1R - 411

WORK PLAN

DATE: JULY 2006

1R-411 Work Plan July 2006

August 11, 2006

Mr. Ben Stone State of New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Plains Pipeline, L.P. Document Submittal Clay Osborn Ranch – Jalmat #1 Clay Osborn Ranch – Jalmat #2 Clay Osborn Ranch – Jalmat #3 Clay Osborn Ranch – Rocky Top #2 Clay Osborn Ranch – Jalmat #22A ✓ Clay Osborn Ranch – East Shell North Jal, Lea County, New Mexico

Dear Mr. Stone:

Plains Pipeline, L.P. (Plains) is pleased to submit the attached Site Investigation Reports and Site-Specific Remediation Work Plans for six of the soil remediation project sites located on the Osborn's Rocky Top Ranch in Jal, Lea County, New Mexico. These documents include the results of an additional soil investigation conducted at the site and the remediation plan are based on the General Remediation Work Plan recently submitted to the New Mexico Oil Conservation Commission (NMOCD) by Plains.

Should you have any questions or comments, please contact me at (713) 646-4657.

Sincerely,

Jéffféy P. Dann, P.G. Sr. Environmental Specialist Plains All American

Attachments: Jalmat #1, #2, #3, #22A, East Shell North and Rocky Top #2, 22B Site Investigation Report and Site-Specific Remediation Work Plans

File: n/jetf-tiles/Osborn-RockyTopRanch/Jalmat-1 CovrLtr.doc

Plains Marketing GP Inc., General Partner

333 Clay Street, Suite 1600 (77002) 🗱 P.O. Box 4648 💭 Houston, Texas 77210-4648 📖 713/646-4100

SITE INVESTIGATION REPORT and SITE-SPECIFIC REMEDIATION WORK PLAN

Clay Osborn Rocky Top Ranch Jalmat 22A Release Site

SW1/4 SW1/4 UL-E, Section 18, Township 25 North, Range 37 East Latitude 32° 7' 58" Latitude North, Longitude 103° 12' 38" West Lea County, New Mexico

PLAINS PIPELINE, L.P. SRS ID: 2000-10614

Prepared For:

Plains Pipeline, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002

Prepared By: SDG Environmental Services 6611 Vialinda, Suite 204 Houston, Texas 77083

July 2006

Kenneth Cody SDG Environmental Services

Table of Contents

S. Z. & Bartes

1000 84

XXXXX

Solution .

A Shara at

Sector .

4. 2. CA

S. Caker

3. 4. 4.

3 F. B.S.

Sec. M. S. S.

- Filling

12.52

With States

湯湯の

Ser a la se

4. 7. C at *

	Tables	
Distri	oution	8
8.0	Limitations	7
7.0	QA/QC Procedures	6
6.0	Recommendations for Remediation	4
5.0	Distribution of Hydrocarbons in the Saturated Zone	4
4.0	Distribution of Hydrocarbons in the Unsaturated Zone	3
3.0	New Mexico Oil Conservation Division (NMOCD) Soil Classification	3
2.0	Summary of Field Activities	2
1.0	Introduction	1

Tables

Table 1:	Soil Sample, Analytical Results Summary May 25, 2006

Figures

Figure 1:	Site Location Map
Figure 2:	Soil Boring Locations
Figure 3:	Estimated Excavation Area and Depths

Appendices

Appendix A:	Environmental Laboratory of Texas Analytical Results
Appendix B:	Soil Boring Log
Appendix C:	EPI July/ August 2000 Soil Sample Results

1.0 INTRODUCTION

248

A. S. San

a and the

S. M.S.

Sec. The

No.

Sala and

100.5

5. 3 . . .

SDG Environmental Services (SDG) was retained by Plains Pipeline, L.P. (Plains) to evaluate historical information, conduct additional investigation, and develop a site-specific remediation work plan for the Clay Osborn Jalmat 22A release site located on the Clay Osborne Rocky Top Ranch in Lea County, New Mexico. Plains is the owner/operator of several pipelines present on the Clay Osborne Rocky Top Ranch located near Jal, New Mexico.

This site is located in Unit Letter-E, in the SW¼ SW ¼ of Section 18, Township 25 North, Range 37 East, approximately 1-mile northwest of Jal, Lea County, New Mexico. A topographic Site Location Map is provided as Figure 1. The latitude is 32° 7' 58" North, and Longitude 103° 12' 38" West. The site is characterized by a pipeline right-of-way in a pasture and an area of surface staining.

The hydrocarbon impacted area is the result of a historical release and the date of the release as well as the volume of crude oil released and recovered is not known. The visually stained area is approximately 23,500 ft². A summary of site activities is provided in Section 2.0

Plains prepared and submitted a General Remediation Work Plan dated April 2006 to address the release sites located on the Rocky Top Ranch. The objective of the General Remediation Work Plan was to remediate crude oil impacted sites at the Rocky Top Ranch, consistent with the remediation/abatement goals and objectives set forth in the New Mexico Oil Conservation Division (NMOCD) "NMOCD Guidelines for Remediation of Leaks, Spills, and Releases, August 13, 1993." The General Remediation Work Plan proposed appropriate risk-based thresholds for contaminates of concern (CoCs) based on relative risk posed by the CoC residuals to local groundwater, area water wells, surface water bodies and impacts on surface reclamation.

The General Remediation Work Plan proposed remediation strategies for sites would be developed under the following three scenarios.

1. Surface Restoration Sites (Scenario 1)

This scenario was developed for sites where investigation data indicates that the surface area has restored itself naturally, the surface expression of the release is difficult to identify, the impacts are limited to the surface and/or shallow soils, and there is no threat to groundwater.

 Total Excavation (Scenario 2) For sites where data indicates that soil impacts are limited in vertical extent (i.e. 10 to 15 feet in depth) and total excavation of the impacted soil is practical. Limited Excavation and Risk-based Closure (scenario 3)
 For sites where data indicates that soil impacts in the source area extend to
 between 10 feet and 45 feet below ground surface (bgs) and excavation of all
 the impacted soil to below NMOCD guidelines is not practical.

The General Remediation Work Plan was conditionally approved by the NMOCD in a letter to Plains dated May 30, 2006.

The soil analytical data in the EPI December 2001 Jalmat #22A Site Investigation Report as well as the visual observations, field photoionization detector (PID) measurement, and soil analytical data from a site investigation conducted in May 2006 by SDG was used in development of this Site Specific Remediation Work Plan.

2.0 SUMMARY OF SITE ACTIVITIES

1000

1. S. C.

10 A.M.

「

a she had

State State

198

Sec. Er

2000 a

and a

On 27 July 2000 through 3 August 2000, initial subsurface horizontal and vertical delineation was conducted by EPI with the installation of twenty-six (26) soil borings installed at the site. Each soil boring was installed to a depth of 15 feet bgs and are identified in Figure 2 as BH-1 through BH-26. Soil samples were collected at depths of 2, 5, 10, and 15 feet bgs field screened with a PID and analyzed for BTEX and TPH-GRO/DRO. Laboratory results indicated that constituent concentrations of BTEX were either below NMOCD regulatory standards or not detected above laboratory results indicated that TPH-GRO/DRO concentrations exceed 100 mg/kg TPH in thirty (30) of the soil samples and the remaining seventy-four (74) soil samples were either below NMCOD regulatory standards or were not detected above the laboratory method detection limits. The highest concentrations were exhibited in samples collected from BH-25 and BH-26. A table summarizing the analytical results from July/August 2000 investigation report is provided in Appendix C.

On 25 May 2006, SDG conducted an additional soil investigation in an effort to determine the vertical extent of impacts at the Clay Osborn Jalmat 22A site. Clay Osborn Jalmat 22A site was identified as an area of stained soils south of the Plains pipeline right-of-way.

One soil boring was installed in the Clay Osborne Jalmat 22A area and is identified in Figure 2 as JM 22A-SB1. Soil Boring JM 22A-SB1 was installed to 25 feet bgs and no groundwater was encountered.

The soil boring was installed by Straub Corporation, Stanton, Texas utilizing an air rotary drill rig. Soil samples were collected at 2 ft, 5 ft, 10 ft, 15 ft, 20 ft, and 25 ft depths using a core sampler. Soil samples were split for headspace analysis to screen for total volatile organic vapor concentrations in soils. A one quart zip-lock bag was filled one-half full of soil and sealed leaving the remainder of the bag filled with air. The sample was allowed to volatilize for five to ten minutes. One end of the bag was opened and the PID probe inserted carefully into the bag and the bag re-

sealed around the probe as much as possible to prevent vapors from escaping. The peak measurement associated with the sample was recorded. The peak PID measurements are provided on the soil boring log included in Appendix B.

3.0 NEW MEXICO OIL CONSERVATION DIVISION (NMOCD) SOIL CLASSIFICATION

The December 8, 2001 Site Investigation Report provided an estimated depth to water at the site of 70 ft bgs. A soil boring installed at a nearby site (Jalmat 22B) (LM22B-SB1) during the May 2006 investigation indicated the depth to water at the site may be greater than 75 ft. Based on the analytical results of soil samples, the hydrocarbon impacted soil extends from the surface to 15 feet bgs, therefore, less than 100 feet of non-impacted soil remains between the last known impacted soil depth and groundwater. The resulting Depth to Groundwater Ranking Score is 10.

The site is greater than 1000 ft from any public water supply source and greater than 200 feet from any private domestic water supply well. The resulting Wellhead Protection Ranking Score is 0.

During remediation activities associated with the Texas-New Mexico Pipeline conducted in the 1990's, a retention basin was constructed to contain runoff from the land farm located east of the site. The retention basin is located approximately 890 ft southwest of the site. At the time of the May 2006 investigation, there was no water in the basin. There are no surface water bodies not constructed as part of remediation within 1000 ft of the site. The resulting Distance to Surface Water Body Ranking Score is 0.

Based on the individual ranking scores identified above, the site has an NMOCD Total Ranking Score of 10 to19, which establish the following remediation levels:

Benzene: 10 mg/kg

1. N. A.

and a

14 M

PART -

A Sec. No.

CC 2. 30

Acres

20242

1.2.2

2.468

BTEX: 50 mg/kg

TPH: 1000 mg/kg

4.0 DISTRIBUTION OF HYDROCARBONS IN THE UNSATURATED ZONE

The estimated area of soils impacted above NMOCD Standards is shown in Figure 3. The area is estimated to be approximately 16,875 square feet. The vertical extent of soils impacted above NMOCD standards based on the data obtained in the 22 May 2006 subsurface sampling is surface to less than 10 feet bgs.

On 25 May 2006, an air rotary drill rig, operated by Straub Corporation, Stanton, Texas, was utilized to delineate the vertical extent of crude oil impacted soil at the site. Soil samples were collected in the subsurface from the soil boring at 5 feet intervals; field screened with a PID and selected soil samples were analyzed for constituent concentrations of BTEX and TPH-GRO/DRO. Laboratory data sheets and chain-of-custody forms are attached (Appendix A). No visual observations of free phase hydrocarbons were encountered during the installation of the soil boring. The soil boring log is provided in Appendix B.

1 . C. B.

1426

6.00

Mar an

011340

2. 28 E . 19

100 Jan

S. March

16.8.22

1000

1.55

Service Service

12 M.A

Soil Boring JM 22A-SB1 was installed adjacent to the location of the historical boring BH-25. This location was selected based on the data provided in the December 2001 Investigation Report which indicated that the impacted soils at this location was not vertically delineated. The soil boring was installed to 25 feet bgs and samples were collected at 2, 5, 10, 15, 20, and, 25 feet bgs, field screened with a PID and submitted for laboratory analysis of TPH GRO/DRO and BTEX. Analytical results indicated that constituent concentrations of BTEX were not detected above the laboratory method detection limits in any of the samples. Analytical results indicated that TPH concentration exceeded the NMOCD standard of 1000 mg/kg at 2 feet bgs (32.4 mg/kg) but did not exceed NMOCD standard of 1000 mg/kg. TPH was not detected above the laboratory detection limits in soil samples collected at 15, 20, and 25 feet bgs.

The extent of hydrocarbon impacted soils has been delineated vertically. Hydrocarbon impacted shallow soils shallower than 10 feet bgs have not been fully delineated to the north of the location of historical soil boring BH-8. However, based on the results of the soil samples collected and analyzed from surrounding soil borings, it is likely that the horizontal impact of shallow soils are limited in extent.

5.0 DISTRIBUTION OF HYDROCARBONS IN THE SATURATED ZONE

No saturated conditions were observed in the boring. Soil boring JM 22A-SB1 was installed to 25 feet bgs and no groundwater was encountered. The depth of hydrocarbon impacted soils above 1000 mg/kg TPH is limited to less than 15 feet bgs. Therefore there is no indication that hydrocarbons from the historical release have impacted the saturated zone.

6.0 RECOMMENDATIONS FOR REMEDIATION

Based on the results of the vertical soil boring investigation conducted at the site, it appears that hydrocarbon impacted soils are present to depths of 5 to 10 feet bgs. Given the NMOCD guideline cleanup standard of 1000 mg/kg TPH, an estimated 5,000 cubic yards of impacted soil and segregated clean overburden will require excavation. Because the horizontal impacts have not been fully defined, delineation samples will be collected commensurate with excavation and/or cleanup confirmation sampling activities.

4

The area with observed staining and where laboratory analytical results indicate that surface impacts do not extend to below 2 feet bgs as defined by soil borings BH6, BH7, and BH10 through BH20 will be addressed under the General Work Plan Scenario 1 involving the following procedures as were outlined under the General Remediation Work Plan and approved by NMOCD in the May 2006 NMOCD approval letter:

General Work Plan Scenario 1

- Scrape the surface asphaltines where apparent and remove;
- Blend the underlying 1 to 2 feet of soil with native soil and contour;
- Do not disturb areas that have already re-vegetated.

Because the impacts greater than 1000 mg/kg TPH are limited in vertical extent (i.e. 5 to 10 feet in depth) as defined by soil borings BH5, BH8, BH9, BH21 through BH24, and JM22A-SB1; these soils will be remediated under the General Work Plan Scenario 2 (Total Excavation) involving the following procedures as were outlined in the approved General Remediation Work Plan and includes NMOCD conditions presented in the May 2006 NMOCD approval letter.

General Work Plan Scenario 2

- Excavation of impacted soil to below site guidelines;
- Collect and analyze soil sample from the walls and floor of the excavation to confirm that the remediation has met site guidelines;
- Relocation of excavated soil to the centralized soil treatment area for blending and aeration;
- Collect and analyze treated soil to confirm that the soil treatment activities have met site guidelines;
- Prepare a risk based closure proposal for submittal and approval by the NMOCD;
- Backfill the excavation with treated soil and restore the area to as close as possible to pre-spill conditions.

Should impacted soils be determined to be limited in extent based on additional delineation samples collected commensurate with excavation activities, the soils may be blended on site and stockpiled adjacent to the excavation pending approval of the NMOCD Project Manager.

Impacted soils above the NMOCD standard have been found to be shallower than 10 feet bgs. However, should areas where vertical hydrocarbon impacted soils extend below 10 feet bgs be determined based on analytical results commensurate with excavation activities, Plains recommends that the approved General Work Plan Closure Scenario 3 be applied. Under this scenario, an impermeable barrier consisting of an oversized 20-mil polyethylene liner will be permanently installed at a minimum depth of 10 feet to inhibit vertical migration of contaminants in soil left in

place below the cap. A 3-foot wide clean area buffer will be established around the impacted soil in the floor of the excavation. The buffer extent will be determined using a calibrated PID and confirmed by laboratory analysis of grab samples collected around the perimeter of the excavation. The liner shall be cushioned above and below with a 3 to 4-inch layer of sand or geotextile to protect it from puncture and tearing during the backfilling process. Installation of the 20-mil polyethylene liner at a minimum depth of 10 feet bgs will protect the barrier from erosion and human intrusion for a term sufficient to allow natural biodegrading of contaminates in the soil.

The clean overburden and impacted soils will be blended and utilized as backfill. Soil samples will be collected at a rate of one sample per 500 cubic yards to verify constituent concentrations of BTEX are below NMOCD guidelines and TPH-GRO/DRO are below 1000 mg/kg as approved for backfill over liners. Once the excavation has been confirmed to meet NMOCD standards or the installation of the 20-mil poly liner is completed, backfilling of the excavation will be initiated with the blended soil. The backfilled excavation will be contoured to the original grade surrounding the site and reseeded with approved grass seed.

A request for closure will be submitted to the NMOCD, upon completion of backfilling activities. Plains is requesting approval from NMOCD to implement these proposed final remediation and site closure activities.

7.0 QA/QC PROCEDURES

Soil Sampling

and the second

u testi d

the land

Callen and

mers.

Standa B

1000

S. 10.

Constant S

6.7.8

1. S. S. S.

Soil samples will be delivered to Environmental Lab of Texas, Inc. in Odessa, Texas for BTEX, TPH analyses using the methods described below. Soil samples will be analyzed for BTEX, TPH-GRO/DRO within fourteen days following the collection date.

The soil samples will be analyzed as follows:

- BTEX concentrations in accordance with EPA Method 8021B, 5030
- TPH concentrations in accordance with modified EPA Method 8015M GRO/DRO

Decontamination of Equipment

Cleaning of the sampling equipment will be the responsibility of the environmental technician. Prior to use, and between each sample, the sampling equipment will be cleaned with Liqui-Nox[®] detergent and rinsed with distilled water.

Laboratory Protocol

A april

10.00

1000

The laboratory will be responsible for proper QA/QC procedures after signing the chain-of-custody form. These procedures will be either transmitted with the laboratory reports or are on file at the laboratory.

8.0 LIMITATIONS

SDG Environmental Services has prepared this Site Investigation Report and Site-Specific Remediation Work Plan to the best of its ability. No other warranty, expressed or implied, is made or intended.

SDG Environmental Services has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. SDG Environmental Services has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. SDG Environmental Services has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. SDG Environmental Services also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains Pipeline, L.P. The information contained in this report including all exhibits and attachments, may not be used by any other party without the express consent of SDG Environmental Services and Plains Pipeline, L.P.

DISTRIBUTION

S

1. 23 J. 1. 1.

W. C.L. C.

Sec. Sec.

Sec. 2 Step

er Martin

THE R

William .

5.3° 0

and the second

Sec.

1.00

1. A. W.

000

an an a

S. Salt -

1.82

and also

- Copy 1: Jeff Dann Plains All American 333 Clay Street Suite 1600 Houston, Texas 77002 jpdann@paalp.com Copy 2: **Camille Reynolds** Plains All American 3112 W. Highway 82 Lovington, New Mexico 88260 cjreynolds@paalp.com Copy 3: Mr. Ben Stone New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 South St. Francis Drive Santa Fe, New Mexico 88240 ben.stone@state.nm.us
- Copy 4: Kenneth Cody SDG Environmental Services 6611 Vialinda, Suite 204 Houston, Texas 77083 kcody@sdgenv.com

TABLE 1

SOIL SAMPLE ANALYTICAL RESULTS SUMMARY

PLAINS PIPELINE, L. P. Jalmat 22A LEA COUNTY, NEW MEXICO PLAINS EMS NO: 2000-10614

SAMPLE	DEPTH	SAMPLE	DEPTH SAMPLE LABORATORY		METHOD: E	METHOD: EPA SW 846-8021B, 5030	121B, 5030		W	METHOD: 8015N		TOTAL TPH
LOCATION	ft bgs	DATE	I.D.	BENZENE	TOLUENE	ЕТНУС-	М,Р-	O-XYLENE				
						BENZENE	XYLENES		C6-C12	C12-C28	C28-C35	C6-C35
				(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
JM22A-SB1-2	2,	05/25/06	05/25/06 6E26006-01	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	401	5270	520	6190
JM22A-SB1-5	Q,	05/25/06	6E26006-02	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	213	4470	484	5170
JM22A-SB1-10	10'	05/25/06	6E26006-03	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	32.4	<10	32.4
JM22A-SB1-15	15'	05/25/06	05/25/06 6E26006-04	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10
JM22A-SB1-20	20'	05/25/06	6E26006-05	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10
JM22A-SB1-25	25'	05/25/06	05/25/06 6E26006-06	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<10	<10	<10	<10

indicates the constituent was not detected
 indicates estimated value (detected below method reporting limit)

.

he But the Carton State

Beach.

A STREET

Sartice".

2.54.25.5

The Board

and a start

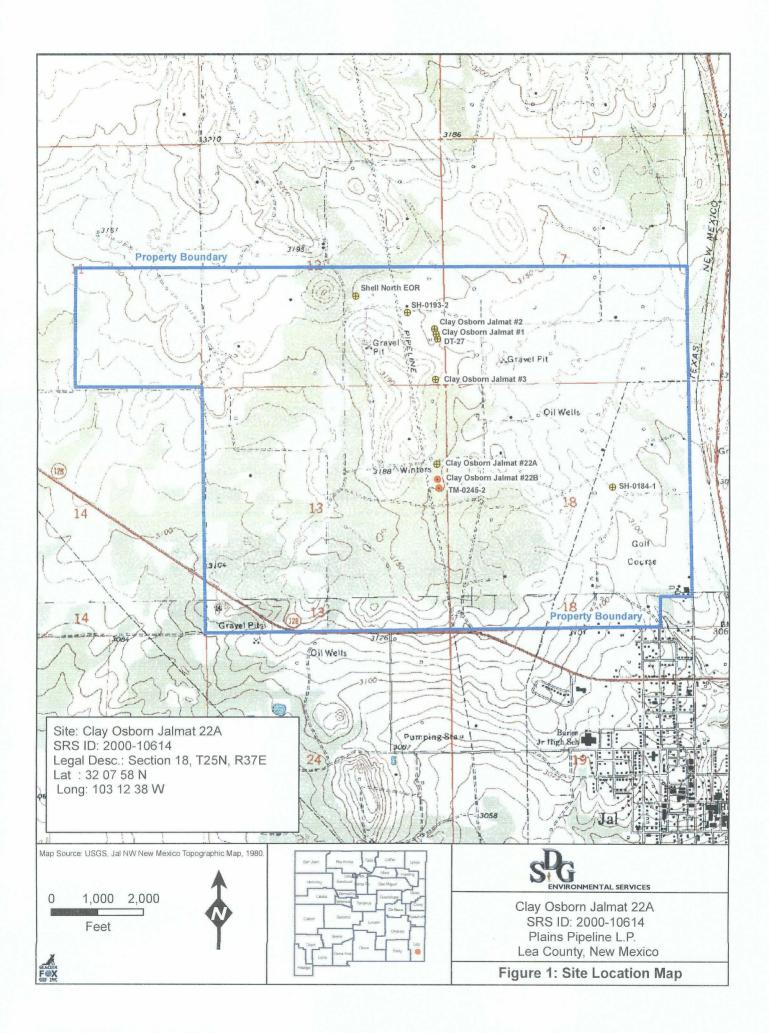
大調寺

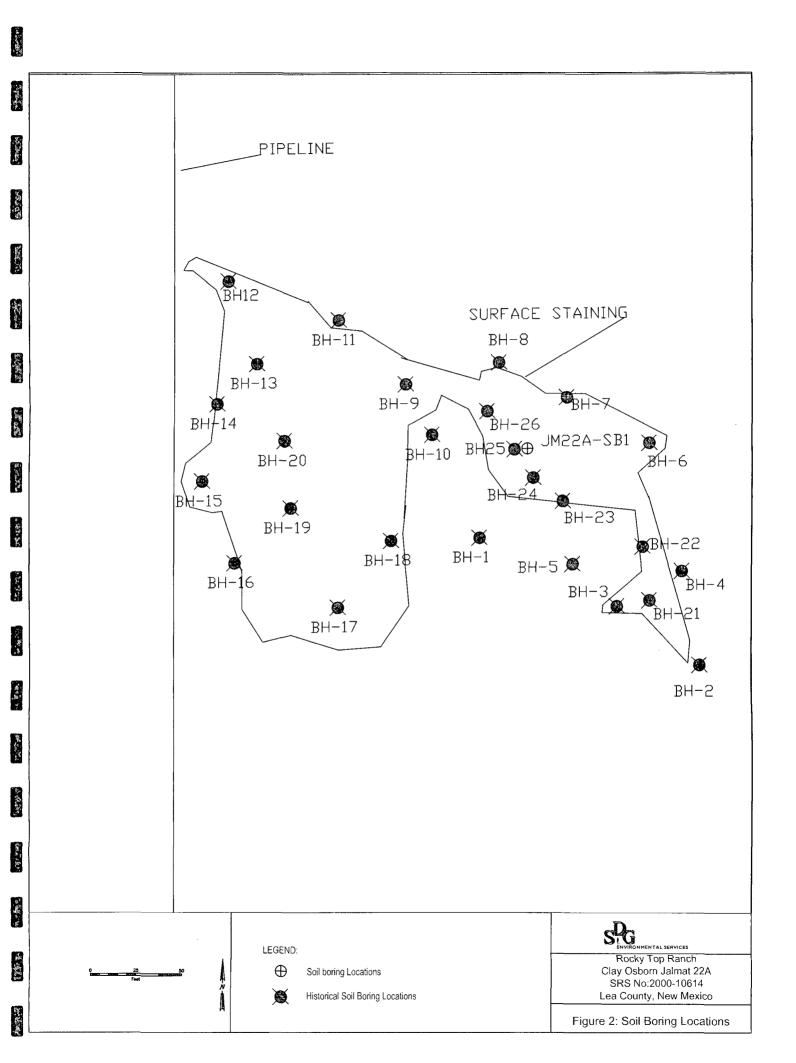
J. M. Carto

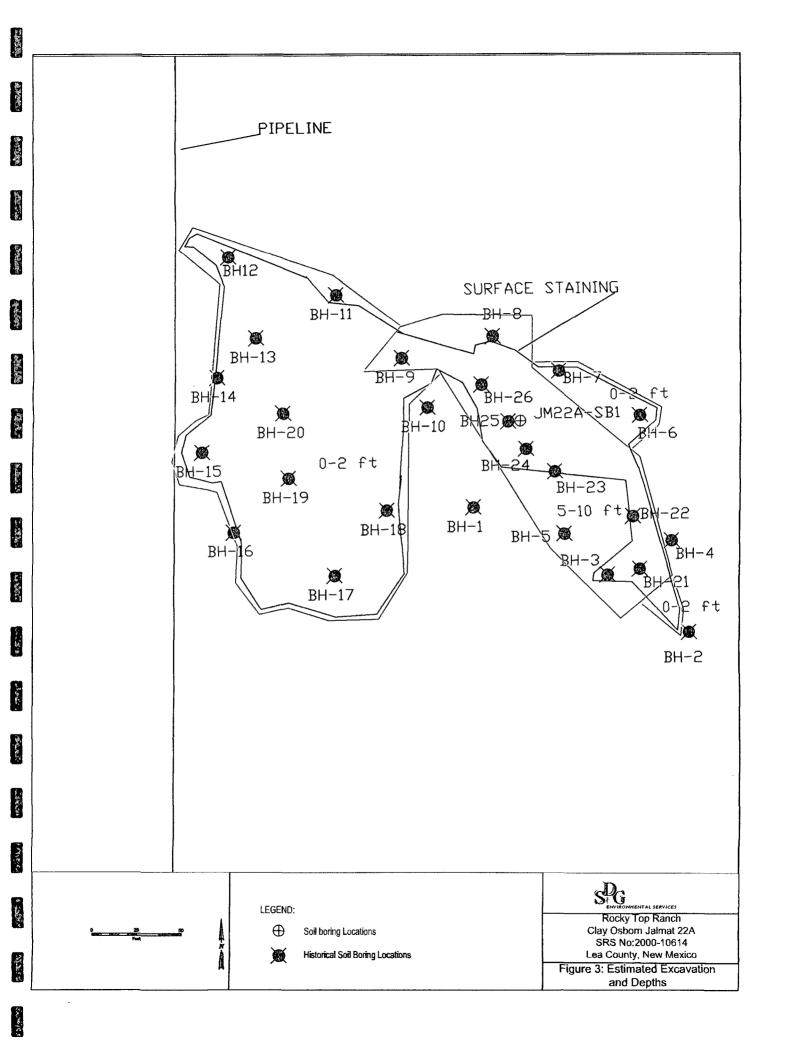
A. State

1. c. 8.

王王


S. 2. 2.


8 2. 80 G


N. C.

1.89.81

 $\mathbb{E}^{k_1}_{k_2} u_{k_2} \neq \frac{1}{2} \circ$

APPENDIX A ENVIRONMENTAL LABORATORY OF TEXAS ANALYTICAL RESULTS

a 4.57 882 4

* 注意 (1)

の時に数

- Carlor

الم وستطريق

1.25 3.5

ا الا المراجع المراجع

Autor

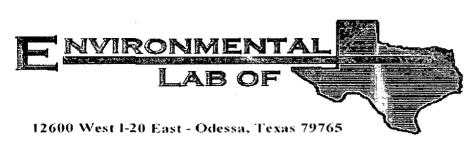
1000

Nation States

n Xin

S. 43.7 .

1.10-11-1


S. matter

1.20%

- m 500.

2 Plada

Salt .

Analytical Report

Prepared for:

Camille Reynolds Plains All American EH & S 1301 S. County Road 1150 Midland, TX 79706-4476

Project: Jalmat Clay Osborne #22A Project Number: 2000-10614 Location: JM-22A

Lab Order Number: 6E26006

Report Date: 06/07/06

24.28.24

	ANALYTICAL REPORT FOR SAMPLES	
Midland TX, 79706-4476	Project Manager: Camille Reynolds	06/07/06 12:59
1301 S. County Road 1150	Project Number: 2000-10614	Reported:
Plains All American EH & S	Project: Jalmat Clay Osborne #22A	Fax: (432) 687-4914

Ser. 2+1.9

Section of the

20.42

認識など

5.3.2 W X

4. 3. C. S. C.

hall and

" Start" -

140 BA

1.98

w that a

a 20 4

Service -

Sec. of States

東京し

Person the

2. A. S. A. S.

1478 84

- States

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
JM22A-SB1-2	6E26006-01	Soil	05/25/06 16:35	05/26/06 09:34
JM22A-SB1-5	6E26006-02	Soil	05/25/06 16:40	05/26/06 09:34
JM22A-SB1-10	6E26006-03	Soil	05/25/06 16:45	05/26/06 09:34
JM22A-SB1-15	6E26006-04	Soil	05/25/06 16:50	05/26/06 09:34
JM22A-SB1-20	6E26006-05	Soil	05/25/06 16:55	05/26/06 09:34
JM22A-SB1-25	6E26006-06	Soil	05/25/06 17:00	05/26/06 09:34

Plains All American EH & S	Project: Jalmat Clay Osborne #22A	Fax: (432) 687-4914
1301 S. County Road 1150	Project Number: 2000-10614	Reported:
Midland TX, 79706-4476	Project Manager: Camille Reynolds	06/07/06 12:59

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Datal	Drever 1	Λ.s.sl	Mathad	N1-7
JM22A-SB1-2 (6E26006-01) Soil	Kesuit	Liniu	Onits	Dilution	Batch	Prepared	Analyzed	Method	Note
Benzene	ND	0.0250	mg/kg dry	25	EF60301	06/03/06	06/04/06	EPA 8021B	
Toluene	ND	0.0230	mg/kg ury	23		00/05/00	100/04/00	EFA 6021D	
Ethylbenzene	ND	0.0250	"						
Xylene (p/m)	ND	0.0250	**		п	"	и		
Xylene (p/m)	ND ND	0.0250							
Surrogate: a.a,a-Trifluorotoluene		83.2 %	80-1	20	"		"		
Surrogate: 4-Bromofluorobenzene		86.5 %	80-1		"	"		"	
Carbon Ranges C6-C12	401	10.0	mg/kg dry	1	EE63114	05/31/06	06/01/06	EPA 8015M	
Carbon Ranges C12-C28	5270	10.0	ing/kg dry	ı "	EE05114	05/51/00	00/01/06	"	
Carbon Ranges C28-C35	520	10.0	11			"		78	
Total Hydrocarbon nC6-nC35	6190	10.0		"				n	
Surrogate: 1-Chlorooctane		88.4 %	70-1	30	"	"	"	'n	
Surrogate: 1-Chlorooctadecane		107 %	70-1		"			n	
			-						
JM22A-SB1-5 (6E26006-02) Soil									
Benzene	NĎ	0.0250	mg/kg dry	25	EF60301	06/03/06	06/04/06	EPA 8021B	
Toluene	ND	0.0250	ш	11	"		"	u	
Ethylbenzene	ND	0.0250		"	"		"	"	
Xylene (p/m)	ND	0.0250	"		"		"	"	
Xylene (o)	ND	0.0250	"	"		"	"	IF.	
Surrogate: a.a.a-Trifluorotoluene		83.8 %	80-1	20	"	11	"	"	
Surrogate: 4-Bromofluorobenzene		86.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	213	10.0	mg/kg dry	L	EE63114	05/31/06	06/01/06	EPA 8015M	
Carbon Ranges C12-C28	4470	10.0		"	"	**	н	"	
Carbon Ranges C28-C35	484	10.0	"	"		**			
Total Hydrocarbon nC6-nC35	5170	10.0			"		"		
Surrogate: 1-Chlorooctane		96.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		140 %	70-1	30	"	"		n	5-6
JM22A-SB1-10 (6E26006-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF60301	06/03/06	06/04/06	EPA 8021B	
Toluene	ND	0.0250			"		"	"	
Ethylbenzene	ND	0.0250	"		п	"		"	
Xylene (p/m)	ND	0.0250	**		"				
Xylene (0)	ND	0.0250	*1	v		*1	u.	н	
Surrogate: a.a.a-Trifluorotoluene		85.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.0%	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	l	EE63114	05/31/06	06/06/06	EPA 8015M	

Environmental Lab of Texas

Sec.2

Start Lines

Sale of the second

Proventing.

の日本の

ALC: NO.

Lought in

2.02.2

2 243- EB-04

- Salar

1. a. 2. 2. 2. 2.

1. B.M.

and the second

\$5362 B

. 27 2 a a a

Sale of

Support of the second s

ACC - MARY

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety.

with written approval of Environmental Lab of Texas.

Plains All American EH & S 1301 S. County Road 1150 Midland TX. 79706-4476		Project N	Project: Jalr Iumber: 200 anager: Car	0-10614		Υ.		Fax: (432) 6 Repor t 06/07/06	ted:
		O	rganics b	y GC					
			g mental L		exas				
		Reporting							<u></u>
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
JM22A-SB1-10 (6E26006-03) Soil									
Carbon Ranges C12-C28	32.4	10.0	mg/kg dry		EE63114	05/31/06	06/06/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"		"	"	"	н	
Fotal Hydrocarbon nC6-nC35	32.4	10.0	п.			41	"		
Surrogate: 1-Chlorooctane		93.2 %	70-1	30		"		п	
Surrogate: 1-Chlorooctadecane		81.0%	70-1		"		"	"	
Sarrogure. I Omorolenatedine		01.070	,,,,	50					
JM22A-SB1-15 (6E26006-04) Soil		<u> </u>							
Benzene	ND	0.0250	mg/kg dry	25	EF60301	06/03/06	06/04/06	EPA 8021B	
Toluene	ND	0.0250	**	"	"	"	17	"	
Ethylbenzene	ND	0.0250	21		11				
Xylene (p/m)	ND	0.0250		"		"		"	
Xylene (o)	ND	0.0250		"	"	п	"	D	
Surrogate: a.a.a-Trifluorotoluene		82.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.2 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE63114	05/31/06	06/01/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	п	"	"	"			
Carbon Ranges C28-C35	ND	10.0	11	"	n.	"	"	"	
Fotal Hydrocarbon nC6-nC35	ND	10.0	ч	"		**			
Surrogate: 1-Chlorooctane		90.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		89.4 %	70-1	30	"	"	17	n	
IM22A-SB1-20 (6E26006-05) Soil									
Benzene	ND		mg/kg dry	25	EF60301	06/03/06	06/04/06	EPA 8021B	
Toluene	ND	0.0250		u	n	н	"	łr	
Ethylbenzene	ND	0.0250	"	ч	"		н	"	
Xylene (p/m)	ND	0.0250		11	"	59	"		
Xylene (0)	ND	0.0250		"	11		"		
Surrogate: a.a.a-Trifluorotoluene		81.5 %	80-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.5 %	80-1		"	"		п	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry 	1	EE63114	05/31/06	06/01/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0				"	"		
Carbon Ranges C28-C35	ND	10.0	"		54	"		"	
fotal Hydrocarbon nC6-nC35	ND	10.0		"	"	+1		"	
Surrogate: 1-Chlorooctane		95.2 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		93.4 %	70-1	30	"	"	и	"	

Environmental Lab of Texas

the star of a

A STREET

Print Print

242 Subs

18. 18 W . .

Ea S.C. The

1. E. S. S. C.

S. Same

A. & 54.

103.07

1. C.

1. 1. 1. A.

8. 5. 5 St. 1

177-229 du

3.5.5

P. Starting .

22. 24

E. Salate

A The Color of

S. HER ALL

Service State

Sala and

Storpe &

1999 G. 18

"Holes?

10. 4 B.

S. 8.1. 1

State Barts

مد مطاقب

× 60 ° 00

Later good

Project: Jalmat Clay Osborne #22A Project Number: 2000-10614 Project Manager: Camille Reynolds

Reported: 06/07/06 12:59

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
JM22A-SB1-25 (6E26006-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EF60301	06/03/06	06/04/06	EPA 8021B	
Toluene	ND	0.0250	"			ч		"	
Ethylbenzene	ND	0.0250		"	"	"		U U	
Xylene (p/m)	ND	0.0250				"		u	
Xylene (0)	ND	0.0250	"	"			"	**	
Surrogate: a.a.a-Trifluorotoluene	<u></u>	82.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.0 %	80-1	20	"	n	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EE63114	05/31/06	06/01/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"		"		"	
Carbon Ranges C28-C35	ND	10.0			"			U.	
Total Hydrocarbon nC6-nC35	ND	10.0		ч	"		u		
Surrogate: 1-Chlorooctane		96.0 %	70-1	30	11	"	"	"	
Surrogate: 1-Chlorooctadecane		93.0 %	70-1	30	"	"	п	"	

Sec.

なない

S. March

Merter.

William

A. 20. 2.

Sta Me

See as

100.00

10.00

ma X-

1 day in som

1324.8

and the

3. T & 3

\$ 400 A

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
JM22A-SB1-2 (6E26006-01) Soil									
% Moisture	4.7	0.1	%	1	EE62901	05/26/06	05/27/06	% calculation	
JM22A-SB1-5 (6E26006-02) Soil									
% Moisture	4.2	0.1	%	1	EE62901	05/26/06	05/27/06	% calculation	
JM22A-SB1-10 (6E26006-03) Soil									
% Moisture	12.4	0.1	%	I	EE62901	05/26/06	05/27/06	% calculation	
JM22A-SB1-15 (6E26006-04) Soil									
% Moisture	6.4	0.1	%	1	EE62901	05/26/06	05/27/06	% calculation	
JM22A-SB1-20 (6E26006-05) Soil									
% Moisture	3.6	0.1	%	1	EE62901	05/26/06	05/27/06	% calculation	
JM22A-SB1-25 (6E26006-06) Soil									
% Moisture	5.3	0.1	%	1	EE62901	05/26/06	05/27/06	% calculation	

Environmental Lab of Texas

Plains All American EH & S 1301 S. County Road 1150 Midland TX, 79706-4476	301 S. County Road 1150 Project Number: 2000-10614													
	O	rganics by Environi		-										
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes				
Batch EE63114 - Solvent Extraction (GC)				······									
Blank (EE63114-BLK1)	Prepared: 05/31/06 Analyzed: 06/01/06													
Carbon Ranges C6-C12	ND	10.0	mg/kg wet											
Carbon Ranges C12-C28	ND	10.0	**											
Carbon Ranges C28-C35	ND	10.0	**											
fotal Hydrocarbon nC6-nC35	ND	10.0	"											
Surrogate: 1-Chlorooctane	45.9		mg kg	50.0		91.8	70-130							
Surrogate: 1-Chlorooctadecane	47.0		"	50.0		94.0	70-130							
LCS (EE63114-BS1)				Prepared: ()5/31/06 A	natyzed: 06	/01/06							
Carbon Ranges C6-C12	561	10.0	mg/kg wet	500		112	75-125							
Carbon Ranges C12-C28	564	10.0	"	500		113	75-125							
Carbon Ranges C28-C35	ND	10.0	U	0.00			75-125							
Total Hydrocarbon nC6-nC35	1130	10.0		1000		113	75-125							
Surrogate: 1-Chlorooctane	53,8		mg kg	50.0		108	70-130							

Calibration Check (EE63114-CCV1)			Prepared: 05/31/	06 Analyzed: 0	5/01/06	
Carbon Ranges C6-C12	288	mg/kg	250	115	80-120	
Carbon Ranges C12-C28	284	11	250	114	80-120	
Total Hydrocarbon nC6-nC35	572	н	500	114	80-120	
Surrogate: 1-Chlorooctane	62.5	,,	50.0	125	70-130	
Surrogate: 1-Chlorooctadecane	61.9	"	50.0	124	70-130	

,,

50,0

92.6

70-130

46.3

Matrix Spike (EE63114-MS1)	Sourc	e: 6E26006	-03	Prepared: 0)5/31/06 A	nalyzed: 0	6/01/06
Carbon Ranges C6-C12	589	10.0	mg/kg dry	571	ND	103	75-125
Carbon Ranges C12-C28	598	10.0	**	571	32.4	99.1	75-125
Carbon Ranges C28-C35	ND	10.0		0.00	ND		75-125
Total Hydrocarbon nC6-nC35	1190	10.0	**	1140	32.4	102	75-125
Surrogate: 1-Chlorooctane	51.9		mg kg	50.0		104	70-130
Surrogate: 1-Chlorooctadecane	45.7		"	50.0		91.4	70-130

Carrier State

1. 2 Mar 10

Carlower Ser

543.W

36 Sec. 30

1. A. W. S.

12.00

Carles Co.

Strain Series

A strate

1.2.2.2

1. C. C.

المعلقة في الملك

1.600

So Sido St.

Surrogate: 1-Chlorooctadecane

Plains All American EH & S 1301 S. County Road 1150 Midland TX, 79706-4476				Fax: (432) Repo 06/07/0	rted:					
	0	rganics by	-	•						
		Environr	nental L	ab of Te	xas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE63114 - Solvent Extraction (GC)										
Matrix Spike Dup (EE63114-MSD1)	Sou	rce: 6E26006	-03	Prepared: (05/31/06 A	nalyzed: 06	5/01/06			
Carbon Ranges C6-C12	579	10.0	mg/kg dry	571	ND	101	75-125	1.71	20	
Carbon Ranges C12-C28	589	10.0	"	571	32.4	97.5	75-125	1.52	20	
Carbon Ranges C28-C35	ND	10.0		0.00	ND		75-125		20	
Total Hydrocarbon nC6-nC35	1170	10.0		1140	32.4	99.8	75-125	1.69	20	
Surrogate: 1-Chlorooctane	51.0		mg kg	50.0		102	70-130			
Surrogate: 1-Chlorooctadecane	44.7		"	50.0		89.4	70-130			
Batch EF60301 - EPA 5030C (GC)										
Blank (EF60301-BLK1)				Prepared: ()6/03/06 A	nalyzed: 06	5/04/06			
Benzene	ND	0.0250	mg/kg wet			_				
Foluene	ND	0.0250								
Ethylbenzene	ND	0.0250								
Nylene (p/m)	ND	0.0250	"							
(v)	ND	0.0250	**							

ug kg

mg/kg wet

...

11

...

11

ug kg

.,

0.0250

0.0250

0.0250

0.0250

0.0250

40.0

40.0

1.25

1.25

1.25

2,50

1.25

40.0

40.0

92.5

96.8

83,2

82.4

90.4

96,4

94.4

91.5

112

Prepared: 06/03/06 Analyzed: 06/04/06

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

80-120

37.0

38.7

1.04

1.03

1.13

2.41

1.18

36.6

44.7

ant the sec

Sec. Asia

のときか

ant Status

S. States

A CONSTRUCTION OF

1. 2. 2. 2. 3

State 2

" Stating

4.54 CAL

Sectoria in

2.5 ° & 8.26

S. C. A. Bar

10 - 2 Mar

Service.

3.9.5.2

aleste -

Surrogate: a,a,a-Trifluorotoluene

Surrogate: 4-Bromofluorobenzene

Surrogate: a.u.a-Trifluorotoluene

Surrogate: 4-Bromofluorobenzene

LCS (EF60301-BS1)

Benzene

Toluene

Ethylbenzene

Xylene (p/m)

Xylene (o)

and parts

を読いる

distant.

S. Salas

Sec.

1. E. C.

Sec. 1

Sandy a g

1. 20 × 10.

De Land

Star Sad

weight a

T. R. B.

A 64.63

the state of

the little

20.00

the second

Project: Jalmat Clay Osborne #22A Project Number: 2000-10614 Project Manager: Camille Reynolds

Fax: (432) 687-4914

Reported:

06/07/06 12:59

Organics by GC - Quality Control

Environmental Lab of Texas

		Environmental L	ab of lex	kas					
Analyte	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF60301 - EPA 5030C (GC)	······································								
Calibration Check (EF60301-CCV1)			Prepared: ()6/03/06 A	nalyzed: 06	/05/06			
Benzene	40.3	ug/kg	50.0		80.6	80-120			
Toluene	40.3		50.0		80.6	80-120			
Ethylbenzene	42.0		50.0		84.0	80-120			
Xylene (p/m)	85.4		100		85.4	80-120			
Xylene (o)	43.8		50.0		87.6	80-120			
Surrogate: a.a.a-Trifluorotoluene	37.2		40.0		93.0	80-120			
Surrogate: 4-Bromofluorobenzene	45.3	"	40.0		113	80-120			
Matrix Spike (EF60301-MS1)	Sour	ce: 6E26005-05	Prepared: ()6/03/06 A	nalyzed: 06	/05/06			
Benzene	1.02	0.0250 mg/kg dry	1.26	ND	81.0	80-120	•		
Toluene	1.01	. 0.0250 "	1.26	ND	80.2	80-120			

Toluene	1.01	0.0250		1.26	NĎ	80.2	80-120	
Ethylbenzene	1.03	0.0250		1.26	ND	81.7	80-120	
Xylene (p/m)	2.28	0.0250	**	2.52	ND	90.5	80-120	
Xylene (o)	1.11	0.0250	"	1.26	ND	88.1	80-120	
Surrogate: a.a.a-Trifluorotoluene	36.7		ug kg	40.0		91.8	80-120	
Surrogate: 4-Bromofluorobenzene	37.8		"	40.0		94.5	80-120	

Matrix Spike Dup (EF60301-MSD1)	Sour	ce: 6E26005-0	15	Prepared: ()	6/03/06 A	nalyzed: 00	5/05/06		
Benzene	1.02	0.0250 m	ng/kg dry	1.26	ND	81.0	80-120	0.00	20
Tohuene	1.02	0.0250	**	1.26	ND	81.0	80-120	0.993	20
Ethylbenzene	1.02	0.0250	"	1.26	ND	81.0	80-120	0.860	20
Xylene (p/m)	2.24	0.0250	н	2.52	ND	88.9	80-120	1.78	20
Xylene (0)	1.08	0.0250		1.26	ND	85.7	80-120	2.76	20
Surrogate: a,a,a-Trifluorotoluene	38,0		ng kg	40.0		95.0	80-120		
Surrogate: 4-Bromofluorobenzene	37.8		"	40.0		94.5	80-120		

Environmental Lab of Texas

C. alle

202.24

2342.24

. the well .

State Sch

1. 1. 1. S.

Se all have

Sec. 25

Etter V

· · · · · · · · · · · ·

F. 10 2 2 .

a started

Statura:

4 6 a with

Sec. 24

御職

1. N. W.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Notes
Batch EE62901 - General Preparation (Prep)										
Blank (EE62901-BLK1)				Prepared: (05/26/06	Analyzed: 05	/30/06			
% Moisture	ND	0.1	%			······				
Blank (EE62901-BLK2)				Prepared: ()5/26/06	Analyzed: 05	/30/06			
% Moisture	ND	0.1	%							
Duplicate (EE62901-DUP1)	Sou	irce: 6E26001-0	94	Prepared: ()5/26/06	Analyzed: 05	/27/06			
% Solids	79.6		%		79.2			0.504	20	
Duplicate (EE62901-DUP2)	Sou	irce: 6E26001-2	21	Prepared: ()5/26/06	Analyzed: 05	/27/06			
% Solids	99.5		%		99.4			0.101	20	
Duplicate (EE62901-DUP3)	Sou	urce: 6E26001-4	41	Prepared: ()5/26/06	Analyzed: 05	/27/06			
% Solids	99.1		%		99.1			0.00	20	
Duplicate (EE62901-DUP4)	Sou	irce: 6E26001-	51	Prepared: ()5/26/06	Analyzed: 05	/27/06			
% Solids	75.2		%		76.2			1.32	20	
Duplicate (EE62901-DUP5)	Sou	irce: 6E26003-0)7	Prepared ()5/26/06	Analyzed: 05	/27/06			
% Solids	98.0		%		98.3			0.306	20	
Duplicate (EE62901-DUP6)	Sou	ırce: 6E26004-0)7	Prepared: (05/26/06	Analyzed: 05	/27/06			
% Solids	97.9		%		96.7			1.23	20	
Duplicate (EE62901-DUP7)	Sou	irce: 6E26005-0)6	Prepared: ()5/26/06	Analyzed: 05	/27/06			
% Solids	99.3		%		99.5			0.201	20	
Duplicate (EE62901-DUP8)	Sou	irce: 6E26008-6)4	Prepared: ()5/26/06	Analyzed: 05	/27/06			
% Solids	98.6		%		91.7	·		7.25	20	

Environmental Lab of Texas

Plains All American EH & SProject:Jalmat Clay Osborne #22AFax: (432) 687-49141301 S. County Road 1150Project Number:2000-10614Reported:Midland TX, 79706-4476Project Manager:Camille Reynolds06/07/06 12:59Notes and Definitions

- S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit

Not Reported

- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Same -

2 Ulapa

Aller.

and the second

and the second

1000

Ser and

440

1.2.8

Swight

3.99

NR

Report Approved By:

Raland Kituts Date:

6/7/2006

Raland K. Tuttle, Lab Manager Celey D. Kcene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

	37 A									ĺ	TAT bisbus	_												
A 22.0		j II						-			əlubərlə2-919) TAT HƏL	18									z z		•.	
14 Osbacce	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	· 📖 🛛	4) 4)	14					·)		
+ Clay (ANALYSI	(the st	-(060	- 22.14				Analyze For:	X	K 05		วย	X	Х	К	X	X				 Intact? r? ntainers Receipt:	ents:		
10 ~ (1)	ORD AND	E.	2000	242				Analy		Ð	tailes: As Ag Ba Cd Cr Pb Hg S latiles selfes	ол	 							4	 Sample Containers Intact? Labels on container? Custody Seels: Containers Temperature Upon Receipt	Labóratory Comments:	•	. 1
	DY REC(ľ	PO #:			TCLP	TOTAL:		ions (Cl, \$04, CO3, HCO3)	vs								1	 Sample C Labels on Custody Temperat	Labórato		
	DF CUSTC	Project Name:	Project #:	Project Loc:	ā.		ļ			90	lier (specify): H: 418.1 (8015M) 1605 - 10(1002 (C9' MG: N9' K)	at 🖂	X	X	Х	Х	X					Time	Time	0934
	CHAIN (ш 1	2	ſ	1	ı	ı			Matrix	jic a6pn	is 🔀	¥	*	X	X	×					Date	Date	05-26-06
			Plains								iher (Specify) ater	0	 										ă	05-
		Sblo	The state	, ,						reservative	08' H04	H												
		C. Reynolds	1. c.C							Pre	403	ਸ ਸ ਅ ਟਿ	×		'	X								1144
		U V	S. Cot U.			Vo:			[] []	5 27	2 2 0 Containers 4 0.0	N		-		- 1								MCMUN
		-0 -0	در بر		6	Fax No:		1			bəlqms2 əmi		1079	1645	0591	655	707							440
		С С	1011		F	5	()	ſ			belqme2 ete	2.06				$\langle \rangle$)			\downarrow		ed by:	ed by ELOT	Noiler
		5	11 NA U V	120	X		$\langle \rangle$)	 			-(_				Received	Received	Ŭ
0X0S	563-1800 563-1713	Keuney	Ewl Course	Vien Via		Ja48	18 - S-							0	2	Q	2					Time DG7U	Time	1
F b	Phone: 432-563-1800 Fax: 432-563-1713	Y	5 203		VICT S	206-70	all a					200E	1		- 1.25	5180	31-2			4- c		Date Carol	Date	
jo B	ohq "H		3	1199	Moon	3-80		7				FIELD CODE	2-212-2	7	2 2 2	4 - S	MS		÷	5			<u></u>	
ntar		Ľ	le			7		÷				22221	12		12-22	V-22	2227						-	
Environmentar Lab. of Texas	East '9765	Project Manager:	Company Name	Company Address:	City/State/Zip:	Telephone No:	Sampler Signature:	Email:				1 - 1 - 1 - 1		17-	17						13:		>	
jer 1	12600 West I-20 East Odessa, Texas 79765	Projec	Сот	Сотрап	Clt	Telt	Sampler				De S	LAB # (lab use only)	-02	<u> </u>	no	-05	ý				Special Instructions:	NA Par	ied by:	
ц Ц	12600 V Odessa										L. L.	LAB # (1									Special I	Retinguished by	Relinquished by:	

المجامعة وتناهم

Environmental Lab of Texas Variance / Corrective Action Report - Sample Log-In

and the second

مى مەركەن

Client: <u>Plains P/L</u>	nopor-	-			
Client: <u>Plains P/L</u>					
Date/Time: 05 -26-06 @ 0934					
Drder #: <u>6E26006</u>					
nitials: JMM					
Sample Receipt	t Checkli	st			
Temperature of container/cooler?	(Yes)	No	1.9	CI	
Shipping container/cooler in good condition?	(Yes)	No			
Custody Seals intact on shipping container/cooler?	(Yes)	No	Not presi		
Custody Seals intact on shipping container/cooler? Custody Seals intact on sample bottles?	Yes	No	Not pres	ent.	
Chain of custody present?		No		<u> </u>	
Sample Instructions complete on Chain of Custody?	(Per	No		1	
Chain of Custody signed when relinquished and received?	(ES)	No			
Chain of custody agrees with sample label(s)	(res)	No	l		
Container labels legible and intact?	Ves	No	·		
Sample Matrix and properties same as on chain of custody?	(Teb)	No			
Samples in proper container/bottle?	(res)	No		· · ·	
Samples properly preserved?	(Te3)	No			
Sample bottles intact?	(783)]	1	
Preservations documented on Chain of Custody?	(Yes)	No			
Containers documented on Chain of Custody?	<u>Ves</u>	No			
Sufficient sample amount for indicated test?	(Yes)	No			
All samples received within sufficient hold time? VOC samples have zero headspace?	(Yes)	No No	Not Apolic		
Other observations:					
l					
					· · · · · · · · · · · · · · · · · · ·
					i.
Variance Docu			0	-t 1	
Contact Person: Date/Time: Regarding:				i by:	
					<u> </u>
Corrective Action Taken:					
	R	<u></u>			
	••••••••••••••••••••••••••••••••••••••				

APPENDIX B SOIL BORING LOGS

1822 A. 1

State of the state

\$. M. M.

1. S. S. S. S.

S. B. S. S.

h hat for the

1. 4. 4. 4. 4

724-24

1. an 9.22

Same and

3.3.2 " 4.2

mar Ma

 $\mathcal{A}_{\mathrm{states}}^{\mathrm{states}} \mathcal{A}_{\mathrm{states}}^{\mathrm{states}} \mathcal{A}_{\mathrm{states}}^{\mathrm{states}}$

S. Mar

and the same

いろうち

Light V

Sec. 20 tob

			A			LOCATION	MAP
		E P		о N M	IENT	AL SERVICES	ACL STAINING 8
	BORING						👝 1M22A-SB(👿)
	ECT L BORI					LOCATION Jal, N.M.	24 BH-5
			-		-		10H-5 C
							BH-3
ТОР О	F CAS	ING EL	.EV. (ft)) <u>N/</u> A	۹	_ GROUND SURFACE ELV. (î) <u>N/A</u>	ВН-2
6	INTERVAL	RECOVERY %	LOG	PID (ppm)	Sample	LITHOLOGIC DESCRIPTION/COMMENTS	REMARK
- 0 -	\searrow	100			14224	Sand, tan, fine grained, well sorted, rounded, some asphaltic material.	Mod. odor Stained
2 -	$\langle \rangle$	100		39.3	JM22A- SB1-2	Sand, red, fine grained, well sorted, rounded, dry.	Mod. odor SIt Staining
• 4 -	X						
• •	$\langle - \rangle$	100		29.4	JM22A- \$B1-5	Sandy clay, red, dense, dry.	Faint odor
6						isonoy clay, rea, dense, ary.	No Staining
8 -							
-10	$ \longrightarrow $	100		2.3	JM22A- SB1-10		No odor No Staining
	$\setminus /$				001 10	Sand. red. fine grained, well sorted, rounded, slightly damp.	
• 12 -	X						
- 14 -		100		0.0	JM22A-		No odor
- 16 -	\backslash			0.0	SB1-15	Sand, red to tan, fine grained, well sorted, rounded, dry, with some gravel.	No Staining
	X						
- 18 -	$ / \setminus$				JM220-		
20 -	$\left(- \right)$	100		0.0	JM22A SB1-20		No odor No Staining
- 22 -	$ \vee $					Sand, tan, fine grained, well sorted, rounded, dry, with some caliche.	
24 -	$\left \right\rangle$						
	/}	100_		0.0	JM22A- SB1-25		No odor No Staining
26						TD= 25'	
- 28 -							
30							
-							
32 -							
34 -							
36		}					
•							
38 -							
• 40 -							

APPENDIX C EPI July/ August 2000 Soil Sample Results

s. S

С • • •

- 2 -

a she ata

:

: f -

а 2017 г.

E.O.T.T. ENERGY PIPELINE

Mr. Panas

ALL PARTY

STATES &

1. S. S. S.

代の言語

With the

a state

12. Mar.

Constant of the

Ser and and

546.05 y

· Ffright

S. Sector Statute

「「「「

Sec. 1

Billy .

Balling a set

E.O.T.T. Energy Pipeline Clay Osborn Jalmat 22A

o-Xylene mg/Kg	0.100	0.100	0.100	0.100	0.100	0.100	0,100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100		
m.p- Xylene mg/Kg	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0,100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100		
Ehtyl Benzene mg/Kg	0.100	0,100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.108	0.100	0.100	0.103	0.100	0.100	0.100	0.100	0.100	0.100	0.100		
Toluene mg/Kg	0.115	121 0	0.153	0.100	0.100	0.130	0.143	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.179	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.111	0.100	0.100	0.100	0.100	0.100	0.100	0.100		
Benzene mg/Kg	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100		
BTEX mg/Kg	0.515	0.500	0.553	0.500	0.500	0.530	0.543	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.579	0.500	0.500	0.500	0.500	0.508	0.500	0.500	0.514	0.500	0.500	0.500	0.500	0.500	0.500	0.500		
'TPH ⁵ mg/Kg	20.000	20.000	20.000	20.000	20.000	20.000	20.000	2543,000	1007.000	67,000	84.000	161.000	20.000	20.000	20,000	1530.000	124.000	75.000	21.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	986.000	4948.000	112.000	461.000		
DRO ⁴ mg/Kg	10	10	10	10	10	10	10	2493	957	57	74	151	10	10	10	1520	114	63	11	10	10	10	10	10	10	- 10	10	976	4898	102	451		
GRO ^J mg/Kg	10	01	101	10	10	10	10	50	50	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	50	10	10		
HEADSPACE VOC ² (ppm)	N/A	N/A		N/A	N/N	V/V	N/A	N/N	N/A																								
F Lithology	Sand	Sand	Sano	Sand																													
Date	7/27/2000	7/27/2000	7/27/2000	7/27/2000	7/27/2000	7/27/2000	7/27/2000	7/27/2000	7/27/2000	7/27/2000	7/27/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000	7/28/2000		onstituents
SAMPUB 1D#	EC022AGP1-02	ECO22AGP1-05	ECO22AGP1-10	ECO22AGP2-02	ECO22AGP2-05	ECO22AGP2-10	ECO22AGP2-15	EC022AGP3-02	ECO22AGP3-05	ECO22AGP3-10	ECO22AGP3-15	ECO22AGP4-02	FCO22AGP4-05	FCO22AGP4-10	FCO22AGP4-15	ECO22AGP5-02	FCO22AGP5-05	ECO22AGP5-10	ECO22AGP5-15	ECO22AGP6-02	ECO22AGP6-05	ECO22AGP6-10	ECO22AGP6-15	ECO22AGP7-02	ECO22AGP7-05	ECO22AGP7-10	ECO22AGP7-15	ECO22AGP8-02	ECO22AGP8-05	ECO22AGP8-10	ECO22AGP8-15	surface	² VOC-Volatile Organic Contaminants/Constituen
Sampling Interval (FT. BGS ¹)	2	s,	10		•م ۱	10	15	2	9	10	15		۱ur	, <u>c</u>	51	2	. в	10	15	2	l vo	10	15	2		10	12	2	i vo	10	15	¹ bgs – below ground surface	
Borehole		Ţ	. • •			7			Ċr.)	ŝ	 	÷		4		Ang. A		Ś	•			9				1				æ		- sgd'	² VOC

²VOC-Volatile Organic Contaminants/Constituents ³GRO-Gasoline Range Organics C₆-C₁₀

⁴DRO-Diesel Range Organics C₁₀-C₂₈

⁵ Γ PH-Total Petroleum Hydrocarbon = GRO+DRO. ⁶Bolded values are in excess of the New Mexico Oil Conservation Division guideline threshold for the parameter ⁷Italicized values are < the instrument detection limit.

⁸N/A Not Analyzed

Reported detection limits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations.

B.O.T.T. ENERGY PIPELINE

1 5 60

4 m . . .

1.5.1

ويت کار

E.O.T.T. Energy Pipeline Clay Osborn Jalmat 22A

Ehtyl m.p- Benzene Nylene mg/Kg mg/Kg								0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100		
Tolucne Be mg/Kg m								0.100 0.100 0.000 0		
Benzene mg/Kg	0.100 0.100 0.100	0.100 0.100 0.100	0.100 0.100 0.100	0.100 0.100	0.100	0.100 0.100 0.100	0.100 0.100 0.100 0.100	0.100 0.100 0.100 0.100 0.100	0.100 0.100 0.100 0.100	
BTEX mg/Kg	0.500 0.500 0.500	0.502 0.500 0.500	0.500 0.500 0.500 0.500	0.500 0.500 0.500	0.500	0.500 0.500 0.500	0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500	0.500 0.586 0.500	
'ky∕8m ₂HdJ,	4020.00 0 180.000 66.000	80.000 20.000 20.000	20.000 20.000 29.000	20.000 20.000 20.000	20.000 20.000	20.000 20.000 20.000	20.000 20.000 31.000	20.000 20.000 20.000 20.000	494.000 95.000 34.000 34.000	
DRO ⁴ mg/Kg	3970 170 56	10 10	10 19 10 10	9 9 9	10	10 10	10 10 21 21	000000	484 85 24 24	
GRO ³ mg/Kg	50 10	10 10 10	10 10 10 10	10	10	10 1	0 0 0 0 0	000000	10 10000	
HEADSPACE VOC ² (ppm)	N/A N/A N/A	N/A N/A N/A	V/N V/N V/N	V/N V/N	V/N	N/N N/N	N N N N N N N N N N N N N N N N N N N		V	
Lithology	Sand Sand Sand	Sand Sand Sand	Sand Sand Sand	Sand Sand	Sand Sand	Sand Sand Sand	Sand Sand Sand Sand	Sand Sand Sand Sand Sand	Sand Sand Sand Sand	
Date Taken	7/28/2000 7/28/2000 7/28/2000	. 7 /28/200 0 7/31/2000 7/31/2000	7/31/2000 7/31/2000 7/31/2000	7/31/2000 7/31/2000 7/31/2000	7/31/2000 7/31/2000	7/31/2000 7/31/2000 7/31/2000	7/31/2000 7/31/2000 7/31/2000 7/31/2000	7/31/2000 7/31/2000 7/31/2000 7/31/2000	8/1/2000 8/1/2000 8/1/2000 8/1/2000	
SAMPLE ID#	ECO22AGP9-02 ECO22AGP9-05 ECO22AGP9-10	ECO22AGP9-15 ECO22AGP10-02 ECO22AGP10-05	ECO22AGP10-10 ECO22AGP10-15 ECO22AGP11-02 ECO22AGP11-05	ECO22AGP11-10 ECO22AGP11-15 ECO22AGP11-15 ECO22AGP12-02	EC022AGP12-05 EC022AGP12-10	ECO22AGP12-15 ECO22AGP13-02 ECO22AGP13-05	EC022AGP13-10 EC022AGP13-15 EC022AGP14-02 EC022AGP14-05 EC022AGP14-05	ECO22AGP1415 ECO22AGP1415 ECO22AGP1502 ECO22AGP1505 ECO22AGP1505 ECO22AGP1515	ECO22AGP16-02 ECO22AGP16-05 ECO22AGP16-10 ECO22AGP16-15 ECO22AGP16-15	lbgs – below ground surface
Sampling Interval (FT. BGS ¹)	2 5 10	15 5 2 2	10 15	5 15	5 10	15 5 2	10 13 13	, 19 (0 % 7) 19 (0 % 7) 19 (0 % 7)	2 5 15	bgs - below ground surface
əlorləroð	6	10	2	3	12	4	1 1	15	16	¹ bgs – bel

CLAY OSBORN JALMAT #22A

8

⁸N/A Not Analyzed Reported detection limits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations.

⁶Bolded values are in excess of the New Mexico Oil Conservation Division guideline threshold for the parameter

 5 TPH. Total Petroleum Hydrocarbon = GRO+DRO.

⁴DRO-Diesel Range Organics C₁₀-C₂₈

 7 Italicized values are < the instrument detection limit.

B.O.T.T. BNERGY PIPELINE

. Aut

\$

в. 12

1 A A A

i.,

S.

E.O.T.T. Energy Pipeline Clay Osborn Jalmat 22A

o-Xylene mg/Kg	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	
m,p- Xylenc mg/Kg	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	
Ehtyl Benzene mg/Kg	0.100 0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	
Tolucae mg/Kg	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.188	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	
Benzene mg/Kg	0.100 0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	
BTFX mg/Kg	0.500 0.500	0.500 0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.588	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	
TPH ⁵ mg/Kg	20.000	20.000 20.000	20.000	20.000	20.000	100.000	24.000	20.000	20.000	20.000	20.000	20.000	20.000	108,000	5290.000	97.000	20.000	4148,000	367.000	20.000	20.000	4144.000	2201.000	40.000	178,000	7897.000	2813.000	212.000	119.000	
DRO ⁴ mg/Kg	10	10	10	10	10	50	14	10	10	10	10	10	10	98	5240	87	10	4098	357	10	10	4052	2040	30	168	7823	2678	202	109	
GRO ³ mg/Kg	10	10	10	10	10	50	10	10	10	10	10	10	10	10	50	10	10	50	10	10	10	92	101	10	10	74	135	10	10	
HEADSPACE VOC ² (ppm)	N/A N/A	N/A N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A										
HI ,ithology	Sand Sand	p p c	pu	nd L	nd Dd	nd	nd	nd .	nd .	pu	nd	pu	pu	nd bu	pu	pq	pu	nd	pu	pu	nd	p	nd	nd	. pu	pu	pu	pu	pu	
Lithc	Sal Sal	S S	Sai	Sar	Sau Sau	Sat	Ser	Sar	Sar	Sai	Sai	Sai	Sai	Sat	Sar	Sat	Sar	Sar	Sar	Sai	Sar	Sar	Sar	Sar	Ser	Sar	Sai	Sar	Sar	
Date Taken	8/1/2000 8/1/2000	8/1/2000	8/1/2000	8/1/2000	8/1/2000	8/1/2000	8/1/2000	8/1/2000	8/1/2000	8/1/2000	8/1/2000	8/1/2000	8/1/2000	8/2/2000	8/2/2000	8/2/2000	8/2/2000	8/2/2000	8/2/2000	8/2/2000	8/2/2000	8/2/2000	8/2/2000	8/2/2000	8/2/2000	8/3/2000	8/3/2000	8/3/2000	8/3/2000	
SAMPLE ID#	ECO22AGP17-02 ECO22AGP17-02	EC022AGP17-10	ECO22AGP18-02	ECO22AGP18-05	ECO22AGP18-10 ECO22AGP18-15	EC022AGP19-02	ECO22AGP19-05	ECO22AGP19-10	ECO22AGP19-15	ECO22AGP20-02	ECO22AGP20-05	ECO22AGP20-10	ECO22AGP20-15	ECO22AGP21-02	ECO 22A G P21-05	ECO22AGP21-10	EC022AGP21-15	ECO22AGP22-02	ECO22AGP22-05	ECO22AGP22-10	ECO22AGP22-15	EC022AGP23-02	EC022AGP23-05	ECO22AGP23-10	EC022AGP23-15	ECO22AGP24-02	ECO22AGP24-05	ECO22AGP24-10	ECO22AGP24-15	ace
Sampling Interval (FT. BGS ¹)	5 5	10 15	2	τς τ <mark>έ</mark>	15	2	\$	10	15	7	ŝ	10	15	2	.	10	15	2	ŝ	10	15	5 7	Ś	10	15	7	Ś	10	15	ground surf
Borchole (J	17			18			10.	7	•••		00	2			21	Į.			"	7			72		•			74		¹ bgs – below ground surface

¹bgs – below ground surface ²VOC--Volatile Organic Contaminants/Constituents

³GRO-Gasoline Range Organics C₆-C₁₀

⁴D RO-Diesel Range Organics C₁₀-C₂₈

⁵TPH-Total Petroleum Hydrocarbon = GRO+DRO.

⁶Bolded values are in excess of the New Mexico Oil Conservation Division guideline threshold for the parameter

 7 ltalicized values are < the instrument detection limit.

•

⁸N/A Not Analyzed Reported detection limits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations.

61

CLAY OSBORN JALMAT #22A

-
-
/
Î
_
2
_
-
_
1

GΥ
~
1.12
-
~
-
NER
~
4
1
<u>; </u>
_
-
Ļ
•
~
· ·
-
•
0.2

12. 2. 2. 2.

1. 2 M. 1.

1. . 7.0

1

1000

101. 100 2.01. 100

5,83

1. N. J. .

1. 0 . 1. 1. 0 . 1. 1. .

m.p- Xylenc mg/Kg	0.100	0.100	0.143	0.100	0.100	3.480	1.820	0.100	
Ehtyl Benzene mg/Kg	0.100	0.100	0.100	0.100	0.100	1.040	0.505	0.100	
Tolucne mg/Kg	0.100	0.100	0.100	0.100	0.100	0.645	0.934	0.100	
Benzene mg/Kg	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	
BTEX mg/Kg	0.500	0.500	0.599	0.500	0.500	8.155	4.201	0.500	
gy/gm	4030.000	2741.000	4371.000	218,000	6560.000	3490.000	363.000	38.000	
DRO ⁴ mg/Kg	3980	2621	4040	208	6346	2947	348	28	
GRO ³ mg/Kg	50	120	331	10	214	543	15	10	
HEADSPACE VOC ² (ppm)	N/A	N/A	N/A	N/A	N/N	N/A	N/A	N/A	
Lithology	Sand	Sand	Sand	Sand	Sand	Sand	Sarid	Sand	
Date Taken	8/3/2000	8/3/2000	8/3/2000	8/3/2000	8/3/2000	8/3/2000	8/3/2000	8/3/2000	
SAMPLE ID#	EC022AGP25-02	EC022AGP25-05	EC022AGP25-10	ECO22AGP25-15	EC022AGP26-02	ECO22AGP26-05	ECO22AGP26-10	ECO22AGP26-15	c
Sampling Borehole Interval (IrT. BGS ¹)	2	3e 2	4. 10	15	0	5	20 10	15	¹ bgs – below ground surface

E.O.T.T. Energy Pipeline Clay Osborn Jalmat 22A

²VOC--Volatile Organic Contaminants/Constituents

³GRO-Gasoline Range Organics C₆-C₁₀

⁴DRO-Diesel Range Organics C₁₀-C₂₈

 5 l'PH-'l'otal Petrolcum Hydrocarbon = GRO+DRO.

^dBolded values are in excess of the New Mexico Oil Conservation Division guideline threshold for the parameter

 7 Italicized values are < the instrument detection limit.

⁸N/A Not Analyzed

Reported detection limits are considered "de minimus" values and are included in the GRO/DRO and BTEX summations.