AP - 073

STAGE 1 WORKPLAN

8/22/2007

PHONE (505) 397-6388 • FAX (505) 397-0397 • 1324 W MARLAND • P.O. BOX 805 • HOBBS, NM 88241-0805 E-MAIL: bbc@bbcintemational.com

RECEIVED

August 22, 2007

AUG 23 2007

VIA FEDERAL EXPRESS AIRBILL NUMBER: 7924 0212 6496 Oil Conservation Division Environmental Bureau

Mr. Glenn Von Gonten New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

SUBJECT: STAGE 1 ABATEMENT PLAN (AP-073)

STATE L-2 TANK BATTERY

Dear Mr. Von Gonten:

On behalf of Chesapeake Operating, Inc., BBC International, Inc. respectfully submits the enclosed Stage 1 Abatement Plan (AP-073).

If you have any questions, please do not hesitate to contact myself at (505) 397-6388 or via e-mail at cbrunson@bbcinternational.com or Bradley Blevins with Chesapeake Operating, Inc. at (505) 391-1462, extension 6224 or via e-mail at bblevins@chkenergy.com.

Sincerely,

BBC International, Inc.

Cliff P. Tuenan

Cliff P. Brunson, CEI, CRS

President

cc: Chris Williams – NMOCD, Hobbs Bradley Blevins – Chesapeake, Hobbs Harlan Brown – Chesapeake, Oklahoma City

STATE L-2 TANK BATTERY

UNIT LETTER "L", SECTION 19, TOWNSHIP 17 SOUTH, RANGE 36 EAST LEA COUNTY, NEW MEXICO

STAGE 1 ABATEMENT PLAN (AP-073)

AUGUST 2007

CHESAPEAKE OPERATING, INC.

HOBBS, NM

PREPARED BY:

BBC INTERNATIONAL, INC.

WORLD-WIDE ENVIRONMENTAL SPECIALISTS
1324 W. MARLAND BLVD.
HOBBS, NEW MEXICO 88240
(505)397-6388 • FAX (505)397-0397
EMAIL: cbrunson@bbcinternational.com

TABLE OF CONTENTS

1.0	INTRODUCTION1
2.0	SITE DESCRIPTION1
3.0	SITE ACTIVITIES2
4.0	STAGE 1 ABATEMENT SITE INVESTIGATION
5.0	MONITORING PLAN8
6.0	AQUIFER DESCRIPTION8
7.0	INVENTORY OF WATER WELLS WITHIN ONE MILE8
8.0	SURFACE OWNERSHIP8
9.0	SCHEDULE OF ACTIVITIES8
10.0	DELIVERABLES9
11.0	ABATEMENT PROCESS9
12.0	REFERENCES10

FIGURES

FIGURE 1 SITE DIAGRAM WITH SOIL BORINGS AND

MONITOR WELLS

FIGURE 2 ONE-MILE RADIUS MAP

FIGURE 3 PROPOSED SOIL BORINGS AND MONITOR

WELLS

LIST OF APPENDICES

APPENDIX I CORRESPONDENCE
APPENDIX II ANALYTICAL DATA

APPENDIX III INVENTORY OF WATER WELLS

APPENDIX IV DRILLING LOGS

TABLES

TABLE 1 SUMMARY SOIL ANALYTICAL DATA

TABLE 2 SUMMARY GROUND WATER ANALYTICAL DATA

1.0 INTRODUCTION

The subject site is located east of Buckeye, New Mexico in Lea County in Unit Letter L, of Section 19, Township 17 South, and Range 36 East. The site is a former operating tank battery. Chesapeake Operating, Inc. (Chesapeake) purchased the tank battery from Concho Exploration in February 2004.

In the spring of 2007, Chesapeake decided to abandon the tank battery. As part of the process of abandonment, site investigation activities were conducted by BBC International, Inc. (BBC) in May 2007. An air rotary drilling rig was utilized to collect samples in order to delineate the lateral and vertical extent of potential hydrocarbon and chloride impact around the tank battery site. Laboratory analyses indicated soil and ground water impact above New Mexico Oil Conservation Division (NMOCD) guidelines and the New Mexico Water Quality Control Commission (WQCC) ground water standards.

On May 30, 2007, the NMOCD was notified via e-mail of the groundwater impact at the site (See Appendix I). The NMOCD notified Chesapeake in a letter dated June 19, 2007 that a Stage I Abatement Plan was required for the State L-2 Tank Battery to investigate groundwater contamination in accordance with NMOCD's regulations found in Rule 19 of the New Mexico Administrative Code, Chapter 15, Part 15.1.19 (19.15.1.19 NMAC) because chlorides released from the tank battery had contaminated ground water at concentrations that exceed the WQCC ground water protection standards specified at 20.6.2.3103 NMAC.

Chesapeake is unaware of any previous investigations related to this site.

Chesapeake has retained BBC International, Inc. (BBC) to investigate and manage the site activities at the State L-2 Tank Battery.

2.0 SITE DESCRIPTION

The subject property is located in southern Lea County in the southeastern corner of New Mexico. The area is in the Pecos River Valley section of the Great Plains physiographic province and is located in the southern margin of the Llano Estacado. The region is generally a treeless, gently sloping plain, with shallow playa lakes, sand dunes and covered with short prairie grass. The climate of the area is classified as semi-arid to arid and is characterized by low annual rainfall, low humidity, and a high average annual temperature. Local precipitation averages approximately 13 inches per year. Evaporation in the region is approximately 100 inches per year (Nicholson and Clebsch).

The site is located in the northwestern quadrant of Section 19, Township 17 South, Range 36 East. The site is located in the eastern portion of the Buckeye area.

Currently, the site is surrounded by oil field operations and ranch land.

3.0 SITE ACTIVITIES

In May 2007, BBC conducted drilling and soil sampling within the site to delineate the lateral and vertical extents of hydrocarbon and chloride impact. Soil samples at each borehole were taken at one (1) foot bgs, three (3) feet bgs, five (5) feet bgs, and at five (5) foot intervals thereafter. Headspace measurements using a photo ionization detector (PID) and chloride field screens were used to determine which sample in the range between five (5) feet bgs and total depth of the soil boring qualified for laboratory analyses (e.g. the sample with highest results of field tests). The sample collected at the extent of each boring was also submitted for laboratory analysis. Consequently, five (5) soil samples from each soil boring were submitted to a laboratory and analyzed for total petroleum hydrocarbons (TPH), including speciation of gasoline range organics (GRO) and diesel range organics (DRO), chloride, benzene, toluene, ethylbenzene, and xylene (BTEX). Please see **Table 1** for summaries of soil analytical data and **Appendix II** for all laboratory analytical reports.

The first soil boring, SB1, was advanced on May 1, 2007 in an area of depression directly south of the tank pad. The samples taken at one (1) foot bgs and at the extent of drilling showed constituents of concern (COCs) to be below NMOCD regulatory guidelines or were non-detectable. Chloride levels in the boring declined from higher concentrations at three (3) feet bgs to low levels at thirty (30) feet bgs. Within the same range of depth, GRO remained below 400 ppm throughout. DRO spiked at thirty (30) feet bgs and dropped below detectable levels at fifty (50) feet bgs. See **Table 1** for a summary of soil analytical data. SB1 was drilled to groundwater and was renamed Temporary MW (SB1). A groundwater sample collected on May 3, 2007 contained COCs in excess of the New Mexico Water Quality Control Commission (WQCC) standards. Please refer to **Figure 1** for the location of all samples collected, and see **Table 2** for a summary of groundwater analytical data. All drilling logs are located in **Appendix IV**.

On May 3, 2007, SB2 was drilled northeast of SB1 and was located between the former heater treater area and the tank pad. All constituents with the exception of chloride were non-detectable throughout. Chloride concentrations declined from 729 ppm at one (1) foot bgs to 254 ppm at thirty nine (39) feet bgs. SB3 was placed northeast of SB2 and directly north of the former location of the heater treater. The trend in SB3 was similar to SB2 in that all constituents with the exception of chloride were non-detectable throughout. Chloride was detected at 184 ppm at one (1) foot bgs, peaked to 1,600 ppm at five (5) feet bgs, and then declined to 117 ppm at thirty-five (35) feet bgs.

Three (3) additional soil borings were drilled on May 21, 2007. SB4 was placed south of the heater treater area and east of SB1 at the farthest southeast corner

of the site. Again, at SB4, all constituents with the exception of chloride were non-detectable. Chloride at SB4 fell from 5,040 ppm at one (1) foot bgs to 342 ppm at thirty-five (35) feet bgs.

SB5 was located in the center of the former location of the tank on the east side of the tank pad. Laboratory analyses at one (1) foot bgs indicated that BTEX was present in concentrations above regulatory guidelines. The remaining samples were within guidelines and showed declining BTEX with depth, ending at twenty (20) feet bgs with non-detectable levels. Chloride was detected at 2,320 ppm at one (1) foot bgs and declined until the twenty (20) foot bgs sample detected only 152 ppm. GRO and DRO dropped below guidelines at the five (5) foot sample and continued through twenty (20) feet bgs.

SB6 was placed on the west side of the tank pad. Low amounts of BTEX were found from one (1) to five (5) feet bgs and quantities were non-detectable deeper than five (5) feet. Chloride fell from 1,680 ppm at one (1) foot bgs to 125 ppm at twenty-five (25) feet bgs. GRO was detected in amounts no greater than 224 ppm, and DRO was no higher than 241 ppm throughout the profile. Both GRO and DRO became non-detectable in the fifteen (15) foot and twenty-five (25) foot samples.

4.0 STAGE 1 ABATEMENT SITE INVESTIGATION

Chesapeake is submitting this Stage 1 Abatement Plan in accordance with the NMOCD's Rule 19 (19.15.1.19 NMAC) to investigate potential ground water contamination at Chesapeake's State L-2 Tank Battery site located in Section 19, Township 17 South, Range 36 East, Lea County, New Mexico.

Chesapeake proposes the following to investigate and delineate the site utilizing the advancement of soil borings and ground water monitoring wells and associated laboratory analyses.

4.1 Soil

A minimum of four (4) soil borings will be advanced at the site to delineate the vertical and horizontal extent of potential hydrocarbon and chloride contamination present in the vadose zone. The proposed location of these soil borings are depicted on **Figure 3**.

The locations of the proposed soil borings are necessary to delineate the area of soil impact of hydrocarbons and chloride that may exist in the vadose zone at the site.

Site history information, conditions, and field screening analytical techniques for hydrocarbons and chloride will dictate the depth and any additional number of soil borings advanced at the site.

An air-rotary rig equipped with split-spoon sampling tools will be used to advance the soil borings and collect the soil samples. The soil borings advanced at the site will be sampled initially in the near surface (0-3 feet below ground surface (bgs)), then sampled every five feet until terminus.

4.2 QA/QC Sampling Procedures-Soil

The soil samples will be obtained by personnel utilizing appropriate sampling tools and wearing clean disposable gloves. The soil samples will be collected using sampling tools that will be decontaminated using an Alconox detergent solution and rinsed with distilled water between sampling events. The drilling equipment will be decontaminated prior to being brought on the site as well as decontaminated between soil borings.

Each soil sampling interval will be split into two equal portions and placed in separate containers. The first portion of the sample will be placed into a container to field screen the soil using a photo ionization detector (PID) for hydrocarbon detection, then using a titration analysis for chloride. The second portion of the sample will be placed in a sterile glass container equipped with a Teflon-lined lid furnished by the testing laboratory. Each container will be filled to capacity with soil. All containers will be labeled, placed on ice in an insulated cooler, and chilled to a temperature of approximately $40^{\circ}F$ ($4^{\circ}C$). The cooler will be sealed for delivery to the laboratory for laboratory testing utilizing proper chain of custody documentation throughout the sampling process. The samples will be delivered for analysis to Trace Laboratories, Inc. in Lubbock, Texas. The laboratory will be responsible for proper QA/QC procedures utilized during the analytical process. These procedures are either transmitted with the laboratory reports or are on file at the laboratory.

4.3 Laboratory Analysis-Soil

The soil samples will be analyzed for all constituents contained in the following analytical methods for initial site characterization according to NMOCD requirements:

- Metals Method SW6020
- Total Mercury Method 7470
- Total Petroleum Hydrocarbons (TPH) Method SW 846-8015 Modified DRO/GRO
- Volatile Organic Compounds (VOCs (including BTEX)) Method SW 846-8260B
- Semi-volatile Organic Compounds (SVOCs) Method SW 846-8270C
- Chloride Method E300
- Cyanide Method E335.3
- Nitrogen, Nitrite Method E354.1
- pH Method E150.1

4.4 Ground Water

A minimum of four (4) ground water monitoring wells will be advanced and installed at the site to delineate the vertical and horizontal extent of potential hydrocarbon and chloride contamination present in the vadose zone and the ground water aquifer. The proposed location of these ground water monitoring wells are depicted on **Figure 3**.

The locations of the proposed ground water monitoring wells are necessary to assist in delineating the impact of the ground water from the operations of the former tank battery.

Two (2) up gradient wells and two (2) down gradient wells of the former tank battery will be installed in order to define the site geology and hydrogeology of potential vadose-zone and ground water contamination, subsurface hydraulic conductivity, transmissivity, storativity, and rate and direction of potential contaminant migration. If site conditions warrant the collection of additional data concerning ground water, additional ground water monitoring wells may be installed.

An air-rotary rig equipped with split-spoon sampling tools will be used to advance the ground water monitoring wells and collect the soil samples. The ground water monitoring wells advanced at the site will be sampled initially in the near surface (0-3 feet below ground surface (bgs)), then sampled every five feet until terminus.

4.5 QA/QC Sampling Procedures-Soil (Ground Water Monitoring Wells)

The soil samples will be obtained by personnel utilizing appropriate sampling tools and wearing clean disposable gloves. The soil samples will be collected using sampling tools that will be decontaminated using an Alconox detergent solution and rinsed with distilled water between sampling events. The drilling equipment will be decontaminated prior to being brought on the site as well as decontaminated between soil borings.

Each soil sampling interval will be split into two equal portions and placed in separate containers. The first portion of the sample will be placed into a container to field screen the soil using chloride titration analysis. The second portion of the sample will be placed in a sterile glass container equipped with a Teflon-lined lid furnished by the testing laboratory. Each container will be filled to capacity with soil. All containers will be labeled, placed on ice in an insulated cooler, and chilled to a temperature of approximately $40^{\circ}F$ ($4^{\circ}C$). The cooler will be sealed for delivery to the laboratory for laboratory testing utilizing proper chain of custody documentation throughout the sampling process. The samples will be delivered for analysis to Trace Laboratories, Inc. in Lubbock, Texas.

The laboratory will be responsible for proper QA/QC procedures utilized during the analytical process. These procedures are either transmitted with the laboratory reports or are on file at the laboratory.

4.6 Laboratory Analysis-Soil (Ground Water Monitoring Wells)

The soil samples will be analyzed for all constituents contained in the following analytical methods for initial site characterization according to NMOCD requirements:

- Metals Method SW6020
- Total Mercury Method 7470
- Total Petroleum Hydrocarbons (TPH) Method SW 846-8015 Modified DRO/GRO
- Volatile Organic Compounds (VOCs (including BTEX)) Method SW 846-8260B
- Semi-volatile Organic Compounds (SVOCs) Method SW 846-8270C
- Chloride Method E300
- Cyanide Method E335.3
- Nitrogen, Nitrite Method E354.1
- pH Method E150.1

4.7 Ground Water Monitor Well Construction and Development

The proposed ground water monitor wells will be completed in the locations as depicted in **Figure 3**. The wells will be constructed of a minimum of fifteen (15) feet of 2 inch (2") PVC well screen with ten (10) feet of well screen below the water table. Blank PVC riser will be extended to the surface. Filter sand will be installed to two-three (2-3) feet above the well screen followed by a bentonite plug and cement grout to the surface with a cement pad and locking vault put in place.

The ground water monitor wells will be developed by surging and bailing or pumping to facilitate ground water flow into the well bore. Following development, the wells will be gauged for depth to ground water and to determine if free hydrocarbons are present. A minimum of twelve (12) hours after installation, the wells will be gauged, purged, and sampled for the required constituents.

4.8 QA/QC Sampling Procedures-Ground Water

The ground water monitor wells will be developed and purged prior to sampling. Monitoring wells with a sufficient recharge will be purged by removing a minimum of three well volumes. Monitoring wells that do not recharge sufficiently will be purged until no additional ground water can be obtained.

After purging the newly installed wells, groundwater samples will be collected with a disposable Teflon sampler and polyethylene line by personnel wearing clean, disposable gloves. Groundwater sample containers will be filled in the order of decreasing volatilization sensitivity (i.e., BTEX containers filled first and PAH containers second).

Ground water samples collected for BTEX analysis will be placed in 40 ml glass VOA vials equipped with Teflon lined caps that will be provided by the analytical laboratory. The vials will be filled to a positive meniscus, sealed, and visually checked to ensure the absence of air bubbles.

Ground water samples collected for PAH analysis will be filled to capacity in sterile, one (1) liter glass containers equipped with Teflon lined caps. Ground water samples collected for metals analysis will be filled to capacity in sterile, one (1) liter plastic containers equipped with Teflon lined caps. All of the sampling containers will be provided by the analytical laboratory.

All containers will be labeled, placed on ice in an insulated cooler, and chilled to a temperature of approximately 40°F (4°C). The cooler will be sealed for delivery to the laboratory for laboratory testing utilizing proper chain of custody documentation throughout the sampling process. The samples will be delivered for analysis to Trace Laboratories, Inc. in Lubbock, Texas.

The laboratory will be responsible for proper QA/QC procedures utilized during the analytical process. These procedures are either transmitted with the laboratory reports or are on file at the laboratory.

4.9 Laboratory Analysis-Ground Water Monitoring Wells

The ground water samples will be analyzed for all constituents contained in the following analytical methods for initial site characterization according to NMOCD requirements:

- Metals Method SW6020
- Total Mercury Method 7470
- Volatile Organic Compounds (VOCs (including BTEX)) Method SW 846-8260B
- Semi-volatile Organic Compounds (SVOCs) Method SW 846-8270C
- Chloride Method E300
- Cyanide Method E335.3
- Nitrogen, Nitrite Method E354.1
- pH Method E150.1
- Total Dissolved Solids E160.1

5.0 MONITORING PLAN

All site ground water monitoring wells will be gauged and sampled on a quarterly basis during the life of the abatement process. The constituents analyzed for will be determined in consultation with the NMOCD after the initial characterization of the first sampling event after the installation of the ground water monitoring wells.

6.0 AQUIFER DESCRIPTION

Several aquifers are located in the Buckeye area, the Quaternary alluvium, the Ogallala formation, and the Triassic Dockum Group which is composed of the Chinle formation and the Santa Rosa Sandstone (Nicholson and Clebsch). The community of Buckeye obtains ground water for domestic use from the Ogallala formation which is the major fresh water aquifer in the area. According to the New Mexico Office of the State Engineer (NMOSE), current depth to water in the site vicinity is approximately 40 to 50 feet and ground water flow direction in the Ogallala aquifer is towards the east southeast.

The site is within the limits of the Lea County Basin as declared by the New Mexico Office of the State Engineer (NMOSE). In the Lea County Basin, the sole source of drinking water is the Ogallala Aquifer. In the Southern High Plains area, the Ogallala Aquifer ranges in saturated thickness from 25 feet to 175 feet. Recharge to the aquifer is fed wholly by precipitation and most water infiltration occurs through playas. Typical recharge rates to the unconfined Ogallala in this area are approximately 0.25 to 0.5 inch/year (Nicholson and Clebsch).

7.0 INVENTORY OF WATER WELLS WITHIN ONE MILE

An inventory of water wells located within one mile of the site can be found in **Appendix III**. These well locations were obtained from the website of the New Mexico Office of the State Engineer.

8.0 SURFACE OWNERSHIP

Chesapeake will conduct a one-mile radius search from the site of all known and registered surface owners. A review of the public tax rolls of Lea County, NM will identify the name and addresses of the surface owners within one mile of the site and a list will be generated. **Figure 2** is a diagram depicting the one-mile radius search.

9.0 SCHEDULE OF ACTIVITIES

All Stage 1 Abatement Plan activities will commence within 30 days of the final approval of the Stage 1 Abatement Plan following the public notice period and approval from the NMOCD. A schedule of site activities will be submitted to the NMOCD upon final approval of the Stage 1 Abatement Plan along with follow up

quarterly progress reports then a final report upon completion of investigative Stage 1 Abatement activities.

10.0 DELIVERABLES

A Stage 1 Abatement Plan Site Investigation Report will be submitted within 60 days upon completion of investigative activities which will include, but not limited to, a description and history of the site, site map, a description of site investigative activities, summary data tables, laboratory analytical data, ground water gradient map, isoconcentration maps and cross sections that depict any identified contamination that may have been released from the former tank battery, and any data necessary to select and design an effective abatement option under NMOCD Rule 19 Stage 2 Abatement requirements.

A paper and electronic copy of all work plans and/or reports will be submitted to both the Santa Fe, New Mexico and Hobbs, New Mexico offices of the NMOCD.

11.0 ABATEMENT PROCESS

On behalf of Chesapeake, BBC has submitted this Stage 1 Abatement Plan (AP-061) in accordance with NMOCD Rule 19 NMAC 15.1.19.

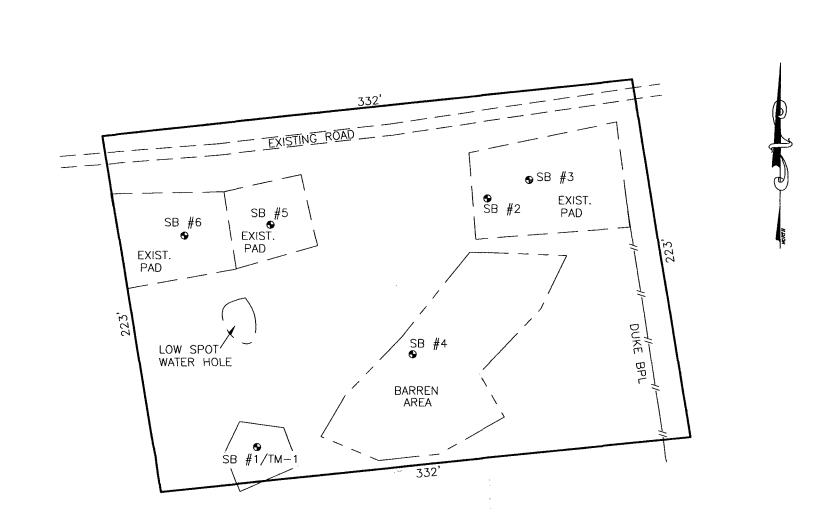
Upon NMOCD approval of the Stage 1 Abatement Plan, all public notice and participation requirements under Rule 19 (19.15.1.19 NMAC), specifically Rule 19G, will be followed.

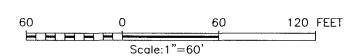
12.0 REFERENCES

Nicholson, Jr., Alexander and Clebsch, Jr. Alfred, 1961, *Geology and Ground-Water Conditions in Southern Lea County, New Mexico, Ground-Water Report* 6, New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico, 120pp.

NMOSE – New Mexico Office of the State Engineer, iWaters website: http://iwaters.ose.state.nm.us:7001/iWATERS/

FIGURE 1


SITE DIAGRAM WITH SOIL BORINGS AND MONITOR WELLS


STATE L-2 TANK BATTERY

August 2007

Chesapeake Operating, Inc. Hobbs, NM

Prepared by: BBC International, Inc.

鐵圖

N/AD

人為

BBC INTERNATIONAL

FIGURE 1 SITE DIAGRAM

AT THE STATE L-2 BATTERY IN SECTION 19, TOWNSHIP 17 SOUTH, RANGE 36 EAST, N.M.P.M., LEA COUNTY, NEW MEXICO

ı	Survey Date: 7/	Sheet	1	of	1	Sheets	
١	W.O. Number: 0	Drawn	By: I	A.			
	Date: 7/19/07	DISK: CD#6	07110	0846			

1.34

41.4

FIGURE 2

ONE-MILE RADIUS MAP

STATE L-2 TANK BATTERY

August 2007

Chesapeake Operating, Inc. Hobbs, NM

Prepared by: BBC International, Inc.

SECTION 19, TOWNSHIP 17 SOUTH, RANGE 36 EAST, N.M.P.M., LEA COUNTY, 3899 5280' SITE 1 CH 3873 3895 3983 Bage 2000 HHHHH Scale:1"=2000' BBC INTERNATIONAL FIGURE 2 ONE MILE RADIUS MAP
AT THE #2 STATE L BATTERY IN
SECTION 19, TOWNSHIP 17 SOUTH, RANGE 36 EAST, N.M.P.M., LEA COUNTY, NEW MEXICO PROVIDING SURVEYING SERVICES SINCE 1946 JOHN WEST SURVEYING COMPANY Survey Date: 7/9/07 Sheet 412 N. DAL PASO HOBBS, N.M. 88240 (505) 393-3117

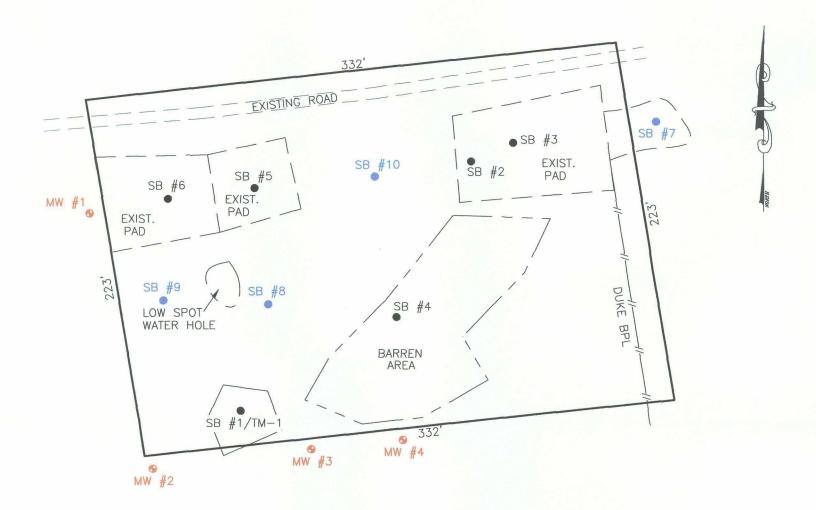
W.O. Number: 07.11.0846

Date: 7/19/07 DISK: CD#6

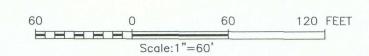
Drawn By: L.A.

07110846

FIGURE 3


PROPOSED SOIL BORING AND MONITOR WELLS

STATE L-2 TANK BATTERY


August 2007

Chesapeake Operating, Inc. Hobbs, NM

Prepared by: BBC International, Inc.

- PROPOSED MONITORING WELL
- PROPOSED SOIL BORING
- - EXISTING SOIL BORING

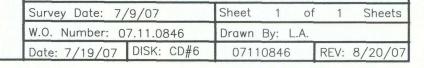

BBC INTERNATIONAL

FIGURE 3 SITE DIAGRAM

AT THE STATE L-2 BATTERY IN

SECTION 19, TOWNSHIP 17 SOUTH, RANGE 36 EAST,

N.M.P.M., LEA COUNTY, NEW MEXICO

APPENDIX I

CORRESPONDENCE

STATE L-2 TANK BATTERY

August 2007

Chesapeake Operating, Inc. Hobbs, NM

Prepared by: BBC International, Inc.

Cliff P. Brunson

From: Cliff P. Brunson [cbrunson@bbcinternational.com]

Sent: Wednesday, May 30, 2007 6:15 PM

To: Wayne Price

Cc: Bradley Blevins; Harlan Brown; Curtis Blake; Ken Swinney; Jennifer Gilkey

Subject: Chesapeake #2 State L Tank Battery-Groundwater Impact Notification

Mr. Price,

This Email is formal notification that Chesapeake Operating, Inc. has encountered a chloride impacted ground water bearing formation at the #2 State L Tank Battery during a site investigation prior to reclamation of the abandoned facility. During the investigation and assessment activities, a soil boring was advanced to the south of the battery to groundwater. Hydrocarbons were encountered in the soil during the advancement and a temporary monitor well was installed. The well was developed, measured, and sampled. Hydrocarbons were non-detect, but 601 ppm of chloride was detected. The temporary well was plugged and abandoned. The following is general information regarding the site:

Name: #2 State L Battery;

Operator: Chesapeake Operating, Inc.;

Location: Township 17S, Range 36E, Section 19;

County: Lea County, New Mexico; and

Depth to ground water: 40.8 feet (based on a measurement from the ground surface to the water encountered in the monitor well).

Chesapeake has ceased investigation activities until further direction from the NMOCD.

Chesapeake will keep the NMOCD informed of any activities at the site.

As you are aware Chesapeake is currently working with Glenn Von Gonten on another remediation site in Lea County and would like to request Glenn as our point of contact on this site.

If you have questions, please contact me at (505) 397-6388 or via email at cbrunson@bbcinternational.com or Bradley Blevins of Chesapeake at (505) 391-1462, ext. 6224 or via e-mail at bblevins@chkenergy.com.

Best regards,

Cliff Brunson

Confidentiality Notice: This electronic transmission (and any attached documents) is intended only for the person(s) to whom it is addressed and may contain information that is privileged, confidential, or otherwise protected from disclosure. If you have received this transmission in error, please immediately notify the sender by e-mail or by collect telephone call to (505) 397-6388 for handling instructions. Any disclosure or distribution of the contents of this transmission by anyone other than the named recipient(s) is strictly prohibited.

Cliff P. Brunson, CEI, CRS President BBC International, Inc. World-Wide Environmental Specialists Mailing Address: P. O. Box 805

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

Governor

Joanna Prukop
Cabinet Secretary

Mark E. Fesmire, P.E.
Director
Oil Conservation Division

JUNE 19, 2007

Mr. Brad Blevins Chesapeake Operating, Inc. P.O. Box 190 Hobbs, NM 88240

RE: REQUIREMENT TO SUBMIT ABATEMENT PLAN CHESAPEAKE STATE L-2

UNIT LETTER "L", SECTION 19, TOWNSHIP 17 SOUTH, RANGE 36 EAST

LEA COUNTY, NEW MEXICO

AP073

Dear Mr. Blevins:

The New Mexico Oil Conservation Division (OCD) has determined after reviewing the notice submitted by BBC International on behalf of Chesapeake Operating, Inc. (Chesapeake), that Chesapeake must submit a Stage 1 Abatement Plan in accordance with OCD Rule 19 (19.15.1.19 NMAC) to investigate ground water contamination at its State L-2 Tank Battery site located in Unit Letter "L", Section 19, Township 17 South, Range 36 East, Lea County, New Mexico. OCD is requiring an abatement plan because chlorides released from Chesapeake's Tank Battery has contaminated ground water at concentrations that exceed the WQCC ground water protection standards specified at 20.6.2.3103 NMAC.

The Stage 1 Abatement Plan proposal must be submitted to the OCD Santa Fe Office with a copy provided to the OCD Hobbs District Office and must meet of all the requirements specified in Rule 19 (19.15.1.19 NMAC), including, but not limited to, the public notice and participation requirements specified in Rule 19G. The Stage 1 Abatement Plan is due sixty (60) days from the receipt by Chesapeake of this written notice.

The Stage 1 Abatement Plan must meet all of the requirements specified in OCD Rule 19E.3, including, but not limited to, a site investigation work plan and monitoring program that will enable it to characterize the release using an appropriate number of isoconcentration maps and

Mr. Brad Blevins June 19, 2007 Page 2

cross sections that depict the contamination and to provide the data necessary to select and design an effective abatement option.

In addition to the Stage 1 Abatement Plan, Chesapeake must also submit a Form C-141 to document this release and impact to ground water. Chesapeake should submit one paper copy and one electronic copy of all future workplans and/or reports and must include the Case Number (AP073) on all future correspondence. If you have any questions, please contact Glenn von Gonten of my staff at (505) 476-3488.

Sincerely,

Wayne Price

Environmental Bureau Chief

LWP:gvg

cc: Larry Johnson, OCD Hobbs District

APPENDIX II

ANALYTICAL DATA

STATE L-2 TANK BATTERY

August 2007

Chesapeake Operating, Inc. Hobbs, NM

Prepared by: BBC International, Inc.

Page Number: 1 of 2 Buckeye,NM

Summary Report

Cliff Brunson **BBC** International 1324 W. Marland Hobbs, NM, 88240

Report Date: May 10, 2007

Work Order: 7050323

Project Location: Buckeye,NM Project Name:

#2 State L Batt

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
123318	SB1 @ 1'/003880	soil	2007-05-01	14:53	2007-05-03
123319	SB1 @ 3'/003855	soil	2007-05-01	14:54	2007-05-03
123320	SB1 @ 5'/004119	soil	2007-05-01	14:55	2007-05-03
123321	SB1 @ 30'/004085	soil	2007-05-01	15:25	2007-05-03
123322	SB1 @ 50'/00481	soil	2007-05-01	16:37	2007-05-03

		BTEX			MTBE	TPH DRO	TPH GRO
	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
123318 - SB1 @ 1'/003880	< 0.0100	< 0.0100	0.0346	0.0463		< 50.0	3.27
123319 - SB1 @ 3'/003855	< 0.100	< 0.100	0.560	1.16		840	183
123320 - SB1 @ 5'/004119	0.256	< 0.200	5.35	6.50		614	392
123321 - SB1 @ 30'/004085	< 0.100	< 0.100	1.38	2.94		3150	273
123322 - SB1 @ 50'/00481	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	2.37

Sample: 123318 - SB1 @ 1'/003880

Param	Flag	Result	Units	RL
Chloride		198	mg/Kg	1.00

Sample: 123319 - SB1 @ 3'/003855

<u>Param</u>	Flag	Result	Units	RL
Chloride		987	mg/Kg	1.00
			0/0	

Sample: 123320 - SB1 @ 5'/004119

Param	Flag	Result	Units	RL
Chloride		380	${ m mg/Kg}$	1.00

Sample: 123321 - SB1 @ 30'/004085

TraceAnalysis, Inc. \bullet 6701 Aberdeen Ave., Suite 9 \bullet Lubbock, TX 79424-1515 \bullet (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

Work Order: 7050323 #2 State L Batt

Page Number: 2 of 2

Buckeye.NM

Param	Flag	Result	Units	RL
Chloride		10.0	mg/Kg	1.00

Sample: 123322 - SB1 @ 50'/00481

Param	Flag	Result	Units	RL
Chloride		138	mg/Kg	1.00

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 6015 Harris Parkway, Suite 110 Lubbock, Texas 79424 El Paso, Texas 79922 Midland, Texas 79703

Ft. Worth, Texas 76132

800 • 378 • 1296 888 • 588 • 3443

915 • 585 • 3443 432 • 689 • 6301

806 • 794 • 1296

FAX 806 • 794 • 1298 FAX 915 • 585 • 4944 FAX 432 • 689 • 6313

817 • 201 • 5260

E-Mail: lab@traceanalysis.com

Analytical and Quality Control Report

Cliff Brunson BBC International 1324 W. Marland Hobbs, NM, 88240

Report Date: May 10, 2007

Work Order: 7050323

Project Location: Buckeye,NM
Project Name: #2 State L Batt
Project Number: #2 State L Batt

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
123318	SB1 @ 1'/003880	soil	2007-05-01	14:53	2007-05-03
123319	SB1 @ 3'/003855	soil	2007-05-01	14:54	2007-05-03
123320	SB1 @ 5'/004119	soil	2007-05-01	14:55	2007-05-03
123321	SB1 @ 30'/004085	soil	2007-05-01	15:25	2007-05-03
123322	SB1 @ 50 ² /00481	soil	2007-05-01	16:37	2007-05-03

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 20 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich. Director

Standard Flags

 $\, B \,$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project #2 State L Batt were received by TraceAnalysis, Inc. on 2007-05-03 and assigned to work order 7050323. Samples for work order 7050323 were received intact at a temperature of 4 C.

Samples were analyzed for the following tests using their respective methods.

Test	Method
BTEX	S 8021B
Chloride (IC)	E 300.0
TPH DRO	Mod. 8015B
TPH GRO	S 8015B

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 7050323 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: May 10, 2007 #2 State L Batt Work Order: 7050323 #2 State L Batt Page Number: 3 of 20 Buckeye,NM

Analytical Report

Sample: 123318 - SB1 @ 1'/003880

Analysis: BTEX QC Batch: 36962 Prep Batch: 32065 Analytical Method: S 8021B Date Analyzed: 2007-05-03 Sample Preparation: 2007-05-03 Prep Method: S 5035 Analyzed By: KB Prepared By: KB

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	m mg/Kg	1	0.0100
Ethylbenzene		0.0346	m mg/Kg	1	0.0100
Xylene		0.0463	mg/Kg	11	0.0100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.829	mg/Kg	1	1.00	83	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.869	${ m mg/Kg}$	1	1.00	87	48.7 - 146

Sample: 123318 - SB1 @ 1'/003880

Analysis: Chloride (IC) QC Batch: 37120 Prep Batch: 32194 Analytical Method: E 300.0
Date Analyzed: 2007-05-07
Sample Preparation: 2007-05-07

Prep Method: N/A
Analyzed By: ER
Prepared By: ER

		m RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		198	m mg/Kg	50	1.00

Sample: 123318 - SB1 @ 1'/003880

Analysis: TPH DRO QC Batch: 36975 Prep Batch: 32074 Analytical Method: Mod. 8015B
Date Analyzed: 2007-05-03
Sample Preparation:

Prep Method: N/A
Analyzed By: TG
Prepared By: TG

		RL			
Parameter	Flag	Result	Units	Dilution	RL_
DRO		< 50.0	m mg/Kg	1	50.0

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
n-Triacontane		165	${ m mg/Kg}$	1	150	110	33.3 - 164

Sample: 123318 - SB1 @ 1'/003880

Analysis: TPH GRO QC Batch: 36963 Prep Batch: 32065 Analytical Method: S 8015B
Date Analyzed: 2007-05-03
Sample Preparation: 2007-05-03

Prep Method: S 5035 Analyzed By: KB Prepared By: KB

DRO

Work Order: 7050323 #2 State L Batt Page Number: 4 of 20 Buckeye,NM

50.0

5

		RL						
Flag		Result		Units	D	ilution		RI
		3.27		mg/Kg		1		1.00
		÷ 3			Spike	Percent	Rec	overy:
	Flag	Result	Units	Dilution	Amount	Recovery	Li	$_{ m mits}$
ene (TFT)		1.00	mg/Kg	1	1.00	100	33.2	2 - 160
robenzene (4-BFB)		1.16	mg/Kg	1	1.00	116	10	- 227
3319 - SB1 @ 3'/00	3855							
BTEX		Analytical M	lethod: S	S 8021B		Pren Metl	nod: S	5 5035
36964								KB
32066								KB
		RL						
Flag		Result		Units	Di	lution		RI
		< 0.100		mg/Kg		10		0.0100
		< 0.100		m mg/Kg		10	1	0.0100
e		0.560		${ m mg/Kg}$		10	4	0.0100
		1.16		mg/Kg		10		0.0100
					Spike	Percent		covery
(DDC)	Flag							mits
robenzene (4-BFB)	····	0.810	mg/Kg	10	1.00	81	48.7	- 140
3319 - SB1 @ 3'/00	3855							
Chloride (IC)		Analytic	al Method	E 300.0		Prep Me	ethod:	N/A
37120				2007-05-07		Analyze	d By:	ER
32194				n: 2007-05-07				ER
		RL						
Flag		Result		Units	Γ	ilution		RI
		987		mg/Kg		100		
	ene (TFT) robenzene (4-BFB) 3319 - SB1 @ 3'/00 BTEX 36964 32066 Flag Flag 1 chloride (IC) 37120 32194	Flag ene (TFT) obenzene (4-BFB) 3319 - SB1 @ 3'/003855 BTEX 36964 32066 Flag Flag Flag Chloride (IC) 37120 32194	### Flag Result ### Result	Flag Result Units	Signature Sign	Spike Amount Spike Spike Amount Spike Spike Amount Spike Spike Amount Spike Spike	Spike Percent Recovery Re	Spike

840

mg/Kg

¹Sample ran at dilution due to hydrocarbons with a retention time greater than xylene.

#2 State L Batt

Work Order: 7050323 #2 State L Batt

Page Number: 5 of 20 Buckeye,NM

				•	Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane	2	381	${ m mg/Kg}$	5	150	254	33.3 - 164

Sample: 123319 - SB1 @ 3'/003855

Analysis: TPH GRO QC Batch: 36965 Prep Batch: 32066

Analytical Method: S 8015B Date Analyzed: Sample Preparation:

2007-05-03 2007-05-03 Prep Method: S 5035 Analyzed By: KB

Prepared By:

RLFlag Parameter Result Units Dilution RLGRO 183 10 1.00 mg/Kg Spike Percent Recovery Flag Surrogate Result Units Dilution Amount Recovery Limits Trifluorotoluene (TFT) 0.678 10 1.00 68 33.2 - 160 mg/Kg 4-Bromofluorobenzene (4-BFB) 1.30 1.00 130 10 - 227 mg/Kg 10

Sample: 123320 - SB1 @ 5'/004119

Analysis: BTEX QC Batch: 36964 Prep Batch: 32066

Analytical Method: S 8021B Date Analyzed: 2007-05-03 Sample Preparation: 2007-05-03

Prep Method: S 5035 Analyzed By: KB Prepared By: KB

.	~~	RL		7	70.7
Parameter	Flag	Result	Units	Dilution	RL
Benzene		0.256	mg/Kg	20	0.0100
Toluene		< 0.200	m mg/Kg	20	0.0100
Ethylbenzene		5.3 5	m mg/Kg	20	0.0100
Xylene		6.50	m mg/Kg	20	0.0100

•					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.564	mg/Kg	20	1.00	56	52.1 - 131
4-Bromofluorobenzene (4-BFB)	3	1.66	mg/Kg	20	1.00	166	48.7 - 146

Sample: 123320 - SB1 @ 5'/004119

Analysis: Chloride (IC) QC Batch: 37029 Prep Batch: 32127

Analytical Method: E 300.0 Date Analyzed: 2007-05-07 Sample Preparation: 2007-05-06

Prep Method: N/AAnalyzed By: ERPrepared By: ER

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		380	m mg/Kg	50	1.00

²High surrogate recovery due to peak interference.

³High surrogate recovery due to peak interference.

#2 State L Batt

Work Order: 7050323 #2 State L Batt

Page Number: 6 of 20 Buckeye,NM

Sample: 123320 - SB1 @ 5'/004119

Analysis: QC Batch:

Prep Batch:

TPH DRO

36975 32074 Analytical Method:

Date Analyzed:

Mod. 8015B 2007-05-03

Sample Preparation:

Prep Method:

Analyzed By: TGPrepared By: TG

N/A

RL

Parameter	Flag	Result	Units	Dilution	RL
DRO		614	mg/Kg	10	50.0

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
n-Triacontane	4	576	m mg/Kg	10	150	384	33.3 - 164

Sample: 123320 - SB1 @ 5'/004119

Analysis: QC Batch:

Prep Batch:

TPH GRO 36965

32066

Analytical Method:

S 8015B Date Analyzed: 2007-05-03 Sample Preparation: 2007-05-03 Prep Method: S 5035

Analyzed By: KB Prepared By: KB

RL

Parameter	Flag	Result	Units	Dilution	RL
GRO		392	m mg/Kg	20	1.00

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.814	mg/Kg	20	1.00	81	33.2 - 160
4-Bromofluorobenzene (4-BFB)		2.14	${ m mg/Kg}$	20	1.00	214	10 - 227

Sample: 123321 - SB1 @ 30'/004085

Analysis: QC Batch: Prep Batch:

BTEX 36964 32066

Analytical Method: Date Analyzed:

S 8021B 2007-05-03 Sample Preparation: 2007-05-03 Prep Method: S 5035 Analyzed By: KBPrepared By: KB

RLParameter Flag Result Units Dilution RLBenzene < 0.100 mg/Kg 10 0.0100 Toluene < 0.100 10 0.0100 mg/Kg Ethylbenzene 1.38 10 0.0100mg/KgXylene 2.94 mg/Kg 10 0.0100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.650	mg/Kg	10	1.00	65	52.1 - 131
4-Bromofluorobenzene (4-BFB)		1.09	${ m mg/Kg}$	10	1.00	109	48.7 - 146

⁴High surrogate recovery due to peak interference.

⁵Sample ran at dilution due to hydrocarbons with a retention time greater than xylene.

#2 State L Batt

Prep Batch: 32194

Work Order: 7050323 #2 State L Batt

Page Number: 7 of 20 Buckeye,NM

Sample: 123321 - SB1 @ 30'/004085

Analysis: QC Batch: Chloride (IC) 37120

Analytical Method: Date Analyzed:

E 300.0 2007-05-07 Sample Preparation: 2007-05-07 Prep Method: N/A Analyzed By: ERPrepared By: ER

RL

Parameter	Flag	Result	Units	Dilution	RL
Chloride		10.0	mg/Kg	5	1.00

Sample: 123321 - SB1 @ 30'/004085

Analysis: QC Batch:

DRO

TPH DRO 36976

Analytical Method: Date Analyzed:

Sample Preparation:

Mod. 8015B 2007-05-03

Prep Method: N/A Analyzed By: TG Prepared By: TG

Prep Batch: 32074

Parameter Flag

RLResult Units 3150 mg/Kg

Dilution RL50.0

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane	6	1050	${ m mg/Kg}$	1	150	700	33.3 - 164

Sample: 123321 - SB1 @ 30'/004085

Analysis: QC Batch:

TPH GRO 36965 Prep Batch: 32066

Analytical Method:

S 8015B 2007-05-03 Prep Method: S 5035 Analyzed By: KB

 $_{
m KB}$

Prepared By:

Date Analyzed: Sample Preparation: 2007-05-03

ВŢ

Parameter	Flag	Result	Units	Dilution	RL
GR.O		273	mg/Kg	10	1.00

					$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.939	mg/Kg	10	1.00	94	33.2 - 160
4-Bromofluorobenzene (4-BFB)		1.27	m mg/Kg	10	1.00	127	10 - 227

Sample: 123322 - SB1 @ 50'/00481

Analysis: BTEX QC Batch: 36962 Prep Batch: 32065

Analytical Method: Date Analyzed:

S 8021B 2007-05-03 Sample Preparation: 2007-05-03 Prep Method: S 5035 Analyzed By: KB Prepared By: KB

RL

Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	mg/Kg	· 1	0.0100
Ethylbenzene		< 0.0100	${ m mg/Kg}$	1 .	0.0100

⁶Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

Report Date: May 10, 2007 #2 State L Batt

Work Order: 7050323 #2 State L Batt Page Number: 8 of 20 Buckeye,NM

sample 123322 continued ...

4-Bromofluorobenzene (4-BFB)

TD /		T-11		RL		Dilestina	זמ	
Parameter		Flag	Resul		Units		Dilution	0.0106
Xylene			< 0.0100	<u>U</u>	mg/Kg	· · · · · · · · · · · · · · · · · · ·	1	0.0100
						Spike	Percent	Recovery
Surrogate		Flag	Result	$_{ m Units}$	Dilution	Amount	Recovery	Limits
Trifiuorotolu	ene (TFT)		0.878	mg/Kg	1	1.00	88	52.1 - 133
4-Bromofluo	robenzene (4-F	BFB)	0.859	${ m mg/Kg}$	1	1.00	86	48.7 - 146
Sample: 12	3322 - SB1	@ 50 ['] / 0 0481						
Analysis:	Chloride (IC	C)	Analyt	ical Method	: E 300.0		Prep M	Method: N/A
QC Batch:	37120	,		nalyzed:	2007-05-	07		ed By: ER
Prep Batch:	32194			Preparation			Prepar	
-			_	=			-	-
			RL					
Parameter		Flag	Result		Units		Dilution	RI
Chloride			138		mg/Kg		5	1.00
QC Batch: Prep Batch:	36976 32074		-	reparation:	2007-05-03			red By: TG
Parameter		Flag	RL Result		Units		Dilution	RI
DRO		1. Iag	<50.0		mg/Kg		1	50.0
<u> </u>			₹30.0		mg/rxg		<u> </u>	30.0
		•				Spike	Percent	Recovery
Surrogate	Flag		Units			Amount	Recovery	Limits
n-Triacontan	e	202	mg/Kg	5	1	150	135	33.3 - 164
Sample: 12	3322 - SB1 (© 50°/00481						
Analysis:	TPH GRO	0 00 700 101	Analytica	al Method:	S 8015B		Prep Me	thod: S 5035
QC Batch:	36963		Date Ana		2007-05-03		Analyzeo	
Prep Batch:	32065			reparation:	2007-05-03		Prepared	
.		T)	RL		T* 1.		70 th	
Parameter		Flag	Result		Units		Dilution	RI
GRO	· · · · · · · · · · · · · · · · · · ·		2.37		mg/Kg		1	1.00
						Spike	Percent	Recovery
Surrogate		Flag	g Result	Units	Dilution	Amount		Limits
Trifluorotolu	ene (TFT)	_ 130	1.06	mg/Kg	1	1.00	106	33.2 - 160
	nohomeone (4 I	וממכ	1 16	ma/1/a	- 1	1.00	116	10 005

1.16

mg/Kg

1

1.00

116

10 - 227

Report Date: May 10, 2007 #2 State L Batt

Work Order: 7050323 #2 State L Batt

Page Number: 9 of 20 Buckeye,NM

Method Blank (1)

QC Batch: 36962

QC Batch: Prep Batch: 32065

36962

Date Analyzed: QC Preparation:

2007-05-03 2007-05-03

Analyzed By: KB Prepared By: KB

MDI

		MDL		
Parameter	Flag	Result	Units	RL
Benzene	,	< 0.00333	mg/Kg	0.01
Toluene		< 0.00372	${ m mg/Kg}$	0.01
Ethylbenzene		< 0.00206	${ m mg/Kg}$	0.01
Xylene		< 0.00259	mg/Kg	0.01

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.843	mg/Kg	1	1.00	84	73.2 - 113
4-Bromofluorobenzene (4-BFB)		0.598	mg/Kg	1	1.00	6 0	54 - 102

Method Blank (1)

QC Batch: 36963

QC Batch: Prep Batch: 32065

36963

Date Analyzed: QC Preparation:

2007-05-03 2007-05-03 Analyzed By: KB Prepared By: KB

MDL

Parameter Flag Result Units RLGRO < 0.459 mg/Kg

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Triffuorotoluene (TFT)		1.06	mg/Kg	1	1.00	106	73.2 - 125
4-Bromofluorobenzene (4-BFB)		0.709	${ m mg/Kg}$	1	1.00	71	51.9 - 110

Method Blank (1)

QC Batch: 36964

QC Batch:

36964

Date Analyzed:

2007-05-03

Analyzed By: KB

Prep Batch: 32066

QC Preparation:

2007-05-03

Prepared By: 'KB

		MDL		
Parameter	Flag	Result	${f Units}$	RL
Benzene	N. A. C.	< 0.00333	mg/Kg	0.01
Toluene		< 0.00372	m mg/Kg	0.01
Ethylbenzene		< 0.00206	${ m mg/Kg}$	0.01
Xylene		< 0.00259	mg/Kg	0.01

					$\operatorname{Spik} e$	$\operatorname{Percent}$	Recovery
Surrogate	Flag	Result	$_{ m Units}$	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.861	mg/Kg	1	1.00	86	73.2 - 113
4-Bromofluorobenzene (4-BFB)		. 0.631	m mg/Kg	1	1.00	63	54 - 102

#2 State L Batt

Work Order: 7050323 #2 State L Batt

Page Number: 10 of 20 Buckeye.NM

Method Blank (1)

QC Batch: 36965

QC Batch: Prep Batch: 32066

36965

Date Analyzed: 2007-05-03

2007-05-03

Analyzed By: KB

QC Preparation:

Prepared By: KB

MDL

RLParameter Flag Result Units GRO < 0.459 mg/Kg1

					Spike	Percent	Recovery
Surrogate	Flag	Result	${ m Units}$	Dilution	\mathbf{Amount}	Recovery	Limits
Trifluorotoluene (TFT)		1.09	mg/Kg	1	1.00	109	73.2 - 125
4-Bromofluorobenzene (4-BFB)		0.757	${ m mg/Kg}$	1	1.00	76	51.9 - 110

Method Blank (1)

QC Batch: 36975

QC Batch:

36975

Date Analyzed:

2007-05-03

Analyzed By: TG

Prep Batch: 32074

QC Preparation: 2007-05-04

Prepared By: ΤG

MDL

Flag RLParameter Result Units DRO <22.3 mg/Kg 50

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		155	mg/Kg	1	150	103	33.3 - 164

Method Blank (1)

QC Batch: 36976

QC Batch: Prep Batch:

36976 32074 Date Analyzed: QC Preparation:

2007-05-03 2007-05-04 Analyzed By: TG

Prepared By: TG

MDL

Parameter Flag Result Units RLDRO 50 <22.3 mg/Kg

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		160	m mg/Kg	1	150	107	33.3 - 164

Method Blank (1)

QC Batch: 37029

QC Batch:

37029 Prep Batch: 32127

Date Analyzed:

2007-05-07 2007-05-06 Analyzed By: ER

Prepared By: ER.

MDL

Flag Parameter Result UnitsRLChloride < 0.140 mg/Kg

QC Preparation:

#2 State L Batt

Work Order: 7050323 #2 State L Batt

Page Number: 11 of 20 Buckeye,NM

Method Blank (1)

QC Batch: 37120

QC Batch: Prep Batch:

37120 32194

Date Analyzed: QC Preparation:

2007-05-07 2007-05-07 Analyzed By: ER

Prepared By: ER

MDL

Parameter Flag Result Units RLChloride < 0.140 mg/Kg

Laboratory Control Spike (LCS-1)

QC Batch:

Prep Batch: 32065

36962

Date Analyzed:

2007-05-03

Analyzed By: KB

Prepared By: KB

Param	LCS Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit
Benzene	0.956	mg/Kg	1	1.00	< 0.00333	96	76.3 - 117
Toluene	0.934	mg/Kg	1	1.00	< 0.00372	93	77.3 - 114
Ethylbenzene	0.906	mg/Kg	1	1.00	< 0.00206	91	75.4 - 115
Xylene	2.70	mg/Kg	1	3.00	< 0.00259	90	73.2 - 112

QC Preparation: 2007-05-03

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	0.971	mg/Kg	1	1.00	< 0.00333	97	76.3 - 117	2	20
Toluene	0.952	${ m mg/Kg}$	1	1.00	< 0.00372	95	77.3 - 114	2	20
Ethylbenzene	0.926	mg/Kg	1	1.00	< 0.00206	93	75.4 - 115	2	·20
Xylene	2.76	mg/Kg	1	3.00	< 0.00259	92	73.2 - 112	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	${ m Rec.}$	Limit
Trifluorotoluene (TFT)	0.889	0.898	mg/Kg	1	1.00	89	90	74.5 - 113
4-Bromofluorobenzene (4-BFB)	0.799	0.825	${ m mg/Kg}$	1	1.00	80	82	68.3 - 110

Laboratory Control Spike (LCS-1)

QC Batch:

36963

Date Analyzed:

2007-05-03

Analyzed By: KB

Prep Batch: 32065

QC Preparation:

2007-05-03

Prepared By: KB

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	8.99	${ m mg/Kg}$	1	10.0	< 0.459	90	79.6 - 113

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	9.00	mg/Kg	1	10.0	< 0.459	90	79.6 - 113	0	20

Report Date: May 10, 2007 #2 State L Batt

Work Order: 7050323 #2 State L Batt

LCS LCSD Spike LCS LCSD Rec. Surrogate Result Result Units Dil. Amount Rec. Rec. Limit Trifluorotoluene (TFT) 0.890 0.910 mg/Kg 1 1.00 89 91 77.1 - 117 78.1 - 118 102 4-Bromofluorobenzene (4-BFB) 0.839 1.02 mg/Kg 1 1.00 84

Laboratory Control Spike (LCS-1)

QC Batch: 36964 Prep Batch: 32066 Date Analyzed: 2007-05-03 QC Preparation: 2007-05-03 Analyzed By: KB
Prepared By: KB

Page Number: 12 of 20

Buckeye,NM

Param	LCS Result	Units	Dil.	$\begin{array}{c} {\rm Spike} \\ {\rm Amount} \end{array}$	Matrix Result	Rec.	Rec. Limit
Benzene	0.890	mg/Kg	1	1.00	< 0.00333	89	76.3 - 117
Toluene	0.871	mg/Kg	1	1.00	< 0.00372	87	77.3 - 114
Ethylbenzene	0.835	mg/Kg	1	1.00	< 0.00206	84	75.4 - 115
Xylene	2.48	mg/Kg	1	3.00	< 0.00259	83	73.2 - 112

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	0.909	mg/Kg	1	1.00	< 0.00333	91	76.3 - 117	2	20
Toluene	0.890	${ m mg/Kg}$	1	1.00	< 0.00372	89	77.3 - 114	2	20
Ethylbenzene	0.858	mg/Kg	1	1.00	< 0.00206	86	75.4 - 115	3	20
X ylen ϵ	2.55	mg/Kg	1	3.00	< 0.00259	85	73.2 - 112	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.861	0.846	mg/Kg	1	1.00	86	85	74.5 - 113
4-Bromofluorobenzene (4-BFB)	0.786	0.769	${ m mg/Kg}$	1	1.00	79	77	68.3 - 110

Laboratory Control Spike (LCS-1)

QC Batch: 3 Prep Batch: 3

36965 32066 Date Analyzed: 20 QC Preparation: 20

2007-05-03 2007-05-03 Analyzed By: KB Prepared By: KB

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	9.21	${ m mg/Kg}$	1	10.0	< 0.459	92	79.6 - 113

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	\mathbf{Amount}	Result	Rec.	Limit	RPD	Limit
GRO	9.05	${ m mg/Kg}$	1	10.0	< 0.459	90	79.6 - 113	2	20

Surrogate	LCS Result	LCSD Result	Units	Dil.	Spike Amount	LCS Rec.	LCSD Rec.	Rec. Limit
Trifluorotoluene (TFT)	0.951	0.950	mg/Kg	1	1.00	95	95	77.1 - 117
4-Bromofiuorobenzene (4-BFB)	0.882	0.835	mg/Kg	1	1.00	88	84	78.1 - 118

#2 State L Batt

Work Order: 7050323 #2 State L Batt

Page Number: 13 of 20 Buckeye,NM

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:

36975 32074 Date Analyzed: QC Preparation:

2007-05-03

2007-05-04

Analyzed By: TG

Prepared By: TG

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	232	${ m mg/Kg}$	1	250	<22.3	93	54.3 - 149

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	$_{ m Limit}$
DRO	212	mg/Kg	1	250	<22.3	85	54.3 - 149	9	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	155	133	mg/Kg	1	150	103	89	33.3 - 164

Laboratory Control Spike (LCS-1)

QC Batch:

36976 Prep Batch: 32074 Date Analyzed:

2007-05-03

Analyzed By: TG

QC Preparation: 2007-05-04

Prepared By: TG

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	216	mg/Kg	1	250	<22.3	86	54.3 - 149

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	\mathbf{Amount}	Result	Rec.	Limit	RPD	Limit
DRO	177	mg/Kg	1	250	<22.3	71	54.3 - 149	20	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	155	143	mg/Kg	1	150	103	95	33.3 - 164

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 32127

37029

Date Analyzed:

2007-05-07

QC Preparation: 2007-05-06

Analyzed By: ER

Prepared By: ER

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	12.6	${ m mg/Kg}$	1	12.5	< 0.140	101	90 - 110

#2 State L Batt

Work Order: 7050323 #2 State L Batt

Page Number: 14 of 20 Buckeye,NM

RPD LCSD Spike Rec. Matrix RPD Limit Param Result Units Dil. Amount Result Rec. Limit Chloride 13.6 mg/Kg 12.5 < 0.140 109 90 - 110 8 20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 32194

37120

Date Analyzed: QC Preparation:

2007-05-07 2007-05-07

Analyzed By: ER Prepared By: $\mathbf{E}\mathbf{R}$

LCS Spike Matrix Rec. Units Param Result Dil. Amount Result Rec. Limit Chloride 12.8 mg/Kg 12.5 < 0.140 102 90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

LCSD RPD Spike Matrix Rec. Param Result Units Dil. Amount Result Rec. Limit RPD Limit Chloride 13.8 < 0.140 90 - 110 20 mg/Kg 1 12.5110 8

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1)

Spiked Sample: 123304

QC Batch: 36962 32065 Prep Batch:

Date Analyzed:

2007-05-03

Analyzed By: KB

KB

Prepared By:

QC Preparation: 2007-05-03

Param	MS Result	Units	Dil.	$\begin{array}{c} {\rm Spike} \\ {\rm Amount} \end{array}$	Matrix Result	Rec.	Rec. Limit
Benzene	0.803	mg/Kg	1	1.00	< 0.00333	80	39.6 - 141
Toluene	0.837	mg/Kg	1	1.00	< 0.00372	84	45.4 - 138
Ethylbenzene	0.875	mg/Kg	1	1.00	< 0.00206	88	48 - 141
Xylene	2.62	m mg/Kg	1	3.00	< 0.00259	87	45.3 - 142

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	0.775	mg/Kg	1	1.00	< 0.00333	78	39.6 - 141	4	20
Toluene	0.806	${ m mg/Kg}$	1	1.00	< 0.00372	81	45.4 - 138	4	20
Ethylbenzene	0.841	mg/Kg	1	1.00	< 0.00206	84	48 - 141	4	20
Xylene	2.51	mg/Kg	1	3.00	< 0.00259	84	45.3 - 142	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	MS Result	MSD Result	Units	Dil.	Spike Amount	MS Rec.	MSD Rec.	Rec. Limit
Trifluorotoluene (TFT)	0.858	0.942	mg/Kg	1	1	86	94	51.5 - 138
4-Bromofluorobenzene (4-BFB)	0.871	0.943	mg/Kg	1	1	87	94	52.2 - 139

Matrix Spike (MS-1) Spiked Sample: 123304

QC Batch:

36963

Date Analyzed:

QC Preparation:

2007-05-03 2007-05-03 Analyzed By: KB

Prep Batch:

32065

Prepared By: KB

Report Date: May 10, 2007 #2 State L Batt

Work Order: 7050323 #2 State L Batt

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	7.61	mg/Kg	1	10.0	< 0.459	76	40.7 - 157

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	9.12	mg/Kg	1	10.0	< 0.459	91	40.7 - 157	18	19.6

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	\mathbf{Amount}	Rec.	Rec.	$_{ m Limit}$
Trifluorotoluene (TFT)	0.753	0.879	mg/Kg	1	1	75	88	34.9 - 155
4-Bromofluorobenzene (4-BFB)	0.926	1.02	${ m mg/Kg}$	1	1	93	102	58.5 - 153

Matrix Spike (MS-1) Spiked Sample: 123328

QC Batch: 36964 Prep Batch: 32066 Date Analyzed: 2007-05-03 QC Preparation: 2007-05-03 Analyzed By: KB Prepared By: KB

Page Number: 15 of 20

Buckeye,NM

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene	0.690	mg/Kg	1	1.00	< 0.00333	69	39.6 - 141
Toluene	0.720	${ m mg/Kg}$	1	1.00	< 0.00372	72	45.4 - 138
Ethylbenzene	0.744	${ m mg/Kg}$	1	1.00	< 0.00206	74	48 - 141
Xylene	2.22	mg/Kg	1	3.00	< 0.00259	74	45.3 - 142

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	0.714	m mg/Kg	1	1.00	< 0.00333	71	39.6 - 141	3	20
Toluene	0.745	${ m mg/Kg}$	1	1.00	< 0.00372	74	45.4 - 138	3	20
Ethylbenzene	0.775	mg/Kg	1	1.00	< 0.00206	78	48 - 141	4	20
Xylene	2.32	mg/Kg	1	3.00	< 0.00259	77	45.3 - 142	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

C	MS	MSD	T7 ()	T):1	Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	\mathbf{Amount}	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.740	0.771	mg/Kg	1	1	74	77	51.5 - 138
4-Bromofluorobenzene (4-BFB)	0.737	0.771	mg/Kg	1	1	74	77	52.2 - 139

Matrix Spike (MS-1) Spiked Sample: 123328

QC Batch: 36965 Prep Batch: 32066 Date Analyzed: 2007-05-03 QC Preparation: 2007-05-03 Analyzed By: KB Prepared By: KB

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	\mathbf{Amount}	Result	Rec.	Limit
GRO	8.95	mg/Kg	1	10.0	< 0.459	90	40.7 - 157

#2 State L Batt

東京

Work Order: 7050323 #2 State L Batt

Page Number: 16 of 20 $_{\rm Buckeye, NM}$

					_						
		MSD	**	**	Spike	Matrix			ec.	222	RPD
Param GRO		Result 8.97	Units	Dil.	Amount	Result < 0.459	Rec. 90		nit - 157	RPD	Limit
	- 		mg/Kg	1	10.0					0	19.6
Percent recovery is based of	on the sp	ike result.	RPD is	based on	the spike a	and spike di	iplicate:	resuit.			
		MS	M	SD		Sı	oike	MS	MSI)	Rec.
Surrogate		Resu		sult		Dil. Am	ount	Rec.	Rec		Limit
Trifluorotoluene (TFT)		0.95			mg/Kg	1	1	95	92		.9 - 155
4-Bromofluorobenzene (4-I	BFB)	1.0) 1	.04	mg/Kg	1	1	105	104	58	3.5 - 153
Matrix Spike (MS-1)	Spiked	Sample: 12	23305								
QC Batch: 36975			Date Ar	nalyzed:	2007-05-	03			Anal	yzed B	
Prep Batch: 32074			QC Pre	paration.	: 2007-05-	04			Prep	ared By	TG
		MS	6			Spike	Mat	trix			Rec.
Param		Resu		Units	Dil.	Amount	Res		Rec.		Limit
DRO		222	2 r	m ng/Kg	1	250	<2	2.3	89	35	.1 - 161
Percent recovery is based of	on the sp	ike result.	RPD is	based on	the spike a	and spike di	iplicate:	result.			
		MSD			Spike	Matrix		R	ec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.		nit	RPD	Limit
DRO		228	mg/Kg		250	<22.3	91		- 161	3	20
Percent recovery is based of	on the sp	ike result.	RPD is	based on	the spike a	and spike di	uplicate	result.			
	MS	MOD			-	C11 .		C.	MOD		D.
Surrogate	MS Result	MSD Resul		Units	Dil.	${ m Spike} \ { m Amount}$	M: Re		MSD Rec.		Rec. Limit
n-Triacontane	141	144		ng/Kg	1	150	94		96		3.3 - 164
				-0/0							
Matrix Crite (MC 1)	Coilord	Comenta, 26	19909								
Matrix Spike (MS-1)	эрікес	Sample: 12	∕oo∠o								
QC Batch: 36976				nalyzed:	2007-05-	03			Anal	yzed B	v: TG
Prep Batch: 32074			QC Pre	paration	: 2007-05-	04			Prep	ared By	:: TG
		MS	3			Spike	Mat	trix			Rec.
Param		Resi	ılt	Units	Dil.	\mathbf{Amount}	Res		Rec.		Limit
DRO		208	3 r	ng/Kg	1	250	<2	2.3	83	35	5.1 - 161
Percent recovery is based of	on the sp	ike result.	RPD is	based on	the spike a	and spike di	uplicate	result.			
		MSD			Spike	Matrix		R	ec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.		mit	RPD	Limit
DRO		175	mg/Kg	1	250	<22.3	70		- 161	17	20
Percent recovery is based of	on the sp	ike result.	RPD is	based on	the spike a	and spike di	uplicate	result.			
	MS	MSD			-	-	_				D.o.
Surrogate	Result	Resul		Units	Dil.	$egin{array}{c} { m Spike} \ { m Amount} \end{array}$	M Re		MSD Rec.		Rec. Limit
n-Triacontane	172	152		ng/Kg	1	150	11		101		3.3 - 164
				<u> </u>							

#2 State L Batt

Work Order: 7050323 #2 State L Batt

Page Number: 17 of 20 Buckeve,NM

Matrix Spike (MS-1)

Spiked Sample: 123320

QC Batch:

37029 Prep Batch: 32127 Date Analyzed: QC Preparation: 2007-05-07

2007-05-06

Analyzed By: ER

Prepared By: ER.

		MS			Spike	Matrix		Rec.
Param		Result	Units	Dil.	Amount	Result	Rec.	$_{ m Limit}$
Chloride	7	950	${ m mg/Kg}$	100	1250	379.511	46	75.6 - 117

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	8	826	mg/Kg	100	1250	379.511	36	75.6 - 117	14	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1)

Spiked Sample: 123328

QC Batch: Prep Batch: 32194

37120

Date Analyzed: QC Preparation:

2007-05-07 2007-05-07 Analyzed By: ER

Prepared By: ER

		MS			$_{ m Spike}$	Matrix		Rec.
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	9	56.4	mg/Kg	5	62.5	14.914	66	75.6 - 117

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	10	54.2	mg/Kg	5	62.5	14.914	63	75.6 - 117	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Standard (ICV-1)

QC Batch: 36962

Date Analyzed: 2007-05-03

Analyzed By: KB

Param	Flag	Units	ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene		$_{ m mg/Kg}$	0.100	0.0969	97	85 - 115	2007-05-03
Toluene		${ m mg/Kg}$	0.100	0.0953	95	85 - 115	2007-05-03
Ethylbenzene		mg/Kg	0.100	0.0933	93	85 - 115	2007-05-03
Xylene		mg/Kg	0.300	0.279	93	85 - 115	2007-05-03

Standard (CCV-1)

QC Batch: 36962

Date Analyzed: 2007-05-03

Analyzed By: KB

⁷Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

⁸ Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

⁹Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control. ¹⁰Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

Report Date: May 10, 2007 #2 State L Batt

Work Order: 7050323 #2 State L Batt Page Number: 18 of 20 Buckeye,NM

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene		mg/Kg	0.100	0.0921	92	85 - 115	2007-05-03
Toluene		m mg/Kg	0.100	0.0906	91	85 - 115	2007-05-03
Ethylbenzene		mg/Kg	0.100	0.0886	89	85 - 115	2007-05-03
Xylene		$_{ m mg/Kg}$	0.300	0.264	88	85 - 115	2007-05-03

Standard (ICV-1)

QC Batch: 36963

Date Analyzed: 2007-05-03

Analyzed By: KB

			ICVs True	ICVs	ICVs Demonst	Percent	Date
Damama	Flag	Timita		Found	Percent	Recovery	4 2 2
Param	riag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GR.O		m mg/Kg	1.00	0.904	90	85 - 115	2007-05-03

Standard (CCV-1)

QC Batch: 36963

Date Analyzed: 2007-05-03

Analyzed By: KB

			CCVs True	CCVs Found	${ m CCVs} \ { m Percent}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	0.939	94	85 - 115	2007-05-03

Standard (ICV-1)

QC Batch: 36964

Date Analyzed: 2007-05-03

Analyzed By: KB

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0925	92	85 - 11š	2007-05-03
Toluene		mg/Kg	0.100	0.0920	92	85 - 115	2007-05-03
Ethylbenzene		${ m mg/Kg}$	0.100	0.0888	89	85 - 115	2007-05-03
Xylene		m mg/Kg	0.300	0.264	88	85 - 115	2007-05-03

Standard (CCV-1)

QC Batch: 36964

Date Analyzed: 2007-05-03

Analyzed By: KB

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene		mg/Kg	0.100	0.0912	91	85 - 115	2007-05-03
Toluene		m mg/Kg	0.100	0.0893	89	85 - 115	2007-05-03
Ethylbenzene		${ m mg/Kg}$	0.100	0.0866	87	85 - 115	2007-05-03
Xylene		${ m mg/Kg}$	0.300	0.259	86	85 - 115	2007-05-03

#2 State L Batt

Work Order: 7050323 #2 State L Batt Page Number: 19 of 20 Buckeye,NM

Standard (ICV-1)

QC Batch: 36965

Date Analyzed: 2007-05-03

Analyzed By: KB

			ICVs	ICVs	ICVs	Percent '	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	0.962	96	85 - 115	2007-05-03

Standard (CCV-1)

QC Batch: 36965

Date Analyzed: 2007-05-03

Analyzed By: KB

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	0.943	94	85 - 115	2007-05-03

Standard (CCV-1)

QC Batch: 36975

Date Analyzed: 2007-05-03

Analyzed By: TG

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	237	95	85 - 115	2007-05-03

Standard (CCV-2)

QC Batch: 36975

Date Analyzed: 2007-05-03

Analyzed By: TG

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	244	98	85 - 115	2007-05-03

Standard (ICV-1)

QC Batch: 36976

Date Analyzed: 2007-05-03

Analyzed By: TG

			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	223	89	85 - 115	2007-05-03

Standard (CCV-1)

QC Batch: 36976

Date Analyzed: 2007-05-03

Analyzed By: TG

Report Date: May 10, 2007 #2 State L Batt

Chloride

mg/Kg

12.5

12.2

98

90 - 110

2007-05-07

Work Order: 7050323 #2 State L Batt

Page I	Number:	20 01 20	J
	Buck	keye,NM	1

#2 State D	Dant			#2 State L Dat	t.		Duckeye,14141
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	229	92	85 - 115	2007-05-03
Standard	(ICV-1)						
QC Batch:	37029		Date Ana	lyzed: 2007-0	5-07	Anal	yzed By: ER
	•		ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	12.5	12.2	98	90 - 110	2007-05-07
Standar d	(CCV-1)						
QC Batch:	37029		Date Ana	lyzed: 2007-0	5-07	Anal	lyzed By: ER
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	12.5	12.1	97	90 - 110	2007-05-07
Standard	(ICV-1)						
QC Batch:	37120		Date Ana	dyzed: 2007-0	5-07	Ana	lyzed By: ER
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	12.5	12.2	98	90 - 110	2007-05-07
Standard	(CCV-1)						
QC Batch:	37120		Date Ana	dyzed: 2007-0	5-07	Ana	lyzed By: ER
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Q1.1 · 1.		/7/	10 -	100	00	00 110	0005 05 05

Turn Aveung Time é different mors standard CHAIN-OF-CUSTODY AND ANALYSIS REQUEST 27) CEO Circle or Specify Method No.) Check II Special Screeting Units Are Hebback Ory Street Basis Remined TIMP Report Peou red ANALYSIS REQUEST maineO enuisioly LAB Order ID # 705032 Ho, BST .COE 808 1.81806 zebiczie = F 209 / ZSD8 4.80± GC/MS Semi Val SSTOC REMARKS PZ9 / BOSZS NOA SWYDE :08 TCLP Pestones CCLP Serni Voiatries TOLP Vosatiles 한번 9원 4억 50 60 68 8A pA aleaeM 역기다T LAB USE 7 (105/80106 gH 58 d^C 10 n0 e8 eA gA eleteM teto VINO STRICT (RICE Logan-Peyler - ORO : ORO 8108 H9T Hoadspace (\$50,4XE 300;XT : 300;XT 86= 패션1 Intact femp. ELECTION XBLE /809Z8 / 204 / 91Z08 38714 1.7 2:55 7.1.7 25g 71.7 4:37 52:E L . 1:5 SAMPLING HWIL 955 Modiumbrum (1993) 19 Paga (1973) 1993 1917 (1953) 1995 1917 (1953) 1994 1995 (1953) 1994 505) 397 6389 5970397 BIAC Time: Project Manne: State BNOW -EO: HOPN Date Dater H²SO ONH THE ALAININGS, ILL OPPOSITA CO :C#4 Received at Laboratory by: Baranas MATRIX Schoolfel at complex reconstitues agiliforment to Tound and Comfrience helfel 신발 201 RBTAM Received by: 25 102 Received tunotur / autojo/ SEBNIATINGO # 13BC Internal Time Trne: 003880 18/100 102 него сооё Project Location Including slate? Dafet Date SB16 (Il different from above) Project #: 50.0 Palinquiehar liv Countact Person Relinguished AB USE UMIY 12318 hydre to: 3 ענותקייוה Address LABI

PIPH Disposits mort free if different from Anual Time CHAIN-OF-CUSTODY AND ANALYSIS REQUEST Circle or Specify Method No.))) LEO Dry Weight Basis Required Check If Special Reporting Limits Are Needed LAB Order ID # 7050393 > TRRP Report Required ANALYSIS REQUEST Moisture Content Hq ,SST ,GOB 803 \ A1808 sebibite99 427 5CB.2 8085 \ e08 GC/MS Semi Vol 8270C / 625 GC/W2 A9F 8560B / 65¢ ВÇI TCLP Pesticides TCLP Semi Volatiles TCLP Volatiles TCLP Metals Ag As Ba Cd Cr Pb Se Hg LAB USE ZINO Total Metals Ag As Ba Cd Cr Pb Se Hg 60108/2007 FPH 8015 GRO / DRO ₹ [PH 418.1 / TX1005 / TX1005 Ext(C35) Carder # 8021B XBT8 \$051B \ 602 \ 8560B \ 624 38TM F.1. 2 2:55 5.1.7 4.37 5:1.2 3:25 5.1.7 2:54 155 McCutcheon, Suite H El Paro, Texas 79932 Tel (1915) 585-3443 Far (1915) 585-4944 1 (888) 588-3443 SAMPLING TIME 505) 397 6389 5970397 <u>۲:۱۰</u> BTAG PRESERVATIVE MONE Project Name: State Submittal of samples constitutes agreement to Terms and Conditions listed on leverse Ade of C. C. C. 77 METHOD ICE 2 HOEN Date: Date: *OS*H OFIGINAL COPY Frace Analysis, Inc. CONH HCI Fax #: arnbe∉ MATRIX AI.A TIOS **ABTAW** Received by Received by Received at 20/ 20% 405 205 405 fnuomA \ emuloV BBC International (Stroot, City, Zip) # CONTAINERS 1324. W. Marland 1.3 580,000 Time 1003855 8880 Cliff Brunson 100/119 18h00/ 1020 FIELD CODE Date: Project Location (including state 15816 So'/ 3/ 5816 361 58105 Tol (805) 794-1296 Fax (806) 794-1298 1 (800) 378-1296 omail: lab@thaceanalysis.com 50102 SBIBI If different from above Relinquished by: Relinquished by Company Name: Contact Person: Relinquished 13318 LAB USE) nvoice to: Project #: LAB# Address

100000

N. STATE OF

A. 2. 20 M

A. W. A.

. de , (1-2me)

Summary Report

Cliff Brunson **BBC** International 1324 W. Marland Hobbs, NM, 88240

Report Date: May 15, 2007

Work Order: 7050718

Project Location: Buckeye,NM Project Name:

State L #2

		•	Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
123489	SB2 @ 1' #004013	soil	2007-05-03	08:00	2007-05-05
123490	SB2 @ 3' #004008	soil	2007-05-03	08:02	2007-05-05
123491	SB2 @ 5' #003995	soil	2007-05-03	08:04	2007-05-05
123492	SB2 @ 20' #003898	soil	2007-05-03	08:05	2007-05-05
123493	SB2 @ 39'#003914	soil	2007-05-03	08:53	2007-05-05
123494	SB3 @ 1' #004000	soil	2007-05-03	09:12	2007-05-05
123495	SB3 @ 3' #003986	soil	2007-05-03	09:13	2007-05-05
123496	SB3 @ 5' #004010	soil	2007-05-03	09:14	2007-05-05
123497	SB3 @ 20' #003901	soil	2007-05-03	09:26	2007-05-05
123498	SB3 @ 35' #003874	soil	2007-05-03	09:49	2007-05-05

			D@DT:) (TDD	MDII DDA	mntr on o
			BTEX		MTBE	TPH DRO	TPH GRO
,	$\operatorname{Benzene}$	Toluene	Ethylbenzene	Xylene	MTBE	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
123489 - SB2 @ 1' #004013	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	<1.00
123490 - SB2 @ 3' #004008	< 0.0100	< 0.0100	< 0.0100	< 0.0100	,	< 50.0	< 1.00
123491 - SB2 @ 5' #003995	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	<1.00
123492 - SB2 @ 20' #003898	< 0.0100	< 0.0100	< 0.0100	< 0.0100]	< 50.0	<1.00
123493 - SB2 @ 39'#003914	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	< 1.00
123494 - SB3 @ 1' #004000	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	< 1.00
123495 - SB3 @ 3' #003986	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	<1.00
123496 - SB3 @ 5' #004010	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	<1.00
123497 - SB3 @ 20' #003901	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	< 1.00
123498 - SB3 @ 35' #003874	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	< 1.00

Sample: 123489 - SB2 @ 1' #004013

Param	Flag	Result	Units	RL
Chloride		729	mg/Kg	1.00

Sample: 123490 - SB2 @ 3' #004008

Param	Flag	Result	Units	RL
Chloride		454	mg/Kg	1.00

Report Date: May 1	5, 2007	Work Order: 7050718 State L #2	F	Page Number: 2 of 2 Buckeye,NM
Sample: 123491 -	SB2 @ 5' #003995			
Param	Flag	Result	Units	RL
Chloride		565	mg/Kg	1.00
				Ç
Sample: 123492 -	SB2 @ 20', #003898			
Param	Flag	Result	Units	RL
Chloride		243	m mg/Kg	1.00
	•			
Sample: 123493 -	SB2 @ 39'#003914			
Param	Flag	Result	Units	RL
Chloride		254	m mg/Kg	1.00
Sample: 123494 -	SB3 @ 1' #004000			
Param	Flag	Result	Units	RL
Chloride		194	m mg/Kg	1.00
Sample: 123495 -	SB3 @ 3' #003986			
Param	Flag	Result	Units	RL
Chloride		337	mg/Kg	1.00
Sample: 123496 -	SB3 @ 5' #004010			
Param	Flag	Result	Units	RL
Chloride		1600	mg/Kg	1.00
C1 19940#	CD0 @ 001 #000001			
	SB3 @ 2 0' #003901			
Sample: 123497 - Param Chloride	SB3 @ 20' #003901 Flag	Result 477	Units mg/Kg	RL 1.00

Result

117

Flag

 Param

Chloride

Units

mg/Kg

RL

1.00

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1

Lubbock, Texas 79424 El Paso, Texas 79922 Midland, Texas 79703

800 • 378 • 1296 888 • 588 • 3443

915 • 585 • 3443

FAX 806 • 794 • 1298 FAX 915 • 585 • 4944 FAX 432 • 689 • 6313

432 • 689 • 6301 817 • 201 • 5260

806 • 794 • 1296

6015 Harris Parkway, Suite 110 Ft. Worth, Texas 76132 E-Mail: lab@traceanalysis.com

Analytical and Quality Control Report

Cliff Brunson **BBC** International 1324 W. Marland Hobbs, NM, 88240

Report Date: May 15, 2007

Work Order: 7050718

Project Location: Buckeye.NM Project Name: State L #2 Project Number: State L #2

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
123489	SB2 @ 1' #004013	soil	2007-05-03	08:00	2007-05-05
123490	SB2 @ 3 ¹ #004008	soil	2007-05-03	08:02	2007-05-05
123491	SB2 @ 5' #003995	soil	2007-05-03	08:04	2007-05-05
123492	SB2 @ 20° #003898	soil	2007-05-03	08:05	2007-05-05
123493	SB2 @ 39`#003914	soil	2007-05-03	08:53	2007-05-05
123494	SB3 @ 1' #004000	soil	2007-05-03	09:12	2007-05-05
123495	SB3 @ 3' #003986	soil	2007-05-03	09:13	2007-05-05
123496	SB3 @ 5' #004010	soil	2007-05-03	09:14	2007-05-05
123497	SB3 @ 20° #003901	soil	2007-05-03	09:26	2007-05-05
123498	SB3 @ 35" #003874	soil	2007-05-03	09:49	2007-05-05

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 22 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Standard Flags

B - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project State L #2 were received by TraceAnalysis, Inc. on 2007-05-05 and assigned to work order 7050718. Samples for work order 7050718 were received intact at a temperature of 4 C.

Samples were analyzed for the following tests using their respective methods.

Test	Method
BTEX	S 8021B
Chloride (IC)	E 300.0
TPH DRO	Mod. 8015B
TPH GRO	S 8015B

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 7050718 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

State L #2

Work Order: 7050718 State L #2

Page Number: 3 of 22 Buckeye,NM

Analytical Report

Sample: 123489 - SB2 @ 1' #004013

Analysis: BTEX QC Batch: 37038 Prep Batch: 32135

Analytical Method: S 8021B Date Analyzed: Sample Preparation:

2007-05-07 2007-05-07 Prep Method: S 5035 Analyzed By: MTPrepared By: MT

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	mg/Kg	1	0.0100
Ethylbenzene		< 0.0100	m mg/Kg	1	0.0100
Xylene		< 0.0100	m mg/Kg	1	0.0100

					Spike	$\operatorname{Percent}$	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.802	mg/Kg	1	1.00	80	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.764	mg/Kg	1	1.00	76	48.7 - 146

Sample: 123489 - SB2 @ 1' #004013

Analysis: Chloride (IC) QC Batch: 37168 Prep Batch: 32245

Analytical Method: E 300.0 Date Analyzed: 2007-05-11 Sample Preparation: 2007-05-11

Prep Method: N/A Analyzed By: ERPrepared By: ER

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		729	mg/Kg	50	1.00

Sample: 123489 - SB2 @ 1' #004013

Analysis: TPH DRO QC Batch: 37046 Prep Batch: 32141

n-Triacontane

Analytical Method: Mod. 8015B Date Analyzed: 2007-05-07 Sample Preparation: 2007-05-07

Prep Method: N/A Analyzed By: DS Prepared By:

Parameter	Fla	g	Result	Uni	its	Dilution	RL
DRO			< 50.0	mg/I	ζg	1	50.0
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	\mathbf{Amount}	Recovery	Limits

150

D.T

mg/Kg

175

Sample: 123489 - SB2 @ 1' #004013

Analysis: TPH GRO QC Batch: 37039 Prep Batch: 32135 .

Analytical Method: S 8015B Date Analyzed: 2007-05-07 Sample Preparation: 2007-05-07 Prep Method: S 5035 Analyzed By: Prepared By: MT

33.3 - 164

117

State L #2

Work Order: 7050718 State L #2

Page Number: 4 of 22 Buckeye,NM

Parameter	Flag		RL Result		Units	D	lilution	RL
GRO			< 1.00		mg/Kg		1	1.00
Surregate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Surrogate Trifluorotoluene (TFT)		riag	0.981	mg/Kg	1	1.00	98	33.2 - 160
4-Bromofluorobenzene (4	4-BFB)		0.952	mg/Kg	1	1.00	95	10 - 227

Sample: 123490 - SB2 @ 3' #004008

Analysis:	BTEX
QC Batch:	37038
Prep Batch:	32135

Analytical Method: S 8021B Date Analyzed: 2007-05-07 Sample Preparation: 2007-05-07

Prep Method: S 5035 Analyzed By: MT Prepared By: MT

		RL	•			
Parameter	Flag	Result	Units	Di	ilution	RL
Benzene		< 0.0100	mg/Kg		1	0.0100
Toluene		< 0.0100	${ m mg/Kg}$		1	0.0100
Ethylbenzene		< 0.0100	mg/Kg		1	0.0100
Xylene		< 0.0100	${ m mg/Kg}$		1	0.0100
				Cuiles	Donoont	D
				Spike	Percent	Recovery

					Spike	Percent	$\operatorname{Recovery}$
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.915	mg/Kg	1	1.00	92	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.869	m mg/Kg	1	1.00	87	48.7 - 146

Sample: 123490 - SB2 @ 3' #004008

Analysis:	Chloride (IC)
QC Batch:	37208
Prep Batch:	32270

Analytical Method: E 300.0
Date Analyzed: 2007-05-14
Sample Preparation: 2007-05-14

Prep Method: N/A
Analyzed By: ER
Prepared By: ER

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		454	${ m mg/Kg}$	50	1.00

Sample: 123490 - SB2 @ 3' #004008

Analysis:	TPH DRO
QC Batch:	37046
Prep Batch:	32141

Analytical Method: Mod. 8015B
Date Analyzed: 2007-05-07
Sample Preparation: 2007-05-07

Prep Method: N/A
Analyzed By: DS
Prepared By: TG

Parameter	Flag	Result	Units	Dilution	RL
DRO		< 50.0	m mg/Kg	1	50.0
			C :1	. D	ъ.

					$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		183	mg/Kg	1	150	122	33.3 - 164

State L #2

Work Order: 7050718 State L #2

Page Number: 5 of 22 Buckeye,NM

Sample: 123490 - SB2 @ 3' #004008

Analysis: QC Batch:

Prep Batch:

TPH GRO 37039 32135

Analytical Method: Date Analyzed:

S 8015B2007-05-07 Sample Preparation: 2007-05-07 Prep Method: S 5035 Analyzed By: MTPrepared By: MT

RL

Parameter	Flag	Result	Units	Dilution	RL
GRO		< 1.00	mg/Kg	1	1.00

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
Trifluorotoluene (TFT)		1.14	mg/Kg	1	1.00	114	33.2 - 160
4-Bromofluorobenzene (4-BFB)		1.08	m mg/Kg	1	1.00	108	10 - 227_

Sample: 123491 - SB2 @ 5' #003995

Analysis: QC Batch:

Prep Batch:

BTEX 37038 32135

Analytical Method: Date Analyzed:

S 8021B 2007-05-07 Sample Preparation: 2007-05-07 Prep Method: S 5035 Analyzed By: MTPrepared By: MT

RL

Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	m mg/Kg	1	0.0100
Ethylbenzene		< 0.0100	mg/Kg	1	0.0100
Xylene		< 0.0100	m mg/Kg	1	0.0100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.927	mg/Kg	1	1.00	93	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.882	mg/Kg	1	1.00	88	48.7 - 146

Sample: 123491 - SB2 @ 5' #003995

Analysis: QC Batch: Prep Batch:

Chloride (IC) 37208 32270

Analytical Method: Date Analyzed:

 $\to 300.0$ 2007-05-14 Sample Preparation: 2007-05-14 Prep Method: N/AAnalyzed By: ERPrepared By: ER

		${ m RL}$			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		56 5	m mg/Kg	50	1.00

Sample: 123491 - SB2 @ 5' #003995

Analysis: QC Batch: Prep Batch:

TPH DRO 37046 32141

Analytical Method: Date Analyzed:

Mod. 8015B 2007-05-07 Sample Preparation: 2007-05-07

Prep Method: N/A Analyzed By: DS Prepared By: TG

State L #2

Work Order: 7050718

State L #2

Page Number: 6 of 22 Buckeye,NM

Parameter DRO	Fla		RL					
	Fla							
DRO		ıg	Result		Units	Ι	Dilution	RI
			< 50.0		mg/Kg		1	50.0
						0 :1	D	T
Corrogata	Flag	Result	Units	וים	ution	Spike Amount	Percent Recovery	Recovery Limits
Surrogate n-Triacontane	Flag	159	mg/Kg	וועו	1	150	106	33.3 - 164
II- III decontaine		103	mg/Ng		1	100	100	00.0 - 10-
Sample: 1234	191 - SB2 @ ;	5' #003995						
Analysis: T	TPH GRO		Analytical	Method:	S 8015B		Prep Met	hod: S 5035
•	37039		Date Analy		2007-05-07		Analyzed	
	32135		Sample Pre				Prepared	
			nr					
Parameter	Fla	a or	RL Result		Units	T	Dilution	RI
GRO	1.15	<u> </u>	<1.00		mg/Kg	<u>.</u>	1	1.00
GILO			~1.00		mg/mg		1	1.00
						Spike	Percent	Recovery
						phire	1 01 00170	
		Flag	Result	Units	Dilution	-	Recovery	Limits
Surrogate Trifluorotoluene			1.15	Units mg/Kg	Dilution 1	-		33.2 - 160
Trifluorotolueno 4-Bromofluorob	benzene (4-BFI	3)	1.15 1.09			Amount	Recovery	
Trifluorotoluend 4-Bromofluorob Sample: 1234 Analysis: F QC Batch: 3	benzene (4-BFI	3)	1.15 1.09 8 Analytical M Date Analyze	mg/Kg mg/Kg	1 1 S 8021B 2007-05-07	Amount 1.00	Recovery 115 109 Prep Met Analyzed	33.2 - 160 10 - 227 hod: S 5038 By: MT
Trifluorotoluend 4-Bromofluorob Sample: 1234 Analysis: F QC Batch: 3	benzene (4-BFI 192 - SB2 @ : BTEX 37038	3)	1.15 1.09 8 Analytical M Date Analyze Sample Prep	mg/Kg mg/Kg	1 1 S 8021B	Amount 1.00	Recovery 115 109 Prep Met	33.2 - 160 10 - 227 hod: S 5038 By: MT
Trifluorotoluend 4-Bromofluorob Sample: 1234 Analysis: E QC Batch: 3 Prep Batch: 3	benzene (4-BFI 192 - SB2 @ : BTEX 37038 32135	20' #003 89 8	1.15 1.09 8 Analytical M Date Analyze	mg/Kg mg/Kg	1 1 S 8021B 2007-05-07	Amount 1.00 1.00	Recovery 115 109 Prep Met Analyzed	33.2 - 160 10 - 227 hod: S 5038 By: MT
Trifluorotoluend 4-Bromofluorot Sample: 1234 Analysis: F QC Batch: 3 Prep Batch: 3	benzene (4-BFI 192 - SB2 @ : BTEX 37038 32135	3)	1.15 1.09 8 Analytical M Date Analyze Sample Prep	mg/Kg mg/Kg	1 1 S 8021B 2007-05-07 2007-05-07	Amount 1.00 1.00	Recovery 115 109 Prep Met Analyzed Prepared	33.2 - 160 10 - 227 hod: S 5038 By: MT By: MT
Trifluorotoluene 4-Bromofluorot Sample: 1234 Analysis: F QC Batch: 3 Prep Batch: 3	benzene (4-BFI 192 - SB2 @ : BTEX 37038 32135	20' #003 89 8	1.15 1.09 8 Analytical M Date Analyze Sample Prep. RL Result	mg/Kg mg/Kg	1 1 S 8021B 2007-05-07 2007-05-07	Amount 1.00 1.00	Recovery 115 109 Prep Met Analyzed Prepared	33.2 - 160 10 - 227 hod: S 5033 By: MT By: MT
Trifluorotoluend 4-Bromofluorot Sample: 1234 Analysis: F QC Batch: 3 Prep Batch: 3 Parameter Benzene Toluene	benzene (4-BFI 192 - SB2 @ : BTEX 37038 32135	20' #003 89 8	1.15 1.09 8 Analytical M Date Analyze Sample Prep. RL Result <0.0100	mg/Kg mg/Kg	1 1 S 8021B 2007-05-07 2007-05-07 Units mg/Kg	Amount 1.00 1.00	Recovery 115 109 Prep Met Analyzed Prepared ilution 1	33.2 - 160 10 - 227 hod: S 5038 By: MT By: MT
Trifluorotoluend 4-Bromofluorot Sample: 1234 Analysis: E QC Batch: 3 Prep Batch: 3 Parameter Benzene Toluene Ethylbenzene	benzene (4-BFI 192 - SB2 @ : BTEX 37038 32135	20' #003 89 8	1.15 1.09 8 Analytical M Date Analyze Sample Preport RL Result <0.0100 <0.0100	mg/Kg mg/Kg	1 1 S 8021B 2007-05-07 2007-05-07 Units mg/Kg mg/Kg	Amount 1.00 1.00	Recovery 115 109 Prep Met Analyzed Prepared ilution 1 1	33.2 - 160 10 - 227 hod: S 5033 By: MT By: MT 0.0100 0.0100
Trifluorotoluene 4-Bromofluorot Sample: 1234 Analysis: E QC Batch: 3 Prep Batch: 3 Parameter Benzene Toluene Ethylbenzene Xylene	benzene (4-BFI 192 - SB2 @ : BTEX 37038 32135	3) 20' #003899	1.15 1.09 8 Analytical M Date Analyze Sample Prep. RL Result <0.0100 <0.0100 <0.0100 <0.0100	mg/Kg mg/Kg ethod: ed: aration:	1 1 S 8021B 2007-05-07 2007-05-07 Units mg/Kg mg/Kg mg/Kg	Amount 1.00 1.00 Description:	Recovery 115 109 Prep Met Analyzed Prepared ilution 1 1 1 1 Percent	33.2 - 160 10 - 227 hod: S 5033 By: MT By: MT 0.0100 0.0100 0.0100 0.0100
Triffuorotoluend 4-Bromofluorot Sample: 1234 Analysis: E QC Batch: 3 Prep Batch: 3 Parameter Benzene Toluene Ethylbenzene Xylene Surrogate	BTEX 37038 32135	20' #003 89 8	1.15 1.09 8 Analytical M Date Analyze Sample Prep. RL Result <0.0100 <0.0100 <0.0100 Result	mg/Kg mg/Kg ethod: ed: aration:	1 1 2007-05-07 2007-05-07 Units mg/Kg mg/Kg mg/Kg mg/Kg	Amount 1.00 1.00 Description:	Recovery 115 109 Prep Met Analyzed Prepared ilution 1 1 1 1 Percent Recovery	33.2 - 160 10 - 227 hod: S 5033 By: MT By: MT 0.0100 0.0100 0.0100 0.0100 Recovery Limits
Trifluorotolueno 4-Bromofluorob	benzene (4-BFI	3)	1.15 1.09	mg/Kg	1	Amount 1.00		115
.9 37	nzene (4-BFI 12 - SB2 @ : FEX 038 135	20' #003 89 8	1.15 1.09 8 Analytical M Date Analyze Sample Prep. RL Result	mg/Kg mg/Kg	1 1 S 8021B 2007-05-07 2007-05-07	Amount 1.00 1.00	Recovery 115 109 Prep Met Analyzed Prepared	33.2 - 16 10 - 22 hod: S 503 By: MT By: MT
Frifluorotoluend Bample: 1234 Analysis: F QC Batch: 3 Prep Batch: 3 Parameter Benzene Foluene	benzene (4-BFI 192 - SB2 @ : BTEX 37038 32135	20' #003 89 8	1.15 1.09 8 Analytical M Date Analyze Sample Preport RL Result <0.0100 <0.0100	mg/Kg mg/Kg	1 1 S 8021B 2007-05-07 2007-05-07 Units mg/Kg mg/Kg	Amount 1.00 1.00	Recovery 115 109 Prep Met Analyzed Prepared ilution 1 1	33.2 - 16 10 - 227 hod: S 503 By: MT By: MT
Trifluorotoluend 4-Bromofluorob Sample: 1234 Analysis: E QC Batch: 3 Prep Batch: 3 Parameter Benzene Toluene Ethylbenzene	benzene (4-BFI 192 - SB2 @ : BTEX 37038 32135	20' #003 89 8	1.15 1.09 8 Analytical M Date Analyze Sample Prep. RL Result <0.0100 <0.0100 <0.0100	mg/Kg mg/Kg	1 1 S 8021B 2007-05-07 2007-05-07 Units mg/Kg mg/Kg mg/Kg	Amount 1.00 1.00	Recovery 115 109 Prep Met Analyzed Prepared ilution 1 1 1	33.2 - 16 10 - 227 hod: S 503 By: MT By: MT 0.010 0.010 0.010
Trifluorotoluend 4-Bromofluorot Sample: 1234 Analysis: E QC Batch: 3 Prep Batch: 3 Parameter Benzene Toluene Ethylbenzene	benzene (4-BFI 192 - SB2 @ : BTEX 37038 32135	20' #003 89 8	1.15 1.09 8 Analytical M Date Analyze Sample Prep. RL Result <0.0100 <0.0100 <0.0100	mg/Kg mg/Kg	1 1 S 8021B 2007-05-07 2007-05-07 Units mg/Kg mg/Kg mg/Kg	Amount 1.00 1.00	Recovery 115 109 Prep Met Analyzed Prepared ilution 1 1 1	33.2 - 16 10 - 227 hod: S 503 By: MT By: MT 0.010 0.010 0.010
Trifluorotoluend 4-Bromofluorot Sample: 1234 Analysis: E QC Batch: 3 Prep Batch: 3 Parameter Benzene Toluene Ethylbenzene	benzene (4-BFI 192 - SB2 @ : BTEX 37038 32135	20' #003 89 8	1.15 1.09 8 Analytical M Date Analyze Sample Prep. RL Result <0.0100 <0.0100 <0.0100	mg/Kg mg/Kg	1 1 S 8021B 2007-05-07 2007-05-07 Units mg/Kg mg/Kg mg/Kg	Amount 1.00 1.00	Recovery 115 109 Prep Met Analyzed Prepared ilution 1 1 1	33.2 - 16 10 - 227 hod: S 503 By: MT By: MT 0.010 0.010 0.010 0.010
Trifluorotoluend 4-Bromofluorot Sample: 1234 Analysis: E QC Batch: 3 Prep Batch: 3 Parameter Benzene Toluene Ethylbenzene Xylene	benzene (4-BFI 192 - SB2 @ : BTEX 37038 32135	3) 20' #003899	1.15 1.09 8 Analytical M Date Analyze Sample Prep. RL Result <0.0100 <0.0100 <0.0100 <0.0100	mg/Kg mg/Kg ethod: ed: aration:	1 1 S 8021B 2007-05-07 2007-05-07 Units mg/Kg mg/Kg mg/Kg	Amount 1.00 1.00 Description:	Recovery 115 109 Prep Met Analyzed Prepared ilution 1 1 1 1 Percent	33.2 - 160 10 - 227 hod: S 503. By: MT By: MT 0.010 0.010 0.010 0.010
Trifluorotoluend 4-Bromofluorot Sample: 1234 Analysis: E QC Batch: 3 Prep Batch: 3 Parameter Benzene Toluene Ethylbenzene Xylene	benzene (4-BFI 192 - SB2 @ : BTEX 37038 32135	3) 20' #003899 lag Flag	1.15 1.09 8 Analytical M Date Analyze Sample Prep. RL Result <0.0100 <0.0100 <0.0100 <0.0100	mg/Kg mg/Kg ethod: ed: aration:	1 1 S 8021B 2007-05-07 2007-05-07 Units mg/Kg mg/Kg mg/Kg	Amount 1.00 1.00 Description:	Recovery 115 109 Prep Met Analyzed Prepared ilution 1 1 1 1 Percent	33.2 - 160 10 - 227 hod: S 503; By: MT By: MT 0.0100 0.0100 0.0100 0.0100

RL

243

Units

mg/Kg

Dilution

RL

1.00

Result

Flag

Parameter

Chloride

State L #2

Work Order: 7050718 State L #2

Page Number: 7 of 22 Buckeye,NM

Sample: 123492 - SB2 @ 20' #003898

Analysis: QC Batch:

TPH DRO 37046 Prep Batch: 32141

Analytical Method: Date Analyzed:

Mod. 8015B 2007-05-07 Sample Preparation: 2007-05-07

Prep Method: N/A Analyzed By: DSPrepared By: TG

RL

Parameter	Flag	Result	Units	Dilution	RL
DRO		< 50.0	mg/Kg	1	50.0

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
n-Triacontane		185	${ m mg/Kg}$	1	150	123	33.3 - 164

Sample: 123492 - SB2 @ 20' #003898

Analysis: TPH GRO QC Batch: 37039 Prep Batch: 32135

Analytical Method: S 8015B Date Analyzed: 2007-05-07 Sample Preparation: 2007-05-07

Prep Method: S 5035 Analyzed By: MTPrepared By: MT

RL

Parameter Flag Result Units Dilution RL<1.00 1.00 GRO mg/Kg

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.984	mg/Kg	1	1.00	98	33.2 - 160
4-Bromofluorobenzene (4-BFB)		0.930	mg/Kg	1	1.00	93	10 - 227

Sample: 123493 - SB2 @ 39'#003914

Analysis: BTEX QC Batch: 37038 Prep Batch: 32135

Analytical Method: S 8021B Date Analyzed: 2007-05-07 Sample Preparation: 2007-05-07

RL

Prep Method: S 5035 Analyzed By: MTPrepared By: MT

Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	$_{ m mg/Kg}$	1	0.0100
Ethylbenzene		< 0.0100	mg/Kg	1	0.0100
Xylene		< 0.0100	m mg/Kg	1	0.0100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.820	mg/Kg	1	1.00	82	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.791	mg/Kg	1	1.00	79	48.7 - 146

State L #2

Work Order: 7050718

State L #2

Page Number: 8 of 22 Buckeye,NM

Sample: 123493 - SB2 @ 39'#003914

Analysis: QC Batch:

Prep Batch: 32270

Chloride (IC) 37208

Analytical Method: Date Analyzed: Sample Preparation:

E 300.02007-05-14 2007-05-14 Prep Method: N/A Analyzed By: ERPrepared By: ER.

RL

Parameter	Flag	Result	Units	Dilution	RL
Chloride		254	mg/Kg	50	1.00

Sample: 123493 - SB2 @ 39'#003914

Analysis: QC Batch:

TPH DRO 37046 Prep Batch: 32141

Analytical Method: Date Analyzed:

Sample Preparation:

Mod. 8015B 2007-05-07 2007-05-07

Prep Method: N/A Analyzed By: DS Prepared By: TG

RL

Parameter	Flag	Result	Units	Dilution	RL
DRO		< 50.0	mg/Kg]	50.0

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		218	mg/Kg	1	150	145	33.3 - 164

Sample: 123493 - SB2 @ 39'#003914

Analysis: QC Batch:

TPH GRO 37039 Prep Batch: 32135

Analytical Method: Date Analyzed:

S 8015B 2007-05-07 Sample Preparation: 2007-05-07

Prep Method: S 5035 Analyzed By: MT Prepared By: MT

RL

Parameter	Flag	Result	Units	Dilution	RL
GRO		<1.00	mg/Kg	1	1.00

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.03	mg/Kg	1	1.00	103	33.2 - 160
4-Bromofluorobenzene (4-BFB)		0.972	${ m mg/Kg}$	1	1.00	97	10 - 227

Sample: 123494 - SB3 @ 1' #004000

Analysis: QC Batch:

BTEX 37038 Prep Batch: 32135

Analytical Method: Date Analyzed:

S 8021B 2007-05-07 Sample Preparation: 2007-05-07 Prep Method: S 5035 Analyzed By: MT Prepared By: MT

		RL			
Parameter	Flag	Result	\mathbf{Units}	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	mg/Kg	1	0.0100
Ethylbenzene		< 0.0100	m mg/Kg	1	0.0100

continued ...

State L #2

Work Order: 7050718 State L #2

Page Number: 9 of 22 Buckeye.NM

sample 123494 continued ...

Parameter	Flag		RL Result		\mathbf{Units}	Di	lution	RL
Xylene			< 0.0100	1	mg/Kg		1	0.0100
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BF	`B)		0.729 0.688	mg/Kg mg/Kg	1 1	1.00 1.00	73 69	52.1 - 131 48.7 - 146

Sample: 123494 - SB3 @ 1' #004000

Analysis: QC Batch: Chloride (IC)

37208 Prep Batch: 32270

Analytical Method:

E 300.0 2007-05-14 Date Analyzed: Sample Preparation: 2007-05-14 Prep Method: N/A Analyzed By: ERPrepared By: ER

RLRLParameter Flag Result Units Dilution Chloride 194 50 1.00 mg/Kg

Sample: 123494 - SB3 @ 1' #004000

Analysis: QC Batch: Prep Batch:

TPH DRO 37046 32141

Analytical Method: Date Analyzed:

Sample Preparation:

Mod. 8015B 2007-05-07 2007-05-07

Prep Method: N/A DS Analyzed By: Prepared By: TG

RLResult Parameter Flag Units Dilution RL $\overline{\mathrm{DRO}}$ < 50.0 50.0 mg/Kg Percent Recovery Spike

Dilution Units Limits Surrogate Flag Result Amount Recovery 127 33.3 - 164 n-Triacontane 191 mg/Kg 150

Sample: 123494 - SB3 @ 1' #004000

Analysis: QC Batch:

Prep Batch:

TPH GRO 37039 32135

Analytical Method: Date Analyzed:

S 8015B 2007-05-07 Sample Preparation: 2007-05-07 Prep Method: S 5035 Analyzed By: Prepared By:

RLParameter Flag Result Units Dilution RLGRO <1.00 mg/Kg 1.00

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
Trifluorotoluene (TFT)		0.907	mg/Kg	1	1.00	91	33.2 - 160
4-Bromofluorobenzene (4-BFB)		0.843	mg/Kg	1	1.00	84	10 - 227

State L #2

Work Order: 7050718 State L #2

Page Number: 10 of 22 Buckeye,NM

Sample: 123495 - SB3 @ 3' #003986

Analysis: QC Batch:

BTEX 37038 Prep Batch: 32135

Analytical Method: Date Analyzed:

S 8021B 2007-05-07 Sample Preparation: 2007-05-07 Prep Method: S 5035 Analyzed By: MTPrepared By: MT

		$_{ m RL}$			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	m mg/Kg	1	0.0100
Ethylbenzene		< 0.0100	${ m mg/Kg}$	1	0.0100
Xylene		< 0.0100	m mg/Kg	1	0.0100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.736	$\mathrm{mg/Kg}$	1	1.00	74	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.712	$_{ m mg/Kg}$	1	1.00	71	48.7 - 146

Sample: 123495 - SB3 @ 3' #003986

Analysis: QC Batch:

Chloride (IC) 37208 Prep Batch: 32270

Analytical Method: Date Analyzed:

E 300.0 2007-05-14 Prep Method: N/A Analyzed By: ER

ER

Prepared By:

Sample Preparation: 2007-05-14

RL

Parameter	Flag	Result	Units	Dilution	RL
Chloride		337	m mg/Kg	50	1.00

Sample: 123495 - SB3 @ 3' #003986

Analysis: QC Batch:

DRO

TPH DRO 37046 Prep Batch: 32141

Analytical Method: Date Analyzed:

Mod. 8015B 2007-05-07 Sample Preparation: 2007-05-07

mg/Kg

Prep Method: N/A Analyzed By: DS Prepared By: TG

Parameter Flag

RLResult < 50.0 Units

RL50.0

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
n-Triacontane		190	mg/Kg	1	150	127	33.3 - 164

Sample: 123495 - SB3 @ 3' #003986

Analysis: QC Batch: Prep Batch:

TPH GRO 37039 32135

Analytical Method: Date Analyzed:

S 8015B 2007-05-07 Sample Preparation: 2007-05-07 Prep Method: S 5035 Analyzed By: MTPrepared By: MT

continued ...

Dilution

1

State L #2

Work Order: 7050718 State L #2 Page Number: 11 of 22 Buckeye,NM

sample 123495 continued . . .

Parameter	Flag		RL Result		Units	D	ilution	RL
			RL					
Parameter	Flag		Result		Units	D	ilution	RL
GRO			<1.00		mg/Kg		1	1.00
Cumpagata		Plan	Result	Units	Dilution	Spike	Percent Recovery	Recovery Limits
Surrogate		Flag			Difficion	Amount	······································	
Trifluorotoluene (T	rfr)		0.918	$_{ m mg/Kg}$	1	1.00	92	33.2 - 160
4-Bromofluorobenz	zene (4-BFB)		0.872	mg/Kg	1	1.00	87	10 - 227

Sample: 123496 - SB3 @ 5' #004010

Analysis:	BTEX
QC Batch:	37038
Prep Batch:	32135

Prep Method:	S 5035
Analyzed By:	MT
Prepared By:	MT

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	 0.0100
Toluene		< 0.0100	mg/Kg	. 1	0.0100
Ethylbenzene		< 0.0100	m mg/Kg	1	0.0100
Xylene		< 0.0100	${ m mg/Kg}$	1	0.0100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.752	mg/Kg	i i	1.00	75	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.715	mg/Kg	1	1.00	72	48.7 - 146

Sample: 123496 - SB3 @ 5' #004010

Analysis:	Chloride (IC)
QC Batch:	37208
Prep Batch:	32270

300.0
07-05-14
07-05-14

Prep Method:	N/A
Analyzed By:	ER
Prepared By-	EB

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		1600	m mg/Kg	100	1.00

Sample: 123496 - SB3 @ 5' #004010

Analysis:	TPH DRO	Analytical Method:	Mod. 8015B	Prep Method:	N/A
QC Batch:	37046	Date Analyzed:	2007-05-07	Analyzed By:	DS
Prep Batch:	32141	Sample Preparation:	2007-05-07	Prepared By:	TG

continued ...

State L #2

Work Order: 7050718 State L #2 Page Number: 12 of 22 Buckeye,NM

sample 123496 continued ...

Parameter	Fla	£	RL Result	Uni	ts	Dilution	RL
			. RL				
Parameter	Fla	g	Result	Uni	ts	Dilution	RL
DRO			< 50.0	${ m mg/H}$	Kg	1	50.0
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		191	mg/Kg]	150	127	33.3 - 164

Sample: 123496 - SB3 @ 5' #004010

Analysis: TPH GRO QC Batch: 37039 Prep Batch: 32135

Trifluorotoluene (TFT)

4-Bromofluorobenzene (4-BFB)

Analytical Method: S 8015B
Date Analyzed: 2007-05-07
Sample Preparation: 2007-05-07

Prep Method: S 5035 Analyzed By: MT Prepared By: MT

33.2 - 160

10 - 227

RLParameter Flag Result Units Dilution RL<1.00 GRO mg/Kg 1.00 1 Spike Percent Recovery Surrogate Flag Result Units Dilution Amount Recovery Limits

mg/Kg

mg/Kg

1

1

1.00

1.00

0.941

0.876

Sample: 123497 - SB3 @ 20' #003901

Analysis: BTEX
QC Batch: 37038
Prep Batch: 32135

Analytical Method: S 8021B
Date Analyzed: 2007-05-07
Sample Preparation: 2007-05-07

Prep Method: S 5035 Analyzed By: MT Prepared By: MT

94 88

RLFlag Result RLParameter Units Dilution Benzene < 0.0100 mg/Kg 0.0100 Toluene < 0.0100 mg/Kg 1 0.0100 Ethylbenzene < 0.0100 mg/Kg 1 0.0100 Xylene < 0.0100 0.0100 mg/Kg 1

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.797	mg/Kg	1	1.00	80	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.754	mg/Kg	1	1.00	75	48.7 - 146

Sample: 123497 - SB3 @ 20' #003901

Analysis: Chloride (IC)
QC Batch: 37208
Prep Batch: 32270

Analytical Method: E 300.0
Date Analyzed: 2007-05-14
Sample Preparation: 2007-05-14

Prep Method: N/A
Analyzed By: ER
Prepared By: ER

State L #2

Work Order: 7050718

State L #2

		RL			
Parameter	Flag	Result	\mathbf{Units}	Dilution	RL
Chloride		477	mg/Kg	50	1.00

Sample: 123497 - SB3 @ 20' #003901

Analysis: TPH DRO QC Batch: 37046 Prep Batch: 32141

Analytical Method:
Date Analyzed:
Sample Preparation:

Mod. 8015B 2007-05-07 2007-05-07 Prep Method: N/A
Analyzed By: DS
Prepared By: TG

Page Number: 13 of 22

Buckeye,NM

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		186	mg/Kg	1	150	124	33.3 - 164

Sample: 123497 - SB3 @ 20' #003901

Analysis: TPH GRO QC Batch: 37039 Prep Batch: 32135 Analytical Method: S 8015B
Date Analyzed: 2007-05-07
Sample Preparation: 2007-05-07

Prep Method: S 5035 Analyzed By: MT Prepared By: MT

				Spike	Percent	Recovery
Surrogate Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)	0.988	mg/Kg	1	1.00	99	33.2 - 160
4-Bromofluorobenzene (4-BFB)	0.922	m mg/Kg	1	1.00	92	10 - 227

Sample: 123498 - SB3 @ 35' #003874

Analysis: BTEX QC Batch: 37038 Prep Batch: 32135 Analytical Method: S 8021B Date Analyzed: 2007-05-07 Sample Preparation: 2007-05-07 Prep Method: S 5035 Analyzed By: MT Prepared By: MT

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	mg/Kg	1	0.0100
Ethylbenzene		< 0.0100	mg/Kg	1	0.0100
Xylene		< 0.0100	mg/Kg	1	0.0100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.782	mg/Kg	1	1.00	78	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.752	${ m mg/Kg}$	1	1.00	75	48.7 - 146

State L #2

Work Order: 7050718 State L #2

Page Number: 14 of 22 Buckeye,NM

Sample: 123498 - SB3 @ 35' #003874

Analysis: QC Batch:

Prep Batch: 32272

Chloride (IC) 37210

Analytical Method: Date Analyzed:

Sample Preparation:

E 300.0 2007-05-15 2007-05-14 Prep Method: N/A Analyzed By: $\mathbf{E}\mathbf{R}$ Prepared By: ER

Result Parameter Flag

RLUnits

RLDilution

5

1.00

Sample: 123498 - SB3 @ 35' #003874

Analysis:

Chloride

TPH DRO . 37046

Analytical Method: Date Analyzed:

117

Mod. 8015B 2007-05-07

mg/Kg

Prep Method: N/A Analyzed By: DS

QC Batch: Prep Batch: 32141

Sample Preparation:

2007-05-07

Prepared By: TG

RL

Result Units Dilution RLParameter Flag DRO < 50.0 mg/Kg 50.0

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		200	mg/Kg	1	150	133	33.3 - 164

Sample: 123498 - SB3 @ 35' #003874

Analysis: QC Batch:

Prep Batch:

TPH GRO 37039

32135

Analytical Method: Date Analyzed:

S 8015B 2007-05-07 Prep Method: S 5035 Analyzed By: MT

MT

Prepared By:

Sample Preparation: 2007-05-07

RL

Parameter Flag Result Units Dilution RLGRO < 1.00 1.00 mg/Kg 1

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.976	mg/Kg	1	1.00	98	33.2 - 160
4-Bromofluorobenzene (4-BFB)		0.920	${ m mg/Kg}$	1	1.00	92	10 - 227

Method Blank (1) QC Batch: 37038

QC Batch: Prep Batch: 32135

37038

Date Analyzed: QC Preparation:

2007-05-07 2007-05-07 Analyzed By: MT

Prepared By: MT

		MDL		
Parameter	Flag	Result	Units	RL
Benzene		< 0.00333	mg/Kg	0.01
Toluene		< 0.00372	mg/Kg	0.01
Ethylbenzene		< 0.00206	${ m mg/Kg}$	0.01
Xylene		< 0.00259	mg/Kg	0.01

State L #2

Work Order: 7050718

State L #2

Page Number: 15 of 22 Buckeye.NM

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	$\begin{array}{c} {\rm Recovery} \\ {\rm Limits} \end{array}$
Trifluorotoluene (TFT)		0.777	mg/Kg	1	1.00	78	73.2 - 113
4-Bromofluorobenzene (4-BFB)		0.554	${ m mg/Kg}$	11	1.00	55	54 - 102

Method Blank (1)

QC Batch: 37039

QC Batch: 37039 Prep Batch: 32135

2007-05-07 Date Analyzed: QC Preparation: 2007-05-07 Analyzed By: MT Prepared By: MT

MDL

Parameter	Flag	Result	Units	RL
GRO		< 0.459	mg/Kg	1

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.993	mg/Kg	1	1.00	99	73.2 - 125
4-Bromofluorobenzene (4-BFB)		0.680	${ m mg/Kg}$	1	1.00	68	51.9 - 110

Method Blank (1)

QC Batch: 37046

QC Batch: 37046 Prep Batch: 32141

Date Analyzed: 2007-05-07 QC Preparation: 2007-05-07 Analyzed By: DS

Prepared By: DS

MDL

Parameter	Flag	Result	Units	RL
DRO		<22.3	mg/Kg	50

					Spike	$\operatorname{Percent}$	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		204	m mg/Kg	1	150	136	33.3 - 164

Method Blank (1)

QC Batch: 37168

QC Batch: 37168 Prep Batch: 32245 Date Analyzed: QC Preparation: 2007-05-11

2007-05-11

Analyzed By: ER. Prepared By: ER

		MDL		
Parameter	Flag	Result	Units	RL
Chloride		< 0.140	mg/Kg	1

Method Blank (1)

QC Batch: 37208

QC Batch: 37208 Prep Batch: 32270

Date Analyzed: 2007-05-14 QC Preparation: 2007-05-14 Analyzed By: ER Prepared By: ER

State L #2

Work Order: 7050718

State L #2

Page Number: 16 of 22

Buckeye,NM

		MDL		
Parameter	Flag	Result	Units	RL
Chloride		< 0.140	mg/Kg	1

Method Blank (1)

QC Batch: 37210

QC Batch:

37210

Date Analyzed:

2007-05-15

Analyzed By: ER

Prep Batch: 32272

QC Preparation: 2007-05-14

Prepared By: ER

		MDL
antar	Place	Racult

Parameter	Flag	Result	Units	RL_
Chloride		< 0.140	mg/Kg	1

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 32135

37038

Date Analyzed:

2007-05-07

Analyzed By: MT Prepared By: MT

QC Preparation: 2007-05-07

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene	0.882	m mg/Kg	1	1.00	< 0.00333	88	76.3 - 117
Toluene	0.866	${ m mg/Kg}$	1	1.00	< 0.00372	87	77.3 - 114
Ethylbenzene	0.833	mg/Kg	1	1.00	< 0.00206	83	75.4 - 115
Xylene	2.47	m mg/Kg	1	3.00	< 0.00259	82	73.2 - 112

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	0.918	mg/Kg	1	1.00	< 0.00333	92	76.3 - 117	4	20
Toluene	0.906	${ m mg/Kg}$	1	1.00	< 0.00372	91	77.3 - 114	4	20
Ethylbenzene	0.875	${ m mg/Kg}$	1	1.00	< 0.00206	88	75.4 - 115	5	20
Xylene	2.60	mg/Kg	1	3.00	< 0.00259	87	73.2 - 112	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.826	0.842	mg/Kg	1	1.00	83	84	74.5 - 113
4-Bromofluorobenzene (4-BFB)	0.747	0.766	${ m mg/Kg}$	1	1.00	75	77	68.3 - 110

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 32135

37039

Date Analyzed: QC Preparation:

2007-05-07

2007-05-07

Analyzed By: MT Prepared By: MT

LCS Spike Matrix Rec. Param Result Units Dil. Limit Amount Result Rec. GRO 9.20mg/Kg 1 10.0 < 0.45992 79.6 - 113

State L #2

Work Order: 7050718

State L #2

Page Number: 17 of 22 Buckeye,NM

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
GRO	9.14	mg/Kg	1	10.0	< 0.459	91	79.6 - 113	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.00	0.950	mg/Kg	1	1.00	100	95	77.1 - 117
4-Bromofluorobenzene (4-BFB)	0.878	0.825	mg/Kg	1	1.00	88	82	78.1 - 118

Laboratory Control Spike (LCS-1)

QC Batch:

37046

Date Analyzed:

2007-05-07

Analyzed By: DS

Prep Batch: 32141

QC Preparation: 2007-05-07

Prepared By: DS

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	292	mg/Kg	1	250	<22.3	117	54.3 - 149

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	258	mg/Kg	1	250	<22.3	103	54.3 - 149	12	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	179	168	mg/Kg	1	150	119	112	33.3 - 164

Laboratory Control Spike (LCS-1)

QC Batch:

Prep Batch: 32245

37168

Date Analyzed:

2007-05-11

Analyzed By: ER

QC Preparation: 2007-05-11 Prepared By: ER.

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	12.1	${ m mg/Kg}$	1	12.5	< 0.140	97	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	13.2	mg/Kg	1	12.5	< 0.140	106	90 - 110	9	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:

37208

Date Analyzed:

2007-05-14

Analyzed By: ER

Prep Batch: 32270

QC Preparation: 2007-05-14

Prepared By: ER

State L #2

Work Order: 7050718

State L #2

Page Number: 18 of 22 Buckeye,NM

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	12.8	mg/Kg	1	12.5	< 0.140	102	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	13.3	mg/Kg	1	12.5	< 0.140	106	90 - 110	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:

37210 Prep Batch: 32272

Date Analyzed: 2007-05-15

QC Preparation: 2007-05-14 Analyzed By: ER Prepared By:

LCS Spike Matrix Rec. Param Result Units Dil. Result Rec. Limit Amount 12.7 12.5 102 90 - 110 Chloride mg/Kg < 0.140

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	12.8	mg/Kg	1	12.5	< 0.140	102	90 - 110	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 123484

QC Batch:

37038

Prep Batch: 32135

Date Analyzed:

QC Preparation:

2007-05-07 2007-05-07

Analyzed By: MT Prepared By: MT

MS Spike Matrix Rec. Param Result Units Dil Amount Result Rec. Limit Benzene 0.784mg/Kg 1 1.00 < 0.00333 78 39.6 - 141 Toluene 0.876 mg/Kg 1 1.00 45.4 - 138 < 0.00372 88 Ethylbenzene 0.917 1.00 48 - 141 mg/Kg 1 < 0.00206 92 Xylene 3.03 mg/Kg 1 3.00 0.16895 45.3 - 142

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}	RPD	Limit
Benzene	0.792	mg/Kg	1	1.00	< 0.00333	79	39.6 - 141	1	20
Toluene	0.887	${ m mg/Kg}$	1	1.00	< 0.00372	89	45.4 - 138	1	20
Ethylbenzene	0.950	mg/Kg	1	1.00	< 0.00206	95	48 - 141	4	20
Xylene	2.83	${ m mg/Kg}$	1	3.00	0.168	89	45.3 - 142	7	20

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.862	0.876	${ m mg/Kg}$	1	1	86	88	51.5 - 138
4-Bromofluorobenzene (4-BFB)	1.18	1.36	${ m mg/Kg}$	1	1	118	136	52.2 - 139

State L #2

Work Order: 7050718

State L #2

Page Number: 19 of 22 Buckeye,NM

Matrix Spike (MS-1)

Spiked Sample: 123487

QC Batch:

37046

Date Analyzed:

2007-05-07

2007-05-07

Analyzed By: DS

Prep Batch: 32141

QC Preparation:

Prepared By: DS

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
DRO	264	mg/Kg	1	250	<22.3	106	35.1 - 161

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	259	m mg/Kg	1	250	<22.3	104	35.1 - 161	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	\mathbf{Limit}
n-Triacontane	170	165	mg/Kg	1	150	113	110	33.3 - 164

Matrix Spike (MS-1)

Spiked Sample: 123492

QC Batch: Prep Batch: 32245

37168

Date Analyzed:

2007-05-11 QC Preparation: 2007-05-11

Analyzed By: ER

Prepared By: ER

		MS			Spike	Matrix		Rec.
Param		Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}
Chloride	1	430	mg/Kg	50	625	242.786	30	75.6 - 117

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	2	370	mg/Kg	50	625	242.786	20	75.6 - 117	15	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1)

Spiked Sample: 123493

QC Batch:

37208

2007-05-14

Analyzed By: ER

Prep Batch: 32270

Date Analyzed: QC Preparation:

2007-05-14

Prepared By: ER

		MS			Spike	Matrix		Rec.
Param		Result	$_$ Units	Dil.	Amount	Result	Rec.	$_{ m Limit}$
Chloride	3	535	mg/Kg	50	625	253.611	45	75.6 - 117

¹Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

²Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

³Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

State L #2

Work Order: 7050718

State L #2

Page Number: 20 of 22

Buckeye,NM

matrix spikes continued . . . MSD RPD Spike Matrix Rec. RPD Result Units Dil Limit Limit Param Amount Result Rec. MSD Rec. RPD Spike Matrix Result Dil. RPD Param Units Result Limit Limit Amount Rec. Chloride 539 mg/Kg 50 253.611 75.6 - 117 20 62546

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1)

Spiked Sample: 123498

QC Batch:

37210

Date Analyzed:

2007-05-15

Analyzed By: ER

Prep Batch: 32272

QC Preparation: 2007-05-14

Prepared By: ER

		MS			Spike	Matrix		Rec.
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	5	266	${ m mg/Kg}$	5	62.5	117.066	238	75.6 - 117

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	Ü	248	mg/Kg	5	62.5	117.066	209	75.6 - 117	7	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Standard (ICV-1)

QC Batch: 37038

Date Analyzed: 2007-05-07

Analyzed By: MT

Param	Flag	Units	ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene		mg/Kg	0.100	0.0897	90	85 - 115	2007-05-07
Toluene		${ m mg/Kg}$	0.100	0.0905	90	85 - 115	2007-05-07
Ethylbenzene		${ m mg/Kg}$	0.100	0.0869	87	85 - 115	2007-05-07
Xylene		${ m mg/Kg}$	0.300	0.259	86	85 - 115	2007-05-07

Standard (CCV-1)

QC Batch: 37038

Date Analyzed: 2007-05-07

Analyzed By: MT

			$rac{ ext{CCVs}}{ ext{True}}$	${ m CCVs}$ Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		m mg/Kg	0.100	0.0893	89	85 - 115	2007-05-07
Toluene		$_{ m mg/Kg}$	0.100	0.0876	88	85 - 115	2007-05-07
Ethylbenzene		${ m mg/Kg}$	0.100	0.0854	85	85 - 115	2007-05-07
Xylene		mg/Kg	0.300	0.256	85	85 - 115	2007-05-07

⁴Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

⁵Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control. ⁶Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

State L #2

Work Order: 7050718

State L #2

Page Number: 21 of 22 Buckeye,NM

Standard (ICV-1)

QC Batch: 37039

Date Analyzed: 2007-05-07

Analyzed By: MT

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		${ m mg/Kg}$	1.00	0.926	92	85 - 115	2007-05-07

Standard (CCV-1)

QC Batch: 37039

Date Analyzed: 2007-05-07

Analyzed By: MT

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		m mg/Kg	1.00	0.937	94	85 - 115	2007-05-07

Standard (ICV-1)

QC Batch: 37046

Date Analyzed: 2007-05-07

Analyzed By: DS

			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	254	102	85 - 115	2007-05-07

Standard (CCV-1)

QC Batch: 37046

Date Analyzed: 2007-05-07

Analyzed By: DS

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	260	104	85 - 115	2007-05-07

Standard (CCV-2)

QC Batch: 37046

Date Analyzed: 2007-05-07

Analyzed By: DS

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		m mg/Kg	250	280	112	85 - 115	2007-05-07

Standard (ICV-1)

QC Batch: 37168

Date Analyzed: 2007-05-11

Analyzed By: ER.

State L #2

Work Order: 7050718

State L #2

Page Number: 22 of 22 Buckeye,NM

		·	···				
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	12.5	12.2	98	90 - 110	2007-05-11
Standard ((CCV-1)						
	` '		Dota Amal	d. 2007.05	11	Anul	wand Dem E'D
QC Batch:	3/108		Date Anal		-11	Allai	yzed By: ER
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	12.5	12.2	98	90 - 110	2007-05-11
Standard ((ICV-1)				,		
QC Batch:			Date Ana	lyzed: 12007-05	5-14	Anal	yzed By: ER
•						D	
			ICVs True	ICVs	ICVs	Percent	TO 4.
D	170	T1:4		Found	Percent	Recovery	Date
Param Chloride	Flag	$\frac{\text{Units}}{\text{mg/Kg}}$	Conc. 12.5	Conc. 12.4	Recovery 99	Limits 90 - 110	Analyzed 2007-05-14
		<u> </u>					
Standard ((CCV-1)						
QC Batch:	37208		Date Ana	lyzed: 2007-03	5-14	Anal	yzed By: ER
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	12.5	12.3	98	90 - 110	2007-05-14
Standard ((ICV-1)						
	Batch: 37210 Date Analyzed: 2007-05-15		5-15	Analyzed By: ER			
QC Batch:	37210		Date Ana	ιν zeu. 2007-υι	, 10		
QC Batch:	37210		ICVs	ICVs	ICVs	Percent	, and the second
QC Batch:	37210		ICVs	ICVs	ICVs	Percent	Date
QC Batch:	37210 Flag	Units		•			, ,
		Units mg/Kg	ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param Chloride	Flag		ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Param	Flag (CCV-1)		ICVs True Conc.	ICVs Found Conc. 12.3	ICVs Percent Recovery 98	Percent Recovery Limits 90 - 110	Date Analyzed
Param Chloride Standard	Flag (CCV-1)		ICVs True Conc. 12.5 Date Ana	ICVs Found Conc. 12.3	ICVs Percent Recovery 98	Percent Recovery Limits 90 - 110	Date Analyzed 2007-05-15
Param Chloride Standard	Flag (CCV-1)		ICVs True Conc. 12.5 Date Ana	ICVs Found Conc. 12.3	ICVs Percent Recovery 98	Percent Recovery Limits 90 - 110 Anal	Date Analyzed 2007-05-15 lyzed By: ER
Param Chloride Standard	Flag (CCV-1)		ICVs True Conc. 12.5 Date Ana	ICVs Found Conc. 12.3	ICVs Percent Recovery 98	Percent Recovery Limits 90 - 110	Date Analyzed 2007-05-15

PIGH breams mort frereitib it emit brown mul-CHAIN-OF-CUSTODY AND ANALYSIS REQUES Circle or Specify Method No.) Dry Weight Basis Required Check II Special Reporting Limits Are Reeded 2 \geq TRRP Report Required Moisture Content ANALYSIS REQUEST 70507 Hq., SST, 008 808 \ A1808 asboite99 508 \ \$606 a\BOR GC/MS Sein! Vol. 8270C / 625 REMARKS: GOIMS AND SSECRI EST RCI LAB Order ID # TCLP Pesticides TCLP Semi Volatiles TCLP Volatiles TCLP Metals Ag As Ba Cd Cr Pb Se Hg LAB USE Tales Metals Ag As 8a Cd Cr Pb Se Hg 50108/2007 Ldg-in-Review PAH 6270C / 625 ▼ \ OAO \ ORÐ ≥108 H9T TPH 418.1 / TX1005 / TX1005 E.4(C35) 神」をひらい +Z\$ / 809Z\$ / Z09 / 81Z08 MTBE 8:00 802 8:04 \$ 50 \$ 50 \$ 50 3.019:13 -3019:14 9:17 3.079.26 3850 765 SAMPLING 15% MeCoutbeon Suite H B Paso, Resas 79032 Ter (1515) 585-343 Fax (915) 585-343 1 (888) 588-343 TIME Balt 397039 3.07 307 3.07 307 307 **STAC** PRESERVATIVE MONE Submitted semples nonathines agreement to fears and Conditions listed on reverse side of C. O. C. JOE 7 METHOD 505 Sampler Signature: HOPN 50 *05°H Project Name: HMO FaceAnalysis, Inc HCI **30007**S MATRIX 五本人 TIOS **HETAW** Received by Received by 402 405 S 0 102 8 22 છ S Inuotify \ amuloV 5 # CONTAINERS 00% Bucker 11 003986 003874 01010 582 @ 20 # 003898 Qooh ao # 003901 582@ 39"# 00351Y # 00 400 B #0000H \$603998 5.307 FIELD CODE # 4 Project Location (Including stato): Street Clly, Zip) Date; Date: = 6771 Alcupaec Assertes (Br. 9) 1 abbook, Texas 7942,4 74 (205) 754 - 1295 Fox (906) 754 - 1295 1 (900) 378 - 1298 9mail, lab@dacamalysis.com 40/83/ap 582@5 (If different from above) SB3@ SB3@ 5B3@ 5836 5B3@ Relinguished by: Relinquistred by: Polinquished by Company Mame Confact Person: 133489 E AR USE) 26 97 8 Address Project #: LABA

OPIGINAL COPY

. 20

Hold Disposal from Merent from standard CHAIN-OF-CUSTODY AND ANALYSIS REQUE or Specify Method No. Dry Weight Basis Required Check If Special Reporting Limits Are Needed 2 70507/ Moisture Content **ANALYSIS REQUEST** Hq ,SST ,GOB 809 \ A1808 asbibites9 BCB,2 8085 \ 608 GC/MS Semi. Vol. 8270C / 625 REMARKS **CC/W2 ∧PF 9560B \ 654** RCI LAB Order ID# TCLP Pesticides TCLP Semi Volatiles Circle TCLP Votatiles LCLP Metals Ag As Ba Cd Cr Pb Se Hg LAB USE Toos/80108 pH eS dq to bo se hg 60108/2007 XINO. MACH 8510C / 625 ż TPH 8015 GRO / DRO / V [PH 418.1 / TX1005 / TX1005 Ext(C35) Cariler # ### / @## / @## / B1Z09 X318 2 8051B / 805 / 8580B / 854 38TM 8:00 6.02 $\frac{\mathcal{S}}{\mathcal{D}}$ 8 8 5,5 -3.02/9:13 3019-14 3-07 9:26 3850 X68 155 McCutcheon, Suite H El Paso, Texas, 79932. Tel (1915) 585-3443. Fax (915) 585-3443. I (888) 588-3443. SAMPLING **HIME** 0 Rad 397039 5.307 3.07 3.07 2.07 5.307 3.07 **DATE** State PRESERVATIVE NONE Submittal of samples constitutes agreement to Name and Conditions listed on reverse side of C. O. C. Z ICE METHOD 505 Sampler Signature: HOEN Project Name: 505 YOS[®]H ORIGINAL COPY TraceAnalysis, Inc. ¹ONH Phone # HCI Fax#: **⊇**oan18 MATRIX ЯIA PIOS **ABIAW** Received by: Received by 707 70 h 1405 4,02 8 \mathcal{C} ઇ InuomA \ smuloV # CONTAINERS 48200 986500 Time: SB2@20#003898 010 h00 106500 Q00 h00 h15800# 166800# £10hoo# # 00400B 5.307 FIELD CODE Project Location (including state): # Date: Date: Date: 7 email lab@traceanalysis.com 582@5 8 6701 Aberdeen Avenue, Sle Lubbock, Texas 79424 Tel (805) 794-1296 Fax (806) 794-1298 1 (800) 378-1296 If different from above) 5830 SB3@ 5836 SB3@ SB3@ à Relinquished by Refinquished by Company Name: Contact Person Refinquished 23489 LAB USE) 4 0 0 2 3 93 Invoice to Ó Project #: LAB # Address

1 6 a

Code . . .

Work Order: 7050716 State L #2

Page Number: 1 of 1 Buckeye,NM

Summary Report

Cliff Brunson **BBC** International 1324 W. Marland Hobbs, NM, 88240

Report Date: May 15, 2007

Work Order: 7050716

Project Location: Buckeye,NM

Project Name:

State L #2

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
123483	Temporury MW (SB1)	water	2007-05-03	10:44	2007-05-05

		F	BTEX	MTBE	TPH DRO	TPH GRO	
	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	DRO	GRO
Sample - Field Code	(mg/L)	(mg/L)	(ing/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
123483 - Temporury MW (SB1)	0.126	0.00930	0.0575	0.0891		< 5.00	0.968

Sample: 123483 - Temporury MW (SB1)

Param	Flag	Result	Units	RL
Chloride		601	mg/L	0.500

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 6015 Harris Parkway, Suite 110 Ft. Worth, Texas 76132

Lubbock, Texas 79424 El Paso, Texas 79922 Midland, Texas 79703

800 • 378 • 1296 888 • 588 • 3443

915 • 585 • 3443 432 • 689 • 6301 FAX 806 • 794 • 1298 FAX 915 • 585 • 4944 FAX 432 • 689 • 6313

817 • 201 • 5260

806 • 794 • 1296

E-Mail: lab@traceanalysis.com

Analytical and Quality Control Report

Cliff Brunson **BBC** International 1324 W. Marland Hobbs, NM, 88240

Report Date: May 15, 2007

Work Order: 7050716

Project Location: Buckeye, NM Project Name: State L #2 Project Number: State L #2

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Dave	111110	Date
Sample	Description	Matrix	Taken	Taken	Received
123483	Temporury MW (SB1)	water	2007-05-03	10:44	2007-05-05

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 9 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

Standard Flags

B - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project State L #2 were received by TraceAnalysis, Inc. on 2007-05-05 and assigned to work order 7050716. Samples for work order 7050716 were received intact without headspace and at a temperature of 4 C.

Samples were analyzed for the following tests using their respective methods.

Test	Method
BTEX	S 8021B
Chloride (IC)	E 300.0
TPH DRO	Mod. 8015B
TPH GRO	S 8015B

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 7050716 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

State L #2

Work Order: 7050716 State L #2

Page Number: 3 of 9 Buckeye,NM

Analytical Report

Sample: 123483 - Temporury MW (SB1)

Analysis: QC Batch:

Prep Batch: 32241

BTEX 37170

Analytical Method: Date Analyzed:

S 8021B 2007-05-11

Sample Preparation: 2007-05-11

Prep Method: S 5030B Analyzed By:

MTPrepared By: KB

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		0.126	mg/L	õ	0.00100
Toluene		0.00930	mg/L	5	0.00100
Ethylbenzene		0.0575	mg/L	5	0.00100
Xvlene		0.0891	mg/L	5	0.00100

					$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
Trifluorotoluene (TFT)		0.469	mg/L	5	0.500	94	80.4 - 120
4-Bromofluorobenzene (4-BFB)		0.371	mg/L	5	0.500	74	72.3 - 116

Sample: 123483 - Temporury MW (SB1)

Analysis: QC Batch:

Chloride (IC) 37142 Prep Batch: 32212

Analytical Method: Date Analyzed:

E 300.0 2007-05-10 Sample Preparation: 2007-05-10 Prep Method: N/A Analyzed By: Prepared By: ER

RL

Parameter	Flag	Result	Units	Dilution	RL
Chloride		601	mg/L	50	0.500

Sample: 123483 - Temporury MW (SB1)

Analysis: QC Batch: Prep Batch:

DRO

TPH DRO 37077 32163

Analytical Method: Date Analyzed:

Sample Preparation:

Mod. 8015B 2007-05-08 2007-05-08

Prep Method: N/A Analyzed By: DS Prepared By: TG

Parameter Flag

RLResult Units Dilution RL< 5.00 5.00 mg/L

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		16.1	mg/L	1	15.0	107	40.7 - 174

Sample: 123483 - Temporury MW (SB1)

Analysis:

TPH GRO

Analytical Method: Date Analyzed:

S 8015B 2007-05-14 Prep Method: S 5030B Analyzed By:

QC Batch: 37196 Prep Batch: 32261

Sample Preparation: 2007-05-14

Prepared By: KB

Method Blank (1)

QC Batch: 37170

State L #2

Work Order: 7050716

State L #2

Page Number: 4 of 9 Buckeye,NM

RLDilution Units RLParameter Flag Result GRO 0.968 mg/L 5 0.100 Spike Percent Recovery Units Dilution Surrogate Flag Result Amount Recovery Limits Trifluorotoluene (TFT) 0.390 mg/L 5 0.500 78 69 - 130 1 4-Bromofluorobenzene (4-BFB) 5 0.50063 67 - 115 0.315mg/LMethod Blank (1) QC Batch: 37077 Analyzed By: DS QC Batch: 37077 Date Analyzed: 2007-05-08 32163 2007-05-08 Prepared By: DS Prep Batch: QC Preparation: MDLFlag Parameter Result Units RLDRO <1.06 mg/L

						- 07	
Cumanata	Flag	Popult	Timita	Dilution	Spike	Percent Recovery	Recovery Limits
Surrogate	Flag	Result	\mathbf{Units}	Dilution	Amount	Recovery	Limits
n-Triacontane		16.6	mg/L	1	15.0	111	40.7 - 174

	r					
Method Blank (1)	QC Batch: 37142	•				
QC Batch: 37142 Prep Batch: 32212		Date Analyzed: QC Preparation:	2007-05-10		Analyzed By: Prepared By:	
Frep Batch. 52212		QC Freparation.	2007-03-10		r repared by.	Ŀĸ
		N	IDL			
Parameter	Flag	Re	esult	Units		RL
Chloride		<0	.172	mg/L		0.5

QC Batch: Prep Batch:	37170 32241		Date Analyzed: QC Preparation:	2007-05-11 2007-05-11		Analyzed By: Prepared By:	
				MDL			
Parameter		Flag		Result	Units		RL
Benzene			<0.0	000595	mg/L		0.001
Toluene			< 0.0	000327	mg/L		0.001
Ethylbenzene	е		< 0.0	000377	mg/L		0.001
Xylene			< 0.0	000366	mg/L		0.001

					$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.0973	mg/L	1	0.100	97	79.5 - 117
4-Bromofluorobenzene (4-BFB)		0.0771	mg/L	1	0.100	77	67.7 - 110

¹Surrogate BFB out due to matrix interference. Sample was reran on 5/14/2007 to confirm matrix interference results.

State L #2

Work Order: 7050716

State L #2

Page Number: 5 of 9 Buckeye,NM

Method Blank (1)

QC Batch: 37196

QC Batch: 37196 Prep Batch: 32261

Date Analyzed: QC Preparation: 2007-05-14

2007-05-14

Analyzed By: KB

Prepared By: KB

MDL

RLUnits Parameter Flag Result 0.1 < 0.0353 mg/L GRO

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.0978	mg/L	1	0.100	98	78.2 - 123
4-Bromofluorobenzene (4-BFB)		0.0744	mg/L	1	0.100	74	62.1 - 112

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 32163

37077

Date Analyzed: QC Preparation:

2007-05-08 2007-05-08 Analyzed By: DS

Prepared By: DS

LCS Matrix Spike Rec. Dil. Result Rec. Limit Param Result Units Amount <1.06 95 56.9 - 128 DRO 23.8 mg/L 25.0

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil. 🦠	Amount	Result	Rec.	Limit	RPD	Limit
DRO	21.3	mg/L	1	25.0	<1.06	85	56.9 - 128	11	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	\mathbf{Limit}
n-Triacontane	14.5	13.2	mg/L	1	15.0	97	88	40.7 - 174

Laboratory Control Spike (LCS-1)

QC Batch:

37142

Prep Batch: 32212

Date Analyzed:

2007-05-10 QC Preparation: 2007-05-10

Analyzed By: ER Prepared By: ER

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	$_{ m Limit}$
Chloride	12.1	mg/L	1	12.5	< 0.172	97	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	$_{ m Limit}$
Chloride	12.2	mg/L	1	12.5	< 0.172	98	90 - 110	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

State L #2

Work Order: 7050716 State L #2

Page Number: 6 of 9 Buckeye,NM

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 32241

37170

Date Analyzed: QC Preparation: 2007-05-11

2007-05-11

Analyzed By: MT Prepared By: KB

Th.	LCS	T T 10	יים דיים	Spike	Matrix	T)	Rec.
Param	Result	\mathbf{Units}	Dil .	Amount	Result	Rec.	Limit
Benzene	0.0993	mg/L	1	0.100	< 0.000595	99	74 - 115
Toluene	0.0995	mg/L	1	0.100	< 0.000327	100	78.7 - 109
Ethylbenzene	0.0982	mg/L	1	0.100	< 0.000377	98	78.7 - 113
Xylene	0.293	mg/L	1	0.300	< 0.000366	98	76 - 111

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	0.101	mg/L	1	0.100	< 0.000595	101	74 - 115	2	20
Toluene	0.100	mg/L	1	0.100	< 0.000327	100	78.7 - 109	1	20
Ethylbenzene	0.0988	mg/L	1	0.100	< 0.000377	99	78.7 - 113	1	20
Xylene	0.295	mg/L	1	0.300	< 0.000366	98	76 - 111	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.0957	0.0941	mg/L	1	0.100	96	94	82.2 - 113
4-Bromofluorobenzene (4-BFB)	0.0903	0.0900	mg/L	1	0.100	90	9 0	79.6 - 119

Laboratory Control Spike (LCS-1)

QC Batch:

37196 Prep Batch: 32261

Date Analyzed: QC Preparation: 2007-05-14

2007-05-14

Analyzed By: KB Prepared By: KB

	LCS		•	Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	0.886	mg/L	1	1.00	< 0.0353	89	75.6 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	0.936	mg/L	1	1.00	< 0.0353	94	75.6 - 115	6	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.0976	0.0998	mg/L	1	0.100	98	100	74.7 - 119
4-Bromofluorobenzene (4-BFB)	0.0891	0.0930	mg/L	1	0.100	89	93	82 - 112

Matrix Spike (MS-1) Spiked Sample: 123483

QC Batch:

Prep Batch: 32163

37077

Date Analyzed:

2007-05-08

QC Preparation: 2007-05-08

Analyzed By: DS

Prepared By: DS

State L #2

Work Order: 7050716

State L #2

Page Number: 7 of 9 Buckeye,NM

Param	MS Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit
DRO	21.4	mg/L	1	25.0	<1.06	86	61.9 - 112.2

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	23.4	mg/L	1	25.0	<1.06	94	61.9 - 112.2	9	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD		,	Spike	MS	MSD	Rec.
Surrogate	Result	Result	$_{ m Units}$	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	17.4	14.8	mg/L	1	15	116	99	40.7 - 174

Matrix Spike (MS-1)

Spiked Sample: 123590

QC Batch: 37142 Prep Batch: 32212 Date Analyzed: 2007-05-10 QC Preparation: 2007-05-10

Analyzed By: ER Prepared By: ER

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	24.4	mg/L	1	12.5	10.3625	112	10 - 188

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	24.0	mg/L	1	12.5	10.3625	109	10 - 188	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Standard (ICV-1)

QC Batch: 37077

Date Analyzed: 2007-05-08

Analyzed By: DS

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/L	250	216	86	85 - 115	2007-05-08

Standard (CCV-1)

QC Batch: 37077

Date Analyzed: 2007-05-08

Analyzed By: DS

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/L	250	215	86	85 - 115	2007-05-08

Standard (ICV-1)

QC Batch: 37142

Date Analyzed: 2007-05-10

Analyzed By: ER

State L #2

Work Order: 7050716

State L #2

Page Number: 8 of 9 Buckeye,NM

			$rac{ ext{ICVs}}{ ext{True}}$	ICVs Found	ICVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.5	12.0	96	90 - 110	2007-05-10

Standard (CCV-1)

QC Batch: 37142

Date Analyzed: 2007-05-10

Analyzed By: ER

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/L	12.5	12.2	98	90 - 110	2007-05-10

Standard (ICV-1)

QC Batch: 37170

Date Analyzed: 2007-05-11

Analyzed By: MT

Param	Flag	Units	ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene		mg/L	0.100	0.0974	97	85 - 115	2007-05-11
Toluene		mg/L	0.100	0.0988	99	85 - 115	2007-05-11
Ethylbenzene		mg/L	0.100	0.0978	98	85 - 115	2007-05-11
Xylene		mg/L	0.300	0.296	99	85 - 115	2007-05-11

Standard (CCV-1)

QC Batch: 37170

Date Analyzed: 2007-05-11

Analyzed By: MT

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene	Triag	mg/L	0.100	0.0975	98	85 - 115	2007-05-11
Toluene		$_{ m mg/L}$	0.100	0.0962	96	85 - 115	2007-05-11
Ethylbenzene		mg/L	0.100	0.0943	94	85 - 115	2007-05-11
Xylene		mg/L	0.300	0.281	94	85 - 115	2007-05-11

Standard (ICV-1)

QC Batch: 37196

Date Analyzed: 2007-05-14

Analyzed By: KB

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/L	1.00	0.917	92	85 - 115	2007-05-14

Standard (CCV-1)

QC Batch: 37196

Date Analyzed: 2007-05-14

Analyzed By: KB

State L #2

Work Order: 7050716

State L #2

Page Number: 9 of 9 Buckeye,NM

			CCVs	CCVs	CCVs	Percent	Date
т.		**	True	Found	Percent	Recovery	
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		${ m mg/L}$	1.00	0.874	87	85 - 115	2007-05-14

PIOH breanets most therethin it emit bround mult CHAIN-OF-CUSTODY AND ANALYSIS REQUES or Specify Method No. Dry Weight Basis Required Check If Special Reporting Limits Are Needed TRRP Report Required ANALYSIS REQUEST Moisture Content 10507 Hq ,22T ,008 808 | A1808 abbbase9 SCB,2 9095 \ 609 GC/MS Semi. Vol. 8270C / 525 REMARKS GC/M2 API 9380B \ 834 BCI LAB Order ID # TCLP Pesticides TCLP Semi Volatiles Circle TCLP Volatiles TCLP Metals Ag As 3s Cd Cr Pb Se Hg LAB USE TUDGS/ROPOB gH && dq 10 to se eA gA siateM istol PAH 8270C / 625 Log-in-Review PER 3015 GRO / ORO PROFILE TPH 418.1 / TX 1005 / TX 1005 EXXC35) Cather # Temp 815X 80239 / 823 / 8238 X518 #29 / 80928 / 209 / 81208 BSTM SAMPLING BMIL 155 Nocutoleem Suge 31 E) Pago, Texas 70932 Tel 1915) 595-3443 Fax (915) 585-4944 1 (888) 589-343 39×6599 397 0397 3TA0 Time: PRESERVATIVE BNON METHOD 7 ICE 7 Ö Sampler Signatura-HORN 505 (505) Terms and Conditions listed on reverse side of C. Date: *08*H Project Name: OPIGINAL COPY HMO3 TRUCARRIVSIS, INC. HC! 200078 MATRIX Ait ROIF RETAW Received by: Received by Ž, muomA / amuio// BBC International # CONTAINERS Q Sinkey Submitted of samples constitutes agreement to Jenporary Mil 351, 6 FIELD CODE Project Location (Including state): Date: E701 Abgedrang Angurung Sta. 3 1 Juberti, Theran 79424 1 Mathef 784-1298 Fax (800) 378-1298 1 (800) 378-1298 ampil, labigh aceanalysis gon lenposan et (If different from above) hy: Relinquished by: Company Mame: Contact Person: Relinquished 23483 AB USE) mygice in: LABA

4.

A. 6. 70 .

Page Number: 1 of 3 Buckeye,NM

Summary Report

Cliff Brunson **BBC** International 1324 W. Marland Hobbs, NM, 88240

Report Date: June 19, 2007

Work Order: 7052525

Project Location: Buckeye,NM Project Name:

State L #2

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
125541	SB4 @ 1'	soil	2007-05-21	13:00	2007-05-25
125542	SB4 @ 3'	soil	2007-05-21	13:02	2007-05-25
125543	SB4 @ 5'	soil	2007-05-21	13:08	2007-05-25
125544	SB4 @ 20'	soil	2007-05-21	13:34	2007-05-25
125545	SB4 @ 35'	soil	2007-05-21	14:06	2007-05-25
125546	SB5 @ 1'	soil	2007-05-21	14:50	2007-05-25
125547	SB5 @ 3'	soil	2007-05-21	14:53	2007-05-25
125548	SB5 @ 5'	soil	2007-05-21	14.55	2007-05-25
125549	SB5 @ 10'	soil	2007-05-21	15:00	2007-05-25
125550	SB5 @ 20'	soil	2007-05-21	15:16	2007-05-25
125551	SB6 @ 1'	soil	2007-05-21	15:43	2007-05-25
125552	SB6 @ 3'	soil	2007-05-21	15:44	2007-05-25
125553	SB6 @ 5'	soil	2007-05-21	15:46	2007-05-25
125554	SB6 @ 15'	soil	2007-05-21	16:08	2007-05-25
125555	SB6 @ 25'	soil	2007-05-21	16:30	2007-05-25

		BTEX				TPH DRO	TPH GRO
	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
125541 - SB4 @ 1'	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	<1.00
125542 - SB4 @ 3'	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	<1.00
125543 - SB4 @ 5'	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	<1.00
125544 - SB4 @ 20'	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	<1.00
125545 - SB4 @ 35'	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	<1.00
125546 - SB5 @ 1'	4.70	21.3	13.3	42.9		9530	1700
125547 - SB5 @ 3'	1.03	4.58	4.65	13.4		1150	868
125548 - SB5 @ 5'	< 0.0100	0.0124	0.0214	0.148		< 50.0	17.0
125549 - SB5 @ 10'	< 0.0100	< 0.0100	0.0250	0.118		66.1	17.7
125550 - SB5 @ 20'	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	3.12
125551 - SB6 @ 1'	< 0.200	< 0.200	1.70	3.29		241	216
125552 - SB6 @ 3'	< 0.200	0.761	1.43	3.37		116	224
125553 - SB6 @ 5'	< 0.0100	< 0.0100	< 0.0100	0.0345		< 50.0	6.92
125554 - SB6 @ 15'	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	<1.00
125555 - SB6 @ 25'	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	<1.00

Sample: 125541 - SB4 @ 1'

Report Date: June	19, 2007	Work Order: 7052525 State L #2	Page :	Number: 2 of 3 Buckeye,NM
Param	Flag	Result	Units	RL
Chloride		5040	mg/Kg	1.00
Sample: 125542	- SB4 @ 3'			
Param	Flag	Result	Units	RL
Chloride		1830	mg/Kg	1.00
Sample: 125543	- SB4 @ 5'			
Param	Flag	Result	Units	RL
Chloride		3970	mg/Kg	1.00
Sample: 125544	- SB4 @ 20'			
Param	Flag	Result	Units	RL
Chloride		386	mg/Kg	1.00
Sample: 125545	- SB4 @ 35'			
Param	Flag	Result	Units	RL
Chloride		342	mg/Kg	1.00
Sample: 125546	- SB5 @ 1'			
Param	Flag	Result	Units	RL
Chloride		2320	mg/Kg	1.00
Sample: 125547	- SB5 @ 3'			
Param	Flag	Result	Units	RL
Chloride		1920	mg/Kg	1.00
Sample: 125548	- SB5 @ 5'	,		
Param	Flag	Result	Units	RL
Chloride	0	2180	mg/Kg	1.00
Sample: 125549	- SB5 @ 10'			
Param	Flag	Result	Units	RL
Chloride		833	mg/Kg	1.00

Report Date: June 19, 2007		Work Order: 7052525 State L #2		Page Number: 3 of 3 Buckeye,NM	
Sample: 125550 -	SB5 @ 20'				
Param	Flag	Result	Units	RL	
Chloride		152.	mg/Kg	1.00	
Sample: 125551 -	SB6 @ 1'			•	
Param	Flag	Result	Units	RL	
Chloride		1680	mg/Kg	1.00	
Sample: 125552 -	SB6 @ 3'				
Param	Flag	Result	Units	RL	
Chloride		1230	m mg/Kg	1.00	
Sample: 125553 -	SB6 @ 5'				
Param	Flag	Result	Units	RL	
Chloride		317	mg/Kg	1.00	
Sample: 125554 -	SB6 @ 15'				
Param	Flag	Result	Units	RL	
Chloride		1270	mg/Kg	1.00	
Sample: 125555 -	SB6 @ 25'				
Param	Flag	Result	Units	RL	
Chloride		125	mg/Kg	1.00	

800 • 378 • 1296

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 6015 Harris Parkway, Suite 110 Ft. Worth, Texas 76132

Lubbock, Texas 79424 El Paso, Texas 79922 Midland, Texas 79703

888 • 588 • 3443

915 • 585 • 3443 432 • 689 • 6301

FAX 806 • 794 • 1298 FAX 915 • 585 • 4944 FAX 432 • 689 • 6313

817 • 201 • 5260

806 • 794 • 1296

E-Mail: lab@traceanalysis.com

Analytical and Quality Control Report

Cliff Brunson **BBC** International 1324 W. Marland Hobbs, NM, 88240

Report Date: June 19, 2007

Work Order: 7052525

Project Location: Project Name: Project Number:

Buckeye,NM State L #2 State L #2

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

	•		Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
125541	SB4 @ 1'	soil	2007-05-21	13:00	2007-05-25
125542	SB4 @ 3'	soil	2007-05-21	13:02	2007-05-25
125543	SB4 @ 5'	soil	2007-05-21	13:08	2007-05-25
125544	SB4 @ 20'	soil	2007-05-21	13:34	2007-05-25
125545	SB4 @ 35'	soil	2007-05-21	14:06	2007-05-25
125546	SB5 @ 1'	soil	2007-05-21	14:50	2007-05-25
125547	SB5 @ 3'	soil	2007-05-21	14:53	2007-05-25
125548	SB5 @ 5'	soil	2007-05-21	14:55	2007-05-25
125549	SB5 @ 10'	soil	2007-05-21	15:00	2007-05-25
125550	SB5 @ 20'	soil	2007-05-21	15:16	2007-05-25
125551	SB6 @ 1'	soil	2007-05-21	15:43	2007-05-25
125552	SB6 @ 3'	soil	2007-05-21	15:44	2007-05-25
125553	SB6 @ 5'	soil	2007-05-21	15:46	2007-05-25
125554	SB6 @ 15'	soil	2007-05-21	16:08	2007-05-25
125555	SB6 @ 25'	soil	2007-05-21	16:30	2007-05-25

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 36 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

Standard Flags

 $\, B \,$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project State L #2 were received by TraceAnalysis, Inc. on 2007-05-25 and assigned to work order 7052525. Samples for work order 7052525 were received intact at a temperature of 4 C.

Samples were analyzed for the following tests using their respective methods.

Test	Method
BTEX	S 8021B
Chloride (IC)	E 300.0
TPH DRO	Mod. 8015B
TPH GRO	S 8015B

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 7052525 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

State L #2

Work Order: 7052525 State L #2 Page Number: 3 of 36 Buckeye.NM

Analytical Report

Sample: 125541 - SB4 @ 1'

Analysis: BTEX QC Batch: 37541 Prep Batch: 32545 Analytical Method: S 8021B
Date Analyzed: 2007-05-25
Sample Preparation: 2007-05-25

Prep Method: S 5035 Analyzed By: MT Prepared By: MT

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	m mg/Kg	1	0.0100
Ethylbenzene		< 0.0100	m mg/Kg	1	0.0100
Xylene		< 0.0100	mg/Kg	1	0.0100

					Spike	$\mathbf{Percent}$	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.934	mg/Kg	1	1.00	93	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.944	m mg/Kg	1	1.00	94	48.7 - 146

Sample: 125541 - SB4 @ 1'

Analysis: Chloride (IC) QC Batch: 38249 Prep Batch: 33114 Analytical Method: E 300.0
Date Analyzed: 2007-06-15
Sample Preparation: 2007-06-15

Prep Method: N/A
Analyzed By: ER
Prepared By: ER

		m RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		5040	mg/Kg	500	1.00

Sample: 125541 - SB4 @ 1'

Analysis: TPH DRO QC Batch: 37552 Prep Batch: 32551 Analytical Method: Mod. 8015B Date Analyzed: 2007-05-26 Sample Preparation: 2007-05-25

Prep Method: N/A
Analyzed By: TG
Prepared By: TG

		RL			
Parameter	Flag	Result	Units	Dilution	RL
DRO		<50.0	m mg/Kg	1	50.0

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		223	${ m mg/Kg}$	1	15 0	149	62.5 - 164

Sample: 125541 - SB4 @ 1'

Analysis: TPH GRO QC Batch: 37543 Prep Batch: 32545

Analytical Method: S 8015B
Date Analyzed: 2007-05-25
Sample Preparation: 2007-05-25

Prep Method: S 5035 Analyzed By: MT Prepared By: MT

State L #2

n-Triacontane

Work Order: 7052525

State L #2

Page Number: 4 of 36 Buckeye,NM

			-,					
			RL					
Parameter	Flag	5	Result		Units		Dilution	RI
GRO		<u></u>	<1.00		mg/Kg		1	1.00
						G :1	.	D
C		T21	D14	T1	D:14:	Spike	Percent	Recovery Limits
Surrogate	(MDM)	Flag	Result	Units	Dilution	Amount	Recovery	33.2 - 160
Trifluorotolu		\	0.949	mg/Kg	1	1.00	95	33.2 - 100 10 - 227
4-Bromonuo	robenzene (4-BFB))	1.01	mg/Kg	1	1.00	101	10 - 221
Sample: 12	25542 - SB4 @ 3	,						
Analysis:	BTEX	•	Analytical M	lethod: S	S 8021B		Prep Met	hod: S 5033
QC Batch:	37618		Date Analyz		2007-05-29		Analyzed	
Prep Batch:			Sample Prep		2007-05-29		Prepared	
r rep Baten.	52550				2007-00-23		rrepared	Dy. HD
Parameter	Fl:	ag	RL Result		Units	I	Dilution	RI
Benzene		<u> </u>	< 0.0100		mg/Kg		1	0.0100
Toluene			< 0.0100		mg/Kg		1	0.010
Ethylbenzen	e		< 0.0100		m mg/Kg		1	0.010
Xylene			< 0.0100		${ m mg/Kg}$		1	0.0100
						~		~
G.		773	D 1	TT	70.71	Spike	Percent	Recovery
Surrogate	(MDM)	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolu	iene (TFT) robenzene (4-BFB)	\	$0.802 \\ 0.673$	mg/Kg	1 1	1.00	80 67	52.1 - 13 48.7 - 146
4-Diomondo.	TOBERZERE (4-Br B)	0.075	mg/Kg	<u>_</u>	1.00		40.7 - 140
Sample: 12	25542 - SB4 @ 3	,						
Analysis:	Chloride (IC)		Analyti	al Method	: E 300.0		Prep M	lethod: N/A
QC Batch:	38249		Date Ar		2007-06-1	Š	Analyz	
Prep Batch:	33114			Preparatio			Prepare	
r cp zacci.	00111		Samino	1 10pm auto	11. 2007 00 1	,	I Topar	Ja 25, 1 - 220
			RL					
Parameter	Flag	r S	Result		Units		Dilution	RI
Chloride			1830		mg/Kg		100	1.0
Sample: 12	25542 - SB4 @ 3'	;						
•			A 1 1	N.E 1	Mr. 1 00177		7 0	ר וו הדו
Analysis:	TPH DRO		Analytical		Mod. 8015B		Prep M	
QC Batch:	37552		Date Anal		2007-05-26		Analyz	
Prep Batch:	32551		Sample Pi	reparation:	2007-05-25		Prepare	ed By: TG
_	_		RL					
Parameter	Flag	<u> </u>	Result		Units		Dilution	R.I
DRO			< 50.0		mg/Kg		1	50.0
						Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dil	ution A	mount	Recovery	Limits
n-Triacontar		222	mg/Kg		1	150	1/18	62.5. 16

222

mg/Kg

150

148

62.5 - 164

State L #2

Work Order: 7052525

State L #2

Page Number: 5 of 36 Buckeye,NM

Sample: 125542 - SB4 @ 3'

Analysis: QC Batch:

TPH GRO 37543 Prep Batch: 32545

Analytical Method: Date Analyzed:

S 8015B

2007-05-25 Sample Preparation: 2007-05-25 Prep Method: S 5035 Analyzed By: MT

Prepared By: MT

RL

Parameter	Flag	Result	Units	$\operatorname{Dilution}_{-}$	RL
GRO		<1.00	mg/Kg	1	1.00

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.516	mg/Kg	1	1.00	52	33.2 - 160
4-Bromofluorobenzene (4-BFB)		0.506	${ m mg/Kg}$	1	1.00	51	10 - 227

Sample: 125543 - SB4 @ 5'

Analysis: QC Batch:

BTEX 37541 Prep Batch: 32545

Analytical Method: Date Analyzed:

S 8021B 2007-05-25 Sample Preparation: 2007-05-25 Prep Method: S 5035 Analyzed By: MTPrepared By: MT

RI

		1(1)			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	m mg/Kg	1	0.0100
Ethylbenzene		< 0.0100	mg/Kg	1	0.0100
Xylene		< 0.0100	${ m mg/Kg}$	1	0.0100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)	1	1.50	mg/Kg	1	1.00	150	52.1 - 131
4-Bromofluorobenzene (4-BFB)		1.42	${ m mg/Kg}$	1	1.00	142	48.7 - 146

Sample: 125543 - SB4 @ 5'

Analysis: QC Batch:

Chloride (IC) 38249 Prep Batch: 33114

Analytical Method: Date Analyzed:

E 300.0 2007-06-15 Sample Preparation: 2007-06-15 Prep Method: N/A Analyzed By: ER

ER

Prepared By:

RL

Parameter	Flag	Result	Units	Dilution	RL
Chloride		3970	m mg/Kg	500	1.00

Sample: 125543 - SB4 @ 5'

Analysis: QC Batch:

Prep Batch: 32551

TPH DRO 37552

Analytical Method: Date Analyzed: Sample Preparation: 2007-05-25

Mod. 8015B 2007-05-26

Prep Method: N/A Analyzed By: TGPrepared By: TG

¹High surrogate recovery. Sample non-detect, result bias high.

State L #2

Work Order: 7052525 State L #2

Page Number: 6 of 36 Buckeye,NM

			RL				7 .11	27.2
Parameter	Flag		Result		Units		Dilution	RL 70.0
DRO			<50.0		mg/Kg		1	50.0
						Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilu	tion .	Amount	Recovery	Limits
n-Triacontane	8	213	mg/Kg	1		150	142	62.5 - 164
			37 - 6			-		
Sample: 12554	43 - SB4 @ 5'							•
	PH GRO		Analytical	Method:	S 8015B		Prep Met	
•	543		Date Anal	••	2007-05-25		Analyzed	
Prep Batch: 32	545		Sample Pr	eparation:	2007-05-25		Prepared	By: MT
			nr					
Parameter	Flag		RL Result		Units		Dilution	RL
GRO	Tiag		<1.00		mg/Kg		1	1.00
GILO			<1.00		mg/rrg	·	1	1.00
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene	(TFT)	0	1.38	mg/Kg	1	1.00	138	33.2 - 160
4-Bromofluorobe			1.41	mg/Kg	1	1.00	141	10 - 227
v			4 1 1				- 36	1 1 0 5005
•	ΓΕΧ 541 545		Analytical M Date Analyze Sample Prep	ed: 20	8021B 007-05-25 007-05-25		Prep Met Analyzed Prepared	By: MT
-	541		Date Analyze Sample Prep	ed: 20	007-05-25		Analyzed	By: MT
Prep Batch: 32	541 545	r	Date Analyze Sample Prep RL	ed: 20	007-05-25 007-05-25	Ī	Analyzed Prepared	By: MT By: MT
Prep Batch: 32 Parameter	541	5	Date Analyze Sample Prep RL Result	ed: 20 aration: 20	007-05-25 007-05-25 Units	I	Analyzed	By: MT By: MT
Prep Batch: 32	541 545	<u> </u>	Date Analyze Sample Prep RL	ed: 20 aration: 20	007-05-25 007-05-25 Units mg/Kg	I	Analyzed Prepared Dilution	By: MT By: MT
Prep Batch: 32 Parameter Benzene	541 545	5	Date Analyze Sample Prep RL Result <0.0100	ed: 20 aration: 20	007-05-25 007-05-25 Units	I	Analyzed Prepared Dilution	By: MT By: MT RL 0.0100
Prep Batch: 32 Parameter Benzene Toluene	541 545	5	Date Analyze Sample Prep RL Result <0.0100 <0.0100	ed: 20 aration: 20	007-05-25 007-05-25 Units mg/Kg mg/Kg	I	Analyzed Prepared Dilution 1 1	By: MT By: MT RL 0.0100 0.0100
Prep Batch: 32 Parameter Benzene Toluene Ethylbenzene	541 545	· ·	Date Analyze Sample Prep RL Result <0.0100 <0.0100 <0.0100	ed: 20 aration: 20	007-05-25 007-05-25 Units mg/Kg mg/Kg mg/Kg		Analyzed Prepared Dilution 1 1 1 1	By: MT By: MT RL 0.0100 0.0100 0.0100 0.0100
Prep Batch: 32 Parameter Benzene Toluene Ethylbenzene Xylene	541 545		Date Analyz Sample Prep RL Result <0.0100 <0.0100 <0.0100 <0.0100	ed: 20 aration: 20	007-05-25 007-05-25 Units mg/Kg mg/Kg mg/Kg mg/Kg	Spike	Analyzed Prepared Dilution 1 1 1 1 Percent	By: MT By: MT RL 0.0100 0.0100 0.0100 Recovery
Prep Batch: 32 Parameter Benzene Toluene Ethylbenzene Xylene Surrogate	541 545 Flag	Flag	Date Analyz Sample Prep RL Result <0.0100 <0.0100 <0.0100 Result	ed: 20 aration: 20 Units	Units mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Spike Amount	Analyzed Prepared Dilution 1 1 1 Percent Recovery	By: MT By: MT RL 0.0100 0.0100 0.0100 Recovery Limits
Prep Batch: 32 Parameter Benzene Toluene Ethylbenzene Xylene	541 545 Flag (TFT)		Date Analyz Sample Prep RL Result <0.0100 <0.0100 <0.0100 <0.0100	ed: 20 aration: 20	007-05-25 007-05-25 Units mg/Kg mg/Kg mg/Kg mg/Kg	Spike	Analyzed Prepared Dilution 1 1 1 1 Percent	By: MT By: MT RL 0.0100 0.0100 0.0100 Recovery
Prep Batch: 32 Parameter Benzene Toluene Ethylbenzene Xylene Surrogate Triffuorotoluene 4-Bromofluorobe Sample: 12554 Analysis: Cl QC Batch: 38	541 545 Flag (TFT) enzene (4-BFB)	Flag	Date Analyzz Sample Prep RL Result <0.0100 <0.0100 <0.0100 Result 0.863 0.801 Analytic Date An	ed: 20 aration: 20 Units mg/Kg mg/Kg mg/Kg	007-05-25 007-05-25 Units mg/Kg mg/Kg mg/Kg mg/Kg 1 Dilution 1 1	Spike Amount 1.00 1.00	Analyzed Prepared Dilution 1 1 1 Percent Recovery 86	By: MT By: MT RL 0.0100 0.0100 0.0100 Recovery Limits 52.1 - 131 48.7 - 146 Iethod: N/A ed By: ER
Prep Batch: 32 Parameter Benzene Toluene Ethylbenzene Xylene Surrogate Triffuorotoluene 4-Bromofluorobe Sample: 12554 Analysis: Cl QC Batch: 38	(TFT) enzene (4-BFB) 44 - SB4 @ 20' elloride (IC) 1249	Flag	Date Analyzz Sample Prep RL Result <0.0100 <0.0100 <0.0100 <0.0100 Result 0.863 0.801 Analytic Date An Sample	Units mg/Kg mg/Kg	007-05-25 007-05-25 Units mg/Kg mg/Kg mg/Kg mg/Kg 1 Dilution 1 1	Spike Amount 1.00 1.00	Analyzed Prepared Dilution 1 1 1 Percent Recovery 86 80 Prep M Analyze	By: MT By: MT RL 0.0100 0.0100 0.0100 Recovery Limits 52.1 - 131 48.7 - 146 Iethod: N/A ed By: ER

State L #2

Work Order: 7052525 State L #2

Page Number: 7 of 36 Buckeye,NM

Sample: 125544 - SB4 @ 20'

Analysis: QC Batch:

TPH DRO 37552 Prep Batch: 32551

Analytical Method: Date Analyzed:

Mod. 8015B 2007-05-26

Sample Preparation: 2007-05-25 Prep Method: N/A Analyzed By: TG Prepared By: TG

RL

Flag Result Units Dilution RLParameter 50.0 $\overline{\text{DRO}}$ < 50.0 mg/Kg

					$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		222	mg/Kg	1	150	148	62.5 - 164

Sample: 125544 - SB4 @ 20'

Analysis: QC Batch:

Prep Batch:

TPH GRO 37543 32545

Analytical Method: Date Analyzed:

Sample Preparation:

S 8015B 2007-05-25 2007-05-25 Prep Method: S 5035 Analyzed By: MT Prepared By: MT

RL

Result Dilution RLParameter Flag Units GRO 1.00 < 1.00 mg/Kg

				Spike	Percent	Recovery
Flag	Result	Units	Dilution	Amount	Recovery	Limits
	0.891	mg/Kg	1	1.00	89	33.2 - 160
	0.849	${ m mg/Kg}$	1	1.00	85	10 - 227
	Flag	0.891	0.891 mg/Kg	0.891 mg/Kg 1	0.891 mg/Kg 1 1.00	0.891 mg/Kg l 1.00 89

Sample: 125545 - SB4 @ 35'

Analysis: BTEX QC Batch: 37541 Prep Batch: 32545

Analytical Method: Date Analyzed: Sample Preparation:

S 8021B 2007-05-25 2007-05-25 Prep Method: S 5035 Analyzed By: MT Prepared By: MT

RLParameter Flag Result Units Dilution RLBenzene 0.0100 < 0.0100 mg/Kg 1 Toluene < 0.0100 mg/Kg 1 0.0100Ethylbenzene < 0.0100 mg/Kg 1 0.0100Xylene < 0.0100 mg/Kg 1 0.0100

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		0.815	mg/Kg	1	1.00	82	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.754	${ m mg/Kg}$	1	1.00	75	48.7 - 146

State L #2

Work Order: 7052525

State L #2

Page Number: 8 of 36 Buckeye,NM

Sample: 125545 - SB4 @ 357

Analysis: QC Batch:

Prep Batch:

38249 [`]33114

Analytical Method: Chloride (IC)

Date Analyzed:

E 300.0

2007-06-15

Sample Preparation: 2007-06-15 Prep Method: N/A ERAnalyzed By:

Prepared By: ER.

RL

RLParameter Flag Result Units Dilution Chloride 342 50 1.00 mg/Kg

Sample: 125545 - SB4 @ 35'

Analysis: QC Batch:

Prep Batch:

TPH DRO

37552 32551

Analytical Method: Date Analyzed:

Sample Preparation:

Mod. 8015B

2007-05-26 2007-05-25 Prep Method: N/A TGAnalyzed By:

Prepared By: TG

ъ

RL

Result RLParameter Flag Units Dilution DRO < 50.0 mg/Kg 50.0

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
n-Triacontane		218	${ m mg/Kg}$	1	150	145	62.5 - 164

Sample: 125545 - SB4 @ 35'

32545

Analysis: QC Batch:

Prep Batch:

TPH GRO 37543

Analytical Method: Date Analyzed:

Sample Preparation:

S 8015B 2007-05-25 2007-05-25 Prep Method: S 5035 Analyzed By:

Prepared By:

RL

Parameter Flag Result Units Dilution RLGRO < 1.00 mg/Kg 1.00

		.			Spike	Percent	Recovery
Surrogate F	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.853	mg/Kg	1	1.00	85	33.2 - 160
4-Bromofluorobenzene (4-BFB)		0.799	$_{ m mg/Kg}$. 1	1.00	80	10 - 227

Sample: 125546 - SB5 @ 1'

Analysis: QC Batch: Prep Batch:

BTEX 37548 32548

Analytical Method: Date Analyzed:

S 8021B 2007-05-25 Sample Preparation: 2007-05-25

S 5035 Prep Method: Analyzed By: MTPrepared By: MT

RL

Parameter Result Flag Units Dilution RL4.70 Benzene 20 0.0100mg/Kg 21.320 Toluene mg/Kg 0.0100 Ethylbenzene 13.3 mg/Kg 20 0.0100

continued ...

Report Date: June 19, 2007 State L $\#2$	Work Order: 7052525 State L #2	Page Number: 9 of 36 Buckeye,NM
sample 125546 continued		,

Parameter	Flag		RL Result		Units	Dil	ution	RL
Xylene			42.9		${ m mg/Kg}$		20	0.0100
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		2	0.446	mg/Kg	20	1.00	45	52.1 - 131
4-Bromofluorobenzene (4-2	BFB)	3	2.13	mg/Kg	20	1.00	213	48.7 - 146

Chloride		2320	mg/Kg	100	1.00
Parameter	Flag	RL Result	Units	Dilution	RL
Prep Batch:	33114	Sample Preparation:	2007-06-15	Prepared By:	ER.
Analysis: QC Batch:	Chloride (IC) 38249	Analytical Method: Date Analyzed:	E 300.0 2007-06-15	Prep Method: Analyzed By:	,

Parameter Fl:	_ ·	Units	Dilution	RL
	RL			
Analysis: TPH DRO QC Batch: 37678 Prep Batch: 32609	Analytical Method: Date Analyzed: Sample Preparation	2007-05-30	Prep Method: Analyzed By: Prepared By:	ΤĠ

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane	4	1090	mg/Kg	10	150	727	62.5 - 164

Analysis: QC Batch: Prep Batch:	TPH GRO 37549 32548	Analytical Method: Date Analyzed: Sample Preparation:	S 8015B 2007-05-25 2007-05-25	Prep Method: Analyzed By: Prepared By:	MT
		RL			
Parameter	Flag	Result	Units	Dilution	RL
GRO		1700	mg/Kg	20	1.00

Sample: 125546 - SB5 @ 1'

²Surrogate out due to peak interference.
³High surrogate recovery due to peak interference.
⁴High surrogate recovery due to peak interference.

State L #2

Work Order: 7052525

Page Number: 10 of 36 State L #2Buckeye,NM

207

62.5 - 164

150

C . This						
Surrogate Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)	0.903	mg/Kg	20	1.00	90	33.2 - 160
4-Bromofluorobenzene (4-BFB) ⁵	5.88	mg/Kg	20	1.00	588	10 - 227

Sample: 125547 - SB5 @ 3'

Analysis: BTEX Analytical Method: QC Batch: 37548 Date Analyzed: Prep Batch: 32548 Sample Preparation:	2007-05-25	Prep Method: Analyzed By: Prepared By:	MT
--	------------	--	----

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		1.03	mg/Kg	20	0.0100
Toluene		4.58	${ m mg/Kg}$	20	0.0100
Ethylbenzene		4.65	m mg/Kg	20	0.0100
Xylene		13.4	m mg/Kg	20	0.0100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)	6	0.475	mg/Kg	20	1.00	48	52.1 - 131
4-Bromofluorobenzene (4-BFB)		1.09	${ m mg/Kg}$	20	1.00	109	48.7 - 146

Sample: 125547 - SB5 @ 3'

Analysis:	Chloride (IC)	Analytical Method:	E 300.0	Prep Method:	ER
QC Batch:	38249	Date Analyzed:	2007-06-15	Analyzed By:	
Prep Batch:	33114	Sample Preparation:	2007-06-15	Prepared By:	
		D.T			

		m RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		1920	mg/Kg	100	1.00

Sample: 125547 - SB5 @ 3'

Analysis:	TPH DRO	Analytical Method:	Mod. 8015B	Prep Method:	N/A
QC Batch:	37552	Date Analyzed:	2007-05-26	Analyzed By:	TG
Prep Batch:	32551	Sample Preparation:	2007-05-25	Prepared By:	TG

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
DRO			1150	mg/K	Σg	1	50.0
Parameter	Fla	5	RL Result	Uni	ts	Dilution	RL

mg/Kg

310

n-Triacontane

⁵High surrogate recovery due to peak interference. ⁶Surrogate out due to peak interference.

⁷High surrogate recovery due to peak interference.

Report Date: June 19, 2007 Work Order: 7052525 Page Number: 11 of 36 State L #2 State L #2 Buckeye,NM

Sample: 125547 - SB5 @ 3'

Analysis: TPH GRO Analytical Method: S 8015B Prep Method: S 5035 QC Batch: 37549 Date Analyzed: 2007-05-25 Analyzed By: MT Prep Batch: 32548 Sample Preparation: 2007-05-25 Prepared By: MT

RLParameter Flag Result Units Dilution RLGRO 868 1.00 mg/Kg Spike Percent Recovery Flag Surrogate Result Units Dilution Amount Recovery Limits Trifluorotoluene (TFT) 1.00 33.2 - 160 0.312 mg/Kg 20 31 179 4-Bromofluorobenzene (4-BFB) 1.79 20 1.00 10 - 227 mg/Kg

Sample: 125548 - SB5 @ 5

Analysis: BTEX Analytical Method: S 8021B Prep Method: S 5035 QC Batch: 37541 Date Analyzed: 2007-05-25 Analyzed By: MT32545 Prepared By: Pren Batch: Sample Preparation: 2007-05-25 MT

RLParameter Flag Result Units Dilution RLBenzene < 0.0100 0.0100 mg/Kg 1 Toluene 0.0124mg/Kg 1 0.0100 Ethylbenzene 1 0.0214 mg/Kg 0.0100Xylene 1 0.01000.148mg/Kg

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		0.892	mg/Kg	1	1.00	89	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.922	${ m mg/Kg}$	1	1.00	92	48.7 - 146

Sample: 125548 - SB5 @ 5'

Analysis: Chloride (IC) Analytical Method: Prep Method: E 300.0 N/AQC Batch: 38249 Date Analyzed: 2007-06-15 Analyzed By: ER. Prep Batch: 33114 Sample Preparation: 2007-06-15 Prepared By: ER

Sample: 125548 - SB5 @ 5'

TPH DRO Analysis: Analytical Method: Mod. 8015B Prep Method: N/A QC Batch: 37552 Date Analyzed: 2007-05-26 Analyzed By: TGPrep Batch: 32551 Sample Preparation: 2007-05-25 Prepared By: TG

⁸Surrogate out due to peak interference.

State L #2

Work Order: 7052525

State L #2

Page Number: 12 of 36 Buckeye,NM

Parameter	Fla	g	RL Result	Uni	its	Dilution	m RL
DRO				mg/Kg		1	50.0
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane	2. 2005	233	mg/Kg	1	150	155	62.5 - 164

Sample: 125548 - SB5 @ 5'

Analysis: TPH GRO QC Batch: 37543 Prep Batch: 32545

Analytical Method: S~8015BDate Analyzed: 2007 - 05 - 25Sample Preparation: 2007-05-25 Prep Method: S 5035 Analyzed By: MT Prepared By: MT

			RL					
Parameter I	Flag		Result		$_{ m Units}$	D	ilution	RL
GRO			17.0		m mg/Kg		1	1.00
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			0.844	mg/Kg	1	1.00	84	33.2 - 160
4-Bromofluorobenzene (4-B)	FB)		1.15	${ m mg/Kg}$	1	1.00	115	10 - 227

Sample: 125549 - SB5 @ 10'

BTEX Analysis: QC Batch: 37541 Prep Batch: 32545

Analytical Method: S 8021B Date Analyzed: 2007-05-25 Sample Preparation: 2007-05-25

Prep Method: S 5035 Analyzed By: MT Prepared By: MT

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	${ m mg/Kg}$	1	0.0100
Ethylbenzene		0.0250	m mg/Kg	1	0.0100
Xylene		0.118	mg/Kg	1	0.0100

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		1.06	mg/Kg	1	1.00	106	52.1 - 131
4-Bromofluorobenzene (4-BFB)		1.09	mg/Kg	1	1.00	109	48.7 - 146

Sample: 125549 - SB5 @ 10'

Analysis: Chloride (IC) QC Batch: 38249 Prep Batch: 33114

Analytical Method: E 300.0Date Analyzed: 2007-06-15 Sample Preparation: 2007-06-15

Prep Method: N/A Analyzed By: $\mathbf{E}\mathbf{R}$ Prepared By: ER

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		833	mg/Kg	50	1.00

Work Order: 7052525

State L #2

State L #2

Page Number: 13 of 36 Buckeye,NM

Sample: 125549 - SB5 @ 10'

Anal	ysis:
QC 3	Batch:

Prep Batch: 32551

TPH DRO 37552

Analytical Method: Date Analyzed:

Mod. 8015B 2007 - 05 - 26

Sample Preparation: 2007-05-25

Prep Method: N/A Analyzed By: TG TG

Prepared By:

RL

Parameter	Flag	Result	Units	Dilution	RL
DRO		66.1	mg/Kg	1	50.0

					$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		239	mg/Kg	1	150	159	62.5 - 164

Sample: 125549 - SB5 @ 10'

TPH GRO Analysis: QC Batch: 37543 Prep Batch: 32545

Analytical Method: S 8015B Date Analyzed: 2007-05-25 Sample Preparation: 2007-05-25 Prep Method: S 5035 Analyzed By: MT Prepared By: MT

RL

Parameter	Flag	Result	Units	Dilution	RL
GRO		17.7	m mg/Kg	1	1.00

Surrogate	Flag	Result	Units	Dilution	$\begin{array}{c} {\rm Spike} \\ {\rm Amount} \end{array}$	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		0.997	mg/Kg	1	1.00	100	33.2 - 160
4-Bromofluorobenzene (4-BFB)		1.49	mg/Kg	1	1.00	149	10 - 227

Sample: 125550 - SB5 @ 20'

BTEX Analysis: QC Batch: 37541 Prep Batch: 32545

Analytical Method: S 8021B Date Analyzed: 2007-05-25 Sample Preparation: 2007-05-25 Prep Method: S 5035 Analyzed By: MT Prepared By: MT

		$_{ m RL}$			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	mg/Kg	1	0.0100
Ethylbenzene		< 0.0100	m mg/Kg	1	0.0100
Xylene		< 0.0100	m mg/Kg	1	0.0100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.982	mg/Kg	1	1.00	98	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.953	mg/Kg	1	1.00	95	48.7 - 146

State L #2

Work Order: 7052525

State L #2

Page Number: 14 of 36 Buckeye,NM

Sample: 125550 - SB5 @ 20'

Analysis: QC Batch:

38249

Chloride (IC)

Prep Batch: 33114 Analytical Method:

E 300.0

Date Analyzed: Sample Preparation: 2007-06-15

2007-06-15

Prep Method: N/AAnalyzed By: ER.

Prepared By: ER

RLResult

152

Parameter Flag Chloride

Units mg/Kg Dilution 5

RL1.00

Sample: 125550 - SB5 @ 20'

Analysis:

TPH DRO 37552

Analytical Method:

Mod. 8015B 2007-05-26

Prep Method: N/A Analyzed By: TG

QC Batch: Prep Batch:

32551

Date Analyzed: Sample Preparation:

2007-05-25

Prepared By: TG

RL

Parameter Flag Result < 50.0 Units

Dilution

RL50.0

DRO

mg/Kg

Recovery

n-Triacontane

Surrogate Flag Result 275

Units Dilution mg/Kg 1

Spike Amount 150

Percent Recovery 183

Limits 62.5 - 164

Sample: 125550 - SB5 @ 20'

Analysis: QC Batch:

TPH GRO 37543 Prep Batch: 32545

Analytical Method: Date Analyzed:

Sample Preparation:

S 8015B 2007-05-25 Prep Method: S 5035 Analyzed By:

MT

RLResult 2007-05-25

Prepared By:

Parameter

Flag GRO

3.12

Units mg/Kg Dilution 1 RL

Surrogate

Trifluorotoluene (TFT)

1.00

Spike Percent Recovery Flag Result Units Dilution Amount Recovery Limits 1.03 mg/Kg 1 1.00 103 33.2 - 160 4-Bromofluorobenzene (4-BFB) 1.19 mg/Kg 1 1.00 119 10 - 227

Sample: 125551 - SB6 @ 1'

Analysis: QC Batch: Prep Batch:

BTEX 37548 32548

Analytical Method: Date Analyzed:

Sample Preparation:

S 8021B 2007-05-25 2007-05-25 Prep Method: S 5035 Analyzed By: MTPrepared By: MT

RLParameter Flag Result Units Dilution RL10 Benzene < 0.200 mg/Kg 20 0.0100 < 0.200 20 Toluene mg/Kg 0.0100Ethylbenzene 1.70 mg/Kg 20 0.0100

⁹High surrogate recovery. Sample non-detect, result bias high.

¹⁰Sample ran at dilution due to hydrocarbons with a retention time greater than xylene.

continued ...

Work Order: 7052525 State L #2 Page Number: 15 of 36 Buckeye,NM

continued ...

sample 125551 continued ...

Parameter	Flag	r	RL Result		Units		Dilution	RL
Xylene		· · · · · · · · · · · · · · · · · · ·	3.29		mg/Kg		20	0.0100
Surrogate		Flag	Result	Units	Dilution	Spike Amount		Recovery Limits
Trifluorotolu			0.608	m mg/Kg	20	1.00	61	52.1 - 131
4-Bromofluoi	robenzene (4-BFB)	· · · · · · · · · · · · · · · · · · ·	1.03	mg/Kg	20	1.00	103	48.7 - 146
Sample: 12	5551 - SB6 @ 1'							
Analysis:	Chloride (IC)			cal Method:	E 300.0		Prep M	,
QC Batch:	38310		Date Ar		2007-06-1		Analyz	
Prep Batch:	33169		Sample	Preparation	n: 2007-06-1	.8	Prepare	ed By: ER
			RL					
Parameter	Flag		Result		Units		Dilution	RL
Chloride			1680		mg/Kg		100	1.00
Analysis: QC Batch: Prep Batch:	TPH DRO 37552 32551		Analytical Date Anal Sample Pr		Mod. 8015F 2007-05-26 2007-05-25		Prep M Analyz Prepar	ed By: TG
D	TO		RL		T		TD:11 - 12	DI
Parameter DRO	Flag		Result 241		$\frac{\mathrm{Units}}{\mathrm{mg/Kg}}$		Dilution	RL 50.0
DIG			241		mg/Kg		1	30.0
Surrogate	Flag	Result	Units	Dilı	ition .	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontan	e 11	251	mg/Kg		1	150	167	62.5 - 164
Sample: 12	5551 - SB6 @ 1'							
Analysis:	TPH GRO		Analytical	Method:	S 8015B		Prep Met	shod: S 5035
QC Batch:	37549		Date Anal	•	2007-05-25		Analyzed	
Prep Batch:	32548		Sample Pr	eparation:	2007-05-25		Prepared	By: MT
			RL					
Parameter	Flag		Result		Units	•	Dilution	RL
GRO			216		mg/Kg		20	1.00
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolu	ene (TFT)		0.626	mg/Kg	20	1.00	63	33.2 - 160

¹¹High surrogate recovery due to peak interference.

State L #2

Work Order: 7052525

State L #2

Page Number: 16 of 36 Buckeye,NM

sample continued ...

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
4-Bromofluorobenzene (4-BFB)		2.22	mg/Kg	20	1.00	222	10 - 227

Sample: 125552 - SB6 @ 3'

Analysis:	BTEX
QC Batch:	37548
Prep Batch:	32548

Analytical Method: S 8021B .
Date Analyzed: 2007-05-25
Sample Preparation: 2007-05-25

Prep Method: S 5035 Analyzed By: MT Prepared By: MT

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Benzene	12	< 0.200	mg/Kg	20	0.0100
Toluene		0.761	m mg/Kg	20	0.0100
Ethylbenzene		1.43	m mg/Kg	20	0.0100
Xylene		3.37	m mg/Kg	20	0.0100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.595	mg/Kg	20	1.00	60	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.808	mg/Kg	20	1.00	81	48.7 - 146

Sample: 125552 - SB6 @ 3'

Analysis:	Chloride (IC)
QC Batch:	38310
Prep Batch:	33169

Analytical Method: E 300.0
Date Analyzed: 2007-06-18
Sample Preparation: 2007-06-18

Prep Method: N/A Analyzed By: ER Prepared By: ER

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		1230	m mg/Kg	100	1.00

Sample: 125552 - SB6 @ 3'

Analysis:	TPH DRO
QC Batch:	37552
Prep Batch:	32551

Analytical Method: Mod. 8015B Date Analyzed: 2007-05-26 Sample Preparation: 2007-05-25

Prep Method: N/A Analyzed By: TG Prepared By: TG

		m RL			
Parameter	Flag	Result	Units	Dilution	RL
DRO		116	m mg/Kg	1	50.0

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane	13	321	m mg/Kg	1	150	214	62.5 - 164

¹²Sample ran at dilution due to hydrocarbons with a retention time greater than xylene.

¹³High surrogate recovery due to peak interference.

Report Date: June 19, 2007 State L #2

Work Order: 7052525

State L #2

Page Number: 17 of 36 Buckeye,NM

Sample: 125552 - SB6 @ 3'

Analysis: QC Batch:

TPH GRO 37549 Prep Batch: 32548

Analytical Method: Date Analyzed:

S 8015B 2007-05-25 Sample Preparation: 2007-05-25 Prep Method: S 5035 Analyzed By: MT Prepared By: MT

RL

Parameter	Flag	Result	Units	Dilution	RL
GRO		224	m mg/Kg	20	1.00

					$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.665	mg/Kg	20	1.00	66	33.2 - 160
4-Bromofluorobenzene (4-BFB)		1.28	mg/Kg	20	1.00	128	10 - 227

Sample: 125553 - SB6 @ 5'

Analysis: BTEX QC Batch: 37541 Prep Batch: 32545

Analytical Method: S 8021B Date Analyzed: 2007-05-25 Sample Preparation: 2007-05-25 Prep Method: S 5035 Analyzed By: MT Prepared By: MT

		RL			
Parameter	Flag	Result	\mathbf{Units}	Dilution	RL
Benzene		< 0.0100	mg/Kg	1	0.0100
Toluene		< 0.0100	mg/Kg	1	0.0100
Ethylbenzene		< 0.0100	mg/Kg	1	0.0100
Xylene		0.0345	mg/Kg	1	0.0100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.905	mg/Kg	1	1.00	90	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.901	${ m mg/Kg}$	1	1.00	90	48.7 - 146

Sample: 125553 - SB6 @ 5'

Analysis: Chloride (IC) QC Batch: 38310 Prep Batch: 33169

Analytical Method: Date Analyzed:

E 300.0 2007-06-18 Sample Preparation: 2007-06-18

Prep Method: N/A Analyzed By: ERPrepared By: ER

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		317	mg/Kg	50	1.00

Sample: 125553 - SB6 @ 5'

Analysis: TPH DRO QC Batch: 37552 Prep Batch: 32551

Analytical Method: Mod. 8015B Date Analyzed: 2007-05-26 Sample Preparation: 2007-05-25

Prep Method: N/AAnalyzed By: TG Prepared By: TG

State L #2

Work Order: 7052525

State L #2

Page Number: 18 of 36 Buckeye,NM

Parameter	Fla	g	Result	Uni		Dilution	RL
DRO			< 50.0	mg/I	<u>ig</u>	1	50.0
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	$_{ m Limits}$
n-Triacontane		176	m mg/Kg	1	150	117	62.5 - 164

Sample:	125553	-	SB6	(0)	5	

Analysis:	TPH GRO
QC Batch:	37543
Prep Batch:	32545

Analytical Method: S 8015B Date Analyzed: 2007-05-25 Sample Preparation: 2007-05-25 Prep Method: S 5035 Analyzed By: Prepared By: MT

Parameter	Flag		$rac{ ext{RL}}{ ext{Result}}$		Units	ח	ilution	RL
	I lag						indelon -	
GRO			6.92		mg/Kg		1	1.00
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (T	FT)		0.942	mg/Kg	1	1.00	94	33.2 - 160
4-Bromofluorobenz	ene (4-BFB)		1.01	${ m mg/Kg}$	1	1.00	101	10 - 227

Sample: 125554 - SB6 @ 15'

Analysis:	BTEX
QC Batch:	37541
Prep Batch:	32545

Analytical Method: S 8021B Date Analyzed: 2007-05-25 Sample Preparation: 2007-05-25

Prep Method: S 5035 Analyzed By: MT Prepared By: MT

•		RL			
Parameter	Flag	Result	Units	Dilution	RL
Benzene		< 0.0100	mg/Kg	I	0.0100
Toluene		< 0.0100	m mg/Kg	1	0.0100
Ethylbenzene		< 0.0100	m mg/Kg	1	0.0100
Xylene		< 0.0100	mg/Kg	1	0.0100

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.939	m mg/Kg	1	1.00	94	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.884	mg/Kg	_ 1	1.00	88	48.7 - 146

Sample: 125554 - SB6 @ 15'

Analysis:	Chloride (IC)
QC Batch:	38310
Prep Batch:	33169

Analytical Method: E 300.0 Date Analyzed: 2007-06-18 Sample Preparation: 2007-06-18 Prep Method: N/A Analyzed By: ER Prepared By: ER

		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		1270	${ m mg/Kg}$	100	1.00

State L #2

Work Order: 7052525

State L #2

Page Number: 19 of 36

Buckeye,NM

N/A

Sample: 125554 - SB6 @ 15'

Analysis: QC Batch: TPH DRO 37553

Analytical Method: Date Analyzed:

Mod. 8015B

2007-05-26

Prep Method: TG Analyzed By:

32551 Prep Batch:

Sample Preparation: 2007-05-25

Prepared By: TG

RL

Flag Result Dilution RLParameter Units 50.0 DR.O < 50.0 mg/Kg

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		219	mg/Kg	1	150	146	62.5 - 164

Sample: 125554 - SB6 @ 15'

Analysis: QC Batch:

TPH GRO 37543 Prep Batch: 32545

Analytical Method:

Sample Preparation:

Date Analyzed:

S 8015B 2007-05-25 2007-05-25 Prep Method: S 5035

Analyzed By: MTPrepared By:

RL

Flag Parameter Result Units Dilution RLGRO <1.00 1.00 mg/Kg 1

					Spike	Percent	$\operatorname{Recovery}$
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.994	mg/Kg	1	1.00	99	33.2 - 160
4-Bromofluorobenzene (4-BFB)		0.984	${ m mg/Kg}$	1	1.00	98	10 - 227

Sample: 125555 - SB6 @ 25'

Analysis: BTEX QC Batch: 37541 Prep Batch: 32545

Analytical Method: Date Analyzed:

S 8021B 2007-05-25 Sample Preparation: 2007-05-25 Prep Method: S 5035 Analyzed By: MTPrepared By: MT

RLParameter Flag Result Dilution Units RLBenzene < 0.0100 mg/Kg 0.0100 1 Toluene < 0.0100 1 0.0100 mg/Kg Ethylbenzene < 0.0100 1 mg/Kg 0.0100Xylene mg/Kg < 0.0100 3 0.0100

					Spike	Percent	Recovery.
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.02	mg/Kg	1	1.00	102	52.1 - 131
4-Bromofluorobenzene (4-BFB)		0.958	$_{ m mg/Kg}$	1	1.00	96	48.7 - 146

State L #2

Work Order: 7052525 State L #2

Page Number: 20 of 36

Buckeye,NM

Sample: 125555 - SB6 @ 25'

Analysis: QC Batch: Chloride (IC) 38310

Flag

Analytical Method:

E 300.0 2007-06-18 Prep Method: N/A Analyzed By: ER

Prep Batch:

33169

Date Analyzed: Sample Preparation:

2007-06-18

Prepared By: ER.

RL

Parameter Chloride

Result 125

Units mg/Kg Dilution

RL1.00

Sample: 125555 - SB6 @ 25'

Analysis: QC Batch: TPH DRO 37553

Analytical Method: Date Analyzed:

Mod. 8015B 2007-05-26

Prep Method: N/A Analyzed By: TG

Prep Batch:

32551

Sample Preparation:

2007-05-25

Prepared By: TG

RL

Parameter Flag DRO

Result Units < 50.0 mg/Kg Dilution

RL50.0

Spike

Recovery

Surrogate

Result Flag n-Triacontane 240

Units Dilution mg/Kg 1

Percent Recovery Amount 160 150

Limits 62.5 - 164

Sample: 125555 - SB6 @ 25'

Analysis: QC Batch:

TPH GRO 37543

Analytical Method: Date Analyzed:

Sample Preparation:

S 8015B 2007-05-25 Prep Method: S 5035 Analyzed By: MT

Prep Batch: 32545

RL

2007-05-25

Prepared By: MT

Parameter GRO

Result <1.00

Units mg/Kg Dilution

RL1.00

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		1.08	mg/Kg	1	1.00	108	33.2 - 160
4-Bromofluorobenzene (4-BFB)		1.04	${ m mg/Kg}$	1	1.00	104	10 - 227

Method Blank (1)

QC Batch: 37541

Flag

QC Batch: Prep Batch: 32545

37541

Date Analyzed: QC Preparation:

2007-05-25 2007-05-25

Analyzed By: MT Prepared By: MT

MDI

		MIDL		
Parameter	Flag	Result	Units	RL
Benzene		< 0.00333	mg/Kg	0.01
Toluene		< 0.00372	m mg/Kg	0.01
Ethylbenzene		< 0.00206	m mg/Kg	0.01
Xylene		< 0.00259	m mg/Kg	0.01

State L #2

Work Order: 7052525

State L #2

Page Number: 21 of 36 Buckeye, NM

					$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.01	mg/Kg	1	1.00	101	73.2 - 113
4-Bromofluorobenzene (4-BFB)		0.724	${ m mg/Kg}$	1	1.00	72	54 - 102

Method Blank (1)

QC Batch: 37543

QC Batch: 37543 Prep Batch: 32545 Date Analyzed:

2007-05-25 QC Preparation: 2007-05-25 Analyzed By: MT Prepared By: MT

MDL Units RLParameter Flag Result GRO < 0.459 mg/Kg

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.09	mg/Kg	1	1.00	109	73.2 - 125
4-Bromofluorobenzene (4-BFB)		0.787	${ m mg/Kg}$	1	1.00	79	51.9 - 110

Method Blank (1)

QC Batch: 37548

QC Batch: 37548 Prep Batch: 32548 Date Analyzed:

2007-05-25

Analyzed By: MT

QC Preparation: 2007-05-25

MDL

Prepared By: MT

Parameter	Flag	Result	${f Units}$	RL
Benzene	,	< 0.00333	mg/Kg	0.01
Toluene	·	< 0.00372	${ m mg/Kg}$	0.01
Ethylbenzene		< 0.00206	mg/Kg	0.01
Xylene		< 0.00259	mg/Kg	0.01

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.854	mg/Kg	1	1.00	85	73.2 - 113
4-Bromofluorobenzene (4-BFB)		0.653	mg/Kg_	1	1.00	65	54 - 102

Method Blank (1)

QC Batch: 37549

QC Batch: Prep Batch: 32548

37549

Date Analyzed:

2007-05-25

Analyzed By: MT

QC Preparation: 2007-05-25

Prepared By: MT

MDL Parameter Flag Result Units RLGRO < 0.459 mg/Kg

C	T21	D)4	¥7. •,	TOTAL AT A	Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.957	m mg/Kg	1	1.00	.96	73.2 - 125
4-Bromofluorobenzene (4-BFB)		0.727	mg/Kg	1	1.00	73	51.9 - 110

State L #2

Work Order: 7052525

State L #2

Page Number: 22 of 36 Buckeye,NM

Method Blank (1)

QC Batch: 37552

QC Batch:

37552

Date Analyzed:

2007-05-26

Analyzed By: TG

Prep Batch: 32551

QC Preparation: 2007-05-25

Prepared By: TG

MDL

Parameter	Flag	Result	Units	RL .
DRO		<10.7	m mg/Kg	50

					$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		246	${ m mg/Kg}$	1	150	164	62.5 - 164

Method Blank (1)

QC Batch: 37553

QC Batch:

37553

Date Analyzed:

2007-05-26

Analyzed By: TG

Prep Batch: 32551

QC Preparation: 2007-05-25

Prepared By: TG

MDL

Parameter	Flag	Result	Units	RL
DRO		<10.7	mg/Kg	50

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane		228	m mg/Kg	1	150	152	62.5 - 164

Method Blank (1)

QC Batch: 37618

QC Batch:

37618

Date Analyzed:

2007-05-29

Analyzed By: KB

Prep Batch: 32598

QC Preparation: 2007-05-29

Prepared By: KB

MDL

Parameter	Flag	Result	Units	RL
Benzene		< 0.00333	mg/Kg	0.01
Toluene		< 0.00372	m mg/Kg	0.01
Ethylbenzene		< 0.00206	m mg/Kg	0.01
Xylene		< 0.00259	mg/Kg	0.01

					Spike	Percent	Recovery
Surrogate	Flag	Result	$_{ m Units}$	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.882	mg/Kg	1	1.00	88	73.2 - 113
4-Bromofluorobenzene (4-BFB)		0.600	$_{ m mg/Kg}$	1	1.00	60	54 - 102

Method Blank (1)

QC Batch: 37678

QC Batch:

37678

Date Analyzed:

2007-05-30

Analyzed By: TG

Prep Batch: 32609

QC Preparation: 2007-05-29

Prepared By: TG

State L #2

Work Order: 7052525

State L #2

Page Number: 23 of 36

Buckeye,N	M
-----------	---

Parameter		Flag		MDL Result	Ţ	Jnits	RL
DRO				<10.7	m	g/Kg	5()
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane	1 145	222	mg/Kg	1	150	148	62.5 - 164

Method Blank (1)

QC Batch: 38249

QC Batch:

38249

Date Analyzed:

2007 - 06 - 15

Analyzed By: ER

Prep Batch: 33114

Chloride

QC Preparation:

2007-06-15

Prepared By: ER

MDL Parameter Flag

Result < 0.140

RL

1

Method Blank (1)

QC Batch: 38310

QC Batch: Prep Batch:

38310 33169 Date Analyzed:

2007-06-18

Analyzed By: ER

QC Preparation: 2007-06-18

Prepared By: ER

MDL

Flag Parameter Result Chloride < 0.140

Units RLmg/Kg

Units

mg/Kg

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 32545

37541

Date Analyzed: QC Preparation:

2007-05-25 2007-05-25

Analyzed By: MT Prepared By: MT

LCS Spike Matrix Rec. Limit Param Result Units Dil. Amount Result Rec. Benzene 1.01 mg/Kg 1.00 < 0.00333 101 76.3 - 117 1 Toluene 1.00 mg/Kg 1 1.00 < 0.00372 100 77.3 - 114 75.4 - 115 Ethylbenzene 0.968 mg/Kg 1 1.00 < 0.00206 97 2.88 73.2 - 112 Xylene mg/Kg 1 3.00 < 0.00259 96

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Param	LCSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	$egin{array}{c} ext{RPD} \ ext{Limit} \end{array}$
Benzene	1.01	mg/Kg	1	1.00	< 0.00333	101	76.3 - 117	0	20
Toluene	0.999	mg/Kg	1	1.00	< 0.00372	100	77.3 - 114	0	20
Ethylbenzene	0.968	mg/Kg	1	1.00	< 0.00206	97	75.4 - 115	0	20
Xylene	2.89	m mg/Kg	1	3.00	< 0.00259	96	73.2 - 112	0	20

State L #2

Work Order: 7052525

State L #2

Surrogate	LCS Result	LCSD Result	Units	Dil.	Spike Amount	LCS Rec.	LCSD Rec.	Rec. Limit
Trifluorotoluene (TFT)	0.930	0.953	mg/Kg	1	1.00	93	95	74.5 - 113
4-Bromofluorobenzene (4-BFB)	0.882	0.903	mg/Kg	1	1.00	88	90	68.3 - 110

Laboratory Control Spike (LCS-1)

QC Batch:

37543 Prep Batch: 32545 Date Analyzed:

2007-05-25

QC Preparation: 2007-05-25

Analyzed By: MT Prepared By: MT

Page Number: 24 of 36

Buckeye,NM

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	8.92	mg/Kg	1	10.0	< 0.459	89	79.6 - 113

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	9.86	m mg/Kg	1	10.0	< 0.459	99	79.6 - 113	10	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	\mathbf{Limit}
Trifluorotoluene (TFT)	0.966	0.947	mg/Kg	1	1.00	97	95	77.1 - 117
4-Bromofluorobenzene (4-BFB)	0.890	0.889	${ m mg/Kg}$	1	1.00	89	89	78.1 - 118

Laboratory Control Spike (LCS-1)

QC Batch:

37548 Prep Batch: 32548 Date Analyzed: QC Preparation: 2007-05-25

2007-05-25

Analyzed By: MT Prepared By: MT

	LCS			Spike	Matrix		Rec.
Param	Result	${ m Units}$	$\mathrm{Dil}.$	${f Amount}$	Result	${ m Rec}.$	Limit
Benzene	0.977	mg/Kg	1	1.00	< 0.00333	98	76.3 - 117
Toluene	0.949	mg/Kg	1	1.00	< 0.00372	95	77.3 - 114
Ethylbenzene	0.904	mg/Kg	1	1.00	< 0.00206	90	75.4 - 115
Xylene	2.71	${ m mg/Kg}$	1	3.00	< 0.00259	90	73.2 - 112

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	0.942	mg/Kg	1	1.00	< 0.00333	94	76.3 - 117	4	20
Toluene	0.917	mg/Kg	1	1.00	< 0.00372	92	77.3 - 114	3	20
Ethylbenzene	0.875	mg/Kg	1	1.00	< 0.00206	88	75.4 - 115	3	20
Xylene	2.62	${ m mg/Kg}$	1	3.00	< 0.00259	87	73.2 - 112	3	20

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.844	0.858	mg/Kg	1	1.00	84	86	74.5 - 113
4-Bromofluorobenzene (4-BFB)	0.817	0.821	${ m mg/Kg}$	1	1.00	82	82	68.3 - 110

State L #2

Work Order: 7052525 State L #2

Page Number: 25 of 36 Buckeve.NM

Laboratory Control Spike (LCS-1)

QC Batch:

37549

Date Analyzed:

2007-05-25

Analyzed By: MT

Prep Batch: 32548

QC Preparation:

2007-05-25

Prepared By: MT

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	8.95	mg/Kg	1	10.0	< 0.459	90	79.6 - 113

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	9.39	${ m mg/Kg}$	1	10.0	< 0.459	94	79.6 - 113	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.937	0.957	mg/Kg	1	1.00	94	96	77.1 - 117
4-Bromofluorobenzene (4-BFB)	0.893	0.902	${ m mg/Kg}$	1	1.00	89	90	78.1 - 118

Laboratory Control Spike (LCS-1)

QC Batch:

37552

Date Analyzed:

2007-05-26

Analyzed By: TG

Prep Batch: 32551

QC Preparation:

2007-05-25

Prepared By: TG

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	218	mg/Kg	1	250	<10.7	87	64.1 - 124

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	212	mg/Kg	1	250	<10.7	85	64.1 - 124	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	223	220	mg/Kg	1	150	149	147	62.5 - 164

Laboratory Control Spike (LCS-1)

QC Batch:

37553

Date Analyzed:

2007-05-26

Analyzed By: TG

Prep Batch: 32551

QC Preparation: 2007-05-25

Prepared By: TG

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	220	mg/Kg	1	250	<10.7	88	64.1 - 124

State L #2

Work Order: 7052525

State L #2

Page Number: 26 of 36

Buckeye,NM

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	218	mg/Kg	1	250	<10.7	87	64.1 - 124		20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	228	228	mg/Kg	1	150	152	152	62.5 - 164

Laboratory Control Spike (LCS-1)

QC Batch:

37618

Date Analyzed: 2007-05-29 Analyzed By: KB

Prep Batch: 32598

QC Preparation:

2007-05-29

Prepared By: KB

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
Benzene	0.925	mg/Kg	1	1.00	< 0.00333	92	76.3 - 117
Toluene.	0.905	${ m mg/Kg}$	1	1.00	< 0.00372	90	77.3 - 114
Ethylbenzene	0.862	mg/Kg	1	1.00	< 0.00206	86	75.4 - 115
Xylene	2.57	mg/Kg	11	3.00	< 0.00259	86	73.2 - 112

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Param	LCSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
			1711.					10110	
Benzene	0.972	$_{ m mg/Kg}$	1	1.00	< 0.00333	97	76.3 - 117	5	20
Toluene	0.950	mg/Kg	1	1.00	< 0.00372	95	77.3 - 114	5	20
Ethylbenzene	0.907	mg/Kg	1	1.00	< 0.00206	91	75.4 - 115	5	20
Xylene	2.70	${ m mg/Kg}$	1	3.00	< 0.00259	90	73.2 - 112	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.856	0.927	mg/Kg	1	1.00	86	93	74.5 - 113
4-Bromofluorobenzene (4-BFB)	0.762	0.822	${ m mg/Kg}$	1	1.00	76	82	68.3 - 110

Laboratory Control Spike (LCS-1)

QC Batch:

37678

Date Analyzed:

2007-05-30

Analyzed By: TG

Prep Batch: 32609

QC Preparation: 2007-05-29

Prepared By: TG

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	257	mg/Kg	1	250	<10.7	103	64.1 - 124

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	224	m mg/Kg	1	250	<10.7	90	64.1 - 124	14	20

State L #2

Work Order: 7052525

State L #2

Page Number: 27 of 36 Buckeye.NM

LCS LCSD Spike LCS LCSD Rec. Surrogate Result Result Units Dil. Amount Rec. Rec. Limit. n-Triacontane 211 201 141 134 62.5 - 164 mg/Kg 1 150

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch: 33114

38249

Date Analyzed:

2007-06-15

QC Preparation: 2007-06-15

Analyzed By: ER

Prepared By: ER

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	12.1	mg/Kg	1	12.5	< 0.140	97	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	12.5	mg/Kg	1	12.5	< 0.140	100	90 - 110	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:

38310 33169

Date Analyzed: QC Preparation:

2007-06-18 2007-06-18 Analyzed By: ER

Prepared By: ER

	LCS			Spik∈	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	12.9	mg/Kg	1	12.5	< 0.140	103	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	23.7	mg/Kg	1	12.5	< 0.140	95	90 - 110	59	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1)

Spiked Sample: 125541

QC Batch:

37541 Prep Batch: 32545 Date Analyzed: QC Preparation:

2007-05-25 2007-05-25 Analyzed By: MT Prepared By: MT

	MS			Spike	Matrix		Rec.
Param	Result	$_{ m Units}$	Dil.	Amount	Result	Rec.	Limit
Benzene	0.768	mg/Kg	1	1.00	< 0.00333	77	39.6 - 141
Toluene	0.798	${ m mg/Kg}$	1	1.00	< 0.00372	80	45.4 - 138
Ethylbenzene	0.840	${ m mg/Kg}$	1	1.00	< 0.00206	84	48 - 141
Xylene	2.53	mg/Kg	1	3.00	< 0.00259	84	45.3 - 142

State L #2

Work Order: 7052525

State L #2

Page Number: 28 of 36 Buckeye.NM

Param	MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Benzene	0.772	mg/Kg	1	1.00	< 0.00333	77	39.6 - 141	Û	20
Toluene	0.801	mg/Kg	1	1.00	< 0.00372	80	45.4 - 138	0	20
Ethylbenzene	0.845	mg/Kg	1	1.00	< 0.00206	84	48 - 141	1	20
Xylene	2.54	mg/Kg	1	3.00	< 0.00259	85	45.3 - 142	()	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate ·	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.942	0.922	mg/Kg	1	1	94	92	51.5 - 138
4-Bromofluorobenzene (4-BFB)	0.925	0.902	mg/Kg	1	1	92	90	52.2 - 139

Matrix Spike (MS-1) Spiked Sample: 125541

QC Batch:

37543

Date Analyzed:

2007-05-25

Analyzed By: MT Prepared By: MT

Prep Batch: 32545

QC Preparation:

2007-05-25

Prepared By: MT

	MS			Spike	Matrix		Rec.
Param	Result	Units	· Dil.	Amount	Result	Rec.	Limit
GRO	7.98	${ m mg/Kg}$	1	10.0	< 0.459	80	40.7 - 157

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	7.63	mg/Kg	1	10.0	< 0.459	76	40.7 - 157	4	19.6

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.845	0.730	mg/Kg	1	1	84	73	34.9 - 155
4-Bromofluorobenzene (4-BFB)	0.941	0.832	m mg/Kg	1	1	94	83	58.5 - 153

Matrix Spike (MS-1) Spiked Sample: 125578

QC Batch:

Prep Batch: 32548

37548

Date Analyzed:

QC Preparation: 2007-05-25

2007-05-25 Analyzed By: MT

MS Spike Matrix Rec. Param Result Units Dil. Amount Result Rec. Limit Benzene 0.906 1.00 39.6 - 141 mg/Kg 1 < 0.00333 91 0.928 Toluene mg/Kg 1.00 93 1 < 0.00372 45.4 - 138 Ethylbenzene 0.924 1.00 92 mg/Kg 1 < 0.00206 48 - 141 Xylene 2.77mg/Kg 1 3.00 < 0.00259 92 45.3 - 142

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	0.878	mg/Kg	1	1.00	< 0.00333	88	39.6 - 141	3	20
Toluene	0.892	mg/Kg	1	1.00	< 0.00372	89	45.4 - 138	4	20

continued ...

State L #2

Work Order: 7052525

State L #2

Page Number: 29 of 36

Buckeye,NM

matrix spikes continued	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Ethylbenzene	0.895	mg/Kg	1	1.00	< 0.00206	90	48 - 141	3	20
Xylene	2.68	mg/Kg	1	3.00	< 0.00259	89	45.3 - 142	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.11	1.02	mg/Kg	1	1	111	102	51.5 - 138
4-Bromofluorobenzene (4-BFB)	1.04	0.964	${ m mg/Kg}$	1	1	104	96	52.2 - 139

Matrix Spike (MS-1) Spiked Sample: 125578

QC Batch:

37549

Date Analyzed:

2007-05-25

Analyzed By: MT

Prepared By: MT Prep Batch: 32548 QC Preparation: 2007-05-25

	MS			$_{ m Spike}$	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	8.80	${ m mg/Kg}$	1	10.0	< 0.459	88	40.7 - 157

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
GRO	8.99	mg/Kg	1	10.0	< 0.459	90	40.7 - 157	2	19.6

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	${ m Rec.}$	Rec.	Limit
Trifluorotoluene (TFT)	1.02	1.06	mg/Kg	1	1	102	106	34.9 - 155
4-Bromofluorobenzene (4-BFB)	1.13	1.12	${ m mg/Kg}$	1	1	113	112	58.5 - 153

Matrix Spike (MS-1) Spiked Sample: 125536

QC Batch:

37552

Date Analyzed:

2007-05-26

Analyzed By: TG

Prep Batch: 32551

QC Preparation: 2007-05-25

Prepared By: TG

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	313	${ m mg/Kg}$	1	250	68.7	98	47.5 - 127

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}	RPD	Limit
DRO	302	mg/Kg	1	250	68.7	93	47.5 - 127	4	20

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	213	225	${ m mg/Kg}$	1	150	142	150	62.5 - 164

Work Order: 7052525

State L #2

State L #2

Page Number: 30 of 36 Buckeye,NM

Matrix Spike (MS-1)

Spiked Sample: 125555

QC Batch:

37553 Prep Batch: 32551

Date Analyzed: QC Preparation: 2007-05-26

2007-05-25

Analyzed By: TG

Prepared By: TG

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}
DRO	200	$_{ m mg/Kg}$	1	250	<10.7	80	47.5 - 127

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	205	mg/Kg	1	250	<10.7	82	47.5 - 127	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	\mathbf{Limit}
n-Triacontane	220	217	mg/Kg	. 1	150	14.7	145	62.5 - 164

Matrix Spike (MS-1)

Spiked Sample: 125620

QC Batch: Prep Batch: 32598

37618

Date Analyzed: QC Preparation:

2007-05-29 2007-05-29 Analyzed By: KB

Prepared By: KB

Param	MS Result	Units	Dil.	$\begin{array}{c} \text{Spike} \\ \text{Amount} \end{array}$	Matrix Result	Rec.	Rec. Limit
Benzene	0.756	mg/Kg	1	1.00	< 0.00333	76	39.6 - 141
Toluene	0.777	mg/Kg	1	1.00	< 0.00372	78	45.4 - 138
Ethylbenzene	0.796	mg/Kg	1	1.00	< 0.00206	80	48 - 141
Xylene	2.40	${ m mg/Kg}$	1	3.00	< 0.00259	80	45.3 - 142

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Param	MSD Result	Units	Dil.	$\begin{array}{c} {\rm Spike} \\ {\rm Amount} \end{array}$	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Benzene	0.774	mg/Kg	1	1.00	< 0.00333	77	39.6 - 141	2	20
Toluene	0.798	mg/Kg	1	1.00	< 0.00372	80	45.4 - 138	3	20
Ethylbenzene	0.817	mg/Kg	1	1.00	< 0.00206	82	48 - 141	3	20
Xylene	2.47	${ m mg/Kg}$	1	3.00	< 0.00259	82	45.3 - 142	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.842	0.875	mg/Kg	1	1	84	88	51.5 - 138
4-Bromofluorobenzene (4-BFB)	0.799	0.846	m mg/Kg	1	1	80	85	52.2 - 139

Matrix Spike (MS-1)

Spiked Sample: 125591

QC Batch:

37678

Date Analyzed:

2007-05-30

Analyzed By: ΤG

Prep Batch: 32609

QC Preparation: 2007-05-29

Prepared By: TG

State L #2

Work Order: 7052525

State L #2

Page Number: 31 of 36 Buckeye,NM

		MS			Spike	Matrix		Rec.
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit
DRO	14	502	mg/Kg	1	250	118	201	47.5 - 127

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}	RPD	Limit
DRO	15	470	mg/Kg	1	250	118	141	47.5 - 127	7	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			$_{ m Spike}$	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
n-Triacontane	221	228	mg/Kg	1	150	147	152	62.5 - 164

Spiked Sample: 125550 Matrix Spike (MS-1)

QC Batch:

38249

Date Analyzed:

2007-06-15

Analyzed By: ER.

Prep Batch: 33114

QC Preparation: 2007-06-15

Prepared By: ER

		MS			Spike	Matrix		${f Rec}.$
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	36	325	mg/Kg	5	62.5	152.539	276	75.6 - 117

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}	RPD	Limit
Chloride	17	426	mg/Kg	5	62.5	152.539	438	75.6 - 117	27	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1)

Spiked Sample: 125576

QC Batch:

38310

Date Analyzed:

2007-06-18

Analyzed By: ER. Prepared By: ER

Prep Batch: 33169

QC Preparation:

2007-06-18

		MS			Spike	Matrix		Rec.
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride	18	990	${ m mg/Kg}$	50	625	141.128	136	75.6 - 117

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	915	mg/Kg	50	625	141.128	80	75.6 - 117	8	20

¹⁴Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

¹⁵Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

¹⁶Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control. ¹⁷Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

¹⁸Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

State L #2

Work Order: 7052525

State L #2

Page Number: 32 of 36 Buckeye,NM

Standard (ICV-1)

QC Batch: 37541

Date Analyzed: 2007-05-25

Analyzed By: MT

Param	Flag	Units	ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene	1146	mg/Kg	0.100	0.0996	100	85 - 115	2007-05-25
Toluene		mg/Kg	0.100	0.0980	98	85 - 115	2007-05-25
Ethylbenzene		mg/Kg	0.100	0.0979	98	85 - 115	2007-05-25
Xylene		${ m mg/Kg}$	0.300	0.293	98	85 - 115	2007-05-25

Standard (CCV-1)

QC Batch: 37541

Date Analyzed: 2007-05-25

Analyzed By: MT

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0984	98	85 - 115	2007-05-25
Toluene		${ m mg/Kg}$	0.100	0.0970	97	85 - 115	2007-05-25
Ethylbenzene		${ m mg/Kg}$	0.100	0.0944	94	85 - 115	2007-05-25
Xylene		${ m mg/Kg}$	0.300	0.282	94	85 - 115	2007-05-25

Standard (ICV-1)

QC Batch: 37543

Date Analyzed: 2007-05-25

Analyzed By: MT

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	0.886	89	85 - 115	2007-05-25

Standard (CCV-1)

QC Batch: 37543

Date Analyzed: 2007-05-25

Analyzed By: MT

			CCVs True	CCVs	CCVs Percent	Percent	Data
			irue	Found	rercent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	0.901	9(1	85 - 115	2007-05-25

Standard (ICV-1)

QC Batch: 37548

Date Analyzed: 2007-05-25

Analyzed By: MT

			ICVs	ICVs	ICVs	Percent		
			True	Found	Percent	Recovery	Date	
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
Benzene		mg/Kg	0.100	0.0946	95	85 - 115	2007-05-25	
Toluene		mg/Kg	0.100	0.0945	94	85 - 115	2007-05-25	

 $continued \dots$

State L #2

Work Order: 7052525

State L #2

Page Number: 33 of 36 Buckeye,NM

standard	continued		

			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Ethylbenzene		mg/Kg	0.100	0.0896	90	85 - 115	2007-05-25
Xylene	***	${ m mg/Kg}$	0.300	0.270	90	85 - 115	2007-05-25

Standard (CCV-1)

QC Batch: 37548

Date Analyzed: 2007-05-25

Analyzed By: MT

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene		mg/Kg	0.100	0.0966	97	85 - 115	2007-05-25
Toluene		mg/Kg	0.100	0.0968	97	85 - 115	2007-05-25
Ethylbenzene		mg/Kg	0.100	0.0874	87	85 - 115	2007-05-25
Xylene		mg/Kg	0.300	0.272	91	85 - 115	2007-05-25

Standard (ICV-1)

QC Batch: 37549

Date Analyzed: 2007-05-25

Analyzed By: MT

			ICVs True	ICVs Found	$rac{ ext{ICVs}}{ ext{Percent}}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	0.922	92	85 - 115	2007-05-25

Standard (CCV-1)

QC Batch: 37549

Date Analyzed: 2007-05-25

Analyzed By: MT

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		m mg/Kg	1.00	1.02	102	85 - 115	2007-05-25

Standard (ICV-1)

QC Batch: 37552

Date Analyzed: 2007-05-26

Analyzed By: TG

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		m mg/Kg	250	258	103	85 - 115	2007-05-26

Standard (CCV-1)

QC Batch: 37552

Date Analyzed: 2007-05-26

Analyzed By: TG

State L #2

Work Order: 7052525

State L #2

Page Number: 34 of 36 Buckeye,NM

Dunne	T71 o	Linito	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param DRO	Flag	Units mg/Kg	Conc. 250	Conc. 239	Recovery 96	Limits 85 - 115	Analyzed 2007-05-26

Standard (CCV-2)

QC Batch: 37552

Date Analyzed: 2007-05-26

Analyzed By: TG

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		${ m mg/Kg}$	250	217	87	85 - 115	2007-05-26

Standard (ICV-1)

QC Batch: 37553

Date Analyzed: 2007-05-26

Analyzed By: TG

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	212	85	85 - 115	2007-05-26

Standard (CCV-1)

QC Batch: 37553

Date Analyzed: 2007-05-26

Analyzed By: TG

			$rac{ ext{CCVs}}{ ext{True}}$	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		m mg/Kg	250	222	89	85 - 115	2007-05-26

Standard (ICV-1)

QC Batch: 37618

Date Analyzed: 2007-05-29

Analyzed By: KB

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	. Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0936	94	85 - 115	2007-05-29
Toluene		mg/Kg	0.100	0.0922	92	85 - 115	2007-05-29
Ethylbenzene		mg/Kg	0.100	0.0887	89	85 - 115	2007-05-29
Xylene		mg/Kg	0.300	0.265	88	85 - 115	2007-05-29

Standard (CCV-1)

QC Batch: 37618

Date Analyzed: 2007-05-29

Analyzed By: KB

State L #2

Work Order: 7052525

State L #2

Page Number: 35 of 36 Buckeye,NM

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene		mg/Kg	0.100	0.0927	93	85 - 115	2007-05-29
Toluene		mg/Kg	0.100	0.0902	90	85 - 115	2007-05-29
Ethylbenzene		mg/Kg	0.100	0.0875	88	85 - 115	2007-05-29
Xylene		mg/Kg	0.300	0.264	88	85 - 115	2007-05-29

Standard (CCV-1)

QC Batch: 37678

Date Analyzed: 2007-05-30

Analyzed By: TG

			CCVs True	${ m CCVs}$ Found	$rac{ ext{CCVs}}{ ext{Percent}}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	274	110	85 - 115	2007-05-30

Standard (CCV-2)

QC Batch: 37678

Date Analyzed: 2007-05-30

Analyzed By: TG

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	248	99	85 - 115	2007-05-30

Standard (ICV-1)

QC Batch: 38249

Date Analyzed: 2007-06-15

Analyzed By: ER

			$_{ m TCVs}$	ICVs,	ICVs	Percent	D /
Param	Flag	Units	True Conc.	Found Conc.	Percent Recovery	Recovery Limits	Date Analyzed
Chloride		m mg/Kg	12.5	11.9	95	90 - 110	2007-06-15

Standard (CCV-1)

QC Batch: 38249

Date Analyzed: 2007-06-15

Analyzed By: ER

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		${ m mg/Kg}$	12.5	13.5	108	90 - 110	2007-06-15

Standard (ICV-1)

QC Batch: 38310

 $Date\ Analyzed:\ \ 2007\text{-}06\text{-}18$

Analyzed By: ER

State L #2

Work Order: 7052525

State L #2

Page Number: 36 of 36

Buckeye,NM

Param	Flag	Units	ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Chloride		mg/Kg	12.5	12.9	103	90 - 110	2007-06-18

Standard (CCV-1)

QC Batch: 38310

Date Analyzed: 2007-06-18

Analyzed By: ER

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	12.5	12.9	103	90 - 110	2007-06-18

15 Harris Pkvy., Suite 110 Ft. Worth, Texas 76132 Tel (817) 201-5260 Turn Around Time if different from standard 6015 Harris Pkvvy. or Specify Method No.) Dry Weight Basis Required Check If Special Reporting Limits Are Needed ➣ ``> `> TRRE Report Required ANALYSIS REQUEST Moisture Content Page 00 East Stimset Rd., Suite E El Paso, Texas 79922 Tel (915) 585-3443 Fax (915) 585-4944 I (888) 588-3443 Ho, ,22T ,008 Pesticides 8081A / 608 200 East Sunset Rd. PC3's 8082 / 508 GC/MS Semi: Vol. 3270C / 625 REMARKS: GC/MS AOF 8560B / 624 RCI TCLP Pesticides TCLP Semi Volatiles Circle TCLP Volatiles 5002 Basin Street, Suite A1 Midland, Texas 79703 Tel (432) 689-5301 Fax (432) 689-6313 TCLP Metais Ag As Ba Cd Cr Pb Se Hg AB USE Total Metals Ag As Ba Cd Cr Pb Se Hg 60108/200.7 > INO Z /> Lög-in Keview PAH 8270C / 625)⊗/5 TPH 8015 GRO / DRO / TPH Heartspace TPH 418.1 / TX1005 / TX1005 Ext(C35) Inlact Temp X3T8 80218 / 802 / 32608 / 81208 38TM h8:1 2:06 05:2 20:1 3:00 O: SAMPLING Bostani TIME Suile 6701 Aberdeen Avenue. Suite Lubbock, Texas 79424 Tel (806) 794-1295 Fex (806) 794-1298 † (800) 378-1296 3976388 12/5 12/ 12/ 12 17/ 17 5. **BTA G** Time: 1 Jack 1 Sampler Signature: PRESERVATIVE NONE METHOD ICE HOBN (Jes Dale: Date: 1-925 105°H Project Manie HNO Phone #: HC Fax#: Regulyed at Laboratory/by: STADGE MATRIX AIR Tace Analysis, Inc. SOIL **RBTAW** Received by: email: lab@traceanalysis.com 4 02 5 £, 5 5 S 5 5 5 JuomA \ emuloV cortentationa # CONTAINERS Project Location (including state): Time: Time: FIELD CODE Date: (Street, City, Zip) Date: 20 (If different from above) Project #: Relinquished by: Relinduished by: Refingitished by: Company Name: Contact Person LAB USE) hvoice to: [h98] 3 ਹ ਹ 3

30 40 GOGBA

Carrier #

Submittal of samples constitutes agreement to Terms and Conditions listed on reverse side of C. O. C.

ö

のろらから

LAB Order ID #

1

ö

Page

200 East Simset Rd., Suite E. El Paso, Texas 79922 Tel (915) 585-3443 Fax (915) 585-3443 (988) 588 3443 5002 Basin Street, Suite A1 Midland, Texas 79703 Tel (432) 589-5301 Fax (432) 589-5313 6701 Aberdeen Avenue. Suite 9 Lubbock, Taxas 79424 Et (966) 794-1296 Fax (966) 794-1298 1 (800) 378-1298 I ace analysis, inc email: lab@traceanalysis.com

6015 Harris Pkwy., Suite 11 Ft. Worth, Texas 76132 Tel (817) 201-5260 Disbusts mort inerelifib it emiT bruorA muT 2 or Specify Method Dry Weight Basis Required Check If Special Reporting Limits Are Meeded IRRP Report Required Moisture Content ANALYSIS REQUEST Hq ,28T ,008 Pesticides 8081A \ 608 PCB's 8082 / 608 9270C / 625 GC/MS Semi. Vol. REMARKS GC/MS //OI: 8260B / 624 BCI TOLP Pesticides TCLP Semi Volatiles Circle TCLP Volatiles ∠ ∠ TOLP Metals Ag As 8a Cd Cr Pb Se Hg **EVBUSE** Total Metals Ag As Ba Cd Cr Pb Se Hg 60108/2007 (y) N ONLY Headspace (PAH 8270C / 625 Led-in Review TPH 8015 GRO / DRO LEST TPH 418,1 / TX1005 / TX1005 Ext(C35) Intact Temp (80218 / 金数 / 81208 XBT8 9024B / 802 / 8280B / 824 38TIN ¥: 36 B. the 55 53 17 SAMPLING TIME Ç. 57 **3TAG** NONE PRESERVATIVE METHOD ICE Sampler Signature: HOBM Date: 102 Date: 5051 Date; FOS²H Project Name: HNO Phone #; HCI Fax #: Received at Laboratoly by SUBBLE MATRIX ЯIA TIOS \geq **MATER** Received by: Received by 8 3 7 3 Johnme / Amount # CONTAINERS 11: 30 cars Time: Time: FIELD CODE Project Location (including state): Date: 6.0 (If different from above) Project #: Company Name: Relinquished by: Refinguished by: Réfinguished by: Contact Person: LAB USE) Invoice to: $\mathcal{L}_{\mathcal{J}}$ 1,35351 3 5 I VE 55 Address

Submittal of samples constitutes agreement to Terms and Conditions listed on reverse side of C. MUCC INTRICTOR

Ö

915 900 0h st

Carrier # (5-5

6015 Harris Pkwy. Suite 110 Ft. Worth, Texas 76132 Tel (817) 201-5260 Circle or Specify Method No.) **ANALYSIS REQUEST** Moisture Content Page 200 East Sunset Rd., Suite E El Paso, Texas 79922 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443 BOD, TSS, pH 808 \ At 808 sebicites PCB's 8082 / 608 GC/MS Semi. Vol. 8270C / 625 CC/W2 AOI 8560B / 624 **BCI** TCLP Pesticides TCLP Semi Volatiles TCLP Volatiles 5002 Basin Street, Suite A1 Midland, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313 TCLP Metals Ag As Ba Cd Cr Pb Se Hg 2525 Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 TPH 8015 GRO / DRO / **ESS** TPH 418.1 / TX1005 / TX1005 Ext(C35) *γ* 8051B / (C) (C) **X**∃T8 ;> 0 80218 | 602 | 82608 | 624 **MTBE** 2:53 5/21/2:53 2.0% 2:50 3:00 00:1 70.1 1:34 3:16 SAMPLING **3MIT** Battery 88891.56 (cs. 397039X 6701 Aberdeen Avenue, Sui Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296 12/2 121 121 12/ /21 12/ /z/> 17 121 **BTA** LAB Order ID PRESERVATIVE NONE Sampler Signature: METHOD ICE HOBN 1205 DS2H Project Name: HNO3 Phone #: HCI SCUDGE MATRIX ЯΙΑ TraceAnalysis, Inc. COIL **A3TAW** email: lab@traceanalysis.com E B ह な 6 В 8 8 6 JunomA \ amuloV # CONTAINERS Project Location (including state): FIELD CODE Street, City, Zip 70 \odot If different from above Company Name: Contact Person: AB USE ONLY C) 3 38341 ß 63 ス 3 nvoice to: Project #: त्र LAB# Address

Turn Around Time if different from standard

Submittal of samples constitutes agreement to Terms and Conditions listed on reverse side of C. O. C.

ORIGINAL COPY

Dry Weight Basis Required

10-61-7

REMARKS

AB USE

Date:

Received by

Time:

Date:

Relinquished by:

Relinduished by:

ONLY

TRRP Report Required

Check If Special Reporting Limits Are Needed

Log-in-Review

Carrier #

Headspace

Intact

Date:

Received by

Time:

Date:

Relinquished by:

11.30 pm

6015 Harris Pkwy.. Suite 110 Ft. Worth, Texas 76132 Tel (817) 201-5260 ŝ **Circle or Specify Method ANALYSIS REQUEST** Moisture Content Page 200 East Sunset Rd., Suite E El Paso, Texas 79922 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443 BOD, TSS, pH Pesticides 8081A / 608 **LCB**, 8082 \ 608 GC/MS Semi. Vol. 8270C / 625 REMARKS GC/W2 A91 8560B / 624 **BCI** TCLP Pesticides TCLP Semi Volatiles 1 23 TCLP Volatiles 5002 Basin Street, Suite A1 Midland, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313 TCLP Metals Ag As Ba Cd Cr Pb Se Hg Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 PAH 8270C / 625 TPH 8015 GRO / DRO / C TPH 418.1 / TX1005 / TX1005 Ext(C35) 80218 / 662 / 6562 / 657 X3T8 €. 80218 / 602 / 82608 / 624 **BETM** 4:36 543 5h % 4:08 6701 Aberdeen Avenue, Suite 9 Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1298 SAMPLING **TIME** 8859 £68 (201) 3970397 121 [j T, **3TA** LAB Order ID # PRESERVATIVE NONE ICE METHOD Sampler Signature: NaOH Date: 505 ⁵OS²H Project Name: HNO³ Phone #: HCI SCUDGE MATRIX ЯΙΑ TraceAnalysis, Inc. SOIF **A**3TAW email: lab@traceanalysis.com ß 20 8 ఠ В Received Volume / Amount # CONTAINERS Time: FIELD CODE Project Location (including state): Street, City, (If different from above) Relinquished by: Company Name: Contact Person LAB USE) ONLY 18881 Invoice to: \aleph $\widetilde{\mathcal{L}}$ SY Project #: LAB# 55 Address: 1000

PIOH

Turn Around Time if different from standard

Submittal of samples constitutes agreement to Terms and Conditions listed on reverse side of C. O. C.

Received at Laboratory by

Time:

Date:

Relinquished by:

ORIGINAL COPY

Dry Weight Basis Required

LAB USE

ONLY

ntact

Date:

Received by:

Time:

Rélinquished by:

<u>چ</u>

TRRP Report Required

Check If Special Reporting Limits Are Needed

3740 000 576

Carrier # (>~S

Log-in-Review

APPENDIX III

INVENTORY OF WATER WELLS

STATE L-2 TANK BATTERY

August 2007

Chesapeake Operating, Inc. Hobbs, NM

Prepared by: BBC International, Inc.

New Mexico Office of the State Engineer **POD Reports and Downloads**

Township: 17S	Range: 36E	Sections: 17,	18,19,20,30						
NAD27 X:	Y:	Zone:	Search Radius:						
County:	Basin:		Number:	Suffix:					
Owner Name: (First)	(Las	st)	O Non-Domestic	ODomestic					
POD / Surface Data Report Avg Depth to Water Report Water Column Report									
Clear Form iWATERS Menu Help									

WATER COLUMN REPORT 07/25/2007

(quarters	s are 1	.=NW 2=1	NE 3=SW	4=SE)
(quarter:	s are b	iggest	to sma	llest)
Tws	Rng Se	c q q	g Zon	.e

(qu	arter	s are bi	gge	est	to	smallest)			Depth	Depth	wate
POD Number	Tws	Rng Sec	đ	q ç	I	Zone	x	Y	Well	Water	Colum
L 04602	17S	36E 17	3	4 2	2				115	45	7
L 04602 APPRO	17S	36E 17	4	3 2	2				115	45	7
L 04171 APPRO	17S	36E 18	1	4					128	128	
L 04171	17S	36E 18	1	4					128	128	
L 05407	17S	36E 19	1	4					108	49	Ē
L 10681	17S	36E 19	4	1					120	40	8
L 05361	17S	36E 20							123	90	3
L 09342	17S	36E 20							138	60	7
L 04599 APPRO	17S	36E 20	1	2					128	38	Ĉ
L 04599	17S	36E 20	1	2					128	38	č
L 05181	17S	36E 20	1	4					125	75	Ē
L 04549 APPRO	17S	36E 20	2	1					121	48	7
L 04549	17S	36E 20	2	1					121	48	7
L 07862	17S	36E 20	3	4					110	58	Ē
L 04601	17S	36E 30							125	50	7
L 07792	17s	36E 30	4						225		

Record Count: 16

New Mexico Office of the State Engineer POD Reports and Downloads

Township: 17	S Range: 35E	Sections: 1	13,24,25						
NAD27 X:	Y:	Zone:	Search Radius:						
County:	Basin:		Number:	Suffix:					
Owner Name: (First)	(1	Last) ② All	O Non-Domestic	O Domestic					
POD / Surface Data Report Avg Depth to Water Report Water Column Report									
	Clear Form	WATERS	Menu Help						

WATER COLUMN REPORT 07/25/2007

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are diggest to smallest)						Deptn Deptn		wat€	
POD Number	Tws	Rng Sec	d d d	Zone	x	Y	Well	Water	Colum
L 04503 APPRO	17s	35E 24	2				90	43	Ĺ
L 04503	17s	35E 24	2				90	43	Ĺ
L 04875	17s	35E 25	2 1 1				130	71	Ē
L 08124	17S	35E 25	4 4 4				125	58	6

Record Count: 4

APPENDIX IV

DRILLING LOGS

STATE L-2 TANK BATTERY

August 2007

Chesapeake Operating, Inc. Hobbs, NM

Prepared by: BBC International, Inc.

File	Number:	

1.OWNER OF WELL			
Name: Chesapeake	Operating	Work Phone:	
Contact:		Home Phone:	
Address: P.O. Box 190			
City: Hobbs		State: NM Z	ip: 88241
2 TOCAMION OF WHITE OF S	u p manipud p an p is but		
2. LOCATION OF WELL (A,B,C,c	_		nge. 36F NMPM
in Lea			County.
B. X =Zone in the	feet, Y =	feet, N.M.	Coordinate System Grant.
U.S.G.S. Quad Map			
C Tatituda, 32 d 40	m 31 5 a Tongita	.do. 102 d 23	m 45.0 s
C. Latitude: <u>32</u> d <u>49</u>			
D. East (m), No	orth(m), UTN	I Zone 13, NAD	(27 or 83)
E. Tract No, Map	No of the	Нус	rographic Survey
F. Lot No. , Bloc	k Noof Unit/Tract		of the
	Subdivision recorded in		
G. Other: #2 State L Tank IH. Give State Engineer FiI. On land owned by (requ		:	IM 88260
	ing Company, Inc. hite 06		
City: Clyde		State: _TX Z.	ip: 79510
Size of hole: 6 1/8 in.;	; Completed: 5/01/07 Total depth of well: 50.0 (shallow, artestion of well: 40.80	ft.;	Air Rotary ;
File Number:	nage 1 of 4	Trn Number:	
PO 1111 - WC- 211	DAGE LOT 4		

Cinches Per ft Per in Top Bottom (feet) From 2.0 Sch. 40 4.0 0.0 35.0	
Depth in Feet Hole Sacks Cubic Feet Method of Placement From To Diameter of mud of Cement 50.0 10.0 6 1/8 12.0 Bentonite Pellets 10.0 0.0 6 1/8 5.0 19.97 cement PLUGGING RECORD Plugging Contractor:	
Depth in Feet Hole Sacks Cubic Feet Method of Placement From To Diameter of mud of Cement 50.0 10.0 6 1/8 12.0 Bentonite Pellets 10.0 0.0 6 1/8 5.0 19.97 cement PLUGGING RECORD Plugging Contractor:	
10.0 0.0 6 1/8 5.0 19.97 cement PLUGGING RECORD Plugging Contractor:	
Plugging Contractor:	
Address: Plugging Method: Date Well Plugged:	
Plugging approved by: State Engineer Representative	<u></u>
No. Depth in Feet Cubic Feet of Cement Top Bottom	
1	
3	
4	
5	

File Number:

File	Number:		

a	TOC	OF	HOLE:	CD_1
Э.	ムノして	OP.	HOTE:	24-1

Depth in From	feet To	Thickness in feet	Color and Type of Material Encountered
0.0	1.0	1.0	Brown sandy clay & limestone rock.
1.0	3.0	2.0	Limestone.
3.0	5.0	2.0	Stained caliche w/limestone gravel.
5.0	16.0	11.0	Stained caliche w/greenish gray sand.
16.0	22.0	6.0	Stained greenish gray sand.
22.0	26.0	4.0	Black stained sand.
26.0	35.0	9.0	Light brown sand.
35.0	38.0	3.0	Light gray sand.
38.0	50.0	12.0	Light brown sand & sandstone. Wet @ 40'
		12.0	Eight blown saint & saintstone. Wet @ 40
	·		
-			
	-		

	-		

	-	\	
	-		
	• •		
			

File	Number:					Trn Number:	
	Form:	wr-20	page 3	of	4	-	_

File	Number:	

Temporary well	set to measure groundwater for 24 hours, pull and plugged.
*	
· · · · · · · · · · · · · · · · · · ·	
	·
The undersign	ned hereby certifies that, to the best of his knowledge and
belief, the f	foregoing is a true and correct record of the above describ
hole.	
	n_{1}
	Dri / ler (mm/dd/year)
========	
	FOR STATE ENGINEER USE ONLY
Quad ; FW	L ;FSL ;Use ;Location No

File	Number:	

1. OWNER OF WELL	
Name: Chesapeake Operating	Work Phone:
Contact:	Home Phone:
Address: P.O. Box 190	
City: Hobbs	State: NM 2ip: 88241
2. LOCATION OF WELL(A,B,C,or D required,E or F if know A1/41/4 Section: 19 Town in Lea	
B. X =feet, Y =	feet, N.M. Coordinate System Grant.
U.S.G.S. Quad Map	
C. Latitude: 32 d 49 m 33.1 s Longitud	le: <u>103</u> d <u>23</u> m <u>43.3</u> s
D. East (m), North (m), UTM	Zone 13, NAD (27 or 83)
E. Tract No, Map Noof the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract Subdivision recorded in	County.
H. Give State Engineer File Number if existing well: 1. On land owned by (required): Darr Angell, P.O. Box 3. DRILLING CONTRACTOR License Number: WD-1456 Name: White Drilling Company, Inc. Agent: John W. White	190, Lovington, NM 88260 Work Phone: 325-893-2950
Mailing Address: P.O. Box 906	
City: Clyde 4. DRILLING RECORD SB-2	State: TX Zip: 79510
Drilling began: 5/03/07 ; Completed: 5/03/07	: Type tools: Air Rotary
Size of hole: 6 1/8 in.; Total depth of well: 38.0	
Completed well is: Shallow (shallow, artes	
Depth to water upon completion of well: Dry	ft.
File Number: Form: wr-20 page 1 of 4	Trn Number:

. PRINCII	PAL WATE	R-BEARING	STRATA:	SB-2			
Depth :	in Feet To			ption of bearing format	ion	Es	timated Yield (GPM)
. RECORD	OF CASI						
		nds Threads	_	in Feet Le Bottom (f		pe of Shoe	Perforation: From To
	in Feet	DING AND CE	Sacks		Meth	od of Placem	nent
From 38.0		Diameter		of Cement	Bentonit	. Dellote	
10.0	10.0 0.0	6 1/8 6 1/8	8.0 5.0	19.97	cement	e Pellets	
Pluggin	Add ugging Me	ctor: ress: thod:					
Pluggin	g approve	d by:		State Engir	neer Repres	entative	
	1	Top Bott	om	c Feet of Ceme			

page 2 of 4

File Number:

Form: wr-20

Trn Number:

File Number:

File	Number:		

_				
Q.	T.OG	α	HOLE .	SB-2

Depth in From 0.0	feet To 0.5	Thickness in feet 0.5	Color and Type of Material Encountered Black stained sand.
0.5	3.0	2.5	Limestone.
3.0	4.0	1.0	Caliche & tan sand.
4.0	7.0	3.0	Limestone.
7.0	13.0	6.0	Caliche & tan sand.
13.0	17.0	4.0	Tannish pink sand & sandstone.
17.0	22.0	5.0	Hard sandstone.
22.0	38.0	16.0	Tannish brown sand & sandstone.
22.0	30.0	10.0	Tannish brown sand & sandstone.
-			
	· · · · · · · · · · · · · · · · · · ·		
			
		-	
 			
			
	<u></u>		

File	Number:					Trn Numbe:	r:	
	Form:	wr-20	page 3	of	4			

File Number:
NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD
ADDITIONAL STATEMENTS OR EXPLANATIONS: SB-2 Chlorides present in soil.
The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.
7/10/07
Driller (mm/dd/year)
FOR STATE ENGINEER USE ONLY

page 4 of 4

File Number:

Form: wr-20

Trn Number:

File	Number:	

1.OWNER OF WELL	
Name: Chesapeake Operating	Work Phone:
Contact:	Home Phone:
Address: P.O. Box 190	_
City: Hobbs	State: NM Zip: 88241
2. LOCATION OF WELL(A,B,C,or D required,E or F if know	m)
A1/41/41/4 Section: 19 Town	
in Lea	County.
B. X = feet, Y =	feet, N.M. Coordinate System
U.S.G.S. Quad Map	Grant.
C. Latitude: 32 d 49 m 32.9 s Longitud	de: 103 d 23 m 42.9 s
D. East (m), North (m), UTM	Zone 13, NAD(27 or 83)
E. Tract No, Map Noof the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract	of the
Subdivision recorded in	
G. Other: #2 State L Tank Battery	
H. Give State Engineer File Number if existing well:	
n. Give scace Engineer Fire Number in existing well.	
I. On land owned by (required): Darr Angell, P.O. Box	190, Lovington, NM 88260
2 PDTTT TVG GOVERN GROU	
3. DRILLING CONTRACTOR License Number: WD-1456	
Name: White Drilling Company, Inc.	- Work Phone: 325-893-2950
Agent: John W. White	
Mailing Address: P.O. Box 906	Home Phone.
	_
City: Clyde	State: TX Zip: 79510
4. DRILLING RECORD SB-3	m Ain Datama
Drilling began: 5/03/07; Completed: 5/03/07	
Size of hole: 6 1/8 in.; Total depth of well: 35.0 Completed well is: Shallow (shallow, arte:	
Depth to water upon completion of well: Dry	
bopen to water upon completion of well.	
File Number: Form: wr-20 page 1 of 4	Trn Number:
FOLIN: WITZU DAGE 1 OT 4	

	NEW MEXI		CE OF THE	- -	ENGINEER	
. PRINCIPAL WATER-	-BEARING	STRATA:	SB-3			
Depth in Feet From To	in feet	water-	bearing for		Es	timated Yield (GPM)
S.RECORD OF CASING	G					
Diameter Pound. (inches) per ft	. per in.	Top	Bottom	(feet)	Type of Shoe	From To
Depth in Feet From To	Hole	MENTING Sacks	Cubic Fee		Method of Placer	nent
35.0 10.0	6 1/8	7.0			tonite Pellets	
10.0 0.0	6 1/8	4.5	19.97	cem	ent	
Plugging Contract Addre Plugging Meth Date Well Plugg Plugging approved	ess: nod: red:	1.0				
			State Er		epresentative	
To	p Bott	om				
4					-	

Form: wr-20

Trn Number:

File Number:

	NEW		ICE OF THE STATE ENGINEER WELL RECORD
9. LOG OF HO	LE: SB-3		
Depth in From	To	Thickness in feet	Color and Type of Material Encountered
0.0	1.0	1.0	Black stained sandy clay.
1.0	4.0	3.0	Limestone.
4.0	10.0	6.0	Caliche & tan sand.
10.0	18.0	8.0	Tan sand.
18.0	21.0	3.0	Hard sandstone.
21.0	35.0	14.0	Light brown sand & sandstone.
21.0	33.0	14.0	Light brown sand & sandstone.
		· · · · · · · · · · · · · · · · · · ·	
			
·			

page 3 of 4

File Number:

Form: wr-20

Trn Number:

File Number:

			WELL	RECORD		
	ADDITIONAL	L STATEMENTS ent in soil.	S OR EXPLANA	ATIONS:SB-3		
	·					
	<u></u>					
The bel	ief, the	ned hereby of foregoing is	certifies the and	at, to the correct re	best of his kr cord of the ab	owledge and oove described
			•	σ	1110107	
		Drifler		(mr	m/dd/year)	
==				=======:		=======
			FOR STATE E	MOTATED WA	E 017 V	

File Number:
Form: wr-20

File	Number:	

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

1.OWNER OF WELL Name: Chesapeake Operating	Work Phone:
Contact:	Home Phone:
Address: P.O. Box 190	
City: Hobbs	State: NM Zip: 88241
2.LOCATION OF WELL(A,B,C,or D required,E	or F if known)
	: 19 Township: 17S Range: 36E N.M.P.M. County.
B. $X = $ feet, $Y = $ Zone in the	feet, N.M. Coordinate System Grant.
U.S.G.S. Quad Map	
C. Latitude: <u>32</u> d <u>49</u> m <u>32.0</u>	s Longitude: 103 d 23 m 43.7 s
D. East(m), North	(m), UTM Zone 13, NAD(27 or 83)
	f theHydrographic Survey
	Unit/Tract of the
	recorded inCounty.
H. Give State Engineer File Number if e. I. On land owned by (required): Darr And and a state of the state o	ngell, P.O. Box 190, Lovington, NM 88260 C. Work Phone: 325-893-2950
City: Clyde	State: TX Zip: 79510
4. DRILLING RECORD SB-4 Drilling began: 5/21/07; Completed Size of hole: 6 1/8 in.; Total depth of Completed well is: Shallow (specific posterior) (specifi	well: 35.0 ft.; shallow, artesian);
File Number: Form: wr-20 page 1 o	Trn Number:

		NEW MEXI		CE OF THE	STATE I	ENGINEER		
Depth :	. PRINCIPAL WATER-BEARING ST Depth in Feet Thickness From To in feet			ption of		Estimated Yield (GPM)		
. RECORD	OF CASI	NG						
		ds Thread: ft. per in			Length (feet)	Type of	Shoe	Perforations From To
. RECORD	OF MUDD	ING AND CE	EMENTING					
Depth From 35.0	in Feet To 10.0	Hole Diameter 6 1/8		of Cement		ethod of l		ent
10.0	0.0	6 1/8	4.0	19.97	ceme		.5	
Plı	ng Contrac Addı ngging Met	ctor:						
		d by:				presentati	ive	
	1 2 3	Fop Bot	tom	ic Feet of Cen				

File Number:
Form: wr-20

Trn Number:

File Number:

File Number:

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

WELL RECORD 9.LOG OF HOLE: SB-4 Depth in feet Thickness Color and Type of Material Encountered From To in feet 0.0 1.0 1.0 Brown sandy clay. 1.0 4.0 3.0 Limestone. 4.0 7.0 3.0 Caliche & limestone. 7.0 13.0 6.0 Limestone. 13.0 19.0 6.0 Caliche w/thin layered limestone. 19.0 23.0 4.0 Tannish brown sand. 23.0 25.0 2.0 Light brown sand & calcihe. 25.0 35.0 10.0 Tan sand and sandstone.

File N	Number:						Trn N	Number:	
	Form:	wr-20	 page	3 (of	4			

AUULILUU K	L STATEMENTS	S OR EXPL	IP • PKOTTAKA	R-4	
Chlorides pres		OK HALL	MAI TOND. DI	5 4	
* * * *					
 					
The undersion	ned hereby o	rertifies	that, to the	he best	of his knowledge and
belief, the	foregoing is	s a true a	and correct	record	d of the above describe
hole. r	,)			
				0/10	107
<u> </u>	Driller			(mm/dd	107 /year)
Ĭ.	•				<u>.</u> .
	=======================================				
	1	FOR STATE	ENCINEED	USE ON	JT,Y

File Number:
Form: wr-20

File	Number:	

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

1. OWNER OF WELL	
Name: Chesapeake Operating	Work Phone:
Contact:	Home Phone:
Address: P.O. Box 190	_
City: Hobbs	State: NM Zip: 88241
2. LOCATION OF WELL (A,B,C,or D required,E or F if know	m)
A1/41/41/4 Section: 19 Town	
B. X =feet, Y =	feet, N.M. Coordinate System
U.S.G.S. Quad Map	
C. Latitude: 32 d 49 m 32.8 s Longitud	de: <u>103</u> d <u>23</u> m <u>45.0</u> s
D. East(m), North(m), UTM	Zone 13, NAD (27 or 83)
E. Tract No, Map No of the	Hydrographic Survey
F. Lot No, Block Noof Unit/Tract	of the
Subdivision recorded in	County.
I. On land owned by (required): Darr Angell, P.O. Box 3. DRILLING CONTRACTOR License Number: WD-1456 Name: White Drilling Company, Inc. Agent: John W. White P.O. Box 906	Work Phone: 325-893-2950
City: Clyde	
4. DRILLING RECORD SB-5 Drilling began: 5/21/07 ; Completed: 5/21/07 Size of hole: 6 1/8 in.; Total depth of well: 20.0 Completed well is: Shallow (shallow, arter per per per per per per per per per p	ft.; sian);
File Number:	Trn Number:
Form: wr-20 page 1 of 4	TIL NUMBEL.

					Fi	le Number:	
		NEW MEXI		CE OF THI		ENGINEER	
5. PRINCIP	AL WATE	R-BEARING	STRATA:	SB-5			
Depth i From	n Feet To	Thickness in feet			rmation	E:	stimated Yield (GPM)
6.RECORD Diamete (inches	r Poun	ds Threads	. Top	Bottom	(feet)	Type of Shoe	From To
Depth :	OF MUDD in Feet To 10.0	Hole Diameter 6 1/8	Sacks	Cubic Fee	:	Method of Place	ment
	0.0	6 1/8	4.0	19.97	ceme	ent	
	g Contrac Addr						
Date 1	Well Plug	ged:					
Plugging	approved	l by:		State E	ngineer Re	presentative	
	1 2 3	Depth in F	COM				

File Number:

Form: wr-20

			File Number:							
	NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD									
9.LOG OF HO	LE: SB-5									
Depth in From	feet To	Thickness in feet	Color and Type of Material Encountered							
0.0	1.5	1.5	Stained black caliche.							
1.5	4.0	2.5	Limestone.							
4.0	8.0	4.0	Caliche & thin layered limestone.							
8.0	12.0	4.0	Caliche & tan sand.							
12.0	16.0	4.0	Limestone.							
16.0	18.0	2.0	Tannish brown sandstone.							
18.0	20.0	2.0	Hard brown sandstone.							
										
										
										
										
										

File Number:		Trn Number:	
Form: wr-20	page 3 of 4		

	File Number:
	NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD
	ADDITIONAL STATEMENTS OR EXPLANATIONS: SB-5 Chlorides present in soil.
٠	
	The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole. Driller (mm/dd/year)
	•
	FOR STATE ENGINEER USE ONLY
	Quad; FWL; FSL; Use ; Location No.

File Number:

Form: wr-20

File	Number:	

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

1.OWNER OF WELL	
Name: Chesapeake Operating	
Contact:	Home Phone:
Address: P.O. Box 190	
City: Hobbs	State: <u>NM</u> Zip: <u>88241</u>
2. LOCATION OF WELL(A,B,C,or D required,E or F if know	wn)
A1/41/4 Section: 19 Town in Lea	nship: 17S Range: 36E N.M.P.M. County.
B. X = feet, Y = Zone in the	feet, N.M. Coordinate System Grant.
U.S.G.S. Quad Map	
C. Latitude: 32 d 49 m 35.0 s Longitud	de: <u>103</u> d <u>23</u> m <u>38.4</u> s
D. East (m), North (m), UTM	Zone 13, NAD(27 or 83)
E. Tract No, Map No of the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract	of the
Subdivision recorded in	
G. Other: #2 State L Tank Battery H. Give State Engineer File Number if existing well: I. On land owned by (required): Darr Angell, P.O. Box	
3. DRILLING CONTRACTOR	
License Number: WD-1456	
Name: White Drilling Company, Inc.	
Agent: John W. White	Home Phone: 325-893-2950
Mailing Address: P.O. Box 906	_
Chido	
City: Clyde	State: 1X Zip: 79510
4. DRILLING RECORD SB-6 Drilling began: 5/21/07 ; Completed: 5/21/07 Size of hole: 6 1/8 in.; Total depth of well: 25.0 Completed well is: Shallow (shallow, arte	ft.; sian);
Depth to water upon completion of well: Dry	£ L.
File Number.	Man Number
File Number: Form: wr-20 page 1 of 4	Trn Number:

		NEW MEXI		CE OF THE ELL RECOR		ENGINEER	
Depth :	in Feet	ER-BEARING Thickness	Descri	ption of		E:	stimated Yield
From				bearing for			(GPM)
6. RECORD	OF CASI	ING					
		nds Threads	Тор		(feet)		Perforations From To
	in Feet To	Hole Diameter	Sacks of mud			Method of Place	ment
10.0	0.0	6 1/8 6 1/8	5.0 4.0	19.97	ceme		····
Plu Date	ng Contra Add ngging Me Well Plu	ctor: ress: thod: gged:	verson in				
	1 2 3 4	. Depth in F	com	c Feet of C	ement	presentative	
File Numbe	r:				Trr	Number:	

Form: wr-20

File Number: _

					:	File Number:	
NEW	MEXICO	OFFICE	OF	THE	STATE	ENGINEER	

9.LOG OF HOLE: SB-6

Depth in		Thickness	Color and Type of Material Encountered
From	To	in feet	
0.0	1.5	1.5	Stained black caliche.
1.5	3.0	1.5	Limestone.
3.0	5.0	2.0	Caliche & limestone.
5.0	6.0	1.0	Limestone.
6.0	9.0	3.0	Caliche & tan sand.
9.0	10.0	1.0	Hard limestone.
10.0	18.0	8.0	Tan sand & sandstone.
18.0	22.0	4.0	Hard brown sandstone.
22.0	25.0	3.0	Tannish brown sand & sandstone.
	-		
			- The state of the
			
<u> </u>			
	-		

WELL RECORD

File	Number:		Trn Number:	
	Form: wr-20	page 3 of 4		

	File Number:
	NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD
ADDITION Chlorides pr	AL STATEMENTS OR EXPLANATIONS: SB-6 esent in soil.
The unders belief, the hole.	igned hereby certifies that, to the best of his knowledge and e foregoing is a true and correct record of the above described
<u>,, , , , , , , , , , , , , , , , , , ,</u>	Driller (mm/dd/year)
	,
=======	
	FOR STATE ENGINEER USE ONLY
01	
ouad :	FWL :FSL :Use :Location No.

File Number:

Form: wr-20

TABLES

TABLE 1 SUMMARY SOIL ANALYTICAL DATA TABLE 2 SUMMARY GROUND WATER ANALYTICAL DATA

STATE L-2 TANK BATTERY

August 2007

Chesapeake Operating, Inc. Hobbs, NM

Prepared by: BBC International, Inc.

Table 1. Soil Laboratory Analytical Results Summary
State L-2 Tank Battery

		Sample	SB1 @ 1"	SB1 @ 3'	SB1 @ 5'	SB1 @ 30'	SB1 @ 50'
Analyte	Method	Date					
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Benzene	S 8021B	05/01/07	<0.0100	<0.100	0.256	<0.100	<0.0100
Toluene	S 8021B	05/01/07	<0.0100	<0.100	<0.200	<0.100	<0.0100
Ethylbenzene	S 8021B	05/01/07	0.0346	0.560	5.35	1.38	<0.0100
Total Xylenes	S 8021B	05/01/07	0.0463	1.16	6.50	2.94	<0.0100
Chloride	EPA 300.0	05/01/07	198	987	380	10.0	138
GRO	S 8015B	05/01/07	3.27	183	392	273	2.37
DRO	Mod. 8015B	05/01/07	<50.0	840	614	3150	<50.0

		Sample	SB2 @ 1'	SB2 @ 3'	SB2 @ 5'	SB2 @ 20'	SB2 @ 39'
Analyte	Method	Date					
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Benzene	S 8021B	05/03/07	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
Toluene	S 8021B	05/03/07	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
Ethylbenzene	S 8021B	05/03/07	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
Total Xylenes	S 8021B	05/03/07	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
Chloride	EPA 300.0	05/03/07	729	454	565	243	254
GRO	S 8015B	05/03/07	<1.00	<1.00	<1.00	<1.00	<1.00
DRO	Mod. 8015B	05/03/07	<50.0	<50.0	<50.0	<50.0	<50.0

		Sample	SB3 @ 1'	SB3 @ 3'	SB3 @ 5'	SB3 @ 20'	SB3 @ 35'
Analyte	Method	Date					
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Benzene	S 8021B	05/03/07	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
Toluene	S 8021B	05/03/07	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
Ethylbenzene	S 8021B	05/03/07	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
Total Xylenes	S 8021B	05/03/07	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
Chloride	EPA 300.0	05/03/07	194	337	1600	477	117
GRO	S 8015B	05/03/07	<1.00	<1.00	<1.00	<1.00	<1.00
DRO	Mod. 8015B	05/03/07	<50.0	<50.0	<50.0	<50.0	<50.0

		Sample	SB4 @ 1'	SB4 @ 3'	SB4 @ 5'	SB4 @ 20'	SB4 @ 35'
Analyte	Method	Date					
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Benzene	S 8021B	05/21/07	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
Toluene	S 8021B	05/21/07	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
Ethylbenzene	S 8021B	05/21/07	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
Total Xylenes	S 8021B	05/21/07	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100
Chloride	EPA 300.0	05/21/07	5040	1830	3970	386	342
GRO	S 8015B	05/21/07	<1.00	<1.00	<1.00	<1.00	<1.00
DRO	Mod. 8015B	05/21/07	<50.0	<50.0	<50.0	<50.0	<50.0

Table 1. Soil Laboratory Analytical Results Summary State L-2 Tank Battery

		Sample	SB5 @ 1"	SB5 @ 3'	SB5 @ 5'	SB5 @ 10'	SB5 @ 20'
Analyte	Method	Date					
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Benzene	S 8021B	05/21/07	4.70	1.03	<0.0100	<0.0100	<0.0100
Toluene	S 8021B	05/21/07	21.3	4.58	0.0124	<0.0100	<0.0100
Ethylbenzene	S 8021B	05/21/07	13.3	4.65	0.0214	0.0250	<0.0100
Total Xylenes	S 8021B	05/21/07	42.9	13.4	0.148	0.118	<0.0100
Chloride	EPA 300.0	05/21/07	2320	1920	2180	833	152
GRO	S 8015B	05/21/07	1700	868	17.0	17.7	3.12
DRO	Mod. 8015B	05/21/07	9530	1150	<50.0	66.1	<50.0

		Sample	SB6 @ 1'	SB6 @ 3'	SB6 @ 5'	SB6 @ 15'	SB6 @ 25'
Analyte	Method	Date					
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Benzene	S 8021B	05/21/07	<0.200	<0.200	<0.0100	<0.0100	<0.0100
Toluene	S 8021B	05/21/07	<0.200	0.761	<0.0100	<0.0100	<0.0100
Ethylbenzene	S 8021B	05/21/07	1.70	1.43	<0.0100	<0.0100	<0.0100
Total Xylenes	S 8021B	05/21/07	3.29	3.37	0.0345	<0.0100	<0.0100
Chloride	EPA 300.0	05/21/07	1680	1230	317	1270	125
GRO	S 8015B	05/21/07	216	224	6.92	<1.00	<1.00
DRO	Mod. 8015B	05/21/07	241	116	<50.0	<50.0	<50.0

Table 2. Groundwater Laboratory Analytical Results Summary State L-2 Tank Battery

	:	Sample	Temporary MW (SB1)
Analyte	Method	Date	
			mg/L
Benzene	S 8021B	05/03/07	0.126
Toluene	S 8021B	05/03/07	0.00930
Ethylbenzene	S 8021B	05/03/07	0.0575
Total Xylenes	S 8021B	05/03/07	0.0891
Chloride	EPA 300.0	05/03/07	601
GRO	S 8015B	05/03/07	0.968
DRO	Mod. 8015B	05/03/07	<5.00