CLOSURE REPORT

RUTH 20-2 RELEASE SITE 1RP #752 EPI REF: 160011

UL-D (NW⁴ of the NW⁴) of Section 20, T16S, R36E ~2.4 Miles Southwest of Lovington Lea County, New Mexico Latitude: N 32° 54' 48.03" Longitude: W 103° 22' 57.43"

AUGUST 2006

PREPARED BY:

ENVIRONMENTAL PLUS, INC. 2100 AVENUE O EUNICE, NEW MEXICO 88231

PREPARED FOR:

Closure Report

Î

Site Characterization

Ruth 20-2 Release Site

Ref. #160011

Name	Title	Company or Agency	Mailing Address	e-mail
Larry Johnson	Environmental Engineer	New Mexico Oil Conservation Division – Hobbs	1625 French Drive Hobbs, NM 88240	lwjohnson@state.nm.us
Bradley Blevins	Field Supervisor	Chesapeake Operating, Inc.	P.O. Box 190 Hobbs, NM 88240-0190	bblevins@chkenergy.com
Curtis Blake	Superintendent	Chesapeake Operating, Inc.	P.O. Box 190 Hobbs, NM 88240-0190	cblake@chkenergy.com
Harlan Brown	Senior Environmental Representative	Chesapeake Operating, Inc.	6100 N. Western Avenue Oklahoma City, OK 73118	hbrown@chkenergy.com
Thaddeus Kostrubala	District Resource Manager	New Mexico State Land Office – Sante Fe	310 Old Sante Fe Trail P.O. Box 1148 Sante Fe, NM 87504-1148	tkostrubala@slo.state.mm.us
Myra Meyers	District Resource Manager	New Mexico State Land Office – Hobbs	2702-D North Grimes Hobbs, NM 88240	mmeyers@slo.state.nm.us
File	1	Environmental Plus, Inc.	P.O. Box 1558 Eunice, NM 88231-1558	iolness@envplus.net

Standard of Care

Site Characterization

Ruth 20-2 Release Site

Ref: 160011

The information provided in this report was collected consistent with the New Mexico Oil Conservation Division (NMOCD) *Guidelines for Remediation of Leaks, Spills and Releases* (August 13, 1993), the NMOCD *Unlined Surface Impoundment Closure Guidelines* (February 1993), and the Environmental Plus, Inc. (EPI) *Standard Operating Procedures and Quality Assurance/Quality Control Plan.* The conclusions are based on field observations and laboratory analytical reports as presented in the report. Recommendations follow NMOCD guidance and represent the professional opinions of EPI staff. These opinions were arrived at with currently accepted geologic, hydrogeologic and engineering practices at this time and location. The report was prepared or reviewed by a certified or registered EPI professional with a background in engineering, environmental and/or the natural sciences.

This report was prepared by:

Hagemath

Jason Stegemoller, M.S. Environmental Scientist

August 4, 2006

Date

This report was reviewed by:

Iain A. Olness, P.G. Technical Manager

4 august 2006

Date

Table of Contents

Summary.		1			
Site Descri	ption	2			
2.1	Geological Description	2			
2.2	Ecological Description	2			
2.3	Area Ground Water	2			
2.4	Area Water Wells	3			
2.5	Area Surface Water Features	3			
NMOCD Site Ranking					
Subsurface Soil Investigation4					
Ground Wa	ater Investigation	4			
Summary of	of Results	4			
Conclusion	38	. 5			
	Summary. Site Description 2.1 2.2 2.3 2.4 2.5 NMOCD S Subsurface Ground W Summary of Conclusion	Summary Site Description 2.1 Geological Description 2.2 Ecological Description 2.3 Area Ground Water 2.4 Area Water Wells 2.5 Area Surface Water Features NMOCD Site Ranking Subsurface Soil Investigation Ground Water Investigation Summary of Results Conclusions			

FIGURES

Figure 1: Area Map Figure 2: Site Location Map Figure 3: Site Map Figure 4: Excavation and Final Sample Location Map

TABLES

Table 1: Summary of Excavation Analytical ResultsTable 2: Well Data

APPENDICES

Appendix I: Laboratory Analytical Reports and Chain-of-Custody Forms Appendix II: Project Photographs Appendix III: Soil Boring Log Appendix IV: Final NMOCD C-141

1.0 Summary

On June 3, 2005, a release of approximately 500 gallons of diesel fuel from a vandalized fuel line supplying a generator. Chesapeake Operating, Inc. (Chesapeake) immediately retained Environmental Plus, Inc. (EPI) to conduct emergency response measures at the release site. EPI personnel mobilized June 4, 2005, to excavate and stockpile diesel saturated soil on plastic as well as perform GPS surveying, photography and characterization of the site. Upon completion of initial excavation activities, three composite samples were collected from the base of the excavation and submitted to an independent laboratory for quantification of total petroleum hydrocarbons (TPH) and benzene, ethylbenzene, toluene and total xylenes (BTEX constituents). Analytical results for these samples indicated TPH concentrations ranging from 3,440 parts per million (ppm) to 8,790 ppm with an average concentration of 5,350 ppm remaining in the excavation. In addition, reported BTEX constituent concentrations ranged from 0.887 ppm to 3.11 ppm with an average concentration of 1.64 ppm (reference *Table 1*). The release entailed an area of approximately 3,150-square feet (ft²) (reference *Figure 3*). The site is located approximately 2.4 miles southwest of Lovington, Lea County, New Mexico (reference *Figure 1*).

On June 8, 2005, EPI personnel initiated remediation activities. Excavation of hydrocarbon impacted soil continued until field analyses indicated remedial concentrations had been achieved. Field analyses were conducted utilizing a MiniRae photoionization detector (PID) equipped with a 9.7 electron volt lamp. Field analyses indicated organic vapor concentrations ranged from 10.1 ppm to 73.5 ppm, with an average concentration of 33.5 ppm. Confirmatory soil samples were collected from the excavation, placed in a laboratory provided container and submitted for quantification of TPH and BTEX constituents.

Analytical results indicated TPH concentrations were in excess of the NMOCD remedial threshold of 100 mg/Kg. On July 25, 2005, excavation activities resumed concentrating in the areas analytical results indicated contaminant levels were in excess of the NMOCD remedial thresholds. Excavation activities continued until soil sample field analyses indicated organic vapor concentrations were below remedial thresholds.

On July 11, 2005, a series of eleven soil samples were collected from the excavation floor at approximately 1-foot below ground surface (bgs) (reference *Figure 4*). A portion of each sample was placed in a laboratory provided container and set on ice for transport to an independent laboratory for quantification of TPH and BTEX constituent concentrations. The remaining portion of each sample was analyzed in the field for the presence of organic vapors. Field analytical data indicated organic vapor concentrations ranged from 0.7 to 73.5 ppm (reference *Table 1*).

Laboratory analytical data indicated BTEX constituent concentrations were non-detectable (ND) at or above laboratory method detection limits in sample locations SP-1 through 11. TPH concentrations were reported to range from ND to 3,410 mg/Kg (reference *Table 1*).

Based on analytical data, excavation activities resumed in the areas where soil samples SP-5, 6, 9, 10 and 11 were collected (reference *Figure 4*). Upon confirmation via field analyses that impacted soil had been removed, soil samples were collected on July 26, 2005 from the excavation floor at these five locations. A portion of each sample was placed in a laboratory provided container and submitted to an independent laboratory for quantification of TPH and BTEX constituent concentrations. The remaining portion of each sample was analyzed in the field for the presence of organic vapors. Field analytical data indicated organic vapor concentrations ranged from 0.6 to 3.0 ppm (reference *Table 1*).

Laboratory analytical data indicated BTEX constituent concentrations were ND at or above laboratory MDL. TPH concentrations in soil sample SP-5, 10 and 11 at 2-feet bgs were ND at or above laboratory MDL. Reported TPH concentrations in SP-6 were 138 mg/Kg and in SP-9 were 276 mg/Kg, in excess of the NMOCD remedial threshold of 100 mg/Kg (reference *Table 1* and *Figure 4*). The northern portion of the release site was backfilled after receipt of verbal approval from the NMOCD.

After further remedial excavation in the southern portion of the release site, a series of five soil samples (SP-12 through 16) were collected on September 6, 2005 from the excavation. A portion of each sample was placed in a laboratory provided container and submitted for laboratory quantification of TPH and BTEX constituent concentrations. The remaining portion of each sample was analyzed in the field for the presence of organic vapor concentrations. Field analyses indicated organic vapor concentrations ranged from 1.7 to 8.1 ppm (reference *Table 1*).

Laboratory analytical data indicated BTEX constituent concentrations were ND at or above laboratory MDL. Reported TPH concentrations were reported to range from ND to 24.5 mg/Kg, below the NMOCD remedial threshold of 100 mg/Kg (reference *Table 1*).

Approximately 340 cubic yards of hydrocarbon impacted soil was excavated and transported to Artesia Aeration for treatment. An equivalent amount of clean soil obtained from an off-site source was utilized to backfill the excavation.

This release site is located in Unit Letter D, (NW¼ of the NW¼), Section 20, T16S, R36E, N32° 54' 48.033" and W103° 22' 57.430". The site is approximately 2.4-miles southwest of Lovington, New Mexico on property owned by the State of New Mexico (reference *Figures 1* through 3).

2.0 Site Description

2.1 Geological Description

<u>The United States Geological Survey (USGS) Ground-Water Report 6, "Geology and</u> <u>Ground-Water Conditions in Southern Lea County, New Mexico," A. Nicholson and A.</u> <u>Clebsch, 1961</u>, describes the near surface geology of southern Lea County as "an intergrade of the Quaternary Alluvium (QA) sediments (i.e., fine to medium sand, with the mostly eroded Cenozoic Ogallala (CO) formation). Typically, the QA and CO formations in the area are capped by a thick interbed of caliche and generally overlain by sandy soil."

The release site is located in the High Plains physiographic subdivision, described by Nicholson & Clebsch as "a flat, gently sloping plain, treeless and marred only by slight undulations and covered with short prairie grass."

2.2 Ecological Description

The area is typical of the Upper Chihuahuan Desert Biome consisting primarily of sandy soil covered with short semi-arid grasses, interspersed with Honey Mesquite and forbs. Mammals represented, include Orrd's and Merriam's Kangaroo Rats, Deer Mouse, White Throated Wood Rat, Cottontail Rabbit, Black Tailed Jackrabbit, Mule Deer, Bobcat, Red Fox and Coyote. Reptiles, amphibians, and birds are numerous and typical of the area. A survey of Listed, Threatened, or Endangered species was not conducted.

2.3 Area Groundwater

The unconfined groundwater aquifer at this site is projected to be ~71-ft bgs based on water depth data obtained from the New Mexico State Engineers Office and the United States

Geological Survey data base. Groundwater was encountered at approximately 72-ft bgs during the advancement of a soil boring advanced during delineation activities of the adjacent Ruth 20-2 drilling pit on October 19, 2005.

2.4 Area Water Wells

There are two water supply wells (L 00209C and USGS #1) located within a 1,000 foot radius of the release site (reference *Figure 2* and *Table 3*).

2.5 Area Surface Water Features

There are no surface water bodies within a 1,000-foot radius of the release site.

3.0 NMOCD Site Ranking

Contaminant delineation and remedial work done at this site indicate that the chemical parameters of the soil and the physical parameters of the groundwater were characterized consistent with the characterization and remediation/abatement goals and objectives set forth in the following New Mexico Oil Conservation Division (NMOCD) publications:

- Guidelines for Remediation of Leaks, Spills and Releases (August 13, 1993); and
- <u>Unlined Surface Impoundment Closure Guidelines (February 1993)</u>

Acceptable thresholds for contaminants/constituents of concern (CoC) were determined based on the NMOCD Ranking Criteria as follows:

- Depth to Groundwater (i.e., distance from the lower most acceptable concentration to the ground water);
- Wellhead Protection Area (i.e., distance from fresh water supply wells);
- Distance to Surface Water Body (i.e., horizontal distance to all down gradient surface water bodies).

Based on the proximity of the site to protectable area water wells, surface water bodies, and depth to groundwater from the lower most contamination, the NMOCD ranking score for the site is 30 points with the soil remedial goals highlighted in the Site Ranking table presented below.

1. Ground Water	2. Wellhead Protection Area	3. Distance to Surface Water						
Depth to GW <50 feet: 20 points	If <1,000' from water source, or; <200' from private domestic water	<200 horizontal feet: <i>20 points</i>						
Depth to GW 50 to 99 feet: 10 points	source: 20 points	200-1,000 horizontal feet: 10 points						
Depth to GW >100 feet: 0 points	If >1,000' from water source, or; >200' from private domestic water source: <i>0 points</i>	>1,000 horizontal feet: <i>0 points</i>						
Total Site Ranking Score and Acceptable Remedial Goal Concentrations								
Parameter 20 c	pr > 10	0						
Benzene' 10 p	opm 10 ppm	10 ppm						
BTEX ¹ 50 p	pm 50 ppm	50 ppm						
TPH 100	ppm 1,000 ppm	5,000 ppm						

A field soil vapor headspace measurement of 100 ppm may be substituted for a laboratory analysis of the benzene and BTEX concentration limits.

4.0 Subsurface Soil Investigation

On June 8, 2005, 5-point composite soil samples were collected from the release area after diesel saturated soil had been excavated. Soil samples were placed in a laboratory provided container and submitted for laboratory quantification of TPH and BTEX constituent concentrations. Laboratory analytical data indicated TPH concentrations ranged from 3,440 to 8,970 mg/Kg, in excess of the NMOCD remedial threshold of 100 mg/Kg. BTEX concentrations ranged from 0.921 to 3.11 mg/Kg, below the NMOCD remedial threshold of 50 mg/Kg (reference *Table 1*).

On July 11, 2005, a series of 11 soil samples were collected after remedial excavation of hydrocarbon impacted soil to approximately 1-foot bgs. Upon collection, a portion of each sample was placed in a laboratory provided container and set on ice for transport to an independent laboratory for quantification of TPH and BTEX constituent concentrations. The remaining portion of each sample was analyzed in the field for the presence of organic vapors. Field analyses indicated organic vapor concentrations ranged from 10.1 to 73.5 mg/Kg. Laboratory analytical results indicated BTEX constituent concentrations were ND at or above laboratory MDL in SP-1 through 11. Reported TPH concentrations in SP-1 and SP-7 were ND at or above laboratory MDL. TPH concentrations in all other sample locations (i.e., SP-2, 3, 4, 5, 6, 8, 9, 10 and 11) ranged from 90.4 to 3,410 mg/Kg (reference *Table 1* and *Figure 4*).

On July 26, 2005, soil samples were collected after further excavation in the area of SP-5, 6, 9, 10 and 11. A portion of each sample was placed in a laboratory provided container and submitted to an independent laboratory for quantification of TPH and BTEX constituent concentrations. The remaining portion of each sample was analyzed in the field for the presence of organic vapors. Field analyses indicated organic vapor concentrations ranged from 0.5 to 3.0 ppm. Laboratory analytical data indicated BTEX concentrations were ND at or above laboratory MDL. Reported TPH concentrations ranged from ND to 276 mg/Kg (reference *Table 1* and *Figure 4*).

On September 6, 2005, soil samples SP-12 through 16 were collected from the excavation. A portion of each sample was placed in a laboratory provided container and submitted to an independent laboratory for quantification of TPH and BTEX constituent concentrations. The remaining portion of each sample was analyzed in the field for the presence of organic vapors. Field analyses indicated organic vapor concentrations ranged from 1.7 to 8.1 ppm. Laboratory analytical data indicated BTEX constituent concentrations were ND at or above laboratory MDL. Reported TPH concentrations were ND at or above laboratory MDL, with the exception of sample SP-12. Reported TPH concentrations in SP-12 were 24.5 mg/Kg, below the NMOCD remedial threshold of 100 mg/Kg (reference *Table 1* and *Figure 4*).

5.0 Groundwater Investigation

Groundwater was encountered at approximately 72-ft bgs during the advancement of a soil boring (BH-1) advanced during delineation activities of the adjacent Ruth 20-2 drilling pit on October 19, 2005 (reference *Appendix III*).

Confirmatory laboratory analytical results for soil samples SP-1, 4, 5, 7, 10, 11, 12, 13, 14, 15 and 16 indicated that TPH and BTEX constituents were non-detectable at or above laboratory MDL, with the exception of SP-12. Analytical data from SP-4 indicated TPH was 24.5 mg/Kg, below the NMOCD remedial threshold of 100 mg/Kg (reference *Table 1* and *Appendix I*).

6.0 Conclusions

The release of approximately 500 gallons of diesel fuel was entirely upon the caliche pad. Approximately 340 cubic yards of hydrocarbon-impacted soil was excavated and transported to Artesia Aeration for treatment. An equivalent amount of clean soil was transported from an off-site source and utilized to backfill the excavation. The excavation was backfilled with clean soil and graded to allow natural drainage. The final extent of excavated area comprised approximately 3,130-square feet to a maximum depth of 6-feet bgs. Laboratory analytical results indicated BTEX constituent concentrations were ND at or above laboratory MDL. Reported TPH concentrations were below the NMOCD remedial threshold of 100 mg/Kg (reference *Table 1*).

7.0 Recommendations

Based on field and laboratory analytical results indicating NMOCD remedial thresholds have been achieved it is recommended the site be closed and "no further action" be required. EPI, on behalf of Chesapeake Energy, request the NMOCD issue a site closure letter. The caliche pad will remain until the well/pumping unit is decommissioned.

FIGURES

Summary of Excavation Analytical Results

Chesapeake Energy Ruth 20-2 Release Site (Ref.# 160011)

Sample Date Soil Status PID Reading Benzene (mg/Kg)	Soil Status PID Reading Benzene (mg/Kg)	PID Reading Benzene (ppm) (mg/Kg)	Benzene (mg/Kg)		Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Total Xylenes (mg/Kg)	Total BTEX (mg/Kg)	TPH (as gasoline) (mg/Kg)	TPH (as diesel) (mg/Kg)	Total TPH (mg/Kg)
08-Jun-05 Excav	Excav	ated	AN	<0.0250	0.0711	0.510	2.53	3.11	1,590	7,200	8,790
08-Jun-05 Excavate	Excavate	q	NA	<0.0250	0.0683	0.134	0.685	0.887	507	3,300	3,810
08-Jun-05 Excavated	Excavated	_	NA	<0.0250	0.0518	0.0877	0.781	0.921	470	2,970	3,440
11-Jul-05 Excavated	Excavated		23.5	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	<10.0	<10.0	<10.0
11-Jul-05 Excavated	Excavated		10.1	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	14.7	846	861
11-Jul-05 Excavated	Excavated		10.4	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	<10.0	108	108
11-Jul-05 In Situ	In Situ		24.1	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	<10.0	90.4	90.4
11-Jul-05 Excavated	Excavated		38.9	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	<10.0	169	169
26-Jul-05 In Situ	In Situ		0.7	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	<10.0	<10.0	<10.0
11-Jul-05 Excavated	Excavated	and the second se	41.4	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	30.9	724	755
26-Jul-05 In Situ	In Situ		0.9	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	<10.0	138	138
11-Jul-05 In Situ	In Situ		25.0	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	<10.0	<10.0	<10.0
11-Jul-05 In Situ	In Situ	-	39.6	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	<10.0	27.8	27.8
11-Jul-05 Excavated	Excavated		46.2	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	16.9	315	332
26-Jul-05 In Situ	In Situ		3.0	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	12.4	264	276

Summary of Excavation Analytical Results

Chesapeake Energy Ruth 20-2 Release Site (Ref.# 160011)

Sample ID	Depth (feet)	Sample Date	Soil Status	PID Reading (ppm)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Total Xylenes (mg/Kg)	Total BTEX (mg/Kg)	TPH (as gasoline) (mg/Kg)	TPH (as diesel) (mg/Kg)	Total TPH (mg/Kg)
01 ds	1	11-Jul-05	Excavated	73.5	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	166	3,240	3,410
01-10	2	26-Jul-05	In Situ	0.5	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	<10.0	<10.0	<10.0
11 ds	1	11-Jul-05	Excavated	31.6	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	<10.0	213	213
11-10	2	26-Jul-05	In Situ	0.6	<0.0250	<0.0250	<0.0250	<0.0500	<0.125	<10.0	<10.0	<10.0
SP-12	3	06-Sep-05	In Situ	1.7	<0.005	<0.005	<0.005	<0.015	<0.030	<10.0	24.5	24.5
SP-13	6	06-Sep-05	In Situ	7.0	<0.005	<0.005	<0.005	<0.015	<0.030	<10.0	<10.0	<20.0
SP-14	3	06-Sep-05	In Situ	8.1	<0.005	<0.005	<0.005	<0.015	<0.030	<10.0	<10.0	<20.0
SP-15	6	06-Sep-05	In Situ	6.6	<0.005	<0.005	<0.005	<0.015	<0.030	<10.0	<10.0	<20.0
SP-16	3	06-Sep-05	In Situ	6.7	<0.005	<0.005	<0.005	<0.015	<0.030	<10.0	<10.0	<20.0
NMOCD	Remedial	Thresholds		100	10				50			100

¹ **Bolded** values are in excess of NMOCD Remediation Thresholds ⁴ NA=Not Applicable ³ Chloride and sulfate residuals may not be capable of impacing local groundwater above the NMWQCC standards of 250 mg/L and 650 mg/L, respectively.

<u>Well Data</u>

Chesapeake Energy Ruth 20-2 (Ref. #160011)

Depth to Water		82 25 JK 77 C (1) 77		利時時期
Well I Depth				
Date Measured		01-1un-60	30-Way-60	
Longitude	133-22 ⁸	3° 21' 17.73"		
Latitude	(32° 55' 19.33" W 10] 32° 55' 32,49" W 10	133. 24. 27. 96. M 10 24. 27. 96. M 10 25. 26. M 10 25. M 1	
Sec q q q		16 222 N		
Rng	1 98 E	36 E		
Twsp	16 S	16 S		
Use		MOQ MOQ		
Owner	T. M. Blackmon	Kenneth Cox	Roy Boland	
Diversion ^A		 3 3 3 5 5		
Well Number	L 03318 APPRO EXP	L 04487 APPRO	L 04437 APPRO	

Well Data

Chesapeake Energy Ruth 20-2 (Ref. #160011)

			_	_		_	_	_
Depth to Water		309	6	66.58		75		
Well Depth		38	110			135		
Date Measured	8 A Market State Stat	18-Aug-58	19-Oct-63	01-Feb-96		02-Jun-68		#1777日の10月1日 1月1日日 二番
Longitude	"19, 11, 11, 11, 11, 11, 11, 11, 11, 11,	W 103° 21' 17.68"	W 103° 21' 17.68"		「	W 103° 24' 7.28"	W 103° 24' 7.28"	
Latitude	", 30 , 3 , 1	N 32° 54' 40.06"	N 32° 54' 40.06"			N 32° 53' 21.38"	N 32° 53' 21.38"	
Sec q q q		21 2 2 4	21 2 2 4	21 232		30 311	30 311	
Rng		36 E	36 E	36 E		36 E	36 E	
Twsp		16 S	16 S	16 S		16 S	16 S	
Use			DOM			PRO	PRO	
Owner	Robert Ralph Sims		Ralph E. Collins			Marcum Drilling Company	Humble Oil & Refining Co.	
Diversion ^A			3			0	0	and and
Well Number		L 03966 APPRO	L 05269	USGS #12		L 06334	L 06334 (E) 1	

* = Data obtained from the New Mexico Office of the State Engineer Website (http://iwaters.ose.state.nm.us.7001/iWATERS/wr_RegisServlet1) Well locations shown on Figure 2

A = in acre feet per annum IND = Industrial

IRR = Irrigation DOM = Domestic EXP = Exploration quarters are 1=NW, 2=NE, 3=SW, 4=SE; quarters are biggest to smallest

APPENDIX I

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORM

Analytical Report

Prepared for:

Iain Olness Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Chesapeake Energy/ Ruth 20-2 Project Number: None Given Location: UL-D, Sect.20. T 16 S, R 36 E

Lab Order Number: 5F13020

Report Date: 06/17/05

Environmental Plus, Incorporated	Project:	Chesapeake Energy/ Ruth 20-2	Fax: 505-394-2601
P.O. Box 1558	Project Number:	None Given	Reported:
Eunice NM, 88231	Project Manager:	Iain Olness	06/17/05 17:01

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Ruth 20-2 S. Flowpath	5F13020-01	Soil	06/08/05 12:30	06/13/05 15:30
Ruth 20-2 W. Half Pooling Area	5F13020-02	Soil	06/08/05 14:10	06/13/05 15:30
Ruth 20-2 E. Half Pooling Area	5F13020-03	Soil	06/08/05 14:15	06/13/05 15:30

Page 1 of 9

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Analytical Report

Prepared for:

Iain Olness Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Chesapeake Energy/ Ruth 20-2 Project Number: None Given Location: UL-D, Sect.20. T 16 S, R 36 E

Lab Order Number: 5F13020

Report Date: 06/17/05

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231

Project: Chesapeake Energy/ Ruth 20-2 Project Number: None Given Project Manager: Iain Olness

Fax: 505-394-2601

Reported: 06/17/05 17:01

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Ruth 20-2 S. Flowpath	5F13020-01	Soil	06/08/05 12:30	06/13/05 15:30
Ruth 20-2 W. Half Pooling Area	5F13020-02	Soil	06/08/05 14:10	06/13/05 15:30
Ruth 20-2 E. Half Pooling Area	5F13020-03	Soil	06/08/05 14:15	06/13/05 15:30

Page 1 of 9

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231 Project: Chesapeake Energy/ Ruth 20-2 Project Number: None Given Project Manager: Iain Olness

Reported: 06/17/05 17:01

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Ruth 20-2 S. Flowpath (5F13020-01) So	il and the second se								
Benzene	ND	0.0250	mg/kg dry	25	EF51404	06/14/05	06/14/05	EPA 8021B	
Toluene	0.0711	0.0250	"			"	u	14	
Ethylbenzene	0.510	0.0250	н		"	"	м	н	
Xylene (p/m)	1.54	0.0250	н	"	"	"	"	"	
Xylene (o)	0.993	0.0250	ų	n		n	n	u	
Surrogate: a,a,a-Trifluorotoluene		85.0 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.5 %	80-12	0	"	"	"	"	
Gasoline Range Organics C6-C12	1590	10.0	mg/kg dry	1	EF51310	06/14/05	06/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	7200	10.0	"	н	n	u	. "	"	
Total Hydrocarbon C6-C35	8790	10.0		w	n	n	n	**	
Surrogate: 1-Chlorooctane		126 %	70-13	0	"	"	"	"	
Surrogate: 1-Chlorooctadecane		138 %	70-13	0	"	"	"	"	S-04
Ruth 20-2 W. Half Pooling Area (5F130	20-02) Soil								
Benzene	ND	0.0250	mg/kg dry	25	EF51404	06/14/05	06/14/05	EPA 8021B	
Toluene	0.0683	0.0250	"	"	**	"	н		
Ethylbenzene	0.134	0.0250	*		н	"		"	
Xylene (p/m)	0.491	0.0250		"	u	"	"	"	
Xylene (o)	0.194	0.0250	u	"	"	"	н	u	
Surrogate: a,a,a-Trifluorotoluene		81.7 %	80-12	0	"	**	n	»	
Constant Description		1010/	00.13	0					

Surrogate: 4-Bromofluorobenzene		101 %	80-120		"	n	"	"	
Gasoline Range Organics C6-C12	507	10.0	mg/kg dry	1	EF51310	06/14/05	06/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	3300	10.0	u	"	"	"	"	"	
Total Hydrocarbon C6-C35	3810	10.0	"	"	"	"	"	*	
Surrogate: 1-Chlorooctane		114 %	70-130		"	"	"	59	
Surrogate: 1-Chlorooctadecane		158 %	70-130		"	"	n	"	S-04

Ruth 20-2 E. Half Pooling Area (5F13020-03) Soil

Benzene	ND	0.0250	mg/kg dry	25	EF51404	06/14/05	06/14/05	EPA 8021B	
Toluene	0.0518	0.0250	"	"	n	n	n	Ħ	
Ethylbenzene	0.0877	0.0250	н	"	n	n	"	**	
Xylene (p/m)	0.488	0.0250	"	"	н	"	"		
Xylene (o)	0.293	0.0250	**	**	"	"	"		
Surrogate: a,a,a-Trifluorotoluene		83.2 %	80-120		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		113 %	80-120		"	"	н	н	
Gasoline Range Organics C6-C12	470	10.0	mg/kg dry	1	EF51310	06/14/05	06/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	2970	10.0	н	"	**	11	"	14	
Total Hydrocarbon C6-C35	3440	10.0	u	"	"	n	n	"	

Environmental Lab of Texas

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Ruth 20-2 E. Half Pooling Area (5	iF13020-03) Soil								
Surrogate: 1-Chlorooctane		111 %	70-	130	EF51310	06/14/05	06/14/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		157 %	70-	130	"	"	"	"	S-04

Environmental Lab of Texas

Reported: 06/17/05 17:01

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Ruth 20-2 S. Flowpath (5F13020)-01) Soil								
% Moisture	18.8	0.1	%	1	EF51401	06/13/05	06/14/05	% calculation	
Ruth 20-2 W. Half Pooling Area	(5F13020-02) Soil								
% Moisture	7.0	0.1	%	1	EF51401	06/13/05	06/14/05	% calculation	
Ruth 20-2 E. Half Pooling Area	(5F13020-03) Soil								
% Moisture	7.6	0.1	%	1	EF51401	06/13/05	06/14/05	% calculation	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Project: Chesapeake Energy/ Ruth 20-2 Project Number: None Given Project Manager: Iain Olness

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF51310 - Solvent Extraction (GC)										
Blank (EF51310-BLK1)	<u>,,</u>	· · · · · · · · · · · ·		Prepared:	06/13/05 A	nalyzed: 06	5/14/05			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	н							
Total Hydrocarbon C6-C35	ND	10.0	"							
Surrogate: 1-Chlorooctane	35.1		mg/kg	50.0		70.2	70-130			
Surrogate: 1-Chlorooctadecane	39.3		"	50.0		78.6	70-130			
LCS (EF51310-BS1)				Prepared:	06/13/05 A	nalyzed: 06	5/14/05			
Gasoline Range Organics C6-C12	392	10.0	mg/kg wet	500		78.4	75-125			
Diesel Range Organics >C12-C35	440	10.0	"	500		88.0	75-125			
Total Hydrocarbon C6-C35	832	10.0	"	1000		83.2	75-125			
Surrogate: 1-Chlorooctane	41.3		mg/kg	50.0		82.6	70-130			
Surrogate: 1-Chlorooctadecane	41.4		"	50.0		82.8	70-130			
Calibration Check (EF51310-CCV1)				Prepared:	06/13/05 A	nalyzed: 06	6/14/05			
Gasoline Range Organics C6-C12	521		mg/kg	500		104	80-120			
Diesel Range Organics >C12-C35	538		"	500		108	80-120			
Total Hydrocarbon C6-C35	1060		"	1000		106	80-120			
Surrogate: 1-Chlorooctane	49.7		"	50.0		99.4	70-130			
Surrogate: 1-Chlorooctadecane	57.1		"	50.0		114	70-130			
Matrix Spike (EF51310-MS1)	Sou	rce: 5F13016	-01	Prepared:	06/13/05 A	nalyzed: 06	/14/05			
Gasoline Range Organics C6-C12	509	10.0	mg/kg dry	506	ND	101	75-125			
Diesel Range Organics >C12-C35	565	10.0	"	506	23.8	107	75-125			
Total Hydrocarbon C6-C35	1070	10.0	"	1010	23.8	104	75-125			
Surrogate: 1-Chlorooctane	63.3		mg/kg	50.0		127	70-130			
Surrogate: 1-Chlorooctadecane	63.7		"	50.0		127	70-130			
Matrix Spike Dup (EF51310-MSD1)	Sou	rce: 5F13016	-01	Prepared:	06/13/05 A	nalyzed: 06	/14/05			
Gasoline Range Organics C6-C12	508	10.0	mg/kg dry	506	ND	100	75-125	0.197	20	
Diesel Range Organics >C12-C35	582	10.0	*	506	23.8	110	75-125	2.96	20	
Total Hydrocarbon C6-C35	1090	10.0	"	1010	23.8	106	75-125	1.85	20	
Surrogate: 1-Chlorooctane	59.0		mg/kg	50.0		118	70-130			
Surrogate: 1-Chlorooctadecane	63 5		"	50.0		127	70-130			

Environmental Lab of Texas

Project: Chesapeake Energy/ Ruth 20-2 Project Number: None Given Project Manager: Iain Olness

Reported: 06/17/05 17:01

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF51404 - EPA 5030C (GC)									_	
Blank (EF51404-BLK1)				Prepared &	Analyzed:	06/14/05				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	н							
Ethylbenzene	ND	0.0250	**							
Xylene (p/m)	ND	0.0250	"							
Xylene (o)	ND	0.0250	н							
Surrogate: a,a,a-Trifluorotoluene	81.3		ug/kg	100		81.3	80-120			
Surrogate: 4-Bromofluorobenzene	98.7		n	100		98.7	80-120			
LCS (EF51404-BS1)				Prepared &	Analyzed:	06/14/05				
Benzene	103		ug/kg	100		103	80-120			
Toluene	90.4		н	100		90.4	80-120			
Ethylbenzene	90.9		Ħ	100		90.9	80-120			
Xylene (p/m)	205		н	200		102	80-120			
Xylene (o)	93.6		н	100		93.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	111		"	100		111	80-120			
Surrogate: 4-Bromofluorobenzene	113		"	100		113	80-120			
Calibration Check (EF51404-CCV1)				Prepared &	Analyzed:	06/14/05				
Benzene	104		ug/kg	100		104	80-120			
Toluene	87.9			100		87.9	80-120			
Ethylbenzene	84.1		"	100		84.1	80-120			
Xylene (p/m)	186		"	200		93.0	80-120			
Xylene (o)	84.4		"	100		84.4	80-120			
Surrogate: a,a,a-Trifluorotoluene	109		"	100		109	80-120			
Surrogate: 4-Bromofluorobenzene	119		"	100		119	80-120			
Matrix Spike (EF51404-MS1)	Sou	rce: 5F13010	-01	Prepared &	Analyzed:	06/14/05				
Benzene	91.0		ug/kg	100	ND	91.0	80-120			
Toluene	84.0		"	100	ND	84.0	80-120			
Ethylbenzene	82.8		"	100	ND	82.8	80-120			
Xylene (p/m)	170			200	ND	85.0	80-120			
Xylene (0)	82.4		"	100	ND	82.4	80-120			
Surrogate: a,a,a-Trifluorotoluene	84.8		"	100		84.8	80-120			
Surrogate: 4-Bromofluorobenzene	112		"	100		112	80-120			

Environmental Lab of Texas

Project: Chesapeake Energy/ Ruth 20-2 Project Number: None Given Project Manager: Iain Olness

Reported: 06/17/05 17:01

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF51404 - EPA 5030C (GC)			_				-			

Matrix Spike Dup (EF51404-MSD1)	Source: 5	Source: 5F13010-01			Prepared & Analyzed: 06/14/05			
Benzene	98.0	ug/kg	100	ND	98.0	80-120	7.41	20
Toluene	88.9		100	ND	88.9	80-120	5.67	20
Ethylbenzene	90.0	"	100	ND	90.0	80-120	8.33	20
Xylene (p/m)	201		200	ND	100	80-120	16.2	20
Xylene (o)	93.1		100	ND	93.1	80-120	12.2	20
Surrogate: a,a,a-Trifluorotoluene	97.3	"	100		97.3	80-120		
Surrogate: 4-Bromofluorobenzene	119	"	100		119	80-120		

Environmental Lab of Texas

Environmental Plus, Incorporated	Project:	Chesapeake Energy/ Ruth 20-2	Fax: 505-394-2601
P.O. Box 1558	Project Number:	None Given	Reported:
Eunice NM, 88231	Project Manager:	Iain Olness	06/17/05 17:01

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF51401 - General Preparation (Prep)										
Blank (EF51401-BLK1)				Prepared: 0	6/13/05 A	nalyzed: 06	/14/05			
% Moisture	ND	0.1	%							
Duplicate (EF51401-DUP1)	Sou	rce: 5F13001-0	01	Prepared: 0	6/13/05 A	nalyzed: 06	/14/05			
% Moisture	7.1	0.1	%		6.9			2.86	20	

Environmental Lab of Texas

Eunice NM, 88231 Project Manager: Iain Olness	06/17/05 17:01
P.O. Box 1558 Project Number: None Given	Reported:
Environmental Plus, Incorporated Project: Chesapeake Energy/ Ruth 20-2	Fax: 505-394-2601

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Raland K Just

6/17/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

Report Approved By:

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 9

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Environmental Lab of Texas

12600 West I-20 East, Odessa, TX 79765

Chain of Custody Form

Variance / Corrective Action Report – Sample Log-In

	EPI
Date/Time:	6/13/05 3:30
Order#:	5F13020
lettale	CR

Sample Receipt Checklist

Temperature of container/codier?	Yes (tic I	10.5 0
Shipping consider/cooler in good condition?		tio I	
Custory Seals maction ships ng contained popler?	l Yes i	the f	Cisi cressor
Custody Seals intaction sample bottles?	163)+C	Not cresent
Chain di custodiv present?	1035 1	11 C ()	
Sample Instructions complete on Ohain of Custody?	E	10 I	
Chain of Custory signed when relinquished and received?	1 KD	tiq 1	
Chain of oustoov agrees with sample label(s)	Fiz	No 1	
Container lagais legible and intact?		No.	······································
Sample Matrix and propenties same as on phain of pustopy?	()	tic I	
Samolas in order containent ortie?	(Eş).c	
Samples properly preserved?	(Ť≣⊊	1.0	
Sample bomes macul	(es	: ". <u>"</u>	
Preservations socumented on Chain of Custory?	() The	• C	······································
Containers cooumented on Chain of Custocy?	(A)	<u>.</u>	********
Sufferent sample amount for indicated test?	()	. NC :	
Ali samples received within sufficient fold time?	3	ेन्द्र व	
VCC samples have darp headspace?	(Dis	`.C	\:::::::::::::::::::::::::::::::::::::

Cther observations:

Variance Documentation: Context Person: -_____Date/Time: _____Contacted by: _____ Regarding: Corrective Action Taken:

*

Analytical Report

Prepared for:

Iain Olness Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Chesapeake Energy/ Ruth 20-2 Project Number: 160011 Location: UL-D, Sect. 20. T 16 S, R 36 E

Lab Order Number: 5G12007

Report Date: 07/14/05

Environmental Plus, Incorporated	Project: Chesapeake Energy/ Ruth 20-2	Fax: 505-394-2601
P.O. Box 1558	Project Number: 160011	Reported:
Eunice NM, 88231	Project Manager: Iain Olness	07/14/05 17:07

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP-1	5G12007-01	Soil	07/11/05 11:45	07/12/05 15:00
SP-2	5G12007-02	Soil	07/11/05 11:55	07/12/05 15:00
SP-3	5G12007-03	Soil	07/11/05 11:59	07/12/05 15:00
SP-4	5G12007-04	Soil	07/11/05 12:15	07/12/05 15:00
SP-5	5G12007-05	Soil	07/11/05 12:20	07/12/05 15:00
SP-6	5G12007-06	Soil	07/11/05 12:24	07/12/05 15:00
SP-7	5G12007-07	Soil	07/11/05 12:30	07/12/05 15:00
SP-8	5G12007-08	Soil	07/11/05 12:35	07/12/05 15:00
SP-9	5G12007-09	Soil	07/11/05 12:42	07/12/05 15:00
SP-10	5G12007-10	Soil	07/11/05 12:50	07/12/05 15:00
SP-11	5G12007-11	Soil	07/11/05 12:55	07/12/05 15:00
Project: Chesapeake Energy/ Ruth 20-2 Project Number: 160011 Project Manager: Iain Olness

Reported: 07/14/05 17:07

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP-1 (5G12007-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG51303	07/12/05	07/13/05	EPA 8021B	
Toluene	ND	0.0250	"	'n	"	н	n	"	
Ethylbenzene	ND	0.0250	"	"	"	"	"		
Xylene (p/m)	ND	0.0250	"	"	"	u	"	н	
Xylene (o)	ND	0.0250	"	*	u	**	н	11	
Surrogate: a,a,a-Trifluorotoluene		97.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EG51207	07/12/05	07/12/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	U II	"	"	n	н	"	
Total Hydrocarbon C6-C35	ND	10.0	u		"	"	"	"	
Surrogate: 1-Chlorooctane		83.8 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		85.2 %	70-1	30	"	"	"	n	
SP-2 (5G12007-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG51305	07/13/05	07/14/05	EPA 8021B	
Toluene	ND	0.0250	"	"	н		"	н	
Ethylbenzene	ND	0.0250	"	"	"	"	"	"	
Xylene (p/m)	ND	0.0250	"	"	11	"	"	"	
Xylene (o)	ND	0.0250	"	н	"	"	"	. н	
Surrogate: a,a,a-Trifluorotoluene		99.7 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	80-1	20	n	"	"	"	
Gasoline Range Organics C6-C12	14.7	10.0	mg/kg dry	1	EG51207	07/12/05	07/12/05	EPA 8015M	
Diesel Range Organics >C12-C35	846	10.0	"	"	**	۳		"	
Total Hydrocarbon C6-C35	861	10.0	"	**		e1	۳	"	
Surrogate: 1-Chlorooctane		78.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		92.4 %	70-1	30	n	"	"	"	
SP-3 (5G12007-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG51305	07/13/05	07/13/05	EPA 8021B	
Toluene	ND	0.0250	"	"	н	н	"	"	
Ethylbenzene	ND	0.0250	"	"		n	"	н	
Xylene (p/m)	ND	0.0250	"	"		u	"	н	
Xylene (o)	ND	0.0250	"	"	"	"	"	*	
Surrogate: a,a,a-Trifluorotoluene		92.1 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	80-1	20	"	n	"	н	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EG51207	07/12/05	07/12/05	EPA 8015M	
Diesel Range Organics >C12-C35	108	10.0	"	"	"	"	n	"	
Total Hydrocarbon C6-C35	108	10.0	н	и	n	"	"	н	
								· · · · · · · · · · · · · · · · · · ·	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples

received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 14

Project: Chesapeake Energy/ Ruth 20-2 Project Number: 160011 Project Manager: Iain Olness Fax: 505-394-2601

Reported: 07/14/05 17:07

		0	rganics by	GC					
		Environ	mental La	b of To	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP-3 (5G12007-03) Soil									
Surrogate: 1-Chlorooctane		78.6 %	70-13	0	EG51207	07/12/05	07/12/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		77.4 %	70-13	0	"	"	"	"	
SP-4 (5G12007-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG51305	07/13/05	07/13/05	EPA 8021B	
Toluene	ND	0.0250	и	"	*	н	"	**	
Ethylbenzene	ND	0.0250	"	۳		"	н	**	
Xylene (p/m)	ND	0.0250	"		"	"		n	
Xylene (o)	ND	0.0250	n	"		n	"	17	
Surrogate: a,a,a-Trifluorotoluene		95.7%	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		120 %	80-12	0	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EG51207	07/12/05	07/12/05	EPA 8015M	
Diesel Range Organics >C12-C35	90.4	10.0	"	"	"	D	"	11	
Total Hydrocarbon C6-C35	90.4	10.0	n	"	"	17	"	н	
Surrogate: 1-Chlorooctane		76.8 %	70-13	0	"	"	"	"	
Surrogate: 1-Chlorooctadecane		78.2 %	70-13	0	"	"	"	"	
SP-5 (5G12007-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG51305	07/13/05	07/13/05	EPA 8021B	
Toluene	ND	0.0250	14	"	"	"	н	**	
Ethylbenzene	ND	0.0250	"	"	"	u	"	**	
Xylene (p/m)	ND	0.0250	"	н	н	"	W	"	
Xylene (o)	ND	0.0250	"	"		"	*	"	
Surrogate: a,a,a-Trifluorotoluene		84.9 %	80-12	0		n	"	**	
Surrogate: 4-Bromofluorobenzene		98.3 %	80-12	0	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EG51207	07/12/05	07/12/05	EPA 8015M	
Diesel Range Organics >C12-C35	169	10.0	*	"	"	"	"	"	
Total Hydrocarbon C6-C35	169	10.0	"	"	п	"	н	"	
Surrogate: 1-Chlorooctane		79.6 %	70-13	0	"	"	"	"	
Surrogate: 1-Chlorooctadecane		82.6 %	70-13	0	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 3 of 14

Project: Chesapeake Energy/ Ruth 20-2 Project Number: 160011 Project Manager: Iain Olness

Organics by GC

Reported: 07/14/05 17:07

Environmental Lab of Texas Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes SP-6 (5G12007-06) Soil Benzene ND 0.0250 mg/kg dry 25 EG51305 07/13/05 07/13/05 EPA 8021B Toluene ND 0.0250 Ethylbenzene 0.0250 ... ND • 0.0250 Xylene (p/m) ND Xylene (o) ND 0.0250 **, •• " ,, " 90.2 % 80-120 Surrogate: a,a,a-Trifluorotoluene n " Surrogate: 4-Bromofluorobenzene 102 % 80-120 Gasoline Range Organics C6-C12 EPA 8015M 30.9 10.0 mg/kg dry 07/12/05 EG51207 07/12/05 E Diesel Range Organics >C12-C35 724 10.0 " **Total Hydrocarbon C6-C35** 755 10.0 н н н н Surrogate: 1-Chlorooctane, 77.8% 70-130 Surrogate: 1-Chlorooctadecane 88.2 % 70-130 SP-7 (5G12007-07) Soil 0.0250 07/13/05 07/13/05 EPA 8021B Benzene ND mg/kg dry 25 EG51305 Toluene 0.0250 ND Ethylbenzene ND 0.0250 Xylene (p/m) 0.0250 ND Xylene (o) ND 0.0250 Surrogate: a,a,a-Trifluorotoluene 89.6% 80-120 ", " Surrogate: 4-Bromofluorobenzene 109 % 80-120 Gasoline Range Organics C6-C12 EPA 8015M ND 10.0 mg/kg dry 1 EG51223 07/12/05 07/13/05 Diesel Range Organics >C12-C35 ND 10.0 ** Total Hydrocarbon C6-C35 н . ND 10.0 ... ,, ,, " Surrogate: 1-Chlorooctane 81.2% 70-130 " 80.6 % Surrogate: 1-Chlorooctadecane 70-130 SP-8 (5G12007-08) Soil Benzene ND 0.0250 mg/kg dry 25 EG51305 07/13/05 07/13/05 EPA 8021B Toluene 0.0250 ND 11 Ethylbenzene ND 0.0250 Xylene (p/m) 0.0250 ND Xylene (o) н ND 0.0250 90.9 % Surrogate: a,a,a-Trifluorotoluene 80-120 n Surrogate: 4-Bromofluorobenzene 100 % 80-120 Gasoline Range Organics C6-C12 ND 10.0 mg/kg dry EG51223 07/12/05 07/13/05 EPA 8015M 1 Diesel Range Organics >C12-C35 27.8 10.0 .. **Total Hydrocarbon C6-C35** 27.8 10.0 ,,

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety,

received in the taboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 14

Environmental Plus, Incorporated	Project: Chesapeake Energy/ Ruth 20-2								Fax: 505-394-2601	
P.O. Box 1558		Project N		Reported:						
Eunice NM, 88231		Project M	lanager: Iain	Olness				07/14/0:	5 17:07	
		O	rganics by	y GC						
		Environ	mental L:	ab of To	exas					
	<u></u>	Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
SP-8 (5G12007-08) Soil										
Surrogate: 1-Chlorooctane		80.2 %	70-1.	30	EG51223	07/12/05	07/13/05	EPA 8015M		
Surrogate: 1-Chlorooctadecane		83.4 %	70-1.	30	"	"	"	"		
SP-9 (5G12007-09) Soil				_						
Benzene	ND	0.0250	mg/kg dry	25	EG51305	07/13/05	07/13/05	EPA 8021B		
Toluene	ND	0.0250	"		"	"	*			
Ethylbenzene	ND	0.0250	н	"		"	"	"		
Xylene (p/m)	ND	0.0250	"	"		"	"	"		
Xylene (o)	ND	0.0250	"	"		"	н	u		
Surrogate: a,a,a-Trifluorotoluene		85.4 %	80-12	20	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		115 %	80-12	20	"	"	"	"		
Gasoline Range Organics C6-C12	16.9	10.0	mg/kg dry	1	EG51223	07/12/05	07/13/05	EPA 8015M		
Diesel Range Organics >C12-C35	315	10.0	н	"	"			"		
Total Hydrocarbon C6-C35	332	10.0	"	п	"		"	н		
Surrogate: 1-Chlorooctane	· · · · · · · · · · · · · · · · · · ·	76.4 %	70-13	30	"	n	"	n		
Surrogate: 1-Chlorooctadecane		81.8 %	70-13	30	"	"	"	"		
SP-10 (5G12007-10) Soil										
Benzene	ND	0.0250	mg/kg dry	25	EG51305	07/13/05	07/13/05	EPA 8021B		
Toluene	ND	0.0250	*	н	'n	**	н	"		
Ethylbenzene	ND	0.0250	н	"	"	**	"	n		
Xylene (p/m)	ND	0.0250	н	н	"	**	н	"		
Xylene (0)	ND	0.0250	"	"	н	н	"	"		
Surrogate: a,a,a-Trifluorotoluene		95.4 %	80-12	20	"	"	n	"		
Surrogate: 4-Bromofluorobenzene		106 %	80-12	20	"	"	"	"		
Gasoline Range Organics C6-C12	166	10.0	mg/kg dry	1	EG51223	07/12/05	07/13/05	EPA 8015M		
Diesel Range Organics >C12-C35	3240	10.0	"	"	н		u	Ħ		
Total Hydrocarbon C6-C35	3410	10.0	H	n 	"	"	, n	n 		
Surrogate: 1-Chlorooctane		76.4 %	70-1.	30	"	"	<i>n</i>	"		

Environmental Lab of Texas

Surrogate: 1-Chlorooctadecane

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

70-130

83.8 %

Page 5 of 14

Project: Chesapeake Energy/ Ruth 20-2 Project Number: 160011 Project Manager: Iain Olness

Reported: 07/14/05 17:07

Organics by GC

Environmental Lab of Texas

		Reporting	TT 1/						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP-11 (5G12007-11) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG51305	07/13/05	07/13/05	EPA 8021B	
Toluene	ND	0.0250	"	"	"	11	"	н	
Ethylbenzene	ND	0.0250	n	**	н	"	**	n	
Xylene (p/m)	ND	0.0250	**	"	"	"	"	*	
Xylene (o)	ND	0.0250	"	!!	n	"	"	M	
Surrogate: a,a,a-Trifluorotoluene		98.6 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		115 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	I	EG51223	07/12/05	07/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	213	10.0		"	"		"	"	
Total Hydrocarbon C6-C35	213	10.0	H	"	n			H	
Surrogate: 1-Chlorooctane		75.4 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		78.8 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

07/14/05 17:07

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyza	D anult	Reporting	T Inciden						
SP 1 (5012007 01) Soll	Kesun	Limit	UTITS	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP-1 (5G12007-01) 5011									
% Moisture	12.0	0.1	%	1	EG51301	07/12/05	07/13/05	% calculation	
SP-2 (5G12007-02) Soil									_
% Moisture	9.7	0.1	%	1	EG51301	07/12/05	07/13/05	% calculation	
SP-3 (5G12007-03) Soil									
% Moisture	10.2	0.1	%	1	EG51301	07/12/05	07/13/05	% calculation	
SP-4 (5G12007-04) Soil									
% Moisture	2.4	0.1	%	1	EG51301	07/12/05	07/13/05	% calculation	
SP-5 (5G12007-05) Soil									
% Moisture	3.1	0.1	%	1	EG51301	07/12/05	07/13/05	% calculation	
SP-6 (5G12007-06) Soil									
% Moisture	2.3	0.1	%	1	EG51301	07/12/05	07/13/05	% calculation	
SP-7 (5G12007-07) Soil									
% Moisture	2.4	0.1	%	1	EG51301	07/12/05	07/13/05	% calculation	
SP-8 (5G12007-08) Soil									
% Moisture	1.3	0.1	%	1	EG51301	07/12/05	07/13/05	% calculation	
SP-9 (5G12007-09) Soil									
% Moisture	5.1	0.1	%	1	EG51301	07/12/05	07/13/05	% calculation	
SP-10 (5G12007-10) Soil									
% Moisture	2.5	0.1	%	1	EG51301	07/12/05	07/13/05	% calculation	
SP-11 (5G12007-11) Soil									
% Moisture	3.5	0.1	%	1	EG51301	07/12/05	07/13/05	% calculation	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 14

Reported: 07/14/05 17:07

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG51207 - Solvent Extraction (GC)										
Blank (EG51207-BLK1)				Prepared &	2 Analyzed:	07/12/05				-
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0								
Total Hydrocarbon C6-C35	ND	10.0	n							
Surrogate: 1-Chlorooctane	37.4		mg/kg	50.0		74.8	70-130			
Surrogate: 1-Chlorooctadecane	35.8		"	50.0		71.6	70-130			
LCS (EG51207-BS1)				Prepared &	Analyzed:	07/12/05				
Gasoline Range Organics C6-C12	457	10.0	mg/kg wet	500		91.4	75-125			
Diesel Range Organics >C12-C35	487	10.0	"	500		97.4	75-125			
Total Hydrocarbon C6-C35	944	10.0	"	1000		94.4	75-125			
Surrogate: 1-Chlorooctane	37.0		mg/kg	50.0		74.0	70-130			
Surrogate: 1-Chlorooctadecane	35.5		"	50.0		71.0	70-130			
Calibration Check (EG51207-CCV1)				Prepared &	: Analyzed:	07/12/05				
Gasoline Range Organics C6-C12	570		mg/kg	500		114	80-120			
Diesel Range Organics >C12-C35	571		н	500		114	80-120			
Total Hydrocarbon C6-C35	1140		"	1000		114	80-120			
Surrogate: 1-Chlorooctane	49.7		"	50.0		99.4	70-130			
Surrogate: 1-Chlorooctadecane	41.2		"	50.0		82.4	70-130			
Matrix Spike (EG51207-MS1)	Sou	rce: 5G1200	1-01	Prepared &	: Analyzed:	07/12/05				
Gasoline Range Organics C6-C12	572	10.0	mg/kg dry	506	ND	113	75-125			
Diesel Range Organics >C12-C35	597	10.0	*	506	49.8	108	75-125			
Total Hydrocarbon C6-C35	1170	10.0	н	1010	49.8	111	75-125			
Surrogate: 1-Chlorooctane	48.9		mg/kg	50.0		97.8	70-130			
Surrogate: 1-Chlorooctadecane	40.9		"	50.0		81.8	70-130			
Matrix Spike Dup (EG51207-MSD1)	Sou	rce: 5G12001	L-01	Prepared &	Analyzed:	07/12/05				
Gasoline Range Organics C6-C12	525	10.0	mg/kg dry	506	ND	104	75-125	8.57	20	
Diesel Range Organics >C12-C35	585	10.0	"	506	49.8	106	75-125	2.03	20	
Total Hydrocarbon C6-C35	1110	10.0	**	1010	49.8	105	75-125	5.26	20	
Surrogate: 1-Chlorooctane	47.8		mg/kg	50.0		95.6	70-130			
Surrogate: 1-Chlorooctadecane	40.3		"	50.0		80.6	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Reported: 07/14/05 17:07

Organics by GC - Quality Control

Environmental Lab of Texas

	_	Reporting		Spike	Source		%REC	_	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG51223 - Solvent Extraction (GC)										
Blank (EG51223-BLK1)				Prepared: ()7/12/05 At	nalyzed: 07	//13/05			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	н							
Total Hydrocarbon C6-C35	ND	10.0	"							
Surrogate: 1-Chlorooctane	35.6		mg/kg	50.0		71.2	70-130			
Surrogate: 1-Chlorooctadecane	35.1		"	50.0		70.2	70-130			
LCS (EG51223-BS1)				Prepared: 0)7/12/05 Ar	1alyzed: 07	'/13/05			
Gasoline Range Organics C6-C12	514	10.0	mg/kg wet	500		103	75-125			
Diesel Range Organics >C12-C35	587	10.0	"	500		117	75-125			
Total Hydrocarbon C6-C35	1100	10.0		1000		110	75-125			
Surrogate: 1-Chlorooctane	50.7		mg/kg	50.0		101	70-130			
Surrogate: 1-Chlorooctadecane	42.5		n	50.0		85.0	70-130			
Calibration Check (EG51223-CCV1)				Prepared: 0	17/12/05 An	alyzed: 07	/13/05			
Gasoline Range Organics C6-C12	564		mg/kg	500		113	80-120			
Diesel Range Organics >C12-C35	602		"	500		120	80-120			
Total Hydrocarbon C6-C35	1170		Ħ	1000		117	80-120			
Surrogate: 1-Chlorooctane	50.2		"	50.0		100	70-130			
Surrogate: 1-Chlorooctadecane	39.7		"	50.0		7 9 .4	70-130			
Matrix Spike (EG51223-MS1)	Sou	rce: 5G12007	-07	Prepared: 0	7/12/05 Ar	alyzed: 07	/13/05			
Gasoline Range Organics C6-C12	543	10.0	mg/kg dry	512	ND	106	75-125			
Diesel Range Organics >C12-C35	613	10.0	"	512	ND	120	75-125			
Total Hydrocarbon C6-C35	1160	10.0		1020	ND	114	75-125			
Surrogate: 1-Chlorooctane	56.4		mg/kg	50.0		113	70-130			
Surrogate: 1-Chlorooctadecane	47.0		"	50.0		94.0	70-130			
Matrix Spike Dup (EG51223-MSD1)	Sou	rce: 5G12007	7-07	Prepared: 0)7/12/05 Ar	1alyzed: 07	/13/05	_		
Gasoline Range Organics C6-C12	583	10.0	mg/kg dry	512	ND	114	75-125	7.10	20	
Diesel Range Organics >C12-C35	606	10.0	"	512	ND	118	75-125	1.15	20	
Total Hydrocarbon C6-C35	1190	10.0	11	1020	ND	117	75-125	2.55	20	
Surrogate: 1-Chlorooctane	55.5		mg/kg	50.0		111	70-130			
Surrogate: 1-Chlorooctadecane	46.1		"	50.0		92.2	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Reported: 07/14/05 17:07

Organics by GC - Quality Control

Environmental Lab of Texas

	D16	Reporting	Tinita	Spike	Source	M/BEC	%REC	בתת	RPD	N
Analyte	Kesuit		Units	Level	Result	%KEC	Linits	KPD		inotes
Batch EG51303 - EPA 5030C (GC)										
Blank (EG51303-BLK1)				Prepared: (07/12/05 A	nalyzed: 07	/13/05			
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	"							
Xylene (p/m)	ND	0.0250	"							
Xylene (0)	ND	0.0250	н							
Surrogate: a,a,a-Trifluorotoluene	97.0		ug/kg	100		97.0	80-120			
Surrogate: 4-Bromofluorobenzene	83.2		. "	100		83.2	80-120			
LCS (EG51303-BS1)				Prepared: 0	7/12/05 A	nalyzed: 07	/13/05			
Benzene	103		ug/kg	100		103	80-120			
Toluene	107		"	100		107	80-120			
Ethylbenzene	118		"	100		118	80-120			
Xylene (p/m)	211		**	200		106	80-120			
Xylene (0)	110		"	100		110	80-120			
Surrogate: a,a,a-Trifluorotoluene	100		"	100		100	80-120			
Surrogate: 4-Bromofluorobenzene	114		"	100		114	80-120			
Calibration Check (EG51303-CCV1)				Prepared: 0	7/12/05 Ar	nalyzed: 07	/13/05			
Benzene	119		ug/kg	100		119	80-120			
Toluene	115		н	100		115	80-120			
Ethylbenzene	109		"	100		109	80-120			
Xylene (p/m)	194		u	200		97.0	80-120			
Xylene (0)	117		"	100		117	80-120			
Surrogate: a,a,a-Trifluorotoluene	93.8			100		93.8	80-120			
Surrogate: 4-Bromofluorobenzene	102		"	100		102	80-120			
Matrix Spike (EG51303-MS1)	Sou	rce: 5G11013	-01	Prepared: 0	7/12/05 Ar	nalyzed: 07	/13/05			
Benzene	2940		ug/kg	2500	ND	118	80-120			
Toluene	2990		u	2500	ND	120	80-120			
Ethylbenzene	2890			2500	ND	116	80-120			
Xylene (p/m)	5160		"	5000	49.6	102	80-120			
Xylene (o)	2920		"	2500	ND	117	80-120			
Surrogate: a,a,a-Trifluorotoluene	96.2		"	100		96.2	80-120			
Surrogate: 4-Bromofluorobenzene	116		"	100		116	80-120			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Reported: 07/14/05 17:07

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EG51303 - EPA 5030C (GC)

Matrix Spike Dup (EG51303-MSD1)	Source: 5	Prepared: (07/12/05 A	Analyzed: 07/13/05					
Benzene	2890	ug/kg	2500	ND	116	80-120	1.71	20	
Toluene	2960	"	2500	ND	118	80-120	1.68	20	
Ethylbenzene	2900	"	2500	ND	116	80-120	0.00	20	
Xylene (p/m)	5200	11	5000	49.6	103	80-120	0.976	20	
Xylene (0)	2880		2500	NĎ	115	80-120	1.72	20	
Surrogate: a,a,a-Trifluorotoluene	91.4	"	100		91.4	80-120	-		
Surrogate: 4-Bromofluorobenzene	119	"	100		119	80-120			

Batch EG51305 - EPA 5030C (GC)

Blank (EG51305-BLK1)	Prepared & Analyzed: 07/13/05								
Benzene	ND	0.0250	mg/kg wet						
Toluene	ND	0.0250	н						
Ethylbenzene	ND	0.0250	N						
Xylene (p/m)	ND	0.0250	"						
Xylene (o)	ND	0.0250	"						
Surrogate: a,a,a-Trifluorotoluene	87.2		ug/kg	100	87.2	80-120			
Surrogate: 4-Bromofluorobenzene	111		"	100	111	80-120			
LCS (EG51305-BS1)				Prepared & Ana	lyzed: 07/13/05				
Benzene	114		ug/kg	100	114	80-120	·····		
Toluene	115		n	100	115	80-120			
Ethylbenzene	113		"	100	113	80-120			
Xylene (p/m)	202		"	200	101	80-120			
Xylene (o)	120		"	100	120	80-120			
Surrogate: a,a,a-Trifluorotoluene	87.6		n	100	87.6	80-120			
Surrogate: 4-Bromofluorobenzene	112		"	100	112	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Reported: 07/14/05 17:07

Organics by GC - Quality Control

Environmental Lab of Texas

· · · · · · · · · · · · · · · · · · ·							·			
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG51305 - EPA 5030C (GC)										
Calibration Check (EG51305-CCV1)				Prepared: (07/13/05 A	nalyzed: 07	//14/05			
Benzene	109		ug/kg	100		109	80-120			
Toluene	. 114		"	100		114	80-120			
Ethylbenzene	111		н	100		111	80-120			
Xylene (p/m)	202		11	200		101	80-120			
Xylene (o)	119		"	100		119	80-120			
Surrogate: a,a,a-Trifluorotoluene	87.8		"	100		87.8	80-120			
Surrogate: 4-Bromofluorobenzene	105		"	100		105	80-120			
Matrix Spike (EG51305-MS1)	Sou	rce: 5G12007-	02	Prepared: (07/13/05 A	nalyzed: 07	/14/05			
Benzene	116		ug/kg	100	ND	116	80-120			
Toluene	118			100	ND	118	80-120			
Ethylbenzene	119		"	100	ND	119	80-120			
Xylene (p/m)	230		"	200	ND	115	80-120			
Xylene (o)	117		n	100	ND	117	80-120			
Surrogate: a,a,a-Trifluorotoluene	102		"	100		102	80-120	-		
Surrogate: 4-Bromofluorobenzene	110		"	100		110	80-120			
Matrix Spike Dup (EG51305-MSD1)	Sou	rce: 5G12007-	02	Prepared: 0	07/13/05 Ai	nalyzed: 07	/14/05			
Benzene	111		ug/kg	100	ND	111	80-120	4.41	20	
Toluene	117		"	100	ND	117	80-120	0.851	20	
Ethylbenzene	113		"	100	ND	113	80-120	5.17	20	
Xylene (p/m)	207			200	ND	104	80-120	10.0	20	
Xylene (o)	118		*	100	ND	118	80-120	0.851	20	
Surrogate: a,a,a-Trifluorotoluene	85.3		"	100		85.3	80-120			
Surrogate: 4-Bromofluorobenzene	106		"	100		106	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG51301 - General Preparation (Prep)									_	
Blank (EG51301-BLK1)				Prepared: 0	7/12/05 A	nalyzed: 07	/13/05			
% Moisture	ND	0.1	%							
Duplicate (EG51301-DUP1)	Sou	rce: 5G11013-	01	Prepared: 0	7/12/05 A	nalyzed: 07	/13/05			
% Moisture	5.2	0.1	%		4.4			16.7	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 13 of 14

Project: Chesapeake Energy/ Ruth 20-2 Project Number: 160011 Project Manager: lain Olness

Reported: 07/14/05 17:07

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike

Dup Duplicate

Report Approved By:

Raland K Just

7/14/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 14 of 14

Environmental Lab of Texas

12600 West I-20 East, Odessa, TX 79765 432-663 1000 - EAV: 432 662 1713

	REQUEST											~	РСЕР НДЯ НДЯ																
	SISK WWW						1994 A. J. Harrison 1994 A. Harrison 1994 A. Harrison 1994 A. Harrison 1994 A. Harrison					e (co"_) Ee (cl.) N	TPH 80151 5ULFATE: PH PH	×	X	X	X	×	×	×	××			F					
												81	<u>न</u> ВТЕХ 802	45 X	55 X	59 X	15 X	20 ×	X X	× ×	22 ×	< > ¥ 5		otmail.cor					Ken
											MPLING		<u>1</u>	-05 11:	05 11:	05 11:	-05 12:	05 12:	05 12:	05 12:	05 12:	0E 15.		olness@hc				er.	abels lo
	0			.II	5			Olness	1558	A 88231	SA		DATE	11-Jul-	11-Jul-	11-Jul-	11-Jul-	11-Juj	1-			- 11- Ini-		esults fo: i				402 N	5.0 3
			_/	Щ	5			ain	30X	N	RV.		язнто					Τ	Τ		Τ	Τ		allr	ARKS				4
				Щ,	٦			ü	Š	nice	ESE	•	1000/301	X	×	×	×	×	×	×İ	<u> </u>	< >		ш	NG NG NG				
				Π	ł			Ati	1,utu	E	РР	3	ACID/BAS																
													:язнто													a	E.		5
													SLUDGE		_									N	d	Š	BCKeC	ŀ	J T
											(IRI)	ור	CRUDE O					_	_		_				Ś	Ż	ð		S
											MA		SOIL	X	×	×	×	긔	× ‡	× ×	⋬⋗	4>		21	Ś				S
												ATER	WATZAW				_	4	_	_		+		\sim	X	(ae)			
					10	atior		ш 9				RETAW	GROUND						+	_	╇	╇	-	ΞĹ.	E	d By:	hact	Ŷ	(A)
	ပ္ခ			1231	I-26	pora		R 3				NEBS	# CONTAI	1	-	7	****	<u></u>			E			ĕ.	3		0 & J		R
	s, Ir			o 86	-394	Co		6 S,				E (C)OME	0 848(8)	0	0	9	0	4	4		4	1	4	<u>æ</u>	Y	<u>*)</u>	18 10 10		A.
	mental Plu	ess	X 1558	New Mexic	3481 / 505	ake Energy	2	sct. 20, T 1		oone		ġ												21-1 and	Time 9.'80	1) July .	Sam	×	1200 15:00
563-1713	Environ	Iain Olne	P.O. BO	Eunice M	505-394-	Chesape	Ruth 20-	UL-D, Se	160011	Roger B		SAMPLEI																	
-AX: 432-		ager	6		#				ce	me				SP-1	2SP-2	3 SP-3	4 SP-4	5 SP-5	SP-6	7 SP-7	552-8 500	SP-10		7	120hr			CROW O	t -
563-1800	pany Name	Project Man	ng Address	State, Zip	hone#/Fax	it Company	ity Name	tion	ect Referen	Sampler Na				0	02	28	04	5	P P					r. Relinquished:	Total a	Albedsi	A Linka De	Norw R)
432-	Com	EPIF	Naili	City,	EPI F	Clien	cacil	-008	Proj∈	EPI 6		ال.	S	l	ŀ	i,				1	· [\	ľ		Sample				$\frac{1}{2}$	

Chain of Custody Form

	AVALYSS REGUERT											онгояюеs (CI) 5014ея >>> 7014ея >>> 7014ея >>> 7014ея >>> 7014ея >>> 7014ея >>>	1 1 2										******				
		 			Cisisian (-	taka adal	and to be to be to be	manalatar			Ê							+			Ę				
											Ş		12:55									e@hotmail.					kela/sca
	0							Olness	1558	188231	SAMPLI	DATE	11-Jul-05									suite to: folnee					K.5°C (W
				Щ	5			ain (Š	, NN	RV.	язнто								Ι	T	all re	ARKS:	•			45.02
				W.				tn: I	od	nice	RESE	ICE/COOL	×						_				N W W W W W				
				4	ł			At		Eu	à	ACID/BASE	\square				_	_	4	_							-
												OTHER:					-+	4	-	╇	_		\mathcal{S}		Y	ed By:	2
											×						+	-	-+		+-		Ý		é	Check	>
											ATR		×			\neg	+	-	╋	-+-	+	-	0		ğ	Ŭ	300
		┢──	Γ		Γ-	Γ	Γ	T	Г	П	2	RETAWETEA					+	+	+	+	╋	Ŕ	Z	staff)		<u>`</u>	Z
						F		ш				ROUND WATER				-	+	-	-	╈	┢		E	(leb	Ś	5 .	63
	Ι.			5	50	vati		36				# CONTAINERS				-	1	1	1	\uparrow	╈	ved B	j <u>ð</u>	yed B	Ś	s Intac No	XX
	2			882	5	ğ		S, H			•	ЧМО(ጋ) НО ВА Я(Э)	G				T	1	T	T		Recti	X	Recei	フ	Cool	\sim
}	mental Plus,	055	X 1558	Vew Mexico	3481 / 505-3	ake Energy C	5	ct. 20. T 16		oone		ä										Date -7-12	217- 3 BUIL	op Takes	1:45	Sample Yes	1112/05
2-563-1713	Environ	lain Oln	P.O. BO)	Eunice I	505-394-	Chesape	Ruth 20-	UL-D, Se	160011	Roger B		SAMPLEI														J.L	
-AX: 43		ager			#				ce	ne			SP-11										Bre		Ş	200	
432-563-1800 1	Company Name	EPI Project Man	Mailing Address	City, State, Zip	EPI Phone#/Fax	Client Company	Facility Name	Location	Project Referent	EPI Sampler Nai		LAB LB.	Ę.	5	e)	4	2()	9		~ ~	01	Sampler Relinquished: "	Roan	Relinguished by:	NOUNTR	Delivered by:	

Page 2 of 2

Chain of Custody Form

Environmental Lap of Texas Variance / Corrective Action Report – Sample Log-In

Dlient:	EPI	
Date/Time	1/12/05	15:00
Order #: _	5612007	
Initials:	CK	

Sample Receipt Checklist

Temperature of container/cooler?	Yes No	4.5 0
Shipping container/cooler in good condition?	Yes No 1	none
Custody Seals intaction shipping container/cooler?	Yes No -	Concressor
Custody Seals Intaction sample bottles?	I CAR I NO I	Not present
Chain of custody present?	I CI No I	4
Samcle Instructions complete on Chain of Custory?	No I	1
Chain of Custody signed when relincuished and received?	I DI No	,
Chein of custody agrees with sample label(s)	I CES I No I	
Container labels legible and intact?	1 (3) No 1	
Sample Matrix and procerties same as on chain of custody?	(as) No I	;
Samples in proper containen/bottle?		
Samples property preserved?	Carl No	:
Sample bottles intact?	」「百! No	
Preservations occurriented on Chain of Custody?	A A A A A A A A A A A A A A A A A A A	·* '
Containers documented on Chain of Custody?		
Sufficient sample amount for incloated test?	I 🙆 I No	
All samples received within sufficient hold time?	Car No	
VCO samples have zero headspace?	(Cosh No	Nat Apolicable

Other observations:

Variance Documentation:

Regarding: Corrective Action Taxen:		Deternine:	Contacted by:	
Corrective Action Taxen:	Regarding:			
Corrective Action Taxen:	***************************************			
	Corrective Action Taxen:			والمركز و

.

Analytical Report

١

Prepared for:

Iain Olness Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Chesapeake Energy/ Ruth 20-2 Project Number: 160011 Location: None Given

Lab Order Number: 5G27011

Report Date: 08/01/05

Environmental Plus, IncorporatedProject:Chesapeake Energy/Ruth 20-2Fax: 505-394-2601P.O. Box 1558Project Number:160011Reported:Eunice NM, 88231Project Manager:Iain Olness08/01/05 10:10

,

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP 5	5G27011-01	Soil	07/26/05 08:16	07/27/05 11:05
SP 11	5G27011-02	Soil	07/26/05 08:17	07/27/05 11:05
SP 10	5G27011-03	Soil	07/26/05 08:18	07/27/05 11:05
SP 6	5G27011-04	Soil	07/26/05 08:19	07/27/05 11:05
SP 9	5G27011-05	Soil	07/26/05 08:20	07/27/05 11:05

1

Project: Chesapeake Energy/ Ruth 20-2 Project Number: 160011 Project Manager: Iain Olness

.

Fax: 505-394-2601 Reported:

.

08/01/05 10:10

		0	rganics b	y GC					
		Environ	mental L	ab of T	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP 5 (5G27011-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG52814	07/28/05	07/28/05	EPA 8021B	
Toluene	ND	0.0250	"	"	17	"	н	17	
Ethylbenzene	ND	0.0250	"	"	"	ч	п	**	
Xylene (p/m)	ND	0.0250	n	н		"	11	w	
Xylene (o)	ND	0.0250	н			"	"	11	
Surrogate: a,a,a-Trifluorotoluene		102 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.8 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EG52708	07/27/05	07/28/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	**	"	*	"	"	
Total Hydrocarbon C6-C35	ND	10.0	"			11	н	"	
Surrogate: 1-Chlorooctane		79.4 %	70-1	30	"	n	n	#	
Surrogate: 1-Chlorooctadecane		102 %	70-1	30	"	"	"	"	
SP 11 (5G27011-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG52814	07/28/05	07/28/05	EPA 8021B	
Toluene	ND	0.0250	"	"		"	"	"	
Ethylbenzene	ND	0.0250	"	"	"	"	"	"	
Xylene (p/m)	ND	0.0250	и	"	"	"	"		
Xylene (o)	ND	0.0250	"	"	"	n	"	"	
Surrogate: a,a,a-Trifluorotoluene		101 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.9 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EG52708	07/27/05	07/28/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	Ħ	n	*	u	*	
Total Hydrocarbon C6-C35	ND	10.0	"	**	н	"	"	"	
Surrogate: 1-Chlorooctane		80.2 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		104 %	70-1	30	"	"	"	17	
SP 10 (5G27011-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG52814	07/28/05	07/28/05	EPA 8021B	
Toluene	ND	0.0250	"	"	"	•	н	н	
Ethylbenzene	ND	0.0250	"	"	"	"	"	и	
Xylene (p/m)	ND	0.0250	и		"	"	"	"	
Xylene (o)	ND	0.0250	"	"	μ	"	н	u	
Surrogate: a,a,a-Trifluorotoluene		94.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.4 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EG52708	07/27/05	07/28/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	н	n		"	"	"	
Total Hydrocarbon C6-C35	ND	10.0	n 	n	**	"	"	n	
Environmental Lab of Texas			The res	ulto in this w	most apply to	the complete an	abred in accord		

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Plus, Incorporated P.O. Box 1558 Eurice NM, 88231		Project N	Project: Che lumber: 160	sapeake E 011 Olnecc	nergy/ Ruth	20-2		Fax: 505-3 Repor	94-2601 ted:
		Project M	anager: ann			·			10.10
		O	rganics by	y GC				·	
		Environ	mental La	ab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP 10 (5G27011-03) Soil							_	· · · · · · · · · ·	
Surrogate: 1-Chlorooctane	<u> </u>	81.4 %	70-1.	30	EG52708	07/27/05	07/28/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		106 %	70-1.	30	"	"	"	"	
SP 6 (5G27011-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG52814	07/28/05	07/28/05	EPA 8021B	
Toluene	ND	0.0250	u	н		n		11	
Ethylbenzene	ND	0.0250	"	W	"	"	"	и	
Xylene (p/m)	ND	0.0250	"	"	"		"	"	
Xylene (o)	ND	0.0250	н	"	**	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		95.0 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.5 %	80-12	20	n	"	n	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EG52708	07/27/05	07/28/05	EPA 8015M	
Diesel Range Organics >C12-C35	138	10.0	**	n	"		H	**	
Total Hydrocarbon C6-C35	138	10.0	н	"	**		"	u	
Surrogate: 1-Chlorooctane		80.0 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		111 %	70-13	30	"	"	"	n	
SP 9 (5G27011-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG52814	07/28/05	07/28/05	EPA 8021B	
Toluene	ND	0.0250	"	"	"	ŧr	"	H	
Ethylbenzene	ND	0.0250	"	"	"	**	"	**	
Xylene (p/m)	ND	0.0250	"	н	"	**	"		
Xylene (o)	ND	0.0250	"	*	11	"	"	11	
Surrogate: a,a,a-Trifluorotoluene		87.3 %	80-12	20	"	11	"	11	
Surrogate: 4-Bromofluorobenzene		81.9 %	80-12	20	"	"	"	"	
Gasoline Range Organics C6-C12	12.4	10.0	mg/kg dry	1	EG52708	07/27/05	07/28/05	EPA 8015M	
Diesel Range Organics >C12-C35	264	10.0	"	*	"		н	и	
Total Hydrocarbon C6-C35	276	10.0	**	*	**	u		u	
Surrogate: 1-Chlorooctane		74.8 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		113 %	70-1.	30	"	"	"	"	

,

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 9

1

Reported: 08/01/05 10:10

General Chemistry Parameters by EPA / Standard Methods

,

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP 5 (5G27011-01) Soil									
% Moisture	7.1	0.1	%	1	EG52809	07/27/05	07/28/05	% calculation	
SP 11 (5G27011-02) Soil									
% Moisture	7.4	0.1	%	1	EG52809	07/27/05	07/28/05	% calculation	
SP 10 (5G27011-03) Soil		_							
% Moisture	4.4	0.1	%	1	EG52809	07/27/05	07/28/05	% calculation	
SP 6 (5G27011-04) Soil									
% Moisture	3.5	0.1	%	1	EG52809	07/27/05	07/28/05	% calculation	
SP 9 (5G27011-05) Soil									
% Moisture	2.5	0.1	%	1	EG52809	07/27/05	07/28/05	% calculation	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

)

Reported: 08/01/05 10:10

Organics by GC - Quality Control

.

Environmental Lab of Texas

Analyte	Recult	Reporting	I Inita	Spike	Source	9/DEC	%REC	רזמפ	RPD	Notes
rilayit	result		Units	Level		70KEU		KPD		INOLES
Batch EG52708 - Solvent Extraction (GC)										
Blank (EG52708-BLK1)				Prepared: ()7/27/05	Analyzed: 07	7/28/05			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet			·				
Diesel Range Organics >C12-C35	ND	10.0	"							
Total Hydrocarbon C6-C35	ND	10.0	н							
Surrogate: 1-Chlorooctane	40.9		mg/kg	50.0		81.8	70-130			
Surrogate: 1-Chlorooctadecane	49.4		"	50.0		98.8	70-130			
LCS (EG52708-BS1)				Prepared: ()7/27/05	Analyzed: 07	1/28/05			
Gasoline Range Organics C6-C12	415	10.0	mg/kg wet	500		83.0	75-125			
Diesel Range Organics >C12-C35	458	10.0	"	500		91.6	75-125			
Total Hydrocarbon C6-C35	873	10.0	u	1000		87.3	75-125			
Surrogate: 1-Chlorooctane	41.1		mg/kg	50.0		82.2	70-130			
Surrogate: 1-Chlorooctadecane	51.7		"	50.0		103	70-130			
Calibration Check (EG52708-CCV1)				Prepared: 0	7/27/05	Analyzed: 07	//28/05			
Gasoline Range Organics C6-C12	415		mg/kg	500		83.0	80-120			
Diesel Range Organics >C12-C35	482			500		96.4	80-120			
Total Hydrocarbon C6-C35	897			1000		89.7	80-120			
Surrogate: 1-Chlorooctane	43.3		"	50.0		86.6	0-200			
Surrogate: 1-Chlorooctadecane	59.2		"	50.0		118	0-200			
Matrix Spike (EG52708-MS1)	Sou	rce: 5G27009	-04	Prepared: 0	17/27/05	Analyzed: 07	'/28/05			
Gasoline Range Organics C6-C12	412	10.0	mg/kg dry	505	ND	81.6	75-125			
Diesel Range Organics >C12-C35	458	10.0		505	ND	90.7	75-125			
Total Hydrocarbon C6-C35	870	10.0	"	1010	ND	86.1	75-125			
Surrogate: 1-Chlorooctane	41.7		mg/kg	50.0		83.4	70-130			
Surrogate: 1-Chlorooctadecane	54.2		"	50.0		108	70-130			
Matrix Spike Dup (EG52708-MSD1)	Sou	rce: 5G27009	-04	Prepared: 0	07/27/05	Analyzed: 07	//28/05			
Gasoline Range Organics C6-C12	402	10.0	mg/kg dry	505	ND	79.6	75-125	2.46	20	
Diesel Range Organics >C12-C35	465	10.0	11	505	ND	92.1	75-125	1.52	20	
Total Hydrocarbon C6-C35	867	10.0	**	1010	ND	85.8	75-125	0.345	20	
Surrogate: 1-Chlorooctane	41.8		mg/kg	50.0		83.6	70-130			
Surrogate: 1-Chlorooctadecane	54.0		"	50.0		108	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

.

Reported: 08/01/05 10:10

Organics by GC - Quality Control

\$

Environmental Lab of Texas

		Reporting	•• •	Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG52814 - EPA 5030C (GC)									. <u> </u>	
Blank (EG52814-BLK1)				Prepared &	Analyzed:	07/28/05				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	n							
Ethylbenzene	ND	0.0250	"							
Xylene (p/m)	ND	0.0250	"							
Xylene (o)	ND	0.0250								
Surrogate: a,a,a-Trifluorotoluene	86.3		ug/kg	100		86.3	80-120			
Surrogate: 4-Bromofluorobenzene	85.7		n	100		85.7	80-120			
LCS (EG52814-BS1)				Prepared &	Analyzed:	07/28/05				
Benzene	91.3		ug/kg	100		91.3	80-120			
Toluene	98.8		11	100		98.8	80-120			
Ethylbenzene	112		н	100		112	80-120			
Xylene (p/m)	220		Ħ	200		110	80-120			
Xylene (o)	107		"	100		107	80-120			
Surrogate: a,a,a-Trifluorotoluene	88.2		"	100		88.2	80-120			
Surrogate: 4-Bromofluorobenzene	96.2		"	100		96.2	80-120			
Calibration Check (EG52814-CCV1)				Prepared: 0	7/28/05 A	nalyzed: 07	/29/05			
Benzene	118		ug/kg	100		118	80-120			
Toluene	120		"	100		120	80-120			
Ethylbenzene	113		"	100		113	80-120			
Xylene (p/m)	224		"	200		112	80-120			
Xylene (o)	101		"	100		101	80-120			
Surrogate: a,a,a-Trifluorotoluene	104		"	100		104	0-200			
Surrogate: 4-Bromofluorobenzene	93.0		"	100		93.0	0-200			
Matrix Spike (EG52814-MS1)	Sou	rce: 5G28005	-04	Prepared &	Analyzed:	07/28/05				
Benzene	115		ug/kg	100	ND	115	80-120			
Toluene	119		н	100	ND	119	80-120			
Ethylbenzene	116		"	100	ND	116	80-120			
Xylene (p/m)	228		"	200	ND	114	80-120			
Xylene (o)	112		"	100	ND	112	80-120			
Surrogate: a,a,a-Trifluorotoluene	102		"	100		102	80-120			
Surrogate: 4-Bromofluorobenzene	102		"	100		102	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

.

Reported: 08/01/05 10:10

Organics by GC - Quality Control

.

Environmental Lab of Texas

		Reporting	Spike	Source		%REC		RPD	
Analyte	Result	Limit Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG52814 - EPA 5030C (GC)		<u></u>							
Matrix Spike Dup (EG52814-MSD1)	Sour	ce: 5G28005-04	Prepared &	Analyzed:	07/28/05				
Benzene	109	ug/kg	100	ND	109	80-120	5.36	20	
Toluene	114		100	ND	114	80-120	4.29	20	
Ethylbenzene	119		100	ND	119	80-120	2.55	20	
Xylene (p/m)	237	"	200	ND	118	80-120	3.45	20	
Xylene (0)	111	11	100	ND	111	80-120	0.897	20	
Surrogate: a,a,a-Trifluorotoluene	92.6	"	100		92.6	80-120			
Surrogate: 4-Bromofluorobenzene	<i>98.2</i>	"	100		<i>98.2</i>	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 9

.

Reported: 08/01/05 10:10

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG52809 - General Preparation (Prep)										
Blank (EG52809-BLK1)				Prepared: ()7/27/05 A	nalyzed: 07	/28/05			
% Moisture	ND	0.1	%							
Duplicate (EG52809-DUP1)	Sou	rce: 5G20024-	03	Prepared: 0)7/27/05 A	nalyzed: 07	/28/05			
% Moisture	19.1	0.1	%		19.3			1.04	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Chesapeake Energy/ Ruth 20-2 Project Number: 160011 Project Manager: Iain Olness .

.

Reported: 08/01/05 10:10

Notes and Definitions

Analyte DETECTED
Analyte NOT DETECTED at or above the reporting limit
Not Reported
Sample results reported on a dry weight basis
Relative Percent Difference
Laboratory Control Spike
Matrix Spike
Duplicate

.

•

Report Approved By:

Raland Kituts

Date: 8/1/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 9

Special Instructions Relinquished: A. Ref. L. Relinquished: A. Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref	$\left \begin{array}{c} \left $	Environmental Lat 12600 West I-20 East p Odessa Texas 79763 F Project Manager: Iain Olness Company Name: Chesapeake Company Address: City/State/Zip: City/State/Zip:
FAX RESULTS TO Date Thin 70-777 7.3 Date 7.3 Date 7.3 11-0	71777777777777777777777777777777777777	• of Texas, Inc. home: 915-563-1800 ax: 915-563-1713
Iain Olness ASAP	Image: Section of the section of th	
3 Jack	M M ICE HNO HCI NaOH HSO None	
	Other (Specify) Water Sludge Soil Other (Specify) TDS/CL/SAR/EC	Project Name: Project #: Project Lac: PO#:
ate Time La 17 7. 30 ate Time 16 ULOS	TPH 4.18.1 TPH TX 1000Extended M M M M M TPH8016MGRODRO Metals Volatiles Semivolatiles	Ruth 20-2 1 # 1000
mple Containers LQ mperature Upon Req boratory Comments:	HHHHHH BTEX 8021B/5030 Reactivity Corrosivity Ignitiability Chlorides	
A	RUSH TAT Standard TAT	

.

.

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

.

Client:	EP
Date/Time:	n/20/05 11:05
Order #:	5627011
Initials:	Chick

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	1.5 CI
Shipping container/cooler in good condition?	(es)	No	
Custody Seals intact on shipping container/ccoler?	Yes	No I	Mot present
Custody Seals intact on sample bottles?	Yes	No	Not present
Chain of custody present?	6	No	
Sample Instructions complete on Chain of Custody?	Ves,	No	
Chain of Custody signed when relinquished and received?	(es)	No	
Chain of custody agrees with sample label(s)	Yes	No	
Container labels legible and intact?	Yes	No	
Sample Matrix and properties same as on chain of custody?	Yes	No	
Samples in proper container/bottle?	Y25	No	
Samples procerly preserved?	Y63	No	
Sample bottles intact?	Yes, I	No	
Preservations documented on Chain of Custody?	I Yes I	No	
Containers documented on Chain of Custody?	Yes	No	
Sufficient sample amount for indicated test?	YES	No	
Ail samples received within sufficient hold time?	Yes I	No	
VOC samples have zero headspace?	1 105	No	Not Applicable

Other observations:

Variance Documentation:

Contact Person: Regarding:	Date/Time:	Contacted by:
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Corrective Action Taken:		
		·
**********		



PHONE (325) 673-7001 • 2111 BEECHWOOD • ABILENE, TX 79603

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR ENVIRONMENTAL PLUS, INC. ATTN: IAIN OLNESS P.O. BOX 1558 EUNICE, NM 88231 FAX TO: (505) 394-2601

Receiving Date: 09/06/05 Reporting Date: 09/08/05 Project Owner: CHESAPEAKE ENERGY CORPORATION Project Name: RUTH 20-2 Project Location: UL-D SEC. 20, T16S, R36E Sampling Date: 09/06/05 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: NF Analyzed By: BC

	GRO	DRO			ETHYL	TOTAL
LAB NUMBER SAMPLE ID	(C ₆ -C ₁₀ )	(>C ₁₀ -C ₂₈ )	BENZENE	TOLUENE	BENZENE	XYLENES
	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
ANALYSIS DATE:	09/06/05	09/06/05	09/07/05	09/07/05	09/07/05	09/07/05
H10157-1 SP-12 (3')	<10.0	24.5	< 0.005	< 0.005	< 0.005	<0.015
H10157-2 SP-13 (6')	<10.0	<10.0	< 0.005	<0.005	< 0.005	<0.015
H10157-3 SP-14 (3')	<10.0	<10.0	< 0.005	<0.005	< 0.005	<0.015
H10157-4 SP-15 (6')	<10.0	<10.0	< 0.005	< 0.005	< 0.005	<0.015
H10157-5 SP-16 (3')	<10.0	<10.0	<0.005	<0.005	<0.005	<0.015
Quality Control	792	809	0.110	0.095	0.098	0.305
True Value QC	800	800	0.100	0.100	0.100	0.300
% Recovery	99.1	101	110	94.9	98.4	102
Relative Percent Difference	2.4	1.7	0.5	1.6	4.1	4.7

METHODS: TPH GRO & DRO - EPA SW-846 8015 M; BTEX - SW-846 8260.

Date

H10157.XLS

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

<u>Chain of Custody Form</u>											8015M 8015M 8015M 8015M 8015M 8015M 8015M 8027B 8015M 8027B 8027B 8027B 8027B	ВТЕХ СНС 5 0ТНЕ 0ТНЕ 0ТНЕ 0ТНЕ 0ТНЕ	XXX										com			
X 79603 -7020							less	58	8231	SAMPLING		DATE TIME	6-Sep-05 /// 20	5-Sep-05 // '03	6-Sep-05 1/1 06	6-Sep-05 1/1 09	s-Sep-05 //// کا-Sep-05						lts to: iolness@hotmail.			
d, Abilene, T. Fax 915-673-							ttn: lain Oln	PO Box 15(	unice, NM 8	RESERV.	EB 2001		) X	)0   X	0 X	)0   X   0(	X 00						E-mail resul REMARKS:	T		
1 Beechwoo -673-7001		•	.11,	•			4		Ш	RIX F	EB: DE OIF	OTHI SLUC	_								_			J	Checked By:	
211 915		Т								MAT	яэтаwэт	SAW	×	×	×	×	×							() staff)		
				_	on		ш				ЯЭТАЖ ОИО	อยอ											ž	i i i		l
5			5	260	orati		36				ZAJNIATN	00 #	-		1	-	1						ived E	No of	& Inta	
xa	Ĕ		88	94-	orp		S, F			•	AB OR (C)OMP	/ย(อ)	G	ច	ប	G	ឲ						Rece	Rece		
nental Lab of Tey Hobbs, NM 88240 IX 505-393-2476	Environmental Plus jer lain Olness	P.O. BOX 1558	Eunice New Mexico	505-394-3481 / 505-3	Chesapeake Energy C	Ruth 20-2	UL-D, Sect. 20. T 16	160011	e John Robinson		SAMPLE I.D.		sP-12 (2')	sP-13 (é')	sP-14 (3 [/] )	\$P-15 6')	( ^ا د ) P-16 ( کا						Date, AOS	Date	Same	
Environm 101 East Marland, F 505-393-2326 Fax	Company Name EPI Project Manag	Mailing Address	City, State, Zip	EPI Phone#/Fax#	<b>Client Company</b>	Facility Name	Location	<b>Project Reference</b>	<b>EPI Sampler Name</b>		LAB I.D.		H10157 - 181	- 2 <mark>S</mark>	- 3 <b>S</b> F	- 4 SI	~ 5 <mark>SI</mark>	9	7	8	6	10	SampleyRelinquished:	Belinquished by:	Delivered by:	

u^{r-} Page 1 of **% /** 

# **APPENDIX II**

# **PROJECT PHOTOGRAPHS**



Photo #1: Looking northwesterly at diesel tank, generator and release area.



Photo #2: Looking westerly at release area.



Photo #3: Looking down at point-of-release.



Photo #4: Looking at pooled diesel fuel on caliche pad.



Photo #5: Excavated, diesel soaked soil stockpiled on plastic. Drilling pit is in background of photo.



Photo #6: Looking southwesterly at excavation.



Photo #7: Looking westerly at excavation.



Photo #8: Looking westerly at excavation. Drilling pit is in right side of photo.



Photo #9: Looking northerly at excavation.



Photo #10: Looking northwesterly at excavation.



Photo #11: Current status, looking northeasterly.

# **APPENDIX III**

# **SOIL BORING LOG**

					L	.og	uf les	(NOTE - Page 1 of 3)
,ili,							Projec	t Number: 160016
				NTAL P	LUS, IN	2. NN	Projec	t Name: Chesapeake Ruth 20-2 Plt Closure
		EN	VIRONN	ENTAL SE	RVICES	··	Locatio	n: UL-D, Section 20, Township 16 South, Range 36 Eas
.11.			50	5-394-34	01		Boring I	lumber: BH-1 Surface Elevation: 3,938-feet an:
Τ		ž	2 2	8-	**3			Start Date: 10/19/05 Time: 1030 hrs
ž	d X		stu		1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	S	eet	Completion Date: 10/19/05 Time: 1350 hrs
	SF-	a c	Ŷ	Rec	982	సద	`   A3	Description
							_	
							<b>–</b>	1' Sandy Loam Topsoil
							<u> </u> -	CALICHE, White to Tan, Hard -
							┢	-
							1	
							Ľ	
								-
							F	-
								-
1030	PS	6		5.4	1,360			-
[							F	-
							<b> </b> -	-
1035	PS	12		4.7	1,360	SM	"	SAND, White to Tan to Red, Fine to Coarse Grained _
							<b> </b>	-
							<b>–</b>	-
							┢	-
1038	PS	7		3.7	1,290	SP	- <u> </u> 20	Sand turns to Red -
		-					T	-
							Γ	-
							F	-
		-		24	1 300	~~		Sand turns to White
	<b>L</b> 2	8		0.4	1,00	34	+	-
							$\vdash$	-
							F	-
							Γ.	-
1050	PS	12		32	1,040	SN		-
								l
Date	Tim		Sample	Casing	<u>cs (reet</u> Cave-k	ט זער זי	ater D	NUng Method: HSA 3.5' ID
-	+		Depth -	Jepth -	Depth -	╇	evel B	ackfill Method: Bentonite
*	-			-	-			

					L	.og	Of T	lest Borings ONDIE - Page 2 of 3)					
	i.			_	_		Pro	)ject Number: 160016					
<u>_</u>				TAL P	LUS, IN	C. ND	Pro	ject Name: Chesapeake Ruth 20-2 Plt Closure					
	r	ENV	IRONNE	NTAL SE	RVICES		Loco	ation: UL-D, Section 20, Township 16 South, Range 36 Ea	st				
		<u> </u>	505	-394-34	81		Borin	ng Number: BH-1 Surface Elevation: 3,938-feet a	ns				
a,	e e	l égi	aun	225	şî Sî Ç	S O	₽	Start Date: 10/19/05 Time: 1030 hrs					
Ē	Som		oist	I B G	a di la di	NUS.U		Completion Date: 10/19/05 Time: 1350 hrs	5				
		20	T T					Description					
								SAND, White to Tan to Red, Fine to Coarse Grained					
							F						
									_				
1054	PS	11		1.6	1,520	SM			_				
							F						
									_				
							$\vdash$						
1202	00	$\vdash$		26	1 520	<b>SH</b>		-40					
1203	P3	8			IJCO	24							
							$\vdash$						
									_				
1550	PS	8	1	2.3	1,120	SM		-45					
							F						
					1.040			-50	_				
230	P5	15	+	1.3	1,040	214							
							-						
							┢		_				
								er.					
1241	PS	8		1.3	1,040	SM							
							F		_				
1846					1 000			-60	_				
1316	<b>P2</b>	8		1./	1,320	SM			_				
	Vate	r Lev	el Meas	iurement	s (feet	:)							
Date	Tim	e S	anple )eoth	Casing	Cave-in Depth	Y	ater evel	Drilling Methodi HSA 3.5' ID					
-	<u>†                                    </u>		-				-	Backfill Nethod: Bentonite					
*				***	<u>                                     </u>			- Field Representative: IR					
					L	.00	Of Test	t Borings (NDTE - Page 3 of 3)					
----------------------------------------------------------------------------------------------	-------------	------------------	-----------	--------	------------	-----------	--------------------------------------------------------------	---------------------------------------------------	--	--	--	--	--
dlı		<b>_</b>		-	-		Projec	t Number: 160016					
ENVIRONMENTAL PLUS, INC. STATE APPROVED LAND FARM AND ENVIRONMENTAL SERVICES EUNICE							Project Name: Chesapeake Ruth 20-2 Pit Closure						
							Location: UL-D, Section 20, Township 16 South, Range 36 East						
			505-	394-34	B1		Boring M	lumber: BH-1 Surface Elevation: 3,938-feet ans					
	le e	sy	are	- 502	sis Sis	Υğ	£٦	Start Date: 10/19/05 Time: 1030 hrs					
Ĕ	Typ		Sti		ner var	C'S'I	Cep .	Completion Date: 10/19/05 Time: 1350 hrs					
	~	డిలే	ž	~~	⊡≹ ≎			Description					
							-	SAND, White to Tan to Red, Fine to Coarse Grained					
								-					
							Ľ						
				ļ									
1350	PS	10	ļ	2.0	4,000	SM	- <b>-</b> -						
							<u> </u>						
							$\vdash$	-					
							F	-					
1327	PS	10		1.1	4,880	SM	70						
							⊥⊻	_					
1343	PS	12	Damp	1.8	>4,000	SM	_ <del>_</del>	_					
							-	-					
1350	PS	12	Vet			SM	75	-					
				†				End of Soll Boring at 76' bgs					
								_					
				ļ			80	-					
							$\vdash$	-					
							┢	-					
							F	-					
							<b>–</b>	-					
							$\vdash$						
							┢	-					
							90	-					
			ļ										
Date	Vate Tin	r Leve e   Sc	nple	Casing	cave-li	i) n V	ater Dr	Hung Methode HSA 3.5" ID					
0/19/05	134	3	epth -	Depth	Depth -	ļĹ	.evel B	ackfill Nethod: Bentonite					
-	-		-	-	-		-	eid Remesentative: R					

f

## **APPENDIX IV**

## FINAL NMOCD C-141 FORM

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

220 S. St. France	is Dr., Santa	Fe. NM 87505		1220 3			side of form				
				Sant	ta Fe	, NM 87505					
			Relea	se Notifica	tion	and Cori	rective Acti	on			
					1	OPERATO	R	🔲 Initial R	Initial Report		
Name of Co	mpany: C	hesapeake E	nergy		(	Contact: Bradley Blevins					
Address: P.	O. Box 190	), Hobbs, N.	M. 88240		1	Telephone No.: (505) 391-1462 ext. 24					
Facility Nar	ne: Ruth 2	0-2			F	Facility Type: Tank Battery					
Surface Ow	ner: State	of New Mex	ico -	Mineral Ov	vner:	State of New	Mexico	Lease No.:	Lease No.: V0-4719-0000		
							ACE			,	
Linit Lattar	Section	Township	Pango	EQUAL Feet from the	Nort	th/South Line	ASE Feet from the	Fact/West Line		County	
D	20	16 S	36 E	Feet from the	INOT		reet it om the			Lea	
			Latitu	<b>de: <u>N 32º 54' 48</u></b>	8 <u>.033"</u>	Longitude: <u>V</u>	V 103° 22' 57.43	<u>0"</u>			
				NATU	RE (	OF RELEA	SE				
<b>Fype of Relea</b>	se: Diesel l	Fuel			T	Volume of Re	lease: 500 gallons	Volume Reco	Volume Recovered: 0 gallons		
Source of Rel	ease: Tank					Date and Hour of Occurrence: Date an 03 June 2005 time unkown 04 June			id Hour of Discovery:		
Was Immedia	ate Notice (	Given?				If YES. To Whom?					
			Yes 🗌 N	No 🛛 Not Requ	ired	Not Applicable	e				
By Whom? N	ot Applicat	ole				Date and Hour: Not Applicable					
Was a Water	course Rea	ched?		r_		If YES, Volume Impacting the Watercourse:					
			Yes 🖾 N	0	ļ	Not Applicable					
If a Watercou	irse was In	pacted, Desc	ribe Fully.	* Not Applicable							
Describe Cau the diesel allo approved treat	se of Probl wed to flow ment facilit	em and Reme onto the calic y.	edial Actio he pad. So	n Taken.* The sit il impacted above	e was the NN	vandalized and MOCD remedial	the fuel line from thresholds has be	the diesel tank to the diesel tank to the diesel tank to the transmission of transmission of transmission of the transmission of transmiss	ne generato ransported	or was cut and all to a State	
Describe Are the caliche pactransported to excavation. N	a Affected a d at the site. Artesia Aer MOCD rem	and Cleanup Approximate ation for treat edial threshold	Action Tally 340-cub ment. An e ds for the s	ken.* Approximate ic yards of hydroca quivalent amount ite were: 10 mg/Kg	ely 3,1 arbon i of clea g for b	150 square feet of impacted soil ab an soil was obtain benzene, 50 mg/	of surface area was ove the NMOCD ned from an off-si Kg for BTEX and	s impacted by the r remedial guideline ite source and utiliz 100 mg/Kg for TP	elease, all s was exca ed to back H.	of which was on wated and fill the	
hereby certif egulations all public health o hould their op or the environ ederal, state,	y that the in operators a or the envirc perations ha ment. In ad or local law	formation give re required to onment. The a ve failed to ad dition, NMOC s and/or regula	en above is report and/ cceptance equately ir CD acceptan ations.	true and complete for file certain releated of a C-141 report b westigate and remo- nce of a C-141 rep	e to the ase no by the ediate ort do	e best of my kno tifications and p NMOCD marke contamination t es not relieve th	weldge and under erform corrective ed as "Final Repor hat pose a threat t e operator of respo	stand that pursuant actions for releases t" does not relieve o ground water, sur onsibility for comp	to NMOC which ma the operate face water liance with	CD rules and ay endanger or of liability c, human health a any other	
		-		~			OIL CONSEI	<b>RVATION DI</b>	VISION	<u>I</u>	
Signature	Snad	the d	51.	· · · ·				_			
	a ind	ang L	aud			Annroved by District Supervisory					
Printed Name	e: Bradley E	Blevins			A		strict <del>supervis</del> or	- E plu	-50-		
Fitle: Field Te	echnician				A	pproval Date:	6.4.07	Expiration Dat	e:		
E-mail Addre	ss: bbleving	s@chkenergy.	com		c	Conditions of A	pproval:	A	ttached		
Date: 7-	4-0	<u>6</u> P	<b>hone:</b> (50)	5) <u>391-1462 ext. 2</u> 4	4		_				
ttach Addi	tional She	ets If Necess	ary							·····	