1R -

REPORTS

DATE:

4-08

RECEIVED 2008 APR 14 PM 1 55 April 4, 2008

M-5 SWD Closure Report

Section 5 T20S R37E Unit M NMOCD # 1R 0424

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

M-5 SWD Closure Report

Section 5 T20S R37E Unit M NMOCD # 1R 0424

prepared for:

Rice Operating Company 122 West Taylor Hobbs, NM 88240

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

1.0 LOCATION

Section 5 T20S R37E Unit M NMOCD # 1R 0424

Plate 1 shows the location of the M-5 SWD site in relation the 1:100,000 scale USGS topographic map. Plate 2 is an aerial photograph of the site with the water wells (within $\frac{1}{2}$ mile of the site) in the Office of the State Engineer database noted. The ROC monitoring well sites and the former Climax Chemical Plant site are also shown on Plates 1 and 2.

2.0 WORK ELEMENTS PERFORMED SINCE SEPTEMBER 2004

From 2004 through 2007, ROC routinely sampled the two monitoring wells at the site, MW-1 (deep) and MW-2 (shallow). All laboratory results from the sampling programs are summarized in Tables 1 and 2.

Rice has also conducted surface reclamation programs described and documented in Appendix A. Waste manifests are also included in Appendix A.

3.0 CONCLUSIONS

3.1 Regional Ground Water Impairment Exists at the M-5 Site

Plate 3 is a ground water elevation map documenting a regional southeastern direction of ground water flow in 2007. Examination of this map will show local ground water perturbations, however, regional flow is to the southeast. Plate 4 is a reproduction of a portion of the Ground Water Map of Southern Lea County (Nicholson and Clebsch, 1961), which also shows the southeastern ground water flow direction in the area of interest. The deep and shallow monitor wells at the M-5 site are directly down gradient from the former redwood tanks and monitoring wells associated with the P-6 release site.

Plate 5 shows the chloride concentrations in ground water from samples obtained during the 4th Quarter 2007 ROC sampling event for the area within 2-3 miles of the site. This map shows a large area of regional ground water impairment due to chloride. The highest chloride concentrations are nearest to the former Climax Chemical Plant, which is located in the northwest corner of Plate 5. A 1968 sample in the PTTC database shows a chloride concentration from a well on the Climax Chemical site exceeds 140,000 mg/L chloride. These data permit a conclusion that the former Climax Chemical Plant is the principal source of the regional ground water quality impairment shown in Plate 5.

3.2 Natural Restoration is Decreasing the Magnitude of the Regional Ground Water Impairment

Figure 1 presents the chloride concentration trend over time for the MW-2 at

the P-6 site. This well is up gradient from a historic ROC release (at P-6 AP-45) and represents ambient water quality in the area of the P-6 and M-5 sites. This monitoring well is also located near the edge of the zone of regional ground water impairment that originates at or near the former Climax Chemical Plant. At MW-2 (P-6), the chloride concentration is decreasing with time and the data permit a prediction that ground water will be less than 250 mg/L within five years (before 2012).

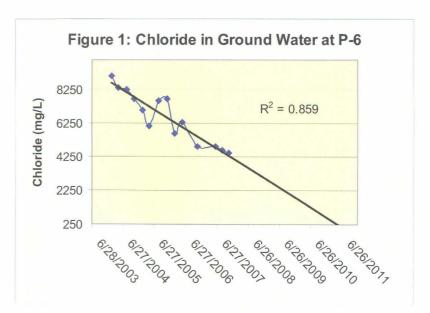
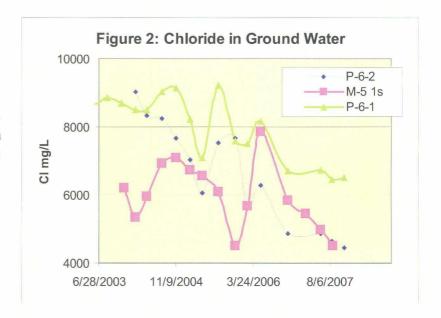



Plate 6 is an expanded view of Plate 5 in the area of the M-5 site and also shows the temporal decrease in the magnitude of the regional zone of impairment. Plotted on Plate 6 are the 8,000 and 2,000 mg/L iso-concentration lines associated with the ROC May 2004 ground water sampling event (red dotted lines) as well as the iso-concentration lines from the 2007 sampling event (shown with green solid lines). These data show that the extent of ground water impairment (as defined by the 2,000 mg/L isopleth) has not materially changed during the 3-year period, but the magnitude of the impairment (defined by the size of the 8,000 mg/L zone of impairment) has decreased due to natural restoration.

3.3 At M-5, Chloride Will Be Less than 250 mg/L Before 2022 in the Shallow Well

Figure 2 shows that chloride concentrations in ground water are decreasing with time at M-5 (shallow well) and the monitoring wells at the up gradient P-6 site. A linear regression of the data for M-5 predicts that chloride in ground water will be less than 250 mg/L before 2022. However, the correlation coefficient of the regression is relatively low (about 0.2) because of the variability observed between August 2005 and October 2006. During much of this time, the redwood tank excavation remained open and natural variations of chloride concentration (as illustrated in the data from P-6-2) might be exacerbated due to increased infiltration of

precipitation through the excavation. Since the backfilling of the excavation, the decreasing trend is very similar to that observed at the background monitoring well P-6-2.

The backfilling of the excavation will reduce deep percolation of precipitation at the site and dampen the variability of chloride concentrations in shallow ground water. If the decreasing chloride trend observed during the past year continues, chloride in the shallow well will be less than 250 mg/L within a few years.

Unlike in the uppermost portion of the aquifer, chloride in the deep well is not affected by changes in the rate of deep percolation (due to large rainfall events or surface restoration efforts). However, if the main source area of chloride at or near the former Climax Chemical Plant is removed, ground water near the base of the aquifer will be naturally restored over time.

3.4 The M-5 Site Does Not Contribute Chloride to Regional Ground Water Impairment

In Plate 6, the chloride concentration at the M-5 site is 4,499 mg/L in the shallow well. The three northernmost monitoring wells at the P-6 site, which are directly up gradient from the M-5 site and screened in the uppermost portion of the aquifer, exhibit an average chloride concentration of 5,531 mg/L. Because the chloride concentrations up gradient from M-5 site are equal to or higher than observed at the M-5 site, the data support our conclusion that the M-5 site is not contributing chloride to regional ground water impairment.

3.5 Constituents in the Vadose Zone Pose No Threat to Ground Water Quality

Table 2 shows the laboratory results of soil/sediment sampling during the October 2003 field program. Our observations at the M-5 Redwood Tank site are similar to our findings at other sites: total petroleum hydrocarbons can exceed 20,000 ppm yet the constituents of concern, such as benzene, are below 0.1 ppm (see sample M5 B4-4 feet on Table 2). In most samples, benzene is below the laboratory detection limits.

The most convincing evidence that hydrocarbon constituents in the vadose zone pose no threat to ground water quality are the results of ground water monitoring at the site (see Table 1). The down gradient monitoring wells have never detected regulated hydrocarbons over the four year monitoring period. Moreover, the results of grab samples obtained from the borings immediately adjacent to the redwood tanks (borings B-1, B-2 and B-3 in Table 2) did not detect regulated hydrocarbons above WQCC Standards despite the fact that deep soil samples from these same borings detected hydrocarbons (e.g. B-1, 26-27 feet bgs detected 13.7 mg/kg ethylbenzene).

Chloride concentrations in soil/sediment samples were also very low (Table 2). The lithologic logs presented in Appendix B of the September 2004 CAP (included with all previous submissions in Appendix C) show that field chloride concentrations range between 209 and 479 ppm. However, field analyses overestimated soil chloride concentration compared to laboratory tests during this program. We split samples in SB-1 for the 7.0 foot depth and the 16.8 foot depth. We found that the laboratory reported chloride values of <20.0 and 53.2 ppm respectively whereas the field values for these samples were 208 and 218 ppm. For SB-2

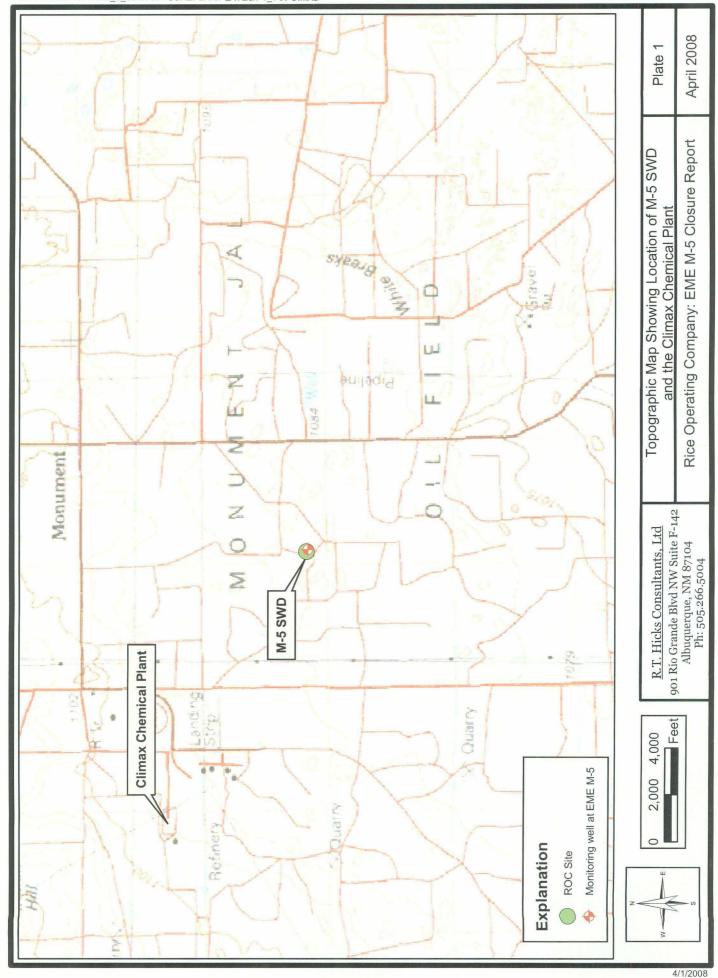
at 12 feet below grade, the laboratory result is 142 ppm and the field test showed 321 ppm. These types of differences between laboratory and field analyses were common in 2003, especially in samples with low chloride content. The results of the soil boring program allow us to conclude that chloride is less than 250 mg/kg in the vadose zone at the former redwood tank site. Moreover, the ground water data also demonstrate that the chloride in the vadose zone is not contributing to chloride concentrations caused by the source area at or near the former Climax Chemical Plant.

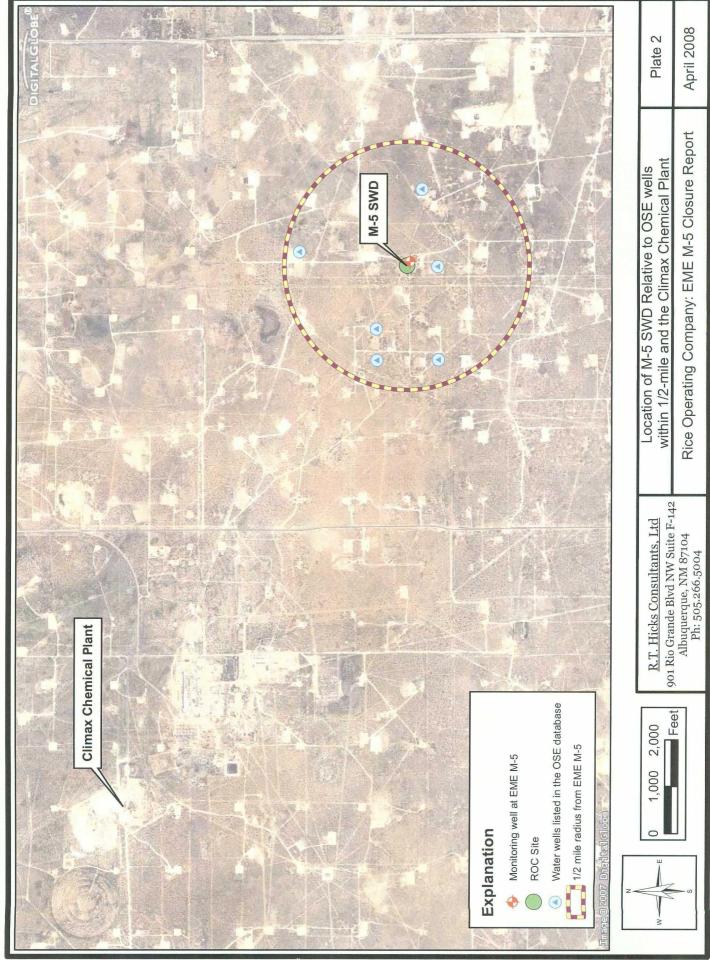
4.0 REQUEST FOR CLOSURE

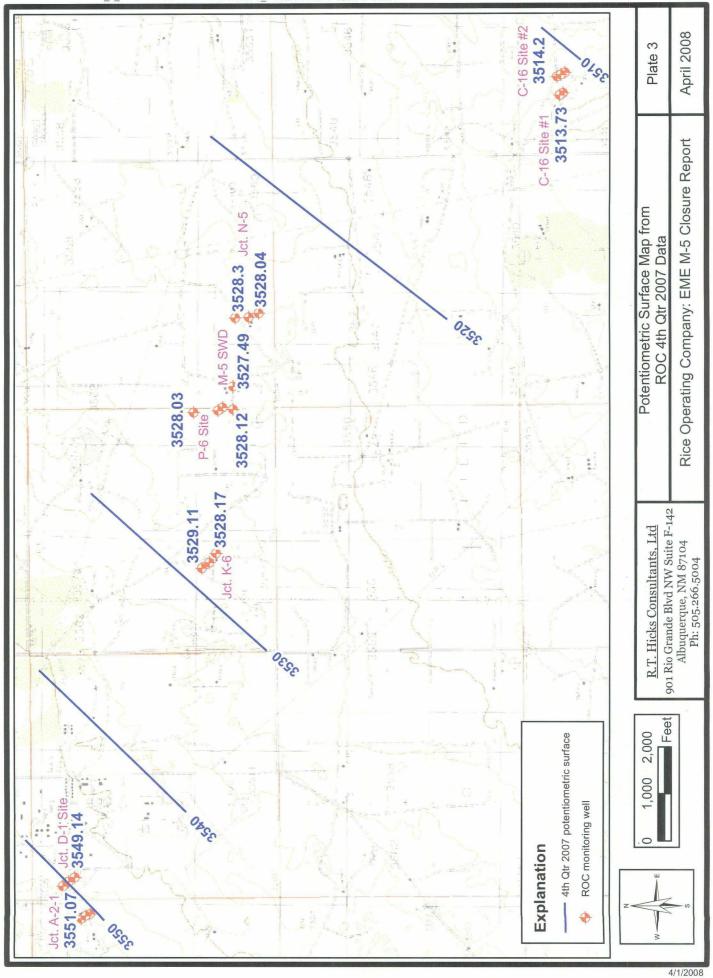
ROC investigated the release of fluids from the M-5 Redwood Tank site and found that the site poses no threat to public health, fresh water or the environment due to petroleum hydrocarbons or soluble salts. With this submittal, we request closure of the regulatory file.

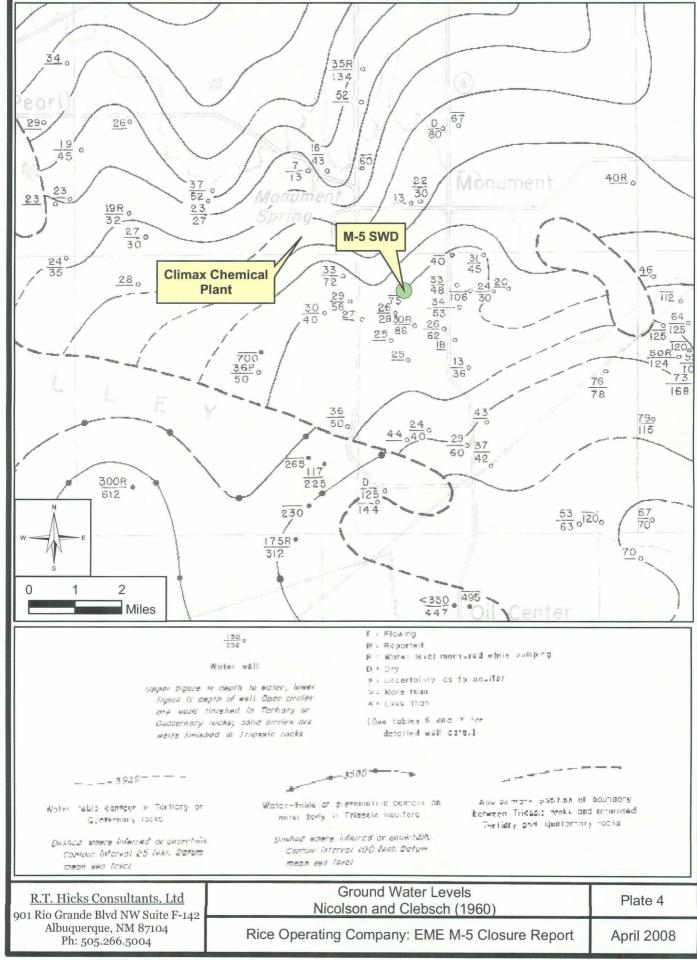
As part of the ongoing investigation of other ROC sites within the EME system, ROC plans to maintain the monitoring wells at the site. Monitoring results will be submitted with the Annual Reports associated with the P-6 release site. The SWD well will remain active and the associated facility will remain.

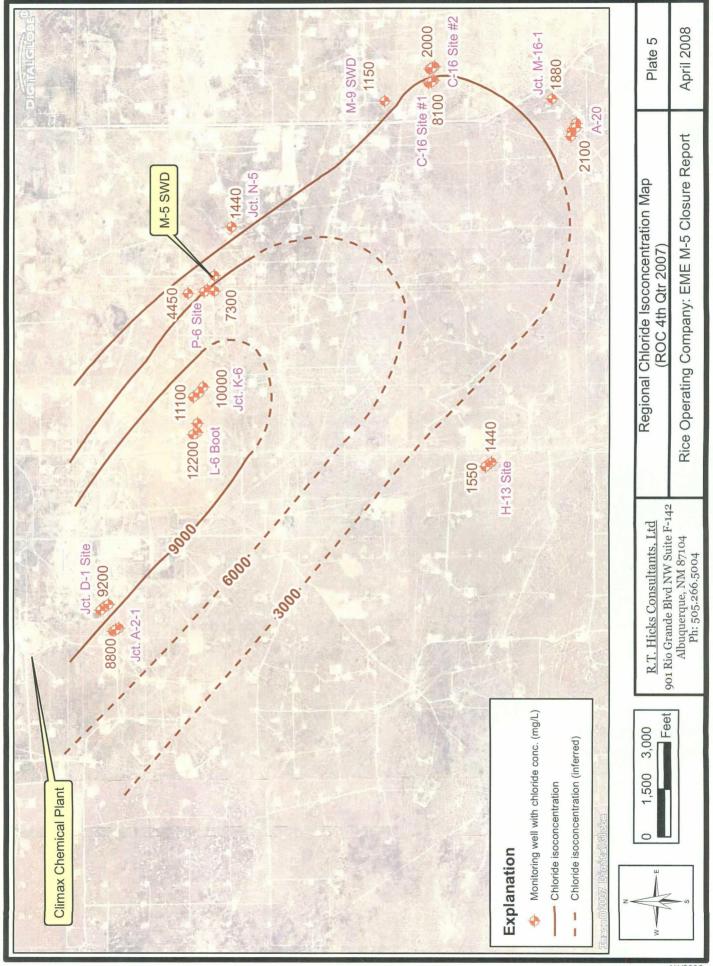
Tables & Plates

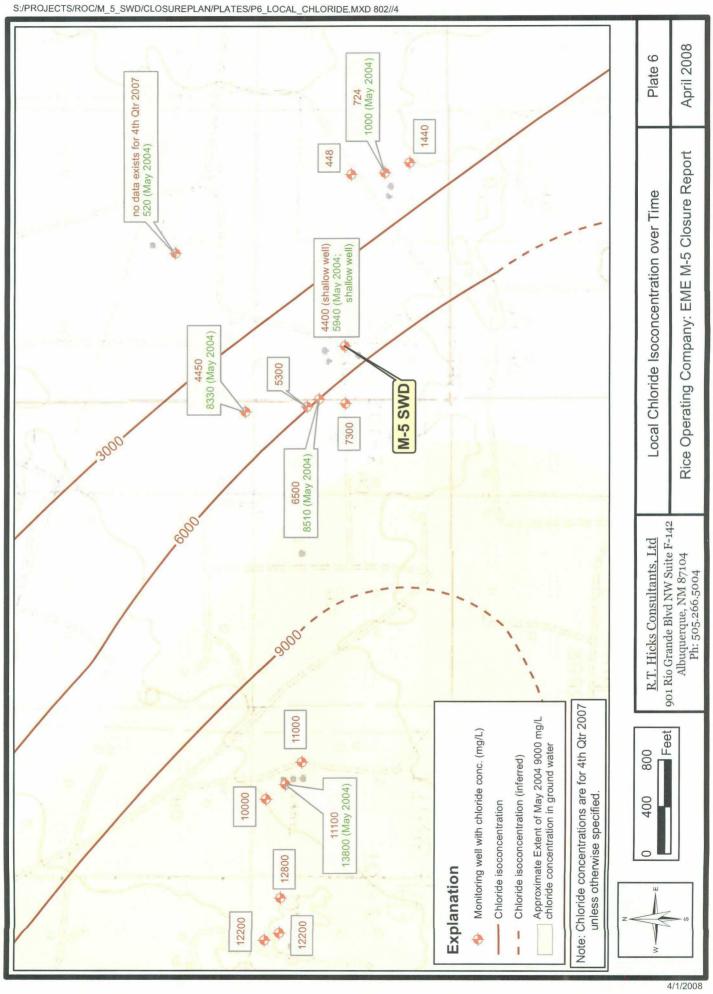

R.T. Hicks Consultants, Ltd.

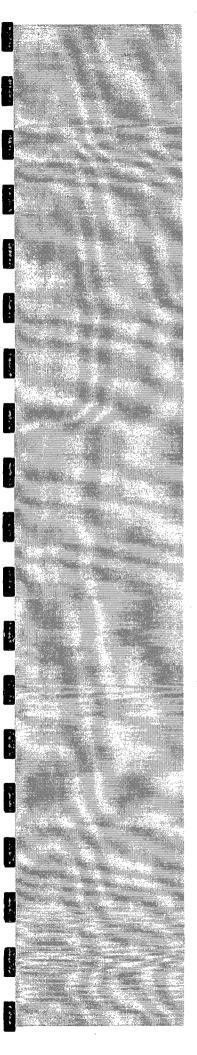

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104


				Table 1: Gro	Table 1: Ground Water Chemstry at EME M-5 SWD	nstrv at	EME M	5 SWD				
≥	Sample Date	Depth to Water	Total Depth	Well Volume	Volume Purged	ਹ	TDS	Benzene	Toluene	Ethyl Benzene	Total Xylenes	Sulfate
1s	12/11/2003	33.28	40.11	1.1	3.33	6,198	10,784	<0.002	<0.002		<0.006	8.66
18	2/20/2004	33.37	39.85	1.1	4	5,320	14,500	<0.001	<0.001	<0.001	<0.001	454
18	5/6/2004	32.79	38.68	1.2	9	5,940	12,400	<0.001	<0.001	<0.001	<0.001	420
18	8/10/2004	32.52	39.85	1.2	9	6,910	17,300	<0.001	<0.001	<0.001	<0.001	470
18	11/10/2004	31.63	38'68	1.3	10	7,090	14,000	<0.001	<0.001	<0.001	<0.001	614
18	2/8/2005	28.85	38.68	1.8	9	6,710	13,200	<0.001	<0.001	<0.001	<0.001	1450
18	2/3/2005	28.1	38.68		9	6,560	16,500	<0.001	<0.001	<0.001	<0.001	595
18	8/13/2005	,				6,070	13,800	<0.001	<0.001	<0.001	<0.001	574
18	11/28/2005	27.87	6'68	1.9	9	4,500	12,300	<0.001	<0.001	<0.001	<0.001	1470
18	2/20/2006	27.25	39.9	2	9	2,660	12,400	<0.001	<0.001	<0.001	<0.001	969
18	5/16/2006	27.81	39.9	1.9	10	7,870	14,300	<0.001	<0.001	<0.001	<0.001	979
18	11/10/2006	27.39	6.68	2	10	5,840	10,500	<0.001	<0.001	<0.001	<0.001	622
18	2/20/2006					2,660	12,400	<0.001	<0.001	<0.001	<0.001	596
18	3/6/2007	26.67	39.87	2.1	10	5,440	9,190	<0.001	< 0.001	<0.001	<0.001	595
18	6/7/2007	26.53	39.87	2.1	10	4,960	11,700	<0.001	<0.001	<0.001	<0.001	539
18	8/27/2007	27.02	39.87	2.1	8	4,499	10,095	<0.002	<0.002	<0.002	900'0>	554
18	11/9/2007	26.92	39.87	2.1	8	4,400	8,193	<0.001	<0.001	<0.001	<0.003	549
18	2/21/2008	26.85	39.88	2.1	8	4,200	8,640	<0.001	<0.001	<0.001	<0.003	474
- - -	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			美國連灣議場				
1d	12/11/2003	33.4	55.1	3.5	10.61	6,198	11,736	<0.002	<0.002	<0.002	<0.006	
1d	11/28/2005	28.1	55.1	4.3	15	5,590	11,400	<0.001	<0.001	<0001	<0.001	
1d	2/20/2006	27.87	55.1	4.4	15	6,830	14,400	<0.001	<0.001	<0.001	<0.001	503
1d	5/16/2006	27.81	39.9	1.9	10	7,000	13,100	<0.001	<0.001	<0.001	<0.001	752
1d	11/10/2006	27.49	55.1	4.4	20	5,840	12,000	<0.001	<0.001	<0.001	<0.001	421
1d	2/20/2006					6,830	14,400	<0.001	<0.001	<0.001	<0.001	503
1d	3/6/2007	26.79	90.33	4.5	15	7,300	10,700	<0.001	<0.001	<0.001	<0.001	595
1d	6/7/2007	26.68	90.55	4.5	15	6,110	16,600	<0.001	<0.001	<0.001	<0.001	371
1d	8/27/2007	27.14	55.06	4.5	15	6,898	14,776	<0.002	<0.002	<0.002	>0.006	394
1d	11/9/2007	27.07	90'55	4.5	15	7,100	12,247	<0.001	<0.001	<0.001	<0.003	435
1d	2/21/2008	27.01	20'55	4.5	15	008'9	12,100	<0.001	<0.001	<0.001	<0.003	422


Table 2. Field and Laboratory Results of Soil Samples at M-5 Site


45								- 1		-		K- 41							П		4.			3				Г
p/mXylene oXylene Naphthalene		297		51			1380		4160						78.2			91.2				479	<25	建筑地位于1000年	249	45	150	301
oXylene		<25		<25			135		633			计编辑系统			61.9			<25				<25	<25		62.9	25.3	<25	70,
p/mXylene	in ug/kg	1250		26.6			5370		15100						795			837			· · · · · · · · · · · · · · · · · · ·	304	<25	And the first of the state of t	1560	228	<25	00
Ethylbenzene	Results in ug/kg	1450		25.2			4650		13700			· · · · · · · · · · · · · · · · · · ·			326			165				314	<25		476	1090	325	7.10
Toluene		<25		<25			<100		<200						<25			<25			大大 一大 ないと	<25	<25		<25	<25	<25	
Benzene		<25		<25			<100		<200						<25			<25				<25	<25	A Charles	74.1	<25	<25	10,
C6 C12 DRO >C12 C35 TOTAL C6 C35 Benzene Toluene		1977		290			2337		15880						5350			4207			で教育技術を対理がある。	5976	<10	A Company of the Comp	13040	2413	726	040
DRO >C12 C35	Results in mg/kg	1470		474			1480		11100						4210			3310			一名の記憶をはいる間をするとのできる。 かんかい かんかい かんかん アイガイ・アイラー かっかん	5370	<10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11300	2210	593	707
GRO C6 C12	Results	507		116			857		4780			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1140			897			一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、	909	<10	を 10 mm 10	1740	203	133	0 01
Chloride				<20			53.2					The state of the s									The State of the S		106	The state of the state of		9.88		, ,,
Field CI			208		251	218		360		479	383		262	321		386	352		273	458	Selling to head a			14 Mg 1				
Date		11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003		11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	中国 医骨骨骨骨	11/5/2003	11/5/2003	4 44	11/5/2003	11/5/2003	11/5/2003	44151000
Well ID		M5 B-1 29.5	M5 B-1 6'	M5 B-1 7'	M5 B-1 11'	M5-B-1 15'	M5 B-1 16.8	M5-B-1 21'	M5 B-1 26-27'	M5-B-1 27'	M5-B-1 31'		M5 B-2 8'	M5 B-2 12'	M5 SB2 12'	M5 B-2 15'	M5 B-2 19'	M5 SB2 23'	M5 B-2 27'	M5 B-2 30'	\$ 100 miles	M5 B-3 11'	M5 B-3 16.5'		M5 B-4 4'	M5 B-4 2'	M5 B-4 6'	14 C 2 V



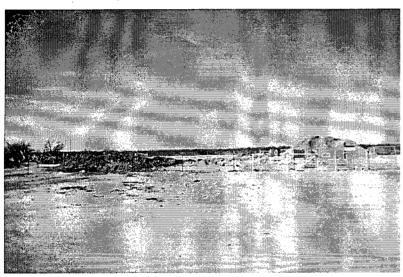


Appendix A Field Work at EME M-5 SWD Waste Manifests

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

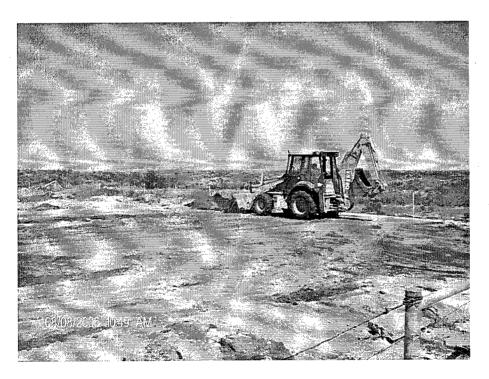
R. T. HICKS CONSULTANTS, LTD.

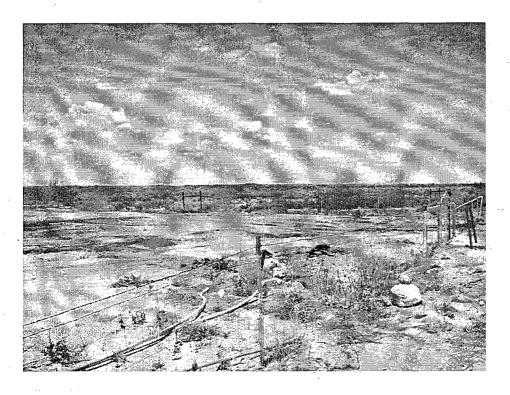

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

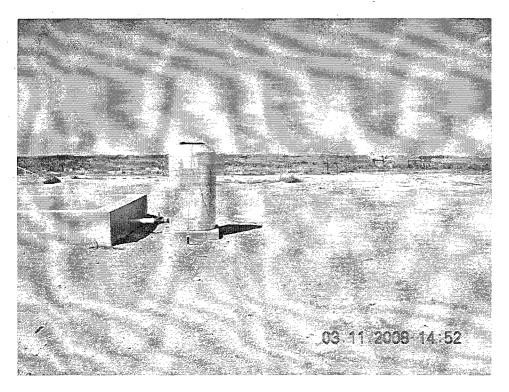
Appendix A - Surface Grading/Restoration

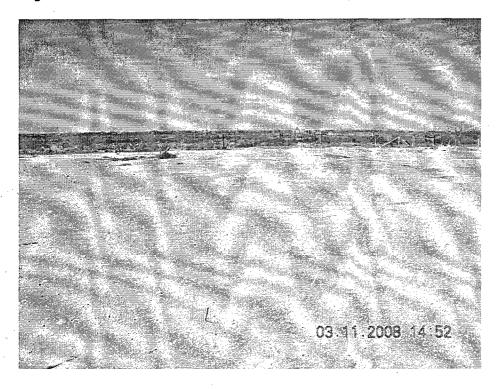
As proposed in the September 2004 Corrective Action Plan (verbally approved by the NMOCD 3-30-06 and 10-11-06), Rice Operating Company (ROC) mobilized to conduct surface restoration at the site in August of 2006 due to safety concerns at this active SWD well. Work included burial of asphaltic hydrocarbon sands previously on the ground surface into the hole created by redwood tank removal and importation of clean fill to level the site. Surface asphaltic material was either buried in place or removed to the Sundance disposal facility. As noted, the subsurface asphaltic material does not contain regulated constituents in concentrations high enough to cause impairment of fresh water or threat to human health.

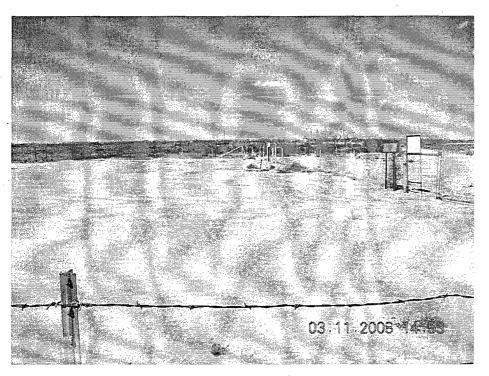
The caliche pad was restored at the site as a safety precaution due to continued operation of the SWD well there.



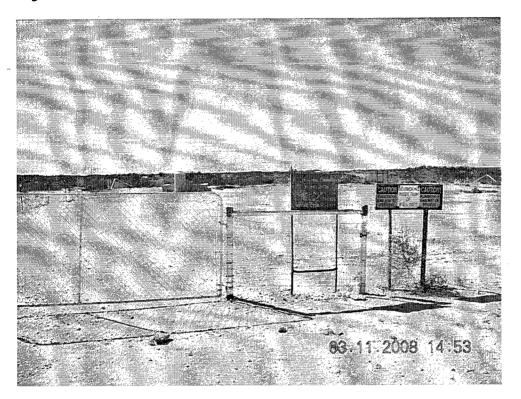



Grading/Restoring Surface at EME M-5, August 2006





The Restored Caliche Pad, March 2008



March 28, 2008 Page 4

March 28, 2008 Page 5

GCI, Inc. d/b/a Sweatt Construction, Inc.

720 S. Texaco Road Hobbs, NM 88240

Invoice

Date	Invoice #
8/21/2006	GCI-806015

Bill To	
RICE OPERATING CO.	
122 W. TAYLOR	
HOBBS, NM 88240	
·	

ENE SUD

0	rdered by	Lease Na	me		
JENNI	FER JOHNSON	EME M-	5		
Date	Item	Description	Quantity	Rate	Amount
8/8/2006 8/9/2006	361 831 361	FURNISH EQUIPMENT, LABOR AND MATERIALS TO DIG OUT CONTAMINATED SOIL AS DIRECTED. BACKHOE MACK HAUL TRUCK BACKHOE) 10 3 9	70.00 75.00 70.00	700.007 225.007 630.007
	THANK YO	OU FOR YOUR BUSINESS!	Subtota	i	\$1,555.00
		_	Sales Ta	ax (5.375%	6) /\$83.58
	,		Total	1	\$1,638.58

Phone #	Fax #
505-393-3180	505-391-9895

Sundance Services Inc.

P.O. Box 1737 Eunice, NM 88231

Invoice

DATE	INVOICE#
12/31/2006	43231

BILL TO
Rice Operating 122 W. Taylor
Hobbs, N.M. 88240

Project	TERMS
Eme M5	

QUANTITY	DESCRIPTION	RATE	TNUOMA
30	Contaminated Soils - Exempt Eme M5 - EME SWD WELL M-5 clean up NM Sales Tax -	14.00 6.6875%	420.00T 28.09
	(COPY		
	82379623		
	Rey R. RASCON	Total	\$448.09

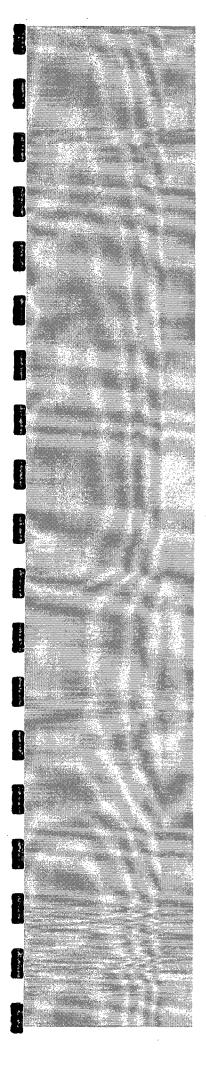
Sundance Services, Inc.

P.O. Box 1737 🖈 Eunice New Mexico 88231

(505) 394-2511

Lease Operator/Shipper/Company:
Lease Name:
Transporter Company: AM/PM
Date:
Charge To: Charge To:
TYPE OF MATERIAL
୍ଳା Produced Water ା Drilling Fluids ା Completion Fluids
☐ Tank Bottoms Contaminated Soil ☐ C-117 No.:
☐ Other Materials . ☐ BS&W Content:
JETOUT
Description: CALLOUT
VOLUME OF MATERIAL BBLS. ARDS
AS A CONDITION TO SUNDANCE SERVICES, INC.'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET, OPERATOR/SHIPPER REPRESENTS AND WARRANTS THAT THE WASTE MATERIAL SHIPPED HEREWITH IS MATERIAL EXEMPT FROM THE RESOURCE, CONSERVATION AND RECOVERY ACT OF 1976, AS AMENDED FROM TIME TO TIME, 40 U.S.C. 6901, ET SEQ., THE NM HEALTH AND SAF. CODE 361.001 ET SEQ., AND REGULATIONS RELATED THERETO, BY VIRTUE OF THE EXEMPTION AFFORDED DRILLING FLUIDS, PRODUCED WATERS, AND OTHER WASTE ASSOCIATED WITH THE EXPLORATION, DEVELOPMENT OR PRODUCTION OF CRUDE OIL OR NATURAL GAS OR GEOTHERMAL ENERGY. ALSO AS A CONDITION TO SUNDANCE SERVICES, INC.'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET, TRANSPORTER REPRESENTS AND WARRANTS THAT ONLY THE MATERIAL DELIVERED BY OPERATOR/SHIPPER TO TRANSPORTER IS NOW DELIVERED BY TRANSPORTER TO SUNDANCE SERVICES, INC.'S FACILITY FOR DISPOSAL. THIS WILL CERTIFY that the above Transporter loaded the material represented by this Transporter Statement at the above described location, and that it was tendered by the above described shipper. This will certify that no additional materials were added to this load, and that the material was delivered without incident.
DRIVER: MICHSO 66-25
FACILITY REPRESENTATIVE:

Sundance Services, Inc.


P.O. Box 1737 ★ Funice, New Mexico 88231 (505) 394-2511

Ticket # 34153 Lease Operator/Shipper/Company: __ Lease Name: 1 M/2 M-S Transporter Company: 1917 + 120 Time AM/PM _____Vehicle No.___313_____ Driver No. Charge To: TYPE OF MATERIAL **Drilling Fluids** Completion Fluids **Produced Water** Contaminated Soil Tank Bottoms C-117 No.: Other Materials **BS&W Content:** ☐ JETOUT CALLOUT VOLUME OF MATERIAL AS A CONDITION TO SUNDANCE SERVICES, INC.'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET, OPERATOR/SHIPPER REPRESENTS AND WARRANTS THAT THE WASTE MATERIAL SHIPPED HEREWITH IS MATERIAL EXEMPT FROM THE RESOURCE, CONSERVATION AND RECOVERY ACT OF 1976, AS AMENDED FROM TIME TO TIME, 40 U.S.C. 6901. ET SEQ., THE NM HEALTH AND SAF. CODE 361.001 ET SEQ., AND REGULATIONS RELATED THERETO, BY VIKTUE OF THE EXEMPTION AFFORDED DRILLING FLUIDS, PRODUCED WATERS, AND OTHER WASTE ASSOCIATED WITH THE EXPLORATION, DEVELOPMENT OR PRODUCTION OF CRUDE OIL OR NATURAL GAS OR GEOTHERMAL ENERGY. ALSO AS A CONDITION TO SUNDANCE SERVICES, INC.'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET, TRANSPORTER REPRESENTS AND WARRANTS THAT ONLY THE MATERIAL DELIVERED BY OPERATOR/SHIPPER TO TRANSPORTER IS NOW DELIVERED BY TRANSPORTER TO SUNDANCE SERVICES, INC.'S FACILITY FOR DISPOSAL. THIS WILL CERTIFY that the above Transporter loaded the material represented by this Transporter Statement at the above described location, and that it was tendered by the above described shipper. This will certify that no additional materials were added to this load, and that the material was delivered without incident.

Sundance Services, Inc.

P.O. Box 1737 ★ Eunice, New Mexico 88231 (505) 394-2511

Ticket # 34172 Lease Operator/Shipper/Company: __ Lease Name: 1976 - 1115 Transporter Company: Dir works Time AM/PM Date: 12-6-6 Vehicle No. 313 Driver No. Charge To: TYPE OF MATERIAL **Produced Water Drilling Fluids Completion Fluids Tank Bottoms Contaminated Soil** C-117 No.: Other Materials **BS&W Content:** ☐ JETOUT Description: Q//y ☐ CALLOUT **VOLUME OF MATERIAL** BBLS. AS A CONDITION TO SUNDANCE SERVICES, INC.'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET. OPERATOR/SHIPPER REPRESENTS AND WARRANTS THAT THE WASTE MATERIAL SHIPPED HEREWITH IS MATERIAL EXEMPT FROM THE RESOURCE, CONSERVATION AND RECOVERY ACT OF 1976, AS AMENDED FROM TIME TO TIME, 40 U.S.C. 6901, ET SEQ., THE NM, HEALTH AND SAF. CODE 361.001 ET SEQ., AND REGULATIONS RELATED THERETO, BY VIRTUE OF THE EXEMPTION AFFORDED DRILLING FLUIDS, PRODUCED WATERS, AND OTHER WASTE ASSOCIATED WITH THE EXPLORATION, DEVELOPMENT OR PRODUCTION OF CRUDE OIL OR NATURAL GAS OR GEOTHERMAL ENERGY. ALSO AS A CONDITION TO SUNDANCE SERVICES, INC.'S ACCEPTANCE OF THE MATERIALS SHIPPED WITH THIS JOB TICKET, TRANSPORTER REPRESENTS AND WARRANTS THAT ONLY THE MATERIAL DELIVERED BY OPERATOR/SHIPPER TO TRANSPORTER IS NOW DELIVERED BY TRANSPORTER TO SUNDANCE SERVICES, INC.'S FACILITY FOR DISPOSAL. THIS WILL CERTIFY that the above Transporter loaded the material represented by this Transporter Statement at the above described location, and that it was tendered by the above described shipper. This will certify that no additional materials were added to this load, and that the material was delivered without incident.

Appendix B Lithologic Logs

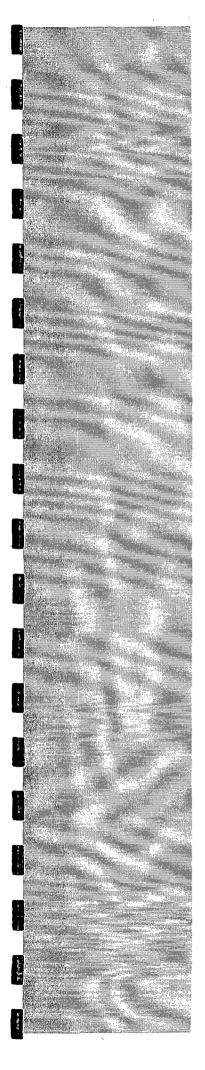
R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

			sultants, Ltd.			И-5		Rice M-5
			NW, Suite F-142	10 C 740 - 1	Projec	ct Name		
	Albuquerqu	e, Ne	w Mexico 87104		F	Rice		
L	ogger		R. Hicks		С	lient		·
	Driller		Eades Drilling	V.1 154	T20S F	39E S3	0	ny de Gal
	lethod		Air Rotary	Mires 2		L 560 F	SL	D- : #4 NI- #1-
	art Date		11/16/2003			County		Boring #1, North
· Er	nd Date		11/16/2003		New	Mexico		side between tanks
			Carry Comments					
	Sample		Description		Lith		Well	Construction
Depth	Number	CI		Grade		T		Cement Pad
			0-5.5 Slough			., ,		•
			_					
•	}							
		,	,					
				5				
. 6		208	, , ,					
			sand w/ hydrocarbon odor - v.					
			little clay					
•			6.5-15 black mottled fine sand					
4.4		054	with hydrocarbon odor, dry,	10				
11		251	, ,,					
			with depth					,
				~				
16		218		15				
16.8			15-25 white to buff fine sand	13				
	1100001210		with some caliche, slight					
		١ .	hydrocarbon odor					
			.,,					
)-21	1103031300		-	20				
21		360						•
								~
				25				
			25-28 indurated caliche and					
5-27	1103031323	479						,
			HC odor, white to brown					
	4400004055		28-30 as above, moist	2=				
9-29.5	1103031335			30				
30		383						
			•					
				35				
			,					
				40				
			Cuttings suggest lithology as					
i	,		above		450,08886			

ě

: 4


1

4

R.T.Hicks Consultants, Ltd. Rice M-5 M-5 Project Name 901 Rio Grande NW, Suite F-142 Albuquerque, New Mexico 87104 Rice Logger R. Hicks Client Driller Eades Drilling T20S R39E S30 Method Air Rotary 1380 FEL 560 FSL B-3, west of tanks Start Date 11/16/2003 Lea County within berm End Date 11/16/2003 New Mexico Sample Lith **Well Construction** Description Depth Number Cement Pad Grade 5-10 Light Brown Fine Blow Sand (No Cement) 10 11 1104030852 10-20 White Caliche w/ some White Sand Plus Caliche 15 16.5 1103030905 20-25 LT Brown Sand w/some Caliche (Cement Slightly Moist) Moist "Mudballs" of Clay. Caliche w/some Sand "Mudballs" Red on Outside -30 Tan Caliche w/ Sand on Inside (Moist) 35 Moist "Mudballs" of Clay. Caliche w/some Sand 40 Cuttings suggest lithology is as above

Rice M-5 R.T.Hicks Consultants, Ltd. M-5 Project Name 901 Rio Grande NW, Suite F-142 Albuquerque, New Mexico 87104 Rice Logger R. Hicks Client T20S R39E S30 Driller Eades Drilling Method Air Rotary 1380 FEL 560 FSL Boring #2, East of 11/16/2003 11/16/2003 Lea County Start Date New Mexico tank berm End Date Lith **Well Construction** Sample Description

Oumpic			Description		
Depth	Number	CI	·	Grade	
			0-5 no core, cuttings are black		
			sand		
			-		
		1			
				5	
			5-7 drk gray/blk fine-grained		
			dune sand		
6.0-7.0	1103031443	262	6-7 light brn/buff fine sand,		
			dry, v. slight HC odor		4
				10	54 Jin.
			10-18 brn/tan sand with		
12	1103031459	321			
,			and faint HC odor		
				`	
15		386	·	15	
19			18-20 caliche with sand, white		
20	1103031518		to buff, faint HC odor	20	
			22-25 caliche and fine dune		
			sand, faint HC odor, brown to		
23		326	buff		技術
24	1103031532				7:14 7:40
	u .			25	1. 电影
			26-28 indurated fine sand with		
27		273			
28	1103031543		calcite/caliche, some gray-brn		50 tr at
			clay, slt HC odor		* . * . *
31.5	1103031550	458		30	11, 12
			buff, slight HC odor, wet		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					100
					्त वेहरू स्थापन
				35	
					75,500 15-1
				40	* 145
			Coutings arranged little learning	40	
			Cuttings suggest lithology is		
			as above		

Appendix CPrevious Submissions & Correspondence

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

January 24, 2008

Wayne Price Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, NM 87505

RE:

2007 Annual Ground Water Monitoring Report

M-5 SWD, Sec 05, T20S, R37E, Unit "M"

NMOCD Case #: 1R424

Dear Mr. Wayne Price:

R.T. Hicks Consultants, Ltd is pleased to submit the 2007 Annual Ground Water Monitoring Report for the M-5 SWD site located in the EME Salt Water Disposal System (SWD). This report consists of the following sections:

- 1. A table summarizing all laboratory results, depth to ground water and other pertinent data associated with ground water sampling at the site, including this past year.
- 2. Graphs showing chemical concentration over time for chloride, TDS, and sulfate.
- 3. Laboratory data sheets associated with the routine sampling for 2007.

A Corrective Action Plan was submitted to NMOCD on September 10, 2004. The CAP is pending NMOCD approval, which we respectively request in writing. We plan to continue quarterly ground water monitoring in 2008.

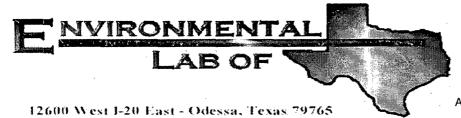
Thank you for your consideration of this annual summary information. The attached CD contains an electronic copy of this report. If you have any questions, please contact us at 505-266-5004, or Kristin Farris Pope at ROC, 505-393-9174.

Sincerely,

R.T. Hicks Consultants, Ltd.

Randall T. Hicks

Principal


Copy: Hobbs NMOCD office; Rice Operating Company

v over time
stry
ŝ
chemi
ļ
Ü
=
97
7
abl
Ţ

	нез (mg/L) Сопипенts	Deep	. Deep		Deep	Deep	Clear no odor	Clear/ No Odor	clear no odor	Clear No Odor	Clear No odor	
	TDS (mg/L) Benzene (mg/L) Toluene (mg/L) EthylBenzene (mg/L) Total Kylenes (mg/L) Comments	<0.002 <0.008	<0001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.002 <0.008	<0.001 <0.003	
ıe	Toluene (mg/L) Eth	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	
Table 1: chemistry over time	Benzene (mg/L)	<0.002	- <0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	
l: chemist	TDS (mg/L)	11736	11400	14400	14400	13100	12000	10700	16600	14778	12247	
Table 1	Sulfate (mg/L)	XX	XXX	503	503	752	421	595	371	394	435	
	Chloride (mg/L)	8198	5590	6830	6830	7000	5840	7300	6110	6898	7100	
	DTIV (ft)	33.40	28.1		27.87	27.81	27.49	26.79	26.68	27.14	27.07	
	Date	12/11/2003	11/28/2005	2/20/2006	2/20/2006	5/16/2008	11/10/2008	3/6/2007	6/7/2007	8/27/2007	11/9/2007	
M-5 SWD	Well Name	MW-1 Deep	MW-1 Deep	MW-1 Deep	MW-1 Deep	MW-1 Deep	MW-1 Deep	MW-1 Deep	MW-1 Deep	MW-1 Deep	MW-1 Deep	

	over ume
7	nemusiry
•	7
•	26
	-
Ę	7

	Comments	Оевр	Shailow	Shallow	Shallow	Shallow	Shallow	Shallow	XXX	xxx	Shaltow	Shallow		Shallow	Clear no odor	Clear/	clear no odor	Clear No Odor	Clear No odor	
	Total Xylenes (mg/L)	<0.008	900'0>	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0,001	<0.001	<0.001	<0.006	<0.003	
	EthylBenzene (mg/L) Total Xylenes (mg/L)	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0,002	<0.001	
<i>16</i>	Toluene (mg/L) E	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	
chemistry over time	Benzene (mg/L)	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	
: chemist	TDS (mg/L)	11736	10784	14500	12400	17300	14000	13200	16500	13800	12300	12400	12400	14300	10500	9190	11700	10095	8193	
Table 1:	Sulfate (mg/L)	90.5	8.66	454	420	470	614	1450	595	574	1470	596	596	628	622	595	539	554	549	
	Chloride (mg/L)	6198	6198	5320	5940	6910	7090	6710	6580	6070	4500	9860	5680	7870	5840	5440	4960	4499	4400	
	DTIV (ft)	33.40	33.28	33.37	32.79	32.52	31.63	. 28.85	28.1	xxx	27.87	27.25		27.81	27.39	28.87	28.53	27.02	26.92	
	Date	12/11/2003	12/11/2003	2/20/2004	5/8/2004	8/10/2004	11/10/2004	2/8/2005	5/3/2005	8/13/2005	11/28/2005	2/20/2006	2/20/2006	5/16/2006	11/10/2008	3/6/2007	6/7/2007	8/27/2007	11/9/2007	
M-5 SWD	Well Name	MW-2 Shallow	MW-2 Shallow	MW-2 Shallow	MW-2 Shallow	MW-2 Shallow														

A Xenco Laboratories Company

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME M-5 SWD

Project Number: None Given

Location: T20S-R37E-Sec 5M- Lea County, NM

Lab Order Number: 7C09026

Report Date: 03/29/07

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory 1D	Matrix	Date Sampled	Date Received
Monitor Well #1 Shallow	7C09026-01	Water	03/06/07 12:50	03-09-2007 13:15
Monitor Well #1 Deep	7C09026-02	Water	03/06/07 13:55	03-09-2007 13:15

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Monitor Well #1 Shallow (7C09026-0	1) Water								
Benzene	ND	0.00100	mg/L	1	EC71307	03/13/07	03/13/07	EPA 8021B	
Toluene	ND	0.00100	#	**		*	*	*	
Ethylbenzene	ND	0.00100	*	**	**		,,	н	
Xylene (p/m)	ND	0.00100	**	**	#	#	н	H	•
Xylene (o)	ND	0.00100	**	**	н	**	"	**	
Surrogate: a,a,a-Trifluorotoluene		92.0 %	80-1	120	"	,,	"	,, .	
Surrogate: 4-Bromofluorobenzene		91.2 %	80-1	120	"	"	"	"	
Monitor Well #1 Deep (7C09026-02)	Water								
Benzene	ND	0.00100	mg/L	1	EC71307	03/13/07	03/13/07	EPA 8021B	
Toluene	ND	0.00100	н	**	н	**	"	41	
Ethylbenzene	ND	0.00100	Ħ	. "		n	,,	н	
Xylene (p/m)	ND	0.00100		,	,,	•	"	**	
Xylene (o)	ND	0.00100	**	41	**		, #	**	
Surrogate: a,a,a-Trifluorotoluene		89.2 %	80-1	20	,,	"	n	"	
Surrogate: 4-Bromofluorobenzene		88.6 %	80-1	20	"	,,	"	,,	

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 Shallow (7C090)	26-01) Water								
Total Alkalinity	226	2.00	mg/L	1	EC71304	03/13/07	03/13/07	EPA 310.1M	
Chloride	5440	100	- **	200	EC71615	03/14/07	03/14/07	EPA 300.0	
Total Dissolved Solids	9190	10.0	**	1	EC71610	03/12/07	03/13/07	EPA 160.1	
Sulfate	595	100	* 44	200	EC71615	03/14/07	03/14/07	EPA 300.0	
Monitor Well #1 Deep (7C09026-	02) Water								
Total Alkalinity	206	2.00	mg/L	1	EC71304	03/13/07	03/13/07	EPA 310.1M	
Chloride	7300	100	**	200	EC71615	03/14/07	03/14/07	EPA 300.0	
Total Dissolved Solids	10700	10.0	**	1	EC71610	03/12/07	03/13/07	EPA 160.1	
Sulfate	474	100	**	200	EC71615	03/14/07	03/14/07	EPA 300.0	

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Monitor Well #1 Shallow (7C	09026-01) Water	· · · · · · · · · · · · · · · · · · ·							` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
Calcium	1110	0.200	mg/L	1	EC72614	03/23/07	03/23/07	EPA 6020A	
Magnesium	327	0.500	**	- "	**	*	*	**	
Potassium	13.9	0.500	*		**		"	**	
Sodium	2380	0.500	"		**	н	tr .	Ħ	
Monitor Well #1 Deep (7C090	026-02) Water								
Calcium	1490	0.200	mg/L	1	EC72614	03/23/07	03/23/07	EPA 6020A	
Magnesium	419	0.500	*		**	и	. "	**	
Potassium	12.2	0.500	"	"	•		*	**	
Sodium	1830	0.500	*	**		*	**	n	

Project: EME M-5 SWD Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC - Quality Control Environmental Lab of Texas

Analyta	Dagult	Reporting	Iluite	Spike	Source		%REC	ana	RPD	N 7 - 4
Analyte	Result	Limit	Units	Level	Resul	t %R	EC Limits	RPD_	Limit	Notes
Batch EC71307 - EPA 5030C (GC)										
Blank (EC71307-BLK1)				Prepared	& Anal	yzed: 03/	/13/07			
Benzene	ND	0.00100	mg/L							
Toluene .	ND	0.00100	•						*	
Ethylbenzene	ND	0.00100	*							
Xylene (p/m)	ND	0.00100								
Xylene (o)	ND	0.00100	. "							
Surrogate: a.a.a-Trifluorotoluene	40.0		ug/l	50.0		80.	0 80-120			
Surrogate: 4-Bromofluorobenzene	43.8		"	50.0		87.	6 80-120			•
LCS (EC71307-BS1)				Prepared	& Anal	yzed: 03/	/13/07			
Benzene	0.0438	0.00100	mg/L	0.0500		87.	6 80-120			-
Toluene	0.0413	0.00100		0.0500		82.	.6 80-120			
Ethylbenzene	0.0422	0.00100		0.0500		84.	.4 80-120		۲.	
Xylene (p/m)	0.0843	0.00100	,	0.100		84.	.3 80-120		`-	
Xylene (o)	0.0406	0.00100		0.0500		81.	2 80-120			
Surrogate: a,a,a-Trifluorotoluene	42.5		ug/l	50.0		85.	0 80-120			
Surrogate: 4-Bromofluorobenzene	47.6		"	50.0		95.	2 80-120			
Calibration Check (EC71307-CCV1)				Prepared:	03/13/0	7 Analy	zed: 03/14/0	7		
Benzene	0.0450		mg/L	0.0500	-	90.	0 80-120			
Toluene	0.0414		**	0.0500		82.	8 80-120			
Ethylbenzene	0.0401			0.0500		80.	2 80-120			
Xylene (p/m)	0.0802			0.100		80.	2 80-120			
Xylene (o)	0.0401		*	0.0500		80.	2 80-120			
Surrogate: a,a,a-Trifluorotoluene	41.5		ug/l	50.0		83.	0 80-120			
Surrogate: 4-Bromofluorobenzene	42,2		"	50.0		84.	4 80-120			
Matrix Spike (EC71307-MS1)	Sou	rce: 7C09031	-03	Prepared:	03/13/01	7 Analy	/zed: 03/14/0	7		
Benzene	0.0423	0.00100	mg/L	0.0500	ND	84.	6 80-120			
Toluene	0.0408	0.00100	н ′	0.0500	ND	81.	6 80-120			
Ethylbenzene	0.0402	0.00100		0.0500	ND	80.	4 80-120			
Xylene (p/m)	0.0809	0.00100		0.100	ND	80.	9 80-120			
Xylene (o)	0.0401	0.00100	"	0.0500	ND	80.	2 80-120			
Surrogate: a,a,a-Trifluorotoluene	44.0		ug/l	50.0		88.	0 80-120			
Surrogate: 4-Bromofluorobenzene	47.5		"	50.0		95.	0 80-120			

Analyte

Project: EME M-5 SWD

Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Organics by GC - Quality Control Environmental Lab of Texas

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike Dup (EC71307-MSD1)	Sour	ce: 7C09031	-03	Prepared:	03/13/07	Analyzed:	03/14/07			
Benzene	0.0421	0.00100	mg/L	0.0500	ND	84.2	80-120	0.474	20	
Toluene	0.0411	0.00100	**	0.0500	ND	82.2	80-120	0.733	20	
Ethylbenzene	0.0411	0.00100		0.0500	ND	82.2	80-120	2.21	20	
Xylene (p/m)	0.0815	0.00100	•	0.100	ND	81.5	80-120	0.739	20	
Xylene (o)	0.0403	0.00100	,,	0.0500	ND	.80.6	80-120	0.498	20	
Surrogate: a,a,a-Trifluorotoluene	42.9		ug/l	50.0		85,8	80-120			
Surrogate: 4-Bromofluorobenzene	43.0		"	50.0		86.0	80-120	,		

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
<u> </u>		Linut	Oillis	Level	Result	/orcec	Ellins	KI D	- Comm	Notes
Batch EC71304 - General Prepar	ation (WetChem)									
Blank (EC71304-BLK1)				Prepared &	Analyzed	: 03/13/07				
Total Alkalinity	2.00	2.00	mg/L							
LCS (EC71304-BS1)			*	Prepared &	Analyzed	: 03/13/07				
Bicarbonate Alkalinity	174	2.00	mg/L	200		87.0	85-115			
Duplicate (EC71304-DUP1)	Source	: 7C09025-	01	Prepared &	Analyzed	: 03/13/07		-		
Total Alkalinity	328	2.00	mg/L		336			2.41	20	
Reference (EC71304-SRM1)				Prepared &	Analyzed	: 03/13/07				
Total Alkalinity	246		mg/L	250		98.4	90-110			
Batch EC71610 - General Prepar Blank (EC71610-BLK1)	ation (WetChem)			Prepared: 0	03/12/07	Analyzed:	03/13/07			
Total Dissolved Solids	ND	10.0	mg/L					,		
Duplicate (EC71610-DUP1)	Source	: 7C09022-	01	Prepared: 0	3/12/07	Analyzed:	03/13/07			
Total Dissolved Solids	1690	10.0	mg/L		1550			8.64	20	
Duplicate (EC71610-DUP2)	Source	:: 7C09026-	02	Prepared: 0	3/12/07	Analyzed:	03/13/07			,
Total Dissolved Solids	11500	10.0	mg/L		10700			7.21	20	
Batch EC71615 - General Prepara	ation (WetChem)		··· <u>···</u>							
Blank (EC71615-BLK1)				Prepared &	Analyzed	: 03/14/07				
Chloride	ND	0.500	mg/L			-				
Sulfate	ND	0.500	*							

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	I Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC71615 - General Preparation	(WetChem)									
LCS (EC71615-BS1)				Prepared 4	& Analyzed	: 03/14/07				
Chloride	9.19	0.500	mg/L	10.0		91.9	80-120			
Sulfate	9.74	0.500	•	10.0		97.4	80-120			
Calibration Check (EC71615-CCV1)				Prepared 6	& Analyzed	: 03/14/07			•	
Chloride .	8.13		mg/L	10.0		81.3	80-120			
Sulfate	11.6		*	10.0		116	80-120			*
Duplicate (EC71615-DUP1)	Source:	7C09022	2-01	Prepared 6	& Analyzed	: 03/14/07				
Chloride	326	10.0	mg/L		328			0.612	20.	
Sulfate	393	10.0	"		397			1.01	20	
Duplicate (EC71615-DUP2)	Source:	7C09027	7-01	Prepared of	& Analyzed	: 03/14/07				
Chloride	700	12.5	mg/L		704			0.570	20	
Sulfate	89.6	12.5	,,		90.8			1.33	20	
Matrix Spike (EC71615-MS1)	Source:	7C09022	2-01	Prepared 6	& Analyzed	: 03/14/07				
Sulfate	621	10.0	mg/L	200	397	112	80-120			
Chloride	553	10.0	"	200	328	112	80-120			
Matrix Spike (EC71615-MS2)	Source:	7C09027	7-01	Prepared 4	& Analyzed	: 03/14/07				
Chloride	961	12.5	mg/L	250	704	103	80-120	,		
Sulfate	313	12.5	**	250	90.8	88.9	80-120			

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Re	porting Limit	Units	Spike Level		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC72614 - General Preparation	(Metals)											
Blank (EC72614-BLK1)					Prepared	&	Analyzed:	03/23/07			~	
Calcium	ND		0.200	mg/L								
Magnesium	ND		0.500	4r								
Potassium	ND		0.500	*								
Sodium	ND		0.500	. "						•		
LCS (EC72614-BS1)					Prepared	&	Analyzed:	03/23/07				
Calcium	2.46		0.200	mg/L	2.50			98.4	75-125			-
Magnesium	2.22		0.500	**	2.50			88.8	75-125			
Potassium	1.98		0.500	**	2.50			79.2	75-125			
Sodium	2.58		0.500	"	2.50			103	75-125			
Duplicate (EC72614-DUP1)		Source: 7	C09022	2-01	Prepared	&	Analyzed:	03/23/07				
Calcium	123		0.200	mg/L			125			1.61	25	
Magnesium	73.5		0.500	**			71.3			3.04	25	
Potassium	9.49		0.500	**			8.45	•		11.6	25	
Sodium	221		0.500	* .			247			11.1	25	
Matrix Spike (EC72614-MS1)	\$	Source: 7	C09022	2-01	Prepared	&	Analyzed:	03/23/07				
Calcium	132		0.200	mg/L	2.50		125	280	75-125			MS-
Magnesium	73.1		0.500	•	2.50		71.3	72.0	75-125			MS-
Potassium	· 11.3		0.500	"	2.50		8.45	114	75-125			
Sodium	237		0.500	**	2.50		247	NR	75-125			MS-
Matrix Spike Dup (EC72614-MSDI)	5	Source: 7	C09022	2-01	Prepared	&	Analyzed:	03/23/07				
Calcium	132		0.200	mg/L	2.50		125	280	75-125	0.00	25	MS-
Magnesium	74.2		0.500	н	2.50		71.3	146	75-125	1.49	25	
Potassium	11.1		0.500		2.50		8.45	106	75-125	1.79	25	
Sodium	243		0.500		2.50		247	NR	75-125	2.50	25	MS-

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Notes and Definitions

MS-1 Recovery of sample outside of historical limits due to matrix interference.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:

3/29/2007

Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 10 of 10

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East

Phone: 432-563-1800

TAT brebnet2 × × NPDES Lone Star ڼ Project Loc: T20S R37E Sec5 M ~ Lea County New Mexico and IT AS (MID-MAC-4-77) TAT HRUR z z z z z z z FedEx Q sbilos baviossiO leioT × Fax: 432-563-1713 ☐ TRRP M.A.O.N F Sample Containers Intact? SCI Custody seals on container(s) Custody seals on cooler(s) EME M-5 SWD Temperature Upon Receipt: VOCs Free of Headspace? SLEX 8021B/5030 \times × by Sampler/Criefit Rep. Sample Hand Delivered SeiffelovimeS abels on container(s) (OBSB N-XELE) Sellielo/ Report Format: [X]Standard AS PHINES AS BA CA OF Phine Se Ç TOTAL OBO/dSB/dVS Anions (Cl., SO4, Alkalimity) # Od × Project Name: Cations (Ca. Mg. Na. K) Project #: 5 9001 XT 500r XI Hal lime 3 fine ครเกร MS108 L'RIP 3466 SNO GW Mostoses menditoro e Vo No. 3/2/01 eDenic inchese e Buseautheri Other (Specify) rozanne@valornet.com SACH TAILL (1) anov Odessa, Texas 79765 O'S'eN rozanne@valornet.com HOEN (505) 397-1471 *OS²H HCl (2) 40 ml 3/886 visis N N ONE 80 × stenistroO to # late (۳) ආ betatilit bled 332 Fax No: e-mail: 13:55 12:50 belgma2 amiT matt@riceswd.com ;> kpope@riceswd.com N. N. N. Repeived by ELOT arnes Johnson 3/6/2007 eceived by: 3/6/2007 Received by belgme2 steC 27.00 Ending Depth S:30 Hobbs, New Mexico 88240 ime RICE Operating Company Rozanne Johnson (505)631-9310 Aded pninniged purvis@riceswd.com kpope@riceswd.com 122 W. Taylor Street Kristin Farris Pope 10/6K (505) 393-9174 FIELD CODE Monitor Well #1-Shallow Please email to Mornitor Well #1-Deep Sampler Signature: Company Address Project Manager: Company Name Telephone No: City/State/Zip: Special Instructions: (lab use only ORDER #: James J (yinc seu del) # 8A

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client:	Rice	•			
Date/ Time:	3/4/07 1315	·			
Lab!D#:	709026	i			
Initials:	<u>Om</u>				-
-	Sample Receip	t Checklist			
				Client	Initials
#1 Tempera	ature of container/ cooler?	Yes	No	(O °C	
#2 Shipping	container in good condition?	¥€ <u>\$</u>	No		
#3 Custody	Seals intact on shipping container/ cooler?	Yes	No	Not Present	
#4 Custody	Seals intact on sample bottles/ container?	Ύes	No	Not Present	
#5 Chain of	Custody present?	YES	No		
#6 Sample	instructions complete of Chain of Custody?	Yes	No		
#7 Chain of	Custody signed when relinquished/ received?	,Yes;	No		
#8 Chain of	Custody agrees with sample label(s)?	Yes,	No	ID written on Cont./ Lid	
#9 Containe	er label(s) legible and intact?	Yes	No	Not Applicable	
#10 Sample	matrix/ properties agree with Chain of Custody?	Yes	No		
#11 Contain	ers supplied by ELOT?	Yes	No		
#12 Sample	s in proper container/ bottle?	Yes)	No	See Below	
#13 Sample	s properly preserved?	Yes	No	See Below	
#14 Sample	bottles intact?	Yes	No		
#15 Preserv	rations documented on Chain of Custody?	(Yes)	No		
}	ers documented on Chain of Custody?	Yes	No		
#17 Sufficie	nt sample amount for indicated test(s)?	∦es>	No	See Below	
#18 All sam	ples received within sufficient hold time?	∂Yes	No	See Below	
#19 Subcon	tract of sample(s)?	Yes	No	Not Applicable	
#20 VOC sa	emples have zero headspace?	ੴes⊃	No	Not Applicable	,
	Variance Doc	umentation			
Contact:	Contacted by:		•	Date/ Time;	
Regarding:			***************************************		
			<u> </u>		
Corrective Ac	ction Taken:				

Check all tha	See attached e-mail/ fax Client understands and we Cooling process had begui	•		-	

A Xenco Laboratories Company

Analytical Report

Prepared for:

Kristin Farris-Pope
Rice Operating Co.
122 W. Taylor
Hobbs, NM 88240

Project: EME M-5 SWD

Project Number: None Given

Location: T20S R37E Sec5 M ~ Lea County New Mexico

Lab Order Number: 7F11013

Report Date: 06/27/07

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
M5-1s	7F11013-01	Water	06/07/07 13:55	06-11-2007 16:30
M5-1d	7F11013-02	Water	06/07/07 14:50	06-11-2007 16:30

Project: EME M-5 SWD

Project Number None Given
Project Manager Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
M5-1s (7F14013-01) Water									
Benzene	ND	0.00100	mg/L	1	EF71312	06/13/07	06/15/07	EPA 8021B	,
Toluene	ND	0.00100	"	•	,	#	#		
Ethylbenzene	ND	0.00100	"	*	"	*		"	
Xylene (p/m)	ND	0.00100			**	n	"	**	
Xylene (o)	ND	0.00100		п	**	н	н	•	
Surrogate: a,a,a-Trifluorotoluene		102 %	80-1.	20	"	m .	."	,	~
Surrogate: 4-Bromofluorobenzene		86.6 %	80-1.	20	"	"		"	
M5-1d (7F11013-02) Water									
Benzene	ND	0.00100	mg/L	1	EF71312	06/13/07	06/15/07	EPA 8021B	_
Toluene	ND	0.00100	"	**	· #	•		n	
Ethylbenzene	ND	0.00100	*	**	17	**	n-	n	
Xylene (p/m)	ND	0.00100	n	17	**	11	**	n	
Xylene (o)	ND	0.00100	n	•	**	"	**	n .	
Surrogate: a,a,a-Trifluorotoluene		99.0 %	80-1.	20	,,	"	"	n ·	
Surrogate: 4-Bromofluorobenzene		87.8 %	80-1.	20	,,	"	"	"	

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
M5-1s (7F11013-01) Water		······································			<u> </u>				
Total Alkalinity	290	2.00	mg/L	ı	EF71403	06/14/07	06/14/07	EPA 310.1M	
Chloride	4960	100		200	EF71504	06/15/07	06/15/07	EPA 300,0	
Total Dissolved Solids	11700	10.0	"	1	EF71519	06/12/07	06/15/07	EPA 160.1	
Sulfate	539	100	"	200	EF71504	06/15/07	06/15/07	EPA 300.0	
M5-1d (7F11013-02) Water									
Total Alkalinity	170	2.00	mg/L	1	EF71403	06/14/07	06/14/07	EPA 310.1M	
Chloride	6110	100	н	200	EF71504	06/15/07.	06/15/07	EPA 300.0	
Total Dissolved Solids	16600	10.0	W	1	EF71519	06/12/07	06/15/07	EPA 160.1	
Sulfate	. 371	100	**	200	EF71504	06/15/07	06/15/07	EPA 300.0	

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
M5-1s (7F11013-01) Water									
Calcium	776	40.5	mg/L	500	EF71902	06/19/07	06/19/07	EPA 6010B	
Magnesium	230	3.60	•	100	•	#	"	н	
Potassium	27.5	0.600	•	10	**	н .	**	*	
Sodium	2120	21.5	"	500	"	*	**	н	
M5-1d (7F11013-02) Water									
Calcium	955	40.5	mg/L	500	EF71902	06/19/07	06/19/07	EPA 6010B	
Magnesium	236	3.60	n	100	,	. *		n	
Potassium	21.8	0.600	**	10		"	*	•	
Sodium	1370	21.5	*	500		"	*	•	

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC - Quality Control Environmental Lab of Texas

Analyta	Pagule	Reporting	Linite	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Levei	Result	70KEC	Linnes	KPD	Limit	ivotes
Batch EF71312 - EPA 5030C (GC)										
Blank (EF71312-BLK1)				Prepared:	06/13/07	Analyzed:	06/15/07			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	**			. 1	_			
Ethylbenzene	ND	0.00100	**							
Xylene (p/m)	ND	0.00100	. "							
Xylene (o)	ND	0.00100	**							
Surrogate: a,a,a-Trifluorotoluene	46.1		ug/l	50.0		92.2	80-120			
Surrogate: 4-Bromofluorobenzene	41.1		"	50.0		82.2	80-120		•	
LCS (EF71312-BS1)				Prepared:	06/13/07	Analyzed:	06/15/07			
Benzene	0.0508	0.00100	mg/L	0.0500		102	80-120			
Toluene	0.0522	0.00100	"	0.0500		104	80-120-			
Ethylbenzene	0.0541	0.00100	*	0.0500		108	80-120			
Xylene (p/m)	0.0945	0.00100		0.100		94.5	80-120			
Xylene (o)	0.0527	0.00100	"	0.0500		105	80-120	•		
Surrogate: a,a,a-Trifluorotoluene	49.2		ug/l	50.0		98.4	80-120			
Surrogate: 4-Bromofluorobenzene	47.4		"	50.0		94.8	80-120			
Calibration Check (EF71312-CCV1)				Prepared:	06/13/07	Analyzed:	06/15/07			
Benzene	0.0493		mg/L	0.0500		98.6	80-120		·.	
Toluene	0.0501			0.0500		100	80-120		*	
Ethylbenzene	0.0485		**	0.0500		97.0	80-120			
Xylene (p/m)	0.0906		"	0.100		90.6	80-120			
Xylene (o)	0.0506		"	0.0500		101	80-120			
Surrogate: a,a,a-Trifluorotoluene	48.6		ug/l	50.0		97.2	80-120	~ .		7
Surrogate: 4-Bromofluorobenzene	46.8		"	50.0		93.6	80-120			*
Matrix Spike (EF71312-MS1)	Soi	rce: 7F12005	-03	Prepared:	06/13/07	Analyzed:	06/15/07			
Benzene	0.0494	0.00100	mg/L	0.0500	ND	98.8	80-120		-	
Foluene	0.0505	0.00100	"	0.0500	ND	101	80-120			
Ethylbenzene	0.0534	0.00100	*	0.0500	ND	107	80-120			
Xylene (p/m)	0.0936	0.00100		0.100	ND	93.6	80-120			
Xylene (o)	0.0523	0.00100		0.0500	ND	105	80-120			
Surrogate: a.a.a-Trifluorotoluene	50.4		ug/l	50.0		101	80-120		·	
Surrogate: 4-Bromofluorobenzene	47.1		.,	50.0		94.2	80-120			

Project: EME M-5 SWD

Project Number: None Given

Fax: (505) 397-1471

Project Manager: Kristin Farris-Pope

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF71312 - EPA 5030C (GC)										

Batch	EF71312	- EPA	5030C	(GC)
-------	---------	-------	-------	------

Matrix Spike Dup (EF71312-MSD1)	Sour	ce: 7F12005	-03	Prepared:	06/13/07	Analyzed:	06/15/07			
Benzene	0.0478	0.00100	mg/L	0.0500	ND	95.6	80-120	3.29	20	
oluene	0.0495	0.00100	**	0.0500	ND	99.0	80-120	2.00	20	
Ethylbenzene	0.0523	0.00100	**	0.0500	ND	105	80-120	1.89	20	
Kylene (p/m)	0.0913	0.00100	•	0.100	ND	91.3	80-120	2.49	20	
Kylene (o)	0.0506	0.00100		0.0500	ND	101	80-120	3.88	20	
Surrogate: a,a,a-Trifluorotoluene	49.5		ug/l	50.0		99.0	80-120			
Surrogate: 4-Bromofluorobenzene	47.1		"	50.0		94.2	80-120			

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level		Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF71403 - General Preparation (W	etChem)	-1- 1/							-		
Blank (EF71403-BLK1)			<u></u>	Prepared	&	Analyzed:	06/14/07		_		
Total Alkalinity	ND	2.00	mg/L								
LCS (EF71403-BS1)		•		Prepared	&	Analyzed:	06/14/07			***	
Bicarbonate Alkalinity	170	2.00	mg/L	200	•		85.0	85-115	1.*		
Duplicate (EF71403-DUP1)	Sourc	e: 7F11010	-01	Prepared	&	Analyzed:	06/14/07		-	•	
Total Alkalinity	320 .	2.00	mg/L	<u>.</u>		320			0.00	20	
Reference (EF71403-SRM1)				Prepared	&	Analyzed:	06/14/07	•			
Total Alkalinity	250	· · · · · · · · · · · · · · · · · · ·	mg/L	250		·	100	90-110			-
Batch EF71504 - General Preparation (W Blank (EF71504-BLK1)	etChem)		· : :	Prepared	&	Analyzed:	06/15/07				
	ND			Prepared	&	Anaryzed:	06/15/07	<u> </u>			
Sulfate		0.500	ma/l								
Sulfate Chloride	ND ND	0.500 0.500	mg/L								
			mg/L	Prepared	&	Analyzed	06/15/07			• 7	
Chloride			mg/L mg/L	Prepared	&	Analyzed	06/15/07	80-120		***	
Chloride LCS (EF71504-BS1) Sulfate	ND	0.500	,	<u> </u>	&			80-120 80-120			
Chloride LCS (EF71504-BS1) Sulfate Chloride	ND 10.1	0.500	,	10.0 10.0	•		101				
Chloride LCS (EF71504-BS1) Sulfate Chloride Calibration Check (EF71504-CCV1)	ND 10.1	0.500	,	10.0 10.0	•		101				
Chloride LCS (EF71504-BS1)	ND 10.1 9.83	0.500	mg/L	10.0 10.0 Prepared	•		101 98.3 06/15/07	80-120			
Chloride LCS (EF71504-BS1) Sulfate Chloride Calibration Check (EF71504-CCV1) Chloride	ND 10.1 9.83 9.07 12.0	0.500	mg/L mg/L	10.0 10.0 Prepared 10.0	&		101 98.3 06/15/07 90.7 120	80-120 80-120 80-120			
Chloride LCS (EF71504-BS1) Sulfate Chloride Calibration Check (EF71504-CCV1) Chloride Sulfate	ND 10.1 9.83 9.07 12.0	0.500	mg/L mg/L	10.0 10.0 Prepared 10.0	&	Analyzed:	101 98.3 06/15/07 90.7 120	80-120 80-120 80-120	0.00	20	

Rice Operating Co.

Project: EME M-5 SWD

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project Number: None Given
Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF71504 - General Preparation	(WetChem)									
Duplicate (EF71504-DUP2)	Sour	ce: 7F11017	-01	Prepared	& Analyz	ed: 06/15/0	7			
Sulfate	76.7	5.00	mg/L		77.6			1.17	20	
Chloride	67.9	5.00			69.9			2.90	20	
Matrix Spike (EF71504-MS1)	Sour	ce: 7F11014	-01	Prepared	& Analyz	ed: 06/15/0	7			
Chloride	992	12.5	mg/L	250	731	104	80-120			
Sulfate	354	12.5	"	250	104	100	80-120			
Matrix Spike (EF71504-MS2)	Sour	ce: 7F11017	-01	Prepared	& Analyz	ed: 06/15/0	7		·	
Sulfate	174	5.00	mg/L	100	77.6	. 96.4	80-120			
Chloride	168	5.00	"	100	69.9	98.1	80-120			
Batch EF71519 - General Preparation	(WetChem)			٠.						
Blank (EF71519-BLK1)	•			Prepared:	06/12/07	Analyzed:	06/15/07			
Total Dissolved Solids	ND	10.0	mg/L			J				
Duplicate (EF71519-DUP1)	Sour	ce: 7F11009	-01	Prepared:	06/12/07	Analyzed:	06/15/07	-		
Total Dissolved Solids	24600	10.0	mg/L		23000			6.72	20	
Duplicate (EF71519-DUP2)	Sour	ce: 7F11014	-03	Prepared:	06/12/07	Analyzed:	06/15/07			
Total Dissolved Solids	1380	10.0	mg/L		1340			2.94	20	

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level -	Source Result	%REC	%REC Limits	RPD	RPD. Limit	Notes
Batch EF71902 - 6010B/No Digestion		-			,					
Blank (EF71902-BLK1)				Prepared -&	Analyzed:	06/19/07				
Calcium	ND	0.0810	mg/L							
Magnesium	-ND	0.0360	"							
Potassium	ND	0.0600	*	1						
Sodium	ND	0.0430								
Calibration Check (EF71902-CCV1)				Prepared &	Analyzed:	06/19/07				
Calcium	2.04		mg/L	2.00		102	85-115			
Magnesium	2.00		**	2.00		100	85-115			
Potassium	2.13		**	2.00		106	85-115		*	
Sodium	2.04		,	2.00		102	85-115			
Duplicate (EF71902-DUP1)	Sour	ce: 7F11010	-01	Prepared &	Analyzed	06/19/07				
Calcium	956	40.5	mg/L		940			1.69	20	
Magnesium	. 337	3.60			346			2.64	20	
Potassium	29.9	0.600	**		30.9			3.29	20	
Sodium	2970	21.5	**		2940			1.02	20	

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:

Date:

6/27/2007

Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant

James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 10 of 10

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Odessa, Texas 79765

12600 West I-20 East

Phone: 432-563-1800 Fax: 432-563-1713

TAT bisbnst2 × Lone Star NPDES ç Project Loc: T20S R37E Sec5 M - Lea County New Mexico RUSH TAT (Pre-Schedule) 24, 48, 72 hrs zzzzzz FedEx 3 Fotal Dissolved Solids TRRP M.A.O.M. 붐 SCI Labels on container(s) Custody seals on container(s) **EME M-5 SWD** × Sample Hand Delivered by Sampler/Otent Red 9 by Courier? Temperature Upon Receipt: BTEX 8021B/5030 \times VOCs Free of Headspace? Sample Containers Intact? Custody seals on cooler(s) Laboratory Comments: Volatiles (BTEX-N 8260) X Standard Metals: As Ag Ba Cd Cr Pb Hg Se ğ SAR / ESP / CEC 101A × Anions (Cl. SO4, Alkalinity) # 04 Project Name: Cations (Ca. Mg, Na, K) × Project #: Report Format: 9001 XT 2001 XT 4:30 80158 M2108 1,814 Нал MP: Non-Potable Specify Other Matrix გ გ EA - CRORDANN SepollSolid 10.11.0 ASSOCIATION AND STREET Office (Specify) rozanne@valornet.com None (1) 1 Liter HDPE Preservation & # of Containers tozanne@valornet.com OSSEN HOBN (505) 397-1471 *05*H HCI (2) 40 ml glass vials ~ FONH əo × xerx 22 Fotal #, of Containers 6 benetitiened Eax No: e-mail: 13:55 14:50 Time Sampled matt@riceswd.com WONER kpope@riceswd.com Received by ELOT 6/7/2007 6/7/2007 Date Sampled Ending Depth Hobbs, New Mexico 88240 RICE Operating Company Ξē Rozenne Johnson (505)631-9310 Reginning Depth purvis@riceswd.com kpope@riceswd.com 122 W. Taylor Street Kristin Farris Pope 4/11/07 (505) 393-9174 FIELD CODE Please email to: 1848 7511013 Company Address: Sampler Signature: Project Manager: Company Name Telephone No: City/State/Zip: Special Instructions: M5-1s M5-1d elinquished by (lab Use only) ORDER #: C, 0 (yino eau del) # 8A

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client.	Rice					
Date/ Time:	6.11.07	4:30		,		-
Lab ID#;	7F110	13				
Initials:	a					
minute.						
 1	÷ ,	Sample Receipt	Checklist			•
			1 623	NI -	Client In	nitials
	ature of container/ coo		(Tes)	No No	2.0 .0	
	container in good co		YES	No	Nat Dancas	
		ing container/ cooler?	Yes	No	Not Present	
		le bottles/ container?	(es)	No	Not Present	
	Custody present?	(0)				
		of Chain of Custody?	(Yes)	No		
		n relinquished/ received?	Yes	No		
	Custody agrees with		(es)	No	ID written on Cont./ Lid	
	er label(s) legible and		Yes	No	Not Applicable	
	· · · · · · · · · · · · · · · · · · ·	ree with Chain of Custody?	766	No		
	ers supplied by ELOT		X#85	No		
	s in proper container		XES	No	See Below	
	s properly preserved	?	Mes	No	See Below	
	bottles intact?	<u> </u>	YES	No		
≱15 Preserv	rations documented o	n Chain of Custody?	∕ (es)	No		
#16 Contain	ers documented on C	Chain of Custody?	Yes	No		
#17 Sufficie	nt sample amount for	indicated test(s)?	Yes	No	See Below	
#18 All sam	ples received within s	ufficient hold time?	Yes	No	See Below	
#19 Subcon	stract of sample(s)?		Yes	No	Not Applicable	
#20 VOC sa	amples have zero hea	idspace?	Yes	No	Not Applicable	
Contact:		Variance Documents	mentation		Date/ Time:	
Joinaul.		_ Contacted by.			Date/Time.	 -
Regarding:						
regarding.						
<u> </u>						
L. Spernetius A.	ation Takan					
Corrective A	CHOIL LAKEII.					
						······································
				·		
book all #5	nt Applic	See attached e-mail/ fax				
theck all that	at Apply.		مالا المال	and with	onalusia.	
		Client understands and wou			•	
•	لـا	Cooling process had begun	snortly after s	sampling	event	

PHONE (505) 393-2326 - 101 E MARLAND - HOBBS, NM 86240

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: KRISTIN FARRIS-POPE

122 W. TAYLOR HOBBS, NM 88240

FAX TO: (505) 397-1471

Receiving Date: 08/29/07

Reporting Date: 09/04/07 Project Number: NOT GIVEN

Project Name: EME M-5 SWD

Project Location: T20S-R37E-SEC5 M ~ LEA CO., NM

Sampling Date: 08/27/07

Sample Type: GROUNDWATER Sample Condition: COOL & INTACT

Sample Received By: HM

Analyzed By: CK

LAB NUMBER SAMPLE ID	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL BENZENE (mg/L)	TOTAL XYLENES (mg/L)
ANALYSIS DATE	08/30/07	08/30/07	08/30/07	08/30/07
H13194-1 M5-1s	<0.002	<0.002	<0.002	<0.006
H13194-2 M5-1d	<0.002	<0.002	<0.002	<0.006
Quality Control	0.086	0.082	0.082	0.252
True Value QC	0.100	0.100	0.100	0.300
% Recovery	86.0	82.3	82.4	84.0
Relative Percent Difference	6.0	2.6	1.8	0.7

METHOD: EPA SW-846 8021 B

Chemist

Date

PHONE (505) 393-2326 - 101 E. MARLAND - HOBBS, NM 88240

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: KRISTIN FARRIS-POPE 122 W. TAYLOR STREET

HOBBS, NM 88240 FAX TO: (505) 397-1471

Receiving Date: 08/29/07 Reporting Date: 09/05/07

Project Owner: NOT GIVEN
Project Name: EME M-5 SWD

Project Location: T20S-R37E-SEC5 M~LEA COUNTY, NM

Sampling Date: 08/27/07

Sample Type: WATER

Sample Condition: COOL & INTACT

Sample Received By: HM

Analyzed By: HM/KS

							-
		Na	Ca	Mg	K	Conductivity	T-Alkalinity
LAB-NUMBER	SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(uS/cm)	(mgCaCO ₃ /L)
ANALYSIS DA	TE:	09/04/07	09/04/07	. 09/04/07	09/05/07	08/30/07	09/04/07
H13194-1	M5~1s	1895	865	182	15.4	13,970	136
H13194-2	M5-1d	2070	1680	363	19.1	19,590	92.0
	and the second s					· -	
Quality Control	en namen sammen en e	NR	50.6	53.2	1.87	1423	NR
True Value QC		NR	50.0	50.0	2.00	1413	NR
% Recovery		NR	101	106	93.6	101	NR
Relative Percer	nt Difference	NR NR	< 0.1	3.1	2.1	< 0.1	NR.
METHODS:		SM:	3500-Ca-D	3500-Mg E	8049	120.1	310,1
		CI ⁻	\$©₄	ČÕ ₃	HCO₃	ρH	TDS
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS DA	TE:	09/04/07	09/05/07	09/04/07	09/04/07	08/30/07	09/04/07
H13194-1	M5-1s	4,499	554	0	166	6.76	10,095
H13194-2	M5-1d	6,898	394	0	112	6.63	14,776
1000 W. S. A. 1000 C.					rito //// houdstation for consequence or consequence		
Quality Control		500	24.0	NR	1025	6.97	NR
True Value QC		500	25.0	NR	1000	7.00	NR
% Recovery		100	96.1	NR	102	99.6	NR
Relative Percer	nt Difference	< 0.1	8.2	NR	6.1	0.1	NR
METHODS:	namen	SM4500-CI-B	375.4	310.1	310.1	150.1	160.1
***************************************					*******************************	tananan mananan mananan mananan mananan mananan da	·····

Chemist Julia

Date

Page 1 of

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST	LAB Order ID #	ANALYSIS REQUEST	(Circle or Specify Method No.)					09 BI	ppue	5 Extended to 19 (19 (19 (19 (19 (19 (19 (19 (19 (19	25 Cd	A A A S A S A S A S A S A S A S A S A S	TIME MTBE 8021E BTEX 8021B BTEX 8021B TOLP Metals TCLP Volatile TCLP Semi V TCLP Semi V GC/MS GC/MS Semi V GC/MS GC/MS Semi V GC/MS GC/MS GC/MS Semi V GC/MS GC/MS GC/MS GC/MS Semi V GC/MS GC/M	x x x x x x x x x x x x x x x x x x x	8-27 (4:0) X X X						Phone Results Yes No	Fax Results Yes No Additional Fax Number:	REMARKS:	Email Results to: kpope@riceswd.com	<u>rozanne@valornet.com</u>	
	ules, inc.	PO# Ombany	(Street, City, Zip)	s, New Mexico 88240	Fax#	(505)397-1471			Ì	rge∕ Rozanne Johnson (505)631-9310 rozanne(Øvalornet com	PRESERVATIVE SA METHOD	(340	NONE ICE (1-17(48-14 NSH2O ⁴ NSH2O ⁴ HNO ³ HCF (5 4041/1	<u>.</u>	2 1 8:						Date: Time:			- 08640 H	CHECKED BY:	(Initials)
Cardinal Labore		BILL TO Company: RICE Operating Cor	Address	122 W Taylor Street ~ Hobbs, New Mexico 88240	Phone#:	(505) 393-9174	Fax#: (505)397-1471			Sample, Signature.	MATRIX	1ERS	# CONTAIN SOIL SIR AIR		3 ×		.2				Received by:		(Laboraton)	Las Andreas	Sample Condition Cool Intact	Yes
101 East Mariand - Hobbs, New Mexico 86240	26 78	Company Name: RICE Operating Company	Project Manager;	Kristin Farris-Pope, Project Scientist	Address: (Street, City, Zip)	7 Taylor Street ~ Hobbs, New Mexico 86240		Project Name.	EME M-5 SWD	Project Location: T20S-R37E-Sec5 M ~ Lea County - New Mexico		LAB#	CONLY ONLY	<i>≫99 - 1</i> M5-1s G	M5-1d G						Date: Time:	Na Na	Date: Time:		Delivered By: (Circle One) Sample	Sampler - UPS - Bus - Other:

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: KRISTIN FARRIS-POPE 122 WEST TAYLOR HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 11/13/07

Reporting Date: 11/20/07

Project Number: NOT GIVEN

Project Name: EME M-5 SWD

Project Location: T20S R37E SEC5 M - LEA COUNTY, NM

Sampling Date: 11/09/07

Sample Type: WATER

Sample Condition: COOL & INTACT

Sample Received By: CK

Analyzed By: AB

	•			
LAB NUMBER SAMPLE ID	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL BENZENE (mg/L)	TOTAL XYLENES (mg/L)
ANALYSIS DATE	11/14/07	11/14/07	11/14/07	11/14/07
H13698-1 M5-1S	<0.001	<0.001	<0.001	<0.003
H13698-2 M5-1D	<0.001	<0.001	<0.001	<0.003

H13698-1 M5-1S	<0.001	<0.001	<0.001	<0.003
H13698-2 M5-1D	<0.001	<0.001	<0.001	<0.003
Quality Control	0.102	0.092	0.095	0.293
True Value QC	0.100	0.100	0.100	0.300
% Recovery	102	92	95	98
Relative Percent Difference	2.4	0.4	1.0	1.5

METHOD: EPA SW-846 8021B

Chemist

Date

H13698b Rice

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: KRISTIN FARRIS-POPE 122 W. TAYLOR STREET

HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 11/13/07 Reporting Date: 11/19/07

Project Number: NOT GIVEN Project Name: EME M-5 SWD

Project Location: T20S-R37E-SEC5 M~LEA COUNTY, NM

Sampling Date: 11/09/07 Sample Type: WATER

Sample Condition: COOL & INTACT

Sample Received By: CK Analyzed By: HM/KS

	-	Na	Ca	Mg	· K	Conductivity	T-Alkalinity
LAB NUMBER	SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(uS/cm)	(mgCaCO ₃ /L)
ANALYSIS DAT	E:	11/16/07	11/16/07	11/16/07	11/15/07	11/14/07	11/14/07
H13698-1	M5-1s	1,807	872	234	15.9	13,910	240
H13698-2	M5-1d	2,207	1,710	383	13.5	20,310	212
Quality Control		NR	49.2	51.6	2.95	1,415	NR
True Value QC		NR	50.0	50.0	3.00	1,413	NF
% Recovery		NR	98.5	103	98.3	100	NF
Relative Percen	t Difference	NR	< 0.1	1.5	5.0	0.1	NR
METHODS:		SM	3500-Ca-D	3500-Mg E	8049	120.1	310.1
		CI	SO ₄	CO ₃	HCO ₃	рН	TDS
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS DAT	E:	11/15/07	11/16/07	11/14/07	11/14/07	11/14/07	11/15/07
H13698-1	M5-1s	4,400	549	. 0	393	6.76	8,193
H13698-2	M5-1d	7,100	435	. 0	259	6.59	12,247
		500					
Quality Control		500	24.3	NR	988	6.95	NR
True Value QC	 -,	500	25.0	NR	1000	7.00	NR
% Recovery	· · · · · · · · · · · · · · · · · · ·	100	97.0	NR	98.8	99.3	NR.
Relative Percent	Uπerence	< 0.1	3.5	NR	1.2	0.7	NR
METHODS:		SM4500-CI-B	375.4	310.1	310.1	150.1	160.1

Busta Superstra

1/19/07 Date Page 1 of

40.00

6 8 - Bra

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST	LAB Order ID #	ANALYSIS REQUEST	(Circle of Specify Method No.)						624 5270CA 3, K)	TCLP RCI GC/M GC/M PCB's PCB's ROD, Moist Moist Cation Cation	X X X	X X X					Yes No	Yes No Additional Fax Number:		kpope@riceswd.com	Weinheimer@riceswd.com	וטלמווויפוע אמוטוויפן. טטווו					
CHA			-			,		O) bebr			НАЧ	×	×					Phone Results	Fax Results	REMARKS:	Email Results to:						
	lai Labulatules, ilic.	BILL TO Company: RICE Operating Company	Address: (Street, City, Zip)	122 W Taylor Street ~ Hobbs, New Mexico 88240	Phone#: Fax#: (ADE) 202 0474	(505) 585-1471 Fax#.	(505)397-1471		Sampler Signature/	4	MATRIX PRESERVATIVE SAMPLING METHOD	(OV)	(2 4001) = (2001) E C C C C C C C C C	# CC YOU	G 3 X 2 1 11-9 /385	G 3 X 2 1 11-9 15:00					Received by: Date: Time: F		Received By: (Laboratory Staff) Date: Time:	all thethe 11/13/07 2305	Sample Condition CHECKED BY:	\ × 8	}
, New	26 76	Company Name: RICE Operating Company	Project Manager:	Kristin Farris-Pope, Project Scientist	Address: (Street, City, Zip)	122 VV Taylor Street ~ Hobbs, New Mexico 86240) 393-9174	Project Name: EME M-5 SWD		205-₹37E-Sec5 M ~ Lea County - New Mexico		LAB#	/ LAB USE	(ONLY)	41368-1 M5-18	2 M5-1d				, ,	d by: Date: Time:	11-13-2007 2:05	Relinquished by: Date: Time: R		Delivered By: (Circle One)	Sampler - UPS - Bus - Other:	

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

February 12, 2007

Wayne Price Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, NM 87505

RE:

2006 Annual Ground Water Monitoring Report

M-5 SWD, Sec 05, T20S, R37E, Unit "M"

NMOCD Case #: Pending

Dear Mr. Wayne Price:

R.T. Hicks Consultants, Ltd is pleased to submit the 2006 Annual Ground Water Monitoring Report for the M-5 SWD site located in the EME Salt Water Disposal System (SWD). This report consists of the following sections:

- 1. A table summarizing all laboratory results, depth to ground water and other pertinent data associated with ground water sampling at the site, including this past year.
- 2. Graphs showing chemical concentration vs. time for chloride and TDS.
- 3. Laboratory data sheets associated with the routine sampling for 2006.

The Corrective Action Plan was submitted to NMOCD on September 10, 2004. The CAP is pending NMOCD approval.

Thank you for your consideration of this annual summary information. The attached CD contains an electronic copy of the annual report. If you have any questions, please contact us at 505-266-5004, or Kristin Farris Pope at ROC, 505-393-9174.

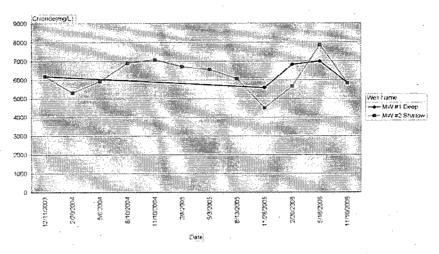
Sincerely,

R.T. Hicks Consultants, Ltd.

Randall T. Hicks

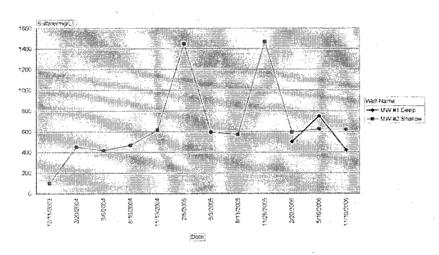
Principal

Copy: Hobbs NMOCD office; Rice Operating Company

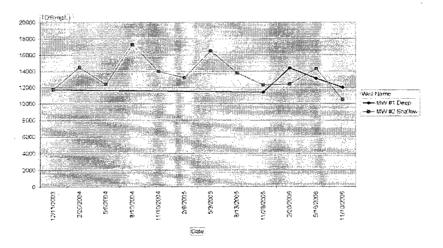

Table 1: chemistry over time

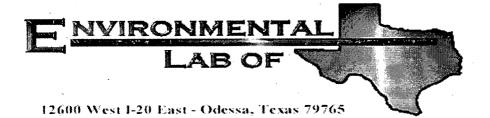
▭
7
5
v
Ľ

							,									,	-	
Comments	Deep	Deep	Deep	Deep	Clear no odor	Deep	Shallow	Shallow	Shallow	Shallow	Shallow	Shallow	XXX	XXX	Shallow	Shallow	Shallow	Clear no odor
Total Xylenes (ug/L)	<0.006	<0.001	<0.001	<0.001	<0.001	-0.006	<0,006	<0.001	<0,001	<0.001	<0.001	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene (ug/L) EthylBenzene (ug/L)	<0.002	<0001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.001	<0.001	<0.001	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene (ug/L)	<0.002	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Benzene (ug/L)	<0.002	<0.001	<0.001		<0.001	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
TDS (mg/L)	11736	11400	14400	13100	12000	11738	10784	14500	12400	17300	14000	13200	18500	13800	12300	12400	14300	10500
Sulfate (mg/L)	XX	XXX	503	752	421	90.5	8.66	454	420	470	614	1450	595	574	1470	596	626	622
Chloride (mg/L)	6198	5590	9830	7000	5840	6198	6198	5320	5940	6910	7090	6710	6560	6070	4500	5880	7870	5840
DTIV (ft)	33.40	28.1	27.87	27.81	27.49	 33.40	33.28	33.37	32.79	32.52	31.63	28.85	28.1	XX	27.87	27.25	27.81	27.39
Date	12/11/2003	11/28/2005	2/20/2006	5/16/2006	11/10/2008	12/11/2003	12/11/2003	2/20/2004	5/6/2004	8/10/2004	11/10/2004	2/8/2005	5/3/2005	8/13/2005	11/28/2005	2/20/2006	5/16/2006	11/10/2006
Well Name	MW #1 Deep	 MW #2 Shallow	MW #2 Shallow	MVV #2 Shallow														


Sor Name M-5 SV/D

Chloride Over Time


Site Name M-5 SWC


Sulfate Over Time

Site Name M 5 SWO

TDS Over Time

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME M-5 SWD Project Number: None Given

Location: Lea County

Lab Order Number: 6B23002

Report Date: 03/06/06

Project: EME M-5 SWD
Project Number: None Given

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 03/06/06 11:34

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1 Shallow	6B23002-01	Water	02/20/06 12:05	02/23/06 09:45
Monitor Well #1 Deep	6B23002-02	Water	02/20/06 11:45	02/23/06 09:45

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 03/06/06 11:34

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 Shallow (6B23002-01) \	Vater								
Benzene	ND	0.00100	mg/L	ı	EB62306	02/23/06	02/24/06	EPA 8021B	•
Toluene	ND	0.00100	**		n		•	"	
Ethylbenzene	ND	0.00100	*	**		**	**	н	
Xylene (p/m)	ND	0.00100	"	**		41	۳ .	**	
Xylene (o)	ND	0.00100	*	n ·	**	. "	"	*	
Surrogate: a,a,a-Trifluorotoluene		85.8 %	80-12	20	"	"	,,	n	
Surrogate: 4-Bromofluorobenzene		93.2 %	80-12	20	,,	. ""	"	n	
Monitor Well #1 Deep (6B23002-02) Wa	ter					_			
Benzene	ND	0.00100	mg/L	I	EB62306	02/23/06	02/24/06	EPA 8021B	
Toluene	ND	0.00100	n			H	"		
Ethylbenzene	ND	0.00100	51	"	**		н	H	
Xylene (p/m)	ND	0.00100	н -	**			"	11	
Xylene (o)	ND	0.00100	н	**	o	•	u	n	
Surrogate: a,a,a-Trifluorotoluene		86.0 %	80-12	0	71	"	, ,	n n	
Surrogate: 4-Bromofluorobenzene		93.5 %	80-12	0	"	"	"	n	

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 03/06/06 11:34

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 Shallow (6B23002-0)									
Total Alkalinity	237	2.00	mg/L	I	EB62205	02/23/06	02/23/06	EPA 310.1M	
Chloride	- 5660	100	**	200	EB62811	02/28/06	02/28/06	EPA 300.0	
Total Dissolved Solids	12400	5.00	**	1	EB62405	02/23/06	02/24/06	EPA 160.1	
Sulfate	596	100	*1	200	EB62811	02/28/06	02/28/06	EPA 300.0	
Monitor Well #1 Deep (6B23002-02) V	Vater								
Total Alkalinity	182	2.00	mg/L	ı	EB62205	02/23/06	02/23/06	EPA 310.1M	
Chloride	6830	100		200	EB62811	02/28/06	02/28/06	EPA 300.0	
Total Dissolved Solids	14400	5.00	**	1	EB62405	02/23/06	02/24/06	EPA 160.1	
Sulfate	503	100	**	200	EB62811	02/28/06	02/28/06	EPA 300.0	

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 03/06/06 11:34

Total Metals by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 Shallow (6B23002-01) Water	er								
Calcium	1470	5.00	mg/L	500	EC60207	03/02/06	03/02/06	EPA 6010B	
Magnesium	419	0.100	"	100		#	н	п	
Potassium	36.4	0.500	•	10	**	n	n		
Sodium	2610	5.00	0	500	*	н	н	"	
Monitor Well #1 Deep (6B23002-02) Water			·						
Calcium	2170	5.00	mg/L	500	EC60207	03/02/06	03/02/06	EPA 6010B	
Magnesium	529	0.500		п	"	•	11	n	
Potassium	35.5	0.500		. 10	"	"		*	
Sodium .	2150	5.00	"	500		"		IT .	

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 03/06/06 11:34

Organics by GC - Quality Control Environmental Lab of Texas

A 1 a	ps 4.	Reporting	** **	Spike	Source	0/P50	%REC	DPD	RPD	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB62306 - EPA 5030C (GC)										
Blank (EB62306-BLK1)				Prepared &	Analyzed:	02/23/06			• •	
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	n				-			
Xylene (p/m)	ND	0.00100								
Xylene (o)	ND	0.00100								-
Surrogate: a,a,a-Trifluorotoluene	33.3		ug/l	40.0		83.2	80-120			
Surrogate: 4-Bromofluorobenzene	35.5		"	40.0		88.8	80-120			
LCS (EB62306-BS1)				Prepared: 0	2/23/06 A	nalyzed: 02	2/27/06			
Benzene	0.0480	0,00100	mg/L	0.0500		96.0	80-120			
Toluene	0.0524	0.00100		0.0500		105	80-120			
Ethylbenzene	0.0564	0.00100	**	0.0500		113	80-120			
Xylene (p/m)	0.118	0.00100		0.100		118	80-120			
Xylene (o)	0.0577	0.00100	**	0.0500		115	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.5		ug/l	40.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	38.4		"	40.0		96.0	80-120			
Calibration Check (EB62306-CCV1)				Prepared: 0	2/23/06 A	nalyzed: 02	2/27/06			
Benzene	47.3		ug/l	50.0		94.6	80-120			
Toluene	52.9		n	50.0		106	80-120			
Ethylbenzene	59.9		**	50.0		120	80-120			
Xylene (p/m)	120		*	100		120	80-120			
Xylene (o)	59.7		*	50.0		119	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.5		"	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	47.5		"	40.0		119	80-120			
Matrix Spike (EB62306-MS1)	Sou	ırce: 6B23001-	01	Prepared: 0	- 2/23/06 A	nalyzed: 02	2/27/06			
Benzene	0,0418	0.00100	mg/L	0.0500	ND	83.6	80-120			
Toluene	0.0464	0.00100		0.0500	ND	92.8	80-120			
Ethylbenzene	0.0521	0.00100	*	0.0500	ND	104	80-120			
Xylene (p/m)	0.109	0.00100	•	0.100	ND	109	80-120			
Xylene (o)	0.0537	0.00100	"	0.0500 .	ND	107	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.4		ug/I	40.0		96.0	80-120			
Surrogate: 4-Bromofluorobenzene	41.3		"	40.0		103	80-120			

Project: EME M-5 SWD

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project Number: None Given
Project Manager: Kristin Farris-Pope

Reported: 03/06/06 11:34

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB62306 - EPA 5030C (GC)										
Matrix Spike Dup (EB62306-MSD1)	Soui	rce: 6B23001-	01	Prepared: 0	2/23/06 A	nalyzed: 02	/27/06			
Benzene	0.0475	0.00100	mg/L	0.0500	ND	95.0	80-120	12.8	20	
Toluene	0.0524	0.00100		0.0500	ND	105	80-120	12.3	20	
Ethylbenzene	0.0577	0.00100		0.0500	ND	115	80-120	10.0	20	
Xylene (p/m)	0.120	0.00100		0.100	ND	120	80-120	9.61	20	
Xylene (o)	0.0591	0.00100		0.0500	ND	118	80-120	9.78	20	
Surrogate: a,a,a-Trifluorotoluene	40.3		ug/l	40.0		101	80-120	•		
Surrogate: 4-Bromofluorohenzene	41.3		"	40.0		103	80-120			

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported:

Reported: 03/06/06 11:34

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB62205 - General Preparatio	n (WetChem)			 						
Blank (EB62205-BLK1)				Prepared &	Analyzed:	02/23/06				
Total Alkalinity	· ND	2.00	mg/L		-					
LCS (EB62205-BS1)				Prepared &	Analyzed:	02/23/06				
Bicarbonate Alkalinity	207	2.00	mg/L	200		104	85-115			
Duplicate (EB62205-DUP1)	Source	e: 6B16004-	01	Prepared &	Analyzed:	02/23/06	•			
Total Alkalinity	273	2.00	mg/L		278			1.81	20	
Reference (EB62205-SRM1)				Prepared &	Analyzed:	02/23/06				
Total Alkalinity	97.0		mg/L	100		97.0	90-110			
Batch EB62405 - General Preparatio	n (WetChem)									
	n (WetChem)		-	Prepared: 0)2/23/06 Ar	nalyzed: 02	/24/06			,
Batch EB62405 - General Preparatio Blank (EB62405-BLKI) Total Dissolved Solids	n (WetChem)	5.00	mg/L	Prepared: 0)2/23/06 Ar	nalyzed: 02	/24/06			·
Blank (EB62405-BLK1)	ND	5.00 re: 6B17004-	-)2/23/06 Ar)2/23/06 Ar					
Blank (EB62405-BLK1) Total Dissolved Solids	ND		-					0.00	5	
Blank (EB62405-BLK1) Total Dissolved Solids Duplicate (EB62405-DUP1) Total Dissolved Solids	ND Sourc 178	re: 6B17004-	01)2/23/06 Ar			0.00	. 5	
Blank (EB62405-BLK1) Total Dissolved Solids Duplicate (EB62405-DUP1) Total Dissolved Solids Batch EB62811 - General Preparatio	ND Sourc 178	re: 6B17004-	01	Prepared: 0)2/23/06 Ar	nalyzed: 02		0.00	5	
Blank (EB62405-BLK1) Fotal Dissolved Solids Duplicate (EB62405-DUP1) Fotal Dissolved Solids Batch EB62811 - General Preparatio Blank (EB62811-BLK1)	ND Sourc 178	re: 6B17004-	01	Prepared: 0	02/23/06 Ar 178	nalyzed: 02		0.00	5	
Blank (EB62405-BLK1) Total Dissolved Solids Duplicate (EB62405-DUP1)	ND Sourc 178 n (WetChem)	5.00	mg/L	Prepared: 0	02/23/06 Ar 178	nalyzed: 02		0.00	5	
Blank (EB62405-BLK1) Total Dissolved Solids Duplicate (EB62405-DUP1) Total Dissolved Solids Batch EB62811 - General Preparatio Blank (EB62811-BLK1)	ND Source 178 n (WetChem) ND	5.00 0.500	mg/L	Prepared: 0	02/23/06 Ar 178	nalyzed: 02 02/28/06		0.00	5	
Blank (EB62405-BLK1) Total Dissolved Solids Duplicate (EB62405-DUP1) Total Dissolved Solids Batch EB62811 - General Preparatio Blank (EB62811-BLK1) Sulfate Chloride	ND Source 178 n (WetChem) ND	5.00 0.500	mg/L	Prepared: 0)2/23/06 Ar 178 . Analyzed:	nalyzed: 02 02/28/06		0.00	5	

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 03/06/06 11:34

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit Units	Spike Level	Source Result %I	%REC REC Limits	RPD	RPD Limit	Notes
Batch EB62811 - General Preparation (WetC	hem)							
Calibration Check (EB62811-CCV1)			Prepared &	Analyzed: 02/2	8/06		,	
Sulfate	9.25	mg/L	10.0	9.	2.5 80-120	_		
Chloride	9.36	D	10.0	9.	3.6 80-120			
Duplicate (EB62811-DUP1)	Sour	rce: 6B23001-01	Prepared-&	Analyzed: 02/2	8/06			
Chloride	7740	100 mg/L		7510		3.02	20	,
Sulfate	956	100 "		889	• •	7.26	20	
, *								

Project: EME M-5 SWD

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project Number: None Given
Project Manager: Kristin Farris-Pope

Reported: · 03/06/06 11:34

Total Metals by EPA / Standard Methods - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EC60207 - 6010B/No Digestion										
Blank (EC60207-BLK1)	-			Prepared &	Analyzed:	03/02/06				
Calcium	ND	0.0100	mg/L					,		,
Magnesium	ND	0.00100	۳.							
Potassium	· ND	0.0500	н							•
Sodium	ND	0.0100	н							
Calibration Check (EC60207-CCV1)				Prepared &	Analyzed:	03/02/06				
Calcium	2.15		mg/L	2.00		108	85-115			
Magnesium	2.20		"	2.00		110	85-115			
Potassium	1.72			2.00		86.0	85-115			
Sodium	1.87			2.00		93.5	85-115			
Duplicate (EC60207-DUP1)	Sour	rce: 6B17004-	01	Prepared &	Analyzed:	03/02/06				
Calcium	106	0.500	mg/L		102			3.85	20	•
Magnesium	20.6	0.0100	. "		22.2			7.48	20	
Potassium	15.4	0.500			15.8			2.56	20	
Sodium	91.5	~ 0.500	**		88.3			3.56	20	

Rice Operating Co.Project: EME M-5 SWDFax: (505) 397-1471122 W. TaylorProject Number: None GivenReported:Hobbs NM, 88240Project Manager: Kristin Farris-Pope03/06/06 11:34

Notes and Definitions

DET	Analyte DETECTED
ND .	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

	Kaland KJulus		
Report Approved By:	Contract 1.0	Date:	3/6/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director

0

Peggy Allen, QA Officer

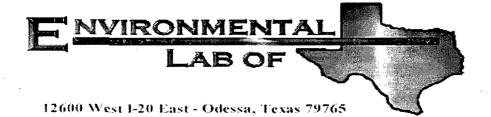
Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

12600 West I-20 East Odessa, Texas 79765


Phone: 432-563-1800 Fax: 432-583-1713

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

TAT bisbnsl2 (slubario2-ang) TAT H2UR shilos beviessiO lato M.R.O.I Temperature Upon Receipt Sample Containers Intact Laboratory Comments: Lea County BTEX 8021B/5030 Project Name: EME M-5 SWD Labels on container? Ya Ya Ba Cd Cr Pb Hg Sa TOTAL: TCLP Project Loc: Project #: ₩ Od Anions (Ci, SO4, CO3, HCO3) Cations (Ca, Mg, Na, K) ime 10,7 PH:418.1 8015M 1005 PLEASE Email RESULTS TO; kpriceswd@valornet.com & mfranks@riceswd.com lio2 Week Sladge Date 190EVV × Other (Specify) None (1) 1 Liter HDPE Fax No: (505) 397-1471 HOEN HCI (2) 40 ml glass vials 7 N CONH ო ന No. of Containers 11:45 12:05 Time Sampled kpriceswd@valornet.com Received by ELK 2/20/2006 2/20/2006 Received by: Date Sampled Sampler Signature: Rozanne Johnson (505) 631-9310 15 813 Time city/state/zlp: Hobbs, New Mexico 88240 Company Name RICE Operating Company Email: rozanne@valornet.com 2330 Company Address: 122 W. Taylor Street Project Manager: Kristin Farris Pope Date FIELD CODE Telephone No: (505) 393-9174 -OV | Monitor Well #1 - Shallow Monitor Well #1 - Deep Special Instructions: AB # (lab use only)

Variance / Corrective Action Report - Sample Log-in nitials: Sample Receipt Checklist Temperature of container/cooler? Yes Shipping container/cooler in good condition? 450 Custody Seals intact on shipping container/cooler? Νo Not present Yes 1 X 555 Nio Custody Seals intact on sample bottles? Not present YES Chain of custody present? No Sample Instructions complete on Chain of Custody? YES | Chain of Custody signed when relinquished and received? YES | NO ¥es | Chain of custody agrees with sample label(s) Container labels legible and intact? YES No Sample Matrix and properties same as on chain of custody? Y€s | No Samples in proper container/bottle? (Es No-No Samples procedy preserved? **(63 |** Y35 1 Sample bottles intact? Preservations documented on Chain of Custody? Yes I No Containers documented on Chain of Custody? No Xes | Sufficient sample amount for indicated test? (E) No Ail samples received within sufficient hold time? Νο **E3** ≥C⊋s | No Not Applicable VOC samples have zero headspace? Other observations: Variance Documentation: Contact Person: - Date/Time: Contacted by: Regarding: Corrective Action Taken:

Environmental abof Texas

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME M-5 SWD
Project Number: None Given
Location: Lea County

Lab Order Number: 6E18014

Report Date: 05/25/06

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 05/25/06 16:13

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1 Shallow	6E18014-01	Water	05/16/06 11:35	05/18/06 12:00
Monitor Well #1 Deep	6E18014-02	Water	. 05/16/06 12:40	05/18/06 12:00

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 05/25/06 16:13

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Monitor Well #1 Shallow (6E18014-01) \	Vater	-							
Benzene	ND	0.00100	mg/L	1	EE62101	05/21/06	05/22/06	EPA 8021B	
Toluene	ND	0.00100		n	•	e		/ "	
Ethylbenzene	ND	0.00100		*	*		**	*	
Xylene (p/m)	ND	0.00100		,,	n	"		n .	
Xylene (o)	ND	0.00100		"	н	n	0	n	
Surrogate: a,a,a-Trifluorotoluene		114 %	80-12	20	" .	n	n.	"	
Surrogate: 4-Bromofluorobenzene		83.2 %	80-12	20	"	"	"	· "	
Monitor Well #1 Deep (6E18014-02) Wa	ter								
Benzene	ND	0.00100	mg/L	1	EE62101	05/21/06	05/22/06	EPA 8021B	
Toluene	ND	0.00100		н		U	н :	"	
Ethylbenzene	ND	0.00100		н	**	u	*		
Xylene (p/m)	, ND	0.00100	н		•		"		
Xylene (o)	ND	0.00100		и	0	n .	H	9	
Surrogate: a,a,a-Trifluorotoluene		112 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.2 %	80-12	20	"	n	"	. "	

Project: EME M-5 SWD

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 05/25/06 16:13

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 Shallow (6E18014-0	01) Water								
Total Alkalinity	206	2.00	mg/L	1	EE62220	05/22/06	05/22/06	EPA 310.1M	
Chloride	7000	100	,	200	EE62205	05/22/06	05/22/06	EPA 300.0	
Total Dissolved Solids	13100	5.00	'n	1	EE61919	05/18/06	05/18/06	EPA 160.1	
Sulfate	752	100	*	200	EE62205	05/22/06	05/22/06	EPA 300.0	
Monitor Well #1 Deep (6E18014-02)	Water								
Total Alkalinity	198	2.00	mg/L	1	EE62220	05/22/06	05/22/06	EPA 310.1M	
Chloride	7870	100	*	200	EE62205	05/22/06	05/22/06	EPA 300.0	
Total Dissolved Solids	14300	5.00	•	i	EE61919	05/18/06	05/18/06	EPA 160.1	
Sulfate	626	100		200	EE62205	05/22/06	05/22/06	EPA 300.0	

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 05/25/06 16:13

Total Metals by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1 Shallow (6E18014-01)	Water						-		
Calcium	1280	2.00	mg/L	200	EE61926	05/19/06	05/19/06	EPA 6010B	
Magnesium	366	0.200	"			•	•	"	
Potassium	23.8	2.50	,,	50	*	b	**	•	
Sodium	2070	5.00	"	500	11	. "			
Monitor Well #1 Deep (6E18014-02) Wa	iter	-							
	1830	2.00	mg/L	200	EE61926	05/19/06	05/19/06	EPA 6010B	
Magnesium	417	0.200	11	n	*	**	**	"	
Potassium	20.6	2.50	"	50	n			"	
Sodium	1600	5.00	**	500	n	*	•	n	

Project: EME M-5 SWD
Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 05/25/06 16:13

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE62101 - EPA 5030C (GC)						-				
Blank (EE62101-BLK1)				Prepared &	Analyzed:	05/21/06				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	R							`
Ethylbenzene	ND	0.00100	n							
Xylene (p/m)	. ND	0.00100								
Xylene (o)	ND	0.00100	*				2			
Surrogate: a,a,a-Trifluorotoluene	42.9		ug/l	40.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	32.2		"	40.0		80.5	80-120			
LCS (EE62101-BS1)			-	Prepared &	Analyzed:	05/21/06				
Benzene	0.0415	0.00100	mg/L	0.0500		83.0	80-120			
Toluene	0.0421	0.00100	**	0.0500		84.2	80-120			
Ethylbenzene	0.0463	0.00100	**	0.0500		92.6	80-120			
Xylene (p/m)	0.102	0.00100	**	0.100		102	80-120			,
Xylene (o)	0.0504	0.00100	41	0.0500		101	80-120			
Surrogate: a,a,a-Trifluorotoluene	42.7		ug/l	40.0		107	80-120			
Surrogate: 4-Bromofluorohenzene	36.2		"	40.0		90.5	80-120			
Calibration Check (EE62101-CCV1)				Prepared &	Analyzed:	05/21/06	-	,		
Benzene	44.3		ug/l	50.0		88.6	80-120			
Toluene	44.3		*	50.0		88.6	80-120			
Ethylbenzene	55.3		4	50.0		111	80-120			
Xylene (p/m)	99.1		**	100		99.1	80-120			
Xylene (o)	49.1		**	50.0		98.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	44.6		"	40.0		112	80-120			
Surrogate: 4-Bromofluorobenzene	34.8		. "	40.0		87.0	80-120			
Matrix Spike (EE62101-MS1)	Sou	rce: 6E17005-	Ó1	Prepared: 0	5/21/06 A	nalyzed: 05	5/22/06			
Benzene	0.0444	0.00100	mg/L	0.0500	ND	88.8	80-120			
Toluene	0.0454	0.00100	10	0.0500	ND	90.8	80-120			
Ethylbenzene	0.0488	0.00100		0.0500	ND	97.6	80-120			
Xylene (p/m)	0.108	0.00100	*	0.100	ND	108	80-120			
Xylene (o)	0.0531	0.00100		0.0500	ND	106	80-120			
Surrogate: a,a,a-Trifluorotoluene	45.5		ug/l	40.0		114	80-120			
Surrogate: 4-Bromofluorobenzene	36.9		"	40.0		92.2	80-120			

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Reported: 05/25/06 16:13

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE62101 - EPA 5030C (GC)							-			
Matrix Spike Dup (EE62101-MSD1)	Sou	rce: 6E17005-	01	Prepared: 0)5/21/06 A	nalyzed: 05	/22/06			
Benzene	0.0439	0.00100	mg/L	0.0500	ND	87.8	80-120	1.13	20	
Toluene .	0.0447	0.00100	**	0.0500	ND	89.4	80-120	1.55	20	
Ethylbenzene	0.0481	0.00100	*	0.0500	ND	96.2	80-120	1.44	20	
Xylene (p/m)	0.107	0.00100		0.100	ND	107	80-120	0.930	20	
Xylene (o)	0.0521	0.00100	**	0.0500	ND	104	80-120	1.90	20	
Surrogate: a,a,a-Trifluorotoluene	46.4		ug/l	40.0		116	80-120			
Surrogate: 4-Bromofluorobenzene	33.4		"	40.0		83.5	80-120			

Project: EME M-5 SWD

Fax: (505) 397-1471

122 W, Taylor

Project Number: None Given

Reported:

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

05/25/06 16:13

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source	-	%REC		- RPD ^c	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit -	Notes
Batch EE61919 - Filtration Preparation		<u> </u>								
Blank (EE61919-BLK1)				Prepared &	Analyzed:	05/18/06				
Total Dissolved Solids	ND	5.00	mg/L							
Duplicate (EE61919-DUP1)	Sourc	e: 6E18012-	01	Prepared &	Analyzed:	05/18/06				
Total Dissolved Solids	1420	5.00	mg/L		1470			3.46	5	
Batch EE62205 - General Preparation (V	VetChem)									
Blank (EE62205-BLK1)		-		Prepared &	Analyzed:	05/22/06				
Sulfate	ND	0,500	mg/L							
Chloride	ND	0.500	H			·				
LCS (EE62205-BS1)				Prepared &	Analyzed:	05/22/06				
Sulfate	8.20		mg/L	10.0		82.0	80-120			
Chloride	10.1			10.0		. 101	80-120			
Calibration Check (EE62205-CCV1)				Prepared &	Analyzed:	05/22/06				
Chloride	10.1		mg/L	10.0		101	80-120			
Sulfate	9.63			10.0		96.3	80-120			
Duplicate (EE62205-DUP1)	Source	e: 6E18012-	01	Prepared &	Analyzed:	05/22/06				
Sulfate	307	10.0	mg/L		304			0.982	20	
Chloride	343	10.0			344			0.291	20	
Duplicate (EE62205-DUP2)	Sourc	e: 6E18015-	01	Prepared &	Analyzed:	05/22/06				
Chloride	415	10.0	mg/L		412		-	0.726	20	
Sulfate	50.3	10.0			50.6			0.595	20	

Project: EME M-5 SWD

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project Number: None Given
Project Manager: Kristin Farris-Pope

Reported: 05/25/06 16:13

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE62205 - General Preparatio	n (WetChem)				1					
Matrix Spike (EE62205-MS1)	Sour	ce: 6E18012-	01	Prepared &	Analyzed:	05/22/06				
Chloride	565	10.0	mg/L	200	344	110	80-120			
Sulfate	465	10.0	*	200	304	80.5	80-120			
Matrix Spike (EE62205-MS2)	Sour	ce: 6E18015-	01	Prepared &	Analyzed:	05/22/06				
Chloride	654	10.0	mg/L	200	412	121	80-120			S-07
Sulfate	200	10.0		200	50.6	74.7	80-120			S-07
Batch EE62220 - General Preparatio Blank (EE62220-BLK1)	n (WetChem)	<u> </u>		Prepared &	Analyzed:	05/22/06				
	n (WetChem)	2.00	mg/L	Prepared &	Analyzed:	05/22/06			-	
Blank (EE62220-BLK1)		2.00	mg/L		Analyzed:					
Blank (EE62220-BLK1) Total Alkalinity		2.00	mg/L				85-115			
Blank (EE62220-BLK1) Total Alkalinity LCS (EE62220-BS1)	ND 214		mg/L	Prepared &		05/22/06	85-115			
Blank (EE62220-BLK1) Total Alkalinity LCS (EE62220-BS1) Bicarbonate Alkalinity	ND 214	2,00	mg/L	Prepared &	2 Analyzed:	05/22/06	85-115	0.358	20	
Blank (EE62220-BLK1) Total Alkalinity LCS (EE62220-BS1) Bicarbonate Alkalinity Duplicate (EE62220-DUP1)	ND 214 Sour	2.00 ce: 6E18012-	mg/L	Prepared & 200 Prepared &	Analyzed: Analyzed:	05/22/06 107 05/22/06	85-115	0.358	20	

Project: EME M-5 SWD

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project Number: None Given

Project Manager: Kristin Farris-Pope

Reported: 05/25/06 16:13

Total Metals by EPA / Standard Methods - Quality Control Énvironmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE61926 - 6010B/No Digestion				 						
Blank (EE61926-BLK1)				Prepared &	Analyzed:	05/19/06				
Calcium	ND	0.0100	mg/L						-	
Magnesium	ND	0.00100				•				
Potassium	ND	0.0500	"							
Sodium	ND	0.0100	н .							
Calibration Check (EE61926-CCV1)				Prepared &	: Analyzed:	05/19/06			•	
Calcium	2.30		mg/L	2.00		115	85-115			
Magnesium	2.21		"	2.00		110	85-115			
Potassium	1.80		o	2.00	÷	90.0	85-115			
Sodium	1.81		"	2.00		90.5	85-115			
Duplicate (EE61926-DUP1)	Sou	rce: 6E18012-	01	Prepared &	: Analyzed:	05/19/06				
Calcium	111	0,500	mg/L		111		,	0.00	20	
Magnesium	58.3	0.0100			56.5			3.14	20	
Potassium	12.2	0.500	н		12.9		,	5.58	20	
Sodium	266	0.500	11		271			1.86	20	

Rice Operating Co.Project:EME M-5 SWDFax: (505) 397-1471122 W. TaylorProject Number:None GivenReported:Hobbs NM, 88240Project Manager:Kristin Farris-Pope05/25/06 16:13

Notes and Definitions

S-07 Recovery outside Laboratory historical or method prescribed limits. Analyte DETECTED DET Analyte NOT DETECTED at or above the reporting limit ND NR dry Sample results reported on a dry weight basis Relative Percent Difference RPD LCS Laboratory Control Spike MS Matrix Spike Duplicate Dup

Report Approved By: Raland KJulis

Date:

5/25/2006

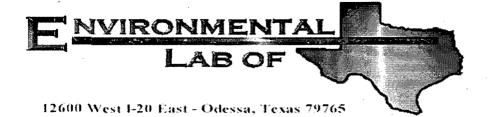
Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

12600 West I-20 East Odessa, Texas 79765


Phone: 432-563-1800 Fax: 432-563-1713

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

TAT basbnet2 × × (sluberto2-sn9) TAT H2U9 Custody Seals: Containers / Cooler spilos bevlossiO istoT M.A.O.M. Temperature Upon Receipt: 3C! Sample Containers Intact? Analyze For Laboratory Comments: Lea County × BTEX 8021B/5030 Project Name: EME M-5 SWD Labels on container? salitelovimas Metals: As Ag Ba Cd Cr Pb Hg Se TCLP: SAR / ESP / CEC TOTAL Project Loc: PO #: Project #: Anions (CI, SO4, CO3, HCO3) Cations (Ca. Mg, Na. K) Time 6:01 -289 -289 Time 8001 2001 M2108 1.814:H9 Other (specify): 3/18/or HOS PLEASE Email RESULTS TO: kpope@riceswd.com & mfranks@riceswd.com Sludge × Other (Specify) ∃90H 15iLit(t) 9moM H⁵2O[¢] Fax No: (505) 397-1471 HOEN 2 2 HCI (2) 40 ml glass vials ^EONH m No. of Containers でしていってい 12:40 11:35 Time Sampled kpope@riceswd.com 5/16/2006 5/16/2006 Received by: Date Sampled Sampler Signature: Rozanne Johnson (505) 631-9310 6:00 Time city/State/Zip: Hobbs, New Mexico 88240 Company Name_RICE Operating Company Email: rozanne@valornet.com Company Address: 122 W. Taylor Street 2/18/01/2 Project Manager: Kristin Farris Pope FIELD CODE Telephone No: (505) 393-9174 Monitor Well #1 Shallow -0.7 Monitor Well #1 Deep ٥ ا Special Instructions: AB # (lab use only)

Environmental Lab of Texas Variance / Corrective Action Report — Sample Log-In

eni <u>Rice Operation</u>	na Co.		•	
tertime: 05-18-01	, O 1200			•
le TimeU j = U				
1500000				
der#: 6E18014		•	•	
	_			
itals:JMM	1	•		
	Sample Receipt	Checklist		
mperature of container/cooler		(Yes) No	1.0 01	
ipping contained cooler in goo	d condition?	No les No		
istody Seals intact on shipping	container/cooler?	YES No	Not present	•
istody Seals intact on sample	bottles?	YESDI NO	Not present	
rain of custody present?		(Yes) No	1	
imple instructions complete of	n Chain of Custody?	(es) No		
rain of Custody signed when i	relinguished and received?	VES) NO	i	
tain of custody agrees with sa	mple label(s)	Yes) No		
initainer labels legible and inta	iCI ?	(ES) No		
imple Matrix and properties s	ame as on chain of custody?	(Pes) No		
mples in proper container/bo	ttle?	Mes No	•	
mples properly preserved?		(es) No		
imple bottles intact?		(Yes) No		
eservations documented on (Chain of Custody?	1 (TES) I NO		
eservations documented on Cha	in of Custody?	(Yes) No		
ifficient sample amount for in	dicated test?	(Yes No		
samples received within suf	ficient hold time?	MES No	1	
DC samples have zero heads	oace?	Yes) No	Not Apolicable	·
Ja samples have zaro me				
ther observations:				
MEI OUSEIVERORS.	·	•		
6				
	•			•
	· "			
	Variance Doci	umontation		
		umentation.	^	
_ontact Person:	Date/Time:		_ Contacted by: _	
egarding:		-	•	
				_
8				
	<u> </u>			
orrective Action Taker	1.			
		·		
13	· _			
9				
		•		
			· · · · · · · · · · · · · · · · · · ·	
				

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME M-5 SWD

Project Number: None Given

Location: T20S-R37E-Sec5M, Lea Co., NM

Lab Order Number: 6H25014

Report Date: 09/05/06

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1-Shallow	6H25014-01	Water	08/24/06 10:35	08-25-2006 15:22
Monitor Well #1-Deep	6H25014-02	Water	08/24/06 09:25	08-25-2006 15:22

Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1-Shallow (6H25014-01)	Water								
Benzene	ND	0.00100	mg/L	1	EH62909	08/29/06	08/29/06	EPA 8021B	
Toluene	ND	0.00100	"	4	,,	н	. "	n	
Ethylbenzene	ND	0.00100	н	•	**			н	
Xylene (p/m)	ND	0.00100	*		n		•	**	
Xylene (o)	ND	0.00100		*	n	•	"	**	
Surrogate: a,a,a-Trifluorotoluene		106 %	80-1	120	11	"	,	"	
Surrogate: 4-Bromofluorobenzene		82.2 %	80-1	120	"	"	,	н	
Monitor Well #1-Deep (6H25014-02) Wa	ter								
Benzene	ND	0.00100	mg/L	1	ЕН62909	08/29/06	08/29/06	EPA 8021B	
Toluene	ND	0.00100	"		н	"	•	**	
Ethylbenzene	ND	0.00100	"	n	н	н	n	19	
Xylene (p/m)	ND	0.00100	,,	,,		"	"	**	
Xylene (o)	ND	0.00100	"	"	n	**	"		
Surrogate: a,a,a-Trifluorotoluene		106 %	80-1	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.8 %	80-1	120	"	,,	"	"	

Project: EME M-5 SWD

Project Number: None Given

- Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

	······································								
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1-Shallow (6H25014	4-01) Water								
Total Alkalinity	230	2.00	mg/L	t	EH63106	08/31/06	08/31/06	EPA 310.1M	
Chloride	6160	100	. "	200	EH63019	08/28/06	08/28/06	EPA 300.0	
Total Dissolved Solids	11800	10.0	"	1	EH62916	08/28/06	08/31/06	EPA 160.1	
Sulfate	601	100	я	200	EH63019	08/28/06	08/28/06	EPA 300.0	
Monitor Well #1-Deep (6H25014-0	2) Water								
Total Alkalinity	202	2.00	mg/L	1	EH63106	08/31/06	08/31/06	EPA 310.1M	
Chloride	7100	100		200	EH63019	08/28/06	08/28/06	EPA 300.0	
Total Dissolved Solids	14100	10.0	**	1	EH62916	08/28/06	08/31/06	EPA 160.1	
Sulfate	460	100	•	200	EH63019	08/28/06	08/28/06	EPA 300.0	

Project: EME M-5 SWD

122 W. Taylor Hobbs NM, 88240 Project Number: None Given

Project Manager: Kristin Farris-Pope

Total Metals by EPA / Standard Methods **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1-Shallow (6H25014-01) Wate									
Calcium	1150	40.5	mg/L	500	EH62802	08/28/06	08/28/06	EPA 6010B	
Magnesium	305	1.80		50		•		r	
Potassium	24.0	3.00	**		a	"	**	и.,	
Sodium	2150	21.5	"	500	"	•	,,	u	
Monitor Well #1-Deep (6H25014-02) Water									
Calcium	1570	40.5	mg/L	500	EH62802	08/28/06	08/28/06	EPA 6010B	
Magnesium	316	1.80	**	-50	•	,	"	•	
Potassium	21.9	3.00	**			n		+	
Sodium	1720	21.5	,,	500	a			n	

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project: EME M-5 SWD

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source	0.555	%REC	ne»	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH62909 - EPA 5030C (GC)										
Blank (EH62909-BLK1)				Prepared &	Analyzed	08/29/06				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	n							
Ethylbenzene	ND	0.00100	**							
Xylene (p/m)	ND	0.00100	н							
Xylene (o)	ND	0.00100	*1							
Surrogate: a:a,a-Trifluorotoluene	42.1		ug/l	40.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	32.7		"	40.0		81.8	80-120			
LCS (EH62909-BS1)				Prepared &	Analyzed:	08/29/06				
Benzene	0.0499	0.00100	mg/L	0.0500		99.8	80-120			,
Toluene	0.0528	0.00100	**	0.0500		106	80-120			
Ethylbenzene	0.0490	0.00100	•	0.0500		98.0	80-120			
Xylene (p/m)	0.113	0.00100		0.100		113	80-120			
Xylene (o)	0.0530	0.00100	41	0.0500		106	80-120			
Surrogate: a,a,a-Trifluorotoluene	43.9		ug/I	40.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	46.1		"	40.0		115	80-120			
Calibration Check (EH62909-CCVI)				Prepared &	Analyzed	08/29/06				
Benzene	52.7		ug/l	50.0		105	80-120			
Toluene	56.2			50.0		112	80-120			
Ethylbenzene	55.8		**	50.0		112	80-120			
Xylene (p/m)	115		*	100		115	80-120			
Xylene (o)	57.3			50.0		115	80-120			
Surrogate: a,a,a-Trifluorotoluene	44.7		"	40.0		112	80-120			
Surrogaie: 4-Bromofluorobenzene	46.4		"	40.0		116	80-120			
Matrix Spike (EH62909-MS1)	Sou	rce: 6H25012-	-04	Prepared: 0	08/29/06 A	nalyzed: 08	3/30/06			
Benzene	0.0489	0.00100	mg/L	0.0500	ND	97.8	80-120			
Toluene	0.0506	0.00100	"	0.0500	ND	101	80-120			
Ethylbenzene	0.0510	0.00100	. "	0.0500	ND	102	80-120			
Xylene (p/m)	0.117	0.00100	"	0.100	ND	117	80-120			
Xylene (o)	0.0538	0.00100	"	0.0500	ND	108	80-120			
Surrogate: a,a,a-Trifluorotoluene	45.7		ug/l	40.0		114	80-120			
Surrogate: 4-Bromofluorobenzene	47.4		"	40.0		118	80-120			

122 W. Taylor -Hobbs NM, 88240 Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	- Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH62909 - EPA 5030C (GC)	· · · · · · · · · · · · · · · · · · ·									
Matrix Spike Dup (EH62909-MSD1)	Sour	rce: 6H25012-	04	Prepared: 0	8/29/06 A	nalyzed: 08	3/30/06			
Benzene	0.0472	0.00100	mg/L	0.0500	ND	94.4	80-120	3.54	20	-
Toluene	0.0489	0.00100	u	0.0500	ND	97.8	80-120	3.22	20	
Ethylbenzene	0.0471	0.00100		0.0500	ND	94.2	80-120	7.95	20	
Xylene (p/m)	0.107	0.00100		0.100	ND	107	80-120	8.93	20	
Xylene (o)	0.0500	0.00100	**	0.0500	ND ·	100	80-120	7.69	20	
Surrogate: a,a,a-Trifluorotoluene	41.2		ug/l	40.0		103	80-120			
Surrogate: 4-Bromofluorohenzene	44.1		"	40.0		110	80-120			

Project: EME M-5 SWD

122 W. Taylor Hobbs NM, 88240

Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

		Reporting		Spike	Source		%REC	_	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH62916 - Filtration Preparation										
Blank (EH62916-BLK1)	-			Prepared: (08/28/06 A	nalyzed: 08	/29/06			
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EH62916-DUP1)	Sour	се: 6Н25010-	-01	Prepared: (08/28/06 A	nalyzed: 08	/29/06			
Total Dissolved Solids	2480	10.0	mg/L		2580		,	3.95	5	
Duplicate (EH62916-DUP2)	Sour	се: 6Н25013-	-01	Prepared: (08/28/06 A	nalyzed: 08	/29/06			
Total Dissolved Solids	1350	10.0	mg/L	- '	1400			3.64	5	
Batch EH63019 - General Preparation (V	VetChem)									
Blank (EH63019-BLK1)		Prepared &	Analyzed		·					
Sulfate	ND	0,500	mg/L							
Chloride	. ND	0.500	"							
LCS (EH63019-BS1)				Prepared &	Analyzed	08/28/06				
Sulfate	10.1	0,500	mg/L	10.0		- 101	80-120			
Chloride	10.2	0.500	u	10.0		102	80-120			
Calibration Check (EH63019-CCV1)				Prepared &	Analyzed	08/28/06				
Sulfate	12.0		mg/L	10.0		120	80-120			
Chloride	9.87		**	10.0		98.7	80-120			
Duplicate (EH63019-DUP1)	Sour	се: 6Н24003-	-01	Prepared &	Analyzed	08/28/06				
Sulfate	225	5.00	mg/L		227			0.885	20	
Chloride	94.7	5.00	"		102			7.42	20	
Duplicate (EH63019-DUP2)	Sour	ce: 6H25013-	-01	Prepared &	Analyzed	: 08/28/06				
Sulfate	40.5	10.0	mg/L		40.9			0.983	20	
Chloride	420	10.0	19		418			0.477	20	

Project: EME M-5 SWD

ing Co.

Project Number: None Given

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH63019 - General Preparatio	n (WetChem)									
Matrix Spike (EH63019-MS1)	Sour	ce: 6H24003-	01 -	Prepared &	Analyzed	08/28/06				
Chloride	204	5.00	mg/L	100	102	102	80-120			
Sulfate	338	5.00	"	100	227		75-125		•	
Matrix Spike (EH63019-MS2)	Source	ce: 6H25013-	01	Prepared &	Analyzed:	08/28/06				- 、
Chloride	645	10.0	mg/L	200	418	114	80-120			
Sulfate	239	10.0	41	200	40.9	99.0	75-125			
,										
Batch EH63106 - General Preparatio Blank (EH63106-BLK1)	n (WetChem)			Prepared &	Analyzed	08/31/06	·			
Blank (EH63106-BLK1)	n (WetChem)	2.00	mg/L	Prepared &	Analyzed	08/31/06				
Blank (EH63106-BLK1) Total Alkalinity			mg/L	Prepared &						
Blank (EH63106-BLK1) Total Alkalinity LCS (EH63106-BS1)			mg/L	-			85-115			
	ND	2.00	mg/L	Prepared &	: Analyzed	08/31/06 95.0	85-115			
Blank (EH63106-BLK1) Total Alkalinity LCS (EH63106-BS1) Bicarbonate Alkalinity Duplicate (EH63106-DUP1)	ND	2.00	mg/L	Prepared &	: Analyzed	08/31/06 95.0	85-115	3.92	20	
Blank (EH63106-BLK1) Total Alkalinity LCS (EH63106-BS1) Bicarbonate Alkalinity	ND 190 Source	2.00 2.00 ce: 6H24003-	mg/L 01	Prepared &	Analyzed: Analyzed: 156	08/31/06 95.0 08/31/06	85-115	3.92	20	

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240 Project: EME M-5 SWD

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH62802 - 6010B/No Digestion	,									
Blank (EH62802-BLK1)	_	_		Prepared &	Analyzed	08/28/06				
Calcium	ND	0.0810	mg/L							
Magnesium	ND	0.0360	"							
Potassium	ND	0.0600	•							
Sodium	ND	0.0430								
Calibration Check (EH62802-CCV1)		-		Prepared &	Analyzed:	08/28/06				
Calcium	1.97		mg/L	2.00		98.5	85-115			•
Magnesium	2.13		*	2.00		106	85-115			
Potassium	1.74			2.00		87.0	85-115			
Sodium	1.84		*	2.00		92.0	85-115		`	
Duplicate (EH62802-DUP1)	Sou	ırce: 6H25010-	-01	Prepared &	Analyzed:	-08/28/06				
Calcium	267	4.05	mg/L		251		-	6.18	. 20	
Magnesium	81.9	1.80			77.6			5.39	20	
Potassium	7.20	0.600	. "		7.76			7.49	20	
Sodium	396	2.15	•		409			3.23	20	

Rice Operating Co. Project: EME M-5 SWD Fax: (505) 397-1471
122 W. Taylor Project Number: None Given
Hobbs NM, 88240 Project Manager: Kristin Farris-Pope

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

	Kaland KJull		
Report Approved By:	Karan Cito	Date:	9/5/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

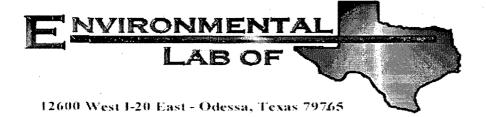
Peggy Allen, QA Officer

Environmental Lab of Texas

All in A games a

12600 West I-20 East Odessa, Texas 79765

hone: 432-563-1800


Fax: 432-563-1713

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

TAT brebnet2 × × (elubario2-ang) TAT HZUR T20S-R37E-Sec5M, Lea County NM Laboratory Comments: NOT Fro Z C Terriperature Upon Receipt: 1000 Labels on container?
Custody Seals: Containers / Cooler spilos baylossi@ lato M.R.O.M SCI Sample Containers Intact? X × BTEX 80218/5030 EME M-5 SWD Ne(als: As Ag Ba Cd Cr Pb Hg Se TCLP: TOTAL OBO / dSB / NV × nions (Cl, 504, CO3, HCO3) (X, kM, kM, kO) sations 1522 Time Time 13:11 8015M 1005 1008 1 817 Hd. Office (specify): 2-52-06 lios 3-52-8 Project Number: PLEASE Email RESULTS TO: kpope@riceswd.com; mfranks@riceswd.com rozanne@valornel.com Project Name: Spudge Date Date Project Loc: PO Number: × Other (Specify) ∃qOH 1atiJ f (f) snoN 'OS²H Fax No: (505) 397-1471 HOPN HC) (S) 40 ml Blass vials C N HMO² MARGAR က No. of Containers ć 10:35 9:25 Time Sampled Project Manager: Kristin Farris Pope kpope@riceswd.com James Johnson 8/24/2006 8/24/2006 Received by: Date Sampled Sampler Signature: Rozanne Johnson (505) 631-9310 Time 13:10 city/state/zip: Hobbs, New Mexico 88240 Company Name RICE Operating Company Email: rozanne@valornet.com 8-2506 Company Address: 122 W. Taylor Street Telephone No: (505) 393-9174 OV | Monitor Well #1-Shallow 102 | Monitor Well #1-Deep Special Instructions: AB # (lab use only)

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	Rice Operating				
Date/ Time:	08-25-06 @ 1522	,	•		•
Lab ID#:	6425014				
Initials:	JMM				
	Sample Receipt	Checklist			Client Initials
#1 Tempera	ature of container/ cooler?	(Yes)	No	1.0 °C	
	container in good condition?	Yes	No		
	Seals intact on shipping container/ cooler?	(Yes)	No	Not Present	
	Seals intact on sample bottles/ container?	(Yes)	No	Not Present	
	Custody present?	(Yes	No		
	instructions complete of Chain of Custody?	Yes	No)	
	Custody signed when relinquished/ received?	(Yes)	No		
	Custody agrees with sample label(s)?	(Yes)	No	ID written on Cont./ Lid	
#9 Containe	er label(s) legible and intact?	(Yes)	No	Not Applicable	
#10 Sample	matrix/ properties agree with Chain of Custody?	(Yes)	No		
#11 Contain	ers supplied by ELOT?	(Yes)	No		
#12 Sample	s in proper container/ bottle?	Yes	No	See Below	
#13 Sample	s properly preserved?	Yes	No	See Below	
	bottles intact?	(Yes)	No		
#15 Preserv	rations documented on Chain of Custody?	(Yes)	No		
#16 Contain	ers documented on Chain of Custody?	(Tes)	No		
#17 Sufficie	nt sample amount for indicated test(s)?	(Yes)	No	See Below	
#18 All sam	ples received within sufficient hold time?	Yes	No	See Below	
#19 VOC sa	amples have zero headspace?	Yes	No	Not Applicable	
•	Variance Docur	mentation			
Contact:	Contacted by:	· · · · · · · · · · · · · · · · · · ·		Date/ Time:	
Regarding:				-	
Corrective Ac	ction Taken:				
Check all tha	it Apply: See attached e-mail/ fax Client understands and woul	d like to proc	eed with	analysis	
	Cooling process had begun :				

Analytical Report

Prepared for:

Kristin Farris-Pope Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: EME M-5 SWD

Project Number: None Given

Location: T20S R37E Sec.5 M- Lea County, NM

Lab Order Number: 6K15002

Report Date: 12/01/06

Project: EME M-5 SWD

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Monitor Well #1- Shallow	6K15002-01	Water	11/10/06 09:20	11-15-2006 08:10
Monitor Well #1- Deep	6K15002-02	Water	11/10/06 10:15	11-15-2006 08:10

Fax: (505) 397-1471

Project: EME M-5 SWD

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project Number: None Given
Project Manager: Kristin Farris-Pope

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1- Shallow (6K15002-01)	Water								
Benzene	ND	0.00100	mg/L	ı	EK61614	11/16/06	11/19/06	EPA 8021B	
Toluene	ND	0.00100	11	**	,	,	"	. "	
Ethylbenzene	ND	0.00100	ч	**	**	ii .	H	**	
Xylene (p/m)	ND	0.00100	**	"	**	*	"		٠.
Xylene (o)	ND	0.00100	**	**	n	н	tr .	* '	-
Surrogate: a,a,a-Trifluorotoluene		110 %	80-12	0	"	"	"	п	
Surrogate: 4-Bromofluorobenzene		80.8 %	80-12	0		"	"	"	
Monitor Well #1- Deep (6K15002-02) W	ater								
Benzene	ND	0.00100	mg/L	ı	EK61614	11/16/06	11/19/06	EPA 8021B	
Toluene .	ND	0.00100			**	н .	**	*	•
Ethylbenzene	ND	0.00100	**	"	**	н	**	*1	
Xylene (p/m)	ND	0.00100	**	**		н	"		
Xylene (o)	ND	0.00100	ч		**	н	•	"	
Surrogate: a,a,a-Trifluorotoluene		109 %	80-12	0	"	"	п	"	
Surrogate: 4-Bromofluorobenzene		81.2 %	80-12	0	"	. "	"	"	

Project: EME M-5 SWD

Fax: (505) 397-1471

122 W. Taylor Hobbs NM, 88240 Project Number: None Given

Project Manager: Kristin Farris-Pope

General Chemistry Parameters by EPA / Standard Methods **Environmental Lab of Texas**

Andrea	D 14	Reporting	Maita						
Analyte Monitor Well #1- Shallow (6K15002	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	·	2.00	ma/I		FWZ (1 60 f	11/15/07	11/18/06	EPA 310.1M	
Total Alkalinity Chloride	224 5840	2.00 100	mg/L	200	EK61605 EK61507	11/17/06 11/15/06	11/1 7 /06 11/15/06	EPA 300.0	
Total Dissolved Solids	10500	10.0	п	ı	EK61611	11/15/06	11/16/06	EPA 160.1	
Sulfate	622	100	**	200	EK61507	11/15/06	11/15/06	EPA 300.0	
Monitor Well #1- Deep (6K15002-02	2) Water							•	
Total Alkalinity	216	2.00	mg/L	I	EK61605	11/17/06	11/17/06	EPA 310.1M	
Chloride	6570	100		200	EK61507	11/15/06	11/15/06	EPA 300.0	
Total Dissolved Solids	12000	10.0	"	1	EK61611	11/15/06	11/16/06	EPA 160,1	
Sulfate	421	100		200	EK61507	11/15/06	11/15/06	EPA 300.0	

Project: EME M-5 SWD

122 W. Taylor

Hobbs NM, 88240

Project Number: None Given
Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Total Metals by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Monitor Well #1- Shallow (6K15002-01) Water									
Calcium	1400	20.2	mg/L	250	EK61703	11/17/06	11/17/06	EPA 6010B	
Magnesium	487	3.60	**	100	"	н	**		
Potassium	39.2	0.600		10	**	•	*	ч	
Sodium	2410	10.8	"	250	**	n	**	**	
Monitor Well #1- Deep (6K15002-02) Water		•							
Calcium	2180	20.2	mg/L	250	EK61703	11/17/06	11/17/06	EPA 6010B	
Magnesium	487	3.60	"	100	*		. "	**	
Potassium	38.5	0.600	**	10	**		,	**	
Sodium	2310	10.8	**	250	"	*	•	**	•

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240 Project: EME M-5 SWD

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source	0/0	%REC	n	RPD	ζ.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK61614 - EPA 5030C (GC)									r.	
Blank (EK61614-BLK1)				Prepared: 1	11/16/06 Ar	nalyzed: 11	/17/06			
Benzene	ND	0.00100	mg/L						,	
Toluene	ND	0.00100	**							
Ethylbenzene	ND	0.00100	*							
Xylene (p/m)	ND	0.00100	*						~	
Xylene (o)	ND	0.00100	10		•					
Surrogāte: a,a,a-Trifluorotoluene	47.8		ug/l	40.0		120	80-120			
Surrogate: 4-Bromofluorobenzene	40.5		"	40.0		101	80-120			
LCS (EK61614-BS1)				Prepared: 1	H/16/06 Ar	nalyzed: 11	/17/06			
Benzene	0.0594	0.00100	mg/L	0.0500		119	80-120			
Toluene	0.0562	0.00100		0.0500		112	80-120			
Ethylbenzene	0.0458	0.00100	н	0.0500		91.6	80-120			
Xylene (p/m)	0.0949	0.00100	u	0.100		94.9	80-120			
Xylene (o)	0.0499	0.00100		0.0500		99.8	80-120			
Surrogate: a,a,a-Trifluorotoluene	46.1		ug/l	40.0		115	80-120			
Surrogate: 4-Bromofluorobenzene	44.2		"	40.0		110	80-120			
Calibration Check (EK61614-CCV1)				Prepared: 1	11/16/06 Ar	nalyzed: 11	/20/06			
Benzene	54.7		ug/l	50.0	,	109	80-120			
Toluene	48.5			50.0		97.0	80-120			
Ethylbenzene	42.1			50.0		84.2	80-120			
Xylene (p/m)	83.0			100		83.0	80-120			
Xylene (o)	43.3			50.0		86.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.4			40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	37.0		"	40.0		92.5	80-120			
Matrix Spike (EK61614-MS1)	Sot	urce: 6K13007-	-01	Prepared: 1	11/16/06 Aı	nalyzed: 11	/17/06			
Benzene	0.0551	0,00100	mg/L	0.0500		110	80-120			
Toluene	0.0498	0.00100	"	0.0500	•	99.6	80-120			
Ethylbenzene	0.0401	0.00100	**	0.0500		80.2	80-120			
Xylene (p/m)	0.0844	0.00100		0.100		84.4	80-120			
Xylene (o)	0.0442	0.00100	*	0.0500		88.4	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.1		ug/l	40.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	42.4		"	40.0		106	80-120			

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

Project: EME M-5 SWD

Project Number: None Given Project Manager: Kristin Farris-Pope Fax: (505) 397-1471

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK61614 - FPA 5030C (GC)					-					

Matrix Spike Dup (EK61614-MSD1)	Sou	rce: 6K13007-	01	Prepared: 11/16/0	06 Analyzed : 11	1/17/06			
Benzene	0.0580	0.00100	mg/L	0.0500	116	80-120	5.31	20	
Toluene	0.0550	0.00100	n	0.0500	110	80-120	9.92	. 20	
Ethylbenzene	0.0421	0.00100	"	0.0500	84.2	80-120	4.87	20	
Xylene (p/m)	0.0909	0.00100	. "	0.100	90.9	80-120	7.42	20	
Xylene (o)	0.0455	0.00100	**	0.0500	91.0	80-120	2.90	20	
Surrogate: a,a,a-Trifluorotoluene	46.3		ug/I	40.0	116	80-120			
Surrogate: 4-Bromofluorobenzene	42.0		"	40.0	105	80-120			

Project: EME M-5 SWD

122 W. Taylor Hobbs NM, 88240 Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK61507 - General Preparation (WetChem)									
Blank (EK61507-BLK1)				Prepared &	Analyzed:	11/15/06				
Sulfate	0.579	. 0.500	mg/L							
Chloride	ND	0.500	**							
LCS (EK61507-BS1)				Prepared &	Analyzed:	11/15/06				
Sulfate	10.9	0.500	mg/L	10.0		109	80-120			
Chloride	11.1	0.500	*	10.0		111	80-120			
Calibration Check (EK61507-CCV1)				Prepared &	: Analyzed:	11/15/06				
Chloride	10.7		mg/L	10.0		107	80-120			
Sulfate	12.0		. "	10.0		120	80-120			
Duplicate (EK61507-DUP1)	Sour	ce: 6K15004-	01	Prepared &	Analyzed:	11/15/06				
Sulfate	79.9	5.00	mg/L		79.8			0.125	20	
Chloride	232	5.00	,,		234			0.858	20	
Duplicate (EK61507-DUP2)	Sour	ce: 6K15006-	07	Prepared &	Analyzed:	11/15/06				
Sulfate	78.2	5.00	mg/L		78.1			0.128	20	
Chloride	37.9	5.00	۳,		43.7			14.2	20	
Matrix Spike (EK61507-MS1)	Sour	ce: 6K15004	01	Prepared &	: Analyzed:	11/15/06				
Chloride	345	5.00	mg/L	100	234	Ш	80-120			
Sulfate	175	5.00		100	79.8	95.2	80-120			
Matrix Spike (EK61507-MS2)	Sour	ce: 6K15006-	07	Prepared &	: Analyzed:	11/15/06				
Chloride	142	5.00	mg/L	100	43.7	98.3	80-120			
Sulfate	175	5.00	**	100	78.1	96.9	80-120			

Rice Operating Co. 122 W. Taylor

Hobbs NM, 88240

Project: EME M-5 SWD

Project Number: None Given

Project Manager: Kristin Farris-Pope

Fax: (505) 397-1471

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
Batch EK61605 - General Preparation (We		,					· · · · · · · · · · · · · · · · · · ·			
Blank (EK61605-BLK1)				Prepared &	. Analyzed:	11/17/06				
Total Alkalinity	ND	2.00	mg/L							
Blank (EK61605-BLK2)				Prepared &	: Analyzed:	11/17/06				
Total Alkalinity	ND	2.00.	mg/L							
LCS (EK61605-BS1)				Prepared &	: Analyzed:	11/17/06				
Bicarbonate Alkalinity	172	-	mg/L	200		86.0	85-115			
LCS (EK61605-BS2)				Prepared &	: Analyzed:	11/17/06				
Bicarbonate Alkalinity	172	•	mg/L	200		86.0	85-115			
Hydroxide Alkalinity	0.00	0.100	"				85-115			
Duplicate (EK61605-DUP1)	Sou	rce: 6K15001-	-01	Prepared &	: Analyzed:	11/17/06				
Total Alkalinity	238	2.00	mg/L	****	238			0.00	20	
Carbonate Alkalinity	0.00	0.100	*		0.00				20	
Bicarbonate Alkalinity	0,00	2.00	. "		0.00				20	
Hydroxide Alkalinity	0.00	0.100	*	•	0.00				20	
Duplicate (EK61605-DUP2)	Sou	rce: 6K16005-	-01	Prepared &	: Analyzed:	11/17/06				
Total Alkalinity	296	2.00	mg/L		300			1.34	20	
Carbonate Alkalinity	0.00	0.100	**		0.00				20	
Bicarbonate Alkalinity	0.00	2.00	•		300				20	
Hydroxide Alkalinity	0.00	0.100	**		0.00				20	
Reference (EK61605-SRM1)				Prepared &	: Analyzed:	11/17/06				
Total Alkalinity	238		mg/L	250		95.2	90-110			
Reference (EK61605-SRM2)				Prepared &	Analyzed:	11/17/06				
Total Atkalinity	238		mg/L	250		95.2	90-110			

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240 Project: EME M-5 SWD

Fax: (505) 397-1471

Project Number: None Given
Project Manager: Kristin Farris-Pope

Environmentai	Lab or	1 exas	

		Reporting		Spiké `	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK61611 - Filtration Preparation										
Blank (EK61611-BLK1)				Prepared: 1	1/15/06 A	nalyzed: 11	/16/06	,		
Total Dissolved Solids	ND	10.0	mg/L							
Duplicate (EK61611-DUP1)	Sour	ce: 6K15001-	01	Prepared: 1	1/15/06 A	nalyzed: 11	/16/06		•	
Total Dissolved Solids	14000	10.0	mg/L		13200			5.88	5	QR-0:
Duplicate (EK61611-DUP2)	Sour	ce: 6K15005-	03	Prepared: 1	1/15/06 A	nalyzed: 11	/16/06			
Total Dissolved Solids	586	10.0	mg/L		622			5.96	5	QR-0

Project: EME M-5 SWD

Fax: (505) 397-1471

122 W. Taylor

Project Number: None Given

Hobbs NM, 88240

Project Manager: Kristin Farris-Pope

Total Metals by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK61703 - 6010B/No Digestion										
Blank (EK61703-BLK1)			-	Prepared &	Analyzed:	11/1 7 /06				
Calcium	ND	0.0810	mg/L							
Magnesium	ND	0.0360	н							
Potassium	ND	0.0600								
Sodium	ND	0.0430	*							
Calibration Check (EK61703-CCV1)				Prepared &	Analyzed:	11/17/06	•			
Calcium	2.17		mg/L	2.00		108	85-115			
1agnesium	2.21		•	2.00		110	85-115		•	
otassium	1.74		**	2.00		87.0	85-115			
odium	1.88			2.00		94.0	85-115			
Ouplicate (EK61703-DUP1)	So	urce: 6K15001	-01	Prepared &	k Analyzed:	11/17/06	-			
Calcium	1300	. 40.5	mg/L		1340			3.03	20	
Magnesium	461	3.60	**		461			0.00	20	
Potassium	55.7	0.600	•		53.2			4.59	20	
Sodium	2890	21.5	•		3100			7.01	20	

Rice Operating Co.

122 W. Taylor

Hobbs NM, 88240

Project Number: None Given

Project Manager: Kristin Farris-Pope

Notes and Definitions

QR-03 The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values. В Analyte is found in the associated blank as well as in the sample (CLP B-flag). DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported Sample results reported on a dry weight basis dry RPD Relative Percent Difference LCS Laboratory Control Spike MS Matrix Spike Duplicate Dup

•	Kaland K July		
Report Approved By:	Racan Cross	Date: _	12/1/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Fax: (505) 397-1471

Environmental Lab of Texas

Phone: 432-583-1800 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East

N N N Lone Star TAT bisbrist ☐ NPDES . ပု RUSH TAT (Pre-Schedule) 24, 48, 72 hrs Project Loc: T20S R37E Sec5 M - Lea County New Mexico Sample, Containers intach?

VOCs Free of Headspace?

Labels on container(s)

Custody seals on container(s)

Custody seals on container(s)

Sample Hand Delivered

by Semmer Clear Rep ?

by Sourier?

UPS DHI FedEx Lo ري زي Total Dissolved Solids × 432-563-1713 TRRP N.O.R.M. RCI EME M-5 SWD Temperature Upon Receipt: BIEX 80218/\$030 or BIEX 8260 × Laboratory Comments: Semivolatiles Fax: Vokstiles (BTEX-N 8260) X Standard Metais: As Ag Ba Cd Ct Pb Hg Se TOTAL SAR / ESP / CEC Anions (Cl., SO4, Alkalinity) Project Name: 90 # × Project #: Cations (Ca., Mg, Na., K) Report Format: 9001 XT 2001 XT Hal Ę Š 11115/NO 18:10 Time ime 85108 MELOS 1.814 HdI Participate Specifumer <u>გ</u> Ø₹ 20/14/02 Date Other (Specify) rozanne@valornet.com None (1) 1 Liter HDPE Odessa, Texas 79765 COZSZEN rozanne@valornet.com HOPN (505) 397-1471 *05*H HCi (2) 40 ml glass vists N S [£]ONH 93] × Total #. of Containers m (1) benetitii ble Fax No: e-mail: 10:15 mfranks@riceswd.com 9:20 Time Sampted kpope@riceswd.com Received by ELOT 11/10/2006 11/10/2008 Received by: ames John Date Sampled Ending Depth Time 20 ; 00 Hobbs, New Mexico 88240 RICE Operating Company 01:8 Rozanne Johnson (505)631-9310 Beginning Depth kpope@riceswd.com 122 W. Taylor Street Kristin Farris Pope 11 (14/B 1. (Slow (505) 393-9174 FIELD CODE Please email to: Monitor Well #1-Shallow Monitor Well #1-Deep Sampler Signature: Company Address: Project Manager: Company Name Telephone No: City/State/Zip: Special Instructions: ORDER #: elingsthed by: efinquished by (lab use only) (Nuo esn del) # 89

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

At: 1115180 8:15	`			*
Time: 1115/00 8:15				•
D#: 10K15002		•		
ls: UK		4		
Cama	la Dagaint Charl			
Samp	le Receipt Checl	IIISE		
Temperature of container/ cooler?	Ye	s No	6,5	Client Initials
	Xe		0,55	<u> </u>
Shipping container in good condition? Custody Seals intact on shipping container/ coo			Not Present	
Custody Seals intact on sample bottles/ contain			Not Present	
Chain of Custody present?	Ye		Notriesent	+
Sample instructions complete of Chain of Custo		/	 	
Chain of Custody signed when relinquished/ rec			 	+
Chain of Custody agrees with sample label(s)?	YE		ID written on Cont./ Li	1
Container label(s) legible and intact?	- C		Not Applicable	<u> </u>
			11007,020,00	
Sample matrix/ properties agree with Chain of Containers supplied by ELOT?		s) No	 	+
Samples in proper container/ bottle?	No.		See Below	
Samples properly preserved?		s No	See Below	
Sample bottles intact?	¥			
Preservations documented on Chain of Custoo			1	
Containers documented on Chain of Custody?				
Sufficient sample amount for indicated test(s)?		····	See Below	
All samples received within sufficient hold time		s No	See Below	
Subcontract of sample(s)?	Ye	s No	Not Applicable	
VOC samples have zero headspace?	Υe	s No	Not Applicable	
Varia tact: Contacted by	ince Documenta	ion	Date/ Time:	
Ormatica by	,		Date fille,	
arding:			:	
				· ·
ective Action Taken:				
			·	
	· · · · · · · · · · · · · · · · · · ·			
k all that Apply:				
	ids and would like to			
☐ Cooling process	had begun shortly	after sampling	event	

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

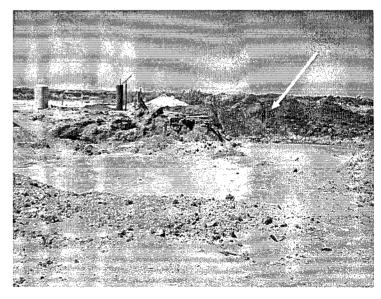
January 25, 2005

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE:

M-5 Redwood Tanks, Section 5 T20S R37E Unit M

NMOCD Case #NOT YET ASSIGNED


Dear Wayne:

In your E-mail of November 18, 2004, you wrote:

- 1. Collect soil samples 3 feet below the bottom of where the two tanks sit. Soil samples shall be analyzed for BTEX, TPH and Chlorides.
- 2. Provide documentation from the landowner that burying the asphaltic material is permissible. If landowner agrees, then perform a SPLP 1312 on this material.
- 3. Notify this office and the local OCD office when sampling occurs.

With respect to items 1 and 3, ROC routinely collects samples such as you requested prior to closure of sites. In the future, we will specifically reference this standard closure protocol our corrective action plan. We will notify the local NMOCD office 72

hours before ROC obtains the samples. Please examine Figure 1, which is a southwestern looking view of the depression caused by removal of the redwood tanks. We have attached the original file of this digital image to this submission to permit close examination. The green hardware (well control valve) and 165gallon white tank are associated with the active salt water disposal well that will remain on-site. In the bottom of the depression are the two circular concrete bases of the former tanks. Cleaning and inspection of these concrete bases shows no discoloration of the concrete due to intrusion of

produced water and hydrocarbons and no fractures or other conduits that would allow seepage to the subsurface through the concrete. The attached image labeled

"hole 1" provides a close-up of the concrete pad. We do not propose to compromise the integrity of these concrete pads to obtain samples directly below the tanks. These images suggest that seepage from the tanks occurred through the redwood or where the redwood met the concrete. We will sample in the areas of obvious seepage at or near the edges of the concrete slab.

Figure 1 does show discolored soil to the left (east) of the active disposal well and a stockpile of discolored soil on the west side of the well. Our Corrective Action Plan presents data from two boreholes located in the area of the stockpile shown in Figure 1. Samples from these borings (SB-3 and SB-4) detected high total petroleum hydrocarbon values but low BTEX concentrations. Below we reproduce a portion of the soil analytical results from our Corrective Action Plan.

Well_ID	Date	GRO_C6_C12	DRO_>C12_C35	TOTAL_C6_C35	Chloride Be	enzene Toluene	Ethylbenzene p/m)	Kylene oXyl	ene
			Results	in mg/kg	*		Results in ug/kg		
M5 SB4 4'	11/5/2003	174	11300	13040		74.1 <25	476	1560	65.9
M5 SB4 2'	11/5/2003	20	3 2210	2413	88.6 <	25 <25	1090	228	25.3
M5 SB4 6'	11/5/2003	13	3 593	726	<	25 <25	325 <25	<25	
M5 SB4 7'	11/5/2003	56.	5 161	218	35.4 <	25 <25	143	38 <25	

We placed our hand-auger boring (B-4) about 3 feet from the edge of the tank; the arrow in Figure 1 is the location of this boring. Boring B-4 was located essentially at the edge of the depression shown in Figure 1. To provide additional characterization of the residual hydrocarbon material, as requested by NMOCD, we plan the following:

- 1. Obtain 2 representative samples from the side of the depression where the tanks once stood at the location of SB-4 to confirm the initial results presented in our Corrective Action Plan.
- 2. Hand auger below the concrete pad at this same location to a depth of 9 and 11 feet below the original grade (about 2 and 4 feet below the concrete pad) and obtain samples for TPH and BTEX.
- 3. Obtain 2 samples using the protocol outlined in 1 (for a sample above the pad) and 2 (for a sample below the pad) above at the location east of the active disposal well where Figure 1 shows some discoloration of soil.
- 4. Repeat the protocol at a third location selected to characterize the residual soil near the eastern-most tank pad.
- 5. Obtain one sample of the surface asphaltic material that comprised the berms around the former storage tanks.
- 6. We will ask the laboratory to analyze these nine (9) samples for TPH and BTEX using the following methods:
 - (i) byBenzene, toluene, ethylbenzene and xylene
 - EPA Method 8021
 - (ii) Total Petroleum Hydrocarbons
 - EPA Method Modified 8015
 - (iii) Chloride
 - EPA Method 300

7. As a matter of academic interest and to respond to NMOCD's second request, we will ask the laboratory to use the SPLP method (BTEX) for the two samples that exhibit the highest TPH concentration.

Some states employ the SPLP analytical method to evaluate Risk Based Corrective Action initiatives at specific sites. As directed by the NMOCD, we will comply with your request and employ this method as outlined in item 7 of our proposed scope of work. To what shall we compare these results? In New Mexico, a protocol for evaluating a risk-based corrective action for residual hydrocarbons in soil does exist within the UST Guidance manual; however the UST Manual does not employ the SPLP method.

If the analyses confirm the results presented in the Corrective Action Plan, we will anticipate NMOCD approval of the plan and we will move forward as proposed.

With respect to NMOCD request #2, we need clarification regarding the regulatory authority for this request in order to gain approval for this action by the System Partners. We clearly understand NMOCD's mandate under the Oil and Gas Act is protection of fresh water, public health and the environment. If NMOCD agrees that our plan provides such protection and approves this Corrective Action Plan, we will notify the landowner as is our custom. If any landowner objects to any Corrective Action Plan that is consistent with Regulations or Rules, we will discuss the plan with the landowner and negotiate a business solution that remains consistent with Rules and is consistent with our lease. Perhaps these negotiations will cause us to submit a modification to the approved plan. However, in the absence of an NMOCD-approved Corrective Action Plan, we have nothing to present to the landowner.

ROC would like to resolve this matter to permit backfilling of the depression shown in Figure 1.

Sincerely,

R.T. Hicks Consultants, Ltd.

and the

Randall Hicks

Principal

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

November 3, 2004

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: M-5 Redwood Tanks- Response to NMOCD Comments

Dear Mr. Price

On October 1, 2003 you transmitted an email communication which included these questions:

- 1. Who is the landowner? [of the M-5 site]
- 2. Your report indicates that natural conditions for chloride are between 209 and 479 ppm. Are you talking about soil or water?
- 3. The sites located on plate 5 (EME) who do they belong to?

Rice Operating Company leases the land that includes the active injection well and the former Redwood Tanks from the Barber Estate. This estate includes James Dellis Barber, Mary V. Barber, Jimmie T. Cooper, Broadman Ware, Browning Ware, Connie Ware, and Weston Ware.

All of the chloride measurements referenced in your email communication are soils data. We believe the background chloride in soil is slightly higher than other places in Lea County due to this site's proximity to the former Climax Chemical facility. Windblown salt from the various exposed piles at this site is probably distributed downwind (east). Precipitation will drive the windblown salt into the upper vadose zone. We have seen this same phenomenon of slightly elevated background chloride in soil in Eddy County near the Potash Mines.

With respect to the EME system sites identified on Plate 5, the land ownership is:

M-5 SWD	Barber Estate
P-6 Leak	Chevron Texaco
Jct. K-6	U.S. Government, BLM
Jct. M-16-1	State of New Mexico, SLO
Jct. E-5	Barber Estate
Jct. N-5	Barber Estate
M-9 SWD	S&W Cattle Co. (Trent Stradley)
Jct. N-4-1	Elsie Reeves

November 3, 2004 Page 2

If you have any additional questions or comments regarding our proposed closure of this site, please contact Kristin Pope of Rice Operating Company with a copy to my office.

Sincerely,

R.T. Hicks Consultants, Ltd.

Randall T. Hicks

Principal

Copy:

Rice Operating Company

----Original Message----

From: Price, Wayne [mailto:WPrice@state.nm.us]

Sent: Friday, October 01, 2004 4:46 PM

To: Carolyn Doran Haynes (E-mail); Randall Hicks (E-mail)

Cc: Sheeley, Paul; Johnson, Larry Subject: Rice M-5 Redwood Tanks

In order for OCD to continue its evaluation of this site please provide

following information:

- Who is the landowner?
- 2. Your report indicates that natural conditions for chloride are between 209 and 479 ppm. Are you talking about soil or water?
- The sites located on plate 5 (EME) who do they belong to?

Sincerely:

Wayne Price New Mexico Oil Conservation Division 1220 S. Saint Francis Drive Santa Fe, NM 87505 505-476-3487 fax: 505-476-3462

E-mail: WPRICE@state.nm.us

---- Original Message -----From: "Price, Wayne" <WPrice@state.nm.us> To: "Carolyn Doran Haynes (E-mail)" <riceswd@leaco.net>; "Kristin Pope (E-mail) " <enviro@leaco.net> Cc: "Sheeley, Paul" <PSheeley@state.nm.us>; "Johnson, Larry" <LWJohnson@state.nm.us> Sent: Thursday, November 18, 2004 11:07 AM Subject: M-5 Redwood Tank Project Sec 5-T20s-R37E

> Dear Ms Haynes and Pope:

> OCD is in receipt of the M-5 Corrective Action Plan dated September

> 10, 2004. After reviewing the document the OCD has the following

> comments and

> requirements:

- Collect soil samples 3 feet below the bottom of where the two tanks
- > sit. Soil samples shall be analyzed for BTEX, TPH and Chlorides.

- > 2. Provide documentation from the landowner that burying the
- > material is permissible. If landowner agrees, then perform a SPLP
- > 1312 on this material.

```
> 3. Notify this office and the local OCD office when sampling occurs.
> 
> Sincerely:
> Wayne Price
> New Mexico Oil Conservation Division
> 1220 S. Saint Francis Drive
> Santa Fe, NM 87505
> 505-476-3487
> fax: 505-476-3462
> E-mail: WPRICE@state.nm.us
```

From: Katie Lee

Sent: Thursday, September 09, 2004 5:30 PM

To: Wayne Price

Cc: Kristen at Rice

Subject: M-5 Report

Dear Mr. Price:

R.T. Hicks Consultants, Ltd. is pleased to submit the Corrective Action Plan for M-5 Redwood Tanks on behalf of Rice Operating Company. Due to file size restrictions, you will find the entire report with tables, plates and Appendix A attached, with the exception of Appendix B. A CD with the full report and both appendices follows via the post office.

If you have any questions, please let us know.

Best regards,

Katie Lee R.T. Hicks Consultants, Ltd. 505.266.5004 3/11/2008 1:42 PM

Corrective Action Plan

M-5 REDWOOD TANKS MONUMENT, NEW MEXICO

Prepared for:

Rice Operative Company 122 West Taylor Hobbs, NM 88240

1.0 BACKGROUND

The M-5 Redwood Tank Site is located about 2 miles southwest of Monument, New Mexico (Section 5 T20S R37E Unit M). Rice Operating Company (ROC) is the service provider (operator) for the Eunice-Monument-Eumount (EME) Saltwater Disposal System and has no ownership of any portion of pipeline, well, or facility. The EME System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis. ROC abandoned the use of these tanks on February 11, 2004. Plate 1 is a topographic map that shows the location of the site and nearby water supply and monitoring wells in the Monument area.

On October 2, 2003, R.T. Hicks Consultants, Ltd. (Hicks Consultants) submitted a work plan to NMOCD describing the activities upon which this Corrective Action Plan is based. NMOCD approved our workplan on that same day. Plate 2 shows the locations of soil borings and monitoring wells used to characterize the lease area, as described in the work plan. Plate 1 also shows the location of monitoring and water supply wells near the site. We obtained data from many of these nearby wells to better characterize regional water quality and ground water flow direction.

The field procedures employed by Hicks Consultants were consistent with industry practice and with previously-submitted ROC characterization plans (e.g. junction box plan). Hicks Consultants used the site data and obtained additional data from public sources to evaluate the potential impact to ground water quality as a result of any leakage from the tanks and to develop a remedy to protect ground water quality and to restore the ground surface.

2.0 RESULTS OF FIELD PROGRAMS AND INVESTIGATIONS

LITHOLOGIC CHARACTERISTICS OF THE VADOSE ZONE

As shown in Plate 2, we drilled three soil borings (B-1, B-2, B-3) and one hand-auger boring (B-4) to characterize the magnitude and extent of any impact due to produced water seepage from the Redwood Tanks. After evaluation of ground water elevations in nearby monitoring wells (Plate 3), we confirmed the regional ground water flow direction, which is generally to the south-southeast. We then installed a monitoring well cluster at the southeastern corner of the lease.

The logs for each of these borings are included in Appendix A. We observed a 33-foot thick vadose zone that is composed of fine sand and caliche. The sand is very similar to dune sand, which dominates the ground surface around the site. We commonly penetrated well-indurated sand and in some core samples, we observed calcite/caliche veins. Clay was present in small amounts.

In SB-4, which we hand-augered to 7 feet deep, the sand was jet black due to hydrocarbons. Samples from this boring resembled an asphalt.

CHLORIDE AND HYDROCARBON DISTRIBUTION IN THE VADOSE ZONE

Table 1 shows the laboratory results of soil/sediment sampling during the October field program (see also Appendix B). Our observations at the M-5 Redwood Tank site are similar to our findings at other sites: total petroleum hydrocarbons can exceed 20,000 ppm yet the constituents of concern, such as benzene, are below 100 ppb (see sample M5 B4-4 feet on Table 1). In most samples, benzene is below the laboratory detection limits.

Chloride concentrations in soil/sediment samples were also very low (Table 1 and Appendix A). The lithologic logs presented in Appendix A show that field chloride concentrations range between 209 and 479 ppm, a very narrow range that is consistent with natural conditions. Because of the lack of variability in chloride measurements, we elected to forego field analysis of B3 and MW-1.

Field analyses overestimated soil chloride concentration compared to laboratory tests during this program. We split samples in SB-1 for the 7.0

foot depth and the 16.8 foot depth. We found that the laboratory reported chloride values of <20.0 and 53.2 ppm respectively whereas the field values for these samples were 208 and 218 ppm. For SB-2 at 12 feet below grade, the laboratory result is 142 ppm and the field test showed 321. These types of difference between laboratory and field analyses are common, especially in samples with low chloride content. Regardless of this difference in values, the results clearly show no material impact to soil from the high chloride produced water stored in the tanks.

CHARACTERISTICS OF THE SATURATED ZONE

The log of MW-1 (Appendix A) shows that the lithology of the saturated zone contains more caliche and clay than samples retrieved from the vadose zone. The air rotary drilling process did not produce large volumes of water from the monitoring well or any of the soil borings, further testifying to the fine-grained nature of the saturated zone. At the M5-1 monitoring well, we ceased drilling when we encountered the characteristic red clay of the Dockum Group at 55 feet below grade.

The hydrogeologic map of Nicholsen and Clebsch (1961) shows that the Ogallala Aquifer is not present in much of the Monument area. The absence of a gravel unit immediately overlying the red beds, which is typical of the Ogallala, supports the mapping of Nicholsen and Clebsch. We conclude that the Ogallala Aquifer is not present at the site.

As displayed in Plate 3 the water table elevation within 1-mile of the site is very flat. On a larger scale, Plate 4 shows that groundwater flows south-southeast, perpendicular to the ground surface elevation in this general area. Table 2 shows the data used to compile this potentiometric surface map.

CHLORIDE AND HYDROCARBON DISTRIBUTION IN GROUND WATER

We obtained ground water grab samples from the temporary piezometers installed in B1, B2, and B3. In these piezometers, benzene was below laboratory detection levels in B1 and B3. In B2, the benzene concentration of 7.6 ppb is below the New Mexico Water Quality Control Commission standards (10 ppb). No volatile organic compounds exceed the WQCC standards in any of these grab samples. Below the former redwood tanks, ground water TDS is 15,000-18,600 ppm. The dissolved solids are dominated by sodium, chloride and calcium.

In M5-1, which lies about 200 feet southeast from the redwood tanks, three sampling events have not detected any volatile organic constituents in M5-Is (Table 3). The quarterly sampling data also data suggest that

TDS ranges between 10,000 and 15,000 ppm and chloride in ground water is 5000-6500 ppm. Chloride is distributed throughout the thickness of the saturated zone.

Examination of ground water chemistry data from nearby monitoring wells (see Plate 5) shows TDS values exceeding 5,000 ppm up gradient and cross-gradient of the redwood tanks at M-5. Monitoring well P6-2, which is located up gradient from a known pipeline leak site and up gradient from the M-5 redwood tank site, shows a TDS of nearly 20,000 ppm.

3.0 DISCUSSION AND CONCLUSIONS

The soil/sediment sampling data clearly show that any seepage from the former redwood tanks have not caused impairment of ground water with respect to hydrocarbons. Moreover, the ground water data also provide empirical evidence that the asphaltic sands that surround the former tanks are not releasing hydrocarbons to ground water. Benzene was detected in only one of 12 samples and this single analyses showed a concentration of less than 75 ppm. We conclude that low concentrations of residual asphaltic hydrocarbons in the vadose zone and on ground surface pose no threat to ground water quality.

Soil chemistry shows that residual chloride in the vadose zone is at or near background concentrations. Because chloride concentrations are at or near background levels, residual chloride also poses no threat to ground water quality.

Residual hydrocarbon and chloride in the vadose zone also pose no threat to the success of surface restoration, human health or the environment. Ground water TDS and chloride at the temporary piezometers is slightly higher than the TDS observed in M5-1, which samples a larger portion of the aquifer than the discrete sampling point of the piezometers. We conclude that the slightly higher TDS and chloride in the piezometers does not suggest that the redwood tanks released sufficient produced water to create measurable impairment. Additionally all of the ground water samples from the M-5 site show a lower TDS than the up gradient well P 6-2. We conclude that regional degradation of ground water quality with respect to chloride and TDS is due to past releases up gradient from the M-5 site.

4.0 REMEDY EVALUATION AND PROPOSED ALTERNATIVE

We examined the potential remedies for the M-5 Redwood Tank restoration identified in the NMOCD-approved work plan. Based upon our evaluation, Hicks Consultants recommends burial of the asphaltic hydrocarbons sands which are now on the ground surface in the hole created by the tank removal and importation of clean fill. The site may then be graded and eventually re-seeded when ROC plugs and abandons this active saltwater disposal well.

Removal of surface asphaltic material, which generally contain no regulated constituents of concern (e.g. benzene), creates an environmental benefit by allowing natural re-vegetation at the edges of the site in areas where ROC future operations associated with the salt water disposal well will be minimal . Restoration of the surface through importation of soil and eventual re-seeding will return this parcel to the same productive capacity of the surrounding land. We elected to minimize any excavation of stained soil below the root zone because such excavation provides no environmental benefit and instead creates environmental damage. For example, unnecessary excavation causes environmental damage in the form of air pollution (dust, vehicle exhaust). The subsurface asphaltic material does not contain regulated constituents in concentrations high enough to cause impairment of fresh water or a threat to human health or the environment. Therefore, excavation of this material is unnecessary.

We also plan to import sand/soil from the adjacent property that now houses the tanks associated with the active salt water disposal well at the site. Employing a source of soil close to the facility also minimizes the environmental damage (air pollution, dust, etc.) which can result from our proposed action.

The surface and subsurface asphaltic material has remained on site for the past several decades and has not caused impairment of ground water with respect to hydrocarbons. As stated above, the hydrocarbons in this asphaltic material generally contain no regulated constituents of concern and represent no threat to human health, the environment or the eventual surface re-vegetation of the site.

After ROC plugs and abandons the saltwater disposal well, final surface restoration could include placement of sand over the area to mimic the stabilized sand dunes that surround the site. The Shinnery Oak can

colonize the restored sand dunes over the former redwood tanks, because upward movement of chloride into the root zone is not a technical problem. High levels of chloride do not exist in the vadose zone at this site. We believe the vadose zone at this site does not contain any regulated constituents in concentrations that are materially different from background conditions.

We recommend voluntary semi-annual sampling of ground water at the M-5 site to assist in the establishment of a database for future regional groundwater characterization. Final surface restoration, as described above, may be a condition for the plugging and abandonment of the saltwater disposal well. We recommend closure of the regulatory file upon documentation of site grading.

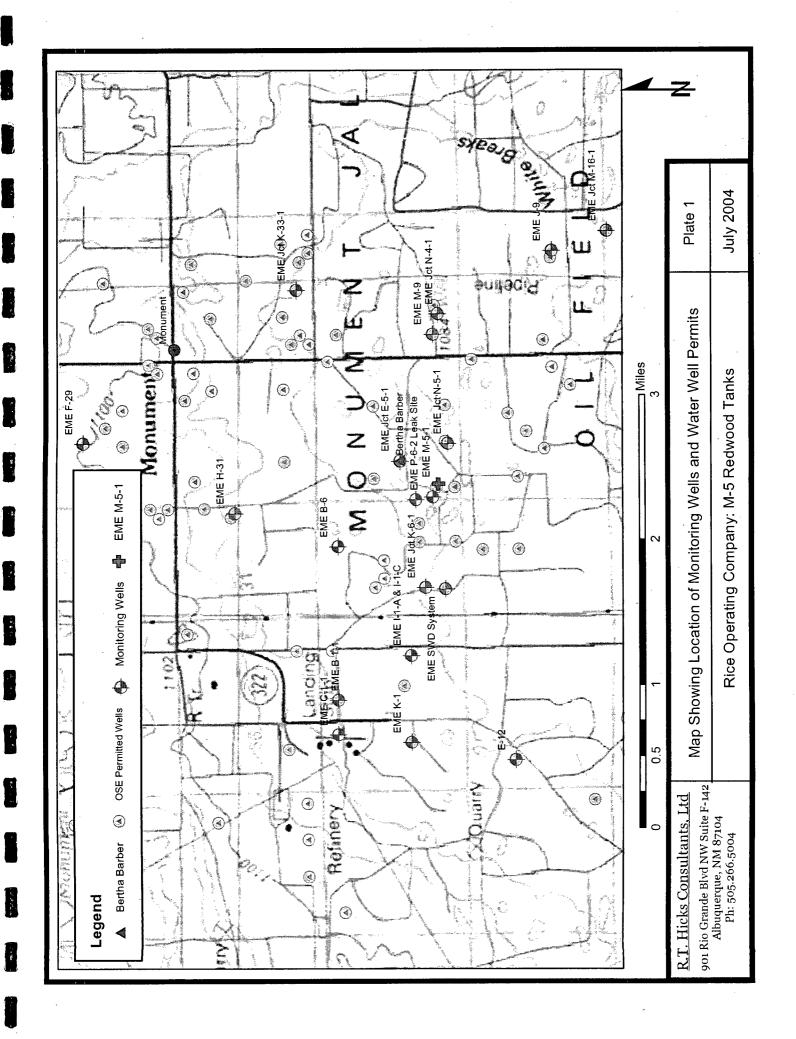
TABLES

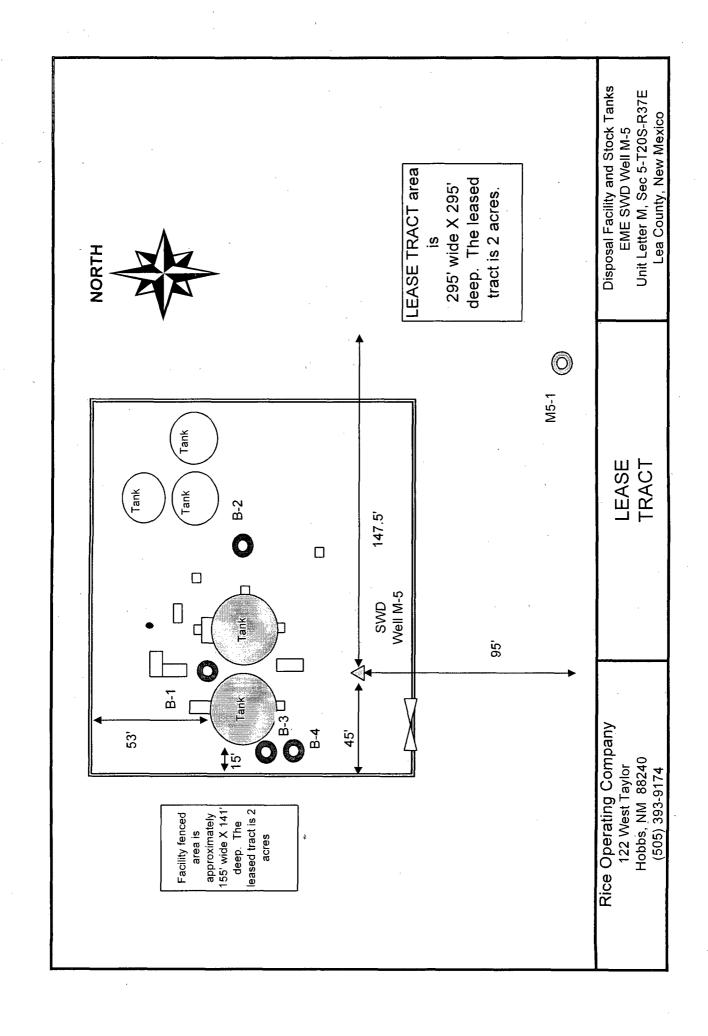
Table 1. Laboratory Results of Soil Samples at M-5 Site

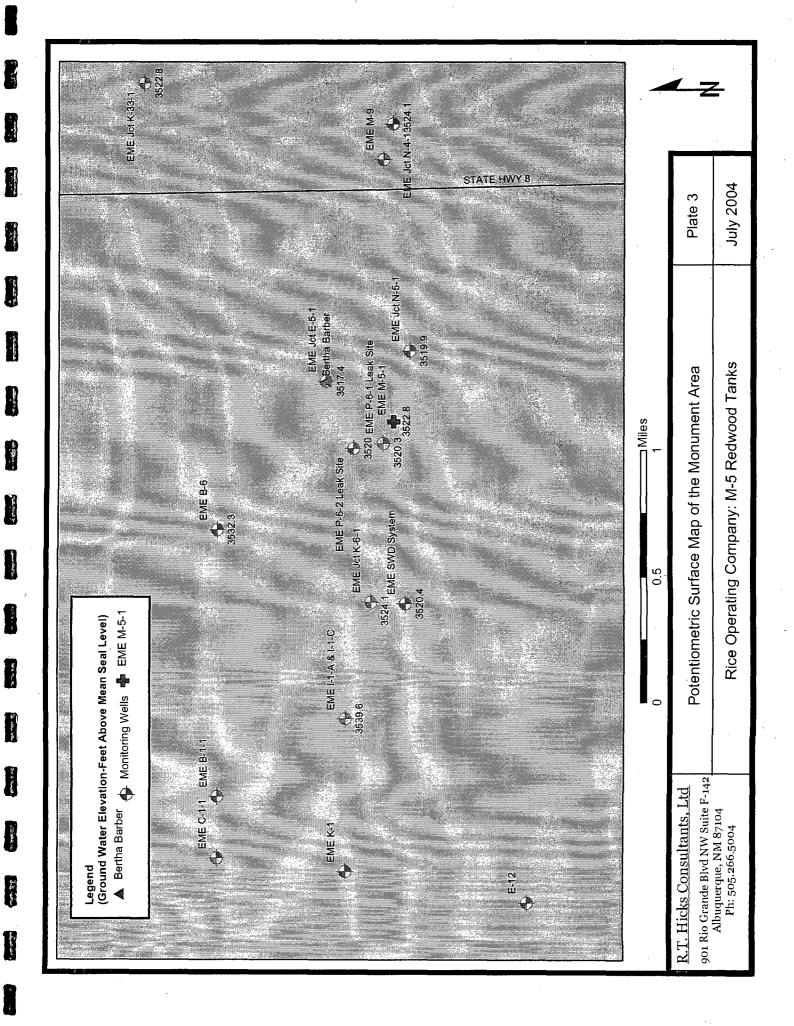
Naphthalene		297		51			1380		4160					78.2			91.2				479	<25	249	45	150	135
oXylene		<25		<25			135		633					61.9		٠	<25				<25	<25	62.9	25.3	<25	<25
p/mXylene	n ug/kg	1250		. 26.6			5370		15100					795			837				304	<25	1560	228	<25	800
Ethylbenzene p/mXylene oXylene Naphthalene	Results in ug/kg	1450		25.2			4650		13700					326			165		-	10 mm	314	<25	476	1090	325	143
Toluene		<25		<25			<100		<200			2000000		<25			<25				<25	<25	<25	<25	<25	<25
Benzene		<25		<25			<100		<200					<25			<25				<25	<25	74.1	<25	<25	<25
DRO >C12 C35 TOTAL C6 C35	-	1977.		290			2337		15880				,	5350			4207				5976	<10	13040	2413	726	218
DRO >C12 C35		1470		474			1480		11100	-				4210			3310				5370	<10	11300	2210	593	161
GRO C6 C12	Results in mg/kg	202		116			857	~	4780					1140			268				909	<10	1740	203	133	56.6
Chloride				<20			53.2															106		88.6		35.4
Field CI			208		251	218	_	360		479	383	262	321		386	352		273	458							
Date		11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003		11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003		11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003	11/5/2003
Mell ID		M5 B-1 29.5	M5 B-1 6'	M5 B-1 7	M5 B-1 11'	M5-B-1 15'	M5 B-1 16.8	M5-B-1 21'	M5 B-1 26-27'	M5-B-1 27	M5-B-1 31'	M5 B-2 8'	M5 B-2 12'	M5 SB2 12'	M5 B-2 15'	M5 B-2 19'	M5 SB2 23'	M5 B-2 27'	M5 B-2 30'		M5 B-3 11'	M5 B-3 16.5'	M5 B-4 4'	M5 B-4 2'	M5 B-4 6'	M5 B-4 7'

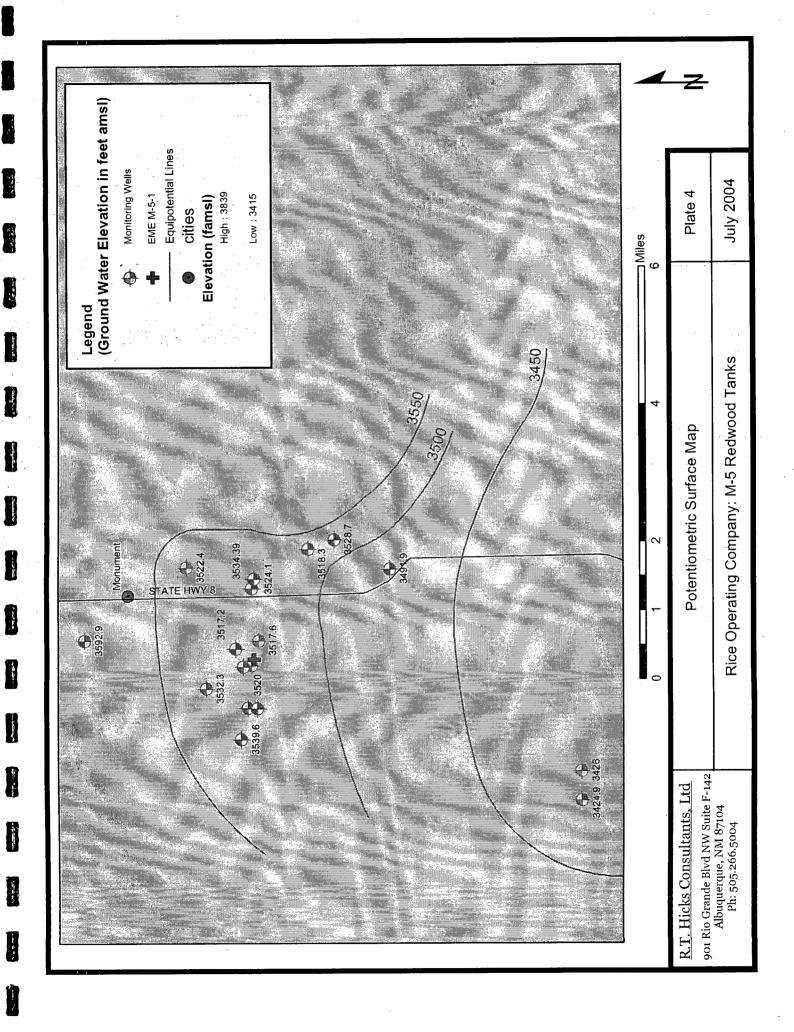
Table 2. Water Elevations of wells in Monument Area

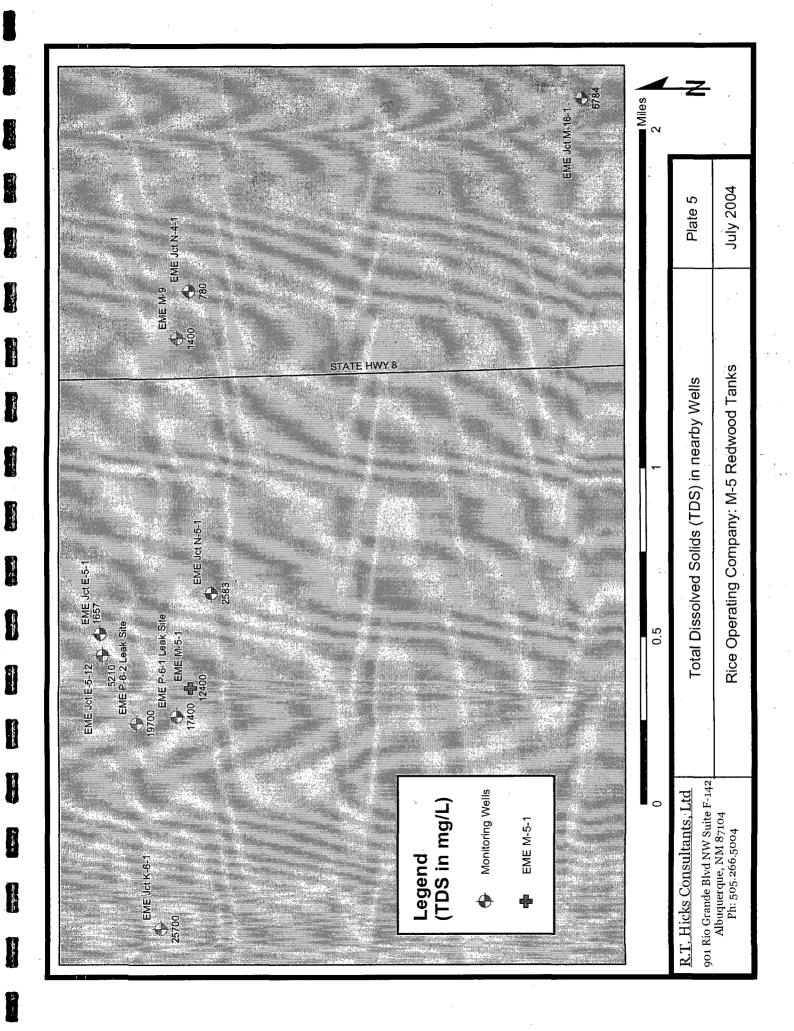
Table 2. Vvalet Elevati	OTTO OT WOR	S III WOULD	10111171100
*			Ground
	Depth to	Surface	Water
Site Name	Water	Elevation	Elevation
		(feet)	
EME Jct K-33-1	37.3	3559.7	3522.4
EME Jct M-16-1	22.8	3551.5	3528.7
EME Jct N-5-1	37.8	3555.4	3517.6
EME Jct E-5-1	40.9	3558.1	3517.2
EME Jct K-6-1	37.6	3561.3	3523.7
EME P-6-1 Leak Site	37.4	3557	3519.6
EME M-9	22.61	3557	3534.39
EME Jct N-4-1	31	3555.1	3524.1
EME M-5-1	32.8	3556.1	3523.3
EME SWD System	37	3557.4	3520.4
EME B-6	28	3560.3	3532.3
EME F-29	17	3609.9	3592.9
EME I-1-A & I-1-C	26	3565.6	3539.6
EME I-35	122	·3546.9	3424.9
EME J-9	25	3543.3	3518.3
EME K-36	115	3541	3426
EME N-16-1	32	3523.9	3491.9
EME P-6-2 Leak Site	37.97	3558	3520


Source: ROC files and NMOCD files


Table 3. Groundwater Chemistry at M-5 Site


		Bicarbonate Caronate	Caronate		Hydroxide	1ydroxide Sulfate 37					Bromide 3	
Well_ID	Date	Alkalilnity _	Alkalinity C	Chloride	Alkalinity_	5.4	Calcium	Magnesium	Magnesium Potassium Sodium		_ 00	TDS
						,	mg/L					
B1 grab	11/5/2003	188	<0.1	8600	<0.1	599	1610	470	46.2	2910	<50	17200
B2 grab	11/5/2003	•	<0.1	7090	<0.1	566	1640	445	44.8	2490	<50	15000
B3 grab	11/5/2003	188	<0.2	7890	<0.2	990	1550	490	57.4	3033	<100	18600
MW-1s	12/11/2003			6198								10784
MW-1s	2/20/04			5320								14500
MW-1s	5/6/04			5940								12400
MW-1d				6198								11736


								,		1_2_dichlor		4_Bromofl
				Ethylbenz			Total	Naphthale	Naphthale Dibromofluor oethance_d Toluene_d uorobenze	oethance_c	Toluene_d	norobenze
Well_ID	Date	Benzene	Toluene	eue	ene p/mXylene oXylene		Xylenes	ne L	omethane	4	ω	пе
				æ	Results in ug/kg					% Recovered	vered	
B1 (voa)	11/5/2003	\ \ \	1>	7.84	79.7	\ \		4.15	124	123	116	116
B2 (voa)	11/5/2003	7.6	1.02	15	26.8	1.11		11.5	126	125	106	125
B3 (voa)	11/5/2003	⊽	₹	12.4	2.89	∀		11.5	127	127	113	11
MW-1s	12/11/03	<0.002	<0.002	<0.002			<0.002					
	2/20/04	<0.001	<0.001	<0.001			<0.001					
	5/6/04	<0.001	<0.001	<0.001			<0.001					
MW-1d	12/11/2003	<0.002	<0.002	<0.002			<0.002				_	


PLATES

APPENDIX A

901 Rio Grande NW, Suite F-142 Rice Client				sultants, Ltd.			M-5		Rice M-5	
Logger R. Hicks Client Driller Eades Drilling T20S R39E S30 Method Air Rotary 1380 FEL-560 FSL Start Date 11/16/2003 Lea County End Date 11/16/2003 New Mexico side between tanks Sample Description Lith Well Construction Depth Number Cl Grade	ľ	901 Rio Gra	ande i	NW, Suite F-142	\$2.50 \$2.50	Proje	ct Name			
Logger R. Hicks Client Driller Eades Drilling T20S R39E S30 Method Air Rotary 1380 FEL-560 FSL Start Date 11/16/2003 Lea County End Date 11/16/2003 New Mexico side between tanks Sample Description Lith Well Construction Depth Number Cl Grade		Albuquerqu	e, Ne	w Mexico 87104		F	Rice			
Driller			r ·							
Method Air Rotary 1380 FEL 560 FSL Start Date 11/16/2003 Lea County Start Date 11/16/2003 New Mexico Sample Description Lith Well Construction					1 - 1985-64			Oskar i nov	4	
Start Date										
Sample					nestra bilden.			OL	Borina #1. No	orth
Sample			l							
Depth Number Cl		d Duic		11710/2000		1400	WICKIGO		olde between t	ariko
Depth Number Cl		Sample		Description		l ith		\A/all (Construction	
208 5.5-6.5 Drk Gray-gm fine sand w/ hydrocarbon odor - v. little clay 6.5-15 black mottled fine sand with hydrocarbon odor, dry, some clay, odor decreasing with depth 15 15 15 15 15 15 15 1				Description		LILII		weild		
208	Depth	Number	CI		Grade		.		Cement Pad	
11 208				0-5.5 Slough						
11 208									•	
208										
208		i		,						
Sand W/ hydrocarbon odor - v]				5					
little clay 6.5-15 black mottled fine sand with hydrocarbon odor, dry, some clay, odor decreasing with depth 15 15-25 white to buff fine sand with some caliche, slight hydrocarbon odor 20 21 25-28 indurated caliche and cemented dune sand, some HC odor, white to brown 28-30 as above, moist 30 35 35 35 35 36 35 36 36	6		208							
11										
11										
11]									
218		·	١.,		10					
16 16.8 1103031249 218 15-25 white to buff fine sand with some caliche, slight hydrocarbon odor 20 20 20 20 20 20 20 20 20 20 20 20 20	11		251							
16.8 1103031249				with depth						
16.8 1103031249 15-25 white to buff fine sand with some caliche, slight hydrocarbon odor 20 20 25-28 indurated caliche and cemented dune sand, some HC odor, white to brown 28-30 as above, moist 30 35 383 383 383 Cuttings suggest lithology as 40 Cuttings suggest lithology as 40)]									
16.8 1103031249	1		040							
20-21	1	1400004040			15					
20-21 1103031300 360 20 20 25 26-27 1103031323 479 25-28 indurated caliche and cemented dune sand, some HC odor, white to brown 28-30 as above, moist 30 35 35 35 Cuttings suggest lithology as	16.8	1103031249		l :						
20-21]									
26-27				nydrocarbon odor					,	
26-27	20.21	1102021200			20		,			
26-27	1 .	1103031300		·	20					
26-27	[300							
26-27	;									
26-27	1			•						
26-27				_	25					
26-27	1			25 29 indurated poliche and	25					
29-29.5	26-27	1103031323	470							
29-29.5 30 1103031335 383 28-30 as above, moist 30 30 30 31 35 35 35 35 35 35 35 35 35 35 35 35 35	20-21	1103031523	4/3							
29-29.5 30 1103031335 383 30 30 30 30 30 30 30 30 30 30 30 30 30	i									
30 383 35 35 35 40 Cuttings suggest lithology as	29-29 5	1103031335		20 00 d3 above, moist	30					
35 35 Cuttings suggest lithology as				.	- 00	\$0,000 no. 10,00 11,0,10,10000000 21,0,10,100000000				
Cuttings suggest lithology as										
Cuttings suggest lithology as	-									
Cuttings suggest lithology as										
Cuttings suggest lithology as		l			35				*	
Cuttings suggest lithology as						000000-00000000 				
Cuttings suggest lithology as										
Cuttings suggest lithology as		ł								
Cuttings suggest lithology as										
					40					
above										
		İ		above						

		nsultants, Ltd.			M-5	77 to 1,850			Rice	<u>M-5</u>
		NW, Suite F-142		Proje	ct Na	me	ÖWR9	(Type borge)	1	
Albuquerqı	ue, N	ew Mexico 87104		ī	Rice					
Logger	T	R. Hicks	1		lient					
Driller		Eades Drilling	Section.	T20S.I	R39E	S30)	95, z i		
Method		Air Rotary		1380 FI	EL 56	0 F	3L		_	
Start Date		11/16/2003			Coun					st of tank
End Date		11/16/2003		New	Mexi	co			withir	n berm
1000000		17:544 Billion - 2004:234								
Sample		Description		Lith -			We	ell C	onstructi	on
epth Number	CI		Grade						Ceme	ent Pad
					•	•	•	•	•	٠
· ·										
	ļ									
			5						,	
		5-10 Light Brown Fine Blow							-	
		Sand (No Cement)								
		,								
•		•	10							
11 1104030852		10-20 White Caliche w/ some								
		White Sand Plus Caliche		aji nijeti						
		` .								
				and pulling						
			15					٠		
16.5 1103030905	ĺ									
										•
			20							
		20-25 LT Brown Sand	20	*****						
		w/some Caliche (Cement								
		Slightly Moist)								
			<u></u>							
		1	25	1.						
		. Moist "Mudballs" of Clay.								
		Caliche w/some Sand	·							
•				y ar en ari						
		"Mudballs" Red on Outside -	30							
		Tan Caliche w/ Sand on								
		Inside (Moist)								
			35							
		Moist "Mudballs" of Clay.			-					
	l	Caliche w/some Sand								
1	l	1								
-	-		40							
		Cuttings suggest lithology is		10 C						

			sultants, Ltd.			M-5	Rice M-5
	901 Rio Gra	ande	NW, Suite F-142	Andreas Section 197	Proje	ct Name	
	Albuguergu	e, Ne	w Mexico 87104			Rice	-
T	ogger	Ī	R. Hicks			lient	
	Oriller		Eades Drilling	la ideologica de la composición dela composición dela composición de la composición de la composición dela composición dela composición de la composición dela composición de la composición dela composición dela composición dela composición dela composición dela composición dela com		R39E S30	
	lethod		Air Rotary			EL 560 FSL	
	art Date		11/16/2003			County	Boring #2, East of
	id Date		11/16/2003			Mexico	tank berm
		l	HEREN PROPERTY AND ADDRESS OF				316
	Sample		Description		Lith	Well C	onstruction
Depth	Number	CI		Grade			
		-	0-5 no core, cuttings are black		SUBSIDE SE		
			sand				
			Jana				
					400 G		•
			-	5			
			5-7 drk gray/blk fine-grained		13	•	
			dune sand	-			
6.0-7.0	1103031443	262	6-7 light brn/buff fine sand,				,
			dry, v. slight HC odor				
				10			
			10-18 brn/tan sand with		Basis Sali		
12	1103031459	321					
,			and faint HC odor				
4-		000		- 15		•	
15		386		15			
			·			4.0	
19		352	18-20 caliche with sand, white				
20	1103031518		to buff, faint HC odor	20			
-		,	22-25 caliche and fine dune		1	*	
			sand, faint HC odor, brown to				
23		326					
24	1103031532				7		
				25	1		
			26-28 indurated fine sand with				
27		273	caliche cement, "veins" of		9 W 3		•
28	1103031543		calcite/caliche, some gray-brn				
	1400001555	4-6	clay, slt HC odor				
31.5	1103031550	458		30	3 4		
	-		buff, slight HC odor, wet		The second		
					~= AL - 1		
					7		
				35	-		
	}		•				
			•		2 1		
			<u> </u>				
			<u> </u>	40	4-7-4		
			Cuttings suggest lithology is		17 E		
ı İ			as above		2.3		

APPENDIX B

ANALYTICAL REPORT

Prepared for:

Kristin Farris
Rice Operating
122 W. Taylor
Hobbs, NM 88240

Project:

M-5 SWD Soil Bore #1

PO#:

758

Order#:

G0307862

Report Date:

11/18/2003

Certificates

US EPA Laboratory Code TX00158

SAMPLE WORK LIST

Rice Operating

122 W. Taylor

Hobbs, NM 88240

505-397-1471

1/2

Order#:

G0307862

Project:

Project Name: M-5 SWD Soil Bore #1

Location:

EME

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

		Date / Time	Date / Time		
Sample:	Matrix:	Collected	Received	Container	Preservative
M5 7.0	SOIL	11/3/03	11/5/03 18:50	4 oz glass	lce
b Testing:	Rejected: No	Te	mp: 5 C		
8015M					
8260B BTEX + N	APHTHALENE by	GC/MS			
Chloride					
M5: 16.8	SOIL	11/3/03	11/5/03	4 oz glass	Ice
	•	12:49	. 18:50		
b Testing:	Rejected: No	Ter	mp: 5 C		
8015M					
8260B BTEX + N	APHTHALENE by	GC/MS			*
Chloride					
M5 B1	SOIL	11/3/03	11/5/03	4 oz glass	lcc
		13:23	18:50	,	
b Testing:	Rejected: No	Tei	up; 5 C		
8015M					
8260B BTEX + N	APHTHALENE by	GC/MS	·		
M5 29.5	SOIL	11/3/03	11/5/03	4 oz glass	lce
		13:35	18:50		
Testing:	Rejected: No	Ter	np: 5 C		
8015M					
8260B BTEX + N	APHTHALENE by	GC/MS			
	M5 7.0 b Testing: 8015M 8260B BTEX + N Chloride M5 16.8 b Testing: 8015M 8260B BTEX + N Chloride M5 B1 b Testing: 8015M 8260B BTEX + N M5 29.5 b Testing: 8015M	M5 7.0 SOII. b Testing: Rejected: No 8015M 8260B BTEX + NAPHTHALENE by Chloride M5 16.8 SOIL b Testing: Rejected: No 8015M 8260B BTEX + NAPHTHALENE by Chloride M5 B1 SOIL b Testing: Rejected: No 8015M 8260B BTEX + NAPHTHALENE by SOIL b Testing: Rejected: No 8015M 8260B BTEX + NAPHTHALENE by M5 29.5 SOIL b Testing: Rejected: No 8015M	Sample : Matrix: Collected M5 7.0 SOIL 11/3/03 b Testing: Rejected: No Testing: 8015M 8260B BTEX + NAPHTHALENE by GC/MS Chloride M5 16.8 SOIL 11/3/03 12:49 b Testing: Rejected: No Ter 8015M 8260B BTEX + NAPHTHALENE by GC/MS Chloride M5 B1 SOIL 11/3/03 13:23 b Testing: Rejected: No Ter 8015M 8260B BTEX + NAPHTHALENE by GC/MS M5 29.5 SOIL 11/3/03 13:35 D Testing: Rejected: No Ter M5 29.5 SOIL 11/3/03 13:35 D Testing: Rejected: No Ter	Sample : Matrix	Sample : Matrix Collected Received Container

ANALYTICAL REPORT

Kristin Farris

Rice Operating 122 W. Taylor Hobbs, NM 88240 Order#:

G0307862

Project:

Project Name: M-5 SWD Soil Bore #1

Location:

EME

Lab ID:

0307862-01

Sample ID:

VM5 7.0

8015M

Method Blank

Prepared

Date

Parameter

TOTAL, C6-C35

Date Analyzed 11/6/03

Sample Amount 1

Dilution Factor

Analyst

10.0

JLH

Method 8015M

Result RL mg/kg GRO, C6-C12 116 10.0 DRO, >C12-C35 474 10,0

590

Surrogates	% Recovered	QC Li	mits (%)
1-Chlorooctane	99%	70	130
1-Chlorooctadecane	106%	70	130

8260B BTEX + NAPHTHALENE by GC/MS

Method <u>Blank</u>	Date Prepared	Date <u>Analyzed</u>	Sample <u>Amount</u>	Dilution Factor	Analyst	Method
0007451-02		11/17/03 15:46	1	Ŧ	СK	8260B

Parameter	Result µg/kg	RL
Benzene	<25.0	25,0
Toluene	<25.0	25.0
Ethylbenzene	25.2	25.0
p/m-Xylene	26.6	25.0
o-Xylene	<25.0	25.0
Naphthalene	51.0	25.0

Surrogates	% Recovered	QC Li	mits (%)
Dibromofluoromethane	111%	53	144
1,2-dichloroethane-d4	104%	57	147
Toluene-d8	98%	64	128
4-Bromofluorobenzene	100%	47	158

ANALYTICAL REPORT

Kristin Farris
Rice Operating
122 W. Taylor

Hobbs, NM 88240

Order#:

G0307862

Project:

M-5 SWD Soil Bore #1

Project Name: Location:

EME

Lab ID;

0307862-02

Sample ID:

M5 16.8

讲

8015M

Method Blank Date Prepared Date Analyzed 11/6/03 Sample Amount Dilution Factor

Analyst JLH

Method 8015M

 Parameter
 Result mg/kg
 RL

 GRO, C6-C12
 857
 10.0

 DRO, >C12-C35
 1,480
 10.0

 TOTAL, C6-C35
 2,337
 10.0

Surrogates	% Recovered	QC Limits (%)		
1-Chlorooctane	102%	70	130	
1-Chlorooctadecane	111%	70	130	

8260B BTEX + NAPHTHALENE by GC/MS

Method Blank 0007451-02 Date Prepared Date
<u>Analyzed</u>
11/17/03

16:11

Sample <u>Amount</u>

Dilution Factor

Analyst CK

Method 8260B

Parameter	Result µg/kg	RL
Benzene	<100	100
Toluene	<100	100
Ethylbenzene	4650	100
p/m-Xylene	5370	100
o-Xylene	135	100
Naphthalene	1380	100

Surrogates	% Recovered	QC Limits (%)		
Dibromofluoromethane	114%	53	144	
1,2-dichloroethane-d4	114%	57	147	
Toluene-d8	98%	64	128	
4-Bromofluorobenzene	100%	47	158	

ANALYTICAL REPORT

Kristin Farris
Rice Operating
122 W. Taylor

Hobbs, NM 88240

Order#:

G0307862

Project:

Project Name:

M-5 SWD Soil Bore #1

Location: EME

Lab ID:

0307862-03

Sample ID:

M5 B1

26-27

8015M

Method Blank Date Analyzed

11/6/03

Date

Prepared

. .

Sample Amount Dilution Factor 5

Analyst

JLH

Method 8015M

 Parameter
 Result mg/kg
 RL

 GRO, C6-C12
 4,780
 50.0

 DRO, >C12-C35
 11,100
 50.0

 TOTAL, C6-C35
 15,880
 50.0

Surrogates	% Recovered	QC Limits (%	
1-Chlorooctane	18%	70 130	
1-Chlorooctadecane	33%	70	130

8260B BTEX + NAPHTHALENE by GC/MS

Method Blank 0007451-02 Date Prepared Date <u>Analyzed</u> 11/17/03 16:46 Sample <u>Amount</u> I Dilution Factor

tor <u>Analyst</u> CK Method 8260B

Result RLParameter μg/kg Benzene <200 200 200 Tolucne <200 13700 200 Ethylbenzene 200 15100 p/m-Xylene 200 o-Xylene 633 4160 200 Naphthalene

Surrogates	% Recovered	QC Limits (%)		
Dibromofluoromethane	119%	53	144	
1,2-dichloroethane-d4	121%	57	147	
Toluene-d8	101%	64	128	
4-Bromofluorobenzene	101%	47	158	

ANALYTICAL REPORT

Kristin Farris Rice Operating 122 W. Taylor

Hobbs, NM 88240

Order#:

G0307862

Project:

M-5 SWD Soil Bore #1

Project Name: Location:

EME

Lab ID:

0307862-04

Sample ID:

M5 29.5

沙

8015M

Method Blank

Date Prepared

Date Analyzed 11/6/03

Sample Amount 1

Dilution Factor

1

Analyst

JLII

Method 8015M

Parameter	Result mg/kg	RL .
GRO, C6-C12	507	10.0
DRO, >C12-C35	1,470	10.0
TOTAL, C6-C35	1,977	10.0

Surrogates	% Recovered	QC Limits (%	
1-Chlorooctane	102%	70	130
1-Chlorocctadecane	109%	70	130

8260B BTEX + NAPHTHALENE by GC/MS

Method	Date	Date	Sample Amount	Dilution Factor	Analyst	Method
Blank	Prepared	Analyzed	Minding	FACTO	Amayar	memon
0007451-02		11/17/03	1	1	CK	8260B
		17.11				

Parameter	Result µg/kg	RL
Benzene	<25.0	25.0
Toluene	<25.0	25.0
Ethylbenzene	1450	25.0
p/m-Xylene	1250	25.0
o-Xylene	<25.0	25.0
Naphthalene	297	25.0

Surrogates	% Recovered	QC Limits (%)		
Dibromofluoromethane	117%	53	144	
1,2-dichloroethane-d4	116%	57	147	
Toluene-d8	100%	64	128	
4-Bromofluorobenzene	100%	47	158	

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director

Jennne McMurrey, Inorg. Tech. Director Sandra Biczugbe, Lab Tech.

Sara Molina, Lab Tech.

Page 4 of 4

ANALYTICAL REPORT

Kristin Farris Rice Operating 122 W, Taylor Hobbs, NM 88240 Order#:

G0307862

Project;

M-5 SWD Soil Bore #1

Project Name: Location:

EME

Lab 1D:

0307862-01

Sample ID: M5.7.0

Test Parameters

Result <20.0

Units mg/kg

Dilution Factor

RL20

Method 9253

Date Analyzed 11/7/03

Analyst SB

Lab ID:

0307862-02

Sample ID:

Parameter

Chloride

M5 16.8

Test Parameters

Parameter Chloride

Result 53.2

Units mg/kg

Dilution Factor

 $\underline{\mathbf{RL}}$ 20

Method 9253

Date Analyzed Analyst 11/7/03

SB

Approval:

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezughe, Lab Tech.

Sara Molina, Lab Tech.

QUALITY CONTROL REPORT

8015M

Order#: G0307862

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
TOTAL, C6-C35-ing/kg	0007353-02			<10.0		
CONTROL SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0007353-03		952	759	79.7%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0007353-04		952	756	79.4%	0.4%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0007353-05	1	1000	856	85.6%	

QUALITY CONTROL REPORT

8260B BTEX + NAPHTHALENE by GC/MS Order#: G0307862

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-µg/kg	0007451-02			<25.0		
Toluene-µg/kg	0007451-02			<25.0		
Ethylhenzene-µg/kg	0007451-02			<25.0		
p/m-Xylene-µg/kg	0007451-02			<25.0		
o-Xylene-µg/kg	0007451-02			<25.0		
Naphthalene-µg/kg	0007451-02			<25.0		
CONTROL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD -
Benzene-µg/kg	0007451-03		50	63	126.%	
Toluene-µg/kg	0007451-03		50	63	126.%	
Ethylbenzene-μg/kg	0007451-03		50	51	102.%	
p/m-Xylene-µg/kg	0007451-03		100	100	100.%	
o-Xylene-µg/kg	0007451-03		50	54	108.%	
Naphthalene-µg/kg	0007451-03		50	44	88.%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Benzene-µg/kg	0007451-04		50	59	118.%	6.6%
I oluene-μg/kg	0007451-04		50	57	114.%	10.%
Ethylbenzene-µg/kg	0007451-04		50	48	96.%	6.1%
p/m-Xylene-µg/kg	0007451-04		100	91	91.%	9.4%
o-Xylene-μg/kg	0007451-04		50	49	98.%	9.7%
Naphthalene-μg/kg	0007451-04		50	51	102.%	14.7%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-µg/kg	0007451-05		50	53.6	107.2%	
Toluene-µg/kg	0007451-05		50	54.7.	109.4%	
Ethylbenzene-µg/kg	0007451-05		50	47.8	95.6%	
o/m-Xylene-µg/kg	0007451-05		100	95.1	95.1%	
-Xylene-μg/kg	0007451-05		50	49.4	98.8%	
Vaphthalene-μg/kg	0007451-05	-	50	48.8	97.6%	

QUALITY CONTROL REPORT

Test Parameters

Order#: G0307862

BLANK	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg	**************************************	0007361-01			<20.0		
MS	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0307873-01	354	500	851	99.4%	
MSD	SOIL	LAB-ID#	Sample Concentr,	Spike Concenty.	'QC Test Result	Pet (%) Recovery	RPD
Chloride-mg/kg		0307873-01	354	500	868	102.8%	2.%
SRM	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Chloride-mg/kg		0007361-04		5000	4960	99.2%	3 "

CASE NARRATIVE

ENVIRONMENTAL LAB OF TEXAS

Prepared for:

Rice Operating

122 W. Taylor

Hobbs, NM 88240

Order#:

G0307862

Project:

M-5 SWD Soil Bore #1

The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

SAMPLE ID	LAB ID	MATRIX	Date Collected	Date Received
M5 7.0	0307862-01	SOIL	11/03/2003	11/05/2003
M5 16.8	0307862-02	SOIL	11/03/2003	11/05/2003
M5 B1	0307862-03	SOIL	11/03/2003	11/05/2003
M5 29.5	0307862-04	SOIL	11/03/2003	11/05/2003

Surrogate recoveries on the 8015M TPH are outside of control limits due to dilution (G0307862-03).

The enclosed results of analyses are representative of the samples as received by the laboratory. Environmental Lab of Texas makes no representations or certifications as to the methods of sample collection, sample identification, or transportation handling procedures used prior to our receipt of samples. To the best of my knowledge, the information contained in this report is accurate and complete.

Approved By:

Environmental Lab of Texas I, Ltd.

Date

א באו אנו

Lab of Texas, Inc.	Phone: 915-563-1800 Fax: 916-563-1713
Environmental Lab of Texas,	12600 West 1.20 East Odessa, Texas 79763

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Project Name: M-5 SWD Soil Bote		Project Loc: EME	Po#: 053		Analyzi TCLP: TOTAL:	Soll Toy (1) SAR 1 EC Toy A18 H Seminibilities Seminibilities BTEX 9021B/5010 BTEX 9021B/5010 A18 H Toy A18 H To	-	トート		× ×			Service Conservers Literatory 72 31	Temperature Upon Recept Extractions Comments	Time // 6°C	11mg
				Fax No: (505) 397-1491	V655	Mode (Specify) Water	11 03 03	1249 (X)	X 1 828	110203 1335 1 1			HOKS-ensi	700	Received by:	RESERVED TO THE METERS
Project Manager: Aclistin Facris	Company Name AICE Operation	Company Address: (33 W. Taylor	CityIslatelZip: +10 665, NM 88340	Telephone No (505)393-9174	The state of the	COSTANTA FIELD CODE	-e1 x5	MS 16.8	-65 AC B1	-04 MS 129,5			Special Instituctions: Fax to RAKOV	W/876X; (505) 266-	Relingskhed by:	Тіте

ANALYTICAL REPORT

Prepared for:

Kristin Farris
Rice Operating
122 W. Taylor
Hobbs, NM 88240

Project:

M-5 SWD Soil Bores #3 & #4 **{2**

PO#:

758

Order#:

G0307864

Report Date:

11/18/2003

Certificates

US EPA Laboratory Code TX00158

SAMPLE WORK LIST

Rice Operating

Order#:

G0307864

Project Name: M-5 SWD Soil Bores #3 & #4

122 W. Taylor

Project:

Hobbs, NM 88240 505-397-1471

Locations

EME

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

				Date / Time	Date / Time		
Lab ID:	Sample:	Matrix:		Collected	Received	Container	Preservative
0307864-01	M5 SB4 4'	SOIL		11/4/03 11:00	. 11/5/03 18:50	4 oz glass	Ice
<u>L</u> t	ab Testing:	Rejected:	No	Ten	np: 5 C		
	8015M						
	8260B BTEX + NAI	PHTHALENE	E by Go	C/MS			
0307864-02	M5 SB4 2'	SOIL		11/4/03 11:11	11/5/03 18:50	4 oz glass	Ice
<u>La</u>	ib Testing:	Rejected:	No	Ten	ар: 5 C		
	8015M						
	8260B BTEX + NAF Chloride	HTHALENE	by G	C/MS			
0307864-03	M5 SB4 6.0'	SOIL		11/4/03 11:20	11/5/03 18:50	4 oz glass	lce
<u>La</u>	ib Testing:	Rejected:	No	Ten	1p: 5 C		
	8015M		•				
	8260B BTEX + NAF	HTHALENI	E by Go	C/MS			in angenti at he sa tan 1100 sa .
0307864-04	M5 SB4 7'	SOIL		11/4/03 11:30	11/5/03 18:50	4 oz glass	Ice
<u>La</u>	b Testing:	Rejected:	Nυ	Ten	np: 5 C		
	8015M						
	8260B BTEX + NAF Chloride	HTHALEN	E by G	C/MS			
0307864-05	M5 B3 11'	SOIL		11/4/03 8:52	11/5/03 18:50	4 oz glass	lce
La	ab Testing:	Rejected:	No	Ten	np: 5 C .		
	8015M						
	8260B BTEX + NAI	HTHALENE	by Go	C/MS			Marie & Marie & Marie and American
0307864-06	M5 B3 16.5'	SOIL		11/4/03 9:05	11/5/03 18:50	4 oz glass	lce
\underline{La}	nb Testing:	Rejected:	No	Ten	ър: 5 C		
	8015M						
	8260B BTEX + NAI	HTHALENE	E by Go	C/MS			

SAMPLE WORK LIST

Rice Operating

122 W. Taylor

Hobbs, NM 88240

505-397-1471

Order#:

G0307864

Project:

Project Name: M-5 SWD Soil Bores #3 & #4

Location:

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Lab ID: 0307864-07	<u>Sample</u> : M5 B2 12'	Matrix:	Date / Time <u>Collected</u> 11/3/03 14:57	Pate / Time Received 11/5/03 18:50	Container 4 oz glass	Preservative
<u>La</u>	<i>b Testing:</i> 8015M 8260B BTEX + N Chloride	Rejected: No APHTHALENE by G	Ten			
0307864-08	M5 B2 23'	SOIL	11/3/03 15:32	11/5/03 18:50	4 oz glass	Ice
<u>La</u>	<u>b Testing:</u> 8015M 8260B BTEX + N	Rejected: No APHTHALENE by G	Ten	np; 5 C		

ANALYTICAL REPORT

Kristin Farris

Rice Operating 122 W. Taylor Hobbs, NM 88240 Order#:

G0307864

Project:

Project Name:

M-5 SWD Soil Bores #3 & #4

Analyst

JLH

Location: EME

Lab ID:

0307864-01

Sample ID:

√ M5 SB4 4' 🦠

8015M

Method Blank

Date Prepared

Date Analyzed 11/6/03

Sample Amount 1

Dilution Factor 5

Method

8015M

Parameter	Result mg/kg	RL
GRO, C6-C12	1,740	50.0
DRO, >C12-C35	11,300	50.0
TOTAL, C6-C35	13,040	50.0

Surrogates	% Recovered	QC Limits (%	
1-Chlorooctane	23%	70	130
1-Chlorooctadecane	23%	70	130

8260B BTEX + NAPHTHALENE by GC/MS

Method Blank 0007451-02

Date Prepared

Date Analyzed 11/17/03 17:35

Sample Amount Dilution Factor

Analyst CK

Method 8260B

Parameter	Result µg/kg	RL
Benzene	74.1	25.0
Toluene	<25.0	25.0
Ethylbenzene	476	25.0
p/m-Xylene	1560	25.0
o-Xylene	65.9	25.0
Naphthalene	249	25.0

Surrogates	% Recovered	QC Limits (%)			
Dibromofluoromethane	123%	53	144		
1,2-dichloroethane-d4	123%	57	147		
Toluene-d8	101%	64	128		
4-Bromofluorobenzene	114%	47	158		

ANALYTICAL REPORT

Kristin Farris

Rice Operating 122 W. Taylor Hobbs, NM 88240 Order#;

G0307864

Project:

Project Name: M-5

1144401 111

M-5 SWD Soil Bores #3 & #4

Location:

EME

Lab ID:

0307864-02

Sample 1D:

M5 SB4 2'

8015M

Method Blank Date

Prepared

Date -Analyzed 11/6/03 Sample Amount Dilution Factor

Analyst JLH

Method 8015M

Parameter	Result mg/kg	RL
GRO, C6-C12	203	50.0
DRO, >C12-C35	2,210	50.0
TOTAL, C6-C35	2,413	50.0

Surrogates	% Recovered	QC Li	mits (%)
1-Chlorooctane	19%	70	130
1-Chlorooctadecane	21%	70	130

8260B BTEX + NAPHTHALENE by GC/MS

Method
Blank
0007451-02

Date Prepared Date <u>Analyzed</u> 11/17/03 17:59 Sample Amount

Dilution Factor

Analyst Method CK 8260B

Parameter	Result µg/kg	RL	
Benzene	<25.0	25.0	
Toluene	<25.0	25.0	
Ethylbenzene	1090	25.0	
p/m-Xylene	228	25.0	
o-Xylene	25.3	25.0	
Naphthalene	45.0	25.0	

Surrogates	% Recovered	QC Li	mits (%)
Dibromofluoromethane	118%	53	144
1,2-dichloroethane-d4	117%	57	147
Toluene-d8	99%	64	128
4-Bromofluorobenzene	95%	47	158

ANALYTICAL REPORT

Kristin Farris

Rice Operating

122 W. Taylor Hobbs, NM 88240 Order#:

G0307864

Project:

Project Name:

M-5 SWD Soil Bores #3 & #4

Location:

EME

Lab 1D:

0307864-03

Sample ID;

M5 SB4 6.0'

8015M

Method Blank Date Prepared Date Analyzed 11/6/03 Sample Amount Dilution Factor 1

Analyst JLH

Method 8015M

Parameter	Result mg/kg	RL
GRO, C6-C12	133	10.0
DRO, >C12-C35	593	10.0
TOTAL, C6-C35	726	10.0

Surrogates	% Recovered	QC Li	mits (%)
1-Chlorooctane	92%	70	130
1-Chlorooctadecane	97%	70	130

8260B BTEX + NAPHTHALENE by GC/MS

Method		
Blank		
0007451-02		

Date Prepared Date Analyzed 11/17/03 18:24 Sample <u>Amount</u> 1

Dilution <u>Factor</u> 1

<u>Analyst</u> CK

Method 8260B

Parameter	Result µg/kg	RL	
Benzene	<25.0	25.0	
Toluene	<25.0	25.0	
Ethylbenzene	325	25.0	
p/m-Xylene	<25.0	25.0	
o-Xylene	<25.0	25.0	
Naphthalenc	150	25.0	

Surrogates	% Recovered	QC Limits (%	
Dibromofluoromethane	118%	53	144
1,2-dichloroethane-d4	114%	57	147
Toluene-d8	98%	64	128
4-Bromofiuorobenzene	99%	47	158

ANALYTICAL REPORT

Kristin Farris Rice Operating

122 W. Taylor Hobbs, NM 88240 Order#:

G0307864

Project:

Project Name: Location: M-5 SWD Soil Bores #3 & #4

EME

Lab ID:

Sample ID:

0307864-04 M5 SB4 7'

8015M

Method Blank Date Prepared Date
<u>Analyzed</u>
11/6/03

Sample Amount

Dilution Factor

Analyst

JLH

Method 8015M

 Parameter
 Result mg/kg
 RL

 GRO, C6-C12
 56.6
 10.0

 DRO, >C12-C35
 161
 10.0

 TOTAL, C6-C35
 218
 10.0

Surrogates	% Recovered	QC Li	mits (%)
1-Chlorooctane	96%	70	130
1-Chlorooctadecane	108%	70	130

8260B BTEX + NAPHTHALENE by GC/MS

Method Blank 0007451-02 Date Prepared Date <u>Analyzed</u> 11/17/03 18:48

Sample Amount 1 Dilution Factor 1

Analyst CK Method 8260B

Result RLParameter μg/kg 25.0 Benzene <25.0 <25.0 25.0 Toluene 25.0 143 Ethylbenzene 25.0 p/m-Xylene 38.0 <25.0 25.0 o-Xylene 25.0 135 Naphthalene

Surrogates	% Recovered	QC Li	mits (%
Dibromofluoromethane	121%	53	144
1,2-dichloroethane-d4	114%	57	147
Toluene-d8	101%	64	128
4-Bromofluorobenzene	113%	47	158

ANALYTICAL REPORT

Kristin Farris Rice Operating Order#:

G0307864

122 W. Taylor Habbs, NM 88240 Project:

M-5 SWD Soil Bores #3 & #4

Analyst

JLH

Location:

Project Name:

EME

Lab ID;

0307864-05

Sample ID:

M5 B3 11'

8015M

Method Blank

Date Analyzed

11/6/03

Sample Amount 1

Dilution Factor

5

Method 8015M

Parameter	Result mg/kg	RL
GRO, C6-C12	606	50.0
DRO, >C12-C35	5,370	50.0
TOTAL, C6-C35	5,976	50.0

Surrogates	% Recovered	QC Li	mits (%)
1-Chlorooctane	21%	70	130
1-Chlorooctadecane	23%	70	130

8260B BTEX + NAPHTHALENE by GC/MS

Method Rlank 0007451-02

Date Prepared

Date

Prepared

Date Analyzed 11/17/03 19:13

Sample Amount 1

Dilution Factor

Analyst CK

Method 8260B

Parameter	Result µg/kg	RL
Benzene	<25.0	25.0
Toluene	<25.0	25.0
Ethylbenzene	314	25.0
p/m-Xylene	304	25.0
o-Xylene	<25.0	25.0
Naphthalene	479	25.0

Surrogates Dibromofluoromethane	% Recovered	QC Li	mits (%)
		53	144
1,2-dichloroethane-d4	119%	57	147
Toluene-d8	101%	64	128
4-Bromofluorobenzene	122%	47	158

ANALYTICAL REPORT

Kristin Farris Rice Operating 122 W. Taylor

Hobbs, NM 88240

Order#;

G0307864

Project:

Project Name:

M-5 SWD Soil Bores #3 & #4

Analyst

JLH

Location:

Lab ID:

0307864-06

Sample ID:

M5 B3 16.5'

8015M

Method Blank

Date Analyzed

11/6/03

Sample Amount

Dilution Factor

Method 8015M

Result Parameter RLmg/kg GRO, C6-C12 0.01 <10.0 DRO, >C12-C35 <10.0 10.0 TOTAL, C6-C35 <10.0 10.0

Surrogates	% Recovered	QC Limits (%)	
1-Chiorooctane	95%	70	130
1-Chlorooctadecane	104%	70	130

8260B BTEX + NAPHTHALENE by GC/MS

Method	
Blank	
0007451-02	

Date Prepared

Toluene

Date

Prepared

Date Analyzed 11/17/03 19:37

Sample Amount 1

Dilution Factor 1

Analyst Method 8260B CK

Result RLParameter μg/kg 25.0 Benzene <25.0 <25.0 25.0 25.0 Ethylbenzene <25.0 25.0 p/m-Xylene <25.0 o-Xylene <25.0 25.0 25.0 Naphthalene <25.0

Surrogates	% Recovered	QC Limits (%)	
Dibromofluoromethane		53	144
1,2-dichloroethane-d4 .	114%	57	147
Toluene-d8	108%	64	128
4-Bromofluorobenzene	103%	47	158

ANALYTICAL REPORT

Kristin Farris

Rice Operating

122 W. Taylor Hobbs, NM 88240 Order#:

: G0307864

Project:

Project Name; M-5 SWD Soil Bores #3 & #4

Location:

EME

Lab ID:

0307864-07

Sample ID;

M5 B2 12'

8015M

Method Blank Date Prepared Date Analyzed Sample <u>Amount</u> Dilution

Analyst Method

JLH

11/6/03

1

Factor 5

8015M

Parameter	Result mg/kg	RL
GRO, C6-C12	1,140	50.0
DRO, >C12-C35	4,210	50.0
TOTAL, C6-C35	5,350	50.0

Surrogates	% Recovered	QC Limits (%)	
1-Chiorooctane	21%	70	130
1-Chlorooctadecane	21%	70	130

8260B BTEX + NAPHTHALENE by GC/MS

Method	Date
Blank	Prepared
0007451-02	

Date
<u>Analyzed</u>
11/17/03
20:01

Sample <u>Amount</u> 1 Dilution <u>Factor</u> 1

Analyst Method CK 8260B

Parameter	Result µg/kg	RL	
Benzene	<25.0	25.0	
Toluene	<25.0	25.0	
Ethylbenzene	326	25.0	
p/m-Xylene	795	25.0	
o-Xylene	61.9	25.0	
Naphthalene	78.2	25.0	

Surrogates	% Recovered	QC Limits (%)	
Dibromofluoromethane		53	144
1,2-dichloroethane-d4	122%	57	147
Toluene-d8	99%	64	128
4-Bromofluorobenzene	111%	47	158

ANALYTICAL REPORT

Kristin Farris

Rice Operating 122 W. Taylor Hobbs, NM 88240 Order#:

Project:

M-5 SWD Soil Bores #3 & #4 Project Name:

Location:

EME

Lab ID:

0307864-08

Sample ID:

M5 B2 23'

8015M

Method Blank

Date Prepared

Date Analyzed 11/6/03

Sample Amount

Dilution Factor 1

Analyst

JLH

Method 8015M

Parameter	Result mg/kg	RL
GRO, C6-C12	897	10.0
DRO, >C12-C35	3,310	10,0
TOTAL, C6-C35	4,207	10.0

Surrogates	% Recovered	QC Limits (%)				
1-Chlorooctane	103%	70	130			
1-Chlorooctadecane	113%	70	130			

8260B BTEX + NAPHTHALENE by GC/MS

Method
Blank
0007451-02

Date Prepared

Date Analyzed 11/17/03

20:50

Sample Amount 1

Dilution Factor i

Analyst CK

Method 8260B

Parameter	Result µg/kg	RL
Benzene	<25.0	25.0
Toluene	<25.0	25.0
Ethylbenzene	165	25.0
p/m-Xylene	837	25.0
o-Xylene	<25.0	25.0
Naphthalene	91.2	25.0

Surrogates	% Recovered	QC Limits (%)					
Dibromofluoromethane	121%	53	144				
1,2-dichloroethane-d4	120%	57	147				
Toluene-d8	97%	64	128				
4-Bromofluorobenzene	105%	47	158				

Approval:

Raland K. Tuttle, Lub/Director, QA Officer Celey D. Keene, Org/ Jech. Director Jeanne McMurrey, Ihorg. Tech. Director

Sandra Biezughe, Lab Tech.

Sara Molina, Lab Tech.

DL = Diluted out N/A = Not Applicable RL = Reporting Limit ENVIRONMENTAL LAB OF TEXAS I, LTD.

Page 8 of 8

ANALYTICAL REPORT

G0307864 Order#: Kristin Farris Project: Rice Operating 122 W. Taylor Project Name: M-5 SWD Soil Bores #3 & #4 Location: EME Hobbs, NM 88240 Lab ID: 0307864-02 Sample ID: M5 SB4 21 **Test Parameters** Dilution Date RL Parameter Result Units Factor Method Analyzed Analyst 11/7/03 88.6 mg/kg 1 20 9253 SB Chloride Lab ID: 0307864-04 M5 SB4 7 Sample ID: Test Parameters Dilution Date Analyst Parameter Result Units Factor RL Method Analyzed 20 9253 35.4 mg/kg 1 11/7/03 SBChloride Lab ID: 0307864-06 M5 B3 16.5' Sample ID: Test Parameters Dilution Date Parameter Result Units Factor RL Method Analyzed Analyst 106 20 9253 11/7/03 SB Chloride mg/kg 1 Lab ID: 0307864-07 M5 B2 12' Sample ID: Test Parameters Date Dilution Analyst Parameter Result Units Factor RL Method Analyzed 20 9253 11/7/03 142 mg/kg SB Chloride 1

Approval: W. M. M. Raiand K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Biezugbe, Lab Tech.

Sara Molina, Lab Tech.

ENVIRONMENTAL LAB OF TEXAS I, LTD.

QUALITY CONTROL REPORT

8015M

BLANK SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0007353-02			<10.0		
CONTROL SOIL	LAB-ID#	Sample Concentr,	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0007353-03		952	759	79.7%	·
CONTROL DUP SOIL	LAB-ID#	Sample Concentr,	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0007353-04		952	756	79.4%	0.4%
SRM SOIL	LAB-II)#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
TOTAL, C6-C35-mg/kg	0007353-05		1000	856	85.6%	

QUALITY CONTROL REPORT

8260B BTEX + NAPHTHALENE by GC/MS

Order#:	G0307864
---------	----------

BLANK SOIL	LAB-ID#	Sample Concentr,	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-µg/kg	0007451-02			<25.0		
Toluene-μg/kg	0007451-02			<25.0		
Ethylbenzene-µg/kg	0007451-02		1	<25.0		
p/m-Xylene-µg/kg	0007451-02			<25.0		
o-Xylene-µg/kg	0007451-02			<25.0		
Naphthalene-µg/kg	0007451-02			<25.0		
CONTROL	LAB-ID#	Sample Concenty.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-µg/kg	0007451-03		50	63	126.%	
Toluenc-µg/kg	0007451-03		50	63	126.%	·
Ethylbenzene-µg/kg	0007451-03		50	51	102.%	
p/m-Xylene-µg/kg	0007451-03		100	100	100.%	
o-Xylene-µg/kg	0007451-03		50	54	108.%	
Naphthalene-µg/kg	0007451-03		- 50	44	88.%	
CONTROL DUP SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-µg/kg	0007451-04		50	59	118.%	6.6%
Tohiene-µg/kg	0007451-04		50	57	114.%	10.%
Ethylbenzene-µg/kg	0007451-04		50	48	96.%	6.1%
/m-Xylene-µg/kg	0007451-04		100	91	91.%	9.4%
-Xylene-µg/kg	0007451-04		50	49	98.%	9.7%
Naphthalene-µg/kg	0007451-04	······································	50	51	102.%	14.7%
SRM SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Benzene-µg/kg	0007451-05		50	53.6	107.2%	
oluene-µg/kg	0007451-05		50	54.7	109.4%	
thylbenzene-µg/kg	0007451-05		50	47.8	95.6%	
/m-Xylene-µg/kg	0007451-05		100	95.1	95.1%	
-Xylene•μg/kg	0007451-05		50	49.4	98.8%	
laphthalenc-µg/kg	0007451-05		50	48.8	97.6%	

QUALITY CONTROL REPORT

Test Parameters

BLANK SOIL		LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0007361-01			<20.0		
MS SOIL		LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/kg		0307873-01	354	500	851	99.4%	-
MSD	SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Chloride-mg/kg	,	0307873-01	354	500	868	102.8%	2.%
SRM SOIL		LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Chloride-mg/kg		0007361-04		5000	4960	99.2%	

CASE NARRATIVE

ENVIRONMENTAL LAB OF TEXAS

Prepared for:

Rice Operating

122 W. Taylor

Hobbs, NM 88240

Order#:

G0307864

Project:

M-5 SWD Soil Bores #3 & #4

The following samples were received as indicated below and on the attached Chain of Custody record. All analyses were performed within the holding time and with acceptable quality control results unless otherwise noted.

SAMPLE ID	LAB ID	MATRIX	Date Collected	Date Received
M5 SB4 4'	0307864-01	SOIL	11/04/2003	11/05/2003
M5 SB4 2'	0307864-02	SOIL	11/04/2003	11/05/2003
M5 SB4 6.0'	0307864-03	SOIL	11/04/2003	11/05/2003
M5 SB4 7'	0307864-04	SOIL	11/04/2003	11/05/2003
M5 B3 11'	0307864-05	SOIL	11/04/2003	11/05/2003
M5 B3 16.5'	0307864-06	SOIL	11/04/2003	11/05/2003
M5 B2 12'	0307864-07	SOIL	11/03/2003	11/05/2003
M5 B2 23'	0307864-08	SOIL	11/03/2003	11/05/2003

Surrogate recoveries on the 8015M TPH are outside of control limits due to dilution. (G0307864-01, 02, 05, & 07)

The enclosed results of analyses are representative of the samples as received by the laboratory. Environmental Lab of Texas makes no representations or certifications as to the methods of sample collection, sample identification, or transportation handling procedures used prior to our receipt of samples. To the best of my knowledge, the information contained in this report is accurate and complete.

Approved By:

Environmental Lab of Texas I, Ltd.

Date

<u>ت</u>
Texas,
Lab of
Environmental

÷									. `					,										
	# + M								(eluberlo	TAT biebrie										-				
	Botes			1							-													
UEST	ශු										-				\exists		\exists		1					
IS REO	J. 10											_						_						
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	d					e For.	-	47,	LN9.	31EX 8021B/6030	IX.	×	X	X	X	X	\leq	X			d U		,	
AND A	SWD		14.1	po		Analyze				aelitatovimas aelitatovimas					_			+		_	parature Upon Rocero	5 · ·		
CORD	7-5		EMF	153				.1		O 68 QA SA Islalel			X	×			^X	7			grathir			
IY REC	.e:	≱ ±	ÿ	PO #:	ł		TOLE		OA	THE BUT AND STRUE TO SO THE BUT AND THE BU		*			~	X				Szmile	Hi.	ĝ		
JSTOD	Project Name: M-S	Froject#:	Project Loc:	ğ						DS (CF) SPB (EC		1-54		54		.×	×	\dashv		\dashv		Time		ĒĄ
of CL	Proje	_	9		,	L				χιμει (εδεςηλ):			7											.)
CHAIN			,					Matrix		e gbuli jio		8	X	X	X	×	\leq					Date		6%
								Н		Vator Specify)								-	-	-				Ó
			Ì		65					ent)														
					1-2			Praservalive		*0s't		-						i	-					
					39			Pras		ICI INO'					-				-	-				
					(31)					D.C	17	><	×	>	X	٨.	\ge	X	_					\sim
						-	τ,	53/	620H	do, of Containers	-	-	_			_	\dashv	-		\dashv				(A)
					Fax No: (505) 397					baldma2 əmiT	1,00		1120	1130	2580	5060	1457	1532		1 2 2	/ Tall 1			(V)
į				2	4. *.					belqms2 als(110403	110403	110403	116403	110403	110403	116303	110303			K. MIC/C).	Received by:		
, 0 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	faceis	Operation	ar.	8834				ļ												- l	. ني		650	F17
D OI I EXA! Phone: 915-563-1800 Fax: 915-563-1713	7	Opera	Taylar	NM	6116		_				- H	2	9	rt.		16.5	12	23			ž ×	Socie Dele	1105	Date
Phone Fax:	istin	RICE	- 1	165,	393	while				i I	584 H	46 H	584		63 -117	1	82	29				\ \ \	2	
	X	9.I.	CA	707	136	B						1		\ \ \ \ \	20	Ì					,	2/0	.	
	iager:	. 1	fress: /	Gity/State/Zip: Hobbs, MM	Telephone No (505) 393-9/7	ature:					2,5	300	MB	MB	M5-	える	C W	MS			1/1		13.	_
OFIII 1-20 East as 73763	Project Manager:	Company Name	Company Address: (22 M.	Gity/Stat	Telephor	Sampler Signature:				3	A TO	ri Q	0,0	100	Ŷ	30.	Ģ	8		nichene.		PYOQ 10 DV hed by:	del	I by:
ENVICONMENTAL LAD OF 1 EXAS 12600 West L-20 East Odessa, Texas 7 7753 Fax: 915-563-1713	d.	-	Con			S PE				Toploso	31 del 4 de									Special lostructions	, / /	Relinguished by	Kenla	Relinquished by:

...

ANALYTICAL REPORT

Prepared for:

Kristin Farris
Rice Operating
122 W. Taylor
Hobbs, NM 88240

Project:

M-5

PO#:

Order#:

G0307863

Report Date:

11/07/2003

Certificates

US EPA Laboratory Code TX00158

Nov 10 03 11:56a

ENVIRONMENTAL LAB OF TEXAS

SAMPLE WORK LIST

Rice Operating

122 W. Taylor

Hobbs, NM 88240

505-397-1471

Order#:

G0307863

Project:

Project Name: M-5

Location:

None Given

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

<u>Lab ID:</u> 0307863-01	Sample: M5 B2 11 nh Texting: Density Moisture	Matrix: SOIL Rejected: No	Date / Time Collected 11/3/03 14:55	Date / Time <u>Received</u> 11/5/03 18:50 emp: 4 C	<u>Container</u> Plastic Bag	<u>Preservative</u> Icc
0307863-02	M5 B2 19'	ZOIL	11/3/03 15:15	11/5/03 18:50	Plastic Bag	Ice
<u>L</u>	nb Testing: Density Moisture	Rejented: No	o 11.	ењр: 4 С		
0307863-03	M5 B3 21	SOIL	11/4/03 9:15	11/5/03 18:50	Plastic Bag	Ice
<u>L</u> a	n <u>b Testing:</u> Density Moisture	Rejected: No	о Т	emp: 4C		
0307863-04	M5 B3 11.5	soit.	11/4/03 8:32	11/4/03 18:50	Plastic Bug	Icc
. <u>La</u>	nb Testing: Density Moisture	Rejected: No	о Т	einp: 4C		

E.q

ENVIRONMENTAL LAB OF TEXAS

ANALYTICAL REPORT

		T T CLEAN TO	ECTABLE EC	~~ ~~	W. J.L.			
Kristin Farris Rice Operating 122 W. Tuylor Hubbs, NM 883	240		Order#: Project: Project I Location	Name:	G0307863 M-5 None Given			
Lab ID: Sample ID:	0307863-01 M5 R2 11				,			•
Test Param	neters <u>'</u>	Result	Units	Dilutio Factor		Method	Date Analyzed	Analyst
Density Moisture	-	1.336	g/cm3(wet) %	1	N/A 1.00	ASTM4292 CLP	11/7/03 11/6/03	es B
Lab ID: Sample ID:	0307863-02 MS B2 19'							
Test Param	nelers	Result	Units	Dilutio: Facto		Method	Date Analyzed	Analyst
Density Moisture		1.162 15.0	g/cm3(wet)	1	N/A 1.00	ASTM4292 CLP	11/7/03 11/6/03	Sh Sb
Lab ID: Sample ID:	03U7863-03 M5 B3 21					.,		
Test Param Parameter	neters	Result	Units	Dilutio Factor		Method	Date Analyzed	Analyst
Density Moisture		1.4 32 13.0	g/cm3(wet) %	1	N/A 1.00	astm 4292 CLP	11/7/03 11/6/03	SB SB
Lab ID: Sample ID:	0307863-04 M5 B3 11.5							
Test Paran Parameter	neters	<u>Result</u>	Units	Dilutio Pacto		Method	Date Analyzed	Analyst
Density Moisture		1.512 7.00	g/cm3(wet) %	1, 1	N/A 00,1	ASTM4292 CLP	1 1/7/03 1 1/6/03	SB SB

Jeanne McMurrey, Inorg. Tech. Director Sandra Biczugbe, Lab Tech. Sara Molina, Lab Tech.

Page 1 of 1

ENVIRONMENTAL LAB OF TEXAS I, LTD.

Nov 10 03 11:56a

p . 4

ENVIRONMENTAL LAB OF TEXAS

QUALITY CONTROL REPORT

υ

Test Parameters

DUPLICATE SOIL	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Moisture-%	0307863-04	7		9.00		25.%

p.5

TAT brabnets RUSH TAT (Pre-Schedula) CHAIN OF CUSTOBY RECORD AND ANALYSIS REQUEST 0002/81408 X3TE Melals: As Ad the Cot of Po Ho Se TCLP: ORCHORD MATOR PAT PO #: Project Name: Project #. Project Lags 3001/2001 XT H9T 1,01 h H9T CBIRASIJOIROT chinat (spand): llos (Vibage) 19010 IDH FIND र्जान्न अम्बार्ध No. of Containett 0945 balemed omili 1104 03 110303 1663 110303 Molshue + Densite beigme2 eksű Environmental Lab of Texas, Inc. 88340 8/20 Time Phone: 915-561-1808 Fax: 918-363-1713 Telephone No. (505)393-9174 City/State/21p: Habbs, NM 1105 Date FIELD CODE Company Address: 122 M Company Marie ALCE Project Manager: Sampler Signature: 72500 West 1.20 East Odessa, Texas 73763 pecial instructions;

ANALYTICAL REPORT

Prepared for:

Kristin Farris
Rice Operating
122 W. Taylor
Hobbs, NM 88240

Project:

M-5 SWD Water

PO#:

758

Order#:

G0307865

Report Date:

11/18/2003

Certificates

US EPA Laboratory Code TX00158

SAMPLE WORK LIST

Rice Operating

122 W. Taylor

Hobbs, NM 88240

505-397-1471

Order#:

G0307865

Project:

Project Name: M-5 SWD Water

Location:

EME

The samples listed below were submitted to Environmental Lab of Texas and were received under chain of custody. Environmental Lab of Texas makes no representation or certification as to the method of sample collection, sample identification, or transportation/handling procedures used prior to the receipt of samples by Environmental Lab of Texas, unless otherwise noted.

Lab ID:	Sample:	<u>Matrix:</u>		Date / Time Collected	Date / Time Received	Container	Preservative
0307865-01	B1 grab	WATER		11/3/03 15:23	11/5/03	See COC	See COC
<u>La</u>	b Testing:	Rejected:	No	Tem	p: 4 C		
	Anions						
	Cations						
	Bromide - 300.0						
	Total Dissolved Soli	ds (TDS)					
0307865-02	B1 (voa)	WATER		11/4/03 8:20	11/5/03 18:50	See COC	See COC
La	b Testing:	Rejected:	No	Tem	p: 4·C		
	8260B BTEX + NAI	PHTHALENE	by G	C/MS			
0307865-03	B2 grab	WATER		11/3/03 16:35	11/5/03 18:50	See COC	See COC
La	b Testing:	Rejected:	No	Tem	p: 4 C		
	Anions						
	Cations						
	Bromide - 300.0						
	Total Dissolved Solid	ds (TDS)					
0307865-04	B2 (voa)	WATER		11/4/03 12:15	11/5/03 18:50	See COC	See COC
<u>La</u>	b Testing:	Rejected:	No	Tem	p: 4 C		
	8260B BTEX + NAI	HTHALENE	by G	C/MS			· · · · · · · · · · · · · · · · · · ·
0307865-05	B3	WATER		11/4/03 15:40	11/5/03 18:50	Sec COC	See COC
<u>La</u>	b Testing:	Rejected:	No	Tem	p: 4 C		
	Anions						
	Cations						
	Bromide - 300.0				•		
•••	Total Dissolved Soli	ds (TDS)					
0307865-06	B3 (voa)	WATER		11/4/03 12:50	11/5/03 18:50	See COC	See COC
La	b Testing:	Rejected:	No	Tem	p: 4 C		
	8260B BTEX + NAI	PHTHALENE	hv G	C/MS			

ANALYTICAL REPORT

Kristin Farris

Rice Operating 122 W. Taylor Hobbs, NM 88240 Order#:

G0307865

Project:

M-5 SWD Water

Project Name: Location:

EME

Lab 1D:

0307865-02

Sample ID:

B1 (vox)

8260B BTEX + NAPHTHALENE by GC/MS

Method Blank

0007452-02

Date Prepared Date Analyzed 11/17/03

21:15

Sample
Amount

Dilution
Factor

Analyst CK

Method 8260B

Result Parameter RLμg/L <1.00 1.00 Benzene 00.1 <1.00 Toluene Ethylbenzene 1.00 7.84 p/m-Xylene 7.97 1.00 1.00 o-Xylene <1.00 Naphthalene 4.15 1.00

Surrogates	% Recovered	QC Limits (%)		
Dibromofluoromethane	124%	53	144	
1,2-dichloroethane-d4	123%	57	147	
Toluene-d8	116%	64	128	
4-Bromofluorobenzene	116%	65	140	

ANALYTICAL REPORT

Kristin Farris

Rice Operating 122 W. Taylor Hobbs, NM 88240 Order#:

G0307865

Project:

M-5 SWD Water

Project Name: Location:

EME

Lab ID;

0307865-04

Sample ID:

B2 (voa)

8260B BTEX + NAPHTHALENE by GC/MS

Method Blank Date <u>Analyzed</u>

Date

Naphthalene

Prepared

Sample Amount Dilution Factor

Analyst CK

1.00

Method 8260B

0007452-02

11/18/03 11:20

.

11.5

Result Parameter RL $\mu g/L$ Benzene 7.60 1.00 1.02 1.00 Toluene 1.00 Ethylbenzene 15.0 1.00 p/m-Xylene 26.8 o-Xylene 1.11 1.00

Surrogates % Recovered QC Limits (%) Dibromofluoromethane 126% 53 144 125% 57 147 1,2-dichloroethane-d4 Toluene-d8 106% 64 128 4-Bromofluorobenzene 125% 65 140

ANALYTICAL REPORT

Kristin Farris Rice Operating

Hobbs, NM 88240

Order#:

G0307865

122 W. Taylor

Project:

M-5 SWD Water

Project Name: Location:

EME

Lab ID:

0307865-06

Sample ID:

B3 (voa)

8260B BTEX + NAPHTHALENE by GC/MS

Method Blank	Date Prepared	Date Analyzed	Sample Amount	Dilution Factor	Analyst	Method
0007452-02		11/17/03	1 .	1	CK	8260B

Parameter	Result µg/L	RL
Benzene	<1.00	1.00
Toluene	<1.00	1.00
Ethylbenzene	12.4	1.00
p/m-Xylene	2.89	1.00
o-Xylene	<1.00	1.00
Naphthalene	11.5	1.00

Surrogates	% Recovered	QC Limits (%)		
Dibrornofluoromethane	127%	53	144	
1,2-dichloroethane-d4	127%	57	147	
Toluene-d8	113%	64	128	
4-Bromofluorobenzene	. 111%	65	140	

Approval:

Raland K. Tuttle, Lab Dischor, QA Officer Celey D. Keene, Org. Tech. Director Jeanne McMurrey, Inone Tech. Director

Sandra Biezugbe, Lab Tech. Sara Molina, Lab Tech.

ANALYTICAL REPORT

Kristin Farris Rice Operating 122 W. Taylor Hobbs, NM 88240		Orderk Project Project Locatio	: Name:	G0307865 M-5 SWD W EME	nter		
Lab ID: 0307865-01 Sample ID: B1 grab			,				
Anions Parameter	Daenit	Unita	Dilution		Method	Date	Analyst
	<u>Result</u> 188	Units	Factor		310.1	Analyzed	SB
Bicarbonate Alkalinity	<0.10	mg/L	1	2.00 0.10		11/6/03 11/6/03	SB SB
Carbonate Alkalinity	8600	mg/L			310.1		
Chloride		mg/L	1	5.00	325	11/6/03	SB SB
Hydroxide Alkalinity SULFATE, 375.4	<0.10 599	mg/L mg/L	12.5	0.10 6.25	310.1 375.4	11/6/03 11/7/03	SB
Cations			Dilution			Date	
Parameter	Result	Units	Factor		Method	Analyzed	Analys
Calcium	1610	mg/L	1000	10.0	6010B	11/6/03	SM
Magnesium	470	mg/L	100	0.10	6010B	11/6/03	SM
Potassium	46.2	mg/L	10	0.50	6010B	11/6/03	SM
Sodium	2910	mg/L	1000	10.0	6010B	11/6/03	SM
Test Parameters			Dilution	1		Date	
Parameter	Result	Units	Factor		Method	Analyzed	Analys
Bromide - 300.0	< 50.0	mg/L	100	50.0	300.0	11/10/03	RKT
Total Dissolved Solids (TDS)	17200	mg/L	2	10.0	160.1	11/6/03	$g_{\mathcal{B}}$
Lab ID: 0307865-03 Sample ID: B2 grab							***************************************
Anions			Dilution	ı		Date	
Parameter	Result	Units	Factor	RL	Method	Analyzed	Analyst
Bicarbonate Alkalinity	208	mg/L	1	2.00	310.1	11/6/03	SB
Carbonate Alkalinity	< 0.10	mg/L	1	0.10	310.1	11/6/03	SB
Chloride	7090	mg/L	,1	5.00	325	11/6/03	SB
Hydroxide Alkalinity	<0.10	mg/L	1	0.10	310.1	11/6/03	SB
SULFATE, 375.4	566	mg/L	12.5	6.25	375.4	11/7/03	SB
Cations	,		Dilution	1		Date	
Parameter	Result	Units	Factor	RL	Method	Analyzed	Analys
Calcium	1640	mg/L	1000	10.0	6010B	11/6/03	SM
Magnesium	445	mg/L	100	0.10	6010B	11/6/03	SM
Potassium	44.8	mg/L	10	0.50	6010B	11/6/03	SM
Sodium	2490	mg/L	1000	0.01	6010B	11/6/03	SM
Test Parameters			Dilution			Date	
Parameter	Result	Units	Factor	RL	Method	Analyzed	Analyst
Bromide - 300.0	< 50.0	mg/L	100	50.0	300.0	11/10/03	RKT
Total Dissolved Solids (TDS)	15,000	mg/L	2	10.0	160.1	11/6/03	SB

ANALYTICAL REPORT

Kristin Farris Rice Operating 122 W. Taylor Hobbs, NM 88240 Order#:

er#: G0307865

Project:

M-5 SWD Water

Project Name: Location:

EME

Lab ID: Sample ID: 0307865-05

B3

Anions			Dilution			Date	
Parameter	Result	Units	Factor	$\underline{\mathbf{RL}}$	Method	Analyzed	Analyst
Bicarbonate Alkalinity	188	mg/L	2	4.0	310.1	11/6/03	SB
Carbonate Alkalinity	<0.20	mg/L	2	0.20	310.1	11/6/03	SB
Chloride	7890	mg/L	1	5.00	325	11/6/03	SB
Hydroxide Alkalinity	< 0.20	mg/L	2	0.20	310.1	11/6/03	SB
SULFATE, 375.4	660	mg/L	12.5	6.25	375.4	11/7/03	SB
Cations			Dilution			Date	
Parameter	Result	Units	Factor	RL	Method	Analyzed	Analyst
Calcium	1550	mg/L	1000	10.0	6010B	11/6/03	SM
Magnesium	490	mg/L	100	0.10	6010B	11/6/03	SM
Potassium	57.4	mg/L	10	0.50	6010B	11/6/03	SM
Sodium	3033	mg/L	1000	10.0	6010B	11/6/03	SM
Test Parameters			Dilution			Date	
Parameter	Result	Units	Factor	RL	Method	Analyzed	Analyst
Bromide - 300.0	< 100	mg/L	200	100	300,0	11/10/03	RKT
Total Dissolved Solids (TDS)	18600	mg/L	4	20.0	160.1	11/6/03	SB

Approval: Club Men 1119
Raland K. Tuttle, Lab Director, OA Officer Date

Raland K. Tuttle, Lab Director, QA Officer Celey D. Keene, Org. Toch. Director Jeanne McMurrey, Inorg. Tech. Director Sandra Piccurche, Lab Toch

Sandra Biczugbe, Lab Tech. Sara Molina, Lab Tech.

ENVIRONMENTAL LAB OF TEXAS I, LTD.

QUALITY CONTROL REPORT

8260B BTEX + NAPHTHALENE by GC/MS

BLANK WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Benzene-µg/L	0007452-02			<00.1>		
Foluene-µg/L	0007452-02		1	<1.00		
Ethylbenzene-μg/L	0007452-02			<1.00		
n/m-Xylene-µg/L	0007452-02		İ	<1.00		
-Xylene-µg/L	0007452-02			<1.00		
Naphthalene-µg/L	0007452-02			<1.00		
CONTROL WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Benzene-µg/L	0007452-03		50	63	126.%	
Toluene-µg/L	0007452-03		50	63	126.%	
Ethylbenzene-µg/L	0007452-03		50	51	102.%	
n/m-Xylene-μg/L	0007452-03		100	100	100.%	
n-Xylenc-μg/L	0007452-03		50	54	108.%	
Naphthalene-µg/L	0007452-03		50	44	88.%	
CONTROL DUP WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Benzene-µg/L	0007452-04		50	59	118.%	6.6%
Foluenc-µg/L	0007452-04		50	57	114.%	10.%
Ethylbenzene-µg/L	0007452-04		50	48	96.%	6.1%
/m-Xylene-µg/L	0007452-04		100	91	91.%	9.4%
-Xylene-μg/L	0007452-04		50	49	98.%	9.7%
Naphthalene-µg/L	0007452-04		50	51	102.%	14.7%
SRM WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Benzene-µg/L	0007452-05		50	53.6	107.2%	
oluenc-µg/L	0007452-05		50	54.7	109.4%	
Ethylbenzene-µg/L	0007452-05		50	47.8	95.6%	
/m-Xylene-µg/L	0007452-05		100	95.1	95.1%	
-Xylene-µg/L	0007452-05		50	49.4	98.8%	
laphthalene-µg/L	0007452-05		50	48.8	97.6%	

QUALITY CONTROL REPORT

Anions

BLANK WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Bicarbonate Alkalinity-mg/L	0007363-01			<2.00		
Carbonate Alkalinity-mg/L	0007364-01			<0.10		
Chloride-mg/L	0007362-01	·		<5.00		
Hydroxide Alkalinity-mg/L	0007365-01			<0.10		
SULFATE, 375.4-mg/L	0007381-01			<0.50		
DUPLICATE WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Bicarbonate Alkalinity-mg/L	0307865-01	188		186		1.1%
Carbonate Alkalinitý-mg/L	0307865-01	0		<0.10		0.%
Hydroxide Alkalinity-mg/L	0307865-01	0		<0.10		0.%
SULFATE, 375.4-ing/L	0307865-01	599		601		0.3%
MS WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/L	0307865-01	8600	5000	13100	90.%	
MSD WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Chloride-mg/L	0307865-01	8600	5000	13000	88.%	0.8%
SRM WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Bicarbonate Alkalinity-mg/L	0007363-04	· · · · · · · · · · · · · · · · · · ·	0.05	0.0496	99.2%	
Carbonate Alkalinity-mg/L	0007364-04	Add the second s	0.05	0.0496	99.2%	
Chloride-mg/L	0007362-04		5000	4960	99.2%	
Hydroxide Alkalinity-mg/L	0007365-04		0.05	0.0496	99.2%	
SULFATE, 375.4-mg/L	0007381-04		50	48.7	97.4%	

QUALITY CONTROL REPORT

Cations

BLANK	WATER	LAB-ID#	Sample Concentr.	Spike Concentr,	QC Test Result	Pet (%) Recovery	RPD
Calcium-mg/L.		0007349-02			<0.010		
Magnesium-mg/L		0007349-02			<0.001		
Potassium-mg/L		0007349-02			< 0.050		
Sodium-mg/L		0007349-02			< 0.010		
DUPLICATE WATER		LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pct (%) Recovery	RPD
Calcium-mg/L		0307865-01	1610		1590		1.3%
Magnesium-mg/L		0307865-01	470		472		0.4%
Potassium-mg/L		0307865-01	46.2		46.4		0.4%
Sodium-mg/L	,	0307865-01	2910		2870		1.4%
SRM	WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Calcium-mg/L		0007349-05		2	1.77	88.5%	
Magnesium-mg/L		0007349-05	-	2	2.16	108.%	
Potassium-mg/L		0007349-05		2	1.88	94.%	
Sodium-mg/L		0007349-05	 	2	2.11	105.5%	

QUALITY CONTROL REPORT

Test Parameters

BLANK WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Bromide - 300.0-mg/L	0007459-01			< 0.50		
Total Dissolved Solids (TDS)-mg/L	0007369-01			<5.00		
CONTROL WATER	LAB-ID#	Sample Concentr.	Spike Concentr,	QC Test Result	Pct (%) Recovery	RPD
Bromide - 300.0-mg/L	0007459-02		10	9.83	98.3%	
CONTROL DUP WATER	LAB-ID#	Sample Concentr.	Spike Concepty.	QC Test Result	Pet (%) Recovery	RPD
Bromide - 300.0-mg/L	0007459-03	7.	10	10.05	100.5%	2.2%
DUPLICATE WATER	LAB-ID#	Sample Concentr.	Spike Concentr,	QC Test Result	Pct (%) Recovery	RPD
Total Dissolved Solids (TDS)-mg/L	0307865-01	17200		17600		2.3%
SRM WATER	LAB-ID#	Sample Concentr.	Spike Concentr.	QC Test Result	Pet (%) Recovery	RPD
Bromide - 300.0-mg/L	0007459-04		10	10.03	100.3%	

	Relinquished by L	Kandark 1	Religioushed by:	Napthalone	Special Instructions:					-04-	Ř	-01	100	107	10	LAB # labits only	Solve.				Sampler	Tele	o cicy	O.	Company	Сопр	Project	12800 West 1-20 East Odessa, Texas 79763
	_	7		20 W/R	ši					1	\$3	82	82	81	81	**************************************					Sampler Signature:	Telephone No (505)393-9/74	omposition T	Siste/7in	Company Address: 133 M	Company Name	Project Manager:	asi 763
				TEX :						(NOA)		(LIGH)	day	(aou)	asab	FJELD CODE					Hank	05/34	Labba, Will about	1/2/11	122 N	BICE	Kristin	. P1,
	Date	1105	Date		Fax t											CODE					M H	1-9/74	11/1/1	3-	Taylar	ļ	Ł	Phone: 915-563-1800 Fax: 915-563-1713
	Time in	150		١,	to R.H.				-					-	1-1							7	00000	002/	ar	Operation	Faccis	-1800 -1713
K. C.	Responding ELOT		Received by:	145	R. HICKS				7	110403	110403	110403	110303	110403	10303	Date	Sampled							<i>-</i> 24				
(24)	91									1250	1540	1216	11.35	0820	1523	Time	Sampled					Fax No: (505) 397-1471						
NO											_	10	-	12	-	No. c	f Containers			•		15	\		-			
<i>ا</i> لارا					9					Z		7		×		Ice						125						
				OP)				-					<u> </u>	_	HNO,			-			W						
				6									-	-		HCI			Preservativa			0	. {			-		
			Ì						+			-	-	-	 	H,50,			valive		1	1.7					-	
]													Nnne					1	15	.					
																	(Specify)					7						
	916C		Date						-	<u> </u>	/	بر	7	<u> </u>	<	Water				'	1	ļ	Ì			1	1	
1			•						\dashv			-	-			Studg			Mairix									HAII
×			-		i			-	+	_		-	-	-	-	}	(specify):		ĺ.						_		P	404
8			Time					1	7		7	-	5	_	<	-	C) SARIEC	:	J		7				Project Loc:	P	Project Name:	сиз
, v			1		أسب											TPH	18.1						31	2	ř ë	Project #:	Nan	700
				ab fin	8				-					<u> </u>	-		X 1005/1006			TOTAL			. ∃ 1	:	ñ	;# [ē.	YR
		١,		lamperature Upon Records:	Sample Contenes Idad?					{		_	-	-	-		015M GRO/O		Se	20								igo)
		,		2 5 0 2					-				-	-		Votati		20.10.19	-				-		EME ME		B	Ĝ A
			A	j	ē,	-	-	-	-	-			_			Semi	nlutiies				3		100	8	<i>™</i>		m-5	<i>NO A</i>
		,	À	1 7	ā				-	2		2		5		BTEX	80218/5030	Naptha	100		Analyse For							MAL
				Š	*				1	}	7		7		Z	Anu	nluties 8021B/5030 /	iens			7		1	- {			N	. Y'SJ
									_	_			>	<u> </u>	>	Br	-]			5	s RE
		Home grass (BIEX)	۳		4				\dashv					-										}			-	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST
		3	Ŧ			\dashv		-+	-																		mater	75.
		Ų,	¥		Ξ			-+	+					_													+	
		80	,	5				_	1							RUSH	TAT (Pre-S	chedute	1		1						h	
		' @														Standi	TAT on]				ļ					
		Ğ,	, 2	2. By																								
		_	į.	t																								

בשט טו ונאמט, וווע. Phone: 915-563-1800

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Odessa, Texas 79763 12600 West 1-20 East Special Instructions: AB # (lab Napthalene WISTEN Company Address: 122 M Sampler Signature: Project Manager: Company Marie RICE Telephone No (505) 393-9174 City/State/Zip: +10 bbs, NM 88240 13 82 83 4000 (ADE) (BOK) (NOA) day Krustin FIELD CODE Fax: 915-563-1713 1105 (505) FAX Operating Date Taylor tarris Jule 0745
Time Received ō 25/2 Time R. HICKS 110403 110403 1110403 Received by: 110403 110303 10303 Recognized by ELOT. Date Sampled (24/2) 1215 11,35 0820 1523 1540 1250 Time Sampled Fax No: (505) 397-1471 2 No. of Containers Ice HNO, HCI NaOH H-SO. None Other (Specify) Date 1/252 Water Date Matrix Soil Project Name: 28 Other (specify): - T Project Lact Time TDS/CL) SAR / EC Project # TPH 418.1 PO #: TOTAL TPH TX 1005/1006 Temperature Djieh Receipt Sample Contamers Intact? aboratory Comments: TPH 8015M GRO/DRO Metals: As Ag Ba Cd Cr Pb Hg Se EME 158 M-5 SWD water Volatiles Analyza For Semivolaties BTEX 80218/5030 Napthale De

RUSH TAT (Pre-Schedule

Standard TAT

BERN - CALL MICHELLE KINDER SO-266-504

ہ ۔ ہ

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

October 2, 2003

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE:

M-5 Redwood Tanks, Section 5 T20S R37E Unit M

Dear Mr. Price

Rice Operating Company retained Hicks Consultants to address potential environmental concerns at the above referenced site. This submission proposes a scope of work that we believe will best mitigate any threat to human health and the environment and lead to closure of the regulatory file for this site.

Background

The M-5 Redwood Tank Site is located about 2 miles southwest of Monument, New Mexico. Figure 1 shows the location of the site. Mr. Jimmy Cooper is the owner of the land surface at this location. Rice Operating Company (ROC) is the service provider (operator) for the Eunice-Monument-Eumount (EME) Saltwater Disposal System and has no ownership of any portion of pipeline, well, or facility. The EME System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis. Major projects require System Partner authorization of expenditures (AFE) approval and work begins as funds are received. We will implement the work outlined herein after NMOCD approval and subsequent authorization from the System Partners.

1. Evaluate Possible Impacts to Soil and Ground Water

The M-5 Redwood Tanks have operated for several decades and will be replaced with tanks that meet more current industry standards. ROC has replaced several such tanks in the past and found that some of these sites caused impairment of ground water quality or have the potential to cause such impairment. The first task of this work assignment is determining the magnitude and extent of any such impairment.

The HYDRUS1D and mixing model simulation, which we plan to employ in Task 2, requires input of 10 parameters. As Table 1 shows, we must collect site specific data for several of these parameters. First we will measure the depth to ground water at nearby windmills and monitoring wells to determine the hydraulic gradient. Figure 1 shows the location of four windmills which we hope to employ in this initial water level

October 2, 2003 Page 5

measurement program. We know that several monitoring wells are nearby, such as the ROC well at the P-6 site, west of the tanks. We will employ this well and others to clearly establish the hydraulic gradient of the area and the direction of ground water flow.

Table 1: Input Parameters for Simulation Modeling

Input Parameter	Source
Vadose Zone Thickness	Proposed monitoring well and borings
Vadose Zone Texture	Proposed monitoring well and borings
Dispersion Length	Professional judgment
Soil Moisture	Field Measurements from borings
Vadose Zone Chloride Load	Proposed borings adjacent to the tanks
Length of release perpendicular to ground water flow	Field Measurements
Climate	Pearl, NM station (Hobbs)
Background Chloride in Ground Water	Samples from nearby water supply wells and monitoring wells
Ground Water Flux	Calculated from regional hydraulic data and data from nearby wells
Aquifer Thickness	Nicholson and Clebsch (1960) and SEO data and proposed monitoring well

Because ROC plans to move forward with taking these two tanks out of service and constructing new facilities adjacent to the existing tanks, our work is independent of this replacement program. We plan to collect samples from four boreholes adjacent to the tanks to obtain information for other input parameters.

Near the northwest side of the tanks (up gradient of probable ground water flow), we will install a boring as close as practical to the existing tanks, perhaps between the two tanks. Drilling and sampling will cease in this borehole when we encounter ground water (approximately 30 feet below grade). We propose a second boring 15 feet west of the westernmost tank and a third boring 30 feet east of the easternmost tank. Again, drilling and sampling will cease in these boreholes when we encounter ground water. Sixty feet southeast of the tanks, we plan a fourth boring which we will convert to a monitoring well as described later.

From each boring, we will obtain split-spoon soil samples every five feet of the vadose zone. We will evaluate these discrete samples, the borehole drilling characteristics, and drill cuttings to develop a lithologic profile of the vadose zone. We will employ standard methods, as described in the Junction Box Replacement Program Plan, to evaluate all soil samples in the field for chloride content, TPH and volatile organic

constituent content. We will submit at least one soil sample from each boring to a qualified laboratory for evaluation of chloride and BTEXN (benzene, toluene, ethylbenzene, xylene, naphthalene). The field geologist will identify samples for laboratory analysis after review of the field analysis of chloride, TPH and VOCs. The geologist will select two samples from the first boring and two samples from the fourth boring for laboratory analysis of soil moisture content and bulk density.

After we complete the sampling program described above for the fourth boring, will continue drilling through the saturated zone to the top of the Dockam Group red beds, which form the base of the aquifer in this area. If the saturated thickness of the aquifer in this boring is less than 25 feet, we will install a 2-inch monitoring well with five feet of screen above the water table and 15 feet below the water table, in a manner consistent with industry standards (see NMOCD, ASTM or EPA publications). If the saturated thickness of the aquifer is greater than 25 feet we will install two 2-inch wells in the same boring. We will complete the uppermost well as described above. In the deeper well, we will install 5 feet of well screen above the top of the Dockam Group red beds. If possible, we will isolate the two screened intervals by installing bentonite pellets above the lowermost screened interval.

To establish background chloride concentrations in ground water, we propose to sample Water Wells #1 and #2 on Figure 1. We also plan to employ water analysis from a proposed background monitoring well (MW-3) at the ROC P-6 Line Leak Site (work plan submitted by Trident Environmental).

2. Evaluate Chloride, Benzene and Naphthalene Flux from the Vadose Zone to Ground Water

We propose to employ HYDRUS1D and a simple ground water mixing model to evaluate the potential of any residual chloride and hydrocarbon mass in the vadose zone to materially impair ground water quality at the site. We will employ predictions of the migration of chloride ion, benzene and naphthalene from the vadose zone to ground water in our selection of an appropriate remedy for the land surface and underlying vadose zone. This simulation is the "no action" alternative, which predicts chloride flux to ground water in the absence of any action by ROC. We have selected these three constituents for simulation modeling because each of these constituents exists in the fluids stored in the tanks and each is specifically regulated by New Mexico ground water regulations (WQCC).

We might provide simulations of two "no action" scenarios. For both simulations, we will employ the input parameters to HYDRUS and the mixing model outlined in Table 1. In the first simulation, we will assume that vegetation is not present over the release site (no evapotranspiration) and a minimum aquifer thickness of 10 feet. This will simulate restriction of any released chloride and hydrocarbons to a portion of the underlying aquifer. If this first simulation does not return results that are consistent with the ground water data from the proposed monitoring well (see below), we will increase the aquifer thickness in the mixing model to the total thickness measured in nearby water

supply wells or from the proposed monitoring well. At other sites, we have found that chloride can be distributed throughout the thickness of the aquifer. Employing the entire thickness of the aquifer in the mixing model calculations for chloride may be appropriate for M-5 tank site. Data may show that employing the entire aquifer thickness in the mixing model for hydrocarbons may not be appropriate.

3. Design Remedy and Submit Report

After ROC completes the replacement of the tanks, we anticipate no additional releases of produced water. Our modeling of the "no action alternative" (Task 1) may show that the residual chloride and hydrocarbon mass in the vadose zone poses a threat to ground water quality. If such a threat does exist, we will use the HYDRUS-1D model predictions to develop a remedy for the vadose zone. If necessary, we will simulate:

- 1. excavation of affected soil and replacement with clean soil to remove the chloride and hydrocarbon mass,
- 2. installation of a low permeability barrier to minimize natural infiltration,
- 3. surface grading to eliminate any ponding of precipitation thereby minimizing natural infiltration, and
- 4. a combination of the above potential remedies.

We will select the vadose zone remedy that offers the greatest environmental benefit while causing the least environmental damage. We may elect to export the affected soil to a disposal site and import clean soil, or we may treat the soil on site then re-fill the excavation with the restored soil.

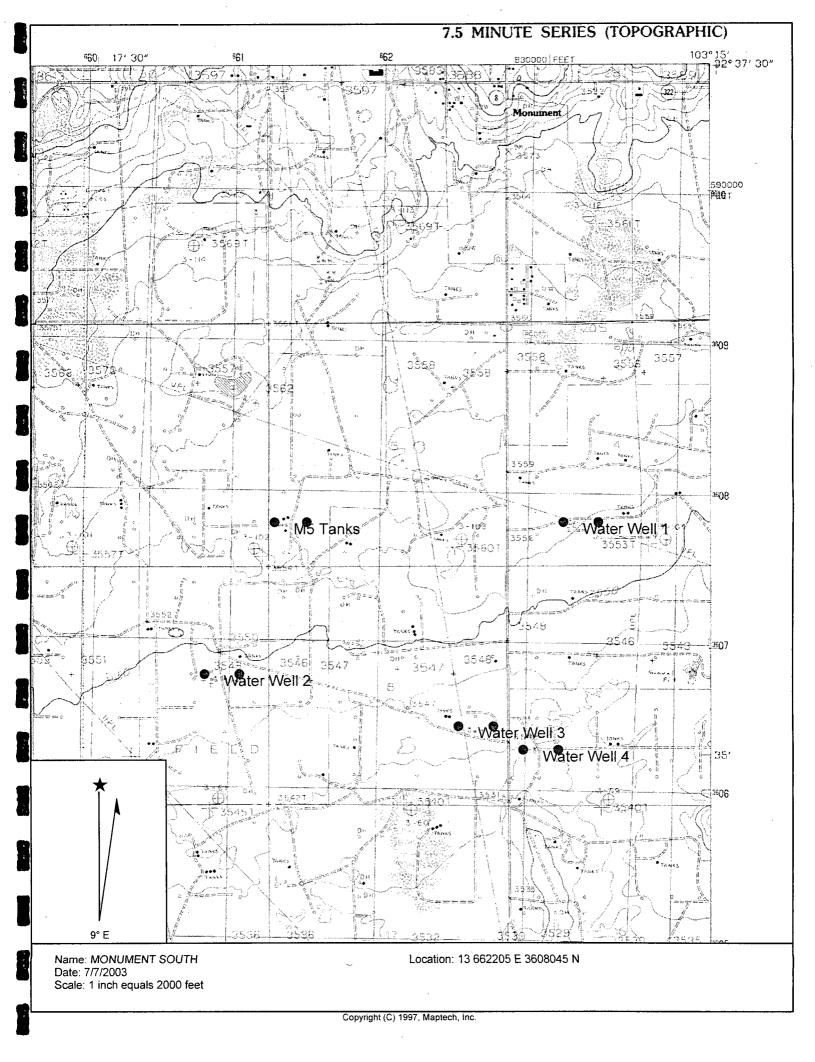
We will use the ground water mixing model or a suitable alternative to assist in the design of a ground water remedy. It is possible, however, that the background chloride and /or hydrocarbon concentrations in ground water measured in the nearby windmills are equal to or higher than the concentration in the proposed monitoring well. Such data would strongly suggest that the M-5 tank site has not caused any material impairment of ground water quality. If we find no evidence of impairment of water quality due to past activities, we will not prepare a ground water remedy. If data suggest that the site has contributed chloride or hydrocarbons to ground water and caused ground water impairment, we will examine the following alternatives:

- 1. Natural restoration due to dilution and dispersion,
- 2. Pump and dispose to remove the chloride and hydrocarbon mass in the saturated zone,
- 3. Pump and treat to remove the chloride and hydrocarbon mass in the saturated zone,

4. Because of the location of the site, institutional controls negotiated with the landowner may provide an effective remedy. Such controls may be restriction of water use to livestock until natural restoration returns the water quality to state standards, a provision for alternative supply well design, or a provision for well head treatment to mitigate any damage to the water resource.

We plan to commence data collection for the HYDRUS1D simulations described above in late August or September. Your approval to move forward with this work plan will facilitate our access to nearby windmills an, approval of expenditures by the System Partners.

Sincerely,


R.T. Hicks Consultants, Ltd.

Randall T. Hicks

Principal

Copy:

Rice Operating Company

