

August 15, 2013

Mr. Jim Griswold New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, NM 87505-4225 RECEIVED OCD

Re: Salty Dog Brine Station - Second Quarterly Groundwater Monitoring and O&M Report

Dear Mr. Griswold:

On behalf of PAB Services, Inc., Daniel B. Stephens & Associates, Inc. (DBS&A) is pleased to submit the enclosed groundwater monitoring and O&M report for the Salty Dog brine station located in Lea County, New Mexico. The report documents results of second quarter groundwater monitoring activities completed at the site on June 23 through 25, 2013, as well as groundwater extraction system operations and maintenance information.

Please do not hesitate to call me at (505) 353-9130 if you have any questions or require additional information.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

7: 1.2,

Michael D. McVey Senior Hydrogeologist

Enclosures

cc: Pieter Bergstein, PAB Services, Inc.

Daniel B. Stephens & Associates, Inc.

505-822-9400 FAX 505-822-8877 Second Quarterly Groundwater Monitoring and O&M Report Salty Dog Brine Station Lea County, New Mexico

Prepared for

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division, Environmental Bureau

August 15, 2013

C

Daniel B. Stephens & Associates, Inc.

6020 Academy NE, Suite 100 • Albuquerque, New Mexico 87109

SECOND QUARTERLY GROUNDWATER MONITORING AND O&M REPORT SALTY DOG BRINE STATION LEA COUNTY, NEW MEXICO

1. INTRODUCTION

Daniel B. Stephens & Associates, Inc. (DBS&A) has prepared this groundwater monitoring and operations and maintenance (O&M) report for submission to the New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (OCD) Environmental Bureau on behalf of PAB Services, Inc. (PAB) for the Salty Dog brine station (the site) located in Lea County, New Mexico (Figure 1). The report summarizes activities conducted at the site on June 23 through 25, 2013.

The site is comprised of a northern portion where the brine pond was located prior to closure in October 2008 and a southern portion where the brine well is located. The brine pond area and the brine well area are separated by approximately 2,500 feet, joined by a dirt road. Since the closure of the brine pond, a number of frac tanks have been stationed in the northern portion of the site to serve as storage for brine that is produced for resale. A concrete truck loading pad is located near the frac tanks. The brine well is currently not operational and attempts are being made to redrill the well and restore brine production. Six monitor wells (PMW-1, DBS-1R, and DBS-2 through DBS-5), one nested well (NW-1), and one recovery well (RW-1) are located in the former brine pond area. Nine monitor wells (MW-2 through MW-6, DBS-6 through DBS-9), one nested well (NW-2) are located in the brine well area (Figure 1).

A groundwater extraction system was installed by DBS&A at the site in early April 2012 to provide hydraulic control of the chloride groundwater plumes present beneath the former brine pond area and brine well area. The extraction system consists of two submersible pumps, conveyance lines, electrical power, and controls to extract groundwater from recovery wells RW-1 (former brine pond area) and RW-2 (brine well area), and convey the extracted groundwater to on-site frac tanks for off-site disposal.

2. SCOPE OF WORK

The scope of work for groundwater monitoring consisted of measuring fluid levels in and collecting groundwater samples from 11 monitor wells for laboratory analysis. The monitor wells included in the quarterly sampling were selected in consultation with the OCD project manager, Jim Griswold, on October 4, 2010. Groundwater samples were submitted to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico for chloride analysis using U.S. Environmental Protection Agency (EPA) Test Method 300.0. In addition, during this monitoring and O&M event, DBS&A installed a new pump in recovery well RW-2, replaced two valves, and purchased and sent a replacement flow meter to PAB for installation.

3. MONITORING ACTIVITIES

Fluid Level Measurement

On June 23, 2013, DBS&A measured fluid levels in monitor wells DBS-1R, DBS-2 through DBS-5 and PMW-1 in the former brine pond area, and DBS-6, DBS-8, DBS-9, MW-3, and MW-5 in the brine well area using a properly decontaminated electronic water level meter (Figure 1). Table 1 provides a summary of the fluid level measurements and groundwater elevations.

The average depth to water beneath the former brine pond area during this monitoring event was 65.65 feet below ground surface (ft bgs), increasing approximately 0.41 foot since the last monitoring event in September 2012. Water levels in DBS-1R, PMW-1, DBS-2, and DBS-4 increased 1.25 feet, 1.37 feet, 0.42 foot, and 0.08 foot, respectively. Water levels in DBS-3 and DBS-5 decreased 0.27 foot and 0.38 foot, respectively.

The average depth to water beneath the brine well area was 62.78 ft bgs, decreasing 0.05 foot since September 2012. Water levels in DBS-6, DBS-8, and MW-5 decreased 0.14 foot, 0.13 foot, and 0.10 foot, respectively. The water level in MW-3 increased 0.14 foot. DBS-9, located northeast of the brine well in the playa, showed a decrease of 0.27 foot.

Potentiometric surface maps were prepared for the former brine pond and brine well areas and are included as Figures 2 and 3. The direction of groundwater flow beneath the former brine pond area remains to the southeast; the gradient decreased from 0.01 to 0.006 foot/foot (ft/ft) since the

last monitoring event in September 2012. A less pronounced cone of depression was present during this monitoring event with the increase in the groundwater level.

The direction of groundwater flow beneath the brine well area remains to the southeast; the gradient remained unchanged at approximately 0.004 ft/ft (Figure 3). The pump in recovery well RW-2 went down in December 2012, and was removed for replacement. No groundwater was extracted from December through the June 2013 monitoring event. The gradient remained unchanged since the last monitoring and O&M event in September 2012 indicating that pumping at the former rate was having little to no effect on drawdown in the brine well area.

Groundwater Sampling

Groundwater samples were collected from monitor wells DBS-1R, DBS-2 through DBS-6, PMW-1, DBS-8, DBS-9, MW-3, and MW-5 on June 24 and 25, 2013. DBS&A followed corporate standard operating procedures developed from EPA guidance during collection of all groundwater samples. Prior to sampling, the well was purged of a minimum of three casing volumes using a submersible pump to ensure that a representative sample of groundwater was collected. During purging, the DBS&A field technician measured water quality parameters including temperature, specific conductance, and pH to ensure that these parameters were stabilized to within 10 percent for specific conductance, 2 degrees for temperature and +/- 0.2 pH units prior to sampling. Sample containers were then filled, labeled, and placed on ice once the stabilization criteria were met. Groundwater samples were submitted under full chain-of-custody to HEAL for chloride analysis.

4. ANALYTICAL RESULTS

Table 2 summarizes chloride analytical results for the 11 groundwater samples collected on June 24 and 25, 2013. Figures 4 and 5 show the distribution of chloride in groundwater beneath the former brine pond and brine well areas for the sampling event. The laboratory report and chain-of-custody documentation are provided in Appendix 1. Field notes recorded during groundwater monitoring activities are included in Appendix 2.

Former Brine Pond Area Wells

Groundwater samples submitted from the wells in the former brine pond area showed the following changes since the last monitoring event in September 2012. The only increase in

chloride concentration was observed in DBS-1R (3,200 to 3,300 mg/L). Decreases were observed in DBS-2 (44 to 36 mg/L), DBS-3 (34 to 32 mg/L), and DBS-4 (32 to 31 mg/L). Chloride concentrations remained unchanged in DBS-5 (160 mg/L), and PMW-1 (14,000 mg/L). Two of the six wells (DBS-1R and PMW-1) sampled in the former brine pond area contain chloride concentrations in excess of the New Mexico Water Quality Control Commission (NMWQCC) standard of 250 mg/L (Table 2).

The chloride groundwater plume in the former brine pond area remains bounded by the existing monitor well network, and pumping of extraction well RW-1 continues to contain downgradient migration of the chloride groundwater plume. The chloride concentration in the downgradient well, DBS-4, remains below the standard, as do chloride concentrations in the two cross-gradient wells, DBS-2 and DBS-3 (Figure 4).

Brine Well Area Wells

Groundwater samples submitted from the wells in the brine well area showed the following changes since the last monitoring event in September 2012. The only increase in chloride concentration was observed in DBS-8 (42 to 45 mg/L). Decreases were observed in DBS-6 (390 to 340 mg/L), MW-3 (16,000 to 12,000 mg/L), and MW-5 (1,500 to 1,300 mg/L). Three of the five wells sampled in the brine well area (MW-3, MW-5, and DBS-6) contain chloride concentrations in excess of the New Mexico Water Quality Control Commission (NMWQCC) standard of 250 mg/L (Table 2).

The downgradient and northern, cross-gradient extent of the chloride groundwater plume in the brine well area remains undefined. The monitor well located closest to the extraction well (MW-3), the farthest downgradient well (MW-5), and the northern-most cross-gradient well (DBS-6) all continue to contain chloride concentrations in excess of the NMWQCC standard (Figure 5).

The chloride concentration in monitor well DBS-9 decreased from 320 to 200 mg/L since the last monitoring event in September 2012, and no longer exceeds the NMWQCC standard. DBS-9 was installed in the playa located northeast of the brine well to determine if documented releases that entered the playa in 2002 and 2005 impacted groundwater (Figure 5).

5. GROUNDWATER EXTRACTION SYSTEM O&M

Groundwater extraction from recovery well RW-1 at the former brine pond area was started on April 7, 2012. The flow rate for RW-1 was initially set at the design specification of 0.5 gallons per minute (gpm). Groundwater extraction from recovery well RW-2 at the brine well area was started on April 6, 2012. The flow rate for RW-2 was initially set at 1.3 gpm. After DBS&A set the flow rates, the PAB facility manager, Mr. Terry Wallace, adjusted the flow rates upward to facilitate daily disposal of the extracted groundwater.

Former Brine Pond Area

The groundwater extraction system at RW-1 has been in operation for approximately 441 days as of June 25, 2013. In July 2012, the system was down for a period of three days due to an electrical problem at the control box. Mr. Wallace contacted an electrician and the necessary repairs were made to restart the pump.

Extracted volumes of groundwater were recorded by the DBS&A field technician during the monitoring event and are provided in Table 3. To date, 2,599,392 gallons have been pumped from recovery well RW-1.

Pumping of recovery well RW-1 at the current flow rate of approximately 4.1 gallons per minute (gpm) has resulted in continued containment of the chloride groundwater plume in the former brine pond area. Monitor wells DBS-1R and PMW-1, the two wells in closest proximity to the extraction well, are the only wells that contain chloride concentrations in excess of the NMWQCC standard. Pumping at the current rate is effectively controlling downgradient migration of the chloride groundwater plume, and although the chloride concentrations in the wells remain elevated, they are expected to decrease through time with continued pumping.

<u>Brine Well Area</u>

The groundwater extraction system at RW-2 has been in operation for approximately 252 days. The pump in RW-2 went down on approximately December 14, 2012 ceasing groundwater extraction in the brine well area. As of the above date when the pump went down, 1,406,748 gallons have been pumped from recovery well RW-2 (Table 3).

Pumping of recovery well RW-2 at a flow rate of approximately 3.9 gpm (when the pump went down) has had little to no effect on drawdown in the brine well area. The chloride plume remains undefined downgradient and cross-gradient to the north of the extraction well. Monitor well MW-3, the well in closest proximity to the extraction well, showed a decrease in chloride concentration from 16,000 to 12,000 mg/L since the last monitoring event. This is the lowest concentration detected in MW-3 since June 2008. Monitor well MW-5, the farthest downgradient well, showed a decrease in chloride concentration from 1,500 to 1,300 mg/L. This is the lowest concentration detected in MW-5 since April 2009. Monitor well DBS-6, the northern-most cross-gradient well, showed a decrease in chloride concentration from 390 to 340 mg/L. This is the lowest concentration necentration detected in DBS-6 since the well was installed in April 2009. The reduction in concentrations noted above in the three wells may indicate a reduction in the total chloride contaminant mass in the brine well area. This will be further evaluated during future monitoring events as groundwater extraction at RW-2 is reinstated with the installation of the new pump.

System Maintenance

During a routine site visit on December 14, 2013, Mr. Wallace noted that the groundwater extraction system at recovery well RW-2 was not operating. Efforts by Mr. Wallace to restart the pump were unsuccessful. After a troubleshooting phone discussion with the DBS&A engineer, Mr. Wallace and PAB staff removed the pump and shipped it DBS&A for inspection. DBS&A then shipped the pump to an authorized manufacturer's representative for inspection and determination of the cause of failure. A determination was made that the pump failed due to a faulty motor shaft seal, and a new replacement pump, covered under the manufacturer's warranty, was sent to DBS&A. DBS&A coordinated with Mr. Wallace to install the replacement pump during the June 2013 monitoring event.

DBS&A field staff arrived on-site the week of June 23, 2013 to perform quarterly groundwater monitoring, system O&M, and installation of the replacement pump in recovery well RW-2. A new Grundfos pump (serial number P1-1211) was installed in RW-2 and set at the same depth as the original pump. In addition, two new 3/4-inch stainless steel ball valves were installed on each extraction system to replace bronze gate valves that had stopped functioning properly. During start-up and testing, DBS&A field staff discovered that the totalizing flow meter installed

at RW-2's wellhead was leaking. DBS&A recommended to Mr. Wallace that RW-2 not be operated until the damaged flow meter could be replaced. A new Badger flow meter (serial number 13445491) was purchased by DBS&A and shipped to Mr. Wallace for installation.

DBS&A did not identify any other maintenance issues requiring attention during this groundwater monitoring event. No other visible damage to any of the aboveground extraction system components was noted at either the RW-1 or RW-2 wellheads. RW-1 was running and no leaks were observed at the wellhead, along the conveyance lines, or at the tie-in to the frac tank. RW-2 will be put back in service once PAB has installed the replacement flow meter.

Future Extraction System Operation

Flow will be maintained at the current rate at RW-1 in the former brine pond area. Minor increases will be made to the flow rate at RW-2 in the brine well area in the near term, if possible, while maintaining a volume of extracted groundwater that can be disposed of on a daily basis by PAB. Once the brine well is brought back online, full-scale operation of the extraction system will begin with reinjection of the extracted groundwater into the brine well. At that time, the flow rate for RW-2 will be increased to meet the design specification of 15 gpm.

6. RECOMMENDATIONS

Based on the groundwater monitoring results, DBS&A recommends the following:

- Continue quarterly groundwater sampling to assess the performance of the groundwater extraction systems in the former brine pond area and brine well area by the collection of groundwater samples for laboratory analysis from the on-site monitor wells.
- Maintain the current flow rate of approximately 4.1 gpm from extraction well RW-1 and reevaluate during the next monitoring event based on chloride concentrations in DBS-1R and PMW-1.
- If possible, increase the flow rate from extraction well RW-2 while still maintaining a volume of extracted groundwater that can be disposed of on a daily basis by PAB.
- Once the brine well is brought back online, increase the flow rate from extraction well

RW-2 to meet the design specification of 15 gpm with reinjection of the extracted groundwater from RW-1 and RW-2 into the brine well.

Figures

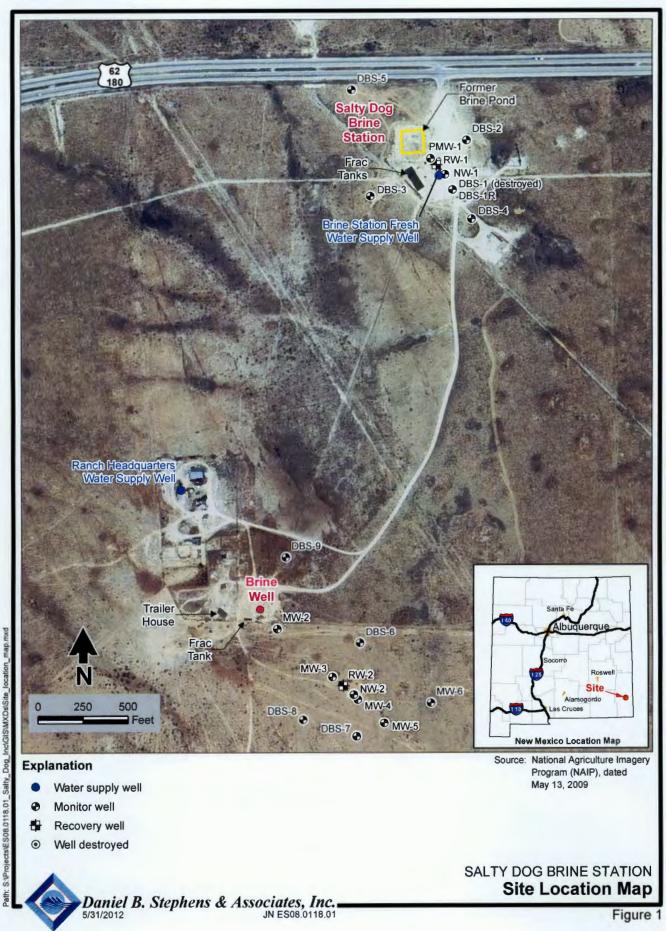
á tra

ssin

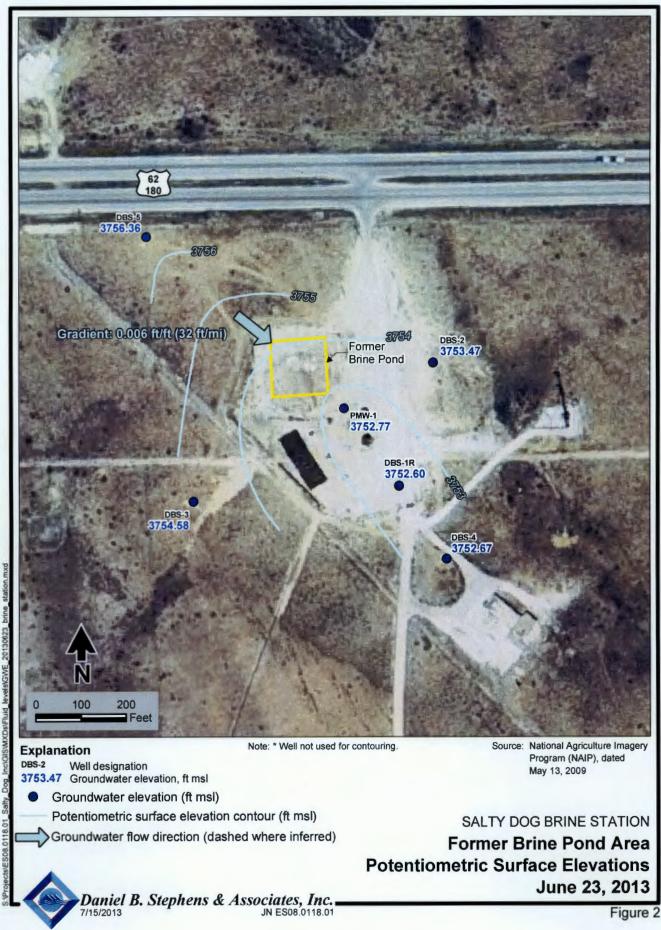
je ir d

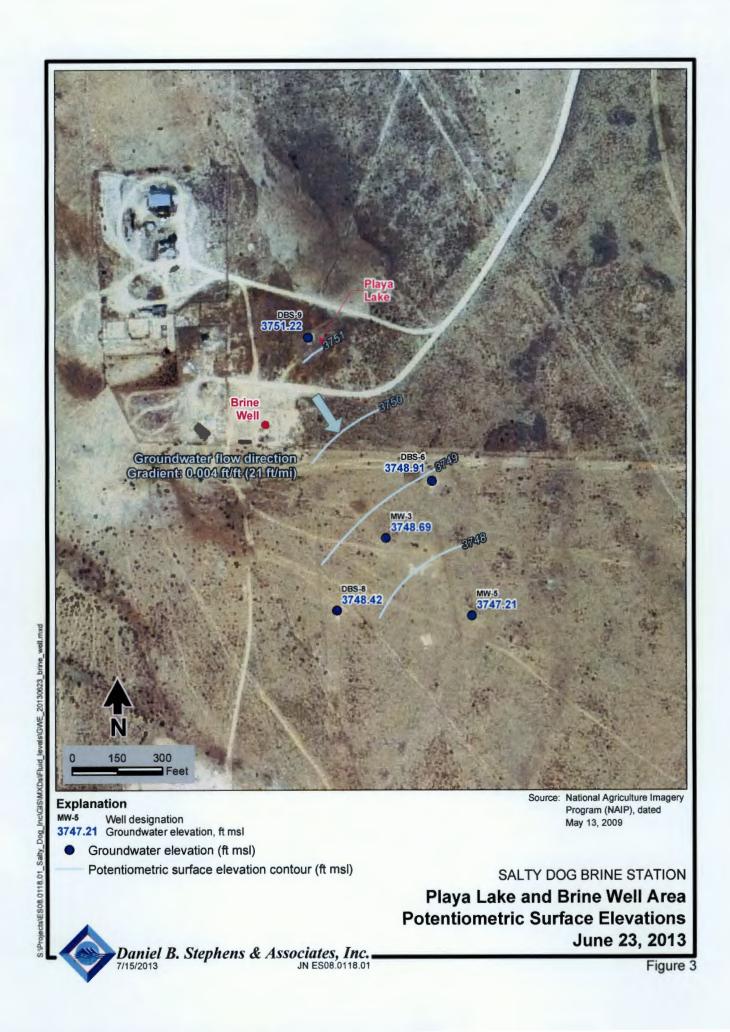
÷.

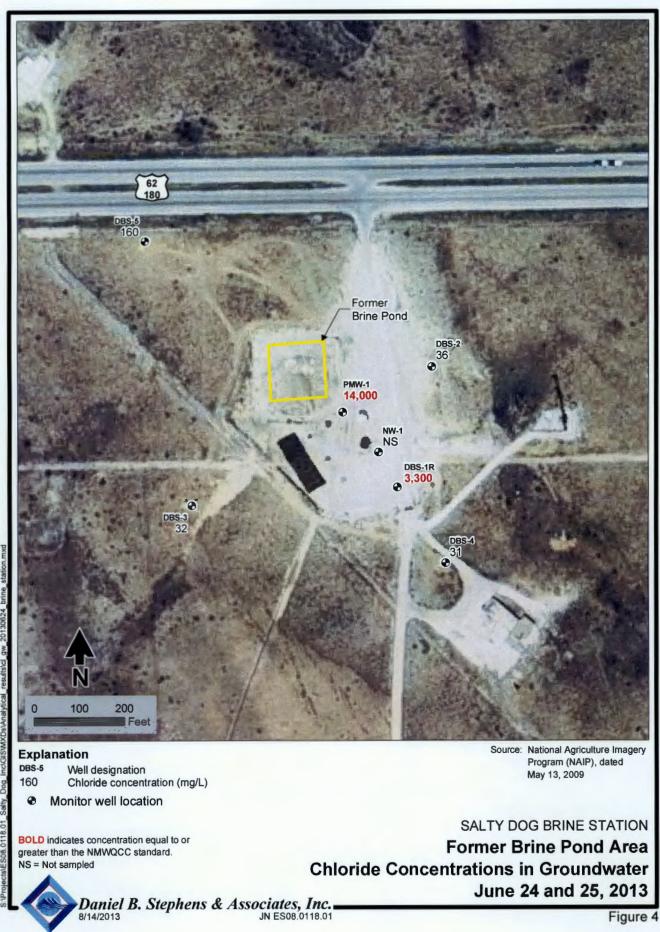
-

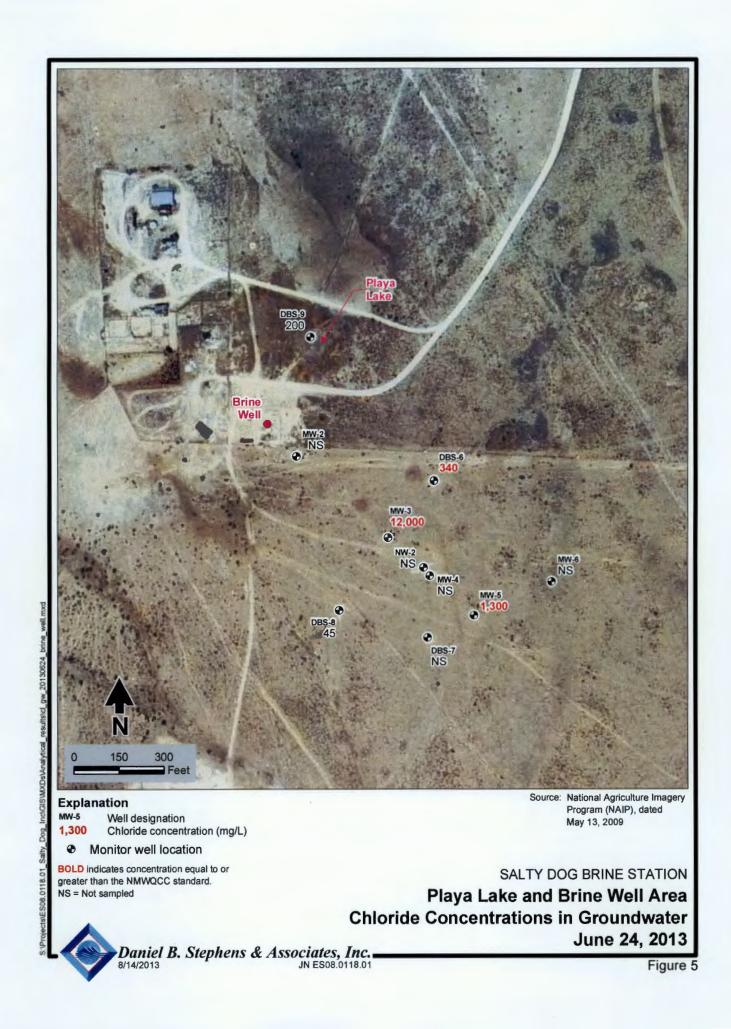

č

-


<u>a</u>


den e


. ندة



oth: SiDmiantelEC08.0118.01 Salts Data IndCISMXD45tia Intration man mu

Tables

نبغث

Table 1. Summary of Historical Fluid Level Measurements Salty Dog Brine Station, Lea County, New Mexico Page 1 of 4

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
DBS-1	56.0-76.0	3817.09	04/08/09	62.38	3754.71
			05/11/11	64.70	3752.39
			10/04/11	Well	destroyed
DBS-1R	58.0-78.0	3817.00 ^b	04/30/12	63.60	3753.40
			09/10/12	65.65	3751.35
			06/23/13	64.40	3752.60
DBS-2	58.0-78.0	3820.50	04/08/09	65.45	3755.05
			05/11/11	66.80	3753.70
			10/04/11	65.87	3754.63
			02/08/12	65.96	3754.54
			04/30/12	66.26	3754.24
			09/10/12	67.45	3753.05
			06/23/13	67.03	3753.47
DBS-3	56.0-76.72	3816.66	04/08/09	60.67	3755.99
			05/11/11	61.25	3755.41
			10/04/11	61.25	3755.41
			02/08/12	61.11	3755.55
			04/30/12	61.41	3755.25
			09/10/12	61.81	3754.85
			06/23/13	62.08	3754.58
DBS-4	56.0-76.0	3820.37	04/08/09	66.27	3754.10
			05/11/11	67.23	3753.14
			10/04/11	66.67	3753.70
			02/08/12	66.76	3753.61
			04/30/12	67.02	3753.35
			09/10/12	67.78	3752.59
			06/23/13	67.70	3752.67
DBS-5	56.9-76.9	3820.66	04/08/09	62.99	3757.67
			05/11/11	63.45	3757.21

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009. ^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

ft bgs = Feet below ground surface ft msl = Feet above mean sea level ft btoc = Feet below top of casing NA

= Not available

Table 1. Summary of Historical Fluid Level Measurements Salty Dog Brine Station, Lea County, New Mexico Page 2 of 4

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
DBS-5 (cont.)	56.9-76.9	3820.66	10/04/11	63.41	3757.25
			02/08/12	63.46	3757.20
			04/30/12	63.70	3756.96
			09/10/12	63.92	3756.74
			06/23/13	64.30	3756.36
DBS-6	56.7-76.7	3812.65	04/07/09	62.75	3749.90
			05/11/11	63.11	3749.54
			10/04/11	63.16	3749.49
			02/08/12	63.20	3749.45
			04/30/12	63.43	3749.22
			09/10/12	63.60	3749.05
			06/23/13	63.74	3748.91
DBS-7	55.1-75.1	3810.21	04/07/09	61.74	3748.47
DBS-8	55.2-75.2	3810.70	04/07/09	61.20	3749.50
			05/11/11	61.67	3749.03
			10/04/11	61.71	3748.99
			02/08/12	61.77	3748.93
			04/30/12	62.00	3748.70
			09/10/12	62.15	3748.55
			06/23/13	62.28	3748.42
DBS-9	48.0-68.0	3806.26	04/08/09	53.93	3752.33
			05/11/11	54.39	3751.87
			10/04/11	54.59	3751.67
			02/08/12	54.53	3751.73
			04/30/12	54.68	3751.58
			09/10/12	54.77	3751.49
			06/23/13	55.04	3751.22
NW-1s	52.95-72.95	3817.33	04/08/09	62.35	3754.98
NW-1m	99.31-119.31	3817.35	04/08/09	62.25	3755.10

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009. ^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

ft bgs = Feet below ground surface

= Feet above mean sea level ft msl

ft btoc = Feet below top of casing NA

= Not available

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
NW-1d	149.45-169.45	3817.35	04/08/09	62.04	3755.31
NW-2s	53.35-73.35	3812.50	04/08/09	63.08	3749.42
NW-2m	93.72-113.72	3812.45	04/08/09	63.27	3749.18
NW-2d	126.87-146.87	3812.46	04/08/09	66.41	3746.05
PMW-1	63-78	3821.17	06/23/08	67.51	3753.66
			04/08/09	65.97	3755.20
			05/11/11	68.70	3752.47
			10/04/11	66.95	3754.22
			02/08/12	66.69	3754.48
			04/30/12	67.27	3753.90
			09/10/12	69.77	3751.40
			06/23/13	68.40	3752.77
MW-1	120-140	NA	06/23/08	59.90	NA
MW-2	127-147	3812.68	06/23/08	61.42	3751.26
			04/07/09	61.65	3751.03
MW-3	NA	3812.05	06/23/08	62.06	3749.99
			04/07/09	62.02	3750.03
			05/11/11	62.91	3749.14
			10/04/11	62.91	3749.14
			02/08/12	62.95	3749.10
			04/30/12	63.39	3748.66
			09/10/12	63.50	3748.55
			06/23/13	63.36	3748.69
MW-4	111-131	3811.33	06/23/08	62.12	3749.21
			04/07/09	62.51	3748.82
MW-5	112-132	3808.96	06/23/08	60.60	3748.36
			04/07/09	60.79	3748.17
			05/11/11	61.17	3747.79
			10/04/11	61.72	3747.24

Table 1. Summary of Historical Fluid Level MeasurementsSalty Dog Brine Station, Lea County, New MexicoPage 3 of 4

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009. ^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

100 01	buoing cloration curreyed by reaging		
ft bgs	= Feet below ground surface	ft btoc	= Feet below top of casing
ft msl	= Feet above mean sea level	NA	= Not available

Table 1. Summary of Historical Fluid Level Measurements Salty Dog Brine Station, Lea County, New Mexico Page 4 of 4

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
MW-5 (cont.)	112-132	3808.96	02/08/12	61.23	3747.73
			04/30/12	61.50	3747.46
			09/10/12	61.65	3747.31
			06/23/13	61.75	3747.21
MW-6	NA	3810.17	06/23/08	62.17	3748.00
			04/07/09	62.41	3747.76

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009. ^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

ft bgs = Feet below ground surface ft btoc = Feet below top of casing

ft msl = Feet above mean sea level NA = Not available

Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 1 of 4

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
New Mexico Water Quality Control Com	mission Standard	250
DBS-1	04/08/09	320
	05/12/11	940
	10/04/11	Well destroyed
DBS-1R	05/01/12	3,000
	09/11/12	3,200
	06/25/13	3,300
DBS-2	04/08/09	14
	05/12/11	25
	10/05/11	18
	02/09/12	22
	05/01/12	24
	09/11/12	44
	06/25/13	36
DBS-3	04/08/09	36
	05/12/11	35
	10/05/11	34
	02/09/12	34
	05/01/12	33
	09/11/12	34
	06/24/13	32
DBS-4	04/08/09	38
	05/12/11	33
	10/05/11	32
	02/09/12	32
	05/01/12	31
	09/11/12	32
	06/25/13	31
DBS-5	04/08/09	65
	05/12/11	140
	10/05/11	140
	02/09/12	140

Bold indicates concentrations that exceed the applicable standard.

^aAll samples analyzed in accordance to EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance to Standard Method 4500-Cl B.

Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 2 of 4

		Chloride Concentration	
Monitor Well	Date	(mg/L) ^a	
New Mexico Water Quality Control Com	250		
DBS-5 (cont.)	04/30/12	150	
	09/11/12	160	
	06/24/13	160	
DBS-6	04/07/09	380	
	05/12/11	410	
	10/05/11	400	
	02/09/12	380	
	04/30/12	400	
	09/11/12	390	
	06/24/13	340	
DBS-7	04/07/08	570	
DBS-8	04/07/09	58	
	05/12/11	36	
	10/05/11	140	
	02/09/12	41	
	04/30/12	41	
	09/10/12	42	
	06/24/13	45	
DBS-9	04/08/09	210	
	05/12/11	600	
	10/05/11	440	
	02/09/12	290	
	04/30/12	330	
	09/11/12	320	
	06/24/13	200	
NW-1s	04/08/09	630	
NW-1m	04/08/09	57	
NW-1d	04/08/09	38	
NW-2s	04/08/09	410	
NW-2m	04/08/09	570	
NW-2d	04/08/09	4,700	

Bold indicates concentrations that exceed the applicable standard.

^a All samples analyzed in accordance to EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance to Standard Method 4500-Cl B.

Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 3 of 4

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
New Mexico Water Quality Control Com	mission Standard	250
PMW-1	02/27/08	9,500 ^b
	05/30/08	8,600 ^b
	06/23/08	12,700
	04/08/09	11,000
	05/12/11	13,000
	10/05/11	12,000
	02/09/12	12,000
	05/01/12	12,000
	09/11/12	14,000
	06/25/13	14,000
MW-1	05/30/08	75 ^b
	06/23/08	243
MW-2	02/27/08	120 ^b
	05/30/08	80 ^b
	06/23/08	1,480
	04/07/09	1,200
MW-3	02/27/08	348 ^b
	05/30/08	360 ^b
	06/23/08	1,090
	04/07/09	17,000
	05/12/11	16,000
	10/05/11	14,000
	02/09/12	15,000
	04/30/12	14,000
	09/10/12	16,000
	06/24/13	12,000
MW-4	02/27/08	476 ^b
	05/30/08	512 ^b
	06/23/08	5,730
	04/07/09	6,600
MW-5	02/27/08	1,280 ^b

Bold indicates concentrations that exceed the applicable standard.

^a All samples analyzed in accordance to EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance to Standard Method 4500-Cl B.

Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 4 of 4

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
New Mexico Water Quality Control Com	mission Standard	250
MW-5 (cont.)	05/30/08	1,220 ^b
	06/23/08	1,260
	04/07/09	1,300
	05/12/11	1,500
	10/05/11	1,500
	02/09/12	1,500
	04/30/12	1,400
	09/10/12	1,500
	06/24/13	1,300
MW-6	02/27/08	32 ^b
	05/30/08	36 ^b
	06/23/08	31.4
	04/07/09	25
Ranch Headquarters Supply Well	06/23/08	35.4
Brine Station Fresh Water Supply Well	02/27/08	630 ^b
	05/30/08	590 ^b
	06/23/08	650

Bold indicates concentrations that exceed the applicable standard.

^a All samples analyzed in accordance with EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance with Standard Method 4500-CI B.

Table 3. Summary of Cumulative Extracted Groundwater VolumesSalty Dog Brine Station, Lea County, New MexicoPage 1 of 1

Recovery Well	Date	Days of Operation	Average Flow Rate (gpm)	Extracted Volume (gal)		
RW-1	04/07/12	Groundwater extraction started				
	05/01/12	24	2.1	73,740		
	09/11/12	154	2.9	636,237		
	06/25/13	441	4.1	2,599,392		
RW-2	04/06/12	C	Groundwater extractio	n started		
	05/01/12	25	2.5	91,450		
	09/11/12	158	4.3	963,789		
	12/14/12 ^a	252	3.9	1,406,748		

^a Pump went down on 12/14/12 due to a blown inner shaft motor seal.

gpm = gallons per minute

gal = gallons

Appendices

نعز

-

-

.

-

-

-

Appendix 1

-

-

. Line

.

ŝ

-

<u>in</u>

im)

Laboratory Report

July 05, 2013

Mike McVey

Daniel B. Stephens & Assoc. 6020 Academy NE Suite 100 Albuquerque, NM 87109 TEL: (505) 822-9400 FAX (505) 822-8877

RE: Salty Dog

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

OrderNo.: 1306B07

Dear Mike McVey:

Hall Environmental Analysis Laboratory received 11 sample(s) on 6/26/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Enviro	nmental Analys	is Laborato	ory, Inc.		Analytical Report Lab Order: 1306B07 Date Reported: 7/5/2013
CLIENT: Project:	Daniel B. Stephens & Salty Dog	Assoc.			Lab Order: 1306B07
Lab ID:	1306B07-001				Date: 6/24/2013 9:31:00 AM
Client Sample ID	: MW-5			M	atrix: AQUEOUS
Analyses		Result	RL Qual	Units	DF Date Analyzed Batch I
EPA METHOD 30	00.0: ANIONS				Analyst: JRR
Chloride		1300	50 *	mg/L	100 6/27/2013 2:49:14 PM R110
Lab ID:	1306B07-002			Collection	Date: 6/24/2013 10:33:00 AM
Client Sample ID	: MW-3			Μ	atrix: AQUEOUS
Analyses		Result	RL Qual	Units	DF Date Analyzed Batch I
EPA METHOD 30	00.0: ANIONS				Analyst: JRR
Chloride		12000	500 *	mg/L	1E 7/1/2013 10:07:11 PM R110
Lab ID:	1306B07-003			Collection	Date: 6/24/2013 11:08:00 AM
Client Sample ID	: DBS-8			Μ	atrix: AQUEOUS
Analyses		Result	RL Qual	Units	DF Date Analyzed Batch I
EPA METHOD 30	00.0: ANIONS				Analyst: JRR
Chloride		45	5.0	mg/L	10 6/27/2013 3:26:26 PM R110
Lab ID:	1306B07-004			Collection	Date: 6/24/2013 11:40:00 AM
Client Sample ID	: DBS-6			M	atrix: AQUEOUS
Analyses		Result	RL Qual	Units	DF Date Analyzed Batch I
EPA METHOD 30	00.0: ANIONS				Analyst: JRR
Chloride		340	50 *	mg/L	100 6/27/2013 4:03:40 PM R116
Lab ID:	1306B07-005			Collection	Date: 6/24/2013 1:30:00 PM
Client Sample ID	: DBS-9			Μ	atrix: AQUEOUS
Analyses		Result	RL Qual	Units	DF Date Analyzed Batch I
EPA METHOD 30	00.0: ANIONS				Analyst: JRR
Chloride		200	50	mg/L	100 6/27/2013 4:28:29 PM R110

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

÷.

-

* Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND Sample pH greater than 2 for VOA and TOC only.
- Р
- RL Reporting Detection Limit

Hall Environ	nmental Analys	sis Laborato	ory, Inc.		Analytica Lab Order: Date Repo	•	13
	Daniel B. Stephens & Salty Dog	Assoc.		L	ab Order:	1306B0)7
Lab ID:	1306B07-006			Collection Date:			
Client Sample ID:	: DBS-5				AQUEOUS		
Analyses		Result	RL Qual	Units	DF Date Ar	nalyzed	Batch ID
EPA METHOD 30 Chloride	0.0: ANIONS	160	5.0	mg/L	10 6/27/201	-	vst: JRR M R1162
Lab ID: Client Sample ID:	1306B07-007 DBS-3			Collection Date: Matrix:	: 6/24/2013 6 : AQUEOUS		
Analyses		Result	RL Qual	Units	DF Date Ar	nalyzed	Batch ID
EPA METHOD 30 Chloride	0.0: ANIONS	32	5.0	mg/L	10 6/27/201		st: JRR M R11629
Lab ID: Client Sample ID:	1306B07-008 DBS-2			Collection Date: Matrix:	6/25/2013 1 AQUEOUS		Л
Analyses		Result	RL Qual		DF Date Ar		Batch ID
EPA METHOD 30	0.0: ANIONS				40 0/07/00/		st: JRR
Chloride		36	5.0	mg/L	10 6/27/201	3 5:55:21 PN	A R1162
Lab ID: Client Sample ID:	1306B07-009 DBS-4		(Collection Date: Matrix:	6/25/2013 1 AQUEOUS		1
Analyses		Result	RL Qual	Units	DF Date An	alyzed	Batch ID
EPA METHOD 30	0.0: ANIONS					Analy	st: JRR
Chloride		31	5.0	mg/L	10 6/27/201	3 6:20:11 PM	A R1162
Lab ID: Client Sample ID:	1306B07-010 DBS-1R		(Collection Date: Matrix:	6/25/2013 1 AQUEOUS		1
Analyses		Result	RL Qual	Units	DF Date An	alyzed	Batch ID
EPA METHOD 300 Chloride	0.0: ANIONS	3300	100 *	mg/L	200 7/1/2013	-	st: JRR / R11694

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

-

-

-

* Value exceeds Maximum Contaminant Level.

Ε Value above quantitation range

J Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Sample pH greater than 2 for VOA and TOC only.
- Р
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.			с.	Analytical Report Lab Order: 1306B07 Date Reported: 7/5/2013				
CLIENT: Project:	Daniel B. Stephens & Salty Dog	Assoc.				Lab Order:	1306B	07
Lab ID: Client Sample	1306B07-011 ID: PMW-1			(Collection Date: 6/25/2013 3:00:00 PM Matrix: AQUEOUS			
Analyses		Result	RL (Qual	Units	DF Date An	alyzed	Batch II
EPA METHO	D 300.0: ANIONS						Anal	yst: JRR
Chloride		14000	1000	٠	mg/L	2E 7/1/2013	10:32:00 P	M R116

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
 - J Analyte detected below quantitation limits
 - 0 RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Sample pH greater than 2 for VOA and TOC only. Reporting Detection Limit
- Р
- RL Reporting Detection Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Daniel B. Stephens & Asso Salty Dog	c.					
Sample ID MB	SampType: MB	BLK	TestCode:	EPA Method	300.0: Anions		
Client ID: PBW	Batch ID: R1	1629	RunNo:	11629			
Prep Date:	Analysis Date: 6/2	27/2013	SeqNo:	329847	Units: mg/L		
Analyte Chloride	Result PQL ND 0.50	SPK value S	PK Ref Val %RE	C LowLimit	HighLimit	%RPD	RPDLimit
Sample ID LCS	SampType: LC	s	TestCode:	EPA Method	300.0: Anions	,	
Client ID: LCSV	Batch ID: R1	1629	RunNo:	11629			
Prep Date:	Analysis Date: 6/2	27/2013	SeqNo:	329848	Units: mg/L		
Analyte	Result PQL	SPK value S	PK Ref Val %RE	C LowLimit	HighLimit	%RPD	RPDLimit
Chloride	4.8 0.50	5.000	0 96.	0 90	110		
Sample ID MB	SampType: MB	LK	TestCode:	EPA Method	300.0: Anions		÷
Client ID: PBW	Batch ID: R1	1629	RunNo:	11629			
Prep Date:	Analysis Date: 6/2	27/2013	SeqNo:	329910	Units: mg/L		
Analyte	Result PQL	SPK value S	PK Ref Val %RE	C LowLimit	HighLimit	%RPD	RPDLimit
Chloride	ND 0.50						
Sample ID LCS	SampType: LC:	s	TestCode:	EPA Method	300.0: Anions		
Client ID: LCSV	Batch ID: R14	1629	RunNo:	11629			
Prep Date:	Analysis Date: 6/2	27/2013	SeqNo:	329911	Units: mg/L		
Analyte	Result PQL	SPK value S	PK Ref Val %RE	C LowLimit	HighLimit	%RPD	RPDLimit
Chloride	4.5 0.50	5.000	0 90.9	9 90	110		

Chionde	4.0 0.00 5.000	0 90.9 90	110	
Sample ID MB	SampType: MBLK	TestCode: EPA Method	1 300.0: Anions	
Client ID: PBW	Batch ID: R11694	RunNo: 11694		
Prep Date:	Analysis Date: 7/1/2013	SeqNo: 331965	Units: mg/L	
Analyte	Result PQL SPK value S	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride	ND 0.50			
Sample ID LCS	SampType: LCS	TestCode: EPA Method	1 300.0: Anions	
Client ID: LCSW	Batch ID: R11694	RunNo: 11694		
Prep Date:	Analysis Date: 7/1/2013	SeqNo: 331966	Units: mg/L	
Analyte	Result PQL SPK value S	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual

0

5.000

Qualifiers:

Chloride

* Value exceeds Maximum Contaminant Level.

0.50

4.6

Ε Value above quantitation range

J Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits

Analyte detected in the associated Method Blank в

90

110

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

91.5

Sample pH greater than 2 for VOA and TOC only. Р

Reporting Detection Limit RL

Page 4 of 4

1306B07

Qual

Qual

Qual

Qual

WO#:

05-Jul-13

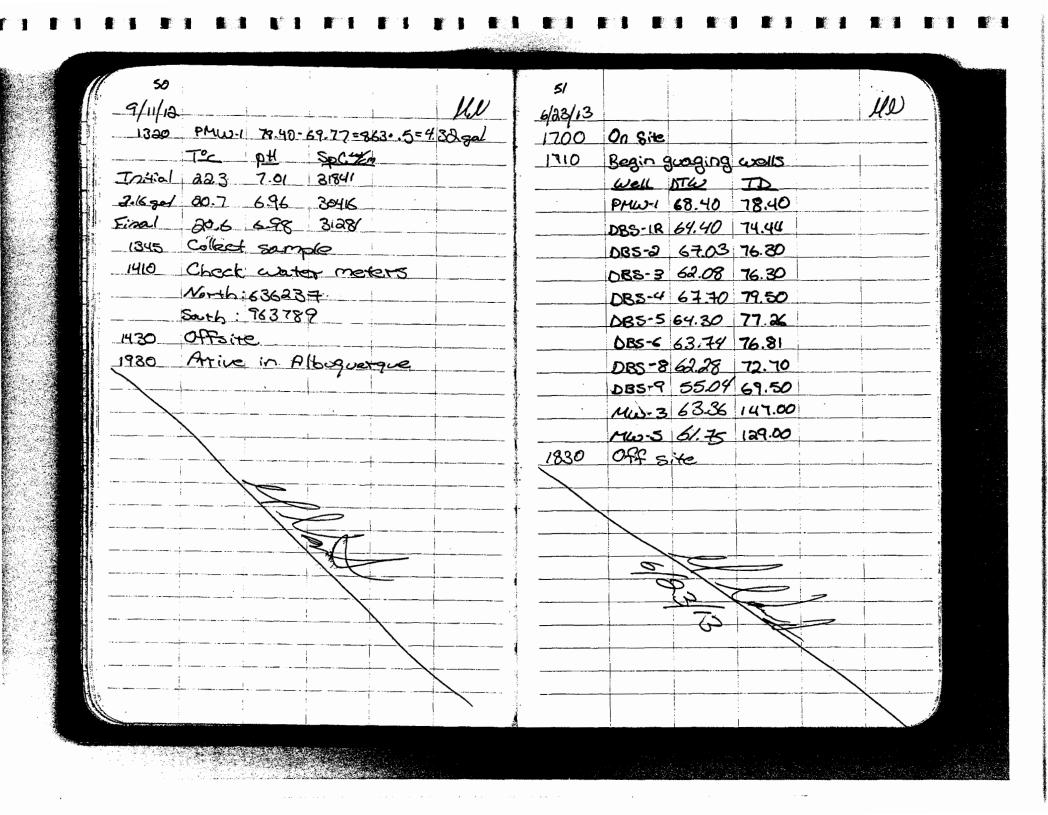
Client Name: DBS	Work Order Num	ber: 1306B07		RcptNo: 1
Received by/date:	624/13			
Logged By: Michelje Garcia	6/26/2013 10:25:00	AM	Minue Cp	nun
Completed By: Michelle Garcia	6/26/2013 1 <u>/</u> 2:42:09		Minus Cps Minus Cps	(un)
Reviewed By:	06/26/12		· 7	
Chain of Custody				
1. Custody seals intact on sample bottles?		Yes 🗌	No 🗌	Not Present 🗹
2. Is Chain of Custody complete?		Yes 🗹	No 🗖	Not Present
3. How was the sample delivered?		Client		
<u>Log In</u>				
4. Was an attempt made to cool the sample	s?	Yes 🗹	No 🗌	NA 🗌
5. Were all samples received at a temperatu	re of >0° C to 6.0°C	Yes 🗹	No 🗌	
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗆	
7. Sufficient sample volume for indicated tes	t(s)?	Yes 🗹	No 🗀	
8. Are samples (except VOA and ONG) prop	erly preserved?	Yes 🗹	No 🗌	
9. Was preservative added to bottles?		Yes 🗌	No 🗹	NA 🗌
10.VOA vials have zero headspace?		Yes	No 🗌	No VOA Vials 🗹
11. Were any sample containers received bro	ken?	Yes 🗆	No 🗹	# of preserved
12. Does paperwork match bottle labels?		Yes 🔽	No 🗆	for pH:
(Note discrepancies on chain of custody)			Na 🗖	(<2 or >12 unless Adjusted?
13. Are matrices correctly identified on Chain 14. Is it clear what analyses were requested?	of Custody?	Yes ✔ Yes ✔	No 🗌	
15. Were all holding times able to be met?		Yes 🗹	No 🗌	Checked by:
(If no, notify customer for authorization.) Special Handling (if applicable)				
16. Was client notified of all discrepancies wit	h this order?	Yes 🗌	No 🗆	NA 🗹
Person Notified:	Date			•
By Whom:	Via:	🗋 eMail 🛄 I	Phone 🗌 Fax	In Person
Regarding:				
Client Instructions:				
17. Additional remarks:				

DBS+A							
	Standard Rush	ANALYSIS LABORATORY					
-	Project Name:	www.hallenvironmental.com					
ng Address:	Satty Dog	4901 Hawkins NE - Albuquerque, NM 87109					
	Project #: 0	Tel. 505-345-3975 Fax 505-345-4107					
ne #: 505-832-2400	2508.0118	Analysis Request					
il or Fax#: MMcvey @DBStophens.co	Project Manager:	() () () () () () () () () () () () () (
C Package:							
tandard Level 4 (Full Validation) M. Mavey Sampler: M. Unuck	BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH 8015B (GRO / DRO / MRO) TPH (Method 504.1) EDB (Method 504.1) PAH's (8310 or 8270 SIMS) PAH's (8310 or 8270 SIMS) RCRA 8 Metals Anions (F,CI,NO ₂ ,NO ₂ ,PO ₄ ,SO ₄) 8081 Pesticides / 8082 PCB's 8260B (VOA) 8270 (Semi-VOA)					
editation	Sampler: M. Unuch	+ TMB + TPH (0 / DI (0 - 1) - 04.1) - 04.1)					
ELAP 🗆 Other	On Ice Mares Ares Children and Area	BTEX + MTBE + TM BTEX + MTBE + TPH BTEX + MTBE + TPH TPH 8015B (GRO / I TPH (Method 504.1) EDB (Method 504.1) PAH's (8310 or 8270 PAH's (8310 or 8270 PAH's (8310 or 8270 PAH's (8310 or 8270 PAH's (8310 or 8270 RCRA 8 Metals Anions (F,CI,NO ₃ ,NC 8260B (VOA) 8270 (Semi-VOA) 21 -					
DD (Type)	Sample d'emperatore : 2	BTEX + MTBE + 1 BTEX + MTBE + 1 TPH 8015B (GRO TPH (Method 504 EDB (Method 504 PAH's (8310 or 82 PAH's (7) PAH's (7) P					
	Container Preservative	BTEX + MTBI BTEX + MTBI TPH 8015B ((TPH (Method PAH's (8310 (PAH's (9310 (PAH's (P					
te Time Matrix Sample Request II	Type and # Type	BTEX BTEX BTEX BTEX FTPH 8 PAH'S 8081 F BAH'S 8081 F BAH'S 8250 B 8270 (
1030731 water MW-5	125 m/ Bly None -00)						
1033 1 MW-3	-002						
1108 DB5-8	-003						
1140 DBS-6	-604						
1330 DB59	-05						
1445 D855							
	$-\frac{1}{006}$						
- 1850 DBS-3							
13 1040 DBS-2		┝╼╪╌╎┝╼╪╌╎╱┥┝╶┼					
108 DBS-4	+ $+$ $ -$	┼┼┼┼┼┼┼┼┼┼┼					
1144 DBS-1R		╎┼╎┼┼┼┼┼┼┼┼┼					
1500 - PMW-1		┥<mark>┊┊┊┊┊┊</mark>╡┥┥┥					
Time: Relinquished by	Received by: Date Time	Remarks:					
Time: Relinquished by:	Received by: Date/ Time	25					

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Appendix 2

<u>مىن</u>


i.

-

.

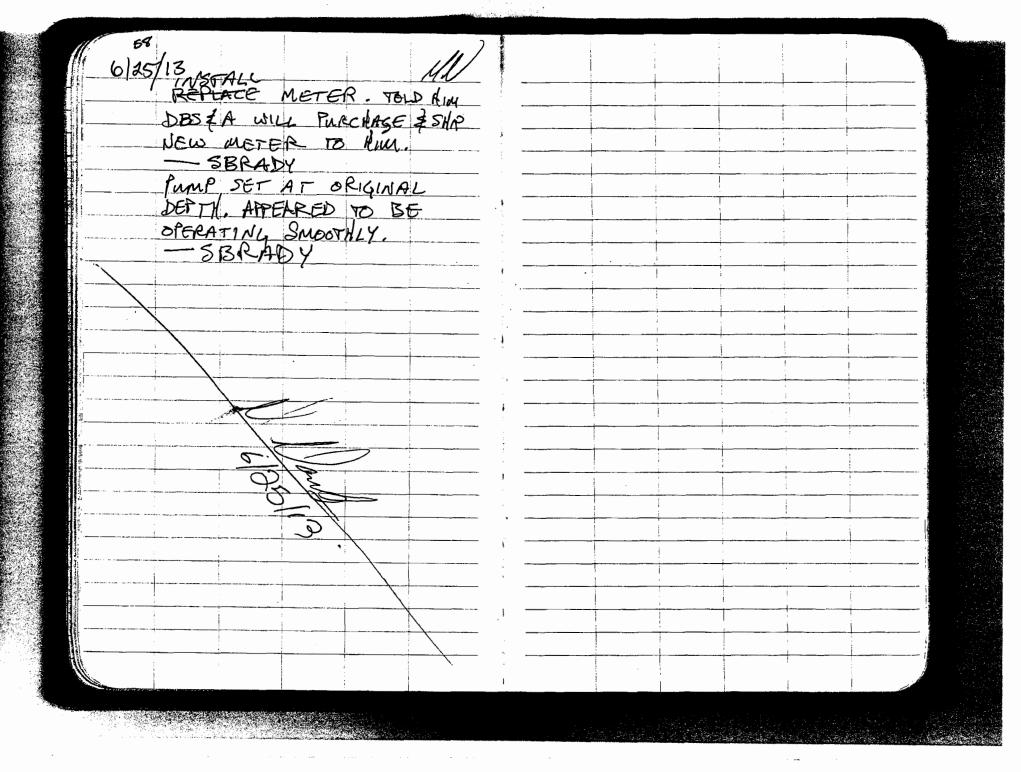
.

Field Notes

52 6/24/13	8				W	53 6/24/13		-	· · ·		He
0700	H.l	hunt.	on sile			Yol Kai)	MU.3 Toc	ett	Sol to	Comme	- mit famme in the second of
	Calibr				,	Initia /	19.6	7.04	43.0		
	Reading		:			10	19.3	6,92	୳ୄୄୄୢୠ୶ଡ଼	<i>e 1</i>	
PN 7	7.01	24.9			· · · · ·	20	A.3	6.47	26326		
4	400	24.5				30	19.3	6.43	32090		
10	10.01	24.1				40	19.3	6.43	34134	11	
550		23.3				45	19.3		34100		
	87.2		662.6 M	nothe.		1033	Colle	act pr	W-3		
	7.52			2		1036		-	meter .	140674	8gal
0748		w-5			*	1050	O ØB				0
	129 00 -		7.85	5 - 33.6	Benlan		1	•	8=10.4	2.0.5	5.21gal
Vol(22))	Toc		Sp - Kn		-	Vol(sel)	-	e#	Sec The		
Joitie	19.5		2317		Saper	Initia		7.27	810	milty	
10	17.5	K.76		clear		5	19.8	7.00	760	Clar	
_20	19.5	6.71	4567	,/	I	10	A.8	6.99	746		
30	19.5			./		15	19.8	6.99	745	~	
40	19.5		4414	11		1108	Colle	et DB	5-8	1	
0815			onpe		otroller	1120	0 DRS	-6			
	Resum	epun	ping a	1 DPL	full		76.8	1-63.7	4:13.07.	0.5 = 6.	54301
i	Collect	- MW	-5	1.1.050		Vol(se)	TC	pH	1	Comm	-
	O MW				•	Initial	20.0	6.76		milly	
-			- 83.64.	,5 = 41.	82	5	19.8	6.68	1	clear	·
1010	Regin	Pumo	000	n		10	19.6	6.63	1856		:
	- 0 - 1		la la	्र	· · ·	15	19.9	6.65	1851		
			- Ca			1140	colle	04 D85	5-6		
•.				<hr/>	·······		7 7		-		:

- Recht R

. ...


and the second second

によるの語言になって

				· · · · · · · · · · · · · · · · · · ·			
Ű	54						56
] -	6/24/13	•				AU	E Do
		@ DB5] 			_Vo
- - -		69.50	- 55.04	(= 14.46	·0.5 = ·	1.23gal	I
	16/ Cal)	TC	PH	Solim	Commer	ts ·	5
1	Initia/	19.1	2.02	1820	milty	howa	_(
	3	18.8	6.38	1603	clear		
-	10	18.7	6.90	1488	./		· _ /
_	15	18.8	6.92	1434	Clear		' _ <i>!</i> '
		18.7		1451	1.1		
-	1330	Collect	DBS-	?			·
<u>.</u> _	1400						-
-		77.20	5-64.30	0=12.96	.0.5=6	48 ge (841)	<u> </u>
-	Vol(Bal)	Te	pH	Sol ton	Comme	2/5	· _ /*
-	Initial						: _1
- 1	<u>ح</u>				Milkya	hite	, _
-		20.1	6.69	1203	// *		·
	15		~				·
-	යට			<u> </u>	*	2	;
	1424					allow	•
		te coo					
-	1434	Resume	3 pum	ping			· · · · · · · · · · · · · · · · · · ·
	1438						ı
	1445			5			· · · · · · · · · · · · · · · · · · ·
11 	1505					·····	
		76.30	-62.0	8 = 14.2	9.05=7	algel	·
			///	1			· ·
		¢.	100	ACT -			

24/13 MITC. Comments oH (امو) 20.6 Milky brown Milk ant 7.06 670 7.08 ha(20.1 7.35 580 20.1 20.1 7.38 574 D Pump has stopped Water appears to have 30 Sotten into pump casing. Plan is to let pump dry out & check Voltage of control line 130 Resume pumping 150 - Collect DBS-3 offsite 90

56 6/25/13 MV	57 6/85/13
0700 Trock down parts for purp 0930 M. Dauch + 5. Brody on site	1108 Collect DBS-4 1120 @DBS-1R
0935 Calibrate 151 Ro	14.44-64.40=10.04.0.5=5.02 sal
Reading T°C pH 4 4.01 25.2	Vollar) T°C, pH Spc. 27 comments Initial 19.9 7.02 7629 milly wht
<u>7 7.08 25.0</u>	3 19.6 6.86 8391 , ° 6 19.6 6.75 9571 clear
50° 1413 1413 25.0	9 19.5 6.76 9711
<u>E20 % - </u> <u>rak</u> -	1144 Collect DBS-IR 1200 Assist S. Brody w/ pump installation
1020 @DBS-2	1437 OPMW-1
76.30-67.03=9.27.0.5= 4.64(50) Volan Tec pH Spart Comments	18.40-68.40=10.00=0.5=5.00 scu Voltan pH Te Sycrem Comments
Initial 19.8 7.07 598 Milly bro	Initial 6.73,95 3500 Closer 3 6.70,9,4 36096 4
2 19.4 6.93 603 milky ukt 4 19.4 6.96 616	6 6.70 19.4 40226 ''
6 19.4 6.87 615 clear 1040 Collect DBS-2	9 6.73 19.4 42400 11 1500 collect PMW-1
1050 @ DBS-4	1600 N. Meter 2599392
19.50-67.70=11.80.0.5=5.9%	Mote: pump on Leaking from metar (south Qw-2),
Initial 19.8 7.40 552 milts bro	TOLD TERBY THAT METER
6 19.5 7.08 554 clear	AND NOT OPERATE WELL.
9 19.5 7.07 554 clear	BY. TERRY SAID HIS GUYS WILL

September 27, 2012

DORE 222 017 - I P

Mr. Jim Griswold New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, NM 87505-4225

Re: Salty Dog Brine Station - First Quarterly Groundwater Monitoring and O&M Report

Dear Mr. Griswold:

On behalf of PAB Services, Inc., Daniel B. Stephens & Associates, Inc. (DBS&A) is pleased to submit the enclosed groundwater monitoring and O&M report for the Salty Dog brine station located in Lea County, New Mexico. The report documents results of the first quarter groundwater monitoring activities completed at the site on September 10 and 11, 2012, as well as groundwater extraction system operations and maintenance information.

Please do not hesitate to call me at (505) 353-9130 if you have any questions or require additional information.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

1:1. Michael D. McVey

Senior Hydrogeologist

Enclosures

cc: Pieter Bergstein, PAB Services, Inc.

Daniel B. Stephens & Associates, Inc.

First Quarterly Groundwater Monitoring and O&M Report Salty Dog Brine Station Lea County, New Mexico

Prepared for New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, Environmental Bureau

September 27, 2012

Daniel B. Stephens & Associates, Inc.

6020 Academy NE, Suite 100 • Albuquerque, New Mexico 87109.

FIRST QUARTERLY GROUNDWATER MONITORING AND O&M REPORT SALTY DOG BRINE STATION LEA COUNTY, NEW MEXICO

1. INTRODUCTION

Daniel B. Stephens & Associates, Inc. (DBS&A) has prepared this groundwater monitoring and operations and maintenance (O&M) report for submission to the New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (OCD) Environmental Bureau on behalf of PAB Services, Inc. (PAB) for the Salty Dog brine station (the site) located in Lea County, New Mexico (Figure 1). The report summarizes activities conducted at the site on September 10 and 11, 2012.

The site is comprised of a northern portion where the brine pond was located prior to closure in October 2008 and a southern portion where the brine well is located. The brine pond area and the brine well area are separated by approximately 2,500 feet, joined by a dirt road. Since the closure of the brine pond, a number of frac tanks have been stationed in the northern portion of the site to serve as storage for brine that is produced for resale. A concrete truck loading pad is located near the frac tanks. The brine well is currently not operational and attempts are being made to redrill the well and restore brine production. Six monitor wells (PMW-1, DBS-1R, and DBS-2 through DBS-5), one nested well (NW-1), and one recovery well (RW-1) are located in the former brine pond area. Nine monitor wells (MW-2 through MW-6, DBS-6 through DBS-9), one nested well (NW-2) are located in the brine well area (Figure 1).

A groundwater extraction system was installed by DBS&A at the site in early April 2012 to provide hydraulic control of the chloride groundwater plumes present beneath the former brine pond area and brine well area. The extraction system consists of two submersible pumps, conveyance lines, electrical power, and controls to extract groundwater from recovery wells RW-1 (former brine pond area) and RW-2 (brine well area), and convey the extracted groundwater to on-site frac tanks for off-site disposal.

2. SCOPE OF WORK

The scope of work for groundwater monitoring consisted of measuring fluid levels in and collecting groundwater samples from 11 monitor wells for laboratory analysis. The monitor wells included in the quarterly sampling were selected in consultation with the OCD project manager, Jim Griswold, on October 4, 2010. Groundwater samples were submitted to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico for chloride analysis using U.S. Environmental Protection Agency (EPA) Test Method 300.0.

3. MONITORING ACTIVITIES

Fluid Level Measurement

On September 10, 2012, DBS&A measured fluid levels in monitor wells DBS-1R, DBS-2 through DBS-5 and PMW-1 in the former brine pond area, and DBS-6, DBS-8, DBS-9, MW-3, and MW-5 in the brine well area using a properly decontaminated electronic water level meter (Figure 1). Table 1 provides a summary of the fluid level measurements and groundwater elevations.

The average depth to water beneath the former brine pond area during this monitoring event was 66.06 feet below ground surface (ft bgs), decreasing approximately 1.18 feet since the last monitoring event in April 2012. Water levels in DBS-1R and PMW-1, the wells closest to extraction well RW-1, decreased 2.05 feet and 2.50 feet, respectively. Water levels in DBS-2, DBS-3, DBS-4, and DBS-5 decreased 1.19 feet, 0.40 foot, 0.76 foot, and 0.22 foot, respectively. The greater drawdown observed in monitor wells DBS-1R, PMW-1, and DBS-2 is the result of groundwater pumping occurring at extraction well RW-1. These three wells, compared to the other wells in the former brine pond area, are located in the closest proximity to the extraction well.

The average depth to water beneath the brine well area was 62.73 ft bgs, decreasing 0.15 foot since April 2012. Water levels in DBS-6, DBS-8, MW-3, and MW-5 decreased 0.17 foot, 0.15 foot, 0.11 foot, and 0.15 foot, respectively. The water level in DBS-9, located northeast of the brine well in the playa, decreased 0.09 foot. Only minor drawdown is evident in the brine well area from pumping of extraction well RW-2 at the current flow rate.

Potentiometric surface maps were prepared for the former brine pond and brine well areas and are included as Figures 2 and 3. The gradient increased an order of magnitude beneath the former brine pond area from 0.005 to 0.01 foot/foot (ft/ft) since the last monitoring event in April 2012, and a cone of depression is apparent during this monitoring event with continued pumping from extraction well RW-1 (Figure 2). The direction of groundwater flow beneath the brine well area remains to the south-southeast with continued pumping from extraction well RW-2. The gradient remained unchanged at approximately 0.004 ft/ft (Figure 3) indicating that pumping at the current rate is having little to no effect on drawdown in the brine well area.

Groundwater Sampling

Groundwater samples were collected from monitor wells DBS-1R, DBS-2 through DBS-6, PMW-1, DBS-8, DBS-9, MW-3, and MW-5 on September 10 and 11, 2012. DBS&A followed corporate standard operating procedures developed from EPA guidance during collection of all groundwater samples. Prior to sampling, the well was purged of a minimum of three casing volumes using a submersible pump to ensure that a representative sample of groundwater was collected. During purging, the DBS&A field technician measured water quality parameters including temperature, specific conductance, and pH to ensure that these parameters were stabilized to within 10 percent for specific conductance, 2 degrees for temperature and +/- 0.2 pH units prior to sampling. Sample containers were then filled, labeled, and placed on ice once the stabilization criteria were met. Groundwater samples were submitted under full chain-of-custody to HEAL for chloride analysis.

4. ANALYTICAL RESULTS

Table 2 summarizes chloride analytical results for the 11 groundwater samples collected on September 10 and 11, 2012. Figures 4 and 5 show the distribution of chloride in groundwater beneath the former brine pond and brine well areas for the sampling event. The laboratory report and chain-of-custody documentation are provided in Appendix 1. Field notes recorded during groundwater monitoring activities are included in Appendix 2.

Former Brine Pond Area Wells

During this monitoring event, groundwater samples submitted from all of the wells in the former brine pond area showed increases in chloride concentrations. Increases were: DBS-1R (3,000 to 3,200 mg/L), DBS-2 (24 to 44 mg/L), DBS-3 (33 to 34 mg/L), DBS-4 (31 to 32 mg/L), DBS-5 (150 to 160 mg/L), and PMW-1 (12,000 to 14,000 mg/L). Currently, only two of the six wells sampled in the former brine pond area contain chloride concentrations in excess of the New Mexico Water Quality Control Commission (NMWQCC) standard of 250 mg/L (Table 2).

The chloride groundwater plume in the former brine pond area remains bounded by the existing monitor well network. Monitor wells PMW-1 and DBS-1R, located downgradient of the former brine pond, continue to show chloride concentrations in excess of the NMWQCC standard (Figure 4). The chloride concentration in the farthest downgradient well, DBS-4, remains below the standard.

Brine Well Area Wells

During this monitoring event, groundwater samples submitted from three of the wells in the brine well area showed increases in chloride concentrations. Increases were: DBS-8 (41 to 42 mg/L), MW-3 (14,000 to 16,000 mg/L), and MW-5 (1,400 to 1,500 mg/L). Two of the wells showed decreases in chloride concentrations. Decreases were: DBS-6 (400 to 390 mg/L) and DBS-9 (330 to 320 mg/L). Currently, four of the five wells sampled in the brine well area (MW-3, MW-5, DBS-6, and DBS-9) contain chloride concentrations in excess of the New Mexico Water Quality Control Commission (NMWQCC) standard of 250 mg/L (Table 2).

The downgradient and northern, cross-gradient extent of the chloride groundwater plume in the brine well area remains undefined. The monitor well located closest to the extraction well (MW-3), the farthest downgradient well (MW-5), and the northern-most cross-gradient well (DBS-6) all continue to contain chloride concentrations in excess of the NMWQCC standard (Figure 5).

The chloride concentration in monitor well DBS-9 decreased slightly during this monitoring event to 320 mg/L, but still continues to exceed the NMWQCC standard. DBS-9 was installed in the playa located northeast of the brine well to determine if documented releases that entered the playa in 2002 and 2005 impacted groundwater (Figure 5).

5. GROUNDWATER EXTRACTION SYSTEM O&M

Groundwater extraction from recovery well RW-1 at the former brine pond area was started on April 7, 2012. The flow rate for RW-1 was initially set at the design specification of 0.5 gallons per minute (gpm). Groundwater extraction from recovery well RW-2 at the brine well area was started on April 6, 2012. The flow rate for RW-2 was initially set at 1.3 gpm. After DBS&A set the flow rates, the PAB facility manager adjusted the flow rates upward to facilitate daily disposal of the extracted groundwater.

Former Brine Pond Area

The groundwater extraction system at RW-1 has been in operation for approximately 153 days. During July 2012, the system was down for a period of three days due to an electrical problem at the control box. The facility manager for PAB contacted an electrician and the necessary repairs were made to restart the pump.

Extracted volumes of groundwater were recorded by the DBS&A field technician during the monitoring event and are provided in Table 3. To date, 636,237 gallons have been pumped from recovery well RW-1.

Pumping of recovery well RW-1 at the current flow rate of approximately 2.9 gallons per minute (gpm) has resulted in a cone of depression being produced in the former brine pond area. The cone of depression is evident in the most recent potentiometric surface map (Figure 2). Monitor wells DBS-1R and PMW-1, both located within the cone of depression, are the only wells that contain chloride concentrations in excess of the NMWQCC standard. Pumping at the current rate is effectively controlling downgradient migration of the chloride plume, and although the chloride concentrations in the wells remain elevated, they are expected to decrease through time with continued pumping.

Brine Well Area

The groundwater extraction system at RW-2 has been in operation for approximately 157 days. The system has been operating without interruption since it was started. To date, 963,789 gallons have been pumped from recovery well RW-2 (Table 3).

Pumping of recovery well RW-2 at the current flow rate of approximately 4.3 gallons per minute (gpm) has had little to no effect on drawdown in the brine well area. The chloride plume remains undefined downgradient and cross-gradient to the north of the extraction well. Monitor well MW-3, the well in closest proximity to the extraction well, showed an increase in chloride concentration since the last monitoring event which may indicate some limited hydraulic control of the plume; however, the farthest downgradient well, MW-5 remains elevated and, in fact, showed an increase in chloride concentration since the last monitoring event the last monitoring event well and the last monitoring event well well, MW-5 remains elevated and, in fact, showed an increase in chloride concentration since the last monitoring event the last monitoring event indicating that the downgradient portion of the plume is not being captured by pumping at the current rate.

System Maintenance

During July 2012, the PAB facility manager noted that the extraction system at RW-1 in the former brine pond area was not operating. An electrician was contacted by PAB to troubleshoot the problem and repairs were made to the control box. The pump was restarted after being down for three days. Since the repairs were made, the system has been operating without interruption.

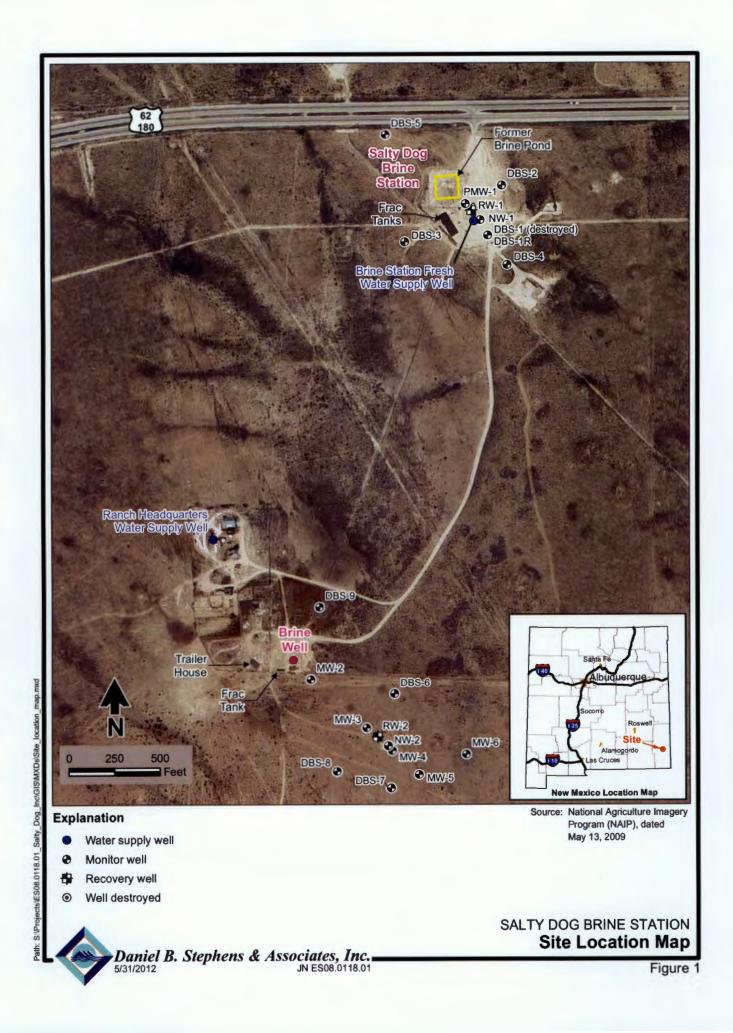
DBS&A did not identify any maintenance issues requiring attention during this groundwater monitoring event. No visible damage to any of the aboveground extraction system components was noted at either the RW-1 or RW-2 wellheads. Both pumps were running and no leaks were observed at either wellhead, along either of the conveyance lines, or at the tie-ins to the frac tanks.

Future Extraction System Operation

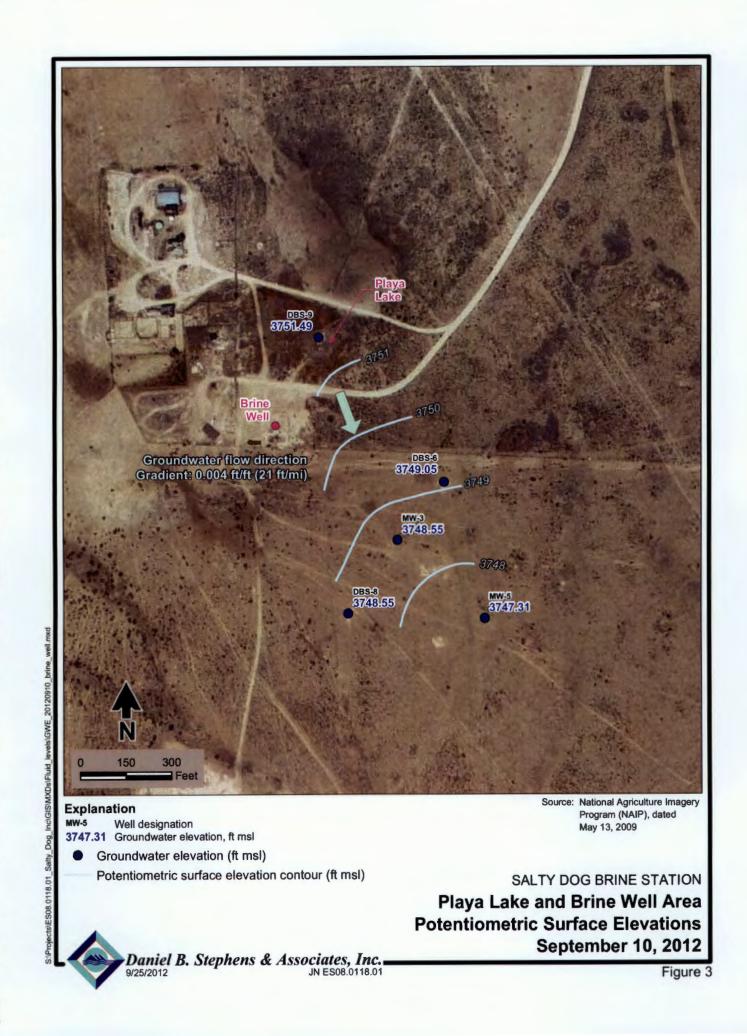
Flow will be maintained at the current rate at RW-1 in the former brine pond area. Minor increases will be made to the flow rate at RW-2 in the brine well area in the near term, if possible, while maintaining a volume of extracted groundwater that can be disposed of on a daily basis by PAB. Once the brine well is brought back online, full-scale operation of the extraction system will begin with reinjection of the extracted groundwater into the brine well. At that time, the flow rate for RW-2 will be increased to meet the design specification of 15 gpm.

6. RECOMMENDATIONS

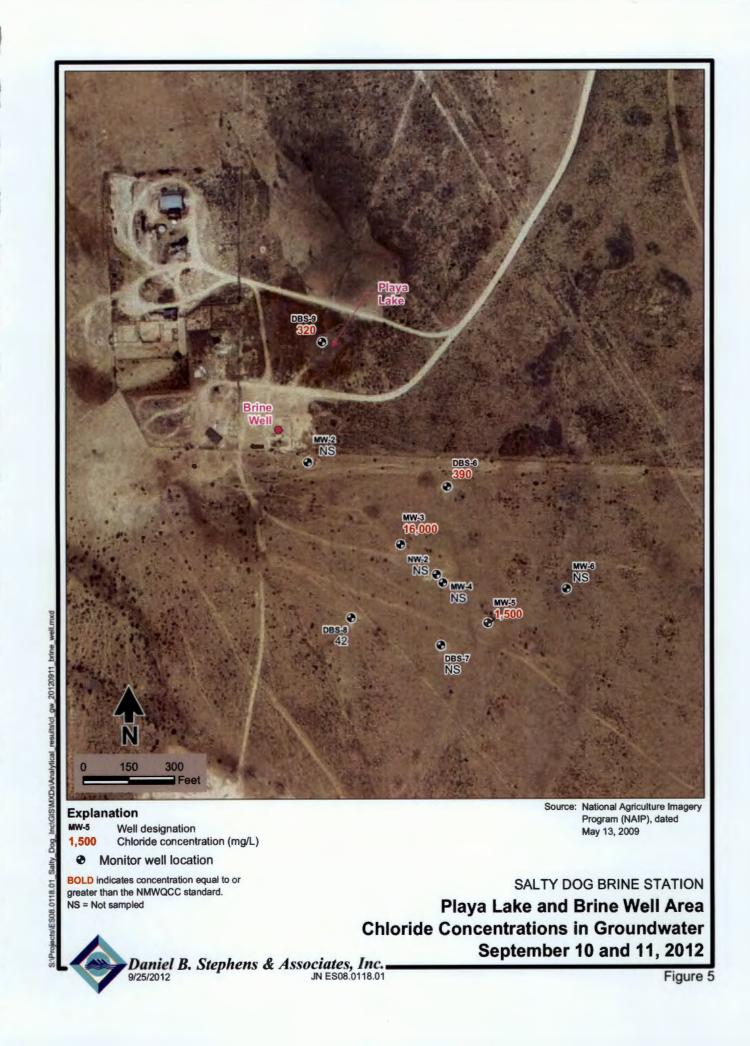
Based on the groundwater monitoring results, DBS&A recommends the following:


- Continue quarterly groundwater sampling to assess the groundwater extraction system performance by the collection of groundwater samples for laboratory analysis from the on-site monitor wells.
- Maintain the current flow rate of approximately 2.9 gpm from extraction well RW-1 and reevaluate during the next monitoring event based on chloride concentrations in DBS-1R and PMW-1.
- If possible, increase the flow rate from extraction well RW-2 while still maintaining a volume of extracted groundwater that can be disposed of on a daily basis by PAB.
- Once the brine well is brought back online, increase the flow rate from extraction well RW-2 to meet the design specification of 15 gpm with reinjection of the extracted groundwater from RW-1 and RW-2 into the brine well.


Figures


. Nga

, m 100


~

Tables

Table 1. Summary of Historical Fluid Level Measurements Salty Dog Brine Station, Lea County, New Mexico Page 1 of 3

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
DBS-1	56.0-76.0	3817.09	04/08/09	62.38	3754.71
			05/11/11	64.70	3752.39
			10/04/11	Well	destroyed
DBS-1R	58.0-78.0	3817.00 b	04/30/12	63.60	3753.40
			09/10/12	65.65	3751.35
DBS-2	58.0-78.0	3820.50	04/08/09	65.45	3755.05
			05/11/11	66.80	3753.70
			10/04/11	65.87	3754.63
			02/08/12	65.96	3754.54
			04/30/12	66.26	3754.24
			09/10/12	67.45	3753.05
DBS-3	56.0-76.72	3816.66	04/08/09	60.67	3755.99
			05/11/11	61.25	3755.41
			10/04/11	61.25	3755.41
			02/08/12	61.11	3755.55
			04/30/12	61.41	3755.25
			09/10/12	61.81	3754.85
DBS-4	56.0-76.0	3820.37	04/08/09	66.27	3754.10
			05/11/11	67.23	3753.14
			10/04/11	66.67	3753.70
			02/08/12	66.76	3753.61
			04/30/12	67.02	3753.35
			09/10/12	67.78	3752.59
DBS-5	56.9-76.9	3820.66	04/08/09	62.99	3757.67
			05/11/11	63.45	3757.21
			10/04/11	63.41	3757.25
			02/08/12	63.46	3757.20
			04/30/12	63.70	3756.96
			09/10/12	63.92	3756.74

^aTop of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

ft bgs = Feet below ground surface

ft msi = Feet above mean sea level

ft btoc = Feet below top of casing NA = Not available

S:\Projects\ES08.0118.03_Salty_Dog_GWM-O&M\Docs\1st Qtrly Mon_O&M\Tables\T1_GW Elev.doc

Top of Screen Casing Depth to Groundwater Elevation ^a Water Elevation Interval Monitor Date (ft msl) Well (ft btoc) (ft msl) (ft bgs) Measured DBS-6 56.7-76.7 3812.65 04/07/09 62.75 3749.90 05/11/11 3749.54 63.11 10/04/11 63.16 3749.49 02/08/12 63.20 3749.45 04/30/12 63.43 3749.22 09/10/12 63.60 3749.05 3810.21 04/07/09 61.74 DBS-7 55.1-75.1 3748.47 DBS-8 55.2-75.2 3810.70 04/07/09 61.20 3749.50 05/11/11 61.67 3749.03 10/04/11 61.71 3748.99 02/08/12 61.77 3748.93 04/30/12 62.00 3748.70 09/10/12 62.15 3748.55 04/08/09 DBS-9 48.0-68.0 3806.26 53.93 3752.33 05/11/11 54.39 3751.87 10/04/11 54.59 3751.67 02/08/12 54.53 3751.73 04/30/12 54.68 3751.58 3751.49 09/10/12 54.77 NW-1s 52.95-72.95 3817.33 04/08/09 62.35 3754.98 NW-1m 99.31-119.31 3817.35 04/08/09 62.25 3755.10 NW-1d 149.45-169.45 3817.35 04/08/09 62.04 3755.31 NW-2s 3812.50 04/08/09 63.08 3749.42 53.35-73.35 NW-2m 93.72-113.72 3812.45 04/08/09 63.27 3749.18 NW-2d 126.87-146.87 3812.46 04/08/09 66.41 3746.05 PMW-1 63-78 3821.17 06/23/08 67.51 3753.66 04/08/09 65.97 3755.20 3752.47 05/11/11 68.70 10/04/11 66.95 3754.22

Table 1. Summary of Historical Fluid Level MeasurementsSalty Dog Brine Station, Lea County, New MexicoPage 2 of 3

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

ft bgs = Feet below ground surface

ft msl = Feet above m

= Feet above mean sea level NA

= Not available

S:\Projects\ES08.0118.03_Salty_Dog_GWM-O&M\Docs\1st Qtrly Mon_O&M\Tables\T1_GW Elev.doc

ft btoc = Feet below top of casing

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
PMW-1 (cont.)	63-78	3821.17	02/08/12	66.69	3754.48
			04/30/12	67.27	3753.90
			09/10/12	69.77	3751.40
MW-1	120-140	NA	06/23/08	59.90	NA
MW-2	127-147	3812.68	06/23/08	61.42	3751.26
			04/07/09	61.65	3751.03
MW-3	NA	3812.05	06/23/08	62.06	3749.99
			04/07/09	62.02	3750.03
			05/11/11	62.91	3749.14
			10/04/11	62.91	3749.14
			02/08/12	62.95	3749.10
			04/30/12	63.39	3748.66
			09/10/12	63.50	3748.55
MW-4	111-131	3811.33	06/23/08	62.12	3749.21
			04/07/09	62.51	3748.82
MW-5	112-132	3808.96	06/23/08	60.60	3748.36
			04/07/09	60.79	3748.17
			05/11/11	61.17	3747.79
			10/04/11	61.72	3747.24
			02/08/12	61.23	3747.73
			04/30/12	61.50	3747.46
			09/10/12	61.65	3747.31
MW-6	NA	3810.17	06/23/08	62.17	3748.00
			04/07/09	62.41	3747.76

Table 1. Summary of Historical Fluid Level Measurements Salty Dog Brine Station, Lea County, New Mexico Page 3 of 3

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012. ft btoc = Feet below top of casing

ft bgs = Feet below ground surface ft msl = Feet above mean sea level

= Not available NA

		Chloride Concentration		
Monitor Well	Date	(mg/L) ^a		
New Mexico Water Quality Control Com	New Mexico Water Quality Control Commission Standard			
DBS-1	04/08/09	320		
	05/12/11	940		
	10/04/11	Well destroyed		
DBS-1R	05/01/12	3,000		
	09/11/12	3,200		
DBS-2	04/08/09	14		
	05/12/11	25		
	10/05/11	18		
	02/09/12	22		
	05/01/12	24		
	09/11/12	44		
DBS-3	04/08/09	36		
	05/12/11	35		
	10/05/11	34		
	02/09/12	34		
	05/01/12	33		
	09/11/12	34		
DBS-4	04/08/09	38		
	05/12/11	33		
	10/05/11	32		
	02/09/12	32		
	05/01/12	31		
	09/11/12	32		
DBS-5	04/08/09	65		
	05/12/11	140		
	10/05/11	140		
	02/09/12	140		
	04/30/12	150		
	09/11/12	160		
DBS-6	04/07/09	380		
	05/12/11	410		

Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 1 of 4

Bold indicates concentrations that exceed the applicable standard.

^aAll samples analyzed in accordance to EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance to Standard Method 4500-CI B.

		Chloride Concentration		
Monitor Well	Date	(mg/L) ^a		
New Mexico Water Quality Control Com	New Mexico Water Quality Control Commission Standard			
DBS-6 (cont.)	10/05/11	400		
	02/09/12	380		
	04/30/12	400		
	09/11/12	390		
DBS-7	04/07/08	570		
DBS-8	04/07/09	58		
	05/12/11	36		
	10/05/11	140		
	02/09/12	41		
	04/30/12	41		
	09/10/12	42		
DBS-9	04/08/09	210		
	05/12/11	600		
	10/05/11	440		
	02/09/12	290		
	04/30/12	330		
	09/11/12	320		
NW-1s	04/08/09	630		
NW-1m	04/08/09	57		
NW-1d	04/08/09	38		
NW-2s	04/08/09	410		
NW-2m	04/08/09	570		
NW-2d	04/08/09	4,700		
PMW-1	02/27/08	9,500 ^b		
	05/30/08	8,600 ^b		
	06/23/08	12,700		
	04/08/09	11,000		
	05/12/11	13,000		
	10/05/11	12,000		
	02/09/12	12,000		
	05/01/12	12,000		

Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 2 of 4

Bold indicates concentrations that exceed the applicable standard.

^a All samples analyzed in accordance to EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance to Standard Method 4500-Cl B.

Monitor Well	Date	Chloride Concentration (mg/L) ^a
New Mexico Water Quality	250	
PMW-1 (cont.)	09/11/12	14,000
MW-1	05/30/08	75 ^b
	06/23/08	243
MW-2	02/27/08	120 ^b
	05/30/08	80 ^b
	06/23/08	1,480
	04/07/09	1,200
MW-3	02/27/08	348 ^b
	05/30/08	360 ^b
	06/23/08	1,090
	04/07/09	17,000
	05/12/11	16,000
	10/05/11	14,000
	02/09/12	15,000
	04/30/12	14,000
	09/10/12	16,000
MW-4	02/27/08	476 ^b
	05/30/08	512 ^b
	06/23/08	5,730
	04/07/09	6,600
MW-5	02/27/08	1,280 ^b
	05/30/08	1,220 ^b
	06/23/08	1,260
	04/07/09	1,300
	05/12/11	1,500
	10/05/11	1,500
	02/09/12	1,500
	04/30/12	1,400
	09/10/12	1,500
MW-6	02/27/08	32 ^b
	05/30/08	36 ^b

Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 3 of 4

Bold indicates concentrations that exceed the applicable standard.

^aAll samples analyzed in accordance to EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance to Standard Method 4500-CI B.

Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 4 of 4

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
New Mexico Water Quality Control Com	mission Standard	250
MW-6 (cont.)	06/23/08	31.4
	04/07/09	25
Ranch Headquarters Supply Well	06/23/08	35.4
Brine Station Fresh Water Supply Well	02/27/08	630 ^b
	05/30/08	590 ^b
	06/23/08	650

Bold indicates concentrations that exceed the applicable standard.

^aAll samples analyzed in accordance with EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance with Standard Method 4500-CI B.

Table 3. Summary of Extracted Groundwater Volumes Salty Dog Brine Station, Lea County, New Mexico Page 1 of 1

Recovery Well	Date	Days of Operation	Average Flow Rate (gpm)	Extracted Volume (gal)
RW-1	05/01/12	23	2.2	73,740
	09/11/12	153	2.9	636,237
RW-2	05/01/12	24	2.6	91,450
	09/11/12	157	4.3	963,789

gpm = gallons per minute gal = gallons

Appendices

<u> .</u>

1

ني

.

. ان

. K

ينفق

Appendix 1

Laboratory Report

.

<u>in</u>

),

•

~

.

.

-

**

۰

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

September 18, 2012

Mike McVey

Daniel B. Stephens & Assoc. 6020 Academy NE Suite 100 Albuquerque, NM 87109 TEL: (505) 822-9400 FAX (505) 822-8877

RE: Salty Dog

OrderNo.: 1209467

Dear Mike McVey:

Hall Environmental Analysis Laboratory received 11 sample(s) on 9/12/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

and

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Enviro	nmental Analys	is Laborato	ory, I	1c.	Lab	lytical Report Order: 1209467 Reported: 9/18/2012
CLIENT: Project:	Daniel B. Stephens & Salty Dog	Assoc.			Lab Orde	er: 1209467
Lab ID: Client Sample ID	1209467-001 : MW-5				n Date: 9/10/2 Aatrix: AQUE	012 2:45:00 PM EOUS
Analyses		Result	RL	Qual Units	DF	Date Analyzed
EPA METHOD 30 Chloride	0.0: ANIONS	1500	50	mg/L	100	Analyst: JRR 9/13/2012 7:49:47 PM
Lab ID: Client Sample ID	1209467-002 : MW-3				Date: 9/10/2 Iatrix: AQUE	012 3:47:00 PM COUS
Analyses		Result	RL	Qual Units	DF	Date Analyzed
EPA METHOD 30 Chloride	0.0: ANIONS	16000	500	mg/L	1000	Analyst: JRR 9/15/2012 1:40:58 AM
Lab ID: Client Sample ID	1209467-003 : DBS-8				Date: 9/10/2 Iatrix: AQUE	012 6:36:00 PM COUS
Analyses		Result	RL	Qual Units	DF	Date Analyzed
EPA METHOD 30 Chloride	0.0: ANIONS	42	10	mg/L	20	Analyst: JRR 9/12/2012 7:16:57 PM
Lab ID: Client Sample ID	1209467-004 : DBS-6				Date: 9/11/2 Iatrix: AQUE	012 8:08:00 AM COUS
Analyses		Result	RL	Qual Units	DF	Date Analyzed
EPA METHOD 30 Chloride	D.0: ANIONS	390	25	mg/L	50	Analyst: JRR 9/13/2012 8:39:25 PM
Lab ID: Client Sample ID	1209467-005 : DBS-9				Date: 9/11/2 Iatrix: AQUE	012 8:50:00 AM COUS
Analyses		Result	RL	Qual Units	DF	Date Analyzed
EPA METHOD 300 Chloride	D.0: ANIONS	320	10	mg/L	20	Analyst: JRR 9/12/2012 8:06:37 PM
Lab ID: Client Sample ID	1209467-006 : DBS-4				Date: 9/11/2 1atrix: AQUE	012 9:28:00 AM OUS
Analyses		Result	RL	Qual Units	DF	Date Analyzed
EPA METHOD 300 Chloride).0: ANIONS	32	10	mg/L	20	Analyst: JRR 9/12/2012 8:31:27 PM
Qualifiers: * E J P RL	Value exceeds Maximum C Value above quantitation ra Analyte detected below qua Sample pH greater than 2 Reporting Detection Limit	inge		H Holdin ND Not De R RPD o	g times for prepara etected at the Repo utside accepted rec	

Hall Environ	mental Analys	is Labora	tory, Iı	1c.			Lab Ord	tical Report der: 1209467 eported: 9/18/2012
	Daniel B. Stephens & Salty Dog	Assoc.				La	ıb Order:	1209467
Lab ID:	1209467-007				Collection	Date:	9/11/201	2 10:05:00 AM
Client Sample ID:	DBS-2				Μ	atrix:	AQUEO	US
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 300. Chloride	0: ANIONS	44	10		mg/L		20	Analyst: JRR 9/12/2012 9:21:06 PM
Lab ID:	1209467-008			(Collection	Date:	9/11/201	2 10:45:00 AM
Client Sample ID:	DBS-5				Μ	atrix:	AQUEO	US
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 300. Chloride	0: ANIONS	160	10		mg/L		20	Analyst: JRR 9/12/2012 9:45:56 PM
Lab ID:	1209467-009	·		(Collection	Date:	9/11/201	2 12:20:00 PM
Client Sample ID:	DBS-3				M	atrix:	AQUEO	US
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 300.	0: ANIONS							Analyst: JRR
Chloride		34	10		mg/L		20	9/12/2012 10:10:45 PM
Lab ID:	1209467-010				Collection	Date:	9/11/201	2 12:55:00 PM
Client Sample ID:	DBS-1R				Μ	atrix:	AQUEO	US
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 300. Chloride	0: ANIONS	3200	250		mg/L		500	Analyst: JRR 9/13/2012 8:51:49 PM
Lab ID:	1209467-011			(Collection	Date:	9/11/201	2 1:45:00 PM
Client Sample ID:	PMW-1				Μ	atrix:	AQUEO	US
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 300. Chloride	0: ANIONS	14000	500		mg/L		1000	Analyst: JRR 9/15/2012 1:53:22 AM

Qualifiers: * Value exceeds Maximum Contaminant Level. Ε Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH greater than 2

Reporting Detection Limit RL

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits S

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Daniel B. Stephens & Assoc. **Project:**

Salty Dog

Sample ID	ample ID MB SampType: MBL			IBLK	TestCode: EPA Method 300.0: Anions						
Client ID:	PBW	Batc	h ID: R	5484		RunNo: 5	484				
Prep Date:	:	Analysis E	Date: 9	9/12/2012		SeqNo: 1	56741	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Va	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	0.50)							
Sample ID	LCS	SampT	ype: L	cs	Te	stCode: E	PA Method	300.0: Anion	s		
Client ID:	LCSW	Batcl	h ID: R	5484		RunNo: 5	484				
Prep Date:	:	Analysis D	Date: 9	9/12/2012		SeqNo: 1	56742	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		4.7	0.50	5.000	0	93.8	90	110		·····	
Sample ID	MB	Samp1	Гуре: М	IBLK	Те	stCode: E	PA Method	300.0: Anion	S		
Client ID:	PBW	Batch ID: R5528		RunNo: 5528							
Prep Date:	:	Analysis D	Date: S	9/13/2012		SeqNo: 1	58122	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	I owl imit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	0.50				LOWERING	- ingrizint	, or a D		Quui
Sample ID	LCS	SampT	ype: L	cs	Те	stCode: E	PA Method	300.0: Anion:	s		
Client ID:	LCSW		h ID: R			RunNo: 5	528				
Prep Date:	:	Analysis D	Date: 9	0/13/2012		SeqNo: 1	58123	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		4.7	0.50	5.000	0	93.6	90	110			
Sample ID	МВ	SampT	ype: M	BLK	Те	stCode: E	PA Method	300.0: Anion	5		
Client ID:	PBW	Batch	n ID: R	5556		RunNo: 5	556				
Prep Date:		Analysis D	Date: 9	0/14/2012		SeqNo: 1	58889	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	0.50)							
Sample ID	LCS	SampT	ype: L	cs	Те	stCode: E	PA Method	300.0: Anion	5		
Client ID:	LCSW	Batch	n ID: R	5556		RunNo: 5	556				
Prep Date:		Analysis D	ate: 9	/14/2012		SeqNo: 1	58890	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		4.8	0.50	5.000	0	96.6	90	110			
Sample ID	MB	SampT	ype: M	BLK	Те	stCode: E	PA Method	300.0: Anion	5	- 12	
	PBW	Batch	n ID: R	5556		RunNo: 5	556				
Client ID:		Analysis D	ate: 9	/15/2012		SeqNo: 1	58961	Units: mg/L			
		Analysis									
Prep Date:		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Prep Date: Analyte			PQL 0.50		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLIMI	Qual
Client ID: Prep Date: Analyte Chloride Qualifiers:		Result			SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Prep Date: Analyte Chloride Qualifiers: * Value	e exceeds Maximum C	Result ND	0.50		B Analyt	e detected i	n the associat	ted Method Bla	۱k	RPDLimit	Qual
Prep Date: Analyte Chloride Qualifiers: * Value E Value		Result ND Contaminant I	0.50 Level.		B Analyt H Holdin	e detected i g times for	n the associat	ted Method Blan or analysis excee	۱k	Page 3	-

WO#: 1209467

18-Sep-12

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Daniel B. Stephens & Assoc.

Project: Salty Dog

-	Sample ID LCS	SampType: LCS			Tes	TestCode: EPA Method 300.0: Anions					
222	Client ID: LCSW	Batch ID: R5556			RunNo: 5556						
	Prep Date:	Analysis Date: 9/15/2012			SeqNo: 158962 Units: mg/L						
	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	Chloride	4.9	0.50	5.000	0	97.5	90	110			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH greater than 2

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

Page 4 of 4

18-Sep-12

WO#: 1209467

HALL Environmental Analysis Laboratory	Hall Environmenta Alb TEL: 505-345-397. Website: www.h	4901 Hawki buquerque, NM 5 FAX: 505-345	ins NE 87105 5-4107	Sample Log-li	n Check Lis
Client Name: DBS		Work Order N	umber: 1	1209467	
Received by/date:	09/12/12				
Logged By: Lindsay Mangin	09 / (こ) / こ 9/12/2012 8:10:00 AN		Am	ly Alago	
	9/12/2012 12:54:12 P			ymayoo YMyyoo	
Completed By: Lindsay Mangin	09/12/2012 12:54:12 P	AV1	(and the second	y#443-D	
Reviewed By:	0412112				
Chain of Custody					
1. Were seals intact?		Yes		Not Present	
2. Is Chain of Custody complete?		Yes 🗸	No	Not Present	
3. How was the sample delivered?		<u>Client</u>			
<u>Log In</u>					
4. Coolers are present? (see 19. for cooler	specific information)	Yes 🗸	No	NA	
5. Was an attempt made to cool the sampl	es?	Yes 🖌	No	NA	
O More all complex received at a tompom	turn of SO ^o C to 6 O ^o C	Yes	No V	NA	
6. Were all samples received at a tempera		Approved by			
7. Sample(s) in proper container(s)?		Yes Ves			
8. Sufficient sample volume for indicated to	est(s)?	Yes 🗸			
9 Are samples (except VOA and ONG) pro		Yes 🗸	No [.]		
10. Was preservative added to bottles?		Yes	No 🗸	NA	
11. VOA vials have zero headspace?		Yes	No	No VOA Vials 🗸	
12. Were any sample containers received b	roken?	Yes	No 🖌	: :	
13. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗸	No	# of preserved bottles checked for pH:	
14. Are matrices correctly Identified on Chai	n of Custody?	Yes 🗸	No	(<2	or >12 unless note
15. Is it clear what analyses were requested	?	Yes 🔽		Adjusted?	
16. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🖌	No:i	Checked by	
Special Handling (if applicable)					
17. Was client notified of all discrepancies v	ith this order?	Yes	No	NA 🗸	
Person Notified:	Date:	ere er er er en som som som som som som er			1
By Whom:	Via:	eMail	Phone	Fax In Person	
Regarding:					
Client Instructions:					
18. Additional remarks:					
19, Cooler Information					
Cooler No Temp °C Condition	Seal Intact Seal No	Seal Date	Sign	ed By	
1 10.1 Good	Not Present				

·

			s & Associates		🗆 🗆 Rush	i i		╶┝╼┼							-			NT/ TO		
	·			Project Nam																/ ■
Mailing A	ddress		·					www.hallenvironmental.com												
			demy NE Suite 100	Salty Dog Project #:		· · · · · · · · · · · · · · · · · · ·	4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request													
			ue NM 87109																	
		505-822-9		ES08.0118.03				0				Anal		Req	uesi	-			-	-
	mail or Fax#: MMcvey@DBStephens.com		Project Man	ager:	· ·	51)	luo	/ DRO / MRO)				SO4	ŝ							
A/QC Package:						(80;	Bas			6		Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	ц П П							
	□ Standard □ Level 4 (Full Validation)			Mike McVey		····	TMB's (8021)	Ξ	Ř				02, P	82						
□ Other Bredd (Type)			Sampler: Micah Nauck			 +	BTEX + MTBE + TPH (Gas only)	ŝ	TPH (Method 418.1)	or 8270SIMS)		3,N	8081 Pesticides / 8082 PCB'		2				*	
	(iype)_	24	· · · · · · · · · · · · · · · · · · ·	On Ice manufactures EE No Manufactures				н Ш	TPH 8015B (GRO	d 41	5 8	als	NN,	des	2	8270 (Semi-VOA)				
							BTEX + MTBE	MT	58	the	PAH (8310 or	RCRA 8 Metals	ПО,	stici	8260B (VOA)	ja ja				
Date	Time	Matrix	Sample Request ID	Container	Preservative	HEAL No.	+ ×	+ ×	801	ž,	PAH (8310	88) su	l Pe)B (/	S)	Chloride			·
				Type and #	Туре	12000111	STE STE	ШЩ ШЩ	퓝	Ha		Ь	hio	308,	3260	327(망			
9/10/12-	1445	libiter	MW-5	125 mL	None	- 001	<u>« </u>		<u> </u>	<u>'</u>		-			~	Ĩ	X			·
í	1547	1 ····	MW-3	1		- 002											X			
	1836		000 			- 603											x			
a1.10						-004	+						╞──	-			x		+	
1	0808		245-9		· · · · · · · · · · · · ·			·				<u> </u>					x		-+	-
	0850					- 005	<u>_</u>				+	\vdash				┝╼╼┥	x	_ _	+	\neg
	0928	· ·	DBS-4	<u>↓··</u>		-ode	+					-				┝─┥	<u>^</u> .Х		+	
	1005 0959		DBS-2			-007			_		+	+-					1-1	 -	-+	_
	1845	· · · · · · · · · · · · · · · · · · ·	DBS-5			-008_				_	-				<u> </u>		X		\rightarrow	
	1220		DB5-3		· 	-009	_										X		_	
	1255		DBS-IR			-010					+	+		<u> </u>			×		\rightarrow	
	1345	ح	PMW-1			-011						\perp	ļ	ļ			X			
				h	1.11	L														
Date:	Time:	Relinquish	a by	Received by:		Date Time	Rei	mark	s:											
9/18/12 0810 Mark			Thursday	WAY ING	N 8941120810	4														
Date:	Time:	Relinquish		Received by:	1 1	Date Time														
	·		the second of the second se			· · · · · · · · · · · · · · · · · · ·														

2.42

Appendix 2

; Šim **Field Notes**

					. [1]	01-10				. /٨.
9/10/12					MI	9/10/12			·	Ŵ
0600	Depart	for Salt.	5 Dog			1580				520.5=41.75gal
2.04	Onsite		I			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			SpC -70m	
	Bagin g	unging a	relt			1	21.7			
		MIW				} •	a0.1			
· · · · · · · · · · · · · · · · · · ·	DBS-IR	65.65	74.44			1	20.0		-	
	DRS-9	67.45	76.30			1547	Collect	- sam	ple	
	DRS-3	61.81	76.30			1605	Mw-8	72.70	· 69.15=10.	55.5= 5.28 pal
	DBS-4	67.78	79.50				Tie	рH	SpCyEm	
	DBS-5	63.92	77.26				22.3			
	DBS-6	63.60	76.81				21.5			
	DBS-8	62.15	72.70			Final	21.2	7.25	732	
	DBS-9	54.77	69.50			_1834_	Collect	Samp	ole	
	PHW-1	69.77	78.40			1840	Offsite	3		
· · · · · · · · · · · · · · · · · · ·	Μω·3	63.50	147.00			\sim				
	Mw.5	61.65	129.00			-				
1300	Comple	ke gua	zing we	lls						
	•	te yoi	- 0	-						
	pH	4	2	10	SpC 1000		$ \rightarrow $	<u></u>	· · · · · · · · · · · · · · · · · · ·	1
		409 236	7.05 23.8	10.03 23.7	1003 2600			2/6	\sim	-
1335	MW-5	129-00	61.65=6	7.35.5 -	33.67gal	##****#			\langle	
		ptt						\sim	1 a	
Inital		6.67						Ó	? <i>\J</i>	
		6.94								
		6.93					·		and discovery of the second second second second second	
		t san	VaA							

MU MV 9/11/12 9/11/12 0725 Onsite 0950 DBS-2 76.20-67.450, 5=4.450 0735 Calibrate ISI Pro To pt screen PH 4 7 10 SpC 1000 4.10 22.0° 7.01 22.1° 10.00 216° 1000 22.0° Initial 22.6 7.47 598 2. 2 gal 20. 4 7.35 620 0745 MW-6 76.81-63.60=7.21-,5=360 ga Final 20.6 7.30 565 T'e pt Spleyen KOS collect sampt Initial 20.5 7.25 1947 1025 DBS-5 77.26-63.92=13.34.5=6.67gal 1.8gal 20.0 6.99 1667 TE pH SpC TEM Final 19.9 6.88 1712 - Initial 23.5 7.15 1213 0808 Collect sample 3.35 21.0 7.23 1224 0825 MW9 69.50-54.77=14.73.5=7.36ga) Final 20.7 7.23 1235 T'C ptt SpC-200 10:15 Collect sample Initial 19.8 7.08 2371 ______ 1150 DBS-3 76.30-61.81=14.49.5=7.25 god 3.5 1 15.3 7.12 1799 Tec pH Spc 12m T'C pH SpC You 1220 Cellect sample Initial 20.9 7.55 559 - 1235 DB5.1R 74.44-65.65=8.79.5=4.89-2.981 20.7 7.62 524 TC pH SpC #2 Final 20.9 7.45 529 Initial 22.8 7.49 2739 0928 Collect sample 2.2 20.4 7.20 7218 Einal 20.3 703 9245 1255 Collect Sample lel

UU 9/11/12 1320 PMW-1 78.40-69.77=863.5=4.30gal Toc pH SpC.7cm Initial 22.3 7.01 31841 2.16 god 00.7 6.96 30416 Final 20.6 6.98 31281 1345 Collect sample 1410 Check water meters North: 636237 South: 763789 1430 Offsite 1980 Arrive in Albuquerque

October 14, 2011

REDEVED OOD

271 0717 02:22

Mr. Jim Griswold New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, NM 87505-4225

Re: Salty Dog Brine Station - Second Quarterly Groundwater Monitoring Report

Dear Mr. Griswold:

On behalf of PAB Services, Inc., Daniel B. Stephens & Associates, Inc. (DBS&A) is pleased to submit the enclosed groundwater monitoring report for the Salty Dog brine station located in Lea County, New Mexico. The report documents second quarter groundwater monitoring activities completed at the site on October 4 and 5, 2011.

Please don't hesitate to call me at (505) 353-9130 if you have any questions or require additional information.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

1-1)-2-Michael D. McVev

Senior Hydrogeologist

Enclosures

cc: Pieter Bergstein, PAB Services, Inc.

Daniel B. Stephens & Associates, Inc.

Albuquerque, NM 87109-3315 FAX 505-822-8877

GROUNDWATER MONITORING REPORT SALTY DOG BRINE STATION LEA COUNTY, NEW MEXICO

1. INTRODUCTION

Daniel B. Stephens & Associates, Inc. (DBS&A) has prepared this second quarterly groundwater monitoring report for submission to the New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (OCD) Environmental Bureau on behalf of PAB Services, Inc. (PAB) for the Salty Dog brine station located in Lea County, New Mexico (Figure 1). This report summarizes groundwater monitoring activities conducted at the site on October 4 and 5, 2011.

The Salty Dog brine station site is comprised of a northern portion where the former brine pond was located and a southern portion where the brine well is located (Figure 1). The former brine pond area and the brine well area are separated by approximately 2,500 feet, joined by a dirt road. Five monitor wells, one nested well, and one recovery well are located in the former brine pond area. Nine monitor wells, one nested well, and one recovery well are located in the brine well area.

Since the brine pond was closed in October 2008, a number of frac tanks have been stationed in the northern portion of the site to serve as storage for brine that is produced for resale. A concrete truck loading pad is located near the frac tanks. The brine well is currently not operational and attempts are being made to redrill the well and restore brine production at the site.

2. SCOPE OF WORK

The scope of work for quarterly groundwater monitoring consisted of measuring fluid levels in and collecting groundwater samples from eleven monitor wells for laboratory analysis. The eleven monitor wells included in the quarterly sampling were selected in consultation with the OCD project manager, Jim Griswold, on October 4, 2010. Groundwater samples were submitted to

Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico for chloride analysis using U.S. Environmental Protection Agency (EPA) Test Method 300.0.

3. MONITORING ACTIVITIES

On October 4, 2011, DBS&A measured fluid levels in monitor wells DBS-2 through DBS-5 and PMW-1 in the former brine pond area, and DBS-6, DBS-8, DBS-9, MW-3, and MW-5 in the brine well area using a properly decontaminated electronic water level meter. Fluid levels were not measured in monitor well DBS-1 because the well has been destroyed. Table 1 provides a summary of the fluid level measurements. The average depth to water beneath the former brine pond area during this monitoring event was 64.83 feet below ground surface (ft bgs), increasing approximately 0.53 foot since the last monitoring event in May 2011. Increases ranged from 0.04 foot in DBS-5 to 1.75 feet in PMW-1. The average depth to water beneath the brine well area was 62.38 ft bgs, decreasing 0.16 foot since May 2011. Decreases ranged from 0.04 foot in DBS-8 to 0.55 foot in MW-5.

Potentiometric surface maps were prepared for the former brine pond and brine well areas and are included as Figures 2 and 3. Groundwater beneath both areas flows to the southeast at an average gradient of approximately 0.004 foot per foot (ft/ft) (Figures 2 and 3). The gradient beneath the former brine pond area has decreased from 0.008 to 0.004 ft/ft since the last monitoring event in May 2011, and is being less influenced with reduced pumping of the brine station fresh water supply well (Figure 1).

Groundwater samples were collected from monitor wells DBS-2 through DBS-5, PMW-1, DBS-6, DBS-8, DBS-9, MW-3, and MW-5 on October 5, 2011. A sample was not collected from DBS-1 because the well has been destroyed. DBS&A followed corporate standard operating procedures developed from EPA guidance during collection of all groundwater samples. Prior to sampling, the well was purged of a minimum of three casing volumes using a submersible pump to ensure that a representative sample of groundwater was collected. During purging, the DBS&A field technician measured water quality parameters including temperature, specific conductance, and pH to ensure that these parameters were stabilized to within 10 percent for specific conductance, 2 degrees for temperature and +/- 0.2 pH units prior to sampling. Sample containers were then

filled, labeled, and placed on ice once the stabilization criteria were met. Groundwater samples were submitted under full chain-of-custody to HEAL for chloride analysis.

4. ANALYTICAL RESULTS

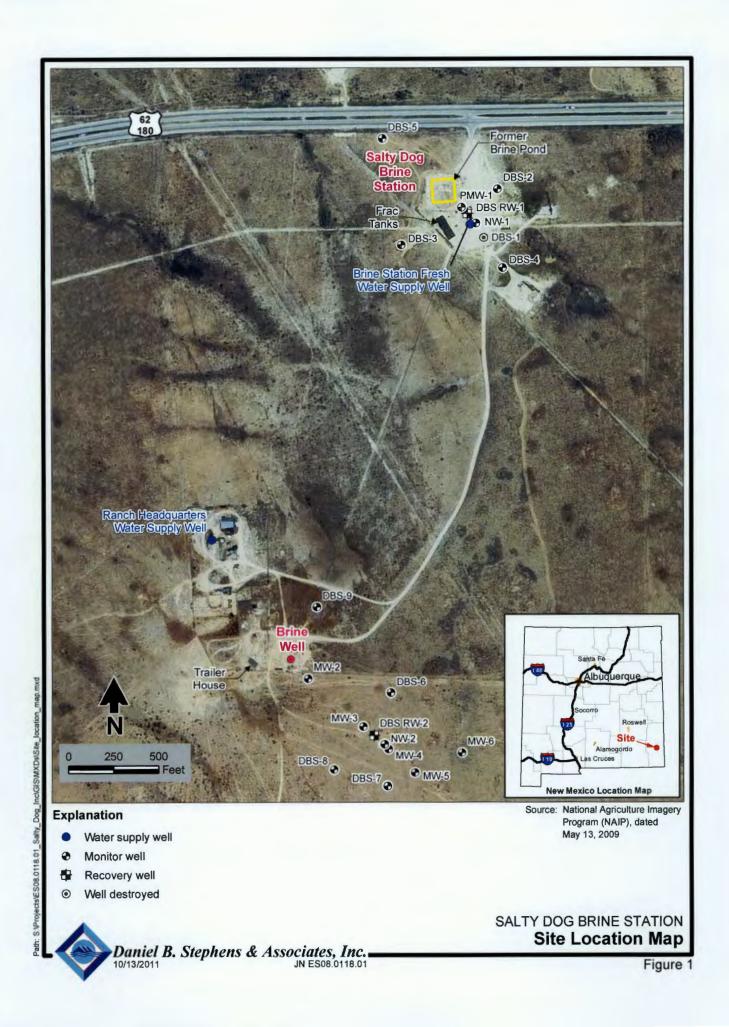
Table 2 summarizes chloride analytical results for the ten groundwater samples collected on October 5, 2011. Figures 4 and 5 show the distribution of chloride in groundwater beneath the former brine pond and brine well areas for the sampling event. Complete laboratory reports and chain-of-custody documentation are provided in Appendix 1. Field notes recorded during groundwater monitoring activities are included in Appendix 2.

Since the last monitoring event in May 2011, only monitor well DBS-8 showed an increase in chloride concentration from 36 to 140 mg/L. Monitor wells DBS-2 (25 to 18 mg/L), DBS-3 (35 to 34 mg/L), DBS-4 (33 to 32 mg/L), DBS-6 (410 to 400 mg/L), DBS-9 (600 to 440 mg/L), PMW-1 (13,000 to 12,000 mg/L), and MW-3 (16,000 to 14,000 mg/L) showed decreases in chloride concentrations. Monitor wells DBS-5 (140 mg/L) and MW-5 (1,500 mg/L) showed no change in chloride concentration. Currently, five of the ten wells sampled contain concentrations of chloride in excess of the NMWQCC standard of 250 mg/L (Table 2). Monitor well DBS-1 contained chloride concentrations in excess of the standard during the April 2009 and May 2011 sampling events prior to being destroyed sometime between the May 2011 and October 2011 sampling events.

The extent of the chloride groundwater plume in the former brine pond area remains bounded by the existing monitor well network. Monitor well PMW-1 (12,000 mg/L), located downgradient of the former brine pond, continues to show a chloride concentration in excess of the NMWQCC standard (Figure 4). The chloride concentration in the farthest downgradient well, DBS-4, remains below the standard.

The downgradient and cross-gradient extents of the chloride groundwater plume in the brine well area remains undefined. The farthest downgradient well, MW-5, and the northern-most cross-gradient well, DBS-6, contained chloride concentrations in excess of the NMWQCC standard (Figure 5). The chloride concentration in the upgradient monitor well, DBS-9,

decreased from 600 to 440 mg/L since the last monitoring event in May 2011, but still exceeds the NMWQCC standard. DBS-9 was installed in a playa lake north of the brine well to determine potential impacts from documented releases that entered the playa in 2002 and 2005 (Figure 5).


5. RECOMMENDATIONS

Based on the current groundwater monitoring results and trends in chloride concentrations, DBS&A recommends the following:

- Continue quarterly groundwater sampling to monitor chloride contaminant concentration trends in site wells.
- Redrill and install a replacement monitor well for DBS-1, which was destroyed (likely by truck traffic from brine filling operations) sometime between the last sampling event in May 2011 and this sampling event in October 2011.
- Begin active remediation of the chloride groundwater plumes at the former brine pond and brine well areas to control plume migration and reduce chloride concentrations in groundwater to less than the 250 mg/L NMWQCC standard.

Figures

))

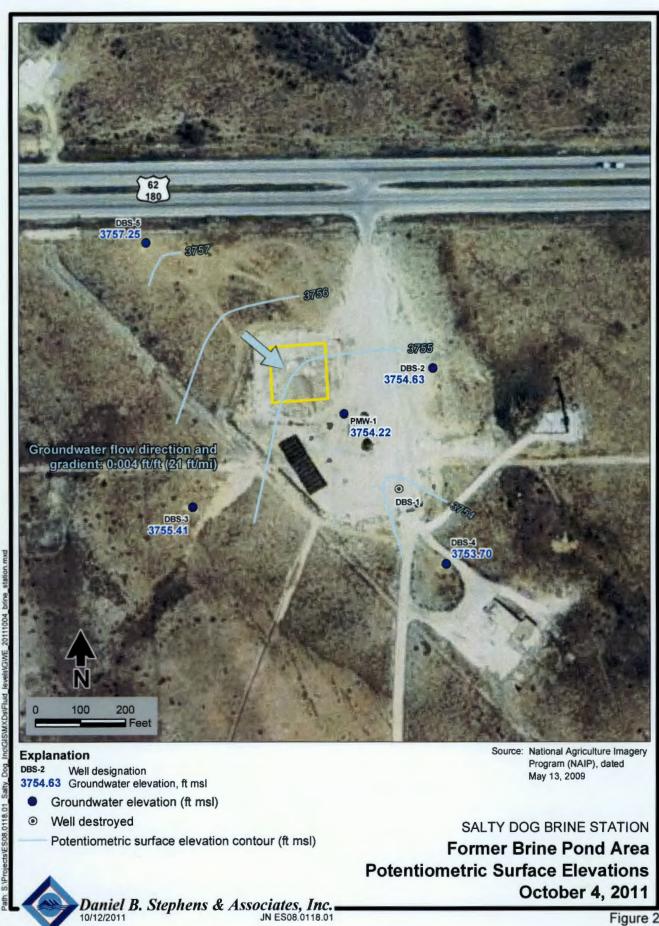



Figure 2

Tables

-

-

-

*

.

.

l	1	Tar f			<u> </u>
Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
DBS-1	56.0-76.0	3817.09	04/08/09	62.38	3754.71
			05/11/11	64.70	3752.39
			10/04/11	Well	destroyed
DBS-2	58.0-78.0	3820.50	04/08/09	65.45	3755.05
			05/11/11	66.80	3753.70
····			10/04/11	65.87	3754.63
DBS-3	DBS-3 56.0-76.72 3816.66		04/08/09	60.67	3755.99
			05/11/11	61.25	3755.41
			10/04/11	61.25	3755.41
DBS-4	56.0-76.0	3820.37	04/08/09	66.27	3754.10
			05/11/11	67.23	3753.14
			10/04/11	66.67	3753.70
DBS-5	56.9-76.9	3820.66	04/08/09	62.99	3757.67
			05/11/11	63.45	3757.21
			10/04/11	63.41	3757.25
DBS-6	56.7-76.7	3812.65	04/07/09	62.75	3749.90
			05/11/11	63.11	3749.54
			10/04/11	63.16	3749.49
DBS-7	55.1-75.1	3810.21	04/07/09	61.74	3748.47
DBS-8	55.2-75.2	3810.70	04/07/09	61.20	3749.50
			05/11/11	61.67	3749.03
			10/04/11	61.71	3748.99
DBS-9	48.0-68.0	3806.26	04/08/09	53.93	3752.33
			05/11/11	54.39	3751.87
			10/04/11	54.59	3751.67
NW-1 (s)	52.95-72.95	3817.33	04/08/09	62.35	3754.98
NW-1 (m)	99.31-119.31	3817.35	04/08/09	62.25	3755.10
NW-1 (d)	149.45-169.45	3817.35	04/08/09	62.04	3755.31
NW-2 (s)	53.35-73.35	3812.50	04/08/09	63.08	3749.42

Table 1. Summary of Historical Fluid Level Measurements Salty Dog Brine Station, Lea County, New Mexico Page 1 of 2

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

ft bgs = Feet below ground surface

ft msl = Feet above mean sea level ft btoc = Feet below top of casing NA

= Not available

S:\Projects\ES08.0118.01_Salty_Dog_Inc\ES08.0118.02_Salty Dog Remediation\Docs\2nd Qtrly GW Mon\T1_GW Elev.doc

Monitor Well			Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
NW-2 (m)	93.72-113.72	3812.45	04/08/09	63.27	3749.18
NW-2 (d)	126.87-146.87	3812.46	04/08/09	66.41	3746.05
PMW-1	63-78	3821.17	06/23/08	67.51	3753.66
			04/08/09	65.97	3755.20
			05/11/11	68.70	3752.47
			10/04/11	66.95	3754.22
MW-1	120-140	NA	06/23/08	59.90	NA
MW-2	127-147	3812.68	06/23/08	61.42	3751.26
			04/07/09	61.65	3751.03
MW-3	NA	3812.05	06/23/08	62.06	3749.99
			04/07/09	62.02	3750.03
			05/11/11	62.91	3749.14
			10/04/11	62.91	3749.14
MW-4	111-131	3811.33	06/23/08	62.12	3749.21
		 ,	04/07/09	62.51	3748.82
MW-5	112-132	3808.96	06/23/08	60.60	3748.36
			04/07/09	60.79	3748.17
			05/11/11	61.17	3747.79
			10/04/11	61.72	3747.24
MW-6	NA	3810.17	06/23/08	62.17	3748.00
			04/07/09	62.41	3747.76

Table 1. Summary of Historical Fluid Level Measurements Salty Dog Brine Station, Lea County, New Mexico Page 2 of 2

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

ft bgs = Feet below ground surface ft msl = Feet above mean sea level ft btoc = Feet below top of casing NA

= Not available

		Chloride
		Concentration
Monitor Well	Date	(mg/L) ^a
New Mexico Water Quality Control Comm	ission Standard	250
DBS-1	04/08/09	320
	05/12/11	940
DBS-2	04/08/09	14
	05/12/11	25
	10/05/11	18
DBS-3	04/08/09	36
	05/12/11	35
	10/05/11	34
DBS-4	04/08/09	38
	05/12/11	33
	10/05/11	32
DBS-5	04/08/09	65
	05/12/11	140
	10/05/11	140
DBS-6	04/07/09	380
	05/12/11	410
	10/05/11	400
DBS-7	04/07/08	570
DBS-8	04/07/09	58
	05/12/11	36
	10/05/11	140
DBS-9	04/08/09	210
	05/12/11	600
	10/05/11	440
NW-1s	04/08/09	630
NW-1m	04/08/09	57
NW-1d	04/08/09	38
NW-2s	04/08/09	410
NW-2m	04/08/09	570
NW-2d	04/08/09	4,700
PMW-1	02/27/08	9,500 ^b

Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 1 of 3

Bold indicates concentrations that exceed the applicable standard.

^a All samples analyzed in accordance to EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance to Standard Method 4500-Cl B.

mg/L = Milligrams per liter

		Chloride
		Concentration
Monitor Well	Date	(mg/L) ^a
New Mexico Water Quality Control Comm	ission Standard	250
PMW-1 (cont.)	05/30/08	8,600 ^b
	06/23/08	12,700
	04/08/09	11,000
	05/12/11	13,000
	10/05/11	12,000
MW-1	05/30/08	75 ^b
	06/23/08	243
MW-2	02/27/08	120 ^b
	05/30/08	80 ^b
	06/23/08	1,480
	04/07/09	1,200
MW-3	02/27/08	348 ^b
	05/30/08	360 ^b
	06/23/08	1,090
	04/07/09	17,000
	05/12/11	16,000
	10/05/11	14,000
MVV-4	02/27/08	476 ^b
	05/30/08	512 ^b
	06/23/08	5,730
	04/07/09	6,600
MVV-5	02/27/08	1,280 ^b
	05/30/08	1,220 ^b
	06/23/08	1,260
	04/07/09	1,300
	05/12/11	1,500
	10/05/11	1,500
MW-6	02/27/08	32 ^b
	05/30/08	36 ^b
	06/23/08	31.4
	04/07/09	25

Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 2 of 3

Bold indicates concentrations that exceed the applicable standard.

^aAll samples analyzed in accordance to EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance to Standard Method 4500-CI B.

mg/L = Milligrams per liter

Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 3 of 3

		Chloride
		Concentration
Monitor Well	Date	(mg/L) ^a
New Mexico Water Quality Control Comm	250	
Ranch Headquarters Supply Well	06/23/08	35.4
Brine Station Fresh Water Supply Well	02/27/08	630 ^b
	05/30/08	590 ^b
	06/23/08	650

Bold indicates concentrations that exceed the applicable standard.

^a All samples analyzed in accordance with EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance with Standard Method 4500-CI B.

mg/L = Milligrams per liter

Appendices

; •••

Appendix 1

Laboratory Reports

<u>.</u>

i Înt

.....

. نان

COVER LETTER

Wednesday, October 12, 2011

Mike McVey Daniel B. Stephens & Assoc. 6020 Academy NE Suite 100 Albuquerque, NM 87109

TEL: (505) 822-9400 FAX (505) 822-8877

RE: Salty Dog

Dear Mike McVey:

Order No.: 1110357

Hall Environmental Analysis Laboratory, Inc. received 10 sample(s) on 10/6/2011 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682

> 4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT: Project:	Daniel B. Stephens Salty Dog	& Assoc.				Lab Orde	er: 1110357
Lab ID:	1110357-01				Collection D	ate: 10/5/20	011 10:05:00 AM
Client Sample	ID: PMW1				Mat	rix: AQUE	OUS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD Chloride	300.0: ANIONS	12000	500		mg/L	1000	Analyst: SR 10/11/2011 4:16:07 A
Lab ID:	1110357-02				Collection D	ate: 10/5/20	011 10:55:00 AM
Client Sample	ID: DBS5				Mat	rix: AQUE	OUS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD Chloride	300.0: ANIONS	140	10		mg/L	20	Analyst: SR 10/7/2011 7:05:22 AM
Lab ID:	1110357-03				Collection Da	ate: 10/5/20)11 11:28:00 AM
Client Sample	ID: DBS2				Mat	rix: AQUE	OUS
Analyses	× ·	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD Chloride	300.0: ANIONS	18	0.50		mg/L	1	Analyst: SR 10/7/2011 8:15:02 AM
Lab ID:	1110357-04				Collection Da	ate: 10/5/20)11 12:11:00 PM
Client Sample	ID: DBS4				Mat	rix: AQUE	OUS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD Chloride	300.0: ANIONS	32	10		mg/L	20	Analyst: SRI 10/7/2011 9:07:15 AM
Lab ID:	1110357-05			(Collection Da	ite: 10/5/20	011 12:50:00 PM
Client Sample	ID: DBS3				Mati	rix: AQUE	OUS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS	34	10		mg/L	20	Analyst: SRI 10/7/2011 9:42:04 AM
Lab ID:	1110357-06			(Collection Da	ite: 10/5/20	11 1:29:00 PM
Client Sample	ID: DBS9				Matu	ix: AQUE	OUS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS	440	25		mg/L	50	Analyst: SRM 10/11/2011 6:00:37 AM
Qualifiers: 4 E J	E Estimated value Analyte detected below of			M	H Holding tin CL Maximum (tes for preparat Contaminant Lord at the Report	

	Daniel B. Stephens & Salty Dog	k Assoc.				Lab Orde	r: 1110357
Lab ID:	1110357-07				Collection Dat	te: 10/5/20	011 3:42:00 PM
Client Sample ID	: MW3				Matri	ix: AQUE	OUS
Analyses	-	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 300 Chloride).0: ANIONS	14000	2500		mg/L	5000	Analyst: SRM 10/11/2011 5:08:23 AM
Lab ID:	1110357-08			(Collection Dat	te: 10/5/20	011 5:37:00 PM
Client Sample ID:	DBS6				Matri	ix: AQUE	OUS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 300 Chloride).0: ANIONS	400	25		mg/L	50	Analyst: SRM 10/11/2011 5:25:47 AN
Lab ID:	1110357-09				Collection Dat	e: 10/5/20)11 6:23:00 PM
Client Sample ID:	MW5				Matri	x: AQUE	OUS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 300 Chloride	0.0: ANIONS	1500	100		mg/L	200	Analyst: SRM 10/11/2011 5:43:12 AM
Lab ID:	1110357-10			(Collection Dat	e: 10/5/20	011 6:54:00 PM
Client Sample ID:	DBS8				Matri	x: AQUE	OUS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 300 Chloride	.0: ANIONS	140	10		mg/L	20	Analyst: SRM 10/7/2011 1:11:02 PM

Hall Environmental Analysis Laboratory, Inc.

Date: 12-Oct-11

QA/QC SUMMARY REPORT

Client:	Daniel B. Stephens & Assoc.
---------	-----------------------------

Project: Salty Dog Work Order: 1110357 Analyte Result Units PQL SPK Va SPK ref %Rec LowLimit HighLimit %RPD RPDLimit Qual Method: EPA Method 300.0: Anions Sample ID: MB Analysis Date: MBLK Batch ID: R48269 10/6/2011 11:21:14 AM Chloride ND mg/L 0.50 Sample ID: MB Batch (D: MBLK R48269 Analysis Date: 10/7/2011 5:03:29 AM Chloride mg/L ND 0.50 Sample ID: MB MBLK Batch ID: R48312 Analysis Date: 10/10/2011 11:43:50 AM Chloride ND mg/L 0.50 Sample ID: LCS Batch ID: R48269 Analysis Date: 10/6/2011 11:38:39 AM LCS Chioride 4.999 mg/L 0.50 5 0 100 90 110 Sample ID: LCS LCS Batch ID: R48269 Analysis Date: 10/7/2011 5:20:54 AM Chloride 5.026 mg/L 101 90 110 0.50 5 0 Sample ID: LCS LCS Batch ID: Analysis Date: 10/10/2011 12:01:14 PM R48312 Chloride 4.982 mg/L 0.50 5 0 99.6 90 110

. .

Qualifiers:

ND

E Estimated value

J Analyte detected below quantitation limits

Not Detected at the Reporting Limit

- H Holding times for preparation or analysis exceeded
- NC Non-Chlorinated
- R RPD outside accepted recovery limits

Hall Environmental Analysis Lab	oratory, Inc.						
k	Sample	Rece	ipt Ch	ecklist			
Client Name DBS				Date Receive	d:		10/6/2011
Work Order Number 1110357				Received by			W.
Checklist completed by:	<		Date	Sample ID la	abels checked	· .	initials
Matrix:	Carrier name:	Client	drop-of	f			V
Shipping container/cooler in good condition?		Yes		No 🗌	Not Present		
Custody seals intact on shipping container/cooler	?	Yes		No 🗌	Not Present		Not Shipped
Custody seals intact on sample bottles?		Yes		No 🗔	N/A	\checkmark	
Chain of custody present?		Yes		No 🗋			
Chain of custody signed when relinquished and re	eceived?	Yes		No 🗆			
Chain of custody agrees with sample labels?		Yes		No 🗖			
Samples in proper container/bottle?		Yes		No 🗔			
Sample containers intact?		Yes		No 🗔			
Sufficient sample volume for indicated test?		Yes		Νο			
All samples received within holding time?		Yes	\checkmark	No 🗔			Number of preserve bottles checked for
Water - VOA vials have zero headspace?	No VOA vials subm	nitted		Yes 🗌	No 🗔		pH:
Water - Preservation labels on bottle and cap mat	tch?			No 🗌	N/A 🗹		
Water - pH acceptable upon receipt?		Yes		No 🗖	N/A 🗹		<2 >12 unless noted below.
Container/Temp Blank temperature?		2.3	•	<6° C Acceptab			
COMMENTS:				If given sufficient	time to cool.		
Client contacted D	Date contacted:			Pers	on contacted	·	
	egarding:						· · · · · · · · · · · · · · · · · · ·
Comments:							
					,,,,		
Corrective Action	······································						

Client:			stody Record											l F		NV	TP	20	NR	NE	NT/	A I	
		DBS	A		tandard ect Name		Rush					A	N.		YS	515	5 L	AE	30			RY	٢
Mailing	Address	609	m Dr. dom.		c_{-}	tea	De	A .		490	<u>от н</u>			VE -						109			
		<u> </u>	De Academy	Proje	ect #:	0		F			el. 50					•			4107				
Phone	#:	1009	228 - 0 822-74		950	80	1K				1. 00	5.0-	-0-0.				Req						
	or Fax#:	MMa			ect Mana			······································		ly)	(lei					(†)							
	Package:		0 000	2					021	s or	Dies					4,SC	PCB's						
⊡-Sta	ndard		Level 4 (Full Validation)		M_i	ke	\mathcal{M}	cley cf	8) S,	<u>G</u>	Gas/					۲ ۵							
	litation			Sam	pler: 🖊	M	Var	ref "	TMB's (8021)	TPH (Gas only)	5B (((1)	, 1	Î		N N	808						Î
	_AP D (Type) _		r	14 at 14 a 12 rd	ie Desien	Mr. Salar Sector	<u>S</u>		+	+	801	418	504.1)	(HAH)	als	S S	es /		(AO				o.
E ED	J (Type)_	5xC		Sam	Dies steats	Jeracu	G		MTBE	ATB	pou	thod	thod	A or	8 Metals	Ъ,	tloid	(A)	-i⊓				es (
Date	Time	Matrix	Sample Request ID				rvative		+	(+)	Met	(Met	(Me	N N	A 8 I	ls (F	Pes	В	(Se	۱			lag
Dato	1	matrix		Тур	e and #	Ty	/pe		втех	BTEX + MTBE	TPH Method 8015B (Gas/Diesel)	TPH (Method 418.1)	EDB (Method	8310 (PNA	RCRA (Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	2			Air Bubbles (Y or N)
10/5	INDE	Water	PMWI	Ð	alia	I	lan.	1110357-	<u>h</u>	-	-	F	-	8	-	/	8	8	3	1		+	+
1010		i			sly_		1	7													-		
	1055		DBS5		1		1	3														-	+
<u>_</u>	1128		DB52				┼──	4													+	-+-	+
	1211		DB54					5				_		<u>} </u>		•							+-
+	1250		DBS3	+				<u>_</u>						-							+	-+-	+-
<u>`</u> +	1329		DB59	+	<u> </u>	-		<u> </u>						<u> </u>						1	-+		+
	1542		MW3				·	8													-+-		+
	1737		DBS6 MWS			$\left\{ -\right\}$					 		┣							A		+	+-
`	1823			+				9	┼─					├──	<u> </u>	┣─		├				+	+
	1854		DBS8		2	+		10				—				<u> </u>						+	+-
				+					-	╂──			┼	┢	-	┣		├				+-	+-
Date:	Time:	Relinguish	ed by:////	Rece	ivled by:	I		Date Time	Rer	L nark	s:		L			L	[<u> </u>				_
10/11	1230		Ulant i		A	- ~	6	0/10/11/1221	ħ														
Date:	Time:	Relinquish	ed by:	Red	ived by:	7		Date Time	۲														
						U																	

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be closely notated on the server data will be closely not the server data

Appendix 2

Field Notes

					K. Ale a		· < 🍂 /
28	. Int	29					
10/35/11	1. J.J.	10/05/11					Me
1306	Onsite at Salty Day Brine Station	0730	Onsite	at PMW	· I. Begin	n setting	υD
	Gunge Wells to be sampled		for sar	mpling	0	v	
	for CL-	0745			63 S/M	1 08E 1014	R
<u></u>	ALM ATLY TO ST		PH	T°C	SpC(#)	
	PMW-1 66.95 79.46 7.5		7.01	22.6	NA		
	DBS2 65.87 78.21		9.92	<i>a</i> a.6			
	DBS 5 63.41 78.16		4.07	22.6	4		
	D853 61.25 78.17	0200	Cffsite	for sup	plies		
·	DBS4 66.67 80.06	0907	Resum	e set c	ponf	Mw -1	
	DBSI Appears Poly destrayed	0940	Begin p	rumping		j	
· · ·	DB59 54.59 70.77	0949		tosur	face ph	10.1 6.12	lgal 3cv
· · · · · · · · · · · · · · · · · · ·	OBS6 63.16 77.71	Time	Vol (ai)	рH	TC		Comments
· 	ABS8 61.71 74.65	0950	0.0	6.67	22.0	30.0	milky
	MWB 62.91 147.04	0953	3.0	6.78	19.8	176.1	stighty milt
		C956	5.0	6.76	19.4	68.7	clear
	Contact M. McVey about DBS.1. Send	0959	6.0	6.78	18.8	58.9	CLOST
	photos to email	1002	7.0	6.79	19.4	60.1	. clear
1630	M. Hevey calls w/J. Bunch saying	1005	Collect	sample	PMW-1		
	DBS+1's vault seems to have	1015	Setup	on De	5.5	7.23 gal ((v)
	been moved.	Time	Vol (sal)	рH	Te	SpC 2m	Comments
1640	Attompt to move rout by hand	1033	0.0	7,34	28.0	2010	slightly milky
	Vault is loose, but too heavy to	1026	3.(7.00	24.5	1619	
	move by hand.	1039	5.0	6.99	23.5	1345	1
1645	M. Nauck offsite	1042	6.3	6.99	23.4	1380	Clear
	laid	1045	7.a	7.00	22.8	1376	clear
and the second second	10/4/11	1048	9.0	7.02	23.6	1399	clear /

 $1 \cdot 1 \cdot 1 \cdot 1$

-

ALL PARTY

	<u>) (</u>	, inter-					in. ≤	i			
20 10/5/11					Me .	31 _10/5/11_				2	ĤN
1855	Collect	sample +	FD at	DBS5		1250	Collect	sample	DBS3		
1108		on DB5		gol zer		1301	Set up	on des	۹.7.۹	2 301 (301)	
Time	Val(gol)	рK	TC	SoC 2	Comments	Time	Val(sal)	_ptl_	Te	SpC 2	Comments
1115	13	7.36	20.8	226.8	Milko Brown	1315	0.0	7.02	22:0	3(30	Milky Brown
1118	3.0	7.46	20.1	435.4	11 1	1318	2.5	7.01	19.7	2422	milkg White
112(4,3	7.81	19.9	433.0	milly	1321	4. 4.5 5. 4.5	7.01	<i>A.</i> 8	2151	. 1
1124	5.9	7.31	19.9	428.3	11	1324	7.0	6.98	-19.6	2064	clear
1127	2.5	7.35	19.9	434.6	17	1327	4.9.3 9.9.3	7.00	19.5	2107	Clear
1128	Colect		at DBS	ይ		1350	Offsite	for luna	K		1
1140-	Setup	DB54		gal (3CV)		1440	Set up	oon 7	Two Mu		7 gal (C+3)
Time	Vol (gal)	DH	T°C	SoC in	Comments	Time	Vol (901)	pH	T°C	Sp C/ Em)	comments
1155	0.0	7.60	22.6	252.0	Milley Broan	1506	0.0	6.92	24.1	8.64 ms	clear
1159	1.8	7.57	20.5	344.4	11	1509	3.8	6.83	20.7	8.01 ms	clear
1201	3.7	7.44	20.6	487.0	clear	1512	7.1	6.83	20.2	7.76 ms	11
1204	5.8	7.44	20.5	241.8	clear	1516	10.0	6.73	20.0	10.12 ms	1/
1207	80	7.42	20.3	231.0	Clear	1518	14.3	6,41	19.8	25.42 MS	*/
1210	9.3	7.41	20.4	233.6		1521	17.8	6.43	19.7	28.61 MS	
1211	Collect	Sample	DBS4			1524	21.4	6.45	19.5	28.95 00	"
1220		at Df		28 gal (30	(4)	1527	25.0	6.44	19.6	20.06 MS	"
Time	Volgal)		T°C.	Soc #	Comments	1530	29.0	6.47	19.4	30.25 M	
1230	0.0	7.47	22.0	263.0	milky	1533	33.3	6.42	19.7	30.93m	"
1232	3.0	7.37	20.8	272.9		1536	36.5	6.43	19.7	31.51ms	-1
1242	4.0	7.37	20.5	579.0	clear.	1539	36,5. 40.0 48.0 M	6.46	19.4	31.09	11
1245	2.9	7.31	20.5	540.6	Clar .	/541	42.8	6.45	19.4	31.57	
1248	9.1	7.34	20.4	536.5	clear	1542	Collect	MW3	Sample		

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1						1. S 💓	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32						33						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1. P			MN	範 二	•		•	- 	MU	-
Ince Milestic PH T \circ_{C} Sec Example PRH PRH Processing Sec Example PRH PRH Processing PRH Processing PRH Processing PRH Processing PRH Processing PRH Processing Processing </td <td>· · · · · · · · · · · · · · · · · · ·</td> <td>Set up</td> <td>MUS</td> <td>33.45</td> <td>al (scr)</td> <td></td> <td>A</td> <td>Vo(Gal)</td> <td>pH</td> <td>TC</td> <td>SpC #</td> <td>Connerts</td> <td>-</td>	· · · · · · · · · · · · · · · · · · ·	Set up	MUS	33.45	al (scr)		A	Vo(Gal)	pH	TC	SpC #	Connerts	-
1830 Pump does not seem to be pumping 1844 2.3 7.26 9.7 783 1843 1855 Set up on DBS6 1847 8.3 2.12 75.5 $close 1725 Replace pump motor 1847 8.3 2.12 75.5 close close 1.725 7.55 close 1.725 7.56 7.44 7.30 1.726 7.74 7.16 7.26 1.74 7.44 7.30 1.716 1726 0.0 5.72 225.5 1274 M.16.80mn 1.853 8.47 7.16 7.86 1.74 7.46 7.36 1.716 7.26 7.74 7.93 1.716 7.854 7.857 7.856 7.97 7.97 7.97 7.97 7.97 7.97 7.97 7.97 7.97 7.97 7.97 7.97 7.97 $						Comments	1841	•	7.38	21.0		Brown	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				and the other designment of the local division of the local divisi			1844	2.3	7.26	19.7	783	Misky	-
1725 Replace pump moder 1750 6.4 7.14 $A.4$ 130 170 1726 0.0 pH $T^{\circ}c$ Spc $connects$ 1853 8.4 7.14 $A.4$ 130 170 1726 0.0 6.92 20.5 1274 $Milkulture 1853 8.4 7.16 19.6 7.16 17.6 7.16 17.6 7.16 17.6 7.16 17.6 7.16 17.6 7.16 17.6 7.16 17.6 17.6 17.7$					H		1847	\$.3	7.17	19.5	755	clear	-
H286 1853 8.4 7.16 7.6 7.36	200 A. C.			-			1850	6.4	7.47	19.4	730	4	_
Time Vol pH T°c SpC Comments 1854 Collect sample DBSB 1726 0.0 6.92 22.5 1274 Milksbown 1910 09551t 1727 3.0 7/19 197 1519 Clear 1910 09551t 1732 5.5 6.96 19.5 1591 Clear 1910 09551t 1732 5.5 6.96 19.5 1591 Clear 1910 09551t 1735 7.5 6.94 19.5 1591 Clear 1910 09551t 1737 Collect sample DBS6 1710 1925 33.45 gal/3cu) 1910 Time Vol (Gel) pH T°c SpC 55 Generals 1900 1740 Set up on Mu) 5 33.45 gal/3cu) 1925 1926 1927 1928 1928 1928 1803 8.3 6.91 19.3 3138 1928 192 1914 11 1803 8.3 6.91 19.3 3945 11 1910		Neplace	pomp	17/0-051			1853	8.4	7.16	19.6	736	11	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1/0/	nH	Toc	SEC.	(m Meals	1854	Collect	Sample	DBSB			-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•		: `		Δ.		, -				-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1					· V .				1 	an a		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1			•				· · · · · · · · · · · · · · · · · · ·	:	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										- - -			-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-												-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			•		4500/3								_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					C C ME	Comments		$\langle \rangle$			-	:	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- 0 -			•	-							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									12				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1								21				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									7 10	/			-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1							· · · · · · · · · · · · · · · · · · ·					
1815 25.5 6.86 19.3 3945 11 1818 29.8 6.86 19.3 3954 11 1818 29.8 6.86 19.3 3954 11 1821 34.3 6.97 19.1 3923 11	1				1	11	i		-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1			· · · · · · · · · · · · · · · · · · ·			,	· · ·		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-				1					7	<u>\</u>		-
	-								ļ				-
1823 Collect Sample Mu25	•		1		500				:				- [
	1823											<u> </u>	-
1831 Set up on DB58 6.33 gal (3 cy)	1831	Set u	pon D	858 6	.33ga((3cu)					a nagy general names and any names and an an an Advance	\sim	-
	114	Marine (A. 1994)			1								

November 9, 2016

Dr. Tomas Oberding New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505-4225

Re: Third Quarter 2016 Groundwater Monitoring and O&M Report, Salty Dog Brine Station

Dear Dr. Oberding:

On behalf of PAB Services, Inc., Daniel B. Stephens & Associates, Inc. (DBS&A) is pleased to submit the enclosed groundwater monitoring and operation and maintenance (O&M) report for the Salty Dog brine station located in Lea County, New Mexico. The report documents results of third quarter 2016 groundwater monitoring activities completed at the site on September 13 and 14, 2016, as well as groundwater extraction system O&M information.

Please note that we recommend reducing the monitoring and reporting frequency from quarterly to semiannually. We are seeking your approval for this reduction and will continue quarterly monitoring and reporting until we receive that approval. The Settlement Agreement & Stipulated Revised Final Oder NM-OCD 2008-2A allows Salty Dog to request that the monitoring schedule be reduced. This is stipulated on page 15 under subsection f.vi of item 15. We respectively request the reduction on behalf of Salty Dog for the reasons described in the report.

Please do not hesitate to call us at (505) 822-9400 if you have any questions or require additional information.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

John Avarbe, P.G.

Sonn Ayarbe, P.G. Senior Hydrogeologist

JA/MDM/rpf Enclosure cc: Pieter Bergstein, PAB Services, Inc. Jim Sayre, Salty Dog, Inc.

Michael D. McVey, P.G. Senior Hydrogeologist

Daniel B. Stephens & Associates, Inc.

6020 Academy NE, Suite 100

Third Quarter 2016

Groundwater Monitoring and

O&M Report

Salty Dog Brine Station

Lea County, New Mexico

Prepared for

New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division

November 9, 2016

Daniel B. Stephens & Associates, Inc.

6020 Academy NE, Suite 100 • Albuquerque, New Mexico 87109

Table of Contents

Se	rction Pa	age
1.	Introduction	1
2.	Scope of Work	2
3.	Monitoring Activities 3.1 Fluid Level Measurement 3.2 Groundwater Sampling	2
4.	Analytical Results 4.1 Former Brine Pond Area Wells 4.2 Brine Well Area Wells	4
5.	 Groundwater Extraction System O&M 5.1 Former Brine Pond Area 5.2 Brine Well Area 5.3 Facility and System Maintenance 5.4 Future Extraction System Operation 	5 6 6
6.	Recommendations	7

List of Figures

Figure

- 1 Site Location Map
- 2 Former Brine Pond Area Potentiometric Surface Elevations, September 2016
- 3 Playa Lake and Brine Well Area Potentiometric Surface Elevations, September 2016
- 4 Former Brine Pond Area Chloride Concentrations in Groundwater, September 2016
- 5 Playa Lake and Brine Well Area Chloride Concentrations in Groundwater, September 2016

List of Tables

Table

- 1 Historical Fluid Level Measurements
- 2 Chloride Groundwater Analytical Data
- 3 Cumulative Extracted Groundwater Volumes

List of Appendices

Appendix

- A Laboratory Analytical Report
- B Field Notes

Third Quarter 2016 Groundwater Monitoring and O&M Report Salty Dog Brine Station, Lea County, New Mexico

1. Introduction

Daniel B. Stephens & Associates, Inc. (DBS&A) has prepared this groundwater monitoring and operations and maintenance (O&M) report for submission to the New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (OCD) Environmental Bureau on behalf of PAB Services, Inc. (PAB) for the Salty Dog brine station (the site) located in Lea County, New Mexico (Figure 1). The report summarizes activities conducted at the site on September 13 and 14, 2016.

The site consists of a northern portion, where the brine pond was located prior to closure in October 2008, and a southern portion, where the brine well is located. The brine pond area and the brine well area are separated by approximately 2,500 feet, joined by a dirt road (Figure 1). Injection water for the brine well comes from two fresh water supply wells (FWS-1 and FWS-2) and remedial pumping at recovery wells in both the former brine pond area (RW-1) and brine well area (RW-2). Groundwater extraction at RW-1 is limited due to pumping from FWS-1. However, pumping at FWS-1 provides hydraulic containment and removal of chloride-impacted groundwater in the former brine pond area.

Brine that is produced for sale is stored at a tank battery on the southern boundary of the former brine pond area. The tank battery consists of six 750-barrel aboveground storage tanks (ASTs) surrounded by a berm. A concrete truck loading pad with two brine filling stations is located north of the tank battery. An operations shed is located adjacent to the loading pad to the west.

Six monitor wells (PMW-1, DBS-1R, and DBS-2 through DBS-5), one nested well (NW-1), one fresh water supply well (FWS-1), and one recovery well (RW-1) are located in the former brine pond area. Nine monitor wells (MW-2 through MW-6, DBS-6 through DBS-9), one nested well (NW-2), one fresh water supply well (FWS-2), and one recovery well (RW-2) are located in the brine well area (Figure 1).

DBS&A installed groundwater extraction systems at the site in early April 2012 to provide hydraulic containment and removal of chloride-impacted groundwater in the former brine pond and brine well areas. The extraction systems consist of submersible pumps, conveyance lines, electrical power, and controls to extract impacted groundwater from the recovery wells. Extracted groundwater is conveyed to the on-site ASTs for reinjection at the brine well.

2. Scope of Work

The scope of work for groundwater monitoring consisted of (1) measuring fluid levels in and collecting groundwater samples from 11 monitor wells, and (2) performing maintenance on the groundwater extraction systems, as necessary. Groundwater samples were submitted to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico for chloride analysis using U.S. Environmental Protection Agency (EPA) method 300.0. The monitor wells included in the quarterly sampling were selected in consultation with Jim Griswold on October 4, 2010; Mr. Griswold was the OCD Project Manager for the site at that time. The selected monitor wells are shown in Figures 2 through 5.

3. Monitoring Activities

3.1 Fluid Level Measurement

On September 13, 2016, DBS&A measured water levels in monitor wells DBS-1R, DBS-2 through DBS-5, and PMW-1 in the former brine pond area (Figure 2) and DBS-6, DBS-8, DBS-9, MW-3, and MW-5 in the brine well area (Figure 3) using a properly decontaminated electronic water level meter. Table 1 reports water level measurements and groundwater elevations.

During this monitoring event, the average depths to water beneath the former brine pond area and brine well area were 68.3 feet below ground surface (bgs) and 63.2 feet bgs, respectively. On average, water levels in the former brine pond area declined by approximately 0.9 foot since the last monitoring event in June 2016, while water levels in the brine well area declined by 0.4 foot.

Figures 2 and 3 present potentiometric surface maps for the former brine pond area and the brine well area, respectively. The direction of groundwater flow beneath the former brine pond area remains to the southeast at a gradient of approximately 0.006 foot per foot (ft/ft) (Figure 2)—increasing slightly since the previous monitoring event. A broad cone of depression was observed in the vicinity of the fresh water supply well (FWS-1) due to increased fresh water production when depth to water level measurements were recorded. The direction of groundwater flow beneath the brine well area remains to the southeast at a gradient of approximately 0.004 ft/ft (Figure 3)—decreasing slightly relative to the previous monitoring event.

3.2 Groundwater Sampling

On September 14, 2016, groundwater samples were collected from monitor wells DBS-1R, DBS-2 through DBS-6, DBS-8, DBS-9, MW-3, MW-5, and PMW-1 following standard sampling procedures developed from EPA guidance. Before sampling, each well was purged of a minimum of three casing volumes using a submersible pump so that a representative groundwater sample was collected. While purging, DBS&A measured water quality field parameters consisting of temperature, specific conductance, and pH. Samples were collected once three casing volumes were purged. Sample containers were then filled, labeled, and placed in an ice-filled cooler. Groundwater samples were submitted under chain of custody to HEAL for chloride analysis.

Samples of the brine well injection water and the produced brine were also collected to meet requirements under discharge permit BW-8. Analytical results of these samples will be reported in the 2016 Annual Class III Well Report.

4. Analytical Results

Table 2 summarizes chloride analytical results for the 11 groundwater samples. Figures 4 and 5 show the distribution of chloride in groundwater beneath the former brine pond area and the brine well area, respectively. The laboratory report and chain of custody documentation are

provided in Appendix A. Field notes recorded during groundwater monitoring activities are provided in Appendix B.

4.1 Former Brine Pond Area Wells

Since the last monitoring event in June 2016, minor to no changes in chloride concentrations were observed at monitor wells DBS-2 through DBS-5 (Table 2). DBS-1R and PMW-1 continue to exhibit chloride concentrations above the New Mexico Water Quality Control Commission (NMWQCC) standard of 250 milligrams per liter (mg/L) (Figure 4). The chloride concentration at DBS-1R showed a slight decrease from 570 mg/L to 360 mg/L, while the concentration at PMW-1 increased slightly, from 8,500 mg/L to 9,300 mg/L.

The chloride plume in the former brine pond area remains bounded by the existing monitor well network (Figure 4). Pumping from PAB's fresh water supply well FSW-1 provides hydraulic containment of the chloride plume. The chloride concentration at downgradient monitor well DBS-4 remains below the NMWQCC standard, as do chloride concentrations at the two cross-gradient monitor wells, DBS-2 and DBS-3.

4.2 Brine Well Area Wells

Since the last monitoring event in June 2016, minor changes in chloride concentrations were observed at most of the monitor wells in the brine well area (Table 2). Monitor wells MW-3 (the well closest to extraction well RW-2), MW-5 (the farthest downgradient well), and DBS-6 (the northernmost cross-gradient well) continue to exhibit chloride concentrations above the NMWQCC standard (Figure 5). The chloride concentration at MW-3 decreased from 9,400 mg/L to 9,100 mg/L. The chloride concentration at MW-5 increased from 970 mg/L to 1,000 mg/L. The chloride concentration at DBS-6 decreased from 300 mg/L to 290 mg/L.

During previous monitoring events, monitor well DBS-9 (an upgradient monitor well) has exhibited chloride concentrations above the NMWQCC standard; however, during this reporting period, the chloride concentration at DBS-9 was 190 mg/L, below the NMWQCC standard

(Table 2). DBS-9 was installed in the playa located northeast of the brine well to help characterize groundwater impacts from documented releases in 2002 and 2005.

5. Groundwater Extraction System O&M

Remedial groundwater extraction in the former brine pond and brine well areas began in April 2012 by pumping from recovery wells RW-1 and RW-2. Extracted groundwater volumes at RW-1 and RW-2 are reported in Table 3.

Production from the fresh water supply well (FWS-1) also supports hydraulic containment and removal of chloride-impacted groundwater in the former brine pond area.

5.1 Former Brine Pond Area

Other than some brief shutdowns to address a few maintenance issues, the groundwater extraction system at RW-1 operated continually until approximately March 2015 (Table 3). Pumping from the nearby fresh water supply well (FWS-1) is inhibiting the effectiveness of RW-1 as an extraction well by lowering groundwater levels at this well. PAB attempted to set the pump at RW-1 to a deeper depth in the well so that pumping from RW-1 could continue, but the pump is already set near the bottom of the well. Although pumping from RW-1 has ceased, pumping at FWS-1 provides containment of the chloride plume in the former brine pond area. The average pumping rate at FWS-1 during the third quarter 2016 was approximately 5 gallons per minute (gpm).

Monitor wells DBS-1R and PMW-1 are the only wells that exhibit chloride concentrations above the NMWQCC standard. Pumping of the fresh water supply well is preventing the downgradient migration of the chloride groundwater plume; although the chloride concentrations in wells DBS-1R and PMW-1 remain elevated, they have decreased from historical highs (Table 2) and are expected to continue to decrease through time with continued pumping at the fresh water supply well. The chloride concentration at downgradient monitor well DBS-4 is well below the NMWQCC standard.

5.2 Brine Well Area

The groundwater extraction system at RW-2 has been operated continually since April 6, 2012 with the exception of addressing a few maintenance issues. A total of 18,453,822 gallons of chloride-impacted groundwater have been pumped from RW-2 (Table 3). Historically, pumping of recovery well RW-2 at flow rates of 2.5 to 4.3 gpm produced little drawdown in the brine well area. However, after increasing the average pumping rate to 66 gpm after the second quarter 2015 monitoring event (Table 3), a cone of depression became evident, thereby improving hydraulic containment and removal of the chloride plume.

The average pumping rate at RW-2 during this reporting period was approximately 6 gpm. A cone of depression was not observed during this monitoring event (Figure 3), although RW-2 was pumping at the time water level measurements were recorded.

The chloride plume remains undefined downgradient and cross-gradient to the north of the recovery well (RW-2). Since April 2009, chloride concentrations in the northernmost cross-gradient well (DBS-6) have fluctuated between 290 and 410 mg/L. Since February 2008, chloride concentrations in the downgradient well (MW-5) have fluctuated between 970 and 1,500 mg/L. The chloride concentration in monitor well MW-3, the well closest to the extraction well (RW-2), decreased by almost half between September and December 2015, but has been showing a slight rebound since that time (Table 2).

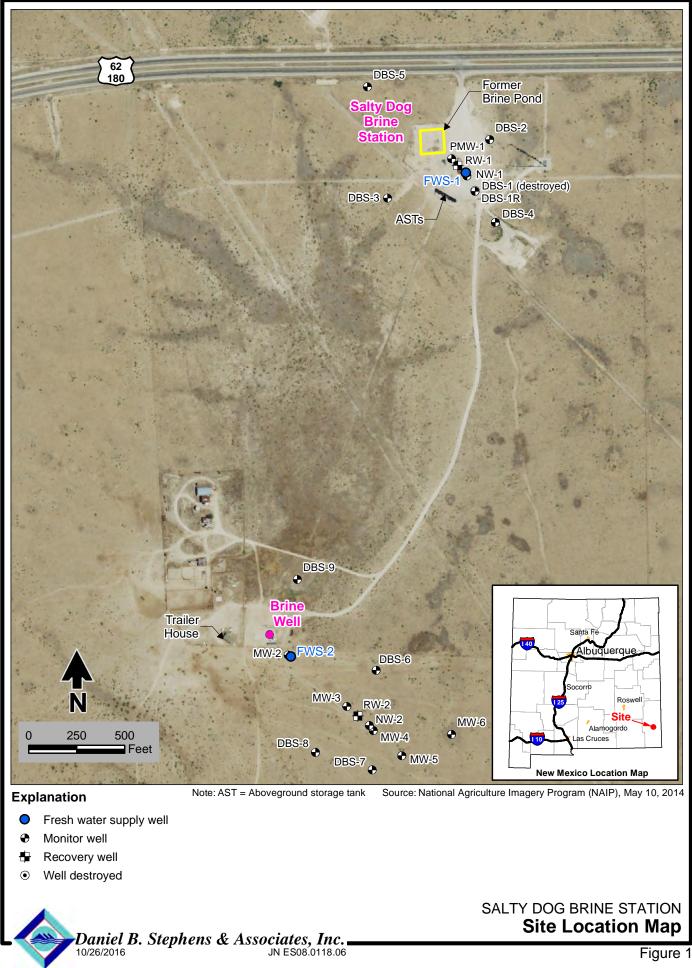
5.3 Facility and System Maintenance

On June 13, 2016 the pump at RW-2 was damaged during a lightning storm. Operations manager Jim Sayre promptly replaced the pump on June 15, 2016. The pump at FWS-2, upgradient from RW-2 (Figure 1), was also damaged and subsequently replaced.

5.4 Future Extraction System Operation

Pumping of the fresh water supply well (FWS-1) has lowered groundwater levels at RW-1, precluding groundwater extraction at this well. Pumping of FWS-1 provides hydraulic

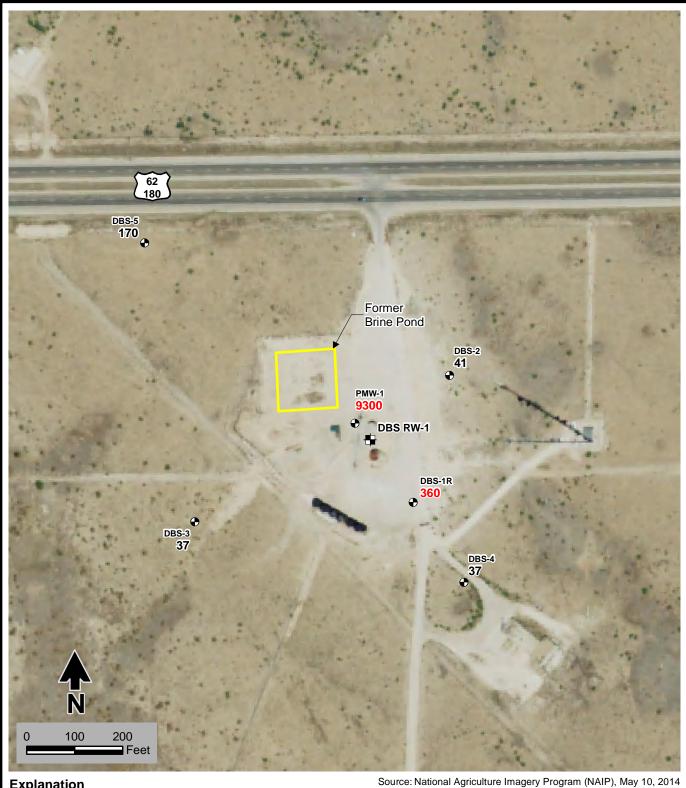
containment and removal of the chloride plume. Future monitoring data will be used to evaluate the effectiveness of FWS-1 in providing hydraulic containment and removal of chloride-impacted groundwater in the former brine pond area.


Pumping of extraction well RW-2 will continue. Increased pumping at RW-2 since the second quarter of 2015 provides improved hydraulic containment and removal of the chloride plume in the brine well area. Future monitoring data will be used to evaluate the effectiveness of RW-2 in providing hydraulic containment and removal of chloride-impacted groundwater in the former brine well area.

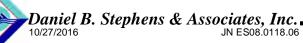
6. Recommendations

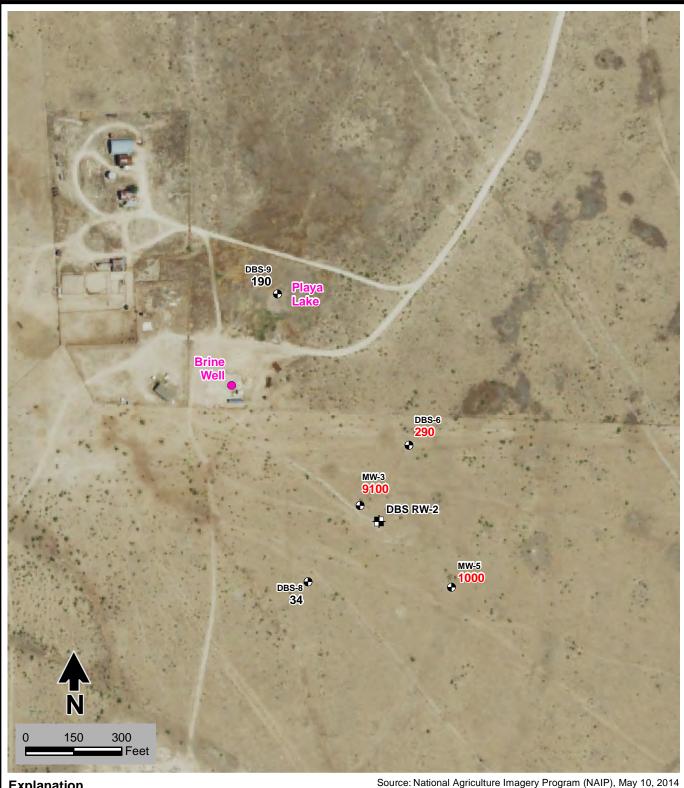
Based on the current groundwater monitoring results and site O&M activities, DBS&A has the following recommendations:

- Continue groundwater extraction at FWS-1 and RW-2 to provide hydraulic containment of the chloride plumes in the former brine pond area and brine well area, respectively.
- Reduce the monitoring and reporting frequency from quarterly to semiannually. Groundwater extraction from FWS-1 and RW-2 has shown continued containment of the chloride plume in both the former brine pond and brine well areas. Although chloride concentrations at monitor wells immediately adjacent to FWS-1 and RW-2 are elevated, chloride concentrations at the downgradient and cross-gradient monitor wells generally meet the NMWQCC standard and remain stable. Implementation of this recommendation requires OCD approval.


Figures

%;PROJECTS\ES08.0118.01_SALTY_DOG_INC\GISMXDS\REPORT\2016_3Q\FIG02_GWE_201609_BRINE_STATION.MXD


Explanation


DBS-5 Well designation Chloride concentration (mg/L) 170 Monitor well Ð

Recovery well

Red indicates concentration equal to or greater than the NMWQCC standard.

SALTY DOG BRINE STATION **Former Brine Pond Area Chloride Concentrations in Groundwater** September 2016

Explanation

PROJECTS/ES08.0118.01_SALTY_DOG_INC/GIS/MXDS/REPORT/2016_3Q/FIG05_CL_GW_201609_BRINE_WELL_MXD

- DBS-8 Well designation Chloride concentration (mg/L) 34
- Ð Monitor well
- Recovery well

Red indicates concentration equal to or greater than the NMWQCC standard.

SALTY DOG BRINE STATION Playa Lake and Brine Well Area **Chloride Concentrations in Groundwater** September 2016

Daniel B. Stephens & Associates, Inc. 10/24/2016 JN ES08.0118.06

Tables

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
DBS-1	56.0–76.0	3,817.09	4/08/2009	62.38	3,754.71
			5/11/2011	64.70	3,752.39
			10/04/2011	Well	destroyed
DBS-1R	58.0–78.0	3,817.00 ^b	4/30/2012	63.60	3,753.40
			9/10/2012	65.65	3,751.35
			6/23/2013	64.40	3,752.60
			1/09/2014	67.23	3,749.77
			4/07/2014	66.36	3,750.64
			3/20/2015	67.17	3,749.83
			7/01/2015	67.92	3,749.08
			9/29/2015	67.07	3,749.93
			12/16/2015	67.54	3,749.46
			3/22/2016	66.61	3,750.39
			6/08/2016	66.23	3,750.77
			9/13/2016	67.43	3,749.57
DBS-2	58.0–78.0	3,820.50	4/08/2009	65.45	3,755.05
			5/11/2011	66.80	3,753.70
			10/04/2011	65.87	3,754.63
			2/08/2012	65.96	3,754.54
			4/30/2012	66.26	3,754.24
			9/10/2012	67.45	3,753.05
			6/23/2013	67.03	3,753.47
			1/09/2014	69.08	3,751.42
			4/07/2014	68.67	3,751.83
			3/20/2015	69.32	3,751.18
			6/30/2015	69.29	3,751.21
			9/29/2015	69.41	3,751.09
			12/16/2015	69.71	3,750.79
			3/22/2016	69.13	3,751.37
			6/08/2016	68.91	3,751.59
			9/13/2016	69.76	3,750.74

Table 1. Historical Fluid Level MeasurementsSalty Dog Brine Station, Lea County, New MexicoPage 1 of 7

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

ft bgs = Feet below ground surface

ft msl = Feet above mean sea level

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
DBS-3	56.0-76.72	3,816.66	4/08/2009	60.67	3,755.99
			5/11/2011	61.25	3,755.41
			10/04/2011	61.25	3,755.41
			2/08/2012	61.11	3,755.55
			4/30/2012	61.41	3,755.25
			9/10/2012	61.81	3,754.85
			6/23/2013	62.08	3,754.58
			1/09/2014	63.30	3,753.36
			4/07/2014	63.43	3,753.23
			3/20/2015	63.93	3,752.73
			6/30/2015	63.99	3,752.67
			9/29/2015	64.17	3,752.49
			12/16/2015	64.41	3,752.25
			3/22/2016	63.88	3,752.78
			6/08/2016	63.92	3,752.74
			9/13/2016	64.56	3,752.10
DBS-4	56.0–76.0	3,820.37	4/08/2009	66.27	3,754.10
			5/11/2011	67.23	3,753.14
			10/04/2011	66.67	3,753.70
			2/08/2012	66.76	3,753.61
			4/30/2012	67.02	3,753.35
			9/10/2012	67.78	3,752.59
			6/23/2013	67.70	3,752.67
			1/09/2014	69.37	3,751.00
			4/07/2014	69.23	3,751.14
			3/20/2015	69.81	3,750.56
			6/30/2015	69.85	3,750.52
			9/29/2015	70.00	3,750.37
			12/16/2015	70.25	3,750.12
			3/22/2016	69.74	3,750.63
			6/08/2016	69.62	3,750.75
			9/13/2016	70.35	3,750.02

Table 1. Historical Fluid Level Measurements Salty Dog Brine Station, Lea County, New Mexico Page 2 of 7

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012. ft bgs = Feet below ground surface ft btoc = Feet below top of ca

ft msl = Feet above mean sea level

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
DBS-5	56.9–76.9	3,820.66	4/08/2009	62.99	3,757.67
			5/11/2011	63.45	3,757.21
			10/04/2011	63.41	3,757.25
			2/08/2012	63.46	3,757.20
			4/30/2012	63.70	3,756.96
			9/10/2012	63.92	3,756.74
			6/23/2013	64.30	3,756.36
			1/09/2014	65.28	3,755.38
			4/07/2014	65.48	3,755.18
			3/20/2015	65.9	3,754.76
			7/01/2015	66.18	3,754.48
			9/29/2015	66.25	3,754.41
			12/16/2015	66.47	3,754.19
			3/22/2016	66.08	3,754.58
			6/08/2016	66.16	3,754.50
			9/13/2016	66.64	3,754.02
DBS-6	56.7–76.7	3,812.65	4/07/2009	62.75	3,749.90
			5/11/2011	63.11	3,749.54
			10/04/2011	63.16	3,749.49
			2/08/2012	63.20	3,749.45
			4/30/2012	63.43	3,749.22
			9/10/2012	63.60	3,749.05
			6/23/2013	63.74	3,748.91
			1/09/2014	64.00	3,748.65
			4/07/2014	64.22	3,748.43
			3/19/2015	64.78	3,747.87
			7/01/2015	64.81	3,747.84
			9/29/2015	65.48	3,747.17
			12/16/2015	65.26	3,747.39
			3/22/2016	65.38	3,747.27

Table 1. Historical Fluid Level Measurements Salty Dog Brine Station, Lea County, New Mexico Page 3 of 7

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

- ^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.
- ft bgs = Feet below ground surface ft btoc = Feet below top of casing NA = Nat available
- ft msl = Feet above mean sea level

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
DBS-6 (cont.)	56.7–76.7	3,812.65	6/08/2016	65.37	3,747.28
			9/13/2016	65.51	3,747.14
DBS-7	55.1–75.1	3,810.21	4/07/2009	61.74	3,748.47
DBS-8	55.2–75.2	3,810.70	4/07/2009	61.20	3,749.50
			5/11/2011	61.67	3,749.03
			10/04/2011	61.71	3,748.99
			2/08/2012	61.77	3,748.93
			4/30/2012	62.00	3,748.70
			9/10/2012	62.15	3,748.55
			6/23/2013	62.28	3,748.42
			1/09/2014	62.47	3,748.23
			4/07/2014	62.67	3,748.03
			3/19/2015	63.19	3,747.51
			6/30/2015	63.25	3,747.45
			9/29/2015	63.82	3,746.88
			12/16/2015	63.58	3,747.12
			3/22/2016	63.76	3,746.94
			6/08/2016	63.72	3,746.98
			9/13/2016	63.83	3,746.87
DBS-9	48.0–68.0	3,806.26	4/08/2009	53.93	3,752.33
			5/11/2011	54.39	3,751.87
			10/04/2011	54.59	3,751.67
			2/08/2012	54.53	3,751.73
			4/30/2012	54.68	3,751.58
			9/10/2012	54.77	3,751.49
			6/23/2013	55.04	3,751.22
			1/09/2014	55.27	3,750.99
			4/07/2014	55.56	3,750.70
			3/19/2015	55.95	3,750.31
			7/01/2015	56.14	3,750.12
			9/29/2015	56.49	3,749.77

Table 1. Historical Fluid Level MeasurementsSalty Dog Brine Station, Lea County, New MexicoPage 4 of 7

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

- ft bgs = Feet below ground surface
- ft msl = Feet above mean sea level

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
DBS-9 (cont.)	48.0–68.0	3,806.26	12/16/2015	56.52	3,749.74
			3/22/2016	56.51	3,749.75
			6/08/2016	56.64	3,749.62
			9/13/2016	56.81	3,749.45
NW-1s	52.95–72.95	3,817.33	4/08/2009	62.35	3,754.98
NW-1m	99.31–119.31	3,817.35	4/08/2009	62.25	3,755.10
NW-1d	149.45–169.45	3,817.35	4/08/2009	62.04	3,755.31
NW-2s	53.35–73.35	3,812.50	4/08/2009	63.08	3,749.42
NW-2m	93.72–113.72	3,812.45	4/08/2009	63.27	3,749.18
NW-2d	126.87–146.87	3,812.46	4/08/2009	66.41	3,746.05
PMW-1	63–78	3,821.17	6/23/2008	67.51	3,753.66
			4/08/2009	65.97	3,755.20
			5/11/2011	68.70	3,752.47
			10/04/2011	66.95	3,754.22
			2/08/2012	66.69	3,754.48
			4/30/2012	67.27	3,753.90
			9/10/2012	69.77	3,751.40
			6/23/2013	68.40	3,752.77
			1/09/2014	71.24	3,749.93
			4/07/2014	69.97	3,751.20
			3/20/2015	70.78	3,750.39
			7/01/2015	71.41	3,749.76
			9/29/2015	70.76	3,750.41
			12/16/2015	71.03	3,750.14
			3/22/2016	70.30	3,750.87
			6/08/2016	69.65	3,751.52
			9/13/2016	71.08	3,750.09
MW-1	120–140	NA	6/23/2008	59.90	NA
MW-2	127–147	3,812.68	6/23/2008	61.42	3,751.26
			4/07/2009	61.65	3,751.03

Table 1. Historical Fluid Level MeasurementsSalty Dog Brine Station, Lea County, New MexicoPage 5 of 7

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

- ^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.
- ft bgs = Feet below ground surface
- ft msl = Feet above mean sea level

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
MW-3	NA	3,812.05	6/23/2008	62.06	3,749.99
			4/07/2009	62.02	3,750.03
			5/11/2011	62.91	3,749.14
			10/04/2011	62.91	3,749.14
			2/08/2012	62.95	3,749.10
			4/30/2012	63.39	3,748.66
			9/10/2012	63.50	3,748.55
			6/23/2013	63.36	3,748.69
			1/09/2014	63.55	3,748.50
			4/07/2014	63.88	3,748.17
			3/19/2015	64.27	3,747.78
			7/01/2015	64.34	3,747.71
			9/29/2015	67.94	3,744.11
			12/16/2015	64.75	3,747.30
			3/22/2016	64.84	3,747.21
			6/08/2016	64.89	3,747.16
			9/13/2016	66.33	3,745.72
MW-4	111–131	3,811.33	6/23/2008	62.12	3,749.21
			4/07/2009	62.51	3,748.82
MW-5	112–132	3,808.96	6/23/2008	60.60	3,748.36
			4/07/2009	60.79	3,748.17
			5/11/2011	61.17	3,747.79
			10/04/2011	61.72	3,747.24
			2/08/2012	61.23	3,747.73
			4/30/2012	61.50	3,747.46
			9/10/2012	61.65	3,747.31
			6/23/2013	61.75	3,747.21
			1/09/2014	61.90	3,747.06
			4/07/2014	62.18	3,746.78
			3/19/2015	62.96	3,746.00
			6/30/2015	62.71	3,746.25

Table 1. Historical Fluid Level MeasurementsSalty Dog Brine Station, Lea County, New MexicoPage 6 of 7

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

- ft bgs = Feet below ground surface
- ft msl = Feet above mean sea level

Table 1. Historical Fluid Level Measurements Salty Dog Brine Station, Lea County, New Mexico Page 7 of 7

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
MW-5 (cont.)	112–132	3,808.96	9/29/2015	63.92	3,745.04
			12/16/2015	63.02	3,745.94
			3/22/2016	63.14	3,745.82
			6/08/2016	63.47	3,745.49
			9/13/2016	63.66	3,745.30
MW-6	NA	3,810.17	6/23/2008	62.17	3,748.00
			4/07/2009	62.41	3,747.76

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009. ^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

ft btoc = Feet below top of casing

ft bgs = Feet below ground surface

ft msl = Feet above mean sea level

NA = Not available

Monitor Well	Date	Chloride Concentration (mg/L) ^a
	IWQCC Standard	250
DBS-1		320
DD2-1	4/08/2009	
	5/12/2011 10/04/2011	940
DBS-1R		Well destroyed
DD3-IK	5/01/2012	3,000
	9/11/2012 6/25/2013	3,200
		3,300
	1/10/2014	1,000
	4/08/2014	1,700
	3/20/2015	1,200
	7/01/2015	860
	9/30/2015	670
	12/17/2015	760
	3/23/2016	560
	6/09/2016	570
	09/14/2016	360
DBS-2	4/08/2009	14
	5/12/2011	25
	10/05/2011	18
	2/09/2012	22
	5/01/2012	24
	9/11/2012	44
	6/25/2013	36
	1/10/2014	45
	4/08/2014	22
	3/20/2015	29
	6/30/2015	28
	9/30/2015	40
	12/17/2015	35
	3/23/2016	46
	6/09/2016	41
	9/14/2016	41

Table 2. Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 1 of 7

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

Monitor Well	Date	Chloride Concentration (mg/L) ^a
NN	IWQCC Standard	250
DBS-3	4/08/2009	36
	5/12/2011	35
	10/05/2011	34
	2/09/2012	34
	5/01/2012	33
	9/11/2012	34
	6/24/2013	32
	1/10/2014	34
	4/08/2014	32
	3/20/2015	35
	6/30/2015	35
	9/30/2015	34
	12/17/2015	34
	3/23/2016	36
	6/09/2016	35
	9/14/2016	37
DBS-4	4/08/2009	38
	5/12/2011	33
	10/05/2011	32
	2/09/2012	32
	5/01/2012	31
	9/11/2012	32
	6/25/2013	31
	1/10/2014	32
	4/08/2014	30
	3/20/2015	33
	6/30/2015	31
	9/30/2015	33
	12/17/2015	35
	3/23/2016	38

Table 2. Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 2 of 7

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

Monitor Well	Date	Chloride Concentration (mg/L) ^a
NN	IWQCC Standard	250
DBS-4 (cont.)	6/09/2016	35
	9/14/2016	37
DBS-5	4/08/2009	65
	5/12/2011	140
	10/05/2011	140
	2/09/2012	140
	4/30/2012	150
	9/11/2012	160
	6/24/2013	160
	1/10/2014	180
	4/08/2014	160
	3/20/2015	140
	7/01/2015	140
	9/30/2015	150
	12/17/2015	160
	3/23/2016	150
	6/09/2016	150
	9/14/2016	170
DBS-6	4/07/2009	380
	5/12/2011	410
	10/05/2011	400
	2/09/2012	380
	4/30/2012	400
	9/11/2012	390
	6/24/2013	340
	1/10/2014	390
	4/07/2014	400
	3/19/2015	370
	7/01/2015	360
	9/30/2015	370
	12/17/2015	380

Table 2. Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 3 of 7

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

Monitor Well	Date	Chloride Concentration (mg/L) ^a
NN	IWQCC Standard	250
DBS-6 (cont.)	3/23/2016	310
	6/09/2016	300
	9/14/2016	290
DBS-7	4/07/2008	570
DBS-8	4/07/2009	58
	5/12/2011	36
	10/05/2011	140
	2/09/2012	41
	4/30/2012	41
	9/10/2012	42
	6/24/2013	45
	1/09/2014	38
	4/07/2014	36
	3/19/2015	36
	7/01/2015	34
	9/30/2015	35
	12/17/2015	33
	3/23/2016	35
	6/09/2016	34
	9/14/2016	34
DBS-9	4/08/2009	210
	5/12/2011	600
	10/05/2011	440
	2/09/2012	290
	4/30/2012	330
	9/11/2012	320
	6/24/2013	200
	1/10/2014	170
	4/07/2014	220
	3/19/2015	260
	7/01/2015	210

Table 2. Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 4 of 7

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
N/	IWQCC Standard	250
DBS-9 (cont.)	9/30/2015	260
	12/17/2015	230
	3/23/2016	200
	6/09/2016	190
	9/14/2016	190
NW-1s	4/08/2009	630
NW-1m	4/08/2009	57
NW-1d	4/08/2009	38
NW-2s	4/08/2009	410
NW-2m	4/08/2009	570
NW-2d	4/08/2009	4,700
PMW-1	2/27/2008	9,500 ^b
	5/30/2008	8,600 ^b
	6/23/2008	12,700
	4/08/2009	11,000
	5/12/2011	13,000
	10/05/2011	12,000
	2/09/2012	12,000
	5/01/2012	12,000
	9/11/2012	14,000
	6/25/2013	14,000
	1/10/2014	11,000
	4/08/2014	12,000
	3/20/2015	8,500
	7/01/2015	8,600
	9/30/2015	9,700
	12/17/2015	9,800
	3/23/2016	8,200
	6/09/2016	8,500
	9/14/2016	9,300

Table 2. Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 5 of 7

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

Monitor Well	Date	Chloride Concentration (mg/L) ^a
NM	IWQCC Standard	250
MW-1	5/30/2008	75 ^b
	6/23/2008	243
MW-2	2/27/2008	120 ^b
	5/30/2008	80 ^b
	6/23/2008	1,480
	4/07/2009	1,200
MW-3	2/27/2008	348 ^b
	5/30/2008	360 ^b
	6/23/2008	1,090
	4/07/2009	17,000
	5/12/2011	16,000
	10/05/2011	14,000
	2/09/2012	15,000
	4/30/2012	14,000
	9/10/2012	16,000
	6/24/2013	12,000
	1/10/2014	10,000
	4/07/2014	12,000
	3/19/2015	9,700
	7/01/2015	10,000
	9/30/2015	9,600
	12/17/2015	5,100
	3/23/2016	8,200
	6/09/2016	9,400
	9/14/2016	9,100
MW-4	2/27/2008	476 ^b
	5/30/2008	512 ^b
	6/23/2008	5,730
	4/07/2009	6,600
MW-5	2/27/2008	1,280 ^b
	5/30/2008	1,220 ^b

Table 2. Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 6 of 7

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

Monitor Well	Date	Chloride Concentration (mg/L) ^a	
NN	IWQCC Standard	250	
MW-5 (cont.)	6/23/2008	1,260	
	4/07/2009	1,300	
	5/12/2011	1,500	
	10/05/2011	1,500	
	2/09/2012	1,500	
	4/30/2012	1,400	
	9/10/2012	1,500	
	6/24/2013	1,300	
	1/10/2014	1,300	
	4/07/2014	1,300	
	3/19/2015	1,200	
	7/01/2015	1,200	
	9/30/2015	1,000	
	12/17/2015	1,000	
	3/23/2016	980	
	6/09/2016	970	
	9/14/2016	1,000	
MW-6	2/27/2008	32 ^b	
	5/30/2008	36 ^b	
	6/23/2008	31.4	
	4/07/2009	25	
Ranch Headquarters Supply Well	6/23/2008	35.4	
Brine Station Fresh	2/27/2008	630 ^b	
Water Supply Well	5/30/2008	590 ^b	
	6/23/2008	650	

Table 2. Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 7 of 7

Bold indicates that value exceeds the applicable standard.

^a All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

mg/L = Milligrams per liter

Recovery		Days of	Average Flow Rate	Extracted Volume		
Well	Date	Operation	(gpm)	(gallons)		
RW-1	4/07/2012	Gro	Groundwater extraction started			
	5/01/2012	24	2.1	73,740		
	9/11/2012	154	2.9	636,237		
	6/25/2013	441	4.1	2,599,392		
	11/15/2013 ^a	585	3.6	3,060,181		
	3/20/2015	1,075	2.4	3,668,511		
	6/30/2015 ^b	1,167	_	3,668,511		
	9/30/2015	1,259	—	3,668,511		
FWS-1	12/17/2015		_	1,232,787		
	3/22/2016	359	12.8	3,011,469		
	6/08/2016	437	33.9	6,818,179		
	9/13/2016	534	5.4	7,578,404		
RW-2	4/06/2012	Gro	n started			
	5/01/2012	25	2.5	91,450		
	9/11/2012	158	4.3	963,789		
	12/14/2012 ^c	252	3.9	1,406,748		
	6/25/2013 ^d	_	—	—		
	9/21/2013 [°]	335	2.9	1,407,005		
	9/30/2015 ^f	1,074	68 ^f	7,313,515		
	12/17/2015	1,152	44	12,266,210		
	3/22/2016	1,248	32	16,657,635		
	6/08/2016	1,326	9.0	17,661,576		
	9/13/2016	1,423	5.7	18,453,822		

Table 3. Cumulative Extracted Groundwater Volumes Salty Dog Brine Station, Lea County, New Mexico

^a Pump went down in RW-1 on approximately November 15, 2013.

^b Meter appears to not be functioning correctly, but the pumping well is functioning.

 $^{\circ}$ Pump in RW-2 went down on December 14, 2012 due to a blown inner shaft motor seal.

^d New pump installed in RW-2 and started on June 25, 2013.

^e Meter and pump were removed from RW-2 on approximately September 21, 2013 by facility manager to install a new, larger-capacity pump.

^f Meter reinstalled and pumping increased after the June 30 and July 1, 2015 monitoring event; flowrate assumes 60 days of operation (August 1 through September 30, 2015) based on personal communication with Jim Sayre (PAB).

gpm = Gallons per minute

Appendix A

Laboratory Analytical Report

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

October 12, 2016

John Ayarbe Daniel B. Stephens & Assoc. 6020 Academy NE Suite 100 Albuquerque, NM 87109 TEL: (505) 822-9400 FAX (505) 822-8877

RE: Salty Dog

OrderNo.: 1609828

Dear John Ayarbe:

Hall Environmental Analysis Laboratory received 13 sample(s) on 9/15/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 1609828 Data Da antade 10/12/2016

Hall Environmental Analys		Date Reported: 10/12/2016				
CLIENT: Daniel B. Stephens & Assoc.			Client Sam	ple ID: DBS-1R		
Project: Salty Dog			Collection Date: 9/14/2016 3:30:00 PM			
Lab ID: 1609828-001	Matrix:	AQUEOUS	Receive	d Date: 9/15/2016 10:30:00 AM		
Analyses	Result	PQL (Qual Units	DF Date Analyzed	Batch	
EPA METHOD 300.0: ANIONS				Analyst	: LGT	
Chloride	360	50	* mg/L	100 9/20/2016 8:45:19 PM	R37349	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte
	D	Sample Diluted Due to Matrix	Е	Value a
	Н	Holding times for preparation or analysis exceeded	J	Analyte
	ND	Not Detected at the Reporting Limit	Р	Sample
	R	RPD outside accepted recovery limits	RL	Reporti
	S	% Recovery outside of range due to dilution or matrix	W	Sample

- te detected in the associated Method Blank
- above quantitation range
- te detected below quantitation limits Page 1 of 17
- le pH Not In Range
- ting Detection Limit
- le container temperature is out of limit as specified

Analytical Report Lab Order 1609828

Hall Environmental Analysi	is Labora	atory, Inc.	• Date Reported: 10/12/2016			
CLIENT: Daniel B. Stephens & Assoc.		(Client Sa	mple ID: DBS-2		
Project: Salty Dog			Collecti	on Date: 9/14/2016 2:00:00 PM		
Lab ID: 1609828-002	Matrix:	AQUEOUS	Receiv	ed Date: 9/15/2016 10:30:00 AM		
Analyses	Result	PQL Qual	Units	DF Date Analyzed Batch		
EPA METHOD 300.0: ANIONS				Analyst: LGT		
Chloride	41	5.0	mg/L	10 9/20/2016 8:57:44 PM R37349		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	D	Sample Diluted Due to Matrix
	Н	Holding times for preparation or analysis exceeded
	ND	Not Detected at the Reporting Limit
	R	RPD outside accepted recovery limits
	S	% Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 2 of 17 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Analytical Report Lab Order 1609828

Hall Environmental Analysi	Date Reported: 10/12/2016			
CLIENT: Daniel B. Stephens & Assoc.		(Client San	nple ID: DBS-3
Project: Salty Dog			Collectio	n Date: 9/14/2016 3:05:00 PM
Lab ID: 1609828-003	Matrix:	AQUEOUS	Receive	d Date: 9/15/2016 10:30:00 AM
Analyses	Result	PQL Qual	Units	DF Date Analyzed Batch
EPA METHOD 300.0: ANIONS				Analyst: LGT
Chloride	37	5.0	mg/L	10 9/20/2016 9:22:33 PM R37349

to the OC S DC . 1 1 on.

Refer to the QC Summary report and	l sample login checklist for flagged	QC data and preservation information
------------------------------------	--------------------------------------	--------------------------------------

ix
i

- B Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 3 of 17 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Analytical Report Lab Order 1609828 0/10/201 ъ 1

Hall Environmental Analys	Date Reported: 10/12/2016			
CLIENT: Daniel B. Stephens & Assoc.		(Client Sa	mple ID: DBS-4
Project: Salty Dog			Collecti	on Date: 9/14/2016 12:30:00 PM
Lab ID: 1609828-004	Matrix:	AQUEOUS	Receiv	ed Date: 9/15/2016 10:30:00 AM
Analyses	Result	PQL Qual	Units	DF Date Analyzed Batch
EPA METHOD 300.0: ANIONS				Analyst: LGT
Chloride	37	5.0	mg/L	10 9/20/2016 9:47:23 PM R37349

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Ana
	D	Sample Diluted Due to Matrix	Е	Valu
	Н	Holding times for preparation or analysis exceeded	J	Ana
	ND	Not Detected at the Reporting Limit	Р	Sam
	R	RPD outside accepted recovery limits	RL	Repo
	S	% Recovery outside of range due to dilution or matrix	W	Sam

- alyte detected in the associated Method Blank
- lue above quantitation range
- halyte detected below quantitation limits Page 4 of 17
- mple pH Not In Range
- porting Detection Limit
- mple container temperature is out of limit as specified

Analytical Report Lab Order 1609828

Hall Environmental Analysi	is Labora	atory, Inc.	• Date Reported: 10/12/2016			
CLIENT: Daniel B. Stephens & Assoc.		(Client Sa	mple ID: DBS-5		
Project: Salty Dog			Collecti	on Date: 9/14/2016 2:30:00 PM		
Lab ID: 1609828-005	Matrix:	AQUEOUS	Receiv	ed Date: 9/15/2016 10:30:00 AM		
Analyses	Result	PQL Qual	Units	DF Date Analyzed Batch		
EPA METHOD 300.0: ANIONS				Analyst: LGT		
Chloride	170	5.0	mg/L	10 9/20/2016 10:37:02 PM R37349		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analy
	D	Sample Diluted Due to Matrix	Е	Value
	Н	Holding times for preparation or analysis exceeded	J	Analy
	ND	Not Detected at the Reporting Limit	Р	Samp
	R	RPD outside accepted recovery limits	RL	Repor
	S	% Recovery outside of range due to dilution or matrix	W	Samp

- lyte detected in the associated Method Blank
- e above quantitation range
- lyte detected below quantitation limits Page 5 of 17
- ple pH Not In Range
- orting Detection Limit
- ple container temperature is out of limit as specified

Analytical Report Lab Order 1609828 10/12/2016 Б ъ 1

Hall Environmental Analysi	is Labora	atory, Inc.	Date Reported: 10/12/2016			
CLIENT: Daniel B. Stephens & Assoc.		(Client Sai	nple ID: DBS-6		
Project: Salty Dog			Collectio	on Date: 9/14/2016 11:45:00 AM		
Lab ID: 1609828-006	Matrix:	AQUEOUS	Receiv	ed Date: 9/15/2016 10:30:00 AM		
Analyses	Result	PQL Qual	Units	DF Date Analyzed Batch		
EPA METHOD 300.0: ANIONS				Analyst: LGT		
Chloride	290	50 *	mg/L	100 9/20/2016 11:14:17 PM R37349		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte de
	D	Sample Diluted Due to Matrix	Е	Value abov
	Н	Holding times for preparation or analysis exceeded	J	Analyte de
	ND	Not Detected at the Reporting Limit	Р	Sample pH
	R	RPD outside accepted recovery limits	RL	Reporting
	S	% Recovery outside of range due to dilution or matrix	W	Sample con

- detected in the associated Method Blank
- ove quantitation range
- detected below quantitation limits Page 6 of 17
- H Not In Range
- g Detection Limit
- ontainer temperature is out of limit as specified

Analytical Report Lab Order 1609828 orted: 10/12/2016 Data Da

Hall Environmental Analysi	Date Reported: 10/12/2016			
CLIENT: Daniel B. Stephens & Assoc.		(Client Sai	nple ID: DBS-8
Project: Salty Dog			Collectio	on Date: 9/14/2016 9:05:00 AM
Lab ID: 1609828-007	Matrix:	AQUEOUS	Receiv	ed Date: 9/15/2016 10:30:00 AM
Analyses	Result	PQL Qual	Units	DF Date Analyzed Batch
EPA METHOD 300.0: ANIONS				Analyst: LGT
Chloride	34	5.0	mg/L	10 9/20/2016 11:26:42 PM R37349

on.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation	informatio
--	------------

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	D	Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 7 of 17 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Analytical Report Lab Order 1609828 Data Da stad. 10/10/2016

Hall Environmental Analys	is Labora	atory, Inc.	C. Date Reported: 10/12/2016			
CLIENT: Daniel B. Stephens & Assoc.		(lient San	ple ID: DBS-9		
Project: Salty Dog			Collectio	n Date: 9/14/2016 8:25:00 AM		
Lab ID: 1609828-008	Matrix:	AQUEOUS	Receive	d Date: 9/15/2016 10:30:00 AM		
Analyses	Result	PQL Qual	Units	DF Date Analyzed Batch		
EPA METHOD 300.0: ANIONS				Analyst: LGT		
Chloride	190	50	mg/L	100 9/21/2016 12:03:56 AM R37349		

on.

ŀ	Refer to the QC	Summary repo	ort and samp	le login c	hecklist for	flagged (QC da	ata and	preservati	on in	formati	01
---	-----------------	--------------	--------------	------------	--------------	-----------	-------	---------	------------	-------	---------	----

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	D	Sample Diluted Due to Matrix
	Н	Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 8 of 17 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Analytical Report Lab Order 1609828

Hall Environmental Analys	is Labora	Date Reported: 10/12/2016			
CLIENT: Daniel B. Stephens & Assoc.			Client Samp	le ID: MW-3	
Project: Salty Dog			Collection	Date: 9/14/2016 11:10:00 AM	
Lab ID: 1609828-009	Matrix:	AQUEOUS	Received	Date: 9/15/2016 10:30:00 AM	
Analyses	Result	PQL Q	ual Units	DF Date Analyzed Batch	
EPA METHOD 300.0: ANIONS				Analyst: LGT	
Chloride	9100	500	* mg/L	1E 9/21/2016 12:28:45 AM R37349	

Oualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Anal
	D	Sample Diluted Due to Matrix	Е	Valu
	Н	Holding times for preparation or analysis exceeded	J	Anal
	ND	Not Detected at the Reporting Limit	Р	Sam
	R	RPD outside accepted recovery limits	RL	Repo
	S	% Recovery outside of range due to dilution or matrix	W	Sam

- alyte detected in the associated Method Blank
- lue above quantitation range
- alyte detected below quantitation limits Page 9 of 17
- nple pH Not In Range
- porting Detection Limit
- nple container temperature is out of limit as specified

Analytical Report Lab Order 1609828 10/12/2016 ъ 1

Hall Environmental Analys	is Labora	atory, Inc.	C. Date Reported: 10/12/2016			
CLIENT: Daniel B. Stephens & Assoc.		(Client San	ple ID: MW-5		
Project: Salty Dog			Collectio	n Date: 9/14/2016 10:10:00 AM		
Lab ID: 1609828-010	Matrix:	AQUEOUS	Receive	d Date: 9/15/2016 10:30:00 AM		
Analyses	Result	PQL Qual	Units	DF Date Analyzed Batch		
EPA METHOD 300.0: ANIONS				Analyst: LGT		
Chloride	1000	50 *	mg/L	100 9/21/2016 1:18:24 AM R37349		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte d
	D	Sample Diluted Due to Matrix	Е	Value abo
	Н	Holding times for preparation or analysis exceeded	J	Analyte d
	ND	Not Detected at the Reporting Limit	Р	Sample p
	R	RPD outside accepted recovery limits	RL	Reporting
	S	% Recovery outside of range due to dilution or matrix	W	Sample co

- detected in the associated Method Blank
- bove quantitation range
- detected below quantitation limits Page 10 of 17
- pH Not In Range
- ng Detection Limit
- container temperature is out of limit as specified

Analytical Report Lab Order 1609828 d. 10/10/0016 . D. Б

Hall Environmental Analys	is Labora	Date Reported: 10/12/2016			
CLIENT: Daniel B. Stephens & Assoc.			Client Sam	ple ID: PMW-1	
Project: Salty Dog			Collection	n Date: 9/14/2016 4:05:00 PM	
Lab ID: 1609828-011	Matrix:	AQUEOUS	Received	d Date: 9/15/2016 10:30:00 AM	
Analyses	Result	PQL Qua	l Units	DF Date Analyzed Batch	
EPA METHOD 300.0: ANIONS				Analyst: LGT	
Chloride	9300	500 *	mg/L	1E 9/21/2016 1:43:14 AM R37349	

to the OC S Dafar la login chacklist for fla nd prosor 1 d OC da vation info tion.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation	informatio
--	------------

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	D	Sample Diluted Due to Matrix
	Н	Holding times for preparation or analysis exceeded
	ND	Not Detected at the Reporting Limit
	R	RPD outside accepted recovery limits

- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits Page 11 of 17 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Analytical Report Lab Order 1609828

100 9/21/2016 2:08:04 AM

9/23/2016 1:36:00 PM

9/19/2016 9:35:15 PM

1

1

R37349

27634

R37296

Analyst: KS

Analyst: JRR

Date Reported: 10/12/2016

Hall Environmental Analysis Laboratory, Inc.

SM2540C MOD: TOTAL DISSOLVED SOLIDS

Project:

Lab ID:

Analyses

Chloride

pН

Total Dissolved Solids

SM4500-H+B: PH

CLIENT: Daniel B. Stephens & Assoc. **Client Sample ID:** Injection Salty Dog Collection Date: 9/14/2016 3:45:00 PM 1609828-012 Matrix: AQUEOUS Received Date: 9/15/2016 10:30:00 AM Result **PQL** Qual Units **DF** Date Analyzed Batch SPECIFIC GRAVITY Analyst: LGT 9/21/2016 3:49:00 PM Specific Gravity 0.9915 0 R37370 1 **EPA METHOD 300.0: ANIONS** Analyst: LGT

50

20.0

1.68

н

mg/L

mg/L

pH units

240

725

8.11

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation informati	on.
--	-----

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	D	Sample Diluted Due to Matrix

- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limit Page 12 of 17 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Analytical Report Lab Order 1609828

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/12/2016

CL	IE	NT:	D	ani	el B.	Stephens	& Assoc.
_					_		

Project: Salty Dog Lab ID: 1609828-013 Client Sample ID: Brine Collection Date: 9/14/2016 4:07:00 PM

Received Date: 9/15/2016 10:30:00 AM

Analyses	Result	PQL (Qual	Units	DF	Date Analyzed	Batch
SPECIFIC GRAVITY						Analys	t: LGT
Specific Gravity	1.148	0			1	9/21/2016 3:49:00 PM	R37370
EPA METHOD 300.0: ANIONS						Analys	t: LGT
Chloride	160000	5000	*	mg/L	1E	9/21/2016 2:20:29 AM	R37349
SM2540C MOD: TOTAL DISSOLVE	SOLIDS					Analys	t: KS
Total Dissolved Solids	241000	2000	*D	mg/L	1	9/23/2016 1:36:00 PM	27634
SM4500-H+B: PH						Analys	t: JRR
рН	7.32	1.68	н	pH units	1	9/19/2016 9:39:11 PM	R37296
EPA METHOD 200.7: METALS						Analys	t: ELS
Sodium	140	2.0		mg/L	1	9/30/2016 8:22:30 PM	27612

Matrix: AQUEOUS

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Met
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation lin
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range

- R RPD outside accepted recovery limits
- % Recovery outside of range due to dilution or matrix S
- lethod Blank
- limitsPage 13 of 17
- Sample pH Not In Range Р
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Client: Project:	Daniel B. Salty Dog	1	& Asso	юс.							
Sample ID	MB-27612	SampT	ype: ME	BLK	TestCode: EPA Method 200.7: Metals						
Client ID:	PBW	Batch	n ID: 27	612	F	RunNo: 3	7369				
Prep Date:	9/20/2016	Analysis D	ate: 9/	21/2016	S	SeqNo: 1	160993	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sodium		ND	1.0								
Sample ID	LCS-27612	SampT	ype: LC	s	TestCode: EPA Method 200.7: Metals						
Client ID:	LCSW	Batch	n ID: 27	612	F	7369					
Prep Date:	9/20/2016	Analysis D	ate: 9/	21/2016	S	SeqNo: 1	160994	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sodium		49	1.0	50.00	0	98.1	85	115			
Sample ID	LLLCS-27612	SampT	ype: LC	SLL	Tes	tCode: E	PA Method	200.7: Metals			
Client ID:	BatchQC	Batch	n ID: 27	612	F	RunNo: 3	7369				
Prep Date:	9/20/2016	Analysis D	ate: 9/	21/2016	S	SeqNo: 1	161051	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sodium		ND	1.0	0.5000	0	105	50	150			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 14 of 17

WO#: **1609828** *12-Oct-16*

Client: Project:		Daniel B. Stephens of Salty Dog	& Asso)C.							
Sample ID	MB	SampType: MBLK TestCode: EPA Method 300.0: Anions									
Client ID:	PBW	Batch	ID: R3	37349	F	RunNo: 37	7349				
Prep Date:		Analysis Da	ate: 9 /	/20/2016	S	SeqNo: 11	60322	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	0.50								
Sample ID	LCS	SampTy	/pe: LC	s	Tes	tCode: EF	PA Method	300.0: Anions	;		
Client ID:	LCSW	Batch	ID: R3	37349	F	RunNo: 37	7349				
Prep Date:		Analysis Da	ate: 9 /	/20/2016	SeqNo: 1160323			Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		4.8	0.50	5.000	0	95.4	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 15 of 17

WO#: 1609828 12-Oct-16

WO#: 1609828 12-Oct-16

Client:	Daniel B.	Stephens	& Asso	oc.							
Project:	Salty Dog	5									
Sample ID 1	609828-012ADUP	• SampT	ype: DL	JP	Tes	Code: S	pecific Grav	vity			
Client ID: I	njection	Batch	n ID: R3	7370	R	unNo: 3	37370				
Prep Date:		Analysis D	ate: 9/	21/2016	S	eqNo: 1	161076	Units:			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Specific Gravity		0.9934	0						0.191	20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 16 of 17

Client: Project:	Daniel Salty I	B. Stephens Dog	& Asso	c.							
Sample ID	D MB-27634 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids										
Client ID: I	D: PBW Batch ID: 27634 RunNo: 37439										
Prep Date:	9/21/2016	Analysis D	ate: 9/	23/2016	S	SeqNo: 1	163956	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved	Solids	ND	20.0								
Sample ID	_CS-27634	SampT	ype: LC	S	Tes	tCode: SI	M2540C MC	DD: Total Dis	solved So	lids	
Client ID:	LCSW	Batch	ID: 27	634	F	RunNo: 3	7439				
Prep Date:	9/21/2016	Analysis D	ate: 9/	23/2016	5	SeqNo: 1	163957	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved	Solids	1030	20.0	1000	0	103	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 17 of 17

HALL
ENVIRONMENTAL
ANALYSIS
LABORATORY

rian Environmeniai Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: DBS	Work Order Number:	1609828		RcptNo:	1
Received by/date:	09/15/14				
Logged By: Lindsay Mangin	9/15/2016 10:30:00 AM	I	Junky Harry D		
Completed By: Lindsay Mangin	9/15/2016 2:01:34 PM		Annalis Harriso		
Reviewed By:	9/16/14		000		
Chain of Custody					
1. Custody seals intact on sample bottles?		Yes 🗌	No 🗌	Not Present 🗹	
2, Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present	
3. How was the sample delivered?		<u>Client</u>			
<u>Log In</u>			•••		
4. Was an attempt made to cool the sample	s?	Yes 🗹	No	NA 🗔	
5. Were all samples received at a temperatu	re of ≥0° C to 6 0°C	Yes	No 🗹		
		Approved			
6. Sample(s) in proper container(s)?		Yes 🗹	No 🛄		
7. Sufficient sample volume for indicated tes	t(s)?	Yes 🔽	No 🗌		
8. Are samples (except VOA and ONG) prop		Yes 🗹	No 🗌		
9. Was preservative added to bottles?		Yes	No 🔽	NA 🗌	
10.VOA vials have zero headspace?		Yes 🗌	No 🗌	No VOA Vials 🔽	
11. Were any sample containers received bro	oken?	Yes 🗌	No 🗹		
				# of preserved bottles checked	Ì
12. Does paperwork match bottle labels?		Yes 🗹	No 🗌	for pH:	r >12 unless noted)
(Note discrepancies on chain of custody)	of Custodu'D	Yes 🔽	No 🗆	Adjusted?	NO
13. Are matrices correctly identified on Chain	of Custody?	Yes ⊻ Yes ⊻			$\widehat{\mathbf{h}}$
14. Is it clear what analyses were requested?15. Were all holding times able to be met?		Yes 🔽	No 🗆	Checked by:	HT)
(If no, notify customer for authorization.)					J
Special Handling /if continents)					
<u>Special Handling (if applicable)</u> 16. Was client notified of all discrepancies wit	h this order?	Yes 🗌	No 🗌	NA 🔽	
Person Notified:	Date		D		
By Whom:	Via: (eMail	Phone 🗌 Fax	In Person	
Regarding:	Andrew (1997) - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997		······		
Client Instructions:			. <u></u> .		
17. Additional remarks:					

18. :	Cooler Information									
	Cooler No Temp °C		Condition	Seal Intact	Seal No	Seal Date	Signed By			
	1	8.7	Good	Not Present	1					

C	Chain-of-Custody Record		Turn-Around	Time:					ы	ALL	F	NN	/T C	20	N R	ме	'NT	- 41	I	
ent:	PBS	8-A		Standard																
	-			Project Name	e:					w	ww.ha	llen	/iron	men	tal.co	om				
ailing	Address	602	O Academy RD NE #100	5 SAL	TY DO	6		4901 Hawkins NE - Albuquerque, NM 87109												
316			NM 87109	Project #:			Tel. 505-345-3975 Fax 505-345-4107													
ione	#: <0<	- R D	NM 87109 2-9400	ESO	3.0118.00	5	Analysis Request													
											\square									
	Package:		· · ·			~	(8021)	IS OF	/ MF		6		⁴ ,SO	PCB's				Ş		
Star	dard		□ Level 4 (Full Validation)	O,	AYARBE	5	0 I	(Ga	DRO		(SMIS)		l d					ورمر		
	itation			Sampler: 🎢	1. 2610ze	K	TMB'	TPH (Gas		÷ ÷			N N	8082						Î
NEL		□ Ot	her	On Ice:	≱≦Yes	□ No	+	+	(GRO	418	5 8	<u>0</u>	o°.	I ~		(Yo	2	Spee		S
EDD) (Type) _		1	Sample Temperature: 8,7°			MTBE	MTBE	<u>в</u>		<u>0</u>	letal	UZ.	icide	(A)	-ir	کاد		.	s (
)ate	Time	Matri	 Sample Request ID 	Container Type and #	Preservative Type	HEAL NO.	BTEX + M ⁻	BTEX + M	TPH 8015B	TPH (Method 418.1)	PAH's (8310 or 8270	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides	8260B (VOA)	8270 (Semi-VOA)	Chlor	PH TDS	No	Air Bubbles (Y or N)
.16	1530	GW	DBS-IR	1 po14	none												\square			
	1400		DBS-2	Í		-002														
	1505		DBS-3			-003														
	1230		DBS-4			-004											\square			
	1430		DBS-5			-05														
	1145		DBS-6			-006											\square			
:	0905		DBS-8			-007											\angle			
	0825		DBS-9			-008											\angle			
	1110		MW-3			-009					_	ļ					\angle		\square	
	1010		MW-5			-010_							ļ				\square			
	1605		PMW-1			-01											\angle			
Τ	1545 1607		INJECTION BRINE	2 poly 3 poly	2 mone 2 none l'HNO.	-012														
te:	Time:	Relinqui		Received by:	1/	Date Time		narks	5:									-		
5/18	1032		h M	PULL	y Com	1115/6 10:30														
te:	Time:	Relingui	shed by:	Received by:		Date Time]													

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Appendix B

Field Notes

9.13.16		M. 26	CORON					mai			- 1e
1440	M. 2600	•		- te	de	0725	10 71	M.7.60			<u>7.14.1</u>
					¢lÿ				isite for	geound	wate
		water ,	~				Monitor				
1950	Deive c						set np		1 1		
	Weathe						Calibe				
	ria obse			Ì.		<u> </u>	4.0	24.02			
	does no	t appe	ac to b	e insec	vice.		10	24.402			
	See phe	+05					7_	24.32	, C		
1515	Begin	Guazine	, wells			Spe	1413	24.06	2		
		recorded			t		1510				
	RW-2	Totali	ZRC -	Pump O	n	ORP	220	23.95 %			
		5876.6				DOz	767.1 m	mHo	78.3 Do	2 100	9100
1610	MW-2									<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
_		0.2 L				0805	Beala	Somely	ng@l	Drea	
1730	M. Zb.			- Cetuco			Sample			105-9_	
		Goe se					Seiting,				
<u> </u>	1,1110			2				1			
						0970		$\bigcirc 0$			
						0120	Setup	J			
						1000	San	sple @	1010		
. <u></u>			<u></u>			023	Seth				
`````````````````````````````````		- AK						ple 6			
<u> </u>		01	$\left  \right\rangle$	_		1043	RW-2	_ Tota	lizer	pumpo	ĨE ,
								30.3 66		noson	nd
			9	13.2016		1/28	SETH	POI	DBS - 6	5	
							Sam	ple (3)	1145		
				_		1205	SETHF	ODE	5 - 4		
		-		1		6	somple to				

3/2 9.14.16 M. Brozek M. 20007ek 9.14.16 1610 - May not be recording properly 1241 Setup AT DBS-2 and that we may wont to check his Sample @ 1400 : one mumbers to verify pumping output Pump Will not pump to top OF withtch has increased due to casing consistently - Trouble Shoot recent growth in oil deilling. often attellowted to pump housing 1645 in Ebrozek OFESITE house to repair. used poly Bailer 1420 Attempted phing, Still does All samples preserved on Ice for transport to Hall Environmental not pump to top of easing use of Barler For remaining Wests. - Phony 13 Wocking DBS-5 sampled at 1430 1945 SETHE and DBS-3 Sample @ 1505 1515 Setup at DBS-1R Sample @ 1530 1541 Sample at Injection m 1545 FWS-1 Totallizer 80438.8 661 Pumpon ~ 3156 BPD 1550 SETUPAT PMWI 5ample 0 1605 1607 SAMPLE at Brine Tanks Na, pH, TDS, Spec, grav, Cl & 1607 1610 Jim Sarr onsite, Jim mentioned that the totalizers Dear. RW-2 -



### **GROUNDWATER ELEVATION DATA SHEET**

Project Name: <u>Salty Dog</u>

Project #: <u>ES08.0118.06</u>

Project Manager: <u>John Ayarbe</u>

Sampler: <u>M. Zbrozek</u>

Sample Date: <u>09/13/16</u>

Sheet # __1__ of _1___

Well ID	Depth to NAPL	Depth to Water	Total Depth	Comments: (well dia., sampled, condition)
DBS-1R	_	67.43	74.39	
DBS-2		69.76	75.38	
DBS-3	_	64.56	74.73	
DBS-4	-	70.35	78.83	
DBS-5	_	66.64	75,84	
DBS-6		65.51	76.03	
DBS-7	_	64.34	75.77	WL only
DBS-8		63.83	69.92	
DBS-9		56.81	67.59	
MW-3	-	66.33	147.05	
MW-4	-	66.31	147.49	WL only
MW-5	-	63.66	128.79	
MW-6	-	65.11	119.15	WL only
PMW-1		71.08	77.82	
NW-1				WL only

Comments:



### **GROUNDWATER MONITORING DATA SHEET**

Project Name: Salty Dog		Sampler: <u>M</u> . Zbrozek				
Project #: ES08.0118.06		Sample Date: <u>09/1+/2016</u>				
Project Manager: John Ayarbe		Sample Time:/5_3				
Well #: DBS-1R						
Well Diameter:2"	(inches)	Height of Water Column: <u>6.96</u>	_(feet)			
Depth to NAPL:	_(feet btoc)	Casing Volume: /. //	_(gal)			
Depth to Water: <u>67.43</u>	_(feet btoc)	Purge Volume: <u>3.33</u>	_(gal)			
Total Depth of Well: 74.39	(feet)	Purge Method: <u>Grab pump</u>				
Note: One casing volume (SCH 40 PVC); 2.0"	ID casing = 0	.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 gal/ft				

### Groundwater Parameters:

Casing Volume	рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	7.67	21.73	1356	10a.2	11.38	Hazy
1	7.51	19.75	1375	106.5	10.67	
1.5	7.40	19.52	1403	112.5	10.44	
2	7.18	19.50	1457	123.9	10.30	Hazr Tonclear
2.5	6.95	19.44	1500	133.1	10.23	
3	6.69	19.42	1567	145.3	10.12	Hazy
3.5						
4						
4.5						
5						

Sample Description:

Physical Observations: _____



#### **GROUNDWATER MONITORING DATA SHEET**

Project Name: Salty Dog	Sampler: M. Zbrozek
Project #: ES08.0118.06	Sample Date: <u>09/14/2016</u>
Project Manager: John Ayarbe	Sample Time: <u>/ 400</u>
Well #: DBS-2	
Well Diameter:2"	(inches) Height of Water Column: <u>5.62</u> (feet)
Depth to NAPL:	_(feet btoc) Casing Voly 🐁 (gal)
Depth to Water: <u>69.76</u>	_(feet btoc) Purge Voluma. <u>2.70</u> (gal)
Total Depth of Well: 75.38	(feet) Purge Method: Grab pump Fail
Note: One casing volume (SCH 40 PVC): 2.0'	' ID casing = 0.16 gai/ft; 4.0'' = 0.65 gal/ft; 6.0'' = 1.47 gal/ft

#### Groundwater Parameters:

Casing Volume	рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	7.62	25.12	532	111.4	8.28	Hazr Tan Cleal
1	7.35	2219	530	132.4	8.32	
1.5		anst				
2	7.60	dingi	554	107.9	7.03	
2.5						
3						
3.5						
4						
4.5						
5						

Sample Description:

Physical Observations:	P	wmp	not	Fine
------------------------	---	-----	-----	------

p not Finctioning used Pole Baller

_____



### **GROUNDWATER MONITORING DATA SHEET**

Project Name: Salty Dog		Sampler: <u>M</u> . Zbrozek					
Project #: ES08.0118.06		Sample Date:	09/14/2016				
Project Manager: John Ayarbe		Sample Time:	1505				
Well #: DBS-3							
Well Diameter:2"	(inches)	Height of Water	Column: <u>/0.17</u>	_(feet)			
Depth to NAPL:	_(feet btoc)	Casing Volume:	1.62	_(gal)			
Depth to Water: <u>64.56</u>	_(feet btoc)	Purge Volume:	4.88	_(gal)			
Total Depth of Well: 74.73	(feet)	Purge Method: _	Pump	,			
Note:							

One casing volume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 gal/ft

### **Groundwater Parameters:**

Casing Volume	pН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)	
Initial	7.73	20.00	522	112.7	11.03	Houzer Turbid Bid	un
1	7.61	19.91	521	116.2	10.60	Haty clear	
1.5	7.30	19.72	520	130.4	10.03		
2	7.09	19.71	520	141.1	9.99		
2.5	6.83	19.67	519	152.0	9.96		
3	6.75	19.66	519	156.3	9.95		
3.5							
4							
4.5							
5							

Sample Description: _____

Physical Observations: _____



#### **GROUNDWATER MONITORING DATA SHEET**

Project Name: Salty Dog		Sampler: <u>M</u> . Zbrozek				
Project #: ES08.0118.06		Sample Date:	09/14/2016			
Project Manager: John Ayarbe		Sample Time:	1230			
Well #: DBS-4						
Well Diameter: <u>2</u> "	(inches)	Height of Water	Column: <u><i>8.48</i></u>	_(feet)		
Depth to NAPL:	_(feet btoc)	Casing Volume:	1.36	_(gal)		
Depth to Water: <u>70.35</u>	_(feet btoc)	Purge Volume:	4.07	_(gal)		
Total Depth of Well: <u>78.83</u>	(feet)	Purge Method:	Pum P			
Note:						

One casing volume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 gal/ft

#### **Groundwater Parameters:**

Casing Volume	рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	7.71	23.32	482	128.7	8.67	Hazy Brown Turbid
1	7.58	20.87	505	123.9	9.42	
1.5	7.41	20.47	505	126.6	9.52	HOUET Brown
2	7.41	20,38	504	127.4	9.51	
2.5	7.37	20.01	505	129.8	9.64	
3	FP. 34	19.98	504	131.7	9.58	Horzyclear
3.5						T
4						
4.5						
5						

Sample Description: 1 Poly

Physical Observations:



#### **GROUNDWATER MONITORING DATA SHEET**

Project Name: Salty Dog		Sampler: <u>M.</u> Zbrozek	
Project #: ES08.0118.06		Sample Date: <u>09/14/2016</u>	
Project Manager: John Ayarbe		Sample Time: <u>/                                   </u>	
Well #: DBS-5			
Well Diameter: <u>2"</u>	(inches)	Height of Water Column: <u></u>	_(feet)
Depth to NAPL:	_(feet btoc)	Casing Volume: / <u>/ / / /</u>	_(gal)
Depth to Water: <u>66.64</u>	_(feet btoc)	Purge Volume: <u> </u>	_(gal)
Total Depth of Well: 75.89	(feet)	Purge Method: <u>(Pump</u>	
Note:			

One casing volume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 gal/ft

#### Groundwater Parameters:

Casing Volume	рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	7.20	20.31	1148	120.3	9.32	
1	7.15	20.10	1143	121.5	9.07	
1.5	7.07	20.04	1140	124.4	8.86	
2	6.77	20.03	1131	133.3	8.63	
2.5	6.57	20.03	1728	141.0	8.55	
3	6.39	19.99	1123	147.5	8.49	
3.5						
4						
4.5						
5						

Sample Description:

Physical Observations: _____



### **GROUNDWATER MONITORING DATA SHEET**

Project Name: Salty Dog		Sampler: M. Z	Zbrozek	
Project #: ES08.0118.06		Sample Date:	09/14/2016	
Project Manager: John Ayarbe		Sample Time:	1145	
Well #: DBS-6				
Well Diameter:2"	(inches)	Height of Water	Column: <u>/0.52</u>	_(feet)
Depth to NAPL:	_(feet btoc)	Casing Volume:	1.68	_(gal)
Depth to Water: <u>65.51</u>	_(feet btoc)	Purge Volume:	5.05	_(gal)
Total Depth of Well: <u>76.03</u>	(feet)	Purge Method:	(Pump	
Note: One casing volume (SCH 40 PVC): 2.0'	' ID casing = 0	.16 gal/ft; 4.0" = 0.65 ga	al/ft; 6.0'' = 1.47 gal/ft	

#### Groundwater Parameters:

Casing Volume	pH	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	7.22	23.58	1544	91.3	8.06	Tan Hazy Mod Thros:0
1	7.06	20.07	1471	107.5	8.02	
1.5	7.00	19.81	1467	111.5	8.20	Hat Tan
2	6.95	19.64	1455	114.1	8.21	
2.5	6.92	19.62	1445	115.0	8.11	
3	6.91	19.64	1439	114.7	8,04	
3.5						
4						
4.5						
5						

Sample Description:

Physical Observations:

Analytical Method(s): _____Sodium, Chloride, TDS, Spec Gravity, pH____



#### **GROUNDWATER MONITORING DATA SHEET**

Project Name: Salty Dog		Sampler: M.	Zbrozek	
Project #: ES08.0118.06		Sample Date:	09/14/2016	
Project Manager: John Ayarbe		Sample Time:	0905	
Well #: DBS-8				
Well Diameter: <u>2</u> "	(inches)	Height of Water	r Column: <u>6.09</u>	_(feet)
Depth to NAPL:	_(feet btoc)	Casing Volume:	0.97	_(gal)
Depth to Water: <u>63.83</u>	_(feet btoc)	Purge Volume:	2.92	_(gal)
Total Depth of Well: <u>69.92</u>	(feet)	Purge Method:	Pump	
Note: One casing volume (SCH 40 PVC): 2.0"	ID casing = 0	.16 gal/ft; 4.0" = 0.65 g	al/ft; 6.0" = 1.47 gal/ft	

#### **Groundwater Parameters:**

Casing Volume	рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	7.23	20.03	614	149.2	8.34	Hazyclear
1	7.05	20,11	618	129.8	8.30	
1.5	7.02	20.12	620	129.0	8.40	
2	6.99	19.91	619	128.8	8.40	
2.5	6.97	19.85	613	128.8	8,29	
3	6.97	19.83	611	128.8	8.25	
3.5						
4						
4.5						
5						

Sample Description:

Physical Observations:



#### **GROUNDWATER MONITORING DATA SHEET**

Project Name: Salty Dog		Sampler: M. Z	Zbrozek	
Project #: ES08.0118.06	_	Sample Date:	09/14/2016	
Project Manager: John Ayarbe		Sample Time:	0825	
Well #: DBS-9				
Well Diameter: <u>2"</u>	(inches)	Height of Water	Column: <u>/0.78</u>	_(feet)
Depth to NAPL:	_(feet btoc)	Casing Volume:	1.72	_(gal)
Depth to Water: <u>56.8/</u>	_(feet btoc)	Purge Volume:	5.17	_(gal)
Total Depth of Well: <u>67.59</u>	(feet)	Purge Method: _	Pump	
Note: One casing volume (SCH 40 PVC): 2.0"	ID casing = 0.	.16 gal/ft; 4.0" = 0.65 ga	al/ft; 6.0" = 1.47 gal/ft	

#### **Groundwater Parameters:**

Casing Volume	рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	6.94	19.83	1584	141.7		Slight Tan Hazr
1	6.92	18.91	1217	120.7		Hazr clear
1.5	6.91	18,84	1143	129.8	9.28	
2	6.89	18.80	1150	129.6	9.29	
2.5	6.87	18.78	1119	129.6	9.29	
3	6.81	19.09	1195	132.0	9.31	
3.5	6.83	19.14	1105	130.5	9.31	
4						
4.5						
5						

_____

Sample Description:

Physical Observations: _____



#### **GROUNDWATER MONITORING DATA SHEET**

_____

Project Name: Salty Dog		Sampler: <u>M. Z</u>	Zbrozek	
Project #: ES08.0118.06		Sample Date:	<u>09/14/2016</u>	
Project Manager: John Ayarbe		Sample Time:	1110	
Well #: MW-3				
Well Diameter: <u>2</u> "	(inches)	Height of Water	Column: <u>80.7</u> 2	∠(feet)
Depth to NAPL;	_(feet btoc)	Casing Volume:	12.91	_(gal)
Depth to Water: <u>66.33</u>	_(feet btoc)	Purge Volume:	38.74	_(gal)
Total Depth of Well: <u>/y7.05</u>	(feet)	Purge Method:	Pump	
Note:				

One casing volume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 gal/ft

#### **Groundwater Parameters:**

Casing Volume	рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	6.97	20.17	81	130.9	5.03	clear
1	6.89	19.61	11582	124.3	5.64	Clear
1.5	6.73	19.54	12999	129.8	6.4.96	
2	6.53	19.49	15932	126.9	4.34	
2.5	6.51	19,76	19076	121.0	4.28	clear
3	6.53	19.56	20552	117.7	4.24	
3.5	6.54	19.56	21237	117,6	4.21	clear
4	6.55	19.56	21039	117. l	4.19	
4.5						
5						

_____

Sample Description:

Physical Observations:



#### **GROUNDWATER MONITORING DATA SHEET**

Project Name: Salty Dog		Sampler: M. J	Zbrozek	
Project #: ES08.0118.06		Sample Date:	<u>09/14/∠016</u>	
Project Manager: John Ayarbe		Sample Time:	1010	
Well #: <u>MW-5</u>				
Well Diameter:2"	(inches)	Height of Water	Column: <u>65.13</u>	_(feet)
Depth to NAPL:	_(feet btoc)	Casing Volume:	10.42	_(gal)
Depth to Water: <u>63.66</u>	_(feet btoc)	Purge Volume:	31.26	_(gal)
Total Depth of Well: /28.79	(feet)	Purge Method:	Pump	
Note: One casing volume (SCH 40 PVC): 2.0'	' ID casing = 0	.16 gal/ft; 4.0" = 0.65 g	al/ft; 6.0'' = 1.47 gal/ft	

#### Groundwater Parameters:

Casing Volume	рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	6.52	20.09	159	161.1	10.93	Clear
1	6.43	19.55	3188	132.9	4.54	
1.5	6.51	19.66	3106	130.3	4.59	
2	6.52	19.67	3070	130.0	4.60	
2.5	6.54	19.71	3021	129.1	4.61	clear
3	6.54	1968	2995	128.5	4.64	clear
3.5						
4						
4.5						
5						

Sample Description: _/ po/r

Physical Observations: <u>Cleal</u>

Analytical Method(s): ______Sodium, Chloride, TDS, Spec Gravity, pH____



#### **GROUNDWATER MONITORING DATA SHEET**

Project Name: Salty Dog		Sampler: <u>M</u> .	Zbrozek	
Project #: ES08.0118.06		Sample Date:	09/14/2016	
Project Manager: John Ayarbe		Sample Time:	1605	
Well #: PMW-1				
Well Diameter: <u>2</u> "	(inches)	Height of Water	r Column: <u>6.74</u>	_(feet)
Depth to NAPL:	_(feet btoc)	Casing Volume:	1.07	_(gal)
Depth to Water: 71.08	_(feet btoc)	Purge Volume:	3.32	_(gal)
Total Depth of Well: 77. 82	(feet)	Purge Method:	Pump	
Note: One casing volume (SCH 40 PVC): 2.0"	ID casing = 0	.16 gal/ft; 4.0" = 0.65 g	jal/ft; 6.0'' = 1.47 gal/ft	

#### **Groundwater Parameters:**

Casing Volume	pН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	7.13	21.17	35 477	114.7	9.56	milter Uhite
1	7.16	20.26	23120	102.8	9.19	HOZY
1.5	7.13	20.23	22420	103.3	2.15	Hazy clear
2	7.10	20,10	22062	103.7	9.16	
2.5	7.09	20.06	22064	104.3	9.13	
3	7.09	20.04	21877	104.9	9.10	Hazy
3.5						
4						
4.5						
5						

Sample Description:

Physical Observations:

onani-or-oustouy necord			Turn-Around Time:										-1 -		E	MN	TE	0	P.I.P.		-			
Client:	Client: DRS&A				Standard C Rush						HALL ENVIRONMENTAL													
					Project Name:						ANALYSIS LABORATORY													
Mailing Address: 1020 Arademy RD NE 1100			SALTY DOG						4901 Hawkins NE - Albuquerque, NM 87109															
Albe	Albuquerque NM 87109			Project #:						Tel. 505-345-3975 Fax 505-345-4107														
Phone #: 505 - 622-9400			ES08.0113.06						Analysis Request															
	100 M 100 M		BEDDBStephens.com	Projec	ct Mana	ger:					TPH (Gas only) 7 PPH (Gas only) 7 DRO / MRO) 3.1) 2.70 SIMS) 2.70 SIMS) 8082 PCB's 8082 PCB's													
	Package:									110081	uo s	MR			()		SC,	PCB's				3		
Stan	dard		Level 4 (Full Validation)	J. AYARBE					6 (8)	(Gas	DRO / MRO)			SIMS)		PO	PC				S			
Accredi				Samp	ler: M	1.26	1028	K		TMB	H	/DF	1)	1)	202		VO ₂ ,	082				CO		=
□ NEL	AP	□ Othe	r	On Ice	e:	B Yes	6	□ No	19-1-1-1	- +	+	RO	18.	504.1)	- 8270		03,1	s / 8	_	(A)		04		or N)
	(Type)			Samp	le Tem	peratur	e: 3	70		L L		0	pd 4	g po	0 0	etals	SI'N	side	A)	-\0	10	5		Z
Date	Time	Matrix	Sample Request ID		Container Type and # Type			Н	EAL No.	RTEX + MTR		TPH 8015B (GRO	TPH (Method 418.1)	EDB (Method	PAH's (8310 or	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ )	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	Chlor.	PH TDS	Na	Air Bubbles (Y
9.14.16	1530	GW	DESTIR	1	Poly	non	Ø.														/			
f	1400	1	DRS-2		1																/			
	1505	-	DRS-3															2.4			/		1	
	1230		DBS-4					1 ~													1		1	
	1430		DBS-S																		/			
	1145		DRS-6						gine .												/			
	0905		PBS-8													1				1	/			
	3825		DBS-9																		/			
	110		MW-3			1. J. 1.											2				/			
	1010		MW-5																		/			
	1605		PMW-1																		/			
	1645		BRINE	2 Poly 2 none links					1						ĺ				-	1	1			
Date: Time: Relinquished by:				Received by: Date Time Remarks:										()									_	
7/15/1×	1032	12	1 11/	19	Per de	10		1 1		10														
Date:	Date: Time: Relinquished by:					Received by: Date Time																		

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.



June 22, 2012

Mr. Jim Griswold New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, NM 87505-4225

Re: Salty Dog Brine Station - Fourth Quarterly Groundwater Monitoring Report

Dear Mr. Griswold:

On behalf of PAB Services, Inc., Daniel B. Stephens & Associates, Inc. (DBS&A) is pleased to submit the enclosed groundwater monitoring report for the Salty Dog brine station located in Lea County, New Mexico. The report documents fourth quarter groundwater monitoring activities completed at the site on April 30 and May 1, 2012.

Please do not hesitate to call me at (505) 353-9130 if you have any questions or require additional information.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

7:0.7

Michael D. McVey Senior Hydrogeologist

Enclosures

cc: Pieter Bergstein, PAB Services, Inc.

Daniel B. Stephens & Associates, Inc.

Albuquerque, NM 87109-3315

FAX 505-822-8877

# Fourth Quarterly Groundwater Monitoring Report Salty Dog Brine Station Lea County, New Mexico

Prepared for New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, Environmental Bureau

June 22, 2012



Daniel B. Stephens & Associates, Inc.

6020 Academy NE, Suite 100 • Albuquerque, New Mexico 87109



### QUARTERLY GROUNDWATER MONITORING REPORT SALTY DOG BRINE STATION LEA COUNTY, NEW MEXICO

### 1. INTRODUCTION

Daniel B. Stephens & Associates, Inc. (DBS&A) has prepared this fourth quarterly groundwater monitoring report for submission to the New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (OCD) Environmental Bureau on behalf of PAB Services, Inc. (PAB) for the Salty Dog brine station (Site) located in Lea County, New Mexico (Figure 1). This report summarizes groundwater monitoring activities conducted at the Site on April 30 and May 1, 2012.

The Site is comprised of a northern portion where the brine pond was located prior to closure in October 2008, and a southern portion where the brine well is located. The brine pond area and the brine well area are separated by approximately 2,500 feet, joined by a dirt road. Since the closure of the brine pond, a number of frac tanks have been stationed in the northern portion of the Site to serve as storage for brine that is produced for resale. A concrete truck loading pad is located near the frac tanks. The brine well is currently not operational and attempts are being made to redrill the well and restore brine production at the Site. Six monitor wells (PMW-1, DBS-1R, and DBS-2 through DBS-5), one nested well (NW-1), and one recovery well (RW-1) are located in the former brine pond area. Nine monitor wells (MW-2 through MW-6, DBS-6 through DBS-9), one nested well (NW-2), and one recovery well (RW-2) are located in the brine well area (Figure 1).

A groundwater extraction system was installed by DBS&A at the Site in early April 2012 to provide hydraulic control of the chloride groundwater plumes present beneath the former brine pond area and brine well area. The extraction system consists of two submersible pumps, conveyance lines, electrical power, and controls to extract groundwater from recovery wells RW-1 (former brine pond area) and RW-2 (brine well area), and convey the extracted groundwater to on-site frac tanks for off-site disposal. At the time of the fourth quarterly



groundwater monitoring event, the extraction system had been operating for a period of approximately three weeks.

### 2. SCOPE OF WORK

The scope of work for quarterly groundwater monitoring consisted of measuring fluid levels in and collecting groundwater samples from 11 monitor wells for laboratory analysis. The monitor wells included in the quarterly sampling were selected in consultation with the OCD project manager, Jim Griswold, on October 4, 2010. Groundwater samples were submitted to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico for chloride analysis using U.S. Environmental Protection Agency (EPA) Test Method 300.0.

### 3. MONITORING ACTIVITIES

On April 30, 2012, DBS&A measured fluid levels in existing monitor wells DBS-2 through DBS-5 and PMW-1 in the former brine pond area, and DBS-6, DBS-8, DBS-9, MW-3, and MW-5 in the brine well area using a properly decontaminated electronic water level meter (Figure 1). In addition, fluid levels were measured in the newly installed monitor well, DBS-1R, which replaced former well DBS-1. DBS-1 was destroyed by a backhoe sometime between the May 2011 and October 2011 sampling events during grading activities at the Site. DBS-1R was installed approximately five feet south of DBS-1 by DBS&A and Peterson Drilling and Testing, Inc. during the installation of the groundwater extraction system in April 2012. Table 1 provides a summary of the fluid level measurements.

The average depth to water beneath the former brine pond area during this monitoring event was 64.88 feet below ground surface (ft bgs), decreasing approximately 0.08 foot since the last monitoring event in February 2012. Water levels in wells DBS-2, DBS-3, DBS-4, and DBS-5 decreased from 0.24 to 0.30 foot; the water level in PMW-1 decreased 0.58 foot. The average depth to water beneath the brine well area was 62.58 ft bgs, decreasing 0.29 foot since February 2012. Water levels in wells DBS-6, DBS-8, and MW-5 decreased from 0.23 to 0.27 foot; the water level in DBS-9, located northeast of the brine well in the playa, decreased 0.15 foot. The greater drawdown observed in monitor wells PMW-1

and MW-3 is the result of groundwater pumping occurring at extraction wells RW-1 and RW-2. PMW-1 and MW-3, compared to the other Site monitor wells, are located in the closest proximity to the extraction wells. At the time of gauging, the extraction system had been operating for a period of approximately three weeks.

Potentiometric surface maps were prepared for the former brine pond and brine well areas and are included as Figures 2 and 3. Groundwater beneath the former brine pond area continues to flow to the southeast. The gradient increased slightly from 0.004 to 0.005 foot/foot (ft/ft) with implementation of groundwater pumping from extraction well RW-1 (Figure 2). The direction of groundwater flow beneath the brine well area changed slightly, with implementation of groundwater pumping from extraction well RW-2, from southeast to south-southeast. The gradient remained unchanged at approximately 0.004 ft/ft (Figure 3).

Groundwater samples were collected from monitor wells DBS-1R, DBS-2 through DBS-6, PMW-1, DBS-8, DBS-9, MW-3, and MW-5 on April 30 and May 1, 2012. DBS&A followed corporate standard operating procedures developed from EPA guidance during collection of all groundwater samples. Prior to sampling, the well was purged of a minimum of three casing volumes using a submersible pump to ensure that a representative sample of groundwater was collected. During purging, the DBS&A field technician measured water quality parameters including temperature, specific conductance, and pH to ensure that these parameters were stabilized to within 10 percent for specific conductance, 2 degrees for temperature and +/- 0.2 pH units prior to sampling. Sample containers were then filled, labeled, and placed on ice once the stabilization criteria were met. Groundwater samples were submitted under full chain-of-custody to HEAL for chloride analysis.

#### 4. ANALYTICAL RESULTS

Table 2 summarizes chloride analytical results for the 11 groundwater samples collected on April 30 and May 1, 2012. Figures 4 and 5 show the distribution of chloride in groundwater beneath the former brine pond and brine well areas for the sampling event. Complete laboratory reports and chain-of-custody documentation are provided in Appendix 1. Field notes recorded during groundwater monitoring activities are included in Appendix 2.

DBS-1R was sampled for the first time during this monitoring event. Analytical results from the groundwater sample submitted from the well showed a chloride concentration of 3,000 mg/L. DBS-1R was installed approximately five feet south of the former well DBS-1. DBS-1 showed a chloride concentration of 940 mg/L the last time it was sampled on May 12, 2011 before it was destroyed.

During this monitoring event, groundwater samples submitted from wells DBS-2 (22 to 24 mg/L), DBS-5 (140 to 150 mg/L), DBS-6 (380 to 400 mg/L), and DBS-9 (290 to 330 mg/L) showed increases in chloride concentrations. Monitor wells DBS-3 (34 to 33 mg/L), DBS-4 (32 to 31 mg/L), MW-3 (15,000 to 14,000 mg/L), and MW-5 (1,500 to 1,400 mg/L) showed decreases in chloride concentrations. Monitor wells DBS-8 (41 mg/L) and PMW-1 (12,000 mg/L) showed no change in chloride concentrations. Currently, six of the 11 wells sampled contain chloride concentrations in excess of the New Mexico Water Quality Control Commission (NMWQCC) standard of 250 mg/L (Table 2).

The chloride groundwater plume in the former brine pond area remains bounded by the existing monitor well network. Monitor well PMW-1 (12,000 mg/L), located downgradient of the former brine pond, continues to show a chloride concentration in excess of the NMWQCC standard (Figure 4). The chloride concentration in the farthest downgradient well, DBS-4, remains below the standard.

The downgradient and northern, cross-gradient extent of the chloride groundwater plume in the brine well area remains undefined. The farthest downgradient well, MW-5, and the northern-most cross-gradient well, DBS-6, continue to contain chloride concentrations in excess of the NMWQCC standard (Figure 5).

The chloride concentration in monitor well DBS-9, which was showing a decreasing trend during previous monitoring events (600 mg/L in May 2011 to 440 mg/L in October 2011 to 290 mg/L in February 2012), increased slightly during this monitoring event to 330 mg/L and still exceeds the NMWQCC standard. DBS-9 was installed in the playa located northeast of the brine well to determine if documented releases that entered the playa in 2002 and 2005 impacted groundwater (Figure 5).



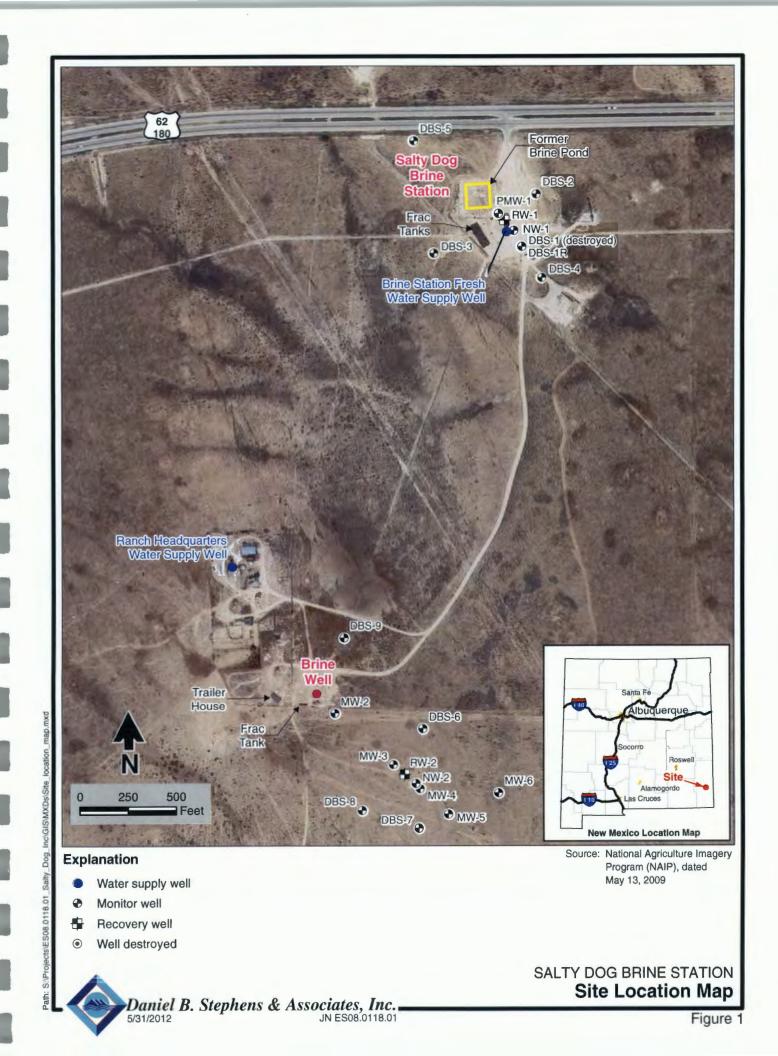
### 5. GROUNDWATER EXTRACTION SYSTEM OPERATION

Groundwater extraction from recovery well RW-2 at the brine well area was started on April 6, 2012. Groundwater extraction from recovery well RW-1 at the former brine pond area was started on April 7, 2012. The flow rate for RW-1 was initially set at the design specification of 0.5 gallons per minute (gpm). The flow rate for RW-2 was initially set at 1.25 gpm. Approximately one week after DBS&A set the flow rates, PAB staff adjusted the flow rates upward to facilitate daily disposal of the extracted groundwater. At the time of groundwater monitoring, approximately three weeks after system startup, extracted volumes of groundwater were recorded by the DBS&A field technician. The extracted volumes are provided in Table 3.

Since the extraction system had only been operating for a period of approximately three weeks prior to this groundwater monitoring event, little effect on chloride concentrations in Site monitor wells was noted. Assessments of system performance regarding hydraulic plume capture will be provided in future quarterly monitoring reports.

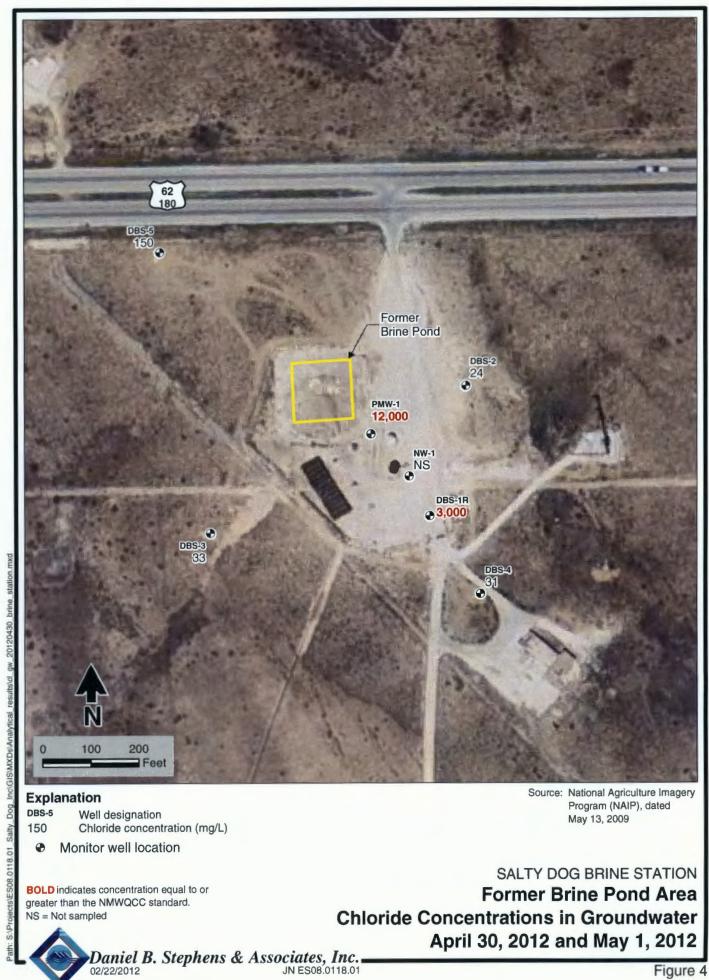
Flow will be maintained at the current rate, with minor increases or decreases, to maintain a volume of extracted groundwater that can be disposed of on a daily basis by PAB. Once the brine well is brought back online, full-scale operation of the extraction system will begin with reinjection of the extracted groundwater into the brine well. At that time, the flow rate for RW-2 will be increased to meet the design specification of 15 gpm.

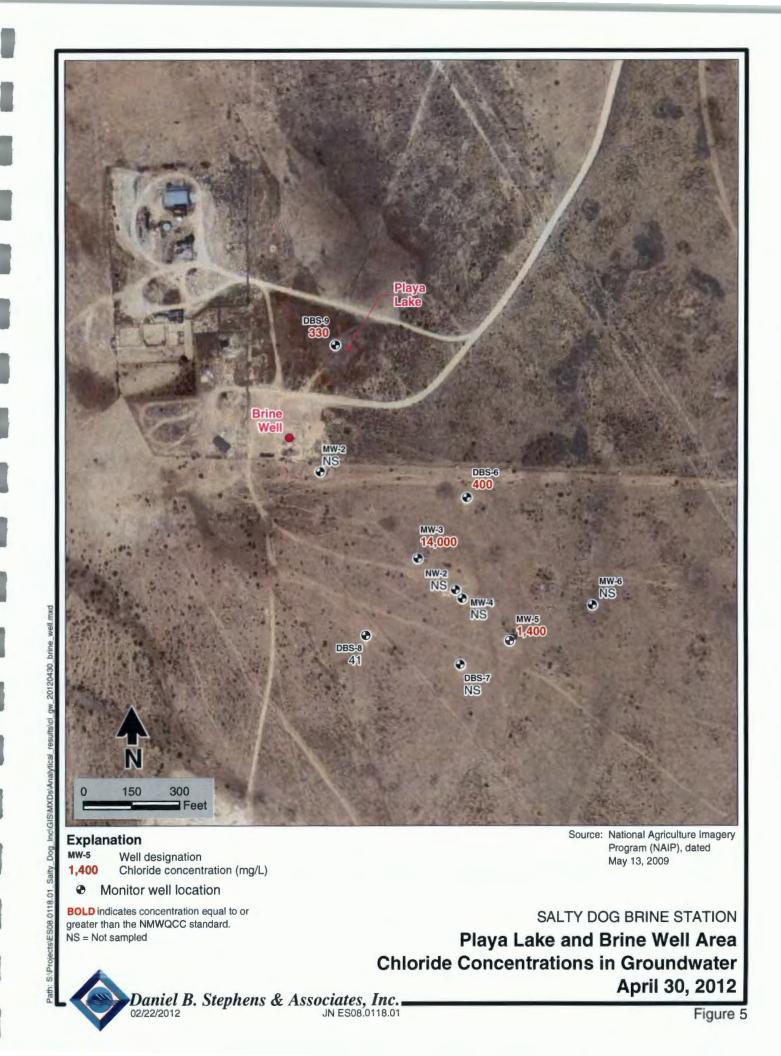
#### 6. RECOMMENDATIONS


Based on the current groundwater monitoring results and trends in chloride concentrations, and the installation of the groundwater extraction system in early April 2012, DBS&A recommends the following:


- Continue quarterly groundwater sampling to assess the groundwater extraction system performance by the collection of groundwater samples for laboratory analysis from the on-site monitor wells. Chloride concentrations measured in each well will be used to verify plume capture.
- Adjust the flow rate from the RW-2 recovery well upward to 15 gpm to meet the design




specification once the brine well is brought back online and reinjection of the extracted groundwater into the brine well can be implemented.


### Figures











### Tables



### Table 1. Summary of Historical Fluid Level Measurements Salty Dog Brine Station, Lea County, New Mexico Page 1 of 3

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
DBS-1	56.0-76.0	3817.09	04/08/09	62.38	3754.71
			05/11/11	64.70	3752.39
			10/04/11	Well	destroyed
DBS-1R	58.0-78.0	3816.00 ^b	04/30/12	63.60	3752.40
DBS-2	58.0-78.0	3820.50	04/08/09	65.45	3755.05
			05/11/11	66.80	3753.70
			10/04/11	65.87	3754.63
			02/08/12	65.96	3754.54
			04/30/12	66.26	3754.24
DBS-3	56.0-76.72	3816.66	04/08/09	60.67	3755.99
			05/11/11	61.25	3755.41
			10/04/11	61.25	3755.41
			02/08/12	61.11	3755.55
			04/30/12	61.41	3755.25
DBS-4	56.0-76.0	3820.37	04/08/09	66.27	3754.10
	1		05/11/11	67.23	3753.14
			10/04/11	66.67	3753.70
			02/08/12	66.76	3753.61
			04/30/12	67.02	3753.35
DBS-5	56.9-76.9	3820.66	04/08/09	62.99	3757.67
			05/11/11	63.45	3757.21
			10/04/11	63.41	3757.25
			02/08/12	63.46	3757.20
			04/30/12	63.70	3756.96
DBS-6	56.7-76.7	3812.65	04/07/09	62.75	3749.90
			05/11/11	63.11	3749.54
			10/04/11	63.16	3749.49
			02/08/12	63.20	3749.45

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009. ^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

ft bgs = Feet below ground surface ft btoc = Feet below top of casing NA = Not available ft msl = Feet above mean sea level

S:\Projects\ES08.0118.01_Salty_Dog_Inc\ES08.0118.02_Salty Dog Remediation\Docs\4th Qtrly Mon\T1_GW Elev.doc



### Table 1. Summary of Historical Fluid Level MeasurementsSalty Dog Brine Station, Lea County, New Mexico Page 2 of 3

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
DBS-6 (cont.)	56.7-76.7	3812.65	04/30/12	63.43	3749.22
DBS-7	55.1-75.1	3810.21	04/07/09	61.74	3748.47
DBS-8	55.2-75.2	3810.70	04/07/09	61.20	3749.50
			05/11/11	61.67	3749.03
			10/04/11	61.71	3748.99
			02/08/12	61.77	3748.93
			04/30/12	62.00	3748.70
DBS-9	48.0-68.0	3806.26	04/08/09	53.93	3752.33
			05/11/11	54.39	3751.87
			10/04/11	54.59	3751.67
			02/08/12	54.53	3751.73
			04/30/12	54.68	3751.58
NW-1 (s)	52.95-72.95	3817.33	04/08/09	62.35	3754.98
NW-1 (m)	99.31-119.31	3817.35	04/08/09	62.25	3755.10
NW-1 (d)	149.45-169.45	3817.35	04/08/09	62.04	3755.31
NW-2 (s)	53.35-73.35	3812.50	04/08/09	63.08	3749.42
NW-2 (m)	93.72-113.72	3812.45	04/08/09	63.27	3749.18
NW-2 (d)	126.87-146.87	3812.46	04/08/09	66.41	3746.05
PMW-1	63-78	3821.17	06/23/08	67.51	3753.66
			04/08/09	65.97	3755.20
			05/11/11	68.70	3752.47
			10/04/11	66.95	3754.22
			02/08/12	66.69	3754.48
			04/30/12	67.27	3753.90
MVV-1	120-140	NA	06/23/08	59.90	NA
MW-2	127-147	3812.68	06/23/08	61.42	3751.26
			04/07/09	61.65	3751.03
MW-3	NA	3812.05	06/23/08	62.06	3749.99

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009. ^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

ft bgs	= Feet below ground surface	ft btoc	= Feet below top of casing
ft msl	= Feet above mean sea level	NA	= Not available

S:\Projects\ES08.0118.01_Salty_Dog_Inc\ES08.0118.02_Salty Dog Remediation\Docs\4th Qtrly Mon\T1_GW Elev.doc



# Table 1. Summary of Historical Fluid Level MeasurementsSalty Dog Brine Station, Lea County, New MexicoPage 3 of 3

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
MW-3 (cont.)	NA	3812.05	04/07/09	62.02	3750.03
			05/11/11	62.91	3749.14
			10/04/11	62.91	3749.14
			02/08/12	62.95	3749.10
			04/30/12	63.39	3748.66
MW-4	111-131	3811.33	06/23/08	62.12	3749.21
			04/07/09	62.51	3748.82
MW-5	112-132	3808.96	06/23/08	60.60	3748.36
			04/07/09	60.79	3748.17
			05/11/11	61.17	3747.79
			10/04/11	61.72	3747.24
			02/08/12	61.23	3747.73
			04/30/12	61.50	3747.46
MW-6	NA	3810.17	06/23/08	62.17	3748.00
			04/07/09	62.41	3747.76

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

- ft bgs = Feet below ground surface
- ft btoc = Feet below top of casing
- ft msl = Feet above mean sea level
- NA = Not available

S:\Projects\ES08.0118.01_Salty_Dog_Inc\ES08.0118.02_Salty Dog Remediation\Docs\4th Qtrly Mon\T1_GW Elev.doc



		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
New Mexico Water Quality Control Com	mission Standard	250
DBS-1	04/08/09	320
	05/12/11	940
	10/04/11	Well destroyed
DBS-1R	05/01/12	3,000
DBS-2	04/08/09	14
	05/12/11	25
	10/05/11	18
	02/09/12	22
	05/01/12	24
DBS-3	04/08/09	36
	05/12/11	35
	10/05/11	34
	02/09/12	34
	05/01/12	33
DBS-4	04/08/09	38
	05/12/11	33
	10/05/11	32
	02/09/12	32
	05/01/12	31
DBS-5	04/08/09	65
	05/12/11	140
	10/05/11	140
	02/09/12	140
	04/30/12	150
DBS-6	04/07/09	380
	05/12/11	410
	10/05/11	400
	02/09/12	380
	04/30/12	400
DBS-7	04/07/08	570
DBS-8	04/07/09	58

## Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 1 of 3

Bold indicates concentrations that exceed the applicable standard.

^aAll samples analyzed in accordance to EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance to Standard Method 4500-CI B.

mg/L = Milligrams per liter



		Chloride Concentration	
Monitor Well	Date	(mg/L) ^a	
New Mexico Water Quality Control Com	mission Standard	250	
DBS-8 (cont.)	05/12/11	36	
	10/05/11	140	
	02/09/12	41	
	04/30/12	41	
DBS-9	04/08/09	210	
	05/12/11	600	
	10/05/11	440	
	02/09/12	290	
	04/30/12	330	
NW-1s	04/08/09	630	
NW-1m	04/08/09	57	
NW-1d	04/08/09	38	
NW-2s	04/08/09	410	
NW-2m	04/08/09	570	
NW-2d	04/08/09	4,700	
PMW-1	02/27/08	9,500 ^b	
	05/30/08	<b>8,600</b> ^b	
	06/23/08	12,700	
	04/08/09	11,000	
	05/12/11	13,000	
	10/05/11	12,000	
	02/09/12	12,000	
	05/01/12	12,000	
MW-1	05/30/08	75 ^b	
	06/23/08	243	
MW-2	02/27/08	120 ^b	
	05/30/08	80 ^b	
	06/23/08	1,480	
	04/07/09	1,200	
MW-3	02/27/08	<b>348</b> ^b	
	05/30/08	360 ^b	

## Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 2 of 3

Bold indicates concentrations that exceed the applicable standard.

^a All samples analyzed in accordance to EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance to Standard Method 4500-Cl B.

mg/L = Milligrams per liter



· · · · · · · · · · · · · · · · · · ·		
		Chloride
		Concentration
Monitor Well	Date	(mg/L) ^a
New Mexico Water Quality Control Comr	nission Standard	250
MW-3 (cont.)	06/23/08	1,090
	04/07/09	17,000
	05/12/11	16,000
	10/05/11	14,000
	02/09/12	15,000
	04/30/12	14,000
MW-4	02/27/08	<b>476</b> ^b
	05/30/08	512 ^b
	06/23/08	5,730
	04/07/09	6,600
MW-5	02/27/08	<b>1,280</b> ^b
-	05/30/08	<b>1,220</b> ^b
	06/23/08	1,260
	04/07/09	1,300
	05/12/11	1,500
	10/05/11	1,500
- The second sec	02/09/12	1,500
	04/30/12	1,400
MW-6	02/27/08	32 ^b
	05/30/08	36 ^b
	06/23/08	31.4
	04/07/09	25
Ranch Headquarters Supply Well	06/23/08	35.4
Brine Station Fresh Water Supply Well	02/27/08	630 ^b
	05/30/08	590 ^b
	06/23/08	650

## Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 3 of 3

Bold indicates concentrations that exceed the applicable standard.

^aAll samples analyzed in accordance with EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance with Standard Method 4500-Cl B.

mg/L = Milligrams per liter



# Table 3. Summary of Extracted Groundwater VolumesSalty Dog Brine Station, Lea County, New MexicoPage 1 of 1

		Ave. Flow Rate	Extracted Volumes
Recovery Well	Date	(gpm)	(gal)
RW-1	05/01/12	2.5	73,740
RW-2	05/01/12	3.5	91,450

gpm = gallons per minute

gal = gallons

### Appendices

### **Appendix 1**

Laboratory Reports



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

May 08, 2012

Mike McVey

Daniel B. Stephens & Assoc. 6020 Academy NE Suite 100 Albuquerque, NM 87109 TEL: (505) 822-9400 FAX (505) 822-8877

RE: Salty Dog

OrderNo.: 1205141

Dear Mike McVey:

Hall Environmental Analysis Laboratory received 11 sample(s) on 5/2/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Enviro	onmental Analys	sis Laborat	ory, I	nc.			Lab O	ytical Report rder: 1205141 Reported: 5/8/2012
CLIENT: Project:	Daniel B. Stephens & Salty Dog	Assoc.				La	nb Orde	r: 1205141
Lab ID:	1205141-001		-	(	Collect	ion Date:	4/30/20	012 1:00:00 PM
Client Sample II	D: DBS-8					Matrix:	AQUE	DUS
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 3	00.0: ANIONS							Analyst: BRM
Chloride		41	10		mg/∟		20	5/3/2012 2:58:04 PM
Lab ID:	1205141-002				Collect	ion Date:	4/30/20	12 2:00:00 PM
Client Sample II	D: MW-5					Matrix:	AQUE	OUS
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 3	00.0: ANIONS							Analyst: BRM
Chloride		1,400	100		mg/L		200	5/3/2012 3:09:18 PM
Lab ID:	1205141-003				Collect	ion Date:	4/30/20	12 3:15:00 PM
Client Sample II	D: MW-3					Matrix:	AQUE	DUS
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 3	00.0: ANIONS							Analyst: BRM
Chloride		14,000	1,000		mg/L		2000	5/3/2012 3:20:32 PM
Lab ID:	1205141-004			(	Collect	ion Date:	4/30/20	12 3:59:00 PM
Client Sample II	D: DBS-6					Matrix:	AQUE	DUS
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 30	0.0: ANIONS	<u> </u>						Analyst: BRM
Chloride		400	25		mg/L		50	5/3/2012 3:31:45 PM
Lab ID:	1205141-005			(	Collect	ion Date:	4/30/20	12 5:22:00 PM
Client Sample II	<b>):</b> DBS-9					Matrix:	AQUEO	DUS
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 30	0.0: ANIONS							Analyst: BRM
Chloride		330	25		mg/L		50	5/3/2012 3:42:59 PM
Lab ID:	1205141-006			(	Collect	ion Date:	4/30/20	12 6:08:00 PM
Client Sample II	<b>DBS-5</b>					Matrix:	AQUEO	DUS
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 30	00.0: ANIONS							Analyst: BRM
Chloride		150	10		mg/L		20	5/3/2012 3:54:13 PM
Qualifiers: */X	Value exceeds Maximum (	Contaminant Level.			B Ana	lyte detected	l in the ass	ociated Method Blank
E	Value above quantitation ra	ange		I	H Hol	ding times fo	or preparati	ion or analysis exceeded
J	Analyte detected below qua					Detected at	•	ing Limit
R S	RPD outside accepted reco Spike Recovery outside acc	•	s	R	L Rep	orting Detec	tion Limit	Page 1 of

抽题

Hall Environmental Analysis Laboratory, Inc.							Analytical Report Lab Order: 1205141 Date Reported: 5/8/2012		
	Daniel B. Stephens Salty Dog	& Assoc.				L	ıb Orde	r: 1205141	
Lab ID:	1205141-007				Collect	ion Date:	5/1/20	12 8:16:00 AM	
Client Sample ID	: DBS-3					Matrix:	AQUE	OUS	
Analyses		Result	RL	Quaj	Units		DF	Date Analyzed	
EPA METHOD 300	0.0: ANIONS					<u></u>		Analyst: BRM	
Chloride		33	10		mg/L		20	5/3/2012 4:05:27 PM	
Lab ID:	1205141-008				Collect	ion Date:	5/1/201	12 8:58:00 AM	
Client Sample ID:	: DBS-4					Matrix:	AQUE	OUS	
Analyses		Result	RL	Qual	Units		DF	Date Analyzed	
EPA METHOD 300	0.0: ANIONS			- <u>.</u>				Analyst: BRM	
Chloride		31	10		mg/L		20	5/3/2012 4:16:41 PM	
Lab ID:	1205141-009				Collect	ion Date:	5/1/201	2 9:41:00 AM	
Client Sample ID:	DBS-2					Matrix:	AQUE	OUS	
Analyses		Result	RL	Qual	Units		DF	Date Analyzed	
EPA METHOD 300	.0: ANIONS							Analyst: BRM	
Chloride		24	10		mg/L		20	5/7/2012 3:32:58 PM	
Lab ID:	1205141-010			(	Collecti	ion Date:	5/1/201	2 10:27:00 AM	
Client Sample ID:	DBS-1R					Matrix:	AQUE	ous	
Analyses		Result	RL	Qual	Units		DF	Date Analyzed	
EPA METHOD 300	.0: ANIONS		- <u></u>		•			Analyst: BRM	
Chloride		3,000	100		mg/L		200	5/7/2012 3:45:23 PM	
Lab ID:	1205141-011				Collecti	on Date:	5/1/201	2 11:04:00 AM	
Client Sample ID:	PMW-1					Matrix:	AQUE	OUS	
Analyses		Result	RL	Qual	Units		DF	Date Analyzed	
EPA METHOD 300	.0: ANIONS							Analyst: BRM	
Chloride		12,000	500		mg/L		1000	5/3/2012 5:12:50 PM	

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank	
	Ε	Value above quantitation range	н	Holding times for preparation or analysis exceede	d
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	-
	S	Spike Recovery outside accepted recovery limits		Pag	e 2

12936

Page 2 of 3

### QC SUMMARY REPORT

### Hall Environmental Analysis Laboratory, Inc.

WO#: 1205141

08-May-12

Client: Project:	Daniel B. Stephens & Assoc. Salty Dog
Sample ID MB	SampType: MBLK TestCode: EPA Method 300.0: Anions
Client ID: PBW	Batch ID: R2571 RunNo: 2571
Prep Date:	Analysis Date: 5/3/2012 SeqNo: 71672 Units: mg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual ND 0.50
Sample ID LCS	SampType: LCS TestCode: EPA Method 300.0: Anions
Client ID: LCS	V Batch ID: R2571 RunNo: 2571
Prep Date:	Analysis Date: 5/3/2012 SegNo: 71673 Units: mg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chloride	4.7 0.50 5.000 0 94.9 90 110
Sample ID MB	SampType: MBLK TestCode: EPA Method 300.0: Anions
Client ID: PBW	Batch ID: R2623 RunNo: 2623
Prep Date:	Analysis Date: 5/7/2012 SeqNo: 72905 Units: mg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual ND 0.50
Sample ID LCS	SampType: LCS TestCode: EPA Method 300.0: Anions
Client ID: LCS	V Batch ID: R2623 RunNo: 2623
Prep Date:	Analysis Date: 5/7/2012 SeqNo: 72906 Units: mg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chloride	4.6 0.50 5.000 0 92.0 90 110

_

citi

#### Qualifiers:

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
  - RL Reporting Detection Limit

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Analyz 490 Albuquerq TEL: 505-345-3975 FAX: Website: www.hallenvir	I Haw we, NI 505-3	kins M 871 45-41	NE 105 107	Sample Log-In Check Li
Client Name: DBS	Work C	Order	Num	ber:	1205141
Received by/date: AF	05/12/12				
<b>1</b> .	2/2012 12:45:00 PM			Ħ	4Map
Completed By: Lindsay Mangin 5/	2/2012 5:20:38 PM			đ	5"00 4#40
Reviewed By: ID 05/03/12				V	
Chain of Custody					
1. Were seals intact?	Ye	s ′	No		Not Present
2. Is Chain of Custody complete?	Ye	s 🗸	No		Not Present
3. How was the sample delivered?	Clin	ent			
Log in					
4. Coolers are present? (see 19. for cooler speci	fic information) Ye	s 🗸	No		NA
5. Was an attempt made to cool the samples?	Ye	s ✔	No		NA
6. Were all samples received at a temperature of	f >0° C to 6.0°C Ye	s 🗸	No		NA
7 Sample(s) in proper container(s)?	Ye	s 🗸	No		
8. Sufficient sample volume for indicated test(s)?	? Ye	s 🖌	No		
9. Are samples (except VOA and ONG) properly	preserved? Ye	s 🗸			
10. Was preservative added to bottles?	Ye	s	, No	•	NA
11. VOA vials have zero headspace?	Ye	\$	No		No VOA Vials 🖌
12. Were any sample containers received broken?	? Ye	5	No	✓	<b>#</b> - <b>f</b>
<ol> <li>Does paperwork match bottle labels? (Note discrepancies on chain of custody)</li> </ol>	Ye	s .✔	No		# of preserved bottles checked for pH:
14. Are matrices correctly identified on Chain of C	ustody? Ye	s 🗸	No		(<2 or >12 unless note
15. Is it clear what analyses were requested?		s 🖌			Adjusted?
<ol> <li>Were all holding times able to be met? (If no, notify customer for authorization.)</li> </ol>	Ye	s 🗸	No		Checked by:
<u>Special Handling (if applicable)</u>					
17, Was client notified of all discrepancies with thi	s order? Yes	s .	No		NA 🗸
Person Notified:	Date	يبه عرب خرائم	يلتار الاحتاديم		an a
By Whom:	Via: eN	lail	P	none	Fax In Person
Regarding:					and a state of the state of the later of the state of the state of the state of the
Client Instructions:					
18. Additional remarks:					
19. <u>Cooler Information</u>					
Cooler No   Temp °C   Condition   Seal					

Page 1 of 1

	1 1	1	1	3	tion of the second s	1	â	ie. V	ł	ž		ŝ	ŝ.	ŧ		ŝ	ž	j		1	1	á		Ĩ	ŧ.	Ĩ	<u>ل</u>	2	Ť.	â		\$	)	1		
--	-----	---	---	---	-----------------------------------------------------------------------------------------------------------------	---	---	----------	---	---	--	---	----	---	--	---	---	---	--	---	---	---	--	---	----	---	----------	---	----	---	--	----	---	---	--	--

. . .

1.104.00.000

Ĩ

С	hain-	of-Cu	stody Record	Turn-Around	Time:															
Client:	·····	DBS			🗆 Rush					_										
				Project Nam														KA	τοι	K T
Mailing	Address	1001	D Academy NE	5	atta D		Ì	40	01 LL						ment			100		
			- HEADERNY NZ	Project #:	Satty Dog				4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107											
Phone	#· c		2-9400	55	28.0118	01		IE	I. DU	0-34	0-35				Req					
			@DBStephens com					<u>()</u>	el)									1		
QA/QC I	Package:		WIDDEPIERS UNIT		-90		021)	s on	Cies					S,	PCB's					
E Stan	-	_	Level 4 (Full Validation)	Mike	= Mever	1-	TMB's (8021)	TPH (Gas only)	TPH Method 8015B (Gas/Diesel)					Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ )	PC I			_		
Accredi			· · · · ·	Sampler: /	- Mever	£	MB	H	<u>е</u>	÷	÷	÷		NO2	8081 Pesticides / 8082					Î
O NEL		□ Other	「	Onslease	reset	白金	+	÷	015	418.	504	Ł	s	0°	/ Sé		S	Chlori		5
BEDD	) (Type) _	<u> </u>	, 	Sample Ten	perandre:		TBE	Ē	B	ğ	B	δ	leta	CI,N	icide	Ŕ	Ĭ			S S
Date	Time	Matrix	Sample Request ID	Container	Preservative		BTEX + MTBE	BTEX + MTBE +	Aeth	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	s (F	Pest	8260B (VOA)	8270 (Semi-VOA)	300.0		Air Bubbles (Y or N)
Date		Manx	Sample Request ID	Type and #	Туре		TEX	Ĭ	H	Ŧ	B	5	CR	nion	81	260E	270	g		B
deal				N E	<b>J</b>		60	<b>a</b>	F	<u>–</u>	<u>ш</u>	80	R	A	8 8	80	80	7	+	<u> </u>
9/20/12	,	Water	DRS-8	None	500 ml Paly												┝─┤			┼╌┼╼
_	1400		MW-5		<u>{}</u>	-002				-									+	++-
_	1515		MW-3			-003												4		+-+-
	1559		DBS-6			-004	<u> </u>											4		$ \downarrow \downarrow \downarrow$
	1722		DBS-9	L- (		-005	ļ								L			4		$\downarrow$
	1808		DBS-5			-006				_								_		$\downarrow$
SILA	0816		DBS-3			-007												4		
	0858		DBS-4			-00%												1		
	0941		DBS-2			-009												1		
	1027		DBS-IR			-010												1		
1	1104		PMW-1															1		
																L				
Date: 5/1/12	Time:	Relinquishe	ed by	Received by:	· · · ·	Date Time	Rer	nark	s:											
Date:		1	1 bich	1-1		5/2/12 0903	1													
	Time:	Relinquishe		Received by:	1' /	$   \int z \left[ 2 \right] \left[ 2 $	+-													
5/2/12	12:43	17:	1) 1/2	Le la		S/2/12 (#.P														

If necessary, samples submitted to Hell Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Appendix 2		
<b>Field Notes</b>		

(iiii)

<u>in a</u>

ang

ر الاش

œ.

-

					- •	
4/30/12 MU	4/30/12		-	-		Ll)
0520 Load up at ware house	1245	DBS-8	(72.95.6	2.00=10.95	0.5= 5.4	15 gal (3cv))
1100 Onsite at Salty Dog	Time	Vol (sal)	DH	T°C	Soc Yem	Comments
Begin guoging wells	1251	Initia	7.51	25.1	717	Turbid
Pres	1252	1.5	7.56	21.8	693	Turbid
Well DTW TD	1254	3.0	7.68	21.2	682	milkg
PMW-1 67.27 78.71	1856	4.5	7.67	21.0	673	milky
DES-1R 63.60 74.58	12.58	Final	7.67	21.1	670	milky
DBS-2 66.26 76.51	1300	collect	sampk	0	1	U
DB5-3 61.41 76.80						
DBS-4 67.02 79.72	1315	MW-5	(129.12-	61.50:67	62.0.50	33.81gd zei
DBS-5 63.70 77.51	Time	Voltal	pH	Te	Sol yem	Comments
DBS-6 63.43 77.00	1332 Tertiat	Initial	7.34	23.4	920	clear
DBS-8-62.00 72.95	1343	11	7.76	21.3	3744	Clear
DBS-9 54.68 69.90	1348	22	7.65	20.4	3669	Clear
MW-3 63.39 147.05	1352	33	7.51	20,1	3632.	clea,r
MW-5 61.50 129.12	Finat	Final	7.50	19.9	3596	clear
1220 DES Calibrate YSI	1400	Collec	+ sam	ole		
pt 7: 7.08@ 24.5°C SpC 1/m 992 023.8		1				
10: 10.05 @ 24.6°C	1410	MW.3	(147.05.63	3.39=83.66-0	0.5= 41.83	gal 3cv)
	Time	Vol	pH	Toc	SpCure	Comments
The state of the s	1440	Initial	7.22	22.2	6650	clear
	1452	14	6.98	20.7	24280	
	1501	28	7,09	20.2	27759	7
	1510	42	7.37	20.2	29278	
	1512	Final	7.42	19.9	29162	
	1515	collec	et sam	ple		

2. Kr

_

-

4/30/12					MD	5/1/12					No
1527	DB5-6	(77.00-6	63.43 = 18.	57.0.5=	6.795al 3cv)	0730	Onsite	at Salt	y Dog.		1
Time	Vol (gas)	pH	TOC	SpC 1/Em	0			rate Y	0 0		
1548	Initial	7.24	23.4	1632	Turbid		pHZ.	1.00		SpC Mcm (1000)	999
1550	2	7.45	21.3	1491	Milks		10	10.05	18.0	(1000)	
1553	4	7.42	20,8	1480	Clear.	0742	DBS-3	(76.80-6	1.41 = 15.39	1.0.5=7.	70gal (300)
1556	6	7.46	20.4	1490	Clear	Time	Vol (BOD)	pH	Toc		Commente
1558	Final	7.38	20.8	1505	Clear	0807	Initial	7,43	19.4	467	Turbid
1559	Collect	sample				0809	2.3	7.45	18.9	486	Milky
		· · ·				0811	4.6	7.46	18.8	473	Milky
1650	D.B5-9	(69.90·5	4.68=15.2	0.5=7.	61801 3cv)	0813	6.9	7.51	19.1	469	clear
Time	Vol (Gal)	pH	TOC		Comments	0815	Fina(	7.43	19.0	469	Clear
1708	Initial	7.24	22.4	2372	TCHE	0816	Collect S	sample			
51712	2	7.61	20.4	1722	Turbid						
1716	94	7,70	19.8	1760	Clear	0830	DBG-4 (	79.72-6	1.02=12.7	0.0.5=6.	35 gal Ben
1719	6	7.71	19.5	1550	Clear	(847	Initial	7.63	22.5	469.8	TUTLE
1721	Final	7.62	19.5	1548	clear	0850	2	7.65	20.8	455	Milky
1722	Collect :	Sample				0853	4	7.63	20.1	457	clear
						0856	6	7.67	19.4	457	Clear
1742	DBS-5	(77.51-6	3.70 = 13.	81.0.5=6	.91 gal 300)	0857	Final	7.63	19.6	450	Clear
Time	Vol (gal)	DH	T°		Comments	0858	1	Samp	ke .		
1759	Initial	7.26	23,1	1065	Turbid	A		:			<u> </u>
1801	2	7.40	20.8	1021	Milky						
1804	4	7.45	20.6	1007	Clear						
1806	6	7,51	20.1	1007	clear						
1807	Final	7.48	20.7	1005	Clear						
	Collect	Sample	2								

5/1/18		111	1 1		I I I MU	5/1/12			:	MU
	DB5-2	(76 51-66	26:10.2	5=0.5=5.1	3 gal (301)	1116	North end	flow meter	reading	73740
Time	Vol(gal)	pH_			Comments	1124	South end	flow meter	reading	91450
	Initial	7.63	21.4	450	Turbid	1200	offsite			
0933		7.67	20.1	443	Clear	$\sum$				·
0936	3.O	7.60	19.9	442	Cleat	·	<u> </u>		an a capital and a set of a subsequence of the summary	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0939	4.5	7.61	19.9	440	Clear		<u> </u>			
0940	Final	761	20.5	456	Clear	- 41.				
0741	Collect =	ample							1	
					i ma					
0957	DBS-IR	(74.58-6	3.60=10.9	8.0.5=5.4	gal (300))				2	- 
Time	Vol (Jal)	PH	Tec	Soc them	Comments				1	
1019	Initial	7.14	23.0	8800	Turbid					
	1.5	7.38	19.9	6230	Milky			- (5		
1023	3.0	7,42	R.5	5930	Clear	<b>,</b>		$= \bigvee$		
1025	4.5	7.44	12,2	6440	clear			-Q		
1026	Final	7.41	19.0	6820	4/221				$\sum$	:
1027	Collect	Sample								
						Management and a subscription of the second				
1041	PMW-1	(78.71-	67.27=1	1.44.0.5=	5. 72 Jal Ber)	والمتحميل والواحد المحمورة في الراب فالمحمولين				·
	Valla!		1		Comments				····· · · · · · · · · · · · · · · · ·	
					Milky			:		
	1.5	•		1	0					
1100	3.0	7.32	20.7	2357	Clear					
1101	4.5	733	20,4	2428	Clean				· · · · · · · · · · · · · · · · · · ·	
1103	Final	7.30	20.6	2448	Cleat		; ;	· · · · · · · · · · · · · · · · · · ·		$\sim$
1104	colles	t samp	le							



June 1, 2012

RECEIVED OCD

2012 JUN -4 P 1:32

Mr. Jim Griswold New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, NM 87505-4225

Re: Groundwater Extraction System Installation Report Salty Dog Brine Station, Lea County, New Mexico

Dear Mr. Griswold:

On behalf of PAB Services, Inc., Daniel B. Stephens & Associates, Inc. (DBS&A) is pleased to submit the enclosed report documenting the installation of a groundwater extraction system and replacement monitor well at the Salty Dog brine station from April 4 to 7, 2012.

Please do not hesitate to call me at (505) 353-9130 if you have any questions or require additional information.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Michael D. McVey

Senior Hydrogeologist

Enclosures

cc: Pieter Bergstein, PAB Services, Inc.

Daniel B. Stephens & Associates, Inc.

Groundwater Extraction System Installation Report Salty Dog Brine Station Lea County, New Mexico

Prepared for New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, Environmental Bureau

June 1, 2012



Daniel B. Stephens & Associates, Inc.

6020 Academy NE, Suite 100 • Albuquerque, New Mexico 87109



### **Table of Contents**

### 

### **List of Figures**

### Figure

- 1 Site Location Map
- 2 RW-1 Piping & Instrumentation Diagram
- 3 RW-2 Piping & Instrumentation Diagram

### **List of Appendices**

i

### Appendix

- A Manufacturer's Cut Sheets
- **B** Photographic Documentation
- C Field Notes
- D Manufacturer's Operations and Maintenance Information

### 1. Introduction

On behalf of PAB Services, Inc. (PAB), Daniel B. Stephens & Associates, Inc. (DBS&A) has prepared this groundwater extraction system installation report for submission to the New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (OCD). The Salty Dog brine station (Site) is located in Lea County in southeastern New Mexico, approximately 12 miles west of Hobbs on the south side of the Hobbs/Carlsbad Highway (US-180 W/US-62 W) (Figure 1).

The Site is comprised of a northern portion where the brine pond was located prior to closure in October 2008, and a southern portion where the brine well is located. The brine pond area and the brine well area are separated by approximately 2,500 feet, joined by a dirt road. Since the closure of the brine pond, a number of frac tanks have been stationed in the northern portion of the Site to serve as storage for brine that is produced for resale. A concrete truck loading pad is located near the frac tanks. The brine well is currently not operational and attempts are being made to redrill the well and restore brine production at the Site. Six monitor wells (PMW-1, DBS-1R and DBS-2 through DBS-5), one nested well (NW-1), and one recovery well (RW-1) are located in the brine pond area. Nine monitor wells (MW-2 through MW-6, DBS-6 through DBS-9), one nested well (NW-2) are located in the brine well area (Figure 1).

This report summarizes the installation of a groundwater extraction system to hydraulically control chloride groundwater plumes in the northern brine pond area and the southern brine well area. A summary of the extraction system installation and system operation are provided in Sections 2 and 3. A brief discussion of the installation of replacement monitor well DBS-1R is provided in Section 4. Section 5 presents the conclusions. The field activities were completed at the Site from April 4 through 7, 2012.

1

### 2. Extraction System Installation

On April 4, 2012, DBS&A personnel arrived on-site to install a groundwater extraction system for the hydraulic control of chloride-contaminated groundwater plumes at the brine pond area and the brine well area. The extraction system consists of two submersible pumps, conveyance lines, electrical power, and controls to extract groundwater from recovery wells RW-1 and RW-2, and convey the extracted groundwater to on-site frac tanks for off-site disposal.

Submersible pumps were installed in recovery wells RW-1 (brine pond area) and RW-2 (brine well area) to initially extract 0.5 gallon per minute (gpm) and 1.5 gpm, respectively. DBS&A subcontracted with Peterson Drilling and Testing, Inc. (Peterson) of Amarillo, Texas to complete the installation of the pumps. A Grundfos submersible pump, model number 5S03-9, rated to 6 gpm, was installed in RW-1 at a depth of 82 feet below ground surface (ft bgs) with 1-inch Schedule 40 (SCH 40) polyvinyl chloride (PVC) drop pipe. A Grundfos submersible pump, model number 16S05-5, rated to 18 gpm, was installed in RW-2 at a depth of 100 ft bgs with 1-inch SCH 40 PVC drop pipe. Manufacturer's cut sheets are provided for each pump in Appendix A.

Electrical power was provided from two separate distribution panels located near each recovery well. Electrical installation was completed by Triple S Electric under contract with the facility owner. Completions were the same at each well head and included a concrete surface pad, locking steel shroud, plumbing connections, totalizing flow meter, and pressure gauge. Four bollards were installed at each well head for protection. Conveyance lines, consisting of 1.5-inch high density polyethylene (HDPE), were placed in excavated trenches at approximately 8 inches bgs and buried. The conveyance lines carry the extracted groundwater from each recovery well to frac tanks located nearby for off-site disposal. Approximately 100 feet of HDPE pipe was installed from the RW-1 well head to a frac tank located at the brine pond area. Approximately 800 feet of HDPE pipe was installed from the RW-2 well head to a frac tank located at the brine well area. Piping and instrumentation diagrams (P&IDs) of each well installation are presented in Figures 2 and 3, with lengths and material details provided. Photographic documentation of the extraction system installation is provided in Appendix B. Field notes recorded during the installation are provided in Appendix C.

S:\Projects\ES08.0118.01_Salty_Dog_Inc\Docs\Extract Sys Install\Rpt_6-12.doc

2

### 3. System Operation

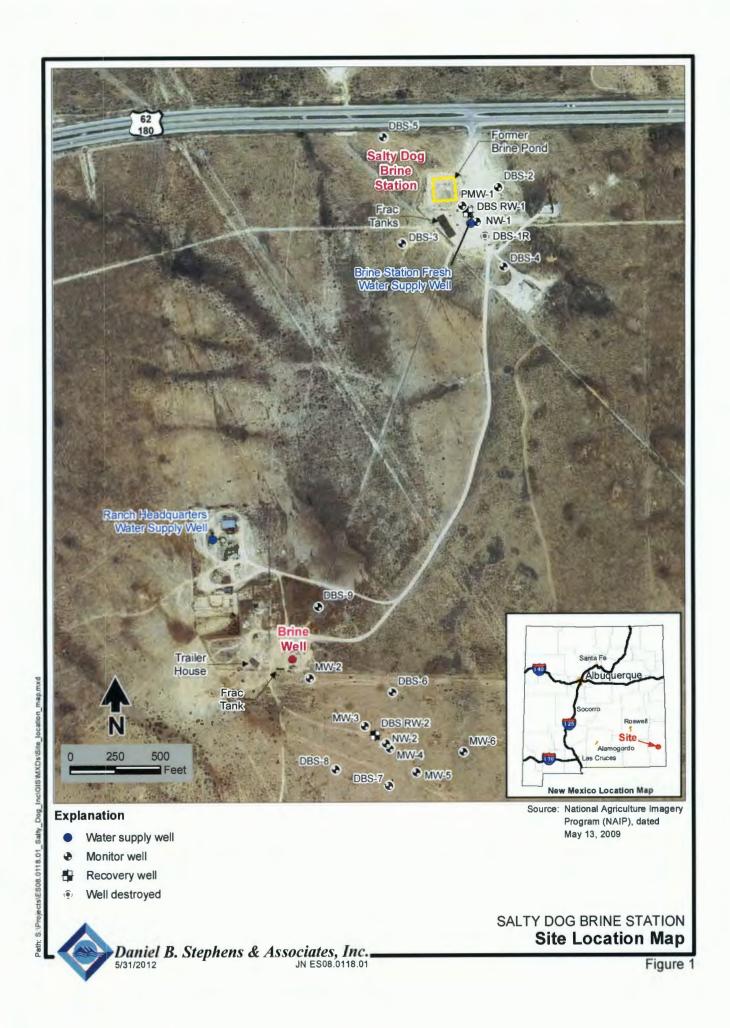
The pumping rate for each recovery well can be increased or decreased by electronically adjusting the line pressure set point on the control panel located at each well head or manually throttling a gate valve in each conveyance line. A 240 volt power disconnect is mounted next to the control panel for each pump. The pump control for each well is provided by a Grundfos CU 301 control unit. The CU 301 provides pump controls by maintaining a constant line pressure registered by a pressure transducer. The CU 301 can be set for line pressures ranging from 40 pounds per square inch (psi) to 100 psi. Both controllers were set initially to 40 psi line pressure. With the line pressure set to 40 psi, the valve nearest the point of discharge from each well was opened, adjusted, and a timed reading was taken from the totalizing flow meter. This was done with both systems until the flow rate was found to be acceptable and the system Initially, RW-1 was set to produce 0.5 gpm and RW-2 was set to produce 1.5 had stabilized. gpm. Each frac tank includes a float valve that will shut off flow should a tank reach its full capacity. A frac tank storage volume of 20,000 gallons allows 7 to 28 days of storage between pumping and off-site disposal events, based on recovery rates of 1.5 to 0.5 gpm, respectively. However, PAB plans to dispose of the extracted groundwater on a daily basis. Manufacturer's information for operation and maintenance of the pumps is provided in Appendix D.

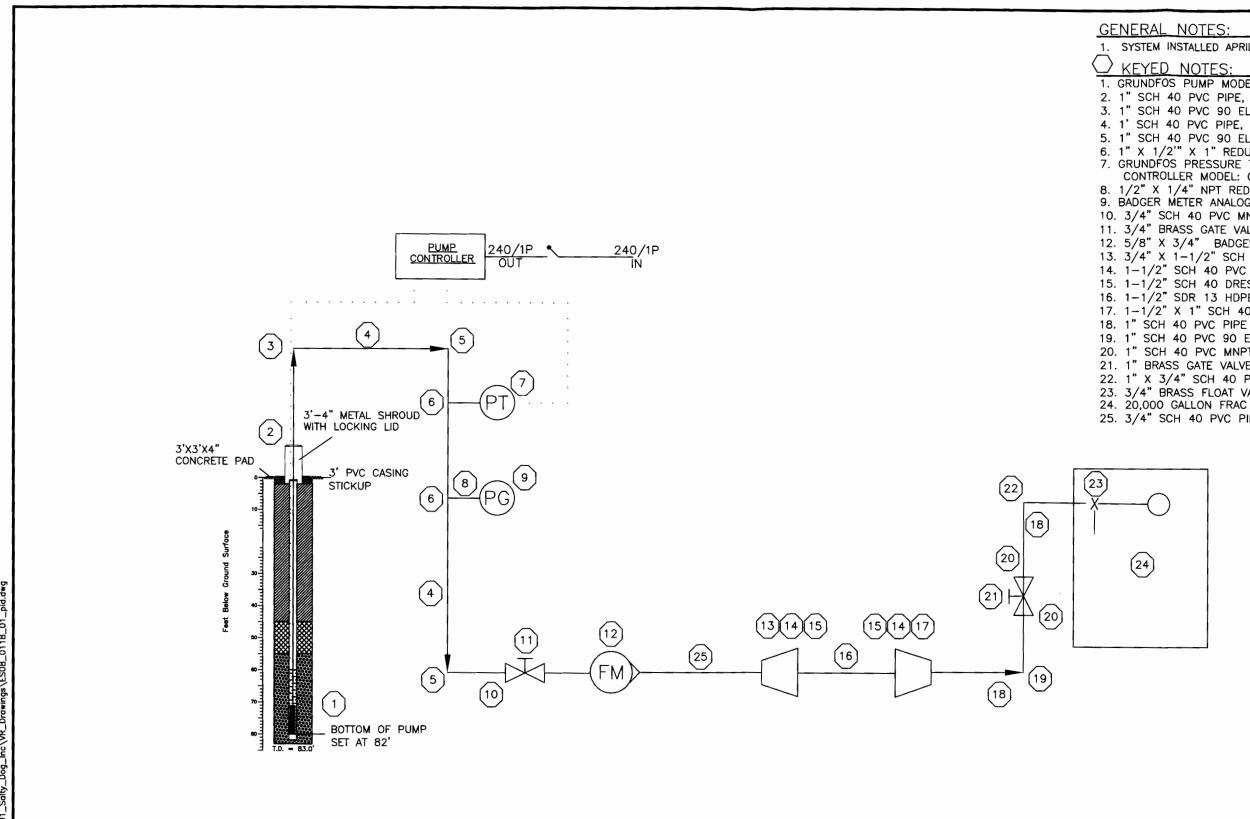
### 4. Monitor Well Replacement

On April 4, 2012, DBS&A and Peterson installed monitor well DBS-1R to replace monitor well DBS-1 which was destroyed by a backhoe during site grading in 2011. Installed five feet south of DBS-1, the DBS-1R boring was advanced to approximately 20 feet below the water table and completed as a 2-inch-diameter groundwater monitor well. The well consists of 20 feet of 2-inch-diameter, 0.020-inch slot, flush-threaded, machine-cut, SCH 40 PVC well screen with blank SCH 40 PVC to the surface. The screen was placed so that approximately five feet would be above the water table and 15 feet below. The filter pack consisted of 8/16 silica sand, placed by a tremie pipe, extending from the bottom of the boring to approximately 3 feet above the well screen. A 3-foot-thick bentonite pellet seal (hydrated) was then placed above the sand pack, and the annular space above the bentonite seal was filled with cement/bentonite grout to the surface. The well was completed with a locking cap within an eight-inch-diameter, flush-mount, traffic-grade well vault with a 3-foot by 3-foot by 6-inch-thick concrete pad to mitigate potential disturbance to the well completion. The concrete pad was also painted orange to increase visibility to on-site traffic (Photograph 11).

DBS&A was able to locate monitor well DBS-1 so that the well could be properly plugged and abandoned. It was determined that the top six inches of the well had been sheared off and the well casing was partially filled with dirt. The well casing was cut off three feet below ground surface and filled with cement/bentonite grout. The concrete well pad was broken up and the concrete and steel well vault were disposed of.

4

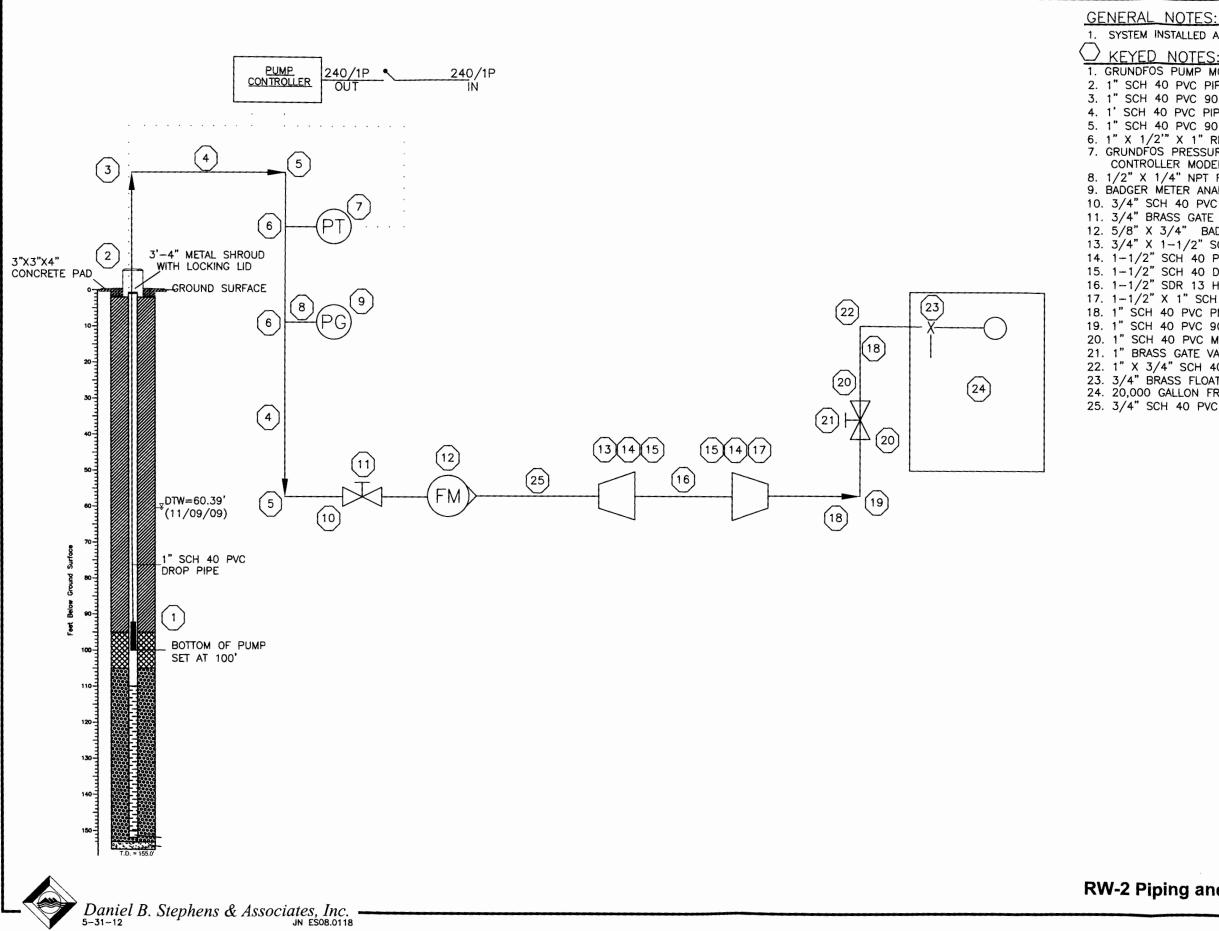

## 5. Conclusion


A groundwater extraction system was installed at the Site from April 4 to 7, 2012 to provide hydraulic control of the chloride-contaminated groundwater plumes at the former brine pond and brine well areas. The completed installation included the placement of submersible pumps in recovery wells RW-1 and RW-2 with plumbing to frac tanks for off-site disposal. The pumps were sized to meet the design pumping rates for hydraulic plume control specified in the 2009 remedial design report of 0.5 gpm for RW-1 and 15 gpm for RW-2. Currently, the flow rate for RW-1 is set at the design specification of 0.5 gpm. The flow rate for RW-2 was set below the design specification of 15 gpm to facilitate daily off-site disposal of the extracted groundwater. Once the brine well is brought back online, full-scale operation of the extraction system can begin with reinjection of the extracted groundwater into the brine well. At that time, the flow rate for RW-2 will be increased to meet the design specification of 15 gpm.

Quarterly groundwater monitoring will continue at the Site to assess system performance by the collection of groundwater samples for laboratory analysis from the on-site monitor wells. Chloride concentrations measured in each well will be used to determine contaminant plume control. In addition, extracted groundwater volumes will be provided in each quarterly report. System maintenance will be performed by PAB during routine weekly site visits, in addition to maintenance performed by DBS&A during quarterly groundwater monitoring.

5

# Figures






ť

1. SYSTEM INSTALLED APRIL 4 THROUGH 7, 2012 KEYED NOTES: 1. GRUNDFOS PUMP MODEL: 16S05-5 HP:1/2 2. 1" SCH 40 PVC PIPE, NPT ENDS 3. 1" SCH 40 PVC 90 ELBOW MNPTX SOCKET 4. 1' SCH 40 PVC PIPE, SPIGOT ENDS 5. 1" SCH 40 PVC 90 ELBOW, SOCKET ENDS 6. 1" X 1/2'" X 1" REDUCING TEE SOCKET*FNPT*SOCKET 7. GRUNDFOS PRESSURE TRANSDUCERS & PUMP CONTROLLER MODEL: CU301 8. 1/2" X 1/4" NPT REDUCING BUSHING, BRASS 9. BADGER METER ANALOG PRESSURE GAUGE 10. 3/4" SCH 40 PVC MNPT ADAPTER 11. 3/4" BRASS GATE VALVE 12. 5/8" X 3/4" BADGER TOTALIZING FLOWMETER 13. 3/4" X 1-1/2" SCH 40 PVC ADAPTER 14. 1-1/2" SCH 40 PVC PIPE 15. 1-1/2" SCH 40 DRESSER COUPLING 16. 1-1/2" SDR 13 HDPE PIPE 17. 1-1/2" X 1" SCH 40 PVC REDUCING BUSHING 19. 1" SCH 40 PVC 90 ELBOW 20. 1" SCH 40 PVC MNPT ADAPTER 21. 1" BRASS GATE VALVE 22. 1" X 3/4" SCH 40 PVC 90 ELBOW FNPT ADAPTER 23. 3/4" BRASS FLOAT VALVE W/INTEGRAL BULKHEAD FITTING 24. 20,000 GALLON FRAC TANK 25. 3/4" SCH 40 PVC PIPE

# **RW-1** Piping and Instrumentation Diagram



550B

.

1. SYSTEM INSTALLED APRIL 4 THROUGH 7, 2012 **KEYED NOTES:** 1. GRUNDFOS PUMP MODEL: 16S05-5 HP:1/2 2. 1" SCH 40 PVC PIPE, NPT ENDS 3. 1" SCH 40 PVC 90 ELBOW MNPTX SOCKET 4. 1' SCH 40 PVC PIPE, SPIGOT ENDS 5. 1" SCH 40 PVC 90 ELBOW, SOCKET ENDS 6. 1" X 1/2" X 1" REDUCING TEE SOCKETxFNPTxSOCKET 7. GRUNDFOS PRESSURE TRANSDUCERS & PUMP CONTROLLER MODEL: CU301 8. 1/2" X 1/4" NPT REDUCING BUSHING, BRASS
 9. BADGER METER ANALOG PRESSURE GAUGE 10. 3/4" SCH 40 PVC MNPT ADAPTER 11. 3/4" BRASS GATE VALVE 12. 5/8" X 3/4" BADGER TOTALIZING FLOWMETER 13. 3/4" X 1-1/2" SCH 40 PVC ADAPTER 14. 1-1/2" SCH 40 PVC PIPE 15. 1-1/2" SCH 40 DRESSER COUPLING 16. 1-1/2" SDR 13 HDPE PIPE 17. 1-1/2" X 1" SCH 40 PVC REDUCING BUSHING 18. 1" SCH 40 PVC PIPE 19. 1" SCH 40 PVC 90 ELBOW 20. 1" SCH 40 PVC MNPT ADAPTER 21. 1" BRASS GATE VALVE 22. 1" X 3/4" SCH 40 PVC 90 ELBOW FNPT ADAPTER 23. 3/4" BRASS FLOAT VALVE W/INTEGRAL BULKHEAD FITTING 24. 20,000 GALLON FRAC TANK

25. 3/4" SCH 40 PVC PIPE

## **RW-2** Piping and Instrumentation Diagram

# Appendices

Appendix A

Manufacturer's Cut Sheets

L

# **GRUNDFOS STAINLESS STEEL PUMPS**

### SQ/SQE SUBMERSIBLE PUMPS

#### 3-Inch SQ/SQE Submersible Well Pumps 3-Inch and Larger Wells

SQ/SQE pumps are suitable for both continuous and intermittent operation for a variety of applications:

- Domestic water supply
- Small waterworks
- Irrigation
- Tank applications

### SQ, SQE pumps offer the following features:

- Dry-Run protection
- High efficiency pump and motor
- Protection against up-thrust
- Soft-start
- Over-voltage and under-voltage protection
- · Overload protection
- Over-temperature protection
- High starting torque

Additionally, the SQE pumps offer:

- Constant pressure control
- Variable speed
- Electronic control and communication

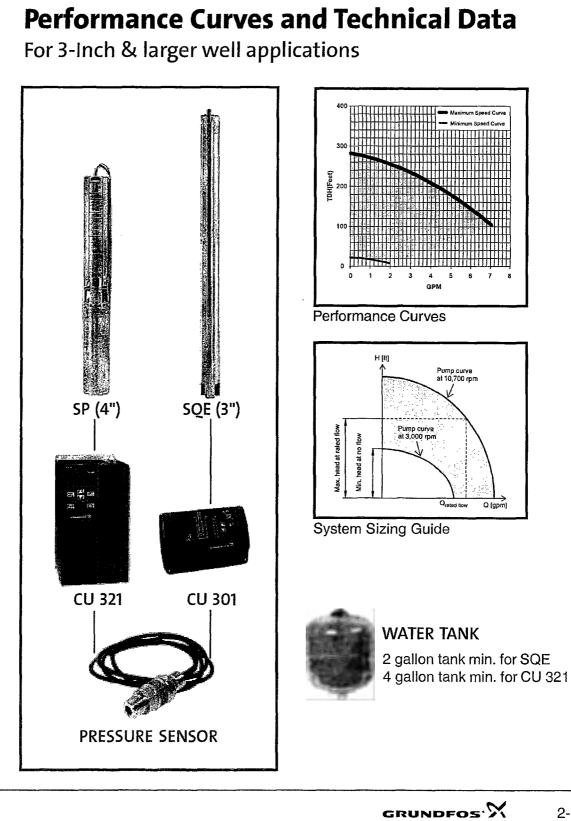
The SQ and SQE pump models incorporate an innovative motor design. With the use of permanent-magnet technology within the motor, the SQ/SQE pumps deliver unmatched performance. By combining permanent-magnet motors and Grundfos's own micro frequency converter, we are now able to control and communicate with the pump in ways never before possible. A few of the features that

### TYPE KEYS

SP Example	10 	) S	05 	-	9
Rated gallons per minute -					
Material of construction					
Horsepower	•				
Number of pump stages -					

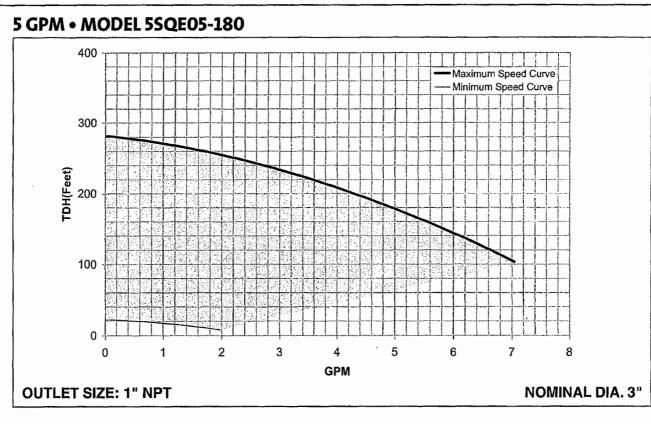
come out of this combination are Constant Pressure Control, Soft-Start, and integrated Dry-Run protection. These are just a few of the many features that the SQ/SQE pumps can offer.

The SQ pump models operate at a constant speed much like today's conventional pumps. The difference between it and traditional pumps is you get all the

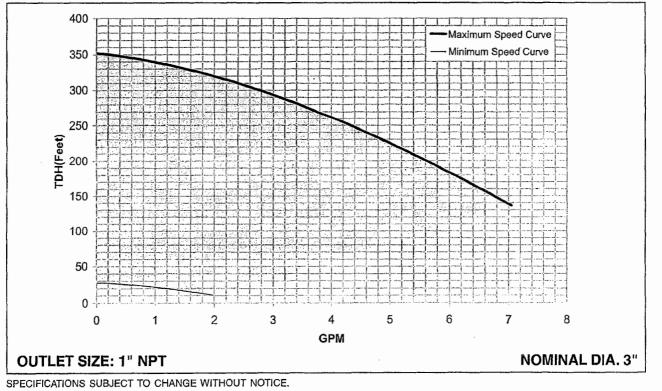



benefits of an electronically controlled permanentmagnet motor that cannot be accomplished with a conventional induction motor. The SQ pumps are available for single phase power. They use a simple 2-wire design making installation easy.

The SQE uses the Grundfos "Smart Motor". Like the SQ model, we still use the high efficiency permanent magnet motor, but we give this motor the ability to communicate. The "Smart Motor" communicates via the CU301 status box through the power leads. It is not necessary to run any additional wires down the well. By being able to communicate with the pump you can have Constant Pressure Control and the ability to change the pump performance while the pump is installed in the well. Like the SQ motor, this is also a 2-wire motor designed for single-phase operation.

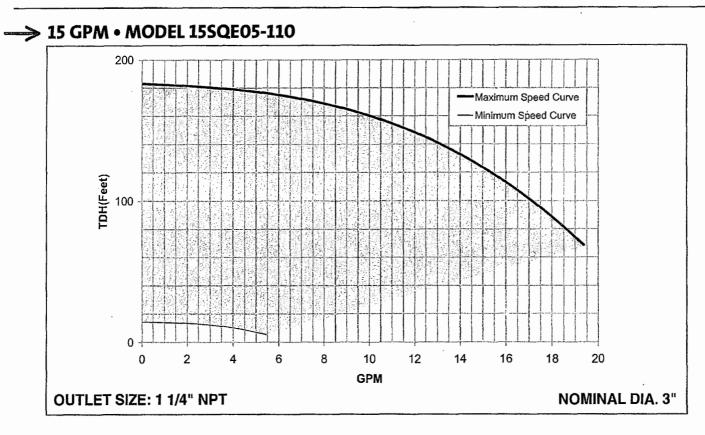

SQ/SQE Example 10 SQ E 05 - 16	60
Rated gallons per minute	
Basic version (without communication)	
Electronic communication	
Horsepower	
Total Dynamic Head in (ft) at rated flow	

1-3

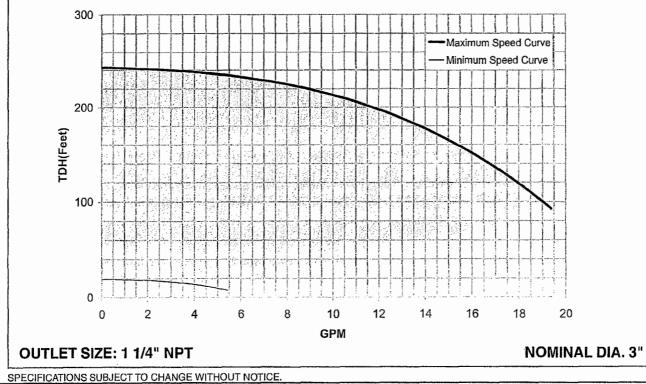



# **PERFORMANCE CURVES**

 $\geq$ 






GRUNDFOS 2-3

# **PERFORMANCE CURVES**



### 15 GPM • MODEL 15SQE07-150



GRUNDFOS'X 2-10

SQE

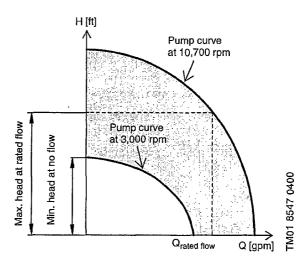
# SYSTEM SIZING GUIDE

#### Step 1

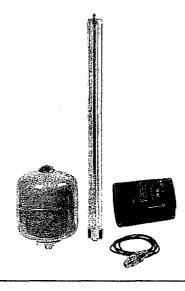
Calculate minimum head requirements at no flow conditions:

Hmax (required) = dynamic head + system pressure (in feet) + above grade elevation + friction loss.

#### Step 2


Select pump from chart as follows:

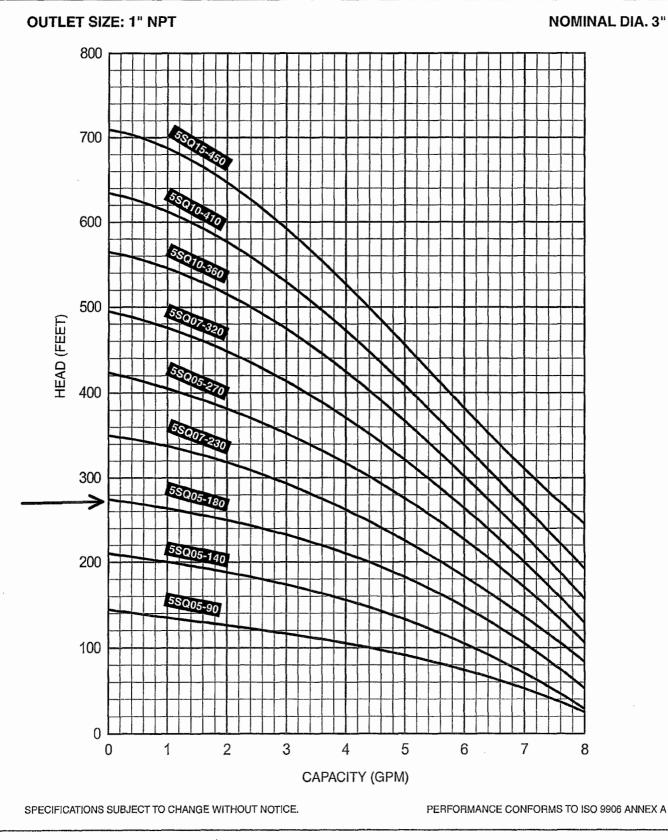
- > Choose model family based on the desired flow rate. i.e. 15SQE for a flow rate of 15gpm
- Select the first model with a value in Column 2 greater than the Hmax calculated in Step 1
- For example: the choice for a 22gpm model with an Hmax of 140' would be the 22SQE-160. Double check your selection in the performance curves found in the previous pages of this book.


	Col. 1	Col. 2
Syste	em Sizing Matri	ix
Pump Type Model B	Shutoff Head (0 GPM) @ 3000 RPM Min. Speed	Head @ Rated GPM @ 10700 RPM Max. Speed
	TDH(Feet)	TDH(Feet)
5SQE-90	11	86
5SQE-140	17	131
5SQE-180	22	177
5SQE-230	28	222
5SQE-270	34	270
5SQE-320	39	315
5SQE-360	45	360
5SQE-410	51	405
5SQE-450	56	450
10SQE-110	12	105
10SQE-160	17	164
10SQE-200	23	215
10SQE-240	29	267
10SQE-290	34	328
10SQE-330	40	390
15SQE-70	10	75
15SQE-110	14	123
15SQE-150	19	164
15SQE-180	24	205
15SQE-220	29	246
15SQE-250	33	287
15SQE-290	38	328
22SQE-40	5	36
22SQE-80	9	77
22SQE-120	14	117
22SQE-160	18	159
22SQE-190	23	200
22SQE-220	27	240
30SQE-40	5	33
30SQE-90	11	82
30SQE-130	16	126

GRUNDFOS'X

2-18



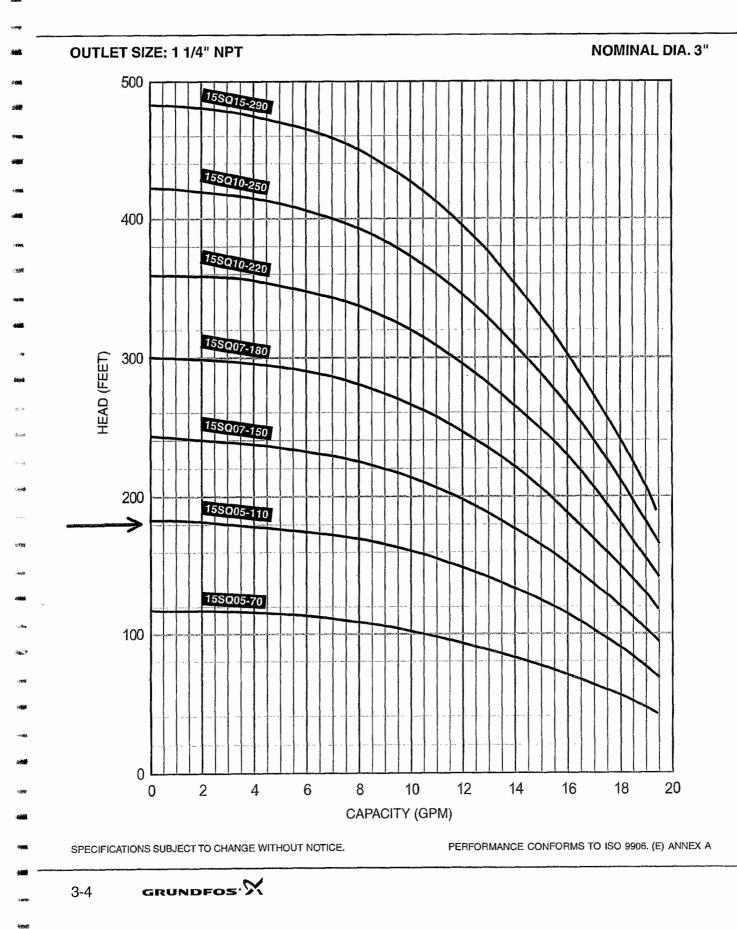

Note: All calculated head requirements must lie between the selected pump models minimum and maximum speed curves.



SQE



# **MODEL 5 SQ**




GRUNDFOS'X

3-2

PERFORMANCE CURVES

15 GPM

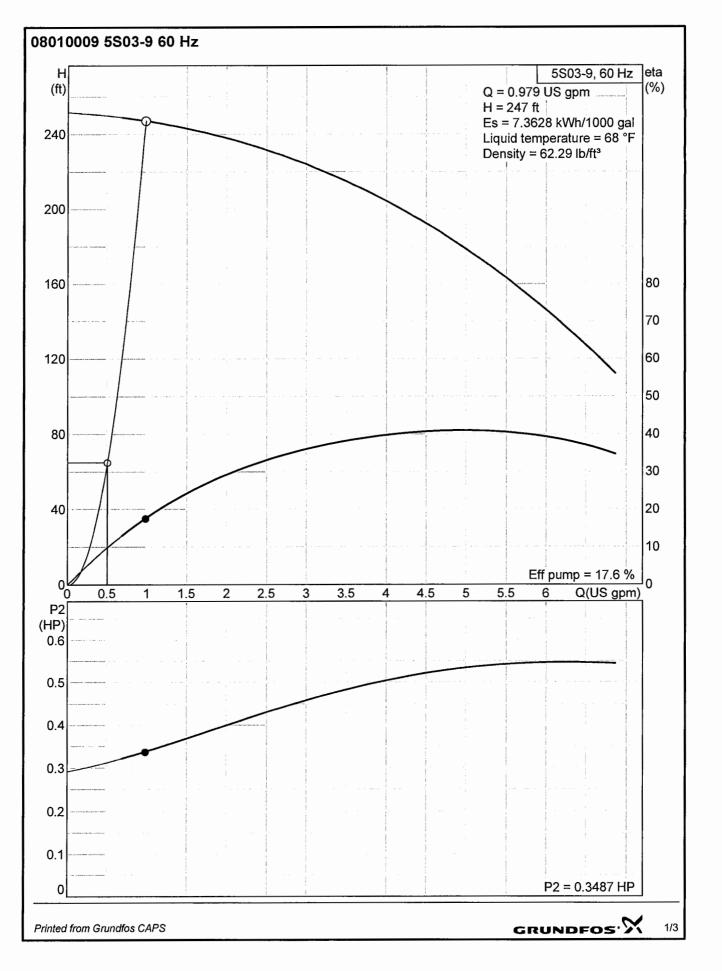


# SQ/SQE

# **TECHNICAL DATA**

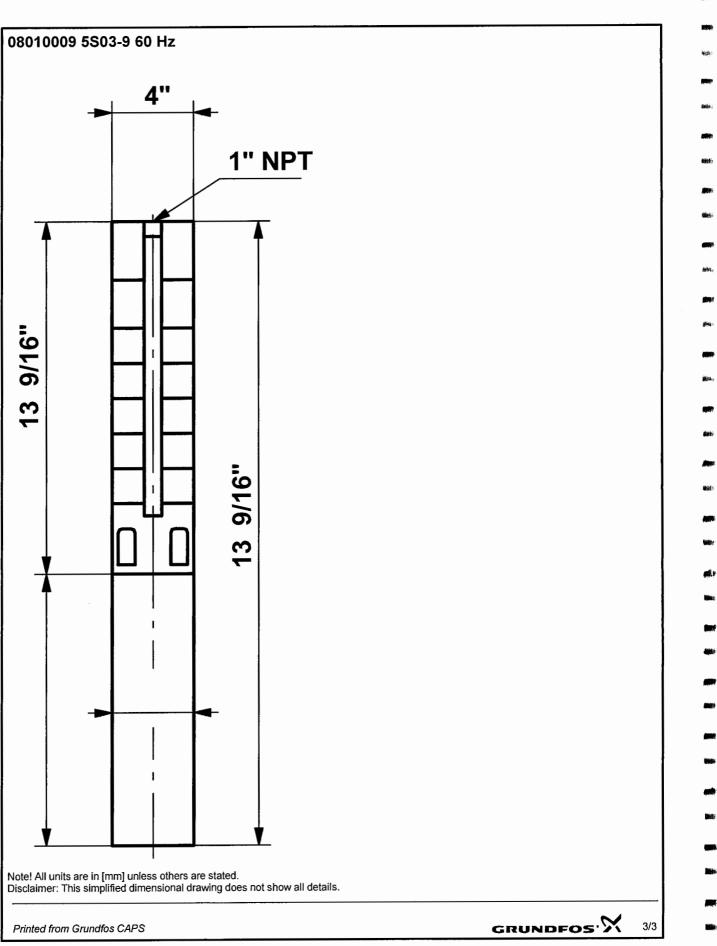
			MOTOR	DISCHARGE	DIMENSIONS IN INCHES					APPROX
MODEL	FIG.	HP	SIZE	SIZE	A	В	С	D	E	SHIP WT
5SQ/SQE05-90	A	1/2	3"	1" NPT	30.4	19.8	10.6	2.6	2.9	12
5SQ/SQE05-140	A	1/2	3"	1" NPT	30.4	19.8	10.6	2.6	2.9	12
5SQ/SQE05-180	A	1/2	3"	1" NPT	31.5	19.8	11.6	2.6	2.9	12
5SQ/SQE07-230	A	3/4	3"	1" NPT	33.6	19.8	13.7	2.6	2.9	13
5SQ/SQE07-270	A	3/4	3"	1" NPT	33.6	19.8	13.7	2.6	2.9	13
5SQ/SQE07-320	A	3/4	3"	1" NPT	34.6	19.8	14.8	2.6	2.9	13
5SQ/SQE10-360	A	1	3"	1" NPT	38.2	21.3	16.9	2.6	2.9	16
5SQ/SQE10-410	A	1	3"	1" NPT	38.2	21.3	16.9	2.6	2.9	16
5SQ/SQE15-450	A	1 1/2	3"	1" NPT	39.3	21.3	18.0	2.6	2.9	16
10SQ/SQE05-110	A	1/2	3"	1 1/4" NPT	30.4	19.8	10.6	2.6	2.9	12
10SQ/SQE05-160	A	1/2	3"	1 1/4" NPT	30.4	19.8	10.6	2.6	2.9	12
10SQ/SQE07-200	A	3/4	3"	1 1/4" NPT	31.5	19.8	11.6	2.6	2.9	13
10SQ/SQE07-240	А	3/4	3"	1_1/4" NPT	33.6	19.8	13.7	2.6	2.9	13
10SQ/SQE10-290	A	1	3"	1 1/4" NPT	35.0	21.3	13.7	2.6	2.9	16
10SQ/SQE15-330	A	1 1/2	3"	1 1/4" NPT	36.14	21.3	14.8	2.6	2.9	16
15SQ/SQE05-70	Α	1/2	3"	1 1/4" NPT	30.4	19.8	10.6	2.6	2.9	12
15SQ/SQE05-110	A	1/2	3"	1 1/4" NPT	30.4	19.8	10.6	2.6	2.9	12
15SQ/SQE07-150	A	3/4	3"	1 1/4" NP <b>T</b>	31.5	19.8	11.6	2.6	2.9	13
15SQ/SQE07-180	A	3/4	3"	1 1/4" NPT	33.6	19.8	13.7	2.6	2.9	13
15SQ/SQE10-220	А	1	3"	1 1/4" NPT	35.0	21.3	13.7	2.6	2.9	16
15SQ/SQE10-250	A	1	3"	1 1/4" NPT	36.1	21.3	14.8	2.6	2.9	16
15SQ/SQE15-290	A	1 1/2	3"	1 1/4" NPT	38.2	21.3	16.9	2.6	2.9	16
22SQ/SQE05-40	A	1/2	3"	1 1/2" NPT	30.4	19.8	10.6	2.6	2.9	12
22SQ/SQE05-80	A	1/2	3"	1 1/2" NPT	30.4	19.8	10.6	2.6	2.9	12
22SQ/SQE07-120	A	3/4	3"	1 1/2" NPT	31.5	19.8	11.6	2.6	2.9	13
22SQ/SQE07-160	A	3/4	3"	1 1/2" NPT	33.6	19.8	13.7	2.6	2.9	13
22SQ/SQE10-190	А	1	3"	1 1/2" NPT	38.2	21.3	16.9	2.6	2.9	16
22SQ/SQE15-220	A	1 1/2	3"	1 1/2" NPT	38.2	21.3	16.9	2.6	2.9	16
30SQ/SQE05-40	A	1/2	3"	1 1/2" NPT	30.4	19.8	10.6	2.6	2.9	12
30SQ/SQE07-90	A	3/4	3"	1 1/2" NPT	30.4	19.8	10.6	2.6	2.9	13
30SQ/SQE10-130	A	1	3"	1 1/2" NPT	35.0	21.3	13.7	2.6	2.9	13

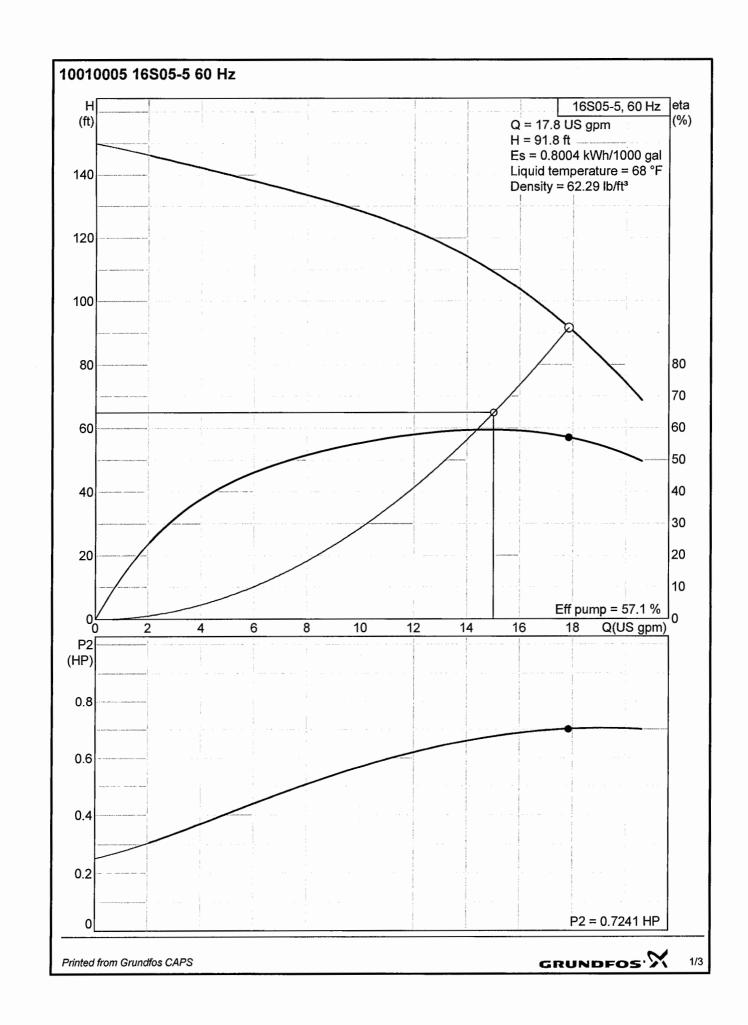
# **Dimensions and Weights**

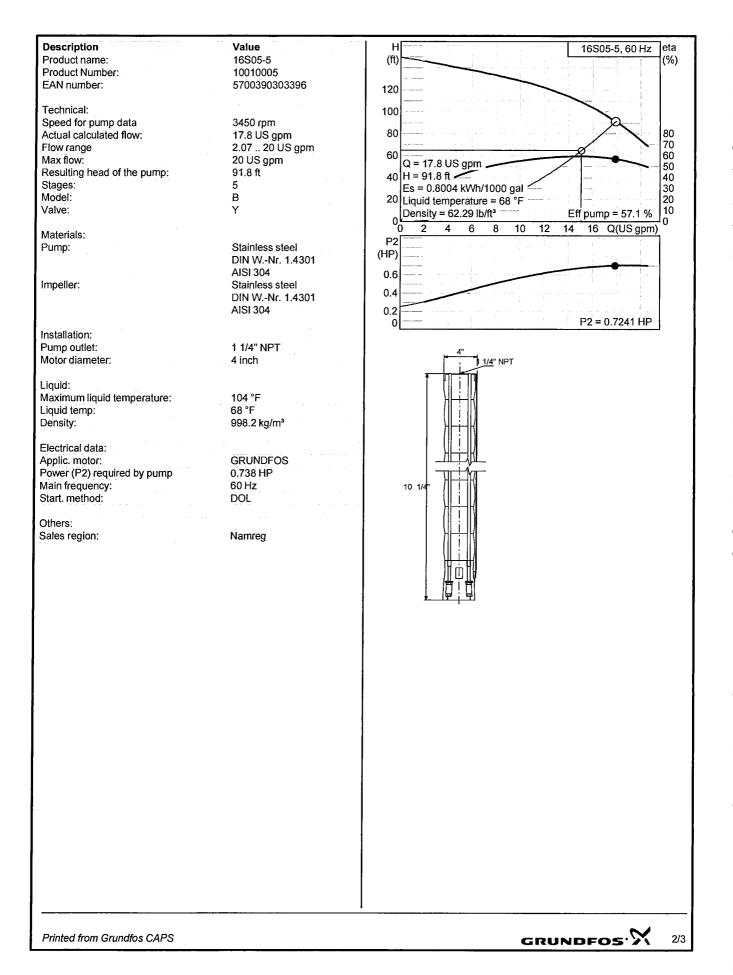

**TECHNICAL DATA** 

SQ/SQE

#### **DISCHARGE SIZES** 1" NPT 5SQ/SQE 1 1/4" NPT 10-15SQ/SQE E 1 1/2" NPT 22-30 SQ/SQE MATERIALS OF CONSTRUCTION COMPONENT SPLINED SHAFT Polyamide Valve Casing С Discharge Chamber 304 Stainless Steel Valve Guide Polyamide 316LN Stainless Steel Valve Spring ----Valve Cone Polyamide Valve Seat NBR Rubber NBR Rubber O-ring ... 310 Stainless Steel ٠ Lock Ring NBR Rubber Top Bearing Top Chamber Polyamide Guide Vanes Polyamide Polyamide w/tungsten carbide bearings Impeller Bottom Chamber Polyamide Neck Ring **TPU/PBT** Aluminum Oxide Bearing Polyamide Suction Interconnector Ring 304 Stainless Steel - D Pump Sleeve 304 Stainless Steel Cone for Pressure Equalization Polyamide Spacer Polyamide 316 Stainless Steel Sand Trap Shaft w/Coupling 304 Stainless Steel В Cable Guard 304 Stainless Steel NOTES: Specifications subject to change without notice.


Fig. A

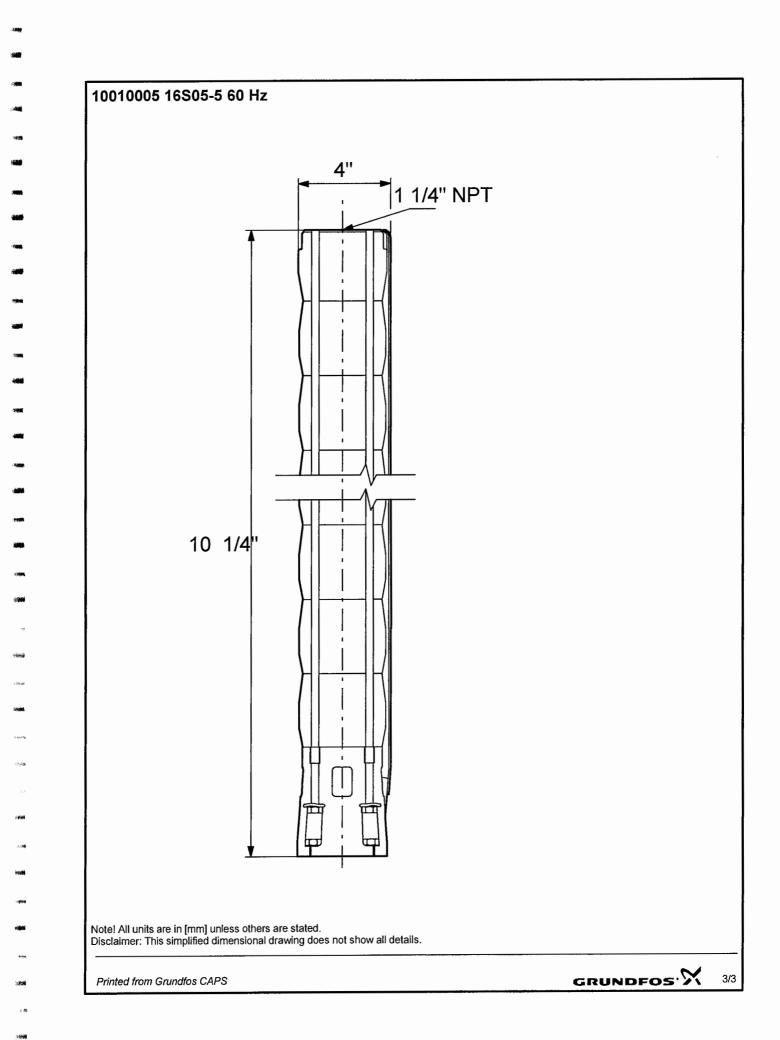

3-8




Resulting head of the pump:247 ftStages:9Model:BValve:YMaterials:Pump:Stainless steelDIN WNr. 1.4301AISI 304DIN WNr. 1.4301AISI 304DIN WNr. 1.4301AISI 3040.3DIN WNr. 1.4301AISI 3040.40.50.40.50.60.70.70.80.90.10.10.10.20.30.40.40.50.60.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.70.7<			
Resulting head of the pump: 247 ft Stages: 9 Wodel: B Valve: Y Materials: Pump: Stainless steel DIN WNr. 1.4301 AISI 304 Installation: Pump outlet: 1"NPT Motor diameter: 4 inch Liquid: Maximum liquid temperature: 104 °F Liquid temp: 68 °F Density: 998.2 kg/m ³ Electrical data: Applic. motor: GRUNDFOS Power (P2) required by pump 0.496 HP Main frequency: 60 Hz Stat. method: DOL Others:			
Resulting head of the pump: 247 ft Stages: 9 Model: $3$ Waterials: $P$ Pump: DIN WNr. 1.4301 AISI 304 mpeller: Stainless steel DIN WNr. 1.4301 AISI 304 nstallation: Pump outlet: 1" NPT Motor diameter: 4 inch Liquid: Maximum liquid temperature: 104 °F Chensity: 998.2 kg/m ³ Electrical data: Applic. motor: GRUNDFOS Power (P2) required by pump 0.496 HP Main frequency: 60 Hz DOL Dthers: $Q$			
Resulting head of the pump: 247 ft Stages: 9 Model: Valve: Y Materials: Pump: Stainless steel DIN WNr. 1.4301 AISI 304 Impeller: Stainless steel DIN WNr. 1.4301 AISI 304 Installation: Pump outlet: 1" NPT Motor diameter: 4 inch Liquid: Maximum liquid temperature: 104 °F Liquid temp: 68 °F Density: 998.2 kg/m ³ Electrical data: Applic. motor: GRUNDFOS Power (P2) required by pump 0.496 HP Main frequency: 60 Hz Start. method: DOL Others:			
Resulting head of the pump: 247 ft Stages: 9 Model: Valve: Y Materials: Pump: Stainless steel DIN WNr. 1.4301 AISI 304 Installation: Pump outlet: 1" NPT Motor diameter: 4 inch Liquid: Maximum liquid temperature: 104 °F Liquid: Maximum liquid temperature: 104 °F Cliquid temp: 68 °F Density: 998.2 kg/m ³ Electrical data: Applic. motor: Power (P2) required by pump 0.496 HP Main frequency: 60 Hz Start. method: DOL Others:			
Resulting head of the pump: 247 ft Stages: 9 Model: Valve: Y Materials: Pump: DIN WNr. 1.4301 AISI 304 Impeller: Stainless steel DIN WNr. 1.4301 AISI 304 Installation: Pump outlet: 1" NPT Motor diameter: 4 inch Liquid: Maximum liquid temperature: 104 °F Liquid temp: 68 °F Density: 998.2 kg/m ³ Electrical data: Applic. motor: GRUNDFOS Power (P2) required by pump 0.496 HP Main frequency: 60 Hz DOL Others:			
Resulting head of the pump: 247 ft Stages: 9 Model: Valve: Y Materials: Pump: DIN WNr. 1.4301 AISI 304 Impeller: Stainless steel DIN WNr. 1.4301 AISI 304 Installation: Pump outlet: 1" NPT Motor diameter: 4 inch Liquid: Maximum liquid temperature: 104 °F Liquid temp: 68 °F Density: 998.2 kg/m ³ Electrical data: Applic. motor: GRUNDFOS Power (P2) required by pump 0.496 HP Main frequency: 60 Hz DOL Others:			
Resulting head of the pump:247 ftStages:9Model:BValve:YMaterials:Pump:DIN WNr. 1.4301 AISI 304Impeller:DIN WNr. 1.4301 AISI 304Installation:Pump outlet:1" NPT 4 inchInstallation:Pump outlet:Uiquid temperature:104 °F Liquid temperature:Liquid: Maximum liquid temperature:104 °F Electrical data: Applic. motor:Applic. motor:GRUNDFOS 0.496 HP Main frequency:Power (P2) required by pump0.496 HP 0.496 HPMain frequency:60 Hz CDU	Others:		
Resulting head of the pump: 247 ft Stages: 9 Model: B Valve: Y Materials: Pump: Stainless steel DIN WNr. 1.4301 AISI 304 Installation: Pump outlet: 1" NPT Motor diameter: 4 inch Liquid: Maximum liquid temperature: 104 °F Liquid temp: 68 °F Density: 998.2 kg/m ³ Electrical data:	Applic. motor: Power (P2) required by pump Main frequency:	0.496 HP 60 Hz	
Resulting head of the pump:247 ftStages:9Model:BValve:YMaterials:Pump:Stainless steelDIN WNr. 1.4301AISI 304Impeller:Stainless steelDIN WNr. 1.4301AISI 304Installation:Pump outlet:1'' NPTMotor diameter:Liquid:Maximum liquid temperature:104 °F	Density:		".9 <del>1/6</del>
Resulting head of the pump:247 ftStages:9Model:BValve:YMaterials:Pump:Stainless steelDIN WNr. 1.4301AISI 304Impeller:Stainless steelDIN WNr. 1.4301AISI 304Installation:Pump outlet:1'' NPTMaterials:Pump outlet:1'' NPTMaterials:Pump outlet:1'' NPTMaterials:Alistallation:Pump outlet:1'' NPTAlistallation:Pump outlet:1'' NPTAlistallation:Pump outlet:1'' NPTAlistallation:Pump outlet:1'' NPTAlistallation:	Maximum liquid temperature:		
Resulting head of the pump:247 ftStages:9Model:BValve:YMaterials:Pump:Stainless steelDIN WNr. 1.4301AISI 304Impeller:Stainless steelDIN WNr. 1.4301AISI 304DIN WNr. 1.4301AISI 304	Pump outlet:		▶
Resulting head of the pump:       247 ft         Stages:       9         Model:       B         Valve:       Y         Materials:       Pump:         DIN WNr. 1.4301         AISI 304         Stainless steel         0.4         0.4         0.5         1         1.5         2         2.5         3         1.5         2         1.5         2         1.5         2         2.5         3         3.5         4.5         5         5         5         1.5         2         1.5         2         1.5         2         1.5         2         1.5         2         1.5         2         1.5         2         2         2         2         2         3         3         3         <	Installation:		0.1 P2 = 0.3487 HP
Resulting head of the pump:       247 ft         Stages:       9         Model:       B         Valve:       Y         Materials:       Pump:         Stainless steel       Stainless steel	Impeller:	AISI 304 Stainless steel	0.3
Resulting head of the pump:     247 ft       Stages:     9       Model:     B       Valve:     Y			P2 P
Resulting head of the pump: 247 ft 80	Model:	В	Eff pump = 17.6 % 10
	Max flow: Resulting head of the pump:	7 US gpm 247 ft	30
Technical:     Speed for pump data     3450 rpm       Actual calculated flow:     0.98 US gpm       Flow range     0.748 7 US gpm	Speed for pump data Actual calculated flow:	0.98 US gpm	160 Density = 62.29 lb/ft ³ 70
Product Number:         08010009         H = 247 ft           EAN number:         5700390263102         200         Es = 7.3628 kWh/1000 ga			

- Serie








**R**eta

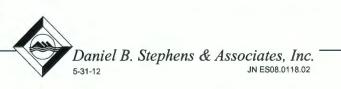
intek :

× 600



Appendix B

Photographic Documentation


-

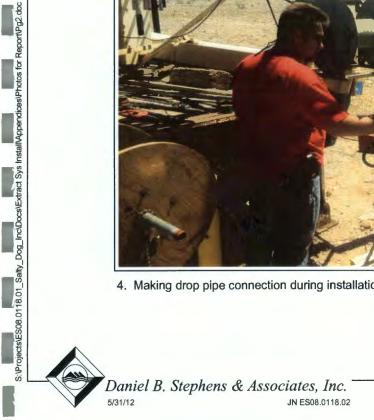


1. Trenching for conveyance piping installation for RW-2



2. Installation of conveyance piping from RW-2



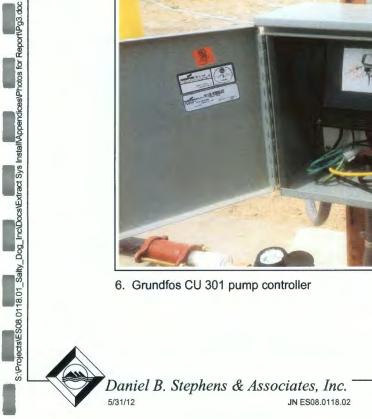

S: Projects ES08.0118.01_Safty_Dog_Inc/Docs/Extract Sys InstallAppendices/Photos for Report/Pg1.doc



3. Installation of conveyance piping and pump at RW-2



4. Making drop pipe connection during installation of pump in RW-2

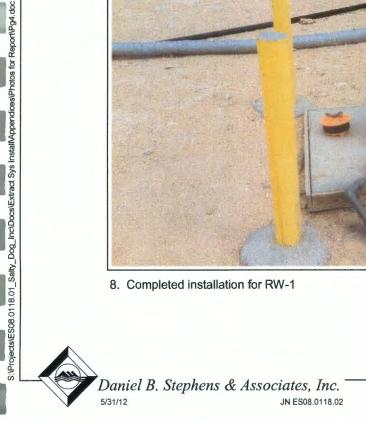





5. Grundfos submersible pump and drop pipe connection



6. Grundfos CU 301 pump controller

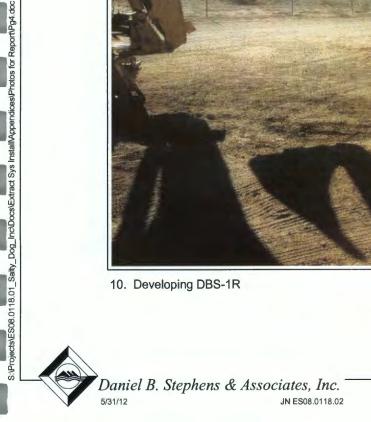





7. Termination of conveyance piping into frac tank for RW-2

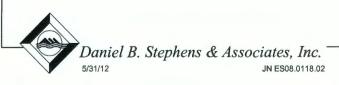


8. Completed installation for RW-1






9. Completed installation for RW-2




10. Developing DBS-1R





11. DBS-1R surface completion



S: Projects/ES08.0118.01_Saity_Dog_Inc/Docs/Extract Sys Install/Appendices/Photos for Report/Pg6.doc

Appendix C

**Field Notes** 

C-WGAM ~A) 54/12 1100 DRIVING CREW ONSME SEAN MARKED OUT THE BREA TO BE TRENCHED. 115 SEGAN TRENCHING (A RW-2 WELL SITE - MAKE MENTY IS ONISITE TO OVERSEE WELL DRULING. U23 ELECTRIC CEEN @ ROV-2 STIE. PREPARENCE THE STIE WHERE PUMP PANER BOX WILL BE INSTALLED. 1/28 STANDARD COMPANY INSTALLING BISCHARGE TANK ( TRAC TANKE): 1/42 PUMP DISCHARGE TANK INSTALLES

4/4/12 SZGADY	SERADY 4/4/12
0800 ENSITE WAITING FER TERRY	FOR FONTHERN FIT WELL SITE
AND STREE CONTRACTORS TO	WILL BE HERE THES AFTERNOON.
Stew of P.	FOR SOUTHERN SITE TERRY
0830 CELESTINE ONSITE	SAID BEST OFTIMN FOR FOUDER
0900 TERRY ONSLTE. DISCUSSING	15 TO DISCONNECT EXISTING
OPTIONS FOR PARUP CONTROLS!	1" WELL AND RECONNECT FOR
POWER, THECHARGE FOR	MEN WELL PUMP. DISCONNECT WHILE
CONVEYANCE LINE + OTHOR	AT TOWER DROP. PANEL BOX WILL
ISSUES. TERRY APTROVED TIPPING	BE ATTACKED AT BALLARD FOR
FRACK TANK ABUVE KLAK	Prime ConTROLS.
WHEEL FOR DISCHARGE POINT.	MOVER ANSITE. HAVE MARK
1000 STEVE (TRIPLES ELECTRIC)	TRENCH LINE FOR NORTHERN WELL (RWZ)
ONSITE TO DISCUSS ELECTRIC	PLAN ON #2' MNDER TRACTOR
INSTALL. TYLER (BACK HOE OF ENDER	TRAILER EXIST PATH. MAN
ONISITE.	ON INSTALL DISCONNET BY a ROUGROROP
1030 WALKED BOTH WELL SITES, IIIS	CELESTINE IS SPF WBSERVING
TERRY SAYS FRACK JANK	REACHING

**新闻的新闻的**在这个人

L j L j

1 È j

1 Ť Ī

. . . . . . . . . . . . .

4/4/2012	SERAD	SER	ADY			. 4	14/12
1200 DROTPINY POST PUP		1915	ADY TREARA FINUS HED	AT N	orthern	(RUS-1)	
TRENCH PETERSON L	s sert		FINISHED	. STEVE	said the	RE MIGH	<b>N</b> .
SETTING ADDRESS	- (Rur-3),	- 1	BE ANT I	నికి ఆశార్ లు	ITH TOW	ER DR	ef E
13.00 Punit DET IN Northe	en Southire		AT NERT	日もとう	Stel. W	TILITY	· .
WELL (RW-2)	· · · · · · · · · · · · · · · · · · ·	: •	Polt MA	Y BE	own E.D	BY RE	BUIDER
1320 DONE RUNNING GUE	P.P.E .		AND THE	er Mig	t nor	Be AB	LE
CELESTINE IS G	onny	1 1 1 1	JD JAK	E Pour	sr off	OF IT	••• .
NOKTH TO ESSERV	ББ	· · · · · · · · · · · · · · · · · · ·	DURING	TREN	ching	A2"	
TRENCHING. PETERSON	N HOAD MY		CONDU	IT WA	s CAU	HTZ	
NOLTH NOW TO SEFT	NEX - Phunp		PULLED	MAYE	BE A	TOT LIN	E.
AND BEGIN DRILLIN	y NEW		VERRY	HAD SP	ID ME	RE WER	KE
MONITORING WELL.			NO HOT	LINEC	ROSSIN	4 TREA	JCH
1415 MCVEY INFORMED N	1		PATH C	ALLED	ELECTR	ICLAN	• •
I HAD PETERSON			TO COME	E AND	INSPECT	DAM	IGES.
WRONG PLUMP IN SONTH	24	1500	ONSIJE	AT SOU	where	WELL (P	w-2)
TAGGED NORTERN WELL			To Pul	l Prime	AND I	NSTALL	• • • • • •
2 TW: 67.50' DTB:	158 85.30		GRRECT	onte.	ál ECTRU	vani ons	MTB

. ....

BANK FREM TH

Ĩ

ŧ

-

ŝ

No.

ŧ.

100

### 

4/4/12		SISRADY	. SBF	ADY	· · ·	4/4/12
CAVED .	TERRY REGARD	wig				
BROKE	2" Contourt, HE	5 00				
Pis way	out.					
ISDE STEVE	E TERRY ONSTE	. 21	- -			
CONTINETD CONDULT						• • • •
	DETERMINING		1			
	- Z Holus ver		* . * .			
1538 DTW: 63.			· · ·	·····		
	For et		، ،			
	30 TTOM OF Print			4° 4° 1, 7 7		
		3	1		· · ·	
	OFFSVTB	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · ·	
The second se	BW-2 FINAL S	1	•		· · · ·	
	R, TRIMMÉD	•		· · · · · · · · · · · · · · · · · · ·		
	OF CASING	1		• · · • · · · · · · · · · · · · · · · ·		
	5 Rumer Ar H	O' FRon		· · · · · · · · · · · · · · · · · · ·		
To? of 0	ASING					
			•.			

# 4/5/12 SBRADY 4/5/20 0745 PETERSON DRILLING & MOVEY ONSWED GETTING READY TO SET RW-1 with Rump 0830 Borrow of Pune Stor 6 92' BELOW JOP OF CASING, COUESTING ONSITE. ED o o lower 240 V/1. PARSE CALLEDSTEVE - HE WALL DE ONSERE SHORTLY, PUTERSON 13 BANLING WELL. BUY \$ 240V/1 Pl 1. DRILLING RUG 2. SERVICE RIG 3. PAMY RIG DEESSER MAT 4. BALK HOE 5. 2 DELLA FIELD VEHICLES 0900 PERERSON IS DOWE W/ DECOMMISSIONING OLD MONITOR WELL.

"15 2012 Øi'scher 10 EL 0 (D) ( Jupt SCHOPIC SCHOPIZECKET SCIBOPV. 2 E 3 15 (F4) TO DECRIPTION Ð QUANTITY E18000 90" SCH 80 PVC 1" **R** (3) Ì (D) DESCRIPTION QUANTIT () MNPY X SACKOT SCH BO PVC I" 1 B 3/4 BRASS GATE VALVE E 1" Scules Pric TEG (3) 3 1 SCHEG PVC FIPE 5 11 States 1"x 34" FMRT Sch80 PVC ADAPTER 5 3/ ANPTXI-1 SCHOO FUC ADAPTER 1 () 1-1" SCHED RVC PIPE 7 (2) 1-1" DRESSERCONPLING 1-3" SDR 13 HOPE PIRE ( 1 1 XX & FNPT ADAPTER 1 4/5/-1) 314" SCH 20 PVC 90° EL 1 (12) I" x 12 FNFT ADAPTER SCHOD PVC (3) 1" x 3/4" SCHBO PIC ADAPTER (3) 5/4" SCHBO PVC PICE

(9) (B) (C) -4 5 2012 6 × 1 × 0 3 2 QUANTIE DESCRIPTION D 1-2 Port PIE ( )1. 2. DRESSER Courcing  $(\widehat{\boldsymbol{\lambda}})$ 1 1- 2 SCHBO PUL PIPE 3 (4) 1-1 X 1 SCHED PVC ADAPTER 1 5 1 SCHBO RIC PIPE 6 1" BRASS GATE VALVE 1 (7) 1" × 1" MNPT SCHBO PARTER 1 (8) 3/4" FNPT × 1" SCHBO PVC APAPTER 1 () 34" BRASS FLOAT VALUE W/ BUCKHEAD FITTING 1 4)5/2012 (16) 1' 20° JCHED PYC ELDOW

1-55 4 5 2612 血血 Ox O 6.00 G Q B Q DESCRIPTION 12 QUANTITY 1-12" POLY PIRE  $(\mathbb{D})$ 6) 3 67 1-1- DRESSER Coursing 1 1- 2" SC480 PUL 119E 1 1-12" × 3/4" SENBO RIC HOAPTER 10 3 3/4 Sculbo tvc Pipe ( 3/4 Sell 80 PVC 90° Elson D 314 MART ADAPOER 8 ) 314" BRAGS GATE VALVE 1. 1) 3/4" FNPT ADAPTER 1 10 3/4 BRASS FLOAT VALVE COUPLING 4/5/2012

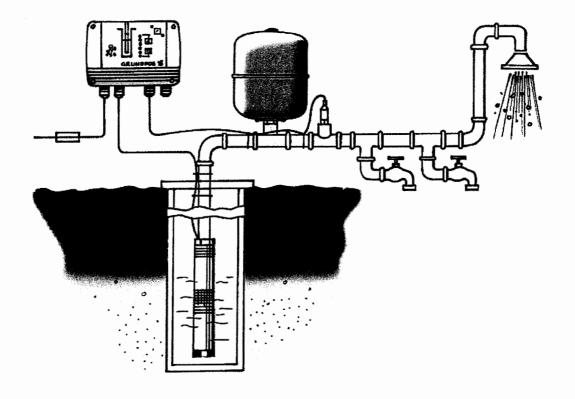
AND KURA SUBS PIC RONGER 1 NA 08179 MOGTZ OL 1/2 (1) (9))/ 314, 30H80 140 116 (E) 3/1/100 (++| HREY 2911/19 OSAWOH AL philling gassage Ð 4/5 1 2-3213 214 80 610 616 1) JJUNS ZJUJ!" -13-29004 X 3-14 8 1 (1)2-1 144462 3115 Έ 1/2 314141 3742 29498 (0)4N 1 q JAM171 four meter (b) HN 2 U- ANCLOR 211 '5 9 h/Ex 1 E) 12-1 ENTH HEWE 3 HITE 33 39 h 471 213 08105 X X 1 2 W S. CHAIN SUARS 7 321 7N 08/175 1/5×1 9 5 NHHAD/537847 7 12 -1 7337 SNAS 354 WML 1 x + FMMPT SUBOLIC BOMIER Ş 2 TLEW QUANTITY 1" x 2"  ${\mathfrak P}$ F) 223 081175 73 00 ,1 3 11 301 80 84C 816 0 11 8949666 1915 - 7919 1916 11 , OhT (01) Neispinesag RUMATIE & 10 1027000 J3445 40 ([b]) 7) (2) 3 8) 01 G OI , ohl J E) G 796.974 P

4 5 2012 4/6/2012 0800 ELECTRICIAN DISITE AT 1730 JERRY ONSOTO 1420 BRADY & CELESTINE OFF SITE TO BRINE WELL FOR WIRING RUN PARTS. Rw-Z, 1635 DES & A ONSITE FROM RUNNING OB ST DES & A OFFSITE TO GET FIC PARTS. ALL CONTRACTOR OFFICE PARTS. WORKING ON ASSEMBLING WELLHEAD 105 DESZA ONSITE. AT RW-2 ComPLETING PRING AF WELLHEAD PiPING. 1800 SHUTFING DOWN FOR THE DAY. 1215 AT RID I INSTALLING RIFING AT WELLHEAD. 1210 ELECTRICIAN HAS FINISHED WIRING RW-Z, PUMP FUNCTIONS PROPERU?, 1250 ELECTRICIAN AT RW-1 WORK ON PONDER SUPPLY 1/30 ELECTRICIAN ARS FINISH WITH WIRING RW-I PUMP FUNCTIODS TROPERITY.

4/5/2012 SBRADY SBRADY 4/5/K0/2 FINISHED WITH FIFING AT RW-1 1200 FLOW IS SET AN 12 gpm. WELL PRESSURZE CONTROLLER 15 SET AT 40 PSI. ANALOG PRESSURE GANGE IS FURCHOFING AND HASN'T STABILIZED AT GIVE FLOW RATE. E) He adda e e e

al la		
4/7/201	- SBRADY SBR	AD? 4/7/2012
	RW-1 PRESSURE HAS STABILIZED 1345	Pump SET AT 2.1 gpm
	EVERNIGNT HEADING DOWN RW-Z	PRESSURE 11 FUNCTURFING.
	TO FINISH OUTLET SIDE OF 1415	
	TRANSMUSSION LINE.	
0930	OFFSITE FOR LADDER &	1-1' BELOW DISCHARGE OF
	DRILL BIT(BUSTED MINE).	VALVE
1045	ONSITE W/SUPPLIES. THE 1500	CALLED MIKE TO INFORM
	WIND IS BLOWING LIKE	
	A MADMAN.	FLOW RATE IS TOO HIGH
11.00	DRILLING TANK PENETRATION	RETURNING TO SITE TO ADJUST
		FLOW.
	THE SIDE OF THE FRAK 1530	
	TANK	HEADING OFFITE.
1210	BREAKING FOR LUNCH	
	FINISHING NP wy Piling	
	HEADING TO WELL TO	
	START PUMPING	

Sec. 1. 11 1


Appendix D

Manufacturer's Operations and Maintenance Information

## **GRUNDFOS INSTRUCTIONS**

# CU 301

 $\textcircled{\sc US}$  Installation and operating instructions





BE>THINK>INNOVATE>

## LIMITED WARRANTY

Products manufactured by GRUNDFOS PUMPS CORPORATION (Grundfos) are warranted to the original user only to be free of defects in material and workmanship for a period of 24 months from date of installation, but not more than 30 months from date of manufacture. Grundfos' liability under this warranty shall be limited to repairing or replacing at Grundfos' option, without charge, F.O.B. Grundfos' factory or authorized service station, any product of Grundfos' manufacture. Grundfos will not be liable for any costs of removal, installation, transportation, or any other charges which may arise in connection with a warranty claim. Products which are sold but not manufactured by Grundfos are subject to the warranty provided by the manufacturer of said products and not by Grundfos' warranty. Grundfos will not be liable for damage or wear to products caused by abnormal operating conditions, accident, abuse, misuse, unauthorized alteration or repair, or if the product was not installed in accordance with Grundfos' printed installation and operating instructions.

To obtain service under this warranty, the defective product must be returned to the distributor or dealer of Grundfos' products from which it was purchased together with proof of purchase and installation date, failure date, and supporting installation data. Unless otherwise provided, the distributor or dealer will contact Grundfos or an authorized service station for instructions. Any defective product to be returned to Grundfos or a service station must be sent freight prepaid; documentation supporting the warranty claim and/or a Return Material Authorization must be included if so instructed.

GRUNDFOS WILL NOT BE LIABLE FOR ANY INCIDENTAL OR CONSEQUEN-TIAL DAMAGES, LOSSES, OR EXPENSES ARISING FROM INSTALLATION, USE, OR ANY OTHER CAUSES. THERE ARE NO EXPRESS OR IMPLIED WAR-RANTIES, INCLUDING MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, WHICH EXTEND BEYOND THOSE WARRANTIES DESCRIBED OR REFERRED TO ABOVE.

Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages and some jurisdictions do not allow limit actions on how long implied warranties may last. Therefore, the above limitations or exclusions may not apply to you. This warranty gives you specific legal rights and you may also have other rights which vary from jurisdiction to jurisdiction.

34

-

-

100

126

<del>ad</del>ia

Installation and operating instructions

## CONTENTS

			Page
	1.	Constant-pressure control	<b>5</b> 5
	1.1 1.2	Description Function	5 5
	1.2	System sizing	7
	1.4	SQE and SQE-NE	7
	1.5	Positioning the pressure sensor	8
	1.6	Precharge pressure setting	8
	1.7	Pressure relief valve	8
-	2.	Operating functions	<b>9</b> 9
	2.1 2.2	On/Off button Indication of pump operation	9
	2.2	Pressure setting	9
	2.4	Button locking	10
;	3.	Alarm functions	10
:	3.1	Service alarm	10
:	3.2	Dry-running protection	11
4	4.	Position of LEDs	12
	5.	CU 301 with R100	13
		Menu OPERATION	15
	5.1.1	Pressure setting	15 15
i I	5.1.Z	Operating mode Alarm	15
		Menu STATUS	16
Ę	5.2.1	Operating mode	16
Ę	5.2.2	Actual pressure	16
		Speed	16
5	5.2.4	Temperature	16
		Power input and power consumption Operating hours and number of starts	16 17
	5.3	Menu INSTALLATION	17
		Sensor	17
Ę	5.3.2	Choice of sensor	17
ę	5.3.3	Maximum pressure setting	17
		Automatic restart	18
		Dry-running stop	18 18
		Maximum speed Cut-in speed	18
		Buttons on the CU 301	19
		Indication of pump operation	19
5	5.3.10	Number	19
6	ô.	Print	20
	7.	Troubleshooting	21
	7.1	Service	21
	<b>3.</b>	Technical data	<b>25</b> 26
		Electrical connection Mains supply	26 27
		Pump supply	27
		Pressure sensor	27
ç	Э.	Pressure sensor voltage chart	28
	10.	Disposal	29

**889** 

ide:

Steel.



Prior to installation, read these installation and operating instructions. Installation and operation must comply with local regulations and accepted codes of good practice.

### 1. Constant-pressure control

The control unit CU 301 is for use only with Grundfos SQE pumps incorporating electronic power factor correction (PFC).

### **1.1 Description**

The system maintains a constant pressure within the maximum pump performance in spite of a varying water consumption.

The CU 301 is designed for wall mounting only.

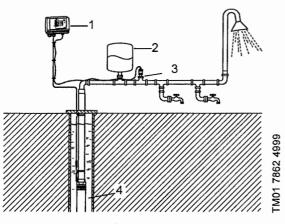



Fig. 1 Example of a system with constantpressure control

- 1 CU 301
- 2 Diaphragm tank (2 gal.)
- 3 Pressure sensor
- 4 SQE pump

### 1.2 Function

The pressure is registered by means of the pressure sensor, which transmits a 4-20 mA signal to the CU 301. The CU 301 adjusts the pump performance accordingly to maintain constant pressure by changing the pump speed.

### Mains borne signalling

The communication between the CU 301 and the pump is via the power supply cable.

This communication principle is mains borne signalling (or power line communication). Using this principle means that no additional cables to the pump are required.

The communication of data is effected via a high-frequency signal transmitted to the power supply cable and led into the electronics unit by means of signal coils incorporated in the motor and the CU 301 respectively.

In situations where multiple CU 301 pump power cables are run parallel in wiring trays or conduit and less than 10-12 inches apart, the possibility for undesired communication between units exists. When this occurs, intermittent or continuous "No contact" is typically seen. Other unexpected errors may also be seen.

Refer to section 5.3.10 for further instructions.

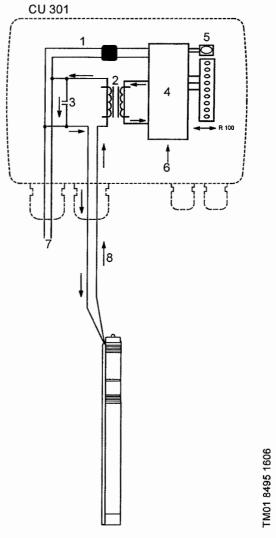



Fig. 2 Principle of mains borne signalling

Pos.	Description	
1	Supply to the electronics	
2	Signal coils	
3	Capacitor	
4	Electronics for the control of the communication	
5	On/Off button	
6	Sensor signal	
7	Mains supply	
8	Communication signals	

### When does the pump start?

The pump starts as a consequence of

· a high flow or

US

- a low pressure or
- a combination of both.

To ensure that the pump is started when water is consumed, a flow detection is required. The flow is detected via pressure changes in the system. When water is consumed, the pressure will drop accordingly depending on the size of the diaphragm tank and the water flow:

- at a low flow, the pressure will drop slowly.
- at a high flow, the pressure will drop quickly. See fig. 3.

### Pressure

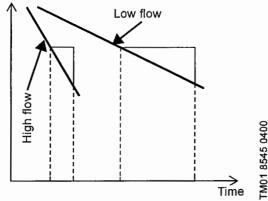



Fig. 3 Pressure changes in relation to flow

**Note:** When the pressure is dropping 1.4 psi/s or faster, the pump will start immediately.

With a diaphragm tank of 2 gal., the pump will start at a flow rate of approx. 0.8 gpm.

**Note:** If a larger tank is used, the flow must be higher before the pump starts.

### Consumption up to 0.8 gpm

The pump will start when the pressure has dropped to 7 psi below the pressure setting.

The pump will run until the pressure is 7 psi above the pressure setting.

#### Flow detection

During pump operation, i.e. when water is consumed, the CU 301 will adjust the pump speed to maintain a constant pressure. In order to stop the pump when no water is consumed, the CU 301 performs flow detection every 10 seconds.

The pump speed is reduced and pressure is read. A pressure drop indicates that water is being consumed and the pump speed is resumed, see fig. 4.

If the pump speed can be reduced without any pressure drop being registered, this indicates that no water is consumed. The diaphragm tank will be filled with water and the pump will be stopped.

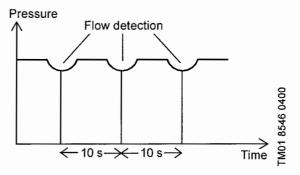
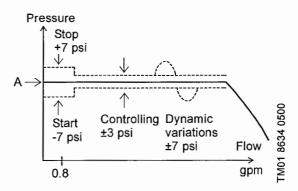
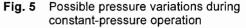





Fig. 4 Flow detection every 10 seconds during operation

### System limits

Even though the CU 301 is controlling the pressure within  $\pm 3$  psi, bigger pressure variations may occur in the system. If the consumption is suddenly changed, e.g. if a tap is opened, the water must start flowing before the pressure can be made constant again. Such dynamic variations depend on the pipework, but, typically, they will lie between 7 and 14 psi. If the desired consumption is higher than the quantity the pump is able to deliver at the desired pressure, the pressure follows the pump curve as illustrated in the far right of fig. 5.





A = Pressure setting

### 1.3 System sizing

To ensure the correct function of the system, it is important that the pump is of the right type.

During operation, the CU 301 controls the pump speed within the range from 3,000 rpm to 10,700 rpm, see fig. 6.

It is recommended to follow the guidelines below.

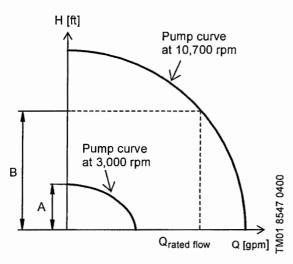



Fig. 6 Pump curves at 3,000 rpm and 10,700 rpm

A: Minimum head at no flow.

B: Maximum head at rated flow.

The following must be fulfilled:

 Minimum head at no flow < static head + system pressure.

**Comment:** If this is not fulfilled, the pressure may exceed the pressure set on the CU 301.

 Maximum head at rated flow > dynamic head + system pressure.
 Comment: If this is not fulfilled, the pressure may

fall below the pressure set on the CU 301.

Maximum head at rated flow and minimum head at no flow can be found in the following sections.

### 1.4 SQE and SQE-NE

Pump type	Min. head at 0 gpm, 3,000 rpm	Max. head at rated flow, 10,700 rpm
-	[feet]	[feet]
5 SQE-90	12	104
5 SQE-140	18	161
5 SQE-180	24	218
5 SQE-230	31	275
5 SQE-270	37	332
5 SQE-320	43	389
5 SQE-360	49	446
5 SQE-410	55	503
5 SQE-450	61	560
10 SQE-110	12	102
10 SQE-160	17	158
10 SQE-200	23	214
10 SQE-240	29	270
10 SQE-290	34	326
10 SQE-330	40	382
15 SQE-70	10	80
15 SQE-110	4	121
15 SQE-150	19	161
15 SQE-180	24	202
15 SQE-220	29	242
15 SQE-250	33	283
15 SQE-290	38	323
22 SQE-40	5	35
22 SQE-80	9	75
22 SQE-120	14	115
22 SQE-160	18	155
22 SQE-190	23	195
22 SQE-220	27	235
30 SQE-40	5	31
30 SQE-90	11	78
30 SQE-130	16	125
10 SQE-100 NE	10	96
10 SQE-140 NE	15	134
10 SQE-180 NE	20	173
10 SQE-220 NE	25	212
10 SQE-260 NE	30	251
10 SQE-300 NE	34	290
10 SQE-340 NE	39	329
22 SQE-40 NE	35	290
22 SQE-80 NE	39	322
22 SQE-110 NE	42	353
22 SQE-140 NE	46	385
22 SQE-180 NE	50	417
22 SQE-210 NE	54	448

### 1.5 Positioning the pressure sensor

Pressure losses often cause inconvenience to the user. The CU 301 keeps the pressure constant in the place where the pressure sensor is positioned, see fig. 7.

US

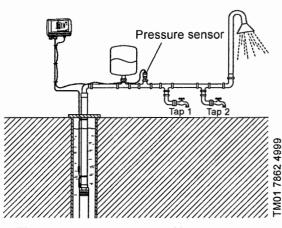



Fig. 7 Pressure sensor position

In fig. 7, tap 1 is placed close to the pressure sensor. Therefore, the pressure will be kept nearly constant at tap 1, as the friction loss is small. At the shower and tap 2, the friction loss is greater. This, of course, depends on the piping.

Therefore, it is recommended that the pressure sensor be positioned as close to the places of consumption as possible.

### 1.6 Precharge pressure setting

The CU 301 is designed to work with a 2 gal. diaphragm tank.

The precharge pressure of the diaphragm tank must be set to 70% of the pressure setting in order to use the tank to the limit of its capacity. This is of course especially important when the tank volume is limited to 2 gal.

Use the values in the following table.

Prechange pressure is measured with 0 psi in the pipeline:

Setting [psi]	Precharge pressure [psi]
40	28
50	35
60	42
70	49
80	56
90	63
100	70

**Note:** If the precharge pressure is higher than the pressure setting, the system will have difficulty controling the pressure.

8

If the user wants to adjust the pressure without changing the precharge pressure of the diaphragm tank, the precharge pressure must be equal to the lowest pressure setting used. This means that the control will work but that the pressure fluctuations might increase.

### 1.7 Pressure relief valve

In order to provide protection against the possibility of an overpressurization, a pressure relieve valve should be installed down stream of the well head. The setpoint of the pressure relief valve should be at least 30 psi above the pressure setting, see section 2.3.

If a relief valve is installed, it is recommended that its discharge be plumbed into an appropriate drainage point.

### 2. Operating functions

### 2.1 On/Off button

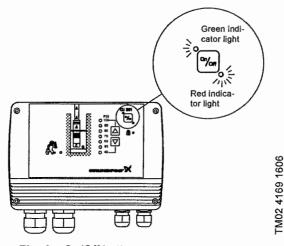



Fig. 8 On/Off button

The green and red indicator lights in the On/Off button indicate pump operating condition as follows:

Indication	Description
Green indicator light permanently on	The system is operational.
Green indicator light off	The system is not opera- tional.
Red indicator light permanently on	Pump has been stopped by means of the On/Off button.*
Red indicator light flashing	The CU 301 is communicat- ing with the R100.

 If the On/Off button has been used to stop the pump, this button must also be used for restarting.

Any alarm indication can be reset by pressing the On/Off button.

If the On/Off button is pressed for more than 5 seconds, the pump is started, irrespective of any active fault/alarm indications and sensor signals.

When the On/Off button is released, the pump will stop, if the alarm still exists.

### IMPORTANT

Setting this button to the OFF position DOES NOT remove power from the pump. Before servicing the pump, remove power at the service breaker.

### 2.2 Indication of pump operation

On the graphical illustration on the CU 301 front, the riser pipe shows running light when the pump is operating. When the pump is not operating, none of the indicator lights are on, see fig. 9.

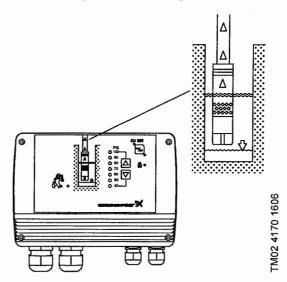



Fig. 9 Indication of pump operation

The indication of pump operation can be changed by means of the R100.

Possible settings:

- "Running light" during pump operation (factory setting).
- · "Constant light" during pump operation.

### 2.3 Pressure setting

The two arrow buttons on the CU 301 front are used for the pressure setting, see fig. 10.

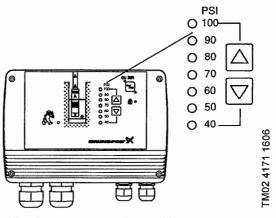



Fig. 10 Pressure setting and indication

TM02 4173 1606

### Indication of pressure setting

The system pressure set is indicated by a yellow indicator light, which is permanently on.

Setting range: 40-100 psi.

### US Arrow-up button

When this button is pressed, the system pressure setting is increased in steps of 10 psi.

### Arrow-down button

When this button is pressed, the system pressure setting is decreased in steps of 10 psi.

### 2.4 Button locking

The buttons on the CU 301 can be locked/unlocked by pressing the two arrow buttons simultaneously for 5 seconds or via the R100 remote control.

**Note:** When the arrow buttons are used for locking, take care not to inadvertently change the pressure setting.

Use the following procedure:

- 1. Set the pressure one step up.
- 2. Press the arrow-down button as the first one when pressing the two buttons.

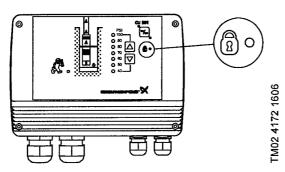



Fig. 11 Button lock indication

When the buttons are locked, the indicator light is permanently on, see fig. 11.

For further information, see section 5.3.8 Buttons on the CU 301.

### 3. Alarm functions

The CU 301 continuously receives operating data from the pump. The alarm functions indicated on the CU 301 front are described in the following sections.

### 3.1 Service alarm

If one or more factory-set alarm values are exceeded, the indicator light for service alarm is permanently on, see fig. 12.

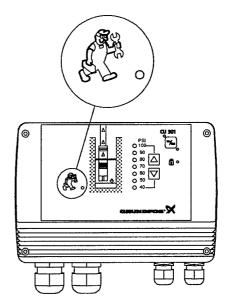



Fig. 12 Service alarm indicator

Possible alarms:

- · Sensor defective
- Overload

٠

- Overtemperature
- Speed reduction
- Voltage alarm
- No contact to pump.

The possible alarms and how to identify them and make the relevant corrections are described in section 7.1 Service.

### 3.2 Dry-running protection

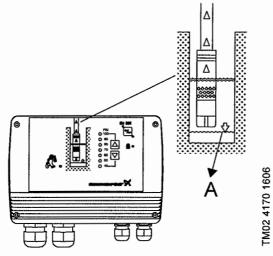
The purpose of the dry-running protection is to protect the pump in case of insufficient water flow.

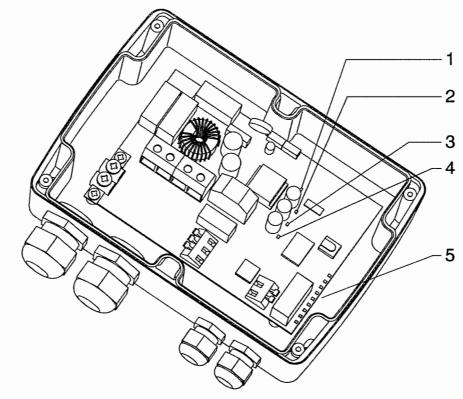
The dry-running protection makes the conventional dry-running protection unnecessary.

No additional cables to the motor are required. The dry-running settings shown in section *8. Technical data*, are built into the pump and automatically transmitted to the CU 301. These settings can be changed via the R100.

When air enters the pump together with water, the pump power decreases, and pressure drops, causing the motor to increase speed. If the power consumption falls below the dry run setting for an accumulated time of 5 seconds, and the motor speed is within 1,000 rpm of the maximum speed setting as defined in the section 5.3.6, the CU 301 stops the pump and declares a dry-running alarm.

When the motor is stopped, the dry-running indicator light is permanently on, see fig. 13, pos. A.





Fig. 13 Dry-running indicator light

Possible cause	Remedy	
	Replace the pump with a smaller one.	
The pump performance is too high compared to the well yield.	Reduce pump perfor- mance using the R100, display <i>5.3.6 Maximum</i> <i>speed</i> .	
Well screen is blocked.	Well service is required.	

### Restarting

After 5 minutes (factory setting) or the period set by means of the R100, display *5.3.4 Automatic restart*, the motor will restart automatically.

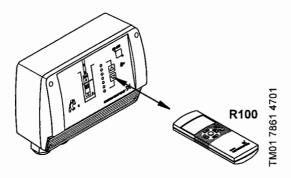
## 4. Position of LEDs



TM01 8537 1606

Fig. 14 Position of the LEDs inside the CU 301

	Indication	Description
Pos.	Indication	Description
1	+24 V overload	Permanent red light when the internal 24 VDC supply is overloaded.
2	+24 V	Permanent green light when the internal 24 VDC supply is OK.
3	+10 V	Permanent green light when the internal 10 VDC supply is OK.
4	+5 V	Permanent green light when the internal 5 VDC supply is OK.
	9 indicator lights:	
	Control indicator	Flashing green light when the pump control is working correctly.
	Min. speed	Permanent yellow light when the pump is running at minimum speed, 3,000 rpm.
	Max. speed	Permanent yellow light when the pump is running at maximum speed, 10,700 rpm.
	Sensor defective *)	Permanent red light when the sensor signal is out of signal range.
5	Overload *)	Permanent red light when the motor load exceeds the stop limit, see section 8. Technical data.
	Overtemperature *)	Permanent red light when the motor temperature exceeds the stop limit, see section 8. Technical data.
	Speed reduction *)	Permanent red light when the pump speed is reduced, see section 8. Technical data.
	Voltage alarm *)	Permanent red light when the supply voltage is out of range, see section 8. Technical data.
	No contact to pump *)	Permanent red light when communication between the CU 301 and the pump is impossible.


*) Press the On/Off button to reset the alarm indication.

### 5. CU 301 with R100

The R100 remote control can be used as a supplement for the installer and as an excellent troubleshooting tool. Grundfos highly recommends the use of one for diagnosing problems and accessing system information unavailable through other means. The R100 provides wireless communication with the CU 301.

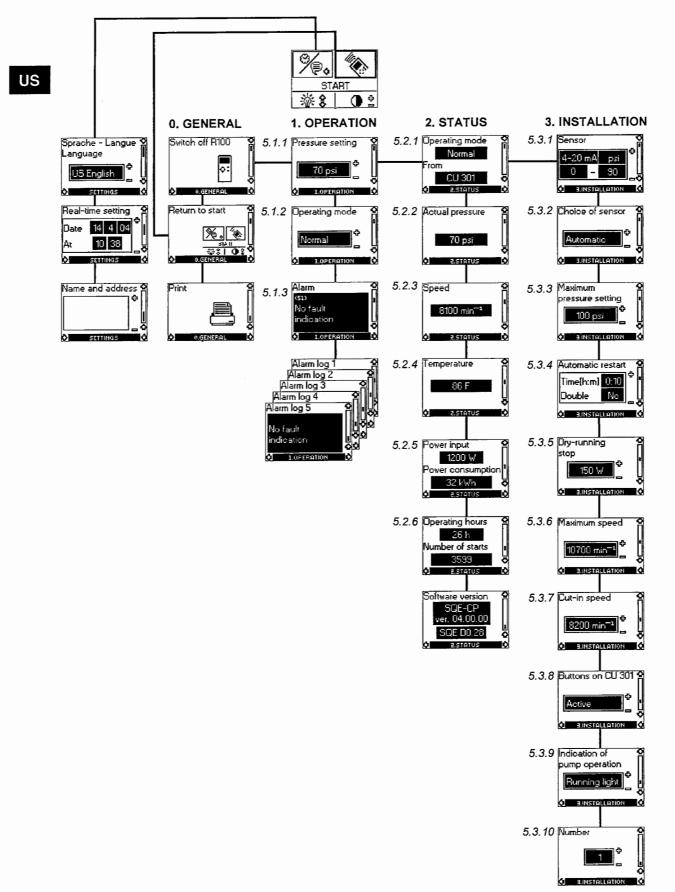
**Note:** It is not necessary to use the R100 to operate the system. The R100 offers additional features.

The R100 communicates via infrared light. During communication, there must be visual contact between the CU 301 and the R100. The best visual contact between the two units is obtained by pointing the R100 at the lower arrow button or by removing the front cover and pointing the R100 at the right side of the CU 301, see fig. 15.



#### Fig. 15 IR communication between the CU 301 and the R100

The R100 offers possibilities of altering factory settings and reviewing operating status of the pump. When the communication between the R100 and CU 301 has been established, the red indicator light in the On/Off button will flash.


For general use of the R100, see the operating instructions included with it.

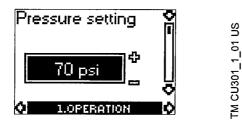
The menu structure for the R100 and CU 301 is divided into four parallel menus, each including a number of displays.

- 0. **GENERAL**, see operating instructions for the R100.
- 1. OPERATION
- 2. STATUS
- 3. INSTALLATION

Menu overview, see fig. 16, page 14.

**Note:** The number stated at each individual display in fig. 16 refers to the section in which the display is described.






### **5.1 Menu OPERATION**

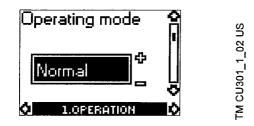
The OPERATION menu for the CU 301 offers the possibility of setting and reading operating parameters.

Factory settings are marked in **bold**-faced type under each individual display.

### 5.1.1 Pressure setting



Set the required pressure.


### Setting range

• 40-100 psi (10 psi intervals), 50 psi.

### Relation to other displays

The setting in display 5.1.1 *Pressure setting* is overridden by the "Max." and "Min." settings in the displays 5.1.2 Operating mode and 5.3.3 Maximum pressure setting.

### 5.1.2 Operating mode



Select one of the following operating modes:

Max.

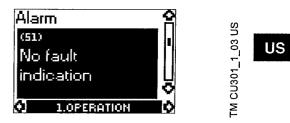
Pump operation is set to maximum speed, irrespective of the pressure setting. The maximum speed is set in display 5.3.6 Maximum speed (factory setting: 10,700 min⁻¹).

Normal

Normal operating mode, i.e. pump operation is based on the pressure set in display *5.1.1 Pressure setting*.

• Min.

Pump operation is set to minimum speed, 3,000 min⁻¹, irrespective of the pressure setting.


- Stop
  - The pump is stopped.

If the On/Off button has been used to stop the pump, this button must also be used for restarting.

### **Relation to other displays**

The "Max." and "Min." settings override the pressure setting in display 5.1.1 Pressure setting.

### 5.1.3 Alarm



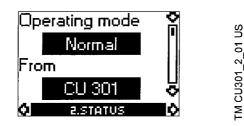
This display shows the current alarm status. Possible alarms are described in the following table:

Alarm indication	Description	
No fault indica- tion	No alarms are registered by the CU 301.	
No contact to pump	No communication between the CU 301 and the pump.*	
Overvoltage	The supply voltage exceeds the limit value.	
Undervoltage	The supply voltage is below the limit value.	
Dry running	The dry-running protection of the pump has been activated.	
Overtemperature	The motor temperature exceeds the limit value.	
Overload	The current consumption of the motor exceeds the limit value.	
Sensor defective	The sensor signal has fallen out- side the measuring range set. The sensor signal of a 4-20 mA or 2-10 V sensor is below 2 mA or 1 V respectively.	

* The pump will attempt to operate in on/off mode starting at 7 psi below pressure setting and stopping at 7 psi above pressure setting. The system must be reset every 250 stops.



The R100 can retrieve the last five alarms that the CU 301 experienced. They are displayed in order of occurrence with "Alarm log 1" being the most recent.


### 5.2 Menu STATUS

The STATUS menu for the CU 301 provides operating data about pump/motor and sensor. It is not possible to change or set values in this menu.

When [OK] is pressed continuously in this display, the displayed value is being updated.

The measuring accuracy is stated in section 8. Technical data.

### 5.2.1 Operating mode



Possible operating modes:

• Max.

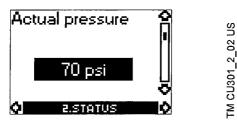
Pump operation has been set to maximum speed, i.e. 10,700 min⁻¹.

Normal

Normal operating mode, i.e. pump operation is based on the pressure set in display 5.1.1 Pressure setting.

Min.

Pump operation has been set to minimum speed, 3,000 min⁻¹.


Stop

The pump has stopped.

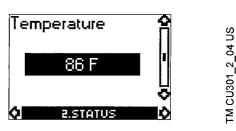
The operating mode was selected from one of the following:

- CU 301 (On/Off button on the CU 301)
- R100
- · Sensor (signals received via the sensor input).

### 5.2.2 Actual pressure



The actual system pressure measured by the pressure sensor.


Tolerance: ±1%.

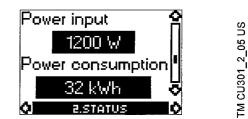
### 5.2.3 Speed



The actual speed stated in min⁻¹ (rpm). Tolerance: ±1%.

### 5.2.4 Temperature




The actual temperature of the motor electronics stated in "C" or "F", based on language selected in "settings".

Tolerance: ±5%.

### Relation to other displays

To select "F", choose the language "US English" in the settings menu.

### 5.2.5 Power input and power consumption



### **Power input**

The actual motor power from the electricity supply. The power input is displayed in W (watt).

Note: This value is used for the calculation of minimum power limit (dry-running stop).

### Power consumption

The accumulated motor power consumption in kWh. The value of power consumption is accumulated from the pump's birth and it cannot be reset. The value

- · is stored in the motor electronics, and it is kept even if the CU 301 is replaced.
- is updated in the software every 2 minutes of continuous operation. The displayed value is updated every two hours.

Tolerance: ±5%.

US

FM CU301_2_03 US

### 5.2.6 Operating hours and number of starts



### **Operating hours**

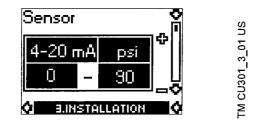
The number of operating hours is accumulated from the pump's birth and it cannot be reset.

The value

- is stored in the motor electronics, and it is kept even if the CU 301 is replaced.
- is updated in the software every 2 minutes of continuous operation. The displayed value is updated every two hours.

#### Number of starts

The number of starts is accumulated from the pump's birth and it cannot be reset.


The value is stored in the motor electronics, and it is kept even if the CU 301 is replaced.

### **5.3 Menu INSTALLATION**

The INSTALLATION menu for the CU 301 offers the possibility of configuring the CU 301, pump/motor and sensor.

Factory settings are marked in **bold**-faced type under each individual display.

### 5.3.1 Sensor



Make the following settings according to sensor type:

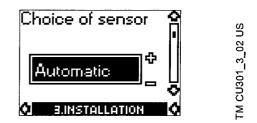
- Sensor output signal: "--" (not active), 0-20 mA,
   4-20 mA, 0-10 V, 2-10 V.
- · Setting range unit: bar, psi.

Setting range, psi:

- Minimum value: 0.
- Maximum value: *40-120* (*40, 50, 60, 70 ... 120). Setting range, bar:*
- Minimum value: 0.
- Maximum value: 2-6 (2, 2.5, 3, 3.5 ... 6.0).

**Note:** The pressure sensor used must measure the pressure in the actual measuring unit.

### **Relation to other displays**


The measuring unit appearing in display *5.2.2 Actual pressure* will be identical to the measuring unit in the front cover.

**Exception:** If "Manual" is selected in display 5.3.2 Choice of sensor, the sensor can be set, irrespective of the front cover.

If changes are made in display 5.3.1 Sensor, the setting in display 5.3.2 Choice of sensor is changed to "Manual".

If the original setting is resumed, it is necessary to change the setting in display *5.3.2 Choice of sensor* from "Manual" to "Automatic".

### 5.3.2 Choice of sensor



The following settings are available:

- Automatic
- Manual.

### **Relation to other displays**

If, for some reason, the setting in this display has changed to "Manual" and this is changed to "Automatic", the setting of the displays *5.3.1* Sensor and *5.3.3* Maximum pressure setting will change to the factory setting.

### 5.3.3 Maximum pressure setting



The setting of this display overrules the possibility of using the arrow button on the CU 301 front to increase the pressure to a setting above the "Maximum pressure setting".

The following settings are available:

40-100 psi (10 psi intervals).

### Relation to other displays

The setting of this display overrules the possibility of using the display *5.1.1 Pressure setting* to increase the pressure to a setting above the "Maximum pressure setting".

If the setting is changed from 100 psi, the setting in display 5.3.2 Choice of sensor changes from "Automatic" to "Manual".

### 5.3.4 Automatic restart



Set the automatic restart time from stop, caused by an alarm, to restart attempt.

The following settings are available:

### Time

- 0:05
- "--" (not active)
- 1, 2, ... 30 m (1 min. intervals) 30, 45, 1 h, ... 2 h (15 min. intervals) 2 h 30 m, 3 h, ... 4 h (30 min. intervals).

### Double

- Yes
- No.

When "Yes" is selected, the restart time set will be doubled automatically for every 10 motor stops caused by an alarm. The time is doubled up to a stop time of 4 hours.

After 10 hours of operation without an alarm, the restart time is automatically set to:

- · the time set in the "Time" field or
- 5 min. (factory setting) if no setting was made in the "Time" field.

### 5.3.5 Dry-running stop



The dry-running stop value is factory-set.

The factory setting depends on the power rating of the motor.

The following settings are default:

- Motor type 0.5 hp, dry-running stop = 300 W.
   Note: For 10 SQE 160 and 10 SQE 160 N pumps, the value is 550 W.
- Motor type 0.75 hp, dry-running stop = 680 W.
- Motor type 1.0 hp, dry-running stop = 800 W.
- Motor type 1.5 hp, dry-running stop = 900 W.

When the dry-running protection is to be active, the minimum value of the pump power input must be set in this display.

Setting range: 0-2500 W (10 W intervals).

### Relation to other displays

The actual pump power input can be read in display 5.2.5 Power input and power consumption.

If the maximum pump speed has been reduced in display 5.3.6 Maximum speed, the dry-running stop value must be changed.

### 5.3.6 Maximum speed



Set the maximum speed.

Setting range: 3,000-10,700 min⁻¹ (100 min⁻¹ intervals).

# Dry-running stop at reduced maximum pump speed

If the maximum pump speed has been reduced, the dry-running stop value in display 5.3.5 Dry-running stop must be changed.

### Calculating the minimum power limit

**Note:** The calculated value is used in display 5.3.5 *Dry-running stop*.

**Note:** If the pump is worn, a renewed calculation of the minimum power limit may be required.

Step	Action
1	Start the pump against closed discharge valve.
2	Read the power input (P ₁ ) in display 5.2.5 Power input and power consumption.
3	Calculate the minimum power limit as follows: Power limit [W] = $P_1 \cdot 0.9$ .

### 5.3.7 Cut-in speed



In the case of an oversized pump or drastically changing water levels, this function may cause an excess pressure, at start-up, in relation to the desired discharge pressure. The cut-in speed can therefore be lowered to compensate.

Setting range: 3,000-10,700 min⁻¹ (**8,200 min⁻¹**) (100 min⁻¹ intervals).

### **Relation to other displays**

The maximum speed setting can be read in display 5.3.6 Maximum speed.

The maximum pump speed setting overrules the cutin speed setting.

5.3.8 Buttons on the CU 301



The buttons on the CU 301 can be set to:

- Active
- Not active.

5.3.9 Indication of pump operation



The following settings are available:

- Running light
- · Constant light.

### 5.3.10 Number



Allocate a number to the CU 301 and the pump connected. The CU 301 and the pump must have the same number.

The CU 301 control unit communicates with the SQE pumps via the pump power cable to turn the pumps on and off, set motor speed and monitor pump status.

The technique used for performing this communication impresses a high frequency data signal on the pump power cable that is picked off by internal pump electronics and then decoded into command instructions. This is the reason for assigning unique numbers to each CU 301 in a multiple unit installation.

The unique number serves as a communication address between each CU 301 control unit/motor pair.

In situations where multiple CU 301 pump power cables are run parallel in wiring trays or conduit and less than 10-12 inches apart, the possibility for undesired communication between units exists. When this occurs, intermittent or continuous "No contact" is typically seen. Other unexpected errors may also be seen.

There are two approaches available to eliminating the possibility of this occurring:

- Physical separation of cables: Maintain a minimum distance of 10-12 inches between pump power cables, and never place more than one cable in a conduit.
- Use shielded cable: The use of shielded cable prevents cross communication between parallel cables and allows sharing of conduit and cable trays. Tie the cable shield to earth only at the CU 301 control unit.

Suitable cables:

"M CU301_3_08 US

Manf.	Part#	Gage			
Anixter	2A-1403S	14			
Anixter	2A-1203S	12			
Anixter	2A-1003S	10			
Anixter (1-800-321-1486)					

In addition, Grundfos recommends applying power to only one CU 301 unit/motor at a time while programming the CU 301 number with the R100. This will prevent the possibility of two pumps hearing the same number assignment command.

### 6. Print

The actual data in the R100 can be printed on a Hewlett-Packard printer type HP82240B.

US

Navigate the R100 to the print menu and point the R100 at the IR sensor of the printer and press [OK]. The following information will be printed: **8**2

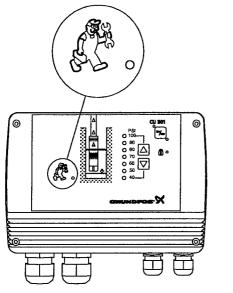
Bio-

in a

inter a

R109
<u>status report</u>
Product type: CV 301
Software version: SQE-CP ver. 03.00.00 SQE D0.30
<u>Settings</u>
<u>General: Value</u> Pressure setting 60 psi Operating mode Normal Max. pres. set. (psi) 100
Auto. rest. time 0:01 Auto. rest. db. No Dry-run stop 150 W Max. speed(speed) 10.700 Buttons on CU 301 Active Operat. indicat. Run. Number 1
<u>Sensor</u> Type 4-20 mA Unit psi Choice Manual
Nín. Max. Range Ø 120
<u>Actual values</u>
Value Operating mode Stop From CU 301 Act. pressure 64 psi Temperature 74 F Speed 0 min ⁻¹ Power input 20 W Power consump. 10 kWh Operat. hours 18 h Num. of starts 397
Alarm No fault indication
Date = 15.5.02 At = 13:24

TM03 4040 1406


### 7. Troubleshooting



Before starting any work on the CU 301, make sure that the electricity supply has been switched off and that it cannot be accidentally switched on.

### 7.1 Service

The CU 301 continuously receives operating data from the pump. In case of an alarm, the service indicator light is permanently on, see fig. 17.



TM02 4173 1606

Fig. 17 Service alarm indicator

The service indicator light will be permanently on if one of the following alarm situations occurs:

- · Sensor defective
- · Overload
- Overtemperature
- Speed reduction
- Voltage alarm
- No contact to pump.

To identify the cause of the service alarm, it is necessary to remove the front cover from the CU 301 or use the R100. Fit the front cover as shown in fig. 18 to avoid disconnecting the multi-core cable. A number of LEDs are mounted on the supply board inside the CU 301, see section *4. Position of LEDs.* 

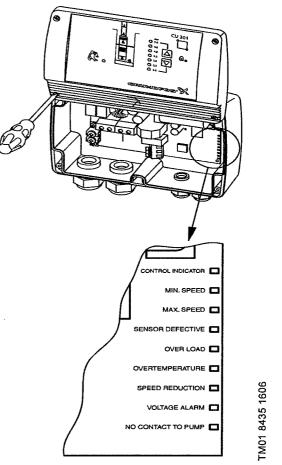



Fig. 18 LEDs and alarm texts on the supply board

Fault		Po	ssible cause	Remedy		
1.	No light in the front cover.	a)	The ribbon cable con- nection is loose or de- fective.	<ul> <li>Is the control indicator LED flashing? If not, the CU 301 is defective.</li> <li>Check that the ribbon cable connection is secure.</li> </ul>		
	The pump does not start. The green indicator	-	The CU 301, the pressure sensor or the pump is defective.	Check		
				<ul> <li>that the control indicator LED is flashing. If not, the CU 301 is defective.</li> </ul>		
	light in the On/Off but- ton is on. No alarm is indicated.			• that the system pressure is 7 psi below the pressure setting.		
				If so, the pump is supposed to start. Open a tap to be sure. If the pump starts, the system is probably OK. The system pressure can be read on the pressure gauge.		
				<ul> <li>Refer to fault 13 to troubleshoot the pressure sensor.</li> </ul>		
				If the pump has not started yet, proceed as follows:		
				<ul> <li>Press the On/Off button for 5 seconds. If the pump starts, the CU 301 or the sensor may be defective.</li> <li>Note: The pressure is not controlled and may rise to</li> </ul>		
				a high level.		
	The pressure is not constant.	a)	The pump is not of the correct type or the precharge pressure of the diaphragm tank is incorrect.	<ul> <li>Check</li> <li>that the LED for Max. speed or Min. speed is on. If so, this indicates that the pump has reached a limit. See section 1.3 System sizing.</li> </ul>		
				Replace the pump, if necessary.		
				• the precharge pressure of the diaphragm tank. Note: Remember to stop and drain the system before the pressure is checked.		
				<ul> <li>Make sure the diaphragm tank is the 2 gal. size.</li> </ul>		
				• whether the sensor is positioned far away from the tap.		
				If so, the pressure variations may be caused by fric- tion losses, see section 1.5 Positioning the pressure sensor.		
		b)	No contact between SQE pump and CU 301 control unit.	Check that the LED for "No contact to pump" is on. If so, go to fault no. 14.		
4.	The pump is running a continuously.	a)	The pump cannot de- liver the set pressure. The CU 301 or the sensor is defective.	<ul> <li>Try to lower the pressure setting, see section 1.3 System sizing. Note that the pump may run for about 15 to 20 seconds before it stops.</li> </ul>		
				Check that the control indicator LED is flashing.		
				<ul> <li>Check that the pipe end of the sensor is not blocked. If so, remove the blockage.</li> </ul>		
				<ul> <li>Try to stop the pump by means of the On/Off button. If this is not possible, the CU 301 is defective. Replace the CU 301.</li> </ul>		
				· Refer to fault 13 to troubleshoot the pressure sensor.		

eiar

-

ii a

a Siri

1909

(continued on the following page)

5. The CU 301 indi-	a)	The motor is not an	If the pump has already worked satisfactorily with a
cates "No contact to pump".	aj	MSE 3.	CU 301 or a CU 300, the motor can be expected to be an MSE 3.
			There is no technical way of determining the motor type. The only way is to read the nameplate engraved in the motor sleeve.
	b)	The pump cable is longer than 650 feet.	Reduce the length of the pump cable.
	c)	Cable breakage.	Switch off the mains supply to the CU 301. Connect motor leads directly to the mains supply.
			Switch on the mains supply again. The pump is now connected direct to the mains supply without interference from the CU 301.
			Does the motor start? Yes: The cable is OK. Go to point d).
			No: Switch off the mains supply again. Remove cable and cable plug from the motor and ohm out cable in- cluding plug.
			Is the cable OK? Yes: The motor is defective. Replace the motor. No: Replace the cable.
	d)	Cross communica-	If another CU 301 is installed:
		tion with adjacent CU 301.	<ul> <li>Insure each unit has a unique number assigned. See section 5.3.10 Number.</li> </ul>
			<ul> <li>If pump cables run parallel to each other, physically separate them by 12-14 inches or rewire using shielded cable.</li> </ul>
	e)	The CU 301 commu- nication part is defec- tive.	Are the three CU 301 supply board LEDs in pos. 2, 3 and 4 on and is the control indicator LED flashing? See section 4. Position of LEDs. Yes:
			<ul> <li>The mains supply is OK.</li> </ul>
			<ul> <li>Assign the system a new number.</li> </ul>
			If this does not work, the CU 301 or the motor communication part is defective.
			Replace the CU 301 and give the new system a num- ber between 1 and 64 in order to obtain correspon- dence between the numbering of the SQE pump and
			the CU 301. Note: Two systems on the same mains supply must no have the same number!
			Is the LED "No contact to pump" of the new CU 301 also on?
			Yes: The CU 301 is OK. Go to point f). No: The CU 301 which was removed is defective.
	f)	The MSE 3 motor communication part is defective.	As a consequence of the above-mentioned checks, replace the MSE 3 motor.
6. Even AFTER replace-	- a)	Numbering of SQE	If an SQE/CU 301 system has been given a number,
ment, the CU 301 in- dicates "No contact to pump".	1	pump and CU 301 is different.	this number is stored in both the SQE and CU 301. A new CU 301 or SQE may not have a number corre- sponding to the number stored in the previous unit. Therefore, "No contact to pump" is indicated even if
			there is no fault. Give a new system the number between 1 and 64 in
			order to obtain correspondence between the numbering of the SQE pump and the CU 301. <b>Note:</b> Two systems on the same mains supply must no
			have the same number!

7.	The CU 301 indi- cates "Overvoltage" or "Undervoltage".	a)	The supply voltage is unstable or outside the voltage range specified for the in- stalled motor type.	<ul> <li>Check - possibly over a period of time - that the supply voltage is according to the values below.</li> <li>Motor type 0.5 hp = 198-315 V</li> <li>Motor type 0.75 hp = 198-315 V</li> <li>Motor type 1.0 hp = 207-315 V</li> <li>Motor type 1.5 hp = 207-315 V.</li> <li>Voltage range for 100-115 V motors:</li> <li>Motor type 0.5 hp = 90-180 V.</li> <li>Note: As the voltage is detected at the motor, allow for the voltage drop in the pump cable.</li> </ul>
8.	The CU 301 indi- cates "Dry running".	sp		is lower than the dry-running stop setting and the motor of programmed maximum speed, for an accumulated pump will be stopped.
		a)	The pump perfor- mance is too high for the well yield.	Replace the pump with a smaller pump or reduce the pump performance, by lowering maximum speed, or reducing set pressure.
		b)	The well screen is blocked.	Check the well capacity and restore water supply to the well.
		c)	The dry-running stop setting is incorrect.	Check and correct the setting, see section 5.3.5 Dry- running stop.
9.	The CU 301 indi- cates "Speed reduc- tion" and	su		ed so as to maintain a reduced performance. When the that it can no longer supply the necessary current to pump will be stopped.
	"Undervoltage".	a)	The supply voltage is unstable or lower than the voltage range specified for the installed motor type.	Restore correct supply voltage.
		b)	The pump is not of the correct type.	Install correct pump type.
		c)	The voltage drop in the pump cable is too great.	Replace the pump cable with lower gauge wires.
10	The CU 301 indi-	Sp	eed reduction is activate	ed so as to maintain a reduced performance.
	cates "Speed reduc- tion" and "Overload".	a)	The pump is worn or blocked.	The pump must be serviced.
		b)	The pump is too large for the installed mo- tor.	Replace pump or motor.
<b>1</b> 1.	The CU 301 indi- cates "Overtempera-		e temperature sensor ir ted in 8. Technical data	the motor is sensing a temperature above the values , factory settings.
	ture".	a)	Insufficient cooling of the motor.	Restore correct cooling of the motor. The flow velocity past the motor should be at least 0.5 ft/s.
12.	The CU 301 indi- cates "Overload".	a)	The pump is worn or blocked.	The pump must be serviced.
		1. )	The pump is too large	

**Pars** 

ia)

i.

**Notice** 

een:

(continued on the following page)

13. The CU 301 indi- cates "Sensor defec- tive".	<ul> <li>Check that the sensor is wired correctly.</li> <li>Check that the R100 setting of the sensor is correct, see section 5.3.1.</li> <li>If the sensor type is 4-20 mA, measure the DC voltage across the sensor input terminals. If the DC voltage measured at the sensor or wiring is defective. Refer to section 9., page 28, for additional troubleshooting assistance.</li> <li>Replace defective parts.</li> <li>Are the LED "Sensor defective" and the LED, pos. 1, on?</li> <li>See section 4. Position of LEDs.</li> <li>Yes: The total load of 24 VDC from terminal 5 is above 100 mA.</li> <li>Disconnect the sensor in order to determine if it is defective.</li> <li>Replace defective sensor.</li> <li>No: The load is OK, but the CU 301 sensor input may be defective.</li> </ul>
14. The pump is operat- a) No communication. ing on/off.	Check that the LED "No contact to pump" is on. If so, the control unit CU 301 starts and stops the pump, based on the sensor signal only. The CU 301 has to be reset every 250 stops. Refer to fault no. 5 for remedy.
15. Excess pressure, for a) Cut-in speed is too a short moment, at high. start of consumption.	Reduce the cut-in speed, see section 5.3.7 Cut-in speed
<ul> <li>8. Technical data</li> <li>Supply voltage <ol> <li>x 100-240 V –10%/+6%, 50/60 Hz, PE.</li> </ol> </li> <li>Power consumption <ol> <li>W.</li> </ol> </li> <li>Back-up fuse Maximum 16 A. </li> <li>Current consumption Maximum 130 mA. Mains borne signalling Frequency shift keying (FSK).</li></ul>	EMC (electromagnetic compatibility) According to EN 55014 and EN 55014-2. Dimensional sketch
<ul> <li>(132.45 kHz ±0.6 kHz).</li> <li>Enclosure class</li> <li>IP 55.</li> <li>Maximum length between CU 301 and pump</li> <li>650 feet.</li> <li>Ambient temperature</li> <li>During operation: -22 to +113°F (-30 to +45°C) (must not be exposed to direct sunlight).</li> <li>During storage: -22 to +140°F (-30 to +60°C).</li> <li>Weight</li> <li>4.5 lb.</li> </ul>	
<b>Relative air humidity</b> Maximum 95%. <b>Materials</b> The CU 301 box is made of black PPO.	Fig. 19 Dimensional sketch

### Input for external sensor

Voltage signal:

**Factory settings** 

0-10 VDC/2-10 VDC,  $R_i = 11 k\Omega$ . Tolerance: ±3% at maximum voltage signal. #22 ga. Screened cable is recommended. Maximum cable length: 1640 ft (500 m). • Current signal: DC 0-20 mA/4-20 mA,  $R_i = 500 \Omega$ . Tolerance: ±3% at maximum current signal.

#22 ga. Screened cable is recommended. Maximum cable length: 1640 ft (500 m).

		100-115 V motors			
Alarm	SQ/SQE/ SQE-NE 0.5 hp	SQ/SQE/ SQE-NE 0.75 hp	SQ/SQE/ SQE-NE 1.0 hp	SQ/SQE/ SQE-NE 1.5 hp	All models
Sensor defective	4-20 mA (the va	lue is stored in the	e CU 301)		
Overload	5.2 A	8.4 A	11.2 A	12 A	11 A
	Stop limit: 167°F (75°C)	Stop limit: 180°F (82°C)	Stop limit: 198°F (92°C)	Stop limit: 203°F (95°C)	Stop limit: 185°F (85°C)
Overtemperature	Restart: 145°F (63°C)	Restart: 162°F (72°C)	Restart: 180°F (82°C)	Restart: 185°F (85°C)	Restart: 167°F (75°C)
Speed reduction	In connection with undervoltage or overload				
Overvoltage *)	315 VAC	315 VAC	315 VAC	315 VAC	180 VAC
	Speed reduction	when the supply v	oltage is below:		
Undervoltage	198 V	198 V	207 V	207 V	90 V
	Stop limit: 150 V	Stop limit: 150 V	Stop limit: 150 V	Stop limit: 150 V	Stop limit: 75 V
Dry running	300 W/550 W**	680 W	800 W	900 W	300 W/550 W**

 *) 200-240 V motors: Operation is guaranteed up to 280 VAC. 100-115 V motors: Operation is guaranteed up to 150 VAC.

In order to avoid unnecessary stops, the overvoltage stop limit is as stated.

**) The 550 W dry-running limit only applies to 10 SQE 160 and 10 SQE 160 N pumps.

### Accuracy of R100 readings

### Operation

Display	Accuracy	
5.2.2 Actual pressure	±1.4 psi	
5.2.3 Speed	±1%	
5.2.4 Temperature	±5%	
5.2.5 Power input and power consumption	±5%	

### Sensor

The sensor signal accuracy depends on the sensor type. See the sensor specifications in question.

### 8.1 Electrical connection

The electrical connection should be carried out by an authorized electrician.



Never make any connections on the CU 301 terminal block unless the electricity supply has been switched off. The CU 301 must be connected in accordance with the local rules and regulations.

#### IMPORTANT

The On/Off button on the CU 301 must not be used as a safety switch when installing and servicing the pump.

Mains disconnector must be provided by the installer.

"Raintight or wet location hubs that comply with the requirements in the standard for Fittings for Conduit and Outlet Boxes, UL514B, are to be used. Suitable devices for CU 301 are rated with enclosure type 3, 3R, 3S, 4, 4X, 6 or 6P".

The supply voltage and frequency are marked on the nameplate. Make sure that the CU 301 is suitable for the electricity supply on which it will be used.

If the CU 301 is connected to an electric installation where a Ground Fault Circuit Interrupter (GFCI) is used as an additional protection, this device **must** trip out when earth fault currents with DC content (pulsating DC) occur.

The CU 301 has two terminal blocks:

- Terminals 1 to 4.
- Terminals 5 to 7.

Furthermore, the CU 301 is equipped with two screw terminals for the protective earth leads (PE).

Always use copper conductors approved for  $60/75^{\circ}C$  (140/167°F).



US

Fig. 20 Electrical connection of the CU 301

#### Legend

Pos.	Description
1	Standard pressure sensor +24 VDC, brown lead, terminal 5
2	Standard pressure sensor Input signal, black lead, terminal 6
3	Standard pressure sensor Braid, terminal 7
4	Standard pressure sensor
5	Connections for operating relay

#### 8.1.1 Mains supply

#### POWER, terminals 1, 2 and PE

Connect terminals 1 and 2 to the phase and neutral leads of the mains supply. Each terminal can be connected to any of the two leads. Torque: 15 lbf-in. Connect the PE terminal to the green/yellow earth lead. Torque: 9.0 - 15.3 lbf-in. Each PE terminal must

be connected to an earth lead of its own. Maximum wire size of the leads to be connected is

10 AWG.

Circuit breaker: Maximum 16 A.

**Note:** The leads of the mains supply must not be connected to terminals 3 and 4 (PUMP).

#### 8.1.2 Pump supply

#### PUMP, terminals 3, 4 and PE

Connect terminals 3 and 4 to the phase and neutral leads of the pump. Each terminal can be connected to any of the two leads. Torque: 15 lbf-in.

Connect the PE terminal to the green/yellow earth lead. Torque: 9.0 - 15.3 lbf-in. Each PE terminal must be connected to an earth lead of its own.

Maximum wire size of the leads to be connected is 10 AWG.

In situations where multiple CU 301 pump power cables are run parallel in wiring trays or conduit and less than 10-12 inches apart, the possibility for undesired communication between units exists. When this occurs, intermittent or continuous "No contact" is typically seen. Other unexpected errors may also be seen.

Refer to section 5.3.10 Number for further instructions.

#### 8.1.3 Pressure sensor

#### SENSOR, terminals 5, 6 and 7

Terminals 5, 6 and 7 (SENSOR) are used for the pressure sensor.

#### Sensor signals

The sensor to be connected must provide signals within one of the following ranges:

- 0-10 V
- 2-10 V
- 0-20 mA
- · 4-20 mA factory default.

Changeover between current and voltage signals is carried out by means of the R100.

#### Important!

The total load of terminal 5 (+24 VDC) must not exceed 100 mA.

#### RELAY, terminals 8 and 9

Terminals 8 and 9 (RELAY) are used for the connection of an external signal transmitter (sound or light).

The operating relay is a normally open contact when the pump is not running, and closes while the pump is running.

#### **Relay specifications**

Maximum load: 230 VAC, 0.5 A.

## 9. Pressure sensor voltage chart

Voltage to pressure chart for CU 301 pressure sensors. Measure the DC voltage between "SENSOR IN" and "SENSOR GND". Voltages lower than 2 or higher than 10 indicate an incorrectly wired or a faulty sensor.

**Andr**ia Regis

1244

nitati k

iner (

14

È.

NAME?

illin.

÷.

S	DC voltage	psi	DC voltage	psi	DC voltage	psi
	1.9	0.0	4.5	40.5	7.1	81.0
	2.0	0.7	4.6	41.2	7.2	81.7
	2.0	1.5	4.6	42.0	7.2	82.5
	2.1	2.2	4.7	42.7	7.2	83.2
	2.1	3.0	4.7	43.5	7.3	84.0
	2.2	3.7	4.8	44.2	7.3	84.7
_	2.2	4.5	4.8	45.0	7.4	85.5
	2.3	5.2	4.8	45.7	7.4	86.2
	2.3	6.0	4.9	46.5	7.5	87.0
	2.4	6.7	4.9	47.2	7.5	87.7
	2.4	7.5	5.0	48.0	7.6	88.5
	2.4	8.2	5.0	48.7	7.6	89.2
	2.5	9.0	5.1	49.5	7.7	90.0
-	2.5	9.7	5.1	50.2	7.7	90.7
-	2.6	10.5	5.2	51.0	7.8	91.5
-	2.6	11.3	5.2	51.7	7.8	92.2
-	2.7	12.0	5.3	52.5	7.9	93.0
-	2.7	12.8	5.3	53.2	7.9	93.7
-	2.8	13.5	5.4	54.0	8.0	94.5
-	2.8	14.3	5.4	54.7	8.0	95.2
-	2.9	15.0	5.5	55.5	8.1	96.0
-	2.9	15.7	5.5	56.2	8.1	96.7
-	3.0	16.5	5.6	57.0	8.2	97.5
-	3.0	17.2	5.6	57.7	8.2	98.2
-	3.1	18.0	5.7	58.5	8.3	99.0
-	3.1	18.7	5.7	59.2	8.3	99.7
-	3.2	19.5	5.8	60.0	8.4	100.5
-	3.2	20.2	5.8	60.7	8.4	101.3
-	3.3	21.0	5.9	61.5	8.4	102.0
-	3.3	21.7	5.9	62.2	8.5	102.8
-	3.4	22.5	6.0	63.0	8.5	103.5
-	3.4	23.2	6.0	63.7	8.6	104.3
-	3.5	24.0	6.0	64.5	8.6	105.0
-	3.5	24.7	6.1	65.2	8.7	105.8
-	3.6	25.5	6.1	66.0	8.7	106.5
-	3.6	26.2	6.2	66.7	8.8	107.3
-	3.6	27.0	6.2	67.5	8.8	108.0
-	3.7	27.7	6.3	68.2	8.9	108.8
-	3.7	28.5	6.3	69.0	8.9	109.5
-	3.8	29.2	6.4	69.7	9.0	110.3
-	3.8	30.0	6.4	70.5	9.0	111.0
-	3.9	30.7	6.5	71.2	9.1	111.8
-	3.9	31.5	6.5	72.0	9.1	112.5
-	4.0	32.2	6.6	72.7	9.2	113.3
-	4.0	33.0	6.6	73.5	9.2	114.0
-	4.1	33.7	6.7	74.2	9.3	114.8
-	4.1	34.5	6.7	75.0	9.3	115.5
-	4.2	35.2	6.8	75.7	9.4	116.3
-	4.2	36.0	6.8	76.5	9.4	117.0
-	4.3	36.7	6.9	77.2	9.5	117.8
-	4.3	37.5	6.9	78.0	9.5	118.5
-	4.4	38.2	7.0	78.7	9.6	119.3
-	4.4	39.0	7.0	79.5	9.6	120.0
-	4.5	39.7	7.1	80.2		

## 10. Disposal

aite d

(19)

1000

This product or parts of it must be disposed of in an environmentally sound way:

- 1. Use the public or private waste collection service.
- 2. If this is not possible, contact the nearest Grundfos company or service workshop.

## US

#### U.S.A.

GRUNDFOS Pumps Corporation 17100 West 118th Terrace Olathe, Kansas 66061 Phone: +1-913-227-3400 Telefax: +1-913-227-3500

#### Canada

GRUNDFOS Canada Inc. 2941 Brighton Road Oakville, Ontario L6H 6C9 Phone: +1-905 829 9533 Telefax: +1-905 829 9512

#### Mexico

Bombas GRUNDFOS de Mexico S.A. de C.V. Boulevard TLC No. 15 Parque Industrial Stiva Aeropuerto Apodaca, N.L.C.P. 66600 Phone: +52-81-8144 4000 Telefax: +52-81-8144 4010 **848**4

1965

5. (A)

-

1

## **GRUNDFOS INSTRUCTIONS**

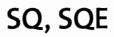
## SQ, SQE

 $\textcircled{\sc US}$  Installation and operating instructions





BE > THINK > INNOVATE >


## LIMITED WARRANTY

Products manufactured by GRUNDFOS PUMPS CORPORATION (Grundfos) are warranted to the original user only to be free of defects in material and workmanship for a period of 24 months from date of installation, but not more than 30 months from date of manufacture. Grundfos' liability under this warranty shall be limited to repairing or replacing at Grundfos' option, without charge, F.O.B. Grundfos' factory or authorized service station, any product of Grundfos' manufacture. Grundfos will not be liable for any costs of removal, installation, transportation, or any other charges which may arise in connection with a warranty claim. Products which are sold but not manufactured by Grundfos are subject to the warranty provided by the manufacturer of said products and not by Grundfos' warranty. Grundfos will not be liable for damage or wear to products caused by abnormal operating conditions, accident, abuse, misuse, unauthorized alteration or repair, or if the product was not installed in accordance with Grundfos' printed installation and operating instructions.

To obtain service under this warranty, the defective product must be returned to the distributor or dealer of Grundfos' products from which it was purchased together with proof of purchase and installation date, failure date, and supporting installation data. Unless otherwise provided, the distributor or dealer will contact Grundfos or an authorized service station for instructions. Any defective product to be returned to Grundfos or a service station must be sent freight prepaid; documentation supporting the warranty claim and/or a Return Material Authorization must be included if so instructed.

GRUNDFOS WILL NOT BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, LOSSES, OR EXPENSES ARISING FROM INSTALLATION, USE, OR ANY OTHER CAUSES. THERE ARE NO EXPRESS OR IMPLIED WARRANTIES, INCLUDING MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, WHICH EXTEND BEYOND THOSE WARRANTIES DESCRIBED OR REFERRED TO ABOVE.

Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages and some jurisdictions do not allow limit actions on how long implied warranties may last. Therefore, the above limitations or exclusions may not apply to you. This warranty gives you specific legal rights and you may also have other rights which vary from jurisdiction to jurisdiction.



-

-

.

Installation and operating instructions Page

4 **US** 

#### CONTENTS

1. 1.1 2. 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3. 3.1 4. 4.1 4.2 4.3 5. 6. 7. 8. 9. 10.1 11.	General description Applications Preinstallation Well preparation Make sure you have the right pump Pumped liquid requirements Motor cooling requirements Liquid temperatures/cooling Motor preparation Refilling of motor liquid Installation positions Positional requirements Electrical connection General Motor protection Connection of motor Cable sizing Splicing the cable Fitting the cable plug to the motor Fitting the cable guard Piping Installing the pump Installation depth Generator operation	
<b>12.</b> 12.1 12.2 12.3 12.4 12.5 12.6	Starting the pump for the first time Motor cooling and other considerations Impurities in the water	



Before beginning installation procedures, these installation and operating instructions should be studied carefully. The installation and operation should also be in accordance with local regulations and accepted codes of good practice.

## 1. General description

The SQ/SQE is a 3 inch diameter submersible pump mainly designed for the pumping of raw water in domestic water supply. This manual is designed to assist in the proper set-up, installation and operation of these pumps.

#### 1.1 Applications

Page

4

4

4

4 4

4

5 5

5

5

6

6

**6** 6 6

6 7

7

7

8

8

9

9

9

10

10

10

10 10

10

10

10

10

11 12

13

13

13

13

14

Typical applications are:

- residential housing
- small waterworks
- pressure boosting
- irrigation systems
- liquid transfer in tanks.

#### 2. Preinstallation

#### 2.1 Well preparation

If the pump is to be installed in a new well, the well should be fully developed and bailed or blown free of cuttings and sand.

The construction of the Grundfos SQ/SQE submersibles makes them resistant to abrasion; however, no pump made of any material can forever withstand the destructive wear that occurs when constantly pumping sandy water.

If this pump is used to replace an oil-filled submersible or oil-lubricated line-shaft turbine in an existing well, the well must be blown or bailed clear of oil.

#### 2.2 Make sure you have the right pump

Determine the maximum depth of the well and the drawdown level at the maximum pump capacity. Pump selection and setting depth should be made based on this data.

#### 2.3 Pumped liquid requirements

Submersible well pumps are designed for pumping clear, cold water; free of air or gases. Decreased pump performance and life expectancy can occur if the water is not clear, cold or contains air or gases.

The water temperature should not exceed 104°F.

A check should be made to ensure that the installation depth of the pump will always be at least three feet below the maximum drawdown level of the well. The bottom of the motor should never be installed lower than the top of the well screen or within five feet of the well bottom.

#### 2.4 Motor cooling requirements

To ensure proper motor cooling, refer to the table below for minimum flow requirements:

Flow velocity past the motor	Maximum liquid temperature
0.0 f/s (free convection)	86°F (30°C)
Min. 0.5 f/s	104°F (40°C)

If the pump is to be installed horizontally, e.g. in a tank, and there is a risk that the pump might be covered by mud, it must be installed in a flow sleeve.

#### 2.5 Liquid temperatures/cooling

Figure 1 shows an SQ/SQE pump installed in a well. With the pump operating, figure 1 illustrates the following:

- Well diameter
- Pump diameter
- · Temperature of pumped liquid
- Flow past the motor to the pump suction strainer.

**Note:** The well diameter must be at least 3 inches. If there is a risk that the motor will be covered with sediment, it is recommended the pump be placed in a flow sleeve. The motor should always be installed above the well screen.

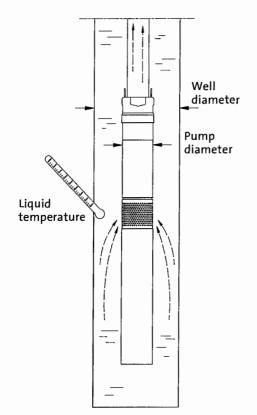



Fig. 1 Pump installed in well

#### 2.6 Motor preparation

Grundfos MS 3 and MSE 3 submersible motors have water-lubricated slide bearings. No additional lubrication is required.



The submersible motors are factory-filled with a special Grundfos motor liquid, type SML 2, which will protect the motor liquid down to  $4^{\circ}F$  (-20°C) and prevent the growth of bacteria. The level of motor liquid is important for the operating life of the bearings and consequently the life of the motor.

#### 2.7 Refilling of motor liquid

If for any reason the motor liquid has been drained or lost, the motor must be refilled with Grundfos motor liquid SML 2.

To refill the motor, proceed as follows:

- 1. Remove the cable guard and separate the pump end from the motor.
- 2. Place the motor in vertical position with an inclination of approximately 10°.
- 3. Remove the filling plug using a screwdriver or a similar tool.
- 4. Inject motor liquid into the motor with a filling syringe or similar tool, see fig. 2.
- 5. To allow possible air to escape, move the motor from side to side and turn the shaft.
- 6. Replace the filling plug and make sure it is tight.
- 7. Assemble pump end and motor.
- 8. Fit the cable guard.

#### The pump is now ready for installation.

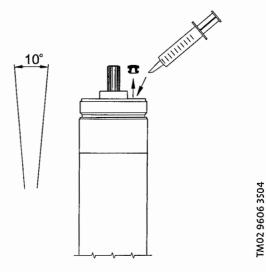



Fig. 2 Injecting motor liquid

FM01 0518 1297

## 3. Installation positions

#### 3.1 Positional requirements

(US)

The pump is suitable for vertical as well as horizontal installation, however, the pump shaft must never fall below the horizontal plane, see fig. 3.

If the pump is to be installed horizontally, e.g. in a tank, and there is a risk that the pump might be covered by mud, it must be installed in a flow sleeve.

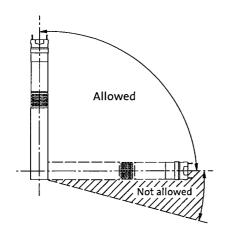



Fig. 3 Pump position

#### 4. Electrical connection

#### 4.1 General

The electrical connection should be carried out by an authorized electrician in accordance with local regulations.



Before starting work on the pump, make sure that the electricity supply has been switched off and that it cannot be accidentally switched on.

The pump must be grounded.

The pump must be connected to an external mains switch.

The supply voltage, rated maximum current and power factor (PF) appear on the motor nameplate.

The required voltage for Grundfos submersible MS 3/MSE 3 motors, measured at the motor terminals, is -10%/+6% of the nominal voltage during continuous operation (including variation in the supply voltage and losses in cables).

If the pump is connected to an installation where a Ground Fault circuit breaker (GFI) is used as additional protection, this circuit breaker must trip out when ground fault currents with DC content (pulsating DC) occur.

**Note:** The pump must never be connected to a capacitor or to another type of control box than CU 300 or CU 301.

**Note:** The pump must never be connected to an external frequency converter.

#### Supply voltage:

1 x 90-120 V or 1 x 200-240 V -- 10%/+6%, 50/60 Hz.

The current consumption can only be measured accurately by means of a true RMS instrument. If other instruments are used, the value measured will differ from the actual value.

The SQE pumps can be connected to a CU 300 or CU 301 control box.

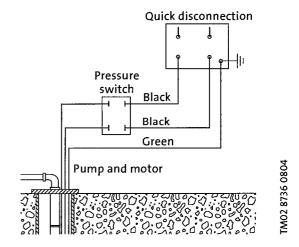
#### 4.2 Motor protection

The motor has built-in automatic thermal overload protection and requires no additional motor protection.

#### 4.3 Connection of motor

The motor can be connected directly to the main circuit breaker.

Start/stop of the pump will typically be done via a pressure switch, see fig. 4.


Note: The pressure switch must be rated for the maximum amps of the specific pump.



FM01 1375 4397

Reduced risk of electric shock during operation of this pump requires the provision of acceptable grounding. If the means of connection to the supply connected box is other than grounded metal conduit, ground the pump back to the service by connecting a copper conductor, at least the size of the circuit supplying the pump.

## Single-phase 2-wire wiring diagram for Grundfos motors



#### Fig. 4 Wiring diagram

**Note:** The pump must never be connected to a capacitor or to another type of control box than CU 300 or CU 301.

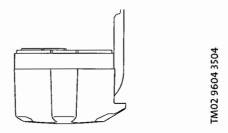
#### 5. Cable sizing

Single-phase 60 Hz maximum cable length motor service to entrance:

			size	oper wire s	Cop				rating	Motor
00	0	2	4	6	8	10	12	14	hp	Volts
	1680	1050	660	410	260	160	100	65	0.5	115
		4870	3060	1930	1210	760	480	300	0.5	230
	4800	3010	1890	1190	750	470	300	190	0.75	230
4540	3600	2260	1420	890	560	350	220	140	1.0	230
4230	3360	2110	1320	830	520	330	210	130	1.5	230

### 6. Splicing the cable

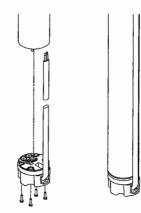
Splice the drop cable with the motor cable. If the splice is carefully made, it will be as efficient as any other portion of the cable and will be completely watertight.


There are a number of cable splicing kits available today - epoxy-filled, rubber-sealed, etc. Many perform well if the manufacturer's directions are followed carefully. If one of these kits is not used, we recommend the following method for splicing the motor cable to the drop cable:

- 1. Examine the motor cable and the drop cable carefully for damage.
- 2. Cut the motor leads off in a staggered manner.
- Cut the ends of the drop cable so that the ends match up with the motor leads. Be sure to match the colors.
- Strip back and strip off one inch of insulation from each lead, making sure to scrape the wire bare to obtain a good connection.
   Be careful not to damage the copper conductor when stripping off the insulation.
- Insert a properly sized Sta-Kon™-type connector on each pair of leads, again making sure that colors are matched. Using Sta-Kon™ crimping pliers, indent the lugs. Be sure to squeeze down hard on the pliers, particularly when using large cable.
- 6. Form a piece of electrical putty tightly around each Sta-Kon[™]. The putty should overlap on the insulation of the wire.
- 7. Use a good quality tape such as #33 Scotch Waterproof or Plymouth Rubber Company Slipknot Grey. Wrap each wire and joint tightly for a distance of about 2% inches on each side of the joint. Make a minimum of four passes over each joint and overlap each pass approximately one inch to ensure a completely watertight seal.

Note: Do not lower or lift the pump using the motor cable.

#### 7. Fitting the cable plug to the motor


The cable plug supplied with the motor is factorygreased. Check that the plug is greased correctly, see fig. 5.



#### Fig. 5 Greasing of plug

To fit the cable plug, proceed as follows:

- 1. Check that the cable is of the correct type, crosssection and length.
- 2. Check that the mains on the location has correct connection to ground.
- 3. Check that the motor socket is clean and dry.
- 4. Press the cable plug onto the motor socket. The plug will only fit one way, see fig. 6.
- 5. Fit and tighten the four screws, see fig. 6. When the plug has been fitted, there must not be a clearance between the motor and the cable plug.



FM02 9605 3504

Fig. 6 Fitting the cable plug

7

#### 8. Fitting the cable guard

US

To fit the cable guard, proceed as follows:

- 1. Make sure that the motor lead lies flat in the cable guard.
- 2. Place the cable guard in the groove in the cable plug. The two flaps must engage with the upper edge of the pump sleeve, see fig. 7.

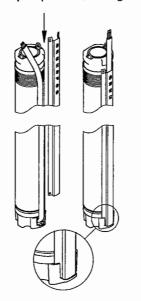



Fig. 7 Placing the cable guard

3. Fasten the cable guard to the pump suction strainer with the two self-tapping screws supplied, see fig. 8.

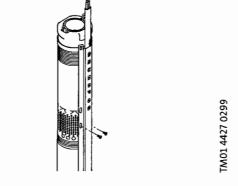
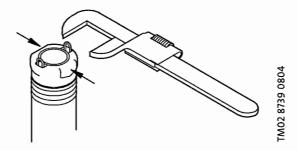



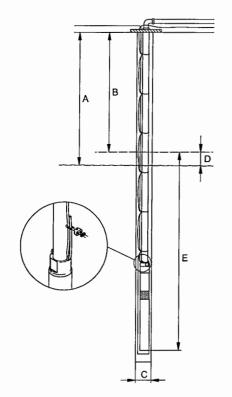

Fig. 8 Fitting the cable guard to the pump suction strainer

## 9. Piping

- The pump should only be gripped by the two flats at the top of the pump, see fig. 9.
- The pump can be installed vertically or horizontally. During operation, the pump must always be completely submerged in water.
- When plastic pipe is used, a stainless steel safety wire is recommended for lowering and lifting the pump. Fasten the wire to the eyelet on the pump, see fig. 10.
- The threaded joints must be well cut and fit together tightly to ensure that they do not work loose.






TM02 9613 3504

#### 10. Installing the pump

#### 10.1 Installation depth

The dynamic water level should always be above the pump, see fig. 10.

- A = Dynamic water level
- B = Static water level
- C = Minimum 3 inch well diameter
- D = Drawdown
- E = Installation depth below static water level. Maximum 500 feet.



#### Fig. 10 Installation depth

#### Procedure:

To install the pump, proceed as follows:

- 1. Attach the enclosed data plate sticker at the well head.
- 2. Check the well for proper clearance. The well must be at least 3 inches in diameter. It is a good idea to check the well for clearance using a plumb ring (2.95 Ø x 10 in.).
- 3. Attach the first section of riser pipe to the pump.
- Lower the pump into the well. Make sure the motor cable is not damaged when the pump is lifted or lowered into the well, especially in 3 inch wells. Note: Do not lower or lift the pump using the motor cable.

 When the pump has been installed to the required depth, the installation should be finished by means of a well seal. Note that the dynamic water level should always be above the pump.



- Loosen the safety wire so that it becomes unloaded and lock it to the well seal using a cable clamp.
- 7. Complete the electrical connections.

**Note:** The pump must never be connected to a capacitor or to another type of control box than CU 300 or CU 301.

#### Installation depths:

Maximum installation depth: 500 feet below the static water level.

500 feet below the static water level.

Minimum installation depth: 1.75 feet below the dynamic water level.

#### Vertical installation:

During start-up and operation, the pump must always be completely submerged in water.

#### Horizontal installation:

The pump must be installed at least 1.75 feet below the dynamic water level.

If there is a risk that the pump might be covered by mud, the pump must always be placed in a flow sleeve.

Note: Do not lower or lift the pump using the motor cable.

#### 11. Generator operation

FM02 8740 0804

It is safe to operate the SQ/SQE with a generator. The generator must be sized 50% above the P1 (input power) values of the pump. See the following table.

Motor	Min. generator size	Recommended generator output
[hp]	[W]	[W]
0.5	1200	1500
0.75	1900	2500
1.0	2600	3200
1.5	2800	3500



## 12. Starting the pump for the first time

When the pump has been connected correctly, the pump should be started with the discharge valve closed approximately one third.



Due to the soft start feature, the pump takes approximately 2 seconds to develop full pressure.

#### 12.1 Motor cooling and other considerations

- Make sure the well is capable of yielding a minimum quantity of water corresponding to the pump capacity.
- Do not start the pump until it is completely submerged in the liquid.
- As the valve is being opened, the drawdown should be checked to ensure that the pump always remains submerged.
- To ensure the necessary cooling of the motor, the pump should never be set so low that it gives no water.

If the flow rate suddenly falls, the reason might be that the pump is pumping more water than the well can yield. The pump must immediately be stopped and the fault corrected.

#### 12.2 Impurities in the water

If there are impurities in the water, the valve should be opened gradually as the water becomes clearer. The pump should not be stopped until the water is clean, otherwise the pump parts and the check valve may become clogged.

When the water is clean, the valve should be fully opened.

#### 12.3 Minimum flow rate

To ensure the necessary cooling of the motor, the pump flow rate should never be set to a value lower than 0.2 gpm.

If the flow rate suddenly falls, the reason might be that the pump is pumping more water than the well can yield. The pump must immediately be stopped and the fault corrected.

**Note:** The pump's dry-running protection is effective only within the recommended duty range of the pump.

**Note:** Do not let the pump run against a closed discharge valve for more than 5 minutes. When the discharge valve is closed, there is no cooling flow and there is a risk of overheating in motor and pump.

#### 12.4 Built-in protection

The motor incorporates an electronic unit which protects the motor in various situations.

- In case of overload, the built-in overload protection will stop the pump for 5 minutes. After that period, the pump will attempt to restart.
- If the pump has been stopped as a result of dry running, it will start automatically after 5 minutes.
- If the pump is restarted and the well has not recovered, the pump will stop after 30 seconds.

#### 12.5 Resetting the pump

Switch off the electricity supply for 1 minute. The motor is protected against the following conditions:

- dry running
- voltage surges (up to 6000 V) In areas with high lightning intensity, external lightning protection is required.
- overvoltage
- undervoltage
- overload
- overtemperature.

#### 12.6 MS 3 motors

**Note:** All MS 3 motors are factory-set to detect dryrunning conditions.

Check that the combination of pump and motor corresponds to the data on page 39.

#### 12.7 MSE 3 motors

**Note:** All MSE 3 motors are factory-set to detect dryrunning conditions. However, if the maximum pump speed setting is changed, the dry running stop value must also be changed. Please refer to either the CU 301 or CU 300 I&O for instructions on this procedure.

#### 12.8 Maintenance and service

The pumps are normally maintenance-free.

Deposits and wear may occur. For that purpose, service kits and service tools are available from Grundfos.

The Grundfos Service Manual is available on request. The pumps can be serviced at a Grundfos service center.

#### 13. Assembly of pump and motor

To assemble pump end and motor, proceed as follows:

- 1. Place the motor horizontally in a vice and tighten it, see fig. 12.
- 2. Pull the pump shaft out to the position shown in fig. 11.

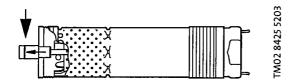



Fig. 11 Pump shaft position

- 3. Grease the motor shaft end with the grease supplied with the motor.
- Screw the pump end on the motor (55 Nm). Note: The pump shaft must engage with the motor shaft.

A spanner may be used on the clamping faces of the pump end, see fig. 12.

5. Fit the cable guard as described in section 8.

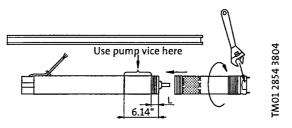



Fig. 12 Pump in vice

0.5 hp: L = 4.7". 0.75 hp: L = 4.0".

1.0 hp: L = 2.6".

1.5 hp: L = 2.6".

When pump end and motor have been assembled correctly, there must be no clearance between pump end and motor.

To disassemble, reverse procedure.



## 14. Troubleshooting

Fault		Cau	ISE	Remedy
1. The pur not run		a) '	The fuses are blown.	Replace the blown fuses. If the new fuses blow too, check the electrical installation and the drop cable.
	-	b) '	The GFI circuit breaker has tripped.	Reset the circuit breaker.
	-	c) 1	No electricity supply.	Contact the electricity provider.
			The motor protection has cut off the electricity supply due to overload.	Check for motor/pump blockage.
		e)	The drop cable is defective.	Repair or replace the pump/cable.
	-	f)	Overvoltage has occurred.	Check the electricity supply.
•		a) '	The discharge valve is closed.	Open the valve.
gives n	o water.	,	No water or too low water level in well.	Increase the installation depth of the pump throttle the pump or replace it with a smaller capacity model.
	-		The check valve is stuck in its closed position.	Pull the pump and clean or replace the valve.
		d) [.]	The suction strainer is closed.	Pull the pump and clean the strainer.
	-	e)	The pump is defective.	Repair or replace the pump.
	The pump runs at reduced capacity.		The drawdown is larger than anticipated.	Increase the installation depth of the pump throttle the pump or replace it with a smaller capacity model.
			The valves in the discharge pipe are partly closed/blocked.	Check and clean or replace the valves as necessary.
	-		The discharge pipe is partly choked by impurities (iron bacteria).	Clean or replace the discharge pipe.
			The check valve of the pump is blocked.	Pull the pump and clean or replace the valve.
	-		The pump and the riser pipe are partly choked by impurities (iron bacteria).	Pull the pump. Check and clean or replace the pump, if necessary. Clean the pipes.
		f) '	The pump is defective.	Repair or replace the pump.
	-	g) I	Hole in discharge pipe.	Check and repair the piping.
	-	h) ⁻	The riser pipe is defective.	Replace the riser pipe.
		i) I	Undervoltage has occurred.	Check the electricity supply.
<ol> <li>Frequer and sto</li> </ol>	ps.	,   	The differential of the pressure switch between the start and stop pressures is too small.	Increase the differential. However, the stop pressure must not exceed the operating pressure of the pressure tank and the start pressure should be high enough to ensure sufficient water supply.
			The water level electrodes or level switches in the reservoir have not been installed correctly.	Adjust the intervals of the electrodes/level switches to ensure suitable time between the cutting-in and cutting-out of the pump See installation and operating instructions for the automatic devices used. If the intervals between start/stop cannot be changed via the automatics, the pump capacity may be reduced by throttling the discharge valve.
	-		The check valve is leaking or stuck half-open.	Pull the pump and clean or replace the check valve.
	_	d) 1	The supply voltage is unstable.	Check the electricity supply.
		e) 1	The motor temperature is too high.	Check the water temperature.

inter-

12

#### 14.1 instruments not allowed

Note: The use of the following instruments is not allowed during troubleshooting.



Fig. 13 Instruments not allowed

Note: When measuring, use RMS instruments.

#### 15. Checking of motor and cable

1. Supply voltage		The voltage should, when the motor is loaded, be within the range specified in sec- tion 4. Electrical connection. Large variations in supply voltage indicate poor electricity supply, and the pump should be stopped until the problem has been cor- rected.
2. Current consumption	Measure the current (RMS) while the pump is operating at a constant discharge head (if possible, at the capacity where the motor is most heavily loaded). For maximum current, see mo- tor nameplate.	<ul> <li>If the current exceeds the full-load current, there are the following possible faults:</li> <li>Poor connection in the leads, possibly in the cable joint.</li> <li>Too low supply voltage, see item 1.</li> </ul>

#### 16. Environment

During handling, operation, storage and transport, all environment regulations dealing with the handling of hazardous materials must be observed.



When the pump is taken out of operation, it must be ensured that no hazardous material is left in the pump and in the riser pipe, which can be injurious to persons and the environment.

### 17. Disposal

Disposal of this product or parts of it must be carried out according to the following guidelines:

- 1. Use the local public or private waste collection service.
- If such waste collection service does not exist or cannot handle the materials used in the product, please deliver the product or any hazardous materials from it to your nearest Grundfos company or service center.



### 18. Technical data

#### Supply voltage

US

1 x 90-120 V -10%/+6%, 50/60 Hz, PE. 1 x 200-240 V -10%/+6%, 50/60 Hz, PE.

#### **Operation via generator**

Recommended generator output must be equal to P1 [kW] + 50% and minimum P1 + 10%.

#### Starting current

The motor starting current is equal to the highest value stated on the motor nameplate.

#### Starting

Soft starting.

#### Run-up time

Maximum 2 seconds.

#### Motor protection

The motor is protected against dry running, overvoltage, undervoltage, overload and overtemperature.

#### Power factor

PF = 1.

#### Service factor

0.5 hp: 1.85 at 115 V/230 V. 0.75 hp: 2.05 at 230 V. 1.0 hp: 2.25 at 230 V. 1.5 hp: 1.65 at 230 V.

#### **Motor cable**

3 Wire, 14 AWG XLPE. Length: 5 feet.

#### Motor liquid

Type SML 2.

pH values

#### 5 to 9.

#### Liquid temperature

The temperature of the pumped liquid must not exceed 104°F.

**Note:** If liquids with a viscosity higher than that of water are to be pumped, please contact Grundfos.

#### **Discharge port**

5 SQ/SQE: 1" NPT. 10-15 SQ/SQE: 1¼" NPT. 22-30 SQ/SQE: 1½" NPT.

#### **Storage conditions**

Minimum ambient temperature: 4°F. Maximum ambient temperature: 140°F.

#### Freeze protection

**Note:** The motor must not be stored without being filled with motor liquid.

If the pump has to be stored after use, it must be stored on a frost-free location or it must be ensured that the motor liquid is frost-proof.

#### **Operating conditions**

Minimum ambient liquid temperature: 32°F. Maximum ambient liquid temperature: 104°F.

#### Motor dimensions (MS 3 and MSE 3)

0.5 hp: 20.9" length x 2.68" diameter. 0.75 hp: 20.9" length x 2.68" diameter. 1.0 hp: 22.3" length x 2.68" diameter. 1.5 hp: 22.3" length x 2.68" diameter.

#### Motor weights (MS 3 and MSE 3)

0.5 hp: 6.0 lbs. 0.75 hp: 7.1 lbs. 1.0 hp: 8.2 lbs. 1.5 hp: 8.2 lbs.

#### Pump end dimensions

Pump diameter: 2.68". Pump diameter, incl. cable guard: 2.91".

#### Pump end dimensions (min. and max.)

5 SQ/SQE: 10.6" to 18.0". 10 SQ/SQE: 10.6" to 14.8". 15 SQ/SQE: 10.6" to 16.9". 22 SQ/SQE: 10.6" to 16.9". 30 SQ/SQE: 10.6" to 13.7".

Pump end weights (min. and max.)

All SQ/SQE models: 2.2 lbs to 3.5 lbs.

#### Well diameter

Minimum 3".

#### Installation depth

Maximum 500 feet below static water level.

#### Subject to alterations.

## Pump models

1200

......

-

Pump type	Power P ₂ [hp]	Voltage [V]	Flow range [gpm]	Min. well dia.	Disch.
5SQ/SQE-90	0.5	230/115	1.5-7.5	3"	1" NPT
55Q/SQE-140	0.5	230/115	1.5-7.5	3"	1" NPT
5SQ/SQE-180	0.5	230/115	1.5-7.5	3"	1" NPT
5SQ/SQE-230	0.75	230	1.5-7.5	3"	1" NPT
5SQ/SQE-270	0.75	230	1.5-7.5	3"	1" NPT
5SQ/SQE-320	0.75	230	1.5-7.5	3"	1" NPT
5SQ/SQE-360	1.0	230	1.5-7.5	3"	1" NPT
5SQ/SQE-410	1.0	230	1.5-7.5	3"	1" NPT
5SQ/SQE-450	1.5	230	1.5-7.5	3"	1" NPT
10SQ/SQE-110	0.5	230/115	3-15	3"	1¼" NPT
10SQ/SQE-160	0.5	230/115	3-15	3"	1¼" NPT
10SQ/SQE-200	0.75	230	3-15	3"	1¼" NPT
10SQ/SQE-240	0.75	230	3-15	3"	1¼" NPT
10SQ/SQE-290	1.0	230	3-15	3"	1¼" NPT
10SQ/SQE-330	1.5	230	3-15	3"	1¼" NPT
15SQ/SQE-70	0.5	230/115	4-20	3"	1¼" NPT
15SQ/SQE-110	0.5	230/115	4-20	3"	1¼" NPT
15SQ/SQE-150	0.75	230	4-20	3"	1¼" NPT
15SQ/SQE-180	0.75	230	4-20	3"	1%" NPT
15SQ/SQE-220	1.0	230	4-20	3"	1¼" NPT
15SQ/SQE-250	1.0	230	4-20	3"	1%" NPT
15SQ/SQE-290	1.5	230	4-20	3"	1%" NPT
225Q/SQE-40	0.5	230/115	7-33	3"	1½" NPT
225Q/SQE-80	0.5	230/115	7-33	3"	1%" NPT
22SQ/SQE-120	0.75	230	7-33	3"	1½" NPT
225Q/SQE-160	1.0	230	7-33	3"	1%" NPT
225Q/SQE-190	1.0	230	7-33	3"	1%" NPT
22SQ/SQE-220	1.5	230	7-33	3"	1%" NPT
30SQ/SQE-40	0.5	230/115	8-42	3"	1%" NPT
30SQ/SQE-90	0.75	230	8-42	3"	1%" NPT
30SQ/SQE-130	1.0	230	8-42	3"	1%" NPT

## Accessories

Product	Part number
CU 300	96422776
CU 301	96436754
Flow sleeve	96037505
Grease	96037562
Flow switch	96022967
Pressure transmitter	96026030

## U.S.A.

GRUNDFOS Pumps Corporation 17100 West 118th Terrace Olathe, Kansas 66061 Phone: +1-913-227-3400 Telefax: +1-913-227-3500

#### Canada

GRUNDFOS Canada Inc. 2941 Brighton Road Oakville, Ontario L6H 6C9 Phone: +1-905 829 9533 Telefax: +1-905 829 9512

#### Mexico

Bombas GRUNDFOS de Mexico S.A. de C.V. Boulevard TLC No. 15 Parque Industrial Stiva Aeropuerto Apodaca, N.L. 66600 Mexico Phone: +52-81-8144 4000 Telefax: +52-81-8144 4010

وأقطأ

**

. Mar



February 24, 2012

1000000000 220000000000

Mr. Jim Griswold New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, NM 87505-4225

Re: Salty Dog Brine Station - Third Quarterly Groundwater Monitoring Report

Dear Mr. Griswold:

On behalf of PAB Services, Inc., Daniel B. Stephens & Associates, Inc. (DBS&A) is pleased to submit the enclosed groundwater monitoring report for the Salty Dog brine station located in Lea County, New Mexico. The report documents third quarter groundwater monitoring activities completed at the site on February 8 and 9, 2012.

Please do not hesitate to call me at (505) 353-9130 if you have any questions or require additional information.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

1:0.1.

Michael D. McVey Senior Hydrogeologist

Enclosures

cc: Pieter Bergstein, PAB Services, Inc.

Daniel B. Stephens & Associates, Inc.

## Quarterly Groundwater Monitoring Report Salty Dog Brine Station Lea County, New Mexico

Prepared for New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, Environmental Bureau

February 24, 2012



No.

Daniel B. Stephens & Associates, Inc.

6020 Academy NE, Suite 100 • Albuquerque, New Mexico 87109



## QUARTERLY GROUNDWATER MONITORING REPORT SALTY DOG BRINE STATION LEA COUNTY, NEW MEXICO

## 1. INTRODUCTION

Daniel B. Stephens & Associates, Inc. (DBS&A) has prepared this third quarterly groundwater monitoring report for submission to the New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (OCD) Environmental Bureau on behalf of PAB Services, Inc. (PAB) for the Salty Dog brine station located in Lea County, New Mexico (Figure 1). This report summarizes groundwater monitoring activities conducted at the site on February 8 and 9, 2012.

The Salty Dog brine station site is comprised of a northern portion where the former brine pond was located and a southern portion where the brine well is located (Figure 1). The former brine pond area and the brine well area are separated by approximately 2,500 feet, joined by a dirt road. Five monitor wells, one nested well, and one recovery well are located in the former brine pond area. Nine monitor wells, one nested well, and one recovery well are located in the brine well area.

Since the brine pond was closed in October 2008, a number of frac tanks have been stationed in the northern portion of the site to serve as storage for brine that is produced for resale. A concrete truck loading pad is located near the frac tanks. The brine well is currently not operational and attempts are being made to redrill the well and restore brine production at the site.

## 2. SCOPE OF WORK

The scope of work for quarterly groundwater monitoring consisted of measuring fluid levels in and collecting groundwater samples from ten monitor wells for laboratory analysis. The ten monitor wells included in the quarterly sampling were selected in consultation with the OCD project manager, Jim Griswold, on October 4, 2010. Groundwater samples were submitted to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico for chloride analysis

1



using U.S. Environmental Protection Agency (EPA) Test Method 300.0.

## 3. MONITORING ACTIVITIES

On February 8, 2012, DBS&A measured fluid levels in monitor wells DBS-2 through DBS-5 and PMW-1 in the former brine pond area, and DBS-6, DBS-8, DBS-9, MW-3, and MW-5 in the brine well area using a properly decontaminated electronic water level meter. Fluid levels were not measured in monitor well DBS-1 because the well has been destroyed. Table 1 provides a summary of the fluid level measurements. The average depth to water beneath the former brine pond area during this monitoring event was 64.80 feet below ground surface (ft bgs), increasing approximately 0.03 foot since the last monitoring event in October 2011. Water levels in wells DBS-2, -4, and -5 decreased from 0.05 to 0.09 foot, while water levels in wells DBS-3 and PMW-1 increased from 0.14 to 0.26 foot. The average depth to water beneath the brine well area was 62.29 ft bgs, increasing 0.09 foot since October 2011. Water levels in wells DBS-6, -8, and MW-3 decreased from 0.04 to 0.06 foot, while water levels in wells MW-5 increased 0.49 foot.

Potentiometric surface maps were prepared for the former brine pond and brine well areas and are included as Figures 2 and 3. Groundwater beneath both areas continues to flow to the southeast at an average gradient of approximately 0.004 foot per foot (ft/ft).

Groundwater samples were collected from monitor wells DBS-2 through DBS-6, PMW-1, DBS-8, DBS-9, MW-3, and MW-5 on February 9, 2012. A sample was not collected from DBS-1 because the well has been destroyed. DBS&A followed corporate standard operating procedures developed from EPA guidance during collection of all groundwater samples. Prior to sampling, the well was purged of a minimum of three casing volumes using a submersible pump to ensure that a representative sample of groundwater was collected. During purging, the DBS&A field technician measured water quality parameters including temperature, specific conductance, and pH to ensure that these parameters were stabilized to within 10 percent for specific conductance, 2 degrees for temperature and +/- 0.2 pH units prior to sampling. Sample containers were then filled, labeled, and placed on ice once the stabilization criteria were met. Groundwater samples were submitted under full chain-of-custody to HEAL for chloride analysis.



#### 4. ANALYTICAL RESULTS

Table 2 summarizes chloride analytical results for the ten groundwater samples collected on February 9, 2012. Figures 4 and 5 show the distribution of chloride in groundwater beneath the former brine pond and brine well areas for the sampling event. Complete laboratory reports and chain-of-custody documentation are provided in Appendix 1. Field notes recorded during groundwater monitoring activities are included in Appendix 2.

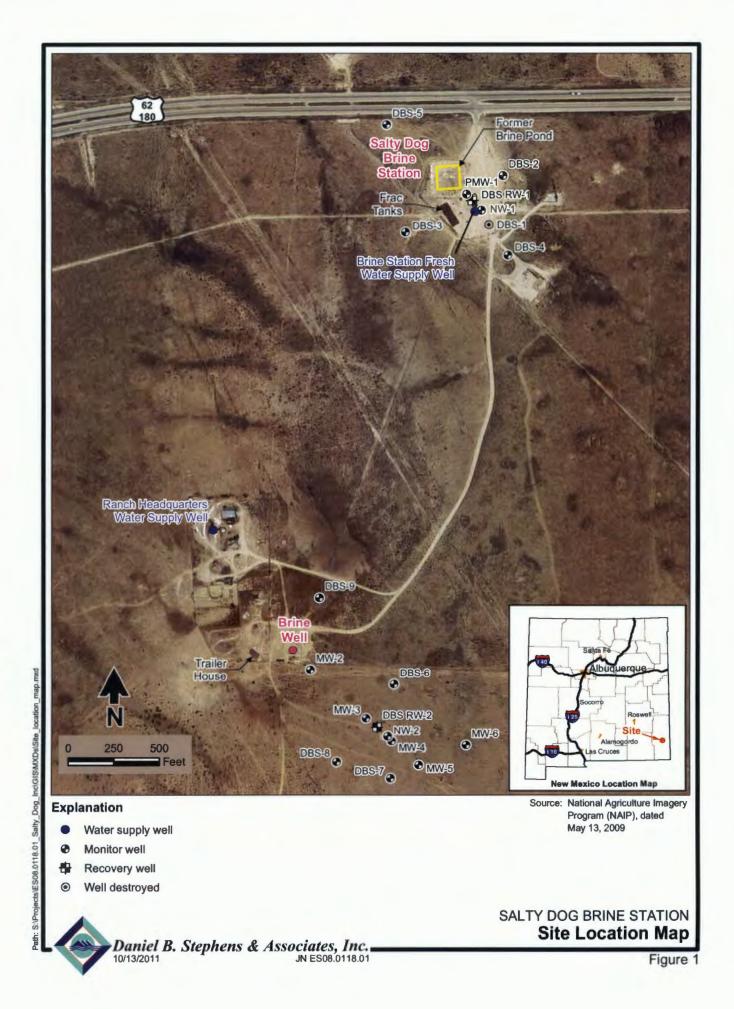
Since the last monitoring event in October 2011, monitor wells DBS-2 and MW-3 showed increases in chloride concentration from 18 to 22 mg/L and 14,000 to 15,000 mg/L, respectively. Monitor wells DBS-6 (400 to 380 mg/L), DBS-8 (140 to 41 mg/L), and DBS-9 (440 to 290 mg/L) showed decreases in chloride concentrations. Monitor wells DBS-3 (34 mg/L), DBS-4 (32 mg/L), DBS-5 (140 mg/L), PMW-1 (12,000 mg/L), and MW-5 (1,500 mg/L) showed no change in chloride concentration. Currently, five of the ten wells sampled contain concentrations of chloride in excess of the NMWQCC standard of 250 mg/L (Table 2). Monitor well DBS-1 contained chloride concentrations in excess of the standard during the April 2009 and May 2011 sampling events prior to being destroyed sometime between the May 2011 and October 2011 sampling events.

The chloride groundwater plume in the former brine pond area remains bounded by the existing monitor well network. Monitor well PMW-1 (12,000 mg/L), located downgradient of the former brine pond, continues to show a chloride concentration in excess of the NMWQCC standard (Figure 4). The chloride concentration in the farthest downgradient well, DBS-4, remains below the standard.

The downgradient and northern, cross-gradient extent of the chloride groundwater plume in the brine well area remains undefined. The farthest downgradient well, MW-5, and the northern-most cross-gradient well, DBS-6, continue to contain chloride concentrations in excess of the NMWQCC standard (Figure 5).

The chloride concentration in monitor well DBS-9 continues to show a decreasing trend (600 mg/L in May 2011 to 440 mg/L in October 2011 to 290 mg/L in February 2012), but still exceeds the NMWQCC standard. DBS-9 was installed in the playa located north of the brine well to



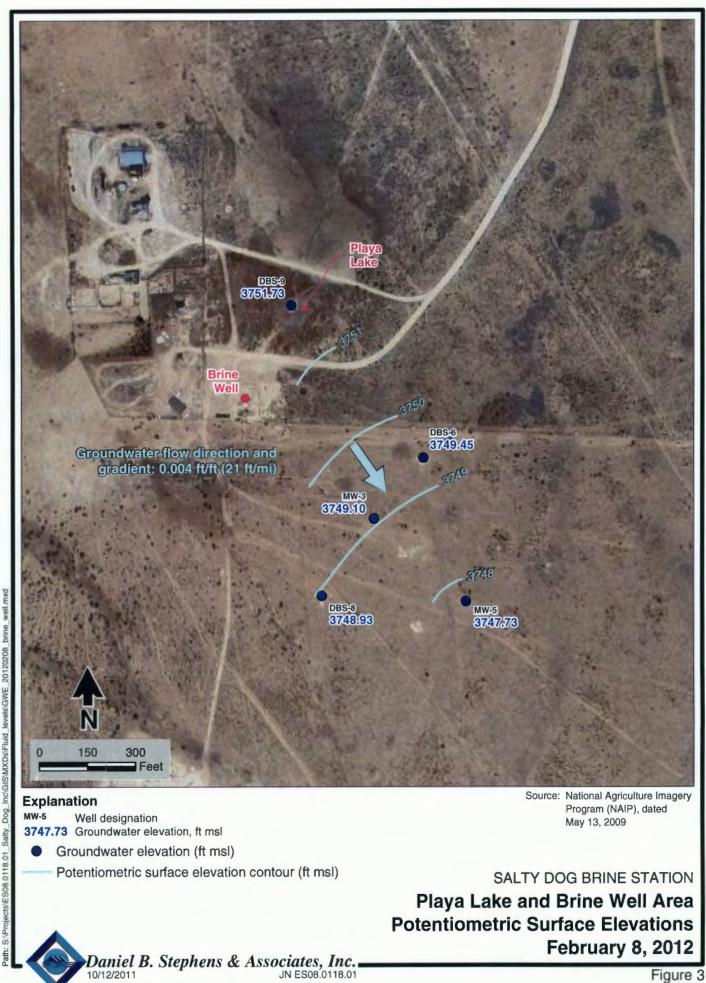

determine if documented releases that entered the playa in 2002 and 2005 impacted groundwater (Figure 5).

## 5. RECOMMENDATIONS

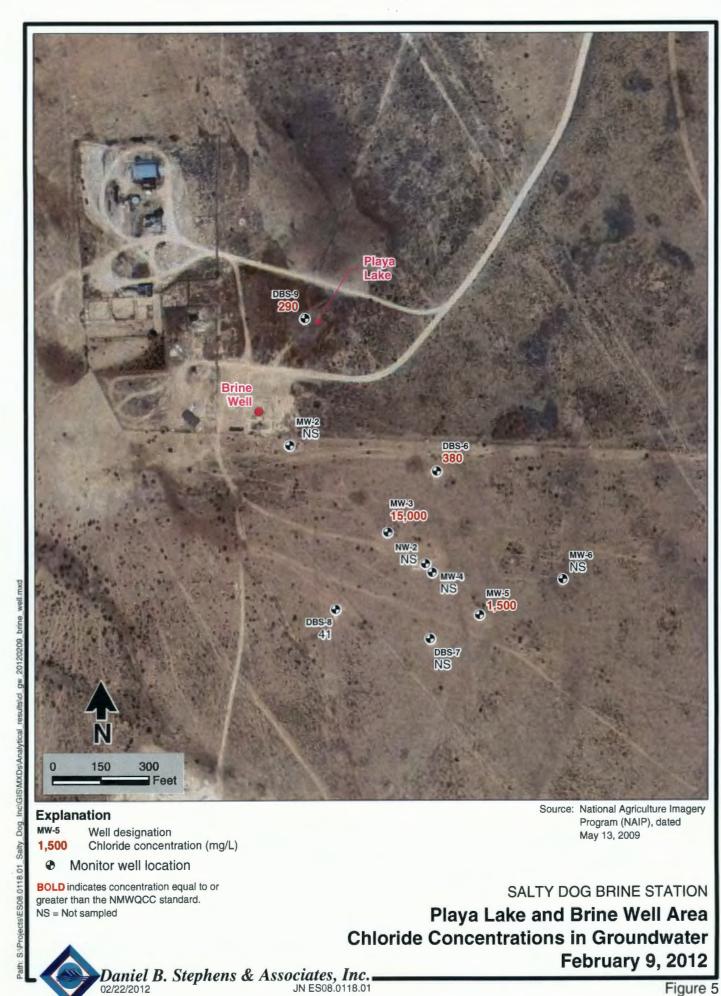
Based on the current groundwater monitoring results and trends in chloride concentrations, DBS&A recommends the following:

- Continue quarterly groundwater sampling to monitor chloride contaminant concentration trends in site wells.
- Redrill and install a replacement monitor well for DBS-1, which was destroyed by a backhoe sometime between May and October 2011.
- Begin active remediation of the chloride groundwater plumes at the former brine pond and brine well areas to control plume migration and reduce chloride concentrations in groundwater to less than the 250 mg/L NMWQCC standard.

## Figures







Daniel B. Stephens & Associates, Inc., 10/13/2011 JN ES08.0118.01

Former Brine Pond Area Potentiometric Surface Elevations February 8, 2012

Figure 2







## Tables

-

-

-

-

*(*070)

انوت

-

-

-

-



;98.M

: Sec

6.204

## Daniel B. Stephens & Associates, Inc.

# Table 1. Summary of Historical Fluid Level MeasurementsSalty Dog Brine Station, Lea County, New MexicoPage 1 of 3

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
DBS-1	56.0-76.0	3817.09	04/08/09	62.38	3754.71
			05/11/11	64.70	3752.39
			10/04/11	Well	destroyed
DBS-2	58.0-78.0	3820.50	04/08/09	65.45	3755.05
			05/11/11	66.80	3753.70
			10/04/11	65.87	3754.63
			02/08/12	65.96	3754.54
DBS-3	56.0-76.72	3816.66	04/08/09	60.67	3755.99
			05/11/11	61.25	3755.41
			10/04/11	61.25	3755.41
			02/08/12	61.11	3755.55
DBS-4	56.0-76.0	3820.37	04/08/09	66.27	3754.10
			05/11/11	67.23	3753.14
			10/04/11	66.67	3753.70
			02/08/12	66.76	3753.61
DBS-5	56.9-76.9	3820.66	04/08/09	62.99	3757.67
			05/11/11	63.45	3757.21
			10/04/11	63.41	3757.25
			02/08/12	63.46	3757.20
DBS-6	56.7-76.7	3812.65	04/07/09	62.75	3749.90
			05/11/11	63.11	3749.54
			10/04/11	63.16	3749.49
			02/08/12	63.20	3749.45
DBS-7	55.1-75.1	3810.21	04/07/09	61.74	3748.47
DBS-8	55.2-75.2	3810.70	04/07/09	61.20	3749.50
			05/11/11	61.67	3749.03
			10/04/11	61.71	3748.99
			02/08/12	61.77	3748.93
DBS-9	48.0-68.0	3806.26	04/08/09	53.93	3752.33

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

ft bgs	= Feet below ground surface	ft btoc	= Feet below top of casing
ft msl	= Feet above mean sea level	NA	= Not available

S:\Projects\ES08.0118.01_Salty_Dog_Inc\ES08.0118.02_Salty Dog Remediation\Docs\3rd Qtrly Mon\T1_GW Elev.doc



## Table 1. Summary of Historical Fluid Level Measurements Salty Dog Brine Station, Lea County, New Mexico Page 2 of 3

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
DBS-9 (cont.)	48.0-68.0	3806.26	05/11/11	54.39	3751.87
			10/04/11	54.59	3751.67
			02/08/12	54.53	3751.73
NW-1 (s)	52.95-72.95	3817.33	04/08/09	62.35	3754.98
NW-1 (m)	99.31-119.31	3817.35	04/08/09	62.25	3755.10
NW-1 (d)	149.45-169.45	3817.35	04/08/09	62.04	3755.31
NW-2 (s)	53.35-73.35	3812.50	04/08/09	63.08	3749.42
NW-2 (m)	93.72-113.72	3812.45	04/08/09	63.27	3749.18
NW-2 (d)	126.87-146.87	3812.46	04/08/09	66.41	3746.05
PMW-1	63-78	3821.17	06/23/08	67.51	3753.66
			04/08/09	65.97	3755.20
			05/11/11	68.70	3752.47
			10/04/11	66.95	3754.22
			02/08/12	66.69	3754.48
MW-1	120-140	NA	06/23/08	59.90	NA
MW-2	127-147	3812.68	06/23/08	61.42	3751.26
			04/07/09	61.65	3751.03
MW-3	NA	3812.05	06/23/08	62.06	3749.99
			04/07/09	62.02	3750.03
			05/11/11	62.91	3749.14
			10/04/11	62.91	3749.14
			02/08/12	62.95	3749.10
MW-4	111-131	3811.33	06/23/08	62.12	3749.21
			04/07/09	62.51	3748.82
MW-5	112-132	3808.96	06/23/08	60.60	3748.36
			04/07/09	60.79	3748.17
			05/11/11	61.17	3747.79
			10/04/11	61.72	3747.24
			02/08/12	61.23	3747.73

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

ft bgs	= Feet below ground surface	ft btoc	= Feet below top of casing
ft msl	= Feet above mean sea level	NA	= Not available

S:\Projects\ES08.0118.01_Salty_Dog_Inc\ES08.0118.02_Salty Dog Remediation\Docs\3rd Qtrly Mon\T1_GW Elev.doc



## Table 1. Summary of Historical Fluid Level Measurements Salty Dog Brine Station, Lea County, New Mexico Page 3 of 3

Monitor Well	Screen Interval (ft bgs)	Top of Casing Elevation ^a (ft msl)	Date Measured	Depth to Water (ft btoc)	Groundwater Elevation (ft msl)
MW-6	NA	3810.17	06/23/08	62.17	3748.00
			04/07/09	62.41	3747.76

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

ft bgs= Feet below ground surfaceft msl= Feet above mean sea level

ft btoc = Feet below top of casing

NA = Not available



### Daniel B. Stephens & Associates, Inc.

		Chloride
		Concentration
Monitor Well	Date	(mg/L) ^a
New Mexico Water Quality Control Com	mission Standard	250
DBS-1	04/08/09	320
	05/12/11	940
	10/04/11	Well destroyed
DBS-2	04/08/09	14
	05/12/11	25
	10/05/11	18
	02/09/12	22
DBS-3	04/08/09	36
	05/12/11	35
	10/05/11	34
	02/09/12	34
DBS-4	04/08/09	38
	05/12/11	33
	10/05/11	32
	02/09/12	32
DBS-5	04/08/09	65
	05/12/11	140
	10/05/11	140
	02/09/12	140
DBS-6	04/07/09	380
	05/12/11	410
	10/05/11	400
	02/09/12	380
DBS-7	04/07/08	570
DBS-8	04/07/09	58
	05/12/11	36
	10/05/11	140
	02/09/12	41
DBS-9	04/08/09	210
	05/12/11	600
	10/05/11	440

# Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 1 of 3

Bold indicates concentrations that exceed the applicable standard.

^aAll samples analyzed in accordance to EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance to Standard Method 4500-CI B.

mg/L = Milligrams per liter



#### Daniel B. Stephens & Associates, Inc.

		Chloride
		Concentration
Monitor Well	Date	(mg/L) ^a
New Mexico Water Quality Control Com	mission Standard	250
DBS-9 (cont.)	02/09/12	290
NW-1s	04/08/09	630
NW-1m	04/08/09	57
NW-1d	04/08/09	38
NW-2s	04/08/09	410
NW-2m	04/08/09	570
NW-2d	04/08/09	4,700
PMW-1	02/27/08	<b>9,500</b> ^b
	05/30/08	<b>8,600</b> ^b
	06/23/08	12,700
	04/08/09	11,000
	05/12/11	13,000
	10/05/11	12,000
	02/09/12	12,000
MW-1	05/30/08	75 ^b
	06/23/08	243
MW-2	02/27/08	120 ^b
	05/30/08	80 ^b
	06/23/08	1,480
	04/07/09	1,200
MW-3	02/27/08	<b>348</b> ^b
	05/30/08	<b>360</b> ^b
	06/23/08	1,090
	04/07/09	17,000
	05/12/11	16,000
	10/05/11	14,000
	02/09/12	15,000
MVV-4	02/27/08	476 ^b
, Î	05/30/08	512 ^b
	06/23/08	5,730
Ī	04/07/09	6,600

# Table 2. Summary of Chloride Groundwater Analytical DataSalty Dog Brine Station, Lea County, New MexicoPage 2 of 3

Bold indicates concentrations that exceed the applicable standard.

^aAll samples analyzed in accordance to EPA method 300.0, unless otherwise noted.

^bSamples analyzed in accordance to Standard Method 4500-Cl B.

mg/L = Milligrams per liter



#### Daniel B. Stephens & Associates, Inc.

Table 2. Summary of Chloride Groundwater Analytical Data
Salty Dog Brine Station, Lea County, New Mexico
Page 3 of 3

		Chloride
		Concentration
Monitor Well	Date	(mg/L) ^a
New Mexico Water Quality Control Com	mission Standard	250
MW-5	02/27/08	1,280 ^b
	05/30/08	<b>1,220</b> ^b
	06/23/08	1,260
	04/07/09	1,300
	05/12/11	1,500
	10/05/11	1,500
	02/09/12	1,500
MW-6	02/27/08	32 ^b
	05/30/08	36 ^b
	06/23/08	31.4
	04/07/09	25
Ranch Headquarters Supply Well	06/23/08	35.4
Brine Station Fresh Water Supply Well	02/27/08	630 ^b
	05/30/08	<b>590</b> ^b
	06/23/08	650

Bold indicates concentrations that exceed the applicable standard.

^a All samples analyzed in accordance with EPA method 300.0, unless otherwise noted.

^b Samples analyzed in accordance with Standard Method 4500-CI B.

mg/L = Milligrams per liter

## Appendices

ي نو

## Appendix 1

### Laboratory Reports

**ک**یت ا



Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

February 20, 2012

: en la

Mike McVey Daniel B. Stephens & Assoc. 6020 Academy NE Suite 100 Albuquerque, NM 87109 TEL: (505) 822-9400 FAX (505) 822-8877

RE: Ground H2O Sampling Salty Dog, Hobbs

OrderNo.: 1202375

Dear Mike McVey:

Hall Environmental Analysis Laboratory received 10 sample(s) on 2/10/2012 for the analyses presented in the following report.

There were no problems with the analytical events associated with this report unless noted in the Case Narrative. Analytical results designated with a "J" qualifier are estimated and represent a detection above the Method Detection Limit (MDL) and less than the Reporting Limit (PQL). These analytes are not reviewed nor narrated as to whether they are laboratory artifacts.

Quality control data is within laboratory defined or method specified acceptance limits except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

. Acres

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Enviror	mental Analy	vsis Laborator	∙y, Iı	nc.			Lab Or	tical Report der: 1202375 eported: 2/20/2012
	Daniel B. Stephens a Ground H2O Sampl		S			La	b Order	: 1202375
Lab ID: Client Sample ID	1202375-001 : DBS-4			(	Collecti		2/9/2012 AQUEC	2 8:35:00 AM DUS
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 300 Chloride	D.0: ANIONS	32	2.5	<u> </u>	mg/L		5	Analyst: BR 2/13/2012 8:33:52 PM
Lab ID: Client Sample ID:	1202375-002 : DBS-2			(	Collecti		2/9/2012 AQUEO	2 9:17:00 AM DUS
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 300 Chloride	0.0: ANIONS	22	2.5		mg/L		5	Analyst: <b>BR</b> 2/13/2012 9:11:08 PN
Lab ID: Client Sample ID:	1202375-003 : PMW-1			(	Collecti	on Date: Matrix:		2 9:58:00 AM US
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 300 Chloride	0.0: ANIONS	12,000	500		mg/L		1000	Analyst: <b>BR</b> 2/14/2012 6:49:46 PM
Lab ID: Client Sample ID:	1202375-004 DBS-3			(	Collecti	on Date: Matrix:		2 10:38:00 AM US
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 300 Chloride	0.0: ANIONS	34	2.5		mg/L		5	Analyst: <b>BR</b> 2/17/2012 6:31:55 PM
Lab ID: Client Sample ID:	1202375-005 DBS-5			(	Collecti	on Date: Matrix:		: 11:12:00 AM US
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 300 Chloride	0.0: ANIONS	140	10		mg/L		20	Analyst: <b>BR</b> 2/13/2012 9:48:21 PM
Lab ID: Client Sample ID:	1202375-006 DBS-9			(	Collecti	on Date: Matrix:		12:02:00 PM US
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 300 Chloride	.0: ANIONS	290	25		mg/L		50	Analyst: <b>BR</b> 2/13/2012 10:00:46 P
E J	Value exceeds Maximum Value above quantitation Analyte detected below q RPD outside accepted rec	range uantitation limits		] N	H Hold ID Not	•	or preparation the Reportion	ciated Method Blank on or analysis exceeded ng Limit
	Spike Recovery outside a	-		T	nep		Linnit	Page 1

1.余河

-

236

nt ind

фхй.

'teret

-181.mg

, 198

Hall Environ	mental Analy	sis Laborator	y, Iı	ıc.			Lab Or	tical Report der: 1202375 eported: 2/20/2012
	Daniel B. Stephens & Fround H2O Sampli	k Assoc. ng Salty Dog, Hobbs	5			La	b Order	: 1202375
Lab ID:	1202375-007				Collectio	on Date:	2/9/2012	2 12:35:00 PM
Client Sample ID:	DBS-8					Matrix:	AQUEC	OUS
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 300. Chloride	0: ANIONS	41	2.5		mg/L		5	Analyst: BRN 2/13/2012 10:13:10 PN
Lab ID:	1202375-008			(	Collectio	on Date:	2/9/2012	2 1:38:00 PM
Client Sample ID:	DBS-6					Matrix:	AQUEC	OUS
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 300. Chloride	0: ANIONS	380	25		mg/L		50	Analyst: BRN 2/13/2012 10:25:35 PM
Lab ID:	1202375-009			(	Collectio	on Date:	2/9/2012	2 2:55:00 PM
Client Sample ID:	MW-3					Matrix:	AQUEC	OUS
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 300. Chloride	0: ANIONS	15,000	500		mg/L		1000	Analyst: BRN 2/14/2012 7:01:00 PM
Lab ID:	1202375-010					n Dato.		2 3:55:00 PM
Client Sample ID:							AQUEO	
Analyses		Result	RL	Qual	Units		DF	Date Analyzed
EPA METHOD 300.	0: ANIONS							Analyst: BRN

Qualifiers:	*/X	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		Page 2 of

#### – QC SUMMARY REPORT

	Hall	Environmental	Analysis	Laboratory,	Inc.
-	11an	Environnentai	Analysis	Laboratory,	

**Client:** Daniel B. Stephens & Assoc. Ground H2O Sampling Salty Dog, Hobbs **Project:** Sample ID MB SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R918 RunNo: 918 Prep Date: Analysis Date: 2/13/2012 SeqNo: 26532 Units: mg/L SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte Result POL ND 0.50 Chloride Sample ID LCS SampType: LCS TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R918 RunNo: 918 Analysis Date: 2/13/2012 SeqNo: 26533 Units: mg/L Prep Date: SPK value SPK Ref Val HighLimit RPDLimit %RPD Qual Result PQL %REC LowLimit Analyte 4.7 0.50 5.000 0 94.9 90 110 Chloride Sample ID 1202390-006AMS SampType: MS TestCode: EPA Method 300.0: Anions Client ID: BatchQC Batch ID: R918 RunNo: 918 SeqNo: 26538 Units: mg/L Prep Date: Analysis Date: 2/13/2012 SPK value SPK Ref Val %RPD RPDLimit %REC LowLimit HighLimit Qual Result PQL Analyte Chloride 6.5 0.50 5.000 1.856 92.4 78 107 TestCode: EPA Method 300.0: Anions Sample ID 1202390-006AMSD SampType: MSD Client ID: BatchQC Batch ID: R918 RunNo: 918 Units: mg/L Prep Date: Analysis Date: 2/13/2012 SeqNo: 26539 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte 6.4 0.50 5.000 1.856 91.7 78 107 0.495 20 Chloride Sample ID MB SampType: MBLK TestCode: EPA Method 300.0: Anions RunNo: 918 Client ID: PBW Batch ID: R918 Analysis Date: 2/13/2012 SeqNo: 26581 Units: mg/L Prep Date: RPDLimit Qual Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD Analyte ND 0.50 Chloride Sample ID LCS SampType: LCS TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R918 RunNo: 918 Analysis Date: 2/13/2012 SeqNo: 26582 Units: mg/L Prep Date: %RPD SPK value SPK Ref Val %REC LowLimit HighLimit RPDLimit Qual Analyte Result POL 4.7 0.50 5.000 0 94.1 90 110 Chloride Sample ID 1202395-003AMS TestCode: EPA Method 300.0: Anions SampType: MS RunNo: 918 Client ID: BatchQC Batch ID: R918 Prep Date: Analysis Date: 2/14/2012 SeqNo: 26598 Units: mg/L %RPD RPDLimit %REC LowLimit HighLimit Qual Analyte Result PQL SPK value SPK Ref Val 100 78 107 Chloride 19 0.50 5.000 14.05 **Qualifiers:** 

*/X Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

1202375 20-Feb-12

____

WO#:

### **QC SUMMARY REPORT**

RPD outside accepted recovery limits

R

jini)

**Client:** 

#### Hall Environmental Analysis Laboratory, Inc. 194

Daniel B. Stephens & Assoc.

**Project:** Ground H2O Sampling Salty Dog, Hobbs

Sample ID	1202395-003AMS	) SampT	Type: N	ISD	Tes	tCode: E	PA Method	300.0: Anion:	s		
Client ID:			h ID: F			RunNo: 9					
Prep Date:		Analysis E			Ś	SeqNo: 2	6599	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	I owl imit	HighLimit	%RPD	RPDLimit	Qual
Chloride		19	0.50		14.05	102	78	107	0.422	20	
Sample ID	MB	SampT	Гуре: N	IBLK	Tes	tCode: E	PA Method	300.0: Anion	s	··	
Client ID:	PBW	Batcl	h ID: F	8952	F	RunNo: 9	52				
Prep Date:		Analysis D	Date:	2/14/2012	\$	SeqNo: 2	7530	Units: <b>mg/L</b>			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	0.50	0							
Sample ID	LCS	SampT	Type: L	.cs	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID:	LCSW	Batcl	h ID: F	8952	F	RunNo: 9	52				
Prep Date:		Analysis E	Date: 2	2/14/2012	S	SeqNo: 2	7 <b>542</b>	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		4.7	0.50	5.000	0	94.3	90	110			
Sample ID	МВ	SampT	Гуре: N	IBLK	Tes	tCode: E	PA Method	300.0: Anion:	s		
Client ID:	PBW	Batcl	h ID: F	8952	F	RunNo: 9	52				
Prep Date:		Analysis D	Date:	2/15/2012	5	SeqNo: 2	7606	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
A. J. J. J.		ND	0.50	0							
Chloride			0.50	J							
Chloride Sample ID	LCS		0.50 Гуре: L		Tes	tCode: E	PA Method	300.0: Anion:	s		
		SampT		.cs		tCode: E RunNo: 9		300.0: Anion	S		
Sample ID		SampT	Гуре: L h ID: F	.CS 1952	F		52	300.0: Anion Units: mg/L	\$		
Sample ID Client ID:		Samp1 Batcl	Гуре: L h ID: F	.CS 8952 2/15/2012	F	RunNo: 9 SeqNo: 2	52 7607		s %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte		Samp1 Batcl Analysis D	Гуре: L h ID: F Date: ;;	CS 8952 2/15/2012 SPK value	F	RunNo: 9 SeqNo: 2	52 7607	Units: mg/L		RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride		Samp1 Batcl Analysis D Result 4.7	Type: L h ID: F Date: 2 PQL	CS 8952 2/15/2012 SPK value 0 5.000	F SPK Ref Val 0	RunNo: 9 SeqNo: 2 %REC 93.4	52 7607 LowLimit 90	Units: <b>mg/L</b> HighLimit	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride	LCSW 1202449-003AMS	SampT Batcl Analysis D Result 4.7 SampT	Fype: L h ID: F Date: 2 PQL 0.50	CS 8952 2/15/2012 SPK value 0 5.000	F SPK Ref Val 0 Tes	RunNo: 9 SeqNo: 2 %REC 93.4	52 7607 LowLimit 90 PA Method	Units: <b>mg/L</b> HighLimit 110	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID	LCSW 1202449-003AMS	SampT Batcl Analysis D Result 4.7 SampT	Fype: L h ID: F Date: 2 PQL 0.50 Fype: N h ID: F	CS 2/15/2012 SPK value 0 5.000 IS 2952	F SPK Ref Val 0 Tes F	RunNo: 9 SeqNo: 2 %REC 93.4 tCode: E	52 7607 LowLimit 90 PA Method	Units: <b>mg/L</b> HighLimit 110	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID:	LCSW 1202449-003AMS	SampT Batcl Analysis E Result 4.7 SampT Batcl	Fype: L h ID: F Date: 2 PQL 0.50 Fype: N h ID: F	CS 2952 2/15/2012 SPK value 0 5.000 IS 2952 2/15/2012	F SPK Ref Val 0 Tes F	RunNo: 9 SeqNo: 2 %REC 93.4 tCode: E RunNo: 9 SeqNo: 2	52 7607 LowLimit 90 PA Method	Units: mg/L HighLimit 110 300.0: Anions	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date:	LCSW 1202449-003AMS	Samp1 Batcl Analysis D Result 4.7 Samp1 Batcl Analysis D	Type: L h ID: F Date: : PQL 0.50 Type: N h ID: F Date: :	CS 2/15/2012 SPK value 0 5.000 1S 2952 2/15/2012 SPK value	F SPK Ref Val 0 Tes F	RunNo: 9 SeqNo: 2 %REC 93.4 tCode: E RunNo: 9 SeqNo: 2	52 17607 LowLimit 90 PA Method 52 17628	Units: mg/L HighLimit 110 300.0: Anions Units: mg/L	%RPD <b>s</b>		
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date: Analyte Chloride	LCSW 1202449-003AMS	SampT Batcl Analysis E Result 4.7 SampT Batcl Analysis E Result 14	Type: L h ID: F Date: : PQL 0.50 Type: N h ID: F Date: : PQL	CS 2/15/2012 SPK value 0 5.000 MS 2/15/2012 2/15/2012 SPK value 0 5.000	F SPK Ref Val 0 Tes F SPK Ref Val 9.227	RunNo: 9 SeqNo: 2 %REC 93.4 tCode: E RunNo: 9 SeqNo: 2 %REC 104	52 17607 LowLimit 90 PA Method 52 17628 LowLimit 78	Units: mg/L HighLimit 110 300.0: Anions Units: mg/L HighLimit	%RPD s %RPD		
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date: Analyte Chloride	LCSW 1202449-003AMS BatchQC	Samp1 Batcl Analysis D Result 4.7 Samp1 Batcl Analysis D Result 14 Samp1	Type: L h ID: F Date: 2 PQL 0.50 Type: N h ID: F Date: 2 0.50	CS 2952 2/15/2012 SPK value 0 5.000 NS 2952 2/15/2012 SPK value 0 5.000 NSD	F SPK Ref Val 0 Tes F SPK Ref Val 9.227 Tes	RunNo: 9 SeqNo: 2 %REC 93.4 tCode: E RunNo: 9 SeqNo: 2 %REC 104	52 7607 LowLimit 90 PA Method 52 7628 LowLimit 78 PA Method	Units: mg/L HighLimit 110 300.0: Anions Units: mg/L HighLimit 107	%RPD s %RPD		
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date: Analyte Chloride Sample ID	LCSW 1202449-003AMS BatchQC 1202449-003AMSE	Samp1 Batcl Analysis D Result 4.7 Samp1 Batcl Analysis D Result 14 Samp1	Type: L h ID: F Date: 2 PQL 0.50 Type: N h ID: F Date: 2 0.50 Type: N h ID: F	CS 2952 2/15/2012 SPK value 0 5.000 MS 2952 2/15/2012 SPK value 0 5.000 MSD	F SPK Ref Val 0 Tes F SPK Ref Val 9.227 Tes F	RunNo: 9 SeqNo: 2 %REC 93.4 tCode: E RunNo: 9 SeqNo: 2 %REC 104 tCode: E	52 7607 LowLimit 90 PA Method 52 7628 LowLimit 78 PA Method 52	Units: mg/L HighLimit 110 300.0: Anions Units: mg/L HighLimit 107	%RPD s %RPD s		
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID:	LCSW 1202449-003AMS BatchQC 1202449-003AMSE	Samp1 Batcl Analysis D Result 4.7 Samp1 Batcl Analysis D Result 14 Samp1 Batcl	Type: L h ID: F Date: 2 PQL 0.50 Type: N h ID: F Date: 2 0.50 Type: N h ID: F	CS 2952 2/15/2012 SPK value 0 5.000 MS 2952 2/15/2012 SPK value 0 5.000 MSD 2952 2/15/2012	F SPK Ref Val 0 Tes F SPK Ref Val 9.227 Tes F	RunNo: 9 SeqNo: 2 93.4 tCode: E RunNo: 9 SeqNo: 2 %REC 104 tCode: E RunNo: 9	52 7607 LowLimit 90 PA Method 52 7628 LowLimit 78 PA Method 52	Units: mg/L HighLimit 110 300.0: Anions Units: mg/L HighLimit 107 300.0: Anions	%RPD s %RPD s		

RL Reporting Detection Limit

20-Feb-12

1202375

WO#:

### QC SUMMARY REPORT

uni.	Hall	Environmental	<b>Analysis</b>	Laboratory,	Inc.

Client ID:       PBW       Batch ID:       R1019       RunNo:       1019         Prep Date:       Analysis Date:       2/17/2012       SeqNo:       29413       Units:       mg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         Chloride       ND       0.50              Qual          Sample ID       LCS       SampType:       LCS       TestCode:       EPA Method 300.0: Anions                        RunNo:       1019	цая <b>21</b>	Client: Project:	Daniel B. Ground H	•		oc. Ity Dog, Ho	bbs						
Prep Date:       Analysis Date:       2/17/2012       SeqNo:       29413       Units:       mg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         Chloride       ND       0.50                        Qual	•	•								300.0: Anion	3		
Analyte       Result       PQL       SPK value       SPK ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         Chloride       ND       0.50	54						S	SeqNo: 2	9413	Units: mg/L			
Client ID:       LCSW       Batch ID:       R1019       RunNo:       1019         Prep Date:       Analysis Date:       2/17/2012       SeqNo:       29414       Units:       mg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         Chloride       5.0       0.50       5.000       0       100       90       110							SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Prep Date:       Analysis Date:       2/17/2012       SeqNo:       29414       Units:       mg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         Chloride       5.0       0.50       5.000       0       100       90       110       90       110         Sample ID       1202629-001AMS       SampType:       MS       TestCode:       EPA Method       300.0:       Anions         Client ID:       BatchQC       Batch ID:       R1019       RunNo:       1019       Prep Date:       Analysis Date:       2/17/2012       SeqNo:       29416       Units:       mg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         Chloride       11       0.50       5.000       6.004       97.4       78       107         Sample ID       1202629-001AMSD       SampType:       MSD       TestCode:       EPA Method       300.0: Anions         Client ID:       BatchQC       Batch ID:       R1019       RunNo:       1019       Prep Date:       Analy		•								300.0: Anion	3		
Chloride       5.0       0.50       5.000       0       100       90       110         Sample ID       1202629-001AMS       SampType: MS       TestCode: EPA Method 300.0: Anions         Client ID:       BatchQC       Batch ID:       R1019       RunNo: 1019         Prep Date:       Analysis Date:       2/17/2012       SeqNo: 29416       Units: mg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         Chloride       11       0.50       5.000       6.004       97.4       78       107         Sample ID       1202629-001AMSD       SampType: MSD       TestCode: EPA Method 300.0: Anions       Client ID:       BatchQC       Batch ID:       R1019       RunNo: 1019         Prep Date:       Analysis Date:       2/17/2012       SeqNo:       29417       Units: mg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual	a									Units: mg/L			
Sample ID       1202629-001AMS       SampType:       MS       TestCode:       EPA Method 300.0:       Anions         Client ID:       BatchQC       Batch ID:       R1019       RunNo:       1019         Prep Date:       Analysis Date:       2/17/2012       SeqNo:       29416       Units:       mg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         Chloride       11       0.50       5.000       6.004       97.4       78       107         Sample ID       1202629-001AMSD       SampType:       MSD       TestCode:       EPA Method 300.0: Anions         Client ID:       BatchQC       Batch ID:       R1019       RunNo:       1019         Prep Date:       Analysis Date:       2/17/2012       SeqNo:       29417       Units:       mg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual							• • • • • • • • • • • • •	-			%RPD	RPDLimit	Qual
Prep Date:       Analysis Date:       2/17/2012       SeqNo:       29416       Units:       mg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         Chloride       11       0.50       5.000       6.004       97.4       78       107         Sample ID       1202629-001AMSD       SampType:       MSD       TestCode:       EPA Method 300.0:       Anions         Client ID:       BatchQC       Batch ID:       R1019       RunNo:       1019         Prep Date:       Analysis Date:       2/17/2012       SeqNo:       29417       Units:       mg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual				•						300.0: Anion:	3		
Chloride       11       0.50       5.000       6.004       97.4       78       107         Sample ID       1202629-001AMSD       SampType:       MSD       TestCode:       EPA Method 300.0:       Anions         Client ID:       BatchQC       Batch ID:       R1019       RunNo:       1019         Prep Date:       Analysis Date:       2/17/2012       SeqNo:       29417       Units:       mg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual	4						-			Units: <b>mg/L</b>			
Sample ID       1202629-001AMSD       SampType:       MSD       TestCode:       EPA Method       300.0:       Anions         Client ID:       BatchQC       Batch ID:       R1019       RunNo:       1019         Prep Date:       Analysis Date:       2/17/2012       SeqNo:       29417       Units:       mg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual		,									%RPD	RPDLimit	Qual
Client ID:       Batch QC       Batch ID:       R1019       Runno:       1019         Prep Date:       Analysis Date:       2/17/2012       SeqNo:       29417       Units:       mg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual	*	Sample ID 12	202629-001AMSD	SampT	ype: M	SD	Tes	tCode: EF	PA Method	300.0: Anion	3		
	ня 88-									Units: <b>mg/L</b>			
	-	Analyte		Result 11	PQL 0.50	SPK value 5.000	SPK Ref Val 6.004	%REC 96.8	LowLimit 78	HighLimit 107	%RPD 0.275	RPDLimit 20	Qual

Qualifiers:

6498

*/X Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits J

RPD outside accepted recovery limits R

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

WO#: 1202375

20-Feb-12

ENVIRONMENTAL ANALYSIS LABORATORY TEL: 505	ronmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 -345-3975 FAX: 505-345-410; e: www.hallenvironmental.com
Client Name: DBS Received by/date: M.H. 2/10/12	Work Order Number: 1202375
Logged By: Michelle Garcia 2/10/2012 1:2	3:00 PM
Completed By: Michelle Garcia 2/10/2012 1:3	
· · · ·	2.45 FW 71 [Mull (prun)
Reviewed By: "TO alto /12	
Chain of Custody	
1. Were seals intact?	Yes 🗌 No 🔄 Not Present 🗹
2. Is Chain of Custody complete?     3. How was the sample delivered?	
3, How was the sample delivered r	Client
<u>Log ín</u>	
4. Coolers are present? (see 19. for cooler specific information	on) Yes 🗹 No 🗌 🛛 NA 🗌
5. Was an attempt made to cool the samples?	Yes 🗹 No 🗋 🛛 NA 🗍
6. Were all samples received at a temperature of >0° C to 6.	0°C Yes 🗹 No 🗋 NA 🗌
7 Sample(s) in proper container(s)?	Yes 🗹 No 🗌
8 Sufficient sample volume for indicated test(s)?	Yes 🗹 No 🗔
9. Are samples (except VOA and ONG) properly preserved?	Yes 🗹 No 🗌
10. Was preservative added to bottles?	Yes 🗋 No 🗹 🛛 NA 🗋
11, VOA vials have zero headspace?	Yes 🗌 No 🛄 No VOA Vials 🗹
12. Were any sample containers received broken?	
13. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes V No H # of preserved bottles checked for pH:
14. Are matrices correctly identified on Chain of Custody?	Yes  ✓ No  (<2 or >12 unless noted
15. Is it clear what analyses were requested?	Yes 🗹 No 🗌 Adjusted?
16. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹 No 🗌
	Checked by:
Special Handling (if applicable) 17. Was client notified of all discrepancies with this order?	Yes 🗌 No 🔲 🛛 NA 🗹
Person Notified:	Date:
By Whom:	Via: eMail Phone Fax In Person
Regarding:	
Client Instructions:	

#### 19. Cooler Information

*648.05* 

Second

------

-43.5P

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	2.2	Good	Not Present			

Page 1 of 1

Cha	in-o	f-Cu	stody Record	Tum-Ar	round	Time:								EN	13 <i>6</i> T				та	
Client:	)BS	ج	Å	<b>⊳</b> ∕Sta	ndard	🗆 Rush														
t	/****		<del>/]</del>	Project	Name	Geouri	HZO SAMPLIN	C						enviro						
Mailing Add	ress:	$C_{0}$	O ÁCADEMY NE-	SAU		DoG, t	TRBS	[	49	01 H							<b>NM 8</b> 7	7109		
SIL	160.	Â	LA NMETIOS	Project	#: (	<u> </u>					5-34				-	-	5-410			
Phone #:	50	5-	60, NM 87109 822 - 9400		÷	508.0	118.01						Ar	alys	is Re	eque	st			
email or Fax	¢#:		······································	Project	Mana	ger:		<del>,</del>	nly)	(lese					3,			で		
QA/QC Packa	•				ľ	NIKE N	AVEY	TMB's (8021)	TPH (Gas only)	ğ								CHL-RIDE		
□ Standard			Level 4 (Full Validation)					B's (	(C) U	Ga					7,° 1 5	2		Ŧ		
Accreditation		] Öther				TES (INI	E NGAM	F TM	н ТРІ	15B	8.1)	(-1)	(H)			1 8082	8			) Z
🗆 EDD (Typ	pe)					Deprementation of the		BE	ΒE	80	d 41	00 00	립	tals			,   Š	360,		ے ا
Date Tir	me N	<i>l</i> latrix	Sample Request ID	Conta Type a	ainer and #	Preservative Type		BTEX + MTBE	BTEX + MTBE	TPH Method 8015B (Gas/Diesel)	TPH (Method 418.1)	EDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,CI,NU ₃ ,NU ₂ ,PU ₄ ,SU ₄ ) 0001 Doction / 0002 DOD's	8081 Pesticides / R260R (V/OA)	8270 (Semi-VOA)	EPA 3		Air Bubbles (Y or N)
02 07/12 08	35 6	SW	DBS-4	2 jont Hispt	5 1	ICE.	1											R		
09			DBS-2		-1		2										Τ	M		$\square$
07	58		PMW-1				3									$\mathbf{X}$		X		
102	X		NB5-3				Ч								1			X		
$\overline{1}$			DBS-5				5							J.				X		$\square$
	02		NBS-9				ý											X		$\square$
12			DBS-8				7					4	A					X		
	<u>DR</u>		NBS-G				8				1		X	<i>v</i>				X		
14	55		MW-3				9					2	<u>×</u>	`				X		
+ 15	55		MW-5	4	7		ID					<u> </u>						$\bowtie$		
	-									$\square$						_				
									1											
Date: Time	Re	linquishe	d by: ELESTINE NGAN	Received	d by:	$\cap$	Date Time		nark	5:										
02/10/12 13 Date: Time	23 11 Re	linguishe	d by:	Received	hoy:	ulp	2 <u>0/10/12/32</u> Dâte Time	13												
			· )		-	•														

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

## Appendix 2

-

### **Field Notes**

021-12 CINCHM 2/08/12 CINGAM 1300 ONSITE @ SALTY DOG 0750 ONSITE @ DBS-4 1400 MET LARRY SQUIRES. HE WANTS A 3er = (80.32-6670 x05) COPY OF GN SAMPLING RESULT. = 6.8 GAL. SET PUMP @ 73'Erce Valan pH Te commentis Conouctivity HATTER 7.4 15.3 TURBID - PROBE FAILED NEELIS DIN TO NES-4 66.76 80:32 THE 7.50 17.10 SLIGHTLY TWEELD DBS-2 65.96 7945 PMW-1 6.69 79.47 407.54 17.20 11 DBS-3 61.11 78:37 20 7.57 17:50 CLOUDY. BBS-5 63-46 78.47 0835 COLLECTED SAMPLE DBS-9 54:53 70.97 DBS-8 61.77 76.97 0850 DBS-2 3CV= [(79.15-63.96) x0:5]GR MW-561.23 130.02 MW-3 62.95 147-27 z G.C. Que pump @ 72'sia DBS-C 63:20 78:02 VOL(GAR) pH 12 CommENTS IME 0910 INTIME 7.60 16.8 TURED 1453 CALIBRATE ISI PRO 6912 2 7.48 17.5 CLONDY - pH 7.00/ 7.07 @ 10.4°C 0914 4 7.46 17.7 CLOUDY 0916 7 7.45 17.8 crows - ptt 10.0/ 10.18 (a 10.8°C * CONDUCTIONTY PROBE FAILING 6917 COLLECTED OF SAMPLE. TO CALIBRATE. RESTORED DEFAULT (ALIGRATIN (FACTURY) BUT STILL 5940 Pmw-1 NOULD NAT CALIBRATE. PROSE HAS 3 cr = [(79.47 - 66.69) x 0.5] = 6.4 Ge, Pump @ 5' Rioc MINCTIONALITY PROBLEM INF VOLCAL) PH T'C COMMENTS 1538 offsut Interne Initial 7.12 16.8 CLOUDY

S. Carlo

22/07/12	۲.۳	SAM C'I	VGAM		02/07/12
PMW-1	CMT.	LC - MA Harve		S-5 CONT.	
I'ME VOLGUE Y	c pht comme	NIS 1110		ED CE 34	
949 20 18.	0 6.98 CLANNY		Jule		TTTPL
1952 4.0 18.	2 6.96 CITAL	11/1	o Des	-9	······
15.7 110 18.	6 6.95 CEAN		2cy = 1	70.00 7	4.53)70.5]
758 Coutelto	CE SAMPLE		= =	8:22 GAL	Pump @ Go'eric
1000 100 2	*	Tim	= Mal GAL	Tec ptt	COMMENTS
1020 DBS-3		A 1. M	4 INTITAL	18.0 7.37	TURED
$3cr = \int (78)$	3:37-61.11)705	1 million and the second se	5 3.0 1	7.9 7.30	TURBIN
= 8.4	SCAL PUMP @ 7	A Dim I	6.0 1	7. 9 7.32	CIEVAY
ime VOI(GAL) To	- ptt commen	25 1 /1-	8 9.0 1	7.8 7.30	CLOUNY
030 INNIA 18.	7.68 TURBIN	120	2 Califord	D SAMPLE	
1032 2.0 19.0	) 1:53 acusy				· · · · · · · · · · · · · · · · · · ·
034 6.0 18.	7.52 chemas	122	5 ABS-8		
10.36 . 9.0 19.0				76.97-61.	
1038 COLLECTED	CE SAMPLE	· · · · · · · · · · · · · · · · · · ·		TIG GAL	
				Te pH	C. A. C. T. C.
1100 DES-5	λ.	1	Intitial	18.6 7.37	THERM
3cr = [(7)]	78.47-63.46)70	57 12.7		19.0 7.94	
= 7	5 GAL PUMP @	725 172	2 4.0	19.1 7.31	/UP RIA
INTE TOLIGAES / C	DH COMMEN		1 6:0	19.2 7.30	
1024 (NITIAL 18:	7 7.15 TUKRID	172	5 8.1	19.2 7.30	( and )
105 20 19.0	7.15 CLOUD	<b>~</b>			whoy
106 40 19.1	7.12 Ching	· · · · · · · · · · · · · · · · · · ·	:	0 mm	
108 6.0 19.1	7.10 (0		Cr	86M 09/2012	••••• ••••••••••••••••••••••••••••••••

1.00

02/09/12 CINGON 02/07/12 CINGam 1315 DBS-5 1510 MW-5 301 = [(130.02-61.23)705] 3er = [(78-02 - B3:20) 70:5] = 34:40 SAL, Pump @ 15 Biox = 7-41 Gor, Pump @ 70'Lia TIME VOLCON PH TC COMMENTS TIME VOLCON PH TC COMMENTS 1320/MITTAL 7.29 18.4 TURBLD 15/8 INTIAL 7:23 18.7 CHEAR 1528 10 7.05 19.2 11 1321 20 7.15 189 CLANDY 1537 20 7.03 19.1 11 1322 40 7.0C 19.0 CLOUDY 1323 6.0 7.05 19.1 CLEAR 1547 30 7.01 19.2 1553 35 7.01 19.0 1324. 8.0 7.04 19.1 (UTAR 1555 COLLECTED CLE SAMPLE 1325. 10.0 7. D.Y 19.1 CLEAR 1328 COLLECTED (IT SAMPLE. NOTE: CONDUCTIVITY WAS EXCLUDED FROM THE ABOVE HO PARAMETERS BEGANDE 1355 MW-3 3cv= [(147.27-62.95) x05] CONDRETIVITY PROBE AS NON FUNCTIONAL - TRED CALIBLETING PRESE BUT NO - 42.16 GAL, PUMP @ 15'EX SUCCESS. PROSE WAS READING TIME VOLGED PH T'C COMMENTS CONDUCTIVITY OF MAGNITUM 105 1415 bring 7.17 17.1 Cut 1423 10 664 187 CHAR IN DI tho. 1432 20 5.65 18.7 CHEAR M FORMS - PUMP WAS DECONTAMINATED BETWEEN 1442 30 6.65 18.6 11 WELLS 1453 413 6.56 18.7 11 1440 CHEANED SITE . (HEEK SAMPLES 1.1 1455 COLLECTED CL SAMPLE 1 2 -1KKS OFTSITE C. NGAM 52/09/R C. NGAM 02/109/12

### RECEIVED 2008 MAR 6 PM 1 59



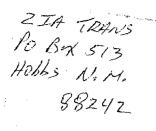
PHONE (575) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

СГ

ANALYTICAL RESULTS FOR SALTY DOG ATTN: JIM SAYRE P.O. BOX 513 HOBBS, NM 88241 FAX TO: (575) 393-8353

Receiving Date: 02/27/08 Reporting Date: 02/27/08 Project Number: NOT GIVEN Project Name: NOT GIVEN Project Location: NOT GIVEN Analysis Date: 02/27/08 Sampling Date: 02/27/08 Sample Type: GROUNDWATER Sample Condition: INTACT Sample Received By: ML Analyzed By: HM

LAB NO.	SAMPLE ID	(mg/L)
H14335-1	WATER WELL	630
H14335-2	PIT WELL	9,500
H14335-3	MW-2	120
H14335-4	MW-3	348
H14335-5	MW-4	476
H14335-6	MW-5	1280
H14335-7	MW-6	32
Quality Contro	1	490
True Value QC	>	500
% Recovery		98
Relative Perce	ent Difference	2.0

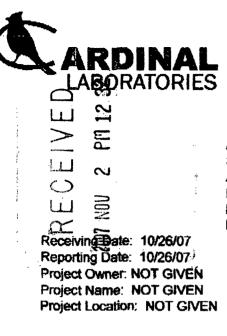

4500-CI'B METHOD: Standard Methods

pe . G. Marens Chemist

02-27-08 Date

#### H14335 SALTY DOG

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be lable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.








Oil Conservation Più Atta C-Len Von Gotten 12 20 South St. Francis SANTA FE New MEXICO. 87505

87505+4225-33 COll



PHONE (325) 673-7001 · 2111 BEECHWOOD · ABILENE, TX 79603

PHONE (505) 393-2326 . 101 E. MARLAND . HOBBS, NM 88240

ANALYTICAL RESULTS FOR SALTY DOG INC. ATTN: JIM SAYRE P.O. BOX 513 HOBBS, NM 88241 FAX TO: (575) 393-8353

> Analysis Date: 10/26/07 Sampling Date: 10/26/07 Sample Type: GROUNDWATER Sample Condition: COOL & INTACT Sample Received By: SB Analyzed By: AB

(mg/L)
9,897
730
104
108
356
1,100
100
28
500
500
100
< 0.1
4500-CTB
• • • • • • •

Biste Ingidos

10/26/07 Date

#### H13587 SALTY DOG

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be timbled to the amount paid by client for analysos. All claims, including those for negligence and any other cause whateoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, atfiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise.

0
CHAIN-OF-CI
2
Z
O
E.
0
ĬČ,
STOD
g
Ó
1
AND
IS.
K
5
A
١Ē.
1
Шще
0
꼬
DY AND ANALYSIS REQU
REQUEST
Ś

ARDINAL LABORATORIES 101 East Marland, Hobbs, NM 88240 2111 Beechwood, Abilene, TX 79603

Bill TO         Bill TO           Notions Property Strings         Company Strings <t< th=""><th></th><th>505-393-2476</th><th>Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476</th><th>† Cardinal cannot accept ve</th></t<>		505-393-2476	Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476	† Cardinal cannot accept ve
BILL TO     BILL TO       Rage:     J.J.     State:     J.J.     J.J.     State:     J.J.     <		ç.		1 .
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		20	-	Liellvered By: (Circle One)
BILL TO     BILL TO       Rage:     54/2 F     State: MMT 720: 987240     PO.#       A     State: MMT 720: 987240     Attribute: 54/57     Res       Attribute: 54/57     Fax #     Atdriase: 12     State: 54/57       Attribute: 54/57     Fax #     Atdriase: 12     State: 51/57       Attribute: 54/57     Fax #     Atdriase: 12     State: 51/57       Attribute: 54/57     Fax #     Atdriase: 12     State: 51/57       Attribute: 54/57     Fax #     State: 57/57     State: 57/57       Attribute: 54/57 <td></td> <td>26/07</td> <td>Suns.</td> <td></td>		26/07	Suns.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		••••••••••••••••••••••••••••••••••••		~
BILL TO     BILL TO       Rage: $U_{12}$ $S_{12}$ $P_{12}$				Holinquished By:
BILL TO     BILL TO       Rage: $V_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}'''_{12}''''_{12}''''_{12}''''_{12}''''_{12}''''_{12}''''_{12}''''_{12}''''_{12}''''_{12}''''_{12}''''_{12}''''_{12}'''''_{12}''''''''''''''''''''''''''''''''''''$	U TES LI NO	REMAR		(b) Summer
Burner     Durth     Birth. TO       radies: $V_{12}$		Phone	Ut 20 Received by:	
Bill. TO       Bill. TO         rage: $\mathcal{I}_{12}$ $\mathcal{I}_{12$	ddargel, Andrit,	n, isaa oo oqa, ti sasa oo poqiini tocuinto by cilikat, na subd m is based uppa any of itm atoma subad ramons to alka	mance of services hereunder by Ceronal regardless of whether such dat	nte data and and and and and and and and and an
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ind received by Candenal within 30 days siler completion	- võun saute vihaissensi kirgil be deemed vained unless mads ih viifug : - Cunsequenisi demedes, indudno väinna leribales budaess kira mataa	erursist ni siama escuengesone laraggearse and ar autoria ta na stant mar Carbinat da nagte dr'insidengra
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ci or tort, shell be langed to the propurt put by the steri	and clien's exclusive respecty by any sistin arising whether based in contra	PLEASE NOTE: Likowy and Dymages, Chronal's labits
Bit     TO     Bit     TO       Rager: $S(J_T) \leq S_T' \in S_T'$ $S_T' \in S_T' \in S_T'$ $S_T' \in S_T' \in S$				
BILL TO     BILL TO       rager: $S'_{1,2}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}''_{2,1}'''_{2,1}'''_{2,1}'''_{2,1}'''_{2,1}'''_{2,1}'''_{2,1}'''_{2,1}''''_{2,1}''''''_{2,1}''''_{2,1}''''''''''''''''''''''''''''''''''''$				
BILL TO     BILL TO       Rager: $S_1 - S_1^* \in \mathcal{L}$ $Connenty, S_0 L Y, D_0, T_0$ Rager: $S_1 - S_1^* \in \mathcal{L}$ $Connenty, S_0 L Y, D_0, T_0$ Rager: $S_1 - S_1^* \in \mathcal{L}$ $Connenty, S_0 L Y, D_0, T_0$ Rager: $S_1 - S_1^* \in \mathcal{L}$ $Connenty, S_0 L Y, D_0, T_0$ Rager: $S_1 - S_1^* \in \mathcal{L}$ $Connenty, S_0 L Y, D_0, T_0$ Rager: $S_1 - S_1^* \in \mathcal{L}$ $Connenty, S_0 L Y, D_0, T_0$ Rager: $S_1 - S_1^* \in \mathcal{L}$ $Connenty, S_0 L Y, D_0, T_0$ Rager: $S_1 - S_1^* \in \mathcal{L}$ $Connenty, S_0 L Y, D_0, T_0$ Rate: $Connenty, S_0 L Y, D_0, T_0$ $Connenty, S_0 L Y, D_0, T_0$ Rate: $S_1 - S_1^* = S_1 + S_1^* + T_0$ $Connenty, S_0 L Y, D_0, T_0^* + S_1 + S_1^* + S_$		26	#6 1	Mownton
Image:     State: M-1     Zip: $872 - 10$ Bill TO       Image:     State: M-1     Zip: $872 - 10$ Ath:: Set Y     Set Y       Image:     State: M-1     Zip: $872 - 10$ Ath:: Set Y     Set Y       Image:     State: M-1     Zip: $872 - 10$ Ath:: Set Y     Set Y       Image:     State: M-1     Zip: $872 - 10$ Ath:: Set Y     Set Y       Image:     State: M-1     Zip: $872 - 10$ Ath:: Set Y     Set Y       Image:     State: M-1     Zip: $872 - 10$ Ath:: Set Y     Set Y       Image:     State: M-1     Zip: $872 - 10$ Ath:: Set Y     Set Y       Image:     State: M-1     Zip: $872 - 10$ Set Y     Set Y       Image:     State: M-1     Reserver     State: M-1     Set Y     Set Y       Image:     Set Y     Set Y     Set Y     Set Y     Set Y     Set Y       Image:     Set Y     Set Y     Set Y     Set Y     Set Y     Set Y       Image:     Set Y     Set Y     Set Y     Set Y     Set Y     Set Y       Image:     Set Y     Set Y     Set Y     Set Y     Set Y       Image:     Set Y			5#	Mediten
BILL TO     BILL TO       nage: $S_{12}$				
BILL TO     BILL TO $PO \ Brdy \ Slave, M + T \ Slave, M + S$				ſ
BILL TO     BILL TO $PO: #$ $PO: #$ $PO: Bex     State: A' H PO: Bex     State: A' H PO: # $			#	
Bill TO     Bill TO $PO$ $B_{2}$ $PO$ <td></td> <td>1</td> <td></td> <td>Xatio OLA</td>		1		Xatio OLA
BILL TO     BILL TO       Inager: $SAPRE$ $POC$ Project Owner: $PORE       Project Owner:     Pole k       Project Owner$	]	[	-	K1256 134
Matrix     JHLT TO     ANALYSIS $PO     State: M-T     Zip:     B2Z+C     Attn::     Dex CONPARTY     State: M-T     Zip:     B2Z+C     Attn::     Dex Government     Fax #     Project Owner:     City:     Dex S/Z Sample 1.D.     Project Owner:     City:     Je L Acc     Atdresse:     Po Sample 1.D.     Project Owner:     City:     Je L Acc     State:     S_Z Sample 1.D.     Project Owner:     State:     Sample 3.52     Fax #:     37.52 Sample 1.D.     (G)RAB OR (C)OMP.     MATRIX     Proservice:     Sample 3.52 Sample 1.D.     (G)RAB OR (C)OMP.     Fax #:     37.53 S3.57 Sample 1.D.     (G)RAB OR (C)OMP.     Sample 1.0     Sample 1.0       Sample 1.D.     (G)RAB OR (C)OMP.     Fax #:     37.53 S3.573 Sample 1.D.     (G)RAB OR (C)OMP.     Sample 1.0     Sample 1.0       Sample 1.D.     (G)RAB OR (C)OMP.     Fax #:     37.53 S3.573 $	<b> </b> -	ļ		130871 [it me.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-		010 5 0 # 2	10 22 10
Haine $\mathcal{A}\mathcal{A}\mathcal{A}\mathcal{A}\mathcal{A}\mathcal{A}\mathcal{A}\mathcal{A}\mathcal{A}\mathcal{A}$		VTHER: CID/BASE: CE/COOL THER:	G)RAB OR (C)OMP CONTAINERS ROUNDWATER VASTEWATER IOIL	
Hume $\mathcal{A}\mathcal{L}\mathcal{T}\mathcal{Y}$ $\mathcal{D}\mathcal{C}$ $\mathcal{I}\mathcal{L}\mathcal{L}$ <b>BILL TO</b> ANALYSIS REQUESnager: $\mathcal{S}_{1,2}$ $\mathcal{S}_{1,2}$ $\mathcal{S}_{1,2}$ $\mathcal{D}_{1,0, \#}$ $\mathcal{D}_{1,0, \#}$ $\mathcal{D}\mathcal{D}\mathcal{D}\mathcal{L}\mathcal{S}\mathcal{T}$ $\mathcal{S}\mathcal{T}\mathcal{T}$ $\mathcal{S}\mathcal{T}\mathcal{T}\mathcal{T}\mathcal{T}\mathcal{T}\mathcal{T}\mathcal{T}\mathcal{T}\mathcal{T}T$		Ţ		500 100 100 100 100 100 100 100 100 100
value. $\mathcal{A}\mathcal{L}\mathcal{T}\mathcal{V}$ $\mathcal{D}\mathcal{L}$ $\mathcal{I}\mathcal{L}\mathcal{T}$ $\mathcal{B}\mathcal{I}\mathcal{L}$ $\mathcal{T}\mathcal{T}$ $\mathcal{A}\mathcal{L}\mathcal{T}\mathcal{S}\mathcal{S}$ $\mathcal{A}\mathcal{L}\mathcal{I}\mathcal{S}\mathcal{S}$ $\mathcal{I}\mathcal{L}\mathcal{I}\mathcal{S}\mathcal{S}$ $\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{S}\mathcal{S}$ $\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{S}\mathcal{S}\mathcal{S}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I}I$		393-83	6	5 21/2
Harmon     Harmon     Harmon     BILL TO     ANALYSIS REQUES       nager: $5/m$ $5$		Phone #: 393-8352		
Hager:     State: N or Zive     Pio: # $PO$ $Bill$ $Pio: #$ $Pio: #$ $Siate: N or #$ $Pio: #$ $Pio: #$ $Athn: Take Y = Day Size     Pio: Yoild Accinetic Size       Pio: # Pio: # Athrease: N or # Size       Pio: # Pio: Pio: Pio: Pio: Pio: Pio: Pio: Pio:$		82		Project Name:
Maine     SHLTY     DOC     INC     BILL TO     ANALYSIS REQUES       mager:     51,71     54,72     P.O.#     P.O.#     ANALYSIS REQUES       PO     Bex     51,3     State: N = 7     Zip:     882.40     Attn:: /cel Y     L30/L4cr       59     State: N = 7     Zip:     882.40     Attn:: /cel Y     L30/L4cr       59     State: N = 7     Zip:     882.40     Attn:: /cel Y     L30/L4cr			Project Owner:	Project #:
nager: 51-7 54/22 P.0.# PO Box 513 State: N M 7 Zip: 88240 Attn: Toel 1 Jull Acr		Bex	Fax #:	393-835
Maine     JHCTY     DOC     INC     BILL TO     ANALYSIS REQUES       nager:     51/15     P.O. #     P.O. #     Inager:     Inage::     Inager:     Inager:		1306	Zip;	10
JACTY DOC INC BILL TO ANALYSIS REQUES			<b>V</b> ⁴	PO Box 5
ANALYSIS REQUES			19/	5/13
	REQUES	BILL TO		YLJAC
			7444 444 1307 307 4 07 1302 1303 30 3 30 5 20 10 10	10FC-EBE 14(14)