AP - 59

GENERAL CORRESPONDENCE

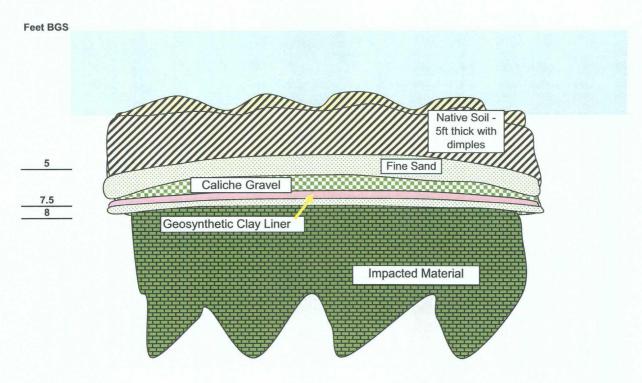
DATE: 2007-2004

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

September 24, 2007

Edward Hansen NMOCD 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Via E-mail


RE: F-35 SWD & G-35 SWD, T17S, R35E; NMOCD Case #: AP-59, Quarterly Report

Dear Mr. Hansen,

This letter serves as our Status Report for the abovementioned sites, presenting work and progress there from April-August of this year.

Vadose Zone Remedy

As you may recall, in April we conducted additional investigations at these sites at your request and reported on their results on the 23rd of the same month. On May 24th we received your response requesting an amended Vadose Zone Remedy Plan. We submitted amendments on June 13th, which were approved on the 14th. We began the approved amended Remedy the week of June 25th, and followed the plans to backfill the excavation presented in the table and drawing below.

September 24, 2007 Page 2

F-35 and G-35 Design Thickness (inches)	F-35 and G-35 Design Thickness (feet)	(All layers are dome shaped to shed excess water)				
6	0.5	Topsoil				
54	4.5	Native Soil Layer				
12	1.0	Fine Sand interface				
		Pea Gravel Caliche				
18	1.5	Sub Layer				
0.25	0.02	GCL				
6	0.50	Sand				
		Total Thickness above				
96.25	8.0	Chloride material				

The pictures below show the installation of the GCL as well as the final backfilled status at both sites.

GCL at F-35, placed 7 feet below grade

Backfilled excavation at F-35

Imported hay to condition topsoil at both sites.

September 24, 2007 Page 3

G-35

GCL in excavation at G-35, 7 feet bgs

Filling the excavation at G-35

Spreading topsoil at G-35

Once the excavations were filled in, decomposing hay was incorporated to condition topsoil. On August 8th and 9th, two passive soil vapor vents were installed at each site. The attached logs show that these vents were slotted from 47-45, 37-35, and 27-25 below ground surface. The vents extend to 6 feet above the ground surface and are fitted with a turbine to vent the subsurface.

Passive soil vent at F-35

September 24, 2007 Page 4

Completed soil vapor vents at G-35 (backfilled excavation visible to right of vents)

Revegetation is ongoing.

Point Source Treatment

Point source treatment at F-35 is on-going. We have added features to make the system more reliable. We estimate that this spring over 15,000 gallons have been pumped, producing over 3,000 gallons for wildlife and approximately 11,000 gallons for routine SWD pipeline maintenance.

Upcoming Actions

A recovery well has been installed at G-35 and will soon be fitted with a solar pump. Treatment equipment is targeted for installation in the 4th quarter of 2007. We are evaluating options for treatment of water at G-35 and will submit our proposed process shortly. We will notify you of any planned field work with as much notice as possible once the schedule is set.

Sincerely, R.T. Hicks Consultants, Ltd.

atie Lee

Katie Lee Staff Scientist

Copy: Rice Operating Company

Hansen, Edward J., EMNRD

	From:	Hansen, Edward J., EMNRD
	Sent:	Thursday, May 24, 2007 6:20 PM
	То:	Kristin Pope
	Cc:	Randall Hicks (Randall Hicks); Prichard, Sharon, EMNRD; Price, Wayne, EMNRD; 'Katie Lee'
	Subject:	RE: F-35 & G-35 SWD; NMOCD Case #:AP-59
D		
\mathbb{D}	ear Ms.	Pope:

The New Mexico Oil Conservation Division (NMOCD) has reviewed your amended investigation report (dated April 23, 2007) for the above referenced sites. The additional information was very useful in the NMOCD's continuing review of the abatement plan for these sites. However, since the additional investigatory data determined that the vadose zone is contaminated with elevated concentrations of chloride and hydrocarbons at depth, NMOCD is requiring that the vadose zone must be further remediated. Therefore, the NMOCD hereby denies the Vadose Zone Remedy (dated February 2, 2007) for these sites. Since this Remedy was originally tested in dryer climate compared to the precipitation that does occur at these sites, there could be "break-through" during wetter precipitation periods. Therefore, this Remedy would involve long-term monitoring to ensure its effectiveness and the NMOCD does not have the resources to monitor these sites on a long-term basis (and Rice Operating Company would be better served spending their limited resources on shorter term remedies). Rice Operating Company must submit a revised Vadose Zone Remedy within 30 days to the NMOCD that includes a design that will prevent further infiltration through the contaminated vadose zone at these sites.

If you have any questions regarding this matter, please contact me at 505-476-3489.

Edward J. Hansen Hydrologist Environmental Bureau

From: Katie Lee [mailto:katie@rthicksconsult.com]
Sent: Monday, April 23, 2007 12:40 PM
To: Price, Wayne, EMNRD; Hansen, Edward J., EMNRD; Prichard, Sharon, EMNRD
Cc: Kristin Pope; Randall Hicks (Randall Hicks)
Subject: F-35 & G-35 SWD; NMOCD Case #:AP-59

Ladies and Gentlemen,

Attached please find our report, on behalf of Rice Operating Company, regarding agreed upon work conducted on 4-16-2007 at the above referenced sites.

Hard copies follow via the post. We look forward to your response.

Best regards,

Katie Lee

Staff Scientist R.T. Hicks Consultants, Ltd. ph. 505-266-5004 fax 505-266-0745 mobile 505-400-7925

This inbound email has been scanned by the MessageLabs Email Security System.

\$

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Fax: 505.266-0745

April 23, 2007

Ed Hansen NMOCD 1220 South St. Francis Drive Santa Fe, New Mexico 87505 **Via E-mail**

RE: Agreed Work at F-35 SWD & G-35 SWD, T17S, R35E; NMOCD Case #: AP-59

Dear Mr. Hansen,

We are pleased to report that we have completed the agreed scope of work as discussed on april 12, and confirmed in our April 13th, 2007 letter for the above-referenced sites. Our agreed work included:

2007 APR 24

A

- One exploratory boring in each excavation where surface sampling and field examination suggest that the highest volume of fluid was released to the subsurface
- Collect samples from each boring at 5-foot intervals for field analysis of chloride and organic vapors using standard ROC protocols
- Record observations of the physical nature of the vadose zone on a boring log
- Extend the soil borings at each site to the capillary fringe

We attach site sketches noting the boring locations. Locations were selected based on areas believed to have been subject to the highest impact and placed in the center of previous excavations as noted. Also find boring logs for exploratory soil borings at F-35 and G-35 that show results of field analysis at 5-foot intervals and record observations of the physical nature of the vadose zone. Borings extended to the capillary fringe at both sites.

- Submit no more than two samples to the laboratory for analysis of BTEX if field analysis of organic vapors exceeds 100 ppm
- Collect two samples from each boring for laboratory analysis of chloride
- Collect 2-3 samples from each boring for laboratory analysis of soil moisture

Please see the attached chain of custody and laboratory results for samples collected during borings.

• Construct a 4-inch recovery/monitoring well at G-35 near the excavation using the well design shown in Figure 1 (attached) at a location that is 25 feet down gradient from the edge of the excavation (which is the former discharge site).

A well completion diagram and lithologic log are also included, and the location of this new 4" casing monitoring well is noted on the G-35 site sketch. Sampling of this well is scheduled for May 8, 2007 to allow the well to equilibrate and as sampling schedules allow.

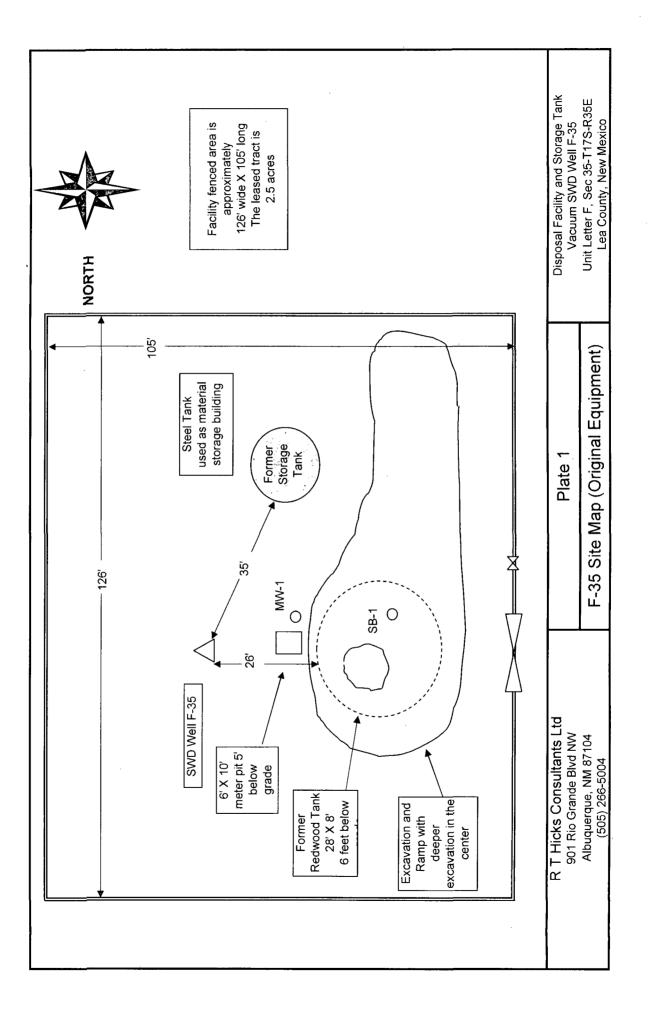
Finally, below we include photo documentation of our April 16th work on these sites.

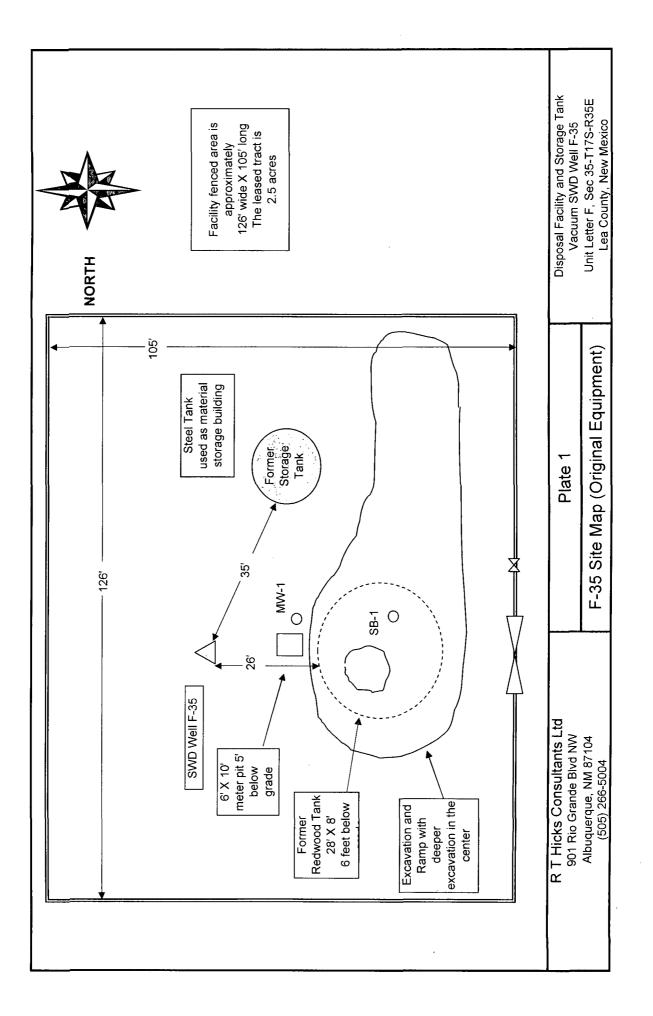
April 23, 2007 Page 2

Boring at F-35

Boring at G-35

Monitoring Well at G-35

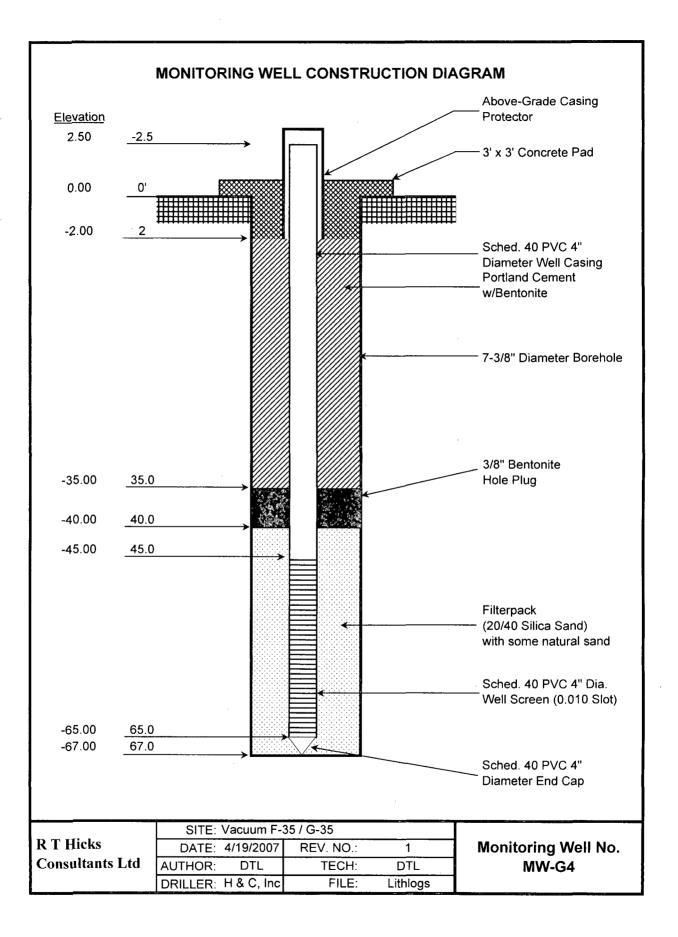

We are hopeful that this information will allow for the speedy approval of our proposed vadose zone remedies for these sites and we are ready to schedule installation of the excavation caps as described in our previous submissions. We look forward to your response.

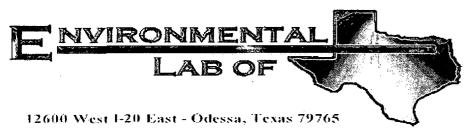

Sincerely, R.T. Hicks Consultants, Ltd.

Katie Lee

Katie Lee Staff Scientist

Copy: Rice Operating Company Hobbs NMOCD office


٠


J

DTIP		IC LOG (SOIL	
R T Hicks	MONITOR WELL NO .:	SB-F1 & 1A Vacuum F-35 / G-3	TOTAL DEPTH: 52.0 Ft (below original surface)
Consultants Ltd	SURFACE ELEVATION:		35 CLIENT: Rice Operating Company COUNTY: Lea County
		Harrison & Cooper	
P O Box 7624	DRILLING METHOD:		LOCATION: T-17-S, R-35-E, Sec. 35 (F)
Midland, TX 79708	INSTALLATION DATE:		FIELD REP .: Dale Littlejohn
(432) 528-3878	WELL PLACEMENT:	Within Pit (8 ft bgs)) FILE NAME: Vac F & G-35\Lithlogs
		Lat. 32° 47' 34.4" N	North, Long. 103º 25' 49.1" West
Lithology			LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE
	PHOTO DEPTH TYPE PID 10-12 Cuttings 620 ppm 15-17 Split 1,398 ppm 20-22 Cuttings 445 ppm 20-22 Cuttings 552 ppm 30-32 Cuttings 552 ppm 35-37 Split Spoon 1,365 ppm 40-42 Split Spoon 1,672 ppm 45-47 Split Spoon 1,672 ppm 50-52 Split Spoon 1,674 ppm	Cl (Lab) Cl (La	LIHELOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE SORTING, ROUNDING, CONSOL, DIST. DEATURES CALICHE AND SAND Grayish brown caliche covered by 1/2 foot of brown silly top soil. Sand brown, very fine grain, with very large caliche gravel (70 to 80% sand). Description and photo from walls of excavation (surface to 16 ft bgs). SANDSTONE (quartzite) gray, fine crystalline, well cemented, very hard drilling. SAND Light brown, very fine grain, well-sorted, rounded. SAND Brown, fine-grain, well-sorted, rounded to sub-rounded with interbedded layers of thin, hard quartzite. SAND Brown, fine-grain, well-sorted, sub-rounded, unconsolidated. SAND Brown, fine-grain, well-sorted, sub-rounded, unconsolidated.

				LITHC	LOG	IC LO	G (SOI	L BORING)
R T Hick	KS			OR WEL	L NO.:	SB-G1		TOTAL DEPTH: 47.0 Ft (below original surface)
Consulta	inte Lt	d		S	ITE ID:	Vacuum	F-35 / G-	35 CLIENT: Rice Operating Company
Consulta		u s					8 Caana	
R T Hicks MONITOR WELL NO.: SB-G1 SITE ID: Consultants Ltd Vacuum F-35 / G-35 SURFACE ELEVATION: O.0 P O Box 7624 Midland, TX 79708 (432) 528-3878 MILLING METHOD: DILLING METHOD: SAMPLE DATA Harrison & Cooper, In Air-Rotary Harrison & Cooper, In Air-Rotary Velue Joac Sample Data Well PLACEMENTS: Lat 32º 47 34.9° MON GOMMENTS: Lat 32º 47 34.9° MON GOM Velue Joac Sample Data DEPTH TP O Sample Data DEPTH Sample Data Velue Joac								
Consultants Ltd SIFE ID: SUFFACTOR Vacuum F-35 / G-35 (CON CONTRACTOR COUNT Harison & Cooper, Inc. Air-Rotary COUNT STATUS Air-Rotary P O Box 7624 Midland, YX 9708 (432) 528-3878 DRILLING METHOD: SAMPLE DATA Air-Rotary LIOCAT FIELD RI 416007 STE DISCUENCE VELL PLACEMENT: Within Pit (5 ft bgs) FIEL NA SORTING, ROUNDING, COUNDING, CO SORTING, ROUNDING, CO SORTING, SULTY SAND Brown to reddish brown, very fine 30-32 10-12 Split 1,245 1,245 3,804 SAND Brown to reddish brown, very fine 30-32 25-27 Split 1,245 1,245 3,804 300 <th></th>								
(432) 526-361	T Hicks MONITOR WEI Dasultants Ltd PO Box 7624 Midland, TX 79708 432) 528-3878 Lithology MULL PLACE COMM Lithology MULL PLACE COMM PHOTO DEPTH TYPE Lithology 10-12 Split 							
R T Hicks MONITOR WELL NO: 38-61 TOTAL DEPTH # 72.0 F (below original surface). CURNER Rec Operating Company CONTRACTOR: Harrison & Cooper. Inc. TOTAL DEPTH # 72.0 F (below original surface). CURNER Rec Operating Company CONTRACTOR: Harrison & Cooper. Inc. TOTAL DEPTH: Rec Operating Company CONTRACTOR: Harrison & Cooper. Inc. P 0 Box 7824 Witting, 17.7 9708 Witting, 17.7 9708 Witting, 17.7 9708 WILL PLACEMENT: Within Pit (6 fbgs) WISTALLTON DATE: 4/1607 WISTALTON DATE: 4/1607 WISTALTON DATE: 4/1607 CONTRONG CONSOL: TT-75, R-35 E, Sec. 35 (6). STAT: We Westo Univolve DRUMENTS: Lat 22/47 34.9 North. Long. 1079 25 34.4 West Was fb C ASAMURES SEC. Univolve MONTOR EPTH TYPE DPID c1(Lab) STAT REVENTING, CONSOL: TTHOLOGY, COLOR, GRAIN SIZE CONTRONG ROUNDING, CONSOL: TO EPTHRES Univolve HOTO DEPTH TYPE DPID c1(Lab) STITIC SCONTRG, CONSOL: THOLOGY, COLOR, GRAIN SIZE Value of excavation (surface to 5 ft bgs). USE 012 Spoon 10-12 Spoin 10.88 303 10-12 Spoin 1286 388 10-12 Spoin 1286 303 20-22 Spoin 11.88 456 20-22 Spoin 11.88								
		РНОТО				CI (Lab)		
								SILTY CLAY Gravish brown with some caliche covered by small
		and the second						gravel (SWD well pad). Description and photo from walls of
	<u> </u>							SILTY SAND Brown with some caliche. Description and photo from
	±							walls of excavation (surface to 5 ft bgs).
	<u> </u>						5	
								SILTY CLAY Grayish black (discolored), with some caliche.
								Provide the standard strategy and the stan
		The second					10	
				Colit	1 0 4 9	202	10	
		SPACE.	10-12					
		2.						
		1.2						SILTY SAND Light greenish gray, very fine grain, with some very
		- Tay					15	
		5 X X	45.47	Split	1,296	366		
		- 64	15-17			mg/kg		
	- <u>-</u> - <u>-</u>							
R							20	
SLL STREET		Section .	20-22			1 2 2 3		
		-		Spoon	ppm	mg/kg		
								CANDETONE (questaite) group fine existelling well compared your
/ CE		and the second					25	
빈 🗱 🗱 🕅		14 - ST			59.7	456	20	naro onining.
		All a second	25-27	Cuttings				
		1100						
		A CONTRACTOR						SAND Light brown, very fine-grain, well-sorted, angular.
		15					30	
			30.32	Split	46.4	3,804		
		-	00-02	Spoon	ppm	mg/kg		
		1						
		-					05	SAND Brown to reddish brown, fine-grain, well-sorted, sub-rounded.
							35	
			35-37		States in	tor Advanter Con		
				Spoon	ррт	mg/kg		
						-	40	
				Split	1 243	2 4 9 9		
		9	40-42					
		1.2			an ai			
		1					45	
		10	45-47			1		
		and the state of the		Spoon	ppm	mg/kg		Soil moist, with mud on drill pipe.
TD = 47 Feet								

D	ТН	ial	10		LIT	THOL	OGIC	LOG (N		DRING WELL)
					MONIT			MW-G4		TOTAL DEPTH: 65.0 Ft
C	onsu	Ita	nts Lto	1	SURFAC				F-35 / G-	35 CLIENT: Rice Operating Company COUNTY: Lea County
					(CONTRA	ACTOR:	Harrison	& Coope	r, Inc. STATE: New Mexico
1	P O Box	762	4		DRIL	LING ME	ETHOD:	Air-Rotai	y .	LOCATION: T-17-S, R-35-E, Sec. 35 (G)
	Midland				INSTAI		DATE:	4/16/07 Southeat	at af ait	FIELD REP.: Dale Littlejohn
1	(432) 52	8-38	/8		VVELI	COM		Lat 32°	47' 34 6"	FILE NAME: Vac F & G-35\Lithlogs
-			Lithology			MPLE D	ATA	Edt. OL	DEPTH	LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE
Contract of				РНОТО	DEPTH	% REC	PID	CI (FId)		SORTING, ROUNDING, CONSOL., DIST. DEATURES
CINT	L									SILTY CLAY AND CALICHE Brown to reddish brown with a thin layer of gravel (SWD Well Pad) at the surface. Photo and description from
			- <u>-</u>							open excavation near monitoring well.
			<u>+</u>	1	No	o soil samp	oles recove	red		
									5	
			<u> </u>	S. 19						CALICHE Gray with some silt and sandstone.
			<u> </u>	a dit						
									10	SILTY SAND Gray very fine grain, well-sorted.
				-					10	
			±							CALICHE with light brown fine grain silty sand.
				tia a	No	o soil samp	oles recove	red		
URR				1					15	SAND Light brown to tan, very fine grain, well-sorted, with some
T SL			- <u>-</u>	· 18 1						caliche.
MEN				· · · ·						
DO			<u> </u>	L 3-						
AN		9	<u>+</u> +						20	
LIN		CASI	<u> </u>							
BENTONITE AND CEMENT SLURRY		NK	- <u>-</u>	-						
8		PVC BLANK CASING		A STA					05	SANDSTONE (Quartzite) Light brown to gray, fine crystalline, very
				1.	No	soil samp	oles recove	red	25	hard drilling.
		4		150 15						
				and the state						SAND Lt brown, very fine grain with interbedded sandstone. SAND Light reddish brown, fine grain, well-sorted, sub-rounded to sub-
		8			-				30	angular.
			1.1	25						
				al construction						
					N				35	
TONITE	8 8	8		a		soli samp	oles recove	rea		
NOL X	8 8	8								
BEN'		8							40	
	***	8		Lin .					40	
				1 43 T					_	
				2. g.						
				and the second s					45	
				1 34 C	1.5					
X				4-18-12		-				
PAG				Sting					50	Maintenne la la factoria d'Italia
SAND		10")			NO	soil samp	les recove	red	50	Moist sample, lost some of the returns
0/40		(0.0		C. Spin						
VD 2(SCREEN (0.010"					1.1			
ALAI) SCF		and a ministra					55	
NATURAL AND 20/40 SAND PACK		PVC SLOTTED								Developed well by pumping 55 gallons at approximately
NA		SLO		1.12						12 gpm with approximately 6 ft of drawdown.
		PVC		S. Lange						
		4" F							60	
				Sample						
				o Sat						
				2 2					65	
TD	= 65 Fe	eet		, M						

A Xenco Laboratories Company

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: Vacuum G-35/ F-35 Site Project Number: Pit Soil Borings (both sides) Location: T17S, R35E, Sec 35, Unit Letter F, G

Lab Order Number: 7D18003

Report Date: 04/19/07

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

.

Project:Vacuum G-35/ F-35 SiteProject Number:Pit Soil Borings (both sides)Project Manager:Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
F-35 SB-1 40.0' - 42.0'	7D18003-01	Soil	04/16/07 09:30	04-18-2007 10:00
F-35 SB-1 50.0' - 52.0'	7D18003-02	Soil	04/16/07 10:00	04-18-2007 10:00
F-35 SB-1A 15.0' - 17.0'	7D18003-03	Soil	04/16/07 10:05	04-18-2007 10:00
F-35 SB-1A 25.0' ~ 27.0'	7D18003-04	Soil	04/16/07 10:20	04-18-2007 10:00
G-35 SB-1A 15.0' - 17.0'	7D18003-05	Soil	04/16/07 13:13	04-18-2007 10:00
G-35 SB-1 30.0' - 32.0'	7D18003-06	Soil	04/16/07 13:37	04-18-2007 10:00
F-35 SB-1 35.0' - 37.0'	7D18003-07	Soil	04/16/07 13:45	04-18-2007 10:00
F-35 SB-1 45.0' - 47.0'	7D18003-08	Soil	04/16/07 14:00	04-18-2007 10:00

١

Rice Operating Co.
122 W. Taylor
11-4-4- 4141 202-01

Hobbs NM, 88240

Project: Vacuum G-35/ F-35 Site Project Number: Pit Soil Borings (both sides) Project Manager: Kristin Farris-Pope

Fax. (505) 397-1471

Organics by GC

Environmental Lab of Texas

Analysis	Result	Reporting Limit	Units						
		Limit	Units	 Dilution 	Batch	Prepared	Analyzed	Method	Notes
F-35 SB-1 50.0' - 52.0' (7D18003-02) Soil			·····						
Benzene	4.22	0.0250	mg/kg dry	25	ED71706	04/18/07	04/18/07	EPA 8021B	
Toluene	18.1	0.0250	"	"	,,		11		
Ethylbenzene	20.1	0.0250	11	**	e*				
Xylene (p/m)	24.9	0.0250			34	46	"	e	
Xylene (o)	12.5	0,0250		"	**	**	"	ţe.	
Surrogate: a,a,a-Trifluorotoluene		1730 %	75-	125	<i>r</i> •		"	••	8-04
Surrogate: 4-Bromofluorobenzene		171 %	75	125	•			"	S-04
F-35 SB-1A 25.0' - 27.0' (7D18003-04) Soil									
Benzene	4.86	0.0250	mg/kg dry	25	ED71706	04/18/07	04/18/07	EPA 8021B	
Toluene	5.29	0.0250	10		**			••	
Ethylbenzene	27.0	0.0250		"	**			63	
Nylene (p/m)	32.8	0.0250	**	**	"			*	
Nylene (o)	11.2	0.0250	"			•		'n	
Swrrogate: a.a.a-Trifhuovotoluene		2140 %	75-	125	17	<i>h</i>	"	n	S-04
Surrogate: 4-Bromofluorobenzene		187 %	75-	125	"		**	"	8-04
G-35 SB-1A 15.0' - 17.0' (7D18003-05) So	il								
Benzem	5.64	u 106	માકુ કરૂ છે.	100	LUTTRA	04-1 5 /07	64719707	有无论证明	
Toluene	20.7	0.100			,-		v		
Ethylbenzene	38.2	0.100			,,	er			
Xylene (p/m)	45.4	0.100			,		9		
Nylene (o)	21.2	0,100		**	*1	15			
Surrogate; a,a,a-Trifluorotoluene		206 %	75-	125	<i>p</i>	n 1999 (n. 1. 1999) - 1. 1991 (n. 1995) 19	**		S-04
Surrogate: 4-Bromofluorobenzene		136 %	75-	125	<i>n</i>	"		**	8-04
G-35 135 SB-1-45.0' - 47.0' (7D18003-08) Soil	(see chain	n & custo	deg)						
Benzene	0.557	0.0250	այցեր գո	25	ED71706	04/18/07	04/19/07	EPA 8021B	
Toluene	3.48	0.0250	**		.,		~	P.	
Ethylbenzene	5.80	0.0250			"	a			
Xylenc (p/m)	8.05	0.0250	**		"		"		
Xylene (o)	3.57	0.0250		47	r.			0	
Surrogate: a.a.a-Trifluorotoluene		176 %	75.	125	r.	ı,	17	<i>,</i> ,	8-04
Surrogate: 4-Bromofluorobenzene		131 %	75.	() 5	r				5.04

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety. with written approval of Environmental Lab of Texas.

Rice Operating Co			Project: Vac	uum G-35	F-35 Site			Fax: (505) 3	97-1471	
122 W Taylor			lumber: Pit S			s)				
Hobbs NM, 88240		•	anager: Kris							
	General Cher	nistry Para	imeters b	y EPA /	Standar	d Method	s			
Environmental Lab of Texas										
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
F-35 SB-1 (40.0' - 42.0' (7D18003-04) Se	oil									
% Moisture	7.0	0,1	% 6	1	ED71903	64/18/07	04/19/07	% calculation		
F-35 \$B-1 50.0' - 52.0' (7D18003-02) Se	bil									
Chloride	1700	20,0	mgiky Wei	2	ED71906	04/18/07	04/18/07	SW 846 9253		
% Moisture	7.5	0.1	%	1	ED71903	r	04/19/07	% calculation		
F-35 SB-1A 15.0' - 17.0' (7D18003-03)	Soil									
% Moisture	12.7	01	%	1	ED71903	04/18/07	04/19/07	% calculation		
F-35 SB-1A 25.0' - 27.0' (7D18003-04)	Soil									
Chloride	160	20.0	mgAg Wet	2	ED71906	04/18/07	04/18/07	SW 846 9253		
% Moisture	7.6	0.1	°,6	I	ED71903		04/19/07	% calculation		
G-35 SB-1A 15.0' - 17.0' (7D18003-05)	Soil									
% Moisture	21.0	0.1	%	1	ED71903	04/18/07	04/19/07	% calculation		
G-35 SB-1 30.0' - 32.0' (7D18003-06) 5	Suit									
Chloride	202	50 Đ	mgikg Wet	7	1.041.000	04.18405	04/18/07	SW 846 9253		

F-35 SB-1	35.0' - 37.0' (7D18003-07) Soil	

% Moisture	10.0	0.1 %	1	ED71903	04/18:07	04/19/07	% calculation
G-35 #-3* SB-1-45.0' - 47.0' (7D18003-08) Soil	(see chai	n of custody)					
Chloride	383	20.0 mg/kg Wet	2	ED71906	04/18/07	04/18/07	SW 846 9253
% Moisture	20.3	Q.1 %	1	ED71903		04/19/07	% calculation

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples undyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in us entirety, with written approval of Environmental Lab of Texas. Project: Vacuum G-35/ F-35 Site Project Number: Pit Soil Borings (both sides) Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED71706 - EPA 5030C (GC)										
Blank (ED71706-BLK1)				Prepared: ()4/17/07 A	nalyzed: 04	/18/07			
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0,00100	•							
Xylene (o)	ND	0.00100	•							
Surrogate: a,a,a-Trifluorotoluene	53.5		ug/kg	50.0		107	75-125			
Surrogate: 4-Bromofluorobenzene	49.0		"	50.0		98.0	75-125			
LCS (ED71706-BS1)				Prepared: (04/17/07 A	nałyzed: 04	/18/07			
Benzene	0.0546	0.00100	mg/kg wet	0.0500		109	80-120			
Toluene	0.0548	0.00100	•	0.0500		110	80-120			
Ethylbenzene	0.0579	0.00100		0.0500		116	80-120			
Xylene (p/m)	0.107	0.00100	"	0.100		107	80-120			
Xylene (0)	0.0589	0.00100	"	0.0500		118	80-120			
Surrogate: a,a,a-Trifluorotoluene	55.5		ug/kg	50.0			75-125			
Surrogate: 4-Bromofluorobenzene	54.1		"	50.0		108	75-125			
Calibration Check (ED71706-CCV1)				Prepared: 0	04/17/07 A	nalyzed: 04	/19/07			
Benzene	56.8		ug/kg	50.0		114	80-120			
Toluene	55.8		H	50.0		112	80-120			
Ethylbenzene	57.5		п	50.0		115	80-120			
Xylene (p/m)	105		11	100		105	80-120			
Xylene (o)	58.1		**	50.0		116	80-120			
Surrogate: a,a,a-Trifluorotoluene	54.9		n	50.0		110	75-125			
Surrogate: 4-Bromofluorobenzene	49.6		"	50.0		<i>99.2</i>	75-125			
Matrix Spike (ED71706-MS1)	Sou	rce: 7D13015	5-02	Prepared: (04/17/07 A	nalyzed: 04	/19/07			
Benzene	0.130	0.00200	mg/kg dry	0.130	ND	100	80-120			
Toluene	0.128	0.00200	"	0.130	ND	98.5	80-120			
Ethylbenzene	0.133	0.00200		0.130	ND	102	80-120			
Xylene (p/m)	0.237	0.00200		0.259	ND	91.5	80-120			
Xylene (o)	0.129	0.00200		0.130	ND	99.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	46.3		ug/kg	50.0		92.6	75-125			
Surrogate: 4-Bromofluorobenzene	43.8		"	50.0		87.6	75-125			

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project:	Vacuum G-35/ F-35 Site	Fax: (505) 397-1471
122 W. Taylor	Project Number:	Pit Soil Borings (both sides)	
Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	

Organics by GC - Quality Control

Environmental Lab of Texas

						· · ·				<u>-</u>
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch ED71706 - EPA 5030C (GC)

Matrix Spike Dup (ED71706-MSD1)	Sou	rce: 7D13015	5-02	Prepared: 0	4/17/07 A	nalyzed: 04	4/19/07		
Benzene	0,129	0.00200	mg/kg dry	0.130	ND	99.2	80-120	0.803	20
Toluene	0.125	0.00200	"	0.130	ND	96.2	80-120	2.36	20
Ethylbenzene	0.129	0.00200	"	0.130	ND	99.2	80-120	2.78	20
Xylene (p/m)	0.224	0,00200	"	0.259	ND	86.5	80-120	5.62	20
Xylene (o)	0.122	0.00200	"	0.130	ND	93.8	80-120	5.60	20
Surrogate: a,a,a-Trifluorotoluene	46.2		ug/kg	50.0		92.4	75-125		
Surrogate: 4-Bromofluorobenzene	42.5		"	50.0		85.0	75-125		

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor		Project Number:		s (both side:	5)			Fax: (505)	397-1471
Hobbs NM, 88240		Project Manager:	Kristin Farris-F	Pope					
General	Chemistry Para	meters by EP	A / Standard	d Metho	ls - Qua	lity Con	trol		
		Environment	l Lab of Te	xas					
Analyte	Result	Reporting Limit Un	Spike ts Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED71903 - General Preparation	(Prep)								
Blank (ED71903-BLK1)			Prepared:	04/18/07 A	nalyzed: 04	/19/07			
% Solids	100	9/	· · · · ·						
Duplicate (ED71903-DUP1)	Sour	ce: 7D18002-01	Prepared:	04/18/07 A	nalyzed: 04	/19/07			
% Solids	88.9	%		89,6			0.784	20	
Batch ED71906 - Water Extraction									
Blank (ED71906-BLK1)			Prepared a	& Analyzed	04/18/07				
Chloride	ND	20.0 mg/kg	Wet						
LCS (ED71906-BS1)			Prepared a	& Analyzed	04/18/07				
Chloride	93.6	10.0 mg/kg	Wet 100		93.6	80-120			
Matrix Spike (ED71906-MS1)	Sour	ce: 7D18002-04	Prepared a	& Analyzed	: 04/18/07				
Chloride	21200	400 mg/kg		12100	91.0	80-120			
Matrix Spike Dup (ED71906-MSD1)	Sour	ce: 7D18002-04	Prepared &	& Analyzed	: 04/18/07				
Chloride	21300	400 mg/kg	Wet 10000	12100	92.0	80-120	0.471	20	
Reference (ED71906-SRM1)			Prepared &	& Analyzed	: 04/18/07				
Chloride	52.1	10.0 mg/kg	Wet 50.0		104	80-120			

•

Environmental Lab of Texas

-

.

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

ſ	Rice Operating Co.	Project:	Vacuum G-35/ F-35 Site	Fax: (505) 397-1471
	122 W. Taylor	Project Number:	Pit Soil Borings (both sides)	
	Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike

- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Bun Barron

4/19/2007

Date:

Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

						(De L			TAT HZUA															
		ł	1			1		N	<u>ا</u> کر	TAT bisbrist		×	×	×	×	×	×	×	×		T				
			U				3H	N	20	RUSH TAT (Pre-Schedul	1911 1912	\times							\geq						
			u.	1						••••••••••••••••••••••••••••••••••••••												z	10		
EST		2	etter				-			Volumetric Moisture Content Total Chloride	1.00		×		<u>×</u>		×		<u> </u>		-f)	512-		
EQU	e e	site	it Le							Total Dissolved Solids											4	り	1		
IS R	S.	득	Ď							triature Content		×		×		×		×			-				
CHAIN OF CUSTODY RECORD AND ANAL YSIS REQUEST	Project Name: Vacuum G-35/F-35 Site	Pit Soil Borings (both sites)	Sec 35, Unit Letter				or:			BCI	С. С											Sample Containers Intact? Temperature Upon Receipt: Laboratory Comments:	5		
ANA	35/	Bui		l			Analyze For			815X 80218			×		×	×			×			Sample Containers Intact? Temperature Upon Receip Laboratory Comments:	W/labels + seal S		
AND	ပ်	BQ	Project Location: T17S, R35E,				Analy	$\downarrow \downarrow$		selitelovimeS											4	iners Jpon omr	+		
RD.	unn	Ī	e E					++	80	Metals: As Ag Ba Cd Cr Pb Hg Votatilos	1.31											ure (éls		
ECO	/act	E	175				à			28818: 98 90 83 C4 C1 BH Hd	+											ole C oerat irato	ap		
УR	ie.	#	Ë	ا ھ			TCLP.	TOTAL		Anions (Cl, SO4, CO3, HCO3)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										-	Sam) Tem	3		
STOL	Иап	Project #:	catic	ပိ		ы				Cations (Ca. Mg, Va. K)															0
cus	oject	54	t Lo	illin		JL,C			900	1 2001 M2108 1.814 .HGT													Time	Time	000/
V OF	Pro		rojec	ROC Billing Code		SUS				Orber (specify):	- 4 - 5										\neg		ļ	_	ᅴ
HAIN			ā	Я		SCC			Matrix	Soil Soil		×	×	×	_×	<u> </u>	×	<u> </u>	_×		\neg				5
с С	I	1	1	1	1	thic			2	1916W	-										-		Date	Date	40
						and andrew@rthicksconsult.com		i h	+	Other (Specify)											4				rugt-po
]	lev				anoN														1	
						and			Preservative	°OS ^z h	1 														
		ĺ			17	and			Sec	HOPN											_				
					-17				ĕ٢	нсі нио														1	ł
		1			397	1.co			\mathbf{F}	150/ 20/ BOI	1. S.	×	×	×	×	×	×	×	×		-				z
				1	05-	SWC			֠	No. of Containers			-			-		-	-	-+-	4			1	2
					പ്പ	irice			┢		5 2 ¹														3
					Fax No: 505-397-147	e@				belqms2 emiT	*) -5*	30	8	1005	1020	1313	37	45	8						menun
					u.	bod				belome2 emiT		0930	1000	2	5	5	1337	1345	1400					1	7
					ı	, k			+		1										_			LO	3
			Ì			d.C						07	07	6	6	6	6	10	5				Ä	by ELOT:	ł
				ļ		SW	5		ļ	beigmeS eleO	2. - 4. 4.	4/16/07	4/16/07	4/16/07	4/16/07	4/16/07	4/16/07	4/16/07	4/16/07				Received	ived	J'a
			ł)rice	17					4	4	4	4	4	4	4	4				Rece	Received	(1)
						<u>so</u>	ۇر.		ſ		P (0	0	0	0	0	0	0	0				0		
() o m				0		griee	Đ				₽ug (‡	42.0	52.0	17.0	27.0	17.0	32.0	37.0	47.0					Time	
D of Texas Phone: 432-563-1800 Fax: 432-563-1713		<u>S</u>		324	1	ц Ц	& THEN W			http://www.celine.celi			<u> 1987 -</u>		<u>a</u>		<u></u>	- Se		<u>800 - 5</u>			<u> </u>	1	
6		ğ		80		cor	\prec	1			Begin (ft)	40.0	50.0	15.0	25.0	15.0	30.0	35.0	45.0				5		
+32 432		õ	2	xic		sult	N				Be	4	20	7	š	-	m	ň	4				G/C	Date	
je i je		ing	olye	Me	2	con	3	1															4/19/07		
م يتق	arris	erat	11	Jew	917	icks	il.							æ	4									╂	
-a	й	ð	Ves	s, z	93-	Prth	\sim	1		FIELD CODE		8-1-	8-1	8	н -	8-1	8	H-	ы.					ł	
	istir	Ge	2 <	qq	5-3	tie (1				F-35 SB-1	F-35 SB-1	F-35 SB-1A	F-35 SB-1A	G-35 SB-1	G-35 SB-1	G-35 SB-1	G-35 SB-1						
ta	~	2	21	Ĭ	120	: ka					the second second	<u> </u>	ц	<u> </u>	<u> </u>	<u></u>	6	Ċ	6		\neg		4		
u a	ager	Jame	ress	:/Zip:	o No.	ts to:	ture:			7000 00	an that a s												1	4	
ne st 65	Man	d Yne	Add	State	hone	esul	igna	,		GIS CODE	1												1 2		
0 Ea	Project Manager: Kristin Farris	Company Name Rice Operating Company	Company Address: 122 West Taylor	city/state/Zip: Hobbs, New Mexico 88240	Telephone No: 505-393-9174	Email results to: katie@rthicksconsult.com, tgrieco@riceswd.com,kpope@riceswd.com,	Sampler Signature:	م. م	上												\neg		Kutter h		
1 11-2 exas	Pro	ŭ	jomp	~	-	μIJ	amp	Ş	5			1	N	Ч	_	.,	. 5					12	PAC -	à	
V es Wes a, T(0				U)	2	4	(Vino esu del) # BAJ		5	20-	63	હ્યું	p	10-	Ģ	89			tions	ished 2.7	ished	
Environmental Lab of Texas 12600 West 1-20 East Phone: 432-563-1700 Odessa, Texas 79765 Fax: 432-563-1713								5	2	200 810L							1					Special Instructions:	Relinquished by	Relinquished by	
HH 26								ت ا	L	-/ ; NL lun.												з <u>н</u>	a m	1 a	

-

-

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client:	Rice Operating	
Date/ Time:	04-18-0701000	
Lab ID # :	7012003	
Initials:	JMM	

Sample Receipt Checklist

....

. . .

				(Client Initials
#1	Temperature of container/ cooler?	(Yes)	No	-2,5 °C	
#2	Shipping container in good condition?	(Yes)	No		
#3	Custody Seals intact on shipping container/ cooler?	(Yes)	No	Not Present	
#4	Custody Seals intact on sample bottles/ container?	(Yes)	No	Not Present	
#5	Chain of Custody present?	Yes	No		
#6	Sample instructions complete of Chain of Custody?	(Tes.)	No		
#7	Chain of Custody signed when relinquished/ received?	Yes	No		
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid	
#9	Container label(s) legible and intact?	(Yes)	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	(Yes-	No		
#11	Containers supplied by ELOT?	Yes	No		
#12	Samples in proper container/ bottle?	Yes	No	See Below	
#13	Samples properly preserved?	Yes	No	See Below	
#14	Sample bottles intact?	Yes	No		
#15	Preservations documented on Chain of Custody?	Yes	No		
#16	Containers documented on Chain of Custody?	Yes	No		
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
#18	All samples received within sufficient hold time?	(Yes)	No	See Below	
#19	Subcontract of sample(s)?	Yes	No	Not Applicable	
#20	VOC samples have zero headspace?	Yes	No	Not Applicable	

Variance Documentation

Contact:	 Contacted by:	Date/ Time:
Regarding:	 ······	
Corrective Action Taken:		
· · · · · · · · · · · · · · · · · · ·		
Check all that Apply:	See attached e-mail/ fax Client understands and would like to proceed with ana	alysis

Cooling process had begun shortly after sampling event

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

April 13, 2007

Ed Hansen NMOCD 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Via E-mail

RE: F-35 SWD & G-35 SWD, T17S, R35E; NMOCD Case #: AP-59

Dear Mr. Hansen,

First, we would like to thank you and other NMOCD staff for meeting with us on such short notice. I believe our wide-ranging discussion was very useful. In our meeting of April 12, 2007, we agreed to the following for the above referenced site:

- Install one exploratory boring in each excavation where surface sampling and field examination suggest that the highest volume of fluid was released to the subsurface
- Collect samples from each boring at 5-foot intervals for field analysis of chloride and organic vapors using standard ROC protocols
- Collect two samples from each boring for laboratory analysis of chloride
- Submit no more than two samples to the laboratory for analysis of BTEX if field analysis of organic vapors exceeds 100 ppm
- Collect 2-3 samples from each boring for laboratory analysis of soil moisture
- Record observations of the physical nature of the vadose zone on a boring log
- Extend the soil borings at each site to the capillary fringe
- Construct a 4-inch recovery/monitoring well at G-35 near the excavation using the well design shown in Figure 1 (attached) at a location that is 25 feet down gradient from the edge of the excavation (which is the former discharge site).

Please note that the attached design calls for 20-feet of screen in the saturated zone as this well is principally a recovery well. Because of the 4-inch well diameter and the placement of a recovery pump at the base of the screen, a sample bailed (or pumped from a sampling pump) from the upper portion of the screen while the bottom pump is active can capture a discrete water sample from the upper 10-feet of the aquifer.

We will be drilling this well on Monday, April 16.

Sincerely, R.T. Hicks Consultants, Ltd.

Randall T. Hicks Principal

Copy: Rice Operating Company, NMOCD Hobbs office

	Client:	Rice C)perting Comp	bany		Well Description:	
	ect Name: Location:	T 47 C	G-35	or 25			Schematic Drawing of Well Construction for Proposed G- 35 Down Gradient Wells
		1175,	R 35 E, Secti	00 35			
		Second Provide State					and the second
Depth (feet)		Comments:				Material Descriptions:	
0.0 2.0						Cement, 0-2 feet	
4.0							
6.0							
8.0							
<u>10.0</u> 12.0				p 🛛			
12.0				Four inch PVC Casing			
16.0							
18.0				M A			
<u>20.0</u> 22.0				'incl			
24.0				Four		Hydrated bentonite,	
26.0						2-48 feet	
28.0							
<u>30.0</u> 32.0							
34.0							
36.0							
38.0							
40.0 42.0							
44.0							
46.0							
48.0							
50.0 52.0	Ground Wa	ater is assumed to be 5	5 feet below				
54.0	ground surfa	ice. Well Depths are to actual depth to water.					
56.0							
58.0 60.0							
60.0						Sand, 50-80 feet	
64.0						Screen 55-75 feet	
66.0							
<u>68.0</u> 70.0							
72.0							
74.0							
76.0 78.0							
80.0							
82.0							
<u>R.T</u>	. Hicks Con	sultants, Ltd	-	ROC , G	25 6	ites	Eigung 4
901 Rio	Grande Blve	d NW Suite F-142	<u>-</u> -				Figure 1
A	lbuquerque, 505-266-		Monit	oring/Reco	overy	Well Boring	March 2007

Hansen, Edward J., EMNRD

From: Price, Wayne, EMNRD

Sent: Friday, April 13, 2007 11:17 AM

To: Katie Lee; Hansen, Edward J., EMNRD; Kristin Pope; Randall Hicks (Randall Hicks)

Cc: 'Dale Littlejohn'; Caperton, Patricia, EMNRD

Subject: RE: F-35 and G-35 NMOCD # Ap-59

Approved with the following conditions:

- 1. All well bore annular space above the screen plug will be grouted to the surface with cement grout with 1-3% bentonite.
- 2. The infiltration barrier will not be constructed until OCD reviews the data and provides approval.
- 3. This approval is based on site specific conditions and should not be considered a blanket approval from any other site.

From: Katie Lee [mailto:katie@rthicksconsult.com]
Sent: Friday, April 13, 2007 9:34 AM
To: Hansen, Edward J., EMNRD; Price, Wayne, EMNRD; Kristin Pope; Randall Hicks (Randall Hicks)
Cc: 'Dale Littlejohn'; Caperton, Patricia, EMNRD
Subject: F-35 and G-35 NMOCD # Ap-59

Attached, our revised scope of work for drilling near Buckeye on Monday, April 16th, 2007.

. P. .

• ;

Thank you,

Katie Lee Staff Scientist R.T. Hicks Consultants, Ltd. ph. 505-266-5004 fax 505-266-0745 mobile 505-400-7925

This inbound email has been scanned by the MessageLabs Email Security System.

Hansen, Edward J., EMNRD

From: Hansen, Edward J., EMNRD

Sent: Wednesday, April 11, 2007 8:19 AM

To: Katie Lee

Cc: Kristin Pope; Randall Hicks (Randall Hicks); Price, Wayne, EMNRD

Subject: RE: G-35 and F-35 Vadose Zone Comments, NMOCD Case # AP-59

Dear Ms. Lee:

Thank you for your timely response to my email message of March 23rd regarding the above-referenced sites. As the NMOCD understands from your letters of April 4 and 5, 2007:

1) Rice Operating Company (ROC) will proceed with a boring in the center of each of the two excavations and sample as specified in your letters. {However, the sampling must include a soil sample at the bottom of the vadose zone and a groundwater sample (i.e., <u>a soil sample must be taken within 1 foot of the groundwater and a groundwater sample must be taken from each the borings</u>) and the analytical results must be submitted to the NMOCD by April 23, 2007).}

2) ROC will use 5 feet (instead of 3 feet) of silty loam for the top layer of the proposed cap and compacted to 85-90% Standard Proctor density at each of the sites. {However, prior to installation of the proposed cap, the <u>NMOCD must approve the design</u>. The design cannot be approved until the analytical results from the soil borings have been reviewed by the NMOCD.}

3) The analytical results from SPS-25 and SPS-26 submitted in your April 4th letter are acceptable to the NMOCD.

4) ROC will install a 4" recovery well at the G-35 site and a 1" water line will be installed to connect the recovery well to the RO unit at the F-35 site (as specified in your April 5th letter). {The groundwater remedy for the G-35 site will be implemented by July 2, 2007.}

The NMOCD hereby approves the above amendments (with the specified exceptions). Please be advised that NMOCD approval of these amendments does not relieve the owner/operator of responsibility should operations pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve the owner/operator of responsibility for compliance with any OCD, federal, state, or local laws and/or regulations.

If you have any questions regarding this matter, please contact me at 505-476-3489.

Edward J. Hansen Hydrologist Environmental Bureau

From: Katie Lee [mailto:katie@rthicksconsult.com]
Sent: Thursday, April 05, 2007 1:44 PM
To: Hansen, Edward J., EMNRD; Price, Wayne, EMNRD
Cc: Kristin Pope; Randall Hicks (Randall Hicks)
Subject: G-35 and F-35 Vadose Zone Comments, NMOCD Case # AP-59

Mr. Hansen,

We are pleased to respond to NMOCD comments on our Vadose Zone Remedy plan for the above referenced site. As the attached letter and progress report show, the ground water treatment system at F-35 has been operating successfully for more than 4 consecutive weeks.

I will call this afternoon to discuss.

Best regards,

Katie Lee Staff Scientist R.T. Hicks Consultants, Ltd. ph. 505-266-5004 fax 505-266-0745 mobile 505-400-7925

This inbound email has been scanned by the MessageLabs Email Security System.

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Fax: 505.266-0745

April 5, 2007

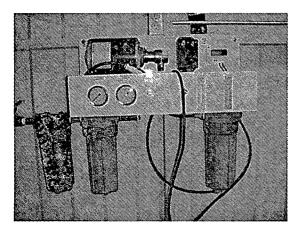
Ed Hansen NMOCD 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Via E-mail

RE: F-35 SWD & G-35 SWD, T17S, R35E; NMOCD Case #: AP-59 F-35 Point Source Treatment System Progress Report Proposed Minor Modification to G-35 System Design

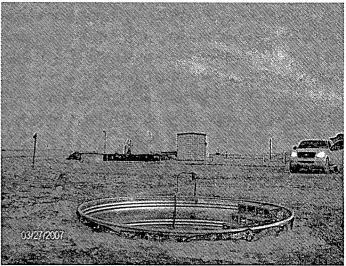
Dear Mr. Hansen,

We are pleased to report that the ground water treatment system at F-35 has been operating successfully for several weeks. Our experience with F-35 leads us to propose a minor modification to the Stage 2 Abatement Plan for the ground water remedy at the G-35 site.

F-35 System Operation


- 1. The F-35 point source treatment system began discharging small volumes of treated water to a stock tank for wildlife in early March, 2007.
- 2. As stated in previous communications, this system:
 - a. extracts water from the F-35 MW-1 which discharges to
 - b. an aeration tank to reduce BTEX concentrations, which then flows through
 - c. a slow sand filter to remove particulates and further reduce BTEX,
 - d. a water softener and a granular activated carbon filter accept the water from the sand filter for pre-treatment prior to pumping to
 - e. a small RO unit that dispenses water to
 - f. a 1000-gallon stock tank for wildlife consumption while
 - g. waste streams from the RO unit and softener regeneration are stored on site in a waste tank and periodically off-hauled for disposal.
- 3. The discharge to the wildlife tank meets all WQCC standards for human consumption (see Table 1).

Sample	Sample Date	TDS	CI	Benzene	Toluene	Ethyl Benzene	Total Xylenes
					(mg/L)		
RO	3/13/2007	151	96	< 0.002	0.07	<0.002	<0.002
treated	3/27/2007	146	88	< 0.002	0.011	<0.002	<0.002


Table 1. Water Quality at the end of weeks one & three of system operation at F-35

RO feed	3/13/2007	3,593	1,759	<0.002	<0.002	<0.002	<0.002
	3/27/2007	3,763	1,819	<0.002	<0.002	<0.002	<0.002
RO	3/13/2007	6,967	3,599	< 0.002	0.027	< 0.002	<0.002
waste	3/27/2007	6,951	3,759	<0.002	0.004	<0.002	<0.002

- 4. Toluene in the treated water is most likely due to "contamination" by glue and solvent used to assemble the PVC pipes of the system and is declining with time.
- 5. Since early March, the system has pumped about 20 gallons a day from MW-1 and produced about 10 gallons a day of treated water for wildlife.
- 6. This week we are upgrading the system to pump 50+ gallons each day, producing about 25+ gallons per day clean water.
- 7. The pictures below show some of the key system components.

RO unit in housing on site, large stock tank with view of tanks and housing in the background.

G-35 System Plans

Rather than install another treatment system at G-35, we propose to use the F-35 system to treat pumped G-35 water for wildlife consumption or operation maintenance as the need arises. This plan includes:

- 1. Installation of a 4 inch casing recovery well near the excavation at G-35.
- 2. Running a 1 inch pipe into the currently unused 8 inch pipe casing that runs from G-35 to F-35 underneath the road.
- 3. A solar powered pump in the G-35 recovery well to pump ground water from G-35 and send it to the F-35 system for treatment.
- 4. Installation of an additional tank to hold fresh water for use in field operations at F-35.

April 5, 2007 Page 3

5. Treatment of G-35 ground water through the F-35 system components.

4

This system would be a small scale addition to the raw water supply at F-35.

We look forward to your expeditious response to this proposed minor modification to the Stage 1 and 2 Abatement Plan as we hope to have components in place to treat ground water from G-35 in the F-35 system within the next few months.

Sincerely, R.T. Hicks Consultants, Ltd.

Katie Lee_

Katie Lee Staff Scientist

Copy: Rice Operating Company

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

April 4, 2007

Ed Hansen NMOCD 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Via E-mail

RE: F-35 SWD & G-35 SWD, T17S, R35E; NMOCD Case #: AP-59

Dear Mr. Hansen,

In your email of March 23, 2007 and subsequent phone conversation with Mr. Hicks, we understand that NMOCD has several comments regarding the recent submissions for the above-referenced site. As you will see in our responses below, the F-35 ground water system just completed its fourth consecutive week of successful operation. Also, while we believe some of the NMOCD requested modifications of the vadose zone remedy for the abovementioned sites are unnecessary for the protection of fresh water, we are willing to comply as shown below in an effort to expedite the installation of the remedy. We propose to:

- Install exploratory borings through the center of the excavations to a depth 5-feet above ground water at each site for data collection prior to installation of the ET Barrier,
- Install 5 foot thick ET barriers on the excavation caps, and
- Install one 4 inch casing recovery well at G-35.

We request your immediate approval of these actions and propose that NMOCD also approve the subsequent backfilling and capping of the site excavations with the capillary break and ET barriers as described regardless of the data collected in borings through the excavations.

Here we list your comments in italics, with our responses below.

1. Prior to implementing the proposed [vadose zone] remedy, Rice Operating Company (ROC) must provide soil sample analytical results for chloride from at least one boring in the center of each excavation at each of the two sites. The borings must be advanced to groundwater with soil samples taken at 5 feet intervals.

Collection of soil data to within 5-feet of the water table will provide excellent data without creating a potential direct conduit between chloride in the vadose zone and the aquifer. Collapse of the borehole during sampling or drilling could create such a conduit.

Although we are interested in the NMOCD response to the query below, we will:

- drill one boring in the center of the excavations at each site
- collect samples from each boring at 5-foot intervals for field analysis of chloride and organic vapors using standard ROC protocols
- collect two samples from each boring for laboratory analysis of chloride
- submit no more than two samples to the laboratory for analysis of BTEX if field analysis of organic vapors exceeds 100 ppm

April 4, 2007 Page 2

- collect 2-3 samples from each boring for laboratory analysis of soil moisture
- record observations of the physical nature of the vadose zone on a boring log
- construct a 4-inch recovery well at G-35 near the excavation using the well design shown in Figure 1 (attached).

As shown below in the response to item 5 (below) the timing of the boring program is academic. As mentioned above, we agree to conduct these borings as soon as we receive a go ahead from you and can schedule a rig to do so.

2. Please provide TDS and chloride analytical results from new water samples from the vicinity production wells, SPS-27 and SPS-25.

In a letter to Wayne Price dated September 28, 2006, we submitted the two attached plates showing regional ground water flow and background TDS and Chloride data collected from nearby wells. As the map shows, SPS-26 and SPS-25 are closest to the sites. Chloride and TDS recent data is presented in the table below. As we believe this data sufficiently establishes water quality in these wells, we do not propose additional sampling of these wells.

Well	Sample Date	Cl.	TDS
	06/25/06	49	340
SPS 25	08/02/06	28.4	346
51 5 25	10/24/06	25.2	320
	01/10/07	29.2	334
	06/25/06	30.6	340
SPS 26	08/02/06	120	534
51520	10/24/06	71.4	388
	01/10/07	87.5	400

Table 1. Recent Xcel Well Data

3. Please submit the soil classification for the "native soil" that would be used in the proposed evapotranspiration cover and the percent standard Proctor density that would be used when installing the native soil portion of the cover.

Our recent work shows that the native soil in the area is only several inches thick. As a lot of material from the site excavations was off hauled years ago, there is insufficient material at either site to use in the proposed capillary break or ET barrier. We propose to purchase and import sand and gravel as well as silty loam from the nearby surface owner for use as the capillary break and ET barriers in the excavation caps. During installation of these materials we will conduct a sieve analysis to and provide the results to NMOCD. We will compact the soil layer of the ET Barrier to 85-90% proctor density and provide field tests to demonstrate that construction is consistent with this design criteria.

4. ROC must proceed with the proposed groundwater remedy (i.e., pump and treat with a R.O. unit and wildlife watering tank) at the F-35 site by Monday, April 2, 2007, and at the G-35 site by Monday, July 2, 2007.

April 4, 2007 Page 3

We submit with this letter a progress report demonstrating that the ground water treatment system at F-35 has been operating successfully for several weeks. Our experience with F-35 leads us to propose a minor modification to the Stage 1&2 Abatement Plan for the ground water remedy at the G-35 site. This proposed modification is explained in the progress report letter.

5. In our phone conversation you indicated that a 5-foot thick soil layer is preferred to a 3-foot soil layer because the climate in Hobbs is wetter than the climate in Albuquerque, where Sandia National Laboratories conducted their tests on evapotranspiration barriers.

We used HYDRUS-1D simulations to test the relative efficacy of a 3-foot thick and a 5-foot thick ET Barrier. The results show that a 5-foot layer does not perform measurably better than a 3-foot layer. We attach an explanation of this modeling effort in which we present the input data for these simulations and describe the simulation methods. Table 2 presents the predicted increase to ground water chloride concentration beneath 3-foot thick silt loam and 5-foot thick ET Barriers with a capillary barrier. In both cases, it is assumed that the root zone penetrates the full depth of the ET Barrier. The simulation assumed that the excavations are filled with appropriate materials to construct the caps and compacted to the proper density. Below the ET Barrier, the model assumed a zone of relatively moist sand-caliche with a constant chloride concentration existed from 10 feet below ground surface (bgs) to 20 feet bgs

Chloride	Predicted Increas Chloride C		
Concentration in Soil (in interval from 10 to 20 feet bgs)	3 Feet of Silt Loam as an ET Barrier at long time	5 Feet of Silt Loam as an ET Barrier at long time	Chloride Loading
mg/kg	mg/L	mg/L	kg/m ²
2,000	11.7	7.3	10.4
5,000	29.9	18	26
10,000	58.5	36	51.9

Table 2. Maximum Possible Effect of Varying Chloride Loads on Ground Water

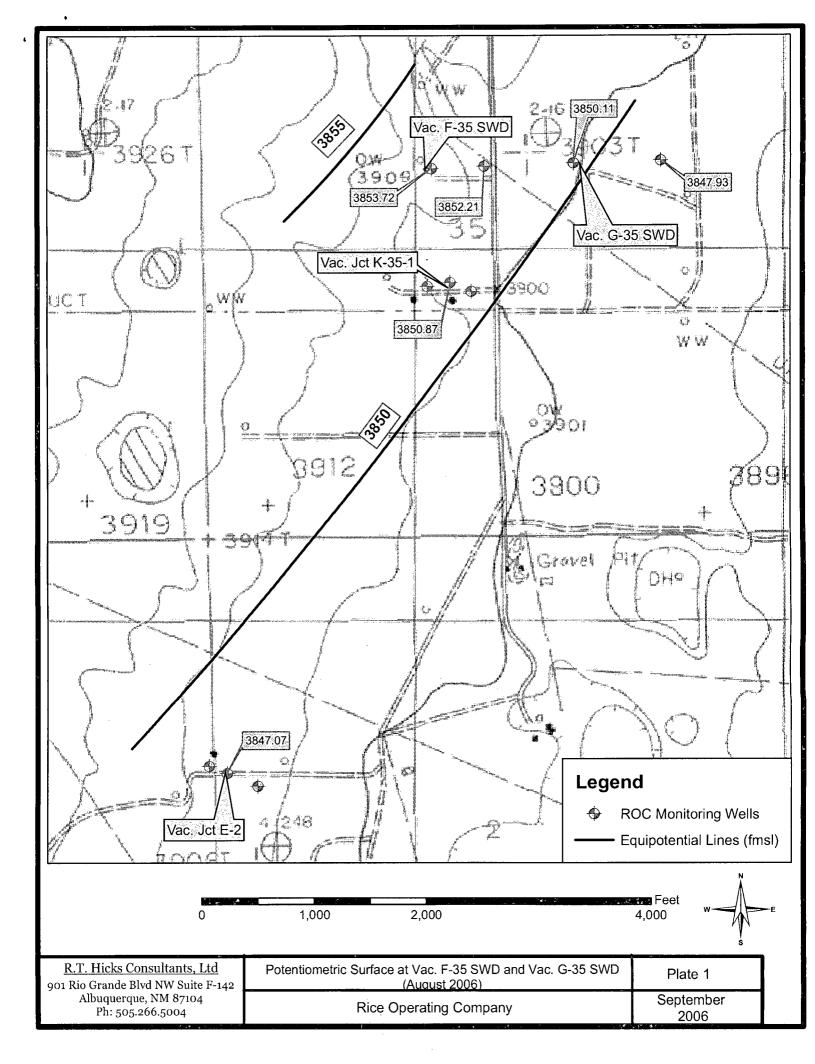
The left-hand column of Table 2 shows chloride concentrations in soil (calculated using the appropriate density and volumetric moisture content from within the model) and the corresponding predicted chloride increases in ground water for each ET Barrier. The right hand column of Table 2 lists corresponding chloride loads (the mass of chloride in the vadose zone per unit area). Typically, ROC encounters chloride concentrations in soil that are less than 10,000 mg/kg, therefore the comparison of the efficacy of a 3-foot thick barrier versus a 5-foot thick barrier for higher concentrations is of academic interest only.

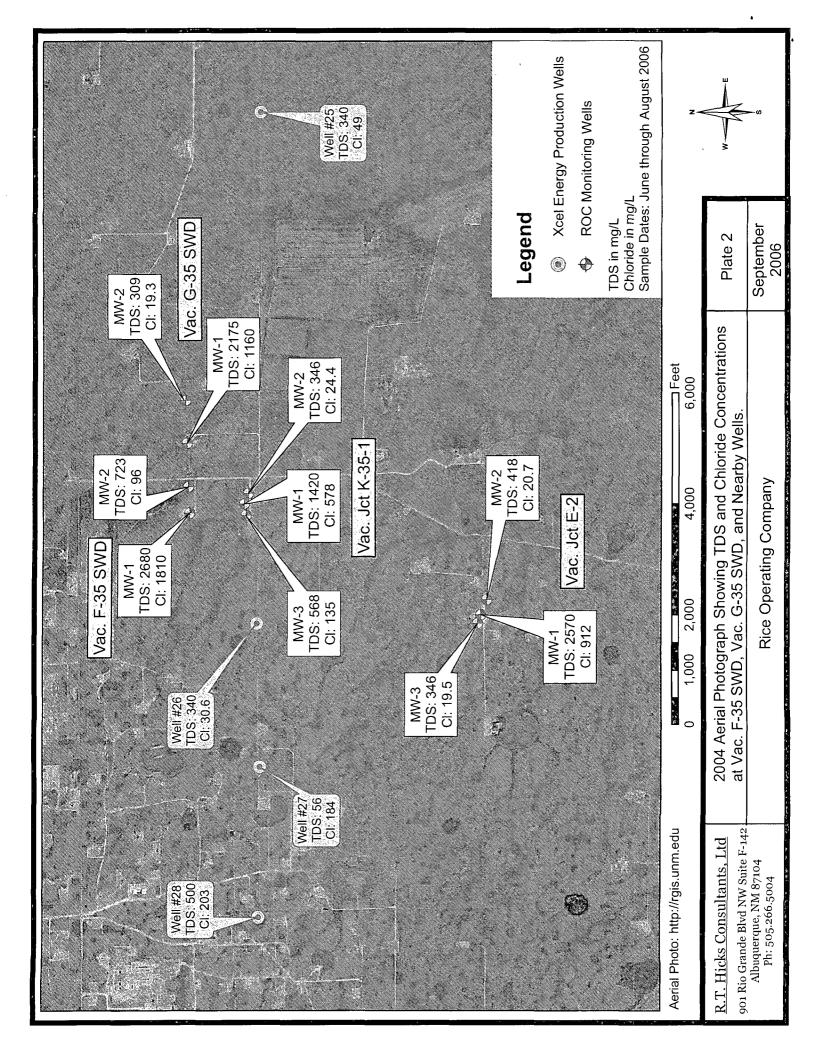
April 4, 2007 Page 4

The simulation data presented in the attachment shows that:

- 1. A properly designed and installed ET barrier is highly effective in sequestering chloride in the vadose zone and is protective of fresh water, public health and the environment,
- 2. The maximum chloride impact to ground water would occur several centuries or perhaps several millennia from now.
- 3. Ninety years from now, the chloride concentration in ground water beneath the 3foot thick ET Barrier would increase by less than 0.008 mg/L and beneath a 5-foot thick barrier, the model predicts a chloride concentration increase of 0.002 mg/L this difference cannot be accurately measured.
- 4. Knowledge of the nature of the material below the ET Barrier will not cause any modification of the design of the Stage 2 Abatement Plan, which is installation of an ET Barrier to sequester chloride in the vadose zone.

We do understand that better knowledge of the subsurface texture, chemistry and moisture content will provide additional certainty to a review process. As mentioned above, we will complete two borings through the center of the excavations at these sites for data collection, and agree to install a 5 foot thick ET barrier on excavation caps.


As mentioned in our November 2006 Vadose Zone Remedy Plan and demonstrated in quarterly monitoring, ground water quality will not begin to improve at these sites until an ET Barrier is installed. Moreover, we believe that excavation of the chloride mass (which reside at a depths exceeding 20 feet below ground surface) would cause ROC to violate NMOCD Rules. As these simulations and experience in the area show the marginal benefit (reduction of risk to fresh water) is not commensurate with the increased risk to the environment (creation of dust, site disturbance, creation of motor exhaust, etc.) and the risk to public health (risk due to truck traffic and excavation process). We therefore propose that once the data collection boreholes are completed at these sites, the excavations be backfilled and capped with the proposed capillary break and ET barrier materials. We are hopeful that you approval of our modified plan will allow us to install an ET barrier at these sites this spring. We look forward to your speedy response.


Sincerely, R.T. Hicks Consultants, Ltd.

Katie Lee

Katie Lee Staff Scientist

Copy: Rice Operating Company

	Client: Rice Operting Company		
Project Name: Location:	6-35		Schematic Drawing of Well Construction for Proposed G- 35 Down Gradient Wells
Depth Comr (feet)	nents:	Material Descriptions:	
0.0		Cement, 0-2 feet	
2.0			
4.0			
8.0			
10.0		, M	
12.0 14.0			
16.0			
18.0	Four inch PVC Casing		
20.0			
24.0	Four	Hydrated bentonite, 2-48 feet	
26.0		2401661	
28.0			
<u>30.0</u> 32.0			
34.0			
36.0			
38.0 40.0			
42.0			
44.0			
46.0			
50.0			
52.0 Ground Water is assu	umed to be 55 feet below epths are to be adjusted to		
54.0 actual de	pth to water.		
<u>56.0</u> 58.0			
60.0			
62.0		Sand, 50-80 feet Screen 55-75 feet	
64.0 66.0			
, 68.0			
70.0			
72.0 74.0			
76.0			
78.0			
80.0 82.0			
R.T. Hicks Consultants, 901 Rio Grande Blvd NW Sui		, G-35 Sites	Figure 1
Albuquerque, NM 87104 505-266-5004 Monitoring/Recovery		ecovery Well Boring	March 2007

•

٢

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

F-35 and G-35 Model Explanation

To model the effects of installation of the proposed vadose zone remedy over the current excavation, an ET Barrier was installed in the combined HYDRUS-1D/Ground Water mixing model of the F-35 and G-35 sites.

Two types of ET Barriers were modeled. The first ET barrier modeled is a three-foot thick layer of silt loam, the second ET barrier modeled is a five-foot thick layer of silt loam. Both ET Barriers are placed above a two-foot thick layer of coarse sand to act as a capillary break. Below the capillary break is fill material to the bottom of the excavation (at an assumed 10 feet below ground surface (bgs)). Below the barrier and fill is sand with some caliche, which is representative of materials at the site. Vegetation was allowed to root throughout the depth of the uppermost silt loam layer in both cases.

In the depth interval between 10 feet and 20 feet bgs, the model assumed a constant concentration of chloride in the vadose zone pore water to simulate the effects of allowing the material currently beneath the excavation to remain in place. A description of the model input parameters are listed below.

HYDRUS INPUTS:

Soil Profile - Information for the soil profile (or vadose zone thickness and texture) is based upon the boring logs from the borings made adjacent to the sites for installation of the monitoring wells. Depth to water measurements from these monitoring wells provide a vadose zone thickness of 50 feet at the site.

Dispersion lengths - Conservative dispersion lengths of less than 6% of the model length were employed. Standard practice calls for employing a dispersion length that is 10% of the model length.

Climate - Weather data used in the predictive modeling was from the Pearl Weather Station (46 years of data), which is less than 10 miles south-southeast of the F-35 and G-35 sites.

Soil Moisture - Because soils are relatively dry in this climate and vadose zone hydraulic

conductivity varies with moisture content, it is important that simulation experiments begin with a representative soil moisture content. Commonly, the calculation of soil moisture content begins with using professional judgment as an initial input and then running sufficient years of weather data through the model to establish a "steady state" moisture content. For these simulations, only minimal changes in the HYDRUS-1D soil moisture content profile occurred after year 25 of the initial condition calculation, 92 years (2 cycles of the 46 years of weather data) was considered more than sufficient to establish an initial moisture condition. This vadose zone moisture content profile was the basis for the subsequent initial condition simulation.

Because the sites were active until about four years ago, this "steady state" vadose zone moisture content profile was considered to be too "dry" to represent the current site for modeling purposes. Therefore to generate a "wetter" soil moisture content profile, a model was constructed featuring approximately seven additional 25 cm precipitation events a year for 30 years. This length of time is sufficiently long to generate a "wetter" soil profile through the vadose zone.

A "wetter" soil moisture content profile was taken at a time about two years after cessation of additional precipitation. This choice is conservative of ground water quality as the "wetter" profile has a higher hydraulic conductivity.

Initial Chloride Profile – In the depth interval between 10 feet and 20 feet bgs, a constant concentration of chloride was installed in the vadose zone to simulate the native soil materials in place as mentioned above. The moisture content from the HYDRUS-1D initial condition moisture content calculation was summed over the depth interval and the chloride concentration (1,508 mg/L) was calculated. This corresponds to a chloride loading of 1.0 kg/m².

MIXING MODEL INPUTS:

Influence Distance - The influence distance is defined as the maximal length of the release parallel to ground water flow direction. From the dimensions of the former tank and reserve pits, an influence distance of 100 feet was used.

Background Chloride Concentration - to demonstrate solely the effect of this simulation on

ground water, a 0.0 mg/L chloride concentration in ground water was used.

Hydraulic Conductivity - R.T. Hicks Consultants believes that the hydraulic conductivity of the saturated zone at the release site is similar to that observed for the Ogallala Aquifer throughout the general area. McAda (1984) simulated water level declines using a two-dimensional digital model and employed hydraulic conductivity values of 51-75 feet/day (1.9 E-4 to 2.8 E-4 m/s) in the area. More recently, Musharrafieh and Chudnoff (1999) employed values for hydraulic conductivity within this area of interest between 21 and 40 ft/day, for their simulation. According to Freeze and Cherry (1979), these values correspond to clean sand, which agrees with nearby lithologic descriptions of the saturated zone. For this simulation, a saturated hydraulic conductivity of the uppermost saturated zone is assumed as 40 feet/day.

Groundwater Gradient - From USGS well data (1996), ground water flows southeast in the area under a hydraulic gradient of approximately 0.0036 ft/ft. The resulting ground water flux is 3.7 cm/day.

Aquifer Thickness - A restricted aquifer thickness of 10 feet was employed in the mixing model as a conservative measure to cause over-estimation of chloride concentration in a simulated receptor well.

For all variables for which field data did not exist, assumptions conservative of ground water quality were made. A summary of the input parameters and a description of the source information used in the HYDRUS-1D model for this application are provided in Table 1 below.

Table 1: Modeling Inputs for the F-35 and G-35 Remedy Simulations				
Input Parameter	Source			
Vadose Zone Thickness - 50 feet	From monitoring wells on the sites			
Vadose Zone Texture	Boring Logs and professional judgment			
Dispersion Length - 6% or less of model length	Professional judgment			
Climate	Pearl, N.M. Weather Station data			
Soil Moisture	HYDRUS-1D initial condition simulation			

Initial soil chloride concentration profile	From Monitoring Well Boring samples within site
Length of release parallel to ground water flow - 100 feet	From site dimensions
Background Chloride in Ground Water - 100 ppm	Regional Data
Ground Water Flux - 3.6 cm/day	Calculated from regional data
Aquifer Thickness - 10-feet	Aquifer thickness penetrated by on-site wells

Modeling Results

With both ET barrier simulations, infiltration is decreased resulting in lower vadose zone moisture contents and corresponding decreases in hydraulic conductivities (See Figure 1).

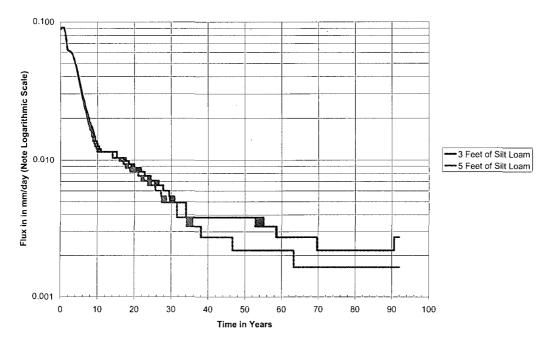


Figure 1: Vadose Zone Water Flux into the Aquifer with Different Thicknesses of ET Barriers, F-35 and G-35 Sites

Vadose zone chloride flux is reduced to the extent that the model simulation of the first 92 years suggests that peak chloride concentration will not enter ground water for one to two

thousand years (See Figure 2). The slow rates of chloride migration are demonstrated in Figure 2. The black line represents the initial chloride concentration in vadose zone soil water at Time = 0 years. A constant concentration of 1,500 mg/L exists between 10 feet and 20 feet bgs. For the remedy composed of three feet of silt loam as an ET barrier, peak chloride concentration (1,380 mg/L) is at a depth of 17.5 feet at Time = 92 years. For the remedy composed of five feet of silt loam as an ET barrier, peak chloride concentration (1,460 mg/L) is at a depth of 15.0 feet at Time = 92 years. An algebraic calculation suggests that the peak chloride concentration in the vadose zone of the remedy composed of three feet of silt loam will take about 1,200 years to enter ground water. Longer time will be necessary for peak chloride concentration to enter ground water for the remedy composed of five feet of silt loam.

.

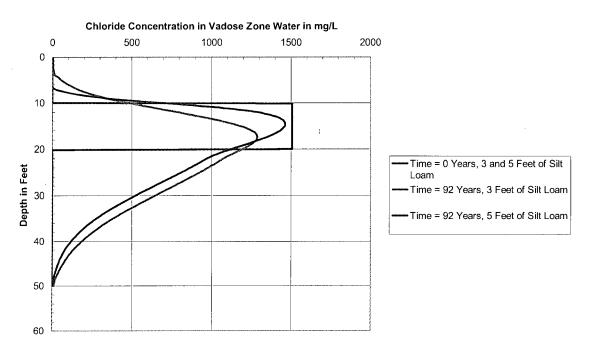


Figure 2: Chloride Concentration Profiles at Time = 0 and at Time = 92 Years, F-35 and G-35 Sites

Rather than modeling the two remedies for two millenia, a maximum vadose zone water flux and a maximum chloride concentration from the vadose zone chloride profile were taken from the second cycle of atmospheric data run through the HYDRUS-1D model. These values were used as constant variables through time as inputs to the mixing model (Table 2). With this assumption, a limit as time goes to infinity can be calculated for predicted

chloride concentration in a monitoring well at the edge of the mixing zone.

Table 2: Maximum Values used to Bound Chloride Flux to Ground Water				
All values are from year 47 of the				
simulation	3 feet of silt loam	5 feet of silt loam		
Maximum vadose zone water flux to				
ground water [cm/day]	0.000383	0.000219		
Maximum chloride concentration from				
the vadose zone chloride profile				
[mg/L]	1,370	1,480		

These limit concentrations are the extreme "worst case scenarios" for two reasons. First, vadose zone flux to ground water is less than these values for all later time (Figure 1). Secondly, because of dispersion, these peak chloride concentrations will attenuate before entering ground water. Therefore, these assumptions are conservative of ground water quality.

Using soil densities and moisture contents from the HYDRUS-1D modeling, Table 3 presents the maximum predicted increase to ground water chloride concentration beneath the two ET barriers. Since chloride is conserved, the vadose zone chloride flux from the HYDRUS-1D model to the ground water mixing model can be multiplied to simulate the chloride loadings in Table 3.

Chloride	Predicted Increas Chloride C			
Concentration in Soil (in interval from 10 to 20 feet bgs)	3 Feet of Silt Loam as an ET Barrier at long time	5 Feet of Silt Loam as an ET Barrier at long time	Chloride Loading	
mg/kg	mg/L	mg/L	kg/m ²	
2,000	11.7	7.3	10.4	
5,000	29.9	18	26	
10,000	58.5	36	51.9	

Table 3. Maximum Possible Effect of Varying Chloride Loads on Ground Water

The left-hand column of Table 3 shows chloride concentrations in soil and the corresponding predicted chloride increases in ground water for each ET Barrier. The right

hand column lists corresponding chloride loads. Given the HYDRUS-1D calculated volumetric moisture contents, vadose zone pore water would have to have a chloride concentration (in mg/L) exceeding that of saturated brine to correspond to the hypothetical 40,000 mg/kg chloride in soil.

From this modeling simulation, either of the installed remedies will effectively decrease chloride flux to ground water. The predicted better performance of the 5 foot silt loam barrier cannot be distinguished from the performance of the 3 foot silt loam barrier using standard ground water monitoring.

From this simulation data we can conclude that:

- A properly designed and installed ET barrier is highly effective in sequestering chloride in the vadose zone and is protective of fresh water, public health and the environment,
- 2. The maximum chloride impact to ground water would occur several centuries or perhaps several millennia from now.
- 3. Ninety years from now, the chloride concentration in ground water beneath the 3-foot thick ET Barrier would increase by less than 0.008 mg/L and beneath a 5-foot thick barrier, the model predicts a chloride concentration increase of 0.002 mg/L this difference cannot be accurately measured.

Hansen, Edward J., EMNRD

From:Hansen, Edward J., EMNRDSent:Wednesday, February 28, 2007 10:29 AMTo:'Kristin Pope'

Subject: RE: prioritized list of submissions

Kristin,

Thanks for sending the priority list - this will be very helpful for me.

I was discussing the Vacuum SWD F/G-35 Vadose Zone work plan with Wayne: can you please obtain and submit recent (say the past 5 years) monitoring data for the two water production wells, SPS 27 (upgradient of the sites) and SPS 25 (downgradient of the sites). Wayne says that these wells are considered public water supplies and data should be available from the power plant. Let me know if you have any questions. Thanks

Edward J. Hansen Hydrologist Environmental Bureau 505-476-3489

From: Kristin Pope [mailto:kpope@riceswd.com]
Sent: Monday, February 26, 2007 4:00 PM
To: Price, Wayne, EMNRD; Hansen, Edward J., EMNRD
Cc: Carolyn Haynes; Scott Curtis
Subject: prioritized list of submissions

Wayne & Ed:

Here is the prioritized list of submissions that need OCD feedback as you requested at our last meeting on Feb. 21. Please feel free to contact me if you have any questions regarding these submissions. Thank you for your time.

Kristin Farris Pope Project Scientist RICE Operating Company Hobbs, New Mexico (505) 393-9174

This inbound email has been scanned by the MessageLabs Email Security System.

.

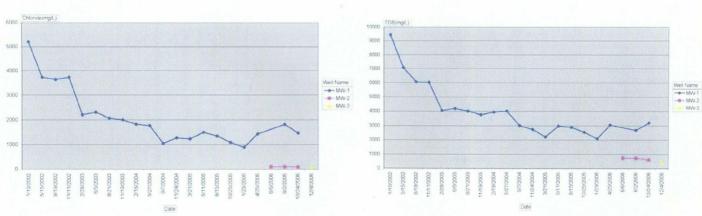
R. T. HICKS CONSULTANTS, LTD. FEB 6 AM 10 54

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Fax: 505.266-0745

February 5, 2007

Wayne Price NMOCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Via E-mail

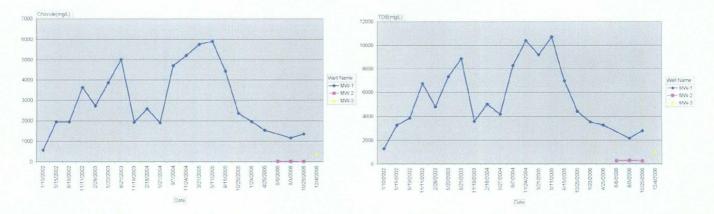
RE: F-35 SWD & G-35 SWD, T17S, R35E; NMOCD Case #: AP-59


Dear Mr. Price,

The purpose of this letter is two-fold: to inform you of on-going site conditions at G-35 and F-35 and update you on the installation of the treatment system at F-35.

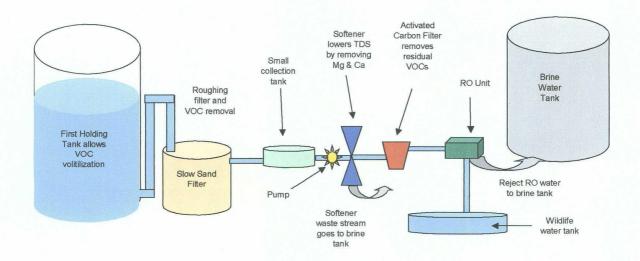
Site Conditions

The following figures show that Chloride and TDS concentrations at the F-35 decreased significantly between 2002 and 2003. G-35 exhibited Chloride and TDS concentration spikes in 2005 and have decreased significantly in 2006. Concentrations at both sites appear to be stable at this time. We believe that the lack of infiltration barriers at these sites allows continued migration of chloride from the vadose zone to ground water. Therefore, the flux of chloride to ground water is balanced by the ground water flux and the result is concentrations above WQCC Standards.


We proposed installation of an infiltration barrier in our Vadose Zone Remedy Plan (submitted 11-15-2006). NMOCD recently approved our infiltration barrier design (with minor modification) at the E-5 Junction Box (NMOCD Case #1R0427-91) site near Monument (10-11-2006). With this submission, we commit to compacting the fine-grained layer of the barrier and the soil layer of the barrier to at least 85% standard proctor at the F-35 and G-35 sites.

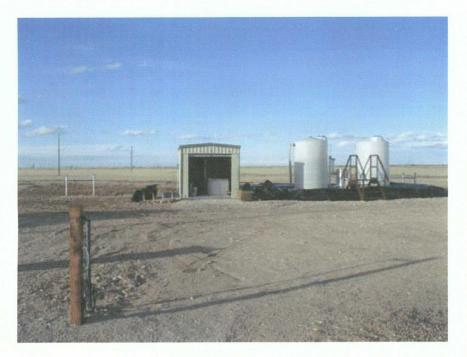
F-35 Ground Water Data

February 5, 2007 Page 2


G-35 Ground Water Data

As shown in the pink and yellow data points in the lower right quadrants of each graph, new monitoring wells down gradient from these sites exhibit background concentrations of chloride and TDS. This finding is good news, demonstrating that the ground water quality impairment associated with the F-35 and G-35 sites is localized.

F-35 Water Treatment System


The water treatment system at F-35 is close to complete operation. As we've discussed in the past, our system has been designed to use off-the-shelf technology and is as robust and low maintenance as possible. As we've installed this system, our interactions with industry experts and trouble shooting in the field have yielded the following water treatment train:

As freezing temperatures can significantly inhibit or permanently damage portions of this system, we have housed the system from the small collection tank to the RO unit in a storage shed and outfitted it with a space heater. The first holding tank, the sand filter, the brine water tank and the wildlife water tank are all outside and placed within secondary containment. The photo below shows the system with F-35 MW-1 in the foreground. The wildlife water tank is

February 5, 2007 Page 3

not visible because it is behind the storage shed outside of the fenced perimeter of the site. The small collection tank is visible in the entrance of the shed.

The activated carbon filter and RO unit are mounted on the wall in the shed, the wildlife water tank is situated behind the shed to the north of the site; both pictured below:

Interior plumbing is complete and outside plumbing is in process this week. We plan to conduct flow tests with the RO unit this week or next. Once flow tests are conducted, we will set the electronic timer to operate the RO unit for our desired capacity. We plan to pump 100 gallons and finish 50 gallons of clean water each day, but keep in mind these are estimations based on our vender's best hypothesis and observed site conditions. We are installing float valves and checking systems on all components to insure that no tank may overflow in case of a system February 5, 2007 Page 4

failure and will put a small heater in the wildlife water tank to keep it from freezing. We anticipate some initial unforeseen variables with the system and will let you know how operation and output progress.

Once we have this system running and the vadose zone remedy in place, we hope to move forward with a water treatment element at G-35. We anticipate the G-35 system will be improved and streamlined based on our experience at F-35.

In summary, we urge NMOCD to review our Vadose Zone Remedy Plan for these sites as soon as possible. If you have questions or comments, please contact Kristin Pope at Rice Operating Company.

Sincerely, R.T. Hicks Consultants, Ltd.

Katie Lee

Katie Lee Staff Scientist

Copy: Rice Operating Company

Hansen, Edward J., EMNRD

From: Sent: To: Cc: Subject: Katie Lee [katie@rthicksconsult.com] Wednesday, January 24, 2007 5:29 PM Hansen, Edward J., EMNRD; Price, Wayne, EMNRD; Kristin Pope Randall Hicks F-35 plans NMOCD Case #AP-59

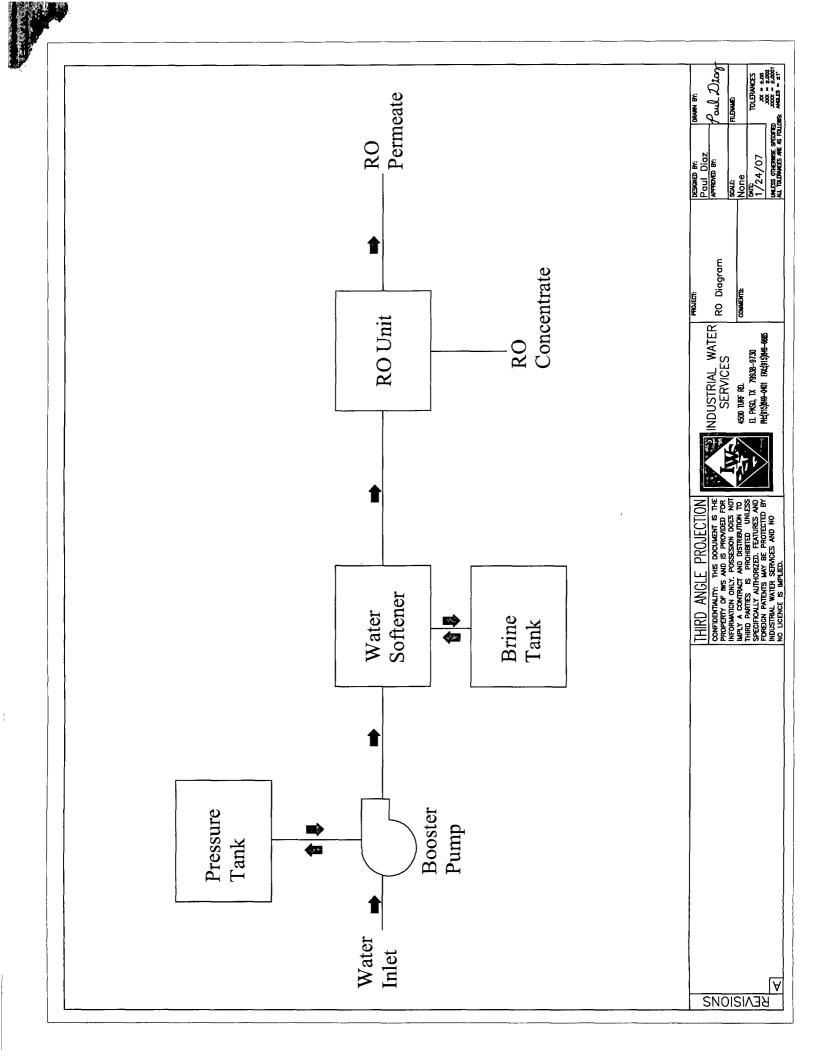
Attachments:

F-35 RO Diagram.pdf

F-35 RO agram.pdf (54 K∣

Gentlemen,

R.T. Hicks Consultants, on behalf of Rice Operating Company, will be installing the last portion of our point source treatment system at the F-35 (NMOCD Case # AP-59) site the week of January 29th, 2007, depending on component shipping times.


Attached, please find a simple drawing of the components of the treatment train for the system at F-35 that will be installed to complete the treatment of ground water at the site. As you may recall, the system utilizes a volatilization tank to allow residual VOCs to degrade and a small slow sand filter prior to the treatment train you will see attached. This system has been designed using "off-the-shelf" equipment with emphasis on durability, ease of use and low maintenance.

We're looking forward to sending you a good report on the results of these efforts!

Best regards,

Katie Lee Staff Scientist R.T. Hicks Consultants, Ltd. 901 Rio Grande Blvd. NW F-142 Albuquerque, NM 87104

Office Phone: 505-266-5004 Fax: 505-266-0745

Price, Wayne, EMNRD

,	
From:	randall hicks [r@rthicksconsult.com]
Sent:	Thursday, September 28, 2006 5:59 AM
То:	Price, Wayne, EMNRD
Cc:	'Kristin Pope'; 'Katie Lee'; david@rthicksconsult.com
Subject:	F-35 G-35
A 44 1	Cont OC Mall Dropped adf

Attachments: Sept 06 Well Proposal.pdf

Wayne

As stated in the Minor Modification to the Abatement Plan, we will drill additional wells at this site in October. I think you will be interested in the well construction diagram as it is a little different that what you are used to. We will be using inflatable packers to isolate sampling zones.

The down gradient well for the F-35 site is probably farther down gradient than you would have expected. The ground water velocity calculations in the attached letter explain our rationale for this location.

Pipelines and other features in the area may require alternation of these locations by up to 100 feet. We are staking the locations today. No action is required on your part as this work element is already approved in the Minor Modification.

Randall Hicks Tel: 505-266-5004 Cell 505-238-9515

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

September 28, 2006

Wayne Price

NMOCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Via E-mail

RE: F-35 SWD & G-35 SWD, T17S, R35E; NMOCD Case #: 1R0330 & 1R0332

Dear Mr. Price,

Plate 1 is a potentiometric surface map documenting a southeast ground water flow direction in this area. Plate 2 presents chloride concentrations in ground water. The background chloride concentration is about 30 mg/L. However, chloride concentrations in excess of 180 mg/L exist at two up gradient supply wells. Plate 3 shows the location of two of the three additional wells proposed in our April 2006 Minor Modification to the Stage 1&2 Abatement Plan. The two wells are:

F-3 – located about 850 feet southeast and down gradient of the F-35 site, G-3 – located about 250 feet southeast and down gradient of the G-35 site.

With the measured hydraulic gradient of 0.003 and an assumed hydraulic conductivity of 40 feet/day (see Appendix B), aquifer flux at the sites is 3.7 cm/day. Using an aquifer porosity of 0.25 the calculation of pore velocity is about 175 feet/year. Highest chloride concentrations in the monitoring well at the F-35 occurred in January, 2002. A pore velocity of 175 feet/year permits a conclusion that an additional monitoring well situated about 850 feet down gradient of the site would intercept any ground water which was beneath the F-35 site in early 2002.

These calculations also allow a conclusion that an additional monitoring well placed about 250 feet down gradient at the G-35 site would intercept ground water which was beneath the G-35 site in mid-2003 when the monitoring well measured the highest chloride concentrations.

The wells will be constructed with 4 inch diameter PVC. Plate 4 shows details of construction. The well screens are proposed in three intervals of:

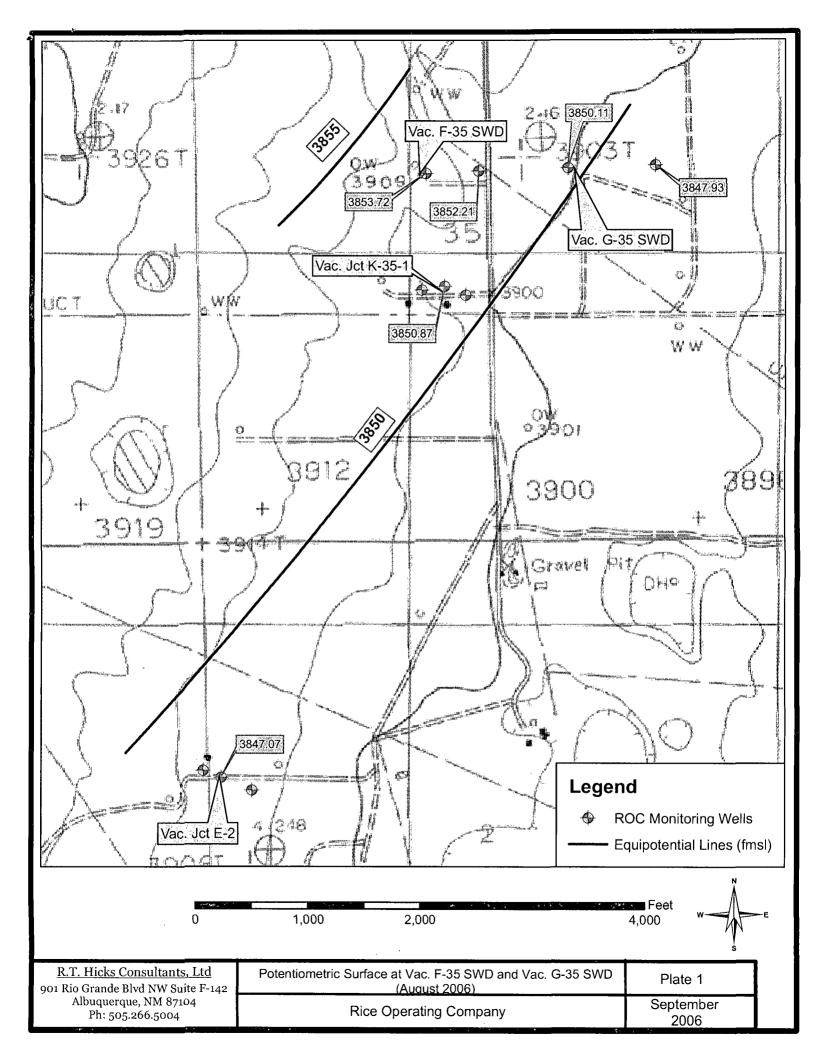
- 1) from five feet above the water table to ten feet below the water table,
- 2) five feet of screen from 20 feet below the water table to 25 feet below the water table,
- 3) and five feet of screen from 35 feet below the water table to 40 feet below the water table.

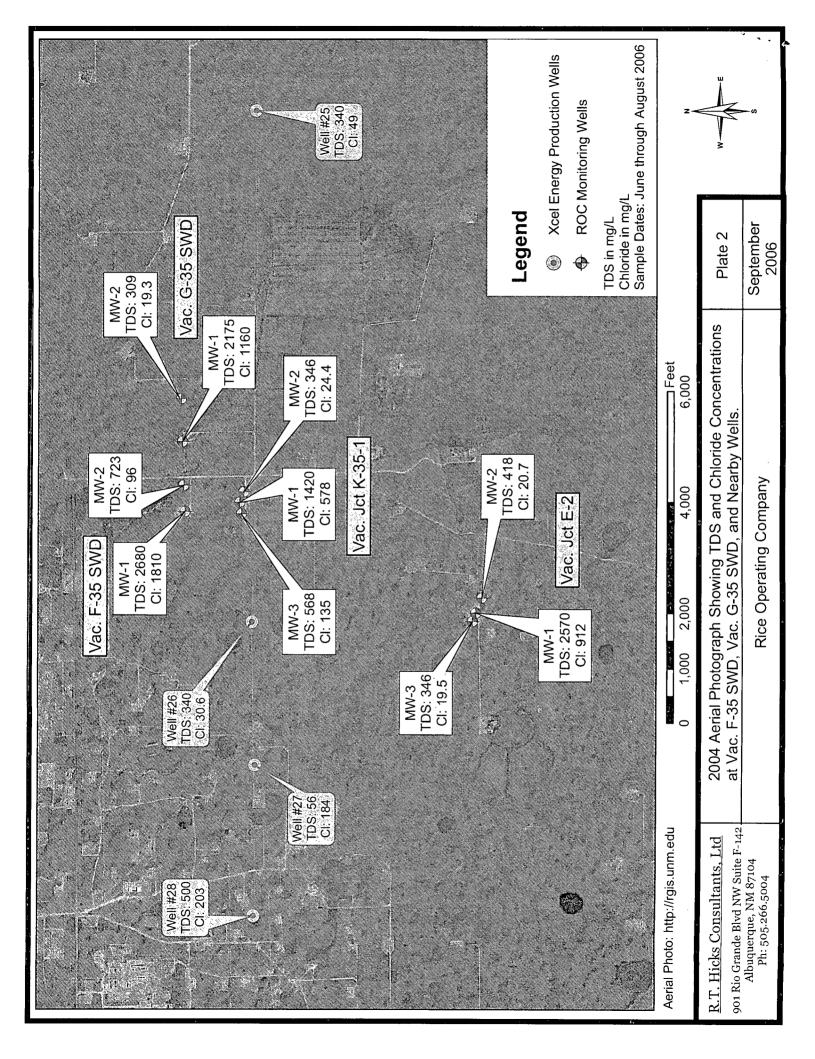
In addition, the wells will feature two one-inch piezometers set to access the center of the lowermost two screened intervals. With this well construction and the use of movable well packers to isolate a pump, all three of the depths within the aquifer can be properly isolated and sampled. This design allows for any and all of the three zones to be pumped and treated if we find unacceptable concentrations of chloride in ground water distributed throughout the aquifer or only in one horizon.

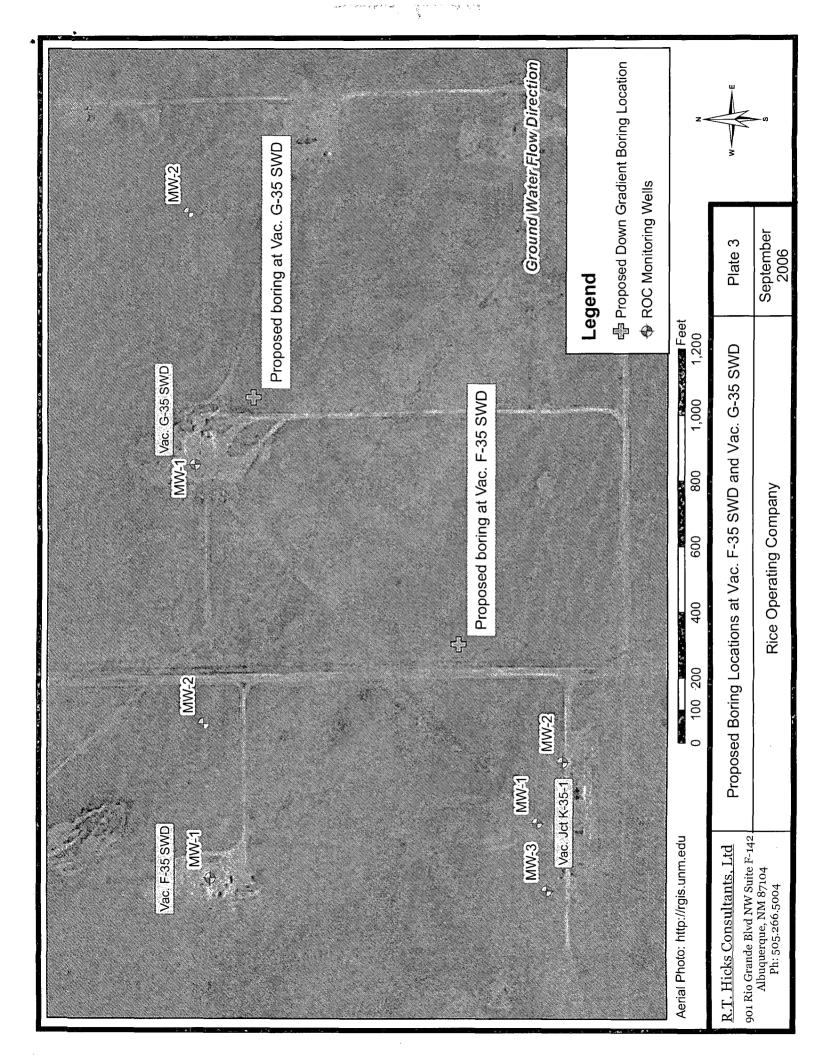
September 28, 2006 Page 2

If any sampled zone in the new wells exhibit concentrations of constituents of concern that suggest additional characterization of the site is warranted to refine the design of the proposed remedy, we will install an additional monitoring well based upon the field data.

• • .


We have scheduled a drilling rig for October 2006 to install these wells. Please contact me if you have any questions.


Sincerely, R.T. Hicks Consultants, Ltd.


andy

Randall Hicks Principal

Copy: Rice Operating Company

Troject Name: F-35, G-35 Sites Location: T 17 S, R 35 E, Section 35 Diff Comments: 0 0		Client: Rice Operting Company			Well Description:				
Location: T 17 S, R 35 E, Section 35 35, G-35 Down Gradient Weils pth Comments: Material Descriptions: 0 Comments: Cement, G-2 feet 0 Count (water is assumed to be 55 feet below grand surface. Weil Depth are to be adjusted to actual depth to water. Provide the bantomic, 2:48 feet 0 Count (water is assumed to be 55 feet below grand surface. Weil Depth are to be adjusted to actual depth to water. Send, 48-66 feet 0 Count (water is assumed to be 55 feet below grand surface. Weil Depth are to be adjusted to actual depth to water. Send, 48-66 feet 0 Count (water is assumed to be 55 feet below grand surface. Weil Depth are to be adjusted to actual depth to water. Send, 48-66 feet 0 Count (water is assumed to be 55 feet below grand surface. Weil Depth are to be adjusted to actual depth to water. Send, 48-66 feet 0 Count (Water is assumed to be 55 feet below grand surface. Weil Depth are to be adjusted to actual depth to water. Send, 48-66 feet 0 Count (Water is assumed to be 55 feet below grand surface. Weil Depth are to be adjusted to actual depth to water. Sand, 94-81 feet 0 Count (Water is assumed to be 55 feet below grand surface. Streng 50-85 feet Sand 99-96 feet 0 Count (Water is assumed to be 55 feet below grand surface. Streng 50-85 feet Sand 99-96 feet 0 Count (Water is assumed to be 55 feet Sand 99-96 feet	Proje	pet Namo:		4					
Print Comments: Material 0 0 0 0 0	I	Location:	ocation:			35, G-35 Down Gradient			
Pint Comments: 0 0				คายสาวประการที่ไปสาวประการ	ection	35	as un constanta		สารวิธีมีในเห็นเราการการการการการการการการการการการการกา
0 0	Depth	<u>11. 39 (1963).</u>		<u>(1999)</u> (51				Material	
0 0 00	(feet)				П		Մ	Descriptions:	
0 0	0.0 2.0							Cement, 0-2 feet	
0 0	4.0								
Ground Water is assumed to be 55 feet bolow Hydrated bentonite, 2:48 feet Ground Water is assumed to be 55 feet bolow Sand, 48-66 feet Ground Water is assumed to be stiplication Sand, 48-66 feet Ground Water is assumed to be stiplication Sand, 48-66 feet Ground Water is assumed to be stiplication Sand, 72-81 feet Ground Water is assumed to be stiplication Sand, 72-81 feet Ground Water is assumed to be stiplication Sand, 72-81 feet Ground Water is assumed to be stiplication Sand, 72-81 feet Ground Water is assumed to be stiplication Sand, 72-81 feet Ground Water is assumed to be stiplication Sand, 72-81 feet Ground Water is assumed to be stiplication Sand, 72-81 feet Ground Water is assumed to be stiplication Sand, 72-81 feet Ground Water is assumed to be stiplication Sand, 72-81 feet Ground Water is assumed to be stiplication Sand, 89-86 feet Ground Water is assumed to be stiplication Sand, 72-81 feet Ground Water is assumed to be stiplication Sand, 89-86 feet Ground Water is assumed to be stiplication Sand, 72-81 feet Ground Water is assumed to be stiplication Sand, 72-81 feet Ground Water is assumed to be stiplica	6.0 8.0								
0 0 0 <td>10.0 12.0</td> <td></td> <td></td> <td></td> <td></td> <td>Ę</td> <td></td> <td></td> <td></td>	10.0 12.0					Ę			
0 0	14.0				Casin	Casi	Casin		
0 0	16.0 18.0				PVC	PVC	PVC		
0 0	20.0 22.0				inch	ir inch	ie inch		
0 0 0	24.0				Ш ⁵	Fou	j		
Ground Water is assumed to be 55 feet below ground surface. Well Depths are to be adjusted to actual depth to water.	26.0 28.0								
Ground Water is assumed to be 55 feet below ground surface. Well Depths are to be adjusted to actual depth to water.	30.0 32.0								
Ground Water is assumed to be 55 feet below ground surface. Well Depths are to be adjusted to actual depth to water.	34.0 36.0								
Ground Water is assumed to be 55 feet below ground surface. Well Depths are to be adjusted to actual depth to water.	38.0								
Ground Water is assumed to be 55 feet below ground surface. Well Depths are to be adjusted to actual depth to water.	40.0								
Ground Water is assumed to be 55 feet below ground surface. Well Depths are to be adjusted to actual depth to water. Sand, 48-66 feet Screen 50-65 feet Book Hydrated bentonite, 66-74 feet Book Sand, 74-81 feet Screen 75-06 feet Book Sand, 74-81 feet Screen 75-06 feet Book Sand, 74-81 feet Screen 75-80 feet Book Sand, 74-81 feet Screen 75-80 feet Book Sand, 89-96 feet Screen 90-95 feet Book Stump, Hydrated Bentonite Book Stump, Hydrated Bentonite	44.0 46.0								
Oround Water is assumed to be 55 feet bolow Sand, 48-66 feet O Sand, 48-66 feet Screen 50-65 feet Sereen 50-65 feet Hydrated bentonite, 66-74 feet Sand, 74-81 feet Screen 75-80 feet Sand, 74-81 feet Screen 77.5 feet Hydrated bentonite, 81-89 feet Hydrated bentonite, 81-89 feet Sand, 89-96 feet Screen 92-95 feet Sand 89-96 feet Screen 92.5 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydrated Bentonite, 81-89 feet Stump, Hydra	48.0								
0 0 0	50.0 52.0								
0 0	54.0 56.0								
0 0 0	58.0							Screen 50-65 feet	
00 00 100 00 00 00 <td>60.0 62.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	60.0 62.0								
10 .0 10 .0	64.0 66.0					8			
.0 .0 .0 .0	68.0								
.0 .0 Sand, 74-81 feet .0 Screen 75-80 feet .0 Piezometer 77.5 feet .0 Hydrated bentonite, .0 81-89 feet .0 Sand, 89-96 feet .0 Screen 90-95 feet .0 Screen 90-95 feet .0 Stump, Hydrated .0	70.0 72.0							00-74 leet	
0 Screen 75-80 feet 0 Piezometer 77.5 feet 0 Hydrated bentonite, 81-89 feet 0 Sand 89-96 feet 0 Screen 90-95 feet 0 Screen 90-95 feet 0 Stump, Hydrated	74.0 76.0								
0 0 0 <td>78.0 80.0</td> <td></td> <td></td> <td>:</td> <td></td> <td></td> <td></td> <td></td> <td></td>	78.0 80.0			:					
0 Hydrated bentonite, 81-89 feet 0 Sand 89-96 feet Screen 90-95 feet Piezometer 92.5 feet 0 Slump, Hydrated Bentonite 0 Slump, Hydrated Bentonite	82.0								
.0 .0 .0	84.0 86.0								
0 0 0 0	88.0 90.0								
0 Screen 90-95 feet 0 Piezometer 92.5 feet 0.0 Slump, Hydrated 0.0 Slump, Hydrated 0.0 Bentonite	92.0 94.0							Sand 80.06 feet	
30 30 20 Slump, Hydrated Bentonite 30 Bentonite	96.0				目			Screen 90-95 feet	
R.T. Hicks Consultants, Ltd POC E-35 C-35 Sites Ploto 4	98.0 100.0							1 16201116161 92.3 166[
R.T. Hicks Consultants, Ltd POC E-35 C-35 Sites Ploto 4	102.0 104.0								
R.T. Hicks Consultants, Ltd POC E-35 C-35 Sites Ploto 4	106.0							Bentonite	
	08.0								
Rio Gianue Bivu IVW Sune 1-142	901 Rio	Grande Blv	vd NW Suite F-142		RC	DC F-35	i, G-35	Sites	Plate 4
Albuquerque, NM 87104 505-266-5004 Monitoring/Recovery Well Boring September, 2006	A			Monitoring/Recovery Well Boring September, 2006					

• Э.

•

Price, Wayne, EMNRD

From: Price, Wayne, EMNRD

Sent: Wednesday, November 23, 2005 9:24 AM

To: Price, Wayne, EMNRD; Carolyn Doran Haynes (riceswd@leaco.net)

Cc: Sanchez, Daniel J., EMNRD; Sheeley, Paul, EMNRD

Subject: RE: Abatement Plan requirement for Vacuum G-35/F35

Corrected version. The AP's are due Dec 30, 2005.

From: Price, Wayne, EMNRD
Sent: Wednesday, November 23, 2005 9:15 AM
To: Carolyn Doran Haynes (riceswd@leaco.net)
Cc: Sanchez, Daniel J., EMNRD; Sheeley, Paul, EMNRD
Subject: Abatement Plan requirement for Vacuum G-35/F35

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

BILL RICHARDSON Governor Joanna Prukop Cabinet Secretary Mark E. Fesmire, P.E. Director Oil Conservation Division

November 23, 2005

Carolyn Doran Haynes Rice Operating Company 122 West Taylor Hobbs, New Mexico 88240

Re: Sites with confirmed Groundwater Contamination

Dear Ms. Haynes:

During our recent technical meeting held on November 03, 2005 ROC provided OCD with a list of projects with NMOCD Approval Pending. Two of these sites were the G-35/F-35. The ICP submitted by R.T. Hicks Consultants on 03/29/05 indicates that groundwater is impacted. Pursuant to the New Mexico Oil Conservation Division rule 19.15.1.19 (Rule 19) Prevention and Abatement of Water Pollution requires all responsible persons who are abating water pollution in excess of the standards shall do so pursuant to an abatement plan approved by the director.

Therefore, Rice Operating Company is hereby required to submit individual abatement plans for OCD approval by December 30, 2005 for each of the following sites:

Vacuum Sites;

G-35 SWD Vacuum	UL	G	Sec 35, T17s, R35E	1R0332
F-35 SWD Vacuum	UL	G	Sec 35, T17s, R37E	1R0330

After OCD receives the plans each site will be assigned a new Abatement Plan number (AP#) for tracking purposes. If you have any questions please do not hesitate to contact me at 505-476-3493 or E-mail <u>DJSanchez@state.nm.us</u>; or contact Wayne Price of my staff at 505-476-3487 or e-mail <u>WPRICE@state.nm.us</u>.

Sincerely;

FOR DAVIEL SAMEHER

Daniel Sanchez Enforcement and Compliance Manager Cc: OCD Hobbs office

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

March 29, 2005

Wayne Price NMOCD Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Via E-mail and Federal Express

1R0330 120332 15K 15

RE: G-35 Investigation Characterization Plan L_____ IRO332 Dear Wayne:

On behalf of Rice Operating Company, R.T. Hicks Consultants, Ltd. is pleased to submit the attached G-35 Investigation Characterization Plan.

If you have any questions or concerns about the enclosed report, please let us know. Thank you for your time.

Sincerely, R.T. Hicks Consultants, Ltd.

Katie Lee Associate Scientist

Copy: Rice Operating Company

March 2005

G-35 Investigation Characterization Plan

NEAR BUCKEYE, NEW MEXICO

Prepared for:

Rice Operating Company 122 West Taylor Hobbs, NM 88240

R.T. HICKS CONSULTANTS, LTD.

901 RIO GRANDE BLVD. NW, SUITE F-142, ALBUQUERQUE, NM 87104

Price, Wayne

From:	Price, Wayne
Sent:	Tuesday, November 23, 2004 11:06 AM
То:	Carolyn Doran Haynes (E-mail); Kristin Farris Pope (E-mail)
Cc:	Sheeley, Paul; Johnson, Larry
Subject:	Vacuum G-35 1R0332 and F-35 1R0330 Groundwater contamination

OCD is in receipt of the Feb 09, 2004 monitoring reports for the Vacuum G-35 and F-35 sites. The reports indicate groundwater is contaminated. Please submit a groundwater investigation and remediation plan for OCD approval by December 24, 2004. The plan shall address how Rice intends on cleaning up the contaminated groundwater and prevent further contamination. Please include area maps, plot plan with all significant features, photos, etc.

OCD will not accept a dilution modeling plan at this time due to the fact the locations are located over the Ogallala water bearing formation and the fact that this area has had enormous amount of rainfall which would probably invalidate any model.

OCD feels that an active remediation plan may cure the problem in a relative short amount of time, thus forgoing OCD requiring a rigorous Abatement 19 plan.

Sincerely:

Wayne Price New Mexico Oil Conservation Division 1220 S. Saint Francis Drive Santa Fe, NM 87505 505-476-3487 fax: 505-476-3462 E-mail: WPRICE@state.nm.us

Price, Wayne

From:	Price, Wayne
Sent:	Tuesday, November 23, 2004 11:06 AM
То:	Carolyn Doran Haynes (E-mail); Kristin Farris Pope (E-mail)
Cc:	Sheeley, Paul; Johnson, Larry
Subject:	Vacuum G-35 1R0332 and F-35 1R0330 Groundwater contamination

OCD is in receipt of the Feb 09, 2004 monitoring reports for the Vacuum G-35 and F-35 sites. The reports indicate groundwater is contaminated. Please submit a groundwater investigation and remediation plan for OCD approval by December 24, 2004. The plan shall address how Rice intends on cleaning up the contaminated groundwater and prevent further contamination. Please include area maps, plot plan with all significant features, photos, etc.

OCD will not accept a dilution modeling plan at this time due to the fact the locations are located over the Ogallala water bearing formation and the fact that this area has had enormous amount of rainfall which would probably invalidate any model.

OCD feels that an active remediation plan may cure the problem in a relative short amount of time, thus forgoing OCD requiring a rigorous Abatement 19 plan.

Sincerely:

Wayne Price New Mexico Oil Conservation Division 1220 S. Saint Francis Drive Santa Fe, NM 87505 505-476-3487 fax: 505-476-3462 E-mail: WPRICE@state.nm.us

RICE Operating Company

122 West Taylor • Hobbs, New Mexico 88240 Phone: (505)393-9174 • Fax: (505) 397-1471

June 18, 2004

RECEIVED

JUN 2 1 2004

Mr. Gary Wink NMOCD District 1 Office 1625 N French Drive Hobbs, NM 88240

OIL CONSERVATION DIVISION

Re: Abandonment of SWD Facility sites Vacuum G-35 and Hobbs E-15 Lea County, NM

Dear Mr. Wink:

This letter is a response to your letter to Rice Operating Company (ROC) dated March 24, 2004, inquiring about the abandonment of wells sites at Vacuum SWD G-35, Hobbs SWD E-15 and Hobbs SWD P-16.

The abandonment of the Hobbs SWD P-16 was completed soon after the P&A of the well. This information was submitted to the District 1 Office on May 13, 2004. There was only insignificant environmental impact at this well site, all of which was remediated to the landowner's (Bill McNeill) satisfaction.

The remaining two sites are in progress for abandonment.

The Vacuum G-35 Site abandonment began July 30, 2001 with a Closure Plan (under the approved Generic Redwood Tank and Pit Closure Plan) submission to Mr. Wayne Price, NMOCD Environmental Bureau, Santa Fe. As work was progressed the site was discovered to have deep vadose zone contaminant impact. This was reported to Roger Anderson and Wayne Price, NMOCD Environmental Bureau, Santa Fe on January 18, 2002 with a follow-up letter on July 1, 2002. A monitor well was installed and has been sampled quarterly with results sent to Mr. Price on an annual basis.

ROC submitted an AFE to the Vacuum System Partners for funding for this project. The Vacuum System Operating Committee then experienced a time of disruption (about 2 years) concerning the division of interest (costs) pertaining to historical environmental remediation. ROC believes this concern has been cleared to the degree that work may progress and funding will be agreeably divided among the System Partners.

RT Hicks Consultants of Albuquerque have since been contracted to manage the environmental work of the abandonment. A RBCA Work Plan has been submitted to Mr. Price and is awaiting

approval. ROC expects this project work to encompass 3 to 6 months with monitor well sampling for 2 years. This work will be done through the Environmental Bureau.

The Hobbs E-15 Site is part of the Hobbs SWD System Abandonment Project. The abandonment work at this site was delayed due to landowner dispute and lawsuit. The Property has since been purchased by Occidental Permian. Occidental Permian has granted ROC permission to continue with the abandonment and remediation work.

This site had preliminary delineation shortly after the well E-15 was P&A. The site was found to have significant vadose zone impact and considerable NORM impact of the surface and redwood tanks. The redwood tanks have been decontaminated and removed. The surface area has also been decontaminated. All of the NORM work was conducted through the NMED.

Arcadis G&M of Midland (Sharon Hall) has been contracted to manage the environmental work at this site. Extensive TPH modeling has been conducted (6 months of work) and the RBCA work plan is being developed based on this research and will be submitted to Mr. Price at the NMOCD Environmental Bureau. Salt impact appears to be less significant. Funding will be requested upon approval of the RBCA work plan.

All of this documentation is available at the ROC office and reports will be submitted to Santa Fe Environmental Bureau and District 1 Office at various stages of the work plan. Please don't hesitate to call the ROC office should you have any questions or concerns as these work plans are conducted. ROC plans to complete the surface-work at these two sites by December 31, 2004. Groundwater activities will continue for at least two years with annual submission of results to the Environmental Bureau.

Thank you for your patience and cooperation.

RICE OPERATING COMPANY

Carolyn Dran Haynon

Carolyn Doran Haynes Engineering Manager

cc: Chris Williams Wayne Price JSC, KF, LBG, file