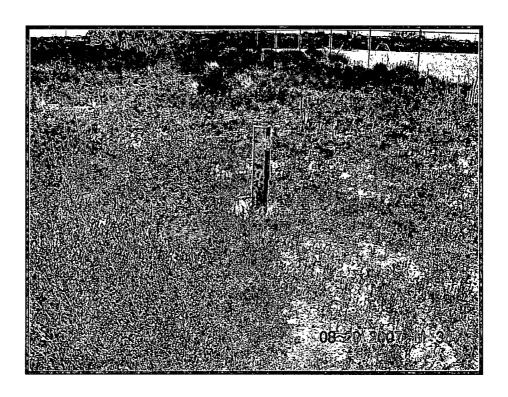
1R. 428-65

REPORTS

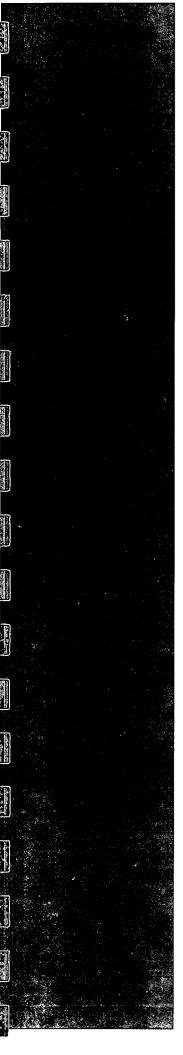
DATE


12-4-07

December 4, 2007

DEC 1 1 2007

Environmental Bureau Oil Conservation Division



E-32-1, NMOCD Case #1R0428-65

Rice Operating Company Closure Report

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

December 4, 2007

RECEIVED

Mr. Ed Hansen New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 DEC 1 1 3ññ7

Environmental Bureau
Oil Conservation Division

RE:

NMOCD Case # 1R0428-65, E-32-1 Junction Box

Hobbs SWD System Abandonment

Closure Report

Dear Mr. Hansen:

This letter and Appendices are the final Closure Report for the E-32-1 Junction Box. The NMOCD approved Corrective Action Plan (Section 7.0, page 9) included creating an infiltration barrier by re-vegetation of the ground surface at the E-32-1 site as well as two additional sampling events showing chloride levels below the standard without an increasing trend. Appendix A includes the junction box closure form. Appendix B provides a photograph of the re-vegetation at the site and ground water sample data confirming these conditions were met. Appendix C includes copies of previous submissions and the NMOCD approval email.

We respectfully request NMOCD approve site closure in writing. Thank you for your attention to this matter.

Sincerely,

R.T. Hicks Consultants, Ltd.

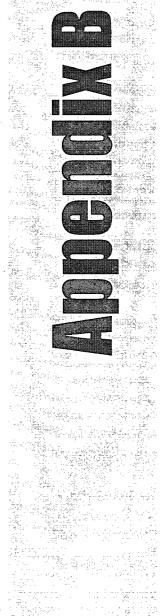
Katie Lee

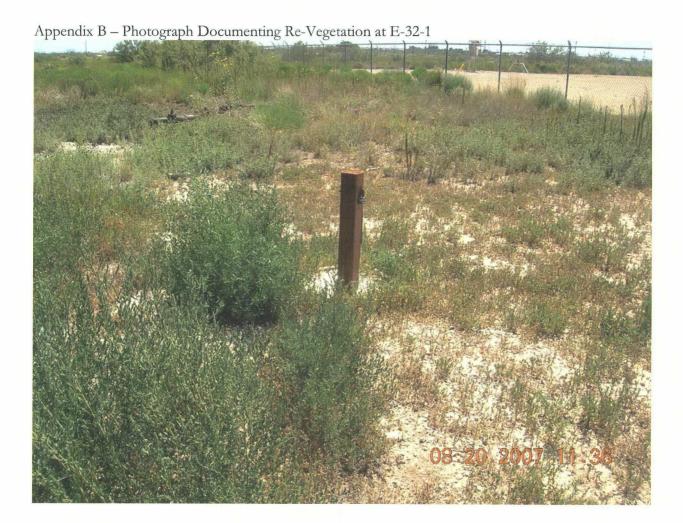
Staff Scientist

Katie Lee

Copy: Rice Operating Company

Hobbs NMOCD Office


RICE OPERATING COMPANY JUNCTION BOX CLOSURE REPORT


BOX LOCATION


SWD SYSTEM	JUNCTION	UNIT	SECTION	TOWNSHIP	RANGE	COUNTY	BOX D	MENSIONS	-FEET
Habbs	jct. E-32-1 (#1R0428-65)	£	32	185	38E	Lea	Length	Width	Depth
	(#1NV426-03)	aranggagaan ar		-	<u></u>		no box-	-System abi	andoned
LAND TYPE: E	BLMST/	ATE	FEE LANDO		occidental F		OTHER		and the second s
Depth to Groun	idwater	43	feet	NMOCD !	SITE ASSE	SSMENTR	ANKING S	CORE:	20
Date Started	5/4/20	06	_ Date Col	mpleted	8/20/2007	NMOC	D Witness		no
Soil Excavated	. 0	cubic ya	ards Exc	cavation Le	ngth <u>n/a</u>	Wiath	n/a	Depth	n/a
Soil Disposed	0	cubic ye	ards Of	fsite Facility		/a	Location	A CONTRACTOR OF THE PARTY OF TH	n/a
General Descriptio	on of Remedial	Action;	This junction	box site was d	eline ato ź usin	g a soil boring	according to t	he Investigati	on and
haracterization Plan s	ubmitted by R.T. H	licks Consult	ants. One mor	nitoring weil wa:	s installed at t	he site on 5/4/2	2006. A Corre	ective Action F	Pian (CAP) was
erbally approved by NI	MOGD on 7/18/200	7 and confin	ned via email o	n 8/8/2007. A	site visit on 8	/20/2007 reveal	ed that health	ry vegetation s	surrounds the
ite; additional seed wa	s added. The encl	osed Hicks N	eport (Decemb	er 2007) docum	nents the fulfi	liment of the ap	proved CAP a	and requests	closure of this
ite. The monitoring we	ell will remain for po	ossible tuture	use for other s	ites in the Hob	bs abandonm	ent investigatio	n.		VV
				<u> </u>		A STATE OF THE STA		• • • • • • • • • • • • • • • • • • • •	nciosures us st
I HEREB	SY CERTIFY TH	IAT THE IT		ON ABOVE			ETE TO TH	HE BEST C	DF MY
EPORT ASSEMBLE	D BY KI	istin Farris P	ope	SIGNATURE	_Kn	- 12410 (Jarres	1 Pap	<u> </u>

11/28/2007

DATE

A Xenco Laboratories Company

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: Hobbs Jct. E-32-1

Project Number: None Given

Location: T18S-R38E-Sec. 32E Lea Co., NM

Lab Order Number: 7B22012

Report Date: 03/08/07

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	7B22012-01	Water	02/22/07 10:10	02-22-2007 15:12

Fax: (505) 397-1471

Project: Hobbs Jct. E-32-1

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project Number: None Given

Project Manager: Kristin Farris-Pope

Organics by GC **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (7B22012-01) Water									
Carbon Ranges C6-C12	ND	3.00	mg/L	0.1	EB72214	02/22/07	02/25/07	EPA 8015M	
Carbon Ranges C12-C28	ND	3.00	**	**	**	**	n	u	
Carbon Ranges C28-C35	ND	3.00	**	**	"	11	**	**	
Total Hydrocarbons	ND	3.00	н	**	"	**	,,	**	
Surrogate: 1-Chlorooctane		112 %	70-	130	"	"	"	п	
Surrogate: 1-Chlorooctadecane		115 %	70-	130	"	"	"	"	

122 W. Taylor

Hobbs NM, 88240

Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (7B22012-01) Water									
Total Alkalinity	256	2.00	mg/L	1	EB72805	02/28/07	02/28/07	EPA 310.1M	
Chloride	119	5.00		10	EB72801	02/28/07	02/28/07	EPA 300.0	
Total Dissolved Solids	494	10.0	**	l	EB72702	02/23/07	02/27/07	EPA 160.t	
Sulfate	93.2	5.00		10	EB72801	02/28/07	02/28/07	EPA 300.0	

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (7B22012-01) Water									
Calcium	86.0	4.05	mg/L	50	EB72310	02/23/07	02/23/07	EPA 6010B	
Magnesium	21.4	0.360		. 10	11		**	"	
Potassium	2.43	0.600	,,	"	"	n	**	••	
Sodium	46.9	0.430	**	"	٠.	n	н	n	

Rice Operating Co. 122 W. Taylor Hobbs NM. 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Volatile Organic Compounds by EPA Method 8260B

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (7B22012-01) Water									
Benzene	ND	0.00100	mg/L	1	EB72704	02/27/07	02/27/07	EPA 8260B	
Toluene	ND	0.00100	"	**	**	**	*	ņ	
Ethylbenzene	ND	0.00100	**	"	"	n	"	**	
Xylene (p/m)	ND	0.00100	•	*		"	"	н	
Xylene (o)	ND	0.00100	н	**	#	"	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	и	
Naphthalene	ND	0.00100	"	•	**	"	n	"	
Surrogate: Dibromofluoromethane		109 %	68-1	29	"	"	"	,,	
Surrogate: 1,2-Dichloroethane-d4		88.0 %	72-1	32	"	"	" .	n	
Surrogate: Toluene-d8		90.2 % .	74-1	18	"	"	0	, n	
Surrogate: 4-Bromofluorobenzene		85.8 %	65-1	40	"	"	"	"	

122 W. Taylor

Hobbs NM, 88240

Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB72214 - Solvent Extraction (GC)										
Blank (EB72214-BLK1)				Prepared: ()2/22/07 A	nalyzed: 02	2/26/07			
Carbon Ranges C6-C12	ND	3.00	mg/L							
Carbon Ranges C12-C28	ND	3.00	*							
Carbon Ranges C28-C35	ND	3.00	"							
Total Hydrocarbons	ND	3.00	**							
Surrogate: 1-Chlorooctane	52.2		"	50.0		104	70-130			
Surrogate: 1-Chlorooctadecane	63.5		"	50.0		127	70-130			
LCS (EB72214-BSI)				Prepared: (02/22/07 A	nalyzed: 02	2/26/07			
Carbon Ranges C6-C12	56.0	30.0	mg/L	50.0	,	112	75-125			
Carbon Ranges C12-C28	42.3	30.0	"	50.0		84.6	.75-125			
Carbon Ranges C28-C35	ND	30.0	**	0.00			75-125			
Total Hydrocarbons	98.3	30.0	"	100		98.3	75-125			
Surrogate: 1-Chlorooctane	54.4		"	50.0		109	70-130			
Surrogate: 1-Chlorooctadecane	55.3		"	50.0		111	70-130			
Calibration Check (EB72214-CCV1)				Prepared: ()2/22/07 A	nalyzed: 02	2/26/07			
Carbon Ranges C6-C12	21.7		mg/L	25.0		86.8	80-120			
Carbon Ranges C12-C28	21.6		•	25.0		86.4	80-120			
Carbon Ranges C28-C35	0.00		"	0.00			80-120			
Total Hydrocarbons	43.3		"	50.0		86.6	80-120			
Surrogate: 1-Chlorooctane	60.9		"	50.0		122	70-130			
Surrogate: 1-Chlorooctadecane	61.2	•	"	50.0		122	70-130			
Matrix Spike (EB72214-MS1)	Sou	rce: 7B22008-	20	Prepared: ()2/22/07 A	nalyzed: 02	2/25/07			
Carbon Ranges C6-C12	60,0	30.0	mg/L	50.0	ND	120	75-125			
Carbon Ranges C12-C28	48.9	30.0	**	50.0	ND	97.8	75-125			
Carbon Ranges C28-C35	ND	30.0	**	0.00	ND		75-125			
Total Hydrocarbons	109	30.0	"	100 -	ND	109	75-125			
Surrogate: 1-Chlorooctane	59.6		"	50.0		119	70-130			
Surrogate: 1-Chlorooctadecane	55.7		"	50.0		111	70-130			

Fax: (505) 397-1471

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given

Fax: (505) 397-1471

Hobbs NM, 88240 Project Manager: Kristin Farris-Pope

Organics by GC - Quality Control Environmental Lab of Texas

-		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB72214 - Solvent Extraction (GC)										
Matrix Spike Dup (EB72214-MSD1)	Sour	ce: 7B22008-	20	Prepared: ()2/22/07 At	nalyzed: 02	2/25/07			
Carbon Ranges C6-C12	59.5	30.0	mg/L	50,0	ND	119	75-125	0.837	20	
Carbon Ranges C12-C28	49.1	30.0	"	50.0	ŅD	98.2	75-125	0.408	20	
Carbon Ranges C28-C35	ND	30.0	*	0.00	ND		75-125		20	
Total Hydrocarbons	109	30.0	17	100	ND	109	75-125	0.00	20	
Surrogate: 1-Chlorooctane	60.4		n	50.0		121	70-130			
Surrogate: 1-Chlorooctadecane	54.9		"	50.0		110	70-130			

Project: Hobbs Jct. E-32-1

Project Number: None Given

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

	S 1	Reporting		Spike	Source	0/DEC	%REC	DIND	RPD	X
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB72702 - General Preparation (WetChem)									
Blank (EB72702-BLK1)				Prepared: (02/23/07 A	nałyzed: 02	/24/07			
Total Dissolved Solids	ND	10.0	mg/L			-				
Duplicate (EB72702-DUP1)	Sou	rce: 7B22009-	01	Prepared: (02/23/07 A	nalyzed: 02	/24/07			
Total Dissolved Solids	364	10.0	mg/L		356			2.22	20	
Duplicate (EB72702-DUP2)	Sou	rce: 7B22012-	01	Prepared: (02/23/07 A	nalyzed: 02	/27/07			
Total Dissolved Solids	518	10.0	mg/L		494			4.74	20	
Batch EB72801 - General Preparation (WetChem)									
Blank (EB72801-BLK1)				Prepared &						
Sulfate	ND	0.500	mg/L							
Chloride	ND	0.500	"							
LCS (EB72801-BS1)				Prepared &	Analyzed:	02/28/07				
Chloride	10.2	0.500	mg/L	10.0		102	80-120			
Sulfate	, 10.6	0.500	**	10.0		106	80-120			
Calibration Check (EB72801-CCV1)				Prepared &	Analyzed:	02/28/07				
Sulfate	11.1		mg/L	10.0		111	80-120			
Chloride	10.4		11	10.0		104	80-120			
Duplicate (EB72801-DUP1)	Sou	rce: 7B22009-	01	Prepared &	Analyzed:	02/28/07				
Sulfate	64.9	5.00	mg/L		64.3			0.929	20	
Chloride	21.6	5.00	Ħ		22.2			2.74	20	
Duplicate (EB72801-DUP2)	Sou	rce: 7B22012-	01	Prepared & Analyzed: 02/28/07						
Chloride	117	5.00	mg/L		119			1.69	20	
Sulfate	. 92.3	5.00	**		93.2			0.970	20	

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	ŔPD	RPD Limit	Notes
Batch EB72801 - General Preparatio	n (WetChem)			<u> </u>						
Matrix Spike (EB72801-MS1)	Sou	rce: 7B22009-	01	Prepared &	Analyzed:	02/28/07				
Chloride	134	5.00	mg/L	100	22.2	112	. 80-120			
Sulfate	172	5.00	"	100	64.3	108	80-120			
Matrix Spike (EB72801-MS2)	Sou	rce: 7B22012-	01	Prepared &	Analyzed:	02/28/07				
Chloride	231	5.00	mg/L	100	119	112	80-120			
Sulfate	204	5.00	**	100	93.2	111	80-120			
Batch EB72805 - General Preparatio	n (WetChem)									
Blank (EB72805-BLK1)				Prepared &	Analyzed:	02/28/07				
Total Alkalinity	· ND	2.00	mg/L							
Carbonate Alkalinity	ND	0.100	**							
Bicarbonate Alkalinity	ND	2.00	**							
Hydroxide Alkalinity	ND	0.100	**							
LCS (EB72805-BS1)				Prepared &	analyzed:	02/28/07				
Bicarbonate Alkalinity	172	2.00	mg/L	200		86.0	85-115			
Duplicate (EB72805-DUP1)	Sou	rce: 7B22004-	01	Prepared &	Analyzed:	02/28/07				
Total Alkalinity	240	2.00	mg/L		240			0.00	20	
Carbonate Alkalinity	0.00	0.100	"		0.00				20	
Bicarbonate Alkalinity	240	2.00	"		240			0.00	20	
Hydroxide Alkalinity	0.00	0.100	**		0.00				20	
Reference (EB72805-SRM1)		J		Prepared &	Analyzed:	02/28/07				
Total Alkalinity	246		mg/L	250		98.4	90-110			

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB72310 - 6010B/No Digestion										
Blank (EB72310-BLK1)				Prepared &	Analyzed:	02/23/07				
Calcium	ND	0.0810	mg/L			·				
Magnesium	ND	0.0360	*1							
Potassium	ND	0.0600	"							
Sodium	ND	0.0430	и							
Calibration Check (EB72310-CCV1)				Prepared &	Analyzed:	02/23/07				
Calcium	1.93		mg/L	2.00		96.5	85-115			
Magnesium	1.88		n	2.00		94.0	85-115			
Potassium	1.82		"	2.00		91.0	85-115			
Sodium	1.75		**	2.00		87.5	85-115			
Duplicate (EB72310-DUP1)	Som	rce: 7B22004-	01	Prepared &						
Calcium	84.4	4.05	mg/L		84.2			0.237	20	
Magnesium	142	1.80	. "		147			3.46	20	
Potassium	22.3	0.600	"		22.8			2.22	. 20	
Sodium	200	2.15			206			2.96	20	
Batch EC70707 - 6010B/No Digestion										
Blank (EC70707-BLK1)				Prepared &	Analyzed:	03/07/07				
Calcium	ND	0.0810	mg/L							
Magnesium	ND	0.0360								
Potassium	ND	0.0600	n							
Sodium	ND	0.0430	11							
LCS (EC70707-BS1)				Prepared &	Analyzed:	03/07/07				
Calcium	1.00		mg/L	1.00		100	85-115			
Magnesium	1.04		**	1.00		104	85-115			
Potassium	9.88		"	10.0		98.8	85-115			
Sodium	9.92		n	11.0		90.2	85-115			

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods - Quality Control Environmental Lab of Texas

	p. 1.	Reporting	•.	Spike	Source	8/DEC	%REC	DDD	RPD	N .
Analyte	Result	Limit Ui	nits	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC70707 - 6010B/No Digestion										
LCS Dup (EC70707-BSD1)				Prepared &	Analyzed:	03/07/07				
Calcium	1.01	m	g/L	1.00		101	85-115	0.995	20	
Magnesium	1.05		•	1.00		105	85-115	0.957	20	
Potassium	9.97		,,	10.0		99.7	85-115	0.907	20	
Sodium	10.0		,,	11.0		90.9	85-115	0.803	20	
Matrix Spike (EC70707-MS1)	Sou	ce: 7C01014-01R	E1	Prepared &	: Analyzed:	03/07/07				
Calcium	118	m	g/L	2.00	116	100	75-125			
Magnesium	50.7		".	2.00	47.I	180	75-125			M
Potassium	42.8		n	20.0	14.3	142	75-125			М
Sodium	317		n	22.0	235	373	75-125			М
Matrix Spike Dup (EC70707-MSD1)	Sour	ce: 7C01014-01R	E1	Prepared &	: Analyzed:	03/07/07				
Calcium	123	. m	g/L	2.00	116	350	75-125	4.15	20	M
Magnesium	51.9		11	2.00	47.I	240	75-125	2.34	20	М
Potassium	42.9			20.0	14.3	143	75-125	0.233	- 20	М
Sodium	322		11	22.0	235	395	75-125	1.56	20	М

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given

Given

Fax: (505) 397-1471

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

Anatora .	bt-	Reporting	Dais-	Spike	Source	9/ P.CC	%REC	מם פ	RPD Limit	Nlase-
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPÐ	LHINI	Notes
Batch EB72704 - EPA 5030C (GCMS)										
Blank (EB72704-BLK1)				Prepared &	Analyzed:	02/27/07				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	**							
Ethylbenzene	ND	0.00100	17							
Xylene (p/m)	ND	0.00100	**							
Xylene (o)	ND	0.00100	"							
Naphthalene	ND	0.00100	"							
Surrogate: Dibromofluoromethane	46.4		ug/l	50.0		92.8	68-129			
Surrogate: 1,2-Dichloroethane-d4	36.6		. "	50.0		73.2	72-132			
Surrogate: Toluene-d8	44.6		"	50.0		89.2	74-118			
Surrogate: 4-Bromofluorobenzene	48.3		"	50.0		96.6	65-140			
LCS (EB72704-BS1)				Prepared &	: Analyzed:	02/27/07				
Benzene	0.0286	0.00100	mg/L	0.0250		114	70-130			
Toluene	0.0260	0.00100	"	0.0250		104	70-130			
Ethylbenzene	0.0250	0.00100	"	0.0250		100	70-130			
Xylene (p/m)	0.0495	0.00100	"	0.0500		99.0	70-130			
Xylene (o)	0.0259	. 0.00100		0.0250		104	70-130			
Naphthalene	0.0204	0.00100	**	0.0250		81.6	70-130			
Surrogate: Dihromofluoromethane	50.1		ug/l	50.0		100	68-129			
Surrogate: 1,2-Dichloroethane-d4	43.1		n	50.0		86.2	72-132			
Surrogate: Toluene-d8	47.6		"	50.0		95.2	74-118			
Surrogate: 4-Bromofluorobenzene	51.9		"	50.0		104	65-140			
Calibration Check (EB72704-CCV1)				Prepared &	Analyzed:	02/27/07				
Toluene	46.4		ug/I	50.0	,	92.8	70-130			
Ethylbenzene	45.3		**	50.0		90.6	70-130			
Surrogate: Dibromofluoromethane	50.6		"	50.0		101	68-129			
Surrogate: 1,2-Dichloroethane-d4	38.5		n	50.0		77.0	72-132			
Surrogate: Toluene-d8	43.7		"	50.0		87.4	74-118			
Surrogate: 4-Bromofluorobenzene	48.9		"	50.0		97.8	65-140			

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given

Fax: (505) 397-1471

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

Volatile Organic Compounds by EPA Method 8260B - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB72704 - EPA 5030C (GCMS)										
Matrix Spike (EB72704-MS1)	Sot	arce: 7B22012-	01	Prepared: 0	2/27/07 A	natyzed: 02	/28/07			
Benzene	0.0215	0.00100	mg/L	0.0250	ND	86.0	70-130			
Toluene	0.0233	0.00100	**	0.0250	ND	93.2	70-130			
Ethylbenzene	0.0260	0.00100	n	0.0250	ND	104	70-130			
Xylene (p/m)	0.0502	0.00100	H	0.0500	ND	100	70-130			
Xylene (o)	0.0250	0.00100	н	0.0250	ND	001	70-130			
Naphthalene	0.0187	0.00100		0.0250	ND	74.8	70-130			
Surrogate: Dibromofluoromethane	51.1		ug/l	50.0		102	68-129			
Surrogate: 1,2-Dichloroethane-d4	41.8		"	50.0		83.6	72-132			
Surrogate: Toluene-d8	42.1		r	50.0		84.2	74-118			
Surrogate: 4-Bromofluorohenzene	46.9		n	50.0		93.8	65-140			,
Matrix Spike Dup (EB72704-MSD1)	Sot	ırce: 7B22012-	01	Prepared: 0	2/27/07 Ai	nalyzed: 02	/28/07			
Benzene	0.0180	0.00100	mg/L	0.0250	ND	72.0	70-130	17.7	20	
Toluene	0.0182	0.00100	**	0.0250	ND	72.8	70-130	24.6	20	
Ethylbenzene	0.0245	0.00100	**	0.0250	ND	98.0	70-130	5.94	20	
Xylene (p/m)	0.0484	0.00100	**	0.0500	ND	96.8	70-130	3.65	20	
Xylene (o)	0.0263	0.00100	**	0.0250	ND	105	70-130	5.07	20	
Naphthalene	0.0231	0.00100	15	0.0250	ND	92.4	70-130	21.1	20	
Surrogate: Dibromofluoromethane	53.5		ug/l	50.0		107	68-129			
Surrogate: 1,2-Dichloroethane-d4	40.3		"	50.0		80.6	72-132			
Surrogate: Toluene-d8	35.7		"	50.0		71.4	74-118			S-1
Surrogate: 4-Bromofluorobenzene	40.5		"	50.0		81.0	65-140			

Fax: (505) 397-1471 Project: Hobbs Jct. E-32-1 Rice Operating Co. Project Number: None Given 122 W. Taylor Project Manager: Kristin Farris-Pope Hobbs NM, 88240

Notes and Definitions

The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect. The RPD exceeded the method control limit. The individual analyte QA/QC recoveries, however, were within acceptance limits. R M1The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

Analyte DETECTED DET

Analyte NOT DETECTED at or above the reporting limit ND

NR

S-04

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

LCS Laboratory Control Spike

MS Matrix Spike

Duplicate Dup

	- 1 Davin		
Report Approved By:	7.38%	Date:	3/8/2007

Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant

James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 14 of 14

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Odessa, Texas 79765 12600 West I-20 East

Fax: 432-563-1713 Phone: 432-563-1800

TAT bisbrist2 FedEx Lone Star □ NPDES Project Loc: T18S R38E Sec32 E ~ Lea County New Mexico RUSH TAT (Pre-Schedule) 24, 44, 72 hrs ç \sqrt{V} Total Dissolved Solids M.A.O.M. TRRP Project Name: Hobbs Junction E-32-1 Labels on container(s) Custody seals on container(s) Sustady seals on cooler(s) Sample Hand Delivered.
by Sample/Client Rep.?
by Couner?
UPS Température Upon Receipt: Sample Containers Intact? /OCs Free of Headspace? BLEX 80216/2030 of BTEX 8260 Laboratory Comments: Semnola(iles Volatiles (BTEX-N 8260) Report Format: X Standard Metals: As Ag Ba Cd Cr Pb Hg Se <u>1</u> 10141 Anions (Cl, SO4, Alkalinity) PO #: Project #: Cations (Ca, Mg, Na, K) 9001 XI 2001 XT Hal 50 Time Time 80108 1.811 Hall M2108 MP-Mon-Petable Specify Other 3 bilostages Sassabinuona = Wa 62-22-67 Date Date Other (Specify) rozanne@valornet.com Mone (1) 1 Liter HDPE OSSEN rozanne@valornet.com HOSN (505) 397-1471 'OS[®]H HCl (2) 10 ml glass vials ²ONH **0**0 (のはあまのまかでかんとかない က Fotal #. of Containers benetliit biet e-maii: Fax No: mfranks@riceswd.com 0.00 Time Sampled matt@riceswd.com kpope@riceswd.com Received by ELOT 2/22/2007 Received by: Date Sampled Ending Depth Hobbs, New Mexico 88240 RICE Operating Company (Signature) Time Rozanne Johnson (505)631-9310 Reginning Depth kpope@riceswd.com jpurvis@riceswd.com 122 W. Taylor Street Kristin Farris Pope 10703 Date (505) 393-9174 FIELD CODE ORDER#: 1787202 Please email to: Sampler Signature: Cómpany Address: Project Manager: Company Name Monitor Well #1 Telephone No: City/State/Zip: Special Instructions: Rozanne Jogoson Relinquished by: Relinquished by: Relinquished by: (lab use only) (yino seu dal) # 8A

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client: QC DD				
Date/ Time: 2/22/07 15:12				
Lab ID#: 18220/2				
Initials:				
Sample Receipt	**************************************			Client Initials
#1 Temperature of container/ cooler?	Yes	No	,5 °C	
#2 Shipping container in good condition?	(Yes)	No		
#3 Custody Seals intact on shipping container/ cooler?	Yas.	No	Not Present	
#4 Custody Seals intact on sample bottles/ container?	¥65	No	Not Present	
#5 Chain of Custody present?	Ø€\$	No		
#6 Sample instructions complete of Chain of Custody?	Ž É ∰3	No		
#7 Chain of Custody signed when relinquished/ received?	X€\$	No		
#8 Chain of Custody agrees with sample label(s)?	Xes,	No	ID written on Cont./ Lid	
#9 Container label(s) legible and intact?	Yes	No	Not Applicable	
#10 Sample matrix/ properties agree with Chain of Custody?	₹ e ş	No		
#11 Containers supplied by ELOT?	Yes	No		
#12 Samples in proper container/ bottle?	SE9	No	See Below	
#13 Samples properly preserved?	(Yes)	No	See Below	
#14 Sample bottles intact?	(Fes)	No		
#15 Preservations documented on Chain of Custody?	Yes	No		
#16 Containers documented on Chain of Custody?	X 8.30	No		
#17 Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
#18 All samples received within sufficient hold time?	/Yes)	No	See Below	
#19 Subcontract of sample(s)?	Yes	No	Not Applicable	
#20 VOC samples have zero headspace?	YES)	No	Not Applicable	
Contact: Contacted by:	mentation	-	Date/ Time:	
Regarding: Corrective Action Taken:				
Check all that Apply: See attached e-mail/ fax Client understands and wou Cooling process had begun				

A Xenco Laboratories Company

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: Hobbs Jct. E-32-1

Project Number: None Given

Location: T18S R38E Sec32 E ~ Lea County New Mexico

Lab Order Number: 7D26010

Report Date: 05/07/07

122 W. Taylor

Hobbs NM, 88240

Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well # 1	7D26010-01	Water	04/25/07 09:45	04-26-2007 16:25

Fax: (505) 397-1471

Project: Hobbs Jct. E-32-1

122 W. Taylor Hobbs NM, 88240 Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte Monitor Well # 1 (7D26010-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	242	2.00	mg/L	1	ED73002	04/30/07	04/30/07	EPA 310.1M	
Chloride	94.3	. 5.00	"	10	EE70307	05/03/07	05/03/07	· EPA 300.0	
Total Dissolved Solids	528	10.0	**	1	EE70209	04/27/07	05/02/07	EPA 160.1	
Sulfate	75.5	5.00	**	10	EE70307	05/03/07	05/03/07	EPA 300.0	

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods Environmental Lab of Texas

Analyte Monitor Well # 1 (7D26010-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Calcium	111	4.05	mg/L	50	ED72704	04/27/07	04/27/07	EPA 6010B	
Magnesium	24.2	0.360	•	10	n	"	"	"	
Potassium	2.65	0.600	**	11	н		n	•	
Sodium	62.0	2.15	••	50	**		n	**	

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

Volatile Organic Compounds by EPA Method 8260B Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well # 1 (7D26010-01) Water									
Benzene	ND	0.00100	mg/L	i	ED73009	04/30/07	04/30/07	EPA 8260B	
Toluene	ND	0.00100	**	"	11	н	н	11	
Ethylbenzene	ND	0.00100	**	"	11	**	#	11	
Xylene (p/m)	ND	0.00100	**	**	"	**	н	#1	
Xylene (o)	ND	0.00100	**	н	"	"	**	11	
Naphthalene	ND	0.00100		**	"	**	"	**	
Surrogate: Dibromofluoromethane		103 %	68-12	9	"	· "	"	"	
Surrogate: 1,2-Dichloroethane-d4		84.4 %	72-13.	2	rr .	"	,,	"	
Surrogate: Toluene-d8		97.8 %	74-11	8	rr .	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.2 %	65-140	0	"	"	"	r	

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED73002 - General Preparati	on (WetChem)									
Blank (ED73002-BLK1)	·			Prepared &	Analyzed:	04/30/07				
Total Alkalinity	ND	2.00	mg/L							
LCS (ED73002-BS1)				Prepared &	k Analyzed:	04/30/07				
Total Alkalinity	0.00	2.00	mg/L				85-115			
Bicarbonate Alkalinity	180	2.00	"	200		90.0	85-115			
Duplicate (ED73002-DUP1)	Sour	ce: 7 D2 6006-	01	Prepared &	Analyzed:	04/30/07				
Total Alkalinity	214	2.00	mg/L		218			1.85	20	
Bicarbonate Alkalinity	0.00	2.00	"		0.00				20	
Reference (ED73002-SRM1)				Prepared &	Analyzed:	04/30/07				
Total Alkalinity	256		mg/L	250		102	90-110			
Batch EE70209 - General Preparation	on (WetChem)			,						
Blank (EE70209-BLK1)				Prepared: (04/27/07 A	nalyzed: 05	/02/07			
Total Dissolved Solids	ND	10.0	mg/L							
						automodi 05	/02/07			
Duplicate (EE70209-DUP1)	Sour	ce: 7D26007-	01	Prepared: ()4/27/07 A	naryzeu: 05	02/07			
	Sour 1500	ce: 7D26007- 10.0	mg/L	Prepared: (04/27/07 A:	naryzeu: 05	02/07	2.02	20	
Total Dissolved Solids	1500		mg/L	······································				2.02	20	
Total Dissolved Solids Duplicate (EE70209-DUP2)	1500	10.0	mg/L	······································	1470			2.02	20	
Total Dissolved Solids Duplicate (EE70209-DUP2) Total Dissolved Solids	1500 Sour 712	10.0 ce: 7D26009 -	mg/L 01	······································	1470 04/27/07 Ai					
Duplicate (EE70209-DUP1) Total Dissolved Solids Duplicate (EE70209-DUP2) Total Dissolved Solids Batch EE70307 - General Preparation	1500 Sour 712	10.0 ce: 7D26009 -	mg/L 01	Prepared: (1470 04/27/07 Ai	nalyzed: 05,				
Total Dissolved Solids Duplicate (EE70209-DUP2) Total Dissolved Solids Batch EE70307 - General Preparation	1500 Sour 712	10.0 ce: 7D26009 -	mg/L 01	Prepared: (1470 04/27/07 At 684	nalyzed: 05,				

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE70307 - General Preparation (V	WetChem)									
LCS (EE70307-BS1)				Prepared &	de Analyzed:	05/03/07				
Chloride	9.62	0.500	mg/L	10.0		96.2	80-120			
Sulfate	10.0	0.500	"	10.0		001	80-120			
Calibration Check (EE70307-CCV1)				Prepared &	& Analyzed:	05/03/07				
Chloride	8.93		mg/L	10.0		89.3	80-120			
Sulfate	11.6		ti	10.0		116	80-120			
Duplicate (EE70307-DUP1)	Sourc	e: 7D26006-	-01	Prepared &	k Analyzed:	05/03/07				
Sulfate	342	12.5	mg/L		339			0.881	20	
Chloride	941	50.0	"		917			2.58	20	
Duplicate (EE70307-DUP2)	Sourc	e: 7D26010-	-01	Prepared &	k Analyzed:	05/03/07				•
Chloride	93.1	5.00	mg/L		94.3			1.28	20	
Sulfate	74.1	5.00	н		75.5			1.87	20	
Matrix Spike (EE70307-MS1)	Source	e: 7D26006-	-01	Prepared &	k Analyzed:	05/03/07				
Sulfate	728	12.5	mg/L	250	339	156	80-120			М
Matrix Spike (EE70307-MS2)	Sourc	e: 7D26010-	-01	Prepared &	Ł Analyzed:	05/03/07				
Chloride	278	5.00	mg/L	100	94.3	184	80-120			М
Sulfate	204	5.00	n	001	75.5	128	80-120			M
Matrix Spike (EE70307-MS3)	Sourc	e: 7D26006-	-01	Prepared & Analyzed: 05/03/07						
C'hloride	1800	50.0	mg/L	1000	917	88.3	80-120			

Rice Operating Co. 122 W. Taylor

Hobbs NM, 88240

Project: Hobbs Jct. E-32-1

Project Number: None Given

Fax: (505) 397-1471

Project Manager: Kristin Farris-Pope

Total Metals by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED72704 - 6010B/No Digestion										
Blank (ED72704-BLK1)				Prepared &	Analyzed:	04/27/07				
Calcium	ND	0.0810	mg/L							
Magnesium	ND	0.0360	"							
Potassium	ND	0.0600	**							
Sodium	ND	0.0430	**							
Calibration Check (ED72704-CCV1)				Prepared &	Analyzed:	04/27/07				
Calcium	2.13		mg/L	2.00		106	85-115			
Magnesium	2.15		**	2.00		108	85-115			
Potassium	2.14		"	2.00		107	85-115			
Sodium	1.98		"	2.00		99.0	85-115			
Duplicate (ED72704-DUP1)	Sou	rce: 7D23010-	01	Prepared &	Analyzed:	04/27/07				
Calcium	44.1	0.810	mg/L		42.4			3.93	20	
Magnesium	43.0	0.360	"		42.4			1.41	20	
Potassium	22.7	0.600	"		22.1			2.68	20	
Sodium	41.9	0.430	"		40.8			2.66	20	

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Kesuit	Limit	Units	Level	Nestin	/OKEC	Linus	KI D	ын	NOICS
Batch ED73009 - EPA 5030C (GCMS)										
Blank (ED73009-BLK1)				Prepared &	Analyzed:	04/30/07				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	**							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	"							
Naphthalene	ND	0.00100	**							
Surrogate: Dibromofluoromethane	50.3		ug/l	50.0		101	68-129			
Surrogate: 1,2-Dichloroethane-d4	42.3		"	50.0		84.6	72-132			
Surrogate: Toluene-d8	48.2		"	50.0		96.4	74-118			
Surrogate: 4-Bromofluorobenzene	47.4		"	50.0		94.8	65-140			
LCS (ED73009-BS1)				Prepared &	Analyzed:	04/30/07				
Benzene	0.0249	0.00100	mg/L	0.0250		99.6	70-130			
Toluene	0.0265	0.00100	**	0.0250		106	70-130			
Ethylbenzene	0.0282	0.00100	**	0.0250		113	70-130			
Xylene (p/m)	0.0570	0.00100	"	0.0500		114	70-130			
Xylene (o)	0.0289	0.00100	"	0.0250		116	70-130			
Naphthalene	0.0190	0.00100		0.0250		76.0	70-130			
Surrogate: Dibromofluoromethane	48.3	14.	ug/l	50.0		96.6	68-129			
Surrogate: 1,2-Dichloroethane-d4	43.7		"	50.0		87.4	72-132			
Surrogate: Toluene-d8	48.1		"	50.0		96.2	74-118			
Surrogate: 4-Bromofluorobenzene	44.1		"	50.0		88.2	65-140			
Calibration Check (ED73009-CCV1)				Prepared &	Analyzed:	04/30/07				
Toluene	48.2		ug/I	50.0		96.4	70-130			
Ethylbenzene	49.8		"	50.0		99.6	70-130			
Surrogate: Dibromofluoromethane	47.3		"	50.0		94.6	68-129			
Surrogate: 1,2-Dichloroethane-d4	39.4		"	50.0		78.8	72-132			
Surrogate: Toluene-d8	46.5		"	50.0		93.0	74-118			
Surrogate: 4-Bromofluorobenzene	42.9		"	50.0		85.8	65-140			

Fax: (505) 397-1471

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

Analyte				6.1	a		#/BEC		0.00	
	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED73009 - EPA 5030C (GCMS)										
Matrix Spike (ED73009-MS1)	Source: 7D26010-01			Prepared & Analyzed: 04/30/07						
Benzene	0.0247	0.00100	mg/L	0.0250	ND	98.8	70-130			
Toluene	0.0260	0.00100	"	0.0250	ND	104	70-130			
Ethylbenzene	0.0256	0.00100		0.0250	ND	102	70-130			
Xylene (p/m)	0.0514	0.00100	"	0.0500	ND	103	70-130			
Xylene (o)	0.0262	0.00100	,,	0.0250	ND	105	70-130			
Naphthalene	0.0148	0.00100	,,	0.0250	ND	59.2	70-130			M8
Surrogate: Dibromofluoromethane	48.6		ng/l	50.0		97.2	68-129			
Surrogate: 1,2-Dichloroethane-d4	42.8		"	50.0		85.6	72-132			
Surrogate: Toluene-d8	47.8		"	50.0		95.6	74-118			
Surrogate: 4-Bromofluorobenzene	43.0		"	50.0		86.0	65-140			
Matrix Spike Dup (ED73009-MSD1)	Source: 7D26010-01			Prepared & Analyzed: 04/30/07						
Benzene	0.0250	0.00100	mg/L	0.0250	ND	100	70-130	1.21	20	
Toluene	0.0264	0.00100	"	0.0250	ND	106	70-130	1.90	20	
Ethylbenzene	0.0262	0.00100	**	0.0250	ND	105	70-130	2.90	20	
Xylene (p/m)	0.0528	0.00100		0.0500	ND	106	70-130	2.87	20	
Xylene (o)	0.0270	0.00100		0.0250	ND	108	70-130	2.82	20	
Naphthalene	0.0169	0.00100	"	0.0250	ND	67.6	70-130	13.2	20	M8
Surrogate: Dibromofluoromethane	50.1		ug/l	50.0		100	68-129			
Surrogate: 1,2-Dichloroethane-d4	42.9		"	50.0		85.8	72-132			
Surrogate: Toluene-d8	48.5		"	50.0		97.0	74-118			
Surrogate: 4-Bromofluorobenzene	43.9		"	50.0		87.8	65-140			

Rice Operating Co.

122 W. Taylor
Project Number: None Given
Project Manager: Kristin Farris-Pope

Notes and Definitions

The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS). M8 ΜI The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS). Analyte DETECTED DET Analyte NOT DETECTED at or above the reporting limit ND NR Sample results reported on a dry weight basis dry RPD Relative Percent Difference Laboratory Control Spike LCS MS Matrix Spike

Report Approved By: Date: 5/7/2007

Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director

Raland K. Tuttle, Laboratory Consultant

James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

Dup

Duplicate

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Phone: 432-563-1800 Odessa, Texas 79765 Fax: 432-563-1713

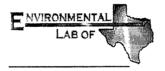
TAT brabhast × NPDES Lone Sta Project Loc: 718S R38F Sec32 E - Lea County New Mexico EMST OF TREASUREST IN TAT HELVA Ç J. GOODSEC 0 spilos baviossiO letoT × TRRP Project Name: Hobbs Junction E-32-1 H ON Labels on container(s)
Custody seals on container(s)
Custody seals on cooler(s) Sample Hand Delivered by Sampler/Clent Rop. 7 by Courier? UPS Temperature Upon Receipt: BTEX 80218/5020 or BTEX 5260 VOCs Free of Headspace? Sample Containers Intact? Laboratory Commonts: Analyze (0928 N-XETB) 20/08/00/ X Standard Melais, As Ag Ba Cd Ct Pb Hg Se 300 3 DBD / BSB / GEC (Variability, ADS IO) anoinA PO# × Project #: Cahous (Cal Mg. Na. K) Report Format: 9001 XI 51 (3) 8001 XT 15:0 Time aus 99108 M8108 11819 andero Prosta etc. 30 10001 PROSPOSIS PRODUCES INT 10.12-6 ABOURD FOR HARM SURVEYOR Date moo jamojenojamezoj EROH 1611 1 (1) énoin rozanne@valornet.com OFSERN (505) 397-1471 *08°F HCI (S) 40 IIII BIBER AIRIF ONE ಣ್ಣ esemenco to le teto paratical tries e-mail Fax No 9:45 beigma2 amiT matt@riceswd.com びちゃくろ kpope@riceswd.com Received by ELOT. 4/25/2007 Received by beigme2 eteO 04:00 Ending Depth Date Circle Hobbs, New Mexico 88240 RICE Operating Company Time Fozanne Johnson (505)831-9310 Beginning Depth purvis@nceswd.com kpope@riceswd.com 122 W. Taylor Street Kristin Farris Pope Oate (505) 393-9174 FIELD CODE 0109201 Please email to Sampler Signature. Company Address: Project Manager Company Name Monitor Well # Telephone No: City/State/Zip Special Instructions: (ellipquished by (Path USe only) ORDER #: (vino seu del) # BAJ \bigcirc

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

lient	Bice				
Jate/ Time.	4-76-07 4125				
ab ID # :	1076010				
ntials:	CLL				
	Sample Receipt	Checklist		Client 4	nitiale
1 Temperi	ature of container/ cooler?	Yes	No	1.0 °C	
	g container in good condition?	Yes	No.		·····
	Seals intact on shipping container/ cooler?	Yes	No.	Not Present	
	Seals intact on sample bottles/ container?	YES	No.	Not Present	
······································	Custody present?	Yes	No		
	Instructions complete of Chain of Custody?	Yes	No	100	
	f Custody signed when relinquished/ received?	Yes	No		
	f Custody agrees with sample label(s)?	YES	No	ID written on Canta Lid	***************************************
Contain	er label(s) legible and intact?	7eş	No	Not Applicable	
0 Sample	e matrix/ properties agree with Chain of Custody?	< Y €\$	No		
1 Contair	ners supplied by ELOT?	Yes>	No		
2 Sample	es in proper container/ bottle?	(ই≣)	No	See Below	
3 Sample	es properly preserved?	∤ প্রেছ্	No	See Below	
4 Sample	e bottles intact?	₹	No		
5 Preser	vations documented on Chain of Custody?	(Yes	No		
16 Contair	ners documented on Chain of Custody?	Yes	No		
·····	ent sample amount for indicated test(s)?	<u> </u>	No	See Belov:	
	ples received within sufficient hold time?	(Y.ə.s	No	See Below	
	ntract of sample(s)?	Yes	No	ÉNGI Applicaties	
20 VOCs	amples have zero headspace?		No	Not Applicable	
iontact: tegarding:	Variance Docu	umentation		Date/ Time:	***** *******************************
man ya tuo sa kadi i sadi.					
Dorrective A	action Taken:				***************************************
Check all th	at Apply: See attached e-mail/ fax Client understands and wo Cooling process had begun			•	

Analytical Report 287157


for

Rice Operating Co.

Project Manager: Kristin Pope

Hobbs Junction E-32-1

13-AUG-07

12600 West I-20 East Odessa, Texas 79765

A Xenco Laboratories Company

NELAC certification numbers:
Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

13-AUG-07

Project Manager: Kristin Pope

Rice Operating Co.
122 West Taylor
Hobbs, NM 88240

Reference: XENCO Report No: 287157

Hobbs Junction E-32-1

Project Address: T18S R38E Sec32 E ~ Lea County New Mexico

Kristin Pope:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 287157. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 287157 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Brent Barron

Odessa Laboratory Director

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Certificate of Analysis Summary 287157 Rice Operating Co., Hobbs, NM

Project Name: Hobbs Junction E-32-1

Project Id:

Contact: Kristin Pope

Date Received in Lab

Aug-02-07 12:50 pm

Report Date:

13-AUG-07

Project Location: T18S R38E Sec32 E ~ Lea County New M

Project Manager:

Brent Barron, II

	Lab Id:	287157-0	01			
Analysis Requested	Field Id:	Monitor Wel	11 # 1			:
,	Depth:					
	Matrix:	WATE	R			
	Sampled:	Jul-30-07 0	7:55			
Alkalinity by EPA 310.1	Extracted:					
Trinamity by Di 7t 510.1	Analyzed:	Aug-07-07	13:00	,		
	Units/RL:	mg/L	RL			
Alkalinity, Total (as CaCO3)		290	4.00		•	-
Inorganic Anions by EPA 300	Extracted:					
	Analyzed:	Aug-07-07	11:48			
	Units/RL:	mg/L	RL			
Chloride		87.5	5.00			
Sulfate	.,	69.3	5.00			
Metals per ICP by SW846 6010B	Extracted:					
por real systems of the second	Analyzed:	Aug-03-07	14:39			
	Units/RL:	mg/L	RL			
Calcium		132	0.100			
Magnesium		25.8	0.010			
Potassium		3.38	0.500			
Sodium	_	43.9	0.500			
Residue, Filterable (TDS) by EPA	Extracted:					
160.1	Analyzed:	Aug-06-07	16:20			
	Units/RL:	mg/L	RL			
Total dissolved solids		672	5.00			
VOAs by SW-846 8260B	Extracted:	Aug-04-07	17:00			
V 0713 By 5 W 010 0200B	Analyzed:	Aug-05-07	19:56			
	Units/RL:	ug/L	RL		:	
Benzene		ND	1.00			
Ethylbenzene		ND	1.00			
Naphthalene		ND	1.00			
Toluene		ND	1.00			
o-Xylene		ND	1.00			
m,p-Xylenes		ND	1.00			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Brent Barron

Odessa Laboratory Director

XENCO Laboratories

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MOL and above the SOL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte.

 The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.
A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Phone Fax 11381 Meadowglen Lane Suite L Houston, Tx 77082-2647 (281) 589-0692 (281) 589-0695 (214) 902 0300 9701 Harry Hines Blvd , Dallas, TX 75220 (214) 351-9139 (210) 509-3334 (201) 509-3335 5332 Blackberry Drive, Suite 104, San Antonio, TX 78238 2505 N. Falkenburg Rd., Tampa, FL 33619 (813) 620-2000 (813) 620-2033 (305) 823-8500 5757 NW 158th St, Miami Lakes, FL 33014 (305) 823-8555

Form 2 - Surrogate Recoveries

Project Name: Hobbs Junction E-32-1

Work Order #: 287157

Project ID:

Lab Batch #: 701795

Sample: 286528-001 S / MS

Batch:

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY							
VOAs by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery % R	Control Limits % R	Flags			
Analytes			[D]					
4-Bromofluorobenzene	. 0.0436	0.0500	87	86-115				
Dibromofluoromethane	0.0480	0.0500	96	86-118				
1,2-Dichloroethane-D4	0.0409	0.0500	82	80-120				
Toluene-D8	0.0468	0.0500	94	88-110				

Lab Batch #: 701795

Sample: 286528-001 SD / MSD

Batch: 1

Matrix: Water

Units: mg/L	SURROGATE RECOVERY STUDY							
VOAs by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits % R	Flags			
Analytes								
4-Bromofluorobenzene	0.0423	0.0500	85	86-115	*			
Dibromofluoromethane	0.0501	0.0500	100	86-118				
1,2-Dichloroethane-D4	0.0412	0.0500	82	80-120				
Toluene-D8	0.0481	0.0500	96	88-110				

Lab Batch #: 701795

Sample: 287157-001 / SMP

Batch:

Matrix: Water

Units: ug/L	SURROGATE RECOVERY STUDY							
VOAs by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits % R	Flags			
4-Bromofluorobenzene	45.98	50.00	92	86-115				
Dibromofluoromethane	53.79	50.00	108	86-118				
1,2-Dichloroethane-D4	41.05	50.00	82	80-120				
Toluene-D8	47.37	50.00	95	88-110				

Lab Batch #: 701795

Sample: 497846-1-BKS / BKS

Batch: 1

Matrix: Water

Units: ug/L	· SU	SURROGATE RECOVERY STUDY							
VOAs by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits % R	Flags				
4-Bromofluorobenzene	43.28	50.00	87	86-115					
Dibromofluoromethane	45.30	50.00	91	86-118					
1.2-Dichloroethane-D4	37.94	50.00	76	80-120	*				
Toluene-D8	46.36	50.00	93	88-110					

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Hobbs Junction E-32-1

Work Order #: 287157

Project ID:

Lab Batch #: 701795

Sample: 497846-1-BLK / BLK

Batch:

Matrix: Water

Units: ug/L	SURROGATE RECOVERY STUDY							
VOAs by SW-846 8260B	Amount Found [A]	True Amount B}	Recovery % R	Control Limits % R	Flags			
Analytes			[D]					
4-Bromofluorobenzene	47.54	50.00	95	86-115				
Dibromofluoromethane	48.11	50.00	96	86-118				
1,2-Dichloroethane-D4	38.00	50.00	76	80-120	*			
Toluene-D8	46.20	50.00	92	88-110				

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Blank Spike Recovery

Project Name: Hobbs Junction E-32-1

Work Order #: 287157

Project ID:

Lab Batch #: 701789

Sample: 701789-1-BKS

Matrix: Water

Date Analyzed: 08/07/2007

Date Prepared: 08/07/2007

Analyst: WRU

Reporting Units: mg/L	Batch #: 1	BLANK /	BLANK SPI	KE REC	COVERY	STUDY
Alkalinity by EPA 310.1	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike % R	Control Limits % R	Flags
Analytes			C	[D]		
Alkalinity, Total (as CaCO3)	ND	200	194	97	80-120	

Lab Batch #: 701864

Sample: 701864-1-BKS

Matrix: Water

Date Analyzed: 08/07/2007

Date Prepared: 08/07/2007

Analyst: IRO

Reporting Units: mg/L

Batch #:

BLANK/BLANK SPIKE RECOVERY STUDY

g.z	Daten III.	DUANT	DUAINK SE	INE NE	COVERI	31001
Inorganic Anions by EPA 300	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike % R	Control Limits % R	Flags
Analytes	[74]	[2]	[C]	[D]	, , ,	
Chloride	ND	10.0	9.03	90	90-110	
Sulfate	ND	10.0	9.63	96	90-110	

Lab Batch #: 701571

Sample: 701571-1-BKS

Matrix: Water

Date Analyzed: 08/03/2007 arting Units

Date Prepared: 08/03/2007

Analyst: LATCOR

Reporting Units: mg/L	Batch #:	BLANK /	BLANK SP	IKE REC	COVERY	STUDY
Metals per ICP by SW846 6010B	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike % R	Control Limits % R	Flags
Analytes	. ,		[C]	[D]		
Calcium	ND	2.00	1.83	92	75-125	
Magnesium	ND	2.00	2.08	104	75-125	
Potassium	ND	2.00	2.28	114	75-125	
Sodium	ND	2.00	1.94	97	75-125	

Lab Batch #: 701795

Sample: 497846-1-BKS

Matrix: Water

Date Analyzed: 08/05/2007 Reporting Units: ng/l

Date Prepared: 08/04/2007

Analyst: CELKEE

Reporting Units: ug/L	Batch #:	BLANK /	BLANK SP	IKE REC	COVERY	STUDY
VOAs by SW-846 8260B	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike % R	Control Limits % R	Flags
Analytes	11	127	[C]	[D]	/	
Benzene	ND	25.0	24.0	96	66-142	
Ethylbenzene	ND	25.0	26.4	106	75-125	
Toluene	ND	25.0	24.3	97	59-139	
o-Xylene	ND	25.0	26.7	107	75-125	
m,p-Xylenes	ND	50.0	53.2	106	75-125	

Blank Spike Recovery [D] = 100*[C]/[B]

All results are based on MDL and validated for QC purposes.

Form 3 - MS Recoveries

nelad

Project Name: Hobbs Junction E-32-1

Work Order #: 287157

Lab Batch #: 701864

QC-Sample ID: 287159-003 S

Date Prepared: 08/07/2007

Project ID:

Date Analyzed: 08/07/2007 Date Preparation

Analyst: IRO

Batch #:

Matrix: Water

Reporting Units: mg/L

DIV SPIKE DECOVERY STUDY

Reporting Units: Ingr	MAII	MATRIX / MATRIX SPIKE RECOVERY STUDY						
Inorganic Anions by EPA 300	Parent Sample Result [A]	Spike Added	Spiked Sample Result [C]	%R - [D]	Control Limits %R	Flag		
Analytes	101	[B]						
Chloride	548	250	862	126	90-110	X		

Matrix Spike Percent Recovery [D] $\approx 100*(C-A)/B$ Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

* 306 -- 41

Form 3 - MS / MSD Recoveries

a do da

and to

Project Name: Hobbs Junction E-32-1

Work Order # 287157

Lab Batch 1D: 701795

Date Analyzed: 08/05/2007

Analyst: Batch #:

l Matrix: Water CELKEE

Project ID:

QC- Sample ID: 286528-001 S **Date Prepared:** 08/04/2007

Reporting Units: mg/L		M	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	/MATI	RIX SPIK	E DUPLICA	re reco	VERY S	TUDY		
VOAs by SW-846 8260B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Spiked Result Sample [C] %R	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.025	0.024	96	0.025	0.025	100	4	66-142	21	
Ethylbenzene	ND	0.025	0.027	108	0.025	0.026	104	4	75-125	20	
Toluene	ND	0.025	0.025	100	0.025	0.026	104	4	59-139	21	
o-Xylene	QN	0.025	0.027	108	0.025	0.027	108	0	75-125	20	
m,p-Xylenes	ND	0.050	0.053	106	0.050	0.052	104	2	75-125	20	

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/EMatrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [RPD = 200*(D-G)/(D+G)]

 $ND = Not \ Detected.\ J = Present \ Below \ Reporting Limit, B = Present in Blank. \ NR = Not \ Requested.\ J = Interference. \ NA = Not \ Applicable N = See \ Narrative, EQL = Estimated Quantitation Limit$

Sample Duplicate Recovery

Project Name: Hobbs Junction E-32-1

Work Order #: 287157

Lab Batch #: 701789

Project ID:

Date Analyzed:08/07/2007Date Prepared:08/07/2007Analyst:WRUQC- Sample ID:287122-001 DBatch #:1Matrix:Water

Reporting Units: mg/L	SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by EPA 310.1 Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Anaryte		1-1			
Alkalinity, Total (as CaCO3)	216	216	0	20	

Lab Batch #: 701571

Date Analyzed: 08/03/2007

Date Prepared: 08/03/2007

Analyst: LATCOR

QC- Sample ID: 287179-001 D Batch #: 1

Batch #: | Matrix: Water | SAMPLE / SAMPLE DUPLICATE RECOVERY

Reporting Units: mg/L	SAMPLE /	SAMPLE / SAMPLE DUPLICATE RECOVERY							
Metals per ICP by SW846 6010B Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	Duplicate RPD Limits Result %RPD		Flag				
Calcium	301	285	5	25					
Magnesium	120	134	11	25					
Potassium	20.1	15.8	24	25					
Sodium	284	265	7	25					

Lab Batch #: 701790

Date Analyzed: 08/06/2007

Date Prepared: 08/06/2007

1

1

Analyst: IRO

QC- Sample ID: 287122-001 D

Batch #:

Matrix: Water

Reporting Units: mg/L	SAMPLE / SAMPLE DUPLICATE RECOVERY						
Residue, Filterable (TDS) by EPA 160.1	Parent Sample Result [A]	Sample Duplicate Result [B]	RPÐ	Control Limits %RPD	Flag		
Analyte	1	(D)					
Total dissolved solids	754	784	4	30			

Lab Batch #: 701790

Date Analyzed: 08/06/2007

Date Prepared: 08/06/2007

Analyst: IRO

QC- Sample ID: 287348-002 D
Reporting Units: mg/L

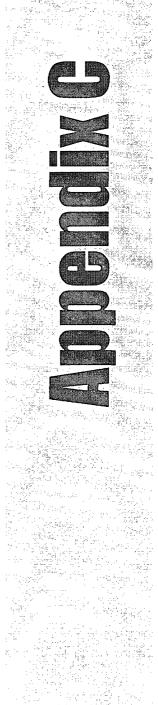
Batch #:

Matrix: Water

Reporting Units: mg/L	SAMPLE	SAMPLE	DUPLIC	ALE REC	OVERY
Residue, Filterable (TDS) by EPA 160.1	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Total dissolved solids	6250	6290	1	30	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

TAT brebnet2 □ NPCES Project Los: T18S R38E Sec32 E - Lea County New Mexico # 14 Z / 4B ' 5E (4B) 5.5 Phone: 432-563-1800 Fax: 432-563-1713 TRRP N.O.R.M. Ħ Project Name: Hobbs Junction E-32-1 1DH VOCs Free of Headspace?
Labals on container(s)
Custody seals on coctention (custody seals on coctention (custod) (custod) 0005/81Z08 X316 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Temperature Upon Receipt Report Format: X Standard £ Project #: 05.21 (0.2.8 rozanne@valornet.com 12600 West I-20 East Odessa, Texas 79765 ,OzZ,sN HOPN Raelyn Gordrei Alally Jardha (505) 397-1471 **'**О\$²н HCI (S) 40 ml diass viais Fax No: e-mail: rozanne@valornet.com Lime Sampled Kristin Farris Pope kpope@riceswd.com 7/30/2007 Received by: raded gnibr 8467 9:15 8467 9:15 Hobbs, New Mexico 88240 **Environmental Lab of Texas** RICE Operating Company Sampler Signature: Rozanne Johnson (505)631-9310 kpope@riceswd.com Company Address: 122 W. Taylor Street (505) 393-9174 FIELD CODE ecial Instructions: Please empli to : 287157 Project Manager: Company Name Monitor Well #1 Telephone No: City/State/Zip: ORDER #: (lab use only) 61


4

S. Australia

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

ient: <u>Fi(l</u>				
ite/Time: 8 2:07 12:50				
ыр#: 787157				
rtials GV.				
Sample Receipt	Checklist		Client (nitials
Temperature of container/ cooler?	(Fes)	No	1, 6 °C	
? Shipping container in good condition?	Yes	No		
3 Custody Seals intact on shipping container/ cooler?	Xes	No	Not Present	
Custody Seals intact on sample bottles/ container?	Yes.	No	Not Present	
Chain of Custody present?	Yes	No		
Sample instructions complete of Chain of Custody?	Yes)	No		
7 Chain of Custody signed when relinquished/ received?	Yés)	No		
6 Chain of Custody agrees with sample label(s)?	Yes)	No	ID written on Cont./ Lid	
9 Container label(s) legible and intact?	Yes	No	Not Applicable	
10 Sample matrix/ properties agree with Chain of Custody?	Yes	No		
11 Containers supplied by ELOT?	Yes	No		
12 Samples in proper container/ bottle?	Yes	No	See Below	\dashv
13 Samples properly preserved?	¥€\$⊃	No	See Below	
14 Sample bottles intact?	Yes)	No	See Below	
Preservations documented on Chain of Custody?	Yes)	No		
16 Containers documented on Chain of Custody?	Yes	No	·	
17 Sufficient sample amount for indicated test(s)?	Yes)	No		
	Yes	No	See Below	
18 All samples received within sufficient hold time?			See Below	-
19 Subcontract of sample(s)?	Yes	No	Not Applicable)	
20 VOC samples have zero headspace?	Yes	No	Not Applicable	
Variance Docu	mentation		Date/ Time	
		•		
Regarding:				·
				·
Corrective Action Taken:				
Check all that Apply See attached e-mail/ fax Client understands and wor Cooling process had begun			•	

Katie Lee

From: Kristin Pope [kpope@riceswd.com]

Sent: Wednesday, October 31, 2007 3:30 PM

To: Katie Lee

Subject: Fw: Summary of July 18 meeting

---- Original Message -----

From: Hansen, Edward J., EMNRD

To: Kristin Pope

Cc: Carolyn Haynes; Scott Curtis; Sanchez, Daniel J., EMNRD; Price, Wayne, EMNRD

Sent: Wednesday, August 08, 2007 11:26 AM **Subject:** RE: Summary of July 18 meeting

Kristin.

Your summary appears to be accurate and complete.

Attached is the summary that you sent with comments from me [OCD case #s and formal (email) approval dates].

I'll be sending more formal (via email) approvals for the closures and some of the CAPs soon.

Also, I will review and comment on the other CAPs and the APs a.s.a.p.

Thanks for the summary.

Let me know if you have any questions regarding my comments.

Edward J. Hansen Hydrologist Environmental Bureau 505-476-3489

From: Kristin Pope [mailto:kpope@riceswd.com] **Sent:** Wednesday, August 08, 2007 10:34 AM

To: Sanchez, Daniel J., EMNRD; Price, Wayne, EMNRD; Hansen, Edward J., EMNRD

Cc: Carolyn Haynes; Scott Curtis **Subject:** Summary of July 18 meeting

Gentlemen,

Please review the attached summary of our July 18 meeting. Please let me know if anything needs to be changed. OCD and ROC have already moved forward with several of the projects listed but I would like written confirmation for our files. Thanks again for your time.

Kristin Farris Pope Project Scientist RICE Operating Company Hobbs, New Mexico (505) 393-9174

This inbound email has been scanned by the MessageLabs Email Security System.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient (s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

OCD/ROC MEETING SUMMARY

July 18, 2007

CLOSURES

- 1. Abatement Completion Report for <u>BD Zachary Hinton EOL</u> submitted by R.T. Hicks Consultants on 3/15/2007. AP-50
- 2. Abatement Completion Report for <u>EME Marathon Barber (jct. E-5)</u> submitted by R.T. Hicks Consultants on 5/16/2007. 1R0427-91 *Approved soil work completed Dec. 2006*
- 3. Closure Report for <u>Hobbs I-29 EOL boot</u> submitted by R.T. Hicks Consultants on 5/23/2007. Approved soil work completed in 2006. 1R428-42
- 4. Closure Request for <u>BD jct. N-29</u> submitted by R.T. Hicks Consultants on 2/10/2007. #1R0426-37

APPROVALS

- 1. Stage 1&2 Abatement Plan for <u>Vacuum F/G-35 SWD</u> submitted by R.T. Hicks Consultants; proof of public notice submitted Feb. 2006; AP-59 *Vadose zone remedy complete; reclaiming surface; groundwater treatment ongoing at F-35; evaluating treatment potential at G-35*
- 2. INVESTIGATION & CHARACTERIZATION PLANS (ICP) NMOCD Approved (1 14) via email August 6, 2007
 - 1. Hobbs O-5 Historical Release by Hicks on 4/11/2007 #1R428-69
 - 2. EME State 'H' EOL by P. Galusky on 5/1/2007 #1R427-15
 - 3. Justis E-1 vent by Highlander on 11/29/2006. #1R0432-06
 - 4. <u>Vacuum State 'P' EOL</u> by Galusky on 4/20/07 #1R425-26
 - 5. Vacuum jct. F-31-1 by Hicks on 4/17/07. #1R425-27
 - 6. BD P-26-1 vent by Trident on 2/12/2007. #1R0426-106
 - 7. BD jct. P-26-2 by Trident on 2/12/2007. #1R0426-107
 - 8. <u>Hobbs jct. E-4, M-4 vent, & N-4 vent</u> (1 plan) by Hicks on 4/17/07 #1R428-71, #1R428-76, #1R428-68, respectively
 - 9. EME L-6 boot by Trident on 12/1/2006. #1R0427-09
 - 10. EME B-8 leak by Trident on 12/1/2006. #1R0480
 - 11. EME jct. F-18 by Arcadis on 7/6/2007 #1R427-16
 - 12. BD jct. F-25-1 by Arcadis on 7/12/2007 #1R426-10
 - 13. EME L-15-1 vent by Galusky on 7/16/2007 #1R427-173
 - 14. EME State 'Q' EOL boot by Galusky on 7/16/2007 #1R427-174
- 3. Corrective Action Plan (CAP) for <u>Hobbs E-15 SWD</u> submitted on 11/28/2006 by Arcadis G&M. *Approved with clay or GCL condition* #1R428-40 NMOCD Approved with conditions via email July 27, 2007

- 4. CAP for Hobbs F-29-1b boot submitted by R.T. Hicks Consultants on 4/2/2007. #1R428-45
- 5. CAP for <u>Hobbs O-29 vent</u> submitted by R.T. Hicks Consultants on 4/2/2007. #1R428-43
- 6. CAP for <u>Hobbs I-29 vent</u> submitted by R.T. Hicks Consultants on 4/13/2007. #1R428-41
- 7. CAP for Hobbs jct. E-33-1 submitted by R.T. Hicks Consultants on 1/2/2007. #1R428-67
- 8. CAP for <u>Hobbs B-32 boot</u> submitted by R.T. Hicks Consultants on 1/22/2007. #1R428-57
- 9. CAP for Hobbs jct. E-32-1 submitted by R.T. Hicks Consultants on 1/22/2007. #1R428-65
- 10. CAP for <u>Hobbs F-33 vent</u> submitted by R.T. Hicks Consultants on 1/22/2007. #1R428-58
- 11. CAP for <u>EME A-2 leak</u> submitted by Highlander on 5/23/2007. # 1R0427-62 condition: install clay at 4 ft instead of 3 ft as proposed
- 12. CAP for jct. A-2-1 submitted by Highlander on 5/23/2007. # 1R0427-177 condition: install clay at 4 ft instead of 3 ft as proposed
- 13. CAP for EME I-1 off-site encroachment submitted by Trident on 2/27/07. #1R0464

Rule 19 ABATEMENT PLANS

OCD granted approval to install monitoring wells as proposed while reviewing plans for administrative completeness:

- 1. Stage 1 & 2 Abatement Plan for <u>Hobbs F-29 SWD</u> submitted on 10/27/2006 by R.T. Hicks Consultants. *Public notice ready to submit upon approval.* AP-64
- 2. Stage 1 Abatement Plan for <u>EME C-16(1) leak</u> submitted on 5/25/2007 by L. Peter Galusky; #1R0476 *Public notice ready to submit upon approval*.
- 3. Stage 1 Abatement Plan for <u>EME C-16(2) leak</u> submitted on 5/25/2007 by L. Peter Galusky; #1R0477 *Public notice ready to submit upon approval.*
- 4. Stage 1&2 Abatement Plan for <u>BD Santa Rita release</u> site submitted on 12/11/2006 by Trident. AP-58 want to drill more MWs

- 5. Stage 1&2 Abatement Plan for <u>EME jct. M-16-1</u> submitted on 1/29/2007 by Arcadis G&M. AP-42
- 6. Stage 1&2 Abatement Plan for <u>EME jct. A-20</u> submitted on 1/29/2007 by Arcadis G&M. AP-43
- 7. Stage 1 Abatement Plan for <u>BD H-35 pit</u> submitted by Arcadis G&M on 3/23/2007. #1R0216
- 8. Stage 1 & 2 Abatement Plan for <u>Justis jet. L-1 boot</u> submitted by Highlander on 1/17/07. AP-48

OCD WILL REVIEW

- 1. Stage 1 Final Report & Closure Request for <u>EME jct. K-33-1</u> submitted by Whole Earth on 12/28/2006. AP-60

 OCD requests confirmation of regional gradient/impact
- 2. CAP for EME M-5 SWD submitted by Hicks on 9/10/2004. #1R424
- 3. Rule 19 Release and CAP for soil for <u>BD jct. F-17</u> submitted by Highlander on 8/30/06. *Additional information requested by OCD was submitted on 12/29/06 and presented at meeting on 2/21/2007.* AP-47
- 4. Request for Release from Rule 19 for <u>EME H-13 release</u> submitted on 8/30/2006 by Highlander Environmental. AP-44

 Additional information requested by OCD was submitted on 12/29/06 and presented at meeting on 2/21/2007. Showed current site photos.
- 5. Final Investigation Report & CAP for <u>EME jct. K-6</u> submitted by Trident on 3/7/2007. AP-46.

OTHER

- 1. CAP for <u>BD K-4 leak</u> submitted by Highlander on 4/23/2007. #1R0459 APPROVAL to begin pumping from MW-1 as proposed; OCD will evaluate CAP (soil work)
- 2. CAP for <u>BD O-17-1</u> vent submitted by Highlander on 5/11/2007. #1R426-12 *No groundwater impact; soil work only ROC WILL REVISE AND RE-SUBMIT FOR CLARIFICATION*

3. GEOSYNTHETIC CLAY LINER (GCL) option for Junction Box Upgrade Program

Modification request required; can be emailed.

NMOCD Approved with conditions via email July 27, 2007

Lanuary E3.2001

Corrective Action Plan I of E 32-1 Junction Box Site

CUE METODOS SATRIOTATE PIDENOS ALS VITEMANIA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DE LA COMPANIA DE LA COMPANIA DEL COMPANIA DE LA COMPANIA DEL COM

は一般の

GENERAL C.

138 Jai

R.T. Hicks Consultants, LTD

901 Rio Grande Blvd. NW, Suite F-142, Albuquerque, NM 87104

Corrective Action Plan
for E-32-1

Junction Box Site
Hobbs Salt Water Disposal System
NMOCD CASE #: 1R0428-66

R.T. Hicks Consultants, LTD

901 Rio Grande Blyd. NW, Suite F-142, Albuquerque, NM 87104

Corrective Action Plan for E-32-1 Junction Box Site

Hobbs Salt Water Disposal System NMOCD CASE #: 1R0428-66

R.T. Hicks Consultants, LTD

901 Rio Grande Blvd. NW, Suite F-142, Albuquerque, NM 87104

1.0	Executive Summary
	Data Summary
	Conclusions
	Recommendations
2.0	Background 4
	2.1 Location
	2.2 Characterization Activities
3.0	Regional Geology and Hydrogeology
4.0	Characteristics of the Vadose Zone
5.0	Characteristics of the Saturated Zone
6.0	Evaluation of Vertical Chloride Flux9
7.0	Proposed Remedy
8.0	Criteria for Closure
List	of Figures, Tables & Plates
Figu	re 1 Chloride Concentrations with Depth
Figu	re 2 Chloride Concentration in the Aquifer with Vegetation 9
Table	e 1 Summary of Data for the Site
Plate	2 1 Junction Box Site Location Map
Appo	endix A — Investigation Characterization Plan
App	endix B — Lithologic Logs with Field Measurements
App	endix C — Analytic Reports
Appe	endix D — Model Explanation

▼ 1.0 EXECUTIVE SUMMARY

This Corrective Action Plan presents the results of the characterization activities performed by R.T. Hicks Consultants (Hicks Consultants) and Rice Operating Company (ROC) at the E-32-1 site located in the Hobbs Salt Water Disposal System (SWD). Hydrocarbon constituents are not present in the vadose zone. HYDRUS-1D simulation modeling predicts that the placement of a vegetative cap over the site mitigates any threat to fresh water posed by chloride in the vadose zone. After re-vegetation of the site and two additional quarterly ground water monitoring events, ROC will submit a final closure report.

Data Summary

- 1. Hicks Consultants and ROC conducted field activities at the E-32-1 Junction Box site in May 2004. This involved general reconnaissance as well as supervision of borehole sampling of the vadose zone from ground surface to ground water.
- 2. Chloride concentration data from vadose zone samples show that the chloride center of mass resides from near ground surface to 10 feet below ground surface. The maximum chloride concentration is at 10 feet bgs (3,180 mg/kg laboratory) and the chloride concentration at 5 feet bgs is 1,200 mg/kg (field analysis).
- Chloride concentrations below the center of mass ranged from 689 mg/kg (field result for 16 feet bgs) to 414 mg/kg (field result at 35 feet bgs).
- 4. Neither field PID analyses nor observed characteristics of samples (e.g. odor, color) suggest that hydrocarbons are present in the vadose zone. All field PID analyses were 2 ppm. Because of this finding, samples were not submitted to the laboratory for analysis for hydrocarbons.
- 5. The chloride concentrations in the vadose zone exceeded the delineation limit established by the Investigation Characterization Plan (ICP). Therefore a monitoring well was installed in the soil boring.
- Three ground water sampling events provided additional data for this Corrective Action Plan.
- 7. Although the initial ground water sampling event showed that TDS and chloride exceeded WQCC Standards (1,350 and 393 mg/L respectively), this result could not be replicated. The two subse-

page

quent quarterly monitoring events show that ground water is below WQCC Standards. The most recent sampling result from this well (9/19/06) was 189 mg/L chloride and 740 mg/L TDS.

Conclusions

- 1. Initial samples from monitoring wells often return anomalous results due to construction issues such as the transport of up-hole constituents to the ground water table. The fact that two consecutive sampling events show results that are 50% of the original finding allows us to conclude that the first analysis is anomalous and is not representative of ground water quality beneath the site.
- 2. HYDRUS-1D simulations predict that subsurface chloride mass will migrate downward over decades, disperse in the soil column and enter ground water at a very slow rate and that ground water will not exceed WQCC standards.

Recommendations

- 1. Restore and re-vegetate the ground surface at the E-32-1 Junction Box Site.
- 2. Continue ground water monitoring for two additional quarters.
- Upon documentation of surface restoration and verification that ground water quality remains below WQCC Standards and does not show an increasing concentration trend over time, ROC will submit a closure report for the E-32-1 Junction Box site.

The selected remedy is the creation of an infiltration barrier through surface restoration and re-vegetation of the site. This remedy is protective of ground water quality, human health and the environment.

V 2.0 BACKGROUND

The Hobbs Salt Water Disposal System (SWD), which managed produced water from the late 1950s to the present, is now closed. Future releases from the system infrastructure are not possible. Closure of facilities like the E-32-1 Junction Box within Hobbs SWD, followed the August 6, 2004 NMOCD-approved junction box investigation plan. This plan calls for delineation of any impact from these sites during the closure process and states:

If 12 feet vertical delineation at the source reveals Target Concentrations for TPH or BTEX will not meet NMOCD guidelines or TPH and BTEX will meet guidelines but there is not a significant decline vs. depth in chloride concentration, the site-impact is judged to be outside the scope of this work plan and will become a risk-based corrective action (RBCA) project-site.

The E-32-1 Junction Box site met these criteria. With the abandonment of the system in 2002, Rice Operating Company (ROC) excavated and removed the E-32-1 Junction Box and the uppermost four feet of the vadose zone. At the time of investigation, the excavation was filled with a mixture of silty loam with some caliche.

2.1 Location

Plate 1 is an aerial photograph of the site when it was active, taken between 1996 and 1998, with the location of the boring and nearby roads noted.

The site is within unit letter E, Section 32, Township 18S Range 38E. To access the site from the intersection of West County Road and Sanger proceed south on West County Road ½ mile and turn left onto the unpaved lease road. Continue east about 100 feet and turn left again off the road. Proceed approximately 200 feet north and then 50 feet east to the site which is situated along the north side of a fenced gas well location.

2.2 Characterization Activities

In May 2006, Hicks Consultants, ROC, and Atkins Drilling mobilized to conduct a series of exploratory drillings at five sites within the Hobbs SWD System. The investigation and characterization used the same protocols as described in the NMOCD-approved work plan for the Section 29 sites and was consistent with the NMOCD-approved ICP submitted for the site (see Appendix A). In order to permit comparison of the results from the boring with the ambient chloride concentrations in the vadose zone, collection of

0298

samples from a background soil boring was a critical element of the ICP. Appendix B shows the results of field chloride measurements from the background soil boring, located in Section 32, Unit A.

At the E-32-1 site, one soil boring was advanced immediately adjacent to the former junction box on May 4, 2006. In the field, ROC evaluated samples from each depth for chloride and used the heated headspace method to measure total organic vapors by PID. Two samples were submitted to the laboratory from depths showing the highest field chloride measurements (9-10 feet bgs) and from (39-40 feet bgs). The boring was completed as a monitoring well due to chloride field tests indicating levels above the threshold specified in the ICP (250 mg/kg). The total depth of the boring is 62 feet bgs and the depth to water is about 43 feet.

▼ 3.0 CHARACTERISTICS OF THE VADOSE ZONE

The upper 4 feet of the 43 foot thick vadose zone at the site is composed of a silty loam that is underlain by 16 feet of caliche and sand. Below these two layers, a fine-grained sand silt composes the vadose zone profile. The lithologic log of the boring/monitoring well is included in Appendix B.

ROC staff performed field chloride measurements and PID measurements every five feet starting at 6 feet bgs. The peak chloride concentration of 2,196 mg/kg, is at 10 feet bgs (Figure 1). Laboratory analyses confirm the results of the field tests (3,180 mg/kg at 9-10 feet bgs and 284 mg/kg at 39-40 feet bgs. Below this center of mass, chloride concentrations declined to 299 mg/kg at 41 feet bgs. Background chloride concentrations in the area, as determined from the background boring located in Section 32, Unit A (Appendix B), are approximately 80 mg/kg.

Neither hydrocarbon odors nor PID measurements above 2 ppm were detected in the boring (Appendix B). Therefore, no laboratory analyses for petroleum hydrocarbons were necessary.



Figure 1: Chloride Concentrations with Depth

V 4.0 CHARACTERISTICS OF THE SATURATED ZONE

At the E-32-1 Junction Box site, moist soil was observed at 41 feet bgs and depth to water is at 43 feet bgs.

Ground water sampling showed that chloride and TDS concentrations slightly exceeded WQCC standards for the initial ground water sampling event, however all constituents of concern were below WQCC standards for the subsequent sampling events. Field data and lab data are summarized in the table below. Analytical Reports for the site are included in Appendix C.

Date Sampled Depth to Ground Water (Feet bgs)	1 -	Constituents in Ground Water (mg/L)					
	Chloride	TDS	BTEX				
5/17/06	45.29	393	1,350	< 0.001			
8/14/06	45.63	134	682	< 0.001			
9/19/06	45.63	189	740	< 0.001			

Table 1: Summary of data for the site

Ground water quality data obtained from recently drilled monitoring wells often show "false positives" due to conditions that can cause downward transportation of up-hole sediments and entrained constituents during drilling. The two most recent sampling events show that ground water quality at this site is within the range of values observed in the general area and are 50% less than the initial sampling. Chloride concentrations in domestic supply wells range from 60 mg/L to more than 300 mg/L. From these data we conclude that the initial sampling event returned anomalous results and the subsequent sampling results are representative of ground water quality.

1372

▼ 5.0 EVALUATION OF VERTICAL CHLORIDE FLUX

Data from the boring shows chloride concentrations above background levels throughout the vadose zone. However, the center of chloride mass is at 10 feet bgs, is 30 feet above the water table. Below 10 feet bgs chloride concentrations decline with depth.

The fact that the center of chloride mass resides at 10 feet bgs and concentrations decrease below that depth allow the following conclusions:

- 1. Operation of the site did not cause saturated flow conditions, and
- 2. The deep percolation rate beneath the fine-grained uppermost vadose zone (0-9 feet bgs) was not sufficient to evenly distribute the chloride load throughout the vadose zone.

Where the deep percolation rate is relatively high due to releases of produced water, chloride concentrations are generally higher than 1,000 mg/kg throughout the vadose zone and a distinct center of mass is not observed. This is not the case at the E-32-1 junction box site.

Hicks Consultants believes the following release/transport scenario is consistent with the empirical data:

- At the E-32-1 site, periodic releases created sufficient soil moisture to allow chloride transport to a depth of 10 feet, perhaps under saturated or near-saturated flow.
- After the release, evaporation of soil moisture and drying of the upper vadose zone reduced soil moisture and hydraulic conductivity temporarily "stranding" the chloride mass at 10 feet bgs. Unsaturated flow caused downward chloride transport through the entire vadose zone, albeit at a very slow rate/flux.

The fact that ground water is not impaired (i.e. ground water quality does not exceed WQCC standards) by chloride flux from the vadose zone to the aquifer also supports a conclusion that chloride in the vadose zone cannot and will not migrate to ground water and exceed the WQCC Standards because releases are no longer possible and the proposed remedy will limit additional deep percolation.

Nevertheless, Hicks Consultants elected to run a HYDRUS-1D model to provide additional confirmation of our conclusion that the residual chloride mass poses no threat to fresh water. A HYDRUS 1-D model was constructed with site specific data as detailed in Appendix E. The predicted vadose zone solute flux to ground water was used as an input to a simple ground water mixing model. Predicted chloride concentration in a hypothetical monitoring well at the down-gradient edge of the site is shown in Figure 2. The model assumes vegetation within the upper three feet of silt loam at the site and that the initial ground water chloride concentration is 161 mg/L.

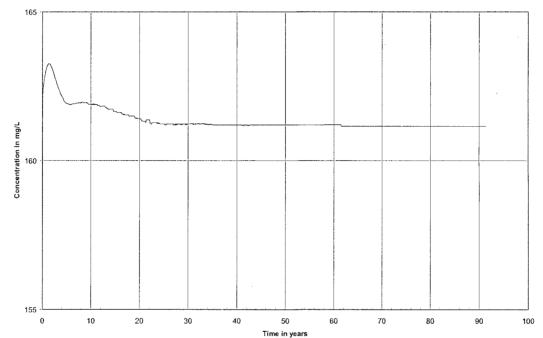


Figure 2: Chloride Concentration in the Aquifer with Vegetation, E-32-1 Site

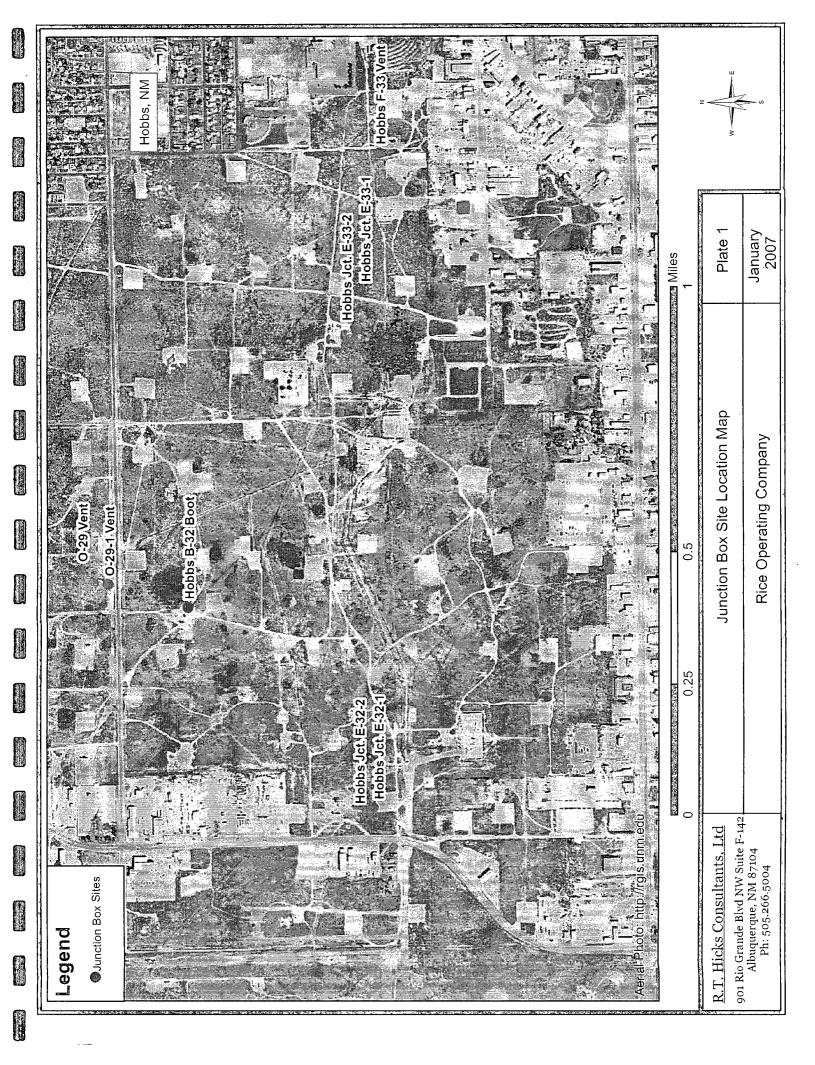
As can be seen in Figure 2, chloride in the lower vadose zone enters ground water raising chloride concentration to 163 mg/L about two years after revegetation of the site. With establishment of vegetation at the site, infiltration is reduced. With "drying" out of the vadose zone soil materials, hydraulic conductivities are reduced. The resultant vadose zone chloride flux to ground water is lowered such that ground water chloride concentration does not rise above 162 mg/L after approximately 20 years (see Appendix D).

Dage

▼ 7.0 PROPOSED REMEDY

Experience at similar sites and HYDRUS-1D simulations of the conditions similar to those observed at this site support simple re-vegetation of the surface as an effective corrective action.

This Corrective Action Plan calls for two additional ground water monitoring events (to be completed in March 2007). If chloride concentrations in ground water remain below WQCC standards and show no increasing concentration trend, ROC will submit evidence of re-vegetation in a final closure report and request closure of the regulatory file.


page

W 8.0 CRITERIA FOR CLOSURE

Ground water beneath the site is below WQCC standards for the constituents of concern.

The data and HYDRUS-1D modeling shows that water contaminants in the vadose zone will not, with reasonable probability contaminate ground water or surface water in excess of the WQCC standards through leaching, percolation, or other transport mechanisms, or as the water table elevation fluctuates.

After re-vegetation of the site and two additional quarters of ground water monitoring (until March 2007) that confirm no impairment of ground water, ROC will submit a final closure report and request closure of the regulatory file for the site.

18

18

1

A ...

TOTAL SALES

34

1

4.

0

destruction of

4

1.7.7.

R. T. HICKS CONSULTANTS, LTD.

1909 Brunson Ave ▲ Midland TX 79701 ▲ 432.638.8740 ▲ Fax: 413.403.9968

CERTIFIED MAIL - RETURN RECIEPT NO. 7099 3400 0017 1737 2367

January 20, 2006

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Investigation Characterization Plan: T18S R38E: E-33-1 Junction Box, B-32 Boot, E-32-1 Junction Box, E-32-2 Junction Box, F-33 Vent

Hobbs Salt Water Disposal System

Dear Mr. Price:

On behalf of Rice Operating Company, please accept this submission as our Initial Characterization Plan (ICP) for the five (5) sites referenced above within the Hobbs Salt Water Disposal System (Plate 1).

Rice Operating Company (ROC) is the service provider (operator) for the Hobbs Saltwater Disposal System and has no ownership of any portion of pipeline, well, or facility. A consortium of oil producers who own the Hobbs System (System Partners); provide all operating capital on a percentage ownership/usage basis. Major projects require System Partner authorization for expenditures (AFE) approval and work begins as funds are received. We will implement the work outlined herein after NMOCD approval and subsequent authorization from the System Partners.

For all environmental projects, ROC will choose a path forward that:

- 1. protects public health,
- 2. provides the greatest net environmental benefit,
- 3. complies with NMOCD Rules, and
- 4. is supported by good science.

The last criteria employed when evaluating any proposed remedy or investigative work is confirming that there is a reasonable relationship between the benefits created by the proposed remedy or assessment and the economic and social costs.

Each site shall have three submissions or a combination of:

- 1. This <u>Investigation and Characterization Plan</u> (ICP) is a proposal for data gathering and site characterization and assessment.
- 2. Upon evaluation of the data and results from the ICP, a recommended remedy will be submitted in a <u>Corrective Action Plan</u> (CAP).
- 3. Finally, after implementing the remedy, a <u>closure report</u> with final documentation will be submitted.

Task 1 Evaluate Chloride and BTEXN Concentrations in Soil at Five Sites, Evaluate Ground Water Quality if Necessary

We will follow the same protocol for characterization of the unsaturated zone at the five new ROC sites listed below.

- o E-33-1 Junction Box
- o B-32 Boot
- o E-32-1 Junction Box
- E-32-2 Junction Box
- o F-33 Vent

At each of the above-referenced sites, we will locate the sampling borehole as close as practical to the suspected release source. Earlier, we inspected each of the five sites nominated in this ICP and identified the boring location before the sites were backfilled and re-graded. Due to our recent experience with difficulties encountered in the installation of well clusters in this area, we plan to employ hollow-stem auger drilling techniques for sampling.

We will screen each sample in the field for chlorides and volatile organic compounds using the methods described in QP-03 and QP-07 (attached), respectively. Soil lithology and the presence of any observed staining or odor will be recorded. For any site, if we detect evidence of leakage within 15 feet of the water table (e.g. field chloride greater than 250 ppm in soil samples) we will complete the boring as a monitoring well in accordance with NMOCD Guidance. If three soil samples taken at 5-foot intervals test below 250 ppm chloride and below 100 ppm total volatile organic compounds, we will terminate the boring. However, all borings will penetrate at least 30 feet of the vadose zone.

Task 2 Evaluate Chloride and Hydrocarbon Flux from the Vadose Zone to Ground Water

We anticipate that one or all of the five sites selected for borehole investigation will show evidence of seepage from the source to a depth of more than 15-feet. For these sites, excavation and disposal of released material can cause more environmental damage than it cures. For such sites, we propose to employ HYDRUS-1D and a simple ground water mixing model to evaluate the potential of any residual chloride and hydrocarbon mass in the vadose zone to impair ground water quality above WQCC Standards. We have selected these two constituents for simulation modeling because each of these constituents is typically found in produced water and each is specifically regulated by New Mexico ground water regulations (WQCC). We will also employ vadose zone hydrocarbon migration predictive tools commonly employed by NMED in their PST program.

Task 3 Provide Investigative Results and/or Corrective Action Plan

Because the Hobbs SWD System no longer carries produced water, additional releases of produced water to ground water are highly unlikely. If modeling shows that the residual chloride and hydrocarbon mass in the vadose zone poses a no threat to ground water quality, we will prepare a report that makes this demonstration and request site closure.

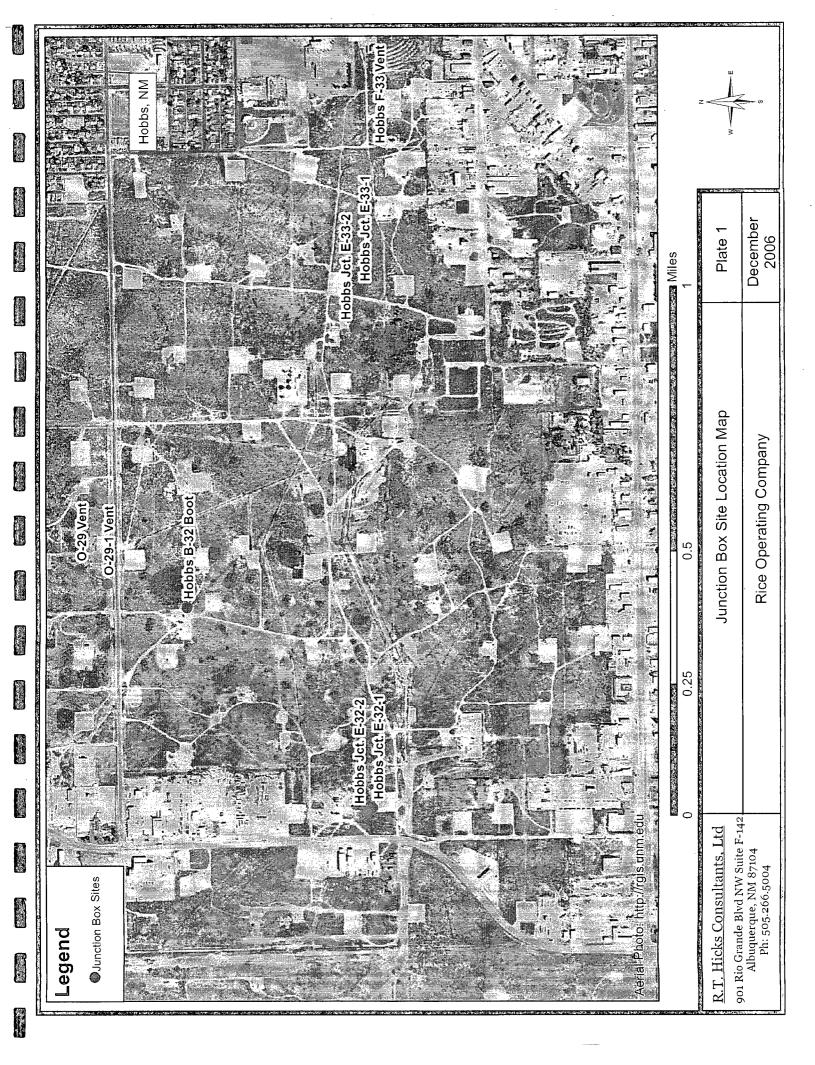
January 20, 2006 Page 3

If simulation experiments suggest that residual constituents pose a threat to ground water quality or if the field program demonstrates impairment, we will expand upon the HYDRUS-1D model predictions described above to develop a remedy for the vadose zone. If necessary, we will simulate:

- Excavation, disposal and replacement of clean soil to remove the chloride and hydrocarbon mass,
- 2. Installation of a low permeability barrier to minimize natural infiltration,
- 3. Surface grading and seeding to eliminate any ponding of precipitation and promote evapotranspiration, thereby minimizing natural infiltration, and
- 4. A combination of the above potential remedies.

We will select the vadose zone remedy that offers the greatest environmental benefit while causing the least environmental damage. If data suggest that the site has contributed chloride or hydrocarbons to ground water and caused ground water impairment, we will notify NMOCD and work collaboratively to determine the appropriate path forward.

Proposed Schedule


With NMOCD's approval of this work plan, we can perform the field activities at these sites in February or March. In late April or May, we plan to deliver any individual Correction Action Plans to address residual constituents in the vadose zone and any reports requesting site closure. If data suggest ground water impairment we plan to conduct two quarters of ground water monitoring to confirm any initial result then meet with NMOCD to develop an appropriate path forward. Your approval to move forward with this work plan will facilitate approval of expenditures by the System Partners.

Sincerely,

R.T. Hicks Consultants, Ltd.

Gilbert Van Deventer Project Manager

cc: Chris Williams, NMOCD Hobbs District Office Carolyn Haynes, Rice Operating Company - Hobbs Kristin Pope, Rice Operating Company – Hobbs Randy Hicks, R. T. Hicks Consultants, Ltd. - Albuquerque

Rice Operating Company

QUALITY PROCEDURE - 03

Sampling and Testing Protocol - Chloride Titration Using .282 Normal Silver Nitrate Solution

1.0 Purpose

This procedure is to be used to determine the concentration of chloride in soil.

2.0 Scope

This procedure is to be used as the standard field measurement for soil chloride concentrations.

3.0 Sample Collection and Preparation

- 3.1 Collect at least 80 grams of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. Ifnecessary, prepare a composite san1ple for soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
- 3.2 The soil sample(s) shall be immediately inserted into a one-quart or large polyethylene freezer bag. Care should be taken to insure that no cross-contamination occurs between the soil sample and the collection tools or sample processing equipment.
- 3.3 The sealed sample bag should be massaged to break up any clods.

4.0 Sample Preparation

- 4.1 Tare a clean glass vial having a minimum 40 ml capacity. Add at least 10 grams of the soil sample and record the weight.
- 4.2 Add at least 10 grams of reverse osmosis water to the soil sample and shake for 20 seconds.
- 4.3 Allow the sample to set for a period of 5 minutes or until the separation of soil and water.
- 4.4 Carefully pour the free liquid extract from the sample through a paper filter into a clean plastic cup if necessary.

5.0 Titration Procedure

- 5.1 Using a graduated pipette, remove 10 m1 extract and dispense into a clean plastic cup.
- 5.2 Add 2-3 drops potassium chromate (K:zcrO4) to mixture.

- 5.3 If the sample contains any sulfides (hydrogen or iron sulfides are common to oilfield soil samples) add 2-3 drops of hydrogen peroxide (HZO2) to mixture.
- 5.4 Using a 10 ml pipette, carefully add .282 normal silver nitrate (one drop at a time) to the sample while constantly agitating it. Stop adding silver nitrate when the solution begins to change from yellow to red. Be consistent with endpoint recognition.
- 5.5 Record the ml of silver nitrate used.

6.0 Calculation

To obtain the chloride concentration, insert measured data into the following formula:

$$\begin{array}{ccc} \underline{0.282 \times 35,450 \times ml \ AgNO_3} & x & \underline{grams \ of \ water \ in \ mixture} \\ \hline ml \ water \ extract & grams \ of \ soil \ in \ mixture \\ \end{array}$$

Using Step 5.0, determine the chloride concentration of the RO water used to mix with the soil sample. Record this concentration and subtract it from the formula results to find the net chloride in the soil sample.

Record all results on the delineation form.

Rice Operating Company

QUALITY PROCEDURE -07

Sampling and Testing Protocol for VOC in Soil

1.0 Purpose

This procedure is to be used to determine the concentrations of Volatile Organic Compounds in soils.

2.0 Scope

This procedure is to be used as the standard field measurement for soil VOC concentrations. It is not to be used as a substitute for full spectrographic speciation of organic compounds.

3.0 Procedure

- 3.1 Sample Collection and Preparation
 - 3.1.1 Collect at least 500 g. of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample of soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
 - 3.1.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag and sealed. When sealed, the bag should contain a nearly equal space between the soil sample and trapped air. Record the sample name and the time that the sample was collected on the Field Analytical Report Form.
 - 3.1.3 The sealed samples shall be allowed to set for a minimum of five minutes at a temperature of between 10-15 Celsius, (59-77° F). The sample temperatures may be adjusted by cooling the sample in ice, or by heating the sample within a generally controlled environment such as the inside of a vehicle. The samples should not be placed directly on heated surfaces or placed in direct heat sources such as lamps or heater vents.
 - 3.1.4 The sealed sample bag should be massaged to break up any clods, and to provide the soil sample with as much exposed surface area as practically possible.

3.2 Sampling Procedure

3.2.1 The instrument to be used in conducting VOC concentration testing shall be an Environmental Instruments 13471 OVM / Datalogger or a similar pro-type instrument. (Device will be identified on VOC Field

Test Report Form.) Prior to use, the instrument shall be zeroed-out in accordance with the appropriate maintenance and calibration procedure outlined in the instrument operation manual. The PID device will be calibrated each day it's used.

- 3.2.2 Carefully open one end of the collection bag and insert the probe tip into the bag taking care that the probe tip not touch the soil sample or the sidewalls of the bag.
- 3.2.3 Set the instrument to retain the highest result reading value. Record the reading onto the Field Test Report Form.
- 3.2.4 If the instrument provides a reading exceeding 100 ppm, proceed to conduct BTEX Speciation in accordance with QP-O2 and QP-O6. If the reading is 100 ppm or less, NMOCD BTEX guideline has been met and no further testing fur BTEX is necessary. File the Field Test Report Form in the project file.

4.0 Clean-up

After testing, the soil samples shall be returned to the sampling location, and the bags collected for off-site disposal, IN NO CASE SHALL THE SAME BAG BE USED TWICE. EACH SAMPLE CONTAINER MUST BE DISCARDED AFTER EACH USE.

LITHOLOGIC LOG AND MONITORING WELL CONSTRUCTION DIAGRAM

AONITOR WELL NO.: MW-1

TOTAL DEPTH: 58 Feet

Lea

SITE ID: Hobbs E-32-1 Junction Box

CLIENT:

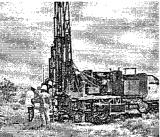
RICE Operating Company

CONTRACTOR: Atkins Engineering

COUNTY: STATE:

New Mexico

DRILLING METHOD: Hollow Stem Auger
START DATE: 5/4/2006
COMPLETION DATE: 5/4/2006


LOCATION: T18S-R38E-Sec 32-Unit E

FIELD REP.: G. Van Deventer / M. Franks

COMMENTS: Located immediately adjacent to former junction box location.

			uscs		Sample	3	Blowcounts	Chloride	PID	LITHOLOGIC DESCRIPTION:
П		1,	0303	Depth	. Time	Туре	(blows - in)	(ppm)	(ppm)	LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEAT
			SM			Surface				Silty loam, moderate yellowish brown (10YR 5/4), dry.
Cerrent		Септеп		5	0850	Split Spoon	22-12*	1204	2	Calcic sand - sandy caliche, very pale orange (10 YR 8/2), moderately hard, dry.
			SM/ CAL		8.08.0888	Stari. A				School (1997) A. S.
				10	0855	Split Spoon	50 8"	2196	2	Calcic sandstone, very pale orange (10 YR 8/2) and grayish orange (10 YR 7/4), indurated, consolidated with hard quartz sandstone streaks. Sand component is fine-grained, subangular, moderately well sorted, dry.
6		Đ	CAL	15	0945	Split Spoon	50 - 4"	689	2	
Bentonite Hole Plug		te Hole Plug						#825. To	g garan-	
3/8 Bentonit		3/8 Bentonite Hole		20	1000	Split Spoon	32 - 12° 42 - 12°	686	2	Light brown (5 YR 5/6) fine sand, slightly moist, subangular, well sorted.
		e e					50 - 5**		224-5	Light brown (5 YR 5/6) fine sand, slightly moist, unconsolidated, subangular, well sorted.
				25	1006	Split Spoon	90 - 3	465	2	
	sing			30	1019	Split	≈ 50 ÷ 6".	518	2	Light brown (5 YR 5/6) fine sand, subangular, well sorted, with intermittent streaks of sandstone.
	C Blank Ca					Spoon				
	Sched 40 PVC Blank Casing			35	1031	Split Spoon	50 - 10"	414	2	Light brown (5 YR 5/6) fine sand, subangular, well sorted, with intermittent streaks of sandstone:
2 in	2" S									A STATE OF THE STA
			SW	40	1045	Split Spoon	50 - 11"	299	2	Light brown (5 YR 5/6) fine sand, slightly moist, subangular, well sorted, with intermittent streaks of sandsto
Pack	Slots	Pack		₩						Groundwater encountered at approximately 43.1t below ground surface.
8/16 Brady Sand Pack	Screen with 0.010" Slots	Brady Sand F		45						Light brown (5 YR 5/6) fine sand, wel-moist, subangular, well sorted, with intermittent streaks of sandstone
2660	eter Screen	8/16 B		50						Light brown (5 YR 5/6) fine sand, wel-moist, subangular, well sorted.
	2" Diameter									Light brown (5 VP 5/6) fire sand well-moist, subangular well-orded
				55						Egy borning (1977)
					-					

LITHOLOGIC LOG

BORING NO.: A-32 TOTAL DEPTH: 30 Feet

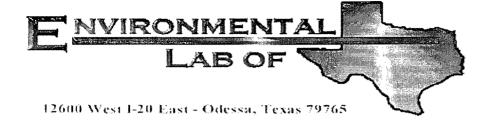
SITE ID: Hobbs SWD System CLIENT: RICE Operating Company

CONTRACTOR: Atkins Engineering COUNTY: Lea

DRILLING METHOD: Hollow Stem Auger STATE: New Mexico

START DATE: 05/03/06 LOCATION: T18S-R38E-Sec 32-Unit A

COMPLETION DATE: 05/03/06 FIELD REP.: G. Van Deventer / M. Franks / J. Hendrickx


COMMENTS: Located in area with no expected impact from oil and gas activities (background conditions).

USCS		Sampl	e	Blowcounts	Chloride	PID	LITHOLOGIC DESCRIPTION:
0303	Depth	Time	Туре	(blows - in)	(ppm)	(ppm)	LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEATURES
SM	1	1421	S plit S poon	50 - 12"	58		Silty loam, pale yellowish brown (10YR 6/2) and caliche (very pale orange (10 YR 8/2), dry.
- 1	2	1426	S plit S poon	100 - 6"	27		
37.0	3	1440	S plit S poon	50 - 12"	. 58		Fine-grained sandy caliche pale yellowish brown (10YR 6/2), dry:
S M/C AL	4	1443	S plit S poon	50 - 12"	58		Fine-grained sandy caliche pale yellowish brown (1018-6/2), dry. Fine-grained sandy caliche pale yellowish brown (1018-6/2), dry, very hard, some consolidated sand nodules
	5	1450	Split Spoon	50 - 12"	58		(cemented)
	6	1500	Split Spoon	30 - 12"	84		Calcic fine-grained sand (very pale orange (10 YR 8/2), hard, consolidated with calcium carbonate in matrix.
	7	1508	S plit S poon	23 - 12"	179		Sand grains are subangular, moderately well sorted, dry.
	8	1512	S plit S poon	38 - 12"	151		
	9	1520	S plit S poon	50 - 9"	340		As above.
	10	1524	S plit S poon	50 - 4"	365		As above.
	11						
	12						
	13 14	1536	S plit S poon	50 - 9"	295		Calcic fine-grained sand (very pale orange (10 YR 8/2), hard, consolidated with calcium carbonate in matrix. Sand grains are subangular, moderately well sorted, dry.
· ·	15	1545	Split Spoon	50 - 4"	228		Calcic fine-grained sand (very pale orange (10 YR 8/2), hard, consolidated with calcium carbonate in matrix.
	16	1343	3 piit 3 pooii	30 - 4	228		Sand grains are subangular, moderately well sorted, dry.
	17	1555	S plit S poon	50 - 1"	. 85		Calcic fine-grained sand (very pale orange (10 YR 8/2), hard, consolidated with calcium carbonate in matrix. Sand grains are subangular, moderately well sorted, dry.
C AL/S M	18						Calcic fine-grained sand (very pale orange (10 YR 8/2), hard, consolidated with calcium carbonate in matrix.
	19		:				Sand grains are subangular, moderately well sorted, dry.
	20						
	21	4.00	6.17.6	50 - 2"			Calcic fine-grained sand (very pale orange (10 YR 8/2), hard, consolidated with calcium carbonate in matrix.
	22 23	1605 1620	S plit S poon S plit S poon	50 - 2"	57 89		Sand grains are subangular, moderately well sorted, dry.
:	23	1620	3 pilt 3 poon	30 - 2	69		
	25						··
	26						
	27	1630	S plit S poon	50 - 1"	58		Calcic fine-grained sand (very pale orange (10 YR 8/2), hard, consolidated with calcium carbonate in matrix. Sand grains are subangular, moderately well sorted, dry.
	28						pana giano are sabangular, moderately wen sured, dry.
	29						·
	30						
	31						Bottom of boring at 30 feet below ground surface.
	32						
	33						
	34						
	35						
	36						
	37						
	38						
	39			1			
	40	<u> </u>					

a

a. (7%)

.

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: Hobbs Jct. E-32-1
Project Number: None Given
Location: Lea County

Lab Order Number: 6H18008

Report Date: 08/28/06

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6H18008-01	Water	08/14/06 09:20	08-18-2006 10:20

Fax: (505) 397-1471

122 W. Taylor Hobbs NM. 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6H18008-01) Water									
Benzene	ND	0.00100	mg/L	1	EH62121	08/21/06	08/21/06	EPA 8021B	
Toluene	ND	0.00100	"	**	**	"	"	n	
Ethylbenzene	ND	0.00100	"	"	"	"		11	
Xylene (p/m)	ND	0.00100	**	**		"	,,	11	
Xylene (o)	ND	0.00100	**	**	**	"	"	**	
Surrogate: a,a,a-Trifluorotoluene		86.8 %	80-12	20	,,	"	"	"	
Surrogate: 4-Bromofluorohenzene		82.5 %	80-12	20	. "	"	"	n	

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6H18008-01) Water									
Total Alkalinity	250	2.00	mg/L	1	EH62128	08/21/06	08/21/06	EPA 310.1M	
Chloride	134	5.00	*	10	EH62101	08/21/06	08/21/06	EPA 300.0	
Total Dissolved Solids	682	10.0	н	1	EH62303	08/18/06	08/22/06	EPA 160.1	
Sulfata	101	5.00	**	10	EU42101	08/21/06	08/21/06	EPA 300 0	

Project: Hobbs Jct. E-32-I

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte Monitor Well #1 (6H18008-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Calcium	95.0	0.810	mg/L	10	EH62313	08/23/06	08/23/06	EPA 6010B	
Magnesium	27.4	0.360	**	"	н	"	••	,11	
Potassium	3.62	0.600	**	"	n	"	*	•	
Sodium	89.2	0.430	**	"	**	**	•	**	

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting	-	Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH62121 - EPA 5030C (GC)	_							.,		
Blank (EH62121-BLK1)				Prepared: 0	8/21/06 A	nalyzed: 08	3/22/06		-	
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	**							
Ethylbenzene	ND	0.00100	**							
Xylene (p/m)	ND	0.00100	**							
Xylene (o)	ND	0.00100	**							
Surrogate: a,a,a-Trifluorotoluene	40.3	 	ug/l	40.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	36.7		"	40.0		91.8	80-120			
LCS (EH62121-BS1)				Prepared &	: Analyzed:	08/21/06				
Benzene	0.0460	0.00100	mg/L	0.0500		92.0	80-120			
Toluene	0.0503	0.00100	"	0.0500		101	80-120			
Ethylbenzene	0.0463	0.00100	"	0.0500		92.6	80-120			
Xylene (p/m)	0.113	0.00100	11	0.100		113	80-120			
Xylene (o)	0.0565	0.00100	**	0.0500		113	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.7		ug/l	40.0		99.2	80-120			
Surrogate: 4-Bromofluorobenzene	45.0		"	40.0		112	80-120			
Calibration Check (EH62121-CCVI)				Prepared: 0	08/21/06 A	nalyzed: 08	3/22/06			
Benzene	48.7		ug/I	50.0		97.4	80-120			
Toluene	52.3		"	50.0		105	80-120			
Ethylbenzene	57.3		"	50.0		115	80-120			
Xylene (p/m)	114		**	100		114	80-120			
Xylene (o)	57.6		**	50.0		115	80-120			
Surrogate: a.a.a-Trifluorotoluene	44.7		n	40.0		112	80-120			
Surrogate: 4-Bromofluorobenzene	38.3		"	40.0		95.8	80-120			
Matrix Spike (EH62121-MS1)	Sou	ırce: 6H18007-	-01	Prepared: 0	08/21/06 A	nalyzed: 08	3/22/06			
Benzene	0.0464	0.00100	mg/L	0.0500	ND	92.8	80-120	-		
Toluene	0.0550	0.00100	•	0.0500	ND	110	80-120			
Ethylbenzene	0.0554	0.00100	"	0.0500	ND	111	80-120			
Xylene (p/m)	0.117	0.00100	**	0.100	ND	117	80-120			
Xylene (o)	0.0575	0.00100	n	0.0500	ND	115	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.8		ug/l	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	46.5		"	40.0		116	80-120			

122 W. Taylor Hobbs NM, 88240

Surrogate: a.a.a-Trifluorotoluene

Surrogate: 4-Bromofluorobenzene

Project: Hobbs Jct. E-32-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH62121 - EPA 5030C (GC)										
Matrix Spike Dup (EH62121-MSD1)	Sou	rce: 6H18007-	-01	Prepared: (08/21/06 A	nalyzed: 08	/22/06			
Benzene	0.0473	0.00100	mg/L	0.0500	ND	94.6	80-120	1.92	20	
Toluene	0.0535	0.00100	"	0.0500	ND	107	80-120	2.76	20	
Ethylbenzene	0.0549	0.00100	"	0.0500	ND	110	80-120	0.905	20	
Xylene (p/m)	0.120	0.00100	n	0.100	ND	120	80-120	2.53	20	
Xylene (6)	0.0583	0.00100	n	0.0500	ND	117	80-120	1.72	20	

ug/l

40.0

40.0

107

116

80-120

80-120

42.9

46.4

. 122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH62101 - General Preparation (WetChem)									
Blank (EH62101-BLK1)				Prepared &	Analyzed:	08/21/06				
Sulfate	ND	0.500	mg/L							
Chloride	ND	0.500	"							
LCS (EH62101-BS1)				Prepared &	Analyzed:	08/21/06				
Sulfate .	8.51	0.500	mg/L	10.0		85.1	80-120			
Chloride	10.0	0.500	n	10.0		100	80-120			
Calibration Check (EH62101-CCV1)				Prepared & Analyzed: 08/21/06						
Sulfate	8.34		mg/L	10.0		83.4	80-120			
Chloride	10.2		"	10.0		102	80-120			
Duplicate (EH62101-DUP1)	Sourc	e: 6H18007-	-01	Prepared &	: Analyzed:	08/21/06				
Sulfate	76.3	5.00	mg/L		65.9			14.6	20	
Chloride	105	5.00	**		98.9			5.98	20	
Duplicate (EH62101-DUP2)	Sourc	е: 6Н18013-	-04	Prepared &	: Analyzed:	08/21/06				
Sulfate	331	5.00	mg/L		336			1.50	20	
Chloride	138	5.00	"		136			1.46	20	
Matrix Spike (EH62101-MS1)	Sourc	е: 6Н18007-	-01	Prepared & Analyzed: 08/21/06						
Sulfate	172	5.00	mg/L	100	65.9	106	80-120			
Chloride	210	5.00	"	100	98.9	111	80-120			
Matrix Spike (EH62101-MS2)	Sourc	е: 6Н18013-	-04	Prepared &	: Analyzed:	08/21/06				
Sulfate	422	5.00	mg/L	100	336	86.0	80-120			
Chloride	224	5.00	"	100	136	88.0	80-120			

Project: Hobbs Jct. E-32-1

Fax: (505) 397-1471

122 W. Taylor

Hobbs NM, 88240

Project Number: None Given Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source	N/BEO	%REC	DDD	RPD	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH62128 - General Preparation (We	(Chem)								10.0	
Blank (EH62128-BLK1)				Prepared &	k Analyzed	08/21/06				
Total Alkalinity	ND	2.00	mg/L						· · · · · · · · · · · · · · · · · · ·	
LCS (EH62128-BS1)				Prepared &	k Analyzed	: 08/21/06				
Total Afkalinity	178		mg/L	200		89.0	85-115			
Duplicate (EH62128-DUP1)	Sour	rce: 6H18007-	-01	Prepared &	: 08/21/06					
Total Alkalinity	186	2.00	mg/L		186			0.00	20	
Reference (EH62128-SRM1)				Prepared &	k Analyzed	: 08/21/06				
Total Alkalinity	248		mg/L	250		99.2	90-110			
Batch EH62303 - Filtration Preparation			4							
Blank (EH62303-BLK1)				Prepared: (08/18/06 A	nalyzed: 08	3/22/06			
Total Dissolved Solids	ND	10.0	mg/L		-					
Duplicate (EH62303-DUP1)	Sou	rce: 6H18007-	-01	Prepared: 08/18/06 Analyzed: 08/22/06						
Total Dissolved Solids	556	10.0	mg/L		526			5.55	5	R
Duplicate (EH62303-DUP2)	Sou	rce: 6H18013-	-04	Prepared & Analyzed: 08/18/06						
Total Dissolved Solids	808	10.0	mg/L		930			14.0	5	

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farriș-Pope

Total Metals by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH62313 - 6010B/No Digestion										
Blank (EH62313-BLK1)				Prepared &	: Analyzed:	08/23/06				
Calcium	ND	0.0810	mg/L							
Magnesium	ND	0.0360	"							
Potassium	ND	0.0600	**							
Sodium	ND	0.0430	**							
Calibration Check (EH62313-CCV1)				Prepared &	: Analyzed:	08/23/06				
Calcium	1.96		mg/L	2.00		98.0	85-115			
Magnesium	2.01		11	2.00		100	85-115			
Potassium	1.76		"	2.00		88.0	85-115			
Sodium	1.96		**	2.00		98.0	85-115			
Duplicate (EH62313-DUP1)	Sou	rce: 6H15005-	-04	Prepared &	Analyzed:	08/23/06				
Calcium	44.4	0.810	mg/L		45.9	·		3.32	20	
Magnesium	48.1	0.360	"		49.3			2.46	20	
Potassium	42.9	0.600	**		42.6			0.702	20	
Sodium	44.4	0.430	**		43.5			2.05	20	

Fax: (505) 397-1471

Rice Operating Co.
Project: Hobbs Jct. E-32-1
Fax: (505) 397-1471
Project Number: None Given
Project Manager: Kristin Farris-Pope

Notes and Definitions

R5	RPD is outside of historic values
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike

Dup

Duplicate

	Kaland KJulis		
Report Approved By:	Cacan City	Date:	8/28/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

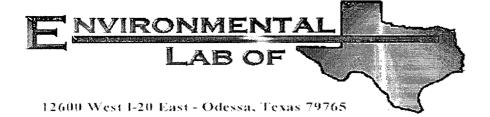
Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas 12600 West 1.20 East Phone: 432-563-1800 Odessa, Texas 79765 Fax: 432-563-1713

12600 West I-20 East Odessa, Texas 79765


CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

	ı	1	1							TAT brabnst			,, <u>,</u> ,	Ţ	Ţ										
					r		ėji metri il	(;	elubedos-e	ng) TAT H8U	8		-	_	_			**********							
					I	\vdash					+	+	+	\dashv					\dashv	\dashv	\dashv	z z			
						\vdash					+	+	+	\dashv		\dashv	-		-+			2			
7	1					-			sbi	loč bavlossið listo	οT >	₹				寸	7		1			૿૽ૼૼૼઌૺ૽૽ૄૼ		5	
33		Ì			1					.M.R.O	'N	†	7			1			一						
										is)님	1										ੂੰ ਰ	e :		
읭		Lea County				Analyze For	×			LEX 8021EV5030	.g >	<										라 (<u>)</u>	/ <u>e</u>	e si	
듸	1	힝				출				səlibslovime	98	1	_	_		_			_			aine	ᅜᅙ	E	
SS		ea (۲ _	╽╢			selitale		+	4	_			_	_			_	ontal conf	. e	υ Σ	
go		إد				6		əş	A Cr Pb Hg :	O s8 gA sA :alsie	_	+	+	\dashv				\dashv				s on	era B	ra D	
Project Name: Hobbs Junction E-32-1	#i	 					TOTAL		O3, HCO3)	nions (Cl, SO4, C		_		\dashv	+	-	-			-	\dashv	Sample Containers Intact? Labels on container?	Temperature Upon Receipt	Laboratory Comments:	
Zam.	Project#:	Project Loc:	PO #:				 _			M.gM.leO) enoite		}	+	-	+	\dashv						<u> </u>	<u>, 1—137</u>		TAX -
St.	Proj	ojec					1	90	-	/2108 1.814.He	+	+	1	1						-	\dashv			Time	e 3
Proj		ت				4	-	T		дивк (abscqt);		1	Ť	-		*******									10
							1	ĕÌ		lio	s	T	\exists					1						ठ	
								Matrix		ə6pn _l	8											Ü		Date	
					1		Į			Vater	v >	<										, D		Date 8-15-06	S(KECO
							-	-		(Уресіїу)	-	1	4	1	_					_	_	, S		(20	188
							l	ē.	390	one (1) 1 Liter HI		- -		-			_	_	_	_		<u>12</u>			
				-				割		*OS*		+	+		-							(6)			
				4			ĺ	Preservative	SIBIN S	Cl (2) 40 ml glass		7		+			\dashv	\dashv			-	ž		l ,	
	Ì	ļ		97-			- 1	٩		^E ON		\dagger	7			_						ıfra			
				5				Ì		Э	ગ >	<u> </u>										ı, n		6	
			ļ	(50,					5.	lo. of Containe	N C	اد										noc		1 3	$\mid \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;$
		:		Fax No: (505) 397-1471	1/	1				bəlqms2 əmi	Τ (9:20			1							kpope@riceswd.com; mfranks@riceswd.com		A. A.	
kpope@riceswd.com					1310	11				pale Sampled		8/14/2006	***									[Received by:	Network of the Control of the Contro
Project Manager: Kristin Farris Pope kpope@	Company Name RICE Operating Company	Company Address: 122 W. Taylor Street	City/State/Zip: Hobbs, New Mexico 88240	Telephone No: (505) 393-9174	Sampter Signature: Rozanne Johnson (505) 631-9310	Email: rozanne@valornet com					FIELD CODE	Monitor Well #1										PLEASE Email RESULTS TO:	Incalilia Wyalyi latronii) Date Time	
Project M	Company	Company Ac	City/St	Tetepho	Sampler Sig					2004 (40)	LAB # (lab use cnly)	5										Special Instructions:		Relinquished by:	1

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

ite/ Time: 8(18)00 10:20	-			
bID#: lettl8000f.				
itials:				
	•			
Sample Re	ceipt Checklist		•	
				Initials
1 Temperature of container/ cooler?	Yes	No	4.0 °C	
2 Shipping container in good condition?	Xes	No		
3 Custody Seals intact on shipping container/ cooler?	<u>768</u>	No	Not Present	
4 Custody Seals intact on sample bottles/ container?	\X 	No	Not Present	
5 Chain of Custody present?	y es	No		
Sample instructions complete of Chain of Custody?	Yes Yes	No		
7 Chain of Custody signed when relinquished/ received		No		
8 Chain of Custody agrees with sample label(s)?	Yes .	No	ID written on Cont./ Lid	
9 Container label(s) legible and intact?	Yes	No	Not Applicable	
10 Sample matrix/ properties agree with Chain of Custo		No		
11 Containers supplied by ELOT?	Yes .	No		
12 Samples in proper container/ bottle?		No	See Below	
13 Samples properly preserved?	<u>Yes</u>	No	See Below	
14 Sample bottles intact?		No		
Preservations documented on Chain of Custody?	Yes Yes	No		
f16 Containers documented on Chain of Custody?	yes _	No		
#17 Sufficient sample amount for indicated test(s)?		No	See Below	
All samples received within sufficient hold time?	Fes	No	See Below	
19 VOC samples have zero headspace?	Yes,	No	Not Applicable	
Variance	Daa			
variance	Documentation			
Contact: Contacted by;			Date/ Time:	
Somacica by,		-	Date/ Time.	
Regarding:				
Corrective Action Taken:				
	· · · · · · · · · · · · · · · · · · ·			

Check all that Apply: See attached e-mail/ i				
Client understands an	id would like to prod	ceed with	analysis	
Cooling process had b	begun shortly after	sampling	event	

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: Hobbs Jct. E-32-1
Project Number: None Given

Location: T18S-R38E-Sec32E, Lea County, NM

Lab Order Number: 6120006

Report Date: 10/02/06

Project: Hobbs Jct. E-32-1

Fax: (505) 397-1471

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6120006-01	Water	09/19/06 09:15	09-20-2006 13:22

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6120006-01) Water									
Benzene	ND	0.00100	mg/L	1	EI62012	09/20/06	09/22/06	EPA 8021B	
Toluene	ND	0.00100		"	"	**	**	**	
Ethylbenzene	ND	0.00100	**	**	11	**	11	**	
Xylene (p/m)	ND	0.00100	**	**	31	**	**	n	
Xylene (o)	ND	0.00100	"	"	"	"	**	**	
Surrogate: a,a,a-Trifluorotoluene		100 %	80-12	0	n	"	"	н	
Surrogate: 4-Bromofluorobenzene		82.5 %	80-12	0	"	"	"	"	

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6120006-01) Water									
Total Alkalinity	240	2.00	mg/L	1	E162707	09/27/06	09/27/06	EPA 310.1M	
Chloride	189	5.00	••	10	E162105	09/22/06	09/25/06	EPA 300.0	
Total Dissolved Solids	740	10.0		I	EI62118	09/20/06	09/21/06	EPA 160.1	
Sulfate	151	5.00	,,	10	E162105	09/22/06	09/25/06	EPA 300.0	

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods Environmental Lab of Texas

Analyte Monitor Well #1 (6120006-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Calcium	91.9	0.810	mg/L	10	El62111	09/21/06	09/21/06	EPA 6010B	
Magnesium	23.1	0.360	**	**	**	n	"	**	
Potassium	3.79	0.600	**	"	**	, h	"	11	
Sodium	98.2	0.430	"	,,	**	n	"	11	

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: *Kristin Farris-Pope

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch E162012 - EPA 5030C (GC)										
Blank (E162012-BLK1)				Prepared &	Analyzed	: 09/20/06				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	n							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	"							
Surrogate: a.a.a-Trifluorotoluene	39.2		ug/l	40.0		98.0	80-120			
Surrogate: 4-Bromofluorohenzene	32.5		"	40.0		81.2	80-120			
LCS (E162012-BS1)				Prepared: 0	9/20/06 A	nalyzed: 09	9/21/06			
Benzene	0.0589	0.00100	mg/L	0.0500		118	80-120			
Toluene	0.0466	0.00100	"	0.0500		93.2	80-120			
Ethylbenzene	0.0423	0.00100		0.0500		84.6	80-120			
Xylene (p/m)	0.0902	0.00100	" .	0.100		90.2	80-120			
Xylene (o)	0.0442	0.00100	"	0.0500		88.4	80-120			
Surrogate: a.a.a-Trifluorotoluene	42.1		ug/l	40.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	43.2		"	40.0		108	80-120			
Calibration Check (E162012-CCV1)				Prepared &	Analyzed	: 09/20/06				
Benzene	0.0540		mg/L	0.0500		108	80-120			
Toluene	0.0482		н	0.0500		96.4	80-120			
Ethylbenzene	0.0489		"	0.0500		97.8	80-120			
Xylene (p/m)	0.0966			0.100		96.6	80-120			
Xylene (o)	0.0480		"	0.0500		96.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.1		ug/l	40.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	43.3		"	40.0		108	80-120			
Matrix Spike (El62012-MS1)	Sot	ırce: 6118004-(03	Prepared: 0	9/20/06 A	nalyzed: 09	0/21/06			
Benzene	0.0597	0.00100	mg/L	0.0500	ND	119	80-120			
Toluene	0.0492	0.00100	"	0.0500	ND	98.4	80-120			
Ethylbenzene	0.0474	0.00100	"	0.0500	ND	94.8	80-120			
Xylene (p/m)	0.0937	0.00100	"	0.100	ND	93.7	80-120			
Xylene (o)	0.0461	0.00100	**	0.0500	ND	92.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	45.3		ug/l	40.0		113	80-120	-		
Surrogate: 4-Bromofluorobenzene	44.4		"	40.0		111	80-120			

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch E162012 - EPA 5030C (GC)

Matrix Spike Dup (E162012-MSD1)	Sou	rce: 6118004-0)3	Prepared: 0	9/20/06 A	nalyzed: 0	9/21/06		
Benzene	0.0592	0.00100	mg/L	0.0500	ND	118	80-120	0.844	20
Toluene	0.0502	0.00100	H	0.0500	ND	100	80-120	1.61	20
Ethylbenzene	0.0488	0.00100	**	0.0500	ND	97.6	80-120	2.91	20
Xylene (p/m)	0.0932	0.00100	"	0.100	ND	93.2	80-120	0.535	20
Xylene (o)	0.0458	0.00100	"	0.0500	ND	91.6	80-120	0.653	20
Surrogate: a,a,a-Trifluorotoluene	43.3		ug/l	40.0	•	108	80-120		
Surrogate: 4-Bromofluorohenzene	46.0		"	40.0		115	80-120		

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch El62105 - General Preparation (V	VetChem)							****		
Blank (E162105-BLK1)				Prepared:	09/22/06 A	nalyzed: 09	9/25/06			
Chloride	ND	0.500	mg/L							
Sulfate	ND	0.500	11							
LCS (E162105-BS1)				Prepared:	09/22/06 A	nalyzed: 09	9/25/06			
Chloride	11.8	0.500	mg/L	10.0		118	80-120			
Sulfate .	11.2	0.500	**	10.0		112	80-120			
Calibration Check (E162105-CCV1)				Prepared:	09/22/06 A	nalyzed: 09	9/25/06			
Chloride	11.7		mg/L	10.0		117	80-120			
Sulfate	11.1		**	10.0		f I 1	80-120			
Duplicate (E162105-DUP1)	Sou	ırce: 6120004-0	D1	Prepared:	09/22/06 A	nalyzed: 09	0/25/06			
Sulfate	118	5.00	mg/L		119			0.844	20	
Chloride	43.6	5.00	"		45.0			3.16	20	
Matrix Spike (EI62105-MS1)	Sou	ırce: 6120004-	01	Prepared:	09/22/06 Л	nalyzed: 09	0/25/06	,		
Chloride	174	5.00	mg/L	100	45.0	129	80-120			М
Sulfate	236	5.00	н	100	119	117	80-120			
Batch E162118 - Filtration Preparation										
Blank (E162118-BLK1)				Prepared:	09/20/06 A	nalyzed: 09	0/21/06			
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EI62118-DUP1)	Sou	rce: 6120004-	D1RE1	Prepared:	09/20/06 A	nalyzed: 09	0/21/06			
Total Dissolved Solids	428	10.0	mg/L		416			2.84	5	

Project: Hobbs Jct. E-32-1

Fax: (505) 397-1471

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch E162707 - General Preparation (Wet	Chem)						.,,,			
Blank (EI62707-BLK1)				Prepared &	Analyzed:	09/27/06				
Total Alkalinity	ND	2.00	mg/L							
LCS (E162707-BS1)				Prepared &	: Analyzed:	09/27/06				
Bicarbonate Alkalinity	192	2.00	mg/L	200		96.0	85-115			
Duplicate (E162707-DUP1)	Sou	rce: 6120004-0	1	Prepared &	: Analyzed:	09/27/06				
Total Alkalinity	284	2.00	mg/L		286			0.702	20	
Reference (E162707-SRM1)				Prepared &	: Analyzed:	09/27/06				
Total Alkalinity	242		mg/L	250		96.8	90-110			

Project: Hobbs Jct. E-32-1

122 W. Taylor Hobbs NM, 88240 Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch El62111 - 6010B/No Digestion										
Blank (E162111-BLK1)	Prepared & Analyzed: 09/21/06									
Calcium	ND	0.0810	mg/L						-	
Magnesium	ND	0.0360	**							
Potassium	ND	0.0600	*1							
Sodium	ND	0.0430	n							
Calibration Check (EI62111-CCV1)	Prepared & Analyzed: 09/21/06									
Cafeium	2.08		mg/L	2.00		104	85-115			
Magnesium	2.15		**	2.00		108	85-115			
Potassium	1.85		"	2.00		92.5	85-115			
Sodium	1.73		**	2.00		86.5	85-115			
Duplicate (El62111-DUP1)	Source: 6120004-01		Prepared & Analyzed: 09/21/06							
Calcium	64.8	0.810	mg/L		67.3	, , , , , , , , , , , , , , , , , , , ,		3.79	20	
Magnesium	24.6	0.360	n		25.1			2.01	20	
Potassium	3.22	0.600	**		3.37			4.55	20	
Sodium	67.8	$0.43\acute{0}$	H		69.6			2.62	20	

Rice Operating Co.

Project: Hobbs Jct. E-32-1

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

Notes and Definitions

The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS). Μi DET Analyte DETECTED Analyte NOT DETECTED at or above the reporting limit ND Not Reported NR Sample results reported on a dry weight basis dry RPD Relative Percent Difference LCS Laboratory Control Spike Matrix Spike MS Dup Duplicate

	Kaland KJul		
Report Approved By:	Lacon Cito.	Date:	10/2/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist

Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Peggy Allen, QA Officer

Environmental Lab of Texas

17.00

d F and

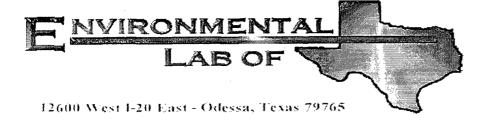
12600 West |-20 East Odessa, Texaa 79766

Phone: 432-563-1800 Fax: 432-663-1713

chain of custody record and analysis request

4

1000


Sport of

TAT basbnet2 (eiubarto&-orq) TAT H2U요 718S-R38E-Sec32E, Lea County NM Custody Seals: Containare Cooler. 2,0 shiloS bevlossi@leto IN SECTION Hobbs Junction E-32-1 Sample Containers Intact Laboratory Comments: Labels on container? BITEX 20218/2020 As An Esp Col Cr Ffb Hig Se (CLY 2007 COST HCOST) 327 States (Ca. Mg, Ma, 19 Time TIMB SIOR PISIOS COLSTA しょうりつびつ la2 Project Number: PLEASE Email RESULTS TO: kpope@riceswd.com; mfranks@riceswd.com Date Project Name: egghade? Date Project Look PO Number: Other (Specify) Monte (1) 1 Prox House Fax No: (505) 397-147 HIDEN තුළුගුං යනපුණි ලාග ලැං රුව අලල් Que non PONH aor No. of Containers က 9:13 Time Sampled kpope@riceswd.com Received by ELOT 9/19/2006 Received by: Date Sampled Sampler Signature: Rozanne Johnson (505) 831-9310 Time lma city/state/zip, Hobbs, New Mexico 88240 Company Name RICE Operating Company Emell: rozanne@yalornet.com Project Manager, Kristin Farris Pops 19-20-61 company Address: 122 W. Taylor Street Oste Date FIELD CODE Telephone No. (505) 393-9174 Monitor Well #1 Special Instructions use only Relinquished By Rozanne Joi

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client: RID D				
Date/ Time: 9/20/00				
Lab ID#: UTLOOG		,		
0.1/				
Initials: UC				
Sample Receipt	Checklist			
			Client Initial	s
#1 Temperature of container/ cooler?	Yes	No	2.0 °C	}
#2 Shipping container in good condition?	(}€®	No		7
#3 Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	1
#4 Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	7
#5 Chain of Custody present?	(¥es	No		1
#6 Sample instructions complete of Chain of Custody?	∦es	No		
#7 Chain of Custody signed when relinquished/ received?	χ∕es	No		
#8 Chain of Custody agrees with sample label(s)?	∑e s	No	ID written on Cont./ Lid	1
#9 Container label(s) legible and intact?	Yes	No	Not Applicable	1
#10 Sample matrix/ properties agree with Chain of Custody?	(Yes	No		7
#11 Containers supplied by ELOT?)¥es	No		7
#12 Samples in proper container/ bottle?	¥es	No	See Below	7
#13 Samples properly preserved?	Yes	No	See Below	1
#14 Sample bottles intact?	∫ Y es	No		7
#15 Preservations documented on Chain of Custody?	Υ€s	No		7
#16 Containers documented on Chain of Custody?	Xes	No		7
#17 Sufficient sample amount for indicated test(s)?	Yes	No	See Below	7
#18 All samples received within sufficient hold time?	Yes	No	See Below	1
#19 VOC samples have zero headspace?	У€G	No	Not Applicable	7
Variance Docum	nentation			
Contact: Contacted by:		_	Date/ Time:	
Regarding:	· · · · · · · · · · · · · · · · · · ·			
				
Corrective Action Taken:				
Check all that Apply: See attached e-mail/ fax Client understands and would Cooling process had begun s				

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: Hobbs Jct. E-32-1

Project Number: None Given

Location: T18S, R38E, Sec.32 E- Lea County, NM

Lab Order Number: 6K03010

Report Date: 11/22/06

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6K03010-01	Water	10/31/06 10:40	11-03-2006 11:45

Fax: (505) 397-1471

Rice Operating Co. 122 W. Taylor

Hobbs NM, 88240

Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte Monitor Well #1 (6K03010-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	270	2.00	mg/L	1	EK60711	11/07/06	11/07/06	EPA 310.1M	
Chloride	197	5.00	н	10	EK60602	11/06/06	11/06/06	EPA 300.0	
Total Dissolved Solids	746	10.0	"	1	EK 60209	11/03/06	11/06/06	EPA 160.1	
Sulfate	120	5.00	. *	10	EK60602	11/06/06	11/06/06	EPA 300.0	

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6K03010-01) Water									
Calcium	133	4.05	mg/L	50	EK60712	11/07/06	11/07/06	EPA 6010B	-
Magnesium	26.6	0.360	**	10			"	**	
Potassium	3.45	0.600			**		**	,,	
Sodium	105	2.15	**	50	**	**	11	,,	

122 W. Taylor

Hobbs NM. 88240

Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Volatile Organic Compounds by EPA Method 8260B Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6K03010-01) Water									
Benzene	, ND	1.00	ug/l	J	EK61308	11/13/06	11/14/06	EPA 8260B	
Toluene	ND	1.00	n	"	Ħ	n	"	**	
Ethylbenzene	ND	1.00	**	"	n	11	n		
Xylene (p/m)	ND	1.00	**	"	n	"	n	"	
Xylene (o)	ND	1.00	**	"	"	n	"	**	
Naphthalene	ND	1.00	"	"	"	n	"	v	
Surrogate: Dibromofluoromethane		102 %	68	129	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		87.2 %	72-	132	"	"	"	"	
Surrogate: Toluene-d8		91.2 %	74	118	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		89.6 %	65-	140	"	"	"	"	

22 W. Tandar

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	%KEC Limits	RPD	Limit	Notes
Batch EK60209 - Filtration Preparation							·			
Blank (EK60209-BLK1)				Prepared:	11/02/06 A	nalyzed: 11	/03/06			
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EK60209-DUP1)	Source	e: 6K01015-	-01	Prepared:	11/02/06 A	nałyzed: 11	/03/06			
Total Dissolved Solids	696	10.0	mg/L		702			0.858	5	
Duplicate (EK60209-DUP2)	Source	e: 6K03008-	-04	Prepared:	H/03/06 A	nalyzed: 11	/06/06			
Total Dissolved Solids	500	10.0	mg/L		492			1.61	5	
Batch EK60602 - General Preparation (WetChem)									
Blank (EK60602-BLK1)				Prepared &	Analyzed	: 11/06/06				
Chloride	ND	0.500	mg/L							
Sulfate	ND	0.500	**							
LCS (EK60602-BS1)				Prepared &	Analyzed	: 11/06/06				
Sulfate	9.30	0.500	mg/L	10.0		93.0	80-120			
Chloride	10.2	0.500	"	10.0		102	80-120			
Calibration Check (EK60602-CCV1)				Prepared &	Analyzed	11/06/06				
Sulfate	10.9		mg/L	10.0		109	80-120			
Chloride	10.0		"	10.0		100	80-120			
Duplicate (EK60602-DUP1)	Sourc	e: 6K03002-	-01	Prepared &	Analyzed:	: 11/06/06				
Chloride	45.8	5.00	mg/L		45.4			0.877	20	
Sulfate	508	5.00	"		511			0.589	20	
Duplicate (EK60602-DUP2)	Source	e: 6K03008-	04	Prepared 8	Analyzed:	11/06/06				
Chloride	44.5	5.00	mg/L		44.2			0.676	20	
Sulfate	116	5.00	**		115			0.866	20	

Project: Hobbs Jct. E-32-1

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240

Project Number: None Given
Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK60602 - General Preparation	(WetChem)									
Matrix Spike (EK60602-MS1)	Sour	ce: 6K03002-	-01	Prepared &	Analyzed:	11/06/06				
Sulfate	613	5.00	mg/L	100	511	102	80-120			
Chloride	148	5.00	"	100	45.4	103	80-120			
Matrix Spike (EK60602-MS2)	Sour	ce: 6K03008-	-04	Prepared &	: Analyzed:	11/06/06				
Chloride	150	5.00	mg/L	100	44.2	106	80-120			
Sulfate	214	5.00	11	100	115	99.0	80-120			
Batch EK60711 - General Preparation		5.00		100	115	99.0	80-120			
Batch EK60711 - General Preparation		5.00					80-120			
Batch EK60711 - General Preparation Blank (EK60711-BLK1)	(WetChem)				: Analyzed:		80-120			
Batch EK60711 - General Preparation Blank (EK60711-BLK1) Total Alkalinity		2.00	mg/L	Prepared &	: Analyzed:	11/07/06	80-120			
Batch EK60711 - General Preparation Blank (EK60711-BLK1) Total Alkalinity	(WetChem)	2.00		Prepared &		11/07/06	NV-120			
Batch EK60711 - General Preparation Blank (EK60711-BLK1) Total Alkalinity LCS (EK60711-BS1)	(WetChem)			Prepared &	: Analyzed:	11/07/06	85-115			
Batch EK60711 - General Preparation Blank (EK60711-BLK1) Total Alkalinity LCS (EK60711-BS1) Total Alkalinity	(WetChem) ND 202	2.00	mg/L	Prepared & Prepared & 200	: Analyzed:	11/07/06 11/07/06				
Batch EK60711 - General Preparation Blank (EK60711-BLK1) Total Alkalimity LCS (EK60711-BS1) Total Alkalimity Duplicate (EK60711-DUP1)	(WetChem) ND 202	2.00	mg/L	Prepared & Prepared & 200	: Analyzed:	11/07/06 11/07/06		1.68	20	
	(WetChem) ND 202 Sour	2.00 2.00 cc: 6K03008-	mg/L mg/L	Prepared & Prepared & 200	: Analyzed: : Analyzed: : Analyzed: 240	11/07/06 11/07/06 101 11/07/06		1.68	20	

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Hobbs NM, 88240

Total Metals by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK60712 - 6010B/No Digestion										
Blank (EK60712-BLK1)				Prepared &	Analyzed:	11/07/06				
Calcium	ND	0.0810	mg/L					-		
Magnesium	ND	0.0360	**							
Potassium	ND	0.0600	н							
Sodium	ND	0.0430	Ħ							
Calibration Check (EK60712-CCV1)				Prepared &	Analyzed:	11/07/06				
Calcium	2.26		mg/L	2.00		113	85-115			
Magnesium	2.12		n	2.00		106	85-115			
Potassium	1.73			2.00		86.5	85-115			
Sodium	2.13		**	2.00		106	85-115			
Duplicate (EK60712-DUP1)	Sou	rce: 6K03002-	01	Prepared &	Analyzed:	11/07/06				
Calcium	84.4	0.810	mg/L		83.8			0.713	20 1	
Magnesium	40.5	0.360			38.9			4.03	20	
Potassium	7.74	0.600	"		8.13			4.91	20	
Sodium	110	2.15	"		117			6.17	20	

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK61308 - EPA 5030C (GCMS)										
Blank (EK61308-BLK1)				Prepared: I	11/13/06 An	nalyzed: 11/	/14/06			
Benzene	ND	1.00	ug/l							
Toluene	ND	00.1	"							
Ethylbenzene	ND	1.00	,,							
Xylene (p/m)	ND	1.00	11							
Xylene (o)	ND	1.00	н							
Naphthalene	ND	1.00	Ħ							
Surrogate: Dibromofluoromethane	48.7		"	50.0		97.4	68-129			
Surrogate: 1,2-Dichloroethane-d4	42.2		"	50.0		84.4	72-132			
Surrogate: Toluene-d8	45.6		"	50.0	*	91.2	74-118			
Surrogate: 4-Bromofluorobenzene	44.2		"	50.0		88.4	65-140			
LCS (EK61308-BS1)				Prepared: 1	11/13/06 An	nalyzed; 11/	/15/06			
Benzene	24.0	1.00	ug/I	25.0		96.0	70-130			
Toluene	24.6	1.00	n	25.0		98.4	70-130			
Ethylbenzene	27.1	1.00	"	25.0		108	70-130			
Xylene (p/m)	52.0	1.00	"	50.0		104	70-130			
Xylene (o)	27.1	1.00	"	25.0		108	70-130			
Naphthalene	27.3	1.00		25.0		109	70-130			
Surrogate: Dibromofluoromethane	48.6		"	50.0		97.2	68-129			
Surrogate: 1,2-Dichloroethane-d4	44.0		"	50.0		88.0	72-132			
Surrogate: Toluene-d8	45.1		"	50.0		90.2	74-118			
Surrogate: 4-Bromofluorobenzene	50.2		"	50.0		100	65-140			
Calibration Check (EK61308-CCV1)				Prepared: 1	11/13/06 An	nalyzed: 11/	/15/06			
Toluene	52.0		ug/l	50.0		104	70-130			
Ethylbenzene	54.9	*	**	50.0		110	70-130			
Surrogate: Dibromofluoromethane	50.6		"	50.0		101	68-129			
Surrogate: 1,2-Dichloroethane-d4	48.9		"	50.0		97.8	72-132			
Surrogate: Toluene-d8	47.2		"	50.0		94.4	74-118			
Surrogate: 4-Bromofluorobenzene	44.4		"	50.0		88.8	65-140			

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Volatile Organic Compounds by EPA Method 8260B - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Amaryte	Kesuli	Limii	Onits	Level	resuit	/OKEC	Fungs	KI D	Film	notes
Batch EK61308 - EPA 5030C (GCMS)						_				
Matrix Spike (EK61308-MS1)	Sourc	ce: 6K09001-	01	Prepared: I	11/13/06 Aı	nalyzed: 11	/16/06			
Benzene	23.0	1.00	ug/l	25.0	ND	92.0	70-130		_	
Toluene	24.7	1.00	11	25.0	ND	98.8	70-130			
Ethylbenzene	27.0	1.00	н	25.0	ND	108	70-130			
Xylene (p/m)	53.3	1.00	,,	50.0	ND	107	70-130			
Xylene (o)	27.0	1.00	"	25.0	ND	108	70-130			
Naphthalene	24.5	00.1	н	25.0	ND	98.0	70-130			
Surrogate: Dibromofluoromethane	49.5		,,	50.0		99.0	68-129			
Surrogate: 1,2-Dichloroethane-d4	48.I		"	50.0		96.2	72-132			
Surrogate: Toluene-d8	47.3		"	50.0		94.6	74-118			
Surrogate: 4-Bromofluorobenzene	48.2		"	50.0		96.4	65-140			
Matrix Spike Dup (EK61308-MSD1)	Sourc	ce: 6K09001-	01	Prepared: 1	11/13/06 Ai	nalyzed: 11	/15/06			
Benzene	23.2	1.00	ug/I	25.0	ND	92.8	70-130	0.866	20	
Toluene	23.6	1.00	11	25.0	ND	94.4	70-130	4.55	20	
Ethylbenzene	24.6	1.00	н	25.0	ND	98.4	70-130	9.30	20	
Xylene (p/m)	47.6	1.00	"	50.0	ND	95.2	70-130	11.3	20	
Xylene (o)	24.8	1.00	"	25.0	ND	99.2	70-130	8.49	20	
Naphthalene	26.0	1.00	"	25.0	ND	104	70-130	5.94	20	
Surrogate: Dibromofluoromethane	52.7		"	50.0		105	68-129			
Surrogate: 1,2-Dichloroethane-d4	54.4		"	50.0		109	72-132			
Surrogate: Toluene-d8	44.8		"	50.0		89.6	74-118			
Surrogate: 4-Bromofluorobenzene	47.I		"	50.0		94.2	65-140			

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given

Fax: (505) 397-1471

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

Notes and Definitions

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

LCS

Laboratory Control Spike

MS

Matrix Spike

Dup

Duplicate

Report Approved By:

Raland Kotul

Date:

11/22/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

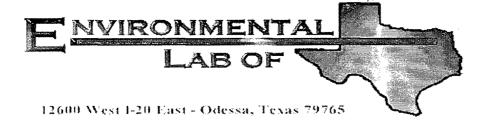
This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

Phone: 432-563-1800 Fax: 432-563-1713 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST 12600 West I-20 East Odessa, Texas 79765

12.


7 20

	E ~ Lea County New Mexico		∏ NPDES	-		\$1	177.	et ,4s (aubedočet9) TAT HZUR											2 2 2		ڼ
1 1	/ Ne	ļ			-						-			\dashv				80€	38B	₽ \$@#	lo
1 1	or the	ĺ	n	1	ŀ			.m.n.o.v abilo Solida Solida	×			-	\dashv	\dashv		+-				ιĽ	<i>∞</i> છ
	ea C		TRRP		ŀ			KCI				\dashv	一十	\dashv	\dashv	+			•		
Ψ,	3		$\dot{\Box}$		٦		09	STEX 80218/5030 & BTEX 826	+				寸	_	十	1		ું ફ	(s) (s)	~ n	<u>5</u>
흵	332	1		k	9			semivolatiles										ents Infa Ispac	(s) ontai	ered KRs UPS	Zec.
ğ	Šě	[2		Analyze For	×		Volatries (BTEX-N 8260)	×							$oldsymbol{\perp}$		ners lead	on co	Sel Zer Zer	hod
Hobbs Junction E-32-1	Project Loc: T18S R38E Sec32		XStandard	ľ	Ħ	6 4	95 26	Metals: As Ag Ba Cd Cr Pb Hg	+				_	4	_	1		Laboratory Comments: Sample Containers Infact? VOCs Free of Headspace?	Labels on container(s) Custody seals on container(s) Custody seals on cooler(s)	Imple Hand Delivered by Samplar/Client Rep. ?	Température Upon Receipt:
휜	188	1	Ę	1		TOTAL	┝	Anions (CI, SO4, Alkalinily) SAR / ESP / CEC	 					-		 -		rator le C s Fre	s on dy s	可能	erati
	⊬ ö	#			١	1		Cations (Ca. Mg. Na. K)	╂┈╌┤				\dashv	\dashv	┪-			samp OCs	abel Susto	ame o	Temp
Project Name:Project #:	, Lo	PO #	nat:		1			6001 XT 6005 XT 1993	1							-		<u> </u>	1	l	10
ject i Pro	rojec		Report Format:				១ទា	TPH: 418.1 8015M 80°											Fille G	Time	ime A
Pro	ā		port			-	ž	HAIO Epocky DIANO-HINHE	>					Ī					0		\geq
			흅	l			Matrix	phoches saterness = Vi	10				Į			- [E.	[1
i l	1	ŀ	- 1					Other (Specify) Pa-Dmáing Vákt 31.: Sudge		-					-	_			730%	Oate	- The contract of the contract
1 1			Í	등			,	None (1) 1 Liter HDPE	-				_		+				1 7)	The
			1	0.0			Sytains	€O ₂ S _X bN													
			=	Š			ŭ e	140aN													
			(505) 397-147	rozanne@valornet.com			Preservation & # of Containers	[†] OS ^z H					\dashv	_}	4						
	ľ	1	97-	0			Piezer	aleiv aarle Im (A+ (S) K)H	+					\dashv	-				1		
		ļ	3	g				нио³	+					-	+	┥┈┈					
			8	0Z9				otal 8, of Containers	aparere.	pp ministrat									1 83		1
		- 1	\smile	2-IÌ				eld Fillered	+			\Box		7	_		 		3.		3
mo			Fax No:	e-mail:				bəlqms2 əmiT	10:40										18 6		2
kpope@riceswd.com iny			4	7/1/4				baldms2 ets0	10/31/2006										Received by:	Received by:	Received by ELOT
Kpope		40			7	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-) dag Depth	3												9111
mpa	1	882		-9310)	Ì	dtqaQ gninnigal	3										Time 7079	Time []. 4.5]	
Project Manager: Kristin Farris Pope kp.	Company Address: 122 W. Taylor Street	City/State/Zip: Hobbs, New Mexico 88240	Telephone No: (505) 393-9174	Sampler Signature: Rozanne Johnson (505)631-9310		e only)	FR #: ("KVKNO"	HH: D CODE	Monitor Well #1									Special Instructions:	Reinfulsiped by, Date Rozanne J&Nigon 11-3-00	Relinquished by: Date Date 11-3-00	Refinquished by: // Date
					إ	(lab use only)	ORDER #:	(ylno əsu dat) # AA	T									Specia	Rozam/	Relinqu	Refinqu
				٠.		: .						∵`			t.: .	4.1			1 A)	

TAT bisbrigta ×

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Pine, NO				
Client: KUU U1/-				
Date/Time: 11306 11-45				
ab ID#: UKOB(O				
0.14				
nitials:				
Sample Receip	t Checklist			•
			Client	Initials
1 Temperature of container/ cooler?	Yes	No	0.5 °C	
2 Shipping container in good condition?	(Yes)	No		
43 Custody Seals intact on shipping container/ cooler?	Yes	No '	Not Present	
4 Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
t5 Chain of Custody present?	Yes	No		
f6 Sample instructions complete of Chain of Custody?	Yes	No		
7 Chain of Custody signed when relinquished/ received?	Ves	No		
*8 Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid	
9 Container label(s) legible and intact?	Yeş	No	Not Applicable	
10 Sample matrix/ properties agree with Chain of Custody?	Y,es	No		
11 Containers supplied by ELOT?	Yes	No		
12 Samples in proper container/ bottle?	Yes	No	See Below	
13 Samples properly preserved?	Ø∕ēs	No	See Below	
14 Sample bottles intact?	Yes	No		
15 Preservations documented on Chain of Custody?	Yes	· No		
#16 Containers documented on Chain of Custody?	Yes	No		
f17 Sufficient sample amount for indicated test(s)?	Ve3	No	See Below	
All samples received within sufficient hold time?	Yes	No	See Below	
†19 VOC samples have zero headspace?	Y∕€s)	No	Not Applicable	
Variance Doci	umentation			
· · · · · · · · · · · · · · · · · · ·		•	•	
Contact: Contacted by:		_	Date/ Time:	
Regarding:				
regarding.				<u>·</u> _
Corrective Action Taken				
Corrective Action (19keu)				
			. ———	
			,	
Check all that Apply: See attached e-mail/ fax				
Client understands and wo	uld like to prod	ceed with	analysis	
Cooling process had begun				
	•			

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: Hobbs Jct. E-32-1
Project Number: None Given
Location: Lea County

Lab Order Number: 6E18018

Report Date: 05/25/06

Project: Hobbs Jct. E-32-1

Fax: (505) 397-1471

122 W. Taylor

Project Number: None Given

Reported:

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

05/25/06 16:22

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6E18018-01	Water	05/17/06 13:15	05/18/06 12:00

Rice Operating Co, 122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported:

Reported: 05/25/06 16:22

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6E18018-01) Water		·							
Benzene	ND	0.00100	mg/L	1	EE62101	05/21/06	05/22/06	EPA 8021B	
Toluene	ND	0.00100	п	**	"	4	,,	**	
Ethylbenzene	ND	0.00100	**	**	**	н	"		
Xylene (p/m)	ND	0.00100	**		,,	"	**	**	
Xylene (o)	ND	0.00100	**	**	"	n	**	**	
Surrogate: a,a,a-Trifluorotoluene		114 %	80-12	20	n	n	"	"	
Surrogate: 4-Bromofluorobenzene		83.2 %	80-12	20	n	,,	"	"	

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 05/25/06 16:22

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte Monitor Well #1 (6E18018-01) Water	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	250	2.00	mg/L	1	EE62220	05/22/06	05/22/06	EPA 310.1M	,
Chloride	393	10.0	"	20	EE62205	05/22/06	05/22/06	EPA 300.0	
Total Dissolved Solids	1350	5.00	н	1	EE61919	05/18/06	05/18/06	EPA 160.1	
Sulfate	161	10.0	н	20	EE62205	05/22/06	05/22/06	EPA 300.0	

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 05/25/06 16:22

Total Metals by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6E18018-01) Water									
Calcium	192	0.500	mg/L	50	EE61926	05/19/06	05/19/06	EPA 6010B	
Magnesium	44.2	0.0100	**	10	н	"	н	n	
Potassium	5.38	0.500	"	"	**	*1	R	,,	
Sodium	135	0.500	**	50		p			

Project: Hobbs Jct. E-32-1

Fax: (505) 397-1471

122 W. Taylor

Project Number: None Given

Reported: 05/25/06 16:22

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

Organics by GC - Quality Control Environmental Lab of Texas

				0.1			#/DCC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Limit	Om.			7444307				
Batch EE62101 - EPA 5030C (GC)										
Blank (EE62101-BLK1)				Prepared &	Analyzed	: 05/21/06				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	**							
Ethylbenzene	ND	0.00100	**							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100								
Surrogate: a,u,a-Trifluorotoluene	42.9		ug/l	40.0		107	80-120	_		
Surrogate: 4-Bromofluorobenzene	32.2		"	40.0		80.5	80-120			
LCS (EE62101-BS1)				Prepared &	: Analyzed:	: 05/21/06				
Benzene	0.0415	0.00100	mg/L	0.0500		83.0	80-120			
Toluene	0.0421	0.00100	#	0.0500		84.2	80-120			
Ethylbenzene	0.0463	0.00100	11	0.0500		92.6	80-120			
Xylene (p/m)	0.102	0.00100	**	0.100		102	80-120			
Xylene (o)	0.0504	0.00100	n	0.0500		101	80-120			
Surrogate: a,a,a-Trifluorotoluene	42.7		ug/l	40.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	36.2		#	40.0		90.5	80-120			
Calibration Check (EE62101-CCV1)				Prepared &	: Analyzed:	: 05/21/06				
Benzene	44.3		ug/l	50.0		88.6	80-120			
Toluene	44.3		**	50.0		88.6	80-120			
Ethylbenzene	55.3		**	50.0		111	80-120			
Xylene (p/m)	99.1		**	100		99.1	80-120			
Xylene (o)	49.1		"	50.0		98.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	44.6		"	40.0		112	80-120			
Surrogate: 4-Bromofluorobenzene	34.8		"	40.0		87.0	80-120			
Matrix Spike (EE62101-MS1)	Soi	ırce: 6E17005-	-01	Prepared: 0)5/21/06 A	nalyzed: 05	5/22/06			
Benzene	0.0444	0.00100	mg/L	0.0500	ND	88.8	80-120			
Toluene	0.0454	0.00100	**	0.0500	ND	90.8	80-120			
Ethylbenzene	0.0488	0.00100	**	0.0500	ND	97.6	80-120			
Xylene (p/m)	0.108	0.00100	**	0.100	ND	108	80-120			
Xylene (o)	0.0531	0.00100	**	0.0500	ND	106	80-120			
Surrogate: a,a,a-Trifluorotoluene	45.5		ug/l	40.0		114	80-120		_ ,	
Surrogate: 4-Bromofluorobenzene	36.9		"	40.0		92.2	80-120			
Surroguie. 4-Bromojinoronenzene	30.7			70.0		/2.2	00-120			

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 05/25/06 16:22

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE62101 - EPA 5030C (GC)										
Matrix Spike Dup (EE62101-MSD1)	Sour	rce: 6E17005-	01	Prepared: 0	5/21/06 A	nalyzed: 05	5/22/06			
Benzene	0.0439	0.00100	mg/L	0.0500	ND	87.8	80-120	1.13	20	
Toluene	0.0447	0.00100	н	0.0500	ND	89.4	80-120	1.55	20	
Ethylbenzene	0.0481	0.00100	n	0.0500	ND	96.2	80-120	1.44	20	
Xylene (p/m)	0.107	0.00100	**	0.100	ND	107	80-120	0.930	20	
Xylene (o)	0.0521	00100.0	**	0.0500	ND	104	80-120	1.90	20	
Surrogate: a,a,a-Trifluorotoluene	46.4		ug/l	40.0		116	80-120			
Surrogate: 4-Bromofluorobenzene	33.4		"	40.0		83.5	80-120			

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jcf. E-32-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 05/25/06 16:22

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE61919 - Filtration Preparation										
Blank (EE61919-BLK1)				Prepared &	. Analyzed:	05/18/06				
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (EE61919-DUP1)	Sour	rce: 6E18012-	01	Prepared &	Analyzed:	05/18/06				
Total Dissolved Solids	1420	5.00	mg/L		1470			3.46	5	
Batch EE62205 - General Preparation (V	VetChem)									
Blank (EE62205-BLK1)				Prepared &	Analyzed:	05/22/06				
Sulfate	ND	0.500	mg/L							
Chloride	ND	0.500	n							
LCS (EE62205-BS1)				Prepared &	Analyzed:	05/22/06				
Sulfate	8.20		mg/L	10.0		82.0	80-120			
Chloride	10.1		**	10.0		101	80-120			
Calibration Check (EE62205-CCV1)				Prepared &	Analyzed:	05/22/06			•	
Chloride	10.1		mg/L	10.0		101	80-120			
Sulfate	9.63		"	10.0		96.3	80-120			
Duplicate (EE62205-DUP1)	Sour	rce: 6E18012-	01	Prepared &	Analyzed:	05/22/06				
Sulfate	307	10.0	mg/L		304			0.982	20	
Chloride	343	10.0	"		344			0.291	20	
Duplicate (EE62205-DUP2)	Sour	rce: 6E18015-	01	Prepared &	Analyzed:	05/22/06				
Chloride	415	10.0	mg/L		412			0.726	20	
Sulfate	50.3	10.0	n		50.6			0.595	20	

Project: Hobbs Jct. E-32-1

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project Number: None Given
Project Manager: Kristin Farris-Pope

Reported: 05/25/06 16:22

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE62205 - General Preparatio	on (WetChem)									
Matrix Spike (EE62205-MS1)	Sour	·ce: 6E18012-	01	Prepared &	& Analyzed:	05/22/06				
Chloride	565	10.0	mg/L	200	344	110	80-120			
Sulfate	465	10.0	"	200	304	80.5 -	80-120			
Matrix Spike (EE62205-MS2)	Sour	ce: 6E18015-	01	Prepared &	Analyzed:	05/22/06				
Chloride	654	10.0	mg/L	200	412	121	80-120			S-0
Sulfate	200	10.0	11	200	50.6	74.7	80-120			S-0
Datab EE42220 Community	· · · (WatCh · · · · ·)									
Batch EE62220 - General Preparation	on (WetChem)			Prepared &	¿ Analyzed:	05/22/06	<u> </u>			
Batch EE62220 - General Preparation Blank (EE62220-BLK1) Total Alkalinity	on (WetChem)	2.00	mg/L	Prepared &	k Analyzed:	05/22/06				
Blank (EE62220-BLK1)		2.00	mg/L	· · ·	À Analyzed:					
Blank (EE62220-BLK1) Total Alkalinity		2.00	mg/L	· · ·	-		85-115			
Blank (EE62220-BLK1) Total Alkalinity LCS (EE62220-BS1)	ND 214		mg/L	Prepared &	-	107	85-115			
Blank (EE62220-BLK1) Total Alkalinity LCS (EE62220-BS1) Bicarbonate Alkalinity	ND 214	2.00	mg/L	Prepared &	è Analyzed:	107	85-115	0.358	20	
Blank (EE62220-BLK1) Total Alkalinity LCS (EE62220-BS1) Bicarbonate Alkalinity Duplicate (EE62220-DUP1)	ND 214 Sour	2.00 rce: 6E18012-	mg/L -01	Prepared & 200 Prepared &	à Analyzed: à Analyzed:	05/22/06 107 05/22/06	85-115	0.358	20	

Project: Hobbs Jct. E-32-1

-1

122 W. Taylor

Project Number: None Given

Fax: (505) 397-1471

Reported:

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

05/25/06 16:22

Total Metals by EPA / Standard Methods - Quality Control Environmental Lab of Texas

	D 1:	Reporting		Spike	Source	N/DEC	%REC	n nr	RPD	Matan
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE61926 - 6010B/No Digestion										
Blank (EE61926-BLK1)				Prepared &	Analyzed:	05/19/06				
Calcium	ND	0.0100	mg/L							
Magnesium	ND	0.00100	"							
Potassium	ND	0.0500	"							
Sodium	ND	0.0100	"							
Calibration Check (EE61926-CCV1)				Prepared &	Analyzed:	05/19/06				
Calcium	2.30		mg/L	2.00		115	85-115			
Magnesium	2.21		11	2.00		110	85-115			
Potassium	1.80		"	2.00		90.0	85-115			
Sodium	1.81		"	2.00		90.5	85-115			
Duplicate (EE61926-DUP1)	Sour	rce: 6E18012-	01	Prepared 8	analyzed:	05/19/06				
Calcium	111	0.500	mg/L		111			0.00	20	
Magnesium	58.3	0.0100	n		56.5			3.14	20	
Potassium	12.2	0.500	"		12.9			5.58	20	
Sodium	266	0.500	"		271			1.86	20	

Rice Operating Co.Project:Hobbs Jct. E-32-1Fax: (505) 397-1471122 W. TaylorProject Number:None GivenReported:Hobbs NM, 88240Project Manager:Kristin Farris-Pope05/25/06 16:22

Notes and Definitions

Recovery outside Laboratory historical or method prescribed limits. S-07 DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported Sample results reported on a dry weight basis dry Relative Percent Difference RPD Laboratory Control Spike LCS MS Matrix Spike Dup Duplicate

	Kaland KJulis		
Report Approved By:	Racan Cito.	Date:	5/25/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Peggy Allen, QA Officer

Environmental Lab of Texas

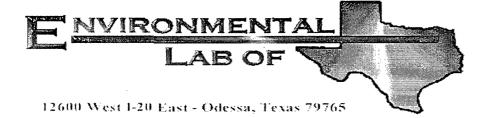
4.

12600 West 1-20 East Odessa, Texas 79765

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Phone: 432-553-1800 Fax: 432-553-1713

Project Name: Hobbs Jct. E-32-1 Lea County Project Loc: 80 # Project #: Fax No: (505) 397-1471 kpope@riceswd.com Sampler Signature: Rozanne Johnson (505) 631-9310 City/State/Zip: Hobbs, New Mexico 88240 Company Name RICE Operating Company Company Address: 122 W. Taylor Street Project Manager: Kristin Farris Pope Telephone No: (505) 393-9174


TCLP

Email: rozanne@valornet.com

Comparing to the control of the co		TAT bisbnet2	×			\Box		\Box				\exists		\{\bar{\chi}{\chi}\}			
PLEASE Email RESULTS TO: kpop@diceswd.com @ mfranks@riceswd.com @		RUSH TAT (Pre-Schedule)		******										Ţ			
PLEASE Email RESULTS TO: Kpope@riceswd.com & mfranks@riceswd.com &	_						_			\dashv	_		Z	ረ			
PLEASE Email RESULTS TO: kpope@piceswd.com & mfranks@riceswd.com & mfrankswd.com & mfrankswd	_		-		-	\dashv	\dashv				\dashv	\dashv	0	Ų			
PLEASE Email RESULTS TO: kpope@piceswd.com & mfranks@riceswd.com & mfrankswd.com & mfrankswd		DISSOMED SOME	×				\dashv				+			9			
PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@riceswd.com & mfranks.com & mfran	:					\neg				\dashv		i	ૺઙ૿				
PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@riceswd.com & mfranks.com & mfran	•		\vdash							1	\dashv		55 Jan	pt:			
PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@riceswd.com & mfranks.com & mfran			×							\neg	寸		ntac fall	Sece.	nts		
PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@riceswd.com & mfranks.com & mfran								T					ers l Iner Con	i io	nme		
PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@riceswd.com & mfranks.com & mfran		Selitificy											itain ontai als:	j L	5		
PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@riceswd.com & mfranks.com & mfran	e	Metals: As Ag Ba Cd Cr Pb Hg S					一			\neg			Con	atcr	ďΩ		
PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@riceswd.com & mfranks.com & mfran	_	8AR ∤ESP ∤CEC											nple els c tody	ed.	Ora		
PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@riceswd.com & mfranks.com & mfranks.c		Anions (CI, SO4, CO3, HCO3)	×										San Lab Cus	Te :	Lab		
PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@riceswd.com		Cations (Ca, Mg, Na, K)	×													~	
PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@riceswd.com	9	TPH: 418.1 8015M 1005 100													Time	0	
PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@rice PLEASE Time Received by: PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@rice PLEASE Time Received by: PLEASE Ti		Other (specify):									Ĭ				<u> </u>	9	77
PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@rice PLEASE Time Received by: PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@rice PLEASE Time Received by: PLEASE Ti	ž	lio2											F			, Q	
PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@rice PLEASE Time Received by: PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@rice PLEASE Time Received by: PLEASE Ti	₹ S	Sludge											Ö		ر ت	100	E C
PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@rice PLEASE Time Received by: PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@rice PLEASE Time Received by: PLEASE Ti		rateW	×										d.c		ľå,	3//	18
Monitor Well #1 5/1 Monitor Well #1 5/1 PLEASE Email RESULTS TO: Date Time Received States		Other (Specify)											NS.			M	
Monitor Well #1 5/1 Monitor Well #1 5/1 PLEASE Email RESULTS TO: Date Time Received States		Hone (1) 1 Liter HDPE	-										<u>ic</u>				
Monitor Well #1 5/1 Monitor Well #1 5/1 PLEASE Email RESULTS TO: Date Time Received States	₹ Ke	+os²H											Ö				
Monitor Well #1 5/1 Monitor Well #1 5/1 PLEASE Email RESULTS TO: Date Time Received States	979	NaCH											KS.				
Monitor Well #1 5/1 Monitor Well #1 5/1 PLEASE Email RESULTS TO: Date Time Received States	rest	HCt (Z) 40 ml glass vials	2										ä			,	
Monitor Well #1 5/1 Monitor Well #1 5/1 PLEASE Email RESULTS TO: Date Time Received States	ш	HNO ₃											1 1			8	
Monitor Well #1 5/1 Monitor Well #1 5/1 PLEASE Email RESULTS TO: Date Time Received States			×										o₫			6	
Monitor Well #1 5/1 Monitor Well #1 5/1 PLEASE Email RESULTS TO: Date Time Received States	-#-		1					AMPINE THE	armental.	-			Ē			Ę.	
Monitor Well #1 5/1 Monitor Well #1 5/1 PLEASE Email RESULTS TO: Date Time Received States		sasajotno 9 to 14	-			_							8		===	الحريب	
Monitor Well #1 5/1 Monitor Well #1 5/1 PLEASE Email RESULTS TO: Date Time Received States			rz.										.vd.		-	Z	
Monitor Well #1 5/1 Monitor Well #1 5/1 PLEASE Email RESULTS TO: Date Time Received States		Time Sampled	3:1										Se				
Monitor Well #1 5/1 Monitor Well #1 5/1 PLEASE Email RESULTS TO: Date Time Received States			<u> </u>										Ţ,			1	
Monitor Well #1 5/1 Monitor Well #1 5/1 PLEASE Email RESULTS TO: Date Time Received States	•		-	-							-		@			2	
Monitor Well #1 5/1 Monitor Well #1 5/1 PLEASE Email RESULTS TO: Date Time Received States	~	٦	ဗ္ဂ					,					l g			7	S by ELO
Monitor Well #1 5/1 Monitor Well #1 5/1 PLEASE Email RESULTS TO: Date Time Received States	>	Date Sampled	120										l ĝ		d by:	4.	\$ 50 p
Monitor Well #1 PLEASE Email RESULTS To Date Time Re			117										1		eive(<u> </u>	E 3
Monitor Well #1 PLEASE Email RESULTS PLEASE Email RESULTS Sylva 6:02 State 1700	J.		w										10		Rec	Ì	\$ 100 mg
Monitor We	·:			···									13				
Monitor We	1												;		ire	3	en Co
Monitor We													ြို့		-	7	1
Monitor We													02		-		_
Monitor We													<u></u>		0	B	e 3
Monitor We		Q											툽		Oa	Ť.	Dad -
Monitor We		Ō											ij			N	1
Monitor We		量	1					İ	ĺ				8				1
Monitor We		ĺ	_			}							Щ				
LAB # (lab use only) LAB # (lab use only) Special Instructions: Relinguished by:			ie/			1							D.		_	1	ىـ
LAB # (lab use only) LAB # (lab use only) Special Instructions: Relinguished by Relinguished by			×												$ I\rangle$	\prod	\\ \\ \\ \\ \\ \
LAB # (lab use only) LAB # (lab use only) Special Instructions: Relinguished 59,			jë													\}	<i>₹</i>
LAB # (lab. use cnly) LAB # (lab. use cnly) Special Instructions: Relinguished by: Relinguished by:			8 ₹			<u>L</u>									1	Á	\$
LAB # (lab use on Expecial Instruction Special Instruction Relinguished by		s	120				# C			350 350	36		ns:	\wedge	1	<u>~</u>	63
EAB # (lab use Rocal Instru		 	19										ctio	1)	1	\ <i>j</i> / ^E	1
Special Ins			18										atru	/	\$	Ž, Ž,	à à
Relingui Relingui							13						<u>=</u>	/	ight in	OL S	ishe.
		***				協							acia acia			a M	B 1
													Spe		Re	1/2	<u>8</u> ∕%
																1.12	
				٠.				•									

Environmental Lab of Texas Variance / Corrective Action Report — Sample Log-In

nt: Rice Operating Co.			
=/Time: 05 - 18 - 04 @ 1200			
er#: <u>6E18018</u>			
		`	
als:			
Sample Receip			
nperature of container/cooler?	Yes No	10 C	
pping container/cooler in good condition?	(Yes) No		
tody Seals intaction shipping container/cooler?	YES No	Not present	
tody Seals intact on sample bottles?	No No	Not present 1	
in of custody present?	(YES) No		
nin of custody present? Instructions complete on Chain of Custody?	(TES) NO	i	
	(Yes) No	i	
in of Custody signed when retinquished and received? in of custody agrees with sample label(s) itainer labels legible and intact? page Matrix and properties same as on chain of custody?	res) No	1	
ntainer labels legible and intact?	(FES) No		
nple Matrix and properties same as on chain of custody?	(Yes) No		
notes in proper container/bottle?	Yes No		
moles properly preserved?	No Ses		
mples properly preserved? mple bottles intact?	GES) NO		
servations documented on Chain of Custody?	No ICES		
ntainers documented on Chain of Custody?	VES) No		
Figiest sample amount for indicated test?	(FES NO		
ifficient sample amount for indicated test? I samples received within sufficient hold time?	(FEQ) No		
DC samples have zero headspace?	(Yes) No	Not Apolicable 1	
ther observations:			
Variance Doc ontact Person: Date/Time: legarding:	umentation:	Contacted by: _	
orrective Action Taken:			
Officetive Action Taxest.			·
,			

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: Hobbs Jct. E-32-1

Project Number: None Given

Location: T18S-R38E-Sec.32E, Lea County, NM

Lab Order Number: 6J10004

Report Date: 10/23/06

Project: Hobbs Jet. E-32-1

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

ANALYTICAL REPORT FOR SAMPLES

Sample 1D	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6J10004-01	Water	10/05/06 15:05	10-09-2006 17:20

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Volatile Organic Compounds by EPA Method 8260B Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6J10004-01) Water									
Benzene	ND	1.00	ug/l	1	EJ61913	10/18/06	10/18/06	EPA 8260B	
Toluene	ND	1.00	**	"	"	"		**	
Ethylbenzene	ND	1.00	**	"	*1	n	,,	**	
Xylene (p/m)	ND	1.00	**	**	**	"	**	**	
Xylene (o)	ND	1.00	**	**	n	"	"	17	
Naphthalene	ND	00.1	**	"	Ħ	"	"	"	
Surrogate: Dibromofluoromethane		101 %	68-1	29	"	,,	"	"	
Surrogate: 1,2-Dichloroethane-d4		90.2 %	72-1	32	"	"	"	"	
Surrogate: Toluene-d8		89.6 %	74-1	18	"	"	"	"	
Surrogate: 4-Bromofluorohenzene		80.8 %	65-1	40	"	"	"	"	

Rice Operating Co. 122 W. Taylor

Hobbs NM, 88240

Project: Hobbs Jct. E-32-1

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EJ61913 - EPA 5030C (GCMS)										
Blank (EJ61913-BLK1)				Prepared &	Analyzed:	10/18/06				
Benzene	ND	1.00	ug/l							
Toluene	ND	1.00	**							
Ethylbenzene	ND	1.00	**							
Xylene (p/m)	ND	1.00								
Xylene (o)	ND	1.00	**							
Naphthalene	ND	1.00	**							
Surrogate: Dibromofluoromethane	47.2		"	50.0		94.4	68-129			-
Surrogate: 1,2-Dichloroethane-d4	42.8		"	50.0		85.6	72-132			
Surrogate: Toluene-d8	40.3		"	50.0		80.6	74-118			
Surrogate: 4-Bromofluorobenzene	37.0		"	50.0		74.0	65-140			
LCS (EJ61913-BS1)		4.5		Prepared &	Analyzed:	10/18/06				
Benzene	20.2	1.00	ug/l	25.0		80.8	70-130			
Foluene	22.1	1.00	"	25.0		88.4	70-130			
Ethylbenzene	22.7	1.00	,,	25.0		90.8	70-130			
Xylene (p/m)	42.0	1.00	**	50.0		84.0	70-130			
Xylene (o)	23.0	1.00	"	25.0		92.0	70-130			
Naphthalene	24.2	1.00	"	25.0		96.8	70-130			
Surrogate: Dibromofluoromethane	49.6		,,	50.0		99.2	68-129			
Surrogate: 1,2-Dichloroethane-d4	51.5		"	50.0		103	72-132			
Surrogate: Toluene-d8	43.6		n	50.0		87.2	74-118			
Surrogate: 4-Bromofluorobenzene	40.2		"	50.0		80.4	65-140			
Calibration Check (EJ61913-CCV1)				Prepared &	z Analyzed:	10/18/06				
Toluene	41.3		ug/l	50.0		82.6	70-130			-
Ethylbenzene	41.1		*	50.0		82.2	70-130			
Surrogate: Dibromofluoromethane	46.9		"	50.0		93.8	68-129			
Surrogate: 1,2-Dichloroethane-d4	44.9		"	50.0		89.8	72-132			
Surrogate: Toluene-d8	44.2		,,	50.0		88.4	74-118			
Surrogate: 4-Bromofluorobenzene	38.7		"	50.0		77.4	65-140			

122 W. Taylor Hobbs NM, 88240 Project: Hobbs Jct. E-32-1

Project Number: None Given

Fax: (505) 397-1471

Project Manager: Kristin Farris-Pope

Volatile Organic Compounds by EPA Method 8260B - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EJ61913 - EPA 5030C (GCMS)										
Matrix Spike (EJ61913-MS1)	Source	e: 6J10005-0)1	Prepared &	Analyzed:	10/18/06				
Benzene	23.6	1.00	ug/t	25.0	3.66	79.8	70-130			
Toluene	22.8	1.00	"	25.0	ND	91.2	70-130			
Ethylbenzene	26.0	1.00	**	25.0	2.22	95.1	70-130			
Xylene (p/m)	45.4	1.00	н	50.0	1.88	87.0	70-130			
Xylene (o)	24.6	1.00	**	25.0	ND	98.4	70-130			
Naphthalene	28.7	1.00	*1	25.0	1.33	109	70-130			
Surrogate: Dibromofluoromethane	51.6		"	50.0		103	68-129			
Surrogate: 1,2-Dichloroethane-d4	48.0		"	50.0		96.0	72-132			
Surrogate: Toluene-d8	44.6		"	50.0		89.2	74-118			
Surrogate: 4-Bromofluorobenzene	40.2		"	50.0		80.4	65-140			
Matrix Spike Dup (EJ61913-MSD1)	Sourc	e: 6 J10 005-0	н	Prepared &	z Analyzed:	10/18/06				
Benzene	23.3	1.00	ug/l	25.0	3.66	78.6	70-130	1.28	20	
Toluene	22.6	1.00	••	25.0	ND	90.4	70-130	0.881	20	
Ethylbenzene	25.7	1.00	"	25.0	2.22	93.9	70-130	1.16	20	
Xylene (p/m)	44.8	1.00	**	50.0	1.88	85.8	70-130	1.33	20	
Xylene (o)	23.9	1.00	**	25.0	ND	95.6	70-130	2.89	20	
Naphthalene	30.2	1.00	**	25.0	1.33	115	70-130	5.09	20	
Surrogate: Dibromofluoromethane	49.0		"	50.0		98.0	68-129			
Surrogate: 1,2-Dichloroethane-d4	46.4		"	50.0		92.8	72-132			
Surrogate: Toluene-d8	44.0		"	50.0		88.0	74-118			
Surrogate: 4-Bromofluorobenzene	39.8		"	50.0		79.6	65-140			

Project: Hobbs Jct. E-32-1

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:

Raland Kotuls

Date:

10/23/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director

Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Fax: (505) 397-1471

Environmental Lab of Texas

Tent to

の間である

Odesea, Texas 79766 12500 West 1-20 East

Phone: 432-563-1800 Fex: 432-663-1713

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

. Althor

The state of

Section Section

TAT brabnet2 SUSH TAT (Pre-Schedule 718S-R38E-Sec32E, Lea County NM 0928 saliteloV $\tilde{\mathcal{X}}$ BTEX-N 8260 shilos baylossiO listo MAEOU. Hobbs Junction E-32-1 Custody Seals Conterners Temperature Upon Receipt Sample Containers Intact -eberatory Commenta STEX SUPPLIES Labels on container? 92 RH 6시 1/1 MO ESI PA 5A (CL, SOA, CO3, HCO3) 97:01 1720 Ilme SOUR SOOR PRESENCE C'ELL FAL 00000 Project Number: PLEASE Email RESULTS TO: kpope@riceswd.com; mfranks@riceswd.com 0076/21 Project Name: න්දිකාදුද Project Loc: PO Number: Other (Specify) Mone (1) 1 Liber 1 MPE . L Preservetiv Fax No: (505) 397-1471 HOOM SEN SSEND DO OF (Z) COH CONTH 901 No. of Containers 15:05 Time Sampled kpope@riceswd.com 10/5/2006 Date Sampled sampler Signature: Rozanne Johnson (505) 631-9310 rozanns@valornet.com 2.4 TIMB city/state/Zip: Hobbs, New Mexico 88240 Company Name RICE Operating Company Bmall: 1028Bhre@valornet.com Company Address: 122 W. Taylor Street 20/200 Project Manager: Kristin Farris Pope FIELD CODE Telephone No: (505) 393-9174 Monitor Well #1 Special Instructions AB # (Eb use enly) d payent Lysikaupuk Pikikia

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

ient: QVC Dp.		•		
12/01 V2 17:10				
o ID#:			•	
tials: W-				
Sample Receipt (`hecklist			
	JIIOOKIISE		Client Ini	itials
Temperature of container/ cooler?	Yes	No	3.5 ° C	
Shipping container in good condition?	Yes	No		
Custody Seals intact on shipping container/ cooler?	У́е́s	No	Not Present	
Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
Chain of Custody present?	Xes	No		
	V. Os	No		\neg
Sample instructions complete of Chain of Custody? Chain of Custody signed when relinquished/ received?	∀as	No		
Chain of Custody agrees with sample label(s)?	⊁es	No	ID written on Cont./ Lid	
Container label(s) legible and intact?	Yes	No	Not Applicable	
Sample matrix/ properties agree with Chain of Custody?	Y/es	No		
1 Containers supplied by ELOT?	Χes	No		
2 Samples in proper container/ bottle?	Yes	No	See Below	
3 Samples properly preserved?	Yes	No	See Below	
4 Sample bottles intact?	Yes	No		
5 Preservations documented on Chain of Custody?	Yes	No		
6 Containers documented on Chain of Custody?	Yes	No		
7 Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
8 All samples received within sufficient hold time?	Yes	No	See Below	
9 VOC samples have zero headspace?	Yes	No	Not Applicable	
Variance Docum	nentation			
ontact: Contacted by:			Date/ Time:	
egarding:				
				\
orrective Action Taken:				
heck all that Apply: See attached e-mail/ fax Client understands and would	Llike to prov	read with	analysis	

Cooling process had begun shortly after sampling event

. . .

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuguerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

To model the effect of the vadose zone remedy's impact on ground water at the E-32-1 site, output from HYDRUS-1D is used as input to a ground water mixing model.

HYDRUS-1D numerically solves the Richard's equation for water flow and the Fickian-based advection-dispersion equation for heat and solute transportation. The HYDRUS-1D flow equation includes a sink term (a term used to specify water leaving the system) to account for transpiration by plants. The solute transport equation considers advective, dispersive transport in the liquid phase, diffusion in the gaseous phase, nonlinear and non-equilibrium sorption, linear equilibrium reactions between the liquid and gaseous phases, zero-order production, and first-order degradation.

The ground water mixing model uses the chloride flux from the vadose zone to ground water provided by HYDRUS-1D and instantaneously mixes this chloride and water with the ground water flux of chloride plus water that enters the mixing cell beneath the subject site. We refer the reader to API Publication 4734, Modeling Study of Produced Water Release Scenarios (Hendrickx and others, 2005) for a general description of the techniques employed for this simulation experiment.

A description of the model input parameters are listed below.

HYDRUS 1-D INPUTS:

Soil Profile - Information for the soil profile (or vadose zone thickness and texture) is based upon the boring log obtained from installation of the monitoring well at the E-32-1 site. Depth to water measurements from the monitoring well provided a vadose zone thickness of 45 feet at the site.

Dispersion lengths - Conservative dispersion lengths were employed. Standard practice calls for employing a dispersion length that is 10% of the model length. Based upon experience with similar soils in this area, dispersion lengths of 6% of the model length were used. This choice is conservative of ground water quality.

Climate - Weather data used in the predictive modeling was from the Pearl Weather Station (46 years of data), approximately 13.25 miles southwest of the E-32-1 site.

HYDRUS-1D can also employ a uniform yearly infiltration rate that will obviously smooth the temporal variations. Because the atmospheric data are of high quality and nearby to the site, we have elected to allow HYDRUS-1D to predict the deep percolation rate and the resultant variable flux to ground water. This choice results in higher peak chloride concentrations in ground water due to temporally variable high fluxes from the vadose zone. As such, this choice is conservative and will not underpredict impairment to ground water quality.

Soil Moisture - Because soils are relatively dry in this climate and vadose zone hydraulic conductivity varies with moisture content, it is important that simulation experiments of different remedial strategies begin with an initial "steady state" soil moisture content. The calculation of soil moisture content begins with using professional judgment as an initial input and then running sufficient years of weather data through the model to establish a "steady state" moisture content.

January 15, 2007 Page 2

Because only minimal changes in the HYDRUS-1D soil moisture content profile occurred after year 35 of the initial condition calculation, 46 years was considered more than sufficient to establish the initial moisture condition. All simulations of chloride movement used soil profiles hydrated in this manner.

Initial Chloride Profile – Field chloride soil concentrations (mg/kg) at depth were obtained from the samples collected from the monitoring well boring.

Integration of the chloride contained within the profile yielded a chloride load of 18.2 kg/m². The averaged soil concentration values (mg/kg) were linearly interpolated to correspond to the HYDRUS 1-D soil profile nodes. Using the volumetric moisture content from the HYDRUS 1-D initial condition and a default dry bulk soil density of 1390 kg/m³, soil water moisture concentrations (mg/L) were calculated for the HYDRUS 1-D soil profile nodes. These chloride concentrations were installed in the HYDRUS-1D model.

As described in API Publication 4734, the ground water mixing model takes the background chloride concentration in ground water multiplied by the ground water flux to calculate the total mass of ground water chloride entering the ground water mixing cell, which lies below the area of interest. The chloride and water flux from HYDRUS-1D is added to the ground water chloride mass and flux to create a final chloride concentration in ground water at an imaginary monitoring well located at the down gradient edge of the mixing cell (the edge of the release site).

MIXING MODEL INPUTS:

Influence Distance - The influence distance is defined as the maximal length of the release area parallel to groundwater flow direction. As this direction is not exactly known, a maximum diameter of 20 feet for the site was used.

Background Chloride Concentration – From monitoring well data from the site, a value of 161 mg/L chloride for ground water was used at this location.

Hydraulic Conductivity - R.T. Hicks Consultants believes that the hydraulic conductivity of the saturated zone at the release site is similar to that observed for the Ogallala Aquifer throughout the general area. McAda (1984) simulated water level declines using a two-dimensional digital model and employed hydraulic conductivity values of 51-75 feet/day (1.9 E-4 to 2.8 E-4 m/s) in the area. More recently, Musharrafieh and Chudnoff (1999) employed values for hydraulic conductivity within this area of interest between 81 and 100 ft/day, for their simulation. According to Freeze and Cherry (1979), these values correspond to clean sand, which agrees with nearby lithologic descriptions of the saturated zone. For the E-32-1 site, the saturated hydraulic conductivity of the uppermost saturated zone is assumed as 75 feet/day.

Groundwater Gradient - From USGS well data (1996), ground water flows southeast in the area under a hydraulic gradient of approximately 0.0036 ft/ft. The resulting ground water flux is 8.2 cm/day.

Aquifer Thickness - A restricted aquifer thickness of 10 feet was employed in the mixing model as a conservative measure although aquifer thickness penetrated by the monitoring well is approximately 15 feet.

For all variables for which field data did not exist, assumptions conservative of ground water quality were made. A summary of the input parameters and a description of the source information used in the HYDRUS-1D model for this application are provided in Table 1 below.

Table 1: Modeling Inputs for the E-32-1 Site						
Input Parameter	Source					
Vadose Zone Thickness - 45 feet	From Monitoring Well on the Site					
Vadose Zone Texture	Boring Log and professional judgment					
Dispersion Length - 6% of model length	Professional judgment					
Climate	Pearl, N.M. Weather Station Data					
Soil Moisture	HYDRUS-1D initial condition simulation					
Initial soil chloride concentration profile	From E-32-1 monitoring well boring samples					
Length of release parallel to ground water flow - 20 feet	Maximum Dimension of Site					
Background Chloride in Ground Water - 161 ppm	Regional and Site Data					
Ground Water Flux – 8.2 cm/day	From regional data					
Aquifer Thickness - 10-feet	Conservative value					

Vegetation was allowed at the site within the upper 3.0 feet of silt loam.

Model of the E-32-1 Site with Revegetation of the Site

The proposed remedy of the E-32-1 site was modeled with a site specific HYDRUS-1D model. The model was begun with a 45 foot thick soil profile constructed and hydrated as discussed above. The initial chloride profile was also installed as described above.

The remedy modeled featured vegetation acting as an evapotranspiration (ET) barrier in 3.0 feet of silt loam above eight inches of sand to reduce upwards wicking of chloride. With vegetation established, vadose zone flux to ground water declines. The resultant chloride concentration in ground water peaks about two years after installation of the ET barrier at less than 165 mg/L and declines there after (see Figure 1).

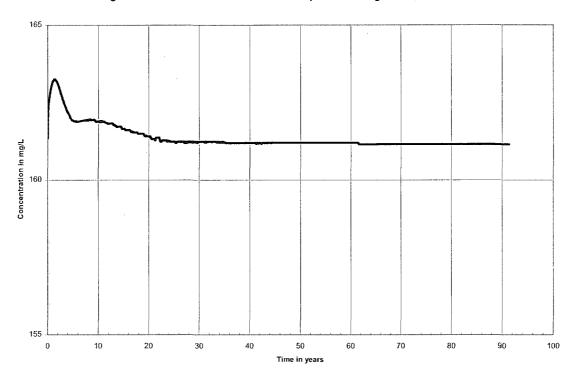
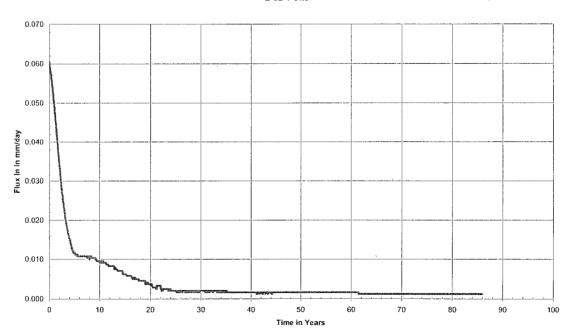


Figure 1: Chloride Concentration in the Aquifer with Vegetation, E-32-1 Site

Figure 2 is a graph of predicted soil water chloride concentration profiles at times in the future with the remedy installed. Between year 0 and year 92, peak chloride concentration moves about 1.0 foot downwards, a migration rate of 0.011 feet per year. This rate implies that peak chloride concentration will enter ground water about 2700 years from now.


Rather than run the model for the large time necessary for the peak chloride concentration to enter ground water, an upper bound was calculated for chloride concentration in the aquifer through time.

This bound is calculated by identifying maximum chloride concentration in the vadose zone and a maximum vadose zone water flux in time. These values are entered as constants through time in the limit calculation and represent a maximum chloride flux from the vadose zone. This flux is used in the calculation as a steady state condition. Then, the limit calculation of the chloride concentration in ground water as time approaches infinity is a simple algebraic evaluation.

Chloride in mg/L Depth in feet Time = 0 Years - Time = 18.4 Years ~ Time = 55 Years - - Time = 92 Years

Figure 2: Chloride Profiles at Time, E-32-1 Site

The maximum chloride concentration value is 42,300 mg/L in the vadose zone at 10.5 feet bgs (Time = 92 Years, Figure 2). Examination of the HYDRUS 1-d output

January 15, 2007 Page 6

files reveals no vadose zone water flux to ground water exceeding 0.00166 mm/day after year 42. Neither of these values will be equaled or exceeded in the future. Due to dispersion, peak vadose zone chloride concentration will decrease. As can be seen in Figure 3, with vegetation at the site, predicted vadose zone water flux will be less than or equal to this maximum value after year 50.

The calculation demonstrates that although peak chloride concentration has not yet migrated to the ground water interface, predicted chloride concentration in the aquifer is bounded by 166 mg/L through all time after year 92.

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

December 21, 2006

Wayne Price
Environmental Bureau Chief
New Mexico Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

RE: E-32-1 Junction Box Site (NMOCD CASE #: 1R0428-65)
Request to Reconsider Regulation under Rule 19

Dear Wayne:

On behalf of Rice Operating Company (ROC), R.T. Hicks Consultants, Ltd. is submitting this request to exclude the above-referenced site from regulation under Rule 19 (see NMOCD letter to ROC dated December 8, 2006. Reproduced below is a portion of the Corrective Action Plan prepared for this site that supports this request.

Ground water sampling showed that chloride and TDS concentrations slightly exceeded WQCC standards for the initial groundwater sampling event, however all constituents of concern were below WQCC standards for the subsequent sampling events. Depth to ground water and laboratory data are summarized in the table below.

Date	Depth to	Concentrations in mg/L			
Sampled	Groundwater (Feet bgs)	Chloride	TDS	BTEX	
5/17/06	45.29	393	1,350	< 0.001	
8/14/06	45.63	134	682	< 0.001	
9/19/06	45.63	189	740	< 0.001	

Ground water quality data obtained from recently drilled monitoring wells often show "false positives" due to conditions that can cause downward transportation of up-hole sediments and entrained constituents during drilling. Conversely, when drilling requires the introduction of fresh water for borehole stabilization, the laboratory can return "false negative" results for the initial sampling. At this site, fresh water was not introduced into the boring. The ground water sampling data strongly suggest that the initial sampling event did not provide representative ground water samples. The most recent two sampling events show that ground water quality at this site is less than WQCC Standards.

For you reference, the boring log and well completion diagram is attached to this letter. The last two quarterly ground water analyses show concentrations that are 50% less than the initial result. These findings allow us to conclude that the initial

December 21, 2006 Page 2

sampling of this well produced a "false positive" analysis. Therefore, we suggest that regulation of this site under Rule 19 may not be appropriate.

In addition to re-vegetation of the ground surface, the Corrective Action Plan for this site provides the following:

This corrective action plan calls for two additional ground water monitoring events. If chloride concentrations in ground water remain below WQCC standards and show no increasing concentration trend that suggests WQCC standards will be exceeded, ROC will submit evidence of re-vegetation in a final closure report and request closure of the regulatory file.

The monitoring well at this site will remain available for sampling and collection of other field data to support future investigations of other Hobbs SWD sites. When the well is of no value for characterization of other Hobbs SWD sites it will be plugged and abandoned.

If NMOCD agrees to this request, we will submit the final CAP to NMOCD on or before January 15, 2007 on behalf of ROC. Please contact Kristin Pope of ROC if you have any questions concerning this submission.

Sincerely,

R.T Hicks Consultants, Ltd.

Randall T. Hicks

Principal

Copy: Kristin Pope, ROC

NMOCD Hobbs

Ed Hanson, NMOCD Santa Fe

LITHOLOGIC LOG AND MONITORING WELL CONSTRUCTION DIAGRAM

10NITOR WELL NO.: MW-1

TOTAL DEPTH: 58 Feet

SITE ID: Hobbs E-32-1 Junction Box

CLIENT:

RICE Operating Company

CONTRACTOR: Atkins Engineering

COUNTY:

Lea

DRILLING METHOD: Hollow Stem Auger
START DATE: 5/4/2006
COMPLETION DATE: 5/4/2006

STATE:

LOCATION: T18S-R38E-Sec 32-Unit E

New Mexico

FIELD REP.: G. Van Deventer / M. Franks

COMMENTS: Located immediately adjacent to former junction box location.

		Ш										
	Sample Biowcounts Chloride PID					ŀ	PID	LITHOLOGIC DESCRIPTION:				
H					2.020	Depth	Time	Туре	(blows - in)	(ppm)	(ppm)	LITHOLOGY, COLOR, GRAIN SIZE, SORTING, ROUNDING, CONSOLIDATION, DISTINGUISHING FEATURE: Silty loam, moderate yellowish brown (10YR 5/4), dry.
								Surface				
	1		1		SM							
	Cerment		ment						DO 408			Calcic sand - sandy caliche, very pale orange (10 YR 8/2), moderately hard, dry.
1 1	Ö		Ö			5	0850	Split Spoon	22-12"	1204	2	Control said - Said y Califfe, Very pare Grange (10 +1) Gray, inducately faid, Gray,
					SM/ CAL						K Sancional	
			188		OAL							
						10	8577790	Split	50.8"	Same Same	2.3.3554	Calcic sandstone, very pale orange (10 YR 8/2) and grayish orange (10 YR 7/4), indurated, consolidated with
						10	0855	Spoon		2196	2	hard quartz sandstone streaks. Sand component is fine-grained, subangular, moderately well sorted, dry.
8000					SS/ CAL	15	0045	Split	50 - 4*	coo		
					CAL		0945	Spoon		689	2	
	P P		Plug									
			Hole	l								
	3/8 Bentonite Hole Plug		Bentonite Hole			20	1000	Split	32 - 12"	686	2	
	Ber Ber		3 Ber					Spoon	42 - 12"			Light-brown (5 YR 5/6) fine sand; slightly moist; subangular, well sorted.
	ર્જે		3/8		V 434							
						25	1006	Split Spoon	50 - 5"	465	2	Light brown (5 YR 5/6) fine sand, slightly moist, unconsolidated, subangular, well sorted.
								Ороон	Carl Law			
	e co											
		1					A 19299996		989 1. 1837 9 18 1	200000000	18177999888	
		Casing		Ė		30	1019	Split Spoon	50 - 6*	518	2	Light brown (5 YR 5/6) fine sand, subangular, well sorted, with intermittent streaks of sandstone.
		ank C										A CONTRACTOR OF THE PARTY OF TH
		PVC Blank										
		40 P			40.00				50 - 10"	ecennia.	2883°	Light brown (5 YR 5/6) fine sand, subangular, well sorted, with intermittent streaks of sandstone.
		Sched 40	32	ľ	, come (co.	35	1031	Split Spoon	50 - 10	414	2	
		2" St	-1999 -178				E. Darw so sout			7 (60)		
3												The second secon
9			,460 ,460		SW∞	40	2.22	Split	50 - 11"			Light brown (5 YR 5/6) fine sand, slightly moist, subangular, well sorted, with intermittent streaks of sandstone.
Chap the						-10	1045	Spoon		299	2	
8					300							Groundwater encountered at approximately 43 ft below ground surface.
	ð	lots	ž			¥						Short and Chebrach and Proceedings of the Conference of the Confer
	Sand Pac	Screen with 0.010" Slots	nd Pack			45						
	y Sar	h 0.0	y Sand									Light brown (5 YR 5/6) line sand, wet-moist, subangular, well sorted, with intermittent streaks of sandstone.
	8/16 Brady	iw ne	Brady									
	8/16	Scree	8/16									
						50						Light brown (5 YR 5/6) fine sand; wel-moist; subangular, well-sorted.
		Diameter										
		2	200									
	33				0.00000000							FILE CONTROL OF THE C
					10000 10000	55						Light brown (5 YR 5/6) fine sand, wet-moist, subangular, well sorted:
												Light brown (5 YR 5/6) fine sand, wel-most, subangular, well sorted. Light brown (5 YR 5/6) fine sand, wel-most, subangular, well sorted: Bottom of boring at 58 feet below ground surface.
	_	5" -	→									Bottom of boring at 58 feet below ground surface.
<u>LL</u>				- 1		60						

R. T. HICKS CONSULTANTS, LTD.

1909 Brunson Ave ▲ Midland TX 79701 ▲ 432.638.8740 ▲ Fax: 413.403.9968

CERTIFIED MAIL - RETURN RECIEPT NO. 7099 3400 0017 1737 2367

January 20, 2006

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Investigation Characterization Plan: T18S R38E: E-33-1 Junction Box, B-32 Boot, E-32-1 Junction Box, E-32-2 Junction Box, F-33 Vent

Hobbs Salt Water Disposal System

Dear Mr. Price:

On behalf of Rice Operating Company, please accept this submission as our Initial Characterization Plan (ICP) for the five (5) sites referenced above within the Hobbs Salt Water Disposal System (Plate 1).

Rice Operating Company (ROC) is the service provider (operator) for the Hobbs Saltwater Disposal System and has no ownership of any portion of pipeline, well, or facility. A consortium of oil producers who own the Hobbs System (System Partners); provide all operating capital on a percentage ownership/usage basis. Major projects require System Partner authorization for expenditures (AFE) approval and work begins as funds are received. We will implement the work outlined herein after NMOCD approval and subsequent authorization from the System Partners.

For all environmental projects, ROC will choose a path forward that:

- 1. protects public health,
- 2. provides the greatest net environmental benefit,
- 3. complies with NMOCD Rules, and
- 4. is supported by good science.

The last criteria employed when evaluating any proposed remedy or investigative work is confirming that there is a reasonable relationship between the benefits created by the proposed remedy or assessment and the economic and social costs.

Each site shall have three submissions or a combination of:

- 1. This <u>Investigation and Characterization Plan</u> (ICP) is a proposal for data gathering and site characterization and assessment.
- 2. Upon evaluation of the data and results from the ICP, a recommended remedy will be submitted in a <u>Corrective Action Plan</u> (CAP).
- 3. Finally, after implementing the remedy, a <u>closure report</u> with final documentation will be submitted.

Task 1 Evaluate Chloride and BTEXN Concentrations in Soil at Five Sites, Evaluate Ground Water Quality if Necessary

We will follow the same protocol for characterization of the unsaturated zone at the five new ROC sites listed below.

- E-33-1 Junction Box
- o B-32 Boot
- o E-32-1 Junction Box
- E-32-2 Junction Box
- o F-33 Vent

At each of the above-referenced sites, we will locate the sampling borehole as close as practical to the suspected release source. Earlier, we inspected each of the five sites nominated in this ICP and identified the boring location before the sites were backfilled and re-graded. Due to our recent experience with difficulties encountered in the installation of well clusters in this area, we plan to employ hollow-stem auger drilling techniques for sampling.

We will screen each sample in the field for chlorides and volatile organic compounds using the methods described in QP-03 and QP-07 (attached), respectively. Soil lithology and the presence of any observed staining or odor will be recorded. For any site, if we detect evidence of leakage within 15 feet of the water table (e.g. field chloride greater than 250 ppm in soil samples) we will complete the boring as a monitoring well in accordance with NMOCD Guidance. If three soil samples taken at 5-foot intervals test below 250 ppm chloride and below 100 ppm total volatile organic compounds, we will terminate the boring. However, all borings will penetrate at least 30 feet of the vadose zone.

Task 2 Evaluate Chloride and Hydrocarbon Flux from the Vadose Zone to Ground Water

We anticipate that one or all of the five sites selected for borehole investigation will show evidence of seepage from the source to a depth of more than 15-feet. For these sites, excavation and disposal of released material can cause more environmental damage than it cures. For such sites, we propose to employ HYDRUS-1D and a simple ground water mixing model to evaluate the potential of any residual chloride and hydrocarbon mass in the vadose zone to impair ground water quality above WQCC Standards. We have selected these two constituents for simulation modeling because each of these constituents is typically found in produced water and each is specifically regulated by New Mexico ground water regulations (WQCC). We will also employ vadose zone hydrocarbon migration predictive tools commonly employed by NMED in their PST program.

Task 3 Provide Investigative Results and/or Corrective Action Plan

Because the Hobbs SWD System no longer carries produced water, additional releases of produced water to ground water are highly unlikely. If modeling shows that the residual chloride and hydrocarbon mass in the vadose zone poses a no threat to ground water quality, we will prepare a report that makes this demonstration and request site closure.

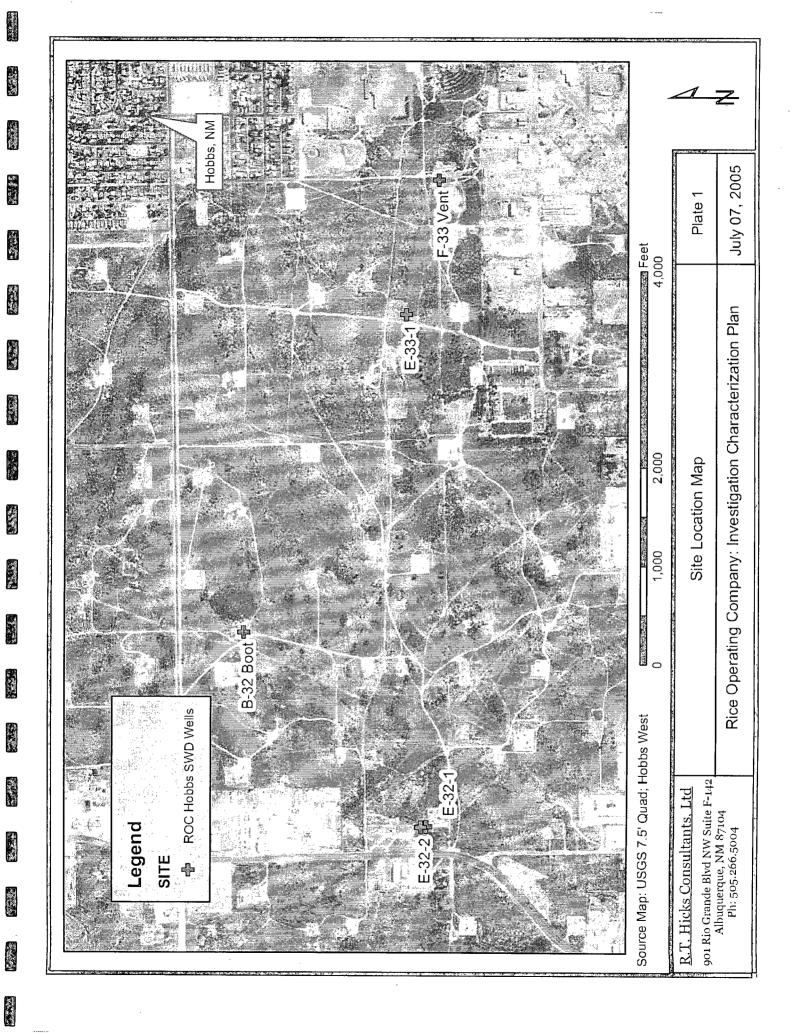
January 20, 2006 Page 3

If simulation experiments suggest that residual constituents pose a threat to ground water quality or if the field program demonstrates impairment, we will expand upon the HYDRUS-1D model predictions described above to develop a remedy for the vadose zone. If necessary, we will simulate:

- 1. Excavation, disposal and replacement of clean soil to remove the chloride and hydrocarbon mass,
- 2. Installation of a low permeability barrier to minimize natural infiltration,
- 3. Surface grading and seeding to eliminate any ponding of precipitation and promote evapotranspiration, thereby minimizing natural infiltration, and
- 4. A combination of the above potential remedies.

We will select the vadose zone remedy that offers the greatest environmental benefit while causing the least environmental damage. If data suggest that the site has contributed chloride or hydrocarbons to ground water and caused ground water impairment, we will notify NMOCD and work collaboratively to determine the appropriate path forward.

Proposed Schedule


With NMOCD's approval of this work plan, we can perform the field activities at these sites in February or March. In late April or May, we plan to deliver any individual Correction Action Plans to address residual constituents in the vadose zone and any reports requesting site closure. If data suggest ground water impairment we plan to conduct two quarters of ground water monitoring to confirm any initial result then meet with NMOCD to develop an appropriate path forward. Your approval to move forward with this work plan will facilitate approval of expenditures by the System Partners.

Sincerely,

R.T. Hicks Consultants, Ltd.

Gilbert Van Deventer Project Manager

cc: Chris Williams, NMOCD Hobbs District Office Carolyn Haynes, Rice Operating Company - Hobbs Kristin Pope, Rice Operating Company - Hobbs Randy Hicks, R. T. Hicks Consultants, Ltd. - Albuquerque

Rice Operating Company

QUALITY PROCEDURE

Sampling and Testing Protocol Chloride Titration Using .282 Normal Silver Nitrate Solution

1.0 Purpose

This procedure is to be used to determine the concentration of chloride in soil.

2.0 Scope

This procedure is to be used as the standard field measurement for soil chloride concentrations.

3.0 Sample Collection and Preparation

- 3.1 Collect at least 80 grams of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample for soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
- 3.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag. Care should be taken to insure that no cross-contamination occurs between the soil sample and the collection tools or sample processing equipment.
- 3.3 The sealed sample bag should be massaged to break up any clods.

4.0 Sample Preparation

- 4.1 Tare a clean glass vial having a minimum 40 ml capacity. Add at least 10 grams of the soil sample and record the weight.
- 4.2 Add at least 10 grams of reverse osmosis water to the soil sample and shake for 20 seconds.
- 4.3 Allow the sample to set for a period of 5 minutes or until the separation of soil and water.
- 4.4 Carefully pour the free liquid extract from the sample through a paper filter into a clean plastic cup if necessary.

5.0 Titration Procedure

- 5.1 Using a graduated piperte, remove 10 ml extract and dispense into a clean plastic cup.
- 5.2 Add 2-3 drops potassium chromate (K₂CrO₄) to mixture.
- 5.3 If the sample contains any sulfides (hydrogen or iron sulfides are common to oilfield soil samples) add 2-3 drops of hydrogen peroxide (H₂O₂) to mixture.
- 5.4 Using a 1 ml pipette, carefully add .282 normal silver nitrate (one drop at a time) to the sample while constantly agitating it. Stop adding silver nitrate when the solution begins to change from yellow to red. Be consistent with endpoint recognition.
- 5.5 Record the ml of silver nitrate used.

6.0 Calculation

To obtain the chloride concentration, insert measured data into the following formula:

.282 X 35.450 X ml AgNO₃ ml water extract

X grams of water in mixture grams of soil in mixture

Using Step 5.0, determine the chloride concentration of the RO water used to mix with the soil sample. Record this concentration and subtract it from the formula results to find the net chloride in the soil sample.

Record all results on the delineation form.

Rice Operating Company

QUALITY PROCEDURE Sampling and Testing Protocol for VOC in Soil

1.6 Purpose

This procedure is to be used to determine the concentrations of Volatile Organic Compounds in soils.

2.0 Scope

This procedure is to be used as the standard field measurement for soil VOC concentrations. It is not to be used as a substitute for full spectrographic speciation of organic compounds.

3.0 Procedure

- 3.1 Sample Collection and Preparation
 - 3.1.1 Collect at least 500 g. of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample of soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
 - 3.1.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag and sealed. When sealed, the bag should contain a nearly equal space between the soil sample and trapped air. Record the sample name and the time that the sample was collected on the Field Analytical Report Form.
 - 3.1.3 The sealed samples shall be allowed to set for a minimum of five minutes at a temperature of between 10-15 Celsius, (59-77 F). The sample temperatures may be adjusted by cooling the sample in ice, or by heating the sample within a generally controlled environment such as the inside of a vehicle. The samples should not be placed directly on heated surfaces or placed in direct heat sources such as lamps or heater yents.
 - 3.1.4 The sealed sample bag should be massaged to break up any clods, and to provide the soil sample with as much exposed surface area as practically possible.

3.2 Sampling Procedure

- 3.2.1 The instrument to be used in conducting VOC concentration testing shall be an Environmental Instruments 13471 OVM / Datalogger or a similar PID-type instrument. (Device will be identified on VOC Field Test Report Form.) Prior to use, the instrument shall be zeroed-out in accordance with the appropriate maintenance and calibration procedure outlined in the instrument operation manual. The PID device will be calibrated each day it's used.
- 3.2.2 Carefully open one end of the collection bag and insert the probe tip into the bag taking care that the probe tip not touch the soil sample or the sidewalls of the bag.
- 3.2.3 Set the instrument to retain the highest result reading value. Record the reading onto the Field Test Report Form.
- 3.2.4 If the instrument provides a reading exceeding 100 ppm, proceed to conduct BTEX Speciation in accordance with QP-02 and QP-06. If the reading is 100 ppm or less, NMOCD BTEX guideline has been met and no further testing for BTEX is necessary. File the Field Test Report Form in the project file.

4.0 Clean-up

After testing, the soil samples shall be returned to the sampling location, and the bags collected for off-site disposal. IN NO CASE SHALL THE SAME BAG BE USED TWICE. EACH SAMPLE CONTAINER MUST BE DISCARDED AFTER EACH USE.