Administrative/Environmental Order

AE Order Number Banner

Report Description

This report shows an AE Order Number in Barcode format for purposes of scanning. The Barcode format is Code 39.

App Number: pENV000GW00034

GW - 33

WESTERN GAS PROCESSING

9/29/2016

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV

Re. .4

it may

State of New Mexico **Energy Minerals and Natural Resources**

Oil Conservation Division ----1 0

OIL CONS. DIV DIST. 3

Form C-141 Revised August 8, 2011

Submit 2 2 2016 Submit 2 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

District IV 1220 S. St. Fran	icis Dr., Santa	a Fe, NM 87505				h St. J Fe, NN							
			Rele				_	orrective A	ction	1			
						OPI	ERAT	FOR	ction		al Report		Final Report
		CI San Juan	n LLC					sh Tuttle	10				
Address: #9								No: 435-686-761	the second se	17	6. 1114		
Facility Nat	me: San Ju	an River Pl	lant			Facili	ty Typ	e: Gas Process	ing and	1 Treatin	g facility		
Surface Ow	mer: Ute M	Iountain Ute	Tribe	Mineral C)wner:	Ute M	lounta	in Ute Tribe		API No	o. N/A		
				LOCA	ATIO	N OF	REI	LEASE					
Unit Letter	Section 27	Township 32N	Range 14W	Feet from the 120'	North	h/South North		Feet from the 90'		Vest Line West	County San Juan		
			Latitu			39. 1	-	de: <u>108° 18'0</u>	2.37"W	V			
(D) (D) 1				NAT	URF	and a state of the		EASE					
Type of Rele		ie Release Barker Inlet P	linalina			and the second second second	and the second second second	Release: 12 bbls. lour of Occurrence			Recovered: (12/10/2014
Source of Ke	icase. 24 L	arker miet i	ipenne			1 2 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		and Unknown		7:14 PM		covery	12/10/2014
Was Immedi	ate Notice (Yes 🗌] No 🗌 Not R	equired	IfY	ES, To	Whom? office in Aztec (C	Charlie 1				e:
By Whom?	Ryan Kelly							lour: 12/11/2014					
Was a Water	Was a Watercourse Reached?					If Y N/A		blume Impacting t	the Wate	ercourse.			
If a Waterco	urse was Im	pacted, Descr	ibe Fully.*	k	-								
N/A													
Describe Car	use of Probl	em and Reme	dial Action	n Taken.*									
underground to excavate t covered prop	pipeline. The contamir berly. Enviro	he pipeline wa nated soil and otech was calle	as isolated expose the ed on Frid	and depressured e pipeline that wa ay December 12,	to begi s leakin 2014 t	n excav ng. All o o collec	vation a contam	l contamination w nd repair. Weemi inated soil was pla sal and confirmation re processing remo	nuche C aced on ion sam	Construction plastic line ples on Mo	n Authority er on the rigionday, Decen	(WCA) nt of wa nber 15	was called by and 5 th . The
	ea Affected	and Cleanup A	Action Tak	ken.*									9-
excavated of	all visible of	contamination	and place	d on plastic liners	s with b	perms ar	nd plast	tituents contained tic covering. Upon e attached environ	n receiv	ing sample	results the	contami	nated soil
regulations a public health should their or the enviro	Il operators or the envi operations honment. In a	are required to ronment. The nave failed to a	o report and acceptance adequately OCD accept	nd/or file certain i ce of a C-141 report investigate and r	release ort by t remedia	notifica he NM(ate cont	ocd m aminati	knowledge and u nd perform correct arked as "Final R ton that pose a thr the operator of	ctive act leport" of reat to g	ions for rel loes not rel round wate	leases which lieve the ope r, surface w	may en rator of ater, hu	ndanger f liability man health
Signature:		14						OIL CON	SERV	ATION	DIVISIO	<u>NC</u>	2.
Printed Nam	e:	Josh 5	Tuttle	_	1	Appro	oved by	Environmental S	pecialis	t: C	ang.	X	Ø
Title: ES&H	Specialist I	I				Appro	oval Da	te: 9/20/14	-	Expiration	Date:		
E-mail Addr	ess: joshua.	tuttle@cci.cor	n			Condi	itions o	f Approval:			Attached		
Date: 8/18/2				(435) 686-7610									
* Attach Add	itional She	ets If Necess	ary +	this is	0	133	391	187				(81)

CONFIRMATION SAMPLING REPORT

LOCATED AT: 24" BARKER DOME PIPELINE LEAK SECTION 27, TOWNSHIP 32N, RANGE 15W SAN JUAN COUNTY, NEW MEXICO

> PREPARED FOR: CCI SAN JUAN LLC MR. RYAN KELLY 99 COUNTY ROAD 6500 KIRTLAND, NEW MEXICO 87417

PROJECT NUMBER 14038-0011 May 2015

5796 US Highway 64, Farmington, NM 87401

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (505) 632-0615 Fx (505) 632-1865 Ph (970) 259-0615 Fr (800) 362-1879

CCI SAN JUAN LLC CONFIRMATION SAMPLING REPORT LOCATED AT THE 24" BARKER DOME PIPELINE LEAK SEC 27, TWP 32N, RNG 14W SAN JUAN COUNTY, NEW MEXICO

TABLE OF CONTENTS

INTRODUCTION1	
ACTIVITIES PERFORMED1	
SUMMARY AND CONCLUSIONS	
STATEMENT OF LIMITATIONS	

- Figures: Figure 1, Vicinity Map Figure 2, Site Map 1 Figure 3, Site Map 2 Figure 4, Site Map 3
- Tables: Summary of Analytical Results
- Appendices: Appendix A, Analytical Results Appendix B, References Appendix C, Bill of Lading

CCI San Juan LLC Confirmation Sampling Report 24" Barker Dome Pipeline Leak May 2015 Project No. 14038-0011 Page 1

INTRODUCTION

Envirotech, Inc. of Farmington, New Mexico, was contracted by CCI San Juan LLC to provide confirmation sampling activities for a release from the 24" Barker Dome Pipeline Leak located in Section 27, Township 32N Range 14W, San Juan County, New Mexico; see enclosed *Figure 1, Vicinity Map*. Activities included confirmation sampling and analysis, documentation, and reporting.

ACTIVITIES PERFORMED

Envirotech, Inc. arrived on site on December 15, 2014 to perform confirmation sampling activities. Upon Envirotech's arrival, a brief site assessment was conducted and the regulatory standards for the site were determined to be 500 parts per million (ppm) for total petroleum hydrocarbons (TPH) and pursuant to Ute Mountain Ute Tribe Standards for Spill Clean-up and Reclamation.

The impacted area had been excavated prior to Envirotech's arrival to approximately 10 feet by 10 feet by four (4) feet deep. Four (4) samples were collected from the excavation. Two (2) five (5)-point composite samples from the bottom of the excavation and two (2) five (5)-point composites from the walls of the excavation; see enclosed *Figure 2, Site Map 1* for sample locations. The samples were placed into four (4)-ounce glass jars, capped headspace free, and transported on ice, under chain of custody, to Envirotech's Analytical Laboratory to be analyzed for TPH using USEPA Method 8015 and for benzene and BTEX using USEPA Method 8021. All of the samples returned results below regulatory standards for all constituents analyzed except the West Bottom sample that returned results above regulatory standards for benzene; see enclosed *Table 1, Summary of analytical Results* and *Appendix A, Analytical Results*. Based on the above stated results, Envirotech recommended further excavation of the west bottom of the excavation.

On January 9, 2015, Envirotech, Inc. returned to the site to perform confirmation sampling activities. The impacted area had been excavated prior to Envirotech's arrival to approximately 10 feet by 10 feet by five (5) feet deep, reaching a coal seam. One (1) five (5)-point composite sample was collected from the west bottom of the excavation and was placed into a four (4)-ounce glass jar, capped headspace free, and transported on ice, under chain of custody, to Envirotech's Analytical Laboratory to be analyzed for Ute Mountain Ute Tribe Standards for Spill Clean-up and Reclamation Table of Constituents. The sample returned results below regulatory standards for all constituents except Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Dibenz(a,h)anthracene, Arsenic, and pH; see enclosed Table 1, Summary of analytical Results and Appendix A, Analytical Results. Based on the above stated results, Envirotech recommended further excavation.

On March 6, 2015, Envirotech, Inc. returned to the site to perform confirmation sampling activities. The impacted area had been excavated one (1) foot into the coal seam prior to Envirotech's arrival to a total extent of approximately 10 feet x 10 feet to 6 feet deep. One (1) five (5)-point composite sample was collected from the west bottom of the excavation. The

CCI San Juan LLC Confirmation Sampling Report 24" Barker Dome Pipeline Leak May 2015 Project No. 14038-0011 Page 2

sample was placed into a four (4)-ounce glass jar, capped headspace free and transported on ice, under chain of custody, to Envirotech's Analytical Laboratory to be analyzed for Ute Mountain Ute Tribe Standards for Spill Clean-up and Reclamation Table of Constituents. The sample returned results below regulatory standards for all constituents analyzed except for Arsenic and pH; see enclosed *Table 1, Summary of Analytical Results*.

Based on the above stated results, the Colorado Department of Public Health and Environment's Risk management guidance for evaluation Arsenic Concetrations in Soil and research on the affects of coal on pH, Envirotech, Inc. concludes that the arsenic concentrations are due to common background concentrations in the area and that the pH levels are due to the coal seam found in the excavation. Therefore, Envirotech, Inc. recommends no further action in regards to this incident if approved by the Ute Mountain Ute Tribe; see enclosed *Appendix B*, *References*.

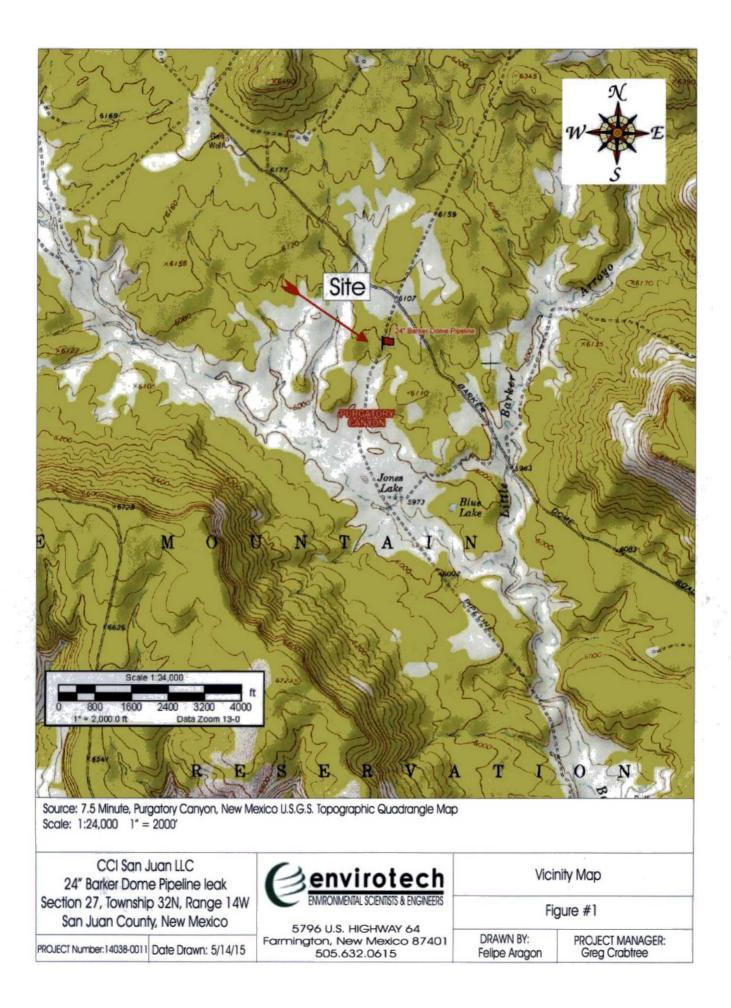
SUMMARY AND CONCLUSIONS

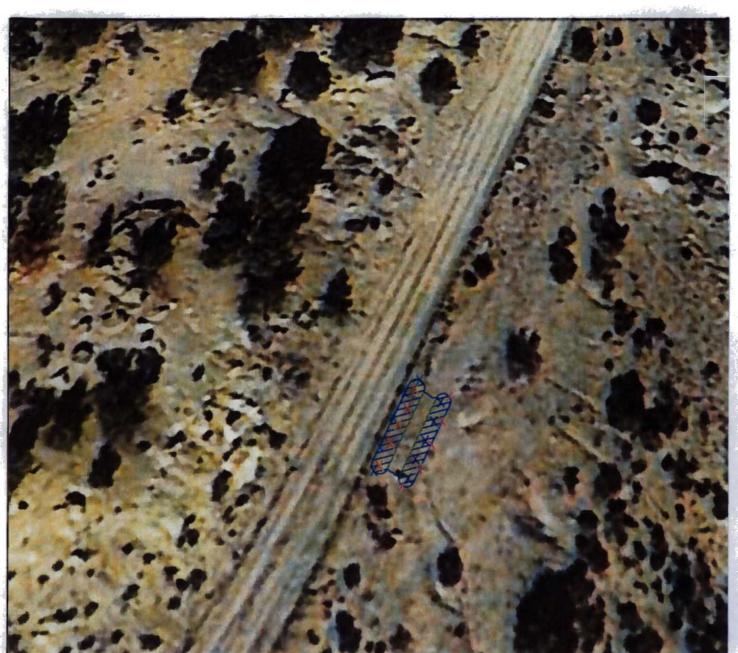
Envirotech, Inc. performed site assessment, confirmation sampling, and remediation treatment activities at the 24" Barker Dome Pipeline Leak. Approximately 286 cubic yards of contaminated soil was removed by CCI San Juan LLC and transported to Industrial Ecosystems Inc's Soil Reclamation Center. Envirotech, Inc. recommends no further action in regards to this incident.

STATEMENT OF LIMITATIONS

Envirotech, Inc. has completed the spill closure activities related to the contamination found at the 24" Barker Dome Pipeline Leak located in Section 27, Township 32N Range 14W, San Juan County, New Mexico. All observations and conclusions provided here are based on the information and current site conditions found at the site of the incident.

The undersigned has conducted this service at the above referenced site. This work has been conducted and reported in accordance with generally accepted professional practices in geology, engineering, environmental chemistry, and hydrogeology.


We appreciate the opportunity to be of service. If you have any questions or require additional information, please contact our office at (505) 632-0615.


Respectfully submitted, ENVIROTECH, INC.

Sheena Leon () Environmental Field Technician sleon@envirotech-inc.com

FIGURES

Figure 1, Vicinity Map Figure 2, Site Map 1 Figure 3, Site Map 2 Figure 4, Site Map 3

LEGEND

Excavation

// Pipeline

X West Bottom Sample

X West Walls Sample

X East Bottom Sample

X East Walls Sample

SITE MAP 1 CCI San Juan LLC 24" Barker Dome Pipeline Leak SECTION 27, TWP 32 NORTH, RANGE 14 WEST SAN JUAN COUNTY, NEW MEXICO SCALE: NTS PROJECT NO.14038-0011 FIGURE NO. 2 REVISIONS NO. DATE BY DESCRIPTION MAP DRWN SL 3/19/15 BASE DRWN S1 3/19/15 BASE DRWN S796 U.S. HIGHWAY 64, FARMINGTON, NM 87401 505-632-0615	-	A DECK OF A DECK	1000		All	
24" Barker Dome Pipeline Leak SECTION 27, TWP 32 NORTH, RANGE 14 WEST SAN JUAN COUNTY, NEW MEXICO SCALE: NTS PROJECT NO.14038-0011 FIGURE NO. 2 REVISIONS NO. DATE BY DESCRIPTION MAP DRWN SL 3/19/15 BASE DRWN SL 3/19/15 BASE DRWN						Constant of Mark Street of
24" Barker Dome Pipeline Leak SECTION 27, TWP 32 NORTH, RANGE 14 WEST SAN JUAN COUNTY, NEW MEXICO SCALE: NTS PROJECT NO.14038-0011 FIGURE NO. 2 REVISIONS NO. DATE BY DESCRIPTION MAP DRWN SL 3/19/15 BASE DRWN SL 3/19/15 BASE DRWN			CCI	S	an Juan LLC	
SECTION 27, TWP 32 NORTH, RANGE 14 WEST SAN JUAN COUNTY, NEW MEXICO SCALE: NTS FIGURE NO. 2 REV PROJECT NO.14038-0011 REVISIONS NO. DATE BY DESCRIPTION MAP DRWN SL 3/19/15 BASE DRWN		24				k.
PROJECT NO.14038-0011 REVISIONS NO. DATE BY DESCRIPTION MAP DRWN SL 3/19/15 BASE DRWN Cenvirotech	SE	CTION	27. T	WP	32 NORTH, RANGE	4 WEST
PROJECT NO.14038-0011 REVISIONS NO. DATE BY DESCRIPTION MAP DRWN SL 3/19/15 BASE DRWN Cenvirotech	SCA	LE: NTS	3			REV
NO. DATE BY DESCRIPTION MAP DRWN SL 3/19/15 BASE DRWN Cenvirotech	PRO	JECT NO.	4038-	0011	FIGURE NO. 2	
envirotech					REVISIONS	
envirotech	_			_		
envirotech	NO.	DATE	BY		DESCRIPTION	
envirotech	MAP	DRWN	SL	3/	19/15 BASE DRWN	1
			-			


LEGEND

Excavation

X West Bottom Sample

	The second division of the	and the owner of the owner.		A	
SE	CTION	4" Bo 27, 1	So rker	E MAP 2 an Juan LLC Dome Pipeline Leak 32 NORTH, RANGE 14 OUNTY, NEW MEXICO	4 WEST
SCA	LE: NTS	5			REV
PRO	JECT NO.	14038-	0011	FIGURE NO. 3	
				REVISIONS	
				a second	
NO.	DATE	BY		DESCRIPTION	
MAP	DRWN	SL.	3/1	9/15 BASE DRWN	T
5	796 U.S. 1	-		IVIROTE	

LEGEND

X West Bottom Sample

	and the second	Sec.		A A A	1.2
SEC	CTION	4" Ba 27, T	Sc rker WP	E MAP 3 In Juan LLC Dome Pipeline Leak 32 NORTH, RANGE 1 OUNTY, NEW MEXIC	4 WEST
_	LE: NT		_	FIGURE NO. 4	REV
PRO	JECT NO.	14038-	0011		
				REVISIONS	
NO.	DATE	BY		DESCRIPTION	
MAP	DRWN	SL	3/1	9/15 BASE DRWN	
	E	-		nvirote	
5	796 U.S.	HIGHW	AY 64,	FARMINGTON, NM 87401 5	05-632-0615

TABLES

Table 1, Summary of Analytical Results

Table 1, Summary of Analytical Results 24' Barker Dome Pipeline Leak Project No. 14038-0011 March 2015

-

Constituents Analyzed	Ut Mt. Ute Tribal Limit	units	West Bottom 12/15/14	West Walls 12/15/14	East Bottom 12/15/14	East Walls 12/15/14	West Bottom 1/9/15	West Botton 3/6/15
TPH	500	mg/kg	33.8	15.9	<35	<35	177.9	<35
Benzene	0.17	mg/kg	0.33	<0.1	0.12	<0.1	0.12	<0.1
Toluene	85	mg/kg	0.84	0.64	0.5	0.16	0.45	<0.1
Ethylbenzene	100	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylene	175	mg/kg	1.04	1.15	0.43	<0.2	1.1	<0.1
Anthracene	1000	mg/kg	NS	NS	NS	NS	0.3	<0.0070
Acenaphthene	1000	mg/kg	NS	NS	NS	NS	0.15	<0.0070
Benzo(a)anthracene	0.22	mg/kg	NS	NS	NS	NS	0.42	0.023
Benzo(a)pyrene	0.022	mg/kg	NS	NS	NS	NS	0.18	0.0079
Benzo(b)fluoranthene	0.22	mg/kg	NS	NS	NS	NS	0.48	0.069
Benzo(k)fluoranthene	2.2	mg/kg	NS	NS	NS	NS	0.095	0.012
Chrysene	22	mg/kg	NS	NS	NS	NS	0.43	0.058
Dibenz(a,h)anthracene	0.022	mg/kg	NS	NS	NS	NS	0.045	< 0.0070
Fluoranthene	1000	mg/kg	NS	NS	NS	NS	0.99	0.061
Fluorene	1000	mg/kg	NS	NS	NS	NS	0.16	<0.0070
ndeno(1,2,3-cd)pyrene	0.22	mg/kg	NS	NS	NS	NS	0.13	0.015
Naphthalene	23	mg/kg	NS	NS	NS	NS	0.045	<0.0070
Pyrene	1000	mg/kg	NS	NS	NS	NS	0.86	0.055
Arsenic	0.39	mg/kg	NS	NS	NS	NS	1.61	2.04
Barium	15000	mg/kg	NS	NS	NS	NS	117	118
Cadmiuim	70	mg/kg	NS	NS	NS	NS	1.08	1.28
Chromium	12000	mg/kg	NS	NS	NS	NS	19.8	28.00
Copper	3100	mg/kg	NS	NS	NS	NS	15.1	23.2
Lead	400	mg/kg	NS	NS	NS	NS	10.1	10.5
Mercury	23	mg/kg	NS	NS	NS	NS	<0.99	0.99
Selenium	390	mg/kg	NS	NS	NS	NS	3.18	3.52
Silver	390	mg/kg	NS	NS	NS	NS	<0.99	<0.99
Zinc	23000	mg/kg	NS	NS	NS	NS	43.6	78.00
Boron	2	mg/kg	NS	NS	NS	NS	<.50	<0.49
Nickel	1600	mg/kg	NS	NS	NS	NS	11.00	16.3
pH	6-9	n/a	NS	NS	NS	NS	4.03	4.47
Sodium Absorbtion								
Ratio	<125	n/a	NS	NS	NS	NS	0.894	1.32
Electrical Conductivity	<4	mmhos/c m	NS	NS	NS	NS	826	1760

* NS - Parameter not screened

* Red - Parameter above Ute Mt Ute Tribe regulatory limit

APPENDIX A

Analytical Results

Analytical Report

Report Summary

Client: CCI, LLC Chain Of Custody Number: 17589 Samples Received: 12/15/2014 4:50:00PM Job Number: 14038-0011 Work Order: P412054 Project Name/Location: Kirtland Plant Pipeline Leak

Date: 12/24/14

Entire Report Reviewed By:

Tim Cain, Laboratory Manager

The results in this report apply to the samples submitted to Envirotech's Analytical Laboratory and were analyzed in accordance with the chain of custody document supplied by you, the client, and as such are for your exclusive use only. The results in this report are based on the sample as received unless otherwise noted. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. If you have any questions regarding this analytical report, please don't hesitate to contact Envirotech's Laboratory Staff.

CCI, LLC	Project Name:	Kirtland Plant Pipeline Leak	
PO Box 70	Project Number:	14038-0011	Reported:
Kirtland NM, 87417	Project Manager:	Sheena Leon	24-Dec-14 09:31

Analyical Report for Samples

Lab Sample ID	Matrix	Sampled	Received	Container
P412054-01A	Soil	12/15/14	12/15/14	Glass Jar, 4 oz.
P412054-02A	Soil	12/15/14	12/15/14	Glass Jar, 4 oz.
P412054-03A	Soil	12/15/14	12/15/14	Glass Jar, 4 oz.
P412054-04A	Soil	12/15/14	12/15/14	Glass Jar, 4 oz.
P412054-05A	Soil	12/15/14	12/15/14	Glass Jar, 4 oz.
	P412054-01A P412054-02A P412054-03A P412054-04A	P412054-01A Soil P412054-02A Soil P412054-03A Soil P412054-04A Soil	P412054-01A Soil 12/15/14 P412054-02A Soil 12/15/14 P412054-03A Soil 12/15/14 P412054-03A Soil 12/15/14 P412054-04A Soil 12/15/14	P412054-01A Soil 12/15/14 12/15/14 P412054-02A Soil 12/15/14 12/15/14 P412054-03A Soil 12/15/14 12/15/14 P412054-03A Soil 12/15/14 12/15/14 P412054-04A Soil 12/15/14 12/15/14

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Three Springs - 65 Mercado Street, Suite 115, Durango. CO 81301

Ph (505) 632-0615 Fx (505) 632-1865 Ph (970) 259-0615 Fr (800) 362-1879

CCI, LLC	t Name:	Kirt	Kirtland Plant Pipeline Leak						
PO Box 70	Projec	Project Number: 14038-0011					Reported:		
Kirtland NM, 87417	Projec	t Manager:	Shee	ma Leon	_			24-Dec-14 09	:31
		We	st Botto	m					
		P4120	54-01 (S	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021			и 						
Benzene	0.33	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B	
Foluene	0.84	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B	
Ethylbenzene	ND	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B	
p,m-Xylene	0.78	0.20	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B	
o-Xylene	0.26	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B	
Total Xylenes	1.04	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B	
Total BTEX	2.21	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		118 %	50	-150	1451026	12/18/14	12/22/14	EPA 8021B	
Nonhalogenated Organics by 8015									
Gasoline Range Organics (C6-C10)	33.8	9.98	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8015D	
Diesel Range Organics (C10-C28)	ND	34.9	mg/kg	1	1451025	12/18/14	12/18/14	EPA 8015D	
Surrogate: o-Terphenyl		104 %	50	-200	1451025	12/18/14	12/18/14	EPA 8015D	
Surrogate: 4-Bromochlorobenzene-FID		107 %	50	-150	1451026	12/18/14	12/22/14	EPA 8015D	

5796 US Highway 64, Farmington, NM 87401 Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301 Ph (505) 632-0615 Fx (505) 632-1865 Ph (970) 259-0615 Fr (800) 362-1879 envirotech-inc.com Laboratory # envirotech-inc.com Page 3 of 14

CCI, LLC PO Box 70 Kirtland NM, 87417	Project Name: Project Number: Project Manager:			and Plant Pij 18-001 I ma Leon		Reported: 24-Dec-14 09:31			
	- Tope	w	est Wall	5					
		P4120	54-02 (Se	olid)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B	
Toluene	0.64	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B	
Ethylbenzene	ND	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B	
p,m-Xylene	0.88	0.20	mg/kg	4	1451026	12/18/14	12/22/14	EPA 8021B	
o-Xylene	0.27	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B	
Total Xylenes	1.15	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B	
Total BTEX	1.79	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		116 %	50	-150	1451026	12/18/14	12/22/14	EPA 80218	
Nonhalogenated Organics by 8015									
Gasoline Range Organics (C6-C10)	15.9	9.97	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8015D	
Diesel Range Organics (C10-C28)	ND	35.0	mg/kg	1	1451025	12/18/14	12/18/14	EPA 8015D	
Surrogate: o-Terphenyl		116%	50	-200	1451025	12/18/14	12/18/14	EPA 8015D	
Surrogate: 4-Bromochlorobenzene-FID		104 %	50	-150	1451026	12/18/14	12/22/14	EPA 8015D	

5796 US Highway 64, Farmington, NM 87401	Ph (505) 632-0615	Fx (505) 632-1865	envirotech-inc.com
Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301	Ph (970) 259-0615	Fr (800) 362-1879	laboratory envirolech-inc.com
			Page 4 of 14

CCI, LLC	Projec	t Name:	Kirt	and Plant Pij	peline Leak						
PO Box 70	Projec	t Number:	ber: 14038-0011				Reported:				
Kirtland NM, 87417	Projec	ct Manager:	Shee	na Leon				24-Dec-14 09	:31		
		Eas	st Botto	m							
		P4120	54-03 (S	olid)							
		Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
Volatile Organics by EPA 8021								• ⁰	8		
Benzene	0.12	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B			
Toluene	0.50	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B			
Ethylbenzene	ND	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B			
p,m-Xylene	0.32	0.20	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B			
o-Xylene	0.11	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B			
Total Xylenes	0.43	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B			
Total BTEX	1.04	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B			
Surrogate: 4-Bromochlorobenzene-PID		114 %	50	-150	1451026	12/18/14	12/22/14	EPA 80218	3		
Nonhalogenated Organics by 8015											
Gasoline Range Organics (C6-C10)	ND	9.97	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8015D			
Diesel Range Organics (C10-C28)	ND	35.0	mg/kg	1	1451025	12/18/14	12/18/14	EPA 8015D	, 2 		
Surrogate o-Terphenyl		108 %	50	-200	1451025	12/18/14	12/18/14	EPA 8015D			
Surrogate: 4-Bromochlorobenzene-FID		102 %	50	-150	1451026	12/18/14	12/22/14	EPA 8015D			

 5796 US Highway 64, Farmington, NM 87401
 Ph (505) 632-0615
 Fx (505) 632-1865
 envirotech-inc.com

 Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301
 Ph (970) 259-0615
 Fr (800) 362-1879
 Laboratory Zenwrotech-inc.com

Page 5 of 14

CCI, LLC PO Box 70 Kirtland NM, 87417	Project Name: Kirtland Plant Pipeline Leak Project Number: 14038-0011 Project Manager: Sheena Leon								Reported: 24-Dec-14 09:31		
			st Wall								
		P4120	54-04 (S	olid)			NAME OF TAXABLE				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
Volatile Organics by EPA 8021							4	1.3			
Benzene	ND	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B			
Toluene	0.16	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B			
Ethylbenzene	ND	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B			
p,m-Xylene	ND	0.20	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B			
o-Xylene	ND	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B			
Total Xylenes	ND	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B			
Total BTEX	0.16	0.10	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8021B			
Surrogate: 4-Bromochlorobenzene-PID		113 %	50	-150	1451026	12/18/14	12/22/14	EPA 80218			
Nonhalogenated Organics by 8015											
Gasoline Range Organics (C6-C10)	ND	9.98	mg/kg	1	1451026	12/18/14	12/22/14	EPA 8015D			
Diesel Range Organics (C10-C28)	ND	34.9	mg/kg	1	1451025	12/18/14	12/18/14	EPA 8015D			
Surrogate: o-Terphenyl		108 %	50	-200	1451025	12/18/14	12/18/14	EPA 8015D			
Surrogate: 4-Bromochlorobenzene-FID		102 %	50	-150	1451026	12/18/14	12/22/14	EPA 8015D			

5796 US Highway 64, Farmington, NM 87401	Ph (505) 632-0615	Fx (505) 632-1865	envirotech-inc.com
Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301	Ph (970) 259-0615	Fr (800) 362-1879	laboratory wenvirotech-inc.com
			Page 6 of 14

CCI, LLC PO Box 70 Kirtland NM, 87417	Projec	t Name: t Number: t Manager:	1403	and Plant Pig 8-001 I na Leon	peline Leak			Reported: 24-Dec-14 09	
			oil Pile 54-05 (Sc	olid)					
		Reporting	-						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TCLP Metals							2	15	
Arsenic	ND	0.01	mg/L	1	1452001	12/22/14	12/22/14	EPA 6010C	
Barium	0.19	0.05	mg/L	1	1452001	12/22/14	12/22/14	EPA 6010C	
Cadmium	ND	0.01	mg/L	1	1452001	12/22/14	12/22/14	EPA 6010C	
Thromium	ND	0.01	mg/L	1	1452001	12/22/14	12/22/14	EPA 6010C	
ead	ND	0.01	mg/L		1452001	12/22/14	12/22/14	EPA 6010C	
elenium	0.03	0.01	mg/L	1	1452001	12/22/14	12/22/14	EPA 6010C	
ilver	0.06	0.01	mg/L	1	1452001	12/22/14	12/22/14	EPA 6010C	
CLP Mercury by EPA 7470A		_							
Mercury	ND	0.0002	mg/L	1	1452002	12/22/14	12/23/14	EPA 7470A	

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865 Ph (970) 259-0615 Fr (800) 362-1879 envirotech-inc.com taboratory@envirotech-inc.com Page 7 of 14

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

CCI, LLC	Project Name:	Kirtland Plant Pipeline Leak	
PO Box 70	Project Number:	14038-0011	Reported:
Kirtland NM, 87417	Project Manager:	Sheena Leon	24-Dec-14 09:31

Volatile Organics by EPA 8021 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1451026 - Purge and Trap EPA 5	030A								_	
Blank (1451026-BLK1)				Prepared &	Analyzed:	18-Dec-14				
Benzene	ND	0.10	mg/kg							
Toluene	ND	0.10								
Ethylbenzene	ND	0.10	-							
p,m-Xylene	ND	0.20	-							
o-Xylene	ND	0.10	•							
Total Xylenes	ND	0.10	•							
Total BTEX	ND	0.10	•							
Surrogate: 4-Bromochlorobenzene-PID	0.423			0.400		106	50-150			
LCS (1451026-BS1)				Prepared &	Analyzed:	18-Dec-14				
Benzene	22.1	0.10	mg/kg	20.0		111	75-125			
Toluene	22.5	0.10		20.0		113	70-125			
Ethylbenzene	22.9	0.10	•	20.0		115	75-125			
p,m-Xylene	45.9	0.20	•	39.9		115	80-125			
o-Xylene	22.8	0.10	-	20.0		114	75-125			
Surrogate: 4-Bromochlorobenzene-PID	0.427			0.399		107	50-150			
Matrix Spike (1451026-MS1)	Sou	rce: P412060-	01	Prepared &	Analyzed:	18-Dec-14				
Benzene	20.7	0.10	mg/kg	20.0	ND	104	75-125			
Toluene	21.1	0.10		20.0	ND	106	70-125			
Ethylbenzene	21.4	0.10	•	20.0	ND	107	75-125			
p.m-Xylene	43.7	0.20	•	39.9	ND	109	80-125			
o-Xylene	21.5	0.10	•	20.0	0.14	107	75-125			
Surrogate: 4-Bromochlorobenzene-PID	0.429			0.399		107	50-150			
Matrix Spike Dup (1451026-MSD1)	Sou	rce: P412060-	01	Prepared &	Analyzed	18-Dec-14				
Benzene	21.9	0.10	mg/kg	20.0	ND	110	75-125	5.76	15	
Tolucne	22.5	0.10	•	20.0	ND	113	70-125	6.19	15	
Ethylbenzene	22.7	0.10		20.0	ND	114	75-125	5.95	15	
p.m-Xylene	46.3	0.20	-	39.9	ND	116	80-125	5.86	15	
o-Xylene	22.9	0.10	•	20.0	0.14	114	75-125	6.26	15	
Surrogate: 4-Bromochlorobenzene-PID	0.424			0.399		106	50-150			

5796 US Highway 64, Farmington, NM 87401	Ph (505) 632-0615	Fx (505) 632-1865	envirotech-inc.com
Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301	Ph (970) 259-0615	Fr (800) 362-1879	laboratory envirotech-inc.com
			Contraction of the second second
			Page 8 of 14

CCI, LLC	Pro	ject Name:	K	irtland Plant	Pipeline Le	ak				
PO Box 70	Pro	ject Number:	14	4038-0011					Report	led:
Kirtland NM, 87417	Pro	S	heena Leon		24-Dec-14 09:31					
12	Nonhalog	enated Org	anics by	y 8015 - Qu	ality Co	ntrol				
	E	nvirotech A	Analyti	cal Labor	atory					
Analyte	Result	Reporting	Units	Spike	Source	%REC	%REC	RPD	RPD	Notes
				2414						
Batch 1451025 - DRO Extraction EPA 3	550M									
Blank (1451025-BLK1)				Prepared &	Analyzed:	18-Dec-14				
Diesel Range Organics (C10-C28)	ND	29.9	mg/kg							
urrogate: o-Terphenyl	39.1	_		39.9		98.1	50-200			
-CS (1451025-BS1)				Prepared &	Analyzed:	18-Dec-14				
Diesel Range Organics (C10-C28)	508	29.9	mg/kg	499		102	38-132			
hurrogate: a-Terphenyl	45.1			39.9		113	50-200			
Matrix Spike (1451025-MS1)	Sou	rce: P412060-	01	Prepared &	Analyzed:	18-Dec-14				
Diesel Range Organics (C10-C28)	599	30.0	mg/kg	499	ND	120	38-132			
urrogate: o-Terphenyl	50.6		•	39.9		127	50-200			
Matrix Spike Dup (1451025-MSD1)	Sou	rce: P412060-	01	Prepared &	Analyzed:	18-Dec-14				
Diesel Range Organics (C10-C28)	537	30.0	mg/kg	500	ND	108	38-132	10.8	20	
the second s	the second	and the second se				the second se			and the second s	and the second sec

5796 US Highway 64, Farmington, NM 87401

Three Springs + 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (505) 632-0615 Fx (505) 632-1865 Ph (970) 259-0615 Fr (800) 362-1879 envirotech-inc.com Isbor.itory#envirotech-inc.com Page 9 of 14

CCI, LLC	Proje	ect Name:	K	irtland Plant	Pipeline Le	ak				
PO Box 70	Proje	ect Number:	14	4038-0011					Repor	ted:
Kirtland NM, 87417	Proje	ect Manager:	S	heena Leon				24-Dec-14 09:31		
	Nonhaloge	nated Org	anics by	8015 - Qu	ality Co	ntrol				
	En	virotech	Analyti	cal Labor	atory					
		Reporting		Spike	Source		%REC		RPD	1
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1451026 - Purge and Trap EPA 5	030A				1				i.	
Blank (1451026-BLK1)				Prepared &	Analyzed	18-Dec-14				
Gasoline Range Organics (C6-C10)	ND	9.99	mg/kg							
Surrogate: 4-Bromochlorobenzene-FID	0.380		•	0.400	- 100 Hit - 1800 - 7 - 6	95.1	50-150	2001		
LCS (1451026-BS1)				Prepared &	Analyzed	18-Dec-14				
Gasoline Range Organics (C6-C10)	316	9.98	mg/kg	291		109	80-120			
Surrogate: 4-Bromochlorobenzene-FID	0.382		-	0.399		95.9	50-150			
Matrix Spike (1451026-MS1)	Sour	ce: P412060-	01	Prepared &	Analyzed	18-Dec-14				
Gasoline Range Organics (C6-C10)	301	9.99	mg/kg	292	ND	103	75-125			4
Surrogate: 4-Bromochlorobenzene-FID	0.382		-	0.399		95.7	50-150			
Matrix Spike Dup (1451026-MSD1)	Sour	ce: P412060-	01	Prepared &	Analyzed	18-Dec-14				-
Gasoline Range Organics (C6-C10)	319	9.99	mg/kg	292	ND	110	75-125	5.91	15	
Surrogate: 4-Bromochlorobenzene-FID	0.379			0.399		94.9	50-150		Contraction of the second	

 5796 US Highway 64, Farmington, NM 87401
 Ph (505) 632-0615
 Fx (505) 632-1865
 envirotech-inc.com

 Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301
 Ph (970) 259-0615
 Fr (800) 362-1879
 Laboratory: envirotech-inc.com

 Page 10 of 14

CCI, LLC PO Box 70 Kirtland NM, 87417	Pro	oject Name: oject Number: oject Manager:	ŀ	irtland Plant 4038-0011 heena Leon	Pipelíne Le	ak			Report 24-Dec-14	
	F	TCLP Met	-					2		
		Reporting	Liaiyu	Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1452001 - Metal Water/TCLP	(EPA 1311) Digesti	on EPA 1014								
Bank (1452001-BLK1)	(BIA ISII) Digest	UN ET A JUIS	A	Despaced 8	Analyzed:	12 Dec 14				
Arsenic	ND	0.01	mg/L	Prepared a	Analyzed	22-Dec-14				
Barium	ND	0.05	mg/L							
Cadmium	ND	0.01								
Chromium	ND	0.01	-							
ead	ND	0.01	-							
Selenium	ND	0.01								
Silver	ND	0.01	•							
Duplicate (1452001-DUP1)	Sou	rce: P412037-	02	Prepared &	Analyzed:	22-Dec-14				
Arsenic	0.02	0.01	mg/L		0.01			62.6	30	DI
Barium	0.39	0.05	-		0.28			32.2	30	DI
Cadmium	0.02	0.01	•		0.02			13.1	30	
Chromium	0.01	0.01	•		0.02			10.7	30	
end	0.17	0.01	-		0.19			15.7	30	
Selenium	0.04	0.01	•		0.04			17.2	30	
Silver	0.03	0.01	•		0.04			19.2	30	
Matrix Spike (1452001-MS1)	Seu	rce: P412037-	02	Prepared &	Analyzed:	22-Dec-14				
Arsenic	0.26		mg/L	0.250	0.01	101	75-125			
Barium	5.48			5.00	0.24	105	75-125			
Cadmium	0.27		-	0.250	0.02	98.6	75-125			
Chromium	0.50		•	0.500	0.01	96.5	75-125			
Lead	0.64		•	0.500	0.17	95.5	75-125			
Selenium	0.14		•	0.100	0.03	105	75-125			
lilver	0.12			0.100	0.03	88.8	75-125			

CCI, LLC	Project Name:	Kirtland Plant Pipeline Leak	
PO Box 70	Project Number:	14038-0011	Reported:
Kirtland NM, 87417	Project Manager:	Sheena Leon	24-Dec-14 09:31

TCLP Mercury by EPA 7470A - Quality Control

	E	nvirotech /	Analyti	cal Labor	atory					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1452002 - Mercury Water/TCLP	Digestion KMN	04							*	
Blank (1452002-BLK1)				Prepared: 2	2-Dec-14	Analyzed:	23-Dec-14			
Mercury	ND	0.0002	mg/L							
LCS (1452002-BS1)				Prepared: 2	2-Dec-14	Analyzed:	23-Dec-14			
Mercury	0.002	0.0002	mg/L	0.00229		108	80-120			
Matrix Spike (1452002-MS1)	Seu	rce: P412054-	05	Prepared: 2	2-Dec-14	Analyzed:	23-Dec-14			
Mercury	0.002	0.0002	mg/L	0.00229	ND	106	75-125			
Matrix Spike Dup (1452002-MSD1)	Sou	rce: P412054-	05	Prepared: 2	2-Dec-14	Analyzed:	23-Dec-14			
Mercury	0.002	0.0002	mg/L	0.00229	ND	107	75-125	1.27	15	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Three Springs - 65 Mercado Street, Suite 115, Durango. CO 81301

Ph (505) 632-0615 Fx (505) 632-1865 Ph (970) 259-0615 Fr (800) 362-1879 envirietech-inc.com Laborator pillenvirietech-inc.com Page 12 of 14

CCI, LLC	Project Name:	Kirtland Plant Pipeline Leak	
PO Box 70	Project Number:	14038-0011	Reported:
Kirtland NM, 87417	Project Manager:	Sheena Leon	24-Dec-14 09:31
			and a state of the

Notes and Definitions

D1 Duplicates or Matrix Spike Duplicates Relative Percent Difference exceeds control limits.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com laboratory#envirotech-inc.com Page 13 of 14

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

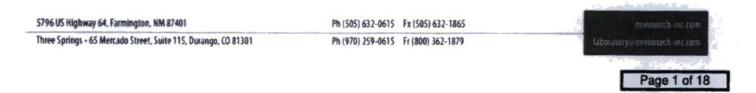
Ph (970) 259-0615 Fr (800) 362-1879

			Cł	HAIN O	FC	US	ГС	D	Y	R	E	C	J F	RD)			1	()	89			
Client: COI			P	roject Name / Locati	ON: CPV	intp	là	lin	01	ea	5			A	NALY	sis	/ PAR	RAME	TER	s			
Email results to: S. P	lo	N	S	ampler Name:	. f	in	p.	201			1 8021)	8260)	s			HIP Malak	-						
Client Phone No.:			C	lient No.: 14(38	-00	1			TPH (Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	RCRA 8 Metals	Cation / Anion		-	CO Table 910-1	118.1)	RIDE			e Cool	e Intact
Sample No./ Identification		nple ate	Sample Time	Lab No.		Volume ontainers	P HNO3	HCI	tive	TPH (BTEX	VOC (RCRA	Cation	RCI	TCLP with	CO Ta	TPH (418.1)	CHLORIDE			Sample	Sample
West Bottom	121	514	11/50	P412054-01	1-402	Aces you				+	+											¥	Y
West walls				P412054-02	-	1				+	1									_		1	Ц
East Boltom			12:20	P412054-03						+		-								-		_	\prod
Ecolulis			12:10	P412054-04	-		i	-		+	+									_	_	+	#
Soutfile	T		12:2	P412054-05		1										+	-			-		T	-
			-		-			+-	-				_				-			-			-
						and the state of the state	-	+				-	_	-	-			-		-	+		-
	-				-		-	-					-							+	-		-
							1	-							C					1		-	
Relinquished by: (Signature)	ha	14.0	01		Date	Time	Rece	eived I	by: (S	ignat	ture)	#			-	-					Date		īme
Relinquished by: (Signature)	/100	na	S		104DIA		Rece	ived l	oy: (S	lignat	ture)		r		1.	1					2151	14	150
Sample Matrix							-	-		-		-			_	_						+-	
Soil Solid 🗆 Sludge 🗆	Aque	ous	Other]																			
Sample(s) dropped off after	hours	to see	cure drop o	off area.	30	en v Anal	ir (ot	e		Ŋ		11.	Ζ	, 1),	81	1	1.4	2			
5795 US Highway 64	• Far	mingt	on, NM 874	01 • 505-632-0615 •	Three Spr	ings • 65 N	Aerco	ido Str	eet, S	Suite	115. D	urang	90, C	0 813	301 ·	labo	rator	y@en	viroted	ch-inc	Page	14 0	of 14

Analytical Report

Report Summary

Client: CCI, LLC Chain Of Custody Number: 17598 Samples Received: 1/9/2015 9:00:00AM Job Number: 14038-0011 Work Order: P501024 Project Name/Location: Kirtland Plant Pipeline Leak


Date: 1/27/15

Entire Report Reviewed By:

Tim Cain, Laboratory Manager

Supplement to analytical report generated on: 1/20/15 1:56 pm

The results in this report apply to the samples submitted to Envirotech's Analytical Laboratory and were analyzed in accordance with the chain of custody document supplied by you, the client, and as such are for your exclusive use only. The results in this report are based on the sample as received unless otherwise noted. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. If you have any questions regarding this analytical report, please don't hesitate to contact Envirotech's Laboratory Staff.

Project Name:	Kirtland Plant Pipeline Leak	
Project Number:	14038-0011	Reported:
Project Manager.	Sheena Leon	27-Jan-15 15:31
	Project Number:	Project Number: 14038-0011

Analyical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container	
West Bottom	P501024-01A	Soil	01/08/15	01/09/15	Glass Jar, 4 oz.	
	P501024-01B	Soil	01/08/15	01/09/15	Glass Jar, 4 oz.	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865 Ph (970) 259-0615 Fr (800) 362-1879

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

CCI, LLC		t Name:		and Plant Pip	peline Leak				
PO Box 70		t Number:		8-0011				Reported:	
Kirtland NM, 87417	Ртојес	t Manager:	Shee	na Leon				27-Jan-15 15	:31
		We	st Botto	m					
		P5010	24-01 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	0.12	0.10	mg/kg	1	1503011	01/13/15	01/15/15	EPA 8021B	
Toluene	0.45	0.10	mg/kg	ı	1503011	01/13/15	01/15/15	EPA 8021B	
Ethylbenzene	ND	0.10	mg/kg	1	1503011	01/13/15	01/15/15	EPA 8021B	
p,m-Xylene	0.78	0.20	mg/kg	1	1503011	01/13/15	01/15/15	EPA 8021B	
o-Xylene	0.32	0.10	mg/kg	1	1503011	01/13/15	01/15/15	EPA 8021B	
Total Xylenes	1.10	0.10	mg/kg	1	1503011	01/13/15	01/15/15	EPA 8021B	
Total BTEX	1.68	0.10	mg/kg	1	1503011	01/13/15	01/15/15	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		118%	50	-150	1503011	01/13/15	01/15/15	EPA 8021B	
Nonhalogenated Organics by 8015				4				â.	
Gasoline Range Organics (C6-C10)	25.9	9.99	mg/kg	1	1503011	01/13/15	01/15/15	EPA 8015D	
Diesel Range Organics (C10-C28)	152	24.9	mg/kg	1	1503010	01/13/15	01/16/15	EPA 8015D	
Surrogate: o-Terphenyl		107 %	50	-200	1503010	01/13/15	01/16/15	EPA 8015D	
Surrogate: 4-Bromochlorobenzene-FID		115%	50	-150	1503011	01/13/15	01/15/15	EPA 8015D	
Total Metals by 6010									
Arsenic	1.61	0.99	mg/kg	1	1504007	01/19/15	01/19/15	EPA 6010C	
Barium	117	4.95	mg/kg	1	1504007	01/19/15	01/19/15	EPA 6010C	
Cadmium	1.08	0.99	mg/kg	1	1504007	01/19/15	01/19/15	EPA 6010C	
Chromium	19.8	0.99	mg/kg	1	1504007	01/19/15	01/19/15	EPA 6010C	
Copper	15.1	0.99	mg/kg	1	1504007	01/19/15	01/19/15	EPA 6010C	
Lead	10.1	0.99	mg/kg	1	1504007	01/19/15	01/19/15	EPA 6010C	
Mercury	ND	0.99	mg/kg	1	1504007	01/19/15	01/19/15	EPA 6010C	
Nickel	11.0	0.99	mg/kg	1	1504007	01/19/15	01/19/15	EPA 6010C	
Selenium	3.18	0.99	mg/kg	1	1504007	01/19/15	01/19/15	EPA 6010C	
Silver	ND	0.99	mg/kg	1	1504007	01/19/15	01/19/15	EPA 6010C	
Zinc	43.6	0.99	mg/kg	1	1504007	01/19/15	01/19/15	EPA 6010C	

5796 US Highway 64, Farmington, NM 87401	Ph (505) 632-0615 Fx (505) 632-1865	envirotech-inc.com
Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301	Ph (970) 259-0615 Fr (800) 362-1879	laboratory@envirotech-inc.com
		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Page 3 of 18

CCI, LLC PO Box 70 Kirtland NM, 87417	Project	Name: Number: Manager:	14038	nd Plant Pij 3-0011 na Leon	peline Leak			Reported: 27-Jan-15 15	
			est Botton 024-01 (So	-		v.		3	
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Cation/Anion Analysis									
oH @25°C	4.03		pH Units	1	1503007	01/13/15	01/13/15	EPA 9045D	
Electrical Conductivity	826		umhos/cm	1	1503007	01/13/15	01/13/15	EPA 120.1	
Sodium Absorption Ratio	0.894		N/A	1	1504008	01/19/15	01/19/15	[CALC]	
Calcium	53.9	0.01	mg/L	1	1503023	01/16/15	01/19/15	EPA 6010C	
Magnesium	22.3	0.01	mg/L	1	1503023	01/16/15	01/19/15	EPA 6010C	
Sodium	30.9	0.01	mg/L	1	1503023	01/16/15	01/19/15	EPA 6010C	
Boron-Hot Water Soluble by EPA 6010		-							
Boron	ND	0.50	mg/L	1	1504006	01/19/15	01/19/15	EPA 6010C	

5796 US Highway 64, Farmington, NM 87401

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (505) 632-0615 Fx (505) 632-1865 Ph (970) 259-0615 Fr (800) 362-1879 envirotech-inc.com laboratory=envirotech-inc.com Page 4 of 18

-

CCI, LLC PO Box 70 Kirtland NM, 87417	Pro	ject Name: ject Number: ject Manager:	1-	irtland Plant 4038-0011 heena Leon	Pipeline Le	ak			Report 27-Jan-15	
		Organics b avirotech /		-		rol				
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1503011 - Purge and Trap EPA 5	6030A									
Blank (1503011-BLK1)				Prepared: 1	3-Jan-15 /	Analyzed: 1	5-Jan-15			
Benzene	ND	0.10	mg/kg							
oluene	ND	0.10	-							
thylbenzene	ND	0.10	-							
,m-Xylene	ND	0.20	-							
-Xylene	ND	0.10								
otal Xylenes	ND	0.10								
Total BTEX	ND	0.10								
urrogate: 4-Bromochlorobenzene-PID	0.463			0.399		116	50-150			
CS (1503011-BS1)				Prepared: 1	3-Jan-15 A	Analyzed: 1	5-Jan-15			
lenzone	17.0	0.10	mg/kg	19.9		85.3	75-125			
olucae	17.6	0.10	•	19.9		88.4	70-125			
thylbenzene	18.0	0.10	•	19.9		90.0	75-125			
,m-Xylene	36.2	0.20	-	39.9		90.6	80-125			
-Xylene	17.8	0.10	•	19.9		89.3	75-125			
urrogate: 4-Bromochlorobenzene-PID	0.466			0.399		117	50-150			
Antrix Spike (1503011-MS1)	Sou	rce: P501024-	01	Prepared: 1	3-Jan-15 A	alyzed: 1	5-Jan-15			
Benzene	18.6	0.10	mg/kg	19.9	0.12	92.6	75-125			
oluene	19.3	0.10	•	19.9	0.45	94.7	70-125			
thylbenzene	19.4	0.10	-	19.9	ND	97.1	75-125			
,m-Xylene	40.0	0.20	-	39.9	0.78	98.3	80-125			
Xylene	19.7	0.10	•	19.9	0.32	97.3	75-125			
urrogate: 4-Bromochlorobenzene-PID	0.479			0.399		120	50-150			
fatrix Spike Dup (1503011-MSD1)	Sou	rce: P501024-	01	Prepared: 1	3-Jan-15 A	nalyzed: 1	5-Jan-15			
lenzene	18.3	0.10	mg/kg	20.0	0.12	91.1	75-125	1.51	15	
oluene	19.2	0.10	•	20.0	0.45	94.2	70-125	0.418	15	
thylbenzene	19.3	0.10	•	20.0	ND	96.7	75-125	0.369	15	
,m-Xylene	41.2	0.20	-	39.9	0.78	101	80-125	3.06	15	
-Xylene	20.1	0.10	•	20.0	0.32	99.0	75-125	1.87	15	
urrogate: 4-Bromochlorobenzene-PID	0.522			0.399		131	50-150			

5796 US Highway 64, Farmington, NM 87401	Ph (505) 632-0615	Fx (505) 632-1865	envirotech-inc.com
Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301	Ph (970) 259-0615	Fr (800) 362-1879	laboratory≣envirotech-inc.com
	*		Page 5 of 18

CCI, LLC	Pro	ject Name:	K	irtland Plant	Pipeline Le	ak				
PO Box 70	Pro	ject Number:	1	4038-0011					Report	ed:
Kirtland NM, 87417	Pro	ject Manager:	S	heena Leon		27-Jan-15 15:31				
	Nonhalog	enated Org	anics by	y 8015 - Qu	ality Co	ntrol				
	E	nvirotech A	Analyti	cal Labor	atory					
Analyte	Result	Reporting	Units	Spike	Source Result	%REC	%REC	RPD	RPD	Notes
		Louis A	Units		-	Alde	Canto	NI D	21111	110100
Batch 1503010 - DRO Extraction EPA 3	550M			-						
Blank (1503010-BLK1)				Prepared: 1	3-Jan-15 /	Analyzed: 1	6-Jan-15			
Diesel Range Organics (C10-C28)	ND	24.9	mg/kg							
Surrogate: o-Terphenyl	47.9			39.9		120	50-200			
LCS (1503010-BS1)		L.		Prepared: 1	3-Jan-15 /	alyzed: 1	6-Jan-15			
Diesel Range Organics (C10-C28)	574	25.0	mg/kg	499		115	38-132			
Surrogate: o-Terphenyl	45.9			39.9		115	50-200			
Matrix Spike (1503010-MS1)	Sou	rce: P501024-	01	Prepared: 1	3-Jan-15 /	alyzed: 1	6-Jan-15			
Diesel Range Organics (C10-C28)	616	24.9	mg/kg	499	152	92.9	38-132			
Surrogate: o-Terphenyl	43.6			39.9		109	50-200			
Matrix Spike Dup (1503010-MSD1)	Sou	rce: P501024-	01	Prepared: 1	3-Jan-15 A	alyzed: 1	6-Jan-15			
Diesel Range Organics (C10-C28)	573	25.0	mg/kg	499	152	84.3	38-132	7.23	20	
Surrogate: o-Terphenyl	45.8			39.9		115	50-200			

5796 US Highway 64, Farmington, NM 87401	Ph (505) 632-0615	Fx (505) 632-1865	envirotech-inc.com
Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301	Ph (970) 259-0615	Fr (800) 362-1879	aboratory@envirotech-inc.com
			Page 6 of 18

CCI,LLC		ect Name:		irtland Plant	r ipenne Le					
PO Box 70		ect Number:	-	4038-0011					Report	
Kirtland NM, 87417	Ртој	ect Manager:	S	heena Leon			27-Jan-15 15:31			
	Nonhaloge	nated Org	anics by	8015 - Qu	ality Co	ntrol				
	En	virotech A	Analyti	cal Labor	atory					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1503011 - Purge and Trap EPA 5	030A									
Blank (1503011-BLK1)				Prepared: 1	3-Jan-15 A	nalyzed: 1	5-Jan-15			
Gasoline Range Organics (C6-C10)	ND	9.98	mg/kg			Comp Dates - Arrest				
Surrogate: 4-Bromochlorobenzene-FID	0.416			0.399		104	50-150			
LCS (1503011-BS1)				Prepared: 1	3-Jan-15 A	nalyzed: 1	5-Jan-15			
Gasoline Range Organics (C6-C10)	248	9.97	mg/kg	291		85.3	80-120			
Surrogate: 4-Bromochlorobenzene-FID	0.419			0.399		105	50-150			
Matrix Spike (1503011-MS1)	Sour	ce: P501024-	01	Prepared: 1	3-Jan-15 A	nalyzed: I	5-Jan-15			
Gasoline Range Organics (C6-C10)	281	9.96	mg/kg	291	25.9	87.6	75-125			
Surrogate: 4-Bromochlorobenzene-FID	0.450		•	0.399		113	50-150			
Matrix Spike Dup (1503011-MSD1)	Sour	ce: P501024-	01	Prepared: 1	3-Jan-15 A	nalyzed: 1	5-Jan-15			
Gasoline Range Organics (C6-C10)	401	9.98	mg/kg	291	25.9	129	75-125	35.3	15	DI
Surrogate: 4-Bromochlorobenzene-FID	0.609			0.399		153	50-150			Sur

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

CCI, LLC PO Box 70 Kirtland NM, 87417	Pro	oject Name: oject Number: oject Manager:	14	irtland Plant 4038-0011 heena Leon	Pipeline Le	ak			Report 27-Jan-15	
-		tal Metals b	-	-						
	E	nvirotech /	Anaiyu							
Analyte	Result	Reporting Limit	Units	Spike	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1504007 - Metal Solid Digestic	on EPA 3051A									
Bank (1504007-BLK1)				Prepared &	Analyzed:	19-Jan-15				
Arsenic	ND	1.00	mg/kg							
Barium	ND	5.00								
admium	ND	1.00	-							
hromium	ND	1.00	-							
Copper	ND	1.00	-							
ead	ND	1.00	-							
fercury	ND	1.00	-							
lickel	ND	1.00	-							
celenium.	ND	1.00	-							
ilver	ND	1.00	-							
inc	ND	1.00	•							
Duplicate (1504007-DUP1)	Sou	rce: P501024-	01	Prepared &	Analyzed:	19-Jan-15				
rsenic	2.47	0.97	mg/kg		1.61			41.8	30	DI
anum	128	4.85	•		117			9.02	30	
admium	1.32	0.97	-		1.08			20.2	30	
hromium	23.6	0.97	-		19.8			17.5	30	
opper	18.8	0.97	•	×	15.1			21.9	30	
lead	10.7	0.97	•		10.1			5.84	30	
Aercury	ND	0.97	-		ND				30	
lickel	13.3	0.97	-		11.0			18.7	30	
elenium	3.45	0.97	-		3.18			8.16	30	
Silver	ND	0.97	-		ND				30	
inc	59.0	0.97	•		43.6			30.0	30	
fatrix Spike (1504007-MS1)	Sou	rce: P501024-	01	Prepared &	Analyzed:	19-Jan-15				
rsenic	0.25		mg/L	0.250	0.02	95.0	75-125			
arium	6.71			5.00	1.12	112	75-125			
admium	0.25		-	0.250	0.01	95.0	75-125			
hromium	0.73		•	0.500	0.19	108	75-125			
opper	0.64		-	0.500	0.14	98.4	75-125			
cad	0.55		•	0.500	0.10	90.1	75-125			
lercury	0.10		•	0.100	0.009	89.9	75-125			
ickel	0.59		•	0.500	0.11	97.0	75-125			
elenium	0.13			0.100	0.03	95.3	75-125			
ilver	0.09			0.100	-0.006	90.5	75-125			

5796 US Highway 64, Farmington, NM 87401	Ph (50 5) 632-0615	Fx (505) 632-1865	envirotech-inc.com
Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301	Ph (970) 259-0615	Fr (800) 362-1879	laboratory@envirotech-inc.com
10 C			a state the second state of
			Page 8 of 18

CCI, LLC	Рто	ject Name:	K	irtland Plant	Pipeline Le	ak				
PO Box 70	Pro	ject Number:	1	4038-0011					Report	ed:
Kirtland NM, 87417	Ртој	ject Manager:	s	heena Leon					27-Jan-15	15:31
	Boron-Hot V	Vater Solut	ole by E	PA 6010 -	Quality (Control				
	En	wirotech A	Analyti	cal Labor	atory					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1504006 - Boron HW Soluble	Digestion						-			
lank (1504006-BLK1)				Prepared &	Analyzed:	19-Jan-15				1.0
loron	ND	0.50	mg/L						_	
Duplicate (1504006-DUP1)	Sou	ree: P501024-	01	Prepared &	Analyzed:	19-Jan-15				
					ND	0.0	-		30	
loron	ND	0.50	mg/L							
loron Matrix Spike (1504006-MS1)		0.50 rce: P50 1024-	-	Prepared &	Analyzed:	19-Jan-15				

5796 US Highway 64, Farmington, NM 87401	Ph (505) 632-0615	Fx (505) 632-1865	envirotech-inc.com
Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301	Ph (970) 259-0615	Fr (800) 362-1879	laboratory@envirotech-inc.com
			Page 9 of 18

Notes and Definitions Surr1 Surrogate recovery was above acceptable limits. D1 Duplicates or Matrix Spike Duplicates Relative Percent Difference exceeds control limits. DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported dry Sample results reported on a dry weight basis RPD Relative Percent Difference	CCI, LL PO Box Kirtland		Project Name: Project Number. Project Manager:	Kirtland Plant Pipeline Leak 14038-0011 Sheena Leon	Reported: 27-Jan-15 15:31
DI Duplicates or Matrix Spike Duplicates Relative Percent Difference exceeds control limits. DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported dry Sample results reported on a dry weight basis			Notes and D	efinitions	
DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported dry Sample results reported on a dry weight basis	Surri	Surrogate recovery was above a	acceptable limits.		
ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported dry Sample results reported on a dry weight basis	DI	Duplicates or Matrix Spike Dup	plicates Relative Percent Difference ex	ceeds control limits.	
NR. Not Reported dry Sample results reported on a dry weight basis	DET	Analyte DETECTED			
dry Sample results reported on a dry weight basis	ND	Analyte NOT DETECTED at or ab	ove the reporting limit		
	NR	Not Reported			
RPD Relative Percent Difference	dry	Sample results reported on a dry w	eight basis		
	RPD	Relative Percent Difference			

 5796 US Highway 64, Farmington, NM 87401
 Ph (505) 632-0615
 Fx (505) 632-1865
 envirotech-inc.com

 Three Springs + 65 Mercado Street, Suite 115, Durango, CO 81301
 Ph (970) 259-0615
 Fr (800) 362-1879
 Laboratory envirotech-inc.com

 Page 10 of 18

		CF	IAIN U	ГС	03		U	1	n			J	L									_
Client:		Pr	bject Name / Locati	ant	+ Pic	plin	el	ah					A	NALY	rsis	/ PAR	RAME	TERS	3			
Email results to:	Leon	Sa	mpler Name:	3.6	Lon	5				d 8021)	8260)	s				7						
Client Phone No.: 0		Cli	ent No.: 14()38-	0011		_		TPH (Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	RCRA 8 Metals	Cation / Anion		TCLP with H/P	CO Table 910-1	TPH (418.1)	RIDE			Sample Cool	Sample intact
Sample No./ Identification	Sample Date	Sample Time	Lab No.		Volume Intainers	Pr HNO3	HCI	Cod	TPH (I	BTEX	VOC (RCRA	Cation	RCI	TCLP	CO Ta	Hd1	CHLORIDE			Samp	Samp
WestBotom	1/8/15	11:30	P501024-01	2-40	glæsju	-		X								+			-		4	7
						-	-												+		-	-
					-	i																
																			_		_	_
				-		+		-			-						-		-	+		-
						+													-		-	-
					1																	ne
Relinquished by: (Signature)	Sheer	all	low	Date	Time	Rece	bevie	by: (S	Signal	ture)	1	2	n	le	1				1	Date		ne 7: 9
Relinquished by: (Signature)		10	~~~			Rece	bevi	by; (S	ilgha	tare)	~											
Sample Matrix																						
	Aqueous [1		-	-	_														_
Sample(s) dropped off afte	r hours to se	cure drop o	off area.	30	env	ir	ot	e		h							0	4.7	2			
5795 US Highway	64 • Farming	ton, NM 874	01 • 505-632-0615 •	Three Sp	rings = 65	Merco	ado St	reet.	Suite	115.0	Duran	go, (0 81	301 •	labo	rato				Page	11 0	f 18
		1.44																	5.3	and the second se		The second second

CHAIN OF CUSTODY DECODD

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Page 12 of 18

Est. 1970

Lynn Cook EnviroTech- NM 5796 US. Highway 64 Farmington, NM 87401

Report Summary

Monday January 26, 2015

Report Number: L742965

Samples Received: 01/13/15 Client Project: 14038-0011

Description: Kirtland Plant Pipeline Leak

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Daphne Richards , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - 01157CA, CT - PH-0197, FL - E87487, GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704/BIO041, ND - R-140. NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 460132, WV - 233, AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032011-1, TX - T104704245-11-3, OK - 9915, PA - 68-02979, IA Lab #364, EPA - TN002

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Page 1 of 6

Lynn Cook

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289 Est. 1970

REPORT OF ANALYSIS

January 26,2015

EnviroTech- NM 5796 US. Highway Farmington, NM 8								
					ESC	Sample 🕴 :	L742965-01	
Date Received	:	January 13, 2	015					
Description	:	Kirtland Plant	Pipeline Leak			e ID : 2501	024	
Sample ID	:	WEST BOTTOM					38-0011	
Collected By Collection Date	:	S. Leon 01/08/15 11:30					50-0011	
Parameter			Dry Result	Det. Limit	Units	Method	Date	Dil
Total Solids			86.1			2540 G-2011	01/16/15	1
Polynuclear Arom	ati	c Hydrocarbons						
Anthracene			0.30	0.0070	mg/kg	8270C-SIM	01/23/15	1
Acenaphthene			0.15	0.0070	mg/kg	8270C-SIM	01/23/15	1
Acenaphthylene			BDL	0.0070	mg/kg	8270C-SIM	01/23/15	1
Benzo (a) anthra	cen	e	0.42	0.0070	mg/kg	8270C-SIM	01/23/15	1
Benzo (a) pyrene			0.18	0.0070	mg/kg	8270C-SIM	01/23/15	1
Benzo (b) fluora	nth	ene	0.48	0.0070	mg/kg	8270C-SIM	01/23/15	1
Benzo(g, h, i)pe	ryl	ene	0.13	0.0070	mg/kg	8270C-SIM	01/23/15	1
Benzo(k) fluora			0.095	0.0070	mg/kg	8270C-SIM	01/23/15	1
Chrysene			0.43	0.0070	mg/kg	8270C-SIM	01/23/15	1
Dibenz (a, h) ant	hra	cene	0.045	0.0070	mg/kg	8270C-SIM	01/23/15	1
Fluoranthene			0.99	0.0070	mg/kg	8270C-SIM	01/23/15	1
Fluorene			0.16	0.0070	mg/kg	8270C-SIM	01/23/15	1
Indeno (1, 2, 3-c	d) p	vrene	0.13	0.0070	mg/kg	8270C-SIM	01/23/15	1
Naphthalene		1	0.045	0.023	mg/kg	8270C-SIM	01/23/15	1
Phenanthrene			1.3	0.0070	mg/kg	8270C-SIM	01/23/15	1
Pyrene			0.86	0.0070	mg/kg	8270C-SIM	01/23/15	1
1-Methylnaphth	ale	ne	BDL	0.023	mg/kg	8270C-SIM	01/23/15	1
2-Methylnaphth			0.030	0.023	mg/kg	8270C-SIM	01/23/15	1
2-Chloronaphth			BDL	0.023	mg/kg	8270C-SIM	01/23/15	1
Surrogate Recove			000	0.000	mg, ng			-
Nitrobenzene-d			65.2		& Rec.	8270C-SIM	01/23/15	1
2-Fluorobiphen			70.8		t Rec.	8270C-SIM	01/23/15	î
			75.1		\$ Rec.	8270C-SIM	01/23/15	-
p-Terphenyl-dl	4		13.1		a Rec.	02/0C-SIM	01/23/15	+

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 01/23/15 16:55 Revised: 01/26/15 09:30

Page 2 of 6

EnviroTech- NM Lynn Cook 5796 US. Highway 64

Farmington, NM 87401

Analyte

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Ref Samp

Batch

Est. 1970

Quality Assurance Report Level II L742965

January 26, 2015

		Laboratory	Blank			
Analyte	Result	Units	* Rec	Limit	Batch	Date Analyze
Total Solids	< .1	•			WG764605	01/16/15 07:
1-Methylnaphthalene	< .02	mg/kg				01/23/15 10:
2-Chloronaphthalene	< .02	mg/kg				01/23/15 10:
2-Methylnaphthalene	< .02	mg/kg				01/23/15 10:
Acenaphthene	< .006	mg/kg			WG766057	01/23/15 10:
Acenaphthylene	< .006	mg/kg			And and Differ and Address	01/23/15 10:
Anthracene	< .006	mg/kg				01/23/15 10:
Benzo (a) anthracene	< .006	mg/kg			WG766057	01/23/15 10:
Benzo (a) pyrene	< .006	mg/kg			WG766057	01/23/15 10:
Benzo(b) fluoranthene	< .006	mg/kg				01/23/15 10:
Benzo(g,h,i)perylene	< .006	mg/kg				01/23/15 10:
Benzo (k) fluoranthene	< .006	mg/kg			WG766057	01/23/15 10:
Chrysene	< .006	mg/kg				01/23/15 10:
Dibenz(a, h) anthracene	< .006	mg/kg			WG766057	01/23/15 10:
Fluoranthene	< .006	mg/kg			WG766057	01/23/15 10:
Fluorene	< .006	mg/kg			WG766057	01/23/15 10:
Indeno(1,2,3-cd)pyrene	< .006	mg/kg				01/23/15 10:
Naphthalene	< .02	mg/kg			WG766057	01/23/15 10:
Phenanthrene	< .006	mg/kg			WG766057	01/23/15 10:
Pyrene	< .006	mg/kg			WG766057	01/23/15 10:
2-Fluorobiphenyl		& Rec.	91.20	38.2-135	WG766057	01/23/15 10:
Nitrobenzene-d5		& Rec.	93.00	28.4-151	WG766057	01/23/15 10:
p-Terphenyl-d14		\$ Rec.	89.40	34.2-141	WG766057	01/23/15 10:

Duplicate Duplicate

RPD

Limit

Result

Total Solids	•	88.5	87.9 0.6	582 5	1742995-01	WG764605
		Laboratory	Control Sample			
Analyte	Units	Known Val	Result	1 Rec	Limit	Batch
Total Solids	•	50	50.0	100.	85-115	WG764605
1-Methylnaphthalene	mg/kg	.08	0.0682	85.3	48.9-127	WG766057
2-Chloronaphthalene	mg/kg	.08	0.0655	81.9	48.8-125	WG766057
2-Methylnaphthalene	mg/kg	.08	0.0686	85.7	45.7-131	WG766057
Acenaphthene	mq/kq	.08	0.0668	83.5	48.7-127	WG766057
Acenaphthylene	mg/kg	.08	0.0676	84.4	47.9-128	WG766057
Anthracene	mg/kg	.08	0.0722	90.2	51.3-136	WG766057
Benzo (a) anthracene	mg/kg	.08	0.0629	78.6	55-126	WG766057
Benzo (a) pyrene	mg/kg	.08	0.0567	70.8	51.9-127	WG766057
Benzo(b) fluoranthene	mg/kg	.08	0.0605	75.7	54-125	WG766057
Benzo (g, h, i) perylene	mg/kg	.08	0.0628	78.5	53.8-136	WG766057
Benzo(k) fluoranthene	mg/kg	.08	0.0716	89.5	53.9-132	WG766051
Chrysene	mg/kg	.08	0.0700	87.5	55.7-133	WG766057
Dibenz(a, h) anthracene	mg/kg	.08	0.0695	86.9	52.6-137	WG766057
Fluoranthene	mg/kg	.08	0.0691	86.4	54-132	WG766057
Fluorene	mg/kg	.08	0.0657	82.1	48.7-127	WG766057
Indeno (1, 2, 3-cd) pyrene	mg/kg	.08	0.0696	87.0	53.8-138	WG766057
Naphthalene	mg/kg	.08	0.0679	84.8	42-127	WG766057
Phenanthrene	mg/kg	.08	0.0626	78.2	49.6-126	WG766057
Pyrene	mg/kg	.08	0.0629	78.6	54-129	WG766057
2-Fluorobiphenyl				81.80	38.2-135	WG766057
Nitrobenzene-d5				83.80	28.4-151	WG766057
p-Terphenyl-d14				80.70	34.2-141	WG766057

p-Terphenyl-d14 80.70 * Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 3 of 6

Units

Page 14 of 18

EnviroTech- NM Lynn Cook 5796 US. Highway 64

Farmington, NM 87401

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L742965

January 26, 2015

Page 15 of 18

		Laboratory	Y Control S	ample Duplicat	te			
Analyte	Units	Result	Ref	\$Rec	Limit	RPD	Limit	Batch
1-Methylnaphthalene	mg/kg	0.0662	0.0682	83.0	48.9-127	3.07	20	WG76605
2-Chloronaphthalene	mg/kg	0.0636	0.0655	79.0	48.8-125	3.01	20	WG76605
2-Methylnaphthalene	mg/kg	0.0670	0.0686	84.0	45.7-131	2.39	20	WG76605
Acenaphthene	mg/kg	0.0645	0.0668	81.0	48.7-127	3.47	20	WG76605
Acenaphthylene	mg/kg	0.0652	0.0676	81.0	47.9-128	3.55	20	WG76605
Anthracene	mg/kg	0.0703	0.0722	88.0	51.3-136	2.63	20	WG76605
Benzo (a) anthracene	mg/kg	0.0608	0.0629	76.0	55-126	3.47	20	WG76605
Benzo (a) pyrene	mg/kg	0.0571	0.0567	71.0	51.9-127	0.670	20	WG76605
Benzo (b) fluoranthene	mg/kg	0.0612	0.0605	76.0	54-125	1.06	20	WG76605
Benzo(g, h, i) perylene	mg/kg	0.0620	0.0628	77.0	53.8-136	1.28	20	WG76605
Benzo(k) fluoranthene	mg/kg	0.0683	0.0716	85.0	53.9-132	4.74	20	WG76605
Chrysene	mg/kg	0.0672	0.0700	84.0	55.7-133	4.02	20	WG76605
Dibenz (a, h) anthracene	mg/kg	0.0686	0.0695	86.0	52.6-137	1.26	20	WG76605
Fluoranthene	mg/kg	0.0675	0.0691	84.0	54-132	2.31	20	WG76605
Fluorene	mg/kg	0.0634	0.0657	79.0	48.7-127	3.66	20	WG76605
Indeno (1, 2, 3-cd) pyrene	mg/kg	0.0688	0.0696	86.0	53.8-138	1.22	20	WG76605
Naphthalene	mg/kg	0.0662	0.0679	83.0	42-127	2.53	20	WG76605
Phenanthrene	mg/kg	0.0606	0.0626	76.0	49.6-126	3.21	20	WG76605
Pyrene	mg/kg	0.0617	0.0629	77.0	54-129	1.78	20	WG76605
2-Fluorobiphenyl				79.90	38.2-135			WG76605
Nitrobenzene-d5				82.10	28.4-151			WG76605
p-Terphenyl-d14				78.80	34.2-141			WG76605

			Matrix Spil	ce				
Analyte	Units	MS Res	Ref Res	TV	t Rec	Limit	Ref Samp	Batch
1-Methylnaphthalene	mg/kg	0.0966	0.0305	.08	83.0	41.8-133	L744637-02	WG76605
2-Chloronaphthalene	mg/kg	0.0554	0.0	.08	69.0	42.4-129	L744637-02	WG76605
2-Methylnaphthalene	mg/kg	0.154	0.0739	.08	100.	37.5-137	L744637-02	WG76605
Acenaphthene	mg/kg	0.0608	0.0	.08	76.0	39.4-132	L744637-02	WG76605
Acenaphthylene	mg/kg	0.0651	0.0	.08	81.0	41.3-132	L744637-02	WG76605
Anthracene	mg/kg	0.0599	0.0	.08	75.0	36.7-144	L744637-02	WG76605
Benzo (a) anthracene	mg/kg	0.0531	0.0	.08	66.0	28-144	L744637-02	WG76605
Benzo (a) pyrene	mg/kg	0.0482	0.0	.08	60.0	23.8-147	L744637-02	WG76605
Benzo (b) fluoranthene	mg/kg	0.0506	0.0	.08	63.0	18.2-147	L744637-02	WG76605
Benzo(g, h, i) perylene	mg/kg	0.0495	0.00627	.08	54.0	9.2-155	L744637-02	WG76605
Benzo(k) fluoranthene	mg/kg	0.0466	0.0	. 08	58.0	26.5-143	L744637-02	WG76605
Chrysene	mg/kg	0.0570	0.00693	.08	63.0	27.4-150	L744637-02	WG76605
Dibenz (a, h) anthracene	mg/kg	0.0474	0.0	.08	59.0	13.8-150	L744637-02	WG76605
Fluoranthene	mg/kg	0.0628	0.00674	.08	70.0	23.2-158	L744637-02	WG76605
Fluorene	mg/kg	0.0631	0.0106	.08	66.0	30.8-139	L744637-02	WG76605
Indeno (1, 2, 3-cd) pyrene	mg/kg	0.0468	0.0	.08	58.0	10.7-155	L744637-02	WG76605
Naphthalene	mg/kg	0.0934	0.0240	.08	87.0	34.9-133	L744637-02	WG76605
Phenanthrene	mg/kg	0.0804	0.0372	.08	54.0	20.2-150	L744637-02	WG76605
Pyrene	mg/kg	0.0613	0.0154	.08	57.0	22.6-151	L744637-02	WG76605
2-Fluorobiphenyl					74.80	38.2-135		WG76605
Nitrobenzene-d5					76.20	28.4-151		WG76605
p-Terphenyl-d14					69.50	34.2-141		WG76605

Analyte	Units	MSD	Ref	*Rec	Limit	RPD	Limit	Ref Samp	Batch
1-Methylnaphthalene	mg/kg	0.0800	0.0966	61.9	41.8-133	18.8	20.9	1744637-02	WG766057
2-Chloronaphthalene	mg/kg	0.0579	0.0554	72.3	42.4-129	4.41	20	L744637-02	WG766057
2-Methylnaphthalene	mg/kg	0.114	0.154	50.1	37.5-137	29.8*	20.4	L744637-02	WG766057
Acenaphthene	mg/kg	0.0620	0.0608	77.5	39.4-132	2.01	20	L744637-02	WG766057
Acenaphthylene	mg/kg	0.0646	0.0651	80.7	41.3-132	0.720	20	L744637-02	WG766057
Anthracene	mg/kg	0.0618	0.0599	77.3	36.7-144	3.15	20.7	L744637-02	WG766057
Benzo (a) anthracene	mg/kg	0.0540	0.0531	67.5	28-144	1.75	24.7	L744637-02	WG766057
t Derformance of this has	lute is outside	of outsh	lished on	iteria.					

Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 4 of 6

EnviroTech- NM Lynn Cook 5796 US. Highway 64

Farmington, NM 87401

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

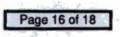
Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L742965

January 26, 2015


		Ma	trix Spike	Duplicate			-102	
Analyte	Units	MSD	Ref	Rec	Limit	RPD	Limit Ref Samp	Batch
Benzo (a) pyrene	mg/kg	0.0495	0.0482	61.8	23.8-147	2.59	25.3 L744637-02	WG76605
Benzo (b) fluoranthene	mg/kg	0.0489	0.0506	61.1	18.2-147	3.49	29.5 L744637-02	WG76605
Benzo(g, h, i) perylene	mg/kg	0.0483	0.0495	52.5	9.2-155	2.56	29.2 L744637-02	WG76605
Benzo(k) fluoranthene	mg/kg	0.0515	0.0466	64.3	26.5-143	10.0	26.1 L744637-02	WG76605
Chrysene	mg/kg	0.0594	0.0570	65.6	27.4-150	4.13	25.7 L744637-02	WG76605
Dibenz(a, h) anthracene	mg/kg	0.0480	0.0474	60.0	13.8-150	1.14	25.8 L744637-02	WG76605
Fluoranthene	mg/kg	0.0649	0.0628	72.7	23.2-158	3.29	26 L744637-02	WG76605
Fluorene	mg/kg	0.0673	0.0631	70.9	30.8-139	6.48	20 L744637-02	WG76605
Indeno(1,2,3-cd)pyrene	mg/kg	0.0480	0.0468	60.0	10.7-155	2.68	26.9 L744637-02	WG76605
Naphthalene	mg/kg	0.0785	0.0934	68.1	34.9-133	17.4	20.4 L744637-02	WG76605
Phenanthrene	mg/kg	0.0874	0.0804	62.8	20.2-150	8.40	24.6 L744637-02	WG76605
Pyrene	mg/kg	0.0639	0.0613	60.7	22.6-151	4.18	25.1 L744637-02	WG76605
2-Fluorobiphenyl				82.60	38.2-135		and an early of	WG76605
Nitrobenzene-d5				84.90	28.4-151			WG76605
p-Terphenyl-d14				75.70	34.2-141			WG76605

Batch number /Run number / Sample number cross reference

WG764476: R3014690 R3014691: L742965-01 WG764605: R3014892: L742965-01 WG766057: R3016124: L742965-01

* Calculations are performed prior to rounding of reported values.
 * Performance of this Analyte is outside of established criteria.
 For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 5 of 6

EnviroTech- NM Lynn Cook 5796 US. Highway 64

Farmington, NM 87401

Quality Assurance Report Level II

L742965

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a target parameter is outside the method limits, every sample that is effected is flagged with the appropriate qualifier in Appendix B of the analytic report.

Method Blank - an aliquot of reagent water carried through the entire analytic process. The method blank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "3" qualifier.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate - is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target analytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J6". The relative percent difference (%RPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier. 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

January 26, 2015

Page 6 of 6

			Billing Info	rmation:		1			A	nalysis /	Contai	ner / Pre	servati	ve		Chain of Custo	dy Page	of
EnviroTech- NM 5796 US. Highway 64 Farmington, NM 87401				oore . Highway 64 ton, NM 8740	1		[cob]									1	ES	a com to co
Lynn & Tin	the second s		Email To:	Lynn ET	in .		jar/									12065 Lebanon I Mount Juliet, TM Phone: 615-758- Phone: 800-767-	17122 1558 1559	
Project Description: Kirtland Plar	nt Pipelin	ie Leak	<	City/State Collected:	2		toz									Tes: 615-758-585		Mit:
Phone: 505-632-0615 Fax:	Client Project			Lab Project #			270/1				a la		ALC: NO			LH (7) A23		
Collected by (print): S. LEON Collected by (signature):	Site/Facility II P 5 1 1 Rush? (L Same I Next D	ab MUST Be	Notified)	Date I	650 Results Needed		Sim by 82	a and an inde			AN NEWS					Acctnum: El Template: Prelogin: TSR: 288 - Do		
Packed on ice N Y	Two Di Three Comp/Grab	Day	25%	FAX?	NoYes	No. of Cntrs	PAH									PB: Shipped Via.		
West Bottom	compronau	SS	Depen		11:30	1	17	No. o		-	Call of		The second	-		Rem /Contamin	GI GI	lub anty)
West OUTION		35		0-08-13	11.50	1	Y		13150	-	North A	1. 199				2.13	Children	
	+				1	1	-44		3		1		24				1011 B	
			-	-	1	1	tel.	-			NS CE				10.8		2253	
	+			1			1007		100	-			1.9.4	-	200			
	+					1	1 Although	-	(and	-	6. N. 66			-	1000		Contraction of the	
							1000		1	-	C.dool		-	1	245		Sale	1
							1252		artist.	-	(Proces		1 march	-			Contraction of the	
						1		1903 1963		-				-	5.5.5		Contraction of the	
							1000	-	10.000	-			Contraction of the second	-				
Matrix: SS - Soil GW - Groundwater	WW - Wastew	ater DW D	lioking Wate	or OT - Other	1	1	100		2000	1	18 207	1 9		Ľ	1		The state	-
Remarks:			-							pH _		Tem			Hold	78195	-09.01	5//
Relinquished by : (Signature)		Date:		Time:	Received by: (Sign	nature)				And in case of	The second second	ned via:	-	\$	Cond	lition: (I	b use only)	a a constante
Laene Zazon		01-12	15	16:05		199			1	Qr		Couri					7	A.F.
Relinquished by : (Senature)	- 3 ⁻¹	Date:		Time:	Received by: (Sign	nature)	K			Temp: 7.2		°C 80	tties Re	Sector States	The Carl	Seal Intact:	N	NA
Relinquished by : (Signature)		Date:		Time:	Received for lab t	B	pture)			Date:	Selents		ne:	5	PROPERTY CARDING	hecked; N	CF: Page 18 o	S. S. S. S.

Analytical Report

Report Summary

Client: CCI, LLC Chain Of Custody Number: Samples Received: 3/6/2015 1:43:00PM Job Number: 14038-0011 Work Order: P503024 Project Name/Location: Kirtland Plant Pipeline Leak

Date: 3/12/15

Entire Report Reviewed By:

Tim Cain, Laboratory Manager

The results in this report apply to the samples submitted to Envirotech's Analytical Laboratory and were analyzed in accordance with the chain of custody document supplied by you, the client, and as such are for your exclusive use only. The results in this report are based on the sample as received unless otherwise noted. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. If you have any questions regarding this analytical report, please don't hesitate to contact Envirotech's Laboratory Staff.

5796 US Highway 64, Farmington, NM 87401	Ph (505) 632-0615	Fx (505) 632-1865	envirotech-inc.com
Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301	Ph (970) 259-0615	Fr (800) 362-1879	laboratory@envirotech-inc.com
			The second second second second second
			Page 1 of 19

CCI, LLC	Project Name:	Kirtland Plant Pipeline Leak	
PO Box 70	Project Number:	14038-0011	Reported:
Kirtland NM, 87417	Project Manager:	Greg Crabtree	12-Mar-15 11:52

Analyical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container	
West Bottom	P503024-01A	Soil	03/06/15	03/06/15	Glass Jar, 4 oz.	
	P503024-01B	Soil	03/06/15	03/06/15	Glass Jar, 4 oz.	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

CCI, LLC PO Box 70 Kirtland NM, 87417	Projec	et Name: et Number: et Manager:	1403	and Plant Pij 8-0011 Crabtree	peline Leak			Reported: 12-Mar-15 11	
			st Botto 24-01 (Sc						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.10	mg/kg	1	1510023	03/11/15	03/11/15	EPA 8021B	
Toluene	ND	0.10	mg/kg	1	1510023	03/11/15	03/11/15	EPA 8021B	
Ethylbenzene	ND	0.10	mg/kg	1	1510023	03/11/15	03/11/15	EPA 8021B	
p,m-Xylene	ND	0.20	mg/kg	1	1510023	03/11/15	03/11/15	EPA 8021B	
o-Xylene	ND	0.10	mg/kg	1	1510023	03/11/15	03/11/15	EPA 8021B	
Total Xylenes	ND	0.10	mg/kg	1	1510023	03/11/15	03/11/15	EPA 8021B	
Total BTEX	ND	0.10	mg/kg	1	1510023	03/11/15	03/11/15	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		94.5 %	50	-150	1510023	03/11/15	03/11/15	EPA 8021B	
Nonhalogenated Organics by 8015		-						5	
Gasoline Range Organics (C6-C10)	ND	9.94	mg/kg	1	1510023	03/11/15	03/11/15	EPA 8015D	
Diesel Range Organics (C10-C28)	ND	34.4	mg/kg	1	1510024	03/10/15	03/10/15	EPA 8015D	
Surrogate: o-Terphenyl		109 %	50	-200	1510024	03/10/15	03/10/15	EPA 8015D	
Surrogate: 4-Bromochlorobenzene-FID		88.8 %	50	-150	1510023	03/11/15	03/11/15	EPA 8015D	
Total Metals by 6010									
Arsenic	2.04	0.99	mg/kg	1	1511005	03/09/15	03/10/15	EPA 6010C	
Barium	118	4.95	mg/kg	1	1511005	03/09/15	03/10/15	EPA 6010C	
Cadmium	1.28	0.99	mg/kg	1	1511005	03/09/15	03/10/15	EPA 6010C	
Chromium	28.0	0.99	mg/kg	1	1511005	03/09/15	03/10/15	EPA 6010C	
Copper	23.2	0.99	mg/kg	1	1511005	03/09/15	03/10/15	EPA 6010C	
Lead	10.5	0.99	mg/kg	1	1511005	03/09/15	03/10/15	EPA 6010C	
Mercury	0.99	0.99	mg/kg	1	1511005	03/09/15	03/10/15	EPA 6010C	
Nickel	16.3	0.99	mg/kg	1	1511005	03/09/15	03/10/15	EPA 6010C	
Selenium	3.52	0.99	mg/kg	1	1511005	03/09/15	03/10/15	EPA 6010C	
Silver	ND	0.99	mg/kg	1	1511005	03/09/15	03/10/15	EPA 6010C	
Zinc	78.0	0.99	mg/kg	1	1511005	03/09/15	03/10/15	EPA 6010C	

 5796 US Highway 64, Farmington, NM 87401
 Ph (505) 632-0615
 Fx (505) 632-1865
 environe th-inc.com

 Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301
 Ph (970) 259-0615
 Fr (800) 362-1879
 Laboratory: environe ch-inc.com

Page 3 of 19

CCI, LLC PO Box 70 Kirtland NM, 87417	Projec	at Name: at Number: at Manager:	14038	nd Plant Pij I-0011 Crabtree	peline Leak			Reported: 12-Mar-15 11	
		We	st Botton	n					
		1.1.1	24-01 (So	-2					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Cation/Anion Analysis									
ere and the second seco	4.47		pH Units	1	1511004	03/09/15	03/09/15	EPA 9045D	
Electrical Conductivity	1760		umhos/cm	1	1511004	03/09/15	03/09/15	EPA 120.1	
Sodium Absorption Ratio	1.32		N/A	1	1511018	03/12/15	03/12/15	[CALC]	
Calcium	16.3	0.01	mg/L	1	1510026	03/06/15	03/09/15	EPA 6010C	
Magnesium	12.7	0.01	mg/L	1	1510026	03/06/15	03/09/15	EPA 6010C	
Sodium	29.3	0.01	mg/L	1	1510026	03/06/15	03/09/15	EPA 6010C	
Boron-Hot Water Soluble by EPA 6010									
Boron	ND	0.49	mg/L	1	1510032	03/06/15	03/10/15	EPA 6010C	

5796 US Highway 64, Farmington, NM 87401 Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301 Ph (505) 632-0615 Fx (505) 632-1865 Ph (970) 259-0615 Fr (800) 362-1879 envirotech-inc.com laboratory Jenvirotech-inc.com Page 4 of 19

OCI, LLC PO Box 70 Kirtland NM, 87417	Pro	ject Name: ject Number: ject Manager:	1	irtland Plant 4038-0011 ireg Crabtree	Pipeline Le	ak			Report 12-Mar-1	
		Organics b nvirotech	-	-	•	trol				
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1510023 - Purge and Trap EPA 5	030A									
Blank (1510023-BLK1)				Prepared: (05-Mar-15	Analyzed:	11-Mar-15			
Benzene	ND	0.10	mg/kg	a construction of the second sec						
Fotuene	ND	0.10								
Ethylbenzene	ND	0.10								
.m-Xylene	ND	0.20								
Xylene	ND	0.10	•							
Total Xylenes	ND	0.10	•							
Total BTEX	ND	0.10	-							
Surrogate: 4-Bromochlorobenzene-PID	0.346			0.393		87.9	50-150	a set of a second		
LCS (1510023-BS1)				Prepared: (05-Mar-15	Analyzed	11-Mar-15			
lenzene	21.4	0.10	mg/kg	19.8		108	75-125			
oluene	20.0	0.10	•	19.8		101	70-125			
thylbenzene	19.0	0.10	•	19.8		96.1	75-125			
,m-Xylene	36.7	0.20	-	39.6		92.6	80-125			
Xylene	17.8	0.10	•	19.8		89.8	75-125			
urrogate: 4-Bromochlorobenzene-PID	0.350			0.396		88.2	50-150			
Matrix Spike (1510023-MS1)	Sou	rce: P503020-	-01	Prepared: 0	5-Mar-15	Analyzed:	11-Mar-15			
Benzene	23.4	0.10	mg/kg	19.9	ND	118	75-125			
Foluene	23.1	0.10		19.9	ND	116	70-125			
Sthylbenzene	22.5	0.10	-	19.9	ND	113	75-125			
,m-Xylene	44.6	0.20		39.7	ND	112	80-125			
Xylens	21.4	0.10	•	19.9	ND	108	75-125			
Surrogate: 4-Bromochlorobenzene-PID	0.370			0.397		93.2	50-150			
Matrix Spike Dup (1510023-MSD1)	Sou	rce: P503020-	01	Prepared: (5-Mar-15	Analyzed:	11-Mar-15			
lenzene	20.8	0.10	mg/kg	19.8	ND	105	75-125	11.9	15	
oluene	20.4	0.10		19.8	ND	103	70-125	12.3	15	
thylbenzene	20.2	0.10		19.8	ND	102	75-125	10.9	15	
,m-Xylene	40.5	0.20	-	39.7	ND	102	80-125	9.60	15	8
Xylene	19.5	0.10		19.8	ND	98.4	75-125	9.34	15	
Surrogate: 4-Bromochlorobenzene-PID	0.373			0 397		94.0	50-150			

Page 5 of 19

CCI, LLC	Pro	ject Name:	K	irtland Plant	Pipeline Le	ak				
PO Box 70	Pro	ject Number:	14	4038-0011					Report	ted:
Kirtland NM, 87417	Pro	ject Manager:	G	reg Crabtree					12-Mar-1	5 11:52
¥.	Nonhalog	enated Org	anics by	8015 - Qu	ality Co	ntrol				
	E	avirotech A	Analyti	cal Labor	atory					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1510023 - Purge and Trap EPA 5	030A							1		
Blank (1510023-BLK1)				Prepared: 0	5-Mar-15	Analyzed:	11-Mar-15			
Gasoline Range Organics (C6-C10)	ND	9.83	mg/kg							
Surrogate: 4-Bromochlorobenzene-FID	0.325			0.393		82.6	50-150			
LCS (1510023-BS1)				Prepared: 0	5-Mar-15	Analyzed:	11-Mar-15			
Gasoline Range Organics (C6-C10)	237	9.91	mg/kg	264		89.9	80-120			
Surrogate: 4-Bromochlorobenzene-FID	0.329			0.396		83.0	50-150			
Matrix Spike (1510023-MS1)	Sou	rce: P503020-	01	Prepared: 0	5-Mar-15	Analyzed:	11-Mar-15			
Gasoline Range Organics (C6-C10)	291	9.93	mg/kg	265	ND	110	75-125			
Surrogate: 4-Bromochlorobenzene-FID	0.350		•	0.397		88.0	50-150			
Matrix Spike Dup (1510023-MSD1)	Sou	rce: P503020-	01	Prepared: 0	5-Mar-15	Analyzed:	11-Mar-15			
Gasoline Range Organics (C6-C10)	258	9.91	mg/kg	264	ND	97.7	75-125	12.0	15	
Surrogate: 4-Bromochlorobenzene-FID	0.352			0.397		88.9	50-150			

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com laboratory@envirotech-inc.com Page 6 of 19

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

CCI, LLC	Pro	ject Name:	K	irtland Plant	Pipeline Le	ak				
PO Box 70	Pro	ject Number:	14	4038-0011					Report	ed:
Kirtland NM, 87417	Pro	ject Manager:	G	ireg Crabtree					12-Mar-1	5 11:52
	Nonhalog	enated Org	anics by	y 8015 - Qu	ality Co	ntrol				
	E	avirotech .	Analyti	cal Labor	atory					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1510024 - DRO Extraction EPA 3	550M									
Blank (1510024-BLK1)				Prepared: 0	5-Mar-15	Analyzed:	06-Mar-15			
Diesel Range Organics (C10-C28)	ND	24.7	mg/kg							
Surrogate: o-Terphenyl	45.9			39.4		116	50-200			
LCS (1510024-BS1)				Prepared: 0	5-Mar-15	Analyzed:	06-Mar-15			
Diesel Range Organics (C10-C28)	529	24.7	mg/kg	494		107	38-132			
Surrogate: o-Terphenyl	44.9			39.5		114	50-200			
Matrix Spike (1510024-MS1)	Sou	rce: P503020-	01	Prepared: 0	5-Mar-15	Analyzed:	06-Mar-15			
Diesel Range Organics (C10-C28)	517	24.6	mg/kg	492	ND	105	38-132			
hurrogate: o-Terphenyl	45.6			39.4		116	50-200			
Matrix Spike Dup (1510024-MSD1)	Sou	rce: P503020-	01	Prepared: 0	5-Mar-15	Analyzed:	06-Mar-15			
Diesel Range Organics (C10-C28)	539	24.6	mg/kg	492	ND	110	38-132	4.28	20	
Surrogate: o-Terphenyl	45.1			39.3		115	50-200			

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

CCI, LLC PO Box 70 Kirtland NM, 87417	Pro	ject Name: ject Number: ject Manager:	14	irtland Plant 4038-0011 reg Crabtree	Pipeline Le	ak			Report 12-Mar-1	
		al Metals b							9	
	Er	wirotech A	Inalyti	cal Labor	atory					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch 1511005 - Metal Solid Dige	stion EPA 3051A								-	
lank (1511005-BLK1)				Prepared: (9-Mar-15	Analyzed:	10-Mar-15			
senic	ND	1.00	mg/kg							
rium	ND	5.00	-							
dmium	ND	1.00								
romium	ND	1.00	•							
pper	ND	1.00	•							
ad	ND	1.00	•							
ncury	ND	1.00	•							
ckel	ND	1.00	•							
lenium	ND	1.00								
ver	ND	1.00	•							
ic .	ND	1.00	•							
uplicate (1511005-DUP1)	Sou	rce: P503024-0	01	Prepared: 0	9-Mar-15	Analyzed:	10-Mar-15			1
senic	1.86	0.94	mg/kg		2.04			9.16	30	
rium	102	4.70	-		118			15.0	30	
dmium	1.05	0.94	•		1.28			19.3	30	
romium	23.1	0.94	•		28.0			19.1	30	
pper	17.5	0.94	•		23.2			28.1	30	
ad	8.83	0.94	•		10.5			17.1	30	
acury	ND	0.94	•		0.99				30	
ckel	13.8	0.94	•		16.3			16.8	30	
lenium	3.35	0.94	•		3.52			5.21	30	
lver	ND	0.94	•		ND				30	
10	57.7	0.94	•		78.0			29.9	30	
5	Som	rce: P503024-4	01	Prepared: 0	9-Mar-15	Analyzed:	0-Mar-15			
atrix Spike (1511005-MS1)		and the second se			0.02	78.2	75-125			
atrix Spike (1511005-MS1) senic	0.22		mg/L	0.250	0.02					
senic	the second se		mg/L	0.250 5.00	1.13	97.6	75-125			
seniç rium	0.22		-				75-125 75-125			
senic rium dmium	0.22		•	5.00	1.13	97.6				
senic rium danium romium	0.22 6.02 0.22		:	5.00 0.250	1.13	97.6 82.5	75-125			
ienic rium danium romium pper	0.22 6.02 0.22 0.66		:	5.00 0.250 0.500	1.13 0.01 0.27	97.6 82.5 78.7	75-125 75-125			
and the second	0.22 6.02 0.22 0.66 0.62		:	5.00 0.250 0.500 0.500	1.13 0.01 0.27 0.22	97.6 82.5 78.7 78.9	75-125 75-125 75-125			
senic rium dmium romium pper ad	0.22 6.02 0.22 0.66 0.62 0.49			5.00 0.250 0.500 0.500 0.500	1.13 0.01 0.27 0.22 0.10	97.6 82.5 78.7 78.9 78.5	75-125 75-125 75-125 75-125			
senic rium danium poer ad reury	0.22 6.02 0.22 0.66 0.62 0.49 0.09		•	5.00 0.250 0.500 0.500 0.500 0.100	1.13 0.01 0.27 0.22 0.10 0.01	97.6 82.5 78.7 78.9 78.5 78.8	75-125 75-125 75-125 75-125 75-125			
senic rium denium pper ad arcury ckel	0.22 6.02 0.22 0.66 0.62 0.49 0.09 0.56		•	5.00 0.250 0.500 0.500 0.100 0.500	1.13 0.01 0.27 0.22 0.10 0.01 0.16	97.6 82.5 78.7 78.9 78.5 78.8 80.6	75-125 75-125 75-125 75-125 75-125 75-125			

5796 US Highway 64, Farmington, NM 87401	Ph (505) 632-0615	Fx (505) 632-1865	envirotech-inc.com
Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301	Ph (970) 259-0615	Fr (800) 362-1879	laboratory@envirotech-inc.com

Page 8 of 19

CCI, LLC PO Box 70 Kirtland NM, 87417	Pro	ject Name: ject Number: ject Manager:	1	irtland Plant 4038-0011 reg Crabtree	Pipeline Lo	ak			Report 12-Mar-15	
	Boron-Hot	Water Solut nvirotech A				Control				
	E	avirotech A	maiyu	Cal Labor	atory					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1510032 - Boron HW Soluble 1	Digestion									
Blank (1510032-BLK1)				Prepared: 0	6-Mar-15	Analyzed:	10-Mar-15			
loron	ND	0.50	mg/L							
Duplicate (1510032-DUP1)	Sou	rce: P503024-	01	Prepared: 0	6-Mar-15	Analyzed:	10-Mar-15			
Boron	ND	0.50	mg/L		ND				30	
Matrix Spike (1510032-MS1)	Sou	rce: P503024-	01	Prepared: 0	6-Mar-15	Analyzed:	10-Mar-15			
loron	0.48		mg/L	0.500	0.10	76.0	75-125			

5796 US Highway 64, Farmington, NM 87401	Ph (505) 632-0615	Fx (505) 632-1865	envirotech-inc.com
Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301	Ph (970) 259-0615	Fr (800) 362-1879	laboratory Renvirotech-inc.com
			Page 9 of 19

CCI, LLC	Project Name:	Kirtland Plant Pipeline Leak	
PO Box 70	Project Number:	14038-0011	Reported:
Kirtland NM, 87417	Project Manager:	Greg Crabtree	12-Mar-15 11:52

Notes and Definitions

SPKI	The spike recovery is outside of quality control limits.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401	Ph (505) 632-0615	Fx (505) 632-1865	envirotech-inc.com
Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301	Ph (970) 259-0615	Fr (800) 362-1879	laboratory@envirotech-inc.com
			The second se
			Page 10 of 19

lient: CCT	-				RUSH?	·	ab Use Only			Ana	alysis	and	Metho	d		lab (
roject: Histfand Plan ampler: a. Garcia	+ Ripelin	e leate			1d 3d	P50	Lab WO#					Tably				er
hone:	-						lob Number	801	-		00.0	0				đ
mail(s): Escar G.	2 11				Pag		38-0011		BTEX by 8021	18.1	by 3	910				Lab Number
roject Manager: Greg C			1	Sample	rag	Contraction of the local division of the loc	ontainers	- ĕ	à	by 4	ride	00				-
Sample	e ID		Sample Date	Time	Matrix		TYPE/Preservat	ve Oug	BTB	H	Ê	U				
West Bottom			3/6/15	1038	5	2.4021	61 0001					X				1
a																
		1														
															Π	
Relinquished by: (Signature)	Date 3/6/15	Time 13:43	Received	by: (Signa	iture)	Date 3/6/15	Time 13:43	**Rece	ived	on la			e Only	,		
Relinquished by: (Signature)	Date	Time	Received	by: (Signa	sture)	Date	Time	T1 16	6		TZ	2.5	7		тз_	_
ample Matrix: S - Soil, Sd - Solid, Sg - Sk	udge, A - Aqueous	, 0 - Other					Container Ty	pe:g-gl	ass, p	- po	ly/pl	astic,	ag - ar	nber g	lass	
*Samples requiring thermal preservation			they are sampled o	A 100 100 10 100	the standard and a second state		And a little of the little of	in 6 °C on s	ubsequ	ent da	ys.	_				
Sample(s) dropped off after hours	to a secure drop o	on area.		chain of	f Custody	Notes/Bil	Intel auto:									
						L								-	- W	
Benvir	oteo	Ch 5796US	Highway 64, Farmingto	en, 1141 87401			Ph (505) 632-06	15 Fx (505)	32-186	5						mente
Anglytic	cal Labor	TOTY Three Se	orings - 65 Mercado Stre	at Suite 115 f	Auronan (0.01)	101	Ph (970) 259-06		13 1070		_			1000	Page	11

.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Lynn Cook EnviroTech- NM 5796 US. Highway 64 Farmington, NM 87401

Report Summary

Tuesday March 10, 2015

Report Number: L752132 Samples Received: 03/07/15

Client Project: 14038-0011

Description: Kirkland Plant Pipeline Leak

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Kichard Crowne

Daphne Richards , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - 01157CA, CT - PH-0197, FL - E87487, GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704/BIO041, ND - R-140. NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 460132, WV - 233, AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032011-1, TX - T104704245-11-3, OK - 9915, PA - 68-02979, IA Lab #364, EPA - TN002

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Page 1 of 6

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

			REPORT	OF ANALYSIS				
Lynn Cook					Ma	rch 10,2015		
EnviroTech- NM								
5796 US. Highway	y 64	1						
Farmington, NM								
					5.0			
Date Received	:	March 07, 2	015		ESC	C Sample 🕴 :	L752132-01	
Description	:	Kirkland Plant	Pipeline Leak					
Sample ID	:	WEST BOTTOM			Sit	te ID : P503	024	
	•	HIDT DOTTON			Pro	ject # : 140	38-0011	
Collected By	:	Issac Garcia						
Collection Date	:	03/06/15 10:38						
Parameter			Dry Result	Det. Limit	Units	Method	Date	Dil.
Total Solids			85.8			2540 G-2011	03/10/15	1
Polynuclear Aron	nati	c Hydrocarbons						
Anthracene			BDL	0.0070	mg/kg	8270C-SIM	03/09/15	1
Acenaphthene			BDL	0.0070	mg/kg	8270C-SIM	03/09/15	1
Acenaphthylene	•		BDL	0.0070	mg/kg	8270C-SIM	03/09/15	1
Benzo (a) anthra		e	0.023	0.0070	mg/kg	8270C-SIM	03/09/15	1
Benzo (a) pyrene			0.0079	0.0070	mg/kg	8270C-SIM	03/09/15	1
Benzo (b) fluora		ene	0.069	0.0070	mg/kg	8270C-SIM	03/09/15	1
Benzo(g, h, i) pe	ryl	ene	0.019	0.0070	mg/kg	8270C-SIM	03/09/15	1
Benzo(k) fluora	inth	ene	0.012	0.0070	mg/kg	8270C-SIM	03/09/15	-
Chrysene			0.058	0.0070	mg/kg	8270C-SIM	03/09/15	1
Dibenz (a, h) ant	hra	cene	BDL	0.0070	mg/kg	8270C-SIM	03/09/15	î
Fluoranthene			0.061	0.0070	mg/kg	8270C-SIM	03/09/15	1
Fluorene			BDL	0.0070	mg/kg	8270C-SIM	03/09/15	1
Indeno (1, 2, 3-c	d)p	yrene	0.015	0.0070	mg/kg	8270C-SIM	03/09/15	1
Naphthalene			BDL	0.023	mg/kg	8270C-SIM	03/09/15	ĩ
Phenanthrene			0.092	0.0070	mg/kg	8270C-SIM	03/09/15	1
Pyrene			0.055	0.0070	mg/kg	8270C-SIM	03/09/15	ĩ
1-Methylnaphth	ale	ne	BDL	0.023	mg/kg	8270C-SIM	03/09/15	î
			BDL	0.023	mg/kg	8270C-SIM	03/09/15	1
2-Methylnaphth			DDT	0.023	mg/kg	8270C-SIM	03/09/15	i
2-Chloronaphth		ne	BDL	0.023				
2-Chloronaphth		ne	BDL	0.025	mg/kg	02/0C-31M	03/03/13	-
2-Chloronaphth	ry	ne	93.3	0.025	* Rec.			
2-Chloronaphth Surrogate Recove	ry IS	ne		0.023		8270C-SIM 8270C-SIM	03/09/15	1

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 03/10/15 14:45 Printed: 03/10/15 14:45

Page 2 of 6

EnviroTech- NM Lynn Cook 5796 US. Highway 64

Farmington, NM 87401

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L752132

March 10, 2015

		Laboratory	Blank			
Analyte	Result	Units	* Rec	Limit	Batch	Date Analyzed
1-Methylnaphthalene	< .02	mg/kg			WG774359	03/09/15 12:0
2-Chloronaphthalene	< .02	mg/kg			WG774359	03/09/15 12:0
2-Methylnaphthalene	< .02	mg/kg			WG774359	03/09/15 12:0
Acenaphthene	< .006	mg/kg			WG774359	03/09/15 12:0
Acenaphthylene	< .006	mg/kg			WG774359	03/09/15 12:0
Anthracene	< .006	mg/kg			WG774359	03/09/15 12:0
Benzo (a) anthracene	< .006	mg/kg			WG774359	03/09/15 12:0
Benzo(a)pyrene	< .006	mg/kg			WG774359	03/09/15 12:0
Benzo (b) fluoranthene	< .006	mg/kg			WG774359	03/09/15 12:0
Benzo(g, h, i) perylene	< .006	mg/kg			WG774359	03/09/15 12:0
Benzo(k) fluoranthene	< .006	mg/kg			WG774359	03/09/15 12:0
Chrysene	< .006	mg/kg			WG774359	03/09/15 12:0
Dibenz(a, h) anthracene	< .006	mg/kg			WG774359	03/09/15 12:0
Fluoranthene	< .006	mg/kg			WG774359	03/09/15 12:0
Fluorene	< .006	mg/kg			WG774359	03/09/15 12:0
Indeno (1, 2, 3-cd) pyrene	< .006	mg/kg			WG774359	03/09/15 12:0
Naphthalene	< .02	mg/kg			WG774359	03/09/15 12:0
Phenanthrene	< .006	mg/kg			WG774359	03/09/15 12:0
Pyrene	< .006	mg/kg			WG774359	03/09/15 12:0
2-Fluorobiphenyl		& Rec.	83.60	38.2-135		03/09/15 12:0
Nitrobenzene-d5		& Rec.	89.20	28.4-151	WG774359	03/09/15 12:0
p-Terphenyl-dl4		* Rec.	94.80	34.2-141		03/09/15 12:0
Total Solids	د.1				WG774417	03/10/15 07:4

			Duplicate				
Analyte	Units	Result	Duplicate	RPD	Limit	Ref Samp	Batch
Total Solids	•	85.8	85.8	0.0882	5	L752132-01	WG774417
Brown Services			ry Control Sa	mple			
Analyte	Units	Known V	al R	sult	Rec	Limit	Batch
The second s							

and the second se	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE	The second s	the second se	the second se	and the second se
mg/kg	.08	0.0712	89.0	48.9-127	WG77435
mg/kg	.08	0.0697	87.1	48.8-125	WG77435
mg/kg	.08	0.0678	84.7	45.7-131	WG77435
mg/kg	.08	0.0686	85.7	48.7-127	WG77435
mg/kg	.08	0.0648	81.1	47.9-128	WG77435
		0.0754			WG77435
		0.0709			WG77435
					WG77435
		0.0666			WG77435
		0.0722			WG77435
		0.0809			WG77435
		0.0792			WG77435
					WG77435
		0.0722			WG77435
					NG77435
					WG77435
			00.30	3118-141	
	50	50.0	99.9	85-115	WG77441
	mg/kg mg/kg	mg/kg .08 mg/kg <td>mg/kg .08 0.0697 mg/kg .08 0.0678 mg/kg .08 0.0648 mg/kg .08 0.0648 mg/kg .08 0.0754 mg/kg .08 0.0709 mg/kg .08 0.0703 mg/kg .08 0.0703 mg/kg .08 0.0703 mg/kg .08 0.0702 mg/kg .08 0.0792 mg/kg .08 0.0792 mg/kg .08 0.0651 mg/kg .08 0.0651 mg/kg .08 0.0706 mg/kg .08 0.0964 </td> <td>mg/kg .08 0.0697 87.1 mg/kg .08 0.0678 84.7 mg/kg .08 0.0678 84.7 mg/kg .08 0.0686 85.7 mg/kg .08 0.0648 81.1 mg/kg .08 0.0754 94.3 mg/kg .08 0.0709 88.6 mg/kg .08 0.0709 88.6 mg/kg .08 0.0703 87.9 mg/kg .08 0.0722 90.3 mg/kg .08 0.0792 98.9 mg/kg .08 0.0792 98.9 mg/kg .08 0.0679 84.9 mg/kg .08 0.0722 90.2 mg/kg .08 0.0722 90.2 mg/kg .08 0.0722 90.2 mg/kg .08 0.0706 88.3 mg/kg .08 0.0706 88.2 mg/kg .08 0.0775 96.8 mg/kg .08 0.0964 121.</td> <td>mg/kg .08 0.0697 87.1 48.8-125 mg/kg .08 0.0678 84.7 45.7-131 mg/kg .08 0.0678 84.7 45.7-131 mg/kg .08 0.0668 85.7 48.7-127 mg/kg .08 0.0648 81.1 47.9-128 mg/kg .08 0.0754 94.3 51.3-136 mg/kg .08 0.0709 86.6 55-126 mg/kg .08 0.0709 88.6 55-126 mg/kg .08 0.0666 83.3 54-125 mg/kg .08 0.0679 90.3 53.8-136 mg/kg .08 0.0679 84.9 52.6-137 mg/kg .08 0.0671 90.2 54-132 mg/kg</td>	mg/kg .08 0.0697 mg/kg .08 0.0678 mg/kg .08 0.0648 mg/kg .08 0.0648 mg/kg .08 0.0754 mg/kg .08 0.0709 mg/kg .08 0.0703 mg/kg .08 0.0703 mg/kg .08 0.0703 mg/kg .08 0.0702 mg/kg .08 0.0792 mg/kg .08 0.0792 mg/kg .08 0.0651 mg/kg .08 0.0651 mg/kg .08 0.0706 mg/kg .08 0.0964	mg/kg .08 0.0697 87.1 mg/kg .08 0.0678 84.7 mg/kg .08 0.0678 84.7 mg/kg .08 0.0686 85.7 mg/kg .08 0.0648 81.1 mg/kg .08 0.0754 94.3 mg/kg .08 0.0709 88.6 mg/kg .08 0.0709 88.6 mg/kg .08 0.0703 87.9 mg/kg .08 0.0722 90.3 mg/kg .08 0.0792 98.9 mg/kg .08 0.0792 98.9 mg/kg .08 0.0679 84.9 mg/kg .08 0.0722 90.2 mg/kg .08 0.0722 90.2 mg/kg .08 0.0722 90.2 mg/kg .08 0.0706 88.3 mg/kg .08 0.0706 88.2 mg/kg .08 0.0775 96.8 mg/kg .08 0.0964 121.	mg/kg .08 0.0697 87.1 48.8-125 mg/kg .08 0.0678 84.7 45.7-131 mg/kg .08 0.0678 84.7 45.7-131 mg/kg .08 0.0668 85.7 48.7-127 mg/kg .08 0.0648 81.1 47.9-128 mg/kg .08 0.0754 94.3 51.3-136 mg/kg .08 0.0709 86.6 55-126 mg/kg .08 0.0709 88.6 55-126 mg/kg .08 0.0666 83.3 54-125 mg/kg .08 0.0679 90.3 53.8-136 mg/kg .08 0.0679 84.9 52.6-137 mg/kg .08 0.0671 90.2 54-132 mg/kg

* Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 3 of 6

EnviroTech- NM Lynn Cook 5796 US. Highway 64

Farmington, NM 87401

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L752132

March 10, 2015

		Laboratory	Control Sa	ample Duplicate				
Analyte	Units	Result	Ref	Rec	Limit	RPD	Limit	Batch
1-Methylnaphthalene	mg/kg	0.0765	0.0712	96.0	48.9-127	7.17	20	WG77435
2-Chloronaphthalene	mg/kg	0.0761	0.0697	95.0	48.8-125	8.77	20	WG77435
2-Methylnaphthalene	mg/kg	0.0731	0.0678	91.0	45.7-131	7.49	20	WG77435
Acenaphthene	mg/kg	0.0738	0.0686	92.0	48.7-127	7.34	20	WG77435
Acenaphthylene	mg/kg	0.0697	0.0648	87.0	47.9-128	7.18	20	WG77435
Anthracene	mg/kg	0.0819	0.0754	102.	51.3-136	8.21	20	WG77435
Benzo (a) anthracene	mg/kg	0.0753	0.0709	94.0	55-126	6.05	20	WG77435
Benzo (a) pyrene	mg/kg	0.0716	0.0703	90.0	51.9-127	1.91	20	WG77435
Benzo(b) fluoranthene	mg/kg	0.0738	0.0666	92.0	54-125	10.2	20	WG77435
Benzo(g, h, i)perylene	mg/kg	0.0754	0.0722	94.0	53.8-136	4.32	20	WG77435
Benzo(k) fluoranthene	mg/kg	0.0831	0.0809	104.	53.9-132	2.68	20	WG77435
Chrysene	mg/kg	0.0861	0.0792	108.	55.7-133	8.46	20	WG77435
Dibenz (a, h) anthracene	mg/kg	0.0703	0.0679	88.0	52.6-137	3.44	20	WG77435
Fluoranthene	mg/kg	0.0765	0.0722	96.0	54-132	5.79	20	WG77435
Fluorene	mg/kg	0.0693	0.0651	87.0	48.7-127	6.27	20	WG77435
Indeno (1, 2, 3-cd) pyrene	mg/kg	0.0738	0.0706	92.0	53.8-138	4.31	20	WG77435
Naphthalene	mg/kg	0.0755	0.0706	94.0	42-127	6.81	20	WG77435
Phenanthrene	mg/kg	0.0831	0.0775	104.	49.6-126	7.00	20	WG77435
Pyrene	mg/kg	0.0954	0.0964	119.	54-129	1.04	20	WG77435
2-Fluorobiphenyl		19.9.19.19. R.S.		86.10	38.2-135	00000000		WG77435
Nitrobenzene-d5				84.90	28.4-151			WG77435
p-Terphenyl-dl4				86.90	34.2-141			WG77435

			Matrix Spik	e				
Analyte	Units	MS Res	Ref Res	TV	Rec	Limit	Ref Samp	Batch
1-Methylnaphthalene	mg/kg	0.0654	0.00122	.08	80.0	41.8-133	L751941-01	WG77435
2-Chloronaphthalene	mg/kg	0.0614	0.0	.08	77.0	42.4-129	L751941-01	WG77435
2-Methylnaphthalene	mg/kg	0.0612	0.00115	.08	75.0	37.5-137	L751941-01	WG77435
Acenaphthene	mg/kg	0.0595	0.00126	.08	73.0	39.4-132	L751941-01	WG77435
Acenaphthylene	mg/kg	0.0583	0.0	.08	73.0	41.3-132	L751941-01	WG77435
Anthracene	mg/kg	0.0659	0.00531	.08	76.0	36.7-144	L751941-01	WG774355
Benzo (a) anthracene	mg/kg	0.0549	0.0128	.08	53.0	28-144	L751941-01	WG774355
Benzo (a) pyrene	mg/kg	0.0509	0.0129	.08	48.0	23.8-147	L751941-01	WG774359
Benzo (b) fluoranthene	mg/kg	0.0470	0.0194	.08	34.0	18.2-147	L751941-01	WG774359
Benzo(g, h, i) perylene	mg/kg	0.0471	0.0103	.08	46.0	9.2-155	L751941-01	WG774355
Benzo(k)fluoranthene	mg/kg	0.0526	0.00683	.08	57.0	26.5-143	L751941-01	WG774355
Chrysene	mg/kg	0.0590	0.0164	.08	53.0	27.4-150	L751941-01	WG774359
Dibenz(a, h) anthracene	mg/kg	0.0428	0.00153	.08	52.0	13.8-150	L751941-01	WG774359
Fluoranthene	mg/kg	0.0661	0.0405	.08	32.0	23.2-158	L751941-01	WG774359
Fluorene	mg/kg	0.0513	0.000836	.08	63.0	30.8-139	L751941-01	WG774359
Indeno (1, 2, 3-cd) pyrene	mg/kg	0.0451	0.00818	.08	46.0	10.7-155	L751941-01	WG774359
Naphthalene	mg/kg	0.0857	0.0123	.08	92.0	34.9-133	L751941-01	WG774355
Phenanthrene	mg/kg	0.0693	0.0287	.08	51.0	20.2-150	L751941-01	WG774359
Pyrene	mg/kg	0.0778	0.0371	.08	51.0	22.6-151	L751941-01	WG774359
2-Fluorobiphenyl					81.50	38.2-135		WG774359
Nitrobenzene-d5					100.0	28.4-151		WG774359
p-Terphenyl-d14					72.00	34.2-141		WG774355
		Matri	x Spike Dup	licate				
Analyte	Units		ef \$Re		Limit	RPD Lim	it Ref Samp	Batch

Analyte	Units	MSD	Ref	*Rec	Limit	RPD	Limit	Ref Samp	Batch
1-Methylnaphthalene	mg/kg	0.0631	0.0654	77.4	41.8-133	3.51	20.9	L751941-01	WG774359
2-Chloronaphthalene	mg/kg	0.0596	0.0614	74.5	42.4-129	2.99	20	L751941-01	WG774359
2-Methylnaphthalene	mg/kg	0.0623	0.0612	76.4	37.5-137	1.77	20.4	L751941-01	WG774359
Acenaphthene	mg/kg	0.0577	0.0595	70.6	39.4-132	2.93	20	L751941-01	WG774359
Acenaphthylene	mg/kg	0.0566	0.0583	70.7	41.3-132	3.10	20	L751941-01	WG774359
Anthracene	mg/kg	0.0614	0.0659	70.1	36.7-144	7.03	20.7	L751941-01	WG774359
Benzo (a) anthracene	mg/kg	0.0631	0.0549	62.9	28-144	13.9	24.7	L751941-01	WG774359
A Destangeness of this be	whether the successful		Alabad an	1					

* Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 4 of 6

EnviroTech- NM Lynn Cook 5796 US. Highway 64

Farmington, NM 87401

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L752132

March 10, 2015

		Ma	trix Spike	e Duplicate					
Analyte	Units	MSD	Ref	tRec	Limit	RPD	Limit	Ref Samp	Batch
Benzo (a) pyrene	mg/kg	0.0587	0.0509	57.2	23.8-147	14.3	25.3	L751941-01	WG77435
Benzo (b) fluoranthene	mg/kg	0.0622	0.0470	53.5	18.2-147	27.9	29.5	L751941-01	WG77435
Benzo(g, h, i) perylene	mg/kg	0.0528	0.0471	53.0	9.2-155	11.3	29.2	L751941-01	WG77435
Benzo(k)fluoranthene	mg/kg	0.0576	0.0526	63.5	26.5-143	9.01	26.1	L751941-01	WG77435
Chrysene	mg/kg	0.0691	0.0590	65.9	27.4-150	15.8	25.7	L751941-01	WG77435
Dibenz (a, h) anthracene	mg/kg	0.0416	0.0428	50.1	13.8-150	2.74	25.8	L751941-01	WG77435
Fluoranthene	mg/kg	0.0965	0.0661	70.0	23.2-158	37.3*	26	L751941-01	WG77435
Fluorene	mg/kg	0.0498	0.0513	61.3	30.8-139	2.91	20	L751941-01	WG77435
Indeno (1, 2, 3-cd) pyrene	mg/kg	0.0498	0.0451	52.0	10.7-155	10.0	26.9	L751941-01	WG77435
Naphthalene	mg/kg	0.0891	0.0857	95.9	34.9-133	3.89	20.4	L751941-01	WG77435
Phenanthrene	mg/kg	0.0912	0.0693	78.1	20.2-150	27.3*	24.6	L751941-01	WG77435
Pyrene	mg/kg	0.104	0.0778	84.2	22.6-151	29.2*	25.1	L751941-01	WG77435
2-Fluorobiphenyl				87.10	38.2-135				WG77435
Nitrobenzene-d5				107.0	28.4-151				WG77435
p-Terphenyl-d14				84.50	34.2-141				WG77435

Batch number /Run number / Sample number cross reference

WG774359: R3023620: L752132-01 WG774417: R3023731: L752132-01

* Calculations are performed prior to rounding of reported values.
 * Performance of this Analyte is outside of established criteria.
 For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 5 of 6

Page 16 of 19

EnviroTech- NM Lynn Cook 5796 US. Highway 64

Farmington, NM 87401

Quality Assurance Report Level II

L752132

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a target parameter is outside the method limits, every sample that is effected is flagged with the appropriate gualifier in Appendix B of the analytic report.

> Method Blank - an aliquot of reagent water carried through the entire analytic process. The method blank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "B" qualifier.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate - is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target analytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J5". The relative percent difference (%RPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier. 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

March 10, 2015

Page 6 of 6

Page 17 of 19

			Billing Infe	ormation:			T			Analysis /	Contai	iner / Pres	ervative		Chain of G	stody Page_of
EnviroTech- NM 5796 US. Highway 64 Farmington, NM 87401			Farming	oore 5. Highway 64 ston, NM 8740	1	- Carto	1001		い、時代の		N. H. S.	·	and the second			ESC
Report to: Tion + Ly Project Description: Kiroland Pla Phone: 505-632-0615 Fax: Collected by (print):	nt Packing Client Project 14039 Site/Facility IC P50	- a	"	Trianz & City/State Collected: Lab Project # P.O. # 1410			1 8770/400 Ches Ja	and the second	State State of States		大学が大学					TN 37122 758-5858 767-5859
Collected by (signature): Immediately Packed on Ice N Y X Sample ID	Rush? (L Same) Next D Two D	ab MUST Be Day ay Day Matrix *	Notified) 	Date F	No Yes	No. of Cntrs	FAH SIM b		のないので		の一般のない				Template Preiogin: TSR: 288 PB: Shipped V	Daphne Richards
West Rotrom		55		03-06-15	1038	17	X		C. B.M.		MIS.		(AN)	3		61
west retroine				10000	1 1 2 1		all the	turn of		1 m	(alight	1 M	Section -			C. C. Brank
					1	4.9	4.000	-	off C		1		10.12	a statistica		1. 1. A.M.
						1	13.000	-	A PARTY		23		North Contraction	and the second	-	
						1	18.		S.C.M.		the second		100	2000		States and
						+	122	-					1	13925		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				1			1.36		12				3.2	2	-	1.5.65
				-	-		12	1	18				6.4	all all		12 23
					200. 73	1	15	12.5	-201	2	All Co		36	2001		Carlos a
					1		2402	12			All start		and and a second	and the second		Carl Street
Matrix: SS - Soil GW - Groundwa emarks:	ter WW - WasteWa	iter OW - Dr	inking Wate	or OT - Other	570	46	056	6920)	pH		Temp		Hold #	12400	
telinguished by : (Signature)	R	Date: 03-00 Date:	.15	1530	Feelled by: (Sign	ature)	2	1		Temp:	dEx [ed via: 4 Courier °C Bott	es Recalved	261 20231	2	(lab use only)
Relinguished by : (Signature)		Date:	_	Time: Re	eceived for lab by	y: (Signa	iture)	201	1	Z. Date: 3-7	207	Time	1.702	pH Che	cked:	Y N NA

			ł									175	213	32
lient: CET			RUSH?	La	b Use Only			Ana	alysis	and	Method		lab	Only
ampler: E. Garcia	leate		1d	and a strength of the strength of the	Lab WO#					2		L.	18	NIN
ampler: E. Garria			3d	P503	3024					-				Correct Cont/Prsrv (s) Y/N
hone:			T	Contraction of the local division of the loc	b Number	15	1.2		0	- 1			ber	S
mail(s): Escar 6.	10 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -			140	38-0011	N 8	12	-	300				Lab Number	1tp
roject Manager: G eg Criebling			Pag	the second se	Y all a		8	418	e by	, ^B ,			qe	3
		Sample			ntainers	GRO/DRO by 8015	X	TPH by 418.1	Chloride by 300.0				-	Lea
Sample ID	Sample Date	Time	Matrix	QTY - Vol/T	YPE/Preservative	GRO	BTE	TPH	5				2.2	J.S
1 2 14										V			T	IV
West Bottom	3/6/15	1038	2	2.402/	51 cool			-		\wedge		3		1
				15										
			1201	St. via		+-	+	-		-			-	-
			32	Al										E
		+		100			-	-		-				+
			-			-	+			-		-		F
				die .								- 12		
			1			1				-		-	100	t
	_												1	
														Г
			-			-				_		-		L
		-				+-		-		-				-
		-	100		2 -1 -152								5	
Relinquished by: (Signature) Date	Time Receive	d by: (Signa	ature)	Date	Time		1	100.00	La	b Us	e Only	N. S. S. S.	-	
	43 Joans	1		3/6/15	13:43 .	*Rece	ived	on lo			e Carlo			
		d by: (Signa	ture)	Date	Time T	1 16.6	6		T2 1	2.5	1	T3		
	-	GUNK	1	3.7.15		VG Te								
ample Matr x. S Soil, Sd - Solid, Sg Sludge, A - Aqueous, O - Oti	ner	1	6		Container Type	g - gla	ass, p	- pol	ly/pla	stic,	ag - amb	er glass		
Samples requiring thermal preservation must be received on ic	e the day they are sampled	or received p	backed in ice	and the second s	and the second se	"C on su	bsequ	ent da	ys.					
Sample(s) dropped off after hours to a secure drop off area.	- 18 -	Chain o	f Custody	Notes/Billin	ng into:	B								
- ·			d .	ALC: NOT	24	/								_
Benvirotech	5796 US Highway 64, Farming		3	~						14		-		-

APPENDIX B

References

Arsenic Concentrations in Soil

Risk management guidance for evaluating reviewed/revised July 2014

Regulatory Limitation

This guidance does not modify, replace, or pre-empt any existing statutory or regulatory requirements, enforcement actions, agreements, policies or other legal mechanisms that may govern actions within the Hazardous Materials and Waste Management Division's (the "division's") various remedial programs. In the event of a conflict between this guidance and existing risk assessment guidance and other programmatic requirements, this guidance defers to the various legal and operating mechanisms of those remedial programs.

This guidance was developed with the division's remedial programs in mind. Other state and federal agencies are not obligated to use the process outlined herein, although the same analysis could apply to other sites undergoing investigation and cleanup where testing for arsenic is required and it may be present in sampled environmental media. Parties wanting to use this guidance at their site must seek approval to do so from the regulatory agency responsible for overseeing their remedial activities.

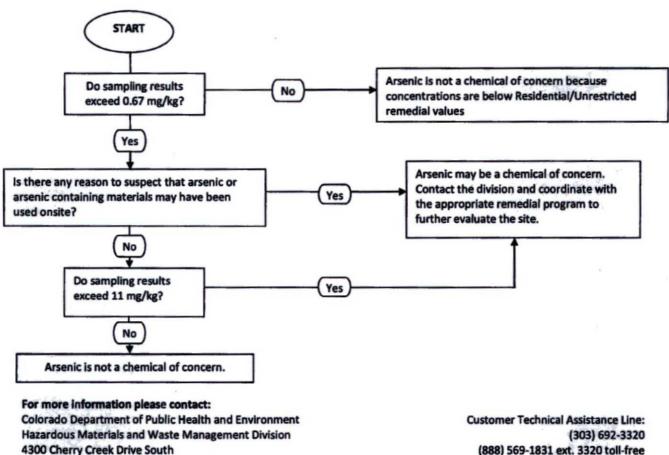
Purpose

The division has prepared this guidance for the purpose of making preliminary determinations when screening data collected from sites that don't necessarily have a reason to believe arsenic contamination may be present, such as a routine Phase II investigation conducted prior to a property transaction. This guidance is simply meant to inform the regulated community of their responsibilities in managing arsenic risks: it is not regulation, nor does it constitute an enforceable standard that must be complied with.

Background

Arsenic is naturally occurring in some geologic environments in Colorado due to weathering and erosion of bedrock and soil, including highly mineralized areas that are mined for metal ores. It is present in more than 200 different minerals, the most common of which is called arsenopyrite. It may also be present in the environment due to a number of anthropogenic activities including: military operations and firing ranges; mining, especially sulfide ores; smelting copper, gold and lead ores; preservation of wood (CCA); chicken feed operations and associated manures (CAFO) due to arsenic-containing growth promoters; tanning and taxidermy operations; coal-burning emissions and ash-derived residues from power plants; and may be present in landfills and landfill-derived leachate. Arsenic may also be found due to the manufacture, use and disposal of: ammunition; fireworks; pigments (paint, paper, ceramics, etc.); older herbicides, insecticides, and pesticides (examples: monosodium methanearsonate (MSMA), disodium methanearsonate (DSMA) and lead-arsonate); electronics containing Gallium-Arsenide-Selenium (GAS) semi-conductors; lead acid battery plates; glass; and some pharmaceuticals. Other anthropogenic arsenic sources may likely exist. Arsenic contamination in soil is of public health concern due to its toxic effects as a carcinogen and a non-carcinogen. Making risk management decisions about arsenic can be difficult because natural occurring concentrations in soil often exceed carcinogenic risk based exposure values.

This guidance was prepared by the division using a data set of background arsenic concentrations developed by the U.S. EPA Region 8. The data set includes over 2,700 samples from 44 counties in Colorado. The areas sampled included: native grasslands; agricultural areas; urban mixed land use; and mining. A summary of the data set is presented in the table below. The complete data set may be found on the U.S. EPA Region 8's website at http://www2.epa.gov/region8/hh-exposure-assessment.


Land Use	Concentration (mg/kg)						
Native Grassland, Rangeland, or Agriculture	3-14						
Urban Mixed Use	6-19						
Mining	10						
Average of all land uses	11						

Region 8 U.S. EPA 95% UCLM Background Soil Arsenic Concentrations in Colorado

Division Guidance Regarding Background Arsenic Concentration

The division's approach to evaluating arsenic in soil is depicted in the following flowchart. This guidance assumes that, based upon the size, history and environmental concerns associated with a particular site, an adequate amount of arsenic data has been obtained to make a determination regarding arsenic concentrations in soil. It isn't meant to be a guide on how to conduct a background study for risk assessment and/or site closure purposes. Guidance on the subject of data collection and analysis needs for conducting a background study should be sought from other published sources. Soil samples should be collected and analyzed for arsenic if the site history suggests it may be present as a result of anthropogenic activities. However, since arsenic is one of the chemicals included as part of a standard "metals" analysis package from a laboratory, you may already have obtained arsenic data for your site.

The current residential/unrestricted land use remedial objective for inorganic arsenic is 0.67 mg/kg (U.S. EPA regional screening level). If arsenic concentrations at your site are lower than 0.67 mg/kg, the division will require no further action to address arsenic in soil. If arsenic concentrations are lower than 11 mg/kg (the average of the 95% UCLM of background concentrations found by the U.S. EPA in Colorado), and releases of arsenic could not have occurred at the site, based on historical data or process knowledge, the division will require no further action to address arsenic in soil. If arsenic could have occurred at the site, based on historical data or process knowledge, the division will require no further action to address arsenic in soil. If arsenic concentrations are greater than 0.67 mg/kg, and the available information suggests that a release of arsenic could have occurred at the site, the division will require additional evaluation of the data and possibly additional sampling to determine whether corrective measures for arsenic are required. This evaluation may include a site specific background study with sampling from offsite locations, and/or additional sampling in areas of the site where activities that could have contributed to environmental contamination never occurred. Please consult with the division prior to performing any background study. If it can be demonstrated that arsenic concentrations in soil are unrelated to site activities, the division will require no further action regarding arsenic. It should be noted that material such as arsenic-bearing mine tailings or oil and gas drill cuttings, although derived from a naturally occurring source material, are not considered to be naturally occurring background once they have been generated through human activity. Therefore, mine tailings and drill cuttings may be subject to remediation if ecological or health-based concentrations are exceeded.

Denver, Colorado 80246-1530

E-mail: comments.hmwmd@state.co.us Website: www.colorado.gov/cdphe/hm

Frequency Distribution of the pH of Coal-Mine Drainage in Pennsylvania

By Charles A. Cravotta III, Keith B.C. Brady, Arthur W. Rose, and Joseph B. Douds

ABSTRACT

The pH of coal-mine drainage in Pennsylvania has a bimodal frequency distribution, with modes at pH 2.5 to 4 (acidic) and pH 6 to 7 (near neutral). Although iron-disulfide and calcareous minerals comprise only a few percent, or less, of the coal-bearing rock, these minerals are highly reactive and are mainly responsible for the bimodal pH distribution. Field and laboratory studies and computer simulations indicate that pH will be driven toward one mode or the other depending on the relative abundance and extent of weathering of pyrite (FeS₂; acid-forming) and calcite (CaCO₃; acid-neutralizing). The pH values in the near-neutral mode result from carbonate buffering (HCO3 /H2CO3 and HCO3 /CaCO3) and imply the presence of calcareous minerals; acid produced by pyrite oxidation is neutralized. The pH values in the acidic mode result from pyrite oxidation and imply a deficiency of calcareous minerals and the absence of carbonate buffering. The oxidation of only a small quantity of pyrite can acidify pure water (0.012 g-L-1 FeS2 produces pH~4 and 20 mg·L⁻¹ SO4²); however, because of the log scale for pH and ion complexation (SO₄²⁻/HSO₄ and Fe³⁺/FeOH²⁺), orders of magnitude greater oxidation is required to produce pH < 3. Laboratory leaching experiments showed that for a specific proportion of FeS2:CaCO3, effluents produced under variably saturated hydrologic conditions, in which oxygen availability and pyrite oxidation were enhanced, had lower pH and greater dissolved solids concentrations than effluents produced under continuously saturated conditions, in which oxygen availability and pyrite oxidation were diminished.

INTRODUCTION

In the northern Appalachian Plateau of the eastern United States, drainage from abandoned coal mines affects more than 8,000 km of streams and associated ground water (Boyer and Sarnoski, 1995). Most affected streams are in Pennsylvania, where contaminated mine runoff and mine discharges impair water quality in 45 of 67 counties (Pennsylvania Department of Environmental Protection, 1998). An understanding of factors affecting the chemistry of coal-mine drainage is needed for the effective planning and implementation of future mining and remediation of abandoned mine lands. This paper evaluates geochemical and hydrological factors affecting the pH of coal-mine drainage. Data for ground-water and discharge samples and laboratory leaching experiments are presented to explain regional water-quality trends for the northern Appalachian coalfields. Geochemical simulations demonstrate the range of effects on pH from different variables, including the amount of pyrite oxidized, buffering by carbonate minerals, and the formation of secondary minerals.

Geochemistry of Coal Mine Drainage

Ground water and associated mine discharges in the coalfields of Pennsylvania range widely in quality from near-neutral, or "alkaline" (alkalinity > acidity; $pH \ge 6$), to strongly acidic (Rose and Cravotta, 1998). The pH of coal-mine drainage in Pennsylvania has a bimodal frequency distribution (Brady and others, 1997, 1998); most samples are either near neutral (pH 6 to 7) or distinctly acidic (pH 2.5 to 4), with few samples having pH 4.5 to 5.5 (fig.1). The bimodal pH distribution is apparent for other regional compilations of water-quality data for coalfields in West Virginia (diPretoro, 1986), Ohio (Helsel and Hirsch, 1992, p. 61), and Germany (Klapper and Schultze, 1995). Whether near neutral or acidic, the drainage from most coal mines has elevated concentrations of dissolved solids, ranging from about 200 mg·L⁻¹ to greater than 10,000 mg·L⁻¹. In contrast, ground water and spring water from unmined areas typically are near neutral and are dilute compared to water from mined areas (Brady and others, 1996; Rose and Cravotta, 1998).

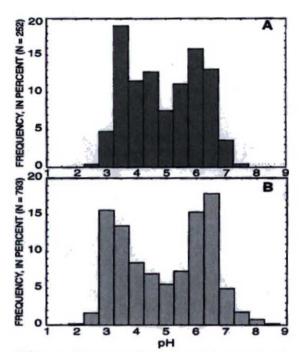


Figure 1. Frequency distribution of the pH of coalmine discharges in Pennsylvania. A, Data for 252 coal-mine discharges in the anthracite coalfield (source: Growitz and others, 1985); B, Data for 793 surface coal-mine discharges in the bituminous coalfield (source: Hellier, 1994). Class intervals for pH \pm 0.25.

Acidic mine drainage (AMD) is characterized by elevated concentrations of dissolved and particulate iron (Fe) and dissolved sulfate ($SO_4^{2^-}$) produced by the oxidation of pyrite (FeS₂):

 $\text{FeS}_2 + 3.5 \text{ O}_2 + \text{H}_2\text{O} \rightarrow \text{Fe}^{2+} + 2 \text{ SO}_4^{2-} + 2 \text{ H}^+ (1)$

 $Fe^{2+} + 0.25 O_2 + 2.5 H_2O \rightarrow Fe(OH)_3(s) + 2 H^+(2)$

Half the acid (H⁺) is produced by the oxidation of pyritic S (reaction 1), and half results from the oxidation and hydrolysis of pyritic Fe (reaction 2). Generally, mines that produce AMD feature interconnected underground "workings" (voids and rock rubble) or aboveground "spoil" (rubble and rejected coal) where pyrite has been exposed to oxygenated air and water and where the calcareous minerals, calcite (CaCO₃) and dolomite (CaMg(CO₃)₂), are absent or deficient relative to pyrite (Hornberger and others, 1990; Brady and others, 1994; Cravotta, 1994; Rose and Cravotta, 1998; Nordstrom and Alpers, 1999). Concentrations of manganese (Mn²⁺), aluminum (Al³⁺), and other solutes in AMD commonly are elevated due to aggressive dissolution of carbonate, oxide, and aluminosilicate minerals by acidic water.

Near-neutral mine drainage can form from rock that lacks pyrite or can originate as AMD that has been neutralized by reaction with calcareous minerals (Cravotta and others, 1994; Blowes and Ptacek, 1994). In near-neutral mine waters, bicarbonate (HCO₃⁻) is a significant anion along with $SO_4^{2^-}$; concentrations of dissolved calcium (Ca²⁺) and magnesium (Mg²⁺) generally are elevated relative to dissolved Fe³⁺ and Al³⁺, which precipitate as pH increases to above 4 to 5. For example, dissolution of calcite neutralizes acid and can increase the pH and alkalinity ([OH⁻] + [HCO₃⁻] + 2 [CO₃²⁻]) of mine water:

$$CaCO_3(s) + 2H^+ \leftrightarrow Ca^{2+} + H_2CO_3^*$$
(3)

$$CaCO_{3}(s) + H_{2}CO_{3}^{*} \leftrightarrow Ca^{2+} + 2 HCO_{3}^{-}$$
(4)

where $[H_2CO_3^{\circ}] = [CO_2 (aq)] + [H_2CO_3^{\circ}]$ (Stumm and Morgan, 1996). However, because the rate of pyrite oxidation can exceed the rate of calcite dissolution, particularly where oxygen is abundant, the pH and alkalinity of mine water will not necessarily increase in the presence of calcite.

Ion complexation, principally the protolysis of anions and the hydrolysis of cations (Stumm and Morgan, 1996), also can be a significant process that stabilizes, or "buffers," the pH of mine water. For example, pH can be buffered in the near-neutral range by the protolysis reaction involving bicarbonate and carbonic acid (pK=6.35; thermodynamic data from Ball and Nordstrom, 1991):

$$HCO_3^- + H^+ \leftrightarrow H_2CO_3^*$$
 (5)

Similarly, pH can be buffered in the acidic range by the protolysis reaction involving sulfate and bisulfate (pK=2.0)

$$SO_4^{2^-} + H^+ \leftrightarrow HSO_4^-,$$
 (6)

and by hydrolysis reactions involving ferric ions, such as the initial hydrolysis step (pK=2.2).

$$Fe^{3+} + H_2O \leftrightarrow FeOH^{2+} + H^+$$
. (7)

The importance of the above reactions will depend on the dissolved solute content of the water, the nature and abundance of acid-producing and neutralizing materials along flow paths, the sequence and intimacy of contact between the water and these materials, as well as the ability of the rock to transmit water and air.

Geologic and Hydrologic Framework

Bituminous coal deposits underlie western and north-central Pennsylvania, and anthracite deposits underlie east-central and northeastern Pennsylvania (fig. 2). The mineable coals, mostly of Pennsylvanian Age, are interbedded with shale, siltstone, sandstone, and occasional limestone (Brady and others, 1998). The bituminous coalfield lies within the Appalachian Plateaus Physiographic Province and is characterized by gently dipping strata; nearly horizontal coalbeds commonly crop out in the incised stream valleys. The anthracite coalfield lies within the adjacent Ridge and Valley Physiographic Province, which is characterized by complexly deformed strata. Mineable anthracite beds are present primarily in steeply folded and fractured synclinal troughs.

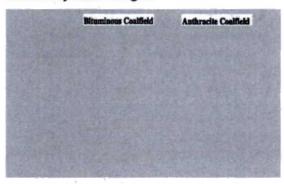


Figure 2. Locations of bituminous and anthracite coalfields in Pennsylvania (modified from Pennsylvania Geological Survey, 1964).

Coal-bearing rocks in the northern Appalachians have variable potential to produce AMD; the pyritic and calcareous contents of the rocks vary. Because weathering over many centuries has depleted reactive minerals from near-surface strata, the acid-forming and acid-neutralizing minerals generally are most abundant in rock deeper than about 10 m (Cravotta and others, 1994; Brady and others, 1996, 1998). Upon mining, however, pyrite in the deep-lying, unweathered strata is exposed to oxygenated air and water within underground workings or surface mine spoil. The spoil commonly consists of a heterogeneous mixture of rocks that are inverted stratigraphically relative to their original positions (Cravotta and others, 1994). Thus, although the relative abundance and vertical distribution of pyritic and calcareous materials at a proposed mine commonly are evaluated before

mining to indicate the potential for AMD formation and to develop a materials handling plan (Brady and others, 1994), the quality and movement of water within the resultant mine spoil and backfill are difficult to predict.

Surface mines and underground mines in the bituminous coalfield generally can be categorized as "updip" or "downdip" depending on the direction that mining proceeded relative to the dip of the coal bed. In the past, most bituminous mines were mined updip so that water would drain freely and pumping costs would be minimized. Updip mines also provided greater access of oxygen to the subsurface, however, which facilitates the oxidation of pyrite and the formation of AMD (Hornberger, 1985). In contrast, downdip mines tend to fill with ground water, which requires pumping during active mining but also reduces the access of oxygen to pyritic rock. Upon mine closure, substantial parts of downdip mines can be permanently inundated thereby minimizing oxygen transport and pyrite oxidation. Hence, the downdip mines generally produce less acidic water than updip mines; however, unless calcareous strata are present, they may not produce near-neutral water.

Most anthracite mines were developed as large underground mine complexes, where shafts and tunnels connected mine workings within multiple coalbeds. Because anthracite mines commonly were developed hundreds of meters below the regional water table and because of the large size of most underground mine complexes, their discharge volumes (overflows or tunnels) tend to be substantially greater than those from surface mines. Upon closure, large volumes of the mine complexes flooded, as expected for downdip mines, producing underground "mine pools." Discharges emanated where the mine pools overflowed from topographically low points overlying the mine complex.

During active mining, the potential for catastrophic flooding of anthracite mine complexes was a major concern. Partly due to the high cost of pumping as the mines were developed to greater and greater depths, most mines had closed by 1960. At some mines, the flooding problem was solved by the construction of extensive drainage tunnels. By promoting the circulation of water and air within the mine workings, the drainage tunnels promoted the formation of AMD where pyritic strata were present. For example, the Jeddo Tunnel, the largest drainage tunnel system in the anthracite coalfield, drains a 70-km² area in the Eastern Middle Anthracite Field (LeRigina, 1988). Acidic water from the Jeddo Tunnel (pH < 4; SO₄ > 400 mg·L⁻¹) discharges at a rate of 175,000 to 270,000 m³·d⁻¹ (Wood, 1996).

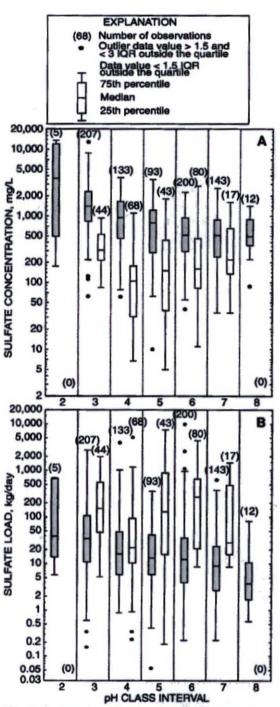
In addition to the mineralogical and hydrological factors described above, the age of the mine, the time elapsed since initial flooding, the origin and composition of the inflow water, the potential for stratification within the mine pool, and the location of the mine outflow can affect the mine-discharge composition. For example, water can be stratified in a mine pool, with generally older, poorer quality water at depth; overflows from the top of the pool generally will be better quality than outflows from boreholes, shafts, or tunnels tapping deeper zones (Ladwig and others, 1984). Regional data pertaining to all these factors are not generally available in digital format and, hence, their evaluation is beyond the scope of this paper.

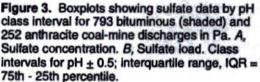
STUDY METHODS

Available data for pH and concentrations of alkalinity, acidity, sulfate, and metals in groundwater and discharge samples from coal mines in Pennsylvania were compiled from several sources. Water-quality data for 793 bituminous surface mine discharges were obtained from the Mine Drainage Inventory data base (Hellier, 1994) maintained by the Pennsylvania Department of Environmental Protection (PaDEP). If multiple samples were reported for a discharge site, arithmetic means of concentration and discharge rate were used for that site. Data for 252 anthracite mine discharges reported by Growitz and others (1985) were obtained from the USGS National Water Information System (NWIS); the anthracite data are predominantly for underground mines. Additional water-chemistry data for selected large anthracite discharges reported by Wood (1996) and for recent USGS investigations at four surface mines in the bituminous field (Dugas and others, 1993; Cravotta and others, 1994; Cravotta, 1998) also were obtained from NWIS. Finally, data for laboratory leaching experiments were added to the compilation.

For the leaching experiments, reported in detail by Cravotta (1996), coaly shale that consisted mostly of quartz, kaolinite, and pyrite was obtained at a coal mine and taken to the laboratory to be crushed, and placed in vertical columns open to the atmosphere. The columns were leached biweekly with water simulating two different hydrologic conditions: variably saturated, aerobic (flooded for 2 days with 1.4 pore volumes, followed by 12-day drying period) or continuously saturated, stagnant (flooded continuously with 1.4 pore volumes). Powdered calcite was added on top of the shale to achieve molar ratios for CaCO₃:FeS₂ of 0:1, 1:1, and 2:1.

The pH data for the bituminous mines (fig. 1A) were determined in the laboratory on chilled samples. These laboratory pH values could be greater than field pH because of the exsolution of CO2 or less than the field pH because of the oxidation and precipitation of Fe (reactions 2 and 3). Nevertheless, pH data for the anthracite mines (fig. 1B) and for the other field and laboratory data sets were determined at the time and location of sample collection. The similarity between field and laboratory pH values for the USGS mine-scale and laboratory leaching data compilations and the similarity between the pH frequency distributions for the bituminous and anthracite discharges (fig. 1) imply that the laboratory pH values are representative of field conditions. The USGS mine-scale and laboratory leaching data compilations also included values for redox potential (Eh). The Eh was determined on fresh samples using Pt and Ag/AgCl reference electrodes according to methods of Wood (1976) and Nordstrom (1977). The water-quality data were evaluated by use of computerized graphical, statistical, and geochemical routines.


The PHREEQC computer program (Parkhurst, 1995) was used to conduct "titration" simulations, where small increments of pyrite were added to a 1 L solution and oxidized. By adjusting different variables, these simulations evaluated the effects on pH, Eh, and sulfate concentrations as a function of the amount of pyrite reacted; oxygen availability; equilibrium with carbonate minerals; partial pressure of CO2 (Pco2); and precipitation of different hydrous iron oxide or sulfate minerals. A typical simulation involved 100 or more incremental steps with small additions of pyrite. After each of these steps, the pH, Eh, and dissolved species were calculated. The pH was plotted as a function of the total SO₄ concentration to indicate the resulting water quality for a given amount of pyrite oxidized.


RESULTS

Regional Studies

Although the bimodal frequency distribution of pH is similar for discharges from bituminous and anthracite mines (fig. 1), the relations between pH and SO₄ concentration or load differ between the two coalfields (fig. 3). The median SO4 concentrations for bituminous discharges exceed those for anthracite discharges at each pH class interval and over the range of pH (fig. 3). Conversely, because discharge rates for most anthracite mines are significantly greater than those for the bituminous mines, the medians for SO4 transport, or "loads," for anthracite discharges exceed those for bituminous discharges at each pH class interval (fig. 3). The anthracite mine discharges are characterized by median SO₄ concentrations of 100 to 300 mg·L⁻¹ and loads of 20 to 400 kg day⁻¹ that are independent of pH. In contrast, the median concentrations and loads for bituminous discharges increase with decreasing pH, from about 500 mg-L⁻¹ and 10 kg·day⁻¹, respectively, for pH > 5.5 to greater than 1,200 mg·L⁻¹ and 40 kg·day⁻¹, respectively, for pH ≤3.5 (fig. 3). The inversely correlated pH and SO₄ data (loads and concentrations) for bituminous mines imply that the extent of pyrite oxidation increases with decreasing pH, which is consistent with laboratory rate data (McKibben and Barnes, 1986; Moses and Herman, 1991; Cravotta, 1996). However, the lack of similar correlations between the pH and SO₄ data for anthracite mine discharges suggest other processes are important.

The anthracite mines generally were flooded for decades before most bituminous surface mines had been developed. Although discharges from the anthracite mines are primarily overflows from stagnant mine pools, historical data indicate that when the anthracite mines first flooded, the water chemistry was similar to that of present bituminous mine discharges, with lower pH and higher concentrations of SO₄ and Fe (Ladwig and others, 1984; Wood, 1996). Comparing data collected in 1975 and 1991 for selected anthracite discharges, pH increased from the acidic mode to the near-neutral mode while SO₄ concentrations decreased for most mines in the Southern and Western Middle Anthracite Fields (Wood, 1996). In contrast, pH data for

the Eastern Middle Anthracite Field, which is largely drained by the Jeddo Tunnel, showed no change from the acidic pH mode. Hence, as pyrite and/or carbonate minerals are depleted and/or rates of reactions decrease, the pH and SO_4 frequency distributions and correlations are likely to change, but the time period for this change could span decades.

Mine-Scale and Laboratory Studies

Data for ground water and associated discharge samples from four surface mines in the bituminous coalfield, when combined so that each mine is represented equally (total frequency of 25 percent for each mine), also show a bimodal distribution of pH (fig. 4A). The pH of the ground water at each mine commonly ranges over several units, mainly caused by spatial variability or heterogeneity. Although acidic and near-neutral waters were sampled at three of the four mines, individual wells or discharges generally reflected locally acidic or near-neutral conditions. A few wells in mixed pyritic and calcareous spoil had water quality that varied temporally between acidic and alkaline (Cravotta and others, 1994; Rose and Cravotta, 1998). The effects of spoil composition and hydrology are indicated by the relations between pH and concentrations of SO42- and Ca2+ (figs. 4B and 4C). Alkaline to weakly acidic water (pH \geq 5) that has relatively low SO42 is characteristic of unmined bedrock and spoil that contain calcareous minerals and have low permeability (e.g. mine 1 in fig. 4). Strongly acidic water (pH \leq 4) that has high SO₄ is characteristic of high-permeability, well-drained, pyritic spoil (e.g. mines 2 and 3 in fig. 4). Moderately acidic water (pH 4 to 5) that has high SO42- is characteristic of spoil or underlying bedrock that lacks dissolved oxygen (e.g. mines 2 and 4 in fig. 4). Although concentrations of Ca2+ and SO42- are positively correlated, the linear relation between Ca2+ and SO42- is evidently site specific with slopes differing among the mines. In general, calcareous strata produced water with the highest concentrations of Ca2+, and noncalcareous, pyritic strata produced water with the highest concentrations of SO42-. Lowest concentrations of Ca2+ and SO42were in water from unmined rock upgradient from the mines.

Laboratory leaching experiments demonstrate the bimodal pH distribution for water at coal mines generally results from the weathering of pyritic rocks that have a deficiency (low pH) or an abundance (near-neutral pH) of calcareous minerals necessary to buffer the pH (fig. 5A). Pyritic shale was subjected to leaching under continuously or variably saturated hydrologic conditions; calcite was added in different proportions to evaluate effects on the oxidation of pyrite and the transport of sulfate and metals (Cravotta, 1996). Without the addition of calcite, the leachate from the shale typically had pH 1.5 to 3.5 and high concentrations of sulfate and iron. However, with the addition of calcite, the leachate had pH 4.5 to 7 and lower concentrations of sulfate and iron. The dissolution of calcite not only neutralized acid but decreased pyrite oxidation rates, as indicated by higher pH and Ca2+ concentrations and lower SO42- concentrations for leachate from shale with added calcite (figs. 5B and 5C). All the leachate samples were undersaturated with respect to gypsum; only leachate in continuously saturated columns with added calcite was saturated or supersaturated with respect to calcite.

The leaching tests also showed the hydrology of a mine has an important effect on pyrite oxidation. By maintaining stagnant, water-saturated conditions, which minimized the oxygen available for reactions, pyrite oxidation was minimized, as indicated by low $SO_4^{2^-}$ concentrations in leachate (figs. 5A and 5B). The leaching data can be summarized generally as follows:

- pH < 3 and SO₄ > 1,500 mg·L⁻¹ for variably saturated conditions without CaCO₃;
- pH 3.2-3.5 and SO₄ < 1,000 mg-L⁻¹ for continuously saturated conditions without CaCO₃;
- pH 4.5-6.5 and SO₄ < 1,000 mg·L⁻¹ for variably saturated conditions with CaCO₃ present; and
- pH≥6.0 and SO₄ < 1,000 mg·L⁻¹ for water-saturated conditions with CaCO₃ present.

For each CaCO₃:FeS₂ molar ratio, ranging from 0:1 to 2:1, lower pH and higher SO₄²⁻ and Ca²⁺ concentrations were produced under variably saturated, oxygenated conditions than under continuously water-saturated, stagnant conditions (figs. 5B and 5C) because of greater extent and rate of pyrite oxidation and the consequent dissolution of calcite and other minerals under oxygenated, acidic conditions.

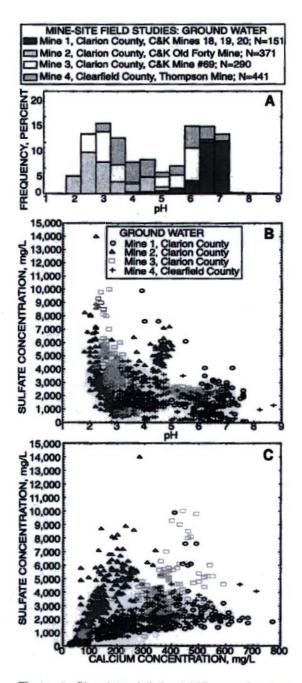


Figure 4. Chemistry data for 1,253 ground-water and discharge samples, collected monthly for 2 to 6 years, from four surface mines in the bituminous coalfield, Pa. (source: Dugas and others, 1993; Cravotta and others, 1994; Cravotta, 1996). *A*, Frequency distribution of pH; data for each mine weighted to represent 25% of the total. *B*, Relation between sulfate concentration and pH. *C*, Relation between sulfate and calcium concentrations.

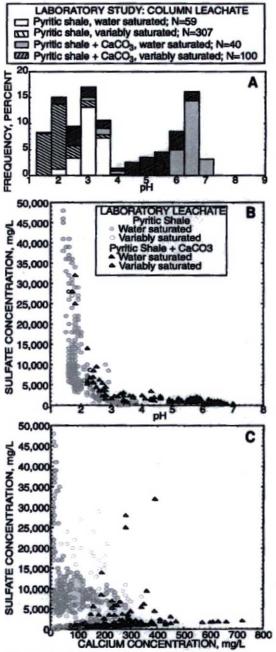


Figure 5. Chemistry data for 606 leachate samples from pyritic shale. Data for each of four leaching scenarios, collected biweekly over 3 to 9 months (source: Cravotta, 1996). *A*, Frequency distribution of pH; data for each treatment weighted to represent 25% of the total. *B*, Relation between sulfate concentration and pH. *C*, Relation between sulfate concentration and calcium concentration.

Geochemical Simulations

Geochemical simulations evaluated the effects on pH, Eh, and sulfate concentrations from pyrite oxidation over a range of conditions characteristic of the field conditions at coal mines. Although a wide range of conditions was considered, this paper evaluates only the most important variables affecting pH. A typical simulation involved 100 or more incremental steps with small additions of pyrite to 1 L solution. After each of these steps, the pH, Eh, and dissolved species were calculated. The pH was plotted as a function of the total concentration of sulfate species in solution $(SO_4^{2-}, HSO_4^{-}, FeHSO_4^{2+}, etc.)$ which indicates the amount of pyrite oxidized (192 g SO₄ per 120 g FeS₂) if sulfate minerals do not precipitate.

Firstly, the oxidation of pyrite, in the absence of calcite, is considered for different Pco2 and Po2 (fig. 6A). Except for depressing the pH of initially pure water, varying Pco2 from 10-3.5 to 10-1 atm has little effect on the pH after pyrite oxidation has begun. In contrast, limiting the availability of oxygen has a significant effect on the pH as simulated for an "open system" (air equilibrium, Po2=0.2 atm, for complete oxidation of S and Fe in FeS2 by reactions 1 and 2) or a "closed system" (3.5 mol O2 per mol FeS₂ for oxidation of only S by reaction 1). Starting with pure water in equilibrium with ambient Pco2, pH declines from 5.5 to 4 with the oxidation of only a small quantity of pyrite (0.012 g·L⁻¹ FeS₂ produces pH~4 and 20 mg·L⁻¹ SO₄²⁻); continued pyrite oxidation decreases pH to about 3 at the point where total SO₄ concentration is 100 mg·L⁻¹. As SO₄ concentration increases from 100 to 1,200 mg·L⁻¹ the pH declines asymptotically approaching 2. For an open system, where oxygen is unlimited, the oxidation of pyritic S and Fe2+ and the precipitation of amorphous Fe(OH)₃ (reactions 1 and 2) results in pH about 0.3 units greater than that for the closed system where oxygen is limited to only the stoichiometric amount needed to produce SO4 (reaction 1). The pH decreases about 0.5 units if a phase such as goethite (FeOOH) precipitates instead of higher solubility amorphous Fe(OH)3, resulting in pH under air equilibrium that is less than that under oxygen limited conditions (fig. 6A). The narrow range of pH results mainly from the logarithmic scale for pH, plus buffering by ionic complexation Fe(OH)2+/Fe3+ and SO42-/HSO4

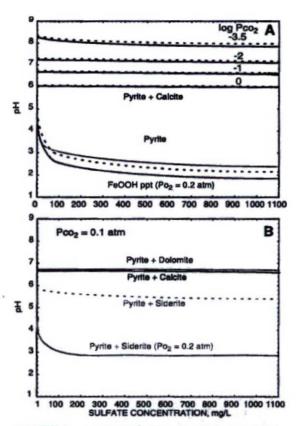


FIGURE 6. Simulated pH and sulfate concentration resulting from pyrite oxidation under different conditions (dashed line O_2 limited; solid line Po_2 = 0.2 atm). Simulations conducted using PHREEQC (Parkhurst, 1995); temperature = 10° C, Pco₂ = 0.1 atm, and amorphous Fe(OH)₃ allowed to precipitate, unless specified. *A*, Effects of Po₂ and Pco₂ and equilibrium with calcite. *B*, Equilibrium with var ious carbonate minerals.

(reactions 6 and 7) and dissolution of previously formed iron minerals. The simulations illustrate that for a specific SO_4 concentration, a lower pH cannot be achieved simply from pyrite oxidation; however, most mine water samples have greater pH at a given SO_4 concentration because of neutralization reactions with other minerals that increase pH and add other solutes.

Secondly, the oxidation of pyrite in equilibrium with various carbonate minerals including calcite, dolomite, or siderite (FeCO₃) is considered (figs. 6A and 6B). For example, if calcite equilibrium is maintained, the pH remains relatively constant at a particular Pco_2 despite the oxidation of pyrite (fig. 6A); however, the pH can range widely as a function of Pco_2 from a relatively constant pH value of 6 (Pco₂ = 1 atm) to pH values of 8.0 to 8.4 (Pco₂ = 10^{-3.5} atm). For calcite equilibrium at Pco₂ = 0.1 atm, pH is 6.6±0.1 over the entire range of SO₄²⁻. Little difference results if equilibrium with dolomite (pKsp = 16.5) is maintained instead of with calcite (pKsp = 8.5) (fig. 6B); for Pco₂ = 0.1 atm, these calcareous minerals buffer pH at about 6.6. However, if siderite (pKsp = 10.5) is the available carbonate mineral, the pH generally will be much lower at equilibrium. For a closed system, where oxygen is limited to only the stoichiometric amount needed to produce SO₄²⁻, siderite buffers pH at about 5.5, because H⁺ is consumed by the reaction:

$$FeCO_3 + 2 H^+ \leftrightarrow Fe^{2+} + H_2O + CO_2(aq).$$
(8)

However, if oxygen is available to oxidize Fe^{2+} , siderite has little buffering effect, because all Fe is oxidized by the reaction:

$$\begin{array}{c} \text{FeCO}_3 + 0.25 \text{ O}_2 + 1.5 \text{ H}_2\text{O} \rightarrow \\ \text{Fe}(\text{OH})_3 + \text{CO}_2(\text{aq}) \quad (9) \end{array}$$

An increase in the dissolved CO_2 by reaction 9 will produce a corresponding decrease in the ratio of $HCO_3^{-}/H_2CO_3^{+}$ and hence decrease the pH (per reaction 5).

DISCUSSION AND CONCLUSIONS

The bimodal distribution of pH for coal-mine drainage, with modes at pH 2.5 to 4 (acidic) and pH 6 to 7 (near neutral), is a regional phenomenon controlled by the mineralogy and hydrology of the mines. Although iron disulfide (pyrite) and calcareous minerals (calcite and dolomite) comprise only a few percent, or less, of the coal-bearing rock, these acid-forming and acid-neutralizing minerals are highly reactive and are mainly responsible for the bimodal pH distribution. The acidic mode, classified as AMD, is produced by the oxidation of pyrite in the absence of carbonate buffering. The field and laboratory studies indicate that, where calcite and dolomite are absent, extensive pyrite oxidation can result under variably saturated conditions, producing severe AMD (pH < 3 and $SO_4 > 2,000 \text{ mg} \cdot L^{-1}$); these conditions can be found at some well-drained underground mines and surface mines (e.g. bituminous mines, fig. 3). The studies also indicate that, where calcareous minerals are absent or deficient, the oxidation of only small amounts of pyrite under

stagnant water-saturated conditions can produce AMD (pH < 4 and SO₄ > 200 mg·L⁻¹); these conditions commonly are found at flooded underground mines (e.g. anthracite mines, fig. 3). In contrast, where calcareous minerals are abundant, the pH can be buffered to be near neutral. Some near-neutral water contains high concentrations of SO₄ (median > 200 mg·L⁻¹), suggesting an origin as AMD that had been neutralized by reactions with calcareous minerals after, or downflow from the location of, pyrite oxidation.

The geochemical simulations confirm the interpretations of the field and laboratory data. The simulations clearly illustrate the effect of pyrite oxidation on lowering pH and of calcite and dolomite dissolution on increasing pH. Specific conclusions from the simulations are as follows:

- The near-neutral pH mode results from the dissolution of calcite and dolomite and by resultant carbonate buffering (HCO₃⁻/H₂CO₃*; HCO₃⁻/CaCO₃; HCO₃⁻/CaMg(CO₃)₂). As long as carbonate equilibrium is maintained or approximated, near-neutral pH can be maintained despite continued amounts of pyrite oxidation.
- In the absence of carbonate buffering, only a small amount of pyrite oxidation produces dilute AMD (0.012 g·L⁻¹ FeS₂ produces pH-4 and 20 mg·L⁻¹ SO₄²⁻). However, because of the logarithmic scale for pH and ion speciation, unit decreases in pH require greater than 1 order of magnitude increases in the amount of pyrite oxidation.
- Buffering in the acidic mode is due to ion speciation (SO₄²⁻/HSO₄⁻; Fe(OH)²⁺/Fe³⁺) and to precipitation and dissolution of Fe(OH)₃.
- The least frequent pH range of pH 4.5 5.5 indicates a poorly buffered condition and could result from limited reactions with calcareous minerals (undersaturated) or limited availability of O₂ resulting in the incomplete oxidation of Fe²⁺ from pyrite or siderite.

The results of this evaluation have several implications. Firstly, the bimodal distribution for pH and the tendency for calcareous minerals to buffer pH in the near-neutral range support the approach of using "acid-base" accounting, where only pyritic and calcareous minerals are evaluated, as a basis for predicting post-mining water quality (e.g. Brady and others, 1994). Generally, "net alka-line" mine water has $pH \ge 6$ (Rose and Cravotta,

1998), and near-neutral pH is desirable to limit the mobility of iron and associated metals (Stumm and Morgan, 1996). The calcareous minerals not only neutralize acid, but their dissolution tends to slow or inhibit pyrite oxidation. Furthermore, although siderite may temporarily buffer pH in the near-neutral range, the presence of siderite should be considered as a negative factor with regard to the prediction of mine-drainage quality, because once the iron precipitates any benefits of siderite as a neutralizing agent will be negated (Skousen and others, 1997).

Secondly, the laboratory experiments indicate that addition of calcite can increase pH and reduce the transport of iron and other metals; however, equilibrium with calcite, hence buffering by the carbonate minerals, is not achieved except under conditions of water saturation. On the other hand, pyrite oxidation tends to be diminished under continuously saturated conditions, in which oxygen availability is limited, compared to variably saturated hydrologic conditions, in which oxygen availability is enhanced. Thus, for those mines where the importation and addition of alkaline materials is needed to achieve a net-neutral acid-base account, the placement of alkaline and pyritic materials in continuously wet zones would be prudent. In practice, however, a permanently wet zone in spoil generally will not be realized immediately and may be difficult to sustain (Cravotta and others, 1994).

Thirdly, recent field and laboratory work indicates iron hydroxysulfate minerals, which tend to be yellowish colored, form dominantly under acidic conditions whereas relatively pure iron hydroxide, which tends to be reddish colored, tends to form dominantly under near-neutral conditions (e.g. Bigham and others, 1996a, 1996b). Because these minerals have different coloration and related spectral properties, new approaches to characterizing mine drainage by use of remote sensing may have merit. For example, preliminary testing of aerial and ground-based spectral reflectance techniques has demonstrated the potential for differentiating between acidic and near-neutral drainages (Robbins and others, 1996). These techniques may be useful for locating and characterizing water quality where access is restricted.

REFERENCES CITED

- Ball, J.W., and Nordstrom, D.K., 1991, User's manual for WATEQ4F with revised data base: U.S. Geological Survey Open-File Report 91-183, 189 p.
- Bigham, J.M., Schwertmann, U., and Pfab, G., 1996a, Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage: Applied Geochemistry, v. 11, p. 845-849.
- Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L., and Wolf, M., 1996b, Schwertmannite and the chemical modeling of iron in acid sulfate waters: Geochimica et Cosmochimica Acta, v. 60, p. 2111-2121.
- Blowes, D.W., and Ptacek, C.J., 1994, Acid-neutralization mechanisms in inactive mine tailings, in Jambor, J.L., and Blowes, D.W., eds., Environmental geochemistry of sulfide minewastes: Mineralogical Association of Canada, Short Course Handbook, vol. 22, p. 271-292.
- Boyer, J., and Sarnoski, B., 1995, 1995 progress report--statement of mutual intent strategic plan for the restoration and protection of streams and watersheds polluted by acid mine drainage from abandoned coal mines: Philadelphia, Pa., U.S. Environmental Protection Agency, 33 p., appendix (http://www.epa.gov/reg3giss/ libraryp.htm).
- Brady, K.B.C., Hornberger, R.J., and Fleeger, G., 1998, Influence of geology on post-mining water quality-Northern Appalachian Basin, in Brady, K.B.C., Smith, M.W., and Schueck, J.H., eds., Coal Mine Drainage Prediction and Pollution Prevention in Pennsylvania: Harrisburg, Pennsylvania Department of Environmental Protection, 5600-BK-DEP2256, p. 8.1-8.92.
 - , Perry, E.F., Beam, R.L., Bisko, D.C., Gardner, M.D., and Tarantino, J.M., 1994, Evaluation of acid-base accounting to predict the quality of drainage at surface coal mines in Pennsylvania, U.S.A.: U.S. Bureau of Mines Special Publication SP 06A, p. 138-147.
- ——, Rose, A.W., Cravotta, C.A., III, and Hellier, W.W., 1997, Bimodal distribution of pH in coal-mine drainage (abs.): Geological Society of America, GSA Abstracts with Programs, v. 29, no. 1, p. 32.

- —, Rose, A.W., Hawkins, J.W., and DiMatteo, M.R., 1996, Shallow ground water flow in unmined regions of the northern Appalachian Plateau-Part 2. Geochemical characteristics, in Proceedings 13th Annual Meeting American Society for Surface Mining and Reclamation: Princeton, W.Va., American Society for Surface Mining and Reclamation, p. 52-62.
- Cravotta, C.A., III, 1994, Secondary iron-sulfate minerals as sources of sulfate and acidity: The geochemical evolution of acidic ground water at a reclaimed surface coal mine in Pennsylvania, in Alpers, C.N., and Blowes, D.W., eds., Environmental geochemistry of sulfide oxidation: Washington, D.C., American Chemical Society Symposium Series 550, p. 345-364.
 - 1996, Municipal sludge use in coal-mine reclamation and potential effects on the formation of acidic mine drainage: University Park, Pa., Pennsylvania State University, unpublished Ph.D. thesis, 200 p.
 - ——1998, Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine: Ground Water, v. 36, no 1, p. 9-19.
 - , Dugas, D.L., Brady, K.B.C., and Kovalchuk, T.E., 1994, Effects of selective handling of pyritic, acid-forming materials on the chemistry of pore gas and ground water at a reclaimed surface coal mine in Clarion County, PA, USA: U.S. Bureau of Mines Special Publication SP 06A, p. 365-374.
- diPretoro, R., 1986, Premining prediction of acid drainage potential for surface coal mines in northern West Virginia: Morgantown, W.Va., West Virginia University, unpublished M.S. thesis, 217 p.
- Dugas, D.L., Cravotta, C.A. III, and Saad, D.A., 1993, Water-quality data for two surface coal mines reclaimed with alkaline waste or urban sewage sludge, Clarion County, Pennsylvania, May 1983 through November 1989: U.S. Geological Survey Open-File Report 93-115, 153 p.
- Growitz, D.J., Reed, L.A., and Beard, M.M., 1985, Reconnaissance of mine drainage in the coal fields of eastern Pennsylvania: U.S. Geological Survey Water Resources Investigations Report 83-4274, 54 p.

- Hellier, W.W., 1994, Best professional judgment analysis for the treatment of post-mining discharges from surface mining activities: Harrisburg, Pa., Pennsylvania Department of Environmental Resources, unpublished report, 160 p.
- Helsel, D.R., and Hirsch, R.M., 1992, Statistical methods in water resources: New York, Elsevier Publishers, Inc., Studies in Environmental Science no. 49, 522 p.
- Hornberger, R.J., 1985, Delineation of acid mine drainage potential of coal-bearing strata of the Pottsville and Allegheny Groups in western Pennsylvania: University Park, Pa., Pennsylvania State University, unpublished M.S. thesis, 558 p.
- ——, Smith, M.W., Friedrich, A.E., and Lovell, H.L., 1990, Acid mine drainage from active and abandoned coal mines in Pennsylvania, in Majumdar, S.K., Miller, E.W., and Parizek, R.R., eds., Water resources in Pennsylvania--Availability, quality, and management: Easton, Pa., The Pennsylvania Academy of Science, p. 432-451.
- Klapper, H., and Schultze, M., 1995, Geologically acidified mining lakes--living conditions and possibilities of restoration: Int. Revue ges. Hydrobiol., v. 80, p. 639-653.
- Ladwig, K.J., Erickson, P.M., Kleinmann, R.L.P., and Posluszny, E.T., 1984, Stratification in water quality in inundated anthracite mines, eastern Pennsylvania: U.S. Bureau of Mines Report of Investigations RI 8837, 35 p.
- LeRigina, J.A., 1988, The mine drainage tunnels of the Eastern Middle Anthracite Field, <u>in</u> Inners, J.D., ed., Bedrock and glacial geology of the North Branch Susquehanna lowland and Eastern Middle Anthracite Field: Harrisburg, Pa., 53rd Annual Field Conference for Pennsylvania Geologists.
- McKibben, M.A., and Barnes, H.L., 1986, Oxidation of pyrite in low temperature acidic solutions--Rate laws and surface textures: Geochimica et Cosmochimica Acta, v. 50, p. 1509-1520.
- Moses, C.O., and Herman, J.S., 1991, Pyrite oxidation at circumneutral pH: Geochimica et Cosmochimica Acta, v. 55, p. 471-482.
- Nordstrom, D.K., 1977, Thermochemical redox equilibria of Zobell's solution: Geochimica et Cosmochimica Acta, v. 41, p. 1835-1841.

—, and Alpers, C.N., 1999, Geochemistry of acid mine waters, in Plumlee, G.S., and Logsdon, M.J., eds., The Environmental Geochemistry of Mineral Deposits--Part A. Processes, methods, and health issues: Reviews in Economic Geology, v. 6, 27 p.

- Parkhurst, D.L., 1995, PHREEQC--A computer model for geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 95-4227, 143 p.
- Pennsylvania Department of Environmental Protection, 1998, "Working" draft Pennsylvania's nonpoint source (NPS) management program: Harrisburg, Pa., Pennsylvania Department of Environmental Protection, 3940-BK-DEP2275, p. 14-23.
- Pennsylvania Geological Survey, 1964, Distribution of Pennsylvania coals: Pennsylvania Geological Survey, Fourth Series, Map # 11.
- Plummer, L.N., Parkhurst, D.L., and Wigley, M.L., 1979, Critical review of the kinetics of calcite dissolution and precipitation, in Jenne, E.A., ed., Chemical modeling in aqueous systems--Speciation, sorption, solubility, and kinetics: American Chemical Society Symposium Series 93, p. 537-573.
- Robbins, E.I., Anderson, J.E., Cravotta, C.A., III, Koury, D.J., Podwysocki, M.H., Stanton, M.R., and Growitz, D.J., 1996, Development and preliminary testing of microbial and spectral reflectance techniques to distinguish neutral from acidic drainages, in Chiang, S.-H., ed., Proceedings 13th Annual International Pittsburgh Coal Conference, v. 2, p. 768-775.
- Rose, A.W., and Cravotta, C.A., III, 1998, Geochemistry of coal-mine drainage, in Brady, K.B.C., Smith, M.W., and Schueck, J.H., eds., Coal Mine Drainage Prediction and Pollution Prevention in Pennsylvania: Harrisburg, Pa., Pennsylvania Department of Environmental Protection, 5600-BK-DEP2256, p. 1.1-1.22.
- Skousen, J., Renton, J., Brown, H., Evans, P., Leavitt, B., Brady, K., Cohen, L., and Ziemkiewicz, P., 1997, Neutralization potential of overburden samples containing siderite: Journal of Environmental Quality, v. 26, p. 673-681.
- Stumm, Werner, and Morgan, J.J., 1996, Aquatic chemistry--chemical equilibria and rates in natural waters (3rd): New York, Wiley-Interscience, 1022 p.

- Wood, C.R., 1996, Water quality of large discharges from mines in the anthracite region of eastern Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 95-4243, 69 p.
- Wood, W.W., 1976, Guidelines for collection and field analysis of ground-water samples for selected unstable constituents: U.S. Geological Survey Techniques of Water-Resources Investigations, book 1, chap. D2, 24 p.

AUTHOR INFORMATION

Charles A. Cravotta, III, U.S. Geological Survey, Lemoyne, Pennsylvania (cravotta@usgs.gov).

Keith B.C. Brady, Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania (brady.keith@dep.state.pa.us).

Arthur W. Rose and Joseph B. Douds, Pennsylvania State University, University Park, Pennsylvania (rose@ems.psu.edu).

DATE 213/15 dustrial Industrial Ecosytems Inc Soil Reclamation Center Soll (Solids) Multiple LOADS - Material Tracking Stress COMPANY NAME: CCI. COMPANY REP. Ryan Kelly ORIGIN OF MATERIAL(LOCATION) Bartes Dome 24 Pipelinhone# TYPE OF MATERIAL: Soil H2S GAS H2S GAS H2S GAS DETECT Soil (Solids) Multiple Loads - Material Tracking Sheet TRUCKING COMPANY: Riple 7 Chlorides assed Paint Filter Test: Failed Driver's Name (Print) Date Time In Transported by Truck# Yards Virgin Soil Out r's Signature **Time Out** 310:10 Hart man 3 18 hogor 0 3 ale 2 18 3 11 9 F = 30 4 n n 10 32 12 an 5 n ч. - mh 3 Harlman 6 87 1:43 7 2:40 2 TridleF 2:42 8 2 0 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

138 cu

DATE 2/12/15 alustrial Industrial Ecosytems Inc ORIGIN OF MATERIAL (LOCATION): Bakker Dome 24' Pyphoheare TYPE OF MATERIAL: Soil TRUCKING COMPANY: Suple 2 Date Soil Reclamation Center Virgin Soil Out Driver's Name (Print) **Driver's Signature** Date Time In Transported by Truck# Yards Time Out Jeff 11:27 112 1110 TripleF Triple F Tim 11: 2 2 11.10 10 -33 3 Trible F erenis 2-----7 4 11:29 Triple -U2 Flor 226 TripleF 5 war I HARIMI) -(Deff 6 31 7 2.27 22 10 8 ~ 4 22 Decemy Eide 2:57 ----9 3:22 n 71 3:40 11 1 -4:21 Hartman Roger 10 47 4:45 11 12 13 14 15 16 17 18 19 20 21 22 23