4-25-27

REPORTS

DATE:

R. T. HICKS CONSULTANTS, LTD.

PO Box 7624 A Midland, Texas 79708 A 432.528.3878 A Fax: 432.689.4578

May 29, 2008

Mr. Ed Hanson New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Vacuum SWD System F-31-1 Junction Box Site (NMOCD CASE #: 1R425-27)

ယ်

တ

Ъ

m

ŧ

Dear Mr. Hanson:

On behalf of Rice Operating Company (ROC), R.T. Hicks Consultants, Ltd. is submitting this request to close the regulatory file for the above referenced site. The investigation demonstrated that neither salt nor hydrocarbons are present in the vadose zone in quantities that represent a threat to ground water quality.

Background

The Vacuum SWD F-31-1 Junction Box Site is located southeast of Buckeye, NM at T-17-S, R-35-E, Section 31, in Unit F. A release of produced water was identified during an excavation that ROC conducted in July of 2005. The NMOCD-approved Investigation Characterization Plan (ICP), dated April 13, 2007, (Attachment A), includes background information and a map that shows the site location relative to the regional setting.

Field Program

Following the initial junction box investigation in 2005, ROC obtained soil samples which indicated that chloride impacted soil was present above 500 ppm from 8 to at least 12 feet below the surface. Photo-ionization detector readings in excess of 100 ppm suggested that hydrocarbon-impacted soil was present from 2 to 4 feet below the surface. The surrounding area was then excavated such that a one foot thick clay liner ($10^{\circ}x 10^{\circ}$) could be installed at a depth of approximately 5 to 6 feet below the surface. The removed soil was blended such that chloride concentrations were below 3,600 mg/kg and returned to the excavation, both above and below the liner. Two to three feet of clean top soil (12 yds^3) was placed at the surface and the area was re-seeded in March of 2006. Information concerning the activities conducted by ROC in 2005 is included in Attachment A.

As a part of the approved ICP, Hicks Consultants supervised a deep soil sampling program to delineate the horizontal and vertical extent of the chlorideand hydrocarbon-impacted soil. On February 19 and 20, 2008 nine soil borings (SB-1 to SB-9) were installed within and surrounding the 2005 excavation as shown on Plate 1. Soil samples were collected and field screened by ROC for chloride and hydrocarbons. Each boring was terminated when either: May 29, 2008 Page 2

- The occurrence of five consecutive samples that exhibit decreasing concentrations with depth (chloride and hydrocarbons) and the deepest sample containing less than 250 ppm chloride and 100 ppm PID or
- The occurrence of three consecutive samples that exhibit concentrations of less than 250 ppm chloride and 100 ppm PID

Attachment B provides soil lithology logs, which include the field chloride and hydrocarbon screening data, and Attachment C provides the laboratory report for field data verification samples.

Results

Data from the deep soil boring program indicates that highest chloride concentrations (<500 ppm) are present from just below the clean top soil to the depth of a consistent quartzite bed that exists across the site at approximately 16 to 24 feet. The horizontal extent of the chloride-impacted soil is approximately 700 ft².

All soil sample hydrocarbon (PID) readings from the borings were below 5.5 ppm and do not extend beyond the limits identified during the 2005 investigation.

Simulation Modeling

We used the HYDRUS-1D model to simulate the impact to ground water due to chloride transport through the vadose zone. The input to the model employed field data from the site or nearby locations and conservative input data for parameters that were not measured at or near the site. Attachment D provides a summary description of the HYDRUS-1D model used in this simulation and a general discussion of the input parameters. The specific parameters used in the simulation at the F-31-1 site include the following:

Model Parameter	Value	Source of Value
Climate (non-smoothed)	1946 - 1992	Pearl, NM Station
Input for distant or hypothetical well (ft)	NA	Not Required
Background Chloride in Aquifer (mg/L)	<50	NM WAIDS
Aquifer Porosity (unitless)	0.30	Sample Description
Groundwater Table Depth (ft)	100	DCP Lee Plant Site
Aquifer Thickness (ft)	30	NM WAIDS
Slope of Water Table	0.005	USGS Data
Hydraulic Conductivity (ft/d)	20	Musharrafieh 1999
Average Chloride Load (kg/m ²)	*30	Calc. from Site Data
Max length of spill in dir. of GW flow (ft)	30	Site Data
Plant Uptake Trigger (%)	1.0	Most Conserv. Option
Surface Layer	Med. Sand	Boring Logs
Soil Profile (clay:caliche:sand ratio)	1:1:1	Boring Logs

May 29, 2008 Page 3

Well depth information from NM WAIDS in the same section as the F-31-1 site indicates an aquifer thickness of at least 30 feet and Musharrafieh and Chudnoff (1999) predict that the saturated thickness of the alluvial aquifer beneath the site will remain at least 50 feet from now to the year 2040. Data from similar sites show that, unlike hydrocarbons, chloride that enters the upper portion of an aquifer will become distributed throughout the entire saturated thickness within a relatively short travel distance from the source. Therefore the arbitrary selection of a 10-foot thick mixing zone (used as a default value for hydrocarbon sites) is unrealistic where the chemical of concern is chloride. In our opinion, a simulation using the 30-foot thickness of the aquifer is appropriate for this site.

As described in Appendix D, the HYDRUS-1D model assumes a single surface spill is the initial source of chloride that is subsequently observed in the subsurface. In order to apply this version of the HYDRUS-1D model to the F-31-1 site, we calibrated the model by adjusting the chloride load parameter such that an emulated chloride concentration profile three years after the surface release compared favorably with a chloride concentration profile from soil samples measured at the source area. A favorable but conservative comparison was achieved as demonstrated below:

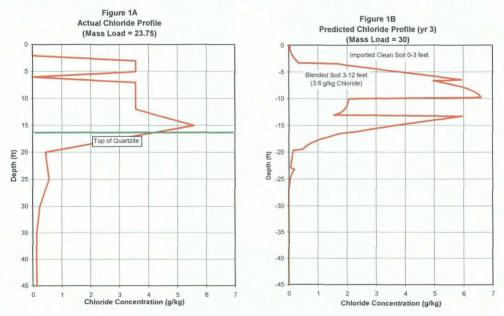
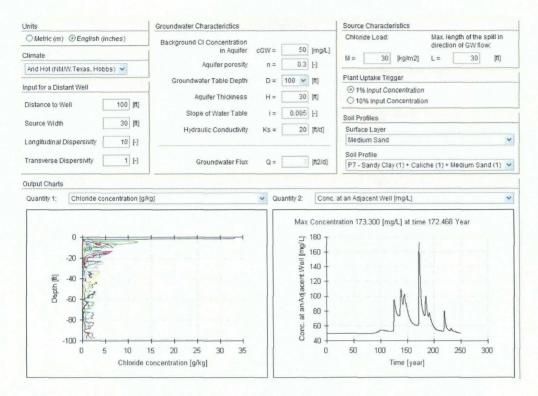



Figure 1A is the profile using field chloride analysis from the original source area excavation (to 12 feet bgs) and SB-5 (below 12 feet). It takes into account the blended soil used for backfill, the reiterate clay liner, and the clean soil placed at the surface. The calculated chloride load for this profile is 23.75 kg/m². Figure 1B is the predicted chloride profile at year 3 of the simulation using a chloride load of 30 kg/m².

The results of the simulation are shown below on the HYDRUS-1D model output summary page. It indicates that the ground water below the site will not

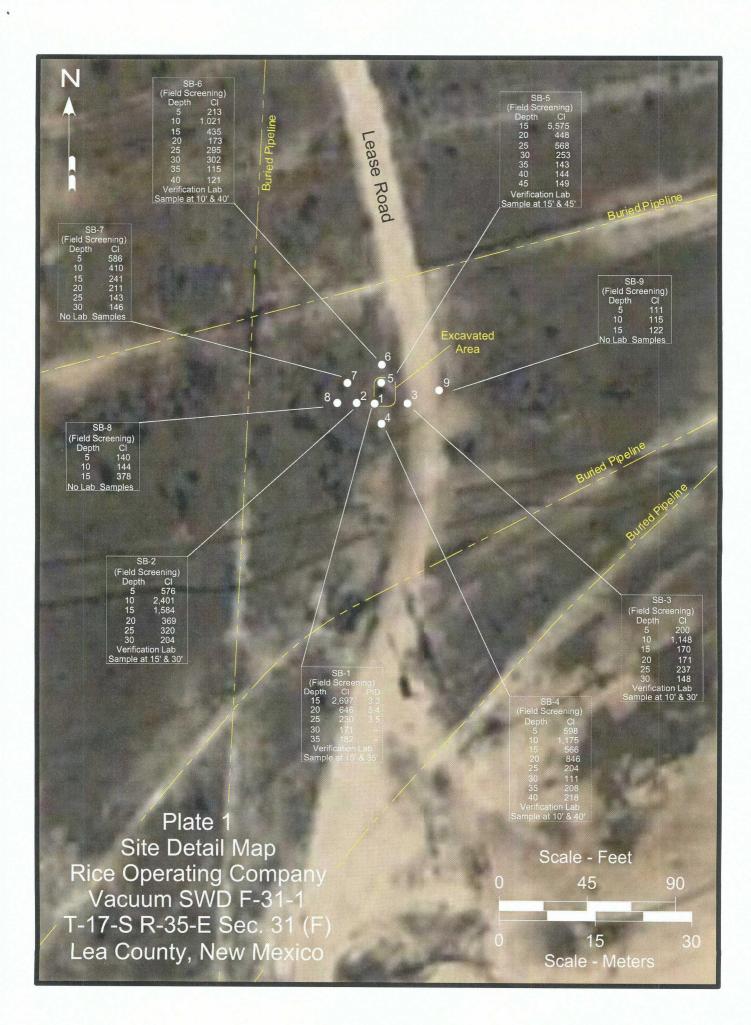
May 29, 2008 Page 4

exceed 174 mg/L (below WQCC standards) if no further corrective actions are taken.

We believe the simulated concentration in ground water is a "worst-case" prediction because of the conservative input parameters used in the model.

Recommendations

We conclude, based on these results that this site is in compliance with the mandates of Rule 116 such that the remaining chloride-impacted soil does not and will not endanger fresh water, public health or the environment.


Please contact Marvin Burrows of ROC if you have any questions concerning this submission.

Sincerely, R.T Hicks Consultants, Ltd.

al 7 hottlysh

Dale T Littlejohn Geologist

Copy: Marvin Burrows, ROC NMOCD Hobbs

ATTACHMENT A Investigation Characterization Plan and Data from Initial Excavation and Placement of Clay Liner

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Fax: 505.266-0745

April 13, 2007

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Investigation Characterization Plan: Jct. F-31-1 Junction, Vacuum Salt Water Disposal System

Dear Mr. Price:

On behalf of Rice Operating Company (ROC), R.T. Hicks Consultants, Ltd. is pleased to submit this Investigation Characterization Plan (ICP) for above- referenced site within the Vacuum Salt Water Disposal System. Plate 1 is a map showing the site relative to major roads in the area, nearby ROC sites and nearby USGS monitoring wells. GPS coordinates for this site are 32° 47.636 N, 103° 29.938 W. This site had a junction box that that was addressed as part of Vacuum System abandonment and excavated to $10L \times 10W \times 12D$ feet and backfilled with blended dirt to 6' below ground surface, capped with a one foot clay barrier, backfilled to the surface with blended soil and topped with 12 yards of clean top soil contoured to shed precipitation. NMOCD was notified that this site is a source of potential ground water impact on 4-17-06.

The work elements proposed to characterize this site sufficiently to develop an appropriate corrective action are presented below.

- 1. ROC will identify and document the location of all current and historic equipment and pipelines associated with the site.
- 2. ROC and Hicks Consultants will use a backhoe, with a 12-foot vertical reach to install a series of sampling trenches in order to recover soil samples and delineate the lateral extent (and potentially the vertical extent) of impacted soil.
- 3. Soil samples employed for delineation will be obtained from regular intervals below ground surface in each trench.
- 4. A representative number of the soil samples will be sent to a laboratory to allow for verification of the field results.
- 5. General soil texture descriptions will be provided for each sample trench.
- 6. The criteria to delineate the extent of impact is 5 point chloride decline vs. depth or:
 a. 250 ppm chloride using field analyses (see attached ROC Quality Procedure in
 - Appendix A), whichever occurs first.b. 100 ppm total hydrocarbon vapors using the headspace method analysis (Appendix
 - A). A).
 - c. Soil boring to ground water depth should neither (a) or (b) apply
 - d. Monitoring well installation if warranted to asses ground water quality at the site.

Following the site characterization described above, we will submit the data and analysis with a Corrective Action Plan that outlines the procedures for closure of the site.

Rice Operating Company (ROC) is the service provider (agent) for the Vacuum Saltwater Disposal System and has no ownership of any portion of pipeline, well, or facility. A consortium of oil producers who own the Hobbs System (System Partners); provide all operating capital on a percentage ownership/usage basis. Major projects require System Partner authorization for expenditures (AFE) approval and work begins as funds are received. We will implement the work April 13, 2007 Page 2

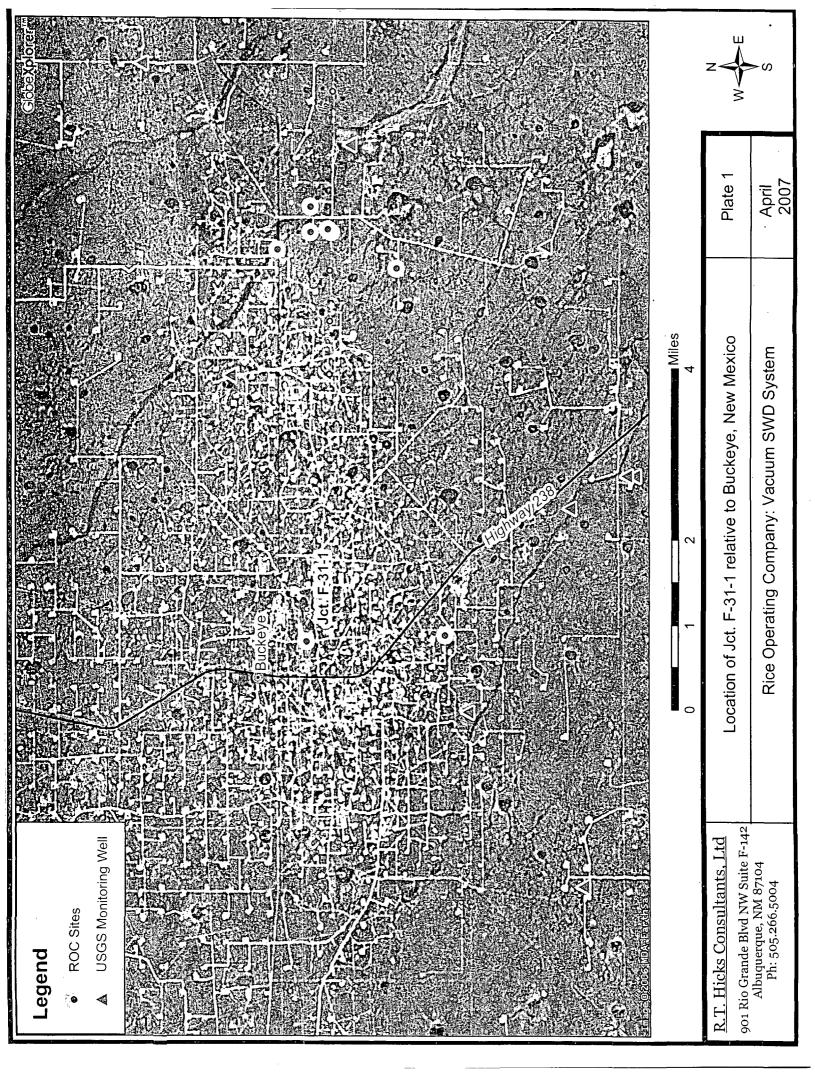
outlined herein after NMOCD approval and subsequent authorization from the System Partners. The Hobbs SWD system is in abandonment.

For all environmental projects, ROC will choose a path forward that:

- 1. Protects public health.
- 2. Provides the greatest net environmental benefit.
- 3. Complies with NMOCD Rules.
- 4. Is supported by good science.

The last criteria employed when evaluating any proposed remedy or investigative work is confirming that there is a reasonable relationship between the benefits created by the proposed remedy or assessment and the economic and social costs.

Each site shall have three submissions or a combination of:


- 1. This Investigation and Characterization Plan (ICP), which is a proposal for data gathering, and site characterization and assessment (this submission).
- 2. Upon evaluation of the data and results from the ICP, a recommended remedy will be submitted in a Corrective Action Plan (CAP).
- 3. Finally, after implementing the remedy, a closure report with final documentation will be submitted.

If you have any questions or comments regarding this ICP, please contact Kristin Pope of Rice Operating Company as she has reviewed and approved this submission.

Sincerely, R.T. Hicks Consultants, Ltd.

Randall T. Hicks Principal

Copy: Rice Operating Company

RICE OPERATING COMPANY JUNCTION BOX DISCLOSURE' REPORT

				BOX LOCAT	ION					
SWD SYSTEM	JUNCTION	UNIT	SECTION	TOWNSHIP	RANGE	COUNTY	BOX DI	MENSIONS	F357-6	
Vaccum	ict. F-31-1	F	31	17S	35É	i.ea	Length	Width	Depth	
vaccent	Joc 1 -01-1				JUE	1.64	bax eliminated - System Ab		Abandonma	pandonment
LAND TYPE: B Depth to Groun		NTE <u>X</u>	FEE LAND	100.0 m	SITE ASS	ESSMENT	OTHER		0	
Date Started	7/19/20	005	Date Co	mpleted	2/17/2006		D Witness		no	
Soil Excavated	44	cutic ya	ids Exc	cavation Ler	ryth10		10	Depth	12	fe
Soil Disposed	24	subic ya	ids Of	fsite Facility	Sundano	e/Parabo	Location	Ξu	nice, NM	

FINAL ANALYTICAL RESULTS: Sample Date 7/21/2005 Sample Depth

5-point composite sample of bottom and 4-point composite sample of excavation sidewalls. TPH and chloride laboratory test results completed by using an approved laboratory and testing procedures pursuant to NMOCD guidelines.

Sample Location	<u>PID</u> ppm	<u>GRO</u> mg/kg	<u>DRO</u> mg/kg	<u>Chloride</u> mg/kg
4-WALL COMP.	XXX	<10.0	<10.0	4990
BOTTOM COMP.	1.5	<10.0	<10.0	6170
BACKFILL COMP.	4.6	<10,0	<10.0	3570

General Description of Remedial Action:

This function box was addressed as part of the Viccium SWD System abandonment. After removing the box materials, defineation tronches were excavated at the site using a trackhoe while soil samples were collected at regular intervals. Chloride field tests and PID screenings were conducted on each sample. Chloride concentrations were high at 12 it while PID concentrations were relatively low throughout. After composite samples from the 10 x 10 x 12 ft excevation were collected for haboratory analysis, the excevation was bookfilled with the excevated snit to 6 it BCS. CHLORIDE FIELD TESTS

12 ft

LOCATION	DEPTH my	ppm	
	3	873	
vertical	4	1481	
	5	231	
	6	198	
delineation	7	458	
trench at	8	1891	
junction	9	2993	
	10	4112	
	11	4731	
	12	6073	
4-wall comp.	n/a	4867	1
bottom comp.	12	7947	
backfill comp.	n/a	3467	

At 6 ft BGS, a 1-ft-ftick compacted day barrier vas installed in the excertation. The remaining excertated soil vas backfilled on top of the clay. Additional topsoil vas imported and backfilled on top of the area. The disturbed surface has been seering with a blend of native vegetation and vali be monitored for growth. An identification plate vas placed on the surface of this site to mark the formar junction box location for future environmental considerations. NRAOCD tas been notified of potential groundwater impact at this site. A replacement junction has is not required because the Vacuum SWD System has been also doned.

ADDITIONAL EVALUATION IS LOW PRIORITY

enclosures: chloride graph, photos, lab results, PID field screenings, clay test, clay diagram

LHEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF.

	ael Juarez SIONATURE	brackfung.	COMPANY RICE Operating Company
REPORT ASSEMBLED BY	Kristin Farris Pope	SIGNATURE KAINT	in Gome Pope
DATE	4/17/2006	TITLE	Project Scientist

* This site is a "DISCLOSURE." It will be placed on a prioritized list of similar sites for further consideration.

April 12, 2007 Page 3

Appendix A

Rice Operating Company

QUALITY PROCEDURE - 03

Sampling and Testing Protocol - Chloride Titration Using .282 Normal Silver Nitrate Solution

1.0 Purpose

This procedure is to be used to determine the concentration of chloride in soil.

2.0 Scope

This procedure is to be used as the standard field measurement for soil chloride concentrations.

3.0 Sample Collection and Preparation

3.1 Collect at least 80 grams of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. Ifnecessary, prepare a composite san1ple for soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).

3.2 The soil sample(s) shall be immediately inserted into a one-quart or large polyethylene freezer bag. Care should be taken to insure that no cross-contamination occurs between the soil sample and the collection tools or sample processing equipment.

3.3 The sealed sample bag should be massaged to break up any clods.

4.0 Sample Preparation

4.1 Tare a clean glass vial having a minimum 40 ml capacity. Add at least 10 grams of the soil sample and record the weight.

4.2 Add at least 10 grams of reverse osmosis water to the soil sample and shake for 20 seconds.

4.3 Allow the sample to set for a period of 5 minutes or until the separation of soil and water.

4.4 Carefully pour the free liquid extract from the sample through a paper filter into a clean plastic cup if necessary.

5.0 Titration Procedure

5.1 Using a graduated pipette, remove 10 m1 extract and dispense into a clean plastic cup.

5.2 Add 2-3 drops potassium chromate (K_2CrO_4) to mixture.

5.3 If the sample contains any sulfides (hydrogen or iron sulfides are common to oilfield soil samples) add 2-3 drops of hydrogen peroxide (H_2O_2) to mixture.

5.4 Using a 10 ml pipette, carefully add 0.282 normal silver nitrate (one drop at a time) to the sample while constantly agitating it. Stop adding silver nitrate when the solution begins to change from yellow to red. Be consistent with endpoint recognition.

5.5 Record the ml of silver nitrate used.

6.0 Calculation

To obtain the chloride concentration, insert measured data into the following formula:

<u>0.282 x 35,450 x ml AgNO₃</u>	x	grams of water in mixture
ml water extract		grams of soil in mixture

Using Step 5.0, determine the chloride concentration of the RO water used to mix with the soil sample. Record this concentration and subtract it from the formula results to find the net chloride in the soil sample.

Record all results on the delineation form.

Rice Operating Company

QUALITY PROCEDURE -07

Sampling and Testing Protocol for VOC in Soil

1.0 Purpose

This procedure is to be used to determine the concentrations of Volatile Organic Compounds in soils.

2.0 Scope

This procedure is to be used as the standard field measurement for soil VOC concentrations. It is not to be used as a substitute for full spectrographic speciation of organic compounds.

3.0 Procedure

3.1 Sample Collection and Preparation

3.1.1 Collect at least 500 g. of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample of soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).

3.1.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag and sealed. When sealed, the bag should contain a nearly equal space between the soil sample and trapped air. Record the sample name and the time that the sample was collected on the Field Analytical Report Form.

3.1.3 The sealed samples shall be allowed to set for a minimum of five minutes at a temperature of between 10-15 Celsius, (59-77° F). The sample temperatures may be adjusted by cooling the sample in ice, or by heating the sample within a generally controlled environment such as the inside of a vehicle. The samples should not be placed directly on heated surfaces or placed in direct heat sources such as lamps or heater vents.

3.1.4 The sealed sample bag should be massaged to break up any clods, and to provide the soil sample with as much exposed surface area as practically possible.

3.2 Sampling Procedure

3.2.1 The instrument to be used in conducting VOC concentration testing shall be an Environmental Instruments 13471 OVM / Datalogger or a similar protype instrument. (Device will be identified on VOC Field

Test Report Form.) Prior to use, the instrument shall be zeroed-out in accordance with the appropriate maintenance and calibration procedure

outlined in the instrument operation manual. The PID device will be calibrated each day it's used.

3.2.2 Carefully open one end of the collection bag and insert the probe tip into the bag taking care that the probe tip not touch the soil sample or the sidewalls of the bag.

3.2.3 Set the instrument to retain the highest result reading value. Record the reading onto the Field Test Report Form.

3.2.4 If the instrument provides a reading exceeding 100 ppm, proceed to conduct BTEX Speciation in accordance with QP-O2 and QP-O6. If the reading is 100 ppm or less, NMOCD BTEX guideline has been met and no further testing fur BTEX is necessary. File the Field Test Report Form in the project file.

4.0 Clean-up

After testing, the soil samples shall be returned to the sampling location, and the bags collected for off-site disposal, IN NO CASE SHALL THE SAME BAG BE USED TWICE. EACH SAMPLE CONTAINER MUST BE DISCARDED AFTER EACH USE.

RICE OPERATING COMPANY JUNCTION BOX DISCLOSURE* REPORT

				BOX LOCAT	ION					
SWD SYSTEM	JUNCTION	UNIT	SECTION	TOWNSHIP	RANGE	COUNTY	BOX DI	MENSIONS	- FEET	
Vaccum	jct. F-31-1	F	31	17S	35E	1.00	Length	Width	Depth	
Vaccum	jot. 1 -01-1		51	1/3	30E	Lea	box eliminate	d-System At	pandonment	
LAND TYPE: BLMSTATEX_FEE LANDOWNEROTHER Depth to Groundwater117feet NMOCD SITE ASSESSMENT RANKING SCORE:0										
Date Started	7/19/0)5	_ Date Co	mpleted	2/17/06	NMOC	D Witness		no	
Soil Excavated		cubic yar			ngth <u>10</u>		10	Depth		feet
Soil Disposed	24	cubic yar	rds O	ffsite Facility	Sundanc	e/Parabo	Location _	Eur	nice, NM	

7/21/05

Sample Date

5-point composite sample of bottom and 4-point composite sample of excavation sidewalls. TPH and chloride laboratory test results completed by using an approved laboratory and testing procedures pursuant to NMOCD guidelines.

FINAL ANALYTICAL RESULTS:

General Description of Remedial Action:

CHLORIDE FIELD TESTS

Sample Depth

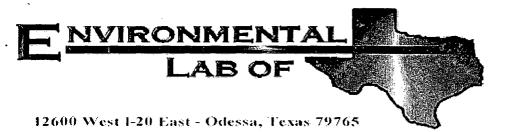
Sample	PID	GRO.	DRO.	Chloride
Location	ppm	mg/kg	mg/kg	mg/kg
4-WALL COMP.	XXX	<10.0	<10.0	4990
BOTTOM COMP.	1.5	<10.0	<10.0	6170
BACKFILL COMP.	4.6	<10.0	<10.0	3570

12 ft

LOCATION	DEPTH (ft)	ppm
	3	873
	4	1481
	5	231
vertical	6	<u>19</u> 8
delineation	7	<u>458</u>
trench at	. 8	1891
junction	9	2993
	10	4112
	11	4731
	12	6073
4-wall comp.	n/a	4867
bottom comp.	12	7947
backfill comp.	n/a	3467

This junction box was addressed as part of the Vacuum SWD System abandonment. After removing the box materials, delineation trenches were excavated at the site using a trackhoe while soil samples were collected at regular intervals. Chloride field tests and PID screenings were conducted on each sample. Chloride concentrations were high at 12 ft while PID concentrations were relatively low throughout. After composite samples from the 10 x 10 x 12-ft excavation were collected for laboratory analysis, the excavation was backfilled with the excavated soil to 6 ft BGS.

At 6 ft BGS, a 1-ft-thick compacted clay barrier was installed in the excavation. The remaining excavated soil was backfilled on top of the clay. Additional topsoil was imported and backfilled on top of the area. The disturbed surface has been seeding with a blend of native vegetation and will be monitored for growth. An identification plate was placed on the surface of this site to mark the former junction box location for future environmental considerations. NMOCD has been notified of potential groundwater impact at this site. A replacement junction box is not required because the Vacuum SWD System has been abandoned.


ADDITIONAL EVALUATION IS LOW PRIORITY

enclosures: chloride graph, photos, lab results, PID field screenings, clay test, clay diagram

I HEREBY CERTIFY THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF.

	rael Juarez SIGNATURE		c	OMPANY	RICE Operating Company
	,				
REPORT ASSEMBLED BY	Kristin Farris Pope	SIGNATURE _			
DATE	4/17/2006	TITLE _		Project Sci	entist

* This site is a "DISCLOSURE." It will be placed on a prioritized list of similar sites for further consideration.

Analytical Report

Prepared for:

Roy Rascon Rice Operating Co. 122 W. Taylor Hobbs, NM 88240

Project: Vacuum Jct. F-31-1 Project Number: None Given Location: None Given

Lab Order Number: 5G25007

Report Date: 07/29/05

Rice Operating Co.	Project:	Vacuum Jct. F-31-1	Fax: (505) 397-1471
122 W. Taylor	Project Number:	None Given	Reported:
Hobbs NM, 88240	Project Manager:	Roy Rascon	07/29/05 12:06

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Remediated Backfill	5G25007-01	Soil	07/21/05 09:20	07/22/05 18:15
Bottom Comp.@ 12'	5G25007-02	Soil	07/21/05 09:15	07/22/05 18:15
4 Wall Comp.	5G25007-03	Soil	07/21/05 09:55	07/22/05 18:15

Project: Vacuum Jct. F-31-1 Project Number: None Given Project Manager: Roy Rascon

Reported: 07/29/05 12:06

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Remediated Backfill (5G25007-01) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EG52514	07/25/05	07/26/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	п	"	11			
Total Hydrocarbon C6-C35	ND	10.0	"	"		11	**	n	
Surrogate: 1-Chlorooctane		81.6 %	70-13	0	n	"	n	"	
Surrogate: 1-Chlorooctadecane		89.8 %	70-13	0	"	"	n	n	
Bottom Comp.@ 12' (5G25007-02) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EG52513	07/25/05	07/26/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	"	**	и	"	"	
Total Hydrocarbon C6-C35	ND	10.0	"	"	"		n	u	
Surrogate: 1-Chlorooctane	• •	74.4 %	70-13	0	"	"	"	"	
Surrogate: 1-Chlorooctadecane		92.4 %	70-13	0	"	"	"	"	
4 Wall Comp. (5G25007-03) Soil									
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EG52514	07/25/05	07/26/05	EPA-8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	"	· n	11	"	и	
Total Hydrocarbon C6-C35	ND	10.0	u	"	ar.	"	н		
Surrogate: 1-Chlorooctane		74.8 %	70-13	0	"	"	"	"	
Surrogate: 1-Chlorooctadecane		82.8 %	70-13	0	"	"	"	"	

Environmental Lab of Texas

Rice Operating Co. 122 W. Taylor Hobbs NM, 88240

Project: Vacuum Jct. F-31-1

Project Number: None Given Project Manager: Roy Rascon Fax: (505) 397-1471

Reported: 07/29/05 12:06

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Remediated Backfill (5G25007-01) Soil									
	3570	50.0	mg/kg	100	EG52811	07/27/05	07/27/05	EPA 300.0	
% Moisture	5.5	0.1	%	1	EG52601	07/25/05	07/26/05	% calculation	
Bottom Comp.@ 12' (5G25007-02) Soil									
Chloride	6170	100	mg/kg	200	EG52811	07/27/05	07/27/05	EPA 300.0	
% Moisture	7.0	0.1	%	1	EG52601	07/25/05	07/26/05	% calculation	
4 Wall Comp. (5G25007-03) Soil									
Chloride	4990	50.0	mg/kg	100	EG52811	07/27/05	07/27/05	EPA 300.0	
% Moisture	7.1	0.1	%	1	EG52601	07/25/05	07/26/05	% calculation	

Environmental Lab of Texas

Project: Vacuum Jct. F-31-1 Project Number: None Given Project Manager: Roy Rascon

Reported: 07/29/05 12:06

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG52513 - Solvent Extraction (GC)				_						
Blank (EG52513-BLK1)				Prepared &	Analyzed:	07/25/05				
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10.0	"							
Total Hydrocarbon C6-C35	ND	10.0								
Surrogate: 1-Chlorooctane	35.6		mg/kg	50.0		71.2	70-130			
Surrogate: 1-Chlorooctadecane	38.0		"	50.0		76.0	70-130			
LCS (EG52513-BS1)				Prepared &	Analyzed:	07/25/05				
Gasoline Range Organics C6-C12	441	10.0	mg/kg wet	500		88.2	75-125			
Diesel Range Organics >C12-C35	445	10.0	"	500		89.0	75-125			
Total Hydrocarbon C6-C35	886	10.0	*1	1000		88.6	75-125			
Surrogate: 1-Chlorooctane	41.4	· · · · · · · · · · · · · · · · · · ·	mg/kg	50.0		82.8	70-130			
Surrogate: 1-Chlorooctadecane	38.5		"	50.0		77.0	70-130			
Calibration Check (EG52513-CCV1)				Prepared: (07/25/05 A	nalyzed: 07	/26/05			
Gasoline Range Organics C6-C12	467		mg/kg	500		93.4	80-120			
Diesel Range Organics >C12-C35	486		11	.500		97.2	80-120			
Total Hydrocarbon C6-C35	953		*1	1000		95.3	80-120			
Surrogate: 1-Chlorooctane	47.7		"	50.0		95.4	70-130			
Surrogate: 1-Chlorooctadecane	35.0		"	50.0		70.0	70-130			
Matrix Spike (EG52513-MS1)	Sou	rce: 5G2500	7-02	Prepared 8	& Analyzed:	07/25/05				
Gasoline Range Organics C6-C12	517	10.0	mg/kg dry	538	ND	96.1	75-125			
Diesel Range Organics >C12-C35	486	10.0	n	538	ND	90.3	75-125			
Total Hydrocarbon C6-C35	1000	10.0	11	1080	ND	92.6	75-125			
Surrogate: 1-Chlorooctane	45.7		mg/kg	50.0	<u> </u>	91.4	70-130			
Surrogate: 1-Chlorooctadecane	35.3		"	50.0		70.6	70-130			
Matrix Spike Dup (EG52513-MSD1)	Sou	rce: 5G2500'	7-02	Prepared 8	k Analyzed:	: 07/25/05				
Gasoline Range Organics C6-C12	481	10.0	mg/kg dry	538	ND	89.4	75-125	7.21	20	
Diesel Range Organics >C12-C35	504	10.0	"	538	ND	93.7	75-125	3.64	20	
Total Hydrocarbon C6-C35	985	10.0	н	1080	ND	91.2	75-125	1.51	20	
Surrogate: 1-Chlorooctane	45.2		mg/kg	50.0		90.4	70-130			

Environmental Lab of Texas

Project: Vacuum Jct. F-31-1 Project Number: None Given Project Manager: Roy Rascon

Reported: 07/29/05 12:06

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG52514 - Solvent Extraction (GC)										
Blank (EG52514-BLK1)				Prepared: ()7/25/05 Ai	nalyzed: 07	/26/05	•		
Gasolíne Range Organics C6-C12	ND	10.0	mg/kg wet						·····	
Diesel Range Organics >C12-C35	ND	10.0	**							
Total Hydrocarbon C6-C35	ND	10.0								
Surrogate: 1-Chlorooctane	47.1		mg/kg	50.0		94.2	70-130			
Surrogate: 1-Chlorooctadecane	63.0	·	"	50.0		126	70-130			
LCS (EG52514-BS1)				Prepared: (07/25/05 A	nalyzed: 07	//26/05			
Gasoline Range Organics C6-C12	449	10.0	mg/kg wet	500		89.8	75-125			
Diesel Range Organics >C12-C35	461	10.0		500		92.2	75-125			
Total Hydrocarbon C6-C35	910	10.0		1000		91.0	75-125			
Surrogate: 1-Chlorooctane	51.0		mg/kg	50.0		102	70-130			
Surrogate: 1-Chlorooctadecane	62.6		"	50.0		125	70-130			
Calibration Check (EG52514-CCV1)				Prepared:	07/25/05 A	nalyzed: 07	7/26/05			
Gasoline Range Organics C6-C12	425		mg/kg	500		85.0	80-120			
Diesel Range Organics >C12-C35	450		**	500		90.0	80-120			
Total Hydrocarbon C6-C35	875		"	1000		87.5	80-120			
Surrogate: 1-Chlorooctane	42.6		"	50.0		85.2	70-130			
Surrogate: 1-Chlorooctadecane	55.9		"	50.0		112	70-130			
Matrix Spike (EG52514-MS1)	Sour	·ce: 5G2500'	7-03	Prepared:	07/25/05 A	nalyzed: 07	7/26/05			
Gasoline Range Organics C6-C12	519	10.0	mg/kg dry	538	ND	96.5	75-125			
Diesel Range Organics.>C12-C35	523	10.0	"	538	ND	97.2	75-125			
Total Hydrocarbon C6-C35	1040	10.0	"	1080	ND	96.3	75-125			
Surrogate: 1-Chlorooctane	46.7		mg/kg	50.0		93.4	70-130			
Surrogate: 1-Chlorooctadecane	52.1		"	50.0		104	70-130			
Matrix Spike Dup (EG52514-MSD1)	Sour	rce: 5G2500	7-03	Prepared:	07/25/05 A	nalyzed: 0'	7/26/05			
Gasoline Range Organics C6-C12	533	10.0	mg/kg dry	538	ND	99.1	75-125	2.66	20	
Diesel Range Organics >C12-C35	534	10.0	"	538	ND	99.3	75-125	2.08	20	
Total Hydrocarbon C6-C35	1070	10.0	"	1080	ND	99.1	75-125	2.84	20	
Surrogate: 1-Chlorooctane	47.1		mg/kg	50.0		94.2	70-130			
Surrogate: 1-Chlorooctadecane	53.1		"	50.0		106	70-130			

Environmental Lab of Texas

Rice Operating Co.														
122 W. Taylor		Project Nu	mber: No	one Given					Repo	ted:				
Hobbs NM, 88240	Project Manager: Roy Rascon													
General Ch														
		Environm	ental L	ab of Tex	kas									
	D	Reporting		Spike	Source		%REC	DDD	RPD	N				
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes				
Batch EG52601 - General Preparation (P	rep)		·											
Blank (EG52601-BLK1)	Prepared: 07/25/05 Analyzed: 07/26/05													
% Moisture	ND	0.1	%		<u></u>									
Duplicate (EG52601-DUP1)	Source: 5G22016-01 Prepared: 07/25/05 Analyzed: 07/26/05													
% Moisture	0.7	0.1	%		0.8			13.3	20					
Batch EG52811 - Water Extraction														
Blank (EG52811-BLK1)				Prepared 8	Analyzed	07/27/05								
Chloride	ND	0.500	mg/kg											
LCS (EG52811-BS1)				Prepared &	Analyzed	07/27/05								
Chloride	10.8	·/	mg/L	10.0		108	80-120							
Calibration Check (EG52811-CCV1)				Prepared 8	Analyzed	07/27/05								
Chloride	10.4		mg/L	10.0		104	80-120							
Duplicate (EG52811-DUP1)	Sou	Source: 5G25007-02 Prepared & Analyzed: 07/27/05												
Chloride	6010	100	mg/kg	·········	6170			2.63	20					

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

122 W. Taylor Project Number: None Given Hobbs NM, 88240 Project Manager: Roy Rascon	ax: (505) 397-1471
Hobbs NIM 99240	Reported:
Hobbs NM, 88240 Project Manager: Roy Rascon	07/29/05 12:06

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Raland K Junts

Date:

7/29/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

Lab of Texas, Inc.	Phone: 915-563-1800
nmental	I-20 East
Enviro	12600 West I-20 Eas

Phone: 915-563-1800	915-563-1713
Phone:	Fax:
West I-20 East	sa. Texas 79763

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

	÷	,		1					r								 		·······			<u>ş</u>		·······
										TAT biebnet2												গ	б	
				1			-		1	RUSH TAT (Pre-Schedule												ts -	Ω.	
																				z j		à	3	
																				n in		ð T	C o	
	\cdot																		1	z :) () ()		Z	seal on cook	
	27																					U	2	
	Li		ł							Major cations/anions, TDS												S.	Ś	
	in the					i i				EC, CEC, SAR, ESP										eipt.		ČÇ.		ļ
	Н					Analvze For				BLEX 80518/2030										Rec				ļ
	2	l				vlen				Semivolatiles										Don		<u></u>		
	Project Name: <u>Kacawan</u>					Ř	-			Volatijes							 			Sample Containers Intact? Temperature Upon Receipt Laboratory Comments:		Hoz glass on ice willabels tisch	7	
	52			•				1	əS Ç	Metals: As Ag Ba Cd Cr Pb Hi										Co ton		N	-	
	23	1		ł		Ĩ	TOLP:	TOTAL:		ORONORD MELOS HET	\geq	\times	~<`							npie		-		
	me:	#	:00:	₽0 #:			1º	5		9001/S001 X1 Hd1										Sar Ter		4. ([*]		
	Na	Project #:	ct L	ă						1.814 H9T												20		N
	lect	á.	Project Loc:			L				/ CF /	\times	\times	\sim								Time	5:30	Time	1815
	Pro		a,							Other (specity):												101	ľ	~
									Matrix	20tt	X	X	\times									i		2
						_			Ň	Sludge											Date	Ņ	Date	7-22-05
										193EW											Ő	54	ď	3
										Other (Specify)												5	1	4
										Aone													Γ	
			1						ative	'୦୨୪୫														
				-	E				Preservative	HOBN													}	
		1			Fax No: 505-397-1471				Pres	HCI														
					-16					, ^e onh												Ι		mennung
					ě			1		90)	\sim	5	$\left[\times \right]$									1		31
		1	}		202					No. of Containers	-											ł		ē.
					6												<u> </u>					6	}	$\{$
					X					_	0		$\left \cdot \right\rangle$								ļ	Ĺ,	+	81
					u.					belgms2 emiT	10		2									2		8
											6	3	-13-							ĺ	-	A CARGE CONTRACT	J.	2
		1								****												C.	ELOT	ame
											105	105	0								à.	ورت ورت	à	9
										Date Sampled		-	3								ived	A. C. States	ived.	1
	1		ł								12	1	1								Received by:		Received by	, U
											1				 					1	-		f	12
3						4															Time		Time	X
915-563-1713		S				Ŷ	14		*]	F		F	1811
563	Į	Ë				2															-	44	┼─-	
a îv	{	ğ		2		L'ék				111					}						a	0-22-6	jej	722
		D		82	-	and a				FIELD CODE	1										Date	ty'	Date	201
Fax:	E	atir	õ	80	2		N. C.	~			12		}											× ×
	Soc	ě	Ta)	ź	တို	all a					Racht	Q												
	Ra	ŏ	3	Ś	390	S.						1010	2000	1										
	2	e S	2	ğ	20	2					100				{								{	
	Ř	α l	21	Ĭ,	50	1					1		$] \geq$											
	:10B	ama	358	ż bi	No:	ure					Router at Pre	Buttown		Ĭ]	;
ñ	ana	Ň	dân	city/state/Zip: Hobbs, NM 88240	Telephone No: <u>505-393-9174</u>	Jual					12	8	1 7	1		1				1	ļ	مربه ليا		
797£	Ct M	naqı	λų	y/St	eph	r Siç				3	1	1): 		ŀ		· •]		Sus	1	2. 63 . Ca.		A
35	Project Manager: Roy Rascon	company Name Rice Operating Company	Company Address: 122 W Taylor	ซี	Tel	Sampler Signature:					i.		i.	I.	ľ	1				Scele	5	and a second	* خ	14
Tex	đ	~	Con			San					here	5	5		į.,					s(ri	d pe	Street	100	5
Odessa, Texas 79763										AB # Iab use only	P	P	P					·· ·		Special Instructions:	Relinquished by	12 mets 6	Relinquished b	ANY 1
des.										5.		11		1						Seci		and the	je,	12
0										C) 7 (32	1	1	ŀ ·	1	1	1		· *		in .	۱a ۳	**	Je I	

2. de la

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client: _ Pices Date/Time: . Order #: 50 _____ Initials:

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	0.5 C
Shipping container/cooler in good condition?	Keg	No	
Custody Seals intact on shipping container/cooler?	405	No	Not present
Custody Seals intact on sample bottles?	Tess	No.	Not present
Chain of custody present?	Yes	No	
Sample Instructions complete on Chain of Custody?	(es)	No	
Chain of Custody signed when relinquished and received?	(Ves)	No	
Chain of custody agrees with sample label(s)	Yes	No	
Container labels legible and intact?	Xes	No	
Sample Matrix and properties same as on chain of custody?	YES	No	
Samples in proper container/bottle?	XES	No	
Samples properly preserved?	(ES)	No	**************************************
Sample bottles intact?	Kes	No	
Preservations documented on Chain of Custody?	1000	No	
Containers documented on Chain of Custody?	Ves	No	
Sufficient sample amount for indicated test?	Xe3.	No	
All samples received within sufficient hold time?	885	No	
VOC samples have zero headspace?	YES	No	Not Applicable

Other observations:

 Variance Documentation:

 Contact Person: Date/Time: ______Contacted by:

Regarding:

Corrective Action Taken:

ATTACHMENT B

Lithology Logs from Soil Borings (Vertical Delineation) Conducted by ROC and RTH in February 2008

				LITHO	LOGI	C LOC	G (SOIL	BORING)
R T Hick	S		MONIT	OR WEL	L NO.:	SB-1		TOTAL DEPTH: 35 Ft
Consulta	nts Ltd					Vacuum	F-31-1Jur	nction CLIENT: Rice Operating Company
- Consulta				e eleva	ATION:	3,980	(USGS M	lap) COUNTY: Lea County
							& Cooper	
P O Box 7624						Air-Rotar	у	LOCATION: T-17-S, R-35-E, Sec. 31 (F)
Midland, TX 7				LATION				FIELD REP.: Dale Littlejohn
(432) 528-3878	3		WELL					Durce area FILE NAME: Vacuum SWD\F-31-1 Lithlogs
	1.246 - 1		CAMPI			Lat. 32°	47' 38.5" I	North, Long. 103° 29' 58.0" West (Hand-Held GPS)
	Lithology	TYPE		E DATA				
	<u> </u>	TYPE	DEPTH	% REC	PID	CI (FId)		SORTING, ROUNDING, CONSOL., DIST. DEATURES SILT AND CALICHE, Dark brown silt, with loose (soft) caliche.
	⊥	excav	3		276	873		
	- <u>-</u>	excav	4		155	1,481		
		excav	5		2.3	231	5	· · · · · ·
	- -	excav	6		12.1	198		CALICHE, white, hard, very little silt.
		excav	7		2.9	458		
	<u> </u>	excav	8		2.6	1,891		
	 	excav	9		0.7	2,993		
	<u> </u>	excav	10		2.5	4,112	10	
	<u> </u>	excav excav	11 12		2.1	4,731		
					1.8	6,073		CALICHE AND SILT, Light brown to tan silt and soft caliche with
								interbedded hard white caliche.
	<u>+</u>						45	
	<u> </u>	cuttings	15		3.3	2,697	15	Lab Data: <u>Chloride BTEX Benz Naphthalene</u> (mg/kg) 293 ND ND ND
11								
NO				· ·			<u> </u>	4
BENTONIT	- <u>-</u>							4 · · · ·
BE		cuttings	20		5.4	646	20	1
				1			<u> </u>	1
	× × ×			[1		QUARTZITE, Brown, fine to medium crystilline, very hard drilling.
	×		ĺ]
	× × ×		L		L	ļ		
		cuttings	25		3.5	230	25	SAND, Brown, fine grain, medium sorted, angular.
								4
	l he driggeringer (der Keiner son der Sch							4
								4
							20	4 -
		cuttings	30	-		171	30	d
								4
	Maria Maria and				1			
	and the set of the set	1		1				4
		cuttings	35		-	182	35	Lab Data: <u>Chloride BTEX Benz Naphthalene</u>
TD = 35 Feet	Mary Mark 1997 - Mark 1997	Countys		.l	L	.1	<u> </u>	(mg/kg) 77 ND ND ND

				LITHO	LOG		G (SOIL	BORING)	
R T Hick	S			OR WEL			·	TOTAL DEPTH: 30 Ft	
Consulta	nts Ltd	1	MONT				F-31-1Jur		
Consulta	nts Litu		SURFAC	E ELEVA			(USGS M		
,							& Cooper		
P O Box 7624						Air-Rotar	у	LOCATION: <u>T-17-S, R-35-E, Sec. 31 (F)</u>	
Midland, TX				LATION				FIELD REP .: Dale Littlejohn	
(432) 528-387	B		WEL				west of SE		
	Lithology		SAMP			Lat. 32°		North, Long. 103° 29' 58.2" West (Hand-Held GPS) LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE	
	Lithology	TYPE		% REC	PID	CI (Fld)			
	<u> </u>	TIPE	DEFIN	70 REC	PID			SILT AND CALICHE, Dark brown silt, with loose (soft) caliche.	
	<u>-</u>					ļ			
	<u> </u>		i					CALICHE, white to grayish white, hard, very little silt.	
	<u>+</u> _								
	<u> </u>	cuttings	5			576	5		
	· -								
			}	1					
	_ <u>~</u>								
	_ <u>~</u>	cuttings	10			2,401	10		
	<u> </u>	outtingo	<u> </u>	<u>├</u>				CALICHE AND SILT, Light brown to tan silt and soft caliche with	
	~ <u>_</u>							interbedded hard white caliche.	
	<u>≁_</u>								
ITE	<u>~_</u>								
O NO	<u>+</u>	cuttings	15			1,584	15	Lab Data: <u>Chloride</u>	
BENTONITE Antipation Antipation								. (mg/kg) 2,800	
	 	cuttings	20			369	20		
	× × × ×	Gattings				- 000		QUARTZITE, Brown, fine to medium crystilline, very hard drilling.	
	*								
	* * * *					1			
	* * * *			L					
		cuttings	25	-		320	25	SAND, Brown, fine grain, medium sorted, angular.	
	g in suite dif Line			Į į		ļ			
	х.						<u> </u>		
11115-111									
		cuttings	30			204	30	Lab Data: <u>Chloride</u>	
TD = 30 Feet	L		<u> </u>	1	L,	L	<u>l</u>	(mg/kg) 43.0	

				LITHO	LOG	C LOG	(SOIL BO	ORING)	
R T Hick	S .			OR WEL			·	TOTAL DEPTH: 30 Ft	
Consulta	nts Ltd	l'	mortin				-31-1Junctio		
Consulta		• •	SURFAC	E ELEVA			USGS Map)	COUNTY: Lea County	
							& Cooper, Inc		
P O Box 7624					Air-Rotar	1	LOCATION: T-17-S, R-35-E, Sec. 31 (F)		
Midland, TX 7			LATION				FIELD REP.: Dale Littlejohn		
(432) 528-3878	3		WELI				ast of Pit Mar		
	Lithology		SAMP			Lat. 32-4		h, Long. 103° 29' 57.8" West (Hand-Held GPS) IOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE	
	TYPE	DEPTH		PID	CI (Fld)				
	<u> </u>			101120				TAND CALICHE, Dark brown silt, with loose (soft) caliche.	
								ICHE, white to gravish white, hard, very little silt.	
	- 								
	<u> </u>								
	<u> </u>	cuttings	5			200		ICHE AND SILT, Light brown to tan silt and soft caliche with	
						{	inter	rbedded hard white caliche.	
	 		1						
		cuttings	10			1,148	10	Lab Data: <u>Chloride</u>	
		l	, î					(mg/kg) 115	
	···								
	<u>∽_</u> ~_								
ITE	<u> </u>		ł						
N O		cuttings	15			170	15		
BENTONIT				<u> </u>					
<u> </u>	^ x [^] x						Q0/	ARTZITE, Brown, fine to medium crystilline, very hard drilling.	
	××××								
	×××	cuttings	20			171	20		
	* * * *					1			
	* * * *	1		1		1			
	*								
	× × ×	1			1	1			
	X X	cuttings	25	<u> </u>		237	25		
			}		}			ND, Light brown, fine grain, well sorted, sub-angular.	
				1					
		cuttings	30	-		148	30	Lab Data: <u>Chloride</u>	
TD = 30 Feet	*****							(mg/kg) <5.0	

D				LITHC	LOG		G (SOIL	BORING)				
R T Hick	S		MONIT	OR WEL	L NO.:	SB-4	SB-4 TOTAL DEPTH: 40 Ft					
Consulta	nts Ltd	L		S	ITE ID:	Vacuum	F-31-1Ju					
Consulta		•		E ELEVA								
						Harrison						
P O Box 7624							Air-Rotary LOCATION: T-17-S, R-35-E, Sec. 31 (F)					
Midland, TX				LATION		2/20/08 FIELD REP.: Dale Littlejohn 10 Feet south of former. pit FILE NAME: \Vacuum SWD\F-31-1 Lithlogs						
(432) 528-387	8		VVELI					Vorth, Long. 103° 29' 58.0" West (Hand-Held GPS)				
	Lithology		SAMPI			Lat. <u>J2</u>	DEPTH LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN S					
	Liniology	TYPE		% REC	PID	CI (Fld)	021111	SORTING, ROUNDING, CONSOL., DIST. DEATURES				
								SILT AND CALICHE, Dark brown silt, with loose (soft) caliche.				
	+ +							CALICHE Gray, interbedded with brown fine grain silty sand.				
	<u> </u>											
		cuttings	5			598	5					
	<u> </u>											
								Lab Data: <u>Chloride</u>				
	- <u>-</u>	cuttings	10			1,175	10	(mg/kg) 3,670				
								CALICHE AND SILT, Light brown, soft, with interbedded hard				
	·		ł					caliche and quartzite.				
	<u> </u>											
	~L ~											
	<u> </u>	cuttings	15			566	15					
			}				L					
	~~ × ×											
			1			1	<u> </u>					
		outtings	20			846	20					
0 E		cuttings	20			040	20					
BENT ON ITE	<u> </u>											
	*					1		QUARTZITE, Brown, fine to medium crystilline, very hard drilling.				
	an sa	cuttings	25			204	25	SAND, Light reddish brown, fine grain, well sorted, sub-angular.				
			Į									
	5 S						L					
	an a						30					
	ar e e tra Distance de la companya de la company	cuttings	30			111						
	и .		1	1			<u> </u>					
							····					
		cuttings	35			208	35					
		-										
	2011 2014 - 1			1								
		l	1			1						
	r Signad					1						
TD = 40 Feet		cuttings	40	<u> </u>	<u> </u>	218	40	Lab Data: <u>Chloride</u>				
10 - 40 reet								(mg/kg) 87.5				

	LITHOLOGIC LOG (SOIL BORING)												
R T Hick	S .		MONIT	OR WEL	L NO.:	SB-5	SB-5 TOTAL DEPTH: 45 Ft						
Consulta	nts Ltd			S	ITE ID:	Vacuum	F-31-1Ju						
Consulta				E ELEV			(USGS N						
						Harrison							
P O Box 7624						Air-Rotar	у	LOCATION: <u>T-17-S, R-35-E, Sec. 31 (F)</u>					
Midland, TX				LATION				FIELD REP.: Dale Littlejohn					
(432) 528-387	8		VVELL			North en							
	Lithology		SAMP			Lat. 32° 4		North, Long. 103° 29' 58.0" West (Hand-Held GPS) LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE					
	Littiology	TYPE		% REC		CI (FId)		SORTING, ROUNDING, CONSOL., DIST. DEATURES					
	±		DEI	7011120				SILT AND CALICHE, Dark brown silt, with loose (soft) caliche (fill					
								material) with red, soft clay at 4 to 4.5 feet (liner).					
	<u>-</u>	excav	3	-	276	873							
		excav	4		155	1,481							
		excav	5		2.3	231	5	·					
	<u>+</u>	excav	6		12.1	198		CALICHE AND SILT, Light brown, soft, with interbedded hard					
	<u> </u>	excav	7		2.9	458		caliche and quartzite.					
		excav	8		2.6	1,891							
		excav	9 10		0.7 2.5	2,993	10						
		excav	10		2.5	4,112							
		excav	12		1.8	6,073							
				ļ		1,							
		cuttings	15		-	5,575	15	Lab Data: <u>Chloride</u>					
	<u> </u>							(mg/kg) 5,330					
	* × * ×							QUARTZITE, Gravish brown, with interbedded silt and caliche.					
	<u>→</u> - <u>→</u> ·			· ·]	ļ						
	~ × ~ ×						20	4 1					
	× _ × _	cuttings	20		1	448	20						
世	× × × ×		<u> </u>	┢────	ł	1		QUARTZITE, Brown, fine to medium crystilline, very hard drilling.					
BENTONI TE	×	}	1	1	1								
E .	*]					
	× × × ×	cuttings	25			568	25	·					
								SAND, Light reddish brown, fine grain, well sorted, sub-angular, with					
	1305-1						<u> </u>	some thin quartzite and interbedded sandstone.					
	14.44				1			4 1					
	and the second secon Second second	cuttings	30		-	253	30						
								٩					
	and the second] [
							L						
		cuttings	35		-	143	35	4					
				1				4					
		1	1										
		.]					h	. Ⅰ					
		cuttings	40			144	40	SANDSTONE, very fine grain, moderately sorted, angular.					
			1					SAND Light brown, to tan very fine grain, well sorted, angular.					
	a standard and a standard a stand Standard a standard a st	1	1		1								
	and the second							4 ¹ I					
	1.100		1	1	ļ		45	Lab Data: <u>Chloride</u>					
TD = 45 Feet	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	cuttings	45		1,	149	45	(mg/kg) 20.1					
10 - 45 Feet													

•

.

				LITHO	LOG		G (SOIL	. BORING)
R T Hick	S		MONIT	OR WEL	I NO ·	SB-6		TOTAL DEPTH: 40 Ft
Consulta	nts Ltd						F-31-1Ju	
Consulta	1105 1200		SURFAC	E ELEV			(USGS M	
							& Cooper	, Inc. STATE: New Mexico
P O Box 7624						Air-Rota	γ	LOCATION: T-17-S, R-35-E, Sec. 31 (F)
Midland, TX				LATION				FIELD REP.: Dale Littlejohn
(432) 528-387	8		WEL				orth of SE	
7	Lithology	· · · ·	SAMP			Lat. 32*		North, Long. 103° 29' 58.0" West (Hand-Held GPS) LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE
	Littology	TYPE		% REC	PID	CI (Fld)		SORTING, ROUNDING, CONSOL., DIST. DEATURES
	<u> </u>		<u></u>	///		<u>, , , , , , , , , , , , , , , , , , , </u>		SILT AND CALICHE, Dark brown silt, with loose (soft) caliche.
	<u> </u>							
	<u> </u>							CALICHE, Gray to white, soft.
	<u> </u>							
		cuttings	5			213	5	
]		CALICHE AND SILT, Light brown, soft.
	<u>-</u>	cuttings	10	_		1,021	10	Lab Data: <u>Chloride</u>
		outingo	10			1,021		(mg/kg) 1,010
	<u>ــــــــــــــــــــــــــــــــــــ</u>							
	<u>+</u>							
	<u>+</u>	cuttings	15			435	15	CALICHE AND SILT, Light brown, soft, with interbedded hard
	, <u>,</u> , , , , , , , , , , , , , , , , ,							sandstone and quartzite.
	^ × ^ ×			1		1		
	× ×						 	
E	× × ×	cuttings	20			173	20	
BENTONIT		cuttings	20			173		
Ц Ш Ш	<u> </u>							
	×			1				
	±				•			
	* * *	cuttings	25			295	25	QUARTZITE, Reddish brown, fine crystilline, very hard drilling.
	× × × ×			L				
								SAND, Light reddish brown, fine grain, well sorted, sub-angular, with
	, 2 , 3, , ,					1		some interbedded quartzite.
			20				30	
	en eart i	cuttings	30			302		
		cuttings	35			115	35	
		•				1		
						1		
TD = 40 Feet	j téxto de la co	cuttings	40	L		121	40	Lab Data: <u>Chloride</u> (mg/kg) <5.0
10 - 40 reet								(iii@in@) ~0.0

S nts Ltd '9708 Lithology	S	GURFAC C DRILL INSTAL WELL SAMPL	E ELEVA Contrac Ling Me Lation Place	ITE ID: ATION: CTOR: THOD: DATE: MENT: ENTS:	Vacuum 3,980 Harrison Air-Rotar 2/20/08 18 Feet v	vast of SB-5 47' 38.6" North, DEPTH LITH SOR	COUNTY: Lea County STATE: <u>New Mexico</u> LOCATION: T-17-S, R-35-E, Sec. 31 (F) FIELD REP.: <u>Dale Littlejohn</u> FILE NAME: <u>Vacuum SWD\F-31-1 Lithlogs</u> Long. 103° 29' 58.2" West (Hand-Held GPS) OLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE TING, ROUNDING, CONSOL., DIST. DEATURES
/9708 3 Lithology 	S TYPE	C DRILL INSTAL WELL SAMPL	E ELEVA CONTRAC LING ME LATION PLACE COMM LE DATA	ATION: CTOR: THOD: DATE: MENT: ENTS: (PPM)	3,980 Harrison Air-Rotar 2/20/08 18 Feet v Lat. 32° 4	(USGS Map) & Cooper, Inc. y vast of SB-5 47' 38.6" North, DEPTH LITH SOR	COUNTY: Lea County STATE: <u>New Mexico</u> LOCATION: T-17-S, R-35-E, Sec. 31 (F) FIELD REP.: <u>Dale Littlejohn</u> FILE NAME: <u>Vacuum SWD\F-31-1 Lithlogs</u> Long. 103° 29' 58.2" West (Hand-Held GPS) OLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE TING, ROUNDING, CONSOL., DIST. DEATURES
/9708 3 Lithology 	S TYPE	C DRILL INSTAL WELL SAMPL	CONTRAC LING ME LATION PLACE COMM LE DATA	CTOR: THOD: DATE: MENT: ENTS: (PPM)	Harrison Air-Rotar 2/20/08 18 Feet v Lat. 32° 4	& Cooper, Inc. y vast of SB-5 47' 38.6" North, DEPTH LITH SOR	STATE: New Mexico LOCATION: T-17-S, R-35-E, Sec. 31 (F) FIELD REP.: Dale Littlejohn FILE NAME: Wacuum SWD\F-31-1 Lithlogs Long. 103° 29' 58.2" West (Hand-Held GPS) OLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE TING, ROUNDING, CONSOL., DIST. DEATURES
Lithology	TYPE	DRILL INSTAL WELL SAMPL	ING ME LATION PLACE COMM LE DATA	THOD: DATE: MENT: <u>ENTS:</u> (PPM)	Air-Rotar 2/20/08 18 Feet v Lat. 32° 4	y vast of SB-5 47' 38.6" North, DEPTH LITH SOR	LOCATION: T-17-S, R-35-E, Sec. 31 (F) FIELD REP.: Dale Littlejohn FILE NAME: Wacuum SWD\F-31-1 Lithlogs Long. 103° 29' 58.2" West (Hand-Held GPS) OLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE TING, ROUNDING, CONSOL., DIST. DEATURES
Lithology	TYPE	INSTAL WELL	LATION PLACE COMM LE DATA	DATE: MENT: <u>ENTS:</u> (PPM)	2/20/08 18 Feet v Lat. 32° 4	vast of SB-5 47' 38.6" North, DEPTH LITH SOR	FIELD REP.: <u>Dale Littlejohn</u> FILE NAME: <u>Vacuum SWD\F-31-1 Lithlogs</u> Long. 103° 29' 58.2" West (Hand-Held GPS) OLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE TING, ROUNDING, CONSOL., DIST. DEATURES
Lithology	TYPE	WELL SAMPL	PLACE COMM LE DATA	MENT: ENTS: (PPM)	18 Feet v Lat. 32° 4	47' 38.6" North, DEPTH LITH SOR	FILE NAME: <u>Wacuum SWD\F-31-1 Lithlogs</u> Long. 103° 29' 58.2" West (Hand-Held GPS) OLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE TING, ROUNDING, CONSOL., DIST. DEATURES
Lithology 		SAMPL	COMM LE DATA	ENTS: (PPM)	Lat. 32° 4	47' 38.6" North, DEPTH LITH SOR	, Long. 103° 29' 58.2" West (Hand-Held GPS) OLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE TING, ROUNDING, CONSOL., DIST. DEATURES
			LE DATA	(PPM)		DEPTH LITH	OLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE TING, ROUNDING, CONSOL., DIST. DEATURES
			and the second design of the s		CI (Fld)	SOR	TING, ROUNDING, CONSOL., DIST. DEATURES
		DEPTH	% REC	PID	CI (Fld)		
	cuttings					I I I I I I I I I I I I I I I I I I I	
· · · · · · · · · · · · · · · · · · ·	cuttings						AND CALICHE, Dark brown silt, with loose (soft) caliche.
	cuttings						CHE, white to grayish white, hard, with interbedded soft caliche
	cuttings					and li	ight brown to tan silt.
<u>ــ</u>	cuttings						
,		5			586	5	
· ····							
					1		
<u>ـد</u>							
	·						
<u> </u>	cuttings	10			410	10 CALI	ICHE AND SILT, Light brown to tan, soft.
±							
			ļļ				
·							
±							
	cuttings	15	·	-	241	15	
±							
					1	、 、	
	cuttings	20	'		211	20	
<u> </u>							
<u>-</u>							
× × ×						QUA	RTZITE, Grayish to reddish brown, fine crystilline, hard.
and an	cuttings	25			143	25 SAN	D, Light brown, very fine grain, medium sorted, with interbedded
						quar	tzite layers.
X X X X			1	i i	1	· · · · ·	-
an an the state of		1					
× × ×			1 [·]				
	cuttings	30		- 1	146	30	
	× × × × × × × × × × × × × × × × × × ×	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

•

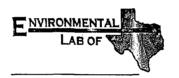
•

Γ						LITHC	LOG	CLOG	G (SOIL	BORIN	IG)		
F	R T Hicks				MONIT	OR WEL	L NO.:	SB-8	·		TOTAL DEPTH:	15 Ft	
6	Consultants Ltd				SITE ID:				F-31-1Jur	ction	CLIENT:	Rice Operating Company	
`	Jonsuita	• •	SURFAC	E ELEV	ATION:	3,980 (USGS Map)			COUNTY:	Lea County			
			(CONTRA	CTOR:	Harrison & Cooper, Inc.				New Mexico			
1	P O Box 7624				DRIL	LING ME	THOD:	Air-Rotary			LOCATION:	T-17-S, R-35-E, Sec. 31 (F)	
l	Midland, TX	79708			INSTALLATION DATE:							Dale Littlejohn	
	(432) 528-387	8			WELI	- PLACE	MENT:	10 Feet wast of SB-2			FILE NAME:	Vacuum SWD\F-31-1 Lithlogs	
											. 103° 29' 58.3" West (Hand-Held GPS)		
Ł		logy			LE DATA	<u>مکسیت کے</u>		1 1			ITHOLOGY, COLOR, GRAIN SIZE		
				TYPE	DEPTH	% REC	PID	CI (FId)			ROUNDING, CONSO		
		<u> </u>	'			}				SILT AND	CALICHE, Dark brown	silt, with loose (soft) caliche.	
		<u> </u>									white, hard, .		
1		<u> </u>		cuttings	5		1	140	5		AND SILT, Light brown	i to tan, son.	
		<u> </u>		cuttings	5	-	-	140	— <u> </u>				
ONITE		<u> </u>											
NO.		<u> </u>)			ĺ	<u> </u>				
Ĕ		<u> </u>	~		ļ			ļ					
œ				cuttings	10			144	10				
1		<u> </u>])					
	医苯基苯基苯基苯基	<u>ـــــ</u>		ļ				l					
		<u> </u>											
1		<u>_</u>]								
L		<u> </u>	<u></u>	cuttings	15			378	15				
Т	D = 15 Feet									QUARTZI	TE at TD		
L													

				LITHO	DLOG		G (SOIL	BORIN	NG)		
R T Hick		MONIT	OR WEI	L NO.:	SB-9			TOTAL DEPTH:	15 Ft		
Consulta	d		S	ITE ID:	Vacuum F-31-1Junction			- CLIENT:	Rice Operating Company		
Consum			SURFAC	E ELEV	ATION:	3980	(USGS N	lap)	COUNTY:	Lea County	
	•		(CONTRA	CTOR:	Harrison & Cooper, Inc.			STATE:	New Mexico	
P O Box 7624	Ļ		DRIL	LING ME	THOD:	Air-Rotary			LOCATION:	T-17-S, R-35-E, Sec. 31 (F)	
Midland, TX	79708		INSTAL	LATION	DATE:	2/20/08			FIELD REP.:	Dale Littlejohn	
(432) 528-387	8		WEL			5' N and 36' E of Pit Marker				Vacuum SWD\F-31-1 Lithlogs	
						Lat. 32º 47' 38.5" North, Long. 103º 29' 57.6" West (Hand-Held GPS)					
	Lithology	SAMPLE DATA (PPM)							SIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE		
		TYPE	DEPTH	% REC	PID	CI (FId)				DL., DIST. DEATURES	
		<u> </u>								silt, with loose (soft) caliche.	
			ļ			[CALICHE,	white to grayish white,	, hard.	
	<u> </u>					┼────			AND SILT Light brown	to tan, soft, with interbedded hard	
		cuttings	5			111		caliche.			
	<u>≁_</u> ⊥		}								
ONIT	~ <u>_</u> _	1	l			ĺ					
Ê.	<u> </u>		Í			ļ				а.	
BENT	\	1	}						,		
		cuttings	10			115	10				
	<u>+</u>			}							
	<u></u>	1	{								
			15			100	15				
TD = 15 Feet	<u> </u>	cuttings	15	L	l,	122	L_15	QUARTZI			
l 10 - 15 Feel								QUARTZI	i E al IU		
L											

ATTACHMENT C Laboratory Reports and Chain-of-Custody Documentation

Analytical Report 298154


for

Rice Operating Co.

Project Manager: Kristin Pope

Vacuum F-31-1 Junction Box Vacuum SWD System

28-FEB-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

28-FEB-08

Project Manager: Kristin Pope Rice Operating Co. 122 West Taylor Hobbs, NM 88240

Reference: XENCO Report No: 298154 Vacuum F-31-1 Junction Box Project Address: T17S, R35E, Sec 31, Unit Letter F

Kristin Pope:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 298154. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 298154 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 298154

Rice Operating Co., Hobbs, NM

Vacuum F-31-1 Junction Box

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SB-1	S ·	Feb-19-08 14:59	15 - 17 ft	298154-001
SB-1	S	Feb-19-08 15:16	35 - 37 ft	298154-002
SB-2	S	Feb-19-08 15:44	15 - 15 ft	298154-003
SB-2	S	Feb-19-08 16:05	30 - 30 ft	298154-004
SB-3	S	Feb-20-08 08:56	10 - 10 ft	298154-005
SB-3	S	Feb-20-08 09:14	30 - 30 ft	298154-006
SB-4	S	Feb-20-08 09:36	10 - 10 ft	298154-007
SB-4	S	Feb-20-08 10:06	40 - 40 ft	298154-008
SB-5	S	Feb-20-08 10:29	15 - 15 ft	298154-009
SB-5	S	Feb-20-08 11:04	45 - 45 ft	298154-010
SB-6 ·	S	Feb-20-08 13:41	10 - 10 ft	298154-011
SB-6	S	Feb-20-08 14:07	40 - 40 ft	298154-012

Certificate of Analysis Summary 298154 Rice Operating Co., Hobbs, NM

Project Name: Vacuum F-31-1 Junction Box

•	ггоје	et ivame:	vacuu	m r-91-1 J	unction	I DUX			
Project Id: Vacuum SWD	System			Dat	e Receive	ed in Lab:	Feb-22-08	8 10:20 am	
Contact: Kristin Pope					Rep	ort Date:	28-FEB-0)8	
Project Location: T17S, R35E, Second	ec 31, Unit Letter F	2			Project N	Manager:	Brent Bar	ron, II	
	Lab Id:	298154-0	01	298154-0	02	298154-0	003	298154-0	04
Analysis Requested	Field Id:	SB-1		SB-1		SB-2		SB-2	
	Depth:	15-17 f	t	35-37 f	t l	15-15 f	ì	30-30 fi	l
	Matrix:	SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-19-08	4:59	Feb-19-08	15:16	Feb-19-08	15:44	Feb-19-08 1	6:05
Anions by EPA 300/300.1	Extracted:								
Amons by LTT 500/2001	Analyzed:	Feb-23-08	10:52	Feb-23-08	10:52	Feb-23-08	10:52	Feb-23-08 1	0:52
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		293	6.19	77.3	5.26	2800	25.0	43.0	5.00
BTEX by SW 8260B	Extracted:	Feb-26-08 11:45		Feb-26-08	11:47				
	Analyzed:	Feb-26-08 14:47		Feb-26-08 15:09					
	Units/RL:	mg/kg	RL	mg/kg	RL				
Benzene		ND	0.0062	ND	0.0053				
Toluene		ND	0.0062	ND	0.0053				
Ethylbenzene		ND	0.0062	ND	0.0053				
m,p-Xylenes		ND	0.0124	ND	0.0105				
o-Xylene		ND	0.0062	ND	0.0053				
Naphthalene		ND	0.062	ND	0.053				
Total BTEX		ND		ND					
Total Xylenes		ND		ND					
Percent Moisture	Extracted:								
	Analyzed:	Feb-23-08	17:00	Feb-23-08	17:00				
	Units/RL:	%	RL	%	RL				
Percent Moisture		19.2		4.89					

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Brent Barron

Odessa Laboratory Director

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Certificate of Analysis Summary 298154 Rice Operating Co., Hobbs, NM

Project Name: Vacuum F-31-1 Junction Box

Project Id: Vacuum SWD S Contact: Kristin Pope	ystem			Date			eb-22-08 8-FEB-0	3 10:20 am 98	
Project Location: T17S, R35E, Sec	e 31, Unit Letter F			I	Project N	Manager: E	Brent Bar	ron, II	
	Lab Id:	298154-00)5	298154-00	06	298154-0	07	298154-0	008
Analysis Requested	Field Id:	SB-3		SB-3		SB-4		SB-4	
	Depth:	10-10 ft		30-30 ft		10-10 ft		40-40 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-20-08 0	8:56	Feb-20-08 0	9:14	Feb-20-08 0	9:36	Feb-20-08	10:06
Anions by EPA 300/300.1	Extracted:								
	Analyzed:	Feb-23-08 1	0:52	Feb-23-08 10:52		Feb-23-08 1	0:52	Feb-23-08	10:52
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		115	5.00	ND	5.00	3670	50.0	87.5	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Brent Barron

Odessa Laboratory Director

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Certificate of Analysis Summary 298154 Rice Operating Co., Hobbs, NM

Project Name: Vacuum F-31-1 Junction Box

Project Id: Vacuum SWD Sy	vstem			Date	e Receive	ed in Lab: F	Feb-22-08 10:20 am				
Contact: Kristin Pope					Rep	ort Date: 2	28-FEB-0)8			
Project Location: T17S, R35E, Sec	31, Unit Letter F	2		1	Project N	Manager: E	Brent Bar	топ, II			
	Lab Id:	298154-00)9	298154-0	10	298154-0	11	298154-0	12		
Analysis Requested	Field Id:	SB-5		SB-5		SB-6		SB-6			
	Depth:	15-15 ft		45-45 ft SOIL		10-10 ft SOIL		40-40 ft SOIL			
	Matrix:	SOIL									
	Sampled:	Feb-20-08 1	0:29	Feb-20-08 1	1:04	Feb-20-08 1	3:41	Feb-20-08 1	4:07		
Anions by EPA 300/300.1	Extracted:										
	Analyzed:	Feb-26-08 0	8:28	Feb-26-08 0	8:28	Feb-26-08 0	8:28	Feb-26-08 0	8:28		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		5330	100	20.1	5.00	1010	10.0	ND	5.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Brent Barron

Odessa Laboratory Director

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Flagging Criteria

- X In our quality control review of the data a OC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to D matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated. E
- RPD exceeded lab control limits. F
- The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL). J
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

Form 2 - Surrogate Recoveries

Project Name: Vacuum F-31-1 Junction Box

ork Order #: 298154 Lab Batch #: 715676 Sample: 2	298153-001 S / MS	MS Batch: 1 Matrix: Soil										
Lab Batch #: /13070 Sample: 2 Units: mg/kg	98133-001 37 MS		RECOVERY S	STUDY								
BTEX by SW 8260B	Amount Found . [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags							
Analytes			······									
4-Bromofluorobenzene	. 0.0569	0.0500	114	74-121								
Dibromofluoromethane	0.0526	0.0500	105	80-120								
1,2-Dichloroethane-D4 Toluene-D8	0.0485	0.0500	97	80-120								
	0.0498	0.0500	100	81-117								
l l	298153-001 SD / MSD		latrix: Soil									
Units: mg/kg		SURROGATE	RECOVERY	STUDY								
BTEX by SW 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag							
4-Bromofluorobenzene	0.0502	0.0500	100	74-121								
Dibromofluoromethane	0.0504	0.0500	101	80-120								
1,2-Dichloroethane-D4	0.0494	0.0500	99	80-120								
Toluene-D8	0.0494	0.0500	99	81-117								
Lab Batch #: 715676 Sample: 2	298154-001 / SMP	Batch: 1 N	latrix: Soil									
Units: mg/kg		SURROGATE	RECOVERY	STUDY								
Units: mg/kg BTEX by SW 8260B Analytes	Amount Found [A]	SURROGATE True Amount [B]	RECOVERY Recovery %R [D]	STUDY Control Limits %R	Flag							
BTEX by SW 8260B Analytes	Found	True Amount	Recovery %R	Control Limits	Flag							
BTEX by SW 8260B Analytes 4-Bromofluorobenzene	Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag							
BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane	Found [A] 0.0470	True Amount [B] 0.0500	Recovery %R [D] 94	Control Limits %R 74-121	Flag							
BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-D4	Found [A] 0.0470 0.0483	True Amount [B] 0.0500 0.0500	Recovery %R [D] 94 97	Control Limits %R 74-121 80-120	Flag							
BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	Found [A] 0.0470 0.0483 0.0462 0.0462	True Amount [B] 0.0500 0.0500 0.0500 0.0500 0.0500	Recovery %R [D] 94 97 92	Control Limits %R 74-121 80-120 80-120	Flag							
BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	Found [A] 0.0470 0.0483 0.0462 0.0489	True Amount [B] 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.1000	Recovery %R [D] 94 97 92 98	Control Limits %R 74-121 80-120 80-120 81-117	Flag							
BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 Lab Batch #: 715676 Sample: 7 Units: mg/kg BTEX by SW 8260B	Found [A] 0.0470 0.0483 0.0462 0.0489	True Amount [B] 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.1000	Recovery %R [D] 94 97 92 98 1atrix: Soil RECOVERY %R	Control Limits %R 74-121 80-120 80-120 81-117								
BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 Lab Batch #: 715676 Sample: 7 Units: mg/kg BTEX by SW 8260B Analytes	Found [A] 0.0470 0.0483 0.0483 0.0462 0.0489 298154-002 / SMP	True Amount [B] 0.0500 0.0500 0.0500 0.0500 0.0500 Batch: 1 SURROGATE True Amount	Recovery %R [D] 94 97 92 98 1atrix: Soil RECOVERY Recovery	Control Limits %R 74-121 80-120 80-120 81-117 STUDY Control Limits								
BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 Lab Batch #: 715676 Sample: 7 Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene	Found [A] 0.0470 0.0483 0.0462 0.0489 298154-002 / SMP	True Amount [B] 0.0500 0.0500 0.0500 0.0500 0.0500 Batch: 1 SURROGATE True Amount	Recovery %R [D] 94 97 92 98 1atrix: Soil RECOVERY %R	Control Limits %R 74-121 80-120 80-120 81-117 STUDY Control Limits								
BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 Lab Batch #: 715676 Sample: 7 Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane	Found [A] 0.0470 0.0483 0.0462 0.0489 298154-002 / SMP Amount Found [A] 0.0505 0.0494	True Amount [B] 0.0500 0.0500 0.0500 0.0500 0.0500 Batch: 1 SURROGATE Batch: 1 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	Recovery %R [D] 94 97 92 98 1atrix: Soil RECOVERY %R [D]	Control Limits %R 74-121 80-120 80-120 81-117 STUDY Control Limits %R								
BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 Lab Batch #: 715676 Sample: 7 Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene	Found [A] 0.0470 0.0483 0.0462 0.0489 298154-002 / SMP Amount Found [A] 0.0505	True Amount [B] 0.0500 0.0500 0.0500 0.0500 0.0500 Batch: 1 SURROGATE True Amount [B] 0.0500	Recovery %R [D] 94 97 92 98 1atrix: Soil RECOVERY %R [D] 101	Control Limits %R 74-121 80-120 80-120 81-117 STUDY Control Limits %R 74-121	Flag							

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Vacuum F-31-1 Junction Box

ork Order #: 298154		Project II): Vacuum S'	WD System	
Lab Batch #: 715676 Sample: 505147-1-BKS	/ BKS Ba	tch: 1 Matri	x: Solid		
Units: mg/kg	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by SW 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
4-Bromofluorobenzene	0.0528	0.0500	106	74-121	
Dibromofluoromethane	0.0505	0.0500	101	80-120	
1,2-Dichloroethane-D4	0.0495	0.0500	99	80-120	
Toluene-D8	0.0485	0.0500	97	81-117	
Lab Batch #: 715676 Sample: 505147-1-BLK	/ BLK Ba	tch: ¹ Matr	ix: Solid		
Units: mg/kg	SU	RROGATE R	ECOVERY S	STUDY	
Units: mg/kg BTEX by SW 8260B Analytes	Amount Found [A]	RROGATE R True Amount [B]	Recovery %R [D]	STUDY Control Limits %R	Flag
BTEX by SW 8260B Analytes	Amount Found	True Amount	Recovery %R	Control Limits	Flag
BTEX by SW 8260B Analytes 4-Bromofluorobenzene	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
BTEX by SW 8260B	Amount Found [A] 0.0507	True Amount [B] 0.0500	Recovery %R [D] 101	Control Limits %R 74-121	Flags

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: Vacuum F-31-1 Junction Box

Work Order #: 298154			Pr	oject ID:	Va	cuum SWD	System			
Lab Batch #: 715676		mple: 505147-			x: Solid					
Date Analyzed: 02/26/2008	Date Prep	oared: 02/26/20			st: KHM					
Reporting Units: mg/kg	Ba	tch #: 1	BLANK /	BLANK SPI	KE REC	OVERY S	TUDY			
BTEX by SW 8260B Analytes		Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags			
Benzene		ND	0.0500	0.0486	97	66-142				
Toluene		ND	0.0500	0.0504	101	59-139				
Ethylbenzene		ND	0.0500	0.0462	92	75-125				
m,p-Xylenes		ND	0.1000	0.0957	96	75-125				
o-Xylene		ND	0.0500	0.0476	95	75-125				
Lab Batch #: 715578 Date Analyzed: 02/23/2008 Reporting Units: mg/kg	Date Pre	mple: 715578- pared: 02/23/20 htch #: 1	008	Matrix: Solid Analyst: IRO K/BLANK SPIKE RECOVERY STUDY						
Anions by EPA 300/300.1		Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags			
Analytes		ND	10.0	9,95	[D]	75-125				
Chloride			10.0	9.95	100	/5-125				
Lab Batch #: 715635 Date Analyzed: 02/26/2008		ample: 715635- pared: 02/26/20	. 800	Analy	ix: Solid st: IRO					
Reporting Units: mg/kg	Ba	atch #: 1	BLANK /	BLANK SPI	KE REC	COVERY S	STUDY			
Anions by EPA 300/300.1		Blank	Spike	Blank	Blank	Control				
Analytes		Result [A]	Added [B]	Spike Result [C]	Spike %R [D]	Limits %R	Flags			

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes.

XENCO	Form 3 - MS R	lecover	ries			O'N ACCORD	
Laboratories Projec	ct Name: Vacuum F	31-1 Jun	ction Box			ine ia	
Work Order #: 298154							
Lab Batch #: 715578			P	roject ID:	Vacuum SV	WD System	
Date Analyzed: 02/23/2008	Date Prepared:	02/23/2008	8	Analyst:	IRO		
QC- Sample ID: 298134-001 S	Batch #:	1		Matrix:	Soil		
Reporting Units: mg/kg	MAT	RIX / MA	TRIX SPIK	E RECO	VERY STU	DY	
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Samp Result [C]	le %R [D]	Control Limits %R	Flag	
Chloride	987	210	1120	63	75-125	x	
Lab Batch #: 715635							
Date Analyzed: 02/26/2008	Date Prepared:	02/26/2008	8	Analyst:	IRO		
QC- Sample ID: 298154-009 S	Batch #:	1		Matrix:	Soil		
Reporting Units: mg/kg	MAT	RIX / MA	TRIX SPIK	E RECO	VERY STU	JDY	
Inorganic Anions by EPA 300 . Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Samp Result [C]	le %R [D]	Control Limits %R	Flag	
	5330	2000	7690	118	75-125		

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $[E] = 200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Work Order #: 298154

Date Analyzed: 02/26/2008 Lab Batch ID: 715676 Reporting Units: mg/kg

Project Name: Vacuum F-31-1 Junction Box

Project ID: Vacuum SWD System

Batch #: QC- Sample ID: 298153-001 S Date Prepared: 02/26/2008

Matrix: Soil , ---

KHM Analyst:

Reporting Units: mg/kg		M	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	E / MATI	RIX SPI	KE DUPLICA	TE RECO	VERY	STUDY		
BTEX by SW 8260B	Parent Sample	Spike	Spiked Sample Spiked Result Sample	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits % RPD	Flag
Analytes	[A]	Added [B]	5	<u>D</u>	E]	Kesun [r]	[G]	/0	VI0/		
Benzene	QN	0.2904	0.2849	98	0.2846	0.2811	66	-	66-142	25	
Toluene	0.0057	0.2904	0.2904	86	0.2846	0.2847	98	0	59-139	25	
Ethylbenzene	QN	0.2904	0.2846	86	0.2846	0.2783	98	0	75-125	25	
m,p-Xylenes	QN	0.5808	0.5793	100	0.5692	0.5433	95	5	75-125	25	
o-Xylenc	ND	0.2904	0.2833	98	0.2846	0.2709	95	3	75-125	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

ERC	nple Di	uplicate	Recov	ery		
borctories Project Nam Vork Order #: 298154	e: Vacuu	m F-31-1	Junction	Box		
Lab Batch #: 715578 Date Analyzed: 02/23/2008	Date Pre	p ared: 02/2	23/2008		D: Vacuum st: IRO	SWD Syste
QC- Sample ID: 298134-001 D	Ba	itch #: 1			ix: Soil	
Reporting Units: mg/kg		SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Anions by EPA 300/300.1	I	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Chloride		987	991	0	20	
Lab Batch #: 715635 Date Analyzed: 02/26/2008 QC- Sample ID: 298154-009 D Reporting Units: mg/kg	Date Pre Ba Г	atch #: 1	26/2008 / SAMPLE	Matr	st: IRO ix: Soil	OVERV
Anions by EPA 300/300.1 Analyte		Parent Sample Result [A]	·····	RPD	Control Limits %RPD	Flag
Chloride		5330	5060	5	20	
Lab Batch #: 715411 Date Analyzed: 02/23/2008	Date Pre		23/2008		st: WRU	<u>.</u>
QC- Sample ID: 298133-001 D	ط آ		/ SAMPLE		ix: Sludge	OVEDV
Reporting Units: % Percent Moisture		Parent Sample Result	Sample Duplicate	RPD	Control Limits %RPD	Flag
Analyte		[A]	Result [B]			

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

il YSIS REQUEST	Junction Box	System	c 31, Unit Letter F		त् भ				CI) CI) Charde Charde Charde Moisture Percent Charder Char		x	X	×	×	×	×	×	×	x x	x	5 、 4. C z			403 glass w/ scal an culter
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	Project Name: Vacuum F-31-1 Junction	Project #: Vacuum SWD System	Project Location: T17S, R35E, Sec 31, Unit Letter	g Code	Pase 1 of		TCLP: Analyze For	-	BLEX H (EN V 3260) Semiyorajipe Meirar Ver V Be Co Cu Do HG Zer V E2b 1 CEC Cajoue (Cr 204' CO3' HCO3) Cajoue (Cr 204' CO3' HCO3)		×	×									Sample Containers Intact? Temperature Upon Receipt: Laboratory Commants:			1 4 03 9 1435 V
CHAIN OF CUS	Project	Δ.	Project Lo	ROC Billing Code	1			Matrix 👳	01 5001 WS108 1919 Hat 909 2019 2019 2019 2019 2019 2019 2019		×	×	×	×	×	×	×	×	×	×		Date Time		2.2708 11:20
					Fax No: 505-397-1471	Email results to: dale@rthicksconsult.com, Lweinheimer@riceswd.com,and kpope@riceswd.com		Preservative	୍ୟୁର୍ଦ୍ଦ H ¹ 20 ¹ ଜଣ ଜଣ ଜଣ ଜଣ ଜଣ		1 X	1 X 1	1 X	1 × 1	- × F	1 X	1 X	1 × -	× +	1 X				Jerr
					Fax No:	swd.com,and kg			belqms≳ emiT		1459	1516	1544	1605	0856	0914	9660	1006	1029	1104			101: 1	
						eimer@rices	Littley eles		bəkqm62 ətsQ		2/19/08	2/19/08	2/19/08	2/19/08	2/20/08	2/20/08	2/20/08	2/20/08	2/20/08	2/20/08		Received by:	Received by ELOT:	Undrea
1 C C G C 32-563-1800 32-563-1713		npany		88240		om, Lweinh			dige0 eigme2 (yino elioe)	in End (ft)	0 17.0	0 37.0	0 15.0	0 30.0	0 10.0	0 30.0	0 10.0	0 - 40.0	0 15.0	0 45.0		S IA 21)	Time	
280 West 20 East Phone: 432-63-180 280 West 20 East Phone: 432-63-180 Xdesse, Texas 73766 Fax: 432-663-1713	istin Fartis	company Name Rice Operating Company	Company Address: 122 West Taylor	City/State/Zip: Hobbs, New Mexico 88240	Telephone No: 505-393-9174	le@rthicksconsult.c	Dat 7		¢ι€Γם CODE	Begin (ft)	-1 15.0	-1 35.0	-2 15.0	-2 30.0	-3 10.0	-3 30.0	4 10.0	4 40.0	5 15.0	5 45.0		2/22/08		
11101110 East 9766	Project Manager: Kristin Farris	ipany Name Ri	ny Address: <u>12</u>	ty/State/Zip: Ho	ephone No: <u>50</u>	li results to: <u>da</u>	Sampler Signature:		GIS CODE		SB-1	SB-1	SB-2	SB-2	SB-3	SB-3	SB-4	SB-4	SB-5	SB-5		Trtte		
12600 West 1-20 East Odessa, Texas 79765	Proje	Con	Compa	5	161	Emai	Sample		(ɣino səu dɛi) # 8A.1	P18154	5,	105	,0 ⁵	P.O.	¢0-	30.	-15	- 03	~ oʻl	טו- טו	Special Instruction	Relinquished by:	Relinquished by:	

Environmental Lab of Texas

Page 14 of 16

Environmental Lab of Texas Isoux 13785 Terminal Lab of Texas Proter Manager Freise Taylor Company Marie Rice Operating Company Company Address: 122 West Taylor Company Address Taylor Company Address: 122 West Taylor Company Address: 122 Wes

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	Rice	
Date/ Time:	2 22 03	10:20
Lab ID # :	298154	
Initials:	ar	<u>.</u>

Sample Receipt Checklist

					Client Initial
#1 Te	emperature of container/ cooler?		Ves	No	- 2.0 °C
#2 S	hipping container in good condition	on?	Yes	No	
	ustody Seals intact on shipping c		Ves)	No	Not Present
#4 C	ustody Seals intact on sample be	ttles/ container?	_Yes	No	Not Present
	hain of Custody present?		Yes	No	
#6 S	ample instructions complete of C	hain of Custody?	(es)	No	
#7 C	chain of Custody signed when rel	nquished/ received?	es	No	
#8 C	hain of Custody agrees with sam	ple label(s)?	Yes	No	He written on Cont/Did
#9 C	Container label(s) legible and intac	st?	Yes	No	Not Applicable>
#10 \$	Sample matrix/ properties agree	with Chain of Custody?	Yes	No	
#11 (Containers supplied by ELOT?		Yes	No	
#12 \$	Samples in proper container/ bott	le?	Yes	No	See Below
#13 \$	Samples properly preserved?		YES	No	See Below
#14	Sample bottles intact?		Yes	No	
#15	Preservations documented on Ch	ain of Custody?	Yes)	No	
#16	Containers documented on Chair	n of Custody?	Yes	No	
#17	Sufficient sample amount for indi	cated test(s)?	Yes	No	See Below
#18	All samples received within suffic	ient hold time?	(es	No	See Below
#19	Subcontract of sample(s)?		Yes	No	Not Applicable
#20	VOC samples have zero headsp	ace?	Fes	No	Not Applicable

Variance Documentation

Contact:		Contacted by:	Date/ Time:
Regarding:		·····	
Corrective Action Taken:			
Check all that Apply:	C c	e attached e-mail/ fax ent understands and would like to proceed with ana oling process had begun shortly after sampling eve	

ATTACHMENT D Summary Description of the Vadose Zone Screening Tool Model

R. T. HICKS CONSULTANTS, LTD. ATTACHMENT D

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

Summary Description of the Vadose Zone Screening Tool Model

The screening tool predicts the impact to ground water from a surface release of brine. The tool uses the HYDRUS-1D model to simulate gravity-driven vertical water flow through the vadose zone. The calculated chloride flux to ground water is the input to a simple ground water mixing model. The output of the mixing model is a predicted chloride concentration in ground water down gradient of the affected area as would be observed in a monitoring or supply well at or near the location.

HYDRUS-1D numerically solves the Richard's equation for water flow and the Fickian-based advection-dispersion equation for heat and solute transportation. The HYDRUS-1D flow equation includes a sink term (a term used to specify water leaving the system) to account for transpiration by plants. The solute transport equation considers advective, dispersive transport in the liquid phase, diffusion in the gaseous phase, nonlinear and non-equilibrium sorption, linear equilibrium reactions between the liquid and gaseous phases, zero-order production, and first-order degradation.

The ground water mixing model uses the chloride flux from the vadose zone to ground water provided by HYDRUS-1D and instantaneously mixes this chloride and water with the ground water flux of chloride plus water that enters the mixing cell beneath the subject site. We refer the reader to API Publication 4734, Modeling Study of Produced Water Release Scenarios (Hendrickx and others, 2005) which describes the techniques employed in the screening model.

HYDRUS 1-D INPUTS

Climate – Weather data used in calculation of the initial condition and the predictive modeling was from the Pearl, New Mexico weather station, located approximately 15 miles west of the city of Hobbs, New Mexico. This station has an excellent database of daily weather conditions that are used in the HYDRUS-1D model (e.g. precipitation, temperature, wind speed, etc.). Although the weather on a given day in Roswell, New Mexico may be different from Midland, Texas, the climate in the Permian Basin of New Mexico and Texas is similar. The weather data spans the 46. 5 year period from July, 1946 to December, 1992,

HYDRUS-1D can also employ a uniform yearly infiltration rate that will obviously smooth the temporal variations that may be caused by a strong El Nino event during a week in July or August. Because the daily atmospheric data are of high quality for Pearl, we have elected to allow the screening tool to predict the deep percolation rate and the resultant variable flux to ground water using actual (non-smoothed data). This choice results in higher predicted peak chloride concentrations in ground water due to temporally variable high fluxes from the vadose zone than would be predicted by an averaged infiltration rate. Where depth to ground water is greater than 30 feet in this climate, using the uniform annual infiltration rate may provide more realistic results. However using daily weather data is conservative of ground water quality as it overestimates any impact.

Initial Soil Moisture - Because soils are relatively dry in this climate and vadose zone hydraulic conductivity varies with moisture content, it is important that simulations start with representative soil moisture content. In the absence of site-specific data, the

Attachment D Page 2

calculation of soil moisture content begins with using professional judgment as an initial input and then running sufficient years of weather data through the model to establish a "steady state" moisture content. For simulations in the Permian Basin, only minimal changes in the HYDRUS-1D soil moisture content profile occurred after year 15 of the initial condition calculation, therefore, 46.5 years (1 cycle of the weather data) was considered sufficient to establish an initial moisture condition for the screening tool.

Input for a Distant Well – In addition to predicting the chloride concentration for a monitoring well located adjacent to the spill area, the screening tool allows for a prediction of a second well located at a specified distance from the spill in the down gradient direction. This can be utilized to determine the potential threat to an actual water well or a compliance monitoring well located down gradient from the release site.

Background Chloride Concentration in Aquifer – If an actual measured chloride concentration from a near-by well is not available then a background concentration of no less than 50 mg/L generally reflects regional conditions.

Aquifer Porosity – If an actual measured value is not available, a conservative estimate of 0.25 to 0.30 is generally acceptable.

Groundwater Table Depth – Published information on depth to ground water is readily available in the Permian Basin if no site specific data is available.

Aquifer Thickness - The thickness of the mixing zone is an important variable in the model. In the Ogallala Aquifer, which is the water table aquifer throughout much of the Permian Basin of Texas and New Mexico, several case studies show that chloride is distributed throughout the upper 20-50 feet saturated zone down gradient of a release site. At some sites, the nature of the release could cause brine to behave as a dense non-aqueous phase liquid, which could concentrate chloride in the lowermost 10-feet of a thin aquifer. In the absence of site-specific hydrogeologic data, use of the screen length of nearby supply wells is a reasonable choice for the aquifer thickness (mixing zone) input to the model.

Slope of the Water Table – If actual hydraulic gradient data from a nearby site or published information is not available then the slope of the water table is assumed to be approximately parallel to the topography.

Hydraulic Conductivity – If a measured hydraulic conductivity of the saturated zone at the release site is not available then a published value from Freeze and Cherry (1979) or Musharrafieh and Chudnoff (1999) is an acceptable choice.

Groundwater Flux – This is a calculated value based on the aquifer thickness, slope of the water table, and the hydraulic conductivity.

Chloride Load –This input parameter is very important. An estimate of the chloride load (weight/area) can be calculated from the analyses of soil boring samples recovered at the source area of the site multiplied by the bulk moisture and the vertical thickness interval of each sample. The result is the chloride load for the vadose zone profile, from the surface to the ground water depth.

The Hydrus 1-D screening tool model initial condition assumes that the release was a single, instantaneous event that saturated the upper half meter of the vadose zone with produced water, like a pipeline rupture. The chloride concentration of the produced water is set such

Attachment D Page 3

that the mass of chloride within the volume of produced water matches the chloride mass calculated from the soil samples. In order to apply the screening tool to a historic spill or other release event, the user must match the vadose zone chloride profile observed in the field to a vadose zone profile generated by the model. In most cases, the user can identify a match between the field data and a generated profile that is several years after time zero of the model. If the screening tool cannot generate an acceptable profile match, a site-specific HYDRUS-1D model with input data that provides a better match than the drop-down menu choices allowed for the screening tool.

Max. Length of the Spill in the Direction of GW Flow - If the exact direction of ground water flow is not known, this value is taken as the maximum dimension of the site.

Plant Uptake Trigger – The screening tool allows for an adjustment to be made in the natural infiltration rate based on the likelihood of vegetation being re-established at the site. Brine spills will often kill vegetation and sites without vegetation allow a higher infiltration rate than sites with vegetation. Over time, the salinity of a relatively porous soil, such as medium-grained sand, will decrease and vegetation will return. The screening tool permits vegetation to return to a spill site when the chloride concentration decreases by to 10% or 1% of the initial concentration. For most sites, vegetation will return when chloride concentrations in soil are 500 mg/kg or less.

Surface Layer and Soil Profile - The screening tool allows for several conservative surface and sub-surface soil types to be utilized based on conditions observed during the installation of soil borings at the site. The texture of the surface layer (the upper meter of the unsaturated zone) is very important. Fine-grained surface soils will prevent infiltration – which is good for the protection of ground water after a surface spill but hinders the natural flushing of salt from the root zone. Coarse-grained soils, such as sand, allow infiltration but natural re-vegetation of such a site can occur after several years, rather than decades for a fine-grained soil.

The screening tool cannot simulate placement of imported fine-grained soil onto a site, which is a common engineered remedy to enhance re-vegetation and to protect ground water by lowering natural infiltration.

Screening Tool (HYDRUS 1-D) OUTPUT CHARTS

The screening tool generates two types of charts. One presents the predicted constituent property profiles in the vadose zone (Quantity 1) and the second predicts ground water quality (Quantity 2) in a down gradient well.

The vadose zone profile chart can display the following constituent properties:

- water content,
- chloride concentration in the soil-water, and
- chloride concentrations of the soil using colored lines to represent future years.

Chloride concentrations in the soil are useful for calibrating the chloride load of the model to actual conditions determined by characterization samples.

As described in API Publication 4734, the ground water mixing model takes the background chloride concentration in ground water multiplied by the ground water flux to calculate the total mass of ground water chloride entering the ground water mixing cell, which lies below

Attachment D Page 4

or down gradient from the release site. The chloride and water flux from HYDRUS-1D is added to the ground water chloride mass and flux to create a final chloride concentration in ground water at a hypothetical monitoring well located at the down gradient edge of the mixing cell (the edge of the release site) or another down gradient location of the users choosing. In addition to the predicted future ground water concentration, the predicted water and chloride flux can also be displayed.