.5 AP -

ANNUAL MONITORING REPORT

YEAR(S): 2006

CERTIFIED MAIL RETURN RECIEPT NO. 7099 3400 0017 1737 2268

New Mexico Energy, Minerals, & Natural Resources

Oil Conservation Division, Environmental Bureau

February 6, 2007

Mr. Edward Hansen

1220 S. St. Francis Drive Santa Fe, New Mexico 87504 TRIDENT

RECEIVED

FEB - 9 2007 Environmental Bureau Oil Conservation Division

RE: 2006 ANNUAL GROUNDWATER MONITORING REPORT EME P-6 LINE LEAK SITE T20S, R37E, SECTION 6, UNIT LETTER P STAGE 1 & 2ABATEMENT PLAN NO.: AP-45

Mr. Hansen:

On behalf of Rice Operating Company (ROC), Trident Environmental takes this opportunity to submit the 2006 Annual Monitoring Well Report for the EME P-6 Line Leak Site located in the Eunice-Monument-Eumont (EME) Salt Water Disposal (SWD) System.

This project has been ongoing since an accidental release of produced water was discovered on November 29, 2000. So far work has included pipeline repair, extensive site assessment sampling, installation and sampling of five groundwater monitoring wells. Groundwater monitoring activities have been conducted quarterly since January 10, 2002. The Stage 1 & 2 Abatement Plan (AP-45) and a Minor Modification involving the installation of three additional monitoring wells and the vadose zone restoration tasks for this site was approved by the NMOCD on July 12, 2006. One downgradient (P6-3) and an upgradient (P6-4) monitoring well were installed on July 19, 2006. Installation of a cross-gradient monitoring well (P6-5) located approximately 200 feet of monitoring well P6-1 is still pending an access agreement with the landowner. Analysis for BTEX concentrations has been suspended for monitoring wells P6-1 and P6-2 as approved by Wayne Price on May 19, 2006 (approval communication attached) since each component of BTEX has been below the laboratory method detection limit of 0.001 mg/L at these wells for over eight consecutive quarters.

ROC is the service provider (agent) for the EME Salt Water Disposal System and has no ownership of any portion of pipeline, well, or facility. The EME SWD System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis.

Thank you for your consideration concerning this annual summary of groundwater monitoring information. If you have any questions, do not hesitate to contact me at (432) 638-8740 or Kristin Farris Pope at (505) 393-9174.

Sincerely,

Gilbert J. Van Deventer, PG, REM

cc: CDH, KFP, file

enclosures: maps, table, graphs, laboratory analytical reports, and correspondence

ATTACHMENT A

Site Maps

Table

Graphs

EME P-6 Line Leak Site T20S - R37E - Section 6 - Unit P

Monitoring Well Sample Dar (mg1.) Chloride (mg1.) TDS (mg1.) Benzere (mg1.) Tolerne (mg1.) Sylene (mg1.) Depth to (mg1.) Depth to (mg1.) <thdepth to<br="">(mg1.) <thdepth to<br="">(mg1.)<th></th><th></th><th></th><th>Sumn</th><th>ary of Ground</th><th>water Monitori</th><th>ing Results</th><th></th><th></th><th></th></thdepth></thdepth>				Sumn	ary of Ground	water Monitori	ing Results				
Weit (mgL)	Monitoring	Sample Date	Chloride	TDS	Benzene	Toluene	Ethylbenzene	Xylene	Depth to Groundwater	Groundwate Elevation	
01/1002 10,700 20,248 < 0.002 < 0.001 < 0.001 36,70 3522.36 08/1902 9,570 16,900 < 0.001	Well		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(feet BTOC)	(feet AMSL)	
05/1402 8,660 18,200 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 36.73 3522.36 11/0502 9,040 17,400 < 0.001		01/10/02	10,700	20,248	< 0.002	< 0.002	< 0.002	< 0.006	36.70	3522.39	
P6-1 08/1502 9,370 16,900 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.011 < 0.01 < 0.0		05/14/02	8,060	18,200	< 0.001	< 0.001	< 0.001	< 0.001	36.73	3522.36	
P6-1 17.460 <		08/15/02	9,570	16,900	< 0.001	< 0.001	< 0.001	< 0.001	36.95	3522.14	
P6-1 02/2703 8,860 15,000 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 37,12 3521,97 P6-1 0,82/103 8,860 17,800 < 0,001		11/06/02	9,040	17,400	< 0.001	< 0.001	< 0.001	< 0.001	37.15	3521.94	
95/2903 8,680 17,090 < 0.001 < 0.001 < 0.001 < 0.001 37,19 352166 11/1903 8,690 18,590 < 0.001		02/27/03	8,860	15,000	< 0.001	< 0.001	< 0.001	< 0.001	37.12	3521.97	
08/21/03 8.860 17.900 < 0.001 < 0.001 < 0.001 < 37.43 3321.64 0/20004 8.510 16.600 < 0.001		05/29/03	8,680	20.000	< 0.001	< 0.001	< 0.001	< 0.001	37.19	3521.90	
P6-1 11/19/03 8,600 18,500 <0.001 <0.001 <0.001 37.64 3321.25 P6-1 05/06/04 8,510 16,600 <0.001		08/21/03	8.860	17,800	< 0.001	< 0.001	< 0.001	< 0.001	37.43	3521.66	
02/2004 8.510 16.600 < 0.001 < 0.001 < 0.001 < 37.84 3321.73 P6-1 08/1004 9.040 17.200 < 0.001		11/19/03	8.690	18,500	< 0.001	< 0.001	< 0.001	< 0.001	37.64	3521.45	
P6-1 0.506.04 8.310 17.400 < 0.001 < 0.001 < 0.001 37.36 3322.0 11.0904 9.130 17.600 < 0.001		02/20/04	8,510	16.600	< 0.001	< 0.001	< 0.001	< 0.001	37.84	3521.25	
P6-1 00/1004 9.040 17.200 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0		05/06/04	8 510	17,400	< 0.001	< 0.001	< 0.001	< 0.001	37.36	3521.20	
Provide Provide <t< td=""><td>P6-1</td><td>08/10/04</td><td>9.040</td><td>17 200</td><td>< 0.001</td><td>< 0.001</td><td>< 0.001</td><td>< 0.001</td><td>37.03</td><td>3522.06</td></t<>	P6-1	08/10/04	9.040	17 200	< 0.001	< 0.001	< 0.001	< 0.001	37.03	3522.06	
1020703 2,100 17,800 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 <		11/09/04	0 1 3 0	17,200	< 0.001	< 0.001	< 0.001	< 0.001	36.78	3522.00	
020002 0.410 1.7000 <0.001 <0.001 <0.001 <0.001 2.001		02/07/05	9,130	17,000	< 0.001	< 0.001	< 0.001	< 0.001	30.28	3522.01	
0000000 1,000 1,000 1,000 1,000 1,000 1,000 2,00 3,2,00 3,2,00 3,2,00 3,2,00 3,2,00 3,2,00 3,2,00 3,2,00 3,2,00 3,2,00 3,2,00 3,2,00 3,2,00 3,2,00 4,0001 <0,001 <0,001 <0,001 2,001 3,22,00 3,22,00 3,22,00 3,22,00 3,20,00 <0,001 <0,001 <0,001 2,000 3,22,00		05/03/05	7,000	10,300	< 0.001	< 0.001	< 0.001		33.34	2526.33	
0.01 (1):2 9,210 16,000 < 0.001 < 0.001 < 0.001 < 0.001 32,81 332,82 02200/06 7,510 15,600 < 0.001		09/11/05	7,090	16,600	< 0.001	< 0.001	< 0.001	< 0.001	32.70	3520.55	
P6-2 1122003 7,500 15,500 < 0,001 < 0,001 < 0,001 < 0,001 32,81 332,62 0,571,676 8,160 15,600 < 0,001		11/28/05	9,210	10,000	< 0.001	< 0.001	< 0.001	< 0.001	32,81	3520.28	
0.22006 (3)10 (3)10 (3)20 (0)01 (4)001 (4)001 (4)001 (4)001 (3)243 (3)226 (3)26		11/28/05	7,580	14,700	< 0.001	< 0.001	< 0.001	< 0.001	32.81	3520.28	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		02/20/06	7,510	15,500	< 0.001	< 0.001	< 0.001	< 0.001	32.43	3526.66	
08/23/06 7,370 12,900 < 0.001 < 0.001 < 0.001 < 32.96 352.01 02/20/04 9,040 19,700 < 0.001		05/16/06	8,160	15,600	< 0.001	< 0.001	< 0.001	< 0.001	52.44	3526.65	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		08/23/06	7,370	12,900	< 0.001	< 0.001	< 0.001	< 0.001	32.96	3526.13	
$ \begin{array}{c} 022004 & 9,040 & 19,700 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & 37.29 & 3521.31 \\ 08/1004 & 8,330 & 15,400 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & 37.29 & 3522.41 \\ 08/1004 & 7,670 & 15,700 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & 35.83 & 3523.87 \\ 02/07/05 & 7,030 & 15,300 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & 35.83 & 3523.87 \\ 02/07/05 & 7,650 & 14,100 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & 32.29 & 3527.41 \\ 08/1105 & 7,650 & 9,170 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & 32.62 & 3527.08 \\ 02/2006 & 5,620 & 12,600 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & 32.62 & 3527.28 \\ 05/16/06 & 6,290 & 12,600 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & 32.62 & 3527.28 \\ 05/16/06 & 6,290 & 11,400 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & 32.42 & 3527.28 \\ 05/16/06 & 6,290 & 11,400 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & 33.03 & 3526.67 \\ 08/2306 & 5,490 & 9,850 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & 33.22 & 3527.20 \\ 08/2306 & 5,430 & 9,850 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & 33.22 & 3527.20 \\ 08/2306 & 6,750 & 13,400 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & 33.22 & 3526.76 \\ 08/2306 & 6,750 & 13,400 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & 33.22 & 3526.76 \\ 02/2004 & 5,320 & 14,500 & < 0.001 & < 0.001 & < 0.001 & < 0.001 & 33.28 & 3526.57 \\ 02/2004 & 5,320 & 14,500 & < 0.002 & < 0.002 & < 0.006 & 33.37 & 3521.40 \\ 08/1305 & 6,560 & 12,400 & < 0.001 & < 0.001 & < 0.001 & 32.23 & 3527.27 \\ 02/2004 & 5,320 & 14,500 & < 0.001 & < 0.001 & < 0.001 & 32.23 & 3527.27 \\ 02/2004 & 5,320 & 14,500 & < 0.001 & < 0.001 & < 0.001 & 32.23 & 3526.76 \\ 08/1305 & 6,560 & 12,400 & < 0.002 & < 0.002 & < 0.006 & 33.37 & 3521.40 \\ 08/1305 & 6,560 & 12,400 & < 0.001 & < 0.001 & < 0.001 & 32.24 & 3526.71 \\ 02/2006 & 6,650 & 12,400 & < 0.001 & < 0.001 & < 0.001 & 32.42 & 3527.72 \\ 08/1004 & 6,110 & 13,800 & < 0.001 & < 0.001 & < 0.001 & 27.83 & 3526.40 \\ 08/1305 & 6,560 & 12,400 & < 0.001 & < 0.001 & < 0.001 & 27.83 & 3527.40 \\ 08/1305 & 6,560 & 12,400 & < 0.001 & < 0.001 & < 0.001 & 27.83 & 3527.52 \\ 08$		11/09/06	6,700	13,200					31.98	3527.11	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		02/20/04	9,040	19,700	< 0.001	< 0.001	< 0.001	< 0.001	37.97	3521.73	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		05/06/04	8,330	16,100	< 0.001	< 0.001	< 0.001	< 0.001	37.29	3522.41	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		08/10/04	8,240	15,400	< 0.001	< 0.001	< 0.001	< 0.001	36.97	3522.73	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		11/09/04	7,670	15,700	< 0.001	< 0.001	< 0.001	< 0.001	35.83	3523.87	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		02/07/05	7,030	15,300	< 0.001	< 0.001	< 0.001	< 0.001	32.76	3526.94	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D6 0	05/03/05	6,050	14,100	< 0.001	< 0.001	< 0.001	< 0.001	32.29	3527.41	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P0-2	08/11/05	7,540	14,300	< 0.001	< 0.001	< 0.001	< 0.001	32.62	3527.08	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		11/28/05	7.660	9,170	< 0.001	< 0.001	< 0.001	< 0.001	32.62	3527.08	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		02/20/06	5.620	12.600	< 0.001	< 0.001	< 0.001	< 0.001	32.42	3527.28	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		05/16/06	6.290	11.400	< 0.001	< 0.001	< 0.001	< 0.001	32.50	3527.20	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		08/23/06	5.490	9.850	< 0.001	< 0.001	< 0.001	< 0.001	33.03	3526.67	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		11/09/06	4 860	9.670					31.79	3527.91	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		08/23/06	8 300	13,100	< 0.001	< 0.001	< 0.001	< 0.001	34.19	3525.89	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P6-3	11/09/06	7 520	14 100	0.013	0.001	0.003	< 0.001	33.32	3526.76	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		08/23/06	6 750	13,400	< 0.013	< 0.001	< 0.003	< 0.001	33.20	3526.70	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P6-4	11/09/06	6,070	11,400	< 0.001	< 0.001	< 0.001	< 0.001	32.23	3520.21	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12/11/03	6 109	10.784	< 0.001	< 0.001	< 0.001	< 0.001	32.23	3321.21	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		02/20/04	6,190	10,704	< 0.002	< 0.002	< 0.002	< 0.000	33.20	2521.04	
$ \frac{03}{06} \frac{03}{06} \frac{1}{04} + \frac{1}{09} \frac{1}{17,300} + \frac{1}{100} \frac{1}{17,300} + \frac{1}{0001} + $		02/20/04	5,320	14,500	< 0.002	< 0.002	< 0.002		33.37	3521.04	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		05/06/04	5,940	12,400	< 0.002	< 0.002	< 0.002	< 0.006	32.79	3521.62	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		08/10/04	6,910	17,300	< 0.001	< 0.001	< 0.001	< 0.001	32.52	3521.89	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		11/09/04	7,090	14,000	< 0.001	< 0.001	< 0.001	< 0.001	31.63	3522.78	
		02/07/05	6,710	13,200	< 0.001	< 0.001	< 0.001	< 0.001	28.85	3525.56	
	v15-1 (shallow)	05/03/05	6,560	16,500	< 0.001	< 0.001	< 0.001	< 0.001	28.10	3526.31	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		08/13/05	6,070	13,800	< 0.001	< 0.001	< 0.001	< 0.001	28.24	3526.17	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		11/28/05	4,500	12,300	< 0.001	< 0.001	< 0.001	< 0.001	28.24	3526.17	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		02/20/06	5,660	12,400	< 0.001	< 0.001	< 0.001	< 0.001	27.25	3527.16	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		05/16/06	7,870	14,300	< 0.001	< 0.001	< 0.001	< 0.001	27.81	3526.60	
11/10/06 5,840 10,500 < 0.001 < 0.001 < 0.001 < 0.001 27.39 3527.02 M5-1 12/11/03 6,198 11,736 < 0.002	<td></td> <td>08/23/06</td> <td>6,160</td> <td>11,800</td> <td>< 0.001</td> <td>< 0.001</td> <td>< 0.001</td> <td>< 0.001</td> <td>28.34</td> <td>3526.07</td>		08/23/06	6,160	11,800	< 0.001	< 0.001	< 0.001	< 0.001	28.34	3526.07
$ M5-1 \ (deep) \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		11/10/06	5,840	10,500	< 0.001	< 0.001	< 0.001	< 0.001	27.39	3527.02	
		12/11/03	6,198	11,736	< 0.002	< 0.002	< 0.002	< 0.006	33.40	3521.11	
$ M5-1 \ (deep) \begin{array}{ c c c c c c c c c c c c c c c c c c c$		11/28/05	5,590	11,400	< 0.001	< 0.001	< 0.001	< 0.001	28.10	3526.41	
WCC1 (dxcp) 05/16/06 7,000 13,100 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 27.81 3526.70 08/23/06 7,100 14,100 < 0.001	M5-1 (deen)	02/20/06	6,830	14,400	< 0.001	< 0.001	< 0.001	< 0.001	27.87	3526.64	
08/23/06 7,100 14,100 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 28.44 3526.07 11/10/06 5,840 12,000 < 0.001	wis-i (ueep)	05/16/06	7,000	13,100	< 0.001	< 0.001	< 0.001	< 0.001	27.81	3526.70	
11/10/06 5,840 12,000 < 0.001 < 0.001 < 0.001 < 0.001 27.49 3527.02 WQCC Standards 250 1,000 0.01 0.75 0.75 0.62 tal Dissolved Solds (TDS), chloride, sulfate, and BTEX concentrations listed in milligrams per liter (mg/L) alyses performed by Environmental Lab of Texas, Odesa, TX. Lues in boldface type indicate concentration second New Nexico Water Quality Commission (WQCC) standards. (B) - Above Mean Sea Level; BTOC - Below Top of Casing	(08/23/06	7,100	14,100	< 0.001	< 0.001	< 0.001	< 0.001	28.44	3526.07	
WQCC Standards 250 1,000 0.01 0.75 0.75 0.62 tal Dissolved Solids (TDS), chloride, sulfate, and BTEX concentrations listed in milligrams per liter (mg/L) alyses performed by Environmental Lab of Texas, Odesa, TX. late in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards. 61, - Above Mean Sea Level; BTOC - Below Top of Casing		11/10/06	5,840	12.000	< 0.001	< 0.001	< 0.001	< 0.001	27.49	3527.02	
tal Dissolved Solds (TDS), chloride, sulfate, and BTEX concentrations listed in milligrams per liter (mg/1.) alyses performed by Environmental Lab of Texas, Odesas, TX. Lues in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards. (SL - Above Mean Sea Level; BTOC - Below Top of Casing	WOCC S	tandards	250	1,000	0.01	0.75	0.75	0.62		•	
alyses performed by Environmental Lab of Texas, Odessa, TX. Jues in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards. (SL - Above Mean Sea Level; BTOC - Below Top of Casing	otal Dissolved Soilds (TDS), chloride, sulfate,	and BTEX concentration	ons listed in milligrams	per liter (mg/L)			L	1		
lues in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards. (SL - Above Mean Sea Level; BTOC - Below Top of Casing	nalyses performed by	Environmental Lab of 7	Texas, Odessa, TX.		-						
ASL - Above Mean Sea Leve; BTUU - Below Top of Casing	alues in boldface type	indicate concentrations	exceed New Mexico W	ater Quality Commissi	on (WQCC) standards.						
the second second by Burd Const Habbe NM	ISL - Above Mean Se	ea Level, BTOC - Below	Top of Casing	L. NIAC							

.

Chloride, TDS, and Groundwater Elevation Values Versus Time Graph (P6-1)

Sampling Date

Sampling Date

Chloride, TDS, and Groundwater Elevation Values Versus Time Graph (P6-4)

Sampling Date

ATTACHMENT B

Laboratory Analytical Reports

And

Chain of Custody Documentation

.

· .

,

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME P-6 Leak Project Number: None Given Location: Lea County

Lab Order Number: 6B23001

Report Date: 03/02/06

Rice Operating Co.	Project: EME P-6 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
bbs NM, 88240	Project Manager: Kristin Farris-Pope	03/02/06 17:05

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6B23001-01	Water	02/20/06 09:25	02/23/06 09:45
Monitor Well #2	6B23001-02	Water	02/20/06 10:30	02/23/06 09:45

Rice Operating Co.	Project:	EME P-6 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
hbs NM, 88240	Project Manager:	Kristin Farris-Pope	03/02/06 17:05
		and a second sec	

Organics by GC

Environmental Lab of Texas

	Result	Reporting	Units	Dilotian	Batab	Drumanial	Anohimad	Mathod	Notes
Analyte				L'Hation	Daton	ГСЛЯСС	7 maryzeu		NOW:
Vonitor Wein #1 (0823001-01) Water									
3enzene	ND	0.00100	me/L	1	EB62306	02/23/06	02/23/06	EPA 8021B	
Foluene	ND	0.00100	"	u	a	*	n	n	
Ethylbenzene	ND	0.00100	"	"	щ	н	Ħ	н	,
(ylene (p/m)	ND	0.00100	11		H	r	u	n	
Xylene (0)	NĎ	0.00100	ŋ	11	μ 	u	*		
Surrogale: a,a,a-Trifluorotoluene		86.8 %	80-1	20	n	#	и	#	
Surrogate: 4-Bromofluorobenzene		101 %	6 80-120		"	"	"	n	
Monitar Well #2 (6B23001-02) Water									
Benzene	ND	0.00100	mg/L	1	EB62306	02/23/06	02/24/06	EPA 8021B	
Foluenc	ND	0.00100	п	ч	Π		H	u	
Ethylbenzene	ND	0.00100	Ħ	v	16	H	"		
Xylene (p/m)	ND	0.00100	н	19	н	μ	п	ır	
Xylenc (0)	ND	0.00100	4	n	п	n	u	u	
Surrogale: u.u.a-Trifluorotoluene		83.0 %	80-1	120	и И	"	11	Π	
rogate: 4-Bromofluorobenzene		91.0 %	80-1	120	"	"	17		

invironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 2 of 10

Ø 031

Rice Operating Co.	Project: EME P-6 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
pbbs NM, 88240	Project Manager: Kristin Farris-Pope	03/02/06 17:05

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Preparco	Analyzed	Method	Notes
Monitor Well #1 (6B23001-01) Water									
Total Alkalinity	216	2.00	mg/L	1	EB62205	02/23/06	02/23/06	EPA 310.1M	
Chloride	7510	100	n	200	EB62811	02/28/06	02/28/06	EPA 300.0	
Total Dissolved Solids	15500	5.00	U.	1	EB62405	02/23/06	02/24/06	EPA 160.1	
Sulfate	889	100	n	200	EB62811	02/28/06	02/28/06	EPA 300.0	
Monitor Well #2 (6B23001-02) Water									
Total Alkalinity	228	2.00	mg/L	1	EB62205	02/23/06	02/23/06	EPA 310.1M	
Chloride	5620	100	0	200	EB62811	02/28/06	02/28/06	EPA 300.0	
Total Dissolved Solids	12600	5.00	n	1	EB62405	02/23/06	02/24/06	EPA 160.1	
Sulfate	875	100	บ	200	EB62811	02/28/06	02/28/06	EPA 300.0	

vironmental Lab of Texas

Rice Operating Co.	Project: EME P-6 Leak	Fax: (505) 397-1471
22 W. Taylor	Project Number: None Given	Reported:
Obbs NM, 88240	Project Manager: Kristin Farris-Pope	03/02/06 17:05

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6B23001-01) Water									
Calcium	1540	10.0	mg/L	1000	FC60207	03/02/06	03/02/06	EPA 6010B	
Magnesium	486	0.100	n	100	"	u	μ	ч	
Potassium	44.0	0.500	n	10	4	W	Ħ	"	
Sodium	4690	10.0	ų	1000	n	π	ų	11	
Monitor Well #2 (6B23001-02) Water									
Calcium	1030	5.00	mg/L	500	HC60207	03/02/06	03/02/06	EPA 6010B	,
Magnesium	42.4	0.100	u	100	17	Ħ	ţi.	r .	
Potassium	44.7	0.500	4	10	n	u	N	u.	
Sodium	3020	5.00	п	500	u	IJ	n	4	

Environmental Lab of Texas

Rice Operating Co. 122 W. Taylor obbs NM, 88240	Project: EME P-6 Leak Project Number: None Given Project Manager: Kristin Farris-Pope								Fax: (505) 397-147 Reported: 03/02/06 17:05		
	Org I	ganics by Environm	GC - Q ental L	Quality C Lab of To	Control exas						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RFD	RPD Limit	Notes	
Batch EB62306 - EPA 5030C (GC)											
Blank (EB62306-BLK1)				Prepared a	& Analyz	ed: 02/23/	06	_			
Senzone	ND	0.00100	mg/L								
oluene	NO	0.00100	н			1					
Sthylbenzene	ND	0.00100.0	u								
(ylene (p/m)	ND	0.00100	м								
(ylene (o)	ND	0.00100	11								
Surrogate a.a.a-Trifluorotoluene	33.3		ug/l	40.0		83.2	80-120				
Surrogale: 4-Bromofluorobenzene	35.5		· •	40.0		88.8	80-120				
LCS (EB62306-BS1)				Prepared:	02/23/06	Analyzed	1: 02/27/06				
Benzene	0.0480	0.00100	mg/L	0.0500		96.0	80-120	-			
Foluene	0.0524	0.00100	11	0.0500		105	80-120				
Ethylbenzene	0.0564	0.00100	"	0.0500		113	80-120				
Kylene (p/m)	0.118	0.00100	17	0.100		118	80-120				
Kylene (o)	0.0577	0.00100	n	0.0500		115	80-120				
Surrogate: a.a.a-Trifluorotoluene	40.5		ug/l	40.0		101	80-120				
Surrogate: 4-Bromofluorobenzene	38.4		"	40.0		96.0	80-120				
blibration Check (EB62306-CCV1)				Prepared:	02/23/06	Analyze	1: 02/27/06				
3cnzene	47.3		ug/J	50.0		94.6	80-120				
Foluenc	52.9		- n	50.0		106	80-120				
Ethylbenzenc	59.9		н	50.0		120	80-120				
Xylene (p/m)	120		۳	100		120	80-120				
Xylene (0)	59.7		4	50.0		119	80-120				
Surrogate a.a.a-Trifluorotoluene	4/.5		"	40.0		104	80-120	• • • • • • • • • • • • • • • • • • • •			
Surrogate: 4-Bromofluorobenzene	47.5		N	40.0		119	80-120				
Matrix Spike (EB62306-MS1)	So	urce: 6B230	01-01	Prepared	02/23/06	Analyze	d: 02/27/06				
Benzene	0.0418	0.00100	mg/1.	0.0500	ND	83.6	80-120				
Folgene	0.0464	0.00100		0.0500	ND	92.8	80-120				
Ethylbenzene	0.0521	0.00100	16	0.0500	ND	104	80-120				
Xylene (p/m)	0.109	0.00100	11	0.100	ND	109	80-120				
Xylene (٥)	0.0537	0.00100	ų	0.0500	NÐ	107	80-120				
Surrogate: a,a,a-Trifluorotoluene	38.4		ug/l	40,0		96.0	80-120				
Surrogate: 4-Bromofluorobenzene	41.3		"	40.0		103	80-120				

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Límits	RPD	Limit	Notes

Batch EB62306 - EPA 5030C (GC)

Matrix Spike Dup (EB62306-MSD1)	Sou	irce: 6B2300	Prepared:	02/23/06						
Benzene	0.0475	0.00100	mg/L	0.0500	ND	95.0	80-120	12.8	20	
Tolucne	0.0524	0.00100	n	0.0500	ND	105	80-120	12.3	20	
Ethylbenzene	0.0577	0.00100	. "	0.0500	ND	115	80-120	10.0	20	
Xviene (p/m)	0.120	0.00100	79	0.100	ND	120	80-120	9.61	20	
Xylene (o)	0.0591	0.00100	v	0.0500	ND	118	80-120	9.78	20	
Surrogate: a.a.a-Trifluorololuenc	40.3		ug/l	40.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	41.3		"	40.0		103	80-120			

vironmental Lab of Texas

Rice Operating Co. 122 W. Taylor obbs NM, 88240		Project Num Project Man	ojeet: EM nber: No ager: Ki	AE P-6 Leal one Given istin Farris-	c Pope]	Fax: (505) Repo 03/02/0	397-1471 rted: 6 17:05
General Che	mistry Parar I	neters by Environm	EPA / ental l	Standar Lab of To	d Meth exas	ods - Q	Quality C	ontro	ł	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB62205 - General Prepara	ation (WetChen	1 <u>)</u>					·			
Mank (EB62205-BLK1)				Prepared	& Analyze	d: 02/23/	06			
otal Alkalinity	 ND	2.00	mg/L							
CS (EB62205-BS1)				Prepared & Analyzed: 02/23/06						
licarbonate Alkalinity	207	2.00	mg/L	200		104	85-115			
Duplicate (EB62205-DUPI)	So	uree: 6B1600	14-01	Prepared & Analyzed: 02/23/06						
otal Alkalinity	273	2.00	m <u>y</u> /L		278			1.81	20	-
Reference (EB62205-SRM1)				Prepared	& Analyze	ed: 02/23/	06			
otal Alkalinity	97.0		mg/L	100		97.0	90-110			
Batch EB62405 - General Prepar	ation (WetChen	a)								
3lank (EB62405-BLK1)				Prepared:	02/23/06	Analyzed	1: 02/24/06			
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (EB62405-DUP1)	So	urce: 6B1700)4-01	Prepared:	02/23/06	Analyzed	1: 02/24/06			
otal Dissolved Solids	178	5.00	mg/L		178		•	0.00	5	
tch EB62811 - General Prepar	ation (WetChen	n)								
3lank (EB62811-BLK1)				Prepared	& Analyza	ed: 02/28/	06			
Sulfate	ND	0.500	mg/L					· ·• ·		
Chloride	ND	0.500	0							
LCS (EB62811-BS1)				Prepared	& Analyz	ed: 02/28/	06			
Chloride	8.76	0.500	mg/L	10.0		87.6	80-120			
Sulfate	8.40	0.500	н	10.0		.84.0	80-120			

invironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Rice Operating Co.	Project: EME P-6 Lcak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
obbs NM, 88240	Project Manager: Kristin Farris-Pope	03/02/06 17:05

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB62811 - General Preparation	n (WetChem	ı)								
Calibration Check (EB62811-CCV1)				Prepared	& Analyze	ed: 02/28/	06			
Sulfate	9.25		mg/L	10.0		92,5	80-120			
Chloride	9.36		IJ	10.0		93.6	80-120			
Duplicate (EB62811-DUP1)	So	arce: 6B2300)1-01	Prepared & Analyzed: 02/28/06			06			
Chloride	7740	100	mg/L		7510			3.02	20	
Sulfate	956	100	u		889			7.26	20	

(

Rice Operating Co. 122 W. Taylor Jobbs NM, 88240		Project: EME P-6 Leak Project Number: None Given Project Manager: Kristin Farris-Pope						Fax: (505) 397-1471 Reported: 03/02/06 17:05			
	Total N	Metals by H	EPA / Sta Invironm	indard ental I	Method Lab of T	ls - Qua exas	ality Co	ontrol			
Analyte		Result	R e porting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC60207 - 6010B/r	to Digestion							·			
Blank (EC60207-BLK1)					Prepared	& Analyza	ed: 03/02/	D6			
Calcium		ND	0,0100	₩ <u>₩</u> L							
Agnesium		ND	0.00100	v							
otassium		ND	0,0500	ч							
odium		ND	0.0100	17							
Calibration Check (EC6020	7-CCV1)				Prepared	& Anaiyz	ed: 03/02/	06			
Calcium		2,15		mg/L	2,00		108	85-115			
Aagnesium		2.20		11	2.00		110	85-115			
otassium		1.72		II.	2.00		86.0	85-115			
muibo		1.87		"	2.00		93.5	85-115			
Duplicate (EC60207-DUP1)		So	urce: 6B1706	04-01	Prepared	& Analyz	cd: 03/02/	06			
Jaleium	,	106	0.500	mg/L		102			3.85	20	
Magnesium		20.6	0.010.0	11		22.2			7.48	20	
Potassium		15.4	0.500	n		15.8			2.56	20	
Sodium		91.5	0.500			88.3			3.56	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 9 of 10

Page 9 of 10

Γ	Rice Operating Co.	Project: EME P-6 Leak	Fax: (505) 397-1471
	122 W. Taylor	Project Number: None Given	Reported:
· ` `	lobbs NM, 88240	Project Manager: Kristin Farris-Por	oe 03/02/06 17:05

Notes and Definitions

DF.I.	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Contro! Spike
M5	Matrix Spike
Dup	Duplicate

Report Approved By:

wil brale.

3-03-06 Date:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Lab of Texas	Phone: 432-563-1800
nvii@mental	inn West -20 East

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

	avitanmental Lab of Texas	
Variance / Cor	rrective Action Report - Sample Log-In	
Client: <u><u><u><u></u></u><u><u><u></u><u><u></u><u><u></u><u><u></u></u><u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u></u></u>		
Date/Time: 2/23/04 9:0	95	
Order #: (1823001		
Initials:		

Initials:

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	-2.5 C
Shipping container/cooler in good condition?	Kerl	No	
Custody Seals intact on shipping container/cooler?	Xes 1	No	Not present
Custody Seals intact on sample bottles?	12551	No	Not present
Chain of custody present?	Yes	No	
Sample Instructions complete on Chain of Custody?	Yes	No	
Chain of Custody signed when relinquished and received?	YES	No	
Chain of custody agrees with sample label(s)	473	No	
Container labels legible and intact?	YEST	Ng	
Sample Matrix and procerties same as on chain of custody?	YEs	No	
Samples in procer container/bottle?	1 255 1	No	
Samples procerly preserved?	1 Kes 1	No	
Sample bottles intact?	1 235 1	No	
Reservations documented on Chain of Custody?	I YEE	No	
tainers documented on Chain of Custody?	Xes	No	· · · · · · · · · · · · · · · · · · ·
Sufficient sample amount for indicated test?		No	
All samples received within sufficient hold time?	CO	Na	
VOC samples have zero headspace?	223	Nc ·	Not Applicable

Other observations:

۰.

Variance Documentation:

Contact Person: -_____ Date/Time: _____ Contacted by: ____ Regarding: . Corrective Action Taken:

.'

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME P-6 Leak Project Number: None Given Location: Lea County

Lab Order Number: 6E18013

Report Date: 05/25/06

Rice Operating Co.	Project:	EME P-6 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	05/25/06 16:13
		WAT AN ADVIDENT AND A	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6E18013-01	Water	05/16/06 09:50	05/18/06 12:00
Monitor Well #2	6E18013-02	Water	05/16/06 08:55	05/18/06 12:00

Rice Operating Co.	Project:	EME P-6 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
lobbs NM, 88240	Project Manager:	Kristin Farris-Pope	05/25/06 16:13

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6E18013-01) Water									
Benzene	ND	0.00100	mg/L	1	EE62101	05/21/06	05/22/06	EPA 8021B	
Toluene	ND	0.00100	"	**	**	n	**	"	
Ethylbenzene	ND	0.00100	"	n	11	"	"	**	
Xylene (p/m)	ND	0.00100	"	"	"	n	'n	"	
Xylene (o)	ND	0.00100		"	11	"		"	
Surrogate: a,a,a-Trifluorotoluene		109 %	80-12	0	,,	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.2 %	80-12	0	"	"	"	"	
Monitor Well #2 (6E18013-02) Water									
Benzene	ND	0.00100	mg/L	1	EE62101	05/21/06	05/22/06	EPA 8021B	
Toluene	ND	0.00100	"	н	11	"	**	a	
Ethylbenzene	ND	0.00100	"	"	n	11	n	"	
Xylene (p/m)	ND	0.00100	"	**	**	н	"	u	
Xylene (0)	ND	0.00100	n	"		"	"	11	
Surrogate: a,a,a-Trifluorotoluene		110 %	80-12	0	"	"	"	<i>p</i>	
rogate: 4-Bromofluorobenzene		89.8 %	80-12	0	"	"	"	"	

Rice Operating Co.	Project: EME P-6 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
lobbs NM, 88240	Project Manager: Kristin Farris-Pope	05/25/06 16:13

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6E18013-01) Water									
Total Alkalinity	216	2.00	mg/L	1	EE62220	05/22/06	05/22/06	EPA 310.1M	
Chloride	8160	100	"	200	EE62205	05/22/06	05/22/06	EPA 300.0	
Total Dissolved Solids	15600	5.00		1	EE61919	05/18/06	05/18/06	EPA 160.1	
Sulfate	1060	100	"	200	EE62205	05/22/06	05/22/06	EPA 300.0	
Monitor Well #2 (6E18013-02) Water									
Total Alkalinity	234	2.00	mg/L	1	EE62220	05/22/06	05/22/06	EPA 310.1M	
Chloride	6290	100	**	200	EE62205	05/22/06	05/22/06	EPA 300.0	
Total Dissolved Solids	11400	5.00	"	1	EE61919	05/18/06	05/18/06	EPA 160.1	
Sulfate	1010	100	"	200	EE62205	05/22/06	05/22/06	EPA 300.0	

Rice Operating Co.	Project: EME P-6 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
lobbs NM, 88240	Project Manager: Kristin Farris-Pope	05/25/06 16:13

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
Monitor Well #1 (6E18013-01) Water									-			
Calcium	1220	2.00	mg/L	200	EE61926	05/19/06	05/19/06	EPA 6010B				
Magnesium	429	0.200	11			"	"	u.				
Potassium	32.6	2.50	n	50	11	"	n	**				
Sodium	2780	5.00	N	500	"	"	"	n				
Monitor Well #2 (6E18013-02) Water												
Calcium	963	2.00	mg/L	200	EE61926	05/19/06	05/19/06	EPA 6010B				
Magnesium	347	0.200	"	11	"	n	н	"				
Potassium	26.2	2.50	"	50	"	"	11	**				
Sodium	2240	5.00	"	500		**		"				

5.00

500

nvironmental Lab of Texas

Rice Operating Co.	Project: EME P-6 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	05/25/06 16:13

Organics by GC - Quality Control

Environmental	Lab	of '	Texas
---------------	-----	------	-------

		Environmental Lab of Texas								
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE62101 - EPA 5030C (GC)										
Blank (EE62101-BLK1)				Prepared &	z Analyzed:	05/21/06				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	n							
Ethylbenzene	ND	0.00100	**							
Xylene (p/m)	ND	0.00100	11							
Xylene (0)	ND	0.00100	"							
Surrogate: a,a,a-Trifluorotoluene	42.9		ug/l	40.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	32.2		"	40.0		80.5	80-120			
LCS (EE62101-BS1)				Prepared &	Analyzed:	05/21/06				
Benzene	0.0415	0.00100	mg/L	0.0500		83.0	80-120			
foluene	0.0421	0.00100	н	0.0500		84.2	80-120			
Ethylbenzene	0.0463	0.00100	"	0.0500		92.6	80-120			
Kylene (p/m)	0.102	0.00100	n	0.100		102	80-120			
Xylene (0)	0.0504	0.00100	"	0.0500		101	80-120			
Surrogate: a,a,a-Trifluorotoluene	42.7		ug/l	40.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	36.2		"	40.0		90.5	80-120			
libration Check (EE62101-CCV1)				Prepared &	z Analyzed:	05/21/06				
Senzene	44.3	-	ug/l	50.0		88.6	80-120			
oluene	44.3		11	50.0		88.6	80-120			
Ethylbenzene	55.3		"	50.0		111	80-120			
Kylene (p/m)	99.I		"	100		99.1	80-120			
Kylene (o)	49.1		"	50.0		98.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	44.6		"	40.0		112	80-120			
Surrogate: 4-Bromofluorobenzene	34.8		"	40.0		87.0	80-120			
Matrix Spike (EE62101-MS1)	Sou	rce: 6E17005-	01	Prepared: ()5/21/06 A	nalyzed: 05	/22/06			
Benzene	0.0444	0.00100	mg/L	0.0500	ND	88.8	80-120			
foluene	0.0454	0.00100	11	0.0500	ND	90.8	80-120			
Ethylbenzene	0.0488	0.00100	11	0.0500	ND	97.6	80-120			
Xylene (p/m)	0.108	0.00100	"	0.100	ND	108	80-120			

Xylene (o)

Surrogate: a,a,a-Trifluorotoluene

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

80-120

80-120

80-120

106

114

92.2

0.0531

45.5

36.9

0.00100

11

ug/l "

0.0500

40.0

40.0

ND

	Rice Operating Co.	Project: EME P-6 Leak	Fax: (505) 397-1471
	122 W. Taylor	Project Number: None Given	Reported:
a a	Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	05/25/06 16:13

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EE62101 - EPA 5030C (GC)

Matrix Spike Dup (EE62101-MSD1)	Sou	Prepared: 05/21/06 Analyzed: 05/22/06									
Benzene	0.0439	0.00100	mg/L	0.0500	ND	87.8	80-120	1.13	20		
Toluene	0.0447	0.00100	"	0.0500	ND	89.4	80-120	1.55	20		
Ethylbenzene	0.0481	0.00100	"	0.0500	ND	96.2	80-120	1.44	20		
Xylene (p/m)	0.107	0.00100	11	0.100	ND	107	80-120	0.930	20		
Xylene (o)	0.0521	0.00100	"	0.0500	ND	104	80-120	1.90	20		
Surrogate: a,a,a-Trifluorotoluene	46.4		ug/l	40.0		116	80-120				
Surrogate: 4-Bromofluorobenzene	33.4		"	40.0		83.5	80-120				

Rice Operating Co.		Pr	oject: El	VIE P-6 Leak					Fax: (505) 397-1471		
122 W. Taylor		Project Nu	mber: No	one Given					Reported:		
Hobbs NM, 88240		Project Mar	hager: Ki	ristin Farris-Pe	ope				05/25/06 16:13		
General C	hemistry Para	ameters by	EPA /	Standard	Method	ls - Qua	lity Con	trol			
		Environm	ental l	Lab of Tex	xas						
		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch EE61919 - Filtration Preparation											
Blank (EE61919-BLK1)			Prepared &	Analyzed:	05/18/06						
iotal Dissolved Solids	ND	5.00	mg/L								
Duplicate (EE61919-DUP1)	Sou	irce: 6E18012-	01	Prepared &							
otal Dissolved Solids	1420	5.00	mg/L	1470 3.46					5		
Batch EE62205 - General Preparation (WetChem)					05/22/04	··				
Blank (EE62205-BLKI)	ND	0.600		Prepared &	Analyzed:	05/22/06					
Sulfate	ND	0,500	mg/L								
	n.b	0.500									
LCS (EE62205-BS1)				Prepared &	Analyzed:	05/22/06					
bulfate	8.20		mg/L 	10.0		82.0	80-120				
Chloride	10.1			10.0		101	80-120				
Calibration Check (EE62205-CCV1)				Prepared &	z Analyzed:	05/22/06					
Chloride	10.1		mg/L	10.0		101	80-120				
Sulfate	9.63		n	10.0		96.3	80-120				
plicate (EE62205-DUP1)	Sou	ırce: 6E18012-	01	Prepared &	Analyzed:	05/22/06					
alfate	307	10.0	mg/L		304	·		0.982	20		
Chloride	343	10.0	n		344			0.291	20		
Duplicate (EE62205-DUP2)	Sou	irce: 6E18015-	01	Prepared &	z Analyzed:	05/22/06					
Chloride	415	10.0	mg/L		412			0.726	20		
Sulfate	50.3	10.0	"		50.6			0.595	20		

(

Rice Operating Co. 122 W. Taylor	Project: EME P-6 Leak Project Number: None Given	Fax: (505) 397-1471 Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	05/25/06 16:13
Genera	l Chemistry Parameters by EPA / Standard Methods - Qua	lity Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE62205 - General Preparatio	on (WetChem)									
Matrix Spike (EE62205-MS1)	Sou	rce: 6E18012-	-01	Prepared &	& Analyzed	05/22/06				
Chloride	565	10.0	mg/L	200	344	110	80-120			
Sulfate	465	10.0	11	200	304	80.5	80-120			
Matrix Spike (EE62205-MS2)	Source: 6E18015-01			Prepared & Analyzed: 05/22/06						
Chloride	654	10.0	mg/L	200	412	121	80-120			S-0'
Sulfate	200	10.0	"	200	50.6	74.7	80-120			S-0'
Batch EE62220 - General Preparatio	on (WetChem)									
Blank (EE62220-BLK1)				Prepared & Analyzed: 05/22/06						
Total Alkalinity	ND	2.00	mg/L							
LCS (EE62220-BS1)				Prepared &	& Analyzed:	05/22/06				
Bicarbonate Alkalinity	214	2.00	mg/L	200		107	85-115			
Duplicate (EE62220-DUP1)	Sou	rce: 6E18012-	-01	Prepared & Analyzed: 05/22/06						
Total Alkalinity	279	2.00	mg/L		280			0.358	20	
Reference (EE62220-SRM1)				Prepared &	& Analyzed:	05/22/06				
tal Alkalinity	96.0		mg/I	100		96.0	90-110			

Rice Operating Co.	Project: EME P-6 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	05/25/06 16:13

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EE61926 - 6010B/No Digestion

Blank (EE61926-BLK1)				Prepared & Analyz	zed: 05/19/06				
Calcium	ND	0.0100	mg/L			-			
Magnesium	ND	0.00100	"						
Potassium	ND	0.0500	и						
Sodium	ND	0.0100	"						
Calibration Check (EE61926-CCV1)				Prepared & Analyz	ed: 05/19/06				
Calcium	2.30		mg/L	2.00	115	85-115			
Magnesium	2.21		"	2.00	110	85-115			
Potassium	1.80		"	2.00	90.0	85-115			
Sodium	1.81		"	2.00	90.5	85-115			
Duplicate (EE61926-DUP1)	Sour	ce: 6E18012-	01	Prepared & Analyz	zed: 05/19/06				
Calcium	111	0.500	mg/L	111			0.00	20	
Magnesium	58.3	0.0100		56.5			3.14	20	
Potassium	12.2	0.500	"	12.9			5.58	20	
Sodium	266	0.500	11	271			1.86	20	

Notes and Definitions

- S-07 Recovery outside Laboratory historical or method prescribed limits.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland Kesting Date:

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

vironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

5/25/2006

Image: Second	iels on container?
A Cations (Ca. Ma, Na, K)	
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	
	E
A HASON	
	SXC I I I I I I I I I I I I I I I I I I I
	s l
	B S
Time Sampled	Chahne
©Ticeswd.co	Received by Received by Received by
Lab of Texas Phone: 432-563-1800 Fax: 432-563-1800 Fax: 432-563-1800 Fax: 432-563-1800 Operating Company V. Taylor Street S. New Mexico 88240 393-9174 nne Johnson (505) 631- nne Johnson (505) 631- rie@valornet.com #1 Excenting Fourier	LEASE Email RESULTS Date/ Time S// 3/6/ L.:CD Date Time
International Project Manager: Kristir Project Manager: Kristir Company Name RICE Company Address: 122 W City/State/Zip Hobb: Telephone No: (505) Sampler Signature: Rozar Email: Cozan US# (lab use only) US Monitor Well # O' Monitor Well #	rame Joyath Mark

Environmental Lab of Texas Variance / Corrective Action Report - Sample Log-In

ient:	Rice Operating Co.
ate/Time:	05-18-06 6 1200
rder #:	6E18013

JMM

itials:

Sample Receipt Checklist

mperature of container/cooler?	Yes No	
hipping container/cooler in good condition?	(ES NO	
stody Seals intact on shipping container/cooler?	(es) No	Not present
Istody Seals intact on sample bottles?	(Yes) No	Not present
nain of custody present?	(Yes) No	
imple Instructions complete on Chain of Custody?	(es) No	
hain of Custody signed when relinquished and received?	(es) No	
rain of custody agrees with sample label(s)	(ES) NO	
ontainer labels legible and intact?	YES NO	
imple Matrix and properties same as on chain of custody?	YESN NO	
imoles in proper container/bottle?	YES NO	
imples properly preserved?	YESSI NO	
ample bottles intact?	YES NO	······································
eservations documented on Chain of Custody?	YES) No	
ontainers documented on Chain of Custody?	(res) No	
ifficient sample amount for indicated test?	Res) No	
I samples received within sufficient hold time?	MES NO	
DC samples have zero headspace?	(Yes) No	Not Applicable

the Coservations:

Variance Documentation:

entact Person: -_____ Date/Time: _____ Contacted by: _____ egarding: orrective Action Taken:

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME P-6 Leak Project Number: None Given Location: T20S-R37E-Sec6P, Lea Co., NM

Lab Order Number: 6H25012

Report Date: 09/05/06

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

Project: EME P-6 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6H25012-01	Water	08/23/06 14:10	08-25-2006 15:22
Monitor Well #2	6H25012-02	Water	08/23/06 09:15	08-25-2006 15:22
Monitor Well #3	6H25012-03	Water	08/23/06 12:55	08-25-2006 15:22
Monitor Well #4	6H25012-04	Water	08/23/06 11:20	08-25-2006 15:22

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prenared	Analyzed	Method	Notes
Monitor Well #3 (6H25012-03) Water							Analyzed		
Benzene	ND	0.00100	mg/L	1	EH62520	08/25/06	08/28/06	EPA 8021B	
Toluene	ND	0.00100		11	"	"	"	ч	
Ethylbenzene	ND	0.00100	"	"	"	11	"	51	
Xylene (p/m)	ND	0.00100	"	"	"	"	"		
Xylene (o)	ND	0.00100	н	n	"	"	"	н	
Surrogate: a,a,a-Trifluorotoluene		108 %	80-120		п	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.8 %	80-120		"	*	"	"	
Monitor Well #4 (6H25012-04) Water									
Benzene	ND	0.00100	mg/L	1	EH62909	08/29/06	08/29/06	EPA 8021B	
Toluene	ND	0.00100	"	"	"	"	n	н	
Ethylbenzene	ND	0.00100	"	"	"	"	"	31	
Xylene (p/m)	ND	0.00100	11	"		"	"	"	
Xylene (o)	ND	0.00100	"	"		11	"	"	
Surrogate: a,a,a-Trifluorotoluene		97.8 %	80-12	0	"	n	"	"	
rogate: 4-Bromofluorobenzene		86.2 %	80-12	0	"	"	"	"	

Rice Operating Co. 122 W. Taylor lobbs NM, 88240

Project: EME P-6 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6H25012-01) Water									
Total Alkalinity	234	2.00	mg/L	1	EH63106	08/31/06	08/31/06	EPA 310.1M	
Chloride	7370	100	n	200	EH63019	08/28/06	08/28/06	EPA 300.0	
Total Dissolved Solids	12900	10.0	"	1	EH62916	08/28/06	08/30/06	EPA 160.1	
Sulfate	1070	100	"	200	EH63019	08/28/06	08/28/06	EPA 300.0	
Monitor Well #2 (6H25012-02) Water									
Total Alkalinity	258	2.00	mg/L	1	EH63106	08/31/06	08/31/06	EPA 310.1M	
Chloride	5490	100	n	200	EH63019	08/28/06	08/28/06	EPA 300.0	
Total Dissolved Solids	9850	10.0	"	1	EH62916	08/28/06	08/30/06	EPA 160.1	
Sulfate	985	100	n	200	EH63019	08/28/06	08/28/06	EPA 300.0	
Monitor Well #3 (6H25012-03) Water									
Total Alkalinity	230	2.00	mg/L	1	EH63106	08/31/06	08/31/06	EPA 310.1M	
Chloride	8300	100	11	200	EH63019	08/28/06	08/28/06	EPA 300.0	
Total Dissolved Solids	13100	10.0	"	1	EH62916	08/28/06	08/30/06	EPA 160.1	
fate	900	100	11	200	EH63019	08/28/06	08/28/06	EPA 300.0	
Monitor Well #4 (6H25012-04) Water									
Total Alkalinity	240	2.00	mg/L	ì	EH63106	08/31/06	08/31/06	EPA 310.1M	
Chloride	6750	100	"	200	EH63019	08/28/06	08/28/06	EPA 300.0	
Total Dissolved Solids	13400	10.0	"	I	EH62916	08/28/06	08/30/06	EPA 160.1	
Sulfate	1050	100	"	200	EH63019	08/28/06	08/28/06	EPA 300.0	

vironmental Lab of Texas

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting	Units	Dilution	Patab	Dronorod	Anabura	Mathad	Nata
Marian Wall #1 ((1125012.01) Water		Lint		Difution	Balch	Prepared	Analyzed	Method	Notes
Monitor well #1 (6H25012-01) water									
Calcium	1130	40.5	mg/L	500	EH62802	08/28/06	08/28/06	EPA 6010B	
Magnesium	350	1.80	"	50	"	11	"	n	
Potassium	29.8	3.00	"	"	"	11	•	"	
Sodium	2750	43.0	"	1000	"	"	"	"	
Monitor Well #2 (6H25012-02) Water				-					
Calcium	757	40.5	mg/L	500	EH62802	08/28/06	08/28/06	EPA 6010B	
Magnesium	274	1.80	"	50	н	"	11	"	
Potassium	27.5	3.00	n	"		"	"	"	
Sodium	2200	21.5	n	500	Ħ	**	"	n	
Monitor Well #3 (6H25012-03) Water									
Calcium	1280	40.5	mg/L	500	EH62802	08/28/06	08/28/06	EPA 6010B	
Magnesium	374	1.80	11	50	"	"	"	**	
Potassium	31.5	3.00	11		11	"	"	"	
dium	3000	21.5	"	500	"	*1	17	11	
Monitor Well #4 (6H25012-04) Water									
Calcium	1080	40.5	mg/L	500	EH62802	08/28/06	08/28/06	EPA 6010B	
Magnesium	312	1.80		50		'n			
Potassium	27.6	3.00		"	"	"	"	"	
Sodium	2700	21.5	"	500		"	"		

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH62520 - EPA 5030C (GC)

Blank (EH62520-BLK1)				Prepared: 08	8/25/06 A	nalyzed: 08	2/28/06	
Benzene	ND	0.00100	mg/L					
Toluene	ND	0.00100	"					
Ethylbenzene	ND	0.00100	"					
Xylene (p/m)	ND	0.00100	w					
Xytene (o)	ND	0.00100	"					
Surrogate: a,a,a-Trifluorotoluene	42.0		ug/l	40.0		105	80-120	
Surrogate: 4-Bromofluorobenzene	43.1		"	40.0		108	80-120	
LCS (EH62520-BS1)				Prepared: 08	8/25/06 A	nalyzed: 08	8/28/06	
Benzene	0.0508	0.00100	mg/L	0.0500		102	80-120	·····
Toluene	0.0533	0.00100	"	0.0500		107	80-120	
Ethylbenzene	0.0539	0.00100	"	0.0500		108	80-120	
Xylene (p/m)	0.120	0.00100	и	0.100		120	80-120	
Xylene (0)	0.0559	0.00100	"	0.0500		112	80-120	
Surrogate: a,a,a-Trifluorotoluene	43.0		ug/l	40.0		108	80-120	
Surrogate: 4-Bromofluorobenzene	46.7		"	40.0		117	80-120	
libration Check (EH62520-CCV1)				Prepared &	Analyzed	08/25/06		
zene	45.2		ug/l	50.0		90.4	80-120	
Toluene	48.4		"	50.0		96.8	80-120	
Ethylbenzene	52.4		"	50.0		105	80-120	
Xylene (p/m)	109		"	100		109	80-120	
Xylene (o)	54.1		"	50.0		108	80-120	
Surrogate: a,a,a-Trifluorotoluene	41.9		"	40.0		105	80-120	
Surrogate: 4-Bromofluorobenzene	38.5		"	40.0		96.2	80-120	
Matrix Spike (EH62520-MS1)	Sour	ce: 6H23008-	01	Prepared &	Analyzed:	08/25/06		
Benzene	0.0517	0.00100	mg/L	0.0500	ND	103	80-120	
Toluene	0.0561	0.00100	и	0.0500	ND	112	80-120	
Ethylbenzene	0.0509	0.00100	"	0.0500	ND	102	80-120	
Xylene (p/m)	0.118	0.00100	11	0.100	ND	118	80-120	
Xylene (0)	0.0546	0.00100	w	0.0500	ND	109	80-120	
Surrogate: a,a,a-Trifluorotoluene	47.5		ug/l	40.0		119	80-120	
Surrogate: 4-Bromofluorobenzene	47.0		"	40.0		118	80-120	

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	 Result	Limit	Units	Levei	Result	%REC	Limits	RPD	Limit	Notes

Batch EH62520 - EPA 5030C (GC)

Matrix Spike Dup (EH62520-MSD1)	Sou	rce: 6H23008-	-01	Prepared & Analyzed: 08/25/06						
Benzene	0.0542	0.00100	mg/L	0.0500	ND	108	80-120	4.74	20	
Toluene	0.0563	0.00100		0.0500	ND	113	80-120	0.889	20	
Ethylbenzen¢	0.0539	0.00100		0.0500	ND	108	80-120	5.71	20	
Xylene (p/m)	0.106	0.00100		0.100	ND	106	80-120	10.7	20	
Xylene (0)	0.0525	0.00100	n	0.0500	ND	105	80-120	3.74	20	
Surrogate: a,a,a-Trifluorotoluene	45.9		ug/l	40.0		115	80-120			
Surrogate: 4-Bromofluorobenzene	45.3		"	40.0		113	80-120			

Batch EH62909 - EPA 5030C (GC)

Blank (EH62909-BLK1)				Prepared & Anal	yzed: 08/29/06		
Benzene	ND	0.00100	mg/L				
Toluene	ND	0.00100	н.				
Ethylbenzene	ND	0.00100	"				
Xylene (p/m)	ND	0.00100	"				
Xylene (0)	ND	0.00100	"				
Surrogate: a,a,a-Trifluorotoluene	42.1		ug/l	40.0	105	80-120	
rogate: 4-Bromofluorobenzene	32.7		"	40.0	81.8	80-120	
LCS (EH62909-BS1)				Prepared & Anal	yzed: 08/29/06		
Benzene	0.0499	0.00100	mg/L	0.0500	99.8	80-120	
Toluene	0.0528	0.00100	"	0.0500	106	80-120	
Ethylbenzene	0.0490	0.00100	"	0.0500	98.0	80-120	
Xylene (p/m)	0.113	0.00100	n	0.100	113	80-120	
Xylene (o)	0.0530	0.00100	"	0.0500	106	80-120	
Surrogate: a,a,a-Trifluorotoluene	43.9		ug/l	40.0	110	80-120	 _
Surrogate: 4-Bromofluorobenzene	46.1		"	40.0	115	80-120	

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH62909 - EPA 5030C (GC)

Calibration Check (EH62909-CCV1)				Prepared &	Analyzed	: 08/29/06	
Benzene	52.7		ug/l	50.0		105	80-120
Toluene	56.2		"	50,0		112	80-120
Ethylbenzene	55.8		"	50.0		112	80-120
Xylene (p/m)	115		"	100		115	80-120
Xylene (0)	57.3		"	50.0		115	80-120
Surrogate: a,a,a-Trifluorotoluene	44.7		"	40.0		112	80-120
Surrogate: 4-Bromofluorobenzene	46.4		"	40.0		116	80-120
Matrix Spike (EH62909-MS1)	Sou	rce: 6H25012-	-04	Prepared: 0	8/29/06 A	nalyzed: 0	3/30/06
Benzene	0.0489	0.00100	mg/L	0.0500	ND	97.8	80-120
Toluene	0.0506	0.00100	п	0.0500	ND	101	80-120
Ethylbenzene	0.0510	0.00100	"	0.0500	ND	102	80-120
Xylene (p/m)	0.117	0.00100	11	0.100	ND	117	80-120
Xylene (o)	0.0538	0.00100	"	0.0500	ND	108	80-120
Surrogate: a,a,a-Trifluorotoluene	45.7		ug/l	40.0		114	80-120
Surrogate: 4-Bromofluorobenzene	47.4		"	40.0		118	80-120

atrix Spike Dup (EH62909-MSD1)	Source: 6H25012-04			Prepared: 0	nalyzed: 0					
senzene	0.0472	0.00100	mg/L	0.0500	ND	94.4	80-120	3.54	20	
Toluene	0.0489	0.00100	н	0.0500	ND	97.8	80-120	3.22	20	
Ethylbenzene	0.0471	0.00100	u	0.0500	ND	94.2	80-120	7.95	20	
Xylene (p/m)	0.107	0.00100	н	0.100	ND	107	80-120	8.93	20	
Xylene (o)	0.0500	0.00100	н	0.0500	ND	100	80-120	7.69	20	
Surrogate: a,a,a-Trifluorotoluene	41.2		ug/l	40.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	44.1		"	40.0		110	80-120			

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH62916 - Filtration Preparation										
Blank (EH62916-BLK1)				Prepared: (08/28/06 A	nalyzed: 08	3/29/06			
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EH62916-DUP1)	Sour	ce: 6H25010-	-01	Prepared: (08/28/06 A	nalyzed: 08	8/29/06			
Total Dissolved Solids	2480	10.0	mg/L		2580			3.95	5	
Duplicate (EH62916-DUP2)	Sour	ce: 6H25013-	-01	Prepared: (08/28/06 A	nalyzed: 08	8/29/06			
Total Dissolved Solids	1350	10.0	mg/L		1400			3.64	5	
Batch EH63019 - General Preparation (W	etChem)									
Blank (EH63019-BLK1)				Prepared &	& Analyzed	08/28/06				
Sulfate	ND	0.500	mg/L							
Chloride	ND	0.500	н							
LCS (EH63019-BS1)				Prepared &	& Analyzed:	08/28/06				
Chloride	10.2	0,500	mg/L	10.0		102	80-120			
Sulfate	10.1	0.500	"	10.0		101	80-120			
Calibration Check (EH63019-CCV1)				Prepared &	& Analyzed:	08/28/06				
fate	12.0		mg/L	10.0		120	80-120			
oride	9.87		"	10.0		98.7	80-120			
Duplicate (EH63019-DUP1)	Sour	ce: 6H24003	-01	Prepared &	& Analyzed:	08/28/06				
Sulfate	225	5.00	mg/L		227			0.885	20	
Chloride	94.7	5.00	"		102			7.42	20	
Duplicate (EH63019-DUP2)	Sour	ce: 6H25013-	-01	Prepared &	& Analyzed:	08/28/06				
Sulfate	40.5	10.0	mg/L		40.9			0.983	20	
Chloride	420	10.0	11		418			0.477	20	

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH63019 - General Preparati	on (WetChem)									
Matrix Spike (EH63019-MS1)	Sour	ce: 6H24003-	01	Prepared &	Analyzed:	08/28/06				
Sulfate	338	5.00	mg/L	100	227	111	75-125			
Chłoride	204	5.00	11	100	102	102	80-120			
Matrix Spike (EH63019-MS2)	Sour	ce: 6H25013-	-01	Prepared &	Analyzed:	08/28/06				
Sulfate	239	10.0	mg/L	200	40.9	99.0	75-125			
Chloride	645	10.0	11	200	418	114	80-120			
Batch EH63106 - General Preparation	on (WetChem)									
Riank (FH63106-RLK1)				Durana de	Analyzad	08/31/06				
Stallk (EITOSTOO-DEIKT)				Prepared &	. Milalyzeu.	00/31/00				
Total Alkalinity	ND	2.00	mg/L	Prepared &	. Analyzeu.	08/31/00				
Total Alkalinity LCS (EH63106-BS1)	ND	2.00	mg/L	Prepared &	: Analyzed:	08/31/06				
Total Alkalinity LCS (EH63106-BS1) Bicarbonate Alkalinity	ND 190	2.00	mg/L mg/L	Prepared & 200	Analyzed:	08/31/06 95.0	85-115			
Total Alkalinity LCS (EH63106-BS1) Bicarbonate Alkalinity Duplicate (EH63106-DUP1)	ND 190 Sour	2.00 2.00 ce: 6H24003-	mg/L mg/L •01	Prepared & 200 Prepared &	Analyzed: Analyzed:	08/31/06 95.0 08/31/06	85-115			
Total Alkalinity LCS (EH63106-BS1) Bicarbonate Alkalinity Duplicate (EH63106-DUP1) Total Alkalinity	ND 190 <u>Sour</u> 150	2.00 2.00 ce: 6H24003 - 2.00	mg/L mg/L 01 mg/L	Prepared & 200 Prepared &	Analyzed: Analyzed: Analyzed: 156	08/31/06 95.0 08/31/06	85-115	3.92	20	
Total Alkalinity LCS (EH63106-BS1) Bicarbonate Alkalinity Duplicate (EH63106-DUP1) Total Alkalinity Reference (EH63106-SRM1)	ND 190 Sour 150	2.00 2.00 ce: 6H24003 - 2.00	mg/L mg/L 01 mg/L	Prepared & 200 Prepared & Prepared &	: Analyzed: : Analyzed: 156 : Analyzed:	08/31/06 95.0 08/31/06 08/31/06	85-115	3.92	20	

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

										_
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH62802 - 6010B/No Digestion

Blank (EH62802-BLK1)				Prepared & Analy	zed: 08/28/06				
Calcium	ND	0.0810	mg/L	<u>_</u>					
Magnesium	ND	0.0360							
Potassium	ND	0.0600	"						
Sodium	ND	0.0430	"						
Calibration Check (EH62802-CCV1)				Prepared & Analy	zed: 08/28/06				
Calcium	1.97		mg/L	2.00	98.5	85-115			
Magnesium	2.13		"	2.00	106	85-115			
Potassium	1.74		"	2.00	87.0	85-115			
Sodium	1.84		"	2.00	92.0	85-115			
Duplicate (EH62802-DUP1)	Sourc	ce: 6H25010-	-01	Prepared & Analy	zed: 08/28/06				
Calcium	267	4.05	mg/L	25	1		6.18	20	
Magnesium	81.9	1.80	"	77.	6		5,39	20	
Potassium	7.20	0.600	11	7.7	6		7.49	20	
Sodium	396	2.15	"	409	9		3.23	20	

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Raland K Junis

9/5

9/5/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Report Approved By:

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

vironmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

1

RD AND ANAL YSIS REQUEST	EME P-6 Leak		T20S-R37E-Sec6P, Lea County NM				Analyze For:		(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	ь ь - 20 рец 2011 2011 20 20 20 20 20 20 20 20 20 20 20 20 20	((rice) (rice) (X X X X X X X X X X X X X X X X X X X		x x x x				Sample Containers Intact? N Labels on container? On N Contron: Saals Containers / Conta	Temperature Upon Receipt:	Time Laboratory Comments: No++rrD2CS	13:11	Time. /5.22
CHAIN OF CUSTODY RECO	Project Name:	Project Number:	Project Loc:	PO Number:	471			servative I Matrix		HD6E	Soil Sludge Marter Mart		1 X	1 X	- -				ks@riceswd.com		Date	8:25-06	Date 8-25-00
ø					× No: (505) 397-14			Pres		SIBI SIBI	No. of Contain Ice HCI (2) 40 m gl	0 1 X	5 1 X	5 3 X 2	2 3 X 2				swd.com; mfran		•	nee the man	70
	griceswd.com				ъ Ч	310	C C	HAND -		q	9iqmeS əfeQ ƏfqmeS əmiT	8/23/2006 14:1	8/23/2006 9:1	8/23/2006. 12:5	8/23/2006 11:2				3 TO: kpope@rices	110	Received by:	James Johnson Jam	Received by FLOV
DOFTEXAS Phone: 432-563-1800 Fax: 432-563-1713	ris Pope kpope@	rating Company	ylor Street	ew Mexico 88240	9174	Johnson (505) 631-9	valornet.com	t.		7	a C C C								SE Email RESULTS	rozanne(<u>o</u> valornel. <u>c</u>	Date Time	8-25-04 13:10	Pate Time
commental Lat tt 1-20 East *xas 79765	Project Manager: Kristin Far.	Company Name RICE Oper	ompany Address: 122 W. Ta	city/State/Zip: Hobbs, Ne	Telephone No: (505) 393-	ampler Signature: Rozanne J	Emaii: <u>rozanne@</u>			27		A Monitor Well #1	DC Monitor Well #2	202 Monitor Well #3	Monitor Well #4				structions: PLEA	7	d by:	itnsoot	ro when 22
T M Messa, Ti Odessa, Ti			U			Ø	·				ડ્યુ કુ								Special In		Relinquishe	Rozanne Ju	Relinquishe

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

c 👘 :	Bice Operating	
Date/ Time:	08-25-06 @ 1522	<u> </u>
Lab ID # :	6425012	
Initials:	JMM	

Sample Receipt Checklist

	· · · · · ·		•	Client Ir	nitials
#1	Temperature of container/ cooler?	(Yes)	No	1.0 °C	
#2	Shipping container in good condition?	Yes	No		
#3	Custody Seals intact on shipping container/ cooler?	(res)	No	Not Present	
#4	Custody Seals intact on sample bottles/ container?	(Yes)	No	Not Present	
#5	Chain of Custody present?	(Yes)	No		
#6	Sample instructions complete of Chain of Custody?	(Yes)	No		_
#7	Chain of Custody signed when relinquished/ received?	(rest)	No		
#8	Chain of Custody agrees with sample label(s)?	(Yes)	No	ID written on Cont./ Lid	
#9	Container label(s) legible and intact?	(Yes)	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	(Yes)	No		
#11	Containers supplied by ELOT?	(Yes)	No		
#12	Samples in proper container/ bottle?	(Yes)	No	See Below	
#13	Samples properly preserved?	Ves	No	See Below	
#14	Sample bottles intact?	(Yes)	No		
#15	Preservations documented on Chain of Custody?	(Yes)	No		
#1	Containers documented on Chain of Custody?	(Tés)	No		
#17	Sufficient sample amount for indicated test(s)?	(Yes)	No	See Below	
#18	All samples received within sufficient hold time?	(Yes)	No	See Below	
#19	VOC samples have zero headspace?	Yes	No	Not Applicable	

Variance Documentation

Contact:	 Contacted by:	Date/ Time:
Regarding:	<u> </u>	
Corrective Action Taken:		· · · ·
Check all that Apply:	See attached e-mail/ fax Client understands and would like Cooling process had begun short	e to proceed with analysis ly after sampling event
	,	

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME P-6 Leak Project Number: None Given Location: T20S R37E Sec.6 P- Lea County, NM

Lab Order Number: 6K15001

Report Date: 12/01/06

Rice Operating Co.Project:EME P-6 LeakFax: (505) 397-1471122 W. TaylorProject Number:None Givenlobbs NM, 88240Project Manager:Kristin Farris-Pope

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6K15001-01	Water	11/09/06 12:30	11-15-2006 08:10
Monitor Well #2	6K15001-02	Water	11/09/06 09:40	11-15-2006 08:10
Monitor Well #3	6K15001-03	Water	11/09/06 10:35	11-15-2006 08:10
Monitor Well #4	6K15001-04	Water	11/09/06 11:40	11-15-2006 08:10

Organics by GC

Environmental Lab of Texas

A	Dogult	Reporting	Tinita						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #3 (6K15001-03) Water									
Benzene	0.0132	0.00100	mg/L	1	EK61614	11/16/06	11/20/06	EPA 8021B	
Toluene	0.00108	0.00100	"	"	"	"	11	"	
Ethylbenzene	0.00331	0.00100	"	"	"	"	"	**	
Xylene (p/m)	ND	0.00100	11	"	"	11	"	"	
Xylene (0)	ND	0.00100	"	"	"	11	"	n	
Surrogate: a,a,a-Trifluorotoluene		112 %	80-12	0	"	n	"	n	
Surrogate: 4-Bromofluorobenzene		87.0 %	80-12	0	"	"	"	"	
Monitor Well #4 (6K15001-04) Water									
Benzene	ND	0.00100	mg/L	1	EK61614	11/16/06	11/19/06	EPA 8021B	
Toluene	ND	0.00100	"	"	"	"	"	"	
Ethylbenzene	ND	0.00100	**	"	"	"	и	"	
Xylene (p/m)	ND	0.00100	"	"	"	n	"	"	
Xylene (0)	ND	0.00100		n	"	11	"	"	
Surrogate: a,a,a-Trifluorotoluene		104 %	80-12	0	"	"	"	п	
rogate: 4-Bromofluorobenzene		83.2 %	80-12	0	"	"	"	"	

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		Penorting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6K15001-01) Water									
Total Alkalinity	238	2.00	mg/L	1	EK61605	11/17/06	11/17/06	EPA 310.1M	
Chloride	6700	100	н	200	EK61507	11/15/06	11/15/06	EPA 300.0	
Total Dissolved Solids	13200	10.0	н	1	EK61611	11/15/06	11/16/06	EPA 160.1	
Sulfate	979	100	"	200	EK61507	11/15/06	11/15/06	EPA 300.0	
Monitor Well #2 (6K15001-02) Water									
Total Alkalinity	262	2.00	mg/L	1	EK61605	11/17/06	11/17/06	EPA 310.1M	
Chloride	4860	100	"	200	EK61507	11/15/06	11/15/06	EPA 300.0	
Total Dissolved Solids	9670	10.0	"	1	EK61611	11/15/06	11/16/06	EPA 160.1	
Sulfate	795	100	"	200	EK61507	11/15/06	11/15/06	EPA 300.0	
Monitor Well #3 (6K15001-03) Water									
Total Alkalinity	244	2.00	mg/L	1	EK61605	11/17/06	11/17/06	EPA 310.1M	
Chloride	7520	100	**	200	EK61507	11/15/06	11/15/06	EPA 300.0	
Total Dissolved Solids	14100	10.0	"	1	EK61611	11/15/06	11/16/06	EPA 160.1	
lfate	821	100	'n	200	EK61507	11/15/06	11/15/06	EPA 300.0	
Monitor Well #4 (6K15001-04) Water									
Total Alkalinity	246	2.00	mg/L	1	EK61605	11/17/06	11/17/06	EPA 310.1M	
Chloride	6070	100	"	200	EK61507	11/15/06	11/15/06	EPA 300.0	
Total Dissolved Solids	11900	10.0	"	1	EK61611	11/15/06	11/16/06	EPA 160.1	
Sulfate	1080	100	4	200	EK61507	11/15/06	11/15/06	EPA 300.0	

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6K15001-01) Water									
Calcium	1340	40.5	mg/L	500	EK61703	11/17/06	11/17/06	EPA 6010B	
Magnesium	461	3.60	"	100		n	**	**	
Potassium	53.2	0.600	"	10	**	"	"		
Sodium	3100	21.5	"	500	"		"	"	
Monitor Well #2 (6K15001-02) Water									
Calcium	1000	8.10	mg/L	100	EK61703	11/17/06	11/17/06	EPA 6010B	
Magnesium	364	3.60	"			и	11	"	
Potassium	44.2	0.600	"	10	н	"	"	"	
Sodium	2360	21.5	"	500	"	"	"	"	
Monitor Well #3 (6K15001-03) Water									
Calcium	1780	40.5	mg/L	500	EK61703	11/17/06	11/17/06	EPA 6010B	
Magnesium	563	3.60	"	100	"		u	"	
Potassium	53.1	0.600	11	10	"	"	"	n	
Sodium	3640	21.5	11	500	"	17	"	и	
Monitor Well #4 (6K15001-04) Water									
Calcium	1380	40.5	mg/L	500	EK61703	11/17/06	11/17/06	EPA 6010B	
Magnesium	528	3.60	"	100	n	"	"	"	
Potassium	52.1	0.600	"	10	n	"	"	n	
Sodium	3200	21.5	"	500	"	н	н	"	

vironmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EK61614 - EPA 5030C (GC)							
Blank (EK61614-BLK1)				Prepared: 11/16	6/06 Analyzed: 11	1/17/06	
Benzene	ND	0,00100	mg/L				
Toluene	ND	0.00100	13				
Ethylbenzene	ND	0.00100	"				
Xylene (p/m)	ND	0.00100	"				
Xylene (0)	ND	0.00100	"				
Surrogate: a,a,a-Trifluorotoluene	47.8		ug/l	40.0	120	80-120	
Surrogate: 4-Bromofluorobenzene	40.5		"	40.0	101	80-120	
LCS (EK61614-BS1)				Prepared: 11/16	5/06 Analyzed: 11	/17/06	
Benzene	0.0594	0.00100	mg/L	0.0500	119	80-120	
Toluene	0.0562	0.00100	"	0.0500	112	80-120	
Ethylbenzene	0.0458	0.00100	"	0.0500	91.6	80-120	
Xylene (p/m)	0.0949	0.00100	"	0.100	94.9	80-120	
Xylene (o)	0.0499	0.00100	"	0.0500	99.8	80-120	
Surrogate: a,a,a-Trifluorotoluene	46.1		ug/l	40.0	115	80-120	
Surrogate: 4-Bromofluorobenzene	44.2		"	40.0	110	80-120	
ibration Check (EK61614-CCV1)				Prepared: 11/16	5/06 Analyzed: 11	1/20/06	
Benzene	54.7		ug/l	50.0	109	80-120	
Toluene	48.5		"	50.0	97.0	80-120	
Ethylbenzene	42.1		"	50.0	84.2	80-120	
Xylene (p/m)	83.0		"	100	83.0	80-120	
Xylene (o)	43.3		11	50.0	86.6	80-120	
Surrogate: a,a,a-Trifluorotoluene	4].4		"	40.0	104	80-120	
Surrogate: 4-Bromofluorobenzene	37.0		"	40.0	92.5	80-120	
Matrix Spike (EK61614-MS1)	Sou	rce: 6K13007-	-01	Prepared: 11/16	i/06 Analyzed: 11	/17/06	
Benzene	0.0551	0.00100	mg/L	0.0500	110	80-120	
Toluene	0.0498	0.00100	"	0.0500	99.6	80-120	
Ethylbenzene	0.0401	0,00100	"	0.0500	80.2	80-120	
Xylene (p/m)	0.0844	0.00100	"	0.100	84.4	80-120	
Xylene (o)	0.0442	0.00100	11	0.0500	88.4	80-120	
Surrogate: a,a,a-Trifluorotoluene	41.1		ug/l	40.0	103	80-120	
Surrogate: 4-Bromofluorobenzene	42.4		"	40.0	106	80-120	

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EK61614 - EPA 5030C (GC)

Matrix Spike Dup (EK61614-MSD1)	Sou	rce: 6K13007-	-01	Prepared: 11/16/0	6 Analyzed: 1	1/17/06	r		
Benzene	0.0580	0.00100	mg/L	0.0500	116	80-120	5.31	20	
Toluene	0.0550	0.00100	"	0.0500	110	80-120	9.92	20	
Ethylbenzene	0.0421	0.00100	n	0.0500	84.2	80-120	4.87	20	
Xylene (p/m)	0.0909	0.00100	"	0.100	90.9	80-120	7.42	20	
Xylene (0)	0.0455	0.00100	"	0.0500	91.0	80-120	2.90	20	
Surrogate: a,a,a-Trifluorotoluene	46.3		ug/l	40.0	116	80-120			
Surrogate: 4-Bromofluorobenzene	42.0		"	40.0	105	80-120			

Environmental Lab of Texas

\		Reporting		Spike	Source		%PEC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK61507 - General Preparation (WetChem)									
Blank (EK61507-BLK1)				Prepared &	Analyzed:	11/15/06				
Sulfate	0.579	0.500	mg/L							
Chloride	ND	0.500	n							
LCS (EK61507-BS1)				Prepared &	Analyzed:	11/15/06				
Sulfate	10.9	0.500	mg/L	10.0		109	80-120	·		
Chloride	11.1	0.500	'n	10.0		111	80-120			
Calibration Check (EK61507-CCV1)				Prepared &	Analyzed:	11/15/06				
Chloride	10.7		mg/L	10.0		107	80-120			
Sulfate	12.0		"	10.0		120	80-120			
Duplicate (EK61507-DUP1)	Sou	rce: 6K15004	-01	Prepared &	Analyzed:	11/15/06				
Sulfate	79.9	5.00	mg/L		79.8			0.125	20	
Chloride	232	5.00	"		234			0.858	20	
Duplicate (EK61507-DUP2)	Sou	rce: 6K15006	-07	Prepared &	Analyzed:	11/15/06				
Sulfate	78.2	5.00	mg/L		78.1			0.128	20	
Chloride	37.9	5.00	"		43.7			14.2	20	
rix Spike (EK61507-MS1)	Sou	rce: 6K15004	-01	Prepared &	Analyzed:	11/15/06				
Chloride	345	5.00	mg/L	100	234	111	80-120			
Sulfate	175	5.00	11	100	79.8	95.2	80-120			
Matrix Spike (EK61507-MS2)	Sou	rce: 6K15006-	-07	Prepared &	Analyzed:	11/15/06				
Chloride	142	5.00	mg/L	100	43.7	98.3	80-120			
Sulfate	175	5.00	п	100	78.1	96.9	80-120	•		

Rice Operating Co.	
122 W. Taylor	
Nobbs NM, 88240	

Environmental Lab of Texas

		Reporting		Snike	Source		%PEC			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK61605 - General Preparation (W	/etChem)									
Blank (EK61605-BLK1)				Prepared &	Analyzed:	11/17/06			_	
Total Alkalinity	ND	2.00	mg/L							
Blank (EK61605-BLK2)	Prepared & Analyzed: 11/17/06									
Total Alkalinity	ND	2.00	mg/L							
LCS (EK61605-BS1)				Prepared &	z Analyzed:	11/17/06				
Bicarbonate Alkalinity	172		mg/L	200		86.0	85-115			
LCS (EK61605-BS2)				Prepared &	z Analyzed:	11/17/06				
Bicarbonate Alkalinity	172		mg/L	200		86.0	85-115		·	
Hydroxide Alkalinity	0.00	0,100	"				85-115			
Duplicate (EK61605-DUP1)	Sou	rce: 6K15001-	-01	Prepared &	Analyzed:	11/17/06				
Total Alkalinity	238	2.00	mg/L		238			0.00	20	
Carbonate Alkalinity	0.00	0.100	"		0.00				20	
Bicarbonate Alkalinity	0.00	2,00	"		0.00				20	
Hydroxide Alkalinity	0.00	0.100	"		0.00				20	
Duplicate (EK61605-DUP2)	Sou	rce: 6K16005-	-01	Prepared &	Analyzed:	11/17/06				
Alkalinity	296	2.00	mg/L		300			1.34	20	
Carbonate Alkalinity	0.00	0.100	н		0.00				20	
Bicarbonate Alkalinity	0.00	2.00	"		300				20	
Hydroxide Alkalinity	0.00	0.100	"		0.00				20	
Reference (EK61605-SRM1)				Prepared &	z Analyzed:	11/17/06				
Total Alkalinity	238		mg/L	250		95.2	90-110			
Reference (EK61605-SRM2)				Prepared &	Analyzed:	11/1 7 /06				
Total Alkalinity	238		mg/L	250		95.2	90-110			

Environmental Lab of Texas

		Reporting		Snike	Source	<u></u>	%PEC			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK61611 - Filtration Preparation										
Blank (EK61611-BLK1)				Prepared:	11/15/06 A	nalyzed: 11	/16/06			
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EK61611-DUP1)	Sour	ce: 6K15001-	-01	Prepared:	11/15/06 A	nalyzed: 11	/16/06			
Total Dissolved Solids	14000	10.0	mg/L		13200			5.88	5	QR-0.
Duplicate (EK61611-DUP2)	Sour	ce: 6K15005-	-03	Prepared:	11/15/06 A	nalyzed: 11	/16/06			
Total Dissolved Solids	586	10.0	mg/L		622			5.96	5	QR-03

Rice Operating Co.	Project:	EME P-6 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	
lobbs NM, 88240	Project Manager:	Kristin Farris-Pope	

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK61611 - Filtration Preparation										
Blank (EK61611-BLK1)				Prepared:	11/15/06 A	nalyzed: 11	/16/06			
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EK61611-DUP1)	Sour	ce: 6K15001	-01	Prepared:	11/15/06 A	nalyzed: 11	/16/06			
Total Dissolved Solids	14000	10.0	mg/L		13200			5.88	5	QR-03
Duplicate (EK61611-DUP2)	Sour	ce: 6K15005	-03	Prepared:	11/15/06 A	nalyzed: 11	/16/06			
Total Dissolved Solids	586	10.0	me/L		622			5.96	5	OR-03

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

, ,		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EK61703 - 6010B/No Digestion

Blank (EK61703-BLK1)				Prepared & Analy	zed: 11/17/06				
Calcium	ND	0.0810	mg/L						
Magnesium	ND	0.0360							
Potassium	ND	0.0600							
Sodium	ND	0.0430	"						
Calibration Check (EK61703-CCV1)				Prepared & Analy	zed: 11/17/06				
Calcium	2.17		mg/L	2.00	108	85-115			
Magnesium	2.21		"	2.00	110	85-115			
Potassium	1.74			2.00	87.0	85-115			
Sodium	1.88		"	2.00	94.0	85-115			
Duplicate (EK61703-DUP1)	Sou	rce: 6K15001-	01	Prepared & Analy	zed: 11/17/06				
Calcium	1300	40.5	mg/L	134	0		3.03	20	
Magnesium	461	3.60	"	461	l		0.00	20	
Potassium	55.7	0.600	"	53.2	2		4.59	20	
Sodium	2890	21.5		310	0		7.01	20	

OP 02

Notes and Definitions

QK-03	accepted based on LCS and/or LCSD recovery and/or RPD values.
В	Analyte is found in the associated blank as well as in the sample (CLP B-flag).
DET	Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

0 .1

- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K Just Date:

e: _____

12/1/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

vironmental Lab of Texas

				8		JES	Г		32 hrs	16) 54' 48'	ITAT (Pre-Schedu TAT big	Rush Stand	×	×	×	×				1-	$\left[- \right]$	ZZ	ZZZ	N Star	<u> </u>
		}		v Mexi] NPI	ſ	Τ_																Lone	•.
]		Nev						sbi	og bevlossig	1sto7	$\overline{\times}$	×	×	×	\neg	\rightarrow			┟┈┥	Ś	696) T	e En≪(⊛)	LA.
	800 713		Ĩ	Court		RP					.M.	.я.о.и													0
ب	563-1 563-1	놂	ł	fea		4			< 0		10 0209/01209	BCI			×	×		\rightarrow			$\left - \right $		er(s)	ā~	ä
NES	432-i 432-i	9 9		é b					+		Seliteio	Semiv			$\hat{}$	-	-	-+		-+		intis: ntact space	s) ntaine oler(s	I Rep. UPS	Recei
REC	:auo	с Ш		Sec		ard			T	(0	ss (BTEX-N 826	Volatile								1		ners	alher on co on co	Clien	l nod
YSIS	μ μ μ	즲		R37	ļ	tands	ľ		202	3 6H 49 1	CEC : As Ag Ba Cd C	AM6tals	_						-+-		-1	ry Co ontail	cont seals seals	mpley mer?	ure L
NAL				T20S		Å		²	ē-	uity)	(CI, 504, Alkali	anoinA	$\overline{\mathbf{x}}$	×	×	×		+	-+-		\vdash	orato ple C S Fre	no sis ody s tody s	ov Sal	perat
A Q		me:	,# ;;		* *	۔ دی	}			ť	4 , 6M , 9M , 6O) 2	Cation	×	×	×	×						VOC VOC	Cust	Sam	Tem
AA C		t Nar	rojec	ect L	ž	rmat				9001 X	TX 1005 XT	нат											5.	a	
SOR!		rojec	ē.	Proj		rt Fo			89	108 1	19108 1.917	:HdT	_					_		-	╞╼┙		Ë S	L L	
REC		ů,				tepol	ļ		atrix		niko211ia2=2 tetswbruw niko2012 eldszo3	012 = 40 1001 - 40	Ş	Ň	ş	ş						1		┨───	<u>×</u>
δ						<u>u</u> .			×		opula Ster Stage	0,4=D4P	0		U	^O							16 6	122	
JSTC				[- {		εl				(Specify)	Olher												ő	Da 2
ŭ L	وبا بيه					{}	õ		iners	<u> </u>	EPOH nation (()	None	-									~		·	=
O NI	Eas 7976						Jet		f Conta		<u>``</u>	SCON				·		-+				COT	}		
CHA	I-20 Kas					47			o∦ şu	├				-	-		-+		+	+	$\left - \right $	net			:
Ŭ	Vest , Tej			[1	8		servetic		ein 20216 im 04 (i	HCI (5			2	2	-1		-+-		$\left\{-\right\}$	/aloi	Ι ι	İ	(
	V OOX			1		39	<u>e</u>		, a			^{\$} ONH		_	•			-†		1-		ģ			
	126 Od					2	Zar					lce	×	×	×	×						ann	5		
						2	안			<u> </u>	ersontainers	.# leto7		~	<u>е</u>	0						20	à	1	
		[ļ			ä	<u></u>	,			hered	Field Fi			:	·		<u> </u>		+	$\left - \right $		- Co		1 da
)	mo				Z Fax Nc	e-mai				belqms2 (əmiT	12:30	9:40	10:35	11:40						swd.com	a her		1000
		e@riceswd.c				4	V V		À		balqmeS	əleÜ	11/9/2006	11/9/2006	11/9/2006	11/9/2006						mfranks@rice	Received by: James approved	Received by:	Received by ELOI
		ğ	2		0	1	\neg	17		Б	unden b	nibr∃	·]		-	'							ຼິງ	0	
Sexé		X	ompan	let	0 8824		1-9310				dtqaQ gnin	nīgə8		,								com	20, C	0. 2, [D	1 1 1 1 1 1 1 1
o of T		arris Pope	oerating C	Taylor Stre	New Mexic	13-9174	hnson (505)63															oe@riceswd	Date 11/14/00	11/15/00	Date
3		Kristin F	RICE O	122 W.	Hobbs, I	(505) 39	Rozanne Jo					LD CODE			. :							iil to: kpo	Δ.	reer	
ment		Manager:	y Name	y Address;	e/Zip:	ne No:	Signature		×15.00			FIE	Well #1	Well #2	Well #3	Well #4						ls: 'lease ema		- Alm	
Lon M		Project I	Compan	Compar	City/Stat	Telepho	Sampler	only)	R #: ()				Monitor	Monitor	Monitor	Monitor						Instruction	shed by: Johnson	shed by:	shed by:
ЦЦ ЦЦ								(lab use	ORDE		yino əsu dal)	# 8V I	2	Þ	Ø	à						Special	Rente	Relinguit	Belinquit
							*		. '	• • •		*		ŝ	,		÷	• .:							

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

iente ate/ rime:	11/15/06 8:10
ab (D # :	(0K1506/
itials:	CK

Sample Receipt Checklist

		_	C	lient Initials
Temperature of container/ cooler?	Yes	No	0,5 °C]
Shipping container in good condition?	Xes	No		
Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
Custody Seals intact on sample bottles/ container?	Xes	No	Not Present	
Chain of Custody present?	Yes	No		
Sample instructions complete of Chain of Custody?	Yes	No		
Chain of Custody signed when relinquished/ received?	Yes	No		
Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid	
Container label(s) legible and intact?	Yes	No	Not Applicable	
0 Sample matrix/ properties agree with Chain of Custody?	Yeş	No		
1 Containers supplied by ELOT?	Yes	No		
2 Samples in proper container/ bottle?	Yes	No	See Below	
3 Samples properly preserved?	Yes	No	See Below	
Sample bottles intact?	Ves	No		
5 Preservations documented on Chain of Custody?	Yes	No		
5 Containers documented on Chain of Custody?	Yes	No		
Semient sample amount for indicated test(s)?	Yes	No	See Below	
All camples received within sufficient hold time?	Yes	No	See Below	
Subcontract of sample(s)?	Yes	No	Not Applicable	
VOC samples have zero headspace?	Yes	No	Not Applicable	

Variance Documentation

itact:	Contacted by:	Date/ Time:	
arding:			
			s.
ective Action Taken:			
ck all that Apply:	See attached e-mail/ fax Client understands and we Cooling process had begu	ould like to proceed with analysis un shortly after sampling event	

6

ATTACHMENT C

NMOCD Correspondence

From: "Price, Wayne, EMNRD" <wayne.price@state.nm.us>
To: "Gilbert Van Deventer" <gilbertvandeventer@cox.net>
Cc: "Carolyn Haynes" <cdhriceswd@valornet.com>; "Kristin Farris Pope"
<kpope@riceswd.com>
Subject: RE: Suspension of BTEX at certain sites
Date: Friday, May 19, 2006 4:47 PM

OCD hereby approves of the request with the following condition:

 If oil is present, or conditions change that BTEX may be found then the approval is rescinded.
 This approval is included in all reports.

Please be advised that NMOCD approval of this plan does not relieve the owner/operator of Responsibility should their operations fail to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve the owner/operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

From: Gilbert Van Deventer [mailto:gilbertvandeventer@cox.net] Sent: Friday, May 19, 2006 3:33 PM To: Price, Wayne, EMNRD Cc: Carolyn Haynes; Kristin Farris Pope Subject: Re: Suspension of BTEX at certain sites

The constituents of concern are chlorides and TDS.

Gilbert J. Van Deventer, PG, REM, NMCS Trident Environmental Work/Mobile: 432-638-8740 Fax: 413-403-9968 Home: 432-682-0727

----- Original Message -----From: Price, Wayne, EMNRD <mailto:wayne.price@state.nm.us> To: gil@rthicksconsult.com Cc: Carolyn Haynes <mailto:cdhriceswd@valornet.com> ; Kristin Farris Pope <mailto:kpope@riceswd.com> Sent: Friday, May 19, 2006 1:22 PM Subject: RE: Suspension of BTEX at certain sites

What are the constituents of concern?

From: Gil Van Deventer [mailto:gil@rthicksconsult.com] Sent: Friday, April 21, 2006 9:16 AM To: Price, Wayne, EMNRD Cc: Carolyn Haynes; Kristin Farris Pope Subject: Suspension of BTEX at certain sites

Wayne, I just wanted to clarify an issue on some of these Stage 1 and 2 Abatement Plans where we propose suspension of sampling and analyzing for BTEX.

In the NMOCD-approved Stage 1 and 2 Abatement Plan for the EME M-9 SWD site we proposed that "Analysis for BTEX concentrations will be suspended, as each component of BTEX has been below the laboratory method detection limit of 0.001 mg/L since August 22, 2003 (10 consecutive quarters)."

The same goes for the EME P-6 Release site and its two montoring wells. In the approved Stage 1-2 plan we state: "Analysis for BTEX concentrations should be suspended, as there has been no indication of dissolved hydrocarbons since the groundwater monitoring program began in January 2002 (13 consecutive quarters)." My understanding that the local Hobbs Office is also reviewing this abatement plan.

The same situation would apply to the BD J-26 Junction Box site but we are still within the 30-day public comment period and plan approval by OCD will take a little time after that. In the Stage 1-2 abatement plan for J-26 we state that we will do the following:

* Collect depth to water measurements and ground water samples for chloride and TDS analysis from the on site monitoring wells (MW-1, MW-2, MW-3) and area water wells (WW-1, WW-5, WW-8, WW-12, WW-19, WM #138, WM #220, and Wallach #914) on a quarterly frequency.

With the J-26 site we don't specifically state that we will "suspend BTEX analysis" but that is the intention. Each component of BTEX has been below the laboratory method detection limit of 0.001 mg/L at this site since it began in 2002 (15 quarters).

Please confirm if you are in agreement with the suspension of BTEX sampling on any of these sites as we are about to initiate the second quarter sampling.

Thanks, Gil

Gilbert J. Van Deventer

R. T. Hicks Consultants, Ltd.

1909 Brunson Ave, Midland TX 79701-6924

432-638-8740 (Office/Mobile) - 413-403-9968 (Fax) - 432-682-0727 (Home)