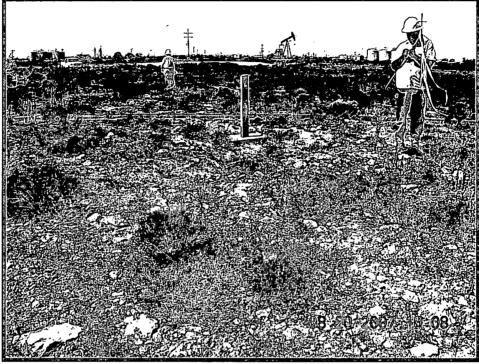

1R. 428-41

REPORTS

DATE:

12-4-07



RECEIVED

December 4, 2007

DEC 1 1 1003

Environmental Bureau Oil Conservation Division

I-29 Vent, NMOCD Case #1R0428-41

Rice Operating Company Closure Report

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Fax: 505.266-0745

December 4, 2007

Mr. Ed Hansen New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

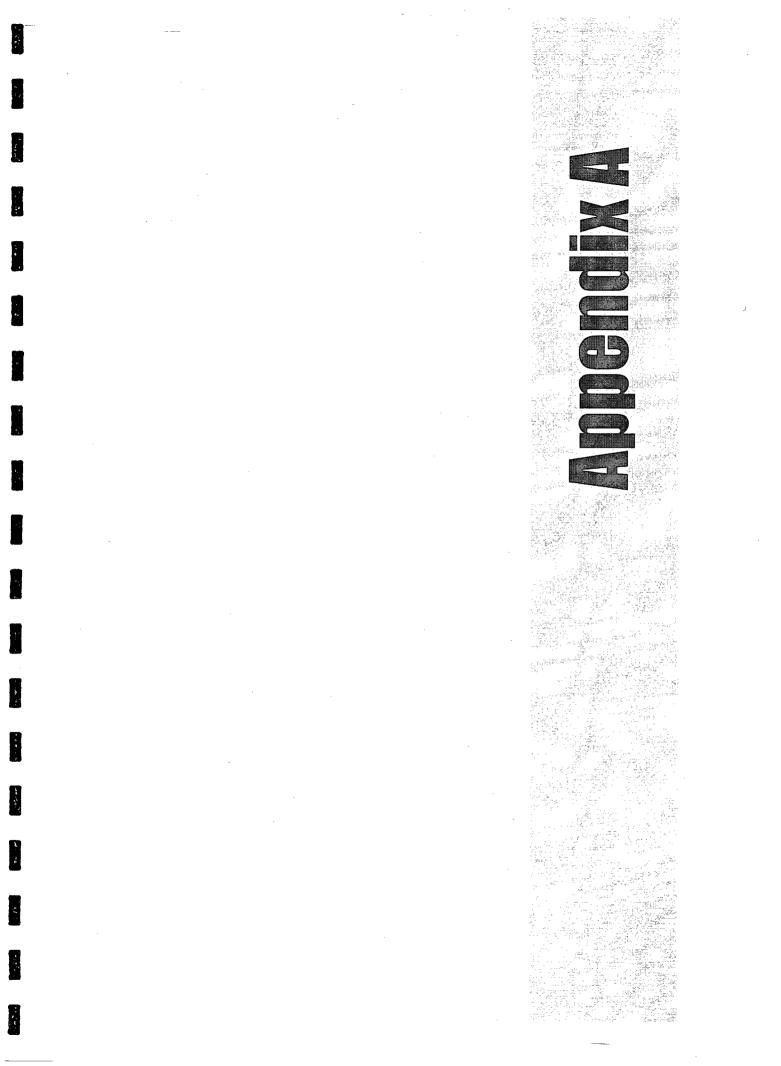
RE: NMOCD Case #1R428-41, I-29-Vent Hobbs SWD System Abandonment Closure Report

RECEIVED

DEC 1 1 9789 Environmental Bureau Oil Conservation Division

Dear Mr. Hansen:

This letter and Appendices are the final Closure Report for the I-29 Vent. The NMOCD approved Corrective Action Plan (Section 4.0, page 3) included creating an infiltration barrier by re-vegetation of the ground surface at the I-29 Vent. Appendix A includes the junction box closure form. Appendix B provides a photograph of the re-vegetation at the site. Appendix C includes copies of previous submissions and the NMOCD approval email. As noted in the CAP, ROC plans to leave the well at this site in place pending investigation of other Section 29 sites.


We respectfully request NMOCD approve site closure in writing. Thank you for your attention to this matter.

Sincerely, R.T. Hicks Consultants, Ltd.

Katie Lee

Katie Lee Staff Scientist

Copy: Rice Operating Company Hobbs NMOCD Office

RICE OPERATING COMPANY

12.00

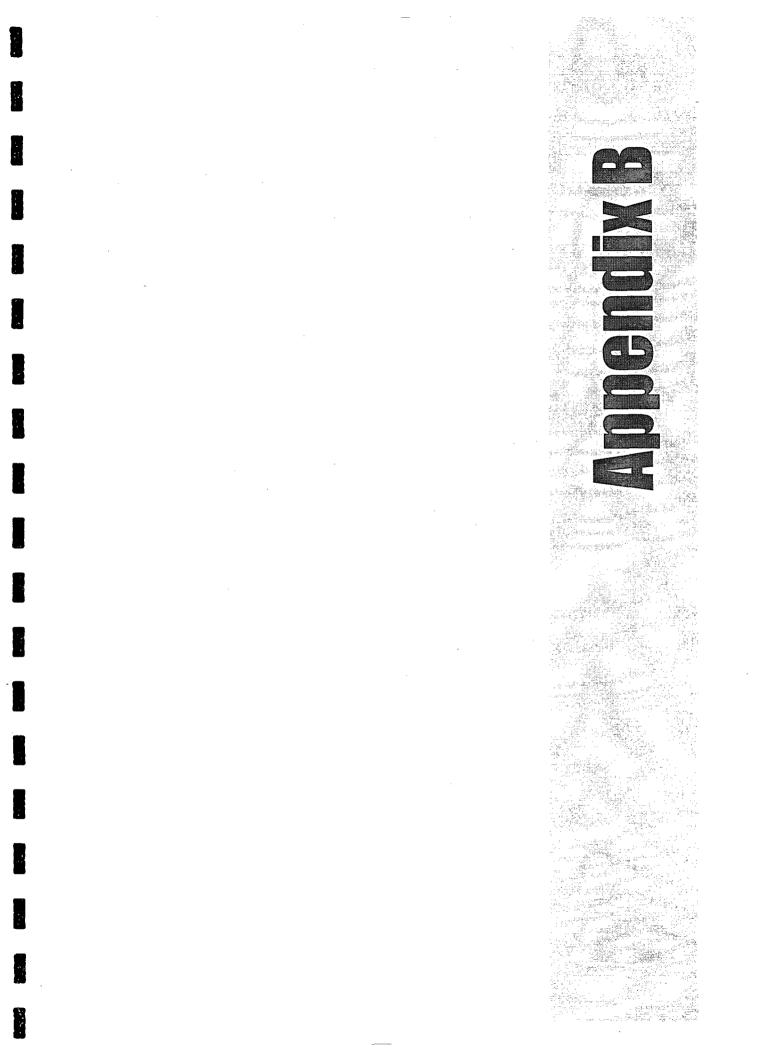
5 ° 8

1.4.2.24

6.1.1

\$ 1.4 . A

- 1 N S


الى مەرىپى بىرى ئۇرىمىدۇ بىر كەرىپىرى

_

JUNCTION BOX CLOSURE REPORT

BOX LOCATION

[SWD SYSTEM	JUNCTION	UNIT	SECTION	TOWNSHIP	RANGE	COUNTY	BOX D	IMENSIONS	S - FEET	
	Hobbs	1-29 vent	1	29	18S	38E	Lea	Lengih	Width	Depth	
		(#1R428-41)	đ	2.5	100	JOL		no box-	-System ab	andoned	
	AND TYPE: E	BLMST.	ATE	FEE LANDO)ccidental P	etroleum /)	OTHER			
1	epth to Groun	idwater	63	leet	NMOCD	SITE ASSE	SSMENT F	VANKING S		10	
	Date Started	11/4/2	004	_ Date Co	mpleted	8/20/2007	NMOC	D Witness	***	0	
9	oil Excavated	0	cubic ya	irds Exc	avation Le	ngth <u>n/a</u>	Width	n/a	Depth	n/a	feat
	Soil Disposed		cubic ya	rds Of	fsite Facility		v/a	Location		n/a	
		up of Remedial			box site was d				·····		was
verba	ly approved by N	MOCO on 7/18/200	07 and confirm	ned via emali o	n 8/8/2007, A	site visit on 8	/20/2007 revea	led that health	y vegetation :	surrounds the	e
site. s	ddilional seed wa	s added. The encl	osed Hicks re	aport (Decemb	er 2007) docur	nents t <mark>ne fulfi</mark> l	liment of the ap	proved CAP a	ind requests	closure of th	is
site.	The monitoring we	ell will remain for p	essible future	use for others	ates in the Hob	bs abandonm	ent investigatio	<u>.</u>			
			81.6.599.6.899.6.1		**** ** *******				E	nolosures as	s stated
	HEREB	IY CERTIFY TH	AT THE IN		ON ABOVE /LEDGE AN			ETE TO TH	IE BEST (DF MY	
REP	ORTASSEMBLE	D 8YK	ristin Farris Po	ope	SIGNATURE	Kai	2110 0	Jania	Pop	2	
	D	ATE	11/28/2007		TITLE			Project Scienti:			

December 4, 2007 Page 2

j

Appendix B – Photograph Documenting Re-Vegetation at I-29 Vent

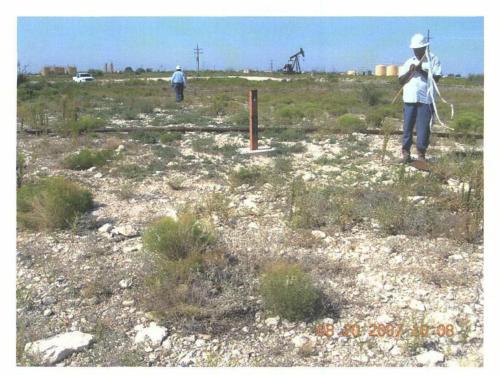
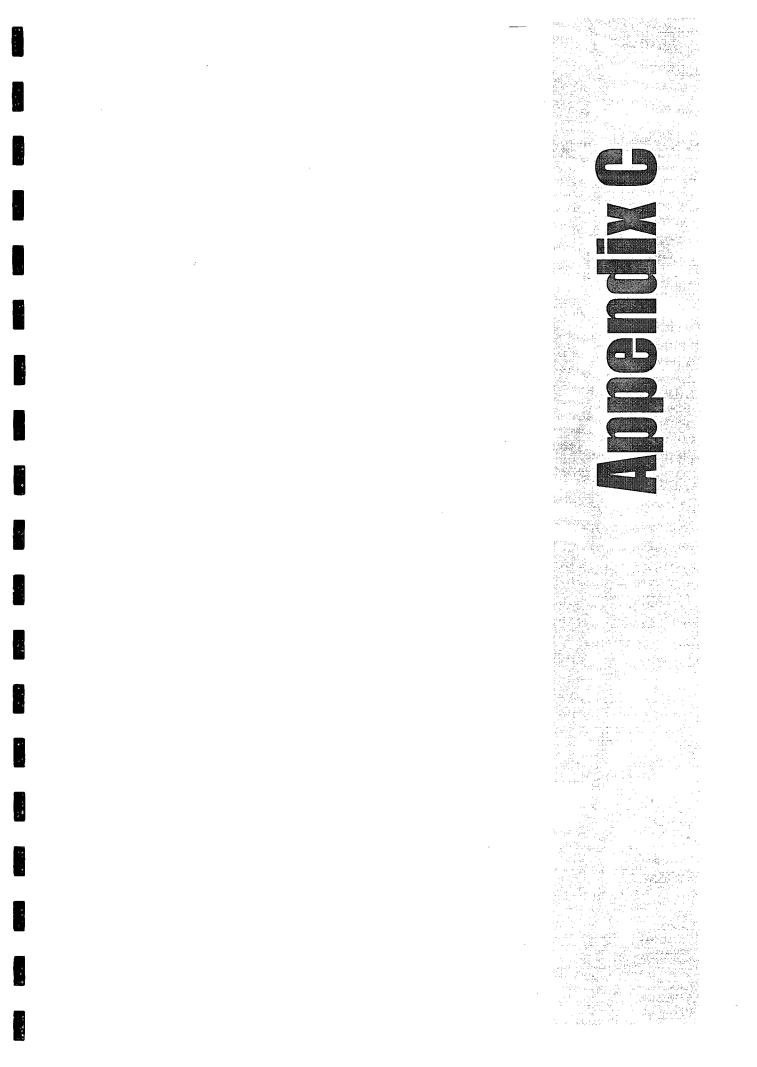



Figure 1: View of I-29-Vent showing re-vegetation

Katie Lee

From:	Kristin Pope [kpope@riceswd.com]
Sent:	Wednesday, October 31, 2007 3:30 PM
To:	Katie Lee
Subject	: Fw: Summary of July 18 meeting

----- Original Message -----From: <u>Hansen, Edward J., EMNRD</u> To: <u>Kristin Pope</u> Cc: <u>Carolyn Haynes</u>; <u>Scott Curtis</u>; <u>Sanchez, Daniel J., EMNRD</u>; <u>Price, Wayne, EMNRD</u> Sent: Wednesday, August 08, 2007 11:26 AM Subject: RE: Summary of July 18 meeting

Kristin,

Your summary appears to be accurate and complete. Attached is the summary that you sent with comments from me [OCD case #s and formal (email) approval dates]. I'll be sending more formal (via email) approvals for the closures and some of the CAPs soon. Also, I will review and comment on the other CAPs and the APs a.s.a.p.

Thanks for the summary. Let me know if you have any questions regarding my comments.

Edward J. Hansen Hydrologist Environmental Bureau 505-476-3489

From: Kristin Pope [mailto:kpope@riceswd.com]
Sent: Wednesday, August 08, 2007 10:34 AM
To: Sanchez, Daniel J., EMNRD; Price, Wayne, EMNRD; Hansen, Edward J., EMNRD
Cc: Carolyn Haynes; Scott Curtis
Subject: Summary of July 18 meeting

Gentlemen,

Please review the attached summary of our July 18 meeting. Please let me know if anything needs to be changed. OCD and ROC have already moved forward with several of the projects listed but I would like written confirmation for our files. Thanks again for your time.

Kristin Farris Pope Project Scientist RICE Operating Company Hobbs, New Mexico (505) 393-9174

This inbound email has been scanned by the MessageLabs Email Security System.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient (s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

1.

OCD/ROC MEETING SUMMARY July 18, 2007

CLOSURES

- Abatement Completion Report for <u>BD Zachary Hinton EOL</u> submitted by R.T. Hicks Consultants on 3/15/2007. AP-50
- 2. Abatement Completion Report for <u>EME Marathon Barber (jct. E-5)</u> submitted by R.T. Hicks Consultants on 5/16/2007. 1R0427-91 *Approved soil work completed Dec. 2006*
- 3. Closure Report for <u>Hobbs I-29 EOL boot</u> submitted by R.T. Hicks Consultants on 5/23/2007. Approved soil work completed in 2006. 1R428-42
- 4. Closure Request for <u>BD jct. N-29</u> submitted by R.T. Hicks Consultants on 2/10/2007. #1R0426-37

APPROVALS

- Stage 1&2 Abatement Plan for <u>Vacuum F/G-35 SWD</u> submitted by R.T. Hicks Consultants; proof of public notice submitted Feb. 2006; AP-59 *Vadose zone remedy complete; reclaiming surface; groundwater treatment ongoing at F-35; evaluating treatment potential at G-35*
- 2. INVESTIGATION & CHARACTERIZATION PLANS (ICP) NMOCD Approved (1 – 14) via email August 6, 2007
 - 1. Hobbs O-5 Historical Release by Hicks on 4/11/2007 #1R428-69
 - 2. <u>EME State 'H' EOL</u> by P. Galusky on 5/1/2007 #1R427-15
 - 3. Justis E-1 vent by Highlander on 11/29/2006. #1R0432-06
 - 4. Vacuum State 'P' EOL by Galusky on 4/20/07 #1R425-26
 - 5. Vacuum jct. F-31-1 by Hicks on 4/17/07. #1R425-27
 - 6. <u>BD P-26-1 vent by Trident on 2/12/2007.</u> #1R0426-106
 - 7. BD jct. P-26-2 by Trident on 2/12/2007. #1R0426-107
 - 8. <u>Hobbs jct. E-4, M-4 vent, & N-4 vent</u> (1 plan) by Hicks on 4/17/07 #1R428-71, #1R428-76, #1R428-68, respectively
 - 9. EME L-6 boot by Trident on 12/1/2006. #1R0427-09
 - 10. EME B-8 leak by Trident on 12/1/2006. #1R0480
 - 11. EME jct. F-18 by Arcadis on 7/6/2007 #1R427-16
 - 12. BD jct. F-25-1 by Arcadis on 7/12/2007 #1R426-10
 - 13. EME L-15-1 vent by Galusky on 7/16/2007 #1R427-173
 - 14. EME State 'Q' EOL boot by Galusky on 7/16/2007 #1R427-174
- Corrective Action Plan (CAP) for <u>Hobbs E-15 SWD</u> submitted on 11/28/2006 by Arcadis G&M. *Approved with clay or GCL condition* #1R428-40 NMOCD Approved with conditions via email July 27, 2007

- 4. CAP for <u>Hobbs F-29-1b boot</u> submitted by R.T. Hicks Consultants on 4/2/2007. #1R428-45
- 5. CAP for <u>Hobbs O-29 vent</u> submitted by R.T. Hicks Consultants on 4/2/2007. #1R428-43
- 6. CAP for <u>Hobbs I-29 vent</u> submitted by R.T. Hicks Consultants on 4/13/2007. #1R428-41
- 7. CAP for <u>Hobbs jct. E-33-1</u> submitted by R.T. Hicks Consultants on 1/2/2007. #1R428-67
- CAP for <u>Hobbs B-32 boot</u> submitted by R.T. Hicks Consultants on 1/22/2007. #1R428-57
- 9. CAP for <u>Hobbs jct. E-32-1</u> submitted by R.T. Hicks Consultants on 1/22/2007. #1R428-65
- CAP for <u>Hobbs F-33 vent</u> submitted by R.T. Hicks Consultants on 1/22/2007. #1R428-58
- 11. CAP for <u>EME A-2 leak</u> submitted by Highlander on 5/23/2007. # 1R0427-62 *condition: install clay at 4 ft instead of 3 ft as proposed*
- 12. CAP for jct. <u>A-2-1</u> submitted by Highlander on 5/23/2007. # 1R0427-177 *condition: install clay at 4 ft instead of 3 ft as proposed*
- 13. CAP for <u>EME I-1 off-site encroachment</u> submitted by Trident on 2/27/07. #1R0464

Rule 19 ABATEMENT PLANS

e 2 .

OCD granted approval to install monitoring wells as proposed while reviewing plans for administrative completeness:

- 1. Stage 1 & 2 Abatement Plan for <u>Hobbs F-29 SWD</u> submitted on 10/27/2006 by R.T. Hicks Consultants. *Public notice ready to submit upon approval*. AP-64
- 2. Stage 1 Abatement Plan for <u>EME C-16(1) leak</u> submitted on 5/25/2007 by L. Peter Galusky; #1R0476 *Public notice ready to submit upon approval*.
- 3. Stage 1 Abatement Plan for <u>EME C-16(2) leak</u> submitted on 5/25/2007 by L. Peter Galusky; #1R0477 *Public notice ready to submit upon approval.*
- 4. Stage 1&2 Abatement Plan for <u>BD Santa Rita release</u> site submitted on 12/11/2006 by Trident. AP-58 *want to drill more MWs*

- 5. Stage 1&2 Abatement Plan for <u>EME jct. M-16-1</u> submitted on 1/29/2007 by Arcadis G&M. AP-42
- Stage 1&2 Abatement Plan for <u>EME jct. A-20</u> submitted on 1/29/2007 by Arcadis G&M. AP-43
- Stage 1 Abatement Plan for <u>BD H-35 pit</u> submitted by Arcadis G&M on 3/23/2007. #1R0216
- 8. Stage 1 & 2 Abatement Plan for <u>Justis jct. L-1 boot</u> submitted by Highlander on 1/17/07. AP-48

OCD WILL REVIEW

- Stage 1 Final Report & Closure Request for <u>EME jct. K-33-1</u> submitted by Whole Earth on 12/28/2006. AP-60 OCD requests confirmation of regional gradient/impact
- 2. CAP for <u>EME M-5 SWD</u> submitted by Hicks on 9/10/2004. #1R424
- 3. Rule 19 Release and CAP for soil for <u>BD jct. F-17</u> submitted by Highlander on 8/30/06. *Additional information requested by OCD was submitted on 12/29/06 and presented at meeting on 2/21/2007.* AP-47
- 4. Request for Release from Rule 19 for <u>EME H-13 release</u> submitted on 8/30/2006 by Highlander Environmental. AP-44 *Additional information requested by OCD was submitted on 12/29/06 and presented at meeting on 2/21/2007. Showed current site photos.*
- 5. Final Investigation Report & CAP for <u>EME jct. K-6</u> submitted by Trident on 3/7/2007. AP-46.

OTHER

- 1. CAP for <u>BD K-4 leak</u> submitted by Highlander on 4/23/2007. #1R0459 *APPROVAL to begin pumping from MW-1 as proposed; OCD will evaluate CAP (soil work)*
- 2. CAP for <u>BD O-17-1</u> vent submitted by Highlander on 5/11/2007. #1R426-12 No groundwater impact; soil work only ROC WILL REVISE AND RE-SUBMIT FOR CLARIFICATION

GEOSYNTHETIC CLAY LINER (GCL) option for Junction Box Upgrade 3. Program Modification request required; can be emailed. NMOCD Approved with conditions via email July 27, 2007

.

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Fax: 505.266-0745

April 12, 2007

Mr. Wayne Price Environmental Bureau Chief New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: NMOCD Case # 1R0428-41, I-29 Vent Hobbs SWD System Abandonment Corrective Action Plan

Dear Mr. Price:

On behalf of Rice Operating Company, R.T. Hicks Consultants, Ltd. is pleased to submit the attached Corrective Action Plan for the I-29 Vent site. This plan presents characterization activities, evaluations and conclusions as well as a proposal for closure of the site after the selected remedy is implemented.

If you have any questions or concerns, please do not hesitate to contact us.

Sincerely, R.T. Hicks Consultants, Ltd.

Natie dec_

Katie Lee Staff Scientist

Copy: Rice Operating Company Hobbs NMOCD Office

Corrective Action Plan

I-29 Vent Site

Section 29, T185, R 38E NMOCD Case #: 1-R0428-41

Prepared for:

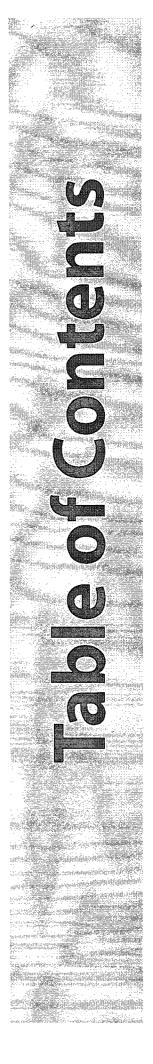
April 9, 2007

Rice Operating Company 122 West Taylor Hobbs, NM 88240

> R.T. Hicks Consultants, Ltd. 901 Rio Grande Blvd. NW, Suite F-142, Albuquerque, NM 87104

Table of Contents

1.0	Introduction	1
2.0	Work Elements Performed	1
3.0	Conclusions	2
4.0	Recommendation	3


Plates

21 t - 8 .

Plate 1: 2004 Aerial Photograph of I-29 Vent Site Plate 2: I-29 Boring Log Plate 3: HYDRUS-1D Vadose Zone Soil Profile

Appendices

Appendix A: D	etails of Characterization Activities
А	t the I-29 Vent Site
Figure A-1:	Chloride Concentrations and PID Readings From I-29 Soil Boring Samples A2
Table A-1:	Laboratory Analysis Results of 1-29 Boring Samples A2
Table A-2:	Quarterly Ground Water Data From the I-29Vent SiteA3
11	eld Measurements & Laboratory Results or Soil Samples
Appendix C: M	lodel Input Parameters and Results
Table C-1:	Hydrus-1D and Mixing Model
	Input Parameters
Table C-2:	Dispersion Lengths
Figure C-1:	Predicted Chloride Concentration In the Aquifer At the I-29 Site Without Vegetation C5
Appendix D: W	orks Consulted

1.0 INTRODUCTION

The I-29 Vent, located west of Hobbs, New Mexico, in section 29, T18S, R38E, was a junction box in the Hobbs Salt Water Disposal (SWD) system, which disposed of produced water from the late 1950s until 2002, when the system was closed. Future impacts from the system are not possible. With the abandonment of the system in 2002, Rice Operating Company (ROC) excavated and removed the SWD I-29 Vent and the uppermost 5–10 feet of the vadose zone. At the time of investigation, the excavation was filled with a mixture of sand-clay-caliche. Activities at the site followed the NMOCD-approved workplan (August 6, 2004).

This Corrective Action Plan presents:

- A description of the characterization activities performed by R.T. Hicks Consultants (Hicks Consultants) and Rice Operating Company (ROC) at the I-29 Vent site located in the Hobbs SWD,
- 2) Evaluation and conclusions drawn from activities performed,
- 3) A proposal for closure of the site after the selected remedy is implemented.

2.0 WORK ELEMENTS PERFORMED

Detailed descriptions of characterization activities are provided in Appendix A. Appendix B shows the results of field chloride measurements. Plate 1 is an aerial photograph of the site when it was active, taken between 1996 and 1998, showing the locations of the boring and background boring.

Activities included:

- 1. I-29 soil boring characterization.
- 2. Background soil boring characterization.
- 3. Field measurements consisting of chloride titration and PID readings for volatiles.
- 4. Submission of two selected soil samples for laboratory analysis in accordance with the workplan.

Corrective Action Plan I-29 Vent Site Section 29, T18S, R 38E NMOCD CASE 1-R0428-41

- 5. Completion of the soil boring as a monitoring well.
- 6. HYDRUS-1D simulation of the site.
- 7. Quarterly monitoring of ground water at the site from December, 2004, to the present day.
- 8. Development of a corrective action plan.

3.0 CONCLUSIONS

3.1 ACTIVITIES AT THE I-29 VENT HAVE NOT CAUSED COCs TO REACH GROUND WATER.

From chloride concentration and PID measurement profiles (confirmed by laboratory analysis), Hicks Consultants concludes that saturated conditions between the surface and ground water never developed and that constituents of concern (COCs) reside in the upper two-thirds of the vadose zone. Ground water monitoring also shows that ground water remains unimpaired and that activities at this site have not caused COCs to reach ground water.

3.2 CHLORIDE CONCENTRATIONS WILL NOT EXCEED WQCC GROUND WATER STANDARDS.

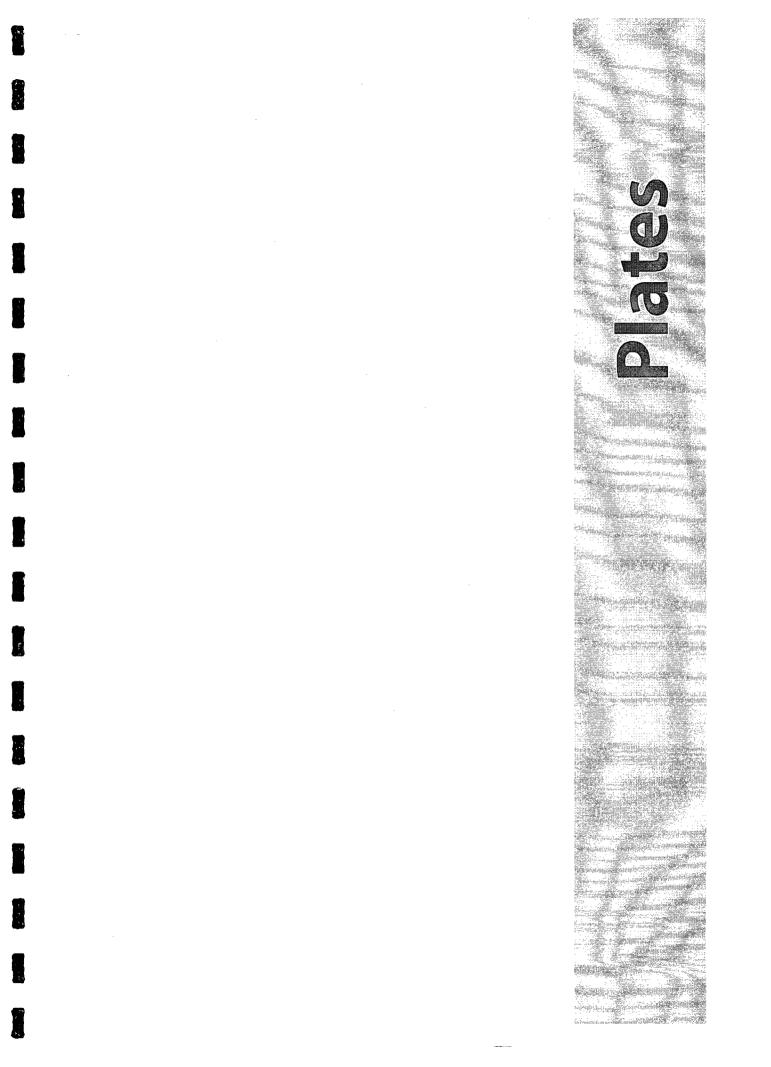
Using highly conservative input data, HYDRUS-1D modeling of the vadose zone chlorides predicts that resulting ground water chloride concentrations will be below the 250 ppm Water Quality Control Commission (WQCC) secondary drinking water standard. At a nearby background monitoring well, over four years of data show that chloride concentration ranges from 111 mg/L to 301 mg/L, with an average concentration of 159 mg/L. The predicted chloride concentration increase at the I-29 site (42 mg/L) could not be differentiated from natural vegetation. The model inputs and methodology are discussed in Appendix C.

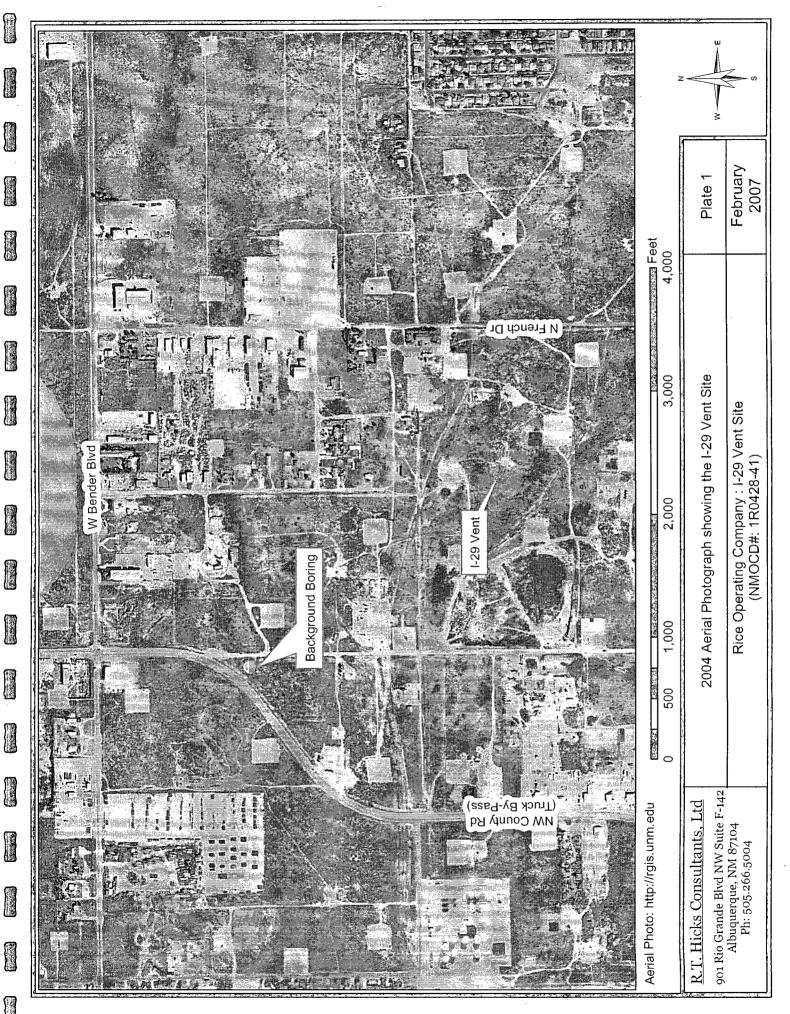
3.3 THE SITE PRESENTS NO THREAT TO FRESH WATER, PUBLIC HEALTH OR THE ENVIRONMENT.

Ground water quality exhibits background levels of chloride concentrations and no detection of hydrocarbons. Because residual petroleum hydrocarbons and chloride are not present in sufficient concentration or sufficient mass, Hicks Consultants concluded

Corrective Action Plan I-29 Vent Site Section 29, T18S, R 38E NMOCD CASE 1-R0428-41

that the site represents no threat to fresh water, public health, or the environment (see discussion in Appendix A and Appendix C).


4.0 RECOMMENDATION


Hicks Consultants recommends that ROC create an infiltration barrier through re-vegetation of the ground surface at the I-29 Vent site. This remedy is protective of ground water quality, human health, and the environment. Upon documentation of this action, a closure report/request will be submitted to NMOCD.

ROC will leave the monitoring well in place pending investigation of other Section 29 sites.

Corrective Action Plan I-29 Vent Site Section 29, T185, R 38E NMOCD CASE 1-R0428-41

Lo	gger: David Hamilton / Mort Bates				Client:					
C	riller: Eades Drilling (0-62 feet) / Atkins Enginee	Eades Drilling (0-62 feet) / Atkins Engineering (60-75			Rice Operating Company					
D	rilling Air Rotary / Hollow Stem Auge	r	Project Name:							
	Date: 11/4/2004 / 11/12/2004				Hobbs I-29 Vent					
End	Date: 11/4/2004 / 11/12/2004		Location:						I-29 Vent MW	
					18S I					
				Sect	tion 2	9, U	Init I			
						l	- 1949 (Sec. 1977)			1923
Depth		1							Field data	
(feet)	Description	Lithology	Comments		W	ell C	onstruction	Depth ft.	Chloride mg/kg	PID ppm
0.0	Surface, light tan, 0-1 feet						Cement, 4 inches tbick			
2.0										
4.0	Caliche, sand, tan, 1-8 feet									
6.0			Some odor					6.0	205	2.9
8.0										
10.0	Calicha cand ailt 9 17 fact							11.0		24.6
12.0	Caliche, sand, silt, 8-17 feet				- 11 I					
14.0										
16.0	Well indurated caliche, 17-19 feet				in the second			16.0	366	202.0
18.0	Caliche, sand, silt, 19-20 feet									
20.0	Very well indurated caliche, 20-22 feet				<u>n</u>			20.0	423	504.0
22.0			Odor		Casing					
24.0	Very fine grained sand silt, yellow-tan, 22-29 feet			2.88	PVC (
26.0					آم ا		Grout, 0.3-54 feet	26.0	512	1049.0
28.0	· · · · · · · · · · · · · ·				40		Grout, 0.3-34 leet			
30.0	Very fine grained sand silt, reddish-tan, 29-34 feet				Sch.			31.0	454	26.3
32.0					inch					
34.0	Caliche, sand, 34-35 feet				2 i					1
36.0	V. f.grained sand silt, reddish-tan, 35-38 feet							36.0	374	10.2
38.0	Caliche, 38-38.75 feet		Hard drilling							
40.0								41.0	209	7.8
42.0	Very fine grained sand silt, reddish-tan, 38.75-46 feet									
44.0						00. 20 00. 20				
46.0	Sand silt, some caliche, 46-51 feet							46.0	284	17.3
48.0	Sand sin, some calche, 40-51 leet									
50.0								51.0	123	5.7
52.0										
54.0	Very fine grained sand silt, reddish-tan, 51-60 feet						Bentonite, 54-57 feet	56.0	85	6.9
56.0			-				Deritorine, 04 07 feet			
58.0					Ш					
60.0								61.0	56	7.4
62.0	Silty sands with broken sandstone, tan, dry, 60-65 feet		Dry		Ш					
64.0							12/20 Silica sand, 57-			
66.0							75 feet. 0.010 Slot Screen, 60-75 feet			
68.0				666	⊢┛		Screen, 00-75 idet			
70.0	Silty fine sand,loose,tan, wet, 65-75 feet		Wet		Щ					
72.0					┠─┥					
74.0		1					ļ			
D.T. Histo Consultante Ltd										
	<u>R.T. Hicks Consultants, Ltd</u> 901 Rio Grande Blvd NW Suite F-142		н	lobbs	; I-2 9	Ver	nt Site		Plate 2	
	Albuquerque, NM 87104									
	505-266-5004		Mo	onitor	ing V	Vell	Boring		April 2007	
L	202 200-2001		<u> </u>					1		

्र 1975 - 197 197

an an an an

age of the

1 8 A.

The Part of the second

27 P. 25

Transfer .

1 **1 1**

			Client:	Location:	
	HYDRUS-1D		Rice Operating Company		
Vad	dose Zone Soil P	rofile	Project Name:	T18S R38	
			I-29 Vent	- Section 2	9
Depth	· ·		Description	Model Profile	Depth
(feet)				Woder Frome	(feet)
0.0		Sa	ndy loam 0-1 feet		0.0
2.0					2.0
4.0					4.0
6.0					6.0
8.0		Loai	my sand, 1-19 feet		8.0
10.0					10.0
12.0					12.0
14.0					14.0
16.0			nd eilt 10 20feet		16.0
18.0			nd, silt 19-20feet lliche, 20-22 feet		18.0
20.0					20.0
22.0 24.0					22.0
24.0					24.0
28.0		Sa	nd, silt 22-34 feet		28.0
30.0					30.0
32.0					30.0
34.0		Ca	aliche, 34-35 feet		34.0
36.0				******	36.0
38.0					38.0
40.0		Sar	nd, silt, 35-45 feet		40.0
42.0					42.0
44.0		Sand	, caliche, 45-47 feet		44.0
46.0			· · · · · · · · · · · · · · · · · · ·		46.0
48.0					48.0
50.0					50.0
52.0		Sar	nd, silt, 47-60 feet		52.0
54.0					54.0
56.0					56.0
58.0					58.0
60.0					60.0
<u>R.</u> T	. Hicks Consultant	s, Ltd			
	Grande Blvd NW S		I-29 Vent Site	Plate 3	
А	lbuquerque, NM 87	104	1-29 Vent Sile	April, 200	7
	505-266-5004			April, 200	1

2 - 1 2, 8

and the second

ļ

A april of

Details of Characterization Activities At the I-29 Vent Site

n

APPENDIX A

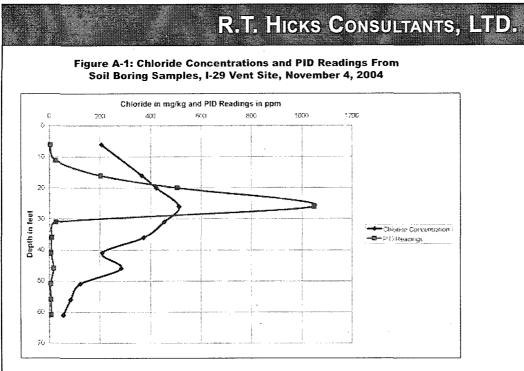
1) I-29 SOIL BORING CHARACTERIZATION

The boring at the I-29 Vent site was drilled in November, 2004, to a depth of 75 feet within the capillary fringe at the site. Plate 2 illustrates the lithology and distribution of constituents of concern.

From 0-35 feet bgs, the split spoon obtained samples at 5-foot intervals. The dry and unconsolidated nature of the sand-silt from 35–60 feet bgs caused loss of split spoon samples during retrieval. In the interval between 35 feet bgs and 60 feet bgs, samples were collected from cuttings. This is the only material deviation from the NMOCD-approved workplan. Moist soil was observed at 61 feet bgs and depth to ground water was estimated at approximately 63 feet bgs. The boring was completed as a monitoring well.

2) BACKGROUND SOIL BORING CHARACTERIZATION

Samples taken from a background boring located about 2,000 feet northwest of the site show that background chloride concentrations in the area are approximately 80 ppm. Appendix B presents the field data from this boring.


3) FIELD MEASUREMENTS

ROC took field measurements from each 5-foot sampling interval for chloride and volatiles in the field using the heated headspace method to measure total organic vapors by photoionization detector (PID). Samples were submitted to a laboratory from depths showing the highest field chloride and PID measurements (26 feet bgs) and from the capillary fringe (61 feet bgs); see Figure A-1. Plate 2 is a lithologic log of the boring with field chloride concentrations and PID measurements. Appendix B provides additional chemical data for the soil samples.

The maximum chloride concentration in the soil is 512 ppm at 26 feet bgs and chloride declines with depth, as shown by Figure A-1.

Corrective Action Plan I-29 Vent Site Section 29, T185, R 38E NMOCD CASE 1-R0428-41

C. 30.0

Chloride concentrations reach approximate background levels (about 80 ppm) at a depth of 51 feet bgs. Field evidence demonstrates that the chloride mass resides in the upper two-thirds of the vadose zone.

PID readings follow a pattern similar to that of chloride, peaking at 26 feet bgs with 1049 ppm total organic vapors, and reaching background concentrations below 36 feet bgs.

Laboratory analysis of the soil sample from 26 feet bgs showed benzene, toluene, ethylbenzene, and zylene (BTEX) are present in total aggregate concentratins below 50 ppm (see Table A-1).

Table A-1: Laboratory Analysis Resul	lts
of Samples From the I-29 Boring.	

Constituent	26 ft. bgs	65 ft. bgs	Detection Limit	NMED Screening Guideline October, 2006		
of Concern	mg/kg (dry)					
Benzene	0.0531	ND		0.0201		
Toluene	0.311	ND		21.7		
Ethyl benzene	0.546	ND	0.025	20.2		
Xylene (p/m)	1.58	ND		81.4		
Xylene (o)	0.245	ND		2.06		

PAGE 🆓

Corrective Action Plan I-29 Vent Site Section 29, T185, R 38E NMOCD CASE 1-R0428-41

BTEX was not detected in field laboratory analysis of the soil sample from the capillary fringe (61 feet bgs).

4) GROUND WATER MONITORING

た湯に

As Table A-2 shows, quarterly monitoring since December, 2004, indicates that activities at the site have not adversely impacted ground water.

Table A-2: Quarterly Ground Water Data From the I-29 Vent Site

Date	Chloride	Sulfate	TDS	Benzene	Toluene	Ethyl Benzene	Total Xylenes
				(mg/L)			
12/2/2004	103	97.7	521	ND	ND	ND	ND
3/21/2005	116	96.6	617	ND	ND	ND	ND
5/19/2005	104	89.7	647	ND	ND	ND	ND
8/9/2005	97.7	87.5	538	ND	ND	ND	ND
11/1/2005	82.7	68	600	ND	ND	ND	ND
1/31/2006	83.1	59.6	508	ND	ND	ND	ND
5/2/2006	102	69.6	572	ND	ND	ND	ND
8/14/2006	98.9	65.9	526	ND	ND	ND	ND
10/31/2006	100	80.3	454	ND	ND	ND	ND
2/3/2006	132	96.4	504	ND	ND	ND	ND

"ND" (non-detect) indicates a concentration that is below detection limits.

Corrective Action Plan I-29 Vent Site Section 29, T18S, R 38E NMOCD CASE 1-R0428-41 Field Measurements & Laboratory Results For Soil Samples

0 0 0

- 14 Par.

2. 196 - 1975 2.4

1. 15. 1.

. . .

Ø 015

System: And Location: V267 F-19 GW: Landowner:								
Soii Bore: Vout 7219 GPS: Coord. System UTM 13 671	0.0 F							
IL I Sec. 29 T / R 75 Map Datum Nad83 362/379 1/								
Depth Cl. PID. Color.	Time							
6 205 2.9 Fin culiche with rocks	······							
11 24.6 white caliely								
16 366 202 - Ten calide some small	·····							
20' 473 504 1""""""""""""""""""""""""""""""""""""	10 m							
	10:20							
31 - 454 26.3 Fint (31:47 a REal 36 374 - 10,7 - 11								
41 209 7.8 Red = and or ralinh	,							
46 284 17.3 11 17.3 11 11 11 11 11 11 11 11 11 11 11 11 11								
51 123 5.7 Red serd	······							
56 8.5 6.9 1 1	·····							
61 56 7.4 " with Rail 4	11:24							
Jami Hoistar P								
	:							
	1							
	·							
	· · · · · · · · · · · · · · · · · · ·							
	<u></u>							
	1							
	·····							
	·							

Notes: Ground water around 62 maybe. Took platures @ bort

Signature description Date 11/1/24

COPY

1 10 C

and the second

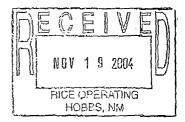
1

		. ·		joil	Bore	
System:	Hobbs	Location	Vait I-24	GN GN	1: 62' Landowner. OXY	
	_					
Soil Bor	<u>e: M, ₩, ±1</u>	VE1+ I-29			GPS: Coord. System UTM	13.671919E
UUI	Sec. 21	T18 R	38		Map Datum Nad83	3621329 N
Depth	Cl.		PID			
60	UI. FREE CI	m Pled cm	PILL 11-4-0		Galor	Time
465 67	1.1	mria col	11-4-6	9		
6361	L'a		0.4		FINE SHELY SAND	091P
			·		}	+
	 -	 			[- f
	 				-	
·	·			-	↓	
	1	·	-			
· ·	1.					
					Γ	
	1					
					1	1
	<u> </u>				-	
	<u></u>			<u>L.</u>	<u> </u>	
	ļ	<u> </u>	L	<u> </u>	£	<u>_</u>
••	ŀ	<u>}</u>	<u>}</u>	-	<u>}-</u>	
<u>`</u>	ŀ	}		F	<u>+</u>	<u></u>
	<u> </u>	<u>[</u>	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
	<u> </u>	<u> </u>		[[
	1	1	<u></u>	l	<u></u>	
	1	·	<u> </u>		ļ	
	<u> </u>	<u> </u>	1			~
	+	+	}			
	+	<u> </u>	<u> </u>	þ	<u>}</u>	
<u> </u>	1	<u>t</u>	1	<u>i</u>	<u>-</u>	
		ſ	[[<u>+</u>	
	1		<u> </u>			
	1	1	ł	1	1	

Notes: Bore Down to 65' still Spann, Spaple 67' Villy Must. PIN. Field CI- TEST Bored down to 75' ck water LUL @ 67.3 Allowed to set 15 min, GW@ 67'3 ck TD @ 73' Set Sceeen OID & 10' BGW & 5' AGW set Spind, set Ping Bentenite MIX Great, Developed well Ettan Sit up

PAJEM Date 11-12-04 Signature Des

PY


11/30/2004 18:05 FAX

•

		<u>مى يىنى مى بىرى بىرى بىرى بىرى بىرى بىرى بىرى </u>
Rice Operating Co.	Project: Vent I-29	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported;
Hobbs NM, 88240	Project Manager: Roy Rascon	11/15/04 16:40
	<u>ڛىنى ، يەنبىرى، يەنبىرى، ، يەنبى سىكىن ، سەخبىرى، بەر سىن ئالىيون ، ئەر سىن ، ئەنبىرى، ئىزان ، ئەر سىر، ، بەر سىن ، ئەر سىن</u>	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB @ 26'	4K.10008-01	Soil	11/04/04 10:20	11/10/04 07:50
SB @ 61'	4K10008-02	Soil	I 1/04/0 4 11:24	11/10/04 07:50

Page 1 of 10

12600 West 1.70 Fast - Adoese Taxos 70705 - (129) 562 1800 E- (129) 562 1712

1	. • • • • • • • • • • • • • • • • • • •		،	
Rice Operatio	ig Co.	Project:	Vent 1-29	Fax: (505) 397-1471
122 W. Tayle	r Pro	ject Number:	None Given	Reported:
Hobbs NM, 8	8240 Pro	ject Manager:	Roy Rascon	11/15/04 16:40
In a second s			<u>ى ئەمەرىيىنى مەمەرىيىنى مەمەرىيىنى مەمەرىيىن مەمەرىيى مەمەرىمى بەر مەمىرىنى مەمەرىيىنى مەمەرىيىنى مەمەرىيى مەمەر</u>	

Organics by GC

Environmental Lab of Texas

Anulyte	Result	Reporting Litait	Units	Dilution	Bitch	Prepared	Analyzed	Method	Note
SB @ 26' (4K10008-01) Soil									
Benzene	0.0531	0.0250	mg/kg dry	25	EK41203	11/11/04	11/12/04	EPA 8021B	
Toluene	0.311	0.0250	R	n		ti	F	ц	
Ethylbenzene	0.546	0.0250	۳	r	n	π	۰ ب	"	
Xylene (p/m)	1.58	0.0250	N	۳	n	v	e	*	
Xylene (0)	0.245	0.0250	٣	-	y	н	11	<i>u</i>	
Surrogate; a, a, a-Trifluorosoluene		174%	80-1	120 ·	"	r r		n	5-04
Surrogate: 4-Bromofluorobenzene		112 %	80-2	120	ŧ	rs	e)	1 7	
Gasoline Range Organics C6-C12	277	10.0	mg/kg dry	1	EK40906	11/10/04	11/11/04	EPA BOISM	
Diesel Range Organics >C12-C35	468	10.0	•	А	π	n	н	U	
Total Hydrocarbon C6-C35	745	10.0	n	u	11	"	et .	e.	
Surrogate: I-Chlorooctane		76.8 %	70	130	17	13		41	
Surrogate: 1-Chlorooctadecane		79.8 %	70	130	n	v	æ	"	
SB @ 61' (4K10008-02) Soil		<u> </u>				_			
Benzene	ND	0.0250	mg/kg dry	25	EK41501	11/12/04	11/12/04	EPA \$021B	
Tolucne	ND	0.0250		*	61	u	ø	lr	
Ethylbenzene	ND	0.0250	*		n	п	ų	n	
Xylene (p/m)	ND	0.0250	н	rf	n	te	n	ĸ	
Xylene (o)	ND	0.0250	•	•		u	π	v	
Surrogate: a, a, a-Trifluorotoluene		92.4 %	80-	120	4	ş1	16	15	
Surrogate: 4-Bromofluorobenzene		103 %	80-	120	17	*	<i>"</i> .	*	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EK40906	11/10/04	11/11/04	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	îh Î	π	**	n	в	*1	
Total Hydrocarbon C6-C35	ND	10.0	br	п	¥	n		•	
Surrogate: 1-Chlorooctane		85.2 %	70-	130		π	N.	#	
Surrogate: 1-Chlorooctadecone		97.8 %	70-	130	F	17	n	27	

Environmental Lab of Texas

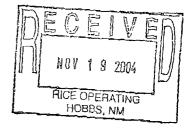
The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 2 of 10

12500 West 1-20 Fact - Orders Taras 70705 - 1427) 562-1800 - En 1422) 562 1713

@ 018

: •

5. M-1


Ø	0	1	9

1			
	Rice Operating Co.	Project: Vcnt I-29	Fax: (505) 397-1471
	122 W. Taylor	Project Number: None Given	Reported;
	Hobbs NM, 88240	Project Manager: Roy Rascon	11/15/04 16:40
	·····································		and the second s

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit Units	Dilation	Batch	Prepared	Analyzed	Method	Notes
SB @ 26' (4K10008-01) Soil								
Chloride .	404	20.0 mg/kg Wet	2	EK41209	11/10/04	11/11/04	SW 846 9253	
% Moisture	6.0	%	l	EK41101	11/10/04	11/11/04	% celculation	
SB @ 61' (4K10008-02) Soll						_		
Chloride	ND	20.0 mg/kg Wei	2.	EK41209	11/10/04	11/11/04	SW 846 9253	
% Moisture	4.0	%	I	EK41101	11/10/04	11/11/04	% calculation	

P

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas, Page 3 of 10

Page 3 of 10

10600 West 1-20 Fact - Oderes Tayor 70705 (120) 569 1000 For 1027 569 1710

sysiem:	1. ale the second	Location	SW:e (2)' Landowner.
Soii Bar	an a	and a second and a s	GPS: Coord. System UTM 13 67/407 8
JL/ F	Sec 20	<u>, 2775</u>	Map Datum Nad83 3:2 1969 //
Depth		<u>FIC</u>	Color, Time
<u>5</u> # 15	/27	1.7	Bart Droko
<u>/a</u>	107	<u> </u>	1 phile withe
	<u></u>	<u> </u>	
21	<u>×\$</u> 51		
24		••••••••••••••••••••••••••••••••••••••	attendied - Loder cool
3	52		Toliche with out
27	1, Z.	3.3	and the could could
92	20	4.7	There is a family of the second se
96 ⁻	126	54	
51	27	2.2	
<u> </u>	57	9.2	
<u></u>	<u> </u>		
	<u></u>	; <u>,</u> , , , , , , , , , , , , , , , , , ,	Marchard Marchard
	1	L. I.	
,			
*********	ļ.	• • • • • • • • • • • • • • • • • • •	
	ļ	ł in	
		t i	
	1	<u> </u> i	
	1	1	
		! 	
·····		·····	
******************************		<u>.</u>	
		1 k	

. ..

To Blank

9 % 0 abr 61-

1 **1** 1

COPY

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Project Na Project Ma		oc Given				Fax: (595) : Repor 11/12/04	trd:
General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas									
Aeral yte	Ressau	Reporting j.antif	Units	Dilution	Re:::	Prepared	Andyaçê	Mabou	No
SB & 61 A (4K 10066-01) Soil Moside	ND	20,(11	rzżą Wei		SX412(?	11/10/54	1172 F.Z.N.	SW 346 9253	
			·						
-					ţ				

COPY

Environmental Lab of Texas

No. 2 de

1. S. S. S.

1.1.2. 2.4

•

The results in this report apply to the samples unalyted an accordance with the samples enceived in the laboratory. Due smalphial report must be reproduced in its entirely, with sering approximal of foreirosemental Lab of Teams. Patho 2 of 4

Page 2 of 4

12600 West 1-20 East - Odessa, Texas 79705 - (452) 563-1800 - Fax (432) 563-1713

Rice Operating Co.	Project: Background Bore	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Glyen	Reparted:
Hobbs NM, 88240	Project Manager: Kristin Pope	11/12/04 16:02

ANALYTICAL REPORT FOR SAMPLES

A Ask .

1984 - 1

4 **8** 6

Sanspäe HD	Laboratory ID	Matrix	Date Sampled	Date Received
SB @ 61 ñ	4K10096-01	Soil	11/03/04 00:00	11/10/04 07:50

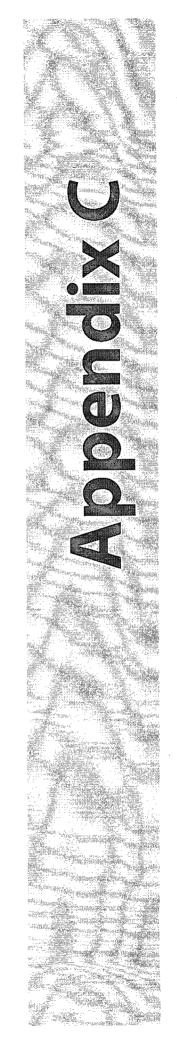
RE	C	53	2 2 2 2		Ē'n
	101		9	8004	
	RICE	ा अब्द	RA 5, N		

Page 1 of 4

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Modeling Input Parameters & Results

10.10


1

R

.

·

.

R.T. HICKS CONSULTANTS, LTD.

APPENDIX C

To model the impact of the vadose zone remedy on ground water at the I-29 Vent site, output from HYDRUS-1D is used as input to a ground water mixing model.

HYDRUS-1D modeling simulates water and chloride fluxes through the vadose zone. The HYDRUS-1D output becomes the input to a simple ground water mixing model to predict chloride concentration in a simulated monitoring well immediately down-gradient of the site. Section 3.0 of "Modeling Study of Produced Water Release Scenarios" (Hendrickx, et al., 2005) provides a general description of this modeling approach (see the Works Consulted section at the end of this document).

The observed vadose zone chloride profile was installed in the model. The present chloride load within the soil profile is the result of all previous activities at the site and is based upon field observation and analysis producing the most accurate modeling approach.

INPUT DATA:

Modeling inputs for the I-29 Vent site are presented in Table C-1.

Table C-1: I-29 HYDRUS-1D and	d Mixing Model Input Parameters
Innut Dorowotor	Course

Input Parameter	Source
Vadose zone thickness - 60 feet	I-29 field data and professional judgement
Vadose zone texture (Plate 3)	I-29 field data
Dispersion length: <6% of model length	Professional judgement
Climate	2004 Hobbs, NM, data and Pearl Weather Station data
Soil moisture	HYDRUS-1D initial condition simulation
Initial soil chloride concentration profile	From ROC field measurements
Length of release parallel to ground water flow: 20 feet	Field measurement
Background chloride in ground water: 100 ppm	Chemical analysis
Ground water flux: 8.6 cm/day	Calculated from published data
Aquifer thickness: 10 feet	Conservative choice

Corrective Action Plan I-29 Vent Site Section 29, T18S, R 38E NMOCD CASE 1-R0428-41

SOIL PROFILE

The I-29 Vent model has a vadose zone soil profile constructed from the lithologic logs of the I-29 Vent boring and five other borings in Section 29. The model's soil profile is representative of a soil profile excavated to a depth of 19-feet bgs. Although the I-29 Vent site was not excavated to this great a depth, this choice is conservative of ground water quality in that the upper 19 feet of the model's soil profile have been replaced with materials featuring equal or greater hydraulic conductivities than the materials at the I-29 Vent site (See Plate 3).

Vadose zone thickness is about 67 feet at the I-29 Vent site. The model uses a thickness of 60 feet. The effect of this difference is to reduce time of transit of infiltrated water through the vadose zone.

DISPERSION LENGTHS

Because of Hicks Consultants' recent experience with similar soils conservative dispersion lengths were employed. Standard practice calls for employing a dispersion length that is 10% of the model length. For each lithologic unit identified in Plate 3, a dispersion length less than 6% of the model thickness was installed (Table C-2 presents the dispersion lengths for each lithology).

	I-29 Hydi	rus-1D Soil Profile	e Properties	
Material	Description	Length (cm)	Dispersion (cm)	% of Profile Length
1	Sandy loam	30	50	2.78
2	Caliche-sand	60	30	1.67
3	Caliche	90	10	0.56
4	Sand-silt	1070	100	5.56
5	Loamy sand	550	100	5.56

Table C-2: I-29 Dispersion Lengths

CLIMATE

Weather data used in the predictive modeling include Hobbs data from November, 2003, to December, 2004, plus an additional 45 years from the Pearl Weather Station, approximately 11 miles west of the Hobbs Airport. The Pearl Weather Station is the closest station to the I-29 Vent site with sufficiently complete weather data for the HYDRUS-1D input files.

Corrective Action Plan I-29 Vent Site Section 29, T185, R 38E NMOCD CASE 1-R0428-41

R.T. HICKS CONSULTANTS, LTD.

SOIL MOISTURE

An initial soil moisture condition was obtained running a HYDRUS-1D simulation for 45 years using the weather data from the Pearl Weather Station. Because soils are relatively dry in this climate and vadose zone hydraulic conductivity varies with moisture content, it is important that simulation experiments of different remedial strategies begin with an initial "steady state" soil moisture content. Vegetation was not allowed in order to create a "wetter" initial condition. This choice is conservative of ground water quality in that "wetter" soils have greater hydraulic conductivities.

The calculation of soil moisture content begins with an initial soil moisture input estimated by professional judgment. Then, sufficient years of weather data are run through the model to establish a "steady state" moisture content. Because only minimal changes in the HYDRUS-1D soil moisture content profile occurred after year 30 of the initial condition calculation, a 45 year simulation was considered acceptable to establish the initial moisture condition. Soil profiles hydrated in this manner were used in all simulations of chloride movement.

INITIAL CHLORIDE PROFILE

From the observed field data generated by ROC personnel, linearly interpolated chloride concentrations were assigned to the model's more finely spaced nodes of the hydrated soil profile.

MIXING MODEL INPUTS:

INFLUENCE DISTANCE

As the vent was oriented vertically, the affected surface area is small. Significant lateral impacts were not observed; therefore, the affected diameter of the site parallel to ground water flow was concluded to be less than or equal to 20 feet.

BACKGROUND CHLORIDE CONCENTRATION

From nearby well data, a value of 100 mg/L chloride for ground water was used for the predictive modeling.

Corrective Action Plan I-29 Vent Site Section 29, T18S, R 38E NMOCD CASE 1-R0428-41

R.T. HICKS CONSULTANTS, LTD.

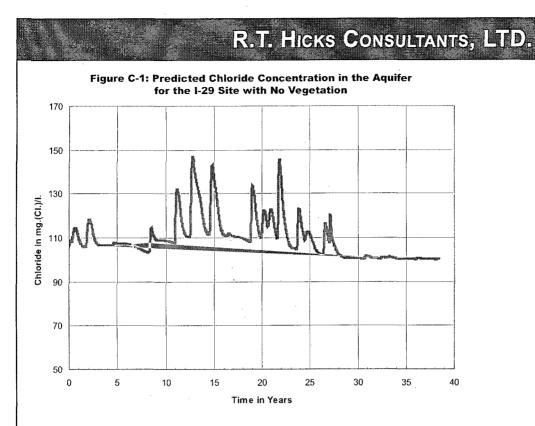
HYDRAULIC CONDUCTIVITY

Hicks Consultants believes that the hydraulic conductivity of the saturated zone at the I-29 Vent site is similar to that observed for the Ogallala Aquifer throughout the general area. McAda (1984) simulated water level declines using a two-dimensional digital model and employed hydraulic conductivity values of 51–75 feet/day (1.9 E-4 to 2.8 E-4 m/s) in the area. According to Freeze and Cherry (1979), these values correspond to clean sand, which agrees with nearby lithologic descriptions of the saturated zone. A value of 45 feet/day was assumed for hydraulic conductivity of the uppermost saturated zone to be conservative of ground water quality.

GROUNDWATER GRADIENT

A hydraulic gradient of 0.0063 was calculated for this site (Intera Report and USGS Topographic Map). Using a hydraulic conductivity of 45 ft/day, ground water flux is calculated as 8.6 cm/day.

AQUIFER THICKNESS


Field data within Section 29 demonstrate that the aquifer is greater than 40 feet thick. A restricted aquifer thickness of 10 feet was employed in the mixing model in accordance with OCD request. This choice is conservative of ground water quality as it results in higher predicted chloride concentrations in a simulated monitoring well.

MODELING RESULTS:

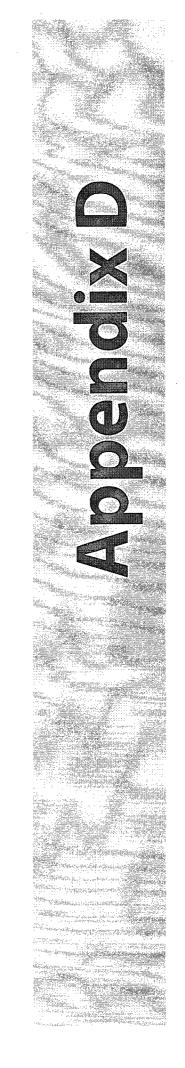
Using the input data described above, HYDRUS-1D and the ground water mixing model predict no exceedance of WQCC ground water standards at the I-29 Vent site (see Figure C-1). For this simulation, it was assumed that no vegetation is present at the site.

Corrective Action Plan I-29 Vent Site Section 29, T18S, R 38E NMOCD CASE 1-R0428-41

As field chloride data demonstrate, impacts at this site are marginally greater than background; thus, an insignificant impact to ground water quality would be expected. As shown in Figure C-1, chloride concentration in the aquifer attains a maximum of 147 ppm approximately 13 years from now. The effect of the chloride load is no longer distinguishable 29 years from now.

Chloride concentration in ground water varies in response to natural causes. At a nearby background monitoring well, over four years of data show that chloride concentration ranges from 111 mg/L to 301 mg/L with an average concentration of 159 mg/L and a standard deviation of 59 mg/L. Therefore, the predicted chloride concentration increase at the I-29 site (47 mg/L) could not be differentiated from natural variation.

Corrective Action Plan I-29 Vent Site Section 29, T185, R 38E NMOCD CASE 1-R0428-41



Works Consulted

.

. .

.

R.T. HICKS CONSULTANTS, LTD.

APPENDIX D

Ash, S.R., 1963, Ground water conditions in northern Lea County, U.S. Geological Survey Hydrologic Investigations Atlas HA-62.

Hendrickx, J., Rodriguez, G., Hicks, R. T., and Simunek, January 2005, Modeling Study of Produced Water Release Scenarios, API Publication Number 4734, 11 pp.

Intera Incorporated, July 8, 2003, Windmill Oil Site Ground Water Sampling Results, prepared for the New Mexico Oil Conservation Division, 3 pp.

McAda, D.P., 1985, Projected water-level declines in the Ogallala aquifer in Lea County, New Mexico, US Geological Survey Water-Resources Investigations Report 84-4062, 84 pp.

Musharrafieh, G. and Chudnoff, M., January 1999, Numerical Simulation of Groundwater Flow for Water Rights Administration in the Lea County Underground Water Basin New Mexico, New Mexico Office of the State Engineer Technical Report 99-1, 6 pp.

Nicholson Jr., A. and Clebsch, A., 1961, Geology and Ground Water Conditions of Southern Lea County, New Mexico, Ground Water Report 6, US Geological Survey, New Mexico Bureau of Mines and Mineral Resources.

Corrective Action Plan I-29 Vent Site Section 29, T185, R 38E NMOCD CASE 1-R0428-41

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

October 20, 2004

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Hobbs SWD System Abandonment Potential Groundwater-Impacted Junction Box Sites Case 1R0414

Dear Mr. Price

This letter serves as our notification for conducting field work associated with the above-referenced project. We will commence field work on November 2.

As discussed in our approved workplan, we have identified five sites that are representative of the system and we plan to install one boring at each site. These five sites are:

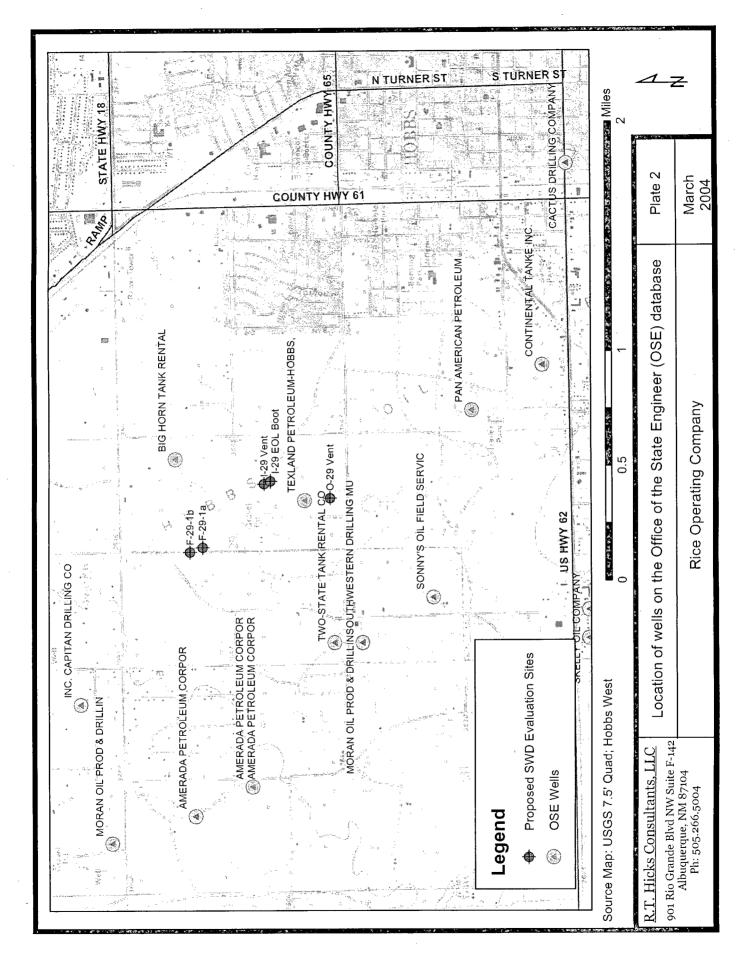
- 1. I-29 Vent Produced Water Pipeline Vent 18S.38E.29.I
- 2. I-29 EOL Boot End of Line Boot 18S.38E,29.I
- 3. O-29 Vent Produced Water Pipeline Vent 18S.38E.29.0
- 4. F-29-1A Junction Box 18S.38E.29.F
- 5. F-29-1B Produced Water Pipeline Boot 18S.38E.29.F

Below, we outline our approach as described in the workplan and in response to your August 6, 2004 conditional approval.

- 1. We will locate the vertical definition sampling borehole as close as practical to the suspected release source.
- 2. From each boring, we will obtain a split-spoon soil sample every five or ten feet throughout the entire vadose zone (ground surface to ground water).
- 3. We will evaluate these discrete samples, the borehole drilling characteristics, and drill cuttings to develop a lithologic profile of the vadose zone.
- 4. We will employ standard methods, as described in the Junction Box Replacement Program Plan, to evaluate all soil samples in the field for chloride content, TPH and volatile organic constituent content.
- 5. We will submit at least one soil sample from each boring to a qualified laboratory for evaluation of chloride and BTEXN (benzene, toluene, ethylbenzene, xylene, naphthalene). The field geologist will identify samples for laboratory analysis after review of the field analysis of chloride, TPH and VOCs. For all borings, we will submit the deepest sample for laboratory analysis of these constituents.

October 20, 2004 Page 2

- 6. The geologist will select two samples from the first boring and two samples from the fourth boring for laboratory analysis of soil moisture content and bulk density.
- 7. We will obtain a background soil sample at a depth of about 5 feet at a location 300 feet from any visible or suspected surface releases.
- 8. If field analyses of a borehole show chloride concentrations are consistently greater than 3 times background from ground surface to ground water, we will conclude that periodic discharges from the source created saturated conditions in the past. For any borehole that encounters these potential saturated conditions, we will continue drilling through the saturated zone to the top of the Dockum Group red beds, which form the base of the aquifer in this area. If the saturated thickness of the aquifer in this boring is less than 25 feet, we will install a 2-inch monitoring well with five feet of screen above the water table and 15 feet below the water table, in a manner consistent with industry standards (see NMOCD, ASTM or EPA publications).
- 9. If the saturated thickness of the aquifer is greater than 25 feet we will install one well screen as described above and a second 5-foot screen above the top of the Dockum Group red beds.
- 10. We will sample any ground water monitoring wells using micro-purge and "nopurge" techniques to collect two separate samples from this "flow through" monitoring well. We will collect a water sample just below the air water interface, which will be employed for evaluation of any impact from a release of hydrocarbons as well as chloride and TDS. At the bottom of the aquifer we will obtain a second sample, which we will test for chloride TDS.
- 11. We expect no material horizontal migration from these potential release sites. If previous excavation work did not provide adequate horizontal characterization, we will provide a protocol for such characterization after our evaluation of these vertical delineation borings.


If you have any questions concerning this field program, please contact Andrew Parker of my staff or me.

Sincerely, R.T. Hicks Consultants, Ltd.

and all T. Hay

Randall Hicks Principal

Copy: Rice Operating Company

and the second s

時にいる

1. 2. 10.00

- 4 A

.

1.2.2

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

March 11, 2004

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Hobbs SWD System Abandonment Potential Groundwater-Impacted Junction Box Sites

Dear Mr. Price

Rice Operating Company (ROC) retained Hicks Consultants to address potential environmental concerns at the above referenced sites. This submission proposes a scope of work that we believe will best mitigate any threat to human health and the environment and lead to closure of the regulatory file for this site.

Background

Plate 1 shows the location of the area of the Hobbs SWD System that is the subject of this work plan. During the abandonment process, ROC found evidence of produced water leakage at 36 sites (see Table 1 and Plate 1). Our initial field inspection suggests that past releases at some of these sites are very minor and will pose no threat to human health or the environment, including surface soil. Nevertheless, we propose a more thorough examination of these sites and submission of our findings.

The Hobbs SWD System operated at a capacity of about 40,000 barrels/day from the late 1950s to the late 1980s. During the past decade, about 1000 barrels/day flowed through the system. We believe that the soil staining and other evidence of produced water leakage at these 36 sites dates to the time when the system was operating at capacity. We hypothesize that accidental releases to the environment at many of these sites ceased in the 1990s and natural restoration has mitigated the effects of any past releases. At most release sites, we witnessed no vegetation stress that we could attribute to any past releases. Our proposed scope of work is outlined below.

Task 1Collect Regional Hydrogeologic Data

Within the area shown on Plate 1, we found over 2000 wells in the database of the Office of the State Engineer (OSE). Plate 2 shows the location of selected water wells on the OSE and USGS database. Table 2 identifies the well owners and certain other specifics regarding these selected wells. We understand that the NMOCD is currently obtaining water levels and water quality samples in support of an investigation of the nearby Windmill Oil Company site (Section 30). We understand that the results of the NMOCD study are not presently available. We do not plan to duplicate NMOCD efforts and Table 2 excludes all wells found in Section 30.

Nevertheless, we require some regional data in order to proceed in a timely fashion. We will attempt to sample at least 10 wells identified in Table 2 to provide an understanding of the regional water quality. Where possible, we will obtain static water levels from these wells. For each of these wells, we will obtain available driller's logs to help us define the regional geology.

We will evaluate these data, data available from the NMOCD investigation of the Windmill Oil Company, published data, and available historical data from the USGS database. The purpose of this research is to assist us with the planning of the proposed drilling program (Task 2).

Task 2Evaluate Chloride and BTEXN Concentrations in Soil at FiveSites, Evaluate Ground Water Quality if Necessary

We have identified five sites that are representative of the system and we plan to install one boring at each site. These five sites (see Plate 1 and Table 1) are:

1.	I-29 Vent	Produced Water Pipeline Vent	18S.38E.29.I
2.	I-29 EOL Boot	End of Line Boot	18S.38E,29.I
3.	O-29 Vent	Produced Water Pipeline Vent	18S.38E.29.0
4.	F-29-1A	Junction Box	18S.38E.29.F
5.	F-29-1B	Produced Water Pipeline Boot	18S.38E.29.F

We will locate the sampling borehole as close as practical to the suspected release source. Due to the presence of caliche in the subsurface, we plan to employ air-rotary drilling techniques. From each boring, we will obtain split-spoon soil samples every five or ten feet of the vadose zone.

We will evaluate these discrete samples, the borehole drilling characteristics, and drill cuttings to develop a lithologic profile of the vadose zone. We will employ standard methods, as described in the Junction Box Replacement Program Plan, to evaluate all soil samples in the field for chloride content, TPH and volatile organic constituent content. We will submit at least one soil sample from each boring to a qualified laboratory for evaluation of chloride and BTEXN (benzene, toluene, ethylbenzene, xylene, naphthalene). The field geologist will identify samples for laboratory analysis after review of the field analysis of chloride, TPH and VOCs. The geologist will select two samples from the first boring and two samples from the fourth boring for laboratory analysis of soil moisture content and bulk density. We will also obtain a background soil sample at a depth of about 5 feet.

If field analyses of a borehole show chloride concentrations are consistently greater than 3 times background from ground surface to ground water, we will conclude that periodic discharges from the source created saturated conditions in the past. For any borehole that encounters potential saturated conditions, we will continue drilling through the saturated zone to the top of the Dockum Group red beds, which form the base of the aquifer in this area. If the saturated thickness of the aquifer in this boring is less than 25 feet, we will install a 2-inch monitoring well with five feet of screen above the water table and 15 feet below the water

.

5 N 30

table, in a manner consistent with industry standards (see NMOCD, ASTM or EPA publications). If the saturated thickness of the aquifer is greater than 25 feet we will install one well screen as described above and a second 5-foot screen above the top of the Dockum Group red beds. We will use micro-purge and "no-purge" techniques to collect two separate samples from this "flow-through" monitoring well. We will collect a sample the air water interface, which will be employed for evaluation of any impact from a release of hydrocarbons as well as chloride and TDS. At the bottom of the aquifer we will obtain a second sample, which we will test for chloride TDS. Appendix A describes the "no-purge" sampling technique we plan to employ at this site after initial sampling using micro-purge techniques.

Task 3Evaluate Chloride, Benzene and Naphthalene Flux from the
Vadose Zone to Ground Water

We anticipate that one or all of the five sites selected for borehole investigation will show evidence of seepage from the source to a depth of more than 10-feet. For these sites, excavation and disposal of released material can cause more environmental damage than it cures. For such sites, we propose to employ HYDRUS-1D and a simple ground water mixing model to evaluate the potential of any residual chloride and hydrocarbon mass in the vadose zone to materially impair ground water quality at the site. We will employ predictions of the migration of chloride ion, benzene and naphthalene from the vadose zone to ground water in our selection of an appropriate remedy for the land surface and underlying vadose zone. This simulation is the "no action" alternative, which predicts chloride flux to ground water in the absence of any action by ROC. We have selected these three constituents for simulation modeling because each of these constituents exists in the fluids stored in the tanks and each is specifically regulated by New Mexico ground water regulations (WQCC).

Tabl	e 3: Input Parameters for HYDRUS-1D
Input Parameter	Source
Vadose Zone Thickness	Proposed borings and/or well logs on file with the OSE
Vadose Zone Texture	Proposed borings and well logs on file with the OSE
Dispersion Length	Professional judgment, typically 10% of the model length
Soil Moisture	Field Measurements from borings and/or HYDRUS-1D simulations
Vadose Zone Chloride Load	Sampling data from proposed borings
Length of release	Field Measurements, these sites are generally less than 30 feet in
perpendicular to ground	diameter
Climate	Pearl, NM station (Hobbs)
Background Chloride in Ground Water	Samples from water supply wells
Ground Water Flux	Calculated from regional hydraulic data, data from nearby wells, and published data
Aquifer Thickness	Nicholson and Clebsch (1960), and well logs on file with the OSE

We will employ the input parameters to HYDRUS and the mixing model outlined in Table 3. In

the no action simulation, we will assume that vegetation is present over the release site. This assumption is consistent with our site observations. We anticipate that any release of chloride to ground water will disperse throughout the entire thickness of the aquifer after a short travel distance. Unless the hydrogeology of the site suggests differently (see Task 1), we plan to use the entire aquifer thickness as the input to the mixing model equation. For hydrocarbons, such as benzene and naphthalene, assuming a chemical stratification within the aquifer is appropriate. For these constituents, we plan to use only the uppermost 10 feet of the aquifer in the mixing model equation

Task 4 Design Corrective Action Plan

After ROC completes the abandonment of the Hobbs SWD System, there can be no additional releases of produced water. Our modeling of the "no action alternative" at these five sites may show that the residual chloride and hydrocarbon mass in the vadose zone poses a threat to ground water quality. If such a threat does exist, we will expand upon the HYDRUS-1D model predictions described above to develop a remedy for the vadose zone. If necessary, we will simulate:

- 1. excavation, disposal and replacement of clean soil to remove the chloride and hydrocarbon mass,
- 2. installation of a low permeability barrier to minimize natural infiltration,
- 3. surface grading and seeding to eliminate any ponding of precipitation and promote evapotranspiration, thereby minimizing natural infiltration, and
- 4. a combination of the above potential remedies.

We will select the vadose zone remedy that offers the greatest environmental benefit while causing the least environmental damage. We will provide a Net Environmental Benefit Analysis to support our selection of the remedy.

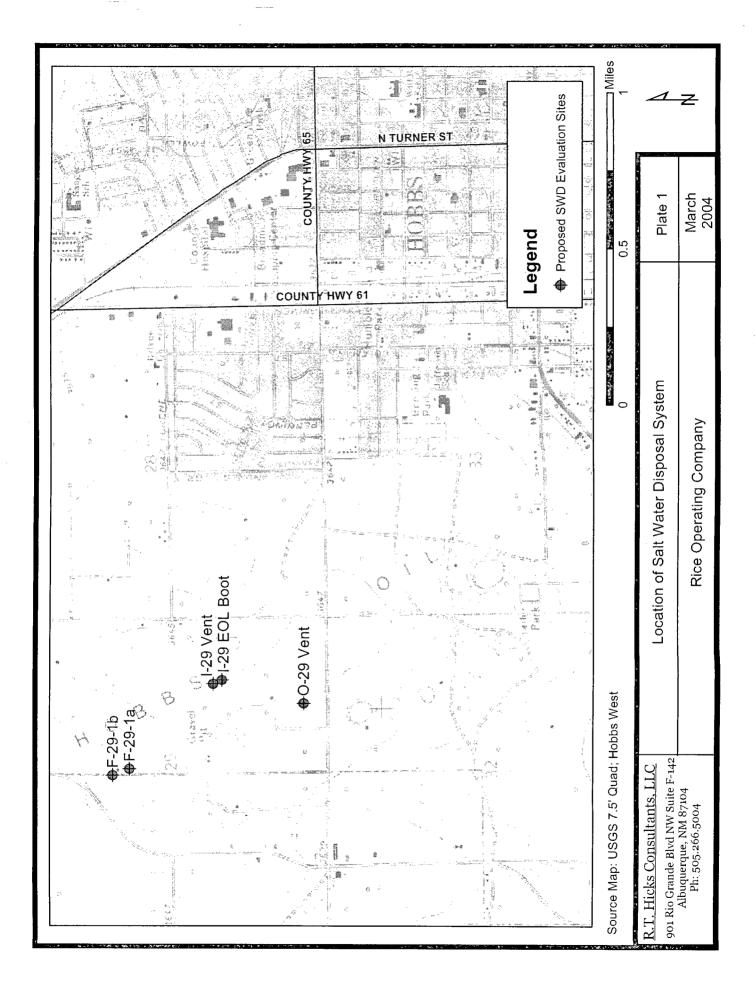
We will use the ground water mixing model or a suitable alternative to assist in the design of any required ground water remedy. It is possible, however, that the background chloride and /or hydrocarbon concentrations in ground water measured in the nearby wells are equal to or higher than the concentration in any monitoring well installed under this work plan. Such data would strongly suggest that the site in question has not caused any material impairment of ground water quality. If we find no evidence of impairment of water quality due to past activities, we will not prepare a ground water remedy. If data suggest that the site has contributed chloride or hydrocarbons to ground water and caused ground water impairment, we will examine the following alternatives:

- 1. Natural restoration due to dilution and dispersion,
- 2. Pump and dispose to remove the chloride and hydrocarbon mass in the saturated zone,

- 3. Pump and treat to remove the chloride and hydrocarbon mass in the saturated zone,
- 4. Because of the location of the site, institutional controls negotiated with the landowner may provide an effective remedy. Such controls may be restriction of water use to livestock until natural restoration returns the water quality to state standards, a provision for alternative supply well design, or a provision for well head treatment to mitigate any damage to the water resource.

We will select the ground water remedy that offers the greatest environmental benefit while causing the least environmental damage. We will provide a Net Environmental Benefit Analysis to support our selection of the remedy. We may propose additional ground water monitoring wells to support the evaluation and selection of a remedy.

We plan to deliver a Corrective Action Plan that is similar to the Junction Box Replacement Program Plan. This type of submittal will allow ROC to evaluate each site, prioritize the restoration of each site based upon a risk profile, and then begin restoration of those sites that pose the highest risks. Depending upon the results of the work described herein, ROC may elect to move forward with an area-wide plan rather than proposing 36 individual remedies. We propose to complete the work of described in Tasks 1-3, begin the work outlined in Task 4 and then meet with NMOCD to discuss the scope of the final submittal.


We plan to commence data collection for the HYDRUS-1D simulations described above in late late March or early April. Your approval to move forward with this work plan will facilitate our access to nearby wells and approval of expenditures by the System Partners.

Sincerely, R.T. Hicks Consultants, Ltd.

and all T. Hy

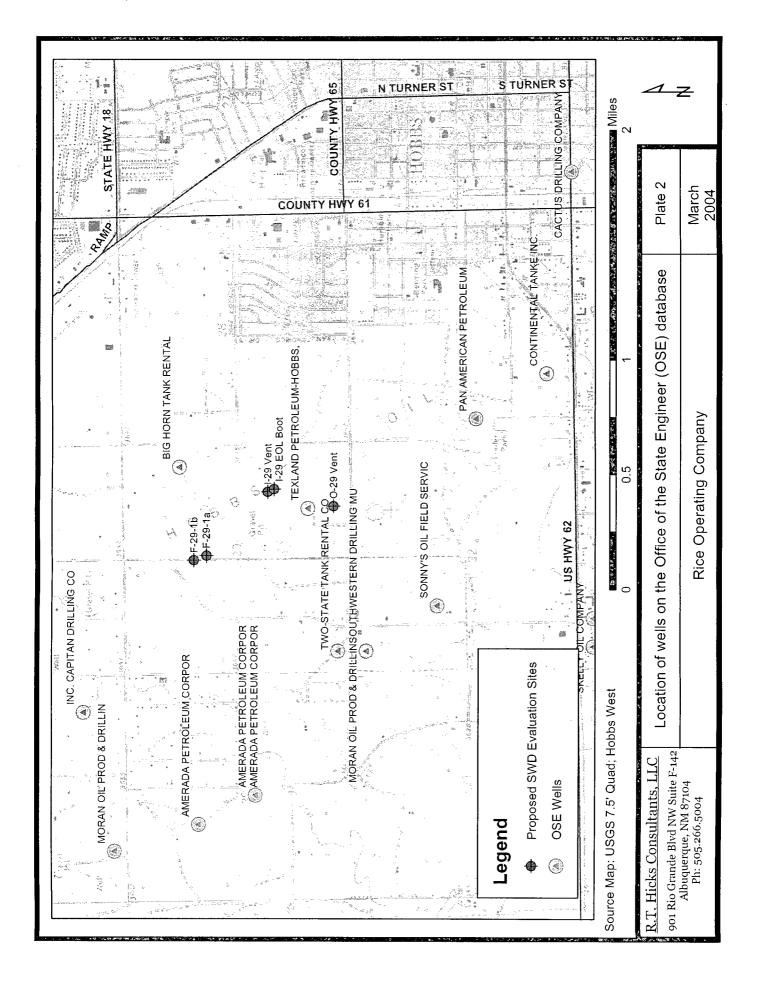
Randall T. Hicks Principal

Copy: Rice Operating Company

1. S. 1.

Se. 49. 74

Sec. 16


. 4. . . 200

and a look

Cal . 150

1. . . in

18 N N

> . . .

1.00

1.0.0 m

20.4870 g

HOBS Junction Box Disclosures: Potential Groundwater Impact HOBS Junction Box Disclosures: Potential Groundwater Impact here scope of the Kice Operating Company Carrier Junction Box Plan. Each of these sites has the potential for groundwater impact, based out tealing company Carrier Junction Box Plan. Each of these sites has the potential for groundwater impact, based on utellineation results. As noted, some of the sites are conficient of these sites has the potential for the NMOCD and are bit monitored for groundwater quality. These sites are bring compared for risk-based corrective action and plans will be subnitted to the NMOCD. F-24-3 Yent Hobbs F Sec 23, TISS, R33E Sci0 NM Initial evaluation only 1/3/120 F-24-3 Yent Hobbs F Sec 23, TISS, R38E Sci0 Oxy Permian Initial evaluation only 1/3/120 M-20 Yent Hobbs F Sec 23, TISS, R38E Sci0 Oxy Permian Initial evaluation only 1/3/120 M-20 Yent Hobbs F Sec 29, TISS, R38E Sci0 Oxy Permian Initial evaluation only 1/3/120 0-29 FOL Hobbs F Sec 29, TISS, R38E Sci0 Oxy Permian Initial evaluation only 1/3/120 0-29 FOL Hobbs	Box Disclosures: Parelle rather than "closure" sitt pany Generic Junction Box are confirmed to have groun sites are being evaluated for T18S, R37E <50 T18S, R38E <50 T18	Potential Groundwater Impactsites because significant TPH or salt impactox Plan. Each of these sites has the potentiaoundwater impact and have been officially roundwater impact and have been officially rI for risk-based corrective action and plans wNMInitial eNMNMInitial eOxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy PermianInitial eOxy PermianInitial eInitial eInitial eInitial eInitial eInitial eInitial eInitial e<	er Impact or salt impact has deemed the site re as the potential for groundwater imp en officially reported to the NMOCI on and plans will be submitted to the Initial evaluation only Initial evaluation only	mediation to be act, based on D and are being NMOCD. 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003
These junction box sites have because significant TPH or saft impact has deemed the site remediation to be outside here copraring Company Generic Junction Box Plan. Each of these sites has the potential for groundwater impact, based on dimensent results. As noted, some of the sites are confirmed to have groundwater quality. Thes sites perturbation Box Plan. Each of these sites has the potential for groundwater impact, based on dimensed for groundwater quality. Thes sites are confirmed to have groundwater quality. These sites are confirmed to tarve groundwater quality. These sites has the potential for groundwater dot. It Bobs F 25 (118), R37E <0 NM Initial evaluation only [131/2003] F-24-3 Vent Hobbs F Sec.20, TISS, R33E Sol Oxy Permian Initial evaluation only [131/2003] M-20 Vent Hobbs F Sec.20, TISS, R33E Oxy Permian Initial evaluation only [131/2003] C-29 EOL Hobbs F Sec.20, TISS, R33E Oxy Permian Initial evaluation only [131/2003] C-29 EOL Hobbs F Sec.20, TISS, R33E Oxy Permian Initial evaluation only [131/2003] C-29 EOL Hobbs	 ' rather than "closure" sit iny Generic Junction Box e confirmed to have groutes e confirmed to have groutes e sare being evaluated fo 18S, R37E 650 18S, R38E 650 	es because significant TPH Plan. Each of these sites ha adwater impact and have be rrisk-based corrective actic NM NM Samuel Bruton Oxy Permian Oxy Permian Oxy Permian Oxy Permian Oxy Permian Oxy Permian Oxy Permian	or salt impact has deemed the site re as the potential for groundwater imp een officially reported to the NMOCI on and plans will be submitted to the Initial evaluation only Initial evaluation only	emediation to be act, based on D and are being NMOCD. 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003
	tes are being evaluated fc 18S, R37E <50 18S, R37E <50 18S, R38E <50 18S, R38	rrisk-based corrective actic NM NM Samuel Bruton Oxy Permian Oxy Permian Oxy Permian Oxy Permian Oxy Permian Oxy Permian	on and plans will be submitted to the Initial evaluation only Initial evaluation only	NMOCD. 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003
F-25 EOL Hobbs F F-25 EOL Hobbs F M-20 Vent Hobbs F T-29 EOL Hobbs F -29 EOL Hobbs F -29 EOL Hobbs K 0-29 EOL Hobbs K 0-29 Vent Hobbs O 0-29 Vent Hobbs O 0-29 Vent Hobbs O 0-29 Vent Hobbs O 0-29 Vent Hobbs P 0-29 Vent Hobbs P 0-29 Vent Hobbs P 0-29 Vent Hobbs P 0-29 Vent Hobbs F Jct. F-31-2 Hobbs F Jct. F-31-1 Hobbs F Jct. F-31-1 Hobbs F Jct. F-31-1 Hobbs F Jct. F-31 Hobbs F Jct. F-20-1A Hobbs F Jct. F-29-1A Hobbs F		NMSamuel BrutonOxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy Permian	Initial evaluation only Initial evaluation only	1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003
M-20 VentHobbsME-29 VentHobbsEI-29 EOLHobbsE-29 EOLHobbsK -29 EOLHobbsK $0-29$ EOLHobbsO $0-29$ VentHobbsO $0-29-1$ VentHobbsO $0-29-1$ VentHobbsP $0-29-1$ VentHobbsP $0-29-1$ VentHobbsP $0-29-1$ VentHobbsP $0-29-1$ VentHobbsP $0-20-1$ VentHobbsP $1ct.$ F-31-1HobbsF $1ct.$ F-31-2HobbsF $1ct.$ F-31-2HobbsP $1ct.$ F-31-2HobbsF $1ct.$ F-31-1HobbsF $1ct.$ F-31-2HobbsF $1ct.$ F-29-1AHobbsF $1ct.$ F-29-1AHobbsF $1-29$ VentHobbsF $1-29$ VentHobbsF $1-29$ VentHobbsF $1-20$ VentHobbsF		Samuel BrutonOxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy Permian	Initial evaluation only Initial evaluation only Initial evaluation only Initial evaluation only Initial evaluation only Initial evaluation only Initial evaluation only	1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003
E-29 VentHobbsE1-29 EOLHobbsI-29 EOL BootHobbsK -29 EOL BootHobbsO $0-29$ VentHobbsO $0-29$ -UHobbsO $0-29$ -I VentHobbsO $0-29$ -I VentHobbsP $0-29$ -I VentHobbsP $0-29$ -I VentHobbsP $0-29$ -I VentHobbsP $0-20$ -UHobbsP $0-20$ -UHobbsP $0-20$ -UHobbsP $0-20$ -UHobbsP $0-20$ -UHobbsP 1 Ct. F-31-2HobbsP 1 Ct. F-31-2HobbsP 1 Ct. F-31-2HobbsP 1 Ct. F-20-1AHobbsP 1 Ct. F-20-1AHobbsF 1 Ct. F-20-1BHobbsF 1 Ct. F-20-1AHobbsF 1 Ct. F-20-1BHobbsF 1 Ct. F-20-1B <td></td> <td>Oxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy Permian</td> <td>Initial evaluation only Initial evaluation only Initial evaluation only Initial evaluation only Initial evaluation only Initial evaluation only</td> <td>1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003</td>		Oxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy Permian	Initial evaluation only Initial evaluation only Initial evaluation only Initial evaluation only Initial evaluation only Initial evaluation only	1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003
I-29 EOLHobbsI -29 EOL BootHobbsK $O-29$ EOL BootHobbsO $O-29$ VentHobbsO $O-29-1$ VentHobbsO $O-29-1$ VentHobbsP $D-29-1$ VentHobbsP $D-29-1$ VentHobbsP $D-29-1$ VentHobbsP $D-29-1$ VentHobbsP $D-29-1$ VentHobbsF $Jct. F-31-1$ HobbsF $Jct. F-31-2$ HobbsF $Jct. F-31-2$ HobbsF $Jct. F-31-2$ HobbsF $Jct. F-31-2$ HobbsF $Jct. P-31$ HobbsF $Jct. P-31$ HobbsF $Jct. P-31$ HobbsF $Jct. F-29-1A$ HobbsF $Jct. F-29-1A$ HobbsF $Ict. F-29-1A$ HobbsF $Jct. F-29-1B$ HobbsF $Jct. F-20-1B$ HobbsF </td <td></td> <td>Oxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy Permian</td> <td>Initial evaluation only Initial evaluation only Initial evaluation only Initial evaluation only Initial evaluation only</td> <td>1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003</td>		Oxy PermianOxy PermianOxy PermianOxy PermianOxy PermianOxy Permian	Initial evaluation only Initial evaluation only Initial evaluation only Initial evaluation only Initial evaluation only	1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003
-29 EOL BootHobbsK -29 EOL BootHobbsO $0-29$ VentHobbsO $0-29-1$ VentHobbsO $0-29-1$ VentHobbsP $0-29-1$ VentHobbsP $0-29-1$ VentHobbsP $1000000000000000000000000000000000000$		Oxy PermianOxy PermianOxy PermianOxy PermianOxy Permian	Initial evaluation only Initial evaluation only Initial evaluation only Initial evaluation only	1/31/2003 1/31/2003 1/31/2003 1/31/2003 1/31/2003
0-29 EOL Hobbs O Sec 29, $0-29$ Vent Hobbs O Sec 29, $0-29-1$ Vent Hobbs O Sec 29, $P-29$ Vent Hobbs P Sec 29, $0-29-1$ Vent Hobbs P Sec 29, $0-29$ Vent Hobbs P Sec 29, $0-230$ Vent Hobbs F Sec 31, Jct. F-31-1 Hobbs F Sec 31, Jct. F-31-2 Hobbs F Sec 31, B-32 Boot Hobbs F Sec 31, B-32 Boot Hobbs F Sec 32, Jct. F-31-2 Hobbs A Sec 32, Jct. A-25 Hobbs A Sec 32, Jct. A-25 Hobbs A Sec 32, Jct. P-31 Hobbs P Sec 32, Jct. F-24-1 Hobbs F Sec 24, Jct. F-29-1A Hobbs F Sec 29, Jct. F-29-1A Hobbs F Sec 29, Jct. F-29-1A Hobbs F Sec 29,		Oxy Permian Oxy Permian Oxy Permian Oxy Permian	Initial evaluation only Initial evaluation only Initial evaluation only	1/31/2003 1/31/2003 1/31/2003 1/31/2003
O-29 Vent Hobbs O Sec 29, $O-29-1$ Vent Hobbs O Sec 29, $P-29$ Vent Hobbs P Sec 29, $P-29$ Vent Hobbs P Sec 29, $D-29-1$ Vent Hobbs P Sec 29, $D-29$ Vent Hobbs F Sec 31, $Jct. F-31-1$ Hobbs F Sec 31, $Jct. F-31-2$ Hobbs A Sec 31, $Jct. A-25$ Hobbs A Sec 41, $Jct. A-25$ Hobbs P Sec 31, $Jct. P-31$ Hobbs P Sec 31, $Jct. F-24-1$ Hobbs F Sec 24, $Jct. F-29-1A$ Hobbs F Sec 29, $Jct. F-29-1A$ Hobbs F Sec 29, $Jct. F-29-1A$ Hobbs F Sec 29, $Jct. F-29-1B$ Hobbs F		Oxy Permian Oxy Permian Oxy Permian	Initial evaluation only Initial evaluation only	1/31/2003 1/31/2003 1/31/2003
O-29-1 Vent Hobbs O Sec 29, $P-29$ Vent Hobbs P Sec 29, $C-30$ Vent Hobbs C Sec 30, $Jct. F-31-1$ Hobbs F Sec 31, $Jct. F-31-2$ Hobbs F Sec 31, $Jct. F-31-2$ Hobbs F Sec 31, $Jct. F-31-2$ Hobbs F Sec 31, $B-32$ Boot Hobbs F Sec 32, $B-32$ Vent Hobbs F Sec 32, $A-6$ Vent Hobbs A Sec 32, $Jct. A-25$ Hobbs A Sec 31, $Jct. A-25$ Hobbs A Sec 32, $Jct. P-31$ Hobbs P Sec 31, $Jct. F-24-1$ Hobbs F Sec 24, $Jct. F-29-1A$ Hobbs F Sec 29, $Ict. F-29-1A$ Hobbs F Sec 29, $Ict. F-29-1A$ Hobbs F Sec 29, $Ict. F-29-1A$ Hobbs I Sec 29, $Ict. F-29-1A$ Hobbs I <td< td=""><td>R38E R38E R38E R38E</td><td>Oxy Permian Oxy Permian</td><td>Initial evaluation only</td><td>1/31/2003</td></td<>	R38E R38E R38E R38E	Oxy Permian Oxy Permian	Initial evaluation only	1/31/2003
P-29 Vent Hobbs P Sec 29, C-30 Vent Hobbs C Sec 30, Jct. F-31-1 Hobbs F Sec 31, Jct. F-31-2 Hobbs F Sec 31, Jct. F-31-2 Hobbs F Sec 31, Jct. F-31-2 Hobbs F Sec 31, B-32 Boot Hobbs F Sec 32, F-33 Vent Hobbs F Sec 33, A-6 Vent Hobbs A Sec 5, Jct. A-25 Hobbs A Sec 25, Jct. A-25 Hobbs P Sec 24, Jct. F-24-1 Hobbs F Sec 29, Jct. F-29-1A Hobbs F Sec 29, Jct. F-29-1B Hobbs F Sec 29, Jct. F-29-1A Hobbs F Sec 29	R38E R38E D30E	Oxy Permian	Initial analysian and.	1/21/2003
C-30 Vent Hobbs C Sec 31 , Jct. F-31-1 Hobbs F Sec 31 , Jct. F-31-2 Hobbs F Sec 31 , Jct. F-31-2 Hobbs F Sec 31 , B-32 Boot Hobbs F Sec 31 , B-32 Boot Hobbs F Sec 32 , F-33 Vent Hobbs F Sec 32 , A-6 Vent Hobbs A Sec 31 , Jct. A-25 Hobbs A Sec 31 , Jct. A-25 Hobbs A Sec 31 , Jct. A-25 Hobbs P Sec 31 , Jct. A-25 Hobbs P Sec 31 , Jct. F-24-1 Hobbs F Sec 24 , Jct. F-29-1A Hobbs F Sec 29 , Jct. F-29-1A Hobbs F Sec 29 , Jct. F-29-1B Hobbs F Sec 29 , Jct. F-29-1A Hobbs F Sec 29 , Jct. F-29-1A Hobbs F Sec 29 , Jct. F-29-1A Hobbs F	R38E		initial evaluation only	101101
Jct. $F-31-1$ HobbsFSec 31 ,Jct. $F-31-2$ HobbsFSec 31 ,B-32 BootHobbsBSec 32 ,F-33 VentHobbsFSec 33 ,A-6 VentHobbsASec 33 ,Jct. A-25HobbsASec 25 ,Jct. A-25HobbsASec 25 ,Jct. A-25HobbsPSec 25 ,Jct. A-25HobbsFSec 23 ,Jct. F-21HobbsFSec 24 ,Jct. F-24-1HobbsFSec 29 ,Jct. F-29-1AHobbsFSec 29 ,Jct. F-29-1B (G-29)HobbsFSec 29 ,I-29 VentHobbsFSec 29 ,Jct. P-31HobbsFSec 29 ,Jct. F-29-1B (G-29)HobbsFSec 29 ,Jct. P-30 VentHobbsFSec 29 ,Jct. P-30 VentHobbsFSec 29 ,Jct. P-30 VentHobbsFSec 29 ,		James Hanson	Initial evaluation only	1/31/2003
Jct. $F-31-2$ HobbsFSec 31,B-32 BootHobbsBSec 32,F-33 VentHobbsFSec 33,A-6 VentHobbsASec 6, 'Jct. A-25HobbsASec 25,Jct. A-25HobbsPSec 25,Jct. P-31HobbsPSec 25,Jct. P-31HobbsPSec 25,Jct. F-24-1HobbsFSec 24,Jct. F-29-1AHobbsFSec 29,Jct. F-29-1B (G-29)HobbsFSec 29,I-29 VentHobbsFSec 29,F-30 VentHobbsFSec 30,	100, NJOE -JU	V. R. Jones	Initial evaluation only	1/31/2003
B-32 Boot Hobbs B F-33 Vent Hobbs F A-6 Vent Hobbs A Jct. A-25 Hobbs A Jct. A-25 Hobbs A Jct. A-25 Hobbs A Jct. A-25 Hobbs A Jct. F-24-1 Hobbs F Jct. F-24-1 Hobbs F Jct. F-29-1A Hobbs F	T18S, R38E <50	V. R. Jones	Initial evaluation only	1/31/2003
F-33 Vent Hobbs F A-6 Vent Hobbs A Jct. A-25 Hobbs A Jct. P-31 Hobbs A Jct. F-29-1A Hobbs F	18S, R38E <50	Oxy Permian	Initial evaluation only	1/31/2003
A-6 Vent Hobbs A Jct. A-25 Hobbs A Jct. P-31 Hobbs A Jct. F-24-1 Hobbs F Jct. F-29-1A Hobbs F	18S, R38E <50	NM	Initial evaluation only	1/31/2003
Jct. A-25 Hobbs A Jct. P-31 Hobbs P Jct. F-24-1 Hobbs F Jct. F-29-1A Hobbs F Jct. F-29-1B (G-29) Hobbs F I-29 Vent Hobbs F F-30 Vent Hobbs F	9S, R38E <50	MN	Initial evaluation only	1/31/2003
Jct. P-31 Hobbs P Jct. F-24-1 Hobbs F Jct. F-29-1A Hobbs F F-29-1B (G-29) Hobbs F I-29 Vent Hobbs I F-30 Vent Hobbs F	18S, R37E <50	NM	Initial evaluation only	1/31/2003
Jct. F-24-1 Hobbs F Jct. F-29-1A Hobbs F F-29-1B (G-29) Hobbs F I-29 Vent Hobbs I F-30 Vent Hobbs F	18S, R38E <50	Kress Jones	Initial evaluation only	1/31/2003
Jct. F-29-1A Hobbs F F-29-1B (G-29) Hobbs F I-29 Vent Hobbs I F-30 Vent Hobbs F	18S, R37E <50	NM	Primary Delineation only	1/31/2003
F-29-1B (G-29) Hobbs F 1-29 Vent Hobbs I F-30 Vent Hobbs F	18S, R38E <50	Oxy Permian	Primary Delineation only	1/31/2003
HobbsISec 29,HobbsFSec 30,	18S, R38E <50	Oxy Permian	Primary Delineation only	2/4/2004
Hobbs F Sec 30,	18S, R38E <50	Oxy Permian	Primary Delineation only	1/31/2003
	T18S, R38E <50	James Hanson etux	Primary Delineation only	1/31/2003
Hobbs L Sec 30,	T18S, R38E <50	NM	Primary Delineation only	1/31/2003
Jct. E-32-1 Hobbs E Sec 32, T18S,	18S, R38E <50	Oxy Permian	Primary Delineation only	1/31/2003
Sec 32,	T18S, R38E <50	Oxy Permian	Primary Delineation only	1/31/2003

 $\frac{2\pi}{3} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1$

No. of Barrier

1.2 4.1

 $\frac{1}{2} \frac{1}{2} \frac{1}$

2-6 - 1 Spin_as - 2

1937 - ANS

an particular

Surcia . S

St. Succession

A STAND

Section 1

1. C. L. M.

Page 1 of 2

3/11/2004

Jct. E-33-1	Hobbs	E	Sec 33, T18S, R38E	<50	NM	Primary Delineation only	1/31/2003
Jct. N-4	Hobbs	N	Sec 4, T19S, R38E	<50	NM	Primary Delineation only	1/31/2003
0-5 Vent	Hobbs	0	Sec 5, T19S, R38E	<50 -	Dee Cochran	Primary Delineation only	1/31/2003
Jct. H-29	Hobbs	Н	Sec 29, T18S, R38E	<50	Sage & Cottrell	Primary Delineation only	1/31/2003
Jct. E-4	Hobbs	ы	Sec 4, T19S, R38E	<50	NM	Primary Delineation only	1/31/2003
Jct. 0-13 (N)	Hobbs	0	Sec 13, T18S, R37E	<50	Charles Seed Trst	Primary Delineation only	1/31/2003
G-9 Vent	Hobbs	IJ	Sec 9, T19S, R38E	<50	NM	Primary Delineation only	1/31/2003
Jct. A-6	Hobbs	A	Sec 6, T19S, R38E	<50	NM	Primary Delineation only	1/31/2003
Jct. E-33-2	Hobbs	E	Sec 33, T18S, R38E	<50	NM	Primary Delineation only	1/31/2003
vent M-4	Hobbs	М	Sec. 4, T19S, R38E	<50	J. A. Desoto	Initial evaluation only	9/11/2003
These Hobbs SWD S ₃	vstem june	ction b	oxes, which have potenti	ial for groundw	ater impact, are not yet	These Hobbs SWD System junction boxes, which have potential for groundwater impact, are not yet at a work-status to report as a disclosure. The Hobbs	re. The Hobbs
SWD System Environ	mental Co	ommiti	tee has directed Rice Ope	erating Compar	iy to prioritize the sites	SWD System Environmental Committee has directed Rice Operating Company to prioritize the sites according to vadose zone and groundwater receptors,	vater receptors,
NMOCD score, landov	wner, surf	ace us	e, etc. in order to coordir	nate the most ef	Fective and timely use (NMOCD score, landowner, surface use, etc. in order to coordinate the most effective and timely use of resources. The Hobbs SWD System Environmental	Environmental
Committee is committ	ted to con	npletin	g the abandonment of the	e Hobbs SWD	Jathering System, and I	Committee is committed to completing the abandonment of the Hobbs SWD Gathering System, and projects the remediation of these junction box sites to	on box sites to
les e lone tours and so		L . L	[د •			

4-2-

1 . 10 Car

The Barrier

- B. Secon

14 14

A Sector

ا (میران ا

Sec. 1. 1.

5 . S. W.

Operating Company Generic Junction Box Plan. As sites are prioritized, work plans will be developed and submitted to the NMOCD for review, feedback be a long-term endeavor, possibly 7-10 years. Each of these sites have significant TPH and salt impact and are deemed to be outside the scope of the Rice and approval.

Page 2 of 2

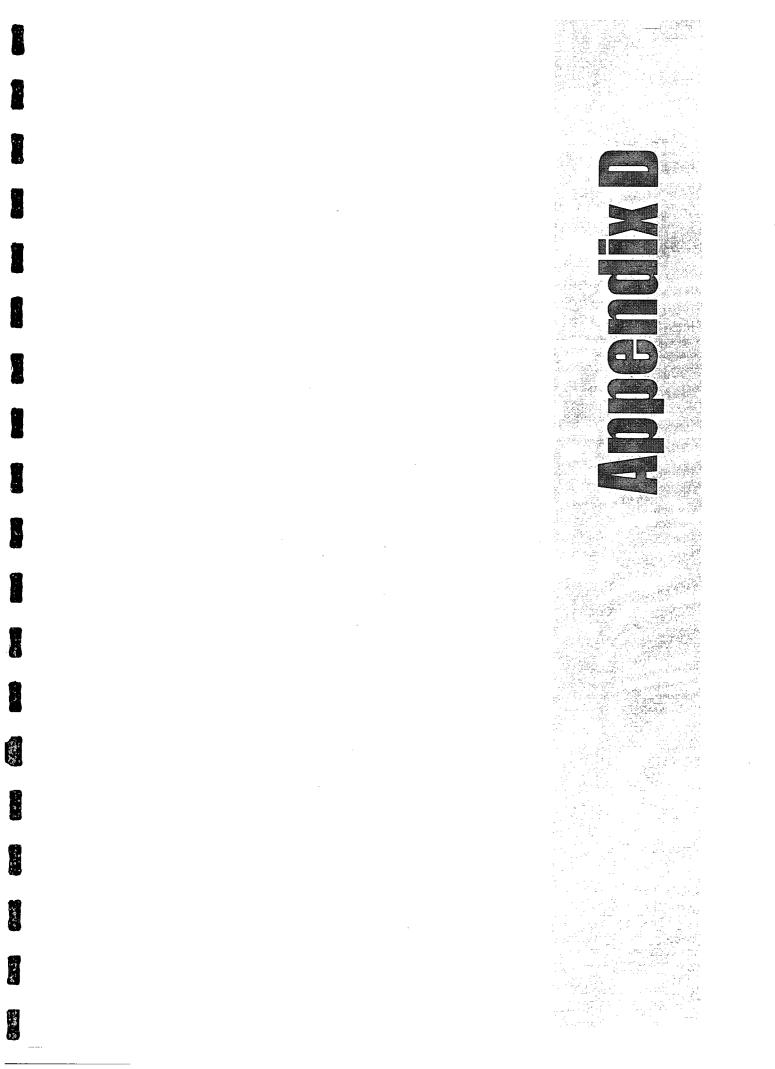
3/11/2004

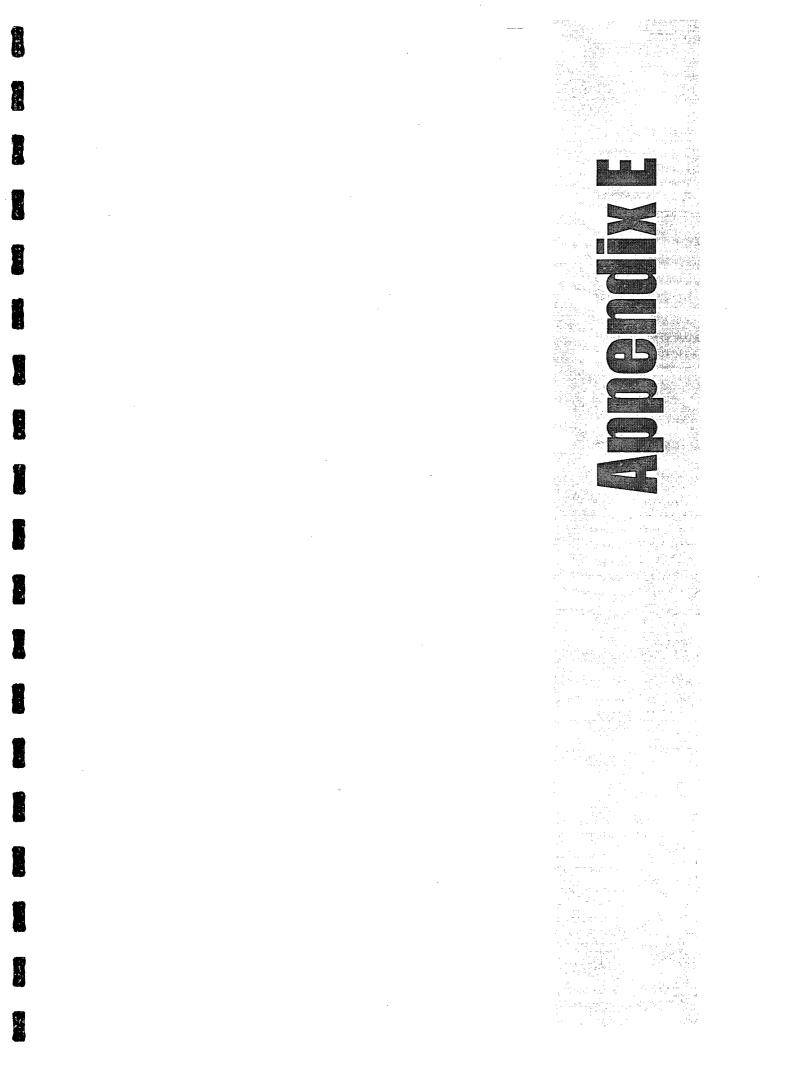
Table 2: Selected Water Well Records from the OSE Database

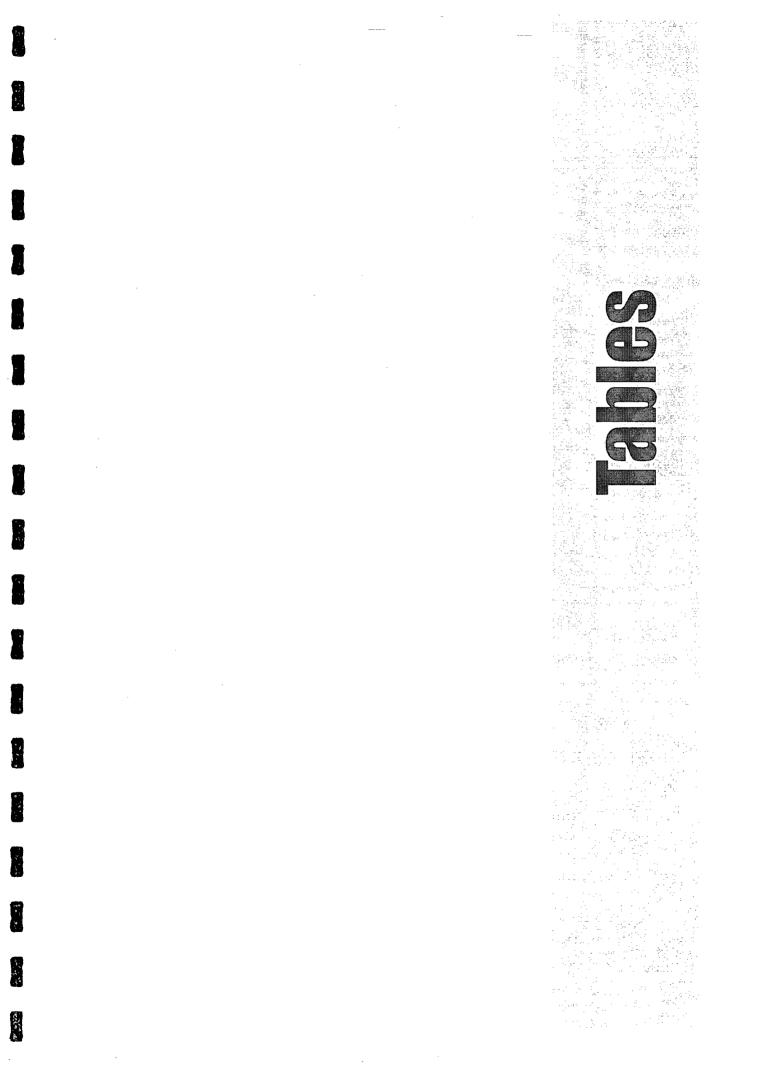
ng the cold

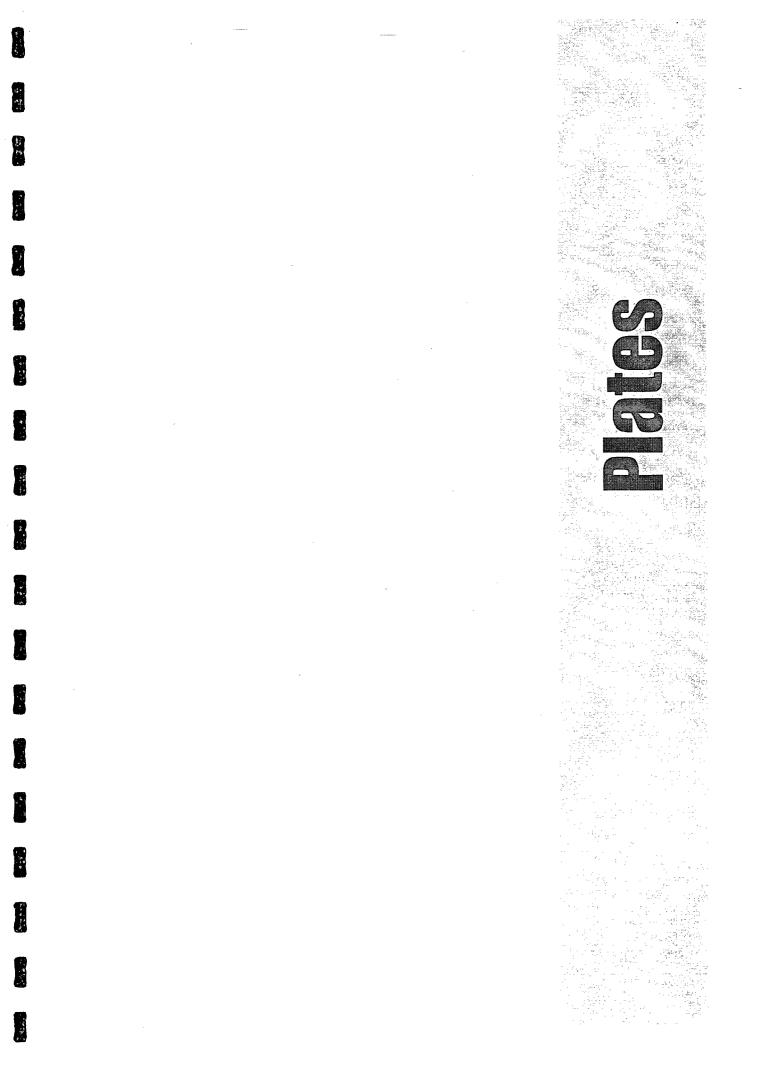
: 7

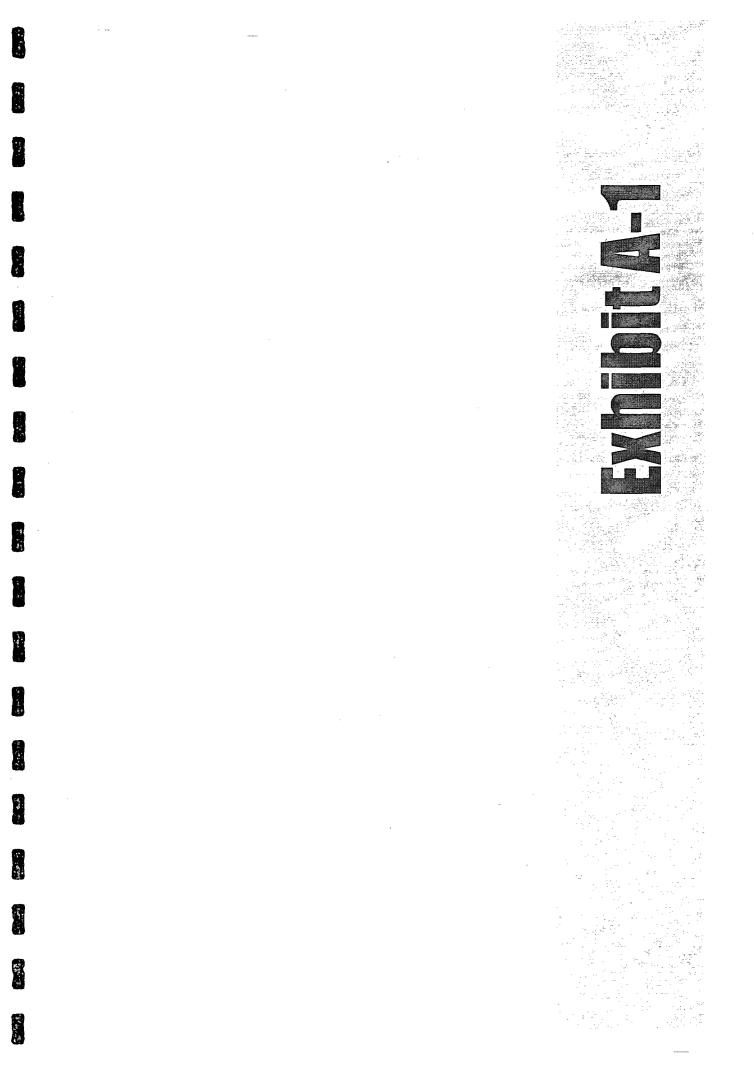
a nuagena a


ومحتج ع


21.2.24


· 23 . 19.


「「


Iable 2: Selected Water Well Records from the OSE Database Use Div ORAM OLMER Well Depth Water Depth Well Number USE Div ORAM OLMER Well Depth Water Depth Well Number SAN OIL FIELD RENTAL SERVICE 130 49 CO. L 08716 SAN OIL FIELD RENTAL SERVICE 130 49 CO. L 08716 SAN MCK TRUCK DEALERSHIP 120 60 L 07810 SAN NIC. HOBBS DIESEL 157 60 L 07810 SAN BIG HORN TANK RENTAL 120 54 L 08857 SAN BIG HORN TANK RENTAL 120 54 L 07750 SAN MOPAN OLI PROD SINCLIN 110 54 G CORPL 06570 (E) SAN SOUTHWESTERN DRILLING MU 122 54 L 07750 SAN SOUTHWESTERN DRILLING MU 122 54 G CORPL 06570 (E) DOM SOUTHWESTERN DRILLING MU 122 54 G CORPL 06570 (E) SAN MOPANOIL DETROLEUM-TORES 120 54 G CORPL 06570 (E) PRO MOPANOIL PRECICLUM-CORPEX 122 48 L 07754	Source Twe Dog Soc 2 2 Date Date		Shallow 18S 38E 19 4 2 6/10/1968	Shallow 18S 38E 20 2 1 3/23/1982	Shallow 18S 38E 20 2 2 11/25/1977 1	Shallow 18S 38E 20 2 2 5/7/1984	Shallow 18S 38E 20 2 3 7/1/1982	Shallow 18S 38E 28 1 1 1/16/1979 1/20/1979	18S 38E 29 2 2 7/9/1982	Shallow 18S 38E 29 2 4 9/8/1977	Shallow 18S 38E 29 3 3	Shallow 18S 38E 29 3 3 6/21/1976 6/22/1976	Shallow 18S		i Shallow 18S 38E 30 1 2 8/31/1953 8/31/1953	Shallow 18S 38E 30 1 4 2/10/1966	Shallow 18S 38E 30 1 4 7	Shallow 18S 38E 30 4 1 10/2/1989 10/2/1989		Shallow 18S 38E 30 4 1 10/3/1989 10/4/1989	Shallow 18S 38E 32 1 1	Shallow 18S	Shallow 18S 38E 32 1 3 5/5/1996 5/15/1996	Shallow 18S 38E 32 1 10/20/1988 10/20/1988	Shallow 18S 38E 32 1 12/29/1967 12/30/1967	Shallow 18S 38E 32 3 3 9/10/1955 9/11/1955	Shallow 18S 38E 32 3 3 6/25/1954 6/25/1954	Shallow 18S 38E 33 1 3 8/18/1969 8/19/1969	Shallow 18S 38E 33 3 6/23/1953 6/23/1953			
 Selected Vater Well Kecords Owner Well Kecords MORAN OIL PROD & BRILLIN MORAN OIL PROD & BRILLING NIC. CAPITAN DRILLING CO OIL FIELD RENTAL SERVICE MACK TRUCK DEALERSHIP STOEHR WIRE ROPE OF TEXA A.A. OILFIELD INC. HOBBS DIESEL BIG HORN TANK RENTAL CROWN CHEMICAL COMPANY MORAN OIL PROD & BRILLIN INC. HOBBS DIESEL BIG HORN TANK RENTAL CROWN CHEMICAL COMPANY MORAN OIL PROD & BRILLING NUC-STATE TANK RENTAL CROWN CHEMICAL COPOR AMERADA PETROLEUM-HOBBS, AMERADA PETROLEUM CORPOR AMERADA PETROLEUM CORPOR AMERADA PETROLEUM CORPOR AMERADA PETROLEUM CORPOR WINDMILL OIL COMPANY BULL DOG TOOL SCONNYS OIL FIELD SERVICE NOLS BAKER OIL TOOLS SCONNYS OIL FIELD SERVICE MAREICAN PETROLEUM 	from the USE Database	200 120 48		49	60	60	54	60	52	50	54 (48	50	65	30	34	32	42	42	42	42	41	41	45	43	80	65	34	30	34	52 L	56
Use Div PRO PRO PRO PRO PRO PRO PRO PRO	:: Selected Water Well Records	MORAN OIL PROD & DRIFTIN	INC. CAPITAN DRILLING CO	OIL FIELD RENTAL SERVICE	MACK TRUCK DEALERSHIP	STOEHR WIRE ROPE OF TEXA	A.A. OILFIELD	INC. HOBBS DIESEL	BIG HORN TANK RENTAL	CROWN CHEMICAL COMPANY	MORAN OIL PROD & DRILLIN	SOUTHWESTERN DRILLING MU	TWO-STATE TANK RENTAL CO	TEXLAND PETROLEUM-HOBBS,	AMERADA PETROLEUM CORPOR	AMERADA PETROLEUM CORPOR	AMERADA PETROLEUM CORPOR	WINDMILL OIL COMPANY	WINDMILL OIL COMPANY	WINDMILL OIL COMPANY	WINDMILL OIL COMPANY	WINDMILL OIL COMPANY	WINDMILL OIL COMPANY	STAR TOOL COMPANY	BULL DOG TOOL	BULL DOG TOOL INC	BALER SERVICE TOOLS	SONNY'S OIL FIELD SERVIC	INC. BAKER OIL TOOLS	SKELLY OIL COMPANY	PAN AMERICAN PETROLEUM	CONTINENTAL TANKE INC.

