

Dirt Work • On-Site Remediation • Soil Testing • Excavation

December 14, 2007

Mr. Larry Johnson New Mexico Oil Conservation Division 1625 French Drive Hobbs, New Mexico 88240

Re: Spill Remediation Workplan, Lovington Deep State,

Unit Letter M (SW/4, SW/4), Section 5, Township 17 South, Range 36 East,

Lea County, New Mexico

1RP #1612

Dear Mr. Johnson:

Attached please find the Spill Remediation Workplan for the Chevron MidContinent L.P., SBU, Lovington Deep State site.

If you have any questions or need additional information, please do not hesitate to call me at (505) 441-7244 or email me at <u>Cindy.Crain@gmail.com</u>.

Sincerely,

Ocotillo Environmental

Cindy K. Crain, P.G.

Environmental Manager

cc: Larry Ridenour, Chevron

ਰੀ 1RP#1604 & 1612 - Message	·.				September 1		_ & X
Eile Edit Yiew Insert Format Tools Table Wi	ndow <u>H</u> el	p Î			Туре а	question fo	r help 🔻 🗴
Send 0 · w v 3 ° 1 ▼ B 2 Options • H	TML				** J	1. 14.	
© To Cindy Crain ≤cindy.crain@omail.com≥;		mentioned allerton copy after	7 vs vs.m.j.v. vs. m.j.v.			of the court was a substitute of the court	
□ Cc							
Subject: 1RP#1604 8.1612			20				
MG X ™ M Arial	T E E	習↓ほ∷非	建建	- 4			· .
A							☲
Approved to proceed as requested. LJ							
							1.
							Ш
							(-
							0
	The state of the s		and an area	and the same		ac erro anaccentra anaco	
#Start 图 Inbox 图 Inbox	1RP#1	MONTH OF		b 目9	S 00		10:03 AM

·

Dirt Work • On-Site Remediation • Soil Testing • Excavation

December 10, 2007

Mr. Larry Johnson
Environmental Engineer
Oil Conservation Division
New Mexico Energy, Minerals and Natural Resources Department
1625 N. French Drive
Hobbs, New Mexico 88240

Re: Spill Remediation Workplan, Lovington Deep State,

Unit Letter M (SW/4, SW/4), Section 5, Township 17 South, Range 36 East,

Lea County, New Mexico

(Latitude: N 32 deg. 51 min. 47.53 sec. / Longitude: W 103 deg. 23 min. 8.11 sec.)

1RP #1612

Dear Mr. Johnson:

Chevron MidContinent L.P. SBU (Chevron) has retained Ocotillo Environmental, LLC (Ocotillo) to remediate impacts to soil from a leak at a water transfer line located near the Lovington Deep State well. The leak occurred in the southeast quarter (SE/4) of the southwest quarter (SW/4), Section 5, Township 17 South, Range 36 East, Lea County, New Mexico (Site). Approximately 20 barrels of produced water and 2 barrels of oil were released from the transfer line on October 2, 2007, and approximately 14 barrels of fluid was recovered from the site. A C-141 was submitted to the New Mexico Oil Conservation Division (NMOCD) on October 4, 2007, and a Spill Investigation Workplan was submitted on October 4, 2007. Verbal approval was granted for the Spill Investigation Workplan on October 11, 2007. Figure 1 shows the site location.

Based on published literature (1961), well records of the New Mexico State Engineer, and well records of the United States Geological Survey, groundwater occurs at approximately 56 feet bgs in the well located nearest the Site. No domestic water wells are located within 1,000 feet of the site. The NMOCD has established RRALs for benzene, total BTEX and TPH resulting from spills of natural gas liquids ("Guidelines for Remediation of Leaks, Spills and Releases, August 13, 1993"). Remediation levels for benzene, total BTEX and TPH were calculated using the following NMOCD criteria:

Criteria	Result	Ranking Score
Depth-to-Groundwater	50 - 99 Feet	10
Wellhead Protection Area	No	0
Distance to Surface Water Body	>1000 Horizontal Feet	0
		Total: 10

The following RRALs have been assigned based on NMOCD criteria:

Benzene 10 mg/kg
Total BTEX 50 mg/kg
TPH 1,000 mg/kg

Initial Investigation

On November 14 and 15, 2007, Ocotillo installed thirteen (13) soil borings (BH-1 through BH-13) at the site, using an air rotary drilling rig, in order to assess the horizontal and vertical limits of the spill. Surficially impacted soil had been previously removed from the surface and disposed at an NMOCD approved disposal facility.

Soil samples from the exploratory borings were collected in five foot intervals from the ground surface to a depth of approximately 32 feet below ground surface (bgs) in borings BH-1, BH-2, and BH-7, to a depth of approximately 27 feet bgs in borings BH-3 and BH-8, to a depth of approximately 22 feet bgs in borings BH-4, BH-5, BH-6, and BH-9, and to a depth of approximately 17 feet bgs in borings BH-10, BH-11, BH-12 and BH-13. All samples were collected using a split-spoon sampling device. The sampling equipment was thoroughly cleaned between soil boring locations with a solution of laboratory-grade detergent and potable water, and rinsed with distilled water. All soil borings were plugged with bentonite. Figure 2 shows the locations of the soil borings.

The soil samples from borings BH-1 through BH-13 were placed in clean glass sample jars, labeled, chilled in an ice chest, and delivered under chain-of-custody control to Environmental Lab of Texas (ELOT), located in Odessa, Texas. A duplicate of each sample was also placed in a clean glass sample jar for headspace analysis. The headspace jars were filled approximately ¾ full, and a layer of aluminum foil was placed over the opening of the jar before replacing the cap. The headspace samples were allowed to reach ambient temperature before a BW Technologies GasAlertMicro 5 photoionization detector (PID) was used to measure the concentration of organic vapors in the headspace of the sample jars. The PID probe was inserted into the headspace of the sample jars (through the aluminum foil) and the concentration of organic vapors was displayed by the instrument in parts per million (ppm). The PID readings are shown on the borings logs included in Appendix A.

All soil samples collected from borings BH-1 through BH-13 were analyzed for chlorides by EPA method 325.3. At a minimum, the uppermost two (2) samples from each boring were analyzed for total petroleum hydrocarbons (TPH) by EPA method SW8015 (extended) for gasoline range organics (GRO) and diesel range organics (DRO). If the PID reading for any particular sample was greater than 100 ppm, the sample was also analyzed for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX). Table 1 presents a summary of the laboratory analysis of soil samples. Laboratory analysis and chain of custody documentation are included in Appendix B.

Referring to Table 1, TPH concentrations in the following samples from borings BH-1, BH-2, BH-5, and BH-9, were reported above the RRAL of 1,000 mg/kg, or above the RRAL of 100 mg/kg if located deeper than six (6) feet bgs:

- BH-1 0-2' 13,350 mg/kg
- BH-1 5-7' 290.7 mg/kg
- BH-1 10-12' 1,129 mg/kg

Mr. Larry Johnson Page 3 December 10, 2007

- BH-2 0-2' 12,406 mg/kg
- BH-5 0-2' 13,870 mg/kg
- BH-5 5-7' 510.3 mg/kg
- BH-9 0-2' 1,240 mg/kg
- BH-9 5-7' 390.1 mg/kg.

Concentrations of BTEX exceeded the RRAL of 50 mg/kg in the following samples:

- BH-1 0-2' 192.544 mg/kg
- BH-2 0-2' 242.5141 mg/kg
- BH-5 0-2' 202.1216 mg/kg.

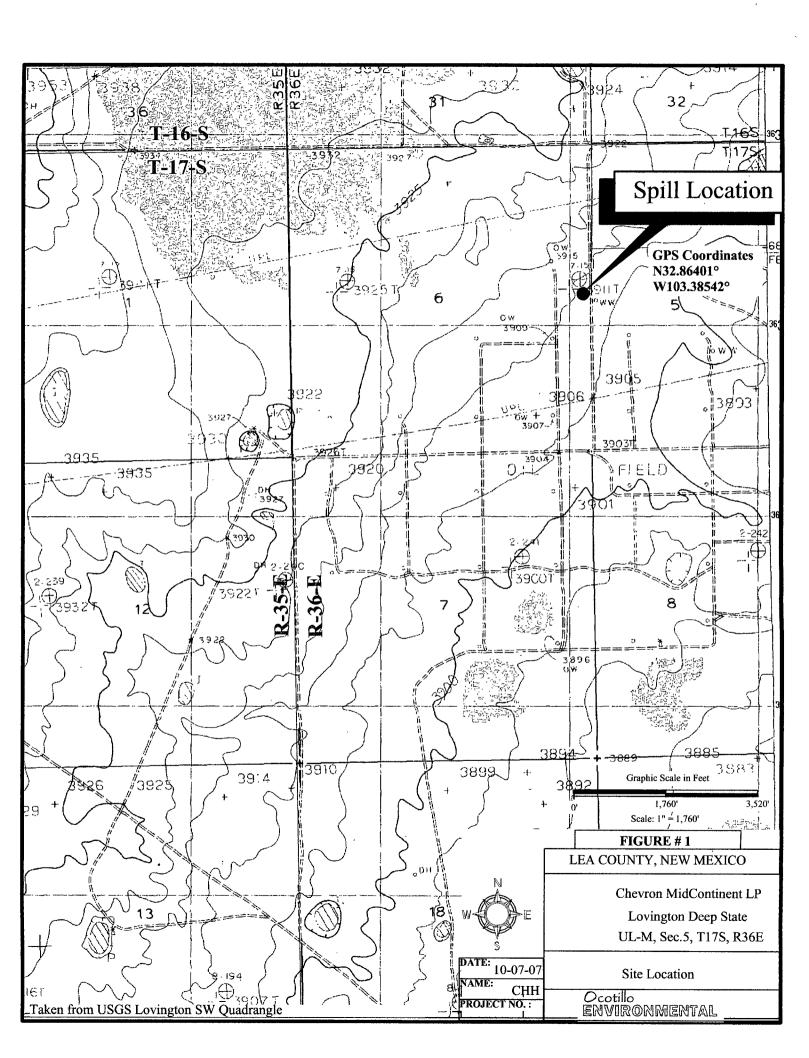
Chloride concentrations were below the RRAL of 250 mg/kg in all samples from borings BH-4, BH-10, BH-11, BH-12 and BH-13. Chloride concentrations were above the RRAL of 250 mg/kg until a depth of approximately 20-22 feet bgs in boring BH-1, 15-17 feet bgs in borings BH-2 and BH-7, and 10-12 feet bgs in borings BH-3, BH-5, BH-6, BH-8 and BH-9.

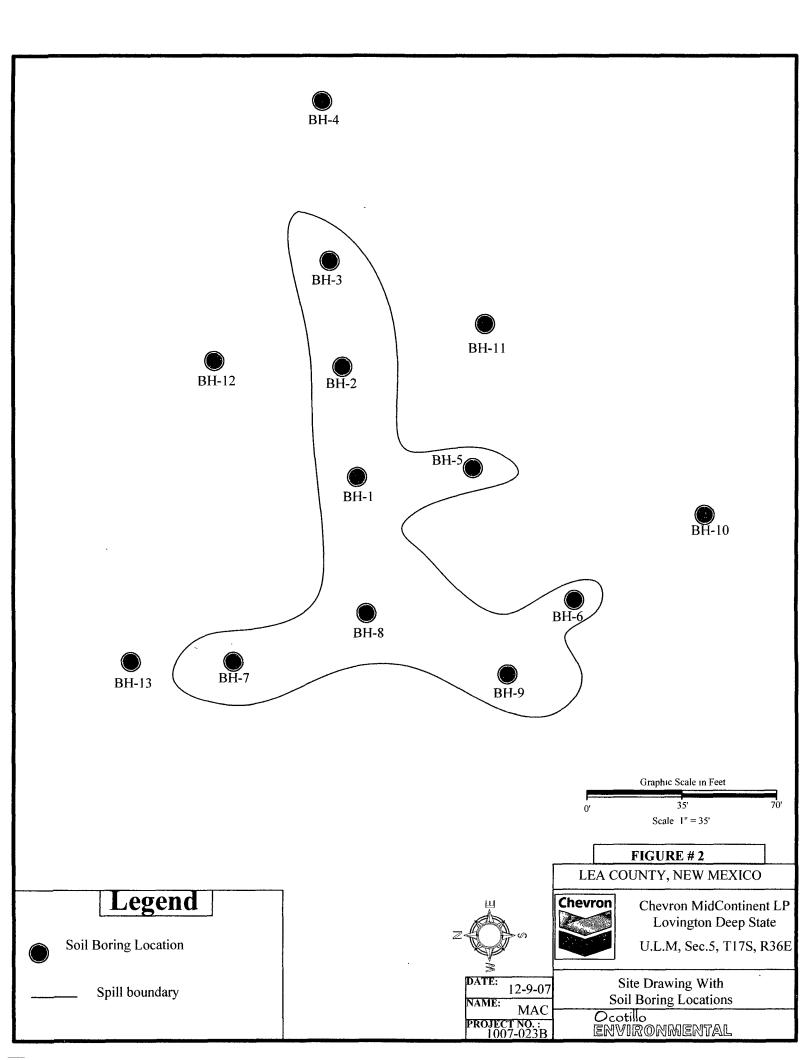
Proposed Remediation

Chevron proposes to conduct excavation of the impacted soil in the vicinity of boring BH-1 to a depth of approximately 18-19 feet bgs, in the vicinity of borings BH-2 and BH-7 to a depth of approximately 13-14 feet bgs, and in the vicinity of borings BH-3, BH-5, BH-6, BH-8 and BH-9 to a depth of approximately 8-9 feet bgs, until confirmations samples at all locations report chloride and TPH concentrations below the RRALs of 250 mg/kg and 100 mg/kg, respectively. Excavated soil will be removed to an NMOCD approved disposal facility. Analytical results from final confirmation samples will be reported to the NMOCD prior to backfilling of the excavation.

If you have any questions or need additional information, please call Mr. Larry Ridenour at (505) 396-4414 x102, or myself at (505) 441-7244. We may also be reached by email at Lridenour@chevron.com or <u>Cindy.Crain@gmail.com</u>.

Sincerely,


Ocotillo Environmental, LLC


indy K. (rain

Cindy K. Crain, P.G. Environmental Manager

cc: Larry Ridenour, Chevron

FIGURES

TABLE

Table 1: Summary of Laboratory Analysis of Soil Samples Chevron MidContinent Alaska, Lovington Deep State Section 5, Township 17 South, Range 36 East Lea County, New Mexico

Page 1 of 4

Sample Date	Soil Boring Number	Sample Depth (feet BGS)	TPH (GRO) C6 - C12 mg/kg	TPH (DRO) C12 - C28 mg/kg	TPH (ORO) C28 - C35 mg/kg	Total TPH C6 - C35 mg/kg	Benzene mg/kg	Total BTEX mg/kg	Chloride (mg/kg)
	RRAL				-	100	10	50	250
11/14/07	BH-1	0-2	2,690	9,520	1,140	13,350	1.724	192.544	25,300
		5-7	51.3	201	38.4	290.7			6,420
		10-12	138	879	112	1,129			1,850
		15-17							936
		20-22							128
		25-27							85.1
		30-32							63.8
11/14/07	BH-2	0-2	3,530	7,950	926	12,406	0.9841	242.5141	13,400
		5-7	18.2	45.4	<16.7	63.6	< 0.0011	0.0096	10,900
		10-12	<15.6	<15.6	<15.6	<46.8			1,290
		15-17							85.1
		20-22							42.5
		25-27							53.2
		30-32							42.5
11/14/07	BH-3	0-2	<17.2	30.5	<17.2	30.5			± 17,100
11/11/07	<u> </u>	5-7	<15.9	<15.9	<15.9	<47.7			6,080
		10-12							191
		15-17							117
		20-22							42.5
·		25-27							160
									<u> </u>

Page 2 of 4

~	~							Page 2	
Sample	Soil	Sample	TPH (GRO)	TPH (DRO)	TPH (ORO)	Total TPH	Benzene	Total BTEX	Chloride
Date	Boring	Depth	C6 - C12	C12 - C28	C28 - C35	C6 - C35	mg/kg	mg/kg	(mg/kg)
	Number	(feet BGS)	mg/kg	mg/kg	mg/kg	mg/kg			
	RRAL					100	10	50	250
11/14/07	BH-4	0-2	<16	37.1	<16	37.1			45.4
		5-7	<15.2	37.8	<15.2	37.8			64.6
		10-12							53.2
		15-17							74.4
		20-22	~~~						42.5
11/14/07	BH-5	0-2	2,590	10,100	1,180	13,870	0.0716	202.1216	15,200
		5-7	34.9	409	66.4	510.3			1,880
		10-12							42.5
		15-17							106
		20-22							74.4
11/14/07	BH-6	0-2	<16.9	86.6	17.2	103.8			12,600
		5-7	<15.6	<15.6	<15.6	<46.8		·	1,130
		10-12							42.5
		15-17							42.5
		20-22							234
11/15/07	BH-7	0-2	<17	<17	<17	<51			₹.7,850°
11/13/07	ВП-/	5-7				 			
			<15.9	<15.9	<15.9	<47.7			5,060
· · · · · · · · · · · · · · · · · · ·		10-12							3,400
		15-17			***				213
		20-22							42.5
		25-27							42.5
		30-32							42.5
	I								1

Page 3 of 4

Sample	Soil	Sample	TPH (GRO)	TPH (DRO)	TPH (ORO)	Total TPH	Benzene	Total BTEX	Chloride
Date	Boring	Depth	C6 - C12	C12 - C28	C28 - C35	C6 - C35	mg/kg	mg/kg	(mg/kg)
	Number	(feet BGS)	mg/kg	mg/kg	mg/kg	mg/kg			(6,6)
	RRAL		8		3 8	100	10	50	250
11/15/07	BH-8	0-2	<17.2	22.2	<17.2	22.2			3,770
		5-7	<15.3	<15.3	<15.3	<45.9			304
		10-12	444						85.1
		15-17							85.1
		20-22							63.8
		25-27							. 106
-									
11/15/07	BH-9	0-2	162	893	185	1,240	< 0.0012	< 0.0082	30,000
		5-7	73.7	285	31.4	390.1	< 0.0010	0.0291	2,010
		10-12	<15.5	<15.5	<15.5	<46.5			176.0
		15-17							74.4
		20-22							74.4
·									
11/15/07	BH-10	0-2	<15.9	<15.9	<15.9	<47.7			45
		5-7	<15.5	<15.5	<15.5	<46.5			44
		10-12							42.5
		15-17							31.9
·									
11/15/07	BH-11	0-2	<16.8	<16.8	<16.8	<50.4			48
		5-7	<15.5	<15.5	<15.5	<46.5			33
		10-12							42.5
		15-17	a. a. a.						31.9
11/15/07	BH-12	0-2	<15.9	48.9	<15.9	48.9			34
		5-7	<16.1	32.7	<16.1	32.7			46
·		10-12							63.8
		15-17							42.5
<u> </u>									

Page 4 of 4

Sample Date	Soil Boring Number	Sample Depth (feet BGS)	TPH (GRO) C6 - C12 mg/kg	TPH (DRO) C12 - C28 mg/kg	TPH (ORO) C28 - C35 mg/kg	Total TPH C6 - C35 mg/kg	Benzene mg/kg	Total BTEX mg/kg	Chloride (mg/kg)
	RRAL					100	10	50	250
11/15/07	BH-13	0-2	<15.5	38.5	<15.5	38.5			33.1
		5-7	<15.2	<15.2	<15.2	<45.6			86.2
		10-12							42.5
		15-17							53.2

Notes:

1. BGS: Depth in feet below ground surface

2. mg/kg: Milligrams per kilogram
 3. GRO: Gasoline Range Organics
 4. DRO: Diesel Range Organics

5. ORO: Oil Range Organics

APPENDIX A SOIL BORING LOGS

Project: Lovington Deep State

Project No.: 1007-023B

Location: Sec 5, T17S, R36E

Log: BH-1

Page: 1 of 1

Geologist: C. Crain

th	logi	Description	Sample Number	ıple e	Sample Recovery	Field Chloride ppm	Analytical Data
Depth	Symbol		Sam	Sample Type	Sam Rec	500 1500	
0		Ground Surface				>25.00	
) -		Silty Clayey Sand Dark brown, silty clayey quartz	1	SS	2	72300	0-2' bgs Total TPH= 242.5141 mg/kg
- - -	77	sand, fine grained,poorly sorted, damp.					Chloride 13400 mg/kg
-5 - -	7/ 7/ 7/ 7/ 1/ 2/ 2/	Caliche Pinkish white quartz sand, non- indurated, dry.	2	SS	2	>2500	5-7' bgs Total TPH= .0096 mg/kg Chloride 10900 mg/kg
-10	/ / / / / /		3	SS	2	>2500	10-12' bgs
- - -							Chloride 1290 mg/kg
-15 -	77, 77, 77,		4	SS	2	1500	15-17' bgs Chloride 85.1 mg/kg
-20	777 777 777		5	SS	2	600 g	20-22' bgs Chloride 42.5 mg/kg
- - -25		Sand Light tan quartz sand, very fine grained, moderately well sorted,				400	25-27' bgs
- - -		loose, dry.	6	SS	2	7-0	Chloride 53.2 mg/kg
- -30			7	SS	2	400	30-32' bgs Chloride 42.5 mg/kg
-		TD at 32' bgs		33			Chionae 42.5 mg/kg
- -35 -							
- - -40							

Ocotillo Environmental, LLC

2125 French Drive Hobbs, NM 88240 (505) 393-6371

Elevation: NA

Checked by: CKC

Drilled by: Scarborough Drilling

Drill Method: Air Rotary

Drill Date: 11/14/07

Project: Lovington Deep State

Project No.: 1007-023B

Drill Method: Air Rotary

Location: Sec 5, T17S, R36E

Log: BH-2

Page: 1 of 1

Geologist: C. Crain

- 0 - 2 - 5 - 7 - 7 - 7 - 10 - 7		Ground Surface Silty Clayey Sand Dark brown, silty clayey quartz sand, fine grained, poorly sorted, damp. Caliche Pinkish white quartz sand, non-indurated, dry.	1 2	SS	2	>2500- •	0-2' bgs Total TPH= 12406 mg/kg Chloride 13400 mg/kg
		Dark brown, silty clayey quartz sand, fine grained, poorly sorted, damp. Caliche Pinkish white quartz sand, non-			2		Total TPH= 12406 mg/kg
		damp. Caliche Pinkish white quartz sand, non-	2	SS			Chloride 13400 ma/ka
		Pinkish white quartz sand, non-	2	SS		0500	
10 五					2	>2500	5-7' bgs Total TPH= 63.6 mg/kg Chloride 10900 mg/kg
			3	SS	2	>2500	10-12' bgs Total TPH = <46.8 mg/kg Chloride 1290 mg/kg
- 15 / / / / / / / / / / / / / / / / / / /	<i>',', ',', ',', ',', ',',</i>		4	SS	2	1500	15-17' bgs Chloride 85.1 mg/kg
-20 /			5	SS	2	600 ø	20-22' bgs Chloride 42.5 mg/kg
- - -25		Sand Light tan quartz sand, very fine grained, moderately well sorted, loose, dry.	6	SS	2 (0	25-27' bgs Chloride 53.2 mg/kg
- - -30			7	SS	2 (0	30-32' bgs Chloride 42.5 mg/kg
		TD at 32' bgs	,	33			Chilohae 42.5 mg/kg
-35 - - - - -40							

Ocotillo Environmental, LLC

2125 French Drive Hobbs, NM 88240 (505) 393-6371

Elevation: NA

Drill Date: 11/14/07 Checked by: CKC

Hole Size: 4" Drilled by: Scarborough Drilling

Project: Lovington Deep State

Project No.: 1007-023B

Drill Method: Air Rotary

Location: Sec 5, T17S, R36E

Log: BH-3

Page: 1 of 1

Geologist: C. Crain

Depth	Symbol	Description	Sample Number	Sample Type	Sample Recovery	Field Chloride ppm 500 1500	Analytical Data
0		Ground Surface			,	>2500	
-	احتبرا	Silty Clayey Sand	1	SS	2		0-2' bgs
		Dark brown, silty clayey quartz sand, fine grained,poorly sorted,					Total TPH= 30.5 mg/kg Chloride 17100 mg/kg
-	77	damp.					
-5	7 7 7	Caliche	2	SS	2	>2500	5-7' bgs Total TPH= <47.7
-	77,	Pinkish white quartz sand, non indurated, damp.		33			Chloride 6080 mg/kg
		muurateu, uamp.					
-10	7		,			400	10-12' bgs
_	77		3	SS	2	%	Chloride 191 mg/kg
-	///						
- -15	///					1200	15-17' bgs
- 13	///		4	SS	2	1200 s	Chloride 117 mg/kg
-	///						
-	7					/	
-20	77			00		0	20-22' bgs
	77		5	SS	2 (Chloride 42.5 mg/kg
-	///						
-25	77					0	25-27' bgs
-	77		6	SS	2 '		Chloride 160 mg/kg
							^
-							`
-30 -							
}	77	TD@32'					
- 1		15602					
-35							
-							
40							
لـــــا						L	

Ocotillo Environmental, LLC

2125 French Drive Hobbs, NM 88240 (505) 393-6371

Elevation: NA

Drill Date: 11/14/07 Checked by: CKC

Hole Size: 4" Drilled by: Scarborough Drilling

Project: Lovington Deep State

Project No.: 1007-023B

Location: Sec 5, T17S, R36E

Log: BH-4

Page: 1 of 1

Geologist: C. Crain

Description Ground Surface Sitty Clayey Sand Dark brown, silty clayey quartz sand, fine grained, poorly sorted, dry. Caliche pinkish white quartz sand caliche, non indurated, dry. 1 SS 2 0 0 0 0 0 1500 3 SS 2 0 0 0 0 1500 3 SS 2 0 0 0 0 1500 TD@22' Analytical Data Analytical Data Pickle Chloride brown, silty clayey quartz sand, fine grained, poorly sorted, dry. 2 SS 2 0 0 0 0 1500 Total TPH= 37.1 mg/kg Chloride 64.6 mg/kg 10-12' bgs Chloride 64.6 mg/kg 10-12' bgs Chloride 63.2 mg/kg 15-17' bgs Chloride 74.4 mg/kg 20-22' bgs Chloride 74.4 mg/kg TD@22'								
Silty Clayey Sand Dark brown, silty clayey quartz sand, fine grained, poorly sorted, dry. Caliche Pinkish white quartz sand caliche, non indurated, dry. 3 SS 2 Total TPH= 37.1 mg/kg Chloride 45.4 mg/kg 5-7' bgs Total TPH= 37.8 mg/kg Chloride 64.6 mg/kg 10-12' bgs Total TPH= 37.1 mg/kg Chloride 64.6 mg/kg 10-12' bgs Chloride 64.6 mg/kg 10-12' bgs Chloride 64.6 mg/kg 15-17' bgs Chloride 74.4 mg/kg TD@22' TD@22' TD@22'	Depth	Symbol	Description	Sample Number	Sample Type	Sample Recovery	ppm	Analytical Data
Sity Clayey Sand Dark brown, sity clayey quartz sand, fine grained, poorly sorted, dry. Caliche Pinkish white quartz sand caliche, non indurated, dry. 1 SS 2 o Chloride 45.4 mg/kg 5-7' bgs Total TPH= 37.1 mg/kg Chloride 45.4 mg/kg 10-12' bgs Total TPH= 37.1 mg/kg Chloride 64.6 mg/kg 10-12' bgs Chloride 64.6 mg/kg 10-12' bgs Chloride 64.6 mg/kg 10-12' bgs Chloride 64.6 mg/kg 15-17' bgs Chloride 53.2 mg/kg 15-17' bgs Chloride 74.4 mg/kg 20-22' bgs Chloride 42.5 mg/kg			Ground Surface				0	
Caliche Pinkish white quartz sand caliche, non indurated, dry.	-		Dark brown, silty clayey quartz	1	SS	2 (Total TPH= 37.1 mg/kg
Pinkish white quartz sand caliche, non indurated, dry. 2 SS 2 o	F	ŹŻ						- "
3 SS 2 0 Chloride 53.2 mg/kg 4 SS 2 0 Chloride 74.4 mg/kg 20-22' bgs Chloride 42.5 mg/kg TD@22' TD. 235	-5 - -		Pinkish white quartz sand caliche,	2	SS	2 9	0	Total TPH= 37.8 mg/kg
Chloride 53.2 mg/kg 15-17' bgs Chloride 74.4 mg/kg 20-22' bgs Chloride 42.5 mg/kg TD@22' TD@22'	10						o	10-12' bgs
4 SS 2 o Chloride 74.4 mg/kg 20-22' bgs Chloride 42.5 mg/kg TD@22' -35	-			3	SS	2 ')	Chloride 53.2 mg/kg
4 SS 2 o Chloride 74.4 mg/kg 20-22' bgs Chloride 42.5 mg/kg TD@22' -35	-	/-/-, /-/-						
20-22' bgs Chloride 42.5 mg/kg TD@22' -35	-15	/ / / / / /		4	SS	2 (0	15-17' bgs Chloride 74.4 ma/ka
5 SS 2 ¢ TD@22' -25 -30 -35	-	/ / / / / /						3 3
5 SS 2 ¢ TD@22' -25 -30 -35	-20	//// ///					0	20-22' has
-25 -30 -35 -35		/ / / / / /		5	SS	2 (Chloride 42.5 mg/kg
-30	-	,	TD@22'					
-35	-25							
-35	-							
-35	-							
	⊢30 ⊢							•
	-							
	- -35							
-40	-							
-40	-		, , , , , , , , , , , , , , , , , , ,					
	-40		**************************************					

Ocotillo Environmental, LLC

2125 French Drive Hobbs, NM 88240 (505) 393-6371

Elevation: NA

Checked by: CKC

Drilled by: Scarborough Drilling

Drill Date: 11/14/07

Drill Method: Air Rotary

Project: Lovington Deep State

Project No.: 1007-023B

Drill Method: Air Rotary

Location: Sec 5, T17S, R36E

Log: BH-5

Page: 1 of 1

Geologist: C. Crain

Depth	Symbol	Description	Sample Number	Sample Type	Sample Recovery	Field Chloride ppm 500 1500	Analytical Data
0		Ground Surface				>2500	
- - -	77	Silty Clayey Sand Dark brown, silty clayey quartz sand, fine grained,poorly sorted, dry.	1	SS	2		0-2' bgs Total TPH= 13870 mg/kg Chloride 15200mg/kg
-5 - -		Caliche Pinkish white quartz sand, non indurated, dry.	2	SS	2	2500	5-7' bgs Total TPH= 510.3 mg/kg Chloride 1880 mg/kg
-10 -			3	SS	2 '	0	10-12' bgs Chloride 42.5 mg/kg
- -15 -			4	SS	2 (0	15-17' bgs Chloride 106 mg/kg
-20 -			5	SS	2 '	0	20-22' bgs Chloride 74.4 mg/kg
- -25		TD@22'	:				
- - -30							
- -35							
- -40							

Ocotillo Environmental, LLC

2125 French Drive Hobbs, NM 88240 (505) 393-6371

Elevation: NA

Drill Date: 11/14/07 Checked by: CKC

Hole Size: 4" Drilled by: Scarborough Drilling

Project: Lovington Deep State

Project No.: 1007-023B

Location: Sec 5, T17S, R36E

Log: BH-6

Page: 1 of 1

Geologist: C. Crain

Depth	Symbol	Description	Sample Number	Sample Type	Sample Recovery	Field Chloride ppm 500 1500	Analytical Data
0		Ground Surface					
-		Silty Clayey Sand Dark brown, silty clayey quartz sand, fine grained, poorly sorted,	1	SS	2		0-2' bgs Total TPH= 103.8 mg/kg Chloride 12,600 mg/kg
- -5	#	dry.				2500	5-7' bgs
-		Caliche Pinkish white quartz sand, non indurated, dry.	2	SS	2	2300	Total TPH= <46.8 mg/kg Chloride 1,130 mg/kg
-10 -			3	SS	2 '	0	10-12' bgs Chloride 42.5 mg/kg
- 15			4	SS	2 (0	15-17' bgs Chloride 42.5 mg/kg
- - -20						0	20-22' bgs
	/-/-, /-/-		5	SS	2 9		Chloride 234 mg/kg
- -25 -		TD@22'					
- -30 -							
-35 -							
- -40							

Ocotillo Environmental, LLC

2125 French Drive Hobbs, NM 88240 (505) 393-6371

Elevation: NA

Checked by: CKC

Drilled by: Scarborough Drilling

Drill Date: 11/14/07

Drill Method: Air Rotary

Project: Lovington Deep State

Project No.: 1007-023B

Location: Sec 5, T17S, R36E

Log: BH-7

Page: 1 of 1

Geologist: C. Crain

Depth	Symbol	Description	Sample Number	Sample Type	Sample Recovery	Field Chloride ppm 500 1500	Analytical Data
0		Ground Surface		,		—⊤—>25 <u>.</u> 00	
-		Silty Clayey Sand Dark brown, silty clayey quartz sand, poorly sorted, damp.	1	SS	2		0-2' bgs Total TPH= <51 mg/kg Chloride 7850 mg/kg
-5 -		Caliche Pinkish white quartz sand, non indurated, dry.	2	SS	2	>2500	5-7' bgs Total TPH= <47.7 mg/kg Chloride 5060 mg/kg
-10 -			3	SS	2	2000	10-12' bgs Chloride 3400 mg/kg
- -15 - -			4	SS	2	1800	15-17' bgs Chloride 213 mg/kg
- -20			5	SS	2	>2500	20-22' bgs Chloride 42.5 mg/kg
-25 -		Silty Sand Light brown silty quartz sand, moderately well sorted, moderately loose, dry.	6	SS	•	0	25-27' bgs Chloride 42.5 mg/kg
-30			7	SS		300 300	30-32'bgs
- -35	1+1.2	TD@32'	-				Chloridie 42.5 mg/kg
- -40							

Ocotillo Environmental, LLC

2125 French Drive Hobbs, NM 88240 (505) 393-6371

Elevation: NA

Checked by: CKC

Drilled by: Scarborough Drilling

Drill Date: 11/15/07

Drill Method: Air Rotary

Project: Lovington Deep State

Project No.: 1007-023B

Location: Sec 5, T17S, R36E

Log: BH-8

Page: 1 of 1

Geologist: C. Crain

Depth	Symbol	Description	Sample Number	Sample Type	Sample Recovery	Field Chloride ppm 500 1500	Analytical Data
0-		Ground Surface				> 2500	
-		Silty Clayey Sand Dark brown, silty clayey quartz	1	SS	2	7	0-2' bgs Total TPH= 22.2 mg/kg
Ė	=	sand, fine grained, poorly sorted, \ dry.					Chloride 3770 mg/kg
-5 - -		Caliche Pinkish white quartz sand, non indurated, dry.	2	SS	2	400	5-7' bgs Total TPH= <45.9 mg/kg Chloride 304 mg/kg
- -10 -	, , , , , , , , , , , , , , , , , , ,		3	SS	2 4	0	10-12' bgs Chloride 85.1 mg/kg
- -15 -			4	SS	2	250 \$	15-17' bgs Chloride 85.1 mg/kg
-20	77, 77, 77,		5	SS	2	100	20-22' bgs Chlorides 63.8 mg/kg
- -25		Silty Sand Light tan silty quartz sand, fine grained moderately well sorted, moderately loose, dry.	6	SS		500	25-27' bgs Chlorides 106 mg/kg
-30		TD@27'					
- -35 -							
- -40						Total Control of the	

Ocotillo Environmental, LLC

2125 French Drive Hobbs, NM 88240 (505) 393-6371

Elevation: NA

Checked by: CKC

. . .

Hole Size: 4"

Drill Method: Air Rotary

Drill Date: 11/15/07

Drilled by: Scarborough Drilling

Project: Lovington Deep State

Project No.: 1007-023B

Location: Sec 5, T17S, R36E

Log: BH-9

Page: 1 of 1

Geologist: C. Crain

Depth	Symbol	Description	Sample Number	Sample Type	Sample Recovery	Field Chloride ppm 500 1500	Analytical Data
0		Ground Surface				2500	
- - - -		Silty Clayey Sand Dark brown, silty clayey quartz sand, fine grained, poorly sorted, dry.	1	SS	2		0-2' bgs Total TPH= 1,240 mg/kg Chloride: 30,000 mg/kg
-5 -		Caliche Pinkish white quartz sand, non indurated, dry.	2	SS	2	2200	5-7' bgs Total TPH= 390.1 mg/kg Chloride: 2.010 mg/kg
-10 -			3	SS	2 '	0	10-12' bgs Chloride: 176 mg/kg
- 15 -			4	SS	2	750	15-17' bgs Chloride: 74.4 mg/kg
- - -20			5	SS	2 4	0	20-22' bgs Chloride: 74.4 mg/kg
- - -25 -		TD@22'					
- - -30 -							
- -35 -							
- -40							

Ocotillo Environmental, LLC

2125 French Drive Hobbs, NM 88240 (505) 393-6371

Elevation: NA

Checked by: CKC

Drilled by: Scarborough Drilling

Drill Date: 11/15/07

Drill Method: Air Rotary

Project: Lovington Deep State

Project No.: 1007-023B

Location: Sec 5, T17S, R36E

Log: BH-10

Page: 1 of 1

Geologist: C. Crain

Depth	Symbol	Description	Sample Number	Sample Type	Sample Recovery	Field Chloride ppm 500 1500	Analytical Data
<u></u>		Ground Surface				n	
- - -	77,	Silty Clayey Sand Dark brown, silty clayey quartz sand, fine grained, poorly sorted, dry.	1	SS	2 4		0-2' bgs Total TPH= <47.7 mg/kg Chloride 45 mg/kg
-5 - - -		Caliche Pinkish white quartz sand, non indurated, dry.	2	SS	2 4	0	5-7' bgs Total TPH= <46.5 mg/kg Chloride 44 mg/kg
-10 -			3	SS	2 4	0	10-12' bgs Chloride 42.5 mg/kg
_ _15			4	SS	2 (0	15-17' bgs Chloride 31.9 mg/kg
-20		TD@17'					
- -25 - -							
30							
- -35 -							
- -40							

Ocotillo Environmental, LLC

2125 French Drive Hobbs, NM 88240 (505) 393-6371

Elevation: NA

Drill Date: 11/15/07

Drill Method: Air Rotary

Checked by: CKC

Hole Size: 4"

Drilled by: Scarborough Drilling

Project: Lovington Deep State

Project No.: 1007-023B

Drill Method: Air Rotary

Location: Sec 5, T17S, R36E

Log: BH-11

Page: 1 of 1

Geologist: C. Crain

Depth	Symbol	Description	Sample Number	Sample Type	Sample Recovery	Field Chloride ppm 500 1500	Analytical Data
0		Ground Surface				0	
		Silty Clayey Sand Dark brown, silty clayey quartz sand,poorly sorted, dry.	1	SS	2 (3	0-2' bgs Total TPH= <50.4 mg/kg Chloride 48 mg/kg
-5 -		Caliche Pinkish white quartz sand, non indurated, dry.	2	SS	2 9	0	5-7' bgs Total TPH= <46.5 mg/kg Chloride 33 mg/kg
-10			3	SS	2 4	0	10-12' bgs Chloride 42.5 mg/kg
- -15			4	SS	2 '	0	15-17' bgs Chloride 31.9 mg/kg
-20		TD@17'					
-25 -							
-30							
-35 -			***				
- -40							

Ocotillo Environmental, LLC

2125 French Drive Hobbs, NM 88240 (505) 393-6371

Elevation: NA

Drill Date: 11/15/07 Checked by: CKC

Hole Size: 4" Drilled by: Scarborough Drilling

Project: Lovington Deep State

Project No.: 1007-023B

Location: Sec 5, T17S, R36E

Log: BH-12

Page: 1 of 1

Geologist: C. Crain

Depth	Symbol	Description	Sample Number	Sample Type	Sample Recovery	Field Chloride ppm 500 1500	Analytical Data
0		Ground Surface				0	
		Silty Clayey Sand Dark brown, silty clayey quartz sand,poorly sorted, dry.	1	SS	2 9		0-2' bgs Total TPH= 48.9 mg/kg Chloride 34 mg/kg
- -5 -		Caliche Pinkish white quartz sand, non indurated, dry.	2	SS	2 (0	5-7' bgs Total TPH= 32.7 mg/kg Chloride 46 mg/kg
-10 - - -			3	SS	2 (0	10-12' bgs Chloride 63.8 mg/kg
-15 -		TD@17'	4	SS	2 4	0	15-17' bgs Chloride 42.5 mg/kg
-20		15@17					
- -25 -							
- -30							
- -35 -							
-40							

Ocotillo Environmental, LLC

2125 French Drive Hobbs, NM 88240 (505) 393-6371

Elevation: NA

Checked by: CKC

Drilled by: Scarborough Drilling

Drill Date: 11/15/07

Drill Method: Air Rotary

Project: Lovington Deep State

Project No.: 1007-023B

Location: Sec 5, T17S, R36E

Log: BH-13

Page: 1 of 1

Geologist: C. Crain

Depth	Symbol	Description	Sample Number	Sample Type	Sample Recovery	Field Chloride ppm 500 1500	Analytical Data
0	<u> </u>	Ground Surface				0	
-		Silty Clayey Sand Dark brown, silty clayey quartz	1	SS	2 4		0-2' bgs
		sand, fine grained, poorly sorted,					Total TPH= 38.5 mg/kg Chloride 33.1 mg/kg
- <u>-</u>	7	dry.					
-5	7/1	Caliche	2	SS	2 4	0	5-7' bgs Total TPH= <45.6 mg/kg
-	//	Pinkish white quartz sand, non indurated, dry.			_		Chloride 86.2 mg/kg
ļ.	知	madatou, a.y.	 			An about the second	
-10	#					0	10-12' bgs
ļ	<u> </u>		3	SS	2 9		Chloride 42.5 mg/kg
-	77						
-15	7					o	15-17' bgs
	=		4	SS	2 9		Chloride 53.2 mg/kg
F		TD@17'					
-20							
- 20							
				ļ			
-							
-25							
-							
-30							
-							
-35							
-							
F							
- -40							
40	L		<u> </u>	L			

Ocotillo Environmental, LLC

2125 French Drive Hobbs, NM 88240 (505) 393-6371

Elevation: NA

Checked by: CKC

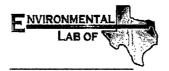
Drilled by: Scarborough Drilling

Drill Method: Air Rotary

Drill Date: 11/15/07

APPENDIX B LABORATORY DATA AND CHAIN OF CUSTODY DOCUMENTATION

Analytical Report 293282


for

Ocotillo Environmental, LLC

Project Manager: Cindy Crain

Chevron Lovington Deep State 1007-023B

30-NOV-07

12600 West I-20 East Odessa, Texas 79765

A Xenco Laboratories Company

Texas certification numbers: Houston, TX T104704215

Florida certification numbers:
Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

30-NOV-07

Project Manager: Cindy Crain Ocotillo Environmental, LLC P.O. Box 1816

P.O. Box 1816 Hobbs, NM 88241

Reference: XENCO Report No: 293282

Chevron Lovington Deep State

Project Address: Sec. 5, T17S, R36E, Lea Co., NM

Cindy Crain:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 293282. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 293282 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Sample Cross Reference 293282

Ocotillo Environmental, LLC, Hobbs, NM

Chevron Lovington Deep State

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
BH-1 (0-2')	S	Nov-14-07 09:30	0 - 2 ft	293282-001
BH-1 (5-7')	S	Nov-14-07 09:42	5 - 7 ft	293282-002
BH-1 (10-12')	S	Nov-14-07 09:50	10 - 12 ft	293282-003
BH-1 (15-17')	S	Nov-14-07 09:58	15 - 17 ft	293282-004
BH-1 (20-22)	S	Nov-14-07 10:05	20 - 22 ft	293282-005
BH-1 (25-27')	S	Nov-14-07 10:13	25 - 27 ft	293282-006
BH-1 (30-32')	S	Nov-14-07 10:20	30 - 32 ft	293282-007
BH-2 (0-2')	S	Nov-14-07 10:38	0 - 2 ft	293282-008
BH-2 (5-7')	S	Nov-14-07 10:42	5 - 7 ft	293282-009
BH-2 (10-12')	S	Nov-14-07 10:50	10 - 12 ft	293282-010
BH-2 (15-17')	S	Nov-14-07 10:58	15 - 17 ft	293282-011
BH-2 (20-22')	S	Nov-14-07 11:02	20 - 22 ft	293282-012
BH-2 (25-27')	S	Nov-14-07 12:59	25 - 27 ft	293282-013
BH-2 (30-32')	S	Nov-14-07 13:04	30 - 32 ft	293282-014
BH-3 (0-2')	S	Nov-14-07 12:16	0 - 2 ft	293282-015
BH-3 (5-7')	S	Nov-14-07 12:21	5 - 7 ft	293282-016
BH-3 (10-12')	S	Nov-14-07 12:23	10 - 12 ft	293282-017
BH-3 (15-17')	S	Nov-14-07 12:31	15 - 17 ft	293282-018
BH-3 (20-22')	S	Nov-14-07 12:36	20 - 22 ft	293282-019
BH-3 (25-27')	S	Nov-14-07 12:46	25 - 27 ft	293282-020
BH-4 (0-2')	S	Nov-14-07 13:10	0 - 2 ft	293282-021
BH-4 (5-7')	S	Nov-14-07 13:21	5 - 7 ft	293282-022
BH-4 (10-12')	S	Nov-14-07 13:23	10 - 12 ft	293282-023
BH-4 (15-17')	S	Nov-14-07 13:25	15 - 17 ft	293282-024
BH-4 (20-22')	S	Nov-14-07 13:31	20 - 22 ft	293282-025
BH-5 (0-2')	S	Nov-14-07 13:42	0 - 2 ft	293282-026
BH-5 (5-7')	S	Nov-14-07 13:49	5 - 7 ft	293282-027
BH-5 (10-12')	S	Nov-14-07 14:01	10 - 12 ft	293282-028
BH-5 (15-17')	S	Nov-14-07 14:07	15 - 17 ft	293282-029
BH-5 (20-22')	S	Nov-14-07 14:11	20 - 22 ft	293282-030
BH-6 (0-2')	S	Nov-14-07 14:28	0 - 2 ft	293282-031
BH-6 (5-7')	S	Nov-14-07 14:31	5 - 7 ft	293282-032
BH-6 (10-12')	S	Nov-14-07 14:40	10 - 12 ft	293282-033
BH-6 (15-17')	S	Nov-14-07 14:44	15 - 17 ft	293282-034
BH-6 (20-22')	S	Nov-14-07 14:50	20 - 22 ft	293282-035
BH-7 (0-2')	S	Nov-15-07 09:25	0 - 2 ft	293282-036
BH-7 (5-7')	S	Nov-15-07 09:31	5 - 7 ft	293282-037
BH-7 (10-12')	S	Nov-15-07 09:37	10 - 12 ft	293282-038
BH-7 (15-17')	S	Nov-15-07 09:47	15 - 17 ft	293282-039
BH-7 (20-22')	S	Nov-15-07 09:53	20 - 22 ft	293282-040
BH-7 (25-27')	S	Nov-15-07 10:02	25 - 27 ft	293282-041
BH-7 (30-32')	S	Nov-15-07 10:10	30 - 32 ft	293282-042
BH-8 (0-2')	S	Nov-15-07 10:20	0 - 2 ft	293282-043

Sample Cross Reference 293282

Ocotillo Environmental, LLC, Hobbs, NM

Chevron Lovington Deep State

BH-8 (5-7')	S	Nov-15-07 10:29	5 - 7 ft	293282-044
BH-8 (10-12')	S	Nov-15-07 10:32	10 - 12 ft	293282-045
BH-8 (15-17')	S	Nov-15-07 10:36	15 - 17 ft	293282-046
BH-8 (20-22')	S	Nov-15-07 10:40	20 - 22 ft	293282-047
BH-8 (25-27')	S	Nov-15-07 10:47	25 - 27 ft	293282-048
BH-9 (0-2')	S	Nov-15-07 11:00	0 - 2 ft	293282-049
BH-9 (5-7')	S	Nov-15-07 11:06	5 - 7 ft	293282-050
BH-9 (10-12')	S	Nov-15-07 11:15	10 - 12 ft	293282-051
BH-9 (15-17')	S	Nov-15-07 11:20	15 - 17 ft	293282-052
BH-9 (20-22')	S	Nov-15-07 11:25	20 - 22 ft	293282-053
BH-10 (0-2')	S	Nov-15-07 12:04	0 - 2 ft	293282-054
BH-10 (5-7')	S	Nov-15-07 12:12	5 - 7 ft	293282-055
BH-10 (10-12')	S	Nov-15-07 12:19	10 - 12 ft	293282-056
BH-10 (15-17')	S	Nov-15-07 12:24	15 - 17 ft	293282-057
BH-11 (0-2')	S	Nov-15-07 12:31	0 - 2 ft	293282-058
BH-11 (5-7')	S	Nov-15-07 12:35	5 - 7 ft	293282-059
BH-11 (10-12')	S	Nov-15-07 12:40	10 - 12 ft	293282-060
BH-11 (15-17')	S	Nov-15-07 12:46	15 - 17 ft	293282-061
BH-12 (0-2')	S	Nov-15-07 12:56	0 - 2 ft	293282-062
BH-12 (5-7')	S	Nov-15-07 13:00	5 - 7 ft	293282-063
BH-12 (10-12')	S	Nov-15-07 13:10	10 - 12 ft	293282-064
BH-12 (15-17')	S	Nov-15-07 13:14	15 - 17 ft	293282-065
BH-13 (0-2')	S	Nov-15-07 13:18	0 - 2 ft	293282-066
BH-13 (5-7')	S	Nov-15-07 13:22	5 - 7 ft	293282-067
BH-13 (10-12')	S	Nov-15-07 13:28	10 - 12 ft	293282-068
BH-13 (15-17')	S	Nov-15-07 13:35	15 - 17 ft	293282-069

Ocotillo Environmental, LLC, Hobbs, NM

Project Name: Chevron Lovington Deep State

Project Id: 1007-023B

Contact: Cindy Crain

Project Location: Sec. 5, T17S, R36E, Lea Co., NM

Date Received in Lab: Sat Nov-17-07 11:27 am

Report Date: 30-NOV-07
Project Manager: Brent Barron, II

	Lab Id:	293282-0	01	293282-0	02	293282-0	03	293282-0	004	293282-0	005	293282-0	006
luene hylbenzene hylbenzene h-Xylenes Kylene lenes, Total tal BTEX Percent Moisture TPH by SW8015 Mod	Field Id:	BH-1 (0-	-2')	BH-1 (5-	7')	BH-1 (10-	·12')	BH-1 (15	-17')	BH-1 (20	-22)	BH-1 (25-	-27')
	Depth:	0-2 ft		5-7 ft		10-12 ft		15-17 1	ft	20-22	ft	25-27 f	ft
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL	SOIL		
	Sampled:	Nov-14-07	09 30	Nov-14-07 (09 42	Nov-14-07	09 50	Nov-14-07	09.58	Nov-14-07	10:05	Nov-14-07	10.13
BTEX by EPA 8021B	Extracted:	Nov-28-07	12 27										
	Analyzed:	Nov-29-07	13.36										
	Units/RL:	mg/kg	RL										
Benzene		1 724	0 1190										
Toluene		43.48	0.2380								·		
Ethylbenzene		34 43	0 1190										
m,p-Xylenes		81.51	0.2380										
o-Xylene		31 40	0 1190										
Xylenes, Total		112.91											
otal BTEX		192.544											
Percent Moisture	Extracted:												
	Analyzed:	Nov-19-07 15:00		Nov-19-07 15.00		Nov-19-07 15:00							
	Units/RL:	%	RL	%	RL	%	RL						
Percent Moisture		160	1.00	7.24	1 00	8 21	1 00						
TPH by SW8015 Mod	Extracted:	Nov-20-07	14.20	Nov-20-07	14 20	Nov-20-07	14.20						
•	Analyzed:	Nov-25-07	17.56	Nov-25-07	18:23	Nov-25-07	18:50						
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL			•			
C6-C12 Gasoline Range Hydrocarbons		2690	89.3	51.3	16.2	138	163						
C12-C28 Diesel Range Hydrocarbons		9520	89.3	201	16 2	879	16 3						
C28-C35 Oil Range Hydrocarbons		1140	89 3	38.4	16.2	112	16.3						
Total TPH		13350		290.7		1129							
Total Chloride by EPA 325.3	Extracted:												
·	Analyzed:	Nov-20-07	08:30	Nov-20-07 (08.30	Nov-20-07	08.30	Nov-20-07	08:30	Nov-20-07	08:30	Nov-20-07	08.30
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		25300	5.95	6420	5 39	1850	5.45	936	5.00	128	5.00	85.1	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Ocotillo Environmental, LLC, Hobbs, NM

Project Name: Chevron Lovington Deep State

Project Id: 1007-023B

Contact: Cindy Crain

Project Location: Sec. 5, T17S, R36E, Lea Co., NM

Date Received in Lab: Sat Nov-17-07 11:27 am

Report Date: 30-NOV-07

Project Manager: Brent Barron, II

Chloride		63.8	5,00	13400	5 82	10900	5.56	1290	5.21	85.1	5,00	42.5	5.00
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Total Chloride by EPA 325.3 Exication Annual Control of the Contr		Nov-20-07 (08.30	Nov-20-07 08:30		Nov-20-07 08:30		Nov-20-07 00·00		Nov-20-07 00.00		Nov-20-07 00.00	
Total TPH				12406		63.6		ND					
C28-C35 Oil Range Hydrocarbons				926	87.2	ND	16.7	ND	15.6				
C12-C28 Diesel Range Hydrocarbons				7950	87.2	45.4	16 7	ND	15 6				
C6-C12 Gasoline Range Hydrocarbons				3530	87 2	18 2	16.7	ND	15 6				
	Units/RL:			mg/kg	RL	mg/kg	RL	mg/kg	RL				
II II by StroutS triud	Analyzed:			Nov-25-07	19:16	Nov-25-07	19:43	Nov-25-07	20:09				
TPH by SW8015 Mod	Extracted:			Nov-20-07	14 20	Nov-20-07	14:20	Nov-20-07	14.20				
Percent Moisture				14.0	1.00	10.1	1 00	4.01	1.00				
	Units/RL:		j	%	RL	%	RL	%	RL				
Percent Moisture	Analyzed:			Nov-19-07	15:00	Nov-19-07	15 00	Nov-19-07	15.00				
Damana Mainten	Extracted:												
Total BTEX				242 5141		0 0096							
/lenes, Total				147.47	5.2520	0.0077	2 0011						
o-Xylene				45 47			0.0022						
m,p-Xylenes				102 0		0.0077							
Ethylbenzene				44.11 49.95		0 0019							
Benzene Toluene				0 9841			0.0011						
December	Units/RL:			mg/kg	RL	mg/kg	RL						
	Analyzed:			Nov-29-07		Nov-28-07							
BTEX by EPA 8021B	Extracted:			Nov-28-07		Nov-28-07							
	Sampled:	Nov-14-07 1	0:20	Nov-14-07	10:38	Nov-14-07	10.42	Nov-14-07	10:50	Nov-14-07	10.58	Nov-14-07 1	11.02
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Depth:	30-32 ft	:)	0-2 ft	Ì	5-7 ft		10-12 f	t	15-17 f	t	20-22 ft	t
Analysis Requested	Field Id:	BH-1 (30-	<i>'</i>	BH-2 (0-	2')	BH-2 (5-		BH-2 (10-	´	BH-2 (15-		BH-2 (20-2	
	Lab Id:	293282-00		293282-0		293282-0		293282-0		293282-0	1	293282-0	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories XENCO Laboratories as XENCO Laboratories as well as the confidence of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Ocotillo Environmental, LLC, Hobbs, NM

Project Name: Chevron Lovington Deep State

Project Id: 1007-023B
Contact: Cindy Crain

Project Location: Sec. 5, T17S, R36E, Lea Co., NM

Date Received in Lab: Sat Nov-17-07 11:27 am

Report Date: 30-NOV-07

Project Manager: Brent Barron, II

							Project Ma	nager.	Dieni Danon,			
	Lab Id:	293282-013	293282-01	4	293282-0	15	293282-0	016	293282-0	017	293282-0	18
Analysis Requested	Field Id:	BH-2 (25-27')	BH-2 (30-3	(2')	BH-3 (0-	2')	BH-3 (5-7')		BH-3 (10	-12')	BH-3 (15-	-17')
Anuiysis Requesteu	Depth:	25-27 ft	30-32 ft		0-2 ft		5-7 ft		10-12 ft		15-17 f	ft
	Matrix:	SOIL	SOIL		SOIL		SOIL		SOIL	.	SOIL	
_	Sampled:	Nov-14-07 12·59	Nov-14-07 13	3:04	Nov-14-07	12 16	Nov-14-07	12.21	Nov-14-07	12.23	Nov-14-07	12.31
Percent Moisture	Extracted:											
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Analyzed:				Nov-19-07	15.00	Nov-19-07	15.00				
	Units/RL:				%	RL	%	RL				
Percent Moisture					13.0	1 00	5.48	1.00				
TPH by SW8015 Mod	Extracted:				Nov-20-07	14 20	Nov-20-07	14 20				
1111 by 5 (10015 1100	Analyzed:				Nov-25-07 20·35		Nov-25-07	21.01				
	Units/RL:				mg/kg	RL	mg/kg	RL				
C6-C12 Gasoline Range Hydrocarbons					ND	17 2	ND	15.9				
C12-C28 Diesel Range Hydrocarbons					30 5	17.2	ND	15 9				
C28-C35 Oil Range Hydrocarbons					ND	17 2	ND	15.9				
Total TPH					30 5		ND					
Total Chloride by EPA 325.3	Extracted:					·						
	Analyzed:	Nov-20-07 00.00	Nov-20-07 0	0.00	Nov-20-07 (00.00	Nov-20-07	00 00	Nov-20-07	00.00	Nov-20-07	00.00
	Units/RL:	mg/kg RI	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		53.2 5.00	42.5	5.00	17100	5.75	6080	5.29	191	5.00	117	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warrantly to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Ocotillo Environmental, LLC, Hobbs, NM

Project Name: Chevron Lovington Deep State

Project Id: 1007-023B

Contact: Cindy Crain

Project Location: Sec. 5, T17S, R36E, Lea Co., NM

Date Received in Lab: Sat Nov-17-07 11:27 am

Report Date: 30-NOV-07

								11					
Analysis Requested	Lab Id:	293282-019		293282-02	20	293282-021		293282-022		293282-023		293282-024	
	Field Id:	BH-3 (20-22')		BH-3 (25-2	27')	BH-4 (0-2')		BH-4 (5-7')		BH-4 (10-12')		BH-4 (15-	17')
	Depth:	20-22 ft		25-27 ft	:	0-2 ft		5-7 ft		10-12 ft		15-17 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL	ł	SOIL	
	Sampled:	Nov-14-07	12.36	Nov-14-07 1	2.46	Nov-14-07	3 10	Nov-14-07 13 21		Nov-14-07 1	13.23	Nov-14-07 13·25	
Percent Moisture	Extracted:												
	Analyzed:					Nov-19-07 15.00		Nov-19-07 15:00					
	Units/RL:					%	RL	%	RL				
Percent Moisture					6 34	1 00	1.20	1 00					
TPH by SW8015 Mod	Extracted:					Nov-20-07 14.20		Nov-20-07 14 20					
	Analyzed:					Nov-25-07 21.27		Nov-25-07 21.53					
	Units/RL:					mg/kg	RL	mg/kg	RL		1		
C6-C12 Gasoline Range Hydrocarbons						ND	16 0	ND	15.2				
C12-C28 Diesel Range Hydrocarbons						37.1	16 0	37 8	15 2				
C28-C35 Oil Range Hydrocarbons						ND	16 0	ND	15.2				
Total TPH						37.1		37 8					
Total Chloride by EPA 325.3	Extracted:												
	Analyzed:	Nov-20-07 00:00		Nov-20-07 00.00		Nov-20-07 00 00		Nov-20-07 00.00		Nov-20-07 00:00		Nov-20-07 00:00	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		42 5	5 00	160	5.00	45.4	5.34	64.6	5.06	53.2	5.00	74 4	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Ocotillo Environmental, LLC, Hobbs, NM

Project Name: Chevron Lovington Deep State

Project Id: 1007-023B
Contact: Cindy Crain

Project Location: Sec. 5, T17S, R36E, Lea Co., NM

Date Received in Lab: Sat Nov-17-07 11:27 am

Report Date: 30-NOV-07

Project Manager: Brent Barron, II

								rioject Mai	iagei.	Brent Barron,			
	Lab Id:	293282-025		293282-0	26	293282-0	27	293282-0	28	293282-0	029	293282-0	30
Analysis Pagyastad	Field Id:	BH-4 (20-22')		BH-5 (0-	-2')	BH-5 (5-	-7')	BH-5 (10-	12')	BH-5 (15	-17')	BH-5 (20-	-22')
Analysis Requested	Depth:	20-22 ft		0-2 ft		5-7 ft		10-12 f	t	15-17	n l	20-22 f	f
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Nov-14-07 13.3	1	Nov-14-07	13.42	Nov-14-07	13·49	Nov-14-07	14.01	Nov-14-07	14·07	Nov-14-07	14·11
BTEX by EPA 8021B	Extracted:			Nov-28-07	12:27								
BIEA by EI A 6021B	Analyzed:			Nov-29-07	16:23								
	Units/RL:			mg/kg	RL								
Benzene				0 0716	0.0577								
Toluene				20.43	0.2308								
Ethylbenzene				43 65	0 1154								
m,p-Xylenes				97.00	0.2308								
o-Xylene				40.97	0 1154								
Xylenes, Total		, , , , , , , , , , , , , , , , , , , ,		137.97									
Total BTEX				202.1216						:			
Percent Moisture	Extracted:												
10.00.00.00.00.00.00.00.00.00.00.00.00.0	Analyzed:			Nov-19-07	15:00	Nov-19-07	15 00						
	Units/RL:			%	RL	%	RL						
Percent Moisture				13 3	1 00	3.93	1.00						
TPH by SW8015 Mod	Extracted:			Nov-20-07	14 13	Nov-20-07	14-13						
TITE Dy SWOOTS NIOU	Analyzed:			Nov-26-07	02:37	Nov-26-07	03.03						
	Units/RL:			mg/kg	RL	mg/kg	RL						
C6-C12 Gasoline Range Hydrocarbons				2590	86.6	34.9	15 6						
C12-C28 Diesel Range Hydrocarbons				10100	86.6	409	15.6						
C28-C35 Oil Range Hydrocarbons				1180	86.6	66.4	15 6						
Total TPH				13870		510.3							
Total Chloride by EPA 325.3	Extracted:												
	Analyzed:	Nov-20-07 00:0	0	Nov-20-07	00:00	Nov-20-07	00.00	Nov-20-07	00.00	Nov-20-07	00.00	Nov-20-07	00.00
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		42.5 5.	.00	15200	5.77	1880	5.20	42.5	5 00	106	5.00	74.4	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Ocotillo Environmental, LLC, Hobbs, NM

Project Name: Chevron Lovington Deep State

Project Id: 1007-023B

Contact: Cindy Crain

Project Location: Sec. 5, T17S, R36E, Lea Co., NM

Date Received in Lab: Sat Nov-17-07 11:27 am

Report Date: 30-NOV-07

								Project Mai	nager:	Brent Barron,	11		
	Lab Id:	293282-0	31	293282-0	32	293282-0	33	293282-0	34	293282-0	135	293282-0	36
Analysis Daguested	Field Id:	BH-6 (0-	2')	BH-6 (5-	7')	BH-6 (10-	12')	BH-6 (15-	17')	BH-6 (20-	-22')	BH-7 (0-	2')
Analysis Requested	Depth:	0-2 ft		5-7 ft		10-12 f	ì	15-17 f	t	20-22	t	0-2 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Nov-14-07	14·28	Nov-14-07 1	4.31	Nov-14-07	14 40	Nov-14-07	14 44	Nov-14-07	14:50	Nov-15-07 (09 25
Percent Moisture	Extracted:												
	Analyzed:	Nov-19-07	15:00	Nov-19-07 1	5:00							Nov-19-07	15.00
	Units/RL:	%	RL	%	RL							0/0	RL
Percent Moisture		11.5	1.00	4.00	1 00							11.9	1 00
TPH by SW8015 Mod	Extracted:	Nov-20-07	14 13	Nov-20-07 1	4.13							Nov-20-07	14 13
1111 by 5 11 0015 1110u	Analyzed:	Nov-26-07	03.28	Nov-26-07 (3:54							Nov-26-07 (04:20
	Units/RL:	mg/kg	RL	mg/kg	RL							mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	169	ND	15.6							ND	17.0
C12-C28 Diesel Range Hydrocarbons		86 6	169	ND	15.6							ND	17.0
C28-C35 Oil Range Hydrocarbons		17 2	16.9	ND	15 6							ND	17.0
Total TPH		103 8		ND								ND	
Total Chloride by EPA 325.3	Extracted:										į		
	Analyzed:	Nov-20-07	00.00	Nov-20-07 (00.00	Nov-20-07	00.00	Nov-20-07	00 00	Nov-20-07	00.00	Nov-20-07 (00.00
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		12600	5.65	1130	5.21	42.5	5.00	42.5	5.00	234	5.00	7850	5.68

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories as XENCO Laboratories as XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990. Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Ocotillo Environmental, LLC, Hobbs, NM

Project Id: 1007-023B

Contact: Cindy Crain

Project Location: Sec. 5, T17S, R36E, Lea Co., NM

Project Name: Chevron Lovington Deep State

Date Received in Lab: Sat Nov-17-07 11.27 am

Report Date: 30-NOV-07

Project Manager: Brent Barron, II

	Analyzed: Units/RL:	Nov-26-07 mg/kg	04:45 RL										
-	Analyzed:	Nov-26-07											
TPH by SW8015 Mod													
TDU by CW9015 Mod	Extracted:	Nov-20-07	14.13										·
Percent Moisture		5 47	1.00										
	Units/RL:	%	RL										
	Analyzed:	Nov-19-07											
Percent Moisture	j J	N 10 07	16.00						1				
	Extracted:												
	Sampled:	Nov-15-07	09:31	Nov-15-07 09	·37	Nov-15-07 (9·47	Nov-15-07 (9.53	Nov-15-07	10:02	Nov-15-07 1	10-10
	Matrix:	SOIL		SOIL		SOIL		SOIL	-	SOIL		SOIL	
Analysis Requested	Depth:	5-7 ft		10-12 ft		15-17 ft	:	20-22 ft		25-27 f	t	30-32 ft	t
Analysis Daguestad	Field Id:	BH-7 (5-	-7')	BH-7 (10-12	2')	BH-7 (15-	17')	BH-7 (20-	22')	BH-7 (25-	27')	BH-7 (30-3	32')
	Lab Id:	293282-0	137	293282-038	3	293282-0	39	293282-0	40	293282-0	41	293282-04	42

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Ocotillo Environmental, LLC, Hobbs, NM

Project Name: Chevron Lovington Deep State

Project Id: 1007-023B

Contact: Cindy Crain

Project Location: Sec. 5, T17S, R36E, Lea Co., NM

Date Received in Lab: Sat Nov-17-07 11:27 am

Report Date: 30-NOV-07

Project Manager: Brent Barron, II

	. ,							110/00/11/14	mager.	Dient Danion,		,	
	Lab Id:	293282-0	143	293282-0)44	293282-0	045	293282-0)46	293282-0)47	293282-0)48
Analysis Requested	Field Id:	BH-8 (0-	-2')	BH-8 (5-	-7')	BH-8 (10	-12')	BH-8 (15	-17')	BH-8 (20	-22')	BH-8 (25-	-27')
Anuiysis Kequesieu	Depth:	0-2 ft		5-7 ft		10-12	ft	15-17	ft	20-22	ft	25-27 f	ft
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL	,	SOIL	
	Sampled:	Nov-15-07	10·20	Nov-15-07	10:29	Nov-15-07	10.32	Nov-15-07	10.36	Nov-15-07	10:40	Nov-15-07	10.47
Percent Moisture	Extracted:												
	Analyzed:	Nov-19-07	16.00	Nov-19-07	16.00								
	Units/RL:	%	RL	%	RL								
Percent Moisture		12 6	1.00	1.91	1.00								
TPH by SW8015 Mod	Extracted:	Nov-20-07	14.13	Nov-20-07	14 13								
1111 by 5 11 6015 11164	Analyzed:	Nov-26-07	05:11	Nov-26-07	05:36								
	Units/RL:	mg/kg	RL	mg/kg	RL								
C6-C12 Gasoline Range Hydrocarbons		ND	17.2	ND	15.3								
C12-C28 Diesel Range Hydrocarbons		22.2	17.2	ND	15.3								
C28-C35 Oil Range Hydrocarbons		ND	17.2	ND	15.3								
Total TPH		22.2		ND									
Total Chloride by EPA 325.3	Extracted:												
•	Analyzed:	Nov-20-07	00.00	Nov-20-07	00 00	Nov-20-07	00.00	Nov-20-07	00.00	Nov-20-07	00.00	Nov-20-07	00.00
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		3770	5.72	304	5.10	85.1	5.00	85.1	5.00	63.8	5.00	106	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warrantly to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Ocotillo Environmental, LLC, Hobbs, NM

Project Name: Chevron Lovington Deep State

Project Id: 1007-023B
Contact: Cindy Crain

Date Received in Lab: Sat Nov-17-07 11 27 am

Report Date: 30-NOV-07
Project Manager: Brent Barron, II

Project Location: Sec. 5, T17S, R36E, Lea Co., NM

								Project Ma	nager:	Brent Barron,	11		
	Lab Id:	293282-0	049	293282-0)50	293282-0	151	293282-0	52	293282-0)53	293282-0	54
Analysis Requested	Field Id:	BH-9 (0	-2')	BH-9 (5	-7')	BH-9 (10-	-12')	BH-9 (15-	-17')	BH-9 (20	-22')	BH-10 (0-	-2')
Anuiysis Nequesieu	Depth:	0-2 ft	:	5-7 ft		10-12 f	ì	15-17 f	ì	20-22	a l	0-2 ft	
	Matrix:	SOIL		SOIL		SOIL	1	SOIL		SOIL	İ	SOIL	
	Sampled:	Nov-15-07	11.00	Nov-15-07	11.06	Nov-15-07	11.15	Nov-15-07	11.20	Nov-15-07	11:25	Nov-15-07 1	2 04
BTEX by EPA 8021B	Extracted:	Nov-28-07	12 27	Nov-28-07	13.51								
	Analyzed:	Nov-29-07	15 33	Nov-28-07	20 24								
	Units/RL:	mg/kg	RL	mg/kg	RL								
Benzene		ND	0 0012	ND	0.0010								
Toluene		ND	0 0023	ND	0.0021								
Ethylbenzene		ND	0 0012	0 0042	0 0010								
m,p-Xylenes		ND	0 0023	0.0058	0 0021								
o-Xylene		ND	0.0012	0 0191	0.0010								
Xylenes, Total		ND		0.0249									
Total BTEX		ND		0.0291									
Percent Moisture	Extracted:												
	Analyzed:	Nov-19-07	16.00	Nov-19-07	16.00	Nov-19-07	16 00					Nov-19-07 1	6.00
	Units/RL:	%	RL	%	RL	%	RL					%	RL
Percent Moisture		14.2	1 00	4.67	1.00	3.49	1 00					5 54	1.00
TPH by SW8015 Mod	Extracted:	Nov-20-07	14.13	Nov-20-07	14 13	Nov-20-07	14 13					Nov-20-07 1	4.13
51 51 5 , 5 11 5 5 5 5 5	Analyzed:	Nov-26-07	06:02	Nov-26-07	06:53	Nov-26-07	07:18					Nov-26-07 0	7:43
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL					mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		162	87 4	73.7	15 7	ND	15.5					ND	15 9
C12-C28 Diesel Range Hydrocarbons		893	87 4	285	15 7	ND	15 5					ND	15 9
C28-C35 Oil Range Hydrocarbons		185	87.4	31.4	15.7	ND	15.5					ND	15.9
Total TPH		1240		390.1		ND						ND	
Total Chloride by EPA 325.3	Extracted:												
3	Analyzed:	Nov-20-07	00.00	Nov-20-07	00 00	Nov-20-07	00.00	Nov-20-07	00:00	Nov-20-07	00:00	Nov-20-07 0	00.00
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		30000	5.83	2010	5.24	176	5.18	74.4	5.00	74.4	5.00	45.0	5.29

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount involved for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Ocotillo Environmental, LLC, Hobbs, NM

Project Name: Chevron Lovington Deep State

Project Id: 1007-023B

Contact: Cindy Crain

Project Location: Sec. 5, T17S, R36E, Lea Co., NM

Date Received in Lab: Sat Nov-17-07 11:27 am

Report Date: 30-NOV-07

								Project Mar	1ager:	Brent Barron,	П		
	Lab Id:	293282-0	55	293282-05	6	293282-0	57	293282-0	58	293282-0	59	293282-06	60
Analysis Paguastad	Field Id:	BH-10 (5	-7')	BH-10 (10-	12')	BH-10 (15-	-17')	BH-11 (0	-2')	BH-11 (5	-7')	BH-11 (10-	·12')
Analysis Requested	Depth:	5-7 ft		10-12 ft		15-17 ft		0-2 ft		5-7 ft		10-12 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Nov-15-07	12.12	Nov-15-07 1	2.19	Nov-15-07 1	2.24	Nov-15-07	12.31	Nov-15-07	12.35	Nov-15-07 1	2 40
Percent Moisture	Extracted:												
101001101110111110	Analyzed:	Nov-19-07	16·00					Nov-19-07	16.00	Nov-19-07	16.00		
	Units/RL:	%	RL				:	%	RL	%	RL		
Percent Moisture		3 39	1.00		·			11 0	1.00	2 98	1.00		
TPH by SW8015 Mod	Extracted:	Nov-20-07	14·13					Nov-20-07	14 13	Nov-20-07	14 13		
11 12 25 2 77 0010 11204	Analyzed:	Nov-26-07	08:09					Nov-26-07 (08.36	Nov-26-07	09:02		
	Units/RL:	mg/kg	RL					mg/kg	RL	mg/kg	RL		
C6-C12 Gasoline Range Hydrocarbons		ND	15.5					ND	16.8	ND	15.5		
C12-C28 Diesel Range Hydrocarbons		ND	15 5					ND	16 8	ND	15 5		
C28-C35 Oil Range Hydrocarbons		ND	15.5					ND	16.8	ND	15.5		
Total TPH		ND						ND		ND			
Total Chloride by EPA 325.3	Extracted:												
10101 C by 2212 02010	Analyzed:	Nov-20-07	00 00	Nov-20-07 0	0:00	Nov-20-07 (00 00	Nov-20-07 (00.00	Nov-20-07	00.00	Nov-20-07 0	00.00
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		44.0	5.18	42.5	5.00	31.9	5.00	47.7	5 62	32 9	5 15	42.5	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Ocotillo Environmental, LLC, Hobbs, NM

Project Name: Chevron Lovington Deep State

Project Id: 1007-023B

Contact: Cindy Crain

Project Location: Sec. 5, T17S, R36E, Lea Co., NM

Date Received in Lab: Sat Nov-17-07 11:27 am

Report Date: 30-NOV-07

bject Edeation. Sec. 3, 1173, RSOE, Lea Co.,	14141							Project Mar	nager:	Brent Barron,	П		
	Lab Id:	293282-0	61	293282-0	62	293282-0	63	293282-0	164	293282-0	65	293282-0	66
Analysis Dagwastad	Field Id:	BH-11 (15	-17')	BH-12 (0	-2')	BH-12 (5	-7')	BH-12 (10	-12')	BH-12 (15	-17')	BH-13 (0-	-2')
Analysis Requested	Depth:	15-17 f	t	0-2 ft		5-7 ft	1	10-12 f	t	15-17 f	t	0-2 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Nov-15-07	12.46	Nov-15-07	12.56	Nov-15-07	13.00	Nov-15-07	13·10	Nov-15-07	13:14	Nov-15-07 1	13:18
Percent Moisture	Extracted:												
7 01 00110 11/20101410	Analyzed:			Nov-19-07	16.00	Nov-19-07	16.00		:			Nov-19-07 1	6.00
•	Units/RL:			%	RL	%	RL					%	RL
Percent Moisture				5.44	1.00	6.92	1.00					3.52	1.00
TPH by SW8015 Mod	Extracted:			Nov-20-07	14.13	Nov-20-07	14 13					Nov-20-07 1	14·13
TITE OF SWOODS MADE	Analyzed:			Nov-26-07	9:30	Nov-26-07 (09:58					Nov-26-07 1	10.29
	Units/RL:			mg/kg	RL	mg/kg	RL					mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons				ND	15.9	ND	16 1					ND	15.5
C12-C28 Diesel Range Hydrocarbons				48.9	15.9	32.7	16.1					38.5	15.5
C28-C35 Oil Range Hydrocarbons	-			ND	15.9	ND	16.1					ND	15 5
Total TPH				48.9		32.7						38.5	
Total Chloride by EPA 325.3	Extracted:												
20001 C-1101 Uj 1111 U 1010	Analyzed:	Nov-20-07	00:00	Nov-20-07	00 00	Nov-20-07	00:00	Nov-20-07	00:00	Nov-20-07	00.00	Nov-20-07 (00.00
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		319	5.00	33.7	5.29	45.7	5.37	63.8	5.00	42.5	5.00	33.1	5.18

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Ocotillo Environmental, LLC, Hobbs, NM

Project Name: Chevron Lovington Deep State

Project Id: 1007-023B

Contact: Cindy Crain

Project Location: Sec. 5, T17S, R36E, Lea Co, NM

Date Received in Lab: Sat Nov-17-07 11:27 am

Report Date: 30-NOV-07

oject Location: Sec. 5, 11/8, R36E, Lea Co,	NM									
								Project Manager:	Brent Barron, II	
	Lab Id:	293282-0	067	293282-0	68	293282-0	169			
Amalusia Paguastad	Field Id:	BH-13 (5	5-7')	BH-13 (10	-12')	BH-13 (15	-17')			
Analysis Requested	Depth:	5-7 ft		10-12 f	t	15-17 f	f			
	Matrix:	SOIL		SOIL	Ì	SOIL				
	Sampled:	Nov-15-07	13.22	Nov-15-07	13:28	Nov-15-07	13.35			
Percent Moisture	Extracted:					-				
·	Analyzed:	Nov-19-07	16.00		l					
	Units/RL:	%	RL							
Percent Moisture		1.32	1 00							
TPH by SW8015 Mod	Extracted:	Nov-20-07	14.13					-		
11 11 by 5 11 0015 11 00	Analyzed:	Nov-26-07	10.59		1					
	Units/RL:	mg/kg	RL		ļ					
C6-C12 Gasoline Range Hydrocarbons		ND	15 2							
C12-C28 Diesel Range Hydrocarbons		ND	15.2			-				
C28-C35 Oil Range Hydrocarbons		ND	15 2							
Total TPH		ND								
Total Chloride by EPA 325.3	Extracted:									
Total Caldida by El H 54515	Analyzed:	Nov-20-07	00.00	Nov-20-07	00.00	Nov-20-07	00.00			
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL			
Chloride		86 2	5.07	42.5	5.00	53.2	5.00			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- D The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Phone Fax 11381 Meadowglen Lane Suite L Houston, Tx 77082-2647 (281) 589-0692 (281) 589-0695 9701 Harry Hines Blvd, Dallas, TX 75220 (214) 902 0300 (214) 351-9139 (210) 509-3334 (201) 509-3335 5332 Blackberry Drive, Suite 104, San Antonio, TX 78238 (813) 620-2000 2505 N. Falkenburg Rd., Tampa, FL 33619 (813) 620-2033 5757 NW 158th St, Miami Lakes, FL 33014 (305) 823-8500 (305) 823-8555

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Project ID: 1007-023B

Lab Batch #: 709436

Sample: 293282-009 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0325	0.0300	108	80-120	
4-Bromofluorobenzene	0.0355	0.0300	118	80-120	

Lab Batch #: 709436

Sample: 293282-050 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SU	RROGATE R	ECOVERY :	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0355	0.0300	118	80-120	
4-Bromofluorobenzene	0.0327	0.0300	109	80-120	

Lab Batch #: 709436

Sample: 501986-1-BKS / BKS

Batch:

Matrix: Solid

Units: mg/kg	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0329	0.0300	110	80-120	
4-Bromofluorobenzene	0.0310	0.0300	103	80-120	

Lab Batch #: 709436

Sample: 501986-1-BLK / BLK

Batch:

Matrix: Solid

Units: mg/kg	SU	RROGATE R	RECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		(-,	[D]	, • • •	
1,4-Difluorobenzene	0.0352	0.0300	117	80-120	
4-Bromofluorobenzene	0.0291	0.0300	97	80-120	

Lab Batch #: 709436

Sample: 501986-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1.4-Difluorobenzene	0.0327	0.0300	109	80-120			
4-Bromofluorobenzene	0.0316	0.0300	105	80-120			

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Project ID: 1007-023B

Lab Batch #: 709491

Sample: 293282-001 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.3434	0.0300	1145	80-120	**	
4-Bromofluorobenzene	0.0383	0.0300	128	80-120	**	

Lab Batch #: 709491

Sample: 293282-008 / SMP

Batch: 1

Matrix: Soil

SURROGATE RECOVERY STUDY Units: mg/kg

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.2682	0.0300	894	80-120	**
4-Bromofluorobenzene	0.0399	0.0300	133	80-120	**

Lab Batch #: 709491

Sample: 293282-026 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	1		[D]			
1,4-Difluorobenzene	0.0396	0.0300	132	80-120	**	
4-Bromofluorobenzene	0.0664	0.0300	221	80-120	**	

Lab Batch #: 709491

Sample: 293282-049 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	,		[D]	,		
1,4-Difluorobenzene	0.0356	0.0300	119	80-120		
4-Bromofluorobenzene	0.0336	0.0300	112	80-120		

Lab Batch #: 709491

Sample: 502014-1-BKS / BKS

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0324	0.0300	108	80-120		
4-Bromofluorobenzene	0.0413	0.0300	138	80-120	*	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Project ID: 1007-023B

Lab Batch #: 709491

Sample: 502014-1-BLK / BLK

Matrix: Solid Batch:

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0350	0.0300	117	80-120		
4-Bromofluorobenzene	0.0283	0.0300	94	80-120		

Lab Batch #: 709491

Sample: 502014-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	10-3	[2]	[D]	/ / /		
1,4-Difluorobenzene	0.0326	0.0300	109	80-120		
4-Bromofluorobenzene	0.0335	0.0300	112	80-120	· · · · · · · · · · · · · · · · · · ·	

Lab Batch #: 709244

Sample: 293280-001 S / MS

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	[]	12,	[D]	, , , ,		
1-Chlorooctane	119	100	119	70-135		
o-Terphenyl	53.8	50.0	108	70-135		

Lab Batch #: 709244

Sample: 293280-001 SD / MSD

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	116	100	116	70-135		
o-Terphenyl	55.2	50.0	110	70-135		

Lab Batch #: 709244

Sample: 293282-001 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	148	100	148	70-135	**	
o-Terphenyl	123	50.0	246	70-135	**	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A/BAll results are based on MDL and validated for QC purposes.

^{***} Poor recoveries due to dilution

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Project ID: 1007-023B

Lab Batch #: 709244

Sample: 293282-002 / SMP

Matrix: Soil Batch:

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	99.0	100	99	70-135			
o-Terphenyl	51.3	50.0	103	70-135			

Lab Batch #: 709244

Sample: 293282-003 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	[[-]	[D]			
1-Chlorooctane	125	100	125	70-135		
o-Terphenyl	64.8	50.0	130	70-135		

Lab Batch #: 709244

Sample: 293282-008 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	166	100	166	70-135	**	
o-Terphenyl	105	50.0	210	70-135	**	

Lab Batch #: 709244

Sample: 293282-009 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		,	[D]			
1-Chlorooctane	101	100	101	70-135		
o-Terphenyl	51.5	50.0	103	70-135		

Lab Batch #: 709244

Sample: 293282-010 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	97.2	100	97	70-135	·		
o-Terphenyl	49.8	50.0	100	70-135	• • • • • • • • • • • • • • • • • • • •		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Lab Batch #: 709244

Sample: 293282-015 / SMP

Project ID: 1007-023B

Matrix: Soil Batch:

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Analytes 1-Chlorooctane	104	100	104	70-135		
o-Terphenyl	52.6	50.0	105	70-135		

Lab Batch #: 709244

Sample: 293282-016 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes						
1-Chlorooctane	103	100	103	70-135	····	
o-Terphenyl	52.2	50.0	104	70-135		

Lab Batch #: 709244

Sample: 293282-021 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	98.0	100	98	70-135	·		
o-Terphenyl	50.1	50.0	100	70-135			

Lab Batch #: 709244

Sample: 293282-022 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	96.6	100	97	70-135			
o-Terphenyl	47.6	50.0	95	70-135			

Lab Batch #: 709244

Sample: 501860-1-BKS / BKS

Batch: 1

Matrix: Solid

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	107	100	107	70-135			
o-Terphenyl .	52.2	50.0	104	70-135			

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Project ID: 1007-023B

Lab Batch #: 709244

Sample: 501860-1-BLK / BLK

Matrix: Solid Batch:

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	101	100	101	70-135		
o Tembenyi	51.0	50.0	102	70 135	<u> </u>	

Lab Batch #: 709244

Sample: 501860-1-BSD / BSD

Batch:

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	113	100	113	70-135		
o-Terphenyl	49.8	50.0	100	70-135		

Lab Batch #: 709250

Sample: 293282-026 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	159	100	159	70-135	**		
o-Terphenyl	114	50.0	228	70-135	**		

Lab Batch #: 709250

Sample: 293282-027 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	101	100	101	70-135			
o-Terphenyl	53.9	50.0	108	70-135			

Lab Batch #: 709250

Sample: 293282-031 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY '					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	100	100	100	70-135		
o-Terphenyl "p"	51.6	50.0	103	70-135		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***.} Poor recoveries due to dilution

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Project ID: 1007-023B

Lab Batch #: 709250

Sample: 293282-031 S / MS

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY						
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	99.2	100	99	70-135				
o-Terphenyl	48.1	50.0	96	70-135				

Lab Batch #: 709250

Sample: 293282-031 SD / MSD Batch: 1

Matrix: Sludge

Units: mg/kg	SURROGATE RECOVERY STUDY						
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	102	100	102	70-135	* ****		
o-Terphenyl	49.6	50.0	99	70-135			

Lab Batch #: 709250

Sample: 293282-032 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	101	100	101	70-135		
o-Terphenyl	51.9	50.0	104	70-135		

Lab Batch #: 709250

Sample: 293282-036 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	102	100	102	70-135		
o-Terphenyl	52.7	50.0	105	70-135		

Lab Batch #: 709250

Sample: 293282-037 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	96.7	100	97	70-135		
o-Terphenyl "	49.4	50.0	99	70-135		

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Project ID: 1007-023B

Lab Batch #: 709250

Sample: 293282-043 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		[D]				
1-Chlorooctane	96.4	100	96	70-135		
o-Terphenyl	49.7	50.0	99	70-135		

Lab Batch #: 709250

Sample: 293282-044 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
			[D]			
1-Chlorooctane	88.9	100	89	70-135		
o-Terphenyl	45.8	50.0	92	70-135		

Lab Batch #: 709250

Sample: 293282-049 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Analytes 1-Chlorooctane	94.8	100	95	70-135		
o-Terphenyl	57.4	50.0	115	70-135	*	

Lab Batch #: 709250

Sample: 293282-050 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	94.3	100	94	70-135		
o-Terphenyl	48.8	50.0	98	70-135		

Lab Batch #: 709250

Sample: 293282-051 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg SURROGATE RECOVERY S				STUDY		
ТРН	oy SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane	()	95.6	100	96	70-135	
o-Terphenyl	9	48.5	50.0	97	70-135	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Sample: 293282-054 / SMP

Project ID: 1007-023B

Lab Batch #: 709250

Matrix: Soil

Units: mg/kg SURROGATE RECOVERY STU				STUDY	
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	97.1	100	97	70-135	
o-Terphenyl	49.5	50.0	99	70-135	

Lab Batch #: 709250

Sample: 293282-055 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY						
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	89.8	100	90	70-135			
o-Terphenyl	45.7	50.0	91	70-135			

Lab Batch #: 709250

Sample: 293282-058 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	85.8	100	86	70-135		
o-Terphenyl	44.7	50.0	89	70-135		

Lab Batch #: 709250

Sample: 293282-059 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY						
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	89.5	100	90	70-135			
o-Terphenyl	45.5	50.0	91	70-135			

Lab Batch #: 709250

Sample: 293282-062 / SMP

Batch:

Matrix: Soil

Units: mg/kg		SURROGATE RECOVERY STUDY					
TPH by	SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Aı	ıalytes			[D]			
1-Chlorooctane	• "	92.6	100	93	70-135		
o-Terphenyl	. ,	47.0	50.0	94	70-135		

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Project ID: 1007-023B

Lab Batch #: 709250

Sample: 293282-063 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	88.6	100	89	70-135		
o-Terphenyl	45.7	50.0	91	70-135		

Lab Batch #: 709250

Sample: 293282-066 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY						
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes	[24]	(10)	[D]	/41			
1-Chlorooctane	85.4	100	85	70-135			

43.1

Lab Batch #: 709250

o-Terphenyl

Sample: 293282-067 / SMP

Batch:

Matrix: Soil

86

50.0

70-135

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	82.5	100	83	70-135		
o-Terphenyl	40.6	50.0	81	70-135		

Lab Batch #: 709250

Sample: 501858-1-BKS / BKS

Batch:

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY						
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R D	Control Limits %R	Flags		
Analytes							
1-Chlorooctane	119	100	119	70-135			
o-Terphenyl	54.5	1 500	l 109	70-135	l		

Lab Batch #: 709250

Sample: 501858-1-BLK / BLK

Batch:

Matrix: Solid

Units: mg/kg SURROGATE RECOVERY STUDY						
ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	16.3	103	100	103	70-135	
o-Terphenyl	il. A	53.2	50.0	106	70-135	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Project ID: 1007-023B

Lab Batch #: 709250

Sample: 501858-1-BSD / BSD

Batch: 1 Matrix: Solid

Units: mg/kg SURROGATE RECOVERY STU			STUDY		
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	106	100	106	70-135	
o-Terphenyl	51.7	50.0	103	70-135	

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Blank Spike Recovery

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Project ID:

1007-023B

Lab Batch #: 708892

Sample: 708892-1-BKS

Matrix: Solid

Date Analyzed: 11/20/2007

Date Prepared: 11/20/2007

Analyst: IRO

eporting Units: mg/kg Batch #: 1 BLANK/BLANK SPIKE RECOVERY ST			STUDY			
Total Chloride by EPA 325.3	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes		. ,	[C]	[D]		
Chloride	ND	100	93.6	94	75-125	

Lab Batch #: 708894

Sample: 708894-1-BKS

Matrix: Solid

Date Analyzed: 11/20/2007

Date Prepared: 11/20/2007

Analyst: LATCOR

Reporting Units: mg/kg

BLANK /BLANK SPIKE RECOVERY STUDY

reporting ours. mg/kg	Daten #.	DEAME	DEALWE ST	KE KEC	OVERT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Total Chloride by EPA 325.3	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes	[A]	[B]	Result [C]	%R [D]	%R	
Chloride	ND	100	95.7	96	75-125	

Lab Batch #: 708897

Sample: 708897-1-BKS

Matrix: Solid

Date Analyzed: 11/20/2007

Date Prepared: 11/20/2007

Analyst: LATCOR

Reporting Units: mg/kg	Batch #: 1	BLANK/E	BLANK SPI	KE REC	OVERY S	STUDY
Total Chloride by EPA 325.3	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes	ĮA;	נטן	[C]	[D]	/0K	
Chloride	ND	100	93.6	94	75-125	

Lab Batch #: 708898

Sample: 708898-1-BKS

Matrix: Solid

Date Analyzed: 11/20/2007

Date Prepared: 11/20/2007

Analyst: LATCOR

Reporting Units: mg/kg	Batch #: 1	BLANK	BLANK SP	KE REC	COVERY	STUDY
Total Chloride by EPA 325.3	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes	[A]	[B]	Result [C]	%R [D]	%R	
Chloride	ND	100	93.6	94	75-125	

Blank Spike Recovery [D] = 100*[C]/[B]All results are based on MDL and validated for QC purposes.

BS/BSD Recoveries

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Analyst: SHE

Date Prepared: 11/28/2007

Project ID: 1007-023B Date Analyzed: 11/28/2007

Lab Batch ID: 709436

Sample: 501986-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

								· · · · · · · · · · · · · · · · · · ·			
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1000	0.1094	109	0.1	0.1088	109	1	70-130	35	
Toluene	ND	0.1000	0.1083	108	0.1	0.1090	109	1	70-130	35	
Ethylbenzene	ND	0.1000	0.1094	109	0.1	0.1125	113	3	71-129	35	
m,p-Xylenes	ND	0.2000	0.2144	107	0.2	0 2208	110	3	70-135	35	
o-Xylene	ND	0.1000	0.1084	108	0.1	0.1122	112	3	71-133	35	

Analyst: SHE

Date Prepared: 11/28/2007

Date Analyzed: 11/29/2007

Lab Batch ID: 709491

Sample: 502014-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1000	0.1039	104	0.1	0.1056	106	2	70-130	35	
Toluene	ND	0.1000	0.1056	106	0.1	0.1079	108	2	70-130	35	
Ethylbenzene	ND	0.1000	0.1165	117	0.1	0.1172	117	ł	71-129	35	
m,p-Xylenes	ND	0.2000	0.2323	116	0.2	0.2312	116	0	70-135	35	
o-Xylene	ND	0.1000	0.1178	118	0.1	0.1166	117	1	71-133	35	

Relative Percent Difference RPD = 200*|(D-F)/(D+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Date Prepared: 11/20/2007 **Batch #:** 1

Project ID: 1007-023B

Analyst: SHE Lab Batch ID: 709250

Sample: 501858-1-BKS

007 **Date Analyzed:** 11/26/2007

Matrix: Solid

Units: mg/kg

BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

V											
TPH by SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
C6-C12 Gasoline Range Hydrocarbons	ND	1000	927	93	1000	950	95	2	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1000	876	88	1000	879	88	0	70-135	35	

Analyst: SHE

Date Prepared: 11/20/2007

Date Analyzed: 11/25/2007

Lab Batch ID: 709244

Sample: 501860-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg		BLAN	K/BLANK S	SPIKE / F	BLANK S	SPIKE DUPI	ICATE 1	RECOVI	ERY STUD	Y	
TPH by SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1000	929	93	1000	911	91	2	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1000	814	81	1000	827	83	2	70-135	35	

Relative Percent Difference RPD = 200*|(D-F)/(D+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Project ID: 1007-023B

Lab Batch ID: 709244

OC- Sample ID: 293280-001 S

Batch #:

Matrix: Soil

Date Analyzed: 11/25/2007

Date Prepared: 11/20/2007

Analyst:

SHE

Departing United malka

Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH by SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample		Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
C6-C12 Gasoline Range Hydrocarbons	ND	1110	1070	96	1110	1140	103	7	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1110	1010	91	1110	1080	97	6	70-135	35	

Lab Batch ID: 709250

QC- Sample ID: 293282-031 S

Batch #:

Matrix: Soil

Date Analyzed: 11/26/2007

Date Prepared: 11/20/2007

Analyst: SHE

1

Reporting Units: mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY										
TPH by SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	- 1	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
C6-C12 Gasoline Range Hydrocarbons	ND	1130	1000	88	1130	1040	92	4	70-135	35	
C12-C28 Diesel Range Hydrocarbons	86.6	1130	949	76	1130	963	78	3	70-135	35	

Lab Batch ID: 708892

QC-Sample ID: 293280-017 S

Batch #:

Matrix: Soil

Date Analyzed: 11/20/2007

Date Prepared: 11/20/2007

Analyst: IRO

Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Total Chloride by EPA 325.3	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride	128	1000	1060	93	1000	1110	98	5	75-125	30	

Form 3 - MS / MSD Recoveries

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Project ID: 1007-023B

Lab Batch ID: 708894

QC-Sample ID: 293282-016 S

Batch #:

Matrix: Soil

Date Analyzed: 11/20/2007

Total Chloride by EPA 325.3

Analytes

Date Prepared: 11/20/2007

Parent

Sample Result

[A]

6080

Analyst: LATCOR

Reporting Units: mg/kg

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY													
Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag				
10600	16000	94	10600	15300	87	8	75-125	30					

Lab Batch ID: 708897

QC- Sample ID: 293282-037 S

Batch #:

Matrix: Soil

Date Analyzed: 11/20/2007

Date Prepared: 11/20/2007

Analyst: LATCOR

Paparting Unite: mg/kg

Chloride

Reporting Units: mg/kg	}	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY										
Total Chloride by EPA 325.3	Parent Sample	Spike	Spiked Sample Result	Sample		Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag	
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD		
Chloride	5060	10600	16200	105	10600	15600	99	6	75-125	30		

Lab Batch ID: 708898

QC- Sample ID: 293282-059 S

Batch #:

Matrix: Soil

Date Analyzed: 11/20/2007

Date Prepared: 11/20/2007

Analyst: LATCOR

Reporting Units: mg/kg		M	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Total Chloride by EPA 325.3	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	•	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride	32.9	1030	1040	98	1030	1060	100	2	75-125	30	

Sample Duplicate Recovery

Project Name: Chevron Lovington Deep State

Work Order #: 293282

Lab Batch #: 708848

11/19/2007

Project ID: 1007-023B

Date Analyzed: 11/19/2007

Date Prepared:

Analyst: RBA

QC-Sample ID: 293280-022 D

Batch #:

Matrix: Soil

Reporting Units: %

SAMPLE /	SAMPLE	DUPLICATE	RECOVERY
D 10	Comple	Co	menal

Percent Moisture Analyte		Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Analyte		<u> </u>			
Percent Moisture	2.62	2.99	13	20	

Lab Batch #: 708850

Date Analyzed: 11/19/2007

Date Prepared: 11/19/2007

Analyst: RBA

QC- Sample ID: 293282-037 D

Batch #:

Matrix: Soil

Reporting Units: %

SAMPLE / SAMPLE 1	DUPLICATE	RECOVERY

Percent Moisture Analyte Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	5.47	5.79	6	20	

Page 1 of 7

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone. 432-563-1800 Fax: 432-563-1713

Project Manager Cindy Crain	nager Cindy Crain									-	P	rojec	t Na	me.		<u></u>	hevi	ron	Lovi	ingto	n De	ер 5	tate	<u> </u>	_					
Company Name Ocotillo Enviro	onmental, LL	c			_										-		P	rojec	:t #*					100	07-0	23B				
Company Address PO Box 1816																	Proj	ect L	.oc			Sec !	5, T1	17S.	R36	, Lea	Co	NM		_
City/State/Zip Hobbs, NM 8	8241																	P	o #·			_ (
Telephone No (505) 441-724	4 _				Fax No		(432	2) 27	2-03	104						Repo	nt Fo	rma	t:	Ø:	Stand	dard	1		TRE	₹P		NPI	DES	
Sampler Signature	1				e-mail:	•					@ a:	nia	ıl cc	וחו	-					~				_			_	•		
							<u> </u>						en an				F					Anel	yze I	or		_			П	
(lab use only)							₹1													TOT	AL	\pm	t	土		1		1	72 hrs	
ORDER# 293262						П		ᅧ	reser	vatio	- & #	of Co	ntaine	F18		atrix	80158	8			1	8 E		8260					1	_
<u> </u>				•			40,0	. 1	İ			1			St.=tstudge	8-SolvBold	1	15	Ω	(£	1	2		BTEX 6021 15030 or BTEX 8260			1		RUSH TAT (Pre-Schadule)	
(Ajvo ean		leginning Depth	5	8	<u> </u>		fotal # of Containers			-				2	ž.		4181	/	g Na. K)	AnionS (C) 804 Alkatinity)	ر د	Voletiles		030 or					g ,	_
# (ep) #		<u>E</u>	Depth	amp	dimag	2	Com		- [ļ		İ		Specia	5 V/s	motor	1 -	TX 1005	3	Â	0 3		seks	Å					AT.	2
1 60 1			Ending	Date Sampled	lime Sampled	eld Fillered	* 75	82	Q I	₽	H,50.	F S	None None	Other (Specify)	DW=Ddnking Water	OW - Groundware	TPH *		Cations (Ca Mg	le l	SAR / ESP / CEC	Volgtiles	Sernivolaties	¥ X	,	NON			RUSH TAT (Pre	9100
3 FIELD CODE ∞\ 3H-1 (0-2')		Ø O	7	11/14/107	0930	<u>.</u>	P.	-	Ī	-	<u> </u>	2 2	z z	10	ð	5 1	╁	=	3	₹	æ <u>:</u>	18	8	₩	ğ	ž	╁	Н	<u> </u>	<u>.</u>
COZ " (5·7·)		5	7	"//4/10/	0942	-	\dashv	+	+	+	+	+	+	+	┢		╁	+	Н	+	+	+	+	⇈	Н	+	╁	-	+	_
(10-12)		10	12	.,	0950		\exists	1	+	+	7	T	+	T	Г		Τź			7	+	+	†	+	T	1	T		\vdash	٦
001 " (15-17)		15	17	¥	0458			7	7	7	7	T	1	T			1	1	П	7		\top	T		П				\sqcap	_
005 (20-22)		20	22	۲	1005												T													_
ide " (25.27.)		25	27	ų	1013				$oxed{I}$								L					I								_
(30.32)		30	32	11	1020		Ц	_	4	_	\perp	1	1	1	L		L		Ц	_	\perp	\perp	\perp	1	Ц	4	4		Ц	_
0-2)		0	2	- 11	1038	Ц	4	1	4	4	4	4	1	1	L		Įχ	\perp	Ц	_	\perp	4	\perp	K	Ц	_	4	\vdash	H	_
009 " (5-7')		5	7	11	1042	4	Н	-	4	+	4	+	+	+			X	╄	Н	4	_	+	+	ř	Н	-+-	+	-	${oldsymbol{arphi}}$	_
Special Instructions		10	12	4,	10.50						Д.			L	<u> </u>		ΙĀ		Leb	orat	ory C	omr	nent	Lis:	Ш			Ш	L	4
																			San	ple	Cont	aner	s Int	act?			$\langle g \rangle$)	N	
Relinquished by	Date	Tin	ne	Received by									Т	De	rte	Т	Tin	16	Lab	is ii ils o	n cor	i Hea Van	er(s)	ace? مان ainer	عمال	εl		=5		
(indy) (sain	11/17/07 Date	112			,											4	_		Cus	tody	seal	s on	cock	er(s)			3000000000000000000000000000000000000	-}	(KIR)	
Relinquished by	Date	Tin	ne	Received by										Da	119		Tim	10	San	by 🧲	mp)	Deli Clie	vere	ep?		18	Y		N	
Relinquished by	Date	Tin	ne	Received by ELC	OT								+		te	+	Tim	٠,	7		ourier		UP		DHL		edEx		e Star	ļ
				Received by ELC	yourio				_				1	<u>uli</u>	7/4	2	11:	39	iem	pera	nure	Upor	n Ke	ceipt	. (1_			*C	

יסר
ab .
9
ŏ
မ္တ
σ
잌
4
N

Company Name Occillio Environmental, LLC

(o-2·)

5.7)

10-12') (15-17)

(20-22)

015

حاان

רוט

018

OM

BH- 3

Project Manager: Cindy Crain

Company Address PO Box 1816

Phone: 432-563-1800

Sec 5, T17S, R36E, Lea Co , NM

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Odessa, Texas 79765 Fax: 432-563-1713 Project Name: Chevron Lovington Deep State 1007-023B

Project Loc.

City/State/Zip Hobbs, NM 88241 Report Format: Standard TRRP

12600 West I-20 East

NPDES Fax No (432) 272-0304 Telephone No Sampler Signature cindy crain@gmail.com Analyze For (lab use only) ORDER # 293282 Preservation & # of Containers FIELD CODE 11/14/07 BH-2 (15-17.) 15 17 1058 011 20 . 22 20 22 1102 012 (25-27) 25 27 1259 30 32 1304 30 - 32) 014

0 2

5 7

10 12

15 17

20 22

4

1216

1221

1223

1231

(25.27)	25 27	1 1246	1 1 1				l		
Special instructions:	Laboratory Comments	i,							
1		Sample Containers Inta	\odot		N				
					VOCs Free of Headspa		0		N_
Relinquished by Date	Time	Received by	Date	Time	Labels on container(s)	id anlie	Y	9	
11/17/	7 1127	1	1		Custody seals on conta Custody seals on coole		Č	- 4	
Relinquished to Date	Time	Received by	 Date		Sample Hand Delivered		ග	, ,	N
(Amarica and an		,	1		by Camplet/Client Re		¥	i	N
					by Courier? UPS	DHL	FedEx	Lone	Star
Relinquished by Date	Time	Received by ELOT	Date	Time	Temperature Upon Rec	nint			
	- {	1			rempossible Opon Rec	օ փւ	4.	O.	'C
			 						

œ
9
Θ
37
9
4
2

Page 3 of 7 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

CHAIN OF COSTODY RECORD AND ANALTSIS REQUEST
12600 West I-20 East Phone: 432-563-1800
Odessa, Texas 79765 Fax. 432-563-1713

												•																					
	Project Manager	Cindy Crain																P	ojeç	i Na	me .			Che	vror	ı Lo	ving	gton	Dec	ep S	tate		_
	Company Name	Ocatillo Envi	ronmental LL	.c															Pr	olec	t #.					_1	007	-023	3B_				
	Company Address:	PO Box 1816	8																Proje	ect L	oc:			Sec	5,	T175	3, R	38E	Lea	Co , I	NM		
	City/State/Zip	Hobbs, NM	88241															PC) # .												_		
	Telephone No.	(505) 441-72	:4,4	Fax No (432) 272-0304										Repo	r! Fo	rmai		À	Standard TRRP NPC								NPC	ES					
	Sampler Signature:	: 7	dis	sai	2		e-mail		CIF	ndv	Cra		ପ୍ରପ୍ର	nai	l co	m						•					_						
			The state of the s	1												-							_	Ana	alyze	e Fo	ř	_	_	\equiv	\sqsupset	٦	
(lab use o	20220	57							2										\vdash			TOT	LP TAL:	+	+	+	-	1				2	
ORDER	# 21020					1		_	e Kr		rese	VEDO	n & #	of Co	1taine	rs	N/	atrix	8015B					ŝ	T	\exists	9260					ŧL	\neg
									40.	П			1				ş	P .	ľ	1X 1006		ŝ		£	ł		EX.					ž į	
only)				Æ	1		_					- 1					SL-Studge	S=Eost Solid		2	Na, K)	a a		ğ	i	- [a a	İ	1			1	1
ě				8	ą.	Pag	pled		Hanrie	H			ı			ή,	A S			g	5	3	2	ã.			3		1			Ĕ!	ξĺ
- E				₽ ₽	8	E	Sam	pere!	20 2	H		١		1.	.	Se S	8	8	£ 19	ξ ξ	(Ca	Ĝ	J. ds	\$		Seles	9	1_				<u>ا ک</u> ا	2
AB # (lab use				Beginning Depth	Ending Depth	Date Sampled	Time Sampled	ield Fallemed	fotal # of Contamers	<u>s</u>	FINO	랓	જું ફ	Na.S.O.	None	Other (Specify)	OW-Drowing Water	GW = Groundwater	¥	1PH TX 1005	Cations (Ca Mg	Anione (ChSO4 Alkabrity)	SAR / ESP / CEC	Metals As Ag Ba Cd Cr Pb Hg	Votatiles	Semivorables	BTEX 8021516030 or BTEX	NO NO				RUSH TAT (Pre-Schadude)	Standard A
021		LD CODE		0	2	11/14/07	1310	ığ.	P.	٢	Ξ	=	Σ :	2 2	Z	°	ð	6	Ϋ́	=	Ü	ł	9	ž	3	3 1	<u> </u>	E 2	╁	\forall	-	2	2
022		5·7·)	-	5	7	114147	13.21		Н	Н	-	+	+	+	┿	\vdash	H		tâ	-	H	\forall	\dashv	+	+	+	十	十	+	+	$\neg \uparrow$	+	┪
U23		0-12.)		10	17		1323	-	Н	Н	+	+	+	+	\dagger	Н			ť	+	H	\dashv	+	+	+	+	十	+	+	\forall	\Box	+	٦
024		5-17)		15	17	11	1325		Н	H		7	+	+	T				t	-	П			7	\top	十	十	十	+	1		†	1
025		0-22)		20	22	12	1331		П	П		7	\top	1	†	П			T				T	\forall	7	\dagger	+	T	\top	\Box	\sqcap	1	٦
026		0-2.)		0	2	14	1342				\exists	T	十	\top	T	П	_		Īχ				1	7	1	寸	χĺ	十	T	П			٦
027		5.7')		5	7	''	1349			П		T	\top	1	T	П	Т		ΪX						T	T	T	\top	1	П	\Box		٦
028	" (1	0-12.)		10	12	٠,	1401							Ι	I				Γ						\Box	I	Ι	I	I				
029	"	15.17')		15	17	11	1407												L							$oldsymbol{ol}}}}}}}}}}}}}}}$	1		L		\Box		
030		20- 22)		20	22	l,	1411						\perp	1					L							丄		丄	\perp	Ш			╛
Special I	nstructions															_										nts: ntac				O		4	
																					VO	Ċs F	ree	of He	eads	pac	e?			E	į	u .	1
Relinquish	egby.		11/17/c7		me 27	Received by										Da	le	T	Tim	6	Cus	tody	/ sea	ils of	n col	ntaır	rer(s	}^\.		Y	8		1
Reimquish	vdy son		7//7/C7	4	∡ / me	Received by Date						la.	+	Tim	A	Cus	tody	sea /	lls or d De	n coi	oler(\$)			8	1	ري						
, amquat	p			ļ .'''												Ju			,	-		by 6	amp	€)/C	Bent	Rep		HL		Υ dE×	i	ų.	
Relinquish	ed by		Date	Tı	ne	Received by ELC	ĎΤ								t	De	le	+	Ten	e			ourie			JPS		HL	re				
				<u> </u>																	ien	iper	BILLITE	e Up	on F	₹ece	ψr.		_	-4	0.	L	1

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Phone: 432-563-1800 Fax. 432-563-1713

12600 West I-20 East Phot Odessa, Texas 79765 Fax

Project Manager Cindy Crain Project Name: Chevron Lovington Deep State Company Name Ocotilo Environmental, LLC 1007-023B Company Address: PO Box 1816 Sec 5, T17S R36E, Lea Co , NM City/State/Zip: Hobbs NM 88241 Report Format: #Standard Telephone No TRRP NPDES (505) 441-7244 (432) 272-0304 Fax No Sampler Signature cindy crain@gmail com Analyze For (lab use only) Preservation & # of Containers Matrix 293282 TOTAL ORDER #: Jeginning Depth Inding Depth FIELD CODE 031 0 - 2 - 3 0 11/14/07 1428 5-7) 5 7 032 1431 1440 10-12 10 12 033 034 15-17 15 17 1444 UBS 20.22 20 22 1450 BH-7 0 - 2 -115107 0925 036 037 5-7.) 5 7 0931 10 - 12 038 10 12 0937 039 (15-17) 15/17 0947 20-22 20 22 040 0953 Special Instructions. Laboratory Comments -68€ Sample Containers Intact? z666z VOCs Free of Headspace? Custody seals on contamer(s)

Custody seals on contamer(s) 11/17/07 1127 Š Sample Hand Delivered
by Sampler/Client Rep ?
by Courier? UPS DHL Received by FedEx Lone Star Date Received by ELOT Date Relinquished by emperature Upon Receipt 40 °C

v
9
9
Ø
39
9,
42

Page 5 of 7

Phone. 432-563-1800

Fax: 432-563-1713

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East

Odessa, Texas 79765

Chevron Lovington Deep State Project Manager Cindy Crain 1007-023B Company Name Ocotillo Environmental, LLC Company Address: PO Box 1816 Project Loc: Sec 5, T17S, R36E, Lea Co , NM City/State/Zip. Hobbs, NM 88241 Report Format Telephone No (505) 441-7244 Fax No: (432) 272-0304 TRRP NPDES Sampler Signature: cindy crain@gmail.com Analyze For: TCLP TOTAL 293282 ORDER#. Preservation & # of Containers Matrix Iding Depth FIELD CODE BH-7 (25-27) 11/15/07 041 25 27 1002 OUZ 30-32 30 32 1010 0 2 BH-8 (o-2·) 1020 043 5 7 5.71 1029 CHU 10 - 12 10 12 1032 05 15 17 Ollo (15-17) 1036 20 22 20 - 22 1040 047 25 27 048 25-27 1047 OYA 02 1, (0-2.) BH-9 1100 050 57 (5.7) 1106 . . Special Instructions 38>> Sample Containers Intact? VOCs Free of Headspace? z888z Labels on container(s) id enlid Custody seals on container(s) Custody seals on cooler(s) 1/11/07 1127 Sample Hand Delivered by Sample Client Rep ? by Courier? UPS DHL Date FedEx Lone Ster Date Relinquished by Received by ELOT Temperature Upon Receipt 4.0 ℃

	20
	•
	Œ
	₽
٠	ਨ
	Ξ
	ᅀ
	_
	7
	·

Page 6 of 7

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Cindy Crein															-	P	rajec	t Na	arne		. (Che	vro	n L	OVI	igto	n D	еер	Stat	e	
	Company Name	Ocotillo Enviro	onmental, LL	¢													_		Đ	roje	ct#.	_					100	7-02	23B				_
	Company Address	PO Box 1816															_		Pro	ect	Loc:			Sec	. 5,	T17	'S, F	R36E	. Le	a Co	, NM	!	
	City/State/Zip	Hobbs, NM B	8241														_			P	O#:	_				_							_
	Telephone No	(505) 441-724	4	-			Fax No		(43	2) 2	72-0	304						Repo	ort Fo	ıma	st:	4	Star	dan	d			TRR	P	ſ	□ NF	PDE:	S
	Sampler Signature:		din (مدر	in		e-mail.		CII	ndy	cr	aine	@q	ma	ıl cc	נחו			_														_
use	ant a																		-			7,	CLP	An	alyz	e F	or T		-	_	—	┨.	ı
	20270). 7							8										┢				TAL.	7				ŀ				E	
DER	#: 20132-8					Ψ			<u>ب</u> الج	С	Prese	rvalk	n & #	of Co	ontaine	ers	1	vlatrix	B015B	Т				8			6260	- }	1	1		8	L
LAB # (lab use only)	FIE	LD CODE		Beginning Depth	Ending Depth	Date Sampled	Time Sampled	ield Filtered	Total # of Contamers 455	£7	HNO,	HC.	H,50.	NBOH NBOH	Neg-2-0-1	Other (Specify)	DW-Drawing Water St.: Sludge	Mer 5-804	TPH 418 1 (8015M) 80	TX 1605 TX 10	ns (Ca, Mg, Na, K)	Among (CL) SO4 Alkalinity)	SAR / ESP / CEC	Matels As Ag Ba Cd Cr Pb Hg	Votatries	Semvolatiles	X 80218/5030 or BTEX	RCI	NORM			RUSH TAT (Pre-Schedule) 24,	Standard TAT
5		- 12')		10	12	11/15/07	1115	-	-	F			\exists	+	+	+	†		17	7	╁	-	٦	1	1	"	-	-	-	十	+	۴	15
52) - 17·)		15	17	1,0,0,1	1120	-	 	┢			_	+	+	╁	t		1	+	+-			+	1	-	\dashv	+	\dashv	+	+	十	╆
53		.22.)		20	22	ı,	1125	-		H	Н	\forall	7	+	Ť	t	t		t	T	t		Ħ	7	1		-	-	$^{+}$	+	+	十	t
37 "Ju		0 · 2 ·)		0	2	',	1204	-		t		7	十	+	十	╁	†-		T_{Y}	1	+	Н	H	┪	7		7	+	+	+	十	t	1
SS		5.7.)		5	7	1,	1212	-	Ħ	H	Н	7	_	+	+	\dagger	t		ᅥ		T	Н	Н	1	\dashv	7	7	7	+	十	+	t	+
36	" (10-12.)		10	12	11	1219		T	H	Н	\dashv	\dashv	$^{+}$	\top	†	t		1	1	T		Ħ	1			7	_	+	+	1	t	_
57	· ()	5-17.)		15	17	4	1224		T	r	П		_	\dagger	+	\dagger	T		T	T	十			7	-		寸	7	十	\top	\top	T	1
5e		<u> </u>		0	2	٠,	1231	Г	Г	Г	П		\neg	†		\top	T		$\mathbf{I}_{\mathbf{X}}$		1			7		╛	7	7	\top	\top	T	t	T
759		5-7')		3	7	"	1235	Г		Г			\top	T		T	T		٦x	1		П		\dashv	╗	╗	\exists	T	\top	T		T	
(a)	" (1)	0 - 12')		10	12	14	1240			Γ	П			Ť		T	Т		T	Ī	Г	П			7		٦	T			Т	Γ	Γ
icial li	nstructions.						,														Sar	nple Cs F	Con ree	taine of He	ers ead	Inta spa	ct? ce?		`	× < & & &	<i>></i>	N N	
nquiph	ode Saul		1/17/07		27	Received by									Ī	D	late		Tin	10	Cur	els o stody	on co / sea / sea	intel Is or Is or	inen n co n co	(s) Intai	ner((5)	5.\ (8)	.U	Y Y Y	. (,
nquish	echty		Date	T:	me	Received by				_						D	ate		Tin	19	∃Sar	nple by€	Han	d Di	elive Den	ered	p ?	DHL		\$) : Lor	N	
nquish	ed by		Date	T,	me	Received by ELC	DT .					_			T	D	ate	\top	Tin	e	Ter		ature					טתנ	,		4.C		ol .

χ
_
30
•
_
앜.
~
**

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone. 432-563-1800 Fax 432-563-1713

	Project Manager Cindy Crain					·										_	P	rojec	t Na	me:			Che	evro	n L	ovir	ngto	n D	еер	Stat	e	
	Company Name Ocotilio Envir	onmental, LL	<u>c</u>			~										-		P	roje	çt #:						100	7-02	23 <u>B</u>				
	Company Address. PO Box 1818															_		Proj	ect	Loc:	_		Se	c 5.	T17	'S, F	₹36£	<u>Le</u>	a Co	, NN	1	
	City/State/Zip. Hobbs NM 8	8241														_			P	O #:												
	Telephone No (505) 441-724	14				Fax No:		(43	2) 2	72-0	304						Repo	rt Fo	ma	ıt:	À	Sta	nda	rd			TRE	₹P		□ NF	PDE:	 3
	Sampler Signature	ide	<u> </u>	zin.	.	e-mail.		CII	ndy	cr	ain	@9	mai	l co	<u>m</u> .			_						_								
(lab use o								_										E				CLP.	Ar	τaly:	e F	or.	\Box	\neg	op	\top	١,	
ORDER	#: 293282	- i						35.5		Prese	rvatio	on & f	of Co	atans	#T5	l N	latrix	8	T	T .	ŤŌ	TAL	S.	H		0		1			45, 72 hrs	l
AB # (lab use only)	FIELD CODE	•	Beginning Depth	Ending Depth	Date Sampled	Time Sampled	wid Fallered	Total # of Containers 4c.	8	нио,	HC	н,≤0,	NaOH	None	Other (Specify)	DW-Drilling Water SL-Sludge	Ner S=Sok	TPH 418 1 (\$013N) 80158	1 X 10	IS (Ca, Mg Na,	Anion (C) 504 Alkalinity)	SAR / ESP / CEC	Metaks: As Ag Ba Cd Gr Pb Hg S	Votatiles	Semvolatiles	87LX 80218/5030 or BTEX 8260	RC)	N.O R.M.			RUSH TAT (Pre-Schedule) 24, 4	Standard TAT
061	BH-11 (15.17°)		15	17	"/16/07	1246	-	<u> </u>		П	7		1	1	T	Ť	<u> </u>	+	†	J	-	Ť	*		Ÿ.		٦	Ť	十	+	۴	ľ
062	BH-12 (0-2)		О	2	11	1256									Τ	Г		1)		Г							П		I		L	
063	" (5.7)		50	7	11	1300								Ι	I			7)									П	П	I	I	Γ	
ani	" (10-12')		10	12	"	1310												Ι									\square		\perp		${ m I}$	
Ous	1 (15-17)		15	17	"	1314									L	L			L												L	
Ou.	BH-13 (0-2')		<u>_p</u>	2	11	1318			L							L		$\perp \lambda$	1	L						\Box		\perp	\perp	\perp	L	
061	" (5-7')		5	7	'4	1322		L	L				\perp			L		<u> </u>		L							\Box	\dashv	\perp	\perp	L	
છે.	" (10-12.)		10	12	и	1328	L,	L	L				\perp		1_	L		\perp		L							Ы	_		ᆚ	L	Ľ
069	" (15-17)		15	17	"	1335		L	L				1	\perp	┖	L			<u> </u>	L		Ш	Ц		_		Ш	_	\perp	\perp	L	Ш
							L	L	L					1				L		L							Ш	\perp	丄	丄	L	
,	nstructions:																			Sat VO	mple Cs f	Col	ntair of i	ners lead	inta spa	ct? ce?			8	3	N	
Relinqueh	do (san	Date 11/17/07	11.		Received by											ate		Tin		Cu	stod	y se	als (on co	oolei	r(s)) (5)	1.1	Y	•	203 (B) 52	,
Relinquish	,	Date		me	Received by											ate		Tin		Sas	npie by (Han	oles)(Cher	ered I Re UPS	pγ	DHL	. 1	Y	> × Lo	N	
Relinquish	ed by	Date	Ti	me	Received by EL	ОТ									Ö.	ate		Tin	ne	Ter	npe	ratur	e Ui	pon	Rec	erpt				Ч,	O'c	

	Variance/ Corrective Action Re	port- Sampl	e Log-Ir	n				
ient	Oco+1110							
ate/ Time	11-17-07@1127							
ab ID#								
	2932BZ JMF							
tials	JMF							
	Sample Receipt	Checklist						
		· · · · · · · · · · · · · · · · · · ·		·	Client Initials			
	ature of container/ cooler?	₹es .	No	4.0 °C	1			
	container in good condition?	(Yes)	No					
	Seals intact on shipping container/ cooler?	Yes	No	Not Present				
	Seals intact on sample bottles/ container?	Yes	No	Not Present				
	Custody present?	Yes	No					
Sample	Instructions complete of Chain of Custody?	Yes⊃	No	<u> </u>				
	f Custody signed when relinquished/ received?	(Yeso	No					
	f Custody agrees with sample label(s)?	Yes	No	(ID written on Cont / Cid	<u> </u>			
	er label(s) legible and intact?	Yes	No	Mot Applicable				
	matrix/ properties agree with Chain of Custody?	(es)	No_					
	ners supplied by ELOT?	Yes	No	<u> </u>	1			
	es in proper container/ bottle?	(Yes)	No	See Below				
	es properly preserved?	(es)	No	See Below				
	bottles intact?	(Yes)	No					
	vations documented on Chain of Custody?	(Yes)	No					
	ners documented on Chain of Custody?	(Tes)	No	<u> </u>				
	ent sample amount for indicated test(s)?	Yes	No	See Below				
8 All sam	ples received within sufficient hold time?	(YES)	No	See Below				
	ntract of sample(s)?	Yes	No	Not Applicable				
0 VOC s	amples have zero headspace?	/es	No	Not Applicable				
Variance Documentation Contact: Contacted by: Date/ Time:								
egarding			····		·			
orrective A	ction Taken		··					
				· · · · · · · · · · · · · · · · · · ·				

See attached e-mail/ fax
Cilent understands and would like to proceed with analysis

Cooling process had begun shortly after sampling event

Check all that Apply.

C141 DOCUMENTATION

District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised October 10, 2003

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release	Notification	and	Corrective	Action	

	OPERATOR (X Initial Report) Final Report										
Name of Company Chevron Midcontinent LP	Contact Larry Ridenour										
Address HCR 60 Box 423 Lovington, N.M. 88260	Telephone No. 505-396-4414 X 102										
Facility Name Lovington Deep State	Facility Type Water transfer line										
Surface Owner State Mineral Owner	er State of NM Lease No. B-4704										
LOCATION OF RELEASE											
Unit Letter Section Township Range Feet from the	Feet from the County										
	uth Line 115 East Line Lea										
Latitude N 32 deg 51 min 47.53 sec Longitude W 103 deg 23 min 8.11 sec NATURE OF RELEASE API #3002531451											
Type of Release Produced water with some oil	Volume of Release 20 BW - 2BO Volume Recovered 13 BW - 1 BO										
Source of Release water transfer line	Date and Hour of Occurrence Date and Hour of Discovery										
Source of Adjusted Visited Marie Info	10/2/07 ?? 10/2/07 9:00 am										
Was Immediate Notice Given?	If YES, To Whom?										
☐ Yes ☐ No ☐ Not Requir											
By Whom? Larry Ridenour	Date and Hour 10/2/2007 4:30 P.M. 3450 / 8970										
'Was a Watercourse Reached?	If YES, Volume Impacting the Watercours.										
☐ Yes ☒ No	If YES, Volume Impacting the Watercourse										
If a Watercourse was Impacted, Describe Fully.*	S Received 5										
the first the second second second second	S Received 5										
•	Hopps 66										
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\										
Describe Cause of Problem and Remedial Action Taken.* The location and API # given are for West Lovington Unit #86 which is the nearest well. The GPS coordinates are for the actual location of the spill. The spill is located approximately 2/10 mile north of WLU 86. The leak was from a water transfer line that conducts fluid from the Lovington Deep State tank battery to the West Lovington Unit injection station.											
Chlorides 35,000											
	•										
Describe Area Affected and Cleanup Action Taken.*											
Fluid soaked in ground. 60° x 60° area around spill and then 8° x 150°	area and 8' x 50' area where fluid traveled down ruts in road. Standing fluid was										
one call and have removed top approximately one foot of soil. They w	d site over to Ocotillo Environmental for remediation. They performed emergency ill do a survey of the contamination and submit a plan to the OCD for approval.										
indy w	in the about the discontinuation and submit a plant to the OCD for approval.										
The second secon											
I hereby certify that the information given above is true and complete t	o the best of my knowledge and understand that pursuant to NMOCD rules and e notifications and perform corrective actions for releases which may endanger										
public health or the environment. The acceptance of a C-141 report by	the NMOCD marked as "Final Report" does not relieve the operator of liability										
should their operations have failed to adequately investigate and remed	liate contamination that pose a threat to ground water, surface water, human health										
or the environment. In addition, NMOCD acceptance of a C-141 report	t does not relieve the operator of responsibility for compliance with any other										
federal, state, or local laws and/or regulations.											
$\sqrt{\chi^2}$	OIL CONSERVATION DIVISION										
Signature: Oy U (in)	Charles										
Printed Name: Larry Ridenour	Approved by District Engineer ONMENTAL ENGINEER										
Title: Operations Representative	Approval Date: 10.4.07 Expiration Date: 12.10.07										
É-mail AddressLRidenour@chevron.com	Conditions of Approval:										
Date: 10/4/07 Phone: 396-4414 X 102	SUBALT PLAN OR FINAL BY										