GW - 032

GENERAL CORRESPONDENCE

4/2007 - Present

Chavez, Carl J, EMNRD

From:Chavez, Carl J, EMNRDSent:Friday, June 10, 2011 6:13 AMTo:'myoung@envirotech-inc.com'Subject:FW: Gallup Refinery (GW-032) Evaporation Pond Network Geotechnical StabilizationAttachments:19.015.0036.pdf; 20115-13DischargePermitQuestionaire.pdf

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/index.htm</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

From: Chavez, Carl J, EMNRD Sent: Friday, June 10, 2011 6:11 AM To: 'myoung@envirotech-inc.om' Cc: 'Riege, Ed' Subject: Gallup Refinery (GW-032) Evaporation Pond Network Geotechnical Stabilization

Young Mr. Maris.

Good morning. It was a pleasure meeting you and your associate yesterday regarding the above subject.

The refinery is currently in the discharge permit renewal process with the OCD revising its WQCC Discharge Permits to only include discharges to surface and ground water while requiring operators to apply for OCD permits under its regulations for all non-WQCC systems, i.e., evaporation ponds (Rule 36: Surface Waste Management Facilities – see attachment and applications forms on OCD Web below-grade tanks, etc.).

The OCD needs to receive a "Modification Request" with attached engineering/geotechnial design and construction plan for the work you briefed me on that will improve or stabilize the existing evaporation pond treatment network, which OCD regards to be an engineered treatment system under the current permit. I recommend that the modification be submitted soon under the existing permit to avoid a separate process under Rule 36 above because there is a time limit specified in a recent OCD Questionnaire to operators (also attached) of November 15, 2012. This way, we can handle it under the existing transition. If this is not Western's path forward, then we will deal with it under a Part 36 application process.

1

Please contact me if you have questions or to arrange a meeting at your earliest convenience to discuss your draft engineering/geotechnical design and construction plan, etc. Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: http://www.emnrd.state.nm.us/ocd/index.htm "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: <u>http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental</u>)

BLOOMFIELD REFINERY

RECEIVED

2009 JUN 2 RM 10 01

Carl J. Chavez, CHMM New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

Certified Mail: #7007 0220 0004 0187 0824

May 29, 2009

RE: Western Refining Southwest, Inc. – Bloomfield Refinery EPA ID# NMD089416416 GW - 001 & UICL-9

Dear Mr. Chavez,

Western Refining Southwest, Inc – Bloomfield Refinery has scheduled inspection of all water-draw sumps located in the Tank Farm to begin the week of June 8, 2009. Each sump will be cleaned out with a Vacuum Truck, visually inspected, and hydro-tested to insure integrity.

If any representatives from the OCD would like to participate, please contact me so that safety orientation training can be scheduled for incoming personnel.

If you need additional information, please contact me at (505) 632-4161.

Sincerely, intado

Cindy Hurtado Environmental Coordinator Bloomfield Refinery

Cc: Randy Schmaltz – Environmental Manager – Bloomfield Refinery Brandon Powell – NMOCD Aztec District Office

Chavez, Carl J, EMNRD

From: Sent: To: Cc:	Monzeglio, Hope, NMENV Wednesday, May 27, 2009 8:18 AM Riege, Ed Cobrain, Dave, NMENV; Kieling, John, NMENV; Jones, Brad A., EMNRD; Chavez, Carl J, EMNRD; Rajen, Gaurav; Martinez, Cynthia, NMENV
Subject:	Installation of monitoring wells
Attachments:	GRCC MISC Requirement install MW.pdf

This will go out in the mail tomorrow.

Hope

Hope Monzeglio Environmental Specialist New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, BLDG 1 Santa Fe NM 87505 Phone: (505) 476-6045; Main No.: (505)-476-6000 Fax: (505)-476-6060 hope.monzeglio@state.nm.us

Websites: <u>New Mexico Environment Department</u> <u>Hazardous Waste Bureau</u>

BILL RICHARDSON Governor

DIANE DENISH Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.nmeny.state.nm.us

RON CURRY Secretary

JON GOLDSTEIN Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

May 28, 2009

Mr. Ed Riege Environmental Superintendent Western Refining, Southwest Inc., Gallup Refinery Route 3, Box 7 Gallup, New Mexico 87301

RE: REQUIREMENT TO INSTALL MONITORING WELLS WESTERN REFINING COMPANY, SOUTHWEST, INC., GALLUP REFINERY HWB-GRCC-MISC EPA ID # NMD000333211

Dear Mr. Riege:

The New Mexico Environment Department (NMED) requires Western Refining Southwest Inc., (the Permittee) to install two monitoring wells. This requirement was addressed in Comment 14 of NMED's March 26, 2009 Notice of Disapproval (NOD) to the *Oil Conservation Division 2007 Annual Groundwater Report (and OCD Addendum)*, dated August 28, 2008. In Comment 14, NMED stated "[t]he Permittee must install another well(s) downgradient of OW-13 and OW-29 to determine if contamination has migrated north, northwest of the refinery and potentially offsite. NMED will address the installation of additional well(s) in a separate letter."

The Permittee must install two monitoring wells at the Gallup Refinery to meet the specifications described below:

a. The Permittee must locate the extension of the sand/gravel water bearing layer that extends north of OW-29 and install one monitoring well at the approximate location specified in the attached Figure 1.

Ed Riege Gallup Refinery May 28, 2009 Page 2

- b. The Permittee must locate and install a monitoring well intersecting the sand stringer that is generally oriented east/west that is anticipated to extend across the northern end of the facility. This relatively coarse-grained zone has been observed near the east end of the old landing strip and in the vicinity of the north ends of Evaporation Ponds 11 and 12. See the attached Figure 1 for the approximate well location.
- c. The monitoring wells must be screened to cross the water table with approximately five feet of screen above the water table no less than five and no more than ten feet of screen below the water table. This will accommodate seasonal fluctuations and detection of separate-phase hydrocarbons. The screened intervals in the wells must intersect a minimum water column of five feet, if possible.
- d. During drilling, if the Permittee achieves the approximate target depth but does not encounter water, the boring must be left open over night to allow for infiltration of groundwater. The Permittee must contact NMED prior to abandoning the boring or installing the well if these conditions are encountered.
- e. The monitoring wells must be developed within ten days of being installed and the initial sampling must analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), RCRA 8 metals, gasoline range organics (GRO), diesel range organics (DRO) extended, and general chemistry parameters.
- f. The monitoring wells must be installed no later than October 30, 2009. Once installation is complete, the monitoring wells must be added to the annual update to the Facility Wide Groundwater Monitoring Plan. The Permittee must submit to NMED a summary well installation report that includes the well logs, well construction details, survey data, and initial groundwater monitoring and sampling data no later than December 31, 2009.

The approximate monitoring well locations are not based on specific knowledge of the presence of sand stringers. The Permittee will need to locate the sand stringers based on review of past drilling operations and well logs at the refinery.

Ed Riege Gallup Refinery May 28, 2009 Page 3

If you have questions regarding this letter please contact Hope Monzeglio of my staff at 505-476-6045.

Sincerely,

cc:

ohn E. Kieling

Program Manager Permits Management Program Hazardous Waste Bureau

> D. Cobrain NMED HWB
> H. Monzeglio NMED HWB
> B. Jones, OCD
> C. Chavez, OCD
> R. Gaurav, Gallup
> File: Reading File and GRCC 2009 File HWB-GRCC-MISC

Chavez, Carl J, EMNRD

From: Sent: To: Subject: Attachments: Jones, Brad A., EMNRD Tuesday, June 02, 2009 8:32 AM Chavez, Carl J, EMNRD FW: Benzene results for April, 2009 April 2.pdf; April 6.pdf; April 17.pdf; April 20.pdf; April 30.pdf

From: Rajen, Gaurav [mailto:Gaurav.Rajen@wnr.com]
Sent: Thursday, May 28, 2009 1:54 PM
To: Monzeglio, Hope, NMENV; Jones, Brad A., EMNRD
Cc: Cobrain, Dave, NMENV; Riege, Ed; Turri, Mark
Subject: Benzene results for April, 2009

Dear Hope:

It is a pleasure to send you our flow rate data and benzene strippers' analytical data for the month of April, 2009.

The analytical data are attached in the reports we have received from Hall Environmental Laboratory. You will note in the attached reports (as also for January, February and March 2009) that MTBE levels have consistently always been at non-detection levels. We are working with the laboratory to improve the detection levels as you have requested.

Through the benzene strippers 1 and 2 after the New API Separator (NAPIS), our average flow rate for the month of April 2009 in gallons per minutes was 212 GPM (with a maximum of approximately 301 GPM and a minimum of 166 GPM). We measure these flows by logging the depth in a 60 degrees trapezoidal flume approximately 6 times a day, and then averaging the depth readings, and using the flume's calibration curve to estimate the flow rate.

For the benzene stripper 3 in our process area, in April only our Desalter effluent was routed to this stripper. Previously, we have sent you details of other units that can be routed at times. The Desalter effluents are approximately 4.5% of our crude charge rates, and for April this works out to approximately 18 GPM as the monthly average flow rate. As our crude charge rate varied through April, we estimate that the minimum and maximum average daily flow rates through the benzene stripper 3 varied between 16 GPM and 20 GPM for the month of April, 2009.

Best regards,

Raj

This inbound email has been scanned by the MessageLabs Email Security System.

COVER LETTER

Wednesday, April 15, 2009

Gaurav Rajen Western Refining Southwest, Gallup Rt. 3 Box 7 Gallup, NM 87301

TEL: (505) 722-0227 FAX (505) 722-0210

RE: Qtrly Method 8260B Air Quality Permit 0633-m7

Order No.: 0904113

Dear Gaurav Rajen:

Hall Environmental Analysis Laboratory, Inc. received 4 sample(s) on 4/8/2009 for the analyses presented in the following report.

1.14

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT:Western Refining Southwest, GallupProject:Qtrly Method 8260B Air Quality Permit 0633-mLab Order:0904113

Date: 15-Apr-09

CASE NARRATIVE

The Benzene stripper 1 and 2 (in and out) both had pHs > 2.

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: HL
Benzene	2400	50	μg/L	50	4/13/2009 6:07:51 PM
Toluene	6700	200	μg/L	200	4/13/2009 5:39:12 PM
Ethylbenzene	510	50	μg/L	50	4/13/2009 6:07:51 PM
Methyl tert-butyl ether (MTBE)	ND	50	μg/L	50	4/13/2009 6:07:51 PM
1,2,4-Trimethylbenzene	520	50	µg/L	50	4/13/2009 6:07:51 PM
1,3,5-Trimethylbenzene	160	50	µg/L	50	4/13/2009 6:07:51 PM
1,2-Dichloroethane (EDC)	ND	50	µg/L	50	4/13/2009 6:07:51 PM
1,2-Dibromoethane (EDB)	ND	50	µg/L	. 50	4/13/2009 6:07:51 PM
Naphthalene	280	100	µg/L	50	4/13/2009 6:07:51 PM
1-Methylnaphthalene	ND	200	μg/L	50	4/13/2009 8:07:51 PM
2-Methylnaphthalene	230	200	μg/L	50	4/13/2009 6:07:51 PM
Acetone	2600	500	µg/L	50	4/13/2009 6:07:51 PM
Bromobenzene	ND	50	µg/L	50	4/13/2009 6:07:51 PM
Bromodichloromethane	ND	50	µg/L	50	4/13/2009 6:07:51 PM
Bromoform	ND	50	µg/L	50	4/13/2009 6:07:51 PM
Bromomethane	ND	50	µg/L	50	4/13/2009 6:07:51 PM
2-Butanone	ND	500	µg/L	50	4/13/2009 6:07:51 PM
Carbon disulfide	ND	500	μg/L	50	4/13/2009 6:07:51 PM
Carbon Tetrachloride	ND	50	µg/L	50	4/13/2009 6:07:51 PM
Chlorobenzene	ND	50	µg/L	50	4/13/2009 6:07:51 PM
Chloroethane	ND	100	µg/L	50	4/13/2009 6:07:51 PM
Chloroform	ND	50	µg/L	50	4/13/2009 6:07:51 PM
Chloromethane	ND	50	µg/L	50	4/13/2009 6:07:51 PM
2-Chlorotoluene	ND	50	µg/L	50	4/13/2009 6:07:51 PM
4-Chlorotoluene	ND	50	µg/L	50	4/13/2009 6:07:51 PM
cis-1,2-DCE	ND	50	µg/L	50	4/13/2009 6:07:51 PM
cis-1,3-Dichloropropene	ND	50	µg/L	50	4/13/2009 6:07:51 PM
1,2-Dibromo-3-chloropropane	ND	100	μg/L	50	4/13/2009 6:07:51 PM
Dibromochloromethane	ND	50	μg/L	50	4/13/2009 6:07:51 PM
Dibromomethane	ND	50	μg/L	50	4/13/2009 6:07:51 PM
1,2-Dichlorobenzene	ND	50	µg/L	50	4/13/2009 6:07:51 PM
1,3-Dichlorobenzene	ND	50	μg/L	50	4/13/2009 6:07:51 PM
1,4-Dichlorobenzene	ND	50	μg/L	50	4/13/2009 6:07:51 PM
Dichlorodifluoromethane	ND	50	µg/L	50	4/13/2009 6:07:51 PM
1,1-Dichloroethane	ND	50	µg/L	50	4/13/2009 6:07:51 PM
1,1-Dichloroethene	ND	50	µg/L	50	4/13/2009 6:07:51 PM
1,2-Dichloropropane	NÐ	50	μg/L	50	4/13/2009 6:07:51 PM
1,3-Dichloropropane	ND	50	µg/L	50	4/13/2009 6:07:51 PM
2,2-Dichloropropane	ND	100	μg/L	50	4/13/2009 6:07:51 PM
1,1-Dichloropropene	ND	50	µg/L	50	4/13/2009 6:07:51 PM
Hexachlorobutadiene	ND	50	µg/L	50	4/13/2009 6:07:51 PM
2-Hexanone	ND	500	µg/L	50	4/13/2009 6:07:51 PM

5: 11

Hall Environmental Analysis Laboratory, Inc.

0904113

0904113-01

Western Refining Southwest, Gallup

Qtrly Method 8260B Air Quality Permit 0633-m

CLIENT:

Project:

Lab ID:

Lab Order:

Date: 15-Apr-09

Client Sample ID: Bz Stripper 1&2 IN Collection Date: 4/2/2009 10:00:00 AM Date Received: 4/8/2009 Matrix: AQUEOUS

Qualifiers: ٠ Value exceeds Maximum Contaminant Level

> Ε Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 1 of 8

Date: 15-Apr-09

Western Refining Southwest, Gallup	(
0904113	
Qtrly Method 8260B Air Quality Permit 0633-m	i
0904113-01	
	Western Refining Southwest, Gallup 0904113 Qtrly Method 8260B Air Quality Permit 0633-m 0904113-01

Client Sample ID: Bz Stripper 1&2 IN Collection Date: 4/2/2009 10:00:00 AM Date Received: 4/8/2009 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: HL
Isopropylbenzene	ND	50	µg/L	50	4/13/2009 6:07:51 PM
4-Isopropyitoluene	ND	50	μg/L	50	4/13/2009 6:07:51 PM
4-Methyl-2-pentanone	ND	500	μg/L	50	4/13/2009 6:07:51 PM
Methylene Chloride	ND	150	µg/L	50	4/13/2009 6:07:51 PM
n-Butylbenzene	ND	50	μg/L	50	4/13/2009 6:07:51 PM
n-Propylbenzene	68	50	µg/L	50	4/13/2009 6:07:51 PM
sec-Butylbenzene	, ND	50	µg/L	50	4/13/2009 6:07:51 PM
Slyrene	ND	50	µg/L	50	4/13/2009 6:07:51 PM
tert-Butylbenzene	ND	50	μg/L	50	4/13/2009 6:07:51 PM
1,1,1,2-Tetrachloroethane	. ND	50	μg/L ·	50	4/13/2009 6:07:51 PM
1,1,2,2-Tetrachloroethane	ND	100	µg/L	50	4/13/2009 6:07:51 PM
Tetrachloroethene (PCE)	ND	50	µg/L	50	4/13/2009 6:07:51 PM
trans-1,2-DCE	ND	50	µg/L. ⁻	50	4/13/2009 6:07:51 PM
trans-1,3-Dichloropropene	ND	50	µg/L	50	4/13/2009 6:07:51 PM
1,2,3-Trichlorobenzene	ND	50	μg/L	50	4/13/2009 6:07:51 PM
1,2,4-Trichlorobenzene	ND	50	μg/L	50	4/13/2009 6:07:51 PM
1,1,1-Trichloroethane	ND	50	µg/L	50	4/13/2009 6:07:51 PM
1,1,2-Trichloroethane	ND	50	µg/L	50	4/13/2009 6:07:51 PM
Trichloroethene (TCE)	ND	50	μg/L	. 50	4/13/2009 6:07:51 PM
Trichlorofluoromethane	ND	50	µg/L	50	4/13/2009 6:07:51 PM
1,2,3-Trichloropropane	ND	100	μg/L	50	4/13/2009 6:07:51 PM
Vinyl chloride	ND	50	μg/L	50	4/13/2009 6:07:51 PM
Xylenes, Total	3000	75	µg/L	50	4/13/2009 6:07:51 PM
Surr: 1,2-Dichloroethane-d4	90.0	68.1-123	%REC	50	4/13/2009 6:07:51 PM
Surr: 4-Bromofluorobenzene	101	53.2-145	%REC	50	4/13/2009 6:07:51 PM
Surr: Dibromofluoromethane	90.0	68.5-119	%REC	50	4/13/2009 6:07:51 PM
Surr: Toluene-d8	89.1	64-131	%REC	50	4/13/2009 6:07:51 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in th
-	Е	Estimated value	Н	Holding times for pre
	J	Analyte detected below quantitation limits	MCL	Maximum Contamine

ND Not Detected at the Reporting Limit

- Spike recovery outside accepted recovery limits S
- e associated Method Blank
- paration or analysis exceeded
- ant Level

RL Reporting Limit

Page 2 of 8

Project: Qtrly Method 82	Qtrly Method 8260B Air Quality Permit 0633-m Date Received: 4/8/2009						
Lab ID: 0904113-02			Mat	rix: AQUEOL	JS		
Analyses	Result	PQL	Qual Units	DF	Date Analyzed		
EPA METHOD 8260B: VOLATILE	S			······································	Analyst: HL		
Benzene	180	20	μg/L	20	4/13/2009 6:36:28 PM		
Toluene	590	20	μg/L	20	4/13/2009 6:36:28 PM		
Ethylbenzene	75	20	μg/L	20	4/13/2009 6:36:28 PM		
Methyl tert-butyl ether (MTBE)	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
1,2,4-Trimethylbenzene	210	20	µg/L	20	4/13/2009 6:36:28 PM		
1,3,5-Trimethylbenzene	68	20	µg/L	20	4/13/2009 6:36:28 PM		
1,2-Dichloroethane (EDC)	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
1,2-Dibromoethane (EDB)	ND	20	ua/L	20	4/13/2009 6:36:28 PM		
Naphthalene	100	40	ug/L	20	4/13/2009 6:36:28 PM		
1-Methvinaphthalene	96	80	ug/L	20	A/13/2009 6:36:28 PM		
2-Methvinaphthalene	190	80	ua/L	20	4/13/2009 6:36:28 PM		
Acetone	- 3000	200	ua/L	20	4/13/2009 6:36:28 PM		
Bromobenzene	ND	20	. µs.=	20	4/13/2009 6:36:28 PM		
Bromodichloromethane	ND	20	µg/4	20	4/13/2009 6:36:28 PM		
Bromoform	ND	20	µg/t.	20	4/13/2009 6:36:28 PM		
Bromomethane	ND	20	µg/L	20	4/13/2009 0.30.20 T M		
2-Butanone	ND	20	pg/L	20	4/13/2009 0.30.20 PN		
Carbon disulfido	ND	200	µg/⊑	20	4/13/2009 0:30.20 MW		
		200	µg/L	20	4/13/2009 0:30:20 PW		
	ND	20	µg/∟	20	4/13/2009 6:36:28 PM		
Chioropenzene ,	NU	20	µg/L	20	4/13/2009 6:36:28 PM		
	ND	40	µg/L	20	4/13/2009 5:36:28 PM		
Chloroform	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
Chloromethane	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
2-Chlorotoluene	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
4-Chlorotoluene	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
cis-1,2-DCE	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
cis-1,3-Dichloropropene	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
1,2-Dibromo-3-chloropropane	ND	40	µg/L	20	4/13/2009 6:36:28 PM		
Dibromochloromethane	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
Dibromomethane	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
1,2-Dichlorobenzene	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
1,3-Dichlorobenzene	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
1,4-Dichlorobenzene	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
Dichlorodifluoromethane	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
1,1-Dichloroethane	ND	20	µg/L	20	4/13/2009 6:38:28 PM		
1,1-Dichloroethene	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
1,2-Dichloropropane	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
1,3-Dichloropropane	ND	20	μg/L	20	4/13/2009 6:36:28 PM		
2,2-Dichloropropane	ND	40	µg/L	20	4/13/2009 6:36:28 PM		
1,1-Dichloropropene	ND	20	μg/L	20	4/13/2009 6:36:28 PM		
Hexachlorobutadiene	ND	20	µg/L	20	4/13/2009 6:36:28 PM		
2-Hexanone	ND	200	ua/L	20	4/13/2009 6:36:28 PM		
		200	P 3' L	20			

· · · ·

Hall Environmental Analysis Laboratory, Inc.

0904113

Western Refining Southwest, Gallup

CLIENT:

Lab Order:

Date: 15-Apr-09

Client Sample ID: Bz Stripper 1&2 OUT

Collection Date: 4/2/2009 10:15:00 AM

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Qualifiers:

*

S Spike recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 3 of 8

Date: 15-Apr-09

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0904113
Project:	Qtrly Method 8260B Air Quality Permit 0633-m
Lab ID:	0904113-02

Client Sample ID: Bz Stripper 1&2 OUT Collection Date: 4/2/2009 10:15:00 AM Date Received: 4/8/2009 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: HL
lsopropylbenzene	ND	20	µg/L	20	4/13/2009 6:36:28 PM
4-Isopropyltoluene	ND	20	. μg/L	20	4/13/2009 6:36:28 PM
4-Methyl-2-pentanone	ND	200	µg/L	20	4/13/2009 6:36:28 PM
Methylene Chloride	ND	60	μg/L	20	4/13/2009 6:36:28 PM
n-Butylbenzene	36	20	µg/L	20	4/13/2009 6:36:28 PM
n-Propylbenzene	26	20	µg/L	20	4/13/2009 6:36:28 PM
sec-Butylbenzene	ND	20	µg/L	20	4/13/2009 6:36:28 PM
Styrene	ND	20	µg/L	20	4/13/2009 6:36:28 PM
tert-Butylbenzene	ND	20	μg/L	20	4/13/2009 6:36:28 PM
1,1,1,2-Tetrachloroethane	ND	20	µg/L	20	4/13/2009 6:36:28 PM
1,1,2,2-Tetrachloroethane	ND	40	μg/L	20	4/13/2009 6:36:28 PM
Tetrachloroethene (PCE)	ND	20	µg/L	20	4/13/2009 6:36:28 PM
trans-1,2-DCE	ND	20	µg/L	20	4/13/2009 6:36:28 PM
trans-1,3-Dichloropropene	ND	20	μg/L	20	4/13/2009 6:36:28 PM
1,2,3-Trichlorobenzene	ND	20	µg/L	20	4/13/2009 6:36:28 PM
1,2,4-Trichlorobenzene	ND	20	µg/L	20	4/13/2009 6:36:28 PM
1,1,1-Trichloroethane	ND	20	µg/L	20	4/13/2009 6:36:28 PM
1,1,2-Trichloroethane	ND	20	µg/L	20	4/13/2009 6:36:28 PM
Trichloroethene (TCE)	ND	20	µg/L	20	4/13/2009 6:36:28 PM
Trichlorofluoromethane	ND	20	μg/L	20	4/13/2009 6:36:28 PM
1,2,3-Trichloropropane	ND	. 40	μg/L	20	4/13/2009 6:36:28 PM
Vinyl chloride	ND	20	μg/L	20	4/13/2009 6:36:28 PM
Xylenes, Total	550	30	µg/L	20	4/13/2009 6:36:28 PM
Surr: 1,2-Dichloroethane-d4	84.4	68.1-123	%REC	20	4/13/2009 6:36:28 PM
Surr: 4-Bromofluorobenzene	104	53.2-145	%REC	20	4/13/2009 6:36:28 PM
Surr: Dibromofluoromethane	96.4	68.5-119	%REC	20	4/13/2009 6:36:28 PM
Surr: Toluene-d8	94.1	64-131	%REC	20	4/13/2009 6:36:28 PM

Qualifiers:

Value exceeds Maximum Contaminant Level

E Estimated value

*

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 4 of 8

Date: 15-Apr-09

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0904113
Project:	Qtrly Method 8260B Air Quality Permit 0633-m
Lab ID:	0904113-03

Client Sample ID: 3rd Bz Stripper IN Collection Date: 4/2/2009 10:45:00 AM Date Received: 4/8/2009 Matrix: AQUEOUS

Date Analyzed PQL Qual Units DF Result Analyses Analyst: HL EPA METHOD 8260B: VOLATILES 800 4/13/2009 7:05:06 PM 30000 800 µg/L Benzene 800 4/13/2009 7:05:06 PM 800 µg/L 31000 Toluene 100 4/13/2009 7:33:44 PM µg/L 1200 100 Ethylbenzene 4/13/2009 7:33:44 PM 100 ND 100 µg/L Methyl tert-butyl ether (MTBE) 100 4/13/2009 7:33:44 PM 1,2,4-Trimethylbenzene 960 100 μg/L 4/13/2009 7:33:44 PM 100 340 100 µg/L 1,3,5-Trimethylbenzene 100 4/13/2009 7:33:44 PM ND 100 µg/L 1,2-Dichloroethane (EDC) ND 100 µg/L 100 4/13/2009 7:33:44 PM 1,2-Dibromoethane (EDB) 4/13/2009 7:33:44 PM 390 200 100 µg/L Naphthalene 4/13/2009 7:33:44 PM 400 µg/L 100 ND 1-Methylnaphthalene 4/13/2009 7:33:44 PM ND 400 µg/L 100 2-Methylnaphthalene 4/13/2009 7:33:44 PM 100 2000 1000 µg/L Acetone 4/13/2009 7:33:44 PM ND 100 µg/L 100 Bromobenzene 100 4/13/2009 7:33:44 PM ND 100 μg/L Bromodichloromethane 4/13/2009 7:33:44 PM 100 µg/L 100 ND Bromoform 4/13/2009 7:33:44 PM ND 100 µg/L 100 Bromomethane ND 1000 μg/L 100 4/13/2009 7:33:44 PM 2-Butanone 100 4/13/2009 7:33:44 PM ND 1000 µg/L Carbon disulfide 4/13/2009 7:33:44 PM ND 100 µg/L 100 Carbon Tetrachloride 4/13/2009 7:33:44 PM 100 ND 100 µg/L Chlorobenzene µg/L 4/13/2009 7:33:44 PM 200 100 ND Chloroethane 4/13/2009 7:33:44 PM ND 100 µg/L 100 Chloroform 4/13/2009 7:33:44 PM ND 100 µg/L 100 Chloromethane 4/13/2009 7:33:44 PM ND 100 µg/L 100 2-Chlorotoluene ND 100 µg/L 100 4/13/2009 7:33:44 PM 4-Chlorotoluene 100 4/13/2009 7:33:44 PM ND 100 µg/L cis-1,2-DCE 4/13/2009 7:33:44 PM 100 µg/L 100 ND cis-1,3-Dichloropropene 4/13/2009 7:33:44 PM 100 ND 200 µg/L 1,2-Dibromo-3-chloropropane 4/13/2009 7:33:44 PM ND 100 100 µg/L Dibromochloromethane 4/13/2009 7:33:44 PM ND 100 µg/L 100 Dibromomethane 100 4/13/2009 7:33:44 PM ND 100 µg/L 1,2-Dichlorobenzene 100 4/13/2009 7:33:44 PM ND 100 µg/L 1,3-Dichlorobenzene 100 4/13/2009 7:33:44 PM 1,4-Dichlorobenzene ND 100 µg/L 4/13/2009 7:33:44 PM ND 100 µg/L 100 Dichlorodifluoromethane 100 4/13/2009 7:33:44 PM ND 100 µg/L 1.1-Dichloroethane ND 100 µg/L 100 4/13/2009 7:33:44 PM 1,1-Dichloroethene 100 4/13/2009 7:33:44 PM ND 100 µg/L 1,2-Dichloropropane ND 100 μg/L 100 4/13/2009 7:33:44 PM 1,3-Dichloropropane 100 4/13/2009 7:33:44 PM ND 200 μg/L 2,2-Dichloropropane ND 100 µg/L 100 4/13/2009 7:33:44 PM 1,1-Dichloropropene 100 4/13/2009 7:33:44 PM ND 100 µg/L Hexachlorobutadiene 4/13/2009 7:33:44 PM ND 1000 µg/L 100 2-Hexanone

6 4

Value exceeds Maximum Contaminant Level

E Estimated value

Qualifiers:

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 5 of 8

Date: 15-Apr-09

Western Refining Southwest, Gallup
0904113
Qtrly Method 8260B Air Quality Permit 0633-m
0904113-03

Client Sample ID: 3rd Bz Stripper IN Collection Date: 4/2/2009 10:45:00 AM Date Received: 4/8/2009 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: HL
Isopropylbenzene	ND	100	µg/L	100	4/13/2009 7:33:44 PM
4-Isopropyltoluene	ND	100	µg/L	100	4/13/2009 7:33:44 PM
4-Methyl-2-pentanone	ND	1000	µg/L	100	4/13/2009 7:33:44 PM
Methylene Chloride	ND	300	μg/L	100	4/13/2009 7:33:44 PM
n-Butylbenzene	ND	100	µg/L	100	4/13/2009 7:33:44 PM
n-Propylbenzene	120	100	µg/L	100	4/13/2009 7:33:44 PM
sec-Butylbenzene	ND	100	µg/L	100	4/13/2009 7:33:44 PM
Styrene	ND	100	µg/L	100	4/13/2009 7:33:44 PM
tert-Butylbenzene	ND	100	µg/L	100	4/13/2009 7:33:44 PM
1,1,1,2-Tetrachloroethane	ND	100	µg/L	100	4/13/2009 7:33:44 PM
1,1,2,2-Tetrachloroethane	ND	200	µg/L	100	4/13/2009 7:33:44 PM
Tetrachloroethene (PCE)	ND	100	µg/L	100	4/13/2009 7:33:44 PM
trans-1,2-DCE	ND	100	µg/L	100	4/13/2009 7:33:44 PM
trans-1,3-Dichloropropene	ND	100	µg/L	100	4/13/2009 7:33:44 PM
1,2,3-Trichlorobenzene	ND	100	µg/L	100	4/13/2009 7:33:44 PM
1,2,4-Trichlorobenzene	ND	100	μg/L	100	4/13/2009 7:33:44 PM
1,1,1-Trichloroethane	ND	100	μg/L	100	4/13/2009 7:33:44 PM
1,1,2-Trichloroethane	ND	100	µg/L	100	4/13/2009 7:33:44 PM
Trichloroethene (TCE)	ND	100	µg/L	100	4/13/2009 7:33:44 PM
Trichlorofluoromethane	ND	100	µg/L	100	4/13/2009 7:33:44 PM
1,2,3-Trichloropropane	ND	200	μg/L	100	4/13/2009 7:33:44 PM
Vinyl chloride	ND	100	µg/L	100	4/13/2009 7:33:44 PM
Xylenes, Total	9000	150	µg/L	100	4/13/2009 7:33:44 PM
Surr: 1,2-Dichloroethane-d4	90.9	68.1-123	%REC	100	4/13/2009 7:33:44 PM
Surr: 4-Bromofluorobenzene	111	53.2-145	%REC	100	4/13/2009 7:33:44 PM
Surr: Dibromofiuoromethane	81.0	68.5-119	%REC	100	4/13/2009 7:33:44 PM
Sum: Toluene-d8	80.1	64-131	%REC	100	4/13/2009 7:33:44 PM

Qualifiers:

*

Value exceeds Maximum Contaminant Level

- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 6 of 8

Lab ID: 0904113-04	Matrix: AQUEOUS						
Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD 8260B: VOLATILES						Analyst: HL	
Benzene	4100	50		µg/L	50	4/13/2009 8:02:23 PM	
Toluene	3900	50		µg/L	50	4/13/2009 8:02:23 PM	
Ethylbenzene	230	10		µg/L	10	4/13/2009 8:31:00 PM	
Methyl tert-butyl ether (MTBE)	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
1,2,4-Trimethylbenzene	200	10		µg/L	10	4/13/2009 8:31:00 PM	
1,3,5-Trimethylbenzene	75	10		µg/L	10	4/13/2009 8:31:00 PM	
1,2-Dichloroethane (EDC)	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
1,2-Dibromoethane (EDB)	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
Naphthalene	150	20		µg/L	10	4/13/2009 8:31:00 PM	
1-Methylnaphthalene	87	40		µg/L	10	4/13/2009 8:31:00 PM	
2-Methylnaphthalene	110	40		μg/L	10	4/13/2009 8:31:00 PM	
Acetone	1700	100		µg/L	10	4/13/2009 8:31:00 PM	
Bromobenzene	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
Bromodichloromethane	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
Bromoform	ND	10		μg/L	10	4/13/2009 8:31:00 PM	
Bromomethane	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
2-Butanone	120	100		µg/L	10	4/13/2009 8:31:00 PM	
Carbon disulfide	ND	100		µg/L	10	4/13/2009 8:31:00 PM	
Carbon Tetrachloride	ND	10		μα/L	10	4/13/2009 8:31:00 PM	
Chlorobenzene	ND	10		ua/L	10	4/13/2009 8:31:00 PM	
Chloroethane	ND ·	20		µa/L	10	4/13/2009 8:31:00 PM	
Chloroform	ND	10		μg/L	10	4/13/2009 8:31:00 PM	
Chloromethane	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
2-Chlorotoluene	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
4-Chlorotoluene	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
cis-1,2-DCE	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
cis-1,3-Dichloropropene	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
1,2-Dibromo-3-chloropropane	ND	20		µg/L	10	4/13/2009 8:31:00 PM	
Dibromochloromethane	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
Dibromomethane	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
1,2-Dichlorobenzene	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
1,3-Dichlorobenzene	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
1,4-Dichlorobenzene	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
Dichlorodifluoromethane	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
1,1-Dichloroethane	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
1,1-Dichloroethene	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
1,2-Dichloropropane	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
1,3-Dichloropropane	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
2,2-Dichloropropane	ND	20		µg/L	10	4/13/2009 8:31:00 PM	
1,1-Dichloropropene	ND	10		μ g /L	10	4/13/2009 8:31:00 PM	
Hexachlorobutadiene	ND	10		µg/L	10	4/13/2009 8:31:00 PM	
2-Hexanone	ND	100		µg/L	10	4/13/2009 8:31:00 PM	
				. •			

0904113

0904113-04

Western Refining Southwest, Gallup

Qtrly Method 8260B Air Quality Permit 0633-m

CLIENT:

Project:

Lab Order:

Date: 15-Apr-09

Client Sample ID: 3rd BZ Stripper OUT Collection Date: 4/2/2009 11:00:00 AM Date Received: 4/8/2009 Matrix: AQUEOUS

Analyte detected below quantitation limits J

ND Not Detected at the Reporting Limit

Estimated value

Qualifiers:

* Ε

Spike recovery outside accepted recovery limits S

Value exceeds Maximum Contaminant Level

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 7 of 8

Date: 15-Apr-09

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0904113
Project:	Qtrly Method 8260B Air Quality Permit 0633-m
Lab ID:	0904113-04

Client Sample ID: 3rd BZ Stripper OUT Collection Date: 4/2/2009 11:00:00 AM Date Received: 4/8/2009 Matrix: AQUEOUS

Analyses	Result	PQL	Qual 1	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					والأجريب وتبتين وتعيير والمرجع	Analyst: HL
lsopropylbenzene	20	10	ł	ug/L	10	4/13/2009 8:31:00 PM
4-Isopropyitoluene	ND	10	۲	ug/L	10	4/13/2009 8:31:00 PM
4-Methyl-2-pentanone	ND	100	٢	Jg/L	10	4/13/2009 8:31:00 PM
Methylene Chloride	ND	30	H	ug/L	10	4/13/2009 8:31:00 PM
n-Butylbenzene	13	10	۲	ug/L	10	4/13/2009 8:31:00 PM
n-Propylbenzene	24	10	٢	Jg/L	10	4/13/2009 8:31:00 PM
sec-Butylbenzene	ND	. 10	۲	ıg/L	10	4/13/2009 8:31:00 PM
Styrene	ND	10	μ	ıg/L	10	4/13/2009 8:31:00 PM
tert-Butylbenzene	ND	10	μ	ıg/L	10	4/13/2009 8:31:00 PM
1,1,1,2-Tetrachloroethane	· ND	10	μ	ig/L	10	4/13/2009 8:31:00 PM
1,1,2,2-Tetrachloroethane	ND	20	μ	ıg/L	10	4/13/2009 8:31:00 PM
Tetrachloroethene (PCE)	ND	10	. µ	ıg/L	10	4/13/2009 8:31:00 PM
trans-1,2-DCE	ND	10	μ	ıg/L	10	4/13/2009 8:31:00 PM
trans-1,3-Dichloropropene	ND	10	μ	ig/L	10	4/13/2009 8:31:00 PM
1,2,3-Trichlorobenzene	ND	10	μ	ıg/L	10	4/13/2009 8:31:00 PM
1,2,4-Trichlorobenzene	ND	10	μ	ıg/L	10	4/13/2009 8:31:00 PM
1,1,1-Trichloroethane	ND	10	μ	ıg/L	10	4/13/2009 8:31:00 PM
1,1,2-Trichloroethane	ND	10	μ	ıg/L	10	4/13/2009 8:31:00 PM
Trichloroethene (TCE)	ND	10	μ	ıg/L	10	4/13/2009 8:31:00 PM
Trichlorofluoromethane	ND	10	μ	ıg/L	10	4/13/2009 8:31:00 PM
1,2,3-Trichloropropane	ND	20	μ	ıg/L	10	4/13/2009 8:31:00 PM
Vinyl chloride	ND	10	μ	ig/L	10	4/13/2009 8:31:00 PM
Xylenes, Total	1800	15	μ	ıg/L	10	4/13/2009 8:31:00 PM
Surr: 1,2-Dichloroethane-d4	91.5	68.1-123	. 9	%REC	10	4/13/2009 8:31:00 PM
Surr: 4-Bromofluorobenzene	98.0	53.2-145	9	%REC	10	4/13/2009 8:31:00 PM
Surr: Dibromofluoromethane	80.7	68.5-119	9	%REC	50	4/13/2009 8:02:23 PM
Surr: Toluene-d8	93.9	64-131	9	%REC	10	4/13/2009 8:31:00 PM

Qualifiers:

*

- Value exceeds Maximum Contaminant Level Estimated value
- E Estimated valueJ Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- . H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 8 of 8

QA/QC SUMMARY REPORT

1.12

۰.

Client:	Western Refining Southwest, Gallup
Project:	Qtrly Method 8260B Air Quality Permit 0633-m

Work Order: 0904113

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RP	DLimit Qual
Method: EPA Method 8260B:	VOLATILES							
Sample ID: 5ml rb		MBLK			Batch II	D: R33223	Analysis Date:	4/13/2009 8:34:24 AM
Benzene	ND	µg/L	1.0					
Toluene	ND	µg/L	1.0					
Ethylbenzens	ND	µg/L	1.0					
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0				•	
1,2,4-Trimethylbenzene	ND	µg/L	1.0					
1,3,5-Trimethylbenzene	ND	µg/L	1.0					
1,2-Dichloroethane (EDC)	ND	µg/L	1.0					
1,2-Dibromosthane (EDB)	ND	µg/L	1.0					
Naphthalene	ND	µg/L	2.0					
1-Methylnaphthalene	ND	µg/L	4.0					
2-Methylnaphthalene	ND	µg/L	4.0				· .	
Acetone	ND	µg/L	10					
Bromobenzene	ND	µg/L	1.0					
Bromodichloromethane	ND	μg/L	1.0					
Bromoform	ND	µg/L	1.0					
Bromomethane	ND	µg/L	1.0					
2-Butanone	ND	µg/L	10					
Carbon disulfide	ND	µg/L	10					
Carbon Tetrachloride	ND	µg/L	1.0					
Chlorobenzene	ND	µg/L	1.0					
Chloroethane	ND	µg/L	2.0					
Chloroform	ND	µg/L	1.0					
Chloromethane	ND	μg/L	1.0					
2-Chlorotoluene	ND	µg/L	1.0					
4-Chlorotoluene	ND	µg/L	1.0					
cis-1,2-DCE	ND	µg/L	1.0					,
cis-1,3-Dichloropropene	ND	μg/L	1.0					
1,2-Dibromo-3-chloropropane	ND	µg/L	2.0					
Dibromochloromethane	ND	µg/L	1.0					
Dibromomethane	ND -	µg/L	1.0					
1,2-Dichlorobenzene	ND	µg/L	1.0					
1,3-Dichlorobenzene	ND	µg/L	1.0					
1,4-Dichlorobenzene	ND	µg/L	1.0					
Dichlorodifluoromethane	ND	µg/Ł	1.0					
1,1-Dichloroethane	ND	µg/L	1.0					
1,1-Dichloroethene	ND	µg/L	1.0					
1,2-Dichloropropane	ND	µg/L	1.0					
1,3-Dichloropropane	ND	µg/L	1.0					
2,2-Dichloropropane	ND	µg/L	2.0					
1,1-Dichloropropene	ND	µg/L	1.0					
Hexachlorobutadiene	ND	µg/L	1.0					
2-Hexanone	ND	µg/L	10					
Isopropylbenzene	ND	µg/L	1.0					
4-Isopropyltoluene	ND	µg/L	1.0					

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:Western IProject:Qtrly Me	Refining South thod 8260B Ai	iwest, Gallur ir Quality Pe	o rmit 0633-	-m			Wor	k Order: 0904113
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RI	PDLimit Qual
Method: EPA Method 8260E	B: VOLATILES							
Sample ID: 5ml rb		MBLK			Batch I	D: R33223	Analysis Date:	4/13/2009 8:34:24 AM
4-Methyl-2-pentanone	ND	µg/L	10					
Methylene Chloride	ND	µg/L	3.0					
n-Butylbenzene	ND	µg/L	1.0					
n-Propylbenzene	ND	µg/L	1.0				ς.	
sec-Butyibenzene	ND	µg/L	1.0					
Styrene	ND	µg/L	1.0		• •			,
tert-Butylbenzene	NĎ	µg/L	1.0					
1,1,1,2-Tetrachioroethane	ND	µg/L	1.0					
1,1,2,2-Tetrachloroethane	ND	µg/L	2.0					
Tetrachloroethene (PCE)	ND	µg/L	1.0					
trans-1,2-DCE	ND	µg/L	· 1.0					
trans-1,3-Dichloropropene	ND	µg/L	1.0					
1,2,3-Trichlorobenzene	ND	µg/L	1.0					
1,2,4-Trichlorobenzene	ND	µg/L	1.0					
1,1,1-Trichloroethane	ND	µg/L	1.0					
1,1,2-Trichloroethane	ND	µg/L	1.0					
Trichloroethene (TCE)	ND	µg/L	1.0					
Trichlorofluoromethane	ND	µg/L	1.0					
1,2,3-Trichloropropane	ND	µg/L	2.0					•
Vinyl chloride	ND	µg/L	1.0					
Xylenes, Total	ND	µg/L	1.5					
Sample ID: 100ng Ics		LCS			Batch I	D: R33223	Analysis Date:	4/13/2009 9:31:27 AM
Benzene	17.68	µg/L	1.0	88.4	88	116		
Toluene	18.72	µg/L	1.0	93.6	82.9	112		
Chlorobenzene	21.82	μg/L	1.0	109	71.4	133		
1,1-Dichloroethene	21.49	µg/L	1.0	107	97.9	140		
Trichloroethene (TCE)	18.38	µg/L	1.0	91.9	90.5	112	,	

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 2

Hall Environmental Anal	ysis Laboratory, I	nc.
-------------------------	--------------------	-----

1.1.2

• ..

· · ···

"``

	Sample	Rec	eipt Ch	necklist			
Client Name WESTERN REFINING GALLU				Date Receive	ed:	4/8/2009	
Work Order Number 0904113	7			Received by Sample ID I	y: TLS abels checked by	x -1.5	
Checklist completed by:			1/8/(Date)9		Inili als	-
Matrix:	Carrier name:	<u>UPS</u>	i				
Shipping container/cooler in good condition?		Yes		No 🗔	Not Present		
Custody seals intact on shipping container/cool	ler?	Yes		No 🗌	Not Present	Not Shipped	
Custody seals intact on sample bottles?		Yes		No 🗌	n/a [
Chain of custody present?		Yes		No 🗔			
Chain of custody signed when relinquished and	received?	Yes		No 🗌			
Chain of custody agrees with sample labels?		Yes		No 🗌			
Samples in proper container/bottle?		Yes		No 🗌			
Sample containers intact?		Yes		No 🗔	÷		
Sufficient sample volume for indicated test?		Yes		Νο			
All samples received within holding time?		Yes		No 🗀			
Water - VOA vials have zero headspace?	No VOA vials subr	nitted		Yes 🗹	No 🗔		
Water - Preservation labels on bottle and cap m	natch?	Yes		No 🗔	N/A 🔽		
Water - pH acceptable upon receipt?		Yes		No 🗔	N/A 🔽		
Container/Temp Blank temperature?			5°	<6° C Accepteb	<i>le</i> t time to cool.		
COMMENTS:					•••••		
. · · ·							
Client contacted	Date contacted:			Pers	on contacted		
Contacted by:	Regarding:						
Comments:							
							<u> </u>
Corrective Action	-					·····	

	VTAL TORY				1			()	or 1	<u>ب</u> (۲	Air Bubbles												
	L L L	5	109	_							•			_		 		 -+					
			M 87 [.]	4107					(AC	<u>ا-</u> ۸۷	mə2) 0728					 		 -+-		-†			
		tal.cc	ľa N	-345 -	luest		<i>Э</i> о	ิก 1	14	(A	OV) 80828	\times	Х	\mathbf{X}	X						Ĺ		
ļ		men	nerqu	202 202	Req		s'BOG	2808	} / Se	əpic	ijsəq 1808					 							
		Niror	Ibudi	Fax .	lysis	(*C	PO4,50	10 ^s	1 ⁽² 01), 1) snoinA					 			-				
	┙╱	aller	× ·	ю	Ana	ļ		 (1		lete	RCRA 8 M	, 				 		 	-+				
	A A A	Ţ.W	s NE	-397	1.4 S.			(1	1V4	po								 -+					
1		3	wkin	5-345	2000 - 100 -			(1	.814	, po	HPH (Meth					 		 -+	-	\neg			
			11 Ha	1. 505		(ləs	eiO\se	D) 8	910	8 p	TPH Metho					 		 	-	\neg			
			490	Te	¥.0	(ʎju	io ero)	Hd.	L + 3	38.	rm + XЭта											larks	
		. 		·	44 90 90	()	208) s	aM.	L + 3	BE.	rm + Xəta											Ren	
me:	🗆 Rush	QUARTERLY METhod	14 Permit 0633-M7				U, RAJEN	u Dorsey	Sves views at a		Type	HCL	HCI 2	HCI 3	HCL 4				-			ulsofog iO200	r Date Time
Turn-Around Ti	Standard	Project Name:	acecus Air Quali	Project #:		Project Manage	GAURA	Sampler: Alui	Onlice 25 20	Samples jempe	Container P Type and #	3-40 ml	Jmoh-E	3-yom	3+40-m							Received by:	Received
stody Record	71 101 1061	ven	3 Box9	87301	2 3833	22 0210	Level 4 (Full Validation)				Sample Request ID	BZ STUPPER 12220	B2 Stripper 12/20TT	3rd B2STrupper IN	3rd B2 Sinpper OUT							- A land	ed by:
of-Cu	N-Rel	ReFi	RT .	S S	5 12	15057					Matrix	셤			1		i					Relinguishe	Relinquishe
hain-	/ES/ECI	مماله	Address.	c) N	# 50	r Fax#: 5	Package: dard		(Type)_		Time	1000	1015	1045	1100							Time: 12:00	Time:
0	Client:	G	Mailing	Sal.	Phone	email o	QA/QC Stan	□ Oth∈			Date	24-00-09	H-02-09	20-20410	34-02-09							50-6-11	Date:

COVER LETTER

Wednesday, April 22, 2009

Gaurav Rajen Western Refining Southwest, Gallup Rt. 3 Box 7 Gallup, NM 87301

TEL: (505) 722-3833 FAX (505) 722-0210

RE: BZ Strippers

Dear Gaurav Rajen:

Order No.: 0904114

Hall Environmental Analysis Laboratory, Inc. received 4 sample(s) on 4/8/2009 for the analyses presented in the following report.

ins frankrigerige

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT: Project:	Western Refining Sout BZ Strippers	hwest, Gallu	p			La	ib Orde	r: 0904114
Lab ID:	0904114-01			(Collecti	on Date:	4/6/200	9 9:15:00 AM
Client Sample ID	: 3RD BZ Stripper-IN					Matrix:	AQUE	OUS
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 80	21B: VOLATILES							Analyst: DAM
Methyl tert-butyl et	her (MTBE)	ND	2500		µg/L		1000	4/15/2009 11:54:45 AM
Benzene		37000	1000		μg/L		1000	4/15/2009 11:54:45 AM
Toluene		41000	1000		µg/L		1000	4/15/2009 11:54:45 AM
Ethylbenzene		1700	1000		µg/L		1000	4/15/2009 11:54:45 AM
Xylenes, Total		12000	2000		µg/L		1000	4/15/2009 11:54:45 AM
Surr: 4-Bromofil	lorobenzene	92.9	65.9-130		%REC		1000	4/15/2009 11:54:45 AM
Loh ID:	0004114 02				Sollaatia	n Data	4/6/200	9.0-20-00 AM
Lap ID: Client Sample ID	: 3RD BZ Stripper-OI	JT		L	lonectio	Matrix:	4/0/200 AOUE0	9 9:30:00 AM DUS
Analyses	· Jus 22 supported	Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 802		ND	120				50	Analyst, DAW
Representation of the second s	ner (IVIT BE)		200		µg/L		200	4/15/2009 12.25.19 PN
Teluene		8500	200		µg/L Ng/l		200	4/16/2009 11:40:34 AM
Ethylbonzene		200	200		µy/L ua/l		200 50	4/16/2009 11:40:34 AM
Zulonon Total		2300			µg/L µg/l		50 60	4/15/2009 12:25:10 PM
Aylenes, rotai	orahan zana	2300	65.0.130		MDCO		50	4/15/2009 12:25:18 FW
Sun: 4-Bromoliu	orobenzene	97.7	00.9-130		MREU		50	4/15/2003 12:25:15 FM
Lab ID:	0904114-03			C	ollectio	on Date:	4/6/200	9 9:55:00 AM
Client Sample ID	BZ Stripper 1&2 IN				•	Matrix:	AQUEC	DUS
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 802	21B: VOLATILES							Analyst: DAM
Methyl tert-butyl etl	ner (MTBE)	ND	500		µg/L		200	4/15/2009 12:55:53 PM
Benzene		11000	200		µg/L		200	4/15/2009 12:55:53 PM
Toluene		20000	400		µg/L		400	4/16/2009 12:11:01 PM
Ethylbenzene		1300	200		µg/L	•	200	4/15/2009 12:55:53 PM
Xylenes Total		8300	400		µg/L		200	4/15/2009 12:55:53 PM
Nylonoo, Totai								

Date: 22-Apr-09

Qualifiers:

*

Value exceeds Maximum Contaminant Level Ε Estimated value

Analyte detected below quantitation limits J

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

- в Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- MCL Maximum Contaminant Level

RL Reporting Limit

1

Page 1 of 2

CLIENT: Project:	Western Refining S BZ Strippers	outhwest, Gallup			Lab Orde	er: 0904114
Lab ID:	0904114-04			Collection D	ate: 4/6/20	09 10:10:00 AM
Client Sample ID:	BZ Stripper 1&2	OUT		Ma	rix: AQUE	OUS
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 802	1B: VOLATILES					Analyst: DAM
Methyl tert-butyl eth	er (MTBE)	ND	130	µg/L	50	4/15/2009 1:26:14 PM
Benzene		3900	50	µg/L	50	4/15/2009 1:26:14 PM
Toluene		12000	200	µg/L	200	4/16/2009 12:41:38 PM
Ethylbenzene		1200	50	μg/L	50	4/15/2009 1:26:14 PM
Xylenes, Total		7400	100	μg/L	50	4/15/2009 1:26:14 PM
Surr: 4-Bromofluc	probenzene	111	65.9-130	%REC	50	4/15/2009 1:26:14 PM

Qualifiers:

*

Value exceeds Maximum Contaminant Level

- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

Date: 22-Apr-09

- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

QA/QC SUMMARY REPORT

Client:Western Refining Southwest, GallupProject:BZ Strippers

Work Order: 0904114 %RPD Units PQL Analyte Result %Rec LowLimit HighLimit RPDLimit Qual EPA Method 8021B: Volatiles Method: Sample ID: 5ML RB MBLK Batch ID: R33261 Analysis Date: 4/15/2009 9:22:06 AM Methyl tert-butyl ether (MTBE) ND µg/L 2.5 Benzene ND µg/L 1.0 Toluene ND µg/L 1.0 Ethylbenzene ND 1.0 µg/L Xylenes, Total ND µg/L 2.0 Sample ID: 100NG BTEX LCS LCS Batch ID: R33261 Analysis Date: 4/16/2009 4:50:43 AM Methyl tert-butyl ether (MTBE) 138 18.77 µg/L 2.5 93.9 51.2 85.9 113 Benzene 20.72 µg/L 1.0 104 Toluene 21.35 1.0 107 86.4 113 µg/L Ethylbenzene 20.68 1.0 103 83.5 118 µg/L Xylenes, Total 60.64 2.0 101 83.4 122 µg/L Sample ID: 100NG BTEX LCSD LCSD Batch ID: R33261 4/16/2009 5:21:06 AM Analysis Date: Methyl tert-butyl ether (MTBE) 138 2.80 19.31 µg/L 2.5 96.5 51.2 28 Benzene 20.83 104 85.9 113 0.539 27 µg/L 1.0 106 Toluene 21.22 µg/L 1.0 86.4 113 0.601 19 Ethylbenzene 20.69 µg/L 1.0 103 83.5 118 0.0290 10 0.638 Xylenes, Total 61.03 µg/L 2.0 102 83.4 122 13

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 1

	Sample	Rec	eipt (Checklist			
Client Name WESTERN REFINING GALLU	<u> </u>			Date Receive	ed:	4/8/2009	
Work Order Number 0904114			i	Received by	y: TLS		
Checklist completed by:	12	l	18	Sample ID I	abels checked b	y: Inilials	-
Matrix:	Carrier name:	UPS	<u>i</u>				
Shipping container/cooler in good condition?		Yes		No 🗌	Not Present		
Custody seals intact on shipping container/cool	er?	Yes	\checkmark	No 🗔	Not Present	Not Shipped	
Custody seals intact on sample bottles?		Yes		No 🗌	N/A		
Chain of custody present?		Yes	\checkmark	No 🗔			
Chain of custody signed when relinguished and	received?	Yes		No 🗍			
Chain of custody agrees with sample labels?		Yes	Y	No 🗔			
Samples in proper container/bottle?		Yes		No 🗌			
Sample containers intact?		Yes	Y	No 🗔			
Sufficient sample volume for indicated test?		Yes		No 🗔			
All samples received within holding time?		Yes		No 🗔			
Water - VOA vials have zero headspace?	No VOA vials`subm	itted		Yes 🔽	No 🗌		
Water - Preservation labels on bottle and cap m	atch?	Yes		No 🗔	N/A 🗹		
Water - pH acceptable upon receipt?		Yes		No 🗔	N/A 🗹		
Container/Temp Blank temperature?			5°	<6° C Acceptab	le		
COMMENTS				If given sufficient	t time to cool.		
Client contacted	Date contacted:			Pers	on contacted		
Contacted by:	Regarding:						
Comments:							
Corrective Action							·····

		www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	3F 3(1) () () ()	r (8021 (638 or (638 or (708)	1) 10085	T + 1 1 + 1 +	BE 8 4 8 00 1 1 10 00 1 1 10 00 1 00 1 00 00	BTEX + MT BTEX + MT BTEX + MT TPH Method TPH (Method 8310 (PNA 8310 (PNA 8081 Pestic 8081 Pestic 8081 Pestic CVO/ 8260B (VO/ 8260B (VO/ 8270 (Semi									Remarks:	
urn-Around Time:	□ Standard □ Rush	Project Name:	BZ SINPPERS	roject #:		roject Manager:	GAURAU, RAJEN	Sampler. A WIN DO FSPY	ntice was possible and the second		Container Preservative Container Type		2	3	7					eceived by: Date Time	eceivedby
hain-of-Custody Record	WESTERN - Refining	(nelling Refinery	Address: RT 3 Box 9	105 NM 87301	# 505 727 3833	rFax# 505 722 0210	Package: Idard	91) (Type)	-	Time Matrix Sample Request ID	0915 pp 3rd Bz Shuper IN	0930 3 2rd Bastinpper-Out	0955 325 mpger 12 IN	1010 Bashipper 12 200T					1. Mainquished by: 12.00 QQ	Time: Relinquished by:
J	Client:		Mailing	e B	Phone	email c	QA/QC	Oth D			Date	509040	2090-h	509041S	P0-00-46					HOLOG	Date:

ames. acci ř. ∑ ∑

COVER LETTER

Thursday, May 07, 2009

Gaurav Rajen Western Refining Southwest, Gallup Rt. 3 Box 7 Gallup, NM 87301

TEL: (505) 722-3833 FAX (505) 722-0210

RE: BZ Strippers

Dear Gaurav Rajen:

Order No.: 0904337

Hall Environmental Analysis Laboratory, Inc. received 4 sample(s) on 4/21/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT:	Western Refining South 3Z Strippers	west, Gallup				La	b Order	: 0904337
Lab ID:	0904337-01				Collect	ion Date:	4/17/20(09 8:00:00 AM
Client Sample ID:	3RD BZ Stripper-IN					Matrix:	AQUEC	US
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 826	: VOLATILES SHORT	LIST						Analyst: HL
Benzene		8200000	200000		µg/L		200000	4/29/2009 4:52:43 PM
Toluene	*	2500000	40000		µg/L		40000	4/29/2009 5:23:01 PM
Ethylbenzene		2600	100		µg/L		100	4/28/2009 8:21:04 PM
Methyl tert-butyl ethi	ər (MTBE)	ND	100		µg/L		100	4/28/2009 8:21:04 PM
Xylenes, Total	-	12000	200		µg/L		100	4/28/2009 8:21:04 PM
Surr: 4-Bromofluo	robenzene	99.7	80.4-119		%REC		100	4/28/2009 8:21:04 PM
Lab ID:	0904337-02				Collecti	ion Date:	4/17/200	9 8:15:00 AM
Client Sample ID:	3RD BZ Stripper-OU	Т				Matrix:	AQUEO	US
nalyses		Result	PQL	Qual	Units		DF `	Date Analyzed
PA METHOD 8260	: VOLATILES SHORT	LIST						Analyst: HL
Benzene		120000	2000	н	µg/L		2000	5/1/2009 2:49:33 PM
Toluene		130000	2000	н	µg/L		2000	5/1/2009 2:49:33 PM
Ethylbenzene		260	20		µg/Ł		20	4/28/2009 9:19:18 PM
Methyl tert-butyl ethe	r (MTBE)	ND	20		µg/L		20	4/28/2009 9:19:18 PM
Xylenes, Total		1100	40		µg/L		20	4/28/2009 9:19:18 PM
Surr: 4-Bromofluo	robenzene	104	80.4-119		%REC		20	4/28/2009 9:19:18 PM
	0904337-03				Collecti	ion Date:	4/17/200	9 9:10:00 AM
lient Sample ID:	BZ Stripper 1&2 IN					Matrix:	AQUEO	US
nalyses		Result	PQL	Qual	Units		DF	Date Analyzed
PA METHOD 8260	VOLATILES SHORT	LIST						Analyst: HL
Benzene		33000	500		μg/L		500	4/29/2009 6:50:47 PM
Toluene		22000	250		µg/L		250	4/28/2009 9:48:22 PM
Ethylbenzene		160	50		µg/L		5 0	4/28/2009 10:17:19 PM
Methyl tert-butyl ethe	r (MTBE)	ND	5 0		µg/L		50	4/28/2009 10:17:19 PM
Xylenes, Total		920	100		µg/L		50	4/28/2009 10:17:19 PM
							-	

Qualifiers:

*

- Е Estimated value
- Analyte detected below quantitation limits J

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

Value exceeds Maximum Contaminant Level

Analyte detected in the associated Method Blank в

- Holding times for preparation or analysis exceeded Η
- MCL Maximum Contaminant Level

RL Reporting Limit

CLIENT: Project:	Western Refining So BZ Strippers	uthwest, Gallup				Lab Orde	er: 0904337					
Lab ID:	0904337-04			Collection Date: 4/17/2009 9:20:00								
Client Sample ID	BZ Stripper 1&2 C	DUT			Ma	trix: AQUE	OUS					
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed					
EPA METHOD 82	60: VOLATILES SHO	RTLIST					Analyst: HL					
Benzene		18000	400		µg/L	400	4/29/2009 7:19:55 PM					
Toluene		17000	400		µg/L	400	4/29/2009 7:19:55 PM					
Ethylbénzene		180	50		µg/L	50	4/28/2009 10:46:28 PM					
Methyl tert-butyl et	her (MTBE)	ND	50		µg/L	50	4/28/2009 10:46:28 PM					

100

80.4-119

µg/L

%REC

1100

94.9

Hall Environmental Analysis Laboratory, Inc.

Date: 07-May-09

50

50

4/28/2009 10:46:28 PM

4/28/2009 10:46:28 PM

Qualifiers:

*

Xylenes, Total

Surr: 4-Bromofluorobenzene

E Estimated value

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Date: 07-May-09

QA/QC SUMMARY REPORT

Client: Western Re	efining South	west, Gallup		•				
Project: BZ Strippe	rs					· ····································	Worl	Corder: 0904337
Analyte	Result	Units	PQL	%Rec	LowLimit HighLimit		%RPD RF	DLimit Qual
Method: EPA Method 8260: V	olatiles Shor	List						· · · · · · · · · · · · · · · · · · ·
Sample ID: 5ml rb		MBLK		·	Batch ID	R33452	Analysis Date:	4/28/2009 10:38:31 AM
Benzene	ND	µg/L	1.0					· .
Toluene	ND	µg/L	1.0					· · ·
Ethylbenzene	ND	hð\r	1.0				•	
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0					
Xylenes, Total	ND	µg/L	2.0				•	
Sample ID: 5ml rb		MBLK			Batch ID	: R33464	Analysis Date:	4/29/2009 1:40:24 PM
Benzene	ND	µg/L	1.0					
Toluene	ND	µg/L	1.0					•
Ethylbenzene	ND	µg/L	1.0					
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0					
Xylenes, Total	ND	μg/L	2.0					
Sample ID: 5ml rb		MBLK			Batch ID:	R33496	Analysis Date:	5/1/2009 8:54:14 AM
Benzene	ND	ug/L	1.0					
Toluene	ND	µg/L	1.0					
Ethylbenzene	ND	µg/L	1.0					
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0					
Xylenes, Total	ND	µg/L	2.0			•		
Sample ID: 100ng ics		LCS			Batch ID:	R33452	Analysis Date:	4/28/2009 11:36:45 AM
Benzene	21.00	µg/L	1.0	105	86.8	120		
Toluene	20.22	µg/L	1.0	101	64.1	127		
Sample ID: 100ng Ics_b		LCS			Batch ID:	R33464	Analysis Date:	4/29/2009 3:53:13 PM
Benzene	22.00	µg/L	1.0	110	86.8	120		
Toluene	18.99	μg/L	1.0	95.0	64.1	127		
Sample ID: 100ng Ics_b		LCS			Batch ID:	R33496	Analysis Date:	5/1/2009 10:58:26 AM
Benzene	19.52	µg/L	1.0	97.6	86.8	120		
Toluene	19.53	µg/L	1.0	97.7	64.1	127		

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 1

	Sample	Rece	eipt Ch	ecklist				
Client Name WESTERN REFINING GALLU				Date Receive	d:		4/21/2009	
Work Order Number 0904337	\bigvee		,	Received by	AT		n 1	
Checklist completed by:	8		4/2/ Date	Sample ID I	abels checked	by:	Initiels	
Matrix:	Carrier name:	<u>Clien</u>	nt drop-o	ff				
Shipping container/cooler in good condition?		Yes		No 🗍	Not Present			
Custody seals intact on shipping container/cooler?		Yes		No 🗔	Not Present		Not Shipped	
Custody seals intact on sample bottles?		Yes		No 🗔	N/A			
Chain of custody present?		Yes		No 🗔				
Chain of custody signed when relinquished and rece	aived?	Yes		No 🗌				
Chain of custody agrees with sample labels?		Yes		Νο				
Samples in proper container/bottle?		Yes		No 🗌				
Sample containers intact?		Yes		No 🗌				
Sufficient sample volume for indicated test?		Yes		No 🗔				
All samples received within holding time?		Yes		No 🗌				
Water - VOA vials have zero headspace? N	lo VOA vials submi	tted		Yes 🗹	No 🗔	·		
Water - Preservation labels on bottle and cap match	?	Yes		No 🗌	N/A 🗹			
Water - pH acceptable upon receipt?		Yes		No 🗔	N/A 🔽			
Container/Temp Blank temperature?		1	2°	<6° C Acceptab	le			
COMMENTS:				If given sufficient	time to cool.			
				D				
Client contacted Date	e contacted:			Pers	on contacted			
Contacted by: Reg	garding:							<u> </u>
Comments:			•					
				· ·				<u>_</u>
	<u></u>			····				
				· · · · ·				
Corrective Action							· · · · · · · · · · · · · · · · · · ·	
· · ·	·····							
	<u> </u>			······································				
· · · · · · · · · · · · · · · · · · ·								

	NALYSIS LABORATORY	ww.hallenvironmental.com	s NE - Albuquerque, NM 87109	-3975 Fax 505-345-4107	Analysis Request	-] 8	5 PCB's	11) 1082 1082 10 11)	.400 8 1,601 3 \ 26 (AC	10 10 10 10 10 10 10 10 10 10	AIN9M) 801 8310 (PUA 8310 (PUA 8081 Pesti 8081 Pesti 808 (VO 8250 (Sem 8270 (Sem 8270 (Sem				X								
		≥ 	4901 Hawkin	Tel. 505-345		əel) uly)	s (802) o ssĐ) eiŪ\ssā	1) B (C BH	1 + 3 1 + 3	387 387 8 bo	BTEX + M BTEX + M BTEX + M BTEX + M										Remarks:	,	
Turn-Around Time:	🗆 Standard 🗆 Rush	Project Name:	BL SUPPERS	Project #:		Project Manager:	GAURAN, RAJEN	Sampler. A LUIN DOTSEY			Container Preservative T Type and # Type	3-40ML	340 M C	340-M1 3	7-40 ML						Received by: Date Time R	Received by: Date Time	
hain-of-Custody Record	NESTERN-REFINING	Malluo ReFINERY	Address: RT 3 BOX9	UP NM 87301	+ 505 722 3833	Fax: 505 722 0210	Package:		(Type)		Time Matrix Sample Request ID	0800 JH 3rd B2 Strupper-IN	0815 2 Bz Stripper-Out	0910 82 Strupper 12270	0920 1 BZSTupper 1220TT	>					Time: Relinquished by:	Time: Relinquished by:	
ပ	Client:	9	Mailing .	11ers	Phone #	email or	QA/QC F	□ Othe			Date	64-17-09	1-17-09	70-17-40	150-11-HO				}		Date:	Date:	

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

COVER LETTER

Friday, May 01, 2009

Gaurav Rajen Western Refining Southwest, Gallup Rt. 3 Box 7 Gallup, NM 87301

TEL: (505) 722-0227 FAX (505) 722-0210

RE: Qtrly Method 8260B Air Quality Permit 0633-M7

Dear Gaurav Rajen:

Order No.: 0904335

Hall Environmental Analysis Laboratory, Inc. received 4 sample(s) on 4/21/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

The Contract of the second second second

THE DESIGNATION OF STREET STREET

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

Lab Order:	0904335			Collection Dat	Collection Date: 4/20/2009 8:15:00 AM				
Project:	Qtrly Method 8260B	Air Quality Per	mit 0633-	M Date Receive	d: 4/21/2009				
Lab ID:	0904335-01			Matri	ix: AQUEOU	JS			
Analyses		Result	PQL	Qual Units	DF	Date Analyzed			
PA METHOD	3260B: VOLATILES				من به عانی الکری ایر کار برای می م	Analyst: HL			
Benzene		43000	800	µg/L	800	4/24/2009 5:52:03 PM			
Toluene		32000	500	µg/L	500	4/24/2009 3:30:36 AM			
Ethylbenzene		1300	50	µg/L	50	4/24/2009 3:59:18 AM			
Methyl tert-butyl	ether (MTBE)	ND	50	μġ/L	50	4/24/2009 3:59:18 AM			
1,2,4-Trimethylb	enzene	690	50	µg/L	50	4/24/2009 3:59:18 AM			
1,3,5-Trimethylb	enzene	270	50	μg/L	50	4/24/2009 3:59:18 AM			
1,2-Dichloroetha	ine (EDC)	ND	50	µg/L	50	4/24/2009 3:59:18 AM			
1.2-Dibromoetha	ane (EDB)	ND	50	µg/L	50	4/24/2009 3:59:18 AM			
Naphthalene	, ,	200	100	µg/L	50	4/24/2009 3:59:18 AM			
1-Methvinaphtha	alene	ND	200	µg/L	50	4/24/2009 3:59:18 AM			
2-Methylnaphtha	alene	ND	200	μg/L	50	4/24/2009 3:59:18 AM			
Acetone		1900	500	µg/L	50	4/24/2009 3:59:18 AM			
Bromobenzene		ND	. 50	μg/L	50	4/24/2009 3:59:18 AM			
Bromodichlorom	ethane	ND	50	ug/L	50	4/24/2009 3:59:18 AM			
Bromoform		ND	50	ua/L	- 50	4/24/2009 3:59:18 AM			
Bromomethane		ND	50	ua/L	50	4/24/2009 3:59:18 AM			
2-Butanone		ND	500	uo/L	50	4/24/2009 3:59:18 AM			
Carbon disulfide		ND	500	µa/L	50	4/24/2009 3:59:18 AM			
Carbon Tetrachi	oride	ND	50	ua/L	50	4/24/2009 3:59:18 AM			
Chlorobenzene	ondo	ND	50	ua/L	50	4/24/2009 3:59:18 AM			
Chloroethane		ND	100	ua/L	50	4/24/2009 3:59:18 AM			
Chloroform		ND	50	ua/L	50	4/24/2009 3:59:18 AM			
Chloromothane		ND	50	ug/L	50	4/24/2009 3:59:18 AM			
2 Chlorotoluono		ND .	50	µg/=	50	4/24/2009 3:59:18 AM			
2-Chlorotoluene		ND	50	µg/C Ua/l	50	4/24/2009 3:59:18 AM			
		ND	50	uo/l.	50	4/24/2009 3:59:18 AM			
ola 1 2 Dichloror	ronene	ND ·	50	uali	50	4/24/2009 3:59:18 AM			
1.2 Dibromo 3.0	bloropropage	ND ND	100	uo/i	50	4/24/2009 3:59:18 AM			
Dibromochlorom	hotopropana	ND	50	ua/L	50	4/24/2009 3:59:18 AM			
Dibromomothan		ND	50	ua/i	50	4/24/2009 3:59:18 AM			
1.2 Diobloroban	7979	ND	50	ua/L	50	4/24/2009 3:59:18 AM			
1.2 Dichloroben		ND	50	ua/L	50	4/24/2009 3:59:18 AM			
1.4 Dichlorobon		ND	50	ua/l	50	4/24/2009 3:59:18 AM			
Dichlorodifluoror	nothana	ND	50	ua/L	50	4/24/2009 3:59:18 AM			
d d Dichlereetha	neurane	ND	50	ua/i	50	4/24/2009 3:59:18 AM			
1,1-Dichloroetha		ND	50	µg/L	50	4/24/2009 3:59:18 AM			
1,1-Dichloroethe	ine	ND	50	µg/L ug/l	50	4/24/2009 3:59:18 AM			
1,2-Dichloroprop			50	ua/i	50	4/24/2009 3:59:18 AM			
1,3-Dichloroprop			100	ug/l	50 /	4/24/2009 3:59:18 AM			
2,2-Dicnioroprop			001	pg/C un/i	· 50	4/24/2009 3:59:18 AM			
1,1-Dicnioroprop	iene		00 Aa	10/1 10/1	50	4/24/2009 3-59-18 AM			
Hexachlorobutad	liene		50	µg/⊑	50	4/24/2009 3:59:18 AM			
2-Hexanone		ND	500	μg/L	00	11-11-1000 0.000 10 1 (H			

CLIENT:

Western Refining Southwest, Gallup

Date: 01-May-09

Client Sample ID: 3RD Bz Stripper-IN

E Estimated value

- Analyte detected below quantitation limits J
- ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Project:	Qtrly Method 8260	B Air Quality P	ermit 0633-M	Date Receive	d: 4/21/200)
Lab ID:	0904335-01			Matri	ix: AQUEOU	JS
Analyses		Result	PQL Q	Qual Units	DF	Date Analyzed
EPA METHOD	8260B: VOLATILES					Analyst: HL
Isopropylbenz	ene	120	50	µg/L	50	4/24/2009 3:59:18 AM
4-Isopropyltolu	leve	ND	50	µg/L	50	4/24/2009 3:59:18 AM
4-Methyl-2-pei	ntanone	ND	500	µg/L	50	4/24/2009 3:59:18 AM
Methylene Chi	loride	ND	150	µg/L	50	4/24/2009 3:59:18 AM
n-Butylbenzen	e	ND	50	µg/L	50	4/24/2009 3:59:18 AM
n-Propylbenze	ine	120	50	µg/L	50	4/24/2009 3:59:18 AM
sec-Butylbenze	ene	ND	50	µg/L	50	4/24/2009 3:59:18 AM
Styrene		ND	50	µg/L	50	4/24/2009 3:59:18 AM
tert-Butylbenze	ene	. ND	50	µg/L	50	4/24/2009 3:59:18 AM
1,1,1,2-Tetracl	hloroethane	ND	50	µg/L	50	4/24/2009 3:59:18 AM
1,1,2,2-Tetraci	hloroethane	ND	100	μg/L	50	4/24/2009 3:59:18 AM
Tetrachloroeth	ene (PCE)	ND	50	μg/L	50	4/24/2009 3:59:18 AM
trans-1,2-DCE		ND	50	µg/L	50	4/24/2009 3:59:18 AM
trans-1,3-Dichl	loropropene	ND	50	μg/L	50	4/24/2009 3:59:18 AM
1,2,3-Trichloro	benzene	ND	50	µg/L	50	4/24/2009 3:59:18 AM
1,2,4-Trichloro	benzene	ND	50	µg/L	50	4/24/2009 3:59:18 AM
1,1,1-Trichloro	ethane	ND	50	µg/L	50	4/24/2009 3:59:18 AM
1,1,2-Trichloro	ethane	ND	50	μg/L	50	4/24/2009 3:59:18 AM
Trichloroethen	e (TCE)	ND	50	µg/L	50	4/24/2009 3:59:18 AM
Trichlorofluoro	methane	ND	50	µg/L	50	4/24/2009 3:59:18 AM
1,2,3-Trichloro	propane	ND	100	μg/L	50	4/24/2009 3:59:18 AM
Vinyl chloride		ND	50	µg/L	50	4/24/2009 3:59:18 AM
Xylenes, Total	,	8500	75	µg/L	50	4/24/2009 3:59:18 AM
Surr: 1,2-Dic	chloroethane-d4	84.7	68.1-123	%REC	50	4/24/2009 3:59:18 AM
Surr: 4-Brom	nofluorobenzene	99.9	53.2-145	%REC	50	4/24/2009 3:59:18 AM
Surr: Dibrorr	nofluoromethane	92.9	68.5-119	%REC	500	4/24/2009 3:30:36 AM
Surr: Toluen	e-d8	101	64-131	%REC	50	4/24/2009 3:59:18 AM

0904335

Western Refining Southwest, Gallup

Date: 01-May-09

Client Sample ID: 3RD Bz Stripper-IN

Collection Date: 4/20/2009 8:15:00 AM

Qualifiers:

CLIENT:

Lab Order:

* Value exceeds Maximum Contaminant Level

- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 2 of 8

Date: 01-May-09

CLIENT:Western Refining Southwest, GailupOLab Order:0904335Project:Qtrly Method 8260B Air Quality Permit 0633-MLab ID:0904335-02

Client Sample ID: 3RD Bz Stripper-OUT Collection Date: 4/20/2009 8:30:00 AM Date Received: 4/21/2009 Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	•
EPA METHOD 8260B: VOLATILES				······		Analyst: HL	-
Benzene	5200	100		µg/L	100	4/24/2009 6:20:53 PM	
Toluene	5900	100		µg/L	100	4/24/2009 6:20:53 PM	
Ethylbenzene	90	10		µg/L	10	4/24/2009 4:56:38 AM	
Methyl tert-butyl ether (MTBE)	ND	. 10		µg/L	10	4/24/2009 4:56:38 AM	
1,2,4-Trimethylbenzene	63	10		µg/L	10	4/24/2009 4:56:38 AM	
1,3,5-Trimethylbenzene	17	10		µg/L	10	4/24/2009 4:56:38 AM	
1,2-Dichloroethane (EDC)	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
1,2-Dibromoethane (EDB)	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
Naphthalene	· 40	20		µg/L	10	4/24/2009 4:56:38 AM	
1-Methylnaphthalene	ND .	40		µg/L	10	4/24/2009 4:56:38 AM	
2-Methylnaphthalene	ND	40		µg/L	10	4/24/2009 4:56:38 AM	
Acetone	1300	100		µg/L	10	4/24/2009 4:56:38 AM	
Bromobenzene	ND	10		μg/L	10	4/24/2009 4:56:38 AM	
Bromodichioromethane	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
Bromoform	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
Bromomethane	ND .	10		µg/L	10	4/24/2009 4:56:38 AM	
2-Butanone	ND	100		µg/L	10	4/24/2009 4:56:38 AM	
Carbon disulfide	ND	100		µg/L	10	4/24/2009 4:56:38 AM	
Carbon Tetrachloride	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
_ Chlorobenzene	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
Chloroethane	ND	20		µg/L	10	4/24/2009 4:56:38 AM	
Chloroform	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
Chloromethane	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
2-Chlorotoluene	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
4-Chlorotoluene	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
cis-1,2-DCE	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
cls-1,3-Dichloropropene	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
1,2-Dibromo-3-chloropropane	ND	20		µg/L	10	4/24/2009 4:56:38 AM	
Dibromochloromethane	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
Dibromomethane	ND	10 ·		µğ/L	10	4/24/2009 4:56:38 AM	
1,2-Dichlorobenzene	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
1,3-Dichlorobenzene	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
1,4-Dichlorobenzene	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
Dichlorodifluoromethane	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
1,1-Dichloroethane	ND	10		µg/L	, 1 0	4/24/2009 4:56:38 AM	
1,1-Dichloroethene	ND	10	I	µg/L	. 10	4/24/2009 4:56:38 AM	
1,2-Dichloropropane	ND	10	1	µg/L	10	4/24/2009 4:56:38 AM	
1,3-Dichloropropane	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
2,2-Dichloropropane	ND	20	ļ	µg/L	10	4/24/2009 4:56:38 AM	
1,1-Dichloropropene	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
Hexachlorobutadiene	ND	10		µg/L	10	4/24/2009 4:56:38 AM	
2-Hexanone	ND	100		µg/L	10	4/24/2009 4:56:38 AM	

Qualifiers: * Value exceeds Maximum Contaminant Level

- E Estimated value
- J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 3 of 8

CLIENT:	Western Refining Southwest, Gallup	Client Sample ID:	3RD Bz Stripper-OUT
Lab Order:	0904335	Collection Date:	4/20/2009 8:30:00 AM
Project:	Qtrly Method 8260B Air Quality Permit 0633-M	Date Received:	4/21/2009
Lab ID:	0904335-02	Matrix:	AQUEOUS

PQL Qual Units

Hall Environmental Analysis Laboratory, Inc.

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES	· · ·				Analyst: HL
Isopropylbenzene	ND	10	µg/L	10	4/24/2009 4:56:38 AM
4-Isopropyltoluene	ND	10	µg/L	- 10	4/24/2009 4:56:38 AM
4-Methyl-2-pentanone	ND	100	µg/L	10	4/24/2009 4:56:38 AM
Methylene Chloride	ND	30	. μg/L	10	4/24/2009 4:56:38 AM
n-Butylbenzene	ND	10	μg/L	10	4/24/2009 4:56:38 AM
n-Propylbenzene	ND	10	µg/L	10	4/24/2009 4:56:38 AM
sec-Butylbenzene	ND	10	µg/L	10	4/24/2009 4:56:38 AM
Styrene	ND	10	µg/L	10	4/24/2009 4:56:38 AM
tert-Butylbenzene	ND	10	μg/L	10	4/24/2009 4:56:38 AM
1,1,1,2-Tetrachloroethane	ND	10	μg/L	10	4/24/2009 4:56:38 AM
1,1,2,2-Tetrachloroethane	ND	20	μg/L	10	4/24/2009 4:56:38 AM
Tetrachloroethene (PCE)	ND	10	μg/L	[°] 10	4/24/2009 4:56:38 AM
trans-1,2-DCE	ND	10	μg/L	10	4/24/2009 4:56:38 AM
trans-1,3-Dichloropropene	ND	10	µg/L	10	4/24/2009 4:56:38 AM
1,2,3-Trichlorobenzene	ND	10	µg/L	10	4/24/2009 4:56:38 AM
1,2,4-Trichlorobenzene	ND	10	µg/L	10	4/24/2009 4:56:38 AM
1,1,1-Trichlorosthane	ND	10	μg/L	10	4/24/2009 4:56:38 AM
1,1,2-Trichloroethane	ND	10	μg/L	10	4/24/2009 4:56:38 AM
Trichloroethene (TCE)	ND	10	µg/L	10	4/24/2009 4:56:38 AM
Trichlorofluoromethane	ND	10	µg/L	10	4/24/2009 4:56:38 AM
1,2,3-Trichloropropane	ND	20	µg/L	10	4/24/2009 4:56:38 AM
Vinyl chloride	ND	10	µg/L	10	4/24/2009 4:56:38 AM
Xylenes, Total	540	15	µg/L	10	4/24/2009 4:56:38 AM
Surr: 1,2-Dichloroethane-d4	89.0	68.1-123	%REC	10	4/24/2009 4:56:38 AM
Surr: 4-Bromofluorobenzene	92.4	53.2-145	%REC	10	4/24/2009 4:56:38 AM
Surr: Dibromofluoromethane	87.4	68.5-119	%REC	100	4/24/2009 6:20:53 PM
Surr: Toluene-d8	93.3	64-131	%REC	10	4/24/2009 4:56:38 AM

Qualifiers:

*

Value exceeds Maximum Contaminant Level

Ε Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

В Analyte detected in the associated Method Blank

Date: 01-May-09

DF

Date Analyzed

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 4 of 8

Project: Qtrly Method 8260B	Air Quality Per	mit 0633-	M Date Receive	d: 4/21/2009)
Lab ID: 0904335-03			Matri	x: AQUEOU	JS
Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES		<u> </u>			Analyst: HL
Benzene	13000	200	µg/L	200	4/24/2009 5:25:20 AM
Toluene	23000	400	μg/L	400	4/24/2009 6:49:35 PM
Ethylbenzene	1600	50	µg/L	50	4/24/2009 5:54:00 AM
Methyl tert-butyl ether (MTBE)	ND	50	μg/L	50	4/24/2009 5:54:00 AM
1,2,4-Trimethylbenzene	1800	50	μg/L	50	4/24/2009 5:54:00 AM
1,3,5-Trimethylbenzene	700	50	µg/L	50	4/24/2009 5:54:00 AM
1,2-Dichloroethane (EDC)	ND	50	μg/L	50	4/24/2009 5:54:00 AM
1,2-Dibromoethane (EDB)	NÐ	50	µg/L	50	4/24/2009 5:54:00 AM
Naphthalene	470	100	μg/L	50	4/24/2009 5:54:00 AM
1-Methylnaphthalene	300	200	µg/L	50	4/24/2009 5:54:00 AM
2-Methylnaphthalene	460	200	µg/L	50	4/24/2009 5:54:00 AM
Acetone	1100	500	μg/L	50	4/24/2009 5:54:00 AM
Bromobenzene	ND	50	µg/L	50	4/24/2009 5:54:00 AM
Bromodichloromethane	ND	50	µg/L	50	4/24/2009 5:54:00 AM
Bromoform	ND	50	μg/L	50	4/24/2009 5:54:00 AM
Bromomethane	ND	50	µg/Ł	50	4/24/2009 5:54:00 AM
2-Butanone	ND	500	µg/L	50	4/24/2009 5:54:00 AM
Carbon disulfide	ND	500	μg/L	50	4/24/2009 5:54:00 AM
Carbon Tetrachloride	ND	50	µg/L	50	4/24/2009 5:54:00 AM
Chlorobenzene	ND	50	µg/L	50	4/24/2009 5:54:00 AM
Chloroethane	ND	100	μg/L	50	4/24/2009 5:54:00 AM
Chloroform	ND	50	µg/L	50	4/24/2009 5:54:00 AM
Chloromethane	ND	50	µg/L	50	4/24/2009 5:54:00 AM
2-Chlorotoluene	ND	50	µg/L	50	4/24/2009 5:54:00 AM
4-Chlorotoluene	ND	50	µg/L	50	4/24/2009 5:54:00 AM
cis-1,2-DCE	ND	50	µg/L	50	4/24/2009 5:54:00 AM
cis-1,3-Dichloropropene	ND	50	µg/L	50	4/24/2009 5:54:00 AM
1,2-Dibromo-3-chloropropane	ND	100	µg/L	50	4/24/2009 5:54:00 AM
Dibromochloromethane	ND	50	µg/L	50	4/24/2009 5:54:00 AM
Dibromomethane	ND	50	µg/L	50	4/24/2009 5:54:00 AM
1,2-Dichlorobenzene	ND	50	µg/L	50	4/24/2009 5:54:00 AM
1,3-Dichlorobenzene	ND	50	µg/L	50	4/24/2009 5:54:00 AM
1,4-Dichlorobenzene	ND	50	µg/L	50	4/24/2009 5:54:00 AM
Dichlorodifluoromethane	ND	50	μg/L	50	4/24/2009 5:54:00 AM
1,1-Dichloroethane	ND	50	µg/L	50	4/24/2009 5:54:00 AM
1.1-Dichloroethene	ND	50	µg/L	50	4/24/2009 5:54:00 AM
1,2-Dichloropropane	ND	50	µg/L	50	4/24/2009 5:54:00 AM
1.3-Dichloropropane	ND	50	µg/L	50	4/24/2009 5:54:00 AM
2.2-Dichloropropane	ND	100	µg/L	50	4/24/2009 5:54:00 AM
1.1-Dichloropropene	ND	50	μg/L	50	4/24/2009 5:54:00 AM
Hexachlorobutadiene	ND	50	µg/L	50	4/24/2009 5:54:00 AM
2-Hexanone	ND	500	µg/L	50	4/24/2009 5:54:00 AM
			1.0		

0904335

Western Refining Southwest, Gallup

CLIENT:

Lab Order:

Date: 01-May-09

Client Sample ID: Bz Stripper 1&2-IN

Collection Date: 4/20/2009 9:25:00 AM

Qualifiers: * Value exceeds Maximum Contaminant Level

- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Project:	Qtrly Method 8260B	Air Quality Per	mit 0633-N	Date Receive	d: 4/21/2009) JS
	0904335-03	Docult	POL	Qual Units	DF	Date Analyzed
Analyses		Kesun				
EPA METHOD	8260B: VOLATILES					Analyst: HL
Isopropylbenz	ene	100	50	µg/L	50	4/24/2009 5:54:00 AM
4-Isopropyltolu	Jene	· ND	50	μg/L	50	4/24/2009 5:54:00 AM
4-Methyl-2-per	ntanone	ND	500	μg/L	50 ·	4/24/2009 5:54:00 AM
Methylene Chl	loride	ND	150	µg/L	50	4/24/2009 5:54:00 AM
n-Butylbenzen	e	190	50	μg/L	50	4/24/2009 5:54:00 AM
n-Propylbenze	ine	350	50	µg/L	50	4/24/2009 5:54:00 AM
sec-Butylbenz	ene	ND	50	µg/L	50	4/24/2009 5:54:00 AM
Styrene		ND ·	50	μg/L	50	4/24/2009 5:54:00 AM
tert-Butvibenze	ene	ND	50	µg/L	50	4/24/2009 5:54:00 AM
1.1.1.2-Tetrac	hloroethane	ND	50	µg/L	50	4/24/2009 5:54:00 AM
1.1.2.2-Tetrac	hloroethane	ND	100	µg/L	50	4/24/2009 5:54:00 AM
Tetrachloroeth	iene (PCE)	ND	50	µg/L	50	4/24/2009 5:54:00 AM
trans-1.2-DCE		ND	50	µg/L	50	4/24/2009 5:54:00 AM
trans-1.3-Dich	loropropene	ND	50	µg/L	50	4/24/2009 5:54:00 AM
1 2 3-Trichloro	benzene	ND	50	µg/L	50	4/24/2009 5:54:00 AM
1 2 4-Trichloro	benzene	ND	50	µg/L	50	4/24/2009 5:54:00 AM
1 1 1-Trichloro	bethane	ND	50	µg/L	50	4/24/2009 5:54:00 AM
1.1.2-Trichloro	hethane	ND	50	ug/L	50	4/24/2009 5:54:00 AM
Trichloroethen		ND	50	uo/L	50	4/24/2009 5:54:00 AM
Trichlorofluoro	mothene	ND	50	<i>⊨a</i>	50	4/24/2009 5:54:00 AM
			100	но/I	50	4/24/2009 5:54:00 AM

50

75

68.1-123

53.2-145

68.5-119

64-131

µg/L

µg/L

%REC

%REC

%REC

%REC

ND

10000

88.8

95.7

79.4

96.5

Hall Environmental Analysis Laboratory, Inc.

0904335

Western Refining Southwest, Gallup

Date: 01-May-09

Client Sample ID: Bz Stripper 1&2-IN

Collection Date: 4/20/2009 9:25:00 AM

Qualifiers:

٠

Vinyl chloride

Xylenes, Total

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

CLIENT:

Lab Order:

- Value exceeds Maximum Contaminant Level Е Estimated value
- Analyte detected below quantitation limits J
- Not Detected at the Reporting Limit ND
- S Spike recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В

50

50

50

50

200

50

4/24/2009 5:54:00 AM

4/24/2009 5:54:00 AM

4/24/2009 5:54:00 AM

4/24/2009 5:54:00 AM

4/24/2009 5:25:20 AM

4/24/2009 5:54:00 AM

- Holding times for preparation or analysis exceeded н
- MCL Maximum Contaminant Level
- **Reporting Limit** RL

Date: 01-May-09

CLIENT:Western Refining Southwest, GallupLab Order:0904335Project:Qtrly Method 8260B Air Quality Permit 0633-MLab ID:0904335-04

Client Sample ID: Bz Stripper 1&2-OUT Collection Date: 4/20/2009 9:35:00 AM Date Received: 4/21/2009

Matrix: AQUEOUS

Analyses	Result	PQL	Qual U	nits	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					بهم المحموم بأمون الأفاسي	Analyst: HL
Benzene	4700	50	μο	g/L	50	4/24/2009 6:22:45 AM
Toluene	12000	200	μg	- g/L	200	4/28/2009 1:04:27 PM
Ethylbenzene	830	50	μg	, g/L	50	4/24/2009 6:22:45 AM
Methyl tert-butyl ether (MTBE)	ND -	50	рц	g/Ľ	50	4/24/2009 6:22:45 AM
1,2,4-Trimethylbenzene	1200	50	þq	g/L	50	4/24/2009 6:22:45 AM
1,3,5-Trimethylbenzene	430	50	p	g/L	50	4/24/2009 6:22:45 AM
1,2-Dichloroethane (EDC)	ND	50	μg	j/L	50	4/24/2009 6:22:45 AM
1,2-Dibromoethane (EDB)	ND	. 50	μg	j/L	50	4/24/2009 6:22:45 AM
Naphthalene	390	100	pų	j/L	50	4/24/2009 6:22:45 AM
1-Methylnaphthalene	280	200	μg	j/L	50	4/24/2009 6:22:45 AM
2-Methylnaphthalene	450	200	μg	ı/L	50	4/24/2009 6:22:45 AM
Acetone	920	500	μg	I/L	50	4/24/2009 6:22:45 AM
Bromobenzene	NØ	50	pq	μ/L.	50	4/24/2009 6:22:45 AM
Bromodichloromethane	ND	50	μg	I/L	50	4/24/2009 6:22:45 AM
Bromoform	ND	50	μg	I/L	50	4/24/2009 6:22:45 AM
Bromomethane	ND	50	рц	/L	50	4/24/2009 6:22:45 AM
2-Butanone	ND	500	μg	/L	50	4/24/2009 6:22:45 AM
Carbon disulfide	ND	500	μg	/L	50	4/24/2009 6:22:45 AM
Carbon Tetrachloride	ND	50	μg	/L	50	4/24/2009 6:22:45 AM
Chlorobenzene	ND	50	, en la	/L	50	4/24/2009 6:22:45 AM
Chloroethane	ND	100	μg	/L	50	4/24/2009 6:22:45 AM
Chloroform	ND	50	μg.	/L	50	4/24/2009 6:22:45 AM
Chloromethane	ND	50	μg	/L	50	4/24/2009 6:22:45 AM
2-Chlorotoluene	ND	50	μg	/L	50	4/24/2009 6:22:45 AM
4-Chlorotoluene	ND	50	ha	/L	50	4/24/2009 6:22:45 AM
cis-1,2-DCE	ND	50	μg/	/L.	50	4/24/2009 6:22:45 AM
cis-1,3-Dichloropropene	ND	50	. µg/	/L	50	4/24/2009 6:22:45 AM
1,2-Dibromo-3-chloropropane	ND	100	hði	/L	50	4/24/2009 6:22:45 AM
. Dibromochloromethane	ND	50	- µg/	/L	50	4/24/2009 6:22:45 AM
Dibromomethane	ND	50	μg/	/L	50	4/24/2009 6:22:45 AM
1,2-Dichlorobenzene	ND	50	իցկ	/L	50	4/24/2009 6:22:45 AM
1,3-Dichlorobenzene	ND	. 50	µg/	/L	50	4/24/2009 6:22:45 AM
1,4-Dichlorobenzene	ND	50	μg/	/L	50	4/24/2009 6:22:45 AM
Dichlorodifluoromethane	ND	50	μg/	/L	50	4/24/2009 6:22:45 AM
1,1-Dichloroethane	ND	50	h8/	/L	50	4/24/2009 6:22:45 AM
1,1-Dichloroethene	ND	50	hâh	ľL	50	4/24/2009 6:22:45 AM
1,2-Dichloropropane	ND	50	μg/	'L	50	4/24/2009 6:22:45 AM
1,3-Dichloropropane	ND	50	μg/	/L	50	4/24/2009 6:22:45 AM
2,2-Dichloropropane	ND	100	/gų	۲L	50	4/24/2009 6:22:45 AM
1,1-Dichloropropene	ND	50	μg/	'L	50	4/24/2009 6:22:45 AM
Hexachlorobutadiene	ND	50	hâ/	Ľ	50	4/24/2009 6:22:45 AM
2-Hexanone	ND	500	µg/	۲L	50	4/24/2009 6:22:45 AM

Qualifiers: * Value exceeds Maximum Contaminant Level

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

E Estimated value

CLIENT:	Western Refining Southwest, Gallup	Client Sample ID:	Bz Stripper 1&2-OUT
Lab Order:	0904335	Collection Date:	4/20/2009 9:35:00 AM
Project:	Qtrly Method 8260B Air Quality Permit 0633-M	Date Received:	4/21/2009
Lab ID:	0904335-04	Matrix:	AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES		<u> </u>			Analyst: HL
Isopropyibenzene	52	50	μg/L	-50	4/24/2009 6:22:45 AM
4-Isopropyltoluene	ND	50	µg/L	50	4/24/2009 6:22:45 AM
4-Methyl-2-pentanone	ND	500	µg/L	50	4/24/2009 6:22:45 AM
Methylene Chloride	ND	150	µg/L	50	4/24/2009 6:22:45 AM
n-Butylbenzene	120	50	µg/L	50	4/24/2009 6:22:45 AM
n-Propylbenzene	200	50	µg/L	50	4/24/2009 6:22:45 AM
sec-Butyibenzene	ND	50	µg/L	50	4/24/2009 6:22:45 AM
Styrene	ND	50	·μg/L	50	4/24/2009 6:22:45 AM
tert-Butylbenzene	ND	50	µg/L	50	4/24/2009 6:22:45 AM
1,1,1,2-Tetrachloroethane	ND	50	µg/L	50	4/24/2009 6:22:45 AM
1,1,2,2-Tetrachloroethane	· ND	100	µg/L	50	4/24/2009 6:22:45 AM
Tetrachloroethene (PCE)	ND	50	µg/L	50	4/24/2009 6:22:45 AM
trans-1,2-DCE	ND	50	µg/L	50	4/24/2009 6:22:45 AM
trans-1,3-Dichloropropene	ND	50	µg/L	50	4/24/2009 6:22:45 AM
1,2,3-Trichlorobenzene	ND	50	µg/L	50	4/24/2009 6:22:45 AM
1,2,4-Trichlorobenzene	ND	50	µg/L	50	4/24/2009 6:22:45 AM
1,1,1-Trichloroethane	ND	50	µg/L	50	4/24/2009 6:22:45 AM
1,1,2-Trichloroethane	ND	50	µg/L	50	4/24/2009 6:22:45 AM
Trichloroethene (TCE)	ND	50	μg/L	50	4/24/2009 6:22:45 AM
Trichlorofluoromethane	ND	50	μg/L	50	4/24/2009 6:22:45 AM
1,2,3-Trichloropropane	ND	100	µg/L	50	4/24/2009 6:22:45 AM
Vinyl chloride	ND	50	µg/L	50	4/24/2009 6:22:45 AM
Xylenes, Total	5100	75	μg/L	50	4/24/2009 6:22:45 AM
Surr: 1,2-Dichloroethane-d4	84.2	68.1-123	%REC	50	4/24/2009 6:22:45 AM
Surr: 4-Bromofluorobenzene	94.7	53.2-145	%REC	50	4/24/2009 6:22:45 AM
Surr: Dibromofluoromethane	79.3	68.5-119	%REC	50	4/24/2009 6:22:45 AM
Surr: Toluene-d8	83.0	64-131	%REC	50	4/24/2009 6:22:45 AM

Qualifiers:

*

Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

Date: 01-May-09

- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

QA/QC SUMMARY REPORT

Western Refining Southwest, Gallup

1

Project: Qtrly Method 8260B Air Quality Permit 0633-M

Work Order: 0904335

Page 1

Analyte	Result	Units	PQL	%Rec	LowLimit HighL	.imit	%RPD	RPD	Limit	Qual
Method: EPA Method 8260B	: VOLATILES									
Sample ID: 5ml rb		MBLK			Batch ID: R	33385	Analysis D	ate:	4/23/2	2009 5:56:05 PN
Benzene	ND	µg/L	1.0							
Toluene	ND	µg/L	1.0							
Ethylbenzene	ND	µg/L	1.0							
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0							
1,2,4-Trimelhylbenzene	ND	µg/L	1.0							
1,3,5-Trimethylbenzene	ND	µg/L	1. 0			•				
1,2-Dichloroethane (EDC)	ND	µg/L	1.0							
1,2-Dibromoethane (EDB)	ND	µg/L	1.0							
Naphthalene	ND	µg/L	2.0							
1-Methylnaphthalene	ND	µg/L	4.0							
2-Methylnaphthalene	ND	µg/L	4.0							
Acetone	ND	µg/L	10							
Bromobenzene	ND	hð\r	1.0							•
Bromodichloromethane	ND	µg/L	1.0							
Bromoform	ND	µg/L	1.0							
Bromomethane	ND	µg/L	1.0							
2-Butanone	ND	µg/L	10							
Carbon disulfide	ND	µg/L	10							
Carbon Tetrachloride	ND .	µg/L	1.0							
Chlorobenzene	ND	µg/L	1.0							·
Chloroethane	ND	µg/L	2.0							
Chloroform	ND	µg/L	1.0							•.
Chloromethane	ND	µg/L	1.0							
2-Chlorotoluene	ND	µg/L	1.0							
4-Chlorotoluene	ND	µg/L	1.0				,			
cis-1,2-DCE	ND	µg/L	1.0							•
cis-1,3-Dichloropropene	ND	µg/L	1.0							
1,2-Dibromo-3-chloropropane	ND	µg/L	2.0	,						
Dibromochloromethane	ND	µg/L	1.0							
Dibromomethane	ND	µg/L	1.0							
1,2-Dichlorobenzene	ND	µg/L	1.0							
1,3-Dichlorobenzene	ND	µg/L	1.0							
1,4-Dichlorobenzene	ND	µg/L	1.0							
Dichlorodifluoromethane	ND	µg/L	1.0							
1,1-Dichloroethane	ND	µg/L	1.0							
1,1-Dichloroethene	ND	µg/L	1.0							
1,2-Dichloropropane	ND	µg/L	1.0							
1,3-Dichloropropane	ND	µg/L	1.0							
2,2-Dichloropropane	ND	µg/L	2.0							
1,1-Dichloropropene	ND	· µg/L	1.0							
Hexachlorobutadiene	ND	µg/L	1.0							
2-Hexanone	ND	µg/L	10							
Isopropylbenzene	ND	µg/L	1.0							
4-Isopropyltoluene	ND	µg/L	1.0				•			

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Designt: Otely Mot	bod 9260D A	west, Gallu	p 	M			Wowl	Ondam 0004225
Project: Quiy Meth			511111 0033-	-141				Order: 0904335
Analyte	Result	Units	PQL	%Rec	LowLimit H	ighLimit	%RPD RP	DLimit Qual
Method: EPA Method 8260B	: VOLATILES						- <u></u>	
Sample ID: 5ml rb		MBLK			Batch ID:	R33385	Analysis Date:	4/23/2009 5:56:05 PM
4-Methyl-2-pentanone	ND	ua/L	10	•				
Methylene Chloride	ND	ua/L	3.0					
n-Butvibenzene	ND	ug/L	1.0					
n-Propylbenzene	ND	ua/L	1.0					
sec-Butylbenzene	ND	ug/L	1.0					
Styrene	ND	µq/L	1.0					
tert-Butvibenzene	ND	ua/L	1.0					
1 1.1.2-Tetrachloroethane	ND	uo/L	1.0					
1.1.2.2-Tetrachloroethane	ND	uo/L	2.0					
Tetrachloroethene (PCE)	ND	ua/L	1.0					
trans-1.2-DCE	ND	ua/L	1.0					
trans-1 3-Dichloropropene	ND	ud/L	1.0					
1 2 3-Trichlorobenzana	ND	uo/i.	1.0					
1 2 4-Trichlorobenzene	ND	ua/l	10					
1 1 1-Trichloroethane	ND	ug/l	1.0					
1 1 2-Trichloroethane	ND	µ9/− ua/l	1.0					
Trichloroethene (TCE)	ND	29′⊏ ua/l	1.0	÷ .				•
Trichlorofiuoromethane	ND	μg/L μα/Ι	1.0					, ,
1.2.3-Trichloropropage	ND	µg/⊑ µg/l	2.0					
Vinyl chloride	ND	10/l	1.0					
Yvlenes Total	ND	ug/l	1.5					
Samolo ID: 5ml rb	NO	MRI K	1.0		Betch ID	R33416	Analysis Date:	4/24/2009 8:45:27 AM
		WIDEN			Daton 10.	1100470	/ margene Dates	
Benzene	ND	µg/L	1.0					
Toluene	ND	µg/L	1.0					
Ethylbenzene	ND	µg/L	1.0					
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0					
1,2,4-Trimethylbenzene	ND	µg/L	1.0					·
1,3,5-Trimethylbenzene	ND	µg/L	1.0					
1,2-Dichloroethane (EDC)	ND	µg/L	1.0					
1,2-Dibromoethane (EDB)	ND	µg/L	1.0					
Naphthalene	ND	µg/L	2.0					
1-Methylnaphthalene	ND	µg/L	4.0					
2-Methylnaphthalene	ND	µg/L	4.0					
Acetone	ND	µg/L	10					
Bromobenzene	ND	µg/L	1.0					
Bromodichloromethane	ND	µg/L	1.0					
Bromoform	ND	µg/L	1.0					
Bromomethane	ND	µg/L	1.0		-			
2-Butanone	ND	µg/L	10					
Carbon disulfide	ND	µg/L	10					
Carbon Tetrachloride	ND	µg/L	1.0					
Chlorobenzene	ND	µg/L	1.0		-			
Chloroethane	ND	hðyr	2.0		•			
Chloroform	ND	µg/L	1.0					,

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

10

Page 2

Page 3

QA/QC	SUMMARY	REPORT
-------	----------------	--------

Client:Western FProject:Qtrly Met	Refining South hod 8260B Ai	west, Gallur ir Quality Pe	Worl	Work Order: 0904335				
Analyte	Result	Units	PQL	%Rec	LowLimit H	lighLimit	%RPD RF	DLimit Qual
Method: EPA Method 8260B	: VOLATILES							
Sample ID: 5ml rb		MBLK			Batch ID:	R33416	Analysis Date:	4/24/2009 8:45:27 AM
Chloromethane	ND	µg/L	1.0					
2-Chlorotoluene	ND	μg/L	1.0					
4-Chlorotoluene	ND	µg/L	1.0					
cis-1,2-DCE	ND	µg/L	1.0					
cis-1,3-Dichloropropene	ND	μg/L	1.0					
1,2-Dibromo-3-chloropropane	ND	µg/L	2.0					
Dibromochloromethane	ND	µg/L	1.0					
Dibromomethane	ND	µg/L	1.0					
1,2-Dichlorobenzene	ND 1	µg/L	1.0					н. Т
1,3-Dichlorobenzene	ND	µg/L	1.0					
1,4-Dichlorobenzene	ND	µg/L	1.0					
Dichlorodifluoromethane	ND	µg/L	1.0					
1,1-Dichloroethane	ND	µg/L	1.0					
1,1-Dichloroethene	ND	µg/L	1.0					
1,2-Dichloropropane	ND	μg/L	1.0					
1,3-Dichloropropane	ND	µg/L	1.0					
2,2-Dichloropropane	ND	ug/L	2.0					
1.1-Dichloropropene	ND	ug/L	1.0					
Hexachlorobutadiene	ND .	μg/L	1.0					
2-Hexanone	ND	ua/L	10					
isopropylbenzene	ND	ug/L	1.0					
4-Isopropyltoluene	ND	ua/L	1.0					
4-Methvi-2-pentanone	ND	ua/L	10					
Methylene Chloride	ND	ua/L	3.0					
n-Butvlbenzene	ND	ua/L	1.0					
n-Propylbenzene	ND	μα/L	1.0					
sec-Butvibenzene	ND	ua/L	1.0					
Sivrene	ND	μα/l	10					
tert-Butylbenzene	ND	ug/)	10					
1 1 1 2-Tetrachloroethane	ND	ug/L	1.0					
1 1.2 2-Tetrachloroethane	ND	ug/l	2.0					
Tetrachloroethene (PCF)	ND	ug/L	1.0					
trans-1.2-DCE	ND	ua/L	1.0					
trans-1.3-Dichloropropene	ND	ua/L	1.0					
1 2 3-Trichlorobenzene	ND	ua/L	1.0					
1 2 4-Trichlorobenzene	ND	uo/L	1.0					
1 1 1-Trichloroethane	ND	uo/L	1.0					
1.1.2-Trichloroethane	ND	ua/L	1.0					
Trichloroethene (TCE)	ND	ua/L	1.0					
Trichlorofluoromethane	ND	ua/L	1.0					
1.2.3.Trichloroncoane	חא	на/1 110/1	20					
Vinyl chloride		но/)	2.0 1 0					
Yulanes Total		нау 89, е	. 15				· .	
Sample ID: Emist		Hair MRIK			Batch ID [.]	R33452	Analysis Date:	4/28/2009 10:38:31 AM

Qualifiers:

- E Estimated value
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD R	PDLimit Qual	
Method: EPA Method 8260B:	VOLATILES							· · · · ·	
Sample ID: 5ml rb		MBLK			Batch	ID: R33452	Analysis Date:	4/28/2009 10:3	38:31 AM
Benzene	ND	uo/L	1.0		ė				
Toluene	ND	ua/L	1.0						· ·
Ethylbenzene	ND	µg/L	1.0						
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0						
1,2,4-Trimethylbenzene	ND	µg/L	1.0						
1,3,5-Trimethylbenzene	ND	µg/L	1.0						
1,2-Dichloroethane (EDC)	ND	µg/L	1.0						
1,2-Dibromoethane (EDB)	ND	µg/L	1.0						
Naphthalene	ND	µg/L	2.0						
1-Methylnaphthalene	ND	µg/L	4.0						
2-Methylnaphthalene	ND	µg/L	4.0						
Acetone	ND	µg/L	10						
Bromobenzene	ND	µg/L	1.0						
Bromodichloromethane	ND	µg/L	1.0						
Bromoform	ND	µg/L	1.0						
Bromomethane	ND	µg/L	1.0				·		
2-Butanone	ND	µg/L	10						
Carbon disulfide	ND	µg/L	10						•
Carbon Tetrachloride	ND	µg/L	1.0						
Chlorobenzene	ND	µg/L	1.0						
Chloroethane	ND	µg/L	2.0						
Chloroform	ND	µg/L	1.0						
Chloromethane	ND	µg/L	1.0						
2-Chlorotoluene	ND	µg/L	1.0						
4-Chlorotoluene	ND	µg/L	1.0						
cis-1,2-DCE	ND	μg/L	1.0						
cis-1,3-Dichloropropene	ND	µg/L	1.0						
1,2-Dibromo-3-chloropropane	ND	µg/L	2.0						
Dibromochloromethane	ND	µg/L	1.0						
Dibromomethane	ND	µg/L	1.0						
I,2-Dichlorobenzene	ND	µg/L	1.0						
,3-Dichlorobenzene	ND	µg/L	. 1.0						
,4-Dichlorobenzene	ND	µg/L	1.0						
DichlorodIfluoromethane	ND	µg/L	1.0						
,1-Dichloroethane	ND	µg/L	1.0						
,1-Dichloroethene	ND	µg/L	1.0						
,2-Dichloropropane	ND	µg/L	1.0						
,3-Dichloropropane	ND .	µg/L	1.0						
2,2-Dichloropropane	ND	µg/L	2.0						
,1-Dichloropropene	ND	µg/L	1.0						
lexachlorobutadiene	ND	µg/L	1.0						
-Hexanone	ND	µg/L	10						
sopropylbenzene	ND	µg/L	1.0						
-Isopropyltoluene	ND	µg/L	1.0						

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 5

QA/QC SUMMARY REPORT

Client: Western R Project: Otrly Meth	lefining South	west, Galluj r Quality Pe	p ermit 0633	-M			Work Order: 000433				
Analyte	Result	Units	PQL	%Rec	LowLimit Hi	ghLimit	%RPD RP	DLimit Qual			
Method: EPA Method 8260B Sample ID: 5ml rb	: VOLATILES	MRIK			Batch ID:	R33462	Analysis Date:	4/28/2000 10-38-31 AM			
Sampe D. Units			40		Daton iei.	1133492	Analysis Date.	4/20/2009 10.30.31 AW			
4-Methyl-2-pentanone	ND	hâ\r	10								
Methylene Chloride	ND	µg/L	3.0								
n-Butylbenzene	ND	µg/L	1.0								
n-Propylbenzene	ND	µg/L	1.0								
sec-Butylbenzene	ND	µg/L	1.0								
Styrene	ND	µg/L	1.0								
tert-Butylbenzene	ND	µg/L	1.0								
1,1,1,2-Tetrachloroethane	ND	µg/L	1.0								
1,1,2,2-Tetrachloroethane	ND	µg/L	2.0								
Tetrachioroethene (PCE)	ND	µg/L	1.0								
trans-1,2-DCE	ND	µg/L	1.0								
trans-1,3-Dichloropropene	ND	µg/L	1.0								
1,2,3-Trichlorobenzene	ND	µg/L	1.0								
1,2,4-Trichlorobenzene	ND	µg/L	1.0								
1,1,1-Trichloroethane	ND	µg/L	1.0								
1,1,2-Trichloroethane	ND	µg/L	1.0								
Trichloroethene (TCE)	ND	µg/L	1.0								
Trichlorofluoromethane	ND	µg/L	. 1.0					·			
1,2,3-Trichloropropane	ND	µg/L	2.0								
Vinyl chloride	ND	µg/L	1.0								
Xylenes, Total	ND	µg/L	1.5				•				
Sample ID: b3		MBLK			Batch ID:	R33452	Analysis Date:	4/28/2009 11:15:44 PM			
Benzene	ND	uo/l.	1.0								
Toluene		ua/l	1.0								
Ethylhenzene	ND	µ9/	1.0								
Methyl tert-hutul ether (MTRE)	ND	µ9/⊏ ⊔n/l	1.0					•			
1 2 A_Trimethylbenzene	ND	µg/L	1.0								
1 3 5-Trimethybenzene		μg/L μα/Ι	1.0		·						
1.2.Dichlorosthane (EDC)	ND	H8/P	1.0								
1,2-Dichloroethane (EDC)	ND	µgr⊂ ug/l	1.0								
Nashihalasa	ND	/ µg/L	2.0								
Naphinalene 1. Mothulaanhtholoao	ND	µg/L ug/l	2.0								
		ug/L	4.0								
		µy/c	4.0								
		µg/c	10								
		µg/∟	1.0								
Bromodichioromethane		µg/L	1.0								
		µg/L	1.0								
sromomethane		µg/L	1.0								
2-Butanone		µg/L	10								
Carbon disulfide		µg/L	10								
Carbon Tetrachloride	ND	µg/L	1.0								
Chlorobenzene	ND	µg/L	1.0								
Chloroethane	ND	µg/L	2.0								
Chloroform	ND	µg/L	1.0			•					

- Qualifiers:
- E Estimated value
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:	Western Refining Southwest, Gallup
Project:	Qtrly Method 8260B Air Quality Permit 0633-M
·	

Work Order: 0904335

Page 6

Analyte	Result	Units	PQL	%Rec	LowLimit H	ighLimit	%RPD RP	DLimit Qual
Method: EPA Method 8260B	· VOLATILES							
Sample ID: b3		MBLK			Batch ID:	R33452	Analysis Date:	4/28/2009 11:15:44 PM
Chloromethane	ND	µg/L	1.0					
2-Chlorotoluene	ND ·	µg/L	1.0					
4-Chlorotoluene	ND	µg/L	1.0					
cis-1,2-DCE	ND	µg/L	1.0					
cis-1,3-Dichloropropene	ND	µg/L	1.0					
1,2-Dibromo-3-chloropropane	ND	µg/L	2.0					
Dibromochloromethane	ND	μg/L	1.0					
Dibromomethane	ND	µg/L	1.0					
1,2-Dichlorobenzene	ND	µg/L	1.0					
1,3-Dichlorobenzene	ND	µg/L	1.0					
1,4-Dichlorobenzene	ND	µg/L	1.0					
Dichlorodifluoromethane	ND	µg/L	1.0					
1,1-Dichloroethane	ND	μg/L	1.0					
1,1-Dichloroethene	ND	µg/L	1.0					
1,2-Dichloropropane	ND	µg/L	1.0					
1,3-Dichloropropane	ND	µg/L	1.0					·
2,2-Dichloropropane	ND	µg/L	2.0					
1,1-Dichloropropene	ND	µg/L	1.0					
Hexachlorobutadiene	ND	µg/L	1.0					
2-Hexanone	ND	µg/L	10					
lsopropylbenzene	ND	µg/L	1.0					
4-Isopropyltoluene	ND	µg/L	1.0					
4-Methyl-2-pentanone	ND	µg/L	10					
Methylene Chloride	ND	µg/L	3.0					
n-Butylbenzene	ND	µg/L	1.0					
n-Propylbenzene	ND	µg/L	1.0					
sec-Butylbenzene	ND	µg/L	1.0					
Styrene	ND	µg/L	1.0					
tert-Butylbenzene	ND	µg/L	1.0					
1,1,1,2-Tetrachloroethane	ND	µg/L ⁻	1.0					
1,1,2,2-Tetrachloroethane	ND	µg/L	2.0					
Tetrachloroethene (PCE)	ND	µg/L	1.0					
trans-1,2-DCE	ND	µg/L	1.0					
trans-1,3-Dichloropropene	ND	µg/L	1.0					
1,2,3-Trichlorobenzene	ND	µg/L	1.0					
1,2,4-Trichlorobenzene	ND	µg/L	1.0					
1,1,1-Trichloroethane	ND	µg/L	1.0				•	
1,1,2-Trichloroethane	ND	µg/L	1.0					
Trichloroethene (TCE)	ND	µg/L	1.0					
Trichlorofluoromethane	ND	µg/L	1.0					
1,2,3-Trichloropropane	ND	µg/L	2.0					
Vinyl chloride	ND	µg/L	- 1.0					
Kylenes, Total	ND	µg/L	1.5					
Sample ID: 100ng Ics		LCS			Batch ID:	R33385	Analysis Date:	4/23/2009 7:22:17 PM

Qualifiers:

- E Estimated value
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Н

QA/QC SUMMARY REPORT

Client:	Western Refining Southwest, Gallup
Project:	Qtrly Method 8260B Air Quality Permit 0633-M

Work Order: 0904335

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPDRF	PDLimit Qual
Method: EPA Method 8260	B: VOLATILES						· ·	
Sample ID: 100ng Ics		LCS			Batch	ID: R33385	Analysis Date:	4/23/2009 7:22:17 PM
Benzene	17.49	µg/L	1.0	87.5	88	116	•	S
Toluene	19.78	µg/L	1.0	98.9	82.9	112		
Chlorobenzene	22.22	µg/L	1.0	111	71.4	133		
1,1-Dichloroethene	20.92	µg/L	1.0	105	97.9	140		
Trichloroethene (TCE)	17.28	µg/L	1.0	86.4	90.5	112		S
Sample ID: 100ng Ics		LCS			Batch	ID: R33416	Analysis Date:	4/24/2009 9:42:54 AM
Benzene	17,18	µg/L	1.0	85.9	76.7	114		
Toluene	22.89	µg/L	1.0	114	78.4	117		
Chlorobenzene	22.91	µg/L	1.0	115	80.7	127		
1,1-Dichloroethene	21.70	µg/L	1.0	109	80.2	128		
Trichloroethene (TCE)	17.22	µg/L	1.0	86.1	77.4	115		
Sample ID: 100ng Ics		LCS			Batch	D: R33452	Analysis Date:	4/28/2009 11:36:45 AM
Benzene	21.00	µg/L	1.0	105	76.7	114		
Toluene	20.22	µg/L	1.0	101	78.4	117		
Chlorobenzene	19.09	µg/L	1.0	95.4	80.7	127		
1,1-Dichloroethene	23.81	µg/L	1.0	119	80.2	128		
Trichloroethene (TCE)	21.80	µg/L	1.0	109	77.4	115		,
Sample ID: 100ng ics_b		LCS			Batch	ID: R33452	Analysis Date:	4/29/2009 12:43:24 AM
Benzene	21.44	µg/L	1.0	102	76.7	114		
Toluene	19.83	µg/L	1.0	95.0	78.4	117		
Chlorobenzene	18.75	µg/L	1.0	93.8	80.7	127		
1,1-Dichloroethene	23.68	μg/L	1.0	118	80.2	128		
Trichloroethene (TCE)	21.46	µg/L	1.0	107	77.4	115		

Qualifiers:

- E Estimated value
- J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

· .	Sample	Rec	eipt Che	ecklist			• •	
Client Name WESTERN REFINING GALLU	×			Date Received	l:		4/21/2009	
Work Order Number 0904335				Received by:	AT		1	
Checklist completed by:	ğ	t	-121 Date	Sample ID la	bels checked	by:	Initials	
Matrix:	Carrier name:	Clier	nt drop-ofi	ſ				
Shipping container/cooler in good condition?	:	Yes		No 🗌	Not Present			
Custody seals intact on shipping container/coole	r?	Yes		No 🗔	Not Present		Not Shipped	
Custody seals intact on sample bottles?		Yes		No 🗌	N/A			
Chain of custody present?		Yes		No 🗋				
Chain of custody signed when relinquished and r	eceived?	Yes		No 🗔				
Chain of custody agrees with sample labels?		Yes		No 🗖				
Samples in proper container/bottle?		Yes		No 🔲				
Sample containers intact?		Yes	\checkmark	No 🗌				
Sufficient sample volume for indicated test?		Yes		No 🗌				
All samples received within holding time?		Yes		No 🗌				
Water - VOA vials have zero headspace?	No VOA viais subm	nitted		Yes 🗹	No 🗔			
Water - Preservation labels on bottle and cap ma	itch?	Yes		No 🗖	N/A 🔽			
Water - pH acceptable upon receipt?		Yes		No 🗌	N/A 🗹			
Container/Temp Blank temperature?		2	2°	<6° C Acceptable	9			
COMMENTS:				If given sufficient	time to cool.			
Olient controlod	Doto contratado			Dama	n contracted			
				Perso	n contacted			
Contacted by:	Regarding:							
Comments:								
				1				
	,,,,				-			
Corrective Action								
				· ·				

	AALL ENVIKONMENTAL ANALYSISTABORATORY	www.hallenvironmental.com	kins NE - Albuquerque, NM 87109	345-3975 Fax 505-345-4107	Analysis Request	(¢C	2 s.82c s(7°2	۲۵۲۱ ۱۳۵۵ ۱۳۵۹	(H1) (H1) (H1) (117) (11	ло мо мо мо мо мо мо мо мо мо мо мо мо мо	odraho (Metho 2 AVI (Metho 2 AVI (F) (C) 2 AVI (F) (C) 2 AVI (F) 2		X		X							
			4901 Haw	Tel. 505-		sel) (Vilu	o ssé eiU\e	es)) F	11 158 158	+ 38 1801									 	 	arks:	
		_ I I				()	.208)	s'a	MT	+ 36	atex + MTE					<u> </u>					Rema	
Turn-Around Time:	🗆 Standard 🗆 Rush	Project Name: QUARTENY METHOCH	8260 BUTY Permit 0633-M7	Project #:		Project Manager:	GANTAN DATA		Sampler: Mulu UOFSEY	Sample Rismon and Control and Cont	Container Preservative Type and # Type	3-40ML I	3-40ml 2	3-40 ml 3	3-40 mil 4						Received by: Land All of College	Received by: Date Time
Chain-of-Custody Record	Client: WESTERN - RE FINING	(Julling Re FINERY	Mailing Address: RT 3 BOX 9	Gallup NM 87301	Phone # 505 722 3833	email or Fax#: 505 722 0210	QA/QC Package:				Date Time Matrix Sample Request ID	strand OSIS M 3rd BrShupper-IN	1-2000 0830 312 B2 Stripper-001	14-20-09 09-25 B2Shuperld 2IN	242009 0935 V B2STripper 12051						Date: Time: Relinquished by:	Date: Time: Relinquished by:

COVER LETTER

Friday, May 15, 2009

Gaurav Rajen Western Refining Southwest, Gallup Rt. 3 Box 7 Gallup, NM 87301

TEL: (505) 722-3833 FAX (505) 722-0210

RE: BZ Strippers

Dear Gaurav Rajen:

Order No.: 0905027

Hall Environmental Analysis Laboratory, Inc. received 4 sample(s) on 5/4/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT: Project:	Western Refining South BZ Strippers	west, Gallup		- //	La	b Orde	r: 0905027
Lab ID:	0905027-01			Collect	ion Date	4/30/20	009 9·30·00 AM
Client Sample ID:	3RD BZ Stripper-IN			Conte	Matrix:	AQÚE	OUS
Analyses		Result	PQL	Qual Units		DF	Date Analyzed
EPA METHOD 802	1B: VOLATILES						Analyst: DAt
Methyl tert-butyl eth	er (MTBE)	ND	2500	µg/L	•	1000	5/12/2009 4:18:41 PM
Benzene		33000	1000	µg/L		1000	5/12/2009 4:18:41 PM
Toluene		33000	1000	µg/L		1000	5/12/2009 4:18:41 PM
Ethylbenzene		1200	1000	µg/L		1000	5/12/2009 4:18:41 PM
Xylenes, Total		8000	2000	µa/L		1000	5/12/2009 4:18:41 PM
Surr: 4-Bromoflue	probenzene	90.4	65.9-130	%REC		1000	5/12/2009 4:18:41 PM
Lab ID:	0905027-02			Collect	ion Date:	4/30/20	009 9:40:00 AM
Client Sample ID:	3RD BZ Stripper-OU	T			Matrix:	AQUE	OUS
nalyses	1	Result	PQL	Qual Units		DF	Date Analyzed
PA METHOD 802	1B: VOLATILES						Analyst: DA
Methyl tert-butyl eth	er (MTBE)	ND	25	µg/L		10	5/13/2009 3:18:29 PM
Benzene		130	10	µg/L	,	10	5/13/2009 3:18:29 PM
Toluene		250	10	ua/L		10	5/13/2009 3:18:29 PM
Ethvibenzene		22	. 10	uo/L	•	10	5/13/2009 3:18:29 PM
Xvienes, Total	•	180	20	ua/L		10	5/13/2009 3:18:29 PM
Surr: 4-Bromofluc	probenzene	97.4	65.9-130	%REC		10	5/13/2009 3:18:29 PM
ab ID:	0905027-03			Collecti	on Date:	4/30/20	09 10:00:00 AM
lient Sample ID:	BZ Stripper 1&2 IN				Matrix:	AQUE	DUS
nalyses		Result	PQL	Qual Units		DF	Date Analyzed
PA METHOD 802	tB: VOLATILES	r					Analyst: DAM
Methyl tert-butyl eth	er (MTBE)	ND	1300	µg/L		500	5/12/2009 3:58:12 AM
Benzene		7300	500	μg/L		500	5/12/2009 3:58:12 AM
Toluene	,	19000	500	μg/L		500	5/12/2009 3:58:12 AM
Ethylbenzene		1200	500	µg/L		500	5/12/2009 3:58:12 AM
Xylenes, Total		8100	1000	µg/L		500	5/12/2009 3:58:12 AM
Curry A Desma efficient	rebenzene	834	65 9-130	%REC		500	5/12/2009 3:58:12 AM

Qualifiers:

*

Value exceeds Maximum Contaminant Level Estimated value

Е Analyte detected below quantitation limits J

Not Detected at the Reporting Limit ND

- Spike recovery outside accepted recovery limits s
- В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 15-May-09

CLIENT: Project:	Western Refining Sou BZ Strippers	ithwest, Gallup			Lab Orde	r: 0905027
Lab ID: Client Sample I	0905027-04 D: BZ Stripper 1&2 C	DUT		Collection D Mat	ate: 4/30/20 rix: AQUE	009 10:15:00 AM OUS
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
FPA METHOD 8	021B: VOLATILES					Analyst: DAM
Methyl fert-butyl	ether (MTBE)	ND	630	µg/L	250	5/12/2009 4:28:42 AM
Benzene		1300	250	µg/L	250	5/12/2009 4:28:42 AM
Toluene		4700	250	µg/L	250	5/12/2009 4:28:42 AM
Ethylbenzene		480	250	μg/L	250	5/12/2009 4:28:42 AM
Xvienes Total		3400	500	µg/L	250	5/12/2009 4:28:42 AM
Surr: 4-Bromo	fluorobenzene	80.2	65.9-130	%REC	250	5/12/2009 4:28:42 AM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated valueJ Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 2 of 2

QA/QC SUMMARY REPORT

Project: BZ Strippers	ining South	iwest, Galluj					w	'ork (Drder: 0905027
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Method: EPA Method 8021B: V	olatiles			-					
Sample ID: 5ML RB		MBLK			Batch	ID: R33615	Analysis Da	te:	5/11/2009 9:37:07 AM
Methyl tert-butyl ether (MTBE)	ND	µg/L	2.5						
Benzene	ND	µg/L	1.0						
Toluene	ND	µg/L	1.0						
Ethylbenzene	ND	µg/L	1.0						
Xylenes, Total	ND	µg/L	2.0						
Sample ID: 100NG BTEX LCS		LCS			Batch	ID: R33615	Analysis Da	te:	5/11/2009 7:18:02 PM
Methyl tert-butyl ether (MTBE)	22.18	µg/L	2.5	111	51.2	138	•		
Benzene	19.72	µg/L	1.0	98.6	85.9	113			
Toluene	21.49	µg/L	1.0	107	86.4	· 113			
Ethylbenzene	21.00	µg/L	1.0	105	83.5	118			
Xylenes, Total	64.64	µg/L	2.0	108	83.4	122			
Sample ID: 100NG BTEX LCSD		LCSD			Batch	D: R33615	Analysis Dat	te:	5/11/2009 7:48:31 PM
Methyl tert-butyl ether (MTBE)	22.21	μg/L	2.5	111	51.2	138	0.144	28	
Benzene -	19.51	µg/L	· 1.0	97.6	85.9	113	1.08	27	
Toluene	20.61	µg/L	1.0	103	86.4	113	4.17	19	
Ethylbenzene	20.31	µg/L	1.0	102	83.5	118	3.33	10	
Xvlenes Total	62.03		2.0	103	83.4	122	4 12	13	

Qualifiers:

- E Estimated value
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 1

	Sample	Rec	eipt Ch	ecklist				
Client Name WESTERN REFINING GALLU				Date Receive	d:		5/4/2009	
Work Order Number 0905027				Received by	: AMF		A1	
21		E	111	Sample ID la	abals checked	by:	<u> </u>	
Signature			Date					
Matzix		Clin	nt dran aft	r				
	Carrier name.							
Shipping container/cooler in good condition?		Yes		No 🗔	Not Present			
Custody seals intact on shipping container/cool	ler?	Yes		No 🗌	Not Present		Not Shipped	
Custody seals intact on sample bottles?		Yes		No 🗌	N/A			
Chain of custody present?		Yes		No 🗔				
Chain of custody signed when relinquished and	received?	Yes		No 🗌				
Chain of custody agrees with sample labels?		Yes		No 🗌				
Samples in proper container/bottle?		Yes		No 🗔		•		
Sample containers intact?		Yes		No 🗔				
Sufficient sample volume for indicated test?		Yes						
All samples received within holding time?		Yes	_	No 🗌				
Water - VOA vials have zero headspace?	No VOA vials subm	nitted		Yes 🗹	No 🗔			
Water - Preservation labels on bottle and cap m	atch?	Yes		No 🛄	N/A 🗹			
Water - pH acceptable upon receipt?		Yes		No 🗔	N/A 🗹			
Container/Temp Blank temperature?			6°	<6° C Acceptabl	e			
COMMENTS:			1	If given sufficient	time to cool.			
		·	r					
Client contacted	Date contacted:			Pers	on contacted			
Controlled by:								
Comments:				· · · · · · · · · · · · · · · · · · ·	<u> </u>		······	· _ · · · · · _ · ·
	· · · · · · · · · · · · · · · · · · ·			- <u></u>				
							· · · · · · · · · · · · · · · · · · ·	
	·							-
				<u>. </u>		··	·····	
	· · · · · · · · · · · · · · · · · · ·							

		www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	ima er statt gestigte for an in Analysis Request for an in the second second second second second second second	18 [(ÞC	- W - W - O - O	. Е Х 1) ⁵¹ Б 85 t 85 t	н ТР 15В 1481) 1481) 1811) 1811) 180 180 180 180 180 180 180 180 180 180	(() () () () () () () () () () () () ()	ATEX + MT TEX + MT TEX + MT TEH Method TPH Method TPH (Method BDB (Method BD									Time Remarks: \\20	Time
Turn-Around Time:	□ Standard □ Rush	Project Name:	132 SIRIPPERS	Project #:		Project Manager:		Nac elvi (Velocio)	On too in the stress in the stress of the st	Sample Temperature	Container Preservative Type and # Type	3-10/11 1201	S-4011 HCI D	3-4011 HCI 3	3-10MI HCI V	-				Received by: Date 1	Received by: Date 7
Chain-of-Custody Record	Client WESTERN-REFINING	Grallup REFINELY	Mailing Address: RT 3 BOX9	GANWO NM 87301	Phone #: 505 722 3833	email or Fax#: 505 122 0210	QA/QC Package:		EDD (Type)		Date Time Matrix Sample Request ID	0430-09 0930 19 3 rd B2 STripper-IM	04-30-0940 3rd BZSTripper-Out	043009 1000 BZSTripper 122 IN	04-30-09 1015 1 Bz Stripper 12201					50409 1200 allen by	Date: Time: Relinquished by:

_					
1	Discharge Plan	Ronowal	nnlicati	on 2003	Revision 0
Ċ,	Discharge Flat	IVCIIC AA GI /-	shhirdri		
		and the second			04/27/04
a' i	Section 3.0		Sugar the mark of the second second		04/27/04
_			and the second sec		

The refinery is situated on an 810 acre irregular shaped tract of land that is substantially located within the lower one quarter of Section 28 and throughout Section 33 of Township 15 North, Range 15 West of the New Mexico Prime Meridian. A small component of the property lies within the northeastern one quarter of Section 4 of Township 14 North, Range 15 West.

A detailed map of the plant site is also included with this application as Appendix A. This map is large format and measures 34 inches wide by 22 inches high.

Profile С I

ы

Chavez, Carl J, EMNRD

From:	Riege, Ed [Ed.Riege@wnr.com]
Sent:	Monday, January 12, 2009 5:18 PM
То:	Bearzi, James, NMENV
Cc:	Monzeglio, Hope, NMENV; Chavez, Carl J, EMNRD
Subject:	Response to Letter of December 19, 2008
Attachments:	Gallup Refinery letter to Bearzi.pdf

Mr. Bearzi,

The response to your letter of December 19, 2008 is attached. The original signed hard copy was placed into the mail.

Thanks,

Ed Riege

Ed Riege Environmental Manager

Western Refining Gallup Refinery Route 3 Box 7 Gallup, NM 87301 (505) 722-0217 ed.riege@wnr.com

This inbound email has been scanned by the MessageLabs Email Security System.

GALLUP REFINERY

January 12, 2009

Mr. James P. Bearzi New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303

Dear Mr. Bearzi:

This letter is a response to your letter dated December 19, 2009 re: Revision of the Part A Permit Application and Additional Facility requirement pertaining to the Wastewater Treatment System, Western Refining Southwest Inc., Gallup Refinery, EPA ID# NMD000333211, HWB-GRCC-MISC. We are responding in a timely manner to those requests with a deadline of January 12, 2009, recognizing that some items have a later deadline, and others have already been submitted in our December 23rd transmittal to Ms. Hope Monzeglio of your staff.

NYSE

We are responding here on a point-by-point basis to your December 19, 2009, letter:

- a. Starting the week of January 5, 2009 the API Separator's overflow pipes to the lagoons were removed from service and overflows are now routed to a semi-permanent/temporary tank
- b. Western Refining will respond by February 13, 2008 as requested.
- c. Samples are being collected as specified and the results of the first set of laboratory analyses have been submitted to Hope Monzeglio of the NMED's Hazardous Waste Bureau and to Carl Chavez of the Oil Conservation Division within the timelines as specified by you.
- d. Samples are being collected as specified and the results of the first set of laboratory analyses have been submitted to Hope Monzeglio of the NMED's Hazardous Waste Bureau and to Carl Chavez of the Oil Conservation Division within the timelines as specified by you.
- e Flow into the new API separator and to the third benzene stripper is not currently monitored.
- f. The requested dates and estimated amounts are being compiled, and we will send the available data and estimates by January 16 as requested.
- g. The requested data has been compiled and submitted on December 23, 2008
- h. The requested laboratory analytical data on the influent and effluent to and from the Benzene Stripper 3 has been compiled and submitted on December 23, 2008. The sources of wastewater to Benzene Stripper 3 are -1) North and South Desalters; 2) Low Pressure Receiver Water Boot; 3) High Pressure Receiver Water Boot; 4) Straight Run Water Wash Tower.
- i. The requested air quality permit has been submitted

Please do not hesitate to contact me at 505-722-3833 if you (or your staff) have any further questions.

Best regards,

.

C

Ed Riege Environmental Manager

GALLUP REFINERY

January 12, 2009

Mr. James P. Bearzi New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303

Dear Mr. Bearzi:

This letter is a response to your letter dated December 19, 2009 re: Revision of the Part A Permit Application and Additional Facility requirement pertaining to the Wastewater Treatment System, Western Refining Southwest Inc., Gallup Refinery, EPA ID# NMD000333211, HWB-GRCC-MISC. We are responding in a timely manner to those requests with a deadline of January 12, 2009, recognizing that some items have a later deadline, and others have already been submitted in our December 23rd transmittal to Ms. Hope Monzeglio of your staff.

WNR

NYSE

We are responding here on a point-by-point basis to your December 19, 2009, letter:

- a. Starting the week of January 5, 2009 the API Separator's overflow pipes to the lagoons were removed from service and overflows are now routed to a semi-permanent/temporary tank
- b. Western Refining will respond by February 13, 2008 as requested.
- c. Samples are being collected as specified and the results of the first set of laboratory analyses have been submitted to Hope Monzeglio of the NMED's Hazardous Waste Bureau and to Carl Chavez of the Oil Conservation Division within the timelines as specified by you.
- d. Samples are being collected as specified and the results of the first set of laboratory analyses have been submitted to Hope Monzeglio of the NMED's Hazardous Waste Bureau and to Carl Chavez of the Oil Conservation Division within the timelines as specified by you.
- e. Flow into the new API separator and to the third benzene stripper is not currently monitored.
- f. The requested dates and estimated amounts are being compiled, and we will send the available data and estimates by January 16 as requested.
- g. The requested data has been compiled and submitted on December 23, 2008
- h. The requested laboratory analytical data on the influent and effluent to and from the Benzene Stripper 3 has been compiled and submitted on December 23, 2008. The sources of wastewater to Benzene Stripper 3 are -1) North and South Desalters, 2) Low Pressure Receiver Water Boot; 3) High Pressure Receiver Water Boot; 4) Straight Run Water Wash Tower.
- i. The requested air quality permit has been submitted

Please do not hesitate to contact me at 505-722-3833 if you (or your staff) have any further questions.

Best regards,

(

Ed Riege Environmental Manager

CEIVED

2008 NOV 10 PM 2 58

Certified Mail 7005 1820 0001 6456 3158

November 6, 2008

Mr. Carl Chavez Oil Conservation Division Environmental Bureau 1220 S. St. Francis Dr. Santa Fe, NM 87505

Re: OCD Discharge Permit GW-032 Condition 9

Dear Mr. Chavez:

This letter is in response to our conference call of October 23, 2008 in which we discussed Western Refining Gallup's letter dated October 1, 2008 regarding OCD Permit Condition 9. Carl thank you for your suggestions to make the Gallup Refinery Storage Tank Table a tool that can be used to track Gallup's progress in meeting Condition 9. The following changes were made to the attached table:

- A statement was added near the bottom of the table which indicates that the refinery will update the Gallup Refinery Storage Tank Table annually with the update due to OCD by January 31 of each year.
- A statement was added near the bottom of the table which indicates that the privately owned tanks (such as Nalco and additive tanks) will be required to implement the 5 year external and 10 year internal inspection schedule for their tanks. Western Refining will contact the owners notifying them of this requirement.
- Columns have been added to the table which allow for indicating the actual completion dates for change in containment style completion, soil compaction completion and tank gauge installation completion.
- A note was added to the column heading "Compacting of Soils" indicating by 10/1/2009.
- A couple of the inspection dates were corrected such as T-5 which had indicated a next external inspection date of October 1999.

Your review and approval of this submittal are appreciated. Please contact Ed Riege at (505) 722-0217 if you have any comments or questions regarding this submittal.

Sincerely, hall by Mark B. Turri General Manager 化合理学的 化合理学 化合理学 化合理学 A SATAN LONG STAT C: Ms. Hope Monzeglio en New York, Anna an All 1997, and a start part of a start of a start start start of the start of the start of the Ed Riege Don Riley Guarav Rajen

46	45	43	42	41	40	39	ω 	37 OC	<u>к</u> 8	ο ω 1 4	. <u>.</u>	32	<u>3</u>	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	3 3	5 u	, 0	0 ~	o د ا	, U	4 1	ω	N	<u> </u>		# 0	
TK-707	TK-706	TK-342	TK-108	TK-576	TK-570	TK-448	TK-345	TK-337	1K-1004	IK-1003	TK-1002	TK-1001	Q-T8	Q-T2	Z81-T9	Z81-T1	TK-913	TK-912	TK-704	TK-703	TK-7	TK-563	TK-5	TK-18571	TK-18570	TK-106	TK-102	TK-575	TK-565	TK-564	TK-560	TK-556	TK-555	TK-440	TV 112	TK 4	TK 2/3	IK-2	TK-115	P-V19C	P-V19B	P-V19A		DESCRIPTION	GALLU
1963	1963	1957	1957	1968	1957	1957	1977	1077	1011				1963	1956		1998			1963	1963	1946	1986	1963			1957	1991	1957	1957	1957	1957	1957	1974	1940	10/5	1070	1057	1965	1957	1957	1957	1957		BUILT	
1,000	10,000	5,000	5,000	40,000	25,000	1,373	20,000	20 000	112	5/	72	72	226	112	60	1,000	206	188	10,000	25,000	330	20,000	1,800	54	54	5,000	80,000	10,000	5,000	5,000	2,300	718	2.073	1 373	3,000	3 000	5,000	4,000	5,000	668.7 ft ³	668.7 ft ³	668.7 ft ³		(BBLS)	FINE
SLOP OIL	FUEL OIL	ETHANOL	ALKLATE	PREMUM BASE	87.0 UNLD REG.	ISO-BUTANE	REFORMATE/ETOH	ETHANOI		DIESEL POUR POINT ADDITIVE	GASOLINE TANK	DIESEL TANK	CAUSTIC	CAUSTIC	DIESEL	TREATED WATER	Add. Gasoline (NAP 96)	Add. Gasoline (6331)	FUEL OIL	RESIDUE/FCC FEED	ISOMERATE ·	NAT. GASOLINE	ETHANOL	NALCO 7359	NALCO 7359	TRANSMIX	CRUDE	JET-A/K1	ISOM/NAT GASO/TOL	NAT.GASOLINE/ISOMERATE	BUTANE	PROPANE	ISO-BUTANE	ISO-BI ITANE			R-1	UNLEADED PREMUM	DHT PRODUCT	HYDROGEN GAS	HYDROGEN GAS	HYDROGEN GAS			RY STORAGE TA
2011	2011	2011	2011	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2009	2009	2009	2009	2009	2009	2009	2009	2009	2009	2009	2009	2009	2008	2008	2008	2008	2008	2008	8002	2000	0002	2008	2008	2008	2008	2008	2008		EXTERNAL INSPEC.	NK T/
2011	2011	2011	2011	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2009	2009	2009	2009	2009	2009	2009	2009	2009	2009	2009	2009	2009	2008	2008	2008	2008	2008	2008	2002	2000	2000	8002	2008	2008	2008	2008	2008		INTERNAL INSPEC.	ABLE
Cone	Cone	Cone	Cone	Cone	Cone	Bullet	Cone	Cone	Hor. Cyl.	Hor. Cyl.	Hor. Cyl.	Hor. Cyl.	Cone	Cone	Hor. Cyl.	Cone	Hor. Cyl.	Hor. Cyl.	Cone	Cone	Bullet	Elyps.	Cone	Cone	Cone	Cone	Cone	Cone	Elyps.	Elyps.	Bullet	Bullet	Bullet	Bullet	D. llot	Cono	Cone	Cone	Cone	Bullet	Bullet	Bullet			TANK OTVI E
Single	Single	Single	Single	Single	Single	Elevated	Single	Single	Elevated	Elevated	Elevated	Elevated	Single	Single	Elevated	Single	Elevated	Elevated	Single	Single	Elevated	Single	Single	Single	Single	Single	Single	Single	Single	Single	Elevated	Elevated	Flevated	Elevated	Silicia	Billic	Single	Single	Double	Elevated	Elevated	Elevated	as or 9/08		
						n/a			n/a	n/a	n/a	n/a			n/a		n/a	n/a			n/a										n/a	n/a	n/a	n/a					Mar-08	n/a	n/a	n/a	Floor Installed mo/yr		CTVI E
Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soll/Gravel	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Soil/Gravel	Soil/Gravel	Concrete	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soll/Graver	Soll/Gravel	Soll/Gravel	Soil/Grave	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	AS OT 9/8	STYLE	CONTAINING
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	No	No	No	No	No	Yes	Yes	N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Vec	Yes	i es	Yes	Yes	Yes	No	No	No	is Action Required?	Con	
									n/a	n/a	n/a	n/a	n/a	n/a .	n/a	n/a	n/a	n/a			n/a			n/a	n/a															n/a	n/a	n/a	Compaction Completed	Action is Requ	ting of Coile on
n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	. n/a	n/a	n/a			n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	IVa	IVa	n/a	n/a	n/a	n/a	n/a	n/a	Concrete Completed	J/1/09 iired	Concreta
YES	YES	YES	YES	YES	YES	YES	YES		NO	NO	NO	NO	NO	NO	NO	No	NO	N	YES	YES	YES	YES	YES	NO	NO	YES	YES	YES	YES	YES	YES	YES	YES				YES	YES	YES	NO	NO	NO	To Install (yes/no)	if Hydrc	
2011	2011	2011	2011	2010	2010	2010	2010	2010	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2009	2009	2009	2009	2009	n/a	n/a	2009	2009	10'09	10'09	Dec-08	10'09	Dec-08	10'09	RU AU			10.09	Dec-08	10'09	n/a	n/a	n/a	estimated date for Completion	10,000 gallo ocarbon or C Storage	ant Clinging
									n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a						n/a	n/a															n/a	n/a	n/a	completed	ns) hemical	System

and the second second

Page 1 of 4

FRY STORAG

,

.

94	26	91 91	90	68	88	87	86	102	85 J	8 O J	2 0	20 20 20	۶ O	80 97	70	77	76	75	74	44	72	71	70	69	68	67	66	о с 4 гс	63 63	62	61	60	50 0	л U /	56	55	54	υu	лc	5	73	49	48	47		#	Count
TK-111	TK-101	SWS-TK1	Z88-V17	Z88-V16	Z81-T7	Z75-V2	Z71-V2	TK-909	TK-902	TK-574	TK-774	TK_3	Mercantan		781-120	TK-572	TK-561	TK-227	TK-107	TK-344	TK-571	TK-338	TK-232	TK-231	SR-T9	SR-T8	SR-T7	SR-T6	SR-14	TK-581	SR-T10	Foam Tk	Z86-T2	284-1105 786-T1	Z81-T15	TK-709	TK-702	TK-557	0-16	A-V61.1	TK-705	Z81-T6	Z81-T10	TK-714		or DESCRIPTION	TANK NUMBER
1957	1057	2006	2000	2000	1998	1998	1987		-900	1968	107/	1022				1957	1957	1957	1957	1977	1957	1964	1957	1957	1993	1993	1993	1992	1002	1957			2002	1066	222	1963	1963	1957	000	1000	1963	1962	1957	1969		BUILT	YEAR
5,000	3,000	1,000	55	55	920	168	453	σ	237	40 000	3 000	⊿ <u>000</u>	10	15 05	63	25,000	2,300	5,000	5,000	20,000	25,000	25,000	5,000	5,000	20	20	ω 5	76	106 76	25,000	20	10	10,832	5 000	80	1,000	25,000	718	39 800	37 000	10,000	880	63	30,000		PACITY (BBLS)	APPROX.CA
DHT PRODUCT		SOUR WATER	ROWATER	RO WATER	BRINE WATER	HYDROCARBON VAPORS	ANHYDROUS AMMONIA	Power Service	Additive Tk. (Western)	ST RUN	RI ITANE/DRODANE	B7 0 OCTANE	Mercenten	Diesel for Eire Water Dump	CALISTIC	87.0 UNLD REG.	BUTANE	K-1	SLOP OIL	REFORMATE	87.0 UNLD REG.	SWEET NAPHTHA	TRANSMIX	TRANSMIX	CA-2102 SETTLING AGENT	CA-100 DEGRADATION INHIBITOR		IC-210 EREE CHELATE	IC 110 IBON CHELATE	LCO	CA-299 SETTLING AGENT	Fire Fighting Foam Concentrate	RAW WATER		DIESEL	RESIDUE	FCC FEED	PROPANE			FUEL OIL	DOMESTIC WATER	CAUSTIC	FCC FEED			PRODUCT
2011	2011	2011	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2009	6002	2009	2009	2009	2009	2009	2013	2013	2013	2013	2013	2013	2013	2013	2013	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	11.07	2011	2011	2011	2011		EXTERNAL INSPEC.	NEXT
2016	2016	2016	2015	2015	2015	2015	2015	2015	2015	2015	2017	2015	2012	2015	2014	2014	2014	2014	2014	2014	2013	2013	2013	2013	2013	2013	2013	2013	2013	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2011	2011	2011	2011	2011		INTERNAL INSPEC.	NEXT
Cone	Cone	Cone	Cone	Cone	Cone	Cone	Bullet	Hor. Cvl.	Cone	Cone	Buillet	Cone		Cone	Hor. Cyl.	Cone	Bullet	Cone	Cone	Cone	Cone	Cone	Cone	Cone	Cone	Cone	Cone	Cone	Cone	Cone	Cone	Hor. Cyl.	Cone	Cone	Hor. Cyl.	Cone	Cone	Bullet	Cone	Cone	Cone	Cone	Cone	Cone			TANK STYLE
Single	Single	Single	Elevated	Elevated	Single	Sinale	Elevated	Elevated	Single	Single		Cinale		Single	Single	Single	Elevated	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Elevated	Single	Single	Elevated	Single	Single	Elevated	Single	Single	Single	Single	Single	Single	as of 9/08		FLOOF
			n/a	n/a			n/a	n/a		11/d	c/a	ilia	- c/n		n/a	-	n/a															n/a			n/a			n/a							Double Floor Installed mo/yr		RSTYLE
Soil/Gravel	Soil/Gravel	Soil/Gravel	Concrete	Concrete	Concrete	Concrete	Soil/Gravel	Concrete	Concrete	Soil/Gravel	Soil/Gravel	Soil/Gravel -	Concrete	Concrete	Concrete	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Soil/Gravel	Concrete	Concrete	Concrete	Concrete	Concrete	Soil/Gravel	Concrete	Concrete	Concrete	Soll/Gravel	Concrete	Soil/Gravel	Soil/Gravel	Soil/Gravel	Concrete	Concrete	Soil/Gravel	Concrete	Concrete	Soil/Gravel	As of 9/8	STYLE	CONTAINMENT
Yes	Yes	Yes	No	No	No	N	Yes	S	No	Ype	Yee	Yee 1	202		NO	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	N	Z Z		No	Yes	No	No	N	No	No	Yes	Yes	Yes		Vop NO	Yes	No	No	Yes	Is Action Required?	IF Cor	. Compac
			n/a	n/a	n/a	n/a	. :	n/a	n/a		-	- Va	n/a	n/a	n/a	-									n/a	n/a	n/a	n/a	n/a		n/a	n/a	n/a	Yes	n/a				n/a	TI/a	2/2	n/a	n/a		Date Soil Compaction Completed	Itainment by 1 Action is Requ	ting of Soils o
n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	Date Concrete Completed	0/1/09 uired	r Concrete
YES	VES	NO	NO	NO	YES	NO	NO	NO	NO							YES	YES	YES	YES	YES	YES	YES	YES	YES	N	N			z c	YES	NO	NO	NO		NO	YES	YES	YES	S C		YES	YES	NO	YES	Required To Install (yes/no)	(> if Hydru	Auto Ta
2016	2016	n/a	n/a	n/a	2015	n/a	n/a	n/a	n/a	2015	2012	2015	n/s	n/a	n/a	2014	2014	2014	2014	2011	2013	2013	2013	2013	n/a	n/a	n/a	n/a	n/a	2013	n/a	n/a	n/a	21.07	n/a	2012	2012	2012	n/a	0011	2012	2011	n/a	2011	Estimated date for Completion	10,000 gallo ocarbon or C Storage	Ink Guaging
		n/a	n/a	n/a		n/a	n/a	n/a	n/a			II/d	n/a	n/a	n/a										n/a	n/a	n/a	n/a	n/a		n/a	n/a	n/a	n/2	n/a				n/a	IVa	n/n		n/a		Actual dat completec	ns) hemical	System

:

Page 2 of 4

,

n/a	n/a	COS	n/a	n/a	200	Soll/Gravel		Single	Cone	200s		EMPTYTANK	101		11.1-1.97	121
n/a	n/a	008	n/a	n/a	2008	Concrete		Single	Cone	000		EMPTY TANK (UNICHEM /3/6)	0		-/135	121
n/a	n/a	soo	n/a	n/a	000	Concrete	n/a	Elevated	Hor. Cyl.	soo		EMPTY TANK	25		TK-907	101
n/a	n/a	00S	n/a	n/a	800	Concrete	n/a	Elevated	Hor. Cyl.	soo		Add. Tk (Empty-Unocal)	232		TK-905	66
n/a	n/a	soo	n/a	n/a	800	Soil/Gravel		Single	Cone	soo		OUT OF SERVICE	1,000		TK-713	94
n/a	n/a	00S	n/a	n/a	soo	Soil/Gravel		Single	Cone	soo		OUT OF SERVICE (Kerosene)	250	1957	TK-573	76
n/a	n/a	800	n/a	n/a	800	Soil/Gravel		Single	Cone	800		OUT OF SERVICE	5,000	1957	TK-453	59
n/a	n/a	00S	n/a	n/a	00S	Soil/Gravel		Single	Cone	soo		OUT OF SERVICE	1,000	1957	TK-452	58
n/a	n/a	00S	n/a	n/a	00S	Soil/Gravei		Single	Cone	soo		OUT OF SERVICE	1,000	1957	TK-451	57
n/a .	n/a	00S	n/a	n/a	00S	Concrete		Single	Cone	soo		OUT OF SERVICE (Fuel Oil)	250		Z81-T8	124
n/a	n/a	SOO	n/a	n/a	soo	Concrete		Single	Cone	soo		OUT OF SERVICE (Water Softner)	161		Z81-T17	131
n/a	n/a	800	n/a	n/a	800	Concrete		Single	Cone	800	DEC-'08	OUT OF SERVICE (Caustic)	671		Q-T3	10
n/a	n/a	00S	n/a	n/a	00S	Soil/Gravel		Double	Cone	soo		OUT OF SERVICE (De-Icer)	250	1983	TK-117	39
n/a	n/a	NO	n/a	n/a	No	Concrete.	n/a	Elevated	Hor. Cyl.	3Pty		Add. Tk. (Shell)	191	3Pty	TK-914	126
n/a	n/a	NO	n/a	n/a	No	Concrete	n/a	Elevated	Hor. Cyl.	3Pty		Add. Tk (Conoco)	191	3Pty	TK-911	125
n/a	n/a	NO	n/a	n/a	No	Concrete	n/a	Elevated	Hor. Cyl.	3Pty		Additive Tk. (Exxon)	143	3Pty	TK-906	124
n/a	n/a	NO	· n/a	n/a	No	Concrete	n/a	Elevated	Hor. Cyl.	3Pty		Additive Tk. (Texaco)	48	3Pty	TK-903	123
n/a	n/a	NO	n/a	n/a	No	Concrete		Single	Cone	3Pty		Additive Tk. (Chevron)	237	3Pty	TK-901	122
n/a	n/a	NO	n/a	n/a	No	Concrete	n/a	Elevated	Hor. Cyl.	2017	2012	STARTING AIR	69	1953	Z81-T16	120
n/a	n/a	NO	n/a	Future	Yes	Soil/Gravel		Single	Cone	2017	2012	STORM WATER (Future)	5,000	1979	TK-28	119
n/a	n/a	NO	n/a	Future	Yes	Soil/Gravel		Single	Cone	2017	2012	STORM WATER (Future)	5,000	1979	TK-27	118
n/a	n/a	NO		n/a	Yes	Soil/Grave!		Single	Cone	2017	2012	Sulfuric Acid	161		Z83-TK-3	117
	2017	YES	n/a	n/a	No	Concrete		Single	Cone	2017	2012	TREATED WATER	5,000	1979	Z81-T5	116
n/a	n/a	NO	n/a	n/a	No	Concrete		Single	Cone	2017	2012	DIESEL	9		Z81-T14	115
n/a	n/a	NO	n/a	n/a	No	Concrete	-	Single	Cone	2017	2012	HYDROCARBON VAPORS	168	1998	Z75-V1	114
n/a	n/a	NO		n/a	Yes	Soil/Gravel	n/a	Elevated	Hor. Cyl.	2017	2012	Diesel-Gasoline Blend	50		Tk-915	113
n/a	n/a	NO	n/a	n/a	No	Concrete	n/a	Elevated	Hor. Cyl.	2017	2012	Red Dye (Western)	13		TK-910	. 112
	2017	YES	n/a		Yes	Soil/Grave!		Single	Cone	2017	2012	LT STRAIGHT RUN	1,800	1963	TK-6	. 111
	2017	YES	n/a		Yes	Soil/Gravel		Sec.	Cone	2017	2012	DIESEL	55,000	1996	TK-583	110
	2017	YES	n/a		Yes	Soil/Gravel		Single	Cone	2017	2012	83.0 UNLD. REG.	25,000	1957	TK-569	109
	2017	YES	n/a		Yes	Soil/Gravel		Single	Cone	2017	2012	ISOMERATE	20,000	1986	TK-562	108
n/a	n/a	NO	n/a	n/a	No	Concrete	n/a	Elevated	Hor. Cyl.	2017	2012	Baume/Caustic	164	1958	A-V59	107
n/a	n/a	NO	n/a		Yes	Soil/Gravel		Single	Cone	2016	2011	AMMONIUM THIOSULFATE	766	2006	Z71-TK-716	106
n/a	n/a	NO	n/a		Yes	Soil/Gravel		Single	Cone	2016	2011	Residue	1,000	1963	TK-708	105
	2016	YES	n/a		Yes	Soil/Gravel		Single	Cone	2016	2011	UNLEADED PREMUM	25,000	1957	TK-582	104
	2016	YES	n/a		Yes	Soil/Gravel		Single	Cone	2016	2011	DIESEL	20,000	1957	TK-579	103
	2016	YES	n/a		Yes	Soil/Grave!	Aug-08	Double	Cone	2016	2011	DIESEL	10,000	1957	TK-577	102
n/a	n/a	NO	n/a		Yes	Soil/Gravel		Single	Cone	2016	2011	AMMONIUM THIOSULFATE	2,000	1998	TK-568	101
	2016	YES	n/a		Yes	Soil/Gravel		Single	Cone	2016	2011	83.0 UNLD. REG.	20,000	1969	TK-567	100
	2016	YES	n/a		Yes	Soil/Gravel		Single	Cone	2016	2011	SOUR NAPHTHA	25,000	1957	TK-339	66
	2016	YES	n/a		Yes	Soil/Gravel	May-06	Double	Cone	2016	2011	KERSOSENE	25,000	1957	TK-226	86
	2016	YES	n/a		Yes	Soil/Gravel	90-Inf	Double	Cone	2016	2011	DISTILLATE	25,000	1957	TK-225	97
	2016	YES	n/a		Yes	Soil/Gravel		Single	Cone	2016	2011	DHT PRODUCT	5,000	1957	TK-116	96
	2016	YES	n/a		Yes	Soil/Gravel		Single	Cone	2016	2011	DHT PRODUCT	5,000	1957	TK-112	95
	Completion	(yes/no)	Completed	Completed	Requireus		mo/yr									
Actual date	Estimated	Required	Date	Date Soil	Is Action	As of 9/8	Double	as of 9/08								
Chernica	Storage	n iyur			=								(600-0)			
Chemical	-10,000 gall	if Hydro)/1/09	ainment by 10	Cont	STYLE				INTERNAL	EXTERNAL			BUILT		4
g System	ank Guagin	Auto Ta	Concrete	ing of Soils or	Compact	CONTAINMENT	STYLE	FLOOR	TANK STYLE	NEXT	NEXT	PRODUCT	APPROX.CA	YEAR	TANK NUMBER	Coun

1

.

		• 0
		# unt
		TANK NUMBER or DESCRIPTION
		YEAR BUILT
		APPROX.CA PACITY (BBLS)
		PRODUCT
		NEXT EXTERNAL INSPEC.
		NEXT INTERNAL INSPEC.
		TANK STYLE
	as of 9/08	FLOOR
	Double Floor Installed mo/yr	STYLE
ĺ	As of 9/8	CONTAINMENT STYLE
	Is Action Required?	Compact Cont IF ,
	Date Soil Compaction Completed	ainment by 10 Action is Requi
	Date Concrete Completed	Concrete //1/09 ired
	Required To Install (yes/no)	Auto Ti (> if Hydrc
	Estimated date for Completion	ank Guaging 10,000 gallo ccarbon or C Storage
	Actual dat completed	System ns) hemical

TANK Hor. Cyl. : Not Pressure Rated, mounted above grade, any leak is readily visible Bullet: Pressure Rated Vessel - Horiz. Cylinder, above grade, leaks are readily visible Cone Roof. API 650 Style, (could be various roof styles) Elypsoidal: Low pressure (<8psig design), single floor

FLOOR STYLES:

Single: Single floor, various styles of support underneath the tank. Secondary - a secondary liner without a sand bottom or leak detection piping, any leak would come out from underneath the tank and not go down under the tank Double: Double floor w/leak detection piping

Elevated: Supported Above grade so any leak is readily visible

CONTAINMENT STYLE EXISTING

Dirt/Gravel Concrete

Tank Ownership -

Some of the tanks on this listing are owned and maintained by 3rd parties rather than Western Refining. These are indicated by 3Pty in the Year Built Column and the next inspection date columns. As we receive the requested information from the 3rd parties, we will drop that information into the appropriate columns. It is the intent of Western to monitor the 3rd party owner's inspection of the tanks that reside here at the Gallup Refinery.

Update Listing

Western will update this listing at least annually in January and provide the updated listing to NMOCD by the end of January each year. This is to show prior year progress in containments and in tank gauging upgrades. If tank schedules are shuffled; this update will be the notification to NMOCD of those changes. Western will progress the appropriate number of tanks to meet the 10 year API Inspection cycle but does retain the option of swapping tanks between years due to our business needs.
From:	Rajen, Gaurav [Gaurav.Rajen@wnr.com]
Sent:	Friday, September 12, 2008 1:15 PM
То:	Chavez, Carl J, EMNRD
Cc:	Monzeglio, Hope, NMENV; Riege, Ed
Subject:	Revisions to our sampling schedule and sampling requirements - GW-032
Attachments:	SAMPLE SCHEDULE 2008-revised 9-3-08.xls

Carl Chavez, OCD New Mexico Energy Minerals and Natural Resources Department Santa Fe, NM

RE: Western Refining – Gallup Refinery (GW-032)

Dear Mr. Chavez:

It is a pleasure to write to you and confirm our acceptance of the requested modifications to our OCD Discharge Plan Permit GW-032 regarding sampling requirements and sampling schedules as specified in the letter of August 18, 2008 sent via certified mail by John E. Kietling of the Hazardous Waste Bureau (HWB)/ NMED to Mr. Ed Riege at Western Refining.

We have attached a Table providing the modified sampling schedule with modified sampling requirements and also changed certain groundwater monitoring well names from NAPIS -1, NAPIS-2, and NAPIS-3 to KA-1R, KA-2R, and KA-3R, respectively. These wells have been installed and renamed since the original schedule was accepted and approved by the OCD. In the interests of time, we are sending you the revised schedule as an attachment to this e-mail. We will send you a paper copy of the schedule and this letter via certified mail next week.

As requested by the HWB/NMED, we will submit copies of all our laboratory analytical results from the sampling of wells KA-1R, KA-2R and KA-3R to the NMED and OCD within 45 days after all associated quarterly sampling work is completed at these wells. We will also report these data in our Annual Groundwater Monitoring Report.

If you have any further questions regarding this please contact me at 505-722-0227 or, Mr. Ed Riege, at 505-722-0217.

Sincerely,

Gaurav Rajen, Ph.D. Western Refining Gallup Refinery Mailing Address: Route 3, Box 7, Gallup, NM 87301 Physical Address: I-40, Exit 39, Jamestown, NM 87343 Telephone: (Main) 505-722-3833 Telephone: (Desk) 505-722-0227 Telephone: (Cell) 505-514-9918 Fax: 505-722-0210 E-mail: <u>Gaurav.Rajen@wnr.com</u>

				•				AN	NTAS	R	EQU	EST					
			•	· · · · ·								ity)	4 hr)	LS			
SAMPLIN		REMENTS PER			. e)	ž.				ions, ductivi	IA (24	τοτα	5 &		
DISCHARGE		(GW-032) 8/23/07	X, M1)		;)	-VOA	OL	4)	ır)	AYS)	(Cati Cond	CTER	occ	TALS	* 5 - 5 - * 5 	an a
			ВТЕ	DED		IS (C	ЕМІ	HEN	vo	48 h	28 D	HEM ,pH,	BAG	s w	B TO	DES	ES
			8021 (8015B	XTEN	Ph	ANION	270 (S	270 PI	260B (IOD- (:OD (2	EN Cl	-COLI	IETAL	ICRA 8	YANI	TARTI
	FREQUENCY	TEST METHOD		E			E	ε	ε	E	ſ		E	N	F	¢	1
	Quarterly										1						
ond 1		Gen Chem, VOC, WQCC Metals, BOD, COD, E-coli Bacteria)							×	×	×	×	×	×			
Pond 2		Same as above							×	\times	×	×	×	×			
		Same as above							<	<	<	<	<	<			
Pond 5		Same as above							×	× >	× >	× >	×	××			
Pond 6		Same as above							×	×	×	×	×	×			
Pond 7		Same as above							×	×	×	×	×	×			
Pond 8		Same as above							×	×	×	×	×	×			
AI-2 to EP-1		RCRA 8 Metals total		×					×					×			
^o ilot Effluent		VOC/DRO Extended, GRO, BOD, COD, WQCC METALS		×					×	×	×			×			
VAPIS Effluent		GEN CHEM, VOC, SVOC (PHENOL), DRO Extended GRO, WQCC METALS		×			×		×			×		×			
AL-1 Inlet	Monthly until 4/08	BOD, COD, PHENOL						×		×	×						
AL-2 Inlet	start quarterly (or more frequently)	Same as above Same as above						××		××	××						
-van Pond 1	monthly until 12/08 then change to atriv	VOC, BOD, COD, CI, DRO/GRO, MTBE, Ph PHENOL		×	×	×		×	×	×	×						
		0021B (BTEV/MTBE) 0210 (Somi VOCs)		>	>	>		>	>	>	>						
(A-1R	Sample qtrly from September 08	8021B (BTEX/MTBE), 8310 (Semi-VOCs), 8015B (DRO extended, GRO), RCRA metals, and GEN CHEM	×	×	×							×			×		
(A-2R	Sample qtrly from September 08	Same as above										×				,	
	Sample qtrly from										-						

.

							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AN	ALYS	SIS R	EQU	EST					
SAMPLING DISCHARGE F	PERMIT	REMENTS PER (GW-032) 8/23/07	8021 (BTEX, MTBE)	8015B TPH(GRO/DRO) EXTENDED	Ph	ANIONS (CI)	8270 (SEMI-VOA)	8270 PHENOL	8260B (VOA)	BOD- (48 hr)	COD (28 DAYS)	GEN CHEM (Cations, Anions,pH, Conductivity)	E-COLI BACTERIA (24 hr)	METALS WOCC TOTALS	RCRA 8 TOTALS & DISSOLVED	CYANIDES	NITRATES
NAPIS 2ndary Containment	REQUENCT	WQCC TOTALS	× (?	× [97 175 176 177 177 177 177 177								×			
OW-14 (HIGH-BENZENE)	èemi-Annual	VOC/MTBE							×								
Pond 1 Inlet (EPI-IN)		GenChem, VOC, SVOC Including Phenol, DRO extended/GRO, WQCC Metals		×			×		×			×		×		_	
Boiler Water inlet to EP-2		Gen Chem										×					
	ANNUAL																
BW-1A		Gen Chem, VOC, SVOC, MIBE, WQCC					×		×			×		×		×	
BW-1B		Same as above					×		×			×		×		×	
BW-1C		Same as above					×		×			×		×		×	
BW-2A		Same as above					×		×			×		×		×	
BW-2B		Same as above					×		×			×		×		×	
BW-2C		Same as above					×		×			×		×		×	
BW-3A		Same as above					×		×			×		×		×	
BW-3B		Same as above					×		×			×		×		×	
BW-3C		Same as above					×		×			×	-	×		×	
MW-1		Gen Chem / RCRA List Constituents		×			×		×		_	×			×	×	
MW-4		Gen Chem / RCRA List Constituents. Modified skinner list metals & organics.		×			×		×			×			×	×	
MW-5		Gen Chem / RCRA List Constituents. Modified skinner list metals & organics.		×			×		×			×			×	×	
OW-11		Gen Chem, VOC, SVOC, MTBE, WQCC					×		×			×		×			
OW-12		VOC/MTBE							×								

							AN	ALYS	IS R	EQU	EST				·	
SAMPLING	3 REQUIR PERMIT (EMENTS PER GW-032) 8/23/07	8021 (BTEX, MTBE) 8015B TPH(GRO/DRO)	EXTENDED	Ph ANIONS (CI)	8270 (SEMI-VOA)	8270 PHENOL	8260B (VOA)	BOD- (48 hr)	COD (28 DAYS)	GEN CHEM (Cations, Anions,pH, Conductivity)	E-COLI BACTERIA (24 hr)	METALS WOCC TOTALS	RCRA 8 TOTALS &	CYANIDES	NITRATES
LOCATION	FREQUENCY												ana ang a			
OW-13		VOC/MTBE						×								
OW-29 HIGH-MTBE		VOC/MTBE						×								
	ANNUAL															
OW-30 HIGH -MTBE		VOC/MTBE						×								
SMW-2		Gen Chem / RCRA List Constituents. Modified skinner list metals & organics.		×		×		×			×			×	×	
SMW-4		Gen Chem / RCRA List Constituents. Modified skinner list metals & organics.		×		~		×			×			×	×	
		VOC/MTBE, DRO extended/GRO, BOD,		<				<	<	<						
EF 2-119LE 1		Gen Chem VOC SVOC MTRE WOCC		>				>	>	>						
GWM-1 HIGH-BENZENE		Metals				×		×			×		×			
PW-2	Every 3 yrs starting with 2008	VOC, SVOC, WQCC METALS, CYANIDE, NITRATES				×		×			-		×		×	×
PW-3	Every 3 yrs starting with 2008	Same as above				×		×					×		×	×
PW-4	Every 3 yrs starting with 2007	Same as above	 			×		×					×		×	Ľ

From:	Chavez, Carl J, EMNRD	

Sent: Tuesday, September 02, 2008 4:59 PM

To: 'Riege, Ed'

- Cc: Turri, Mark; Rajen, Gaurav; Monzeglio, Hope, NMENV; Price, Wayne, EMNRD
- Subject: RE: Western Refining Southwest- Gallup Refinery Proposal Regarding OCD Permit Condtion 9 (GW-032)

Mr. Riege, et. al:

Re: Western Refining Southwest (WRSW)- Gallup Refinery (GW-032) New Mexico Oil Conservation Division Disc Permit Condition 9

The New Mexico Oil Conservation Division (NMOCD) has completed its review of Mr. Mark Turri's letter (letter) wit attachments dated June

30, 2008. The NMOCD did not specify a 10 year schedule coincident with API inspections during the meeting, but WRSW to

provide a schedule that the NMOCD could approve. Currently, WRSW seems to rely on a 10 year API schedule the acceptable to

the NMOCD. The letter is intended to address "Condition 9" of the discharge permit. The following revisions and/c responses to NMOCD comments

or requirements below are required:

Item 1:

1) A denotation on the attached table for tanks greater than 10,000 gallons is required to show where the installati automatic tank

gauging systems will be installed.

Item 2:

1) The NMOCD is concerned about the use of the term "significant floor problems," since the implication by WRSN time of the

meeting was that secondary bottoms would be installed with leak detection at all tanks undergoing the API inspect Consequently the

above language is not acceptable.

2) An engineering design diagram(s) of the double bottom tank installation w/ leak detection is required with speci the liner type,

mil thickness, type of thermal seaming w/ non-destructive pressure testing, footages, etc. Perhaps the engineering submitted for

Tanks T-225, T-226, etc., could be submitted that will satisfy the above.

Item 3:

1) WRSW should not wait to compact soil in earthen secondary containments at the time of tank inspection and re must denote on the

tank inspection table all of the locations where clay will be compacted to comply with secondary containment requi the discharge

permit and by a date that is more practical than waiting for the 10 year API inspection. This should not interfere or WRSW from

conducting future API inspections and facilitate the intent of secondary containment in the event of a release prece inspection.

Item 4:

1) Same as Item 3 above.

Storage Tank Inspection Chart:

1) The term "Chart" in the above table should be changed to "Table", since the inspection information is in a table.

2) An updated aerial or plot map to scale is required displaying all of the tanks listed in the table and any forgotten NMOCD is unsure

of whether all tanks are accounted for in the attached tank inspection chart? Please confirm that all tanks containing chemicals are accounted

for in the table or revise to include forgotten ones. The OCD is unable to locate all tanks on any one existing map

The above revisions are requested within 30 days from receipt of this message or by a date approved by the NMO Please contact me if you have guestions. Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3491 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: http://www.emnrd.state.nm.us/ocd/index.htm (Pollution Prevention Guidance is under "Publications")

-----Original Message-----From: Riege, Ed [mailto:Ed.Riege@wnr.com] Sent: Friday, August 22, 2008 9:56 AM To: Chavez, Carl J, EMNRD Cc: Turri, Mark; Rajen, Gaurav Subject: Proposal Regarding OCD Permit Condtion 9

<<_0822094129_001.pdf>> Hi Carl,

Western was wondering whether you had a chance to review our June 30, 2008 letter (attached) regarding Gallup's proposal of the alternate to OCD Permit Condition 9, the above ground tanks impermeable secondary containment requirement. Look forward to hearing from you.

Thanks

Ed

Ed Riege Environmental Superintendent

Western Refining Gallup Refinery Route 3 Box 7 Gallup, NM 87301 (505) 722-0217 ed.riege@wnr.com

From: Sent: To: Cc: Subject: Riege, Ed [Ed.Riege@wnr.com] Friday, August 22, 2008 9:56 AM Chavez, Carl J, EMNRD Turri, Mark; Rajen, Gaurav Proposal Regarding OCD Permit Condtion 9

Attachments: __0822094129_001.pdf

_0822094129_001. pdf (403 KB)

<<_0822094129_001.pdf>>

Hi Carl,

Western was wondering whether you had a chance to review our June 30, 2008 letter (attached) regarding Gallup's proposal of the alternate to OCD Permit Condition 9, the above ground tanks impermeable secondary containment requirement. Look forward to hearing from you.

Thanks

Ed

Ed Riege Environmental Superintendent

Western Refining Gallup Refinery Route 3 Box 7 Gallup, NM 87301 (505) 722-0217 ed.riege@wnr.com

RECEIVED

2008 JUL 1 PM 1 43

Certified Mail 7007 0220 0001 6547 2630

June 30, 2008

Mr. Carl Chavez Oil Conservation Division Environmental Bureau 1220 S. St. Francis Dr. Santa Fe, NM 87505

Re: OCD Discharge Permit GW-032 Condition 9

Dear Mr. Chavez:

This letter is in response to your letter of March 12, 2008 and follow-up to our meeting held in Santa Fe on May 15. Western Refining Gallup Refinery summarizes the alternative to OCD Permit Condition 9, Above Ground Tanks Impermeable Secondary Containment Requirement that was discussed during the May meeting:

- 1. Install an automatic tank gauging system in all of its large (> 10,000 gallons) liquid storage tanks in the tank farm. The gauges will be installed initially in the highest priority liquid storage tanks and all new large tanks.
- 2. Install secondary bottoms with leak detection on tanks with significant floor problems found during the API 653 inspections scheduled for every 10 years and all new tanks. At least 10 percent of the tanks will be inspected each year. The anticipated schedule can be found in the attached tank list. A thick HDPE or FRP liner is laid over the failed steel tank bottom and fusion sealed along the side of the tank. Sand is spread and compacted over the liner with a leak detection network of perforated piping constructed on the sand and then covered with additional sand. A new steel floor is then installed on top of the sand. Please note the following tanks have recently had secondary bottoms with leak detection installed, T-225, T-226, T-577 and T-115.
- 3. Compact soil in earthen secondary containments at the time of tank inspection and repair.
- 4. Line the earthen secondary containments of the smaller sized storage tanks less than 10,000 gallons.

Attached is an inventory of all the refinery tanks as required by Item 1) in the OCD letter dated March 12, 2008. This list includes tank contents, capacity, dimensions, next external inspection date and the next internal inspection date (this is also the date where the tank will be considered for a secondary bottom with leak detection) and floor style. Please note on tank inspection dates, Western Refining

reserves the right to switch tanks due to logistics as long as 10 percent of tank inspections are conducted each year.

Your review and approval of this submittal are appreciated. Please contact Ed Riege at (505) 722-0217 if you have any comments or questions regarding this submittal.

Sincerely,

March D. Gurni

Mark B. Turri General Manager

C: Ms. Hope Monzeglio Ed Riege Don Riley Guarav Rajen

GALLUP REFINERY STORAGE TANK INSPECTION CHART

	TANK NUMBER	YEAR BUILT	APPROX. CAPACITY (BBLS)	TANK DIAMETER	TANK HEIGHT/ LENGTH	NORMAL PRODUCT	NEXT EXTERNAL INSP. DATE	NEXT INTERNAL INSP.	FLOOR STYLE (ABG =Above ground)
Cnt								DATE	
1	MKT-TK-2	1965	4,000	30'-0"	32'-0"	UNLEADED PREMIUM	2008	2008	ABG-gravel
2	MKT-TK-4	1970	3,800	30'-5"	32'-0"	83.0 OCTANE	2008	2008	ABG-gravel
3	P-V19A	1957	668.7 ft ³	30'	LTH-147'-5"	HYDROGEN	2008	2008	Bullet
4	P-V19B	1957	668.7 ft ³	30'	LTH-147'-5"	HYDROGEN	2008	2008	Bullet
5	P-V19C	1957	668.7 ft ³	30'	LTH-147'-5"	HYDROGEN	2008	2008	Bullet
6	TK-343	1957	5,000	33'-6"	32'-0"	ETHANOL	2008	2008	ABG-gravel
7.	TK-446	1945	712	9'-2 3/4 "	LTH-53'-10"	OLEFINS/ISO BUTANE	2008	2008	Bullet
8	TK-447	1957	1,502	11'-9"	LTH-45'-0"	ISO-BUTANE	2008	2008	Bullet
9	TK-555	1974	2,142	11'-0"	LTH-69'-11"	ISO-BUTANE	2008	2008	Bullet
10	TK-556	1957	718	9'-2 3/4 "	LTH-53'-10"	PROPANE	2008	2008	Bullet
11	TK-560	1957	2,336	11'-9"	LTH-69'-11"	BUTANE	2008	2008	Bullet
12	TK-563	1986	20,000	60'-0"	46'-6"	NAT. GAS.	2008	2008	ELLIPSOID
13	TK-564	1957	5,000	30'-0"	40'-0"	NAT.GAS/ISOM.	2008	2008	HEMISPHERE
14	TK-575	1957	10,000	42'-6"	40'-0"	SWET JET-A/K1	2008	2008	ABG-gravel
15	MKT-TK-5	1963	1,800	25'-0"	24'-0"	ETHANOL	2009	2009	ABG-gravel
16	MKT-TK-7	1946	330	9'-0"	LTH-66'-0"	ISOMERATE	2009	2009	Bullet
17	TK-106	1957	5,000	33'-6"	32'-0"	TRANSMIX	2009	2009	ABG-gravel
18	TK-18570	NO DATA	NO DATA	8'-0"	6'-0"	NALCO 7359	2009	2009	ABG-concrete
19	TK-228	1957	5,000	33'-6"	32'-0"	K-1	2009	2009	ABG-gravel
20	TK-27	1979	5,000	33'-5"	32'-0"	SLOP OIL	2009	2009	ABG-concrete
21	TK-28	1979	5,000	33'-5"	32'-0"	SLOP OIL	2009	2009	ABG-concrete
22	TK-338	1964	25,000	67'-0"	40'-0"	SWEET NAPHTHA	2009	2009	ABG-gravel
23	TK-562	1986	20,000	60'-0"	46'-6"	ISOMERATE	2009	2009	ELLIPSOID
24	TK-573	1957	250	10'-0"	18'-0"	KEROSENE (N.I.S)	2009	2009	ABG-gravel
25	1001	NO DATA	NO DATA	5'-4"	18'-0"	DIESEL TANK	2010	2010	ABG-concrete
26	1002	NO DATA	NO DATA	5'-4"	18'-0"	GASOLINE TANK	2010	2010	ABG-concrete
27	1003	NO DATA	NO DATA	5'-9"	12'-3 1/2"	UNICHEM 7547	2010	2010	ABG-concrete
28	1004	NO DATA	NO DATA	7'-5"	14'-7 1/2"	DSL POURPT ADDIT.	2010	2010	ABG-concrete
29	Q-T2	1956	350 BBL	10'-0"	8'-0"	CAUSTIC	2010	2010	ABG-concrete
30	Q-T8	1963	226	11'-9"	11'-8"	CAUSTIC	2010	2010	ABG-concrete
31	TK-117	1983	250	10'-0"	17'-9"	DE-ICER (DEAD TK)	2010	2010	ABG-gravel
32	TK-157	2001	400	12'-0"	20'-0"	SLOP OIL	2010	2010	ABG-gravel
33	TK-235	1957	5,000	33'-6"	32'-0"	TRANSMIX	2010	2010	ABG-gravel
34	TK-337	1977	20,000	60'-0"	42'-0"	ETHANOL	2010	2010	ABG-gravel
35	Q-T3	NO DATA	NO DATA	20'-0"	12'-0"	CAUSTIC (N.I.S)	2011	2011	ABG-concrete
36	SWS-TK1	2006	NO DATA	15'5"	30'-0"	SOUR WATER	2011	2011	ABG-concrete
37	TK-108	1957	5,000	33'-6"	32'-0"	ALKLATE	2011	2011	ABG-concrete
38	TK-342	1957	5,000	33'-6"	32'-0"	ETHANOL	2011	2011	ABG-gravel

	TANK NUMBER	YEAR BUILT	APPROX. CAPACITY (BBLS)	TANK DIAMETER	TANK HEIGHT/ LENGTH	NORMAL PRODUCT	NEXT EXTERNAL INSP. DATE	NEXT INTERNAL INSP. DATE	FLOOR STYLE (ABG =Above ground)
Cnt	TK 244	1077	20.000	60' 0"	42' 0"		2011	2011	ABC-gravel
39	TK 344	1077	20,000	60' 0"	42.0"		2011	2011	ABG-gravel
40	TK-345	1977	37,000	88'-6"	33'-10"	FCC FEED	2011	2011	ABG-tar
41	TK_706	1963	10.000	47'-5"	32'-1"	FUEL OIL	2011	2011	ABG-tar
42		1963	1 000	26'-6"	17'-7"	SLOP OIL	2011	2011	ABG-tar
40		1969	30,000	73'-4"	40'-0"	FCC FFFD	2011	2011	ABG-tar
45	TK-557	1957	718	9'-2 3/4 "	I TH-53'-10"	PROPANE	2012	2012	Bullet
46		1998	2,000	25'-0"	24'-0"	AMMONIUM THIOSULFATE	2012	2012	ABG-gravel
47	TK-577	1957	10,000	42'-6"	40'-0"	DIESEL	2012	2012	ABG-gravel
48	TK-579	1957	20,000	60'-0"	40'-0"	DIESEL	2012	2012	ABG-gravel
49	TK-582	1957	25,000	67'-0"	40'-0"	UNLEADED PREMIUM	2012	2012	ABG-gravel
50	TK-709	1963	1,000	22'-6"	14'-9"	RESIDUE	2012	2012	ABG-tar
51	Z-71-TK-716	2006	NO DATA	15'5"	30'-0"	AMMONIUM THIOSULFATE	2012	2012	ABG-concrete
52	Z-81-T10	1957	NO DATA	11'-0"	18'-0"	CAUSTIC	2012	2012	ABG-tar
53	Z-81-T15	NO DATA	UNKNOWN	5'-7.75'	18'-0"	DIESEL	2012	2012	ABG-concrete
54	Z-86-T2	2002	444,000 GW	44'-0"	40'-0"	WATER	2012	2012	ABG-concrete
55	TK-102	1991	80,000	110'-0"	48'-0"	CRUDE	2013	2013	ABG-tar
56	TK-107	1957	5,000	33'-6"	32'-0"	SLOP OIL	2013	2013	ABG-gravel
57	TK-232	1957	5,000	33'-6"	32'-0"	TRANSMIX	2013	2013	ABG-gravel
58	TK-571	1957	25,000	67'-0"	40'-0"	87.0 UNLD REG.	2013	2013	ABG-gravel
59	TK-581	1957	25,000	67'-0"	40'-0"	LCO	2013	2013	ABG-gravel
60	TK-702	1963	25,000	67'-0"	40'-5"	FCC FEED	2013	2013	ABG-gravel
61	TK-704	1963	10,000	47'-4"	32'-2"	FUEL OIL	2013	2013	ABG-tar
62	TK-708	1963	1,000	22'-6"	14'-11"	RESIDUE	2013	2013	ABG-tar
63	TK-912	NO DATA	NO DATA	8*-0"	21'-0"	GASOLINE ADDITIVE	2013	2013	ABG-concrete
64	Z-81-T1	1998	1,000	21'-3"	16'-0"	TREATED WATER	2013	2013	ABG-concrete
65	TK-227	1957	5,000	33'-6"	32'-0"	K-1	2009	2014	ABG-gravel
66	TK-231	1957	5,000	33'-6"	32'-0"	TRANSMIX	2009	2014	ABG-gravel
67	TK-561	1957	2,336	131.875'	LTH-133.4"	BUTANE	2009	2014	Bullet
68	TK-565	1957	5,000	30'-0"	40'-0"	ISOM/NAT GAS/TOL	2009	2014	HEMISPHERE
69	TK-570	1957	25,000	67'-0"	40'-0"	87.0 UNLD REG.	2009	2014	ABG-gravel
70	TK-572	1957	25,000	67'-0"	40'-0"	87.0 UNLD REG.	2009	2014	ABG-gravel
71	TK-574	1968	40,000	85'-0"	40'-0"	ST.RUN	2009	2014	ABG-gravel
72	TK-576	1968	40,000	85'0"	40'-0"	PREMIUM BASE	2009	2014	ABG-gravel
73	TK-703	1963	25,000	67'-0"	39'-8"	RESIDUE/FCC FEED	2009	2014	ABG-tar
74	TK-705	1963	10,000	47'-4"	31'-1"	FUEL OIL	2009	2014	ABG-tar
75	MKT-TK-1	1965	3,000	30'-0"	24'-0"	DIESEL	2010	2015	ABG-gravel
76	MKT-TK-3	1965	4,000	30'-0"	32'-0"	87.0 OCTANE	2010	2015	ABG-gravel
77	TK-101	1957	80,000	110'-0"	48'-0"	CRUDE	2010	2015	ABG-concrete
78	TK-111	1957	5,000	33'-6"	32'-0"	DHT PRODUCT	2010	2015	ABG-gravel
79	TK-448	1957	1,502	11'-9"	LTH-45'-0"	ISO-BUTANE	2010	2015	Bullet
80	TK-554	1974	2,142	131.875"	LTH-133.4"	BUTANE/PROPANE	2010	2015	Bullet
81	TK-567	1969	20,000	60'-0"	40'-0"	83.0 UNLD. REG.	2010	2015	ABG-gravel
82	Z-71-V2	1987	NO DATA	94.4375"	LTH-52'25"	ANHYDROUS AMMONIA	2010	2015	Bullet
83	Z-81-T7	1998	920	20'-5"	15'-8"	BRINE WATER	2010	2015	ABG-concrete

	TANK	YEAR	APPROX.	TANK	TANK	NORMAL PRODUCT	NEXT	NEXT	FLOOR STYLE
1 [NUMBER	BUILT	CAPACITY	DIAMETER	HEIGHT/		EXTERNAL	INTERNAL	(ABG =Above
			(BBLS)		LENGTH		INSP. DATE	INSP.	ground)
Cnt								DATE	
84	Z-86-T1	1966	5,000	30'-0"	40'-0"	FIREWATER	2010	2015	ABG-concrete
85	MKT-TK-6	1963	1,800	28'-0"	27'-11"	EMPTY TANK	2011	2016	ABG-gravel
86	TK-112	1957	5,000 ,	33'-6"	32'-0"	DHT PRODUCT	2011	2016	ABG-gravel
87	TK-115	1957	5,000	33'-6"	32'-0"	DHT PRODUCT (N.I.S)	2011	2016	ABG-gravel
88	TK-116	1957	5,000	33'-6"	32'-0"	DHT PRODUCT	2011	2016	ABG-concrete
89	TK-18571	NO DATA	NO DATA	8'-0"	6'-0"	NALCO 7359	2011	2016	ABG-concrete
90	TK-225	1957	25,000	67'0"	40'-0"	DISTILLATE	2011	2016	ABG-gravel
91	TK-226	1957	25,000	67'-0"	40'-0"	KEROSENE	2011	2016	ABG-gravel
92	TK-339	1957	25,000	67'-0"	40'-0"	SOUR NAPHTHA	2011	2016	ABG-gravel
93	TK-569	1957	25,000	67'-0"	40'-0"	83.0 UNLD. REG.	2011	2016	ABG-gravel
94	Z-81-T6	1962	880	20'-6"	17'-6"	DOMESTIC WATER	2011	2016	ABG-tar
95	Q-T6	NO DATA	NO DATA	63'-5"	53'-0"	DRAIN HOLDING TK	2012	2017	ABG-concrete
96	TK-583	1996	55,000	100'-0"	40'-0"	DIESEL	2012	2017	ABG-concrete
97	TK-913	NO DATA	NO DATA	9'-11"	15'-0"	GASOLINE ADDITIVE	2012	2017	ABG-concrete
98	Z-81-T13	NO DATA	UNKNOWN	4'-0"	4'-0"	DIESEL	2012	2017	ABG-gravel
99	Z-81-T16	1953	UNKNOWN	5'-7.75'	15'-8"	STARTING AIR	2012	2017	ABG-concrete
100	Z-81-T17	NO DATA	NO DATA	8'9"	15'-0"	WATER SOFTENER (N.I.S)	2012	2017	ABG-gravel
101	Z-81-T5	1979	5,000	33'-5"	32'-0"	TREATED WATER	2012	2017	ABG-concrete
102	Z-81-T8	NO DATA	250	11'-0"	15'-0"	FUEL OIL (N.I.S)	2012	2017	ABG-concrete
103	Z-81-T9	NO DATA	UNKNOWN	6'-0"	12'-0"	DIESEL	2012	2017	ABG-ped
104	TK-451	1957	1,000	21'-3"	16'-0"	OUT OF SERVICE	n/a	n/a	ABG-gravel
105	TK-452	1957	1,000	21'-3"	16'-0"	OUT OF SERVICE	n/a	n/a	ABG-gravel
106	TK-453	1957	5,000	33'-6"	32'-0"	OUT OF SERVICE	n/a	n/a	ABG-gravel
107	TK-713	NO DATA	NO DATA	NO DATA	NO DATA	NOT IN SERVICE	n/a	n/a	ABG-tar

From: Chavez, Carl J, EMNRD

Sent: Friday, August 01, 2008 9:29 AM

To: 'Schmaltz, Randy'; Hurtado, Cindy; 'Riege, Ed'

Cc: Price, Wayne, EMNRD; 'Moore, Darrell'; 'Lackey, Johnny'; Monzeglio, Hope, NMENV

Subject: FW: OCD/Praxair Mtg

Randy, Ed and Cindy:

I am writing to invite some representatives (i.e., engineers, scientists...) to an upcoming presentation by Praxair on alternative methods for tank testing that the Navajo Refinery is interested in implementing at its refineries to address OCD required tank testing and alternative approvals on testing. I believe Western Refining SW faces similar challenges at its refineries and the OCD is willing to consider feasible alternative technologies for addressing its requirements. Please come and join Navajo Refining and the OCD at the upcoming presentation here at the Wendell Chino Building (OCD 3rd Floor Conference Room). Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3491 Fax: (505) 476-3462 E-mail: <u>Carl J.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

From: Lackey, Johnny [mailto:Johnny.Lackey@hollycorp.com]
Sent: Tuesday, July 15, 2008 12:23 PM
To: Resinger, Jim; Moore, Darrell; Douglas_Wilson@Praxair.com; Chavez, Carl J, EMNRD
Subject: OCD/Praxair Mtg

When: Thursday, August 07, 2008 10:00 AM-12:00 PM (GMT-07:00) Mountain Time (US & Canada). Where: Santa Fe

~~*~*~*~*~*~*

Meet with the New Mexico OCD to present Praxair's leak detection technology for Above Ground Storage Tanks.

¢

From: Chavez, Carl J, EMNRD

Sent: Tuesday, July 15, 2008 11:08 AM

To: 'Riege, Ed'

Cc: Ed Cote; Rajen, Gaurav; Monzeglio, Hope, NMENV

Subject: RE: Western Refining SW- Gallup Refinery (GW-032) Engineering & Design of the Sanitary Wastewater Lift Station

Mr. Riege:

The Agencies hereby conclude that the engineering design drawings are satisfactory to fulfill the OCD Letter of March 12, 2008, and OCD Discharge Permit (GW-032) Item 5 (Condition 24A & B).

Please be advised that NMOCD approval of this plan does not relieve Western Refining Southwest- Gallup Refinery of responsibility should their operations fail to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve Western Refining Southwest- Gallup Refinery of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3491 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/index.htm</u> (Pollution Prevention Guidance is under "Publications")

From: Riege, Ed [mailto:Ed.Riege@wnr.com]
Sent: Tuesday, July 15, 2008 10:32 AM
To: Chavez, Carl J, EMNRD
Cc: Ed Cote; Rajen, Gaurav; Monzeglio, Hope, NMENV
Subject: RE: Western Refining SW- Gallup Refinery (GW-032) Engineering & Design of the Sanitary Wastewater Lift Station

Dear Carl:

Many thanks for your review of our engineering and design drawings of the Sanitary Wastewater Lift Station.

In response to your questions:

- The emergency storage tanks will be placed directly on top of the 12 inches of native excavated soil which will be underlain by a Geosynthetic Clay Liner (GCL; specifications discussed below) according to the manufacturer's guidelines and specifications. The 12 inches of excavated native soil will be replaced, graded, and re-compacted to 90 percent density (minimum). All pipe penetrations, collars and seals through the GCL will be per the manufacturer's details and sealed with Bentonite.
- 2) The GCL is manufactured by CETCO and is the CETCO Bentomat SDN. The attached file provides details of the GCL and its specifications as well as certified properties. A brief description of the GCL as described by the manufacturer is provided below.
- 3) The secondary containment area will be designed and constructed to hold 1 + 1/3 the volume of the

largest tank and/or the volume of all interconnected tanks within the bermed secondary containment area.

Please do not hesitate to contact me with further questions if you need any more clarifications. With my best regards,

Ed Riege

Manufacturer description of GCL (more detailed technical specifications in the attached file)

Bentomat® Geosynthetic Clay Liners

CETCO is the world leader in the production of geosynthetic clay liners. The Bentomat® geosynthetic clay liners (GCLs) are high performance environmental liners manufactured with durable high-strength geotextiles and a uniform layer of low-permeability granular Volclay® sodium bentonite. The Bentomat patented manufacturing process utilizes a needle punched technique which encapsulates the sodium bentonite between two layers of geotextile, inhibiting migration of the clay in its dry or hydrated state. The geotextiles offer a long lasting resistance to physical and chemical break-down in harsh environments. The bentonite's high swelling capacity and low permeability provide an effective hydraulic seal. With a total thickness of less than one inch, CETCO GCLs provide better hydraulic performance than several feet of compacted clay.

Ed Riege Environmental Superintendent

Western Refining Gallup Refinery Route 3 Box 7 Gallup, NM 87301 (505) 722-0217 riege.ed@wnr.com

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]
Sent: Wednesday, July 09, 2008 2:30 PM
To: Riege, Ed
Cc: Turri, Mark; Riley, Don; Monzeglio, Hope, NMENV; Price, Wayne, EMNRD
Subject: Western Refining SW- Gallup Refinery (GW-032) Engineering & Design of the Sanitary Wastewater Lift Station

Mr. Riege:

The New Mexico (NM) Oil Conservation Division (OCD) in consultation with the NM Environment Department-Hazardous Waste Bureau (Agencies) have complete our review of the Diagrams: C-1; A-1; S-1; P-1; P-2; E-1 thru E-3; and I-1 thru I-9 completed by Hubbell, Roth & Clark, Inc. and signed by Edward L. Cote, P.E.

DePauli Engineering & Surveying, LLC. was contacted today to verify the survey date (12/10/07) with conversion of vertical elevation to the NVGD29 System.

There are a few questions or clarifications related to drawings C-1 and P-1, which reference geosynthetic liner system and geosynthetic clay liner (GCL) w/ 12 inch of soil cover respectively within the bermed area of the emergency storage tank area. Please verify that the emergency tanks will be placed directly on top of the 12 inches of native excavated soil, which will be underlain by GCL (mil spec & type?) in a cement secondary containment area? Will the secondary containment area be constructed to hold 1 + 1/3 the volume of the largest tank and/or the volume of all interconnected tanks within the bermed secondary containment area?

Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3491 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/index.htm</u> (Pollution Prevention Guidance is under "Publications")

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient (s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

BENTOMAT[®] SDN CERTIFIED PROPERTIES

MATERIAL PROPERTY	TEST METHOD	TEST FREQUENCY ft ² (m ²)	REQUIRED VALUES
Bentonite Swell Index ¹	ASTM D 5890	1 per 50 tonnes	24 mL/2g min.
Bentonite Fluid Loss ¹	ASTM D 5891	1 per 50 tonnes	18 mL max.
Bentonite Mass/Area ²	ASTM D 5993	40,000 ft ² (4,000 m ²)	0.75 lb/ft ² (3.6 kg/m ²) min
GCL Grab Strength ³	ASTM D 6768	200,000 ft ² (20,000 m ²)	30 lbs/in (53 N/cm) MARV
GCL Peel Strength ³	ASTM D 6496	40,000 ft ² (4,000 m ²)	2.5 lbs/in (4.4 N/cm) min
GCL Index Flux ⁴	ASTM D 5887	Weekly	$1 \ge 10^{-8} \text{ m}^3/\text{m}^2/\text{sec max}$
GCL Hydraulic Conductivity ⁴	ASTM D 5887	Weekly	5 x 10 ⁻⁹ cm/sec max
GCL Hydrated Internal Shear Strength ⁵	ASTM D 5321 ASTM D 6243	Periodic	500 psf (24 kPa) typ @ 200 psf

Bentomat SDN is a reinforced GCL consisting of a layer of sodium bentonite between two nonwoven geotextiles, which are needlepunched together.

Notes

¹ Bentonite property tests performed at a bentonite processing facility before shipment to CETCO's GCL production facilities.

² Bentonite mass/area reported at 0 percent moisture content.

³All tensile strength testing is performed in the machine direction using ASTM D 6768. All peel strength testing is performed using ASTM D 6496. Upon request, tensile and peel results can be reported per modified ASTM D 4632 using 4 inch grips.

⁴ Index flux and permeability testing with deaired distilled/deionized water at 80 psi (551kPa) cell pressure, 77 psi (531 kPa) headwater pressure and 75 psi (517 kPa) tailwater pressure. Reported value is equivalent to 925 gal/acre/day. This flux value is equivalent to a permeability of $5x10^{\circ}$ cm/sec for typical GCL thickness. Actual flux values vary with field condition pressures. The last 20 weekly values prior the end of the production date of the supplied GCL may be provided.

⁵ Peak values measured at 200 psf (10 kPa) normal stress for a specimen hydrated for 48 hours. Site-specific materials, GCL products, and test conditions must be used to verify internal and interface strength of the proposed design.

CETCO has developed an edge enhancement system that eliminates the need to use additional granular sodium bentonite within the overlap area of the seams. We call this edge enhancement, SuperGroove[™], and it comes standard on both longitudinal edges of Bentomat[®] SDN. It should be noted that SuperGroove[™] does not appear on the end-of-roll overlaps and recommend the continued use of supplemental bentonite for all end-of-roll seams.

1500 W. Shure Drive Arlington Heights, IL 60004 USA 800.527.9948 Fax 847.577.5571 For the most up-to-date information please visit our website, <u>www.cetco.com</u> A wholly owned subsidiary of AMCOL International

The information and date contained herein are believed to be accurate and reliable. CETCO makes no warranty of any kind and accepts no responsibility for the results obtained through application of this information.

From: Sent: To: Cc: Subject: Monzeglio, Hope, NMENV Tuesday, July 15, 2008 10:46 AM Chavez, Carl J, EMNRD Cobrain, Dave, NMENV FW: Proposed Navajo Upgradient Well Locations

Attachments:

GoogleEarth_Image.jpg

GoogleEarth_Image .jpg (159 KB)... Carl

I forgot to cc you on this. The locations of the upgradient wells at Navajo have been moved. See attachment. Let me know if you have any questions.

Hope

-----Original Message-----From: Hall, Sharon [mailto:Sharon.Hall@arcadis-us.com] Sent: Tuesday, July 15, 2008 9:16 AM To: Monzeglio, Hope, NMENV Cc: Moore, Darrell; Hall, Sharon Subject: Proposed Navajo Upgradient Well Locations

Hope, thank you for consideration of these revised proposed well locations. The locations shown on the map are those we discussed. One location will be drilled on the East side of Roselawn. Most likely it will be drilled in the location shown on the attached figure. If access conditions are better along the east side of Roselawn at another location between West Lolita and West James Avenues the well may be placed in an alternate location between those streets. Thank you for your flexibility within those two blocks- it will give Darrell some alternatives for the City.

The second location is proposed south of Yucca Ave near the curve north to what looks like 16th St. If access conditions are not suitable in this location the well will be drilled on the south side of Yucca between 15th and 16th Streets, as near to 16th Street as possible.

With your approval Darrell will propose that the request to drill at these locations be put on the agenda for July 22, 2008 City Council Meeting. Please let Darrell or I know if you have any questions or need additional information.

Thank you, Sharon

NOTICE: This e-mail and any files transmitted with it are the property of ARCADIS U.S., Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by ARCADIS U.S., Inc. and its affiliates.

May 27, 2008

Hope Monzeglio Environmental Specialist Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico, 87505-6303

Re: Response to Approval with Direction Summary of Drilling and Sampling Activities Western Refining Southwest Inc., Gallup refinery NMED ID # NMD000333211 HWB-GRCC-08-002

Dear Ms. Monzeglio:

It is a pleasure to submit our response to the letter of May 23, 2008 by Mr. John Kieling granting Approval with Direction to our report on Summary of Drilling and Sampling Activities, Western Refining (WNR) Southwest Inc., Gallup refinery. In this response we have provided explanations to all of the comments the letter has detailed that direct us to provide clarifications.

Comment 1

No response required. We will correct the date as mentioned in all future correspondence.

Comment 2

a. In this response, we first explain why the original sample analysis did not include tests for volatile organic compounds (VOCs). Eventually, however, we did test the cutting soils for hydrocarbons. Originally, the soils were destined for WNR's land farm. The land farm operated by WNR is in accordance with established guidelines of the New Mexico Oil Conservation Division (OCD). Sampling and analysis of the soils prior to treatment of the soils was to verify that the soils were not characteristic RCRA hazardous wastes as such wastes are not permitted by the OCD to be treated at WNR's land farm. Soils contaminated with volatile organic compounds (VOCs) are allowed to be treated at the land farm which has an ongoing sampling and analysis program according to OCD requirements. Sampling for VOCs of soils emplaced in the land farm occurs as a part of ongoing land farm operations, including sampling to verify no migration from the land farm. Hence, we did not sample the soils for VOCs. As one of the drums containing well bore cuttings was damaged, these soils were re-packaged into a new drum

WNR

NYSE

with good integrity. Eventually, due to a lack of availability of treatment space at WNR's land farm, a decision was made to dispose off these soils at an appropriate landfill. A composite sample of soils was taken from all the drums containing soil cuttings and analyzed for Total Petroleum Hydrocarbons using EPA Method 8015B (Gas/Diesel) and Toxicity Characteristic Leachate Procedure (TCLP) tests for RCRA 8 metals, Volatile Organic Aromatics (VOA), and Semi-VOA, as well as reactivity, corrosivity and ignitability tests. An attachment presents details of the tests requested and the laboratory analytical results. The tests allowed the soil cuttings to be designated non-hazardous, and the drums were disposed off at a certified non-hazardous landfill with appropriate documentation and shipping manifests on file at WNR.

- b. Soils from the damaged drum containing cuttings from KA-1 were re-drummed and disposed off as described in response (a).
- c. WNR has an operating permit from the OCD and all soils treated at this facility are monitored in accordance with this permit's conditions. For this project, no soils cuttings were treated at the WNR land farm.

Comment 3

In future we will use the EPA Region 6's Medium-Specific Screening Level of 11 microg/L as the standard for comparison of groundwater MTBE levels at this site.

Comment 4

The depth to water (DTW) measurements for well KA-3 were different on different days and slowly increasing as the shallow groundwater flow in this area is through a series of non-continuous layers of sand and clay that are of varying permeability. The flow of groundwater into well KA-3 is known to be at very low velocities with high variations in the flow rates. Future sampling will occur in well KA-3R, and well KA-3 has been closed and is not proposed to be a part of future sampling efforts (as agreed to by NMED). Since installation, we have proceeded with a DTW monitoring program (data have been shared with NMED) at well KA-3R. This well (KA-3R) has been found to recharge at less than a foot a day after being bailed dry.

Thank you for giving us this opportunity to respond to your approval with direction of our report. Please do not hesitate to contact me with further questions at 505-722-0227 if I can provide any further clarifications.

Sincerely,

gan Ray-

Gaurav Rajen, Ph.D. Environmental Engineer

Cc: John E. Kieling, Program Manager, Permits Management Program, Hazardous Waste Bureau, 2905 Rodeo Park Drive East, Building 1, Santa Fe, New Mexico, 87505-6303
Carl J. Chavez, CHMM, NM Energy, Minerals & Natural Resources Department, Oil Conservation Division, Environmental Bureau, 1220 South St. Francis Drive, Santa Fe, NM 87505
Ed Riege, Environmental Superintendent, WNR Thurman B. Larsen, Environmental Engineer, WNR
Cheryl Johnson, Environmental Specialist, WNR
/File

.

HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D	Albuquerque, New Mexico 8/109 Tel: 505.345.3975 Fax 505.345.4107 www.hallenvironmental.com	ANALYSIS REQUEST		or N)	10/586 10/586 10/586 10/586 10/586 10/586	9992b9)))))))) _)	+ 381 108 h 108 h 108 h 108 h 100 h	н Мі 1 есіл 1 есіл	 X378 X164 X164 X174 X174<th>X X X X</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Remarks:</th><th>Kush Bralysis pleuse</th>	X X X X										Remarks:	Kush Bralysis pleuse
0A/ QC Package: Std bd Level 4 [] Other:	Project Name: 90 DAY Soil Sumples	Project #:		Project Manager:	Caurav Rajen	sampler DUNSON A. DUSEU	Sample Temperature.	Preservative	Number/Volume H9Cl ₂ HNO ₃ HEAL No.	10t - i	. 2	~ ~ ~		5	- (-		8 -	2 - 9 - 1		Received By: (Signature) 1 41/7/08	Received By: (Signature)
CHAIN-OF-CUSTODY RECORD	Client: Wastern Repinery	Address: OF 3 RN 7	Gullup, NM 81301	Cheryl, johnson Ownr.com	gaurav, rajen Ownr, com	Phone #: 505.722-3833	Fax#: 505.732.0210		Date Time Matrix Sample I.D. No.	4-16-08 11:00 Soil BZ. Strip Clean-up	1 11:15 / NAPIS Well Carvery	11:30 1 OAPIS CLEAN-WP	11:45 Studge Vactrk-Lagoon	dry rual 7 4 M M Jios 24 CI	1300 Soil 7232 Clean up	1 1330 Studge Proline was louid	1 1400 Study StopTank Studye	4.17.05 1030 Soil ASÓ Sandblast Madu		Date: Time: Relinquished By: (Signatural	Date: Time: Relinquished By: (Signature)

Hall Environmental Analysis Laboratory, Inc.

Date: 30-Apr-08

CLIENT:	Western Refining South	west, Gallup		Clier	t Sample ID:	NAPIS W	ell Casing (POMPOS
Lab Order:	0804213			Co	llection Date:	4/16/2008	11:15:00 AM
Project:	90 Day Soil Samples			D	ate Received:	4/17/2008	
Lab ID:	0804213-02			2.	Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8	015B: DIESEL RANGE O	RGANICS	içini ina nû bin îlî dirina	1 TH 1876 MARK			Analyst: SCC
Diesel Range Or	ganics (DRO)	ND	10		mg/Kg	1	4/23/2008 11:03:23 PM
Motor Oil Range	Organics (MRO)	ND	50		mg/Kg	1	4/23/2008 11:03:23 PM
Surr: DNOP		107	61.7-135		%REC	1	4/23/2008 11:03:23 PM
EPA METHOD 8	015B: GASOLINE RANG	E					Analyst: NSB
Gasoline Range	Organics (GRO)	ND	5.0		ma/Ka	1	4/23/2008 7:37:10 PM
Surr: BFB	• , 、 •	101	84-138		%REC	1	4/23/2008 7:37:10 PM
AFRCURY TO	P						Analyst SNV
Mercurv	••	ND	0.020		ma/L	1	4/22/2008 2:54:36 PM
			0.020			•	12212000 2,07,00 F W
PA METHOD 6	010B: TCLP METALS						Analyst: NMO
Arsenic		ND	5.0		mg/L	1	4/28/2008 12:50:57 PM
Barium		ND	100		mg/L	1	4/28/2008 12:50:57 PM
Cadmium		ND	1.0		mg/L	1	4/28/2008 12:50:57 PM
Chromium		ND	5.0		mg/L	1	4/28/2008 12:50:57 PM
Lead		ND	5.0		mg/L	1	4/28/2008 12:50:57 PM
Selenium		ND	1.0		mg/L	1	4/28/2008 12:50:57 PM
Silver		ND	5.0		mg/L	1	4/28/2008 12:50:57 PM
PA METHOD 8	270C TCLP						Analyst: JDC
2,4-Dinitrotoluene	e	ND	0.13		mg/L	1	4/23/2008
Hexachlorobenze	ș	ND	0.13		mg/L	1	4/23/2008
Hexachlorobutad	iene	ND	0.50		mg/L	1	4/23/2008
Hexachloroethan	θ	ND	3.0	,	mg/L	1	4/23/2008
Nitrobenzene		ND	2.0		mg/L	1	4/23/2008
Pentachlorophen	ol	ND	100		mg/L	1	4/23/2008
Pyridine		ND	5.0		mg/L	1	4/23/2008
2,4,5-Trichloroph	enol	ND	400		mg/L	1.	4/23/2008
2,4,6-Trichloroph	enol	ND	2.0		mg/L	1	4/23/2008
Cresols, Total		ND	200		mg/L	1	4/23/2008
Surr: 2,4,6-Trib	promophenol	54.9	20.9-128		%REC	1	4/23/2008
Surr: 2-Fluorob	piphenyl	56.7	18.3-119		%REC	1	4/23/2008
Surr: 2-Fluorop	phenol	39.4	16.6-101		%REC	1	4/23/2008
Surr: 4-Terphe	nyl-d14	51.4	32.3-135		%REC	1	4/23/2008
Surr: Nitrobenz	zene-d5	58.0	22.6-117		%REC	1	4/23/2008
Surr: Phenol-d	5	22.4	8-77.9		%REC	1	4/23/2008
	8260B/1311						Asshat DDU
Benzene		ND	ሰ ናስ		ma/l	1	Analyst: BDH
2-Butanone		ND	10.50		mg/L	1 4	4/20/2000 11:02:00 PW
Carbon Tetrachlo	ride	ND	0.50		mg/L	1	4/20/2008 11:32:53 PM
	······						-1120/2000 11.32.33 PW
Qualifiers: *	Value exceeds Maximum Cor	ntaminant Level		E	3 Analyte detec	ted in the ass	ociated Method Blank
E	value above quantitation rang	3e		ŀ	Holding time	s for preparat	ion or analysis exceeded
J	Analyte detected below quant	itation limits		M	CL Maximum Co	ontaminant L	evel
ND	Not Detected at the Reporting	Limit		R	L Reporting Lin	nit	

S Spike recovery outside accepted recovery limits

л

Page 3 of 18

Analyses	Result	PQL Qual Units	DF	Date Analyzed
Lab ID:	0804213-02	Matrix:	SOIL	· · · · · · · · · · · · · · · · · · ·
Project:	90 Day Soil Samples	Date Received:	4/17/2008	;
Lab Order:	0804213	Collection Date:	4/16/2008	11:15:00 AM
CLIENT:	Western Refining Southwest, Gallup	Client Sample ID:	NAPIS W	ell Casing

Hall Environmental Analysis Laboratory, Inc.

Date: 30-Apr-08

VOLATILES BY 8260B/1311 Analyst: BDH ND 100 4/26/2008 11:32:53 PM Chlorobenzene mg/L 1 ND 6.0 4/26/2008 11:32:53 PM Chloroform mg/L 1 ND 7.5 1 4/26/2008 11:32:53 PM 1,4-Dichlorobenzene mg/L ND 0.50 4/26/2008 11:32:53 PM 1,2-Dichloroethane (EDC) mg/L 1 ND 0.70 1,1-Dichloroethene 1 4/26/2008 11:32:53 PM mg/L ND 0.50 1 Hexachlorobutadiene mg/L 4/26/2008 11:32:53 PM Tetrachloroethene (PCE) ND 0.70 mg/L 1 4/26/2008 11:32:53 PM Trichloroethene (TCE) ND 0.50 mg/L 1 4/26/2008 11:32:53 PM Vinyl chloride ND 0.20 mg/L 1 4/26/2008 11:32:53 PM Surr: 1,2-Dichloroethane-d4 104 69.9-130 %REC 1 4/26/2008 11:32:53 PM Surr: 4-Bromofluorobenzene 103 71:2-123 %REC 1 4/26/2008 11:32:53 PM Surr: Dibromofluoromethane 95.3 73.9-134 %REC 1 4/26/2008 11:32:53 PM Surr: Toluene-d8 110 81.9-122 %REC 1 4/26/2008 11:32:53 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 4 of 18

Ę

ENERGY LABORATORIES, INC. • P.O. Box 30916 • 1120 South 27th Street • Billings, MT 59107-0916 800-735-4489 • 406-252-6325 • 406-252-6069 fax • eli@energylab.com

LABORATORY ANALYTICAL REPORT

Cijent:	Hall Environmental	Report Date:	04/30/08
Project:	B0804213	Collection Date:	04/16/08 11:15
Lab ID:	B08042275-002	DateReceived:	04/22/08
Client Sample ID:	0804213-02B, NAPIS Well Casing	Matrix:	Soil

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
IGNITABILITY Flash Point (Ignitability)	>200	٩.	r	30.0		SW1010M	04/28/08 15:38 / mgs
CORROSIVITY pH of Soil and Waste	8.49	8.U.	,	0,10		SW9045D	04/24/08 14:33 / mgs
REACTIVITY Cyanide, Reactive Sulfide, Reactive	ND ND	mg/kg mg/kg		0.05 20	250 500	SW846 Ch 7 SW846 Ch 7	04/30/08 10:44 / kjp 04/29/08 07:00 / pwc

 Report
 RL - Analyte reporting limit.

 Definitions:
 QCL - Quality control limit.
 RL - Analyte reporting limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

BILL RICHARDSON Governor

DIANE DENISH Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.nmenv.state.nm.us

RON CURRY Secretary

JON GOLDSTEIN Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

May 23, 2008

Mr. Ed Riege Environmental Superintendent Western Refining Gallup Refinery Route 3, Box 7 Gallup, New Mexico 87301 - Mart de Bugo En diouzioniai Superlan adout Marte De Beñeling Gallan hañar Marte De Box 7 anofino de contexas 80505

12.5

RE: APPROVAL WITH DIRECTION SUMMARY OF DRILLING AND SAMPLING ACTIVITIES WESTERN REFINING SOUTHWEST, INC., GALLUP REFINERY NMED ID # NMD000333211 HWB-GRCC-08-002

Dear Mr. Riege:

The New Mexico Environment Department (NMED) has received Western Refining Southwest, Inc., Gallup Refinery's (Permittee) *Summary of Drilling and Sampling Activities* (Report) dated April 14, 2008. The Report describes the installation of the replacement monitoring wells in the vicinity of the New API separator (NAPIS). NMED hereby issues this Approval with Direction and provides the following comments.

Comment 1

The Permittee states on the cover page and on page 2 that the well installation and sampling was performed in accordance with NMED's December 20, 2007 approval letter.

The December 20, 2007 letter was an approval of the Permittee's extension request to install the monitoring wells at a later date and not an approval of the installation and sampling activities. The well installation and sampling requirements were established in NMED's letter dated October 15, 2007. No revision is necessary.

Ed Riege Giant Gallup Refinery May 23, 2008 Page 2

Comment 2

The Permittee states on page 4, bullet three that "[a] composite soil sample was collected from the cuttings from existing monitoring wells KA-2 and KA-3, as well as from replacement monitoring wells KA-1R, KA-2R, and KA-3R, following installation. The sample was collected for classification in order to dispose of the cuttings in Western's on-site landfarm. Cuttings from the existing monitoring well KA-1 could not be sampled due to damage to the drum. The composite sample was analyzed for anions per EPA Method 9056A, mercury per EPA Method 7471, and for total metals per EPA Method 6010B. The sample was also to be analyzed for free liquid, ignitability, corrosivity, and reactivity; and..."

NMED has the following comments:

c. The Permittee must obtain permission from the Oil Conservation Division (OCD) to the determined of the dispose of the cuttings at the on-site landfarm and test the soils as required by OCD.

Comment 3

The Permittee states on page 5 (Groundwater Analytical Results) that "[m]ethyl tert-butyl ether was detected at 260 μ g/L, which is above the NMWQCC standard of 100 μ g/L."

There is no Water Quality Control Commission (WQCC) numerical standard for methyl tertbutyl ether (MTBE). In the future, the Permittee must apply the EPA Region 6 Human Health Medium- Specific Screening Levels, residential water standard for MTBE, which is currently 11 μ g/L.

Comment 4

The Permittee provides a summary of fluid level measurements in Table 1. The depth to water (DTW) measurements for KA-3 were 12.50 feet below ground surface (bgs) on 6/12/07, 8.50 feet bgs on 6/21/07, and 8.61 feet bgs on 3/20/08.

There appears to be a significant difference between the DTW measurement collected on June 12, 2007 and the measurements collected on June 21, 2007 and the March 20, 2008. The Permittee must explain this significant difference in the water level measurements.

Ed Riege Giant Gallup Refinery May 23, 2008 Page 3

The Permittee must submit a response to this Approval with Direction addressing all comments requiring a response to NMED on or before July 7, 2008.

If you have any questions regarding this letter please call Hope Monzeglio of my staff at (505) 476-6045.

l afoits Masager and Program Forardous Weste Buresu

W PARA SATE

D. Cobrah, AMED EV-

H. Monk. Soc. MMED. 17

C. Friedman, MARD H / 6

Sincerely,

cc:

E L John E. Kieling

Program Manager Permits Management Program Hazardous Waste Bureau

> D. Cobrain, NMED HWB C. Frischkorn, NMED HWB H. Monzeglio, NMED HWB W. Price, OCD C. Chavez, OCD B. Powell, OCD Aztec Office G. Ragen, Western Gallup

File: Reading and GRCC 2008

HWB-GRCC-08-002

GALLUP REFINERY

WNR MSILIDI NYSE

May 12, 2008

Hope Monzeglio New Mexico Environment Dept. Hazardous Waste Bureau 2905 Rodeo Park Drive East, BLDG **B** Santa Fe, NM 87505-6303

2008 MAY 19 PM m ___ m 2

Dear Ms. Monzeglio:

It is a pleasure to submit our excavation and remediation plan for the Fan-out Area SWMU at the Gallup Refinery of Western Refining Southwest Inc.

As you will notice from the attached report and figure, we have carried out a series of sampling events to determine the area and depth of soils to be excavated, and have used extremely conservative estimation procedures in this determination.

For example, in areas in which the sampled materials had no detectable levels of contaminants at 3 feet, we plan to excavate to depths of 5 feet. Similarly in the few areas at which there is contamination at greater depths, we plan to excavate to far greater depths than at which we found no detectable levels of contaminants. Similarly, you will notice that at point L1 we found no detectable levels of contamination; yet, on a conservative basis, we plan to excavate an areal extent far more extensive than the clean point L1 would indicate.

You will notice that at point A we collected samples from a depth of 9 feet and did find some contamination. We were unable to sample at a greater depth than 9 feet at point A as this area had been previously excavated and our sampling drill rig could not locate itself directly on top of point A. At point B, a foot away, we found no detectable levels of contamination at depths much less than 13 feet. At these locations, marked in pink in our figure, we plan to excavate to depths of 13 feet which is far greater than the depths at which any detectable levels of contaminants were found.

We look forward to your review and comments of our excavation plan, and to the expeditious conclusion of our planned remedial actions.

Please do not hesitate to contact me if I can offer any further clarifications at 505-722-0227.

Sincerely,

Gaurav Ragen Environmental Engineer

Cc Carl Chavez

GALLUP REFINERY

NYSE

2008 FIAY 15

Pm.

(၂) (၂) (၂) m

May 12, 2008

Hope Monzeglio Environmental Specialist New Mexico Environmental Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6303

Re: Gallup Refinery Groundwater Confirmation Monitoring Report

Dear Hope:

Please find enclosed the Gallup Refinery Groundwater Confirmation Monitoring Report, Monitoring Wells OW-14 and OW-30 prepared by Gannett Fleming. Please contact me at 505-722-0217 if you have any questions regarding this report.

Sincerely,

La **Ed Riege**

Environmental Superintendent Western Refining Gallup Refinery

C: Carl Chavez OCD

Gaurav Rajen Western Refining

May 2, 2008

Mr. Ed Riege Environmental Superintendent Western Refining Company, L.P. Route 3 Box 7 Gallup, NM 87301

RE: Railroad Rack Lagoon Fan-out Area Excavation Work Plan

Dear Mr. Reige:

Western Refining and Trihydro have been working together to delineate soil contamination in the Railroad Rack Overflow Ditch and Fan-out Area (Fan-out Area) at the Gallup Refinery (Gallup). The New Mexico Environmental Department (NMED) has requested an Excavation Plan (Plan). This Plan has been prepared to assist in the excavation and disposal of soil in the Fan-out Area that exceed diesel range organics (DRO) concentrations of 890 mg/kg. NMED and Gallup agreed that the Industrial Direct Exposure level for #3 and # 6 Fuel Oil of 890 mg/kg would be used as the DRO clean-up standard (verbal agreement with Hope Monzeglio, Dave Cobrain, and Jim Lieb).

COMPLETED FIELD WORK

Trihydro was contracted to collect samples to determine the presence or absence of residual contamination at the Overflow Ditch and Fan-out Area locations. The initial field work for this project was conducted in October 2006 and a report was submitted to Gallup and NMED, titled *Railroad Rack Lagoon Overflow Ditch and Fan-out Area, SWMU #8 Subsurface Investigation* dated February 8, 2007. The results of this investigation prompted NMED to request that Gallup excavate soil contaminated DRO in the vicinity of the two test pit locations, "B-8" and "B-9". Trihydro was onsite and completed the initial sampling and excavation of soil from these test pits during the week of May 21, 2007.

The soil sample concentrations from "B-9" were below the DRO clean-up standard (890 mg/kg). However, the soil sample results from the southeast corner of test pit "B-8" was reported at concentrations higher than the clean-up standard for DRO. Gallup then requested that Trihydro collect additional samples from the contaminated area around "B-8" and delineate the impacted soil that would need to be excavated to meet the objectives of the project. The additional samples were collected during the week of August 20, 2007. One of the objectives of the August sampling event was to minimize the amount of soil that would potentially need to be excavated. It was anticipated that the August 2007 soil sample results would be below the DRO clean up standard approved by NMED. However, the August data collection showed several samples results above the DRO clean up standard.

Mr. Ed Riege May 2, 2008 Page 2

Therefore, after conversations with Gallup personnel, it was decided to delineate the contamination by using a larger step-out distance to meet project objectives. Field work utilizing this method commenced on December 17, 2007. The soil samples collected during this event effectively delineated the horizontal and vertical extent of DRO contamination associated with "B-8". The December 17 field event and results are described below.

DECEMBER 207 FIELD EVENT

Horizontal Delineation

Soil samples were collected extending outward in a radial pattern at 20, 40 and 60 feet away from existing boreholes K, G, I and M at depths of 3, 8, and 13 feet below ground surface (ft-bgs). As shown on Figure 1, boreholes K, G, I, and M were the outermost DRO contaminated soil sample locations based on the August event. The proposed step-out distances of 20, 40, and 60 feet are designated as 1, 2, and 3, respectively on Figure 1. The 20 foot step-out locations are designated as M-1, I-1, G-1, and K-1. Boreholes M-1, I-1, G-1, and K-1 were installed on December 17, 2007 using a CME 75 drill rig. A 6 ³/₄ inch hollow stem auger was advanced to 1 foot above the discrete sampling depth. A split-spoon sampling device was then advanced from 1 foot above to 1 foot below the discrete sampling depth. Samples were taken directly from the split spoon sampling device at depths of 3, 8, and 13 ft-bgs. Samples were submitted to the Laboratory for 24-hour analysis on the same day. No visual contamination or odor was noted at any of these boreholes during sampling. Borehole logs were recorded for each location and a photograph was taken of each split spoon. Field documentation will be provided as needed as part of Trihydro's Railroad Rack Lagoon Fan-out Area Final Report upon completion of the excavation of DRO contaminated soils.

On December 18th, while waiting for laboratory results of the December 17th sampling, boreholes K-2, K-3, G-2, G-3, I-2, and M-2 were installed and sampled in the same manner described above. The remaining proposed boreholes, M-3 and I-3, were installed on December 19, 2007. These locations were sampled in the event the 20-foot step-out interval samples (M-1, I-1, G-1, and K-1) were not below the clean-up standard.

Vertical Delineation

Existing borehole B (B8-NEW-SE-S1) was drilled to a depth of 23 ft-bgs to vertically delineate the extent of DRO contamination. This borehole was selected for vertical delineation because the previous sampling event showed that this borehole had a DRO exceedance of 2,600 mg/kg at 7 ft-bgs. Samples were collected on December 17 at 8, 13, 18, and 23 ft-bgs using the same methods described above. These samples were submitted to the Laboratory for 24 hour DRO analysis on the same day that they were collected.

Mr. Ed Riege May 2, 2008 Page 3

Results

Samples were submitted to Hall Environmental in Albuquerque, NM for analysis. The laboratory analyzed the samples using USEPA Method 8015B. The results for samples collected from new boreholes M-1, I-1, G-1, and K-1 at depths of 3, 8, and 13 ft-bgs and existing borehole B (B8-NEW-SE-S1) at 8, 13, 18, and 23 ft-bgs were non-detect for DRO. Trihydro believes that this new data effectively delineates both the horizontal and vertical extent of DRO contamination associated with test pit B-8. These results are illustrated on Figure 1. Laboratory reports will be provided as part of the final report after the completion of the excavation. Because samples from the above locations met the project objectives, samples from boreholes, M-3 and I-3 were not analyzed.

EXCAVATION PLANS

Trihydro proposes to excavate soil horizontally and vertically to the extents that have been determined to be above clean-up standards based on laboratory analysis. These extents of soil impacts are illustrated on Figure 1. The DRO contaminated zone has been divided into three areas that will be excavated to different depths to remove DRO contaminated soil. The green area on Figure 1 will be excavated to a depth of 3 ft-bgs. The blue and pink areas will be excavated to 5 and 13 ft-bgs, respectively. Based on calculations generated from the areas shown on Figure 1, the total volume of soil that requires excavation is approximated to be 145 cubic yards. The anticipated final volume of soils requiring excavation would be approximately 240 cubic yards due to a 1.5 expansion factor and a 10 percent contingency.

PROCEDURES

Staking the Boundaries:

The areas that will require excavation were staked by Trihydro personnel on April 11, 2008. A photograph illustrating the staked locations is presented as Figure 2. Sampling locations from previous events had been staked and labeled at the time of sample collection and these stakes currently remain in the ground as illustrated on Figure 2. These locations were used as reference points when the excavation boundary stakes were installed on April 11. The boundaries of the area to be excavated to 3 ft-bgs illustrated in green on Figure 1 have been marked with green ribbon (Figure 2). The boundaries of the areas to be excavated to 5 and 13 ft-bgs (blue and pink areas on Figure 1, respectively) have been marked with orange and pink ribbon, respectively (Figure 2). These boundaries will be estimated in the field during the excavation and documented in the final report.

Excavation

Excavation will be performed by or under the supervision of Trihydro personnel. A clean, decontaminated backhoe will be used to complete the excavation. The staked boundaries will be excavated to the corresponding depths illustrated on Figure 1. Excavated soil will either be immediately transported to Gallup's Northeast OCD Land Farm or temporarily stock piled on plastic sheeting within a

Mr. Ed Riege May 2, 2008 Page 4

bermed area until it can be transported to the Land Farm. This volume will be more than adequate for the excavated soil from the Fan-out Area. Upon completion of the excavation, the area will be immediately backfilled with clean native material obtained from soil from within the Refinery boundary.

Reporting

As requested in a letter from NMED dated March 14, 2007, an investigation report will be submitted to NMED within 90 days of completion of the excavation. This report will be similar in style and format to Gallup Refinery's *Railroad Rack Lagoon Overflow Ditch and Fan-out Area, SWMU #8 Subsurface Investigation* (Report) dated February 8, 2007. It will include appropriate field forms, photos, and analytical data obtained from each field event, including photos of the excavation itself, not described in the February 8, 2007 report.

FIELD DOCUMENTATION AND LOGGING

Field observations are critical to the verification of appropriate excavation procedures. Field observations made during the excavation will be recorded in a field log book by Trihydro personnel. The following information will be recorded, in indelible ink, where appropriate:

- Date and name of observer.
- Names and affiliations of excavation team members.
- Names and affiliations of others present at the excavation site.
- Weather conditions.
- Health and safety measures implemented.
- Excavation site condition upon arrival.
- Deviations from or clarifications of excavation procedures.
- Miscellaneous conditions which the excavation team finds noteworthy.
- Backhoe make and model
- Odor qualities (sweet, sulfurous, strong, etc.) will also be recorded if casually noticed; however, field personnel will be cautioned against unnecessary exposure to volatile constituents.

Mr. Ed Riege May 2, 2008 Page 5

PHOTOGRAPHS

Photographs will be used to substantiate and augment the field notes. Photo-documentation will be utilized to show that the staked boundaries have been excavated to the appropriate depths. Each photograph will be numbered and recorded on a photograph log.

INVESTIGATIVE DERIVED WASTE

Wastes associated with the excavation, other than the excavated soil itself, are expected to be minimal. Disposable personal protective equipment (PPE) and plastic sheeting used for stock piling, if used, will be managed by Gallup according to appropriate regulations.

EQUIPMENT DECONTAMINATION PROCEDURES

The only piece of equipment that will come in contact with DRO contaminated soil is the backhoe that will be used for excavation. The shovel of backhoe will be cleaned and decontaminated prior to the excavation and again after the excavation is complete. The cleaning pad located at the Gallup Refinery will be utilized for decontamination.

HEALTH AND SAFETY PROCEDURES

Personnel operating the backhoe will be properly trained. The Trihydro site specific Health and Training Plan will be followed. An excavation permit for the area will be obtained from Gallup by Trihydro personnel.

Trihydro is ready to implement this work plan at a mutually convenient date upon NMED approval. If you have any questions, please feel free to contact us at (307) 745-7474.

Sincerely, Trihydro Corporation

Eric Worden Client Manager

072-013-001

cc: Jim Lieb, Giant Refining

Attachment

Regina Allen Project Manager

FIGURES

.

Gannett Fleming West, Inc.

2155 Louisiana Boulevard, NE Suite 7000 Albuquerque, New Mexico 87110

Office (505) 265-8468 Facsimile (505) 881-2513

May 2, 2008

Mr. Ed Riege Western Gallup Refinery Rt. 3 Box 7 Gallup, NM 87301

Re: Gallup Refinery Groundwater Confirmation Monitoring Report, Monitoring Wells OW-14 and OW-30

Dear Mr. Riege:

Gannett Fleming, Inc. West (GFW) has prepared this Groundwater Monitoring Report for the groundwater sampling activities recently completed at the Western Refinery located near Gallup, New Mexico. The activities were completed in accordance with the our proposal, dated February 7, 2008, in order to verify the results of a recent groundwater sampling event performed by Western Refining Company (Western). Western has detected Methy Tertiary Butyl Ether (MTBE) above New Mexico Water Quality Control Commission (WQCC) standards in two groundwater monitoring wells, and requested third-party confirmation of the detection. This letter report has been prepared in response to that request.

BACKGROUND

The Western Refinery is located near Gallup, New Mexico as shown on Figure 1. The refinery has been performing annual groundwater monitoring in several wells at the facility. The monitoring has analyzed groundwater samples for Volatile Organic Compounds (VOCs) by EPA Method 8260B. In the groundwater sampling events performed by Western on December 28, 2007 and January 2, 2008, MTBE was detected in two groundwater monitor wells, OW-14 and OW-30, above the WQCC standard of 100 μ g/l, and benzene was detected above the standard of 10 μ g/ in OW-14. These well locations are shown on Figure 2. These two monitor wells are generally down gradient from Tank 568, the former MTBE storage tank at the refinery. However, these two wells are also in the vicinity of SWMU #8 and SWMU #9, and near the rail spur at the east side of the refinery. It is our understanding that MTBE had been delivered to the refinery on that rail spur in the past. GFW was told the integrity of Tank 568 was tested and confirmed in 2006. Although there is no documentation of a release, other than the MTBE detection in these two wells, refinery personnel have said MTBE could have been released near the Tank 568 location. GFW was also told that Tank 568 is located over a gasoline product plume that is being remediated by a pump and treat system. The trend of MTBE concentrations, measured by Western in the annual monitoring events for this two wells, is shown on Table 1.

Tabl	le 1. Recent MTBE Concentration	s (μg/l)
Date	OW-14	OW-30
12/8/2004	65	2.5
9/27/2005	77	< 2.5
10/27/2006	16	18
12/28/2006	180	18
12/28/2007	NA	290
1/2/2008	920	NA

According to refinery personnel, the use of MTBE at this refinery was discontinued on March 31, 2006. All MTBE was removed from the refinery in the third quarter of 2006. MTBE was stored in Tank 568 until January 11, 2006, and blended into the gasoline in the product trucks prior to delivery to the various retail distributors. No product/MTBE mixture was stored in Tank 568. MTBE was also stored in Marketing Tank #6 directly north of the tanker loading rack, but this tank is located a considerable distance away from the area in which MTBE has been detected.

The monitoring well boring logs and well completion diagrams for OW-14 and OW-30 show that the wells are completed to depths, respectively, of 45.0 and 48.1 feet below the ground surface (bgs) (Appendix A). According to these boring logs, the wells are completed in the Triassic Chinle Formation, comprised of reddish brown silty, sandy clay; with interbeds of silt and very fine sands. The wells are screened in the sandy zones, which are the water-bearing zones within the Chinle Formation. Based on the geologic cross sections constructed from drilling logs at the refinery (Appendix A), these zones are intermittent, somewhat discontinuous, and vary in thickness, being about 15 feet thick in OW-14. This cross section shows the zone encountered in OW-14 to be continuous with the area beneath Tank 568, but ending just north of OW-30.

Historic ground water levels provided to GFW by Western show water levels in OW-30 fluctuating between 21 and 26 feet bgs, but water level in OW-14 fairly constant at about 27 to 27.5 feet bgs. Based on a 2004 contour map provided by Western, groundwater gradient is to the north at this location, at about 0.01 ft/ft (Appendix A). Just north of OW-14, however, gradient decreases to about 0.0042 ft/ft, which may be a result of pinching out the water-bearing zone of OW-14 and OW-30, and monitoring points farther downgradient measuring water levels in a different zone. However, water level data for 2005 shows this flow direction reversed from that shown for 2004 and 2006.

WELL INSPECTION AND FIELD MONITORING

Western contracted with GFW to perform one round of independent confirmation sampling of monitor wells OW-14 and OW-30 to check for the presence of MTBE in those two wells. The wells were inspected and sampled by GFW on February 25, 2008. GFW's field sampler visually verified the well conditions to ensure their integrity has been maintained and the MTBE detections were not a result of surface infiltration due to a deterioration of the well construction. For both OW-14 and OW-30, the well casing protection and surface completion were verified to be in good condition, the rubber sealing gasket on OW-30 and threaded PVC cap on OW-14 were undamaged, and there was no free water in the protective casing and the interior of the well. Both wells were unlocked by Western personnel.

The water levels measured by GFW on February 25, 2008 were 25.4 feet bgs for OW-14 and 23.6 feet bgs for OW-30. Based on the ground surface elevations at the well locations reported on the well logs, the groundwater elevations are approximately 6897.6 at OW-14 and 6898.1 at OW-30. These elevations mean the flow direction would be opposite that shown on the groundwater contour map in Appendix A (i.e., flow from OW-30 to OW-14). The well measurements made during GFW's groundwater sampling are summarized in Table 2 (attached). Since only two monitoring points were measured for this study, a groundwater contour map could not be constructed, and GFW has relied on the historic contour map and gradient, although that data is inconsistent with the groundwater elevations determined as part of this study.

The reason for the discrepancy in groundwater flow directions is not apparent from the available information. It is possible that the water-bearing zones are discontinuous between monitoring points, or the flow direction has been reversed due to groundwater extraction near OW-14 in conjunction with the reported pump and treat of the product plume. Further determination of the groundwater situation was beyond the scope of this project.

LABORATORY ANALYTICAL RESULTS

GFW measured the depth to groundwater in both of the wells using an electronic water/PSH interface probe. No phase-separated hydrocarbons (PSH) were detected in either well. Three casing volumes of water were then purged from each well prior to collecting groundwater samples. Temperature, pH, and conductance were measured for stabilization during the purging. Purging and sampling were performed using dedicated polyethylene bailers, and the field parameters were recorded on field logs.

Groundwater samples were then collected by transferring directly into clean sample containers provided by the analytical laboratory. Because the analyses were for VOCs, GFW carefully filled the vials and checked them to make sure no bubbles appeared within the vials. The sample containers were labeled and the chain-of-custody was completed. The samples were then placed on ice and stored in the laboratory-provided sample coolers. The samples were delivered to Hall Environmental Analysis Laboratory (HEAL) upon completion of the sampling. Table 3 at the end of this report is a summary of the analytical laboratory results from this round of sampling and the historical results provided by Western. The complete laboratory package from HEAL, including the completed chain-of-custody form, is included in Appendix B.

The laboratory results from GFW's sampling event showed that both OW-14 and OW-30 contained MTBE at concentrations higher than the WQCC standards for groundwater. In addition, benzene was detected over the WQCC standard in OW-14. Minor amounts of xylene and EDC were also detected, although the concentrations are well below the WQCC standard.

SOURCE EVALUATION

The results of this groundwater sampling confirm that MTBE is present in the groundwater at the locations of OW-14 and OW-30. The trends shown on Table 3 show an increase in MTBE over time in both wells, although the latest sampling showed a decrease in MTBE in OW-14 between January and February 2008. However, the benzene concentration continued to increase.

Based on our understanding of the activities and infrastructure around these two well locations, as reported to GFW by refinery employees, possible sources of the MTBE might be:

- an historic release from MTBE unloading operations at the rail spur;
- MTBE from Solid Waste Management Unit (SWMU) #8 and #9;
- MTBE release from Tank 568; or
- a release from mixing operations (MTBE and product) in or around the tank farm.

GFW understands that MTBE was delivered to the refinery using the rail spur near the east property boundary. If MTBE were released along the rail spur near Tank 568, it could be the source of the current MTBE detections in OW-14 and OW-30. Based on the groundwater gradient discussed earlier, the migration route would be from Tank 568 to OW-14 to OW-30, and that could explain the MTBE detection first in OW-14 and then in OW-30.

SWMU #8 was the railroad rack lagoon, overflow ditch and fan out area, and SWMU #9 was sludge pits. It is our understanding that SWMU #9 underwent voluntary bioremediation and capping, and a No Further Action (NFA) finding was obtained for that SWMU. The chemical analyses for samples taken by Western from SWMU #8 have not detected MTBE. Because of this, and because both SWMUs are between OW-14 and OW-30, and downgradient of OW-14, it appears unlikely that these SWMUs are the source of the MTBE.

It was reported by Western that Tank 568 was used to store MTBE in the past, but is no longer. In addition GFW was told that the integrity of Tank 568 was recently verified. Because that tank is upgradient of OW-14 where MTBE concentrations were first detected, this appears to be a likely source of the MTBE. GFW was told Tank 568 contained only MTBE, and the MTBE was mixed with product in the product tanker trucks, so the tank itself should not be the source of benzene also detected in OW-14. However, GFW was told the tank sits over a product plume that is being remediated. Although GFW does not know the details of that remediation, it is possible that the benzene is coming from the product plume and MTBE from the former MTBE tank. If the tank was the source of MTBE in OW-14, and the decrease in MTBE concentration in OW-14 is the beginning of a downward trend, the MTBE may be a small plume migrating to the north. In that case, the MTBE concentrations may continue to decrease over time since MTBE is no longer used at the refinery and the source has been removed.

The final apparent source is from releases during mixing operations of gasoline with MTBE that may have occurred in and around the MTBE tank. Further research into the use of MTBE at the refinery would need to be conducted in order to verify this as a source. Releases from such mixing operations could also explain the benzene detection in OW-14. Typically, in soil contaminated with gasoline containing MTBE additive, the MTBE is the first contaminant to be detected due to its higher solubility, higher vapor pressure, and lower soil adsorption potential as compared to benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds, other gasoline constituents commonly found with MTBE. Since benzene has also been detected above the WQCC standard in OW-14, gasoline treated with MTBE could be a source of the detected MTBE.

POTENTIAL RECEPTORS

Based on GFW's search of the NM Office of the State Engineers iWaters database, the closest water supply wells are approximately 2,800 and 4,000 feet away from the MTBE contaminate plume. The NMDOT has two wells for construction of public works approximately 2,800 feet west of the contaminated area, and Chindi Peavy has a non-domestic livestock well approximately 4,000 feet north of the plume. Using the hydraulic gradient of the groundwater between OW-30 and these locations (0.0042 ft/ft) and an assumed average hydraulic conductivity of for sandstone (1.0 x 10⁻⁵ cm/sec), the calculated groundwater movement rate is approximately 2.1 feet/year. Assuming groundwater is flowing directly to the wells, we estimate it would take 1,300 years for the MTBE to reach the NMDOT wells and 1,900 years to reach the Chindi Peavy well. These calculations assume the water-bearing zone in OW-14 and OW-30 is continuous to these supply wells, which is unlikely given the discontinuous nature of the sandstone layers, and the fact that most of the water for this area is supplied by wells from deeper aquifers. Therefore, it appears that there are no receptors that are immediately threatened by the MTBE in OW-14 and OW-30. It should also be noted that the historic water level data shows the groundwater elevations in those two wells to be nearly the same, with the gradient sometimes to the north and sometimes to the south.

RECOMMENDATION

The regulations of the NM Oil Conservation Division (OCD) require abatement of contaminants present in groundwater above WQCC standards. There are exceptions to this if the water has a Total Dissolved Solids (TDS) of greater than 10,000 mg/l, if no present or reasonably foreseeable beneficial use would be impaired by contamination, or if the contamination is being addressed under another regulatory program, such as the Resource Conservation and Recovery Act (RCRA). If abatement is required, the first step is submission to OCD of a Stage 1 abatement plan in accordance with 19.15.1.19 NMAC.

The MTBE detected in OW-14 and OW-30 appears to be migrating generally to the north (downgradient), but does not appear to be threatening any receptors at this time. Because MTBE is reportedly no longer used or stored at the refinery, the MTBE source appears to have been removed and is no longer contributing MTBE to the groundwater. However, MTBE is present in these two wells above the WQCC standard. In addition, benzene is present in OW-14 above WQCC the standard. Because the source has been removed, no receptors are immediately threatened, and the MTBE concentration in OW-14 appears to be decreasing, GFW recommends continued monitoring of OW-14 and OW-30 to assess the trend of the contaminants and evaluate the need for a Stage 1 Abatement Plan.

GFW recommends quarterly monitoring in OW-13, OW-14, OW-30, and OW-29 to monitor the contaminant plume and evaluate the need for abatement of the MTBE. If the source has been removed, the contaminant concentration in OW-14 should be expected to continue declining, and the concentration in OW-30 should increase slightly as the plume passes, and then also decrease. OW-29 is downgradient from OW-14 and OW-30, and can be used as a sentinel well to monitor the MTBE before it migrates off the refinery boundary. The analytical report for the groundwater sampling conducted on January 2, 2008 shows MTBE in OW-13 and OW-29, although both are below the WQCC standard. MTBE in OW-29 was at a concentration of 4.3 μ g/l, whereas the standard is 100 μ g/l. The MTBE detections in OW-13 and OW-29 may indicate a larger area of MTBE in groundwater than just the area around OW-14. And although 1-2 Dichloroethane (EDC)

was below WQCC standard, it was detected in OW-14, and should be monitored since it is a compound commonly associated with gasoline.

Should the concentrations of MTBE increase in any of these four wells, the need for more active groundwater abatement should be considered. If the benzene concentration increases or other BTEX compounds appear, the situation should also be re-evaluated. To monitor natural attenuation of the MTBE, Western could consider also monitoring for Tertiary Butyl Alcohol (TBA), which is a degradation product of MTBE.

CLOSING

If you have any questions regarding this monitoring report, please call me at (505) 265-8468 or email me at <u>mbrazie@gfnet.com</u>.

Sincerely, GANNETT FLEMING WEST, INC.

Blance

Mike E. Brazie, P.E. Vice President

cc: Mr. Allen Hains, Western Refining Company

Attached:

Figure 1 – Location Map Figure 2 – Site Plan Layout Table 2 – Well Construction Details and Groundwater Elevations Table 3 – Summary of Groundwater Analytical Results Appendix A – Historical Background Data Appendix B – Laboratory Analytical Report

, ·			aded			
		ditior	ondítíon, thre	ood condition.		
		Notes and Well Con	Well and well protection in good c PVC cap good condition.	Well and well protection in very go gasket sealing good condition		
		PSH Thickness (feet)	AN	NA		
		Apparent Groundwater Elevation (feet)	6897.6	6898.1		, ·
		Depth to PSH (feet TIC)	NA	NA		ming West
		Depth to Groundwater (feet TOC)	28.4	26.6		Gannett ^{Fie}
	suc	Stick-Up Height (feet)	3.0	3.0		
	dwater Elevatio	Ground Elevation (feet)*	6923	6921.6	d Surface	
	ails and Groun inery	Total Well Depth (feet TOC)	48.8	48.4	r casing. red from Groun	
	Construction Deta ning Inc-Ciniza Ref fexico	Measurement Date	2/25/2008	2/25/08	et below top of outei nner casing cable. Boring Log, measu	finery Well-GW Data. <i>x</i> Is
	Table 2: Well Western Refir Gallup, New N	Well Number	OW-14	OW-30	NOTES: feet TOC = Fet TIC = top of inr NA = Not Appli PSH = * = Taken from	Ciniza Ref

ile 3: Summ stern Refinin lup, New Me)	ary of Groundwate ig Inc-Ciniza Refin xico	er Analytical Re erj	esult:							
		Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	EDB	EDC	Naphthalene	Other
MMN	/QCC Standard ^a	10	750	750	620	100	0.1	10	30	Compounds
Sample ID	Date Sampled									
OW-14	2/25/2008	23	<1.0	2.5	<1.0	570	<0.01	16	<15	
	1/2/2008	14	<5.0	<5.0	<7.5	920	<5.0	<5.0	27	, , ,
	12/28/2006	1				180	1	1		1
	10/27/2006		-		1	16	•	-		•
	9/28/2005	•	J			77	•	1	1	•
	12/8/2004	8	1		I	65	1		t	-
									<2.0	
08-70	2/25/08	<1.0	<1.0	<1.0	<1.0	420	<0.01	1.2	<2.0	1
	1/2/08	<1.0	<1.0	<1.0	<1.5	290	<1.0	<1.0	<2.0	3
	10/27/06	1	1		1	18	-	,		•
	9/27/05	J	•		1	<2.5	•			
	12/8/04		-	1	I	<2.5		1		-
ES: sults reporte	- d in microarams ne	ar liter (norte nor	(Idaa Tabilid							
Less than the Water quality :	ad in micrograms per e method detection standards of the Ne	er liter (parts per limit shown. w Mexico Wate	r billion [ppb]). er Quality Cont	ol Commission (N	MWQCC).	NQS = No V NA = Not Ap Analytical r	water quality oplicable. esults show	standard fo vn in bold i	or these parameters indicate exceedan	s. ces of t

: 5

COVER LETTER

Friday, February 29, 2008

Mike Brazie Gannett-Fleming West 2155 Louisiana Ave. Ste. 9000 Albuquerque, NM 87110

TEL: (505) 259-8053 FAX (505) 881-2513

RE: Giant Ciniza Refinery

Dear Mike Brazie:

Order No.: 0802294

Hall Environmental Analysis Laboratory, Inc. received 3 sample(s) on 2/26/2008 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

62

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

Date: 29-Feb-08

CLIENT:	Gannett-Fleming West
Lab Order:	0802294
Project:	Giant Ciniza Refinery
Lab ID:	0802294-01

Client Sample ID: OW30 Collection Date: 2/25/2008 12:01:00 PM Date Received: 2/26/2008

Matrix: AQUEOUS

Analyses			Result	PQL	Qual	Units	DF	Date Analyzed
EPA METH	OD 8	260B: VOLATILES						Analyst: SMP
Benzene			ND	1.0		µg/L	1	2/27/2008 11:57:25 AM
Toluene			ND	1.0		µg/L	1	2/27/2008 11:57:25 AM
Ethylbenze	ene		ND	1.0		µg/L	1 :	2/27/2008 11:57:25 AM
Methyl tert-	-butyl e	ether (MTBE)	420	10		µg/L	10 :	2/28/2008 9:32:42 AM
1,2,4-Trime	ethylbe	nzene	ND	1.0		μg/L	1 2	2/27/2008 11:57:25 AM
1,3,5-Trime	ethylbe	nzene	ND	1.0		µg/L	1 :	2/27/2008 11:57:25 AM
1,2-Dichlor	oethar	ne (EDC)	1.2	1.0		µg/L	1 :	2/27/2008 11:57:25 AM
1,2-Dibrom	oethai	те (EDB)	ND	1.0		µg/L	1 2	2/27/2008 11:57:25 AM
Naphthaler	ıe		ND	2.0		µg/L	1 2	2/27/2008 11:57:25 AM
1-Methylna	phthal	ene	ND	4.0		µg/L	1 2	2/27/2008 11:57:25 AM
2-Methylna	phthal	ene	ND	4.0		µg/L	1 2	2/27/2008 11:57:25 AM
Acetone			ND	10		µg/L	1 2	2/27/2008 11:57:25 AM
Bromobenz	ene		ND	1.0		µg/L	1 2	27/2008 11:57:25 AM
Bromodich	lorome	thane	ND	1.0		µg/L '	1 2	27/2008 11:57:25 AM
Brompform			ND	1.0		µg/L	1 2	/27/2008 11:57:25 AM
Bromometh	nane		ND	1.0		µg/L	1 2	/27/2008 11:57:25 AM
2-Butanone			ND	10		µg/L	1 2	//27/2008 11:57:25 AM
Carbon dist	ulfide		ND	10		µg/L	1 2	2/27/2008 11:57:25 AM
Carbon Tet	rachlo	ride	ND	1.0		μg/L	1 2	/27/2008 11:57:25 AM
Chlorobenz	ene		ND	1.0		µg/L	1 2	/27/2008 11:57:25 AM
Chloroethar	าย		ND	2.0		µg/L	1 2	/27/2008 11:57:25 AM
Chloroform			ND	1.0		µg/L	1 2	/27/2008 11:57:25 AM
Chlorometh	ane		ND	1.0		µg/L	1 2	/27/2008 11:57:25 AM
2-Chlorotolu	Jene		ND	1.0		µg/L	1 2	/27/2008 11:57:25 AM
4-Chlorotolu	lene		ND	1.0		µg/L	1 2	/27/2008 11:57:25 AM
cis-1,2-DCE	Ξ		ND	1.0		µg/L	1 2	/27/2008 11:57:25 AM
cis-1,3-Dich	loropro	opene	ND	1.0		µg/L	. 1 2	/27/2008 11:57:25 AM
1,2-Dibromo	o-3-chl	oropropane	ND	2.0		µg/L	1 2	/27/2008 11:57:25 AM
Dibromochle	orome	hane	ND	1.0		µg/L	1 2	27/2008 11:57:25 AM
Dibromome	thane		ND	1.0		µg/L	1 2/	/27/2008 11:57:25 AM
1,2-Dichloro	benze	ne	ND	1.0		µg/L	1 2/	27/2008 11:57:25 AM
1,3-Dichloro	benze	ne	ND	1.0	1	µg/L	1 2/	27/2008 11:57:25 AM
1,4-Dichloro	benze	ne	ND	1.0	ļ	µg/L	1 2/	27/2008 11:57:25 AM
Dichlorodiflu	iorome	ethane	ND	1.0	1	µg/L	1 2/	27/2008 11:57:25 AM
1,1-Dichloro	ethane	ð	ND	1.0	1	µg/L	1 2/	27/2008 11:57:25 AM
1,1-Dichloro	ethene	9	ND	1.0	·	ug/L	1 2/	27/2008 11:57:25 AM
1,2-Dichloro	propa	ne	ND	1.0	ł	Jg/L	1 2/	27/2008 11:57:25 AM
1,3-Dichloro	propar	าย	ND	1.0	\$	ug/L	1 2/	27/2008 11:57:25 AM
2,2-Dichloro	propar	ne	ND	2.0	ł	Jg/L	1 2/	27/2008 11:57:25 AM
1,1-Dichloro	proper	าย	ND	1.0	1	Jg/L	1 2/	27/2008 11:57:25 AM
Hexachlorot	outadie	ine	ND	1.0	ł	Jg/L	1 2/	27/2008 11:57:25 AM
2-Hexanone	l		ND	10	ŀ	ug/L	1 2/.	27/2008 11:57:25 AM
Qualifiers:	*	Value exceeds Maximur	n Contaminant Level		В	Analy	te detected in the associat	ed Method Blank
	Е	Value above quantitation	n range		Н	Holdi	ng times for preparation o	r analysis exceeded
	J	Analyte detected below	quantitation limits		MC	L Maxi	num Contaminant Level	
	ND	Not Detected at the Rep	orting Limit		RI	. Repor	ting Limit	n
	S	Spike recovery outside a	ccepted recovery limits	1				Page 1 of 6

CLIENT:	Gannett-Fleming West			Client Sample I	D: OW30	
Lab Order:	0802294			Collection Da	te: 2/25/200	8 12:01:00 PM
Project:	Giant Ciniza Refinery			Date Receive	ed: 2/26/200	8
Lab ID:	0802294-01			Matr	ix: AQUEO	US
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8260B: VOLATILES					Analyst: SMP
Isopropylbenzer	ne	ND	1.0	μg/L	1	2/27/2008 11:57:25 AM
4-Isopropyltolue	ene	ND	1.0	µg/L	1	2/27/2008 11:57:25 AM
4-Methyl-2-pent	anone	ND	10	µg/Ł	1	2/27/2008 11:57:25 AM
Methylene Chlor	ride	ND	3.0	μg/L	1	2/27/2008 11:57:25 AM
n-Butylbenzene		ND	1.0	µg/L	1	2/27/2008 11:57:25 AM
n-Propylbenzen	e	ND	1.0	µg/L	1	2/27/2008 11:57:25 AM
sec-Butylbenzer	ne	ND	1.0	μg/L	1	2/27/2008 11:57:25 AM
Styrene		ND	1.0	µg/L	¹ 1	2/27/2008 11:57:25 AM
tert-Butylbenzen	1e	ND	1.0	μg/L	1	2/27/2008 11:57:25 AM
1,1,1,2-Tetrachl	oroethane	ND	1.0	μg/L	1	2/27/2008 11:57:25 AM
1,1,2,2-Tetrachl	oroethane	ND	2.0	μg/L	1	2/27/2008 11:57:25 AM
Tetrachloroethe	ne (PCE)	ND	1.0	µg/L	1	2/27/2008 11:57:25 AM
trans-1,2-DCE	· · · · · · · · · · · · · · · · · · ·	ND	1.0	µg/L	1	2/27/2008 11:57:25 AM
trans-1,3-Dichlor	ropropene	ND	1.0	μg/L	1	2/27/2008 11:57:25 AM
1,2,3-Trichlorobe	enzene	ND	1.0	µg/L	1	2/27/2008 11:57:25 AM
1,2;4-Trichlurobe	enzene	ND.	1.0	µg/L	1	2/27/2008 11:57:25 AM
1,1,1-Trichloroet	hane	ND	1.0	µg/L	1	2/27/2008 11:57:25 AM
1,1,2-Trichloroet	hane	ND	1.0	µg/L	1	2/27/2008 11:57:25 AM
Trichloroethene	(TCE)	ND	1.0	µg/L	1	2/27/2008 11:57:25 AM
Trichlorofluorom	ethane	ND	1.0	µg/L	1	2/27/2008 11:57:25 AM
1,2,3-Trichloropr	opane	ND	2.0	µg/L	1	2/27/2008 11:57:25 AM
Vinyl chloride		ND	1.0	µg/L	. 1	2/27/2008 11:57:25 AM
Xylenes, Total		ND	1.5	µg/L	1	2/27/2008 11:57:25 AM
Surr: 1,2-Dich	loroethane-d4	94.1	68.1-123	%REC	1	2/27/2008 11:57:25 AM
Surr: 4-Bromo	fluorobenzene	98.9	53.2-145	%REC	1	2/27/2008 11:57:25 AM
Surr: Dibromo	fluoromethane	92.6	68.5-119	%REC	1	2/27/2008 11:57:25 AM
Surr: Toluene	-d8	98.9	64-131	%REC	1	2/27/2008 11:57:25 AM

Date: 29-Feb-08

Qualifiers:

*

- Value exceeds Maximum Contaminant Level Ε Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- в Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

2

Page 2 of 6

CLIENT:Gannett-Fleming WestLab Order:0802294Project:Giant Ciniza Refinery

0802294-02

Lab ID:

Date: 29-Feb-08

Client Sample ID: OW14 Collection Date: 2/25/2008 3:25:00 PM

Date Received: 2/26/2008

Matrix: AQUEOUS

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES			an an a	·	Analyst: SMP
Benzene	23	1.0	μg/L	1	2/27/2008 12:32:48 PM
Toluene	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
Ethylbenzene	2.5	1.0	µg/L	1	2/27/2008 12:32:48 PM
Methyl tert-butyl ether (MTBE)	570	10	μg/L	10	2/28/2008 12:29:52 PM
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	2/27/2008 12:32:48 PM
1,2-Dichloroethane (EDC)	1.6	1.0	μg/L	1	2/27/2008 12:32:48 PM
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
Naphthalene	ND	2.0	µg/L	1	2/27/2008 12:32:48 PM
1-Methylnaphthalene	16	4.0	µg/L	1	2/27/2008 12:32:48 PM
2-Methylnaphthalene	ND	4.0	µg/L	1	2/27/2008 12:32:48 PM
Acetone	ND	10	µg/L	1	2/27/2008 12:32:48 PM
Bromobenzene	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
Bromodichloromethane	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
Bromoform	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
Bromumethane	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
2-Butanone	ND	10	µg/L	1	2/27/2008 12:32:48 PM
Carbon disulfide	ND	10	µg/L	1	2/27/2008 12:32:48 PM
Carbon Tetrachloride	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
Chlorobenzene	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
Chloroethane	ND	2.0	µg/L	1	2/27/2008 12:32:48 PM
Chloroform	ND .	1.0	µg/L	1	2/27/2008 12:32:48 PM
Chloromethane	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
2-Chlorotoluene	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
4-Chlorotoluene	ND	1.0	µg/L	- 1	2/27/2008 12:32:48 PM
cis-1,2-DCE	ND	1.0	μg/L	1	2/27/2008 12:32:48 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	2/27/2008 12:32:48 PM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	2/27/2008 12:32:48 PM
Dibromochloromethane	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
Dibromomethane	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
1,2-Dichlorobenzene	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
1,3-Dichlorobenzene	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
1,4-Dichlorobenzene	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
Dichlorodifluoromethane	· ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
1,1-Dichloroethane	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
1,2-Dichloropropane	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	2/27/2008 12:32:48 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/27/2008 12:32:48 PM
1,1-Dichloropropene	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
Hexachlorobutadiene	ND	1.0	μg/L	- 1	2/27/2008 12:32:48 PM
2-Hexanone	ND	10	μg/L	1	2/27/2008 12:32:48 PM

2

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

			ator y, 11		······	
CLIENT:	Gannett-Fleming West			Client Sample I	D: OW14	
Lab Order:	0802294			Collection Dat	te: 2/25/200	8 3:25:00 PM
Project:	Giant Ciniza Refinery			Date Receive	d: 2/26/200	8
Lab ID:	0802294-02			Matri	ix: AQUEO	US
Analyses	-	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8260B: VOLATILES					Analyst: SMP
Isopropylbenzei	ne	1.7	1.0	µg/L	1	2/27/2008 12:32:48 PM
4-Isopropyltolue	ene	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
4-Methyl-2-pent	lanone	ND	10	μg/L	1	2/27/2008 12:32:48 PM
Methylene Chlo	ride	ND	3.0	µg/L	1	2/27/2008 12:32:48 PM
n-Butylbenzene		ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
n-Propylbenzen	6	ND.	1.0	µg/L	1	2/27/2008 12:32:48 PM
sec-Butylbenze	ne	4.7	1.0	µg/L	1	2/27/2008 12:32:48 PM
Styrene		ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
tert-Butylbenzer	ne	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
1,1,1,2-Tetrach	loroethane	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
1,1,2,2-Tetrachl	oroethane	ND	2.0	µg/L	1	2/27/2008 12:32:48 PM
Tetrachloroethe	ne (PCE)	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
trans-1,2-DCE		ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
trans-1,3-Dichlo	propropene	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
1,2,3-Trichlorob	enzene	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
1,2,4-Trichlorob	enzene	ND	1.0	μg/L	1	2/27/2008 12:32:48 PM
1,1,1-Trichloroe	thane	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
1,1,2-Trichloroe	thane	ND	1.0	μg/L	1	2/27/2008 12:32:48 PM
Trichloroethene	(TCE)	ND	1.0	μg/L	1	2/27/2008 12:32:48 PM
Trichlorofluorom	nethane	ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
1,2,3-Trichlorop	ropane	ND	2.0	µg/L	1	2/27/2008 12:32:48 PM
Vinyl chloride		ND	1.0	µg/L	1	2/27/2008 12:32:48 PM
Xylenes, Total	. '	ND	1.5	µg/L	1	2/27/2008 12:32:48 PM
Surr: 1,2-Dict	nloroethane-d4	90.3	68.1-123	%REC	1	2/27/2008 12:32:48 PM
Surr: 4-Brom	ofluorobenzene	107	53.2-145	%REC	1	2/27/2008 12:32:48 PM
Surr: Dibromo	ofluoromethane	91.6	68.5-119	%REC	1	2/27/2008 12:32:48 PM
Surr: Toluene	-d8	93.5	64-131	%REC	1	2/27/2008 12:32:48 PM

Date: 29-Feb-08

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

л

Page 4 of 6

Date: 29-Feb-08

CLIENT:Gannett-Fleming WestLab Order:0802294Project:Giant Ciniza RefineryLab ID:0802294-03

Client Sample ID: Trip Blank Collection Date: Date Received: 2/26/2008

Matrix: TRIP BLANK

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES				a a constant	Analyst: SMP
Benzene	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
Toluene	ND	1.0	μg/L	1	2/27/2008 1:08:21 PM
Ethylbenzene	ND	1.0	μg/L	1	2/27/2008 1:08:21 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	2/27/2008 1:08:21 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	2/27/2008 1:08:21 PM
1 2-Dichloroethane (EDC)	ND	1.0	μg/L	. 1	2/27/2008 1:08:21 PM
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
Naphthalene	ND	2.0	μg/L	1	2/27/2008 1:08:21 PM
1-Methylnaphthalene	ND	4.0	µg/L	1	2/27/2008 1:08:21 PM
2-Methylnaphthalene	ND	4.0	µg/L	1	2/27/2008 1:08:21 PM
Acetone	ND	10	µg/L	1	2/27/2008 1:08:21 PM
Bromobenzene	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
Bromodichloromethane	ND	1.0	µg/L	. 1	2/27/2008 1:08:21 PM
Bromoform	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
Bromomethane	ND	1.0	μg/L	1	2/27/2008 1:08:21 PM
2-Butanone	ND	10	µg/L	1	2/27/2008 1:08:21 PM
Carbon disulfide	ND	10	µg/L	1	2/27/2008 1:08:21 PM
Carbon Tetrachloride	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
Chlorobenzene	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
Chloroethane	ND	2.0	µg/L	1	2/27/2008 1:08:21 PM
Chloroform	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
Chloromethane	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
2-Chlorotoluene	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
4-Chlorotoluene	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
cis-1,2-DCE	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
cis-1,3-Dichloropropene	ND .	1.0	µg/L	1	2/27/2008 1:08:21 PM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	2/27/2008 1:08:21 PM
Dibromochloromethane	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
Dibromomethane	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	2/27/2008 1:08:21 PM
1,3-Dichlorobenzene	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	2/27/2008 1:08:21 PM
Dichlorodifluoromethane	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
1,1-Dichloroethane	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
1,2-Dichloropropane	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	2/27/2008 1:08:21 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	2/27/2008 1:08:21 PM
1,1-Dichloropropene	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
Hexachlorobutadiene	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
2-Hexanone	ND	10	΄ μg/L	1	2/27/2008 1:08:21 PM
Qualifiers: * Value exceeds Maximum (Contaminant Level		B Analyte de	tected in the ass	conjated Method Blank

Qualifiers: * Value ex

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

CLIENT:	Gannett-Fleming West			Client Sample ID	: Trip Blanl	ĸ
Lab Order:	0802294			Collection Date	;	
Project:	Giant Ciniza Refinery			Date Received	: 2/26/2008	
Lab ID:	0802294-03			Matrix	TRIP BLA	ANK
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8260B: VOLATILES			<u></u>		Analyst: SMP
Isopropylbenzer	ne	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
4-Isopropyltolue	ne .	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
4-Methyl-2-pent	anone	ND	10	μg/L	1	2/27/2008 1:08:21 PM
Methylene Chlo	ride	ND	3.0	µg/L	1	2/27/2008 1:08:21 PM
n-Butylbenzene		ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
n-Propylbenzen	e	. ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
sec-Butylbenzer	ne	ND	1.0	μg/L	1	2/27/2008 1:08:21 PM
Styrene		ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
tert-Butylbenzer	le	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
1,1,1,2-Tetrachl	oroethane	ND	1.0	μg/L	1	2/27/2008 1:08:21 PM
1,1,2,2-Tetrachl	oroethane	ND	2.0	µg/L	1	2/27/2008 1:08:21 PM
Tetrachloroethe	ne (PCE)	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
trans-1,2-DCE		ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
trans-1,3-Dichlo	ropropene	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
1,2,3 ¹ Trichlorob	enzene	ND	1.0	μg/L	1	2/27/2008 1:08:21 PM
1,2,4-Trichlorob	enzene	ND	1.0	μg/L	. 1	2/27/2008 1:08:21 PM
1,1,1-Trichloroet	hane	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
1,1,2-Trichloroet	hane	ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
Trichloroethene	(TCE)	ND	1.0	μg/L	1	2/27/2008 1:08:21 PM
Trichlorofluorom	ethane	ND	1.0	μg/L	1	2/27/2008 1:08:21 PM
1,2,3-Trichlorop	ropane	ND	2.0	µg/L	1	2/27/2008 1:08:21 PM
Vinyl chloride		ND	1.0	µg/L	1	2/27/2008 1:08:21 PM
Xylenes, Total		ND	1.5	μg/L	1	2/27/2008 1:08:21 PM
Surr: 1,2-Dich	loroethane-d4	94.8	68.1-123	%REC	1	2/27/2008 1:08:21 PM
Surr: 4-Bromo	ofluorobenzene	103	53.2-145	%REC	1	2/27/2008 1:08:21 PM
Surr: Dibromo	fluoromethane	91.3	68.5-119	%REC	· 1	2/27/2008 1:08:21 PM
Surr: Toluene	-d8	99.0	64-131	%REC	1	2/27/2008 1:08:21 PM

Date: 29-Feb-08

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 6 of 6

ก

Date: 29-Feb-08

QA/QC SUMMARY REPORT

Client: Ga	nnett-Fleming West							
Project: Gi	ant Ciniza Refinery						Worl	Order: 0802294
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RF	DLimit Qual
Method: EPA Method	d 8260B: VOLATILES							
Sample ID: 5ml rb		MBLK			Batch IE	D: R27510	Analysis Date:	2/27/2008 6:06:20 AM
Benzene	ND	ua/L	1.0					
Toluene	ND	μg/L	1.0					
Ethylbenzene	ND	μg/L	1.0					
Methyl tert-butyl ether (N	TBE) ND	μg/L	1.0					
1,2,4-Trimethylbenzene	ND	µg/L	1.0					
1,3,5-Trimethylbenzene	ND	µg/L	1.0					
1,2-Dichloroethane (EDC) ND	µg/L	1.0					
1,2-Dibromoethane (EDE	3) ND	µg/L	1.0					
Naphthalene	, ND	µg/L	2.0					
1-Methylnaphthalene	ND	µg/L	4.0					
2-Methylnaphthalene	ND	µg/L	4.0					
Acetone	ND	μg/L	10					
Bromobenzene	ND	ug/L	1.0					
Bromodichloromethane	ND	µg/L	1.0					
Bromoform	ND	ug/L	1.0					
Bromomethane	ND	μg/L	1.0					
2-Butanone	ND	µg/L	10					
Carbon disulfide	ND	µg/L	10					
Carbon Tetrachloride	ND	µg/L	1.0					
Chlorobenzene	ND	µg/L	1.0		•			
Chloroethane	ND	µg/L	2.0					
Chloroform	ND	ug/L	1.0					
Chloromethane	ND	ug/L	1.0					
2-Chlorotoluene	ND	µa/L	1.0					
4-Chlorotoluene	ND	μg/L	1.0					
cis-1,2-DCE	ND	μg/L	1.0					
cis-1.3-Dichloropropene	ND	ug/L	1.0					
1,2-Dibromo-3-chloroprop	ane ND	µg/L	2.0					
Dibromochloromethane	ND	μg/L	1.0					
Dibromomethane	ND	µg/L	1.0					
1,2-Dichlorobenzene	ND	µg/L	1.0					
1,3-Dichlorobenzene	ND	µg/L	1.0					
1,4-Dichlorobenzene	ND	µg/L	1.0					
Dichlorodifluoromethane	ND	µg/L	1.0					
1,1-Dichloroethane	ND	µg/L	1.0					
1,1-Dichloroethene	ND	µg/L	1.0					
1,2-Dichloropropane	ND	µg/L	1.0					
1,3-Dichloropropane	ND	µg/L	1.0					
2,2-Dichloropropane	ND	µg/L	2.0					
1 1-Dichloropropene	ND	μg/L	1.0					
-lexachlorobutadiene	ND	µg/L	1.0					
2-Hexanone	ND	μg/L	10					
sopropylbenzene	ND	µg/L	1.0					
I-isopropyltoluene	ND	µg/L	1.0					

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

ND

S Spike recovery outside accepted recovery limits

Page 1

.

Client: Project:	Gannett-Fleming West Giant Ciniza Refinery	•					•	Work Orde	r: 0802294
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Method: EPA Met	hod 8260B: VOLATILES				n-t-h	D. 007740		Nata 0/07	10000 0 00 00 00
Sample ID: 5ml rb		MBLK			Batch	D: R27510	Analysis L		2008 6:06:20 AN
4-Methyl-2-pentanone	ND	µg/L	10						
Methylene Chloride	ND	µg/L	3.0						
n-Butylbenzene	ND	µg/L	1.0		,				
n-Propylbenzene	ND	µg/L	1.0						
sec-Butylbenzene	ND	µg/L	1.0						
Styrene	ND	µg/L	1.0						
tert-Butylbenzene	· ND	µg/L	1.0			÷ .			
1,1,1,2-Tetrachloroeth	ane ND	µg/L	1.0						
1,1,2,2-Tetrachloroeth	ane ND	µg/L	2.0						
Tetrachloroethene (PO	CE) ND	µg/L	1.0						
trans-1,2-DCE	ND	µg/L	1.0						
trans-1,3-Dichloroprop	ene ND	µg/L	1.0						
1,2,3-Trichlorobenzen	e ND	µg/L	1.0						
1,2,4-Trichlorobenzen	e NĎ	μg/L	1.0						
1,1,1-Trichloroethane	ND	µg/L	1.0						
1,1,2-Trichloroethane	. ND	µg/L	1.0						
Trichloroethene (TCE)	ND	µg/L	1.0						
Trichlorofluoromethan	e ND	µg/L	1.0						
1,2,3-Trichloropropan	e ND	µg/L	2.0						
Vinyl chloride	ND	µg/L	1.0						
Vienes, Total	ND	µg/L	1.5						
Sample ID: 5ml rb		MBLK			Batch II	D: R27517	Analysis D	ate: 2/28/	2008 6:37:04 AM
Bonzono		uo/l	1.0				. *		
		µg/L	1.0						
		µg/L	1.0						
zinyidenzene		µg/∟ \\\\\\\	1.0						
vietnyi ten-butyi etner		µy/L	1.0						
1,2,4- Minetinyibenzen 1,2,5 Telesethuiken		µg/⊏	1.0						
1,3,5- mmetnyibenzer		µg/L	1.0						
1,2-Dichloroethane (E		µy/L	1.0						
	טא (שט	µg/L	1.0						
Naphthalene		μy/L 	2.0						
Methymaphthalene		µg/L	4.0						
		µy/∟	4.0						
		μg/L	10						
	NU	µg/L	1.0						
sromouicnioromethan	e NU	µg/L	1.0						
sromotorm	ND	µg/L	1.0						
sromomethane	ND	µg/L	1.0						
-Butanone	· ND	µg/L	10						
arbon disulfide	ND	µg/L	10 .						
Carbon Tetrachloride	ND	µg/L	1.0						
Chlorobenzene	ND	µg/L	1.0						
Chloroethane	ND	µg/L	2.0						
••• •	NID	110/	10						

C STIMMADV DEDODT 0. 10

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

ο

Spike recovery outside accepted recovery limits S

Date: 29-Feb-08

QA/QC SUMMARY REPORT

Client:Gannett-FleProject:Giant Ciniz	eming West za Refinery						Ŵ	ork Order: 0802294
Analyte	Result	Units	PQL	%Rec	LowLimit I	HighLimit	%RPD	RPDLimit Qual
Method: EPA Method 8260B:	VOLATILES							
Sample ID: 5ml rb		MBLK			Batch ID): R27517	Analysis Da	te: 2/28/2008 6:37:04 AN
Chloromethane	ND	µg/L	1.0					
2-Chlorotoluene	ND	µg/L	1.0					
4-Chlorotoluene	ND	µg/L	1.0					
cis-1,2-DCE	ND	µg/L	1.0					
cis-1,3-Dichloropropene	ND	µg/L	1.0					
1,2-Dibromo-3-chloropropane	ND	μg/L	2.0					•
Dibromochloromethane	ND	µg/L	1.0					
Dibromomethane	ND	µg/L	1.0					
1,2-Dichlorobenzene	ND	µg/L	1.0					κ.
1,3-Dichlorobenzene	ND	µg/L	1.0					
1,4-Dichlorobenzene	NÐ	µg/L	1.0					
Dichlorodifluoromethane	ND	µg/L	1.0					
1,1-Dichloroethane	ND	µg/L	1.0					
1,1-Dichloroethene	ND	µg/L	1.0					
1,2-Dichloropropane	ND	μg/L	1.0					
1,3-Dichloropropane	ND	μg/L	1.0					
2,2-Dichloropropane	ND	μg/L	2.0					
1,1-Dichloroplopene	ND	µg/L	1.0					
Hexachlorobutadiene	ND	µg/L	1.0					
2-Hexanone	ND	µg/L	10					
lsopropylbenzene	ND	µg/L	1.0					•
4-Isopropyltoluene	ND	µg/L	1.0					
4-Methyl-2-pentanone	ND	µg/L	10					
Methylene Chloride	ND	µq/L	3.0					
n-Butylbenzene	NÐ	ug/L	1.0					
n-Propylbenzene	ND	µg/L	1.0					
sec-Butylbenzene	ND	ua/L	1.0				•	
Styrene	ND	µa/L	1.0					
ert-Butylbenzene	ND	µg/L	1.0 ·					
1,1,1,2-Tetrachloroethane	ND	µg/L	1.0					
1,1,2,2-Tetrachloroethane	ND	µg/L	2.0					
Tetrachloroethene (PCE)	ND	µg/L	1.0					
rans-1,2-DCE	ND	µg/L	1.0					
rans-1,3-Dichloropropene	ND	µg/L	1.0					
,2,3-Trichlorobenzene	ND	µg/L	1.0					
,2,4-Trichlorobenzene	ND	µg/L	1.0					
,1,1-Trichloroethane	ND	µg/L	1.0					
,1,2-Trichloroethane	ND	µg/L	1.0					
richloroethene (TCE)	ND	µg/L	1.0					
richlorofluoromethane	ND	μg/L	1.0					
,2,3-Trichloropropane	ND	μg/L	2.0					
/inyl chloride	ND	µg/L	1.0					
ylenes, Total	ND	μg/L	1.5					
ample ID: 100ng Ics		LCS			Batch ID:	R27510	Analysis Date:	2/27/2008 7:15:58 AM

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

ND

S Spike recovery outside accepted recovery limits

Page 3

· ·		
01/00	OTTEN AND ALL TAXY	DEDODM
		- KKPI 16 T
UAUU		NEI UNI
X X -		

Client: Project:	Gannett-Fleming West Giant Ciniza Refinery						Wor	k Order: 0802294
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RF	PDLimit Qual
Method: EPA Met	thod 8260B: VOLATILES					-		
Sample ID: 100ng	lcs	LCS			Batch	ID: R27510	Analysis Date:	2/27/2008 7:15:58 AM
Benzene	20.45	μg/L	1.0	102	72.4	126		
Toluene	20.31	µg/L	1.0	102	79.2	115		
Chlorobenzene	19.81	µg/L	1.0	99.1	83.1	111		
1,1-Dichloroethene	23.01	µg/L	1.0	115	81.4	122		
Trichloroethene (TCE	E) 18.93	−µg/L	1.0	94.7	64.4	118		
Sample ID: 100ng	lcs	LCS			Batch I	D: R27517	Analysis Date:	2/28/2008 7:46:35 AM
Benzene	19.18	µg/L	1.0	95.9	72.4	126		
Toluene	19.61	µg/L	1.0	98.1	79.2	115		
Chlorobenzene	18.67	µg/L	1.0	93.4	83.1	111		
1,1-Dichloroethene	20.74	µg/L	1.0	104	81.4	122		
Trichloroethene (TCE	E) 16.94	µg/L	1.0	84.7	64.4	. 118		

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 4

10

L

	Sample	Receipt Che	cklist				 18-16-2
Client Name GFW	· · ·	·	Date Received	d:		2/26/2008	
Work Order Number 0802294	λ		Received by:	: ARS			
			Sample ID la	bels checked	by _	AS	
Checklist completed by:	¥		08		Ir	nilials	
-		1					
Matrix	Carrier name	Client drop-off					
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present			
Custody seals intact on shipping container/coo	oler?	Yes 🗌	No 🗍	Not Present		Not Shipped	
Custody seals intact on sample bottles?		Yes 🗌	No 🗌	N/A			
Chain of custody present?		Yes 🗹	No 🗌				
Chain of custody signed when relinquished and	d received?	Yes 🗹	No 🗌				
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌				
Samples in proper container/bottle?		Yes 🗹	No 🗔				
Sample containers intact?		Yes 🗹	No 🗌			· .	
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌				
All samples received within holding time?		Yes 🗹	No 🗌				
Water - VOA vials have zero headspace?	No VOA vials subn	nitted	Yes 🗹	No 🗌			
Water - Preservation labels on bottle and cap r	match?	Yes 🗌	No 🗌	N/A 🗹			
Water - pH acceptable upon receipt?		Yes 🗌	No 🗌	N/A 🗹			
Container/Temp Blank temperature?		3° <	6° C Acceptable)			
COMMENTS:		lf	given sufficient	time to cool.			
	<u> </u>						 -
Client contacted	Date contacted:	×	Dereo	n contacted			
	Date contacted.			in contacted			
Contacted by:	Regarding						
Comments:							
	-						
	-						
Corrective Action							
			······				

	ka	E.				10 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					or N	۲) و	ir Bubbles	۲			1	 -		\square		1	[<u> </u>	F			
4	ן מיד	Ę					4								+				+						<u> </u>	-		ŀ
		/ _ m f		-	•	1.18														1.						<u> </u>		· .
		2		37109	20	1											ŀ.			. 	-			ļ	<u> </u>	4		
	ξà	ן ניין	com	MN	5-41	st	2 . 2					(\				,	<u> </u>		-						$\left - \right $	-		
	2 .	5	ental	due,	05-34 	eque		s'B:	ЪС	280)8 / Se	cide	iltee9 180		1					+						-		
		N	Conm	rquer	ິ ຊິ	sis R	(†()S'*	Ю	^{'²} O	N' ^E OI	N'IC), H) enoin	1			<u> </u>	Î-			 	<u> </u>				-		
	2 y 1 y	<u>ה</u>	lenviì	Albu	ŭ.	naly	L				(НАЧ	10 1	AN9) 015	3	\uparrow	-		†	<u>†</u>					†—-	† . .			
		ן ג	w.hal	L Z Z	975					(0928	ροι	HI9M) OO	E		<u> </u>				ŀ].		
ĺ			Sec.	kins I	345-3					()	1.403	pou	DB (Meth	3					ļ	<u> </u>				ĺ		-		
		-		Haw	505-3		lies		1921	(নার	1.814		Ham Ha							<u> </u>				 	<u> </u>	-		
				4901	Tel.		(<u></u> גונ		(32)	He	 		W + X = 19]			_			-						Tks:		
				7			(120	<u>8)</u> s	'an	<u> </u>	181	3TEX + M]						-						lema		cibility.
						Y.X.							<u></u>	- 	. .	$\left \right $	1			<u> </u>								hie poe
					-								AL No. 127 94		1	5										1.6 8		ae notice of
			0								900公 十		рс не Ово									<i>.</i>				2260	-	This same
	hsi		<u>,</u>	3		1			1.	2			A le										· · ·			Ú		tories
	D B			5	しら	< 11	- <u>-</u>	م. 2-2-0	5	Ch = 1/2		CHING ST	Type		ししれ	 										A R	ceived by:	dited labors
	ndard	Name:		+175	# 口 4	1 7	Manag∈	4. SC	5	er: 7	X		ainer P and #							· ·						μ Ψ	<u>n</u>	other accre
	□ □ Sta	Project	را ب	5	Project		Project			Sample	On loe	Not the	Conta Type a															contracted to
				μ	110				ion)	ļ			it ID			SA 202	•											nay be subc
	4			15	87	لىر	M		alidat				due			2			-	7								nental r
	200			5	ちん	46	2		[≂] ull ∨			ľ	e Re			2								-		W.	c.	Environi
1	ر ا م			See	20	20 1	1-6		el 4 (ł				Idmi	130	1 14	0				.						hed by	ใก กลน	to Hall [
	mine			2	4	5	-88		Leve				Sa	5	ງ ດ	L' L											singuis	mitted
	ते	1		201	2	7	5			•		\vdash		 		4)										D C	les sub
	Ar H			3155	. 70	Sas	い。 (表:	kage:	q		(be)		Time	1251	15 2	· .										me: 9,10	Ď	sary, samp
	لا ل		.555		N. H	e #:	or Fa	C Pack	andar	her	D.(T)	-	<u>م</u>	5	2	· ·							\rightarrow			<u>اللہ میں ج</u> الار		If neces
	Clien		Addre			Phon	email	QAQ	ti A∕	ð D			Dai	2 2	X	. [ŀ	Date:	Jaic.	ŀ

Chavez, Carl J, EMNRD

From:Monzeglio, Hope, NMENVSent:Friday, April 11, 2008 10:09 AMTo:Ed RiegeCc:Cobrain, Dave, NMENV; Frischkorn, Cheryl, NMENV; Kieling, John, NMENV; Martinez,
Cynthia, NMENV; Price, Wayne, EMNRD; Chavez, Carl J, EMNRD; Jim LiebSubject:Evaporation Pond Closure PlanAttachment:GRCC MISC EP Closure 4_11_08.pdf

This will go out in the mail today.

Hope

Hope Monzeglio Environmental Specialist New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, BLDG 1 Santa Fe NM 87505 Phone: (505) 476-6045; Main No.: (505)-476-6000 Fax: (505)-476-6060 hope.monzeglio@state.nm.us

Websites: <u>New Mexico Environment Department</u> <u>Hazardous Waste</u> Bureau

BILL RICHARDSON Governor

DIANE DENISH Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.nmenv.state.nm.us

RON CURRY Secretary

JON GOLDSTEIN Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

April 11, 2008

Mr. Ed Riege Environmental Superintendent Western Refining Company Gallup Refinery Route 3, Box 7 Gallup, New Mexico 87301

RE: CLARIFICATION OF RCRA CORRECTIVE ACTION PROCESS EVAPORATION POND CLOSURE PLAN WESTERN REFINING COMPANY, GALLUP REFINERY HWB-GRCC-MISC EPA ID # NMD000333211

Dear Mr. Riege:

The New Mexico Environment Department (NMED) received the *Evaporation Pond Closure Plan* (Closure Plan) dated, December 2007 submitted on behalf of Western Refining Company, Gallup Refinery (Permittee). The Closure Plan was submitted as a requirement of the Oil Conservation Division (OCD) Discharge Permit (GW-032). This letter does not provide comments regarding the Closure Plan; however, NMED has taken this opportunity to provide the RCRA requirements that must be followed at the time the Evaporation Ponds (EPs) are removed from service. This process also applies to Solid Waste Management (SWMU) Unit No. 1 Aeration Basin.

The EPs are SWMU Unit No. 2 based on NMED's Post-Closure Care Permit. When the EPs are removed from service, they must go through the RCRA corrective action process outlined below. Definitions to the terminology below can be found in 20.4.2.7 NMAC.

- a. The Permittee must submit a RCRA Facility Investigation (RFI) work plan (investigation work plan) for the EPs to determine the extent of any releases. An RFI describes the proposed investigation activities to determine the nature and extent of contamination at a unit or facility.
- b. Upon completion of approved RFI activities, the Permittee must submit an RFI report (i.e., investigation report) that discusses the results of the investigation and provides conclusions and recommendations.
- c. If additional investigation activities are required, a subsequent Phase II RFI work plan and Phase II RFI report would be required by NMED.
- d. Once the Permittee determines the full extent of contamination, a Corrective Measures Evaluation (CME) to identify and evaluate potential corrective measures (remedy) and alternatives may be required by NMED.
- e. If a CME is required, NMED will evaluate the proposed remedies. When a remedy is selected by NMED, the Permittee would then be required to submit a Corrective Measures Implementation (CMI) work plan, which would present specifications to implement the approved remedy at the SWMU.
- f. After implementing the selected remedy, the Permittee must submit a CMI report describing implementation of the remedy to NMED.
- g. After completion of all remedial actions, the Permittee must submit a Remedy Completion Report, which summarizes the results of completion of the implementation of corrective measures.
- h. Once NMED has determined that no additional remedial activity is required at a unit, then the Permittee may petition for corrective action complete determination.

The EPs have not achieved no further action status (NFA) (i.e. Corrective Action Complete without Controls) as implied in the Closure Plan prepared for OCD. In addition, the Closure Plan discusses an investigation at the evaporation ponds conducted in the early 1990's where soil and groundwater samples were collected in the pond areas. The Permittee states in the Closure Plan that volatile organic compounds (VOCs) or semi-volatile organic compounds (SVOCs) were not detected in soil and groundwater at SWMU No. 2. The analytical data collected during the investigations at the EPs in the 1990s cannot be used to determine if further sampling is necessary for the following reasons:

Ed Riege Western Refining Company Gallup April 11, 2008 Page 3

- a. Data collected during the investigations conducted in the early 1990's were not collected in accordance with standard sampling methods and procedures (e.g.; soil samples analyzed for VOC analysis were collected as composite samples);
- b. The data collected is 10 to 15 years old and the EPs have been in continuous operation since this time;
- c. The facility has had various releases of untreated wastewater to the aeration lagoons and EPs 1 and 2. Remedial actions to remove contaminated soil from the banks of EP 1 and 2 have been conducted twice since 2000. It is unknown whether contamination has migrated to the other ponds.

If you have questions regarding this letter, please contact Hope Monzeglio of my staff at 505-476-6045.

Sincerely,

21 Jøhn E. Kieling

Program Manager Permits Management Program Hazardous Waste Bureau

cc: D. Cobrain NMED HWB C. Frishkorn, NMED HWB H. Monzeglio NMED HWB W. Price, OCD C. Chavez, OCD J. Lieb, Western File: Reading File and GRCC 2008 File HWB-GRCC-MISC
Chavez, Carl J, EMNRD

Ed Riege [Ed.Riege@wnr.com]
Thursday, April 03, 2008 3:52 PM
Monzeglio, Hope, NMENV
Chavez, Carl J, EMNRD
Emailing: _0403152516_001

Attachments: __0403152516_001.pdf

_0403152516_001. pdf (453 KB)

<_0403152516_001.pdf>>

Hope,

4

Here is a copy of the sampling plan for your review that we discussed.

Ed

This inbound email has been scanned by the MessageLabs Email Security System.

March 28, 2008

Mr. Ed Riege Environmental Superintendent Western Refining Company, L.P. Route 3 Box 7 Gallup, NM 87301

RE: Aeration Lagoon and Evaporation Pond Sediment Sampling Work Plan

Dear Mr. Reige:

This Sediment Sampling Work Plan (Plan) has been prepared to assist in the characterization of the accumulated sediment present in the two aeration lagoons and Evaporation Pond No. 1 at the Western Refinery in Gallup, New Mexico. The information obtained during this investigation will be used to calculate approximate sediment volumes and to determine appropriate disposal options.

Preparation/Reconnaissance

To determine the approximate thicknesses of the accumulated sediment in the aeration lagoons/evaporation pond and appropriate sampling techniques, Trihydro completed a reconnaissance field event during the week of March 2, 2008. During this event, approximate water depths and sediment thicknesses were measured at six locations within Aeration Lagoon 2 and eight locations in Evaporation Pond No. 1.

Based on the results of the reconnaissance field event, the sediment in Aeration Lagoon 2 appears to be stratified into two general sediment types. The uppermost sediment layer is soft, loose, and unconsolidated. This "soft sediment" ranges in thickness from approximately 8-10 feet. Underlying the soft sediment is a more compact, dense layer of sediment. This "hardpack sediment" occurs directly beneath the soft sediment and extends to the rock liner of the aeration lagoons at approximately 15 feet.

In Evaporation Pond No. 1, no hardpack sediment was identified during the reconnaissance field effort. Soft sediment was identified and ranged in thicknesses from approximately 2-4 feet. A hard layer, presumably the native soil bottom of the pond, was identified beneath the soft sediment.

Sampling Methods and Procedures – Aeration Lagoons

Ten sediment samples will be collected from five locations in each aeration lagoon; one location near each of the four corners and one location in the center. Aeration Lagoon One is approximately 120 feet by 120 feet and Aeration Lagoon Two is approximately 150 feet by 150 feet. These dimensions will be confirmed during sampling activities. A figure illustrating the approximate dimensions of the aeration lagoons and the approximate sample locations will be created upon completion of the sampling event. At each location, one sample will be collected from the soft sediment, and one sample will be collected from the hardpack sediment. Trihydro plans to use two different sampling techniques to obtain representative sediment samples: a butterfly valve operated sediment sampler and a stainless steel hand auger.

Sediment Sampler Sample Method – Aeration Lagoons

Soft sediment samples will be collected using a butterfly valve operated sediment sampler. The sediment sampler will be pushed into the soft sediment from a boat at each sampling location. A clean, disposable, eight foot sediment core tube will be used at each sample location. The core tube will be pushed to a depth of eight feet, total depth, or until refusal is reached using a rubber mallet. Upon retrieval, the butterfly valve closes, creating a suction that prevents the sediment from falling out of the bottom of the core tube. The core tube will be immediately capped until samples can be extracted. Samples will be extracted by cutting the core tube lengthwise or by using a plunger to extract the sediment into a clean compositing container. A representative composite sample will be collected and placed on ice. If the sediment sampler is able to be driven into the hardpack sediment, the portion of the hardpack sediment obtained will be capped and saved so that it may be composited with hardpack sediment collected at the same location with the hand auger.

Hand Auger Sample Method – Aeration Lagoons

A stainless steel hand auger with extensions will be used to collect hardpack sediment samples from sample locations where hardpack sediment samples were not obtainable using sediment sampler. Field personnel will attempt to collect samples from as close to the original soft sediment sampling location as possible. The auger will be driven into the sediment to the desired depth. Soft sediment overlying the desired hard pack sample interval will be pushed through the open top of the auger as the auger is driven down.

Auger sampling will begin at the top of the hardpack sediment or, if the sediment sampler was able to obtain a portion of the hardpack sediment, at the deepest depth achieved by the sediment sampler. Samples will be collected in approximately one foot intervals (the length of the auger core barrel) from the top of the hardpack sediment to the total depth of the lagoon. As each interval is retrieved, it will be extracted from the auger into a clean compositing container. A clean liner will be installed in the

compositing container and sealed in between sample intervals to help prevent volatilization. After total depth is achieved, the hardpack sediment will be composited, sampled, and placed on ice.

Sampling Methods and Procedures – Evaporation Pond No. 1

Sediment samples will be collected from up to eight locations in Evaporation Pond No. 1 (Pond One). Pond One is approximately 300 feet by 150 feet. These dimensions will be confirmed during sampling activities. A minimum of one sediment sample will be collected near the inlet from Pond One as well as the overflow inlet (the southwest and southeast corners of the pond, respectively). These sampling locations have been chosen due to the fact that they have the highest potential to be contaminated. Additional sediment samples will be collected from other representative locations to be determined in the field. A figure illustrating the approximate dimensions of Pond One and the approximate sample locations will be created upon completion of the sampling event.

Sediment Sampler Sample Method – Evaporation Pond No. 1

All sediment samples obtained from Pond One will be collected using the butterfly valve operated sediment sampler. The core tube will be driven to the bottom of the accumulated sediment using a rubber mallet. Upon retrieval, the core tube will be immediately capped until samples can be extracted. Samples will be extracted by cutting the core tube lengthwise or by using a plunger to extract the core into a clean compositing container. The entire sediment interval will be composited, sampled, and placed on ice.

Sediment Thickness Measurements

Sediment thicknesses will be measured at all sampling locations in the aeration lagoons and Pond One, as well as five additional locations in each aeration lagoon and eight additional locations in the Pond One. In the aeration lagoons, the thicknesses of the soft sediment and hardpack sediment will be measured. This data will be collected to calculate the volume of accumulated sediment. A figure illustrating the approximate measuring point locations will be created upon completion of the sampling event.

Field Documentation and Logging

Field observations are critical to the verification and interpretation of the laboratory data. Field observations made during sediment sampling will be recorded in the field log book and on the sediment sampling field forms (Figure 1). The following information will be recorded, in indelible ink, where appropriate for each sample:

- Date and name of observer.
- Names and affiliations of sampling team members.

- Names and affiliations of others present at the sampling sites.
- Weather conditions.
- Sampling location and time of sampling.
- Health and safety measures implemented.
- Sampling site condition upon arrival (turbulent water, standing water, aerators on/off, etc.).
- Sediment characteristics and texture.
- Sediment observations including discoloration, hydrocarbon sheens, presence of waste, etc.
- Deviations from or clarifications of sampling procedures.
- Miscellaneous conditions which the sampling team finds noteworthy.
- Sampler and model number, photographs, and other QA/QC data as applicable.
- Sample interval depth.
- Odor qualities (sweet, sulfurous, strong, etc.) will also be recorded if casually noticed; however, field personnel will be cautioned against unnecessary exposure to volatile constituents.

Photographs

Photographs will be used to substantiate and augment the field notes. Photographs will be used during the investigation to document the color of sample media, sediment staining, and other defining features at each location. Each photograph will be numbered and recorded on the photograph log (Figure 2).

Investigative Derived Waste

Excess sediment collected from the aeration lagoons and Pond One will returned to the lagoon/pond from which they were collected. Wastes associated with sampling including personal protective equipment (PPE), rinse water from decontamination, and disposable sampling instruments will be managed according to appropriate regulations by the Gallup Refinery.

Equipment Decontamination Procedures

Non-disposable sampling equipment will be decontaminated prior to sampling in the field and after sampling at each location. Sampling equipment will be disassembled into component parts prior to

decontamination. Sampling devices will be decontaminated using warm non-phosphate detergent solution (e.g., Alconox) and then rinsed with distilled water.

To ensure proper equipment decontamination, one equipment blank will be collected from the hand auger for each day of sampling. Equipment blanks will be collected in appropriate containers.

Quality Assurance/Quality Control Procedures

The following QAQC procedures will be followed:

- Data listed in the Field Documentation and Logging section will be documented on the sediment sampling field forms.
- One blind duplicate will be collected per 20 samples collected.
- Matrix Spike (MS) and Matrix Spike Duplicate (MSD) samples will be collected and labeled as MS/MSD samples.
- One equipment blank will be collected each day of sampling.
- Chain-of Custody (COC) will be completed and will accompany the samples to the laboratory.
- The shipping container will be sealed with a custody seal to ensure that the samples have not been disturbed during transportation to the laboratory.

Sample Analyses

Sediment samples will be collected in laboratory provided sample containers using the sampling techniques described above and submitted for analysis to Hall Environmental located in Albuquerque, New Mexico. Laboratory recommended preservation methods will be utilized for all samples. Laboratory sampling analyses will include diesel range organics (DRO)/gas range organics (GRO) by USEPA method 8015, semi-volatile organic compounds (SVOCs) by USEPA method 8270, volatile organic compounds (VOCs) by USEPA method 6010C.

Health and Safety Procedures

Trihydro's "Boat Operation – Sediment Sampling" Job Safety Analysis (JSA) will be reviewed by all field team members prior to sampling activities. In addition, a safety meeting will be held every morning to discuss the anticipated activities and potential hazards. Trihydro will work with the Gallup Refinery to obtain any necessary permits. Proper access controls and health and safety precautions will be

implemented prior to sampling. Protective measures will be employed for limiting access to the sampling sites during sampling.

Trihydro is ready to implement this work plan at a mutually convenient date upon NMED approval. If you have any questions, please feel free to contact us at (307) 745-7474.

Sincerely, Trihydro Corporation

Eric Worden Client Manager

cc: Jim Lieb, Giant Refining

697-019-001

Attachments

For: Regina Allen Project Manager

ATTACHMENTS

.

.

FIGURES

· · ·

.

.

. .

S

.

. . .

.

Project Name: Sample ID: Sample Location: Samplers: Weather:	Sample Media: Sample Date: Sample Time: Photo Taken? (Y/N)
	Sample Description
Sampling Equipment: Sample Depth: Sample Recovery: Latitude: Longitude: Moisture Content: pH: Sample Description: (Color, gra	ain size, odor, organic matter, etc.)

.

FIGURE 2. EXAMPLE PHOTOGRAPH LOG

Project Nan Site and Ph	ne: otograph Dat	ie:	
Photo	area a consistence and	estation de la contraction de la contraction La contraction de la c	
Number	Date	Direction	Photograph Description
		Direction	
		ł [
		1	
		1	
		1	
		-	
	·	┨ ┠┈┈┈	
	· · · · ·		
	· · · · · · · · · · · · · · · · · · ·	-	
		1	
·		┦┠	
		· · · · · ·	
]	
		1	
		┨ ┠	
		-	
] [
	· · · · · · · · · · · · · · · · · · ·		
		┫┠━━━━━━	
		┨┠	
		4	
		┨┠	
		J	

New Mexico Energy, Minerals and Natural Resources Department

Bill Richardson Governor

Joanna Prukop Cabinet Secretary Reese Fullerton Deputy Cabinet Secretary Mark Fesmire Division Director Oil Conservation Division

March 12, 2008

Mr. Mark B. Turri General Manager Western Refining Southwest, Gallup Refinery Route 3 Box 7 Gallup, New Mexico 87301

Re: Revised Schedules for OCD Discharge Permit GW-032

Dear Mr. Turri:

The New Mexico Oil Conservation Division (NMOCD) has received Western Refining Southwest (WRSW), Gallup Refinery's letter dated February 22, 2008, which requests a change in schedules from the Discharge Permit (Permit). The request for date changes to the discharge permit was made subsequent to the meeting held in Santa Fe, New Mexico on February 11, 2008.

The NMOCD will not handle the schedule changes as a modification(s) to the Permit, but as revisions in this letter. Please note that any revisions (i.e., March 1, 2009 date) approved herein must be met. The revisions are as follows:

1) Condition 9 Above Ground Tanks Impermeable Secondary Containment Requirement: WRSW proposes an alternative to installing secondary containment liners under existing and new tanks at the refinery. WRSW proposes to install an automatic tank gauging system in all of its large liquid storage tanks in the tank farm. The installation after the engineering design is completed and capital funding is obtained from "Corporate" has been approved. The automatic tank gauges will be installed initially in the highest priority liquid storage tanks (i.e., marketing tanks).

The NMOCD does not feel that the proposed "automatic tank gauging system" will in itself satisfy the Permit requirements. We will consider alternative technologies that will satisfy permit requirements where liner retrofitting is not proposed. The NMOCD will require an inventory of all refinery tanks, chemical contents, volumes, and projected dates for alternative technology testing or other type of testing, liner emplacement or retrofitting. Any new tanks will be required to install secondary containment with leak detection underneath any new installed tank.

The NMOCD approves the lining of containments of smaller sized storage tanks where the containments are currently native soil. This would include any tanks less than 10,000 (bbls. A 60-mil HDPE or LLDPE reinforced seamless liner (welded seams if seams are present) is acceptable or concrete pad and berm. As mentioned, many of the smaller tanks (i.e., additive tanks are already on concrete secondary containments and leak detection will be evident.

Oil Conservation Division * 1220 South St. Francis Drive * Santa Fe, New Mexico 87505 * Phone: (505) 476-3440 * Fax (505) 476-3462* <u>http://www.emnrd.state.nm.us</u> March 12, 2008 Page 2

NMOCD require berming to contain 1 + 1/3 volume of the single largest tank or volume of interconnected tanks where required to contain spills.

2) Condition 16.B. Repair New API Separator

The NMOCD approves the March 15, 2008 date.

3) Condition 16.C. Activated Sludge Wastewater Treatment Study and Design and Condition 16.D Aeration Lagoons Replacement Engineering Design/Construction Plan and Schedule.

The NMOCD approve the March 1, 2009 deadline for submittal of the treatment study and the engineering design of the tank based activated sludge treatment process or equivalent. This time schedule. In addition, a schedule for the implementation of the activated sludge or alternative treatment process and tentative closure of the aeration lagoons will be included.

It appears that WRSW in addition to consideration of replacement of the aeration lagoons (ALs 1 & 2) with a tank based activated sludge treatment process or alternative equivalent system, is also evaluating whether lining the ALs is feasible. The NMOCD does not approve of this, since the tank based treatment system is the preferred technology.

4) Condition 16.E. Evaporation Ponds- Engineering Design/Construction Plan to Single Line the Evaporation Pond No. 1 (EP-1) or Alternative Plan.

Since the design of the activated sludge treatment or alternative process will have a bearing on the decision as to whether single lining or an alternative will be needed in EP-1. WRSW proposes to move this deadline for a plan also to March 1, 2009.

The NMOCD approves the March 1, 2009 deadline for submittal of lining EP-1. If the tank based treatment system is installed, the lining of EP-1 may not be necessary.

5) Condition 24.A. and 24.B. Installation of Dual Separation Device and Emergency Holding Tank for Pilot Travel Center Waste Water.

Similar to Item # 4 above, WRSW proposes to change the deadline for construction of the dual separation device and the emergency 48-hours storage to March 1, 2009. WRSW expects the engineering and design will be completed by April 2008. Requests for proposal will be sent by June 2008. The change will provide Western with the time to negotiate a new contract with the Pilot Travel Center (Pilot) to share the capital costs for the Pilot wastewater treatment and storage equipment.

The NMOCD approves the March 1, 2009 deadline. The engineering and design will be completed by April 2008 and sent to the agencies by June 2008. The construction will be completed by March 1, 2009.

6) Condition 24.E. Biohazard O&M Plan for WW Treatment Facility.

WRSW proposes to change the due date for the plan to March 1, 2009 to be consistent with the other requirements for the waste water treatment study and design.

The NMOCD approves the March 1, 2009 deadline.

March 12, 2008 Page 3

Please contact me at (505) 476-3491 or <u>carlj.chavez@state.nm.us</u> if you have questions. Thank you for your cooperation in this matter.

Sincerely,

Carl J. Whines

Carl J. Chávez Environmental Engineer

CJC/cjc

xc: OCD District Office

WNR

NYSF

*

February 22, 2008

Carl Chavez Environmental Engineer Oil Conservation Division 1220 S. Saint Francis Street Santa Fe, NM 87505

Hope Monzeglio Environmental Specialist New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, BLDG 1 Santa Fe, NM 87505

RE: Revised Schedules for OCD Discharge Permit GW-032

Dear Carl and Hope:

During our meeting on February 11th, Wayne Price mentioned that the Western Refining Gallup Refinery would be allowed more time for meeting conditions in the OCD Discharge permit and that the changed schedules could be adopted as a minor permit modification. Western presents a revised schedule. These schedule changes will allow Western sufficient time to evaluate cost effective alternatives and complete the permit requirements in a timely manner. For some requirements, Western respectfully requests additional time beyond the 120 days change provided in your February 19th email to Western . Western's reasons for the additional time are presented in the following sections.

Condition 9 Above Ground Tanks Impermeable Secondary Containment Requirement

As discussed in the meeting on February 11, as an alternative to lining secondary containments, Western proposes to implement an automatic tank gauging system in all of its large liquid storage tanks in the tank farm. We will install the gauges after final engineering design of the system is completed and the necessary capital funding from Corporate has been approved. The automatic tank gauges will be installed initially in our highest priority liquid storage tanks

(tanks with the highest volumetric turnover rates) such as our Marketing tanks. Western will install radar assembly bells on two Marketing tanks in 2008; the console for monitoring the signals from these two gauges will be installed at a later time. Some tanks have the 6- or 8-inch diameter thief vents on their roofs so that the radar bells could be installed without needing to take the tanks out of service for installation. Western will conduct an inventory of each of our tank farm tanks to determine the tanks with the existing thief vents where the gauges can be installed. Radar gauges could be installed fairly quickly in the tanks with existing thief vents over the course of a few years. Tanks without existing thief vents will be modified when the tanks are taken out of service according to Western's API 653 inspection schedule. This would allow for as many as 7 or 8 tanks per year to be fitted with radar gauges. According to this schedule, each of the liquid storage tanks in the tank farm should be equipped with the automatic gauges within a fifteen year period beginning in 2008, many much sooner.

Western will line the containments of smaller sized storage tanks where the containments are currently diked clay. Most of the Gallup Refinery's smaller tanks, such as our additive tanks, are already equipped with concrete secondary containments.

As we discussed during the meeting, Western is installing secondary bottoms on tanks that fail inspection during the API 653 inspections. In the system that Western uses at the Gallup Refinery, a thick HDPE or FRP liner is laid over the steel tank bottom and fusion lined along the side of the tank. Three to five inches of sand is spread and compacted over the liner. Next, a leak detection network of perforated piping, arranged in a radial starfish pattern, is constructed on the sand. Additional sand from a freshwater beach is mounded on the leak detection piping and compacted into a convex form. A new steel floor is then installed on top of the sand.

Condition 16.B. Repair New API Separator

Western expects the work to repair the New API separator to be completed by March 15, 2008.

Condition 16. C. Activated Sludge Wastewater Treatment Study and Design *and* Condition 16. D Aeration Lagoons Replacement Engineering Design/Construction Plan and Schedule

Western is requesting a change on the deadline for submitting the activated sludge waste water treatment study, design and the aeration lagoons

replacement plan and schedule. Changing the deadline for these items to March 1, 2009 will provide Western with the time it will need to obtain results from piloting alternative wastewater treatment systems including a membrane bioreactor (MBR) in conjunction with an activated sludge process and to evaluate other technologies and options. This change is based on the fact that the suggested period by the vendor for a thorough MBR pilot study is at least three months. The availability of the MBR pilot is pretty tight so it may take at least a month to acquire and several weeks to get it up and running (need to first get the activated sludge process running smoothly). Then it may take up to month for the pilot plant data to be analyzed by the consultant and presented to Western. Western will need time to evaluate the report and select the best alternative to implement. The activated sludge process or equivalent treatment system will be a large and complex project requiring significant engineering and design effort requiring time and funding. Hence, Western requests March 1, 2009 as the deadline for submittal of the treatment study and the engineering design of the tank based activated sludge treatment process or equivalent. This time schedule will also coincide with the Section 16.C.2. requirement for monthly grab samples at EP-1 through December 2008 allowing time for analysis of the December 2008 data.

э

As noted, Western is considering replacing the existing aeration lagoons with a tank based activated sludge treatment process or alternative equivalent systems. Western is also evaluating whether lining the lagoons is feasible. Hence the activated sludge treatment engineering design or alternatives will serve also as the aeration lagoons replacement engineering design/construction plan.

Western will also provide by March 1, 2009, the schedule for the implementation of the activated sludge or alternative treatment process and tentative closure of the aeration lagoons. Between now and December 31, 2008, Western will sample the sludge in the lagoons to determine the proper handling and disposition of the sediments that will be removed from the lagoons prior to their closure unless Western decides to line the aeration lagoons.

Condition 16. E. Evaporation Ponds – Engineering Design/Construction Plan to Single Line the Evaporation Pond EP-1 or Alternative Plan

The design of the activated sludge treatment or alternative process will have a bearing on the decision as to whether single lining or an alternative will be needed in EP-1. Hence Western proposes to move this deadline for a plan also to March 1, 2009.

Condition 24.A. and 24.B. Installation of Dual Separation Device and Emergency Holding Tank for Pilot Travel Center Waste Water

Western proposes to change the deadline for construction of the dual separation device and the emergency 48-hours storage to March 1, 2009. Western expects the engineering and design will be completed by April 2008. Requests for proposal will be sent by June 2008. The change will provide Western with the time to negotiate a new contract with the Pilot Travel Center (Pilot) to share the capital costs for the Pilot wastewater treatment and storage equipment.

Condition 24.E. Biohazard O&M Plan for WW Treatment Facility

Western proposes to change the due date for the biohazard O&M plan also to March 1, 2009 to be consistent with the other requirements for the waste water treatment study and design.

Attached is a schedule with Western's proposed deadlines as presented in this letter. The requested changes are shaded. Your consideration in approval of Western's proposed schedule and plan is greatly appreciated. If you have any questions regarding the plan presented in this letter, please feel free to contact Ed Riege at (505) 722-0217 or Jim Lieb at (505) 722-0227.

Sincerely,

harls. bim.

Mark B. Turri General Manager, Gallup Refinery

\Cc: Ed Riege
 Don Riley
 Jim Lieb
 Ann Allen
 Allen Hains
 Ed Cote - HRC
 Wayne Price - OCD
 Dave Cobrain - NMED

Chavez, Carl J, EMNRD

From: Jim Lieb [Jim.Lieb@wnr.com]

Sent: Thursday, March 06, 2008 4:00 PM

To: Monzeglio, Hope, NMENV

Cc: Ed Riege; Cheryl Johnson; Chavez, Carl J, EMNRD

Subject: RE: GWM-2 at Western Refining - Gallup

Attachments: _0306144127_001.pdf; GWM-2WaterLevels.xls; _0306155807_001.pdf

Hope:

I am providing the report for GWM-2 now. We have measured water levels over the week. The initial sample date we found water in the well was on 2/18/08. I prepared a table summarizing the well measurements of GWM-2 to date. Steve Morris was able to obtain a sample for analysis on 2/28/08 which has been delivered to HEAL in Albuquerque for TPH and VOCs (8260B) analysis. Not enough water was present in the well to provide sufficient sample for additional analysis. I have not yet received the lab results but will forward them to you when I receive them. Steve measured the riser and his report including some additional well data is attached.

GWM-2 is at the far northwestern side of aeration lagoon adjacent to evap. pond 1. GWM-2 is located close to GWM-1. I attached a section of one of Kingsley's maps showing the location of GWM-2. This is from Figure 3 in the 2006 GW Report.

We will continue taking water level measurements until you tell us to stop.

If you need additional info or have a question please contact me at 505-722-0227 or reply email.

Regards,

Jim Lieb

From: Monzeglio, Hope, NMENV [mailto:hope.monzeglio@state.nm.us] Sent: Thursday, February 28, 2008 8:34 AM To: Jim Lieb; Price, Wayne, EMNRD; Chavez, Carl J, EMNRD; Ed Riege Cc: Cobrain, Dave, NMENV; Frischkorn, Cheryl, NMENV Subject: GWM-2

GWM-2 update

Western Gallup found ~5 inches or less of water in GWM-2. There is not enough water for a sample. NMED is having Western bail down the 5 inches of water as much as possible and will check the water levels daily. Jim will send an email update on March 7th. Jim is also going to inquire about the well cap being sealed prior to the water level measurement. Jim mentioned that they have had a lot of snow and rain fall this winter and rain over the weekend (Feb 23). Jim is also going to find out the length of the riser above ground.

Jim in your message you said GWM-2 was between Aeration lagoon (AL) 1 and AL-2. The map shows GWM-2 between AL-2 and Evaporation Pond 1. Please clarify the location for me. What day was the water level measured?

Thanks Hope

Hope Monzeglio Environmental Specialist New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, BLDG 1 Santa Fe NM 87505 Phone: (505) 476-6045; Main No.: (505)-476-6000 Fax: (505)-476-6060 hope.monzeglio@state.nm.us

Websites: <u>New Mexico Environment Department</u> <u>Hazardous Waste Bureau</u>

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient (s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

This inbound email has been scanned by the MessageLabs Email Security System.

Jim Lieb

From:	Stephen Morris Ismorris@trihydro.com
Sent:	Friday, February 29, 2008 9:12 AM
To:	Jim Lieb
Subject:	GWM-2 2-28-2008

Jim,

Alvin and I checked and sampled GWM-2 on Feb. 28, 2008: Depth to water - 18.55 feet. Sampled well using new plastic bailer for 8260 and 8015 GRO/DRO at 1430 hrs. There was not enough water to sample well for General Chemistry. Depth to water after sampling - 18.78 feet. Total well depth measured - 18.98 feet.

Top of casing measured to concrete well pad (stick up) - 2.646 feet.

1

Top of casing measured to ground at well (stick up) - 2.812 feet.

Thanks, Steve

Date: Time: Relinquished By: (Signature)	Oate: Time: Relinquished By: (Signature)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			•			28-8/1130 Hac 5/41-2		Date Time Matrix Samolal D No	Fax#: 5057220210	Phone #: 505722 78933			Jally My 87301	Address: But S Box 7	Gally of	Client: Wastern Kelining -	Chain-of-Custody Record		
Received By: (Signature)	Received By: (Signature)							6	HgCl ₂ HNO ₃	Number/Adume Preservative	Sample Temperature:	Sampler Star Starres	lim the	Project Manager:		Project #:	30 J 22 Dala war	Project Name: G W M - 2 Water	Other:	QA/QC Package:	
	Remarks:								BTE> BTE> TPH EDB EDC 8310 RCR/ 8330 8260 8270	(+ M (+ M (Meth (Meth (Meth) (PN/ A 8 Me as (F, C 1 Pest) B (V() (Sem	ITBE + TBE + ad 801 and 41 and 50 and 80 A or PA etals Cl, NO ₃ icides, DA) ai-VOA	- TMB TPH (5B (G 8.1) 4.1) 21) (H) (H) (PCB)	's (80 Gasoli as/Die PQ₄, 9 s (808	21) ne Or sel) SO ₄] 32)		ANALYSIS REQUEST	www.nailenvironmentai.com	Albuquerque, New Mexico 87109 Tel. 505.345.3975 Fax 505.345.4107	4901 Hawkins NE, Suite D	HALL ENVIRONMENTAL	

GWM-2 Inspections Western Refining - Gallup Refinery

Date	Time	Depth to Water (feet)	Sampler
2/18/2008	2:12 PM	18.38	CJ
2/28/2008*	2:30 PM	18.55	SM
3/4/2008	1:00 PM	18.68	CJ
3/5/2008	9:00 AM	18.68	CJ
3/6/2008	8:45 AM	18.68	ĊJ

* The well water was sampled and delievered to HEAL for TPH and VOCs analysis The well depth is before the sample was taken.

Note: Depth to well bottom = 18.98 feet measured 2-28-08 by Steve Morris

NOTE: CLOSED = ABANDONED

re 3

Chavez, Carl J, EMNRD

From:	Jim Lieb [Jim.Lieb@wnr.com]
Sent:	Thursday, March 06, 2008 4:11 PM
То:	Monzeglio, Hope, NMENV
Cc:	Ed Riege; Chavez, Carl J, EMNRD
Subject:	FW: Railroad Rack Lagoon Fan Out Area Update Memo
Attachments	: 200803_Fan_Out_Memo.pdf

Hope:

Update on the RR Rack Lagoon fan Out area investigation as per your request.

Jim Lieb Environmental Engineer Western Refining, Inc. Gallup Refinery I-40, Exit 39 Jamestown, NM 87347 (505) 722-0227 fax (505) 722-0210 jim.lieb@wnr.com

From: Regina Allen [mailto:rmallen@trihydro.com]
Sent: Wednesday, March 05, 2008 5:01 PM
To: Jim Lieb
Cc: Grant Price
Subject: Railroad Rack Lagoon Fan Out Area Update Memo

Hi Jim,

I have attached the Memo that updates the progress on the Railroad Rack Lagoon Fan-out Area project.

Let me know if you have any questions or concerns.

Regina Allen Environmental Scientist

1252 Commerce Drive Laramie, Wyoming 82070 307/745-7474 (phone) 307/745-7729 (fax) mallen@trihydro.com

3/6/2008

CONFIDENTIAL INFORMATION: This electronic message is intended only for the use of the person or entity to which it is addressed and may contain information that is privileged and confidential, the disclosure of which is governed by applicable law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this information is STRICTLY PROHIBITED. If you have received this message in error, please immediately notify the sender by either email or telephone. Please destroy the related message. Thank you for your cooperation.

This inbound email has been scanned by the MessageLabs Email Security System.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient (s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

memorandum

То:	Western Refining, LLC
From:	Trihydro Corporation
CC:	
Date:	March 5, 2008
Re:	Railroad Rack Lagoon Fan-out Area

The purpose of this memo is to provide a progress update for the Railroad Rack Lagoon Fan-out Area. Trihydro personnel were onsite December 17 through December 19, 2007 to collect additional samples as described in the letter titled "Change Order – Railroad Rack Lagoon Fan-out Area Soil Sampling and Excavation" dated November 13, 2007. In this letter, Trihydro had proposed to collect additional samples to delineate the extent of diesel range organics (DRO) soil contamination.

Horizontal Delineation

Soil samples were collected extending outward in a radial pattern 20, 40 and 60 feet away from existing boreholes K, G, I and M at depths of 3, 8, and 13 feet below ground surface (ft-bgs). The proposed stepout distances of 20, 40, and 60 feet are designated as 1, 2, and 3, respectively. The 20 foot step out locations (M-1, I-1, G-1, and K-1) are illustrated on Figure 1. Boreholes M-1, I-1, G-1, and K-1 were installed on December 17, 2007 using a CME 75 drill rig. A 6 ¾" hollow stem auger was advanced to 1 foot above the discrete sampling depth. A split-spoon sampling device was then advanced from 1 foot above to 1 foot below the discrete sampling depth. Samples were taken directly from the split spoon sampling device. Samples were collected at 3, 8, and 13 ft bgs and submitted to Hall Environmental for 24 hour analysis on the same day. No visual contamination or odor was noted at any of these boreholes. Borehole logs were recorded for each location and a photograph was taken of each split spoon. Field documentation will be provided as needed as part of Trihydro's Railroad Rack Lagoon Fan-out Area Final Report.

On December 18th, while waiting for laboratory results of the December 17th sampling, boreholes K-2, K-3, G-2, G-3, I-2, and M-2 were installed and sampled in the same manner described above. The remaining proposed boreholes, M-3 and I-3, were installed on December 19, 2007.

Vertical Delineation

Existing borehole B (B8-NEW-SE-S1) was drilled to a depth of 23 ft-bgs to vertically delineate the extent of DRO contamination. This borehole was selected for vertical delineation because a previous sampling event showed that this borehole had a DRO exceedance of 2,600 mg/kg at 7 ft-bgs. Samples were collected on December 17 at 8, 13, 18, and 23 ft-bgs using the same methods described above. These samples were submitted to Hall Environmental for 24 hour DRO analysis on the same day that they were collected.

1252 Commerce Drive | Laramie, WY 82070 | phone 307/745.7474 | fax 307/745.7729 | www.trihydro.com H\Projects\GiantRefinery\Ciniza\Finals\Soil Sample Fan Out\Progress Report 200803\200803_Fan_Out_Memo.doc

Results

The results for samples collected from new boreholes M-1, I-1, G-1, and K-1 at depths of 3, 8, and 13 and B ft-bgs and existing borehole B (B8-NEW-SE-S1) at 8, 13, 18, and 23 ft-bgs were all non-detect for DRO. Trihydro believes that this new data effectively delineates both the horizontal and vertical extent of DRO contamination associated with test pit B-8. In a meeting on December 20 between Gallup and Trihydro personnel, it was agreed that no further analysis of samples collected during the week of December 17 would be required since the delineation objectives had been met.

Path Forward:

Figure 1 has been prepared to approximate the area and volume of soil that exceeds clean-up standards. Because the field measurements were collected with a measuring tape, the areas and volumes calculated should be considered approximations. At the direction of the refinery, a final report including a detailed overview of the field activities completed at the Fan-out Area is being drafted.

nzene benzene 1TBE iethylbenzene iloroethane ylbenzene tylbenzene	arium anthrene	A Metals
ND(1.0) ND(1.0) ND(1.0) ND(1.0) ND(1.0) ND(1.5)	42.0	ND(5.0) 0.31 ND(0.0002) N
240 190.0 210.0 170.0 ND(40.0) ND(10.0) 31.0 20.0 20.0 20.0 20.0 20.0	ND 1.1	ND(5.0) 5.5 ND(0.0002)
	ng/L	mg/L mg/L
A Z	Not analyzed	ND(50.0) ND(5.0) Not analyzed Not analyzed
AII ND	Not analyzed	ND(50.0) ND(5.0) Not analyzed Not analyzed
A ND	Not analyzed	ND(50.0) ND(5.0) Not analyzed Not analyzed
ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	Not analyzed	ND(1000) ND(100) Not analyzed Not analyzed
	Not analyzed	ND(50.0) ND(5.0) Not analyzed Not analyzed
	Not analyzed	ND(50.0) 90 Not analyzed Not analyzed
AIND	Not analyzed	ND(50.0) ND(5.0) Not analyzed Not analyzed
AI ND	Not analyzed	ND(50.0) ND(5.0) Not analyzed Not analyzed
	Not analyzed	ND(50.0) ND(5.0) Not analyzed Not analyzed

•

NE Not ana Not ana	Not ana	4														
14000.0 ND(5.0) Not analyzed Not analyzed	Not analyzed	All ND				s					. ·	,				
ND(50.0) ND(5.0) Not analyzed Not analyzed	Not analyzed	AII ND														
120.0 ND(5.0) Not analyzed Not analyzed	Not analyzed	All ND														
ND(50.0) ND(5.0) Not analyzed Not analyzed	Not analyzed	All ND														
ND(50.0) ND(5.0) Not analyzed Not analyzed	Not analyzed	AII ND														
ND(50.0) ND(5.0) Not analyzed Not analyzed	Not analyzed	All ND														
ND(50.0) ND(5.0) Not analyzed Not analyzed	Not analyzed	AII ND														
ND(50.0) ND(5.0) Not analyzed Not analyzed	Not analyzed	AII ND														
ND(50.0) ND(5.0) Not analyzed Not analyzed	Not analyzed	All ND														
ND(50.0) ND(5.0) Not analyzed Not analyzed	Not analyzed	AII ND														
ND(50.0) ND(5.0) Not analyzed Not analyzed	Not analyzed	All ND														
sla		sne	au	enzene 1alene	thane	zene ene	zene	ethane de) tal							

Chavez, Carl J, EMNRD

From:	Jim Lieb [Jim.Lieb@wnr.com]
Sent:	Thursday, March 06, 2008 4:10 PM
То:	Monzeglio, Hope, NMENV
Cc:	Ed Riege; Chavez, Carl J, EMNRD
Subject:	FW: Tank 101/102 Progress Memo
Attachments:	200803_Memo_Tank101_102_Progress.pd

Hope:

Update on the Tank 101 and 102 investigation as per your request.

Jim Lieb Environmental Engineer Western Refining, Inc. Gallup Refinery I-40, Exit 39 Jamestown, NM 87347 (505) 722-0227 fax (505) 722-0210 jim.lieb@wnr.com

From: Regina Allen [mailto:rmallen@trihydro.com] Sent: Wednesday, March 05, 2008 5:02 PM To: Jim Lieb Cc: Grant Price Subject: Tank 101/102 Progress Memo

Hi Jim,

I have attached the Memo updating the progress for the Tank 101/102 project. Let me know if you have any questions or concerns.

Regina Allen Environmental Scientist

1252 Commerce Drive Laramie, Wyoming 82070 307/745-7474 (phone) 307/745-7729 (fax) rmallen@trihydro.com www.trihydro.com

3/6/2008

CONFIDENTIAL INFORMATION: This electronic message is intended only for the use of the person or entity to which it is addressed and may contain information that is privileged and confidential, the disclosure of which is governed by applicable law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this information is STRICTLY PROHIBITED. If you have received this message in error, please immediately notify the sender by either email or telephone. Please destroy the related message. Thank you for your cooperation.

This inbound email has been scanned by the MessageLabs Email Security System.

memorandum

To:	Western Refining LLC
From:	Trihydro Corporation
CC:	
Date:	March 5, 2008
Re:	Tank 101 and 102 Soil Investigation

This memo has been prepared to provide a brief summary of field activities associated with the Tank 101 and 102 Soil Investigation. The investigation of this area was conducted in response to a request by the Giant Refining Company, Gallup Refinery (Gallup). Gallup requested that Trihydro identify the source of two water seeps located down-gradient of Tank 102 and to delineate the soil contamination associated with these seeps. The New Mexico Environmental Department (NMED) was verbally contacted by Gallup personnel as part of the project preparation activities and is aware of the seeps/soil contamination near Tanks 101 and 102. A work plan, in letter format, was submitted to NMED on August 16, 2007 (Work Plan).

Field Activities

Trihydro personnel were on-site during the week of August 20, 2007. Field activities associated with the Tank 101 and 102 Soil Investigation consisted of a site walk-through, an EM31-MK2 survey, surface water sampling, and soil sampling. These activities are described in detail below.

Site Walk-Through

A site walk-through was conducted with Gallup personnel prior to commencing the EM31-MK2 survey. During this walk through, the seeps were located and a plan was developed to conduct the EM31-MK2 survey. Trihydro personnel conducted a second site walk-through to identify any surface contamination. Some residuum was observed in and along the drainage ditch. These locations were logged with a global positioning system (GPS) and are included on Figure 1. Other features that had the potential to affect the results of the EM31-MK2 survey were also logged (e.g. test pits, rebar, fence, roadways, and tank berms).

EM31-MK2 Survey

An electromagnetic survey was performed on an area west of Tanks 101 and 102 which encompassed both seeps. The area was approximately 440 feet (north-south) by 625 feet (east-west) and is illustrated on Figure 1. The survey area was divided into a bi-directional grid with a grid spacing of approximately 15 feet. The grid was marked with 3 foot wooden stakes. The boundaries of the survey area and the boundary/grid line intersects were staked prior to conducting the survey.

The survey was performed by Trihydro personnel with a Geonics EM31-MK2 ground conductivity meter. Continuous conductivity measurements were recorded in conjunction with GPS navigation. The EM31-MK2 ground conductivity meter creates an electromagnetic induction field into the ground and measures two components of the return electromagnetic field which vary with changes in geology or other subsurface features. The two components are a quadrature-phase component and an in-phase component. The quadrature-phase component is a direct conductivity reading of subsurface geology measured in millisiemens per meter (mS/m). Since moisture content can affect conductivity of the subsurface geology, this phase may be useful in delineating soil contamination associated with the seeps. The in-phase component is a measurement of the magnetic susceptibility of subsurface features and is a good indicator of high-conductivity features such as metal objects. The in-phase is measured as the ratio of the secondary to primary magnetic field in parts per thousand (ppt). The effective depth of response is up to 18 ft bgs. Calibration of the EM31-MK2 ground conductivity meter was performed per the manufacturer's instruction.

The EM31-MK2 data was plotted and mapped using Geosoft's OasisMontaj software. A color grid was generated using the "minimum curvature" algorithm within the program. The color grid was overlain on an existing contour map of the refinery to assist in analyzing the image. This is illustrated on Figure 1.

Surface Water Sampling

Surface water samples collected from Seep 1 and Seep 2 were analyzed for Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), Diesel Range Organics (DRO), Gasoline Range Organics (GRO), Motor Oil Range Organics (MRO), and Resource Conservation and Recovery Act (RCRA) metals. Surface water samples were not collected from the West Ditch test pit because surface water was not present. Results are summarized in Table 1 and discussed below.

Soil Sampling

Three test pits were installed directly up-gradient of Tanks 101 and 102 inside the tank berm, three test pits were installed directly down-gradient of Tanks 101 and 102 inside the tank berm, one test pit was installed at Seep 1 (Seep 1 Test Pit), one test pit was installed in between Seep 1 and Seep 2 (Seep 2 Test Pit), and one test pit was installed west of the drainage ditch located directly west of Seep 2 (West Ditch Test Pit). The test pit sampling and logging procedures were conducted in accordance with the Work Plan and locations are shown on Figure 1.

The three test pits installed directly up-gradient of Tanks 101 and 102 were installed at the request of NMED to assist in determining if the source of the seeps was a result of these up-gradient tanks. The test pits are identified as TK 102_SE, TK Center, and TK 101_NE on Figure 1. These test pits were sampled at 2 and 8 feet below ground surface (ft bgs), 2 and 6 ft bgs, and 2 and 8 ft bgs, respectively and analyzed for DRO, MRO, GRO, and VOCs. The samples were also field-screened using a photo-ionization detector (PID) as outlined in the Work Plan. The results were logged on field forms that will be included in the final report. No elevated PID readings were identified. As shown in Table 1, analytical results from each discreet interval were reported as non-detect.

The three test pits installed directly down-gradient of Tanks 101 and 102 were installed to determine any potential connection between the seeps and contamination within the tank berms. These are identified as TK 101_W, TK 102_W, and Tank 102_SW on Figure 1. These test pits were sampled at 2 and 5.5 ft bgs, 2 and 6 ft bgs, and 2 and 6 ft bgs, respectively and analyzed for DRO, MRO, GRO, VOCs. The samples were also field-screened using a PID. The results were logged on field forms that will be included in the final report. As with the previous set of test pits, no elevated PID readings were identified. DRO and MRO were detected in TK 102_W and TK 102_SW as shown on Table 1.

Seep 1, Seep 2, and West Ditch test pits were excavated to a water-bearing sand lens. Seep 1 test pit was located against an embankment and was excavated to a total depth of 3 ft bgs. During the excavation a black seam was encountered. Soil samples were collected from above and below the black seam, directly from the black seam, and from the water-bearing sand lens. The water-bearing sand lens is located at approximately 1.5 to 2 ft bgs. Seep 2 test pit was excavated to a depth of 7 ft bgs and sampled at 2 and 6 ft bgs. A water-bearing sand lens was encountered at 7 ft bgs. The test pit became unstable at 7 ft bgs due to the high moisture content making it impossible to collect a sample below the water-bearing sand lens. The West Ditch test pit was excavated to a depth of 9 ft bgs and sampled at 4, 8, and 9 ft bgs. A water-bearing sand lens was encountered at 8 ft bgs. As with the Seep 1 test pit, this test pit became unstable at this depth due to the high moisture content; therefore collecting a sample deeper than 9 ft-bgs was not possible.

Photo Documentation

Field work was documented and recorded in Trihydro personnel's field log book in accordance with the Work Plan. Photos were taken at the test pits, residuum locations, and seeps. These photos will be included as part of the final report.

Analytical Data

Samples were shipped to Hall Environmental located in Albuquerque, New Mexico for analysis. The surface water samples collected from the seeps were analyzed for VOCs, SVOCs, DRO, GRO, MRO, Mercury, and RCRA metals. The soil samples collected from the test pits were analyzed for DRO, GRO, MRO, and VOCs. The analytical detections reported for soil and surface water are summarized in Table 1. A detailed summary of the analytical data will be presented in the final report.

Path Forward

Several meetings were held between Gallup and Trihydro personnel to evaluate the data collected during the field visit and to determine the most efficient cost effective path forward. Based on the field data already collected and recent discussions with refinery personnel, the source of the seeps may be the firewater line that runs parallel to the fence next to the tank berms or a source from within the tank berm. The following activities will be implemented to assist in determining the source of the seeps.

- During the post-field work meetings, Gallup personnel indicated a firewater line runs parallel and just to the west of the fence that is shown in Figure 1. To determine if firewater is the water source for the seeps Trihydro personnel will work in conjunction with Gallup personnel to conduct conductivity tests on the firewater line water and the water from Tank 101/102 water draws. According to Gallup personnel, the source for the firewater line is groundwater. Therefore, the conductivity between the two potential sources should be different and, in theory, the conductivity of one of these suspected sources would be similar to the conductivity of the water in the seep.
- Trihydro personnel will work with Gallup personnel to obtain the firewater line specifications. Specifications include drawings or schematics to determine the depth of the firewater line, how old the line may be, and when the line was re-pressurized. If the specifications allow, environmentally safe dye will be dispersed into the system and the seep will be examined for the presence of dye.
- Trihydro personnel will work with Gallup to excavate a test pit between Seep 1 and the tank berm to see if the "black seam" and the water bearing sand lens stretches up-gradient (i.e. to the east) of Seep 1. The intent of this task is to determine if the sand lens and/or black seem can be correlated to the subsurface beneath the Tank 102 berm.
- Prepare an excavation plan to remove contaminated soil from within the Tank 102 bermed area. A plan will be developed in consultation with NMED to determine the best path forward for removing the soil within the Tank 102 bermed area.

Chavez, Carl J, EMNRD

From:	Jim Lieb [Jim.Lieb@wnr.com]
Sent:	Friday, March 28, 2008 10:00 AM
То:	Chavez, Carl J, EMNRD; Powell, Brandon, EMNRD; Monzeglio, Hope, NMENV
Cc:	Mark Turri; Ed Riege; Joel Quinones; James Geer; Mike L. Facker; Bryon Holbrook; Ann Allen
Subject:	C-141 Form for the Tank 577 ULSD Release at Western Refining Gallup Refinery
Attachments:	Tank577releaseULSD 3-19-08.pdf

Carl, Brandon, and Hope

I prepared the OCD C-141 form for the release of ultra-low sulfur diesel (ULSD) from the Tank 577 that occurred at Western Refining's Gallup Refinery on March 19, 2008. The release resulted from overfilling of the tank. Approximately 300 barrels of fuel oil was released onto the ground around the tank. A vacuum truck was dispatched to the spill soon after it occurred. The vac truck was able to recover 274 barrels of the diesel. Diesel impacted soil has been removed and placed on plastic liner. We expect to send the soil off site probably to Envirotech near Farmington for landfarming.

All of the release was contained within the diking surrounding Tank 577.

If you have any questions, please contact me or Bryon Holbrook (505) 722-0258. Regards, Jim Lieb

Environmental Engineer Western Refining, Inc. Gallup Refinery I-40, Exit 39 Jamestown, NM 87347 (505) 722-0227 fax (505) 722-0210 jim.lieb@wnr.com

This inbound email has been scanned by the MessageLabs Email Security System.

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

1220 S. St. Frar	icis Dr., Santa	a Fe, NM 87505	5	Sa	anta Fe	, NM 875	505				side of form
	. <u>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u>		Rele	ease Notifi	cation	and Co	orrective A	ction			
						OPERA	TOR	\mathbf{X}	Initia	al Report	Final Report
Name of Company: Western Refining: Gallup Refinery						Contact:	Bryon Holbro	ok			
Address: I-40, Exit 39, Jamestown NM 87347							No.: 505-722	-0258			
Facility Na	me: Gallı	up Refinery				Facility Typ	be: Oil refin	ery			
Surface Ow	ner: Gia	nt Industrie	s, Inc.	Mineral (Owner: (Giant Indus	tries, Inc.	1	Lease N	No.	
				LOC	ATION	OF RE	LEASE				
Unit Letter	Unit LetterSectionTownshipRangeFeet from theNorth/S23 & 3315N15W15W						Feet from the	East/Wes	East/West Line Coun McK		
		Lat	itude <u>3</u>	5°29'30"		Longitu	de <u>-108°24'40</u>	»			
				NAT	URE	OF REL	EASE				
Type of Rele	ease: Ultra	Low Sulfur D	Diesel (UL	SD) Fuel		Volume of	Release: 200 to 3	300 V	olume I	Recovered: 274	barrels
C					<u></u>	barrels (es	timate)	(e:	stimate) II	2/10/08
Source of Re	elease: Tank	5//				3/19/08 (10ur of Occurrenc	$a = \begin{bmatrix} Da \\ a \end{bmatrix}$	ate and 1830	Hour of Discove hours	ry: 3/19/08
Was Immedi	ate Notice C	Jiven?				If YES, To	Whom?	t			
		\boxtimes	Yes	No 🗌 Not R	equired	OCD - Ca	rl Chavez				
						NMED – I	lope Monzeglio				
By Whom?	Jim	Lieb			····	Date and I	Hour 3/20/08 a	it 0805 hou	ırs		
Was a Water	course Read	hed?				If YES, V	olume Impacting t	the Waterco	urse.		
			Yes D	No							
If a Waterco	urse was Im	pacted, Descr	ibe Fully.'	k							
Describe Cau	use of Proble	em and Reme	dial Action	n Taken.*			<u></u>				
Tank overfill	l. A pumper	technician w	as transfer	ring ULSD to Ta	ink 577.	The tank me	chanical level gau	ige stuck.			
A vacuum tri	uck was disp	batched soon a	after the sp	oill occurred to va	acuum up	the spilled	liesel. The vacuu	m truck was	s able to	o recover 274 ba	rrels of the
Describe Are	a Affected a	and Cleanup A	Action Tak	en.* The release	se is restr	icted to the	liked area surroun	ding Tank	577. N	one of the releas	e made its way
off of Wester	n property.	Western used	d its vacuu	m truck to recover	er approx	imately 274	barrels of diesel.	We estimat	te that a	approximately 26	5 barrels of
diesel was re	leased into t	he soil. We v	will take co	ore samples to de	termine t	he penetratio	on of the diesel int	to the soil.	The imj	pacted soil was r	emoved and
placed on pla	placed on plastic liner. We will sample the excavated area to ensure all the diesel impacted soil has been removed. Upon OCD and NMED approval, the								approval, the		
excavation will be back-filled with fresh clay after confirmatory sampling is conducted. Impacted soils will be placed in roll-off boxes and taken off-site for land farming at an OCD approved facility (likely Envirotech in Farmington)								I taken off-site			
I hereby certi	I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and								O rules and		
regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger								/ endanger			
public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability											
should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other											
federal, state, or local laws and/or regulations.											
Signature: hall (OIL CONSERVATION DIVISION						
Printed Name	Printed Name: Mark B. Turri								1		
				<u> </u>	A	Approved by	District Supervise	or:			
Title: Generation	al Manager				A	Approval Da	te:	Exp	iration	Date:	
				······································			· · · · · · · · · · · · · · · · · · ·				
E-mail Address: mark.turri@wnr.com Conditions of Approval:									Attached		
Date: March 26, 2008 Phone: (505) 722-0260											

Attach Additional Sheets If Necessary

Chavez, Carl J, EMNRD

From:	Jim Lieb [Jim.Lieb@wnr.com]
Sent:	Friday, March 28, 2008 9:49 AM
То:	Chavez, Carl J, EMNRD; Powell, Brandon, EMNRD; Monzeglio, Hope, NMENV
Cc:	Mark Turri; Ed Riege; Joel Quinones; James Geer; Mike L. Facker; Bryon Holbrook; Ann Allen
Subject:	C-141 Form for the Tank 706 Release at Western Refining Gallup Refinery
Attachments:	Tank706 release3-19-08.pdf

Carl, Brandon, and Hope

I prepared the OCD C-141 form for the release of fuel oil from the Tank 706 that occurred at Western Refining's Gallup Refinery on March 19, 2008. The release resulted from a pump seal failure at the transfer pump located at Tank 706 that is used to transfer fuel oil from Tank 706 to the fuel oil loading rack. Approximately 5 to 6 barrels of fuel oil was released onto the ground near the pump. A vacuum truck was dispatched to the spill soon after it occurred. The vac truck was able to recover 4 barrels of fuel oil. Oil impacted soil has been removed and placed on plastic liner. We expect to send the soil off site probably to Envirotech near Farmington.

All of the release was contained within the diking surrounding the fuel oil tank farm tanks.

If you have any questions, please contact me or Bryon Holbrook (505) 722-0258. Regards, Jim Lieb

Environmental Engineer Western Refining, Inc. Gallup Refinery I-40, Exit 39 Jamestown, NM 87347 (505) 722-0227 fax (505) 722-0210 jim.lieb@wnr.com

This inbound email has been scanned by the MessageLabs Email Security System.

State of New Mexico Energy Minerals and Natural Resources

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Oil Conservation Division
1220 South St. Francis Dr.
Santa Fe, NM 87505

		in the second	Rele	ase Notifi	catio	n and Co	orrective A	ction				
						OPERA	TOR		🛛 Initia	al Report		Final Re
Name of Co	ompany:	Western Re	efining: C	allup Refinery	,	Contact:	Bryon Holbro	ook				
Address: I-40, Exit 39, Jamestown NM 87347						Telephone 1	No.: 505-722	2-0258				
Facility Nai	me: Gallı	ip Refinery				Facility Typ	be: Oil refin	nery				
Surface Ow	mer: Gia	nt Industries	s, Inc.	Mineral	Owner:	Giant Indust	tries, Inc.		Lease N	Ňо.		
				LOC	ATIO	N OF REI	LEASE					
Unit Letter	Section	Township	Range	Feet from the	North	/South Line	Feet from the	East/We	est Line	County		· · · · · · · · · · · · · · · · ·
	23 & 33	15N	15W							McKinley	,	
	I	x				T ! 4	100904340		· -	I'		
		Lati	itude_3	5-29:30*	:	Longitud	1e108*24*40	<u>) </u>	·			
(D_1		<u></u>		NA'	FURE	OFREL	EASE	1 1	<u>V-1</u>	1	41	,
lype of Rele	ase: Fuel C	21				(estimate)	Release: 5 to 6 t	barrels	Volume F	Recovered:	4 barre	IS
Source of Re	lease: Tank	706		<u> </u>	··········	Date and H	Iour of Occurrent	ce:]	Date and	Hour of Dis	scovery	: 3/19/08
Was Immadi	ata Natioa C	liven?		·		<u>3/19/08</u>	$\frac{1250 \text{ hours (est})}{1250 \text{ hours (est)}}$	timate) (<u>@ 1300</u>	hours		
was minieur	ale Nolice G		Yes 🗌	No 🗖 Not B	equired	OCD - Car	l Chavez					
					1	NMED - H	Hope Monzeglio					
Whom?	Jim I	Lieb							ours			
By Whom? Jim Lieb Was a Watercourse Reached?					Date and Hour 3/20/08 at 0805 hours							
Was a Water	course Reac	hed?				If YES, Vo	olume Impacting	the Water	course.			
Was a Water	course Reac	hed?	Yes 🗵	No		If YES, Vo	olume Impacting	the Water	course.			
Was a Water If a Watercon Describe Cau	course Reac urse was Imp ise of Proble	hed?	Yes 🕅 ibe Fully.* dial Actior	No		If YES, Vo	Jour 3/20/08 a	the Watero	course.			
Was a Water Was a Water Describe Cau A pump seal the pump. T A vacuum tri barrels of the Describe Are Western prop was released blaced direct mpacted soil conducted. hereby certi egulations a public health hould their of r the environ ederal, state.	urse was Imp use of Proble failed while he spill is co uck was disp spilled fuel a Affected a berty. A Vea into the soil ly into roll-co l has been re Impacted so of the envir operations ha ment. In ac or local law	hed? pacted, Descr em and Reme to fuel oil was ontained withing batched soon a oil. and Cleanup A olia vacuum t t. We will tak off boxes or o emoved. Upo ils will be tak information gi are required t ronment. The ave failed to a ddition, NMC vs and/or regu	Yes Xeibe Fully.* ibe Fully.* dial Action being pum in the dike after the sp Action Tak ruck was a te core sam n plastic li n OCD an ten off-site ven above o report an acceptance adequately DCD accep ilations.	No Taken.* ped from Tank 7 surrounding the surrounding the surroundin	706 to th hot 'oil t acuum u se is in t pproxim- te the pe nal boxe al, the e g at an C plete to t release r ort by th remedia report o	Date and F If YES, Vo e loading rack anks. up the spilled f he area aroun ately 4 barrels metration of th s can be obtai xcavation will OCD approved the best of my notifications a ne NMOCD m te contaminati loes not reliev	A pumper tech in a pumper tech fuel oil. The vacu d the Tank 706 pr of fuel oil. We de ne fuel oil into the ned. We will san l be back-filled w facility (likely E knowledge and u nd perform corre- narked as "Final R ion that pose a the re the operator of OIL CON	nician saw uum truck uump. Non estimate the e soil. The nple the es vith fresh c nvirotech understand ctive actio Report" dor reat to groi responsib	v the leaka was able he of the r hat approxe impacted cavated a clay after of in Farmin l that purs ns for relie s not relie und water ility for co ATION	age and imn to recover a release made kimately 1-2 d soil has be area to ensu confirmator ngton). suant to NM eases which ieve the ope r, surface wa ompliance v	nediate approxi e its wa 2 barrel een rem re that y samp OCD r may e rator o ater, hu with an <u>ON</u>	ly turned o mately 4 y off of s of fuel oi toved and all the oil ling is ules and ndanger f liability uman health y other
f a Waterco Describe Cau A pump seal he pump. T A vacuum trip parrels of the Describe Arc Western prop was released blaced direct mpacted soil conducted. hereby certi egulations a bublic health should their co or the environ ederal, state, Bignature:	urse was Imp use of Proble failed while he spill is co uck was disp spilled fuel the Affected a perty. A Vea into the soil ly into roll-co has been re Impacted so ify that the in ll operators a or the envir operations has ment. In ac or local law	hed? pacted, Descr em and Reme e fuel oil was bontained within batched soon a oil. and Cleanup A olia vacuum t b. We will tak off boxes or o emoved. Upo ils will be tak nformation gi are required t comment. The ave failed to a ddition, NMC vs and/or regu Turri	Yes X ibe Fully.* dial Action being pum in the dike after the sp Action Tak ruck was a ce core san n plastic li n OCD an en off-site ven above o report an acceptanc adequately DCD accep ilations.	No Taken.* ped from Tank 7 surrounding the pull occurred to v ten.* The relean to recover any pull to recover any to recover any pull to recover any to recover any to recover any to recover any pull to recover any to recover any	206 to th hot oil t acuum t se is in t oproxim- ne the pe nal boxe ral, the e g at an C plete to t release n ort by th remedia report c	Date and F If YES, Vo e loading rack anks. up the spilled f the area aroun ately 4 barrels netration of th s can be obtai xcavation will OCD approved the best of my notifications a ne NMOCD m te contaminati does not reliev	A pumper tech fuel oil. The vacu d the Tank 706 pr of fuel oil. We do ne fuel oil into the ned. We will san be back-filled w facility (likely E knowledge and to nd perform correct backed as "Final F ion that pose a thu the the operator of OIL CON	nician saw uum truck uum truck uump. Non estimate th e soil. The nple the ex- vith fresh c nvirotech understand ctive actio Report" dor responsibi	v the leaka was able the of the r hat approxe impacted cavated a lay after of in Farmir that purs ns for relo es not reli und water ility for co ATION	age and imm to recover a elease made kimately 1-2 d soil has be area to ensu confirmator ngton). suant to NM eases which ieve the ope r, surface wa ompliance v DIVISIC	nediate approxi e its wa barrel een rem re that y samp OCD r may e prator o ater, hu with an <u>ON</u>	ly turned o mately 4 y off of s of fuel oi ioved and all the oil ling is ules and ndanger f liability man health y other
f a Waterco Describe Cau A pump seal he pump. T A vacuum tru barrels of the Describe Are Western prop was released blaced direct mpacted soil onducted. hereby certi egulations a bublic health should their of r the environ ederal, state, Signature:	course Reac urse was Imp use of Proble failed while he spill is co uck was disp spilled fuel ca Affected a perty. A Vec into the soil ly into roll-co l has been re Impacted so of the envir operations has ment. In ac or local law	hed? pacted, Descr em and Reme to fuel oil was portained within patched soon a oil. and Cleanup A oila vacuum t l. We will tak off boxes or o emoved. Upo ils will be tak nformation gi are required t ronment. The ave failed to a ddition, NMC vs and/or regu Turri	Yes X ibe Fully.* dial Action being pum in the dike after the sp Action Tak ruck was a te core sam n plastic li n OCD an en off-site o report an acceptance adequately DCD accep ilations.	No Taken.* ped from Tank 7 surrounding the surrounding the surrounding the surrounding the surrounding the surrounding the recover an uples to determing ner until addition d NMED approv for land farming is true and com- is true and com- investigate and tance of a C-141	706 to th hot oil t acuum u se is in t oproxim- te the pe nal boxe ral, the e g at an C plete to t release t ort by th remedia report c	Date and F If YES, Vo e loading rack anks. up the spilled f the area aroun ately 4 barrels metration of th s can be obtai xcavation will DCD approved the best of my notifications a ne NMOCD m te contaminati does not reliev	A pumper tech fuel oil. The vacu d the Tank 706 pr of fuel oil. The vacu d the Tank 706 pr of fuel oil. We d ne fuel oil into the ned. We will san l be back-filled w facility (likely E knowledge and to nd perform corre- barked as "Final R ion that pose a thu re the operator of <u>OIL CON</u> District Supervise	nician saw uum truck uump. Non estimate the e soil. The nple the ex- rith fresh c <u>nvirotech</u> understand ctive actio Report" dor reat to grou responsibi	v the leaka was able the of the r hat approxe impacted covated a lay after of in Farmir I that purs ns for relie und water ility for co ATION	age and imm to recover a release made kimately 1-2 d soil has be area to ensu confirmator ington). suant to NM eases which ieve the ope r, surface wa ompliance v DIVISIC	nediate approxi e its wa 2 barrel een rem re that y samp OCD r may e orator o ater, hu with an <u>DN</u>	ly turned o mately 4 y off of s of fuel oi ioved and all the oil ling is ules and ndanger f liability uman health y other
f a Waterco Describe Cau A pump seal he pump. T A vacuum tri- barrels of the Describe Are Western prop was released blaced direct mpacted soil conducted. hereby certi- regulations a bublic health should their of or the environ- rederal, state, Signature:	course Reac urse was Imp use of Proble failed while he spill is co uck was disp spilled fuel ca Affected a perty. A Vea into the soil ly into roll-co l has been re Impacted so of the envir operations ha ment. In ac or local law	hed? pacted, Descr em and Reme e fuel oil was bottained within batched soon a olia vacuum t l. We will tak off boxes or o emoved. Upo ils will be tak nformation gin are required t ronment. The ave failed to a ddition, NMC vs and/or regu Turri	Yes X ibe Fully.* dial Action being pum in the dike after the sp Action Tak ruck was a te core sam n plastic li n OCD an en off-site ven above o report an acceptance adequately DCD accep	No Taken.* ped from Tank 7 surrounding the surrounding the surrounding the surrounding the surrounding the surrounding the recover any ples to determing ner until addition d NMED approve for land farming is true and com- is true and com- is true and com- investigate and tance of a C-141	706 to th hot oil t acuum u se is in t pproxim- te the pe nal boxe al, the e g at an C plete to t release I ort by th remedia report o	Date and F If YES, Vo e loading rack anks. up the spilled f he area aroun ately 4 barrels metration of th s can be obtai xcavation will DCD approved the best of my notifications a ne NMOCD m te contaminati loes not reliev Approved by	A pumper tech fuel oil. The vacu d the Tank 706 p of fuel oil. The vacu d the Tank 706 p of fuel oil. We d he fuel oil into the ned. We will san l be back-filled w facility (likely E knowledge and u nd perform corre- harked as "Final R ion that pose a thu- re the operator of <u>OIL CON</u> District Supervis te:	nician saw uum truck uump. Non estimate the e soil. The nple the ex- vith fresh c nvirotech understand ctive actio Report" dor reat to groo responsibi	v the leaka was able the of the r hat approxe in Farmin l that purs ns for rele cavated a lay after of in Farmin l that purs ns for rele sont reliund water ility for co ATION	age and imm to recover a release made kimately 1-2 d soil has be area to ensu confirmator gton). suant to NM eases which ieve the ope r, surface wa ompliance v DIVISIC	nediate approxi e its wa 2 barrel een rem re that y samp OCD r may e prator o ater, hu with an <u>DN</u>	ly turned o mately 4 y off of s of fuel oi ioved and all the oil ling is ules and ndanger f liability y other
Was a Water Was a Water Describe Cau A pump seal the pump. T A vacuum try parrels of the Describe Are Western prop was released blaced direct mpacted soi conducted. hereby certi regulations a bublic health should their cor the environ rederal, state, Signature:	course Reac urse was Imp ise of Proble failed while he spill is co uck was disp e spilled fuel ta Affected a perty. A Vea into the soil ly into roll-co has been re Impacted so ify that the in ll operators a or the envir operations ha ment. In ac or local law	hed? pacted, Descr em and Reme e fuel oil was bontained within batched soon a oil. and Cleanup A olia vacuum t l. We will tak off boxes or o emoved. Upo ils will be tak nformation gi are required t ronment. The ave failed to a ddition, NMC vs and/or regu Turri	Yes X ibe Fully.* dial Action being pum in the dike after the sp Action Tak ruck was a ce core san n plastic li n OCD an en off-site ven above o report an acceptance adequately DCD accep	No Taken.* ped from Tank 7 surrounding the pull occurred to v ten.* The relean to recover any ples to determing ner until addition d NMED approv for land farming is true and comp d/or file certain te of a C-141 rep investigate and tance of a C-141	206 to the hot oil ta acuum to se is in to proxim- ne the per- nal boxe ral, the e g at an C plete to to release r ort by the remedia report of	Date and F If YES, Vo e loading rack anks. up the spilled f he area aroun ately 4 barrels netration of th s can be obtai xcavation will OCD approved the best of my notifications a ne NMOCD m te contaminati does not reliev Approved by	A pumper tech fuel oil. The vacu a A pumper tech fuel oil. The vacu d the Tank 706 pr of fuel oil. We do ne fuel oil into the ned. We will sam l be back-filled w facility (likely E knowledge and to nd perform corre- tarked as "Final F ion that pose a thing the operator of <u>OIL CON</u> District Supervise te:	nician saw uum truck uum truck uump. Non estimate the e soil. The nple the ex- vith fresh c nvirotech understand ctive actio Report" dor responsibi SERVA	v the leaka was able le of the r nat approx impacted cavated a lay after in Farmir I that purs ns for rele es not reli und water ility for cu ATION	age and imm to recover a release made kimately 1-2 d soil has be area to ensur confirmator ngton). suant to NM eases which ieve the ope r, surface wa ompliance v DIVISIC	nediate approxi e its wa 2 barrel een rem re that y samp OCD r may e rator o ater, hu vith an <u>ON</u>	ly turned o mately 4 y off of s of fuel oi ioved and all the oil ling is ules and ndanger f liability uman health y other
Was a Water Was a Water Describe Cau A pump seal the pump. T A vacuum tri- barrels of the Describe Arc Western proj was released placed direct impacted soi conducted. hereby certi- regulations a public health should their of the environ rederal, state. Signature:	course Reac urse was Imp use of Proble failed while he spill is co uck was disp spilled fuel a Affected a berty. A Vea into the soil ly into roll-co l has been re Impacted so of the envir operations ha ment. In ac or local law	hed? pacted, Descr em and Reme e fuel oil was bontained withing bontained withing bontained withing bontained withing bontained withing and Cleanup A olia vacuum t l. We will tak off boxes or o emoved. Upoo ils will be tak nformation ging are required t ronment. The ave failed to a ddition, NMC vs and/or regu Turri mri@wnr.com	Yes X ibe Fully.* dial Action being pum in the dike after the sp Action Tak ruck was a te core sam n plastic li n OCD an en off-site ven above o report an acceptance adequately DCD accep	No Taken.* ped from Tank 7 surrounding the surrounding the surrounding the surrounding the surrounding the release to ccurred to v ten.* The release to recover ap uples to determin ner until addition d NMED approv for land farming is true and comp d/or file certain te of a C-141 rep investigate and tance of a C-141	706 to th hot oil t acuum v se is in t oproxim- e the pe nal boxe al, the e g at an C plete to t release r ort by th remedia report c	Date and F If YES, Vo e loading rack anks. up the spilled f he area aroun ately 4 barrels netration of th s can be obtai xcavation will OCD approved the best of my notifications a ne NMOCD m te contaminati loes not reliev Approved by Approval Dar Conditions of	A pumper tech fuel oil. The vacu d the Tank 706 pr of fuel oil. The vacu d the Tank 706 pr of fuel oil. We d he fuel oil into the ned. We will san l be back-filled w facility (likely E knowledge and u nd perform corre- narked as "Final R ion that pose a thr the the operator of <u>OIL CON</u> District Supervisi te:	nician saw uum truck uump. Non estimate th e soil. The nple the ex- vith fresh c nvirotech understand ctive actio Report" dor reat to groo responsibi SERVA	v the leaka was able he of the r hat approxe impacted cavated a clay after of in Farmin I that purs ns for rele sont reli und water ility for co ATION	age and imm to recover a release made kimately 1-2 d soil has be area to ensu confirmator ngton). suant to NM eases which ieve the ope r, surface wa ompliance v DIVISIC	nediate approxi e its wa 2 barrel een rem re that y samp OCD r may e rator o ater, hu with an <u>DN</u>	ly turned o mately 4 y off of s of fuel oi ioved and all the oil ling is ules and ndanger f liability iman health y other

Chavez, Carl J, EMNRD

From:	Monzeglio, Hope, NMENV
Sent:	Monday, March 31, 2008 10:49 AM
То:	Ed Riege
Cc:	Kieling, John, NMENV; Cobrain, Dave, NMENV; Frischkorn, Cheryl, NMENV; Price, Wayne, EMNRD; Chavez, Carl J, EMNRD; Jim Lieb; Martinez, Cynthia, NMENV
Subject:	Annual GW Monitoring Plan
Attachments:	GRCC 07-004 Approval Annual GW Mon Plan 4_1_08 .pdf

Ed,

¥

The hard copy will go out in the mail tomorrow.

Hope

Hope Monzeglio Environmental Specialist New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, BLDG 1 Santa Fe NM 87505 Phone: (505) 476-6045; Main No.: (505)-476-6000 Fax: (505)-476-6060 hope.monzeglio@state.nm.us

Websites: <u>New Mexico Environment Department</u> <u>Hazardous Waste Bureau</u>

BILL RICHARDSON Governor

DIANE DENISH Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.nmenv.state.nm.us

RON CURRY Secretary

ION GOLDSTEIN Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

April 1, 2008

Mr. Ed Riege Environmental Superintendent Western Refining Company Gallup Refinery Route 3, Box 7 Gallup, New Mexico 87301

RE: APPROVAL REVISED OIL CONSERVATION DIVISION (OCD) 2006 ANNUAL GROUNDWATER REPORT (AND OCD ADDENDUM) WESTERN REFINING COMPANY, GALLUP REFINERY HWB-GRCC-07-004 EPA ID # NMD000333211

Dear Mr. Riege:

The New Mexico Environment Department (NMED) has completed its review of the *Revised Oil Conservation Division 2006 Annual Groundwater Report (and OCD Addendum)* (Report), dated March 13, 2008, submitted on behalf of Western Refining Company, Gallup Refinery (Permittee). This Report was submitted in response to NMED's Notice of Disapproval dated January 16, 2008. NMED hereby approves this Report. For future annual groundwater monitoring reports, the Permittee must provide explanations for all deviations from the sampling work plan. Ed Riege Western Refining Company Gallup April 1, 2008 Page 2

If you have questions regarding this approval letter, please contact Hope Monzeglio of my staff at 505-476-6045.

Sincerely,

for

John E. Kieling Program Manager Permits Management Program Hazardous Waste Bureau

cc: D. Cobrain NMED HWB C. Frishkorn, NMED HWB H. Monzeglio NMED HWB W. Price, OCD C. Chavez, OCD J. Lieb, Western File: Reading File and GRCC 2008 File HWB-GRCC-07-004