

ANNUAL GW MONITOR REPORT

DATE: 2006

AP-44 Highlander Environmental Corp. Annual GW Mon. Midland, Texas Report 2006

2007 MAR

山

CERTIFIED MAIL RETURN RECEIPT NO. 7004 2510 0001 1869 0958

March 7, 2007

Mr. Wayne Price New Mexico Energy, Minerals, & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

2006 Annual Groundwater Summary Report & Project Status Report, Rice Re: Operating Company, Eunice Monument Eumont (EME) SWD System H-13 Leak, Unit H, Section 13, T-20-S, R-36-E, Lea County, New Mexico, MOCD CASE #1R0429 (AP-44) CO

Dear Mr. Price:

Highlander Environmental Corp. (Highlander) takes this opportunity to submit the 2006 Annual Groundwater Summary Report for the Rice Operating Company (ROC), Eunice Monument Eumont (EME) SWD System H-13 Leak.

Background

ROC discovered an accidental discharge at the above referenced site on July 3, 2002. The soil had settled underneath a 4" asbestos/concrete system line causing it to break. According to the C-141 form (Initial) filed on July 11, 2002, the total volume spilled was 10 barrels with 5 barrels recovered and disposed of into the EME SWD system. The pipeline leak was permanently repaired to minimize the potential for further impairment. The site location is shown on Figure 1.

Two delineation trenches were excavated on July 22, 2002, one on the east side of the system line and one on the west side of the line. Chloride concentrations in the east trench decreased to 254 mg/kg at a depth of 8 feet below ground surface, while the west trench exhibited elevated chloride levels to 12 feet below ground surface (bgs). A soil boring was installed on September 25, 2002 to further delineate the depth of impact. Based upon the chloride concentrations and relatively shallow groundwater (~31 feet bgs), this soil boring was completed as a monitoring well. The well was completed to a total depth of 41 feet bgs.

On December 13, 2002, the NMOCD was notified of groundwater impact. The monitoring well has been sampled on a quarterly basis since October 2002. The only constituent of concern (COC) at this site is chloride.

1910 N. Big Spring

As part of the Stage 1 Abatement Plan two additional monitor wells were proposed for the site. These two monitor wells (MW-2 and MW-3) were installed on March 23, 2006. MW-2 was placed up-gradient of MW-1 and MW-3 was placed down-gradient. The wells were developed and sampled on March 27, 2006 and July 17, 2006. Both of the new monitor wells displayed similar qualities to the monitor well placed at the leak site (MW-1).

Also as part of the Stage I Abatement Plan, a water well database search was performed to encompass a $\frac{1}{2}$ mile radius around the site. The database search revealed two wells in adjoining section of this site. Both wells were noted as "livestock watering wells" and both exhibited elevated chloride concentrations (1268 mg/L and 2680 mg/L). Based upon the results of the Stage I Abatement Plan implementation, it appears that the background water quality is impaired over the entire region, and not as a result of this spill incident.

RULE 19 RELEASE REQUEST and SOIL WORK PLAN

In a report to the NMOCD dated August 18, 2006, ROC requested release from NMOCD Rule 19 requirements. Additionally, ROC proposed to complete assessment and remediation of chloride impacted soils for closure under NMOCD approval.

The New Mexico Oil Conservation Division Responded to the above-mentioned report on September 27, 2006, in an email memorandum. In that memorandum, the NMOCD stated that "After reviewing the submittal OCD is inclined to agree with your conclusions. In order for OCD to release this site it would be helpful if ROC demonstrates that the groundwater gradient is accurate". A response letter with the requested data was submitted on December 27, 2006. NMOCD approval for the release request is pending.

Monitor Well Sampling

The site monitor wells were sampled on January 18, March 27 (MW-2 and MW-3), April 18, July 17 and October 9, 2006. Prior to sampling, the wells were gauged for static water levels. The monitor well caps were opened and water level measurements were taken from the top of the casing. The measurements were taken to the nearest 0.01 feet.

The wells were then purged using a portable submersible pump. Approximately three casing volumes of water were purged from each well prior to sampling. The pump and associated tubing were decontaminated with a laboratory grade detergent and rinsed with deionized water. Cumulative water level measurements and purge volumes for the monitor wells are included in the Tables Section of this report.

The wells were also inspected for the presence of phase-separated hydrocarbons (PSH). Groundwater samples were collected as soon as possible after the groundwater returned to its static level. Groundwater samples were collected using clean disposable polyethylene bailers and disposable line. The samples were transferred into labeled and preserved containers provided by the laboratory. The samples were delivered under proper

chain-of-custody control to Environmental Labs of Texas, Inc., Odessa, Texas. The groundwater samples were analyzed for major anions, by methods 310.1, 9253 and 375.4, cations by method 6010B, Total Dissolved Solids (TDS) by method 160.1 and Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) by method EPA 8021B. Copies of the laboratory reports are enclosed in Appendix A.

Monitor Well Sample Results

In 2006, there were no BTEX constituents detected at or above reporting limits for any of the monitor wells. Chloride and total dissolved solid (TDS) concentrations from all three monitor wells exceeded the Water Quality Control Commission (WQCC) standards of 250 mg/L for chloride and 1000 mg/L for TDS in all sampling events. The chloride and TDS concentrations are relatively consistent with each other and with reported concentrations in the area. Cumulative analytical data is summarized in the Table Section of this report.

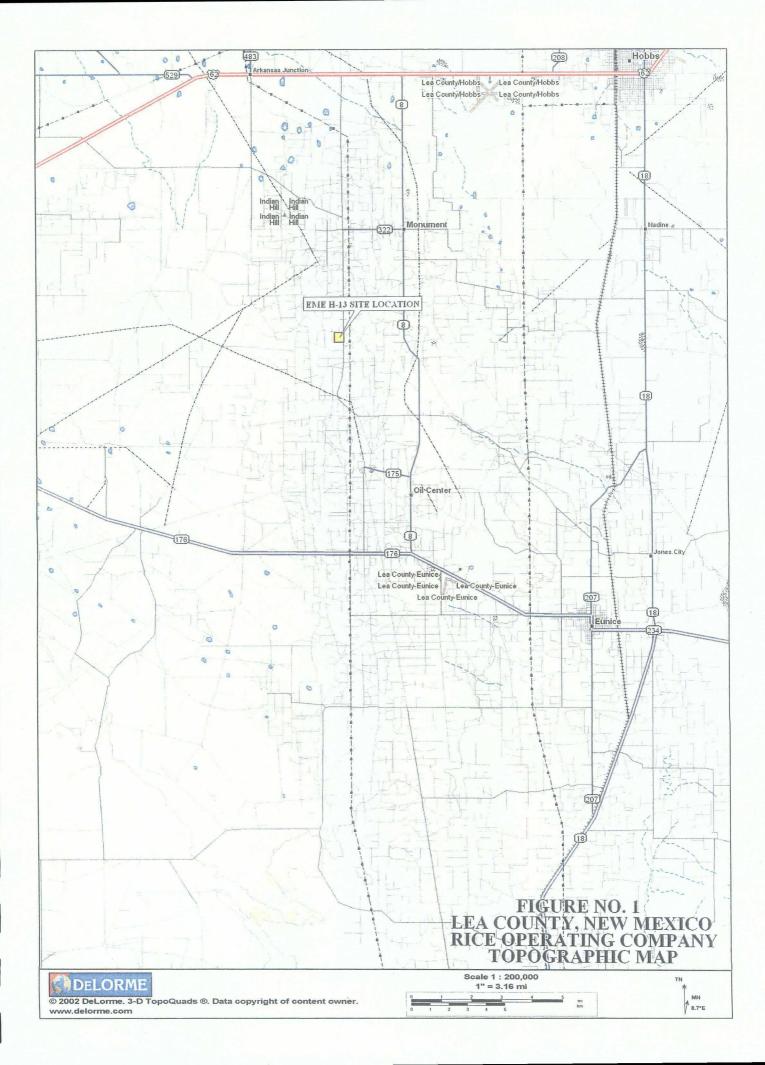
Conclusions

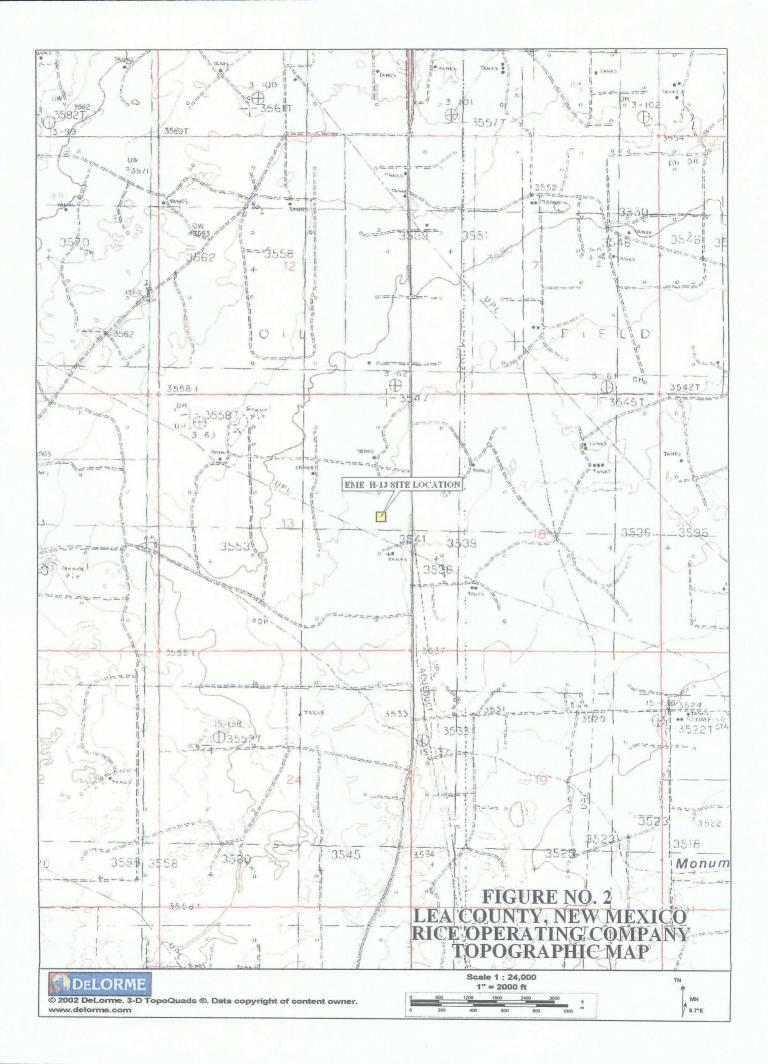
- 1. In 2006, there were no BTEX constituents detected at or above reporting limits for any of the three monitor wells. To date, no hydrocarbon impact has been detected in any of the monitor wells and as such is not considered a Constituent of Concern at this site.
- 2. Chloride and total dissolved solid (TDS) concentrations from all three monitor wells exceeded the Water Quality Control Commission (WQCC) standards of 250 mg/L for chloride and 1000 mg/L for TDS in all sampling events. The chloride and TDS concentrations are relatively consistent with each other and with reported concentrations in the area.
- 3. Based upon the results of the Stage I Abatement Plan implementation, it appears that the background water quality is impaired over the entire region, and not as a result of this spill incident. Quarterly monitoring at this site will continue, until notified by the NMOCD and, if warranted, an annual report will be prepared and submitted to the NMOCD in the first quarter of 2008.

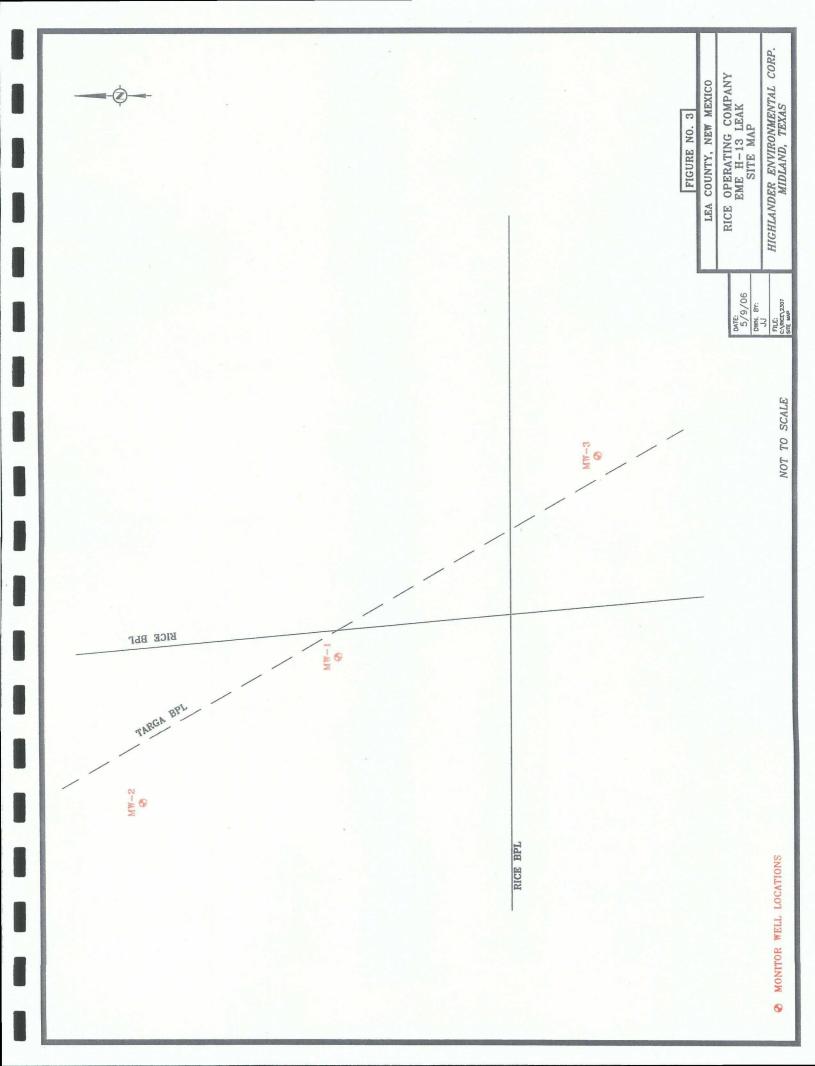
Respectfully Submitted, HIGHLANDER ENVIRONMENTAL CORP.

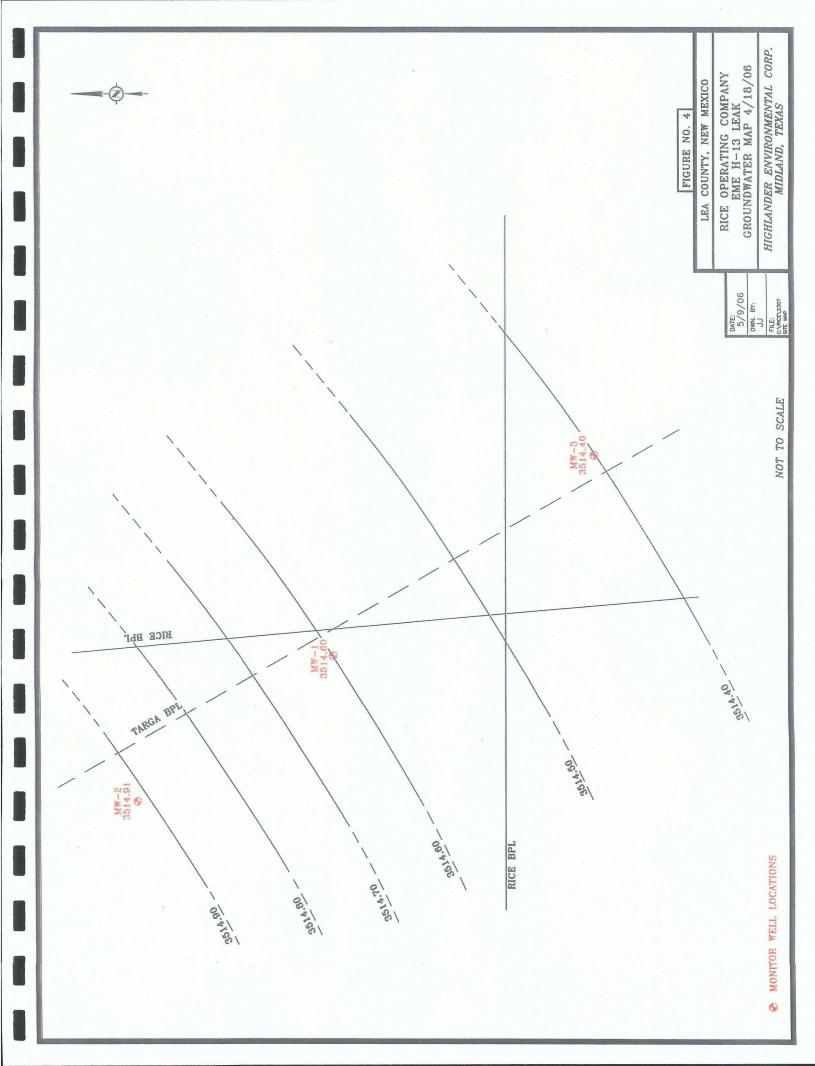
M

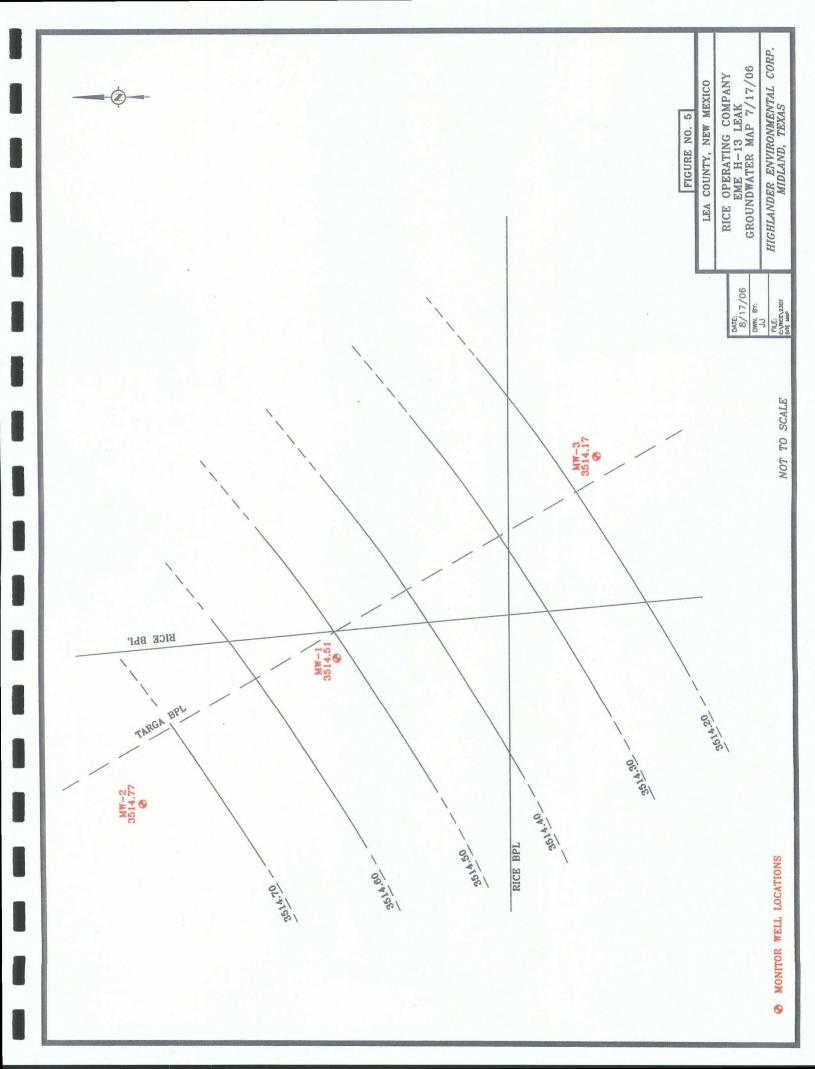
fimothy M. Reed, P.G. Vice President

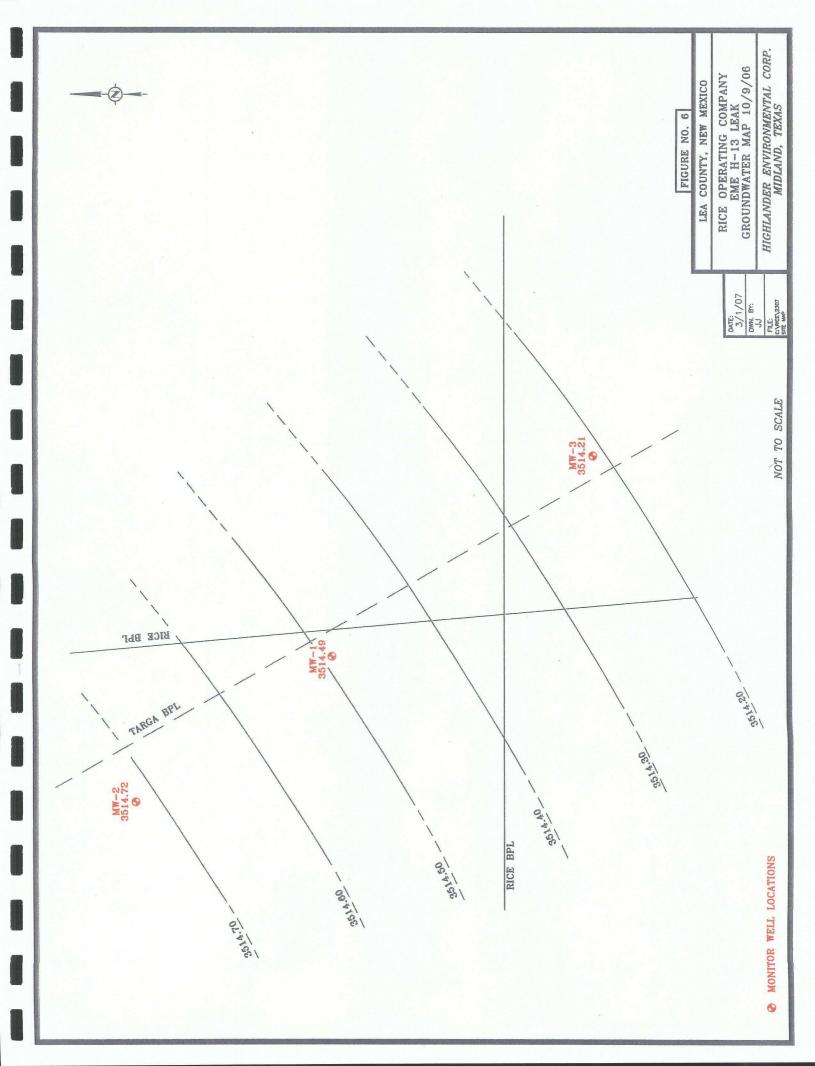

cc: ROC, Edward Hansen – NMOCD Enclosures: Figures, Tables, Laboratory Analysis

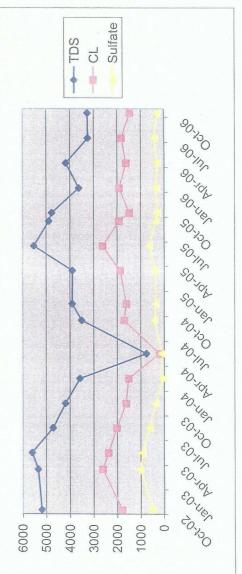



で調査


No.

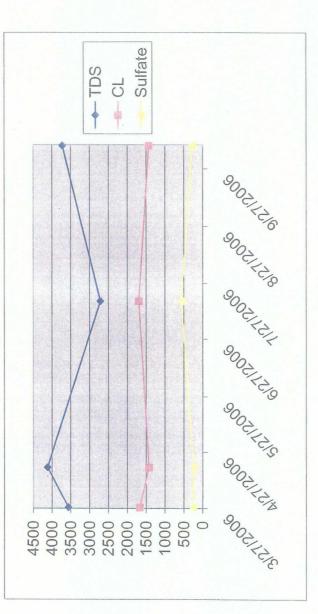

範備電

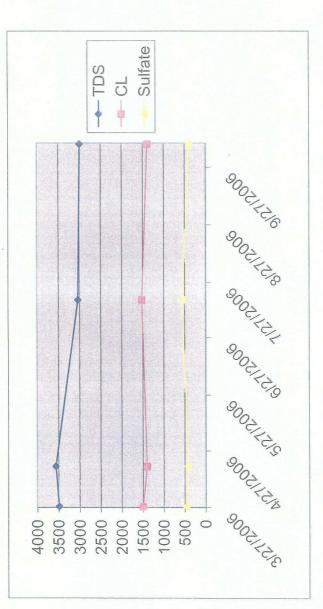




Bie Cash

STATES OF

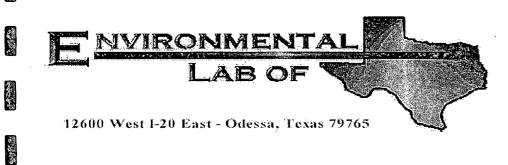

		Comments																		Clear
		Sulfate		497	1020	920	622	370	44	90.8	418	358	376	641	358	286	351	307	412	308
		Total Xylenes		<0.001	<0.001	<0.001	<0.001	0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
		Toluene Ethyl Benzene Total Xylenes Sulfate		<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
		Toluene		<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Rice Engineering Operating H-13	Lea County, New Mexico	Benzene		<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
eering H-13	ty, Nev	TDS		5180	5340	5600	4700	4180	3580	751	3510	3900	3890	5520	4880	4760	3620	4160	3240	3260
e Engin	a Coun	Ū		1770	2600	2360	2000	1600	1500	177	1680	1590	1850	2610	1900	1450	1900	1600	1800	1430
Rio	Le	Sample	Date	10/29/02	03/06/03	05/29/03	08/22/03	11/19/03	02/18/04	05/27/04	09/07/04	11/24/04	03/30/05	06/21/05	09/16/05	10/19/05	01/18/06	04/18/06	07/17/06	10/09/06
	14	Volume	Purged	5.25	5.10	5.10	5.04	5.00	5.00	5.00	5.14	5.40	25.0	10.0	XXX	6.0	8.0	8.0	10.0	10.0
		Well	Volume	1.72	1.71	1.21	1.68	1.60	1.67	1.65	1.71	1.80	1.91	1.95	XXX	2.00	2.00	2.00	2.00	2.00
		Total	Depth	43.94	43.90	43.91	43.90	43.91	43.90	43.90	44.10	44.10	44.10	44.10	XXX	44.10	44.10	44.10	44.10	44.10
		Depth to	Water	33.19	33.18	33.20	33.40	33.35	33.41	33.56	33.40	32.85	32.19	31.93	XXX	31.70	31.59	31.66	31.75	31.77
		MM	-	~	~	-	~	~	~	~	4	-	~	-	4	-	1	1	~	-7


			Comments					Clear
			Sulfate		264	237	562	284
			Total Xylenes		<0.001	<0.001	<0.001	<0.001
			CI TDS Benzene Toluene Ethyl Benzene Total Xylenes Sulfate Comments		<0.001	<0.001	<0.001	<0.001
			Toluene		<0.001	<0.001	<0.001	<0.001
Rice Engineering Operating		Lea County, New Mexico	Benzene		<0.001	<0.001	<0.001	1430 3720 <0.001
eering	H-13	ity, Nev	TDS		3560	1420 4120	1690 2710	3720
ce Engin		ea Cour	C		1670 3560	1420	1690	1430
Ric		L	Sample	Date	03/27/06	04/18/06	07/17/06	10/09/06
			Volume	Purged	8.00	8.00	10.00	10.00
			Well	Volume	2.00	2.00	2.00	2.00
			Total	Depth	43.10	43.10	43.10	43.10
			Depth to	Water	30.69	30.66	30.80	30.85
			MM		2	2	2	2

T

T

			Comments					Clear
			Sulfate		472	426	557	393
			Total Xylenes		<0.001	<0.001	<0.001	<0.001
			CI TDS Benzene Toluene Ethyl Benzene Total Xylenes Sulfate Comments		<0.001	<0.001	<0.001	<0.001
			Toluene		<0.001	<0.001	<0.001	<0.001
Rice Endineering Operating		Lea County, New Mexico	Benzene		<0.001	<0.001	<0.001	<0.001
pering	H-13	nty, Nev	TDS		1490 3480	3560	3035	2990
Endir	10	ea Cour	Ū		1490	1390	1510 3035	1380 2990
Ric		Ľ	Sample	Date	03/27/06	04/18/06	07/17/06	10/09/06
			Volume	Purged	8.00	10.00	10.00	10.00
			Well	Volume	2.30	2.30	2.20	2.20
			Total	Depth	46.00	46.00	46.00	46.00
			Depth to	Water	31.89	31.85	32.08	32.04
			MM		с С	က	3	3


APPENDIX A

建築が

54.25

Lab Analysis

1/18/06

いため

Service State

N. C. S.

N. 34 28

10 to 10

S-Shide La

A. 18. 20 -

R. Bolt of

. B. C.

16.4 XR. 86

新福州市场

いた。行き

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME Jct. H-13 Leak Project Number: None Given Location: Lea County

Lab Order Number: 6A19006

Report Date: 01/27/06

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Project: Project Number: Project Manager:		•			Fax: (505) 397-1471 Reported: 01/27/06 13:27
	ANALYT	ICAL REPORT	Г FOR SAM	PLES			
Sample ID		Labo	Matrix		Date Sampled	Date Receive	
Monitor Well #1		6A1	9006-01	Water		01/18/06 10:50	01/19/06 11:
							•
		·					
					. ·		
					•		
		-					
		•					
· · ·							

•

.

.

an Carlo

Statistics.

W. W.

的重要地

「「「「

And pres

188 C.

調査会

のないなど

An Wester

No sugar

「「「

位哲学学

やいたは「神

Rice Operating Co.	Project:	EME Jct. H-13 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	01/27/06 13:27

Organics by GC

Environmental Lab of Texas

Analyte	- Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Monitor Well #1 (6A19006-01) Water									
Benzene	ND	0.00100	mg/L	1	EA62304	01/23/06	01/24/06	EPA 8021B	
Toluene	ND	0.00100	"	"		U II	U	0	
Ethylbenzene	ND	0.00100			u	н	н	u	
Xylene (p/m)	ND	0.00100			"	"		"	
Xylene (o)	ND	0.00100	ч	**	0	"	н	"	
Surrogate: a,a,a-Trifluorotoluene		86.5 %	80-12	20	"	н	n	"	
Surrogate: 4-Bromofluorobenzene		84.2 %	80-12	20	"	n	"	"	

Environmental Lab of Texas

and Samaline

Ser Contraction

22.22

Sale and

1. N. W. W.

の語の

Sint Carl

State of the second

Mar Sugar

N. Care

Same -

1. States

der filt

S. Marting

Act Bas

No An

2.2.6

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.Project:EME Jct. H-13 LeakFax: (505) 397-1471122 W. TaylorProject Number:None GivenReported:Hobbs NM, 88240Project Manager:Kristin Farris-Pope01/27/06 13:27

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6A19006-01) Water									
Total Alkalinity	208	2.00	mg/L	1	EA62406	01/26/06	01/26/06	EPA 310.1M	
Chloride	1900	25.0		50	EA62018	01/20/06	01/20/06	EPA 300.0	
Total Dissolved Solids	3620	5.00		1	EA62307	01/19/06	01/20/06	EPA 160.1	
Sulfate	351	25.0		50	EA62018	01/20/06	01/20/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Sec. Sec.

一般的新

1000

and the second

and the second

100519

B. W.

3 . B. C.

14.20

2.建建油

N. 62. 2. 10

Rice Operating Co.	Project: EME Jct. H-13 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	01/27/06 13:27

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
356	0.500	mg/L	50	EA62615	01/26/06	01/26/06	EPA 6010B	
156	0.0500	*		н	н	11	u	
18.6	0.500	"	10	н	и	н	н	
733	1.00	"	100	u	"			
	356 156 18.6	Result Limit 356 0.500 156 0.0500 18.6 0.500	Result Limit Units 356 0.500 mg/L 156 0.0500 " 18.6 0.500 "	Result Limit Units Dilution 356 0.500 mg/L 50 156 0.0500 " " 18.6 0.500 " 10	Result Limit Units Dilution Batch 356 0.500 mg/L 50 EA62615 156 0.0500 " " " 18.6 0.500 " 10 "	Result Limit Units Dilution Batch Prepared 356 0.500 mg/L 50 EA62615 01/26/06 156 0.0500 " " " " 18.6 0.500 " 10 " "	Result Limit Units Dilution Batch Prepared Analyzed 356 0.500 mg/L 50 EA62615 01/26/06 01/26/06 156 0.0500 " " " " " 18.6 0.500 " 10 " " "	Result Limit Units Dilution Batch Prepared Analyzed Method 356 0.500 mg/L 50 EA62615 01/26/06 01/26/06 EPA 6010B 156 0.0500 " " " " " " 18.6 0.500 " 10 " " " "

Environmental Lab of Texas

QU 12.0

Sauth State

10.4.6

1. C. C. C.

William State

A. Salar

and the second

考えば

6-135280-5

の間をおいまい

T. Maria

said to

No. of the other

all and

1225-253

1000

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Project Nu	mber: No	4E Jct. H-13 I one Given istin Farris-Po					Repo	Fax: (505) 397-1471 Reported: 01/27/06 13:27	
	0	rganics by	GC - Q	Quality Co	ntrol				1		
		Environm	ental L	ab of Tex	as			•		1.	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch EA62304 - EPA 5030C (GC)				<u> </u>							
Blank (EA62304-BLK1)				Prepared &	Analyzed	01/23/06					
Benzene	ND	0.00100	mg/L								
Toluene	ND	0.00100	0								
Ethylbenzene	ND	0.00100	"								
Xylene (p/m)	ND	0.00100	u.								
Xylene (o)	ND	0.00100	"								
Surrogate: a,a,a-Trifluorotoluene	37.5		ug l	40.0		93.8	80-120				
Surrogate: 4-Bromofluorohenzene	32.6		"	40.0		81.5	80-120				
LCS (EA62304-BS1)				Prepared &	. Analyzed	: 01/23/06					
Benzene	0.0461	0.00100	mg/L	0.0500		92.2	80-120				
Toluene	0.0462	0.00100	"	0.0500		92.4	80-120				
Ethylbenzene	0.0427	0.00100	u	0.0500.		85.4	80-120				
Xylene (p/m)	0.0846	0.00100		0.100		84,6	80-120				
Xylene (o)	0.0451	0.00100	н	0.0500		90.2	80-120				
Surrogate: a,a,a-Trifluorotohuene	38.5		ugil	40.0		96.2	80-120				
Surrogate: 4-Bromofluorobenzene	37.9		"	40.0		94.8	80-120				
Calibration Check (EA62304-CCV1)				Prepared &	Analyzed	: 01/23/06					
Benzene	44.4		ug/l	50,0		88.8	80-120				
Toluene	45.2		"	50.0	•	90.4	80-120				
Ethylbenzene	42.5			50.0		85.0	80-120				
Xylene (p/m)	83.1		"	100		83.1	80-120				
Xylene (o)	44.5		"	50.0		89.0	80-120				
Surrogate: a,a,a-Trifluorotoluene	35.8		"	40,0		89.5	80-120				
Surrogate: 4-Bromofluorobenzene	35.5		"	40.0		88.8	80-120				
Matrix Spike (EA62304-MS1)	Sou	rce: 6A20019-	-01	Prepared &	Analyzed	: 01/23/06					
Benzene	. 0.0455	0.00100	mg/L	0.0500	ND	91.0	80-120				
Toluene	0.0452	0,00100	"	0.0500	ND	90.4	80-120				
Ethylbenzene	0.0417	0.00100		0.0500	ND	83.4	80-120				
Xylene (p/m)	0.0829	0.00100		0.100	ND	82.9	80-120				
Xylene (o)	0.0445	0.00100	. "	0.0500	ND	89.0	80-120				
Surrogate: a,a,a-Trifluorotoluene	38.2		ug l	40.0		95.5	80-120	· · · · · · · · · · · · · · · · · · ·			

and the second se

A Barling

State and

Ser.

Sec. Constant

1997 (P)

- Contractor

and the

本能建設

17. Sec. 9.

100

EL Provide

N. M. S.

南龙山道。

N.S. 5.2.3

建立的公司

Environmental Lab of Texas

.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report mixt be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 5 of 10

		1.1. 0.1 .0
Rice Operating Co.	Project: EME Jct. H-13 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	01/27/06 13:27

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EA62304 - EPA 5030C (GC)

1. C. S. S. S.

0.000

が一般に

を語う

ALCONT. LOW

0.000

1. C. B. B. L.

S.W. 2. 22

Con the second

184.4726

S. There

141.000

5. 7 88 S.S.

a dina

の見て

1. A. S. S.

Matrix Spike Dup (EA62304-MSD1)	Sou	rce: 6A20019-	-01	Prepared &	Analyzed	01/23/06				
Benzene	0.0427	0.00100	mg/L	0.0500	ND	85.4	80-120	6,35	20	
Toluene	0.0428	0.00100	"	0.0500	ND	85.6	80-120	5.45	20	
Ethylbenzene	0.0404	0.00100	**	0.0500	ND	80.8	80-120	3.17	20	
Xylene (p/m)	0.0802	0.00100	11	0.100	ND	80.2	80-120	3,31	20	
Xylene (o)	0.0427	0.00100		0.0500	ND	85,4	80-120	4.13	20	•
Surrogate: a,a,a-Trifluorotoluene	37.2		ug/l	40.0		93.0	80-120		•	
Surrogate: 4-Bromofluorobenzene	35.4		"	40.0		88.5	80-120			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.			2	4E Jct. H-13	Leak				Fax: (505)	397-147
122 W. Taylor		Project Nur	nber: No	ne Given					Repo	rted:
Hobbs NM, 88240		Project Mar	ager: Kr	istin Farris-Po	ope				01/27/0	6 13:27
General C	hemistry Para	neters by	EPA /	Standard	Method	ls - Qua	lity Cont	trol		
]	Environm	ental I	ab of Te	as					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA62018 - General Preparation (WetChem)				<u> </u>					
Blank (EA62018-BLK1)				Prepared &	Analyzed:	01/20/06				
Sulfate	ND	0.500	mg/L							
Chloride	ND	0.500	"							
LCS (EA62018-BS1)				Prepared &	Analyzed:	01/20/06				
Chloride	8.74		mg/L	10.0		87.4	80-120			
Sulfate	9.62		"	10.0		96.2	80-120			
Calibration Check (EA62018-CCV1)				Prepared &	Analyzed:	01/20/06				
Sulfate	9.77		mg/L	10.0		97.7	80-120			
Chloride	8.88		*	10.0		88.8	80-120			
Duplicate (EA62018-DUP1)	Sour	ce: 6A19008-	01	Prepared &	Analyzed:	01/20/06				
Sulfate	110	5.00	ing/L		111			0.905	20	
Chloride	61.5	5.00	"		62.2			-1.13	20	
Batch EA62307 - General Preparation (WetChem)									
Blank (EA62307-BLK1)				Prepared: (nalyzed: 01	/20/06			
Total Dissolved Solids	ND	5.00	ıng/L							
Duplicate (EA62307-DUP1)	Sour	ce: 6A 19005-	01	Prepared: (01/19/06 A	nalyzed: 01	/20/06			
Total Dissolved Solids	2400	5.00	mg/L		2480			3.28	5	
Batch EA62406 - General Preparation ((WetChem)									
Blank (EA62406-BLK1)				Prepared &	k Analyzed	01/26/06		<u></u>		
Total Alkalinity	ND	2.00	mg/L							

Environmental Lab of Texas

Section 2

Charles State

病語を

1.000

の実施に

ALC: N

Max and Park

A. 1963.

A AND A

C. Salaria

and a star

書きた

and the

(10)

Sec.

軍機器

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 10

Rice Op	erating Co.	Project: EME Jct. H-13 Leak	Fax: (505) 397-1471
122 W.	Taylor	Project Number: None Given	Reported:
Hobbs N	M, 88240	Project Manager: Kristin Farris-Pope	01/27/06 13:27

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

			· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	
	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
VetChem)									
			Prepared &	Analyzed:	01/26/06	•			
220		mg/L	200		110	85-115			
Sour	ce: 6A19005-	01	Prepared &	Analyzed:	01/26/06				
258	2.00	mg/L		256			0.778	20	
			Prepared &	2 Analyzed	01/26/06				
97.0		mg/L	100		97.0	90-110			
	VetChem) 220 Sourc 258	Result Limit VetChem) 220 Source: 6A19005- 258 2.00	ResultLimitUnitsVetChem)220mg/L220Source: 6A19005-012582582.00mg/L	Result Limit Units Level VetChem) Prepared & 220 mg/L 200 Source: 6A19005-01 Prepared & 258 2.00 mg/L Prepared & Prepared &	Result Limit Units Level Result VetChem) Prepared & Analyzed: 220 mg/L 200 Source: 6A19005-01 Prepared & Analyzed: 258 2.00 mg/L 256 Prepared & Analyzed: 256 Prepared & Analyzed:	ResultLimitUnitsLevelResult%RECVetChem)Prepared & Analyzed: 01/26/06220mg/L200110Source: 6A19005-01Prepared & Analyzed: 01/26/062582.00mg/L256Prepared & Analyzed: 01/26/06	Result Limit Units Level Result %REC Limits VetChem) Prepared & Analyzed: 01/26/06 900 110 85-115 220 mg/L 200 110 85-115 Source: 6A19005-01 Prepared & Analyzed: 01/26/06 900 258 2.00 mg/L 256 Prepared & Analyzed: 01/26/06 900 900 900	Result Limit Units Level Result %REC Limits RPD VetChem) 220 mg/L 200 110 85-115 Source: 6A19005-01 Prepared & Analyzed: 01/26/06 258 2.00 mg/L 256 0.778 Prepared & Analyzed: 01/26/06	Result Limit Units Level Result %REC Limits RPD Limit VetChem) Prepared & Analyzed: 01/26/06 01/26/06

Environmental Lab of Texas

Sec. as

14.3302

1.2023

なるの

P. C.S. C.

ないの

Ser Vinder

S. S. S. S. S.

Sec. 38

and the set

Bargo Bargo B

S. Sec. S.

L. L. Build

a state

A. Martinet

100

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Rice Operating Co.	Project: EME Jct. H-13 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	01/27/06 13:27

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EA62615 - 6010B/No Digestion										
Blank (EA62615-BLK1)				Prepared &	2 Analyzed:	01/26/06				
Calcium	ND	0.0100	mg/L							
Magnesium	ND	0.00100								
Potassium	ND	0.0500	u						*	
Sodium	ND	0.0100	н							
Calibration Check (EA62615-CCV1)				Prepared &	& Analyzed	01/26/06				
Calcium	2.12		mg/L	2.00		106	85-115			
Magnesium	1.99		и	2.00		99.5	85-115			
Potassium	1.88			2.00		94.0	85-115			
Sodium	1.94		u	2.00		97.0	85-115			
Duplicate (EA62615-DUP1)	Sou	irce: 6A19005-	-01	Prepared &	& Analyzed	01/26/06	-			
Calcium	224	0.500	mg/L		222			0.897	20	
Magnesium	115	0.0500			120			4.26	20	
Potassium	14.6	0.500	"		15.2			4.03	20	
Sodium	306	0.500	0		313			2.26	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Sec. No.

Sec. 1

You. The

A. Marine

10. A

Capity (Index

a second

1. N. S. S. S.

742 9 M

N. M. M.

SEA

3000 8

Same "State

からの時代

が開たた

State of the second

Rice Ope 122 W. T Hobbs NI	aylor	Project Number:	EME Jct. H-13 Leak None Given Kristin Farris-Pope		Fax: (505) 397-1471 Reported: 01/27/06 13:27
		Notes and De	finitions		
DET	Analyte DETECTED				
ND	Analyte NOT DETECTED at or above the reporting limit				
NR	Not Reported				
dry	Sample results reported on a dry weight basis				
RPD	Relative Percent Difference				
LCS	Laboratory Control Spike			·	
MS	Matrix Spike				
Dup	Duplicate				

Report Approved By:

12.2

19 BB

1. 1. S. ...

1. A. B. B.

Sec. Sec.

ALC NOT

20

a horada a

and with

T ARACE

調整

1000

68 2 E

100

Raland K Julies

1/27/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

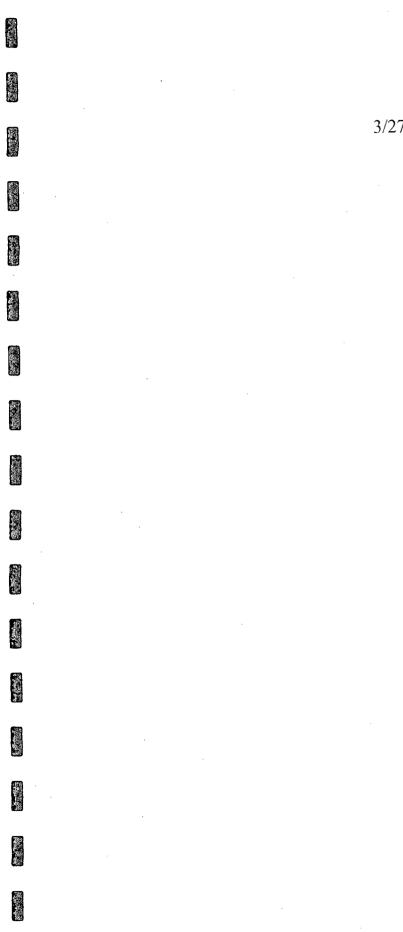
Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.


12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 10 of 10

5. 18 A. 19										, .			:										
1										TAT bisbridg	×												
2							ſ		5112120	(əlubəri (Pre-Schedule)		 	~							z			
- ALL THE .					- {															z	2		
										zbilo2 bevlassiG istoT	×	 	_						{	Bab	Ţ		
. Hard										M.A.O.N	_					•				<u></u>			
	۲.	Leat		ž			LOL 10		T	BCI	×	 _								Sample Containers Intact? Labels on container? Custody Seals. <u>Container</u> o	Temperature Upon Receipt	:ដ	
an a the	oues	+13		Lea County			Analyze For	ŀŀ	\downarrow	Semivolaüles BTEX 6021B/5030	$\hat{}$	 								Sample Containers Intact? Labels on container? Custody Seals. <u>Containe</u> b	a Su Su Su Su Su Su Su Su Su Su Su Su Su	nmen	
	s RE	, ici		ea			A			≈iùsioV										intain contai eals:	re Up	v Comme	
-	r Ast	INE		Ē					_	SRR / ESP / CEC		 								Sample Containers Ir Labels on container? Custody SealsCont	beratu	Laboratory	
er start	ANA	ne: T	 #	ÿ	i ₽O#;			TOLP:		Anions (Cl, 504, CO3, HCO3)	. ×	 								Samp Label Custo	Temp	Labo	
	AND	rt Nar	Project #:	Project Loc;	d				-	(Cations (Ca, Mg, Va, K)	×	 								···•		0.0	• •
14, 194	CHAIN OF CUSTODY RECORD AND AMALYSIS REQUEST	Project Name: EME Jct. H-13 Leak	д.	Proj						Othar (specify): TPH: 418,1 8015M 1005 1006				WETTER								Time 6. Ex	11me
教堂	REC	ц.							Matrix											mo:			
	<i>Хао</i> _	I	I	I	1	1	I		Ma											mfranks@riceswd.com		Date [9/04	l CC
	crısı						ļ		-	Other (Specify) Water		 		-	******					Cest		-	- 2-
	V OF								a a	None (1) 1 Liter HDPE										Ŭ,			
-97 T.B.	CHAIP		1			2			eservativ	*OS ² H HO®N	_	 								nks			
10 A	Ŭ				-	397-147			Prese	HCI (S) 40 ml glass vials	2						{			ıfra			
×.							\backslash			tonh										ద ల		S	ι. Ι
and the second					1	(505)	3			No. of Containers	3 2 2	 		9	-					mo:		2	λ
						No: (A	\neg	>			 								let.c			3
の時間であった		E				Fax N	P		_	bəlqms2 əmiT	10:50	Ì								iceswd@valornet.com &		K	Z
		alornet.com		ĺ																ģ			C,
		orne					J				/2006									Msə		Z	
										belqms2 ets0	18/20									orice		A pa	A A
. 10 Mar		vd@					310				1/18											Received	
<u>b</u>	0 <u>,</u> 0 .	kpriceswd@v			0		331-9										~			S TO			
S. A. Salar	Lab of Texas Phone: 432-563-1800 Fax: 432-563-1713	đ	company Name RICE Operating Company		city/state/Zip: Hobbs, New Mexico 88240		Sampler Signature: Rozanne Johnson (505) 631-9310	шo												PLEASE Email RESULTS TO: kpr		Time 6:50	Time ////0
	432-5	ge	S	tree	Xi		<u> </u>	let.c		1										Ц Ц		Pate 19/66	6/2
all the set	hone: Fax:	is Po	ating	<u>, lor S</u>	v Me	3174	sunc	alorr		FIELD CODE										mail		Date 1/19/0	Date // 100
- 14-	ര്ദ്	Far	Open	Ta	Ne.	393-6	ne Jo	6@V												ш М М			
24	and CC	Project Manager: Kristin Farris Pope	UE ICE	Company Address: 122 W. Taylor Street	sqqo	Telephone No: (505) 393-9174	ozan	Email: rozanne@valornet.com			Monitor Well #1									чЕА		$ \Lambda\rangle$	2
2	tion Line	Er: A		5. 1	۲ ق	<u> -</u> : 이	ة 52	믭			itor M		Ì							UT.	$\overline{\}$		Ś
40,628	65 65	/anagr	ny Nar	Addres	tate/2	юпе N	gnatui	Ema			Non											H.	2 m
	C 1 1	oject N	ompai	≁ Yneq	City/S	Telept	pler S			(Muo										ctions.	\frown	M	Ĥ
	Environmental 12600 West I-20 East Odessa, Texas 79765	Ъи	Ċ	Com		·	Sam			LAB # (lab use only)	20									Special Instructions:		Retineushed by: Kozanne Johnson	nd by:
6	2600 V																			ecial		Retinguished by. Kozanne Johnso	Relinquished by:
a gangen	Q 🕂 katkal									12000002.2.5		<u>8</u>]				<u>_</u>				ชี้		A Pal	e A
																					/		
	1							• •				 •											

Stoffwark.

						· ·	
En En	vironmental La	ab of T	exas	5			
Variance / Corr	ective Action I	Report	- Sa	ample Log	j-ln		
Client: C(LA D)2-							
Date/Time: 1/19/00_11	-10	,					
Derive # InALGOOG							
0rder#: <u> </u>			·				
Initials:							
Temperature of container/cooler?	Sample Receipt						
	1?	Yes Xes	No Na	-2.0	<u>C </u>		
Shipping container/cooler in good condition Custody Seals intact on shipping container		Yes	No	Nict presen	it l		
Custody Seals intact on sample bottles?		Yes	No	Not presen			
Chain of custody present?		(,स्फ़)	No	1			
Sample Instructions complete on Chain of Chain of Custody signed when relinquished	Custody?	YES	Na				
,		YES.	No				
Chain of custody agrees with sample label	(S)	(35)	No		{		
Container labels legible and intact? Sample Matrix and procerties same as on		्रि हो ।	No	1	{		
Sample Matrix and properties same as on	chain of custody?) Xes	No	 			
Samples in procer container/bottle?		YES	No.				
Sample bottles istact?	······	(Fes	<u>No</u>				
Samele bottles intact? Preservations documented on Chain of Cu	ichodu D		No	 			
Containers documented on Chain of Custo			No No		i		
- o the second second for the state as		2=5	No No	 			
All samples received within sufficient hold			No	 			
VOC samples have zero headspace?	mue:	Ves Ves	No No	Not Applicat			
		<u> </u>	1				
Other observations:							-
Samples not frozen				, , , , , , , , , , , , , , , , , , ,	••••••••••		-
	· · · · · · · · · · · · · · · · · · ·				·····		-
							-
				·			
						<i>;</i> ?	
	N/ • • •						
	Variance Docu						
Contact Person:	Date/Time:		-	Contacted I	oy:		_
Regarding:							
		4		· ·		· · · · · · · · · · · · · · · · · · ·	
						···· <u> </u>	
Corrective Action Takeh:	·····	<u> </u>					
	•						
	· · · · · · · · · · · · · · · · · · ·		<u></u>				
7 8							
	- <u> </u>	<u>_</u> _		······································			
		·······					
·							
·				<u>·</u>			
	· ·	· .					

3/27/06

. . .

.

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME Jct. H-13 Leak Project Number: None Given Location: Lea County

Lab Order Number: 6C29007

Report Date: 04/10/06

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240	Project: EME Jct. H-13 Leak Project Number: None Given Project Manager: Kristin Farris-Pope							
	ANALYTICAL REPORT FOR SAM	IPLES						
Sample ID	Laboratory ID	Matrix	Date Sampled	, Date Received				
Monitor Well #2	6C29007-01	Water	03/27/06 11:55	03/29/06 13:40				
Monitor Well #3	6C29007-02	Water	03/27/06 13:10	03/29/06 13:40				
			i.					

Ser. S. Mar

2.2 Mars

22.22.24

Constant.

S. P. S.

N SOLUTION

ARAS :

の時に

All States

Carles.

early .

. W. W.

18. M. S.

Sump che

1963 B.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Rice Operating Co.		Р	roiect: EM	IE Jct. H-13	Leak			Fax: (505) .	397-1471	
122 W. Taylor			imber: No					Reported:		
Hobbs NM, 88240		04/10/06	15:14							
		Or	ganics b	y GC						
		Environn	nental L	ab of Te	exas					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Monitor Well #2 (6C29007-01) Water										
Benzene	ND	0.00100	mg/L	1	EC63016	03/30/06	03/31/06	EPA 8021B		
Toluene	ND	0.00100	U .	'n	н	н	"	п		
Ethylbenzene	ND	0.00100	"	"	n	n	n [.]	п		
Xylene (p/m)	ND	0.00100	"	п		"	н	"		
Xylene (o)	ND	0.00100	"	"	•	и	n	n		
Surrogate: a,a,a-Trifluorotoluene		80.5 %	80	120	"	"	"	"	,	
Surrogate: 4-Bromofluorobenzene		84.8 %	80-,	120	"	н	"			
Monitor Well #3 (6C29007-02) Water								•		
Benzene	ND	0.00100	mg/L	1	EC63016	03/30/06	03/31/06	EPA 8021B		
Toluene	ND	0.00100		"	11		"	ъ		
Ethylbenzene	ND	0.00100	U II	н	11		и	"		
Xylene (p/m)	ND	0.00100	n	"	u		*	11		
Xylene (o)	ND	0.00100	n	"	"	"	n	11		
Surrogate: a,a,a-Trifluorotoluene		84.2 %	80-	120	"	"	n	n		
Surrogate: 4-Bromofluorobenzene		87.8 %	80-	120	"	"	• "	"		

(CERSON)

10.10 Miles

1000

2000

T. B. LE

1 THE

調整

State of

(*******

2.46.3

S. C. Star

1. A. W.

2. C. S.

AC. 1997 B

1. 1. A. E.K.

A STREET

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 10

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

A SULT

の語を

義通

and the second

1.75.35.5

Constraint Sec.

語を見たい

a far water

Siden - Se

State of

the parts of

N. Provide

5.9 m St -

an age an

1. S. S. S.

Project: EME Jct. H-13 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471 Reported:

04/10/06 15:14

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #2 (6C29007-01) Water		· · · · · · · · · · · · · · · · · · ·							
Total Alkalinity	186	2.00	mg/L	1	ED60315	04/03/06	04/03/06	EPA 310.1M	
Chloride	1670	25.0	•	50	ED60306	03/31/06	04/03/06	EPA 300.0	
Total Dissolved Solids	3560	5.00	"	1	EC63019	03/29/06	03/30/06	EPA 160.1	
Sulfate	264	25.0	"	50	ED60306	03/31/06	04/03/06	EPA 300.0	
Monitor Well #3 (6C29007-02) Water									
Total Alkalinity	187	2.00	mg/L	1	ED60315	04/03/06	04/03/06	EPA 310.1M	
Chloride	1490	25.0	и	50	ED60306	03/31/06	04/03/06	EPA 300.0	
Total Dissolved Solids	3480	5.00		1	EC63019	03/29/06	03/30/06	EPA 160.1	
Sulfate	472	25.0	н	50	ED60306	03/31/06	04/03/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

10 m

Rice Operating Co.	Project:	EME Jct. H-13 Leak	Fax: (505) 397-1471		
122 W. Taylor	Project Number:	None Given	Reported:		
Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	04/10/06 15:14		

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #2 (6C29007-01) Water									
Calcium	346	0.500	mg/L	50	EC63112	03/31/06	03/31/06	EPA 6010B	
Magnesium	149	0.0500	**	и	"	"	u	*	
Potassium	13.2	0.500		10		и			
Sodium	513	2.00	"	200	"	н	11	11	
Monitor Well #3 (6C29007-02) Water	_								
Calcium	320	0.500	mg/L	50	EC63112	03/31/06	03/31/06	EPA 6010B	
Magnesium	133	0.0500	н	"	н	*		**	
Potassium	11.4	0.500	"	10	н		"	11	
Sodium	594	2.00	н	200		**		и	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

and the s

のない

10.200

(1)常い物が

17. M.P.

State State

14.000

10.50

×...* 2.00

2. 645

3. W. C.

St. Marth

Rice Operating Co.				IE Jct. H-13	Leak				Fax: (505)	
122 W. Taylor		Project Nu							-	rted:
Hobbs NM, 88240	`	Project Mar	nager: Kr	istin Farris-Po	ope				04/10/0	6 15:14
	0	rganics by	GC - Q	uality Co	ntrol					
		Environm	ental L	ab of Tex	as					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch EC63016 - EPA 5030C (GC)										
Blank (EC63016-BLK1)	•			Prepared &	Analyzed:	03/30/06				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	**							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	"							
Surrogate: a,a,a-Trifluorotoluene	33.8		ug 1	40.0		84.5	80-120			
Surrogate: 4-Bromofluorohenzene	38.6		"	40.0		96.5	80-120			
LCS (EC63016-BS1)		Prepared & Analyzed: 03/30/06								
Benzene	0.0405	0.00100	mg/L	0.0500		81.0	80-120			
Toluene	0.0441	0.00100	**	0.0500		88.2	80-120			
Ethylbenzene	0.0593	0.00100	"	0,0500		119	80-120			
Xylene (p/m)	0.102	0.00100	н	0,100		102	80-120			
Xylene (o)	0.0499	0.00100	н	0.0500		99.8	80-120			
Surrogate: a,a,a-Trifluorotoluene	34.4		ug/l	40.0		86.0	80-120			
Surrogate: 4-Bromofluorobenzene	39.8		"	40.0		99.5	80-120			
Calibration Check (EC63016-CCV1)				Prepared: ()3/30/06 A	nalyzed: 03	3/31/06			
Benzene	45.1		ug/l	50.0		90.2	80-120			
Toluene	41.8			50,0		83.6	80-120			
Ethylbenzene	46.8		п	50.0		93.6	80-120			
Xylene (p/m)	95.9		н	100		95.9	80-120			
Xylene (o)	47.5		"	50.0		95.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.7		"	40.0		99.2	80-120			
Surrogate: 4-Bromofluorobenzene	35.1		"	40.0		87.8	80-120			
Matrix Spike (EC63016-MS1)	Soi	irce: 6C24010	-02	Prepared: (03/30/06 A	nalyzed: 02	3/31/06			
Benzene	0.0450	0.00100	mg/L	0.0500	ND	90.0	80-120			
Toluene	0.0429	0.00100	n	0.0500	ND	85.8	80-120			
Ethylbenzene	0.0491	0.00100	"	0.0500	ND	98.2	80-120			
Xylene (p/m)	0.0999	0.00100		0.100	ND	99.9	80-120			
Xylene (0)	0.0492	0.00100		0.0500	ND	98.4	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.1		ug 1	40.0		87.8	80-120			
Surrogate: 4-Bromofluorobenzene	36.9		"	40.0		92.2	80-120			

Environmental Lab of Texas

.

2. M. 1.

1999 (M

A. Same

教授

10.00

、大学会を

and the second

1

Strategie

Phillippe

6-21-64A

Sec. Sec.

No.

Section !

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 5 of 10

Rice Operating Co.	Project: EME Jct. H-13 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	Reported:
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	04/10/06 15:14

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC63016 - EPA 5030C (GC)										
Matrix Spike Dup (EC63016-MSD1)	Sour	rce: 6C24010-	02	Prepared: 0	13/30/06 Ai	nalyzed: 03	/31/06			
Benzene	0.0433	0.00100	mg/L	0.0500	ND	86.6	80-120	3.85	20	
Toluene	0.0415	0.00100	"	0.0500	ND	83.0	80-120	3.32	20	-
Ethylbenzene	0.0475	0.00100		0.0500	ND	95.0	80-120	3.31 ·	20	
Xylene (p/m)	0.0971	0.00100	"	0.100	ND	97.1	80-120	2.84	· 20	
Xylene (0)	0.0475	0.00100	"	0.0500	ND	95.0	80-120	3.52	20	
Surrogate: a,a,a-Trifluorotoluene	-43.1		ug-1	40.0		108	80-120			
Surrogate: 4-Bromofluorobenzene	34.5		"	40.0		86.2	80-120			

Environmental Lab of Texas

語の言

の語の語な

ないない

100

S. S. States

442.61

No.

Carlor Carlo

a feliante

1.5.2.3

3. C. Beller

1. S. Co.

1. A.

e folktate."

1. M. M. S.

2.49.3.5

をない

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Project Nur	nber: No	4E Jct. H-13 one Given istin Farris-Po					Fax: (505) Repo 04/10/0	rted:
General Cl	nemistry Para	meters by Environm				ls - Qua	lity Con	trol		
	<u> </u>	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC63019 - General Preparation (WetChem)									
Blank (EC63019-BLK1)				Prepared: 0	3/29/06 A	nalyzed: 03	/30/06	_		
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (EC63019-DUP1)	Sour		01	Prepared: (3/29/06 A	nalvzed: 03	/30/06			
Total Dissolved Solids	1660	5.00	mg/L		1700			2.38	5	
Batch ED60306 - General Preparation (' Blank (ED60306-BLK1)	weichem)			Prepared &	Analyzed:	04/03/06				
Sulfate	ND	0.500	mg/L							
Chloride	ND	0.500	"							
LCS (ED60306-BS1)				Prepared &	Analyzed:	04/03/06				
Chloride	8.69		mg/L	10.0		86.9	80-120	_		
Sulfate	9.44		11	10.0		94.4	80-120			
Calibration Check (ED60306-CCV1)				Prepared &	Analyzed:	04/03/06			<u>.</u>	
Sulfate	9.95		mg/L	10.0		99.5	80-120	_		
Chloride	9.04		u	10.0		90.4	80-120			
Duplicate (ED60306-DUP1)	Sour	rce: 6C29006-	-01	Prepared &	Analyzed:	04/03/06				
Sulfate	211	10.0	mg/L		233			9.91	20	
Chloride	570	10.0	"		564			1.06	20	
Batch ED60315 - General Preparation (WetChem)									
Blank (ED60315-BLK1)				Prepared 8	Analyzed:	04/03/06				
Total Alkalinity	ND	2.00	mg/L		·					

Environmental Lab of Texas

.

A 40.64

Contraction of

の間にあっ

19936262

いないない

のない

E.Thing

調整の

Parties 2

20283

たいあるとも

martin 15

640.0

1.79.4

E's after the ?

Times.

Sales and

· [Rice Operating Co.	Project: EM	1E Jct. H-13 Leak	Fax: (505) 397-1471
	122 W. Taylor	Project Number: No.	ne Given	Reported:
	Hobbs NM, 88240	Project Manager: Kri	istin Farris-Pope	04/10/06 15:14

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED60315 - General Preparation	(WetChem)				'		-			
Duplicate (ED60315-DUP1)	Sour	ce: 6C29006-	-01	Prepared &	k Analyzed:	04/03/06				
Duplicate (ED60315-DUP1) Total Alkalinity	Sour 176	2.00	01 mg/L	Prepared &	2 Analyzed: 177	04/03/06		0.567	20	
						····	·	0.567	20	

Environmental Lab of Texas

Sar Canada

1.12.2.2.2

を調整な

言語の

14 M 10

Section.

in the second

S. Salar

13.28.2

32.6

S and the week

Sugar.

A. 8. 4. 6.

den a

T.R.R.L

Sec. Maria

Sec. 20

Rice Operating Co.	Project:	EME Jct. H-13 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	 04/10/06 15:14

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC63112 - 6010B/No Digestion										
Blank (EC63112-BLK1)				Prepared &	Analyzed:	03/31/06				
Calcium	ND	0.0100	mg/L							
Magnesium	ND	0.00100								
Potassium	ND	0.0500	"							
Sodium	ND	0.0100	**							
Calibration Check (EC63112-CCV1)				Prepared &	k Analyzed:	: 03/31/06				
Calcium	1.85		ıng/L	2.00		92.5	85-115			
Magnesium	1.84		"	2.00		92.0	85-115			
Potassium	1.76		u	2.00		88.0	85-115			
Sodium	1.74		"	2.00		87.0	85-115			
Duplicate (EC63112-DUP1)	Sou	rce: 6C23007-	01	Prepared &	k Analyzed:	: 03/31/06				
Calcium	145	0.500	mg/L		147			1.37	20	
Magnesium	94.1	0.0500	*1		93.9			0.213	20	
Potassium	30.2	0.500	"		29.7			1.67	20	
Sodium	483	2.00 -	"		490			1.44	20	

Environmental Lab of Texas

100.000

のないため

the state of

1.12838.A

the cost

S. Bar

Section 1

1. 2 . S. . 4

Wild Die

18 M 6

3.2 Mi

A 224

X & R & F

S. 1999

N. W. W.

Ser Har

SPERIES .

3.12

122 W. T	rating Co. aylor M, 88240	Project Number:	EME Jct. H-13 Leak None Given Kristin Farris-Pope	Fax: (505) 397-1471 Reported: 04/10/06 15:14
		Notes and De	finitions	
DET	Analyte DETECTED			
ND	Analyte NOT DETECTED at or above the reporting lim	it		
NR	Not Reported			
dry	Sample results reported on a dry weight basis			
RPD	Relative Percent Difference			
LCS	Laboratory Control Spike			
MS	Matrix Spike		,	
Dup	Duplicate			

Report Approved By:

福高

1. W. S

10 A 10

1

0

1.00

金融目

1

4. A. S. A.

1.4

ter Shart

のため、夏季に

Raland K Julies

4/10/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

NY35 CHAIN OF CUSTODY RECORD AND 33-1800 33-1800 CHAIN OF CUSTODY RECORD AND 33-1800 AFT135 CHAIN OF CUSTODY RECORD AND APPleter Identified Application (20) 631-9310 Project Ident (2005) 397-1471 Project Ident (2005) 397-1471 Project Ident (2005) 397-1471 Data Sampled Project Ident (2005) 397-1471 </th <th></th> <th></th>		
Mile Mile <th< th=""><th>Temperature Ur Laboratory Co</th><th></th></th<>	Temperature Ur Laboratory Co	
XALS CHAIN OF CLUSTOOY RECORD AND ANLYSIS REQUEST XALS CHAIN OF CLUSTOOY RECORD AND ANLYSIS REQUEST XALS CHAIN OF CLUSTOOY RECORD AND ANLYSIS REQUEST Ratio Ratio Ratin Ratio Ratio </th <td>Temperature Ur Laboratory Co</td> <td></td>	Temperature Ur Laboratory Co	
33:1713 Series CHAM OF CUSTODY RECORD AND ANLLYSS REQUEST S3:1713 KASS S3:1713 Kaster S3:1713 Kaster S3:1713 Kaster S3:1713 Forder Lame: EME LG: H-13 Lesk Fast No: (505) 397-1471 Forder Lame: EME LG: H-13 Lesk Fast No: (505) 397-1471 Forder Lame: EME LG: H-13 Lesk Fast No: (505) 397-1471 Forder Lame: EME LG: H-13 Lesk Fast No: (505) 397-1471 Forder Lame: EME LG: H-13 Lesk Fast No: (505) 397-1471 Forder Lame: EME LG: H-13 Lesk Fast No: (505) 397-1471 Forder Lame: EME LG: H-13 Lesk S3:2702005 11 Time Sampled S3:2772005 12 Lesk S3:2772005 11 Line Sampled S3:2772005 12 Line Sampled S3:2772005 12 Line Sampled S3:2772005 12 Line Sampled S3:2772005 12	Temperature Ur Laboratory Co	
33:1713 Series CHAM OF CUSTODY RECORD AND ANLLYSS REQUEST S3:1713 KASS S3:1713 Kaster S3:1713 Kaster S3:1713 Kaster S3:1713 Forder Lame: EME LG: H-13 Lesk Fast No: (505) 397-1471 Forder Lame: EME LG: H-13 Lesk Fast No: (505) 397-1471 Forder Lame: EME LG: H-13 Lesk Fast No: (505) 397-1471 Forder Lame: EME LG: H-13 Lesk Fast No: (505) 397-1471 Forder Lame: EME LG: H-13 Lesk Fast No: (505) 397-1471 Forder Lame: EME LG: H-13 Lesk Fast No: (505) 397-1471 Forder Lame: EME LG: H-13 Lesk S3:2702005 11 Time Sampled S3:2772005 12 Lesk S3:2772005 11 Line Sampled S3:2772005 12 Line Sampled S3:2772005 12 Line Sampled S3:2772005 12 Line Sampled S3:2772005 12	Temperature Ur Laboratory Co	
33:1713 CHAIM OF CUSTODY RECORD AND ANALYSIS REQUEST 33:1713 KASS Sa:100 Sa:1113 KASS CHAIM OF CUSTODY RECORD AND ANALYSIS REQUEST Sa:100 Sa:1113 Karlender Project R: Part Project R: Project R: Project R:	Temperature Ur Laboratory Co	
Res CHAIN OF CUSTODYRE 33240 S-1800 311713 kpriceswd@valornet.com Bala S-1800 S-11713 kpriceswd@valornet.com Bala S-1800 S-11713 kpriceswd@valornet.com Bala S-1471 Bala S-1471 Bala S-1471 Min Matrix Matrix Matrix <td>Temperature Ur Laboratory Co</td> <td></td>	Temperature Ur Laboratory Co	
State CHAIN OF CUSTODY REC 33240 States Scatter CHAIN OF CUSTODY REC Scatter Scatter Bala Scatter Scatter Scatter Sca	Temperature Ur Laboratory Co	
Res CHAIN OF CUSTODYRE 33240 S-1800 311713 kpriceswd@valornet.com Bala S-1800 S-11713 kpriceswd@valornet.com Bala S-1800 S-11713 kpriceswd@valornet.com Bala S-1471 Bala S-1471 Bala S-1471 Min Matrix Matrix Matrix <td></td> <td></td>		
Res CHAIN OF CUSTODYRE 33240 S-1800 311713 kpriceswd@valornet.com Bala S-1800 S-11713 kpriceswd@valornet.com Bala S-1800 S-11713 kpriceswd@valornet.com Bala S-1471 Bala S-1471 Bala S-1471 Min Matrix Matrix Matrix <td></td> <td></td>		
Res CHAIN OF CUSTODYRE 33240 S-1800 311713 kpriceswd@valornet.com Bala S-1800 S-11713 kpriceswd@valornet.com Bala S-1800 S-11713 kpriceswd@valornet.com Bala S-1471 Bala S-1471 Bala S-1471 Min Matrix Matrix Matrix <td></td> <td>1.0</td>		1.0
Res CHAIN OF CUSTODYRE 33240 S-1800 311713 kpriceswd@valornet.com Bala S-1800 S-11713 kpriceswd@valornet.com Bala S-1800 S-11713 kpriceswd@valornet.com Bala S-1471 Bala S-1471 Bala S-1471 Min Matrix Matrix Matrix <td>Time</td> <td>- 0</td>	Time	- 0
Res CHAIN OF CUSTODYRE 33240 S-1800 311713 kpriceswd@valornet.com Bala S-1800 S-11713 kpriceswd@valornet.com Bala S-1800 S-11713 kpriceswd@valornet.com Bala S-1471 Bala S-1471 Bala S-1471 Min Matrix Matrix Matrix <td>드 드</td> <td>102 (1)</td>	드 드	102 (1)
Res CHAIN OF CUSTODYRE 33240 S-1800 311713 kpriceswd@valornet.com Bala S-1800 S-11713 kpriceswd@valornet.com Bala S-1800 S-11713 kpriceswd@valornet.com Bala S-1471 Bala S-1471 Bala S-1471 Min Matrix Matrix Matrix <td></td> <td>Time 5,02</td>		Time 5,02
S3-1713 kpriceswd@valomet.com S3-1713 kpriceswd@valomet.com Bany Bany Data Sampled 11 :55 13:10 3:277/2006 11:55 3:277/2006 13:10 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 <td></td> <td></td>		
S3-1713 kpriceswd@valomet.com S3-1713 kpriceswd@valomet.com Bany Bany Data Sampled 11 :55 13:10 3:277/2006 11:55 3:277/2006 13:10 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 <td>æ</td> <td>200</td>	æ	200
S3-1713 kpriceswd@valomet.com S3-1713 kpriceswd@valomet.com Bany Bany Data Sampled 11 :55 13:10 3:277/2006 11:55 3:277/2006 13:10 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 <td>Date</td> <td>Date 010</td>	Date	Date 010
S3-1713 kpriceswd@valomet.com S3-1713 kpriceswd@valomet.com Bany Bany Data Sampled 11 :55 13:10 3:277/2006 11:55 3:277/2006 13:10 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 <td>· · ·</td> <td>17</td>	· · ·	17
33240 33277/2006 11:55 3 3 1410 11:55 3/277/2006 11:55 3 2 1 201LTS TO: kpriceswd@valonnet.com 3 2 2 2 2		
S3-1713 kpriceswd@valomet.com S3-1713 kpriceswd@valomet.com Bany Bany Data Sampled 11 :55 13:10 3:277/2006 11:55 3:277/2006 13:10 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:777/2006 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 11:55 3:770 <td></td> <td></td>		
station state state bany pany pany pany sults to: kp		
e X a S sa-1800 sa-1713 kpriceswd@v pany pany pany 005) 631-9310 005) 631-9310 005) 631-9310 005 10 232 327 327 327 327 327 327 327		
station state state bany pany pany pany sults to: kp		
station state state bany pany pany pany sults to: kp		
e X a S sa-1800 sa-1800 sa-1713 kpriceswd@v pany pany pany ma 3/21 3		jeo
station state state bany pany pany pany sults to: kp	Å	d by ELOT:
	Received by:	Received by ELOT:
	0 0	Time Time
		8
FOnmental Lab Of Tex Formental Lab Of Tex Former 432-563- sxas 79765 Frans Pone: 432-563- sxas 79765 Project Manager: Kristin Farris Pope Company Name RICE Operating Compa Inpeny Address: 122 W. Taylor Street Inperiod Signature: Robit Propert Manager: Kristin Farris Pope Company Name RICE Operating Compa Inpeny Address: 122 W. Taylor Street Inpension Inpension Inpension Inpension Inpension Inpension Index Signature: Robit Index Signature: Robit Record Index Signature: Robit Record Monitor Well #2 Monitor Well #3 PLEASE Email RESU		2/24
ALEASE		
Achited Control of the second)
Onmental Lab O onmental Lab O as 79765 Fax: 20 East Frans Phone: as 79765 Fax: Phone: Fax: Piet Manager: Kristin Farris Po cimpany Name RICE Operating pany Address: 122 W. Taylor S pany	1	
Environmental Lab of Te Environmental Lab of Te ¹²⁶⁰⁰ West I-20 East Project Manager: Kristin Farris Pope Company Address: 122 W. Taylor Street Company Address: 122 W. Taylor Street Citylstate/Zlp: Hobbs, New Mexico Citylstate/Zlp: Hobbs, New Mexico Citylstate/Zlp: Hobbs, New Mexico Enail: Fozanne Johnson (5 Email: Fozanne@valonnet.cc Lab # (lab use only) FrELD cone Lab # (lab use only) FrEASE Email REC	·	Relinquished by:
Special In:	eduished by:	ozanne elinqui

••

State.

e an the second at the attribute to the second distribute the second second second second second second second

Environmental L				
Variance / Corrective Action	Report	– Sari	nple Log-Iri	
like no.				
$\frac{\mu W V }{2 \ln 2 \ln 2} = \frac{1}{40}$				
TIME 3/29/de 1:40				
ec29007				
<u>rk</u>				
Sample Receip			1.0	
perature of container/cooler? Sinc container/cooler in good condition?	Yes	No No	(<i>i</i> 0 <u>c</u>	
one container/cooler in good container/cooler?		No	Not present	
ody Seals intaction sample bottles?		No 1	Nict present	
in of custody present?	1 Year	No		
ple Instructions complete on Chain of Custody?	63	Ng		
in of Custody signed when relinquished and received?	YES	I No I		
n of custody agrees with sample label(s)		No I		
Aaner lacels legible and intact?		I NO I		
ncie Matrix and properties same as on chain of custody?		I NG		
ncle Matrix and properties same as on chain of custody?		No I		
		I No I		
ncies procerly preserved?				
nple bottles intact?	1 100	I No		
servations documented on Chain of Custody?	102	<u> No </u>	<u>.</u>	
ntainers documented on Chain of Custody?	1729	No 1	· .	
ficient sample amount for indicated test?	- CP	I NO I		
samples received within sufficient hold time?	I Yes	I NO		
samples have zero headspace?	733	No	Not Applicable	
her observations:				
			κ ·	
Variance Do	aumontat	ion:		
Contact Person: • Date/Time:			Contacted by:	
legarding:				
			· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	, 			
Corrective Action Taken:				
Corrective Action Taken:			· · · · · · · · · · · · · · · · · · ·	
Corrective Action Taken:			· · · · · · · · · · · · · · · · · · ·	
Corrective Action Taken:				
Corrective Action Taken:			· · · · · · · · · · · · · · · · · · ·	
Corrective Action Taken:				
Corrective Action Taken:				

•

NUSAUS.

1. LW 3

記録

の時間に

市街など

States and

AN AL

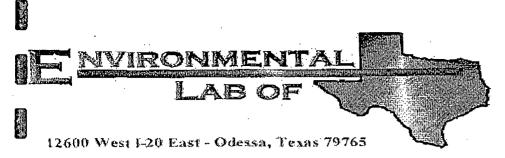
1. N. 18

SE SE

んぷっきゃ

er ve

1.63


M.S. LA

S. W. Land

S. P.S.M.

and the second

San Line

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME Jct. H-13 Leak Project Number: None Given Location: Lea County

Lab Order Number: 6D20007

Report Date: 04/26/06

No.

3. C. C.

-- ----

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240	1	Project Nu:	oject: EME Jct. H- mber: Nonc Given nager: Kristin Farri		•	: (505) 397-1471 Reported: 94/26/06 16:30
	ANALYT	ICAL RE	PORT FOR SAM	MPLES		
Sample ID			Laboratory D	Matrix	Date Sampled	Date Received
Monitor Well #1			6D20007-01	Water	04/18/06 ()9:30	04/20/06 15:0
Monitor Well #2			6D20007-02	Water	04/18/06 11:05	04/20/06 15:0
Monitor Well #3			6D20007-03	Water	04/18/06 08:30	04/20/06 15:0
		•				
	· · .					
					·	
		•				
					·	
				,		
			,			
·						
•						
			•			

Page 1 of 10

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Rice Operating Co.			oject: EMÉ		3 Leak			Fax: (505)	
122 W. Taylor			nber: None		D			Repor	
Hobbs NM, 88240		Project Mar	ager: Knsl	in Farris	-Pope			04/26/00	5 16:30
		-	anics by						
·		Environm	ental La	b of 1	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Monitor Well #1 (6D20007-01) Water									
Benzene	ND	0.00100	mg/L	1	ED62105	04/21/06	04/21/06	EPA 8021B	
Toluenc	NĎ	0.00100	U	μ	11	н	Ħ	"	
Ethylbenzene	ND	0.00100	и	ł	11	"	н	р	
Xylenc (p/m)	ND	0.00100	**	n	۳	и	. H	te	
Xylene (0)	ND	0.00100	n	μ.	U	a	ų	U	
Surrogate: a,a,a-Trifluorotoluene		95.0 %	80-12	0	"	11	л	"	
Surrogate: 4-Bromofluorobenzene		96.8 %	80-12	0	"	. "	(1	, n ·	
Surrogate: 4-Bromofluorobenzene Monitor Well #2 (6D20007-02) Water									
Всплене	ND	0.00100	mg/L	1	ED62105	04/21/06	04/21/06	EPA 8021B	
Toluenc	ND	0.00100	n	ν.	n	**	н	υ.	
Ethylbenzene	ND	0.00100	π	'n	ч	н	u	н,	
Xylene (p/m)	ND	0.00100	. u	n	Ħ	16	M	11	
Xylene (0)	ND	0.00100	P	h	¥I	17	W	u	
Surrogate: a,a,a-Trifluorotoluene		98.0 %	80-12	20	"	"		37	
Surrogate: 4-Bromofluorobenzenc		102 %	80-12	20	"	n	п	"	
Monitor Well #3 (6D20007-03) Water									
Всплене	ND	0.00100	mg/L	1	ED62105	04/21/06	04/21/06	EPA 8021B	
Toluenc	ND	0.00100	11	"	u	H	μ	ų	
Ethylbenzene	ND	0.00100	n	4	н	u	n	n	
Xylene (p/m)	ND	0.00100	a .	n	"	11	u	u	
Xylene (o)	ND	0.00100	U	n	**	u	"	76	
Surrogate: a,a,a-Trifluorotoluene		94.2 %	80-12	20	"	"	<i>(1</i>		· · · · · · · · · · · · · · · · · · ·
Surrogate: 4-Bromofluorobenzene		96.2 %	80-12	20	"	"	п	17	

Environmental Lab of Texas

S

A. 4. 4. 4.

Mar 1

Station of the

「変動

Same and

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas, Page 2 of 10

Page 2 of 10

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

*2°

1. J. J. 1. 1.

M. Sain

1. J. M.

1. V. W.

- 60	Rice Operating Co.	Project:	EME Jct. H-13 Leak	Fax: (505) 397-1471
	Rice Operating Co. 122 W. Taylor Hobbs NM, 88240	Project Number:		Reported:
1	Hobbs NM, 88240	Project Manager:	Kristin Fartis-Pope	05/02/06 11:19

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

2. 3. Barto	Алајуте	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Mcthod	Notes
8	Monitor Well #1 (6D20007-01) Water									
1	Total Alkalinity	213	2.00	mg/L	1	ED62402	04/25/06	04/25/06	EPA 310.1M	
	Total Alkalinity Chloride	1600	25.0	n	50	ED62120	04/24/06	04/24/06	EPA 300.0	
	Total Dissolved Solids	4160	5.00	U	1	ED62405	04/20/06	04/21/06	EPA 160,1	
Sale and	Sulfate	307	25.0	n	50	ED62120	04/24/06	04/24/06	EPA 300.0	
844 1. 7	Monitor Well #2 (6D20007-02) Water									
ų	Total Alkalinity	198	2.00	mg/L	1	ED62402	04/25/06	04/25/06	EPA 310.1M	
1.8.4	Total Alkalinity Chloride	1420	25.0	н	- 50	ED62120	04/24/06	04/24/06	EPA 300.0	
	Total Dissolved Solids	4120	5.00	n	1	ED62405	04/20/06	04/21/06	EPA 160.1	
と言い	Sulfate	237	25.0	n	50	ED62120	04/24/06	04/24/06	EPA 300.0	
53	Monitor Well #3 (6D20007-03) Water					<u></u>				
1	Total Alkalinity	197	2.00	mg/L	. 1	ED62402	04/25/06	04/25/06	EPA 310.1M	
14 A.	Chloride	1390	25.0	11	50	ED62120	04/24/06	04/24/06	EPA 300.0	
	Total Dissolved Solids	3560	5.00	н	1	ED62405	04/20/06	04/21/06	EPA 160.1	
A STATE	Sulfate	426	25.0	ţı	50	ED62120	04/24/06	04/24/06	EPA 300.0	

Environmental Lab of Texas

Monitor Well #2 (6D20007-02) Water

Monitor Well #3 (6D20007-03) Water

323

136

11.9

552

302

128

13.7

675

0.500

0.0500

0.500

2.00

0.500

0.0500

0.500

2,00

mg/L

н

n

п

mg/L

Ħ

ñ

n

50

17

10

200

50

IJ

10

200

ED62106

ED62106

04/21/06

04/21/06

н

A STATE

A Back

123.232

Calcium

Magnesium

Potassium

Sodium

Calcium

Magnesium

Potassium

Sodium

EPA.6010B

....

EPA 6010B

u

11

04/21/06

n

.

.

04/21/06

**

19.20										
「「「「「」」	Ricc Operating Co. 122 W. Taylor Hobbs NM, 88240		Project Nur Project Nur Project Mar	nber; No					Fax: (505) 3 Report 04/26/06	ed:
Star Bar		Tota	l Metals by Environm				ods			
	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Anniyzed	Method	Notes
	Monitor Well #1 (6D20007-01) Water									
6 53	Calcium	341	0.500	mg/L	50	ED62106	04/21/06	04/21/06	EPA 6010B	
Sec. Sec.	Magnesium	141	0.0500	n	41	81	"	0	M	
100	Potassium	15.1	0.500	л	10	н	13	н	IT	
_	Sodium	686	2.00	۳.	200	4	11	u	n	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 4 of 10

12600 West 1-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Ricc Operating Co. 122 W. Taylor Hobbs NM, 88240		Pro Project Nun Project Man	nber: No						Fax: (505) Repo 04/26/0	rted:
	-	ganics by (Environm(
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED62105 - EPA 5030C (GC)			•							
Blank (ED62105-BLK1)				Prepared	& Analy?,	ed; 04/21/0	06			
enzene	ND	0.00100	ˈmg/L							••••••••••••••••••••••••••••••••••••••
olucne	ND	0.00100	н							
thylbenzenc	ND	0.00100	"							
(ylene (p/m)	ND	0.00100	м							
ylene (o)	ND	0.00100	"							
urrogate: a.a.a-Trifluorotoluene	42.2		ug/l	40.0		106	80-120			
urrogate: 4-Bromo/luorobenzene	44.5		"	40.0		111	80-120			
CS (ED62105-BS1)				Prepared	& Analyz	ed: 04/21/	06			
enzenc	0.0477	0.00100	nig/L	0.0500		95.4	80-120			
oluene	0.0506	0.00100	U	0.0500		101	80-120			
thylbenzene	0.0523	0.00100	н	0.0500		105	80-120			
(ylene (p/m)	0.117	0.00100	P	0.100		117	80-120			
ylene (0)	0.0580	0.00100	n	0.0500		116	80-120			
urrogate: a,a,a-Trifluorotoluene	37.5		ug/l	40.0		93.8	80-120	•	• • • • • • • •	
urrogau: 4-Bromofluorobenzene	41.1		."	40.0		İ03	80-120			
Calibration Check (ED62105-CCV1)			•	Prepared	04/21/06	Analyzed	i: 04/23/06	•		
Senzenc	54.3		ug/l	50,0		109	80-120	•		
oluene	53,4		0	50.0		107	80-120			
Elhylbenzene	57.0			50.0		114	80-120			
(ylene (p/m)	115		н	100		115	80-120			
(ylene (o)	56.7		u	50.0		113	80-120	•		
urrogate: a,a,a-Trifluorotoluene	34.8		(/	40.0		87.0	80-120			
urrogate: 4-Bromofluorobenzene	37.6		".	40.0		94.0	80-120			
fatrix Spike (ED62105-MS1)	So	urce: 6D170(02-02	Prepared	& Analyz	ed: 04/21/	06			
enzenc	0,0508	0,00100	mg/L	0.0500	ND	102	80-120			
oluene	0.0537	0.00100	U	0.0500	ND	107	80-120			
thylbenzene	0.0579	0.00100	U	0.0500	ND	116	80-120			
Cylene (p/m)	0.120	0.00100	11	0.100	ND	120	80-120			
(ylene (0)	0.0581	0.00100		0.0500	ND	116	80-120			
furrogate: a,a,a-Tryluorotoluene	41,9		ug/l	40.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	47.3			40.0		118	80-120			

Environmental Lab of Texas

1. 50 E

22

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in the entirety, with written approval of Environmental Lab of Texas. Page 5 of 10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 5 of 10

18 M

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Pro Project Nun Project Man	aber: No						Fax: (505) Repo 04/26/0	rted:
	-	anics by (nvironm		-				·		
Analyte	Rcsult	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED62105 - EPA 5030C (GC)			-						•	
Matrix Spike Dup (ED62105-MSD1) Benzene Toluene Ethylbenzene Xylene (p/m) Xylene (o)	0.0514 0.0540 0.0567 0.119 0.0596	rce: 6D1700 0.00100 0.00100 0.00100 0.00100 0.00100	2-02 mg/L "	Prepared 0.0500 0.0500 0.0500 0.0500 0.100 0.0500	& Analyzo ND ND ND ND ND	ed: 04/21/ 103 108 113 119 119	80-120 80-120 80-120 80-120 80-120 80-120	0.976 0.930 2.62 0.837 2.55	20 20 20 20 20 20	
Surrogate: a,a,a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene	39.2 45,9		ug/l "	40.0 40.0		98.0 115	80-120 80-120			
- · ·										
		·								
· · ·										
· · · · ·										
										÷
	• •									
						·				
	• .									
					• .					
Environmental Lab of Texas	· ·		rece	results in this ived in the la wrltten appr	boratory, T	'his analyti	cal report n	nust be rej	produced in	th the sam, th sentirety, Page 6 0

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

13

1

2.20

10.00

14 . A. S. S. A.

Section of

Hob Analy Batc Blanl Sulfat Chlori LCS Sulfat Chlori Chlori	h ED62120 - General Prepara k (ED62120-BLK1) c ide (ED62120-BS1) z	Rosult	Project Nur Project Mar neters by Environm Reporting Limit	mber: No hager: Kr EPA / cental I Units mg/L	istin Farris- Standar Lab of T Spike Level Prepared	Pope d Meth	%REC	%REC Limits		Fax: (505) Repoi 04/26/00 I RPD Limit	rteđ:
Analy Batc Blanl Sulfat Chlori LCS Sulfat Chlori Calib	General Cher vtc h ED62120 - General Prepara k (ED62120-BLK1) c ide (ED62120-BS1) #	Result tion (WetChen ND ND ND 8.76	neters by Environm Reporting Limit	EPA / cental I Units mg/l, "	Standar Lab of To Spike Level Prepared	d Meth exas Source Result	%REC	%REC Limits		04/26/00 I RPD	5 16:30
Batc Blanl Sulfat Chlori LCS Sulfat Chlori Chlori	yte h ED62120 - General Prepara k (ED62120-BLK1) c ide (ED62120-BS1) z	Result tion (WetChen ND ND ND 8.76	Environm Reporting Limit	Units Units mg/l, "	Lab of T Spike Level	exas Source Result	%REC	%REC Limits		RPD	Notes
Batc Blanl Sulfat Chlori LCS Sulfat Chlori Chlori	h ED62120 - General Prepara k (ED62120-BLK1) c ide (ED62120-BS1) z	ND ND ND ND 8.76	Limit 1) 0.500	nıg/1, "	Level Prepared	Result		Limits	RPD		Notes
Blanl Sulfat Chlori LCS Sulfat Chlóri Calib	k (ED62120-BLK1) c ide (ED62120-BS1) %	ND ND 8.76	0.500	וי		& Analyze	d: 04/24/0	06	 	·	
Sulfat Chlori LCS Sulfat Chlóri Calib	r ide <u>(ED62120-BS1)</u> æ	ND 8.76		וי		& Analyze	d: 04/24/0	06		,	
Chlori LCS Sulfat Chlóri Calib	ide <u>(ED62120-BS1)</u> &	ND 8.76		וי		······································			••••		
LCS Sulfat Chlóri Calib	(ED62120-BS1)	8.76	0.500	וז	Dromorad						
Sulfat Chlóri Calib	<u>د</u>				Dropprod						•
Chlóri <u>Calib</u>					ricparca	& Analyze	d; 04/24/	06			
<u>Calib</u>	ide	9.01		mg/L	10.0		87.6	80-120			
		2.01		н	10.0		90.1	80-120			
	oration Check (ED62120-CCV1)				Prepared	& Analyzo	d: 04/24/	06			
Sulfat		9.38		mg/L	10.0		93.8	80-120			
Chlori	ide	9.40		n	10.0		94.0	80-120			
	icate (ED62120-DUP1)		urce: 6D200	05-01	Prepared	& Analyze	d: 04/24/	06			
Sulfat		86.7	5.00	mg/L		86.4			0.347	20	
Chiori	ide	56.7	5.00	n		55.9			1.42	20	
Bate	h ED62402 - General Prepara	tion (WetChen	1)								
Blan	k (ED62402-BLK1)				Prepared	& Analyze	:d: 04/25/	06		· ·	
Total	Alkalinity	ND	2.00	mg/ì,							
LCS	(ED62402-BS1)				Prepared	& Analyza	d: 04/25/	06			
Bicart	bonate Alkalinity	214	2.00	mg/L	200		107	85-115			
	icate (ED62402-DUP1)		urce: 6D200	05-01	Prepared	& Analyzo	d: 04/25/	06			
Total	Alkalinity	197	2.00	mg/L		198			0.506	20	
	rence (ED62402-SRM1)				Prepared	& Analyzo	:d: 04/25/	06			
Total	Alkalinity	97.0		mg/1,	100	, , , , , , , , , , , , , , , , ,	97.0	90-110			, .

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 7 of 10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 7 of 10

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Project Nur Project Man	nber: No						Fax: (505) Repoi 04/26/06	ted:
General Chemis						ods - Qi	ality (Contro	1	
	<u>k</u>	Invironm	ental l	Lab of T	exas					
utalyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	Ŕ₽D	RPD Limit	Notes
atch ED62405 - Filtration Preparati	ол	,			·					
lank (ED62405-BLK1)				Prepared	& Analyza	d: 04/20/06	 ;		<u></u>	
atal Dissolved Solids	ND	5.00	mg/L	- opinio			,		<u> </u>	
uplicate (ED62405-DUP1)	Sou	rce: 6D2000)6-01	Prepared	& Analyze	:d: 04/20/06	i			
otal Dissolved Solids	2390	5,00	mg/L		2290			4.27	5	
. •										
· .										
				•						
	<u></u>	<u> </u>			.					
Environmental Lab of Texas			The rece	results in this ived in the lai	report app boratory T	ly to the sam	ples analy	yzed in acc	ordance with	h the sum
			with	written appr	oval of Env	ironmental L	ab of Tex	as.		age 8 o
						- Fax (432				- <u>-</u>

and the second	[•						
	Rice Operating Co.				AE let. H-1	3 Lcak				Fax: (505)	39 7 -1471
1.00 March 1	122 W. Taylor		Project Nur							Repo	rted:
	Hobbs NM, 88240		Project Man	ager: Kr	istin Farris-	Pope				04/26/0	6 16:30
	Total M	etals by	EPA / Sta	ndard	Method	ls - One	ality Co	ntrol		•	
			Environm			•		,			
No.	Алаlyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Batch ED62106 - 6010B/No Digestion						· · · · · · · · · · · · · · · · · · ·				
	Blank (ED62106-BLK1)		·		Prepared	& Analyze	ed: 04/21/	06			
の記録を	Calcium	ND	0.0100	.mg/L				•			
8. 1	Magnesium	ND	0.00100	11							
	Potassium	ND	0.0500	. e							
4. 25. C	Sodium	ND	0.0100	u							
	Calibration Check (ED62106-CCV1)				Prepared	& Analyz	cd: 04/21/	06			
	Calcium	1.98		mg/L	2.00		99.0	85-115		• • • • • • • • • • • • • • • • • • • •	
	Magnesium	2.10		ei	2.00		105	85-115			
SALES AND	Potassium	2,06		u	2.00		103	85-115			
	Sodium	2.06		н	2.00		103	85-115		,	
	Duplicate (ED62106-DUP1)	Sa	urce: 6D2000	5-01	Prepared	& Analyz	ed; 04/21/	06			
	Calcium	25.1	0.100	mg/L		28.8			13.7	20	
_	Magnesium	15.9	0.0100	u		13,4			17.1	20	
¥₹3	Potassium	8.87	0.500	U.		10.0			12.0	20	
	Sodium	122	0.500	, n		122			0.00	20	

Environmental Lab of Texas

2.3.84° #

20.00

The sealer

A. 165

324.5

18. W. E.

ي أوجع يون و

Sale and

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 9 of 10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 9 of 10

Section of the

Subart S

1. 2. 2. C. 2.

See Bar

Sec. 30

1. W. 2

Notes and Definitions

	DET	Analyte DETECTED
	ND	Analyte NOT DETECTED at or above the reporting limit
	NR	Not Reported
	dry	Sample results reported on a dry weight basis
Distant of	RPD	Relative Percent Difference
<u>F</u> e	LCS	Laboratory Control Spike
樽	MS	Matrix Spike

Dup Duplicate

Report Approved By: Raland K. Jule Date: 5-02-06

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texus. Page 10 of 10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

the second		1	I	I	1						TAT brebriets	×	×	$\overline{\times}$	r		- T					and the second second		Ujeta	al again
											(Pre-Schedule) TAT HZUR	$\hat{}$		Î											
	·																					z D			
-															+		+	-+			[N ~ K			
											Total Dissolved Solids	×	×	×						_					
		뽔									и.о.я.м. И.о.я.м.		\rightarrow		\rightarrow	+	+	-	+	-					
	i:	Project Name: EME Jct. H-13 Leak		Inty				Analyze For	×		BTEX 8021B/5030	×	×	\times								Sample Containers Intact? Labels on container? Custody Seals: Containers Temperature Upon Receipt	ents		
	ques	H		County				^q naly:			Semivolatiles	_				_						liners laine Upon	u u u		
	CHAIN OF CUSTODY RECORD AND ANAL VSIS REQUEST	to III		Lea						ŧ	Volatilea Volatilea		-							-		Sample Containers II Labels on container? Custody Seals: Con Temperature Upon R	Laboratory Comments		
	ISAT	EMI							TOTAL:	Ľ	SAR / ESP / CEC											nple stody mper	Jorat		
	ANA	ame:	ct ∰	Loc:	PO #				۴ P		Aniona (Cl. SO4, CO3, HCO3)	×	×	×							-	Ter Cui		<u> </u>	
	AND	sct N	Project #	Project Loc:	<u>n</u>					\vdash	TPH: 418.1 6015M 1005 1006 Cations (Ca, Mg, No, K)	×	×	×		-			-+				Time	0	15:05
1	ORD	Proje		5 d					مملسي	T	Other (specify):														<u>छ</u>
	REC									Mairix	llos			-								Ę			Alidoo
A REPORT	ναο	[1		ł		Σ	Siudge	×	×	X		-+						dc	Date		n S S
	cust							1		F	Other (Specify)											MS			A
	4 O F									g	Hone (1) 1 Liter HDPE	~~	-	~								lince			
_	INAN					7				Preservative	³ OS ² H HO ^B N		• •			-+			-			l B B			
	0					397-147				Prese	HCI (S) 40 ml glass vials	7	2	2				•••••				lan			
						397					⁶ ONH					_						l T			i I
						05)				L	Να, οξ Conteinera Ιœ	ы К		ЭX		\rightarrow			_			≪ E			
ないで									[•			_			<u> </u>		:	g
						Fax No: (505)	7		7		balqıns8 əmiT	0E:6	11:05	8:30								riceswd	,	/ 11 11 11 11 11 11 11 11 11 11 11 11 11	3) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-ange		kpope@riceswd.com					10		h st		Date Sampled	4/18/2006	4/18/2006	4/18/2006						.		PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@riceswd.com	Received by:		Received by ELOT
把這些認識	S an	ope@r			0		331-03															LTS T(Time Re
Research Street	b of Texas Phone: 432-563-1800 Fax: 432-563-1713		adu	eet	co 8824		150516	10001	t.com												•	II RESU		0,00	<u> </u>
	b of Phone: 43 Fax: 43	Project Manager: Kristin Farris Pope	Commany Name RICE Operating Company	Commany Address: 122 W. Tavlor Street	cinistate/zip: Hobbs. New Mexico 88240	3-9174	Dorrong Johnson (505) 631-0310		Emall: rozanne@valornet.com		FIELD CODE											SE Ema	Date	440	Dáte
	Га	tin Fa	р О Ц	LM	bs. N	5) 393	0000		anne(#2	= #3								PLEA			
	ntal	_{er:} Kris	RIC	122	Hot	lo: (50			all: roz:			Monitor Well #1	Monitor Well #2	Monitor Well #3											1
	nmel East 19765	set Manage	new Nan	an Addros	itviState/Z	Telephone No: (505) 393-9174	i	er signeru	Em				Mor	Mon								ons:		4	
and the second	Environmental Lab of Texas 12500 West I-20 East Ddessea, Texas 79765 Fax: 432-563-1713	Proie				, Te	•	sample			CONCOLUTION OF A	10	8	-07								Special Instructions:	talinquished by:	Rozenne John John Mar	Relinquished by.
	12801 12801 Odes																				1	2DBC 2DBC	ă d	Rozel	ر Relin

•

淵

Filter

. •

	. 1		
Environmental La Variance / Corrective Action			
n so no	•		
= 15:05			
=r #: (eDLODcor)			
Λ La			
	Cheek		
perature of container/cooler? Sample Receipt			
sing container/cooler in good condition?	Yes	No	2.5 C
dy Seals intact on shipping container/cooler?		<u>No</u>	
bdy Seals intact on sample bottles?		No	Not present
n of custody present?	- Yes Ves	No	Not present
ple Instructions complete on Chain of Custody?		No	
n of Custody signed when relinquished and received?		No	
n of custody agrees with sample label(s)	XED	No	
ainer labels legible and intact?	A	No	<u> </u>
ole Matrix and properties same as on chain of custody?		No	
ples in proper container/bottle?	X	No	
ties properly preserved?	Yes	No	
le bottles intact?		No	
invations documented on Chain of Custody?		I No	· · · · · · · · · · · · · · · · · · ·
iners documented on Chain of Custody?	125	No	
ient sample amount for indicated test?	- (125) Xes	No	
mples received within sufficient hold time?		No	·
samples have zero headspace?		No	Nct Applicable
r observations:			
Variance Docu ntact Person: Date/Time; garding:	<u></u>		
rrective Action Taken:			•
			· · · · · · · · · · · · · · · · · · ·
	1		

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79932 888 • 588 • 3443 E-Mail: lab@traceanalysis.com

806 • 794 • 1296 FAX 806 • 794 • 1298 915 • 585 • 3443 FAX 915 • 585 • 4944

Analytical and Quality Control Report

Kristen Farris-Pope Rice Operating Company 122 W Taylor Street Hobbs, NM, 88240

States.

State of

1000

1. 2. A.

No.

and the second

Sec.

Sector La

× 42,438

2.325

Service Service

10 R. S. S. S.

Report Date: August 10, 2006

Work Order: 6072139

Project Location:Lea County,NMProject Name:EME-H-13 LeakProject Number:EME-H-13 Leak

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
96124	Monitor Well #1	water	2006-07-17	08:00	2006-07-21
96125	Monitor Well #2	water	2006-07-17	09:05	2006-07-21
96126	Monitor Well #3	water	2006-07-17	10:35	2006-07-21

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 16 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

Report Date: August 10, 2006 EME-H-13 Leak

Same a

Sadala

an an

A.S. A.S.

調むる

Distant.

A. 160

A 46.

Surger State

があた

200

2003

ALAN.

ないのです。

1348256

ないの

Bernar I

19. AN 19. AN

Work Order: 6072139 EME-H-13 Leak

Analytical Report

Sample: 96124 - Monitor Well #1

Analysis:AlkalinityQC Batch:28340Prep Batch:24777		Analytical Method: Date Analyzed: Sample Preparation:	SM 2320B 2006-07-26 2006-07-25	Prep Method:N/AAnalyzed By:LJPrepared By:LJDilutionRL11.0011.0014.0014.00	
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1	1.00
Carbonate Alkalinity		<1.00	mg/L as CaCo3	1	1.00
Bicarbonate Alkalinity		226	mg/L as CaCo3	1	4.00
Total Alkalinity		226	mg/L as CaCo3	1	4.00

Sample: 96124 - Monitor Well #1

Analysis:BTEXQC Batch:28280Prep Batch:24761		Analytical M Date Analyz Sample Prep	ed:	S 8021B 2006-07-24 2006-07-24		Prep Met Analyzed Prepared	By: MT
		R					
Parameter	Flag	Resu	lt	Units	I	Dilution	RL
Benzene		< 0.0010	0	mg/L		1	0.00100
Toluene		< 0.0010	0	mg/L		1	0.00100
Ethylbenzene		< 0.0010	0	mg/L		1	0.00100
Xylene		<0.0010	0	mg/L		1	0.00100
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)	·····= ··=	0.0844	mg/L	1	0.100	84	78.1 - 125.4
4-Bromofluorobenzene (4-BF	B)	0.0746	mg/L	1	0.100	75	46.4 - 136.5

Sample: 96124 - Monitor Well #1

Analysis: QC Batch: Prep Batch:	Cations 28356 24749		Analytical Method: Date Analyzed: Sample Preparation:	S 6010B 2006-07-26 2006-07-24	Prep Method: Analyzed By: Prepared By:	
			RL			
Parameter		Flag	Result	Units	Dilution	RL
Dissolved Ca	alcium		361	mg/L	10	0.500
Dissolved Po	otassium		22.0	mg/L	1	1.00
Dissolved M	agnesium		147	mg/L	10	1.00
Dissolved Sc	odium		578	mg/L	10	1.00

Sample: 96124 - Monitor Well #1

Analysis:	Ion Chromatography	Analytical Method:	E 300.0	Prep Method:	N/A
QC Batch:	28549	Date Analyzed:	2006-07-30	Analyzed By:	WB
Prep Batch:	24970	Sample Preparation:	2006-07-30	Prepared By:	WB

eport Date: August 10, 2006 ME-H-13 Leak			der: 6072139 . H-13 Leak		umber: 3 of 10 ea County,NN
		RL			
Parameter	Flag	Result	Units	Dilution	
Chloride		1800	mg/L	100 100	0.500
Sulfate		412	mg/L	100	0.500
Sample: 96124 - Monito	r Well #1				
Analysis: TDS		Analytical Method:	SM 2540C	Prep N	Aethod: N/A
QC Batch: 28404	•	Date Analyzed:	2006-07-25		zed By: SM
Prep Batch: 24848		Sample Preparation	: 2009-07-24	Prepar	red By: SM
Domonoston	Fla-	RL	I I :4-	Dilution	DI
Parameter Total Dissolved Solids	Flag	Result 3240	Units	Dilution5	
			mg/L		10.0
Analysis:AlkalinityQC Batch:28340Prep Batch:24777		Analytical Metho Date Analyzed: Sample Preparati	2006-07-26	Analy	Method: N/A zed By: LJ red By: LJ
		RL	T.L.: 4-		D
Parameter	- Flag	Result		Dilution	N N
Parameter Hydroxide Alkalinity	• Flag		Units mg/L as CaCo3	Dilution	R
Hydroxide Alkalinity	• Flag	<1.00	mg/L as CaCo3	Dilution 1	1.0
Hydroxide Alkalinity Carbonate Alkalinity	• Flag		mg/L as CaCo3 mg/L as CaCo3	· 1	1.0
Hydroxide Alkalinity	• Flag	<1.00 <1.00	mg/L as CaCo3	- 1	1.0 1.0 4.0
Hydroxide Alkalinity Carbonate Alkalinity Bicarbonate Alkalinity Total Alkalinity Sample: 96125 - Monito		<1.00 <1.00 216	mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3	- 1	1.0 1.0 4.0 4.0
Hydroxide Alkalinity Carbonate Alkalinity Bicarbonate Alkalinity Total Alkalinity Sample: 96125 - Monito Analysis: BTEX		<1.00 <1.00 216 216 216 Date Analyzed:	mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3	1 1 1	1.0 1.0 4.0 4.0 0d: S 5030
Hydroxide Alkalinity Carbonate Alkalinity Bicarbonate Alkalinity Total Alkalinity Sample: 96125 - Monito Analysis: BTEX QC Batch: 28277		<1.00 <1.00 216 216 216 Analytical Method:	mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 S 8021B	l l l Prep Meth	0d: S 5030 By: MT
Hydroxide Alkalinity Carbonate Alkalinity Bicarbonate Alkalinity Total Alkalinity Sample: 96125 - Monito Analysis: BTEX QC Batch: 28277 Prep Batch: 24759	r Well #2	<1.00 <1.00 216 216 216 Date Analyzed:	mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 S 8021B 2006-07-24 2006-07-24	l l l Prep Meth Analyzed Prepared F	1.0 1.0 4.0 4.0 8.0 8.0 8.0 8.0 8.0 9.0 9.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
Hydroxide Alkalinity Carbonate Alkalinity Bicarbonate Alkalinity Total Alkalinity Sample: 96125 - Monito Analysis: BTEX QC Batch: 28277		<1.00 <1.00 216 216 216 216 Sangle Preparation: RL	mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 S 8021B 2006-07-24 2006-07-24 Units	l l l Prep Meth Analyzed	0d: S 5030 By: MT
Hydroxide Alkalinity Carbonate Alkalinity Bicarbonate Alkalinity Total Alkalinity Sample: 96125 - Monito Analysis: BTEX QC Batch: 28277 Prep Batch: 24759 Parameter	r Well #2	<1.00 <1.00 216 216 216 216 Sangle Method: Date Analyzed: Sample Preparation: RL Result	mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 S 8021B 2006-07-24 2006-07-24	l l l Prep Meth Analyzed Prepared F	1.0 1.0 4.0 4.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8
Hydroxide Alkalinity Carbonate Alkalinity Bicarbonate Alkalinity Total Alkalinity Sample: 96125 - Monito Analysis: BTEX QC Batch: 28277 Prep Batch: 24759 Parameter Benzene Toluene Ethylbenzene	r Well #2	<1.00 <1.00 216 216 216 216 216 216 216 216 216 216	mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 S 8021B 2006-07-24 2006-07-24 Units mg/L	l l l Prep Meth Analyzed Prepared E Dilution 1	0d: S 5030 By: MT By: MT R 0.0010
Hydroxide Alkalinity Carbonate Alkalinity Bicarbonate Alkalinity Total Alkalinity Sample: 96125 - Monito Analysis: BTEX QC Batch: 28277 Prep Batch: 24759 Parameter Benzene Toluene Ethylbenzene	r Well #2	<1.00 <1.00 216 216 216 216 216 Sangle Preparation: RL Result <0.00100 <0.00100	mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 S 8021B 2006-07-24 2006-07-24 Units mg/L mg/L	l l l Prep Meth Analyzed Prepared E Dilution 1 1	0.0010 1.0 1.0 4.0 4.0 4.0 8.0 8.0 0.0010 0.0010 0.0010 0.0010
Hydroxide Alkalinity Carbonate Alkalinity Bicarbonate Alkalinity Total Alkalinity Sample: 96125 - Monito Analysis: BTEX QC Batch: 28277 Prep Batch: 24759 Parameter Benzene Toluene Ethylbenzene Xylene	r Well #2 Flag	<1.00 <1.00 216 216 216 216 216 216 216 216 216 216	mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 S 8021B 2006-07-24 2006-07-24 Units mg/L mg/L mg/L mg/L mg/L Spike	l l l l l l Prep Meth Analyzed Prepared E Dilution l l l l l Percent	0.0010 0.0010
Hydroxide Alkalinity Carbonate Alkalinity Bicarbonate Alkalinity Total Alkalinity Sample: 96125 - Monito Analysis: BTEX QC Batch: 28277 Prep Batch: 24759 Parameter Benzene Toluene Ethylbenzene	r Well #2	<1.00 <1.00 216 216 216 216 216 216 216 216 216 216	mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 mg/L as CaCo3 S 8021B 2006-07-24 2006-07-24 Units mg/L mg/L mg/L mg/L mg/L Spike Dilution Amount	l l l l l l Prep Meth Analyzed Prepared E Dilution l l l l l Percent	1.0 1.0 4.0 4.0 8.0 8.0 8.0 9.0 8.0 1.0 4.0 1.0 4.0 8.0 8.0 1.0 4.0 4.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8

18. B. A

8 V. & 2124

ふいぞう

A AN

「ないのない

The status

「「「「

W. W.

STREET, BALL

AND SAL

and the second

ale of the second

at Martin

2.2.2.20

A. Date

an militade

Sec.

「「「「

19. J. J.

¹BFB surrogate recovery outside normal limits. ICV/CCV and TFT surrogate recovery show the method to be in control.

Report Date: August 10, 2006	Work Order: 6072139	Page Number: 4 of 16
EME-H-13 Leak	EME-H-13 Leak	Lea County,NM

Sample: 96125 - Monitor Well #2

Analysis:CationsQC Batch:28356Prep Batch:24749		Analytical Method: Date Analyzed: Sample Preparation:	S 6010B 2006-07-26 2006-07-24	Prep Method: Analyzed By: Prepared By:	ТР
	`	RL			
Parameter	Flag	Result	Units	Dilution	RL
Dissolved Calcium		325	mg/L	10	0.500
Dissolved Potassium		17.1	mg/L	1	1.00
Dissolved Magnesium		129	mg/L	10	1.00
Dissolved Sodium		507	mg/L	10	1.00

Sample: 96125 - Monitor Well #2

Analysis: QC Batch: Prep Batch:	Ion Chromatography 28549 24970	Analytical Date Anal Sample Pr			Prep Method: Analyzed By: Prepared By:	: WB WB <u>RL</u> 0.500
•		RL				
Parameter	Flag	Result	Units	Dilution		RL
Chloride		1690	mg/L	100		0.500
Sulfate		562	mg/L	100		0.500

Sample: 96125 - Monitor Well #2

Analysis:TDSQC Batch:28404Prep Batch:24848		Analytical Method: Date Analyzed: Sample Preparation:	2006-07-25	Prep Metho Analyzed F Prepared B	By: SM
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Total Dissolved Solids		2710	mg/L	5	10.00

Sample: 96126 - Monitor Well #3

Analysis: QC Batch: Prep Batch:	Alkalinity 28340 24777		Analytical Method: Date Analyzed: Sample Preparation:	SM 2320B 2006-07-26 2006-07-25	Prep Method: Analyzed By: Prepared By:	
			RL			•
Parameter		Flag	Result	Units	Dilution	RL
Hydroxide A	lkalinity	•	<1.00	mg/L as CaCo3	1	1.00
Carbonate Al	lkalinity		<1.00	mg/L as CaCo3	1	1.00
Bicarbonate .	Alkalinity		262	mg/L as CaCo3	1	4.00
Total Alkalin	ity		262	mg/L as CaCo3	1	4.00

N.S.S.

-States-

· VERSON

ALC: NO.

South The

Strain St

1.3.3 A.s.

1.4 ASP 2.0

ARG DAY

Report Date: EME-H-13 L	August 10, 2006 Leak		Work Order: 6072139 EME-H-13 Leak					Page Number: 5 of 16 Lea County,NM			
Sample: 961	26 - Monitor Well #3										
Analysis:	BTEX		Analytical M	lethod:	S 8021B	;		Prep	Method:	S 50	30E
QC Batch:	28277		-		2006-07				lyzed By:	MT	
Prep Batch:	24759		Sample Prep		2006-07				ared By:	MT	
-									·		
D	D 1		R			TT '4-		D'1 ('			ы
Parameter Benzene	Flag		Resu <0.0010			Units	· · · · ·	Dilution		0.00	RI
Toluene			< 0.0010			mg/L mg/L		1		0.00	
Ethylbenzene	x		< 0.0010			mg/L mg/L		1		0.00	
Xylene			< 0.0010			mg/L		1		0.00	
						<u>6</u> .2					
. .				* * * .			Spike	Percen		lecov	
Surrogate	(77.77)	Flag	Result	Units	Di	lution	Amount	Recove		Limi	
Trifluorotolue		2	0.0954	mg/L		1	0:100	95		.2 - 1	
4-Bromofluo	robenzene (4-BFB)		0.0557	mg/L		1	0.100	56	:/0	.6 - 1	29.
QC Batch: Prep Batch:	28356 24749		Date Analyz Sample Prej	paration:	2006-01 2006-01				lyzed By: bared By:	TP TS	
Deremeter		Floo	т	RL	•	I Inita		Dibition			п
Parameter Dissolved Ca	leium	Flag	1	Result		Units mg/L		Dilution 10	<u></u>		R 0.50
Dissolved Ca				19.9		mg/L mg/L		10			1.0
Dissolved M				112		mg/L		10			1.0
Dissolved So	0			580		mg/L		10			1.0
•	26 - Monitor Well #3					E 200 0				·	
Analysis: QC Batch:	Ion Chromatography 28549			alytical N te Analyz		E 300.0 2006-07-	20		Prep Meth		
Prep Batch:	24970			nple Prep		2006-07-			Analyzed I Prepared E		W] W]
. rep Baton.			541	pro r rop		2000-07-			r repureu L		**.
D	101		RL		-	· ·.					_
Parameter Chlorido	Flag		Result			Jnits		Dilution			R
Chloride Sulfate			1510 557			ng/L ng/L		100 100).5().5(
						iig/ L/		100	<u></u>		<i>.</i>
			、								
Sample: 961	26 - Monitor Well #3										
Sample: 961 Analysis:	26 - Monitor Well #3 TDS		Analytical	Method:	SM 2	540C			Prep Meth	od:	N/
-			Analytical Date Anal			540C 07-25			Prep Meth Analyzed		N/ SN

•

²BFB surrogate recovery outside normal limits. ICV/CCV and TFT surrogate recovery show the method to be in control.

.

調査的た

St. H. Sarah

Martin b

1. C. C.

202 (No.)

a sala a

120

22.0.20

No. of Concession, Name

Section.

A CONTRACTOR

1.23 Mar

States and

ALL ON

S. Carlos

Report Date: August 10, 2006 EME-H-13 Leak			ork Order EME-H-1	: 6072139 3 Leak			umber: 6 of 1 ea County,NM
sample 96126 continued							
		j	RL				•
Parameter	Flag	Res		Units]	Dilution	RL
			RL				
Parameter	Flag	Res		Units]	Dilution	RI
Total Dissolved Solids		. 30	35	mg/L		5	10.00
						· •	
Method Blank (1) QC Batch:	28277						
QC Batch: 28277		Date Analy	zed: 20	06-07-24		Analyz	zed By: MT
Prep Batch: 24759		QC Prepara		006-07-24		Prepar	
			M	IDL			
Parameter	Flag			sult	Unit	S	RL
Benzene	······		< 0.000	255	mg/l	Ĺ	0,00
Toluene			< 0.000	210	mg/l	L	0.00
Ethylbenzene			< 0.000		mg/l	Ĺ	0.00
Xylene			< 0.000	603	mg/l	L	0.00
Surragata	Flag	Dogult	Units	Dilution	Spike Amount	Percent	Recover Limits
Surrogate Trifluorotoluene (TFT)	riag	Result 0.0949	mg/L	1	0.100	Recovery 95	76.1 - 11
4-Bromofluorobenzene (4-BFB)		0.0633	mg/L mg/L	1	0.100	63	58.5 - 11
Method Blank (1) QC Batch: QC Batch: 28280 Prep Batch: 24761	28280	Date Analy QC Prepara		006-07-24 006-07-24			zed By: M ^r ed By: M ^r
•				(D)		, , , , , , , , , , , , , , , , , , ,	2
Parameter	Flag			IDL sult	Unit	ts	RL
Benzene	8		< 0.000		mg/		0.00
Toluene			< 0.000		mg/		0.00
Ethylbenzene		,	< 0.000		mg/		0.00
Xylene			< 0.000	456	mg/	L	0.00
Surrogata	Ēlaa	Docult	I Inita	Dilution	Spike	Percent	Recover
Surrogate	Flag	Result 0.0857	Units mg/L	Dilution 1	Amount 0.100	Recovery 86	Limits 77.4 - 10
Triffuorotoluene (TET)		0.0037	பாஜ/ ட	1			
Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)		0.0735	mg/L	1	0.100	74	63.8 - 11

Method Blank (1) QC Batch: 28340

Analyzed By: LJ QC Batch: 28340 Date Analyzed: 2006-07-26 Prep Batch: 24777 QC Preparation: 2006-07-25 Prepared By: LJ

S. 1.00 m

STOR No.

あいる

である

2 Caller

a mali sare

And the

an think

Parita.

Britten Br

and the factor

が見たい

· Andrews

Sandala a

Sol Michael

· Krieth

T. Salar Sa

Report Date: August 10, 2006	Work Order: 6072139	Page Number: 7 of 16
EME-H-13 Leak	EME-H-13 Leak	Lea County,NM
	MDI.	······································

		MDL		
Parameter	Flag	Result	Units	RL
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1
Carbonate Alkalinity		<1.00	mg/L as CaCo3	1
Bicarbonate Alkalinity		<4.00	mg/L as CaCo3	4
Total Alkalinity		$<\!\!4.00$	mg/L as CaCo3	4

Method Blank (1) QC Batch: 28356

S. . W.

Carry Carry

and the second

NAL OF

Frank Press

and the second

1.082.284

1. A. B. B.

State.

a we have

42.4.8.Y.Z.s

an stand

Sec. Barrie

Participation of the

Mart all

Sec. 2 Alle

QC Batch: 28356	Date Analyze			Analyzed By: TP
Prep Batch: 24749	QC Preparati	on: 2006-07-24		Prepared By: TS
		MDL		
Parameter	Flag	Result	Units	RL
Dissolved Calcium		0.132	mg/L	0.5
Dissolved Potassium		1.08	mg/L	1
Dissolved Magnesium		< 0.704	mg/L	1
Dissolved Sodium		0.836	mg/L	1

Method Blank (1) QC Batch: 28404

QC Batch: 28404 Prep Batch: 24848	Date Analyzed: QC Preparation:			Analyzed By: Prepared By:	
		MDL			
Parameter	Flag	Result	Units		RL
Total Dissolved Solids		<5.000	mg/L		10

Method Blank (1) QC Batch: 28549

QC Batch: Prep Batch:	28549 24970		Date Analyzed: QC Preparation:			Analyzed By: Prepared By:	
				MDL			
Parameter		Flag	I	Result	Units		RL
Chloride			<0	.0181	mg/L		0.5
Sulfate			<0	.0485	mg/L		0.5

Duplicates (1)

QC Batch: 28340 Prep Batch: 24777		Date Analyzed: QC Preparation:	2006-07-26 2006-07-25		•	l By: LJ By: LJ
	Duplicate	Sample				RPD
Param	Result	Result	Units	Dilution	RPD	Limit
Hydroxide Alkalinity	<1.00	<1.00	mg/L as CaCo3	1	0	20
Carbonate Alkalinity	<1.00	<1.00	mg/L as CaCo3	1	0	20

continued...

Report Date: August 10, 2006 EME-H-13 Leak				Order: 607 1E-H-13 Le						lumber: Lea Cou	
									duplicat	e contin	ued
	Duplicat	e	Sample						aupticat	e contin	RPD
Param	Result	-	Result		Units		Dilı	ition	RPI	2	Limi
Bicarbonate Alkalinity	110		108	m	g/L as CaCo	03		1	2	-	12.6
Total Alkalinity	110		108		g/L as CaCo g/L as CaCo			1	2		11.5
			, <u>, , , , , , , , , , , , , , , , , , </u>							•	
Duplicates (1)											
QC Batch: 28404			e Analyze							zed By	
Prep Batch: 24848		QC	Preparatic	on: 2006-0)7-24				Prepa	red By:	SM
	Dupli			nple	.				200		RPI
Param	Resi			sult	Units		Dilutio	n _.	RPD		Lim
Total Dissolved Solids	329	ַכ	3()35	mg/L		5		8		17.2
Laboratory Control Spike (LCS-1)											
QC Batch: 28277		Date	e Analyze	d: 2006-0	07-24				Analy	yzed By	: M1
Prep Batch: 24759			Preparatic							red By:	
•			-						1	5	
	LCS	5			Spike	2	Matri	x			Rec.
Param	Resu		Units	Dil.	Amount		Resu	lt	Rec.		Limit
Benzene	0.10		mg/L	1	0.100		<0.000		109		.2 - 11
Toluene	0.10		mg/L	1	0.100		<0.000		108		.2 - 11
Ethylbenzene	0.10		mg/L	1	0.100		<0.000		109		0 - 122
Xylene	0.32		mg/L	1	0.300		< 0.000	603	107	. 81	.3 - 12
Percent recovery is based on the spike	e result. RP	D is ba	used on the	e spike and	spike dupli	cate res	sult.				
	LCSD			Spike	Matri				Rec.		RPI
Param	Result	Units	Dil.	Amount	Resu		Rec.		imit	RPD	Lim
Benzene	0.104	mg/L	1	0.100	< 0.000		109		2 - 119	5	20
Toluene	0.103	mg/L	1	0.100	< 0.000		108		2 - 119	5	20
Ethylbenzene	0.101	mg/L	1	0.100	< 0.000		109		- 122	8	20
Xylene	0.306	mg/L	1	0.300	< 0.000		107	81	3 - 122	5	20
Percent recovery is based on the spike				spike and	spike dupli				1.005		
Surrogate	LC: Resi		LCSD Result	Units	Dil.	Spike Amou		LCS Rec.	LCSD Rec.		Rec. Limit
Trifluorotoluene (TFT)	0.10		0.101	mg/L	1	0.100		101	101		.8 - 11
. ,	0.11		0.111	mg/L	1	0.100		112	111		.7 - 11
4-Bromofluorobenzene (4-BFB)											
Laboratory Control Spike (LCS-1)		Dat	e Analyze	d: 2006-	07-24				Anal	vzed By	': M'
 4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LCS-1) QC Batch: 28280 Prep Batch: 24761 			e Analyze Preparatio							yzed By ared By	
Laboratory Control Spike (LCS-1) QC Batch: 28280	LC	QC					Ma	trix			: M'
Laboratory Control Spike (LCS-1) QC Batch: 28280		QC S			07-24			trix sult		ared By	

Saraha an

1. A. M. M. A.

an she

の、「「

a strated

Mar You

A. 267

C #182

1.20 W 10

SHELL!

「調査」

" Attains ."

Personal Personal

and the second

1-2-5-68

2, 3.00

Report Date: August 10, 2006 EME-H-13 Leak				rder: 6072 -H-13 Leal					Fage	Numbe Lea Co	ounty,N
control spikes continued											
	LCS				Spike		Matı				Rec.
Param	Result		Units	Dil.	Amoun		Resi		Re		Limit
Toluene	0.0961		mg/L	1	0.100		< 0.00		96		80 - 12
Ethylbenzene	0.0965		mg/L	1	0.100		< 0.00		96		80 - 12
Xylene	0.290		mg/L	1	0.300		< 0.00	J456	97	/	80 - 12
Percent recovery is based on the spi		is base	ea on the sp	•			uit.				
	LCSD			Spike	Mat			Re			RP
Param		Jnits		Amount	Res		Rec.	Lir		RPD	Lin
Benzene		ng/L	1	0.100	< 0.00		95	80 -		1	20
Toluene		ng/L	1	0.100	< 0.00		96 06	80 -		1	20
Ethylbenzene		ng/L	1	0.100	< 0.00		96 07	80 -		1	20
Xylene		ng/L	1	0.300	< 0.00		<u> </u>	80 -	120	1	20
Percent recovery is based on the spa			-	nke and sp	orke dupli				•		
G	LCS		LCSD	T.I ! 4	D'1	Spik		LCS	LC		Rec.
Surrogate Trifluorotoluene (TFT)	Result 0.0934		Result 0.0971	Units	Dil.	Amor 0.10		Rec.	Re 9		Limi
4-Bromofluorobenzene (4-BFB)	0.0934		0.0971	mg/L mg/L	1 1	0.10		93 90	9		80 - 12 80 - 12
QC Batch: 28356	1)		Analyzed: Preparation:	2006-01 2006-01						nalyzed epared I	
QC Batch: 28356					7-24						Зу: Т
Prep Batch: 24749	LCS	QC P	Preparation:	2006-03	7-24 Spik		Ma		Pro	epared I	By: T Rec
QC Batch: 28356 Prep Batch: 24749 Param	LCS Result	QC P	Preparation: Units		7-24 Spik Amo	unt	Res	sult	Pro Re	epared I	By: T Rec Limi
QC Batch: 28356 Prep Batch: 24749 Param Dissolved Calcium	LCS Result 51.7	QC P	Preparation: Units mg/L	2006-03	7-24 Spik <u>Amor</u> 50.0	unt D	Res <0.0	sult 950	Pro Re 10	epared I	3y: T Rec Limi 85 - 1
QC Batch: 28356 Prep Batch: 24749 Param Dissolved Calcium Dissolved Potassium	LCS Result 51.7 50.8	QC P	Units mg/L mg/L	2006-07 Dil: 1 1	7-24 Spik Amou 50.0	unt D D	Res <0.0 <0.	sult 950 377	Pro <u> Re</u> 10 10	epared I	By: T Rec Limi 85 - 1 85 - 1
QC Batch: 28356 Prep Batch: 24749 Param Dissolved Calcium Dissolved Potassium Dissolved Magnesium	LCS Result 51.7	QC P	Preparation: Units mg/L	2006-03	7-24 Spik <u>Amor</u> 50.0	unt D D D	Res <0.0	sult 1950 377 704	Pro Re 10	epared I 	By: T Rec Limi 85 - 1 85 - 1 85 - 1
QC Batch: 28356 Prep Batch: 24749 Param Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium	LCS Result 51.7 50.8 51.5 50.5	QC P	Preparation: Units mg/L mg/L mg/L mg/L	2006-07 Dil. 1 1 1 1	7-24 Spik Amoo 50.0 50.0 50.0 50.0	unt 0 0 0 0 0	Res <0.0 <0. <0. <0.	sult 1950 377 704	Pro <u> Re</u> 10 10 10 10	epared I 	By: T Rec Limi 85 - 1 85 - 1 85 - 1
QC Batch: 28356 Prep Batch: 24749 Param Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium	LCS Result 51.7 50.8 51.5 50.5	QC P	Preparation: Units mg/L mg/L mg/L mg/L	2006-07 Dil. 1 1 1 1	7-24 Spik Amoo 50.0 50.0 50.0 50.0	unt 0 0 0 0 0 cate res	Res <0.0 <0. <0. <0.	sult 1950 377 704	Pro Re 10 10 10 10	epared I 	By: T Rec Limi 85 - 1 85 - 1 85 - 1 85 - 1
QC Batch: 28356 Prep Batch: 24749 Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium Percent recovery is based on the sp Param	LCS Result 51.7 50.8 51.5 50.5 ike result. RPD LCSD Result	QC P is base Units	Preparation: Units mg/L mg/L mg/L mg/L	2006-07 Dil: 1 1 1 Dike and sp Spike Amount	7-24 Spik Amor 50.0 50.0 50.0 50.0 bike dupli Mat Res	unt 0 0 0 0 cate res rix ult	Res <0.0 <0. <0. <0. sult.	sult 9950 377 704 261	Pro <u>Re</u> 10 10 10 10 	epared I 	By: T Rec. Limi 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 RP Lim
QC Batch: 28356 Prep Batch: 24749 Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium Percent recovery is based on the sp Param Dissolved Calcium	LCS Result 51.7 50.8 51.5 50.5 ike result. RPD LCSD Result 51.7	QC P is base Units mg/L	Units mg/L mg/L mg/L mg/L mg/L ed on the sp	2006-07 Dil. 1 1 1 Dike and sp Spike Amount 50.0	7-24 Spik Amou 50.0 50.0 50.0 50.0 bike dupli Mat Res <0.0	unt 0 0 0 0 0 cate res rix ult 950	Res <0.0	sult 9950 377 704 261	Pro Re 10 10 10 10 10 10 10 10 115	epared I c. 3 12 13 11	By: T Rec. Limi 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 20
QC Batch: 28356 Prep Batch: 24749 Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium Percent recovery is based on the sp Param Dissolved Calcium Dissolved Potassium	LCS Result 51.7 50.8 51.5 50.5 ike result. RPD LCSD Result 51.7 49.3	QC P is base <u>Units</u> mg/L mg/L	Units mg/L mg/L mg/L mg/L ed on the sp Dil.	2006-07 Dil. 1 1 1 Dike and sp Spike Amount 50.0 50.0	7-24 Spik Amou 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.	unt 0 0 0 0 0 0 0 0 0 0 0 0 0	Res. <0.0 <0. <0. <0. sult. Rec. 103 102	sult 1950 377 704 261	Pro Re 10 10 10 10 10 10 10 10 10 10	epared I .c. .3 .2 .3 .12 .3 .12 .13 .12 .13 .12 .13 .12 .13 .12 .13 .12 .13 .12 .13 .12 .13 .12 .13 .13 .12 .13 .14 .14 .14 .14 .14 .14 .14 .14	By: T Rec Limi 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 20 20 20
QC Batch: 28356 Prep Batch: 24749 Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium Percent recovery is based on the sp Param Dissolved Calcium Dissolved Potassium Dissolved Magnesium	LCS Result 51.7 50.8 51.5 50.5 ike result. RPD LCSD Result 51.7 49.3 49.8	QC P is base <u>Units</u> mg/L mg/L mg/L	Units mg/L mg/L mg/L ed on the sp Dil. 1 1 1	2006-07 Dil: 1 1 1 bike and sp Spike Amount 50.0 50.0 50.0	7-24 Spik Amou 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.	unt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Res. <0. <0. <0. <0. sult. Rec. 103 102 103	sult 1950 377 704 261	Pro Re 100 100 100 100 100 100 100 10	epared I 3 12 13 12 13 11 RPD 0 3 3 3	By: T Rec. Limi 85 - 1 85 - 1 20 20 20
QC Batch: 28356 Prep Batch: 24749 Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium Percent recovery is based on the sp Param Dissolved Calcium Dissolved Potassium Dissolved Magnesium	LCS Result 51.7 50.8 51.5 50.5 ike result. RPD LCSD Result 51.7 49.3 49.8	QC P is base <u>Units</u> mg/L mg/L mg/L	Units mg/L mg/L mg/L mg/L ed on the sp Dil.	2006-07 Dil: 1 1 1 bike and sp Spike Amount 50.0 50.0 50.0	7-24 Spik Amou 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.	unt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Res. <0. <0. <0. <0. sult. Rec. 103 102 103	sult 1950 377 704 261	Pro Re 100 100 100 100 100 100 100 10	epared I 3 12 13 12 13 11 RPD 0 3 3 3	By: T Rec Lim 85 - 1 85 - 1 2 2 2
QC Batch: 28356 Prep Batch: 24749 Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium Percent recovery is based on the sp Param Dissolved Calcium Dissolved Potassium	LCS Result 51.7 50.8 51.5 50.5 ike result. RPD LCSD Result 51.7 49.3 49.8 48.6	QC P is base mg/L mg/L mg/L mg/L	Units mg/L mg/L mg/L mg/L ed on the sp Dil. 1 1 1 1	2006-07 Dil: 1 1 1 jike and sp Spike Amount 50.0 50.0 50.0 50.0 50.0	7-24 Spik Amou 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1	unt 0 0 0 cate res rix ult 950 377 704 261	Res <0.0	sult 1950 377 704 261	Pro Re 100 100 100 100 100 100 100 10	epared I .c. .3 .2 .3 .12 .3 .12 .13 .12 .13 .12 .13 .12 .13 .12 .13 .12 .13 .12 .13 .12 .13 .12 .13 .13 .12 .13 .14 .14 .14 .14 .14 .14 .14 .14	By: T Rec. Limi 85 - 1 85 - 1 20 20 20 20
QC Batch: 28356 Prep Batch: 24749 Param Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium Percent recovery is based on the sp Param Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium Percent recovery is based on the sp Laboratory Control Spike (LCS-	LCS Result 51.7 50.8 51.5 50.5 ike result. RPD LCSD Result 51.7 49.3 49.8 48.6 ike result. RPD	QC P is base mg/L mg/L mg/L is base	Preparation: Units mg/L mg/L mg/L ed on the sp Dil. 1 1 1 1 1 ed on the sp	2006-07 Dil. 1 1 1 1 2 Dike and sp Spike Amount 50.0 50	7-24 Spik Amou 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.	unt 0 0 0 cate res rix ult 950 377 704 261	Res <0.0	sult 1950 377 704 261	Pro Re 10 10 10 10 10 10 10 10 10 10	epared I c. 13 12 13 12 13 12 13 12 13 11 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 13 12 12 13 12 13 12 13 13 12 13 12 13 13 13 13 13 13 13 13 13 13	By: T Rec Limi 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 20 20 20 20 20
QC Batch: 28356 Prep Batch: 24749 Param Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium Percent recovery is based on the sp Param Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium Percent recovery is based on the sp	LCS Result 51.7 50.8 51.5 50.5 ike result. RPD LCSD Result 51.7 49.3 49.8 48.6 ike result. RPD	QC P is base mg/L mg/L mg/L is base Date	Units mg/L mg/L mg/L mg/L ed on the sp Dil. 1 1 1 1	2006-07 Dil: 1 1 1 jike and sp Spike Amount 50.0 50.0 50.0 50.0 50.0	7-24 Spik Amou 50.0 50.0 50.0 50.0 50.0 50.0 50.0 co.0 <0.0 <0.0 <0.0 <0.0 2 0.0 2 0.0 2 0.0 2 2 30	unt 0 0 0 cate res rix ult 950 377 704 261	Res <0.0	sult 1950 377 704 261	Pro Re 100 100 100 100 100 100 100 10	epared I 3 12 13 12 13 11 RPD 0 3 3 3	By: T Rec Limi 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 20 20 20 20 20 20 20 20 20 20 20 20 20
QC Batch: 28356 Prep Batch: 24749 Param Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium Percent recovery is based on the sp Param Dissolved Calcium Dissolved Calcium Dissolved Magnesium Dissolved Magnesium Dissolved Sodium Percent recovery is based on the sp Laboratory Control Spike (LCS- QC Batch: 28549	LCS Result 51.7 50.8 51.5 50.5 ike result. RPD LCSD Result 51.7 49.3 49.8 48.6 ike result. RPD 1)	QC P is base mg/L mg/L is base QC P	Units mg/L mg/L mg/L ed on the sp Dil. 1 1 1 ed on the sp Analyzed: reparation:	2006-07 Dil: 1 1 1 1 bike and sp Spike Amount 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.	7-24 Spik Amou 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1	unt 0 0 0 cate res rix ult 950 377 704 261 cate res cate res	Res <0.0 <0. <0. sult. 103 102 103 101 sult.	sult 1950 377 704 261	Pro Re 100 100 100 100 100 100 100 10	epared I .c. .3 .2 .3 .12 	By: T Rec. Limi 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 20 20 20 20 20 20 20 20 20 20 20 20 20
QC Batch: 28356 Prep Batch: 24749 Param Dissolved Calcium Dissolved Potassium Dissolved Magnesium Dissolved Sodium Percent recovery is based on the sp Param Dissolved Calcium Dissolved Calcium Dissolved Magnesium Dissolved Magnesium Dissolved Sodium Percent recovery is based on the sp Laboratory Control Spike (LCS- QC Batch: 28549	LCS Result 51.7 50.8 51.5 50.5 ike result. RPD LCSD Result 51.7 49.3 49.8 49.8 48.6 ike result. RPD	QC P is base mg/L mg/L is base QC P	Units mg/L mg/L mg/L ed on the sp Dil. 1 1 1 ed on the sp Analyzed:	2006-07 Dil: 1 1 1 1 Dike and sp Spike Amount 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.	7-24 Spik Amou 50.0 50.0 50.0 50.0 50.0 50.0 50.0 co.0 co.0 co.0 co.0 co.0 co.0 co.0 c	unt 0 0 0 cate res rix ult 950 377 704 261 cate res ace unt	Res <0. <0. <0. sult. 103 102 103 101 sult. Ma Res	sult 1950 377 704 261	Pro Re 100 100 100 100 100 100 100 10	epared I c. 3 3 2 3 3 11 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	By: T Rec. Limi 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 85 - 1 20 20 20 20 20 20 20 20

Series.

and the second

32 (M. H.

·思想的。"

an in the

a a line of

1. al 1. al

1. S. C. M.

A. S. S.

S. S. Warden

· · · ·

195

and the second

ing the second

いたので

J. S. Baarlow &

1. A. A.

Report Date: August 10, 2006 EME-H-13 Leak					Order: 6072 E-H-13 Leal					Page Nu I	umber: Lea Cou	
control spikes continued												
		LCS				Spik	e	Ma	ıtrix			Rec.
Param		Result		Units	Dil.	Amou			sult	Rec.		Limit
Sulfate		12.8		mg/L	1	12.5	5	<0.	0485	102		90 - 11
Percent recovery is based on the sp	ike result	RPD i	s bas	ed on the	spike and sp	oike dupli	cate r	esult.				
	LCS	D			Spike	Mat	rix		Re	c.		RPI
Param	Resi		Units	Dil.	Amount			Rec.	Lin		RPD	Lim
Chloride	12.	6 r	ng/L	1	12.5	<0.0	181	102	90 -	110	2	20
Sulfate	12.	9 r	ng/L	1	12.5	< 0.0	485	102	90 -	110	1	20
QC Batch: 28277 Prep Batch: 24759				Analyzed Preparation							yzed By ared By	
		MS				Spike		Matr	ix			Rec.
Param		Result		Units	Dil.	Amount		Resu		Rec.		Limit
Benzene		0.107		mg/L	1	0.100		< 0.000		107).9 - 12
Toluene		0.105 0.106		mg/L	1	0.100		< 0.000		105).8 - 12
Ethylbenzene Xylene		0.311		mg/L mg/L	1	0.100 0.300		<0.000		106 104		4.8 - 12 5.7 - 12
Percent recovery is based on the sp					spike and st		cate r			101		
<i>,</i> 1	MSE								D			DD
		,		-	Spike	Matri		D	Re Lir		סחח	RP Lin
Param		lt II	nite	. Dil	Amount							
Param Benzene 3	Resu		nits g/L	<u>Dil.</u>	Amount 0.100	Resu < 0.000		Rec.			RPD 200	
		m	g/L	• Dil. 1 1	Amount 0.100 0.100	<0.000 <0.000	255	0 0	70.9	- 126	200 200	20
Benzene3Toluene4Ethylbenzene5	Resu NA	m; m;		1	0.100	< 0.000	255 210	0	70.9	- 126 - 125 ·	200	20 20
Benzene3Toluene4Ethylbenzene5	Resu NA NA	m; m; m;	g/L g/L	1 1	0.100 0.100	<0.000 <0.000	255 210 317	0 0	70.9 · 70.8 ·	- 126 - 125 - 125	200 200	20 20 20
Benzene3Toluene4Ethylbenzene5Xylene6	Resu NA NA NA NA	m; m; m;	g/L g/L g/L g/L	1 1 1 1	0.100 0.100 0.100 0.300	< 0.000 < 0.000 < 0.000 < 0.000 < 0.000	255 210 317 603	0 0 0 0	70.9 - 70.8 - 74.8 -	- 126 - 125 - 125	200 200 200	20 20 20
Benzene3Toluene4Ethylbenzene5Xylene6	Resu NA NA NA NA	m; m; m;	g/L g/L g/L g/L is bas	1 1 1 1	0.100 0.100 0.100 0.300	< 0.000 < 0.000 < 0.000 < 0.000 < 0.000	255 210 317 603 cate r	0 0 0 result.	70.9 - 70.8 - 74.8 -	- 126 - 125 - 125	200 200 200 200	20 20 20 20
Benzene3Toluene4Ethylbenzene5Xylene6Percent recovery is based on the sp	Resu NA NA NA NA	m; m; m; t. RPD i	g/L g/L g/L g/L is bas	1 1 1 sed on the	0.100 0.100 0.100 0.300	< 0.000 < 0.000 < 0.000 < 0.000 < 0.000	255 210 317 603 cate r Sp:	0 0 0 result.	70.9 - 70.8 - 74.8 - 75.7 -	- 126 - 125 - 125 - 125 - 126	200 200 200 200	20 20 20 20 Rec.
Benzene 3 Toluene 4 Ethylbenzene 5 Xylene 6 Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT)	Resu NA NA NA NA vike result	m m m t. RPD i MS Result 0.101	g/L g/L g/L g/L is bas	1 1 1 sed on the MSD Result NA	0.100 0.100 0.100 0.300 e spike and sp Units mg/L	<0.000 <0.000 <0.000 <0.000 pike dupli Dil. 1	255 210 317 603 cate r Sp Amo	0 0 0 result. ike ount	70.9 - 70.8 - 74.8 - 75.7 - MS Rec. 101	- 126 - 125 - 125 - 126 MSD Rec. 0	200 200 200 200	20 20 20 20 Rec. Limit
Benzene3Toluene4Ethylbenzene5	Resu NA NA NA NA	m m m t. RPD i MS Result	g/L g/L g/L g/L is bas	1 1 1 sed on the MSD Result	0.100 0.100 0.100 0.300 e spike and sp Units	<0.000 <0.000 <0.000 <0.000 pike dupli Dil.	255 210 317 603 cate r Sp Amo	0 0 0 result. ike ount	70.9 - 70.8 - 74.8 - 75.7 - MS Rec.	- 126 - 125 - 125 - 126 MSD Rec.	200 200 200 200	20 20 20 20 Rec. Limit
Benzene 3 Toluene 4 Ethylbenzene 5 Xylene 6 Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)	Resu NA NA NA oike result	m; m; m; t. RPD i MS Result 0.101 0.110	g/L g/L g/L g/L is bas	1 1 1 sed on the MSD Result NA	0.100 0.100 0.100 0.300 e spike and sp Units mg/L	<0.000 <0.000 <0.000 <0.000 pike dupli Dil. 1	255 210 317 603 cate r Sp Amo	0 0 0 result. ike ount	70.9 - 70.8 - 74.8 - 75.7 - MS Rec. 101	- 126 - 125 - 125 - 126 MSD Rec. 0	200 200 200 200	20 20 20 20 Rec. Limit
Benzene 3 Toluene 4 Ethylbenzene 5 Xylene 6 Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)	Resu NA NA NA oike result	m; m; m; t. RPD i MS Result 0.101 0.110	g/L g/L g/L is bas	1 1 1 sed on the MSD Result NA	0.100 0.100 0.300 e spike and sp Units mg/L mg/L	<0.000 <0.000 <0.000 eike dupli	255 210 317 603 cate r Sp Amo	0 0 0 result. ike ount	70.9 - 70.8 - 74.8 - 75.7 - MS Rec. 101	- 126 - 125 - 125 - 126 MSD Rec. 0 0	200 200 200 200	20 20 20 20 20 Limit 3.6 - 12 1.8 - 12

³RPD is out of range because a matrix spike duplicate was not prepared. ⁴RPD is out of range because a matrix spike duplicate was not prepared. ⁵RPD is out of range because a matrix spike duplicate was not prepared. ⁶RPD is out of range because a matrix spike duplicate was not prepared. ⁷RPD is out of range because a matrix spike duplicate was not prepared.

Starter . W. F. Mark . "Bur P. Salar Frank of ·秦海之 驿 The second Ser. Sala の意思

調整

Constant of

1999 B

100.00

教会さ

WARDER

All and the

the Letter

⁸RPD is out of range because a matrix spike duplicate was not prepared.

San Ca

States -

Bar Same

1960

ALC: N

and the second

and the second

ALC: NO

Strate St

Control -

See Lange

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene	0.0940	mg/L	1	0.100	< 0.000153	94	88.4 - 114
Toluene	0.0939	mg/L	1	0.100	< 0.000283	94	81.4 - 116
Ethylbenzene	0.0944	mg/L	1	0.100	< 0.000621	94	82.5 - 118
Xylene	0.283	mg/L	1	0.300	< 0.000456	94	77.9 - 117

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene ·	9	NA	mg/L	1	0.100	< 0.000153	0	88.4 - 114	200	20
Toluene	10	NA	mg/L	1	0.100	< 0.000283	0	81.4 - 116	200	20
Ethylbenzene	11	NA	mg/L	1	0.100	< 0.000621	0	82.5 - 118	200	20
Xylene	12	NA	mg/L	1	0.300	< 0.000456	0	77.9 - 117	200	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MS	MSD			Spike	MS	MSD	Rec.
Surrogate		Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	13	0.0931	NA	mg/L	1	0.1	93	0	84 - 109
4-Bromofluorobenzene (4-BFB)	14	0.0894	NA	mg/L	1	0.1	89	0	74 - 120

Matrix Spike (MS-1) Spiked Sample: 96124

QC Batch:	28356	Date Analyzed:	2006-07-26	Analyzed By:	ТΡ
Prep Batch:	24749	QC Preparation:	2006-07-24	Prepared By:	TS

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Dissolved Calcium	416	mg/L	1	50.0	361	110	68.4 - 138
Dissolved Potassium	73.8	mg/L	1	50.0	22	104	82 - 129
Dissolved Magnesium	208	mg/L	1	50.0	147	122	61.2 - 135
Dissolved Sodium	633	mg/L	1	50.0	578	110	81.8 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Dissolved Calcium	406	mg/L	1	50.0	361	90	68.4 - 138	2	20
Dissolved Potassium	81.3	mg/L	1	50.0	22	119	82 - 129	10	20
Dissolved Magnesium	194	mg/L	1	50.0	147	94	61.2 - 135	7	20
Dissolved Sodium	637	mg/L	1	50.0	578	118	81.8 - 125	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 96125

QC Batch:	28549	Date Analyzed:	2006-07-30	Analyzed By:	WB
Prep Batch:	24970	QC Preparation:	2006-07-29	Prepared By:	WB

⁹RPD is out of range because a matrix spike duplicate was not prepared.

¹⁰RPD is out of range because a matrix spike duplicate was not prepared.

¹¹RPD is out of range because a matrix spike duplicate was not prepared. ¹²RPD is out of range because a matrix spike duplicate was not prepared.

¹³RPD is out of range because a matrix spike duplicate was not prepared.

¹⁴RPD is out of range because a matrix spike duplicate was not prepared.

Report Date: August EME-H-13 Leak	10, 2006			order: 6072139 -H-13 Leak)		Page	Number: Lea Cou	
		M	S		Spike	Matri	х		Rec.
Param		Res		Dil.	Amount	Resul			Limit
Chloride		332		100	12.5	1690			5.4 - 17
Sulfate		76	0	100	12.5	562) - 677
Percent recovery is ba	used on the s	pike result. RI	PD is based on the s	pike and spike	e duplicate re	esult.			
		MSD		Spike	Matrix		Rec.		RPE
Param		Result	Units Dil.	Amount	Result	Rec.	Limit	'RPD	Lim
Chloride	·	3350	mg/L 100	12.5	1690	133	25.4 - 171	1	20
Sulfate		780	mg/L 100	12.5	562	17	0 - 677	·2	20
Percent recovery is ba Standard (ICV-1)	ased on the s	pike result. K	PD is based on the s	pike and spike	e duplicate n	esun.			
QC Batch: 28277			Date Analyzed:	2006-07-24	· .		An	alyzed By	y: M'
			ICVs	ICVs	ICVs		Percent		
			True	Found	Percent		Recovery		Date
Param	Flag	Units	Conc.	Conc.	Recovery		Limits		nalyze
Benzene		mg/L	0.100	0.104	104		85 - 115)6-07-2
Toluene		mg/L	0.100	0.104	104		85 - 115	200)6-07-2
Ethylbenzene		mg/L	0.100	0.104	104		85 - 115	200)6-07-2
Xylene		mg/L	0.300	0.314	105		85 - 115	200)6-07-2
Standard (CCV-1) QC Batch: 28277			Date Analyzed:	2006-07-24	ŀ		An	alyzed B	y: M
			CCVs	CCVs	CCVs		Percent		
			True	Found	Percent		Recovery		Date
Param	Flag	Units	Conc.	Conc.	Recovery	,	Limits	A	nalyzed
Benzene		mg/L	0.100	0.107	107		85 - 115	200	06-07-2
Toluene		mg/L	0.100	0.105	105		85 - 115		06-07-2
Ethylbenzene		mg/L	0.100	0.106	· 106		85 - 115	200	06-07-2
Xylene		mg/L	0.300	0.311	104		85 - 115		06-07-
Standard (ICV-1)									
QC Batch: 28280			Date Analyzed:	2006-07-24	1		Ar	nalyzed B	y: M
			ICVs	ICVs	ICVs		Percent		
			True	Found	Percent		Recovery		Date
		Units	Conc.	Conc.	Recovery	/	Limits		nalyze
Param	Flag	Onto							
Param Benzene	Flag	mg/L	0.100	0.0940	94		85 - 115	20	06-07-2
	Flag				94 95		85 - 115 85 - 115		
Benzene	Flag	mg/L	0.100	0.0940				20	06-07-2 06-07-2 06-07-2

Standard (CCV-1)

him to all the

"A& #2.24"

Sec.

Same.

Sales and

. Sharper

the states

14 20 A

1. 2012

an ar

のない

"" " " "

3. 6. B.

P. 6 6 16. 29.

日本美

"and to the

1. 2. 2. 2 S

A Brite Law

QC Batch: 28280

Date Analyzed: 2006-07-24

.

Analyzed By: MT

					CCVs	CCVs	Percent	Date
Param	Flag	Units			Found Conc.	Percent Recovery	Recovery Limits	Analyzed
Benzene	riag	Onits mg/L			0.0919	92	85 - 115	2006-07-2
Toluene		mg/L			.0928	93	85 - 115	2006-07-2
Ethylbenzene		mg/L		0.100 0	.0933	93	85 - 115	2006-07-2
Xylene		mg/L	<u> </u>	0.300	0.281	94	85 - 115	2006-07-2
Standard (ICV-1)								
QC Batch: 28340				Date Analyzed:	2006-07-26		Ana	lyzed By: L
				ICVs	ICVs	ICVs	Percent	
			•	True	Found	Percent	Recovery	Date
Param	Flag	Un		Conc.	Conc.	Recovery	Limits	Analyze
Total Alkalinity		mg/L as	CaCo3	3 250	240	96	90 - 110	2006-07-2
Standard (CCV-1)								
QC Batch: 28340				Date Analyzed:	2006-07-26		Ana	alyzed By: L
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Un		Conc.	Conc.	Recovery	Limits	Analyze
Total Alkalinity		mg/L as	Caco.	3 250	240	96	90 - 110	2006-07-2
Standard (ICV-1) QC Batch: 28356				Date Analyzed:	2006-07-26		Ana	lyzed By: T
				ICVs	ICVs	ICVs	Percent	
D				True	Found	Percent	Recovery	Date
Param		<u> </u>	Units	Conc.	Conc.	Recovery	Limits	Analyze
Dissolved Calcium Dissolved Potassium			ng/L ng/L	50.0 50.0	50.7 52.0	101 104	90 - 110 90 - 110	2006-07-1 2006-07-1
Dissolved Magnesium			ng/L ng/L	50.0	49.6	99	90 - 110 90 - 110	2006-07-
Dissolved Sodium			mg/L	50.0	50.9	102	90 - 110	2006-07-
Standard (CCV-1)								
QC Batch: 28356				Date Analyzed:	2006-07-26		Ana	ilyzed By: 7
				CCVs	CCVs	CCVs	Percent	
_		•		True	Found	Percent	Recovery	Date
Param			Units	Conc.	Conc.	Recovery	Limits	· Analyze
Dissolved Calcium Dissolved Potassium			mg/L	50.0	51.2 54.6	102	90 - 110	2006-07-
Dissolved Potassium Dissolved Magnesium			mg/L mg/L	50.0 50.0	54.6 50.0	109 100	90 - 110 90 - 110	2006-07- 2006-07-
Dissolved Sodium			mg/L	50.0	53.2	100	90 - 110 90 - 110	2006-07- 2006-07-
Pisoned Dominin			ing/L	50.0	33.2	100	70 - 110	2000-07-

のないないとい

. The Bar of

W. S. Bar

大品語を

States 1

.....

1. States

Succe of the

を協議家

in which we

and the s

如此,如此,

2 Carling

States.

Sale of the second

E . Street

and the

P. Salar B.

Standard (ICV-1)							
QC Batch: 28404		Date	e Analyzed:	2006-07-25	i	Ana	lyzed By: SM
			ICVs	ICVs	ICVs	Percent	
-			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Total Dissolved Solids		mg/L	1000	982.0	98	90 - 110	2006-07-2
Standard (CCV-1)						•	
QC Batch: 28404		Dat	e Analyzed:	2006-07-25		۸na	lyzed By: SM
QC Datch. 20404		Date	. Anaryzeu.	2000-07-22		Alla	iyzeu by. Sivi
			ĊCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
		· · ·	Conc.	Conc.	Recovery	Limits	Analyzed
	Flag	Units					
Total Dissolved Solids Standard (ICV-1)	Flag	mg/L Date	1000 e Analyzed:	1001 2006-07-30			
Total Dissolved Solids Standard (ICV-1) QC Batch: 28549 Param Flag	Units	mg/L Date ICVs True Conc.	1000 e Analyzed: F C	2006-07-30 CVs Yound Conc.	ICVs Percent Recovery	Ana Percent Recovery Limits	lyzed By: WE Date Analyzed
Total Dissolved Solids Standard (ICV-1) QC Batch: 28549 Param Flag Chloride	Units mg/L	mg/L Date ICVs True Conc. 12.5	1000 e Analyzed: F C	2006-07-30 CVs Cound Conc. 12.0	ICVs Percent Recovery 96	Ana Percent Recovery Limits 90 - 110	lyzed By: WE Date Analyzed 2006-07-3
Param Total Dissolved Solids Standard (ICV-1) QC Batch: 28549 Param Flag Chloride Sulfate	Units	mg/L Date ICVs True Conc.	1000 e Analyzed: F C	2006-07-30 CVs Yound Conc.	ICVs Percent Recovery	Ana Percent Recovery Limits	lyzed By: WE Date Analyzed 2006-07-3
Total Dissolved Solids Standard (ICV-1) QC Batch: 28549 Param Flag Chloride	Units mg/L	mg/L Date ICVs True Conc. 12.5	1000 e Analyzed: F C	2006-07-30 CVs Cound Conc. 12.0	ICVs Percent Recovery 96	Ana Percent Recovery Limits 90 - 110	lyzed By: WE Date Analyzed 2006-07-3
Total Dissolved Solids Standard (ICV-1) QC Batch: 28549 Param Flag Chloride Sulfate Standard (CCV-1)	Units mg/L	mg/L Date ICVs True Conc. 12.5 12.5	1000 e Analyzed: F C	2006-07-30 CVs Cound Conc. 12.0	ICVs Percent Recovery 96 98	Ana Percent Recovery Limits 90 - 110 90 - 110	lyzed By: WE Date Analyzed 2006-07-3 2006-07-3
Total Dissolved Solids Standard (ICV-1) QC Batch: 28549 Param Flag Chloride Sulfate	Units mg/L	mg/L Data ICVs True Conc. 12.5 12.5 Data CCVs	1000 e Analyzed: F C e Analyzed:	2006-07-30 CVs Yound Conc. 12.0 12.3 2006-07-30 CCVs	ICVs Percent Recovery 96 98 0 CCVs	Ana Percent Recovery Limits 90 - 110 90 - 110 Ana Percent	lyzed By: WE Date Analyzed 2006-07-3 2006-07-3 lyzed By: WE
Total Dissolved Solids Standard (ICV-1) QC Batch: 28549 Param Flag Chloride Sulfate Standard (CCV-1) QC Batch: 28549	Units mg/L mg/L	mg/L Date ICVs True Conc. 12.5 12.5 Date CCVs True	1000 e Analyzed: F C e Analyzed: 5 C	2006-07-30 CVs Yound Conc. 12.0 12.3 2006-07-30 CCVs Found	ICVs Percent Recovery 96 98 0 0 CCVs Percent	Ana Percent Recovery Limits 90 - 110 90 - 110 Ana Percent Recovery	Analyzed 2006-07-3 2006-07-3 lyzed By: WE Date
Total Dissolved Solids Standard (ICV-1) QC Batch: 28549 Param Flag Chloride Sulfate Standard (CCV-1) QC Batch: 28549 Param Flag Standard (CCV-1) Param Flag Param Flag Flag Chardard (CCV-1) Flag Flag Param Flag Flag	Units mg/L mg/L Units	mg/L Date ICVs True Conc. 12.5 12.5 Date CCVs True Conc	1000 e Analyzed: F C e Analyzed: 5 6 7 7	2006-07-30 CVs Yound Conc. 12.0 12.3 2006-07-30 CCVs Found Conc.	ICVs Percent Recovery 96 98 98 CCVs Percent Recovery	Ana Percent Recovery Limits 90 - 110 90 - 110 Ana Percent Recovery Limits	lyzed By: WE Date Analyzed 2006-07-3 2006-07-3 lyzed By: WE Date Analyzed
Total Dissolved Solids Standard (ICV-1) QC Batch: 28549 Param Flag Chloride Sulfate Standard (CCV-1) QC Batch: 28549	Units mg/L mg/L	mg/L Date ICVs True Conc. 12.5 12.5 Date CCVs True	1000 e Analyzed: F C e Analyzed: 5 G F C	2006-07-30 CVs Yound Conc. 12.0 12.3 2006-07-30 CCVs Found	ICVs Percent Recovery 96 98 0 0 CCVs Percent	Ana Percent Recovery Limits 90 - 110 90 - 110 Ana Percent Recovery	lyzed By: WE Date Analyzed 2006-07-3 2006-07-3 lyzed By: WE Date

to a later

er fertigen

18. Mar 19.

たたのである

and the second

and the second

の加加

のない

"虚缺"

い時にあっ

alais.

34 44

1.100-2-14

a charles

In Safe

ALC N. F

1997 W 1997

ALC: N

Hold Turn Around Time if different from standard ç CHAIN-OF-CUSTODY AND ANALYSIS REQUEST Total Dissolved Solids × × × Anions (CI, SSSSO4, CO3, HCO3) × Check if special reporting limits needed × × Cations (Ca, Mg, Va, K) × × × Page Moisture Content σ Hq , SST , DOB Pesticides 8081A/608 ANALYSIS REQUEST Circle or Specify Method No.) 2 PCB's 8082/608 GC/MS Semi. Vol. 8270C/625 ن م CC/WS AN: 8560B/624 RCI LAB Order ID # REMARKS: TCLP Pesticides 9 TCLP Semi Volatiles TCLP Volatiles TCLP Metals Ag As Ba Cd Cr Pb Se Hg LAB USE ONLY Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 PAH 8270C Log-in Review TPH 418.1/TX1005 / TX1005 Extended (C35) eadspace_ Carrier #_ BTEX 80218/602 × × × emp itact MTBE 80218/602 9:05 10:35 9:05 10:35 SAMPLING 8:00 8:00 **HME** Rozanne Johnson (505)631-9310 <u> ozanne@valornet.com</u> 155 McCutcheon Way, Suite H El Pasc, Texas 79932 Tel (915) 585-4343 Fax (915) 585-4944 71-7 71-17 71-17 7-17 71-7 71-17 0002 3TAQ \sim ANONE RESERVATIVE ICE × × × × × × METHOD ²OS²H Time: Time: 0-12-Time: kpope@riceswd.com *OSH®N ^EONH EME H-13 Leak ЛСГ × × × Date: Date: (505)393-9174 Fax #: (505) 397-1471 Project Name TraceAnalysis, Inc. SLUDGE WATRIX Submittal of samples constitutes agreement to Terms and Conditions listed on reverse side of COC Phone # ЯІА NOS eceived at Labora **AJTAW** × × × × × × 40 ml 40 m] 40 ml Received by: hnuomA\smuloV Ļ 늰 Ļ eceived by # CONTAINERS 2 3 2 ~ -** Q S S S 122 W Taylor Street - Hobbs, New Mexico 88240 FIELD CODE Time: Time: 3 Kristin Farris - Pope, Project Scientist Lea County New Mexico **Monitor Well #1** Monitor Well #2 Monitor Well #2 Monitor Well #1 Monitor Well #3 Monitor Well #3 Date: Date: Date RICE Operating Company Ğ₽. Lubbock, Texas 73424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1298 (Street, different from above Relinquished by: ompany Name: 3 ished b(ontact Person: J LAB USE None Given LAB # ONLY 612 3 ject Local voice to: finguis) ddress: oject #: tarth

Report Date: August 10, 2006 EME-H-13 Leak Work Order: 6072139 -EME-H-13 Leak

Page Number: 15 of 16 Lea County,NM

60. T. 6 Surger and Contraction of the local distribution of the Station State and the second and the second のである an advine STRATES

SHE AL

1. E. C.

Report Date: August 10, 2006 EME-H-13 Leak

EC µMHOs/cm

TDS ppm

Fluoride mdd

Nitrate

Chloride ppm

Sulfate mqq

Potassium Alkalinity

Sodium bpm

Magnesium mgq

8/16/2006 Calcium bpm

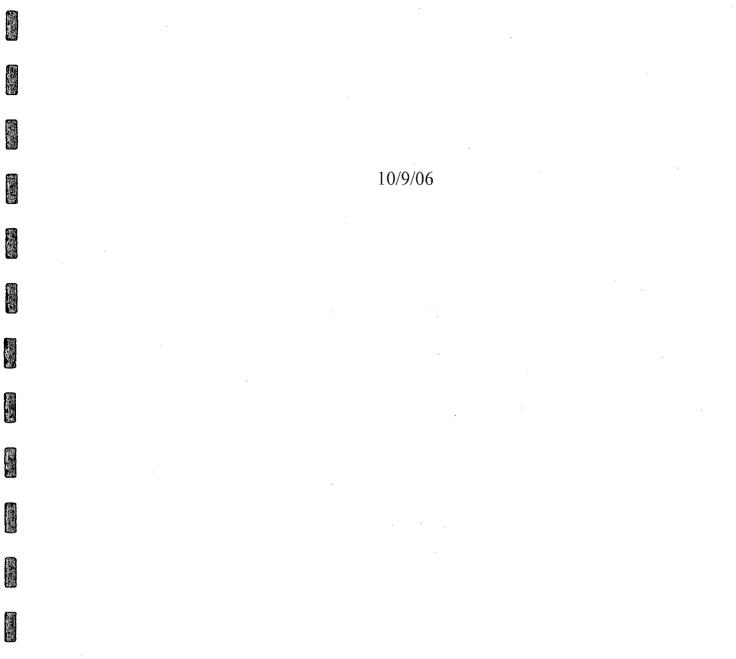
DATE: Sample #

mqq

mdd

Work Order: 6072139
EME-H-13 Leak

Page Number: 16 of 16 Lea County,NM


「「「「」」

である

い情報

Cation-Anion Balance Sheet

				Percentage	Error	13.5	25.4	16.6		.77	<i>TT.</i>	.77
			Total	Anions	in meq/L	63.88	63.70	59.43		needs to be 0.55-0.77	needs to be 0.55-0.77	needs to be 0.55-0.77
3240	2710	3035	Total	Cations	in meq/L	55.82	49.32	50.32	TDS/Anion	0.51	0.43	0.51
				Fluoride	in meq/L				TDS/Cat	0.58	0.55	0.60
				Nitrate	in meq/L				TDS/EC			
1600	1690	1510		Chloride	ìn meq/L	50.78	47.67	42.60				
412	562	557		Sulfate	in meq/L	8.58	11.70	11.60		0	0	0
226	216	262		Alkalinity	in meq/L	4.52	4.32	5.24		0	0	0
22	17.1	19.9		Potassium	in meq/L	0.56	0.44	0.51		0	o	0
578	507	580		Sodium	in meq/L	25.14	22.05	25.23		range	range	range
147	129	112		Magnesium	in meq/L	12,10	10.62	9.22	EC/Anion			
361	325	308		Calcium	in meq/L	18.01	16.22	15.37	EC/Cation			
96124	96125	96126		Sample #		96124	96125	96126		96124	96125	96126

Sec. 24.

Strang,

and the second

18 B.

di Stato

24,422

Contraction of the

a March

22.3788

South and

18 5 S

Party Serve

1.2

単語

Analytical Report

Prepared for: Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME H-13 Leak Project Number: None Given Location: T20S-R36E-Sec.13H, Lea County, NM

Lab Order Number: 6J12011

Report Date: 10/24/06

Rice Operating Co. 122 W. Taylor

1

22.5

的。他们是

1. N. 1.

4. 18 Minutes

1. 200

24.00

Pro Carl

「「「「「

Ser State

a state of

4. 4. 4. 10

18. Carlos - 1

1.254. 913

5. 3. 4. A.A

23.00 5

" 3. (3) hit.

· 24.50

Hobbs NM, 88240

Project: EME H-13 Leak Project Number: None Given Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1	6J12011-01	Water	10/09/06 09:05	10-12-2006 16:00
Monitor Well #2	6J12011-02	Water	10/09/06 10:10	10-12-2006 16:00
Monitor Well #3	6 J1 2011-03	Water	10/09/06 11:20	10-12-2006 16:00

.

Page 1 of 10

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Pr Project Nu Project Ma	oject: EME mber: None nager: Krist	e Given				Fax: (505) 3	97-1471
		Orį	ganics by	GC					
		Environn	ental La	b of Te	xas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
Monitor Well #1 (6J12011-01) Water									
Benzene	ND	0.00100	mg/L	1	EJ61407	10/14/06	10/15/06	EPA 8021B	
Foluene	ND	0.00100		"	"	n	*	2 u	
Ethylbenzene	ND	0.00100	N	"	"		**	"	
Xylene (p/m)	ND	0.00100	"		н	п	н	н	
Xylene (o)	ND	0.00100	"	"	"	R	"	"	
Surrogate: a,a,a-Trifluorotoluene		83.5 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.8 %	80-12	20	"	"	"	11	
Monitor Well #2 (6J12011-02) Water									
Benzene	ND	0.00100	mg/L	1	EJ61407	10/14/06	10/16/06 .	EPA 8021B	
Foluene	ND	0.00100	"	н	н	"	н	11	
Ethylbenzene	ND	0.00100	**	"	"	н	n	н	
Xylene (p/m)	ND	0.00100	ч			"	14		
Xylene (o)	ND	0.00100	"	н	"	D	**	"	,
Surrogate: a,a,a-Trifluorotoluene		82.0 %	80-12	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		95.8 %	80-12	20	"	"	"	"	
Monitor Well #3 (6J12011-03) Water									
Benzene	ND	0.00100	mg/L	1	EJ61407	10/14/06	10/16/06	EPA 8021B	
Toluene	ND	0.00100	н		"	"	u	"	
Ethylbenzene	ND	0.00100	"	"	11	н	Ħ	11	
•	ND	0.00100	и	н	"	"	Ш	н	
Xylene (p/m)						11	ц	u	
Xylene (p/m) Xylene (o)	ND	0.00100		n					
	ND	0.00100 81.8 %	80-1.		н	 n	"	н	

Environmental Lab of Texas

.

S. S. S. W.

States.

Sec. 1

Mary Cal

N.S. AL

2,2000

いたがい

2000

S. Salara

State of

South States

State of the

いたので

Salar Vi

the states

A STA

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

,

Page 2 of 10

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

to de transition

226973

C. Market S.

1000

0 B 4 C 2 C

and a set

A COLORAD

100

Destrong

ARE SAL

States.

S. B. Mary

Sales and

854264 St

1.200

Project: EME H-13 Leak Project Number: None Given , Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 (6J12011-01) Water									٠
Total Alkalinity	242	2.00	mg/L	1	EJ61311	10/13/06	10/13/06	EPA 310.1M	
Chloride	1430	25.0	"	50	EJ61403	10/19/06	10/19/06	EPA 300.0	
Total Dissolved Solids	3260	10.0	11	1	EJ61404	10/14/06	10/15/06	EPA 160.1	
Sulfate	308	25.0	"	50	EJ61403	10/19/06	10/19/06	EPA 300.0	
Monitor Well #2 (6J12011-02) Water								· · · · · ·	
Total Alkalinity	222	2.00	mg/L	1	EJ61311	i0/13/06	10/13/06	EPA 310.1M*	
Chloride	1430	25.0		50	EJ61403	10/19/06	/ 10/19/06	EPA 300.0	
Total Dissolved Solids	3720	10.0	"	1	EJ61404	10/14/06	10/15/06	EPA 160.1	
Sulfate	284	25.0	"	50	EJ61403	10/19/06	10/19/06	EPA 300.0	
Monitor Well #3 (6J12011-03) Water									
Total Alkalinity	238	2.00	mg/L	1	EJ61311	10/13/06	10/13/06	EPA 310.1M	
Chloride	1380	25.0	н	50	EJ61403	10/19/06	10/19/06	EPA 300.0	
Total Dissolved Solids	2990	10.0		1	EJ61404	10/14/06	10/15/06	EPA 160.1	
Sulfate	393	25.0	"	50	EJ61403	10/19/06	10/19/06	EPA 300.0	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240		Project Nu	mber: No	/IE H-13 Lea one Given istin Farris-I				Fax: (505) 3	97-1471
	Tot	al Metals by Environn				ls			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Monitor Well #1 (6J12011-01) Water									
Calcium	331	. 4.05	mg/L	50	EJ61604	10/13/06	10/16/06	EPA 6010B	
Magnesium	148	1.80		и		**		11	
			"					и	

250

50

11

10

250

50

..

10

250

EJ61604

..

..

EJ61604

.,

11

10/13/06

0

...

10/13/06

11

...

10/16/06

n

...

10/16/06

...

н

...

EPA 6010B

11 12

EPA 6010B

••

,,

н

10.8

4.05

1.80

0.600

10.8

4.05

1.80

0.600

10.8

mg/L

п

...

13

mg/L

...

п

**

488

288

130

11.8

457

270

127

14.2

500

Environmental Lab of Texas

a the set

Strates

ALC: NO

語影的

Solution and

84. A.M.

10.000

Sav Sun

R. S. S.

ないない

target.

調査会

Sodium

Calcium

Magnesium

Potassium

Sodium

Calcium

Magnesium

Potassium

Sodium

Monitor Well #2 (6J12011-02) Water

Monitor Well #3 (6J12011-03) Water

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 4 of 10

Organics by GC - Quality Control Environmental Lab of Texas Analyte Reporting Limit Spike Units Source Result Source Level Source Result Spike Level Source Result Source Result Spike Level Source Result Spike Source Source Result Spike Level Source Result Spike Spike Source Result Spike Level Source Result Spike Spike Spike Result Spike Spike) 397-147
Result Result Spike Source Anajyte Result Limit Units Level Result %REC Batch E.J61407 - EPA S030C (GC) Binn (EJ61407 - EPA S030C (GC) Prepared: 10/14/06 Analyzed: 1 Binn (EJ61407 - EPA S030C (GC) Prepared: 10/14/06 Analyzed: 1 Benzene ND 0.00100 " K Folgene ND 0.00100 " K Sylenc (p(n) ND 0.00100 " K Sylenc (p(n) ND 0.00100 " K K Surrogate: a.a.Trifluorotolucine 33.5 ug / 40.0 83.8 Surrogate: 4.Bromofluorobetraene 35.0 " 40.0 83.8 Surrogate: 4.Bromofluorobetraene 0.0451 0.00100 mg/L 0.0500 86.0 Ethylbenzene 0.0451 0.00100 " 0.0500 86.0 Surrogate: a.a.Trifluorotolucine 34.4 ug / 40.0 <t< th=""><th></th><th></th><th></th><th></th></t<>				
Analyte Result Limit Units Level Result %REC Batch EJ61407 - EPA 5030C (GC) Blank (EJ61407-BLK1) Prepared: 10/14/06 Analyzed: 1 Benzene ND 0.00100 "mg/L Image: 1 Analyzed: 1 Benzene ND 0.00100 " Image: 1 Mail (Mail (Mai				
Batch EJ61407 - EPA 5030C (GC) Blank (EJ61407-BLK1) Prepared: 10/14/06 Analyzed: 1 Benzene ND 0.00100 mg/L Toluene ND 0.00100 " Edhylbenzene ND 0.00100 " Xylene (p/m) ND 0.00100 " Xylene (o) ND 0.00100 " Surrogate: a.a.a-Trifluorotaduene 33.5 ug/l 40.0 83.8 Surrogate: a.a.a-Trifluorotaduene 33.5 ug/l 40.0 87.5 LCS (EJ61407-BS1) Prepared: 10/14/06 Analyzed: 1 Benzene 0.0451 0.00100 " 90.2 Toluene 0.0451 0.00100 "g/l 0.0500 86.0 Styrogate: a.a.a-Trifluorotaduene 34.4 ug/l 40.0 92.9 Xylene (p/m) 0.0929 0.0100 "g/l 86.0 Sturrogate: a.a.a-Trifluorotaduene 34.4 ug/l 40.0 86.0 Sturrogate: a.a.a-Trifluorotaduene 34.1 "g/l 90.0 86.0	%REC Limits	RPD	RPD Limit	Notes
Blank (EJ61407-BLK1) Prepared: 10/14/06 Analyzed: 1 Benzene ND 0.00100 mg/L Toluene ND 0.00100 " Ethylbenzene ND 0.00100 " Xylene (p/m) ND 0.00100 " Xylene (o) ND 0.00100 " Surrogate: a.a.aTriftuarotoluene 33.5 ug / 40.0 83.8 Surrogate: -Bromofluorobenzene 35.0 " 40.0 87.5 LCS (EJ61407-BS1) Prepared: 10/14/06 Analyzed: 1 80.0 90.2 70.0 86.0 Ethylbenzene 0.0451 0.00100 " 0.0500 86.0 Styrengete: a.a.aTriftuarotoluene 0.0513 0.00100 " 0.0500 86.0 Ethylbenzene 0.0513 0.00100 " 0.0500 86.6 Styrengete: a.a.aTriftuarotoluene 37.4 ug/1 40.0 86.0 Styrengete: da.a.aTriftuarotoluene 37.4 ug/1 50.0 84.6 Styrengete: da.a.aTriftuar				
Benzene ND 0.00100 mg/L Toluene ND 0.00100 " Ethylbenzene ND 0.00100 " Xylene (p/m) ND 0.00100 " Starrogate: a.a.a. Triffuoratoluene 33.5 ug / 40.0 83.8 Starrogate: 4-Bromofluorobenzene 35.0 " 40.0 87.5 LCS (EJ61407-BS1) Prepared: 10/14/06 Analyzed: 1 Benzene 0.0451 0.00100 " 90.2 Toluene 0.0430 0.00100 " 0.0500 86.0 Ethylbenzene 0.0513 0.00100 " 0.0500 86.0 Starrogate: a.a.a. Triffuoronoluene 31.4 ugr/1 0.0500 86.0 Ethylbenzene 0.0500 84.6 Starrogate: a.a.a. Triffuoronoluene 31.4 ugr/1 40.0 86.0 Starrogate: 4-Bromofluorobenzene 43.8 " 40.0 100 Starrogate: 4-Bromofluorobenzene 31.4 ugr/1 50.0 86.0 Starrogate: 4-Bro	0/15/06			
Toluene ND 0.00100 " Ethylbenzene ND 0.00100 " Xylene (p/m) ND 0.00100 " Xylene (o) ND 0.00100 " Surrogate: a.a.a.Trifluoroioluene 33.5 ug / 40.0 83.8 Surrogate: 4-Bromofluorohenzene 35.0 " 40.0 87.5 LCS (EJ61407-BS1) Prepared: 10/14/06 Analyzed: 1 1 Benzene 0.0451 0.00100 mg/L 0.0500 90.2 Toluene 0.0430 0.00100 " 0.0500 86.0 Ethylbenzene 0.0513 0.00100 " 0.0500 103 Xylene (o) 0.0423 0.00100 " 0.0500 86.0 Surrogate: a.a.aTrifluoronoluene 34.4 ug/L 40.0 86.0 Surrogate: 4-Bromofluorohenzene 43.8 " 40.0 110 Calibration Check (EJ61407-CCV1) Prepared: 10/14/06 Analyzed: 1 10 Benzene 49.9 ug/L 50.0 86.2 Ethylbenzene				
Ethylbenzene ND 0.00100 " Xylene (p/m) ND 0.00100 " Xylene (o) ND 0.00100 " Surrogate: a,a,a-Triftuorotoluene 33.5 ng/ 40.0 83.8 Surrogate: 4-Bromofluorohenzene 35.0 " 40.0 87.5 LCS (EJ61407-BS1) Prepared: 10/14/06 Analyzed: 1 8 Benzene 0.0451 0.00100 " 0.0500 90.2 Toluene 0.0430 0.00100 " 0.0500 86.0 Ethylbenzene 0.0513 0.00100 " 0.0500 86.0 Styrogate: a,a,a-Trifluorotoluene 34.4 ug/ 40.0 86.0 Sturrogate: -Bromofluorobenzene 43.8 " 40.0 110 Calibration Check (EJ61407-CCV1) Prepared: 10/14/06 Analyzed: 1 Benzene 49.9 ug/1 50.0 86.2 Ethylbenzene 42.0 " 50.0 86.2 Ethylbenzene 43.1 <t< td=""><td></td><td></td><td></td><td></td></t<>				
ND 0.00100 " Xylene (p/m) ND 0.00100 " Surrogate: a,a,a-Triffuorotoluene 33.5 ug / 40.0 83.8 Surrogate: 4-Bromofluorobenzene 35.0 " 40.0 87.5 LCS (EJ61407-BS1) Prepared: 10/14/06 Analyzed: 1 Benzene 0.0451 0.00100 mg/L 0.0500 90.2 Toluene 0.0430 0.00100 " 0.0500 86.0 Ethylbenzene 0.0513 0.00100 " 0.0500 86.0 Surrogate: a,a,a-Triffuorotoluene 3.4.4 ug/T 40.0 92.9 Xylene (o) 0.0423 0.00100 " 0.0500 86.0 Surrogate: a,a,a-Triffuorotoluene 34.4 ug/T 40.0 110 Calibration Check (EJ61407-CCV1) Prepared: 10/14/06 Analyzed: 1 Benzene 49.9 ug/T 50.0 86.0 Xylene (o) 41.2 " 50.0 86.2 Ethylbenzene 43.1				
Nytene (b) ND 0.00100 Surrogate: a,a,a-Trifluorotoluene 33.5 ug / 40.0 83.8 Surrogate: 4-Bromofluorobenzene 35.0 " 40.0 87.5 LCS (EJ61407-BS1) Prepared: 10/14/06 Analyzed: 1 10/14/06 Analyzed: 1 Benzene 0.0451 0.00100 mg/L 0.0500 90.2 Toluene 0.0513 0.00100 " 0.0500 86.0 Ethylbenzene 0.0513 0.00100 " 0.0500 86.0 Surrogate: a,a,a-Trifluorotoluene 34.4 ug/L 40.0 86.0 Surrogate: 4-Bromofluorobenzene 43.8 " 40.0 86.0 Surrogate: 4-Bromofluorobenzene 43.4 ug/L 40.0 86.0 Surrogate: 4-Bromofluorobenzene 43.1 " 50.0 86.2 Ethylbenzene 42.0 " 50.0 86.2 Ethylbenzene 42.0 " 50.0 84.0 Xylene (o) 41.2 " 50.0 <td></td> <td></td> <td></td> <td></td>				
Surrogate: +-Bromofluorohenzene 35.0 40.0 87.5 LCS (EJ61407-BS1) Prepared: 10/14/06 Analyzed: 1 Benzene 0.0451 0.00100 mg/L 0.0500 90.2 Toluene 0.0430 0.00100 mg/L 0.0500 86.0 Ethylbenzene 0.0513 0.00100 " 0.0500 103 Xylene (p/m) 0.0929 0.00100 " 0.0500 84.6 Surrogate: a,a,a-Trifluorotoluene 34.4 ug/l 40.0 86.0 Surrogate: 4-Bromofluorohenzene 43.8 " 40.0 110 Calibration Check (EJ61407-CCV1) Prepared: 10/14/06 Analyzed: 1 Benzene 49.9 ug/l 50.0 84.0 Xylene (p/m) 83.7 " 100 83.7 Toluene (o) 41.2 " 50.0 84.0 Xylene (p/m) 83.7 " 100 83.7 Surrogate: a,a,a-Trifluorotohuene 36.1 " 40.0 90.2				
Surragate: 4-Bromofluorohenzene 35.0 40.0 87.5 LCS (EJ61407-BS1) Prepared: 10/14/06 Analyzed: 1 Benzene 0.0451 0.00100 mg/L 0.0500 90.2 Toluene 0.0430 0.00100 mg/L 0.0500 86.0 Ethylbenzene 0.0513 0.00100 0.0500 103 Xylene (p/m) 0.0929 0.00100 0.0500 84.6 Surragate: a, a, a-Trifluorotoluene 34.4 ug/l 40.0 86.0 Surragate: 4-Bromofluorobhenzene 43.8 " 40.0 86.2 Calibration Check (EJ61407-CCV1) Prepared: 10/14/06 Analyzed: 1 Benzene 49.9 ug/l 50.0 84.0 Xylene (p/m) 83.7 " 100 83.7 Xylene (p/m) 83.7 " 40.0 85.8 Surragate: a, a, a-Trifluorotohuene 36.1 " 40.0 85.2 Surragate: (p/m) 83.7 " 100 83.7 Xylene (p/m)	80-120	. <u> </u>		
Benzene 0.0451 0.00100 mg/L 0.0500 90.2 Toluene 0.0430 0.00100 " 0.0500 86.0 Ethylbenzene 0.0513 0.00100 " 0.0500 103 Xylene (p/m) 0.0929 0.00100 " 0.100 92.9 Xylene (o) 0.0423 0.00100 " 0.0500 84.6 Surragate: a.a.a.Trifluorotoluene 34.4 ug/l 40.0 86.0 Surragate: 4.Bornoffluorobenzene 43.8 " 40.0 110 Calibration Check (EJ61407-CCV1) Prepared: 10/14/06 Analyzed: 1 Benzene 49.9 ug/l 50.0 86.2 Ethylbenzene 42.0 " 50.0 86.2 Ethylbenzene 42.0 " 50.0 84.0 Xylene (p/m) 83.7 " 100 83.7 Xylene (p/m) 83.7 " 0.0 82.4 Surragate: a.a.a.Trifluorotoluene	80-120			
Toluene 0.0430 0.00100 " 0.0500 86.0 Ethylbenzene 0.0513 0.00100 " 0.0500 103 Xylene (p/m) 0.0929 0.00100 " 0.100 92.9 Xylene (o) 0.0423 0.00100 " 0.0500 84.6 Surrogate: a,a,a-Trifluorotoluene 34.4 ug/l 40.0 86.0 Surrogate: 4-Bromofluorobenzene 43.8 " 40.0 110 Calibration Check (EJ61407-CCV1) Prepared: 10/14/06 Analyzed: 1 Benzene 49.9 ug/l 50.0 86.2 Ethylbenzene 42.0 " 50.0 86.2 Ethylbenzene 42.0 " 50.0 84.4 Surrogate: a,a,a-Trifluorotoluene 33.7 " 100 83.7 Xylene (o) 41.2 " 50.0 82.4 Surrogate: a,a,a-Trifluorotoluene 36.1 " 40.0 90.2 Surrogate: 4-Bromofluorobenzene 34.3 " 40.0 85.8 Matrix Spike (EJ61407-MS1) Source: 6J12015-01 Pr	0/15/06			
Induct 0.0513 0.00100 0.0500 103 Ethylbenzene 0.0513 0.00100 0.0500 103 Xylene (p/m) 0.0929 0.00100 0.100 92.9 Xylene (o) 0.0423 0.00100 0.0500 84.6 Surrogate: a,a,a-Trifluorotoluene 34.4 ug/l 40.0 86.0 Surrogate: 4-Bromofluorobenzene 43.8 " 40.0 110 Calibration Check (EJ61407-CCV1) Prepared: 10/14/06 Analyzed: 1 Benzene 49.9 ug/l 50.0 86.2 Ethylbenzene 42.0 " 50.0 86.2 Ethylbenzene 42.0 " 50.0 82.4 Xylene (p/m) 83.7 " 100 83.7 Xylene (o) 41.2 " 50.0 82.4 Surrogate: a,a,a-Trifluorotoluene 36.1 " 40.0 90.2 Surrogate: +-Bromofluorobenzene 34.3 " 40.0 85.8 Matrix Spike (EJ61407-MS1) Source: 6J12015-01 Prepared: 10/14/06 Analyzed: 1 Benzene	80-120			
Nylene (p/m) 0.0929 0.00100 " 0.100 92.9 Xylene (o) 0.0423 0.00100 " 0.0500 84.6 Surrogate: a,a,a-Triffuorotoluene 34.4 ug/t 40.0 86.0 Surrogate: 4-Bromofluorobenzene 43.8 " 40.0 110 Calibration Check (EJ61407-CCV1) Prepared: 10/14/06 Analyzed: 1 Benzene 49.9 ug/t 50.0 99.8 Toluene 43.1 " 50.0 86.2 Ethylbenzene 42.0 " 50.0 84.0 Xylene (p/m) 83.7 " 100 83.7 Surrogate: a,a,a-Triffuorotoluene 36.1 " 40.0 82.4 Surrogate: a,a,a-Triffuorotoluene 36.1 " 40.0 85.8 Surrogate: a,a,a-Triffuorotoluene 36.1 " 40.0 85.8 Matrix Spike (EJ61407-MS1) Source: 6J12015-01 Prepared: 10/14/06 Analyzed: 1 Benzene 0.0501 0.00100 mg/L 0.0500 ND 100	80-120			
Xylene (o) 0.0423 0.00100 0.0500 84.6 Surrogate: a,a,a-Trifluorotoluene 34.4 ugrl 40.0 86.0 Surrogate: 4-Bromofluorobenzene 43.8 " 40.0 110 Calibration Check (EJ61407-CCV1) Prepared: 10/14/06 Analyzed: 1 Benzene 49.9 ugrl 50.0 99.8 Toluene 43.1 " 50.0 86.2 Ethylbenzene 42.0 " 50.0 84.6 Xylene (p/m) 83.7 " 100 83.7 Xylene (o) 41.2 " 50.0 82.4 Surrogate: a,a,a-Trifluorotoluene 36.1 " 40.0 90.2 Surrogate: 4-Bromofluorobenzene 36.3 " 40.0 85.8 Matrix Spike (EJ61407-MS1) Source: 6J12015-01 Prepared: 10/14/06 Analyzed: 1 Benzene 0.0501 0.00100 mg/L 0.0500 ND 100	80-120	•		
Surrogate: a,a,a-Trifluorotoluene 34.4 ug/l 40.0 86.0 Surrogate: 4-Bromofluorobenzene 43.8 " 40.0 110 Calibration Check (EJ61407-CCV1) Prepared: 10/14/06 Analyzed: 1 Benzene 49.9 ug/l 50.0 99.8 Toluene 43.1 " 50.0 86.2 Ethylbenzene 42.0 " 50.0 84.0 Xylene (p/m) 83.7 " 100 83.7 Surrogate: a,a,a-Trifluorotoluene 36.1 " 40.0 90.2 Surrogate: a,a,a-Trifluorotoluene 36.3 " 40.0 85.8 Matrix Spike (EJ61407-MS1) Source: 6J12015-01 Prepared: 10/14/06 Analyzed: 1 Benzene 0.0501 0.00100 mg/L 0.0500 ND 100	80-120			
Surrogate: 4-Bromofluorobenzene 43.8 " 40.0 110 Calibration Check (EJ61407-CCV1) Prepared: 10/14/06 Analyzed: 1 Benzene 49.9 ug/1 50.0 99.8 Toluene 43.1 " 50.0 86.2 Ethylbenzene 42.0 " 50.0 84.0 Xylene (p/m) 83.7 " 100 83.7 Xylene (o) 41.2 " 50.0 82.4 Surrogate: a,a,a-Triffuorotoluene 36.1 " 40.0 90.2 Surrogate: +-Bromofluorobenzene 34.3 " 40.0 85.8 Matrix Spike (EJ61407-MS1) Source: 6J12015-01 Prepared: 10/14/06 Analyzed: 1 Benzene 0.0501 0.00100 mg/L 0.0500 ND 100	80-120			
Calibration Check (EJ61407-CCV1) Prepared: 10/14/06 Analyzed: 1 Benzene 49.9 ug/l 50.0 99.8 Toluene 43.1 " 50.0 86.2 Ethylbenzene 42.0 " 50.0 84.0 Xylene (p/m) 83.7 " 100 83.7 Xylene (o) 41.2 " 50.0 82.4 Surrogate: a,a,a-Triffuorotoluene 36.1 " 40.0 90.2 Surrogate: 4-Bromofluorohenzene 34.3 " 40.0 85.8 Matrix Spike (EJ61407-MS1) Source: 6J12015-01 Prepared: 10/14/06 Analyzed: 1 Benzene 0.0501 0.00100 mg/L 0.0500 ND 100	80-120			
Benzene 49.9 ug/l 50.0 99.8 Toluene 43.1 " 50.0 86.2 Ethylbenzene 42.0 " 50.0 84.0 Xylene (p/m) 83.7 " 100 83.7 Xylene (o) 41.2 " 50.0 82.4 Surragate: a,a,a-Triffuorotoluene 36.1 " 40.0 90.2 Surragate: 4-Bromofluorobenzene 34.3 " 40.0 85.8 Matrix Spike (EJ61407-MS1) Source: 6J12015-01 Prepared: 10/14/06 Analyzed: 1 Benzene 0.0501 0.00100 mg/L 0.0500 ND 100	80-120			
Toluene 43.1 " 50.0 86.2 Ethylbenzene 42.0 " 50.0 84.0 Xylene (p/m) 83.7 " 100 83.7 Xylene (o) 41.2 " 50.0 82.4 Surrogate: a,a,a-Triffuorotoluene 36.1 " 40.0 90.2 Surrogate: 4-Bromofluorobenzene 34.3 " 40.0 85.8 Matrix Spike (EJ61407-MS1) Source: 6J12015-01 Prepared: 10/14/06 Analyzed: 1 Benzene 0.0501 0.00100 mg/L 0.0500 ND 100	0/17/06			
Ethylbenzene 42.0 " 50.0 84.0 Xylene (p/m) 83.7 " 100 83.7 Xylene (o) 41.2 " 50.0 82.4 Surrogate: a,a,a-Triffuorotoluene 36.1 " 40.0 90.2 Surrogate: 4-Bromofluorohenzene 34.3 " 40.0 85.8 Matrix Spike (EJ61407-MS1) Source: 6J12015-01 Prepared: 10/14/06 Analyzed: 1 Benzene 0.0501 0.00100 mg/L 0.0500 ND 100	80-120			
Xylene (p/m) 83.7 " 100 83.7 Xylene (o) 41.2 " 50.0 82.4 Surrogate: a, a, a-Triffuorotoluene 36.1 " 40.0 90.2 Surrogate: 4-Bromofluorohenzene 34.3 " 40.0 85.8 Matrix Spike (EJ61407-MS1) Source: 6J12015-01 Prepared: 10/14/06 Analyzed: 1 Benzene 0.0501 0.00100 mg/L 0.0500 ND 100	80-120			
Xylene (o) 41.2 " 50.0 82.4 Surragate: a,a,a-Trifluorotoluene 36.1 " 40.0 90.2 Surragate: 4-Bromofluorobenzene 34.3 " 40.0 85.8 Matrix Spike (EJ61407-MS1) Source: 6J12015-01 Prepared: 10/14/06 Analyzed: 1 Benzene 0.0501 0.00100 mg/L 0.0500 ND 100	80-120			
Surragate: a,a,a-Trifluorotoluene 36.1 " 40.0 90.2 Surragate: 4-Bromofluorobenzene 34.3 " 40.0 85.8 Matrix Spike (EJ61407-MS1) Source: 6J12015-01 Prepared: 10/14/06 Analyzed: 1 Benzene 0.0501 0.00100 mg/L 0.0500 ND 100	80-120			
Surrogate: 4-Bromofluorobenzene 34.3 " 40.0 85.8 Matrix Spike (EJ61407-MS1) Source: 6J12015-01 Prepared: 10/14/06 Analyzed: 1 Benzene 0.0501 0.00100 mg/L 0.0500 ND 100	80-120			
Matrix Spike (EJ61407-MS1) Source: 6J12015-01 Prepared: 10/14/06 Analyzed: 1 Benzene 0.0501 0.00100 mg/L 0.0500 ND 100	80-120		•	
Benzene 0.0501 0.00100 mg/L 0.0500 ND 100	80-120			
	0/17/06			
	80-120			
	80-120			
Ethylbenzene 0.0416 0.00100 " 0.0500 ND 83.2	80-120			
Xylene (p/m) 0.0914 0.00100 " 0.100 ND 91.4	80-120			
Xylene (o) 0.0427 0.00100 " 0.0500 ND 85.4	80-120			
Surrogate: a,a-Trifluorotoluene 35.5 ug l 40.0 88.8 Surrogate:	80-120			

Environmental Lab of Texas

and the second

Calification

States of

100

Salar Salar

の変に、

and the second

State of the second

COLORER V

B.3.2.2

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Page 5 of 10

	Rice Operating Co.	,	Project: EN	ME H-13 Leak	Fax: (505) 397-1471
ļ	122 W. Taylor		Project Number: No	one Given	
	Hobbs NM, 88240		Project Manager: Kr	ristin Farris-Pope	

Organics by GC - Quality Control

Environmental Lab of Texas

				-					
	Reporting		Spike	Source		%REC		RPD	
Analyte Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EJ61407 - EPA 5030C (GC)

19 N

Matrix Spike Dup (EJ61407-MSD1)	Sour	rce: 6J12015-0	D1	Prepared: 1	0/14/06 A	nalyzed: 10	0/17/06		
Benzene	0.0502	0.00100	mg/L	0.0500	ND	100	80-120	0.00	20
Toluene	0.0442	0.00100	н	0.0500	ND	88.4	80-120	0.454	20
Ethylbenzene	0.0412	0.00100	п	0.0500	ND	82.4	80-120	0.966	20
Xylene (p/m)	0.0913	0.00100	"	0.100	ND	91.3	80-120	0.109	20
Xylene (o)	0.0437	0.00100	н	0.0500	ND	87.4	80-120	2.31	-20
Surrogate: a,a,a-Trifluorotoluene	35.4		ug4	40.0	•••···	88.5	80-120		
Surrogate: 4-Bromofluorobenzene	41.0		"	40.0		102	80-120		

Environmental Lab of Texas

à.cer.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 6 of 10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Rice Operating Co.	Project: EME H-13 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

]	Environm	ental I	Lab of Tex	xas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EJ61311 - General Preparation (V	VetChem)									
Blank (EJ61311-BLK1)				Prepared &	Analyzed:	10/13/06			-	
Total Alkalinity	ND	2.00	mg/L			·····				
Carbonate Alkalinity	ND	0.100	N							
Bicarbonate Alkalinity	ND	2.00	"							
Hydroxide Alkalinity	ND	0.100	"							
LCS (EJ61311-BS1)				Prepared:	10/13/06 A	nalyzed: 10	/20/06			
Bicarbonate Alkalinity	196	2.00	mg/L	200		98.0	85-115	_	•	
Duplicate (EJ61311-DUP1)	Sour	ce: 6J12011-(D1	Prepared &	k Analyzed:	10/13/06				
Total Alkalinity	238	2.00	mg/L		242			1.67	. 20	
Reference (EJ61311-SRM1)				Prepared 8	2 Analyzed:	10/13/06				
Total Alkalinity	250		mg/L	250		100	90-110			
Batch EJ61403 - General Preparation (V	VetChem)									
Blank (EJ61403-BLK1)				Prepared 8	k Analyzed:	10/19/06				
Sulfate	ND	0.500	mg/L		<u> </u>					
Chloride	ND	0.500	"							
LCS (EJ61403-BS1)				Prepared &	k Analyzed:	10/19/06				
Sulfate	9.55	0.500	mg/L	10.0		95.5	80-120			
Chloride	9.62	0.500	"	10.0		96.2	80-120			
Calibration Check (EJ61403-CCV1)				Prepared &	& Analyzed:	10/19/06				
Chloride	10.5		mg/L	10,0		105	80-120			
Sulfate	10.1			10.0		101	80-120			

Environmental Lab of Texas

100 Area

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 7 of 10

Rice Operating Co.	Project: EME H-13 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number: None Given	
Hobbs NM, 88240	Project Manager: Kristin Farris-Pope	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	·
Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	KPD Limit	Notes
Batch EJ61403 - General Preparation (Wet	Chem)									
Duplicate (E.J61403-DUP1)	Sou	irce: 6J12011-(01	Prepared &	Analyzed:	10/19/06				
Chloride	1430	25.0	mg/L		1430			0.00	20	
Sulfate	291	25.0	**		308			5,68	20	
Duplicate (EJ61403-DUP2)	Sou	irce: 6J12016-0	02	Prepared &	Analyzed:	10/19/06				
Chloride	690	12.5	ing/L		692			0.289	20	
Sulfate	236	12.5	"		237			0.423	20	
Matrix Spike (EJ61403-MS1)	Sou	rce: 6J12011-0	01	Prepared &	Analyzed:	10/19/06				
Sulfate	781	25,0	mg/L	500	308	94.6	80-120			
Chloride	2040	25.0	ч	500	1430	122	80-120			S-0
Matrix Spike (EJ61403-MS2)	Source: 6J12016-02		Prepared & Analyzed: 10/19/06							
Chloride	979	12.5	ıng/L	250	692	115	80-120			· · · · · · · · · · · · · · · · · · ·
Sulfate	476	12.5	"	250	237	95.6	80-120			
Batch EJ61404 - Filtration Preparation									*.	
Blank (EJ61404-BLK1)				Prepared:	10/14/06 A	nalyzed: 10)/15/06			
Total Dissolved Solids	ND	10.0	ing/L							
Duplicate (EJ61404-DUP1)	Sou	ırce: 6J12011-(01	Prepared:	10/14/06 A	nalyzed: 10)/15/06			
Total Dissolved Solids	3380	10.0	mg/L		3260			3.61	5	
Duplicate (EJ61404-DUP2)	Soi	irce: 6J12016-	02	Prepared:	10/14/06 A	nalyzed: 10	0/15/06			
Total Dissolved Solids	1850	10.0	mg/L		1900			2.67	5	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Operating Co.	Project:	EME H-13 Leak	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	
Hobbs NM, 88240	Project Manager:	Kristin Farris-Pope	

Total Metals by EPA / Standard Methods - Quality Control

.

Environmental Lab of Texas

		Reporting		Spike	Source	MDD0	%REC	000	RPD	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EJ61604 - 6010B/No Digestion										
Blank (EJ61604-BLK1)				Prepared:	10/13/06 A	nalyzed: 10)/16/06			
Calcium .	ND	0.0810	mg/L				· · · ·			
Magnesium	ND	0.0360	н							
Potassium	ND	0.0600	н							
Sodium	ND	0.0430	н							
Calibration Check (EJ61604-CCV1)				Prepared:	10/13/06 A	nalyzed: 10)/16/06			
Calcium	1.99		mg/L	2.00		99.5	85-115			
Magnesium	2.20		"	2.00		110	85-115			
Potassium	1.94		"	2.00		97.0	85-115			
Sodium	1.79		"	2.00		89.5	85-115			
Duplicate (EJ61604-DUP1)	Sou	irce: 6J12001-	04	Prepared:	10/13/06 A	nalyzed: 10)/16/06			
Calcium	0.426	0.0810	mg/L		0.427			0.234	20	
Magnesium	0.432	0.0360	п		0.422			2.34	20	
Potassium	0.596	0.0600	п		0.582			2.38	20	
Sodium	0.890	0.0430	п		0.866			2.73	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Rice Opera 122 W. Tay Hobbs NM	vlor	Project Number:	EME H-13 Leak None Given Kristin Farris-Pope	Fax: (505) 397-1471
		Notes and De	finitions	
S-07	Recovery outside Laboratory historical or met	thod prescribed limits.		
DET	Analyte DETECTED			
ND	Analyte NOT DETECTED at or above the reporting	g limit		• *
NR	Not Reported			
dry	Sample results reported on a dry weight basis			
RPD	Relative Percent Difference			
LCS	Laboratory Control Spike			
MS	Matrix Spike			

Dup Duplicate

Report Approved By:

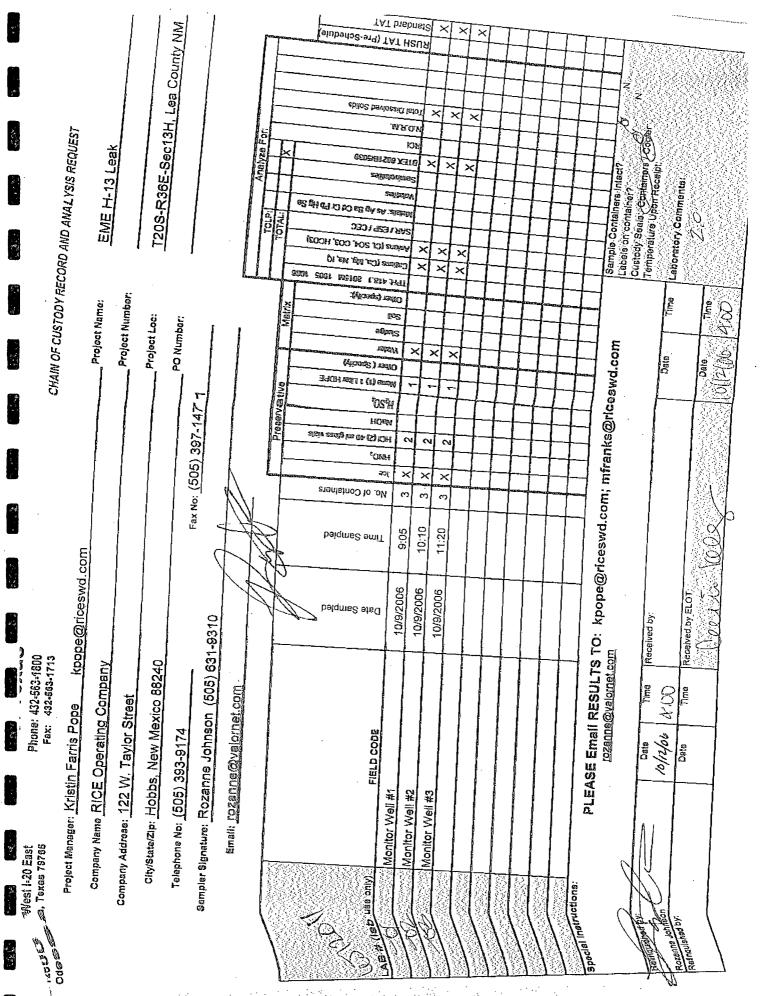
Raland K Julies

10/24/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.


If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 10 of 10

12600 West I-20 East - Odessa, Texas 79705 - (432) 563-1800 - Fax (432) 563-1713

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

t:	Rive Op.
:e/ Time:	10/12/de 4:00
ID # :	6512011
ials:	014

調査部

Sale and

2.1010A

- B. W. S.

Sample Receipt Checklist

t				•	C	lient Initials
	~~~~	Temperature of container/ cooler?	Yes	No	2.0 °C	
(Celler)		Shipping container in good condition?	(X-es	No		
	<b>_</b>	Custody Seals intact on shipping container/ cooler?	Jes	No	Not Present	
		Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
	i	Chain of Custody present?	Yes	No		
	;	Sample instructions complete of Chain of Custody?		No		
	,	Chain of Custody signed when relinquished/ received?	Yes	No		
1	3	Chain of Custody agrees with sample label(s)?	Xess	No	ID written on Cont./ Lid	
	}	Container label(s) legible and intact?	Ves	No	Not Applicable	
	10	Sample matrix/ properties agree with Chain of Custody?	Yes	No		
<b>1</b>	11	Containers supplied by ELOT?	Yes	No		
	12	Samples in proper container/ bottle?	Yes	No	See Below	
	13	Samples properly preserved?	Yes	No	See Below	
	14	Sample bottles intact?	Yes	No		
A COLUMN TO LOOK	15	Preservations documented on Chain of Custody?	Yes	No		
1999) 1997	16	Containers documented on Chain of Custody?	YES	No		· ·
	17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
	18		Yes	No	See Below	
	:19	VOC samples have zero headspace?	Yes	No	Not Applicable	

# Variance Documentation

Contact:	C	ontacted by:	Date/ Ti	ime:	
Regarding:			· · · · · · · · · · · · · · · · · · ·		
· · ·		·			
Corrective Action Taker	):				
		·			
			·		
Check all that Apply:	See a	attached e-mail/ fax			
		t understands and would like			,
	Cooli	ing process had begun shortly	/ after sampling event		