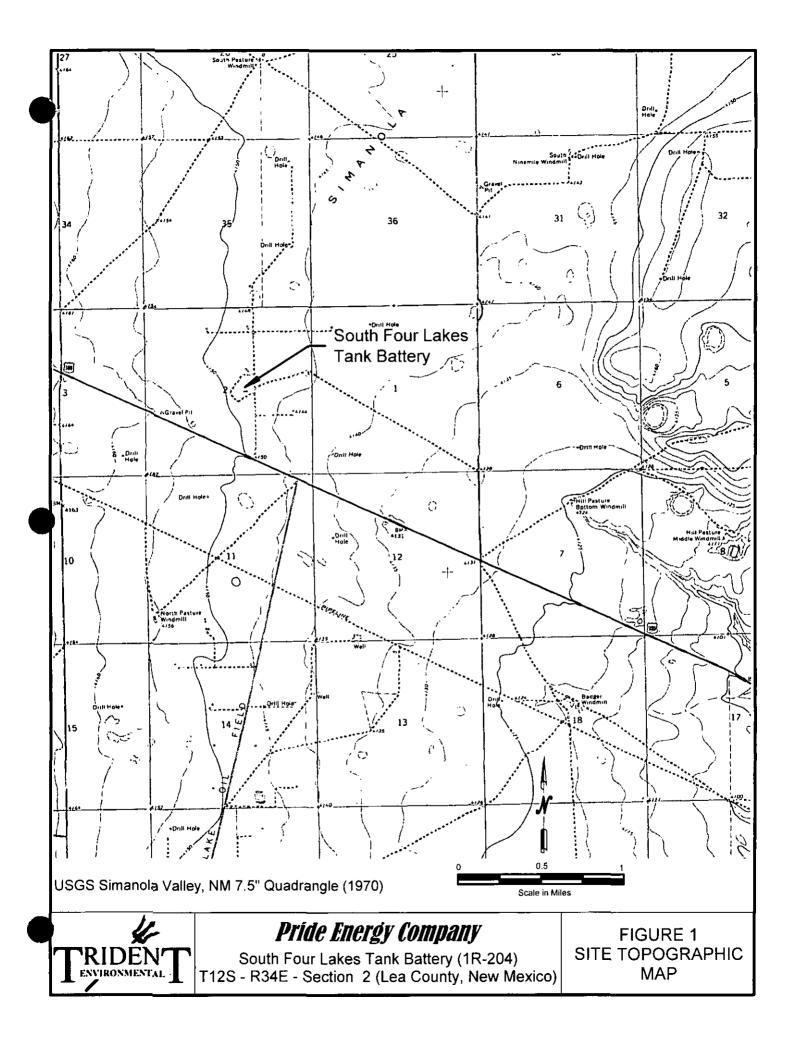
Based on the sampling and monitoring data to date, the following conclusions relevant to groundwater conditions at the South Four Lakes Tank Battery are evident:

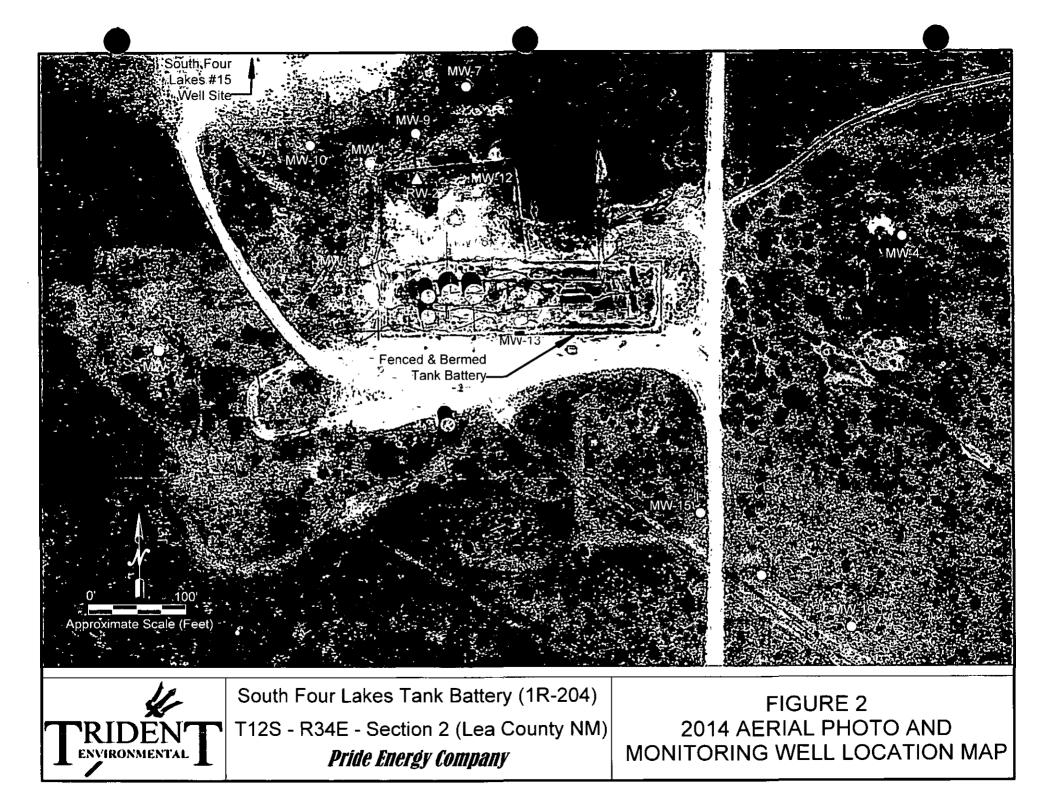
- Benzene concentrations in monitoring wells MW-5, MW-7, MW-9, MW-10, MW-14, MW-15, and MW-16 were below the New Mexico Water Quality Control Commission (WQCC) standard of 0.010 mg/L. The benzene levels in monitoring wells MW-13 (1.89 mg/L) and RW-1d (0.904 mg/L) exceeded the WQCC standard. o Toluene, ethylbenzene, and xylene concentrations in all sampled wells were below the WQCC standards with the exception of the 0.75 mg/L standard for xylenes in MW-15 (1.141 mg/L).
- Light non-aqueous phased liquids (LNAPL) are present in the groundwater and have the characteristics of a light crude oil or natural gas liquid (condensate). The LNAPL thicknesses have been reduced significantly over the last 6 years due to operation of the windmill recovery system and passive recovery activities in affected wells. LNAPL is localized between RW-2s and MW-6. As of December 11, 2014, measurable LNAPL was only present in: MW-1 (0.24 ft), MW-12 (0.26 ft), and RW-2s (0.20 ft).
- The windmill-driven LNAPL recovery system at RW-2s has been performing well since it was put back into operation on July 20, 2008. The system operates in total fluids mode so it is not known how much LNAPL has been removed; however, approximately 612,572 gallons (14,585 barrels) of hydrocarbon-impacted groundwater has been removed, since July 2008.
- Approximately 100.2 gal of LNAPL has been removed from MW-1, MW-6, MW-7, MW-9, MW12, MW-13, RW-1s, and RW-2s since May 2008 by use of passive bailers, oil absorbent socks, hand bailing, and windmill recovery.
- Chloride concentrations in MW-13 (2,420 mg/L), MW-14 (290 mg/L), MW-16 (459 mg/L), and RW-1d (1,700 mg/L exceed the WQCC standard of 250 mg/L. The chloride concentrations in the other sampled monitoring wells were below the WQCC standard.
- TDS concentrations in MW-9 (1,260 mg/L), MW-13 (4,480 mg/L), MW-14 (1,220 mg/L), MW-15 (1,570 mg/L), MW-16 (1,480 mg/L), and RW-1d (1,820 mg/L) exceed the WQCC standard of 1,000 mg/L. TDS concentrations in the other sampled monitoring wells were below the WQCC standard.
- Although iron and manganese concentrations exceed WQCC standards in some monitoring wells, increased levels of these constituents indicate intrinsic bioremediation processes are active.
- Source control has been implemented with the removal of contaminated soils beneath the closed EXXON production pit (December 1995) and the ongoing LNAPL and groundwater recovery operations. Given these source control measures, contaminant loading to groundwater has diminished through time, and the groundwater plume has stabilized and shown indications of decreased concentrations and areal extent over time.
- There are no indications that the hydrocarbon plume in the groundwater has migrated beyond the boundaries of the facility and there are no potential receptors (water wells) within a half-mile of the site. Given local and regional groundwater use, the groundwater plume in its current extent poses no risk to human health or the environment.
- Continued annual sampling is necessary to monitor plume stability and to evaluate the effectiveness of natural attenuation in limiting the downgradient migration of the plume.

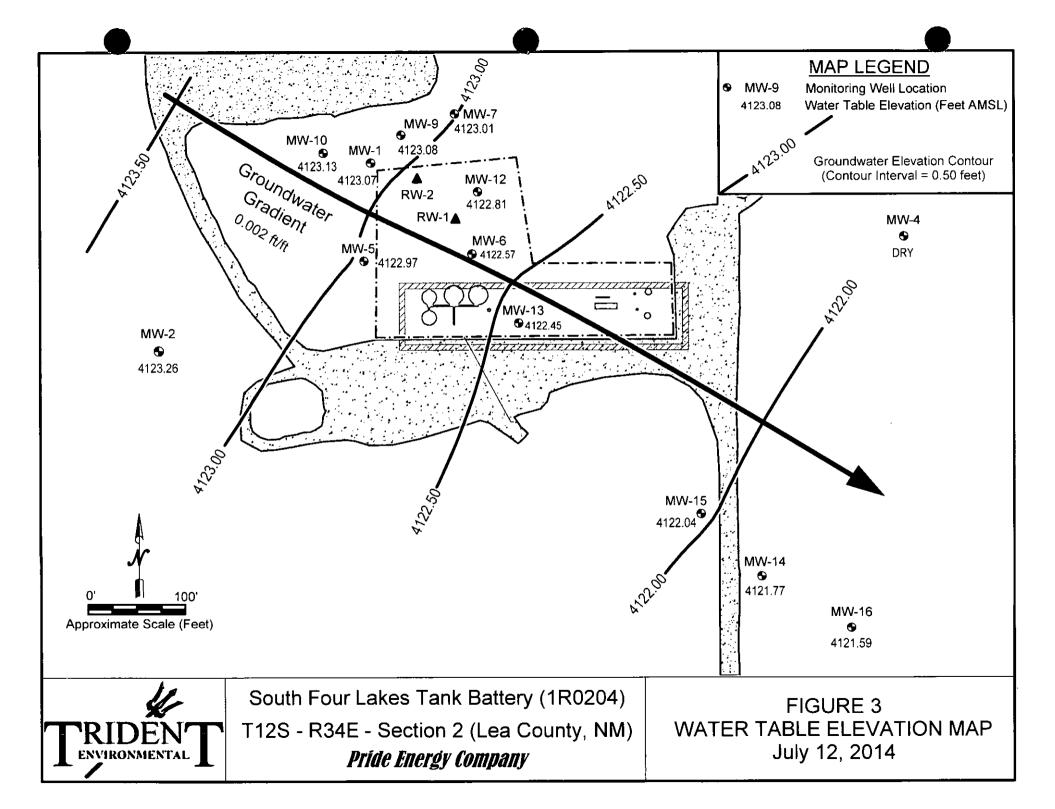
10.0 Recommendations

The following corrective actions are recommended for South Four Lakes Tank Battery.

- Continue the sampling and monitoring program on an annual basis in accordance with the July 14, 1997 NMOCD approval letter. Continued annual sampling is necessary to monitor plume stability and to evaluate the effectiveness of natural attenuation in limiting the downgradient migration of the plume. The next sampling event is scheduled during the second quarter of 2015.
- Continue LNAPL recovery, if present, in RW-1s, RW-2s, MW-1, MW-6, MW-7, MW-9, MW-12, and MW-13, using passive bailers or absorbent socks with monthly inspections.
 Obtain groundwater samples from these wells if the LNAPL thickness is less than 0.01 feet.
- The above recommended LNAPL recovery effort will improve the effectiveness of biological attenuation of the dissolved hydrocarbon plume as observed with the continued uptake of electron acceptors, production of biological reaction by-products, and the reduction in BTEX concentrations and areal extent of the dissolved hydrocarbon plume.






11.0 Limitations

Trident has prepared this Annual Monitoring Report to the best of its ability. No other warranty, expressed or implied, is made or intended. Trident has examined and relied upon documents obtained from the OCD Online database (<u>http://ocdimage.emnrd.state.nm.us/imaging/AEOrderFileView.aspx?a</u>ppNo=pENV00001RP204) as referenced in the report and may have relied on oral statements made by certain individuals. Trident has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements are true and accurate. Trident has prepared this report, in a professional manner, using the degree of skill and care expected of environmental consultants. Trident also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

FIGURES

2014 Annual Groundwater Monitoring Report South Four Lakes Tank Battery (1R-204)

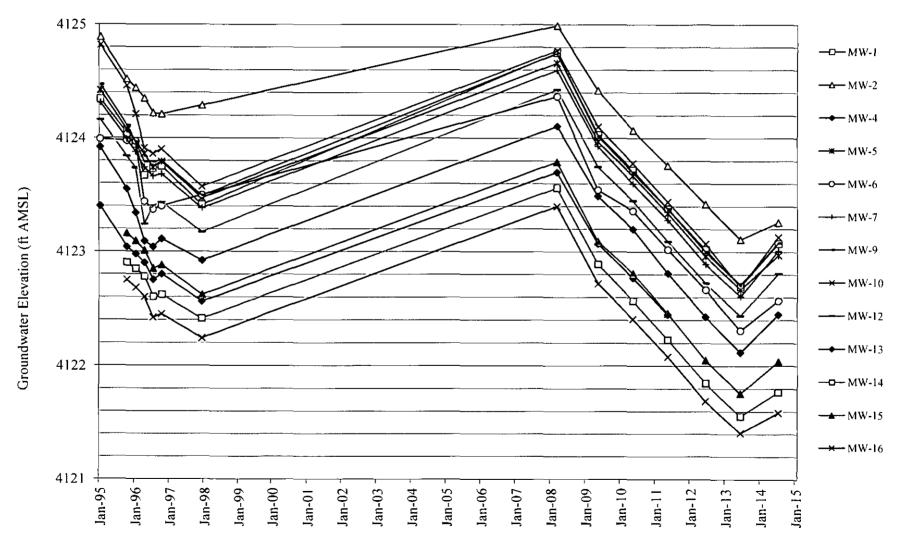
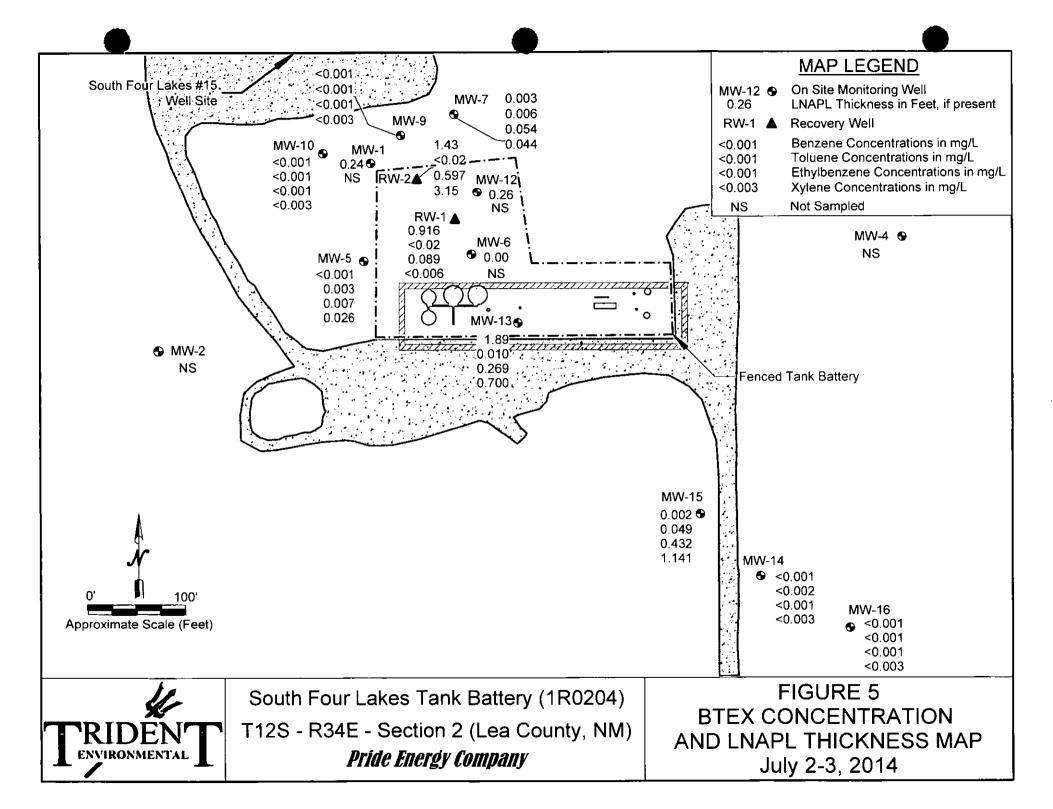
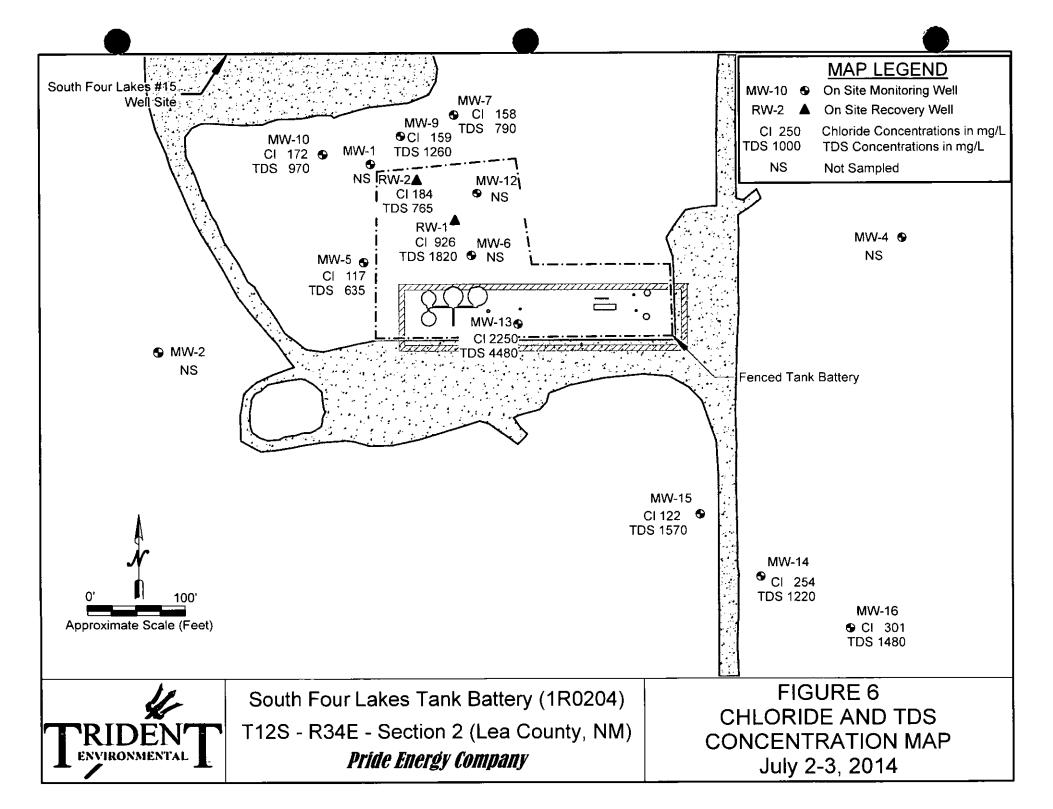
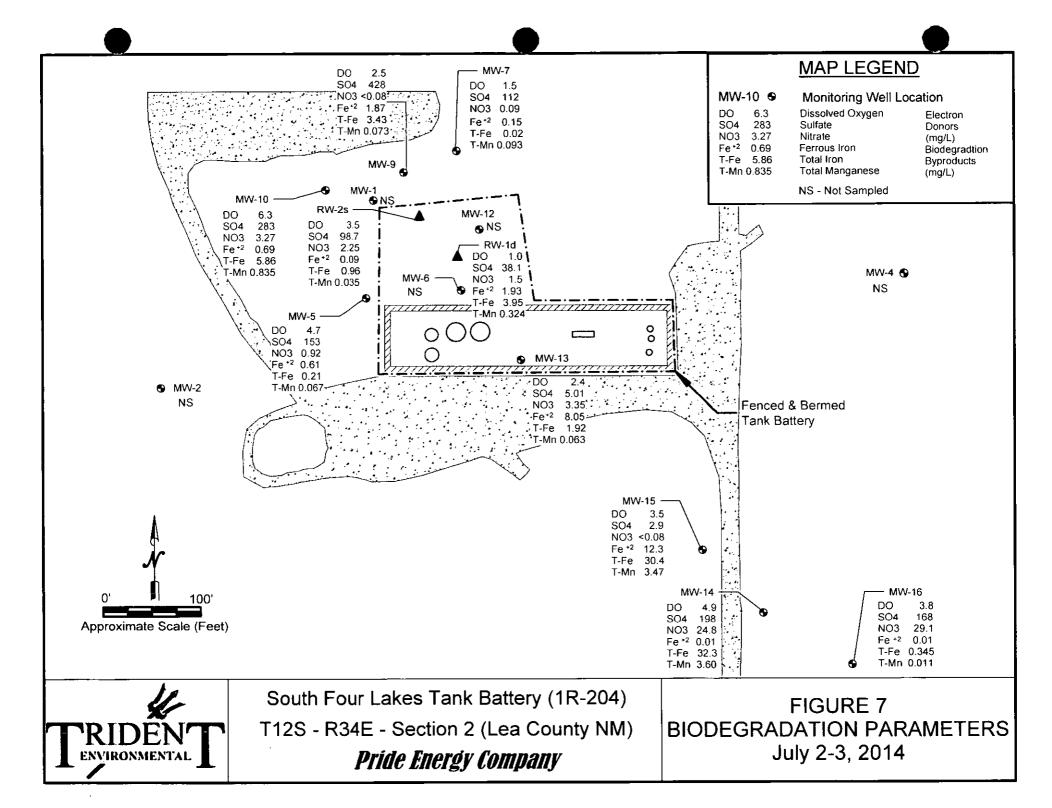





FIGURE 4 Groundwater Elevation Versus Time

Date

2014 Annual Groundwater Monitoring Report South Four Lakes Tank Battery (1R-204)

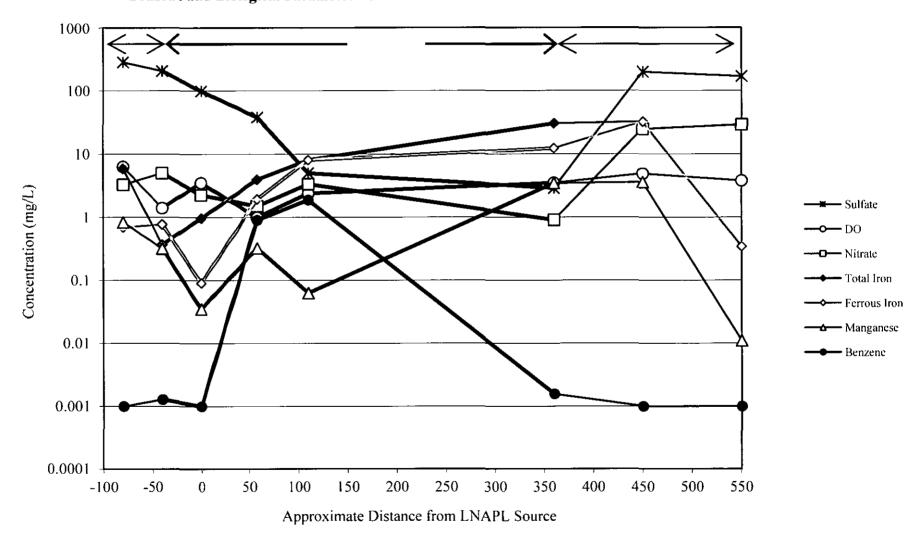
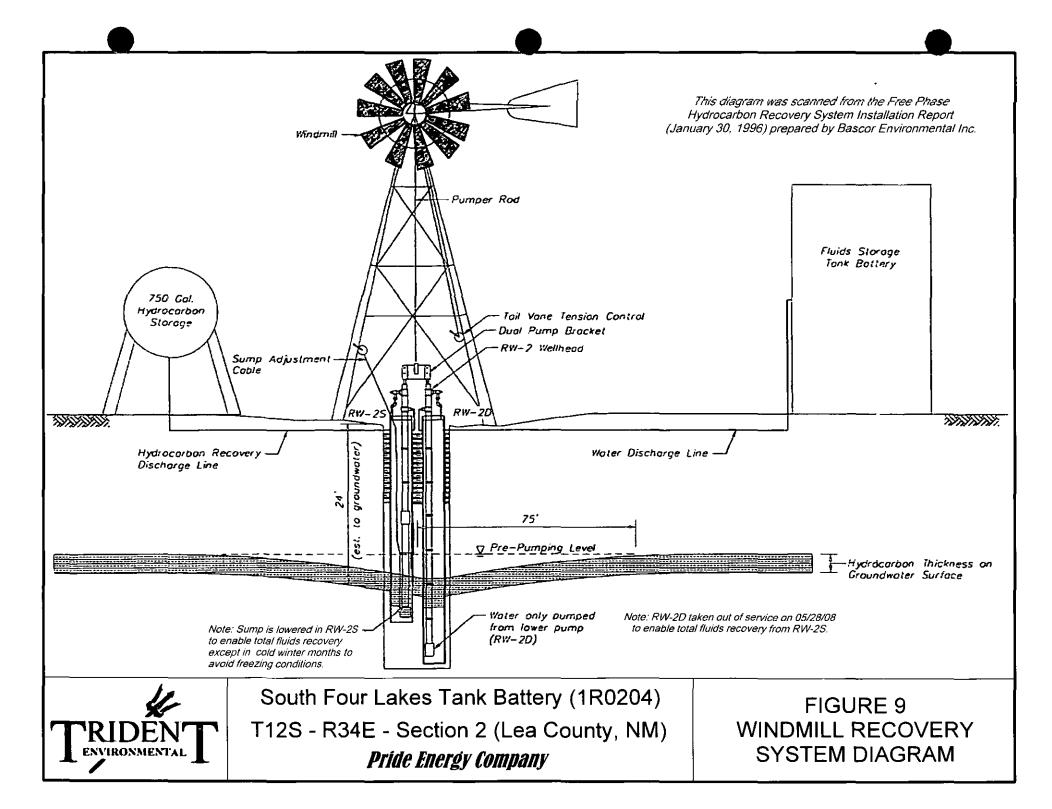
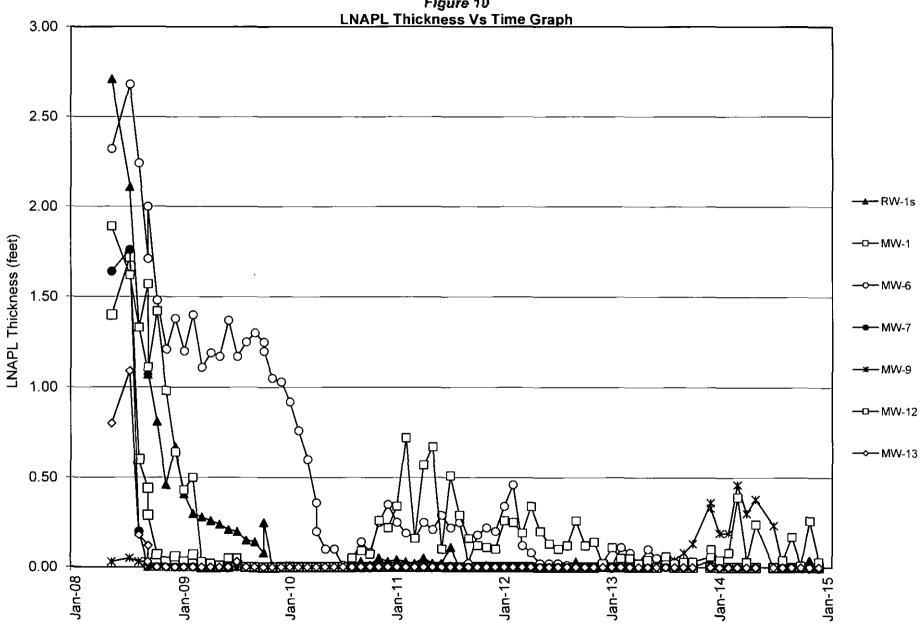
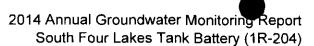
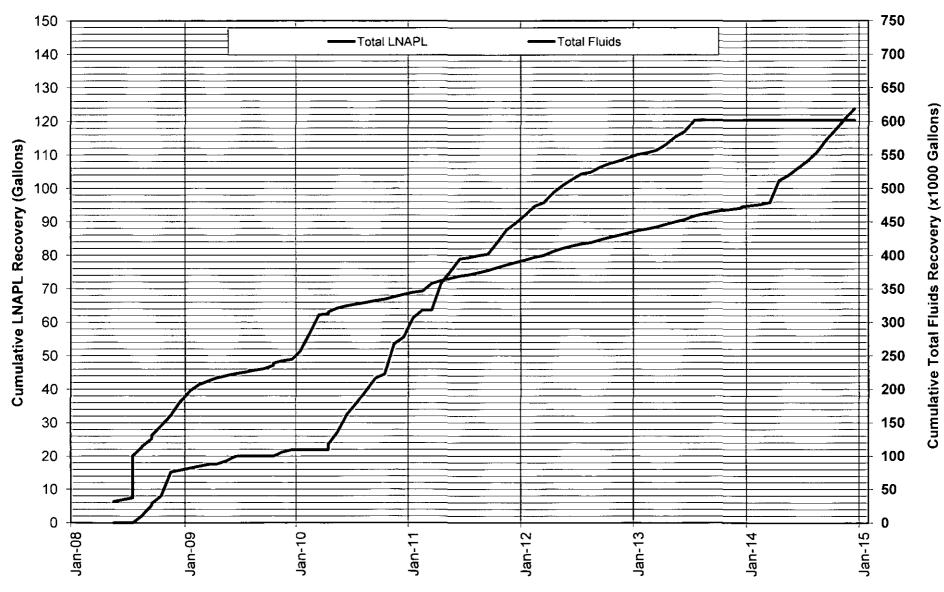



FIGURE 8 Benzene and Biological Parameters Concentrations Versus Distance from Source Area


Figure 10 LNAPL Thickness Vs Time Graph

ŧ.

2014 Annual Groundwater Monitoring Report South Four Lakes Tank Battery (1R-204)

Figure 11 Cumulative LNAPL and Total Fluids Recovery Vs Time Graph

Date

TABLES

Summary of Groundwater Elevations							
Monitoring Wall	Sample Date	Top of Casing	Depth to Groundwater				
Monitoring Well	Sample Date	Elevation (feet)	(feet BTOC)	(feet)	Elevation (feet AMSL)		
·····	01/17/95	4149.13	26.37	1.96	4124.34		
	10/10/95	4149.13	NM	NM	4124.04		
	01/04/96	4149.13	27.40	2.74	4123.94		
	04/16/96	4149.13	28.02	3.17	4123.67		
	07/09/96	4149.13	27.96	3.17	4123.73		
	10/15/96	4149.13	27.97	3.21	4123.75		
	12/03/97	4149.13	27.98	2.80	4123.41		
MW-1	03/13/08	4149.13	25.51	1.40	4124.75		
	05/18/09	4149.13	25.10	0.00	4124.03		
	05/26/10	4149.13	25.41	0.00	4123.72		
	05/17/11	4149.13	25.75	0.00	4123.38		
	06/19/12	4149.13	26.11	0.00	4123.02		
	06/12/13	4149.13	26.43	0.00	4122.70		
	07/02/14	4149.13	26.25	0.24	4123.07		
	01/04/95	4151.50	26.64	0.00	4124.86		
	01/18/95	4151.50	26.61	0.00	4124.89		
	10/10/95	4151.50	26.98	0.00	4124.52		
	01/04/96	4151.50	NM	NM	4124.44		
	04/16/96	4151.50	27.15	0.00	4124.35		
	07/09/96	4151.50	27.28	0.00	4124.22		
	10/15/96	4151.50	27.29	0.00	4124.21		
MW-2	12/03/97	4151.50	NM	NM	4124.29		
	03/13/08	4151.50	26.51	0.00	4124.99		
	05/18/09	4151.50	27.08	0.00	4124.42		
	05/26/10	4151.50	27.43	0.00	4124.07		
	05/17/11	4151.50	27.74	0.00	4123.76		
	06/19/12	4151.50	28.08	0.00	4123.42		
	06/12/13	4151.50	28.39	0.00	4123.11		
	07/02/14	4151.50	28.24	0.00	4123.26		
	01/18/95	4148.58	25.18	0.00	4123.40		
	10/10/95	4148.58	25.54	0.00	4123.04		
	01/04/96	4148.58	NM	NM	4122.98		
	04/16/96	4148.58	25.68	0.00	4122.90		
	07/09/96	4148.58	25.83	0.00	4122.75		
	10/15/96	4148.58	25.78	0.00	4122.80		
NA337 A	12/03/97	4148.58	26.02	0.00	4122.56		
MW-4	03/13/08	4148.58	24.88	0.00	4123.70		
	05/18/09	4148.58	25.51	0.00	4123.07		
	05/26/10	4148.58	25.81	0.00	4122.77		
	05/17/11	Å148.58	26.13	0.00	4122.45		
	06/19/12	4148.58	Dry	0.00	Dry		
	06/12/13	4148.58	Dry	0.00	Dry		
	07/02/14	4148.58	Dry	0.00	Dry		

 Table 1

 Summary of Groundwater Elevations

:

.

Summary of Groundwater Elevations Top of Casing Depth to Groundwater LNAPL Thickness Corrected Groundw								
Monitoring Well	Sample Date	Elevation (feet)	(feet BTOC)	(feet)	Elevation (feet AMSL)			
	01/10/00							
	01/18/95	4150.40	25.98	0.00	4124.42			
	10/10/95	4150.40	26.33	0.00	4124.07			
	01/04/96	4150.40	NM	NM	4123.97			
	04/16/96	4150.40	26.54	0.00	4123.86			
	07/09/96	4150.40	26.66	0.00	4123.74			
	10/15/96	4150.40	26.61	0.00	4123.79			
MW-5	12/03/97	4150.40	26.93	0.00	4123.47			
	03/13/08	4150.40	25.74	0.00	4124.66			
	05/18/09	4150.40	26.43	0.00	4123.97			
	05/26/10	4150.40	26.73	0.00	4123.67			
	05/17/11	4150.40	27.06	0.00	4123.34			
	06/19/12	4150.40	27.44	0.00	4122.96			
	06/12/13	4150.40	27.73	0.00	4122.67			
<u></u>	07/02/14	4150.40	27.43	0.00	4122.97			
	01/04/95	4149.90	28.88	3.68	4123.99			
	10/10/95	4149.90	NM	NM	4123.98			
	01/04/96	4149.90	29.53	4.46	4123.97			
	04/16/96	4149.90	30.04	4.43	4123.44			
	07/09/96	4149.90	30.04	4.52	4123.37			
	10/15/96	4149.90	30.18	4.56	4123.40			
MW-6	12/03/97	4149.90	NM	NM	4123.50			
IVI VV =0	03/13/08	4149.90	27.35	2.25	4124.37			
	05/18/09	4149.90	27.30	1.17	4123.54			
	05/26/10	4149.90	26.62	0.10	4123.36			
	05/17/11	4149.90	27.05	0.21	4123.02			
	06/19/12	4149.90	27.25	0.02	4122.67			
	06/12/13	4149.90	27.63	0.05	4122.31			
	07/02/14	4149.90	27.33	0.00	4122.57			
	01/18/95	4149.16	24.85	0.00	4124.31			
	10/10/95	4149.16	25.17	0.00	4123.99			
	01/04/96	4149.16	NM	NM	4123.88			
	04/16/96	4149.16	25.42	0.00	4123.74			
	07/09/96	4149.16	25.50	0.00	4123.66			
	10/15/96	4149.16	25.48	0.00	4123.68			
MW-7	12/03/97	4149.16	25.78	0.00	4123.38			
101 00 - 7	03/13/08	4149.16	25.87	1.62	4124.60			
	05/18/09	4149.16	25.23	0.00	4123.93			
	05/26/10	4149.16	25.56	0.00	4123.60			
	05/17/11	4149.16	25.88	0.00	4123.28			
	06/19/12	4149.16	26.27	0.00	4122.89			
	06/12/13	4149.16	26.55	0.00	4122.61			
	07/02/14	4149.16	26.15	0.00	4123.01			
··· = ··· ···	01/18/95	4148.81	24.66	0.00	4124.15			
MW-8	10/10/95	4148.81	24.66	0.00	4124.15			
			red to allow excavation a	1				

 Table 1

 Summary of Groundwater Elevations

	no Wall Somple Date							
Monitoria W-11	Sample Data	Top of Casing	Depth to Groundwater	LNAPL Thickness	Corrected Groundwater			
Monitoring Well	Sample Date	Elevation (feet)	(feet BTOC)	(feet)	Elevation (feet AMSL)			
	01/18/95	4149.63	25.16	0.00	4124.47			
	10/10/95	4149.63	25.52	0.00	4124.11			
	01/04/96		NM	NM	4123.96			
				0.00	4123.79			
					4123.79			
	j		J	0.00	4123.80			
	12/03/97	4149.63	26.14	0.00	4123.49			
MW-9	03/13/08	4149.63	24.91	0.03	4124.74			
	05/18/09	4149.63	25.61	0.00	4124.02			
	05/26/10	4149.63	25.93	0.00	4123.70			
	05/17/11	4149.63	26.25	0.00	4123.38			
	06/19/12	4149.63	26.63	0.00	4123.00			
	06/12/13	4149.63	26.92	0.00	4122.71			
	07/02/14	4149.63	26.55	0.00	4123.08			
<u></u> ,	01/18/95	4149.98	25.16	0.00	4124.82			
	10/10/95	4149.98	25.52	0.00	4124.46			
	01/04/96	4149.98	NM	NM	4124.21			
	04/16/96	4149.98	26.07	0.00	4123.91			
	07/09/96	4149.98	26.12	0.00	4123.86			
	10/15/96	4149.98	26.08	0.00	4123.90			
	12/03/97	4149.98	26.41	0.00	4123.57			
MW-10	03/13/08	4149.98	25.21	0.00	4124.77			
	05/18/09	4149.98	25.88	0.00	4124.10			
	05/26/10	4149.98	26.20	0.00	4123.78			
	05/17/11	4149.98	26.54	0.00	4123.44			
	06/19/12	4149.98	26.91	0.00	4123.07			
	06/12/13	4149.98	27.29	0.00	4122.69			
	07/02/14	4149.98	26.85	0.00	4123.13			
	01/04/95	4149.86	28.40	3.22	4124.06			
RW-11	01/17/95	4149.86	28.76	3.69	4124.08			
10.44-11	01/1//95		red to allow excavation a					
	01/04/95	4149.15	25.30	0.35	4124.13			
	01/04/95	4149.15	25.58	0.73	4124.16			
	10/10/95	4149.15	NM	NM	4123.84			
	01/04/96	4149.15	28.70	4.07	4123.74			
	04/16/96	4149.15	29.98	5.04	4123.24			
	07/09/96	4149.15	29.08	4.12	4123.40			
	10/15/96	4149.15	28.94	3.99	4123.43			
MW-12	12/03/97	4149.15	29.06	3.82	4123.17			
1*1 ¥¥ = 1 Z	03/13/08		29.00	1.83	4123.17			
		4149.15		0.01	4124.43			
	05/18/09	4149.15	25.41					
	05/26/10	4149.15	25.70	0.00	4123.45			
	05/17/11	4149.15	26.60	0.67	4123.09			
	06/19/12	4149.15	26.53	0.13	4122.72			
	06/12/13	4149.15	26.71	0.00	4122.44			
	07/02/14	4149.15	26.55	0.26	4122.81			

 Table 1

 Summary of Groundwater Elevations

			Groundwater Elevatio		
Monitoring Well	Sample Date	Top of Casing	Depth to Groundwater		Corrected Groundwater
		Elevation (feet)	(feet BTOC)	(feet)	Elevation (feet AMSL)
	01/18/95	4150.31	26.39	0.00	4123.92
	10/10/95	4150.31	26.76	0.00	4123.55
	01/04/96	4150.31	NM	NM	4123.34
	04/16/96	4150.31	27.22	0.00	4123.09
	07/09/96	4150.31	27.27	0.00	4123.04
	10/15/96	4150.31	27.20	0.00	4123.11
MW-13	12/03/97	4150.31	27.39	0.00	4122.92
WW-13	03/13/08	4150.31	26.81	0.75	4124.11
	05/18/09	4150.31	26.82	0.00	4123.49
	05/26/10	4150.31	27.11	0.00	4123.20
	05/17/11	4150.31	27.50	0.00	4122.81
	06/19/12	4150.31	27.88	0.00	4122.43
	06/12/13	4150.31	28.19	0.00	4122.12
	07/02/14	4150.31	27.86	0.00	4122.45
	10/11/95	4151.83	28.93	0.00	4122.90
	01/04/96	4151.83	NM	NM	4122.85
	04/16/96	4151.83	29.05	0.00	4122.78
	07/09/96	4151.83	29.23	0.00	4122.60
	10/15/96	4151.83	29.21	0.00	4122.62
	12/03/97	4151.83	29.42	0.00	4122.41
MW-14	03/13/08	4151.83	28.27	0.00	4123.56
	05/18/09	4151.83	28.94	0.00	4122.89
	05/26/10	4151.83	29.26	0.00	4122.57
	05/17/11	4151.83	29.60	0.00	4122.23
	06/19/12	4151.83	29.98	0.00	4121.85
	06/12/13	4151.83	30.27	0.00	4121.56
	07/02/14	4151.83	30.06	0.00	4121.77
	10/11/95	4150.63	27.47	0.00	4123.16
	01/04/96	4150.63	NM	NM	4123.09
	04/16/96	4150.63	27.62	0.00	4123.01
	07/09/96	4150.63	27.78	0.00	4122.85
	10/15/96	4150.63	27.75	0.00	4122.88
	12/03/97	4150.63	28.01	0.00	4122.62
MW-15	03/13/08	4150.63	26.84	0.00	4123.79
	05/18/09	4150.63	27.54	0.00	4123.09
	05/26/10	4150.63	27.82	0.00	4122.81
	05/17/11	4150.63	28.17	0.00	4122.46
	06/19/12	4150.63	28.58	0.00	4122.05
	06/12/13	4150.63	28.87	0.00	4121.76
	07/02/14	4150.63	28.59	0.00	4122.04

 Table 1

 Summary of Groundwater Elevations

			(feet BTOC) (feet) Elevation (feet AMSL) 28.59 0.00 4122.75 NM NM 4122.68 28.74 0.00 4122.60 28.92 0.00 4122.42 28.89 0.00 4122.42 28.89 0.00 4122.42 28.89 0.00 4122.42 28.89 0.00 4122.42 28.89 0.00 4122.42 28.89 0.00 4122.42 28.89 0.00 4122.42 28.93 0.00 4122.72 28.93 0.00 4122.08 29.26 0.00 4122.08 29.65 0.00 4121.69 29.93 0.00 4121.69 29.75 0.00 4121.59 DNA 0.15 DNA DNA 3.58 DNA DNA 4.67 DNA DNA 4.67 DNA DNA 2.71 DNA			
Monitoring Well	Sample Date	Top of Casing				
Monitoring wen	Sumple Dute	Elevation (feet)	(feet BTOC)	(feet)	Elevation (feet AMSL)	
	10/11/95	4151.34	28.59	0.00	4122.75	
	01/04/96	4151.34	NM	NM	4122.68	
	04/16/96	4151.34	28.74	0.00	4122.60	
	07/09/96	4151.34	28.92	0.00	4122.42	
	10/15/96	4151.34	28.89	0.00	4122.45	
	12/03/97	4151.34	29.10	0.00	4122.24	
MW-16	03/13/08	4151.34	27.94	0.00	4123.40	
	05/18/09	4151.34	28.62	0.00	4122.72	
	05/26/10	4151.34	28.93	0.00	4122.41	
	05/17/11	4151.34	29.26	0.00	4122.08	
	06/19/12	4151.34	29.65	0.00	4121.69	
	06/12/13	4151.34	29.93	0.00	4121.41	
	07/02/14	4151.34	29.75	0.00	4121.59	
	01/04/96	NM	DNA	0.15	DNA	
	04/16/96	NM	DNA		DNA	
	07/09/96	NM	DNA	4.72	DNA	
	10/15/96	NM	DNA	4.67	DNA	
	12/03/97	NM	DNA	4.26	DNA	
RW-1s	03/13/08	NM	DNA	2.71	DNA	
K W-15	05/18/09	NM	DNA	0.24	DNA	
	05/26/10	NM	24.99	0.00	DNA	
	05/17/11	NM	25.37	0.02	DNA	
	06/19/12	NM	25.71	0.00	DNA	
	06/12/13	NM	26.13	0.00	DNA	
	07/02/14	NM	25.92	0.00	DNA	
	01/04/96	NM	DNA	3.50	DNA	
	03/13/08	NM	NM	1.77	DNA	
	05/18/09	NM	24.97	0.24	DNA	
RW-2s	05/26/10	NM	25.15	0.00	DNA	
r w-25	05/17/11	NM	NM	NM	DNA	
	06/19/12	NM	NM	NM	DNA	
	06/12/13	NM	NM	NM	DNA	
	07/02/14	NM	26.08	0.20	DNA	

 Table 1

 Summary of Groundwater Elevations

NM = Not Measured: DNA - Data Not Available

AMSL - Above Mean Sea Level: BTOC - Below Top of Casing, LNAPL - Light Non-Aqueous Phased Liquids

Gauging data, laboratory results, and elevations for MW-1 through MW-16 obtained from previously published reports submitted by Phillips Petrleum Co.

Table 2
Summary of Regulated Constituent Concentrations

	Summary of Regulated Constituent Concentrations							
Monitoring	Sample	LNAPL	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS
Well	Date	Thickness (feet)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	Oct-90	0.00	<0.010	0.039	0.100	0.390	NA	NA
	01/04/96	2.74	0.260	0.730	0.450	2.72	120	680
	04/16/96	3.17	0.051	0.270	0.340	2.19	150	750
	07/09/96	3.17	NA	NA	NA	NA	160	800
	10/15/96	3.21	NA	NA	NA	NA	170	1,300
MW-1	12/03/97	2.80	NA	NA	NA	NA	100	650
1~1 ~ 1	05/19/09	0.00	0.01	0.009	0.156	0.209	168	792
	05/26/10	0.00	0.002	0.004	0.036	0.045	144	594
	05/17/11	0.00	<0.005	<0.01	0.153	0.105	316	1,000
	06/19/12	0.00	0.005	0.012	0.170	0.023	177	570
	06/13/13	0.00	0.001	0.004	0.076	0.089	117	635
	07/03/14	0.24	NS	NS	NS	NS	NS	NS
	Oct-90	0.00	< 0.001	< 0.001	< 0.001	< 0.001	NA	NA
	01/04/95	0.00	NS	NS	NS	NS	NS	NS
	01/18/95	0.00	<0.001	<0.001	< 0.001	<0.001	109	760
	10/10/95	0.00	NS	NS	NS	NS	NS	NS
MW-2	01/04/96	NM	< 0.001	<0.001	< 0.001	<0.001	80	680
IVI W-2	04/16/96	0.00	< 0.001	<0.001	<0.001	< 0.001	80	700
	07/09/96	0.00	< 0.001	<0.001	<0.001	<0.001	84	680
	10/15/96	0.00	< 0.001	<0.001	<0.001	<0.001	79	680
	12/03/97	NM			ved request to d	liscontinue a	innual samp	ling.
	03/13/08	0.00	< 0.001	< 0.002	<0.001	< 0.003	116	1,020
	Oct-90	0.00	<0.001	<0.001	<0.001	<0.001	NA	NA
	01/18/95	0.00	< 0.001	<0.001	< 0.001	<0.001	790	1,880
	10/10/95	0.00	NS	NS	NS	NS	NS	NS
	01/04/96	NM	<0.001	<0.001	<0.001	<0.001	460	1,300
MW-4	04/16/96	0.00	< 0.001	<0.001	<0.001	0.001	450	1,300
	07/09/96	0.00	< 0.001	<0.001	< 0.001	<0.001	460	1,200
	10/15/96	0.00	< 0.001	<0.001	<0.001	<0.001	460	1,200
	12/03/97	0.00			oved request to d			
	03/13/08	0.00	<0.001	< 0.002	<0.001	< 0.003	243	868
	01/18/95	0.00	< 0.001	<0.001	<0.001	<0.001	49	497
Í	10/10/95	0.00	NS	NS	NS	NS	NS	NS
	01/04/96	NM	< 0.001	< 0.001	< 0.001	< 0.001	41	500
	04/16/96	0.00	< 0.001	< 0.001	<0.001	<0.001	40	490
	07/09/96	0.00	< 0.001	< 0.001	<0.001	< 0.001	38	470
	10/15/96	0.00	<0.001	< 0.001	< 0.001	<0.001	36	500
MW-5	12/03/97	0.00	< 0.001	<0.001	<0.001	<0.001	37	450
	03/13/08	0.00	0.003	0.021	0.081	0.466	173	724
	05/18/09	0.00	0.002	0.007	0.025	0.065	364	1,100
	05/25/10	0.00	0.448	<0.04	0.121	0.776	372	1,180
	05/17/11	0.00	<0.005	< 0.01	< 0.005	< 0.01	547	1,170
	06/19/12	0.00	0.003	0.010	0.027	0.030	389	1,220
	06/13/13	0.00	<0.001	0.001	0.002	0.003	372	1,220
	07/03/14	0.00	<0.001	0.003	0.007	0.026	117	635

Table 2
Summary of Regulated Constituent Concentrations

	Summary of Regulated Constituent Concentrations								
Monitoring	Sample	LNAPL	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS	
Well	Date	Thickness (feet)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
	01/04/95	3.68	NS	NS	NS	NS	NS	NS	
	10/10/95	NM	NS	NS	NS	NS	NS	NS	
	01/04/96	4.08	9.10	11.0	0.93	5.30	1,400	3,700	
	04/16/96	4.43	13.0	19.0	5.00	24.5	1,200	2,600	
	07/09/96	4.52	NA	NA	NA	NA	1,100	2,500	
	10/15/96	4.56	NA	NA	NA	NA	890	2,500	
MW-6	12/03/97	NM	NA	NA	NA	NA	720	1,700	
141 44 -0	03/13/08	2.25	NS	NS	NS	NS	NS	NS	
	05/18/09	1.17	NS	NS	NS	NS	NS	NS	
	05/25/10	0.10	NS	NS	NS	NS	NS	NS	
	05/17/11	0.21	NS	NS	NS	NS	NS	NS	
	06/19/12	0.02	NS	NS	NS	NS	NS	NS	
	06/13/13	0.05	NS	NS	NS	NS	NS	NS	
	07/03/14	0.00	NS	NS	NS	NS	NS	NS	
	01/18/95	0.00	0.013	<0.001	0.026	<0.001	255	1,190	
	10/10/95	0.00	NS	NS	NS	NS	NS	NS	
	01/04/96	NM	0.006	<0.001	0.013	< 0.001	210	900	
	04/16/96	0.00	0.004	< 0.001	0.011	< 0.001	180	920	
	07/09/96	0.00	0.003	<0.001	0.010	< 0.001	110	730	
	10/15/96	0.00	0.005	<0.001	0.015	< 0.001	120	720	
MW-7	12/03/97	0.00	0.002	<0.001	<0.001	<0.001	69	620	
101 00 5 /	03/13/08	1.62	NS	NS	NS	NS	NS	NS	
	05/19/09	0.00	0.005	0.015	0.065	0.137	332	1,330	
	05/25/10	0.00	0.022	0.112	0.050	0.083	362	1,240	
	05/17/11	0.00	< 0.005	<0.01	0.008	<0.01	189	952	
	06/19/12	0.00	0.003	0.006	0.032	0.004	332	1,510	
	06/13/13	0.00	<0.001	0.001	0.002	0.002	192	830	
	07/03/14	0.00	0.003	0.006	0.054	0.044	158	790	
	01/18/95	0.00	0.740	<0.001	0.100	0.330	563	1,460	
MW-8	10/10/95	0.00	NS	NS	NS	NS	NS	NS	
	Nov-95				excavation and s				
	01/18/95	0.00	<0.001	<0.001	< 0.001	<0.001	58	636	
	10/10/95	0.00	<0.001	<0.001	<0.001	<0.001	NA	NA	
	01/04/96	NM	<0.001	<0.001	<0.001	<0.001	54	620	
	04/16/96	0.00	<0.001	<0.001	< 0.001	<0.001	58	630	
	07/09/96	DNA	<0.001	<0.001	<0.001	<0.001	57	640	
	10/15/96	DNA	<0.001	<0.001	< 0.001	<0.001	58	620	
MW-9	12/03/97	0.00	<0.001	<0.001	< 0.001	<0.001	54	630	
111 11 *7	03/13/08	0.03	NS	NS	NS	NS	NS	NS	
	05/19/09	0.00	<0.001	0.005	0.015	0.089	76	628	
	05/25/10	0.00	<0.001	<0.002	0.005	0.014	149	630	
	05/17/11	0.00	<0.005	<0.01	0.002	0.008	134	666	
	06/19/12	0.00	<0.001	<0.001	<0.001	<0.003	412	1,220	
	06/13/13	0.00	<0.001	0.001	<0.001	< 0.003	329	1,360	
	07/03/14	0.00	<0.001	< 0.001	< 0.001	< 0.003	159	1,260	

Table 2
Summary of Regulated Constituent Concentrations

Monitoring	Sample	LNAPL	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS
Well	Date	Thickness (feet)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		(mg/L)
	01/18/95	0.00	< 0.001	< 0.001	<0.001	< 0.001		1,190
	10/10/95	0.00	NS	NS	NS	NS		NS
	01/04/96	NM	< 0.001	< 0.001	<0.001	< 0.001		1,100
	04/16/96	0.00	< 0.001	< 0.001	< 0.001	< 0.001		970
	07/09/96	DNA	< 0.001	< 0.001	< 0.001	< 0.001		1,000
	10/15/96	DNA	<0.001	<0.001	<0.001	< 0.001		000,1
	12/03/97	0.00	< 0.001	<0.001	<0.001	< 0.001	140	720
MW-10	03/13/08	0.00	< 0.001	<0.002	< 0.001	< 0.003	377	1,362
	05/18/09	0.00	< 0.001	<0.001	< 0.001	<0.003	320	1,100
	05/25/10	0.00	< 0.001	< 0.002	< 0.001	< 0.002	287	870
	05/17/11	0.00	<0.005	<0.01	<0.005	<0.01	471	1,510
	06/19/12	0.00	<0.001	<0.001	< 0.001	< 0.003	312	1,240
	06/13/13	0.00	< 0.001	< 0.001	< 0.001	0.006	213	1,120
	07/03/14	0.00	< 0.001	<0.001	< 0.001	< 0.003	172	970
	01/04/95	3.22	NS	NS	NS	NS	NS	NS
RW-11	01/17/95	3.69	NS	NS	NS	NS	NS	NS
	Nov-95		Well remove	ed to allow (excavation and s	olidification	of pit.	
	01/04/95	0.35	NS	NS	NS	NS	NS	NS
	01/17/95	0.73	NS	NS	NS	NS		NS
	10/10/95	NM	NS	NS	NS	NS		NS
	01/04/96	4.07	7.20	6.10	1.50	7.40		3,600
	04/16/96	5.04	11.0	11.0	1.10	6.50		4,300
	07/09/96	4.12	NA	NA	NA	NA		4,200
	10/15/96	3.99	NA	NA	NA	NA		4,300
MW-12	12/03/97	3.82	NA	NA	NA	NA		1,400
	03/13/08	1.83	NS	NS	NS	NS		NS
	05/18/09	0.01	NS	NS	NS	NS		NS
	05/26/10	0.00	1.10	< 0.04	0.257	0.349		1,120
	05/17/11	0.67	NS	NS	NS	NS		NS
	06/19/12	0.13	NS	NS	NS NC	NS		NS
	06/13/13	0.00 0.26	NS	NS NS	NS NS	NS		NS NS
	07/03/14	·	NS 2.2	<0.001	0.36	1.60		1,640
	01/18/95 01/04/96	0.00 NM	2.2	0.022	0.330	1.60	377 320 287 471 312 213 172 NS NS of pit.	1,640
	01/04/96	0.00	2.4 2.4	0.022	0.330	1.55	1	1,500
	07/09/96	0.00	2.4	0.014	0.430	1.82	1	1,500
	10/15/96	0.00	2.1	0.097	0.350	1.71		1,300
	12/03/97	0.00	0.92	0.140	0.160	0.570	/L) (mg/L) 001 359 S NS 001 260 001 260 001 260 001 260 001 260 001 260 001 260 001 260 001 260 001 140 003 377 003 320 002 287 01 471 003 312 06 213 003 172 S NS S	1,500
MW-13	05/19/09	0.00	1.00	0.015	0.414	1.60		3,860
	05/26/10	0.00	0.247	<0.013	0.125	0.400		2,720
	05/18/11	0.00	0.133	0.003	0.086	0.223		3,120
	06/19/12	0.00	0.133	< 0.05	0.160	0.242		4,450
	06/13/13	0.00	0.405	0.020	0.205	0.497		5,720
	07/03/14	0.00	1.890	0.020	0.269	0.700		4,480

 Table 2

 Summary of Regulated Constituent Concentrations

Monitoring	Sample	LNAPL	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS
Well	Date	Thickness (feet)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	10/11/95	0.00	<0.005	< 0.005	< 0.005	< 0.005	NA	NA
	01/04/96	NM	< 0.001	< 0.001	< 0.001	< 0.001	87	900
	04/16/96	0.00	< 0.001	< 0.001	< 0.001	< 0.001	100	920
	07/09/96	0.00	< 0.001	< 0.001	< 0.001	< 0.001	110	1,000
	10/15/96	0.00	< 0.001	< 0.001	< 0.001	< 0.001	120	930
	12/03/97	0.00	< 0.001	<0.001	< 0.001	< 0.001	130	900
MW-14	03/13/08	0.00	<0.001	< 0.002	<0.001	< 0.003	361	1,170
	05/18/09	0.00	< 0.001	< 0.001	< 0.001	< 0.003	304	1,250
	05/25/10	0.00	0.002	0.002	0.001	0.003	319	1,280
	05/17/11	0.00	0.002	< 0.002	< 0.001	0.002	299	1,420
	06/19/12	0.00	<0.001	< 0.001	<0.001	< 0.003	290	1,370
	06/13/13	0.00	<0.001	<0.001	0.001	< 0.003	302	1,380
	07/03/14	0.00	< 0.001	< 0.002	<0.001	< 0.003	254	1,220
	10/11/95	0.00	0.087	1.10	0.770	2.07	NA	NA
	01/04/96	NM	0.096	0.870	0.880	2.40	430	1,200
	04/16/96	0.00	0.052	0.550	0.690	1.92	410	1,200
	07/09/96	0.00	0.035	0.610	0.850	2.15	510	1,400
	10/15/96	0.00	< 0.001	0.420	0.610	1.63	580	1,400
	12/03/97	0.00	0.091	1.10	0.860	2.26	490	1,400
MW-15	03/13/08	0.00	0.020	0.036	0.301	0.752	1,360	3,140
	05/18/09	0.00	0.019	0.033	0.364	0.747	960	2,250
	05/25/10	0.00	0.008	0.044	0.406	0.993	1,064	2,090
	05/17/11	0.00	0.005	0.019	0.322	0.757	1,010	1,840
	06/19/12	0.00	0.006	0.030	0.205	0.542	770	1,960
	06/13/13	0.00	0.008	0.030	0.398	0.887	1,040	1,950
	07/03/14	0.00	0.002	0.049	0.432	1.141	122	1,570
	10/11/95	0.00	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA
	01/04/96	NM	< 0.001	< 0.001	<0.001	< 0.001	66	900
	04/16/96	0.00	< 0.001	<0.001	< 0.001	< 0.001	68	910
	07/09/96	0.00	< 0.001	< 0.001	< 0.001	< 0.001	93	910
	10/15/96	0.00	< 0.001	< 0.001	<0.001	< 0.001	73	870
	12/03/97	0.00	< 0.001	< 0.001	<0.001	< 0.001	66	850
MW-16	03/13/08	0.00	<0.001	< 0.002	0.002	0.006	293	1,400
	05/18/09	0.00	< 0.001	<0.001	<0.001	< 0.003	336	1,270
	05/25/10	0.00	< 0.001	<0.002	<0.001	0.003	404	1,290
	05/17/11	0.00	< 0.005	<0.01	<0.005	< 0.01	410	1,350
	06/19/12	0.00	< 0.001	< 0.001	< 0.001	< 0.003	799	1,700
	06/13/13	0.00	< 0.001	< 0.001	<0.001	< 0.003	459	1,750
	07/03/14	0.00	< 0.001	< 0.001	< 0.001	< 0.003	301	1,480

· · · · -					int concentration		· · · · · · · · · · · · · · · · · · ·	
Monitoring Well	Sample Date	LNAPL Thickness (feet)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Chloride (mg/L)	TDS (mg/L)
RW-1s	05/26/10	0.00	<0.001	< 0.002	< 0.001	< 0.002	1,436	2,760
	05/18/11	0.00	3.09	0.003	0.084	0.006	2,010	3,240
DW 14	06/19/12	0.00	0.916	< 0.02	0.089	<0.06	1,700	2,430
RW-1d	06/13/13	0.00	0.872	0.007	0.441	2.58	1,700	2,430
	07/03/14	0.00	0.904	< 0.002	0.094	< 0.003	926	1,820
	05/18/09	0.00	0.814	0.107	0.345	2.56	720	1,800
	05/26/10	NM	1.03	<1.00	1.32	5.74	718	1,470
RW-2s	05/18/11	NM	1.22	0.270	0.526	3.05	452	2,510
K W-25	06/19/12	NM	1.43	< 0.02	0.597	3.15	348	710
	06/13/13	NM	1.98	0.031	0.492	3.36	323	1,120
	07/03/14	NM	NS	NS	NS	NS	NS	NS
RW-2d	07/03/14	0.00	< 0.001	< 0.002	< 0.001	< 0.003	184	765
		WQCC Standards	0.01	0.62	0.62	0.75	250	1,000

 Table 2

 Summary of Regulated Constituent Concentrations

DNA = Data Not Available, NA = Not Analyzed, NM = Not Measured, NS = Not Sampled

Total Dissolved Soilds (TDS), chloride, sulfate, and BTEX concentrations listed in milligrams per liter (mg/L)

Values in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards.

		<u></u>	Electro	on Accep	tors	Biodegradation Byproducts			
Monitoring Well	Sample Date	Well Position	Dissolved Oxygen (mg/L)	Sulfate (mg/L)	Nitrate (mg/L)	Ferrous Iron (mg/L)	Total Iron (mg/L)	Total Manganese (mg/L)	
	01/04/96	In Plume	1.50	120	1.00	NA	0.14	0.400	
	04/16/96	In Plume	2.50	160	1.60	NA	0.08	0.320	
	07/09/96	In Plume	1.19	160	1.60	NA	0.07	0.360	
	10/15/96	In Plume	<0.10	130	1.00	NA	0.06	0.350	
	12/03/97	In Plume	NA	120	0.67	NA	0.10	0.490	
MW-1	05/19/09	In Plume	0.3	110	<0.1	0.79	1.34	0.431	
	05/26/10	Upgradient	1.5	97.7	0.9	0.16	4.04	0.680	
	05/17/11	Upgradient	1.0	66.2	1.0	1.97	3.74	0.694	
	06/20/12	Upgradient	2.2	112	1.88	0.14	0.90	0.310	
	06/13/13	Upgradient	1.4	206	5.00	0.77	0.37	0.320	
	07/03/15	In Plume	NS	NS	NS	NS	NS	NS	
	01/18/95	Crossgradient	NA	145	NA	NA	2.0	0.380	
	01/04/96	Crossgradient	1.60	120	16.0	NA	<0.001	0.290	
	04/16/96	Crossgradient	3.44	120	17.0	NA	0.04	0.320	
MW-2	07/09/96	Crossgradient	3.44	120	17.0	NA	0.03	0.320	
	10/15/96	Crossgradient	1.83	130	16.0	NA	< 0.001	0.280	
	03/13/08	Crossgradient	3.6	151	0.87	0.07	<0.20	0.602	
	05/18/09	Crossgradient	2.1	205	24.4	0.75	0.17	0.040	
	01/18/95	Crossgradient	NA	121	NA	NA	2.20	0.090	
	01/04/96	Crossgradient	2.65	78	<0.05	NA	0.52	0.070	
	04/16/96	Crossgradient	2.00	60	<0.05	NA	1.00	0.120	
MW-4	07/09/96	Crossgradient	1.90	43	0.06	NA	1.60	0.160	
	10/15/96	Crossgradient	NA	36	0.06	NA	0.97	0.170	
	03/13/08	Crossgradient	2.80	49.7	0.43	0.97	2.98	0.305	
	05/18/09	Crossgradient	0.50	110	<0.10	1.69	9.94	0.228	
	01/18/95	Crossgradient	NA	109	NA	NA	13.2	0.051	
	01/04/96	Crossgradient	5.27	110	1.30	NA	<0.025	< 0.01	
	04/16/96	Crossgradient	5.38	110	1.20	NA	< 0.025	< 0.01	
	07/09/96	Crossgradient	NA	100	0.91	NA NA	<0.025	< 0.01	
	10/15/96	Crossgradient	6.51	110	1.10	NA	<0.025	< 0.01	
	12/03/97	Crossgradient	NA	88	0.96	NA	0.028	< 0.01	
MW-5	03/13/08	Crossgradient	4.8	75.2	1.11	0.29	4.73	0.266	
	05/18/09	Crossgradient	3.8	92.4	<0.1	1.41	2.43	0.075	
	05/25/10	Crossgradient / In Plume	5.3	211	1.3	1.73	8.35	0.220	
	05/17/11	Crossgradient	4.7	215	3.2	3.21	12.7	0.197	
	06/20/12	Crossgradient	5.4	271	8.86	1.33	0.45	0.160	
}	06/12/13	Crossgradient	4.2	206	5.00	1.00	2.80	0.200	
1	07/03/14	Crossgradient	4.7	153	1.67	0.61	0.005	0.027	

			Electro	on Accep	otors	Biodegradation Byproducts			
Monitoring Well	Sample Date	Well Position	Dissolved Oxygen (mg/L)	Sulfate (mg/L)	Nitrate (mg/L)	Ferrous Iron (mg/L)	Total Iron (mg/L)	Total Manganese (mg/L)	
	01/04/96	In Plume	1.98	46	NA	NA	3.20	1.10	
	04/16/96	In Plume	<0.10	56	0.73	NA	2.20	1.00	
MW-6	07/09/96	In Plume	1.67	40	0.48	NA	1.90	0.850	
	10/15/96	In Plume	<0.10	43	0.29	NA	1.40	0.720	
	12/03/97	In Plume	NA	21	<0.05	NA	< 0.025	0.790	
	01/18/95	In Plume	NA	222	NA	NA	15.6	0.180	
	01/04/96	Upgradient	2.06	170	<0.05	NA	0.67	0.100	
	04/16/96	Upgradient	2.82	170	< 0.05	NA	0.77	0.110	
	07/09/96	Upgradient	3.37	170	< 0.05	NA	0.46	0.080	
	10/15/96	Upgradient	0.76	180	<0.05	NA	0.40	0.070	
	12/03/97	Upgradient	2.08	140	< 0.05	NA	0.34	0.078	
MW-7	03/13/08	In Plume	NS	NS	NS	NS	NS	NS	
	05/19/09	Upgradient	0.3	283	<0.1	0.53	0.91	0.171	
	05/25/10	In Plume	2.7	185	<0.1	2.50	14.0	0.530	
	05/17/11	Upgradient	1.2	86.6	0.9	1.37	3.26	0.137	
	06/20/12	Upgradient	1.6	215	NA	1.07	0.37	0.099	
	06/12/13	Upgradient	1.1	191	0.92	2.08	0.21	0.067	
	07/03/14	Upgradient	1.5	112	0.09	0.15	0.02	0.093	
	01/18/95	Upgradient	NA	192	NA	NA	17.6	0.020	
	01/04/96	Upgradient	5.98	180	0.59	NA	<0.025	<0.01	
	04/16/96	Upgradient	7.03	190	0.56	NA	0.04	< 0.01	
	07/09/96	Upgradient	6.30	180	0.65	NA	< 0.025	<0.01	
Í	10/15/96	Upgradient	6.30	190	0.70	NA	<0.025	< 0.01	
	12/03/97	Upgradient	NA	200	0.61	NA	<0.025	<0.01	
MW-9	03/13/08	In Plume	NS	NS	NS	NS	NS	NS	
	05/19/09	Upgradient	0.7	150	<0.1	0.39	0.72	0.230	
	05/25/10	Upgradient	2.3	165	<0.1	0.81	0.80	0.600	
	05/17/11	Upgradient	3.0	184	0.3	0.01	0.53	0.366	
	06/20/12	Upgradient	2.8	125	3.14	0,22	0.31	0.310	
	06/12/13	Upgradient	1.8	237	0.78	1,23	0.09	0.140	
	07/03/14	Upgradient	2.5	428	<0.08	1.87	3.43	0.073	

	<u> </u>		Electro	on Accep	otors	Biodegradation Byproducts			
Monitoring Well	Sample Date	Well Position	Dissolved Oxygen (mg/L)	Sulfate (mg/L)	Nitrate (mg/L)	Ferrous Iron (mg/L)	Total Iron (mg/L)	Total Manganese (mg/L)	
	01/18/95	Upgradient	NA	176	NA	NA	19.9	0.093	
	01/04/96	Upgradient	4.80	160	4.80	NA	<0.025	<0.01	
	04/16/96	Upgradient	4.57	160	4.10	NA	<0.025	<0.01	
	07/09/96	Upgradient	4.58	170	3.70	NA	<0.025	<0.01	
	10/15/96	Upgradient	4.10	180	3.90	NA	<0.025	0.020	
	12/03/97	Upgradient	3.83	150	2.00	NA	<0.025	<0.01	
MW-10	03/13/08	Upgradient	6.5	154	2.80	0.01	0.58	0.067	
	05/18/09	Upgradient	7.8	197	2.10	1.49	7.81	0.109	
	05/25/10	Upgradient	7.2	138	0.7	0.15	0.70	<0.1	
	05/17/11	Upgradient	4.7	200	4.0	2.49	22.4	0.278	
	06/20/12	Upgradient	5.8	332	8.46	1.50	0.13	0.008	
	06/12/13	Upgradient	5.0	291	3.44	0.69	<1.7	<0.17	
	07/03/14	Upgradient	6.3	283	3.27	2.00	5.86	0.835	
	01/04/96	In Plume	0.81	0.86	< 0.05	NA	2.80	0.850	
	04/16/96	In Plume	1.32	<0.025	<0.05	NA	5.60	1.60	
MW-12	07/09/96	In Plume	1.35	< 0.025	<0.05	NA	5.20	1.30	
IVI W-12	10/15/96	In Plume	<0.10	0.37	<0.05	NA	0.04	1.30	
	12/03/97	In Plume	NA	4.30	<0.05	NA	0.27	0.620	
	05/25/10	In Plume	1.4	64.1	1.90	2.02	6.64	0.850	
	01/18/95	Downgradient / In Plume	NA	20.20	NA	NA	38.2	0.640	
	01/04/96	Downgradient / In Plume	1.66	4.50	0.07	NA	4.30	1.90	
	04/16/96	Downgradient / In Plume	1.19	2.30	<0.05	NA	4.00	1.90	
	07/09/96	Downgradient / In Plume	1.49	2.70	<0.05	NA	4.00	1.90	
	10/15/96	Downgradient / In Plume	0.85	2.80	<0.05	NA	4.40	2.10	
	12/03/97	Downgradient / In Plume	2.22	11.0	<0.05	NA	4.30	2.20	
MW-13	03/13/08	Downgradient / In Plume	NS	NS	NS	NS	NS	NS	
	05/19/09	Downgradient / In Plume	2.4	<10	0.420	12.5	29.9	4.62	
	05/26/10	Downgradient / In Plume	1.7	<25	<0.1	8.8	26.6	30.5	
	05/17/11	Downgradient / In Plume	1.5	59.9	0.400	6.36	28.0	2.44	
	06/20/12	Downgradient / In Plume	2.6	60.0	5.45	4.74	29.0	3.30	
[06/12/13	Downgradient / In Plume	2.1	17.2	0.705	19.3	13.0	4.00	
	07/03/14	Downgradient / In Plume	2.4	5.01	3.35	8.05	1.92	0.063	

			Electro	on Accep	tors	Biodegr	adation	Byproducts
Monitoring Well	Sample Date	Well Position	Dissolved Oxygen (mg/L)	Sulfate (mg/L)	Nitrate (mg/L)	Ferrous Iron (mg/L)	Total Iron (mg/L)	Total Manganese (mg/L)
	01/04/96	Downgradient	5.7	230	0.38	NA	0.03	0.010
	Date Well Point 01/04/96 Downgra 04/16/96 Downgra 07/09/96 Downgra 07/09/96 Downgra 10/15/96 Downgra 10/15/96 Downgra 03/13/08 Downgra 05/18/09 Downgra 05/25/10 Downgra 05/17/11 Downgra 06/19/12 Downgra 06/19/12 Downgra 06/12/13 Downgra 01/04/96 Downgradient 04/16/96 Downgradient 07/09/96 Downgradient 03/13/08 Downgradient 03/13/08 Downgradient 03/13/08 Downgradient 05/25/10 Downgradient 05/25/10 Downgradient 05/17/11 Downgradient 05/12/13 Downgradient 05/12/14 Downgradient 05/17/15 Downgradient 06/12/13 Downgradient 06/12/13 Downgradient	Downgradient	NA	230	0.47	NA	0.05	0.010
	07/09/96	Downgradient	3.68	220	0.37	NA	0.03	0.010
	10/15/96	Downgradient	2.96	250	0.60	NA	< 0.025	<0.01
	12/03/97	Downgradient	NA	170	0.79	NA	<0.025	<0.01
MW-14	03/13/08	Downgradient	4,7	154	8.41	0.01	0.45	< 0.05
WIW-14	05/18/09	Downgradient	5.3	225	14.8	2.16	1.19	0.023
	05/25/10	Downgradient	4.4	28.2	5.5	2.99	<0.3	<0.1
	05/17/11	Downgradient	4.9	259	16.2	0.39	1.43	0.038
	06/19/12	Downgradient	5.1	243	41.9	0.00	0.10	0.009
	06/12/13	Downgradient	3.5	254	27.8	0.00	<1.7	<0.017
	07/03/14	Downgradient	4.9	198	24.8	0.01	32.3	3.60
	01/04/96	Downgradient / In Plume	1.30	27	<0.05	NA	1.70	0.660
	04/16/96	Downgradient / In Plume	2.17	42	< 0.05	NA	1.60	0.660
	07/09/96	Downgradient / In Plume	2.08	55	<0.05	NA	1.80	0.750
	10/15/96	Downgradient / In Plume	1.05	46	<0.05	NA	2.40	0.980
	12/03/97	Downgradient / In Plume	1.19	4.8	<0.05	NA	3.30	0.870
MW-15	03/13/08	Downgradient / In Plume	2.6	<10	<0.20	1.03	15.0	2.12
101 00 - 13	05/18/09	Downgradient / In Plume	1.1	<10	<0.1	3.86	17.5	1.68
	05/25/10	Downgradient / In Plume	2.0	36.8	<0.1	3.50	16.5	2.38
	05/17/11	Downgradient / In Plume	1.5	37.4	0.5	2.96	16.2	1.99
}	06/19/12	Downgradient / In Plume	4.0	11.4	2.85	6.18	18.0	2.80
	06/12/13	Downgradient / In Plume	2.3	12.7	0.91	12.3	4.00	2.60
	07/03/14	Downgradient / In Plume	3.5	2.9	<0.08	12.3	30.4	3.47
		Downgradient	4.90	280	1.00	NA	< 0.025	< 0.01
	04/16/96	Downgradient	4.75	260	0.92	NA	0.03	<0.01
	07/09/96	Downgradient	3.03	230	0.86	NA	0.04	<0.01
	10/15/96	Downgradient	3.56	260	0.81	NA	< 0.025	<0.01
	12/03/97	Downgradient	2.83	190	0.66	NA	< 0.025	<0.01
MW-16	03/13/08	Downgradient	3.2	140	3.69	0.01	<0.20	<0.05
01-1111	05/18/09	Downgradient	1.7	168	2.61	1.96	4.71	0.042
	05/25/10	Downgradient	1.7	172	3.2	3.06	<0.3	<0.1
	05/17/11	Downgradient	2.6	201	5.2	0.00	1.91	<0.033
	06/19/12	Downgradient	2.4	195	14.8	0.00	0.09	0.007
	06/12/13	Downgradient	3.5	26.4	4.14	0.00	<1.7	<0.017
	07/03/14	Downgradient	3.8	168	29.1	0.01	0.345	0.011

			Electro	on Accep	otors	Biodegradation Byproducts			
Monitoring Well	Sample Date	Well Position	Dissolved Oxygen (mg/L)	Sulfate (mg/L)	Nitrate (mg/L)	Ferrous Iron (mg/L)	Total Iron (mg/L)	Total Manganese (mg/L)	
RW-1s	05/26/10	In Plume	1.2	<25	< 0.1	3.04	26.0	0.660	
	05/17/11	In Plume	0.8	38.0	6.55	7.36	14.5	0.486	
RW-1d	06/20/12	In Plume	1.6	13.4	5.35	4.20	9.7	0.410	
Kw-Ju	06/13/13	In Plume	1.3	55.8	0.795	3.80	<1.7	0.220	
	07/03/14	In Plume	1.0	38.1	<0.08	1.93	3.95	0.324	
	05/18/09	In Plume	6.2	61.4	<0.1	6.18	10.4	0.957	
	05/26/10	In Plume	6.2	55.2	2.4	4 .9 4	13.5	0.780	
RW-2s	05/17/11	In Plume	1.1	96.9	3.25	6.60	7.79	0.435	
	06/20/12	In Plume	2.1	96.3	2.12	2.68	6.00	0.380	
	06/13/13	In Plume	2.3	60.2	0.68	3.80	3.70	0.420	
RW-2d	07/03/14	In Plume	3.5	98 .7	2.25	0.09	0.96	0.035	
		WQCC	Standards:	600	10		1.0	0.2	

Summary of Monitoring Natural Attenuation Parameters

NA - Not Analyzed.

Hanna Model 98130 instrument used in field to obtain pH, conductivity, and temperature measurements.

Milwaukee Model SM300 used in field for dissolved oxygen readings

Hach Model DR 890 Spectrophotometer used for field measurement of ferrous iron (Method 8146).

		Expressed As	similative Capacity	y	
Electron Acceptor/ Byproduct	Terminal Electron Accepting Process (in order of preferred utilization)	Trend in Analyte Concentration Duríng Biodegradation	Mass of benzene Degraded per unit mass of Electron Acceptor Utilized/Produced	Concentrations of	Biodegradation Capacity of Electron Acceptors/Byproducts (mg/L)
O ₂ /CO ₂	Aerobic Respiration	Decreases	0.325	3.35	1.09
SO ₄ /H ₂ S	Sulfanogenesis	Decreases	0.22	125	27.2
NO ₃ /NO ₂ ,N ₂ ,NH ₃	Denitrification	Decreases	0.21	8.77	1.84
Fe^{3+}/Fe^{+2}	Iron Reduction	Increases	0.046	10.3	0.47
Mn^{4+}/Mn^{2+}	Manganese Reduction	Increases	0.14	7.06	0.99
	<u> </u>		Total Bioc	legradation Capacity	31.6
·	Highes	t benzene concer	ntration currently ob	served within plume	1.43
	Average	e benzene concer	ntration currently ob	served within plume	0.35

Table 4Expressed Assimilative Capacity

Degradation capacity based on values provided by "Technical Protocol for Implementing Intrinsic Remediation With Long-Term Monitoring of Natural Attenuation of Fuel-Contamination Dissolved in Groundwater" (Weidemeier et. al. 1995)

The stoichiometry presented above does not take into account microbial cell mass production (Conservative assumption).

Redox *	Respiration	e [.] Acceptor	By-Products
+ 200 mv	Aerobic	O ₂	CO2
1	Denitrification	NO ₃ ^{2.}	NO ₂ ⁻ , N ₂ , NH ₃
	Manganese Reduction	Mn⁴⁺	Mn²*
	Iron Reduction	Fe ³⁺	Fe ²⁺
	Sulfanogenesis	SO42-	H ₂ S
- 400 mv	Methanogenesis	CO2	CH₄
• The redox values are	for guideline purposes only. T	hese values can vary by 2 to	o 3 times based on other factors.

As displayed in Table 4 above, the calculated biodegradation capacity of electron acceptors and metabolic byproducts (31.6 mg/L) exceeds the *highest* benzene concentration (1.43 mg/L) currently observed on site by a factor of 22 to 1. The biodegradation capacity of electron acceptors and metabolic byproducts further exceeds the *average* benzene concentration (0.35 mg/L) currently observed within the plume by a ratio of 90 to 1. This indicates that the necessary nutrients and by-products are present for the continued biodegradation of dissolved hydrocarbons.

Light Non-Aqueous Phase Liquids Thickness

	LNAPL Thickness (feet)								
Date	RW-1s	RW-2s	MW-1	MW-6	MW-7	MW-9	MW-12	MW-13	
5/7/2008	2.71	1.77	1.40	2.32	1.64	0.03	1.89	0.80	
7/23/2008	2.11	NM	1.72	2.68	1.76	0.05	1.62	1.09	
7/24/2008	1.35	NM	0.27	0.39	0.45	0.00	0.54	0.03	
8/12/2008	1.33	NM	0.60	2.24	0.20	0.03	1.33	0.18	
8/13/2008	1.32	NM	0.54	1.65	0.17	0.00	1.37	0.18	
9/9/2008	1.07	NM	0.44	1.71	0.00	0.03	1.57	0.12	
9/17/2008	1.09	NM	0.29	2.00	0.01	0.00	1.11	0.03	
10/8/2008	0.81	NM	0.07	1.48	0.00	0.00	1.42	0.00	
11/20/2008	0.46	0.00	0.03	1.21	0.00	0.00	0.98	0.00	
12/23/2008	0.67	1.47	0.06	1.38	0.00	0.00	0.64	0.00	
12/23/2008	0.35	1.47	0.06	0.14	0.00	0.00	0.64	0.00	
1/15/2009	0.41	NM	0.03	1.20	0.00	0.00	0.43	0.00	
2/27/2009	0.30	NM	0.07	1.40	0.00	0.00	0.50	0.00	
3/26/2009	0.28	NM	0.00	1.11	0.00	0.00	0.03	0.00	
4/28/2009	0.26	NM	0.00	1.19	0.00	0.00	0.02	0.00	
5/18/2009	0.24	NM	0.00	1.17	0.00	0.00	0.01	0.00	
6/17/2009	0.21	NM	0.00	1.37	0.00	0.00	0.05	0.00	
7/16/2009	0.20	NM	0.01	1.17	0.00	0.00	0.05	0.03	
8/26/2009	0.15	NM	0.00	1.25	0.00	0.00	0.00	0.00	
9/15/2009	0.14	NM	0.00	1.30	0.00	0.00	0.00	0.00	
10/15/2009	0.08	1.44	0.00	1.25	0.00	0.00	0.00	0.00	
10/21/2009	0.25	NM	0.00	1.20	0.00	0.00	0.00	0.00	
11/12/2009	0.01	NM	0.00	1.05	0.00	0.00	0.00	0.00	
12/10/2009	0.00	NM	0.00	1.03	0.00	0.00	0.00	0.00	
1/13/2010	0.00	NM	0.00	0.92	0.00	0.01	0.00	0.00	
2/25/2010	0.00	NM	0.00	0.76	0.00	0.00	0.00	0.00	
3/23/2010	0.00	NM	0.00	0.60	0.00	0.00	0.00	0.00	
4/1/2010	0.00	NM	0.00	0.36	0.00	0.00	0.00	0.00	
4/28/2010	0.00	NM	0.00	0.20	0.00	0.00	0.00	0.00	
5/25/2010	0.00	NM	0.00	0.10	0.00	0.00	0.00	0.00	
6/16/2010	0.00	NM	0.00	0.10	0.00	0.00	0.00	0.00	
7/14/2010	0.00	NM	0.00	0.01	0.00	0.00	0.00	0.00	
8/24/2010	0.01	NM	0.00	0.04	0.00	0.00	0.05	0.00	
9/22/2010	0.03	NM	0.00	0.14	0.00	0.00	0.09	0.00	
10/6/2010	0.01	NM	0.00	0.08	0.00	0.00	0.07	0.00	
11/30/2010	0.05	NM	0.00	0.25	0.00	0.00	0.26	0.00	
12/13/2010	0.03	NM	0.00	0.35	0.00	0.00	0.22	0.00	
1/19/2011	0.04	NM	0.00	0.25	0.00	0.00	0.34	0.00	
2/24/2011	0.03	NM	0.00	0.19	0.00	0.00	0.72	0.00	
3/17/2011	0.02	NM	0.00	0.16	0.00	0.00	0.16	0.00	
4/26/2011	0.05	NM	0.00	0.25	0.00	0.00	0.57	0.00	
5/17/2011	0.02	NM	0.00	0.21	0.00	0.00	0.67	0.00	
6/29/2011	0.02	NM	0.00	0.29	0.00	0.00	0.10	0.00	

2014 Annual Groundwater Monitoring Report South Four Lakes Tank Battery Site (1RP-0204)

Table 5	
---------	--

					kness (feet)		<u> </u>	
Date	RW-1s	RW-2s	MW-1	MW-6	MW-7	MW-9	MW-12	MW-13
7/14/2011	0.11	NM	0.00	0.22	0.00	0.00	0.51	0.00
8/23/2011	0.00	NM	0.00	0.25	0.00	0.00	0.29	0.00
9/28/2011	0.01	NM	0.00	0.02	0.00	0.00	0.16	0.00
10/25/2011	0.00	NM	0.00	0.18	0.00	0.00	0.12	0.00
11/22/2011	0.01	NM	0.00	0.22	0.00	0.00	0.11	0.00
12/13/2011	0.00	NM	0.00	0.20	0.00	0.00	0.10	0.00
1/24/2012	0.00	NM	0.00	0.34	0.00	0.00	0.26	0.00
2/29/2012	0.00	NM	0.00	0.46	0.00	0.00	0.25	0.00
3/15/2012	0.00	NM	0.00	0.12	0.00	0.00	0.19	0.00
4/25/2012	0.00	NM	0.00	0.08	0.00	0.00	0.34	0.00
5/25/2012	0.00	NM	0.00	0.02	0.00	0.00	0.20	0.00
6/19/2012	0.00	NM	0.00	0.02	0.00	0.00	0.13	0.00
07/12/12	0.00	NM	0.00	0.02	0.00	0.00	0.10	0.00
08/02/12	0.00	NM	0.00	0.01	0.00	0.00	0.12	0.00
09/26/12	0.03	NM	0.00	0.00	0.00	0.00	0.26	0.00
10/29/12	0.00	NM	0.00	0.00	0.00	0.00	0.12	0.00
11/29/12	0.00	NM	0.00	0.00	0.00	0.00	0.14	0.00
12/27/12	0.00	NM	0.01	0.00	0.00	0.00	0.02	0.00
01/30/13	0.00	NM	0.00	0.00	0.00	0.00	0.11	0.00
02/20/13	0.00	NM	0.00	0.11	0.00	0.00	0.05	0.00
03/18/13	0.00	NM	0.00	0.08	0.00	0.00	0.05	0.00
04/23/13	0.00	NM	0.00	0.02	0.00	0.00	0.02	0.00
05/28/13	0.00	NM	0.00	0.10	0.00	0.00	0.04	0.00
06/13/13	0.00	NM	0.00	0.05	0.00	0.00	0.00	0.00
07/25/13	0.01	NM	0.04	0.03	0.00	0.00	0.06	0.00
08/29/13	0.03	NM	0.04	0.02	0.00	0.00	0.07	0.00
09/23/13	0.02	NM	0.08	0.03	0.00	0.00	0.07	0.00
10/25/13	0.00	NM	0.13	0.03	0.00	0.00	0.08	0.01
12/06/13	0.04	NM	0.36	0.06	0.00	0.00	0.06	0.01
12/30/13	0.03	NM	0.33	0.10	0.00	0.00	0.16	0.00
01/17/14	0.00	NM	0.19	0.04	0.00	0.00	0.27	0.00
02/04/14	0.00	NM	0.19	0.08	0.00	0.00	0.08	0.00
03/24/14	0.00	NM	0.46	0.39	0.00	0.00	0.13	0.22
04/14/14	0.00	2.26	0.30	0.03	0.00	0.00	0.03	0.11
05/15/14	0.00	1.96	0.38	0.24	0.00	0.00	0.04	0.00
07/02/14	0.00	0.20	0.23	0.00	0.00	0.00	0.26	0.00
08/06/14	0.02	1.80	0.00	0.04	0.00	0.00	0.56	0.00
09/26/14	0.00	0.21	0.00	0.17	0.00	0.00	0.35	0.00
10/13/14	0.00	0.14	0.00	0.01	0.00	0.00	0.39	0.00
11/21/14	0.04	0.14	0.00	0.26	0.00	0.00	0.32	0.06
12/11/14	0.00	0.14	0.00	0.03	0.00	0.00	0.14	0.00

Thickness measurements in recovery well RW-2s cannot be made while windmill is in operation and is assumed ~0.00 ft.

Total Fluids and Light Non-Aqueous Phase Liquids Recovery Volumes

					Liquids Rec			
Date	RW-1s	RW-2s	MW-1	MW-6	MW-7	MW-9	MW-12	MW-13
5/7/2008	1.34	5	0	0	0	0	0.03	0
7/23/2008	1.00	0	0	0	0	0	0.03	0.10
		5	1	1	1	0.10		0.10
7/24/2008	3.00		· · · · · · · · · · · · · · · · · · ·			t		<u> </u>
8/12/2008	0.80	10,421	0.50	0.50	0.50	0	0.30	0.03
8/13/2008	0.10	432	0.01	0.01	0.02	0.01	0.00	0.03
9/9/2008	0.90	15,331	0.40	0.30	0.15	0.00	0.50	0.05
9/17/2008	0.05	2,649	0.14	0.38	0.01	0.02	0.34	0.05
10/8/2008	1.04	10,853	0.15	0.90	0.05	0.00	0.64	0.05
11/20/2008	0.95	36,452	0.27	0.85	0.01	0.01	1.04	0.02
12/23/2008	0.78	2,852	0.08	1.10	0.00	0.00	0.42	0.00
1/15/2009	0.30	2,852	0.02	0.47	0.00	0.00	0.40	0.00
2/27/2009	0.48	2,851	0.10	0.46	0.00	0.00	0.41	0.00
3/26/2009	0.23	2,836	0.06	0.44	0.00	0.00	0.39	0.00
4/28/2009	0.23	829	0.06	0.39	0.00	0.00	0.25	0.00
5/18/2009	0.23	4,687	0.00	0.38	0.00	0.00	0.05	0.00
6/17/2009	0.17	6,859	0.00	0.36	0.00	0.00	0.05	0.00
7/16/2009	0.12	0.0	0.00	0.25	0.00	0.00	0.05	0.00
8/26/2009	0.20	0.0	0.01	0.34	0.00	0.00	0.04	0.00
9/15/2009	0.12	0.0	0.00	0.24	0.00	0.00	0.02	0.00
10/15/2009	0.12	0.0	0.01	0.50	0.00	0.00	0.01	0.00
10/21/2009	0.20	0.5	0.00	0.38	0.00	0.00	0.00	0.00
11/12/2009	0.21	5,904	0.02	0.44	0.00	0.00	0.02	0.00
12/10/2009	0.01	3,874	0.01	0.44	0.00	0.00	0.01	0.00
1/13/2010	0.01	2.0	0.01	0.31	0.00	0.00	0.01	0.00
2/25/2010	0.03	5.0	0.01	0.37	0.00	0.00	0.04	0.00
3/23/2010	0.06	5.0	0.01	0.33	0.00	0.00	0.03	0.00
4/1/2010	0.03	0.0	0.00	0.29	0.00	0.00	0.04	0.00
4/28/2010	0.02	9,720	0.00	0.27	0.00	0.00	0.02	0.00
5/25/2010	0.01	34,850	0.00	0.25	0.00	0.00	0.01	0.00
6/16/2010	0.01	18,060	0.00	0.06	0.00	0.00	0.01	0.00
7/14/2010	0.01	16,450	0.00	0.07	0.00	0.00	0.02	0.00
8/24/2010	0.03	18,980	0.00	0.10	0.00	0.00	0.02	0.00
9/22/2010	0.04	18,330	0.00	0.04	0.00	0.00	0.03	0.00
10/6/2010	0.03	6,600	0.00	0.04	0.00	0.00	0.02	0.00
11/30/2010	0.05	44,928	0.01	0.04	0.00	0.00	0.05	0.00
12/13/2010	0.04	9,690	0.00	0.06	0.00	0.00	0.06	0.00
1/19/2011	0.02	28,482	0.01	0.05	0.00	0.00	0.05	0.00
2/24/2011	0.04	11,900	0.00	0.06	0.00	0.00	0.01	0.00
3/17/2011	0.04	130	0.00	0.06	0.00	0.00	0.21	0.00
4/26/2011	0.03	39,670	0.00	0.06	0.00	0.00	0.07	0.00
5/17/2011	0.02	18,310	0.00	0.06	0.00	0.00	0.07	0.00
6/29/2011	0.06	18,530	0.00	0.08	0.00	0.00	0.25	0.00
7/14/2011	0.11	2,060	0.00	0.07	0.00	0.00	0.06	0.00
8/23/2011	0.13	3,040	0.00	0.07	0.00	0.00	0.36	0.00
9/28/2011	0.05	2,058	0.00	0.24	0.00	0.00	0.35	0.00
10/25/2011	0.07	17,486	0.00	0.03	0.00	0.00	0.29	0.00

Та	b	e	6
I d		c	U

Total Fluids and Light Non-Aqueous Phase Liquids Recovery Volumes

Total Fluids and Light Non-Aqueous Phase Liquids Recovery Volumes Total Fluids and LNAPL Recovered (gallons) Date										
Date	RW-1s	RW-2s	MW-1	MW-6	MW-7	MW-9	MW-12	MW-13		
11/22/2011	0.03	18,779	0.00	0.06	0.00	0.00	0.28	0.00		
12/13/2011	0.07	10,388	0.00	0.07	0.00	0.00	0.23	0.00		
1/24/2012	0.10	11,988	0.00	0.08	0.00	0.00	0.38	0.00		
2/29/2012	0.07	12,960	0.00	0.08	0.00	0.00	0.38	0.00		
3/15/2012	0.02	5,400	0.00	0.13	0.00	0.00	0.16	0.00		
4/25/2012	0.17	14,760	0.00	0.40	0.00	0.00	0.38	0.00		
5/25/2012	0.07	10,800	0.00	0.21	0.00	0.00	0.37	0.00		
6/19/2012	0.04	9,000	0.00	0.13	0.00	0.00	0.27	0.00		
07/12/12	0.06	8,280	0.00	0.10	0.00	0.00	0.23	0.00		
08/02/12	0.03	2,588	0.00	0.11	0.00	0.00	0.17	0.00		
09/26/12	0.11	7,477	0.00	0.25	0.00	0.00	0.39	0.00		
10/29/12	0.08	5,361	0.00	0.16	0.00	0.00	0.36	0.00		
11/29/12	0.08	3,982	0.00	0.14	0.00	0.00	0.33	0.00		
12/27/12	0.06	4,771	0.01	0.14	0.00	0.00	0.35	0.00		
01/30/13	0.13	4,771	0.01	0.16	0.00	0.00	0.34	0.01		
02/20/13	0.05	2,566	0.01	0.07	0.00	0.00	0.26	0.01		
03/18/13	0.07	3,649	0.02	0.12	0.00	0.00	0.26	0.01		
04/23/13	0.05	8,660	0.03	0.19	0.00	0.00	0.35	0.01		
05/28/13	0.04	11,425	0.05	0.15	0.00	0.00	0.28	0.02		
06/13/13	0.09	8,020	0.02	0.08	0.00	0.00	0.14	0.00		
07/25/13	0.06	16,891	0.05	0.35	0.00	0.00	0.30	0.02		
08/29/13	0.14	283	0.05	0.17	0.00	0.00	0.22	0.03		
09/23/13	0.13	466	0.05	0.15	0.00	0.00	0.20	0.02		
10/25/13	0.12	263	0.05	0.13	0.00	0.00	0.21	0.01		
12/06/13	0.13	67	0.04	0.19	0.00	0.00	0.34	0.02		
12/30/13	0.13	0	0.05	0.07	0.00	0.00	0.13	0.00		
01/17/14	0.06	0 **	0.06	0.09	0.00	0.00	0.12	0.01		
02/04/14	0.00	0 **	0.06	0.07	0.00	0.00	0.18	0.00		
03/24/14	0.08	0 **	0.07	0.06	0.00	0.00	0.35	0.01		
04/14/14	0.06	6	0.08	0.22	0.00	0.00	0.18	0.02		
05/15/14	0.15	1.04	0.08	0.06	0.00	0.00	0.20	0.05		
07/02/14	0.00	3.81	0.11	0.21	0.00	0.00	0.12	0.01		
08/06/14	0.27	2.09	0.00	0.18	0.00	0.00	0.02	0.00		
09/26/14	0.24	2.82	0.00	0.29	0.00	0.00	0.40	0.00		
10/13/14	0.16	2.45	0.03	0.13	0.00	0.00	0.15	0.05		
11/21/14	0.12	2.89	0.00	0.08	0.00	0.00	0.40	0.06		
12/11/14	0.12	2.04	0.00	0.19	0.00	0.00	0.36	0.00		
Well Totals	16.8	612,595	3.8	18.5	1.7	0.1	17.5	1.1		
Total Gallons of LNAPL Recovered in all Wells Since May 6, 2008:										
		Tot	al Gallons o	f Fluids Reco	overed in RW	/-2s Since Ju	ly 24, 2008:	612,595		

* Volumes in blue text reflect gallons of total fluids (mostly water with some LNAPL) recovered from RW-2s. LNAPL is not separated from total fluids, therefore LNAPL recovery in RW-2s cannot be measured.

Total fluids volume estimated at average of 0.25 gpm during certain periods when totalizer meter malfunctioned.

** Windmill system was not operational due to high wind damage as discovered in January 2014. Since April 2014 LNAPL recovery has been accomplished using a passive bailer and hand bailing during monthly site visits.

APPENDIX A

NMOCD Correspondence

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

DIL CONSERVATION DIVISION 2040 S. PACHECÚ SANTA FE, NEW MEXICO 67505 15051 627-7131

July 14, 1997

CERTIFIED MÂIL RETURN RÉCEIPT NO. P-410-431-193

Mr. Sam E. Christy Phillips Petroleum Company 4001 Penbröok Odessa, Texas 79762

RÉ: GROUND WATER REMEDIATION AND MONITORING SOUTH FOUR LAKES UNIT

Dear Mr. Christy:

The New Mexico Oil Conservation Division has reviewed Phillips Petrolcum Company's (Phillips) May 6, 1997 SOUTH FOUR LAKES UNIT QUANTIFICATION OF NATURAL 'ATTENUATION & FUTURE GROUNDWATER MONITORING PROGRAM ". This document contains the results of Phillips's recent ground water remediation and monitoring activities: The document also contains recommendations to plug and abandon 3 site monitoring wells and modify the long term ground water monitoring plan.

Phillips's proposals as contained in the above referenced document are approved with the following conditions:

- 1. In addition to the proposed sampling parameters, Phillips will continue to sample and analyze ground water from all monitor wells for concentrations of iron and manganese using EPA approved methods and quality assurance/quality control (QA/QC).
- Annual remediation and monitoring reports will be submitted to the OCD by July 1 of each year. The annual reports will contain:
 - A description of the monitoring and remediation activities which occurred during the year including conclusions and recommendations.
 - b. Summary tables listing past and present laboratory analytic results of all water quality sampling for each monitoring point and plots of concentration vs. time for contaminants of concern from each monitoring point. Copies of the most recent years laboratory, data sheets and associated QA/QC data will also be submitted.

Mr. Sam E. Christy July 14, 1997 Page 2.

- c. A water table elevation map using the water table elevation of the ground water in all monitor wells.
- d. Plots of water table elevation vs. time for each ground water monitoring point.
- e. A product thickness map based on the thickness of free phase product on ground water in all refinery monitor wells.
- f. The volume of product and water recovered in the remediation system during each year and the total recovered to date.
- All wastes generated will be disposed of at an OCD approved facility or in an OCD approved manner.
- A. Phillips will notify the OCD at least one week in advance of all scheduled activities such that the OCD has the opportunity to witness the events and/or split samples;
- 5. All documents will be submitted to the OCD Santa Fe Office with copies provided to the OCD Hobbs District Office.

Please be advised that OCD approval does not relieve Phillips of liability should the remediation and monitoring program fail to adequately monitor or remediate contamination related to Phillips's operations. In addition, OCD approval does not relieve Phillips of responsibility for compliance with any other federal, state, or local laws and/or regulations.

If you have any questions, please call me at (505) 827-7154,

Sincerely.

William C. Olson Hydrogeologist Environmental Bureau

xc: Chris Williams, OCD Hobbs District Supervisor
 Wayne Price, OCD Hobbs Office
 David Deardorff, New Mexico State Land Office

APPENDIX B

Laboratory Analytical Reports

And

Chain of Custody Documentation

PERMIAN BASIN ENVIRONMENTAL LAB, LP 10014 SCR 1213 Midland, TX 79706

Analytical Report

Prepared for:

Matt Pride Pride Energy Company P.O. BOX 701950 Tulsa, OK 74170-1950

Project: Pride Energy Company Project Number: South Four Lakes Tank Battery Location: T12S-R34E, Sectio 2 Unit Letter G

Lab Order Number: 4G07001

NELAP/TCEQ # T104704156-13-3

Report Date: 08/08/14

Pride Energy Company	Project: Pride Energy Company	Fax: (918) 524-9292
P.O. BOX 701950	Project Number: South Four Lakes Tank Battery	
Tulsa OK, 74170-1950	Project Manager: Matt Pride	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-5	4G07001-01	Water	07/03/14 13:30	07-04-2014 13:30
MW-7	4G07001-02	Water	07/03/14 12:00	07-04-2014 13:30
MW-9	4G07001-03	Water	07/03/14 11:00	07-04-2014 13:30
MW-10	4G07001-04	Water	07/03/14 10:00	07-04-2014 13:30
MW-13	4G07001-05	Water	07/03/14 13:00	07-04-2014 13:30
MW-14	4G07001-06	Water	07/02/14 15:50	07-04-2014 13:30
MW-15	4G07001-07	Water	07/02/14 17:00	07-04-2014 13:30
MW-16	4G07001-08	Water	07/02/14 15:10	07-04-2014 13:30
RW-1d	4G07001-09	Water	07/03/14 14:10	07-04-2014 13:30
RW-2d	4G07001-10	Water	07/03/14 15:00	07-04-2014 13:30

Please note, PBEL is currently in the process for receiving NELAC Certification on Fe and Mn. New Mexico does not require NELAC certification at this time for groundwater sampling.

.

MW-5

4G07001-01 (Water)

Analyte Resolt Limit Units Dilution Batch Prepared Analyzed Method Permian Basin Environmental Lab, L.P. Organics by GC Benzene ND 0.00100 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Tolucne 0.00289 0.00100 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Ethylbenzene 0.00724 0.00100 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Xylene (p/m) 0.0199 0.00200 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Sylene (p/m) 0.00611 0.00100 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Surrogate: 1-Bromofluorobenzene 94.8 % 80-120 P4G1006 07/07/14 07/08/14 EPA 8021B Surrogate: 1-Bromofluorobenzene 77.4 % 80-120 P4G1006 07/07/14 07/08/14 EPA 8021B										
Organics by GC Benzene ND 0.00100 img/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Toluene 0.00289 0.00100 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Ethylbenzene 0.00724 0.00100 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Xylene (p/m) 0.0199 0.00200 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Surrogate: <i>I</i> -Bromog/huorobenzene 94.8 % 80-120 P4G1006 07/07/14 07/08/14 EPA 8021B Surrogate: 1,4-Diffuorobenzene 94.8 % 80-120 P4G1006 07/07/14 07/08/14 EPA 8021B Surrogate: 1,4-Diffuorobenzene 77.4 % 80-120 P4G1006 07/07/14 07/08/14 EPA 8021B Surrogate: 1.1 2.50 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Surrogate: 1.1 0.0	Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Benzene ND 0.00100 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Toluene 0.00289 0.00100 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Ethylbenzene 0.00724 0.00100 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Xylene (p/m) 0.0199 0.00200 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Surrogate: 4-Bromofluorobenzene 0.00611 0.00100 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Surrogate: 4-Bromofluorobenzene 94.8 % 80-120 P4G1006 07/07/14 07/08/14 EPA 8021B Surrogate: 1,4-Difluorobenzene 94.8 % 80-120 P4G1006 07/07/14 07/08/14 EPA 8021B General Chemistry Parameters by EPA / Standard Methods E E E E Chloride 117 2.50 mg/L 5 P4G1506 07/09/14 07/15/14 EPA 300		Peri	mian Basin Ei	nvironme	ntal Lab, 1	L.P.				
Toluene 0.00289 0.00100 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Ethylbenzene 0.00724 0.00100 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Xylene (p/m) 0.0199 0.00200 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Xylene (o) 0.00611 0.00100 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Surrogate: 4-Bromofluorobenzene 94.8 % 80-120 P4G1006 07 07/14 07/08/14 EPA 8021B Surrogate: 1,4-Difluorobenzene 77.4 % 80-120 P4G1006 07 07/14 07/08/14 EPA 8021B General Chemistry Parameters by EPA / Standard Methods 80-120 P4G1006 07/09/14 07/15/14 EPA 802.0 Nitrate as N 1.67 0.0800 mg/L 1 P4G1506 07/09/14 07/15/14 EPA 300.0 Sulfate 153 5.00 mg/L 1 P4G1506 07/09/14 07/15/14 EPA 300.0 Sulfate 153 5.00 mg/	Organics by GC									
Ethylbenzene 0.00724 0.00100 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Xylene (p/m) 0.0199 0.00200 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Xylene (o) 0.00611 0.00100 mg/L 1 P4G1006 07/07/14 07/08/14 EPA 8021B Surrogate: 4-Bromofluorobenzene 94.8 % 80-120 P4G1006 07/07/14 07/08/14 EPA 8021B Surrogate: 1,4-Difluorobenzene 94.8 % 80-120 P4G1006 07/07/14 07/08/14 EPA 8021B Surrogate: 1,4-Difluorobenzene 77.4 % 80-120 P4G1006 07/07/14 07/08/14 EPA 8021B General Chemistry Parameters by EPA / Standard Methods EPA 800.0 0.0 0.0 mg/L 5 P4G1506 07/09/14 07/15/14 EPA 300.0 Nitrate as N 1.67 0.0800 mg/L 1 P4G1506 07/09/14 07/15/14 EPA 300.0 Sulfate 153 5.00 mg/L 5 P4G1506 07/09/14 07/15/14 <td>Benzene</td> <td>ND</td> <td>0.00100</td> <td>mg/L</td> <td>1</td> <td>P4G1006</td> <td>07/07/14</td> <td>07/08/14</td> <td>EPA 8021B</td> <td></td>	Benzene	ND	0.00100	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Anisotration Onoritical EPA 8021B <	Toluene	0.00289	0.00100	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Number of the standard of the s	Ethylbenzene	0.00724	0.00100	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene 94.8 % 80-120 P4G1006 07 07/14 07.08'14 EPA 8021B Surrogate: 1,4-Difluorobenzene 77.4 % 80-120 P4G1006 07 07/14 07.08'14 EPA 8021B General Chemistry Parameters by EPA / Standard Methods Reference 94.8 % 80-120 P4G1006 07 07/14 07.08'14 EPA 8021B General Chemistry Parameters by EPA / Standard Methods Reference Surrogate: 17 2.50 mg/L 5 P4G1006 07.07/14 07.08'14 EPA 8021B General Chemistry Parameters by EPA / Standard Methods Surrogate: 17 2.50 mg/L 5 P4G1506 07/09/14 07/15/14 EPA 300.0 Nitrate as N 1.67 0.0800 mg/L 1 P4G1509 07/08/14 07/15/14 EPA 160.1 Sulfate 635 20.0 mg/L 5 P4G1506 07/09/14 07/15/14 EPA 300.0 Sulfate 153 5.00 mg/L 5 P4G1506 07/09/14 07/15/14 EPA 6010B Model 9.00500 0.0170 mg/L 1 <thp< td=""><td>Xylene (p/m)</td><td>0.0199</td><td>0.00200</td><td>mg/L</td><td>1</td><td>P4G1006</td><td>07/07/14</td><td>07/08/14</td><td>EPA 8021B</td><td></td></thp<>	Xylene (p/m)	0.0199	0.00200	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Surrogate: 1,4-Diffuorobenzene 77.4 % 80-120 P4G1006 07.07:14 07.08'14 EPA 8021B General Chemistry Parameters by EPA / Standard Methods Epa 8021B Epa 8021B Chloride 117 2.50 mg/L 5 P4G1506 07/09/14 07/15/14 EPA 300.0 Nitrate as N 1.67 0.0800 mg/L 1 P4G1506 07/09/14 07/15/14 EPA 300.0 Total Dissolved Solids 635 20.0 mg/L 1 P4G1506 07/09/14 07/15/14 EPA 300.0 Total Metals by EPA / Standard Methods 635 20.0 mg/L 1 P4G1506 07/09/14 07/15/14 EPA 300.0 Metals by EPA / Standard Methods 635 20.0 mg/L 1 P4G1506 07/09/14 07/15/14 EPA 300.0 Total Metals by EPA / Standard Methods Epa 300.0 0.0170 mg/L 1 P4H0402 07/28/14 08/01/14 EPA 6010B	Xylene (o)	0.00611	0.00100	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
General Chemistry Parameters by EPA / Standard Methods Chloride 117 2.50 mg/L 5 P4G1506 07/09/14 07/15/14 EPA 300.0 Nitrate as N 1.67 0.0800 mg/L 1 P4G1506 07/09/14 07/15/14 EPA 300.0 Total Dissolved Solids 635 20.0 mg/L 1 P4G1509 07/08/14 07/15/14 EPA 160.1 Sulfate 153 5.00 mg/L 5 P4G1506 07/09/14 07/15/14 EPA 160.1 Sulfate 153 5.00 mg/L 5 P4G1506 07/09/14 07/15/14 EPA 300.0 Total Metals by EPA / Standard Methods EVA 1000000000000000000000000000000000000	Surrogate: 4-Bromojluorobenzene		94.8 %	80-	120	P4G1006	07 07/14	07:08:14	EPA 8021B	
Chloride 117 2.50 mg/L 5 P4G1506 07/09/14 07/15/14 EPA 300.0 Nitrate as N 1.67 0.0800 mg/L 1 P4G1506 07/09/14 07/15/14 EPA 300.0 Total Dissolved Solids 635 20.0 mg/L 1 P4G1509 07/08/14 07/15/14 EPA 160.1 Sulfate 153 5.00 mg/L 5 P4G1506 07/09/14 07/15/14 EPA 160.1 Sulfate 153 5.00 mg/L 5 P4G1506 07/09/14 07/15/14 EPA 300.0 Total Metals by EPA / Standard Methods Image: Contract of the standard Methods EPA 6010B	Surrogate: 1,4-Difluorobenzene		77.4 %	80-	120	P4G1006	07.07:14	07/08/14	EPA 8021B	S-GC
Nitrate as N 1.67 0.0800 mg/L 1 P4G1506 07/09/14 07/15/14 EPA 300.0 Total Dissolved Solids 635 20.0 mg/L 1 P4G1506 07/09/14 07/15/14 EPA 300.0 Sulfate 153 5.00 mg/L 5 P4G1506 07/09/14 07/15/14 EPA 300.0 Total Metals by EPA / Standard Methods 1 P4G1506 07/09/14 07/15/14 EPA 300.0 Total Metals by EPA / Standard Methods 1 P4G1506 07/09/14 07/15/14 EPA 300.0	<u>General Chemistry Parameters by E</u>	PA / Standard Metho	ds							
Total Dissolved Solids 635 20.0 mg/L 1 P4G1509 07/08/14 07/15/14 EPA 160.1 Sulfate 153 5.00 mg/L 5 P4G1506 07/09/14 07/15/14 EPA 160.1 Total Metals by EPA / Standard Methods 0.00500 0.0170 mg/L 1 P4G1502 07/09/14 07/15/14 EPA 300.0	Chloride	117	2.50	nıg/L	5	P4G1506	07/09/14	07/15/14	EPA 300.0	
Sulfate 153 5.00 mg/L 5 P4G1506 07/09/14 07/15/14 EPA 300.0 Total Metals by EPA / Standard Methods 0.00500 0.0170 mg/L 1 P4H0402 07/28/14 08/01/14 EPA 6010B	Nitrate as N	1.67	0.0800	mg/L	1	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Metals by EPA / Standard Methods 0.00500 0.0170 mg/L 1 P4H0402 07/28/14 08/01/14 EPA 6010B	Total Dissolved Solids	635	20.0	mg/L	I	P4G1509	07/08/14	07/15/14	EPA 160.1	
0.00500 0.0170 mg/L 1 P4H0402 07/28/14 08/01/14 EPA 6010B	Sulfate	153	5.00	mg/L	5	P4G1506	07/09/14	07/15/14	EPA 300.0	
	Total Metals by EPA / Standard Me	thods								
	J	0.00500	0.0170	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QAL1, J
	Maganese	0.0270	0.00100	mg/L	l	P4H0402	07/28/14	08/01/14	EPA 6010B	QALI

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Fax: (918) 524-9292

MW-7

4G07001-02 (Water)

Г		•	 				- • •		· · · · ·		
				Reporting							
	Analyte		Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian	Basin	Environmental	Lab,	L.P.
---------	-------	---------------	------	------

Organics by GC						<u> </u>			
Benzene	0.00329	0.00100	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Toluene	0.00640	0.00100	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Ethylbenzene	0.0542	0.00100	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Xylene (p/m)	0.0287	0.00200	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Xylene (0)	0.0148	0.00100	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Surrogute: 4-Bramofluorobenzene		83.2 %	80-11	20	P4G1006	07.07.14	07.08-14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		82.7 %	80-12	20	P4G1006	07.07/14	07.08 14	EPA 8021B	
<u>General Chemistry Parameters by EPA</u> Chloride	158	2.50	mg/l_	5	P4G1506	07/09/14	07/15/14	EPA 300.0	
Nitrate as N	0.0870	0.0800	mg/L	1	P4G1506	07/09/14	07/15/14	EPA 300,0	
Total Dissolved Solids	790	20.0	mg/L	1	P4G1509	07/08/14	07/15/14	EPA 160.1	
Sulfate	112	5.00	mg/L	5	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Metals by EPA / Standard Method	ls								
Iron	0.0170	0.0170	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QAL
Manganese	0.0930	0.00100	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QAL

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

MW-9

4G07001-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
•	Perr	nian Basin Ei	nvironme	ntal Lab, 1	L.P.		· · · · · · · · · · · · · · · · · · ·		
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Xyłene (p/m)	ND	0.00200	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		106 %	80-	120	P4G1006	07.07:14	07 08'14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		82.1 %	80-	120	P4G1006	07/07/14	07/08/14	EPA 8021B	
General Chemistry Parameters by E	PA / Standard Metho	ds							
Chloride	159	2.50	mg/L	5	P4G1506	07/09/14	07/15/14	EPA 300.0	
Nitrate as N	ND	0.0800	mg/L	1	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Dissolved Solids	1260	20.0	mg/L	1	P4G1509	07/08/14	07/15/14	EPA 160.1	
Sulfate	428	5.00	mg/L	5	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Metals by EPA / Standard Met	hods								
Iron	3.43	0.0170	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QALI
Manganese	0.0730	0.00100	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QAL1

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

MW-10

4G07001-04 (Water)

Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes									1
		Reporting							
	Analyte	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian I	Basin	Environmental	Lab, L.P.
-----------	-------	---------------	-----------

Organics by GC									
Benzene	ND	0.00100	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Toluene	ND	0.00100	mg/L	I	P4G1006	07/07/14	07/08/14	EPA 8021B	
Ethylbenzen¢	ND	0.00100	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P4G1006	07/07/14	07/08/14	EPA 8021B	
Surrogate: 4-Bromofluorohenzene		107 %	80-12	20	P4G1006	07.07.14	07,08 14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		81.2 %	80-12	20	P4G1006	07.07/14	07.08-14	EPA 8021B	
General Chemistry Parameters by EPA	Standard Method	lls		-					
Chloride	172	2.50	mg/L	5	P4G1506	07/09/14	07/15/14	EPA 300.0	
Nitrate as N	3.27	0.0800	mg/L	1	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Dissolved Solids	970	20.0	mg/L	1	P4G1509	07/08/14	07/15/14	EPA 160.1	
Sulfate	283	5.00	mg/L	5	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Metals by EPA / Standard Method	s	<u>-</u>					<u> </u>		
Iron	5.86	0.0170	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QALI
Manganese	0.835	0.00100	mg/L	1	P4110402	07/28/14	08/01/14	EPA 6010B	QALI

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

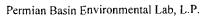
MW-13

4G07001-05 (Water)

Алајуте	Result	Reporting Limit	Units	Ditution	Batch	Prepared	Analyzed	Method	Notes
	Peri	mian Basin E	Environme	ntal Lab, I	L.P.				
Organics by GC						<u> </u>			
Benzene	1.89	0.0200	mg/kg wet	20	P4G1607	07/15/14	07/16/14	EPA 8021B	
Toluene	0.0103	0.00200	mg/kg wet	1	P4G1607	07/15/14	07/16/14	EPA 8021B	
Ethylbenzene	0.269	0.0200	mg/kg wet	20	P4G1607	07/15/14	07/16/14	EPA 8021B	
Xylene (p/m)	0.643	0.0400	mg/kg wet	20	P4G1607	07/15/14	07/16/14	EPA 8021B	
Xylene (0)	0.0572	0.0200	mg/kg wet	20	P4G1607	07/15/14	07/16/14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		79.4%	75-1	25	P4G1607	07/15/14	07/16 14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.8 %	7 <i>5-1</i>	25	P4G1607	07/15/14	07/16/14	EPA 8021B	
General Chemistry Parameters by El	PA / Standard Metho	ds							
Chloride	2250	25.0	mg/L	50	P4G1506	07/09/14	07/15/14	EPA 300.0	
Nitrate as N	3.35	2.00	mg/L	25	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Dissolved Solids	4480	20.0	mg/L	1	P4G1509	07/08/14	07/15/14	EPA 160.1	
Sulfate	5.01	1.00	mg/L	1	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Metals by EPA / Standard Met	hods								
Iron	1,92	0.0170	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QALI
Мапдапезе	0.0630	0.00100	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QALI

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety; with written approval of Permian Basin Environmental Lab.


Fax: (918) 524-9292

MW-14

4G07001-06 (Water)

	······································	Reporting	•						
Analyte	Result	Linit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin Er	ivironme	ntal Lab, L	P.				

Organics by GC									
Benzene	ND	0.00100	mg/kg wet	1	P4G1607	07/15/14	07/16/14	EPA 8021B	
Toluene	ND	0.00200	mg/kg wet	1	P4G1607	07/15/14	07/16/14	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg wet	1	P4G1607	07/15/14	07/16/14	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg wet	l	P4G1607	07/15/14	07/16/14	EPA 8021B	
Xylene (o)	ND	0.00100	mg/kg wet	1	P4G1607	07/15/14	07/16/14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		94.4 %	75-12	5	P4G1607	07/15/14	07/16/14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		86.0 %	75-12	5	P4G1607	07/15/14	071614	EPA 8021B	
General Chemistry Parameters by EP	<u> / Standard Method</u>	s		_					
Chloride	254	5.00	mg/L	10	P4G1506	07/09/14	07/15/14	EPA 300.0	
Nitrate as N	24.8	0.400	mg/L	5	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Dissolved Solids	1220	20.0	mg/L	1	P4G1509	07/08/14	07/15/14	EPA 160.1	
Sulfate	198	10.0	mg/L	10	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Metals by EPA / Standard Metho	ods	·						<u> </u>	
Iron	32.3	0.0170	mg/L	ł	P4H0402	07/28/14	08/01/14	EPA 6010B	QALI
Manganese	3.60	0.00100	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QALI

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

MW-15

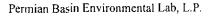
4G07001-07 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin Ei	nvironme	ntal Lab, L	P.				
Organics by CC									

Urganics by GC									-
Benzene	0.00157	0.00100	mg/kg wet	1	P4G1607	07/15/14	07/16/14	EPA 8021B	
Tolucne	0.0486	0.00200	mg/kg wet	1	P4G1607	07/15/14	07/16/14	EPA 8021B	
Ethylbenzene	0.432	0.0200	mg/kg wet	20	P4G1607	07/15/14	07/16/14	EPA 8021B	
Xylene (p/m)	1.00	0.0400	mg/kg wet	20	P4G1607	07/15/14	07/16/14	EPA 8021B	
Xylene (0)	0.141	0.0200	mg/kg wet	20	P4G1607	07/15/14	07/16/14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		89.8 %	75-12	5	P4G1607	07/15-14	07:16:14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		98.0 %	75-12	5	P4G1607	07/15/14	07/16/14	EPA 8021B	
General Chemistry Parameters by EP. Chloride	<u>A / Standard Methoe</u> 122	<u>ls</u> 5.00	mg/L	10	P4G1506	07/09/14	07/15/14	EPA 300.0	
Nitrate as N	ND	0.0800	mg/L	10	P4G1506	07/09/14	07/15/14	EPA 300,0	
Total Dissolved Solids	1570	20.0	mg/L	1	P4G1509	07/08/14	07/15/14	EPA 160.1	
Sulfate	2.89	1.00	mg/L	1	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Metals by EPA / Standard Metho	ods								
Iron	30.4	0.0170	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QALI
Manganese	3.47	0.00100	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QAL1
									-

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.


Fax: (918) 524-9292

MW-16

4G07001-08 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin Ei	nvironme	ntal Lab, I	P.				
Organics by GC	·····			. <u> </u>			<u> </u>		
Benzene	ND	0.00100	mg/L	1	P4G1006	07/07/14	07/09/14	EPA 8021B	

Benzene	ND	0.00100	uig-L	•	1401000	0//0//14	07/09/14	1.1 A 0021D	
Toluene	ND	0.00100	mg/L	1	P4G1006	07/07/14	07/09/14	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P4G1006	07/07/14	07/09/14	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P4G1006	07/07/14	07/09/14	EPA 8021B	
Xylene (0)	ND	0.00100	mg/L	1	P4G1006	07/07/14	07/09/14	EPA 8021B	
Surrogate: 4-Bromafluorobenzene		103 %	80-1.	20	P4G1006	07,07/14	07.09 14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		79. <i>4 %</i>	80-12	20	P4G1006	07.07/14	07.09114	EPA 8021B	S- GC
General Chemistry Parameters by EPA /	Standard Method	ls							
Chloride	301	5.00	mg/L	10	P4G1506	07/09/14	07/15/14	EPA 300.0	
Nitrate as N	29.1	0.0800	mg/L	1	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Dissolved Solids	1480	20.0	mg/L	ł	P4G1509	07/08/14	07/15/14	EPA 160.1	
Sulfate	168	10.0	mg/L	10	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Metals by EPA / Standard Methods									<u> </u>
Iron	0.345	0.0170	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QAL1
Manganese	0.0110	0.00100	mg/L	,	P4H0402	07/28/14	08/01/14	EPA 6010B	QAL1

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

RW-1d

4G07001-09 (Water)

· · · · · · · · · · · · · · · · · · ·									
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permi	an Basin Ei	ivironme	ental Lab, L					

Organics by GC									
Benzene	0.904	0.0200	mg/kg wet	20	P4G1607	07/15/14	07/16/14	EPA 8021B	
Toluene	ND	0.00200	mg/kg wet	1	P4G1607	07/15/14	07/16/14	EPA 8021B	
Ethylbenzene	0.0944	0.0200	mg/kg wet	20	P4G1607	07/15/14	07/16/14	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg wet	1	P4G1607	07/15/14	07/16/14	EPA 8021B	
Xylene (0)	ND	0.00100	mg/kg wet	1	P4G1607	07/15/14	07/16/14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		98.4 %	75-125	;	P4G1607	07/15/14	07/16/14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		83.5 %	75-125	i	P4G1607	07/15/14	07/16/14	EPA 8021B	
General Chemistry Parameters by EPA / St	andard Methods								
Chloride	926	10.0	mg/L	20	P4G1506	07/09/14	07/15/14	EPA 300.0	
Nitrate as N	ND	0.0800	mg/L	1	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Dissolved Solids	1820	20.0	mg/L	1	P4G1509	07/08/14	07/15/14	EPA 160.1	
Sulfate	38.1	20.0	mg/L	20	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Metals by EPA / Standard Methods									
Iron	3.95	0.0170	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QAL1
Manganese	0.324	0.00100	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QALI

Pennian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Fax: (918) 524-9292

RW-2d

4G07001-10 (Water)

Analyte	Result	Reporting Limit	Units	Dílution	Batch	Prepared	Analyzed	Method	Notes
	Perr	nian Basin E	Invironme	ntal Lab, l					
Organics by GC									·
Benzene	ND	0.00100	mg/kg wet	1	P4G1607	07/15/14	07/16/14	EPA 8021B	
Toluene	ND	0.00200	mg/kg wet	1	P4G1607	07/15/14	07/16/14	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/kg wet	1	P4G1607	07/15/14	07/16/14	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/kg wet	1	P4G1607	07/15/14	07/16/14	EPA 8021B	
Xylene (0)	ND	0.00100	mg/kg wet	1	P4G1607	07/15/14	07/16/14	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		87.3 %	75-1	25	P4G1607	07.15.14	07/16/14	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		100 %	75-1	25	P4G1607	07/15/14	07-16-14	EPA 8021B	
<u>General Chemistry Parameters by EPA / Sta</u>	<u>ndard Metho</u>	ds							
Chloride	184	5.00	mg/L	10	P4G1506	07/09/14	07/15/14	EPA 300.0	
Nitrate as N	2.25	0.0800	mg/L	1	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Dissolved Solids	765	20.0	mg/L	1	P4G1509	07/08/14	07/15/14	EPA 160.1	
Sulfate	98.7	10.0	mg/L	10	P4G1506	07/09/14	07/15/14	EPA 300.0	
Total Metals by EPA / Standard Methods									
Iron	0.960	0.0170	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QALI
Manganese	0.0350	0.00100	mg/L	1	P4H0402	07/28/14	08/01/14	EPA 6010B	QALI

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Permian Basin Environmental Lab.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

ł		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4G1006 - General Preparatio	on (GC)									
Blank (P4G1006-BLK1)				Prepared: 0	07/07/14 A	nalyzed: 07	//08/14			
Benzene	ND	0.00100	mg/1.							
Toluene	ND	0.00100								
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00200	19							
Xylenc (0)	ND	0.00100	•1							
Surrogate: 4-Bromofluorobenzene	59.4		ug I	60,0		99.0	80-120		·	
Surrogate: 1,4-Difluorobenzene	45.9		ri	60.0		76.5	80-120			S-GC
LCS (P4G1006-BS1)				Prepared: 0)7/07/14 A	nalyzed: 07	//08/14			
Benzene	0.0840	0.00100	mg/L	0.100		84.0	80-120			
Toluene	0.0912	0 00100		0.100		91,2	80-120			
Ethylbenzene	0.0929	0.00100	**	0.100		92.9	80-120			
Xylene (p/m)	0,202	0.00200	.,	0.200		101	80-120			
Xylene (o)	0.107	0.00100		0,100		107	80-120			
Surrogate: 4-Bromofluorobenzene	81.1		ug l	60.0		135	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	54.4		n	60.0		90.7	80-120			
L <u>CS.</u> Dup (P4G1006-BSD1)				Prepared: 0	07/07/14 A	nalyzed: 07	/08/14			
E	0.0875	0.00100	mg/L	0.100		87.5	80-120	4.05	20	
Toluene	0.0916	0,00100	D	0.100		91,6	80-120	0.438	20	
Ethylbenzene	0.0931	0.00100		0.100		93.1	80-120	0.161	20	
Xylene (p/m)	0.199	0.00200	н	0.200		99.6	80-120	1,27	20	
Xylene (0)	0.107	0.00100		0.100		107	80-120	0.243	20	
Surrogate: 4-Bromofluoroben_ene	77.]		ug l	60.0	<u> </u>	128	80-120			S-G(
Surrogate: 1,4-Difluorobenzene	52.1		"	60.0		86.9	80-120			
Duplicate (P4G1006-DUP1)	Sou	arce: 4G07021-	02	Prepared: 0	7/07/14 A	nalyzed: 07	//09/14			
Benzene	ND	0.00100	mg/1,		ND				20	
Toluene	ND	0.00100	0		ND				20	
Ethylbenzene	ND	0.00100			ND				20	
Xylene (p/m)	ND	0.00200			ND				20	
Xylene (0)	ND	0.00100	4		ND				20	
Surrogate: 4-Bromofluorobenzene	67.9		ug l	60.0		<i>113</i>	80-120			
Surrogate: 1,4-Difluorohenzene	46.5		"	60.0		77.4	80-120			S-GC

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Límit	Notes
Batch P4G1607 - General Preparation (GC)										
Blank (P4G1607-BLK1)				Prepared &	Analyzed	07/15/14				_
Benzene	ND	0 00100	mg/kg wet							
Toluene	ND	0.00200	н							
Ethylbenzene	NÐ	0.00100								
Xylene (p/m)	ND	0,00200	**							
Xylene (o)	ND	0,00100	11							
Surrogate: [.4-Difluorobenzene	56.6		ug kg	60.0		94.4	75-125			
Surrogate: 4-Bromofluorobenzene	507		"	60.0		84.6	75-125			
LCS (P4G1607-BS1)				Prepared &	z Analyzed:	07/15/14				
Benzene	0.100	0.00100	ing/kg wet	0.100	_	100	70-130			
Toluene	0.0952	0.00200	н	0,100		95.2	70-130			
Ethylbenzene	0.0896	0 00100		0.100		89.6	70-130			
Xylene (p/m)	0.190	0.00200	v	0,200		95.1	70-130			
Xylene (o)	0.0949	0.00100	1	0.100		94.9	70-130			
Surrogate: 4-Bromofluorobenzene	62.5		ug kg	60.0		104	75-125			
Surrogate: 1,4-Difluorobenzene	61.1		"	60.0		102	75-125			
Duplicate (P4G1607-DUP1)	Sour	<u></u>	-10	Prepared: 0	07/15/14_A	nalyzed: 07	/16/14			
Benzene	ND	0.00100	mg/kg wet		ND				20	
Toluene	ND	0.00200			ND				20	
Ethylbenzene	ND	0.00100			ND				20	
Xylene (p/m)	ND	0.00200	v		ND				20	
Xylene (o)	ND	0.00100	•		ND				20	
Surrogate: 4-Bromofluorobenzene	47.1		ug kg	60.0		78.5	75-125			
Surrogate: 1,4-Difluorobenzene	57.8		"	60.0		96.3	75-125			

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Límit	Notes
Batch P4G1506 - *** DEFAULT PREP ***										
Blank (P4G1506-BLK1)				Prepared &	Analyzed:	07/15/14				
Chloride	ND	0 500	mg/L							
Nitrate as N	NÐ	0,0800								
Sulfate	ND	1.00	ч							
LCS (P4G1506-BS1)				Prepared &	Analyzed:	07/15/14				
Chloride	9.81	0.500	mg/L	10.0		98.1	80-120			
Sulfate	9.82	1 00		10.0		98,2	80-120			
Nitrate as N	2,16	0.0800		2.00		108	80-120			
LCS Dup (P4G1506-BSD1)				Prepared &	Analyzed:	07/15/14				
Chiloride	9.99	0.500	mg/L	10,0		99.9	80-120	1.87	20	
Sulfate	10.0	1.00	"	10.0		100	80-120	2.05	20	
Nitrate as N	2.22	0.0800	м	2.00		111	80-120	2.88	20	
Matrix Spike (P4G1506-MS1)	Sou	rce: 4G07001-	-01	Prepared &	Analyzed:	07/15/14				
Nitrate as N	3.76	0.0800	mg/L	11.0	1 67	19.0	80-120			
Chloride	171	2.50	0	55.0	117	98.6	80-120			
Sulfate	210	5.00	ч	55.0	153	103	80-120			
P4G1509 - *** DEFAULT PREP ***										
Blank (P4G1509-BLK1)				Prepared &	Analyzed:	07/15/14				
Fotal Dissolved Solids	ND	20.0	mg/I,							
Duplicate (P4G1509-DUP1)	Sou	rce: 4G03014-	-01	Prepared &	Analyzed:	07/15/14				
Total Dissolved Solids	815	20.0	mg/L		815			0.00	20	

Permian Basin Environmental Lab, L.P.

Pride Energy Company	Project: Pride Energy Company	Fax: (918) 524-9292
P.O. BOX 701950	Project Number: South Four Lakes Tank Battery	
Tulsa OK, 74170-1950	Project Manager: Matt Pride	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4G1509 - *** DEFAULT PREP ***			18 1.11						, <u></u>	
Duplicate (P4G1509-DUP2)	Sou	rce: 4G07004-	04	Prepared &	Analyzed:	07/15/14				
Total Dissolved Solids	1660	20.0	mg/L		1700			2,38	20	

Total Metals by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4H0402 - EPA 3005A										
Blank (P4H0402-BLK1)				Prepared: (07/28/14 A	nalyzed: 08	/01/14			
Manganese	ND	0.00100	mg/L							
Iron	ND	0.0170	"							
LCS (P4H0402-BS1)				Prepared: ()7/28/14 A	natyzed: 08	/01/14			
Iron	0.940	0.0170	mg/L	1.00		94.0	85-115			
Manganese	0.951	0.00100	Ð	1.00		95.1	85-115			

Notes and Definitions

- S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
- QAL1 The Laboratory is not NELAC Certified for this analyte or analysis.
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Ban Bracen

8/8/2014

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Date:

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Company Name: Pride Energy Company

Billing Address: P. O. Box 701950

City, State, Zip Code: Tulsa, OK 74170-1950

Fax No: 918-524-9292

Email Report to: mattp@pride-energy.com

Telephone No: 918-524-9200

Direct Invoice To: Matt Pride

Permian Basin Environmental Lab, LP 10014 S. County Road 1213 Midland, Texas 79706 Phone: 432-661-4184

Project Name: Pride Energy Company Project #: South Four Lakes Tank Battery Project Location: T12S-R34E, Section 2, Unit Letter G coc #: V-126-0714

San	npler: <u>Gil Van Deventer</u>			Ľ	PL]] ē	E.	Ø		4																			
	Printed				9	Signa	ture			<u> </u>									Ā	\nal	yze F	or:		_	_	- 7 *	_	Ť/	AT
•				·													TCL				-		+		<u> </u>				
								mee	ervati				Matr		- -		TOTA		+		+	ō	+	- 				i	ĺ
LAB # (lab use only)	FIELD CODE	Date Sampled	Time Sampled	Field Filtered	No. of Containers			'EX only)	T	k TDS)	(Specify)		Sludge	pecity):	TPH: 418.1 8015M 1005 1006	BTEX 8021B	Votatiles	Semivolatiles Metals: As Ao Ba Cd Cr Ph Ho Se		Anians (Cl. SO4, CO3, HCO3)	Chloride (325.3 / SM4500B)	Sultate - SO ₄ (EPA 375.1 / SM450	Nitrate - NO ₃ (EPA WW 352.1)	TDS (160.1 / SM2540C)		Total Mn	SPLP 1312	RUSH (Pre-Schedule)	Standard TAT
4607001-01	MW - 5	07/03/14	1330	N		X	-	- †		-		X	-+-		1-	X				\uparrow	Ťx		İx					[<u> </u>	X
-02	MW - 7	07/03/14	1200	N	•	X	-+	\dashv	-+-	-		Х		-	1-	X			+	+	X	X	X	x	X	X			X
-03	MW - 9	07/03/14	1100	N		X				+-	+	Х	<u> </u>	-		X				╎	$d \mathbf{x}$	X	X	tx	Tx	X			X
-04	MW - 10	07/03/14	1000	N		X		-+				Х				X			+		X	X	X	X	X	X		<u>├</u> ──	X
-05	MW - 13	07/03/14	1300	N		X				<u>-</u>		Х			+	Х	┝╌ϯ		+-		X	-	X	x	_	X		 	X
-06	MW - 14	07/02/14	1550	N		X		+	-+			Х			\mathbf{t}	X			╧	+-		x	tx	(X		x		<u></u>	X
-07	MVV - 15	07/02/14	1700	N		X			-†-			X			╀	X	┝╍╺┝╸			+	X		x	X	_	X		┢───	X
-08	MVV - 16	07/02/14	1510	N				-	-+-		1.	X	╧	╞	ϯ╴	x				Ť				_		1x		 	X
-09	RW - 1d	07/03/14	1410	N		X		-†		+	+	X				X			┢	1	X	_	X	_	_	X			X
-10	RW - 2d	07/03/14	1500	N		X				\top		X	-+-	+-	╀──	X	┝╌╀╸	-	1		<u> </u>	X		-					X
Special Instructions: E	Email results to: gil@trident-enviro	nmental.con	and ma	ttp@)pric	de-e	ene	rgy	.co	m	<u> </u>				I		Sam Sam Labo	ples	Coo	?	rs Ini	tact	<u> </u>		Q		N N	•	, <u> </u>
Relinquished by	Date Time 7/4/14/1:30	Received by:										Da				9			., -										
Reliaquished by:	Date Time	Received by PB		1					_		-	Da 1 4	1		Tim 33					3.	0	ЮÇ	4	:	4				

Company Name: Trident Environmental

Address: PO Box 12177

City, State, Zip Code: Odessa TX 79768-2177

Fax No: 413-403-9968

Email Report to: gil@trident-environmental.com

Project Manager: Gil Van Deventer

Telephone No: 432-638-8740

PERMIAN BASIN ENVIRONMENTAL LAB, LP 10014 SCR 1213 Midland, TX 79706

Analytical Report

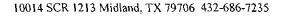
Prepared for:

Matt Pride Pride Energy Company P.O. BOX 701950 Tulsa, OK 74170-1950

Project: Pride Energy Company Project Number: South Four Lakes Tank Battery Location: T12S-R34E, Section 2, Unit Letter G

Lab Order Number: 3F14001

NELAP/TCEQ # T104704156-12-1


Report Date: 06/26/13

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	3F14001-01	Water	06/13/13 11:00	06-14-2013 14:18
MW-5	3F14001-02	Water	06/12/13 09:30	06-14-2013 14:18
MW-7	3F14001-03	Water	06/12/13 18:00	06-14-2013 14:18
MW-9	3F14001-04	Water	06/12/13 17:00	06-14-2013 14:18
MW-10	3F14001-05	Water	06/12/13 16:00	06-14-2013 14:18
MW-13	3F14001-06	Water	06/13/13 12:00	06-14-2013 14:18
MW-14	3F14001-07	Water	06/13/13 09:00	06-14-2013 14:18
MW-15	3F14001-08	Water	06/12/13 15:00	06-14-2013 14:18
MW-16	3F14001-09	Water	06/12/13 12:30	06-14-2013 14:18
MW-1D	3F14001-10	Water	06/13/13 13:00	06-14-2013 14:18
MW-1S	3F14001-11	Water	06/12/13 10:00	06-14-2013 14:18

Fe and Mn analysis were subcontracted to Test America. Their report is attached to the back of this report. Their certification number is T104704223-10-6-TX.

MW-1

3F14001-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Peri	nian Basin E	nvironme	ntal Lab,	L.P.				
Organics by GC									
Benzene	0.00129	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Foluene	0.00369	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Ethylbenzene	0.0759	0.00100	mg/l_	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (p/m)	0.0770	0.00200	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (0)	0.0115	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		115 %	80-	120	P3F1803	06-17/13	06/18/13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		99.2 %	80-	120	P3F1803	06/17/13	06 [,] 18 13	EPA 8021B	
General Chemistry Parameters by E	PA / Standard Metho	ds							
Chloride	255	2.50	mg/L	5	P3F1901	06/17/13	06/19/13	EPA 300.0	
Nitrate as N	0.540	0.0800	mg/L	1	P3F1901	06/17/13	06/19/13	EPA 300.0	
Total Dissolved Solids	815	10.0	mg/L	1	P3F2107	06/18/13	06/21/13	EPA 160.1	
Fotal Metals by EPA / Standard Me	thods			·		<u> </u>			
Iron	0.370	1.70	mg/L	1	P3F2605	06/18/13	06/19/13	EPA 6010B	SUB-1,
Manganese	0.320	0.0170	mg/L	1	P3F2605	06/18/13	06/19/13	EPA 6010B	su

Fax: (918) 524-9292

MW-5

3F14001-02 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
L · · · · · · · · · · · · · · · · · · ·	Peri	nian Basin Ei	nvironme	ntal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Toluene	0.00144	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Ethylbenzene	0.00241	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (p/m)	0.00347	0.00200	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (0)	ND	0.00100	tng/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-	120	P3F1803	06/17/13	06-18-13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		106 %	80-	120	P3F1803	06:17/13	061813	EPA 8021B	
<u>General Chemistry Parameters by EPA / S</u>	tandard Metho	ds							
Chloride	372	12.5	mg/L	25	P3F1901	06/17/13	06/19/13	EPA 300.0	
Nitrate as N	5.00	0.400	mg/L	5	P3F1901	06/17/13	06/19/13	EPA 300.0	
Total Dissolved Solids	1220	10.0	mg/L	t	P3F2107	06/18/13	06/21/13	EPA 160.1	
Total Metals by EPA / Standard Methods									
Iron	2.80	1.70	mg/L	1	P3F2605	06/18/13	06/19/13	EPA 6010B	SUB-1
Manganese	0.200	0.0170	mg/L	1	P3F2605	06/18/13	06/19/13	EPA 6010B	SUB-1

Permian Basin Environmental Lab, L.P.

MW-7

3F14001-03 (Water)

	 					·····			
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian Basin Environmental Lab, L.P.

Organics by GC	· · · · · · · · · · · · · · · · · · ·	· · ·							
Benzene	ND	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Toluene	0.00126	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Ethylbenzene	0.00183	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (p/m)	0.00231	0.00200	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		97.2 %	80-12	20	P3F1803	06 17/13	06 18 13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		108 %	80-12	20	P3F1803	06/17/13	06 18/13	EPA 8021B	
General Chemistry Parameters by E	PA / Standard Method	ls							_
Chloride	192	12.5	mg/L	25	P3F1901	06/17/13	06/19/13	EPA 300.0	
Nitrate as N	0.915	0.400	mg/L	5	P3F1901	06/17/13	06/19/13	EPA 300.0	
Total Dissolved Solids	830	10.0	mg/L	1	P3F2107	06/18/13	06/21/13	EPA 160.1	
Total Metals by EPA / Standard Me	thods								
Iron	0.210	1.70	mg/L	1	P3F2605	06/18/13	06/19/13	EPA 6010B	SUB-1, J
Manganese	0.0670	0.0170	mg/L	1	P3F2605	06/18/13	06/19/13	EPA 6010B	SUB-1

Permian Basin Environmental Lab, L.P.

MW-9

3F14001-04 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Net-
Analyte		Lunit	OTHIS	Dimition	Datch	Frepareu	Analyzed	Method	Note
	Perr	nian Basin Ei	nvironme	ntal Lab, I	L. P.				
Organics by GC								<u> </u>	
Benzene	ND	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Toluene	0.00143	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	١	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Surrogate: 4-Bromofluorohenzene		107 %	80-	120	P3F1803	06 17:13	06/18/13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		108 %	80-	120	P3F180 3	06/17/13	06 18 13	EPA 8021B	
General Chemistry Parameters by F	PA / Standard Metho	ds							
Chloride	329	12.5	mg/L	25	P3F1901	06/17/13	06/19/13	EPA 300.0	
Nitrate as N	0.775	0.400	mg/L	5	P3F1901	06/17/13	06/19/13	EPA 300.0	
Total Dissolved Solids	1360	10.0	mg/L	1	P3F2107	06/18/13	06/21/13	EPA 160.1	

1.70

0.0170

0.140

mg/L

mg/L

L

1

P3F2605

P3F2605

06/18/13

06/18/13

06/19/13

06/19/13

EPA 6010B

EPA 6010B

SUB-1, J

SUB-1

Total Metals by EPA / Standard Methods Iron 0.0870

Manganese

Permian Basin Environmental Lab, L.P.

Fax: (918) 524-9292

MW-10

3F14001-05 (Water)

		·····							
}		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte		<u></u>			·		Analyzed		
	Permia	n Basin Ei	ivironme	ntal Lab, L	.P.				

Organics by GC									
Benzene	ND	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	-
Tolucne	ND	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Ethylbenzene	0.00216	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (p/m)	0.00417	0.00200	mg/L	L	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		90.1 %	80-1	20	P3F1803	06/17/13	06/18/13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		108 %	80-1.	20	P3F1803	06/17/13	06/18/13	EPA 8021B	
General Chemistry Parameters by EPA /	<u>Standard Metho</u>	ds							
Chloride	213	12.5	mg/L	25	P3F1901	06/17/13	06/19/13	EPA 300.0	
Nitrate as N	3.44	0.400	mg/L	5	P3F1901	06/17/13	06/19/13	EPA 300.0	
Total Dissolved Solids	1120	10.0	mg/L	1	P3F2107	06/18/13	06/21/13	EPA 160.1	
Total Metals by EPA / Standard Methods									
Iron	ND	1.70	mg/L	1	P3F2605	06/18/13	06/19/13	EPA 6010B	SUB-1
Manganese	ND	0.0170	mg/L	1	P3F2605	06/18/13	06/19/13	EPA 6010B	SUB-1

Permian Basin Environmental Lab, L.P.

MW-13

3F14001-06 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pen	nian Basin Ei	nvironme	ntal Lab, I	L.P.				
Organics by GC								<u> </u>	
Benzene	0.819	0.00500	mg/L	5	P3F1803	06/17/13	06/18/13	EPA 8021B	
Toluene	0.0202	0.00500	mg/L	5	P3F1803	06/17/13	06/18/13	EPA 8021B	
Ethylbenzene	0.205	0.00500	mg/L	5	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (p/m)	0.453	0.0100	mg/L	5	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (0)	0.0440	0.00500	mg/L	5	P3F1803	06/17/13	06/18/13	EPA 8021B	
Surrogate: 4-Bromofluorohenzene		82.6 %	80-	120	P3F1803	06/17/13	06/18/13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		94.5 %	80-	120	P3F1803	06/17/13	06/18/13	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Metho	ds							
Chloride	2310	25.0	mg/L	50	P3F1901	06/17/13	06/19/13	EPA 300 0	
Nitrate as N	0.705	0.400	mg/L	5	P3F1901	06/17/13	06/19/13	EPA 300.0	
Total Dissolved Solids	5720	10.0	mg/L	1	P3F2107	06/18/13	06/21/13	EPA 160.1	
Total Metals by EPA / Standard Method	ls	.							
Iron	13.0	1.70	mg/L	1	P3F2605	06/18/13	06/19/13	EPA 6010B	SUB-1

mg/L

0.0170

4.00

Manganese

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

P3F2605

06/18/13

06/19/13

EPA 6010B

SUB-1

1

MW-14

3F14001-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Permian	Basin	Environmental	Lab, L.P.
---------	-------	---------------	-----------

Organics by GC	<u> </u>								
Benzene	ND	0.00100	mg/L	L	P3F1803	06/17/13	06/18/13	EPA 8021B	
Tolucne	ND	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Ethylbenzene	0.00108	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		78.4%	80-1.	20	P3F1803	06/17/13	06/18/13	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		114%	80-12	20	P3F1803	06/17/13	06/18/13	EPA 8021B	
General Chemistry Parameters by EPA / S	tandard Method	ls							
Chloride	302	12.5	mg/L	25	P3F1901	06/17/13	06/19/13	EPA 300.0	
Nitrate as N	27.8	0.400	mg/L	5	P3F1901	06/17/13	06/19/13	EPA 300.0	
Total Dissolved Solids	1380	10.0	mg/L	1	P3F2107	06/18/13	06/21/13	EPA 160.1	
Total Metals by EPA / Standard Methods	<u></u>								
Iron	ND	1.70	mg/L	1	P3F2605	06/18/13	06/19/13	EPA 6010B	SUB-1
	112								000.

MW-15

3F14001-08 (Water)

			••••••						
		Reporting							i
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		D ' D			n				

Permian	Basin	Environment	al La	b, L.P <i>.</i>

Organics by GC									
Benzene	0.00565	0.00500	mg/L	5	P3F1803	06/17/13	06/18/13	EPA 8021B	
Toluene	0.0295	0.00500	mg/Ł	5	P3F1803	06/17/13	06/18/13	EPA 8021B	
Ethylbenzene	0.205	0.00500	mg/L	5	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (p/m)	0.471	0.0100	mg/L	5	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (0)	0.0713	0.00500	mg/L	5	P3F1803	06/17/13	06/18/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		78.2 %	80-1.	20	P3F1803	06/17/13	06/18/13	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		98.7 %	80-1.	20	P3F1803	06/17/13	06/18/13	EPA 8021B	
General Chemistry Parameters by EPA	/ Standard Metho	ds							
Chloride	770	12.5	mg/L	25	P3F1901	06/17/13	06/19/13	EPA 300.0	
Nitrate as N	0.905	0.400	mg/L	5	P3F1901	06/17/13	06/19/13	EPA 300.0	
Total Dissolved Solids	1960	10.0	mg/L	1	P3F2107	06/18/13	06/21/13	EPA 160.1	
Total Metals by EPA / Standard Method	s								
Iron	4.00	1.70	mg/L	1	P3F2605	06/18/13	06/19/13	EPA 6010B	SUB-1
Manganese	2.60	0.0170	mg/L	1	P3F2605	06/18/13	06/19/13	EPA 6010B	SUB-1

Permian Basin Environmental Lab, L.P.

Manganese

Project: Pride Energy Company Project Number: South Four Lakes Tank Battery Project Manager: Matt Pride

MW-16

3F14001-09 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perr	nian Basin Ei	nvironme	ntal Lab, I	L.P.				
Organics by GC		· · · · · · · · · · · · · · · · · · ·			-				
Benzene	ND	0.00100	mg/L	l	P3F1803	06/17/13	06/18/13	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Surrogane: 4-Bromofluorobenzene		96.9 %	80-	120	P3F1803	06/17/13	06/18/13	EPA 8021B	
Surrogate:],4-Difluorobenzene		117 %	80-	120	P3F1803	06417/13	06118113	EPA 8021B	
General Chemistry Parameters by EPA / Star	idard Metho	ds							
Chloride	799	12.5	mg/L	25	P3F1901	06/17/13	06/19/13	EPA 300.0	
Nitrate as N	4.14	0.400	mg/L	5	P3F1901	06/17/13	06/19/13	EPA 300.0	
Fotal Dissolved Solids	1700	10.0	mg/L	1	P3F2107	06/18/13	06/21/13	EPA 160.1	
Total Metals by EPA / Standard Methods									
Iron	ND	1.70	mg/L]	P3F2605	06/18/13	06/19/13	EPA 6010B	SUB-1

mg/L

1

P3F2605

06/18/13

0.0170

ND

SUB-1

EPA 6010B

06/19/13

Permian Basin Environmental Lab, L.P.

EPA 6010B

EPA 6010B

SUB-1

SUB-1

MW-ID

3F14001-10 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perr	nian Basin Ei	nvironme	ntal Lab, l	L.P.				
Organics by GC									
Benzene	0.872	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Toluene	0.00657	0.00100	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Ethylbenzene	0.441	0.00100	mg/L	I	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (p/m)	2.00	0.00200	mg/L	1	P3F1803	06/17/13	06/18/13	EPA 8021B	
Xylene (o)	0.576	0.00100	mg/L	١	P3F1803	06/17/13	06/18/13	EPA 8021B	
Surrogate: 4-Bromofluorobensene		109 %	80-	120	P3F1803	06/17/13	06/18/13	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		123 %	80-	120	P3F1803	06/17/13	06418413	EPA 8021B	S-GC
General Chemistry Parameters by E	PA / Standard Metho	ds				<u> </u>			
Chloride	813	12.5	mg/L	25	P3F1901	06/17/13	06/19/13	EPA 300.0	
Nitrate as N	0.795	0.400	mg/L	5	P3F1901	06/17/13	06/19/13	EPA 300.0	
Total Dissolved Solids	1830	10.0	mg/L	1	P3F2107	06/18/13	06/21/13	EPA 160.1	

mg/L

mg/L

l

1

P3F2605

P3F2605

06/18/13

06/18/13

06/19/13

06/19/13

1.70

0.0170

ND

0.220

Manganese

Iron

Permian Basin Environmental Lab, L.P.

Manganese

Project: Pride Energy Company Project Number: South Four Lakes Tank Battery Project Manager: Matt Pride

Fax: (918) 524-9292

EPA 6010B

SUB-1

MW-1S

3F14001-11 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin Ei	nvironme	ntal Lab, I	L.P.				
Organics by GC						_			
Benzene	1.98	0.0250	mg/L	25	P3F1903	06/19/13	06/19/13	EPA 8021B	
Toluene	0.0308	0.0250	mg/Ľ	25	P3F1903	06/19/13	06/19/13	EPA 8021B	
Ethylbenzene	0.492	0.0250	mg/L	25	P3F1903	06/19/13	06/19/13	EPA 8021B	
Xylene (p/m)	2.57	0.0500	mg/L	25	P3F1903	06/19/13	06/19/13	EPA 8021B	
Xylene (0)	0.794	0.0250	mg/L	25	P3F1903	06/19/13	06/19/13	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		87.8 %	80-	120	P3F1903	06/19/13	06-19-13	EPA 8021B	
Surrogute: 1,4-Difluorobenzene		99.0 %	80-	120	P3F1903	06/19/13	06/19/13	EPA 8021B	
<u>General Chemistry Parameters by EP</u>	A / Standard Metho	<u>ls</u>				<u></u>			
Chloride	323	12.5	mg/L	25	P3F1901	06/17/13	06/19/13	EPA 300.0	
Nitrate as N	0.680	0.400	mg/L	5	P3F1901	06/17/13	06/19/13	EPA 300.0	
Fotal Dissolved Solids	1120	10.0	mg/L	ı	P3F2107	06/18/13	06/21/13	EPA 160.1	
<u> Fotal Metals by EPA / Standard Meth</u>	10ds	_							
Iron	3.70	1.70	mg/l_	1	P3F2605	06/18/13	06/19/13	EPA 6010B	SUB-

mg/L

1

P3F2605

06/18/13

06/19/13

0.0170

0.420

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

	. .	Reporting		Spike	Source	• · · · · -	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3F1803 - General Preparation	(GC)			<u> </u>	·					
Blank (P3F1803-BLK1)				Prepared: (06/17/13 Ar	nalyzed: 06	/18/13			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	•							
Ethylbenzene	NÐ	0.00100	*							
Xylene (p/m)	ND	0.00200	"							
Xylene (0)	ND	0.00100								
Surrogate: 4-Bromofluorobenzene	56.4		ug l	60.0		93.9	80-120			
Surrogate: 1,4-Difluorobenzene	64.4		"	60.0		107	80-120			
LCS (P3F1803-BS1)				Prepared: (06/17/13 At	nalyzed: 06	/18/13			
Benzene	0.102	0,00100	mg/L	0.100	- <i>a</i>	102	80-120			
Toluene	0.0855	0.00100		0.100		85.5	80-120			
Ethylbenzene	0.0840	0.00100	н	0.100		84.0	80-120			
Xylene (p/m)	0, 80	0.00200		0.200		90.0	80-120			
Xylene (0)	0.0842	0.00100		0.100		84.2	80-120			
Surrogate: 4-Bromofluorobenzene	56.8		ug l	60.0		94.6	80-120			<u></u>
Surrogate: 1,4-Difluorobenzene	52.2		"	60.0		87.0	80-120			
LC <u>S Dup (</u> P3F1803-BSD1)				Prepared: (06/17/13 Ar	nalyzed: 06	/18/13			
F	0.0878	0.00100	mg/L	0.100		87.8	80-120	14.5	20	
Toluene	0.0843	0.00100		0.100		84,3	80-120	1.46	20	
Ethylbenzene	0.0803	0.00100	0	0.100		80.3	80-120	4.47	20	
Xylene (p/m)	0.166	0.00200	41	0,200		83.2	80-120	7,80	20	
Xylene (0)	0.0851	0.00100	4	0.100		85.1	80-120	0.992	20	
Surrogate: 4-Bromofluorobenzene	61.4		ng l	60.0		102	80-120			
Surrogute: 1,4-Difluorobenzene	57.1		"	60.0		<i>95.2</i>	80-120			
Matrix Spike (P3F1803-MS1)	Sou	rce: 3F14001-	D1	Prepared: (06/17/13 At	nalyzed: 06	/18/13			
Benzene	0.0344	0.00100	mg/L	0,100	0.00129	33.1	80-120			QM-0
Toluene	0.0296	0.00100	.,	0.100	0.00369	25.9	80-120			QM-0
Ethylbenzene	0.0578	0.00100		0,100	0.0759	NR	80-120			QM-0
Xylene (p/m)	0.0855	0.00200	12	0.200	0.0770	4.24	80-120			QM-0
Xylene (0)	0.0255	0.00100		0.100	0.0115	14,0	80-120			QM-0
Surrogate: 4-Bromofluorobenzene	64.7		ug l	60.0		108	80-120	- · · · · · ·		
Surrogate: 1,4-Difluorobenzene	64.2		0	60.0		107	80-120			

Permian Basin Environmental Lab, L.P.

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3F1903 - General Preparation	(GC)					· · · · · ·				
Blank (P3F1903-BLK1)	<u></u>			Prepared &	Analyzed:	06/19/13				
Benzene	ND	0.00100	mg/L	·						·
Toluene	ND	0.00100	м							
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00200	•1							
Xylene (o)	ND	0.00100	н							
Surrogate: 4-Bromafluorobenzene			ug l	60.0		67.3	80-120		v ·	
Surrogate: 1,4-Diffuorobenzene	60.9		"	60.0		102	80-120			
LCS (P3F1903-BS1)				Prepared &	Analyzed:	06/19/13				
Benzene	0.0924	0,00100	mg/L	0.100		92.4	80-120			·
Toluene	0.0814	0.00100	н	0.100		81.4	80-120			
Ethylbenzene	0.0848	0.00100	н	0,100		84.8	80~120			
Xylene (p/m)	0.167	0.00200		0.200		83.4	80-120			
Xylene (0)	0.0815	0.00100		0.100		81.5	80-120			
Surrogate: 4-Bromofluarobenzene	51.9		ug I	60.0		86.5	80-120			
Surrogate: 1,4-Difluorobenzene	63.7		"	60.0		106	80-120			
LCS Dup (P3F1903-BSD1)				Prepared &	Analyzed:	06/19/13				
Benzene	0.0856	0.00100	mg/L	0.100		85.6	80-120	7.60	20	
Toluene	0.0819	0.00100		0.100		81.9	80-120	0.563	20	
Ethylbenzene	0.0829	0.00100	••	0,100		82.9	80-120	2.24	20	
Xylene (p/m)	0.164	0,00200	н	0,200		81,9	80-120	1.92	20	
Xylene (o)	0,0806	0.00100	м	0.100		80.6	80-120	1.10	20	
Surrogate: 4-Bromofluorobenzene	57.0		ug l	60.0		95.0	80-120			
Surrogate: 1,4-Difluorobenzene	59.5		"	60.0		99.I	80-120			
Matrix Spike (P3F1903-MS1)	Sou	rce: 3F18001-(01	Prepared &	Analyzed:	06/19/13				
Benzene	0.169	0.00100	mg/L	0.100	ND	169	80-120			QM-0:
Toluene	0.148	0.00100	"	0,100	ND	148	80-120			QM-0:
Ethylbenzen e	0.130	0.00100		0 100	ND	130	80-120			QM-05
Xylene (p/m)	0 280	0.00200		0 200	ND	140	80-120			QM-05
Xylene (0)	0.115	0.00100	0	0,100	ND	115	80-120			
Surrogate: 4-Bromofluorobenzene	64.2		ug l	60.0		107	80-120	·		
Surrogate: 1,4-Difluorobenzene	68.3		"	60.0		114	80-120			

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3F1901 - *** DEFAULT PREP ***										
Blank (P3F1901-BLK1)				Prepared: (06/17/13 A	nalyzed: 06	/19/13	_		
Chloride	ND	0.500	mg/L							
Nitrate as N	ND	0 0800								
LCS (P3F1901-BS1)				Prepared: ()6/17/13 A	nalyzed: 06	/19/13			
Chloride	9.84		mg/L	10.0		98.4	80-120			
Nitrate as N	2.75		Ð	2.00		137	80-120			
LCS Dup (P3F1901-BSD1)				Prepared: ()6/17/13 A	nalyzed: 06	/19/13			
Chloride	9.75		mg/L	10.0		97.5	80-120	0.970	20	
Nitrate as N	2.73		и	2.00		137	80-120	0.584	20	
Duplicate (P3F1901-DUP1)	Sou	rce: 3F14001-	01	Prepared: (06/17/13 A					
Chloride	250	2,50	mg/L		255			2.10	20	
Nitrate as N	1.18	0.400	0		0,540			74.1	20	
Matrix Spike (P3F1901-MS1)	Sou	rce: 3F14001-	01	Prepared: ()6/17/13 A	nalyzed: 06	/19/13			
Chloride	300	2.50	mg/L	42.5	255	106	80-120			
Nitrate as N	13,7	0.400	н	8.50	0,540	155	80-120			
Manix Spike (P3F1901-MS2)	Sou	rce: 3F14001-	11	Prepared: (06/17/13 A	nalyzed: 06	/19/13			
As N	53.4	2.00	mg/L	50.0	0,680	106	80-120			
Chloride	539	12.5	n	250	323	86.3	80-120			
Batch P3F2107 - *** DEFAULT PREP ***										
Blank (P3F2107-BLK1)				Prepared: ()6/18/13 A	nalyzed: 06	/21/13			
Total Dissolved Solids	ND	10.0	mg/L						·	

Permian Basin Environmental Lab, L.P.

Pride Energy Company	Project: Pride Energy Co	ompany	Fax: (918) 524-9292
P.O. BOX 701950	Project Number: South Four Lake	es Tank Battery	
Tulsa OK, 74170-1950	Project Manager: Matt Pride		
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3F2107 - *** DEFAULT PREP ***										
Duplicate (P3F2107-DUP1)	Sou	rce: 3F14001-	01	Prepared: 0	6/18/13 Ai	alyzed: 06	/21/13			
Total Dissolved Solids	770	10.0	mg/L		815			5.68	20	

Notes and Definitions

SUB-1 Subcontract of analyte/analysis to Test America TCEQ/NELAC # T104704223-10-6-TX

- S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
- QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Bion Barrion

6/26/2013

Brent Barron, Laboratory Director/Technical Director

Report Approved By:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed m accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Date:

Pride Energy Company	Project: Pric	de Energy Company	Fax: (918) 524-9292
P.O. BOX 701950	Project Number: Sou	ath Four Lakes Tank Battery	
Tulsa OK, 74170-1950	Project Manager: Mat	tt Pride	

Permian Basin Environmental Lab, L.P.

Permian Basin Environmental Lab, LP 10014 S. County Road 1213 Midland, Texas 79706 Phone: 432-661-4184

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

. •

	· .														• •											a c
Company Name	Pride Energy Company	Compar	vy Name:	Trid	lent	Envi	onr	nent	al		-	Pr	oject	Nan	ne: I	^o ride	En	erg	y C	omp	any					Page
Direct Involce To:	Matt Pride	Project N	Manager:	<u>Gil '</u>	Van	Dev	ente	er			-		Pr	oject	#:	Souti	h'Fo	our	Lak	es T	ank	Bat	ten	/		
Billing Address:	P. O. Box 701950	_	Address:	PO	Box	(121	77				-	Proje	ct Lo	catio	on: -	[128	S-R3	34E	, Se	ectio	n 2,	Unit	t Le	tter	G	
City, State, Zip Code:	Tulsa, OK 74170-1950	City, State, Z	lip Code:	Ode	essa	i TX 7	797	<u>6</u> 8-2	177		_					/-12										
Telephone No:	918-524-9200	Telepl	hone No:	432	-638	<u>8</u> -874	0	_			-															
Fax No:	918-524-9292	_	Fax No:	413	-403	3-996	8				-															
Email Report to:	mattp@pride-energy.com	Email R	eport to:	gj/@	tride	ent-en	viro	nmer	ntal.c	om	•															
Sampler	Gil Van Deventer	-	4 y []	T	Z	2.3	4	<u> </u>			-															
•	Printed				<u> </u>	Signatu	re	• .			_							An	alyze	For:			منتفسي		T	AT]
		_						1								TCLP	-	\square				<u> </u>	1	\mp		\square
· <u> </u>	· · · · · · · · · · · · · · · · · · ·				·		Pre	eserva	tive			Matr	bx .	1006			Se		+	20	+	┢┼┼╴	+	+		
3F14001		Date Sampled	Time Sampled	Field Fittered	0. of Containers		1BTEX only)	NaOH	H ₂ SO ₄ (Nitrate only)	Other (Specify)	ter	Sludge	er (specify):	3015M 1005	BTEX 8021B	volaules Semivolatiles	Metals: As Ag Ba Cd Cr Pb Hg	ons (Ca, Mg, Na, K)	Anlons (CI, SO4, CO3, HCO3).	Unionde (325.37 SM4500B) Suttate - SO4 (EPA 375.17 SM450)	Nitrate - NO ₃ (EPA WW 352.1)	TDS (160.1 / SM2540C)	lotal Fe Total Mis	P 1312	Ē	Standard TAT
LAB # (lab use only) .	FIELD CODE				°N N	e CN H	말	Na	т ž	e le	Water	Slue Slue	8 B	H	BTE	Sem	Meta	Catic	Anlor	Sulfa	Nitra		1012 1 1 012	SPLP	LS.	Stan
-0	<u>MW - 1</u>	6-13-13 11		Ν		X	·				Х				X					X	X	XX	ХУ	$\langle \Box \rangle$		Х
-02	MW - 5	0	930	N		X	<u> </u>	\downarrow		4	X				Х		Ŀ	·		X .	X	X);	<u>× /</u>	K		X
-03	MW - 7 MW - 9		00	Ν		X		-			Х		4		X					X	X	XX	X y	4		X
-04	MW - 10		700	N		X			:	_	Х		`		X					×	X	X	X į	凵		X
-0 <u>\$</u> -06	MW - 13		000	N		X		++	-		X		_		X					X	X		×х	$(\square$	<u> </u>	X
-07	MW - 14		00	N		X X		++	- -		X				X	<u> </u>			_	X	X		X X	4	<u> </u>	X
-08	MW - 15		900 500	N N		X	+	┝		+	X				X				_	×	ΙX,		<u>ر x</u>	<u>4</u>	┞	X
-09	NW - 16		130 130	N		Â.	+	+	-		X X	<u>-</u>	-		X					×	Ķ	X >	<u>< x</u>	4	<u> </u>	X
-10	RW - 1D		300	N		X	-{	┽┼	-+	┥┥	Â			-	X X	-+-	$\left \right $	┍╼╺┟		×	Ŕ		XX	4-	┡	X
-11	RW - 2S		000	N		x	+	╆╸╢		+	Â		+		$\hat{\mathbf{x}}$	+-				× ×		XX XX		K	┣	X
Special Instructions: Ema	il results to: gil@trident-enviro	Received by:			⊵prio		nerç	 gy.co	I_ om		Da	te		Time	S S	ampl	es C	001?	iers	ntact	22	2 2 2 2 4	\mathbf{X}^{\prime}	<u>ҚІ</u> N N	L	
Relinquished by:	Date Time	Received by PBEL		A	Þ			7- 		6	(Da [[]			Time				• •)	i	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Houston 6310 Rothway Street Houston, TX 77040 Tel: (713)690-4444 TestAmerica Job ID: 600-74862-1

Client Project/Site: Analytical Revision: 1

Permian Basin Environmental Lab 10014 SCR 1213 Midland, Texas 79706

Attn: Brent Barron

Elinditor

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

ww.testamericainc.com

Authorized for release by: 6/26/2013 3:49:40 PM Ed Fry, Project Manager II ed.fry@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited The test results in this report meet all 2003 INELAC and 2009 TRU requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, parameters, exceptions are noted in this report, this report may not be reproduced except in tuil, and with written approval from the laboratory. For questions please contact the Project Manager This report has been electronically signed and authorized by the signatory. Electronic signature is and with written approval norm me randratory. Conquestions pre-at the e-mail address or telephone number listed on this page.

intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Page 21 of

APPENDIX C

Well Sample Data Form

. :

WELL SAMPLING DATA FORM

12

CLIENT: Pride Ene	rgy Comp	any		_		×
SITE NAME: South Fou	<mark>ir Lakes</mark> T	ank Battery (1R-2	204)	_		TRIDENT
SITE LOCATION: T12S - R	34E - Sec	2, Lea County, N	IM	_		TRIDEN ENVIRONMENTAL
SAMPLER: <u>Gil Van D</u>	eventer			_		-/ -
PURGING METH		Hand Bailed	Pump			sible (MW-15, MW-16, RW1d & RW-2d)
SAMPLING METHO	DD: 🔽	Disposable Bailer		om Discharge		
DISPOSAL METHOD OF PURGE WAT		On-site Drum	🗋 On site	U	\checkmark	On site SWD (Tank Battery)
DECONTAMINATION METHO	DS: Nitile gl	loves, Alconox, and I	Distilled Wate	er Rinse.		

										Field Measurements						
Date	Time	Monitoring Well No.	Depth to Water (ft btoc)	Total Depth (ft)	Water Column Height (ft)	Volume Purged (gal)	No. of Well Volumes Purged	Purge Method (Hand Bail or Pump)	Temp. ° C	Cond. (mS/cm)	рН	DO (mg/L)	Fe ⁺² (mg/L)	NO ⁻³ (mg/L)		
07/03/14	1330	MW-5	27.43	30.9	3.5	3	5.2	Hand Bail	20.6	1.04	7.56	4.7	0.61	2.4		
07/03/14	1200	MW-7	26.15	34.0	7.9	4	3.1	Hand Bail	20.6	1.24	7.32	1.5	0.15	2.9		
07/03/14	1100	MW-9	26.55	30.0	3.5	4	7.0	Hand Bail	21.0	1.69	7.16	2.5	1.87	2.2		
07/03/14	1000	MW-10	26.85	32.2	5.4	5	5.6	Hand Bail	19.1	1.33	7.32	6.3	2.00	3.5		
07/03/14	1300	MW-13	27.86	34.0	6.1	4	3.9	Hand Bail	20.0	4.99	6.77	2.4	8.05	2.6		
07/02/14	1550	MW-14	30.06	37.3	7.2	4	3.3	Hand Bail	19.1	1.65	7.12	4.9	0.01	13.5		
07/02/14	1700	MW-15	28.59	36.8	8.2	5	3.7	Pump	19.2	2.66	7.05	3.5	2.01	1.7		
07/02/14	1510	MW-16	29.75	36.4	6.7	4	3.6	Pump	19.6	1.86	7.14	3.8	0.01	>25		
07/03/14	1410	RW-1d	25.57	39.5	13.9	30	3.2	Pump	21.6	2.96	7.41	1.0	1.93	1.5		
07/03/14	1500	RW-2d	25.59	39.5	14.0	30	3.2	Pump	21.1	1.14	7.69	3.5	0.09	3.0		

Comments: Hanna Model 98130 meter used to measure pH, conductivity & temperature. Milwaukee Model SM600 used to measure Dissolved Oxygen.

Hach Model DR-890 used to measure ferrous iron (Fe⁺²) using Method 8146 and nitrate (NO-3) using Method 8171.

Hand delivered samples to Permian Basin Laboratories for BTEX, chloride, sulfate, nitrate, TDS, iron, and manganese analysis.

WELL SAMPLING DATA FORM

CLIENT: Pride Energy Company

SITE NAME: South Four Lakes Tank Battery

SITE LOCATION: T12S - R34E - Sec 2, Lea County, NM

SAMPLER: Gil Van Deventer

PURGING METHOD:

SAMPLING METHOD:

 $\overline{\mathbf{v}}$

7

☑ Pump Type: 12V submersible (MW-15, MW-16, & RW1d)

Disposable Bailer Direct from Discharge Hose Other:

DISPOSAL METHOD OF PURGE WATER:

On-site Drum

□ On site discharge □ On site SWD (Tank Battery) DECONTAMINATION METHODS: Nitile gloves, Alconox, and Distilled Water Rinse.

								D			Field I	Measurem	nents		
Date	Time	Monitoring Well No.	Depth to Water (ft btoc)	Totai Depth (ft)	Water Column Height (ft)	Volume Purged (gal)	No. of Well Volumes Purged	Purge Method (Hand Bail or Pump)	Temp. °F	Cond. (mS/cm)	pН	DO (mg/L)	Fe ⁺² (mg/L)	NO ⁻³ (mg/L)	SO₄ (mg/L)
6/13/2013	1100	MW-1	26.44	31.0	4.6	4	5.3	Hand Bail	77.0	1.07	7.07	1.4	0.77	2.4	
6/12/2013	0930	MW-5	27.73	30.9	3.2	3	5.7	Hand Bail	66.3	1.96	7.61	4.2	1.00	3.1	190
6/12/2013	1800	MW-7	26.55	34.0	7.5	4	3.2	Hand Bail	70.8	1.30	7.50	1.1	2.08	0.9	150
6/12/2013	1700	MW-9	26.92	30.0	3.1	3	5.8	Hand Bail	69.9	1.91	7.43	1.8	1.23	0.6	280
6/12/2013	1600	MW-10	27.29	32.2	4.9	5	6.1	Hand Bail	71.0	1.54	7.32	5.0	0.69	2.3	290
6/13/2013	1200	MW-13	28.19	34.0	5.8	4	4.1	Hand Bail	75.0	5.59	7.05	2.1	19.3	1.7	
6/13/2013	0900	MW-14	30.27	37.3	7.0	2	1.7	Hand Bail	66.1	1.86	7.20	3.5	0.00	16.3	180
6/13/2013	1500	MW-15	28.87	36.8	7.9	6	4.5	Pump	74.0	3.24	7.04	2.3	12.3	0.0	12
6/12/2013	1230	MW-16	29.93	36.4	6.5	5	4.6	Pump	70.0	2.10	7.08	3.5	0.00	4.4	
6/13/2013	1300	RW-1d	26.03	39.5	13.5	40	4.5	Pump	74.5	3.17	8.50	1.3	3.80	0.80	
6/13/2013	1000	RW-2s	NM	39.5	14.0	50	5.4	Windmill	74.0	1.78	7.25	2.3	3.80	0.80	55

COMMENTS: Hanna Model 98130 meter used to obtain pH, conductivity, and temperature readings. Milwaukee Model SM600 used for DO readings. Hach Model DR-890 used to measure ferrous iron (Fe⁺²), nitrate (NO⁻³), and sulfate (SO₄) using Hach Methods 8146, 8171, and 8000, respectively.

Hand delivered samples to Permian Basin Laboratories for BTEX, chloride, TDS, sulfate, iron, and manganese analysis.

Hand Bailed