
AP- 75

STAGE 2 REPORTS

DATE: 4-1-08

CLOSURE 4-1-08

RICE OPERATING COMPANY JUNCTION BOX FINAL REPORT

BOX LOCATION

SWD SYSTEM	JUNCTION	UNIT	SECTION	TOWNSHIP	RANGE	COUNTY			NS - FEET	
Blinebry- Drinkard (BD)	J-26 boot	J	26	21S	37E	Lea	Length no box;	Width junction eli	Depth minated	
LAND TYPE: B	LMSTA	\TE	FEE LAND	OWNER	Delrose	Scott	OTHER		N. 81.	
Depth to Groun	idwater	42	feet	NMOCE	SITE ASSI	ESSMENT F	ANKING S	CORE:	20	<u></u>
Date Started	4/23/20)02	Date Cor	npleted	10/2/2002		D Witness		YES	
	1000						76		40	6
Soil Excavated	1000	cubic yard	ds EXC	avation Le	ingth	Width	/5	Deptn	40	feet
Soil Disposed	480	cubic yard	ds Off	fsite Facility	Sund	lance	Location	Eunice,	New Mexic	20
				6	N					
General Descriptio	n of Remedial A		For a summar		on box remedia	tion and excava	ation activities,	refer to the p	reviously-	
submitted Junction Box	Disclosure Report	-		110	······					
			S					s		
The attached November	r 2007 Abatement (Completion Rep	port by Triden	t Environment	al of Midland, T	exas requests	closure of this	junction box	site.	
										<u></u>
	<u>Contra and a Constant a Constant and a Cons</u>					 	the first of the second se			
IHEREE	BY CERTIFY TH	AT THE IN		N ABOVE LEDGE AN		ND COMPLE	TE TO THE	E BEST OF	MY	
					/			D		
REPORT ASSEMBLED	BY Kri	stin Farris Pop	e	SIGNATURE	Knin	in de	anis .	Yope		_
DA	TE	11/15/2007		TITLE		P	roject Scientist	/	<u> </u>	-

.

November 20, 2007

STAGE 2 FINAL INVESTIGATION AND ABATEMENT COMPLETION REPORT

BD JCT. J-26 SITE (1R0426-40) T21S, R37E, SECTION 26, UNIT LETTER J LEA COUNTY, NEW MEXICO

Prepared by:

P. O. Box 7624 Midland, Texas 79708 Prepared for:

RICE Operating Company

122 West Taylor

Hobbs, New Mexico 88240

		- 	TABLE OF CONTENTS
		<u>i</u>	
		1.0	EXECUTIVE SUMMARY1
		2.0	CHRONOLOGY OF EVENTS2
		3.0	BACKGROUND4
			3.1 Site Location and Land Use
			3.2 SUMMARY OF PREVIOUS WORK AND INVESTIGATIONS
		4.0	GEOLOGY AND HYDROGEOLOGY7
			4.1 REGIONAL AND LOCAL GEOLOGY
	:	a († 2 1	 4.1 REGIONAL AND LOCAL GEOLOGY
		•	
		5.0	GROUNDWATER QUALITY
•	L.	• • • •	5.1 MONITORING PROGRAM
		6.0	Fate and Transport Modeling Results14
		7.0	CONCLUSIONS AND RECOMMENDATION FOR CLOSURE

TABLES

TABLE 1SUMMARY OF WATER WELL DATA	
TABLE 2REGIONAL GROUNDWATER SAMPLING RESULTS	9
TABLE 3HISTORICAL GROUNDWATER SAMPLING RESULTS	

FIGURES

FIGURE 1	SITE TOPOGRAPHIC MAP	.5
FIGURE 2	SITE AERIAL PHOTO MAP	.6
FIGURE 3	REGIONAL GROUNDWATER GRADIENT AND CHLORIDE/TDS CONCENTRATION MAP	.11
	LOCAL GROUNDWATER GRADIENT AND CHLORIDE/TDS CONCENTRATION MAP	.12

APPENDICES

APPENDIX A DESCRIPTION OF FATE & TRANSPORT MODELING PROCEDURES AND PARAMETER INPUTS

- APPENDIX B DOCUMENTATION OF WINTRAN (VERSION 1.03) FATE & TRANSPORT MODEL CAPABILITIES AND BENCHMARKING
- APPENDIX C AQUIFER TEST PROCEDURES AND OUTPUT
- APPENDIX D ... LABORATORY REPORTS & CHAINS OF CUSTODY

Ś

APPENDIX E JUNCTION BOX CLOSURE REPORT

1.0 EXECUTIVE SUMMARY

This Stage 2 Final Investigation and Abatement Completion Report presents the results of the characterization activities performed by Trident Environmental and the characterization and site closure activities performed by ROC at the Jet. J-26 site. This report fulfills the obligations of and ROC presented in the Stage 1 and 2 Abatement Plan of December 5, 2005, which was approved by NMOCD on June 26, 2006.

The following corrective actions were performed in accordance with the Stage 1 and 2 Abatement Plan:

- Quarterly groundwater monitoring activities of the three on site monitoring wells were continued to document the return of chloride and total dissolved solids (TDS) concentrations to background levels. The 2006 Annual Groundwater Monitoring Report was submitted to the NMOCD on February 5, 2007.
- Regional groundwater sampling was conducted to confirm that remediation of the constituents of concern is taking place, changes in the local and regional ground water flow directions were noted, and ambient ground water chemistry was confirmed.
- Data was input into a fate and transport model (WinTran Version 1.3) to forecast the movement and attenuation of the chloride/TDS plume by dispersion and abatement by the water supply wells.

Since July 2004, chloride and TDS concentrations at the Jct. J-26 site have generally remained at or near background levels in each of the three on site monitoring wells. Background concentrations of chlorides and TDS at the site have been confirmed through recent laboratory analysis of several surrounding wells and research of local groundwater data. There is strong evidence that the continual withdrawal of groundwater by several supply wells for the operation of the Eunice Gas Plant has assisted in the redirection and recovery of residual chloride and TDS constituents from the Jct. J-26 site. In addition, WinTran fate and transport simulations show the effects of the water supply wells and natural dispersion in attenuating chloride and TDS constituents.

Based on the physical findings, source removal activities, backfilling with an infiltation barrier, re-establishment of native vegetation, and results of the WinTran fate and transport simulations, ROC has performed sufficient remedies which have resulted in the protection of groundwater quality, human health, and the environment. On behalf of ROC, we respectfully request that NMOCD approve the plugging and abandonment of the three onsite monitoring wells and close the regulatory file for this site. A copy of the Final Junction Box Closure Report is included in Appendix E.

2.0 CHRONOLOGY OF EVENTS

 $V_{1,1}^{(i)} = \{r_i^{(i)}\}_{i \in I}$

April 23, 2002	-Initial soil sampling activities were conducted to delineate the extent of chloride and hydrocarbon-impacted soils near the Jct. J-26.	، المراق
 September 2002	Excavation of chloride and TPH-impacted soil was completed to a depth of 42 feet bgs. 480 yd ³ of the impacted soils were removed and disposed. Imported backfill was placed in the deep excavation from 42 feet to 27 feet bgs. A 12-inch compacted clay layer was then installed prior to backfilling with the remediated soil in 3-foot lifts. A second 12-inch compacted clay layer was installed at 5 feet bgs. The remaining remediated soil was placed above the clay layer and contoured to drain rainwater away from the area. A new replacement junction box was installed about 60 feet north of the former location. The surface was then reseeded and monitored for growth which resulted in re-establishing the native vegetation.	
October 10, 2002	One monitoring well (MW-1) was installed immediately adjacent to the southeast corner of the excavated area to further assess if groundwater was impacted with chlorides. Subsequent sampling of MW-1 confirmed that groundwater was impacted with chloride and TDS levels above WQCC standards; however there was no hydrocarbon impact based on BTEX concentrations below laboratory detection limit of 0.001 mg/L.	en en en estatente en en en en en en
October 29, 2002	The disclosure report detailing all of the above-referenced work was completed and forwarded to the NMOCD in early 2003 along with the disclosure reports for other sites.	
December 13, 2002	ROC notified the NMOCD Environmental Bureau Chief of groundwater impact in accordance with NM Rule 116.	
June 20, 2003	A work plan addressing further actions was submitted by Trident Environmental to Wayne Price at the NMOCD office in Santa Fe.	
June 27, 2003	The work plan was approved by Wayne Price of the NMOCD office in Santa Fe.	
August 19, 2003	Monitoring wells MW-2 and MW-3 were installed approximately 220 feet down gradient (south-southeast) and approximately 150 feet upgradient (northwest) of MW-1, respectively. Subsequent sampling results indicated MW-2 and MW-3 delineated the downgradient and upgradient extent of chloride and TDS impact to groundwater.	

. . . .

December 16, 2004	Trident Environmental submitted a request to Wayne Price of the NMOCD office in Santa Fe for further actions regarding the chloride and TDS-impacted groundwater at the BD Jct. J-26 site.
January 28, 2005	Trident Environmental submitted an Update to the Site Plan which described the findings of assessment activities and proposed corrective actions for the Jct. J-26 site.
May 5, 2005	Mr. Daniel Sanchez of the NMOCD requested that ROC submit an abatement plan to the NMOCD pursuant to Rule 19.
December 5, 2005	A Stage 1 and 2 Abatement Plan was prepared by R. T. Hicks Consultants Ltd. and submitted to the NMOCD
April 17, 2006	ROC submitted proof of public notifications to the NMOCD
June 26, 2006	NMOCD approved the Stage 1 & 2 Abatement Plan
August 1, 2006	Depth to water measurements and samples for chloride and TDS analysis were obtained from several off site wells in the surrounding area.
October 4, 2006	Trident Environmental initiated fate and transport simulations for the site.
November 22, 2006	Trident Environmental performed an aquifer test at two nearby water supply wells to determine site-specific hydrological parameters.
February 5, 2007	Trident Environmental submitted the 2006 Annual Groundwater Monitoring Report to the NMOCD. And the Annual
February 19, 2007	Trident completed fate and transport simulations for the site.

na tarihan

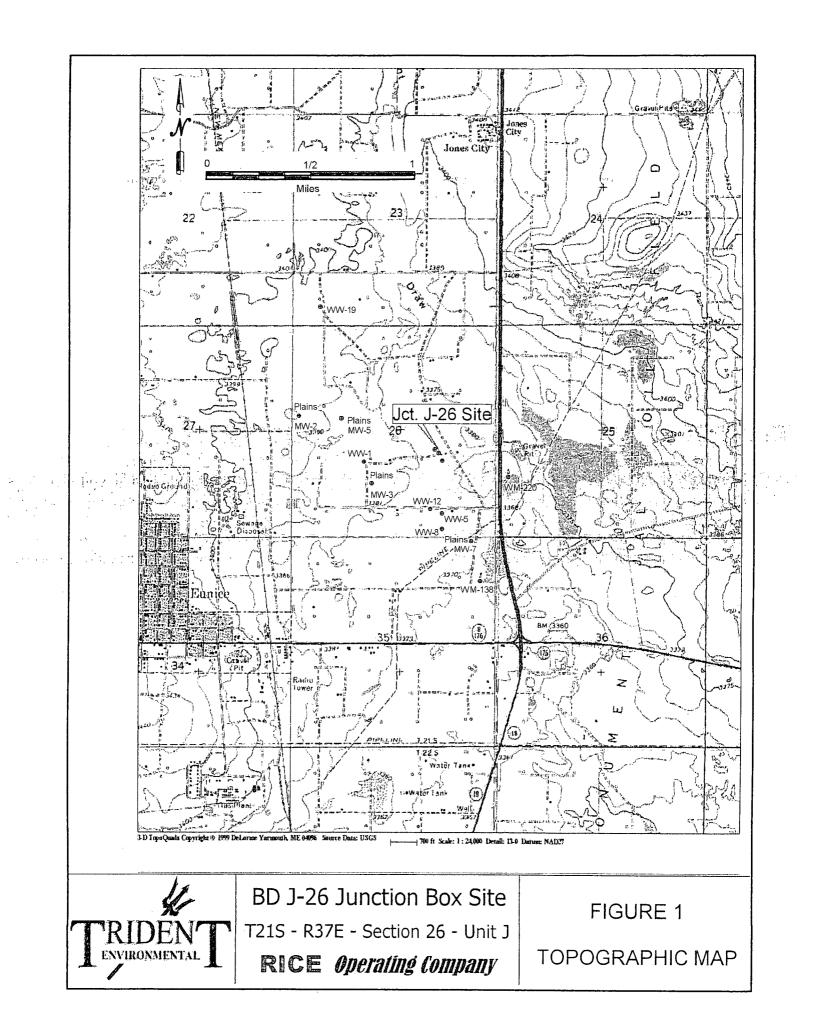
an george

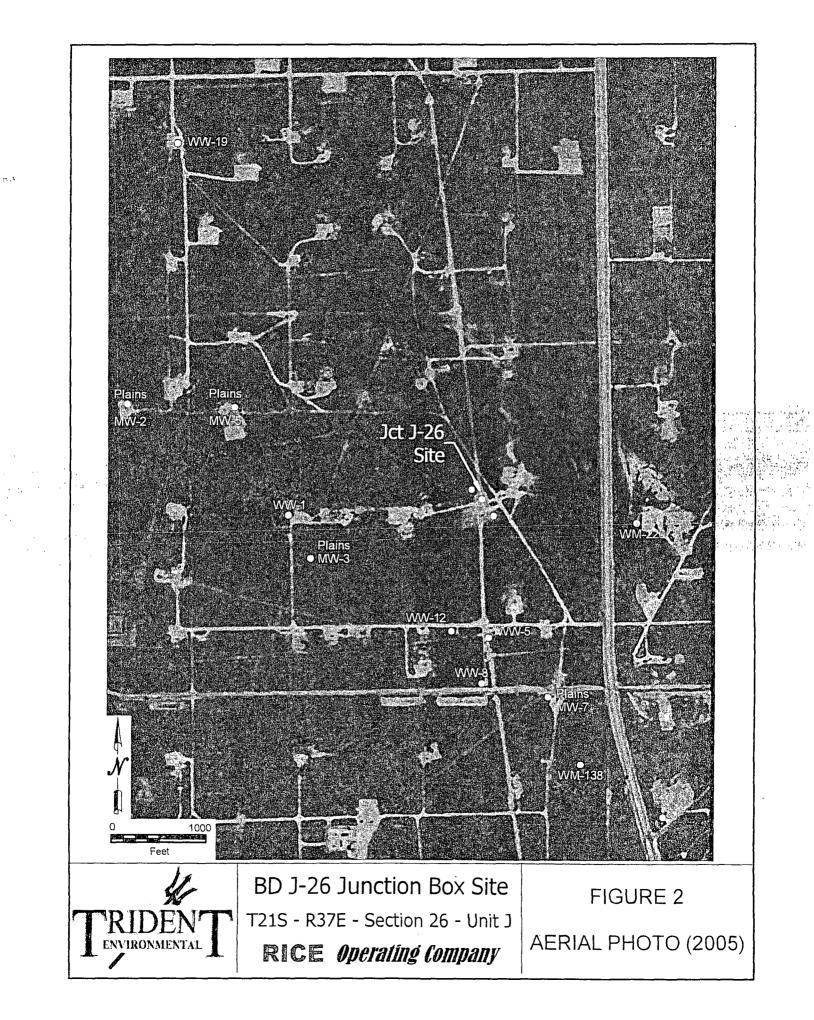
3.0 BACKGROUND

3.1 SITE LOCATION AND LAND USE

The Jct. J-26 site is located in township 21-south, range 37 east, section 26, unit letter J approximately 1 mile north-northwest of the intersection of NM State Highway 18 and County Highway 176 near Eunice, NM as shown on the attached topographic map (Figure 1) and aerial photographic map (Figure 2). Land in the site area is primarily utilized for oil and gas production and cattle ranching.

3.2 SUMMARY OF PREVIOUS WORK AND INVESTIGATIONS


Initial soil sampling activities for delineation of the Jct. J-26 area began on May 2, 2002, as part of ROC's junction box upgrade program.


In September 2002, excavation of TPH impacted soil was completed to a depth of 42 feet bgs where groundwater was encountered. 480 cubic yards of TPH impacted soil was transported to the Sundance facility in Eunice, New Mexico and the remaining excavated soil was remediated on site. Imported backfill was placed in the deep excavation from 42 feet to 27 feet bgs. A 12-inch compacted clay layer was then installed prior to backfilling with the remediated soil in 3-foot lifts. A second 12-inch compacted clay layer was installed at 5 feet bgs. The remaining remediated soil was placed above the clay layer and contoured to drain rainwater away from the area. A new replacement junction box was installed about 60 feet north of the former location. The surface was then reseeded and monitored for growth.

On October 10, 2002, a monitoring well (MW-1) was installed immediately adjacent to the southeast corner of the excavated area, which was the presumed down gradient direction. Subsequent sampling of MW-1 confirmed that groundwater was impacted with chloride and TDS levels above WQCC standards, however there was no hydrocarbon impact based on BTEX concentrations below the WQCC standards. ROC notified the Director of the NMOCD, Environmental Bureau of groundwater impact in accordance with NM Rule 116.

Monitoring wells MW-2 and MW-3 were installed approximately 220 feet down gradient (south-southeast) and approximately 150 feet upgradient (northwest) of MW-1, respectively, on August 19, 2003. Subsequent sampling results indicated MW-2 and MW-3 delineated the downgradient and upgradient extent of chloride and TDS impact to groundwater.

A Stage 1 and 2 Abatement Plan was submitted to the NMOCD on December 5, 2005, and approved by the NMOCD on June 26, 2006.

GEOLOGY AND HYDROGEOLOGY

4.1 REGIONAL AND LOCAL GEOLOGY

5.1

The Jct. J-26 site is situated within the center of Monument Draw. According to published information (Nicholson and Clebsch, 1961, Barnes, 1976, and Anderson, Jones, and Green, 1997) the site is underlain by Quaternary Colluvial Deposits composed of sand, silt, and gravel deposited by slopewash, and talus from the Tertiary Ogallala Formation. These colluvial deposits are often calichified (indurated with cemented calcium carbonate) with caliche layers from 1 to 20 feet thick. The thickness of the colluvial deposits and Ogallala Formation is approximately 45 feet; however it varies locally as a result of significant paleotopography at the top of the underlying Triassic Dockum Group. Since Cretaceous Age rocks in the region have been removed by pre-Tertiary erosion, the alluvium and Ogallala Formation rest unconformably on the Triassic Dockum Group. The uppermost unit of the Dockum Group is the Chinle Formation, which primarily consists of micaceous red clay and shale but also contains thin interbeds of fine-grained sandstone and siltstone. The red clays and shale of the Chinle Formation act as an aquitard beneath the water bearing colluvial deposits/Ogallala Formation and therefore limit the amount of recharge to the underlying Dockum Group.

Based on the lithologic log descriptions provided by Trident Environmental the subsurface soils are composed of caliche with varying amounts of very fine to fine-grained sand in matrix (0-40 ft), calcareous fine to medium-grained sand (40-50 ft), and fine to medium-grained sand (50-60 ft). More detailed descriptions of the subsurface lithology are provided on the lithologic logs in Appendix A of the Stage 1 and 2 Abatement Plan.

4.2 REGIONAL AND LOCAL HYDROGEOLOGY

Potable ground water used in southern Lea County is derived primarily from the Ogallala Formation and the Quaternary alluvium. Water from the Ogallala and alluvium aquifers in southern Lea County is used for irrigation, stock, domestic, industrial, and public supply purposes.

Based on the total depths of water wells in the area (85 feet) and the depth to groundwater (average of 40 feet bgs), the saturated thickness of the Ogallala Formation in the site area is estimated at approximately 45 feet.

Nicholsen and Clebsch (1961) found that the regional gradient of the Ogallala and interconnected colluvial aquifer in the site area generally flows toward the southeast and the hydraulic gradient varies from approximately 0.001 to 0.01 feet/feet.

Based on the recent depth to groundwater data from accessible wells located within a mile of the Jct. J-26 site the magnitude of the regional groundwater gradient is 0.003 feet/foot and the direction of flow is to the southeast (Figure 3). However, the local groundwater gradient

in the more immediate area of the site has indicated magnitudes of 0.005 feet/foot or greater with direction of flow towards the south (Figure 4). The difference between the localized and regional gradient is attributed to the effect of the continual groundwater withdrawal from several nearby water supply wells that provide water for the Eunice Gas Plant. Based on records from the New Mexico Office of the State Engineer (NMSEO) these wells have been pumping at a combined rate of approximately 82 gallons per minute between July 6, 2005 and January 8, 2007. The groundwater withdrawal induces groundwater to flow from the site

towards the water supply wells, which are located south (WW-5, WW-8, and WW12) and west (WW-1) of the site, as evidenced by a local groundwater gradient trending to the south (Figure 4) which differs from the regional gradient to the southeast (Figure 3).

No water wells are located within 1,000 feet of the site. A summary of active water wells located in the vicinity of the Jct. J-26 site are listed in Table 1 below. These wells are also depicted in Figure 3.

_										
ſ	Well ID	Well Type/Use	Permit Holder (Site Name)	T21S-	-R37E	Distance from				
	wenin	well Type/Ose		Sec	UL	Jct. J-26 Site				
.[WM-220	Windmill/Livestock	Owens (L-0220)	25	I	1,610 ft East				
	WW-1	Industrial Supply	Targa (Eunice Gas Plant)	. 26	K .,:	2,100 ft West				
	[WW-5]	Industrial Supply	Targa (Eunice Gas Plant)	26	P	- 1,450 ft South-				
[WW-8	Industrial Supply	Targa (Eunice Gas Plant)	26	P	1,960 ft South				
-	WW-12	Industrial Supply	Targa (Eunice Gas Plant)	.26	0	1,410 ft SSW				
1			and the second	• • •						

Table	1
Summary of Wate	er Well Data

There are no surface water bodies located within a mile of the site.

5.0 GROUND WATER QUALITY

5.1 MONITORING PROGRAM

The on site monitoring wells at the Jct. J-26 site have been sampled on a quarterly basis for major ions, TDS, and benzene, toluene, ethylbenzene, and xylenes (BTEX). A complete summary of historical analytical results and ground water elevations are provided in the 2006 Annual Groundwater Monitoring Report.

Each constituent of BTEX has been below the New Mexico Water Quality Control Commission (WQCC) standards at this site since the installation of monitoring well MW-1 in October 2002 (18 consecutive quarters).

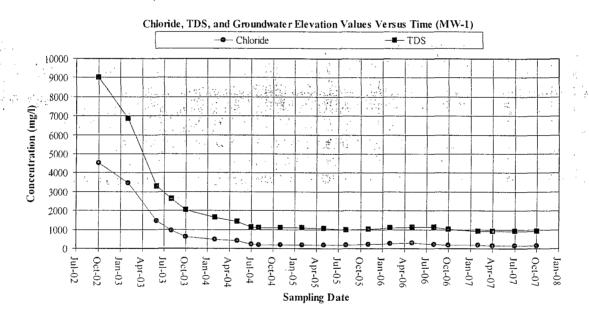
Background concentrations of chlorides and TDS at the site have been confirmed through recent laboratory analysis of several surrounding wells and research of regional groundwater data. During the third quarter (August 1, 2006) access was granted for a one-time monitoring event (depth to water measurements and chloride and TDS analysis) for the following wells:

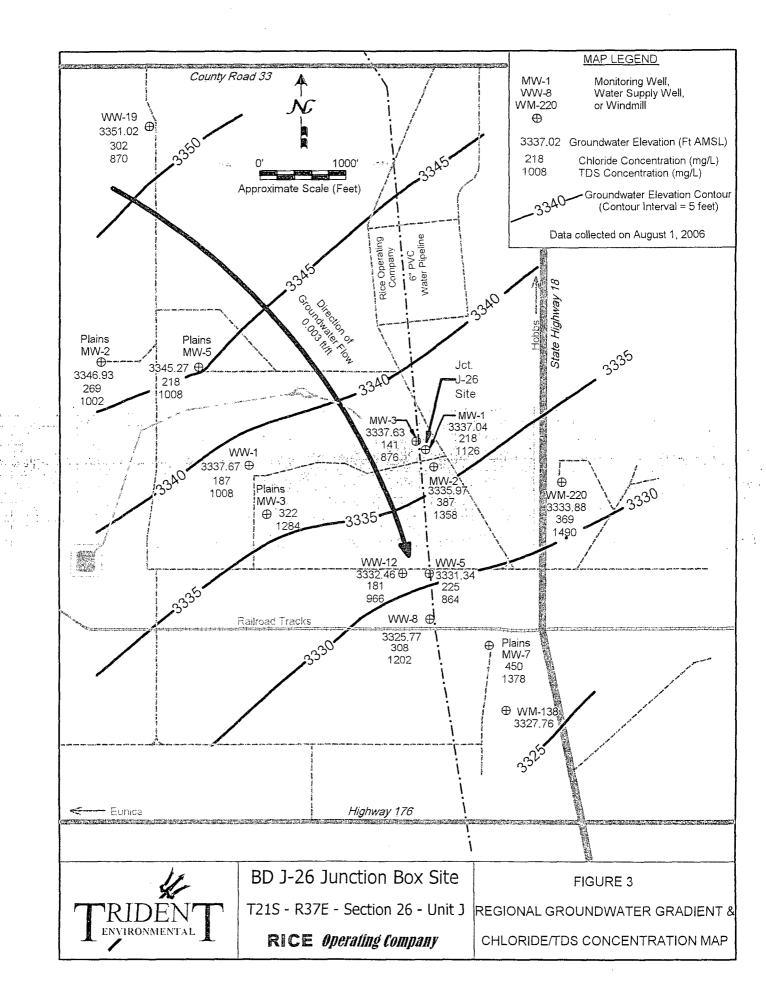
- Targa (Eunice Gas Plant) water supply wells (WW-1, WW-5, WW-8, WW-12, WW-19).
- One monitoring well at each of four nearby Plains Petroleum monitoring sites.
 - One windmill (L-0220)

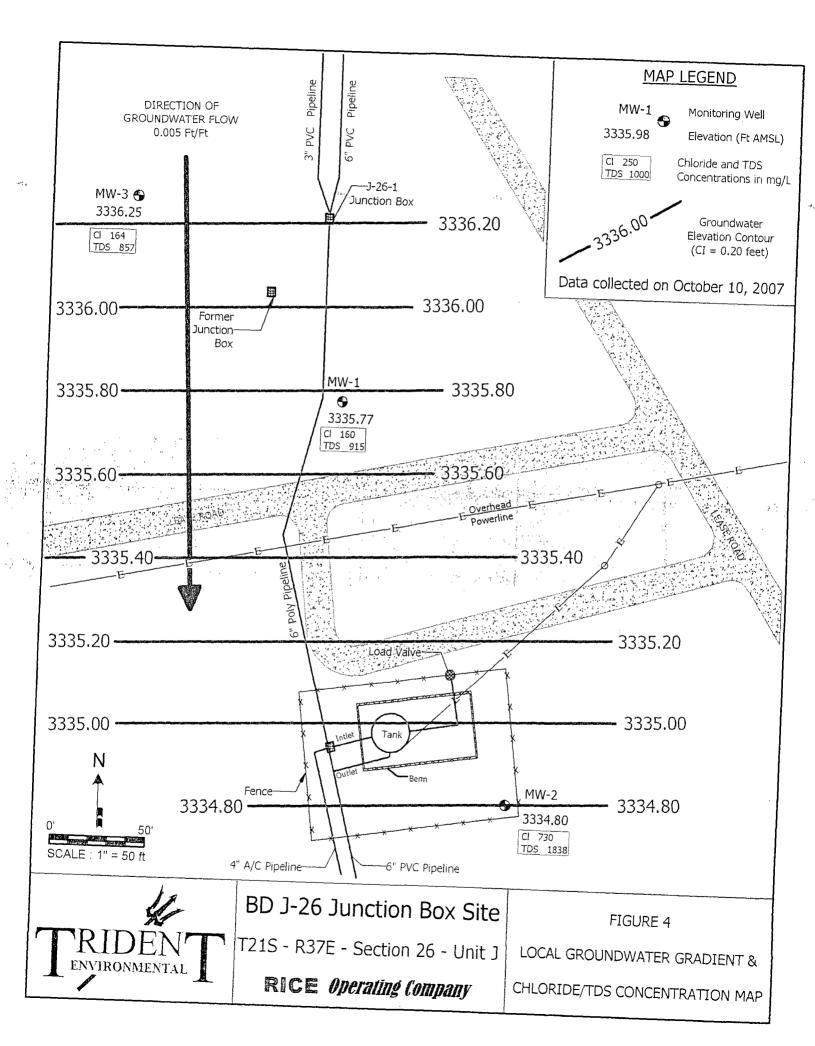
Results of this one time sampling event are summarized in Table 2 below and depicted in Figure 3. A copy of the laboratory analytical reports and chains of custody form are included in Appendix D.

Regional Ground Water Sampling Results (August 1, 2006)									
Well ID	Well Type/Use	Permit Holder	Site Name	Depth to Groundwater (feet BTOC)	Chloride (mg/L)	TDS (mg/L)			
MW-1	Monitoring	ROC	Jct. J-26	38.80	218	1126			
MW-2	Monitoring	ROC	Jct. J-26	39.35	387	1358			
MW-3	Monitoring	ROC	Jct. J-26	38.22	141	876			
WM-220	Windmill	Owens	L-0220	37.49	369	1490			
MW-3	Monitoring	Plains	DH Gathering	45.52	322	1284			
MW-7	Monitoring	Plains	Vacuum to Jal 14" Mainline#3	49.04	450	1378			
MW-2	Monitoring	Plains	TNM 98-5B	47.82	269	1002			
MW-5	Monitoring	Plains	TNM 98-5A	46.26	218	1008			
WW-1	Industrial	Targa	Eunice Gas Plant	49.32	187	1008			
WW-5	Industrial	Targa	Eunice Gas Plant	48.11	225	864			
WW-8	Industrial	Targa	Eunice Gas Plant	51.00	308	1202			
WW-12	Industrial	Targa	Eunice Gas Plant	49.28	181	966			
WW-19	Abandoned	Dandoned Targa Eunice Gas Plant 47.28		47.28	302	870			
		Average	(Background) Chloride and TDS	Concentrations	275	1110			

 Table 2


 Regional Ground Water Sampling Results (August 1, 2006)


Based on the sampling results listed in the table above average (background) chloride and TDS concentrations in section 26 have ranged from 141 mg/L to 450 mg/L and 870 mg/L to 1,490 mg/L, respectively.


62.0

The highest chloride (4,520 mg/L) and TDS (9,020 mg/L) concentrations in MW-1 were observed during the first sampling event on October 29, 2002. The decreased chloride and TDS concentrations observed in MW-1, as shown in the graph below, can be attributed to the excavation activities (source removal) and the effect of groundwater withdrawal from the industrial water wells that supply process water for the Eunice Gas Plant. The groundwater withdrawal induces groundwater to flow from the site towards the water supply wells, which are located south (WW-5, WW-8, and WW-12) and west (WW-1) of the site and thus has assisted in the removal of any remnant chloride/TDS mass from the area of the Jct. J-26 site. Further evidence for this conclusion is supported by the fate and transport modeling simulations as explained in the following section.

There is no longer a threat of impact from the vadose zone at this site because of the excavation, source removal, and backfilling with an infiltration barrier over the former source area near MW-1 that was completed in 2002. The surrounding area was re-seeded with a mixture of native grasses and plants which has resulted in the re-establishment of native vegetation as depicted on the cover page photo of this report. ROC has been monitoring the site for continued healthy growth of native vegetation.

Table 3

Historical Groundwater Sampling Results

		Sample	Depth to	Groundwater	· Chloride	TDS	Benzene	· Toluene	Ethylbenzene	Xylene	
	Monitoring Well	Date	Groundwater	Elevation "	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	}
ļ	·	10/29/02	(feet BTOC) 43.02	(feet AMSL) 3332.82		9020	< 0.001	< 0.001	< 0.001	< 0.001	(
		02/28/03	43.02 42.33	3333.51	4520 3470	9020 6870	< 0.001	< 0.001	< 0.001	< 0.001	
	1	06/05/03	43.00	3332.84	1460	3280	< 0.001	< 0.001	< 0.001	< 0.001	
		08/22/03	43.72	3332,12	957	2620	< 0.001	< 0.001	< 0.001	< 0.001	
		10/30/03	43.91	3331,93	620	2040	< 0.001	< 0.001	< 0.001	< 0.001	
ļ		02/18/04	43.70	3332.14	478	1630	< 0.001	< 0.001	< 0.001	< 0.001	l l
1		05/05/04	40.80	3335.04	390	1440	< 0.001	< 0.001	< 0.001	< 0.001	
		07/08/04	40.80	3335.04	230	1140	< 0.001	< 0.001	< 0.001	< 0.001	
		08/10/04	37.02	3338.82	195	1080	< 0.001	< 0.001	< 0.001	< 0.001	
		11/09/04	36.61	3339,23	177	1100	< 0.001	< 0.001	< 0.001	< 0.001	
}	MW-1	02/09/05	36.62	3339.22	179	1090	< 0.001	< 0.001	< 0.001	< 0.001]
		05/05/05	37.00 37.56	3338.84 3338.28	179	1060	< 0.001	< 0.001	< 0.001	< 0.001	Î
		08/13/05 11/07/05	37.98	3338.28	193 233	1000 1020	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	
1		02/06/06	38.39	3337.45	262	1020	< 0.001	< 0.001	< 0.001	< 0.001	
		05/08/06	38.55	3337.29	282	1140	< 0.001	< 0.001	< 0.001	< 0.001]
[08/01/06	38.80	3337.04	218	1126	< 0.001	< 0.001	< 0.001	< 0.001	
		10/23/06	39.21	3336.63	193	1010	< 0.001	< 0.001	< 0.001	< 0.001	
	-	02/08/07	39.52	3336.32	182	912	< 0.001	< 0.001	< 0.001	< 0.001	
• [. 04/18/07	39.66	3336.18	161	898	< 0.001	< 0.001	< 0.001	< 0.001	
		07/18/07	39,86	3335.98	149	900	— .		-	`	
4		10/10/07	40.07	3335.77	160	915					
<u> </u>		. 08/22/03	43,99	3331.33	. 239	1180	< 0.001	< 0.001	< 0.001	< 0.001	13 1 1
· -		-10/30/03	44:17	3331.15 3331.41	239 [.]	1240	< 0.001	< 0.001	< 0.001 < 0.001	< 0.001	[
i		02/18/04 05/05/04	43.91 [.] 40.98	3334,34	221 - 204	1150 1060	< 0.001	0.001	< 0.001	< 0.001 < 0.001	
		03/03/04	37.14	3338.18	230	1120	< 0.001	< 0.001	< 0.001	< 0.001	
	17.00	11/09/04	36.99	3338.33	230 ¹	1120	< 0:001	< 0.001	< 0.001	< 0.00'1	48 - 1
		02/09/05	37.03	3338.29	294	1220	< 0.001	< 0.001	< 0.001	< 0.00,1	
		05/06/05	37.46	3337.86	257	1210	< 0.001	< 0.001	< 0.001	< 0.001	
	MW-2	08/13/05	38.02	3337.30	237	1180	< 0.001	< 0.001	< 0.001	< 0.001	
	(v1 vv - <u>-</u> _	11/07/05	38,44	3336.88	206	1130	< 0.001	< 0.001	< 0.001	< 0.001	
		02/06/06	38.83	3336.49	250	1090	< 0.001	< 0.001	< 0.001	< 0.001	4
		05/08/06	39.02	3336.30	257	1210	< 0.001	< 0.001	< 0.001	< 0.001	
1		08/01/06	39.35 39.71	3335.97	387	1358	< 0.001	< 0.001	< 0.001	< 0.001	
		10/23/06 02/08/07	40.03	3335.61 3335.29	395 378	1370 1220	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	ĺ
		02/08/07	40.09	3335.23	446	1220	< 0.001	< 0.001	< 0.001	100.0 >	
		07/18/07	40.30	3335.02	440 679	1720		~ 0.001		< 0,001	
	_	10/10/07	40.52	3334.80	730	1838					
Ī		08/22/03	43.06	3332.79	160	904	< 0.001	< 0.001	< 0.001	< 0.001	
. (10/30/03	43.28	3332.57	168	1070	< 0.001	< 0.001	< 0.001	< 0.001	l
	ļ	02/18/04	43.03	3332.82	160	862	< 0.001	< 0.001	< 0.001	< 0.001	1
		05/05/04	40.04	3335.81	160	891. 011	< 0.001	< 0.001	< 0.001	< 0.001	1
		08/10/04	36.55	3339.30	164	941	< 0.001	< 0.001	< 0.001	< 0.001	
		11/09/04 02/09/05	36.22 36.17	3339.63 3339.68	142 138	1160	< 0.001 < 0.001	< 0.001	< 0.001 < 0.001	< 0.001	
ļ		02/09/05	36,56	3339.08	138	1010 870	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001	< 0.001 < 0.001	
		08/13/05	37.12	3338.73	125	870 842	< 0.001	< 0.001	< 0.001	< 0.001	[
	MW-3	11/07/05	37.55	3338.30	125	826	< 0.001	< 0.001	< 0.001	< 0.001	
	ļ	02/06/06	37.84	3338.01	119	748	< 0.001	< 0.001	< 0.001	< 0.001	
1		05/08/06	38.00	3337.85	142	806	< 0.001	< 0.001	< 0.001	< 0.001	
Į		08/01/06	38.22	3337.63	141	876	< 0.001	< 0.001	< 0.001	< 0.001	
ł		10/23/06	38.68	3337.17	147	834	< 0.001	< 0.001	< 0.001	< 0.001	
ļ		02/08/07	39.01	3336.84	147	788	< 0.001	< 0.001	< 0.001	< 0.001	
		04/18/07	39.16	3336.69	150	818	< 0.001	< 0.001	< 0.001	< 0.001	
l		07/18/07	39.40	3336.45	139	848					
ļ		10/10/07	39.60	3336.25	164	857					
1		WQCC S	tandards		250	1000	0.01	0.75	0.75	0.62	

- 1

6.0 FATE AND TRANSPORT MODELING RESULTS

6.1 FATE AND TRANSPORT MODELING

:

As proposed in the NMOCD-approved Stage 1 and 2 Abatement Plan, fate and transport model simulations were performed to forecast the movement and attenuation of the chloride plume by dispersion and abatement by the water supply wells. Simulations were conducted with the two-dimensional groundwater flow and contaminant transport model WinTran, version 1.03 (1995) designed and distributed by Environmental Simulations, Inc. WinTran is built around a steady-state analytical element flow model, which is uniquely linked to a finite element contaminant transport model. A detailed description of the modeling procedure, parameter inputs, and the simulated results are provided in Appendix A. The features, equations, and benchmarking documentation are included in Appendix B.

The fate and transport model simulations demonstrate how chloride concentrations in the center of the plume will decrease to background levels by the year 2047 as the mass of the plume is captured by the water supply wells and does not migrate beyond them. The results of the fate and transport modeling simulations support the conclusion that the chloride plume is not likely to impact any drinking water, livestock, municipal, or irrigation water supplies, the closest of which is a windmill (NM File No. CP-220) located approximately 1,610 feet east of the Jet. J-26 site. This windmill, which is used for livestock watering, is cross-gradient from the junction box and, therefore not in the direct path of the simulated plume.

e pro

7.0 CONCLUSIONS AND REQUEST FOR CLOSURE

151

Since July 2004, chloride and TDS concentrations at the Jct. J-26 site have generally remained at or near background levels in each of the three on site monitoring wells. Chloride and TDS concentrations in downgradient monitoring well MW-2 have exhibited a slight increase over background levels in the most recent quarter however, that is consistent with the modeling simulations as described in Appendix A. The fate and transport modeling simulates chloride concentrations in MW-2 peaking at 737 mg/L in year 2009 and then resume a decreasing trend.

Continued operation of the water supply wells is essential in maintaining the operation of the Eunice Gas Plant. The withdrawal of groundwater by several of these wells has resulted in redirecting and recovery of residual chloride and TDS constituents from the Jct. J-26 site. In addition, WinTran fate and transport modeling simulations show the capture effects of the water supply wells and natural dispersion in attenuating chloride and TDS constituents.

Based on the physical findings, source removal activities, backfilling with an infiltration barrier, re-establishment of native vegetation, and results of the WinTran fate and transport simulations, ROC has performed sufficient remedies which have resulted in the protection of groundwater quality, human health, and the environment. Therefore, additional groundwater monitoring is not necessary. On behalf of ROC, we respectfully request that NMOCD approve the plugging and abandonment of the three onsite monitoring wells and close the regulatory file for this site. A copy of the Final Junction Box Closure Report is included in Appendix E.

APPENDIX A

..564

19 E - 19

. 205 -

心观的 经精计 计

AC 1

. 1/4 .

and the state of the first of

Description of Fate and Transport Modeling Procedures and Parameter Inputs

Description of Fate and Transport Modeling

Conceptual Model

Produced water containing high concentrations of chloride, and resultant high levels of total dissolved solids (TDS), reportedly leaked from the J-26 junction box. Extrapolating from current conditions for decades into the future, taking account of both advective flow and attenuation by hydrodynamic dispersion, enables prediction of the probable distance that the residual plume will travel as well as the gradually declining concentrations in the plume.

Basic Site Data

Information about site conditions was obtained from data collected by Rice Operating Company and Trident Environmental. This included lithologic records from well installations, water level data, and water quality analytical results.

Simulation Model

Simulations were conducted with the two-dimensional groundwater flow and contaminant transport model WinTran, version 1.03 (1995) designed and distributed by Environmental Simulations, Inc. (ESI) of Herndon, Virginia. WinTran is built around a steady-state analytical element flow model, linked to a finite element contaminant transport model. The Windows interface allows for rapid data input, processing, parameter manipulation and optimization, and output in multiple formats. The fundamental mathematics of the model solutions, model verification (benchmarked against MODFLOW), and use of WinTran is documented in the "Guide to Using WinTran" published by ESI.

Base Map

A simplified site base map, edited with TurboCAD (Version 12), was exported to a universal drawing exchange file (DXF) file format. The DXF base map was imported into WinTran, which preserves the original units of measurement.

Model Input Parameters

The following table lists the various parameters input into the fate and transport model simulations.

Parameter	Value	Source of Data
Hydraulic Conductivity (K_x, K_y, K_z)	4.4 ft/day (1.2E-03 cm/sec)	Aquifer test (Appendix C)
Hydraulic Gradient	0.003 ft/ft	Observed and measured
Gradient Direction	56° south of due east (SE)	Observed and measured
Longitudinal Dispersivity	328 ft	Estimated plume length (2002)
Transverse Dispersivity	32.8 ft	One-tenth of longitudinal
Porosity	0.25	Professional judgement
Base elevation of aquifer	3250 ft AMSL	Observed and measured
Depth to groundwater	40 ft	Observed and measured
Saturated thickness	45 ft	Observed and measured
Model X Extent (100 nodes)	2.5 miles	Professional judgement
Model Y Extent (100 nodes)	2.5 miles	Professional judgement
Coefficient of molecular diffusion	$0.34 \text{ ft}^2/\text{yr} (1.0\text{E}-07 \text{ cm}^2/\text{sec})$	Bear and Verruijt (1987)

Flow Parameters

Input requirements for the steady-state groundwater flow simulation include: hydraulic gradient and direction of flow, hydraulic conductivity, aguifer top and bottom elevations, and reference head. The values used were based on the following sources:

- Hydraulic gradient measured gradient of 0.003 feet/foot based on historical site measurements.
- Direction of flow measured direction of approximately 56° south of due east (SE) based on past local and current regional measurements.

e. 1.,

- Hydraulic conductivity This is one of the most critical parameters used for any fate and transport 0 modeling effort, and the various published values researched range widely from less than 2 ft/day to 200 ft/day. Therefore an aquifer test was performed at two nearby industrial water supply wells (WW-1 and WW-5) to determine the most accurate site-specific value. A hydraulic conductivity of 4.4 ft/day was determined by performing a Cooper-Jacob analysis of the recovery data, and a program from USGS Open-File 02-197 (Keith Halford, 2002). Documentation of the aquifer test procedures, results, and USGS program is included in Appendix C).
- Aquifer top and bottom elevations bottom elevation of Ogallala Formation at 3250 feet based on 0 published information (Nicholson & Clebsch, 1961). The top elevation for an unconfined aquifer must be greater than the reference head. An elevation of 3400 feet was assumed.
- Reference head measured unconfined head of 3345 feet located upgradient of the site so as not to be influenced by pumping wells during modeling simulations.

· Jun

Transport Parameters Input requirements for the contaminant transport numerical simulation include: longitudinal and transverse dispersivity, porosity, diffusion coefficient, contaminant half-life, and retardation coefficient. The values used were based on the following sources:

- Longitudinal and transverse dispersivity Longitudinal dispersivity represents the spreading of the contaminant plume in the direction of groundwater flow. The transverse component represents spreading perpendicular to the flow direction. Dispersivity is a scale-dependent parameter which is generally larger as the scale of the contaminant plume increases. Fetter (1993, Section 2.11, pp. 71-77) notes the apparent scale-dependency of longitudinal dispersivity, which typically may be about 0.1 times the flow length. However, values of dispersivity reported in the literature generally range from 1 to 100 percent of the problem scale (Gelhar, 1986). For the current site scale, a conservative value of 328 feet (100 meters) was selected for longitudinal dispersivity. A value of 32.8 feet (i.e., 10 meters, or one-tenth of the longitudinal value) was selected for transverse dispersivity. These conservative values also minimized modeling transport errors.
- Porosity no site measurements were available; therefore a literature value based on saturated zone lithology was selected. Typical lithology is described as silty sand and very fine sand. A range of 0.25 to 0.50 is typically given for unconsolidated "sand" (e.g., Freeze & Cherry, 1979, Table 2.4, p. 37); however, the Ogallala Formation is predominantly very fine grained, compacted and partly cemented, and may also fit within the range of 0.05 to 0.30 for sandstone. Fetter (1988, Table 4.3 and Figure 4.10, pp. 74-75) cites an average value of 0.20 for the specific yield of very fine sands. Specific retention of silty fine sand is approximately 0.05, for a total porosity of 0.25, which is the value selected for the transport modeling. WinTran uses the porosity term to estimate groundwater velocity, and actually requires an effective porosity value. Fetter (1988, Section 4.4, pp. 84-85) notes that pores of most sediments down to clay size are interconnected and that the effective porosity is virtually equal to the total porosity.
- Diffusion coefficient occurs when a contaminant spreads in water due to concentration gradients. 0 That is, dissolved contaminants will spread in water from areas of high concentration to areas of

lower concentration. This process is caused by random movement of molecules in a fluid. The coefficient of molecular diffusion (or simply the diffusion coefficient) is expressed in units of L^2/T (e.g., cm²/s) and is often assumed to equal zero in advective-dominated transport. Only in very slow-moving groundwater is diffusion important. Bear and Verruijt (1987) estimate the diffusion coefficient to be approximately 1 x 10-5 cm^2/s (0.34 ft²/yr) in dilute systems.

- Contaminant half-life this parameter accounts for chemical decay (e.g., radioisotopes, biological 0 transformation of organic molecules); however, the species of interest in the present case are inorganic ions (chloride) and are not expected to decay to any appreciable extent. A conservative value of 1000 years was used, which produces a negligible decay coefficient of less than 0.001 yr⁻¹.
- Retardation coefficient this parameter accounts for sorption processes that slow the movement of contaminants relative to the groundwater velocity. Inorganic ions such as chloride are commonly taken as conservative tracers in groundwater and are not considered to be retarded; therefore, a value of 1.0 was selected for the retardation coefficient.

Flow Model Calibration

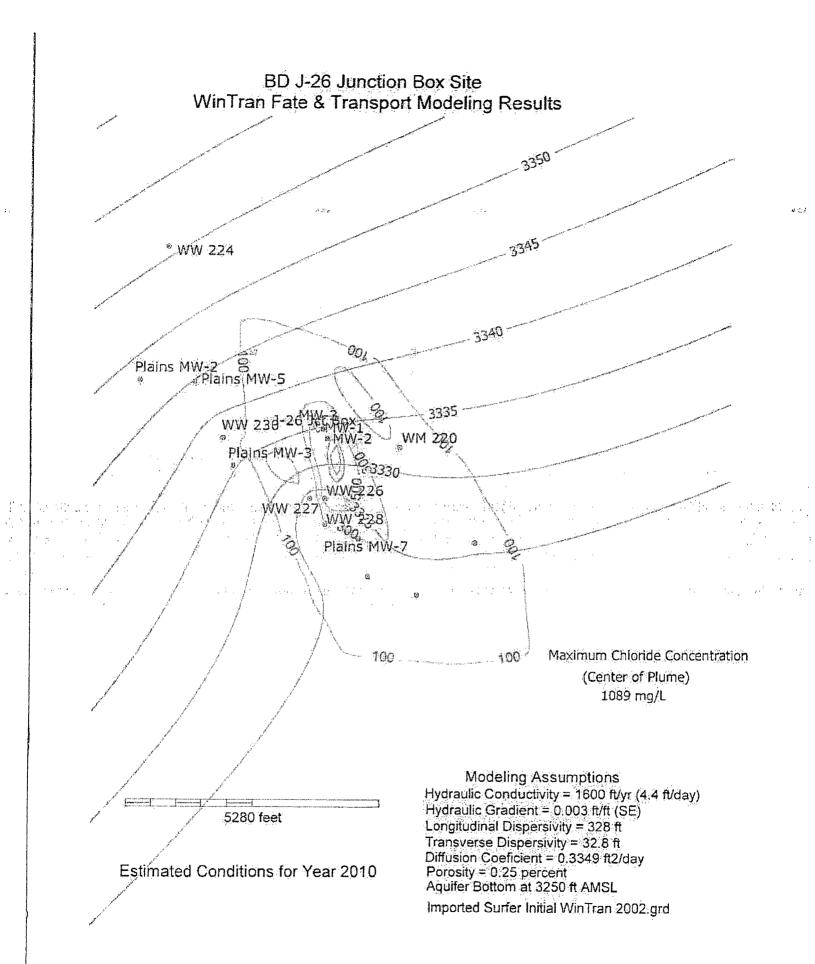
and the same from

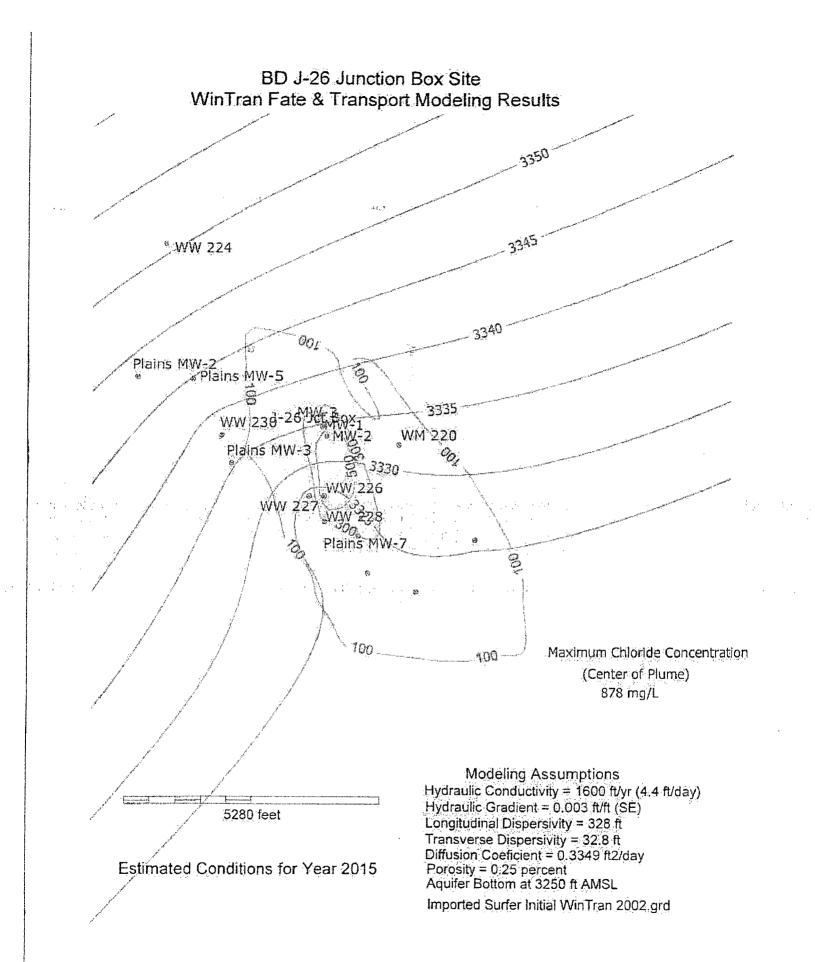
The vicinity of the site where water level measurements were recorded between October 2002 and August 2006 is simulated closely by the flow model.

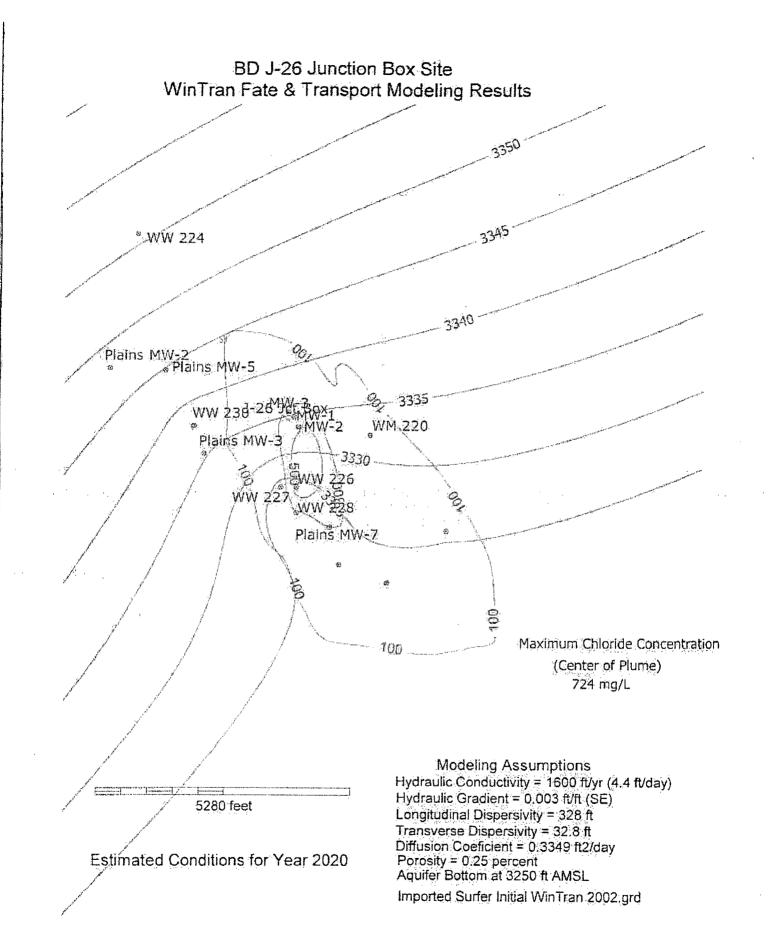
Contraction Transport Model Calibration

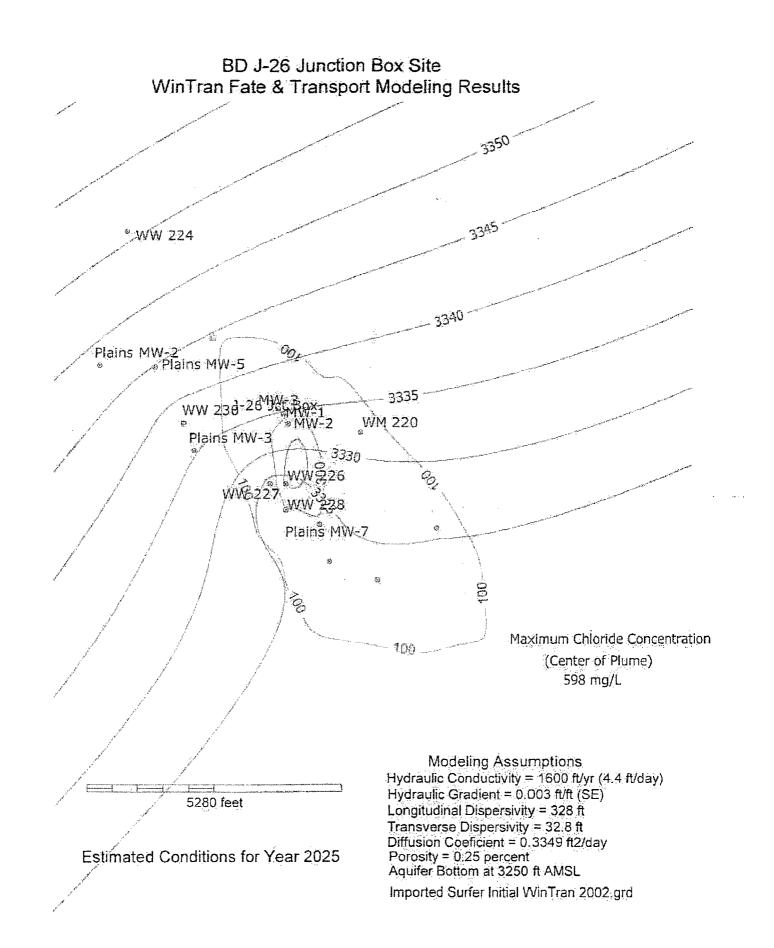
that closely match current observed values. This was done by importing a grid file created from an isopletby observed values. that closely match current observed values. This was done by importing a grid file created from an isopleth believe strates map using Surfer (version 6.04) contouring program, producing the configuration and constituent strates and the strates of th concentration distribution observed in October 2002 at the completion of the upgrade of the junction box. The model again ran for 4 years (2002 to 2006) after entering in the known concentrations at each of the three monitoring wells and other area wells (Targa water recovery wells and two monitoring wells from a state of the substate nearby Plains Petroleum sites, and a windmill east-southeast of the site).

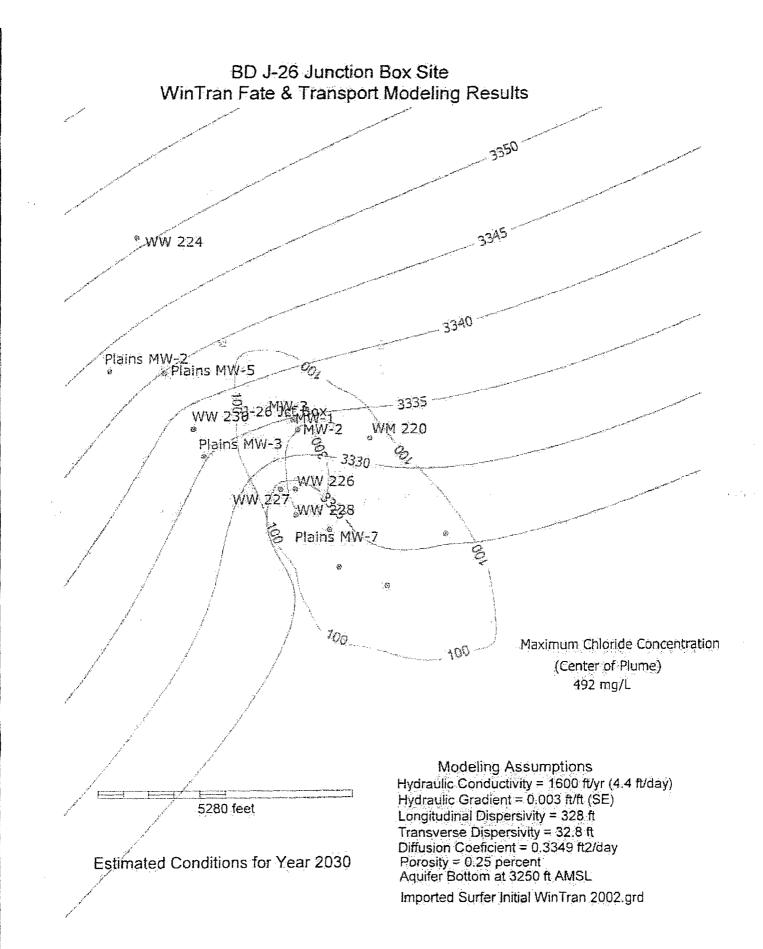
Simulation of Fate and Transport

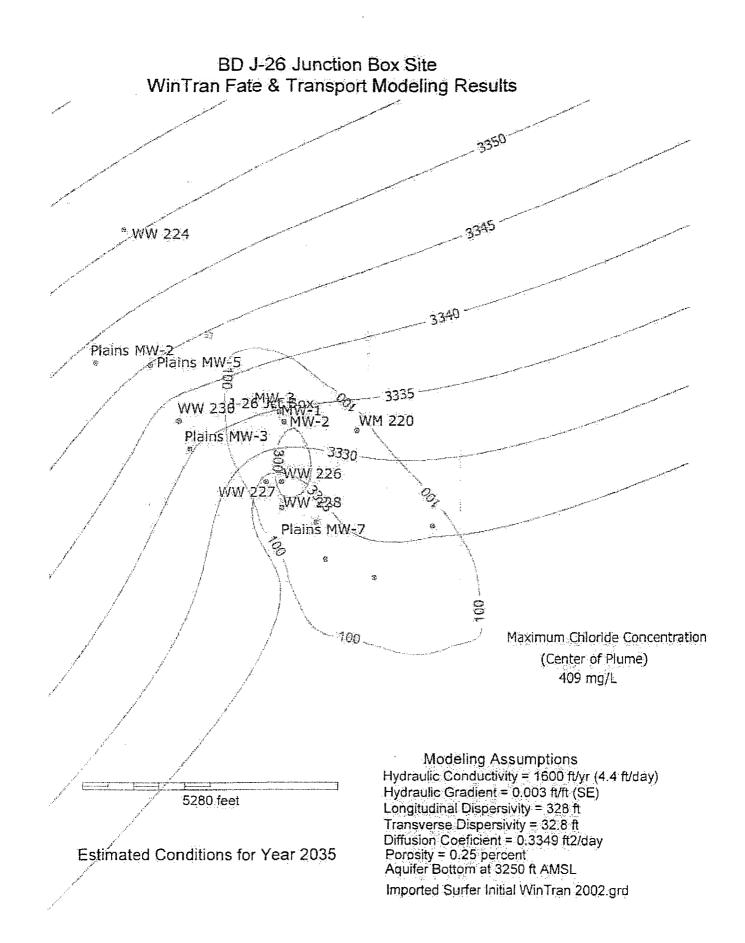

After model calibration, estimation of the fate and transport of chlorides was then achieved by restarting the transport model from the end of 2006 by retaining the distribution of contaminant mass and projecting into the future. Hydrodynamic dispersion serves to broaden the dimensions of the plume while reducing the concentrations in the middle of the plume. Advective flow moves the center of plume mass downgradient (southeast) while the groundwater withdrawal from the industrial supply wells directs the plume in a more southerly direction. Water supply wells WW-1 and WW-12 cause further dilution of the plume by directing the chloride mass transverse to the natural gradient direction. Similarly water supply wells WW-5 and WW-8 direct the chloride mass in a southerly direction. Various time increments were input to show the fate and transport of the chloride mass over a 41 year period (Years 2006 through 2047) after which the chloride plume center attenuated to a concentration of 276 mg/L (background conditions). Results of the fate and transport modeling output (Years 2010, 2015, 2020, 2025, 2030, 2035, 2040 and 2047) are depicted on site maps in the pages that follow.

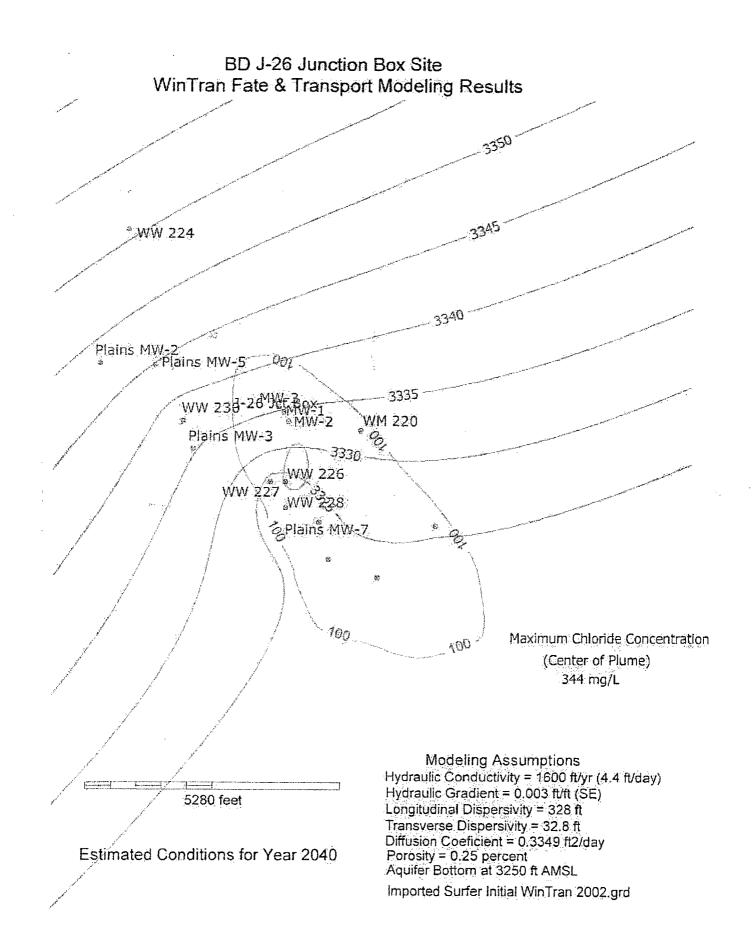

For a hydraulic conductivity value of 4.4 ft/day the resultant average velocity is 14.9 ft/yr based on the darcy expression: $v = (k \cdot i) / n$, where k is the hydraulic conductivity (ft/yr), i is the hydraulic gradient (ft/ft), and n is the effective porosity (unitless). The center of the modeled plume moves at a greater rate (22.8 ft/yr) over successive time intervals than the average groundwater velocity based on Darcy's law, due to the added effect of dispersion and the capture effect from the water supply wells.

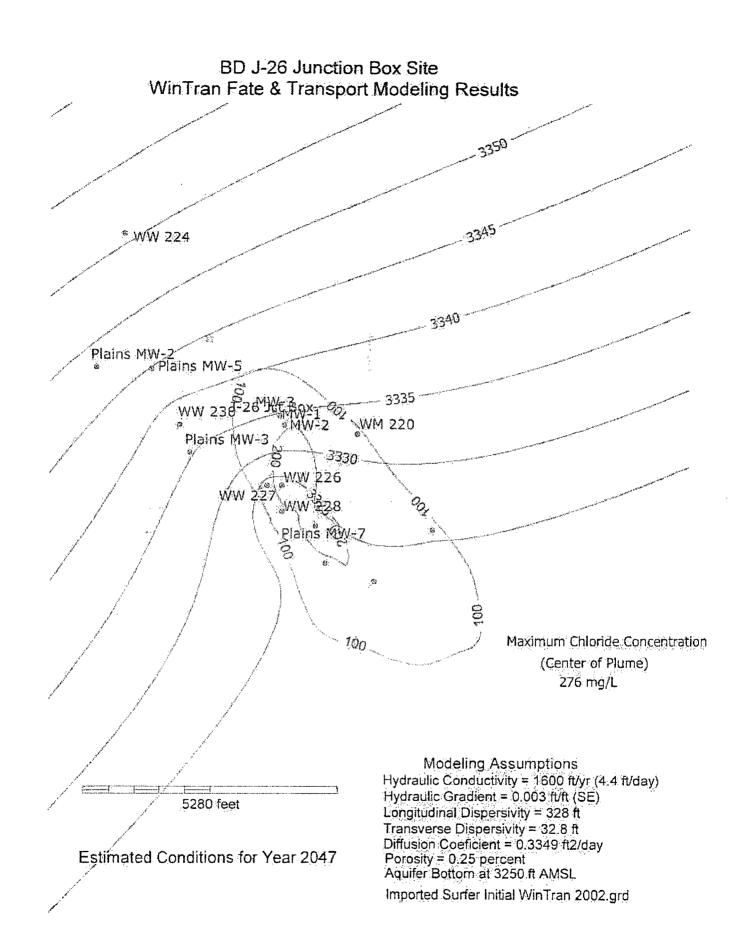

The fate and transport model simulations demonstrate how chloride concentrations in the center of the plume will decrease to background levels by the year 2047 as the mass of the plume is captured by the water supply wells and does not migrate beyond them. These results strongly support the evidence that the chloride plume is not likely to impact any existing sources of water supply, the closest of which is a windmill (NM File No. CP-220) located approximately 1,610 feet east of the Jct. J-26 site. This windmill, which is used for livestock watering, is cross-gradient from the junction box and, therefore not in the direct path of the simulated plume.


It is not necessary to simulate the fate and transport of TDS because those concentrations are closer to meeting background concentrations in comparison with chloride values. In other words, the standard for TDS concentrations will be met before those for chloride concentrations.


4-1.2







.

ň

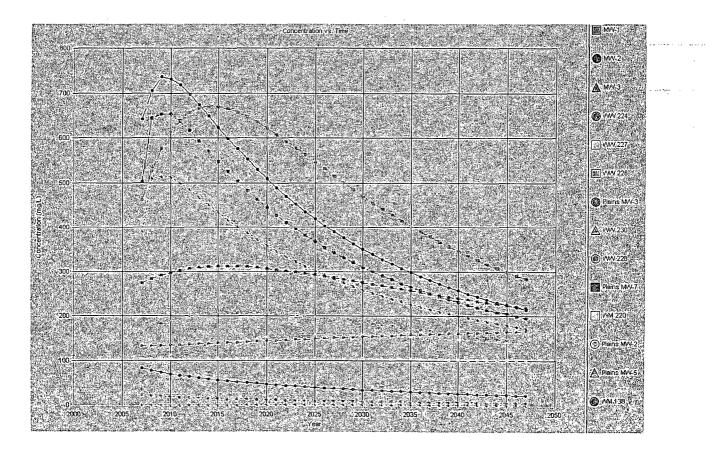
WinTran Analytical Model of 2D Ground-Water Flow and Finite-Element Contaminant Transport Model

Developed by

James O. Rumbaugh, III

Douglas B. Rumbaugh

(c) 1995 Environmental Simulations, Inc.



Model performed by: Trident Environmental (Gilbert Van Deventer)

Date: 03/02/07

Time: 13:19:54.00

Input File: 2006 CHLORIDE J26
Map File : D:\PROJECTS\RICE\BD\J-26\WINTRAN RESULTS\WINTRAN2002BASE.MAP

Model Entities Number of Wells = 17Well #1 Center of Well -- x: 3873.000000 y: 5443.000000 Radius = 0.083330Pumping Rate = 0.00000010 Concentration of Injected Water = 218.000000 Head at Well Radius = 3334.738437 Well #2 Center of Well -- x: 3969.000000 y: 5243.000000 Radius = 0.083330Pumping Rate = 0.000000Concentration of Injected Water = 387.000000 = 3333.495421 Head at Well Radius Well #3 Center of Well -- x: 3764.000000 y: 5540.000000 Radius = 0.083330Pumping Rate = 0.000000Concentration of Injected Water = 141.000000 Head at Well Radius = 3335.402430Well #4 Center of Well -- x: 631.000000 y: 9185.000000 Radius = 0.083330Pumping Rate = 0.000000Concentration of Injected Water = 302.000000 Head at Well Radius = 3355.727045 Well #5 Center of Well -- x: 3611.000000 y: 4012.000000 Radius = 0.375000Pumping Rate = 721412.000000Concentration of Injected Water = 181.000000 Head at Well Radius = 3318.357873 Well #6 Center of Well -- x: 3921.000000 y: 4012.000000 Radius = 0.375000Pumping Rate = 543819.000000Concentration of Injected Water = 225.000000 Head at Well Radius = 3318.856940 Well #7 Center of Well -- x: 2012.000000 y: 4694.000000 Radius = 0.083330Pumping Rate = 0.000000Concentration of Injected Water = 322.000000 Head at Well Radius = 3335.282440 Well #8 Center of Well -- x: 1802.000000 y: 5262.000000 Radius = 0.375000Pumping Rate = 1202639.000000Concentration of Injected Water = 187.000000 Head at Well Radius = 3328.076355Well #9 Center of Well -- x: 3927.000000 y: 3481.000000 Radius = 0.375000Pumping Rate = 2748248.000000Concentration of Injected Water = 308.000000 Head at Well Radius = 3289.944035Well #10 Center of Well -- x: 4628.000000 y: 3178.000000 Radius = 0.083330

Pumping Rate = 0.000000Concentration of Injected Water = 450.000000 Head at Well Radius = 3323.670009Well #11 Center of Well -- x: 5472.000000 y: 5065.000000 Radius = 0.250000Pumping Rate = 1000.00000Concentration of Injected Water = 620.000000 Head at Well Radius = 3332.262314 Well #12 Center of Well -- x: 60.000000 y: 6446.000000 Radius = 0.083330Pumping Rate = 0.000000Concentration of Injected Water = 269.000000 Head at Well Radius = 3348.295561 Well #13 Center of Well -- x: 1205.000000 y: 6403.000000 Radius = 0.083330Pumping Rate = 0.000000Concentration of Injected Water = 225.000000 Head at Well Radius = 3344.810629 Well #14 Center of Well -- x: 4829.000000 y: 2410.000000 Radius = 0.250000Pumping Rate = 0.000000Concentration of Injected Water = 341.000000 Head at Well Radius = 3324.074809 Well #15 Center of Well -- x: 5838.000000 y: 2032.000000 Radius = 0.250000 Pumping Rate = 0.000000 Concentration of Injected Water = 971.000000 Head at Well Radius = 3323.649345 •••• Well #16 Center of Well -- x: 7050.000000 y: 3103.000000 Radius = 0.375000Pumping Rate = 100000.000000Concentration of Injected Water = 405.000000 Head at Well Radius = 3324.822825 Well #17 Center of Well -- x: 3914.520000 y: 5464.310000 Radius = 4.000000Pumping Rate = 0.000000Concentration of Injected Water = 60000.000000 Head at Well Radius = 3334.824298

Reference Head = 3345.000000 Defined at -- x: 2360.290000 y: 7094.260000

ús.

a na na para

Aquifer Properties Steady-State Flow Model Permeability..... = 1606.000000 [L/T] Porosity..... 0.250000 Elevation of Aquifer Top....= 3400.000000 Elevation of Aquifer Bottom. = 3250.000000 Uniform Regional Gradient...= 0.003000 Angle of Uniform Gradient...= 304.000000 Recharge.....= 0.000000 Transient Transport Model Longitudinal Dispersivity...= 328.000000 [L] Transverse Dispersivity....= 32.800000 [L] Diffusion Coefficient....= 0.000000 [L2/T] Contaminant half-life..... = 0.000000 [T] Retardation Coefficient....= 1.000000 Upstream Weighting in X....= 0.000000 Upstream Weighting in Y....= 0.000000 Time Stepping Information Number of time steps.....= 41 1. 1980 Starting time value....= 2006.000000 Initial time step size....= 1.000000 . . Time step multiplier.... = 1.000000 Maximum time step size....= 1.000000 Time stepping scheme.....= Central Differencing Simulation Summary Starting time.....= 2006.000000 Ending time..... = 2047.000000 Number of time steps..... = 41 (NOTE: following mass balance errors expressed as percent) Transport Mass Balance Error= 7.032368 Peclet Criterion..... = 0.516657 Courant Number..... = 0.867743 Flow Model Type..... Analytic Element

2

APPENDIX B

30

Documentation of WinTran (Version 1.03) Fate and Transport Model Capabilities and Benchmarking

Attached as separate Adobe Reader file in pdf format (What is WinTran.pdf)

APPENDIX C

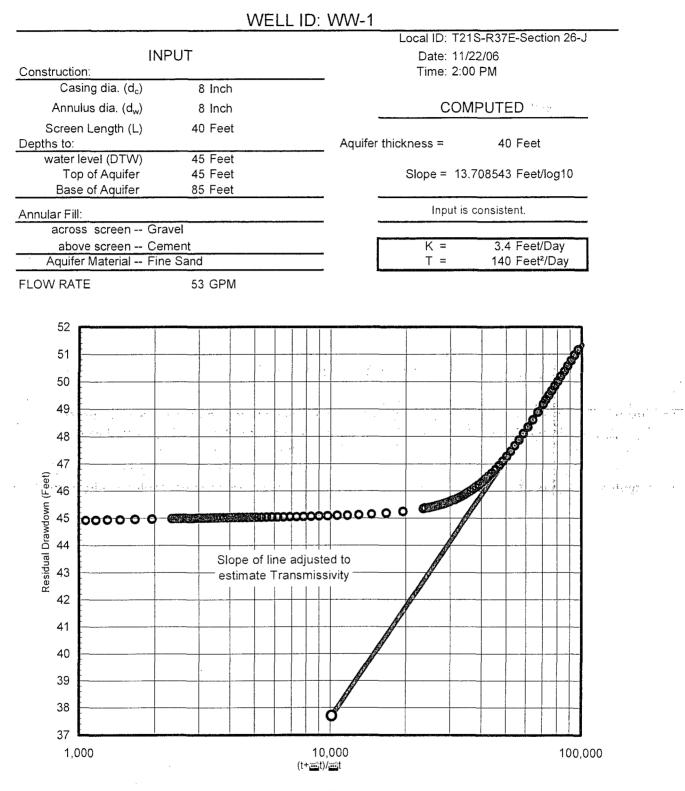
. 3

Aquifer Test Procedures and Output

Description of Aquifer Test

Hydraulic conductivity is one of the most critical parameters used for any fate and transport modeling effort, and the various published values researched range widely over two orders of magnitude, from less than 2 ft/day to 200 ft/day. Therefore, an aquifer test at two nearby industrial water supply wells (WW-1 and WW-5) was performed on November 22, 2006, to determine site-specific hydraulic conductivity. There were several advantages in using these wells as follows:

- Each well is fully penetrating (screened across entire thickness of the aquifer)
- The wells had been reportedly running continuously for over 16-20 hours prior to recording the recovery drawdown data.
- The wells are located nearby the Jct. J-26 site thus available for site-specific testing.
- The wells were constructed efficiently as they are designed to provide maximum yields for supply to the Eunice Gas Plant.


s 4. 1

• The wells play a useful role in abatement of chlorides and TDS in the area.

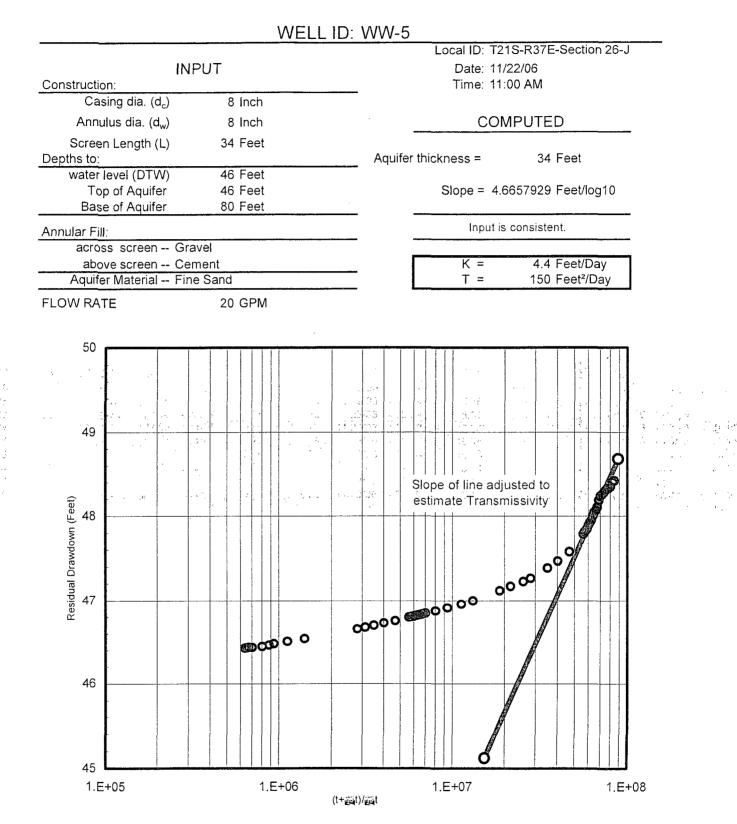
The wells had been running continuously for about 16-20 hrs according to the Eunice Gas Plant personnel who graciously allowed access to their wells for aquifer testing. Immediately prior to turning off the pump in each well, depth to groundwater was measured using an electronic water level indicator. A 10 psi pressure transducer and Hermit 2000 Data logger were then used to capture and record the recovery drawdown data. This instrumentation made it possible to obtain many data points early on in the test (first few minutes) which was essential for subsequent analysis and interpretation of the results. Data was recorded immediately after the water well pump was turned off to provide recovery drawdown data. Collection of data was terminated after the water table equilibrated to near static conditions; consequently the tests were of relatively short duration (less than 1 hour).

Hydraulic conductivity values were determined using a Cooper-Jacob analysis of the recovery data, and a program from USGS Open-File 02-197 (Keith Halford, 2002, documentation attached in Appendix C). The USGS program uses Thiem's equation and the Cooper-Jacob plotting methods for determining hydraulic conductivity. Results of the aquifer test analysis are shown on the following graphs and tables attached herein. The slope near the earlier time drawdown data (within the first few minutes of the test) provided the best estimation. Note that the time axis is plotted as t/t so time increases from right to left. This is the preferred method to analyze recovery data from a pumping well.

Hydraulic conductivity values of 3.4 ft/day and 4.4 ft/day were calculated from water supply wells WW-1 and WW-5, respectively. Results from water supply well WW-1 probably provided better data because that well was pumping at a rate that stressed the aquifer, that is, the pumping water level was over 9 feet below the static level, whereas with WW-5 the pumping level was less than 2 feet from static. Either way the results from both tests are consistent with each other. The higher hydraulic conductivity value of 4.4 ft/day was used in the fate and transport modeling because it provided a more conservative value.

REMARKS:

Cooper-Jacob recovery analysis of single-well aquifer test


This recovery test was done on a water supply well (WW-1) that had been running continuously at ~53 gpm for 16-20 hours. A Hermit 2000 data logger was used to record the water level data for the length of the test (~50 minutes).

Depth to water before shutting off pump 54.09 ft (t = 0 min).

Depth to water at end of recovery test 44.84 ft (t = 50 min).

Raw input recovery data for water supply well WW-1

		Reduced Data Time,	Water Level		Time,	Water Level		Time,	Water Level		
	Entry 1	Date Hr:Min:Sec 1/0/00 0:00:00	Feet 0.00	Entry 51	Date Hr:Min:Sec 11/22/06 14:00:44	Feet 45.71	Entry 101	Date Hr:Min:Sec 11/22/06 14:07:48	Feet 45.00		
	2	11/22/06 14:00:00	54.09	52	11/22/06 14:00:45	45.67	102	11/22/06 14:08:00	45.00		
	3	11/22/06 14:00:08	54.09	53	11/22/06 14:00:46	45.65	103	11/22/06 14:08:12	44.99		
	4	11/22/06 14:00:08	53.99	54	11/22/06 14:00:47	45.61	104	11/22/06 14:08:24	44.99		
	5	11/22/06 14:00:09	53.74	55	11/22/06 14:00:48	45.57	105	11/22/06 14:08:36	44.99		
	6	11/22/06 14:00:09	53.47	56	11/22/06 14:00:49	45.55	106	11/22/06 14:08:48	44.99		
	7	11/22/06 14:00:10	53.22	57	11/22/06 14:00:50			11/22/06 14:09:00	44.99		
	8	11/22/06 14:00:11	52.96	58	11/22/06 14:00:51	45.50		11/22/06 14:09:12	44.99		
	9	11/22/06 14:00:11	52.72	59	11/22/06 14:00:52			11/22/06 14:09:24	44.99		
	10 11	11/22/06 14:00:11 11/22/06 14:00:12	52.48 52.25	60 61	11/22/06 14:00:53 11/22/06 14:00:54	45.45 45.43		11/22/06 14:09:36 11/22/06 14:09:48	44.99 44.99		
	12	11/22/06 14:00:12	52.02	62	11/22/06 14:00:55	45.43		11/22/06 14:10:00	44.99		
	13	11/22/06 14:00:13	51.80	63	11/22/06 14:00:56	45.40		11/22/06 14:12:00	44.96		
·	14	11/22/06 14:00:14	51.59	64	11/22/06 14:00:57	45.38		11/22/06 14:14:00			
	15	11/22/06 14:00:14	51.37	65	11/22/06 14:00:59	45.36		11/22/06 14:16:00	44.94	: . ·	,
	16	11/22/06 14:00:14		66	11/22/06 14:00:59	45.37		11/22/06 14:18:00			12
· . ·	17	11/22/06 14:00:15	50.96	67	11/22/06 14:01:00		117	11/22/06 14:20:00	44.93	11 N.S.	
	18	11/22/06 14:00:15	50.76	.68	11/22/06 14:01:12			11/22/06 14:22:00	44.92	. 10.13 	
	19	11/22/06 14:00:16	50.56	69	11/22/06 14:01:24	45.18		11/22/06 14:24:00		·· ,	
	20	11/22/06 14:00:17	50.37	70	11/22/06 14:01:36	45.14		11/22/06 14:26:00		-	
	21	11/22/06 14:00:17	50.19	71.	11/22/06 14:01:48	45.12		11/22/06 14:28:00	44.89	16 .	5
	22 23	11/22/06 14:00:17 11/22/06 14:00:18	50.01 49.84	72 73	11/22/06 14:02:00 11/22/06 14:02:12	45.10 45.09		11/22/06 14:30:00 11/22/06 14:34:00	44,89		i ure di
	24	11/22/06 14:00:18	49.67	73	11/22/06 14:02:12	45.08		11/22/06 14:36:00	44.87		
	25	11/22/06 14:00:19	49.50	75	11/22/06 14:02:36			11/22/06 14:38:00	44.86		
	26	11/22/06 14:00:20	49.34	76	11/22/06 14:02:48	45.06		11/22/06 14:40:00	44.86		
	27	11/22/06 14:00:20	49.18	77	11/22/06 14:03:00	45.05	127	11/22/06 14:42:00	44.86		
	28	11/22/06 14:00:21	48.89	78	11/22/06 14:03:12	45.05	128	11/22/06 14:44:00	44.85		
	29	11/22/06 14:00:22	48.61	79	11/22/06 14:03:24	45.05		11/22/06 14:46:00	44.84		
	30	11/22/06 14:00:23	48.34	80	11/22/06 14:03:36	45.04		11/22/06 14:48:00	44.84		
	31	11/22/06 14:00:24	48.10	81	11/22/06 14:03:48	45.04	131	11/22/06 14:50:00	44.84		
	32 33	11/22/06 14:00:25 11/22/06 14:00:26	47.87 47.66	82 83	11/22/06 14:04:00 11/22/06 14:04:12	45.04 45.04					
	34	11/22/06 14:00:27	47.46	84	11/22/06 14:04:12						
	35	11/22/06 14:00:28	47.27	85	11/22/06 14:04:36	45.03					
	36	11/22/06 14:00:29	47.10	86	11/22/06 14:04:48	45.03					
	37	11/22/06 14:00:30	46.94	87	11/22/06 14:05:00	45.03					
	38	11/22/06 14:00:31	46.80	88	11/22/06 14:05:12	45.02					
	39	11/22/06 14:00:32	46.66	89	11/22/06 14:05:24	45.02					
	40	11/22/06 14:00:33	46.55	90	11/22/06 14:05:36	45.02					
	41 42	11/22/06 14:00:34 11/22/06 14:00:35	46.43 46.32	91 92	11/22/06 14:05:48 11/22/06 14:06:00	45.02 45.02					
	42 43	11/22/06 14:00:35	46.23	92 93	11/22/06 14:06:00	45.02 45.02					
	44	11/22/06 14:00:37	46.14	90 94	11/22/06 14:06:24	45.02					
	45	11/22/06 14:00:38	46.06	95	11/22/06 14:06:36	45.01					
	46	11/22/06 14:00:39	45.99	96	11/22/06 14:06:48	45.01					
	47	11/22/06 14:00:40	45.92	97	11/22/06 14:07:00	45.01					
	48	11/22/06 14:00:41	45.86	98	11/22/06 14:07:12	45.00					
	49	11/22/06 14:00:42	45.81	99	11/22/06 14:07:24	45.00					
	50	11/22/06 14:00:43	45.76	100	11/22/06 14:07:36	45.00					

REMARKS:

۰....

.

Cooper-Jacob recovery analysis of single-well aquifer test

This recovery test was done on a water supply well (WW-1) that had been running continuously at ~53 gpm for 16-20 hours. A Hermit 2000 data logger was used to record the water level data for the length of the test (~50 minutes). Depth to water before shutting off pump 54.09 ft (t = 0 min).

Depth to water before shalling on pump 54.09 ft (t = 0 min). Depth to water at end of recovery test 44.84 ft (t = 50 min).

Raw input recovery data for water supply well WW-5

		Reduced Data				
		Time,	Water Level		Time,	Water Level
	Entry	Date Hr:Min:Sec	Feet	Entry	Date Hr:Min:Sec	Feet
	1	11/22/06 11:00:00	0.00	31	11/22/06 11:05:00	47.00
	2	11/22/06 11:00:40	48.42	32	11/22/06 11:06:00	46.96
	3	11/22/06 11:00:41	48.42	33	11/22/06 11:07:00	46.92
	4	11/22/06 11:00:42	48.40	34	11/22/06 11:08:00	46.88
	5	11/22/06 11:00:43	48.35	35	11/22/06 11:08:12	46.85
	6	11/22/06 11:00:44	48.33	36	11/22/06 11:08:24	46.84
No. 19 State	7	11/22/06 11:00:45	48.32	37	11/22/06 11:08:36	46.84
	8	11/22/06 11:00:46	48.31	38,	11/22/06 11:08:48	46.83
<i>~ (* *</i>	9	11/22/06 11:00:47	48.28	39	11/22/06 11:09:00	46.83
	10	11/22/06 11:00:48	48.25	40	11/22/06 11:09:12	46.82
	11	11/22/06 11:00:49	48.24	41	11/22/06 11:09:24	46.82
	12	11/22/06 11:00:50	48.18	42	11/22/06 11:09:36	46.81
	13	11/22/06 11:00:51	48.11	43	11/22/06 11:09:48	46.81
	14	11/22/06 11:00:52	48.07	44	11/22/06 11:10:00	46.80
	15	11/22/06 11:00:53	48.05	45	11/22/06 11:12:00	46.80
	16	11/22/06 11:00:54	48.00	46	11/22/06 11:14:00	46.76
	17	11/22/06 11:00:55	47.95	47	11/22/06 11:16:00	46.73
	18	11/22/06 11:00:56	47,93	48	11/22/06 11:18:00	46.70
	19	11/22/06 11:00:57	47.89	49	11/22/06 11:20:00	46.68
	20	11/22/06 11:00:58	47.85	50	11/22/06 11:40:00	46.66
	21	11/22/06 11:00:59	47.83	51	11/22/06 11:50:00	46.54
	22	11/22/06 11:01:00	47.81	52	11/22/06 12:00:00	
	23	11/22/06 11:01:12	47.79	53	11/22/06 12:04:00	
	24	11/22/06 11:01:24	47.58	54	11/22/06 12:10:00	
	25	11/22/06 11:01:36	47.47	55	11/22/06 12:20:00	
	26	11/22/06 11:02:00	47.39	56	11/22/06 12:24:00	
	27	11/22/06 11:02:12	47.27	57	11/22/06 12:26:00	46.44
	28	11/22/06 11:02:36	47.23	58	11/22/06 12:28:00	46.43
	29	11/22/06 11:03:00	47.17			
	30	11/22/06 11:04:18	47.12			

APPENDIX D

Summary Laboratory Analytical Reports

And

Chain of Custody Documentation

(Full length lab reports with all QA/QC information are included separately on compact disk in Adobe Reader format)

Summary Report

Kristen Farris-Pope Rice Operating Company 122 W Taylor Street Hobbs, NM, 88240

Report Date: August 14, 2006

Work Order: 6080433

Project Location: Lea County,NM Project Name: BD Junction J-26

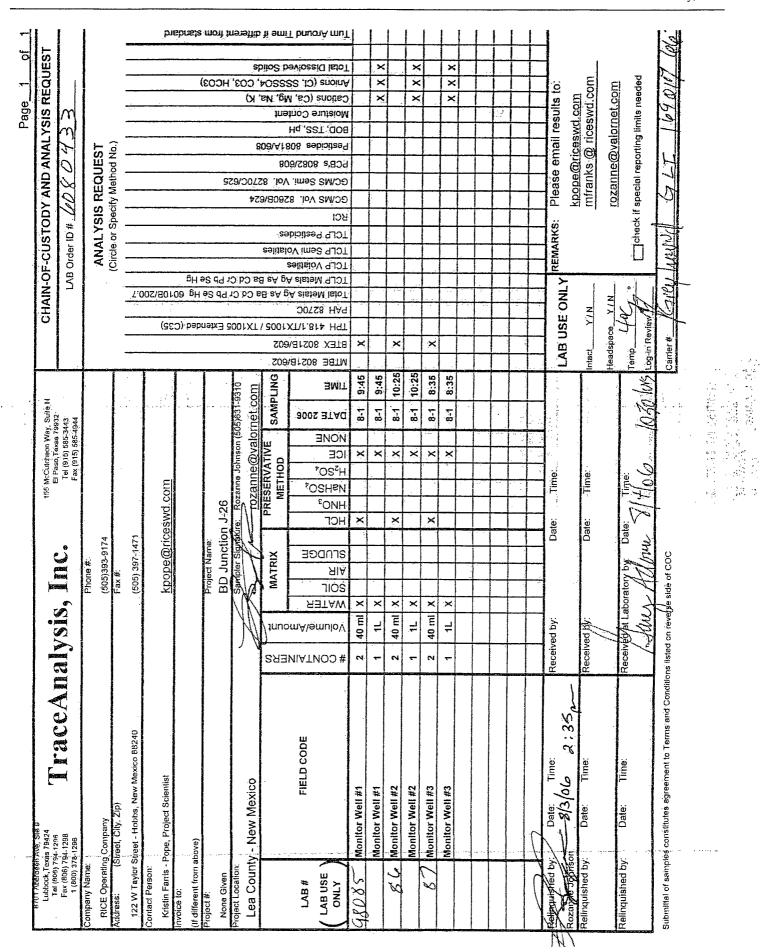
			Date	Time	Date	
Sample	Description	Matrix	Taken	Taken	Received	
98085	Monitor Well $\#1$	water	2006-08-01	09:45	2006-08-04	
98086	Monitor Well $#2$	water .	2006-08-01	10:25	2006-08-04	•
98087	Monitor Well $#3$. water	2006-08-01	08:35	2006-08-04	
			· · · · · · · · · · · · · · · · · · ·	1		

Sample: 98085 - Monitor Well #1

Param	Flag	Result	Units	RL
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1.00
Carbonate Alkalinity		<1.00	mg/L as $CaCo3$	1.00
Bicarbonate Alkalinity		226	mg/L as CaCo3	4.00
Total Alkalinity		226	mg/L as CaCo3	4.00
Dissolved Calcium		86.2	mg/L	0.500
Dissolved Potassium		41.6	mg/L	1.00
Dissolved Magnesium		23.9	m mg/L	1.00
Dissolved Sodium		225	mg/L	1.00
Chloride		218	mg/L	0.500
Sulfate		248	mg/L	0.500
Total Dissolved Solids		1126	mg/L	10.00

Sample: 98086 - Monitor Well #2

Param	Flag	Result	Units	RL
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1.00
Carbonate Alkalinity		<1.00	mg/L as CaCo3	1.00
Bicarbonate Alkalinity		216	mg/L as CaCo3	4.00
Total Alkalinity		216	mg/L as CaCo3	4.00
Dissolved Calcium		144	mg/L	0.500
Dissolved Potassium		18.3	mg/L	1.00
Dissolved Magnesium		42.4	m mg/L	1.00
Dissolved Sodium		241	mg/L	1.00
Chloride		387	mg/L	0.500
Sulfate		247	mg/L	0.500


continued

Report Date: August 14, 2006	Work Order: 6080433 BD Junction J-26	Page Number: 2 of 2 Lea County,NM		
sample 98086 continued				

Param	Flag	Result	Units	RL
Total Dissolved Solids		1358	mg/L	10.00

Sample: 98087 - Monitor Well #3

Param	Flag	Result	Units	RL
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1.00
Carbonate Alkalinity		<1.00	mg/L as $CaCo3$	1.00
Bicarbonate Alkalinity		208	mg/L as CaCo3	4.00
Total Alkalinity		208	mg/L as $CaCo3$	4.00
Dissolved Calcium		91.8	mg/L	0.500
Dissolved Potassium		10.4	m mg/L	1.00
Dissolved Magnesium		33.0	$\mathrm{mg/L}$	1.00
Dissolved Sodium		140	mg/L	1.00
Chloride		141	mg/L	0.500
Sulfate	1	190	$\mathrm{mg/L}$	0.500
Total Dissolved Solids		876.0	mg/L	. 10.00
			n an	ار از این از میکند. به این از میکند به محمد مکنه مرد است.
			· ·	

Report Date: August 14, 2006 **BD** Junction J-26

Page Number: 10 of 11 Lea County,NM

Work Order: 6080433 BD Junction J-26

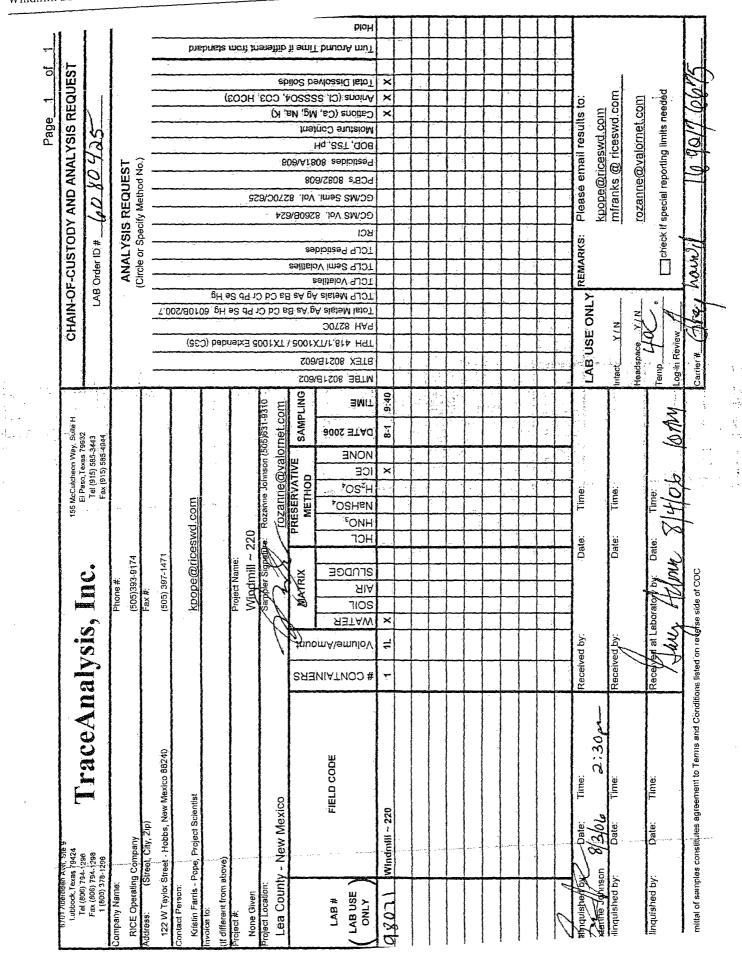
112 g					Dercentere	Error	7.85	5.93	12,13			112 x	
,	EC uMHOs/cm				Total Apione D		15.83	20.38	12:09		rieeds to be 0.55-0.77	needs to be 0.55-0.77 needs to be 0.55-0.77	
	TDS	Π	1360	876	Total Cations	in meq/L	17.12	21.63	13.65	TDS/Anion		0.67	
	Fluoride pom				Fluorida	in meq/L				TDS/Cat	.9970	0.05	
	Nitrate		·	- 1	Nitrato	in meq/L				TDS/EC			المراجع
set.	Chloride	217.755	387	- 140:922	Chinda	in meq/L	6.14	10.92	96 E	Execution of the second s	, i	· 1. · · · · · · · · · · · · · · · · · ·	
Cation-Anion Balance Sheet	Sulfate	248		190 5	Sulfate	in meq/L	5,16	5.14	3:96				**************************************
nion Bal	Alkalinity ppm	226	216	208	Alkalińity	in meq/L	4.52	4.32	4.16			<u>२</u> २	
Cation-A	Potassium	41.6	18.3	10.4.	Potassium	in meq/L	1.06	0.47	0.27		0	0 0	
	Sodium	225	241	140	Sodium	in meq/L	9.79	10.48	6.09		egnar	range range	
	Magnesium ppm-	23.9	42.4	333	Magnesium	in meq/L	1.97	3.49	2.72	EC/Anion			
	8/10/2006 Calclum ppm	86.2	144	8.19	Calcium	in meq/L	4.30	7.19	4.58	EC/Cation			
	UAIE: Sample #	98085	98086	98087	Samole #		98085	98086	98087	harre	98085	98088 93087	

Report Date: August 14, 2006 BD Junction J-26

• • . . •

Summary Report

Kristin Farris-Pope Rice Operating Company 122 W Taylor Street Hobbs, NM, 88240


ά.

Report Date: August 22, 2006

Work Order: 6080425

Project Location: Lea County,NM Project Name: Windmill 220

Sample	Description	Matrix	Date Taken	Time Taken	Date Received	
98071	Windmill 220	water	2006-08-01	09:40	2006-08-04	
Sample: 98071	- Windmill 220					
Param		g Resu	lt	Units	RL	and the second
Hydroxide Alkalin	nity	<1.()0 m	g/L as CaCo3	1.00	
Carbonate Alkalir	nity	<1.0	00 m	g/L as CaCo3	1.00	
Bicarbonate Alkal	linity	24	8 m	g/L as CaCo3	4.00	
Total Alkalinity		24	8 m	g/L as CaCo3	4.00	
Dissolved Calcium	1	13	57	mg/L	0.500	
Dissolved Potassiu	um	15.	.3	mg/L	1.00	
Dissolved Magnes	ium	47.	.8	mg/L	1.00	
Dissolved Sodium		27	7	mg/L	1.00	
Chloride		36	9	mg/L	0.500	
Sulfate		29	2	mg/L	0.500	
Total Dissolved So	olids	149	0	mg/L	10.00	

Work Order: 6080425 Windmill 220

Report Date: August 22, 2006 Windmill 220

a stand a

* * : :: : :

ء ر								
		Percentage Error 7.889490014			1.7			Prof.
	EC µMHOs/cm	Anions in meq/L 21.45	1.55-0.77					
	TDS ppm 1490	Cations in meq/L 23.21	needs to be 0.55-0.77					~
	Bromide	Bromide in meq/L	TDS/Anion 0.69				 	
	Fluoride	Nitrate Fluoride In meq/L In meq/L 0 0	TDS/Cal					ر بر بال المراجع المراج المراجع المراجع
	Nitrate ppm		TDS/EC #DIV/01		interfaces and an analysis of the second sec			
leet	Chloride ppm 369	Chloride In meg/L		به د بیرو به ^و ر د	en an Pinne Pinne Pinne Pinne			
ance St	Sulfate ppm 292	Sulfate in meq/L 6.08	.0					
nion Bat	Alkallnity ppm 248	Atkalinity in meq/L 4.96	٩					
Cation-Anion Balance Sheet	Potassium ppm 15.3	Potassium in meq/L 0.39	0					
	Sodium ppm	Sodium In meq/L 12.05	rangé					
	Magnesium ppm 47.8	Magnesium in meq/L 3.93	EC/Anion 2144,893				·	• • .•
	8/22/2006 Calcium ppm 137	Calcium in meq/L 6.84	EC/Cation 2321.0636					
	DATE: Sample # 98071	Sample # 88071	98071					

Report Date: August 22, 2006 Windmill 220 Work Order: 6080425 Windmill 220 Page Number: 9 of 9 Lea County,NM

s.,

27

• • •

877.**2**

Summary Report

Kristin Farris-Pope Rice Operating Company 122 W Taylor Street Hobbs, NM, 88240

· .,

Report Date: August 23, 2006

Work Order: 6080427

Project Location:	Lea County,NM
Project Name:	Plains Pipeline-DS Hugh Gathering

	Sample Description		Matrix		Date Taken	Time Taken	Date Received
	98073 Monitor Well #3	3	water		2006-08-01	11:35	2006-08-04
	Sample: 98073 - Monitor Well	#3	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	· · ·			
	Param	Flag	s s y de	Result	د. محمد المحمد	Units	RL
Andrea and a state of the	Hydroxide Alkalinity		<u>.</u>	<1.00	m	g/L as CaCo3	1.00
	Carbonate Alkalinity			<1.00	m	g/L as CaCo3	1.00
	Bicarbonate Alkalinity			280	m	g/L as CaCo3	4.00
	Total Alkalinity			280	m	g/L as CaCo3	4.00
	Dissolved Calcium			124		mg/L	0.500
	Dissolved Potassium			10.3		mg/L	1.00
	Dissolved Magnesium			63.3		mg/L	1.00
	Dissolved Sodium			195		mg/L	1.00
	Chloride			322		mg/L	0.500
	Sulfate		ς.	255		mg/L	0.500
	Total Dissolved Solids		`` <u> </u>	1284		mg/L	10.00

Page Number: 8 of 9 Lea County,NM

Work Order: 6080427 Plains Pipeline-DS Hugh Gathering

Report Date: August 23, 2006 Plains Pipeline-DS Hugh Gathering

-				•		p.	nebn	1818 [noth	ifferei	ib îi (ອເຫເັ	bruotAmuT bioH																	
of	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST												vlosei() IstoT	×						\pm	\pm	1		1			**	k		
-	ЮЩ.	M						-(2	HCO				,60) snoit60 Anions (Cl, S	××	ł		\neg	Ţ	-	1	Ţ	-	F	ö	kpope(wilceswa.com mfranks @ riceswil com	mo	Chack if spectal reporting limits needed	14		
Page_	N R	hÌ		•				÷		<u></u>			Moisture.Cor	Ĥ			÷	-+	-+	+	+			sults		et o	lts ne	161	1	
č	SY.	40											ROD, TSS, pl						1	1		-	1	Please email results to	mfranks @ riceswa.com	rozanne@valornet.com	ng lim	10		
	MAN	\bigcirc	ST	('on .		~~~~					809	سبئي	Pesticides 80	-				+		-	+		-	ema			portir	14		
	ğ	608	ANALYSIS REQUEST	(Circle or Specify Method No.)					G	29/30	128		PC8's 8082/		-	$\left - \right $			+	-+	+			ise e	0e(d		la re			
	N.	E	RE	Ϋ́Υ.								شيبت	19A SW/20	 			-	1	+	1	+	+	1-	Plea		roza	spec			
	la		SIS	Speci									เวร											i vi		,	¥.	13		
	1ST	LAB Order (D #	ALY	e of									TCLP Pestici	 				_	_		4	4		REMARKS:			Jché	Moul		
	ថ	Orde	AN	Cici		n un é nom					Sa		TCLP Volatile			┝╌┥	-+	+	+	-+			+	REM			Ļ	13	l l	
	ō	LAB		٠.			_					_	TCLP Metals											Contractory of the		1	1 0]	13		- ,
	Į₹				7.0	02/80	109	BH (Pb Se	10 60	88 I	s∀ D∖	PAH 8270C		┣	┝╾┤	-+		+	+			╞	NO	2	z		d is	1	
	さ			•		(<u>)</u>	(C3	pəpu	ishx∃ d	DOIX	1/9	001X	TT:814 H9T	<u> </u>				┿	-+	-		+-		ISE ISE		N 7	R R	May		e viere en la companya de
											<u> </u>	209/	BISO8 XETB	F										LAB USE ONLY		Headspac		Log-in Review Carrier #		5. 2010 2010
				ngaine			ungnaa		-		كالكريفات	-incase of the second sec	MTBE 8021E	-						_		_			, , ,	Inta	Temp	Log Car		arte Solitta da
	e H								bu	Sampler Signature Buzatare Johnson (505)631-9310	PRESERVATIVE	SAMPLING	TIME	1 11:36										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					ł . 	
a construction of the second	ay. Suite H	EI Paso, (exas / 9932 Tel (915) 585-3443 Fax (915) 585-4944							heri	505)6C		SA	DATE 2006	8-1						-	_						4	স্থ	•	Saya
	McCutcheon Way.	exas) 585- 5) 585-							Gat	son (Vall		NONE ICE	×	–	$\left - \right $			4			4-			Ì					
	Cutche	raso, 1 el (915 ax (915	*						uah	ullol (VAT	<u>8</u>	105 ² H			i i l						-	+	- - 61		ń				
	155 Mc	ng in ut 					3		Ξ S	aune	SER	METHOD	[₽] OSH [₽] N	Ĺ							T		1	Time:	Time.		Time	3		
na i seneraria di se Ne										Engle	OL BRE		[©] ONH	Ļ			_		_	_	-		-				1.11	H		
					_				eline		7-	-	HCL	┢┯┙					-+	÷	-		-	Date:	04:00	Jaile.	Date	A		
		ڈ م	-9174		7-147				Pin Pin	Sign		×	SLUDGE	\mathbf{T}	-			\rightarrow	$^+$	╾┼	+	-		1		-		WWW	,	
		IIC	Phone #: (505)393-9174	#	(505) 397-1471		ning washing and		Project Name: Plains Pip	Sampler		MATRIX	AIR								1						A No	WWW te of COC	Ś	
	>		Phc (50	Fax#	(50	13	긝		đ	Sai	N.	Z	WATER SOIL	×	_			-+	+					Į				P side		
										1	T				†	$\left - \right $		+	+	+		-	┿	ž		÷	(Lab			
		3									L	Junoi	mA\ ∋mu loV	=	ļ			_				-		ved b	4		E H			
											S	RERS	# CONTAIN	-										Received by:	10000	Maccelven by.	Received at Labora	ns lister		
		raceAnalysis											garint yidə takın tərdik əkri												L			and Condition		
					sw Mexico 88240		entist				(ico		FIELD CODE	#3										Time:	- 1	autor a	Time:	f sammas constitutes of entities and Conditions listed on reporte sic		
	, 5te 9	296 203 36	mnariù U	(, City, Zip)	t - Hobbs, Ne		e, Project Sci	. (6			- New Mexico	•••	a a na ana ang ang ang ang ang ang ang a	Monitor Well #3										Cale Calk	Inke/a	Late:	Date:	constitutae an	in commerce	
	Lubhock, Texag. 79	Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 376-1285	Company Name:	Address: (Street, City, Zip)	122 W Taylor Street - Hobbs, New Mexico 88240	ontact Person:	Kristin Fartis - Pope, Project Scientist nvoice to:	If different from above)	roject #: None Given	2	Lea County - I		LAB USE	Jen 2 Mai									1	lished by	E Lettoson	isned by:	shed by:	f aarnolae r	r cardinae i	

						·		·										
			Percentage	0.746530774				ಕ್ರಾಸಿ										
	EC	huMHOs/cm	Anlons in mod	19.99	.55-0:77													
	TDS	ppm 1284.	Catloris In mer/I	20.14	needs to be 0.55-0.77													
	Bromide	mqq	Bromide in med	- 0: -	TDS/Anion 0.64													
	f Fjuoride	ppm	Fluoridē fn mod/l	-	0.64	Şeri eler	• • • •	· · ·	• • •	.î `		•		• منتحرين				
	e Nitrate	ppin	e Nitrate 1 in menu	Н	TDS/EC		· ·		4		· · · · ·	* * e.) (s. 1999) 1 2	t an an the large				
	Chloride	ppm 322	Chloride in mod	9.08	n in			а , 1997 - Д а, 1997 - Д		• ¹ 1		· · ·	* • ••			n T	, . * *	··· •
ance St	Sulfate	թթո 255	Sulfate	5.31	0				1	ī.,								
Cation-Anion Balance Sheet	Alkalinity	ррт 280	Alkalinity in med/l	5.60	Q													
Cation-A	Potassium	ppm 10.3	Potasšium in mečul	0.26	0													
	Sodium	ррт 195	Sodium in mer/l	8.48	range													
	Magnesium	ppm 63.3	Magnesium in men/l	5.21	EC/Anion 1999.272			·										
	g c	ppm 124		6.19	EC/Cation 2014.2531													
	DATE: Cample #	98073	Sample #	98073	98073													

Report Date: August 23, 2006 Plains Pipeline-DS Hugh Gathering

Work Order: 6080427 Plains Pipeline-DS Hugh Gathering

,

Page Number: 9 of 9 Lea County,NM

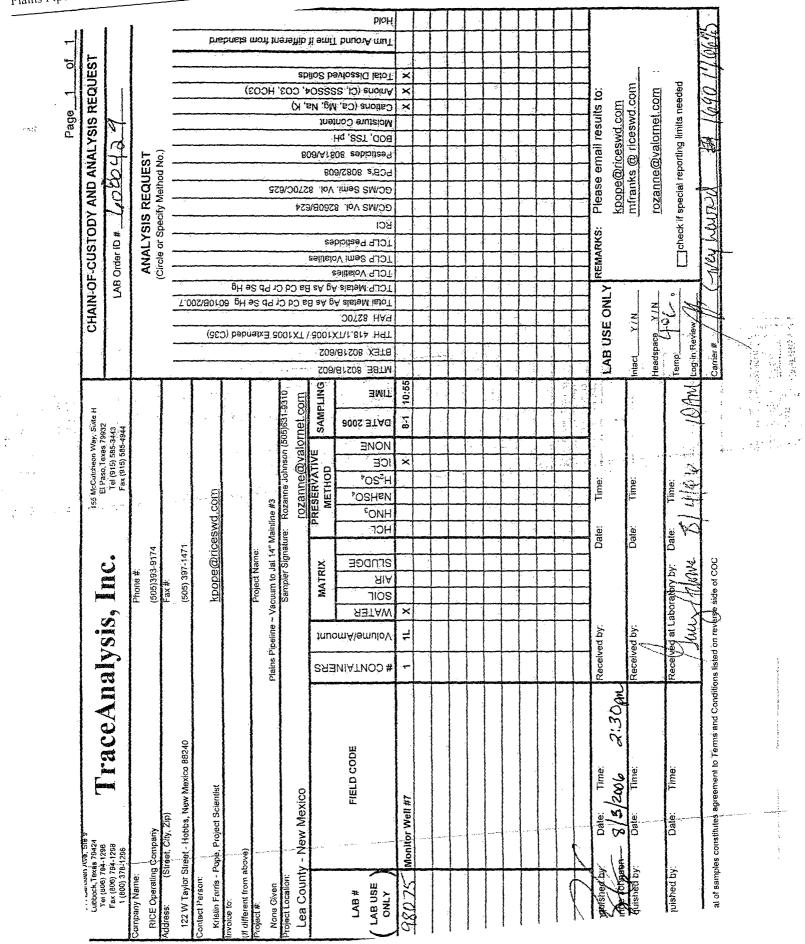
Summary Report

Kristin Farris-Pope Rice Operating Company 122 W Taylor Street Hobbs, NM, 88240

e 12 *

л Приз Report Date: August 24, 2006

Work Order: 6080429


Project Location:Lea County,NMProject Name:Plains Pipeline-Vacuum to Jal 14 Inch Mainline #3

Sample	Description Monitor Well 7	5	Matrix water	Dat Take 2006-08	n	Time <u> </u>	Date Received 2006-08-04
90075			water	2000-00	5-01.	10:00	2000-08-04
	enj.			3	• .	· · ·	
	· · · · ·						
Sample: 98075	- Monitor Well 7			· · · · ·			
Param	**	Flag		Result	1	Units	RL
Hydroxide Alkalin	iity			<1.00	• • • •	mg/L as CaCo3	1.00
Carbonate Alkalin	nity			<1.00		mg/L as CaCo3	1.00
Bicarbonate Alkal	linity			190		mg/L as CaCo3	4.00
Total Alkalinity				190		mg/L as CaCo3	4.00
Dissolved Calcium	1			138		mg/L	0.500
Dissolved Potassiu	ım			13.8		mg/L	1.00
Dissolved Magnes	ium			75.8		mg/L	1.00
Dissolved Sodium				196		mg/L	1.00
Chloride				450		mg/L	0.500
Sulfate				216		mg/L	0.500
Total Dissolved Se	olids			1378		mg/L	10.00

Page Number: 8 of 9 Lea County,NM

Work Order: 6080429 Plains Pipeline-Vacuum to Jal 14 Inch Mainline #3

Report Date: August 24, 2006 Plains Pipeline-Vacuum to Jal 14 Inch Mainline #3

		906 906					
- 6 ⁻¹		Percentage Error 4.73731936				4 *	-12
	EC µMHOS/cm	Anlons in meg/L 20.98					
	TDS ppm 1378	Cations in meq/L 22.00					
	Bromide ppm	Bromide in meq/L o	TDS/Anion 0.66				
	Fluoride	Fluoride in meq/L 0	.TDS/Cat 0.63	n an			
	Chloride Nitrate ppm ppm	Nitrate In meq/L					
)	Chloride in meq/L 12.69		*.		,	
	Sulfate ppm 215.661	Sulfate in meq/L 4.49			n an	tig An State State State State State State State State State State State State	
Cation-Anion Balance Sheet	Alkalinity ppm 190	Alkalinity in meq/L 3.80	2				
Cation-A	Potassium ppm 13.8	Potásslum in meg/L. 0.35	O				
	Sodium ppm 196	Sodium In meq/L 8.53	range				
	Mágneslum ppm 75.8	Magnesium in meq/L 6.24	EC/Anion 2098.4562				
	8/24/2006 Catclum ppm 138	Calcium in meq/L 6.89	EC/Cation 2200.2786				
	DATE: Sample # 98075	Sample # 98075	98075				

Work Order: 6080429 Plains Pipeline-Vacuum to Jal 14 Inch Mainline #3 Page Number: 9 of 9 Lea County,NM

4.) 1

Summary Report

с.,

Kristin Farris-Pope Rice Operating Company $122~\mathrm{W}$ Taylor Street Hobbs, NM, 88240

_

Report Date: August 22, 2006

Work Order: 6080426

Project Location:	Lea County,NM
Project Name:	Plains Pipeline-TNM 98-5B

Description	Matrix		Date Taken	Time Taken	Date Received
98072 Monitor Well #2	water	• •	2006-08-01	12:50	2006-08-04
			-		
Sample: 98072 - Monitor Well $\#2$	•			a de la companya de l La companya de la comp	
Param Flag		Result		Units	RL
Hydroxide Alkalinity	· · · · · · · · · · · · · · · · · · ·	<1.00	mg/L	as CaCo3	1.00
Carbonate Alkalinity		<1.00	mg/L	as CaCo3	1.00
Bicarbonate Alkalinity		162		as CaCo3	4.00
Total Alkalinity		162	mg/L	as CaCo3	4.00
Dissolved Calcium		95.1		mg/L	0.500
Dissolved Potassium		8.10		mg/L	1.00
Dissolved Magnesium		45.5		mg/L	1.00
Dissolved Sodium		146		mg/L	1.00
Chloride		269		mg/L	0.500
Sulfate		197		mg/L	0.500
Total Dissolved Solids		1002		mg/L	10.00

DIOH bisbrists mort transition if smill bruorA mull CHAIN-OF-CUSTODY AND ANALYSIS REQUEST 5 spilos paviossia jeto T × Check if special reporting limits needed mfranks @ riceswd.com Anions (CI, SSSSO4, CO3, HCO3) × Page 1 rozanne@valornet.com Please email results to: (y 'en '6W 'e) suone) kpope@riceswd.com × JUBILION BURISION LAB Order ID # 1008 U 4 2 5 Hq SST , DOB Pesticides 8081A/608 Circle or Specify Method No.) ANALYSIS REQUEST B09/7808 \$.80d 82300128 CC/MS Semi. Vol. 5C/MS Vol. 8260B/624 เวช REMARKS: TCLP Pesticides Convolution (sellitsiov ime8 9101 ICLP Volatiles TCLP Metals Ag As Ba Cd Cr Pb Se Hg LAB USE ONLY 0 T.002/80108 pH 92 dG 10 bD 68 eA pA sistem isto teadspace Y/N LAFU Intact Y/N PAH 82700 -og-in Review Š TPH 418.1/TX1005 / TX1005 Exended (C35) Carrier # (emp. 209/81208 X318 209/81208 38TM 12:50 SAMPLING BWI Rozanna Johnson (505)631-9310 rozanne@valornet.com 155 McCutcheon Way, Suite H El Paso, Teyas 79932 Tel (915) 685-3443 Fax (915) 385-4944 (MHM) BOOS BTAG . ? NONE PRESERVATIVE Plains Pipeline~TNM 98-5B i, CE × METHOD *OSZH Time: Time: Time: 410-10 kpope@riceswd.com "OSHEN ^EONH arriplef Signature: HCL Date: Date: Date: ANNU & (505) 397-1471 (505)393-9174 Project Name TraceAnalysis, Inc. SLUDGE itial of samples constitutes agraement to Terms and Conditions listed on reverse side of COC MATRIX Phone # AIA Fax #: 109 **MATER** 1 Xmyt × Received at Lab inomAlamuol Received by: eceived by ₽ # CONTAINERS ~ 2:300 122 W Taylor Street - Hobbs, New Mexico 88240 FIELD CODE Time: Time: Time: Kristtn Farris - Pope, Project Scientist Lea County - New Mexico Monitor Well #2 8/3/01 Date: Date: Date RICE Operating Company (Street, City, different from above) Talina de la constanta iquished by: tertished My yd bertsingn ompany Name: 81773 outact Person oject Location None-Given LAB USE LAB# ONLY voice to: roject #: Address:

Work Order: 6080426 Plains Pipeline-TNM 98-5B

Report Date: August 22, 2006 Plains Pipeline-TNM 98-5B

		Porcentage Error 0.801773000																~ 2		
	EC µMHOs/cm	Anions P in meq/L	_]																	
	SUT Mqq	Cations in meq/L	Ē																	
	Brontide	Bromide in meq/L	TDS/Anion 0.67																	
	Nitrate Fluoride ppm ppm	 Niţţăţe Eluoiîde fluoiîde în meq/L in meq/L 	EC TD	4						•		 . *	•							
	Chloride ppm 268.96				а —	ین مربعہ مربعہ مربعہ	a da constante a constante constan		an den g San An San An San An	•				* 12* - 14*			- 1		۰ <u>۱</u>	
ance Sh	Sulfate ppm 5		0					·			•					-				
nion Bal	Alkalinity ppm	Alkalinity in meq/L	t t																	
Cation-Anion Balance Sheet	Potassium ppm	Potassium in meg/L																		
	Sodium ppm 146	Sodium in meq/L 6.35	range	0																
	Magnesium ppm 45.5	Magnesium In meq/L 3.74	EC/Anion 1492,77149													·				
	8/22/2006 Calcium ppm		1 200	_																
-	DATE: Sample #	Sample # awiy2	98072																	

.

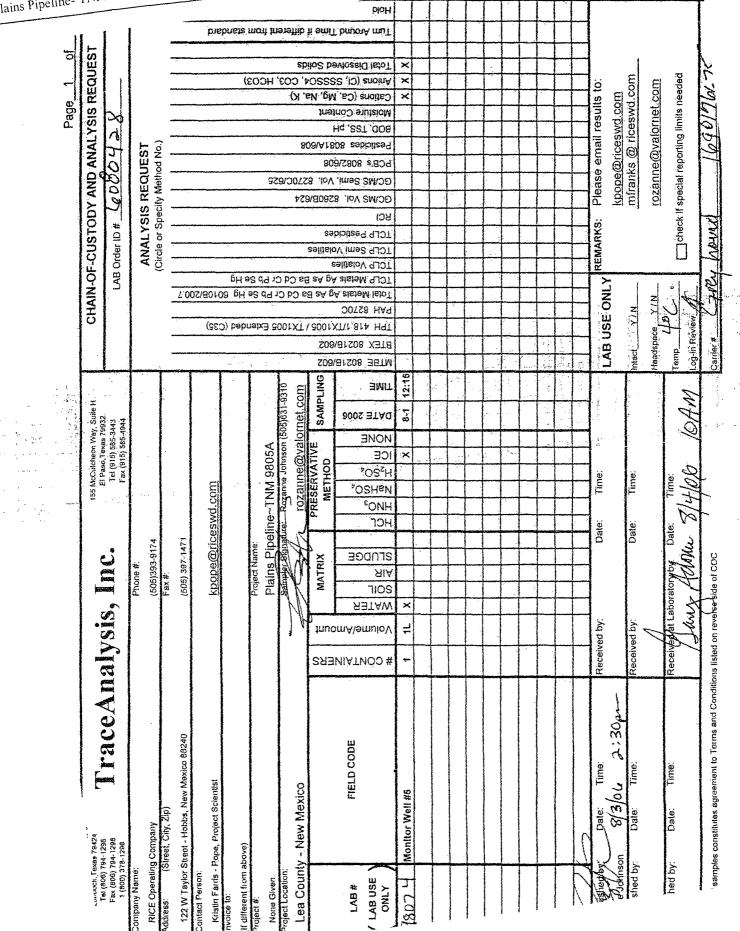
Summary Report

~ 5

Kristin Farris-Pope Rice Operating Company 122 W Taylor Street Hobbs, NM, 88240

Report Date: August 24, 2006

Work Order: 6080428


Project Location:Lea County, NMProject Name:Plains Pipeline- TNM 98-5A

Course la construction de la con		Matuin	Date	Time	Date
	scription	Matrix	Taken	Taken	Received
<u>98074 Mo</u>	nitor Well #5	water	2006-08-01	12:15	2006-08-04
		1980 - S.		а 1 Сила 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Sample: 98074 - Mo	onitor Well $\#5$		α 	· · ·	te a station est
Param	Flag	¢	Result	Units	RL
Hydroxide Alkalinity	······································	• •	<1.00	mg/L as CaCo3	1.00
Carbonate Alkalinity			<1.00	mg/L as CaCo3	1.00
Bicarbonate Alkalinity			274	mg/L as CaCo3	4.00
Total Alkalinity			274	mg/L as CaCo3	4.00
Dissolved Calcium			96.3	mg/L	0.500
Dissolved Potassium			10.8	mg/L	1.00
Dissolved Magnesium			49.3	mg/L	1.00
Dissolved Sodium			167	mg/L	1.00
Chloride			218	mg/L	0.500
Sulfate			148	mg/L	0.500
Total Dissolved Solids			1008	mg/L	10.00

THA WE TH

Work Order: 6080428 Plains Pipeline- TNM 98-5A

Report Date: August 24, 2006 Plains Pipeline- TNM 98-5A

28-2

	Percentage Error 10.8677829	
EC LIMHOS/CM	Anioths in meg/L	
TDS 1008	Cations in meg/L 16.40	
Bromide	Bromide in-meq/L	TDS/Anion 0.69
Pineters and the second s	Fluoride In meo/L	O.G. T. D.S. C. T. D.S. C. T. T. T. S.
Point	Nitrate in még/L	
Chloride Ppm 218.129	Chloride in meq/L 6.15	
ance Sh Sulfate 147.879	Sultate in meg/L 3.08	0
nion Bal Alkalinity 274	Alkalinity in meq/t: 5.48	2
Cation-Anion Balance Sheet	Potassium in meq/L	0
Sodium ppm 167	Sodium in meq/L 7.26	range Ge
Magnesium ppin 49.3	Magnesium in meq/L 4.06	EC/Anion 1471.22599
8/24/2006 Calcium Ppm 96.3	Calċlum in meq/l. 4.81	EC/Cation 1640.3031
DATE: Sample #	Sample # 98074	980074

51-1

and the second second

- ----

Summary Report

Kristin Farris-Pope Rice Operating Company 122 W Taylor Street Hobbs, NM, 88240

ang a Kalanta Report Date: August 29, 2006

Work Order: 6080422

Project Location: Lea County,NM Project Name: TARGA

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
98065	Water Well $\#1$	water	2006-08-01	15:40	2006-08-04
. 98066 .	Water Well $\#5$	water	2006-08-01	14:50	2006-08-04
<i>)</i> 98067	Water Well $\#8$	water .	2006-08-01	15:03	2006-08-04
98068	Water Well $\#12$	water	2006-08-01	15.12	2006-08-04

3 Sample: 98065 - Water Well #1 groups and so a set of the set

Param	Flag	Result	Units	RL
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1.00
Carbonate Alkalinity		<1.00	mg/L as $CaCo3$	1.00
Bicarbonate Alkalinity		332	mg/L as $CaCo3$	4.00
Total Alkalinity		332	mg/L as CaCo3	4.00
Dissolved Calcium		101	mg/L	0.500
Dissolved Potassium		9.01	m mg/L	1.00
Dissolved Magnesium		51.5	m mg/L	1.00
Dissolved Sodium		143	$\mathrm{mg/L}$	1.00
Chloride		187	mg/L	0.500
Sulfate		147	mg/L	0.500
Total Dissolved Solids		1008	mg/L	10.00

Sample: 98066 - Water Well #5

Param	Flag	Result	Units	RL
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1.00
Carbonate Alkalinity		<1.00	mg/L as CaCo3	1.00
Bicarbonate Alkalinity		156	mg/L as CaCo3	4.00
Total Alkalinity		156	mg/L as CaCo3	4.00
Dissolved Calcium		83.1	mg/L	0.500
Dissolved Potassium		8.44	mg/L	1.00
Dissolved Magnesium		39.8	mg/L	1.00
Dissolved Sodium		126	mg/L	1.00
Chloride		225	$\mathrm{mg/L}$	0.500
				continued

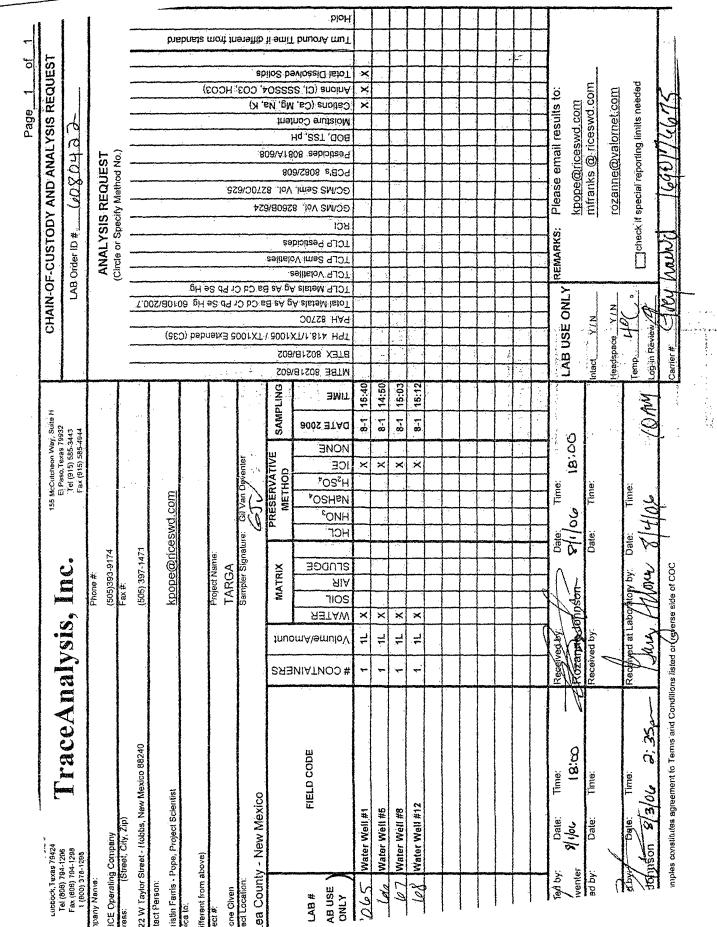
Report Date: August 29, 2006	Work Order: 6080422	Page Number: 2 of 2
	TARGA	Lea County,NM

sample 98066 continued ...

Param	Flag	Result	Units	RL
Sulfate		177	mg/L	0.500
Total Dissolved Solids		864.0	mg/L	10.00

Sample: 98067 - Water Well #8

Param	Flag	Result	Units	RL
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1.00
Carbonate Alkalinity		<1.00	mg/L as CaCo3	1.00
Bicarbonate Alkalinity		268	mg/L as CaCo3	4.00
Total Alkalinity		268	mg/L as CaCo3	4.00
Dissolved Calcium		90.5	mg/L	0.500
Dissolved Potassium		9.56	mg/L	1.00
Dissolved Magnesium		49.1	mg/L	1.00
Dissolved Sodium		206	mg/L	1.00
Chloride		308	mg/L	0.500
Sulfate	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	224	mg/L	0.500
Total Dissolved Solids	and the second sec	1202	mg/L	10.00
· · · · · · · · · · · · · · · · · · ·	the galaxies of the	i i i i i i i i i i i i i i i i i i i		1. (P.).;


Sample: 98068 - Water Well #12

Param	Flag	Result	Units	RL
Hydroxide Alkalinity		<1.00	mg/L as CaCo3	1 00
Carbonate Alkalinity		<1.00	mg/L as $CaCo3$	1.00
Bicarbonate Alkalinity		296	mg/L as CaCo3	4.00
Total Alkalinity		296	mg/L as CaCo3	4.00
Dissolved Calcium		86.8	mg/L	0.500
Dissolved Potassium		9.66	$\mathrm{mg/L}$	1.00
Dissolved Magnesium		42.7	m mg/L	1.00
Dissolved Sodium		168	mg/L	1.00
Chloride		181	$\mathrm{mg/L}$	0.500
Sulfate		160	mg/L	0.500
Total Dissolved Solids		966.0	mg/L	10.00

Work Order: 6080422 TARGA

Report Date: August 29, 2006

TARGA

		12.00	•		Darcentado	Error	4.822937211	0.222402212	5.220024465	7.019268334	:	
	ыMHOs/cm				Antons	In med/L	14.99	13:15	18.71	14:36	1,55-0,77 1,55-0,77 1,55-0,77	
	TOS	1008	864	- 1202 - 966	Cations	in meq/L	15.73.	. 13.12	17:76	. 15:40	needs to be 0.55-0.77 needs to be 0.55-0.77 needs to be 0.55-0.77 needs to be 0.55-0.77	
	Bromide				Bromide	in meq/L	0	0	0	a	TDS/Anion 0.67 0.66 0.64	
· } :	Fluoride				Fhuoride	in meq/L	0	Ó,	Q.	0	TDS/Cat 0.64 0.66 0.68	
• • • •	Nitrate							· · · 0 · · ·	0	17.0	TDS/EC: #DIV/0! #DIV/0! #DIV/0!	
et	Chiloride	187.376	224.772	308. 180.704	~	in meq/L	5.29	-6.34	8.69	5.10		
ance She	Sulfate	147.08	177.095	160.337	Sulfate		3.06 '	3.69	4.67	3.34	0000	
nion Bala	Alkalinity	332	156 060	296	Aikalinitv	in meq/L	6.64	3.12	5.36	5.92	8 8 8 5 1	
Cation-Anion Balance Sheet	Potassium ppm	9.01	8.44	9.66	Potassium	in meq/L	0.23	0.22	0.24	0.25	000	
•	Sodium ppm	143	126	200 168	Sodium	in meq/L	6.22	5.48	8.96	7.31	range range range	
	Magnesium pin	51.5	39.8	42.7	Magnesium	in méq/L	4.24	3.28	4.04	3.51	EC/Anion 1498.80826 1314.7936 1871.41089	
	8/29/2006 Calcium ppm	101	83.1 20.7	8.98 86.8	Calchan	in meq/L	5.04	4.15	4.52	4:33	EC/Cation EC/Anion 1572.88108 1498.80826 1311.87272 1314.7936 1776.19338 1871.41089	
	UATE: Sample #	98065	98066 00063	98068	Samole #	e h	90065	98066	98067	98068	98065 98065 98067	

::

···· 1

. 1

۲.

Summary Report

· ;

Kristin Farris-Pope Rice Operating Company 122 W Taylor Street Hobbs, NM, 88240

Report Date: August 22, 2006

Work Order: 6080423

Project Location: Lea County,NM Project Name: TARGA

Sample	Description	Matrix	Date Taken	Time Taken	Date Received
98069	Water Well #19	water .	2006-08-01	17:55	2006-08-04
Sample: 98069	- Water Well #19		·	di an de la	

Sample: 98069 - Water Well #19

Param	Flag	Result	Units	RL
Hydroxide Alkalinity	the second second	<1.00	mg/L as CaCo3	1.00
Carbonate Alkalinity	.'	<1.00	mg/L as CaCo3	1.00
Bicarbonate Alkalinity		244	mg/L as CaCo3	4.00
Total Alkalinity		244	mg/L as CaCo3	4.00
Dissolved Calcium		92.7	mg/L	0.500
Dissolved Potassium		9.16	mg/L	1.00
Dissolved Magnesium		26.6	mg/L	1.00
Dissolved Sodium		156	mg/L	1.00
Chloride		302	m mg/L	0.500
Sulfate		88.1	mg/L	0.500
Total Dissolved Solids		870.0	mg/L	10.00

								· .												۵.	Page		õ	-	ľ
		ζ) jen	(1551	McCutol El Paso	heon Wa	vy. Suite H	2		0	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST	0-7	-CU	STO.	λ	QN	ANA	VL YS	SIS F	SEO	UES.		1
I HUCAINYSIS,	Idlysi	Ś		3			Tel (9 Fax (9	15) 585-1	Tel (915) 585-3443 Fax (915) 585-344					LAB	Order	¥ 9	E	28	LAB Order ID # (10 8 04 ス	53					1
			Phone #: (505)393	^o hone #: 505)393-9174			с. <u>(</u> 3)	/ · · ·			- 1" 51 ₹ 5-1 - 520a 1 - 51				ANA	LYS	IS R	EQL Matho	ANALYSIS REQUEST						1
144 11 10110 0000 - 110000 New Mexico 88240			Fax #: (505) 31	ax #. 505) 397-1471									<u></u>		,	5 5				- 					
t Person:										Ī			1200												
Kristin Farris _ Pope, Project Scientist	ويعدد والمحادث والمحادث والمحادث والمحادث والمحادث		kpop	spope@riceswd.com	esw	1.con	ci					(982	8010											p.e	
invoice to: (If different from above)							• .)) pəp	9 <u>Þ</u> H									•		pueis	
Project #:			Project	roject Name:								nətx	eS c	· - ·								(503)		шол	
None Given			TAR	TARGA /	- 1		ł		× ×			9 90	14.10			······		979			•••)H '		y jua	
Project Location: 1 ea County - New Mexico		1 :		Ellon C	_ \ ł	Bezan	ne Joh Dine G	nson (5 D'V.A.I.O	Bezanne Johnson (505)631-9310 Trt7 anne (7) valornet com	310 M		IX10	CP C				54							ອາອາກິ່	
		R	MATRIX	₩ Ž		RESE	PRESERVATIVE METHOD	IVE	SAMPLING	LING		نسمست	e8 sA		səlits	\$	29/809			800/11				ा भ	
					Ļ	╟		+		T	_	<u> </u>	_	ŝ∀ s	_	səpic	828	•			ainc			úŤ b	
LAB # FIELD CODE	IATNOD IATANOD	ABTAV	וצ סור	LUDGE	CL	°OSH₽ NO ³	⁷ OS ²	ONE SE	9002 3TA	ME	TBE 8021	/1.814 He	D0728 HA eletán lete	IsteM 910	imaS 910	olesario Dire Pestio	CWR AN	məs SM/C	2808 2'80 3 29hioitre	Selicides (oisture Co	eO) ations (Ci, tions (Ci,	iceaid listo	onuonA mi	
(30 b g) water well #19	╉─	-			_		4		a 🚆	17:55				1			·				W			<u>u </u>	·
				 		╞		-				ļ			Ļ			 		-			÷		<u> </u>
			<u> </u>				1	ļ			 :			1	<u> </u>		1			<u> </u>				-	+
							, . 	[6								ľ		┢	–	Ĺ	<u> </u>			<u></u>
							1 1 1 - 1			1 1 1 1 1 2 1 2 1 1 1								[-	
																									
						:									:										
							21 - 21 - 2 - 2				<u>.</u>								-						<u> </u>
			۲ د د			, ,				i de la construcción de la constru La construcción de la construcción d													Ē		<u> </u>
													 						-	ļ				,	
									144 21			1	:				\square		r			$\left - \right $		<u> </u>	<u> </u>
Date: Time:	Received by:				Date:	Ħ	Time:		and a second		LAB	ISI	LAB USE ONLY	-	SEMA	REMARKS:		ease	Please email results to:	allre	esult	s to			ł
Redenting Joshon 3/3/06 2:392	Donaitical his																집	ope	kpope@riceswd.com	esw	<u>d.co</u>	E			
Late.		Ŀ			Jale	=		-	, , , , , ,	t i	Intact	X	V/N				Ξ	Iran	IIIIIanks @ riceswa.com	. 106	DMS	CON.	_		
Relincuished by Date Time.	// Rechilized at Lahors	l abo	- 15		Date	Tit	Time				- i -		12	4			2	zanr	rozanne@valornet.com	valoi	rnet.	COII			
	Miner					400		· ·	IOAM		Tenip Tro	Revier		۰. ا	Ŀ	chec	k if sp	ecial		ting li	mitsin	eede	ס	:	
Submittel of samples constitutes agreement to Terms and Conditions listed on reverse si	ilions listed on re	werse	side of COC	sóc	-		•			ļ	Carrier #	#	NG	Cifey hund	M	N		149		1	E I	\mathbb{L}			
							. .		• 1.*					~						-)				
						: *											•				,				
																					5. T				
								: '																	

Report Date: August 22, 2006 TARGA

. . .

Work Order: 6080423 TARGA

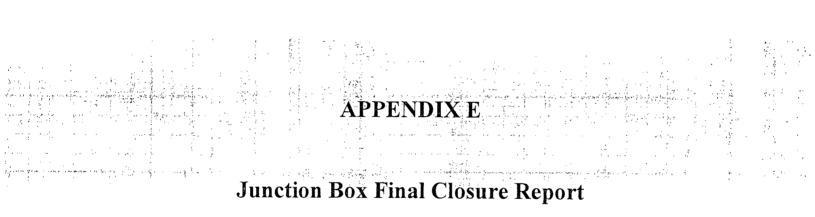
Page Number: 8 of 8 Lea County,NM

۰.

PHONE (325) 673-7001 · 2111 BEECHWOOD · ABILENE, TX 79603

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: KRISTIN FARRIS-POPE 122 W. TAYLOR STREET HOBBS, NM 88240 FAX TO: (575) 397-1471


Receiving Date: 10/12/07 Reporting Date: 10/16/07 Project Number: NOT GIVEN Project Name: BD JUNCTION J-26 Project Location: T21S R37E SEC26 J~LEA COUNTY, NM Sampling Date: 10/10/07 Sample Type: WATER Sample Condition: COOL & INTACT Sample Received By: BC Analyzed By: HM/KS

	Na	Са	Mg	к	Conductivity	T-Alkalinity
LAB NUMBER SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(<i>u</i> S/cm)	(mgCaCO ₃ /L)
ANALYSIS DATE:	10/15/07	10/15/07	10/15/07	10/12/07	10/15/07	10/15/07
H13494-1 MONITOR WELL #1	166	59.9	28.2	28.7	1,397	200
H13494-2 MONITOR WELL #2	323	174	68.6	10.7	3,040	192
H13494-3 MONITOR WELL #3	163	51.9	33.1	6.43	1,345	232
	<u> </u>					
				f		с.,
Quality Control	NR:	47.9	51.6	1.87	9,770	NR
True Value QC	- NR	50.0	50.0		C 10,000	NR NR
% Recovery	NR	95.8	103	93.6	97.7	NR.
Relative Percent Difference	NR NR	2.7	, < 0.1	< 0.1	0.4	NR
	11 <u>-</u> 12 .			<u>:</u>		
METHODS:	SM	3500-Ca-D	3500-Mg E	8049	120.1	310.1
	· · · · · · ·	·		-	, ·	
	CI	SO4	CO_3	HCO3	рH	TDS
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS DATE:	10/15/07	10/15/07	10/15/07	10/15/07	10/15/07	10/14/07
H13494-1 MONITOR WELL #1	160	228	0	244	7.90	915
H13494-2 MONITOR WELL #2	730	204	0	234	7.61	1,838
H13494-3 MONITOR WELL #3	164	160	0	283	7.77	857
Quality Control	500	22.6	NR	988	6.99	NR
True Value QC	500	25.0	NR	1000	7.00	NR
% Recovery	100	90.4	NR	98.8	99.9	
Relative Percent Difference	2.0	90.4 15.5	NR	90.0	99.9 0.1	NR
	1 2.0.	15.5	INR	1.2	0.1	NR
METHODS:	SM4500-CI-B	375.4	310.1	310.1	150.1	160.1

Kisten Suploto

_______ Date

bs. New		Þ] -											CHA	NIN-	CHAIN-OF-CUSTODY	UST	lao	(AND	DA	NAL	Page_ YSIS R	Ū		of ST		.1
Mexico 88240 Tel (505) 383-2326 Fax (505) 393-2476	dina		Laborato	Õ	rai	0	ICS	5		Ů	3.7		Į			LAB Order ID #	er ID	#									I
^{Jany} Name: ICE Operating Company		BILL TO RICE (o o C	o Company: Operating	o Co Co	Compan	Sec≎ ∕	, 	#Od							A I	AL	SIS	RE	ANALYSIS REQUEST	ST]	ļ	1
ct Manager. 'istin Farris-Pone Droiaot Scientist		101 001	Acher	Address		. 4	(S)	treet,	(Street, City, Zip)	(d		_					le or	Speci	¥ –	(Circle or Specify Method No.)			_				
		122 W Taylor Sireet ~ Hobbs, New Mexico 8824U				s, New	MeXICC	92.88	: ارچ						<u></u>												
ass. المالية: مالية: مالية: مالية: مالية: مالية: 2 W Taylor Street ~ Hobbs, New Mexico 88240		(505) 393-9174	393- ₁	9172			• • • •		(505	(505)397-1471	1471				2.00											<u></u>	
e#: 05) 393-917 4	Fax#: (505) 397-1471	397-1	471										(98)	(108/20												
ct #: Project Name: BD Junction J-26					$\overline{}$	L'	$\mathbf{A}^{(i)}$)) bebr	- \		611.0											
ct Localion: 21S R37E Sec26 J ~ Lea County New Mexico	w Mexico				elig		rozan roza	nne(nson ØVal	Rozanne Johnson (505)631-9310 rozanne@valornet.com	-9310 COM									C7				180			sun
			2	MATRIX	ž	 	RESE ME	ESERVAT	PRESERVATIVE METHOD	-	SAMPLING		1X100		_					<u>ann</u> ,	8				a		10H 47
LAB# FIELD CODE	dmo(ጋ	SAENI						• •	г НDРЕ)	(2)	2 N N 10																.∽ əmīT b
)) 10 ds1(Đ)	# СОИТА	MATER SOIL	AIR SOIL	SLUDGE	нсг	^⁰ OSH [®] N °ONH	[≯] OS ^z H	ICE (1-1 Liter	NONE (200	TIME	208 38TM	RTEX 8021	D0728 HA9	etal Metal	TCLP Volati	TCLP Semi	เวษ	IPA SW/29	NCB's 808 MACE's 8082	sebioilee	SOD, TSS, Moisture Co		Cations (Ca Anions (Cl,	lozzi () Isto'	sabinolnC	nuonA mui
、 <i>サ</i> ゲゲー/ Monitor Well #1	U	1	×						-	10-10	0 17:15		-			ļ			╞		+	+			×		.
- C Monitor Well #2	υ	+	×						4	10-10	0 18:20													×××	÷		1
- 3 Monitor Well #3	ß	1	×				1.4 1.4		, T	10-10	16:25													+			1
																								 		\vdash	1
									2 12 2 1 2 1 2 1 2 1 2 1 2 1													├					1
							- 12 - 179 -		្នេះ ។ ដែ ី ដោះ ដ	1000 - 1000									┝╌╉	2		$\left \right $		┝╌┨			
	_		\rightarrow	_		4			3.5 . 5 .8.3 - 7				-+		\rightarrow	1	-		\neg	-+	_	-	1	-			1
			+	+					<u></u>			-+-	+	\square	+	1			+	+		+	1	-	1	+	ł
0			+									+-	+-		╋	1	+	\Box	+	+-		╋	1	╀		+	1
Date: Time:	Received by:	d by:	-	-	1]	Date:		Time			Phon	Phone Results	sults	┢	Yes	╞	[°] Z	1	-]	-	1	-			I
10/ 10-71-01	ŋ	1									-	FaxF	Fax Results	S		Yes	ļ	Ŷ		dditio	nal F	ax Nu	Additional Fax Number:				1
quished by: Date: Time:	Received By:	By:	(Labo	raton	(Laboratory Staff)		Date:		Time			REM	REMARKS											ļ			1
1		Z	Ĵ	L'	L	Ē	$\langle \rangle$) 16	1 Act	/ 70/	0:20		Email Results to:	Resu	ults to	-	dody	e@l	ices	kpope@riceswd.com	mo						
ered By: (Circle One)	Sample Condition	Conditio	_ ī			EHE E	ECKED BY	BY:									weir oza	hein ne(Dval	<u>orne</u>	<u>Iweinheimer@riceswd.com</u> rozanne@valornet.com	u con	_				
ipler) UPS - Bus - Other:		Yes No	No Ves	M		(Initials)	ls)																				
							4.				·																Į

63.

ş

RICE OPERATING COMPANY JUNCTION BOX FINAL REPORT

BOX LOCATION

SWD	SYSTEM	JUNCTION	UNIT	SECTION	TOWNSHIP	RANGE	COUNTY	NEW BO	DIMENSIC	NIS FEET
	inebry-	J-26 boot	J	26	215	37E	Lea	Length	Width	Depth
Dtini	kard (BD)			1			та с с с с с с с с с с с с с с с с с с с	no box	Junction ell	minaled
					· · ·					
LAND	TYPE B	LMST/	ATE	FEE LAND	DWNER	Deirose	Scóti	OTHER		
						an an the second of the				
Dept	h to Groun	dwater	.42	feet	NMOCD	SITE ASSE	SSMENT R	ANKING S	CORE:	20
Dat	e Started	4/23/20	002	Date Cor	npleted	10/2/2002		D Witness		YES
			· · · ·			· · · · · ·				
Soil E	xcavated	1.000	cubic ya	rda Exc	avation ter	gth <u>115</u>	Width	75	Qép ih	<u>40</u> 1
alant Situtter Nananananan		્ય સંપર્ધ મુંદ્ર પ્રાથમિક છે. પ્રાથમિક છે. પ્રાથમિક છે.	nika ji davuni Tiri			i selentre de L'Alexandre de L'Alexandre de L'Alexandre de	program Al Antonia - Carlos Al Antonia - Carlos	n an	an a	alahan dari dari dari dari dari dari dari dari
Soll I	Disposed	480	cubic yar	ds Off	site Facility_	Sund	ance	Location	Eunice,	New Mexico
• `.		۰.	•	*						
م مديني ما د پنجو د م	1.e. 1.g. 2.g.145541. 6. -				1	.	n na shekara na shekar N		• .	
General	Description	n of Remedial A	Action							
				For a summar	7 of the junction	box remedia	ion and excave	tion activities,	relecto the pr	eyloùsly-
ionalited J	unction Box (Disclosure Report	(2002). Since	the vádose rer	nediation, grau	udwater at the	silo has been	monitored on	a quarterly ba	515
				<u>,</u>						
•			* ************************************	4. 14. 14. 14. 14. 14. 14. 14. 14. 14. 1					·····	alarına mintəri 7 yürfələr iyin Fili Məsərəfi bəşişin interinteri
he attached	d November	2007 Abatement (Completion Re	port by Trident	Environmental	of Micland, T	exas requests	closure of this	junction box s	ite.
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	nna da mana ser a constant de 1946.	Listenia Cher Galeria (1997) and a state of the	al Mandan construit sur part affect (eine constructione)	<b>X-211-24</b> -100-100-100-100-100-100-100-100-100-10	aya kuta an			- to alkala mita sana asa asa aya aya aya aya a
		z ole zan mer gaaraal ja zona herri aan kadeloonad			100 C C C C C C C C C C C C C C C C C C	<u></u>				
	THERER	Y CERTIFY TH		IFORMATIO				TE TO THE	BESTOF	мŶ
	ليوعوه ويستنده والم	ր պաr∺ապերջ էնք է հ.β.։	ag p. P. P. B. Bana A∰.9 }		EDGE AND		jaan (Jaan jan 1989) ji kachan	ښې و د مېږ و مسرون	ور و در ایک	,

REPORT ASSEMBLED BY	Kilstin Faris Pope	SIGNATURE	Annie Jamis Pone
DATE	11/15/2007	TITLE	Project Scientist