<u>GW-</u>5

MONITORING REPORTS

DATE: 2007 to Present

Chavez, Carl J, EMNRD

From:	Mark Larson [Mark@laenvironmental.com]
Sent:	Tuesday, October 19, 2010 6:45 AM
To:	Chavez, Carl J, EMNRD
Cc:	VonGonten, Glenn, EMNRD; Griswold, Jim, EMNRD; Johnson, Larry, EMNRD; Leking,
Subject: Attachments:	Geoffrey R, EMNRD; Wrangham, Calvin W. Re: Targa Middle Plant (GW-005) Recovery Tables and Graphs LNAPL Recovery table and graph 10-4-10.pdf

Carl,

Please find attached tables and graphs in pdf format. Please let me know if I need to mail copies. Sincerely,

Mark J. Larson Sr. Project Manager / President 507 N. Marienfeld St., Ste. 202 Midland, Texas 79701 (432) 687-0901 (office) (432) 687-0456 (fax) (432) 556-8656 (cell) mark@laenvironmental.com

arson ssociates, Inc. Environmental Consultants

I am using the Free version of <u>SPAMfighter</u>. SPAMfighter has removed 5502 of my spam emails to date.

Do you have a slow PC? Try free scan!

Date	Depth LNAPL	Depth H ₂ O	LNAPL Thickness	Filter/Float Depth Set	Cycles/ Minute	Inlet Pressure	LNAPL Recovered	H₂O Recovered	Drum/ Used, Full, Empty (#/U,F,E)	Notes
10/13/2009	26.18	31.33	5.15							LNAPL Discovered
10/21/2009	26.22	31.28	5.06				2.75			LNAPL Recovery Test
11/11/2000	26.20	24.54	E 43	07.45	~	7.5	1	1		Keck PRS System Installed. Full
11/11/2009	26.38	31.51	5.13	27.15	2	75				operation on 11/13/09
11/19/2009	27.26	29.16	1.90	26.5	2	74	21.1	27.7	1/U	Raised float ~8 inches
11/20/2009	27.57	27.77	0.20	26.6	2	75	18.2	31.6	1/F; 2/U	Well recovery test; 0.20 feet
11/23/2009	27.09	29.92	2.83	27.6	2	75	7.4	0	1/U; 2/E	Lowered Float
12/3/2009	27.76	28.33	0.57	28	2	72	13	40.1	1/U; 2/E	Lowered Float
12/9/2009	28.15	28.21	0.06				11.6	28.9	1/F; 2/U	Shut down system to allow recovery for Bail Down - Recovery testing
12/10/2009	26.82	30.51	3.69							Allowing stabilization
12/11/2009	26.75	31.05	4.30	27	2	68	2.2			Bail Down - Recovery testing
12/14/2009			0.00	27.5					1/F; 2/U	Reset pump, not recovering
12/15/2009			0.00				10.3	0	1/E; 2/U	
12/16/2009		27.92	0.00	27.5	2	72	13.75	3.7	1/E; 2/U	
12/18/2009			0.00	27.5	0.66	60			1/E; 2/U	Reset timer for 90 sec. cycle
12/23/2009	27.95	28.10	0.15	27.5	0.66	50	20		1/E; 2/U	
12/30/2009	27.98	28.05	0.07	27.5	0.66	50	31.82	0	1/E; 2/U	
1/5/2010	28.01	28.10	0.09	27.5	0.66	50	39.5	0	1/E; 2/F	Moved discharge & overflow check valve to Drum 1
1/15/2010	28.09	28.16	0.07	27.5	0.66	50	8.7	0	1/U; 2/F	Shut down system to allow recovery for Bail Down - Recovery testing
1/18/2010	26.87	31.16	4.29	27.5	0.66	50	0	0	1/U; 2/E	LNAPL Recovery Test
1/25/2010	28.13	28.2	0.07	27.5	0.66	50	18.6	0	1/U; 2/E	
2/1/2010	28.16	28.21	0.05	27.5	0.66	50	24.6	1	1/U; 2/E	
2/5/2010	28.14	28.22	0.08	27.5	0.66	50	28.7	1.04	1/U; 2/E	
2/8/2010	27.96	28.01	0.05	27.5	0.66	50	32.4	1.04	1/U; 2/E	
2/12/2010	27.57	27.61	0.04	27.5	0.66	50	38.8	1.04	1/F; 2/E	Moved discharge & overflow check valve to Drum 2
2/15/2010	27.18	27.23	0.05	27.5	0.66	50	8.3	0	1/E;2/U	
2/22/2010	26.84	26.9	0.06	27.5	0.66	50	34.5	0	1/E;2/F	Moved discharge & overflow check valve to Drum 1
2/26/2010	26.98	27.00	0.02	27.5	0.66	50	11.4	0	1/U;2/E	
3/1/2010	27.07	27.09	0.02	27.5	0.66	50	19.2	0	1/U;2/E	
3/5/2010	27.09	27.1	0.01	27.5	0.66	45	26.85	0	1/U;2/E	Lowered inlet pressure
3/8/2010	27.13	27.15	0.02	27.5	0.66	45	31.4	0	1/F;2/E	Moved discharge & overflow check valve to Drum 2
3/12/2010	27.31	27.32	0.01	27.5	0.66	45	3.1	0	1/E;2U	
3/15/2010	27.4	27.41	0.01	27.5	0.66	45	6.4	0	1/E;2U	
3/19/2010	27.38	27.39	0.01	27.5	0.66	45	9.3	0	1/E;2U	
	· · · · · · · · · · · · · · · · · · ·		0.00						1/E;2U	
3/29/2010	27.59	27.62	0.03	27.5	0.66	45	15.9	0	1/E;2U	
4/1/2010	27.61	27.64	0.03	27.5	0.66	50	17.4	0	1/E;2U	
4/6/2010	27.6	27.63	0.03	27.5	0.66	50	18.6	0	1/E;2U	
4/8/2010	27.69	27.03	0.03	27.5		50		0	1/E;20	
					0.66		19.8			
4/12/2010	27.78	27.81	0.03	27.5	0.66	50	21.1	0	1/E;2U	
4/19/2010 4/22/2010	27.89 27.8	27.92	0.03	27.5	0.66 0.66	50 45	23.1	0	1/E;2U 1/E;2U	Moved discharge & overflow check valve to Drum 1
5/3/2010	27.98	28.01	0.03	27.5	0.66	48	0	0	1/U;2/F	
5/14/2010	28.06	28.09	0.03	27.5	0.66	45	2.9	0	1/U;2/F	

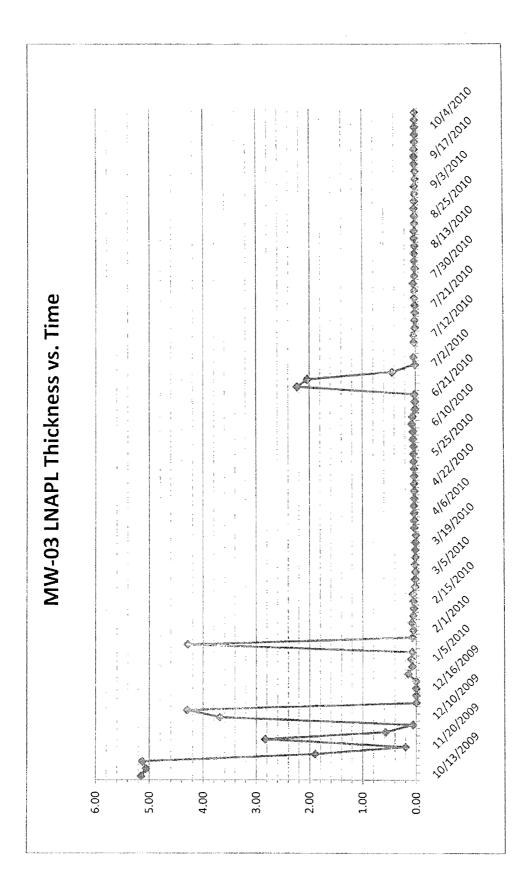
Date	Depth LNAPL	Depth H ₂ O	LNAPL Thickness	Filter/Float Depth Set	Cycles/ Minute	Inlet Pressure	LNAPL Recovered	H ₂ O Recovered	Drum/ Used, Full, Empty (#/U,F,E)	Notes
5/25/2010	28.11	28.15	0.04	27.5	0.66	50	6.2	0	1/U;2/F	
5/28/2010	28.12	28.16	0.04	27.5	0.66	50	6.4	0	1/U;2/E	
6/4/2010	28.08	28.13	0.05	27.5	0.66	50	8.5	0	1/U;2/E	
6/7/2010	28.2	28.25	0.05	27.5	0.66	50	8.9	0	1/U;2/E	
6/10/2010	28.12	28.19	0.07	27.5	0.66	50	10.3	0	1/U;2/E	
6/11/2010	27.87	27.93	0.06	28.5	0.66	50	10.3	0	1/U;2/E	Lowered float ~12 inches, both drums emptied.
6/14/2010	27.69	27.7	0.01	28.5	0.66	50	0	0	1/E;2/E	Moved discharge & overflow check valve to Drum 1.
6/18/2010	27.67	27.68	0.01	28.5	0.66	50	0	0	1/U;2/E	
6/21/2010	27.7	27.72	0.02	28.5	0.66	45	1.9	0	1/U;2/E	
6/23/2010	27	29.23	2.23	28.5	0.66	45	2.3	0	1/U;2/E	
6/24/2010	26.56	28.6	2.04	28.5	0.66	45	2.9	0	1/U;2/E	Temporarily fixed leak in air line
6/29/2010	23.78	24.22	0.44	27.5	0.66	50	22.7	0	1/F;2/E	Moved discharge & overflow check valve to Drum 2.
7/2/2010	23.89	23.9	0.01	27.5	0.66	50	3.7	51.6	1/E;2/F	Moved discharge & overflow check valve to Drum 1.
7/6/2010	21.85	21.89	0.04	21.85	0.66	50	0.82	53.9	1/F;2/F	
7/7/2010									-, -, -, -	Pump down, waiting on check valve replacement. Drums emptied.
7/9/2010	20.66	20.69	0.03	21.85	0.66	50			1/E;2/E	Replaced check valve. Moved discharge & overflow check valve to Drum 1.
7/12/2010	20.28	20.32	0.04	21.85	0.66	50	0.2	54.5	1/F;2/E	Moved discharge & overflow check valve to Drum 2.
7/14/2010	20.58	20.59	0.01	20.85	0.66	50	0	34.1	1/F;2/F	Waiting on Drums to be emptied.
7/16/2010	20.95	20.96	0.01	20.85	0.66	50			1/E;2/E	Drums emptied. Moved discharge & overflow check valve to Drum 1.
7/19/2010	21.65	21.66	0.01	20.85	0.66	50	0	0	1/E;2/E	
7/21/2010	22.02	22.03	0.01	20.85	0.66	50	0	0	1/U;2/E	
7/23/2010	22.34	22.36	0.02	23.5	0.66	50	0	0	1/U;2/E	
7/26/2010	22.87	22.89	0.02	23.5	0.66	50	0	0	1/U;2/E	
7/28/2010	23.17	23.21	0.04	23.5	0.66	50	0	0	1/U;2/E	
7/30/2010	23.29	23.31	0.02	23.5	0.66	50	0	0	1/U;2/E	
8/2/2010	23.52	23.53	0.01	23.5	0.66	45	0	0	1/U;2/E	
8/9/2010	23.98	24	0.02	23.5	0.66	45	0	0	1/U;2/E	
8/11/2010	24.08	24.1	0.02	24.0	0.66	45	0	0	1/U;2/E	Parts on order
8/13/2010	24.32	24.33	0.01	23.9	0.66	45	0	0	1/U;2/E	
8/19/2010	24.55	24.57	0.02	23.9	0.66	45	0	0	1/U;2/E	Replaced bladder.
8/20/010	24.65	24.67	0.02	23.9	0.66	45	0	0	1/U;2/E	
8/23/2010	24.85	24.86	0.01	23.9	0.66	45	0	0	1/U;2/E	
8/25/2010	24.92	24.93	0.01	23.9	0.66	45	0	0	1/U;2/E	
8/27/2010	24.99	25.01	0.02	23.9	0.66	45	0	0	1/U;2/E	1
8/30/2010	25.13	25.14	0.01	23.9	0.66	45	0	0	1/U;2/E	1
9/1/2010	25.16	25.17	0.01	23.9	0.66	45	0	0	1/U;2/E	
9/3/2010	25.3	25.31	0.01	23.9	0.66	45	0	0	1/U;2/E	
9/7/2010				23.9	0.66	45	0	0	1/U;2/E	
9/10/2010				23.9	0.66	45	0	0	1/U;2/E	
9/16/2010	25.53	25.54	0.01	23.9	0.66	45	0	0	1/U;2/E	

.

Date	Depth LNAPL	Depth H ₂ O	LNAPL Thickness	Filter/Float Depth Set	Cycles/ Minute	iniet Pressure	LNAPL Recovered	H ₂ O Recovered	Drum/ Used, Full, Empty (#/U,F,E)	Notes
9/22/2010	25.29	25.3	0.01	23.9	0.66	45	0	0	1/U;2/E	
9/24/2010	25.16	25.16	0.00	23.9	0.66	49	0	17.6	1/U;2/E	
10/1/2010	22.16	22.16	0.00	23.9	0.66	49	0	50.2	1/F;2/E	Turned off product recover system
10/4/2010	21.67	21.67	0.00	23.9	0.66	49	0	50.2	1/F;2/E	System off.
			0.00		·····					
			0.00							
					Re	covery Totals	236	293		

Notes

Depths reported in feet.


Inlet Pressure in Pounds per Square Inch (PSI).

Volumes reported in gallons.

55-gallon drum dimensions = 22.5" ID X 32" Internal height. ~0.206613 gallons per 0.01 feet gauged

Yellow indicates recovery not used in total calculation.

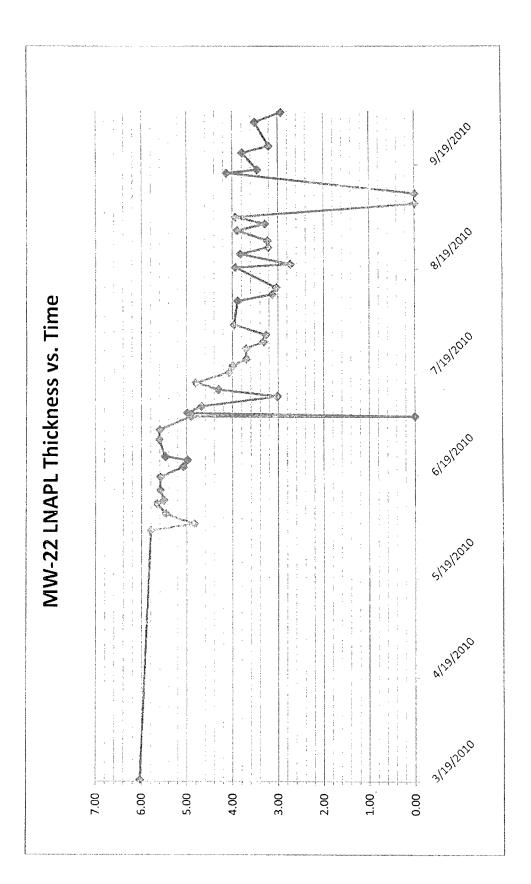
Quick Calc	Input Feet	Gallons
Gauged Drum Thickness	2.43	50.2

Date	Depth LNAPL	Depth H ₂ O	LNAPL Thickness	Filter/Float Depth Set	Cycles/ Minute	inlet Pressure	LNAPL Recovered	H ₂ O Recovered	Drum/ Used, Full, Empty (#/U,F,E)	Notes
3/19/2010	29.13	35.17	6.04							LNAPL Discovered, Well TD = 35.17
6/2/2010	29.37	35.17	5.80	32.3	0.66	50			1/U	Keck PRS System Installed, Full operation on 6/2/10
6/4/2010	29.8	34.64	4.84	32.3	0.66	50	44.4	0	1/F;2/E	Moved discharge & overflow check valve to Drum 2
6/7/2010	29.7	35.17	5.47	29.1	0.66	50	54.8	0	1/F;2/F	
6/10/2010	29.5	35.17	5.67	29.1	0.66	50			1/F;2/F	Drums emptied, discharge & overflow check valve on Drum 2
6/11/2010	29.66	35.17	5.51	29.1	0.66	50	20.7	0	1/U;2/E	Moved discharge & overflow check valve to Drum 2
6/14/2010	29.58	35.17	5.59	29.1	0.66	45	41.3	0	1/F;2/F	Drums emptied, discharge & overflow check valve on Drum 2
6/18/2010	29.58	35.17	5.59	29.1	0.66	45	41.5	0	1/E;2/F	Moved discharge & overflow check valve to Drum 1
6/21/2010	29.56	34.64	5.08	29.1	0.66	45	54.8	0	1/U;2/E	Moved discharge & overflow checkvalve to Drum 2
6/23/2010	29.7	34.69	4.99	29.1	0.66	45	36.2	0	1/U;2/E	Moved discharge & overflow checkvalve to Drum 1
6/24/2010	29.69	35.17	5.48	29.1	0.66	45	15.1	0	1/U;2/E	
6/29/2010	29.56	35.17	5.61	29.1	0.66	45	54.8	0	1/F;2/E	Moved discharge & overflow checkvalve to Drum 2
7/2/2010	29.57	35.17	5.60	29.1	0.66	45	8.3	0	1/F;2/U	
7/6/2010	29.63	34.54	4.91	29.1	0.66	45	54.8	0	1/F;2/F	
7/6/2010			0.00				40		1/F;2/F	secondary containment
7/7/2010	29.57	34.56	4.99	29.1	0.66	45			1/E;2/E	Drums emptied. Moved discharge & overflow checkvalve to Drum 1
7/9/2010	29.59	34.27	4.68	29.1	0.66	45	34.1	0	1/F;2/E	Moved discharge & overflow checkvalve to Drum 2
7/12/2010	30.85	33.87	3.02	29.1	0.66	45	54.8	Ō	1/E;2/F	Moved discharge & overlow checkvalve to Drum 1
7/14/2010	29.42	33.73	4.31	29.1	0.66	45	34	0	1/F;2/F	Waiting on Drums to be emptied.
7/16/2010	29.25	34.06	4.81	29.1	0.66	45			1/E;2/E	Drums emptied. Moved discharge & overflow checkvalve to Drum 1
7/19/2010	29.31	33.39	4.08	29.1	0.66	45	64.8	0	1/E;2/E	Secondary containment has 10 gallons. Moved discharge & overflow checkvalve to Drum 1
7/21/2010	29.31	33.31	4.00	29.1	0.66	45	34.7	0	1/U;2/E	Moved discharge & overflow check valve to Drum 2
7/23/2010	29.34	33.04	3.70	29.1	0.66	45	41.7	0	1/F;2/U;3/E	Moved discharge & overflow checkvalve to Drum 3
7/26/2010	29.29	33	3.71	29.1	0.66	45	54.8	0	1/E;2/F;3/E	Moved discharge & overflow checkvalve to Drum 1

Date	Depth LNAPL	Depth H ₂ O	LNAPL Thickness	Filter/Float Depth Set	Cycles/ Minute	Inlet Pressure	LNAPL Recovered	H ₂ O Recovered	Drum/ Used, Full, Empty (#/U,F,E)	Notes
7/28/2010	29.28	32.6	3.32	29.1	E & E	45	44.4	0	1/U;2/F;3/E	Moved discharge & overflow checkvalve to Drum 1
7/30/2010	29.29	32.56	3.27	29.1	E&E	45	53.5	0	1/F;2/F;3/E	Moved discharge & overflow checkvalve to Drum 3
8/2/2010	29.12	33.09	3.97	29.1	E & E	45	42.6	0	1/E;2/E;3/F	Moved discharge & overflow checkvalve to Drum 1
8/9/2010	29.09	32.98	3.89	29.1	E & E	45	44.4	0	1/F;2/E;3/E	Moved discharge & overflow checkvalve to Drum 2
8/11/2010	29.2	32.33	3.13	29.1	E & E	45	44.4	0	1/E;2/F;3/E	Moved discharge & overflow checkvalve to Drum 1
8/13/2010	29.14	32.18	3.04	29.1	E & E	45	42.3	0	1/F;2/E;3/E	Moved discharge & overflow checkvalve to Drum 2
8/19/2010	28.94	32.88	3.94	29.1	D&D	45	42.3	0	1/E;2/F;3/E	Moved discharge & overflow checkvalve to Drum 1
8/20/2010	29.2	31.93	2.73	29.7	F&F	45	42.3	0	1/F;2/F;3/E	Moved discharge & overflow checkvalve to Drum 3. Reset float.
8/23/2010	29.0	32.83	3.83	29.7	F & F	45	42.3	0	1/E;2/E;3/F	Moved discharge & overflow checkvalve to Drum 1.
8/25/2010	29.18	32.4	3.22	29.7	F & F	45	42.1	0	1/F;2/E;3/E	Moved discharge & overflow checkvalve to Drum 2.
8/27/2010	29.13	32.36	3.23	29.7	F&F	45	43.38	0	1/E;2/F;3/E	Moved discharge & overflow checkvalve to Drum 1.
8/30/2010	28.93	32.83	3.90	29.7	F & F	45	43.38	0	1/F;2/E;3/E	Moved discharge & overflow checkvalve to Drum 2.
9/1/2010	29.13	32.42	3.29	29.7	F & F	45	37.6	0	,1/E;2/F;3/E	Moved discharge & overflow checkvalve to Drum 1.
9/3/2010	29.09	33.03	3.94	29.7	F&F	45	43.2	0	1/F;2/F;3/E	Moved discharge & overflow checkvalve to Drum 3.
9/7/2010	<u>.</u>			29.7	F&F	45	42.8	0	1/F;2/F;3/F	Moved discharge & overflow checkvalve to Drum 4.
9/10/2010	~.			29.7	F&F	45	42.4	0	1/E;2/E;3/E	Moved discharge & overflow checkvalve to Drum 1.
9/16/2010	28.99	33.12	4.13	29.7	F&F	45	53.9	0	1/F;2/E;3/E	Moved discharge & overflow checkvalve to Drum 2.
9/17/2010	29.12	32.58	3.46	29.7	F & F	45	25.2	0	1/E;2/E;3/E	Moved discharge & overflow checkvalve to Drum 1.
9/22/2010	28.93	32.72	3.79	29.7	F&F	45	49.58	0	1/F;2/E;3/E	Moved discharge & overflow checkvalve to Drum 2.
9/24/2010	28.98	32.18	3.20	29.7	F&F	45	39.5	0	1/F;2/F;3/E	Moved discharge & overflow checkvalve to Drum 3.

Date	Depth LNAPL	Depth H ₂ O	LNAPL Thickness	Filter/Float Depth Set	Cycles/ Minute	Inlet Pressure	LNAPL Recovered	H₂O Recovered	Drum/ Used, Full, Empty (#/U,F,E)	Notes
10/1/2010	28.87	32.38	3.51	29.7	F&F	45	40.5	0	1/F;2/F;3/F	Moved discharge & overflow checkvalve to Drum 4.
10/4/2010	28.94	31.87	2.93	29.7	F& F	45	6.8	0	1/F;2/F;3/F	
			0.00							
			0.00							
					Re	covery Totals	1,671	0		

Notes


Depths reported in feet.

Inlet Pressure in Pounds per Square Inch (PSI).

Volumes reported in gallons.

55-gallon drum dimensions = 22.5" ID X 32" Internal height. ~0.206613 gallons per 0.01 feet gauged

Yellow indicates recovery no	ot used in tota	al calculation.
Quick Calc	Input Feet	Gallons
 Gauged Drum Thickness	0.33	6.8

Chavez, Carl J, EMNRD

From: Sent: To: Cc: Subject:	Mark Larson [Mark@laenvironmental.com] Friday, October 15, 2010 12:08 PM Chavez, Carl J, EMNRD VonGonten, Glenn, EMNRD; Griswold, Jim, EMNRD; Johnson, Larry, EMNRD; Leking, Geoffrey R, EMNRD; Wrangham, Calvin W.; gmaricle@targaresources.com; Michelle Green Be: Targa Middle Plant (GW-005) Condensate Suspected Source of Belease Update
Subject: Attachments:	Re: Targa Middle Plant (GW-005) Condensate Suspected Source of Release Update Initial C-141, October 15, 2010.pdf; PA140018.JPG; PA140025.JPG; PA140026.JPG; LNAPL recovery table and graph.xlsx

Dear Mr. Chavez,

This message is submitted to the New Mexico Oil Conservation Division (OCD) environmental bureau on behalf of Targa Midstream Services L.P. (Targa) by Larson & Associates, Inc. (LAI) to provide an update to determine the source for light non-aqueous phase liquid (condensate) discovered in monitoring wells MW-3 and MW-22 near the southeast corner of the Eunice Gas Plant (Facility). On October 13, 2010, Facility personnel discovered a leaking union on a 2-inch scrubber dump line after exposing lines, fittings and valves at a junction about 60 feet north of MW-22. The line was buried about 4 feet below ground and soil surrounding the union was stained and wet with hydrocarbons consistent with condensate. The line was isolated to control the release. Facility personnel will excavate additional soil from the area to make necessary repairs and place contaminated soil on plastic until disposal is arranged. A plan will be submitted to the OCD in Santa Fe to delineate the vertical and lateral extent of the release. Product recovery in wells MW-3 and MW-22 will continue with approximately 236 and 1,671 gallons recovered, respectively, through October 4, 2010. The attached table presents a summary of the LNAPL recovery from MW-3 and MW-22. The initial C-141 for the release is attached. Photographs showing the location of the release relative to monitoring well MW-22 (PA140018.JPG) and leaking union (PA140025.JPG and PA140026JPG) are also attached. Please contact Cal Wrangham with Targa at (432) 688-0542 or myself if you have questions.

Mark J. Larson Sr. Project Manager / President 507 N. Marienfeld St., Ste. 202 Midland, Texas 79701 (432) 687-0901 (office) (432) 687-0456 (fax) (432) 556-8656 (cell) mark@laenvironmental.com

ociates, Inc. witchmental Consultant

I am using the Free version of <u>SPAMfighter</u>. SPAMfighter has removed 5499 of my spam emails to date.

Do you have a slow PC? Try free scan!

Date	Depth LNAPL	Depth H ₂ O	LNAPL Thickness	Filter/Float Depth Set	Cycles/ Minute	linlet Pressure	LNAPL Recovered	H ₂ O Recovered	Drum/ Used, Full, Empty (#/Ú,F,E)	Notes
10/13/2009	26.18	31.33	5.15							LNAPL Discovered
10/21/2009	26.22	31.28	5.06				2.75			LNAPL Recovery Test
11/11/2009	26.38	31.51	5.13	27.15	2	75				Keck PRS System Installed. Full operation on 11/13/09
11/10/2000		20.16	1.00	26 5	2	74			1/11	
11/19/2009	27.26	29.16	1.90	26.5	2	74	21.1	27.7	1/U	Raised float ~8 inches
11/20/2009	27.57	27.77	0.20	26.6	2	75	18.2	31.6	1/F; 2/U	Well recovery test; 0.20 feet
11/23/2009	27.09	29.92	2.83	27.6	2	75	7.4	0	1/U; 2/E	Lowered Float
12/3/2009	27.76	28.33	0.57	28	2	72	13	40.1	1/U; 2/E	Lowered Float
12/9/2009	28.15	28.21	0.06				11.6	28.9	1/F; 2/U	Shut down system to allow recovery for Bail Down - Recovery testing
12/10/2009	26.82	30.51	3.69							Allowing stabilization
12/11/2009	26.75	31.05	4.30	27	2	68	2.2			Bail Down - Recovery testing
12/14/2009			0.00	27.5					1/F; 2/U	Reset pump, not recovering
12/15/2009			0.00				10.3	0	1/E; 2/U	
12/16/2009		27.92	0.00	27.5	2	72	13.75	3.7	1/E; 2/U	
12/18/2009			0.00	27.5	0.66	60	20110		1/E; 2/U	Reset timer for 90 sec. cycle
12/23/2009	27.95	28.10	0.15	27.5	0.66	50	20		1/E; 2/U	neset timer for so see, eyele
12/23/2009	27.98	28.05	0.13	27.5	0.66	50	31.82	0	1/E; 2/U	
1/5/2010	28.01	28.03	0.09	27.5	0.66	50	39.5	0	1/E; 2/G	Moved discharge & overflow check valve to Drum 1
1/15/2010	28.09	28.16	0.07	27.5	0.66	50	8.7	0	1/U; 2/F	Shut down system to allow recovery for Bail Down - Recovery testing
1/18/2010	26.87	31.16	4.29	27.5	0.66	50	0	0	1/U; 2/E	LNAPL Recovery Test
1/25/2010	28.13	28.2	0.07	27.5	0.66	50	18.6	0	1/U; 2/E	
2/1/2010	28.16	28.21	0.05	27.5	0.66	50	24.6	1	1/U; 2/E	
2/5/2010	28.14	28.22	0.08	27.5	0.66	50	28.7	1.04	1/U; 2/E	
2/8/2010	27.96	28.01	0.05	27.5	0.66	50	32.4	1.04	1/U; 2/E	
2/12/2010.	27.57	27.61	0.04	27.5	0.66	50	38.8	1.04	1/F; 2/E	Moved discharge & overflow check valve to Drum 2
2/15/2010	27.18	27.23	0.05	27.5	0.66	50	8.3	0	1/E;2/U	
2/22/2010	26.84	26.9	0.06	27.5	0.66	50	34.5	0	1/E;2/F	Moved discharge & overflow check valve to Drum 1
2/26/2010	26.98	27.00	0.02	27.5	0.66	50	11.4	0	1/U;2/E	
3/1/2010	27.07	27.09	0.02	27.5	0.66	50	19.2	0	1/U;2/E	
3/5/2010	27.09	27.1	0.01	27.5	0.66	45	26.85	0	1/U;2/E	Lowered inlet pressure
3/8/2010	27.13	27.15	0.02	27.5	0.66	45	31.4	0	1/F;2/E	Moved discharge & overflow check valve to Drum 2
3/12/2010	27.31	27.32	0.01	27.5	0.66	45	3.1	0	1/E;2U	
3/15/2010	27.4	27.41	0.01	27.5	0.66	45	6.4	0	1/E;2U	
3/19/2010	27.38	27.39	0.01	27.5	0.66	45	9.3	0	1/E;2U	
	F		0.00				1		1/E;2U	
3/29/2010	27.59	27.62	0.03	27.5	0.66	45	15.9	0	1/E;2U	
4/1/2010	27.61	27.64	0.03	27.5	0.66	50	17.4	0	1/E;2U	
4/6/2010	27.6	27.63	0.03	27.5	0.66	50	18.6	0	1/E;2U	
4/8/2010	27.69	27.03	0.03	27.5	0.66	50	19.8	0	1/E;2U	
	27.09	27.73	0.04	27.5	0.66					·······
4/12/2010						50	21.1	0	1/E;2U	
4/19/2010	27.89	27.92	0.03	27.5 27.5	0.66	50 45 .	23.1 24	0	1/E;2U 1/E;2U	Moved discharge & overflow check valve to Drum 1
		1	0.02	07.5	0.00	48	1	<u> </u>	1/11.2/5	
5/3/2010	27.98	28.01	0.03	27.5	0.66	40	0	0	I 1/0;2/F	
5/3/2010 5/14/2010	27.98 28.06	28.01	0.03	27.5 27.5	0.66	40	2.9	0	1/U;2/F 1/U;2/F	

	Depth		LNAPL	Filter/Float	Cycles/	inlet	LNAPL	H ₂ O	Drum/ Used;	an a
Date	LNAPL	Depth H ₂ O	Thickness	Depth Set	Minute	Pressure	Recovered	Recovered	Full, Empty (#/U,F,E)	Notes
5/25/2010	28.11	28.15	0.04	27.5	0.66	50	6.2	0	1/U;2/F	
5/28/2010	28.12	28.16	0.04	27.5	0.66	50	6.4	0	1/U;2/E	
6/4/2010	28.08	28.13	0.05	27.5	0.66	50	8.5	0	1/U;2/E	
6/7/2010	28.2	28.25	0.05	27.5	0.66	50	8.9	0	1/U;2/E	
6/10/2010	28.12	28.19	0.07	27.5	0.66	50	10.3	0	1/U;2/E	
6/11/2010	27.87	27.93	0.06	28.5	0.66	50	10.3	<u>,</u> 0	1/U;2/E	Lowered float ~12 inches, both drums emptied.
6/14/2010	27.69	27.7	0.01	28.5	0.66	50	0	0	1/E;2/E	Moved discharge & overflow check valve to Drum 1.
6/18/2010	. 27.67	27.68	0.01	28.5	0.66	50	0	0	1/U;2/E	
6/21/2010	27.7	27.72	0.02	28.5	0.66	45	1.9	0	1/U;2/E	
6/23/2010	27	29.23	2.23	28.5	0.66	45	2.3	0	1/U;2/E	
6/24/2010	26.56	28.6	2.04	28.5	0.66	45	2.9	0	1/U;2/E	Temporarily fixed leak in air line
6/29/2010	23.78	24.22	0.44	27.5	0.66	50	22.7	0	1/F;2/E	Moved discharge & overflow check valve to Drum 2.
7/2/2010	23.89	23.9	0.01	27.5	0.66	50	3.7	51.6	1/E;2/F	Moved discharge & overflow check valve to Drum 1.
7/6/2010	21.85	21.89	0.04	21.85	0.66	50	0.82	53.9	1/F;2/F	
7/7/2010										Pump down, waiting on check valve replacement. Drums emptied.
7/9/2010	20.66	20.69	0.03	21.85	0.66	50			1/E;2/E	Replaced check valve. Moved discharge & overflow check valve to Drum 1.
7/12/2010	20.28	20.32	0.04	21.85	0.66	50	0.2	54.5	1/F;2/E	Moved discharge & overflow check valve to Drum 2.
7/14/2010	20.58	20.59	0.01	20.85	0.66	50	0	34.1	1/F;2/F	Waiting on Drums to be emptied.
7/16/2010	20.95	20.96	0.01	20.85	0.66	50			1/E;2/E	Drums emptied. Moved discharge & overflow check valve to Drum 1.
7/19/2010	21.65	21.66	0.01	20.85	0.66	50	0	0	1/E;2/E	
7/21/2010	22.02	22.03	0.01	20.85	0.66	50	0	0	1/U;2/E	
7/23/2010	22.34	22.36	0.02	23.5	0.66	50	0	0	1/U;2/E	
7/26/2010	22.87	22.89	0.02	23.5	0.66	50	0	0	1/U;2/E	
7/28/2010	23.17	23.21	0.04	23.5 23.5	0.66	50	0	0	1/U;2/E	· · · · · · · · · · · · · · · · · · ·
7/30/2010 8/2/2010	23.29	23.31	0.02	23.5	0.66	45	0	0	1/U;2/E 1/U;2/E	
8/9/2010	23.98	23.35	0.01	23.5	0.66	45	0	0	1/U;2/E	
8/11/2010	24.08	24.1	0.02	24.0	0.66	45	0	0	1/U;2/E	Parts on order
8/13/2010	24.32	24.33	0.01	23.9	0.66	45	0	0	1/U;2/E	
8/19/2010	24.55	24.57	0.02	23.9	0.66	45	0	0	1/U;2/E	Replaced bladder.
8/20/010	24.65	24.67	0.02	23.9	0.66	45	0	0	1/U;2/E	
8/23/2010	24.85	24.86	0.01	23.9	0.66	45	0	0	1/U;2/E	
8/25/2010	24.92	24.93	0.01	23.9	0.66	45	0	0	1/U;2/E	
8/27/2010	24.99	25.01	0.02	23.9	0.66	45	0	0	1/U;2/E	
8/30/2010	25.13	25.14	0.01	23.9	0.66	45	0	0	1/U;2/E	
9/1/2010	25.16	25.17	0.01	23.9	0.66	45	0	0	1/U;2/E	
9/3/2010	25.3	25.31	0.01	23.9	0.66	45	0	0	1/U;2/E	
9/7/2010				23.9	0.66	45	0	0	1/U;2/E	
9/10/2010				23.9	0.66	45	0	0	1/U;2/E	
9/16/2010	25.53	25.54	0.01	23.9	0.66	45	0	0	1/U;2/E	
9/17/2010	25.56	25.57	0.01	23.9	0.66	45	0	0	1/U;2/E	

Date	Depth LNAPL	Depth Hs()*	LNAPL Thickness	Filter/Float Depth Set		Inlet Pressure	LNAPL Recovered	H ₂ O Recovered	Drum/ Used, Full, Empty (#/U,F,E)	Notes
9/22/2010	25.29	25.3	0.01	23.9	0.66	45	0	0	1/U;2/E	
9/24/2010	25.16	25.16	0.00	23.9	0.66	49	0	17.6	1/U;2/E	
10/1/2010	22.16	22.16	0.00	23.9	0.66	49	0	50.2	1/F;2/E	Turned off product recover system
10/4/2010	21.67	21.67	0.00	23.9	0.66	49	0	50.2	1/F;2/E	System off.
			0.00							
			0.00							
	N 19 19 19 19				Rec	covery Totals	236	293		

Notes

Depths reported in feet.

Inlet Pressure in Pounds per Square Inch (PSI).

Volumes reported in gallons.

55-gallon drum dimensions = 22.5" ID X 32" Internal height. ~0.206613 gallons per 0.01 feet gauged

Yellow indicates recovery not used in total calculation.

Quick Calc	Input Feet	Gallons
Gauged Drum Thickness	2.43	

Date	Depth LNAPL	Depth H₂O	LNAPL Thickness	Filter/Float Depth Set	Cycles/ Minute	inlet Pressure	UNAPL Recovered	H ₂ O Recovered	Drum/ Used, Full, Empty (#/U,F,E)	Notes
3/19/2010	29.13	35.17	6.04							LNAPL Discovered, Well TD = 35.17
6/2/2010	29.37	35.17	5.80	32.3	0.66	50			1/U	Keck PRS System Installed. Full operation on 6/2/10
6/4/2010	29.8	34.64	4.84	32.3	0.66	50	44:4	0	1/F;2/E	Moved discharge & overflow check valve to Drum 2
6/7/2010	29.7	35.17	5.47	29.1	0.66	50	54.8	0	1/F;2/F	
6/10/2010	29.5	35.17	5.67	29.1	0.66	50			1/F;2/F	Drums emptied, discharge & overflow check valve on Drum 2
6/11/2010	29.66	35:17	5.51	29.1	0.66	50	20.7	0	1/U;2/E	Moved discharge & overflow check valve to Drum 2
6/14/2010	29.58	35.17	5.59	29.1	0.66	45	41.3	0	1/F;2/F	Drums emptied, discharge & overflow check valve on Drum 2
6/18/2010	29.58	35.17	5.59	29.1	0.66	45	41.5	0	1/E;2/F	Moved discharge & overflow check valve to Drum 1
6/21/2010	29.56	34.64	5.08	29.1	0.66	45	54.8	0	1/U;2/E	Moved discharge & overflow checkvalve to Drum 2
6/23/2010	29.7	34.69	4.99	29.1	0.66	45	36:2	0	1/U;2/E	Moved discharge & overflow checkvalve to Drum 1
6/24/2010	29.69	35.17	5.48	29.1	0.66	45	15.1	0	1/U;2/E	
6/29/2010	29.56	35.17	5.61	29.1	0.66	45	54.8	0	1/F;2/E	Moved discharge & overflow checkvalve to Drum 2
7/2/2010	29.57	35.17	5.60	29.1	0.66	45	8.3	0	1/F;2/U	
7/6/2010	29.63	34.54	4.91	29.1	0.66	45	54.8	0	1/F;2/F	
7/6/2010			0.00				40		1/F;2/F	secondary containment
7/7/2010	29.57	34.56	4.99	29.1	0.66	45			1/E;2/E	Drums emptied. Moved discharge & overflow checkvalve to Drum 1
7/9/2010	29.59	34.27	4.68	29.1	0.66	45	34.1	0	1/F;2/E	Moved discharge & overflow checkvalve to Drum 2
7/12/2010	30.85	33.87	3.02	29.1	0.66	45	54.8	0	1/E;2/F	Moved discharge & overlow checkvalve to Drum 1
7/14/2010	29.42	33.73	4.31	29.1	0.66	45	34	о	1/F;2/F	Waiting on Drums to be emptied.
7/16/2010	29.25	34.06	4.81	29.1	0.66	45			1/E;2/E	Drums emptied. Moved discharge & overflow checkvalve to Drum 1
7/19/2010	29.31	33.39	4.08	29.1	0.66	45	64:8	0	1/E;2/E	Secondary containment has 10 gallons. Moved discharge & overflow checkvalve to Drum 1
7/21/2010	29.31	33.31	4.00	29.1	0.66	45	34.7	0	1/U;2/E	Moved discharge & overflow check valve to Drum 2
7/23/2010	29.34	33.04	3.70	29.1	0.66	45	41:7	0	1/F;2/U;3/E	Moved discharge & overflow checkvalve to Drum 3
7/26/2010	29.29	33	3.71	29.1	0.66	45	54.8	0	1/E;2/F;3/E	Moved discharge & overflow checkvalve to Drum 1

Date	Depth LNAPL	Depth H ₂ O	LNAPL Thickness	Filter/Float Depth Set	Gycles/ Minute	inlet Pressure	LNAPL Recovered	H ₂ O Recovered	Drum/Used, Full, Empty (#/U,F,E)	Notes
7/28/2010	29.28	32.6	3.32	29.1	E & E	45	44.4	0	1/U;2/F;3/E	Moved discharge & overflow checkvalve to Drum 1
7/30/2010	29.29	32.56	3.27	29.1	E & E	45	53.5	0	1/F;2/F;3/E	Moved discharge & overflow checkvalve to Drum 3
8/2/2010	29.12	33.09	3.97	29.1	E&E	45	42.6	0	1/E;2/E;3/F	Moved discharge & overflow checkvalve to Drum 1
8/9/2010	29.09	32.98	3.89	29.1	E&E	45	44.4	0	1/F;2/E;3/E	Moved discharge & overflow checkvalve to Drum 2
8/11/2010	29.2	32.33	3.13	29.1	E&E	45	44,4,	0	1/E;2/F;3/E	Moved discharge & overflow checkvalve to Drum 1
8/13/2010	29.14	32.18	3.04	29.1	E & E	45	42-3	0	1/F;2/E;3/E	Moved discharge & overflow checkvalve to Drum 2
8/19/2010	28.94	32.88	3.94	29.1	D&D	45	42.3	0	1/E;2/F;3/E	Moved discharge & overflow checkvalve to Drum 1
8/20/2010	29.2	31.93	2.73	29.7	F&F	45	42:3	0	1/F;2/F;3/E	Moved discharge & overflow checkvalve to Drum 3. Reset float.
8/23/2010	29.0	32.83	3.83	29.7	F&F	45	42:3	0	1/E;2/E;3/F	Moved discharge & overflow checkvalve to Drum 1.
8/25/2010	29.18	32.4	3.22	29.7	F&F	45	42.1	о	1/F;2/E;3/E	Moved discharge & overflow checkvalve to Drum 2.
8/27/2010	29.13	32.36	3.23	29.7	F & F	45	43.38	0	1/E;2/F;3/E	Moved discharge & overflow checkvalve to Drum 1.
8/30/2010	28.93	32.83	3.90	29.7	F & F	45	43.38	0	1/F;2/E;3/E	Moved discharge & overflow checkvalve to Drum 2.
9/1/2010	29.13	32.42	3.29	29.7	F&F	45	37.6	0	1/E;2/F;3/E	Moved discharge & overflow checkvalve to Drum 1.
9/3/2010	29.09	33.03	3.94	29.7	F&F	· 45	43.2	0	1/F;2/F;3/E	Moved discharge & overflow checkvalve to Drum 3.
9/7/2010				29.7	F&F	45	42.8	0	1/F;2/F;3/F	Moved discharge & overflow checkvalve to Drum 4.
9/10/2010				29.7	F&F	45	42.4	0	1/E;2/E;3/E	Moved discharge & overflow checkvalve to Drum 1.
9/16/2010	28.99	33.12	4.13	29.7	F&F	45	53.9	0	1/F;2/E;3/E	Moved discharge & overflow checkvalve to Drum 2.
9/17/2010	29.12	32.58	3.46	29.7	F&F	45	25.2	0	1/E;2/E;3/E	Moved discharge & overflow checkvalve to Drum 1.
9/22/2010	28.93	32.72	3.79	29.7	F&F	45	49.58	0	1/F;2/E;3/E	Moved discharge & overflow checkvalve to Drum 2.
9/24/2010	28.98	32.18	3.20	29.7	F&F	45	39.5	0	1/F;2/F;3/E	Moved discharge & overflow checkvalve to Drum 3.

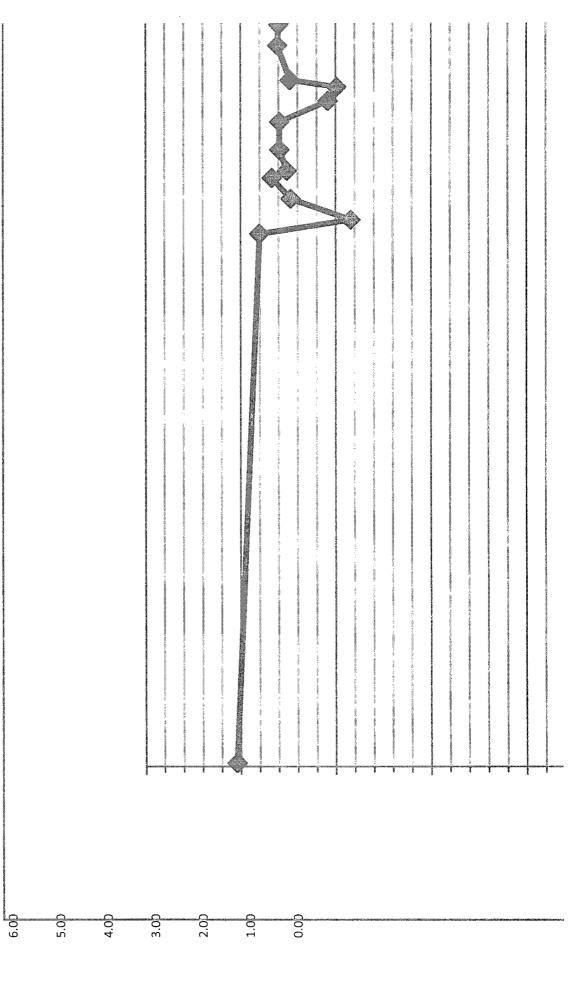
Date	Depth LNAPL	Depth H ₂ O	LNAPL Thickness	Filter/Float Depth Set	Cycles/ Minute	inlet. Pressure	LNAPL Recovered	H ₂ O Recovered	Drum/Used, Full, Empty _(#/U,F,E)	Notes
10/1/2010	28.87	32.38	3.51	29.7	F & F	45	40.5	0	1/F;2/F;3/F	Moved discharge & overflow checkvalve to Drum 4.
10/4/2010	28.94	31.87	2.93	29.7	F&F	45	6.8	0	1/F;2/F;3/F	
		Ĩ	0.00							
			0.00					·		
		<u> </u>			Rec	overy Totals		0	2 S	

Notes

Depths reported in feet.

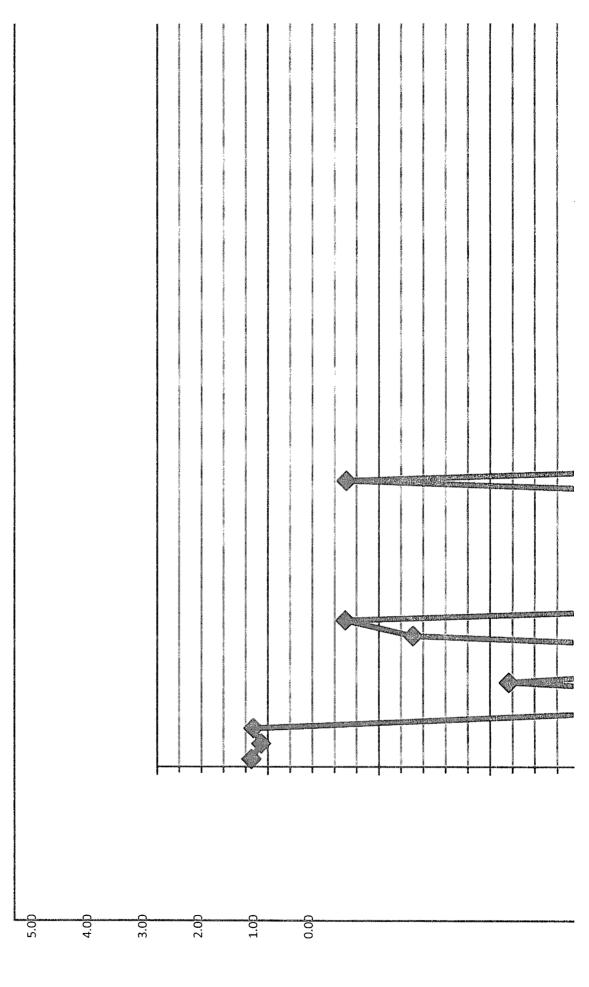
Inlet Pressure in Pounds per Square Inch (PSI).

Volumes reported in gallons.


55-gallon drum dimensions = 22.5" ID X 32" Internal height. ~0.206613 gallons per 0.01 feet gauged

Yellow indicates recovery not used in total calculation.

Quick Calc	Input Feet	Gallons
Quick Calc Gauged Drum Thickness	0.33	.6.8


MW-22 LNAPL Thickness vs. Time

MW-03 LNAPL Thickness vs. Time

Type of Release: Natural Gas Condensate

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Lease No.

Volume Recovered: None

Release Notification and Corrective Action

	OPERATOR	\boxtimes	Initial Report	Final Report
Name of Company: Targa Midstream Services, L.P.	Contact: Cal Wrangham			
Address: 6 Desta Drive, Suite 3300, Midland, TX 79705	Telephone No.: (432) 688-0542			
Facility Name: Eunice Gas Plant (GW-005)	Facility Type: Natural Gas Plant			

Surface Owner: Versado Gas Processors Mineral Owner

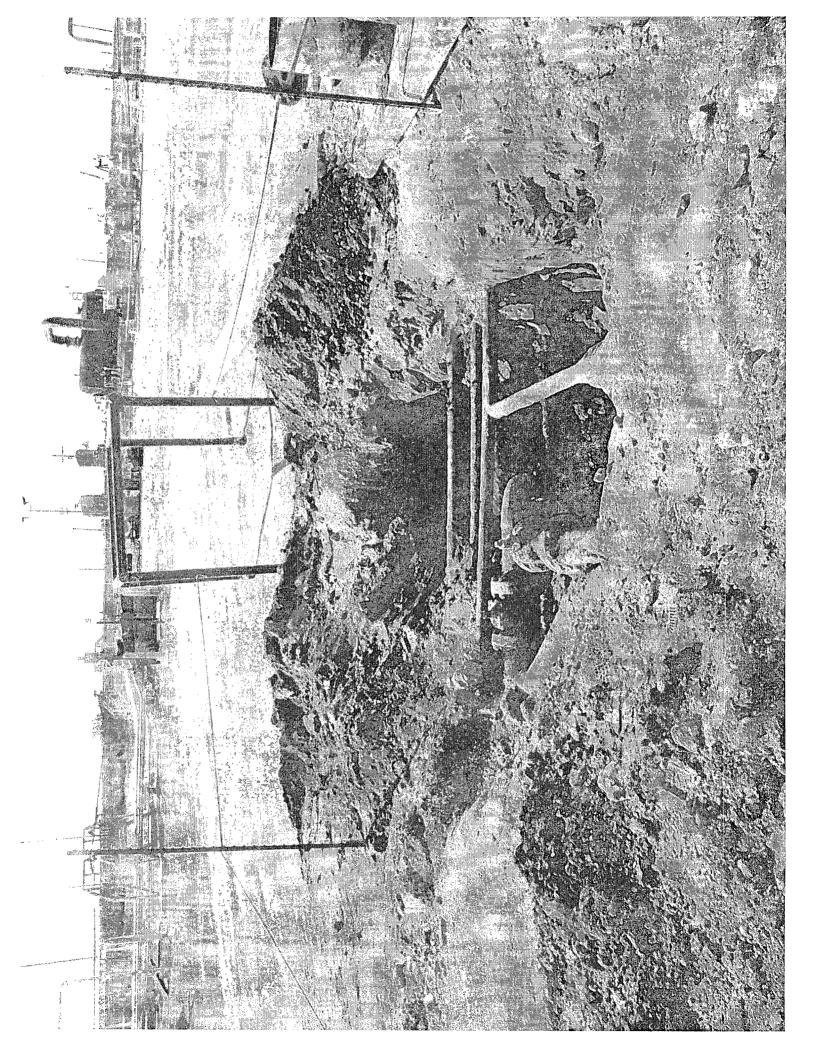
LOCATION OF RELEASE

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
Н	3	228	37E					Lea

Latitude: N 32.424535103 Longitude: W 103.145193605 NATURE OF RELEASE

Volume of Release: Unknown

Source of Release: Union on 2 inch steel scrubber dump line Date and Hour of Occurrence: Date and Hour of Discovery: October 13, 2010: 15:00 hrs Unknown Was Immediate Notice Given? If YES, To Whom? Yes No Not Required By Whom? Date and Hour Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. ☐ Yes ⊠ No If a Watercourse was Impacted, Describe Fully.* N/A Describe Cause of Problem and Remedial Action Taken.* Union on 2 inch scrubber dump line buried about 4 feet below ground was discovered during investigation to determine source for light non-aqueous phase liquid (condensate) found in 2 monitoring wells (MW-3 and MW-22). Release located about


60 feet north of monitoring well MW-22 near southeast corner of Facility. Line was isolated to control release.

Describe Area Affected and Cleanup Action Taken.* Affected area is estimated to be in immediate vicinity of release and extending to groundwater at approximately 28 feet below ground. Soil will be hand excavated around valves, fittings and piping to allow access to replace leaking union. Contaminated soil will be put on plastic until disposal is arranged. Targa will submit a plan to the OCD to include collecting soil samples from borings to delineate extent of release. Product recovery in wells MW-3 and MW-22 will continue with approximately 236 gallons (MW-3) and 1,671 gallons (MW-22) netted through October 4, 2010.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

	<u>OIL CONSE</u>	ERVATION DIVISION
Signature: Printed Name: Mark J. Larson (Consultant to Targa Midstream Services, L.P.)	Approved by Environmental Engi	ineer:
Title: Sr. Project Manager / President, Larson and Associates, Inc.	Approval Date:	Expiration Date:
E-mail Address: mark@latenvironmental.com Date: 10/15/2010 Phone: (432) 687-0901	Conditions of Approval:	Attached
Attack Additional Chasta If Nacasanan		

* Attach Additional Sheets If Necessary

Chavez, Carl J, EMNRD

From: Sent:	Chavez, Carl J, EMNRD Thursday, June 10, 2010 3:28 PM
То:	'Mark Larson'
Cc:	VonGonten, Glenn, EMNRD
Subject:	Targa Midstream Services, L.P., Eunice Gas Plant (GW-005) Former Shell Tanks Excavation Report & Closure Approval Request (June 7, 2010)
Attachments:	Re: Former Shell Tanks Excavation Report and Closure Approval Request, Targa Midstream Services, L.P., Enice Gas Plant (GW-005), Eunice, New Mexico; Re: Former Shell Tanks Excavation Report and Closure Approval Request, Targa Midstream Services, L.P., Enice Gas Plant (GW-005), Eunice, New Mexico

Mark:

The OCD is in receipt of your "Closure" request (report) for the above subject facility. The OCD appreciates Targa's efforts in resolving the phase separated hydrocarbon (PSH) contamination at the facility and its efforts to remove the source that may be causing the contamination at the facility.

The OCD has reviewed the report and notes the following key observations:

- A review of the OSE ground water database the suggest ground water is greater than 50 ft. deep, but less than 100 ft. OCD spill/release cleanup criteria is in the risk-based range of 10 – 19 (B-10 ppm; BTEX- 50 ppm; & TPH-1000 ppm).
- 2) The report indicates that ~ 1166 cubic yards of soils were excavated in July of 2008. There was also a release estimated at 20 bbls. with 20 bbls. recovered, which typically cannot be achieved in the corrective action phase and may be indicative of more contamination present than originally estimated. This location is also suspected of the PSH ground water contamination in MW-3 and down gradient. OCD is currently working with Targa on identifying the source and the corrective action to remediate ground water PSH and dissolved phase ground water contamination.
- 3) In Table 1 (excavation boring) the TPH contamination appears to be present from 5 16.5 ft.; however, the excavation that was conducted in March of 2010 and appears to be down to only 6 feet in certain areas (i.e., East Wall 4 & 5) of Figure 4 of the report. No C-138 was submitted in the appendices from the most recent excavation in March of 2010.

The OCD recommends the following:

- 1) More investigation with excavation is required below the Table 1 six ft. depth to delineate the horizontal and vertical extent of soil contamination and to remove the source of hydrocarbon contamination.
- 2) The warm weather may assist with the remediation of contaminated soils and more contaminated soils are removed during excavation and verification of soil remediation samples can be taken.
- 3) A fence should be placed around the excavation to prevent trespass and possible injury while the excavation is open.
- 4) The liner placement may be approved based on the final sampling and/or verification of soils remediation results (OCD is keying on 1000 ppm TPH) after the above required excavation and should be installed consistent with OCD Regulations Part 17 "soil cover designs" where the liner is placed deeper with more clean topsoil placed above the liner.

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: http://www.emnrd.state.nm.us/ocd/index.htm

June 7, 2010

VIA EMAIL: glenn.vongonten@state.nm.us

Mr. Glenn von Gonten, Acting Chief Environmental Bureau New Mexico Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

RE: Former Shell Tanks Excavation Report and Closure Approval Request Targa Midstream Services, L.P., Eunice Gas Plant (GW-005) Unit A (NE/4, NE/4), Section 3, Township 22 South, Range 37 East Lea County, New Mexico

Dear Mr. von Gonten:

This letter is submitted to the New Mexico Oil Conservation Division (OCD) on behalf Targa Midstream Services, L.P. (Targa) by Larson & Associates, Inc. (LAI), Targa's consultant, to report the laboratory results of soil samples and request closure approval for an excavation associated with the former shell (condensate) tanks at the Eunice Gas Plant (Facility). The tanks and associated equipment was located near the southeast corner of the Facility which operates under OCD discharge permit GW-005. The Facility is located in Unit A (NE/4, NE/4), Section 3, Township 22 South, Range 37 East in Lea County, New Mexico. Figure 1 presents a location and topographic map. Figure 2 presents a Facility drawing. Figure 3 presents an aerial image showing the former Shell tanks location.

Background

tec) des¹ The shell tanks consisted of one 500-barrel (bbl) gun barrel tank, two (2) 500-bbl condensate tanks and an oil and water separator. The tanks were located inside a high density polyethylene (HDPE) lined secondary containment. The oil and water separator received slop oil and water from plant processes. The gun barrel tank received hydrocarbons (condensate) and water from the inlet scrubbers. Waste oil and condensate was transferred to the 500-barrel oil storage tanks and the water was disposed in the Facility's OCD permitted Class II disposal (injection) well. The oil and condensate were sold and trucked off the Facility. Targa replaced the shell tanks with new tanks and containment about 200 feet north of the former shell tank location.

Targa decommissioned the old shell tanks in July 2008. The tanks and equipment were recycled or salvaged and the polyethylene liner was disposed at Controlled Recovery, Inc. (CRI) located between Hobbs and Carlsbad, New Mexico. In July 2008 Watson Construction Company, Inc. (Watson) excavated approximately 1,166 cubic yards of soil from the former shell tanks area. The soil was hauled to Jay-Dan Landfarm LLC located near Lovington, New Mexico.

On July 29, 2008, Tagra reported a release of 20 barrels of natural gas condensate to the OCD District 1 office in Hobbs, New Mexico. The release occurred when a dump line was over pressured during pigging operations and failed at a dresser sleeve located near the open excavation causing some of the liquid to flow into the excavation. Targa recovered 20 bbl and notified the OCD in Hobbs, New Mexico. Form C-141 is presented in Appendix A. On October 12, 2009, during semi-annual groundwater monitoring activities, LAI personnel observed approximately 5.15 feet of light non aqueous phase liquid (LNAPL), consistent with natural gas condensate, in monitoring well MW-3 which is located east of the former shell tanks.

Current Investigation

يەر بەر مەربە يەر

and a state of

2. 2. L. 2.

A Start of

The second

A had to

ан с. 19

35 T. 07.

2. 200

On March 8, 2010, LAI personnel collected a 5-spot composite soil sample from the excavation bottom and seven discreet samples from the west, north, south and east sidewalls. The composite and discreet samples were collected using a stainless steel hand trowel.

On March 8, 2010, Scarborough Drilling, Inc. used a jam tube sampler to collect soil samples from a borehole (EB) drilled in the bottom and near the center of the excavation. The borehole samples were collected beginning at the bottom of the excavation or approximately eight (8) feet below ground surface (bgs) and every five (5) to approximately 15 feet or 24 feet bgs. The sampling devises were cleaned between uses by washing with a solution of distilled water and laboratory grade detergent and rinsed with distilled water. A drawing of the excavation and sample points are presented in Figure 4.

The samples were collected in clean 4-ounce glass jars that were labeled, placed an ice filled chest and delivered under chain of custody control to Xenco Laboratories Inc. (formerly Environmental Lab of Texas) located in Odessa, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by method SW-8015 for gasoline range organics (GRO) and diesel range organics (DRO) and chloride by EPA method 300. The borehole samples were also analyzed for benzene, toluene, ethylbenzene and xylene (BTEX) by method SW-8021B. A summary of laboratory results is presented in Table 1. Appendix B presents the laboratory report. Photo documentation is presented in Appendix C.

Benzene and total BTEX were below the OCD recommended remediation action level (RRAL) of 10 milligrams per kilogram (mg/Kg) and 50 mg/Kg, respectively, in the borehole samples. TPH was 3,704 mg/Kg in the borehole sample from 10 to 11.5 feet (18 to 19.5 feet bgs) and decreased to 1,084 mg/Kg in the sample from 15 to 16.5 feet (23 to 24.5 feet bgs). The highest TPH concentration reported in the sidewall samples was 1,594 mg/Kg from the east wall. Chloride was less than 250 mg/Kg in all samples except West Wall-4 (442 mg/Kg) and North Wall-6 (1,100 mg/Kg).

On March 25, 2010, during a meeting in Santa Fe, New Mexico, OCD personnel requested that Targa excavate additional soil from the east side of the excavation to reduce the TPH below 1,000 mg/Kg. Watson excavated approximately 862 cubic yards of soil which was disposed at Sundance Services located east of Eunice, New Mexico. On April 29, 2010, LAI personnel collected 5 discreet soil samples from the east sidewall of the excavation (East Wall-SS1 through East Wall-SS5). The samples were collected using the procedures previously described and analyzed for TPH by method SW-8015 including DRO and GRO. TPH was below the target concentration of 1,000 mg/Kg in all but 2 samples, East Wall-SS-4 and East Wall-SS5. TPH in the East Wall-SS4 and East Wall-SS5 samples was 1,632 mg/Kg and 1,050 mg/Kg, respectively. The excavation at location Eastwall-SS4 is about 5 feet from monitoring well MW-3 which is currently used as a LNAPL recovery well.

Excavation Closure

LAI, during the meeting with OCD on March 25, 2010, expressed Targa's desire to permanently close the centralized waste management unit (landfarm) and proposed to use remediated soil from Cell 1 to fill the shell tanks excavation. LAI presented laboratory results of soil samples that were collected from landfarm Cell 1 to demonstrate that the soil has been remediated below the OCD closure concentration for benzene (0.2 mg/Kg), BTEX (50 mg/Kg), TPH by method SW-8015 including DRO and GRO (500 mg/Kg), TPH by method 418.1 (2,500 mg/Kg), volatile organic, semi volatile

organic and poly aromatic compounds presented in 20 NMAC 3103A. Chloride is soil samples from Cell 1 ranged from less than the method detection limit (<5.39 mg/Kg) to 283 mg/Kg.

LAI also presented the analytical results of metals samples that were tested using the synthetic precipitation leaching procedure (SPLP) by method SW-1311. Reported concentrations of chromium, copper, lead, manganese, selenium, zinc and mercury were below the human health and domestic water quality standards presented in 20 NMAC 3103A and 3103B. Iron was reported between 1.02 milligrams per liter (mg/L) and 1.91 mg/L and slightly exceeded the domestic water quality standard of 1.0 mg/L. The landfarm sample results were submitted to the OCD on March 8, 2010, in a report titled, *"2009 Surface Waste Management Annual Report, Eunice Gas Plant (GW-005) Lea County, New Mexico"*). A summary of laboratory treatment zone sample and SPLP results is presented in Table 2.

Targa proposes to line the bottom of the excavation with a 20-mil thick polyethylene liner and place a layer of clean "buffer" soil about 1-foot thick over the liner prior to filling the excavation to within 6 inches of ground surface with the soil from landfarm Cell 1. The last 6 inches will be covered with crushed caliche. Targa will provide at least 48-hours notification to the OCD prior to commencing closure activities and submit a final report, including a final C-141, to the OCD offices located in Santa Fe and Hobbs, New Mexico.

Your approval of this closure plan is requested. Please contact Mr. Cal Wrangham with Targa at 432.688.0452 or myself at 432.687.0901, if you have questions. We may also be reached by email at <u>CWrangham@targaresources.com</u> or <u>mark@laenvironmental.com</u>.

Sincerely, Larson & Associates, Inc.

Mark J. Larson, P.G., C.P.G., C.G.W.P. Senior Project Manager/President

Encl.

1. S. W. F.

1.0

1. 1. 24 c

6.6

Cc: Cal Wrangham – Targa James Lingnau – Targa Susan Ninan – Targa Larry Johnson – NMOCD District 1 Table 1

f. Const.

and the second second

Star Co

A affect

Server .

2.2.5

500 2 . 10

68 Jug 1

\$ 6 G &

2.8 6

A . 4. 8.

1 mar 10

A. 5. W.

Targa Midstream Services, L.P. Soil Analytical Data Summary Lea County, New Mexico Eunice Gas Plant

	Status Date	Benzene	Toluene	Ethyl benzene	Total Xylenes	Total BTEX	GRO C6-C12	DRO C12-C28	ТРН С6-С28	Chlorides
		0.2		-	1	50			1,000	250
Insitu 3/8/2010	010	0.0122	0.1139	0.2917	2.674	3.091	448	501	949	8.34
Insitu 3/8/2010	010	<0.0052	0.0271	0.2371	1.2679	1.5321	1,590	143	1,733	<4.32
Insitu 3/8/2010	010	<0.0133	0.2708	3.405	11.778	15.454	3,450	254	3,704	17.7
Insitu 3/8/2010	010	<0.0051	0.0214	0.1327	2.542	2.696	850	234	1,084	20.8
Insitu 3/8/2010	010	1		ļ	1	-	<16.6	25.3	25.3	13.2
Insitu 3/8/2010	010		1	l	1		<17.0	<17.0	<17.0	<9.50
Insitu 3/8/2010	10	1	1	l	1	1	<15.6	<15.6	<15.6	442
Excavated 3/8/2010	10	-	ł	l	1	1	106	1260	1,366	82.5
Excavated 3/8/2010	10		;	ł	1	1	93.7	1500	1,594	200
Insitu 4/29/2010	010	-	1	Į	1	ł	41.2	234	275.2	ł
Insitu 4/29/2010	010			ļ		1	35.1	88.2	123.3	ł
Insitu 4/29/2010	010	1	ł	ļ	1	ł	199	131	330	ł
Insitu 4/29/2010	010	1	ł	Į	1	1	412	1220	1,632	ł
Insitu 4/29/2010	010		1	1	1	1	173	877	1,050	•
Insitu 3/8/2010	010	-	ł	ł	1	1	22.4	54.2	77.6	1,100
Insitu 3/8/2010	010		1	1	1	1	<16.6	22.7	22.7	95.0

Notes

RAL - Regulatory Action Level

Total Petroleum Hydrocarbons analyzed via EPA SW Method 8015 Mod.

Chlorides analyzed via EPA Method 300.

All values reported in Milligrams per Kilogram - dry (mg/Kg, parts per million).

Depth reported in feet.

Bold indicates the analyte was detected.

Bold and blue indicates the value exceeds NMOCD requirements.

Table 2
Soil Closure Constituents - Treatment Zone Surface Waste Management Facility
Targa Midstream - Eunice Gas Plant
Lea County, New Mexico

. [4]

9

P I

	Parameter	Reporting Units	Closure Constituent	Cell 1A (0-1) 9/29/09		Closure Constituent	Cell 1B (0-1) 9/29/09		Closure Constituent	Cell 1C (0-1) 9/29/09		Cell 1C-1 (0-1) 9/29/09	
The ratio The ratio <t< td=""><td>Total Petroleum Hydrocartons</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Total Petroleum Hydrocartons												
	TPH - DRO	mg/Kg		215			22.4					274	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TPH - GRO			<0.0968			<0.0962			<0.100		<0.102	
There in The in 1200 0.200						500			500			271	
Barte Gampands Particle Company Particle Company <td>• •</td> <td></td>	• •												
Interven mg/kg 0.2 0.0.0023 - 0.2 0.0.0025 - 0.0.005 - 0.0.005 - 0.0.005 - 0.0.005 - 0.0.005 - 0.0.005 - 0.0.005 - 0.0.005 - 0.0.005 - 0.0.005 - 0.0.005 - 0.0.005 - 0.0.005 - 0.0.0016 </td <td></td>													
Bit Notescript mg/rg n cd0.0847 n n cd0.022 n n cd0.023 n d0.0023 d0.0016 n d0.0151 n		malka	0.2	<0.00202		0.2	<0.00204		0.2	<0.00295		<0.00293	
Tauk Peen mg/hz - <													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•												
Total Arts reging 90 cd.00020 - 50 cd.00020 - 500 cd.0020 - 500 cd.0000 - 500 cd.0000 - 500 cd.0000 - 500 cd.0000 cd.0000 Cell 12 (6-1) Deck (12 (6-1)) Deck (12 (6-1)) <thdeck (12="" (6-1))<="" th=""></thdeck>	Toluene	mg/Kg		<0.00487			<0.00507			<0.00492			
Digenic Graphic Generation Parameters Registry Chi Loi Markov Cell Loi Markov	Total Xylenes	mg/Kg		< 0.00487			<0.00507			<0.00492		<0.00488	
Openic Superior Openic Sup	Total BTEX	mg/Kg	50	< 0.00292		50	<0.00304		50	<0.00295		<0.00293	
Chiolas Import 500 457 - 500 637 - 500 781 - 783 -	Inorganic Compounds	<u> </u>						·	.		·····	······	
Persmettes Impeting Units Cell 3.6 (4) 2005 Cell 3.6 (4) 0.721/2009 Cell 3.6 (4) 0.721/2009 Cell 3.6 (4) 0.721/2009 Cell 3.6 (4) 0.721/2009 falls Organic Compound 11.12 - Technomene 1.12 - Technomene 1.12 - Technomene 1.12 - Technomene may fall 0.025 0.00101 - 0.025 0.0025 - 0.025 0.00205		mg/Kg	500	48.7		500	<5.39		500	283		19.0	
Parameters Packground Control 2006 Control 2007 Eactground Control 2007 Eactground Control 2007 Control 2007 <thcontrol 2007<="" th=""> <thcontrol 2007<="" th=""></thcontrol></thcontrol>													
Part Provide Dist 10/21/2009 Pack Provide Dist/1/2009 Pack Provide Dist/1/2009 Dist/1/2009 <td>_</td> <td>Reporting</td> <td></td> <td>Cell 1/</td> <td>A (0-1)</td> <td></td> <td>Cell 1</td> <td>B (0-1)</td> <td></td> <td>Cell 1</td> <td>C (0-1)</td> <td>Cell 10</td> <td>2-1 (0-1)</td>	_	Reporting		Cell 1/	A (0-1)		Cell 1	B (0-1)		Cell 1	C (0-1)	Cell 10	2-1 (0-1)
Diff: Date: Date: Date: Date: Date: 11.3): Finite Components mg//g 0.0023	Parameters	Units		10/21	/2009	-	10/21	/2009	-	10/21	/2009	10/21	1/2009
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Units	2006	10, 21	/ 2005	2006	20/22	., 2005	2006				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Volatile Organic Compounds												
1,1,2,7 chi/orestname mg/kg 40.023 -0.02149 40.025 -0.00249 40.025 -0.00149 40.014 1,1,2 her/chirorestname mg/kg 40.025 -0.00277 40.025 -0.0028 40.014 40.014 40.014 40.014 40.015 <		mg/Kg	<0.025	<0.00103		<0.025	<0.000975		<0.025	<0.00106		< 0.00104	
1.1.2-reh/rocethane mg/kg 40.023 -0.0023 -0.0027 - 40.025 -0.0026 - -0.0016 - </td <td></td>													
1.1.0.och/contine mg/kg 0.0023 0.0025 0.00106 0.00											1		
1.1-Deblorethere Carten transferride mg/kg 40.025 40.025 40.0075 - 40.025 40.0016 - 40.0016 - 1.3-Deblorethere Carten transferride mg/kg 40.05 40.0013 - 40.025 40.0016 - 40.0017 - 40.0017 - 40.0017 - 40.0017 - 40.0017 - 40.0017 - 40.0017 - 40.0017 - 40.0017 - 40.0017 - 40.0017 - 40.0017 - 40.0017 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></t<>									1				
1.2-Okhloreshner mg/kg 40.025 -0.0025 -0.0025 -0.0016 -0.0017	-												
1.2-Dethorsentume mg/rg 40.023 -0.023 -0.025 -0.0225 -0.0225 -0.0225 -0.0214 -0.025 -0.0214 -0.025 -0.0214 -0.0214 -0.0214 -0.0214 -0.0214 -0.0214 -0.0214 -0.0214 -0.0214 -0.0214 -0.0214 -0.0214 -0.0214 -0.0214 -0.0214 -0.0214 -0.0214	1,1-Dichloroethene	mg/Kg	<0.025	< 0.00103		<0.025	<0.000975		<0.025	<0.00106		<0.00104	
Carbon tetrachionede mg/kg 40.025 < < < < < < < < < < < < < < < < < < < <	-			<0.00103			<0.000975			<0.00106		<0.00104	
Charaform mig/kg do 0.25 do 0.013 do 0.25 do 0.05 do 0.016 do 0.017 do 0.017 <td>-</td> <td></td>	-												
Ethylene diacomide Methylene diacomide Tertenbrorshnee mg/rg mg/rg -0.0010 -0.0053 -0.0010 -0.0053 -0.0010 -0.0053 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.00100 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.00100 -0.0010 -0.001000 -0.00100 -0.001000													
Methylene chloride mg/kg 0.0253 0.00254 0.00253 0.00253 0.00253 0.00253 0.00254 0.00274 0.00274 0.00274 0.00274 0.00274 0.00177 0.0177 0.01775 0.01775 0.01726 0.00726 0.00727 0.02724 0.01777 0.01726 0.002724 0.00724 0.01724 0.01724 0.01724 0.01724 0.01724 0.01724 0.01724 0.01724 0.01724													1
Tertichlorechene mg/rg 0.025 0.0013 0.025 0.00075 0.025 0.00106 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0017 0.00								1					
Tricklovenhene my/kg cd.025 cd.00975 - cd.025 cd.00106 - cd.00106 - Unit chickle SFMI Ganguadi - cd.025 cd.000975 - cd.025 cd.00106 - cd.00107 - cd.00106 - cd.00106 - cd.00106 - cd.00106 - cd.00107	Methylene chloride		<0.025	<0.00514		<0.025							
Tricklovenhene my/kg cd.025 cd.00975 - cd.025 cd.00106 - cd.00106 - Unit chickle SFMI Ganguadi - cd.025 cd.000975 - cd.025 cd.00106 - cd.00107 - cd.00106 - cd.00106 - cd.00106 - cd.00106 - cd.00107	Tetrachloroethene	mg/Kg	<0.025	<0.00103		<0.025	<0.000975		<0.025	<0.00106		<0.00104	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Trichloroethene		<0.025	< 0.00103		<0.025	<0.000975		<0.025	<0.00106		< 0.00104	
Investigité 2 PMI Compound Investigité 2 PMI Compound Investigité 2 PMI Compound Investigité 2 PMI Compound L'Methylophthalene mg/Kg 0.13 0.0101 - 0.428 0.0102 - 0.0217 - 0.0206 - 0.0216 - 0.0216 - 0.0216 - 0.0216 - 0.0216 - 0.0216 - 0.0216 - 0.0216 - 0.0216 - 0.0217 - 0.02								[í
			(0.025	(0.00103	L	10.025	(0.000975		40.025	-0.00100		40.00104	
1-Methympinhalene mg/kg 0.13 0.0101 0.028 e.00102 0.0479 e.0.017 0.0203 Naphthalene mg/kg 0.2 0.0101 0.024 0.0275 0.0275 0.0275 0.0072 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 <								r					1
2-Methylaphtalene mg/kg													
2. Methynaphthalene mg/Kg < < < < < < < < < < < < < < < < <	1-Methylnaphthalene	mg/Kg	0.13	< 0.0101		0.428	<0.0102		0.0479	<0.0107		<0.0103	
Naghthileine 2,4,5 Trichlorophenol mg/kg 0 -0,010 0,0107 -0,0175 0,0176 -0,0176 -0,0175	2-Methylnaphthalene			< 0.0202			<0.0204			< 0.0214		<0.0206	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
2,4,6-Trichtorophenol mg/kg -0,0757 -0,0726 -0,0622 -0,0622 -0,0622 -0,0622 -0,0622 -0,0622 -0,0622 </td <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>()</td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>1</td> <td></td>					1	()				· · · · · · · · · · · · · · · · · · ·		1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1								1	
2.4-Dimethylphenol mg/Kg <0.0827		mg/Kg											
2.4-Dintrophenol mg/kg -	2,4-Dichlorophenol	mg/Kg		<0.062			<0.0649			<0.0622		<0.0619	
2.4-Dinitrophenol mg/kg 0.0622 0.0612 0.00512 0.00512 0.00514 0.00514 0.00516 0.00516 0.00516 0.00516 0.00516 0.00516 0.00516 0.00516 0.00516 0.00516 0.00516 0.00529 0.00523 0.0164 0.00523 0.0164 0.00535 0.0164	2,4-Dimethylphenol	mg/Kg		<0.0827			<0.0865			<0.0829		<0.0825	
2-Chlorophenol mg/kg -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< -< <th< td=""><td>2.4-Dinitrophenol</td><td></td><td></td><td>< 0.062</td><td></td><td></td><td><0.0649</td><td></td><td></td><td><0.0622</td><td></td><td><0.0619</td><td></td></th<>	2.4-Dinitrophenol			< 0.062			<0.0649			<0.0622		<0.0619	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•	mg/Kg						J	J J)
4.6-Dintro-2-methylphenol mg/kg < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	2-Methylphenol	mg/kg											
4-Choro-3-methylphenol mg/kg -<													
4-Mitrophenol mg/kg c0.135 c0.108 c0.104 c0.104 c0.103 c0.104 c0.104 c0.104 c0.104 c0.104 c0.105 c0.0619 c0.0528 c0.0186 c0.0535 c0.0542	4,6-Dinitro-2-methylphenol	mg/Kg		<0.0827			<0.0865			<0.0829		<0.0825	
4-Mitrophenol mg/kg c0.135 c0.108 c0.104 c0.104 c0.103 c0.104 c0.104 c0.104 c0.104 c0.104 c0.105 c0.0619 c0.0528 c0.0186 c0.0535 c0.0542	4-Chloro-3-methylphenol	mg/Kg		<0.062			<0.0649			<0.0622		< 0.0619	
4-Nitrophenol mg/kg < 0.145 < 0.0151 < 0.043 < 0.043 < 0.043 < 0.0928 < 0.0928 < 0.0928 < 0.0622 < 0.0622 < 0.0616 < 0.0616 < 0.0616 < 0.0616 < 0.0517 < 0.0518 < 0.0518 < 0.0516 < 0.0516 < 0.0516 < 0.0516 < 0.0516 < 0.0516 < 0.0516 < 0.0516 < 0.0516 < 0.0516 < 0.0516 < 0.0512 < 0.0512 < 0.0512 < 0.0512 < 0.0512 < 0.0512 < 0.0512 < 0.0542 < 0.0542 < 0.0542 < 0.0542 < 0.0542 < 0.0542 < 0.0542 < 0.0542 < 0.0542 < 0.0542	4-Methylphenol			<0.103			<0.108			<0.104		<0.103	
Pench mg/Kg <0.033 <0.0933 <0.0933 <0.0933 <0.0933 <0.0933 <0.0933 <0.0933 <0.0933 <0.0933 <0.0933 <0.0933 <0.0933 <0.0933 <0.0933 <0.0933 <0.0933 <0.0933 <0.0061 <0.0051 <0.0051 <0.0051 <0.0051 <0.0051 <0.0051 <0.0053 <0.0054 <0.0184 <0.0528 <0.0186 <0.0535 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0562 <0.056	• •												
Phenol mg/kg c0.0517 c0.0549 c0.0522 c0.0519 B Compounds	•												
Total Phenols mg/Kg <0.05 <0.0517 - <0.05 <0.0541 <0.05 <0.0518 <0.0516 B compounds Ancolor 1016 mg/Kg <0.0321	•												
B Compounds													1
Arodor 1016 mg/Kg		mg/Kg	<0.05	<0.0517		<0.05	< 0.0541		<0.05	<0.0518		<0.0516	
Arocior 1221 mg/Kg <0.0321 <0.0049 <0.0184 <0.0528 <0.0186 <0.0535 <0.0542 Arocior 1232 mg/Kg <0.0321													
Aroclor 1221 mg/kg c0.0321 c0.0049 c0.0184 c0.0528 c0.0186 c0.0535 c0.0542 Aroclor 1242 mg/kg c0.0321 c0.0049 c0.0184 c0.0528 c0.0186 c0.0535 c0.0542 Aroclor 1248 mg/kg c0.0321 c0.0049 c0.0184 c0.0528 c0.0186 c0.0535 c0.0542 Aroclor 1250 mg/kg c0.0321 c0.0049 c0.0184 c0.0528 c0.0186 c0.0535 c0.0542 Aroclor 1260 mg/kg c0.0321 c0.0049 c0.0184 c0.0528 c0.0186 c0.0535 c0.0542 Aroclor 1260 mg/kg c0.0321 c0.0049 c0.0184 c0.0528 c0.0186 c0.0535 c0.0542 Aroclor 1260 mg/kg<	Aroclor 1016	mg/Kg	<0.0321	<0.0049		<0.0184	<0.0528		<0.0186	<0.0535		<0.0542	
Aroclor 1232 mg/Kg <0.0321 <0.0049 <0.0184 <0.0528 <0.0186 <0.0335 <0.0542 Aroclor 1242 mg/Kg <0.0321												1	
Aroclor 1242 mg/Kg <0.0321 <0.0049 <0.0184 <0.0528 <0.0186 <0.0355 <0.0542 Aroclor 1254 mg/Kg <0.0321			}										
Aroclor 1248 mg/Kg <0.0321 <0.0049 <0.0184 <0.0528 <0.0186 <0.0535 <0.0542 Arochor 1254 mg/Kg <0.0321 <0.0049 <0.0184 <0.0528 <0.0186 <0.0535 <0.0542 etals Total SPLP Total SPLP <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						1							
Aroclor 1254 Aroclor 1260 mg/Kg <0.0321 <0.0049 <0.0184 <0.0528 <0.0186 <0.0535 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0542 <0.0345 <0.0542 <0.0345 <0.056 <0.029 <0.													
Aroclor 1260 mg/Kg <0.0321 <0.0049 <0.0184 <0.0528 <0.0186 <0.0535 <0.0542 etais Total SPLP Total <td></td>													
Total SPLP Total SPLP <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Arsenic mg/Kg 7.02 4.12 2.94 2.65 2.87 1.90 2.34 Barium mg/Kg 133 84.4 157 102 116 59.8 48.5 Cadmium mg/Kg 0.405 0.296 <0.346		mg/Kg	<0.0321			<0.0184			<0.0186	<0.0535		<0.0542	
Arsenic mg/kg 7.02 4.12 2.94 2.65 2.87 1.90 2.34 Barium mg/kg 133 84.4 157 102 116 59.8 48.5 Cadmium mg/kg 0.405 0.296 <0.346	Metals			Total	SPLP		Total	SPLP		Total	SPLP	Total	SPLP
Barium mg/Kg 133 84.4 157 102 116 59.8 48.5 Cadmium mg/Kg 0.405 0.296 <0.346	Arsenic	mg/Kg	7.02			2.94			2.87				
Cadmium mg/Kg 0.405 0.296 <0.346 0.309 <0.346 <0.104 <0.0978 Chromium mg/Kg 4.68 16.9 0.00443 80 14.5 7.48 9.18 <0.002						((1		(
Chromium mg/Kg 4.68 16.9 0.00443 80 14.5 7.48 9.18 <0.002 11.0 0.00206 Copper mg/Kg 4.9 39.4 0.0219 21.4 8.44 4.08 3.97 4.13 0.002 Iron mg/Kg 3480 5880 1.48 4100 5770 1.91 4910 7010 0.102 7150 1.37 Lead mg/Kg 4.30 13.1 0.00363 49.1 6.04 3.16 3.86 0.0003 4.27 0.0014 Manganese mg/Kg 1.93 0.493 0.506 0.526 <0.002 <1.50 0.544 0.611 Silver mg/Kg 0.29 <0.091 0.242 <0.107 0.235 <0.104 0.611 Uranium mg/Kg 0.290 -1 0.242 <0.107 2.05<													
Copper mg/kg 4.9 39.4 0.0219 21.4 8.44 4.08 3.97 4.13 0.002 Iron mg/kg 3480 5880 1.48 4100 5770 1.91 4910 7010 0.102 7150 1.37 Lead mg/kg 4.30 13.1 0.00363 49.1 6.04 3.16 3.86 <0.003													
Iron mg/kg 3480 5880 1.48 4100 5770 1.91 4910 7010 0.102 7150 1.37 Lead mg/kg 4.30 13.1 0.00363 49.1 6.04 3.16 3.86 <0.0033											<0.002		0.00206
Iron mg/kg 3480 5880 1.48 4100 5770 1.91 4910 7010 0.102 7150 1.37 Lead mg/kg 4.30 13.1 0.00363 49.1 6.04 3.16 3.86 <0.0003	Copper		4.9			21.4	8.44		4.08	3.97		4.13	0.002
Lead mg/kg 4.30 13.1 0.00363 49.1 6.04 3.16 3.86 <0.0033 4.27 0.00104 Manganese mg/kg 39 63.0 0.0183 75.7 57.3 72.8 56.8 74.2 0.00938 Selenium mg/kg 1.93 0.493 0.506 0.526 <0.002	Iron	mg/Kg	3480	5880	1.48	4100	5770	1.91	4910	7010	0.102		
Manganese mg/Kg 39 63.0 0.0183 75.7 57.3 72.8 56.8 74.2 0.00938 Selenium mg/Kg 1.93 0.493 0.506 0.526 <0.002													
Selenium mg/Kg 1.93 0.493 0.506 0.526 <0.002 <1.50 0.544 0.611 Silver mg/Kg 0.29 <0.091 0.242 <0.107 0.235 <0.104 <0.0978 Uranium mg/Kg <5 <0.91 <1.07 <5.59 <1.04 <0.978 Zinc mg/Kg 0.11 81.9 0.0304 50.1 28.9 20.5 15.7 17.6 Mercury mg/Kg 0.3305 1.11 0.000357 0.1308 0.141 <0.0008 0.06681 0.0365 0.0595 Organic Compounds													
Silver mg/Kg 0.29 <0.091 0.242 <0.107 0.235 <0.104 <0.0978 Uranium mg/Kg <5	-									1			
Uranium mg/Kg <5 <0.91 <1.07 <5.59 <1.04 <0.978 Zinc mg/Kg 21.1 81.9 0.0304 50.1 28.9 20.5 15.7 17.6 Mercury mg/Kg 0.02505 1.11 0.000357 0.1308 0.141 <0.0008				-								I	
Zinc Mercury mg/Kg mg/Kg 21.1 0.02505 81.9 1.11 0.0304 0.000357 50.1 0.1308 28.9 0.141 20.5 0.06681 15.7 0.0365 17.6 0.0595 organic Compounds mg/Kg 5.35 2.94 12.8 2.3 5.66 2.14 2.97 Nitrate-N Sulfate* mg/Kg 2.47 18.4 2.66 <5.39 0.835 <5.39 <5.26 Sulfate* mg/Kg 600 205 600 139 <0.09 <0.204 <0.209 <0.209 <0.209 <0.209 <0.209 <0.099 <0.204 <0.099 <0.204 <0.099 <0.204 <0.099 <0.204 <0.099 <0.204 <0.099 <0.204 <0.099 <0.204 <0.099 <0.204 <0.209 <0.209 <0.209 <0.209 <0.209 <t< td=""><td></td><td></td><td></td><td>1</td><td></td><td>0.242</td><td></td><td></td><td></td><td></td><td></td><td><0.0978</td><td></td></t<>				1		0.242						<0.0978	
Zinc Mercury mg/Kg mg/Kg 21.1 0.02505 81.9 1.11 0.0304 0.000357 50.1 0.1308 28.9 0.141 20.5 0.06681 15.7 0.0365 17.6 0.0595 organic Compounds mg/Kg 5.35 2.94 12.8 2.3 5.66 2.14 2.97 Nitrate-N Sulfate* mg/Kg 2.47 18.4 2.66 <5.39 0.835 <5.39 <5.26 Sulfate* mg/Kg 600 205 600 139 <0.09 <0.204 <0.209 <0.209 <0.209 <0.209 <0.209 <0.099 <0.204 <0.099 <0.204 <0.099 <0.204 <0.099 <0.204 <0.099 <0.204 <0.099 <0.204 <0.099 <0.204 <0.099 <0.204 <0.209 <0.209 <0.209 <0.209 <0.209 <t< td=""><td>Uranium</td><td>mg/Kg</td><td><5</td><td><0.91</td><td></td><td></td><td><1.07</td><td></td><td><5.59</td><td><1.04</td><td></td><td><0.978</td><td></td></t<>	Uranium	mg/Kg	<5	<0.91			<1.07		<5.59	<1.04		<0.978	
Mercury mg/Kg 0.02505 1.11 0.000357 0.1308 0.141 <0.0008 0.06681 0.0365 0.0595 organic Compounds Fluoride mg/Kg 5.35 2.94 12.8 2.3 5.66 2.14 2.97 Nitrate-N mg/Kg 2.47 18.4 2.66 <5.39	Zinc				0.0304	50.1						1	
Fluoride mg/Kg 5.35 2.94 12.8 2.3 5.66 2.14 2.97 Nitrate-N mg/Kg 2.47 18.4 2.66 <5.39													
Fluoride mg/Kg 5.35 2.94 12.8 2.3 5.66 2.14 2.97 Nitrate-N mg/Kg 2.47 18.4 2.66 <5.39		ö' 'ö			2.0000007	_ 3.1300	V74		0.00001	3.0303		0.0393	
Nitrate-N mg/Kg 2.47 18.4 2.66 <5.39 0.835 <5.39 <5.26 Sulfate* mg/Kg 600 205 600 139 600 3400 255 Cyanide, Total mg/Kg <0.09													
Sulfate* mg/Kg 600 205 600 139 600 3400 255 Cyanide, Total mg/Kg <0.09													
Sulfate* mg/Kg 600 205 600 139 600 3400 255 Cyanide, Total mg/Kg <0.09			2.47	18.4		2.66	<5.39		0.835	<5.39		<5.26	
Cyanide, Total mg/Kg <0.09 <0.204 <0.09 <0.2 <0.09 <0.204 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <0.209 <td>Sulfate*</td> <td></td> <td>600</td> <td>205</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Sulfate*		600	205									
dioactivity Radium 226 & Radium 228 pCi/gm <1.51 <1.68 <1.55 <1.62													
Radium 226 & Radium 228 pCi/gm <1.51 <1.68 <1.55 <1.62		0, 0										0.205	
		nCi/am	r	21 61			×1 C0		·	24 FF			
Notes		PCIAN		1.21			<1.00			<1.55		<1.62	

Analyses performed by DHL Analytical, Round Rock, Texas Radioactivity analysis was performed by Environmental Laboratory of Texas, Odessa, Texas

AND AND AND AND AND AND AND AND AND

mg/Kg - milligrams per kilogram

< - Less than method detection limit * - Acceptable PQL

SPLP 0.00206 0.002 **1.37** 0.00104 0.00938 ł ; Cell 1C-1 (0-1) 10/21/2009 11.0 4.13 7,150 4.27 74.2 Total ł ł 0.102 <0.0003 <0.002 SPLP ł ł ł Cell 1C (0-1) 10/21/2009 --7,010 3.86 9.18 Total ł ł <0.002 .. 1.91 SPLP ł ł ; 10/21/2009 Cell 1B (0-1) 0.526 ----5,770 Total ł ł 0.00443 0.0219 **1.48** 0.00363 0.0183 SPLP ; Cell 1A (0-1) 10/21/2009 16.9 39.4 5,880 13.1 Total 63.0 ! Industrial 100,000 45,400 100,000 SSL Residential SSL WQCC Manganese Selenium Parameters Zinc Mercury Chromium Copper lron Lead Metals

Notes

Analyses performed by DHL Analytical, Round Rock, Texas

mg/Kg - milligrams per kilogram mg/L - milligrams per liter

< - Less than method detection limit

Page 3 of 3

4 0 E Service State 148 P 0

R. 4000 -

1 . W. B. . B.

Part and a start

States and

The start

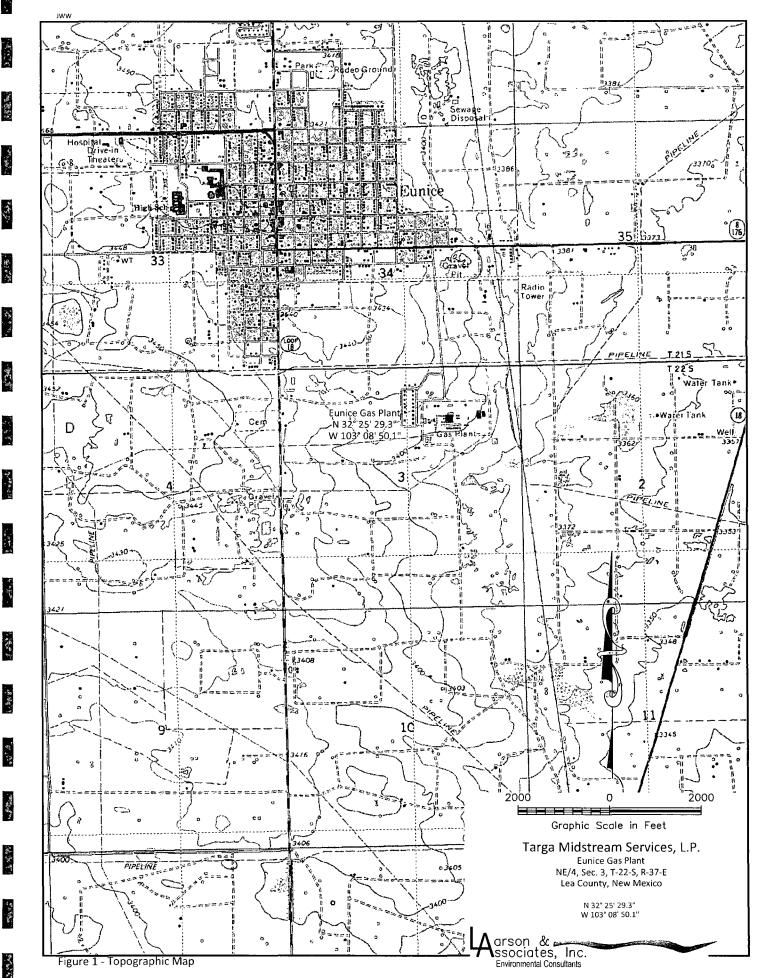
id Al

1

10 00 K

1.58%

Table 2


Soil Closure Constituents - Treatment Zone Surface Waste Management Facility Targa Midstream - Eunice Gas Plant Lea County, New Mexico

; 1 <0.00008 ł 0.141 ; 0.0304 0.000357 81.9 1.11 800 48,400 5,680 100,000 68.4 100,000 3,130 23,500 400 3,590 391 23,500 6.11 0.05 1.0 1.0 0.05 0.2 0.05 10 0.002

1. 105 5 1. B.

En co vipit

S. 1. 1. 1.

「日間の

- - ARE - 344

1997

. e. .

Brage B

1.000

Mr. 7 10

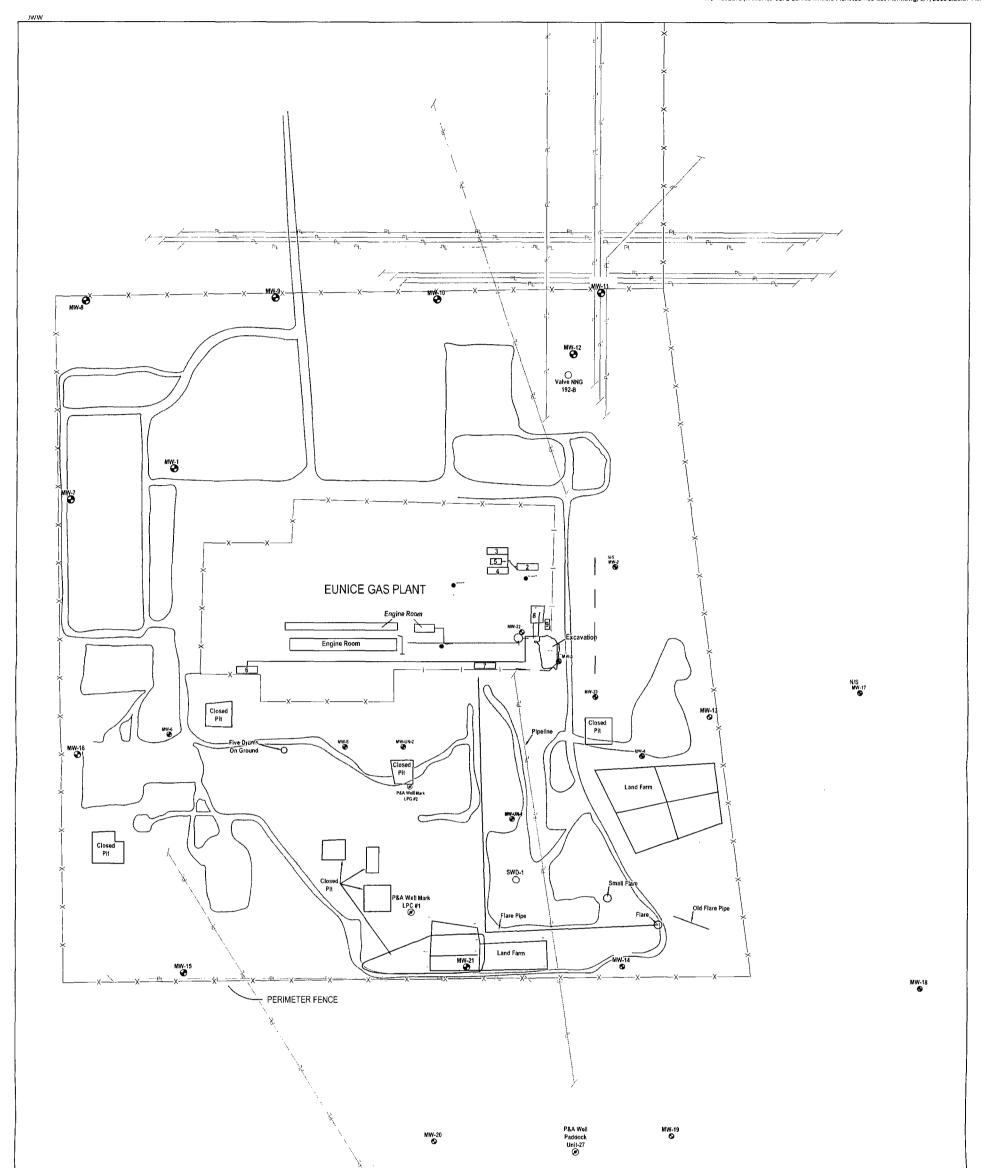
1. 3. B. S.

\$8.8°C

*47 E

18 N W

Contraction of the


10 and 10

14

1.4 - 5

1

111

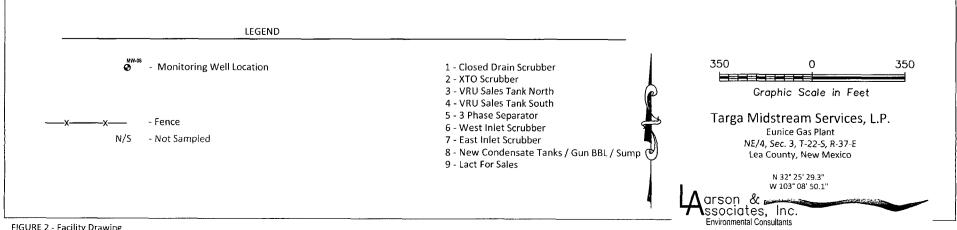


FIGURE 2 - Facility Drawing

there is a

l dage

1日

Sec. 4

13

. 6.2 2

FIGURE 3 - Aerial Photo

12 94

机振力

L. Le

影.

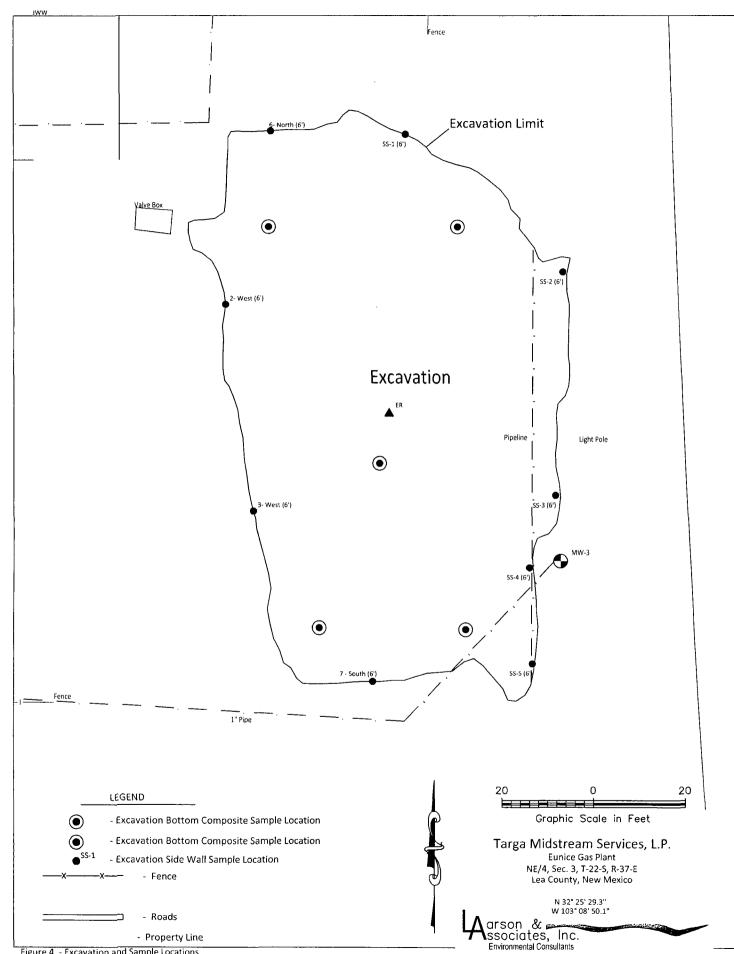


Figure 4 - Excavation and Sample Locations

Chavez, Carl J, EMNRD

From: C	havez, Carl J	, EMNRD
---------	---------------	---------

Sent: Thursday, July 31, 2008 4:22 PM

To: Lingnau, James A.

Cc: Johnson, Larry, EMNRD

Subject: FW: Eunice Plant (GW-005) Separator C 141 Release of Condensate & Water in Plant Condensate Handling Area

James:

FYI.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3491 Fax: (505) 476-3462 E-mail: <u>Carl J.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

From: Chavez, Carl J, EMNRD
Sent: Thursday, July 31, 2008 4:18 PM
To: Johnson, Larry, EMNRD; 'Embrey, Donald M'
Cc: Price, Wayne, EMNRD
Subject: RE: Eunice Plant (GW-005) Separator C 141 Release of Condensate & Water in Plant Condensate Handling Area

Don:

Good afternoon. By receipt of this e-mail, please submit C-141s to the OCD Santa Fe Office (see discharge permit for name of contact) with a copy to the District Office from now on. This C-141 will be filed on OCD Online under the "C-141s" thumbnail at <u>http://ocdimage.emnrd.state.nm.us/imaging/AEOrderFileView.aspx?</u> appNo=pENV000GW00005.

The OCD requires photos of the base of excavation; BTEX and chloride samples from the base of the excavation for verification of remediation; and C-138 confirming the final disposition of the excavated contaminated soil. Targa shall provide a plan for addressing this pigging incident in the future including, which could include installation of a liner system or other approved secondary containment at the separator. Environmental sampling and analytical test methods and data results shall comply with EPA environmental procedures. Submit final C-141 report in 30 days.

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3491 Fax: (505) 476-3462 E-mail: <u>Carl J. Chavez@state.nm.us</u> Website: <u>http://www.emrrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications") From: Johnson, Larry, EMNRD Sent: Thursday, July 31, 2008 2:51 PM To: Chavez, Carl J, EMNRD Subject: FW: Eunice Plant Separator C 141

From: Embrey, Donald M [mailto:DEmbrey@targaresources.com]
Sent: Wednesday, July 30, 2008 6:52 AM
To: Johnson, Larry, EMNRD
Cc: Wrangham, Calvin W.
Subject: Eunice Plant Separator C 141

Larry,

Sec. 4

Please find attached the C 141 on the incident we discussed yesterday on the phone. If you have any questions please let me know. Thanks Don

This inbound email has been scanned by the MessageLabs Email Security System.

Analytical Report 364825

for

Larson & Associates

Project Manager: Michelle Green

Eunice Gas Plant

9-0138

19-MAR-10

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL00449): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295)

19-MAR-10

Project Manager: Michelle Green Larson & Associates P.O. Box 50685 Midland, TX 79710

Reference: XENCO Report No: 364825 Eunice Gas Plant Project Address:

Michelle Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 364825. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 364825 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

. . .

б, т.

Sample Cross Reference 364825

Larson & Associates, Midland, TX

Eunice Gas Plant

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
1-Bottom	S	Mar-08-10 12:15		364825-001
2-West	S	Mar-08-10 11:20		364825-002
3-West	S	Mar-08-10 10:50		364825-003
4-East	S	Mar-08-10 11:30		364825-004
5-East	S	Mar-08-10 11:45		364825-005
6-North	S	Mar-08-10 10:00		364825-006
7-South	S	Mar-08-10 10:30		364825-007

Client Name: Larson & Associates Project Name: Eunice Gas Plant

Project ID:9-0138Work Order Number:364825

Report Date: 19-MAR-10 Date Received: 03/08/2010

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-797747 Percent Moisture AD2216A Batch 797747, Percent Moisture RPD is outside the QC limit. This is most likely due to sample non-homogeneity. Samples affected are: 364825-001, -002, -004, -006, -005, -007, -003.

Batch: LBA-797950 TPH By SW8015 Mod SW8015MOD_NM

Batch 797950, C12-C28 Diesel Range Hydrocarbons, C6-C12 Gasoline Range Hydrocarbons recovered below QC limits in the Matrix Spike. Samples affected are: 364825-001, -002, -004, -006, -005, -007, -003. The Laboratory Control Sample for C12-C28 Diesel Range Hydrocarbons, C6-C12 Gasoline Range Hydrocarbons is within laboratory Control Limits

SW8015MOD_NM

Batch 797950, C12-C28 Diesel Range Hydrocarbons, C6-C12 Gasoline Range Hydrocarbons RPD was outside QC limits. Samples affected are: 364825-001, -002, -004, -006, -005, -007, -003

Batch: LBA-798911 Inorganic Anions by EPA 300 E300MI Batch 798911, Chloride RPD is outside the QC limit. This is most likely due to sample nonhomogeneity. Samples affected are: 364825-001, -002, -004, -006, -005, -007, -003.

ENCO boratories
۶×

Certificate of Analysis Summary 364825 Larson & Associates, Midland, TX

Project Name: Eunice Gas Plant

Project Id: 9-0138 Contact: Michelle Green

Date Received in Lab: Mon Mar-08-10 04:25 pm Report Date: 19-MAR-10

					Project Manager: 1	Brent Barron, II	
	Lab Id:	364825-001	364825-002	364825-003	364825-004	364825-005	364825-006
Audicio Damastad	Field Id:	1-Bottom	2-West	3-West	4-East	5-East	6-North
naisanhay sistimuy	Depth:						
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Mar-08-10 12:15	Mar-08-10 11:20	Mar-08-10 10:50	Mar-08-10 11:30	Mar-08-10 11:45	Mar-08-10 10:00
Anions by E300	Extracted:						
	Analyzed:	Mar-17-10 15:22	Mar-17-10 15:22	Mar-17-10 15:22	Mar-17-10 15:22	Mar-17-10 15:22	Mar-17-10 15:22
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride		13.2 4.68	ND 9.50	442 43.8	82.5 17.4	200 8.83	1100 21.8
Percent Moisture	Extracted:						
	Analyzed:	Mar-10-10 17:00	Mar-10-10 17:00	Mar-10-10 17:00	Mar-10-10 17:00	Mar-10-10 17:00	Mar-10-10 17:00
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		10.2 1.00	11.6 1.00	4.17 1.00	3.36 1.00	4.82 1.00	3.61 1.00
TPH By SW8015 Mod	Extracted:	Mar-10-10 11:00	Mar-10-10 11:00	Mar-10-10 11:00	Mar-10-10 11:00	Mar-10-10 11:00	Mar-10-10 11:00
	.4nalyzed:	Mar-12-10 07:53	Mar-12-10 08:25	· Mar-12-10 08:55	Mar-12-10 14:59	Mar-12-10 15:28	Mar-12-10 15:59
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C12 Gasoline Range Hydrocarbons		ND 16.6	ND 17.0	ND 15.6	106 77.5	93.7 79.2	22.4 15.5
C12-C28 Diesel Range Hydrocarbons		25.3 16.6	ND 17.0	ND 15.6	1260 77.5	1500 79.2	54.2 15.5
C28-C35 Oil Range Hydrocarbons		ND 16.6	ND 17.0	ND 15.6	232 77.5	132 79.2	78.6 15.5
Total TPH		25.3 16.6	ND 17.0	ND 15.6	1598 77.5	1726 79.2	155.2 15.5

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and the entire data marking in the analytical report represent the beel judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Odessa Laboratory Manager Brent Barron, II

Final Ver. 1.000

Q ë
XEN

Certificate of Analysis Summary 364825

Project Id: 9-0138 Contact: Michelle Green

Project Location:

Date Received in Lab: Mon Mar-08-10 04:25 pm Report Date: 19-MAR-10 Protect Manager: Brent Barron 11

	Lab Id:	364825-007		
Analysis Donnoctod	Field Id:	7-South		
naicanhay erefinity	Depth:		 	
	Matrix:	SOIL	 	
	Sampled:	Mar-08-10 10:30		
Anions by E300	Extracted:			
	Analyzed:	Mar-17-10 15:22	 	
	Units/RL:	mg/kg RL		
Chloride		95.0 9.32		
Percent Moisture	Extracted:			
	Analyzed:	Mar-10-10 17:00		
	Units/RL:	% RL	 	
Percent Moisture		9.84 1.00		
TPH By SW8015 Mod	Extracted:	Mar-10-10 11:00		
	Analyzed:	Mar-12-10 16:31	 	
	Units/RL:	mg/kg RL		
C6-C12 Gasoline Range Hydrocarbons		ND 16.6		
C12-C28 Diesel Range Hydrocarbons		22.7 16.6		
C28-C35 Oil Range Hydrocarbons		ND 16.6		
Total TPH		22.7 16.6		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressibling mandyrical report represent the best judgment of XTENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warramy to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Odessa Laboratory Manager Brent Barron, II

Final Ver. 1.000

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America Phone Fax

	Phone	Fax
4143 Greenbriar Dr. Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West 1-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Form 2 - Surrogate Recoveries

Project Name: Eunice Gas Plant

Vork Orders : 364825 Lab Batch #: 797950	5, Sample: 552886-1-BKS / Bl	KS Patr	Project II ch: ¹ Matrix:			
Lab Batch #: 797930 Units: mg/kg	Sample: 332880-1-BK37B Date Analyzed: 03/12/10 06:18		JRROGATE RI		STUDY	
	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		1
1-Chlorooctane		101	99.6	101	70-135	
o-Terphenyl		47.8	49.8	96	70-135	<u> </u>
Lab Batch #: 797950	Sample: 552886-1-BSD / B3	SD Bate	ch: l Matrix:	:Solid		
Units: mg/kg	Date Analyzed: 03/12/10 06:50	SU	JRROGATE RI	ECOVERY !	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Anarytes	104	100	104	70-135	
o-Terphenyl		48.8	50.2	97	70-135	i
L	S 557886 1-BLK / B	1	<u> </u>	<u> </u>	/****	
Lab Batch #: 797950	Sample: 552886-1-BLK / B Date Analyzed: 03/12/10 07:21		ch: 1 Matrix: JRROGATE RI		STUDY	
Units: mg/kg		1		<u> </u>		
ТРН І	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		I
I-Chlorooctane		101	99.7	101	70-135	I
o-Terphenyl		58.3	49.9	117	70-135	
Lab Batch #: 797950	Sample: 364825-001 / SMP	Bate	ch: 1 Matrix:	: Soil		_
Units: mg/kg	Date Analyzed: 03/12/10 07:53	SU	JRROGATE RE	ECOVERY	STUDY	
трн і	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		75.5	99.6	76	70-135	
o-Terphenyl		42.9	49.8	86	70-135	í
Lab Batch #: 797950	Sample: 364825-002 / SMP	, Bate	ch: ¹ Matrix:		<u> </u>	
Units: mg/kg	Date Analyzed: 03/12/10 08:25		JRROGATE RE		STUDY	<u></u>
	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Allalytes	70.3	100		70.125	
o-Terphenyl		38.3	50.2	70	70-135	i
o respicency.		1 20.0	50.2	1 10	1 10-135 1	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Form 2 - Surrogate Recoveries

Project Name: Eunice Gas Plant

Vork Orders : 364825,			Project II			
Lab Batch #: 797950	Sample: 364825-003 / SMP	Batch	h: Matrix: RROGATE RE		STUDV	
Units: mg/kg	Date Analyzed: 03/12/10 08:55 By SW8015 Mod	Amount	True		Control	Ph
		Found [A]	Amount [B]	Recovery %R	Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		101	99.7	101	70-135	
o-Terphenyl		57.8	49.9	116	70-135	
Lab Batch #: 797950	Sample: 364825-004 / SMP	Batch	h: 1 Matrix:	Soil		
Units: mg/kg	Date Analyzed: 03/12/10 14:59	SU	RROGATE RE	ECOVERY	STUDY	
ТРН І	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Anarytes	92.6	99.8	93	70-135	
o-Terphenyl		52.8	49.9	106	70-135	
Lab Batch #: 797950	Sample: 364825-005 / SMP				1	
Units: mg/kg	Date Analyzed: 03/12/10 15:28	Batch: 1 Matrix: Soil SURROGATE RECOVERY STUDY				
[Amount	True		Control	
1101	By SW8015 Mod Analytes	Found [A]	Amount [B]	Recovery %R D	Limits %R	Flags
1-Chlorooctane		84.0	101	83	70-135	
o-Terphenyl		48.2	50.3	96	70-135	
Lab Batch #: 797950	Sample: 364825-006 / SMP	Batcl	h: Matrix:	:Soil	, ,	
Units: mg/kg	Date Analyzed: 03/12/10 15:59	SU	RROGATE RI	ECOVERY	STUDY	
ТРН І	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		105	99.8	105	70-135	
o-Terphenyl		60.2	49.9	121	70-135	
Lab Batch #: 797950	Sample: 364825-007 / SMP		h: 1 Matrix:			
Units: mg/kg	Date Analyzed: 03/12/10 16:31	SU	RROGATE RE	ECOVERY S	STUDY	
ТРН І	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		87.5	99.7	88	70-135	
o-Terphenyl		50.0	49.9	100	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

.

Surrogate Recovery [D] = 100 * A / B

Form 2 - Surrogate Recoveries

Project Name: Eunice Gas Plant

Vork Orders : 364825 Lab Batch #: 797950	, Sample: 364825-001 S / MS		h: ¹ Matrix			
Units: mg/kg	Date Analyzed: 03/13/10 00:28	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		70.1	99.8	70	70-135	
o-Terphenyl	****	35.3	49.9	71	70-135	
Lab Batch #: 797950	Sample: 364825-001 SD / N	ASD Bate	h: 1 Matrix	x: Soil		
Units: mg/kg	Date Analyzed: 03/13/10 01:00	SU	RROGATE R	ECOVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		104	100	104	70-135	
o-Terphenyl		49.0	50.0	98	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

1.4.1

Project Name: Eunice Gas Plant

Work Order #: 364825		Рі	roject ID:			9-0138
Lab Batch #: 798911 Date Analyzed: 03/17/2010	Sample: 798911 Date Prepared: 03/17/2		Matrix: Analyst:	: Solid : LATCOR	ξ.	
Reporting Units: mg/kg	Batch #: 1	BLANK /	BLANK SPI	KE REC	COVERY S	STUDY
Anions by E300	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes	[A]	[B]	Result [C]	%R D]	%R	
Chloride	ND	10.0	10.4	104	75-125	

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

. .

BS / BSD Recoveries

5. 0. 5

1.44

19

9 8 B

. 3° 7.7

Project Name: Eunice Gas Plant

Work Order #: 364825 Analyst: BEV Lab Batch ID: 797950 Sample: 552886-1-BKS Units: mg/kg B

Date Prepared: 03/10/2010

Batch #:]

Project ID: 9-0138 Date Analyzed: 03/12/2010 Matrix: Solid

TPH By SW8015 Mod Blank Spike Blank Blank Blank Sample Result Added Spike Spike Spike Analytes [A] [B] [C] [D] C6-C12 Gasoline Range Hydrocarbons ND 996 955 96	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	LANK SI	PIKE DUPL	ICATE F	RECOVE	RY STUD	Å	
IB IC ND 996 955		Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
ND 996 955		Ξ	Result [F]	<u>5</u>				
	96	1000	959	96	0	70-135	35	
C12-C28 Diesel Range Hydrocarbons ND 996 868 87	87	1000	820	82	6	70-135	35	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes Page 12 of 17

Form 3 - MS Recoveries

Project Name: Eunice Gas Plant

Work Order #: 364825

Lab	Batch #:	798911
1.744 1.7	Date: // /	770711

Project ID: 9-0138

Date Analyzed: 03/17/2010	Date Prepared: 03/17/2	010	А	nalyst: L	ATCOR	
QC- Sample ID: 364841-056 S	Batch #: 1		1	Matrix: S	oil	
Reporting Units: mg/kg	MATRIX	K / MAT	RIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300		Spike Added	Spiked Sample Result C	%R [D]	Control Limits %R	Flag
Analytes	[A]	[B]				
Chloride	857	431	1280	98	75-125	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $[E] = 200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries C. Bangar J - Service and 生感我狂。 a Static B. M. W.

1887 S. S. S.

N. 4. 1. 1. 1.

S.

and the second

いいまま

holes Si

「田田町町

1.285

い 読い ひょう

S. S. S. S. S.

1. 10 . E.

Project ID: 9-0138

Project Name: Eunice Gas Plant

QC-Sample ID: 364825-001 S Date Prepared: 03/10/2010

Date Analyzed: 03/13/2010

Work Order #: 364825 Lab Batch ID: 797950

Matrix: Soil -BEV Batch #: Analyst:

Reporting Units: mg/kg		W	ATRIX SPIKI	E/MAT	RIX SPH	<u>MATRIX SPIKE / MATRIX SPIKE DUPLICATE_RECOVERY STUDY</u>	FE RECO	DVERY S	STUDY		
TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Spiked Du Result Sample Spike Spike	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Kesult [A]	Added [B]	<u>5</u>	10]	Added [E]	Result [F]	<u>د</u> ۲	%	%К	%KPD	
C6-C12 Gasoline Range Hydrocarbons	DN	1110	626	56	1110	1060	95	51	70-135	35	XF
C12-C28 Diesel Range Hydrocarbons	25.3	1110	474	40	1110	608	11	52	70-135	35	XF

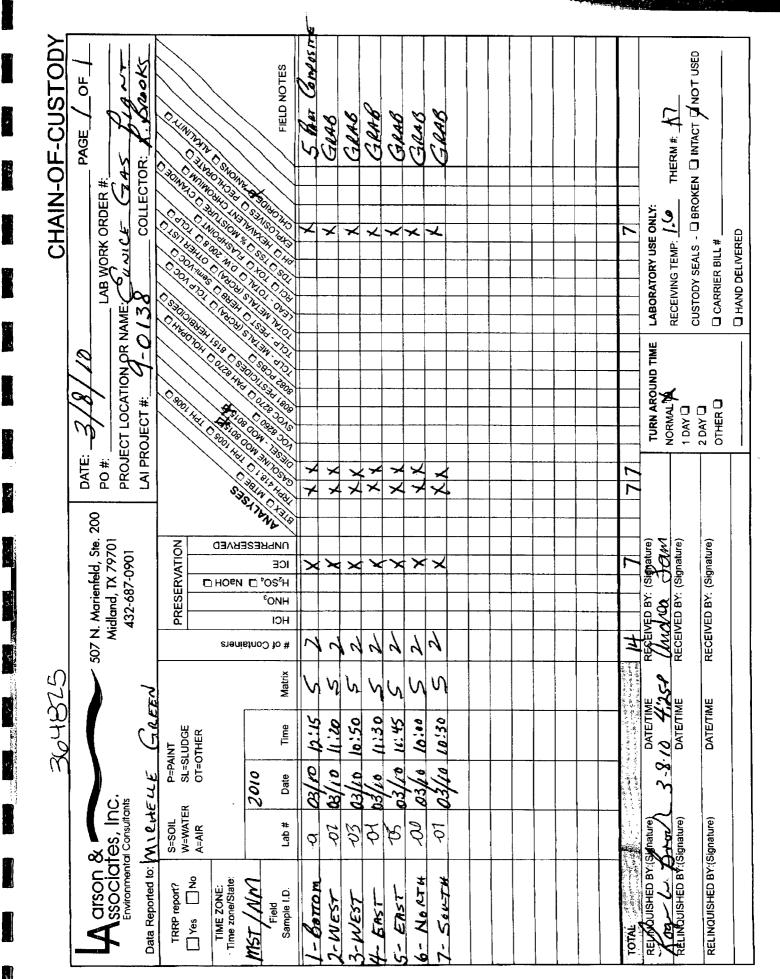
Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*((C+F)/

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 14 of 17

2


Sample Duplicate Recovery

Project Name: Eunice Gas Plant

Work Order #: 364825						
Lab Batch #: 798911				Project I	D: 9-0138	
Date Analyzed: 03/17/2010	Date Prepar	ed: 03/17/2010) Ana	lyst: LATC	OR	
QC- Sample ID: 364841-056 D	Batch	#: 1	Ma	trix: Soil		
Reporting Units: mg/kg		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Anions by E300		Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte			[B]			
Chloride		857	871	2	20	
Lab Batch #: 797747						
Date Analyzed: 03/10/2010	Date Prepar	ed: 03/10/2010) Ana	lyst:JLG		
QC- Sample ID: 364825-001 D	Batch	#: 1	Ma	trix: Soil		
Reporting Units: %		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture Analyte		Parent Sample Result [A]	Sample Duplicate Result {B]	RPD	Control Limits %RPD	Flag
Percent Moisture		10.2	13.2	26	20	F

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

1.8.20

1.4

Final Ver. 1.000

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

55a.

16:25

Client	Larson & A.	<u>350</u>
Date/ Time:	3.8.10	16.
Lab ID # :	3642	15
Initiale'	. AL	

Initials:

Sample Receipt Checklist

	· · · · ·			CI	ient Inițiale
#1	Temperature of contained cooler?	(Yes)	No	1.4 °C	
#2	Shipping container in good condition?	(Yes)	No		
#3	Custody Seals intact on shipping contained cooler?	Yes	No	Not Present>	
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
#5	Chain of Custody present?	(Nes	No		i
#8	Sample instructions complete of Chain of Custody?	2100	No		
#7	Chain of Custody signed when relinquished/ received?	ð es	No		
#8	Chain of Custody agrees with sample isbel(s)?	Yes	No	iD written on Cont/Lid	
#9	Container label(s) legible and intact?	(Yes)	No	Not Applicable	!
#10		(Yes	No		
#11	Containers supplied by ELOT?	(Yes	No		
#12		Tes	No	See Below	:
#13		Yes	No	See Below	
#14			No		
#15	Preservations documented on Chain of Custody?	Yes	No		
#16		Res	No		
#17	ويستجرب المتكافية الألبابية ألبنيها المستأن بمناتبها إنفاعه المحمل المحموص مستبابا والقربة متحملاتها ومركا البريان	et es	No	See Below	
Concession of the local division of the loca	All samples received within sufficient hold time?	Yes	No	See Below	
#19		Yes	No	Not Applicable	
#20		Yes	No	Not Applicable	

Variance Documentation

-

Contact

Contacted by:

Date/Time:

.

Regarding:

Corrective Action Taken:

Check all that Apply:

See attached e-mail/ fax Client understands and would like to proceed with analysis

. .

Cooling process had begun shortly after sampling event

Analytical Report 364842

for

Larson & Associates

Project Manager: Michelle Green

Targa Eunice Middle Plant

9-0138

19-MAR-10

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AAL11), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL00449): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295)

> > Page 1 of 24

S. S. W. C.

1. Sec. 1.

ALL OF

SP LAN .

Ser. 4

Contraction of the

いまで

3.6

1. 1 a

Sec. 29.19

いい

2. 5 S

の日本の

Final Ver. 1.000

19-MAR-10

1. STOR

2010

Sever to

Sec. 2

Project Manager: Michelle Green Larson & Associates P.O. Box 50685 Midland, TX 79710

Reference: XENCO Report No: 364842 Targa Eunice Middle Plant Project Address:

Michelle Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 364842. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 364842 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 364842

Larson & Associates, Midland, TX

Targa Eunice Middle Plant

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	Mar-08-10 11:50	0 - 1.5 ft	364842-001
S	Mar-08-10 11:55	5 - 6.5 ft	364842-002
S	Mar-08-10 12:00	10 - 11.5 ft	364842-003
S	Mar-08-10 12:05	15 - 16.5 ft	364842-004
S	Mar-08-10 12:15	20 - 21.5 ft	364842-005
S	Mar-08-10 12:25	23 - 24.5 ft	364842-006
S	Mar-08-10 14:50	0 - 1.5 ft	364842-007
S	Mar-08-10 14:55	5 - 6.5 ft	364842-008
S	Mar-08-10 15:05	10 - 11.5 ft	364842-009
S	Mar-08-10 15:10	15 - 16.5 ft	364842-010
	S S S S S S S S	S Mar-08-10 11:50 S Mar-08-10 11:55 S Mar-08-10 12:00 S Mar-08-10 12:00 S Mar-08-10 12:00 S Mar-08-10 12:00 S Mar-08-10 12:05 S Mar-08-10 12:25 S Mar-08-10 12:25 S Mar-08-10 14:50 S Mar-08-10 14:55 S Mar-08-10 15:05	S Mar-08-10 11:50 0 - 1.5 ft S Mar-08-10 11:55 5 - 6.5 ft S Mar-08-10 12:00 10 - 11.5 ft S Mar-08-10 12:05 15 - 16.5 ft S Mar-08-10 12:15 20 - 21.5 ft S Mar-08-10 12:25 23 - 24.5 ft S Mar-08-10 14:50 0 - 1.5 ft S Mar-08-10 14:50 1.5 ft

14.00 M

を読む

مورد مرور مورد مرور

1. Walt

54.7

18 4. 2

CASE NARRATIVE

Client Name: Larson & Associates Project Name: Targa Eunice Middle Plant

Project ID:9-0138Work Order Number:364842

Report Date: 19-MAR-10 Date Received: 03/08/2010

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None

5 394

Analytical Non Conformances and Comments:

Batch: LBA-797747 Percent Moisture AD2216A Batch 797747, Percent Moisture RPD is outside the QC limit. This is most likely due to sample non-homogeneity. Samples affected are: 364842-004, -007, -006, -001, -002, -003, -005.

Batch: LBA-797748 Percent Moisture None

Batch: LBA-797951 TPH By SW8015 Mod None

Batch: LBA-798277 BTEX by EPA 8021B SW8021BM

Batch 798277, 1,4-Difluorobenzene recovered below QC limits . Matrix interferences is suspected; data confirmed by re-analysis Samples affected are: 364842-007,364842-008,364842-009,364842-010. 4-Bromofluorobenzene recovered above QC limits . Matrix interferences is suspected; data confirmed by re-analysis Samples affected are: 364842-007,364842-010,364842-009,364842-008.

Batch: LBA-798297 BTEX by EPA 8021B None

Batch: LBA-798415 TPH By SW8015 Mod SW8015MOD_NM

Batch 798415, C12-C28 Diesel Range Hydrocarbons recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 364842-009, -010. The Laboratory Control Sample for C12-C28 Diesel Range Hydrocarbons is within laboratory Control Limits

1 - 8 8 F. S.

「「「

CASE NARRATIVE

Client Name: Larson & Associates Project Name: Targa Eunice Middle Plant

Project ID:9-0138Work Order Number:364842

Report Date: 19-MAR-10 Date Received: 03/08/2010

Batch: LBA-798911 Inorganic Anions by EPA 300 E300MI Batch 798911, Chloride RPD is outside the QC limit. This is most likely due to sample nonhomogeneity. Samples affected are: 364842-004, -007, -006, -001, -002, -003, -008, -005.

Batch: LBA-798914 Anions by E300 None

1987 B.	O Sire
	XEN

Contact: Michelle Green

Project 1d: 9-0138

1. 2. 8

10 10

来、ふいま 1. A. B. State Barre 67 ANA.S Sec. 1. a to Rain 1. St. 2. 1.

Project Name: Targa Eunice Middle Plant

- 4 - 9 m

in str

Str. A.

.

15 - B - E

P20 - 224

Date Received in Lab: Mon Mar-08-10 05:10 pm Report Date: 19-MAR-10

Poject Manager: Brent Barton, II to it is $36482-001$ $56482-001$ <th< th=""><th>Proiect Location:</th><th></th><th></th><th></th><th></th><th>Report Date: 19-MAR-10</th><th>9-MAK-10</th><th></th></th<>	Proiect Location:					Report Date: 19-MAR-10	9-MAK-10	
Lub life 3is432-001 5is432-003 5is432-003 5is432-004 5is432-004 5is432-005 5is432-004 5is432-005 5is432-005 5is432-004 5is432-005 5is432-004 5is432-005 5is432-005 5is432-005 5is432-005 5is432-001 5is432-0							Srent Barron, II	
Industry Requested Field th Depti Mw-22 (0-15) Mw-2		Lab Id:	364842-001	364842-002	364842-003	364842-004	364842-005	364842-006
Mutry No Vequence Days e^{-15} ft 5.65 ft 5.65 ft 5.65 ft 5.011 5.001 5.001 5.001 5.011 5.001 5.0	2	Field Id:	MW-22 (0-1.5')	MW-22 (5-6.5')	MW-22 (10-11.5')	MW+22 (15-16.5')	MW-22 (20-21.5')	MW-22 (23-24.5')
	Analysis Kequested	Depth:	0-1.5 Ĥ	5-6.5 ft	10-11.5 ft	15-16.5 ft	20-21.5 ft	23-24.5 Ĥ
		Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Anions by E300 Extracrd, unioku: Mar.17.1015.22 mg/g Mar.17.1015.20 mg/g Mar.17.1015.20 mg/g Mar.17.1015.20 mg/g Mar.17.1015.20 mg/g Mar.17.1015.20 mg/g Mar.17.1015.20 mg/g		Sampled:	Mar-08-10 11:50	Mar-08-10 11:55	Mar-08-10 12:00	Mar-08-10 12:05	Mar-08-10 12:15	Mar-08-10 12:25
	Anions by E300	Extracted:						
		Analyzed:	Mar-17-10 15:22	Mar-17-10 15:22	Mar-17-10 15:22	Mar-17-10 15:22	Mar-17-10 15:22	Mar-17-10 15:22
		Units/RL:						mg/kg RL
	Chloride							ND 4.23
	BTEX by EPA 8021B	Extracted:			:			Mar-15-10 08:00
		Analyzed:						Mar-15-10 14:48
		Units/RL:						mg/kg RL
me	Benzene							ND 0.0010
	Toluene							ND 0.0020
es	Ethylbenzene							ND 0.0010
	m,p-Xylenes							ND 0.0020
mes mes <th>o-Xylene</th> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND 0.0010</td>	o-Xylene							ND 0.0010
X Analyzed: Mar-10-1017:00	Total Xylenes							ND 0.0010
Percent Moisture Extracted: Mar-10-10 17:00 Mar-10-10 11:00 Mar-10-10 11:	Total BTEX							ND 0.0010
	Percent Moisture	Extracted:						
Units/RL: $\%$ RL $\%$		Analyzed:	Mar-10-10 17:00	Mar-10-10 17:00	Mar-10-10 17:00	Mar-10-10 17:00	Mar-10-10 17:00	Mar-10-10 17:00
oisture 2.96 1.00 6.27 1.00 1.51 1.00 ND <		Units/RL:						% RL
TPH By SW8015 Mod <i>Extracted:</i> Mar-10-1011:00 Mar-12-1013:29 Mar-12-1013:26 Mar-12-1013:29 Mar-12-1013:26 Mar-12-1013:29 Mar-12-1013:26 Mar-1	Percent Moisture			1				ND 1.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TPH By SW8015 Mod	Extracted:	Mar-10-10 11:00	Mar-10-10 11:00	Mar-10-10 11:00	Mar-10-10 11:00	Mar-10-10 11:00	Mar-10-10 11:00
Units/RL: mg/kg RL mg/kg		Analyzed:	Mar-12-10 12:09	Mar-12-10 12:36	Mar-12-10 13:02	Mar-12-10 13:29	Mar-12-10 13:56	Mar-12-10 14:23
asoline Range Hydrocarbons ND 15.4 ND 15.2 ND 15.1 ND 15.1 Diesel Range Hydrocarbons ND 15.4 ND 16.0 15.5 15.2 ND 15.1 ND 15.1 Diesel Range Hydrocarbons ND 15.4 ND 16.0 15.5 15.2 15.1 34.0 15.1 3 Dil Range Hydrocarbons ND 15.4 ND 16.0 ND 15.2 15.1 34.0 15.1 3 Dil Range Hydrocarbons ND 15.0 ND 15.2 15.2 15.1 34.0 15.1 3		Units/RL:						mg/kg RL
ND 15.4 ND 16.0 15.5 15.2 15.9 15.1 34.0 15.1 Disel Range Hydrocarbons ND 15.4 ND 16.0 15.5 15.2 15.1 34.0 15.1 Dil Range Hydrocarbons ND 15.4 ND 16.0 ND 15.2 15.1 ND 15.1 Dil Range Hydrocarbons ND 15.4 ND 16.0 ND 15.2 15.1 ND 15.1	C6-C12 Gasoline Range Hydrocarbons					ļ		ND 15.1
Dil Range Hydrocarbons ND 15.4 ND 16.0 ND 15.2 ND 15.1 ND 15.1 ND 15.4 ND 16.0 15.5 15.2 15.9 15.1 34.0 15.1	C12-C28 Diesel Range Hydrocarbons							34.9 15.1
ND 15.4 ND 16.0 15.5 15.2 15.9 15.1 34.0 15.1	C28-C35 Oil Range Hydrocarbons							ND 15.1
	Total TPH		ND 15.4	ND 16.0				34.9 15.1

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report repressent the best jughtment of XENCO Laboratories. XENCO Laboratories assumes to responsibility and nacks so warranty to the end use of the data hareby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Odessa Laboratory Manager

Brefit Barron, II

Page 6 of 24

Project 1d: 9-0138		L'IUJCUL MAILLE.	Jeel Maine: Targa Eunice Minune Flant	iuule riani		
Contact: Michelle Green					Date Received in Lab: Mon M	Mon Mar-08-10 05:10 pm
CURRENT MICHAIC CICCII					Report Date: 19-MAR-10	R-10
roject rocation.					Project Manager: Brent B	Brent Barron, II
	Lab Id:	364842-007	364842-008	364842-009	364842~010	i
Analysis Domostad	Field Id:	EB (0-1.5')	EB (5-6.5')	EB (10-11.5')	EB (15-16.5')	
natsanhay studione	Depth:	0-1.5 ft	5-6.5 ft	10-11.5 A	15-16.5 Ĥ	
	Matrix:	SOIL	SOIL	SOIL	SOIL	
	Sampled:	Mar-08-10 14:50	Mar-08-10 14:55	Mar-08-10 15:05	Mar-08-10 15:10	
Anions by E300	Extracted:					
	Analyzed:	Mar-17-10 15:22	Mar-17-10 15:22	Mar-18-10 10:52	Mar-18-10 10:52	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	
Chloride	-	8.34 4.29	ND 4.32	17.7 5.62	20.8 4.32	
BTEX by EPA 8021B	Extracted:	Mar-12-10 08:00	Mar-12-10 08:00	Mar-12-10 08:00	Mar-12-10 08:00	
	.4nalyzed:	Mar-13-10 22:11	Mar-13-10 23:41	Mar-14-10 01:32	Mar-14-10 02:39	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	
Benzene		0.0122 0.0102	ND 0.0052	ND 0.0133	ND 0.0051	
Toluene		0.1139 0.0204	0.0271 0.0103	0.2708 0.0265	0.0214 0.0103	
Ethylbenzene		0.2917 0.0102	0.2371 0.0052	3.405 0.0133	0.1327 0.0051	
m,p-Xylenes		1.969 0.0204	0.8262 0.0103	7.925 0.0265	1.749 0.0103	
o-Xylene		0.7045 0.0102	0.4417 0.0052	3.853 0.0133	0.7925 0.0051	
Total Xylenes		2.674 0.0102	1.2679 0.0052	11.778 0.0133	2.542 0.0051	
Total BTEX		3.091 0.0102	1.5321 0.0052	15.454 0.0133	2.696 0.0051	
Percent Moisture	Extracted:					
	Analyzed:	Mar-10-10 17:00	Mar-10-10 17:00	Mar-10-10 17:00	Mar-10-10 17:00	
	Units/RL:	% RL	% RL	% RL	% RL	
Percent Moisture		2.06 1.00	2.70 1.00	25.3 1.00	2.73 1.00	
TPH By SW8015 Mod	Extracted:	Mar-10-10 11:00	Mar-10-10 11:00	Mar-10-10 12:00	Mar-10-10 12:00	
	Analyzed:	Mar-12-10 14:51	Mar-12-10 15:18	Mar-12-10 20:12	Mar-12-10 20:39	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	
C6-C12 Gasoline Range Hydrocarbons		448 76.3	1590 77.0	3450 100	850 77.1	
C12-C28 Diesel Range Hydrocarbons		501 76.3	143 77.0	254 100	234 77.1	
C28-C35 Oil Range Hydrocarbons		ND 76.3	ND 77.0	001 UN	ND 77.1	
Total TPH		949 76.3	1733 77.0	3704 100	1084 77.1	

This analytical report, and the entire data package it represents. has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the besi jugneron of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our fiability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Final Ver. 1.000

Page 7 of 24

200 Tak

1. LE B.

149° 630°

191 8.36.8

Strate P.

and a state weat

E wet B

1. 2. E. M.

である

450 43

. 30°35.

Y TA

1.23

13 - F. L.

÷ 50 °.

部殿調 9 S. States

Certificate of Analysis Summary 364842 Larson & Associates, Midland, TX

Brent Barron, II Odessa Laboratory Manager

See . Law

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

A Small Dusiness and Minority Status Company that derivers SERV TEE and QONSETT

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

4143 Greenbriar Dr, Stafford, Tx 77477
9701 Harry Hines Blvd, Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
5757 NW 158th St, Miami Lakes, FL 33014
12600 West I-20 East, Odessa, TX 79765
842 Cantwell Lane, Corpus Christi, TX 78408

Strate State

Super Sug

1.0

P. 1. 24 . 24 .

37. 2

St. A.

الا تحديث

Strate .

1 8 A.

States a

A.

1. 4012.

A State

1 . A. S.

S. 2. 8 . 8

2.00 ×

1.6.28

Form 2 - Surrogate Recoveries

Project Name: Targa Eunice Middle Plant

ork Orders : 364842	2, Sample: 558177-1-BKS / B	KS Batch	Project II 1: ¹ Matrix			
Units: mg/kg	Date Analyzed: 03/13/10 18:49		RROGATE RI	-	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
	Analytes			[D]		
1,4-Difluorobenzene		0.0290	0.0300	97	80-120	
4-Bromofluorobenzene		0.0293	0.0300	98	80-120	
Lab Batch #: 798277	Sample: 558177-1-BSD / B	SD Batch	n: ¹ Matrix	:Solid		
Units: mg/kg	Date Analyzed: 03/13/10 19:12	SUI	RROGATE RI	ECOVERYS	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0296	0.0300	99	80-120	-
4-Bromofluorobenzene		0.0301	0.0300	100	80-120	
Lab Batch #: 798277	Sample: 558177-1-BLK / B	LK Batch	h: Matrix	· Solid	<u> </u>	
Units: mg/kg	Date Analyzed: 03/13/10 20:19		RROGATE R		STUDY	
		L				
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0243	0.0300	81	80-120	
4-Bromofluorobenzene		0.0296	0.0300	99	80-120	<u>.</u>
Lab Datab # 709277	S			- Soil		-
Lab Batch #: 798277	Sample: 364842-007 / SMP		RROGATE R		STUDV	
Units: mg/kg	Date Analyzed: 03/13/10 22:11					
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0193	0.0300	64	80-120	**
4-Bromofluorobenzene		0.0666	0.0300	222	80-120	**
Lab Batch #: 798277	Sample: 364842-008 / SMP	Batel	h: l Matrix	:Soil		
Units: mg/kg	Date Analyzed: 03/13/10 23:41	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0176	0.0300	59	80-120	**
4-Bromofluorobenzene		0.1905	0.0300	635	80-120	**
		0.1703	0.0500	0,55	00-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

1. N. 1.

B. S. . . B

B. S. and S.

是國家

Stops

H. Such

APPEN LINE

1. S. B.

A . . .

Sec. 2. 2. 2.

\$. C.S.

C. Buch

Q. 0 . 6 9

10 20

2 - A - 2

Form 2 - Surrogate Recoveries

Project Name: Targa Eunice Middle Plant

Vork Orders : 364842 Lab Batch #: 798277	2, Sample: 364842-009 / SMP	Batch	Project II			
Units: mg/kg	Date Analyzed: 03/14/10 01:32		RROGATE RI		STUDY	
BTE	Х by ЕРА 8021В	Amount Found [A]	True Amount B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0202	0.0300	67	80-120	**
4-Bromofluorobenzene		0.1394	0.0300	465	80-120	**
Lab Batch #: 798277	Sample: 364842-010 / SMP	Batch				
Units: mg/kg	Date Analyzed: 03/14/10 02:39	SUI	RROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0201	0.0300	67	80-120	**
4-Bromofluorobenzene		0.2833	0.0300	944	80-120	**
Lab Batch #: 798297	Sample: 558185-1-BKS / BK	S Batch	n: 1 Matrix	:Solid	·	
Units: mg/kg	Date Analyzed: 03/15/10 08:18	SUI	RROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0298	0.0300	99	80-120	
4-Bromofluorobenzene		0.0323	0.0300	108	80-120	
Lab Batch #: 798297	Sample: 558185-1-BSD / BS	D Batch	h: 1 Matrix	: Solid	<u> </u>	
Units: mg/kg	Date Analyzed: 03/15/10 08:41		RROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount {B}	Recovery %R	Control Limits %R	Flags
	Analytes		l	[D]		
1,4-Difluorobenzene		0.0295	0.0300	98	80-120	
4-Bromotluorobenzene		0.0312	0.0300	104	80-120	
Lab Batch #: 798297	Sample: 558185-1-BLK / BL	K Batch	h: l Matrix	:Solid		
Units: mg/kg	Date Analyzed: 03/15/10 09:48	SUI	RROGATE RI	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
				+	<u> </u>	
1,4-Difluorobenzene		0.0243	0.0300	81	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

1

「「「

State of

19 A.

A ALL ALL

Sec. 2. Se

1. ME 14

1. A. H.

Strange

and the second

S CAR

3 . No. E.

1. S. 1. 1. 10

Form 2 - Surrogate Recoveries

Project Name: Targa Eunice Middle Plant

		Batch	Project II			
Units: mg/kg	Date Analyzed: 03/15/10 14:48	(m	ROGATE RI		STUDY	
BTEX by EPA 8021B Analytes 1,4-Difluorobenzene 4-Bromofluorobenzene Lab Batch #: 798297 Sample: 364842-006 D / N Units: mg/kg Date Analyzed: 03/15/10 15:11 BTEX by EPA 8021B Analytes 1,4-Difluorobenzene 4-Bromofluorobenzene	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]		
		0.0241	0.0300	80	80-120	
4-Bromofluorobenzene		0.0304	0.0300	101	80-120	
Lab Batch #: 798297	Sample: 364842-006 D / MD					
Units: mg/kg	Date Analyzed: 03/15/10 15:11	SUB	RROGATE RI	ECOVERY	STUDY	
BTE	·	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0244	0.0300	81	80-120	
4-Bromofluorobenzene		0.0321	0.0300	107	80-120	
Lab Batch #: 797951	Sample: 552887-1-BKS / BK	S Batch	: 1 Matrix	: Solid	<u> </u>	
Units: mg/kg	· ·		RROGATE RI	ECOVERY	STUDY	
ТРН		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Anarytes	124	99.6	124	70-135	
Lab Batch #: 798297 Sample: 364842-006 / S Units: mg/kg Date Analyzed: 03/15/10 14:48 BTEX by EPA 8021B Analytes 1,4-Difluorobenzene 4-Bromofluorobenzene Lab Batch #: 798297 Sample: 364842-006 D. Units: mg/kg Date Analyzed: 03/15/10 15:11 BTEX by EPA 8021B Analytes 1,4-Difluorobenzene 4-Bromofluorobenzene 4-Bromofluorobenzene 4-Bromofluorobenzene Lab Batch #: 797951 Sample: 552887-1-BKS Units: mg/kg Date Analyzed: 03/12/10 04:56 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 552887-1-BSD Units: mg/kg Date Analyzed: 03/12/10 05:23 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 552887-1-BSD Units: mg/kg Date Analyzed: 03/12/10 05:23 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 552887-1-BLK Units: mg/kg Date Analyzed: 03/12/10 05:30 TPH By SW8015 Mod Analytes		52.2	49.8	105	70-135	
	Samula 552887 1 BSD / BS				1 10 100	
	·		RROGATE RI		STUDY	
	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
Lab Batch #: 798297 Sample: 364842-006 / SN Units: mg/kg Date Analyzed: 03/15/10 14:48 BTEX by EPA 8021B Analytes 1,4-Difluorobenzene 4-Bromofluorobenzene Lab Batch #: 798297 Sample: 364842-006 D / Units: mg/kg Date Analyzed: 03/15/10 15:11 BTEX by EPA 8021B Analytes 1,4-Difluorobenzene 4-Bromofluorobenzene 4-Bromofluorobenzene Lab Batch #: 797951 Sample: 552887-1-BKS / Units: mg/kg Date Analyzed: 03/12/10 04:56 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 552887-1-BSD / Units: mg/kg Date Analyzed: 03/12/10 05:23 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 552887-1-BLK / Units: mg/kg Date Analyzed: 03/12/10 05:23 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 552887-1-BLK / Units: mg/kg Date Analyzed: 03/12/10 05:20 TPH By SW8015 Mod Analytes 1-Chlorooctane	119	100	119	70-135		
	50.1	50.2	100	70-135		
Analytes 1,4-Difluorobenzene 4-Bromofluorobenzene Lab Batch #: 798297 Sample: 364842-006 D Units: mg/kg Date Analyzed: 03/15/10 15:1 BTEX by EPA 8021B Analytes 1,4-Difluorobenzene 4.Bromofluorobenzene 4-Bromofluorobenzene 4.Bromofluorobenzene Lab Batch #: 797951 Sample: 552887-1-BKS Units: mg/kg Date Analyzed: 03/12/10 04:50 TPH By SW8015 Mod Analytes 1-Chlorooctane 0-Terphenyl Lab Batch #: 797951 Sample: 552887-1-BSI Units: mg/kg Date Analyzed: 03/12/10 05:22 TPH By SW8015 Mod Analytes 1-Chlorooctane 0-Terphenyl Lab Batch #: 797951 Sample: 552887-1-BLI Units: mg/kg Date Analyzed: 03/12/10 05:22 TPH By SW8015 Mod Analytes 1-Chlorooctane 0-Terphenyl Lab Batch #: 797951 Sample: 552887-1-BLI Units: mg/kg Date Analyzed: 03/12/10 05:50 TPH By SW8015 Mod Analytes 1-Chlorooctane 03/12/10 05:50 TPH By SW8015 Mod Analytes 1-Chlorooc						
Units: mg/kg Date Analyzed: 03/15/10 14:48 BTEX by EPA 8021B Analytes 1,4-Difluorobenzene 4-Bromofluorobenzene Lab Batch #: 798297 Sample: 364842-006 D Units: mg/kg Date Analyzed: 03/15/10 15:11 BTEX by EPA 8021B Analytes 1,4-Difluorobenzene 4-Bromofluorobenzene 4-Bromofluorobenzene Lab Batch #: 797951 Sample: 552887-1-BKS Units: mg/kg Date Analyzed: 03/12/10 04:56 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 552887-1-BSD Units: mg/kg Date Analyzed: 03/12/10 05:22 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 552887-1-BSD Units: mg/kg Date Analyzed: 03/12/10 05:22 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 552887-1-BLK Units: mg/kg Date Analyzed: 03/12/10 05:50 TPH By SW8015 Mod Analytes 1-Chlorooctane		SUI	RROGATE R	ECOVERY	STUDY	_
ТРН	•	Amount Found [A]	True Amount B	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		103	99.7	103	70-135	
			11.1	1 105	,,,,,,,	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

2.87

ľ,

Form 2 - Surrogate Recoveries

Project Name: Targa Eunice Middle Plant

Work Orders : 364842 Lab Batch #: 797951	2, Sample: 364842-001 / SMP	Batch	Project II h: ¹ Matrix:				
Units: mg/kg	Date Analyzed: 03/12/10 12:09	SU	RROGATE RE	ECOVERY	STUDY		
Lab Batch #: 797951 Sample: 364842-001 / S Units: mg/kg Date Analyzed: 03/12/10 12:09 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 364842-002 / S Units: mg/kg Date Analyzed: 03/12/10 12:36 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 364842-003 / S Units: mg/kg Date Analyzed: 03/12/10 13:02 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 364842-004 / S Units: mg/kg Date Analyzed: 03/12/10 13:02 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 364842-004 / S Units: mg/kg Date Analyzed: 03/12/10 13:29 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 364842-005 / S Units: mg/kg Date Analyzed: 03/12/10 13:29 TPH By SW8015 Mod Analytes		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[[D]			
1-Chlorooctane		101	99.9	101	70-135		
Units: mg/kgDate Analyzed: 03/12/10 12:09TPH By SW8015 ModAnalytes1-Chlorooctaneo-TerphenylLab Batch #: 797951Sample: 364842-002 / SM1Units: mg/kgDate Analyzed: 03/12/10 12:36TPH By SW8015 ModAnalytes1-Chlorooctaneo-TerphenylLab Batch #: 797951Sample: 364842-003 / SM1Units: mg/kgDate Analyzed: 03/12/10 13:02TPH By SW8015 ModAnalytes1-Chlorooctaneo-TerphenylLab Batch #: 797951Sample: 364842-004 / SM1Units: mg/kgDate Analyzed: 03/12/10 13:29TPH By SW8015 ModAnalytes1-Chlorooctaneo-TerphenylLab Batch #: 797951Sample: 364842-004 / SM1Units: mg/kgDate Analyzed: 03/12/10 13:29TPH By SW8015 ModAnalytes1-Chlorooctaneo-TerphenylLab Batch #: 797951Sample: 364842-005 / SM1Units: mg/kgDate Analyzed: 03/12/10 13:56TPH By SW8015 ModAnalytes1-Chlorooctaneo-Terphenyl <td colspa<="" td=""><td>52.3</td><td>50.0</td><td>105</td><td>70-135</td><td></td></td>	<td>52.3</td> <td>50.0</td> <td>105</td> <td>70-135</td> <td></td>	52.3	50.0	105	70-135		
Lab Batch #: 797951	Sample: 364842-002 / SMP	Batch	h: l Matrix:	Soil			
Units: mg/kg	Date Analyzed: 03/12/10 12:36	SU	RROGATE RI	ECOVERY	STUDY		
ТРН		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Lab Batch #: 797951 Sample: 364842-001 / S Units: mg/kg Date Analyzed: 03/12/10 12:09 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 364842-002 / S Units: mg/kg Date Analyzed: 03/12/10 12:36 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 364842-003 / S Units: mg/kg Date Analyzed: 03/12/10 13:02 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 364842-004 / S Units: mg/kg Date Analyzed: 03/12/10 13:02 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 364842-004 / S Units: mg/kg Date Analyzed: 03/12/10 13:29 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 364842-005 / S Units: mg/kg Date Analyzed: 03/12/10 13:29 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 797951 Sample: 364842-005 / S Units: mg/kg Date Analyzed: 03/12/10 13:29		99.4	100	99	70-135		
		52.5	50.0	105	70-135		
Lab Batch #: 797951	Sample: 364842-003 / SMP	Batel	h: 1 Matrix:	Soil			
	· ·		RROGATE RI	ECOVERY	STUDY		
ТРН		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		108	99.7	108	70-135		
o-Terphenyl		54.2	49.9	109	70-135		
Lab Batch #: 797951	Sample: 364842-004 / SMP	Batcl	h: 1 Matrix	Soil			
	·		RROGATE RI		STUDY		
	-	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]			
Units: mg/kgDate Analyzed: 03/12/10 12:09TPH By SW8015 ModAnalytes1-Chlorooctane0-TerphenylLab Batch #: 797951Sample: 364842-002 / SUnits: mg/kgDate Analyzed: 03/12/10 12:36TPH By SW8015 ModAnalytes1-Chlorooctane0-TerphenylLab Batch #: 797951Sample: 364842-003 / SUnits: mg/kgDate Analyzed: 03/12/10 13:02TPH By SW8015 ModAnalytes1-Chlorooctane00-TerphenylLab Batch #: 797951Sample: 364842-004 / SUnits: mg/kgDate Analyzed: 03/12/10 13:02TPH By SW8015 ModAnalytes1-Chlorooctane0-TerphenylLab Batch #: 797951Sample: 364842-005 / SUnits: mg/kgDate Analyzed: 03/12/10 13:29TPH By SW8015 ModAnalytes1-Chlorooctane0-TerphenylLab Batch #: 797951Sample: 364842-005 / SUnits: mg/kgDate Analyzed: 03/12/10 13:56TPH By SW8015 ModAnalytes1-Chlorooctane0-12/10 13:56OTERPH By SW8015 ModInits: mg/kg <td colsp<="" td=""><td>95.7</td><td>99.7</td><td>96</td><td>70-135</td><td></td></td>		<td>95.7</td> <td>99.7</td> <td>96</td> <td>70-135</td> <td></td>	95.7	99.7	96	70-135	
o-Terphenyl		49.5	49.9	99	70-135		
Lab Batch #: 797951	Sample: 364842-005 / SMP	Bate	h: 1 Matrix	Soil			
Units: mg/kg	Date Analyzed: 03/12/10 13:56	SU	RROGATE RI	ECOVERY	STUDY		
ТРН	•	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		102	100	102	70-135		
o-Terphenyl		51.1	50.0	102	70-135		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

「「「

State of the second

264.05

12. Y. . Weger

調かれる

18. 3

Set. 20

F. 3. 7. 8.

48. 3 . 4. S

Sara 41

4. B. 9. 6

9.20

N. C. S.

14 C 24

13.5

1. 248 C

Form 2 - Surrogate Recoveries

Project Name: Targa Eunice Middle Plant

Vork Orders : 364842		Batel	Project II h: 1 Matrix			
Units: mg/kg	Date Analyzed: 03/12/10 14:23		RROGATE RI		STUDY	
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		100	100	100	70-135	
o-Terphenyl		50.2	50.0	100	70-135	
Lab Batch #: 797951	Sample: 364842-007 / SMP	Batel	h: l Matrix	: Soil		
Units: mg/kg	Date Analyzed: 03/12/10 14:51	SU	RROGATE RI	ECOVERYS	STUDY	
ТРН		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctane		111	99.7	111	70-135	····
o-Terphenyl		54.7	49.9	110	70-135	
Lab Batch #: 797951	Sample: 364842-008 / SMP	Batc	h: 1 Matrix	: Soil	·	
Units: mg/kg	Date Analyzed: 03/12/10 15:18	SU	RROGATE R	ECOVERYS	STUDY	<u> </u>
ТРН	•	Amount Found [A]	True Amount [B]	Recovery %R [Đ]	Control Limits %R	Flags
1 Chloroastone	Analytes	122	99.9		70 125	
		62.8	50.0	122	70-135	
			ļ		10-135	
	· · ·	Batel	h: 1 Matrix RROGATE R		STUDY	
Units: mg/kg	Date Analyzed: 03/12/10 15:45	50				·
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R D	Control Limits %R	Flags
1-Chlorooctane		116	100	116	70-135	
o-Terphenyl		49.0	50.2	98	70-135	
Lab Batch #: 797951	Sample: 364841-013 SD / M	SD Batel	h: l Matrix	:Soil		
Units: mg/kg	Date Analyzed: 03/12/10 16:11	SU	RROGATE R	ECOVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
.ab Batch #: 797951 Sample: 364842-006 ///itemple Units: mg/kg Date Analyzed: 03/12/10 14: TPH By SW8015 Mod Analytes I-Chlorooctane >-Terphenyl		118	100	118	70-135	
o-Terphenyl		50.2	50.2	100	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

言語の

1. S. C.

ので

all the

States.

61.20

S. Salar

報告の

100 100 100

1. 34

1. 1. 1. T. E.

Left Saint

Brack 6

C. april 1

N. C. S.

1 . 2 EV

Form 2 - Surrogate Recoveries

Project Name: Targa Eunice Middle Plant

/ork Orders : 364842 Lab Batch #: 798415	, Sample: 558249-1-BKS / B	KS Batc		D: 9-0138			
Units: mg/kg	Date Analyzed: 03/12/10 18:52		RROGATE R		STUDY		
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]			
1-Chlorooctane		117	100	117	70-135		
o-Terphenyl	······································	48.9	50.1	98	70-135		
Lab Batch #: 798415	Sample: 558249-1-BSD / B	SD Bate	h: ¹ Matrix	: Solid			
Units: mg/kg	Date Analyzed: 03/12/10 19:18	SU	RROGATE R	ECOVERY	STUDY		
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		119	99.7	119	70-135		
o-Terphenyl		48.8	49.9	98	70-135		
Lab Batch #: 798415	Sample: 558249-1-BLK / B	LK Batc	h: 1 Matrix	v Solid	<u> </u>		
Units: mg/kg	Date Analyzed: 03/12/10 19:46	SURROGATE RECOVERY STUDY					
	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
<u> </u>	Analytes			[D]			
1-Chlorooctane		95.7	99.7	96	70-135		
o-Terphenyl		49.1	49.9	98	70-135		
Lab Batch #: 798415	Sample: 364842-009 / SMP						
Units: mg/kg	Date Analyzed: 03/12/10 20:12	SU	RROGATE R	ECOVERY	STUDY		
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		109	99.8	109	70-135		
o-Terphenyl		57.1	49.9	114	70-135		
Lab Batch #: 798415	Sample: 364842-010 / SMP	Batc	h: l Matrix	s: Soil			
Units: mg/kg	Date Analyzed: 03/12/10 20:39	SU	RROGATE R	ECOVERY	STUDY		
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1	Analytes			1	1		
1-Chlorooctane		127	100	127	70-135		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

1. Be

1. W. J. C. W.

5. 8 2. 2

Sec. Sec.

AROS AND

STREES.

1. 5. Star

A P. C. Sala

Care S

1. S. W. E.

Sec. Sec.

14 H 17

Sec. Sec.

10 A.

S TOF LE

1. 3. 6. 6

of Briter

Form 2 - Surrogate Recoveries

Project Name: Targa Eunice Middle Plant

Lab Batch #: 798415 Units: mg/kg TPH 1-Chlorooctane o-Terphenyl Lab Batch #: 798415 Units: mg/kg	2, Sample: 364894-001 S / M!	S Batc		D: 9-0138 ::Soil			
Units: mg/kg	Date Analyzed: 03/13/10 03:55	SU	RROGATE R	ECOVERY S	STUDY		
ТРН	•	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		105	99.8	105	70-135		
o-Terphenyl		54.9	49.9	110	70-135		
Units: mg/kg TPH I-Chlorooctane o-Terphenyl Lab Batch #: 798415 Units: mg/kg TPH I-Chlorooctane	Sample: 364894-001 SD / N	MSD Batch: I Matrix: Soil					
Units: mg/kg	Date Analyzed: 03/13/10 04:22	SU	RROGATE R	ECOVERY S	STUDY		
Lab Batch #: 798415 Sample: 364894-001 S / M Units: mg/kg Date Analyzed: 03/13/10 03:55 TPH By SW8015 Mod Analytes 1-Chlorooctane o-Terphenyl Lab Batch #: 798415 Sample: 364894-001 SD / Units: mg/kg Date Analyzed: 03/13/10 04:22 TPH By SW8015 Mod Analytes 1-Chlorooctane	Amount Found [A]	True Amount [B]	Recovery %R D]	Control Limits %R	Flags		
I-Chlorooctane		98.4	100	98	70-135		
o-Terphenyl		50.4	50.0	101	70-135		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

たま記

Sec. 1

and a state of

States in

- Barrer

を いたい

読むい

1. 0. B.

Sale Se

1 6 a - 1 + 0 b

1. 2. A. 4

100 J - 1

1.0 6. 1

1. 1 B. . O.

문화 내용

Project Name: Targa Eunice Middle Plant

Work Order #: 364842			Рг	oject ID:			9-0138
Lab Batch #: 798911 Date Analyzed: 03/17/2010		nple: 798911- nred: 03/17/20		Matrix: Analyst:	Solid LATCOF	٤	
Reporting Units: mg/kg	Bato	ch #: l	BLANK /	BLANK SPI	KE REC	OVERY	STUDY
Anions by E300		Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes		[2]	121	[C]	[D]		
Chloride		ND	10.0	10.4	104	75-125	
Lab Batch #: 798914	Sample: 798914-1-BKS Matrix: Solid						
Date Analyzed: 03/18/2010	Date Prepa	red: 03/18/20)10	Analyst: LATCOR			
Reporting Units: mg/kg	Bate	ch #: 1	BLANK /	BLANK SPI	KE REC	COVERY	STUDY
Anions by E300		Blank Result	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Analytes		[A]	[10]	[C]	[D]	701	
Chloride		ND	11.0	11.3	103	75-125	

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

19 (19 (19 (19 (19 (19 (19 (19 (19 (19 (
通い、通	CO tories
Sec.	XEN
M. Z. M.	

BS / BSD Recoveries

A. 4. 8. 4. 80

B Star Raise

1 at 3 . 4.

Sec. Sec.

調整

"YALK"

「愛いる意う

「「「「「」」

State of

S. A.S. A.L.

Se the as

ALC: CAR

· Alter

A.P. Were

State of the

Project Name: Targa Eunice Middle Plant

Work Order #: 364842 Analyst: ASA

Lab Batch ID: 798277

Date Prepared: 03/12/2010 Batch #: 1 Sample: 558177-1-BKS

Project ID: 9-0138 Date Analyzed: 03/13/2010 Matrix: Solid

Units: mg/kg		BLANI	X /BLANK S	SPIKE / B	LANK S	BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	ICATE F	RECOVE	RY STUD	Y	
BTEX by EPA 8021B	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	<u>[</u>	[B]	lC]		[E]	Dupncare Result [F]	20 X	%	%0K	%K/U	
Benzene	QN	0.1000	0.0975	86	0.1	0.1034	103	9	70-130	35	
Toluene	QN	0.1000	0.0924	92	0.1	0.0977	86	9	70-130	35	
Ethylbenzene	QN	0.1000	0.0942	94	0.1	0.1002	100	6	71-129	35	
m,p-Xylenes	QN	0.2000	0.1807	06	0.2	0.1922	96	9	70-135	35	
o-Xylene	DN	0.1000	0.0899	06	0.1	0.0949	95	5	71-133	35	
Analyst: ASA	Da	ite Prepare	Date Prepared: 03/15/2010	0			Date An	alyzed: 0	Date Analyzed: 03/15/2010		

Analyst: ASA		Da	ite Prepar	Date Prepared: 03/15/2010	0			Date A1	nalyzed: (Date Analyzed: 03/15/2010		
Lab Batch ID: 798297	Sample: 558185-1-BKS	KS	Batch #: 1	1 #: 1					Matrix: Solid	olid		
Units: mg/kg		1	BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / B	LANK S	PIKE DUPL	ICATE 1	RECOVE	CRY STUD	Y	
BTEX by EPA 8021B	8021B	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes		<u>.</u>	B	Kesult [C]	10] 8	[E]	Duplicate Result [F]	¥ []	%	У%	%KPU	
Benzene		QN	0.1000	0.1020	102	0.1	0.1005	101	-	70-130	35	
Toluene		QN	0.1000	0.0968	67	0.1	0.0956	96	-	70-130	35	
Ethylbenzene		QN	0.1000	0.0995	100	0.1	0.0981	86	-	71-129	35	
m.p-Xylenes		QN	0.2000	0.1919	96	0.2	0.1886	94	7	70-135	35	
o-Xylene		QN	0.1000	0.0940	94	0.1	0.0923	92	2	71-133	35	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

_	
کې در س	Cories
1. A. S.	XEN Labora

BS / BSD Recoveries

,

1.00

. . . .

1.

and the

- 18.0°

3

Project Name: Targa Eunice Middle Plant

 Work Order #: 364842

 Analyst: BEV

 Lab Batch ID: 797951
 Sample: 552887-1-BKS

Date Prepared: 03/10/2010 Batch #: 1

Project ID: 9-0138 Date Analyzed: 03/12/2010 Matrix: Solid

Units: mg/kg		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	SPIKE / E	S YNK S	PIKE DUPL	ICATE	RECOVE	CRY STUD	Y	
TPH By SW8015 Mod	Blank Sample Result	Spike Added	Blank Spike Passult	Blank Spike %D	Spike Added	Blank Spike Durdigata	BIK. Spk Dup. °2. D	RPD */	Control Limits °2.D	Control Limits 2.000	Flag
Analytes		[B]		ā	[E]	Result [F]	1 <u>0</u>	₹			
C6-C12 Gasoline Range Hydrocarbons	QN	966	1080	108	1000	1030	103	2	70-135	35	
C12-C28 Diesel Range Hydrocarbons	DN	966	790	62	1000	776	78	2	70-135	35	
Analyst: BEV	Da	te Prepar	Date Prepared: 03/10/2010	0			Date A	Date Analyzed: 03/12/2010	3/12/2010		
Lab Batch ID: 798415 Sample: 558249-1-BKS	3KS	Batcl	Batch #:]					Matrix: Solid	olid		
Units: mg/kg		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	SPIKE / B	S YNK S	PIKE DUPL	JCATE	RECOVE	RY STUD	Y	
TPH By SW8015 Mod	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	<u></u>	[8]	Result [C]	10]	E	Duplicate Result [F]	IGI %	%	% R	%RPD	

35

70-135

108 83

1080 829

797 797

104 106

1040 1060

1000

g g

C6-C12 Gasoline Range Hydrocarbons C12-C28 Diesel Range Hydrocarbons

5 4

Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes Page 18 of 24

Final Ver. 1.000

A Barris

感题

Sector of

Var. o. Y

Sec.

1. 20

1 . T. W.

Town to

Form 3 - MS Recoveries

Project Name: Targa Eunice Middle Plant

	Work Order #: 364842							
	Lab Batch #: 798911				Pro	ject ID:	9-0138	
1. 10. 1.	Date Analyzed: 03/17/2010	Date P	repared: 03/1	7/2010	Α	nalyst: L	ATCOR	
	QC- Sample ID: 364841-056 S		Batch #: 1		Ν	Aatrix: S	oil	
3	Reporting Units: mg/kg		MAT	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
	Inorganic Anions by EPA 300		Parent Sample Result [A]	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
	Analytes		[A]	B				
I	Chloride		857	431	1280	98	75-125	
	Lab Batch #: 798914							
	Date Analyzed: 03/18/2010	Date P	repared: 03/1	8/2010	А	nalyst: L	ATCOR	
	QC- Sample ID: 364842-009 S		Batch #: 1		N	Matrix: S	oil	
	Reporting Units: mg/kg		MATE	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
	Inorganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added B	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
	Chloride		17.7	147	166	101	75-125	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

1 area - 18	NCO ratories
the set of	

Form 3 - MS / MSD Recoveries Contraction of State State The Part of 2.28.2.2 AND IN THE

きょう

L. Barne

Bar S

3. A.

B. Balles

Stanker a

1. AL

Project Name: Targa Eunice Middle Plant

Work Order # : 364842

Date Analyzed: 03/12/2010 Lab Batch ID: 797951

BEV Analyst: Batch #:

QC- Sample ID: 364841-013 S

Date Prepared: 03/10/2010

Matrix: Soil _

Project ID: 9-0138

Flag Limits Control %RPD 35 35 Control Limits 70-135 70-135 %R MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY RPD % Ч Spiked Dup. %R 102 5 Spiked Sample Duplicate Result [F] 1080 747 Spike Added 1060 1060 Е Spiked Sample %R 100 a 66 Spiked Sample Result 1060 759 $\overline{\mathbf{O}}$ Spike Added [B] 1060 1060 Parent Sample Result 62.4 ΩN M TPH By SW8015 Mod C6-C12 Gasoline Range Hydrocarbons C12-C28 Diesel Range Hydrocarbons Analytes Reporting Units: mg/kg

×

2

65

Flag Limits %RPD Control Control Limits %R MATRIN SPIKE / MATRIN SPIKE DUPLICATE RECOVERY STUDY RPD % Spiked Dup. %R Matrix: Soil Spiked Sample Result [F] Duplicate BEV Spike Added Batch #: Analyst: Sample %R Spiked Spiked Sample Result Ū QC- Sample ID: 364894-001 S Date Prepared: 03/10/2010 Spike Added Parent Sample Result 2 TPH By SW8015 Mod Date Analyzed: 03/13/2010 Lab Batch ID: 798415 Reporting Units: mg/kg

70-135 70-135 Ś × 102 5 40 1070 659 1050 1050 Ξ ē 109 45 1130 711 1040 1040 [B] g 244 C6-C12 Gasoline Range Hydrocarbons C12-C28 Diesel Range Hydrocarbons Analytes

×

33 35

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*((C+F)/

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Final Ver. 1.000

Page 20 of 24

Project Name: Targa Eunice Middle Plant

Work Order #: 364842						
Lab Batch #: 798911				Project I	D: 9-0138	
	Date Prepare	ed: 03/17/2010		lyst: LATC		
QC- Sample ID: 364841-056 D	Batch	n#: 1	Mat	rix: Soil		
Reporting Units: mg/kg		SAMPLE /	SAMPLE	DUPLIC	ATE RECO	OVERY
Anions by E300 Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		857	871	2	20	
Lab Batch #: 798914				<u></u>		
Date Analyzed: 03/18/2010	Date Prepare	ed: 03/18/2010) Ana	lyst: LATC	OR	
QC- Sample ID: 364842-009 D	Batch			rix: Soil		
Reporting Units: mg/kg		SAMPLE /	SAMPLE	DUPLIC	ATE RECO	OVERY
Anions by E300 Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		17.7	16.3	8	20	
Lab Batch #: 798297 Date Analyzed: 03/15/2010 QC- Sample ID: 364842-006 D	Date Prepare Batch			lyst: ASA trix: Soil	ATE DEC	OVEDV
Reporting Units: mg/kg		I				
BTEX by EPA 8021B Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Benzene		ND	ND	NC	35	
Toluene		ND	ND	NC	35	[
Ethylbenzene		ND	ND	NC	35	[
m,p-Xylenes		ND	ND	NC	35	
o-Xylene		ND	ND	NC	35	
Lab Batch #: 797747 Date Analyzed: 03/10/2010 QC- Sample ID: 364825-001 D Reporting Units: %	-	ed: 03/10/2010 h #: 1 SAMPLE /		lyst: JLG rix: Soil DUPLIC	ATE REC	OVERY
			,	<u></u>		
Percent Moisture Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

「「「「

A East

22.22

STOT I's

and the second

3-- 24.K

Mar Cart

5. P. M. C.

45 mg

لا رو کاللیش

"Asses

AL at

Sec. 2000

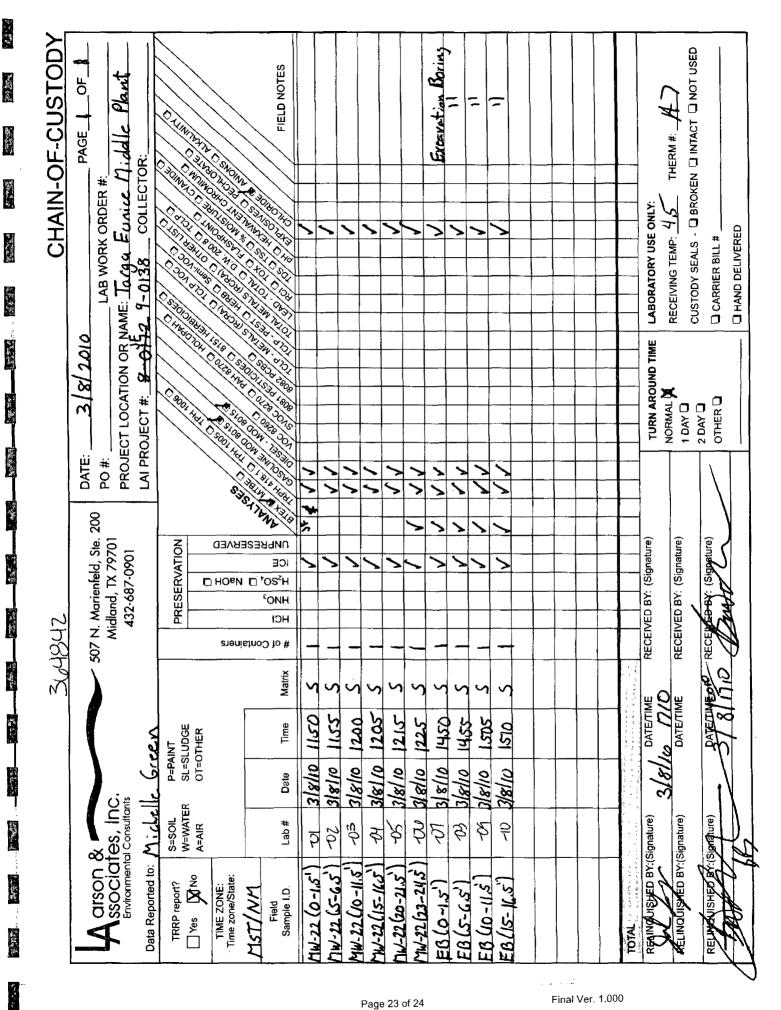
A. 1. 34

19.2

1. B. B

1 % a 8

Sample Duplicate Recovery



Project Name: Targa Eunice Middle Plant

Work Order #: 364842

Lab Batch #:	797748				Project I	D: 9-0138	
Date Analyzed:	03/10/2010	Date Prepa	red: 03/10/2010	Ana	lyst:JLG		
QC- Sample ID:	364894-001 D	Bate	h #: 1	Ma	trix: Soil		
Reporting Units:	%		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
	Percent Moisture		Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
	Analyte		11	[B]			
Percent Moisture			4.35	5.27	19	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client:	Larson& Assoc.
Date/ Time:	3.8.10 17.10
Lab ID # :	364842
Initials:	BB/AL

Sample Receipt Checklist

#1	Temperature of container/ cooler?	Yes	No	4.5 °C	
#2	Shipping container in good condition?	(Yes)	No		
¥3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
#4	Custody Seals intact on sample bottles/ container?	Yes	No	< Not Present	
# 5	Chain of Custody present?	Yes	No		
#6	Sample instructions complete of Chain of Custody?	Tes	'No		
#7	Chain of Custody signed when relinquished/ received?	Yes	No		
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid	
# 9	Container label(s) legible and intact?	Yes	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	Yes	No		
#11	Containers supplied by ELOT?	(Yes)	No		
#12	Samples in proper container/ bottle?	Yes	No	See Below	
#13	Samples properly preserved?	Yes	No	See Below	
#14	Sample bottles intact?	(Yes)	No		
#15	Preservations documented on Chain of Custody?	Yes	No		
#16	Containers documented on Chain of Custody?	Tes	No		
#17	Sufficient sample amount for indicated test(s)?	(Yes)	No	See Below	
# 18	All samples received within sufficient hold time?	(Yes)	No	See Below	
#19	Subcontract of sample(s)?	Yes	No	Not Applicable	
#20	VOC samples have zero headspace?	Yes	No	Not Applicable	

Variance Documentation

Contact:

Ser Sunt

a with the

and a state of the

No. Contraction of the second s

Farmer Com

a state a

and the state

.

.

Date/ Time:

Regarding:

Corrective Action Taken:

Check all that Apply:

See attached e-mail/ fax

Contacted by:

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Analytical Report 370872

for

Larson & Associates

Project Manager: Michelle Green

Targa Middle Plant

9-0138

03-MAY-10

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330) Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370) Xenco-Boca Raton (EPA Lab Code: FL00449): Florida(E86240),South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295)

03-MAY-10

Project Manager: Michelle Green Larson & Associates P.O. Box 50685 Midland, TX 79710

Reference: XENCO Report No: **370872 Targa Middle Plant** Project Address:

Michelle Green:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 370872. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 370872 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

A Trues

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

A AND C

A. 95 . 3

1. 2. C. S.

C. R. A.

8. M.

5 . 5 . 5 . 5.

1. 4 × 4 4

S. 137 400

S. Barles

S. S. S. S. S.

A 45 8

1. Sugar 1.

1. 18 - 10 - 10 19 - 10 - 10 19 - 10 - 10

A. Reise

Sample Cross Reference 370872

Larson & Associates, Midland, TX

Targa Middle Plant

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SS-1	S	Apr-29-10 10:00		370872-001
SS-2	S	Apr-29-10 10:10		370872-002
SS-3	S	Apr-29-10 10:20		370872-003
SS-4	S	Apr-29-10 10:30		370872-004
SS-5	S	Apr-29-10 10:45		370872-005

and the second

Bayer.

t gat

18.20

4 Q

The st

1. G. V.

Bett.

31400

CASE NARRATIVE

Client Name: Larson & Associates Project Name: Targa Middle Plant

Project ID:9-0138Work Order Number:370872

Report Date: 03-MAY-10 Date Received: 04/29/2010

Sample receipt non conformances and Comments: None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-804652 Percent Moisture None

Batch: LBA-804658 TPH By SW8015 Mod SW8015MOD_NM

Batch 804658, C12-C28 Diesel Range Hydrocarbons RPD was outside QC limits. Samples affected are: 370872-004, -001, -003, -002, -005

XENCO Laboratories	Cert	ifficate of A Larson & /	Certificate of Analysis Summary 370872 Larson & Associates, Midland, TX	mary 37087 ^{and, TX}	2	THE TRANSPORT
Project 1d: 9-0138		Project Na	Project Name: Targa Middle Plant	e Plant		
Contact: Michalle Green		5			te Received in Lab: 7	Date Received in Lab: Thu Apr-29-10 01:45 pm
CONTRACT: MICHERY CITY					Report Date: (03-MAY-10
I roject Location.					Project Manager: Brent Barron, II	3rent Barron, II
	Lub Id:	370872-001	370872-002	370872-003	370872-004	370872-005
Laboration Discontection	Field Id:	SS-1	SS-2	SS-3	SS-4	SS-5
naisanhan sistinuk	Depth:					
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Apr-29-10 10:00	Apr-29-10 10:10	Apr-29-10 10:20	Apr-29-10 10:30	Apr-29-10 10:45
Percent Moisture	Extracted:					
	Analyzed:	Apr-29-10 17:00	Apr-29-10 17:00	Apr-29-10 17:00	Apr-29-10 17:00	Apr-29-10 17:00
	Units/RL:	% RL	% RL	% RL	% RL	% RL
Percent Moisture		10.5 1.00	9.59 1.00	11.3 1.00	3.68 1.00	3.01 1.00
TPH By SW8015 Mod	Extracted:	Apr-29-10 15:10	Apr-29-10 15:10	Apr-29-10 15:10	Apr-29-10 15:10	Apr-29-10 15:10
	Analyzed:	Apr-30-10 11:12	Apr-30-10 00;42	Apr-30-10 01:11	Apr-30-10 01:40	Apr-30-10 02:09
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C12 Gasoline Range Hydrocarbons	-	41.2 16.7	35.1 16.6	199 17.0	412 77.9	173 76.9
C12-C28 Diesel Range Hydrocarbons		234 16.7	88.2 16.6	131 17.0	1220 77.9	877 76.9
C28-C35 Oil Range Hydrocarbons		149 16.7	24.7 16.6	60.1 17.0	ND 77.9	ND 76.9
Total TPH		424 16.7	148.0 16.6	390 17.0	1632 77.9	1050 76.9

and Sheet

Burn 25.00

19 242 Be

6.2 A

1. 28 8 A.

L'af " a

Sat a st

L. R. War

1. A. B. B. B.

and the second

14 / B 44/6

1. 1. B. 1. B.

A. S.

の見てい

いいます

Sec.

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no reponsibility and nakes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Final Ver. 1.000

Brefit Barron, II Odessa Laboratory Manager

Page 5 of 13

C.S.C.

S. 4. 2

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Balano

A. C. Ser

10 Call

18 - B- B.

S 24.6. 2

5-43-47 Pre-

2 12 Ma

20.00

D. See

See 16

La altera

the state

1. Tuesday

Sec. 3.

7. T. T.

12342.4

Form 2 - Surrogate Recoveries

Project Name: Targa Middle Plant

Vork Orders : 370872		VC D/I		D: 9-0138		
Lab Batch #: 804658 Units: mg/kg	Sample: 562059-1-BKS / B Date Analyzed: 04/29/10 15:17		h: 1 Matrix RROGATE R		STUDY	
	By SW8015 Mod Analytes	Amount Found [A]	True Amount B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		169	199	85	70-135	
o-Terphenyl		86.9	99.5	87	70-135	
Lab Batch #: 804658	Sample: 562059-1-BSD / B	SD Batcl	h: l Matrix	· Solid	<u> </u>	
Units: mg/kg	Date Analyzed: 04/29/10 15:47		RROGATE R		STUDY	
	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		99.8	100	100	70-135	
o-Terphenyl		44.4	50.1	89	70-135	
Lab Batch #: 804658	Sample: 562059-1-BLK / B	LK Bate	h: 1 Matrix	: Solid	•	
Units: mg/kg	Date Analyzed: 04/29/10 16:17		RROGATE R	ECOVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		88.3	99.8	88	70-135	
o-Terphenyl		47.3	49.9	95	70-135	
Lab Batch #: 804658	Sample: 370872-002 / SMP	Batc	h: 1 Matrix	: Soil	<u> </u>	<u> </u>
Units: mg/kg	Date Analyzed: 04/30/10 00:42	SU	RROGATE R	ECOVERY	STUDY	
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		93.3	99.8	93	70-135	
o-Terphenyl		49.8	49.9	100	70-135	
Lab Batch #: 804658	Sample: 370872-003 / SMP		h: 1 Matrix			
Units: mg/kg	Date Analyzed: 04/30/10 01:11	50	RROGATE R		, <u> </u>	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		93.2	100	93	70-135	
o-Terphenyl		55.1	50.2	110	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

2

Form 2 - Surrogate Recoveries

Project Name: Targa Middle Plant

Work Orders : 370872 Lab Batch #: 804658	, Sample: 370872-004 / SMP	Batel	Project ID			
Units: mg/kg	Date Analyzed: 04/30/10 01:40		RROGATE RE		STUDY	
ТРН І	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		90.4	100	90	70-135	
o-Terphenyl		49.0	50.0	98	70-135	
Lab Batch #: 804658	Sample: 370872-005 / SMP	Bate	h: ¹ Matrix:	Soil		
Units: mg/kg	Date Analyzed: 04/30/10 02:09	SU	RROGATE RE	COVERY	STUDY	
ТРН І	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		81.1	99.5	82	70-135	
o-Terphenyl		45.3	49.8	91	70-135	
Lab Batch #: 804658	Sample: 370803-004 S / MS	Bate	h: Matrix:	Soil	1	
Units: mg/kg	Date Analyzed: 04/30/10 02:39		RROGATE RE	COVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R D]	Control Limits %R	Flags
1-Chlorooctane		105	99.9	105	70-135	
o-Terphenyl		47.7	50.0	95	70-135	
Lab Batch #: 804658	Sample: 370803-004 SD / M	SD Bate	h: ¹ Matrix:	Soil		
Units: mg/kg	Date Analyzed: 04/30/10 03:08	SU	RROGATE RE	COVERY	STUDY	
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		104	99.8	104	70-135	
o-Terphenyl		46.7	49.9	94	70-135	
Lab Batch #: 804658	Sample: 370872-001 / SMP		h: l Matrix:			
Units: mg/kg	Date Analyzed: 04/30/10 11:12	SU	RROGATE RE	COVERY	STUDY	
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		87.9	99.7	88	70-135	
o-Terphenyl		48.4	49.9	97	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

430

Project Name: Targa Middle Plant

Sample: 562059-1-BKS Work Order #: 370872 Lab Batch ID: 804658 Analyst: BEV

Date Prepared: 04/29/2010

Batch #: 1

Project ID: 9-0138 Date Analyzed: 04/29/2010 Matrix: Solid

Units: mg/kg		BLANK	X /BLANK S	PIKE / B	LANK S	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	ICATE F	LECOVE	RY STUD	٨	
TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	c	ā	Ξ	Result [F]	<u>[</u>]				
C6-C12 Gasoline Range Hydrocarbons	QN	566	1020	103	1000	1020	102	0	70-135	35	
C12-C28 Diesel Range Hydrocarbons	QN	995	968	97	1000	723	72	29	70-135	35	

Relative Percent Difference RPD = 200*((C-F)/(C+F)) Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Page 9 of 13

Sold and Form 3 - MS / MSD Recoveries RANK AND AT STATES C. Read Party and

Selecte 2

A set of start

Antonio and a

A

"Called

N.F. M. J.

STRAKE C

1.000

Project Name: Targa Middle Plant

Work Order #: 370872

Date Analyzed: 04/30/2010 Lab Batch ID: 804658

Matrix: Soil -

Project ID: 9-0138

Analyst: Batch #: QC- Sample ID: 370803-004 S Date Prepared: 04/29/2010

BEV

Reporting Units: mg/kg		W	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	E / MAT	RIX SPH	XE DUPLICA	te reco	VERV S	AGUTS		
TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Spiked Result Sample	Spiked Sample	Spike	DuplicateSpiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]		<u>כ</u>	DI	Added [E]	Result [F]	8% [G]	%	%R	%RPD	
C6-C12 Gasoline Range Hydrocarbons	QN	1070	0011	103	1060	1070	101	3	70-135	35	
C12-C28 Diesel Range Hydrocarbons	QN	1070	1070	100	1060	747	70	36	70-135	35	<u>ند</u>

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

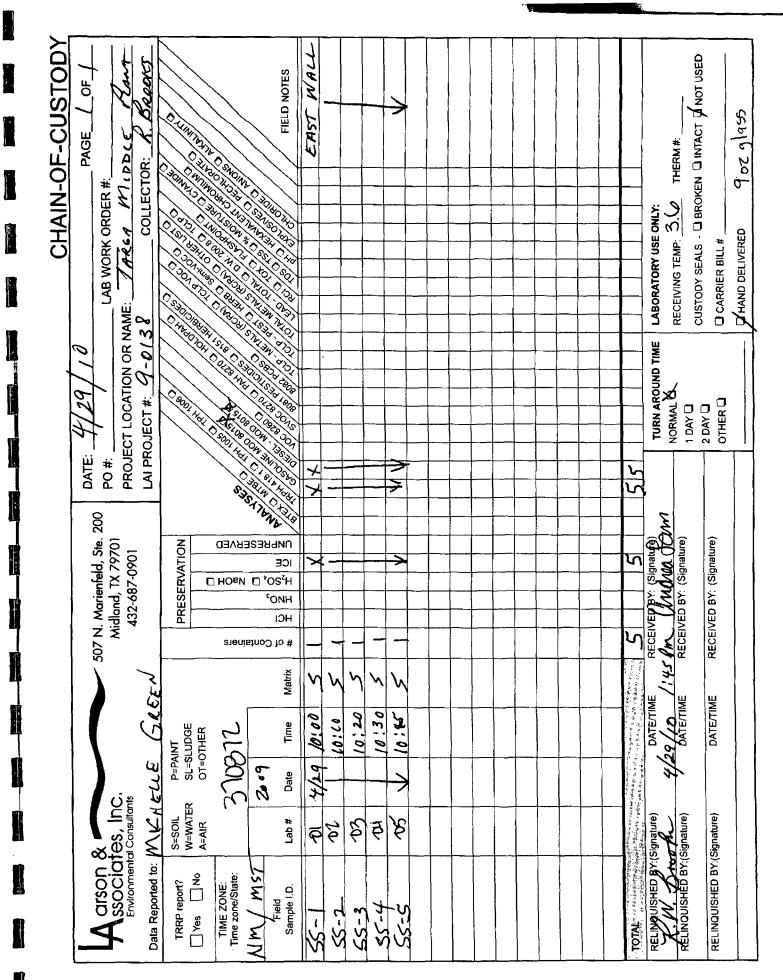
ND = Not Detected, J = Present Below Reporting Limit. B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 10 of 13

ŀ

-

ŀ



Project Name: Targa Middle Plant

Work Order #: 370872

Lab Batch #: 804652				Project I	D: 9-0138	
Date Analyzed: 04/29/2010	Date Prepared	1: 04/29/2010) Ana	lyst: JLG		
QC- Sample ID: 370803-001 D	Batch #	<i>ŧ</i> : 1	Mat	t rix: Soil		
Reporting Units: %	Γ	SAMPLE /	/ SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture	P	arent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		()	[B]			
Percent Moisture		3.82	3.51	8	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client:	Largon & Assoc.
Date/ Time:	4.29.10 13.45
Lab ID # :	370872
Initials:	AL

Sample Receipt Checklist

		-		Client Initial
#1	Temperature of container/ cooler?	Yes	No	3.(0 °C
#2	Shipping container in good condition?	Yes	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	<not présent<="" td=""></not>
#4	Custody Seals intact on sample bottles/ container?	Yes	No	<not present)<="" td=""></not>
#5	Chain of Custody present?	(Yes)	No	
#6	Sample instructions complete of Chain of Custody?	Nes	No	
#7	Chain of Custody signed when relinquished/ received?	(Yes)	No	
#8	Chain of Custody agrees with sample label(s)?	(Yes)	No	ID written on Cont./ Lid
#9	Container label(s) legible and intact?	(Yes)	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	Yes	No	
#11	Containers supplied by ELOT?	(Yes)	No	
#12	Samples in proper container/ bottle?	(Yes)	No	See Below
#13	Samples properly preserved?	(Yes	No	See Below
#14	Sample bottles intact?	(Yes)	No	
#15	Preservations documented on Chain of Custody?	Yes	No	
#16	Containers documented on Chain of Custody?	(Yes)	No	
#17	Sufficient sample amount for indicated test(s)?	(Yes)	No	See Below
#18	All samples received within sufficient hold time?	(Yes)	No	See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicable
#20	VOC samples have zero headspace?	Yes	No	Not Applicable
h	Variance Docu	mentation		
Cor	tact: Contacted by:	<u></u>		Date/ Time:
Rec	arding:			

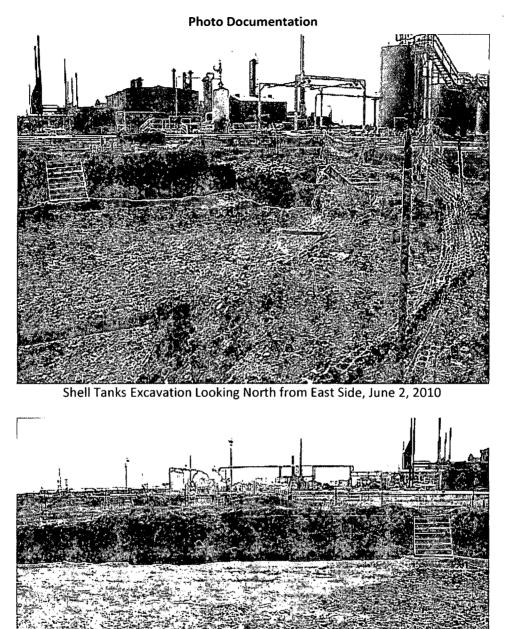
1. 11 M.

1. A. A. A.

1.2

Corrective Action Taken:

Check all that Apply:


See attached e-mail/ fax

Client understands and would like to proceed with analysis

Cooling process had begun shortly after sampling event

.

Shell Tanks Excavation Eunice Gas Plant (GW-005) Targa Midstream Services, L.P. Lea County, New Mexico

- + e 12 -

......

1 10 A.

ester : -

a start of

Same Barre

an vad

いた

Charles and Provide States

a venote

G P

S. S. S.

Shell Tanks Excavation Eunice Gas Plant (GW-005) Targa Midstream Services, L.P. Lea County, New Mexico

3. A.C. C.

1. N. M. W.

100 CT - 0

1.2025.12

S. Bally States

C WEAK

語の語

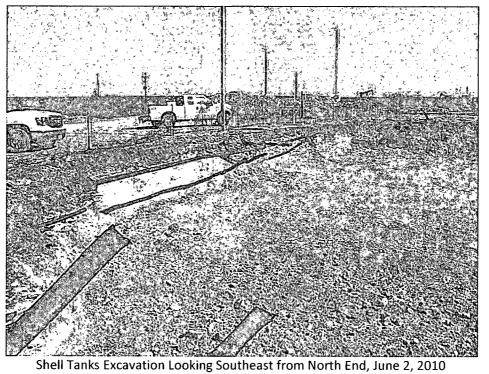
1990 (M.)

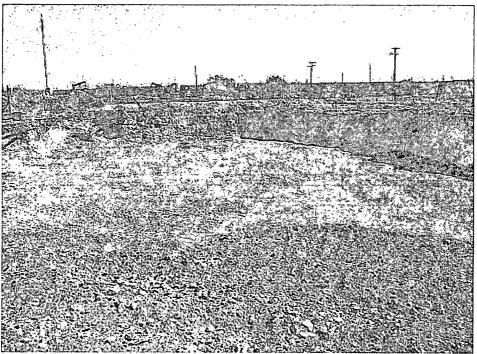
1. 28. A.

1000

1. E. M. C.

14 M. 3.


Sec. 1


Star Star

223

370° 4

A 5 44

Shell Tanks Excavation Looking South from North End, June 2, 2010

RECEIVED 2009 DEC 22 AM 11 38

December 18, 2009

VIA EMAIL: Carl.Chavez@state.nm.us

Mr. Carl Chavez Environmental Engineer New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Free Product Assessment and Recovery Update - Targa Midstream Services, L.P., Eunice Gas Plant (GW-005), Unit Letter A (NE/4, NE/4), Section 3, Township 22 South, Range 37 East, Lea County, New Mexico

Dear Mr. Chavez:

This letter is submitted to the New Mexico Oil Conservation Division (OCD) on behalf Targa Midstream Services, L.P. (Targa) by Larson & Associates, Inc. (LAI), Targa's consultant, to update the OCD, since November 17, 2009, on source evaluation and recovery of light non-aqueous phase liquids (LNAPL or condensate) discovered in monitoring well MW-3 at the Eunice Gas Plant (Facility). The Facility operates under OCD discharge permit GW-005 and is located in Unit A (NE/4, NE/4), Section 3, Township 22 South, Range 37 East in Lea County, New Mexico. Figure 1 presents a location and topographic map. Figure 2 presents a Facility drawing.

Hydrocarbon Product Recovery

On November 13, 2009, LAI personnel began recovering LNAPL from well MW-3 using a Keck pneumatic product recovery system (PRS) supplied by GeoTech, Inc., Denver, Colorado.

The PRS is a stainless steel bladder pump equipped with a floating hydrophobic filter to skim LNAPL. The condensate is discharged into a 55-gallon polyethylene drum positioned inside secondary containment. The tank full sensor is positioned inside the polyethylene drum to signal the controller to shut off the pump once the drum level is full. Between November 13 and December 16, 2009, approximately 80.4 gallons of LNAPL and 132 gallons of water have been recovered from MW-3. Recovered product is removed by Targa personnel, and recycled in plant operations. Table 1 summarizes MW-3 gauging, pump operating parameters, recovery volumes, and operation notes.

On December 11, 2009, LAI personnel performed a second bail-out test in well MW-3 to evaluate system operation effectiveness. The bail-out test is performed by measuring the static water and product level in the well, then hand bailing LNAPL with a disposable polyethylene bailer. Water and product recovery is monitored until an inflection point is observed. The inflection point occurs when the product thickness in the well equalizes with the product thickness in the formation and is based on the method outlined by Gruszczenski (1987, NGWA). The apparent hydrocarbon product thickness prior to the bail-out test was 4.30 feet, down from 5.06 feet recorded October 21st. During this second test the inflection point was delayed until

approximately 120 minutes after recovery started, a time increase of 25 minutes when compared with the previous test. The calculated product thickness for this test was 0.90 feet (previously 1.44 feet) and the capillary fringe height was 3.40 feet (previously 3.62 feet). The bail-out test results indicate a 60% reduction in LNAPL, and a 6.5% capillary fringe reduction. Copies of the October and December bail-out tests are presented in Appendix A.

Observed product thickness in well MW-3 during pumping has been reduced to sheen, but does substantially recover when the pump is turned off. During the next site visit, LAI will be reducing the pump cycle frequency to approximately once per every five minutes; a length of time that should allow about 0.10 feet of LNAPL to recovery in MW-3 between cycles, enhancing recovery efforts.

Source Evaluation

On October 12, 2009, Targa personnel collected liquid samples from the XTO inlet scrubber, closed drain scrubber and monitoring well MW-3. On October 15, 2009, Targa personnel collected a product sample from the condensate ("Shell") tank. The samples were delivered under chain of custody control to Cardinal Laboratories (Cardinal) located in Hobbs, New Mexico, and analyzed by Caprock Laboratories (Caprock) located in Midland, Texas. Caprock analyzed the samples for total sulfur, API gravity and extended hydrocarbons by gas chromatography (GC). The sample from the XTO inlet scrubber was a water solution that contained no phase-separated hydrocarbons for fingerprint analysis. Based on the GC, gravity and weight-percent sulfur data, Caprock concluded that the three samples (closed drain scrubber, MW-3, Shell Tanks) were not from the same origin. The laboratory report for the Shell Tank sample was not available for inclusion in the submittal on November 17, 2009, and is presented in Appendix B.

At the OCD's request, LAI prepared two (2) geological cross sections (A to A' and B to B') from geological logs of monitoring wells MW-2A, MW-3, MW-4, MW-5, MW-6, MW-11, MW-12, MW-13, MW-14, MW-16 and MW-19. Geological logs of monitoring wells MW-16, MW-6, MW-5, MW-3 and MW-13 were used to prepare cross section A to A' which transects the Facility from west to east (Figure 3). Geological logs of monitoring wells MW-11, MW-12, MW-12, MW-2A, MW-3, MW-4, MW-14 and MW-19 were used to prepare cross section B to B' which transects the Facility from north to south (Figure 4). Figure 2 presents the cross section locations.

Referring to Figure 3, the groundwater elevation is highest in the vicinity of well MW-3 where the groundwater and LNAPL occur in a sandstone unit between approximately 22 and 33 feet below ground surface (bgs). The sandstone grades vertically into clayey sand and is laterally discontinuous. The sandstone was not observed at well MW-13 located approximately 295 feet east. The groundwater elevation decreases west of MW-3.

Figure 4 shows that the surface elevation and groundwater elevation is highest in the vicinity of well MW-3. Groundwater and LNAPL occur in the sandstone unit that is

laterally discontinuous to the north and south. The groundwater elevation decreases gradually to the north and south of well MW-3. The geological cross sections show possible groundwater mounding in the area of MW-3. The groundwater mounding may be due to an open excavation located about 25 feet west of the well. The excavation is the result of soil removal following construction of the new "Shell" tanks north of the former location.

On July 29, 2008, Targa reported a spill to the OCD District 1 office in Hobbs, New Mexico. The spill occurred near the closed drain scrubber that was previously located near the open excavation. The release involved about 20 barrels of condensate when a dresser sleeve on a line failed due to over pressuring from pigging operations causing the condensate to flow into the open excavation. Although condensate was recovered the spill is considered a source for the LNAPL in MW-3.

Targa will continue recovering LNAPL from MW-3 using the pneumatic product recovery pump. If you have any questions or comments, please contact Mr. Cal Wrangham at 432.688.0452 or <u>CWrangham@targaresources.com</u>, or myself at 432.687.0901 or <u>mark@laenvironmental.com</u>.

Sincerely,

Larson & Associates, Inc.

Mark J. Larson, P.G., C.P.G., C.G.W.P. Senior Project Manager/President

Encl.

Cc: Cal Wrangham, Targa James Lingnau, Targa Susan Ninan, Targa Larry Johnson, OCD – Hobbs TABLES

in the second second

с. Т.

ß

	>	Plant
	MW-03 LNAPL Recovery Summary	Targa Midstream Services, L.P., Eunice Plant
Table 1	L Recover	Services, L
	N-03 LNAF	lidstream !
	ž	Targa M

le t

Date	Depth	Depth H ₂ O	LNAPL	Filter/Float	Cycles/	inlet	LNAPL	H ₂ O	Drum/ Used, Full, Emptv	Notes
	LNAPL		Thickness	Depth Set	Minute	Pressure	Recovered	Recovered	(#/U,F,E)	
10/13/2009	26.18	31.33	5.15							LNAPL Discovered
10/21/2009	26.22	31.28	5.06				2.75			LNAPL Recovery Test
P00C/11/11	36 36	3151	ה 12 12	77 15		75				Keck PRS System Installed. Full
	00.04	*0.*0	CT.C	CT:/7	7	C,				operation on 11/13/09
11/19/2009	27.26	29.16	1.90	26.5	2	74	21.1	27.7	1/U	Raised float ~8 inches
11/20/2009	27.57	27.77	0.20	26.6	2	75	18.2	31.6	1/F; 2/U	Well recovery test; 0.20 feet
11/23/2009	27.09	29.92	2.83	27.6	2	75	7.4	0	1/U; 2/E	Lowered Float
12/3/2009	27.76	28.33	0.57	28	2	72	13	40.1	1/U; 2/E	Lowered Float
										Shut down system to allow
12/9/2009	28.15	28.21	0.06				11.6	28.9	1/F; 2/U	recovery for Bail Down -
										Recovery testing
12/10/2009	26.82	30.51	3.69				-			Allowing stabilization
12/11/2009	26.75	31.05	4.30	27	2	68	2.2			Bail Down - Recovery testing
12/14/2009			0.00	27.5					1/F; 2/U	Reset pump, not recovering
12/15/2009			0.00				10.3	0	1/E; 2/U	
12/16/2009		27.92	0.00	27.5	2	72	13.75	3.7	1/E; 2/U	
			0.00							
			0.00							
			0.00							
			0.00							

Notes

132

80.4

Recovery Totals

Depths reported in feet.

Inlet Pressure in Pounds per Square Inch (PSI).

Volumes reported in gallons.

55-gallon drum dimensions = 22.5" ID X 32" Internal height. ~0.206613 gallons per 0.01 feet gauged

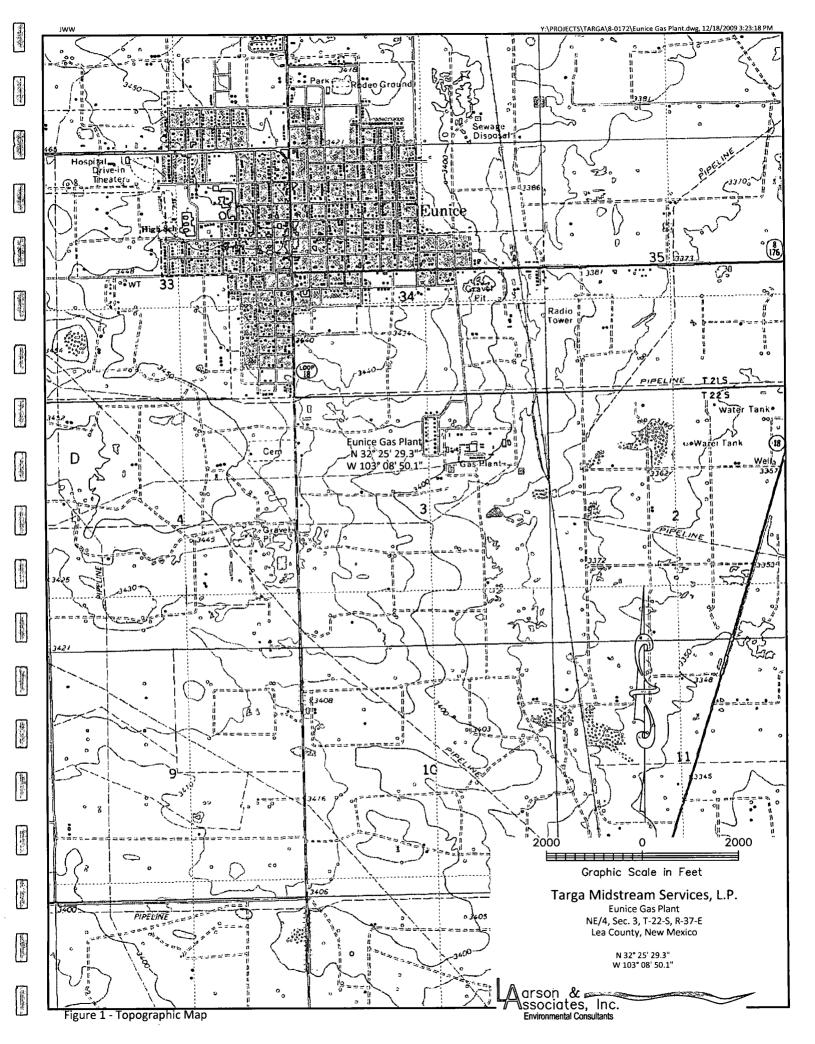
Yellow indicates recovery not used in total calculation.

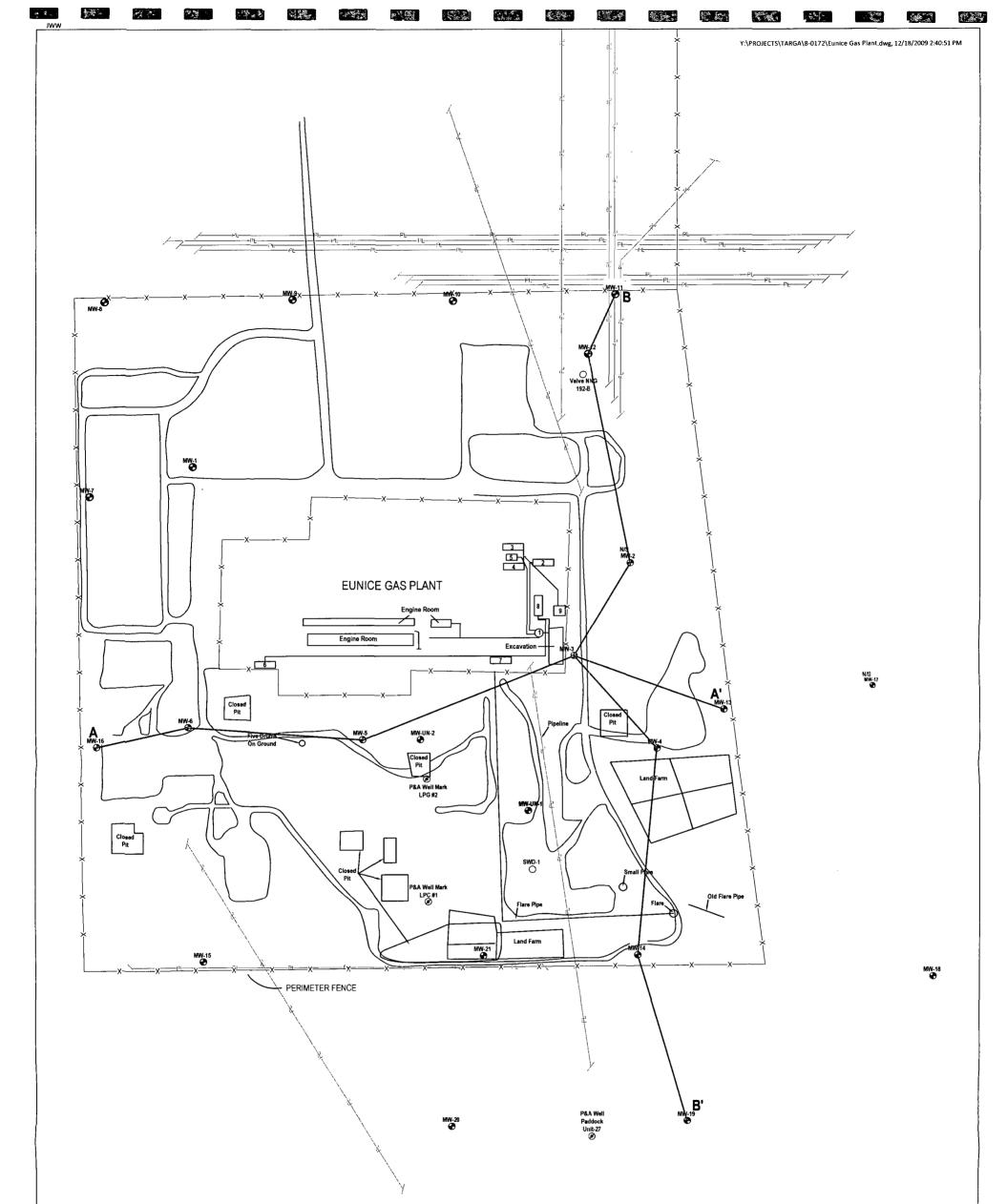
Quick Calc	Input Feet	Gaílons
uged Drum Thickness		0.0

FIGURES

ł

l


ł


i. i

ł

ř J

.

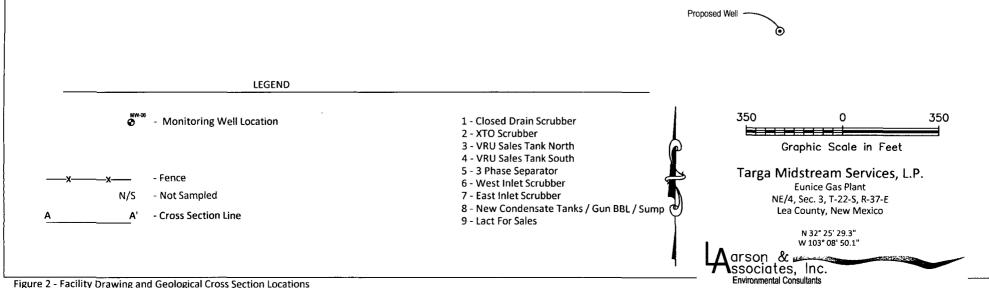
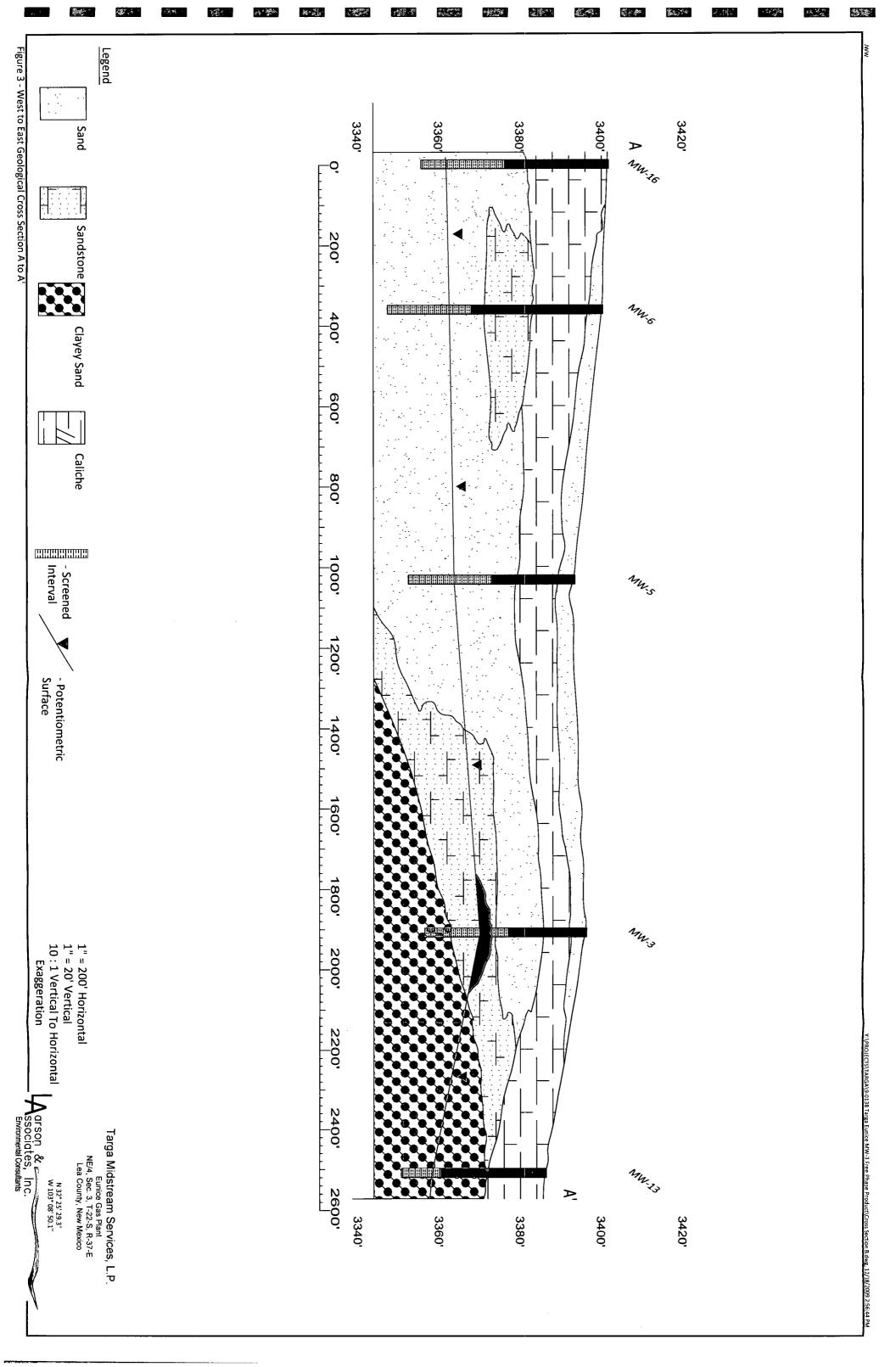
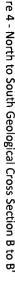
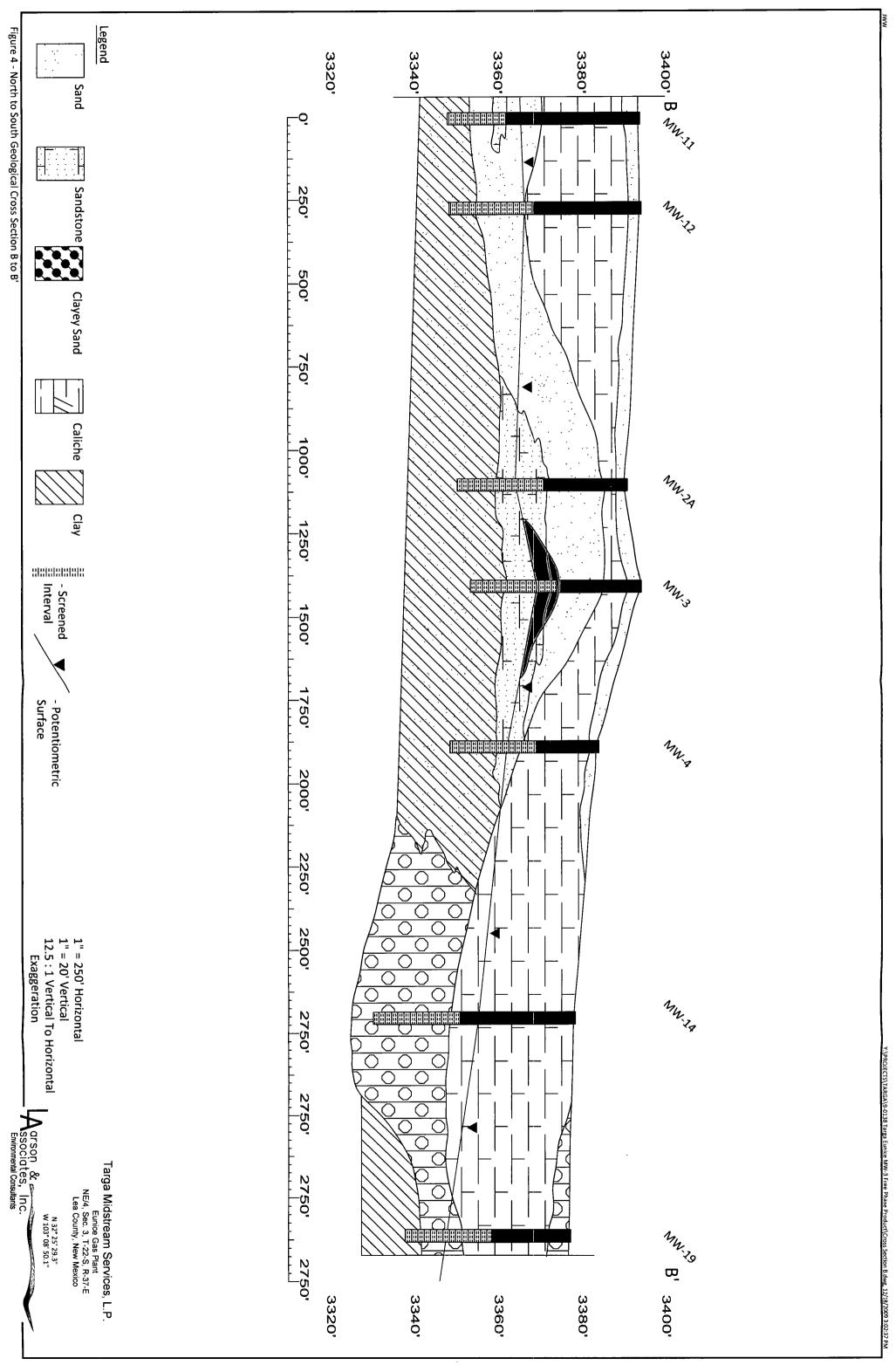




Figure 2 - Facility Drawing and Geological Cross Section Locations



(ini)

2.00

19 A 11

these

Ser 19.5

記書

1.73

1. 19 1

8-1 52

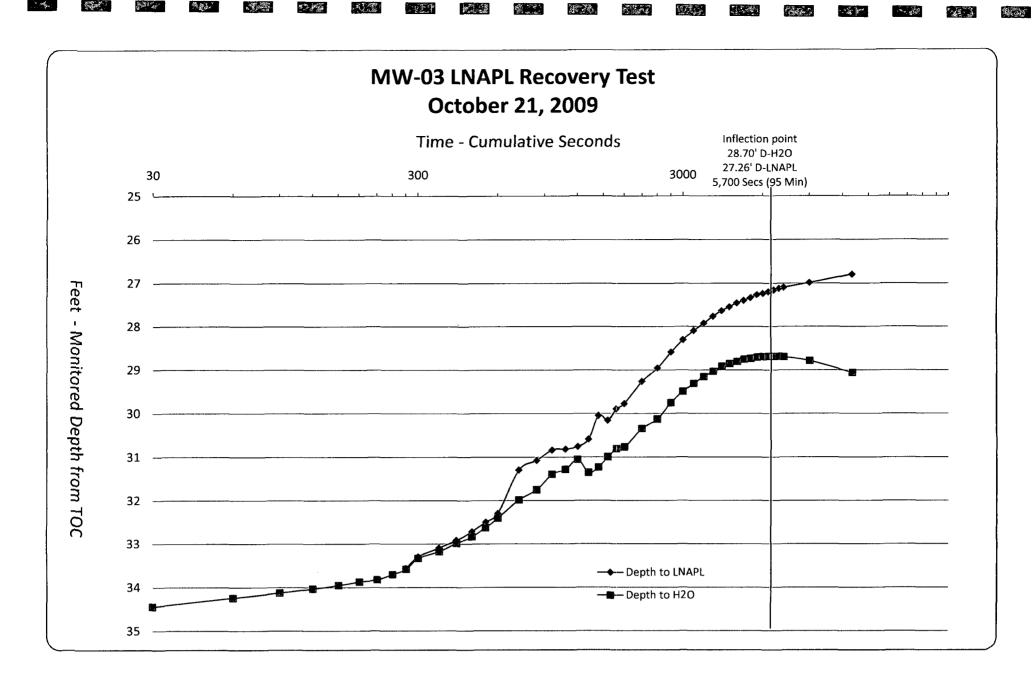
Stan

4 4 ° 5 ° 1

9⁵²¹⁰ 8

- **3** - 5

a 1236


8-6- 6-6-

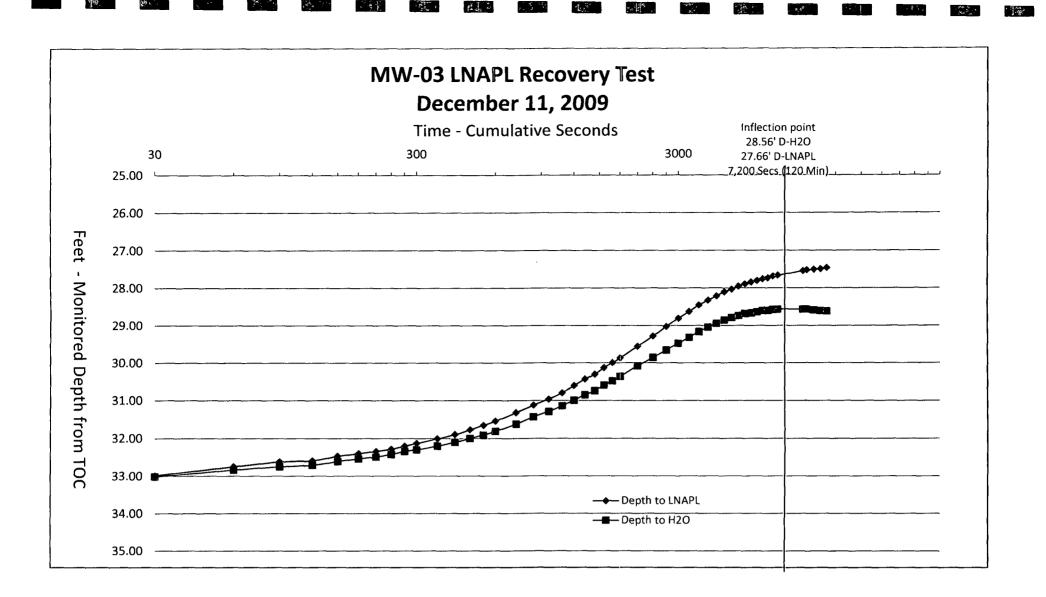
APPENDIX A

1

Bailout Test Results

.

Obs. No. 1	Time Sec 30	Depth to LNAPL	Depth to H₂O 34.44
2	60 00		34.24
3 4	90 120		34.12 34.03
5	150		33.95
6	180		33.87
7	210		33.82
8 9	240 270	33.56	33.70 33.58
9 10	300	33.29	33.33
11	360	33.09	33.17
12	420	32.91	32.98
13	480	32.71	32.83
14 15	540 600	32.49 32.29	32.62
15 16	720	32.29 31.29	32.40 31.98
17	840	31.07	31.75
18	960	30.83	31.39
19	1080	30.81	31.28
20	1200	30.75	31.05
21 22	1320 1440	30.58 30.04	31.35 31.23
23	1560	30.15	30.99
24	1680	29.89	30.80
25	1800	29.77	30.76
26	2100	29.26	30.34
27 28	2400 2700	28.95 28.58	30.12 29.75
20 29	3000	28.30	29.75
30	3300	28.09	29.31
31	3600	27.92	29.15
32	3900	27.76	29.03
33 34	4200 4500	27.63 27.54	28.91 28.85
35	4800	27.45	28.80
36	5100	27.39	28.75
37	5400	27.33	28.73
38	5700	27.26	28.70
39 40	6000 6300	27.23 27.19	28.69 28.68
40 41	6600	27.19	28.68
42	6900	27.12	28.68
43	7200	27.09	28.69
44	9000	26.98	28.78
45	13020	26.79	29.06


Static	Static	Corrected
D-LNAPL	D-H2O	D-GW
26.22	31.28	27.64

Specific Gravity Estimated at 0.72 g/cm³

Charting and calculation based upon Determination of a Realistic Estimate of Formation Product Thickness Using Monitor Wells: A Field Bailout Test by Thomas S. Gruszczenski (1987, NGWA)

Step Number

9 – Capillary Fringe Height	3.62
8 – Inflection Product Thickness	1.44
7 – Measured Product Thickness	5.06
6 – S.G. corrected	27.64
5 – Inflection Point	sec
-	5700

1.

et al is

Obs. No.	Time Sec	Time Min	Depth to LNAPL	Depth to H ₂ O
1	30	0.5	32.98	33.01
2	60	1	32.74	32.83
3	90	1.5	32.61	32.74
4	120	2	32.58	32.70
5	150	2.5	32.46	32.60
6 7	180 210	3 3.5	32.39	32.53
8	240	3.5 4	32.33 32.27	32.48 32.41
9	240 270	4 4.5	32.27	32.41
10	300	4.5 5	32.19	32.33
11	360	6	32.00	32.29
12	420	7	31.89	32.09
13	480	8	31.76	31.99
14	540	9	31.64	31.90
15	600	10	31.53	31.80
16	720	12	31.31	31.61
17	840	14	31.11	31.42
18	960	16	30.95	31.28
19	1080	18	30.79	31.13
20	1200	20	30.59	30.98
21	1320	22	30.42	30.84
22	1440	24	30.29	30.73
23	1560	26	30.12	30.58
24	1680	28	29.99	30.47
25	1800	30	29.86	30.35
26	2100	35	29.55	30.07
27	2400	40	29.28	29.85
28	2700	45	29.02	29.65
29	3000	50	28.80	29.47
30	3300	55	28.62	29.31
31	3600	60	28.45	29.16
32	3900	65	28.32	29.04
33	4200	70	28.21	28.94
34	4500	75	28.10	28.85
35	4800	80	28.03	28.78
36	5100	85	27.95	28.73
37	5400	90	27.89	28.68
38	5700	95	27.84	28.66
39	6000	100	27.80	28.63
40	6300	105	27.76	28.60
41	6600	110	27.73	28.59
42	6900	115	27.68	28.57
43	7200	120	27.66	28.56
44 45	9000	150	27.54	28.56
45 46	9300	155	27.52	28.56
46	9900	165	27.50	28.58
47 49	10500	175	27.49	28.60
48	11100	185	27.46	28.61

Pho:

Static	Static	Corrected
D-LNAPL	D-H2O	D-GW
26.75	31.05	27.95

Specific Gravity Estimated at 0.72 g/cm³

Charting and calculation based upon Determination of a Realistic Estimate of Formation Product Thickness Using Monitor Wells: A Field Bailout Test by Thomas S. Gruszczenski (1987, NGWA)

Step Number

5 – Inflection Point	7,200 sec
6 – S.G. corrected	27.95
7 – Measured Product Thickness	4.3
8 – Inflection Product Thickness	0.90
9 – Capillary Fringe Height	3.40

APPENDIX B

-

r Guir F

1 - 1 - 1 - 1 - 1

1

: ;; ;;

2. B. 1. 2.

i i Laboratory Report

Verster.

بخيند تد كل

2.42

November 23, 2009

Roger Holland Targa Resources 6 Desta Drive, Suite 3300 Midland, TX 79705

Re: Middle Plant Shell Tanks

Enclosed are the results of analyses for sample number H18505, received by the laboratory on 10/15/09 at 12:40 pm.

Cardinal Laboratories is accredited through Texas NELAP for:

Method SW-846 8021 Method SW-846 8260 Method TX 1005 Benzene, Toluene, Ethyl Benzene, and Total Xylenes Benzene, Toluene, Ethyl Benzene, and Total Xylenes Total Petroleum Hydrocarbons

Certificate number T104704398-08-TX. Accreditation applies to solid and chemical materials and non-potable water matrices.

Cardinal Laboratories is accredited though the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.2	Regulated VOCs (V2, V3)

Accreditation applies to public drinking water matrices.

Total Number of Pages of Report: 10 (includes Chain of Custody)

Sincerely.

Celey/D. Keene Laboratory Director

Caprock Laboratories, Inc.

3312 Bankhead Highway Midland, Texas 79701 (432) 689 - 7252

November 20, 2009

Cardinal Laboratories 101 East Marland Hobbs, New Mexico 88240

Attention: Celey Keene

Subject: Hydrocarbon Fingerprint

Gentlemen

Presented in this report are the final results of analyses performed to help determine if the samples submitted on October 22, 2009 and November 20, 2009 were from the same origin. The sample identified as H18479-2 was a water solution and contained only a trace amount of hydrocarbons and could not be included in the fingerprint analyses.

The other three samples (H18479-1, H18479-3 & H18505-1) were analyzed to determine Total Sulfur by X-Ray Fluorescence, API Gravity and Extended Hydrocarbons by Gas Chromatography. The data from the Extended Chromatographic analysis was calculated and the ratio of the weight percent of each component between N-Decane to N-Eicesane was calculated as a function of weight percent N-Tridecane. The resulting data was then graphed to serve as a fingerprint of each hydrocarbon. The ratio of three biomarkers, Farnesane:N-Tetradecane, Pristane:N-Heptadecane, and Phytane:N-Octadecane were also calculated and compared.

In general, based on the fingerprint, gravity and weight % sulfur data, these three samples probably are not from the same origin.

It has been a pleasure to perform this study for you and we look forward to being of service in the future. Please do not hesitate to call if you should have any questions about the analytical procedures used, the results obtained, or if we may be of further assistance.

Respectfully,

mus L. Pintchard

James L. Pritchard, Lab Manager Caprock Laboratories, Inc.

CAPROCK LABORATORIES, INC. 3312 BANKHEAD HIGHWAY MIDLAND, TEXAS 79701 (432) 698-7252

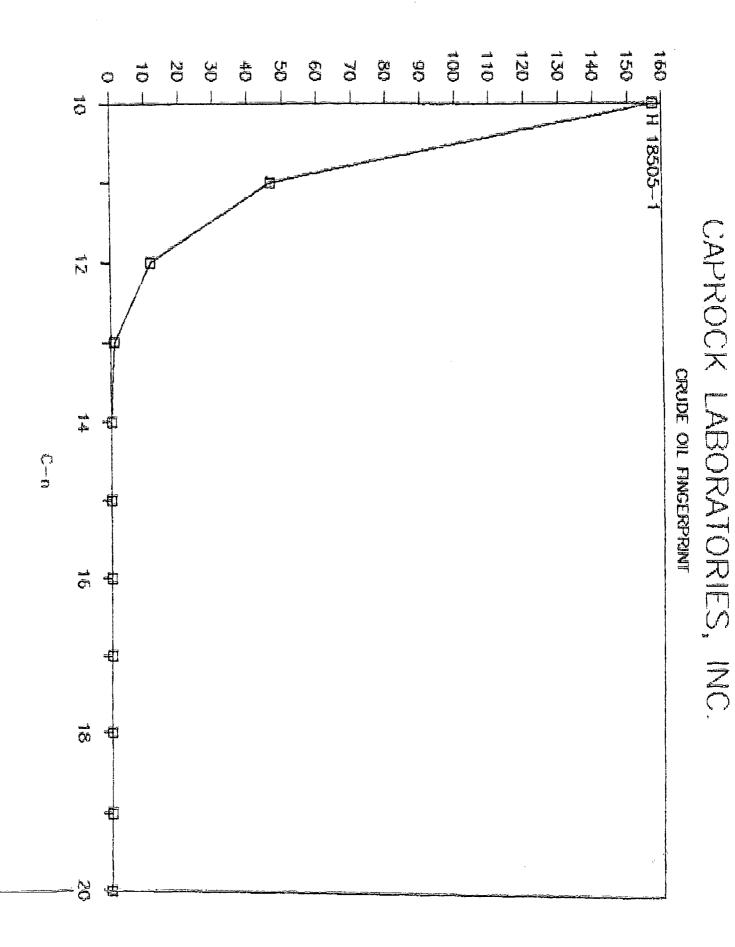
COMPANY :	CARDINAL	LABORATORIES	JOB NUMBER:	0911008
SAMPLE:	AS NOTED		DATE RECEIVED:	NOV. 03, 2005
			DATE REPORTED:	NOV, 20, 2005
			REPORTED TO:	CELEY KEENE

SUMMARY OF CRUDE OIL ANALYSIS

SAMPLE IDENTIFICATION	H18479-1	H18479∞3	H18505-1
LAB NUMBER	10089~01	10089-03	11008-01
WEIGHT % SULFUR	1.2967	0.3096	0.2208
BPECIFIC GRAVITY, 60/60F	0,7389	0,7632	0,7428
API GRAVITY @ 60 F	60.0	53,8	59.0

* SAMPLE WAS A WATER SOLUTION, NOT HYDROCARBONS

METHODS: WEIGHT % SULFUR ~ ASTM D4294 GRAVITY ~ ASTM D287 SAMPLE: CRUDE OIL


ANALYST:

JAMES L. PRITCHARD, LAB MANAGER

.

	CAPRO	CK LABORAT	ORIES, INC		
		2 BANKHEAD Land, texa			
COMPANY :		LABORATORI		JMBER:	
	H 18505-1				11-03-08
	OCTOBER 1	5, 2009			11-20-01
SAMPLE #:	0911008-0	1	REPOR	TED TO:	C, KEENE
COMPONENT	١	WEIGHT %	COMPONENT		WEIGHT %
Methane - Eth	ane	0,0016	Octadecanes		0.0000
Propane	C-3	0.0432	N-Octadecane	C-18	
Iso-Butane		0.1231	Nonadecanes		0,0000
N=Butane	C-4	0.6037		C-19	0.0000
Iso-Pentane		1.3273			0,0000
N~Pentane	C-5	1.9286			
Neo-Hexane		0.0592	Heneicosano +	0-21+	0.0000
Cyclopentane		0.5925	T • • • 1		100 0000
2-Methylpente		2.2436	Total		100.0000
3-Methylpenta N-Hexane		1.7063	C-n / C-13 SUM		
Methylcyclope					
Benzene		1.1082	Ç~n		
Cyclohexane		3.3494		₩ 317,50° 1505	
2-Methylhexan	8	2.2788	10	157.525	
3-Methylhexan	8	3.1064		46,775	
Dimethylcycle	pentanes	4,8079	12	11.800	
Heptanes		1.9542	13	1.000	
N-Heptane		6.9411	14	0.000	
Methylcyclohe	xane	7.9502		0.000	
Toluene		3.9979		0.000	
Octanes	~ ~	17.3277	17	0.000	
N-Octane	C-8	5.8225	18	0.000	
Ethylbenzene B.M.Yvlana		1.7087	19	0.000	
P-M-Xylene Q-Xylene		1.0782 0.6853	20	0.000	
Nonanes		12.3183	BIO-MARKER SUM	MARY	
N-Nonane	C-9	1.8710	BIA.WUUVEU AAW		
Decanes		4.8846	Farnesane/C-14	0.000	
N-Decane	C-10	0.6301	Pristane/C-17	0,000	
Undecanes		1,2545	Phytane/C-18	0.000	
N-Undecane	Q-11	0,1871			
Dodecanes		0.3294			
N-Dodecane	C-12	0.0472	WEIGHT % S	0.2208	
Tridecanes N-Tridecane	C-13	0.0959		.	
Tetradecanes	و ا ک	0.0040 0.0272	GRAVITY,	59,0	
N-Tetradecane	0 C-14	0.0000	API 🛛 60 F		
Pentadecanes	8 9 14	0,0000			
N-Pentadecane	C-16	0.0000			
Hexadecanes	and it inge	0.0000	(10	
N-Hexadecane	C-16	0.0000	Analyst;	. T. Ta	T.L. []
Heptadecanes		0.0000	/ Zame	s L. Prit	chard
N-Heptadecane	C-17	0.0000		ab Manage	1 <u>, 1</u> , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

..فكرف

0-n / 0-13

- 2- 2 - 2-

2 . 2 <u>8</u> .

and and

. . .

in the The second second

فسيسلخ ب

الموسقة محمد المراجع الموسقة محمد المراجع

بد بحقيق

- 4

-2-2-2-

CAPROCK LABORATORIES, INC 3312 BANKHEAD HIGHWAY MIDLAND, TEXAS 79701

		·				
COMPANY:	CARDINAL	LABORATORI	ES	JOB NI	/MÐER:	0910089
SAMPLE ID:	H18479-1			DATE P	RECIEVED:	10-22-09
						10-30-09
					TED TO:	
SAMPLE #:	10089-01			UPLAU	IER IV	AN VEENE
244 1 - 25 2 1 8 - 4 Mar. 20 3						
COMPONENT		WEIGHT %	COMPONENT		,	WEIGHT %
A A A A A A A A A A A A A A A A A A A		11 maia 347 () (757	Seme Aucul		,	NETAUL V
Methane = Eth	nane	0,0000	Octadecan	86		0.0000
Propane	C-3	0.0057	N-Octadec		C=18	
Iso-Butane	* C	0.0114	Nonadecan		# 1¥	0.0000
N-Butane	Ç=4	0.0740		ee Ana	C-10	0.0000
lso-Pentane		0.4781	Eicosanes		A6	
	C-5	V:4/01 A 0083	EICUSANES	•	8 88	0.0000
N-Pentane	Ç-5	0.8367		ê.	G=20	0.0000
Neo-Hexane		0.0374	Heneicosa	ne +	C-21+	0.0000
Cyclopentane		0.3765	_			
2-Methylpente		0.0374 0.3765 1.4929	Total			100.0000
3-Methylpenti		1.1466				
N-Hexane			C-n / C-1	3 SUM	MARY	
Methylcyclop	entane	1.7295				
Benzene Cyclohexane		0,8017	C-n	(C-n/C=13	
Cyclohexane		1.9702				
2-Methylhexa	10	1.5408	10		46.686	
3-Methylhexa	10	2,1068	11		9.301	
Dimethylcyclo			12		0.617	
Heptanes		1.3221	13		1,000	
Heptanes N=Heptane	C-7	5,3527	14		0.619	
Methylcycloh	axane		16		0,377	
		3.4768	16		0.208	
Toluene Octanes		15.4848			0,000	
N-Octane	C-8	0.6163	18		0.000	
Ethylbenzene		3,9314			0,000	
P-M-Xylene		4.1810	20			
O-Xylene		1.4855	£V		0.000	
Nonanes		22.9573	BTA HADVE	<u>а ени</u>		
N-Nonane	Č-9	••••••••••••••••••••••••••••••••				
Decanes	A~5	3.8728 9.2133	· · · · · · · · · · · · · · · · · · ·			
N-Decane	C=10	1.1018	Farnesane		0.170	
Undecanes	V-1V		Pristane/		N.A.	
N-Undecane	C-11	1.8701 0.2195	Phytane/C	-16	Ν.Α.	
Dodecanes	A. I.I.					
N-Dodecane	C-12	0,4781 0,0122	WETGUE A	•		
Tridecanes	6-18		WEIGHT %	Ş	1.2967	
N-Tridecane	C-13	0,2204	0.0111941		~ ~ ~	
Tetradecanes	M. 13	0.0236	GRAVITY,	8 5	60.0	
N-Tetradecan	e C=14	0.1000	API @ 60	r		
Pentadecanes	<u>v</u> v=14	0.0146				
N-Pentadecanes	o /?	0.0724				
	e C-15	0.0089	ſ	<i>.</i>	А	
Hexadecanes	0 1 P	0.0268	1	U	1 Some	1 -
N-Hexadecane	C-16	0.0049	Analyst:	Jona	J. Inle	and -
Heptadecanes	~ ~ ~ ~ ~ ~	0.0000	(/Jame		chard,
N-Heptadecan	9 C=17	0.0000	\mathcal{V}	۲ <u>ل</u>	ab Manage	F
			2			

the start

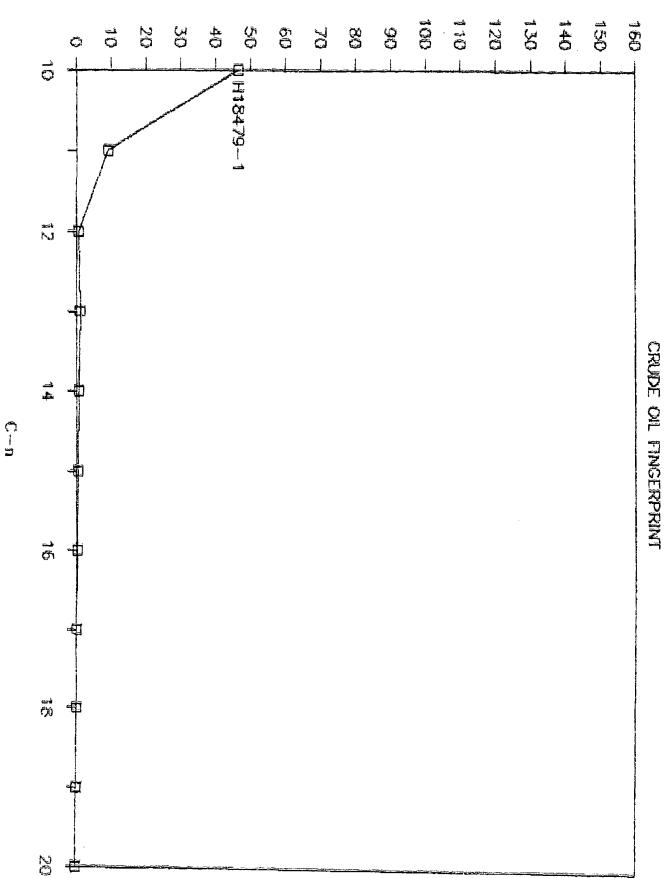
the second second

المردح فرجد

بالمتعاقبة الم

1. 18 . .

من بالله


n de la construction de la construcción de la const

- موقدون

100 and 100 and

1. 2 E .

CAPROCK LABORATORIES, INC.

E allowing an

نيد تل^ي ي

Ser.

a state

a to the second

· . .

1 Aris

ليدويه

مي المريخ موجد في حو

and the second

1

ي. ومراجع ومراجع

CAPROCK LABORATORIES, INC 3312 BANKHEAD HIGHWAY MIDLAND, TEXAS 79701

COMPANY: Sample ID:	H18479-3	LABORATORI		DATE R		0910089 10-22-09 10-30-09 C. KEENE
SAMPLE #:	10089-03					
COMPONENT		WEIGHT %	COMPONENT		V	VEIGHT %
Methane - Eth		0.0000	Octadecan	18 S		0,1436
Propane	C = 3	0.0025	N-Octadeo	ane	C-18	0.0160
Iso-Butane		0.0049	Nonadecan	05		0,0872
N-Butane	C-4	0.0233	N-Nonadec	ane	C-19	0.0319
Iso-Pentane		0.1449	Eicosanes			0.0516
N-Pentane	C-5	0.1571	N-Eicosan	9	C-20	0.0073
Neo-Hexane		0.0135	Henelcose	ine +	0-21+	0,0000
Cyclopentane		0.1350				-
2-Methylpent	ine	0.4812	Total			100.0000
3-Methylpent		0.4873				
N-Hexane	C=6	0,9354	C-n / C=1	3 SUMM	ARY	
Methylcyclop	entane	0,8875		*****	20. 00 ftt be ris an et es	
Benzene		0.1878	C-n	C	-n/C-13	
Cyclohexane		1.3430				
2-Methylhexa			10		14.749	
3-Methylhexa		1,3233	11		5,520	
Dimethylcycle	opentanes	2.3864	12		2.284	
Heptanes		0.8986	13		1.000	
N-Heptane	Q-7		14		0,299	
Methylcycloh	exane	4.6820	15		0,346	
Toluene		1.7554	16		0.063	
Octanes		14.7408	17		0.110	
N-Octane	C-8	6,4902	18		0.103	
Ethylbenzene		2.3091	19		0.205	
P-M-Xylene		2.7927	20		0.047	
Q-Xylene		0.8777				
Nonanes			BIO-MARKE	R SUMM	IARY	
N-Nonane	C-9	4.6390	و الله بربا دور برب س بربا دی			
Decanes		15.2134	Farnesane		2.110	
N-Decane	C-10	2.2993	Pristane/		4.860	
Undecanes		5.5425	Phytane/C	2-18	1.880	
N-Undecane	C-11	0.8605				
Dodecanes	5 4 A	1.7947		-	_	
N-Dodecane	C-12	0.3560	WEIGHT %	S	0.3096	
Tridecanes N-Tridecane	0-19	0,8409				
Tetradecanes	C≈13	0.1559	GRAVITY,		53.9	
N-Tetradecan	o 0_41	0.4779	API 🛛 60	F		
Pentadecanes	e C-14	0.0466				
	n n. 1 f	0.4149				
N-Pentadecan Hexadecanes	e C-15	0.0540		\cap	. 0	
N-Hexadecanes	C-16	0.1682 0.0098	A	L.	Juny 2	1 A
Heptadecanes	ري = 1 (<u>ا</u>	0.1559	Analyst:	Agenca	ppale	and
N=Heptadecan	e C-17	0.0178		/James Lā	D Manage	chard,
	~ ~ .,		V		8 11811898	į

021068982P

برقال الح

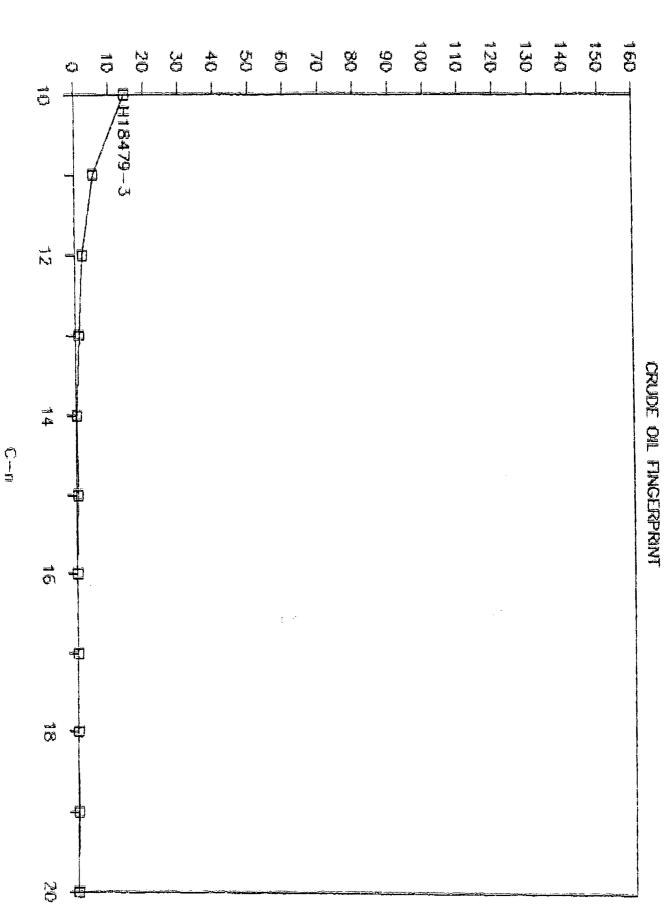
and the second second

. Sugar

والقالح والمراجع

1.00

14. S. S. S.


rd y be

100

and the second

1. 7 a 1.

CAPROCK
LABORATORIES,

t E

A REAL

San Street -

1. 1. S. 1.

1

- Service

بد برايا م

Sec.

the second second

ſ.

2 ad

See - week

سيبعب تنبله

-

101 East Ma 101 East Ma (515) 393-	CHIXDINNAL LABOLAN OKIAS 101 East Manland, Hobbs, NM 88240 (575) 393-2326 Fax (575) 393-2476		Page0 ^f
Company Name: 14/0 A		BILL TO	ANALYSIS REQUEST
Project Manager.		P.O. #.	
Address: Rox 1926	5	Company:	
City: EUNICE	State: A WLZip: 3231	Attm	
* 575-394-	2524 Fax #: 575-394-1514	Address:	
Project #:	Project Owner:	City.	
Project Name: M. J. C P.H.	- Shell Tanks	State: Zip:	
		Phome #:	
Sampler Name: Haller	Phi d	Fax #:	
1	ALATIC A	PRESERV SAMPLING	
Lab I.D.		ור בין כססר נוסיפאפני עדעפאיני עדעפאיני עדעפפי עדעפפי עדעפפי עדעפפי עדעפפי עדעפפי עדעפפי עדעפפי עדעפפי עדעפפי עדעפפי עדעפי עדעפי עדעפי עדעפי עדעפי עדי עדעפי עדפי עד	
TAMA Shill Tenks	S	N. WAR	
H 82.4	· · · · · · · · · · · · · · · · · · ·		
PNERSE MOTE: Lanbiny and Damagos. Cardinata iai Innahyses, Ali claimis including those for negligence an service Tanno inventshañ Cardinal De Nable for includin	s esclusive remedy for any clean ansing whether based in use whatsoever shall be deemed waved unless made in w ental damages, including, without firmfablor, business inter	contract or hort, shaft be limited to the armount pactory the client for the miling and received by Cardinal within 30 dibys after completion of the a uptions, isso in luse, or loss of profits neurised by clinon, its subolanses	The client for the mysebor of the agriticoble the source dances.
emiliares or successors arrang out of related to the p	to the performance of services hereinder by Larging in tegrories of when a part of print and print approx are reported and and a print of the performance of the phone Res. (Phone Res.)	La	Prome Result: U No Add ¹ Phome #: FartResult: U No Add ¹ Fart#:
Hereitinguistineed By:	Types: 41-00 Date: All Received By:		
Delivered By: (Circle One) Sampler - UPS - Bus - Other:	Terme. Sample Condition Cool Intract If / (, 2, 1 % , No 1 No	horn CHECKED BY: 11/ritials) 5 JA	

. . .

.

. .

∲ ₩

میں ہے۔ الانٹھ سربادہ

All Ber

1

1. 1. 1. 1. T.

and the second second

14 July -

5 6 6

1 Cardinal cannot accept verbal changes. Please fax written changes to 575-393-2475.

November 17, 2009

VIA EMAIL: Carl.Chavez@state.nm.us

Mr. Carl Chavez Environmental Engineer New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re:	Free Product Assessment and Recovery Update	~	0
	Targa Midstream Services, L.P., Eunice Gas Plant (GW-005)	جر	\bigcirc
	Unit Letter A (NE/4, NE/4), Section 3, Township 22 South, Range	e 37 East	H
	Lea County, New Mexico	29	

Dear Mr. Chavez:

This letter is submitted to the New Mexico Oil Conservation Division (OCD) on behalf Targa Midstream Services, L.P. (Targa) by Larson & Associates, Inc. (LA), its consultant, to update the OCD on source evaluation and recovery of free phase petroleum hydrocarbons (condensate) recently discovered in monitoring well MW-3 at the Eunice Gas Plant (Facility). The Facility is located in unit A (NE/4, NE/4), Section 3, Township 22 South, Range 37 East, in Lea County, New Mexico. The geodetic position is 32.42237196 degrees north and 103.1453015 degrees west. Figure 1 presents a location and topographic map. Figure 2 presents a Facility drawing.

Chronology

October 12, 2009 Free phase petroleum hydrocarbons (condensate) was discovered in monitoring well MW-3 during semi-annual groundwater monitoring activities and immediately reported to client, whom notified the OCD in Santa Fe, New Mexico;

Targa collected samples from well MW-3 and possible sources including the XTO inlet scrubber and closed drain scrubber, for sulfur and fingerprint analysis. The samples were submitted to Cardinal Laboratories, located in Hobbs, New Mexico;

2009 NOV 2

Targa pressure tested underground lines in the vicinity of well MW-3;

Mr. Carl Chavez November 17, 2009 Page 2 of 4

- October 21, 2009 LAI performed a bail-out test of the free phase hydrocarbons in MW-3 to determine the formation thickness of the hydrocarbons;
- November 13, 2009 Recovery of free phase product began in well MW-3 using a pneumatic pumping system.

Fingerprint Analysis

On September 12, 2009, Targa personnel collected liquid samples from the XTO inlet scrubber, closed drain scrubber and monitoring well MW-3. The samples were delivered under chain of custody control to Cardinal Laboratories (Cardinal) located in Cardinal transferred the samples to Caprock Laboratories Hobbs, New Mexico. (Caprock) located in Midland, Texas, which were analyzed for total sulfur, API gravity and extended hydrocarbons by gas chromatography (GC). A condensate sample from the waste oil (Shell) tank was also collected but results were not available for this report. The liquid sample from the XTO inlet scrubber was a water solution that contained no phase-separated hydrocarbons for fingerprint analysis. Caprock reported concentrations for three (3) biomarker parameters in the closed drain samples that were either not present or present at lower concentrations in the sample from MW-3. The biomarker parameters included farnesane (C-14), pristane (C-17) and phytane (C-Neither pristine or phytane were reported in the sample from MW-3, but 18). constituted 4.86% and 1.88% of the closed drain sump sample. Farnesane was 0.170% in the sample from MW-3 and 2.11% in the closed drain sump sample. The closed drain sump is not considered a source for the hydrocarbons based on the fingerprint analysis. Targa will submit the results for the waste oil (Shell) tank sample upon receipt from the laboratory. Figure 3 presents a detailed schematic showing the locations for the XTO Inlet Scrubber, Closed Drain Scrubber and monitoring well MW-3. Appendix A presents the laboratory report.

Underground Line Testing

Targa personnel performed short-term (15 minute) pressure tests on nine (9) underground lines in the vicinity of monitoring well MW-3, including the closed drain scrubber, XTO inlet scrubber, north and south vapor recovery unit (VRU) sales tanks, 3-phase separator, west and east inlet scrubbers, new condensate (Shell) tanks, gunbarrel tank, sump and lease automatic custody transfer (LACT) for sales lines. The lines were blocked, pressurized above operating pressure and manually observed for about 15 minutes for pressure decreases. No pressure decreases were observed concluding that the tested lines are not sources for the hydrocarbons in well MW-3. Figure 3 presents a detailed schematic for the locations of tested lines.

Mr. Carl Chavez November 17, 2009 Page 3 of 4

Bailout Test

On October 23, 2009, LAI personnel performed a bail-out test in well MW-3 to determine the thickness of product in the formation. The bail-out test was performed by measuring the static water and product level in the well prior to removing hydrocarbons by hand bailing with a disposable polyethylene bailer. The rate of water and product recovery was monitored until an inflection point was observed. The inflection point occurs when the product thickness in the well equalizes with the product thickness in the formation and is based on the method by Gruszczenski (1987, NGWA). The apparent hydrocarbon product thickness, prior to the bail-out test, was 5.06 feet. An inflection point was observed at approximately 95 minutes after recovery began. The calculated product thickness was 1.44 feet and the capillary fringe height was 3.62 feet. On Appendix B presents the bail-out test results.

On July 29, 2008, Targa personnel reported a spill to the OCD District 1 office in Hobbs, New Mexico. The spill occurred near the closed drain scrubber that was previously located near an excavation where the waste oil (Shell) tanks were located about 100 feet northwest (upgradient) of well MW-3. The release involved about 20 barrels of condensate when a dresser sleeve on a line failed due to over pressuring from pigging operations. The condensate ran into the excavation of the former waste oil (Shell) tanks and was collected using a vacuum truck. A track hoe was used to remove contaminated soil from the bottom of the excavation and placed in the on-site OCD permitted landfarm. The spill is considered a possible source for the hydrocarbons in well MW-3. Appendix C presents form C-141.

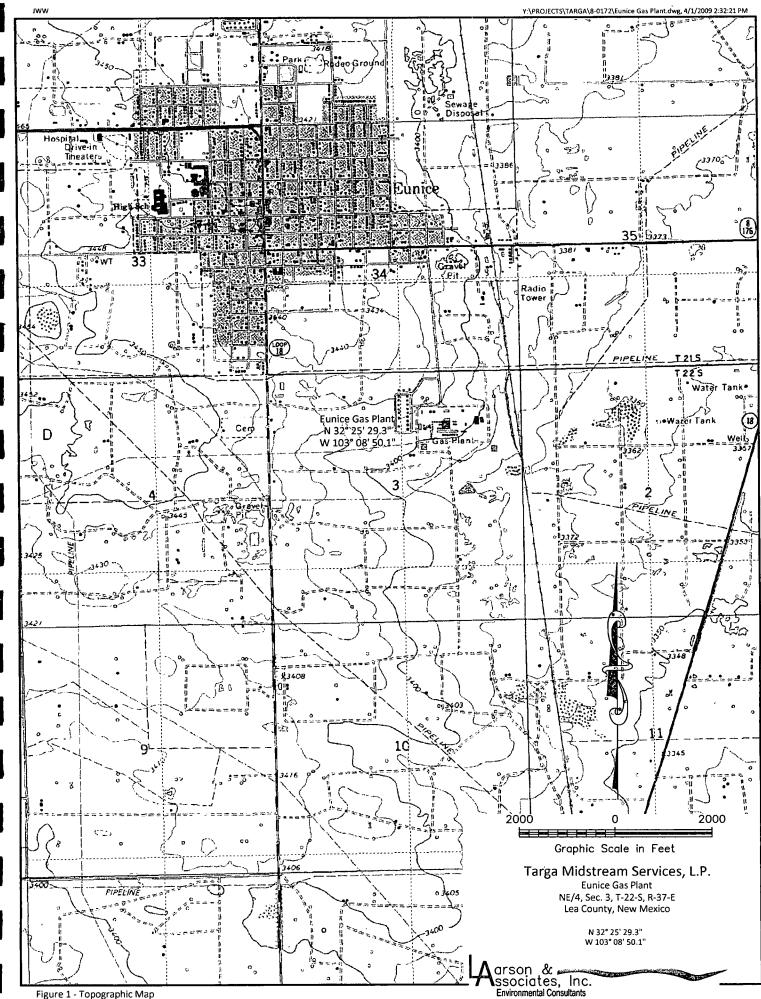
Hydrocarbon Product Recovery

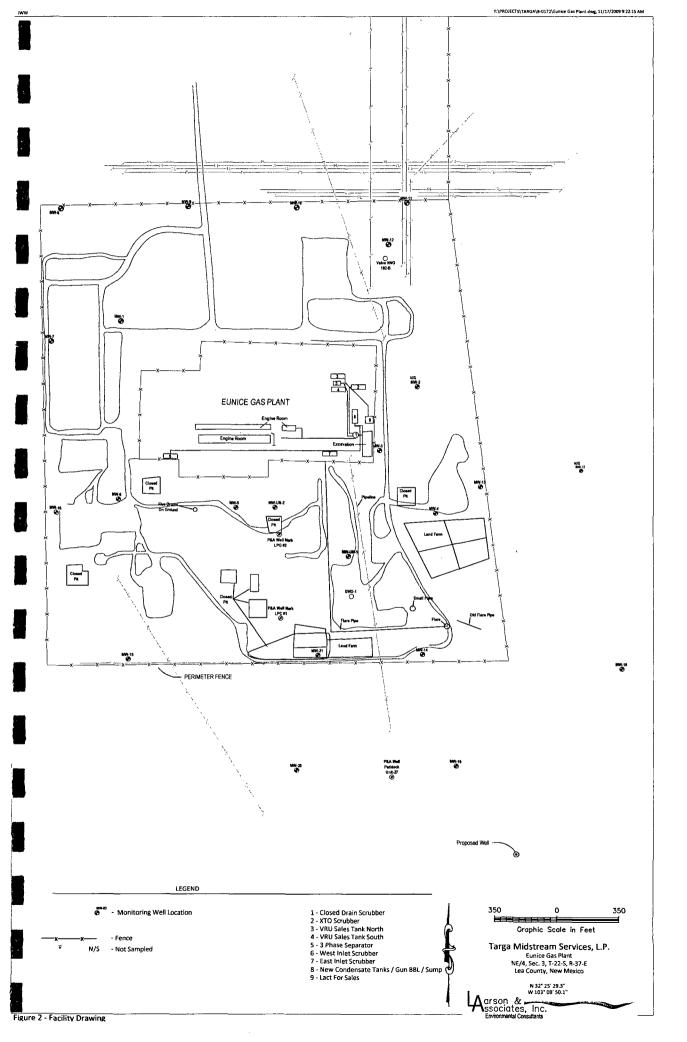
On November 13, 2009, LAI personnel began recovering hydrocarbon product from well MW-3 using a Keck pneumatic product recovery system (PRS) manufactured by GeoTech, Inc., Denver, Colorado. The PRS is designed to efficiently collect free floating hydrocarbons in monitoring wells, and consists of a control panel, down-hole stainless steel bladder pump, floating skimmer attachment and pneumatic tank full sensor. Air is supplied via a stainless steel line from the compressor building and a pressure regulator is located near the well. The product is discharged into a 55-gallon polyethylene drum positioned inside secondary containment. The tank full sensor is positioned inside the polyethylene drum to signal the controller to shut off the pump once the drum level is full. Approximately 50 gallons of hydrocarbon product was recovered from well MW-3 between November 13 and 16, 2009.

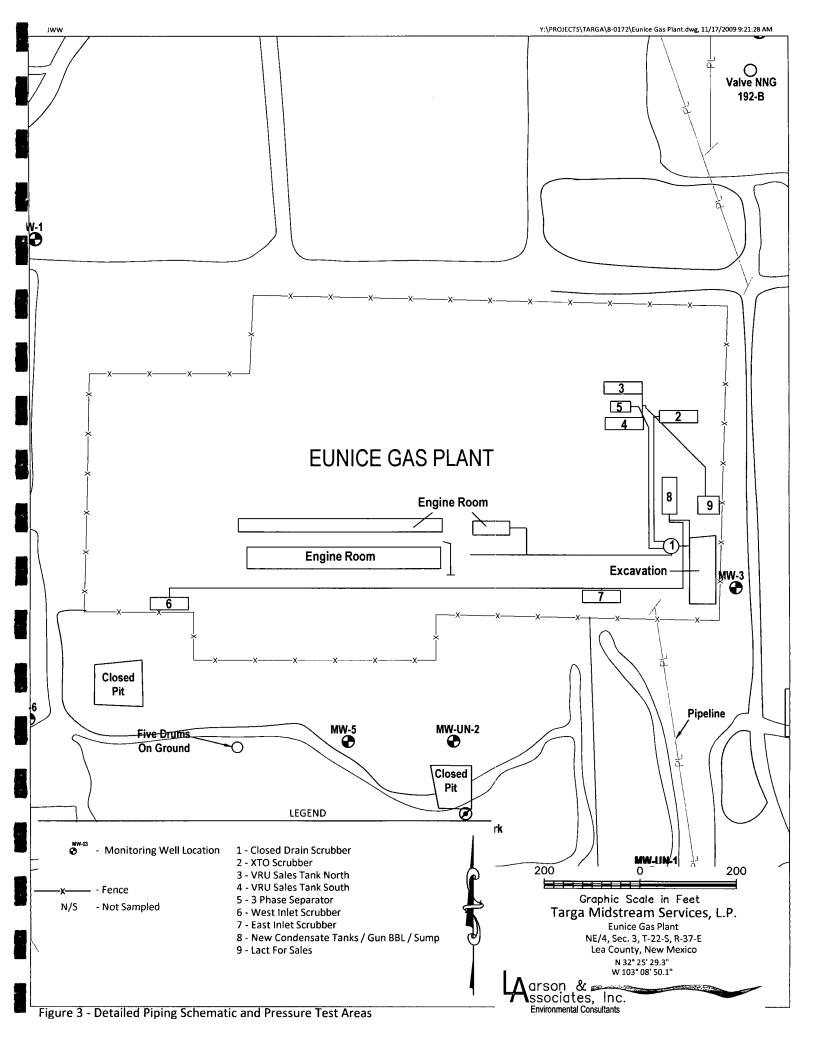
LAI will record the volume of hydrocarbon product recovered from the well by tracking the drums of hydrocarbon product filled by the pump. The drums will be emptied by

Mr. Carl Chavez November 17, 2009 Page 4 of 4

Targa personnel and placed into the condensate (Shell) tanks. LAI will monitor the rate of product recovery to determine if there is an active source for the hydrocarbons and report these results to the OCD. Targa will continue recovering free product from well MW-3 using the pneumatic pump, unless otherwise directed by the OCD. Appendix D presents the PRS specifications.


The results of line pressure testing and fingerprint analysis conclude that none of the t4ested lines or the closed drain sump is the source for the hydrocarbons. Targa will submit to the OCD the results of the fingerprint analysis of the condensate (Shell) tank samples upon receipt from the laboratory. A report summarizing the recovery of hydrocarbon product and determination of an active source will be submitted to the OCD on or before December 21, 2009. Please contact myself at (432) 687-0901 or Cal Wrangham at (432) 688-0452, if you have questions. We may also be reached by emailing mark@laenvironmental.com or CWrangham@targaresources.com. Sincerely,


Larson & Associates, Inc.


Mark J. Larson, P.G., C.P.G., C.G.W.P. Senior Project Manager/President

Encl.

cc: Cal Wrangham, Targa James Lingnau, Targa Susan Ninan, Targa Larry Johnson, OCD - Hobbs

October 20, 2009

Roger Holland Targa Resources 6 Desta Drive, Suite 3300 Midland, TX 79705

Re: Middle Plant

Enclosed are the results of analyses for sample number H18479, received by the laboratory on 10/12/09 at 4:00 pm.

Cardinal Laboratories is accredited through Texas NELAP for:

Method SW-846 8021 Method SW-846 8260 Method TX 1005 Benzene, Toluene, Ethyl Benzene, and Total Xylenes Benzene, Toluene, Ethyl Benzene, and Total Xylenes Total Petroleum Hydrocarbons

Certificate number T104704398-08-TX. Accreditation applies to solid and chemical materials and non-potable water matrices.

Cardinal Laboratories is accredited though the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Method EPA 524.2 Method EPA 524.2 Haloacetic Acids (HAA-5) Total Trihalomethanes (TTHM) Regulated VOCs (V2, V3)

Accreditation applies to public drinking water matrices.

Total Number of Pages of Report: 3 (includes Chain of Custody)

Sincerely,

Celey D/Reene Laboratory Director

- ar

a T

1 Cardinal cannot accept verbal changes. Please fax written changes to 575-393-2476.

CAPROCK LAB. HOV-02-2009 10:36 AM

4326890130

Р. 02

CAPROCK LABORATORIES, INC. 3312 BANKHEAD HIGHWAY MIDLAND, TEXAS 79701 (432) 698-7262

0910089 : OCT. 22, 2009 : OCT. 30, 2009 : CELEY KEENE JOB NUMBER: C DATE RECEIVED: C DATE REPORTED: C REPORTED TO: C CARDINAL LABORATORIES AS NOTED COMPANY: SAMPLE:

SUMMARY OF CRUDE OIL ANALYSIS

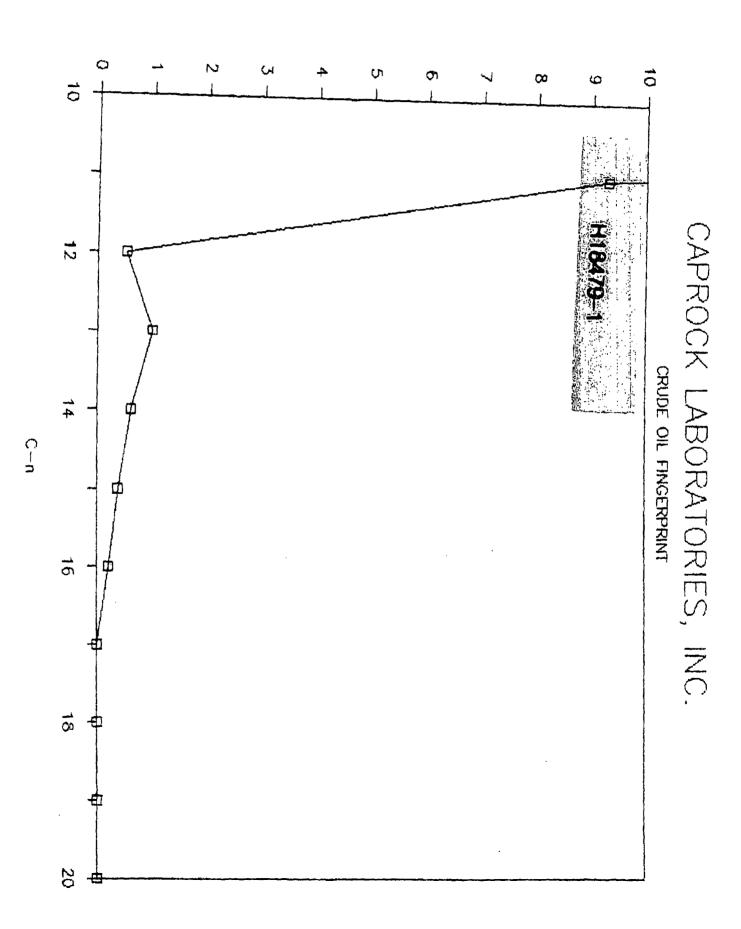
SAMPLE IDENTIFICATION	H18479-1	H18479-2*	H18479-3
LAB NUMBER	10089-01	10089-02	10089-03
WEIGHT % SULFUR	1.2967	0.2706	0.3096
SPECIFIC GRAVITY, 60/60F	0.7389	1.0126	0.7632
API GRAVITY @ 60 F	60.0	N. A.	53.9

-

SAMPLE WAS A WATER SOLUTION, NOT HYDROCARBONS

WEIGHT % SULFUR - ASTM D4294 GRAVITY - ASTM D287 CRUDE OIL METHODS: SAMPLE:

PRITCHARD, LAB MANAGER J AMES L ANALYST:

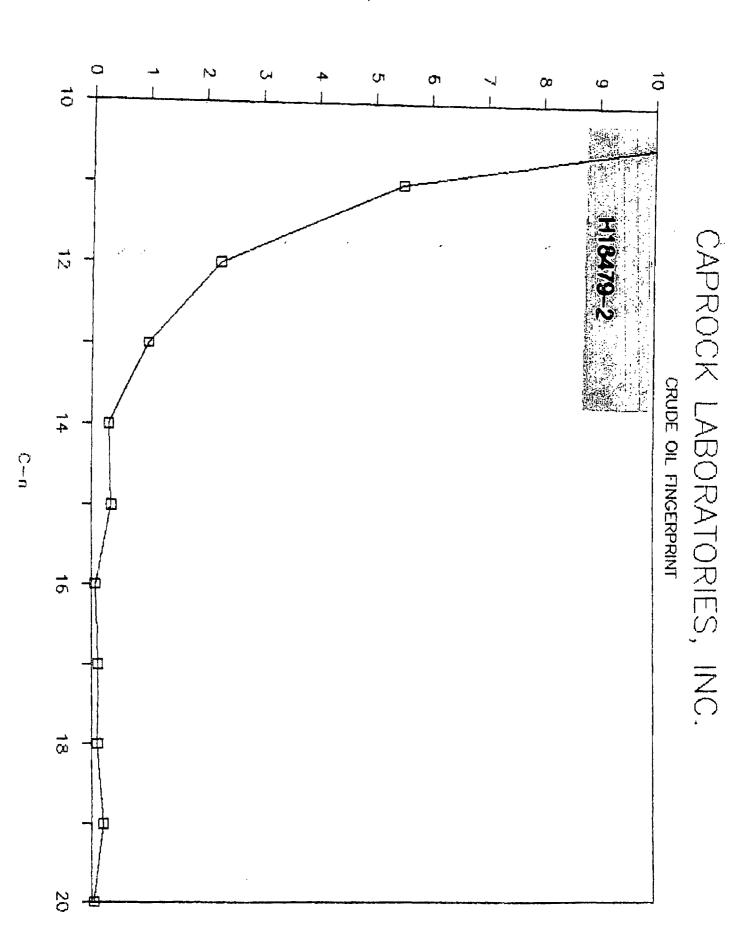

P.03____

CAPROCK LABORATORIES, INC 3312 BANKHEAD HIGHWAY MIDLAND, TEXAS 79701	
--	--

.

			•		
COMPANY:	CARDINAL	LABORATORI	ES .J	OB NUMBER:	0910089
SAMPLE ID:	H18479-1		-	ATE RECIEVED	
				ATE REPORTED	
SAMPLE #:	10089-01		R	EPORTED TO:	C. KEENE
	10009-01				
COMPONENT		WETOUT	00110010		
		WEIGHT %	COMPONENT		WEIGHT %
Methane - Eth	1.8 m A	0.0000	Notodese	_	
Propane	C-3	0.0057	Octadecane		0.0000
Iso-Butane	03		N-Octadeca		0.0000
N-Butane	0.4	0.0114	Nonadecane		0.0000
	C-4	0.0740	N-Nonadecar	ne C-19	0.0000
Iso-Pentane		0.4781	Eicosanes		0.0000
N-Pentane	C-5	0.8367	N-Eicosane		0.0000
Neo-Hexane		0.0374	Heneicosan	e + C-21+	0.0000
Cyclopentane		0.3765			
2-Methylpente	ine	1.4929	Total		100.0000
3-Methylpente	ane	1.1465			
N-Hexane	C-6	2.9060	C-n / C-13	SUMMARY	
Methylcyclope	entane	1.7295			-
Benzene		0.8017	C-n	C-n/C-13	
Cyclohexane		1.9702			
2-Methylhexar	1.6	1.5408	10	46.686	
3-Methylhexar		2.1068	11	9,301	
Dimethylcyclo			12	0.517	
Heptanes	pauranes.	1.3221	13	1.000	
N-Heptane	C-7	5.3527	14		
Methylcyclohe		5.1226	15	0.619 0.377	
Toluene	JAGHO	3.4768	16	0.208	
Octanes	~ •	15,4848	17	0.000	
N-Octane	C-8	0.6163	18	0.000	
Ethylbenzene		3.9314	19	0.000	
P-M-Xylene		4.1810	20	0,000	
O-Xylene		1.4855		CURALA DV	
Nonanes	0.0	22.9573	BIO-MARKER	SUMMARY	_
N-Nonane	C-9	3.8728	50000000//	-14 - 170	-
Decanes	A 44	9.2133	Farnesane/		
N-Decane	C-10	1.1018	Pristane/C		
Undecanes	• • • •	1.8701	Phytane/C-	18 N.A.	
N-Undecane	C-11	0.2195			
Dodecanes		0.4781			
N-Dodecane	C-12	0.0122	WEIGHT % S	1.2967	
Tridecanes		0.2204			
N-Tridecane	C-13	0.0238	GRAVITY,	60.0	
Tetradecanes		0.1000	API 🛛 60 F		
N-Tetradecan	e C-14	0.0146			
Pentadecanes		0.0724			4
N-Pentadecan	e C-15	0.0089	\sim		
Hexadecanes		0.0268	()		+1
N-Hexadecane	C-16	0.0049	Analyst:	man A. The	land
Heptadecanes		0.0000	()		tcharø,
N-Heptadecan	e C-17	0.0000		Lab Manag	er '

C-n / C-13


.....

CAPROCK LABORATORIES, INC 3312 BANKHEAD HIGHWAY MIDLAND, TEXAS 79701

COMPANY: Sample ID:	CARDINAL H18479-3	LABORATOR		DATE RE DATE RE	PORTED:	10-22-09
SAMPLE #:	10089-03		ł	REPORTE	D TO:	C. KEENE
COMPONENT		WEIGHT %	COMPONENT		١	WEIGHT %
Methane - Et	hane	0.0000	Octadecane			0 1400
Propane	C-3	0.0025	N-Octadeca	10 10 A	C-18	0.1436 0.0160
Iso-Butane		0.0049	Nonadecane	IR III	0-10	0.0872
N-Butane	C-4	0.0233	N-Nonadeca		C-19	0.0319
Iso-Pentane		0.1449	Eicosanes		U 15	0.0516
N-Pentane	C-5	0.1571	N-Eicosane	ł	C-20	0.0073
Neo-Hexane		0.0135	Heneicosan			
Cyclopentane)	0.1350				0.0000
2-Methylpent	ane	0.4812	Total		-	100.0000
3-Methylpent		0.4873				
N-Hexane	C-6	0.9354	C-n / C-13	SUMMAR	YF	
Methylcyclop	entane	0.8875				
Benzene		0.1878	C-n	C-1	n/C-13	
Cyclohexane		1.3430				
2-Methylhexa		0.8900	10		4.749	
3-Methylhexa		1.3233	11		5.520	
Dimethylcycl	opentanes		12		2.284	
Heptanes		0.8986	13		1.000	
N-Heptane	C~7	3.3378	14		0.299	
Methylcycloh	exane	4.6820	15		0.346	
Toluene		1,7554	18		0.063	
Octanes	_ · _	14.7408	17		0.110	
N-Octane	C-8	6.4902	18		0.103	
Ethylbenzene)	2.3091	19		0.205	
P-M-Xylene		2.7927	20		0.047	
0-Xylene		0.8777				
Nonanes	• •	19.3283	BIO-MARKER	SUMMAR	۲Y	
N-Nonane	C-9	4.6390			0 4 4 0	
Decanes N-Decane	C-10	15.2134 2.2993	Farnesane/ Pristane/C		2.110 4.860	
Undecanes	0-10	5.5425	Phytane/C-		1.880	
N-Undecane	0-11	0.8605	riytane/u-	10	1.000	
Dodecanes	\mathbf{V}^{-1}	1.7947				
N-Dodecane	C-12	0.3560	WEIGHT % S		0.3096	
Tridecanes		0.8409	WEIGHT X G	, v	5.0000	
N-Tridecane	C-13	0.1559	GRAVITY,		53. 9	
Tetradecanes		0.4779	API @ 60 F		00.0	
N-Tetradecar		0.0466				
Pentadecanes		0.4149				
N-Pentadecar		0.0540			Λ	_
Hexadecanes		0.1682	n		1.	$, \cap$
N-Hexadecane	C-16	0.0098	Analyst :	mar / K	Intel	and
Heptadecanes		0.1559	77	James	. Prite	chard,
N-Heptadecar		0.0172	\vee		Manage	

Lab Manager

C-n / C-13

Caprock Laboratories, Inc.

3312 Bankhead Highway Midland, Texas 79701 (432) 689 - 7252

October 30, 2009

Cardinal Laboratories 101 East Marland Hobbs, New Mexico 88240

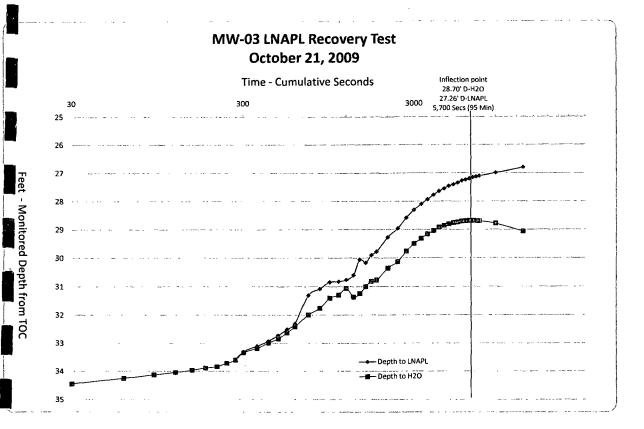
Attention: Celey Keene

Subject: Hydrocarbon Fingerprint

Gentlemen

Presented in this report are the final results of analyses performed to help determine if the samples submitted on October 22, 2009 were from the same origin. The sample identified as H18479-2 was a water solution and contained only a trace amount of hydrocarbons and could not be included in the fingerprint analyses.

The other two samples (H18479-1 & H18479-3) were analyzed to determine Total Sulfur by X-Ray Fluorescence, API Gravity and Extended Hydrocarbons by Gas Chromatography. The data from the Extended Chromatographic analysis was calculated and the ratio of the weight percent of each component between N-Decane to N-Eicosane was calculated as a function of weight percent N-Tridecane. The resulting data was then graphed to serve as a fingerprint of each hydrocarbon. The ratio of three biomarkers, Farnesane:N-Tetradecane, Pristane:N-Heptadecane, and Phytane:N-Octadecane were also calculated and compared.


In general, the fingerprint data indicate that the hydrocarbons from the tested samples are not from the same origin.

It has been a pleasure to perform this study for you and we look forward to being of service in the future. Please do not hesitate to call if you should have any questions about the analytical procedures used, the results obtained, or if we may be of further assistance.

Respectfully,

Jatcha

James L. Pritchard, Lab Manager Caprock Laboratories, Inc.

Obs.	Time	Depth to	Depth
No.	Sec	LNAPL	to H₂O
1	30		34.44
2	60		34.24
3	90		34.12
4	120		34.03
5	150		33.95
6	180		33.87
7	210		33.82
8	240		33.70
9	270	33.56	33.58
10	300	33.29	33.33
11	360	33.09	33.17
12	420	32.91	32.98
13	480	32.71	32.83
14	540	32.49	32.62
15	600	32.29	32.40
16	720	31.29	31.98
17	840	31.07	31.75
18	960	30.83	31.39
19	1080	30.81	31.28
20	1200	30.75	31.05
21	1320	30.58	31.35
22	1440	30.04	31.23
23	1560	30.15	30.99
24	1680	29.89	30.80
25	1800	29.77	30.76
26	2100	29.26	30.34
27	2400	28.95	30.12
28	2700	28.58	29.75
29	3000	28.30	29.49
30	3300	28.09	29.31
31	3600	27.92	29.15
32	3900	27.76	29.03
33	4200	27.63	28.91
34	4500	27.54	28.85
35	4800	27.45	28.80
36	5100	27.39	28.75
37	5400	27.33	28.73
38	5700	27.2 6	28.70
39	6000	27.23	28.69
40	6300	27.19	28.68
41	6600	27.15	28.68
42	6900	27.12	28.68
43	7200	27.09	28.69
44	9000	26.98	28.78
45	13020	26.79	29.06

26.22	31.28	27.64	
Specific Gr	avity Estima	ited at 0.72 g	/cm³
Determina Formation Wells: A Fi	tion of a Re Product Thi	on based upo alistic Estima ickness Using Fest by Thom GWA)	te of Monitor
Step Num	ber		
			5700
E – Inflocti	on Doint		606

Static

D-H2O

Corrected

D-GW 27.64

Static

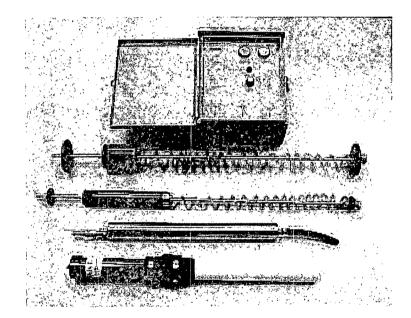
D-LNAPL

Step Humber	
5 – Inflection Point	
6 – S.G. corrected	

5 - Inflection Point	sec
6 - S.G. corrected	27.64
7 – Measured Product Thickness	5.06
8 – Inflection Product Thickness	1.44
9 – Capillary Fringe Height	3.62

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form


			Relea	ise No	otifica	ation	and Cor	rective Ac	tion	
						OPE	RATOR		🗵 Initial Rep	oort 🔲 Final Report
Name of Co	ompany: T	Farga Midstr	eam Serv	ices L P)		Contact: Ja	mes Lingnau 505		
							Telephone]	No. (505) 394-2	534	
Facility Na	me: Eunic	e Gas Plant					Facility Typ	be		
Surface Ow	me of Company: Targa Midstream Services L P Contact: James Lingnau 505.394.2534, Chuck Tolsma 505.631.6026 dress: PO Box 1909 Eunice, NM 88231 Telephone No. (505) 394-2534 sility Name: Eunice Gas Plant Facility Type face Owner: TARGA RESOURCES Mineral Owner: Lease No. LOCATION OF RELEASE									
•		***********************		· · · · · · · · · · · · · · · · · · ·			OFDEL	FACE	······································	
Unit Letter	Section	Township	Range						East/West Linc	County
0					bin the		oodin Dine			
		l	L]	<u> </u>	Lea
			L	atitude	32.25.	<u>16.9N</u>	Longitude_	<u>10308.47.8W</u>		
					NATI	IRE C	FRELE	ASE		
Type of Rele	ase: Gas an	d Produced L	iquids						Volume	Recovered: Recovered
			1							
				dump lin	e from				c: Date an	d Hour of Discovery
			g alca.			·····				ngin 112312008
		X Yes	N	•	Not Rec	uired			bs by phone	
By Whom? I	Don Embrey	,	· · · · · · · · · · · · · · · · · · ·		·····		Date and H	Hour 11:30 AM 7	//29/2008	·····
					· · · · · · · · · · · · · · · · · · ·			and the second se		
			Yes	× No						
If a Waterco	urse was Im	pacted, Descr	ibe Fully.*	*						
		, ,	, .							
Describe Cau	ise of Probl	em and Reme	dial Action	n Taken	*					
Pig pushed n	naximum an	nount of liqui	d into sepa	rator and	d caused	overpres	ssure of dum	p line and dresser	sleeve on line se	parated. Liquid was
		it around sepa	rator and c	lean up e	excavation	on. Drip	truck was ca	illed out and liqui	d recovered. Lin	e was shut in and dresser
								•		
Contaminated	as containe	a in containm	CD appro	ean up ex	(cavalio) Ifarm T	n. Track The area	hoe brought	In to remove cont led to insure clean	taminated soil in	pottom of excavation. The
	- 30m Will B		JOD uppre			ne area	witi oo aanipi		up to meet get	guidennes.
I hereby cert	ify that the	information g	iven above	is truc a	nd com	plete to t	he best of my	knowledge and u	inderstand that pr	rsuant to NMOCD rules and
regulations a	Il operators	arc required t	o report ar	nd/or file	certain :	release n	otifications a	nd perform correct	tive actions for r	eleases which may endanger
liability shou	Id their one	rations have f	acceptant	leanately	investio	ort by the	e NMOCD if remediate con	narked as "Final R	cport does not r	und water surface water
human health	1 or the env	ironment. In	addition, N	MOCD	acceptar					
with any othe	er fættgral, s	tate, or local	aws and o	r regulati	ions.	·······	·		-	· · ·
Signature:	Non	- Em	hz					OIL CONSI	ERVATION	DIVISION
Printed Nam	a Dan Em	haari	()							
Finited Ivan	c. Don cin		\mathcal{L}	. <u>.</u>	· · · · · · · · · · · · · · · · · · ·		Approved by	District Supervis	or:	
Title: Adviso	ог						Approval Da	te:	Expiratio	n Date:
E-mail Addr	ess: dembre	y@targaresou	IFCES COM				Conditions o	fApproval		
		g agan gai 0301			··· ···· ···		CONCISCIONS O	r uhhrosar:		Attached
Date: July 29). 2008 Pho	one: (432) 688	-0546			1				

* Attach Additional Sheets If Necessary

PRS -Product Recovery System

Installation and Operation Manual

26600008 Rev. 6 10/19/05

Table of Contents

CHAPTER 1: SYSTEM DESCRIPTION	
FUNCTION AND THEORY	
CHAPTER 2: SYSTEM INSTALLATION	11
CHAPTER 3: SYSTEM OPERATION	13
CHAPTER 4: SYSTEM MAINTENANCE	15
CHAPTER 5: SYSTEM TROUBLESHOOTING	
CHAPTER 6: SYSTEM SPECIFICATIONS	20
CHAPTER 7: SYSTEM SCHEMATIC	26
CHAPTER 8: REPLACEMENT PARTS LIST	27
THE WARRANTY	36
EQUIPMENT RETURN POLICY	36
EQUIPMENT DECONTAMINATION	36

1

DOCUMENTATION CONVENTIONS

This uses the following conventions to present information:

WARNING

An exclamation point icon indicates a **WARNING** of a situation or condition that could lead to personal injury or death. You should not proceed until you read and thoroughly understand the **WARNING** message.

A raised hand icon indicates **CAUTION** information that relates to a situation or condition that could lead to equipment malfunction or damage. You should not proceed until you read and thoroughly understand the **CAUTION** message.

A note icon indicates **NOTE** information. Notes provide additional or supplementary information about an activity or concept.

Chapter 1: System Description

Function and Theory

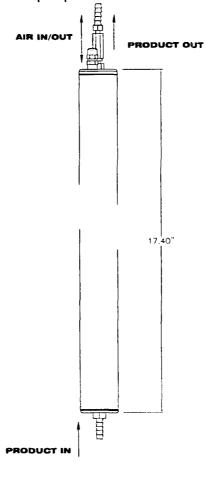
The Keck PRS Product Recovery System has been designed to efficiently collect free floating hydrocarbons in 2 inch or larger monitoring wells. The system consists of a floating skimmer attachment, a control panel that can be mounted indoors or out, a stainless steel bladder pump, a pneumatic tank full sensor, and an optional air compressor (not included).

The PRS' unique product intake assembly incorporates both a density float and a hydrophobic filter which differentiates between floating hydrocarbons and water. The intake assembly follows water table fluctuations and places the screen intake at the water/product interface. As the system cycles, product is drawn through the hydrophobic filter and transferred to the pump through a coiled hose and the skimmer's transfer shaft.

The pneumatic control panel regulates the system and features two timers which vary the cycle time and flow rate of the skimmer pump. The control panel also contains a pneumatic tank full shut off sensor which shuts off the pump when the recovery tank is filled.

The automatic stainless steel bladder pump has a two-phase pumping cycle. During the first phase, or pump intake phase, pressurized air is vented from the pump, thus creating a vacuum. This vacuum closes the top discharge check valve and opens the bottom intake check valve, causing product to be drawn through the skimmer's product intake assembly and into the pump.

During the second phase, or pump discharge phase, pressurized air is directed into the pump bladder, causing it to expand within the pump body. This action closes the bottom intake check valve and opens the top discharge check valve, thus forcing the recovered product from the pump up to the surface.


The tank-full shut-off sensor system consists of a sensor tube and a switching valve. The sensor tube is installed in the recovery tanks 2 inch bung opening. As the recovery tank fills, the rising pressure is transmitted to the switching valve located in the control panel. When the pressure reaches the activation point (an indication of a filled recovery tank) the switching valve stops the air supply to the timers and disables

the pump from recovering product or overfilling the recovery tank. After the tank is emptied, the tank full shut off valve must be manually reset, allowing the system to resume normal operation.

System Components

Pump

The Keck PRS Product Recovery System utilizes an air driven bladder pump. The pump consists of a stainless steel outer housing, top and bottom check valves, and a flexible inner bladder. The pump is designed for pumping liquids only; any solids (silt, dirt, etc.) may reduce its performance or cause the pump to malfunction.

Optional High-Capacity Pump

The Keck PRS Product Recovery System also offers an optional highcapacity pump. The pump is constructed the same as the standard PRS pump, but gives twice the flow rate of recovery.

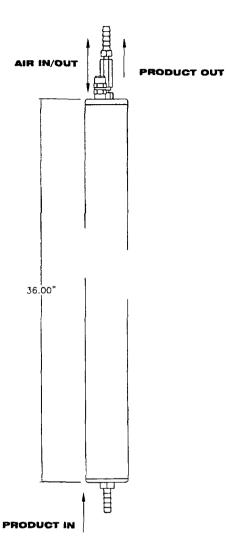


Figure 2 – Optional High-Capacity Pump

Standard Skimmer Attachment

The PRS' standard skimmer attachment is designed to recover floating hydrocarbons, skimming down to a sheen over a 2 foot travel range (1 foot travel for the 2 inch skimmer), and will not pump water unless forcibly submerged. Up to 5 feet of travel (4 inch skimmer only) is available on a custom order basis. The skimmer is connected to the bottom of the pump, and consists of a product intake assembly, a coiled product transfer hose, and a transfer shaft with well centralizers placed at the top and bottom.

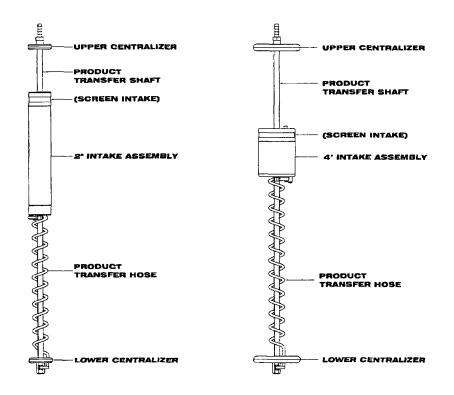


Figure 3 - 2" and 4" Standard Skimmer Attachments

Optional Oil Skimmer Attachment

The PRS' optional oil skimmer attachment is designed to recover a range of fluids from gasoline to gear oil, skimming down to .01 feet in 4 inch and larger wells. The skimmer is connected to the bottom of the pump, and consists of a product intake assembly, a coiled product transfer hose, and a transfer shaft with well centralizers placed at the top and bottom. The buoy can travel a distance of 2 feet between these centralizers. The skimmer intake can be fine tuned by adjusting the intake fitting on the buoy: turn the fitting clockwise to lower the intake relative to the product/water interface, or turn it counter-clockwise to raise the intake away from the interface.

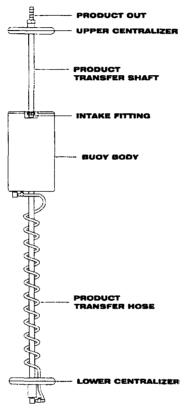


Figure 4 - Oil Skimmer Attachment (optional)

PRS System Control Panel

The air-driven pump controller is the "heart" of the PRS Product Recovery System. The controller uses two timers to vary the pumping rate of the system, independently controlling the discharge time and the recharge time of the pump. A clean, dry air source that can deliver one cubic foot per minute (CFM) at 90 psi will adequately allow the controller to drive one pump. Up to four pumps can be run from one controller with a commercial air supply of at least 4 CFM at 90 psi. The PRS Control Panel comes equipped with a tank full shut off. The Tank Full Shut Off incorporates a manual reset button, as an additional safety feature. The reset button must be pushed and the system reset to resume operation.

The tankfull indicator is green when the system is operational and is black when the system is shut off. The recovery tank must be emptied and the reset button pushed before the system can be reactivated, and the indicator to show green.

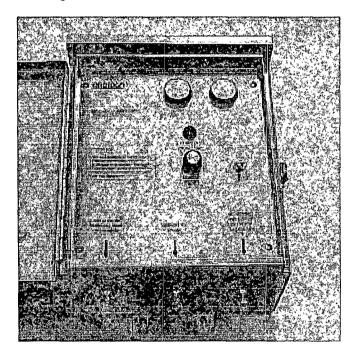


Figure 5 - PRS System Control Panel

Air Supply

The standard single or dual pump PRS system can be supplied with a 115V 2 hp "oil-less" air compressor. Larger multiple well head systems typically use a 1.5 hp or larger oil lubricated air compressor.

Oil lubricated air compressors usually require the installation of the intake air filter and the filling of the oil sump before operation. The filter and appropriate oil are provided with the compressor. Refer to the instructions provided with the air compressor for set-up procedures. The oil-less air compressors require a 115V 15 amp circuit, and the oil lubricated air compressors require at least a 115V 20 amp circuit (depending on the model). To avoid electrical overload, do not use an extension cord or plug any other equipment into the same circuit as the compressor.

An automatic tank drain and an air dryer may be required for the air compressor if the system is operating in humid conditions.

Bottled air may be used to operate the PRS if operating an air compressor is not feasible. A high pressure regulator must be used to reduce the air pressure to the range of 45 - 125 psi. Pressures outside of this range may cause the system to malfunction.

9

Г	<u> </u>	
[:	==	

The air compressor must be kept as cool as possible. If placing the compressor in an enclosure, it must be well ventilated and a fan may be required for proper cooling.

Product Recovery Tank

A product recovery tank is not provided with the PRS system. A tank with a 2 inch bung opening for the overfill sensor tube, a product inlet opening, and a vent are required for proper operation – typically a 55 gallon drum or other suitable container. Check local and state regulations regarding fuel storage before selecting a recovery tank

Air Line and Discharge Hoses

Protect the supplied air lines and hoses for the pump, controller, and recovery tank from damage. Conduit or PVC pipe buried below grade will provide adequate line protection. Check local and state regulations regarding fuel transmission lines before installation of product discharge lines. The dimensions of air-line and hose to the listed devices are as follows:

Compressor	¾" O.D. x 50 ft / 9.5mm x 15m
Pump Air Line	¼" O.D. x 100 ft. / 6mm x 30m
Product Discharge Line	5∕a" O.D. x 100 ft. / 16mm x 30m
Controller to Tank Full Shut off Sensor	¼" O.D. x 50 ft / 6mm x 15m

To successfully plan the installation of the PRS System, use the following guidelines to determine a suitable location for the air compressor and recovery tank (also refer to page 20, figure 10, System Schematic):

)
•		
	_	

- Do not locate the compressor in an area where there may be explosive vapors. Compliance with Chapter 5 of the National Electric Code Handbook and any local codes is essential for an electrically safe installation. The compressor requires a cool, well ventilated environment to operate efficiently, and may require an air dryer in freezing or humid conditions.
- 2) Run all air and discharge lines through pipe or conduit to protect the lines from damage.
- 3) All air line connections must be installed properly for the system to function correctly. When cutting the air line, the cut must be clean and square. When inserting the air lines into the compression fittings, push the air line firmly into the fitting, hand tighten the compression nut, and then tighten one more full turn with a wrench.

Chapter 2: System Installation

_	
Г	
1:	
1:	
12	

Prior to installation, it is best if the screen intake is "conditioned". Use diesel fuel or similar hydrocarbon to saturate the screen portion of the intake. The optimum fluid would be the downwell hydrocarbons to be recovered. Take care to avoid damaging the screen intake.

- 1) Install control panel vertically on hard surface or post.
- 2) Remove the inner ring of the well cap, and secure it to the well casing using the three set screws located on the perimeter of the ring.
- Cut a length of the provided air line and connect it from the output of the air compressor to the port labeled "INPUT FROM AIR SUPPLY" on the control panel.
- 4) To calculate the amount of air line and discharge hose required to suspend the pump and skimmer in the well, first determine the static water level, in the well, and then subtract 46 inches (38 inches for the 2 inch skimmer) from the reading. Next, measure out this amount of air line and discharge hose. For the optional high-capacity pump, subtract 63 inches (55 inches for the 2" skimmer) from the reading. Do not make any cuts to tubing until all measurements between controller and well head and well height to recovery tank are made. Last, pull the measured lengths of air line and discharge hose through the fittings on the well cap. Fully tighten the compression fittings. The well cap will suspend the pump and skimmer by the discharge hose, setting the intake assembly at the midpoint of its travel range.
- 5) Attach the air line and discharge hose to the pump using the provided compression fitting and hose clamp respectively, and set the pump and skimmer in the well.
- 6) Connect the free end of the pump air line to the controller fitting labeled "OUTPUT TO PUMP" (see page 8, figure 5).
- 7) Connect the free end of the product discharge hose to the product recovery tank.

8) Install the tank full shut off sensor air line between the tank full shut off sensor tube and the controller fitting labeled "INPUT FROM TANK-FULL SHUT OFF SENSOR" (see page 8, figure 5).

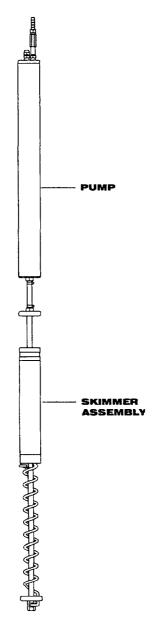
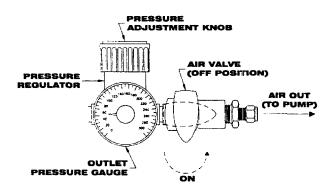
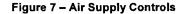




Figure 6 – Pump and Skimmer Assembly

Chapter 3: System Operation

- Start the air compressor. If the air compressor was supplied by Geotech, two pressure gauges, a pressure switch, an air valve, and a pressure regulator are located on the top of the compressor air tank(s). The main pressure gauge shows the total tank pressure, and the outlet pressure gauge (figure 7) shows the outlet air pressure set by the regulator. The pressure switch has a lever with two positions. Move the lever to the "AUTO" (down) position, and the compressor will run until the tank pressure reaches 125 psi. Turn the air valve on and verify that the pressure shown on the outlet pressure gauge reads between 75 and 95 psi. If the setting is outside of this range, adjust the pressure by rotating the knob on the regulator.
- 2) Verify that the controller's pump intake and pump discharge timers are on the "C" setting as indicated on the controller faceplate. Turn the air valve on the control panel to the "ON" position. The system will now begin to cycle and recover product.

- 3) Test the tank full shut off system by immersing the sensor tube in a pail of water (at least 12 inches deep) while the system is cycling. Within one cycle, the sensor will shut off the air supply to the control panel. When you remove the sensing tube from the water, test to be sure the system remains off until the reset is pressed. If the system does not function as described, check the fittings at both the controller and sensing tube, and check for kinks in the sensor air line. Install the sensing tube in the 2 inch bung opening on the discharge tank.
- 4) The pumping rate can be adjusted based on product volume. If there is a large volume of product, or a minimal amount of product in the well, the pumping rate may be adjusted by referring to the following illustrations. DO NOT USE THE SETTINGS IN THE LIGHTLY SHADED AREA ON THE DIALS.

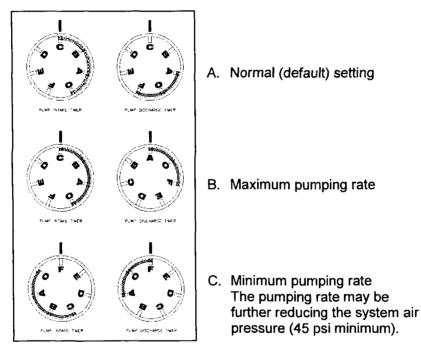


Figure 8

Weekly Maintenance

- Turn the air compressor off and drain the air tank(s). On air compressors without an optional automatic condensate drain, open the drain fitting on the bottom of the compressor tank(s) and drain any accumulated water. The tank(s) must be drained regularly to avoid compressor malfunction.
- 2) Check and adjust the compressor oil level (not applicable to all systems). Verify that the oil is at the proper level. Refer to the compressor manual for service intervals and procedures. It is very important that the oil level is maintained properly. If the oil level is too low or too high, the compressor may fail, or the pump may malfunction due to excess oil in the air stream.
- Inspect the compressor for loose fittings. Over time, vibration may cause bolts to loosen or air leaks to develop. If uncorrected, excess air consumption and shortened compressor life will result.
- Verify pump settings and fluid levels in well. Make sure that the pump and skimmer are set at the correct interval for collection of free product.

Monthly Maintenance

- Turn the air compressor off and drain the air tank(s). On air compressors without an optional automatic condensate drain, open the drain fitting(s) on the bottom of the compressor tank(s) and drain any accumulated water. The tanks must be drained regularly to avoid compressor malfunction.
- If the supplied compressor is oil lubricated, change the compressor oil. Fully drain and replace the compressor oil using a quality nondetergent compressor oil as specified in the compressor's operating instructions.
- 3) Inspect the compressor's air filter. Remove and clean the air intake filter, blowing from the inside out with compressed air. If the filter is very dirty, or you are unable to clean it, replace the filter.

- 4) Inspect the product skimmer. Visually inspect the skimmer, making sure that the coiled hose is not tangled and that the intake assembly moves freely over its travel range. Inspect the intake assembly and clean or replace it as needed using the methods described in the section of this manual on product skimmer cleaning (see page 16).
- 5) Check to make sure the tank full shut off is operating properly as described on page 14.
- 6) Verify pump settings and fluid levels in the well. Make sure that the pump and skimmer are set at the correct interval for collection of free product, and that the cycling rate of the system is correct for the amount of product available. If the well is slow to recharge and/or there is only a small volume of product to pump, the pumping rate should be decreased to conserve air and minimize compressor wear.
- *For technical assistance, call Geotech Environmental Equipment, Inc.
- 8) at 1-800-833-7958 or in Michigan at 1-800-275-5325.

Product Skimmer Cleaning

- Inspect the product skimmer assembly for signs of physical damage. Scrapes or dents in the screen intake may cause the skimmer to take on water. If such damage is found, a new 2" or 4" intake assembly may be necessary (see page 28 or 30).
- 2) Inspect the tubing coil for physical damage or obstructions, such as kinks. Replace the tubing coil as necessary.
- 3) To clean the intake assembly screen intake, use a very soft bristle paint brush and fresh diesel fuel or the type of product being recovered. Typically, this type of maintenance should only be performed when the screen intake is obstructed with emulsified product or other debris. Take care not to dent or scratch the screen intake.
- 4) Rinse the product intake assembly with clean water and make sure it is completely dry before reconditioning screen intake.
- 5) Use diesel fuel or similar hydrocarbon to saturate the screen portion of the intake. The optimum fluid would be the downwell hydrocarbons to be recovered. Take care to avoid damaging the screen intake.

Bladder Replacement

The pump is fitted with a field replaceable bladder for easy repair on the job site (see page 26, figure 15, item 1).

1) Unscrew the top cap from the pump body and pull the top cap off. Slide assembly out.

17

.

- 2) Unscrew the old bladder and screw on the new one
- 3) Re-assemble the pump.

Chapter 5: System Troubleshooting

Problem: the pump discharges water only. Solutions:

1) The water level has risen above the travel range of the skimmer.

- Pull the pump and skimmer out of the well and purge water out of the intake assembly and pump by allowing the system to cycle for several minutes. Refer to page 11, and then reset the pump and skimmer.
- 2) The pump setting has slipped, or has been installed below the water level.
 - Refer to step "A" solution and then reset the pump and skimmer.
- 3) Loose hose/tubing at fitting
 - Check all fitting connections.

Problem: the pump discharges air only, no product. Solutions:

Product has been removed.

- Reduce the pumping rate (pg. 14), or decrease the air pressure (45 psi minimum) to conserve air.
- 2) The Product layer is below the bottom of the skimmer's travel range.
 - Refer to page 11, and then reset the pump and skimmer.
- 3) The pump bladder has ruptured.
 - Replace the pump bladder. Refer to page 26, figure 15 or contact Geotech Environmental Equipment, Inc. for further information.

Problem: the pump cycles but does not discharge product. Solutions:

- 1) One or both of the pump check valves are malfunctioning.
 - Refer to page 26, figure 15. Remove and clean, or replace the check valves (items 6 & 9).
- 2) The viscosity of the product is too thick for the skimmer.
 - Contact Geotech Environmental Equipment Inc. for other skimmer options.
- 3) The intake assembly is obstructed or the coiled product hose is kinked.
 - Verify that the intake assembly moves freely over its travel range, and adjust the coiled hose if needed. Refer to step "A" solution and then reset the pump and skimmer.

Chapter 6: System Specifications

Pump

Size: Weight: Materials: 23.5"L x 1.75" O.D.4.5Lbs.303 and 304 Stainless Steel, flexible PVC and Brass

Skimmer

2" Model 4"Model

Effective travel range:12"2Size:35.5" L x1.75" O.D. 3Weight:1.75 lbs.2Operating Temperature:32° to 100° FMaterials:304 Stainless Steel, IDeburopulanaBrass

 12"
 24"

 35.5" L x1.75" O.D.
 35.5" L x 3.75" O.D.

 1.75 lbs.
 2.25 lbs.

 32° to 100° F
 304 Stainless Steel, Polyethylene, PVC

 Polypropylene, Brass

Controller

Size:	12" H x 10" W x 6" D
Weight:	18 Lbs.
Temperature:	32° to 100° F
Min. Pressure:	45 psi
Max. Pressure:	125 psi
Max. CFM:	8 cfm @ 90 psi

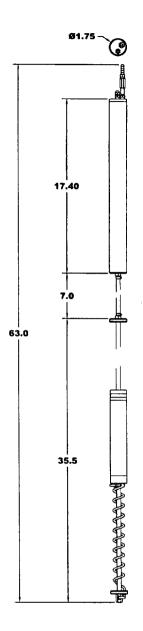
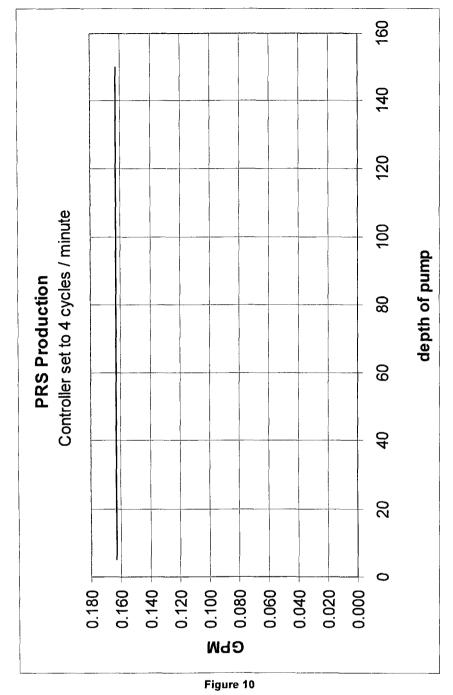
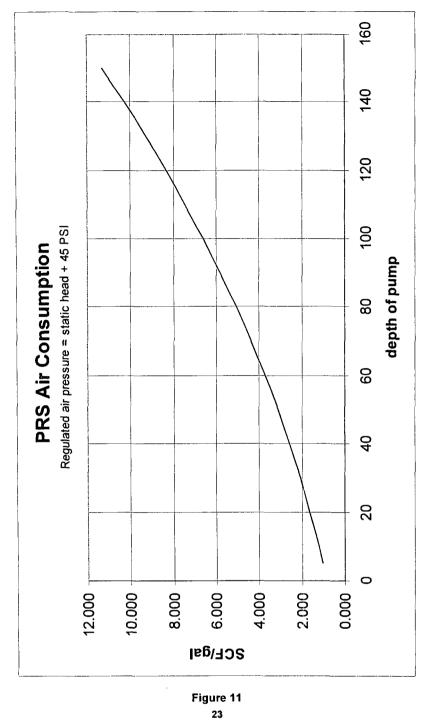
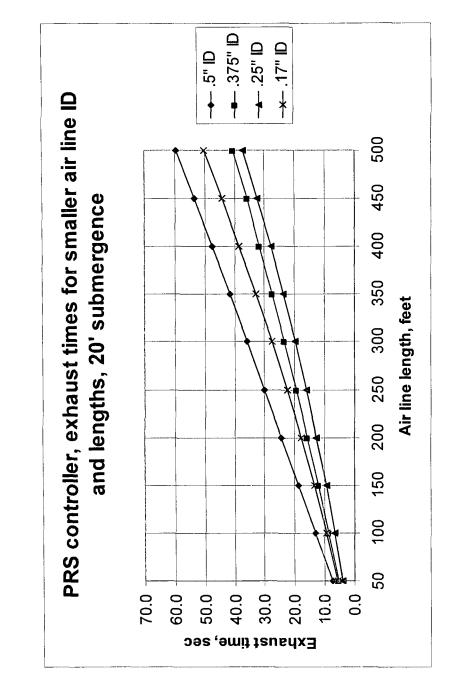



Figure 9 – Dimensions in Inches



.


¢

". . .

2

14 -1

-

Figure 12 24

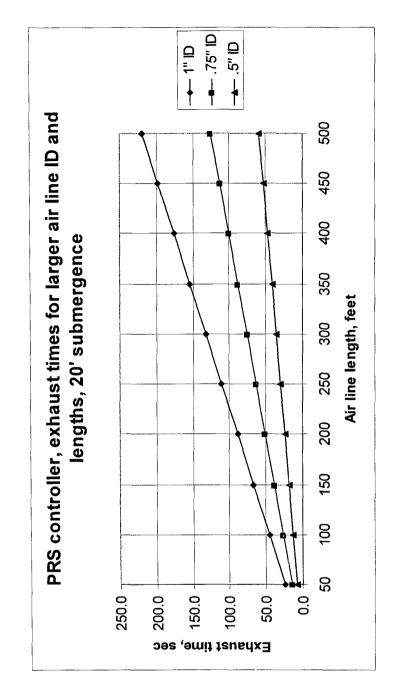


Figure 13 25

e 11

.

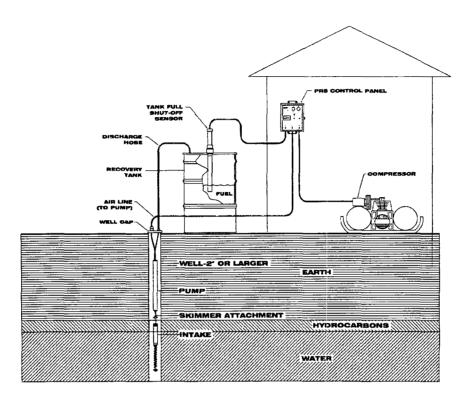
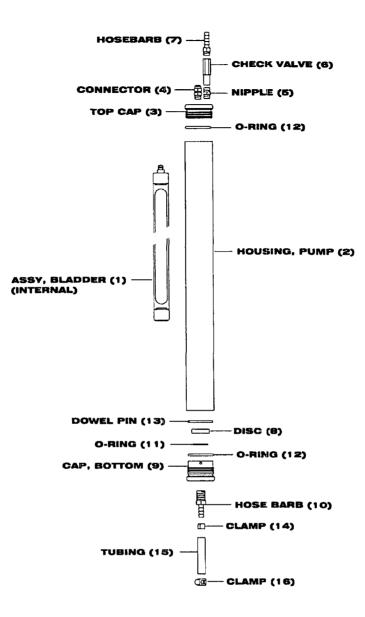
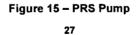




Figure 14 – System Schematic

ITEM # PARTS DESCRIPTION

.

1	ASSY, BLADDER, CRS/PRS	56600013
2	HOUSING, PUMP, SS, CRS/PRS	26600013
3	CAP, TOP, SS	26600012
4	CONNECTOR, 1/4 X 1/8 MPT, POLYTITE	16600037
5	NIPPLE, BRS, 1/8, HEX, NPT	17500151
6	CHECK VALVE, 1/8 NPT, 2.5 PSI, 1/8 FPT X 1/8 FPT	16600003
7	HOSEBARB, BRS, 1/8 MPT X 3/8	16650310
8	DISC, PVC, CHECK, CRS/PRS	26600017
9	CAP, BOTTOM, SS, CRS/PRS	26600018
10	HOSEBARB, BRS, 1/4 MPT X 3/8	16650323
11	O-RING, VITON, #208	16600023
12	O-RING, VITON, #128	16600030
13	PIN, DOWEL, SS8, 1/8 X 1-3/4	16600026
14	CLAMP, SS, STEPLESS EAR, 17MM	16600004
15	TUBING, RBR, 3/8 X 5/8 FT PRODUCT DISCHARGE	16600019
16	CLAMP, SS, WORM, 5/8"	16600063

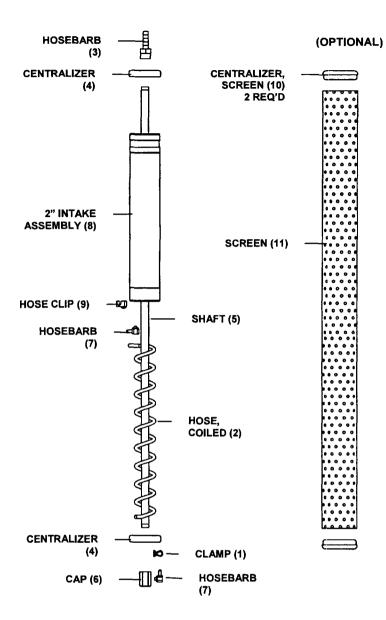


Figure 16 - Standard 2" Skimmer Parts list

ITEM # PARTS DESCRIPTION

PA	RTS	; LI	ST

1	CLAMP, SS, STEPLESS EAR	16600005
2	HOSE, COILED, 2" SKIMMER	26650304
3	HOSEBARB, BRASS	16650308
4	CENTRALIZER, PVC, 2" SKIMMER	26650306
5	SHAFT, SS, SKIMMER, 33.5", PRC	26600002
6	CAP, BRASS	16600064
7	HOSEBARB, BRASS, 90°	17500149
8	ASSEMBLY, 2" INTAKE	56650309
9	HOSE CLIP, PVC	26650028
OPTION	NAL	

10	CENTRALIZER, SCREEN, PR2	26600186
11	SCREEN, SS, 1.88" OD X 32.7"	26600188

i (

1 1 1

1

ł

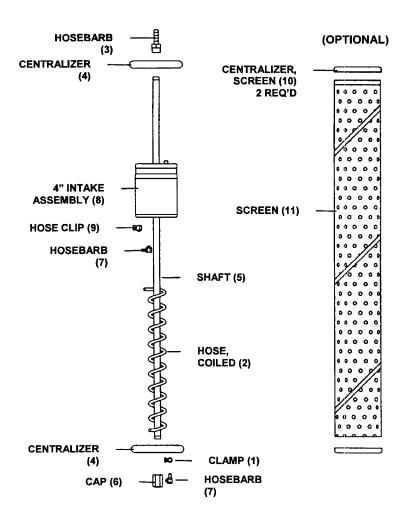


Figure 17 – Standard 4" Skimmer Parts List

ITEM # PARTS DESCRIPTION

PARTS LI

1 2 3 4 5 6 7 8	CLAMP, SS, STEPLESS EAR HOSE, COILED, 4" SKIMMER HOSEBARB, BRASS CENTRALIZER, PVC, 4" SKIMMER SHAFT, SS, SKIMMER, 33.5" PRC CAP, BRASS, 90° HOSEBARB, BRASS, 90° ASSEMBLY, 4" INTAKE HOSE CUP, PVC	16600005 16650312 16650308 26600187 26600002 16600064 17500149 56650310 26650028
9	HOSE CLIP, PVC	26650028
OPTIONAL		

10CENTRALIZER, SCREEN, PR42660018711SCREEN, SS, 3.67" OD X 32.7"26600189

32

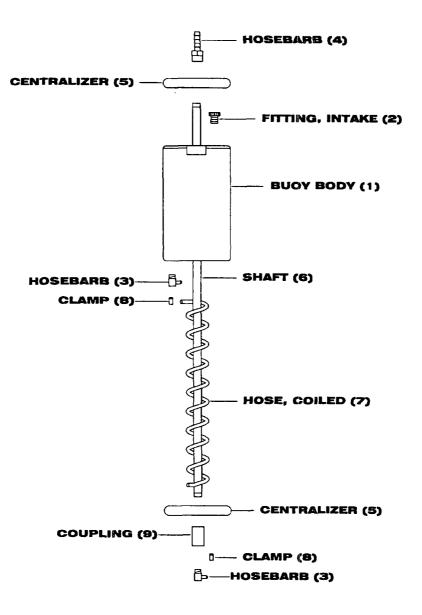


Figure 18 – Oil Skimmer Attachment Parts List

1

.

4.5

1

. . . .

ITEM # PARTS DESCRIPTION

i

11 A A 7

j

.

H

E

PARTS LIST

1	BUOY, POLY, OIL	26600004
2	FITTING, INTAKE, OIL BUOY	26600005
3	HOSEBARB, 90°, 1/8 NPT X 3/16	17500148
4	HOSEBARB, BRS. 3/8 X 1/8 FPT	16650308
5	CENTRALIZER, SKIMMER, PR4	16600048
6	SHAFT, SS, OIL SKIMMER, 38", PR4	26600006
7	HOSE, COILED	26600007
8	HOSECLAMP, SS, 5/16, 2 EAR	11200273
9	COUPLING, SS, 1/8 NPT	16600006

Notes

35

H

The Warranty

For a period of one (1) year from date of first sale, product is warranted to be free from defects in materials and workmanship. Geotech agrees to repair or replace, at Geotech's option, the portion proving defective, or at our option to refund the purchase price thereof. Geotech will have no warranty obligation if the product is subjected to abnormal operating conditions, accident, abuse, misuse, unauthorized modification, alteration, repair, or replacement of wear parts. User assumes all other risk, if any, including the risk of injury, loss, or damage, direct or consequential, arising out of the use, misuse, or inability to use this product. User agrees to use, maintain and install product in accordance with recommendations and instructions. User is responsible for transportation charges connected to the repair or replacement of product under this warranty.

Equipment Return Policy

A Return Material Authorization number (RMA #) is required prior to return of any equipment to our facilities, please call 800 number for appropriate location. An RMA # will be issued upon receipt of your request to return equipment, which should include reasons for the return. Your return shipment to us must have this RMA # clearly marked on the outside of the package. Proof of date of purchase is required for processing of all warranty requests.

This policy applies to both equipment sales and repair orders.

FOR A RETURN MATERIAL AUTHORIZATION, PLEASE CALL OUR SERVICE DEPARTMENT AT 1-800-833-7958 OR 1-800-275-5325.

Model Number:

Serial Number:

Date:

Equipment Decontamination

Prior to return, all equipment must be thoroughly cleaned and decontaminated. Please make note on RMA form, the use of equipment, contaminants equipment was exposed to, and decontamination solutions/methods used.

Geotech reserves the right to refuse any equipment not properly decontaminated. Geotech may also choose to decontaminate equipment for a fee, which will be applied to the repair order invoice.

Geotech Environmental Equipment, Inc 2650 East 40th Avenue Denver, Colorado 80205 (303) 320-4764 • (800) 833-7958 • FAX (303) 322-7242 email: sales@geotechenv.com website: www.geotechenv.com

Chavez, Carl J, EMNRD

From:	Mark Larson [Mark@laenvironmental.com]
Sent:	Friday, November 20, 2009 9:07 AM
То:	Chavez, Carl J, EMNRD
Cc:	VonGonten, Glenn, EMNRD; Wrangham, Calvin W.; jlingnau@targaresources.com; Johnson, Larry, EMNRD
Subject:	Re: Phase-Separated Product Recovery, Targa Midstream Services, L.P., Eunice Gas Plant (GW-005), Lea County, New Mexico

Carl,

This message is submitted to the New Mexico Oil Conservation Division (OCD) on behalf of Targa Midstream Services, L.P. (Targa) by Larson & Associates, Inc. (LAI), its consultant, is response to the conference call on November 19, 2009, with OCD, Targa and LAI personnel to update the OCD on actions performed by Targa to investigate and recover free phase hydrocarbon product (product) recently discovered in monitoring well MW-3 at the Eunice Gas Plant (Facility). The Facility is located in Unit B (NW/4, NE/4), Section 3, Township 22 South, Range 37 East in Lea County, New Mexico. The product was discovered while gauging the well in conjunction with semi-annual groundwater monitoring activities during the week of October 12, 2009. Targa notified the OCD shortly after being notified by LAI personnel. On October 27, 2009, LAI, on behalf of Targa, submitted to the OCD in an emailed summary of activities performed by Targa and LIA personnel immediately after discovering the product, including conducting pressure tests of lines in the vicinity of well MW-3, performing a product bailout test in well MW-3 and product recovery from MW-3 to determine if there is an active source. The results of these activities were also submitted to the OCD in a letter report on November 19, 2009.

During the conference call on November 19, 2009, Targa and LAI representatives provided an update to the OCD on activities performed to date for assessing and recovering the product in MW-3, including the results of subsurface line tests and initial results of product recovery. OCD personnel suggested that a shallow sand unit observed in well MW-3 may be a shallow water bearing zone and requested geological cross sections that include well MW-3 to examine the shallow sand unit. LAI suggested that geological cross sections may have been submitted to the OCD in earlier reports and c=omitted to reviewing the reports. If none were found, OCD requested at least 2 geological cross sections (north to south and east to west) through the area of MW-3.

The OCD recommended to Targa that additional investigation would be necessary to identify the lateral extent of the product in the subsurface through installing monitoring wells upgradient of well MW-3, inside the plant, and downgradient (southeast) since existing monitoring wells located a considerable distance from well MW-3. Targa personnel recommended to the OCD that it would like to monitor the product recovery in well MW-3 to determine if there is an active source and submit the results to the OCD on or before December 21, 2009. The report is to include the results of fingerprint analysis of product from the condensate (Shell) tanks that was not available at the time the report was submitted to the OCD, volume of product recovered in well MW-3, recovery tests in well MW03 after removing the pump and observing the rate and thickness of product recovery in the well, geological cross sections through well MW-3 and recommendations for additional investigation as to the extent of the product in the subsurface. Please contact Cal Wrangham with Targa at (432) 688-0542 or myself at (432) 687-0901, if you have questions. Sincerely,

Mark J. Larson Sr. Project Manager / President 507 N. Marienfeld St., Ste. 202 Midland, Texas 79701 (432) 687-0901 (office) (432) 687-0456 (fax) (432) 556-8656 (cell) mark@laenvironmental.com

I am using the Free version of <u>SPAMfighter</u>. We are a community of 6 million users fighting spam. SPAMfighter has removed 4995 of my spam emails to date. The Professional version does not have this message.

This inbound email has been scanned for malicious software and transmitted safely to you using Webroot Email Security.

Chavez, Carl J, EMNRD

Subject: Location:	Targa Middle Plant (GW-5) MW-3 Free-Product Well Meeting 11/19/2009 Note to File TBD
Start: End:	Tue 11/17/2009 8:15 AM Tue 11/17/2009 8:45 AM
Recurrence:	(none)
Meeting Status:	Meeting organizer
Organizer: Required Attendees:	Chavez, Carl J, EMNRD VonGonten, Glenn, EMNRD; Griswold, Jim, EMNRD; Lowe, Leonard, EMNRD; Chavez, Carl J, EMNRD; Wrangham, Calvin W.; Mark Larson

Note to file 11/19/2009:

OCD held a telephone conference call with Targa (Cal Wrangham and James Lingnau) and their consultant Mark Larson at 2:00 p.m. yesterday, November 19, 2009. Targa sent a report to the OCD on November 19, 2009 from Larson & Associates for the meeting.

Targa mentioned a condensate release from C-141 release (SWL ~ 20 ft. bgl) form that occurred ~ 40 W of MW-3 at the former tank battery location while tanks were excavated, but the release was side gradient from MW-3 and they quickly remediated the contamination. The release was from an over pressured line that flowed into the excavated former tank battery from dresser sleeve for an estimated loss of 20 bbls. Targa was in the final stages of relocating the tanks to the new Tank Battery location about 150 ft. N of MW-3.

The trend in [Benzene] at MW-3 has been upward, since 1992. Nine underground lines were tested and passed the pressure tests.

Targa started removing free-product into drums last Friday, November 13, 2009 and had pumped ~ 50 gallons. Their pneumatic pump is on a timer when it pumps down to a sheen. Targa would like to continue free-product removal to determine if the source is finite or there is an ongoing leak. From bail-off test, they estimate the actual product thickness on water table to be at ~ 1.5 ft thick.

OCD recommendations:

- Gauge barrels for % condensate to water volumes every couple of hours to determine the efficiency of the freeproduct pump they are using. Targa thought this was a good idea. They will recycle the condensate through their plant.
- Conduct soil boring (4" dia. for recovery well installation if necessary) work (2 downgradient & 1 upgradient) around MW-3 to assess soil contamination and to determine the source of the free product. Targa request to continue pumping free product for the next 2 weeks to determine if the source is ongoing before doing the soil boring work. OCD was ok with this. Targa said they'd update us next Friday.
- Cross sections needed transecting MW-3. Targa will look for any historical cross-sections that may address this, if not they will provide. This may help understand the significant static water differential (20 ft. to 80 ft.) noticed from MWs at each side of the plant. Probably a perched aquifer there somewhere. An anomalous sandstone unit was also noticed at MW-3, which could be a conduit for discharge into MW-3?
- OCD requested that Targa follow-up with meeting conclusion items for OCD records. Ok.

End.....

Meet to discuss path forward on free-product well discovery and to get back with Targa on this discovery......

History of Free-Product Discovery

10-28-09

Mark:

Good morning. Based on your corrective action plan (highlighted below), do you think this can be done safely? The OCD understands Targa is attempting to assess the magnitude of free product or condensate on the water table to better assess the situation and to determine further corrective action(s). What will Targa do with hazardous waste (condensate contains BTEX?) in drums? Targa apparently feels that the volume is minimal right now based on the recent discovery from ground water monitoring....

There are small diameter portable intrinsically safe automated free-product recovery pumps that can be installed and can recover free-product into smaller size tank units that may be safer (explosion hazard) than what has been proposed. The OCD recommends that a safer active automated free-product intrinsically safe recovery system be installed or used to assess the volume of free product at the MW-3 location over time. The OCD does want the source of contamination removed to expedite remediation of ground water and any dissolved phase contaminants that are forming and migrating in ground water.

The water table elevation may have risen causing the water table to interface with a smear zone(s) or there may be an active leaky pipeline source? It may be prudent to core sample down in a triangular pattern near MW-3 to profile or characterize any free product or condensate hung up in the unsaturated zone to determine if the source is from a smeared zone(s) above the water table. Targa should evaluate static water level conditions to see if the water table has risen near MW-3 that may indicate a smear zone scenario. If not, the source may likely be a leaky line? Any pressure test information from MITs performed on lines should be included in your report along with pipelines (type of pipeline) transecting the facility.

Not sure what the static water level is at MW-3, but Targa should address any soil contamination near impacted MW-3. If there is free product in soil, Targa will need to excavate and dispose of contaminated soils or propose corrective actions (quick response to remove source of contamination) or remediation (long-term ground water abatement).

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

From: Mark Larson [mailto:Mark@laenvironmental.com]
Sent: Tuesday, October 27, 2009 1:10 PM
To: Chavez, Carl J, EMNRD
Cc: VonGonten, Glenn, EMNRD; Lowe, Leonard, EMNRD; Johnson, Larry, EMNRD; Wrangham, Calvin W.;
jlingnau@targaresources.com; susan.ninan@targaresources.com; Michelle Green; William Green; Leking, Geoffrey R, EMNRD
Subject: FW: Re: Phase-Separated Product Recovery, Targa Midstream Services, L.P., Eunice Gas Plant (GW-005), Lea

Subject: FW: Re: Phase-Separated Product Recovery, Targa Midstream Services, L.P., Eunice Gas Plant (GW-005), Lea County, New Mexico

Carl,

This message is submitted to the New Mexico Oil Conservation Division (OCD) on behalf of Targa Midstream Services, L.P. (Targa) by Larson & Associates, Inc. (LAI), its consultant, to update the OCD on hydrocarbon product (product) that was discovered in monitoring well MW-3 at the Eunice Gas Plant located in Unit B (NW/4, NE/4), Section 3, Township 22 South, Range 37 East in Lea County, New Mexico. The product was discovered while gauging the well in conjunction

with semi-annual groundwater monitoring activities during the week of October 12, 2009. Targa notified the OCD shortly after being notified by LAI personnel and conducted pressure testing of lines in the vicinity of well MW-3. The line testing did not identify a source for the product. On October 21, 2009, LAI personnel conducted a bailout test in well MW-3 to determine the thickness of product in the formation. An inflection point was observed about 95 minutes into the recovery phase of the test and calculated product thickness was 1.44 feet. The apparent product thickness in well MW-3 was 5.06 feet prior to the bailout test. LAI will begin recovering the product by pumping well MW-3 to determine if an active source exists. A pneumatic or equivalent pump will be installed in well MW-3 and recovered product will be placed in 55-gallon drums and processed by the Facility. The well will be pumped for a sufficient time to determine if there is an active source. A report will be submitted to the OCD upon completion of the recovery operation proposing additional actions, if necessary. Please contact Cal Wrangham with Targa at (432) 688-0542 or myself at (432) 687-0901, if you have questions.

Mark J. Larson Sr. Project Manager / President 507 N. Marienfeld St., Ste. 202 Midland, Texas 79701 (432) 687-0901 (office) (432) 687-0456 (fax) (432) 556-8656 (cell) mark@laenvironmental.com

w/oomented Consultants

OCD Message 10/13/2009

Carl, I did talk to Jim this morning. The sampling indicated 5.2 feet of gas/condensate appearing liquid. There has not been any free product in these wells in the past. Last sample of #3 was 0.159 ppm of benzene. We have pressure tested any potential source in that area of the plant with not leaks detected (3 lines). There are 2 gas/oil wells in the area that we are checking on. We sent a sample of the plant condensate and the liquid from the well to the lab yesterday to try and identify it or see if it was consistent. No results yet. Will keep you posted.

Thanks, Cal.

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]
Sent: Tuesday, October 13, 2009 9:50 AM
To: Wrangham, Calvin W.
Cc: VonGonten, Glenn, EMNRD
Subject: Targa Eunice Middle Plant (GW-005) MW-3 Detection of Free Product Notification

Cal:

Thanks for the telephone message notification of free-product detected for the first time in MW-3 yesterday. What is the thickness of free product in the well?

Has free-product ever been detected at the facility? Could mounding of the water table due to leakage have raised the water table up to a smear zone? What are Targa's thoughts? The OCD notices that MW-3 appears to sit on top of a ground water recharge area or area of mounding of the water table with GW flow direction easterly. It has displayed higher concentration of TDS and chlorides in the past....

Thanks.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>Carl J. Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

Chavez, Carl J, EMNRD

From: Sent:	Wrangham, Calvin W. [CWrangham@targaresources.com] Thursday, November 19, 2009 9:46 AM
To:	Chavez, Carl J. EMNRD
Subject:	FW: Free Product Assessment and Recovery Update, November 17, 2009
Attachments:	Free Product Assessment and Recovery Update, Targa Midstream Services, LP, Eunice Gas Plant (GW-005), November 17, 2009.pdf

Please see attachment on our progress with MW #3. Can we set a time after lunch, or later this PM to discuss on a phone conference? That would give you time to review this info. Maybe around 2pm your time zone?

From: Mark Larson [mailto:Mark@laenvironmental.com]
Sent: Thursday, November 19, 2009 10:27 AM
To: Wrangham, Calvin W.
Subject: Re: Free Product Assessment and Recovery Update, November 17, 2009

Cal,

Please find the attached letter report for the free product assessment and recovery for the Eunice Gas Plant (GW-005) attached. The document will be bound and mailed today to the New Mexico Oil Conservation Division (OCD) in Santa Fe and Hobbs, New Mexico. Please contact me if you have questions. Sincerely,

Mark J. Larson Sr. Project Manager / President 507 N. Marienfeld St., Ste. 202 Midland, Texas 79701 (432) 687-0901 (office) (432) 687-0456 (fax) (432) 556-8656 (cell) mark@laenvironmental.com

lates Environmental Consultants

I am using the Free version of <u>SPAMfighter</u>. We are a community of 6 million users fighting spam. SPAMfighter has removed 4994 of my spam emails to date. The Professional version does not have this message.

This inbound email has been scanned for malicious software and transmitted safely to you using Webroot Email Security.

November 17, 2009

VIA EMAIL: Carl.Chavez@state.nm.us

Mr. Carl Chavez Environmental Engineer New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Free Product Assessment and Recovery Update Targa Midstream Services, L.P., Eunice Gas Plant (GW-005) Unit Letter A (NE/4, NE/4), Section 3, Township 22 South, Range 37 East Lea County, New Mexico

Dear Mr. Chavez:

This letter is submitted to the New Mexico Oil Conservation Division (OCD) on behalf Targa Midstream Services, L.P. (Targa) by Larson & Associates, Inc. (LA), its consultant, to update the OCD on source evaluation and recovery of free phase petroleum hydrocarbons (condensate) recently discovered in monitoring well MW-3 at the Eunice Gas Plant (Facility). The Facility is located in unit A (NE/4, NE/4), Section 3, Township 22 South, Range 37 East, in Lea County, New Mexico. The geodetic position is 32.42237196 degrees north and 103.1453015 degrees west. Figure 1 presents a location and topographic map. Figure 2 presents a Facility drawing.

Chronology

October 12, 2009 Free phase petroleum hydrocarbons (condensate) was discovered in monitoring well MW-3 during semi-annual groundwater monitoring activities and immediately reported to client, whom notified the OCD in Santa Fe, New Mexico;

Targa collected samples from well MW-3 and possible sources including the XTO inlet scrubber and closed drain scrubber, for sulfur and fingerprint analysis. The samples were submitted to Cardinal Laboratories, located in Hobbs, New Mexico;

Targa pressure tested underground lines in the vicinity of well MW-3;

Mr. Carl Chavez November 17, 2009 Page 2 of 4

October 21, 2009 LAI performed a bail-out test of the free phase hydrocarbons in MW-3 to determine the formation thickness of the hydrocarbons;

November 13, 2009 Recovery of free phase product began in well MW-3 using a pneumatic pumping system.

Fingerprint Analysis

On September 12, 2009, Targa personnel collected liquid samples from the XTO inlet scrubber, closed drain scrubber and monitoring well MW-3. The samples were delivered under chain of custody control to Cardinal Laboratories (Cardinal) located in Cardinal transferred the samples to Caprock Laboratories Hobbs, New Mexico. (Caprock) located in Midland, Texas, which were analyzed for total sulfur, API gravity and extended hydrocarbons by gas chromatography (GC). A condensate sample from the waste oil (Shell) tank was also collected but results were not available for this report. The liquid sample from the XTO inlet scrubber was a water solution that contained no phase-separated hydrocarbons for fingerprint analysis. Caprock reported concentrations for three (3) biomarker parameters in the closed drain samples that were either not present or present at lower concentrations in the sample from MW-3. The biomarker parameters included farnesane (C-14), pristane (C-17) and phytane (C-Neither pristine or phytane were reported in the sample from MW-3, but 18). constituted 4.86% and 1.88% of the closed drain sump sample. Farnesane was 0.170% in the sample from MW-3 and 2.11% in the closed drain sump sample. The closed drain sump is not considered a source for the hydrocarbons based on the fingerprint analysis. Targa will submit the results for the waste oil (Shell) tank sample upon receipt from the laboratory. Figure 3 presents a detailed schematic showing the locations for the XTO Inlet Scrubber, Closed Drain Scrubber and monitoring well MW-3. Appendix A presents the laboratory report.

Underground Line Testing

Targa personnel performed short-term (15 minute) pressure tests on nine (9) underground lines in the vicinity of monitoring well MW-3, including the closed drain scrubber, XTO inlet scrubber, north and south vapor recovery unit (VRU) sales tanks, 3-phase separator, west and east inlet scrubbers, new condensate (Shell) tanks, gunbarrel tank, sump and lease automatic custody transfer (LACT) for sales lines. The lines were blocked, pressurized above operating pressure and manually observed for about 15 minutes for pressure decreases. No pressure decreases were observed concluding that the tested lines are not sources for the hydrocarbons in well MW-3. Figure 3 presents a detailed schematic for the locations of tested lines.

Mr. Carl Chavez November 17, 2009 Page 3 of 4

Bailout Test

On October 23, 2009, LAI personnel performed a bail-out test in well MW-3 to determine the thickness of product in the formation. The bail-out test was performed by measuring the static water and product level in the well prior to removing hydrocarbons by hand bailing with a disposable polyethylene bailer. The rate of water and product recovery was monitored until an inflection point was observed. The inflection point occurs when the product thickness in the well equalizes with the product thickness in the formation and is based on the method by Gruszczenski (1987, NGWA). The apparent hydrocarbon product thickness, prior to the bail-out test, was 5.06 feet. An inflection point was observed at approximately 95 minutes after recovery began. The calculated product thickness was 1.44 feet and the capillary fringe height was 3.62 feet. On Appendix B presents the bail-out test results.

On July 29, 2008, Targa personnel reported a spill to the OCD District 1 office in Hobbs, New Mexico. The spill occurred near the closed drain scrubber that was previously located near an excavation where the waste oil (Shell) tanks were located about 100 feet northwest (upgradient) of well MW-3. The release involved about 20 barrels of condensate when a dresser sleeve on a line failed due to over pressuring from pigging operations. The condensate ran into the excavation of the former waste oil (Shell) tanks and was collected using a vacuum truck. A track hoe was used to remove contaminated soil from the bottom of the excavation and placed in the on-site OCD permitted landfarm. The spill is considered a possible source for the hydrocarbons in well MW-3. Appendix C presents form C-141.

Hydrocarbon Product Recovery

On November 13, 2009, LAI personnel began recovering hydrocarbon product from well MW-3 using a Keck pneumatic product recovery system (PRS) manufactured by GeoTech, Inc., Denver, Colorado. The PRS is designed to efficiently collect free floating hydrocarbons in monitoring wells, and consists of a control panel, down-hole stainless steel bladder pump, floating skimmer attachment and pneumatic tank full sensor. Air is supplied via a stainless steel line from the compressor building and a pressure regulator is located near the well. The product is discharged into a 55-gallon polyethylene drum positioned inside secondary containment. The tank full sensor is positioned inside the polyethylene drum to signal the controller to shut off the pump once the drum level is full. Approximately 50 gallons of hydrocarbon product was recovered from well MW-3 between November 13 and 16, 2009.

LAI will record the volume of hydrocarbon product recovered from the well by tracking the drums of hydrocarbon product filled by the pump. The drums will be emptied by

والمتحاد مراجي والمناف والمحادث المراجب

Mr. Carl Chavez November 17, 2009 Page 4 of 4

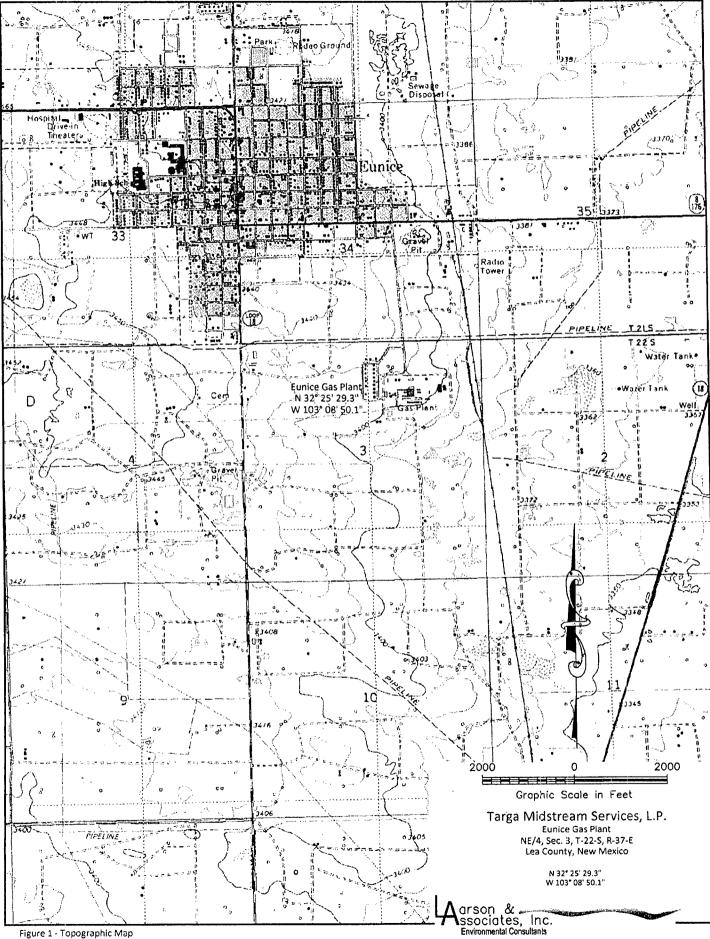
Targa personnel and placed into the condensate (Shell) tanks. LAI will monitor the rate of product recovery to determine if there is an active source for the hydrocarbons and report these results to the OCD. Targa will continue recovering free product from well MW-3 using the pneumatic pump, unless otherwise directed by the OCD. Appendix D presents the PRS specifications.

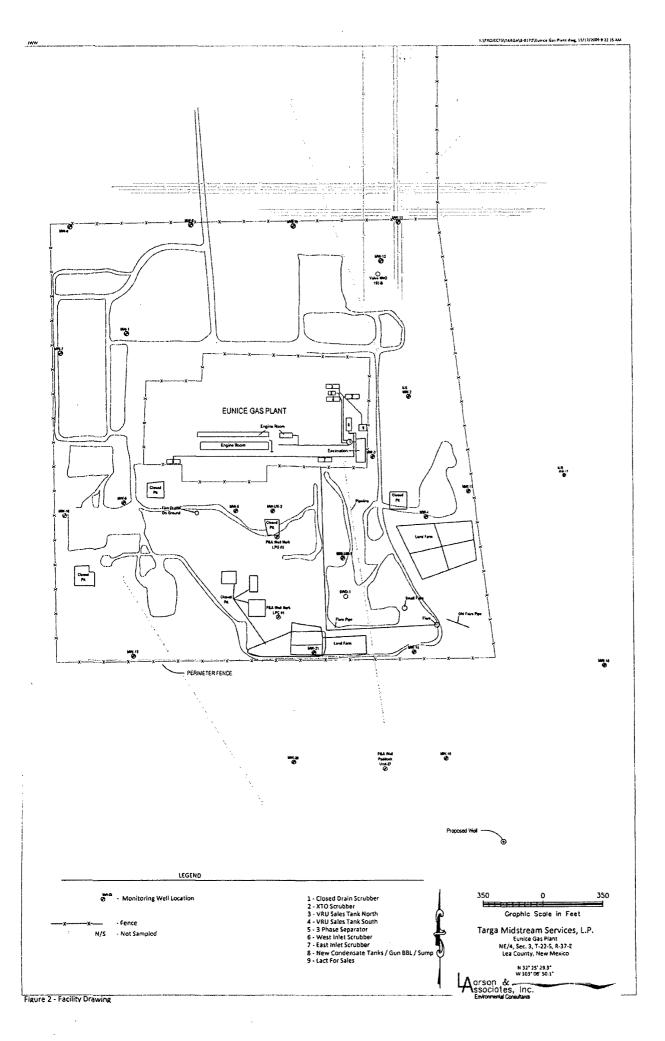
The results of line pressure testing and fingerprint analysis conclude that none of the t4ested lines or the closed drain sump is the source for the hydrocarbons. Targa will submit to the OCD the results of the fingerprint analysis of the condensate (Shell) tank samples upon receipt from the laboratory. A report summarizing the recovery of hydrocarbon product and determination of an active source will be submitted to the OCD on or before December 21, 2009. Please contact myself at (432) 687-0901 or Cal Wrangham at (432) 688-0452, if you have questions. We may also be reached by emailing mark@laenvironmental.com or CWrangham@targaresources.com. Sincerely.

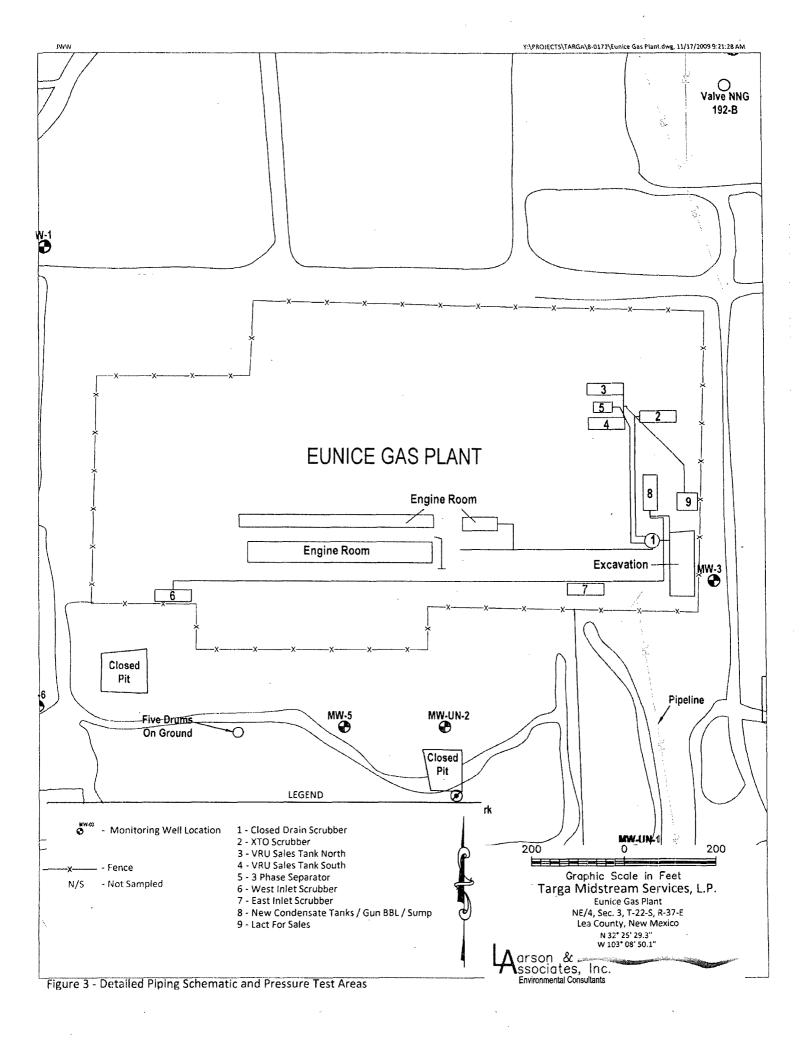
Larson & Associates, Inc.

Mark J. Larson, P.G., C.P.G., C.G.W.P. Senior Project Manager/President

Encl.


cc: Cal Wrangham, Targa James Lingnau, Targa Susan Ninan, Targa Larry Johnson, OCD - Hobbs FIGURES


,


٠.

507 North Marienfeld, Suite 200 ♦ Midland, Texas 79701 ♦ Ph. (432) 687-0901 ♦ Fax (432) 687-0456

APPENDIX A

Laboratory Report

507 North Marienfeld, Suite 200 Midland, Texas 79701 Ph. (432) 687-0901 Fax (432) 687-0456

October 20, 2009

Roger Holland Targa Resources 6 Desta Drive, Suite 3300 Midland, TX 79705

Re: Middle Plant

Enclosed are the results of analyses for sample number H18479, received by the laboratory on 10/12/09 at 4:00 pm.

Cardinal Laboratories is accredited through Texas NELAP for:

Method SW-846 8021 Method SW-846 8260 Method TX 1005 Benzene, Toluene, Ethyl Benzene, and Total Xylenes Benzene, Toluene, Ethyl Benzene, and Total Xylenes Total Petroleum Hydrocarbons

Certificate number T104704398-08-TX. Accreditation applies to solid and chemical materials and non-potable water matrices.

Cardinal Laboratories is accredited though the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.2	Regulated VOCs (V2, V3)

Accreditation applies to public drinking water matrices.

Total Number of Pages of Report: 3 (includes Chain of Custody)

Sincerely.

Celey D/Keene Laboratory Director

This report conforms with NELAP requirements.

5 REQUEST Č Page 03 265 Range 10/11/199-ANALYSIS No Add'I Phone #: No Add'I Fax #: 60122/01 propro $\not\neq$ - $\mathcal{D}_{\mathbb{C}}$ #4 205 > 5 > ∂ ala r DAB AVTL I why we Dronger Contract water and deriverungh for any dam word, within the Verter of any with Ander Amere were were and the applicable of DAB AVTL. I why we Dronger Contract water and any other cance where or the Manual and any and the America at competing the applicable cances which any more some approxements of consequenting within another manual and and and and attern and the America at a competing of the applicable of the AMER and America and any other cance where or 2000 to decine and any other and and a some and and attern and an and a some and a some and a some some at a some and an and a some a & added 12 Phone Result: Fax Result: REMARKS: PAJE TIME SAMPLING 60/c1/0 105 N N BILL TO Company: Servic CHECKED BY: 10/21 N. C. Zip: (Injtials) PRESERV ABHTO Address: 10007301 Phone #: P.O.#: State: Гах #∵ City: 3578/0:09 Attn: Sample Condition Cool Intact Tres Tres ABHTO apanns MATRIX 10 ¥. ĥ Project Owner: Parch Hc/Pra nos Received By RETAWETER Received B(Fax # 575-394.151 State N. T. Zip: (22) ROUNDWATER SRENIATNOD # čmp. (575) 393-2326 Fax (575) 393-2476 9MO(0) 80 8V8(9) 101 East Marland, Hobbs, NM 88240 ARDINAL LABORATORIES Date: Date: CO/LA K.T. O. Talet Clesed Derin Somber Time: Date: Sample I.D. Prione #: 575-39 U - 25-30 Project #: April 100 M.W. #3 Address: D. D. Dev 1925 Project Name: ///i.J.J. /c. P.H. Sampler - UPS - Bus - Other: Delivered By: (Circle One) Company Name 7279 Sampler Name: Souch City: Eularce Sampler Rejinjuuishee Project Manager: Project Location: Religouished BY H18479-1 NM FOR LAP USE ONLY Lab I.D. 5

† Cardinal cannot accept verbal changes. Please fax written changes to 575-393-2476.

HOV-02-2009 10:36 AN CAPROCK LAB.

р. б С

1

CAPROCK LABORATORIES, INC. 3312 BANKHEAD HIGHWAY MIDLAND, TEXAS 79701 (432) 698-7252

DATE RECEIVED: OCT. 22, 2009 DATE REPORTED: OCT. 30, 2009 REPORTED TO: CELEY KEENE 0910089 JOB NUMBER: CARDINAL LABORATORIES AS NOTED COMPANY: SAMPLE:

SUMMARY OF CRUDE OIL ANALYSIS

H18479-2* H18479-3	10089-02 10089-03	0.2706 0.3096	1.0126 0.7632	N. A. 53.9
H18479-1	10089-01	1.2967	0.7389	60.0
SAMPLE IDENTIFICATION	LAB NUMBER	WEIGHT % SULFUR	SPECIFIC GRAVITY, 60/60F	API GRAVITY @ 60 F

* SAMPLE WAS A WATER SOLUTION, NOT HYDROCARBONS

METHODS: WEIGHT % SULFUR - ASTM D4294 GRAVITY - ASTM D287 SAMPLE: CRUDE OIL

PRITCHARD, LAS MANAGER AMES L ANALYST:

CAPROCK LABORATORIES, INC 3312 BANKHEAD HIGHWAY MIDLAND, TEXAS 79701

. .

. . . .

		•				
COMPANY:	CARDINAL	LABORATORI	ES .	JOB N	IUMBER :	0910089
SAMPLE ID;	H18479-1				RECIEVED:	10-22-09
				DATE	REPORTED:	10-30-09
• • • • • • •					TED TO:	C. KEENE
SAMPLE #:	10089-01		,	121 011		O, KECHE
COMPONENT		WEIGHT %	COMPONENT		L.	VEIGHT %
			COM CALL		3	
Methane Eth	ane	0.0000	Octadecan	àq		0.0000
Propane	C-3	0.0057	N-Octadeca	ane	C-18	0.0000
Iso-Butane		0.0114	Nonadecan		0.10	0.0000
N-Butane	C-4	0.0740	N-Nonadeci		C-19	0.0000
Iso-Pentane		0,4781	Eicosanes		• • •	0.0000
N-Pentane	C-5	0.8367	N-Eicosane	3	C-20	0.0000
Neo-Hexane		0.0374	Heneicosar		C-21+	0.0000
Cyclopentane		0,3765			U _ ()	
2-Methylpenta	ne	1.4929	Total			100.0000
3-Methylpentar	าอ	1.1465				•••••
N-Hexane	C-6	2.9060	C-n / C-13	S SUM	MARY	
Methylcyclope	ntane	1.7295				
Benzene		0.8017	C-n		C-n/C-13	
Cyclohexane		1.9702			• 11/ • 10	
2-Methylhexan	9	1.5408	10		46,686	
-3-Methylhexand		2.1068	11		9.301	
Dimethylcyclop		3,3159	12		0.517	
Heptanas		1.3221	13		1.000	
N-Heptane	C~7	5,3527	14		0.619	
Methylcyclohes		5,1226	15		0.377	
Toluene		3.4768	16		0.208	
Octanes		15,4848	17		0.000	
N-Octane	C-8	0.6163	18		0.000	
Ethylbenzene		3.9314	19		0,000	
P-M-Xylene		4.1810	20		0.000	
O-Xylene		1.4855				
Nonanes		22,9573	BIO-MARKE	R SUM	IMARY	
N-Nonane	C-3	3.8728				
Decanes		9.2133	Farnesane			
N-Decane	C-10	1,1018	Pristane/			
Undecanes		1.8701	Phytane/C	-18	N.A.	
N-Undecane	C-11	0.2195				
Dodecanes		0.4781				
N-Dodecane	0-12	0.0122	WEIGHT %	S	1,2987	
Tridecanes		0.2204				
N-Tridecane	C-13	0.0236	GRAVITY,		60.0	
Tetradecanes		0.1000	API 🛯 60	F		
N-Tetradecane	C-14	0.0146				
Pentadecanes		0.0724				
N-Pentadecane	C-15	0,0089	~		1.	1
Hexadecanes	_	0.0268]	14.7	1.1.1
N-Hexadecane	C-16	0.0049	Analyst:	ęmu	no ful	ang
Heptadecanes		0.0000	()	/Jame		charø,
N-Heptadecane	C-17	0.0000	V	ι	_ab Manage	T

· ·

-4

 \bigcirc \sim শে 10 4 Qh φ œ 5 ω $\ddot{0}$ 1 CAPROCK LABORATORIES, INC H18479 12 国家的なない CRUDE OIL FINGERPRINT 14 0-n ť ...б ф 5 -(1)-20

C-n / C-13

4326890130

CAPROCK LABORATORIES, INC 3312 BANKHEAD HIGHWAY MIDLAND, TEXAS 79701

				- 10101			
COMPAN SAMPLE		CARDINAL H18479-3	LABORATORI	ES	DATE DATE	REPORTED:	10-22-09
SAMPLE	. #:	10089-03			REPOR	RTED TO:	C. KEENE
COMPON	ENT		WEIGHT %	COMPONENT			WEIGHT %
Methan	e – Etl	nane	0.0000	Octadecan	D D D		0.1436
Propan	e	C-3	0.0025	N-Octadec		C-18	0.0160
Iso-Bu	tane		0.0049	Nonadecan		010	0.0872
N-Buta		C-4	0.0233	N-Nonadec		C-19	0,0319
Iso-Pe			0.1449	Eicosanes		• • •	0.0516
N-Pent		C-5	0.1571	N-Eicosan		C-20	
Neo-He			0,0135	Heneicosa			
Cyclop	entane		0.1350				
	ylpente	ane	0,4812	Total			100.0000
	ylpenta		0.4873				
	ne	C-8	0,9364	C-n / C-1	3 SUN	MARY	
Methyl	cyclope	entane	0,8875				
Benzen			0.1878	C-n		C-n/C-13	
Cycloh	exane		1.3430				
2-Meth	ylhexar	le	0,8900	10		14.749	
3-Meth	ylhexar	าอ	1.3233	11		5.520	
		opentanes		12		2,284	
Heptan		••••	0.8986	13		1.000	
N-Hept		C-7	3.3378	14		0.299	
	cyclohe	exane	4.8820	15		0.346	
Toluen	-		1.7554	18		0.063	
Octane			14.7408	17		0.110	
N-Octa		C-8	8.4902	18		0.103	
	enzene		2.3091	19		0.205	
P-M-Xy			2.7927	20		0.047	
O-Xyle			0.8777				
Nonane			19.3283	BIO-MARKE	R SUN	MARY	
N-None		C-9	4,6390				•
Decane	8		15,2134	Farnesane	s/0-14	4 2.110	
N-Deca	ne	C-10	2.2993	Pristane/	0-17	4,860	
Undeca	nes		5.5425	Phytane/(2-18	1,880	
N-Unde	cane	C-11	0.8605				
Dodeca	nes		1,7947				
N-Dode	cane	C-12	0.3560	WEIGHT %	S	0.3096	
Trideo	anes		0.8409				
N-Tric	ecane	C-13	0.1559	GRAVITY,		53.9	
Tetrac	lecanes		0.4779	API 🔮 60	F		
N-Tetr	adecan	e C-14	0.0466				
Pentac	lecanes		0.4149				
N-Pent	adecan	e C-15	0.0540		~	Λ	\sim
Hexade	scanes		0.1682		()	11.1	
N-Hexa	Idecane	C-16	0,0098	Analyst	Gone	12-Julie	and
	lecanes		0.1559	(/ Jam		tchard,
N-Hept	adecan	e C~17	0.0172		/	Lab Manag	ør

P.05

....

0-n

NO

CAPROCK LABORATORIES, INC.

 \circ ک... N ĆH 10 4 (n σ 1 ŝ G 0 -4 NJ CRUDE OIL FINGERPRINT ، حبا Čů L Ш

C-n / C-13

Caprock Laboratories, Inc. 3312 Bankhead Highway

Midland, Texas 79701 (432) 689 - 7252

October 30, 2009

Cardinal Laboratories 101 East Marland Hobbs, New Mexico 88240

Attention: Coley Keene

Subject: Hydrocarbon Fingerprint

Gentlemen

Presented in this report are the final results of analyses performed to help determine if the samples submitted on October 22, 2009 were from the same origin. The sample identified as H18479-2 was a water solution and contained only a trace amount of hydrocarbons and could not be included in the fingerprint analyses.

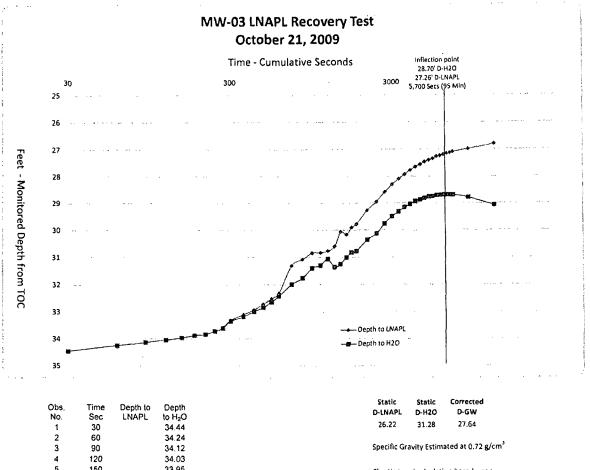
The other two samples (H18479-1 & H18479-3) were analyzed to determine Total Sulfur by X-Ray Fluorescence, API Gravity and Extended Hydrocarbons by Gas Chromatography. The data from the Extended Chromatographic analysis was calculated and the ratio of the weight percent of each component between N-Decane to N-Eicosane was calculated as a function of weight percent N-Tridecane. The resulting data was then graphed to serve as a fingerprint of each hydrocarbon. The ratio of three biomarkers, Farnesane:N-Tetradecane, Pristane:N-Heptadecane, and Phytane:N-Octadecane were also calculated and compared.

In general, the fingerprint data indicate that the hydrocarbons from the tested samples are not from the same origin.

It has been a pleasure to perform this study for you and we look forward to being of service in the future. Please do not hesitate to call if you should have any questions about the analytical procedures used, the results obtained, or if we may be of further assistance.

Respectfully,

l. Jatche


James L. Pritchard, Lab Manager Caprock Laboratories, Inc.

APPENDIX B

Bail-Out Test Results

507 North Marienfeld, Suite 200 🗢 Midland, Texas 79701 🗢 Ph. (432) 687-0901 🗢 Fax (432) 687-0456

(

Charting and calculation based upon Determination of a Realistic Estimate of Formation Product Thickness Using Monitor Wells: A Field Bailout Test by Thomas S. Gruszczenski (1987, NGWA)

Step Number

	5700
5 – Inflection Point	sec
6 - S.G. corrected	27.64
7 – Measured Product Thickness	5.06
8 – Inflection Product Thickness	1.44
9 – Capillary Fringe Height	3.62

4	120		34.03
5	150		33.95
6	180		33.87
7	210		33.82
8	240		33.70
9	270	33.56	33.58
10	300	33.29	33.33
11	360	33.09	33.17
12	420	32.91	32.98
13	480	32.71	32.83
14	540	32.49	32.62
15	600	32.29	32.40
16	720	31.29	31.98
17	840	31.07	31,75
18	960	30.83	31.39
19	1080	30.81	31.28
20	1200	30.75	31.05
21	1320	30.58	31.35
22	1440	30.04	31.23
23	1560	30.15	30.99
24	1680	29.89	30.80
25	1800	29.77	30.76
26	2100	29.26	30.34
27	2400	28.95	30.12
28	2700	28.58	29.75
29	3000	28.30	29.49
30	3300	28.09	29.31
31	3600	27.92	29.15
32	3900	27.76	29.03
33	4200	27.63	28.91
34	4500	27.54	28.85
35	4800	27.45	28.80
36	5100	27.39	28.75
37	5400	27.33	28.73
38	5700	27.26	28.70
39	6000	27.23	28.69
40	6300	27.19	28.68
41	6600	27.15	28.68
42	6900	27.12	28.68
43	7200	27.09	28.69
44	9000	26.98	28.78
45	13020	26.79	29.06

APPENDIX C

Form C-141

507 North Marienfeld, Suite 200 & Midland, Texas 79701 & Ph. (432) 687-0901 & Fax (432) 687-0456

۰. State of New Mexico **Energy Minerals and Natural Resources**

Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Release Notification and Corrective Action

	OPERATOR	🗷 Initial Report 🗌 Final Report
Name of Company: Targa Midstream Services L P	Contact: James Lingn	au 505.394.2534, Chuck Tolsma 505.631.6026
Address: PO Box 1909 Eunice, NM 88231	Telephone No. (505)	394-2534
Facility Name: Eunice Gas Plant	Facility Type	
Surface Owner: TARGA RESOURCES M	ineral Owner:	Leasc No.

Surface Owner: TARGA RESOURCES Mineral Owner:

LOCATION OF RELEASE

	Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Linc	County	
		3	218	37E						
1		{		1					Lea	Ĺ

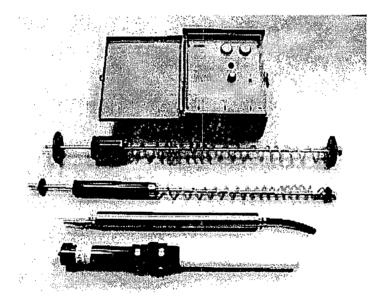
Latitude 32.25.16.9N Longitude 103..08.47.8W

NATURE OF RELEASE

Type of Release: Gas and Produced Liquids	Volume of Release:	Volume Re	covered: Recovered			
	Approximately 20 barrels of		ely 20 barrels of liquid.			
	liquid					
Source of Release: Dresser Sleeve separated on dump line from	Date and Hour of Occurrence:	Date and H	our of Discovery			
Separator in plant condensate handling area.	12 Midnight 7/29/2008		at 7/29/2008			
Was Immediate Notice Given?	If YES, To Whom?	- L				
🔀 Yes 🗌 No 🛄 Not Required	r r r r oop in Unbig her	phone				
By Whom? Don Embrey	Date and Hour 11:30 AM 7/29/20	008				
Was a Watercourse Reached?	If YES, Volume Impacting the W	atercourse.				
🗌 Yes 🗷 No						
If a Watercourse was Impacted, Describe Fully.*						
Describe Cause of Problem and Remedial Action Taken. *		······				
Pig pushed maximum amount of liquid into separator and caused over	pressure of dump line and dresser sleeve	c on line separa	ted. Liquid was			
contained in containment around separator and clean up excavation. I	Drip truck was called out and liquid reco	overed. Line wa	as shut in and dresser			
sleeve repaired.						
Describe Area Affected and Cleanup Action Taken.*	the test of the second sector is		a for a constinue of the			
The liquid was contained in containment and clean up excavation. Track hoe brought in to remove contaminated soil in bottom of excavation. The						
contaminated soil will be taken to an OCD approved landfarm. The area will be sampled to insure cleanup to meet OCD guidelines.						
I hereby certify that the information given above is true and complete	to the heat of my hun unlader and under	toud that murou	ant to NRAOCD vulge and			
regulations all operators are required to report and/or file certain relea	to the best of my knowledge and under-	anu mai puisu	and to which may endunger			
public health or the environment. The acceptance of a C-141 report b	with a NMOCD insisted as "Binal Benort	" does not relie	ve the operator of			
liability should their operations have failed to adequately investigate a	by the INVICED marked as Final Report	threat to group	A water surface water			
human health or the environment. In addition, NMOCD acceptance of	C_{2} C-141 report does not relieve the optimized	enter of respon	which, surface which,			
with any other fedgral, state, or local laws and or regulations.	it a C-141 report abox not reneve are op-	eradit of respon	isionity for compliance			
win any other prayant order, or roop name and or robuntions	OIL CONSERV		VICION			
Signature: Alen Emba	OILCONSERV	ATION DI	VISION			
- A A A A A A A A A A A A A A A A A A A						
Printed Name: Don Embroy	American disc District Communication					
	Approved by District Supervisor:					
Title: Advisor	A physical Data:	Ermination 1	hata.			
1110×7144Y1301	Approval Date:	Expiration E	ναις,			
E-mail Address: dembrey@targaresources.com	Conditions of Approval:					
to man radicess, demontyladargaresources.com			Attached			
Date: July 29, 2008 Phone: (432) 688-0546			1			

* Attach Additional Sheets If Necessary

APPENDIX D


Keck PRS Specifications

507 North Marienfeld, Suite 200 Midland, Texas 79701 Ph. (432) 687-0901 Fax (432) 687-0456

PRS -Product Recovery System

Installation and Operation Manual

26600008 Rev. 6 10/19/05

Table of Contents

CHAPTER 1:	SYSTEM DESCRIPTION	. 3
FUNCTION A SYSTEM CO	ND THEORY	. 3 . 4
CHAPTER 2:	SYSTEM INSTALLATION	11
CHAPTER 3:	SYSTEM OPERATION	13
CHAPTER 4:	SYSTEM MAINTENANCE	15
CHAPTER 5:	SYSTEM TROUBLESHOOTING	18
CHAPTER 6:	SYSTEM SPECIFICATIONS	20
CHAPTER 7:	SYSTEM SCHEMATIC	26
CHAPTER 8:	REPLACEMENT PARTS LIST	27
THE WARRA	NTY	36
EQUIPMENT	RETURN POLICY	36
EQUIPMENT	DECONTAMINATION	36

DOCUMENTATION CONVENTIONS

This uses the following conventions to present information:

An exclamation point icon indicates a **WARNING** of a situation or condition that could lead to personal injury or death. You should not proceed until you read and thoroughly understand the **WARNING** message.

CAUTION

A raised hand icon indicates **CAUTION** information that relates to a situation or condition that could lead to equipment malfunction or damage. You should not proceed until you read and thoroughly understand the **CAUTION** message.

A note icon indicates **NOTE** information. Notes provide additional or supplementary information about an activity or concept.

Chapter 1: System Description

Function and Theory

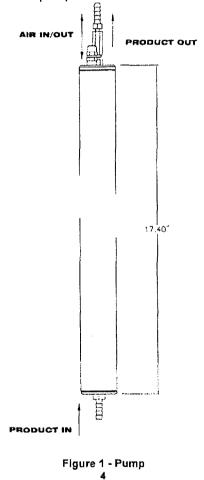
The Keck PRS Product Recovery System has been designed to efficiently collect free floating hydrocarbons in 2 inch or larger monitoring wells. The system consists of a floating skimmer attachment, a control panel that can be mounted indoors or out, a stainless steel bladder pump, a pneumatic tank full sensor, and an optional air compressor (not included).

The PRS' unique product intake assembly incorporates both a density float and a hydrophobic filter which differentiates between floating hydrocarbons and water. The intake assembly follows water table fluctuations and places the screen intake at the water/product interface. As the system cycles, product is drawn through the hydrophobic filter and transferred to the pump through a coiled hose and the skimmer's transfer shaft.

The pneumatic control panel regulates the system and features two timers which vary the cycle time and flow rate of the skimmer pump. The control panel also contains a pneumatic tank full shut off sensor which shuts off the pump when the recovery tank is filled.

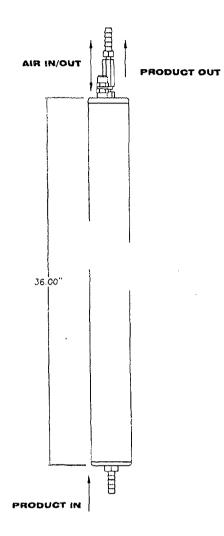
The automatic stainless steel bladder pump has a two-phase pumping cycle. During the first phase, or pump intake phase, pressurized air is vented from the pump, thus creating a vacuum. This vacuum closes the top discharge check valve and opens the bottom intake check valve, causing product to be drawn through the skimmer's product intake assembly and into the pump.

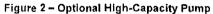
During the second phase, or pump discharge phase, pressurized air is directed into the pump bladder, causing it to expand within the pump body. This action closes the bottom intake check valve and opens the top discharge check valve, thus forcing the recovered product from the pump up to the surface.


The tank-full shut-off sensor system consists of a sensor tube and a switching valve. The sensor tube is installed in the recovery tanks 2 inch bung opening. As the recovery tank fills, the rising pressure is transmitted to the switching valve located in the control panel. When the pressure reaches the activation point (an indication of a filled recovery tank) the switching valve stops the air supply to the timers and disables

the pump from recovering product or overfilling the recovery tank. After the tank is emptied, the tank full shut off valve must be manually reset, allowing the system to resume normal operation.

System Components


Pump


The Keck PRS Product Recovery System utilizes an air driven bladder pump. The pump consists of a stainless steel outer housing, top and bottom check valves, and a flexible inner bladder. The pump is designed for pumping liquids only; any solids (silt, dirt, etc.) may reduce its performance or cause the pump to malfunction.

Optional High-Capacity Pump

The Keck PRS Product Recovery System also offers an optional highcapacity pump. The pump is constructed the same as the standard PRS pump, but gives twice the flow rate of recovery.

Standard Skimmer Attachment

The PRS' standard skimmer attachment is designed to recover floating hydrocarbons, skimming down to a sheen over a 2 foot travel range (1 foot travel for the 2 inch skimmer), and will not pump water unless forcibly submerged. Up to 5 feet of travel (4 inch skimmer only) is available on a custom order basis. The skimmer is connected to the bottom of the pump, and consists of a product intake assembly, a coiled product transfer hose, and a transfer shaft with well centralizers placed at the top and bottom.

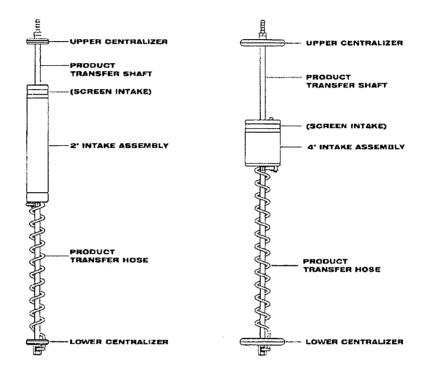


Figure 3 - 2" and 4" Standard Skimmer Attachments

Optional Oil Skimmer Attachment

The PRS' optional oil skimmer attachment is designed to recover a range of fluids from gasoline to gear oil, skimming down to .01 feet in 4 inch and larger wells. The skimmer is connected to the bottom of the pump, and consists of a product intake assembly, a coiled product transfer hose, and a transfer shaft with well centralizers placed at the top and bottom. The buoy can travel a distance of 2 feet between these centralizers. The skimmer intake can be fine tuned by adjusting the intake fitting on the buoy: turn the fitting clockwise to lower the intake relative to the product/water interface, or turn it counter-clockwise to raise the intake away from the interface.

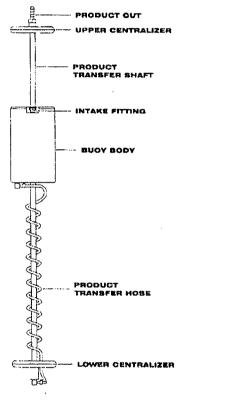


Figure 4 – Oil Skimmer Attachment (optional)

PRS System Control Panel

The air-driven pump controller is the "heart" of the PRS Product Recovery System. The controller uses two timers to vary the pumping rate of the system, independently controlling the discharge time and the recharge time of the pump. A clean, dry air source that can deliver one cubic foot per minute (CFM) at 90 psi will adequately allow the controller to drive one pump. Up to four pumps can be run from one controller with a commercial air supply of at least 4 CFM at 90 psi. The PRS Control Panel comes equipped with a tank full shut off. The Tank Full Shut Off incorporates a manual reset button, as an additional safety feature. The reset button must be pushed and the system reset to resume operation.

The tankfull indicator is green when the system is operational and is black when the system is shut off. The recovery tank must be emptied and the reset button pushed before the system can be reactivated, and the indicator to show green.

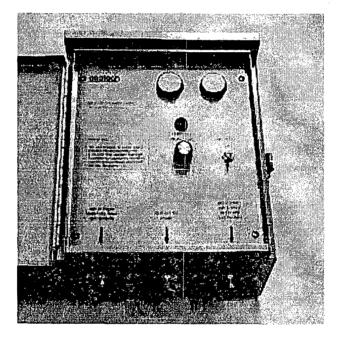


Figure 5 - PRS System Control Panel

Air Supply

The standard single or dual pump PRS system can be supplied with a 115V 2 hp "oil-less" air compressor. Larger multiple well head systems typically use a 1.5 hp or larger oil lubricated air compressor.

Oil lubricated air compressors usually require the installation of the intake air filter and the filling of the oil sump before operation. The filter and appropriate oil are provided with the compressor. Refer to the instructions provided with the air compressor for set-up procedures. The oil-less air compressors require a 115V 15 amp circuit, and the oil lubricated air compressors require at least a 115V 20 amp circuit (depending on the model). To avoid electrical overload, do not use an extension cord or plug any other equipment into the same circuit as the compressor.

An automatic tank drain and an air dryer may be required for the air compressor if the system is operating in humid conditions.

Bottled air may be used to operate the PRS if operating an air compressor is not feasible. A high pressure regulator must be used to reduce the air pressure to the range of 45 - 125 psi. Pressures outside of this range may cause the system to malfunction.

9

b i

The air compressor must be kept as cool as possible. If placing the compressor in an enclosure, it must be well ventilated and a fan may be required for proper cooling.

Product Recovery Tank

A product recovery tank is not provided with the PRS system. A tank with a 2 inch bung opening for the overfill sensor tube, a product inlet opening, and a vent are required for proper operation -- typically a 55 gallon drum or other suitable container. Check local and state regulations regarding fuel storage before selecting a recovery tank

Air Line and Discharge Hoses

Protect the supplied air lines and hoses for the pump, controller, and recovery tank from damage. Conduit or PVC pipe buried below grade will provide adequate line protection. Check local and state regulations regarding fuel transmission lines before installation of product discharge lines. The dimensions of air-line and hose to the listed devices are as follows:

Compressor	¾" O.D. x 50 ft / 9.5mm x 15m
Pump Air Line	¼" O.D. x 100 ft. / 6mm x 30m
Product Discharge Line	%" O.D. x 100 ft. / 16mm x 30m
Controller to Tank Full Shut off Sensor	¼" O.D. x 50 ft / 6mm x 15m

To successfully plan the installation of the PRS System, use the following guidelines to determine a suitable location for the air compressor and recovery tank (also refer to page 20, figure 10, System Schematic):

- Do not locate the compressor in an area where there may be explosive vapors. Compliance with Chapter 5 of the National Electric Code Handbook and any local codes is essential for an electrically safe installation. The compressor requires a cool, well ventilated environment to operate efficiently, and may require an air dryer in freezing or humid conditions.
- 2) Run all air and discharge lines through pipe or conduit to protect the lines from damage.
- 3) All air line connections must be installed properly for the system to function correctly. When cutting the air line, the cut must be clean and square. When inserting the air lines into the compression fittings, push the air line firmly into the fitting, hand tighten the compression nut, and then tighten one more full turn with a wrench.

Chapter 2: System Installation

ſ	A
ļ	
i	
ł	
I	

Prior to installation, it is best if the screen intake is "conditioned". Use diesel fuel or similar hydrocarbon to saturate the screen portion of the intake. The optimum fluid would be the downwell hydrocarbons to be recovered. Take care to avoid damaging the screen intake.

- 1) Install control panel vertically on hard surface or post.
- 2) Remove the inner ring of the well cap, and secure it to the well casing using the three set screws located on the perimeter of the ring.
- Cut a length of the provided air line and connect it from the output of the air compressor to the port labeled "INPUT FROM AIR SUPPLY" on the control panel.
- 4) To calculate the amount of air line and discharge hose required to suspend the pump and skimmer in the well, first determine the static water level, in the well, and then subtract 46 inches (38 inches for the 2 inch skimmer) from the reading. Next, measure out this amount of air line and discharge hose. For the optional high-capacity pump, subtract 63 inches (55 inches for the 2" skimmer) from the reading. Do not make any cuts to tubing until all measurements between controller and well head and well height to recovery tank are made. Last, pull the measured lengths of air line and discharge hose through the fittings on the well cap. Fully tighten the compression fittings. The well cap will suspend the pump and skimmer by the discharge hose, setting the intake assembly at the midpoint of its travel range.
- 5) Attach the air line and discharge hose to the pump using the provided compression fitting and hose clamp respectively, and set the pump and skimmer in the well.
- 6) Connect the free end of the pump air line to the controller fitting labeled "OUTPUT TO PUMP" (see page 8, figure 5).
- 7) Connect the free end of the product discharge hose to the product recovery tank.

8) Install the tank full shut off sensor air line between the tank full shut off sensor tube and the controller fitting labeled "INPUT FROM TANK-FULL SHUT OFF SENSOR" (see page 8, figure 5).

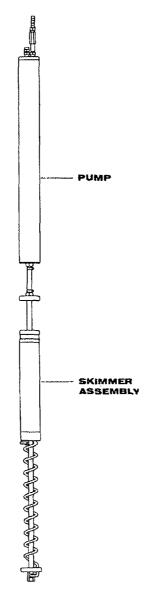


Figure 6 – Pump and Skimmer Assembly

Chapter 3: System Operation

- 1) Start the air compressor. If the air compressor was supplied by Geotech, two pressure gauges, a pressure switch, an air valve, and a pressure regulator are located on the top of the compressor air tank(s). The main pressure gauge shows the total tank pressure, and the outlet pressure gauge (figure 7) shows the outlet air pressure set by the regulator. The pressure switch has a lever with two positions. Move the lever to the "AUTO" (down) position, and the compressor will run until the tank pressure reaches 125 psi. Turn the air valve on and verify that the pressure shown on the outlet pressure gauge reads between 75 and 95 psi. If the setting is outside of this range, adjust the pressure by rotating the knob on the regulator.
- 2) Verify that the controller's pump intake and pump discharge timers are on the "C" setting as indicated on the controller faceplate. Turn the air valve on the control panel to the "ON" position. The system will now begin to cycle and recover product.

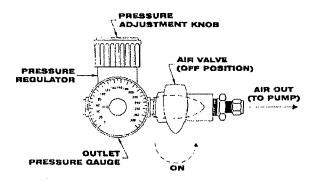


Figure 7 – Air Supply Controls

- 3) Test the tank full shut off system by immersing the sensor tube in a pail of water (at least 12 inches deep) while the system is cycling. Within one cycle, the sensor will shut off the air supply to the control panel. When you remove the sensing tube from the water, test to be sure the system remains off until the reset is pressed. If the system does not function as described, check the fittings at both the controller and sensing tube, and check for kinks in the sensor air line. Install the sensing tube in the 2 inch bung opening on the discharge tank.
- 4) The pumping rate can be adjusted based on product volume. If there is a large volume of product, or a minimal amount of product in the well, the pumping rate may be adjusted by referring to the following illustrations. DO NOT USE THE SETTINGS IN THE LIGHTLY SHADED AREA ON THE DIALS.

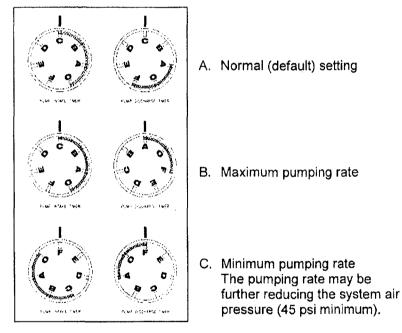


Figure 8

Weekly Maintenance

- Turn the air compressor off and drain the air tank(s). On air compressors without an optional automatic condensate drain, open the drain fitting on the bottom of the compressor tank(s) and drain any accumulated water. The tank(s) must be drained regularly to avoid compressor malfunction.
- 2) Check and adjust the compressor oil level (not applicable to all systems). Verify that the oil is at the proper level. Refer to the compressor manual for service intervals and procedures. It is very important that the oil level is maintained properly. If the oil level is too low or too high, the compressor may fail, or the pump may malfunction due to excess oil in the air stream.
- 3) Inspect the compressor for loose fittings. Over time, vibration may cause bolts to loosen or air leaks to develop. If uncorrected, excess air consumption and shortened compressor life will result.
- 4) Verify pump settings and fluid levels in well. Make sure that the pump and skimmer are set at the correct interval for collection of free product.

Monthly Maintenance

- Turn the air compressor off and drain the air tank(s). On air compressors without an optional automatic condensate drain, open the drain fitting(s) on the bottom of the compressor tank(s) and drain any accumulated water. The tanks must be drained regularly to avoid compressor malfunction.
- If the supplied compressor is oil lubricated, change the compressor oil. Fully drain and replace the compressor oil using a quality nondetergent compressor oil as specified in the compressor's operating instructions.
- 3) Inspect the compressor's air filter. Remove and clean the air intake filter, blowing from the inside out with compressed air. If the filter is very dirty, or you are unable to clean it, replace the filter.

- 4) Inspect the product skimmer. Visually inspect the skimmer, making sure that the coiled hose is not tangled and that the intake assembly moves freely over its travel range. Inspect the intake assembly and clean or replace it as needed using the methods described in the section of this manual on product skimmer cleaning (see page 16).
- 5) Check to make sure the tank full shut off is operating properly as described on page 14.
- 6) Verify pump settings and fluid levels in the well. Make sure that the pump and skimmer are set at the correct interval for collection of free product, and that the cycling rate of the system is correct for the amount of product available. If the well is slow to recharge and/or there is only a small volume of product to pump, the pumping rate should be decreased to conserve air and minimize compressor wear.
- 7) *For technical assistance, call Geotech Environmental Equipment, Inc.
- 8) at 1-800-833-7958 or in Michigan at 1-800-275-5325.

Product Skimmer Cleaning

- Inspect the product skimmer assembly for signs of physical damage. Scrapes or dents in the screen intake may cause the skimmer to take on water. If such damage is found, a new 2" or 4" intake assembly may be necessary (see page 28 or 30).
- 2) Inspect the tubing coil for physical damage or obstructions, such as kinks. Replace the tubing coil as necessary.
- 3) To clean the intake assembly screen intake, use a very soft bristle paint brush and fresh diesel fuel or the type of product being recovered. Typically, this type of maintenance should only be performed when the screen intake is obstructed with emulsified product or other debris. Take care not to dent or scratch the screen intake.
- 4) Rinse the product intake assembly with clean water and make sure it is completely dry before reconditioning screen intake.
- 5) Use diesel fuel or similar hydrocarbon to saturate the screen portion of the intake. The optimum fluid would be the downwell hydrocarbons to be recovered. Take care to avoid damaging the screen intake.

Bladder Replacement

The pump is fitted with a field replaceable bladder for easy repair on the job site (see page 26, figure 15, item 1).

- 1) Unscrew the top cap from the pump body and pull the top cap off. Slide assembly out.
- 2) Unscrew the old bladder and screw on the new one
- 3) Re-assemble the pump.

Chapter 5: System Troubleshooting

Problem: the pump discharges water only. Solutions:

1) The water level has risen above the travel range of the skimmer.

- Pull the pump and skimmer out of the well and purge water out of the intake assembly and pump by allowing the system to cycle for several minutes. Refer to page 11, and then reset the pump and skimmer.
- 2) The pump setting has slipped, or has been installed below the water level.
 - Refer to step "A" solution and then reset the pump and skimmer.
- 3) Loose hose/tubing at fitting
 - Check all fitting connections.

Problem: the pump discharges air only, no product. Solutions:

1) Product has been removed.

- Reduce the pumping rate (pg. 14), or decrease the air pressure (45 psi minimum) to conserve air.
- 2) The Product layer is below the bottom of the skimmer's travel range.
 - Refer to page 11, and then reset the pump and skimmer.

3) The pump bladder has ruptured.

• Replace the pump bladder. Refer to page 26, figure 15 or contact Geotech Environmental Equipment, Inc. for further information.

Problem: the pump cycles but does not discharge product. Solutions:

1) One or both of the pump check valves are malfunctioning.

- Refer to page 26, figure 15. Remove and clean, or replace the check valves (items 6 & 9).
- 2) The viscosity of the product is too thick for the skimmer.
 - Contact Geotech Environmental Equipment Inc. for other skimmer options.
- 3) The intake assembly is obstructed or the coiled product hose is kinked.
 - Verify that the intake assembly moves freely over its travel range, and adjust the coiled hose if needed. Refer to step "A" solution and then reset the pump and skimmer.

Chapter 6: System Specifications

Pump

Size: Weight: Materials: 23.5"L x 1.75" O.D.4.5Lbs.303 and 304 Stainless Steel, flexible PVC and Brass

Skimmer

2" Model 4"Model

Effective travel range: Size: Weight: Operating Temperature: Materials:

Controller

Size: Weight: Temperature: Min. Pressure: Max. Pressure: Max. CFM: 12" H x 10" W x 6" D 18 Lbs. 32° to 100° F 45 psi 125 psi 8 cfm @ 90 psi

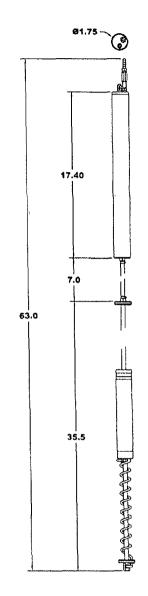
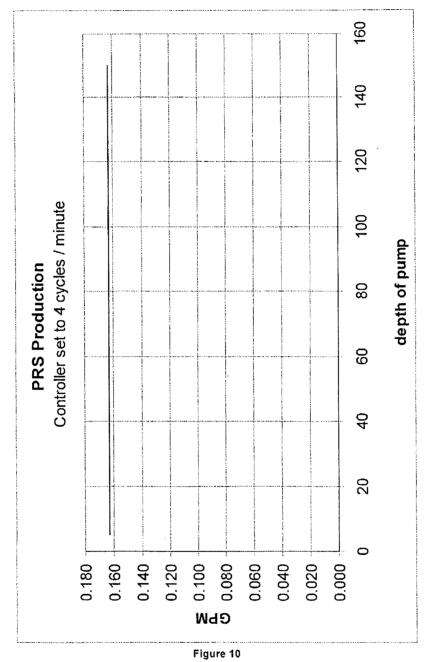
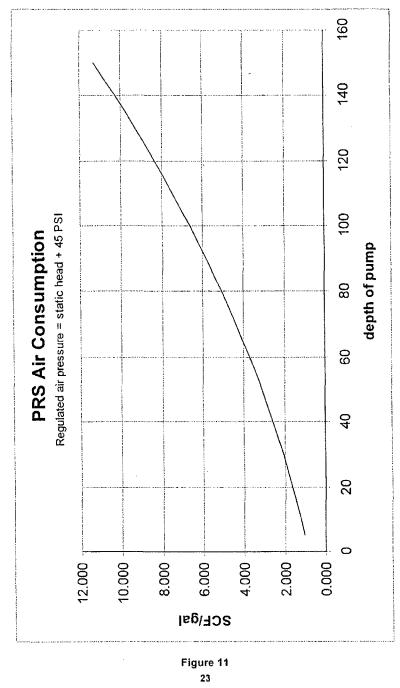
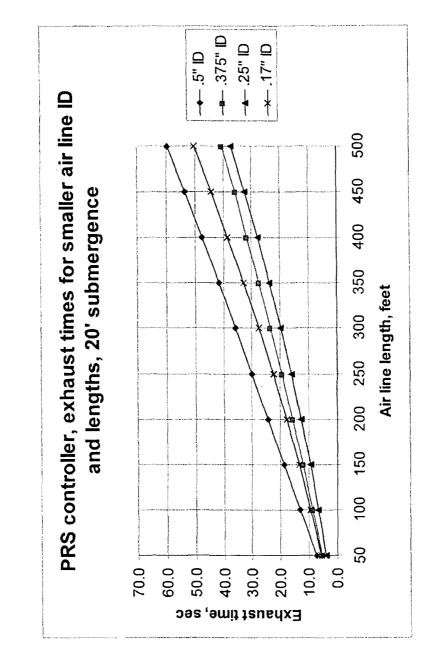
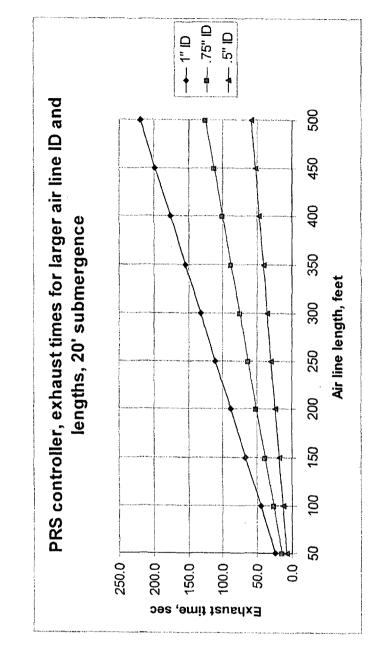





Figure 9 - Dimensions in Inches



÷

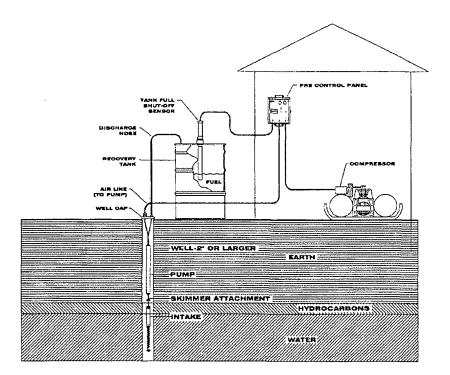
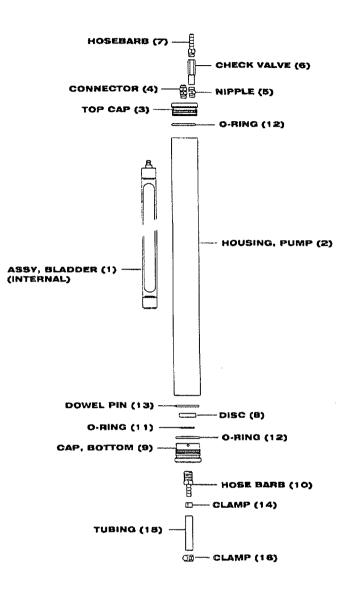
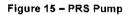




Figure 14 – System Schematic

PARTS DESCRIPTION

1	ASSY, BLADDER, CRS/PRS	56600013
2	HOUSING, PUMP, SS, CRS/PRS	26600013
3	CAP, TOP, SS	26600012
4	CONNECTOR, 1/4 X 1/8 MPT, POLYTITE	16600037
5	NIPPLE, BRS, 1/8, HEX, NPT	17500151
6	CHECK VALVE, 1/8 NPT, 2.5 PSI, 1/8 FPT X 1/8 FPT	16600003
7	HOSEBARB, BRS, 1/8 MPT X 3/8	16650310
8	DISC, PVC, CHECK, CRS/PRS	26600017
9	CAP, BOTTOM, SS, CRS/PRS	26600018
10	HOSEBARB, BRS, 1/4 MPT X 3/8	16650323
11	O-RING, VITON, #208	16600023
12	O-RING, VITON, #128	16600030
13	PIN, DOWEL, SS8, 1/8 X 1-3/4	16600026
14	CLAMP, SS. STEPLESS EAR, 17MM	16600004
15	TUBING, RBR, 3/8 X 5/8 FT PRODUCT DISCHARGE	16600019
16	CLAMP, SS, WORM, 5/8*	16600063

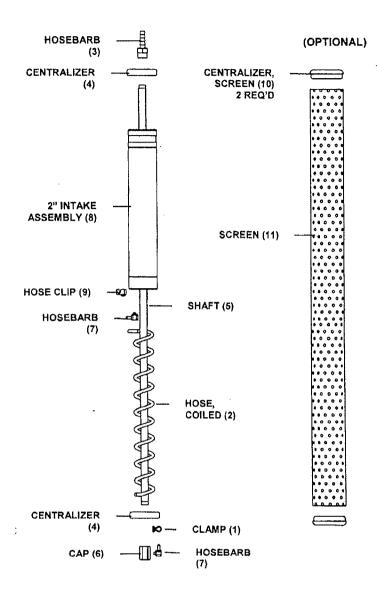


Figure 16 - Standard 2" Skimmer Parts list

ITEM #	PARTS DESCRIPTION	PARTS LIST
1	CLAMP, SS, STEPLESS EAR	16600005
2	HOSE, COILED, 2" SKIMMER	26650304
3	HOSEBARB, BRASS	16650308
4	CENTRALIZER, PVC, 2" SKIMMER	26650306
5	SHAFT, SS, SKIMMER, 33.5", PRC	26600002
6	CAP, BRASS	16600064
7	HOSEBARB, BRASS, 90°	17500149
8	ASSEMBLY, 2" INTAKE	56650309
9	HOSE CLIP, PVC	26650028
OPTIONAL		

10	CENTRALIZER, SCREEN, PR2	26600186
11	SCREEN, SS, 1.88" OD X 32.7"	26600188

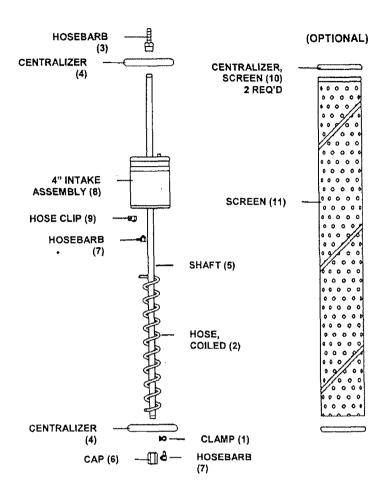


Figure 17 - Standard 4" Skimmer Parts List

ITEM #	PARTS DESCRIPTION	PARTS LIST
1	CLAMP, SS, STEPLESS EAR	16600005 16650312
2 3	HOSE, COILED, 4" SKIMMER HOSEBARB, BRASS	16650308
4 5	CENTRALIZER, PVC, 4" SKIMMER SHAFT, SS, SKIMMER, 33.5" PRC	26600187 26600002
6	CAP, BRASS , 90°	16600064
7 8	HOSEBARB, BRASS, 90° ASSEMBLY, 4" INTAKE	17500149 56650310
9	HOSE CLIP, PVC	26650028
OPTIONAL		
10	CENTRALIZER SCREEN PR4	26600187

10	CENTRALIZER, SCREEN, PR4	26600187
11	SCREEN, SS, 3.67" OD X 32.7"	26600189

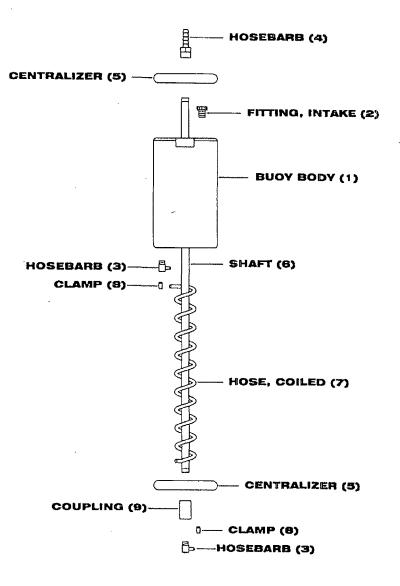


Figure 18 - Oil Skimmer Attachment Parts List

ITEM

PARTS DESCRIPTION

PARTS LIST

1	BUOY, POLY, OIL	26600004
2	FITTING, INTAKE, OIL BUOY	26600005
3	HOSEBARB, 90*, 1/8 NPT X 3/16	17500148
4	HOSEBARB, BRS. 3/8 X 1/8 FPT	16650308
5	CENTRALIZER, SKIMMER, PR4	16600048
6	SHAFT, SS, OIL SKIMMER, 38", PR4	26600006
7	HOSE, COILED	26600007
8	HOSECLAMP, SS, 5/16, 2 EAR	11200273
9	COUPLING, SS, 1/8 NPT	16600006

Notes

The Warranty

For a period of one (1) year from date of first sale, product is warranted to be free from defects in materials and workmanship. Geotech agrees to repair or replace, at Geotech's option, the portion proving defective, or at our option to refund the purchase price thereof. Geotech will have no warranty obligation if the product is subjected to abnormal operating conditions, accident, abuse, misuse, unauthorized modification, alteration, repair, or replacement of wear parts. User assumes all other risk, if any, including the risk of injury, loss, or damage, direct or consequential, arising out of the use, misuse, or inability to use this product. User agrees to use, maintain and install product in accordance with recommendations and instructions. User is responsible for transportation charges connected to the repair or replacement of product under this warranty.

Equipment Return Policy

A Return Material Authorization number (RMA #) is required prior to return of any equipment to our facilities, please call 800 number for appropriate location. An RMA # will be issued upon receipt of your request to return equipment, which should include reasons for the return. Your return shipment to us must have this RMA # clearly marked on the outside of the package. Proof of date of purchase is required for processing of all warranty requests.

This policy applies to both equipment sales and repair orders.

FOR A RETURN MATERIAL AUTHORIZATION, PLEASE CALL OUR SERVICE DEPARTMENT AT 1-800-833-7958 OR 1-800-275-5325.

Model Number:

Serial Number:

Date:

Equipment Decontamination

Prior to return, all equipment must be thoroughly cleaned and decontaminated. Please make note on RMA form, the use of equipment, contaminants equipment was exposed to, and decontamination solutions/methods used.

Geotech reserves the right to refuse any equipment not properly decontaminated. Geotech may also choose to decontaminate equipment for a fee, which will be applied to the repair order invoice.

Geotech Environmental Equipment, Inc 2650 East 40th Avenue Denver, Colorado 80205 (303) 320-4764 • (800) 833-7958 • FAX (303) 322-7242 email: sales@geotechenv.com website: www.geotechenv.com

r

Chavez, Carl J, EMNRD

From: Sent:	Wrangham, Calvin W. [CWrangham@targaresources.com] Tuesday, October 13, 2009 10:41 AM
To:	Chavez, Carl J, EMNRD
Cc:	VonGonten, Glenn, EMNRD
Subject:	RE: Targa Eunice Middle Plant (GW-005) MW-3 Detection of Free Product Notification

Carl, I did talk to Jim this morning. The sampling indicated 5.2 feet of gas/condensate appearing liquid. There has not been any free product in these wells in the past. Last sample of #3 was 0.159 ppm of benzene. We have pressure tested any potential source in that area of the plant with not leaks detected (3 lines). There are 2 gas/oil wells in the area that we are checking on. We sent a sample of the plant condensate and the liquid from the well to the lab yesterday to try and identify it or see if it was consistent. No results yet. Will keep you posted.

Thanks, Cal.

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]
Sent: Tuesday, October 13, 2009 9:50 AM
To: Wrangham, Calvin W.
Cc: VonGonten, Glenn, EMNRD
Subject: Targa Eunice Middle Plant (GW-005) MW-3 Detection of Free Product Notification

Cal:

Thanks for the telephone message notification of free-product detected for the first time in MW-3 yesterday. What is the thickness of free product in the well?

Has free-product ever been detected at the facility? Could mounding of the water table due to leakage have raised the water table up to a smear zone? What are Targa's thoughts? The OCD notices that MW-3 appears to sit on top of a ground water recharge area or area of mounding of the water table with GW flow direction easterly. It has displayed higher concentration of TDS and chlorides in the past....

Thanks.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. This email has been scanned using Webroot Email Security.

This inbound email has been scanned for malicious software and transmitted safely to you using Webroot Email Security.

RECEIVED 2008 SEP 22 AM 8 17

September 15, 2008

Mr. Wayne Price, Chief Environmental Bureau New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: 2007 Annual Groundwater Monitoring Report Targa Midstream Services, L.P., Eunice Gas Plant (GW-005) Unit B (NW/4, NE/4), Section 3, Township 22 South, Range 37 East Lea County, New Mexico

Dear Mr. Price:

Please enclosed report is submitted to the New Mexico Oil Conservation Division (OCD) on behalf of Targa Midstream Services, L. P. (Targa) by Larson and Associates, Inc. (LAI), its consultant, to present the results of groundwater monitoring performed at the Eunice Gas Plant (GW-00%) during 2007. Please call Mr. Cal Wrangham with Targa at (432) 688-0542 or myself at (432) 687-0901 if you have questions. We may also be reached by emailing <u>cwrangham@targaresources.com</u> or john@laenvironmental.com. Sincerely,

Larson and Associates, Inc.

for

John M Fergerson, PG No. 3231 Texas Professional Geologist john@laenvironmental.com

Cc: File

Mr. Cal Wrangham, Targa Midstream Services, L.P. Mr. James Lingnau, Targa Midstream Services, L.P. Mr. Larry Johnson, OCD – Hobbs Office

2007 GROUNDWATER MONITORING REPORT EUNICE GAS PLANT (GW-005) LEA COUNTY, NEW MEXICO

Prepared for: Targa Midstream Services, L.P. 6 Desta Drive Suite 3300 Midland, Texas 79705

Prepared by: Larson & Associates, Inc. 507 N. Marienfeld Street, Suite 200 Midland, Texas 79701

Project No. 2-0103

September 2, 2008

Table of Contents

ļ

Sectio:	<u>n</u>			Page	
1.0	INTRODUCTION				1
	1.2	Backg	round		1
2.0	CURRENT ACTIVITIES			2	
	2.1	Depth	to Groundwater and Hydrocarbon		2
		Product Measurements			
	2.2	<u>Groun</u>	Groundwater Samples		3
		2.2.1	Organic Constituents		4
		2.2.2	Dissolved Metals		5
		2.2.3	Anion and Water Quality Parameters		5
3.0	CONCLUSIONS		7		
4.0	PROPOSED INVESTIGATIONS AND REMEDIATION 8			8	

List of Tables

<u>Table</u>

- 1. Monitoring Well Completion and Gauging Summary
- 2. Summary of BTEX Analysis of Groundwater Samples
- 3. Summary of Dissolved Metals Analysis of Groundwater Samples
- 4. Summary of Inorganic Analysis of Groundwater Samples from Monitoring Wells

List of Figures

Figure

- 1. Facility Location and Topographic Map
- 2. Facility Drawing
- 3. Groundwater Potentiometric Map, June 6, 2007
- 4. Groundwater Potentiometric Map, December 3, 2007
- 5. Dissolved Benzene Concentration in Groundwater, June 6 7, 2007
- 6. Dissolved Benzene Concentration in Groundwater, December 3 4, 2007
- 7. Dissolved Chromium Concentration in Groundwater, June 6 7, 2007
- 8. Dissolved Chromium Concentration in Groundwater, December 3 4, 2007
- 9. Chloride Concentration in Groundwater, June 6 7, 2007
- 10. Chloride Concentration in Groundwater, December 3 4, 2007
- 11. Total Dissolved Solids Concentration in Groundwater, June 6 7, 2007
- 12. Total Dissolved Solids Concentration in Groundwater, December 3 4, 2007

List of Appendices

Appendix

. T

ŀ

- A. OCD Correspondence, August 25, 2006
- B. Laboratory Reports and Chain of Custody Documentation

•

1.0 INTRODUCTION

Targa Midstream Services, L.P. (Targa), as successor-company to Dynegy Midstream Services, L.P. (Dynegy), has retained Larson & Associates, Inc. (LAI) to conduct groundwater monitoring at its Eunice Gas Plant (Facility) located in Unit B (NW/4, NE/4), Section 3, Township 22 South, Range 37 East, in Lea County, New Mexico. The Facility operates under New Mexico Oil Conservation Division (OCD) discharge permit GW-005. This report presents the results of groundwater monitoring conducted at the Facility on June 6 - 7, 2007 and December 3 - 4, 2007. Figure 1 presents a Facility location and topographic map. Figure 2 presents a Facility drawing.

1.2 Background

On May 1, 2006, Targa proposed to modify the groundwater monitoring schedule to include the following:

- Semi-annual (twice yearly) collection and analysis of groundwater samples from wells MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-11, MW-12, MW-13, MW-14, MW-17, MW-18, MW-19 and MW-20;
- Annual (once yearly) collection and analysis of groundwater samples from the semi-annual wells and wells MW-7, MW-8, MW-9, MW-10, MW-15 and MW-16; and
- Laboratory analysis of samples for benzene, toluene, ethylbenzene, xylene (BTEX), dissolved metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, calcium, magnesium, potassium, sodium), anions and water quality parameters alkalinity, chloride, sulfate, and total dissolved solids (TDS).

On August 25, 2006, the OCD issued a letter to Targa proposing the following:

- Dig up high density polyethylene liner (HDPE) near MW-3 to help determine the source o contamination;
- MWs 19 and 20 were installed southeast and southwest of MW-14 with elevated levels of

TDS and chloride being detected, but at significantly lower levels than MW-14. Additional MWs are required southward from MWs 18 - 20 to begin implementing remediation measure to monitor, capture and reduce VOCs, metals, chloride and TDS from migrating offsite in the vicinity of MW-14. The aquifer shall be samples near the water table and at a deeper depth(s) within the aquifer depending on the saturated thickness;

- In addition to contacting "One Call," aerial photos should be used to investigate pipelines in the vicinity of MW-11 to determine whether spills/releases from nearby pipelines, and surface waste facilities have impacted MW-11. In addition, former brine evaporation pits in the vicinity of MWs 3 and other MWs should be investigated as the source(s) for chlorides; and
- Investigate pipelines toward the east to see if they are contributing to the piezometric mound condition beneath the plant. Targa needs to investigate the shallow water table at MW-11 to determine if there was or is a spill area north of MW-11 (100 ft. x 100 ft.) that may explain the shallow water table condition. Investigate the NE Plant for a possible crude oil pipeline release (Eunice & Monument).

Appendix A presents the correspondence from August 25, 2006.

2.0 CURRENT ACTIVITIES

2.1 Depth to Groundwater and Hydrocarbon Product Measurements

On June 6, 2007 and December 3, 2007, depth to groundwater and phase-separated hydrocarbon (PSH) was measured in all monitoring wells (MW-1 through MW20). Monitoring well MW-17 was dry during both monitoring events. The depth to groundwater and PSH measurements were obtained at the top of the PVC well casing using an electronic interface probe and recorded in a bound field note book. The interface probe was thoroughly cleaned between wells using a solution of laboratory-grade detergent and rinsed with distilled water. The depth-to-groundwater measurements were used to prepare groundwater potentiometric surface maps presented as Figure 3

(June 6, 2007) and Figure 4 (December 3, 2007). Table 1 presents a summary of the depth-togroundwater measurements. No PSH was observed in the wells during the reporting period.

Referring to Figure 3, the groundwater surface elevation ranged from 3,374.03 feet above mean sea level (AMSL) at well MW-3 to 3,346.87 feet AMSL at well MW-18. Groundwater flow was generally from northwest to southeast, but a groundwater mound was observed beneath the Facility that resulted in radial flow pattern to the west, southwest, south, southeast and east. Referring to Figure 4, the groundwater surface elevation ranged from 3,372.74 feet AMSL at well MW-3 to 3,346.59 feet AMSL at well MW-18. A groundwater mound was also observed beneath the Facility resulting in a similar radial flow pattern as observed during previous monitoring events.

2.2 Groundwater Samples

On June 6 – 7, 2007 and December 3 - 4, 2007, groundwater samples were collected from all monitoring wells except MW-17. The samples were collected using dedicated disposable polyethylene bailers after approximately three (3) casing volumes of groundwater was removed from each well or the after the wells had recovered sufficiently after purging. The samples were carefully poured from the dedicated bailers into laboratory prepared containers, labeled, chilled in an ice chest and delivered via Lonestar Overnight services under custody seal and chain-of-custody control to Severn Trent Laboratories, located in Corpus Christi, Texas.

The laboratory analyzed the samples for BTEX, dissolved metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, calcium, magnesium, potassium and sodium), anions and water quality parameters alkalinity, chloride, sulfate, and TDS. The laboratory also analyzed quality assurance and quality control (QA/QC) samples from wells MW-14 and MW-16 during the June and December 2007 events. Table 2 presents a summary of the BTEX analysis. Table 3 presents a summary of the dissolved metals analysis. Table 4 presents a summary of the inorganic and TDS

analysis. Appendix B presents the laboratory reports.

2.2.1 Organic Constituents

On June 6 – 7, 2007, benzene was reported above the New Mexico Water Quality Control Commission (WQCC) human health standard of 0.01 milligrams per liter (mg/L) in samples from monitoring wells MW-3 (4.3 mg/L), MW-6 (1.0 mg/L), MW-11 (0.93 mg/L), and MW-14 (0.20 mg/L). On December 3 – 4, 2007, benzene was reported above the WQCC human health standard in samples from monitoring wells MW-2 (0.24 mg/L), MW-3 (0.60 mg/L), MW-6 (0.12 mg/L), MW-11 (2.1 mg/L), and MW-14 (0.40 mg/L). On June 6 – 7, 2007, ethylbenzene (1.7 mg/L) and xylene (1.5 mg/L) were reported above the WQCC human health standards of 0.75 mg/L and 0.62 mg/L, respectively, in samples from well MW-3. Figure 5 and Figure 6 present the benzene concentrations reported by the laboratory in samples collected on June 6 – 7, 2007 and December 3 – 4, 2007, respectively.

A tank battery used for storing slop oil is located near the southeast corner of the Facility and is the suspected source for the benzene reported in the groundwater sample from well MW-3 Targa began to decommission the tank battery in August 2008. Contaminated soil from the tank battery was hauled to the J Dan Commercial Landfarm located near Lovington, New Mexico. Soil samples will be collected from the bottom and sides of the excavation for laboratory analysis, and results will be submitted to the OCD. An aerial photograph revealed a pit northeast of well MW-6 that may be the source for benzene reported in the sample from well MW-6 or possibly releases from pipelines. Targa suspects the benzene in MW-11 to be the result of pipeline releases north of well. The Facility is not considered a source for the benzene in well MW-11 since benzene was not detected in the sample from well MW-12. On October 4, 2005, LAI identified an area of crude oil staining about 150 feet north of well MW-11 that measured 50 x 50 feet. The spill was located near a pipeline owned by Link Energy. The suspected source for the benzene in well MW-14 is a pit that was

located north and west of the well. The extent of the benzene impact at wells MW-3, MW-6 and MW-14 has been determined from benzene concentrations reported in the down gradient wells. The extent of the benzene impact north and east of well MW-11 has not been determined.

2.2.2 Dissolved Metals

On June 6 – 7, 2007, dissolved chromium was reported above the WQCC human health standard of 0.05 mg/L in groundwater samples from wells MW-1 (0.074 mg/L) and MW-4 (0.077 mg/L). On December 3 – 4, 2007, dissolved chromium was reported above the WQCC human health standard in groundwater samples from wells MW-1 (0.074 mg/L) and MW-15 (0.063 mg/L). Targa is not aware of a source for the chromium, but will continue to monitor for chromium in groundwater. Figure 7 and Figure 8 present the dissolved chromium concentrations reported by the laboratory in samples collected on June 6 – 7, 2007 and December 3 – 4, 2007, respectively.

On June 6 – 7, 2007, dissolved barium was reported above the WQCC human health standard of 1 mg/L in groundwater samples from wells MW- 3 (5.1 mg/L) and MW-11 (1.40 mg/L). The barium is known to naturally occur in groundwater from the Ogallala formation and no point-source is known. During the June and December events, dissolved selenium was also reported in samples from well MW-4 at 0.17 mg/L and 0.069 mg/L, respectively, and exceeded the WQCC human health standard of 0.05 mg/L. The source is known for the selenium.

2.2.3 Anion and Water Quality Parameters

During the June and December 2007 events, chloride exceeded the WQCC domestic water quality standard of 250 mg/L in samples from all wells, except MW-6, MW-7, MW-9 and MW-11. Well MW-8, considered the background well for the water quality monitoring purposes, reported chloride at 460 mg/L and 750 mg/L during the June and December events, respectively. The highest chloride concentrations were reported in samples from wells MW-13 and MW-14

located east and southeast of the Facility, respectively. On June 6 - 7, 2007, chloride was reported in wells MW-13 and MW-14 at 5800 mg/L and 31,000 mg/L, respectively. On December 3 - 4, 2007, chloride was reported in wells MW-13 and MW-14 at 5,900 mg/L and 42,000 mg/L, respectively. Chloride concentrations decreased down gradient from well MW-14, but remain above the WQCC standard in wells MW-18 (3,700 mg/L and 4,600 mg/L), MW-19 (4,900 mg/L and 5,300 mg/L), and MW-20 (2,100 mg/L and 2,300 mg/L). Figure 9 and Figure 10 present the isopleths maps showing chloride concentrations in groundwater samples collected on June 6 - 7, 2007 and December 3 - 4, 2007, respectively.

TDS concentrations exceeded the WQCC domestic water quality standard of 1,000 mg/L in groundwater samples from all wells, except MW-9 and MW-11, during the June and December 2007 sample events. On June 6 - 7, 2007 and December 3 – 4, 2007, TDS was reported at in samples from the background well (MW-8) at 1,600 mg/L and 2,000 mg/L, respectively. The highest TDS concentrations reported during the June and December 2007 events occurred in samples from wells MW-13 and MW-14 located east side and southeast of the Facility, respectively. On June 6 – 7, 2007 and December 3 – 4, 2007, TDS was reported in samples from wells MW-13 at 16,000 mg/L and 13,000 mg/L, respectively. The TDS concentrations in well MW-14 for the same periods were 56,000 mg/L and 75,000 mg/L, respectively. The extent of the chloride and TDS east of the Facility has not been determined, but Targa proposes to drill a monitoring well adjacent to well MW-17 to determine if groundwater-bearing strata occurs below well MW-17. Targa also proposes to conduct an electromagnetic (EM) terrain conductivity survey down gradient of wells MW-18, MW-19 and MW-20 and install an additional well down gradient to assess the extent of the chloride and TDS. Figure 11 and Figure 12 present the isopleths maps showing TDS concentrations in groundwater samples collected on June 6 – 7, 2007 and December 3 – 4, 2007, respectively.

During June and December 2007, sulfate exceeded the WQCC domestic water quality

standard of 600 mg/L in groundwater samples from wells MW-2, MW-4, MW-12, MW-13, MW-14, MW-15, MW-18, MW-19 and MW-20. The background sulfate concentrations of 190 mg/L and 250 mg/L reported in well MW-8 during June and December, respectively, were below the WQCC threshold.

3.0 CONCLUSIONS

- During the reporting period groundwater mounding was observed beneath the Facility and created a radial flow pattern.
- During the reporting period benzene exceeded the WQCC human health standard of 0.01 mg/L in samples from five (5) wells: MW-2 (0.24 mg/L), MW-3 (4.3 mg/L and 0.60 mg/L), MW-6 (1.0 mg/L and 0.12 mg/L), MW-11 (0.93 mg/L and 2.1 mg/L) and MW-14 (0.20 mg/L and 0.40 mg/L).
- During June 2007, ethyl benzene (1.7 mg/L) and xylene (1.5 mg/L) exceeded the WQCC human health thresholds for each constituent in samples from well MW-3.
- During the reporting period dissolved chromium was reported above the WQCC human health standard of 0.05 mg/L in samples from wells MW-1 (0.074 mg/L and 0.074mg/L), MW-4 (0.0770 mg/L), and MW-15 (0.063 mg/L). No immediate source of the chromium is known.
- Dissolved barium exceeded the WQCC human health standard of 1.0 mg/L in samples from wells MW-3 (5.1 mg/L) and MW-11 (1.4 mg/L). No immediate source for the barium is known.
- During the reporting period, chloride and TDS concentrations in groundwater from the background well MW-8 exceeded the WQCC domestic water quality limitations of 250 mg/L and 1,000 mg/L, respectively. Chloride and TDS concentrations in groundwater from down gradient monitoring wells were significantly higher than the background concentration confirming that groundwater has been affected from releases of produced and brine waters.

- The extent of chloride and TDS in groundwater is not currently defined, as concentrations in the furthest down gradient wells (MW-18, MW-19 and MW-20) exceed background concentrations.
- During the reporting period, sulfate was reported above the WQCC human health standard of 600 mg/L in samples from wells MW-2 (2,100 mg/L and 870 mg/L), MW-4 (950 mg/L and 1,100 mg/L), MW-12 (690 mg/L and 700 mg/L), MW-13 (2,300 mg/L and 1,700 mg/L), MW-14 (3,200 mg/L and 3,100 mg/L) MW-15 (720 mg/L and 710 mg/L), MW-18 (610 mg/L and 670 mg/L), and MW-19 (1,700 mg/L and 1,200 mg/L). During the December event, sulfate decreased in samples from wells MW-2, MW-13 & MW-19.

4.0 PROPOSED INVESTIGATIONS AND REMEDIATION

Targa will continue monitoring groundwater according to the modified schedule presented to the OCD. The samples will be submitted to an accredited laboratory using proper preservation and chain of custody (COC) procedures. Notice will be given to the OCD at least 48-hours prior to each sampling event and results will be reported to the OCD in an annual report to be submitted during the first half of 2009. Any significant changes in groundwater quality will be reported to the OCD as soon as possible.

Targa will perform additional investigations to address OCD proposed actions presented in its correspondence dated August 26, 2006, including:

- Completion of soil remediation, according to OCD guidelines ("Guidelines for Remediation of Spills, Leaks and Release, August 13, 1993"), in the vicinity of the former slop oil ("shell") tanks. Results of the remediation will be reported to the OCD in the next annual report, due during the first half of 2009;
- Review aerial photographs and One-Call records for the area near well MW-11 to evaluate possible sources for benzene in groundwater;
- Performing electromagnetic (EM) terrain conductivity survey south of wells MW-14, MW-

2007 Groundwater Monitoring Report Targa Midstream Services, L.P. Eunice Gas Plant (GW-005) Lea County, New Mexico September 2, 2008

18, MW-19 and MW-20 to qualitatively assess the extent of the elevated chloride and TDS in groundwater. The EM survey will be performed using an EM-34 terrain conductivity meter manufactured by Geonics, Ltd., and measurements will be collected using sample grids measuring approximately 100 x 100 feet. The EM-34 survey will also include the area of the former brine pit located west of well MW-14 to assess the pit as a potential source for the chloride and TDS. The EM-34 conductivity survey results will be used to select a downgradient well location to monitor groundwater quality;

- Install a boring into the former brine pit located west of MW-14 to assess the potential for salt-contaminated material as a potential source for the elevated chloride in groundwater south of the Facility. The boring will be advanced to about 25 feet bgs and soil samples will be collected about every 5 feet for chloride analysis by an accredited laboratory;
- Collect multi-level groundwater samples from wells MW-14, MW-17A, MW-18, MW-19 and MW-20 to assess chemical stratification, depending on the saturated thickness;
- Installing an initial groundwater recovery well (RW-1), based on the EM survey results, near the south property line to initiate remediation of groundwater containing elevated chloride, TDS and benzene near the south property fence. The recovery well will be drilled to the base of the Ogallala aquifer and the well screen will extend across the saturated portion of the aquifer. The recovery well will be constructed using 4-inch diameter PVC screen and casing;
- Conducting a pumping test of sufficient obtain information that can be used to prepare a
 model to estimate the capture zone for the recovery well and assess the need for additional
 extraction wells that may be needed for hydraulic control of the contaminant plume.
 Measurements will also be collected from the adjacent monitoring wells to assess aquifer
 conditions;
- Conduct in-situ aquifer conductivity (slug tests) will also be performed in about 5 to 8 monitoring wells to augment the pumping test data and to calculate an average horizontal hydraulic conductivity value and range of r the aquifer;

9

- Install a replacement well (MW-2A) for monitoring well MW-2 which has been inundated with woody vegetation and roots rendering the well unusable. The new well will be drilled within about 20 feet of well MW-2 which will be plugged according to New Mexico State Engineer (NMSE) rules;
- Perform an investigation at well MW-17 to determine if groundwater is present below the current depth of the well. A boring will be advanced to approximately 50 feet below ground surface (bgs) within about 20 feet of well MW-17 to determine if groundwater is present below the current well depth of approximately 35 feet bgs. A replacement well (MW-17A) will be installed, using methods consistent with the construction of MW-17, if groundwater is observed and existing well MW-17 will be plugged according to NMSE rules;
- Resurvey well MW-5 which was repaired after being struck by heavy equipment and the new wells (MW-2A and MW-17A).

TABLES

,

,...

ŀ

Targa Midstream Services, L.P., Eunice Middle Plant Gas Plant Monitoring Well Completion and Gauging Summary Lea County, New Mexico

3,365.00 3,364.95 3,367.60 3,367.58 Corrected 3,374.03 3,369.73 3,369.70 3,358.95 3,368.53 3,370.44 Water. Elevation 3,368.48 3,368.23 3,367.59 3,364.64 3,358.10 3,357.75 3,372.74 3,368.85 3,370.38 3,369.37 3,369.80 3,369.74 3,367.74 3,367.65 3,368.53 3,368.32 3,363.18 3,358.91 3,370.11 3,369.77 Depth to Water 28.46 23.05 24.51 37.70 49.91 49.96 26.71 27.35 24.43 17.77 19.36 26.46 26.73 38.74 38.79 52.13 61.64 61.21 50.86 50.89 35.99 35.96 30.36 28.25 29.59 29.94 37.66 25.72 52.11 30.27 Depth to broken broken Fluid ł 1 1 1 1 ł 1 1 ; ; ; ł 1 ł ł ł ł t ţ 1 ł 1 1 1 ł ł ł Groundwater Data IOC Elevation Date Gauged 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007 12/3/2007 6/6/2007 6/6/2007 6/6/2007 6/6/2007 6/6/2007 12/3/2007 6/6/2007 6/6/2007 6/6/2007 6/6/2007 6/6/2007 6/7/2007 6/6/2007 6/6/2007 6/6/2007 6/6/2007 3,388.21 3,418.44 3,394.94 3,398.46 3,403.74 3,405.73 3,398.01 3,396.78 3,387.69 3,381.99 3,396.84 3,419.71 3,431.01 3,420.59 3,396.61 Casing Stickup 2.05 2.14 2.48 2.49 2.55 2.59 2.46 2.35 2.45 2.42 2.50 1.97 1.87 2.33 1.94 Screen Interval 14.87 - 34.49 25.00 - 44..49 25.00 - 34.49 25.00 - 44.49 40.17 - 59.79 19.17 - 38.79 19.47 - 39.09 19.87 - 39.49 31.87 - 51.49 39.87 - 59.49 54.87 - 74.49 39.87 - 59.49 26.87 - 46.49 30.87 - 50.49 27.00 - 46.49 (bgs) Elevation 3,392.80 3,385.73 3,394.29 3,401.15 3,417.25 3,428.66 3,418.14 3,403.31 3,395.51 3,394.81 3,385.82 3,379.66 3,416.39 3,395.97 3,394.67 Surface. Diameter (inches) Well 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Well Depth from TOC 42.14 42.55 62.46 42.49 37.48 54.59 62.45 49.33 46.94 62.05 77.35 49.42 49.51 36.87 46.97 Depth Drilled (bgs) 60 4 40 40 35 Å 52 60 33 8 4 45 35 4 47 Date Drilled 6/3/2003 4/9/2002 4/9/2002 8/6/2002 8/6/2002 8/6/2002 8/7/2002 8/7/2002 8/7/2002 8/8/2002 6/3/2003 6/3/2003 6/4/2003 4/9/2002 8/9/002 **Nell Information** Well ID MW-14 MW-10 **MW-13** MW-15 MW-2 MW-5 MW-6 6-WW MW-11 **MW-12** MW-3 MW-4 MW-8 MW-1 7-WW

4 - 2

Table 1

Targa Midstream Services, L.P., Eunice Middle Plant Gas Plant Monitoring Well Completion and Gauging Summary Lea County, New Mexico Table 1

, # # ,

ت بر الم بر الم

Well Information	lation								Groundwater Data	Data		
Well ID	Date Drilled Depth Depth (bgs)	Drilled Depth (bgs)	Well Depth from TOC	Well. Diameter (inches)	Surface Elevation	Screen Interval (bgs)	Casing Stickup	TOC Elevation	Date Gauged	Depth to Depth t Fluid Water	Depth to Depth to Fluid Water	Corrected Water Elevation
MW-16	6/4/2003	45	47.03	2	3,402.48	25.00 - 44.49	2.03	3,404.51	6/6/2007 12/3/2007	: :	40.64 40.68	3,363.87 3,363.83
MW-17	12/19/2005	35	37.02	2	3,372.62	19.49 - 34.49	2.02	3,374.64	6/7/2007 12/3/2007	: :	DRY DRY	1 1
MW-18	12/19/2005	35	37.15	2	3,373.02	19.49 - 34.49	2.15	3,375.17	6/7/2007 12/3/2007	11	28.30 28.58	3,346.87 3,346.59
MW-19	10/31/2005	38	40.00	2	3,378.55	23.00 - 37.49	2.46	3,381.01	6/6/2007 12/3/2007	1 1	31.71 31.65	3,349.30 3,349.36
MW-20	10/31/2005	48	50.00	2	3,387.68	33.00 - 47.41	2.41	3,390.09	6/6/2007 12/3/2007	: :	38.20 38.07	3,351.89 3,352.02

Notes

All values are in feet, unless otherwise noted.

bgs - below ground surface

TOC - top of casing

Elevations are above mean sea level (3365) referenced to 1984 Geodetic Datum. Wells drilled and installed by Scarbrough Drilling, Inc., Lamesa, Texas. Schedule 40 threaded PVC casing and screen set.

		Eunice, Lea	County, Ne			
Well	Sample Date	Benzene	Toluene	Ethyl	Total	Total BTEX
Number			ala ang sang sang sang sang sang sang sang	benzene	Xylenes	
Standard (N	IMWQCC)	0.01	0.75	0.75	0.62	
MW-1	06/07/07	<0.0002	<0.0002	<0.0002	< 0.0006	<0.0012
	12/03/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
MW-2	06/07/07	<0.0002	< 0.0002	<0.0002	<0.0006	<0.0012
	12/03/07	0.24	<0.0002	<0.0002	<0.0006	0.24
MW-3	06/06/07	4.3	<0.008	1.7	1.5	7.5
	12/03/07		<0.001	0.21	0.031	0.841
MW-4	06/06/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
	12/03/07	0.0057	<0.0002	0.0077	0.0035	0.0169
MW-5	06/06/07	0.0016	<0.0002	<0.0002	<0.0006	0.0016
	12/04/07	0.0069	<0.0002	<0.0002	<0.0006	0.0069
MW-6	06/07/07	1.0	<0.002	0.019	<0.006	1.019
	12/04/07	0.12	0.0035	0.013	<0.006	0.1365
MW-7	06/06/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
	12/03/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
MW-8	06/06/07	< 0.0002	<0.0002	<0.0002	<0.0006	<0.0012
	12/03/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
MW-9	06/06/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
	12/03/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
MW-10	06/06/07	<0.0002	<0.0002	< 0.0002	<0.0006	<0.0012
	12/03/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
MW-11	06/06/07	. 0.93	< 0.001	0.0049	0.012	0.9469
	12/03/07	2.1	<0.004	<0.004	<0.012	2.1
MW-12	06/06/07	< 0.0002	<0.0002	< 0.0002	< 0.0006	< 0.0012
	12/03/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
MW-13	06/06/07	< 0.0002	< 0.0002	<0.0002	<0.0006	<0.0012
	12/03/07	0.0061	<0.0002	<0.0002	<0.0006	0.0061
MW-14	06/07/07	0.20	0.00054	0.00049	0.0025	0.2035
	12/03/07	0.40	<0.0008	0.011	0.0077	0.4187
MW-15	06/07/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
	12/04/07	0.0028	<0.0002	<0.0002	<0.0006	0.0028
MW-16	06/07/07	< 0.0002	<0.0002	<0.0002	<0.0006	<0.0012
	12/04/07	0.0013	<0.0002	<0.0002	<0.0006	0.0013
MW-18	06/07/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
	12/04/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
MW-19	06/06/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
	12/04/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
MW-20	06/06/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
	12/04/07	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
Duplicates						
MW-16	6/7/2007	<0.0002	<0.0002	<0.0002	<0.0006	<0.0012
MW-14	12/3/2007	.0.41	<0.0008	0.011	0.008	0.429
Notos:						

Table 2 Summary of BTEX Analysis of Groundwater Samples Targa Midstream Services, L.P., Eunice Middle Gas Plant Funice, Lea County, New Mexico

Notes:

.*.

Analyses performed by SevernTrent Laboratories, Corpus Christi, Texas All results reported in milligrams per liter (mg/L)

1. <: Concentration below test method detection limit

2. --: No data available

Table 3 Summary of Dissolved Metals Analyses of Groundwater Samples Targa Midstream Services, L. P., Eunice Middle Gas Plant Lea County, New Mexico

.

a a a

2

5 8 Br

Ro uto."

1 . A

2 90 - 10 - 50 d

•

				רבם החתוניגו	rea coastel, rew mexico				
Wonitor	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
	(NMWQCC)	0.1	1.0	0.01	0.05	0.05	0.002	0.05	0.05
MW-1	06/07/07	0.0053	0.082	<0.001	0:074	<0.001	0.00023	0.010	<0.001
	12/03/07	0.0063	0.094	<0.001	Sec. 0.074 Sec. 5	<0.001	<0.00013	0.011	<0.001
MW-2	06/07/07	0.023	0.053	<0.001	<0.0011	<0.0011	0.00022	0.025	<0.001
	12/03/07	0.016	0.073	<0.001	<0.002	<0.001	<0.00013	0.025	<0.001
MW-3	06/06/07	0.072	5.1 N	<0.001	<0.0011	<0.001	0.00019	<0.001	<0.001
	12/03/07	0.091	0.58	<0.001	0.0099	0.0056	<0.00013	<0.002	<0.001
MW-4	06/06/07	0.029	0.036	<0.001	0.0770	<0.001	0.0002	12:0°27	<0.001
	12/03/07	0.032	0.058	<0.001	0.0190	0.0022	0.00015	0.069	<0.001
MW-5	06/07/07	0.033	0.17	<0.001	0.0051	0.0015	0.00025	0.0044	<0.001
	12/04/07	0.038	0.067	<0.001	0.0050	0.0022	0.00016	0.0049	<0.001
MW-6	06/07/07	0.038	0.20	<0.001	0:0030	0.0012	0.00019	0.0016	<0.001
	12/04/07	0.04	0.14	<0.001	<0.002	<0.001	<0.00013	<0.002	<0.001
MW-7	06/06/07	0.0061	0.0540	<0.001	0.0013	<0.001	0.00016	0.0067	<0.001
	12/03/07	0.009	0.10	<0.001	0.0025	<0.001	<0.00013	0.0093	<0.001
MW-8	06/06/07	0.012	0.079	<0.001	<0.0011	<0.001	0.00017	0.0066	<0.001
	12/03/07	0.012	0.082	<0.001	<0.002	<0.001	<0.00013	0.0065	<0.001
6-WW	06/06/07	9600.0	0.069	<0.001	<0.0011	<0.001	0.00018	<0.001	<0.001
	12/03/07	0.0089	0.072	<0.001	<0.0020	<0.001	<0.00013	<0.002	<0.001
MW-10	06/06/07	0.0067	0.37	<0.001	0.0019	<0.001	0.00021	0.0032	<0.001
	12/03/07	0.0074	0.31	<0.001	<0.002	<0.001	<0.00013	0.0035	<0.001
MW-11	06/06/07	0.014	*`_{4}_4 \}	<0.001	<0.0011	<0.001	0.00019	<0.001	<0.001
	12/03/07	0.011	0.81	<0.001	<0.002	<0.001	<0.00013	<0.002	<0.001
MW-12	06/06/07	0.012	0.049	<0.001	<0.0011	<0.001	0.00021	0.018	<0.001
	12/03/07	0.031	0.30	<0.001	0.044	0.014	<0.00013	0.018	<0.001
MW-13	06/06/07	0.0089	0.092	<0.001	<0.0011	<0.001	0.00021	0.020	<0.001
	12/03/07	0.01	0.14	<0.001	0.0035	<0.001	<0.00013	0.023	<0.001
MW-14	06/07/07	0.024	0.30	<0.001	0.018	0.0055	<0.00013	0.0019	<0.001
	12/03/07	0.023	0.20	<0.001	<0.002	<0.001	<0.00013	0.0038	<0.001
MW-15	06/07/07	0.017	0.17	<0.001	0.046	<0.001	0.00028	0.0085	<0.001
	12/04/07	0.019	0.37	<0.001	0.063	0.0012	0.00013	0.0052	<0.001

Summary of Dissolved Metals Analyses of Groundwater Samples Targa Midstream Services, L. P., Eunice Middle Gas Plant Table 3

. 5

-

, , ,

2 · · · · · ·

.....

Lea County, New Mexico

Monitor	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
Well						•			1
Standard (NMWC	MWQCC)	0.1	1.0	0.01	0.05	0.05	0.002	0.05	0.05
MW-16	06/07/07	0.011	0.82	<0.001	0.011	0.0029	26000.0	<0.001	<0.001
	12/04/07	0.0083	0.18	<0.001	<0.002	<0.001	0.00016	<0.002	<0.001
MW-18	06/07/07	0.001	0.12	<0.001	0.0019	<0.001	0.00027	0.0043	<0.001
	12/04/07	0.001	0.11	<0.001	<0.002	<0.001	<0.00013	0.0030	<0.001
MW-19	06/06/07	0.014	0.052	<0.001	0.0045	<0.001	0.00039	0.0056	<0.001
	12/04/07	0.014	0.058	<0.001	0.0052	<0.001	<0.00013	0.0060	<0.001
MW-20	06/06/07	0.061	0.024	<0.001	0.0059	<0.001	0.00019	0.0076	<0.001
	12/04/07	0.058	0.044	<0.001	0.0070	<0.001	<0.00013	0.0076	<0.001
Duplicates									
MW-16	06/07/07	0.0079	0.51	<0.001	0.0047	0.0012	0.00065	<0.001	<0.001
MW-14	12/03/07	0.023	0.21	<0.001	<0.002	<0.001	<0.00013	0.004	<0.001

Notes:

Analyses performed by SevernTrent Laboratories, Corpus Christi, Texas

All results reported in milligrams per liter (mg/L) 1. <: Concentration below test method detection limit 2. --: No data available

from Monitoring Wells e Gas Plant Table 4 alysis of G----Nic A .

. .

^{ر م}رد.

2 - 2 ⁻ 2

, test,

est

 $u_{i}=\frac{1}{2}\left(\frac{u_{i}}{2}\right)^{2}$

é 5, **9**

200 2³ 7

larga

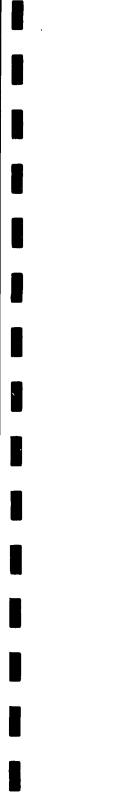
U.	
Ð	
	8
ĕ	÷ž
2	lex
ຮ	2
Eunie	
Ξ.	Nev
	-
n Services, L. P.	ounty,
÷.	5
Š	
<u>ŏ</u>	ā
2	Lea C
ŝ	
F	inice
ā	Ę
2	ū
<u>s</u>	
Midstream	
2	
m	

ŝ	ē
er Samples from Mo	Taras Midetrosm Semicor 1 D. Emice Middle Cor DI
Ť	4
es	7
ď	2
an	ę
Š	-
ate	Ľ
summary of Inorganic Analysis of Groundwater	C
5	-
ē	š
Ĝ.	÷
0	ŝ
sis	š
al	2
Å	ļ
<u>,</u>	ž
an	Z
ñ	£
Ĕ	ł
ď,	-
ž	
nar	
Ĕ	
Ľ.	
-	

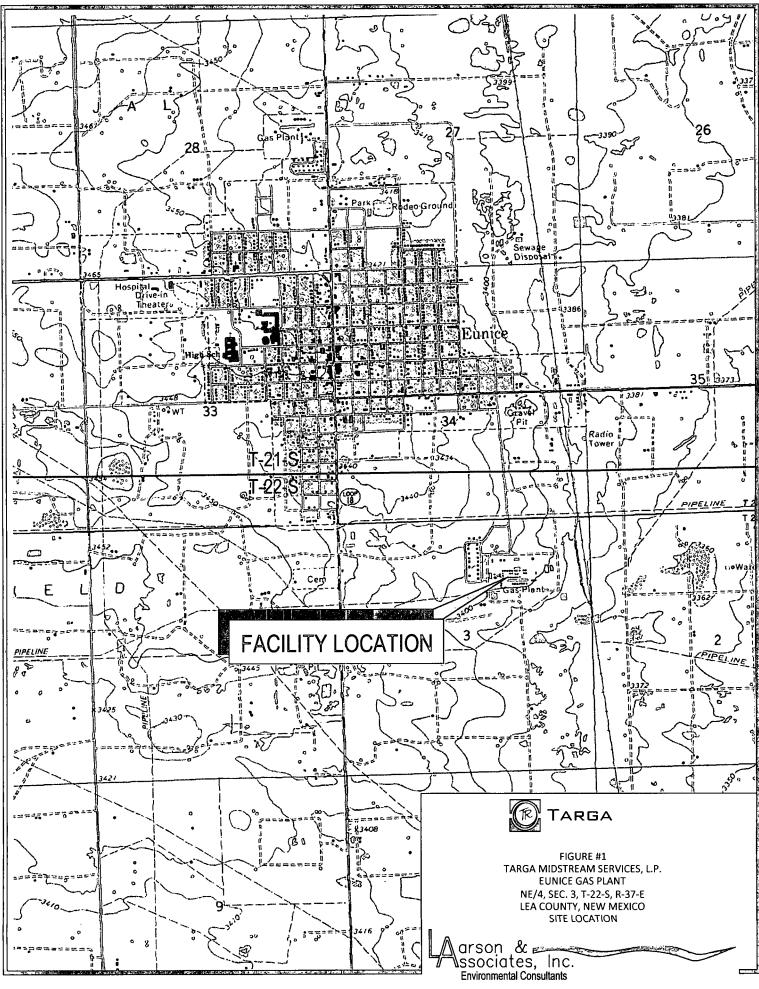
Anorther		A Due De Saut							
WOILLU	Jampie Date	AIRdinity	culoride	Surrate	Calcium	Magnesium	Potassium	mulboc	2
			010						
		:	250-	600	:		1	1997 - 199 - 1997 - 1997	1,000
MW-1	06/07/07	380	740.	480	320	120	11	320	2,400
	12/03/07	420	v. ⊧810:	440	320	120	11	380	2,600
MW-2	06/07/07	490	⊶ 1,200 1,	2,100	400	160	17	700	
	12/03/07	430	470	. 870	310	120	18	540	2,900
MW-3	06/06/07	730	280	64	66	100	3.9	240	A 1,900 / 1
	12/03/07	660	. 990	34	240	160	23	790	2,600
MW-4	06/06/07	750	190s	950	82	13	13	064	3,000; 3
	12/03/07	840	210	1,100	120	28	14	950	∱.√3,4009¢∜
MW-5	06/07/07	710	350	480	85	22	15	600	2,200
	12/04/07	790	210	330	72	23	14	550	: 2;000:
MW-6	06/07/07	730	240	190	110	42	7.3	390	1,500
	12/04/07	760	230	200	85	44	7.3	410	. 1,700 M
MW-7	06/06/07	380	210	280	140	50	8.1	160	1,300
	12/03/07	460	240	250	190	56	8.2	180	<1,300<
MW-8	06/06/07	230	460	190	120	52	9.0	250	3,1600
	12/03/07	230	.750	250	150	66	8.5	410	7. 2,000
6-MM	06/06/07	370	55	96	86	33	5.3	100	730
	12/03/07	360	50	80	77	30	4.4	93	630
MW-10	06/06/07	150	560	120	270	62	4.1	50	2,400
	12/03/07	160	ن د 530 کې ک	130	280	63	4.0	54	7 1,500 3
MW-11	06/06/07	280	38	7.4	42	24	3.8	57	1,000
	12/03/07	260	36	2.0	44	23	4.0	57	420
MW-12	06/06/07	200	1,500	690	450	200	11	600	4,200
	12/03/07	200	1,700	700	500	220	20	560	<u>4,200)_></u>
MW-13	06/06/07	210	5,800	2,300	1,900	560	23	1,400	16,000
	12/03/07	210	5,900	1,700	2,100	590	25	1,400	13,000
MW-14	06/07/07	440	31,000	3,200	760	420	91	13,000	56,000
	12/03/07	490	42,000	3,100	960	510	230	\mathbf{a}	75,000
MW-15	06/07/07	390	1,100	720	200	100	23	860 780	3,800 3,800
	12/04/07	440	940	/10	700	70	54		

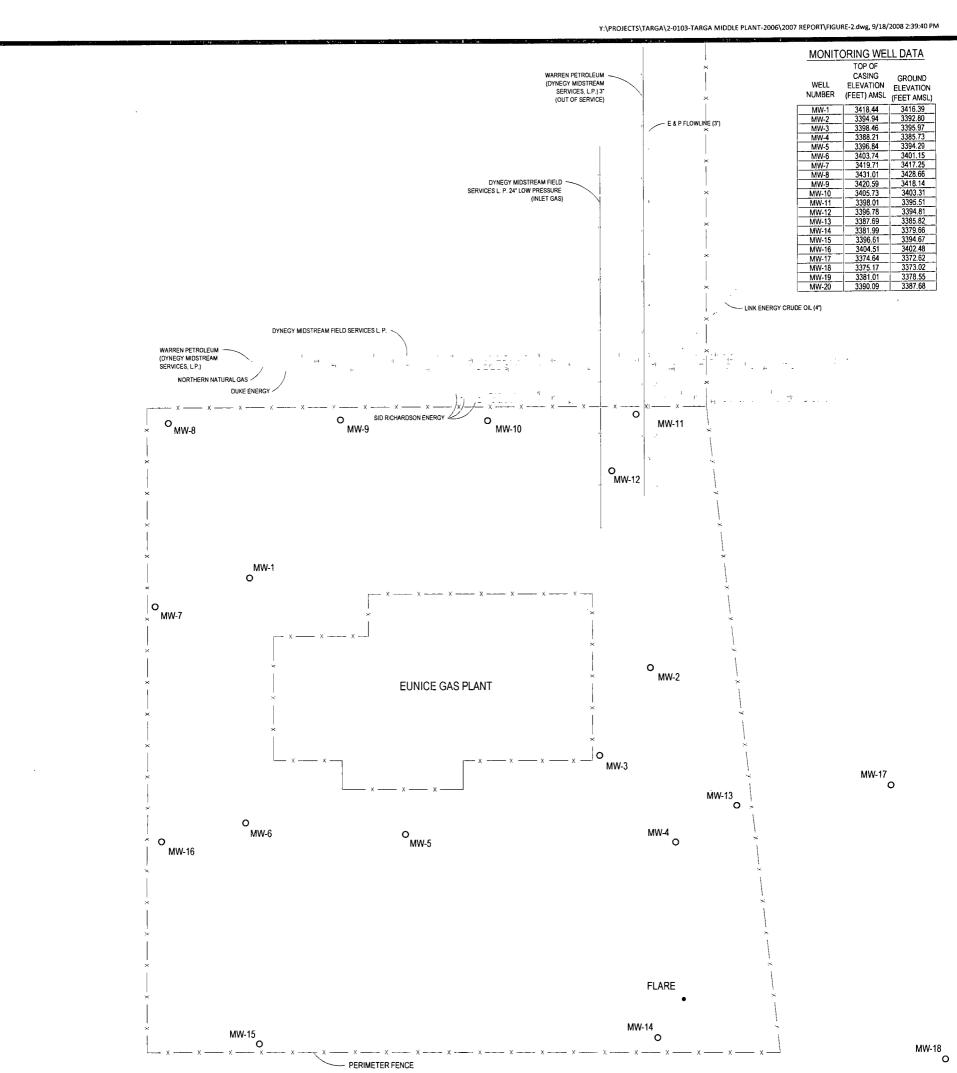
Summary of Inorganic Analysis of Groundwater Samples from Monitoring Wells Targa Midstream Services, L. P., Eunice Middle Gas Plant Table 4

Eunice, Lea County, New Mexico


Monitor Sample	Sample Date	Alkalinity	Chloride	Sulfate	Calcium	Magnesium	Potassium	Sodium	TDS
Well)			
Standard (NMWQCC)	MWQCC)	:	250	600	-	1	:	:	1,000
MW-16	06/07/07	430	062	160	180	52	11	510	2,100
	12/04/07	570	500	170	100	33	7.9	480	1,800
MW-18	06/07/07	420	3,700	610	610	260	18	1,800	7,700
	12/04/07	450	4,600	670	710	290	21	2,000	9,600
MW-19	06/06/07	260	4,900	1,700	290	380	23	2,200	12,000
	12/04/07	280	5,300	1,200	860	400	25	2,300	13,000
MW-20	06/06/07	530	2,100 🛧	. 910	32	18	44	2,000	÷ 6,200
	12/04/07	690	2,300	740	38	17	40	1,900	5,800
Duplicates								•	
MW-16	06/07/07	410	062	160	160	50	9.4	500	2,100
MW-14	12/03/07	490	43,000	3,200	1,000	540	240	27,000	75,000
Alator.									

Notes:

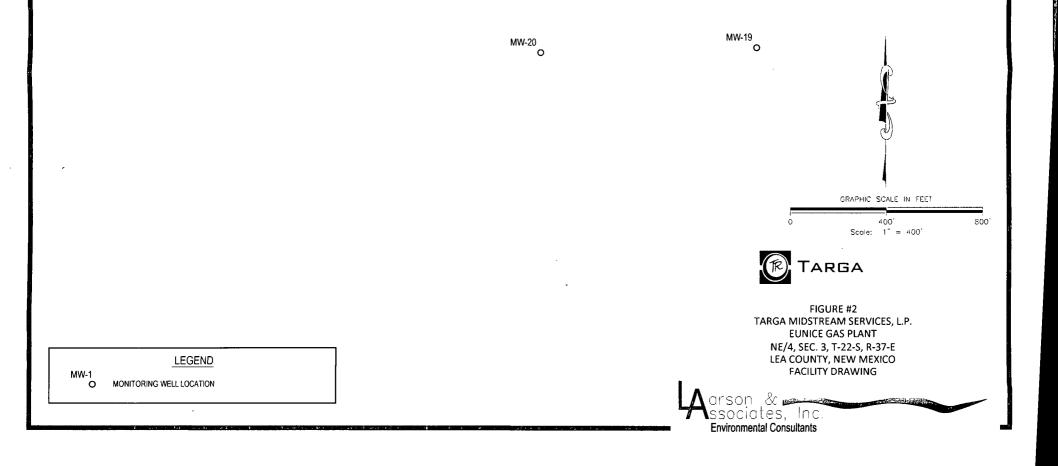

Analyses performed by SevernTrent Laboratories, Corpus Christi, Texas

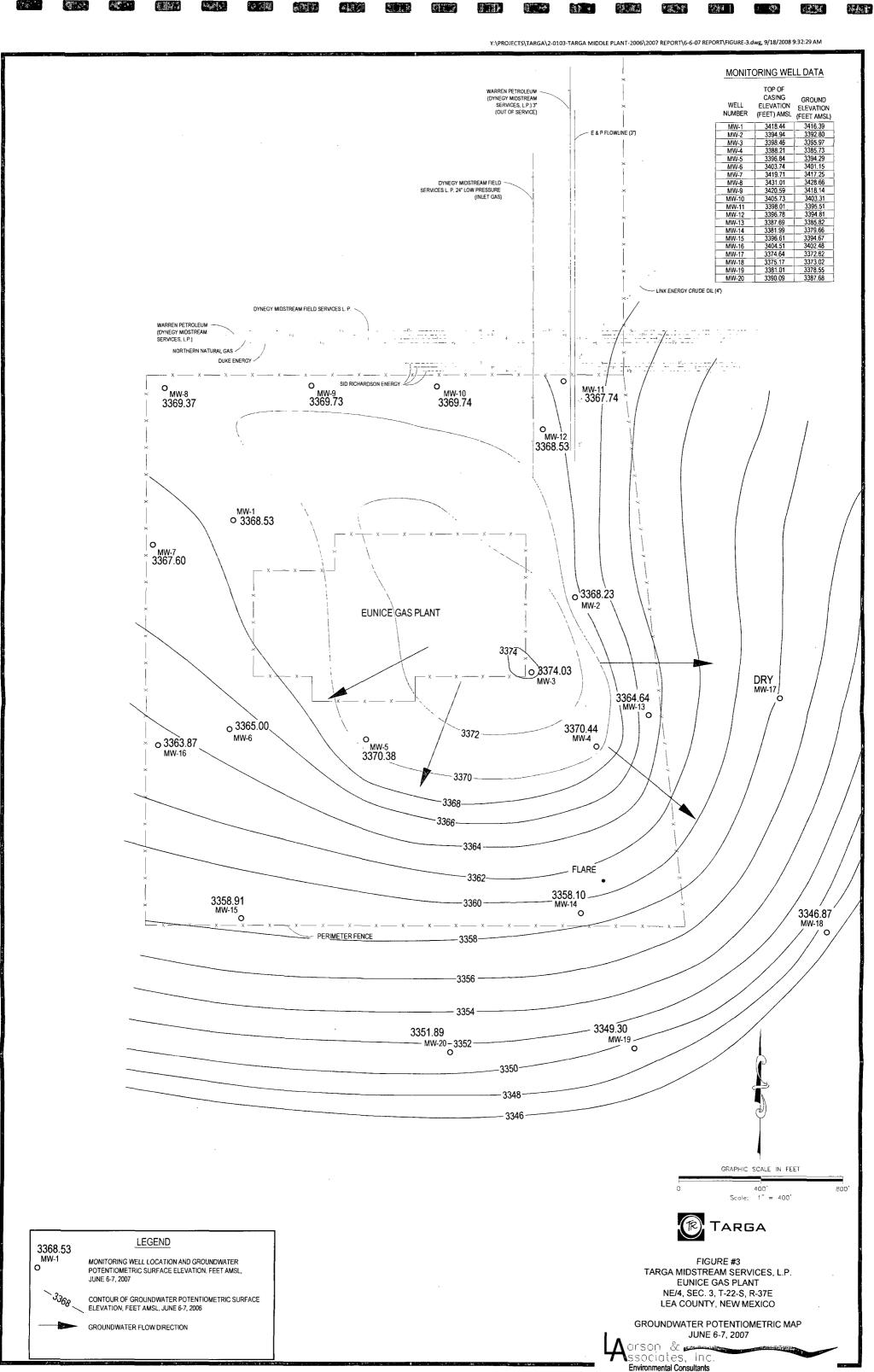

All results reported in milligrams per liter (mg/L) 1. <: Concentration below test method detection limit 2. --: No data available

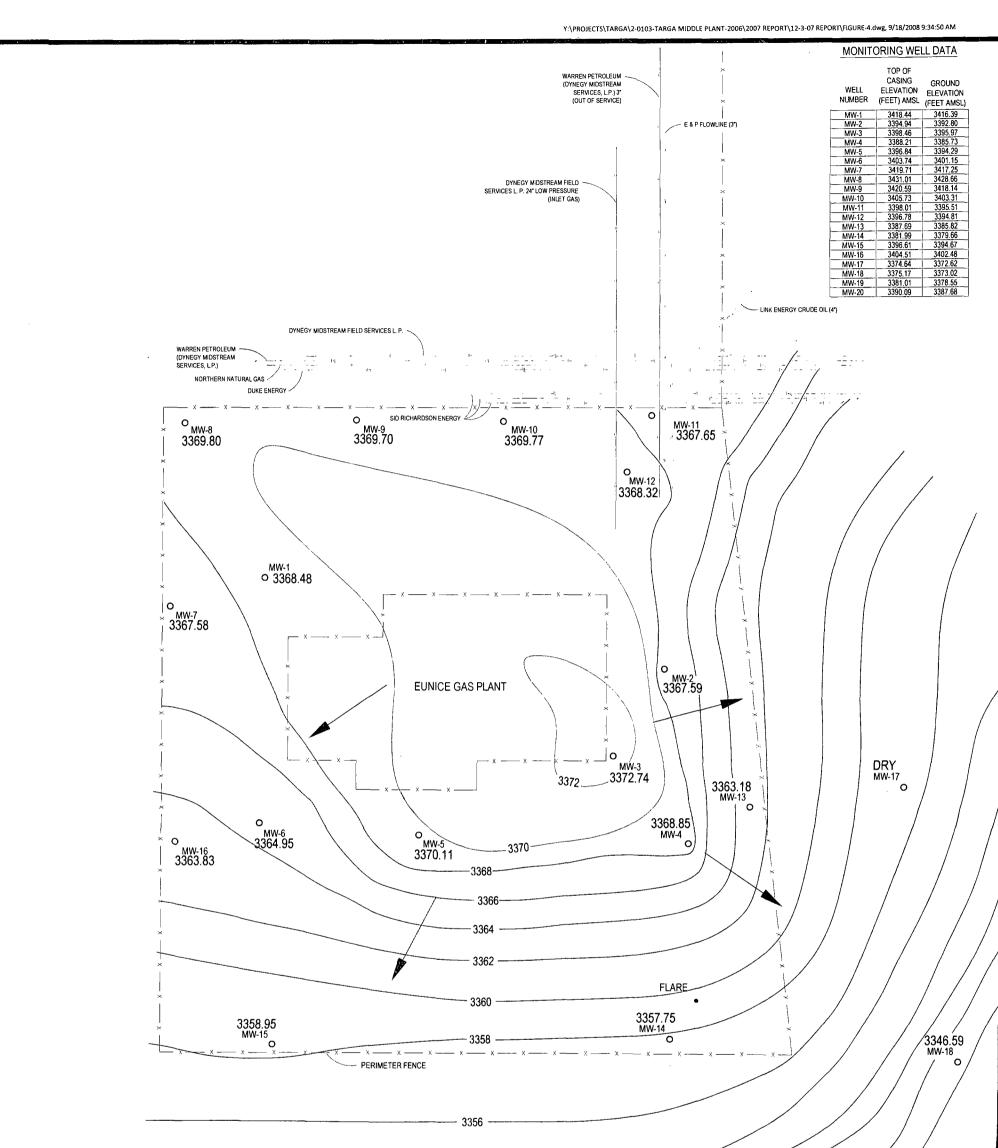
FIGURES

TE

11 11


18 1 19

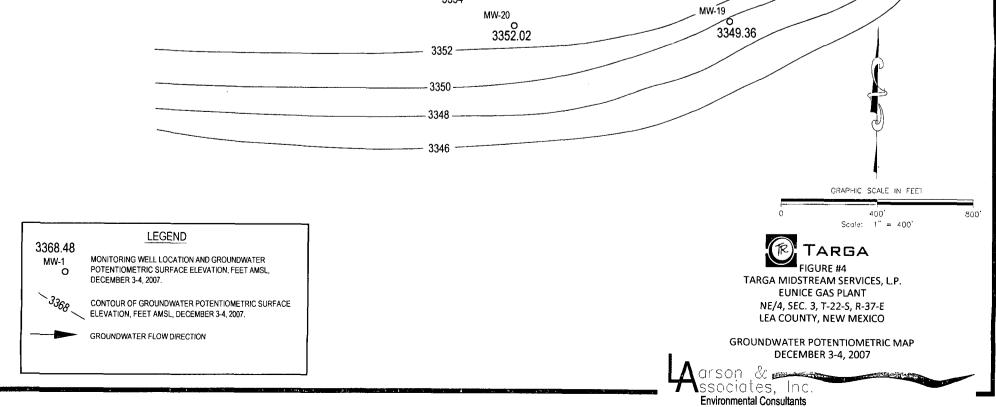

1.4

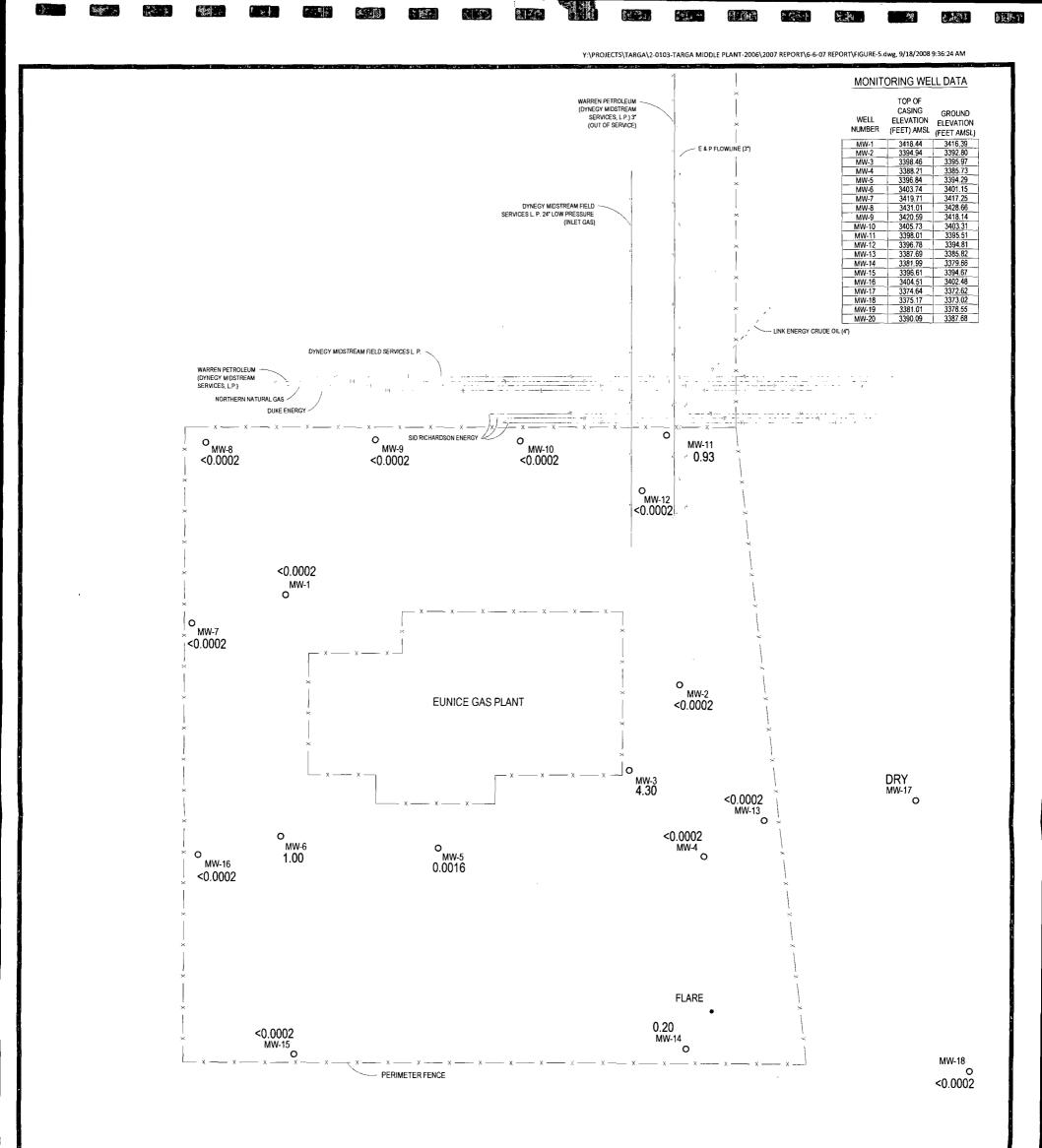

113

é 🖞

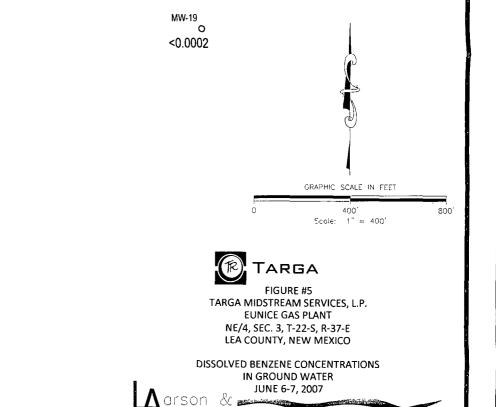
i S

1

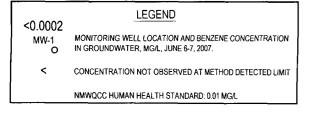

- 51

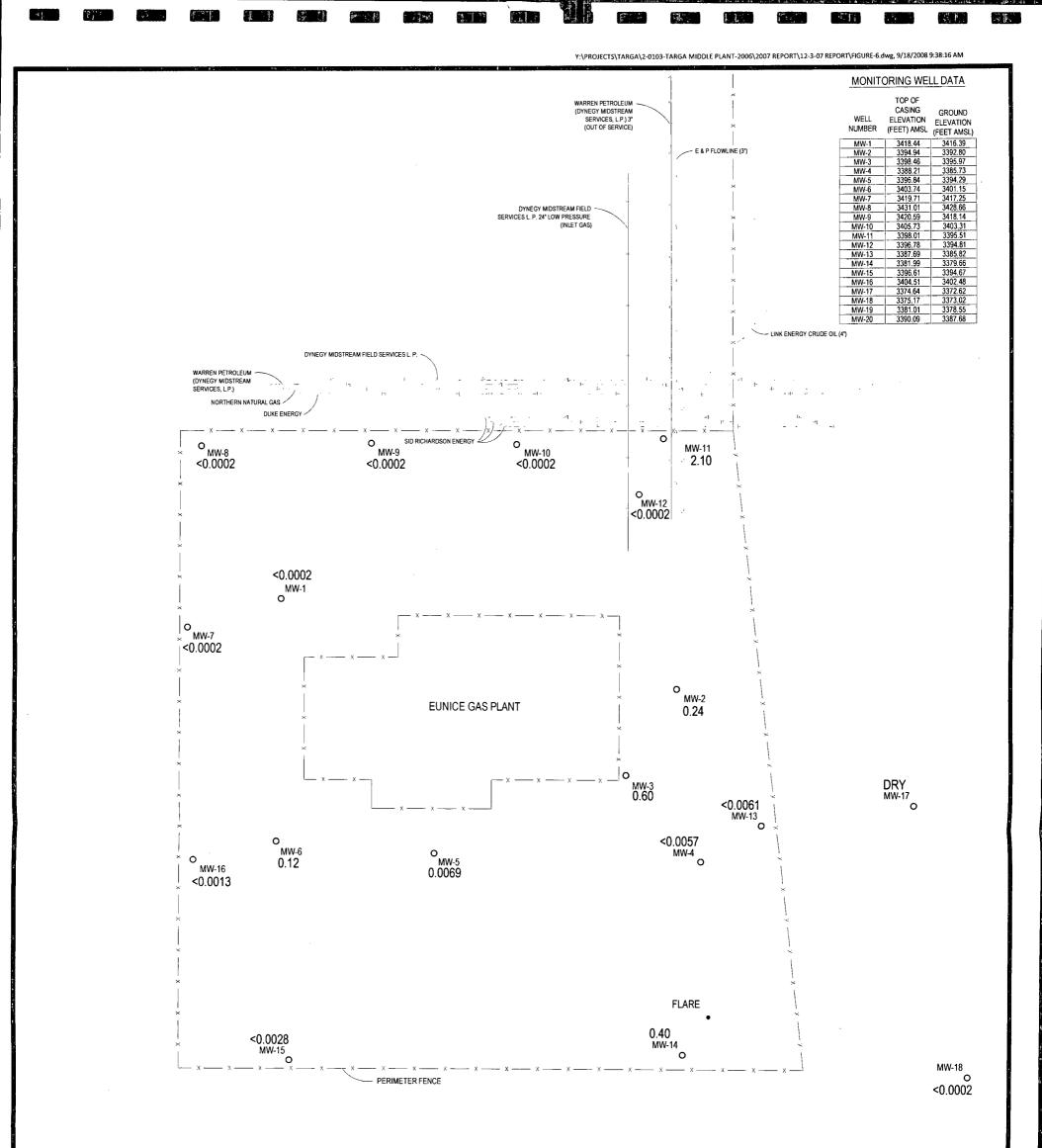

5117 | 1 a a 51 | 15 113 12

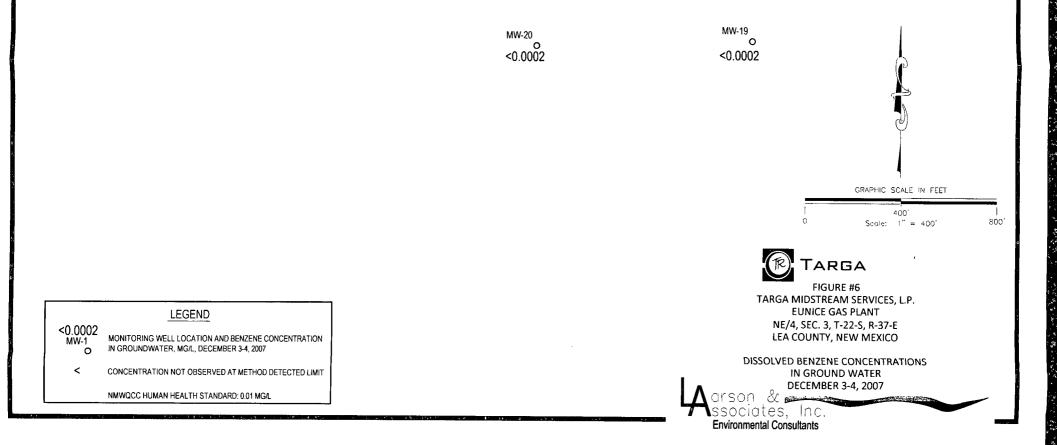
1 30-3.

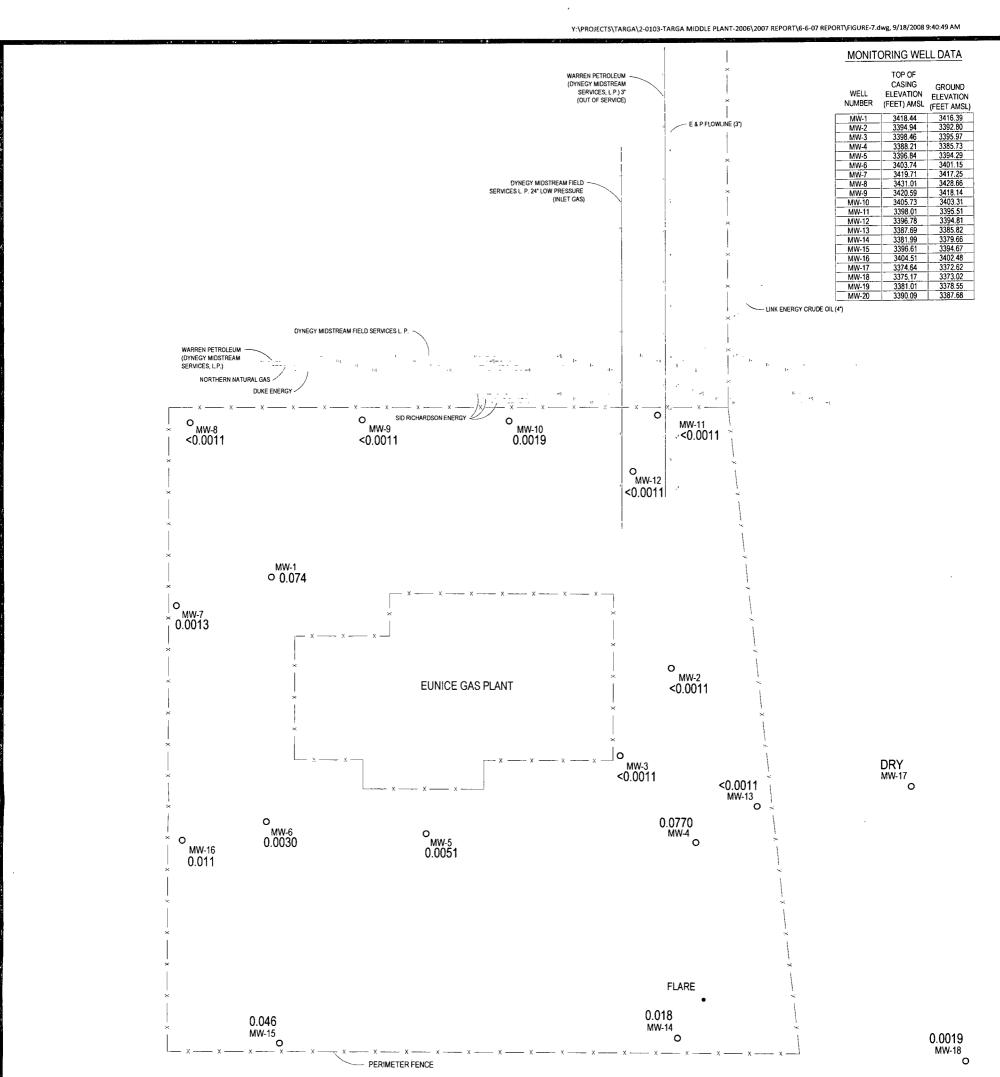

* (1)

mil p.



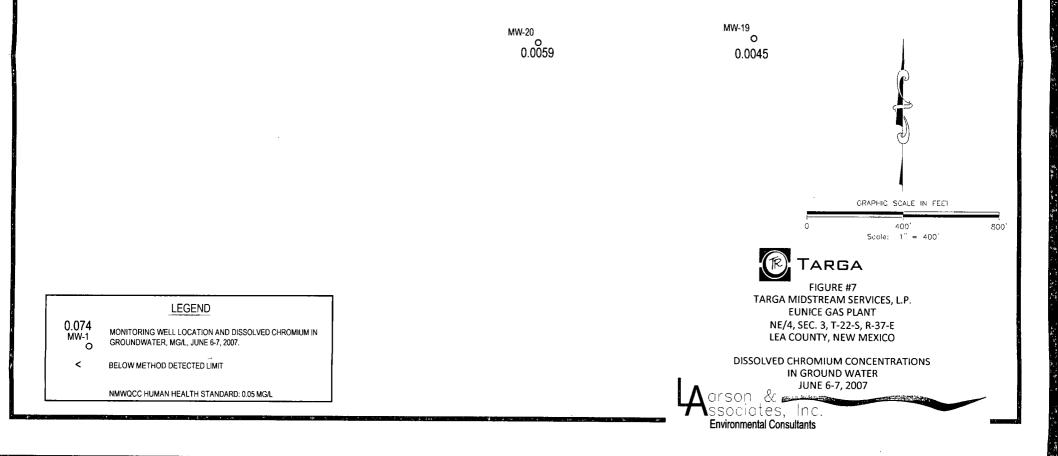


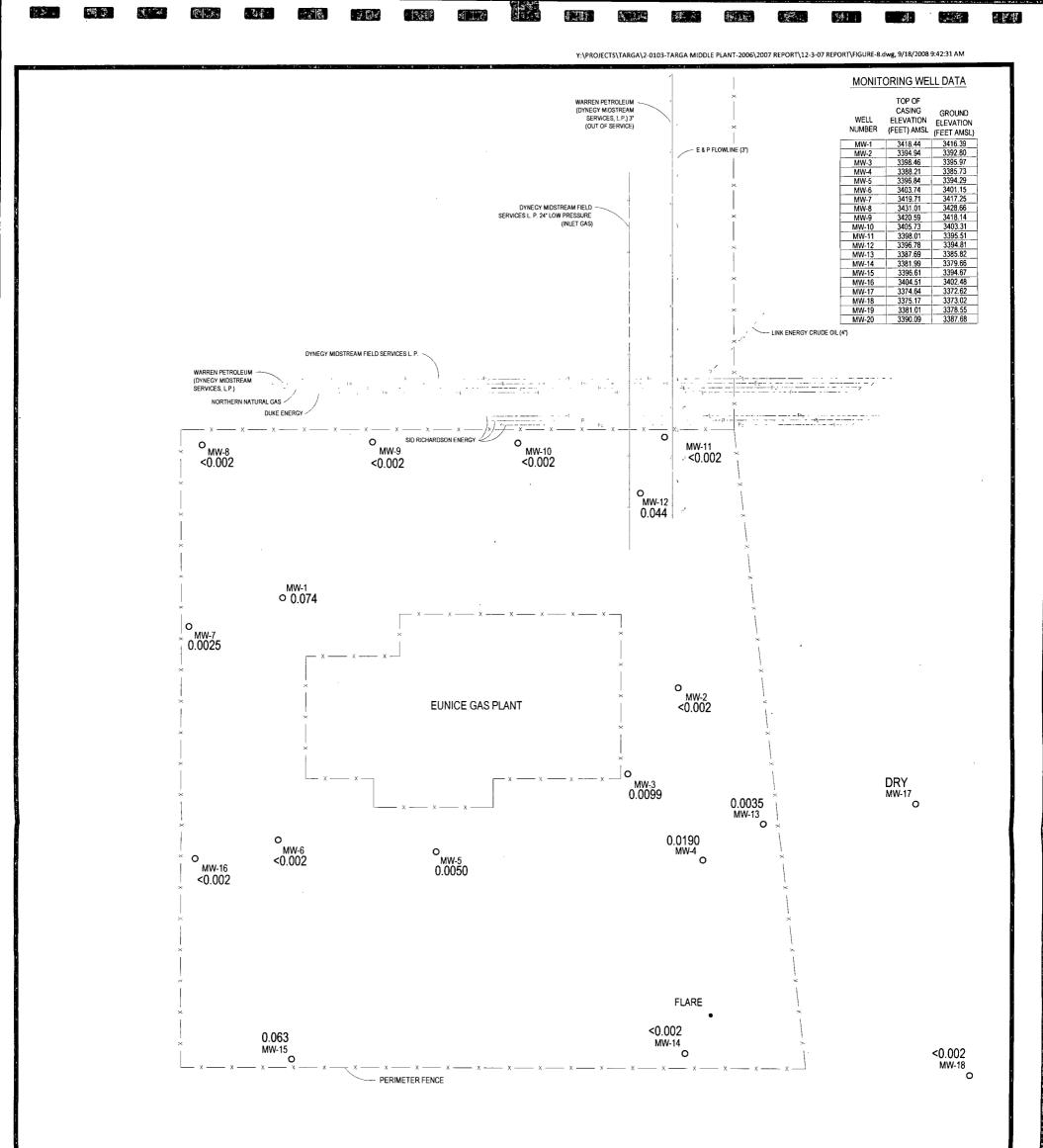

MW-20 o <0.0002

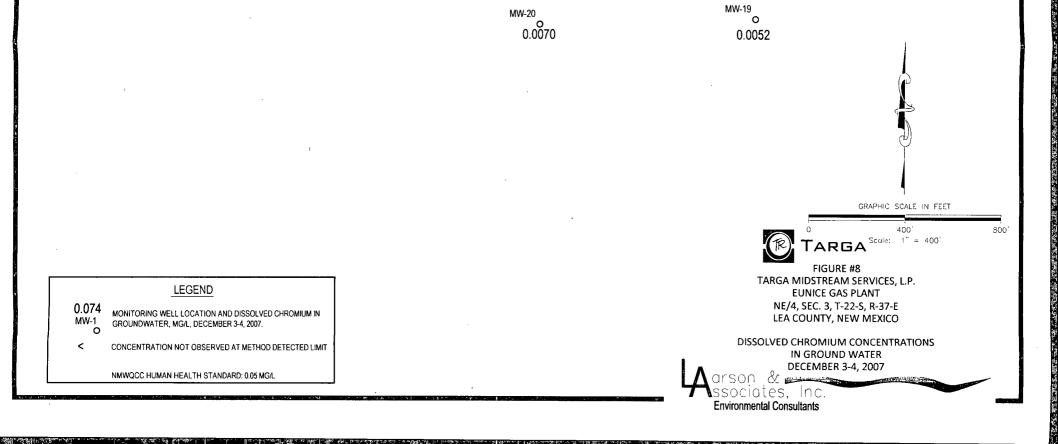


ssociates, Inc.

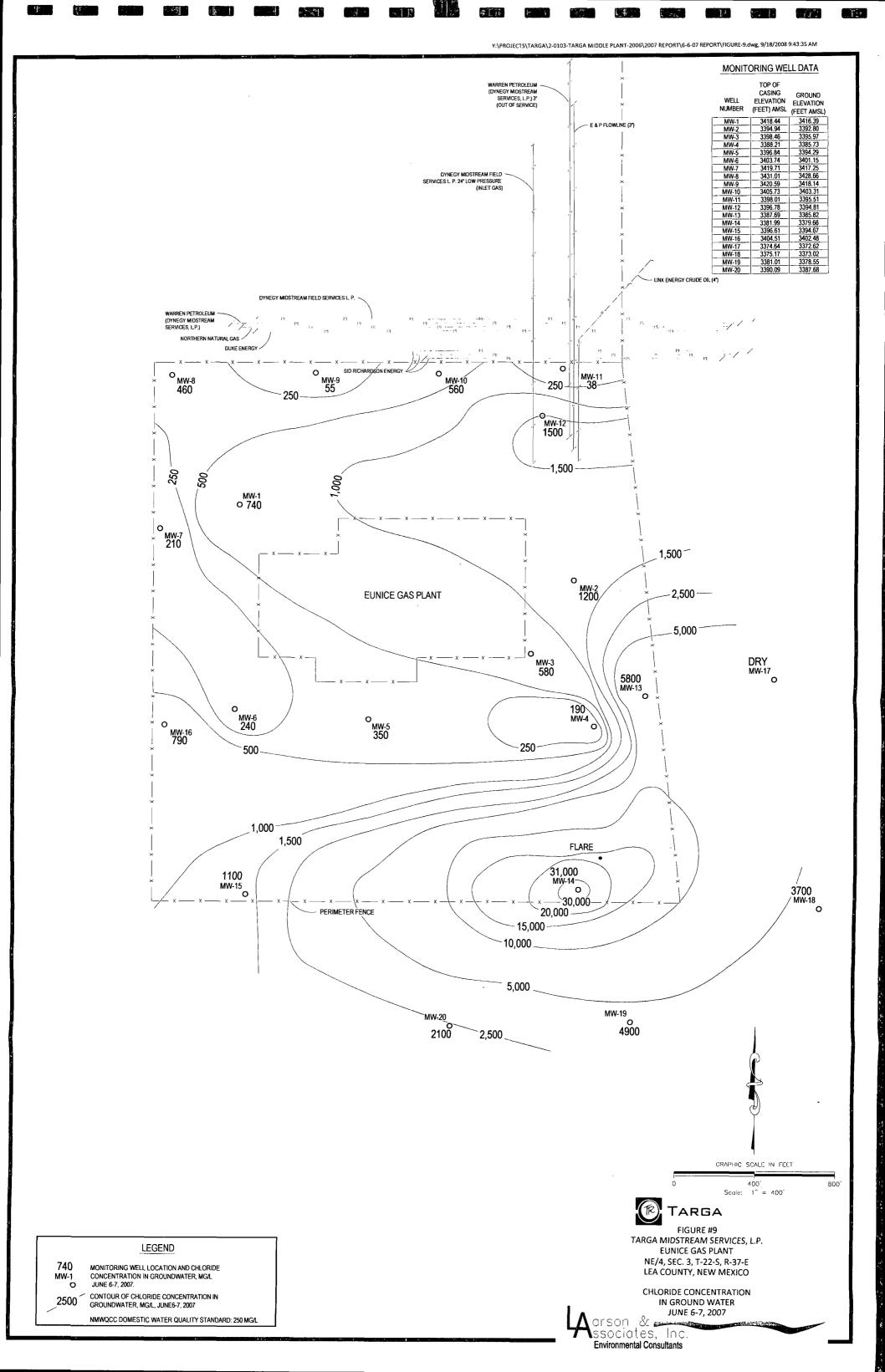
11

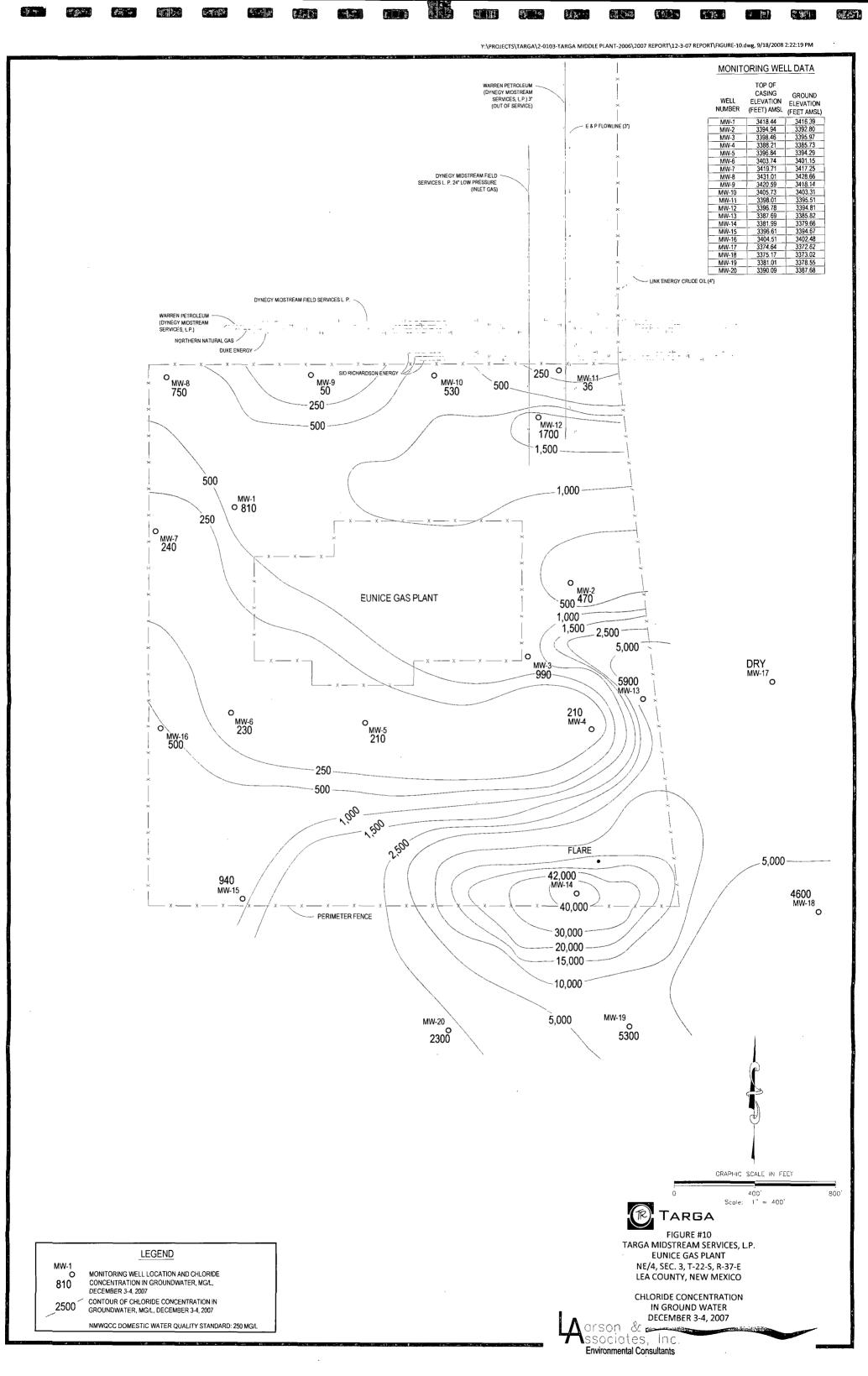

6.14

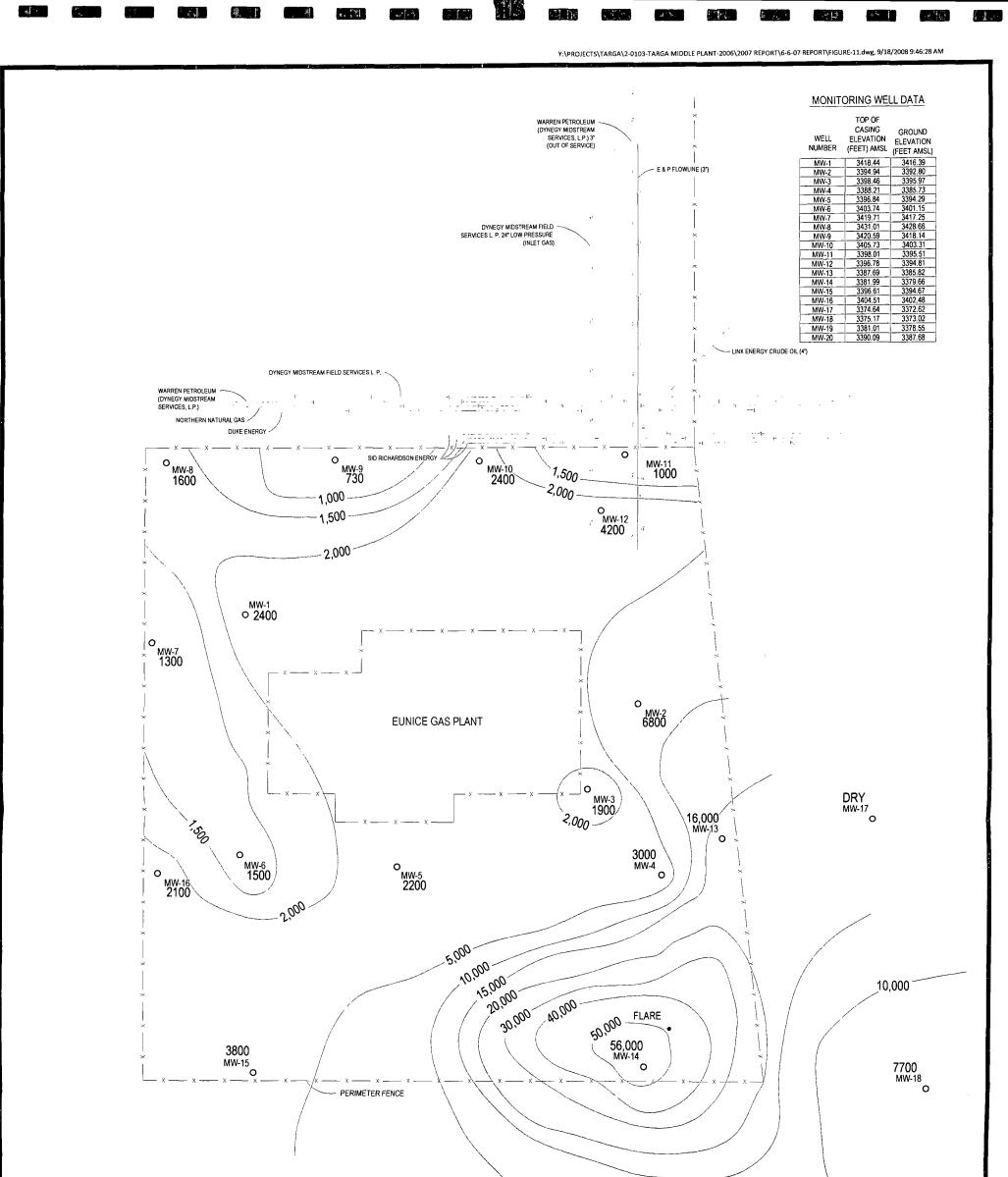

fre :

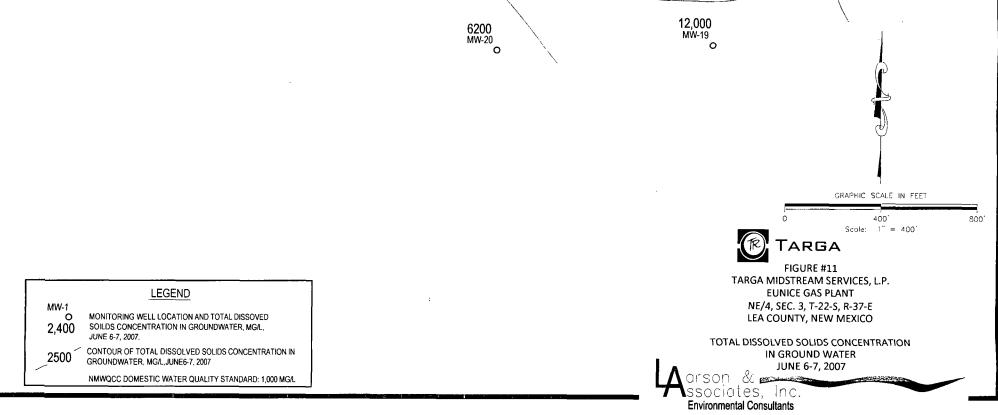

· 14²

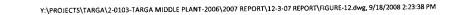
H


2. 1.1

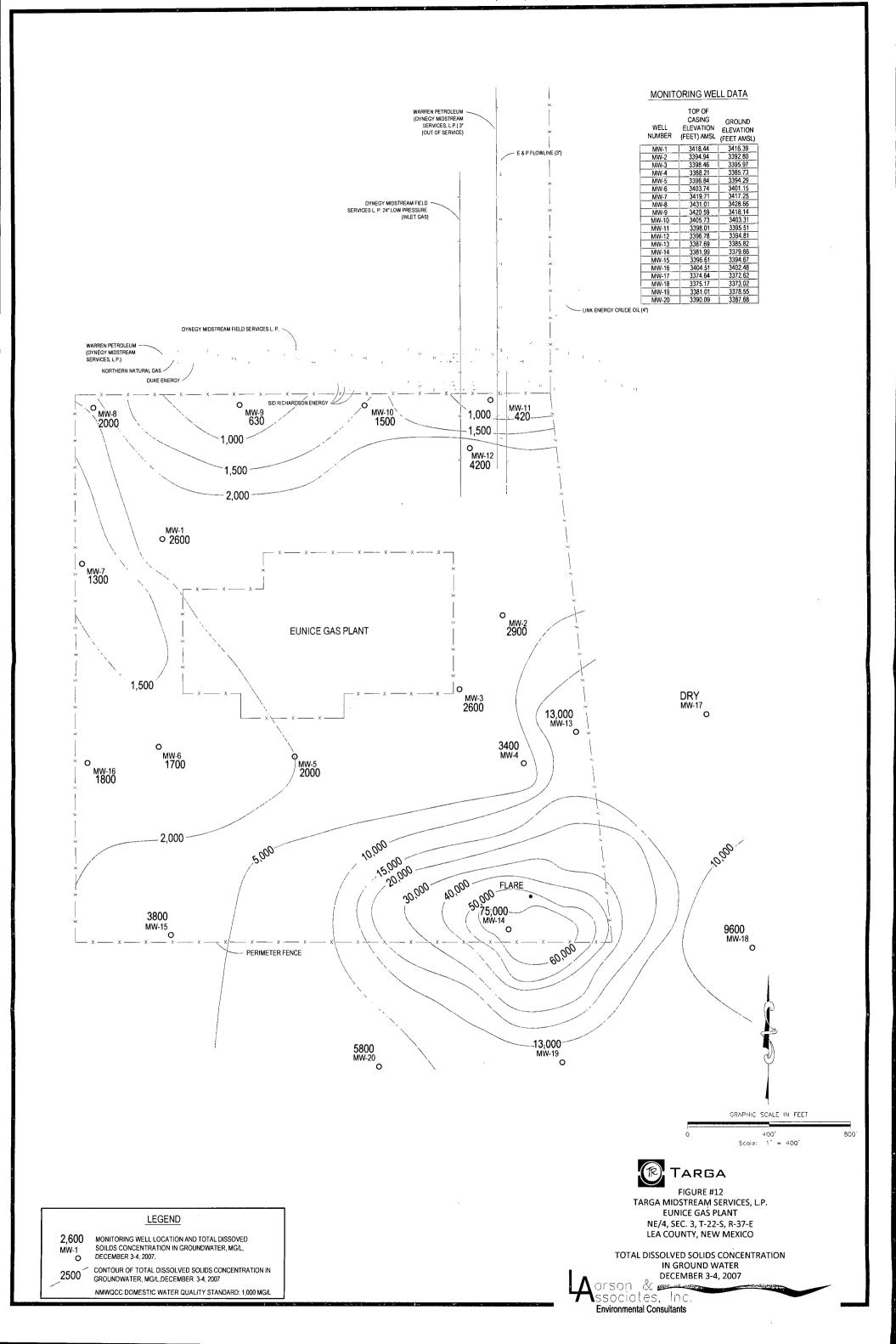





and the second secon



111 11488458. A 127 17 29 (Stor) [13.5 Private http://www.macelson.actio



1 . **h***

×. 37

۹ I I

10 A

£ 11

APPENDIX A

OCD Correspondence August 25, 2006

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor Joanna Prukop Cabinet Secretary Mark E. Fesmire P.E. Director Oil Conservation Division

August 25, 2006

Mr. Cal Wrangham Environmental, Safety and Health Advisor TARGA Resources, Inc. 6 Desta Drive, Suite 3300 Midland, Texas 79705

Re: Discharge Permit Eunice Gas Plant (GW-005) 2005 Annual Groundwater Monitoring Report- May 5, 2006 (report)

Dear Mr. Wrangham:

Pursuant to our June 19, 2006 meeting with Mr. Mark Larson (Larson & Associates, Inc.) in Santa Fe, and subsequent to a review of the above report, the Energy, Minerals and Natural Resources Department- Oil Conservation Division (EMNRD-OCD) has the following comments and/or recommendations on the Eunice Gas Plant for your consideration. A dual monitoring and remediation approach is highly recommended.

The OCD believes that monitoring data to date has identified significant groundwater contamination beneath and surrounding the site. Additional piezometer and monitor wells need to be installed to assist in monitoring of groundwater contamination and the piezometric surface beneath the plant.

The Ogallala Formation (water table aquifer) is about 25 feet below ground level at the plant and ranges in saturated thickness between 5 and 12 feet. Volatile organic hydrocarbons, metals, and inorganics including elevated levels of chlorides, TDS and other contaminants have impacted the aquifer. Based on monitoring data, point sources appear to vary over the plant with contaminants suspected of being caused by nearby pipeline and tank leaks/spills and/or old abandoned unlined brine ponds. Furthermore, contaminant transport beneath the plant is complicated by a piezometric mound and radial groundwater flow with contaminant transport away from the plant in multiple directions. Consequently, the point source of contamination observed at MW-11 may actually be from the plant.

From Section 4 of the report, Targa believes that a leak discovered in a water line from the cooling tower repaired in late 2004 and/or the normal operation of the gas plant is the cause of water table mounding beneath the plant. Also, there is suspicion that the mounding may be associated with old leaking Chevron tanks and Targa is planning to remove them. The mounding indicates to OCD that either there is a natural recharge condition(s) or a significant stready-state

stream of artificial recharge water(s) and/or waste(s) infiltrating into the Ogallala. The OCD suspects the latter.

Based on the above, pump and treat with reinfiltration away from the mound and/or disposal into a permitted injection well would help to contain and remediate or dispose of contaminated groundwater beneath the plant. An aquifer pump test of sufficient duration and flow rate as to adequately stress the aquifer would establish draw-down information and how easily the piezometric surface could change from a mound into a trough or depression. In a preferred scenario, groundwater flow and transport of contaminants could be induced to flow into one large cone of depression beneath the plant to be treated and/or disposed via a permitted underground injection well.

Some items discussed with Mark Larson (Larson & Associates, Inc.) on June 19, 2006 are:

- 1. Dig up HDPE near MW-3 to help determine the source of contamination.
- 2. MWs 19 and 20 were installed southeast and southwest of MW-14 with elevated levels of TDS and chlorides being detected, but at significantly lower levels than MW-14. Additional MWs are required southward from MWs 18 20 to begin implementing remediation measures to monitor, capture and reduce VOCs, metals, chlorides and TDS from migrating off-site in the vicinity of MW-14. The aquifer shall be sampled near the water table and at a deeper depth(s) within the aquifer depending on the saturated thickness.
- 3. In addition to contacting "One Call," aerial photos should be used to investigate pipelines in the vicinity of MW-11 to determine whether spills/releases from nearby pipelines, and surface waste facilities have impacted MW-11. In addition, former brine evaporation pits in the vicinity of MWs 3 and other MWs should be investigated as the source(s) for chlorides.
- 4. Investigate pipelines toward the east to see if they are contributing to the piezometric mound condition beneath the plant. Targa needs to investigate the shallow water table at MW-11 to determine if there was or is a spill area north of MW-11 (100 ft. x 100 ft.) that may explain the shallow water table condition. Investigate the NE Plant for a possible crude oil pipeline release (Eunice & Monument).

Additional OCD comments and/or recommendations are as follows:

- 1. A dual monitoring and remediation approach is needed at the plant to monitor, capture, remediate and prevent the continued migration of contamination in the Ogallala aquifer off-site.
- 2. An aquifer pump test of sufficient duration and pump rate is required at or in the vicinity of MW-14 to determine aquifer characteristics; assess the cone of depression for capture; etc. Additional piezometer wells will be needed to monitor the piezometric surface throughout the test to help monitor the piezometric surface and capture of groundwater contaminants at the site.

- 3. An active pump and treat with reinfiltration away from the plume(s) and/or disposal of contaminated groundwater into a permitted injection well is needed to capture and control contaminant migration off-site. Inorganics, metals and organic contamination are present above WQCC standards beneath the plant in the Ogallala aquifer.
- 4. Another MW in the vicinity of MW-17 is required. MW-17 was installed east of MW-13 and was dry and Mr. Larson feels the Ogallala pinches out toward the east. After reviewing the well record, it appears that the drillers stopped short of tagging the basal clay detected at other nearby MWs. The OCD does not concur with this observation unless deeper drilling is conducted and confirms the lack of a water table.
- 5. The monitoring schedule proposed in Section 5 of the report may be acceptable if we begin work on a dual track consisting of monitoring and remediation to prevent point source impacts to groundwater or the Ogallala aquifer.
- 6. The status of removal of the old Chevron tanks suspected of leaking and possibly contributing to contamination and the mounding condition beneath the plant is requested.
- 7. The OCD inspected the site on Thursday, August 17, 2006 and have some point source concerns based on the photos taken below. Figures 1, 3 and 4 may be potential point sources. Figure 1 depicts trash being stockpiled on site. Figure 2 depicts the steam generator area with runoff draining across and off-site. Figure 3 depicts barrels (some empty) stored on site incorrectly. Figure 4 depicts contaminated soil piles, sulfur piles, etc. being stored on site and clarification is requested on the length of storage and planned disposal date of removal. Figure 5 depicts runoff through the property and off-site from the steam generator area which is recharging the Ogallala aquifer. A sample of the water was collected by the OCD.

Figure 1. Trash piles west side of plant

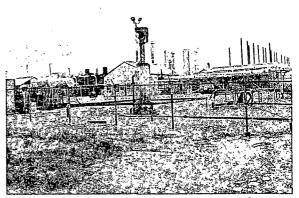


Figure 2. Steam generator source northwest side of plant

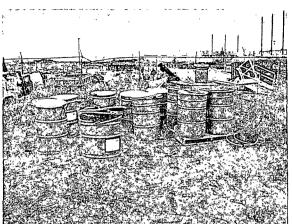
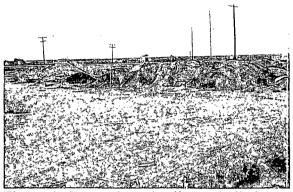



Figure 3. Drums marked "SelectoxTM 33" west side of plant

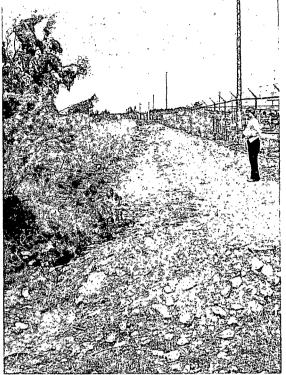


Figure 5. Steam generator runoff (possible stormwater issues & recharge water source for mounding west side of plant

Figure 4. Contaminated soils stockpiled on west side of plant

Please contact me at (505) 476-3491 or E-mail me at <u>carlj.chavez@state.nm.us</u> if you have questions or to discuss the above comments and recommendations.

Sincerely,

da, r

10

1.6.4.2

her .

Carl Chavez Environmental Bureau

CC/lwp Attachments-1 xc: OCD District Office

APPENDIX B

Laboratory Reports

State of New Mexico **Energy Minerals and Natural Resources**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action

	OPERATOR	Initial Report	Final Report
Name of Company: Targa Midstream Services Limited	Contact: James Lingna	u (505) 394-2534 Ext.226	
Partnership	Cal Wrangha	m (432) 688-0542	
Address: PO Box 1909 Eunice, NM 88231	Telephone No. (505)	394-2534	
Facility Name: Eunice Middle Plant (GW-005)	Facility Type: Gas P	rocessing Plant	
Surface Owner: Targa Midstream Services Mineral Ov	vner:	Lease No.	

Surface Owner: Targa Midstream Services Mineral Owner:

LOCATION OF RELEASE

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
South Booster	27	228	37E					Lea, County

Latitude West 103 Degrees, 09' 31.3"

Longitude North 32 Degrees, 21' 41.1"

NATURE OF RELEASE

Type of Release: Gas Flare	Volume of Release 450 MCF	Volume R	ecovered:		
Source of Release: Facility Flares	Date and Hour of Occurrence:	Date and I	Hour of Discovery		
	3/19/07 7:00 PM	Same			
Was Immediate Notice Given?	If YES, To Whom?				
Yes 🔀 No 🗌 Not Required					
By Whom?	Date and Hour		·····		
Was a Watercourse Reached?	If YES, Volume Impacting the W	atercourse.			
regeneration of the second sec	i				
If a Watercourse was Impacted, Describe Fully.*			• • •		
Describe Cause of Problem and Remedial Action Taken. *					
Unit #31 down on panel board problems. A Maintenance technic	ian was called to correct the problem	em and the u	mit put back on line.		
	•		•		
Describe Area Affected and Cleanup Action Taken.*					
Gas flared no cleanup necessary.					
das nareu no eleanup necessary.					
I hereby certify that the information given above is true and complete to	the best of my knowledge and unders	tand that purs	ant to NMOCD rules and		
regulations all operators are required to report and/or file certain release	notifications and perform corrective a	ctions for rele	ases which may endanger		
public health or the environment. The acceptance of a C-141 report by t	he NMOCD marked as "Final Report'	does not relie	eve the operator of		
liability should their operations have failed to adequately investigate and	I remediate contamination that pose a	threat to group	nd water, surface water.		
human health or the environment. In addition, NMOCD acceptance of a	C-141 report does not relieve the ope	rator of respon	nsibility for compliance		
with any other federal, state, or local laws and/or regulations.		-			
	OIL CONSERV	ATION D	IVISION		
Signature famer forgrou					
Printed Name: James Lingnau	Approved by District Supervisor:				
	· · · · · ·				
Title: Area Manager	Approval Date:	Expiration I	Date:		
		L			
E-mail Address: jlingnau@targaresources.com	Conditions of Approval:	• •			
· · · · · · · · · · · · · · · · · · ·			Attached		
Date: Revised 3/29/07 Phone: (505) 394-2534 Ext. 226		-			

* Attach Additional Sheets If Necessary

RECEIVED 2007 RUG 6 PM 2 22

August 1, 2007

Mr. Wayne Price, Chief Environmental Bureau New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: 2006 Groundwater Monitoring Report, Targa Midstream Services, L.P., Eunice Gas Plant (GW-005), UL B (NW/4, NE/4), Section 3, Township 22 South, Range 37 East, Lea County, New Mexico

Dear Mr. Price:

Please find the enclosed report which is submitted to the New Mexico Oil Conservation Division (OCD) on behalf of Targa Midstream Services, L.P. (Targa) by Larson & Associates, inc. (LAI). The report presents the results of groundwater monitoring at the Eunice Gas Plant during 2006. Please call Mr. Cal Wrangham with Targa at (432) 688-0542 or myself at (432) 687-0901 if you have questions. We may also be reached by emailing <u>cwrangham@targaresources.com</u> or mark@laenvironmental.com. Sincerely,

Larson and Associates, Inc.

Mark J. Larson, P.G., C.G.P., C.G.W.P. Sr. Project Manager / President

Encl.

Cc: Cal Wrangham – Targa James Lingnau - Targa Larry Johnson – OCD District 1

2006 GROUND WATER MONITORING REPORT EUNICE GAS PLANT (GW-005) LEA COUNTY, NEW MEXICO

Prepared for:

Targa Midstream Services, L.P. 6 Desta Drive Suite 3300 Midland, Texas 79705

Prepared by:

Larson & Associates, Inc. 507 North Marienfeld Street, Suite 202 Midland, Texas 79701 (432) 687-0901

July 31, 2007

Mark J. Larson Certified Professional Geologist 10490

Table of Contents

<u>Section</u>	on		Page
1.0	INTF	RODUCTION	1
	1.2	Background	1
2.0	CUR	RENT ACTIVITIES	1
	2.1	Depth-to-Ground Water and Hydrocarbon	1
		Product Measurements	
	2.2	Ground Water Samples	2
		2.2.1 Organic Constituents	3
		2.2.2 Dissolved Metals	4
		2.2.3 Anion and Water Quality Parameters	5
3.0	CON	ICLUSIONS	6
4.0	REC	OMMENDATIONS	7

H

List of Tables

<u>Table</u>

- 1. Monitoring Well Completion and Gauging Summary
- 2. Summary of BTEX Analysis of Groundwater Samples
- 3. Summary of Dissolved Metals Analyses of Groundwater Samples
- 4. Summary of Inorganic Analysis of Groundwater Samples from Monitoring Wells

List of Figures

Figure

- 1. Facility Location
- 2. Facility Drawing
- 3. Groundwater Potentiometric Map, June 26, 2006
- 4. Groundwater Potentiometric Map, December 4, 2006
- 5. Dissolved Benzene Concentrations in Groundwater, June 27 28, 2006
- 6. Dissolved Benzene Concentrations in Groundwater, December 5 12,2006
- 7. Dissolved Chromium Concentrations in Groundwater, June 27 28, 2006
- 8. Dissolved Chromium Concentrations in Groundwater, December 5 12,2006
- 9. Chloride Concentrations in Groundwater, June 27 28, 2007
- 10. Chloride Concentrations in Groundwater, December 5 12, 2007
- 11. Total Dissolved Solids Concentrations in Groundwater, June 27 28, 2007
- 12. Total Dissolved Solids Concentrations in Groundwater, December 5 12,2006

List of Appendices

Appendix

A. Laboratory Reports and Chain of Custody Documentation

1.0 INTRODUCTION

Targa Midstream Services, L.P. (Targa), as successor company to Dynegy Midstream Services, L.P. (Dynegy), has retained Larson & Associates, Inc. (LAI) to conduct groundwater monitoring at its Eunice Gas Plant (Facility), which operates under discharge permit GW-005 administered by the New Mexico Oil Conservation Division (OCD). This report presents the results of groundwater monitoring at the Facility during 2006. The Facility is located in Unit B (NW/4, NE/4), Section 3, Township 22 South, Range 37 East, in Lea County, New Mexico. Figure 1 presents a location and topographic map. Figure 2 presents a Facility drawing.

1.2 Background

On May 1, 2006, Targa proposed a modification to the groundwater monitoring schedule to include the following:

- Semi-annual (twice yearly) collection and analysis of groundwater samples from wells MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-11, MW-12, MW-13, MW-14, MW-17, MW-18, MW-19 and MW-20;
- Annual (once yearly) collection and analysis of groundwater samples from wells MW-7, MW-8, MW-9, MW-10, MW-15 and MW-16; and
- Laboratory analysis of samples for benzene, toluene, ethylbenzene, xylene (BTEX), dissolved metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, calcium, magnesium, potassium, sodium), anions and water quality parameters alkalinity, chloride, sulfate, and total dissolved solids (TDS).

2.0 CURRENT ACTIVITIES

2.1 Depth-Groundwater and Hydrocarbon Product Measurements

Depth to groundwater and phase-separated hydrocarbon (PSH) thickness was measured in all monitoring wells (MW-1 through MW-20) on June 26, 2006 and December 4, 2006. The

measurements were collected at the top of the PVC well casing using an electronic interface probe which distinguishes between water and product based on infrared optics and conductivity. The interface probe was thoroughly cleaned between wells using a solution of laboratory-grade detergent and rinsed with distilled water.

No PSH was observed in the wells during the reporting period. The depth-to-groundwater measurements were used to prepare groundwater potentiometric surface maps for June 26, 2006 (Figure 3) and December 4, 2006 (Figure 4). Table 1 presents a summary of the depth-to-groundwater measurements.

During the June event, the groundwater surface elevation ranged from 3,369.00 feet above mean sea level (AMSL) at well MW-8 (northwest) to 3,346.48 feet AMSL at well MW-18 (southeast). Groundwater flow was generally from northwest to southeast at an approximate gradient of 0.005 feet per foot (ft/ft). Groundwater mounding was observed beneath the Facility and created a radial flow pattern. The mounding may have been caused by cooling tower leaks. In 2005, Facility personnel repaired a water line leak near the cooling tower, which is located near the north central area of the Facility. Monitoring well MW-17 was dry during the monitoring event.

During the December event, the groundwater surface elevation ranged from 3,369.15 feet AMSL at well MW-8 (northwest) to 3,346.58 feet AMSL at well MW-18 (southeast). Mounding was also observed beneath the Facility resulting in a radial ground water flow pattern. Monitoring well MW-17 was dry during the December event.

2.2 Ground Water Samples

On June 27 – 28, 2006 and December 5 – 12, 2007, groundwater samples were collected according to the modified sampling schedule. Well MW-17 was dry during the events, therefore, no

samples were collected from the well. The groundwater samples were collected using dedicated disposable PVC bailers after approximately three (3) casing volumes of groundwater was removed from the wells or the wells were purged dry. The samples were collected using the dedicated disposable PVC bailers and carefully poured into laboratory prepared containers, labeled, chilled in an ice chest and delivered under chain-of-custody control to Environmental Lab of Texas (ELOT) located in Odessa, Texas.

The samples were analyzed for BTEX, dissolved metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, calcium, magnesium, potassium and sodium), anions and water quality parameters alkalinity, chloride, sulfate, and TDS. On June 27 - 28, 2006, duplicate samples were collected from monitoring wells MW-13 and MW-19 for quality assurance and quality control (QA/QC) purposes. On December 5 – 12, 2006, duplicate samples were collected from monitoring wells MW-5, MW-15, MW-16 and MW-20. Figure 5 and Figure 6 present benzene concentrations in ground water on June 27 – 28, 2006 and December 5 – 12, 2006, respectively. Figure 7 and Figure 8 present chromium concentrations in ground water on June 27 – 28, 2006 and December 5 – 12, 2006, respectively. Figure 9 and Figure 10, present chloride concentrations in ground water on June 27 – 28, 2006 and December 5 – 12, 2006, respectively. Figure 11 and Figure 12, present TDS concentrations in ground water on June 27 – 28, 2006 and December 5 – 12, 2006, respectively. Table 2 presents a summary of the BTEX analysis. Table 3 presents a summary of the dissolved metals analysis. Table 4 presents a summary of the inorganic and TDS analysis. Appendix A presents the laboratory reports.

2.2.1 Organic Constituents

During the June event, benzene was reported in samples from wells MW-3 (1.21 mg/L), MW-6 (0.0533 mg/L), MW-11 (5.37 mg/L) and MW-14 (0.639 mg/L) and exceeded the New Mexico Water Quality Control Commission (WQCC) human health standard of 0.01 milligrams per

liter (mg/L). During the December event, samples from wells MW-3 (0.13 mg/L), MW-6 (0.335 mg/L), MW-11 (5.11 mg/L) and MW-14 (0.0271 mg/L) exceeded the WQCC human health standard for benzene.

On October 4, 2005, LAI submitted a letter to the OCD, on behalf of Dynegy, which presented the results of reconnaissance to identify potential sources for the benzene in groundwater. The suspected source for the benzene in well MW-3 is spills and releases from the slop oil "shell" tanks located near the southeast corner of the Facility. Targa is nearing completion of a new tank system and will commence soil remediation following decommissioning of the old tanks. The likely source(s) for benzene in well MW-6 is a pit that was located immediately northeast of the well and/or subsurface release from pipelines. The possible source(s) for benzene in well MW-11 is surface or near subsurface releases of hydrocarbons from pipelines located north of the well. On October 4, 2005, LAI identified an area of crude oil straining about 150 feet north of well MW-11 that measured approximately 50 x 50 feet. The apparent source for the crude oil release was a shipping line owned by Link Energy. The suspected source for the benzene in well MW-14 is a pit that was located north of the well.

The extent of the benzene near MW-3, MW-6 and MW-14 has been determined from down gradient wells. However, the extent of the benzene in groundwater in the vicinity of well MW-11 has not been determined.

2.2.2 Dissolved Metals

Historically, dissolved metals (barium, chromium and lead) have been detected above the WQCC human health standards in groundwater from wells MW-1, MW-3, MW-6 and MW-10. During the June and December 2006 events, dissolved chromium was reported at 0.194 mg/L and 0.077 mg/L, respectively, in groundwater from well MW-1. The chromium concentrations exceeded

the WQCC human health standard of 0.05 mg/L.

During the June and December events, dissolved barium was reported at 3.42 mg/L and 1.78 mg/L, respectively, in samples from well MW-3. The barium concentrations exceeded the WQCC human health standard of 1.0 mg/L. Dissolved barium (1.17 mg/L) was also reported above the WQCC human health standard in groundwater from well MW-11. The source(s) for the barium is not known.

2.2.3 Anion and Water Quality Parameters

During the June and December events, chloride exceeded the WQCC domestic water quality standard of 250 mg/L in groundwater from all wells, except MW-6, MW-7, MW-9 and MW-11. Monitoring well MW-8 is considered the background well for the water quality monitoring, and chloride was reported at 588 mg/L in this well during the December event. The highest chloride concentrations occurred in ground water from wells MW-13 and MW-14 located near the east side and southeast corner of the Facility, respectively. During June and December 2006, chloride was reported at 6,890 mg/L and 6,150 mg/L, respectively, in ground water from well MW-13. During June and December 2006, chloride was reported at 13,700 mg/L and 8,770 mg/ L, respectively, in groundwater from well MW-14. Chloride decreased down gradient from wells MW-13 and MW-14, but remained above the WQCC threshold in samples from wells MW-18 (3,100 mg/L and 2,910 mg/L), MW-19 (3,760 mg/L and 4,510 mg/L) and MW-20 (2,110 mg/L and 2,960 mg/L) during June and December 2006.

TDS exceeded the WQCC domestic water quality standard of 1,000 mg/L in groundwater from all wells except MW-9 and MW-11 during the June and December events. The background TDS concentration (1,220 mg/L) reported in groundwater from well MW-8 during the December event exceeded the WQCC threshold. The highest TDS concentrations were reported in samples from wells MW-13 and MW-14 located near the east side and southeast corner of the Facility. The

TDS concentrations were 20,900 mg/L and 11,700 mg/L in groundwater from well MW-13 during June and December, respectively. The TDS concentrations were 23,700 mg/L and 14,000 mg/L in groundwater from well MW-14 during June and December, respectively. TDS decreased down gradient of wells MW-13 and MW-14, but remained above the WQCC threshold at wells MW-18 (6,710 mg/L and 5,750 mg/L), MW-19 (7,880 mg/L and 7,100 mg/L) and MW-20 (6,010 mg/L and 4,820 mg/L).

During the June and December events, sulfate exceeded the WQCC domestic water quality standard of 600 mg/L in groundwater from wells MW-2, MW-4, MW-5, MW-12, MW-13, MW-14, MW-19 and MW-20. The background sulfate concentration (155 mg/L) reported in groundwater from well MW-8 was below the WQCC threshold. The highest sulfate concentrations were reported in samples from wells MW-4 (985 mg/L and 1,230 mg/L), MW-13 (1,280 mg/L and 970 mg/L) and MW-14 (1,190 mg/L). During the December event, sulfate decreased to 311 mg/L in groundwater from well MW-14.

3.0 CONCLUSIONS

- During the reporting period, benzene exceeded the WQCC human health standard of 0.01 mg/L in samples from four (4) wells: MW-3 (1.21 mg/L and 0.13 mg/L), MW-6 (0.0533 mg/L and 0.335 mg/L), MW-11 (5.37 mg/L and 5.11 mg/L) and MW-14 (0.639 mg/L and 0.335 mg/L), MW-11 (5.11 mg/L) and MW-14 (0.639 mg/L and 0.0271 mg/L).
- Ethyl benzene (0.0542 mg/L) and xylene (0.0632 mg/L) were also reported in samples from well MW-3, but were below the WQCC human health thresholds of 0.75 mg/L and 0.62 mg/L, respectively.
- During the reporting period, dissolved chromium (0.194 mg/L and 0.077 mg/L) was identified reported above the WQCC human health standard of 0.05 mg/L in groundwater from well MW-1. The chromium impact appears to be isolated to the northwest area of the

Facility, but the source is not known.

- Dissolved barium exceeded the WQCC human health standard of 1.0 mg/L in samples from wells MW-3 (3.42 mg/L and 1.78 mg/L) and MW-11 (1.17 mg/L). No immediate source for the barium is known.
- During the reporting period, chloride and TDS in the background well (MW-8) exceeded the WQCC domestic water quality limitations of 250 mg/L and 1,000 mg/L, respectively. Concentrations of chloride and TDS in down gradient monitoring wells were significantly higher than the background concentration confirming that groundwater has been affected from releases of produced and brine waters.
- The extent of chloride and TDS in groundwater is not currently defined, as concentrations in the down gradient wells (MW-18, MW-19 and MW-20) exceed the background concentration.

4.0 **RECOMMENDATIONS**

Sec. 8.

5. 10. 10 mg

のを読み

· South

States Page

Targa will continue monitoring groundwater according to the modified schedule. The samples will be submitted to a National Environmental Laboratory Accreditation Program (NELAP) qualified laboratory using proper preservation and chain of custody (COC) procedures. The OCD will be given approximately 48-hours notification before sampling and the results will be reported to the NMOCD in an annual report to be submitted during the first half of 2008. Any significant changes in groundwater quality will be reported to the OCD as soon as possible.

Targa will initiate soil remediation following decommissioning of the former slop oil tanks according to OCD guidelines ("Guidelines for Remediation of Spills, Leaks and Release, August 13, 1993"). Targa will perform additional investigation, including an electromagnetic (EM) terrain conductivity survey and monitoring wells, if necessary, to assess the extent of the chloride and TDS in groundwater down gradient (southeast) of the Facility. The results of the soil remediation and

additional investigation will be submitted to the OCD in the 2008 annual report.

-

Tables

. . .

.

. درد برد

r dy Aller in 1

a a sur the

Sec. 1982

 Table 1

 Monitoring Well Completion and Gauging Summary

 Targa Midstream Services, L.P., Eunice Middle Plant Gas Plant

 Lea County, New Mexico

3,373.82 3,373.49 3,372.25 3,372.53 3,364.93 3,365.18 3,368.21 3,368.54 3,368.59 3,371.67 3,367.25 3,367.28 Corrected Elevation 3,368.38 3,368.36 3,369.94 3,369.59 3,368.48 3,369.36 3,368.09 3,368.03 3,367.64 3,367.83 3,365.01 3,365.03 3,367.15 3,368.61 3,367.50 Water Depth to Water 29.20 50.06 50.08 50.23 49.90 26.33 26.35 23.27 24.64 24.97 26.21 25.93 18.27 18.62 19.73 18.85 28.75 28.81 29.01 38.73 38.71 38.81 38.56 52.56 52.46 52.43 52.21 Depth to sheen Fluid 1 1 1 1 - 1 ł 1 ł 1 1 - 1 ł ł ł ł 1 1 ł ł ł ł ł ł - 1 ł ł Groundwater Data Date Gauged 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005 12/4/2006 1/19/2006 12/4/2006 1/19/2006 1/19/2006 6/26/2006 1/19/2006 6/26/2006 6/26/2006 6/26/2006 12/4/2006 6/26/2006 12/4/2006 1/19/2006 6/26/2006 12/4/2006 1/19/2006 6/26/2006 12/4/2006 1/19/2006 12/4/2006 TOC Elevation 3,398.46 3,418.44 3,403.74 3,394.94 3,388.21 3,396.84 3,419.71 Casing Stickup 2.05 2.14 2.49 2.48 2.55 2.59 2.46 Screen Interval 40.17 - 59.79 19.17 - 38.79 14.87 - 34.49 19.87 - 39.49 31.87 - 51.49 39.87 - 59.49 19.47 - 39.09 (sgq) 3,392.80 3,385.73 3,394.29 3,401.15 3,417.25 Elevation 3,416.39 3,395.97 Surface Diameter (inches) Well 2 2 2 2 2 2 2 Well Depth from TOC 37.48 42.14 42.49 42.55 62.46 62.05 54.59 Drilled Depth (bgs) ß 4 4 35 4 23 80 **Date Drilled** 8/6/2002 4/9/2002 4/9/2002 8/6/2002 4/9/2002 8/6/2002 8/7/2002 Well Information Well ID **MW-1** MW-3 **MW-4 MW-5 MW-6** MW-2 **MW-7**

Table 1Monitoring Well Completion and Gauging SummaryTarga Midstream Services, L.P., Eunice Middle Plant Gas PlantLea County, New Mexico

3,369.00 3,369.46 3,369.59 3,351.92 3,351.90 3,351.51 Corrected 3,367.39 3,362.22 Elevation 3,368.18 3,364.78 3,369.26 3,367.24 3,368.40 3,368.43 3,364.48 3,363.26 3,379.54 3,379.33 3,369.15 3,369.12 3,368.91 3,369.38 3,369.51 3,369.21 3,367.17 3,367.51 3,368.31 3,351.85 Water Depth to 28.60 Water 61.86 51.08 30.62 30.50 28.38 28.35 25.47 30.09 30.48 51.68 51.68 36.52 36.47 36.14 30.84 30.77 28.47 23.21 24.43 30.14 51.47 62.01 51.47 51.21 36.27 22.91 30.07 Depth to Fluid - 1 ł ł 1 ł ÷ 1 ÷ ÷ ł ł ţ ł 1 ł ł ł ł ł Groundwater Data TOC Elevation Date Gauged 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005 11/30/2005 1/19/2006 1/19/2006 6/26/2006 12/4/2006 1/19/2006 6/26/2006 12/4/2006 1/19/2006 6/26/2006 12/4/2006 1/19/2006 6/26/2006 12/4/2006 6/26/2006 12/4/2006 1/19/2006 6/26/2006 12/4/2006 1/19/2006 6/26/2006 12/4/2006 3,396.78 3,420.59 3,405.73 3,387.69 3,381.99 3,398.01 3,431.01 Stickup Casing 2.45 2.50 2.35 2.42 2.33 1.87 1.97 Screen Interval 25.00 - 44..49 25.00 - 34.49 54.87 - 74.49 39.87 - 59.49 26.87 - 46.49 30.87 - 50.49 27.00 - 46.49 (bgs) Surface 3,418.14 3,379.66 Elevation 3,428.66 3,403.31 3,395.51 3,394.81 3,385.82 Diameter (inches) Well 2 2 2 2 2 2 2 Well Depth from TOC 62.45 49.42 49.33 77.35 49.51 46.97 36.87 Depth Drilled (bgs) ۲ ß 45 35 4 4 4 Date Drilled 6/3/2003 6/3/2003 8/7/2002 8/7/2002 8/8/2002 6/3/2003 8/9/002 Well Information **MW-12** Well ID MW-10 **MW-13** MW-8 6-WW **MW-11** MW-14

able 1

Table 1

1. 1. 1.

Targa Midstream Services, L.P., Eunice Middle Plant Gas Plant Monitoring Well Completion and Gauging Summary Lea County, New Mexico

Well Information	nation								Groundwater Data	Data		
		Drilled	Well Depth	Well	Surface	Screen Interval	Casing			Denth to	Denth to	Corrected
Well ID	Date Drilled	Depth	from TOC	Diameter	Elevation	(bgs)	Stickup	TOC Elevation Date Gauged	Date Gauged	Fluid	Water	Water
		(DBS)		(incnes)								Elevation
MW-15	6/4/2003	45	46.94	2	3,394.67	25.00 - 44.49	1.94	3,396.61	11/30/2005	;	37.95	3,358.66
_							_		1/19/2006	1	37.90	3,358.71
							_		6/26/2006	1	37.87	3,358.74
									12/4/2006	1	37.74	3,358.87
MW-16	6/4/2003	45	47.03	2	3,402.48	25.00 - 44.49	2.03	3,404.51	11/30/2005	:	40.96	3,363.55
									1/19/2006	;	40.85	3,363.66
							_		6/26/2006	;	40.89	3,363.62
									12/4/2006	1	40.73	3,363.78
MW-17	12/19/2005	35	37.02	2	3,372.62	19.49 - 34.49	2.02	3,374.64	1/19/2006	:	DRY	
							_		6/26/2006	1	DRY	1
									12/4/2006	1	DRY	1
MW-18	12/19/2005	35	37.15	2	3,373.02	19.49 - 34.49	2.15	3,375.17	1/19/2006	-	28.21	3,346.96
							_		6/26/2006	1	28.69	3,346.48
									12/4/2006	-	28.59	3,346.58
MW-19	10/31/2005	38	40.00	2	3,378.55	23.00 - 37.49	2.46	3,381.01	11/30/2005	:	31.82	3,349.19
		_					-		1/19/2006	ł	31.73	3,349.28
									6/26/2006	1	31.54	3,349.47
							1		12/4/2006	-	31.77	3,349.24
MW-20	10/31/2005	48	50.00	7	3,387.68	33.00 - 47.41	2.41	3,390.09	11/30/2005	:	38.57	3,351.52
									1/19/2006	1	38.47	3,351.62
							_		6/26/2006	ł	38.30	3,351.79
									12/4/2006	;	38.28	3,351.81

Notes

All values are in feet, unless otherwise noted.

bgs - below ground surface

TOC - top of casing

Elevations are above mean sea level (3365) referenced to 1984 Geodetic Datum. Wells drilled and installed by Scarbrough Drilling, Inc., Lamesa, Texas. Schedule 40 threaded PVC casing and screen set.

Well	Sample Date	Benzene	Toluene	Ethyl	Total	Total BTEX
Number	Sample Date	Delizene	Toldene	benzene	Xylenes	
	rd (WQCC)	0.01	0.75	0.75	0.62	
MW-1	11/30/05	<0.01	<0.001	<0.001	<0.02	<0.005
	06/27/06		<0.001	<0.001	<0.002	<0.005
	12/05/06	<0.001 <0.001	<0.001	<0.001	<0.002	<0.005
MW-2	06/27/06	<0.001	<0.001	<0.001	<0.002	<0.005
14144-2	12/02/06	<0.001	<0.001	<0.001	<0.002	<0.005
MW-3	12/02/05	3.78	0.0117	1.52	1.4502	6.76190
10100-3	06/27/06	1.21	<0.0117	0.475	0.2660	1.951
ļ	12/06/06	0.130	0.0116	0.0542	0.0632	0.25900
MW-4	12/00/00	0.00478	<0.001	0.00348	0.00256	0.01082
10100-4	06/27/06	<0.00478	<0.001	<0.001	<0.002.30	<0.005
	12/06/06	0.000519	0.000746	0.000217	0.002166	0.003648
MW-5	12/08/08	0.000319	<0.001	0.000217	0.002186	0.003048
	06/27/06	<0.00108	<0.001	<0.000992	<0.00936	<0.005
	12/12/06	<0.001	<0.001	<0.001	<0.002	<0.005
MW-6	12/12/08	0.684	0.00279	0.109	<0.002	0.79579
10100-0	06/27/06	0.0533	<0.00273	<0.001	<0.02	0.05330
	12/08/06	0.335	0.0025	0.060	0.00307	0.40027
MW-7	12/06/05	<0.001	<0.001	<0.001	<0.002	<0.005
14144 1	12/05/06	0.000989	0.0154	0.006	0.039	0.06162
MW-8	12/06/05	< 0.001	< 0.001	<0.001	< 0.002	< 0.005
	12/05/06	<0.001	<0.001	<0.001	<0.002	<0.005
MW-9	12/06/05	<0.001	< 0.001	< 0.001	< 0.002	<0.005
	12/05/06	<0.001	<0.001	< 0.001	<0.002	<0.005
MW-10	12/06/05	< 0.001	< 0.001	< 0.001	<0.002	<0.005
	12/05/06	<0.001	<0.001	< 0.001	<0.002	< 0.005
MW-11	12/06/05	4.87	<0.100	<0.100	<0.200	4.87
	06/28/07	5.37	<0.05	<0.05	0.0586	5.4286
	12/05/06	5.11	<0.001	< 0.001	0.055	5.2
MW-12	12/06/05	0.023	0.000271	0.000658	0.000900	0.024829
	06/28/06	< 0.001	<0.001	<0.001	<0.002	<0.005
	12/08/06	<0.001	<0.001	<0.001	<0.002	<0.005
MW-13	12/07/05	<0.001	< 0.001	< 0.001	<0.002	< 0.005
	06/27/06	<0.001	<0.001	<0.001	<0.002	<0.005
	12/06/06	<0.001	<0.001	<0.001	<0.002	<0.005
MW-14	12/07/05	0.334	<0.01	< 0.01	<0.02	0.3340
	06/27/06	0.639	<0.001	<0.001	<0.002	0.639
	12/06/06	0.0271	0.00707	0.0004	0.0258	0.0604
MW-15	12/07/05	<0.001	<0.001	<0.001	<0.002	<0.005
	12/08/06	<0.001	0.00121	0.000355	0.002667	0.004232
MW-16	12/07/05	0.00088	<0.001	<0.001	<0.002	0.00088
	12/12/06	< 0.001	<0.001	<0.001	<0.002	<0.005
MW-18	01/19/06	<0.001	<0.001	<0.001	<0.002	<0.005
	06/28/06	<0.001	<0.001	<0.001	<0.002	<0.005
	12/08/06	<0.001	<0.001	<0.001	<0.002	<0.005
MW-19	12/07/05	0.000812	<0.001	<0.001	<0.002	0.000812
	06/28/06	<0.001	<0.001	<0.001	<0.002	<0.005
	12/08/06	<0.001	<0.001	<0.001	<0.002	<0.005

Table 2 Summary of BTEX Analysis of Groundwater Samples Targa Midstream Services, L.P., Eunice Middle Gas Plant Eunice, Lea County, New Mexico

Well	Sample Date	Benzene	Toluene	Ethyl	Total	Total BTEX
Number				benzene	Xylenes	
Standar	d (WQCC)	0.01	0.75	0.75	0.62	
MW-20	12/07/05	< 0.001	<0.001	<0.001	<0.002	<0.005
	06/28/06	<0.001	<0.001	<0.001	<0.002	<0.005
	12/08/06	<0.001	<0.001	<0.001	<0.002	<0.005
Duplicate	12/6/2005	<0.001	<0.001	<0.001	<0.002	<0.005
(MW-7)						
Duplicate	12/6/2005	0.0193	0.000273	0.000722	0.00115	0.021445
(MW-12)						
Duplicate	12/7/2005	0.334	<0.010	<0.010	<0.010	0.334
(MW-14)						
Duplicate	6/27/2006	<0.001	<0.001	<0.001	<0.002	<0.005
(MW-13)						
Duplicate	6/28/2006	<0.001	<0.001	<0.001	<0.002	<0.005
(MW-19)						
Duplicate	12/8/2006	<0.001	<0.001	<0.001	<0.002	<0.005
(MW-20)						
Duplicate	12/8/2006	<0.001	<0.001	<0.001	<0.002	<0.005
(MW-15)						
Duplicate	12/12/2006	<0.001	<0.001	<0.001	<0.002	< 0.005
(MW-5)						
Duplicate	12/12/2006	<0.001	<0.001	<0.001	<0.002	< 0.005
(MW-16)						

Table 2 **Summary of BTEX Analysis of Groundwater Samples** Targa Midstream Services, L.P., Eunice Middle Gas Plant Eunice, Lea County, New Mexico

Analyses of other samples conducted by Environmental Lab of Texas, Ltd., Odessa, Texas As of June 2007, analyses performed by SevernTrent Laboratories, Corpus Christi, Texas All results reported in milligrams per liter (mg/L)

Concentration below test method detection limit 1. <:

2. --: No data available Table 3 Summary of Dissolved Metals Analyses of Groundwater Samples Targa Midstream Services, L. P., Eunice Middle Gas Plant

Sodium ,060 1,190 1110 1040 99.4 60.8 51.9 200 77.2 51.1 619 430 514 954 957 395 376 385 214 280 79.2 44.7 514 520 370 350 434 707 705 231 <0.000296 <0.00405 <0.00405 0.000336 <0.00405 <0.00405 <0.00405 <0.00148 0.000575 0.000226 0.000464 <0.00405 <0.00405 <0.00405 0.00566 <0.0140 <0.0140 <0.0140 0.000163 <0.0140 <0.0140 <0.0140 <.00148 <0.014 0.000551 <0.0140 0.00151 0.0104 <0.0140 0.00457 <0.014 Silver 0.05 Selenium <0.0300 <0.0525 <0.0525 <0.0525 <0.0525 <0.0525 <0.0300 0.0145 0.00802 0.06560 <0.0525 <0.0300 0.0402 <0.0525 <0.0300 0.00091 <0.0525 <0.0525 <0.0525 0.0145 0.0100 0.1080 0.0076 0.0092 0.0363 0.005 0.0038 0.0088 0.020 0.003 0.05 0.001 Potassium 22.8 66.3 51.6 18.9 13.0 13.4 17.8 16.3 12.9 13.7 23.6 27.8 17.4 38.2 12.4 47.6 10.4 5.59 5.12 4.69 4.36 3.04 3.15 14.5 13.6 13.6 8.9 4.31 11 9.8 Mercury 0.0001301 <0.00250 <0.00025 <0.00025 <0.00025 <0.00025 <0.00025 <0.00025 0.00006 <0.00025 <0.00025 0.00004 <0.00025 0.00006 0.00008 <0.00025 0.00008 <0.0005 <0.0005 0.00008 0.00004 0.00014 0.00004 0.00006 0.00018 0.00004 0.00027 0.00004 0.00027 0.002 0.0001 0.0001 Magnesium 252.0 26.6 32.8 74.6 54.2 30.6 52.4 60.4 34.9 31.9 61.0 76.5 15.9 246 28.1 33.7 43.2 76.4 76.4 23.5 96.2 176 9.2 123 164 124 106 21.1 191 164 120 Lea County, New Mexico <0.000692 <0.000692 <0.000692 <0.000692 <0.0300 <0.000692 <0.000692 <0.000692 <0.000692 <0.00296 <0.00296 <0.00346 <0.00296 <0.00346 <0.00296 <0.00296 <0.00296 <0.00296 <0.000692 <0.00296 0.00679 <0.0300 0.00959 0.1810 0.0136 <0.030 0.0173 <0.030 0.0152 0.2090 <0.030 Lead 0.05 Chromium <0.0125 <0.00698 <0.00698 <0.00698 <0.00202 0.000368 <0.00698 <0.00698 <0.00202 <0.00698 0.00114 0.00183 <0.0125 0.000387 <0.0125 <0.0125 <0.0125 <0.0125 0.0068 <0.0125 <0.0125 0.0012 <0.0125 0.0325 0.054 **0.05** 0.295 0.194 0.0011 0.0162 0.077 0.001 Calcium 45.5 23.9 142 59.9 71.8 34.9 90.3 95.2 35.2 26.4 288 296 58.2 169 288 122 141 141 103 141 272 280 41.4 354 339 680 360 18 274 297 85 Cadmium <0.0100 <0.00692 <0.0150 <0.00692 <0.00692 <0.00692 <0.00692 <0.00692 <0.0100 <0.0150 c0.00692 <0.0150 <0.0150 <0.010 <0.0150 ±0.00692 <0.010 <0.010 <0.0100 <0.010 <0.010 <0.010 <0.003 <0.003 <0.003 <0.003 <0.010 <0.003 0.002 <0.01 <0.003 0.01 Barium 0.0228 0.0603 0.0590 0.0448 0.0297 0.0409 0.0510 0.118 0.1130 0.0563 0.276 0.0438 3.040 3.420 0.037 0.0245 1.780 0.1240 0.194 0.122 0.144 0.067 0.303 0.745 0.583 0.046 0.101 0.467 0.077 0.047 1.17 0.00348 Arsenic **0.1** <0.020 <0.020 0.0223 <0.020 0.0071 0.0116 0.0386 0.0948 <0.020 0.0351 0.0405 <0.020 0.0203 0.0267 <0.020 0.0417 0.0353 <0.020 0.0101 <0.020 0.0156 0.0114 <0.020 0.00934 <0.020 0.0116 0.0195 0.107 0.0127 <0.020 Sample Date 12/05/06 06/27/06 06/27/06 06/27/06 06/27/06 12/02/05 06/27/06 12/06/06 06/27/06 12/06/06 12/12/06 12/02/05 12/06/05 12/05/06 12/06/05 12/05/06 12/06/05 12/05/06 12/06/05 11/30/05 12/02/05 12/02/05 12/02/05 12/08/06 12/05/06 12/06/05 36/28/06 06/28/06 12/06/05 12/05/06 12/08/06 Standard (WQCC) MW-1 11/30/0 **MW-10** Monitor **MW-12** MW-2 **MW-6** 6-WW **MW-11 MW-3** MW-4 **MW-5** MW-8 MW-7 Well

 Table 3

 Summary of Dissolved Metals Analyses of Groundwater Samples

 Targa Midstream Services, L. P., Eunice Middle Gas Plant

14,800 Sodium 1,520 1,210 1,110 15,200 6,480 5.350 1,640 1,690 1,640 1,460 1,540 2,480 2,760 2,180 2.910 2,780 819 910 456 760 554 860 773 215 <0.00405 <0.00405 <0.00405 **0.05** <0.0140 <0.00405 <0.00405 <0.00148 <0.00405 <0.0140 <0.0140 0.00088 <0.0140 <0.0140 0.00596 <0.0056 0.00191 0.00134 <0.0140 <0.0140 0.00087 <0.0140 0.00107 0.00121 <0.0140 0.00102 Silver Selenium <0.0300 0.00958 <0.0525 0.000850 <0.0525 0.0246 <0.0525 <0.0300 <0.0525 0.0024 <0.0210 <0.0300 0.0080 <0.0525 0.0101 <0.0525 0.0196 0.0157 0.0089 <0.0525 <0.0525 0.0433 0.0267 0.0059 0.0084 0.05 Potassium 25.6 55.0 32.5 13.4 22.3 24.9 38.6 80.6 63.2 10.8 29.1 33.1 30.3 40.2 26.8 13.0 23.7 29.7 23.1 61.2 291 272 66 80 14 Mercury <0.00025 0.00006 0.00006 <0.00025 <0.00025 0.00013 <0.00025 <0.00025 <0.00025 <0.00025 <0.00025 <0.00025 0.00004 0.0000 0.00036 0.00011 <0.0005 0.00009 0.0000 0.00004 0.00004 0.00004 <0.0005 <0.001 0.0001 0.0002 Magnesium 766.00 237.00 16.70 37.9 56.6 46.2 36.9 20.9 45.0 978 446 103 210 177 204 232 20.4 194 660 805 702 233 700 654 394 Lea County, New Mexico <0.000692 <0.000692 <0.00296 <0.00296 <0.00346 <0.00296 <0.00346 <0.00296 <0.00296 <0.00346 <0.00346 <0.00296 <0.00346 <0.00296 <0.00346 **0.05** 0.0329 0.00574 <0.0300 <0.0300 <0.030 <0.030 <0.030 Lead 0.0117 0.0235 0.0122 Chromium <0.00698 **0.05** <0.0125 <0.00202 <0.00698 0.000826 <0.00698 0.00116 <0.00698 <0.00202 <0.0125 <0.0125 <0.0125 <0.0125 <0.0125 0.00370 0.00173 0.00460 0.00413 <0.0125 0.00386 0.00516 0.0058 0.0356 0.0112 0.004 Calcium 496.0 144.0 1,010 2,020 2,570 2,170 2,500 1,060 73.9 35.2 32.6 882 31.6 836 175 372 412 386 27.7 669 439 465 984 Cadmium <0.00692 <0.00692 <0.0150 <0.00692 **0.01** <0.010 <0.00692 :0.00692 <0.00692 <0.0150 <0.010 <0.0150 <0.010 <0.0150 <0.010 <0.010 <0.0150 <0.0150 <0.0150 0.00382 <.00692 <0.0100 <0.0150 <0.010 <0.010 <0.010 0.0208 Barium 0.0952 0.0757 0.0598 0.0367 0.0801 0.0784 0.0947 0.346 0.0794 0.0415 0.036 0.229 0.105 0.0471 0.066 0.041 0.232 0.238 0.255 0.0205 0.108 0.117 0.281 0.191 <0.0170 Arsenic <0.020 <0.020 0.00823 0.0339 <0.020 <0.020 0.0125 0.0106 0.0149 0.0155 <0.020 0.0144 **0.1** <0.020 0.0157 0.0325 <0.020 0.0306 0.0197 0.0213 <0.020 0.0562 0.0567 <0.020 0.021 Sample Date 12/07/05 06/27/06 12/06/06 12/07/05 06/27/06 12/06/06 12/07/05 12/08/06 12/07/05 12/12/06 01/19/06 06/28/06 12/08/06 12/07/05 06/28/06 12/08/06 12/07/05 06/28/06 12/06/05 12/06/05 12/07/05 06/27/06 06/28/06 12/08/06 12/08/06 Standard (WQCC) MW-13 12/07/0 Duplicate Duplicate Duplicate Duplicate Duplicate Duplicate MW-16 Monitor MW-18 **MW-14 MW-15** MW-19 **MW-20** (MW-12) (MW-14) (MW-13) (MW-19) (MW-20) (L-WM) Well

Summary of Dissolved Metals Analyses of Groundwater Samples Targa Midstream Services, L. P., Eunice Middle Gas Plant Lea County, New Mexico Table 3

Sodium 1,070 1,200 728 0.00 0.000361 0.000322 0.00522 Silver **0.05** 0.00972 Mercury Potassium Selenium 0.00115 0.0123 27.5 39.4 14 <0.00025 <0.00025 <0.00025 0.002 Magnesium 44.80 112 52 0.000824 <0.000296 <0.00346 <0.00148 Lead 0.05 Calcium Chromium **0.05** 0.034 0.000 130 177 190 Cadmium **0.01** <0.0150 <0.00346 <0.000692 **1.0** 0.0476 Barium 0.288 0.044 **0.1** 0.0206 Arsenic 0.0114 0.0259 Sample Date 12/08/06 12/12/06 12/12/06 Standard (WQCC) **Duplicate** Duplicate Duplicate Monitor (MW-16) (MW-15) (MW-5) Well Notes:

Analyses of other samples conducted by Environmental Lab of Texas, Ltd., Odessa, Texas

As of June 2007, analyses performed by SevernTrent Laboratories, Corpus Christi, Texas

All results reported in milligrams per liter (mg/L)

Concentration below test method detection limit No data available ; ∴ 2. <

Table 4
Summary of Inorganic Analysis of Groundwater Samples from Monitoring Wells
Targa Midstream Services, L. P., Eunice Middle Gas Plant

1.4 00

لأنيار المحاله

e no man

Sec. 20 and and

1 y 100

1 - 10 - 1

5 4/2 F

a street a

5 5 1

- 17 L.A. 18

Maginar			nty, New Mexi Chloride	Sulfate	TDS
Monitor Well	Sample Date	Alkalinity	Chioride	Suitate	IUS
Standa	rd (WQCC)		250	600	1,000
MW-1	11/30/05	292	828	400	2,550
	06/27/06	250	808	406	2,550
	12/05/06	392	662	402	1,920
MW-2	12/02/05	260	531	795	2,330
	06/27/06	314	598	913	3,230
MW-3	12/02/05	704	915	42.5	2,260
	06/27/06	656	1,190	117.0	2,970
	12/06/06	680	1,340	486.0	2,700
MW-4	12/02/05	724	292	1,050	3,460
	06/27/06	732	374	985	3,370
	12/06/06	930	259	1,230	3,100
MW-5	12/02/05	774	568	655	2,840
	06/27/06	1060	682	800	3,830
	12/12/06	680	565	960	2,750
MW-6	12/02/05	660	241	105	1,330
	06/27/06	592	279	115	1,420
	12/08/06	710	244	131	1,370
MW-7	12/06/05	328	191	215	1,230
	12/05/06	388	202	258	1,150
MW-8	12/05/05	212	385	133	1,000
	12/05/06	260	588	155	1,220
MW-9	12/05/05	340	48.6	68.4	564
14144-3	12/05/05	340	45.7	63.5	564
MW-10	12/05/05	114	444	73.1	1,320
10100-10	12/05/05	114	529	65.6	1,520
MW-11	12/05/05	206	42.4	16.0	326
10100-11	06/27/06	208	46.7	19.4	412
	12/05/06	262	29.0	5.86	338
MW-12	12/05/05	156	1,170	418	3,020
10100-12	06/28/06		1,170	573	· ·
		198	· ·	709	3,800
MW-13	12/08/06	280	1,540 5,950		3,240
10100-13	12/07/05	194		1,100	12,700
	06/17/06	194	6,890	1,280	20,900
 MW-14	12/06/06	320	6,150	970	11,700
10100-14	12/07/05 06/27/06	444 442	22,800	1,250	40,000
	12/06/06	442 550	13,700 8,770	<u>1,190</u> 311	23,700
MW-15			746	311 381	14,000 2,430
14144-12	12/07/05 12/08/06	512 440	746 834	539	·
MW-16	12/08/06	502	420	67.6	2,600
141 44-10	12/07/05	502 590	863	83.3	1,750
MW-18	01/19/06	414	2,430	350	1,820 5,610
141 AA-TO	06/28/06	414 434	3,100	453	
	1	434 490		,	6,710 5,750
MW-19	12/08/06		2,910	300	5,750
IAI AA-T.A	12/07/05	264	2,730	552	5,900
	06/28/06	267	3,760	638	7,880
144/20	12/08/06	390	4,510	593	7,100
MW-20	12/07/05	644	3,110	460	6,860
	06/28/06	560	2,960	684	6,010
	12/08/06	580	2,110	564	4,820

	E	Eunice, Lea Cou	nty, New Mexic	:0	
Monitor	Sample Date	Alkalinity	Chloride	Sulfate	TDS
Well					
Standa	rd (WQCC)		250	600	1,000
Duplicate	12/06/05	292	185	210.0	1,300
(MW-7)					
Duplicate	12/06/05	156	1,200	445.0	3,290
(MW-12)					
Duplicate	12/07/05	472	25,800	1,140.0	43,300
(MW-14)					
Duplicate	06/27/06	197	6,960	1,300	19,600
(MW-13)					
Duplicate	06/28/06	272	3,780	638.0	7,580
(MW-19)					
Duplicate	12/08/06	600	2,020	547.0	4,720
(MW-20)					
Duplicate	12/08/06	520	769	465.0	2,340
(MW-15)					
Duplicate	12/12/06	620	546	928.0	3,110
(MW-5)					
Duplicate	12/12/06	530	997	114.0	2,290
(MW-16)					

Table 4 Summary of Inorganic Analysis of Groundwater Samples from Monitoring Wells Targa Midstream Services, L. P., Eunice Middle Gas Plant

Notes:

1.28 m

the state of

Sales and

Space dias

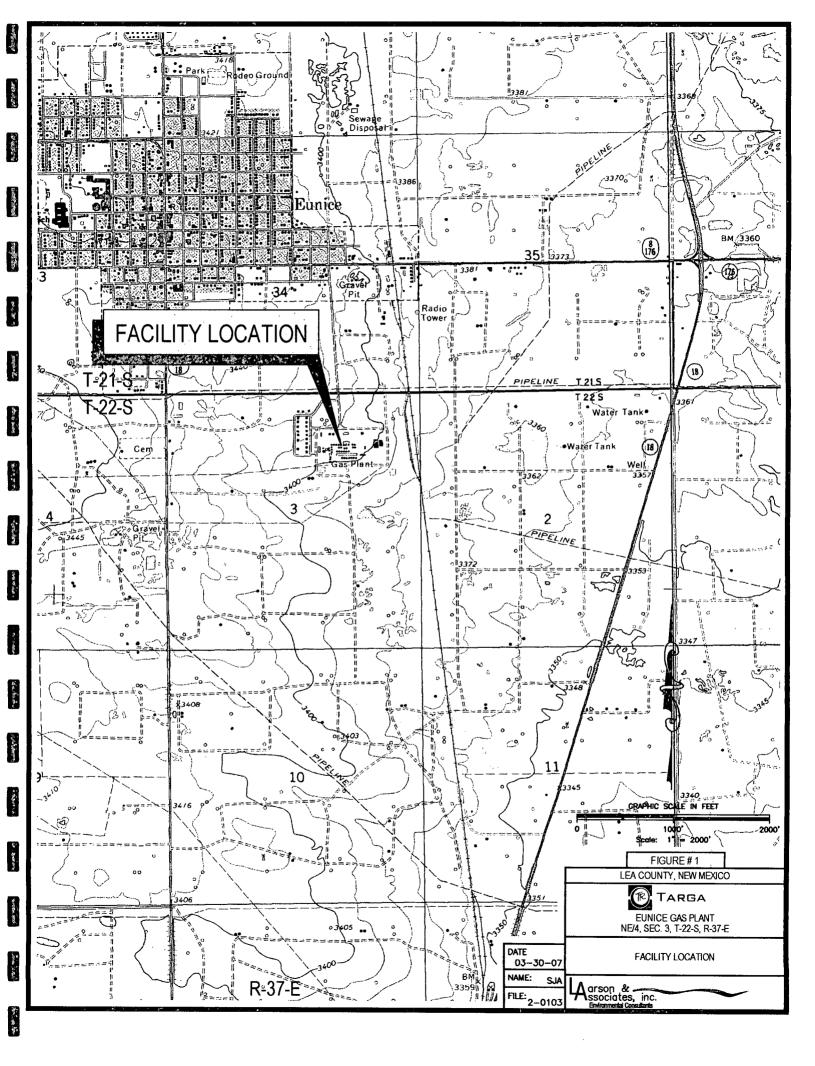
14 2. 21 -

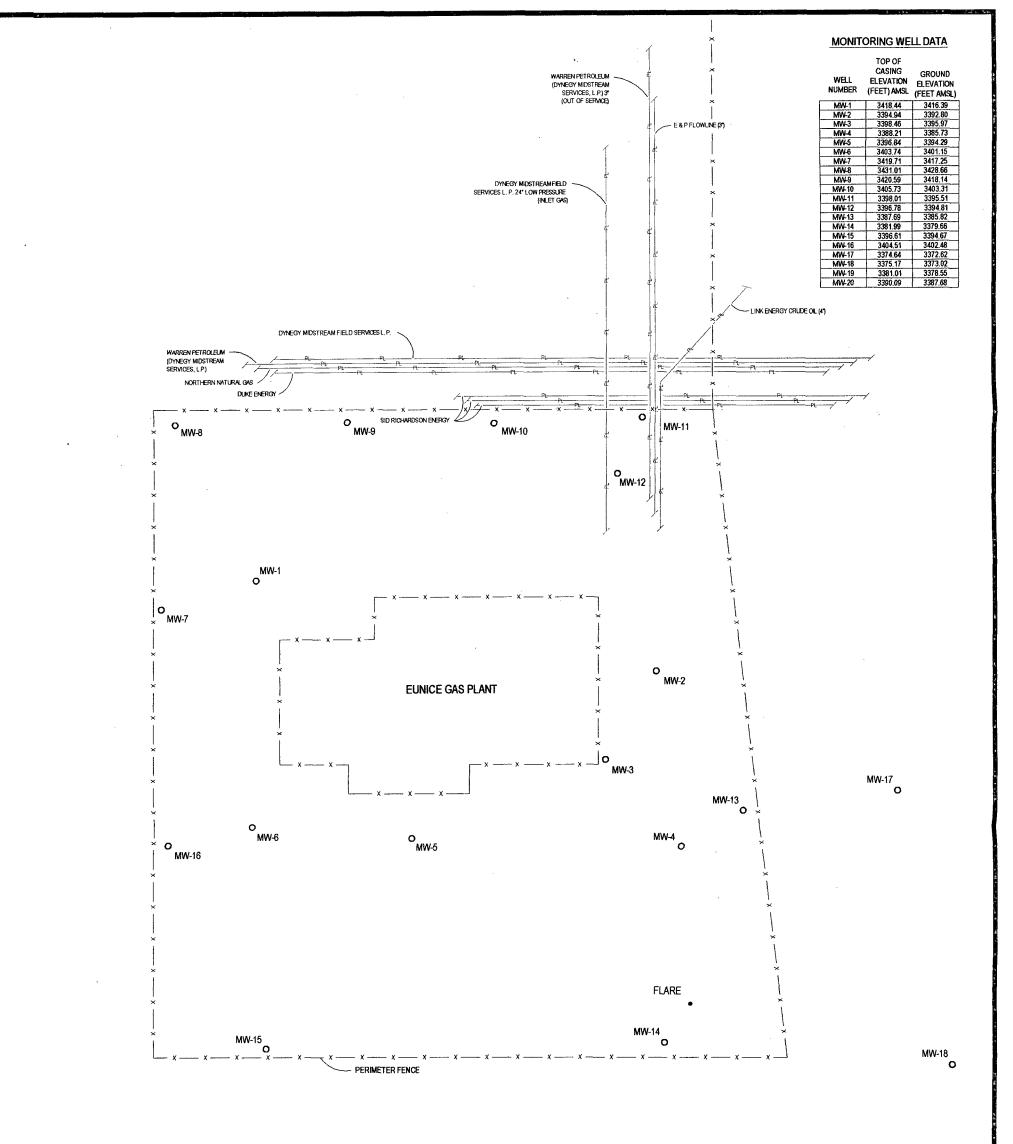
- Alland

a total a

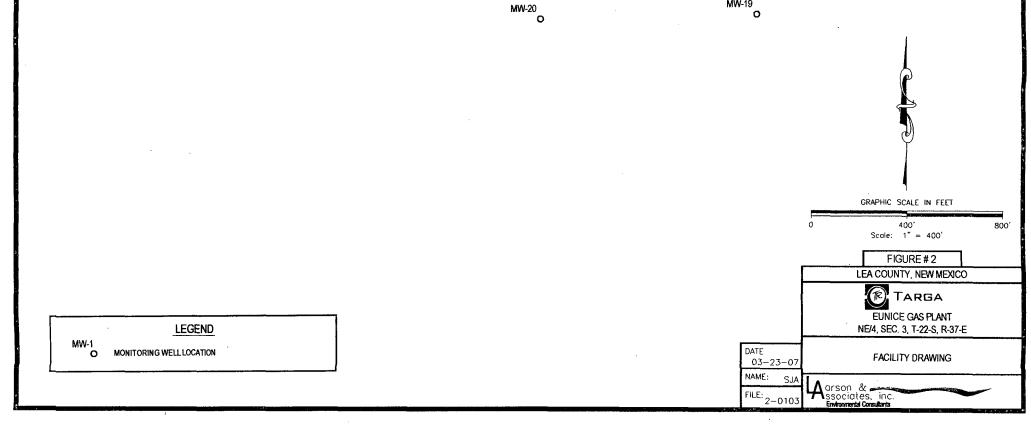
0 . On 10

Analyses of other samples conducted by Environmental Lab of Texas, Ltd., Odessa, TX As of June 2007, analyses performed by SevernTrent Laboratories, Corpus Christi, TX All results reported in milligrams per liter (mg/L)

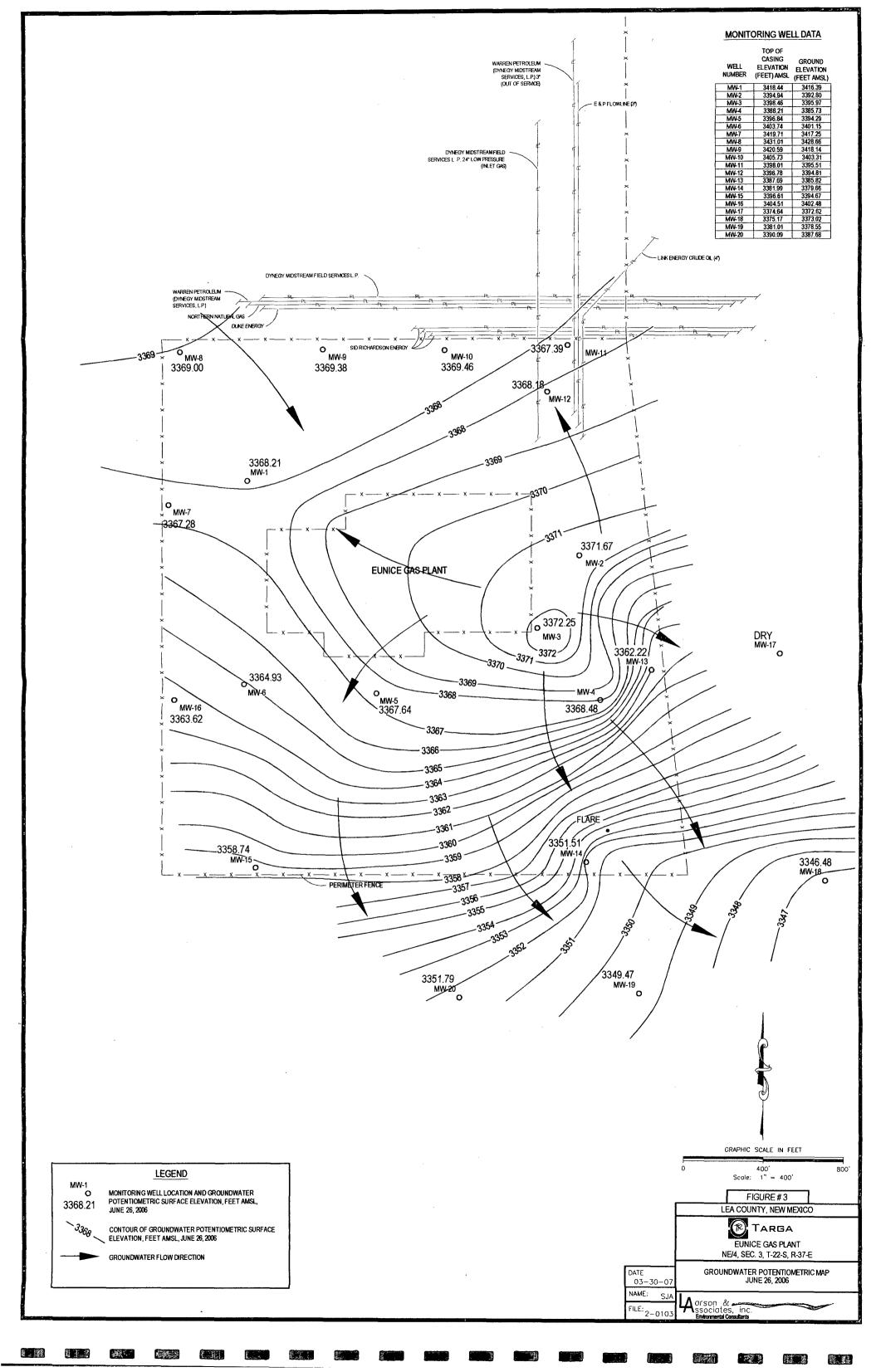

1. <: Concentration below test method detection limit

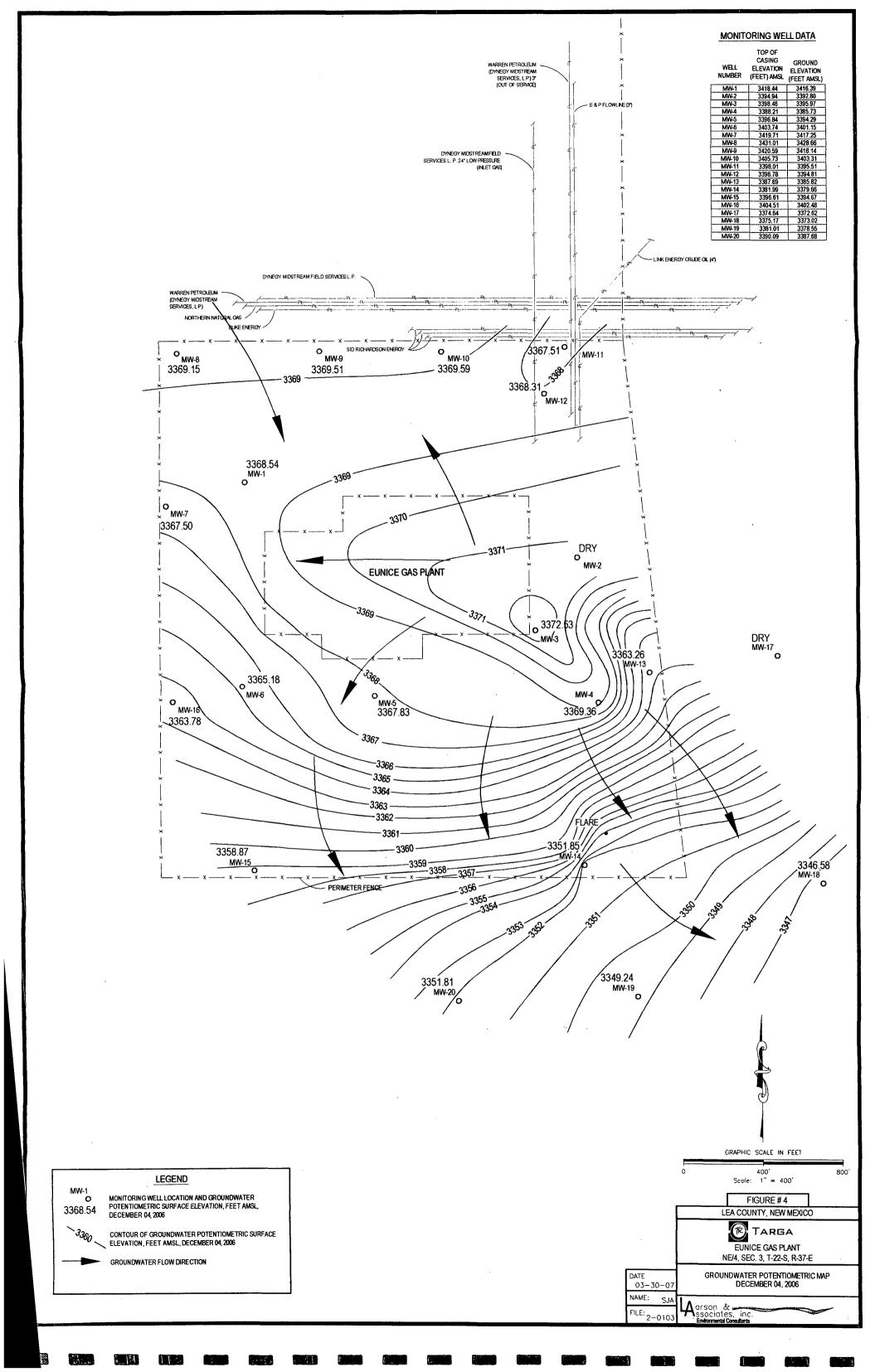

2. --: No data available

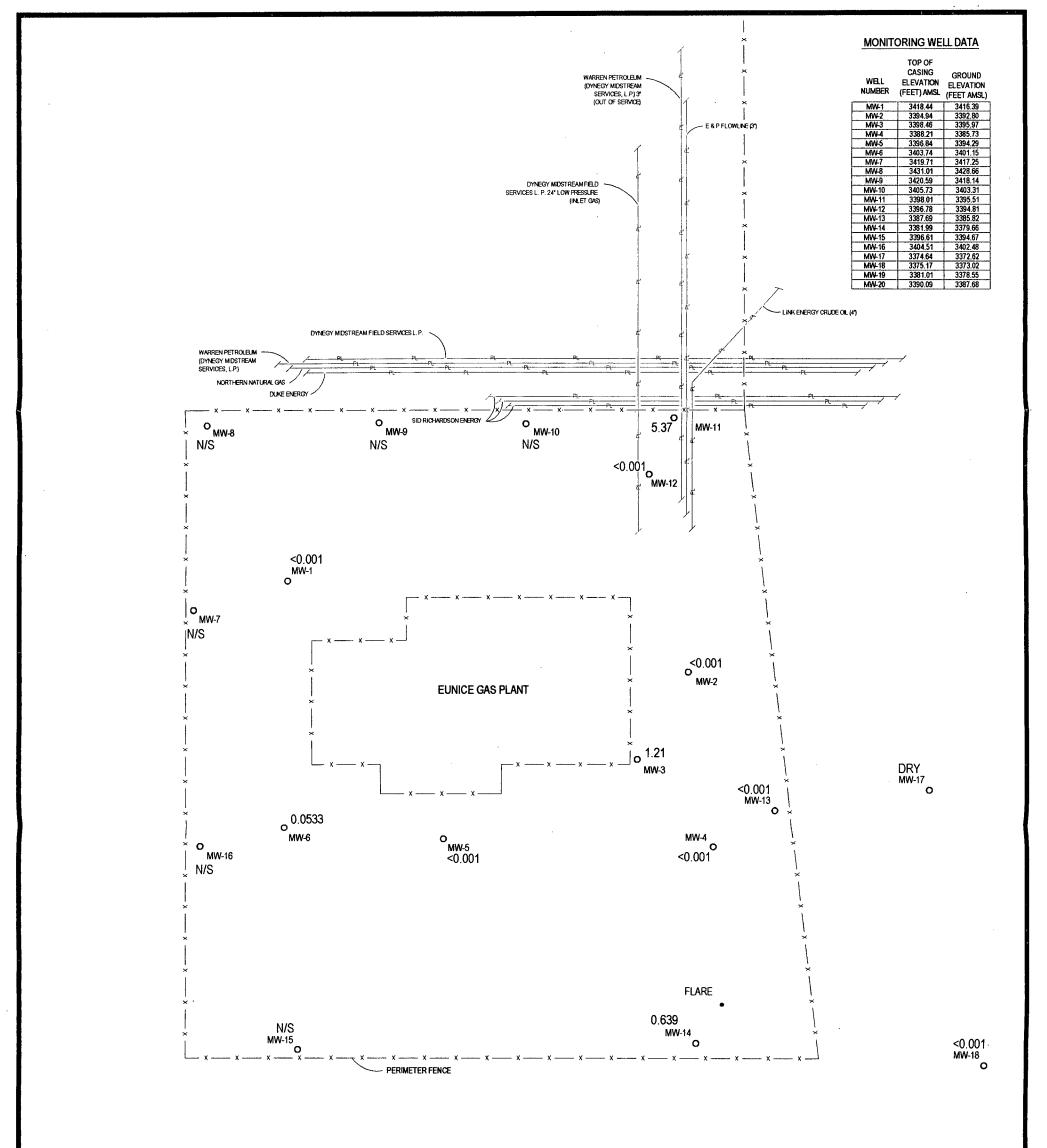
a transfer and


Figures

.

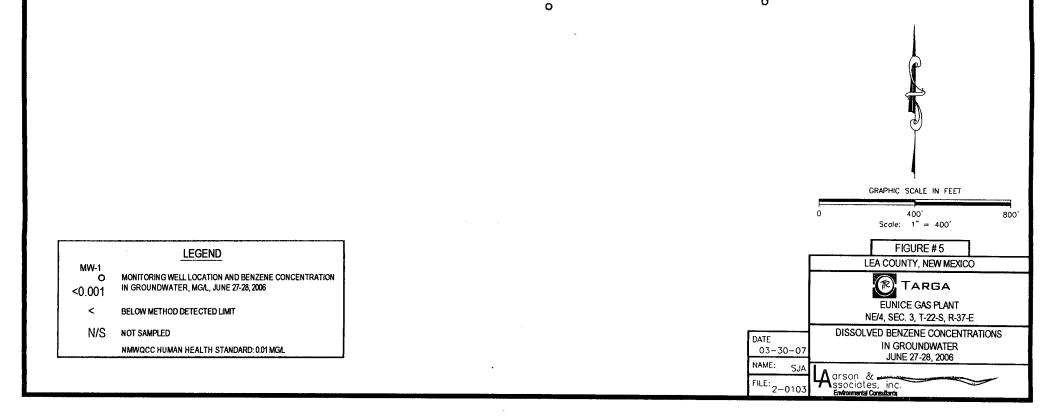



MW-19



(and

L. Lack



<0.001 MW-19

0

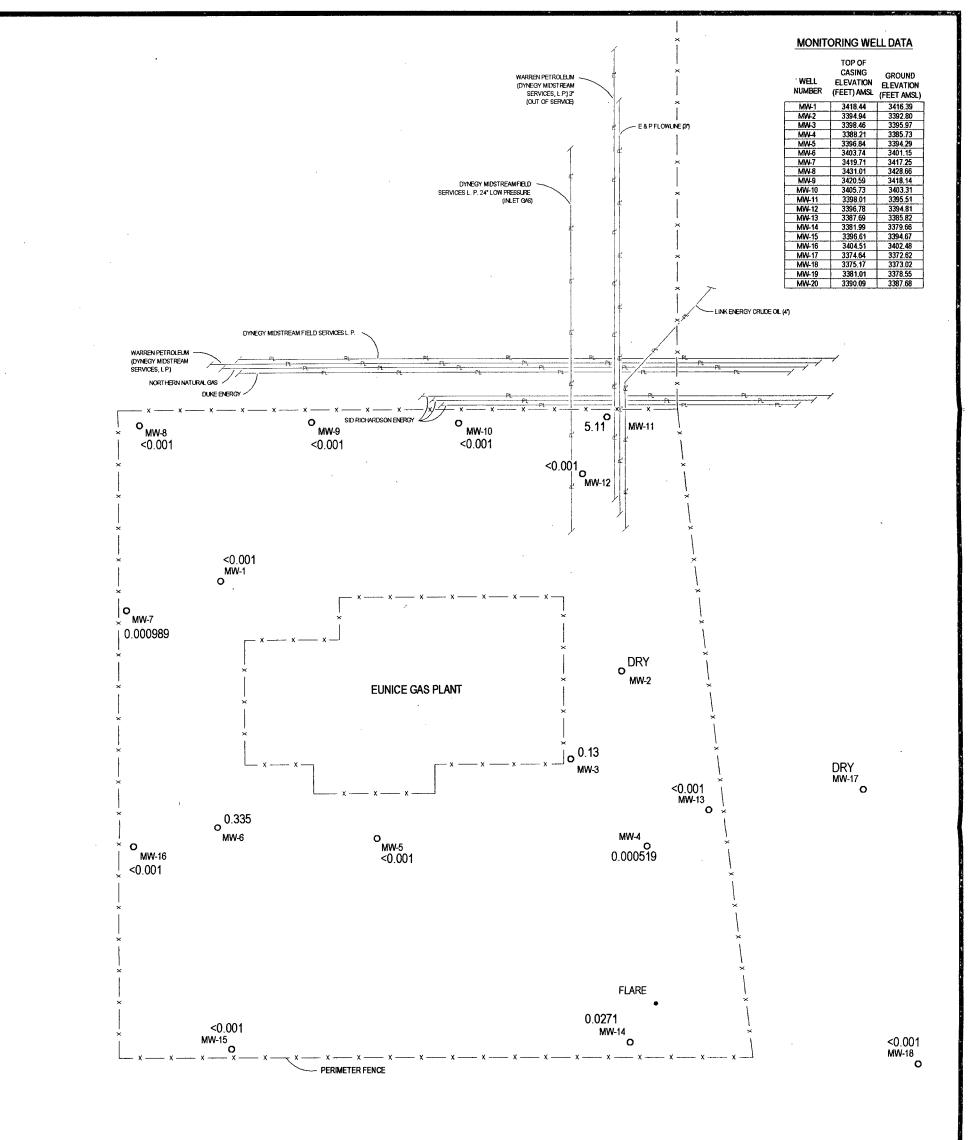
<0.001 MW-20

្លុំរា

the second state

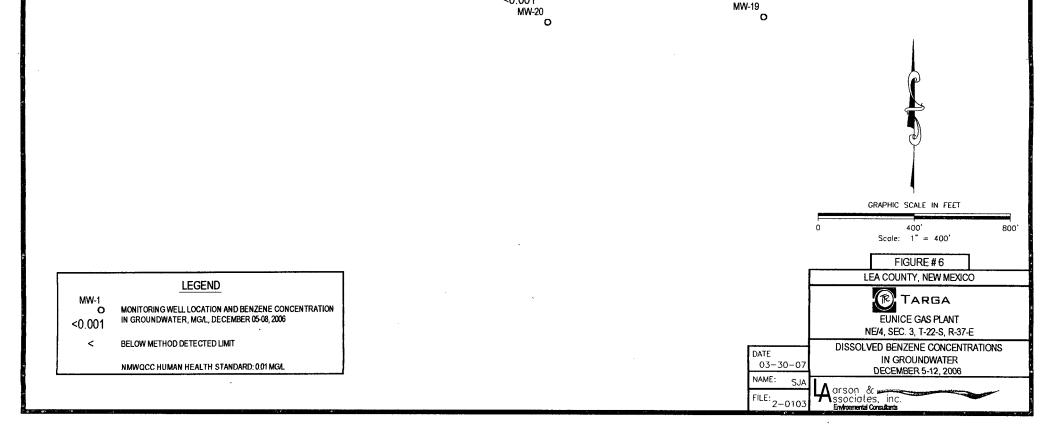
\$5____

the first


93 Sien...

3

l ze


A Ser 1

Contraction of the

<0.001

<0.001

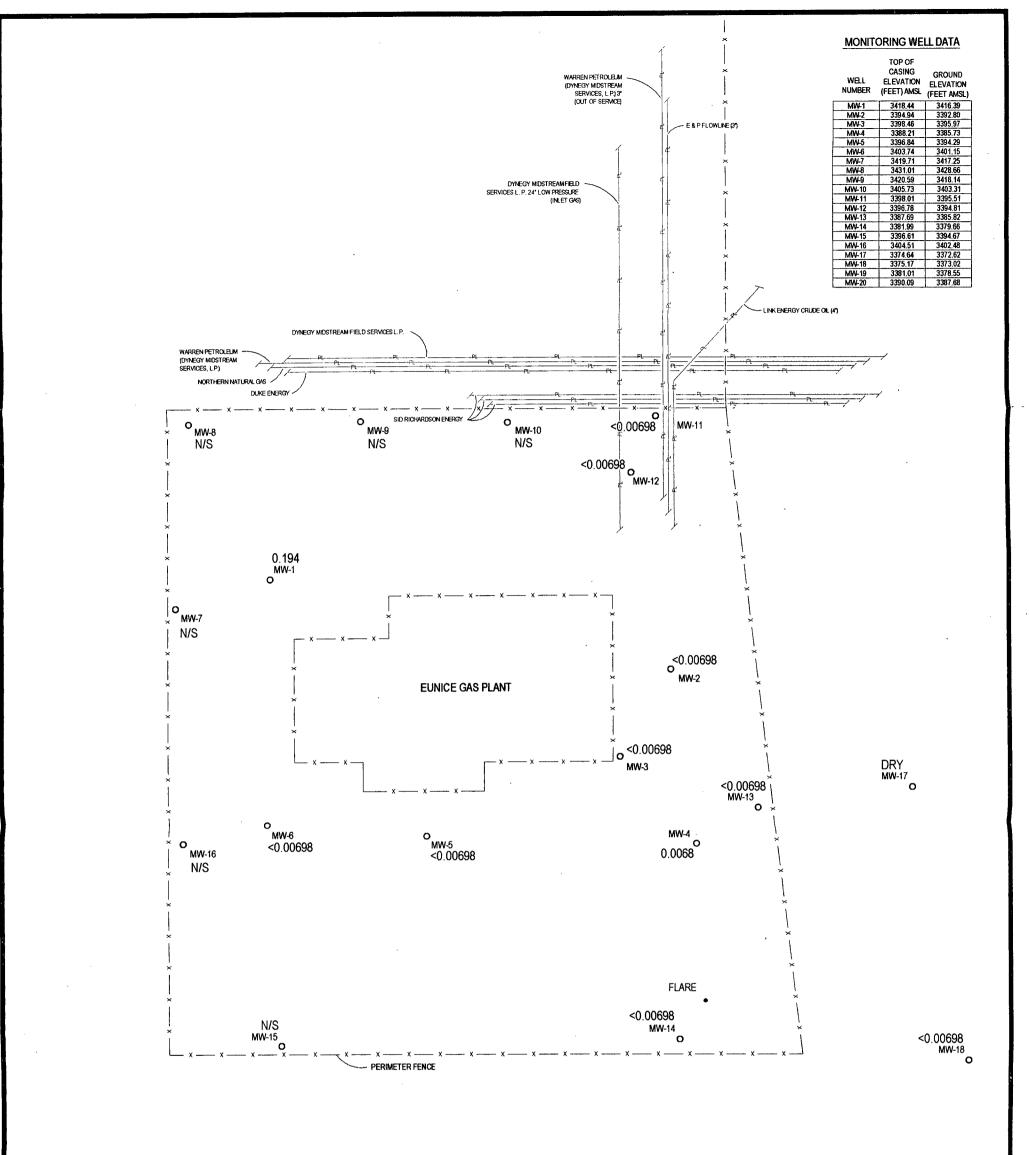
10.74

. Sec.

. Sala

A Sector

and when

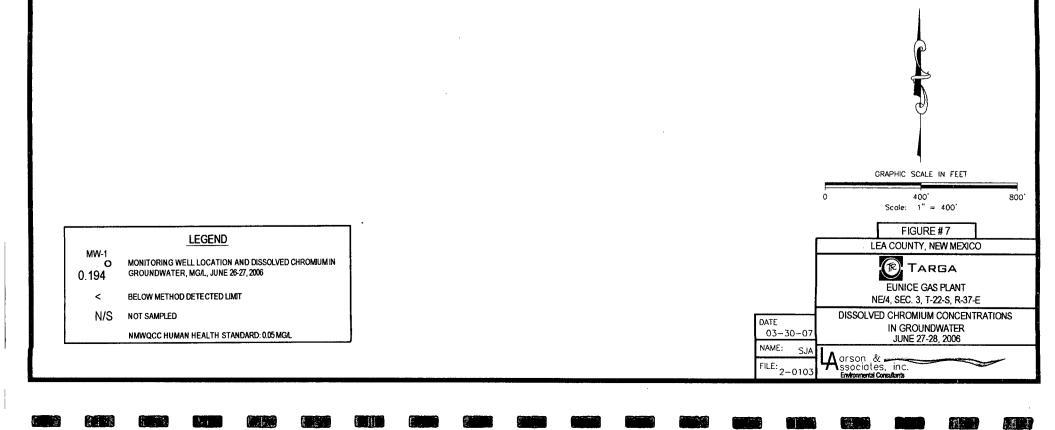

18 F

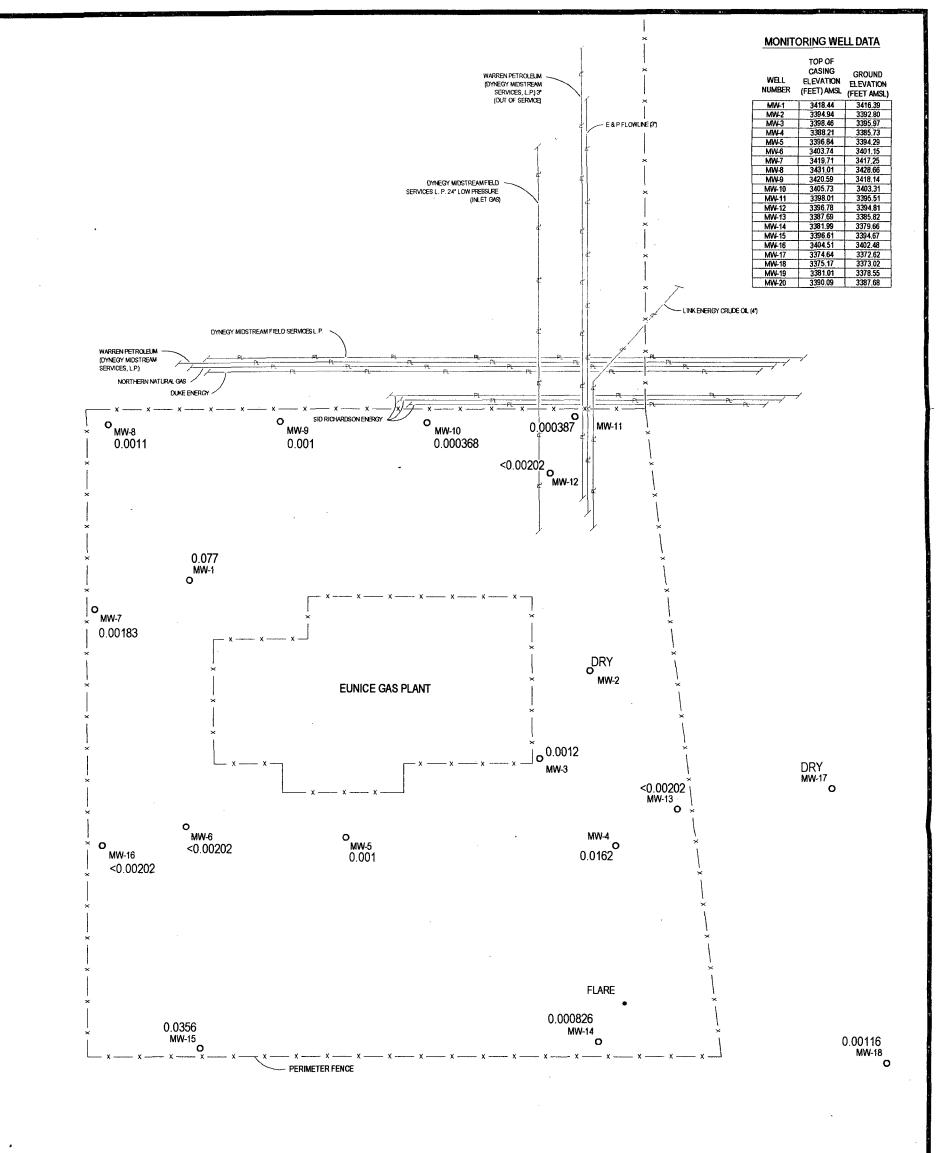
Real Real

the the second

的感謝

C. R

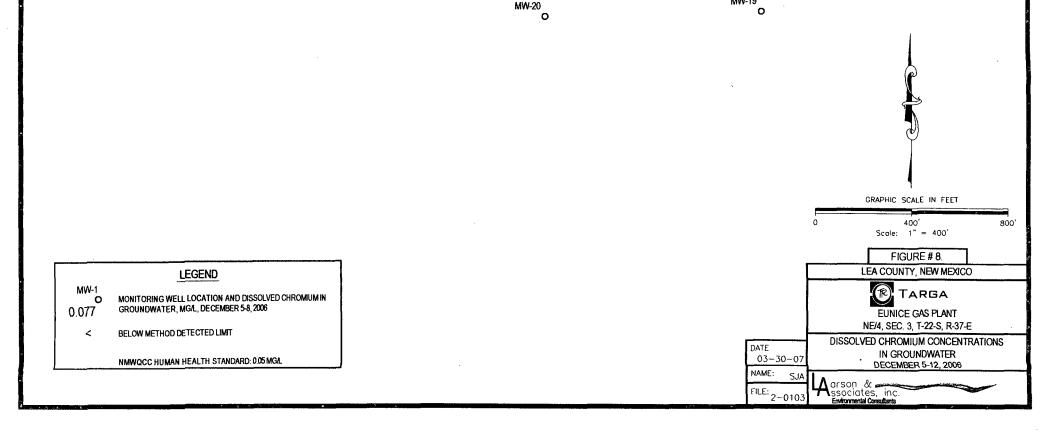



0.0046 MW-19

O

0.004 MW-20

0



0.00413 MW-19

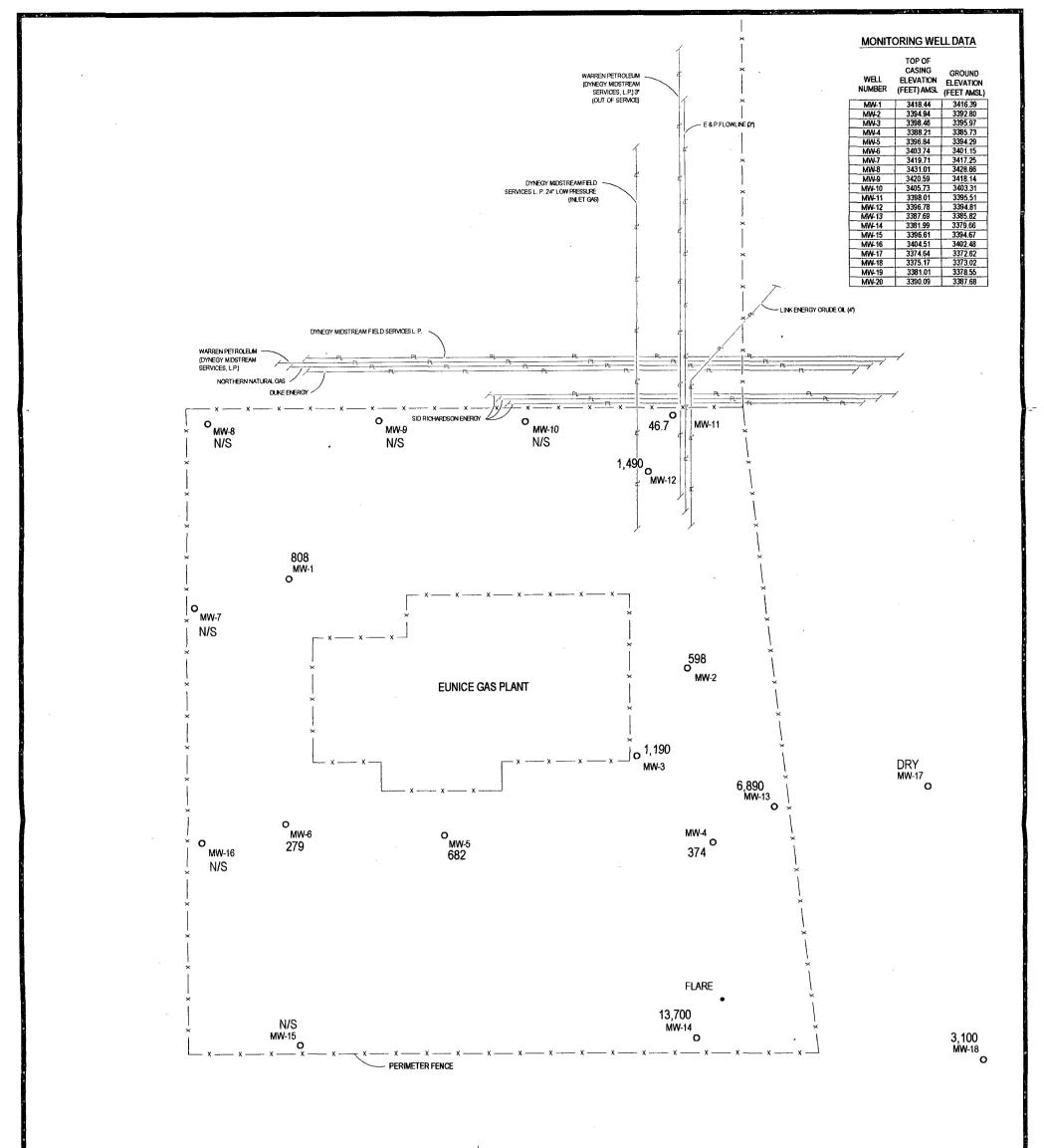
. Salta B

and of the

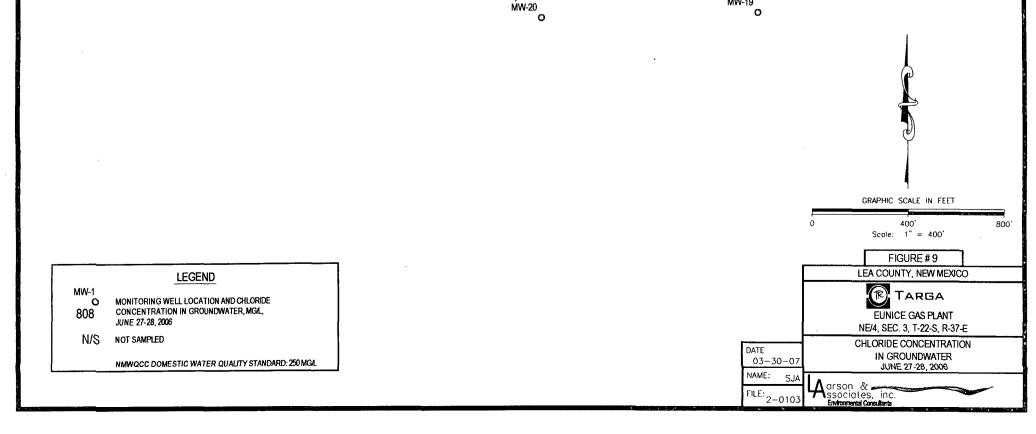
0.005

er.

\$ 】】】】


A State

律师律


Roman in

Carl Nation - Mar

and the second s

3,760 MW-19

. . . 3

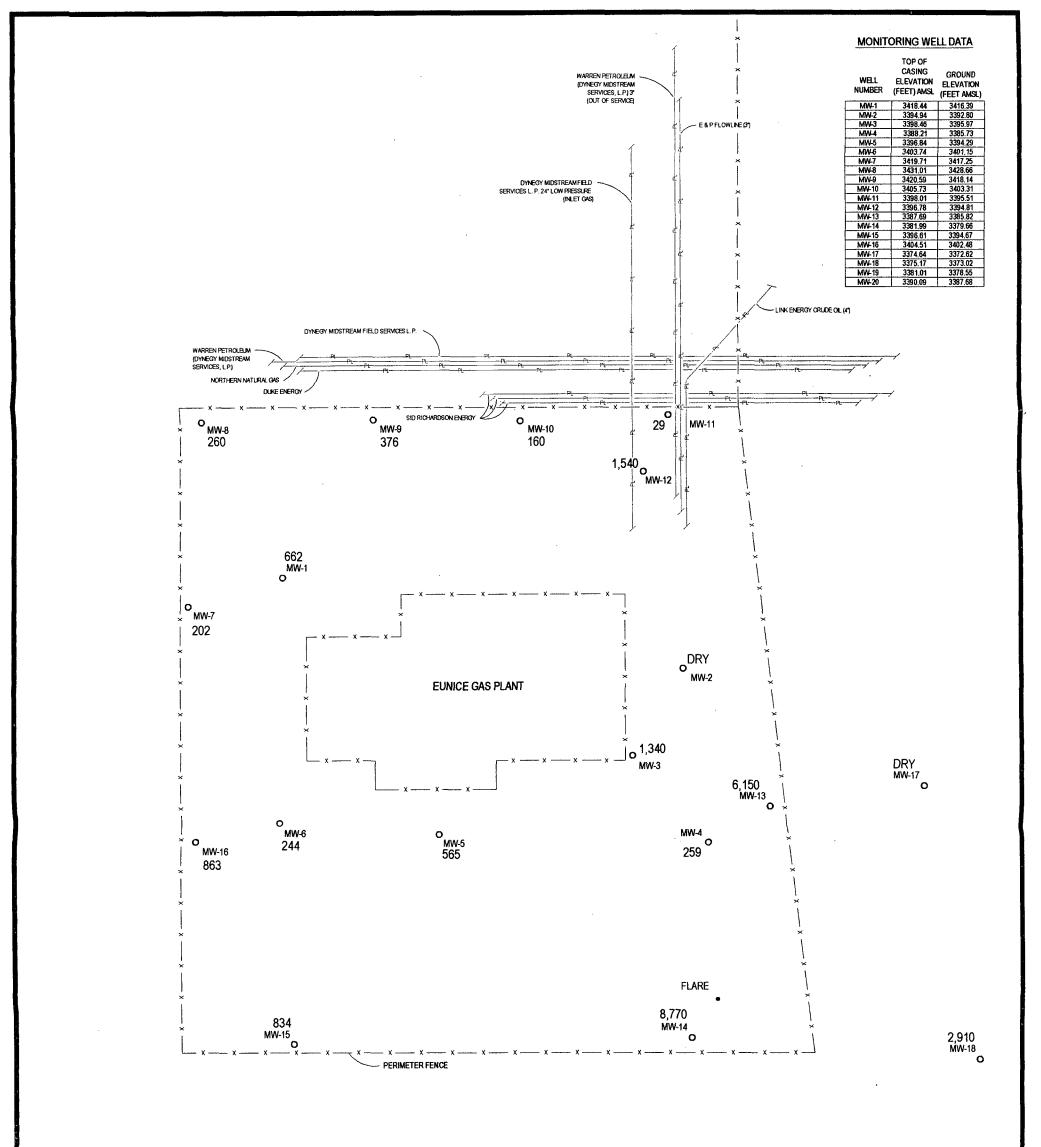
主题

Contraction of the second

经济的

i. Marti

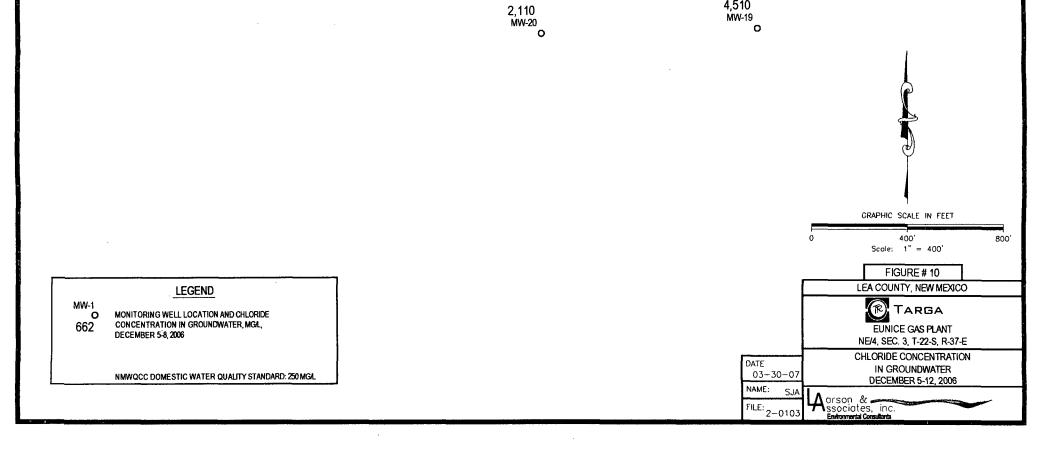
. . . .


83V122

ALC: -

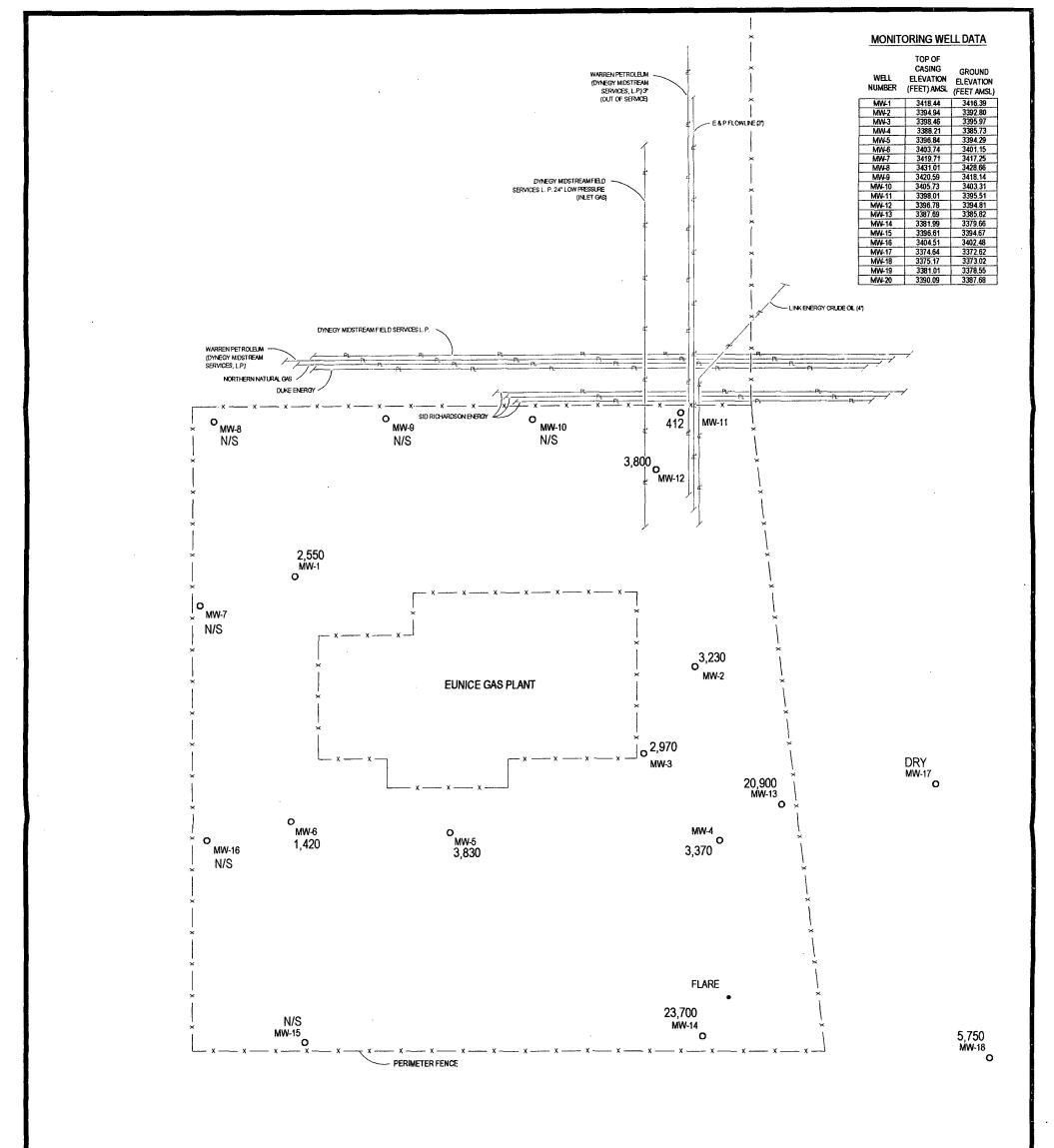
ŝ,

Ť,

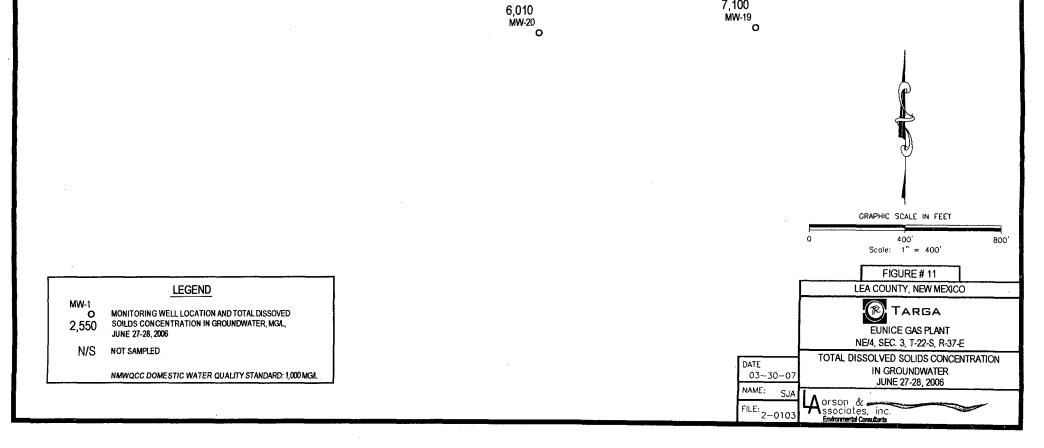

2,960

4,510 MW-19

ting tors


4

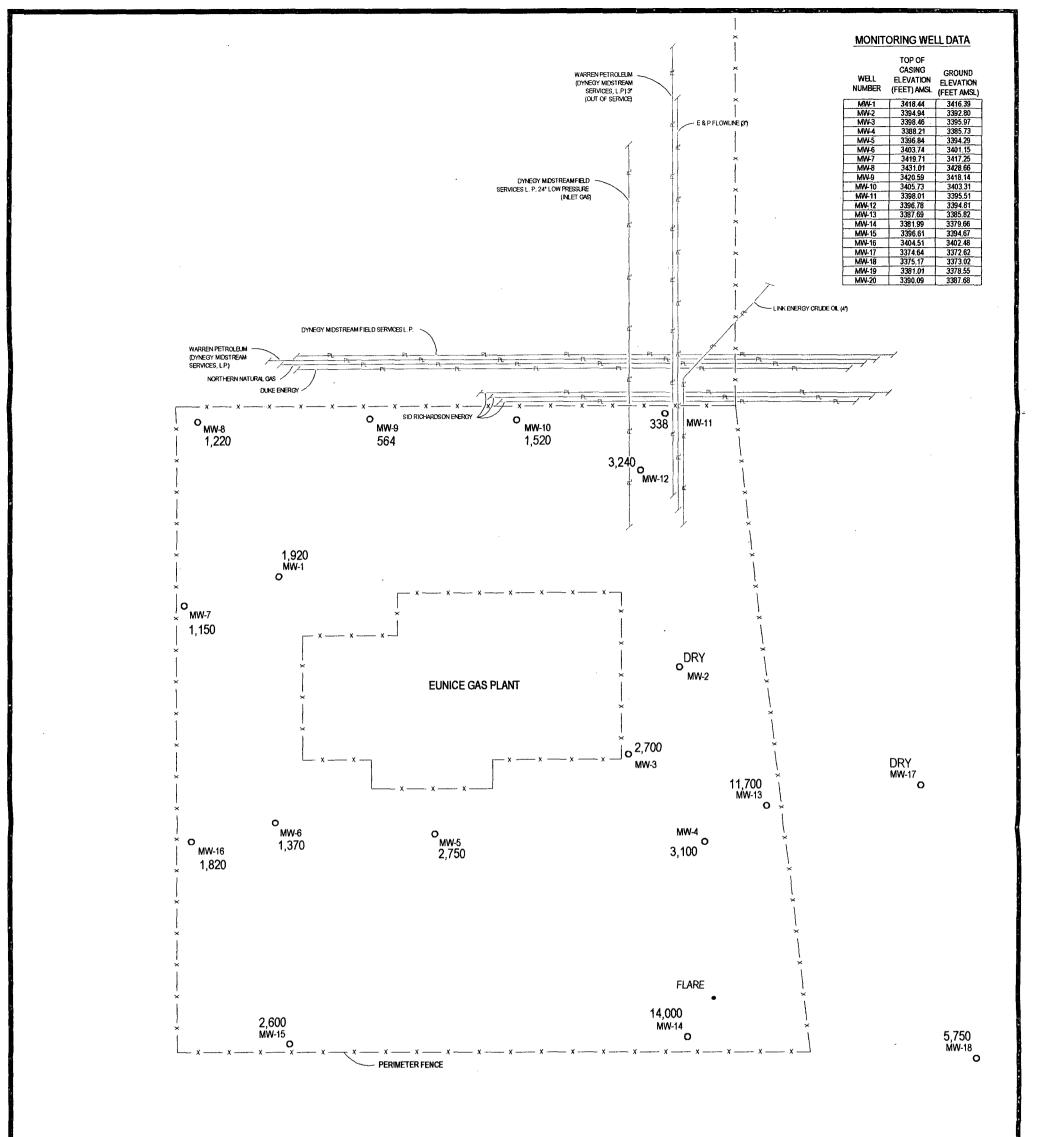
2


E. Carlat

1

7,100

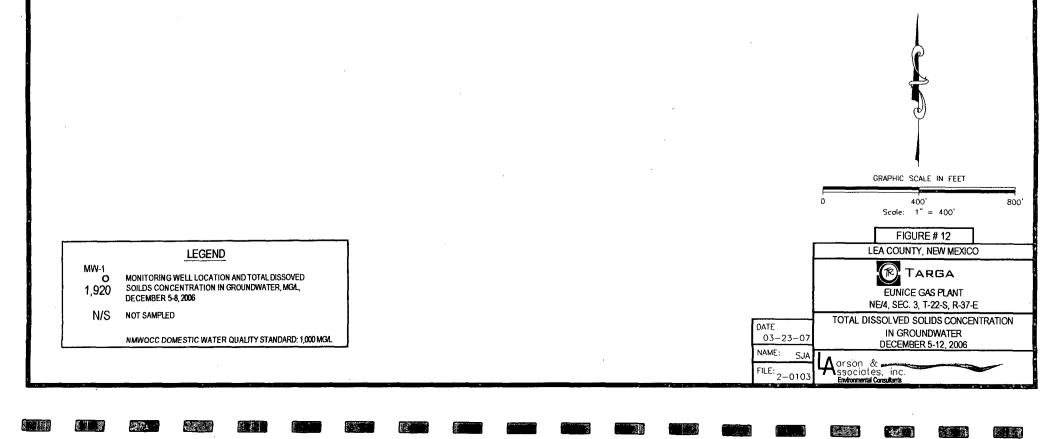
MW-19



and the second

And the second

6.


14 50,9

7,100 MW-19

1

ο

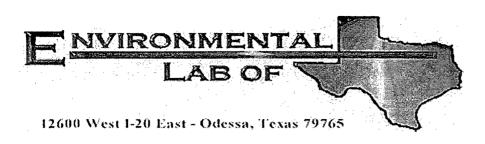
4,820 мw-20

Appendices

and the second sec

- 18 - 1 - 1

میں ہو او م


a. 6. te.

. .

· · · ·

. . .

1.4.8.

天安 弟

The Comput

and a public

inetration of

10 N. W. W.

" and a stare " a

5 - 6 * Parting

. . . .

-

.....

-

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Location: None Given

Lab Order Number: 6F28014

Report Date: 07/10/06

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

Aug a .

福いのう

「御殿寺」。

4.20° 3. 26

Garage -

2. 2. 4

1. 818 W

2-19 A . 240

4-00

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson Fax: (432) 687-0456

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	6F28014-01	Water	06/27/06 07:44	06/28/06 16:05
MW-2	6F28014-02	Water	06/27/06 08:31	06/28/06 16:05
MW-13	6F28014-03	Water	06/27/06 09:20	06/28/06 16:05
MW-4	6F28014-04	Water	06/27/06 09:55	06/28/06 16:05
MW-3	6F28014-05	Water	06/27/06 10:35	06/28/06 16:05
MW-14	6F28014-06	Water	06/27/06 11:12	06/28/06 16:05
MW-5	6F28014-07	Water	06/27/06 11:44	06/28/06 16:05
MW-6	6F28014-08	Water	06/27/06 13:25	06/28/06 16:05
MW-11	6F28014-09	Water	06/28/06 08:38	06/28/06 16:05
MW-12	6F28014-10	Water	06/28/06 09:02	06/28/06 16:05
MW-20	6F28014-11	Water	06/28/06 09:50	06/28/06 16:05
MW-19	6F28014-12	Water	06/28/06 10:42	06/28/06 16:05
MW-18	6F28014-13	Water	06/28/06 12:32	06/28/06 16:05
Dup 1	6F28014-14	Water	06/28/06 00:00	06/28/06 16:05
Dup 2	6F28014-15	Water	06/28/06 00:00	06/28/06 16:05

Larson & Associates, Inc.	Project: Targa Midstream/ Eunice Mid. Plant							Fax: (432) 6	Fax: (432) 687-0456	
P.O. Box 50685		Project Number: 2-0103								
Midland TX, 79710		Project Ma	nager: Mark	Larson						
		Or	ganics by	GC						
		Environn	iental La	b of Te	xas					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No	
MW-1 (6F28014-01) Water										
Benzene	ND	0.00100	mg/L	1	EF62914	06/29/06	06/30/06	EPA 8021B		
Toluene	ND	0.00100	"		"	•	"	"		
Ethylbenzene	ND	0.00100	"	"		n	*	n		
Xylene (p/m)	ND	0.00100			n		*	•		
Xylene (0)	ND	0.00100		n	"	"	"	*		
Surrogate: a,a,a-Trifluorotoluene		100 %	80-12	0	"	n	"	"		
Surrogate: 4-Bromofluorobenzene		87.2 %	80-12	0	"	"	"	n		
MW-2 (6F28014-02) Water										
Benzene	ND	0.00100	mg/L	1	EF62914	06/29/06	06/30/06	EPA 8021B		
Toluene	ND	0.00100	*		"	Ħ	*	•		
Ethylbenzene	ND	0.00100		"	"	-	"	•		
Xylene (p/m)	ND	0.00100		-	"			"		
Xylene (0)	ND	0.00100	*	"	"		*	"		
Surrogate: a,a,a-Trifluorotoluene		87.0 %	80-12	0	"	"	17	"		
Surrogate: 4-Bromofluorobenzene		91.5 %	80-12	0	"	n	"	n		
MW-13 (6F28014-03) Water							·			
Benzene	ND	0.00100	mg/L	1	EF62914	06/29/06	06/30/06	EPA 8021B		
Toluene	ND	0.00100	*	"	"	"	"			
Ethylbenzene	ND	0.00100	"	"	"	"	**	*		
Xylene (p/m)	ND	0.00100			"		*	**		
Xylene (0)	ND	0.00100				**	n	भ.		
Surrogate: a,a,a-Trifluorotoluene		91.5 %	80-12	0	"	"	n	"		
Surrogate: 4-Bromofluorobenzene		88.2 %	80-12	0	"	"	"	u		
MW-4 (6F28014-04) Water										
Benzene	ND	0.00100	mg/L	1	EF62914	06/29/06	06/30/06	EPA 8021B		
Toluene	ND	0.00100					**	۳		
Ethylbenzene	ND	0.00100	"	•	"	"	n	Ħ		
Xylene (p/m)	ND	0.00100	п	"	"	"	•	P		
Xylene (o)	ND	0.00100	"	н	"	17	**	#		
Surrogate: a,a,a-Trifluorotoluene		102 %	80-12	0	"	"	n	"		
Surrogate: 4-Bromofluorobenzene		86.5 %	80-12	0	"	"	"	"		

1. 1. 1. A. 2.

o tradit, der ar

লক ઈ કેમ્પ્રેન્ટ ન

Nurse short

4 . 0 . topo

Speed in

1 m. 2

Ann 2 - Mary

- - 425-

- monte

50.

* * * * *

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Larson & Associates, Inc. P.O. Box \$0685 Midland TX, 79710		P Project Nu Project Ma	mber: 2-0	103	am/ Eunice	Mid. Plant		Fax: (432) 687-0456		
		Or	ganics b	y GC						
		Environn	iental L	ab of Te	exas					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
MW-3 (6F28014-05) Water										
Benzene	1.21	0.0500	mg/L	50	EF62914	06/29/06	06/30/06	EPA 8021B		
Toluene	ND	0.0500	"	*	-	"	н	**		
Ethylbenzene	0.475	0.0500	"					"		
Xylene (p/m)	0.266	0.0500	"							
Xylene (0)	ND	0.0500	"			"	"	"		
Surrogate: a,a,a-Trifluorotoluene		98.0 %	80-,	120	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		90.2 %	80-1	20	"	"	"	"		
MW-14 (6F28014-06) Water										
Benzene	0.639	0.0100	mg/L	10	EF62914	06/29/06	06/30/06	EPA 8021B		
Toluene	ND	0.0100		"	"		•	"		
Ethylbenzene	ND	0.0100	"		"	"		"		
Xylene (p/m)	ND	0.0100		"						
Xylene (o)	ND	0.0100	۳	۳	"	"	-	-		
Surrogate: a,a,a-Trifluorotoluene		104 %	80	120	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		91.5 %	80	120	"	"	"	"		
MW-5 (6F28014-07) Water		•							•	
Benzene	ND	0.00100	mg/L	1	EF62914	06/29/06	06/30/06	EPA 8021B		
Toluene	ND	0.00100	-	"	*		"	۳		
Ethylbenzene	ND	0.00100	"	۳	"	"	"			
Xylene (p/m)	ND	0.00100		*	"	π	"			
Xylene (o)	ND	0.00100		**		"		"		
Surrogate: a,a,a-Trifluorotoluene		92.2 %	80	120	"	n	"	"		
Surrogate: 4-Bromofluorobenzene		85.8 %	80	120	"	"	*	"		
MW-6 (6F28014-08) Water										
Benzene	0.0533	0.0100	mg/L	10	EF62914	06/29/06	06/30/06	EPA 8021B		
Toluene	ND	0.0100	*	**	"	"	"	n		
Ethylbenzene	ND	0.0100		-		-		#		
Xylene (p/m)	ND	0.0100		"	n	"	a	H		
Xylene (o)	ND	0.0100	Ħ	"	n	H	"	"		
Surrogate: a,a,a-Trifluorotoluene		103 %	80	120	"	"	"	"		
			00	120						

Surrogate: 4-Bromofluorobenzene

-, . . A # . . .

314 Tr. 3. 1211

. A Bugge

1.5461.01.6

a. 4. 4.

8 10, 100° 10 201

4 + 4 + M

- A 16-12

4.00 Par 1

18.

an t A

- 10 M

40 - 18 - 1

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

"

"

"

80-120

n

92.8 %

Larson & Associates, Inc. P.O. Box 50685			roject: Tar umber: 2-0		m/ Eunice l	Mid. Plant		Fax: (432)	687-0456
Midland TX, 79710		Project Ma							
		Or	ganics b	y GC					
		Environn	iental L	ab of Te	xas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
MW-11 (6F28014-09) Water				Difution	Daten				
Benzene	5.37	0.0500	mg/L	50	EE(2014	0.00000	07/05/0/	EPA 8021B	
Toluene	3.37 ND	0.0500	, mg/L	50 "	EF62914 "	06/29/06 "	07/05/06 "	"	
Ethylbenzene	ND	0.0500	"				"		
	0.0586		ч	-		м	_	π	
Xylene (p/m) Xylene (o)		0.0500 0.0500	"					я	
Xylene (o)	ND		0.0						
Surrogate: a,a,a-Trifluorotoluene		93.5 %	80-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		80.5 %	80-1	20	"	"	"	"	
MW-12 (6F28014-10) Water									
Benzene	ND	0.00100	mg/L	1	EF62914	06/29/06	06/30/06	EPA 8021B	
Toluene	ND	0.00100	"	"		۳	-	-	
Ethylbenzene	ND	0.00100					-	-	
Xylene (p/m)	ND	0.00100	"		•	"	M	*	
Xylene (o)	ND	0.00100	"	"	#	۳		ŧt	
Surrogate: a,a,a-Trifluorotoluene		94.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.0 %	80-1	120	"	"	"	n	
MW-20 (6F28014-11) Water									
Benzene	ND	0.00100	mg/L	1	EF62914	06/29/06	06/30/06	EPA 8021B	
Toluene	ND	0.00100			"	N	n	"	
Ethylbenzene	ND	0.00100	"	*	"	N			
Xylene (p/m)	ND	0.00100	"		"	"		Ħ	
Xylene (0)	ND	0.00100	-	n	"	"		ti	
Surrogate: a,a,a-Trifluorotoluene		99.8 %	80-1	120	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		92.2 %	80-1		"	"	"	"	
MW-19 (6F28014-12) Water									
Benzene	ND	0.00100	mg/L	1	EF63019	06/30/06	06/30/06	EPA 8021B	
Toluene	ND	0.00100	۳		"	"	н	*	
Ethylbenzene	ND	0.00100	۳	•		-	"	*	
Xylene (p/m)	ND	0.00100	•	*	"	"		*	
Xylene (0)	ND	0.00100	"	•	n		•	*	
Surrogate: a,a,a-Trifluorotoluene		98.0 %	80-,	120	"	"	n	n	
Surrogate: 4-Bromofluorobenzene		91.2 %	80-1	120	"	"	"	"	

-

. . .

× ≈0.

- 3 - 1

28.0

2.424.2

. . .

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 23

Larson & Associates, Inc.
P.O. Box 50685
Midland TX, 79710

an a 101 a

1. T. .

.

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson Fax: (432) 687-0456

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-18 (6F28014-13) Water									
Benzene	ND	0.00100	mg/L	1	EF63019	06/30/06	06/30/06	EPA 8021B	
Toluene	ND	0.00100	"		•	н	"	*	
Ethylbenzene	ND	0.00100		"	۳		"	"	
Xylene (p/m)	ND	0.00100		"	н	n	"	м	
Xylene (o)	ND	0.00100	*	π	۳	•	n	R	
Surrogate: a,a,a-Trifluorotoluene		89.2 %	80-1	20	"	"	11	IT	
Surrogate: 4-Bromofluorobenzene		85.2 %	80-1	20	"	"	H	π	
Dup 1 (6F28014-14) Water									
Benzene	ND	0.00100	mg/L	1	EF63019	06/30/06	06/30/06	EPA 8021B	
Toluene	ND	0.00100		"			*		
Ethylbenzene	ND	0.00100	*		-			-	
Xylene (p/m)	ND	0.00100	**	"	"		"	"	
Xylene (o)	ND	0.00100	*			n	n	"	
Surrogate: a,a,a-Trifluorotoluene		81.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.5 %	80-1	20	"	"	"	n	
Dup 2 (6F28014-15) Water									·
Benzene	ND	0.00100	mg/L	1	EF63019	06/30/06	06/30/06	EPA 8021B	
Toluene	ND	0.00100		"	π	**		۳	
Ethylbenzene	ND	0.00100	"			14	Ħ		
Xylene (p/m)	ND	0.00100	*					"	
Xylene (0)	ND	0.00100	"	u		-	**	۳	
Surrogate: a,a,a-Trifluorotoluene		97.8 %	80-1	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		97.0 %	80-1	20	"	"	"	"	

Environmental Lab of Texas

.

. a. F.

1

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1 (6F28014-01) Water				Dilution	Daten				
Total Alkalinity	250	2.00	mg/L	1	EF62904	06/29/06	06/29/06	EPA 310.1M	
Chloride	808	12.5		25	EF62911	06/29/06	06/30/06	EPA 300.0	
Total Dissolved Solids	2550	5.00	*	1	EF62902	06/29/06	06/30/06	EPA 160.1	
Sulfate	406	12.5	н	25	EF62911	06/29/06	06/30/06	EPA 300.0	
MW-2 (6F28014-02) Water									
Total Alkalinity	314	2.00	mg/L	1	EF62904	06/29/06	06/29/06	EPA 310.1M	
Chloride	598	25.0	•	50	EF62911	06/29/06	06/30/06	EPA 300.0	
Total Dissolved Solids	3230	5,00		1	EF62902	06/29/06	06/30/06	EPA 160.1	
Sulfate	913	25.0	-	50	EF62911	06/29/06	06/30/06	EPA 300.0	
MW-13 (6F28014-03) Water									
Total Alkalinity	194	2.00	mg/L	1	EF62904	06/29/06	06/29/06	EPA 310.1M	
Chloride	6890	100	*	200	EF62911	06/29/06	06/30/06	EPA 300.0	
Total Dissolved Solids	20900	5.00	*	1	EF62902	06/29/06	06/30/06	EPA 160.1	
Sulfate	1280	100	"	200	EF62911	06/29/06	06/30/06	EPA 300.0	
MW-4 (6F28014-04) Water	<u>_</u>							- <u> </u>	
Total Alkalinity	732	2.00	mg/L	1	EF62904	06/29/06	06/29/06	EPA 310.1M	
Chloride	374	25.0	"	50	EF62911	06/29/06	06/30/06	EPA 300.0	
Total Dissolved Solids	3370	5.00	"	1	EF62902	06/29/06	06/30/06	EPA 160.1	
Sulfate	985	25.0	۳	50	EF62911	06/29/06	06/30/06	EPA 300.0	
MW-3 (6F28014-05) Water									
Total Alkalinity	656	2.00	mg/L	1	EF62904	06/29/06	06/29/06	EPA 310.1M	
Chloride	1190	25.0	"	50	EF62911	06/29/06	06/30/06	EPA 300.0	
Total Dissolved Solids	2970	5.00		1	EF62902	06/29/06	06/30/06	EPA 160.1	
Sulfate	117	25.0		50	EF62911	06/29/06	06/30/06	EPA 300.0	
MW-14 (6F28014-06) Water									
Total Alkalinity	442	2.00	mg/L	1	EF62904	06/29/06	06/29/06	EPA 310.1M	
Chloride	13700	250		500	EF62911	06/29/06	06/30/06	EPA 300.0	
Total Dissolved Solids	23700	5.00		1	EF62902	06/29/06	06/30/06	EPA 160.1	
Sulfate	1190	250	۳	500	EF62911	06/29/06	06/30/06	EPA 300.0	

Environmental Lab of Texas

and in sec

1

ar 6

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	D'I d'	D . 1	D			
MW-5 (6F28014-07) Water			Units	Dilution	Batch	Prepared	Analyzed	Method	Not
wiw-5 (6F28014-07) water									
Total Alkalinity	1060	2.00	mg/L	1	EF62904	06/29/06	06/29/06	EPA 310.1M	
Chloride	682	25.0	*	50	EF62911	06/29/06	06/30/06	EPA 300.0	
Total Dissolved Solids	3830	5.00		1	EF62902	06/29/06	06/30/06	EPA 160.1	
Sulfate	800	25.0		50	EF62911	06/29/06	06/30/06	EPA 300.0	
MW-6 (6F28014-08) Water									
Total Alkalinity	592	2.00	mg/L	t	EF62904	06/29/06	06/29/06	EPA 310.1M	
Chloride	279	10.0		20	EF62911	06/29/06	06/30/06	EPA 300.0	
Total Dissolved Solids	1420	5.00		1	EF62902	06/29/06	06/30/06	EPA 160.1	
Sulfate	115	10.0		20	EF62911	06/29/06	06/30/06	EPA 300.0	
MW-11 (6F28014-09) Water									
Total Alkalinity	222	2.00	mg/L	1	EF62904	06/29/06	06/29/06	EPA 310.1M	
Chloride	46.7	5.00		10	EF62911	06/29/06	06/30/06	EPA 300.0	
Total Dissolved Solids	412	5.00		1	EF62902	06/29/06	06/30/06	EPA 160.1	
Sulfate	19.4	5.00	Ħ	10	EF62911	06/29/06	06/30/06	EPA 300.0	
MW-12 (6F28014-10) Water	•			•					
Total Alkalinity	198	2.00	mg/L	1	EF62904	06/29/06	06/29/06	EPA 310.1M	-
Chloride	1490	25.0		50	EF62911	06/29/06	06/30/06	EPA 300.0	
Total Dissolved Solids	3800	5.00		1	EF62902	06/29/06	06/30/06	EPA 160.1	
Sulfate	573	25.0	۲	50	EF62911	06/29/06	06/30/06	EPA 300.0	
MW-20 (6F28014-11) Water									
Total Alkalinity	560	2.00	mg/L	1	EF62904	06/29/06	06/29/06	EPA 310.1M	
Chloride	2690	50.0		100	EF62911	06/29/06	06/30/06	EPA 300.0	
Total Dissolved Solids	6010	5.00		1	EF62902	06/29/06	06/30/06	EPA 160.1	
Sulfate	684	50.0	n	100	EF62911	06/29/06	06/30/06	EPA 300.0	
MW-19 (6F28014-12) Water									
Total Alkalinity	267	2.00	mg/L	1	EF62904	06/29/06	06/29/06	EPA 310.1M	
Chloride	3760	50.0		100	EF62911	06/29/06	06/30/06	EPA 300.0	
Total Dissolved Solids	7880	5.00	Ħ	1	EF62902	06/29/06	06/30/06	EPA 160.1	
Sulfate	638	50.0		100	EF62911	06/29/06	06/30/06	EPA 300.0	

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		_							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-18 (6F28014-13) Water									
Total Alkalinity	434	2.00	mg/L	1	EF62904	06/29/06	06/29/06	EPA 310.1M	
Chloride	3100	50.0	-	100	EF62911	06/29/06	06/30/06	EPA 300.0	
Total Dissolved Solids	6710	5.00	n	1	EF62902	06/29/06	06/30/06	EPA 160.1	
Sulfate	453	50.0	۳	100	EF62911	06/29/06	06/30/06	EPA 300.0	
Dup 1 (6F28014-14) Water									
Total Alkalinity	197	2.00	mg/L	1	EF62904	06/29/06	06/29/06	EPA 310.1M	
Chloride	6960	100	"	200	EF62911	06/29/06	06/30/06	EPA 300.0	
Total Dissolved Solids	19600	5.00	"	1	EF62902	06/29/06	06/30/06	EPA 160.1	
Sulfate	1300	100	"	200	EF62911	06/29/06	06/30/06	EPA 300.0	
Dup 2 (6F28014-15) Water	_	_							
Total Alkalinity	272	2.00	mg/L	1	EF62904	06/29/06	06/29/06	EPA 310.1M	
Chloride	3780	50.0	-	100	EF62911	06/29/06	06/30/06	EPA 300.0	
Total Dissolved Solids	7580	5.00		1	EF62902	06/29/06	06/30/06	EPA 160.1	
Sulfate	638	50.0		100	EF62911	06/29/06	06/30/06	EPA 300.0	

Environmental Lab of Texas

1.00

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

20.000

1.00

.

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson Fax: (432) 687-0456

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

	·····	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (6F28014-01) Water									
Calcium	288	0.500	mg/L	50	EG60504	07/05/06	07/05/06	EPA 6010B	
Magnesium	124	0.0500	n	и	"	"	n	-	
Potassium	13.0	0.500	"	10	n	n	"	-	
Sodium	231	2.00		200	"				
Mercury	J [0.000130]	0.000250		1	EF63007	06/29/06	06/30/06	EPA 7470A	1
Chromium	0.194	0.00698		10	EF63009	06/29/06	07/06/06	EPA 6020A	
Arsenic	J [0.00710]	0.0170			"	۳		"	
Selenium	J [0.0145]	0.0300	TT I	"	"		*		
Silver	ND	0.00405	**	*	"	**	-		
Cadmium	ND	0.00692	"	"			"	"	
Barium	0.276	0.00489						"	
Lead	ND	0.00296	*	π	۳		"		
MW-2 (6F28014-02) Water									
Calcium	296	0.500	mg/L	50	EG60504	07/05/06	07/05/06	EPA 6010B	
Magnesium	123	0.0500	۳	"		*	"	•	
Potassium	16.3	0.500	"	. 10	"	"	٠.	n	
Sodium	434	2.00	+	200	"	•	-	"	
Mercury	J [0.000180]	0.000250		1	EF63007	06/29/06	06/30/06	EPA 7470A	
Chromium	ND	0.00698	"	10	EF63009	06/29/06	07/06/06	EPA 6020A	
Arsenic	0.0386	0.0170	н	*	-		11	"	
Selenium	0.0656	0.0300	π	-	-	"	"	"	
Silver	ND	0.00405		-	"				
Cadmium	ND	0.00692	"		"	H			
Barium	0.0245	0.00489	"	"	"	"		п	
Lead	ND	0.00296	п	"	"	**	"	π	
MW-13 (6F28014-03) Water									
Calcium	2170	10.0	mg/L	1000	EG60504	07/05/06	07/05/06	EPA 6010B	
Magnesium	702	0.200	۲	200		Ħ	"	77	
Potassium	30.3	2.50	N	50	۳	*	n	**	
Sodium	860	10.0	"	1000	"	м	n	-	
Mercury	[0.0000900]	0.000250	"	1	EF63007	06/29/06	06/30/06	EPA 7470A	
Chromium	ND	0.00698	۳	10	EF63009	06/29/06	07/06/06	EPA 6020A	
Arsenic	J [0.0157]	0.0170	*	"		w	"	"	
Selenium	J [0.0267]	0.0300	"	"	"	"	19	"	
Silver	ND	0.00405	"	π			"	"	
Cadmium	ND	0.00692	π	*	n	"	*	н	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 9 of 23

1. N. S. S.

5

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-13 (6F28014-03) Water									
Barium	0.108	0.00489	mg/L	10	EF63009	06/29/06	07/06/06	EPA 6020A	
Lead	ND	0.00296	"	Ħ	"	"	H	"	
MW-4 (6F28014-04) Water									
Calcium	85.0	0.500	mg/L	50	EG60504	07/05/06	07/05/06	EPA 6010B	
Magnesium	32.8	0.0500		"	ч		M	π	
Potassium	17.4	0.500		10	۳		۳	"	
Sodium	954	2.00		200		п	-	"	
Mercury	0.000270	0.000250	-	1	EF63007	06/29/06	06/30/06	EPA 7470A	
Chromium	J [0.00679]	0.00698		10	EF63009	06/29/06	07/06/06	EPA 6020A	
Arsenic	0.0351	0.0170	"	"	н	۳	"	۳	
Selenium	0.0402	0.0300	"		•		-	"	
Silver	ND	0.00405		"	*		•	"	
Cadmium	ND	0.00692	Ħ		-	"	"		
Barium	0.0228	0.00489	n	"	"		"	"	
Lead	ND	0.00296					"	"	
MW-3 (6F28014-05) Water									
Calcium	169	0.500	mg/L	50	EG60504	07/05/06	07/05/06	EPA 6010B	
Magnesium	176	0.0500	"	"	"	"	"	-	
Potassium	13.7	0.500	*1	10	"	"	"	"	
Sodium	514	2.00	11	200		n	*	"	
Mercury	[0.0000600]	0.000250	π	1	EF63007	06/29/06	06/30/06	EPA 7470A	-
Chromium	ND	0.00698	*	10	EF63009	06/29/06	07/06/06	EPA 6020A	
Arsenic	0.0948	0.0170		"	"		π	"	
Selenium	ND	0.0300	۳	"	**		"	m	
Silver	ND	0.00405	-	"	-	Π	"	H	
Cadmium	ND	0.00692	**	"			•	**	
Barium	3.42	0.00489	*	n	۳			"	
Lead	ND	0.00296	"	"	-	-	"	н	

Environmental Lab of Texas

فحربعان

o those his

2.44.4

61 43

State -

marter to

.

1.1

4

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-14 (6F28014-06) Water	· · · · · · · · · · · · · · · · · · ·								
Calcium	836	2.00	mg/L	200	EG60504	07/05/06	07/05/06	EPA 6010B	
Magnesium	446	0.200	"	-	"			-	
Potassium	98.5	2.50	Ħ	50	"	"	n		
Sodium	6480	10.0		1000		"	"	"	
Mercury	ND	0.000250	н	1	EF63007	06/29/06	06/30/06	EPA 7470A	
Chromium	ND	0.00698	"	10	EF63009	06/29/06	07/06/06	EPA 6020A	
Arsenic	0.0306	0.0170	*	"	н		π	"	
Selenium	ND	0.0300				"		"	
Silver	ND	0.00405	"	"		"	"	n	
Cadmium	ND	0.00692		"	"	π	"	"	
Barium	0.232	0.00489	н		"			H	
Lead	ND	0.00296	n	-	"	"		۳	
MW-5 (6F28014-07) Water									
Calcium	122	0.500	mg/L	50	EG60504	07/05/06	07/05/06	EPA 6010B	
Magnesium	54.2	0.0500	π	-	"	"		۳	
Potassium	51.6	2.50		"	"	. "	"	*	
Sodium	1040	2.00	"	200			π		
Mercury	[0.0000800]	0.000250		1	EF63007	06/29/06	06/30/06	EPA 7470A	
Chromium	ND	0.00698		10	EF63009	06/29/06	07/06/06	EPA 6020A	
Arsenic	0.0203	0.0170	۳	"		"		"	
Selenium	ND	0.0300	•	"	"	"	•	"	
Silver	ND	0.00405	"	π	"	"		"	
Cadmium	ND	0.00692	"		-	"	"	**	
Barium	0.0603	0.00489	"	"		*		۳	
Lead	ND	0.00296	"		"	۳	"	n	
MW-6 (6F28014-08) Water									
Calcium	45.5	0.100	mg/L	10	EG60504	07/05/06	07/05/06	EPA 6010B	
Magnesium	30.6	0.0100	**	-	"			"	
Potassium	8.94	0.500	Ħ	"	"		н	*	
Sodium	376	0.500	*	50	"	м	*	•	
Mercury	J [0.000140]	0.000250	Ħ	1	EF63007	06/29/06	06/30/06	EPA 7470A	
Chromium	ND	0.00698	۳	10	EF63009	06/29/06	07/06/06	EPA 6020A	
Arsenic	0.0417	0.0170	Ħ		n		"	17	
Selenium	ND	0.0300	*	"	"	H	"		
Silver	ND	0.00405	۲	"	"	u	"	n	
Cadmium	ND	0.00692		"	47			*	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 11 of 23

2 2 and

5

4

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Fax: (432) 687-0456

Total Metals by EPA / Standard Methods

Project Manager: Mark Larson

Environmental Lab of Texas

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-6 (6F28014-08) Water				Ditution					
Barium	0.122	0.00489	mg/L	10	EF63009	06/29/06	07/06/06	EPA 6020A	
Lead	ND	0.00296	"	"	π		-		
MW-11 (6F28014-09) Water									
Calcium	26.4	0.100	mg/L	10	EG60504	07/05/06	07/05/06	EPA 6010B	
Magnesium	15.9	0.0100			"	н	-	"	
Potassium	3.04	0.500			"	*		•	
Sodium	51.1	0.100	۳	"	"	*	"	"	
Mercury	J [0.000100]	0.000250		1	EF63007	06/29/06	06/30/06	EPA 7470A	
Chromium	ND	0.00698	-	10	EF63009	06/29/06	07/06/06	EPA 6020A	
Arsenic	J [0.00348]	0.0170	-	۳	*	*	-	-	
Selenium	ND	0.0300	-	н		*		-	
Silver	ND	0.00405			"	"	۳	π	
Cadmium	ND	0.00692	•	۳	"		۳	"	
Barium	0.583	0.00489	-	*	"		"	"	
Lead	ND	0.00296		"	"	н	"	"	
MW-12 (6F28014-10) Water									
Calcium	339	0.500	mg/L	50	EG60504	07/05/06	07/05/06	EPA 6010B	
Magnesium	164	0.0500		π			n	"	
Potassium	13.6	0.500	-	10	Ħ	11	π		
Sodium	520	2.00	Ħ	200		ग	"	"	
Mercury	0.000270	0.000250		1	EF63007	06/29/06	06/30/06	EPA 7470A	
Chromium	ND	0.00698		10	EF63009	06/29/06	07/06/06	EPA 6020A	
Arsenic	J [0.0116]	0.0170		н				•	
Selenium	J [0.0145]	0.0300		*			"		
Silver	ND	0.00405		"	n	**	н	Ħ	
Cadmium	ND	0.00692	"	-	'n	*	"	*	
Barium	0.0462	0.00489	-	74			**	•	

Environmental Lab of Texas

1 T

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 12 of 23

مت وبيل و ال

90 CO 60 Q

1.1.1

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	D.1 .1	D : 1				
MW-20 (6F28014-11) Water	Kesun	- Lunit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
						·	······		
Calcium	35.2	0.500	mg/L	50	EG60504	07/05/06	07/05/06	EPA 6010B	
Magnesium	20.9	0.0500	"	"	"	"	۳		
Potassium	63.2	2.50		"	n	"	"		
Sodium	2180	5.00	N	500	"	н	"	"	
Mercury	F [0.000200]	0.000250	H	1	EF63007	06/29/06	06/30/06	EPA 7470A	
Chromium	J [0.00386]	0.00698	"	10	EF63009	06/29/06	07/06/06	EPA 6020A	
Arsenic	ND	0.0170		**		*	"		
Selenium	J [0.0101]	0.0300	۳	"	"	۳		Π	
Silver	ND	0.00405	н	-	"		*	**	
Cadmium	ND	0.00692		"			*	**	
Barium	0.0356	0.00489		"	-		-	-	
Lead	ND	0.00296	*	*	"	۳	٠	*	
MW-19 (6F28014-12) Water									
Calcium	465	0.500	mg/L	50	EG60504	07/05/06	07/05/06	EPA 6010B	· · ·
Magnesium	232	0.0500	-	"	-	н			
Potassium	24.9	2.50				. "	н		
Sodium	1540	5.00	-	500		"	"		
Mercury	J [0.000110]	0.000250		1	EF63007	06/29/06	06/30/06	EPA 7470A	
Chromium	J [0.00460]	0.00698		10	EF63009	06/29/06	07/06/06	EPA 6020A	
Arsenic	J [0.0155]	0.0170	-			n	۳		
Selenium	ND	0.0300			-	π	"	11	
Silver	ND	0.00405	•	**	"	"			
Cadmium	ND	0.00692		41	"	"	-	n	
Barium	0.0367	0.00489	۳	"	"	n		**	
Lead	ND	0.00296		۳	Π	*		Ħ	
MW-18 (6F28014-13) Water									
Calcium	386	0.500	mg/L	50	EG60504	07/05/06	07/05/06	EPA 6010B	
Magnesium	177	0.0500		"	"	۳	"		
Potassium	22.3	2.50		"	"	"		**	
Sodium	1690	5.00		500	"	"	"	**	
Mercury	[0.0000900]	0.000250	"	1	EF63007	06/29/06	06/30/06	EPA 7470A	
Chromium	ND	0.00698	"	10	EF63009	06/29/06	07/06/06	EPA 6020A	
Arsenic	J [0.0106]	0.0170			"	n .	"	Ħ	
Selenium	ND	0.0300			"	м		77	
Silver	J [0.00191]	0.00405		*			π	"	
Cadmium	ND	0.00403	"						

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples

received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 13 of 23

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson Fax: (432) 687-0456

	Tot	al Metals by	EPA/	Standard	d Method	ls			
		Environn	nental I	ab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-18 (6F28014-13) Water									
Barium	0.0757	0.00489	mg/L	10	EF63009	06/29/06	07/06/06	EPA 6020A	
Lead	ND	0.00296	*	"		"	*1	**	
Dup 1 (6F28014-14) Water									
Calcium	2020	5.00	mg/L	500	EG60504	07/05/06	07/05/06	EPA 6010B	
Magnesium	766	0.250	-	250	۳	*	н		
Potassium	29.1	2.50		50		*	н	**	
Sodium	910	5.00	-	500	"	*	"	-	
Mercury	J [0.000130]	0.000250	-	1	EF63007	06/29/06	06/30/06	EPA 7470A	
Chromium	ND	0.00698	۳	10	EF63009	06/29/06	07/06/06	EPA 6020A	
Arsenic	J [0.00823]	0.0170		-	"	*	*	**	
Selenium	J [0.0196]	0.0300	"			π	н	"	
Silver	ND	0.00405	-		н	۳	*		
Cadmium	ND	0.00692	"	M	"	*		**	
Barium	0.105	0.00489	-	н	"				
Lead	ND	0.00296	•	"		*			
Dup 2 (6F28014-15) Water									
Calcium	496	0.500	mg/L	50	EG60504	07/05/06	07/05/06	EPA 6010B	
Magnesium	237	0.0500	۳	-	۳	n			
Potassium	25.6	2.50	-	"		n	*		
Sodium	1520	5.00	"	500	м	w			
Mercury	[0.0000900]	0.000250	*	1	EF63007	06/29/06	06/30/06	EPA 7470A	
Chromium	J [0.00576]	0.00698		10	EF63009	06/29/06	07/06/06	EPA 6020A	
Arsenic	J [0.0144]	0.0170		"	*	n.		"	
Selenium	J [0.0157]	0.0300		"	н		*	**	
Silver	ND	0.00405				"	"	"	

Environmental Lab of Texas

Cadmium

Barium

Lead

1

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

"

"

11

**

н

"

"

"

...

0.00692

0.00489

0.00296

"

"

ND

ND

0.0412

1

"

....

4 @ (13-0-4" *

3.4 A. 24

1. A. C.

differ a partie of

مالان والامراهد

an 1000 m

5 A.

- 2 -9 - 4

1.1

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson Fax: (432) 687-0456

Organics by GC - Quality Control

Environmental Lab of Texas

		Panarting		Spike	Source		%REC		RPD	
Analyte	Result	Reporting Limit	Units	Level	Source Result	%REC	Limits	RPD	Limit	Notes

Batch EF62914 - EPA 5030C (GC)

Blank (EF62914-BLK1)				Prepared: 06	5/29/06 A	nalyzed: 06	/30/06	
Benzene	ND	0.00100	mg/L					
Foluene	ND	0.00100	•					
Ethylbenzene	ND	0.00100	**					
Xylene (p/m)	ND	0.00100						
Xylene (0)	ND	0.00100	*					
Surrogate: a,a,a-Trifluorotoluene	41.9		ug/l	40.0		105	80-120	
Surrogate: 4-Bromofluorobenzene	34.2		"	40.0		85.5	80-120	
LCS (EF62914-BS1)				Prepared &	Analyzed:	06/29/06		
Benzene	0.0583	0.00100	mg/L	0.0500		117	80-120	
Toluene	0.0578	0.00100		0.0500		116	80-120	
Ethylbenzene	0.0541	0.00100	۳	0.0500		108	80-120	
Xylene (p/m)	0.119	0.00100	•	0.100		119	80-120	
Xylene (0)	0.0573	0.00100		0.0500		115	80-120	
Surrogate: a,a,a-Trifluorotoluene	40.2		ug/l	40.0		100	80-120	
Surrogate: 4-Bromofluorobenzene	42.4		"	40.0		106	80-120	
Calibration Check (EF62914-CCV1)				Prepared: 06	5/29/06 A	nalyzed: 06	/30/06	
Benzene	56.8	•	ug/l	50.0		114	80-120	
Toluene	55.1			50.0		110	80-120	
Ethylbenzene	57.9		"	50.0		116	80-120	
Xylene (p/m)	111		"	100		111	80-120	
Xylene (0)	56.2			50.0		112	80-120	
Surrogate: a,a,a-Trifluorotoluene	37.2		"	40.0		93.0	80-120	
Surrogate: 4-Bromofluorobenzene	40.7		"	40.0		102	80-120	
Matrix Spike (EF62914-MS1)	Sou	rce: 6F28011-	04	Prepared: 06	5/29/06 A	nalyzed: 06	/30/06	
Benzene	0.0557	0.00100	mg/L	0.0500	ND	111	80-120	
Toluene	0.0544	0.00100		0.0500	ND	109	80-120	
Ethylbenzene	0.0515	0.00100	•	0.0500	ND	103	80-120	
	0.0515							
Xylene (p/m)	0.112	0.00100	"	0.100	ND	112	80-120	
Xylene (p/tn) Xylene (o)		0.00100 0.00100		0.100 0.0500	ND ND	112 110	80-120 80-120	
	0.112		" " ug/l					

Environmental Lab of Texas

Constants. r

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson Fax: (432) 687-0456

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF62914 - EPA 5030C (GC)

Matrix Spike Dup (EF62914-MSD1)	Sou	rce: 6F28011-	04	Prepared: 0	6/29/06 A	nalyzed: 0	6/30/06		
Benzene	0.0555	0.00100	mg/L	0.0500	ND	111	80-120	0.00	20
Toluene	0.0548	0.00100		0.0500	ND	110	80-120	0.913	20
Ethylbenzene	0.0508	0.00100		0.0500	ND	102	80-120	0.976	20
Xylene (p/m)	0.114	0.00100	۳	0,100	ND	114	80-120	1.77	20
Xylene (0)	0.0563	0.00100		0.0500	ND	113	80-120	2.69	20
Surrogate: a,a,a-Trifluorotoluene	41.5		ug/l	40.0		104	80-120		
Surrogate: 4-Bromofluorobenzene	39.0		"	40.0		97.5	80-120		

Batch EF63019 - EPA 5030C (GC)

Blank (EF63019-BLK1)				Prepared & Anal	yzed: 06/30/06		
Benzene	ND	0.00100.0	mg/L				
Toluene	ND	0.00100					
Ethylbenzene	ND	0.00100	"				
Xylene (p/m)	ND	0.00100	Π				
Xylene (0)	ND	0.00100	"				
Surrogate: a,a,a-Trifluorotoluene	37.2		ug/l	40.0	93.0	80-120	
Surrogate: 4-Bromofluorobenzene	32.9		"	40.0	82.2	80-120	
LCS (EF63019-BS1)				Prepared & Anal	yzed: 06/30/06		
Benzene	0.0572	0.00100	mg/L	0.0500	114	80-120	
Toluene	0.0562	0.00100		0.0500	112	80-120	
Ethylbenzene	0.0548	0.00100	•	0.0500	110	80-120	
Xylene (p/m)	0.118	0.00100		0.100	118	80-120	
Xylene (o)	0.0571	0.00100	•	0.0500	114	80-120	
Surrogate: a,a,a-Trifluorotoluene	40.4		ug/l	40.0	101	80-120	
Surrogate: 4-Bromofluorobenzene	44.3		"	40.0	111	80-120	

Environmental Lab of Texas

we have a way

271-0, 43 43 10 V

Parahana

ana cisa

our bayaru

1. N. W.

4 AN 044

- 20

.....

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF63019 - EPA 5030C (GC)

Calibration Check (EF63019-CCV1)				Prepared: 06	6/30/06 A	nalyzed: 02	7/03/06			
Benzene	59.5		ug/l	50.0		119	80-120			
Toluene	59.9		"	50.0		120	80-120			
Ethylbenzene	55.6		н	50.0		111	80-120			
Xylene (p/m)	116		n	100		116	80-120			
Xylene (0)	56.9		ei	50.0		114	80-120			
Surrogate: a,a,a-Trifluorotoluene	45.4		н	40.0		114	80-120			
Surrogate: 4-Bromofluorobenzene	34.6		"	40.0		86.5	80-120			
Matrix Spike (EF63019-MS1)	Sou	rce: 6F30019-(01	Prepared: 06	6/30/06 A	nalyzed: 03	7/05/06			
Benzene	0.0562	0.00100	mg/L	0.0500	ND	112	80-120			
Toluene	0.0556	0.00100		0.0500	ND	111	80-120			
Ethylbenzene	0.0517	0.00100	•	0.0500	ND	103	80-120			
Xylene (p/m)	0.116	0.00100	*	0.100	ND	116	80-120			
Xylene (0)	0.0581	0.00100		0.0500	ND	116	80-120			
Surrogate: a,a,a-Trifluorotoluene	36.0		ug/l	40.0		90.0	80-120			
Surrogate: 4-Bromofluorobenzene	40.3		"	40.0		101	80-120			
Matrix Spike Dup (EF63019-MSD1)	Sou	rce: 6F30019-	01	Prepared: 00	6/30/06 A	nalyzed: 01	7/01/06			
Benzene	0.0532	0.00100	mg/L	0.0500	ND	106	80-120	5.50	20	
Toluene	0.0563	0.00100	۳	0.0500	ND	113	80-120	1.79	20	
Ethylbenzene	0.0517	0.00100	"	0.0500	ND	103	80-120	0.00	20	
Xylene (p/m)	0.112	0.00100	*	0.100	ND	112	80-120	3.51	20	
Xylene (0)	0.0564	0.00100	•	0.0500	ND	113	80-120	2.62	20	
Surrogate: a,a,a-Trifluorotoluene	40.6	- /11/	ug/l	40.0		102	80-120			

"

40.0

38.8

Environmental Lab of Texas

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

97.0

80-120

abia no au

- 3 705-05 - 92

1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 -

and share

in the second se

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF62902 - Filtration Preparation		<u> </u>								
Blank (EF62902-BLK1)				Prepared: (6/29/06 A	nalyzed: 06	/30/06			
Fotal Dissolved Solids	ND	5.00	mg/L							
Duplicate (EF62902-DUP1)	Sou	rce: 6F28009-	01	Prepared: ()6/29/06 A	nalyzed: 06	/30/06			
Fotal Dissolved Solids	4120	5.00	mg/L		4160			0.966	5	
Duplicate (EF62902-DUP2)	Sou	rce: 6F28014-	10	Prepared: (6/29/06 A	nalyzed: 06	/30/06			
Total Dissolved Solids	3900	5.00	mg/L		3800			2.60	5	
Batch EF62904 - General Preparation (Blank (EF62904-BLK1)	WetChem)			Prepared &	Analyzed:	06/29/06				
Total Alkalinity	ND	2.00	mg/L		<u> </u>			,		
LCS (EF62904-BS1)				Prepared &	Analyzed:	06/29/06				
Bicarbonate Alkalinity	218		mg/L	200		109	85-115			
Duplicate (EF62904-DUP1)	Sou	rce: 6F28014-	01	Prepared &	Analyzed:	06/29/06				
Total Alkalinity	251	2.00	mg/L		250			0.399	20	
Reference (EF62904-SRM1)				Prepared &	Analyzed:	06/29/06				
Total Alkalinity	97.0		tng/L	100		97.0	90-110			
Batch EF62911 - General Preparation (WetChem)	_								
Blank (EF62911-BLK1)				Prepared: ()6/29/06 A	nalyzed: 06	5/30/06			
Chloride	ND	0.500	mg/L	_						
Sulfate	ND	0.500								

Environmental Lab of Texas

1. 1.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF62911 - General Preparation (V	WetChem)									
LCS (EF62911-BS1)				Prepared:	06/29/06 A	nalyzed: 06	5/30/06			
Sulfate	8.85		mg/L	10.0		88.5	80-120			
Chloride	10.2		۳	10.0		102	80-120			
Calibration Check (EF62911-CCV1)				Prepared:	06/29/06 A	nalyzed: 06	5/30/06			
Chloride	9.99		mg/L	10.0		99.9	80-120		-	
Sulfate	10.4		*	10.0		104	80-120			
Duplicate (EF62911-DUP1)	Sou	rce: 6F28014-	01	Prepared:	06/29/06 A	nalyzed: 06	5/30/06			
Sulfate	403	12.5	mg/L		406			0.742	20	
Chloride	804	12.5	*		808			0.496	20	
Duplicate (EF62911-DUP2)	Sou	rce: 6F28014-	08	Prepared:	06/29/06 A	nalyzed: 06	5/30/06			
Chloride	274	10.0	mg/L		279			1.81	20	
Sulfate	115	10.0	"		115			0.00	20	
Matrix Spike (EF62911-MS1)	Sou	rce: 6F28014-	01	Prepared:	06/29/06 A	nalyzed: 06	5/30/06			
Chloride	1090	12.5	mg/L	250	808	113	80-120			
Sulfate	605	12.5		250	406	79.6	75-125			
Matrix Spike (EF62911-MS2)	Sou	rce: 6F28014-	08	Prepared:	06/29/06 A	nalyzed: 06	5/30/06			
Chloride	480	10.0	mg/L	200	279	100	80-120			
Sulfate	257	10.0	ч	200	115	71.0	75-125			

Environmental Lab of Texas

1.4.1.00

. .

New Jord

1. A .

a, V

e E e e

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF63007 - EPA 7470A		· · · · · ·								
Blank (EF63007-BLK1)				Prepared: 0)6/29/06 Ar	alyzed: 06	5/30/06			
Mercury	ND	0.000250	mg/L					-		
LCS (EF63007-BS1)				Prepared: 0)6/29/06 At	nalyzed: 06	5/30/06			
Mercury	0.00106	0.000250	mg/L	0.00100		106	85-115			
LCS Dup (EF63007-BSD1)				Prepared: 0)6/29/06 At	nalyzed: 06	5/30/06			
Mercury	0.00108	0.000250	mg/L	0.00100		108	85-115	1.87	20	
Calibration Check (EF63007-CCV1)				Prepared: 0)6/29/06 At	nalyzed: 06	6/30/06			
Mercury	0.00110		mg/L	0,00100		110	90-110			
Matrix Spike (EF63007-MS1)	Sou	rce: 6F28014-4	01	Prepared: 0)6/29/06 At	nalvzed [,] 06	5/30/06			
Mercury	0.000890	0.000250	mg/L	0.00100	0.000130	76.0	75-125			
Blank (EF63009-BLK1)				Prepared: 0)6/29/06 Ar	nalyzed: 07	7/06/06			
Chromium	ND	0.000698	mg/L	Prepared. 0	0/29/00 AI	alyzed. 07	/00/00		·····	
Arsenic	ND	0.00170	"							
Selenium	ND	0.00300	n							
Silver	ND	0.000405								
Cadmium	ND	0.000692								
Barium	ND	0.000489	"							
	ND ND	0.000489 0.000296								
Barium Lead LCS (EF63009-BS1)				Prepared: 0)6/29/06 Ai	nalyzed: 07	7/06/06			
Lead			" " mg/L	Prepared: 0 0.200	06/29/06 At	nalyzed: 07 99,0	7/06/06 85-115			
Lead LCS (EF63009-BS1)	ND	0.000296	" " mg/L	· · ·	06/29/06 At					
Lead LCS (EF63009-BS1) Chromium	ND 0.198	0.000296	-	0.200	06/29/06 At	99.0	85-115			
Lead LCS (EF63009-BS1) Chromium Arsenic	ND 0.198 0.752	0.000296	-	0.200)6/29/06 At	99.0 94.0	85-115 85-115			
Lead LCS (EF63009-BS1) Chromium Arsenic Selenium	ND 0.198 0.752 0.410	0.000296 0.000698 0.00170 0.00300	-	0.200 0.800 0.400	06/29/06 At	99.0 94.0 102	85-115 85-115 85-115			
Lead LCS (EF63009-BS1) Chromium Arsenic Selenium Silver	ND 0.198 0.752 0.410 0.100	0.000296 0.000698 0.00170 0.00300 0.000405	-	0.200 0.800 0.400 0.100	06/29/06 At	99.0 94.0 102 100	85-115 85-115 85-115 85-115			

Environmental Lab of Texas

1.7

مريحة فيدام

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF63009 - EPA 200.8				··· · · · · · · · · · · · · · · · · ·						
LCS Dup (EF63009-BSD1)				Prepared: (06/29/06 Ar	alyzed: 07	7/06/06			
Chromium	0.199	0.000698	mg/L	0.200		99.5	85-115	0.504	20	
Arsenic	0.737	0.00170	H	0.800		92.1	85-115	2.01	20	
Selenium	0.402	0.00300	"	0.400		100	85-115	1.97	20	
Silver	0.0986	0.000405	"	0.100		98.6	85-115	1.41	20	
Cadmium	0.196	0.000692		0.200		98.0	85-115	0.509	20	
Barium	0.206	0.000489	"	0.200		103	85-115	1.96	20	
Lead	0.985	0.000296		1.10		89.5	85-115	0.203	20	
Calibration Check (EF63009-CCV1)				Prepared: ()6/29/06 Ar	alyzed: 07	7/06/06			
Chromium	0.0501		mg/L	0.0500		100	90-110			
Arsenic	0.0512		۳	0.0500		102	90-110			
Selenium	0.0500			0.0500		100	90-110			
Silver	0.0507		-	0.0500		101	90-110			
Cadmium	0.0508		۳	0.0500		102	90-110			
Barium	0.0515		*	0.0500		103	90-110			
Lead	0.0501			0.0500		100	90-110			
Matrix Spike (EF63009-MS1)	Sou	ırce: 6F28014-	01	Prepared: ()6/29/06 Ar	alyzed: 07	7/06/06			
Chromium	0.420	0.00698	mg/L	0.200	0.194	113	75-125			
Arsenic	0.785	0.0170	"	0.800	0.00710	97.2	75-125			
Selenium	0.416	0.0300		0.400	0.0145	100	75-125			
Silver	0.0951	0.00405	"	0.100	ND	95.1	75-125			
Cadmium	0.202	0.00692	•	0.200	ND	101	75-125			
Barium	0.280	0.00489	-	0.200	0.276	2.00	75-125			M
Lead	1.10	0.00296	"	1.10	ND	100	75-125			
Matrix Spike Dup (EF63009-MSD1)	Sou	ırce: 6F28014-	01	Prepared: (06/29/06 Ar	alyzed: 02	7/06/06			
Chromium	0.419	0.00698	mg/L	0.200	0.194	112	75-125	0.238	20	
Arsenic	0.786	0.0170	"	0.800	0.00710	97.4	75-125	0.127	20	
Selenium	0.431	0.0300	"	0.400	0.0145	104	75-125	3.54	20	
Silver	0.0942	0.00405	۳	0.100	ND	94.2	75-125	0.951	20	
Cadmium	0.201	0.00692	-	0.200	ND	100	75-125	0.496	20	
Barium	0.278	0.00489		0.200	0.276	1.00	75-125	0.717	20	М
Lead	1.10	0.00296		1.10	ND	100	75-125	0.00	20	

Larson & Associates, Inc.		Pr	oiect: Ta	rga Midstrear	n/ Eunice N	1id. Plant			Fax: (432)	687-0456
P.O. Box 50685		Project Nu	5							
Midland TX, 79710		Project Mar								
Т	otal Metals by				- Qualit	ty Contr	ol	·····		
		Environm	ental I	lab of Tey	as	-				
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF63009 - EPA 200.8										
Post Spike (EF63009-PS1)	Sour	rce: 6F28014-	01	Prepared: 06/29/06 Analyzed: 07/06/06						
Barium	10.7	0.0244	mg/L	10.0	0.276	104	85-115			
Batch EG60504 - 6010B/No Digestion										
Blank (EG60504-BLK1)	Prepared & Analyzed: 07/05/06									
Calcium	ND	0.0100	mg/L							
Magnesium	ND	0.00100	**							
Potassium	ND	0.0500								
Sodium	ND	0.0100	*							
Calibration Check (EG60504-CCV1)				Prepared &	Analyzed:	07/05/06				
Calcium	1.95		mg/L	2.00		97.5	85-115			
Magnesium	2.14		**	2.00		107	85-115			
Potassium	1.99			2.00		99.5	85-115			
Sodium	1.94		۳	2.00		97.0	85~115			
Duplicate (EG60504-DUP1)	Sou	rce: 6F28014-	01	Prepared &	Analyzed:	07/05/06				
Calcium	290	0.500	mg/L		288			0.692	20	
Magnesium	127	0.0500			124			2.39	20	
Potassium	12.9	0.500			13.0			0.772	20	
Sodium	228	2.00	н		231			1.31	20	

Environmental Lab of Texas

of Bright and

Sand in.

A U.L. Caller

ar o 200

A Barrie Praf

1 m - - 10

1. 2. Go for

20 an C. 10 an

2.1 cm 6.5

Set, with w

Larson &	Associates, Inc.	Project: Targa Midstream/ Eunice Mid. Plant	Fax: (432) 687-0456					
P.O. Box	50685	Project Number: 2-0103						
Midland	FX, 79710	Project Manager: Mark Larson						
		Notes and Definitions						
S-07	Recovery outside Laboratory histor	rical or method prescribed limits.						
MS-3	the serial dilution sample was within 75-125% recovery, therefore data accepted based on method requirements.							
J	Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).							
DET	Analyte DETECTED							
ND	Analyte NOT DETECTED at or above	the reporting limit						
NR	Not Reported							
dry	Sample results reported on a dry weigh	t basis						
RPD	Relative Percent Difference							
LCS	Laboratory Control Spike							
MS	Matrix Spike							
Dup	Duplicate							

Report Approved By:

Raland K.Julis

7/10/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 23 of 23

Turké Miderreenn MARIL LARSCIN PROJECT NOME: PROJECT NAME: PROJECT PROJECT NAME: PRUJECT PROJECT NAME: PRUJECT PROJECT NAME: PRUJECT NAME: PRUJECT PROJECT NAME: PRUJECT NAME: PRUJEC	X LOLYF WELGHR X LOLYF WELGHR X GALIOMS X GALIOMS X GALIOMS	ON & Marine Cicites, In mental convita iorienteld, St
CTNO:: -0103 FUNE: PROJECT NAME: -0103 FUNE Cas Plant -0103 FUNE: FUNE Cas Plant -0103 FUNE: AMPLE IDENTIFICATION -0104 X MW-1 -0531 MW-1 -1 0531 MW-1 -1 0531 MW-1 -1 0532 MW-1 -1 0532 MW-1 -1 1112 MW-2 -1 1112 MW-2 -1 12 MW-12 -1 12 MW-12 -1 12 MW-12 -1 12 MW-12 -1 0532	X PLDS X PLIDNS X PLIDNS X BLEX	A GrSON & Inc. Fa Environmental Convutants 07 N. Marienfeld, Ste. 202 LdB. I.D.
-0103 1 or 1 148. PO# 1 035 MW -1 1 112 MW -1 1 112 MW -6 1 144 MW -	X LDZ X HAIDHZ X HAIDHZ X CHLIOMZ X BLEX	ottants Ste, 202
1 0f Ldb. P0 # M'' M''' M''' M'' M''' M''' M''' M'' M''' M''' M'''' M''' M''''	X JD2 X JMIDNR X JMIDNR X JZQX	Ste, 202
AND AND AND 1 Corrad X MW-1 0 Corrad X MW-2 0 MW-1 MW-2 0 MW-1 MW-3 1 10355 MW-4 1 MW-5 MW-6 1 11 MW-5 1 11 MW-5 0 0 22 0 0 22 0 0 22 0 MW-5 MW-5 MW-6 MW-6 MW-7 0 0 0 0 0 0 0 0 0 MW-7 0 MW-7 0 0 0	X LDS X White X White X White X CALIC	
1 0720 0821 0720 0755 1035 1035 1112 112 112 114 112 1144 Mw -4 Mw -4 Mw -4 Mw -4 Mw -4 Mw -5 Mw -6 Mw -6 Mw -6 Mw -12 Mw -12 Mw -12 0902 0902 1042 Mw -12 Mw -12 M	4 X X X X X X X X X X X X X X X X X X X	NUMBER II.E. FILTERED, UNFILTERED, PRESERVED, UNPRESERVED, (LAB USE ONLY) GRAB COMPOSITE)
0920 1925 1035 1112 112 112 114 112 114 112 114 112 114 114		[6F28014-0]
092.0 Mwu-1 0955 Mwu- 103.5 Mwu- 111.2 Mwu- 1144 Mwu- 1325 Mwu- 09.838 Mwu- 09.838 Mwu- 1.232 Mwu- 1.232 Mwu- 1.232 Mwu- 1.232 Mwu-		4
1112 1035 1144 1144 112 1325 86329 0922 0922 1042 1042 1042 1042 1042 1042 1042 10		Sa
1035 MW- 1112 MW- 1144 MW- 1325 MW- 0922 MW- 0952 MW- 1042 MW- 1232 MW- 1232 MW-		40
1112 MWU- 1325 MWU- 1325 MWU- 0902 MWU- 0922 MWU- 1042 MWU- 1232 MUU- 1232 MUU- 1232 MUU- 1232 MUU-		40
1144 MW- 1325 MW- 80838 MW- 0902 MW- 0902 MW- 1042 MW- 1232 MW- 1232 MW- 1232 MW-		00
1325 MW- 80838 MW- 0922 MW- 1042 MMW- 1232 MMW- 1232 MMW- 1232 DUP1		101
B 0838 - MW- 0902 - MW- 0920 - MW- 1042 - MW- 1232 - MW- 1232 - DUP 2 - DUP 2		Sa-
0902 0902 muu- 0922 mmu- 1042 1042 mmu- 1232 muu- 1232 m		M
- mm Mw -		-10
- mm Dup 2 Dup 2		
		121
		10
		19
- Due 2		
		-15-46
SAMPLED BY: (Signature) DATE: 6/2.8 RELINQUISHED	RELINQUISHED BY: (Signature) DATE: TIME:	RECEIVED BY: (Signature) DATE: TIME:
RECEIVED	BY: (Signature) DATE:	SAMPLE SHIPPED BY: (Circle)
XCC TIME. LECS	TIME	BUS A
comments:	TURNAROUND TIME NEEDED	D HAND DELIVERED UPS OTHER: MUNTEDECENTING LAP
		ا. ا حد
RECEIVING LABORATORY:	RECEIVED BY: (Signature)	LA AFTER RECEIPT)
STATE: ZIP PHONE	DATE: LECZIDLE TIME: LECC	• •
DITION WHEN RECEIVED:	LA CONTACT PERSON:	SAMPLE TYPE: HOU HUR

and the second

and a property

وهدائه ملاحمتها

a and the second

1. all 1. 10 10

N to Kar

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	Larson
Date/Time:	10/28/01e 11:05
Order #:	6F28014
Initials:	CK

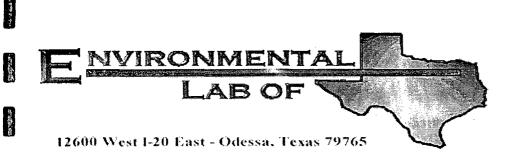
Sample Receipt Checklist

Temperature of container/cooler?	Yes No	1.0 CI
Shipping container/cooler in good condition?	CES NO	
Custody Seals intact on shipping container/cooler?	Yes No	Not present
Custody Seals intact on sample bottles?	Yes Na	Not present 1
Chain of custody present?	VES NO	
Sample Instructions complete on Chain of Custody?	(TES) NO	
Chain of Custody signed when relinquished and received?	Res No	
Chain of custody agrees with sample label(s)	(Tes) No	
Container labels legible and intact?	VES NO	
Sample Matrix and properties same as on chain of custody?	Kes No	
Samples in proper container/bottle?	MES NO	
Samples properly preserved?	I CED NO	
Sample bottles intact?	XE9 NO	
Preservations documented on Chain of Custody?	1 Yes I No	1
Containers documented on Chain of Custody?	YER I NO	i
Sufficient sample amount for indicated test?	YES NO	
All samples received within sufficient hold time?	Ves No	}
VOC samples have zero headspace?	Ces No	Nct Apelicable

Other observations:

 Variance Documentation:

 Contact Person: -_____ Date/Time: _____ Contacted by: _____



Regarding:

Corrective Action Taken:

چهد و برم

+ in surger

o**gi‡ ap 7 u**at

0~~\$? + 5

o i speciale

42 CE - 484

an antique

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Location: None Given

Lab Order Number: 6L15007

Report Date: 01/02/07

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

. 4. . 3. . 4

2 2.2 GR

2.45 di 1942

See 51.20

warne De

S. S. Grandstran

Anon bee

AR - MOD 61

the second

las .m.

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson Fax: (432) 687-0456

ANALYTICAL REPORT FOR SAMPLES

	······			
Sample ID	Laboratory [D	Matrix	Date Sampled	Date Received
MW-I	6L15007-01	Water	12/05/06 11:30	12-15-2006 09:35
MW-7	6L15007-02	Water	12/05/06 12:20	12-15-2006 09:35
MW-8	6L15007-03	Water	12/05/06 13:00	12-15-2006 09:35
MW-9	6L15007-04	Water	12/05/06 13:45	12-15-2006 09:35
MW-10	6L15007-05	Water	12/05/06 14:15	12-15-2006 09:35
MW-11	6L15007-06	Water	12/05/06 14:40	12-15-2006 09:35
MW-14	6L15007-07	Water	12/06/06 09:00	12-15-2006 09:35
MW-4	6L15007-08	Water	12/06/06 10:00	12-15-2006 09:35
MW-3	6L15007-09	Water	12/06/06 10:40	12-15-2006 09:35
MW-13	6L15007-10	Water	12/06/06 11:10	12-15-2006 09:35
MW-12	6L15007-11	Water	12/08/06 09:10	12-15-2006 09:35
MW-18	6L15007-12	Water	12/08/06 09:40	12-15-2006 09:35
MW-20	6L15007-13	Water	12/08/06 10:40	12-15-2006 09:35
MW-19	6L15007-14	Water	12/08/06 11:55	12-15-2006 09:35
MW-15	6L15007-15	Water	12/08/06 12:40	12-15-2006 09:35
MW-6	6L15007-16	Water	12/08/06 13:50	12-15-2006 09:35
MW-5	6L15007-17	Water	12/12/06 09:30	12-15-2006 09:35
MW-16	6L15007-18	Water	12/12/06 10:30	12-15-2006 09:35
DUP #1	6L15007-19	Water	12/08/06 00:00	12-15-2006 09:35
DUP #2	6L15007-20	Water	12/08/06 00:00	12-15-2006 09:35
DUP #3	6L15007-21	Water	12/12/06 00:00	12-15-2006 09:35
DUP #4	6L15007-22	Water	12/12/06 00:00	12-15-2006 09:35

2.19 . 40.00

States -

1. A. 1. 1. 1. 1.

#offer:

4000idto 425 24

279631 740

alera_{la} que sú

a gan ana a

A. A. Barne M

ing an arts

and a second

2 mg 10 mg 20

1. 8 A 4 4

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-10 (6L15007-05) Water								·	
Benzene	ND	0.00100	mg/L	1	EL61809	12/18/06	12/18/06	EPA 8021B	
Toluene	ND	0.00100	**	"	H			**	
Ethylbenzene	ND	0.00100	"	"	"	"		"	
Xylene (p/m)	ND	0.00100	•	11	n	"	n	n	
Xylene (0)	ND	0.00100	**	n	"	"	"	**	
Surrogate: a,a,a-Trifluorotoluene		99.2 %	80-	120	"	"	"	15	
Surrogate: 4-Bromofluorobenzene		82.5 %	80-	120	"	"	"	"	
MW-11 (6L15007-06) Water									
Benzene	5.11	0.100	mg/L	100	EL61809	12/18/06	12/18/06	EPA 8021B	
Toluene	ND	0.100	**	"	"	"	"	"	
Ethylbenzene	ND	0.100	"	"	"	**	"		
Xylene (p/m)	J [0.0546]	0.100	"	"	n	"	н		
Xylene (0)	ND	0.100	11	"		"	н	•	
Surrogate: a,a,a-Trifluorotoluene		107 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.0 %	80-	120	"	н	"	n	
MW-14 (6L15007-07) Water	•								
Benzene	0.0271	0.0100	mg/L	10	EL61908	12/19/06	12/19/06	EPA 8021B	
Toluene	J [0.00707]	0.0100	"	"	11		"	"	
Ethylbenzene	J [0.00394]	0.0100	"	"	и	"	"	n	
Xylene (p/m)	0.0175	0.0100	"		"	"	"	"	
Xylene (0)	J [0.00831]	0.0100	11	"	"		π	"	
Surrogate: a,a,a-Trifluorotoluene		94.5 %		120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.0 %	80-	120	"	"	"	"	
MW-4 (6L15007-08) Water			_						
Benzene	J [0.000519]	0.00100	mg/L	1	EL61908	12/19/06	12/19/06	EPA 8021B	
Toluene	J [0.000746]	0.00100	"	55	"	я		n	
Ethylbenzene	J [0.000217]	0.00100	п	**	u	"	n		
Xylene (p/m)	0.00140	0.00100	"	"	"		"	"	
Xylene (0)	J [0.000766]	0.00100	"	n	n	11	"	"	
Surrogate: a,a,a-Trifluorotoluene		99.2 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.2 %	80	120	"	"	"	"	

Larson & Associates, Inc. P.O. Box \$0685 Midland TX, 79710

20.000

ملاد کې هدي ۲

. oft, 20 ve

- 803 -

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-3 (6L15007-09) Water	······································								
Benzene	0.130	0.0200	mg/L	20	EL61908	12/19/06	12/19/06	EPA 8021B	
Toluene	J [0.0116]	0.0200	"	11		14		"	
Ethylbenzene	0.0542	0.0200	"	"		"	11	"	
Xylene (p/m)	0.0532	0.0200	"		"		"	**	
Xylene (0)	J [0.0100]	0.0200	"	"		"		**	
Surrogate: a,a.a-Trifluorotoluene		92.8 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.5 %	80-	120	"	"	"	"	
MW-13 (6L15007-10) Water									
Benzene	ND	0.00100	mg/L	1	EL61908	12/19/06	12/19/06	EPA 8021B	•,• <u> </u>
Toluene	ND	0.00100	"	"	•	"	"	**	
Ethylbenzene	ND	0.00100		м	•	"	"	16	
Xylene (p/m)	ND	0.00100	"	"	n	"	"	**	
Xylene (0)	ND	0.00100	"	n	"		"	"	
Surrogate: a,a,a-Trifluorotoluene		91.8 %	80-	120	'n	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.2 %	80-	120	"	"	"	"	
MW-12 (6L15007-11) Water						•			
Benzene	ND	0.00100	mg/L	1	EL61908	12/19/06	12/19/06	EPA 8021B	<u></u>
Toluene	ND	0.00100	"		"	11	"	**	
Ethylbenzene	ND	0.00100	"	н	"	"	π	.,	
Xylene (p/m)	ND	0.00100	14	*	۲	"		11	
Xylene (o)	ND	0.00100		"	**	11	11	m	
Surrogate: a,a,a-Trifluorotoluene		98.5 %	80-	120	"	"	"		
Surrogate: 4-Bromofluorobenzene		97.0 %	80-		17	"	"	"	
MW-18 (6L15007-12) Water									
Benzene	ND	0.00100	mg/L	1	EL61908	12/19/06	12/19/06	EPA 8021B	
Toluene	ND	0.00100		"	"	"	п	"	
Ethylbenzene	ND	0.00100	**	"		"	"	11	
Xylene (p/m)	ND	0.00100	Ħ	н	"	"	u	11	
Xylene (0)	ND	0.00100	"	"	**	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		102 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	80-	120	"	"	"	"	

Environmental Lab of Texas

<u>____</u>

.

31.02.04.40

an wett

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

Fax: (432) 687-0456

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-20 (6L15007-13) Water									
Benzene	ND	0.00100	mg/L	1	EL61908	12/19/06	12/19/06	EPA 8021B	
Foluene	ND	0.00100		"	"	"	"		
Ethylbenzene	ND	0.00100	"		"	"			
Kylene (p/m)	ND	0.00100	"	"		"	"		
Kylene (o)	ND	0.00100	**	u	".	**	*1	н	
Surrogate: a,a,a-Trìfluorotoluene		103 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.0 %	80-	120	"	"	"	"	
MW-19 (6L15007-14) Water									
Benzene	ND	0.00100	mg/L	1	EL61908	12/19/06	12/19/06	EPA 8021B	
Foluene	ND	0.00100	**		"	"	"	"	
Ethylbenzene	ND	0.00100	**		"	"	**		
Xylene (p/m)	ND	0.00100	n	"	"	и	"		
Kylene (0)	ND	0.00100	н	"	"	**	π		
Surrogate: a.a.a-Trifluorotoluene		98.5 %	80-	120	"	"	"	11	
Surrogate: 4-Bromofluorobenzene		83.2 %	80-	120	"	"	"	"	
MW-15 (6L15007-15) Water									
Benzene	ND	0.00100	mg/L	1	EL61908	12/19/06	12/20/06	EPA 8021B	
Toluene	0.00121	0.00100	"	n		"	"	"	
Ethylbenzene	J [0.000355]	0.00100	"	"	"	"	n	"	
Xylene (p/m)	0.00196	0.00100	**	"	и	"	"	"	
Xylene (0)	J [0.000707]	0.00100	"	"	"	51	"	"	
Surrogate: a,a,a-Trifluorotoluene		110 %	80-	120	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		107 %	80-	120	"	"	и	N	
MW-6 (6L15007-16) Water									
Benzene	0.335	0.00500	mg/L	5	EL61908	12/19/06	12/20/06	EPA 8021B	
Toluene	J [0.00250]	0.00500	"	"	"	"	"	"	
Ethylbenzene	0.0597	0.00500	t 1	"		"	"	11	
Xylene (p/m)	J [0.00307]	0.00500	"	. "	*	"	"	"	
Xylene (o)	ND	0.00500	"	"	n	rr -	11	"	
Surrogate: a,a,a-Trifluorotoluene		91.2 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.0 %	80-	120	"	"	n	"	

Environmental Lab of Texas

. . .

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

Tel Strate & 1

0250

-90 GE

a grant

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-5 (6L15007-17) Water									_
Benzene	ND	0.00100	mg/L	1	EL61908	12/19/06	12/20/06	EPA 8021B	
Toluene	ND	0.00100	"	"	"	"	"	,,	
Ethylbenzene	ND	0.00100	**	11	"	"	"	n	
Xylene (p/m)	ND	0.00100	"	"	n			"	
Xylene (o)	ND	0.00100	77	"	"	11	n	"	
Surrogate: a,a,a-Trifluorotoluene		109 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		80.8 %	80-,	120	"	"	. "	м	
MW-16 (6L15007-18) Water									
Benzene	ND	0.00100	mg/L	1	EL61908	12/19/06	12/20/06	EPA 8021B	
Toluene	ND	0.00100	**		"	"	"	"	
Ethylbenzene	ND	0.00100	"	"	"	"	"	"	
Xylene (p/m)	ND	0.00100	"	п	n	"	м	*1	
Xylene (o)	ND	0.00100		"	"	× 11	n	**	
Surrogate: a,a,a-Trifluorotoluene		95.8 %	80	120	н	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.0 %	80	120	"	"	"	"	
DUP #1 (6L15007-19) Water						•			
Benzene	ND	0.00100	mg/L	1	EL61908	12/19/06	12/20/06	EPA 8021B	
Toluene	ND	0.00100	11	11	"	"	н	*1	
Ethylbenzene	ND	0.00100	14	"	••	"	. "	41	
Xylene (p/m)	ND	0.00100		"	"	"	"		
Xylene (o)	ND	0.00100		**	"	π	"	"	
Surrogate: a,a,a-Trifluorotoluene		94.8 %	80	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	80	120	"	"	"	"	
DUP #2 (6L15007-20) Water									
Benzene	ND	0.00100	mg/L	1	EL61908	12/19/06	12/20/06	EPA 8021B	New 2
Toluene	ND	0.00100	**		"	"	"	-	
Ethylbenzene	ND	0.00100	"	"	"	"	"		
Xylene (p/m)	ND	0.00100	"	"	**	11	"	u	
Xylene (o)	ND	0.00100	**	**	"	"	n	"	
Surrogate: a,a,a-Trifluorotoluene		98.0 %	80	120	"	"	"	"	-
Surrogate: 4-Bromofluorobenzene		96.8 %	80-	120	"	n	"	"	

Environmental Lab of Texas

à et. 1400.

0-6-2 B. S.

2.20.04

ind distant

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DUP #3 (6L15007-21) Water									
Benzene	ND	0.00100	mg/L	1	EL61908	12/19/06	12/20/06	EPA 8021B	
Toluene	ND	0.00100	"	н	**	"	н	47	
Ethylbenzene	ND	0.00100	"	"	"	"	"	19	
Xylene (p/m)	ND	0.00100		n		"	"	n	
Xylene (0)	ND	0.00100	.,	'n	n	"	rr	"	
Surrogate: a,a,a-Trifluorotoluene		99.5 %	80-1	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.8 %	80-1	120	n	"	11	"	
DUP #4 (6L15007-22) Water									
Benzene	ND	0.00100	mg/L	1	EL61908	12/19/06	12/20/06	EPA 8021B	
Toluene	ND	0.00100	"	"		**	"		
Ethylbenzene	ND	0.00100	n	n	**	"	N	**	
Xylene (p/m)	ND	0.00100	"	11	π	"	n	**	
Xylene (o)	ND	0.00100	"	"	n	"	n	n	
Surrogate: a,a,a-Trifluorotoluene		88.5 %	80-1	120	"	"	'n	"	
Surrogate: 4-Bromofluorobenzene		98.8 %	80-1	120	"	"	"	n	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 37

A. 2.8".

marian at a

an parts i a

Ap days

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (6L15007-01) Water					,			<u>+</u>	
Total Alkalinity	392	4.00	mg/L	2	EL61901	12/19/06	12/19/06	EPA 310.1M	Ê
Chloride	662	20.0	**	40	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	1920	10.0	"	1	EL61801	12/15/06	12/18/06	EPA 160.1	O-04
Sulfate	402	20.0	"	40	EL62107	12/21/06	12/27/06	EPA 300.0	
MW-7 (6L15007-02) Water	<u></u>	·							
Total Alkalinity	388	4.00	mg/L	2	EL61901	12/19/06	12/19/06	EPA 310.1M	B
Chloride	202	12.5	"	25	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	1150	10.0	"	1	EL61801	12/15/06	12/18/06	EPA 160.1	O-04
Sulfate	258	12.5	"	25	EL62107	12/21/06	12/27/06	EPA 300.0	
MW-8 (6L15007-03) Water									
Total Alkalinity	260	4.00	mg/L	2	EL61901	12/19/06	12/19/06	EPA 310.1M	E
Chloride	588	12.5	"	25	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	1220	10.0	".	1	EL61801	12/15/06	12/18/06	EPA 160.1	O-04
Sulfate	155	12.5	H	25	EL62107	12/21/06	12/27/06	EPA 300.0	
MW-9 (6L15007-04) Water									•
Total Alkalinity	376	4.00	mg/L	2	EL61901	12/19/06	12/19/06	EPA 310.1M	E
Chloride	45.7	5.00	"	10	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	564	10.0	"	1	EL61801	12/15/06	12/18/06	EPA 160.1	O-04
Sulfate	63.5	5.00	11	10	EL62107	12/21/06	12/27/06	EPA 300.0	
MW-10 (6L15007-05) Water									
Total Alkalinity	160	4.00	mg/L	2	EL61901	12/19/06	12/19/06	EPA 310.1M	E
Chloride	529	12.5	- 11	25	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	1520	10.0	"	1	EL61801	12/15/06	12/18/06	EPA 160.1	O-04
Sulfate	65.6	12.5	"	25	EL62107	12/21/06	12/27/06	EPA 300.0	
MW-11 (6L15007-06) Water									
Total Alkalinity	262	4.00	mg/L	2	EL61901	12/19/06	12/19/06	EPA 310.1M	I
Chloride	29.0	5.00	"	10	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	338	10.0	"	1	EL61801	12/15/06	12/18/06	EPA 160.1	· O-04
Sulfate	5.86	5.00	"	10	EL62107	12/21/06	12/27/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

.

migan, Jan Ja

the star among of

V. Same

%

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Fax: (432) 687-0456

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Project Manager: Mark Larson

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-14 (6L15007-07) Water									
Total Alkalinity	550	20.0	mg/L	10	EL61901	12/19/06	12/19/06	EPA 310.1M	
Chloride	8770	125	"	250	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	14000	10.0	"	1	EL61801	12/15/06	12/18/06	EPA 160.1	O-04
Sulfate	311	125	11	250	EL62107	12/21/06	12/27/06	EPA 300.0	
MW-4 (6L15007-08) Water									
Total Alkalinity	930	20.0	mg/L	10	EL61901	12/19/06	12/19/06	EPA 310.1M	E
Chloride	259	25.0	14	50	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	3100	10.0	"	1	EL61801	12/15/06	12/18/06	EPA 160.1	O-04
Sulfate	1230	25.0	"	50	EL62107	12/21/06	12/27/06	EPA 300.0	
MW-3 (6L15007-09) Water									
Total Alkalinity	680	20.0	mg/L	10	EL62009	12/19/06	12/19/06	EPA 310.1M	F
Chloride	1340	25.0	"	50	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	2700	10.0	"	1	EL61801	12/15/06	12/18/06	EPA 160.1	O-04
Sulfate	486	25.0	"	50	EL62107	12/21/06	12/27/06	EPA 300.0	
MW-13 (6L15007-10) Water	· .						101		
Total Alkalinity	320	20.0	mg/L	10	EL62009	12/19/06	12/19/06	EPA 310.1M	F
Chloride	6150	100	11	200	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	11700	10.0	"	1	EL61801	12/15/06	12/18/06	EPA 160.1	O-0-
Sulfate	970	100	"	200	EL62107	12/21/06	12/27/06	EPA 300.0	
MW-12 (6L15007-11) Water									
Total Alkalinity	280	20.0	mg/L	10	EL62009	12/19/06	12/19/06	EPA 310.1M	1
Chloride	1540	25.0	"	50	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	3240	10.0	*	1	EL61801	12/15/06	12/18/06	EPA 160.1	O-0
Sulfate	709	25.0	11	50	EL62107	12/21/06	12/27/06	EPA 300.0	
MW-18 (6L15007-12) Water		· · · · · · · · · · · · · · · · · · ·							
Total Alkalinity	490	20.0	mg/L	10	EL62009	12/19/06	12/19/06	EPA 310.1M	1
Chloride	2910	50.0	н	100	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	5750	10.0	"	1	EL61801	12/15/06	12/18/06	EPA 160.1	O-0
Sulfate	300	50.0	**	100	EL62107	- 12/21/06	12/27/06	EPA 300.0	

Environmental Lab of Texas

9. Gage

an gha ing

A 10 10 10-10-10

1. CB +

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Project Manager: Mark Larson

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-20 (6L15007-13) Water							·		
Total Alkalinity	580	20.0	mg/L	10	EL62009	12/19/06	12/19/06	EPA 310.1M	l
Chloride	2110	50.0	**	100	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	4820	10.0	*	1	EL61801	12/15/06	12/18/06	EPA 160.1	
Sulfate	564	50.0	"	100	EL62107	12/21/06	12/27/06	EPA 300.0	
MW-19 (6L15007-14) Water									
Total Alkalinity	390	20.0	mg/L	10	EL62009	12/19/06	12/19/06	EPA 310.1M	I
Chloride	4510	100	"	200	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	7100	10.0	**	1	EL61801	12/15/06	12/18/06	EPA 160.1	
Sulfate	593	100	۳	200	EL62107	12/21/06	12/27/06	EPA 300.0	
MW-15 (6L15007-15) Water									
Total Alkalinity	440	20.0	mg/L	10	EL62009	12/19/06	12/19/06	EPA 310.1M	I
Chloride	834	25.0	H	50	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	2600	10.0	**	1	EL61801	12/15/06	12/18/06	EPA 160.1	
Sulfate	539	25.0	n	50	EL62107	12/21/06	12/27/06	EPA 300.0	
MW-6 (6L15007-16) Water									
Total Alkalinity	710	20.0	mg/L	10	EL62009	12/19/06	> 12/19/06	EPA 310.1M	I
Chloride	244	12.5	"	25	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	1370	10.0	11	1	EL61801	12/15/06	12/18/06	EPA 160.1	
Sulfate	131	12.5	"	25	EL62107	12/21/06	12/27/06	EPA 300.0	
MW-5 (6L15007-17) Water									
Total Alkalinity	680	20.0	mg/L	10	EL62009	12/19/06	12/19/06	EPA 310.1M	· 1
Chloride	565	25.0	H .	50	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	2750	10.0	"	1	EL61801	12/15/06	12/18/06	EPA 160.1	
Sulfate	960	25.0	"	50	EL62107	12/21/06	12/27/06	EPA 300.0	
MW-16 (6L15007-18) Water									
Total Alkalinity	590	20.0	mg/L	10	EL62009	12/19/06	12/19/06	EPA 310.1M	
Chloride	863	20.0	"	40	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	1820	10.0	"	1	EL61801	12/15/06	12/18/06	EPA 160.1	
Sulfate	83.3	20.0	"	40	EL62107	12/21/06	12/27/06	EPA 300.0	

Environmental Lab of Texas

r. ebai'y we

R CARD 4

Sectors of

- 1042 A

- Rey an Por

10 - 10 - Nav

Project: Targa Midstream/ Eunice Mid. Plant

Fax: (432) 687-0456

Project Number: 2-0103

Project Manager: Mark Larson

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DUP #1 (6L15007-19) Water							···		
Total Alkalinity	600	20.0	mg/L	10	EL.62009	12/19/06	12/19/06	EPA 310.1M	B
Chloride	2020	50.0	"	100	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	4720	10.0	"	1	EL61801	12/15/06	12/18/06	EPA 160.1	
Sulfate	547	50.0	*1	100	EL62107	12/21/06	12/27/06	EPA 300.0	
DUP #2 (6L15007-20) Water	· · · · <u></u>								
Total Alkalinity	520	20.0	mg/L	10	EL62009	12/19/06	12/19/06	EPA 310.1M	В
Chloride	769	25.0	. 11	50	EL62107	12/21/06	12/27/06	EPA 300.0	
Total Dissolved Solids	2340	10.0	"	1	EL61801	12/15/06	12/18/06	EPA 160.1	
Sulfate	465	25.0	"	50	EL62107	12/21/06	12/27/06	EPA 300.0	
DUP #3 (6L15007-21) Water									
Total Alkalinity	620	20.0	mg/L	10	EL62009	12/19/06	12/19/06	EPA 310.1M	В
Chloride	546	25.0	"	50	EL62105	12/20/06	12/21/06	EPA 300.0	
Total Dissolved Solids	3110	10.0	"	1	EL61530	12/18/06	12/19/06	EPA 160.1	
Sulfate	928	25.0	"	50	EL62105	12/20/06	12/21/06	EPA 300.0	
DUP #4 (6L15007-22) Water									
Total Alkalinity	530	20.0	mg/L	10	EL62009	12/19/06	12/19/06	EPA 310.1M	B
Chloride	997	25.0	"	50	EL62105	12/20/06	12/21/06	EPA 300.0	
Total Dissolved Solids	2290	10.0	"	1	EL61530	12/18/06	12/19/06	EPA 160.1	
Sulfate	114	25.0	"	50	EL62105	12/20/06	12/21/06	EPA 300.0	

Environmental Lab of Texas

مەلۇر ۋەۋىمە --

am wet o

gent, genap

194 Law 19" 4

\$ 1. at 1.

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103

Project Manager: Mark Larson

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1 (6L15007-01) Water									
Calcium	360	20.2	mg/L	250	EL61906	12/19/06	12/19/06	EPA 6010B	
Magnesium	96.2	1.80		50	17	"	"	н 	
Potassium	13.4	0.600	'n	10	"	"	n	u	
Sodium	350	10.8	11	250	"	"	"	T	
MW-7 (6L15007-02) Water									
Calcium	152	4.05	mg/L	50	EL61906	12/19/06	12/19/06	EPA 6010B	
Magnesium	47.9	0.360	11	10	"		n	"	
Potassium	8.71	0.600	п	"		"	"	17	
Sodium V	191	2.15	n	50	"	"		Ħ	
MW-8 (6L15007-03) Water									
Calcium	141	4.05	mg/L	50	EL61906	12/19/06	12/19/06	EPA 6010B	
Magnesium	76.4	1.80	"	"	"	*	"	"	
Potassium	9.81	0.600		10	"	14	n		
Sodium	280	2.15	. n	50	"	31		"	
MW-9 (6L15007-04) Water									
Calcium	71.8	4.05	mg/L	50	EL61906	12/19/06	12/19/06	EPA 6010B	
Magnesium	31.9	0.360	и.	10	"	"	n	n	
Potassium	5.12	0.600	"		"	11	1	"	
Sodium	79.2	2.15	' #	50	n	**	п	n	
MW-10 (6L15007-05) Water									
Calcium	280	8.10	mg/L	100	EL61906	12/19/06	12/19/06	EPA 6010B	
Magnesium	76.5	1.80	"	50	11	"	n	**	
Potassium	4.31	0.600	"	10	н	п	•	"	
Sodium	44.7	2.15	11	50	"	n	**	u	
MW-11 (6L15007-06) Water									
Calcium	34.9	0.810	mg/L	10	EL61906	12/19/06	12/19/06	EPA 6010B	
Magnesium	21.1	0.360		n	"	11	11	**	
Potassium	3.15	0.600	"	"	"	"	u		
Sodium	51.9	0.430	**	**	11	"	u		

Environmental Lab of Texas

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710

500 45 Qu

. artesta

- 9 000 -

Stor a where

1. 5 E a 200

0.0.1 (1.0.10)

.

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-14 (6L15007-07) Water									
Calcium	882	40.5	mg/L	500	EL61906	12/19/06	12/19/06	EPA 6010B	
Magnesium	394	3.60	"	100	"	"	•	**	
Potassium	80.1	3.00	п	50	"	"	11	"	
Sodium	5350	108	"	2500	"	11	"	11	
MW-4 (6L15007-08) Water									
Calcium	142	4.05	mg/L	50	EL61907	12/19/06	12/19/06	EPA 6010B	
Magnesium	28.1	0.360		10	"	"		11	
Potassium	22.8	0.600	"		"		n	"	
Sodium	1060	21.5	н	500	н	ы	n	11	
MW-3 (6L15007-09) Water									
Calcium	288	8.10	mg/L	100	EL61907	12/19/06	12/19/06	EPA 6010B	
Magnesium	246	3.60	"	"	"	"	h	н	
Potassium	23.6	0.600	"	10	"	**	"	**	
Sodium	707	21.5	n	500		"		"	
MW-13 (6L15007-10) Water									
Calcium	2500	40.5	mg/L	500	EL61907	12/19/06	12/19/06	EPA 6010B	
Magnesium	978	18.0	"	"	"		11	"	
Potassium	40.2	0.600	"	10	"	**	"	n	
Sodium	1110	21.5	"	500	"	"	••	n	
MW-12 (6L15007-11) Water									
Calcium	680	40.5	mg/L	500	EL61907	12/19/06	12/19/06	EPA 6010B	
Magnesium	252	1.80	"	50	"	TT	н	"	
Potassium	13.6	0.600	"	10	"	"	۳	"	
Sodium	705	21.5	"	500	"	"	11	n	
MW-18 (6L15007-12) Water			·						
Calcium	669	40.5	mg/L	500	EL61907	12/19/06	12/19/06	EPA 6010B	
Magnesium	233	1.80	"	50	"	"	11	"	
Potassium	29.7	0.600	"	10	tr	"	n	11	
Sodium	1640	21.5	"	500	**	"	"	11	

Environmental Lab of Texas

4.9. 4.4

gresdag ov

A ARRA OF

and rules

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
MW-20 (6L15007-13) Water						_			
Calcium	31.6	0.810	mg/L	10	EL61907	12/19/06	12/19/06	EPA 6010B	
Magnesium	20.4	0.360		"		"	11	**	
Potassium	61.2	3.00	*1	50	"	*		"	
Sodium	2910	21.5	π	500	"	**		"	
MW-19 (6L15007-14) Water						_			
Calcium	984	40.5	mg/L	500	EL61907	12/19/06	12/19/06	EPA 6010B	
Magnesium	700	18.0	"	"	"	"		n	
Potassium	38.6	0.600	"	10	"		"	"	
Sodium	2480	21.5	"	500	"	11	n	11	
MW-15 (6L15007-15) Water						_			
Calcium	175	4.05	mg/L	50	EL61907	12/19/06	12/19/06	EPA 6010B	
Magnesium	103	1.80	"	н	"		"	"	
Potassium	26.8	0.600	"	10	**	"	"	۳	
Sodium	773	10.8	"	250	"		n	"	
MW-6 (6L15007-16) Water									
Calcium	95.2	4.05	mg/L	50	EL61907	12/19/06	12/19/06	EPA 6010B	
Magnesium	9.22	0.360	"	10	"	"	"	u	
Potassium	47.6	0.600	"	17	"	. 11	n	"	
Sodium	385	4.30	"	100	"	11	11		
MW-5 (6L15007-17) Water						_			
Calcium	90.3	4.05	mg/L	50	EL61907	12/19/06	12/19/06	EPA 6010B	
Magnesium	33.7	0.360		10	۳	"		"	
Potassium	38.2	0.600		n	"	n		"	
Sodium	1110	10.8	"	250		"	"	۳	
MW-16 (6L15007-18) Water	- 1 8 1 1-1 h.					~			
Calcium	171	4.05	mg/L	50	EL61907	12/19/06	12/19/06	EPA 6010B	
Magnesium	46.2	0.360	"	10	"	п	"	"	
Potassium	13.0	0.600	"	"	"	"	"		
Sodium	760	21.5	"	500	н	"	"	۳	

Environmental Lab of Texas

Sec. 3. 12. "

and The second

on South and

1. Sec.

- 6.0m - 10

. . . .

Project: Targa Midstream/ Eunice Mid. Plant

Fax: (432) 687-0456

Project Number: 2-0103 Project Manager: Mark Larson

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DUP #1 (6L15007-19) Water		'w							
Calcium	32.6	0.810	mg/L	10	EL.61907	12/19/06	12/19/06	EPA 6010B	
Magnesium	16.7	0.360	"	· #	"	"	"	Ħ	
Potassium	55.0	3.00		50	"		"	"	
Sodium	2780	43.0	"	1000	"	**	"	11 ·	
DUP #2 (6L15007-20) Water									
Calcium	190	4.05	mg/L	50	EL61907	12/19/06	12/19/06	EPA 6010B	
Magnesium	112	1.80	"	"	"	"	n	"	
Potassium	27.5	0.600	*1	10	"	*	"	n	
Sodium	1070	21.5	"	500	"	16	"	"	
DUP #3 (6L15007-21) Water						_			
Calcium	130	4.05	mg/L	50	EL61907	12/19/06	12/19/06	EPA 6010B	
Magnesium	44.8	0.360		10	"	"	"		
Potassium	39.4	0.600	"	"	"			*	
Sodium	1200	21.5	"	500	"	"		"	
DUP #4 (6L15007-22) Water								•	
Calcium	177	4.05	mg/L	50	EL61907	12/19/06	12/19/06	EPA 6010B	
Magnesium	52.2	0.360	**	10	"	*	"	"	
Potassium	13.6	0.600	"	"	"		"	11	
Sodium	728	21.5	H	500	"	"		"	

Environmental Lab of Texas

က်က်။ ကော်

dive to.

- 10 States

"Jin, Post

40.948 ×

a âtras

Server Sure

Project: Targa Midstream/ Eunice Mid. Plant

Fax: (432) 687-0456

Project Number: 2-0103

Project Manager: Mark Larson

Dissolved Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1 (6L15007-01) Water					··				
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0116	0.000698	"		EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.0371	0.00170	. •	"	"	n	"	"	
Cadmium	ND	0.00300	"	"		•	н	"	
Chromium [,]	0.0767	0.000405	"	"	"		"	"	
ead	ND	0.000692	"	"	Ħ	"	"	"	
Selenium	0.0100	0.000489	. 11	"		n	n	"	
Silver	0.0104	0.000296	n	"	"	n	n	"	
MW-7 (6L15007-02) Water									
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0101	0.000698		"	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.0510	0.00170	"	"	n		'n	"	
Cadmium	ND	0.00300	"	"	"	"	"	*	
Chromium	0.00183	0.000405	۳.		"		n	"	
Lead	ND	0.000692			**	и.	**	"	
Selenium	0.00881	0.000489	. "	"	n	"	"	"	
Silver	J [0.000163]	0.000296	"	"	"		11	"	
MW-8 (6L15007-03) Water									
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0156	0.000698	**	84	EL62004	12/20/06	12/20/06	EPA 6020A	•
Barium	0.0672	0.00170	"	**	n		'n	"	
Cadmium	ND	0.00300	•	١T	n	"	n	н	
Chromium	0.00111	0.000405	"	"	"	"	"	n	
Lead	ND	0.000692	*	"	"	"	"	n	
Selenium	0.00921	0.000489	64	Ħ	"	**	11	**	
Silver	0.000575	0.000296	"		"		"	"	
MW-9 (6L15007-04) Water				·· · ·					
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0114	0.000698	"	"	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.0563	0.00170			n	"		**	
Cadmium	ND	0.00300	"	"		н	31	н	
Chromium	0.000569	0.000405	· 11	"	"		"	"	
Lead	ND	0.000692	11	**	"	u	"	"	
Selenium	0.000912	0.000489		"	"		"	"	
Silver	J [0.000226]	0.000296	"			24	"		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 16 of 37

4.0 . Q.

6.190.000 P

anton a kina-

3-95 C

Sec. Sec.

્લ્ય ફે વ્લ્સ, કે

1000-1-1218:

电子师型。

कर्ट्य, हन्म

88 04400m

-ch.f. (See out

si vasirijos.or

20.9.20 L. 0

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103

Project Manager: Mark Larson

Dissolved Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-10 (6L15007-05) Water		, B. (BL), ₁₀ , 20							
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.00934	0.000698	"	"	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.303	0.00170	"	n	"	11	"	"	
Cadmium	ND	0.00300	"	9	π		"	"	
Chromium	J [0.000368]	0.000405		"	"	••	"	"	
Lead	ND	0.000692	"	Ħ	"	"	n	n	
Selenium	0.00376	0.000489		"	"	"	Ħ	"	
Silver	0.000464	0.000296	"	H	n	**	u	"	
MW-11 (6L15007-06) Water									
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0127	0.000698	*	"	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	1.17	0.00170		۳	"	"	n		
Cadmium	ND	0.00300	"	"	"	14	"	п	
Chromium	J [0.000387]	0.000405		"	"		"	"	
Lead	ND	0.000692	"	"	"	"	"	u	
Selenium	0.000849	0.000489		۳	, n'	"	"	n	
Silver	ND	0.000296	11	"	"	**	"	n	
MW-14 (6L15007-07) Water									
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0339	0.00349		5	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.238	0.00852	"	"	"	**	п	11	
Cadmium	ND	0.0150	. "	**	n		"	"	
Chromium	J [0.000826]	0.00202	"	п	"	"	"	"	
Lead	ND	0.00346	n	"	"	"	"		
Selenium	J [0.000850]	0.00244	*1	"	"	"	"	п	
Silver	J [0.00102]	0.00148	π		"		"		
MW-4 (6L15007-08) Water									
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0405	0.00349	"	5	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.0297	0.00852	"	"	"	"	. 11	"	
Cadmium	ND	0.0150	н	"	n	"	"		
Chromium	0.0162	0.00202	n	н	"	"	"	"	
Lead	ND	0.00346		"	"	"	n	**	
Selenium	0.108	0.00244	*	"	н	**	"	"	
Silver	ND	0.00148	н		41		:		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 17 of 37

14.4. 2. A.

- 1: 1955 C

on se poor

T. Charles los

Carl Some

4 . D . 2019

بحمن متبع لاريه

\$ 11/3 \$. 4 \$ a

10 m

eriðer fin

w a trace.

Sec. 10-0's

- - - - - - A

1. 120 Bulle

6 Jagari

.

10.0 miles

Party Code of

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

Dissolved Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-3 (6L15007-09) Water									
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.107	0.00349	"	5	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	1.78	0.00852	"	π		н		"	
Cadmium	ND	0.0150	"	11	n	11	"	"	
Chromium	J [0.00122]	0.00202		n	"	"	"	"	
Lead	ND	0.00346	"	"	"	"	**	"	
Selenium	0.00326	0.00244	н	"	"	**	"	"	
Silver	J [0.000336]	0.00148	"	"	**	"	**	tt	
MW-13 (6L15007-10) Water									
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0325	0.00349	**	5	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.117	0.00852	"	"	11	17	47	11	
Cadmium	ND	0.0150	"	"	"	n		"	
Chromium	ND	0.00202	"	π	"	"	π	n	
Lead	ND	0.00346		"	"	11			
Selenium	0.0246	0.00244	. п	"	۳.	11 .	11	"	
Silver	J [0.00121]	0.00148		11	"	"	**	"	
MW-12 (6L15007-11) Water									
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0195	0.00349	"	5	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.0474	0.00852		"	"	11	н	11	
Cadmium	ND	0.0150	"	π	"	"	"	n	
Chromium	ND	0.00202		"	"	"		n	
Lead	ND	0.00346	"	n	"	n	**	"	
Selenium	0.0201	0.00244	•	"		"		**	
Silver	0.00151	0.00148	11	"	"	"	*1	"	
MW-18 (6L15007-12) Water									
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0149	0.00349	*	5	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.0794	0.00852	"	"	11	"	"	"	
Cadmium	ND	0.0150	"	"	"	"	11	π	
Chromium	J [0.00116]	0.00202	11	"	"	"	"		
Lead	ND	0.00346	"	"	"	74	n .	**	
Selenium	0.00588	0.00244	"	"			**	п	
Silver	J [0.00134]	0.00148	"		,,		11	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 18 of 37

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

+ 4004

Mar . 2

1. 2. 2. 2. 2. A.

26.4.95

Sec. 2.

مانا، في م

Carters B

an shut a

نوب مايو. مع

22.20

. . . . P

P. 1121.1

1010 1010

W. 2.

("& Tada"

. 14. 17 St. Stand

1.10 a 4 a 1.

1.05 \$ 2004

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

Dissolved Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
MW-20 (6L15007-13) Water									
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0562	0.00349	"	5	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.0205	0.00852	**	11	"	"	"	"	
Cadmium	ND	0.0150	*	"	"		"	"	
Chromium	0.00516	0.00202	"	"	n		n	"	
Lead	ND	0.00346	*1	"	"	*	**	٣	
Selenium	0.00838	0.00244	••	"		•	"	"	
Silver	J [0.000870]	0.00148	"	Π	۳	"	**	n	
MW-19 (6L15007-14) Water									
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0210	0.00349	"	5	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.0415	0.00852	".	"	"			**	
Cadmium	ND	0.0150	"	W	"	"	и	n	
Chromium	0.00413	0.00202	19	"	"	"	"	**	
Lead	ND	0.00346	n	"	".	"	"	Ħ	
Selenium	0.00802	0.00244	"	"			"	ir	
Silver	J [0.000880]	0.00148	н	"	n	"	n	11	
MW-15 (6L15007-15) Water			_						
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0197	0.00349	"	5	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.0471	0.00852	**	"	n	11	**	H	
Cadmium	ND	0.0150	11	"	11	"	"	**	
Chromium	0.0356	0.00202	"	и	"	11		'n	
Lead	ND	0.00346	"		**	"			
Selenium	0.00887	0.00244	11	"	"	"	"		
Silver	ND	0.00148	"	"	"	"	**	n	
MW-6 (6L15007-16) Water									
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0353	0.00349	н	5	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.144	0.00852	"	ĸ	۳.,	"	•	11	
Cadmium	ND	0.0150	"	"	"	"	n	"	
Chromium	ND	0.00202	"	**	"	n	"	n	
Lead	ND	0.00346	n	"	"	"	"	"	
Selenium	0.00518	0.00244		**		"		11	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 19 of 37

an i an

4. 900 E

- Sington

3 40.9134

10. 016 Black

- 1975 -

Agent Hote...

b AC

Cold Name

a. Olime

N. 848. 348

de timore

1000

A. Sales

1978 - 1 Jan 2.

and a spectra

ang gun

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

Dissolved Metals by EPA / Standard Methods

Environmental Lab of Texas

	D	Reporting	.						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-6 (6L15007-16) Water									
Silver	ND	0.00148	mg/L	5	EL62004	12/20/06	12/20/06	EPA 6020A	
MW-5 (6L15007-17) Water									
Mercury	ND	0.000250	mg/L	i	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0267	0.00349	"	5	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.0409	0.00852	"		11		"	"	
Cadmium	ND	0.0150		ч	*1	н .	11	н	
Chromium	J [0.00114]	0.00202	п			**	"	"	
Lead	ND	0.00346	H	"	"		"	н	
Selenium	0.00763	0.00244		"	"	"	Ħ	"	
Silver	J [0.000551]	0.00148	"	"	**		. *	"	
MW-16 (6L15007-18) Water									
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0125	0.00349	"	5	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.255	0.00852	"	"	"	"	"	11	
Cadmium	ND	0.0150	۳.	"	n	"	"	"	
Chromium	ND	0.00202		"	"		n	۳.	
Lead	ND	0.00346	11	17	n .	"	"		
Selenium	J [0.00240]	0.00244		۳.	"	м	'n	"	
Silver	0.00596	0.00148	"	"	11	**	"	T	
DUP #1 (6L15007-19) Water	·								
Mercury	ND	0.000250	mg/L	i	EL62011	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0567	0.00349	"	5	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.0208	0.00852	"	"	"		"		
Cadmium	ND	0.0150		"	*	. "	"	"	
Chromium	0.00447	0.00202	•	"	"		*		
Lead	ND	0.00346	"	"	"	**	**	"	
Selenium	0.00958	0.00244		"	"	"	в	"	
Silver	J [0.00107]	0.00148		"	17			a	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 20 of 37

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson Fax: (432) 687-0456

Dissolved Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
DUP #2 (6L15007-20) Water		tt							
Mercury	ND	0.000250	mg/L	1	EL62011	12/19/06	12/20/06	EPA 7470A	<u></u>
Arsenic	0.0206	0.00349		5	EL62004	12/20/06	12/20/06	EPA 6020A	
Barium	0.0476	0.00852	л	"		"	"	11	
Cadmium	ND	0.0150	"	"	"	π	"	"	
Chromium	0.0343	0.00202	"	"	54	71	"		
Lead	ND	0.00346	"	. "	u	"	"	п	
Selenium	0.00972	0.00244	"	"	. "		и	n	
Silver	I [0.000361]	0.00148	"	"	**	n	n	н	
DUP #3 (6L15007-21) Water									
Mercury	ND	0.000250	mg/L	1	EL62012	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0259	0.00852		5	EL62005	12/20/06	12/20/06	EPA 6020A	
Barium	0.0439	0.00244	"	"	м		11	"	
Cadmium	ND	0.00346	"	"	"	**	"	"	
Chromium	J [0.00135]	0.00349		"	11	n	"	11	
Lead	ND	0.00148	"	"	"	"	"	11	
Selenium	J [0.0123]	0.0150	"	"	и .		"	n .	
Silver	0.00522	0.00202	"	"	IT	*	45	Н	
DUP #4 (6L15007-22) Water									
Mercury	ND	0.000250	mg/L	1	EL62012	12/19/06	12/20/06	EPA 7470A	
Arsenic	0.0114	0.00170	**	"	EL62005	12/20/06	12/20/06	EPA 6020A	
Barium	0.288	0.000489	"	"	"			"	
Cadmium	ND	0.000692	"	**	"	"	"	"	
Chromium	0.000824	0.000698	"	"	"	"		"	
Lead	ND	0.000296		**	"	**	"	"	
Selenium	J [0.00115]	0.00300	"	ч.	".	"	**	"	
Silver	J [0.000322]	0.000405	"		"			**	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

di Vitadi e

Or Bar .

ha, milije,

82. 40 a

na with a

1. 4 e . 1

r. forging

1. ch

Burney.

generation of

110 A.B.S.

the set of

V. 80 1000

3. Cor. 246

- 9 Bells - -

1. 201 2 40 . S

ter - Be ? te

જેન્ન છે ન્દ્ર

S^a van ester

9. atta 3

antraherte ;

a 76, 550 . D.

S. 10. 2 30

ANT 84. 295

9. S. S. S.

1.2/20 2

og virm se

4.08 E. 1.40

a the state

Sie u st

and, when a

مت الله و خطه

. We Vite

30: - 30° C

1. 68.1.5

Project:Targa Midstream/ Eunice Mid. PlantProject Number:2-0103Project Manager:Mark Larson

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL61809 - EPA 5030C (GC)										
Blank (EL61809-BLK1)				Prepared &	Analyzed	12/18/06				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00100	"							
Xylene (0)	ND	0.00100	н							
Surrogate: a,a,a-Trifluorotoluene	36.6		ug/l	40.0		91.5	80-120			
Surrogate: 4-Bromofluorobenzene	35.8		"	40.0		89.5	80-120			
LCS (EL61809-BS1)				Prepared &	Analyzed	12/18/06				
Benzene	0.0456	0.00100	mg/L	0.0500		91.2	80-120			
Toluene	0.0439	0.00100		0.0500		87.8	80-120			
Ethylbenzene	0.0452	0.00100	"	0.0500		90.4	80-120			
Xylene (p/m)	0.0825	0.00100	"	0.100		82.5	80-120			
Xylene (0)	0.0420	0.00100	"	0.0500		84.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	32.1		ug/l	40.0		80.2	80-120			
Surrogate: 4-Bromofluorobenzene	32.5		"	40.0		81.2	80-120			
Calibration Check (EL61809-CCV1)				Prepared: 1	2/18/06 A	nalyzed: 12	2/19/06			
Benzene	49.6		ug/l	50.0		99.2	80-120			
Toluene	48.9			50.0		97.8	80-120			
Ethylbenzene	50.1		**	50.0		100	80-120			
Xylene (p/m)	88.8		"	100		88.8	80-120			
Xylene (0)	43.8		"	50.0		87.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.0		"	40.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	39.7		"	40.0		99.2	80-120			
Matrix Spike (EL61809-MS1)	Sou	ırce: 6L12016-	05	Prepared: 1	2/18/06 A	nalyzed: 12	2/19/06			
Benzene	0.0547	0.00100	mg/L	0.0500	ND	109	80-120			
Toluene	0.0534	0.00100	н	0.0500	ND	107	80-120			
Ethylbenzene	0.0551	0.00100	"	0.0500	ND	110	80-120			
Xylene (p/m)	0.101	0.00100	"	0.100	ND	101	80-120			
Xylene (o)	0.0505	0.00100	n	0.0500	ND	101	80-120			
Surrogate: a,a,a-Trifluorotoluene	43.0		ug/l	40.0		108	80-120			
Surrogate: 4-Bromofluorobenzene	39.1		"	40.0		97.8	80-120			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

8. . . . R

(introd

Carlow Carlo

donesi foreje

The state

The Road and

STS & B BUDO

4. 8° 4

1.00

1. Ballin ...

Re of the

21. E. ...

5

ه مهارستان وهو هو

14 . 13 . 14 C

" a well fear a

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

Organics by GC - Quality Control

Environmental Lab of Texas

Reporting Spike Source %REC RPD Analyte Besult Limit Units Level Result %REC Limits RPD Limit											-
Analyte Result Limit Units Level Result %REC Limits RPD Limit			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EL61809 - EPA 5030C (GC)

Matrix Spike Dup (EL61809-MSD1)	Sou	rce: 6L12016-	05	Prepared: 1	2/18/06 A	nalyzed: 12	2/19/06			
Benzene	0.0556	0.00100	mg/L	0.0500	ND	111	80-120	1.82	20	
Toluene	0.0546	0.00100	"	0.0500	ND	109	80-120	1.85	20	
Ethylbenzene	0.0581	0.00100	п	0.0500	ND	116	80-120	5.31	20	
Xylene (p/m)	0.102	0.00100		0.100	ND	102	80-120	0.985	20	
Xylene (o)	0.0513	0.00100	"	0.0500	ND	103	80-120	1.96	20	
Surrogate: a,a,a-Trifluorotoluene	44.9		ug/l	40.0		112	80-120			
Surrogate: 4-Bromofluorobenzene	34.1		"	40.0		85.2	80-120			

Batch EL61908 - EPA 5030C (GC)

Blank (EL61908-BLK1)				Prepared: 12/19/	06 Analyzed: 12	2/20/06	
Benzene	ND	0.00100	mg/L				
Toluene	ND	0.00100	"				
Ethylbenzene	ND	0.00100					
Xylene (p/m)	ND	0.00100	"				
Xylene (0)	ND	0.00100	۳				
Surrogate: a,a,a-Trifluorotoluene	41.7		ug/l	40.0	104	80-120	
Surrogate: 4-Bromofluorobenzene	32.6		n	40.0	81.5	80-120	
LCS (EL61908-BS1)				Prepared: 12/19/	06 Analyzed: 12	2/20/06	
Benzene	0.0468	0,00100	mg/L	0.0500	93.6	80-120	
Toluene	0.0469	0.00100	"	0.0500	93.8	80-120	
Ethylbenzene	0.0500	0.00100	"	0.0500	100	80-120	
Xylene (p/m)	0.0893	0.00100	"	0.100	89.3	80-120	
Xylene (0)	0.0431	0.00100	*1	0.0500	86.2	80-120	
Surrogate: a,a,a-Trifluorotoluene	34.7		ug/l	40.0	86.8	80-120	
Surrogate: 4-Bromofluorobenzene	40.0		"	40.0	100	80-120	

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL61908 - EPA 5030C (GC)										
Calibration Check (EL61908-CCV1)		<u></u>		Prepared: 1	2/19/06 A	nalvzed: 12	/20/06			
Benzene	50.3		ug/l	50.0		101	80-120			
Toluene	48.7		"	50.0		97.4	80-120			
Ethylbenzene	50.2		11	50.0		100	80-120			
Xylene (p/m)	89.8		"	100		89.8	80-120			
Xylene (o)	45.2		**	50.0		90.4	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.4		"	40.0	***	104	80-120			
Surrogate: 4-Bromofluorobenzene	39.2		"	40.0		98.0	80-120			
Matrix Spike (EL61908-MS1)	Sou	rce: 6L15007-	10	Prepared: 1	2/19/06 A	nalyzed: 12	2/20/06		,	
Benzene	0.0476	0.00100	mg/L	0.0500	ND	95.2	80-120			
Tolucne	0.0487	0.00100	"	0.0500	ND	97.4	80-120			
Ethylbenzene	0.0464	0.00100	"	0.0500	ND	92.8	80-120			
Xylene (p/m)	0.0929	0.00100	"	0.100	ND	92.9	80-120			
Xylene (0)	0,0446	0.00100	"	0.0500	ND	89.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.5		ug/l	40.0		98.8	80-120			
Surrogate: 4-Bromofluorobenzene	37.9		"	40.0		94.8	80-120			
Matrix Spike Dup (EL61908-MSD1)	Sou	irce: 6L15007-	-10	Prepared: 1	2/19/06 A	nalyzed: 12	2/20/06			
Benzene	0.0466	0.00100	mg/L	0.0500	ND	93.2	80-120	2.12	20	
Toluene	0.0444	0.00100	. н	0.0500	ND	88.8	80-120	9.24	20	
Ethylbenzene	0.0443	0.00100	"	0.0500	ND	88.6	80-120	4.63	20	
Xylene (p/m)	0.0816	0.00100	"	0.100	ND	81.6	80-120	13.0	20	
Xylene (0)	0.0420	0.00100	ч	0.0500	ND	84.0	80-120	6.00	20	
Surrogate: a,a,a-Trifluorotoluene	36.2		ug/l	40.0		90.5	80-120			
Surrogate: 4-Bromofluorobenzene	34.3		"	40.0		85.8	80-120			

Environmental Lab of Texas

- at - 5820-0

Control of

2.2 8 2.23

16 AP 16

~ 48°, 40. .

er a ver a ve

Ador 4

ar ad

á . á a an

1. 0 BRG 0

64. P. a. a

A16. 9 440

-95.6- 10.

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporti	ıg		Spike	Source		%REC		RPD	
Analyte	Result	Lin	nit U	Jnits	Level	Result	%REC	Limits	RPD	Límit	Notes
Batch EL61530 - Filtration Preparation						•	<u> </u>				
Blank (EL61530-BLK1)					Prepared:	12/18/06 A	Analyzed: 12	/19/06			
Total Dissolved Solids	ND	10	.0 m	ng/L							
Duplicate (EL61530-DUP1)	So	urce: 6L14(06-01		Prepared:	12/18/06 #	Analyzed: 12	/19/06			
Total Dissolved Solids	9510	10	.0 m	ng/L		9600			0.942	20	
Duplicate (EL61530-DUP2)	So	urce: 6L15(06-03		Prepared: 1	12/18/06 A	Analyzed: 12	/19/06			
Total Dissolved Solids	1250	10	.0 m	ng/L		1300			3.92	20	
Blank (EL61801-BLK1)					Prepared:	12/15/06	Analyzed: 12	2/18/06			
Blank (EL61801-BLK1)					Prepared:	12/15/06	Analyzed: 12	2/18/06			
Total Dissolved Solids	ND	10	.0 n	ng/L							
Duplicate (EL61801-DUP1)	So	urce: 6L15(07-01		Prepared:	12/15/06 4	Analyzed: 12	2/18/06			
Total Dissolved Solids	2050	10	0.0 n	ng/L		1920			6.55	20	
Duplicate (EL61801-DUP2)	So	urce: 6L15(07-11		Prepared:	12/15/06 A	Analyzed: 12	2/18/06			
Total Dissolved Solids	3370	10	.0 n	ng/L		3240			3.93	20	
Batch EL61901 - General Preparation (We	tChem)										
Blank (EL61901-BLK1)					Prepared 8	k Analyzed	1: 12/19/06				
Total Alkalinity	8.00	4	00 11	ng/L							

Total Alkalinity	8.00	4.00	mg/L	, B	
Carbonate Alkalinity	ND	0.100	"	В	
Bicarbonate Alkalinity	8.00	4.00	"	В	
Hydroxide Alkalinity	ND	0.100	"	В	

Environmental Lab of Texas

v - 346 .

E ARE SAM

s attained

ala calif section

a- 2020

alls i ta nur

and spine

te in the state of the

ر الله مان معاني م

the standard

14 E 2

Contraction of the

10 . 04 Se

1. Sec. 2.

23 mar

4. 4 C .

الم المحمد المراجع

BR Badrins

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL61901 - General Preparatio	n (WetChem)									
LCS (EL61901-BS1)				Prepared &	Analyzed:	12/19/06				
Total Alkalinity	196	4.00	mg/L	200		98.0	85-115			
Duplicate (EL61901-DUP1)	Sou	rce: 6L15005-	01	Prepared &	Analyzed:	12/19/06				
Total Alkalinity	2000	20.0	mg/L		1960			2.02	20	
Reference (EL61901-SRM1)				Prepared &	z Analyzed:	12/19/06				
Total Alkalinity	248	4.00	mg/L	250		99.2	90-110			
Batch EL62009 - General Preparatio	on (WetChem)					_				
Blank (EL62009-BLK1)				Prepared &	z Analyzed:	12/19/06				
Total Alkalinity	12.0	4.00	mg/L							
Carbonate Alkalinity	ND	0.100	"							
Bicarbonate Alkalinity	12.0	4.00	"							
Hydroxide Alkalinity	ND	0.100								
LCS (EL62009-BS1)				Prepared &	2 Analyzed:	12/19/06				
Total Alkalinity	192	4.00	mg/L	200		96.0	85-115			
Duplicate (EL62009-DUP1)	Sou	rce: 6L15007-	-09	Prepared &	Analyzed:	12/19/06				
Total Alkalinity	660	20.0	mg/L		680			2.99	20	
Reference (EL62009-SRM1)				Prepared &	Analyzed:	12/19/06				
Total Alkalinity	248	4.00	mg/L	250		99.2	90-110			
Batch EL62105 - General Preparation	on (WetChem)									
Blank (EL62105-BLK1)				Prepared:	12/20/06 A	nalyzed: 12	2/21/06			
Sulfate	ND	0.500	mg/L							
Chloride	ND	0,500								

Environmental Lab of Texas

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Project Manager: Mark Larson

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL62105 - General Preparation (N	VetChem)									
LCS (EL62105-BS1)				Prepared: 1	12/20/06 A	nalyzed: 12	2/21/06			
Sulfate	10.2	0.500	mg/L	10.0		102	80-120			
Chloride	10.5	0.500	11	10.0		105	80-120			
Calibration Check (EL62105-CCV1)				Prepared:	12/20/06 A	nalyzed: 12	2/21/06			
Sulfate	11.0		mg/L	10.0		110	80-120			
Chloride	9.93		н	10.0		99.3	80-120			
Duplicate (EL62105-DUP1)	Sou	rce: 6L15005-	01	Prepared: 1	12/20/06 A	nalyzed: 12	2/21/06			
Chloride	7610	125	mg/L		7510			1.32	20	
Sulfate	505	125	"		493			2.40	20	
Duplicate (EL62105-DUP2)	Sou	rce: 6L15006-	04	Prepared:	12/20/06 A	nalyzed: 12	2/21/06			
Chloride	114	5.00	mg/L		115			0.873	20	
Sulfate	173	5.00	"		172			0.580	20	
Matrix Spike (EL62105-MS1)	Sou	rce: 6L15005-	01	Prepared:	12/20/06 A	nalyzed: 12	2/21/06			
Chloride	10500	125	mg/L	2500	7510	120	80-120			
Sulfate	3490	125	"	2500	493	120	80-120			
Matrix Spike (EL62105-MS2)	Sou	rce: 6L15006-	04	Prepared:	12/20/06 A	nalyzed: 12	2/21/06			
Chloride	221	5.00	mg/L	100	· 115	106	80-120		4	
Sulfate	277	5.00		100	172	105	80-120			
Batch EL62107 - General Preparation (WetChem)									
Blank (EL62107-BLK1)				Prepared:	12/21/06 A	nalyzed: 12	2/27/06			
Sulfate	ND	0.500	mg/L							
Chloride	ND	0.500	"							

Environmental Lab of Texas

. 4. 4

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL62107 - General Preparation (V	VetChem)									
LCS (EL62107-BS1)				Prepared: i	2/21/06 A	nalyzed: 12	2/27/06			
Sulfate	10.6	0.500	mg/L	10.0		106	80-120			
Chloride	10.7	0.500	"	10.0		107	80-120			
Calibration Check (EL62107-CCV1)				Prepared: 1	2/21/06 A	nalyzed: 12	2/27/06			
Chloride	8.38		mg/L	10.0		83.8	80-120			
Sulfate	10.9		۳	10.0		109	80-120			
Duplicate (EL62107-DUP1)	Sour	ce: 6L15007-	-02	Prepared:	2/21/06 A	nalyzed: 12	2/27/06			
Chloride	196	12.5	mg/L		202			3.02	20	
Sulfate	254	12.5	"		258			1.56	20	
Duplicate (EL62107-DUP2)	Sour	ce: 6L15007-	-15	Prepared: 1	12/21/06 A	nalyzed: 12	2/27/06			
Chloride	848	0.500	mg/L		834			1.66	20	-
Sulfate	579	0.500	"		539			7.16	20	
Matrix Spike (EL62107-MS1)	Sour	ce: 6L15007-	-02	Prepared:	12/21/06 A	nalyzed: 12	2/27/06			
Sulfate	528	12.5	mg/L	250	258	108	80-120			
Chloride	475	12.5	"	250	202	109	80-120			
Matrix Spike (EL62107-MS2)	Sour	ce: 6L15007-	-15	Prepared:	12/21/06 A	nalyzed: 12	2/27/06			
Sulfate	1180	25.0	· mg/L	500	539	128	80-120			QM
Chloride	1530	25.0	, "	500	834	139	80-120			QM

Environmental Lab of Texas

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL61906 - 6010B/No Digestion										
Blank (EL61906-BLK1)				Prepared &	2 Analyzed:	12/19/06				
Calcium	ND	0.0810	mg/L							
Magnesium	ND	0.0360	n							
Potassium	ND	0.0600	"							
Sodium	ND	0.0430	н							
Calibration Check (EL61906-CCV1)				Prepared &	z Analyzed:	12/19/06				
Calcium	2.26		mg/L	2.00		113	85-115			
Magnesium	1.87		п	2.00		93.5	85-115			
Potassium	1.70		N	2.00		85.0	85-115			
Sodium	1.93		n	2.00		96.5	85-115			
Duplicate (EL61906-DUP1)	Sou	rce: 6L15005-	01	Prepared &	Analyzed:	12/19/06				
Calcium	96.1	4.05	mg/L		95.0			1.15	20	
Magnesium	186	1.80	"		199			6.75	20	
Potassium	39.2	0.600	11		39.3			0.255	20	
Sodium	4870	43.0	n		5060			3.83	20	
Batch EL61907 - 6010B/No Digestion										
Blank (EL61907-BLK1)				Prepared &	Analyzed:	12/19/06				
Calcium	ND	0.0810	mg/L							
Magnesium	ND	0.0360	"							
Potassium	ND	0.0600	"							
Sodium	ND	0.0430	"							
Calibration Check (EL61907-CCV1)				Prepared &	z Analyzed:	12/19/06				
Calcium	2.13		mg/L	2.00		106	85-115			
Magnesium	2.00		"	2.00		100	85-115			
Potassium	1.71		"	2.00		85.5	85-115			
Sodium	1.81		"	2.00		90.5	85-115			

Environmental Lab of Texas

6

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103

Project Manager: Mark Larson

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Spike	Source		%REC		RPD			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL61907 - 6010B/No Digestion										
Duplicate (EL61907-DUP1)	Sour	rce: 6L15007-	09	Prepared &	Analyzed:	12/19/06				
Calcium	292	8.10	mg/L		288			1.38	20	
Magnesium	251	3.60	"		246	•		2.01	20	
Potassium	24.1	0.600	**		23.6			2.10	20	
Sodium	625	21.5	"		707			12.3	20	

Environmental Lab of Texas

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL62004 - EPA 3005A										
Blank (EL62004-BLK1)				Prepared &	: Analyzed:	12/20/06				
Arsenic	ND	0.000698	mg/L							
Barium	ND	0.00170	"							
Cadmium	ND	0.00300	н							
Chromium	ND	0.000405	"							
Lead	ND	0.000692	"							
Selenium	ND	0.000489	"							
Silver	ND	0.000296	n							
LCS (EL62004-BS1)				Prepared &	Analyzed:	12/20/06				
Arsenic	0.777	0.000698	mg/L	0.800		97.1	85-115		· _ · = ·	
Barium	0.200	0.00170	"	0.200		100	85-115			
Cadmium	0.199	0.00300	. "	0.200		99.5	85-115			
Chromium	0.204	0.000405	"	0.200		102	85-115			
ead	0.976	0.000692	"	1.10		88.7	85-115			
Selenium	0.401	0.000489	"	0.400		100	85-115	•		
Silver	0.0946	0.000296	11	0.100		94,6	85-115			
LCS Dup (EL62004-BSD1)				Prepared &	: Analyzed:	12/20/06				
Arsenic	0.784	0.000698	mg/L	0.800		98.0	85-115	0.897	20	
Barium	0.202	0.00170	Ħ	0.200		101	85-115	0.995	20	
Cadmium	0.202	0.00300	*	0.200		101	85-115	1.50	20	
Chromium	0.204	0.000405	н	0.200		102	85-115	0.00	20	
Lead	1.04	0.000692	"	1.10		94.5	85-115	6.35	20	
Selenium	0.418	0.000489		0.400		104	85-115	4.15	20	
Silver	0.101	0.000296	"	0.100		101	85-115	6.54	20	
Calibration Check (EL62004-CCV1)				Prepared &	: Analyzed:	12/20/06				
Arsenic	0.0511	• •	mg/L	0.0500		102	90-110			~~~~
Barium	0.0487		"	0.0500		97.4	90-110			
Cadmium	0.0494		"	0.0500		98.8	90-110			
Chromium	0.0458	•	"	0.0500		91.6	90-110			
Lead	0.0500		"	0.0500		100	90-110			
Selenium	0.0495			0.0500		99.0	90-110			
Silver	0.0459		"	0.0500		91.8	90-110			

Environmental Lab of Texas

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103

Project Manager: Mark Larson

Dissolved Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL62004 - EPA 3005A										
Matrix Spike (EL62004-MS1)	Sou	rce: 6L15007-	19	Prepared &	& Analyzed:	12/20/06				
Arsenic	0.906	0.00698	mg/L	0.800	0.0567	106	75-125			
Barium	0.214	0.0170	.,	0.200	0.0208	96.6	75-125			
Cadmium	0.208	0.0300		0.200	ND	104	75-125			
Chromium	0.176	0.00405	"	0.200	0.00447	85.8	75-125			
Lead	0.745	0.00692	"	1.10	ND	67.7	75-125			MS-3
Selenium	0.445	0.00489	"	0.400	0.00958	109	75-125			
Silver	0.0954	0.00296	17	0.100	0.00107	94.3	75-125			
Matrix Spike Dup (EL62004-MSD1)	Sou	rce: 6L15007-	19	Prepared &	& Analyzed:	12/20/06				
Arsenic	0.903	0.00698	mg/L	0.800	0.0567	106	75-125	0.332	20	
Barium	0.218	0.0170	"	0.200	0.0208	98.6	75-125	1.85	20	
Cadmium	0.210	0.0300		0.200	ND	105	75-125	0.957	20	
Chromium	0.178	0.00405	"	0.200	0.00447	86.8	75-125	1.13	20	
Lead	0.801	0.00692		1.10	ND	72.8	75-125	7.24	20	MS-3
Selenium	0.449	0.00489	. "	0.400	0.00958	110	75-125	0.895	20	
Silver	0.0976	0.00296		0.100	0.00107	96.5	75-125	2.28	20	
Post Spike (EL62004-PS1)	Sou	rce: 6L15007-	19	Prepared &	& Analyzed:	12/20/06				
Lead	56.4	0.0148	mg/L	55.0	ND	103	85-115			

Blank (EL62005-BLK1)				Prepared & Analyzed: 12/20/06	
Arsenic	ND	0.00170	mg/L		
Barium	ND	0.000489	"		
Cadmium	ND	0.000692	"		
Chromium	ND	0.000698	"		
Lead	ND	0.000296	"		
Selenium	ND	0.00300	· #		
Silver	ND	0.000405	"		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

ورد .

1 14 Y

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL62005 - EPA 3005A										
LCS (EL62005-BS1)				Prepared &	Analyzed:	12/20/06				
Arsenic	0.768	0.00170	mg/L	0.800		96.0	85-115			
Barium	0.195	0.000489	"	0.200		97.5	85-115			
Cadmium	0.196	0.000692	"	0.200		98.0	85-115			
Chromium	0.183	0.000698	"	0.200		91.5	85-115			
Lead	1.02	0.000296		1.10		92.7	85-115			
Selenium	0.412	0.00300		0.400		103	85-115			
Silver	0.0939	0.000405		0.100		93.9	85-115			
LCS Dup (EL62005-BSD1)				Prepared &	Analyzed:	12/20/06				
Arsenic	0.786	0.00170	mg/L	0.800		98.2	85-115	2.32	20	
Barium	0.193	0.000489		0.200		96.5	85-115	1.03	20	
Cadmium	0.198	0.000692	"	0.200		99.0	85-115	1.02	20	
Chromium	0.184	0.000698	"	0.200		92.0	85-115	0.545	20	
Lead	1.03	0.000296	**	1.10		93.6	85-115	0.976	20	
Selenium	0.421	0.00300		0,400		105	85-115	2.16	20	
Silver	0.101	0.000405	"	0.100		101	85-115	7.29	20	
Calibration Check (EL62005-CCV1)				Prepared 8	Analyzed:	12/20/06				
Arsenic	0.0525		mg/L	0.0500		105.	90-110			
Barium	0.0476		"	0.0500	•	95.2	90-110			
Cadmium	0.0491		"	0.0500		98.2	90-110			
Chromium	0.0450		n	0.0500		90.0	90-110			
Lead	0.0493		"	0.0500		98.6	90-110			
Selenium	0.0530		"	0.0500		106	90-110			
Silver	0.0457		"	0.0500		91.4	90-110			
Matrix Spike (EL62005-MS1)	Sou	ırce: 6L15007-	22	Prepared &	Analyzed:	12/20/06				
Arsenic	0.837	0.0170	mg/L	0.800	0.0114	103	75-125			
Barium	0.433	0.00489		0.200	0.288	72.5	75-125			M
Cadmium	0.205	0.00692	11	0.200	ND	102	75-125			
Chromium	0.174	0.00698	11	0.200	0.000824	86.6	75-125			
Lead	0.731	0.00296	"	1.10	ND	66.5	75-125			M
Selenium	0.436	0.0300	"	0.400	0.00115	109	75-125			
Silver	0.112	0.00405	11	0.100	0.000322	112	75-125			

Environmental Lab of Texas

. .

* 1 J 1 *

44.

1. e -

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL62005 - EPA 3005A										
Matrix Spike Dup (EL62005-MSD1)	Sou	rce: 6L15007-	22	Prepared &	& Analyzed	12/20/06				
Arsenic	0.835	0.0170	mg/L	0.800	0.0114	103	75-125	0.239	20	
Barium	0.435	0.00489	"	0.200	0.288	73.5	75-125	0.461	20	MS
Cadmium	0.206	0.00692	н	0.200	ND	103	75-125	0.487	20	
Chromium	0.174	0.00698	н	0.200	0.000824	86,6	75-125	0.00	20	
Lead	0.752	0.00296	п	1.10	ND	68.4	75-125	2.83	20	MS
Selenium	0.430	0.0300	п	0.400	0.00115	107	75-125	1.39	20	
Silver	0.111	0.00405		0.100	0.000322	111	75-125	0.897	20	
Post Spike (EL62005-PS1)	Sou	rce: 6L15007-	22	Prepared &	& Analyzed	12/20/06				
Barium	10.5	0.0244	mg/L	10.0	0.288	102	85-115			
Lead	55.4	0.0148	"	55.0	ND	101	85-115			
Batch EL62011 - EPA 7470A										
Blank (EL62011-BLK1)	·			Prepared:	12/19/06 A	nalyzed: 1	2/20/06			
Mercury	ND	0.000250	mg/L							
LCS (EL62011-BS1)				Prepared:	12/19/06 A	nalyzed: 1	2/20/06			
Mercury	0.00110	0.000250	mg/L	0.00100		110	85-115			
LCS Dup (EL62011-BSD1)				Prepared:	12/19/06 A	nalyzed: 1	2/20/06			
Mercury	0.00110	0.000250	mg/L	0.00100		110	85-115	0.00	20	
Calibration Check (EL62011-CCV1)				Prepared:	12/19/06 A	.nalyzed: 1	2/20/06			
Мегсигу	0.00106		mg/L	0.00100		106	90-110	•		
Matrix Spike (EL62011-MS1)	Sou	rce: 6L15007-	-01	Prepared:	12/19/06 A	nalyzed: 1	2/20/06			
Mercury	0.00106	0.000250	mg/L	0.00100	ND	106	75-125			

Environmental Lab of Texas

1 2 2

(B) () (B)

3.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 34 of 37

Environmental Lab of Texas

		· · · · · · · · · · · · · · · · · · ·								
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL62012 - EPA 7470A										
Blank (EL62012-BLK1)				Prepared:	12/19/06 A	nalyzed: 12	/20/06			
Мегсигу	ND	0.000250	mg/L							
LCS (EL62012-BS1)				Prepared:	12/19/06 A	nalyzed: 12	/20/06			
Mercury	0.00104	0.000250	mg/L	0.00100		104	85-115			
LCS Dup (EL62012-BSD1)				Prepared:	12/19/06 A	nalyzed: 12	/20/06			
Мегсигу	0.00110	0.000250	mg/L	0.00100		110	85-115	5.61	20	
Calibration Check (EL62012-CCV1)				Prepared:	12/19/06 A	nalyzed: 12	/20/06			
Mercury	0.000990		mg/L	0.00100	· · ·	99.0	90-110			
Matrix Spike (EL62012-MS1)	Sou	rce: 6L15007-	21	Prepared: 12/19/06 Analyzed: 12/20/06						
Mercury	0.000980	0.000250	mg/L	0.00100	ND	98.0	75-125			

Environmental Lab of Texas

.

ē,

- W.4

Notes and Definitions

- QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- O-04 This sample was analyzed outside the EPA recommended holding time.
- MS-4 Matrix spike and/or matrix spike duplicate outside 75-125% acceptance limits. Serial dilution (x5) within10% RPD limits. Post spike on serial dilution sample within 75-125% recovery limits indicating matrix interference.
- MS-3 Matrix spike and/or matrix spike duplicate outside 75-125% limits. Serial dilution (x5) outside 10% RPD limits. Post spike for the serial dilution sample was within 75-125% recovery, therefore data accepted based on method requirements.
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- B Analyte is found in the associated blank as well as in the sample (CLP B-flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Raland K Julis

1/2

1/2/2007

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 36 of 37

and there

Sec. Sec.

1.0

144

Spector 7.

うちちずる

Barting and

a radicy file.

Antipetition of the

She and

Project: Targa Midstream/ Eunice Mid. Plant Project Number: 2-0103 Project Manager: Mark Larson

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

PARAMETERS/METHOD NUMBER CHAIN-OF-CUSTODY RECOR
hod massimul / V V for the second s
207 N. 507 N. X
A X X X
$\langle X \rangle$
D BY: (Signature) DATE DATE RECEIVED BY: (Signature)
Signature) DATE DATE Circle)
FEDEX FEDEX
- MOTION -
101 L 10 Sector Manager
A CONTACT BEDCON.

and the second

			F				NPDES	F	T	-422	'8¢	,45 (olubaria2-mg) TAT HEUR TAT b18bn612											N		N N one Star	្
			2 Pl									\$d1	Y	χ	प्र	R							Laboratory Comments; Sampo Soudatives Inizit? VOCS Eree of Headspace?	letinets oproof direct (s), as a second and the second s	Y N Y N FedEx Lone Star	
04-	EST	Phone: 432-563-1800 Fax: 432-563-1713	y				🗌 trrp		╞			.М.Я.О.И		-,							-	_				
	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	563-	N								09	RCI	$\overline{}$	Y.	$\overline{\mathcal{O}}$	$\overline{\mathbf{v}}$						-	2	er(s)	mple:Hand Delivered by SamplerClient Rep. 7 by Counier DPS DHL	Ħ
	No.	432-432-	17						e For			Semivolotines			$\langle $	4					+	\neg	nts: ntac	s) ntain Diet(Rep	Temperature Upon Receipt:
	YSI!	x: x:	Å				ē		Analyze			saidsioV					`				1	-1	Laboratory Comments Sample Contaigers Initi VOCs Free of Headspace	S S C	Client	Son F
	AL	Phone Fax:	N/	0		-	Standard				əs	Metals: As Ag Ba Cd Cr Pb Hg											of H	als o als o als o	nd D pler fer	Ъ С
-	AA		9	i ł			S S			TOTAL	ļ	SARIESPICEC	- <u>-</u>										Eree	y se V se	e Ha Sam	atu
	ANC)`` ت	 ¥≟	ا ت	[₩		1		Ē		Cations Ca, Mg, Na, K)	X	X	ХX	X	·		-+			_	nubor OCs	Interior Interior	by by	edm.
	22		Project Name:	Project #:	Project Loc:	РО#:	nat:		ł		-	9001 XT 2001 XT :HAT	\sim	· X	X	×	-							<u> 第</u> び 習	<u> %</u>	1
	Ő		ect)	6 10	ojec		Forn				891										-+			eLine	Lime	Time
	R E		Proj		ã		Report Format:				×	Np≖Non-Potable Specify Other	╞──								+	-	•	ŧ	F	
	â						Rej				Matrix	Dirosuios=s alempunon = WD	3	3	3	Ş									1.	
_	IST(1	1	1	1	1			ļ		Other (Specify)	-								-			Date .	Date	Date
	3										rers	1001 1001									-+-					
	0	ast 765					1	Į			Container	°O'SZEN									+	-1			┨	÷
-	AIN	20 E s 79			- {		ļ	Í				HOSN	<u> </u>								╉	-				
	GH	st I-:									n d	'0\$ ^z h										4			}	
÷		We: a, T									Preservation & # of	HCI									T					
8 00		12600 West I-20 East Odessa, Техаs 79765	ļ								Presi	[¢] ONH														
		çğ			1						Ц	jce			Ļ											
							1	1				Total #. of Containers	p	3	9	3										
							ö	÷				Field Filtered								_	-	_				
							Fax No:	e-mail:				bəlqms2 əmiT								-						
			Ś	Assob.								Date Sampled	ON/X/W		12/12/00	بر								Received by:	Received by:	Received by ELOT
	ഗ		K,	E		[Ending Depth		[']
а. А	exa		- - -	-95-								ៅqeD ចូរកែកខ្លែង ការក្រុម Deptin												Time	Time	Time
	Environmental Lab of Texas		Murk Larson	Larson																				Date	Date	Date
	ta La		~									FIELD CODE			A	\mathbf{A}										
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	C.		er:	þ	Company Address:			Sampler Signature:				별	The second	#	10	44								1		
1944 1944	ç		Project Manager:	Company Name	ppq	City/State/Zip:	Telephone No:	igna					0	0	12	Þ.	ł								1	
_	C		t Ma	hu	any	ate/	one	er S		. : :			2	ΪŻ	N.	N		[:su		1	[
т 15 59 21	Q		ojec	du	,mp;	y/St	leph	ldm					$ \varphi$	10	5	<u>↓</u>							Ictio	5	2	
	म्बद्ध स्वयन्त्र स्वयन्त्र		Ргс	ပိ	ပိ	Cit	Tel	Sa		Njuo	#												15 tru	éd ba	ed by	ed by
2										(lab use only)	ORDER #:	(vino esu del) # BAJ	4	0		2		·			·		Special Instructions:	Relinquished by:	Relinquíshed by:	Relinquished by:
										(lab.	OR	1.450 son del/ # 84	17	1	2	le			.	[·		• • {	bec	telinc	telinc	celino
									-	· • • • • • •			<u>. </u>		لمسما	·					 		~1	<u> </u>	Tœ	102

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client	Largon
Date/ Time:	12/15/06 9:35
Lab ID # 1	41-15001
Initials:	CKS

Sample Receipt Checklist

				Cli	ent Initials
/#1 #2	Temperature of container/ cooler?	Yes	No	0.5 °C]
#2	Shipping container in good condition?	Yes	No		
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
#4 #5	Chain of Custody present?	Yes	No		
#6	Sample instructions complete of Chain of Custody?	(XES)	No		
#7	Chain of Custody signed when relinquished/ received?	E S	No		
#7 #8	Chain of Custody agrees with sample label(s)?	(es	No	ID written on Cont./ Lid	
#9.	Container label(s) legible and intact?	Xes	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	(AS)	No		
#11	Containers supplied by ELOT?	(ES)	No		
#12	Samples in proper container/ bottle?	res	No	See Below	
#13	Samples properly preserved?	(es	No	See Below	
#14		Yes	No		
#15	Preservations documented on Chain of Custody?	A	No		
#16	Containers documented on Chain of Custody?	Yes	No		
\$17	Sufficient sample amount for indicated test(s)?	Yes?	No	See Below	
#18	All samples received within sufficient hold time?	1200	(No)	See Below	
#19	Subcontract of sample(s)?	Yes	NO	Not Applicable	
#20	VOC samples have zero headspace?	Xes	No	Not Applicable	

Variance Documentation

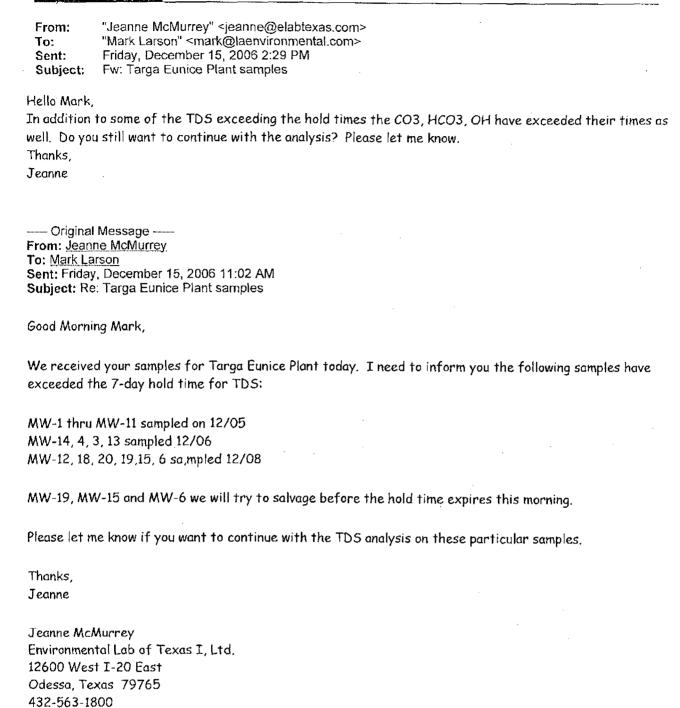
Contact.	Mark Larson	Contacted by:	Jeanne McMurrey	Date/ Time:	12-15-06
Regarding:	t: add dup's	to COC 2	nun MW13 WA	ist labeled	oles CO3, HCQOH as we
Corrective .	Action Taken:			·····	
heck all t	hat Apply;	See attached e-ma			
			and would like to proceed with an ad begun shortly after sampling ev		

and the second

a article

. N. . . .

100



1. A. 1.

1. 3

and the sec

34.63 B. 91459

12/16/2006

Jeanne McMurrey

--

From:	"Mark Larson" <mark@laenvironmental.com></mark@laenvironmental.com>
To:	"Jeanne McMurrey" <jeanne@elabtexas.com></jeanne@elabtexas.com>
Sent:	Friday, December 15, 2006 3:21 PM
Subject:	RE: Targa Eunice Plant samples

Jeanne: Please run the samples for TDS. Also, per your earlier email, please run the additional analysis. Mark

This message has been scanned for viruses and dangerous content by <u>Basin Broadband</u>, and is believed to be clean.

12/15/2006

Jeanne McMurrey

From:	"scott armour" <scott@laenvironmental.com></scott@laenvironmental.com>
To:	"JEANNE" <jeanne@elabtexas.com></jeanne@elabtexas.com>
Sent:	Friday, December 15, 2006 3:16 PM
Subject:	CHANGES TO WATER SAMPLES

JEANNE,

34 p. 1.

All Barries

4 . X. M

C Dailon

hái sin

8 . B.

100°. 31600.

2.2. 8.2

÷ 10

PLEASE ADD ALL DUPS TO THE CHAIN-OF-CUSTODYS AND RUN THE TARGA EUNICE PLANT SAMPLES THAT ARE UNLABELED BTEX FOR MW-13

THANKS

SCOTT

--

This message has been scanned for viruses and dangerous content by <u>Basin Broadband</u>, and is believed to be clean.

12/15/2006