

AE Order Number Banner

Report Description

This report shows an AE Order Number in Barcode format for purposes of scanning. The Barcode format is Code 39.

App Number: pEEM0112360697

NM2 **-** 1

XTO ENERGY, INC.

3/7/2018

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

	OPERATOR	Initial Report	\boxtimes	Final Report
Name of Company: XTO Energy, Inc.	Contact: James McDaniel			
Address: 382 Road 3100, Aztec, New Mexico 87410	Telephone No.: (505) 333-3701			
Facility Name: Central Evaporation Pond #2 (Permit NM-02-0001)	Facility Type: Evaporation Pond			

Surface Owner: Federal	Mineral Owner:	Lease No.:

LOCATION OF RELEASE

Unit Letter Section	n Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
26	32N	9W					San Juan

Latitude: 36.956656 Longitude: -107.752204

NATURE OF RELEASE

Type of Release: Produced Water	Volume of Release: Unknown	Volume Recovered: None
Source of Release: Evaporation Pond	Date and Hour of Occurrence:	Date and Hour of Discovery:
	Unknown	NA OIL CONS. DIV DIST. 3
Was Immediate Notice Given?	If YES, To Whom?	
🗌 Yes 🗌 No 🖾 Not Required		MAP 1 1 2013
By Whom?	Date and Hour:	MMH 1 2 6010
Was a Watercourse Reached?	If YES, Volume Impacting the Wat	ercourse.
Yes No		
If a Watercourse was Impacted, Describe Fully,*		
Describe Cause of Problem and Remedial Action Taken.*		
On May 23, 2011, LT Environmental collected closure samples beneath th	e liner of Central Evaporation Pond #	2 as outlined in the attached Soil Sampling
Results Report. The samples were analyzed for each of the constituents out	tlined in the closure procedures for a	centralized waste facility. Chloride results
for samples collected in sections G,H,I and J returned results above the 250) mg/kg Spill Confirmation results ou	atlined in the attached Approved Closure
Plan. This confirmed that a release had occurred at this location. The chlo	orides found in sections G,H,I and J w	vas the results of overspray, and not a result
of a leak in the pond liner. Chlorides collected from sections A, B C and I), which were beneath the pond liner.	returned results below the 250 mg/kg
standard for the determination of a release. The site was ranked a 30 accord	ding to the NMOCD Guidelines for t	he Remediation of Leaks. Spills and
Releases due to a drainage at less than 1,000 feet from the location and a d	epth to groundwater of approximately	40 feet. This set the closure standard to
100 ppm TPH, 10 ppm benzene and 50 ppm total BTEX.		
Describe Area Affected and Cleanup Action Takan *		
The analytical results are attached in the Soil Sampling Results Report Al	results are below the regulatory stan	dards outlined in the NMOCD Guidelines
for the Remediation of Leaks Spills and Releases. The NMOCD Guidelin	es for the Remediation of Leaks Spil	Ils and Releases does not cite a closure
standard for chlorides, and hased on a depth to groundwater of over 40 fee	t at this location a dense tight shale l	laver beginning at approximately 12 feet
below ground surface, the chloride levels present will not pose a threat to h	numan health and the environment. T	The dense shale layer was encountered at
approximately 12 feet below ground surface during the construction of Eva	aporation Pond #2, and chloride level	s in this shale layer at the bottom of the
pond were below the 250 mg/kg standards for the determination of a releas	se.	-
I hereby certify that the information given above is true and complete to the	e best of my knowledge and understa	nd that pursuant to NMOCD rules and
regulations all operators are required to report and/or file certain release no	tifications and perform corrective act	tions for releases which may endanger
public health or the environment. The acceptance of a C-141 report by the	NMOCD marked as "Final Report" of	does not relieve the operator of liability
should their operations have failed to adequately investigate and remediate	contamination that pose a threat to g	round water, surface water, human health
or the environment. In addition, NMOCD acceptance of a C-141 report do	es not relieve the operator of respons	sibility for compliance with any other
rederar, state, or local laws and/or regulations.	OIL CONSERV	
TARDOUS S	OIL CONSERV	ATION DIVISION
Wesser Constant	4	

the for the second	Now States States OIL CONSERVATIO	
Signature:	P. P. M. S.P. M.	
Printed Name: James McDaniel. CHMM #1	567 5 3 15 - Proved by District Supervisor:	bell
Title: EII&S Supervisor	A spiroval Date: 3/20/13 Expiration	on Date:
E-mail Address: James_McDaniel@xtoenerg	gy.com	Attached
Date: 3/11/2013	Phone: 505-333-3701	
	nJK1.307953215	

SITE NAME:

CENTRALIZED EVAPORATION POND #2 Section 26, Township 32N, Range 9W San Juan County, New Mexico OCD Permit No. NM-02-0001

SUBMITTED TO:

MR. BRAD JONES New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 (505) 476-3487

SUBMITTED BY:

XTO ENERGY, INC. SAN JUAN DIVISION 382 ROAD 3100 AZTEC, NEW MEXICO 87410 (505) 333-3100

MARCH 11, 2013

TABLE OF CONTENTS

INTRODUCTION	.1
SCOPE OF CLOSURE ACTIVITIES	.1

Figures: Figure 1 Vicinity Map

Attachments:	Attachment #1	December 13, 2010 Letter from NMOCD
	Attachment #2	Reclamation Plan
	Attachment #3	Photo Documentation
	Attachment #4	LT Environmental Sampling Report

Evaporation Pond Closure Report XTO Energy, Inc. Centralized Evaporation Pond #2 OCD Permit No. NM-02-0001 2011 Page 1

INTRODUCTION

The Centralized Evaporation Pond #2 (Pond #2) was originally permitted by the New Mexico Oil Conservation Division (OCD) for Koch Exploration in July of 1998, OCD Permit No. NM-02-0001. The pond lease and permit was acquired by XTO Energy, Inc. (XTO) in 2009 from El Paso Exploration and Production Company, and approval to transfer the permit was issued in March of 2009. The evaporation pond was used to dispose of produced water from the Blancett Com C #1, Gardner C #1, Gardner C #5 and Gardner C #7 well sites by previous operators. These wells are now owned and operated by XTO, however Pond #2 has not been used by XTO. XTO notified OCD in April 2009 of plans for removing fluids from the pond in order to clean and inspect the liner as part of our routine operations and maintenance program. During inspection and maintenance, obsolete, damaged and non-operational equipment was removed from the location. Based on completion of this process XTO decided to close Pond #2. A closure plan for this evaporation pond was submitted to your office and approved on December 13, 2010.

SCOPE OF CLOSURE ACTIVITIES

The purpose of this closure report is to provide details of the closure activities performed by XTO for Evaporation Pond #2 located in Section 26, Township 32N, Range 9W.

1) XTO notified the division's environmental bureau on April 28, 2009 of the cessation of operations at Pond #2 as part of our plans for evaporating the fluid in the pond in order to clean and inspect the liner. This closure plan and proposed schedule has been submitted to the division for adequacy in accordance with Paragraph 1 of Subsection A of NMAC 19.15.36.18.

This closure plan was approved by the OCD on December 13, 2010.

- 2) XTO is requesting an exception to Paragraph 2 of Subsection A of NMAC 19.15.36.18, the division's 60 days for notification of modifications of the closure plan and proposed schedule, based on the time of year and expected weather impediments. Winter precipitation, snow melt and Federal area closures will hinder closure operations. Closure activities occurred at this site from April 4, 2011 through September 17, 2012.
- *3)* However, if the division does not notify XTO of additional closure requirements within 60 days as provided, the operator may proceed with closure in accordance with the approved closure plan; provided that the director, for good cause, extend the time for the division's response for an additional period not to exceed 60 days by written notice to XTO in accordance with Paragraph 3 of Subsection A of NMAC 19.15.36.18.

XTO is in receipt of the additional closure requirements outlined in the December 13, 2010 letter from the NMOCD. This letter is enclosed as *Attachment #1*.

- 4) XTO shall be entitled to a hearing concerning a modification or additional requirement the division seeks to impose if it files an application for a hearing within 10 days after receipt of written notice of the proposed modifications or additional requirements in accordance with Paragraph 4 of Subsection A of NMAC 19.15.36.18.
 A hearing was not requested by XTO Energy, Inc.
- 5) Closure shall proceed in accordance with the approved closure plan and schedule and modifications or additional requirements the division imposes. During closure operations XTO shall maintain the surface waste management facility to protect fresh water, public health, safety and the environment in accordance with Paragraph 5 of Subsection A of NMAC 19.15.36.18.

Closure activities were performed in accordance with the approved closure plan.

6) Upon completion of closure, XTO shall re-vegetate the site in accordance with the included Reclamation Plan. The surface owner of this site is the Bureau of Land Management (BLM) and the included Reclamation Plan conforms to BLM requirements and is in accordance with Paragraph 6 of Subsection A of NMAC 19.15.36.18.

XTO has reclaimed the pond area accordance with the BLM standards, and as outlined in the attached *Reclamation Plan*.

7) All water and sediment in the pond has been removed and disposed of at an OCD permitted disposal facility in order to inspect the liner as per our agreement with OCD dated April 2009 and in accordance with Paragraph 1 Subsection E of NMAC 19.15.36.18.

All water in Evaporation Pond #2 was removed and disposed of at Agua Moss' OCD permitted injection facility, OCD permit number NMOCD-07-162. Approximately 615 yards of sediments were disposed of at CRI's OCD permitted landfill, OCD permit number NM-01-006

8) All liners and bedding material will be inspected for re-use in other Oil and Gas operations (with OCD approval). Portions of the liner and bedding material that are deemed unusable will be properly cleaned and disposed of per 19.15.9.712 NMAC at the Bondad Landfill, located in La Plata County, Colorado (due to location) or the San Juan County Landfill, located in San Juan County, New Mexico. Concrete used to make up the leak detection system footer will be broken up and screened for Naturally Occurring Radioactive Material before being hauled to the Bondad Landfill for disposal.

All liner and bedding material was removed and disposed of at the Bondad Landfill. Upon removal of the sump area, it was discovered that there was no concrete in the leak detection area. The leak detection was made up of an 8" PVC connected to the 1" leak detection piping running beneath the pond liner. Please see the photographs presented in *Attachment #3*.

9) The soil beneath the evaporation pond liner, pond sidewalls, liquids receiving and treatment area, leak detection area, and area outside the berm will be sampled, by a third

party contractor, into 4-ounce glass jars, capped headspace free, and analyzed for BTEX via USEPA Method 8021B, and for total petroleum hydrocarbons (TPH) via USEPA Method 418.1, total chlorides, and 3103 Subsection A and Subsection B constituents in accordance with NMAC 20.6.2.3103AB. Samples will also be collected from the natural background (for comparative purposes), to be analyzed for metals, and other inorganics listed in Subsections A and B of NMAC 20.6.2.3103. Standard metals will be analyzed via USEPA Method 6010B, Mercury will be analyzed via USEPA Method 7470 and cyanide will be analyzed via USEPA Method 9012B. Fluoride, Nitrate, Sulfate and Chlorides will be analyzed via USEPA Method 9056. Polychlorinated Biphenyls (PCB) will be analyzed via USEPA Method 8082, Volatile Organic Compounds (VOCs) will be analyzed via USEPA Method 8260B, Poly Aromatic Hydrocarbons (PAH) will be analyzed via USEPA Method 8310, Ethylene Dibromide (EDB) will be analyzed via USEPA Method 8011, Phenols will be analyzed via USEPA Method 9066, Total Dissolved Solids (TDS) will be analyzed via USEPA Method 2540C, Uranium will be analyzed via USEPA Method 200.8, and Radium 226/228 will be analyzed via USEPA Method 7500.

Individual grab samples will be obtained from any areas (beneath the evaporation pond liner, pond sidewalls, liquids receiving and treatment area, leak detection area, and area outside the berm) with visually obvious staining or moist soil. If the liner is obviously damaged, or there is any indication of a release, a subsurface investigation will be conducted.

Please see attached closure sampling report from LT Environmental (LTE) as *Attachment #4*. The metals results presented in Attachment #4 were analyzed using the RCRA 8 metals procedure for total metals. As a typical rule of thumb, TCLP metals are typically 1/20th of the metals found during total metals analysis.

10) Samples will be collected in accordance with the USEPA SW-846 protocols. Four (4) soil samples will be collected from beneath the pond and along the pond sidewalls, one in each quadrant of a grid pattern. Each sample will be a 10 point composite as shown on Figure 3. Each grid will measure approximately 160' x 160'. The evaporation pond is approximately 315' x 315'. One additional composite sample will be collected beneath the concrete footer of the leak detection system as well. One background sample of virgin, undisturbed soil will be analyzed for comparative purposes. The sample results will be submitted to the OCD Santa Fe office in accordance with Paragraphs 4-5 of Subsection E of NMAC 19.15.36.18.

A sample grid map is included in the LTE Sampling Report, Attachment #4, as Figure #2.

11) Considerations: This site has an OCD Hazard Ranking of 30 based on depth to groundwater of less than 50 feet, distance to a water well of over 1,000 feet, and horizontal distance to surface water of over 200 feet; see Figure 1, Vicinity Map. Sample results above 100 mg/kg TPH, 10 mg/kg benzene and 50 mg/kg BTEX standards will be excavated and a new sample collected as per OCD Guidelines for the

Remediation of Leaks, Spills and Releases. Should all closure samples return results below the closure standards determined for this site, no excavation will be required. Soil samples will be collected and analyzed for a chloride standard of 250 mg/kg or background to determine if a release has occurred.

Each of the Pond closure samples were found in the laboratory to be below the closure standards outlined in the OCD Guidelines for the Remediation of Leaks, Spills and Releases.

12) Once laboratory analysis indicates closure standards have been achieved for the site, the evaporation pond will be backfilled using non-waste containing soil, and re-contoured and re-vegetated pursuant to the attached Grading Plan and Reclamation Plan. These plans conform to NMAC 19.15.36.18 and BLM requirements.

The facility has been reclaimed pursuant to the attached Grading plan and Reclamation Plan. The reclamation plan includes soil amendments approved by the BLM to facilitate growth at this location. The site has been seeded with a seed mixture containing a minimum of three (3) native plant species, including at least one (1) native grass, not including noxious weeds. The *seed mixture analysis* and the invoice for seeding from Ridgeline Seeding and Reclamation, Inc. have been attached for your reference.

13) The post-closure care period for the evaporation pond closure shall be three years if XTO has achieved clean closure. During that period XTO or another responsible entity shall regularly inspect and maintain the required re-vegetation. If there has been a release to the vadose zone or to groundwater, then XTO shall comply with applicable requirements of 19.15.29 and 19.15.30 NMAC in accordance with Subsection F on NMAC 19.15.36.18.

No release has been confirmed in the Vadose Zone

14) Once all closure activities have been completed, a report detailing on-site activities and sampling results will be prepared and submitted to OCD environmental bureau in Santa Fe.

This report is intended to be the above mentioned closure report.

XTO Energy, Inc. has completed closure activities at Evaporation Pond #2 located in Section 26, Township 32N, Range 9W, San Juan County, New Mexico. Pending approval of this closure plan, Evaporation Pond #2 will no longer be permitted as a Centralized Waste Facility regulated by the OCD.

James McDaniel, CHMM #15676 EH&S Supervisor

www.delorme.com

MN (10.0° E)

Data Zoom 14-4

5217

30-045-24591

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS NORTHWESTERN NEW MEXICO (Submit 3 copies to OCD Aztec Office)

Operator KOCH EXPLORATION COMPANY Location: Unit <u>G</u> Sec. <u>26</u> Twp32 Rng <u>9</u> Name of Well/Wells or Pipeline Serviced <u>GARDNER-5</u>

Elevation 6570 'Completion Date 11-8-85 Total Depth 397' Land Type F-NM-013642 Casing, Sizes, Types & Depths NONE If Casing is cemented, show amounts & types used NONE If Cement or Bentonite Plugs have been placed, show depths & amounts used NONE Depths & thickness of water zones with description of water when possible: Fresh, Clear, Salty, Sulphur, Etc. @-40'-CLEAR, ALKALT. Depths gas encountered: ______ NONE Type & amount of coke breeze used: <u>METALLURGICAL,3500#</u> Depths anodes placed: 375'-365'-355'-345'-290'-250'-200'-120'-110'-35' Depths vent pipes placed: 390' Vent pipe perforations: FROM 75'DOWN MARI GISSO Remarks: ON COR. DR

If any of the above data is unavailable, please indicate so. Copies of all logs, including Drillers Log, Water Analyses & Well Bore Schematics should be submitted when available. Unplugged abandoned wells are to be included.

*Land Type may be shown: F-Federal; I-Indian; S-State; P-Fee. If Federal or Indian, add Lease Number.

LT Environmental, Inc.

2243 Main Avenue, Suite 3 Durango, Colorado 81301 T 970.385.1096 / F 970.385.1873

June 28, 2011

Mr. James McDaniel XTO Energy 382 CR 3100 Aztec, NM 87410

RE: Soil Investigation Results XTO Energy, Inc. Centralized Evaporation Pond #2 Permit NM-02-0008 San Juan County, New Mexico

Dear Mr. McDaniel:

LT Environmental, Inc. (LTE) is pleased to provide XTO Energy, Inc. (XTO) with this letter summarizing the results of soil sampling activities at the Centralized Evaporation Pond #2, permit number NM-02-0008 (Site). The Site is located in the southeast ¼ of the northwest ¼ of Section 26 in Township 32 North, Range 9 West, San Juan County, New Mexico (Figure 1). LTE collected soil samples for closure of the evaporation pond, which was used by previous operators to dispose of produced water generated at nearby natural gas wells.

SOIL SAMPLING

XTO removed all water and sediment from the pond, the pond liner, and any other facility equipment prior to sampling. On May 16 and May 23, 2011, LTE collected ten composite soil samples and one background soil sample from locations specified in the January 13, 2011 closure plan submitted by XTO to the New Mexico Oil Conservation Division (NMOCD) and approved by the NMOCD on February 17, 2011. LTE conducted a visual investigation of the Site and did not observe any stained or moist soil from which to collect additional samples.

Composite soil sample locations are shown in Figure 2. Four ten-point composite samples were collected from beneath the former pond liner including the bottom and side walls of the pond (Samples A, B, C, and D). Five-point composite samples were collected beneath the former leak detection sump (Sample E), beneath the former liquids receiving and treatment area (Sample F), and from four areas outside of the former berm (Samples G, H, I, and J). A discrete background sample was collected from the ground surface outside of the facility perimeter in the estimated up-gradient direction (west). For each composite soil sample, LTE deposited the appropriate number of aliquots of soil into plastic bags, thoroughly mixed the contents and sampled into 4-ounce glass jars. The soil samples were stored on ice and shipped in a cooler to Environmental Science Corporation in Mt. Juliet, Tennessee, and Hall Environmental Analysis Laboratory in Albuquerque, New Mexico following strict chain of custody procedures. The soil samples were analyzed for benzene, toluene, ethylbenzene, and total xylenes by United States Environmental Protection Agency (USEPA) Method 8021B and total petroleum hydrocarbons by USEPA Method 418.1. Additionally, the following constituents listed in Subsections A and B of

COMPLIANCE / ENGINEERING / REMEDIATION

J. McDaniel Page 2

20.6.2.3103 of the New Mexico Administrative Code were analyzed based on knowledge of process: arsenic, barium, cadmium, chromium, cyanide, fluoride, lead, total mercury, nitrate, selenium, silver, uranium, combined radioactivity, copper, iron, manganese, chloride, sulfate, total dissolved solids, zinc, and pH.

RESULTS

Table 1 lists the soil analytical results determined in the background sample and composite closure samples. The complete laboratory analytical report is attached as Appendix A.

LTE appreciates the opportunity to provide environmental services to XTO. If you have any questions regarding this report, please contact us at (970) 385-1096.

Sincerely,

LT ENVIRONMENTAL, INC.

ablay L Olyn

Ashley L. Ager, M.S. Senior Geologist/Office Manager

Attachments (4)

Figure 1 – Site Location Map Figure 2 – Soil Sampling Location Map

Table 1 - Soil Analytical Results

Appendix A - Laboratory Analytical Reports

Jul No

Brooke Herb Staff Geologist

FIGURES

P:XTO Energy/GIS/MXD/012911006 CORONADO/012911006_CORONADO_#2_FIG01_SL.mxd

TABLE

TABLE 1

SOIL SAMPLE RESULTS **CENTRALIZED EVAPORATION POND #2 XTO ENERGY, INC.**

	Sample ID	Background	A	B	C	D	E	F	G	н	1	J
S	ample Date	5/23/2011	5/23/2011	5/23/2011	5/23/2011	5/23/2011	5/16/2011	5/23/2011	5/23/2011	5/23/2011	5/23/2011	5/23/2011
Analyte	Units											1.1
Benzene	mg/kg	< 0.0028	< 0.0028	< 0.0029	< 0.0028	<0.0028	< 0.0029	< 0.0029	< 0.0029	<0.0028	< 0.0029	< 0.0029
Toluene	mg/kg	< 0.028	<0.028	<0.029	<0.028	< 0.028	< 0.029	< 0.029	< 0.029	< 0.028	< 0.029	< 0.029
Ethylbenzene	mg/kg	< 0.0028	<0.0028	< 0.0029	<0.0028	<0.0028	< 0.0029	< 0.0029	< 0.0029	<0.0028	<0.0029	<0.0029
Total Xylene	mg/kg	< 0.0084	<0.0085	<0.0086	<0.0085	< 0.0086	<0.0086	< 0.0086	< 0.0086	< 0.0085	< 0.0087	<0.0088
Total Petroleum Hydrocarbons	mg/kg	<20	<20	<20	<20	<20	<20	43	<20	<20	<20	<20
pH	S.U.	8.1	8.3	8.2	9.3	8.7	7.6	8.7	9.3	10.0	8.7	9.6
Total Dissolved Solids	%	89	88	87	88	88	87	87	87	88	87	86
Sulfate	mg/kg	<56	190	360	190	110	370	<57	560	400	490	500
Nitrate	mg/kg	6.4	<1.1	1.6	1.8	<1.1	2.9	5.6	7.7	3.7	11.0	7.9
Chloride	mg/kg	58	69	68	120	68	140	150	620	560	370	680
Uranium	mg/kg	<25	<25	<25	<25	<25	<25	<25	<25	<25	<50	<25
Arsenic	mg/kg	2.1	1.9	1.6	<1.1	<1.1	2.4	3.3	1.4	<1.1	1.2	<1.2
Barium	mg/kg	780	160	640	220	220	200	250	300	1,000	270	470
Cadmium	mg/kg	< 0.28	<0.28	< 0.29	< 0.28	< 0.28	0.48	< 0.29	< 0.29	< 0.28	< 0.29	< 0.29
Chromium	mg/kg	9.7	10.0	11.0	10.0	11.0	12.0	13.0	13.0	11.0	10.0	12.0
Cyanide	mg/kg	<0.28	< 0.28	< 0.29	<0.28	<0.28	<0.29	<0.29	< 0.29	<0.28	< 0.29	< 0.29
Fluoride	mg/kg	3.3	17.0	16.0	17.0	12.0	7.2	6.2	14.0	26.0	28.0	17.0
Lead	mg/kg	11.0	9.3	10.0	9.5	10.0	8.7	12.0	11.0	10.0	9.8	10.0
Mercury	mg/kg	<0.022	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023
Selenium	mg/kg	<1.1	4.6	<1.1	1.6	1.8	11.0	<1.1	1.2	<1.1	<1.2	<1.2
Silver	mg/kg	<0.56	<0.57	0.64	< 0.57	0.80	<0.58	0.63	0.60	0.72	<0.58	0.64
Copper	mg/kg	9.1	10.0	10.0	13.0	10.0	13.0	8.9	11.0	12.0	12.0	11.0
Iron	mg/kg	14,000	13,000	16,000	16,000	18,000	14,000	15,000	18,000	17,000	16,000	18,000
Manganese	mg/kg	380	140	250	200	190	310	370	230	170	170	190
Zinc	mg/kg	38	34	50	47	47	31	41	53	50	52	51
Radium-226	pCi/g	0.700	0.963	1.050	1.050	1.040	1.010	1.050	0.906	1.220	1.050	0.906
Radium -228	pCi/g	1.300	1.480	1.340	1.450	1.280	1.830	1.160	1.440	1.460	1.280	1.210
Combined Radioactivity	pCi/g	2.000	2.443	2.390	2.500	2.320	2.840	2.210	2.346	2.680	2.330	2.116

Notes:

% - percent mg/kg - milligram per kilogram pCi/g - PicoCurries per gram S.U. - Standard unit

Pond #2_Table 1.xlsx

APPENDIX A

LABORATORY ANALYTICAL REPORTS

Tax I.D. 62-0814289

Est. 1970

James McDaniel XTO Energy - San Juan Division 382 Road 3100 Aztec, NM 87410

Report Summary

Friday June 03, 2011

Report Number: L517393 Samples Received: 05/24/11 Client Project:

Description: Coronado Pond 2

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Daphne Richards , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002,NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032008A, TX - T104704245, OK-9915

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Page 1 of 22

Tax I.D. 62-0814289

Est. 1970

	PEPOP	OF ANALYSTS				
James McDaniel XTO Energy - San Juan Division 382 Road 3100 Aztec, NM 87410	REPORT	OF ANALISIS	Ju	ne 03,2011		
			ES	C Sample # :	L517393-01	£
Date Received : May Description : Coronado F	24, 2011 Pond 2		ci	ID (OPONADO BOND	2
Sample ID : A			51		LORONADO POND	4
Collected By : Collection Date : 05/23/11 1	2:00		Pro	oject # :		
Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil
Chloride Fluoride Nitrate Sulfate	69. 17. BDL 190	11. 1.1 1.1 57.	mg/kg mg/kg mg/kg mg/kg	9056 9056 9056 9056	05/25/11 05/25/11 05/25/11 05/25/11	1 1 1
Cyanide	BDL	0.28	mg/kg	9012B	06/02/11	1
pH	8.3		su	9045D	05/27/11	1
Total Solids	88.		s	2540G	06/01/11	1
Mercury	BDL	0.023	mg/kg	7471	05/26/11	1
Arsenic Barium Cadmium Chromium Copper	1.9 160 BDL 10.	1.1 0.28 0.28 0.57 1.1	mg/kg mg/kg mg/kg mg/kg mg/kg	6010B 6010B 6010B 6010B 6010B	05/26/11 05/26/11 05/26/11 05/26/11 05/26/11	1 1 1 1
Iron Lead Manganese Selenium	13000 9.3 140 4.6	5.7 0.28 0.57	mg/kg mg/kg mg/kg	6010B 6010B 6010B 6010B	05/26/11 05/26/11 05/26/11 05/26/11	1 1 1
Silver Zinc	BDL 34.	0.57	mg/kg mg/kg	6010B 6010B	05/26/11 05/26/11	1 1
Benzene Toluene Ethylbenzene Total Xylene Surrogate Percurry(%)	BDL BDL BDL BDL	0.0028 0.028 0.0028 0.0085	mg/kg mg/kg mg/kg mg/kg	8021B 8021B 8021B 8021B	05/25/11 05/25/11 05/25/11 05/25/11	5555
a,a,a-Trifluorotoluene(PID)	99.0		% Rec.	8021B	05/25/11	5

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/03/11 14:07 Printed: 06/03/11 14:30 L517393-01 (PH) - 8.3@21.0c

Page 2 of 22

Tax I.D. 62-0814289

Est. 1970

		REPORT	OF ANALYSIS					
James McDaniel XTO Energy - San Juar	n Division			June 03,2011				
382 Road 3100 Aztec, NM 87410								
				ES	C Sample # :	L517393-02		
Date Received : M Description : 0	Aay 24, 20 Coronado Pond 2	011						
Sample ID : H	3			Si	te ID : CO	DRONADO POND	2	
Collocated Du				Pr	oject # :			
Collection Date : (05/23/11 12:06							
Parameter		Dry Result	Det. Limit	Units	Method	Date	Dil	
Chloride		68.	11.	mg/kg	9056	05/25/11	1	
Fluoride		16.	1.1	mg/kg	9056	05/25/11	1	
Nitrate		1.6	1.1	mg/kg	9056	05/25/11	1	
Sulfate		360	57.	mg/kg	9056	05/25/11	1	
Cyanide		BDL	0.29	mg/kg	9012B	05/26/11	1	
pH		8.2		su	9045D	05/27/11	l	
Total Solids		87.		20	2540G	06/01/11	1	
Mercury		BDL	0.023	mg/kg	7471	05/25/11	1	
Arsenic		1.6	1.1	mg/kg	6010B	05/25/11	1	
Barium		640	0.29	mg/kg	6010B	05/25/11	1	
Cadmium		BDL	0.29	mg/kg	6010B	05/25/11	1	
Chromium		11.	0.57	mg/kg	6010B	05/25/11	1	
Copper		10.	1.1	mg/kg	6010B	05/25/11	1	
Iron		16000	5.7	mg/kg	6010B	05/25/11	1	
Lead		10	0.29	mg/kg	6010B	05/25/11	1	
Manganese		250	0.57	ma/ka	6010B	05/25/11	1	
Selenium		BDL	1 1	mg/kg	6010B	05/25/11	1	
Silver		0 64	0.57	mg/kg	60108	05/25/11	1	
Zinc		50.	1.7	mg/kg	6010B	05/25/11	ī	
Benzene		BDI.	0 0029	ma /ka	8021B	05/26/11	5	
Toluene		BDL	0.029	mg/kg	8021B	05/26/11	5	
Ethylbenzene		BDL	0.0029	malka	80218	05/26/11	5	
Total Xylene		BDL	0.0086	mg/kg	8021B	05/26/11	5	
Surrogate Recovery(2)		505	0.0000	malva	OVELD	00/20/11	5	
a, a, a-Trifluorotolu	uene (PID)	104.		% Rec.	8021B	05/26/11	5	

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/03/11 14:07 Printed: 06/03/11 14:30 L517393-02 (PH) - 8.2@21.0c

Page 3 of 22

Tax I.D. 62-0814289

Est. 1970

James McDaniel XTO Energy - San Juan Division 382 Road 3100 Aztec, NM 87410	REPORT	OF ANALYSIS	Ju	ne 03,2011		
Date Received : May 24, Description : Coronado Pond	2011		ES	C Sample #	: L517393-03	3
Sample ID : C			Sit	te ID :	CORONADO POND	2
			Pro	oject # :		
Collected By : Collection Date : 05/23/11 12:12						
Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil
Chloride	120	11.	mg/kg	9056	05/25/11	1
Fluoride	17.	1.1	mg/kg	9056	05/25/11	1
Nitrate	1.8	1 1	mg/kg	9056	05/25/11	1
Sulfate	190	57.	mg/kg	9056	05/25/11	1
Cyanide	BDL	0.28	mg/kg	9012B	05/26/11	1
pH	9.3		su	9045D	05/27/11	1
Total Solids	88.		ofe	2540G	06/01/11	1
Mercury	BDL	0.023	mg/kg	7471	05/26/11	1
Arsenic	BDL	1.1	mg/kg	6010B	05/25/11	1
Barium	220	0.28	mg/kg	6010B	05/25/11	1
Cadmium	BDL	0.28	mg/kg	6010B	05/25/11	1
Chromium	10	0.57	ma/ka	6010B	05/25/11	1
Copper	13.	1.1	ma/ka	6010B	05/25/11	1
Iron	16000	5.7	ma/ka	6010B	05/25/11	1
Lead	9 5	0.28	ma/ka	6010B	05/25/11	1
Manganese	200	0.57	ma/ka	6010B	05/25/11	1
Selenium	1 6	1 1	mg/kg	6010B	05/25/11	ī
Silver	BDL	0.57	ma/ka	6010B	05/25/11	1
Zinc	47.	1.7	mg/kg	6010B	05/25/11	1
Banzana	ppt	0 0028	malka	80.21P	05/26/11	5
Toluene	BDL	0.0028	mg/kg	80218	05/26/11	5
Pthylhonzono	BDL	0.028	mg/kg	8021B	05/26/11	5
Total Valence	BUL	0.0028	mg/kg	80218	05/26/11	5
Surrogate Decevery (%)	BDL	0.0085	mg/kg	SONTB	05/26/11	5
a a a-Trifluorotoluene(PTD)	105		2 Pac	80218	05/26/11	5
a fing the state and a OCOAGETIC (FID)	±00.		" MEC.	00210	00/40/11	_

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/03/11 14:07 Printed: 06/03/11 14:30 L517393-03 (PH) - 9.3021.30

Page 4 of 22

% Rec. 8021B

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

ESC Sample # : L517393-04 Site ID : CORONADO POND 2

Project # :

June 03,2011

Collected By : Collection Date : 05/23/11 12:17

Date Received : May 24, 2011 Description : Coronado Pond 2

James McDaniel XTO Energy - San Juan Division 382 Road 3100 Aztec, NM 87410

Sample ID : D

arameter	Dry Result	Det. Limit	Units	Method	Date	Dil
Chloride	68.	11.	mg/kg	9056	05/25/11	1
Fluoride	12.	1.1	mg/kg	9056	05/25/11	1
Nitrate	BDL	1.1	mg/kg	9056	05/25/11	1
Sulfate	110	57.	mg/kg	9056	05/25/11	1
Cyanide	BDL	0.28	mg/kg	9012B	05/26/11	1
рн	8.7		su	9045D	05/27/11	1
Total Solids	88.		ala	2540G	06/01/11	1
Mercury	BDL	0.023	mg/kg	7471	05/26/11	1
Arsenic	BDL	1.1	mg/kg	6010B	05/25/11	1
Barium	220	0.28	mg/kg	6010B	05/25/11	1
Cadmium	BDL	0.28	mg/kg	6010B	05/25/11	1
Chromium	11.	0.57	mg/kg	6010B	05/25/11	1
Copper	10.	1.1	mg/kg	6010B	05/25/11	1
Iron	18000	5.7	mg/kg	6010B	05/25/11	1
Lead	10.	0.28	mg/kg	6010B	05/25/11	1
Manganese	190	0.57	mg/kg	6010B	05/25/11	1
Selenium	1.8	1.1	mg/kg	6010B	05/25/11	1
Silver	0.80	0.57	mg/kg	6010B	05/25/11	1
Zinc	47.	1.7	mg/kg	6010B	05/25/11	1
Benzene	BDL	0.0028	mg/kg	8021B	05/26/11	5
Toluene	BDL	0.028	mg/kg	8021B	05/26/11	5
Ethylbenzene	BDL	0.0028	mg/kg	8021B	05/26/11	5
Total Xylene	BDL	0.0086	mg/kg	8021B	05/26/11	5
progate Recovery (%)						
a.a.a-Trifluorotoluene(PID)	106		& Rec.	8021B	05/26/11	5

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/03/11 14:07 Printed: 06/03/11 14:30 L517393-04 (PH) - 8.7021.1c

Page 5 of 22

Tax I.D. 62-0814289

Est. 1970

	REPORT	OF ANALYSIS				
James McDaniel XTO Energy - San Juan Division 382 Road 3100 Aztec, NM 87410			Ju	ne 03,2011		
Date Received : May 24,	2011		ES	C Sample # :	L517393-05	;
Description : Coronado Pond	2		c i	TO . C	ORONADO POND	2
Sample ID : F			51		ORONADO TOND	-
Collected By : Collection Date : 05/23/11 12:22			PI	bject # :		
Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil
Chloride	150	11.	mg/kg	9056	05/25/11	1
Fluoride	6.2	1.1	mg/kg	9056	05/25/11	1
Nitrate	5.6	1.1	mg/kg	9056	05/25/11	1
Sulfate	BDL	57.	mg/kg	9056	05/25/11	1
Cyanide	BDL	0.29	mg/kg	9012B	05/26/11	1
pH	8.7		su	9045D	05/27/11	l
Total Solids	87.		ajo	2540G	06/01/11	1
Mercury	BDL	0.023	mg/kg	7471	05/26/11	1
Arsenic	3.3	1.1	mg/kg	6010B	05/25/11	1
Barium	250	0.29	mg/kg	6010B	05/25/11	1
Cadmium	BDL	0.29	mg/kg	6010B	05/25/11	1
Chromium	13.	0.57	mg/kg	6010B	05/25/11	1
Copper	8.9	1.1	mg/kg	6010B	05/25/11	1
Iron	15000	5.7	mg/kg	6010B	05/25/11	1
Lead	12.	0.29	mg/kg	6010B	05/25/11	1
Manganese	370	0.57	mg/kg	6010B	05/25/11	1
Selenium	BDL	1.1	mg/kg	6010B	05/25/11	1
Silver	0.63	0.57	mg/kg	6010B	05/25/11	1
Zinc	41.	1.7	mg/kg	6010B	05/25/11	1
Benzene	BDL	0.0029	mg/kg	8021B	05/26/11	5
Toluene	BDL	0.029	mg/kg	8021B	05/26/11	5
Ethylbenzene	BDL	0.0029	mg/kg	8021B	05/26/11	5
Total Xylene	BDL	0.0086	mg/kg	8021B	05/26/11	5
Surrogate Recovery(%)						
a,a,a-Trifluorotoluene(PID)	105.		% Rec.	8021B	05/26/11	5

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/03/11 14:07 Printed: 06/03/11 14:30 L517393-05 (PH) - 8.7@21.0c

Page 6 of 22

Tax I.D. 62-0814289

Est. 1970

	PPDOPT	OF ANALYSTS				
James McDaniel XTO Energy - San Juan Division 382 Road 3100 Aztec, NM 87410	KBFORI	OF AMADIBIS	Jur	ne 03,2011		
			ESC	Sample # .	1.517393-06	
Date Received : May 24, 201 Description : Coronado Pond 2	1		cit	e ID · C	OPONADO POND	2
Sample ID : G			Dave			~
Collected By : Collection Date : 05/23/11 12:27			PIC)ject # :		
Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Chloride Fluoride Nitrate Sulfate	620 14. 7.7 560	12. 1.2 1.2 58.	mg/kg mg/kg mg/kg mg/kg	9056 9056 9056 9056	05/25/11 05/25/11 05/25/11 05/25/11	1 1 1 1
Cyanide	BDL	0.29	mg/kg	9012B	05/26/11	1
рН	9.3		su	9045D	05/27/11	1
Total Solids	87.		dia	2540G	06/01/11	1
Mercury	BDL	0.023	mg/kg	7471	05/26/11	1
Barium Cadmium Chromium Copper Iron Lead Manganese Selenium Silver Zinc	300 BDL 13. 11. 18000 11. 230 1.2 0.60 53.	0.29 0.29 0.58 1.2 5.8 0.29 0.58 1.2 0.58 1.2 0.58	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	05/25/11 05/25/11 05/25/11 05/25/11 05/25/11 05/25/11 05/25/11 05/25/11 05/25/11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Benzene Toluene Ethylbenzene Total Xylene Surrogate Recovery(%)	BDL BDL BDL BDL	0.0029 0.029 0.0029 0.0086	mg/kg mg/kg mg/kg mg/kg	8021B 8021B 8021B 8021B	05/25/11 05/25/11 05/25/11 05/25/11	5555
a, a, a-Trifluorotoluene (PID)	101.		% Rec.	8021B	05/25/11	5

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/03/11 14:07 Printed: 06/03/11 14:30 L517393-06 (PH) - 9.3021.0c

Page 7 of 22

Tax I.D. 62-0814289

Est. 1970

James McDaniel	REPORT	F OF ANALYSIS	Ju	ne 03,2011		
XTO Energy - San Juan Division 382 Road 3100 Aztec, NM 87410						
Date Received : May 24, 20 Description : Coronado Pond 2	011		ES	C Sample #	: L517393-07	7
Sample ID : H			Si	te ID : (CORONADO POND	2
Collected By : Collection Date : 05/23/11 12:39			Pr	oject # :		
Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil
Chloride Fluoride Nitrate Sulfate	560 26. 3.7 400	11. 1.1 1.1 57.	mg/kg mg/kg mg/kg mg/kg	9056 9056 9056 9056	05/25/11 05/25/11 05/25/11 05/25/11	1 1 1 1
Cyanide	BDL	0.28	mg/kg	9012B	05/26/11	1
pH	10.		su	9045D	05/27/11	1
Total Solids	88.		90	2540G	06/01/11	1
Mercury	BDL	0.023	mg/kg	7471	05/26/11	1
Barium Cadmium Chromium Copper Iron Lead Manganese Selenium Silver Zinc	BDL 1000 BDL 11. 12. 17000 10. 170 BDL 0.72 50.	0.28 0.28 0.57 1.1 5.7 0.28 0.57 1.1 0.57 1.7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B	05/26/11 05/26/11 05/26/11 05/26/11 05/26/11 05/26/11 05/26/11 05/26/11 05/26/11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Benzene Toluene Ethylbenzene Total Xylene Surrogate Recovery(%)	BDL BDL BDL BDL	0.0028 0.028 0.0028 0.0085	mg/kg mg/kg mg/kg mg/kg	8021B 8021B 8021B 8021B	05/25/11 05/25/11 05/25/11 05/25/11	5 6 5 5
a, a, a-Trifluorotoluene (PID)	102.		% Rec.	8021B	05/25/11	5

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/03/11 14:07 Printed: 06/03/11 14:30 L517393-07 (PH) - 10.3@20.7c

Page 8 of 22

Sample ID

James McDaniel XTO Energy - San Juan Division 382 Road 3100 Aztec, NM 87410

Date Received : May 24, 2011 Description : Coronado Pond 2

: I

12065 Lebanon Rd. 12055 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

June 03,2011

ESC Sample # : L517393-08

Site ID : CORONADO POND 2

Project # :

		Pro	oject # :		
Dry Result	Det. Limit	Units	Method	Date	Dil
370	12.	ma/ka	9056	05/25/11	1
28.	1.2	mg/kg	9056	05/25/11	1
11.	1.2	mg/kg	9056	05/25/11	1
490	58.	mg/kg	9056	05/25/11	1
BDL	0.29	mg/kg	9012B	05/26/11	1
8.7		su	9045D	05/27/11	1
87.		5	2540G	06/01/11	1
BDL	0.023	mg/kg	7471	05/26/11	1
1.2	1.2	mg/kg	6010B	05/26/11	1
270	0.29	mg/kg	6010B	05/26/11	1
BDL	0.29	mg/kg	6010B	05/26/11	1
10.	0.58	mg/kg	6010B	05/26/11	1
12.	1.2	mg/kg	6010B	05/26/11	1
16000	5.8	mg/kg	6010B	05/26/11	1
9.8	0.29	mg/kg	6010B	05/26/11	1
170	0.58	mg/kg	6010B	05/26/11	1
BDL	1.2	mg/kg	6010B	05/26/11	1
BDL	0.58	mg/kg	6010B	05/26/11	1
52.	1.7	mg/kg	6010B	05/26/11	1
BDL	0.0029	mg/kg	8021B	05/25/11	5
BDL	0.029	mg/kg	8021B	05/25/11	5
BDL	0.0029	mg/kg	8021B	05/25/11	5
BDL	0.0087	mg/kg	8021B	05/25/11	5
106		P. Poc	80218	05/25/11	5
	Dry Result 370 28. 11. 490 BDL 8.7 87. BDL 1.2 270 BDL 10. 12. 16000 9.8 170 BDL BDL 52. BDL BDL BDL BDL 1.20 2.20 1.2	Dry Result Det. Limit 370 12. 28. 1.2 11. 1.2 490 58. BDL 0.29 8.7 87. BDL 0.023 1.2 1.2 270 0.29 BDL 0.29 1.2 1.2 270 0.29 BDL 0.29 10. 0.58 12. 1.2 16000 5.8 9.8 0.29 170 0.58 BDL 1.2 BDL 0.58 52. 1.7 BDL 0.0029 BDL	Dry Result Det. Limit Units 370 12. mg/kg 28. 1.2 mg/kg 11. 1.2 mg/kg 490 58. mg/kg BDL 0.29 mg/kg 8.7 su 87. * BDL 0.023 mg/kg 1.2 1.2 mg/kg 1.2 1.2 mg/kg 87. * * BDL 0.023 mg/kg 1.2 1.2 mg/kg 1.2 1.2 mg/kg 1.2 1.2 mg/kg 12. 1.2 mg/kg 10. 0.58 mg/kg 12. 1.2 mg/kg 170 0.58 mg/kg 12.1 1.2 mg/kg BDL 0.58 mg/kg BDL 0.58 mg/kg BDL 0.58 mg/kg BDL 0.0029	Dry Result Det. Limit Units Method 370 12. mg/kg 9056 28. 1.2 mg/kg 9056 11. 1.2 mg/kg 9056 490 58. mg/kg 9056 BDL 0.29 mg/kg 9012B 8.7 su 9045D 87. % 2540G BDL 0.023 mg/kg 6010B 270 0.29 mg/kg 6010B 270 0.29 mg/kg 6010B 1.2 1.2 mg/kg 6010B 12. 1.2 mg/kg 6010B 10. 0.58 mg/kg 6010B 12. 1.2 mg/kg 6010B 170 0.58 mg/kg 6010B 170 0.58 mg/kg 6010B BDL 1.2 mg/kg 6010B BDL 0.58 mg/kg 6010B BDL <t< td=""><td>Dry Result Det. Limit Units Method Date 370 12. mg/kg 9056 05/25/11 28. 1.2 mg/kg 9056 05/25/11 11. 1.2 mg/kg 9056 05/25/11 490 58. mg/kg 9056 05/25/11 BDL 0.29 mg/kg 9012B 05/26/11 8.7 su 9045D 05/27/11 87. % 2540G 06/01/11 BDL 0.023 mg/kg 7471 05/26/11 1.2 1.2 mg/kg 6010B 05/26/11 1.2 1.2 mg/kg 6010B 05/26/11 1.2 1.2 mg/kg 6010B 05/26/11 10. 0.58 mg/kg 6010B 05/26/11 12. 1.2 mg/kg 6010B 05/26/11 13.0 0.58 mg/kg 6010B 05/26/11 14.1 1.2 mg/kg <td< td=""></td<></td></t<>	Dry Result Det. Limit Units Method Date 370 12. mg/kg 9056 05/25/11 28. 1.2 mg/kg 9056 05/25/11 11. 1.2 mg/kg 9056 05/25/11 490 58. mg/kg 9056 05/25/11 BDL 0.29 mg/kg 9012B 05/26/11 8.7 su 9045D 05/27/11 87. % 2540G 06/01/11 BDL 0.023 mg/kg 7471 05/26/11 1.2 1.2 mg/kg 6010B 05/26/11 1.2 1.2 mg/kg 6010B 05/26/11 1.2 1.2 mg/kg 6010B 05/26/11 10. 0.58 mg/kg 6010B 05/26/11 12. 1.2 mg/kg 6010B 05/26/11 13.0 0.58 mg/kg 6010B 05/26/11 14.1 1.2 mg/kg <td< td=""></td<>

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/03/11 14:07 Printed: 06/03/11 14:30 L517393-08 (PH) - 8.7@20.9c

Page 9 of 22

Tax I.D. 62-0814289

Est. 1970

James McDaniel	REPORT	F OF ANALYSIS	.711	ne 03,2011		
XTO Energy - San Juan Division 382 Road 3100 Aztec, NM 87410						
			ES	C Sample # :	L517393-09	Э
Date Received : May 24, 2 Description : Coronado Pond 2	011		C i		DECNADO DOND	2
Sample ID : J			51	ce in : c	ORONADO POND	4
Collected By : Collection Date : 05/23/11 12:30			PI	bject # :		
Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil.
Chloride	680	12.	mg/kg	9056	05/25/11	1
Fluoride	17.	1.2	mg/kg	9056	05/25/11	1
Nítrate	7.9	1.2	mg/kg	9056	05/25/11	1
Sulfate	500	58.	mg/kg	9056	05/25/11	1
Cyanide	BDL	0.29	mg/kg	9012B	05/26/11	1
pH	9.6		su	9045D	05/27/11	1
Total Solids	86.		ofo	2540G	06/01/11	l
Mercury	BDL	0.023	mg/kg	7471	05/26/11	1
Arsenic	BDL	1.2	mg/kg	6010B	05/26/11	1
Barium	470	0.29	mg/kg	6010B	05/26/11	1
Cadmium	BDL	0.29	mg/kg	6010B	05/26/11	1
Chromium	12.	0.58	mg/kg	6010B	05/26/11	1
Copper	11.	1.2	mg/kg	6010B	05/26/11	1
Iron	18000	5.8	mg/kg	6010B	05/26/11	1
Lead	10.	0.29	mg/kg	6010B	05/26/11	1
Manganese	190	0.58	mg/kg	6010B	05/26/11	1
Selenium	BDL	1.2	mg/kg	6010B	05/26/11	1
Silver	0.64	0.58	mg/kg	6010B	05/26/11	1
Zinc	51.	1.8	mg/kg	6010B	05/26/11	1
Benzene	BDL	0.0029	mg/kg	8021B	05/25/11	5
Toluene	BDL	0.029	mg/kg	8021B	05/25/11	5
Ethylbenzene	BDL	0.0029	mg/kg	8021B	05/25/11	5
Total Xylene	BDL	0.0088	mg/kg	8021B	05/25/11	5
a,a,a-Trifluorotoluene(PID)	106.		% Rec.	8021B	05/25/11	5

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/03/11 14:07 Printed: 06/03/11 14:30 L517393-09 (PH) - 9.6020.6c

Page 10 of 22

2	ESC				12065 Le Mt. Juli (615) 75 1-800-76 Fax (615	banon Rd. et, TN 37122 8-5858 7-5859 5) 758-5859	
L·A·B	S.C.I.E.N.C.E.S				Tax I.D.	62-0814289	
YOUR	LAB OF CHOICE				Est. 197	0	
		REPOR	OF ANALYSIS				
	James McDaniel XTO Energy - San Juan Division 382 Road 3100 Aztec, NM 87410			Ju	ne 03,2011		
	Date Received : May 24,	2011		ES	C Sample # :	L517393-10	0
	Description : Coronado Pond	4		Si	te ID : C	ORONADO POND	2
	Sample ID : BACKGROUND			Pri	oject # :		
	Collected By : Collection Date : 05/23/11 12:35	5					
	Parameter	Dry Result	Det. Limit	Units	Method	Date	Dil
	Chloride	58.	11.	mg/kg	9056	05/25/11	1
	Fluoride	3.3	1.1	mg/kg	9056	05/25/11	1
	Nitrate	6.4	1.1	mg/kg	9056	05/25/11	1
	Sulfate	BDL	56.	mg/kg	9056	05/25/11	1
	Cyanide	BDL	0.28	mg/kg	9012B	05/26/11	1
	Нq	8.1		su	9045D	05/27/11	1
	Total Solids	89.		of	2540G	06/01/11	1
	Mercury	BDL	0.022	mg/kg	7471	05/26/11	1
	Arsenic	2.1	1.1	mg/kg	6010B	05/26/11	1
	Barium	780	0.28	mg/kg	6010B	05/26/11	1
	Cadmium	BDL	0.28	mg/kg	6010B	05/26/11	1
	Chromium	9 7	0.56	mg/kg	6010B	05/26/11	1
	Copper	9 1	1.1	mg/kg	6010B	05/26/11	1
	Irop	14000	5 6	mg/kg	6010B	05/26/11	1
	Land	11	0.00	mallea	C010P	05/26/11	1
	Management	200	0.20	mg/kg	COLOB	05/20/11	1
	nanganese	380	0.56	mg/kg	COLOB	05/26/11	1
	Selenium	BDL	1.1	mg/kg	6010B	05/26/11	1
	Silver	BDL	0.56	mg/kg	6010B	05/26/11	1
	Zinc	38.	1.7	mg/kg	6010B	05/26/11	1
	Benzene	BDL	0.0028	mg/kg	8021B	05/25/11	5
	Toluene	BDL	0.028	mg/kg	8021B	05/25/11	5
	Ethylbenzene	BDL	0.0028	mg/kg	8021B	05/25/11	5
	Total Xvlene	BDL	0.0084	mg/kg	8021B	05/25/11	5
	Surrogate Recovery(2)	10° 10° 4.1				00/20/44	-
	a a a-Trifluorotoluene(PID)	107		& Rec	8021B	05/25/11	5
	ajaja - i i i i u u u u u u u u u u u u u u u	+ • • • •		U Allandar y	W W #*	warf warf de de	1.00

Results listed are dry weight basis. BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 06/03/11 14:07 Printed: 06/03/11 14:30 L517393-10 (PH) - 8.1020.8c

Page 11 of 22

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
L517393-05	WG537164	SAMP	Barium	R1700509	v
	WG537164 WG537164	SAMP	Iron Manganese	R1700509	V V
	WG537164	SAMP	Selenium	R1700509	P1

Page 12 of 22

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
v	(ESC) - Additional QC Info: The sample concentration is too high to evaluate accurate spike recoveries.

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Bach qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

- Definitions Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples. Relates to how close together the results are and is represented by Relative Percent Differrence.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chem-ically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 13 of 22

YOUR LAB OF CHOICE XTO Energy - San Juan Division James McDaniel 382 Road 3100

Aztec, NM 87410

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L517393

June 03, 2011

		Laboratory	Blank			
Analyte	Result	Units	% Rec	Limit	Batch	Date Analyzed
Benzene	< .0005	mar/ka			WG537267	05/25/11 09:3
Ethylbenzene	< 0005	mg/kg			WG537267	05/25/11 09:3
Toluene	< .005	mg/kg			WG537267	05/25/11 09:3
Total Xvlene	< .0015	mg/kg			WG537267	05/25/11 09:3
a, a, a-Trifluorotoluene (PID)		% Rec.	107.2	54-144	WG537267	05/25/11 09:3
Arsenic	< 1	mg/kg			WG537164	05/25/11 11:0
Barium	< .25	mg/kg			WG537164	05/25/11 11:0
admium	< .25	mg/kg			WG537164	05/25/11 11:0
Chromium	< .5	mg/kg			WG537164	05/25/11 11:0
Copper	< 1	mg/kg			WG537164	05/25/11 11:0
Iron	< 5	mg/kg			WG537164	05/25/11 11:0
ead	< 25	marka			WG537164	05/25/11 11.0
langanese	5	mg/kg			WG537164	05/25/11 11.0
Selenium	- 1	mg/kg			W3537164	05/25/11 11.0
Silver	E	mg/kg			W/35 3 71 64	DE/DE/11 11.0
Zinc	< 1.5	mg/kg			WG537164	05/25/11 11:0
Chloride	< 10	malka			WG537769	05/25/11 10.4
luoride	- 10	mg/kg			WC537269	05/25/11 10.4
litrate		mg/kg			WG537208	05/25/11 10:4
Sulfate	< 50	mg/kg			WG537268	05/25/11 10:4
Mercury	< .02	mg/kg			WG537172	05/25/11 14:3
Penzeno	0.005				MGENZALG	05/25/11 17.2
2t hul hongong	< .0005	mg/kg			WG537316	05/25/11 1/:2
Schyrbenzene Teluana	2.0005	mg/kg			WG537316	05/25/11 17:2
Total Vicience	< .005	mg/kg			WG537316	05/25/11 17:2
a, a, a-Trifluorotoluene (PID)	< .0015	% Rec.	102.6	54-144	WG537316	05/25/11 17:2
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					的形成出现
Benzene	< .0005	mg/kg			WG537173	05/26/11 01:5
Sthylbenzene	< .0005	mg/kg			WG537173	05/26/11 01:5
foluene	< .005	mg/kg			WG537173	05/26/11 01:5
Total Xylene	< .0015	mg/kg			WG537173	05/26/11 01:5
a, a, a-Trifluorotoluene (PID)		% Rec.	104.4	54-144	WG537173	05/26/11 01:5
Arsenic	< 1	mg/kg			WG537166	05/26/11 12:1
Barium	< .25	mg/kg			WG537166	05/26/11 12:1
Cadmium	< .25	mg/kg			WG537166	05/26/11 12:1
Chromium	< .5	mg/kg			WG537166	05/26/11 12:1
Copper	< 1	mg/kg			WG537166	05/26/11 12:1
tron	< 5	mg/kg			WG537166	05/26/11 12:1
lead	\$.25	mg/kg			WG537166	05/26/11 12.1
Manganese	< 5	ma/ka			WG537166	05/26/11 12.1
Selenium	< 1	mg/kg			WG537166	05/26/11 12.1
Silver	\$.5	ma/ka			WG537166	05/26/11 12.1
Zinc	< 1.5	mg/kg			WG537166	05/26/11 12:1
Mercury	< .02	mg/kg			WG537237	05/26/11 10:4

Performance of this Analyte is outside of established criteria.
 Por additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 14 of 22

YOUR LAB OF CHOICE

XTO Energy - San Juan Division James McDaniel 382 Road 3100

Aztec, NM 87410

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L517393

June 03, 2011

		Laboratory	Blank				
Analyte	Result	Units	% Rec	Limit	Batch	Date Ana	lyzed
Cyanide	< .25	mg/kg			WG537202	05/26/11	13:59
Arsenic	< 1	mg/kg			WG537330	05/26/11	17:21
Barium	< .25	mg/kg			WG537330	05/26/11	17:21
Cadmium	< .25	mg/kg			WG537330	05/26/11	17:21
Chromium	< .5	mg/kg			WG537330	05/26/11	17:21
Copper	< 1	mg/kg			WG537330	05/26/11	17:21
Iron	< 5	mg/kg			WG537330	05/26/11	17:21
Lead	< .25	mg/kg			WG537330	05/26/11	17:21
Manganese	< .5	mg/kg			WG537330	05/26/11	17:21
Selenium	< 1	mg/kg			WG537330	05/26/11	17:21
Silver	< .5	mg/kg			WG537330	05/26/11	17:21
Zinc	< 1.5	mg/kg			WG537330	05/26/11	17:21
рН	3.70	su			WG537706	05/27/11	11:15
Total Solids	< .1	8			WG538160	06/01/11	11:20
Total Solida	< .1	\$			WG538159	06/01/11	11:36
Cyanide	< .25	mg/kg			WG538237	06/02/11	12:15

			Duplicate				
Analyte	Units	Result	Duplicate	RPD	Limit	Ref Samp	Batch
Arsenic	mg/kg	2.80	2.80	1.42	20	L517393-05	WG537164
Barium	mg/kg	190.	220.	13.1	20	L517393-05	WG537164
Cadmium	mg/kg	0	0	0	20	L517393-05	WG537164
Chromium	mg/kg	11.0	11.0	1.80	20	L517393-05	WG537164
Copper	mg/kg	7.40	7.80	5.26	20	L517393-05	WG537164
Iron	mg/kg	14000	13000	3.77	20	L517393-05	WG537164
Lead	mg/kg	9.80	10.0	1.61	20	L517393-05	WG537164
Manganese	mg/kg	300.	320.	5.79	20	L517393-05	WG537164
Selenium	mg/kg	2.30	0	NA	20	L517393-05	WG537164
Silver	mg/kg	0.660	0.550	18.9	20	L517393-05	WG537164
Zinc	mg/kg	35.0	36.0	2.25	20	L517393-05	WG537164
Sulfate	mg/kg	0	15.5	NA	20	L516850-05	WG537268
Mercury	mg/kg	0.0240	0.0200	19.8	20	L517313-01	WG537172
Arsenic	mg/kg	0.980	1.10	11.8	20	L517397-04	WG537166
Barium	mg/kg	20.0	23.0	16.5	20	L517397-04	WG537166
Cadmium	mg/kg	0	0	0	20	L517397-04	WG537166
Chromium	mg/kg	5.00	5.30	6.03	20	L517397-04	WG537166
Copper	mg/kg	2.90	3.32	12.5	20	L517397-04	WG537166
Iron	mg/kg	5100	5610	8.94	20	L517397-04	WG537166
Lead	mg/kg	2.10	2.30	7.21	20	L517397-04	WG537166
Manganese	mg/kg	140.	162.	12.5	20	L517397-04	WG537166
Selenium	mg/kg	1.10	0	NA	20	L517397-04	WG537166
Silver	mg/kg	0.250	0.320	23.0*	20	L517397-04	WG537166
* Devformance of this	. Realute is subside	6 astablishs	d autrauta				

Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 15 of 22

XTO Energy - San Juan Division James McDaniel 382 Road 3100 YOUR LAB OF CHOICE

Aztec, NM 87410

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L517393

June 03, 2011

Analyte	Units	Result	Duplicate	RPD	Limit	Ref Samp	Batch
Zinc	mg/kg	11.0	11.7	5.26	20	L517397-04	WG53716
Mercury	mg/kg	0	0	0	20	L517393-01	WG53723
Cyanide	mg/kg	0	0	0	20	L517393-08	WG537202
Cyanide	mg/kg	0	a	0	20	L517237-03	WG537202
Barium	mg/kg	280.	260.	8.47	20	L517500-02	WG53733
Cadmium	mg/kg	0.620	0.580	6.67	20	L517500-02	WG53733(
Chromium	ps//pm	18.0	22.0	20.0	20	L517500-02	WG537330
Copper	By/Bu	24.0	25.0	6.19	20	L517500-02	WG537330
Iron	mg/kg	13000	12600	5,41	20	L517500-02	WG53733(
Lead	mg/kg	14.0	13.0	6.69	20	L517500-02	WG53733(
Salanium	mg/kg	1 70	248.	5.38	20	1517500-02	WG53733
Silver	px/pm	0	0	0	20	1517500-02	WG53733
Zinc	mg/kg	43.0	43.0	0.700	20	L517500-02	WG53733(
Arsenic	mg/kg	15.0	14.0	5.56	20	L517500-02	WG537330
pH	su	7.30	7.30	0	1	1.517347-02	WG537706
μđ	ns	8.30	8.30	0	1	L517500-02	WG53770(
Total Solids	4	63.0	65.1	2.56	5	L517414-02	WG53816(
Total Solids	8	87.0	87.0	0.0934	5	L517313-22	WG538159
Cyanide	mg/kg	0	0	0	20	L517496-01	WG538237
Analyte	Units	Laborato Known V	ry Control Sa al R	mple esult	\$ Rec	Limit	Batch
Benzene	mg/kg	, 0 5	0.0	501	100.	76-113	WG53726
Toluene	mg/kg	- 05	0.0	487	97.4	76-114	WG537267
Total Xylene	mg/kg	.15	0.1	49	99.1	81-118	WG537267
Arsenic	ma/ka	192	170		100	8 0C1-2 0t	MOSTT AL

Barium Cadmium Chromium Copper Iron Lead Manganese Selenium Silver Zinc wg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 420 70.1 168 122 18100 113 441 113 441 115 115 115 384. 62.6 159. 120. 16400 16400 164.0 164. 164. 161. 111. 91.4 989.3 94.6 90.6 91.2 91.2 91.5 91.5 92.0 78.8-121.4 78.5-121.5 80.4-120.7 81.6-119.7 50.7-149.7 77.3-122.1 78.9-120.9 75.6-125.0 66-133.9 78.5-121.7 85-115 WG537164 WG537268

Chloride $$\rm mg/kg$$ * Performance of this Analyte is outside For additional information, please see 200 204. 102. of established criteria. Attachment A 'List of Analytes with QC Qualifiers.'

Page 16 of 22

YOUR LAB OF CHOICE

XTO Energy - San Juan Division James McDaniel 382 Road 3100 Aztec, NM 87410

Quality Assurance Report Level II

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Pax (615) 758-5859 Est. 1970 Tax I.D. 62-0814289

June 03, 2011

Analyte	Units	Known Val	Result	* Rec	Limit	Batch
Fluoride	mg/kg	20	20.1	101.	85-115	WG537268
Nitrate	mg/kg	20	20.0	100.	85-115	WG537268
Sulfate	mg/kg	200	206.	103.	85-115	WG537268
Mercury	mg/kg	8.77	7.72	88.0	71.6-127.7	WG537172
Benzene	mg/kg	50.	0.0528	106.	76-113	WG537316
Ethylbenzene	mg/kg	. 05	0.0534	107.	78-115	WG537316
Toluene	mg/kg	.05	0.0529	106.	76-114	WG537316
Total Xylene	mg/kg	.15	0.161	107.	81-118	WG537316
a, a, a-Trifluorotoluene (PID)				102.6	54-144	WG537316
Benzene	mg/kg	.05	0.0488	97.6	76-113	WG537173
Sthylbenzene	mg/kg	.05	0.0463	92.6	78-115	WG537173
Toluene	mg/kg	.05	0.0475	95.1	76-114	WG537173
rotal Xylene a,a,a-Trifluorotoluene(PID)	mg/kg	.15	0.144	96.3 105.4	81-118 54-144	WG537173 WG537173
Arsenic	mg/kg	192	188.	97.9	78.6-120.8	WG537166
Barium	mg/kg	420	411.	97.9	78.8-121.4	WG537166
Cadmium	mg/kg	70.1	68.4	97.6	78.5-121.5	WG537166
Copper	ma/ka	122	123	101.	81 6-119 7	M0537166
Iron	mg/kg	18100	18500	102.	50.7-149.7	WG537166
Lead	mg/kg	113	114.	101.	77.3-122.1	WG537166
Manganese	mg/kg	441	450.	102.	78.9-120.9	WG537166
Silver	mg/kg	176	176.	100.	66-133 9	WG537166
Zinc	mg/kg	437	433.	99.1	78.5-121.7	WG537166
Mercury	mg/kg	8.77	9.78	112.	71.6-127.7	WG537237
Cyanide	mg/kg	28.1	25,8	91.8	50-150	WG537202
Arsenic	mg/kg	192	176.	91.7	78.6-120.8	WG537330
Gadmium	mg/xg	420	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	94.0	78.8-121.4	WG537330
Chromium	DX/Eu	168	162.	96.4	80.4-120.2	WG537330
Copper	mg/kg	122	120.	98.4	81.6-119.7	WG537330
Iron	mg/kg	18100	16600	91.7	50.7-149.7	WG537330
Manganese	mg/kg	441	410.	93.0	78.9-120.9	WG537330
Selenium	54/Bu	176	170.	96.6	75.6-125.0	WG537330
Silver	mg/kg	115	107.	0.56	66-133.9	WG537330
Zinc	mg/kg	437	397.	90.8	78.5-121.7	WG537330
Ηq	su	6.3	6.20	98.4	97.98-102.0	2 WG537706
Total Solids	alo	50	50.0	100	85-155	MC218160
* Performance of this Analyte	is outside of	established cri	iteria.	no puntisiano		
For additional information,	please see At	tachment A 'List	of Analytes with	n oc Qualifiers	-	

Page 17 of 22

YOUR LAB OF CHOICE

Aztec, NM 87410

XTO Energy - San Juan Division James McDaniel 382 Road 3100

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L517393

June 03, 2011

analyte	Inite	Labor	atory Cont	rol Sample		h Rog		Timit	Patch
Analyce	UTILS	NOIN	n vai	Resul	6	\$ Rec		FIUIC	Bacch
Total Solids	\$	50		50.0		100.		85-155	WG538159
Cyanide	mg/kg	28.1		26.6		94.7		50-150	WG538237
					1.4.1.1.1		1		
Anna Justice	****	Laboratory	Control S	ample Dupl:	icate	t la la	000	t in it.	Datah
Analyte	Units	Result	Rei	*Rec		Limit	RPD	Limit	Batch
Benzene	malka	0 0494	0.0501	0.99		76-113	1 47	20	WG537267
Frhylhenzone	malka	0.0494	0.0501	00.0		78-115	1 30	20	WG537267
Toluene	mg/kg	0.0479	0.0497	95.0		76-114	1 50	20	WG537267
Total Yulene	mg/kg	0.147	0.140	90.0		01-110	1 43	20	WG537267
a a Trifluorotoluene (BTD)	mg7 × g		0.145	105.0		E4-144	1.45	40	WC637267
a, a, a - IIII (dorocoluene (PID)				105.9		24-744			10337207
Chloride	met /ker	198	204	99.0		85-115	2.99	20	WG537268
Fluoride	malka	19 7	20 1	99.0		85-115	2 01	20	WG537268
Nitrate	mg/kg	19.6	20.1	98.0		85-115	2 02	20	WG537268
Culfate	mg/kg	202	20.0	30.0		05-115	2 06	20	10537260
bullate	mg/ kg	202.	200.	104.		00-110	1.30		10331200
Benzene	malka	0 0487	0 0528	97 0		76-113	8 24	20	WG537316
Pthylhenzene	mg/kg	0.0503	0.0520	107		78-115	5 80	20	WG537316
Toluene	mg/kg	0.0490	0.0529	98 0		76-114	7 70	20	WG537316
Total Vulana	mg/kg	0.152	0.0525	102		01-110	E E 0	20	WG537316
Total Aylene	mg/xg	0.152	0.101	102.		51-110	5.30	20	WG537316
a, a, a-111110100010ene(PID)				104.5		24-144			100001010
Benzene	ma/ka	0.0494	0 0488	99 0		76-113	1 32	20	WG537173
Ethylhenzene	malka	0.0469	0.0463	94 0		78-115	1.41	20	WG537173
Toluene	malka	0 0476	0.0475	95.0		76-114	0 080	0 20	WG537173
Total Vulene	mg/kg	0 147	0 144	99.0		91-119	1 61	20	WG537173
a a Trifluoratoluere (PTD)	11197 × 9	0.117	0.144	105.0		54-144	4.51	20	WG537173
a, a, a - 11 11 1001 0 to tuene (F1D)				105.5		23-144			100001210
Cyanide	mg/kg	28.6	25.8	102.		50-150	10.3	20	WG537202
рн	su	6.20	5.20	98.0		97.98-102.02	0	20	WG537706
Cyanide	mg/kg	25.5	26.6	91.0		50-150	4.22	20	WG538237
			Matrix Sp	ike					
Analyte	Units	MS Res	Ref Res	TV	% Rec	Limit		Ref Samp	Batch
					1		-		
Benzene	mg/kg	0.261	0	.05	104.	32-137		L517288-01	WG537267
Ethylbenzene	mg/kg	0.235	0	. 05	94.1	10-150		L517288-01	WG537267
Toluene	mg/kg	0.236	0	.05	94.5	20-142		L517288-01	WG537267
Total Xylene	mg/kg	0.700	0	.15	93.3	16-141		L517288-01	WG537267
a, a, a-Trifluorotoluene (PID)					103.3	54-144			WG537267
Broonin	and line	10.0	2.20	5.0	04.0	25.105		1517202 05	
ALBERTU Davis	mg/kg	49.9	2.80	50	24.2	75-125		1517393-05	WG537164
Co. don i sum	mg/kg	257.	220.	50	74.0*	75-125		L317393-05	10037164
Cadin Lum	mg/kg	48.1	0	50	96.2	75-125		1517393-05	WG537164
CHIOMIUM	mg/kg	60.6	11.0	50	99.2	75-125		1517393-05	WG537164
copper	mg/kg	59.6	7.80	50	104.	75-125		1517393-05	WG537164

Performance of this Analyte is outside of established criteria.
 For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 18 of 22

Company Name/Address			Alternate B	illing				Analy	sis/Co	ontaine	r/Prese	rvative		Chain of Custody
XTO Energy, Inc. 382 County Road 3100 Aztec, NM 87410			XTORNM	10318105				b, Ha, Se	1,20				Prepared by:	MENTAL
			Report to: Jan	nes McDaniel				0	à			13	12065 Labar	p pon Road
			E-mail to: jam	nes_mcdaniel@x	toenergy.com			Ц	1			- 9	Mt. Juliet TN	37122
Project Description: CORONA	DO POND	#2	1	City/	State Collected:			-N	R	Z			Phone (615)	758-5858
PHONE: 505-333-3701 FAX:	Client Project I	NO.		Lab Project #				5	Ge	as			FAX (61	5)758-5859
Collected by:	Site/Facility ID	100 Pri	D#2	P.O.#			17	S. T	3	m		1	CoCode	(lab use only)
Collected by(signature):	Rush? (L	ab MUST be Next Day WO Day Three Day	Notified) 100% 50% 25%	Date Resul	Its Needed No_X_Yes NoYes	No	TEX (800	Ba, Cu	9. 2 C	OH, NC	DS, PH		XTORNM Template/Prelogin Shipped Via: Fed Ex	
Sample ID	Comp/Grab	Matrix	Depth	Date	Time	Cntrs	6	Ğ	Q	5	F		Remarks/contaminant	Sample # (lab only)
J	Comp	SS		5/3/11	12:30	2	1	~	V	~	-			1517393-09
Backgrounio	Grab	T		T.	12:35	3	2	V	~	2				-10
						-								
									1.74.9					
Matrix: SS-Soil/Solid GW-Ground Remarks: "ONLY 1 COC Per Sit	water WW-Wa e!!"	stewater D	W-Drinking	Water OT- C	Other							pH_	Temp Flow	Other
Relinquisher by (Signature	Daty 5/33 11 Date:	Time:	Received by: Received by:	Signature) (Signature)	S.A.		Sampl	les retur	rned via	a: FedEx	Bottles R	Other		(lab use only)
Relinquisher by (Signature	Date:	Time;	Received for	lab by: (Signatu	ure)		Date: 5/	24/1	11		Time:	-40-2 10C	pH Checked:	NCF: YES

-

NON-CONFORMANCE FORM

Login No.: 1517393
Date: 05-24-11
Evaluated by: J.F.) lcr
Client: XTORNM

Non-Conformance (check applicable items)

- Parameter(s) past holding time
- Improper temperature
- □ Improper container type
- □ Improper preservation
- □ Container lid not intact
- Login Clarification Needed
- □ Chain of custody is incomplete
- □ Chain of Custody is missing (see below)
- Broken container(s) (See below)
 - Broken container: sufficient sample

volume remains for analysis requested (See below)

Date:	Time:	
Temp:	Cont. Rec	pH:
🗆 Fedex	O UPS OSWA O	Other
Tracking	#	

Insufficient packing material around container
 Insufficient packing material inside cooler

- Improper handling by carrier (FedEx / UPS / Courier
- Sample was frozen

comments: Client asked for TDS. Scriptes are Soil.

Login Instructions:	TSR Initials: TOK
Client informed by call / email / fax / voice mail Client contact:	date: $5/24$ time: $13:45$
	AF IDS IS WASH FRID

Summary of Remarks For Samples Printed 05/24/11 at 16:43:21

TSR Signing Reports: 288 R5 - Desired TAT

drywt

Sample: L516379-01 Account: XTORNM Received: 05/17/11 09:00 Due Date: 05/24/11 00:00 RPT Date: 05/24/11 16:42

XTO Energy - San Juan Division James McDaniel 382 Road 3100 YOUR LAB OF CHOICE

Aztec, NM 87410

Quality Assurance Report Level II

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-0814289

Est. 1970

May 24, 2011

		L516379				
		Laboratory Blank				
Analyte	Result	Units \$ Re	e.C	Limit	Batch Date	Analyzed
Chloride	< 10	ma/ka			WG536120 05/1	8/11 10:38
Fluoride	< 1	mg/kg			WG536120 05/1	8/11 10:38
Nitrate	< 1	mg/kg			WG536120 05/1	8/11 10:38
Sulfate	< 50	mg/kg			WG536120 05/1	8/11 10:38
Mercury	< .02	mg/kg			WG536128 05/1	8/11 14:32
Benzene	< .0005	mg/kg			WG536259 05/1	8/11 19:15
Ethylbenzene	< .0005	mg/kg			WG536259 05/1	8/11 19:15
Total Xvlene	< .0015	mg/kg			WG536250 05/1	8/11 19:15
a, a, a-Trifluorotoluene (PID)		* Rec. 94.	. 62	54-144	WG536259 05/1	8/11 19:15
Arsenic	< 1	mg/kg			WG536127 05/1	9/11 12:12
Barium	× .25	mg/kg			WG536127 05/1	9/11 12:12
Chromium	۸ ۸ 	mg/kg			WG536127 05/1	9/11 12:12
Copper	< 1	mg/kg			WG536127 05/1	9/11 12:12
Iron	~ 5	mg/kg			WG536127 05/1	9/11 12:12
Lead Manganese	л л . 25	mg/kg			WG536127 05/1	9/11 12:12
Zinc	< 1.5	mg/kg			WG536127 05/1	9/11 12:12
Selenium	< 1	mg/icg			WG536127 05/1	9/11 01:34
Hq	4.30	su			WG536341 05/2	0/11 08:17
Silver	< .5	mg/kg			WG536512 05/2	0/11 14:48
Total Solids	< .1	419			WG536848 05/2	3/11 08:53
Cyanide	< .25	mg/kg	the states of	· · · · · · · · · · · · · · · · · · ·	WG536757 05/2	4/11 10:38
Analyte	Units	Duplicate Result Duplicate	RPD	Limit	Ref Samp	Batch
Sulfate	mg/kg	0 6.50	NA	20	L516426-03	WG536120
Sulfate	mg/icg	0 5.30	NA	20	1.516426-05	WG536120
Mercury	mg/kg	0.0420 0.0600	35.5*	20	L516382-13	WG536128
Arsenic	mg/kg	5,50 6.30	13.9	20	L516426-03	WG536127
Cadmium	mg/kg	0.750 0.790	4.93	20	L516426-03	WG536127
Chromium	mg/kg	16.0 18.0	8.70	20	L516426-03	WG536127
Copper	mg/kg	12.0 0	NA	20	1.516426-03	WG536127
Iron	mg/kg	15000 16000	5.79	20	L516426-03	WG536127
Manganese	mg/kg	380. 580.	42.9*	20	1516426-03	WG536127
Selenium	mg/kg	12.0 13.0	8.00	20	L516426-03	WG536127
	Ev / Fan		TANT.	N C	CO-07LOTCH	1 9 T D C C D M

 Manganese
 mg/kg
 380.
 580.
 42.9*
 20

 Selenium
 mg/kg
 12.0
 13.0
 8.00
 20

 Zinc
 mg/kg
 100.
 0
 0
 20

 * Performance of this Analyte is outside of established criteria.
 NA
 20

 For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 5 of 9

XTO Energy - San Juan Division James McDaniel 382 Road 3100 YOUR LAB OF CHOICE

Aztec, NM 87410

Benzene Ethylbenzene Toluene Total Xylene a, a, a-Trifluorotoluene(PID)

mg/kg mg/kg mg/kg

.05

0.0408 0.0437 0.0427 0.130

81.5 87.4 85.5 86.9 92.75

76-113 78-115 76-114 81-118 54-144

WG536259 WG536259 WG536259 WG536259

Nitrate Chloride Fluoride

mg/kg mg/kg

200 20 200

202. 19.7 19.9 202.

101. 98.5 99.5

85-115 85-115 85-115 85-115

WG536120 WG536120 WG536120 WG536120

Units

Laboratory Control Sample Known Val Resul

Result

Rec

Limit

Batch

mg/kg -10 mg/kg SU Units

0.670

0.660

1.20 2.60

20 S 20

L516441-01 L516355-06

WG536757 WG536757

L516971-07 1516837-01

WG536848 WG536512

72.0 0

73.8 0 7.10

7.10

00 RPD

L516328-08 L516495-38

WG536341 WG536341

Result

Duplicate Duplicate

Limit

Ref Samp

Batch

May 24,

2011

mg/kg

8.77

7.92

90.3

71.6-127.7

WG536128

Mercury

Cyanide Cyanide

Analyte

Silver PH Analyte

Total Solids

Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Selenium Zinc

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg kg/kg mg/kg

192 420 70.1 168 122 18100 113 441 176 437

162. 366. 61.8 149. 149. 114. 15600 98.1 384. 164. 382.

93.4 86.2 86.8 87.1

78.6-120.8 78.8-121.4 78.8-121.5 80.4-120.5 81.6-119.7 50.7-149.7 77.3-122.1 78.9-120.9

WG536127 WG536127 WG536127 WG536127 WG536127 WG536127 WG536127 WG536127 WG536127 WG536127

84.4 87.1 88.2 88.7

Cyanide

Silver PH

mg/kg

115 6.3

100.

87.0 100 93.2

85-155

66-133.9

97.98-102.02

75.6-125.0 78.5-121.7

su

6.30

- 49

50

28.1

21.4 50.0

Total Solids

Analyte

Chloride mg/kg 207. 202. 104. 85-115
* Performance of this Analyte is outside of established criteria.
Por additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 6 of 9

Units mg/kg

Laboratory Control Sample Duplicate Result Ref %Rec

Limit

2.44 RPD

20 Limit

WG536120

Batch

WG536757 WG536848 WG536512 WG536341 Quality Assurance Report Level II

L516379

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Est. 1970

Tax I.D. 62-0814289

* ESC							12 Mt (6 1 - 1 - 7a	065 Lebanon Juliet, TT 15) 758-5851 800-767-5855 x (615) 758
L.A.B S.C.I.E.N.C.E.S YOUR LAB OF CHOICE							Ta	x I.D. 62-0
XTO Energy - San Juan Division James McDaniel							23	C. 1910
382 Road 3100		Qua	lity Assura Level	II Repo	rt			
Aztec, NM 87410			L516379					Maj
Analyte	Units	Laboratory Result	Control Sa Ref	mple Dup \$Rec	licate	Limit	RPD	Limit
Fluoride	mg/kg	20.2	19.7	101.		85-115	2.51	20
Nitrate	by/bu	20.3	19.9	102.		85-115	1.99	20
Sulfate	mg/kg	208.	202.	104.		85-115	2.93	20
Benzene	mg/kg	0.0465	0.0408	93.0		76-113	13.2	20
Sthylbenzene	mg/kg	0.0509	0.0437	102.		78-115	15.2	20
Total Xvlene	bx/fm	0.152	0.130	102.		81-118	15.6	20
a, a, a-Trifluorotoluene (PID)	n			89.28		54-144	1	
Н	ns	6.30	6.30	100.		97.98-102.0	2 0	20
Cyanide	mg/kg	27.7	21.4	98.0		50-150	25.7*	20
Analyte	Units	MS Res	Matrix Spi Ref Res	ke TV	* Rec	Limit		Ref Samp
Sulfate	mg/kg	532.	4.00	500	106.	80-12	0	L516426-01
Mercury	mg/kg	0.340	0.0600	. 25	112.	70-13	0	LI516382-13
Benzene	mg/kg	0.180	0	. 05	72.0	32-13	7	L516328-08
Ethylbenzene	mg/kg	0.185	a	. 05	74.0	10-15	0	L516328-08
Toluene Total Xvlene	mg/kg mg/kg	0.187	0 0	. 05	74.8	20-14		L516328-08
a, a, a-Trifluorotoluene (PID)					87.43	54-14	4	
Arsenic	mg/kg	47.3	6.30	50	82.0	75-12	ß	L516426-03
Barium Cadmium	mg/kg mg/kg	203.	160.	50	81.2	75-12	un ur	L516426-03
Chromium	mg/kg	60.2	18.0	50	84.4	75-12	5	L516426-03
Copper	mg/kg	59.9	0	50	120.	75-12	5	L516426-03
Iron Lead	mg/kg mg/kg	15700	16000	20	* 0 83 4	75-12	5 0	L516426-03
Manganese	6x/bm	637.	580.	50	114.	75-12		L516426-03
Selenium	Ex/Bu	52.8	13.0	50	79.6	75-12	S	L516426-03
Zinc	mg/kg	143.	0	50	286.*	75-12	2	L516426-03
Silver	mg/kg	47.8	0	50	95.6	75-12	s.	L516837-01

30 * Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.' 5.44 70-130 120. 0.340 mg/kg 0.359 Mercury

Page 7 of 9

12065 Lebanon Rd. Mt. Julict, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

0814289

y 24, 2011

WG536120 WG536120 WG536120

Batch

WG536259 WG536259 WG536259 WG536259

WG536341 MG536757 WG536259 WG536259 WG536259 WG536259

WG536120 WG536128

Batch

WGS36127 WG536127 WG536127 WG536127 WG536127 WG536127 WG536127 WG536127 WG536127

MG536757

L516355-13

80-120

97.3

3.33

0

3.24

mg/kg

Cyanide

WG536120 WG536128

L516426-01 1,516382-13

0.566

80-120

105.

532.

mg/kg 529. MSD

Sulfate

Analyte

Units

Batch

Ref Samp

Limit

RPD

Limit

Matrix Spike Duplicate Ref %Rec

WG536512

YOUR LAB OF CHOICE

Aztec, NM 87410

XTO Energy - San Juan Division James McDaniel 382 Road 3100

12065 Lebanon Rd. 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L516379

May 24, 2011

		Ma	trix Spik	e Duplicate					
Analyte	Units	MSD	Ref	*Rec	Limit	RPD	Limit	Ref Samp	Batch
Benzene	mg/kg	0.185	0.180	74.1	32-137	2.91	39	L516328-08	WG536259
Ethylbenzene	mg/kg	0.190	0.185	75.8	10-150	2.38	44	L516328-08	WG536259
Toluene	mg/kg	0.189	0.187	75.6	20-142	1.15	42	L516328-08	WG536259
Total Xylene	mg/kg	0.572	0.561	76.2	16-141	1.95	46	L516328-08	WG536259
a,a,a-Trifluorotoluene(PID)				89.45	54-144				WG536259
Arsenic	ma/ka	47.1	47.3	81.6	75-125	0.424	20	L516426-03	WG536127
Barium	mg/kg	197.	203.	74.0*	75-125	3.00	20	L516426-03	WG536127
Cadmium	mg/kg	42.1	41.4	82.6	75-125	1.68	20	L516426-03	WG536127
Chromium	mg/kg	62.3	60.2	88.6	75-125	3.43	20	L516426-03	WG536127
Copper	mg/kg	59.6	59.9	119.	75-125	0.502	20	L516426-03	WG536127
Iron	mg/kg	16600	15700	1200*	75-125	5.57	20	L516426-03	WG536127
Lead	mg/kg	64.1	66.7	78.2	75-125	3.98	20	L516426-03	WG536127
Manganese	mg/kg	421.	637.	0*	75-125	40.8*	20	L516426-03	WG536127
Selenium	mg/kg	54.4	52.8	82.8	75-125	2.99	20	L516426-03	WG536127
Zinc	mg/kg	126.	143.	252.*	75-125	12.6	20	L516426-03	WG536127
Silver	mg/kg	44.3	47.8	88.6	75-125	7.60	20	L516837-01	WG536512
Cyanide	mg/kg	3.44	3.24	103.	80-120	5.99	20	L516355-13	WG536757

Batch number /Run number / Sample number cross reference

WG536120:	R1692610:	L516379-01
WG536128:	R1692711:	L516379-01
WG536259:	R1692929:	L516379-01
WG536127:	R1693371:	L516379-01
WG536341:	R1694309:	L516379-01
WG536512:	R1695110:	L516379-01
WG536848:	R1697115:	L516379-01
WG536757:	R1698973:	L516379-01

* Calculations are performed prior to rounding of reported values.
 * Performance of this Analyte is outside of established criteria.
 For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 8 of 9

YOUR LAB OF CHOICE XTO Energy - San Juan Division James McDaniel 382 Road 3100

Aztec, NM 87410

Quality Assurance Report Level II

L516379

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a target parameter is outside the method limits, every sample that is effected is flagged with the appropriate qualifier in Appendix B of the analytic report.

> Method Blank - an aliquot of reagent water carried through the entire analytic process. The method blank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "B" qualifier.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate - is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target analytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J6". The relative percent difference (%RPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier. 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

May 24, 2011

Page 9 of 9

Company Name/Address	Alternate	Billing		Analysis	/Contain	ner/Presen	vative		Chain of Custody
XTO Energy, Inc.	XTORN	M031810S		this				B039	rage_toi_t
Aztec, NM 87410	Report to Ja E-mail to: ja	imes McDaniel mes_mcdaniel@xtoenergy.com		-, CN-F, Pb	10, čn			Prepared by: ENVIRON Science cor 12065 Leba Mt. Juliet TN Phone (615)	MENTAL p non Road V 37122
HONE: 505-333-3701 Client Project		Lab Project #	21)	31	e le			Phone (800 FAX (61)) 767-5859 15)758-5859
Collacted by: Site/Facility: BrDOKE Herb Coron Collacted by(signature): Rush? Social Collacted by (signature): Rush?	Lab MUST be Notified) Next Day	P.O.# Date Results Needed Email?No_X_Yes FAX?NoYes	TEX (80	s, Ba, Cd	DU NIOZ	He SV		CoCode XTORNM Template/Prelogin Shipped Via: Fed Ex	(lab use only)
Sample ID Comp/Grail	Matrix Depth	Date Time 5/10/11 13:30	intrs PD D V	V .	50	1		Remarks/contaminant	Sample # (lab only 1516,379.61
			_						
			_						
				8					
Matrix: SS-Soil/Solid GW-Groundwater WW-V	astewater DW-Drinking	Water OT- Other					pH	Temp	Other
einfuisher by (Signature)	Time: Received by	(Signature)	Sampl	es returne	d via: Fed	Ex_X_UPS_	_Other	Condition	(lab use only)
elinguisher by:(Signature Date	Time Received for	r lab by: (Signature)	Date:	3.4		Z-	402	DH Checked:	NCF:

	k	ŀ		6	5	(
- · A ·	B	s.	C.	1 · E	E·N	·C	· E	. 5

NON-CONFORMANCE FORM

Login No.: 1514379	
Date: 05-17-11	
Evaluated by: J. Fuller	
Client: XTORNM	

Non-Conformance (check applicable items)

Parameter(s) past holding time

Improper temperature

improper container type

Improper preservation

□ Container lid not intact

Login Clarification Needed

□ Chain of custody is incomplete

□ Chain of Custody is missing (see below)

□ Broken container(s) (See below)

Broken container: sufficient sample
 volume remains for analysis requested (See below)

if no C	OC: Received I	oy	
	Date:	Time:	
	Temp:	Cont. Rec	pH:
	= Fedex	= UPS =SWA =	Other
	Tracking	÷	

Insufficient packing material around container

Insufficient packing material inside cooler

z Improper handling by carrier (FedEx / UPS / Courter

Sample was frozen

Comments: We do not run TDS for 50:15.

ogin Instructions:	TSR Initials: DK
Client informed by call / (mail)/ fax / voice	mail date: 5/17 time: 14:00
Client contact:informed	client

COVER LETTER

Monday, June 27, 2011

James McDaniel XTO Energy 382 County Road 3100 Aztec, NM 87410

TEL: (505) 787-0519 FAX (505) 333-3280

RE: Coronado Pond #2

Dear James McDaniel:

Order No.: 1105938

Hall Environmental Analysis Laboratory, Inc. received 10 sample(s) on 5/24/2011 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com Hall Environmental Analysis Laboratory, Inc.

Date: 27-Jun-11 Analytical Report

CLIENT:	XTO Energy			Clier	nt Sample ID:	A		
Lab Order: 1105938				Co	5/23/2011	5/23/2011 12:00:00 PM		
Project: Lab ID:	Coronado Pond #2 1105938-01			D	ate Received: Matrix:	5/24/2011 SOIL		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD Uranium	6010B: SOIL METALS	ND	25		mg/Kg	5	Analyst: ELS 5/31/2011 11:02:36 AM	
EPA METHOD Petroleum Hydr	418.1: TPH rocarbons, TR	ND	20		mg/Kg	1	Analyst: JB 6/1/2011	

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 1 of 10

Hall Environmental Analysis Laboratory, Inc.

Date: 27-Jun-11 Analytical Report

CLIENT: XTO Energy				Client Sample ID: E			B 5/23/2011 12:06:00 PM	
Project: Lab ID:	Coronado Pond #2 1105938-02		Date Received: Matrix:		5/24/2011 SOIL			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD Uranium	6010B: SOIL METALS	ND	25		mg/Kg	5	Analyst: ELS 5/31/2011 11:04:39 AM	
EPA METHOD Petroleum Hyd	418.1: TPH rocarbons, TR	ND	20		mg/Kg	1	Analyst: JB 6/1/2011	

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 2 of 10

Date: 27-Jun-11 Analytical Report

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	XTO Energy			Clier	С	C		
Lab Order:	1105938		Collection Date:		5/23/2011	5/23/2011 12:12:00 PM		
Project: Lab ID:	Coronado Pond #2 1105938-03			D	ate Received: Matrix:	5/24/2011 SOIL		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD Uranium	6010B: SOIL METALS	ND	25		mg/Kg	5	Analyst: ELS 5/31/2011 11:06:35 AM	
EPA METHOD Petroleum Hydr	418.1: TPH rocarbons, TR	ND	20		mg/Kg	1	Analyst: JB 6/1/2011	

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 3 of 10

Hall Environmental Analysis Laboratory, Inc.

Date: 27-Jun-11 Analytical Report

CLIENT: Lab Order: Project:	XTO Energy 1105938 Coronado Pond #2 1105938.04		Client Sample ID: Collection Date: Date Received: Matrix:		D 5/23/2011 5/24/2011 SOIL	12:17:00 PM	
Analyses	1103338-04	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD Uranium	6010B: SOIL METALS	ND	25		mg/Kg	5	Analyst: ELS 5/31/2011 11:08:26 AM
EPA METHOD Petroleum Hyd	418.1: TPH rocarbons, TR	ND	20		mg/Kg	1	Analyst: JB 6/1/2011

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 4 of 10

Hall Environmental Analysis Laboratory, Inc.

Date: 27-Jun-11 Analytical Report

						and the second se			
CLIENT:	XTO Energy			Clie	F				
Lab Order: 1105938				Co	llection Date:	5/23/2011	5/23/2011 12:22:00 PM		
Project: Lab ID:	Coronado Pond #2 1105938-05			D	ate Received: Matrix:	5/24/2011 SOIL			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD Uranium	6010B: SOIL METALS	ND	25		mg/Kg	5	Analyst: ELS 5/31/2011 11:10:20 AM		
EPA METHOD Petroleum Hydr	418.1: TPH rocarbons, TR	43	20		mg/Kg	1	Analyst: JB 6/1/2011		

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

- J Analyte detected below quantitation limits
- NC Non-Chlorinated

PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit

Page 5 of 10

S Spike recovery outside accepted recovery limits

Date: 27-Jun-11 Analytical Report

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	XTO Energy		Client Sample ID: G						
Lab Order: 1105938		Collection Date: 5				5/23/2011	5/23/2011 12:27:00 PM		
Project: Lab ID:	Coronado Pond #2 1105938-06			D	ate Received: Matrix:	5/24/2011 SOIL			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD Uranium	6010B: SOIL METALS	ND	25		mg/Kg	5	Analyst: ELS 5/31/2011 11:12:14 AM		
EPA METHOD Petroleum Hyd	418.1: TPH rocarbons, TR	ND	20		mg/Kg	1	Analyst: JB 6/1/2011		

Qualifiers:

* Value exceeds Maximum Contaminant Level

.

- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 6 of 10

Hall Environmental Analysis Laboratory, Inc.

Date: 27-Jun-11 Analytical Report

CLIENT:XTO EnergyLab Order:1105938				Clier	nt Sample ID: llection Date:	H 5/23/2011	12:39:00 PM
Project: Lab ID:	t:Coronado Pond #2Date ReceivedD:1105938-07Matrix			Date Received: 5/24/2011 Matrix: SOIL			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD Uranium	6010B: SOIL METALS	ND	25		mg/Kg	5	Analyst: ELS 5/31/2011 11:21:16 AM
EPA METHOD Petroleum Hyd	418.1: TPH rocarbons, TR	ND	20		mg/Kg	1	Analyst: JB 6/1/2011

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

Date: 27-Jun-11 Analytical Report

CLIENT:	XTO Energy	Client Sample ID: 1							
Lab Order: 1105938				Co	llection Date:	5/23/2011	12:43:00 PM		
Project: Lab ID:	Coronado Pond #2 1105938-08			D	ate Received: Matrix:	5/24/2011 SOIL			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD Uranium	6010B: SOIL METALS	ND	50	÷ .	mg/Kg	10	Analyst: ELS 5/31/2011 11:23:12 AM		
EPA METHOD Petroleum Hydr	418.1: TPH rocarbons, TR	ND	20		mg/Kg	1	Analyst: JB 6/1/2011		

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 8 of 10

Date: 27-Jun-11 Analytical Report

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	XTO Energy			Clier	J			
Project: Lab ID:	Coronado Pond #2 1105938-09		Date Received: Matrix:			5/24/2011 SOIL		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD Uranium	6010B: SOIL METALS	ND	25		mg/Kg	5	Analyst: ELS 5/31/2011 11:26:41 AM	
EPA METHOD Petroleum Hyd	418.1: TPH rocarbons, TR	ND	20		mg/Kg	1	Analyst: JB 6/1/2011	

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
 - ND Not Detected at the Reporting Limit

Page 9 of 10

S Spike recovery outside accepted recovery limits

Date: 27-Jun-11 Analytical Report

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	XTO Energy			Clien	t Sample ID	: Backgrout	nd
Lab Order:	1105938			Co	lection Date	: 5/23/2011	12:35:00 PM
Project: Lab ID:	Coronado Pond #2 1105938-10			D	ate Received Matrix	: 5/24/2011 : SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD Uranium	6010B: SOIL METALS	ND	25		mg/Kg	5	Analyst: ELS 5/31/2011 11:28:35 AM
EPA METHOD	418.1: TPH	ND	20		malka		Analyst: JB

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 10 of 10

Pace Analytical www.pacelebs.com

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

ANALYTICAL RESULTS

Project: 1105938				1		
Pace Project No.: 3047433				· · · · · · · · · · · · · · · · · · ·		
Sample: 1105938-01B	Lab ID: 304743300	11 Collected: 05/23/11 12:0	00 Received:	05/27/11 10:30 M	atrix: Solid	
PWS:	Site ID:	Sample Type:				
Results reported on a "dry-we	light" basis					
Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 901.1m).963 ± 0.189 (0.179)	pCl/g	06/22/11 09:52	13982-63-3	
Radium-228	EPA 901.1m	.48 ± 0.293 (0.268)	pCi/g	06/22/11 09:52	15262-20-1	
Sample: 1105028 028	Lab ID: 204742200	2 Collected: 05/23/11 12:0	6 Peceived	05/27/11 10:30 M	atriv: Solid	
PWS.	Site ID:	Samole Type:		0012111110.00	unit. Cond	
Results reported on a "drv-we	ight" basis	and the states				
Parametere	Method	Act + Linc (MDC)	Linits	Analyzed	CAS No	Qual
	EDA 004 4m			00/00/44 40-57	10000 02 2	
Radium-228	EPA 901.1m	1.34 ± 0.265 (0.281)	pCi/g	06/22/11 10:57	15262-20-1	
Sample: 1105938-03B	Lab ID: 304743300	3 Collected: 05/23/11 12:1	2 Received:	05/27/11 10:30 M	atrix: Solid	
PWS:	Site ID:	Sample Type:				
Results reported on a "dry-we	lght" basis					
Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 901.1m	.05 ± 0.206 (0.185)	pCi/g	06/22/11 12:54	13982-63-3	
Radium-228	EPA 901.1m 1	.45 ± 0.321 (0.238)	pCi/g	06/22/11 12:54	15262-20-1	
Sample: 1105938-04B	Lab ID: 304743300	4 Collected: 05/23/11 12:1	7 Received:	05/27/11 10:30 Ma	atrix: Solid	
PWS:	Site ID:	Sample Type:				
Results reported on a "dry-we	ight" basis					
Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 901.1m 1	.04 ± 0.179 (0.153)	pCi/g	06/22/11 14:00	13982-63-3	
Radium-228	EPA 901.1m 1	.28 ± 0.302 (0.262)	pCi/g	06/22/11 14:00	15262-20-1	
Sample: 1105938-05B	Lab ID: 304743300	5 Collected: 05/23/11 12:2	2 Received	05/27/11 10:30 M	atrix: Solid	
PWS:	Site ID:	Sample Type:		00/2///11 10:00		
Results reported on a "dry-wel	ight" basis					
Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 901.1m 1	.05 ± 0.201 (0.166)	pCi/g	06/22/11 15:03	13982-63-3	
Radium-228	EPA 901.1m 1	.16 ± 0.273 (0.264)	pCi/g	06/22/11 15:03	15262-20-1	
Sample: 1105938-06B	Lab ID: 304743300	6 Collected: 05/23/11 12:2	7 Received:	05/27/11 10:30 Ma	atrix: Solid	
PWS:	Site ID:	Sample Type:				
Results reported on a "dry-well	ght" basis					
Parameters	Method	Act ± Unc (MDC)	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 901.1m 0	906 ± 0.191 (0.181)	pCi/g	06/22/11 16:30	13982-63-3	
Radium-228	EPA 901.1m 1	44 ± 0.351 (0.291)	pCi/g	06/22/11 16:30	15262-20-1	

Date: 06/24/2011 02:10 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ace Analytical www.pacelabs.com

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

ANALYTICAL RESULTS

Project:	1105938									
Pace Project No .:	3047433									
Sample: 1105938-	07B	Lab ID: Site ID:	3047433007	Collect	ed: 05/23/11 e Type:	12:39	Received:	05/27/11 10:30	Matrix: Solid	
Results reported of	n a "dry-weig	nt" basis								
Parame	ters	Metho	bd	Act ±	Unc (MDC)		Units	Analyzed	CAS No.	Qual
Radium-226 Radium-228		EPA 901.1m EPA 901.1m	1.22 ± 1.46 ±	0.219	(0.172) (0.258)		pCi/g pCi/g	06/23/11 08:5 06/23/11 08:5	7 13982-63-3 7 15262-20-1	
Sample: 1105938-0 PWS:	08B	Lab ID: Site ID:	3047433008	Collect	ed: 05/23/11 e Type:	12:43	Received:	05/27/11 10:30	Matrix: Solid	
Results reported of	n a "dry-weig	ht" basis								
Parame	ters	Metho	bd	Act ±	Unc (MDC)		Units	Analyzed	CAS No.	Qual
Radium-226 Radium-228		EPA 901.1m EPA 901.1m	1.05 ± 1.28 ±	0.195	(0.178) (0.314)		pCi/g pCi/g	06/23/11 09:59 06/23/11 09:59	9 13982-63-3 9 15262-20-1	
Sample: 1105938-0 PWS:	99B	Lab ID: Site ID:	3047433009	Collect	ed: 05/23/11 e Type:	12:30	Received:	05/27/11 10:30	Matrix: Solid	
Results reported or	n a "dry-weig	ht" basis								
Parame	ters	Metho	d	Act ±	Unc (MDC)		Units	Analyzed	CAS No.	Qual
Radium-226 Radium-228		EPA 901.1m EPA 901.1m	0.906 1.21 ±	± 0.181 0.269	(0.170) (0.287)	1	pCi/g pCi/g	06/23/11 11:03 08/23/11 11:03	3 13982-63-3 3 15262-20-1	
Sample: 1105938-1 PWS:	OB	Lab ID: Site ID:	3047433010	Collect	ed: 05/23/11 a Type:	12:35	Received:	05/27/11 10:30	Matrix: Solid	
Results reported or	n a "dry-weig	ht" basis								
Paramet	ters	Metho	d	Act ± 0	Jnc (MDC)		Units	Analyzed	CAS No.	Qual
Radium-226 Radium-228		EPA 901.1m EPA 901.1m	0.700 ±	t 0.168 0.316	(0.179) (0.244)	1	oCi/g oCi/g	06/23/11 12:56	5 13982-63-3 5 15262-20-1	

Date: 06/24/2011 02:10 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical www.pacelabs.com

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5800

QUALITY CONTROL DATA

Project:	110593	8							
Pace Project No .:	304743	3							
QC Batch:	RADO	/8531		Analysis	Method:	EPA 901.	.1m		
QC Batch Method:	EPA 9	01.1m		Analysis	Description:	901.1 Ga	mma Spec		
Associated Lab Sam	ples:	3047433001, 3047433009,	3047433002 3047433010	, 3047433003, 3	3047433004, 3	047433005,	3047433006, 304743300	07, 3047433008,	
METHOD BLANK:	304756			Ma	trix: Solid				
Associated Lab Sam	ples:	3047433001, 3047433009,	3047433002 3047433010	, 3047433003, 3	3047433004, 3	047433005,	3047433006, 304743300	07, 3047433008,	
Param	eter		Ac	t ± Unc (MDC)		Units	Analyzed	Qualifiers	
Radium-226		-0.	027 ± 0.0290	(0.203)	p	Ci/g	06/23/11 13:58		
Radium-228		-0.	078 ± 0.426	(0.295)	p	Ci/g	06/23/11 13:58		

Date: 06/24/2011 02:10 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Client: X Project: C	TO Energy oronado Po	nd #2								Work	Order:	1105938
Analyte		Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimi	t Qual
Method: EPA Metho	od 418.1: TP	н	MDLK				Ratch iD:	27004	Analye	e Data:		8/1/2011
Sample ID: NID-2700	*		WIDLN	00			Daton 1D.	27004	Analys	15 1/2(0.		0/1/2011
Sample ID: LCS-270	04	ND	LCS	20			Batch ID:	27004	Analys	is Date:		6/1/2011
Petroleum Hydrocarbon Sampte ID: LCSD-27	ns, TR 004	102.0	mg/Kg LCSD	20	100	0	102 Batch ID:	81.4 27004	118 Analysi	is Date:		6/1/2011
Petroleum Hydrocarbon	ns, TR	104.6	mg/Kg	20	100	0	105	81.4	118	2.54	8.58	
Method: EPA Metho	od 6010B: So	oll Metals										
Sample ID: MB-2698	1		MBLK				Batch ID:	26981	Analysi	is Date:	5/31/2011	8:26:26 AM
Uranium		ND	mg/Kg	5.0								
Sample ID: LCS-2698	31		LCS				Batch ID:	26981	Analysi	is Date:	5/31/2011	8:28:22 AM
Uranium		25.48	mg/Kg	5.0	25	0	102	80	120			

QA/QC SUMMARY REPORT

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Page I

Hall Environmental Analysis Laboratory, Inc.

	Sample	Rec	eipt Ch	eck	list			
Client Name XTO ENERGY				D	ate Receive	d:		5/24/2011
Work Order Number 1105938					Received by	AMG		1Ko
Checklist completed by:	Carrier name:	Grey	24 Date	11-	Sample ID I	abels checked	by: Ī	nitiats
Shipping container/cooler in good condition?		Yes			No 🗌	Not Present		
Custody seals intact on shipping container/cooler?		Yes			No 🗌	Not Present		Not Shipped
Custody seals intact on sample bottles?		Yes			No 🗌	N/A		
Chain of custody present?		Yes			No			
Chain of custody signed when relinquished and rece	eived?	Yes			No 🗌			
Chain of custody agrees with sample labels?		Yes			No 🗆			
Samples in proper container/bottle?		Yes			No 🗆			
Sample containers intact?		Yes			No			
Sufficient sample volume for indicated test?		Yes			No			
All samples received within holding time?		Yes			No 🗆			Number of preserved
Water - VOA vials have zero headspace? N	lo VOA vials submi	itted		Ye	es 🗋	No 🗌		bottles checked for pH:
Water - Preservation labels on bottle and cap match	1?	Yes			No 🗌	N/A		
Water - pH acceptable upon receipt?		Yes		- 1	No 🗀	N/A		<2 >12 unless noted
Container/Temp Blank temperature?				<6°	C Acceptab	le		below.
COMMENTS:				If giv	ven sufficient	t time to cool.		
		= =			===:			
Client contacted Dat	e contacted:		_		Pers	on contacted		
Contacted by: Reg	garding:						10	
Comments:							_	
Corrective Action								

C	hain-	of-Cu	stody Record	Turn-Around	Time:		-			ы			ER	J.V.	ТВ	0	N 8 10		NT		
Client:	Jam	es	McDaniel	Standard	□ Rush						N		VS	TS		AE	30	R/	Т	DR	Y
	XTO	2 Fm	emil	Project Name	:	-						hall	envir		nent	al co	m				
Mailing	Address:	38-	200 2100	Cover	ndo	Pond#7		400	1 1	ouki		E			rout		4 87	109	-	00	
1	7240	1)	N SIW	Project #:	adio	i crita p		490		E 24	5 20	75				245	4107	105		22	
Phone t	127CI		51-0519				1	Te	1. 50	5-34	0-38	Ar	nalvs	sis f	Real	uest	4107	1			
email or	Fax#:	5-1	31-0011	Project Mana	der:			5	()					4)						R	
QA/QC F	Package:			i roject mana	ger.		021)	on	Dies					So	B's	.				22	
X Stan	dard		Level 4 (Full Validation)	Jarr	res N	(chanie)	\$ (80	Gas	as/L					PO	PC				-	Int	
Accredi	tation			Sampler: P	ampler: Brooke Herb					=	=			203	082				F	0	-
	AP	□ Othe	r	On Ice						100	204	HAG	0	03,1	s / 8		(Y)		4.	6	Or N
	(Type)			Sample Temp	nple Temperature					od 4	po	or	etal	N'N	cide	(A)	07-1	5	ac	avic	3
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAHNO	STEX + MT	BTEX + MT	TPH Metho	FPH (Meth	EDB (Meth	3310 (PNA	RCRA 8 M	Anions (F,(3081 Pesti	3260B (VO	3270 (Sem	<i>Mraniu</i>	Radio	(Comt	Air Bubble
5/3/11	12:00	Soil	A	402/2	NONE	1	H			\checkmark		~	-		~	~	~	V	1		
1	12:06	1	B	-1-		2				\checkmark								\checkmark	V		
	12.12		C			3				1								1	1		
1	12:17		D			4				V								1,	1		
	12:22		F			5				1								1			
1	12:22		6			10				V								1	V	1	11
	12:39		H			7				1								J.	1	+	+1
	12:1/2		T			8				J.	-	-	-					J.	A		+1
	12.20					a				1								1	1	+	+-
11	12:20		Backaraund	1	1	10				1	-		-			-		1	1	-	+
	12.73		Dackgroures							•								•	V		
Deter	Times	Defending		Desciondhar		Data Tima															
5/28/11 Date:	1523 Time:	Relingujsh	ed by:	Received by:	in Wal	La 5/23/11 1523 Gate Time	Rer	narks	5:												
1/23/11	11047	Nhay	elin Walters of	A	1	5/24/11913	2									_					

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

COVER LETTER

Thursday, June 16, 2011

James McDaniel XTO Energy 382 County Road 3100 Aztec, NM 87410

TEL: (505) 787-0519 FAX (505) 333-3280

RE: Coronado Pond #2

Dear James McDaniel:

Order No.: 1105696

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 5/17/2011 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com Hall Environmental Analysis Laboratory, Inc.

Date: 16-Jun-11 Analytical Report

CLIENT:	XTO Energy			Client Sample II): E	
Lab Order:	1105696			Collection Dat	e: 5/16/2011	1:30:00 PM
Project: Lab ID:	Coronado Pond #2 1105696-01			Date Receive Matri	d: 5/17/2011 x: SOIL	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD Uranium	6010B: SOIL METALS	ND	25	mg/Kg	5	Analyst: ELS 5/31/2011 12:49:26 PM
EPA METHOD Petroleum Hydr	418.1: TPH rocarbons, TR	ND	20	mg/Kg	1	Analyst: LRW 5/20/2011

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

NC Non-Chlorinated

PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Pace Analytical

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greenaburg, PA 15601 (724)850-5600

ANALYTICAL RESULTS

Project:	1105696						
Pace Project No .:	3047004						
Sample: 1105696-0 PWS:)1B	Lab ID: 304700 Site ID:	4001 Collected: Sample Ty	05/16/11 13:30 Re	aceived: 05/20/11 10:00	Matrix: Solid	
Results reported or	n a "dry-weigh	t" basis					
Paramet	ters	Method	Act ± Und	(MDC)	Units Analyzed	CAS No.	Qual
Radium-226		EPA 901.1m	1.01 ± 0.248 (0.	209) pCi/g	06/16/11 08:	18 13982-63-3	
Radium-228		EPA 901.1m	1.83 ± 0.427 (0.	184) pCi/g	06/16/11 08:	18 15262-20-1	

Date: 06/16/2011 02:33 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical"

Pace Analytical Services, Inc. 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15801 (724)850-5600

QUALITY CONTROL DATA

Project: 11	105696					
Pace Project No.: 31	047004					
QC Batch:	RADC/8455	Analysis Method:	EPA 901.1m	1		
QC Batch Method:	EPA 901.1m	Analysis Description	: 901.1 Gamr	ma Spec		
Associated Lab Sampl	es: 3047004001					
METHOD BLANK: 30	02759	Matrix: Solid				
Associated Lab Sample	es: 3047004001					
Paramet	er	Act ± Unc (MDC)	Units	Analyzed	Qualifiers	
Radium-226	0.0710 ± 0	.140 (0.244)	pCi/g	06/16/11 08:50		
Radium-228	-0.041 ± 1.	06 (0.407)	pCi/g	06/16/11 08:50		

Date: 06/16/2011 02:33 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Client: X Project: C	TO Energy coronado Por	nd #2								Work	Order:	1105696
Analyte		Result	Units	PQL	SPK Va	a SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimi	t Qual
Method: EPA Metho Sample ID: MB-2689	od 418.1: TPI 7	Ч	MBLK				Batch ID:	26897	Analysis	Date:	14	5/20/2011
Petroleum Hydrocarbo Sample ID: LCS-268	ns, TR 97	ND	mg/Kg LCS	20			Batch ID:	26897	Analysis	Date:		5/20/2011
Petroleum Hydrocarbor Sample ID: LCSD-26	ns, TR 897	96.86	mg/Kg LCSD	20	100	0	96.9 Batch ID:	81.4 26897	118 Analysis	Date:		5/20/2011
Petroleum Hydrocarbor	ns, TR	98.20	mg/Kg	20	100	0	98.2	81.4	118	1.37	8.58	
Method: EPA Metho Sample ID: MB-2699	od 60108: So 7	II Metals	MBLK				Batch ID:	26997	Analysis	Date:	5/31/2011	11:52:18 AM
Uranium Sample ID: LCS-2699	97	ND	mg/Kg LCS	5.0			Batch ID:	26997	Analysis	Date:	5/31/2011	11:54:15 AM
Uranium		25.49	mg/Kg	5.0	25	0.6564	99.3	80	120			

QA/QC SUMMARY REPORT

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

4

Hall Environmental Analysis Laboratory, Inc.

	Sample	Rec	eipt Ch	neck	list				
Client Name XTO ENERGY				D	ate Received	d:		5/17/2011	
Work Order Number 1105696					Received by:	MIN	G	A /	
Checklist completed by: Miles	el Cjoni	E	5/17/ Date	11	Sample ID la	bels check	ed by:	Initials	
Matrix:	Carrier name:	Grey	hound						
Shipping container/cooler in good condition?		Yes			No 🗆	Not Prese	nt 🗆		
Custody seals intact on shipping container/coole	er?	Yes			No	Not Prese	nt 🗆	Not Shipped	
Custody seals intact on sample bottles?		Yes			No 🗆	N/A			
Chain of custody present?		Yes			No 🗌				
Chain of custody signed when relinquished and	received?	Yes			No 🗌				
Chain of custody agrees with sample labels?		Yes			No				
Samples in proper container/bottle?		Yes			No				
Sample containers intact?		Yes			No 🗌				
Sufficient sample volume for indicated test?		Yes			No				
All samples received within holding time?		Yes			No 🗌			Number o	f preserved
Water - VOA vials have zero headspace?	No VOA vials subm	nitted		Ye	es 🗆	No		bottles ch pH:	ecked for
Water - Preservation labels on bottle and cap m	atch?	Yes			No 🗆	N/A			
Water - pH acceptable upon receipt?		Yes			No 🗆	N/A		<2 >12 uni	less noted
Container/Temp Blank temperature?		1.	0°	<6°	C Acceptabl	0		Delow.	
COMMENTS:				If give	ven sufficient	time to coo	d.		
		==			====		==		
승규가 맛있어야 한 것이 같아.									
Client contacted	Date contacted:				Perso	on contacte	d		_
Contacted by:	Regarding:								
Jomments:						_			
Competitut Autien									
					-				

Client: James Mc Daniel XTO Energy Mailing Address: 382 CR 3100 AZTC NM Phone #: 505, 757.0519				Turn-Around Time: Standard I Rush Project Name: Coronado Pond # 2 Project #:				HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request													
email or Fax#: QA/QC Package: Standard Level 4 (Full Validation) Accreditation NELAP Other EDD (Type)				Project Manager: James McDaniel Sampler: Brooke Herb On Ice: Sample Temperature Sample Temperature			BE + TMB's (8021)	BE + TPH (Gas only)	d 8015B (Gas/Diesel)	od 418.1)	od 504.1)	or PAH)	etals	CI,NO3,NO2,PO4,SO4)	cides / 8082 PCB's	A)	i-VOA)	(ichnity (cembine	adium Jourado	s (Y or N)
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAD NO	BTEX + MI	BTEX + MI	TPH Metho	TPH (Meth	EDB (Meth	8310 (PNA	RCRA 8 M	Anions (F,C	8081 Pesti	8260B (VO	8270 (Sem	Uraniu	Radioc	S	Air Bubbles
			E	402/2	none																
Date:	Time: 1422 Time:	Relinguish	ed by: where the second secon	Received by:	~ Walt	Date Time 5/16/11 1422 Date Time	Rer	mark	s:												

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.