Administrative/Environmental Order

AE Order Number Banner

Report Description

This report shows an AE Order Number in Barcode format for purposes of scanning. The Barcode format is Code 39.

App Number: pENV000GW00001

GW - 1

SAN JUAN REFINING CO

8/24/2017

C-141

56

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

OIL CONS. DIV DIST. 3

Form C-141 Revised August 8, 2011

AUG **1 9** 2014 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

	Release Notification and Corrective Action										
						OPERA	FOR	🗌 Ini	tial Report	\boxtimes	Final Report
Name of Company: Western Refining Southwest, Inc.						Contact: Kelly Robinson					
Address: 50 Road 4990						Telephone No.: 505-632-4166					
Facility Name: Bloomfield Terminal						Facility Type: Products Terminal					
Surface Owner: Western Refining Southwest, Mineral Owner Inc.)wner			APIN	ío.		
LOCATION OF RELEASE											
Unit Letter	Section	Township	Range	Feet from the	North	/South Line	Feet from the	East/West Line	County		

Latitude <u>36.695219</u> Longitude -107.967848

NATURE OF RELEASE

Type of Release: Sour Water						Volume	of Release:	< 25 barrels	Volume Recovered: 134 gallons
Source of Release: hydro test fail	lure					Date and Hour of Occurrence: Date and Hour of Discovery:			Date and Hour of Discovery:
						08/01/20)14 (approx.	11:00am)	8/04/2014 at 08:00 AM
Was Immediate Notice Given?						If YES,	To Whom?		
	\boxtimes	Yes [No	Not Not	Required	1)	Carl Chave	z with NMOC	D – Santa Fe Office,
By Whom? : Matt Krakow						Date and Hour :			
					'	1)	2:01 pm or	n 8/7/2014 to C	arl Chavez (NMOCD)
							-		
Was a Watercourse Reached?						If YES,	Volume Imp	acting the Wate	ercourse.
		Yes	🛛 No						
If a Watercourse was Impacted, D	Describe	e Fully	·.*						

Describe Cause of Problem and Remedial Action Taken.*

29N

26

NWSW

11W

Pursuant to Condition 13 of the Facility's OCD Discharge Permit (GW-001), Western is required to perform annual hydro testing of underground piping at the facility. During the pressure testing of a sour water pipeline, a segment of testing pipe failed. This test failure was identified immediately by visible water stain at the point of discharge from the underground pipe. Western was able to isolate the pipeline from normal facility operations. It is Western's intent that the pipeline not be returned to service, and a new pipeline will be installed in its place.

Describe Area Affected and Cleanup Action Taken.*

The segment of pipeline which failed the hydro test is located along the west side service road that provides access to the evaporation ponds south of Highway 4990. Western was able to recover 134 gallons of the test water.

Due to the location of the pipeline breach, for safety reasons Western has chosen not to expose the pipeline. Therefore it is not certain as to the final quantity of water that was released during this event. Conservative calculations show that the maximum amount possible to release is less than 25 barrels. It is possible that this event resulted in a quantity of less than 5 barrels of water that discharged to ground.

The pipeline in-question is normally used to transfer sour water from the transfer pump located north of the evaporation ponds to the evaporation pond inlet. From the evaporation pond, the sour water is discharged through the on-site injection well. The hydro testing of the pipeline was done using the sour water that is normally carried through the pipeline. This water is sampled on a regular basis prior to the point of injection through the on-site injection well. Samples collected of the sour water are not normally analyzed for total petroleum hydrocarbons. However following the occurrence of this event, Western collected a sample of the sour water for TPH analysis. A copy of the analytical results showing the quality of the sour water released during this event is attached.

The analytical shows that the water does not contain concentrations that exceed the applicable spill clean-up standards pursuant to the OCD *Guidelines for Remediation of Leaks, Spills, and Releases* dated August 13, 1993. Therefore based on the analytical information provided, Western is requesting a no further corrective action be issued by OCD for this event.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

		OIL CONSERVATION DIVISION	V
Signature: Kelle Kolewoord			
Printed Name: Kelly Robiwon	Approved by I	District Copy	
Title: Environmental Manager	Approval Date	For Scanning Only	4
E-mail Address: Kelly, Robiuson @ wnr. com	Conditions of <i>i</i>	Has NOT been processed	
Date: 8/15/14 Phone: 505-632-416		Attached	

* Attach Additional Sheets If Necessary

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

August 15, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4166 FAX (505) 632-3911

RE: Injection Well 7-28-14 3rd QTR

OrderNo.: 1407D12

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/29/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical	Report
------------	--------

Lab Order 1407D12

Date Reported: 8/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Injection Well Injection Well 7-28-14 3rd QTR Collection Date: 7/28/2014 9:30:00 AM **Project:** 1407D12-001 Received Date: 7/29/2014 7:55:00 AM Lab ID: Matrix: AQUEOUS Result **RL** Qual Units **DF** Date Analyzed Batch Analyses EPA METHOD 300.0: ANIONS Analyst: LGP 510 8/4/2014 5:04:09 PM Chloride 25 mg/L 50 R20363 Sulfate 41 2.5 mg/L 5 7/29/2014 4:17:43 PM R20236 **EPA METHOD 7470: MERCURY** Analyst: MMD ND 0.00020 8/4/2014 2:43:32 PM 14571 Mercury mg/L 1 EPA 6010B: TOTAL RECOVERABLE METALS Analyst: ELS Arsenic ND 0.020 mg/L 8/2/2014 2:09:02 PM 14549 1 Barium 0.63 0.020 mg/L 8/2/2014 2:09:02 PM 14549 1 Cadmium ND 0.0020 mg/L 1 8/2/2014 2:09:02 PM 14549 Calcium 480 mg/L 8/2/2014 2:10:49 PM 14549 5.0 5 ND 0.0060 14549 Chromium mg/L 1 8/2/2014 2:09:02 PM 0.0050 8/2/2014 2:09:02 PM Lead ND mg/L 1 14549 Magnesium 99 1.0 mg/L 1 8/2/2014 2:09:02 PM 14549 Potassium 36 1.0 mg/L 1 8/2/2014 2:09:02 PM 14549 Selenium ND 0.050 mg/L 1 8/2/2014 2:09:02 PM 14549 Silver ND 0.0050 1 8/2/2014 2:09:02 PM 14549 mg/L Sodium 1100 20 mg/L 20 8/2/2014 3:24:50 PM 14549 **EPA METHOD 8270C: SEMIVOLATILES** Analyst: DAM Acenaphthene ND 100 µg/L 1 7/31/2014 8:37:47 PM 14520 Acenaphthylene ND 100 µg/L 1 7/31/2014 8:37:47 PM 14520 ND 100 7/31/2014 8:37:47 PM 14520 Aniline µg/L 1 Anthracene ND 100 µg/L 1 7/31/2014 8:37:47 PM 14520 Azobenzene ND 100 µg/L 1 7/31/2014 8:37:47 PM 14520 ND Benz(a)anthracene 100 µg/L 1 7/31/2014 8:37:47 PM 14520 Benzo(a)pyrene ND 100 µg/L 1 7/31/2014 8:37:47 PM 14520 Benzo(b)fluoranthene ND 100 µg/L 1 7/31/2014 8:37:47 PM 14520 ND Benzo(g,h,i)perylene 100 1 7/31/2014 8:37:47 PM 14520 µg/L Benzo(k)fluoranthene ND 100 1 7/31/2014 8:37:47 PM 14520 µg/L Benzoic acid ND 200 µg/L 1 7/31/2014 8:37:47 PM 14520 ND 100 Benzyl alcohol 1 7/31/2014 8:37:47 PM 14520 µg/L ND Bis(2-chloroethoxy)methane 100 µg/L 1 7/31/2014 8:37:47 PM 14520 Bis(2-chloroethyl)ether ND 100 µg/L 1 7/31/2014 8:37:47 PM 14520 Bis(2-chloroisopropyl)ether ND 100 µg/L 1 7/31/2014 8:37:47 PM 14520 Bis(2-ethylhexyl)phthalate ND 100 µg/L 1 7/31/2014 8:37:47 PM 14520 4-Bromophenyl phenyl ether ND 100 µg/L 1 7/31/2014 8:37:47 PM 14520 Butyl benzyl phthalate ND 100 µg/L 1 7/31/2014 8:37:47 PM 14520

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

100

100

100

µg/L

µg/L

µg/L

ND

ND

ND

Qualifiers:

Carbazole

4-Chloroaniline

4-Chloro-3-methylphenol

*

Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
 J Analyte detected below quantitation
- J Analyte detected below quantitation limits O RSD is greater than RSDlimit
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

1

1

1

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Page 1 of 20

P Sample pH greater than 2.

RL Reporting Detection Limit

ter than 2.

7/31/2014 8:37:47 PM

7/31/2014 8:37:47 PM

7/31/2014 8:37:47 PM

14520

14520

14520

Hall En	vironmental Ana	lysis Labora	tory, Inc.			Analytical Report Lab Order 1407D12 Date Reported: 8/15/20	14
CLIENT: Project:	Western Refining Southw Injection Well 7-28-14 31			Client Samp	-	ection Well 8/2014 9:30:00 AM	
Lab ID:	1407D12-001		AQUEOUS			9/2014 7:55:00 AM	
Analyses		Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA MET	HOD 8270C: SEMIVOLAT	TILES				Analyst	DAM
2-Chloror	aphthalene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2-Chlorop	henol	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
4-Chlorop	henyl phenyl ether	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Chrysene		ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Di-n-buty	phthalate	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
	phthalate	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
	h)anthracene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Dibenzofu	uran	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
1,2-Dichlo	probenzene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
1,3-Dichlo	probenzene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
1,4-Dichlo	probenzene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
3,3'-Dichl	orobenzidine	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Diethyl ph	nthalate	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Dimethyl	phthalate	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dichlo	prophenol	ND	200	µg/L	1	7/31/2014 8:37:47 PM	14520
	thylphenol	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
4,6-Dinitro	o-2-methylphenol	ND	200	µg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dinitro	ophenol	ND	200	µg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dinitro	otoluene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2,6-Dinitro	otoluene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Fluoranth	ene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Fluorene		ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Hexachlo	robenzene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Hexachlo	robutadiene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Hexachlo	rocyclopentadiene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Hexachlo		ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Indeno(1,	2,3-cd)pyrene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Isophoror	2	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
the second s	aphthalene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
	aphthalene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2-Methylp		ND	200	µg/L	1	7/31/2014 8:37:47 PM	14520
3+4-Meth	ylphenol	210	100	µg/L	1	7/31/2014 8:37:47 PM	14520
N-Nitroso	di-n-propylamine	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
N-Nitroso	dimethylamine	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
N-Nitroso	diphenylamine	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Naphthale	ene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2-Nitroani	lline	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
3-Nitroani	lline	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
4-Nitroani	line	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Meth	ssociated Method Blank		
	E	Value above quantitation range	Н	Holding times for preparation or analys	is exceeded		
J Analyte		Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 2 of 20		
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	1 age 2 01 20		
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit			
	S	Spike Recovery outside accepted recovery limits					

Analytical Report

Hall En	vironmental Analysis	Labora	tory, Inc	•			Lab Order 1407D12 Date Reported: 8/15/20	14
CLIENT: Project: Lab ID:	Western Refining Southwest, Ind Injection Well 7-28-14 3rd QTR 1407D12-001		AQUEOUS			Date: 7/2	ection Well 8/2014 9:30:00 AM 9/2014 7:55:00 AM	
Analyses		Result	RL Q	ual	Units	DF	Date Analyzed	Batch
EPA MET	HOD 8270C: SEMIVOLATILES						Analyst	DAM
Nitrobenz	ene	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
2-Nitroph	enol	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
4-Nitroph		ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
Pentachlo		ND	200		µg/L	1	7/31/2014 8:37:47 PM	14520
Phenanth		ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
Phenol		ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
Pyrene		ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
Pyridine		ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
	hlorobenzene	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
	hlorophenol	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
	hlorophenol	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
	-Fluorophenol	0	12.1-85.8	S	%REC	1	7/31/2014 8:37:47 PM	14520
	henol-d5	0	17.7-65.8	S	%REC	1	7/31/2014 8:37:47 PM	14520
	,4,6-Tribromophenol	0	26-138	S	%REC	1	7/31/2014 8:37:47 PM	14520
	litrobenzene-d5	0	47.5-119	S	%REC	1	7/31/2014 8:37:47 PM	14520
	-Fluorobiphenyl	0	48.1-106	S	%REC	1	7/31/2014 8:37:47 PM	14520
	-Terphenyl-d14	0	44-113	S	%REC	1	7/31/2014 8:37:47 PM	14520
	HOD 8260B: VOLATILES	Ū.		0			Analyst	
Benzene	TOD GEGOD. VOLATILEO	ND	2.0		ug/l	2	7/31/2014 1:41:17 PM	R2029
Toluene		ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R2028
	1020	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R2029
Ethylbenz					µg/L	2	7/31/2014 1:41:17 PM	
	rt-butyl ether (MTBE) nethylbenzene	ND	2.0		µg/L	2		R2029
		ND	2.0		µg/L		7/31/2014 1:41:17 PM	R2029
ing.	nethylbenzene	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R2029
	proethane (EDC)	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R2029
	moethane (EDB)	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R2029
Naphthale		ND	4.0		µg/L	2	7/31/2014 1:41:17 PM	R2029
	aphthalene	ND	8.0		µg/L	2	7/31/2014 1:41:17 PM	R2029
	aphthalene	ND	8.0		µg/L	2	7/31/2014 1:41:17 PM	R2029
Acetone		85	20		µg/L	2	7/31/2014 1:41:17 PM	R2029
Bromober		ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R2029
	hloromethane	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R2029
Bromofor		ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R2029
Bromome 2 Butanou		ND	6.0		µg/L	2	7/31/2014 1:41:17 PM	R2029
2-Butanor		ND	20		µg/L	2	7/31/2014 1:41:17 PM	R2029
Carbon di		ND	20		μg/L	2	7/31/2014 1:41:17 PM	R2029
	etrachloride	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R2029
Chlorober		ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R2029
Chloroeth	ane	ND	4.0		µg/L	2	7/31/2014 1:41:17 PM	R2029

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

÷.,.

· · .

Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit Page 3 of 20
- P Sample pH greater than 2.

RL Reporting Detection Limit

Analytical Report Lab Order 1407D12

	T I (т			Lab Order 1407D12	
Hall Environmental Analysi	is Laborato	ory, Inc.			Date Reported: 8/15/20	14
CLIENT: Western Refining Southwest, I	Inc.		Client Samp	le ID: Inj	ection Well	
Project: Injection Well 7-28-14 3rd QT	TR.		Collection	Date: 7/2	8/2014 9:30:00 AM	
Lab ID: 1407D12-001	Matrix: A	QUEOUS	Received	Date: 7/2	9/2014 7:55:00 AM	
Analyses	Result	RL Qua	l Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
Chloroform	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Chloromethane	ND	6.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
2-Chlorotoluene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
4-Chlorotoluene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
cis-1,2-DCE	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1,2-Dibromo-3-chloropropane	ND	4.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Dibromochloromethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
Dibromomethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1,2-Dichlorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1,3-Dichlorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1,4-Dichlorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
Dichlorodifluoromethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1,1-Dichloroethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1,1-Dichloroethene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1,2-Dichloropropane	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1,3-Dichloropropane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
2,2-Dichloropropane	ND	4.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1,1-Dichloropropene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Hexachlorobutadiene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
2-Hexanone	ND	20	µg/L	2	7/31/2014 1:41:17 PM	R20298
Isopropylbenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
4-Isopropyltoluene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
4-Methyl-2-pentanone	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
	ND	6.0		2	7/31/2014 1:41:17 PM	R20298
Methylene Chloride	ND	6.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
n-Butylbenzene	ND	2.0	µg/L		7/31/2014 1:41:17 PM	
n-Propylbenzene			µg/L	2		R20298
sec-Butylbenzene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Styrene	ND ND	2.0 2.0	µg/L	2 2	7/31/2014 1:41:17 PM 7/31/2014 1:41:17 PM	R20298 R20298
tert-Butylbenzene			µg/L	2		
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L		7/31/2014 1:41:17 PM	R20298
1,1,2,2-Tetrachloroethane Tetrachloroethene (PCE)	ND ND	4.0 2.0	μg/L	2 2	7/31/2014 1:41:17 PM 7/31/2014 1:41:17 PM	R20298 R20298
trans-1,2-DCE	ND	2.0	μg/L μg/L	2	7/31/2014 1:41:17 PM	R20298
trans-1,3-Dichloropropene	ND	2.0	μg/L μg/L	2	7/31/2014 1:41:17 PM	R20298
1,2,3-Trichlorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1,2,4-Trichlorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1,1,1-Trichloroethane	ND	2.0		2	7/31/2014 1:41:17 PM	R20298
1,1,2-Trichloroethane	ND	2.0	μg/L μg/L	2	7/31/2014 1:41:17 PM	R20298 R20298

Analytical Report

· · .

· · 4

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank			
	E	Value above quantitation range	Н	Holding times for preparation or analysis exceeded			
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 4 of 20		
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	1 age 4 01 20		
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit			
	S	Spike Recovery outside accepted recovery limits					

A	n	aly	tic	al	Report	
	1	0			10	

Lab Order 1407D12

Date Reported: 8/15/2014

Hall Environmental Analysis Laboratory, Inc.

. ц

· 3

CLIENT: Western Refining Southwest, I	nc.		Client Sample	ID: In	jection Well	
Project: Injection Well 7-28-14 3rd QT	R		Collection Da	ate: 7/2	28/2014 9:30:00 AM	
Lab ID: 1407D12-001	Matrix:	AQUEOUS	Received Da	ate: 7/2	29/2014 7:55:00 AM	
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
Trichloroethene (TCE)	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Trichlorofluoromethane	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1,2,3-Trichloropropane	ND	4.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Vinyl chloride	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Xylenes, Total	ND	3.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Surr: 1,2-Dichloroethane-d4	92.4	70-130	%REC	2	7/31/2014 1:41:17 PM	R20298
Surr: 4-Bromofluorobenzene	95.4	70-130	%REC	2	7/31/2014 1:41:17 PM	R20298
Surr: Dibromofluoromethane	100	70-130	%REC	2	7/31/2014 1:41:17 PM	R20298
Surr: Toluene-d8	93.6	70-130	%REC	2	7/31/2014 1:41:17 PM	R20298
SM2510B: SPECIFIC CONDUCTANCE					Analyst	JRR
Conductivity	1900	0.010	µmhos/cm	1	7/29/2014 12:08:01 PM	R20245
SM4500-H+B: PH					Analyst	JRR
рH	7.10	1.68	H pH units	1	7/29/2014 12:08:01 PM	R20245
SM2320B: ALKALINITY					Analyst	JRR
Bicarbonate (As CaCO3)	220	20	mg/L CaCO3	1	7/29/2014 12:08:01 PM	R20245
Carbonate (As CaCO3)	ND	2.0	mg/L CaCO3	1	7/29/2014 12:08:01 PM	R20245
Total Alkalinity (as CaCO3)	220	20	mg/L CaCO3	1	7/29/2014 12:08:01 PM	R20245
SM2540C MOD: TOTAL DISSOLVED SC	LIDS				Analyst	KS
Total Dissolved Solids	1380	200	* mg/L	1	7/30/2014 5:19:00 PM	14475

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank		
	E	Value above quantitation range	Н	Holding times for preparation or analys	is exceeded	
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 5 of 20	
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	1 age 5 01 20	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit		
	S	Spike Recovery outside accepted recovery limits				

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	140730036
Address:	4901 HAWKINS NE SUITE D	Project Name:	1407D12
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Client Sample ID 1	40730036-001 407D12-001E / INJEC Vater		oling Date	7/28/2014		Time Receiv bling Time	ed 7/30/2014 9:30 AM	12:25 PM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide (reactive)		ND	mg/L	1	8/12/2014	CRW	SW846 CH7	
Flashpoint		>200	°F		8/5/2014	KFG	EPA 1010	
pН		7.44	ph Units		8/5/2014	AJT	SM 4500pH-B	
Reactive sulfide		ND	mg/L	1	8/1/2014	AJT	SW846 CH7	

Authorized Signature

3

w. Call John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C585 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Thursday, August 14, 2014

Page 1 of 1

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	140730036
Address:	4901 HAWKINS NE SUITE D	Project Name:	1407D12
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Quality Control Data

Lab Control Sa	mple										
Parameter		LCS Result	t Units	LCS	S Spike	%Rec	AR	%Rec	Prep	Date	Analysis Date
Reactive sulfide		0.16	mg/L		0.2	80.0	70)-130	8/1/2	2014	8/1/2014
Cyanide (reactive)		0.505	mg/L		0.5	101.0	80)-120	8/12/	2014	8/12/2014
Lab Control Sa	mple Duplicate										
		LCSD		LCSD			_	AR			
Parameter		Result	Units	Spike	%Rec	%RP		%RPD	Prep [Analysis Date
Reactive sulfide		0.18	mg/L	0.2	90.0	11.8	8	0-25	8/1/20	014	8/1/2014
Matrix Spike											
Sample Number	Parameter		Sample Result	MS Result	Unit	5 5	MS Spike	%Rec	AR %Rec	Prep Date	Analysis Date
140730036-001	Reactive sulfide		ND	0.22	mg/	L	0.2	110.0	70-130	8/1/2014	8/1/2014
140730036-001	Cyanide (reactive)		ND	0.919	mg/	L	1	91.9	80-120	8/12/2014	8/12/2014
Matrix Spike Di	uplicate										
		MSD		MSD				AR	_		
Parameter		Result	Units	Spike			6RPD	%RPI	50 NO 0 0	p Date	Analysis Date
Cyanide (reactive)		0.906	mg/L	1	90	.6	1.4	0-25	8/1	2/2014	8/12/2014
Method Blank											
Parameter			Res	sult	Ur	nits		PQL	Pr	ep Date	Analysis Date
Cyanide (reactive)			N	D	m	g/L		1	8/1	2/2014	8/12/2014
Reactive sulfide			N	D	m	g/L		1	8/	1/2014	8/1/2014

 AR
 Acceptable Range

 ND
 Not Detected

 PQL
 Practical Quantitation Limit

 RPD
 Relative Percentage Difference

Comments:

· · 1

Certifications held by Anstek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anstek Labs WA: EPA:WA00169; ID:WA00169; WA:C586; MT:Cert0095; FL(NELAP): E871099

Thursday, August 14, 2014

Page 1 of 1

Client:

Hall I	Environment	tal Analysis	Laboratory,	Inc.
--------	-------------	--------------	-------------	------

Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR Sample ID MB SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R20236 RunNo: 20236 Prep Date: Analysis Date: 7/29/2014 SeqNo: 588153 Units: mg/L SPK value SPK Ref Val %REC LowLimit **RPDLimit** Analyte Result PQL HighLimit %RPD Qual Sulfate ND 0.50 Sample ID LCS SampType: LCS TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R20236 RunNo: 20236 Prep Date: Analysis Date: 7/29/2014 SeqNo: 588154 Units: mg/L %RPD RPDLimit Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit Qual Sulfate 9.7 0.50 10.00 0 97.4 90 110 Sample ID MB SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R20236 RunNo: 20236 Prep Date: Analysis Date: 7/29/2014 SeqNo: 588211 Units: mg/L SPK value SPK Ref Val %REC LowLimit RPDLimit Result PQL HighLimit %RPD Qual Analyte ND 0.50 Sulfate Sample ID LCS SampType: LCS TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R20236 RunNo: 20236 Prep Date: Analysis Date: 7/29/2014 SeqNo: 588212 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Sulfate 9.6 0.50 10.00 95.6 90 110 0 Sample ID MB SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R20363 RunNo: 20363 Prep Date: Analysis Date: 8/4/2014 SeqNo: 592146 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Chloride ND 0.50 Sample ID LCS SampType: LCS TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R20363 RunNo: 20363 Prep Date: Analysis Date: 8/4/2014 SeqNo: 592147 Units: mg/L SPK value SPK Ref Val %REC %RPD RPDLimit Analyte Result PQL LowLimit HighLimit Qual 4.7 0.50 5.000 94.2 Chloride 0 90 110

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 20

15-Aug-14

1407D12

WO#:

· · •

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc. **Project:** Injection Well 7-28-14 3rd QTR

Sample ID MB	SampType: MBLK	TestCode: EPA Method	300.0: Anions		
Client ID: PBW	Batch ID: R20363	RunNo: 20363			
Prep Date:	Analysis Date: 8/5/2014	SeqNo: 592208	Units: mg/L		
Analyte	Result PQL SPK valu	e SPK Ref Val %REC LowLimit	HighLimit %	6RPD RF	PDLimit Qual
Chloride	ND 0.50				
Sample ID LCS	SampType: LCS	TestCode: EPA Method	300.0: Anions		
Sample ID LCS Client ID: LCSW	SampType: LCS Batch ID: R20363	TestCode: EPA Method RunNo: 20363	300.0: Anions		
	1 31		300.0: Anions Units: mg/L		
Client ID: LCSW	Batch ID: R20363 Analysis Date: 8/5/2014	RunNo: 20363	Units: mg/L	6RPD RF	PDLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Р Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 20

15-Aug-14

WO#: 1407D12

1

,

Hall Environmental Analysis Laboratory, Inc.

	Refining So									
Project: Injection	n Well 7-28-1	14 3rd Q1	K							
Sample ID 5mL rb	SampTy	pe: MBLK		Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R2023	D	F	RunNo: 2	0230				
Prep Date:	Analysis Da	ite: 7/29/2	014	5	SeqNo: 5	87928	Units: %RE	С		
Analyte	Result	PQL SP	K value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	9.1		10.00		91.3	70	130			
Surr: 4-Bromofluorobenzene	9.3		10.00		93.2	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.7		10.00		96.7	70	130			
Sample ID 100ng Ics	SampTy	pe: LCS		Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	ID: R2023	D	F	RunNo: 2	0230				
Prep Date:	Analysis Da	ite: 7/29/2	014	S	SeqNo: 5	87930	Units: %RE	С		
Analyte	Result	PQL SP	K value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.6	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.4	70	130			
Surr: Dibromofluoromethane	11		10.00		107	70	130			
Surr: Toluene-d8	9.4		10.00		94.3	70	130			
Sample ID 5ml rb	SampTy	pe: MBLK		Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R2029	3	F	RunNo: 2	0298				
Prep Date:	Analysis Da	te: 7/31/2	014	S	SeqNo: 5	89943	Units: µg/L			
Analyte	Result	PQL SP	K value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
011	110	1.0								

Qualifiers:

Chlorobenzene

* Value exceeds Maximum Contaminant Level.

ND

1.0

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 8 of 20

- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

4

1

Hall Environmental Analysis Laboratory, Inc.

Client:Western Refining Southwest, Inc.Project:Injection Well 7-28-14 3rd QTR

Sample ID 5ml rb	SampTy	pe: MBLK		tCode: EPA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R20298	F	RunNo: 20298				
Prep Date:	Analysis Da	ate: 7/31/2014	5	SeqNo: 589943	Units: µg/L			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloroethane	ND	2.0						
Chloroform	ND	1.0						
Chloromethane	ND	3.0						
2-Chlorotoluene	ND	1.0						
4-Chlorotoluene	ND	1.0						
cis-1,2-DCE	ND	1.0						
cis-1,3-Dichloropropene	ND	1.0						
1,2-Dibromo-3-chloropropane	ND	2.0						
Dibromochloromethane	ND	1.0						
Dibromomethane	ND	1.0						
1,2-Dichlorobenzene	ND	1.0						
1,3-Dichlorobenzene	ND	1.0						
1,4-Dichlorobenzene	ND	1.0						
Dichlorodifluoromethane	ND	1.0						
1,1-Dichloroethane	ND	1.0						
1,1-Dichloroethene	ND	1.0						
1,2-Dichloropropane	ND	1.0						
1,3-Dichloropropane	ND	1.0						
2,2-Dichloropropane	ND	2.0						
1,1-Dichloropropene	ND	1.0						
Hexachlorobutadiene	ND	1.0						
2-Hexanone	ND	10						
lsopropylbenzene	ND	1.0						
4-Isopropyltoluene	ND	1.0						
4-Methyl-2-pentanone	ND	10						
Methylene Chloride	ND	3.0						
n-Butylbenzene	ND	3.0						
n-Propylbenzene	ND	1.0						
sec-Butylbenzene	ND	1.0						
Styrene	ND	1.0						
ert-Butylbenzene	ND	1.0						
1,1,1,2-Tetrachloroethane	ND	1.0						
I,1,2,2-Tetrachloroethane	ND	2.0						
Tetrachloroethene (PCE)	ND	1.0						
rans-1,2-DCE	ND	1.0						
rans-1,3-Dichloropropene	ND	1.0						
1,2,3-Trichlorobenzene	ND	1.0						
1,2,4-Trichlorobenzene	ND	1.0						
1,1,1-Trichloroethane	ND	1.0						

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 9 of 20

1 - ₁.

Client:

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc.

Project: Injec	tion Well 7-28	3-14 3rd	QTR							
Sample ID 5ml rb	Samp	Туре: МЕ	BLK	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batc	h ID: R2	0298	F	RunNo: 2	0298				
Prep Date:	Analysis I	Date: 7/	31/2014	S	SeqNo: 5	89943	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.8		10.00		88.2	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		98.9	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.9		10.00		98.9	70	130			
Sample ID 100ng Ics	Samp	Type: LC	S	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batc	h ID: R2	0298	F	RunNo: 2	0298				
Prep Date:	Analysis I	Date: 7/	31/2014	5	SeqNo: 5	89945	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130			
Toluene	21	1.0	20.00	0	107	80	120			
Chlorobenzene	20	1.0	20.00	0	99.3	70	130			
1,1-Dichloroethene	22	1.0	20.00	0	110	82.6	131			
Trichloroethene (TCE)	21	1.0	20.00	0	103	70	130			
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.6	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.4		10.00		94.3	70	130			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 10 of 20

- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

4

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

Sample ID mb-14520	SampTy	/pe: MBLK	Tes	stCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBW	Batch	ID: 14520	1	RunNo: 2	0300				
Prep Date: 7/31/2014	Analysis Da	ate: 7/31/2014	:	SeqNo: 5	90031	Units: µg/L			
Analyte	Result	PQL SPK value	e SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10							
Acenaphthylene	ND	10							
Aniline	ND	10							
Anthracene	ND	10							
Azobenzene	ND	10							
Benz(a)anthracene	ND	10							
Benzo(a)pyrene	ND	10							
Benzo(b)fluoranthene	ND	10							
Benzo(g,h,i)perylene	ND	10							
Benzo(k)fluoranthene	ND	10							
Benzoic acid	ND	20							
Benzyl alcohol	ND	10							
Bis(2-chloroethoxy)methane	ND	10							
Bis(2-chloroethyl)ether	ND	10							
Bis(2-chloroisopropyl)ether	ND	10							
Bis(2-ethylhexyl)phthalate	ND	10							
4-Bromophenyl phenyl ether	ND	10							
Butyl benzyl phthalate	ND	10							
Carbazole	ND	10							
4-Chloro-3-methylphenol	ND	10							
4-Chloroaniline	ND	10							
2-Chloronaphthalene	ND	10							
2-Chlorophenol	ND	10							
4-Chlorophenyl phenyl ether	ND	10							
Chrysene	ND	10							
Di-n-butyl phthalate	ND	10							
Di-n-octyl phthalate	ND	10							
Dibenz(a,h)anthracene	ND	10							
Dibenzofuran	ND	10							
1,2-Dichlorobenzene	ND	10							
1,3-Dichlorobenzene	ND	10							
1,4-Dichlorobenzene	ND	10							
3,3'-Dichlorobenzidine	ND	10							
Diethyl phthalate	ND	10							
Dimethyl phthalate	ND	10							
2,4-Dichlorophenol	ND	20							
2,4-Dimethylphenol	ND	10							
4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol	ND ND	20 20							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 11 of 20

15-Aug-14

1407D12

WO#:

4

s,

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc. **Project:** Injection Well 7-28-14 3rd QTR

rioject. injectio	II WEII /-20-	1-F JIU	VII							
Sample ID mb-14520	SampTy	pe: MB	BLK	Test	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBW	Batch	ID: 14	520	R	RunNo: 2	0300				
Prep Date: 7/31/2014	Analysis Da	ate: 7/	31/2014	S	SeqNo: 5	90031	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10								
2,6-Dinitrotoluene	ND	10								
Fluoranthene	ND	10								
Fluorene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	10								
Hexachlorocyclopentadiene	ND	10								
Hexachloroethane	ND	10								
Indeno(1,2,3-cd)pyrene	ND	10								
Isophorone	ND	10								
1-Methylnaphthalene	ND	10								
2-Methylnaphthalene	ND	10								
2-Methylphenol	ND	20								
3+4-Methylphenol	ND	10								
N-Nitrosodi-n-propylamine	ND	10								
N-Nitrosodimethylamine	ND	10								
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								
Surr: 2-Fluorophenol	130		200.0		66.7	12.1	85.8			
Surr: Phenol-d5	95		200.0		47.4	17.7	65.8			
Surr: 2,4,6-Tribromophenol	170		200.0		86.4	26	138			
Surr: Nitrobenzene-d5	84		100.0		83.6	47.5	119			
Surr: 2-Fluorobiphenyl	84		100.0		83.7	48.1	106			
Surr: 4-Terphenyl-d14	94		100.0		94.5	44	113			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits I
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2. Р
- Reporting Detection Limit RL

Page 12 of 20

15-Aug-14

1407D12

WO#:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

. .

Sample ID Ics-14520	SampT	ype: LC	S	Test	tCode: El	PA Method	8270C: Semiv	volatiles		
Client ID: LCSW	Batch	1D: 14	520	R	RunNo: 2	0300				
Prep Date: 7/31/2014	Analysis D	ate: 7/	31/2014	S	SeqNo: 5	90032	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	87	10	100.0	0	87.0	50.3	109			
1-Chloro-3-methylphenol	200	10	200.0	0	99.0	51.2	113			
2-Chlorophenol	190	10	200.0	0	94.9	48.5	104			
1,4-Dichlorobenzene	80	10	100.0	0	79.5	39.5	106			
2,4-Dinitrotoluene	82	10	100.0	0	82.3	45.4	107			
N-Nitrosodi-n-propylamine	91	10	100.0	0	91.0	50.4	119			
l-Nitrophenol	110	10	200.0	0	53.6	15.5	62.2			
Pentachlorophenol	150	20	200.0	0	72.7	23.5	93.5			
Phenol	110	10	200.0	0	54.8	26.8	65.6			
Pyrene	96	10	100.0	0	95.5	54.4	108			
1,2,4-Trichlorobenzene	78	10	100.0	0	78.0	39.9	106			
Surr: 2-Fluorophenol	140		200.0		72.4	12.1	85.8			
Surr: Phenol-d5	100		200.0		52.5	17.7	65.8			
Surr: 2,4,6-Tribromophenol	170		200.0		87.0	26	138			
Surr: Nitrobenzene-d5	100		100.0		101	47.5	119			
Surr: 2-Fluorobiphenyl	96		100.0		96.0	48.1	106			
Surr: 4-Terphenyl-d14	91		100.0		90.9	44	113			
Sample ID Icsd-14520	SampT	ype: LC	SD	Test	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSS02	Batch	ID: 14	520	R	RunNo: 2	0300				
Prep Date: 7/31/2014	Analysis D	ate: 7/	31/2014		eqNo: 5		Units: µg/L			
	Analysis D Result	ate: 7 / PQL					Units: µg/L HighLimit	%RPD	RPDLimit	Qual
				S	SeqNo: 5	90033		%RPD 12.8	RPDLimit 27.2	Qual
Analyte Acenaphthene	Result	PQL	SPK value	S SPK Ref Val	SeqNo: 5 %REC	90033 LowLimit	HighLimit			Qual
Analyte Acenaphthene I-Chloro-3-methylphenol	Result 77	PQL 10	SPK value 100.0	SPK Ref Val	SeqNo: 5 %REC 76.5	90033 LowLimit 50.3	HighLimit 109	12.8	27.2	Qual
Analyte Acenaphthene I-Chloro-3-methylphenol I-Chlorophenol	Result 77 190	PQL 10 10	SPK value 100.0 200.0	SPK Ref Val 0 0	SeqNo: 5 %REC 76.5 93.8	90033 LowLimit 50.3 51.2	HighLimit 109 113	12.8 5.37	27.2 25.9	Qual
Analyte Acenaphthene I-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene	Result 77 190 170	PQL 10 10 10	SPK value 100.0 200.0 200.0	SPK Ref Val 0 0 0	SeqNo: 5 %REC 76.5 93.8 84.4	90033 LowLimit 50.3 51.2 48.5	HighLimit 109 113 104	12.8 5.37 11.7	27.2 25.9 22.5	Qual
Analyte Acenaphthene I-Chloro-3-methylphenol I-Chlorophenol I,4-Dichlorobenzene 2,4-Dinitrotoluene	Result 77 190 170 73	PQL 10 10 10 10	SPK value 100.0 200.0 200.0 100.0	SPK Ref Val 0 0 0 0 0	SeqNo: 5 %REC 76.5 93.8 84.4 73.3	90033 LowLimit 50.3 51.2 48.5 39.5	HighLimit 109 113 104 106	12.8 5.37 11.7 8.19	27.2 25.9 22.5 24.6	Qual
Analyte Acenaphthene I-Chloro-3-methylphenol I-Chlorophenol I,4-Dichlorobenzene 2,4-Dinitrotoluene I-Nitrosodi-n-propylamine	Result 77 190 170 73 73	PQL 10 10 10 10 10	SPK value 100.0 200.0 200.0 100.0 100.0	SPK Ref Val 0 0 0 0 0 0	SeqNo: 5 %REC 76.5 93.8 84.4 73.3 73.1	90033 LowLimit 50.3 51.2 48.5 39.5 45.4	HighLimit 109 113 104 106 107	12.8 5.37 11.7 8.19 11.9	27.2 25.9 22.5 24.6 25.3	Qual
Analyte Accenaphthene Chloro-3-methylphenol Chlorophenol ,4-Dichlorobenzene ,4-Dinitrotoluene Nitrosodi-n-propylamine Nitrophenol	Result 77 190 170 73 73 85	PQL 10 10 10 10 10 10	SPK value 100.0 200.0 100.0 100.0 100.0	S SPK Ref Val 0 0 0 0 0 0 0 0	8 K K K K K K K K K K K K K K K K K K K	bood series and serie	HighLimit 109 113 104 106 107 119	12.8 5.37 11.7 8.19 11.9 6.98	27.2 25.9 22.5 24.6 25.3 23.6	Qual
Analyte cenaphthene -Chloro-3-methylphenol -Chlorophenol ,4-Dichlorobenzene ,4-Dinitrotoluene I-Nitrosodi-n-propylamine -Nitrophenol Pentachlorophenol	Result 77 190 170 73 73 85 110	PQL 10 10 10 10 10 10 10	SPK value 100.0 200.0 100.0 100.0 100.0 200.0	SPK Ref Val 0 0 0 0 0 0 0 0 0	8eqNo: 5 %REC 76.5 93.8 84.4 73.3 73.1 84.9 52.7	90033 LowLimit 50.3 51.2 48.5 39.5 45.4 50.4 15.5	HighLimit 109 113 104 106 107 119 62.2	12.8 5.37 11.7 8.19 11.9 6.98 1.69	27.2 25.9 22.5 24.6 25.3 23.6 34.7	Qual
Analyte Ana	Result 77 190 170 73 73 85 110 150	PQL 10 10 10 10 10 10 10 20	SPK value 100.0 200.0 100.0 100.0 100.0 200.0 200.0	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0	8eqNo: 5 %REC 76.5 93.8 84.4 73.3 73.1 84.9 52.7 72.9	90033 LowLimit 50.3 51.2 48.5 39.5 45.4 50.4 15.5 23.5	HighLimit 109 113 104 106 107 119 62.2 93.5	12.8 5.37 11.7 8.19 11.9 6.98 1.69 0.275	27.2 25.9 22.5 24.6 25.3 23.6 34.7 32.8	Qual
Analyte Accenaphthene Chloro-3-methylphenol Chlorophenol -A-Dichlorobenzene -A-Dinitrotoluene Nitrosodi-n-propylamine Nitrophenol Pentachlorophenol Phenol Pyrene	Result 77 190 170 73 73 85 110 150 100	PQL 10 10 10 10 10 10 20 10	SPK value 100.0 200.0 100.0 100.0 100.0 200.0 200.0 200.0	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0	8eqNo: 5 %REC 76.5 93.8 84.4 73.3 73.1 84.9 52.7 72.9 51.6	90033 LowLimit 50.3 51.2 48.5 39.5 45.4 50.4 15.5 23.5 26.8	HighLimit 109 113 104 106 107 119 62.2 93.5 65.6	12.8 5.37 11.7 8.19 11.9 6.98 1.69 0.275 6.05	27.2 25.9 22.5 24.6 25.3 23.6 34.7 32.8 25.5	Qual
Analyte Accenaphthene Chloro-3-methylphenol Chlorophenol -A-Dichlorobenzene -A-Dinitrotoluene Nitrosodi-n-propylamine Nitrophenol Pentachlorophenol Phenol Pyrene	Result 77 190 170 73 73 85 110 150 100 89	PQL 10 10 10 10 10 10 20 10 10	SPK value 100.0 200.0 100.0 100.0 200.0 200.0 200.0 200.0 100.0	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SeqNo: 5 %REC 76.5 93.8 84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8	90033 LowLimit 50.3 51.2 48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4	HighLimit 109 113 104 106 107 119 62.2 93.5 65.6 108	12.8 5.37 11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31	27.2 25.9 22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4	Qual
Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene	Result 77 190 170 73 73 85 110 150 100 89 68	PQL 10 10 10 10 10 10 20 10 10	SPK value 100.0 200.0 100.0 100.0 200.0 200.0 200.0 200.0 100.0 100.0	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 76.5 93.8 84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8 68.4	200033 50.3 51.2 48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4 39.9	HighLimit 109 113 104 106 107 119 62.2 93.5 65.6 108 106	12.8 5.37 11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31 13.1	27.2 25.9 22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4 25.9	Qual
Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene Surr: 2-Fluorophenol	Result 77 190 170 73 73 85 110 150 100 89 68 140	PQL 10 10 10 10 10 10 20 10 10	SPK value 100.0 200.0 100.0 100.0 200.0 200.0 200.0 100.0 100.0 200.0	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 76.5 93.8 84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8 68.4 68.8	boods LowLimit 50.3 51.2 48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4 39.9 12.1	HighLimit 109 113 104 106 107 119 62.2 93.5 65.6 108 106 85.8	12.8 5.37 11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31 13.1 0	27.2 25.9 22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4 25.9 0	Qual
Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene Surr: 2-Fluorophenol Surr: Phenol-d5	Result 77 190 170 73 73 85 110 150 100 89 68 140 110	PQL 10 10 10 10 10 10 20 10 10	SPK value 100.0 200.0 100.0 100.0 200.0 200.0 200.0 100.0 100.0 200.0 200.0 200.0	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 76.5 93.8 84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8 68.4 68.8 53.9	boods LowLimit 50.3 51.2 48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4 39.9 12.1 17.7	HighLimit 109 113 104 106 107 119 62.2 93.5 65.6 108 106 85.8 65.8	12.8 5.37 11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31 13.1 0 0	27.2 25.9 22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4 25.9 0 0	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 13 of 20

P Sample pH greater than 2.

RL Reporting Detection Limit

WO#: 1407D12

15-Aug-14

í,

Hall Environmental Analysis Laboratory, Inc.

Client:Western Refining Southwest, Inc.Project:Injection Well 7-28-14 3rd QTR

Sample ID Icsd-14520	SampType: LCSD TestCode: EPA Method 82						8270C: Semi	volatiles		
Client ID: LCSS02	Batch	ID: 14	520	R	RunNo: 2	0300				
Prep Date: 7/31/2014	Analysis D	ate: 7	31/2014	S	SeqNo: 5	90033	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Terphenyl-d14	90		100.0		90.0	44	113	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

7

Hall Environmental Analysis Laboratory, Inc.

Client:Western Refining Southwest, Inc.Project:Injection Well 7-28-14 3rd QTR

Sample ID	1407d12-001b dup	p SampType: DUP TestCode: SM2510B: Specific Conductance									
Client ID:	Injection Well	Batch II): R2	0245	R	lunNo:	20245				
Prep Date:		Analysis Dat	e: 7/	29/2014	S	eqNo:	588403	Units: µmho	os/cm		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Conductivity		1800 (0.010						4.30	20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 15 of 20

- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

ž

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc. **Project:** Injection Well 7-28-14 3rd QTR

Sample ID MB-14571	SampType: MBLK	TestCode: EPA Method	7470: Mercury	
Client ID: PBW	Batch ID: 14571	RunNo: 20345		
Prep Date: 8/4/2014	Analysis Date: 8/4/2014	SeqNo: 591482	Units: mg/L	
Analyte	Result PQL SPK value S	PK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Mercury	ND 0.00020			
the second se				
Sample ID LCS-14571	SampType: LCS	TestCode: EPA Method	7470: Mercury	
Sample ID LCS-14571 Client ID: LCSW	SampType: LCS Batch ID: 14571	TestCode: EPA Method RunNo: 20345	7470: Mercury	
			7470: Mercury Units: mg/L	
Client ID: LCSW	Batch ID: 14571	RunNo: 20345 SeqNo: 591483		RPDLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Р Sample pH greater than 2.
- RL Reporting Detection Limit

15-Aug-14

1407D12

WO#:

Page 16 of 20

۴,

Client:

Project:

Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR

ingeen mjeene	n ((on / 2)		¥												
Sample ID MB-14549	Samp	Туре: МЕ	BLK	Tes	tCode: E	PA 6010B:	Total Recover	coverable Metals							
Client ID: PBW	Bato	h ID: 14	549	F	RunNo: 2	0323									
Prep Date: 8/1/2014	Analysis I	Date: 8/	2/2014	S	SeqNo: 5	90696	Units: mg/L								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual					
Arsenic	ND	0.020													
Barium	ND	0.020													
Cadmium	ND	0.0020													
Calcium	ND	1.0													
Chromium	ND	0.0060													
_ead	ND	0.0050													
Magnesium	ND	1.0													
Potassium	ND	1.0													
Selenium	ND	0.050													
Silver	ND	0.0050													
Sodium	ND	1.0								1					
Sample ID LCS-14549	Samp	Type: LC	S	Tes	tCode: E	PA 6010B:	Total Recover	rable Meta	als						
Client ID: LCSW	Bato	Batch ID: 14549 RunNo: 20323													
Prep Date: 8/1/2014	Analysis I	Date: 8/	2/2014	5	SeqNo: 5	90697	Units: mg/L								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual					
Arsenic	0.50	0.020	0.5000	0	101	80	120								
Barium	0.50	0.020	0.5000	0	99.7	80	120								
Cadmium	0.50	0.0020	0.5000	0	99.7	80	120								
Calcium	ND	1.0	50.00	0	0	80	120			S					
Chromium	0.50	0.0060	0.5000	0	100	80	120								
Lead	0.50	0.0050	0.5000	0	99.5	80	120								
Magnesium	ND	1.0	50.00	0	0	80	120			S					
Potassium	ND	1.0	50.00	0	0	80	120			S					
Selenium	0.52	0.050	0.5000	0	105	80	120								
Silver	0.085	0.0050	0.1000	0	84.9	80	120								
Sodium	ND	1.0	50.00	0	0	80	120			S					
Sample ID LCS Cat-14549	Samp	Type: LC	S	Tes	tCode: El	PA 6010B:	Total Recover	rable Meta	als						
Client ID: LCSW	Bato	h ID: 14	549	F	RunNo: 2	0323									
Prep Date: 8/1/2014	Analysis I	Date: 8/	2/2014	S	SeqNo: 5	90698	Units: mg/L								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual					
Calcium	51	1.0	50.00	0	102	80	120								
Magnesium	51	1.0	50.00	0	101	80	120								
Potassium	49	1.0	50.00	0	97.3	80	120								
Sodium	50	1.0	50.00	0	101	80	120								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 17 of 20

- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
- RL Reporting Detection Limit

WO#: 1407D12 15-Aug-14

15-71ug-14

è

¥

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR **Project:**

Sample ID	1407d12-001b dup	SampType	DUP		Test	Code:	SM4500-H+B	: pH			
Client ID:	Injection Well	Batch ID:	R20245		R	unNo:	20245				
Prep Date:		Analysis Date:	7/29/20	14	S	eqNo:	588388	Units: pH u	nits		
Analyte		Result P	QL SPK	value	SPK Ref Val	%RE	C LowLimit	HighLimit	%RPD	RPDLimit	Qual
pН		7.11 1	.68								Н

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Р Sample pH greater than 2.
- RL **Reporting Detection Limit**

Page 18 of 20

15-Aug-14

ú

	Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR				
Sample ID mb-1	SampType: MBLK	TestCode: SM2320B: Alkalinity			
Client ID: PBW	Batch ID: R20245	RunNo: 20245			
Prep Date:	Analysis Date: 7/29/2014	SeqNo: 588355 Units: mg	g/L CaCO3		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimi	t %RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3) ND 20				
Sample ID Ics-1	SampType: LCS	TestCode: SM2320B: Alkalinity			
Client ID: LCSW	Batch ID: R20245	RunNo: 20245			
Prep Date:	Analysis Date: 7/29/2014	SeqNo: 588356 Units: mg	g/L CaCO3		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimi	t %RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3) 80 20 80.00	0 100 90 110)		
Sample ID mb-2	SampType: MBLK	TestCode: SM2320B: Alkalinity			
Client ID: PBW	Batch ID: R20245	RunNo: 20245			
Prep Date:	Analysis Date: 7/29/2014	SeqNo: 588376 Units: mg	g/L CaCO3		
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimi	t %RPD	RPDLimit	Qual

Hall Environmental Analysis Laboratory, Inc.

Prep Date:	Analysis L	Date: 71	29/2014	5	seqNo: 5	88376	Units: mg/L	Caco3		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3)	ND	20								
Sample ID Ics-2	SampT	ype: LC	s	Tes	tCode: SI	M2320B: A	kalinity			
Client ID: LCSW	Batch	n ID: R2	0245	F	RunNo: 2	0245				
Prep Date:	Analysis D	ate: 7/	29/2014	S	SeqNo: 5	88377	Units: mg/L	CaCO3		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3)	80	20	80.00	0	100	90	110			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 19 of 20

1407D12 15-Aug-14

WO#:

Client:

WO#: 1407D12 15-Aug-14

Hall Environmental	Analysis	Labora	tory,	Inc.
--------------------	----------	--------	-------	------

Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR

Project: Injectio	on Well 7-28-14 3rd QTR								
Sample ID MB-14475	SampType: MBLK	TestCode: SM2540C MOD: Total Dise	solved Solids						
Client ID: PBW	Batch ID: 14475	RunNo: 20257							
Prep Date: 7/29/2014	Analysis Date: 7/30/2014	SeqNo: 588640 Units: mg/L							
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit	%RPD RPDLimit Qual						
Total Dissolved Solids	ND 20.0								
Sample ID LCS-14475	SampType: LCS	TestCode: SM2540C MOD: Total Diss	olved Solids						
Client ID: LCSW	Batch ID: 14475	RunNo: 20257							
Prep Date: 7/29/2014	Analysis Date: 7/30/2014	SeqNo: 588641 Units: mg/L							
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit	%RPD RPDLimit Qual						
Total Dissolved Solids	1020 20.0 1000	0 102 80 120							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 20 of 20

HALL ENVIRONMENTAL ANALYSIS LABORATORY		4901 Hawkins NE uerque, NM 87109 AX: 505-345-4107	Samp	ble Log-In Ch	eck List
Client Name: Western Refining Southw W	Vork Order Number: 1	I407D12		RcptNo:	1
Received by/date: A-07/29/19					
Logged By: Anne Thorne 7/29	9/2014 7:55:00 AM	L	Toni Ilm	-	
Completed By: Anne Thorne 7/25	9/2014		Tome Sham	_	
Reviewed By: MG 07/5	29/14				
Chain of Custody	7	4			
1. Custody seals intact on sample bottles?		Yes 🗌	No 🗌	Not Present	
2. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present	
3. How was the sample delivered?		Courier			
Log In					
4. Was an attempt made to cool the samples?		Yes 🗹	No 🗌	NA 🗌	
5. Were all samples received at a temperature of >	>0° C to 6.0°C	Yes 🗹	No 🗌		
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗌	· .	
7. Sufficient sample volume for indicated test(s)?		Yes 🗹	No 🗌		
8. Are samples (except VOA and ONG) properly pro	eserved?	Yes 🗹	No 🗌		
9. Was preservative added to bottles?		Yes	No 🗹	na 🗆	*
10.VOA vials have zero headspace?		Yes 🗹	No 🗌	No VOA Vials	
11. Were any sample containers received broken?	•.	Yes	No 🗹 🛛	# .f	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗹	No 🗆	# of preserved bottles checked for pH:	(12 unless noted)
13. Are matrices correctly identified on Chain of Cust	tody?	Yes 🗹	No 🗌	Adjusted?	10
14. Is it clear what analyses were requested?		Yes 🗹	No 🗌		03
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No	Checked by:	
Special Handling (if applicable)					
16. Was client notified of all discrepancies with this of	order?	Yes	No 🗌	NA 🗹	
Person Notified:	Date	na nema sa salakana ane salakana	1		
By Whom:	Via:	eMail 🗌 Phone	e 🗌 Fax	In Person	
Regarding:	edandi yakili 10ko kun 10ko milako kulikanata yakiko zakiko te	1	hallafft and links of X**	1911 - A is found of in the second bills in the other second	
Client Instructions:	an a		and the same of the same	terre a service de mont de las	
17. Additional remarks:					
18. <u>Cooler Information</u> Cooler No Temp ^e C Condition Seal In 1 1.0 Good Yes	ntact Seal No Se	eal Date Sig	ned By		
Page 1 of 1		- <u></u>			

4

z

			istody R		Turn-Around	Time:							LL		JV.	тр			1F	NT	-	
Client	West	inal	Recivi	N9	Standard	C Rush					_		AL		-							
			r cynor	1	Project Name):	7-28-14	1 1			_											
Mailing	Address	#5	SCR 4	990	Twieel	ionli	7-28-14 ell 3rd OTR	Www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87					109									
RIA	- Ci	eld .	NM 87	41.2	Project #:			1														
Phone	#: 50:	5-63	2-4/3.					Tel. 505-345-3975 Fax 505-345 Analysis Reques														
email o					Project Mana	ger:	11.42°	-	(Al	00		9	-	Y	04)				2	1		T
QA/QC I	Package:							3021	IS OF	/ MF	N	¥	(s	A	4, S(CB's			N		0	
Stan			🗆 Level 4 (F	ull Validation)				3's (8	Ő	RO	SAL	Back	SIM	F	PG.	2 P(Cortos! UN		Y	<u> </u>
Accredi			_		Sampler: Bob On loc			TMB's (8021)	H	(GRO / DRO / MRO)			8270 SIMS)	S S	N	808			ف		H	or N)
			÷۲	1.0.000	on lee an s Samale d'eni	A SALEND COMPANY AND A COMPANY	<u>i No</u> vie V-C	4	+ Ш	GRO			or 8	Sel	ş	les /		(OA)	मे	۱ _۲	đ	N or
	(Type)_		[MTBE	ATB				310	Meta	Ū,	sticid	(YO	-in-	ilio	1:t	S	es
Date	Time	Matrix	Sample	Request ID	Container	Preservative	-IEALNO	4	1 + X	801			s (8	A 8	IS (F	Pe	B	(Se	t	F	E	C la
				1	Type and #	Туре	14071NOZ	BTEX	BTEX + MTBE + TPH (Gas only)	TPH 8015B			PAH's (8310	RCRA 8 Metals Ca, Mg, Na, K	Anio	8081 Pesticides / 8082 PCB's	8260B (VOA)	8270 (Semi-VOA)	Iguitability	Reactivitu	LY	Air Bubbles
7-28-14	9:30	H20	Injection	on Well	3-VOA	Hel	-201					-	-	_			X			-		
1	1	t			1-liter	amber	00											X				
					1-500m	-	201												X			\top
					1-500ml	-	201				X										X	
				1		H2SO4	001					X										-
				1	1-500ml		105							X				İ				
					1-500 ml		105-													X		\top
				1	1-500m]		105-															X
-																						1
Date:	Time:	Relinquish	ed by:	0	Received by:	. 1	Date Time	Rer	nark	s:												
-28-14	1452	Rob		kow	mist	Fliket	128/14 1450	갘												c		
Date:	Time:	Relinquish	ed by:		Received by:	1. 1	Date Time 1)7/29/14															•
128/14	1724	Y Shu	stu Wa	lle	1 Ulh	m	0755						•									

 \mathbf{r}

.

If necessary samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Analytical Report

Report Summary

Client: Western Refining Southwest, Inc. Chain Of Custody Number: 17288 Samples Received: 8/7/2014 3:20:00PM Job Number: 96012-0115 Work Order: P408024 Project Name/Location: Injection Well

Date: 8/8/14

Entire Report Reviewed By:

Tim Cain, Laboratory Manager

The results in this report apply to the samples submitted to Envirotech's Analytical Laboratory and were analyzed in accordance with the chain of custody document supplied by you, the client, and as such are for your exclusive use only. The results in this report are based on the sample as received unless otherwise noted. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. If you have any questions regarding this analytical report, please don't hesitate to contact Envirotech's Laboratory Staff.

 5796 US Highway 64, Farmington, NM 87401
 Ph (505) 632-0615
 Fx (505) 632-1865
 envirotech-inc.com

 Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301
 Ph (970) 259-0615
 Fr (800) 362-1879
 laboratory@envirotech-inc.com

Page 1 of 7

Western Refining Southwest, Inc.	Project Name:	Injection Well	
PO Box 159	Project Number:	96012-0115	Reported:
Bloomfield NM, 87413	Project Manager:	Kelly Robinson	08-Aug-14 17:39

Analyical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
Inj. Well	P408024-01A	Aqueous	08/07/14	08/07/14	Voa vial, 40mL, HCl
	P408024-01B	Aqueous	08/07/14	08/07/14	Voa vial, 40mL, HCl
	P408024-01C	Aqueous	08/07/14	08/07/14	Voa vial, 40mL, HCl

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway	64, Farmington,	NM 87401
-----------------	-----------------	----------

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (505) 632-0615 Fx (505) 632-1865 Ph (970) 259-0615 Fr (800) 362-1879 envirotech-inc.com

Page 2 of 7

Western Refining Southwest, Inc. PO Box 159	Project Project	Name: Number:	2	tion Well 2-0115				Reported:					
Bloomfield NM, 87413	Project	Manager:	Kelly	y Robinson				08-Aug-14 17	7:39				
			nj. Well 24-01 (W										
P408024-01 (Water) Reporting													
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes				
Nonhalogenated Organics by 8015													
Gasoline Range Organics (C6-C10)	ND	0.10	mg/L	1	1432028	08/08/14	08/08/14	EPA 8015D					
Diesel Range Organics (C10-C28)	4.99	2.37	mg/L	1	1432027	08/08/14	08/08/14	EPA 8015D					
Surrogate: Benzo[a]pyrene		35.5 % 50-2		-200	1432027	08/08/14	08/08/14	EPA 8015D	Surr2				

50-150

1432028

08/08/14

08/08/14

EPA 8015D

98.4%

Surrogate: Bromochlorobenzene

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (505) 632-0615 Fx (505) 632-1865 Ph (970) 259-0615 Fr (800) 362-1879 envirotech-inc.com laboratory@envirotech-inc.com

Page 3 of 7

Western Refining Southwest, Inc.	Project Name:	Injection Well	
PO Box 159	Project Number:	96012-0115	Reported:
Bloomfield NM, 87413	Project Manager:	Kelly Robinson	08-Aug-14 17:39

Nonhalogenated Organics by 8015 - Quality Control

Envirotech Analytical Laboratory												
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 1432027 - Sep Funnel Liquid-Liqu			Onta	Level	Result	/utcle	Linits	III D	Linit	110103		
Blank (1432027-BLK1)	In Extraction Er	A 5510C		Prepared &	Analyzed:	08-Aug-14						
Diesel Range Organics (C10-C28)	ND	2.78	mg/L									
Surrogate: Benzo[a]pyrene	11.8		"	18.0		65.6	50-200					
LCS (1432027-BS1)				Prepared &	Analyzed:	08-Aug-14						
Diesel Range Organics (C10-C28)	11.4	2.73	mg/L	12.5		91.3	36-132					
Surrogate: Benzo[a]pyrene	11.3		"	18.3		61.4	50-200					
Matrix Spike (1432027-MS1)	Sourc	e: P408025-	01	Prepared &	Analyzed:	08-Aug-14						
Diesel Range Organics (C10-C28)	1640	268	mg/L	12.5	2960	NR	36-132			SPK1		
Surrogate: Benzo[a]pyrene	14.6		"	18.7		78.1	50-200					
Matrix Spike Dup (1432027-MSD1)	Source	Source: P408025-01 P		Prepared &	Analyzed:	08-Aug-14						
Diesel Range Organics (C10-C28)	1200	250	mg/L	12.5	2960	NR	36-132	31.2	20	D1, SPK1		
Surrogate: Benzo[a]pyrene	10.5		"	20.0		52.5	50-200					

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401	Ph (505) 632-0615 Fx (505) 632-1865	envirotech-inc.com
Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301	Ph (970) 259-0615 Fr (800) 362-1879	laboratory@envirotech-inc.com

Page 4 of 7

Western Refining Southwest, Inc.	Project Name:	Injection Well	
PO Box 159	Project Number:	96012-0115	Reported:
Bloomfield NM, 87413	Project Manager:	Kelly Robinson	08-Aug-14 17:39

Nonhalogenated Organics by 8015 - Quality Control

Envirotech Analytical Laboratory												
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 1432028 - Purge and Trap EPA 5030A												
Blank (1432028-BLK1)			Prepared & Analyzed: 08-Aug-14									
Gasoline Range Organics (C6-C10)	ND	0.10	mg/L									
Surrogate: Bromochlorobenzene	0.0463		"	0.0500		92.5	50-150					
Duplicate (1432028-DUP1)	Sou	rce: P408024-	01	Prepared &	Analyzed:	08-Aug-14						
Gasoline Range Organics (C6-C10)	ND	0.10	mg/L		ND				200			
Surrogate: Bromochlorobenzene	0.0496		"	0.0500		99.3	50-150					
Matrix Spike (1432028-MS1)	Source: P408024-01			Prepared &	Analyzed:	08-Aug-14						
Gasoline Range Organics (C6-C10)	0.44	0.10	mg/L	0.450	ND	97.3	80-120					
Surrogate: Bromochlorobenzene	0.0489		"	0.0500		97.8	50-150					

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Western Refining Southwest, Inc.	Project Name:	Injection Well	
PO Box 159	Project Number:	96012-0115	Reported:
Bloomfield NM, 87413	Project Manager:	Kelly Robinson	08-Aug-14 17:39

Notes and Definitions

Surr2	Surrogate recovery was below acceptable limits.
SPK1	The spike recovery for this QC sample is outside of control limits.
D1	Duplicates or Matrix Spike Duplicates Relative Percent Difference exceeds control limits.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401	Ph (505) 632-0615 Fx (505) 632-1865	envirotech-inc.com
Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301	Ph (970) 259-0615 Fr (800) 362-1879	laboratory@envirotech-inc.com

Page 6 of 7

CHAIN OF CUSTODY RECORD

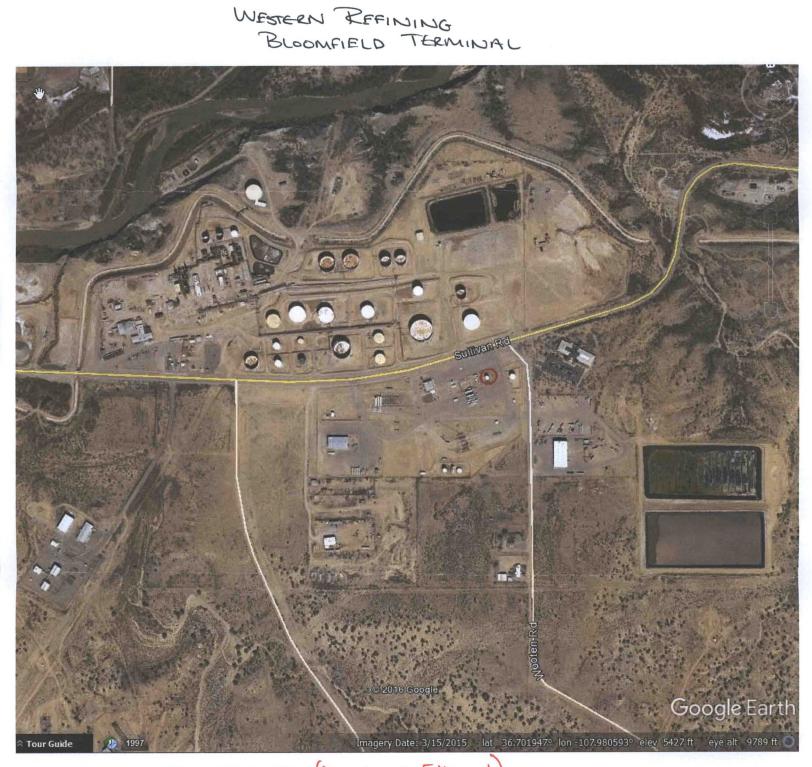
Client: Project Name / Location: Western Refining Injection Well Email results to: Sampler Name; Kelly & Matt Imposed Client Phone No.: Client No.:						ANALYSIS / PARAMETERS																
Email results to: Kelly & MAIL	-		npler Name:						8015)	d 8021)	8260)	S			0	.						
Client Phone No.:		Clie	ent No.: Ale	912-	0115	5			TPH (Method	BTEX (Method 8021)	VOC (Method 8260)	RCRA 8 Metals	Cation / Anion		TCLP with H/P	CO Table 910-1	418.1)	RIDE			Sample Cool	Sample Intact
Sample No./ Identification	Sample Date	Sample Time	Lab No.	No./\	/olume ntainers		eservati HCI	ve	TPH (BTEX	VOC (RCRA	Cation	RCI	TCLP	со та	TPH (418.1)	CHLORIDE			Sampl	Sampl
INj. well	8-7-14	3:00	P405024-01	3×V	0A-ulm	2			X												-	4
																				 _	_	_
																						_
																				 	_	
																						_
Relinquished by: (Signature)	Krall	loc)		Date	Time 1 3:20	Recei	ived b	y: (Si	ignati	ure)	/	1	4	1	1	2					Tir	ne SZE
Relinquished by: (Signature)						Recei	ived b	y. (S	Ignat	ure)			20							. ,,		
Sample Matrix Soil Solid Sludge	Aqueous D	Other 🗆																				
Sample(s) dropped off after	hours to se		if area.	26	nvi	ird	o t	0	~ 	<u>ן</u>		i))	12	1.	1	2.	1		 	1	
Rust			E		Anal																	
5795 US Highway 6	4 • Farmingt	on, NM 8740	1 • 505-632-0615 • 1	Three Spri	ings • 65 M	lerca	do Str	eet, S	uite 1	15, D	uran	go, C	0 81	301 •	labo	rator	y@en	virote	ech-in	Page	70	f 7

State of New Mexico **Energy Minerals and Natural Resources**

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.


			Dal	NI-4.M				-4:						
			Kele	ase Notific	catior		orrective A	ction						
27.00				1.110		OPERA'			🛛 Initi	al Report		Final Repor		
		Vestern Refin	ning Termi	nals, LLC.		Contact: Kelly Robinson								
Address: 5						Telephone No.: 505-632-4166								
Facility Nat	ne: Bloon	nfield Termi	nal			Facility Type: Products Terminal								
Surface Ow Inc.	mer: West	tern Refining	g Southwes	st, Mineral (Owner				API No					
	6. C. C.			LOCA	ATIO	N OF RE	LEASE							
Unit Letter	Section	Township	Range	Feet from the	North/	South Line	Feet from the	East/V	West Line	County				
	27	29N	1137											
	21	29N	11W											
			Latitu	de_ <u>36.696870</u>		Lo	ngitude107.	.970785	5					
				NAT	URE	OF REL	EASE							
Type of Rele	ase: Denat	ured Ethanol				Volume of 25-30 bbls	Release: estimat	ted	Volume I	Recovered:	approx	. 22 bbl		
Source of Re	lease: Tank	c 44 Ethanol 7	Fank				Hour of Occurrence at approx. 9:30pn		Date and Hour of Discovery: 11/3/2016 at approx. 9:35pm					
Was Immediate Notice Given?						If YES, To Whom? Cory Smith (NMOCD-Aztec) Vanessa Fields (NMOCD-Aztec) Carl Chavez (NMED–Santa Fe) Leona Tsinnajinnie (NMED-HWB) Dave Cobrain (NMED-HWB) Neelam Dhawan (NMED-HWB)								
By Whom? :	Kelly Rob	inson				Date and Hour :								
						11/4/2016 at 2:26pm via e-mail								
Was a Water	course Read		Yes 🛛	No		If YES, Vo	olume Impacting	CONS.	DIV DIS	ST. 3				
If a Watercou	irse was Im	pacted, Descr	ibe Fully.*					NOV	0 8 2016					
Describe Ca	ise of Probl	em and Reme	dial Action	Taken *										
At approxima secondary co which includ disposal. Pre	ately 9:30pr ntainment a ed recoverin liminary est	n on Novemb irea. Upon di ng excess liqu	er 3, 2016, scovery, the ids using th at the total v	a delivery truck truck driver cea e on-site vacuur olume released	ased unlo n truck.	bading activit	ed Tank 44 result ies and Western (ed ethanol was sen 5-30 barrels of den	Operation through the second s	ns Personn gh the facil	el initiated ity WWTS	correcti for reco	ve actions overy and		
Describe Are	a Affected	and Cleanup A	Action Take	n.*										
The volume r	eleased was	s contained w	ithin the ear	then tank secon	dary con	tainment area	a. No surface liqu	iids wer	e released f	from the fac	ility bo	undary		

Western is contracting with Envirotech to initiate excavation clean-up activities. Confirmation samples will be collected in the field and compared to applicable clean-up standards pursuant to the NMOCD "Guidelines for Remediation of Leaks, Spills, and Releases" dated August 13, 1993. In addition, this event occurred in an area previously investigated under the active Consent Order issued through the New Mexico Hazardous Waste Bureau (NMED-HWB). Western will be coordinating with the NMED-HWB on implementing corrective actions pursuant to the conditions of the Consent Order.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Signature Kelly Roleu Don	OIL CONSERVATION DIVISION
Printed Name: Kelly Robinson	Appro District Copy For Scanning Only
Title: Environmental Supervisor	Appre Has NOT been processed.
E-mail Address: Kelly.robinson@wnr.com	Conditions of Approval.
Date: 11/4/2016 Phone: (505) 632-4166	

* Attach Additional Sheets If Necessary

O = TANK 44 (Denatured Ethanol)

LAT/LONG: 36.696870, -107.970785 NESE Sect: 27/T29N/RIIW

Friday, November 04, 2016 2:33:58 PM -

federal, state, or local laws and/or regulations.

5

1

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

1220 S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505													
	on and Corrective Action												
	OPERATOR Initial Report Final Report												
Name of Company: Western Refining Southwest, Inc.	Contact: Kelly Robinson												
Address: 50 Road 4990	Telephone No.: 505-632-4166												
Facility Name: Bloomfield Terminal	Facility Type: Bulk Storage Terminal												
Surface Owner: Western Refining Southwest, Mineral Owne	API No.												
	ON OF RELEASE												
Unit Letter Section Township Range Feet from the Nor	rth/South Line Feet from the East/West Line County												
27 29N 11W	OIL CONS. DIV DIST. 3												
Latitude <u>36.700351</u>	Longitude NOV 1 0 2016												
NATUR	E OF RELEASE												
Type of Release: Recovered Groundwater Volume of Release: 3-5 bbls Volume Recovered: 5-10 bbls													
Source of Release: Recovered groundwater	Date and Hour of Occurrence:Date and Hour of Discovery:Uncertain10/26/2016 at 7:15pm												
Was Immediate Notice Given?	If YES, To Whom? ed												
By Whom? :	Date and Hour :												
Was a Watercourse Reached?	If YES, Volume Impacting the Watercourse.												
☐ Yes ⊠ No													
If a Watercourse was Impacted, Describe Fully.*													
Describe Cause of Problem and Remedial Action Taken.*													
Tank 38 to fill and run over into the tank secondary containment area. used the on-site vacuum truck to pull down the level in the tank, and th excess liquids within the tank secondary containment. All fluids recovered	I that the variable drive (VFD) on the discharge pump of Tank 38 failed, causing Tank 38 captures groundwater from East Outfall #1. Operations personnel quickly us stopping the discharge to ground. The vacuum truck was also used to recover ered were transported to the on-site wastewater treatment system.												
secondary containment. No surface water were impacted. The liquids													
Describe Area Affected and Cleanup Action Taken.*													
	st Outfall #1 when there was a concern of groundwater impacts in the area during ears, the water at this location no longer exhibits characteristics of being impacted. s visible.												
Laboratory for analysis. The sample was analyzed for total petroleum l	llected a sample of the water from Tank 38 and submitted the sample to Hall hydrocarbons (TPH), Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX). The as of TPH or BTEX, therefore Western is requesting a No Further Corrective Action												
regulations all operators are required to report and/or file certain release public health or the environment. The acceptance of a C-141 report by should their operations have failed to adequately investigate and remed	o the best of my knowledge and understand that pursuant to NMOCD rules and e notifications and perform corrective actions for releases which may endanger the NMOCD marked as "Final Report" does not relieve the operator of liability iate contamination that pose a threat to ground water, surface water, human health t does not relieve the operator of responsibility for compliance with any other												

Signature: Kelly Roleior	OIL CONSERVATION DIVISION
Printed Name: Kelly Robinson	Approved by E District Copy
Title: Environmental Supervisor	For Scanning Only Approval Date Has NOT been processed.
E-mail Address: Kelly. Robinson Cunr. com	Conditions of Approva.
Date: 11-9-16 Phone: 505)632-4146	

* Attach Additional Sheets If Necessary

. 1

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

November 07, 2016 Kelly Robinson

Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: Tank 38

OrderNo.: 1611108

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 11/2/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical	Report

Lab Order 1611108

Date Reported: 11/7/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Project: Tank 38

1611108-001

Lab ID:

Client Sample ID: TK 38 Water Collection Date: 10/26/2016 8:00:00 PM Received Date: 11/2/2016 10:15:00 AM

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 418.1: TPH					Analys	t: MAB
Petroleum Hydrocarbons, TR	ND	1.0	H mg/L	1	11/3/2016	28445
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	1.0	µg/L	1	11/4/2016 9:20:20 AM	B38456
Toluene	ND	1.0	µg/L	1	11/4/2016 9:20:20 AM	B38456
Ethylbenzene	ND	1.0	µg/L	1	11/4/2016 9:20:20 AM	B38456
Xylenes, Total	ND	2.0	µg/L	1	11/4/2016 9:20:20 AM	B38456
Surr: 4-Bromofluorobenzene	99.8	87.9-146	%Rec	1	11/4/2016 9:20:20 AM	B38456

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 3
	ND Not Detected at the Reporting Limit		Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S % Recovery outside of range due to dilution or matrix		W	Sample container temperature is out of limit as specified

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc.

Project:	Tank 38										
Sample ID	MB-28445	SampT	ype: ME	BLK	Tes	tCode: El					
Client ID:	PBW	Batch ID: 28445			F	RunNo: 3	8438				
Prep Date:	11/3/2016	Analysis D	ate: 1	1/3/2016	S	SeqNo: 1	200230	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Petroleum Hyd	Irocarbons, TR	ND	1.0								
Sample ID	LCS-28445	SampType: LCS			Tes	PA Method					
Client ID:	LCSW	Batch	ID: 28	445	F	RunNo: 3	8438				
Prep Date:	11/3/2016	Analysis D	ate: 1	1/3/2016	S	SeqNo: 1	200231	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Petroleum Hyd	Irocarbons, TR	5.8	1.0	5.000	0	117	79.2	126			
Sample ID	LCSD-28445	SampT	ype: LC	SD	Tes	tCode: El	PA Method	418.1: TPH			
Client ID:	LCSS02	Batch	ID: 28	445	F	RunNo: 3	8438				
Prep Date:	11/3/2016	Analysis D	ate: 1	1/3/2016	S	SeqNo: 1	200232	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Petroleum Hyd	Irocarbons, TR	5.5	1.0	5.000	0	110	79.2	126	6.07	20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 2 of 3

WO#: 1611108 07-Nov-16

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Western I Tank 38	Refining S	Southwe	st, Inc.							
Sample ID RB		Samp	Гуре: М	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: PBW		Batc	h ID: B3	8456	F	aunNo: 3	8456				
Prep Date:		Analysis [Date: 1	1/4/2016	S	eqNo: 1	201592	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	1.0			9					
Toluene		ND	1.0								
Ethylbenzene		ND	1.0								
Xylenes, Total		ND	2.0								
Surr: 4-Bromofluorob	enzene	21		20.00		105	87.9	146			
Sample ID 100NC	BTEX LCS	Samp	Type: LC	s	Tes	Code: El	PA Method	8021B: Volat	iles		
Client ID: LCSW	1	Batc	h ID: B3	8456	R	unNo: 3	8456				
Prep Date:		Analysis [Date: 1	1/4/2016	S	eqNo: 1	201593	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		20	1.0	20.00	0	101	80	120			
Foluene		20	1.0	20.00	0	99.0	80	120			
Ethylbenzene		18	1.0	20.00	0	90.7	80	120			
(ylenes, Total		53	2.0	60.00	0	88.1	80	120			
Surr: 4-Bromofluorob	enzene	20		20.00		100	87.9	146			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 3 of 3

WO#: 1611108 07-Nov-16

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental A Albuq TEL: 505-345-3975 F Website: www.hall	4901 uerqui TAX: 5	Hawkins NE 2, NM 87109 05-345-4107	Sample Log-In Check L										
Client Name: Western Refining Southw	Work Order Number:	16111	08		RcptN	o: 1								
Received by/date:	11/02/10													
Logged By: Ashley Gallegos	11/2/2016 10:15:00 AM		5	t f										
Completed By: Ashley Gallegos	11/2/2016 12:20:29 PM		Å	EF.										
Reviewed By: IC)	11/00/14			U										
Chain of Custody				•••••••••••••••••••••••••••••••••••••••										
1. Custody seals intact on sample bottles?		Yes	E1	No	Not Present	•]								
2. Is Chain of Custody complete?		Yes		No [Not Present									
 S chain of ouslody complete? How was the sample delivered? 		UPS	19.1											
3. Now was the sample delivered?														
Log In														
4. Was an attempt made to cool the samples	?	Yes		No 🗌	NA	7								
5. Were all samples received at a temperature	e of >0° C to 6.0°C	Yes		No []	NA L	1								
6. Sample(s) in proper container(s)?		Yes		No										
7. Sufficient sample volume for indicated test	(s)?	Yes	\checkmark	No										
8. Are samples (except VOA and ONG) prope	rly preserved?	Yes	\checkmark	No										
9. Was preservative added to bottles?		Yes	ſ I	No 🔽	NA]								
10.VOA vials have zero headspace?		Yes	V	No []]	No VOA Vials	1								
11. Were any sample containers received brok	en?	Yes		No 🗹	# of preserved									
12.Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes	V	No []	bottles checked for pH:	2 or >12 unless noted)								
13. Are matrices correctly identified on Chain o	f Custody?	Yes	\checkmark	No 📋	Adjusted?									
14. Is it clear what analyses were requested?		Yes		No 🗌										
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes		No []	Checked by	/:								
Special Handling (if applicable)														
16. Was client notified of all discrepancies with	this order?	Yes		No 🗌	NA 🖢	đ								

Person N	lotified:			Date	1		
By Whor	n:		alman mand a life in the second space of the second	Via:	eMail [] Phone []] Fax	In Person
Regardin	ig:		nernerne skiel felder van maan maar	an an ann an Anna an An	n ar an an an an an an an An Anna An	al canal land a subscription of the second secon	na para na kata na kata kata na
Client Ins	structions:	nin i fan de sense gereken sense gereken sense	n an	and an	statolyan-et-en-en-en-stochanascrificiti-MetediAffig	and the distribution of the second	an a
Additional rem							
	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By	
Cooler No	10mp 0						

÷.,

Page 1 of 1

¢

С	Chain-of-Custody Record			Turn-Around Time:												0			NT	A 1	
lient:	West	em R	efimin	□ Standard	Rush	ASIA-P													TC		
,			X	Project Name			www.hallenvironmental.com														
ailing	Address	1110	R 4990	TAI	JK 38		4901 Hawkins NE - Albuquerque, NM 87109														
	BI	omfe	42 NM 87413	Project #:				Tel. 505-345-3975 Fax 505-345-4107													
hone	#: 50	15-6	232-4166					Analysis Request													
mail o	r Fax#:	Kelly .	Robinson CUNR ca				(8021)	only)	MRO)					04)	-						
A/QC Package:				Kelly Robinson				TPH (Gas o	DRO / M			(SMIS)		,PO4,S	PCB'			_			
ccreditation			Sampler: Kc	the Rob	iune O No	- TMB's		-	8.1)	4.1)	8270 S		3,NO2,	/ 8082		(1	803			r N)	
EDD	(Type)				perature: [. 3		BE +	BE +	(GRO	d 41	od 50	0 or	tals	I,NO	ides	(7	0	1			Z
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	ers de la s ere	BTEX + MTBE	BTEX + MTBE	TPH 8015B	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals	Anions (F, Cl, NO ₃ , NO ₂ , PO ₄ , SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA)	8270 (Semi-VOA)	BTEX			Air Bubbles (Y or N)
9/16	20:00	Water	TK38 Water	3 NORS	HCI	-001												X			
ł		J	L	2 3 Some	None					X											
	Bernetter, the down of a ge													-							
					>														_	-	
																				_	
																			\dashv	_	_
	6														_	-				_	_
																			-+	+	+-
								-												+	
ate:	Time:	Relinquish	by Daling	Received by:	<u> </u>	Date Time	Rei	nark	s:						L						
ate: Time: Relinquished by:			Received by:	zy (imet	24 [1/02/16 1015 Date Time		P.(Э.	17	ZL	21:	55	2	8							

2

*

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

WNR

August 29, 2016

OIL CONS. DIV DIST. 3 SEP. 0 1 2016

Carl Chavez New Mexico Energey, Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Frances Drive Santa Fe, New Mexico 87505

UPS Tracking #:	1Z 881 839 01 4279 6114	(OCD – Santa Fe)
Certified Mailer #:	7015 0640 0005 8540 2704	(OCD – Aztec)
UPS Tracking #:	1Z 881 839 01 4194 7122	(NMED-HWB)

Re: August 4th, 2016 Sump Overflow Incident Response to Corrective Action Report Request Western Refining Southwest, Inc. – Bloomfield Terminal EPA ID# NMD089416416

Dear Mr. Chavez:

On August 4th, 2016, Western Refining Southwest Inc. - Bloomfield Terminal ("Western") provided notification to the New Mexico Oil Conservation Division ("NMOCD") and the New Mexico Environment Department Hazardous Waste Bureau ("NMED-HWB") regarding a sump overflow event that occurred near the Bloomfield Terminal Product Loading Rack Area. Figures showing the approximate location of the release are attached. The cause of the incident was the result of a malfunction of the fire suppression system at the Product Loading Rack, which resulted in a large volume of water to drain to the sump during a short period of time, thus causing the sump to overflow. Corrective actions were initiated upon immediate notification of the event, which included the shutdown of the Loading Rack and the removal of surface fluids using the on-site vacuum truck. The release was contained to within the earthen berm area around the sump.

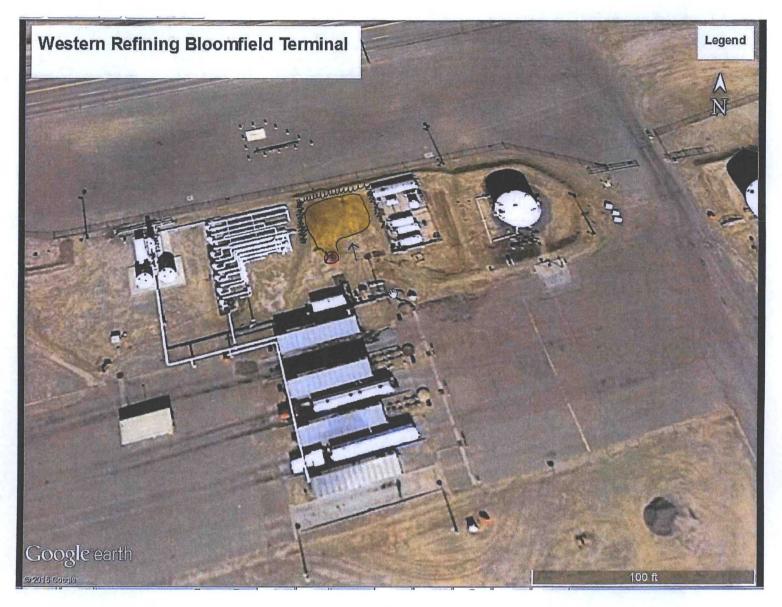
Western has contracted with LT Environmental to oversee the removal of visually impacted soils within the release area to the extent that the soils removal does not compromise the integrity of the containment berm for this sump area and adjacent loading rack. Excavated soils will be replaced with clean soil so as to re-establish the containment area sufficient for daily operations.

The area in which this overflow occurred has been previously investigated under an active Consent Order issued through NMED-HWB. Previous investigation results indicate concentrations within the surrounding soils that will require further investigation and corrective actions once the area is no longer in-service and is accessible to implement corrective action activities. With this said, Western is requesting approval from the NMOCD to defer closure of this area until such time that the area is no longer part of facility operations. In addition, Western is requesting that future corrective actions for this area be conducted pursuant to the conditions of the active Consent Order under the coordination

WNR

with NMED-HWB. To reflect this request, Western has enclosed a revised C-141 Initial Report indicating that on-going corrective actions, as it pertains to this release area, will be coordinated with NMED-HWB pursuant to the Consent Order dated July 27, 2007.

If you have any questions or would like to discuss this topic, please feel free to contact me at (505) 632-4171 or <u>Randy.Schmaltz@wnr.com</u>.


Sincerely,

Janhes R. Schmaltz Health, Safety, Environmental, and Regulatory Manager Western Refining Southwest, Inc. – Bloomfield Terminal

cc:D. Cobrain (NMED-HWB) N. Dhawan (NMED-HWB) K. Van Horn (NMED-HWB) L. Tsinnajinnie (NMED-HWB) C. Smith (OCD – Aztec) A. Hains (WNR) K. Robinson (WNR)

Site Location

O = Top of sump; source of overflow release. - Area of impact. 1 = Showing direction of surface flow due to surface gradient. = Symbol of existing earther berm.

Thursday, August 11, 2016 11:42:29 AM -

C-141 Initial Report (Revised August 29, 2016)

· ·

8.7

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Form C-141 Revised August 8, 2011

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Santa Fe, NM 87505											
			Rele	ase Notifi	catio	n and Co	orrective A	ction			
OPERATOR Initial Report (revised 8/29/2016) Final Report											
							elly Robinson	1.66			
						No.: 505-632-4 be: Products Te					
						raciiity 1 y	e. Floudels Ie.				
Surface Ow Inc.	ner: West	ern Refining	g Southwe	st, Mineral (Owner				API No		
					-	N OF RE					
Unit Letter	Section	Township	Range	Feet from the	North	/South Line	Feet from the	East/We	st Line	County	
	27	29N	11W								
	Latitude_36.696775Longitude107.971133										
				NAT	TURE	OF REL					
Type of Rele						150 bbl	Release: estimat	imated Volume Recovered: approx. 140 b			51
Source of Re	lease: Unlo	ading Rack S	ump				Iour of Occurrenc t approx. 6am		Date and Hour of Discovery: 8/4/2016 at approx. 6am		
Was Immedia	ate Notice C					If YES, To		0	74/2010		
		\boxtimes	Yes 🗌	No 🛛 Not R	equired		Cory Smith (NMC				
							Carl Chavez (NMED–Santa Fe) Leona Tsinnajinnie (NMED-HWB)				
						Dave Cobrain (NMED-HWB)					
By Whom?:	Kelly Rohi	ກຣດກ				Date and H	Veelam Dhawan (NMED-H	WB)		
	-						2/4/2016 at 3:54pr	n via e-ma	uil		
Was a Watero	course Reac		Yes 🛛	No		If YES, Vo	If YES, Volume Impacting the Watercourse.				
If a Watercou	rse was Im	pacted, Descr	ibe Fully.*								
	1										
Describe Cau	se of Proble	em and Reme	dial Action	Taken.*							
loading rack r large volume of fresh water	resulted in the of fresh was release was	he overfill of ter to drain th s more than th	the loading rough the l ne sump co	rack sump. The bading rack drai	e event i ns and in short pe	nvolved the unto the loadin	nexpected activat g rack sump. This	ion of the t s event last	fire supp ted only	Terminal ("Western") pro ression system, resulting i a few minutes, but the vol luct sump was a mixture o	n a ume
Describe Area	a Affected a	und Cleanup A	Action Take	n.*							
										rthen bermed area around low of water to the sump.	
Western estimates that approximately 150 bbls of water/product mixture overflowed from the sump, all of which remained within the containment area. A large portion of the released volume was recovered using an on-site vacuum truck.											
This product/water release occurred in an area previously investigated under an active Consent Order issued through the New Mexico Hazarous Waste Bureau (NMED-HWB). Western will be coordinating with the NMED-HWB on implementing corrective action pursuant to the condition of the Consent Order.											

regulations all operators are required to report and/or file certain release public health or the environment. The acceptance of a C-141 report by t should their operations have failed to adequately investigate and remedi	o the best of my knowledge and understand that pursuant to NMOCD rules and e notifications and perform corrective actions for releases which may endanger the NMOCD marked as "Final Report" does not relieve the operator of liability iate contamination that pose a threat to ground water, surface water, human health t does not relieve the operator of responsibility for compliance with any other
VAD DI	OIL CONSERVATION DIVISION
Signature: Kelly Kolei vor	District Copy
Printed Name: Kelly Robinson	Approved District Copy For Scanning Only

E-mail Address: Kelly, Robinson COUNE, com

Title: Environmental Supervisor

Approval I Has NOT been processed. Conditions of Approval:

Attached

 Date:
 8-29-16
 Phone:
 555-632-4166

 * Attach Additional Sheets If Necessary

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources

IUN 29 2015

API No.

OIL CONS. DIV DIST. 3

Form C-141 Revised August 8, 2011

Submit 1 Copy to appropriate District Office in

accordance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Release Notification and Corrective Action

	OPERATOR	\boxtimes	Initial Report	\bowtie	Final Report
Name of Company: Western Refining Southwest, Inc.	Contact: Matthew Krakow	4			
Address: 50 Road 4990	Telephone No.: 505-632-4169				
Facility Name: Bloomfield Terminal	Facility Type: Products Terminal				

Surface Owner: Western Refining Southwest, Mineral Owner Inc.

LOCATION OF RELEASE

Unit Letter Sec	ction Toy	wnship Ra	lange	Feet from the	North/South Line	Feet from the	East/West Line	County
27	291	N 11	1W					

Latitude <u>36[°] 41' 55"N</u>

Longitude 107[°] 58' 26" W

NATURE OF RELEASE

Type of Release: Water	Volume of Release: 45 barrels	Volume Recovered: 40-45 barrels
Source of Release: Sump overflow	Date and Hour of Occurrence:	Date and Hour of Discovery:
	6/10/15 at 10:15 am MT	6/10/15 at 10:15 am MT
Was Immediate Notice Given?	If YES, To Whom?	
🛛 Yes 🔲 No 🖾 Not Required	Cory Smith NMOCD	
By Whom?: Matthew Krakow	Date and Hour :	
	6/11/2015 at 8:30 am MT	
Was a Watercourse Reached?	If YES, Volume Impacting the Wate	ercourse.
🗌 Yes 🖾 No		
If a Watercourse was Impacted, Describe Fully.*		
		그 김 씨는 소리가 물건 것같이.

Describe Cause of Problem and Remedial Action Taken.*

Storm water runoff from a severe rain event overwhelmed the terminal's products rack sump and it overtopped. The water collected in a containment area around the sump and did not leave the property.

Describe Area Affected and Cleanup Action Taken.*

The water that collected in the containment area was removed with a vacuum truck and disposed of through the facilities wastewater treatment system. This spill took place in an area previously investigated under an active Consent Order issued through New Mexico Hazardous Waste Bureau. Western is working with the Hazardous Waste Bureau for the corrective actions pursuant to the condition of the Consent Order.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

when Illa	OIL CONSERVATION DIVISION
Signature:	
Printed Name: Matthew Krakow	Approved by Envir District Copy
Title: Environmental Coordinator	Approval Date: Has NOT because
	Approval Date: Has NOT been processed.
E-mail Address: Math, Kra Kow@WNR. COM	Conditions of Approva:
Date: 6/24/15 Phone: 505-632-4169	

* Attach Additional Sheets If Necessary