
1R-433

REPORTS

DATE:

3-6-06

Whole Earth Environmental, Inc.

2006 MAR 13 PM 12 05

March 6, 2006

NMOCD 1220 South Saint Francis Dr. Sante Fe, NM 87505

Attn: Wayne Price

Dear Wayne:

Enclosed, please find a copy of the laboratory analytical results, hydro geologic gradient chart & spreadsheet summary for the Devon Patsy site situated southeast of Monument in Lea County New Mexico.

The Patsy Battery was acquired by Devon Energy in 2001 as a part of a larger asset purchase. Prior to the acquisition, all of the tanks and ancillary equipment were removed leaving only bare ground and a few joints of 2" flow lines. Devon does not own or operate any other properties in the immediate area.

Upon notification of potential environmental defects, Devon undertook two independent studies of the site which included the advancement, development and monitoring of a series of seven monitor wells. An initial analysis of the waters from within the wells indicated extensive chloride contamination of the site including three wells situated well up gradient of all production facilities. Only one well (MW –5) indicated BTEX involvement. This well was situated adjacent to a production pit used only sporadically over the life of the facility.

With sandy soil conditions and a water table located less than thirty feet below ground, minor amounts of hydrocarbons migrated to the water table directly below the production pit. In March, 2005, Whole Earth Environmental excavated all hydrocarbon and brine contaminated soils from the production pit area and through a combination of aeration and dilution reduced the TPH, BTEX and chloride concentrations of the soils to levels specified within the approved protocol.

The water table directly beneath the pit was pumped out several times until no sheen appeared on the surface. The water was then analyzed for BTEX and found to be at essentially non-detection levels. When tested this year, all monitor wells again showed non-detection levels of BTEX.

The chloride concentrations within the wells actually trended upward over the last analysis – including those wells situated up-gradient from the production facilities. This is clear indication that the elevated chloride concentrations are resulting from off site sources migrating on to the location.

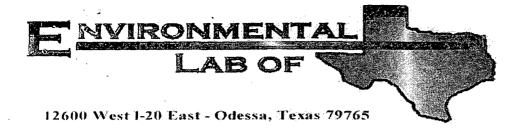
We would like to plug and abandon almost all of the monitor wells at the site. We propose to leave Monitor Well no. 5 open for a minimum period of three years. Well no. 5 is the only one ever to show BTEX involvement and is additionally the most up-gradient of the wells on the site. It's location will allow us to trend the background chloride migration over time.

Thank you in advance for your consideration of our proposal. I very much look forward to discussing this with you in the near future.

Warmest personal regards,

Mike Griffin President

Whole Earth Environmental, Inc.


Cc: Chris Biagi / Devon Energy Corporation

Attachments: Environmental Lab of Tx. Analytical Report 6B14001

Gradient and Monitor Well Location Map Historical Analytical Analysis Summary

Hydrological Gradient Chart

Bailing Logs

Analytical Report

Prepared for:

Mike Griffin WHOLE EARTH ENVIRONMENTAL 2103 Arbor Cove Katy, TX 77494

Project: Patsy Lease
Project Number: None Given
Location: Monument

Lab Order Number: 6B14001

Report Date: 02/21/06

2163 Arbor Cove Katy TX, 77494 Project: Patsy Lease

Project Number: None Given Project Manager: Mike Griffin

Fax: (281) 394-2051

Reported: 02/21/06 15:59

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	6B14001-01	Water	.02/13/06 09:41	02/14/06 08:10
MW-3	6B14001-02	Water	02/13/06 09:13	02/14/06 08:10
MW-4	6B14001-03	Water	02/13/06 08:50	02/14/06 08:10
MW-5	6B14001-04	Water	02/13/06 08:15	02/14/06 08:10
MW-6	6B14001-05	Water	02/13/06 08:25	02/14/06 08:10
MW-7	6B14001-06	Water	02/13/06 09:51	02/14/06 08:10

2103 Arbor Cove Katy TX, 77494

Project: Patsy Lease Project Number: None Given Project Manager: Mike Griffin Fax: (281) 394-2051 Reported: 02/21/06 15:59

Organics by GC **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1 (6B14001-01) Water	<u> </u>					parea	1 2 2 2 2 2 2		1101
Benzene	J [0.000908]	0.00100	mg/L	1	EB61616	02/16/06	02/17/06	EPA 8021B	
Toluene	0.00148	0.00100	"	**	"	11	U	н	
Ethylbenzene	0.00806	0.00100	11	11	н	11	t1	"	
Xylene (p/m)	0.00211	0.00100	н	п	н	11	11	н	
Xylene (o)	J [0.000258]	0.00100	u	**	n	n	11	u	
Surrogate: a,a,a-Trifluorotoluene		97.0 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.8 %	80-	120	"	"	"	"	
MW-3 (6B14001-02) Water							_		
Benzene	ND	0.00100	mg/L	1	EB61616	02/16/06	02/17/06	EPA 8021B	
Toluene	ND	0.00100	н	11	ŧ	Ħ	н	11	
Ethylbenzene	ND	0.00100	"	"	u	tt	н	11	
Xylene (p/m)	ND	0.00100	n	U	U	Ħ	н	11	
Xylene (o)	ND	0.00100	н	11	U	11	"	u	
Surrogate: a,a,a-Trifluorotoluene		94.8 %	80-	120	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.0 %	80-	-120	n	"	"	"	
MW-4 (6B14001-03) Water									_
Benzene	ND	0.00100	mg/L	1	EB61616	02/16/06	02/17/06	EPA 8021B	
Toluene	ND	0.00100	11	O	и .	11	п	n	
Ethylbenzene	ND	0.00100	11	н	и	If	11	n	
Xylene (p/m)	ND	0.00100	11	n	11	H	IT	u	
Xylene (o)	ND	0.00100	н	"	11	11	II.	11	
Surrogate: a,a,a-Trifluorotoluene		80.0 %	80-	-120	"	. "	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	80-	-120	"	"	"	"	
MW-5 (6B14001-04) Water									
Benzene	ND	0.00100	mg/L	. 1	EB61616	02/16/06	02/20/06	EPA 8021B	
Toluene	ND	0.00100	н .	11	11	n	n	11	
Ethylbenzene	ND	0.00100	н	11	11	11	0	11	
Xylene (p/m)	ND	0.00100	0	u	u	**	п	н	
Xylene (o)	ND	0.00100	11	. "	н	tr.	н	н	
Surrogate: a,a,a-Trifluorotoluene		98.2 %	80-	-120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	•	109 %	80-	-120	"	"	"	"	

2103 Arbor Cove Katy TX, 77494 Project: Patsy Lease

Project Number: None Given Project Manager: Mike Griffin

Fax: (281) 394-2051

Reported: 02/21/06 15:59

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-6 (6B14001-05) Water									
Benzene	ND	0.00100	mg/L	1	EB61616	02/16/06	02/20/06	EPA 8021B	
Toluene	ND	0.00100	11 .	**	н	u	11	11	
Ethylbenzene	ND	0.00100	11	11	H	11	n	n	
Xylene (p/m)	ND	0.00100	11	п	11	n	11	11	
Xylene (o)	ND	0.00100	н	"	"	н	TI .	0	
Surrogate: a,a,a-Trifluorotoluene		112 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		120 %	80-12	20		"	"	"	
MW-7 (6B14001-06) Water									
Benzene	ND	0.00100	mg/L	1	EB61616	02/16/06	02/20/06	EPA 8021B	
Toluene	ND	0.00100	n	II	11	11	**	11	
Ethylbenzene	ND	0.00100	**	"	v	11	"	11	
Xylene (p/m)	ND	0.00100	n	U	11	н	n.	11	
Xylene (o)	ND	0.00100	**	"	n	11	11	11	
Surrogate: a,a,a-Trifluorotoluene		106 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		114 %	80-12	20	"	"	"	"	

2103 Arbor Cove Katy TX, 77494 Project: Patsy Lease

Project Number: None Given Project Manager: Mike Griffin

Fax: (281) 394-2051

Reported: 02/21/06 15:59

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (6B14001-01) Water									
Chloride	1110	25.0	mg/L	50	EB61711	02/17/06	02/20/06	EPA 300.0	
MW-3 (6B14001-02) Water									
Chloride	615	12.5	mg/L	25	EB61711	02/17/06	02/20/06	EPA 300.0	
MW-4 (6B14001-03) Water									
Chloride	603	12.5	mg/L	25	EB61711	02/17/06	02/20/06	EPA 300.0	
MW-5 (6B14001-04) Water									
Chloride	575	12.5	mg/L	25	EB61711	02/17/06	02/20/06	EPA 300.0	
MW-6 (6B14001-05) Water				٠					
Chloride	895	12.5	mg/L	25	EB61711	02/17/06	02/20/06	EPA 300.0	
MW-7 (6B14001-06) Water									
Chloride	588	12.5	mg/L	25	EB61711	02/17/06	02/20/06	EPA 300.0	1

2103 Arbor Cove Katy TX, 77494 Project: Patsy Lease

Project Number: None Given Project Manager: Mike Griffin

Fax: (281) 394-2051

Reported: 02/21/06 15:59

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB61616 - EPA 5030C (GC)				,						
Blank (EB61616-BLK1)				Prepared .	& Analyze	ed: 02/16/0	06			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	n n							
Ethylbenzene	ND	0.00100	11							
Xylene (p/m)	ND	0.00100	11							
Xylene (o)	ND	0.00100								
Surrogate: a,a,a-Trifluorotoluene	34.1		ug/l	40.0		85.2	80-120			
Surrogate: 4-Bromofluorobenzene	36.3		"	40.0		90.8	80-120			
LCS (EB61616-BS1)				Prepared	& Analyzo	ed: 02/16/	06			
Benzene	0.104	0.00100	mg/L	0.100		104	80-120			
Toluene	0.111	0.00100	u	0.100		111	80-120			
Ethylbenzene	0.115	0.00100	11	0.100		115	80-120			
Xylene (p/m)	0.206	0.00100	. н	0.200		103	80-120			
Xylene (o)	0.120	0.00100	и	0.100		120	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.1		ug/l	40.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	43.5		"	40.0		109	80-120			
Calibration Check (EB61616-CCV1)				Prepared:	02/16/06	Analyzed	l: 02/17/06			
Benzene	107		ug/l	100		107	80-120			
Toluene	112		u	100		112	80-120			
Ethylbenzene	106		"	100		106	80-120			
Xylene (p/m)	188		0	200		94.0	80-120			
Xylene (o)	102		n	100		102	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.2		11	40.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	36.5		"	40.0		91.2	80-120			
Matrix Spike (EB61616-MS1)	So	urce: 6B0900	04-01	Prepared:	02/16/06	Analyzeo	l: 02/17/06			
Benzene	0.0988	0.00100	mg/L	0.100	ND	98.8	80-120			
Toluene	0.116	0.00100	н	0.100	ND	116	80-120			
Ethylbenzene	0.119	0.00100	u u	0.100	ND	119	80-120			
Xylene (p/m)	0.217	0.00100	н	0.200	ND	108	80-120			
Xylene (o)	0.119	0.00100	н	0.100	ND	119	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.9		ug/l	40.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	39.5		"	40.0		98.8	80-120			

2103 Arbor Cove Katy TX, 77494

Project: Patsy Lease

Project Number: None Given Project Manager: Mike Griffin Fax: (281) 394-2051

Reported: 02/21/06 15:59

Organics by GC - Quality Control **Environmental Lab of Texas**

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	EB61616 -	EPA	5030C	(GC)
Daten	rabuitoro -		JUJUC	ω

Matrix Spike Dup (EB61616-MSD1)	Sou	ırce: 6 B 0900	4-01	Prepared:	02/16/06	Analyze	d: 02/17/06		
Benzene	0.0968	0.00100	mg/L	0.100	ND	96.8	80-120	2.04	20
Toluene	0.114	0.00100	11	0.100	ND	114	80-120	1.74	20
Ethylbenzene	0.115	0.00100	11	0.100	ND	115	80-120	3.42	20
Xylene (p/m)	0.204	0.00100	н	0.200	ND	102	80-120	5.71	20
Xylene (o)	0.115	0.00100	п	0.100	ND	115	80-120	3.42	20
Surrogate: a,a,a-Trifluorotoluene	41.6		ug/l	40.0		104	80-120		
Surrogate: 4-Bromofluorobenzene	34.2		"	40.0		85.5	80-120		

2103 Arbor Cove Katy TX, 77494 Project: Patsy Lease

Project Number: None Given Project Manager: Mike Griffin

Fax: (281) 394-2051

Reported: 02/21/06 15:59

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB61711 - General Preparatio	n (WetChem)									
Blank (EB61711-BLK1)				Prepared:	02/17/06	Analyzed	1: 02/20/06			
Chloride	ND	0.500	mg/L							
LCS (EB61711-BS1)				Prepared:	02/17/06	Analyzed	1: 02/20/06			
Chloride	8.76	0.500	mg/L	10.0		87.6	80-120		,	
Calibration Check (EB61711-CCV1)				Prepared:	02/17/06	Analyzed	l: 02/20/06			
Chloride	8.59		mg/L	10.0		85.9	80-120			
Duplicate (EB61711-DUP1)	Sour	ce: 6B1300	6-01	Prepared:	02/17/06	Analyzed	l: 02/20/06			
Chloride	641	12.5	mg/L		629			1.89	20	

2103 Arbor Cove Katy TX, 77494

Project: Patsy Lease

Project Number: None Given

Project Manager: Mike Griffin

Fax: (281) 394-2051

Reported: 02/21/06 15:59

Notes and Definitions

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

LCS

Laboratory Control Spike

MS

Matrix Spike

Dup

Duplicate

Report Approved By: Report Approved By:

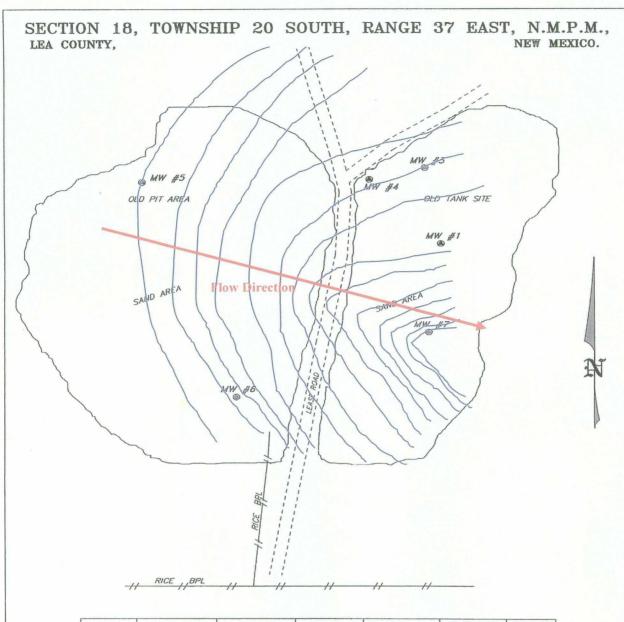
Date: 2-21-06

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director

Peggy Allen, OA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.


If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas, Inc.	Lab of Texas.	, Inc. 12600 West 1	12600 West L-20 East Odessa, Texas 79763 (915) 563-1800 FAX (915) 563-1713	713 CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST.
Project Managers		Phone #: FAX #:		ANALYSIS REQUEST
Company Name & Address: () holp = anth	The Eminon			l
	*	Project Name	ne: 7 (2004) Y	
Froject Location:			1000	Ba Cd Cr
	รษ	≥ MATRIX	PRESERVATIVE SAMPLING METHOD	0.5030 sA gA . sA gA sA gA
LAB# FIELD CODE (LAB USE) CONLY	W CONTAINE	Volume/Amou SOII, SOII, SUDGE SUUGE	исг иоие отнев отнев	TIME BTEX \$1120 TOLP Metals TOLP Metals TOLP Votatili TOLP Semil V TOS RICI RICI
214601-01 MILLI	71	X 1207	-,7	X (77, 6
				7.2
15 me -4				Q.X.
7- WW-5			5	2.51
10 min -6				8.37
*,	→		H N N	9.51 V
,				
Relinquished by:	Date:	Times:	Received by:	REMARKS REC 0.5 C not fozen
Relinquished by:	Date:	Tlac:	Received by:	2- VOA HCI
Relinquished by:	Date 2/14/0/0	Times:	Received by Laboratory:	1- doz glass
	Y() - 1	7		M MAKE IN THE MAKE TH

EB

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: What Farth				
Date/Time: <u>UAJOU 8:10</u>				
Order #: <u>VB4001</u>				
Initials:				
Sample Receipt	Checkli	ist	·.	
Temperature of container/cooler?	Yes	No	015	CI
Shipping container/cooler in good condition?	KED	No		<u> </u>
Custody Seals intact on shipping container/cooler?	Yes	No	Olci present	•
Custody Seals intact on sample bottles?		No	Not present	
Chain of custody present?		No		
Sample Instructions complete on Chain of Custody?		No		
Chain of Custody signed when relinquished and received?	(35)	No		
Chain of custody agrees with sample label(s)		No		
Container labels legible and intact?	\ \(\&\circ\ \(\&\circ\ \)	No		
Sample Matrix and properties same as on chain of custody?	₩	No		
Samples in procer container/bottle?	Y€3	No		•
Samples properly preserved?	Y639	No		
Sample bottles intact?	YES	No		
Preservations documented on Chain of Custody?	€\$	No		
Containers documented on Chain of Custody? Sufficient sample amount for indicated test?		No I		
All samples received within sufficient hold time?		No		
VOC samples have zero headspace?	YES	No	Not Applicabl	
Other observations: Saimples not frozen.				
Variance Docum Contact Person: Date/Time:			Contacted by	y:
Regarding:				
Corrective Action Taken:				

NAME	NORTHING	EASTING	LATITUDE	LONGITUDE	ELEVATION NO. SIDE PVC	ELEVATION CONCRETE
MW #1	N575474.584	E863628.018	N32°34'39.6"	W103°17′13.4"	3549.64'	3546.99'
MW #3	N575580.346	E863608.566	N32'34'40.6"	W10377'13.6"	3550.42'	3547.39
MW #4	N575564.148	E863539.895	N32*34'40.5"	W10377'14.4"	3549.01	3546.27'
MW #5	N575560.635	E863260.263	N32*34'40.5"	W10377'17.7"	3549.64'	3546.84'
MW #6	N575258.500	E863374.845	N32*34'37.5"	W10377'16.4"	3547.46'	3545.24
MW #7	N575349.615	E863612.419	N32'34'38.4"	W10377'13.6"	3546.72'	3543.73'

ALL COORDINATES ARE BASED ON NMSPCE (NAD83)

Devon Energy Company Patsy Battery Water Analytical Summary

	MW-1							
Date	Lab. No	Benzene	Toluene	Ethylbenzene	Xylene	Chlorides		
3/27/2005	5C28002-01	0.002	0.002	0.004	0.003	560		
2/13/2006	6B14001-01	ND	0.0010	0.0080	0.0020	1,110		

	MW-3						
Date	Lab. No	Benzene	Toluene	Ethylbenzene	Xylene	Chlorides	
3/27/2005	5C28002-02	ND	ND	ND	ND	664	
2/13/2006	6B14001-02	ND	ND	ND	ND	615	

	MW-4						
Date	Lab. No	Benzene	Toluene	Ethylbenzene	Xylene	Chlorides	
3/27/2005	5C28002-03	ND	ND	ND	ND	472	
2/13/2006	6B14001-03	ND	ND	ND	ND	603	

	MW-5						
Date	Lab. No	Benzene	Toluene	Ethylbenzene	Xylene	Chlorides	
3/27/2005	5C28002-04	ND	ND	ND	ND	572	
2/13/2006	6B14001-04	ND	ND	ND	ND	575	

	MW-6						
Date	Lab. No	Benzene	Toluene	Ethylbenzene	Xylene	Chlorides	
3/27/2005	5C28002-05	ND	ND	ND	ND	1,190	
2/13/2006	6B14001-05	ND	ND	ND	ND	895	

	MW-7							
Date	Lab. No	Benzene	Toluene	Ethylbenzene	Xylene	Chlorides		
3/27/2005	5C28002-06	ND	ND	ND	ND	538		
2/13/2006	6B14001-06	ND	ND	ND	ND	588		

Devon's Patsy Lease Geological-Hydrostatic Head

					_			Υ	Х	Z
						Groundy	vater	Land S	Surface	Geo-Hydro
MW	Elevation	RTW	R	STW	TD	MSL	MW	Northing	Easting	Head
1	3546.99	34.80	2.65	34.80	41.55	3512.19	1	575474.584	863628.018	0.71
3	3547.39	35.40	3.03	35.40	41.80	3511.99	3	575580.346	863608.566	0.51
4	3546.27	33.80	2.74	33.80	41.10	3512.47	4	575564.148	863539.895	0.99
5	3546.84	34.00	2.80	34.00	40.25	3512.84	5	575560.635	863260.263	1.36
6	3545.24	32.50	2.22	32.50	41.35	3512.74	6	575258.500	863374.845	1.26
7	3543.73	32.25	2.99	32.25	40.55	3511.48	7	575349.615	863612.419	0.00

Patsy MW #1

Ŧ	-4-	
ſ	ar.	

N32.⁰34 39.6"

Long.

W103⁰ 17' 13.4"

Surf. Elev.

3,547 Ft.

As Drilled			As Measured				
Date:		Date:	3/27/05	2/22/06			
Top of Water '	Ft.	Top of Water	31.50	31.40	Ft.		
Bottom of Bore	Ft.	Bottom of Bore	38.20	38.10	Ft.		
		Bore Volumn	1.08	1.08	Gal		
		LPNL Top	NA	NA	Ft.		
		LPNL Bottom	NA	NA	Ft.		
		DPNL Top	NA	NA	Ft.		
		DPNL Bottom	NA	NA	Ft.		
		Min. Bailing Vol.	3.24	3.24	Gal		
		Actual Bailing Vol.	15.00	15.00	Gal		

Devon Patsy

Monitor Well Bailing Log

Patsy MW #3

Ŧ	-4-	
	-34 T	

N32.⁰34 40.6"

Long.

W103⁰ 17' 13.6"

Surf. Elev.

3,550 Ft.

As Drilled		As Measured				
Date:		Date:	3/27/05	2/22/06		
Top of Water	Ft.	Top of Water	31.80	31.90	Ft.	
Bottom of Bore	Ft.	Bottom of Bore	38.30	38.40	Ft.	
		Bore Volumn	1.05	1.05	Gal.	
		LPNL Top	NA	NA	Ft.	
		LPNL Bottom	NA	NA	Ft.	
		DPNL Top	NA	NA	Ft.	
		DPNL Bottom	NA	NA	Ft.	
		Min. Bailing Vol.	3.15	3.15	Gal.	
		Actual Bailing Vol.	15.00	15.00	Gal.	

Devon Patsy

Monitor Well Bailing Log

Patsy MW #4

Lat:	N32. ⁰ 34 40.5"
Long.	W103 ⁰ 17' 14.4
Surf. Elev.	3,549 Ft.

 As Drilled
 As Measured

 Date:
 3/27/05
 2/22/06

 Top of Water
 Ft.
 Top of Water
 30.30
 30.30
 Ft.

Date:	
Top of Water	Ft.
Bottom of Bore	Ft.

Date	: 3/27/05	2/22/06	
Top of Water	30.30	30.30	Ft.
Bottom of Bore	37.40	37.40	Ft.
Bore Volumn	1.15	1.15	Gal.
LPNL Top	NA	NA	Ft.
LPNL Bottom	NA	NA	Ft.
DPNL Top	NA	NA	Ft.
DPNL Bottom	NA	NA	Ft.
Min. Bailing Vol.	3.44	3.44	Gal.
Actual Bailing Vol.	15.00	15.00	Gal.

Patsy MW #5

T	at.

N32.⁰34 40.5"

Long.

W103⁰ 17' 17.7"

Surf. Elev.

3,549 Ft.

As Drilled		As Measured				
Date:		Date:	3/27/05	2/22/06		
Top of Water	Ft.	Top of Water	30.70	30.70	Ft.	
Bottom of Bore	Ft.	Bottom of Bore	37.40	37.40	Ft.	
		Bore Volumn	1.08	1.08	Ga	
		LPNL Top	NA	NA	Ft.	
		LPNL Bottom	NA	NA	Ft.	
		DPNL Top	NA	NA	Ft.	
		DPNL Bottom	NA	NA	Ft.	
		Min. Bailing Vol.	3.24	3.24	Ga	
		Actual Bailing Vol.	15.00	15.00	Ga	

The Control of the Co			

Patsy MW #6

Lat:	N32. ⁰ 34 37.5"
Long.	W103 ⁰ 17' 16.4"
Surf. Elev.	3,547 Ft.

As Drilled		As Measured				
Date:		Date:	3/27/05	2/22/06		
Top of Water	Ft.	Top of Water	29.20	29.10	Ft.	
Bottom of Bore	Ft.	Bottom of Bore	37.90	38.10	Ft.	
		Bore Volumn	1.40	1.45	Gal.	
		LPNL Top	NA	NA	Ft.	
		LPNL Bottom	NA	NA	Ft.	
		DPNL Top	NA	NA	Ft.	
		DPNL Bottom	NA	NA	Ft.	
		Min. Bailing Vol.	4.21	4.35	Gal.	
		Actual Bailing Vol.	15.00	15.00	Gal.	

Patsy MW #7

N32.⁰34 38.4"

Long.

W103⁰ 17' 13.6"

Surf. Elev.

3,546 Ft.

As Drilled	<u>l</u>	As Measured				
Date:		Date:	3/27/05	2/22/06		
Top of Water	Ft.	Top of Water	28.70	28.90	Ft.	
Bottom of Bore	Ft.	Bottom of Bore	37.10	37.20	Ft.	
-		Bore Volumn	1.35	1.34	Gal	
		LPNL Top	NA	NA	Ft.	
		LPNL Bottom	NA	NA	Ft.	
		DPNL Top	NA	NA	Ft.	
		DPNL Bottom	NA	NA	Ft.	
		Min. Bailing Vol.	4.06	4.02	Gal	
		Actual Bailing Vol.	15.00	15.00	Gal	

•	 ,		