1R - 428 - 68

WORKPLANS

DATE:

R. T. HICKS CONSULTANTS, LTD.

PO Box 7624 A Midland, Texas 79708 A 432.528.3878 Fax: 432.689.4578

July 8, 2008

. .

īę,

Mr. Ed Hansen New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Hobbs SWD System N-4 Vent Site (NMOCD CASE #: 1R428-68)

Dear Mr. Hansen:

On behalf of Rice Operating Company (ROC), R.T. Hicks Consultants, Ltd. is submitting this request to close the regulatory file for the above referenced site. The investigation demonstrated that neither salt nor hydrocarbons are present in the vadose zone in quantities that represent a threat to ground water quality.

Background

The Hobbs SWD N-4 Vent Site is located southwest of the city of Hobbs at T-19-S, R-38-E, Section 4, in Unit N and a release was verified during a excavations that were conducted in May and November of 2002. The NMOCD-approved Investigation Characterization Plan (ICP), dated April 13, 2007, provided as Attachment A to this letter, includes background information and a site vicinity map for this and two other nearby ROC sites.

177

17

Π

P

8-48

Field Program

As a part of the approved ICP, ROC installed and sampled seven backhoe trenches from August 31 to September 4, 2007 to delineate the horizontal extent of chlorides in the soil. A summary map prepared by ROC presents the results of the field chloride analyses and hydrocarbon screening data and is provided as Attachment B to this letter. A laboratory report for the soil samples used to verify the ROC field data is also provided. The results of this initial assessment indicate that the highest chloride concentration (1,354 ppm) is present at four feet below the surface in an area approximately five feet south of the original excavation. None of the 2007 trenches identified the vertical extent of the chloride-impacted soil.

Field screening of hydrocarbons in the soil identified the highest concentration (18 ppm PID) was also present at a location five feet south of the initial excavation at a depth of 9 feet below the surface. All other soil sample PID readings were below 5.0 ppm; therefore, hydrocarbon-impacted soil is not present at a concentration that represents a threat to fresh water, human health, or the environment.

٠

Hicks Consultants supervised a deep soil sampling program to delineate the vertical extent of the chloride-impacted soil. On February 18, 2008 the first soil boring (SB-1) collected samples at a location approximately seven feet south of the original excavation to evaluate the area of highest remaining chloride and hydrocarbon concentrations. On February 21, after ROC filled the original excavation, a second soil boring (SB-2) was installed to collect samples at the source area location. Plate 1 shows the location of both soil borings relative to the initial excavation and sampling trenches. Soil samples were collected and field screened by ROC for chloride and hydrocarbons. Each boring was terminated when either of the following conditions occurred:

- Five consecutive samples that exhibit decreasing concentrations with depth (chloride and hydrocarbons) and the deepest sample containing less than 250 ppm chloride and 100 ppm PID or
- Three consecutive samples that exhibit concentrations of less than 250 ppm chloride and 100 ppm PID

Attachment C provides soil lithology logs, which include the field chloride and hydrocarbon screening data, and Attachment D provides the laboratory report for field data verification samples.

Results

Data from the deep soil boring program indicates that highest chloride concentrations (>500 ppm) are present from just below the surface to a depth of 15 to 20 feet. The horizontal extent of the chloride-impacted soil is approximately 2,000 ft^2 with the highest levels located just south of the original excavation.

All soil sample hydrocarbon (PID) readings from the borings were below 5.2 ppm and do not extend beyond the limits identified during the 2007 investigation.

Simulation Modeling

We used the HYDRUS-1D model to simulate the impact to ground water due to chloride transport through the vadose zone. The input to the model employed field data from the site or nearby locations and conservative input data for parameters that were not measured at or near the site. Attachment E provides a summary description of the HYDRUS-1D model used in this simulation and a general discussion of the input parameters. The specific parameters used in the simulation at the N-4 site include the following:

Model Parameter	Value	Source of Value
Climate (non-smoothed)	1946 - 1992	Pearl, NM Station
Input for distant or hypothetical well (ft)	NA	Not Required
Background Chloride in Aquifer (mg/L)	80	NM WAIDS, E-4 Site
Aquifer Porosity (unitless)	0.30	Sample Description

٠

Groundwater Table Depth (ft)	30	Site Soil Borings
Aquifer Thickness (ft)	30	Professional Judgment
Slope of Water Table	0.003	Nicholson 1961
Hydraulic Conductivity (ft/d)	50	Musharrafieh 1999
Average Chloride Load (kg/m ²)	7.0	Calc. from Site Data
Max length of spill in dir. of GW flow (ft)	70	Site Data
Plant Uptake Trigger (%)	1.0	Professional Judgment
Surface Layer	caliche	Boring Logs
Soil Profile (sandy clay:caliche:sand ratio)	1:1:1	Boring Logs

Well depth information from NM WAIDS in the same section as the N-4 site indicates an aquifer thickness of at least 50 feet and Musharrafieh and Chudnoff (1999) predict that the saturated thickness of the aquifer beneath the site will remain at least 50 feet from now to the year 2040. Data from similar sites show that, unlike hydrocarbons, chloride that enters the upper portion of an aquifer will become distributed throughout the entire saturated thickness within a relatively short travel distance from the source. Therefore the arbitrary selection of a 10-foot thick mixing zone (used as a default value for hydrocarbon sites) is unrealistic where the chemical of concern is chloride. In our opinion, a simulation using the 30-foot thickness of the aquifer is conservative for this site.

As described in Appendix E, the HYDRUS-1D model assumes a single surface spill is the initial source of chloride that is subsequently observed in the subsurface. In order to apply this version of the HYDRUS-1D model to the Hobbs N-4 site, we calibrated the model by adjusting the chloride load parameter such that an emulated chloride concentration profile fifteen years after the surface release compared favorably with a chloride concentration profile from soil samples measured at the source area. A favorable but conservative comparison was achieved as demonstrated below:

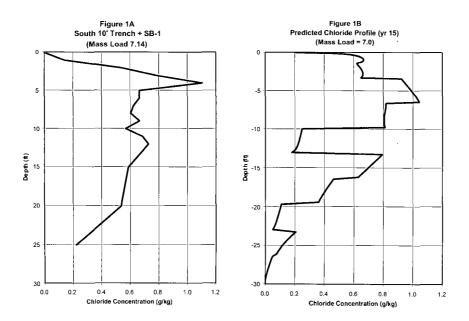
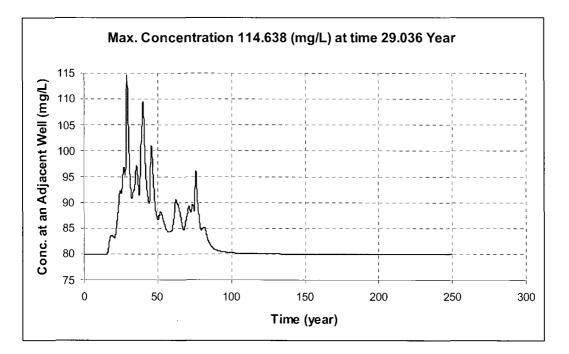



Figure 1A is the profile using field chloride analysis from the 10-Foot South Trench (to 12 feet bgs) and SB-1 (below 12 feet). The calculated chloride load for this profile is 7.14 kg/m^2 . Figure 1B is the predicted chloride profile at year 15 of the simulation using a chloride load of 7.0 kg/m^2 . It does not take into account the clean soil used for backfill of the original excavation.

The results of the simulation are shown below on the HYDRUS-1D model ground water output chart which has been constructed using the data files generated by the simulation. It indicates that the ground water below the site will not exceed 115 mg/L (below WQCC standards) if no further corrective actions are taken.

We believe the simulated concentration in ground water is a "worst-case" prediction because of the conservative input parameters used in the model.

Recommendations

We conclude, based on these results that this site is in compliance with the mandates of Rule 116 such that the remaining chloride-impacted soil does not and will not endanger public health or the environment.

Please contact Marvin Burrows of ROC if you have any questions concerning this submission.

•


.

Sincerely, R.T Hicks Consultants, Ltd.

al Thereby

Dale T Littlejohn Geologist

Copy: Marvin Burrows, ROC NMOCD Hobbs

ATTACHMENT A Investigation Characterization Plan

•

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW & Suite F-142 A Albuquerque, NM 87104 S05.266.5004 Fax: 505.266-0745

April 13, 2007

Mr. Wayne Price New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Investigation Characterization Plan: T18S R38È Jct. E-4 Jct. N-4 Vent Jct. M-4 Vent Hobbs Salt Water Disposal System

Dear Mr. Price:

6.

On behalf of Rice Operating Company (ROC), R.T. Hicks Consultants, Ltd. is pleased to submit this Investigation Characterization Plan (ICP) for the three (3) junction box sites referenced above within the Hobbs Salt Water Disposal System. Plate 1 is a map showing the location of these three sites relative to major roads in the area and other relevant sites.

The work elements proposed to characterize these sites sufficiently to develop an appropriate corrective action are presented below.

- 1. ROC will identify and document the location of all current and historic equipment and pipelines associated with each site.
- 2. ROC and Hicks Consultants will use a backhoe, with a 12-foot vertical reach to install a series of sampling trenches in order to recover soil samples and delineate the lateral extent (and potentially the vertical extent) of impacted soil.
- 3. Soil samples employed for delineation will be obtained from regular intervals below ground surface in each trench.
- 4. Representative soil samples will be sent to a laboratory to allow for verification of the field results.
- 5. General soil texture descriptions will be provided for each sample trench.
 - The criteria to delineate the extent of impact is 5 point chloride decline vs. depth, or:
 a. 250 ppm chloride using field analyses (see attached ROC Quality Procedure in Appendix A) whichever occurs first,
 - b. 100 ppm total hydrocarbon vapors using the headspace method analysis (Appendix A).
 - c. Soil boring to ground water depth should neither (a) nor (b) apply,
 - d. Monitoring well installation if warranted to assess ground water at the site.

Following the site characterization described above, we will submit the data and analysis with a Corrective Action Plan that outlines the procedures for closure of the site.

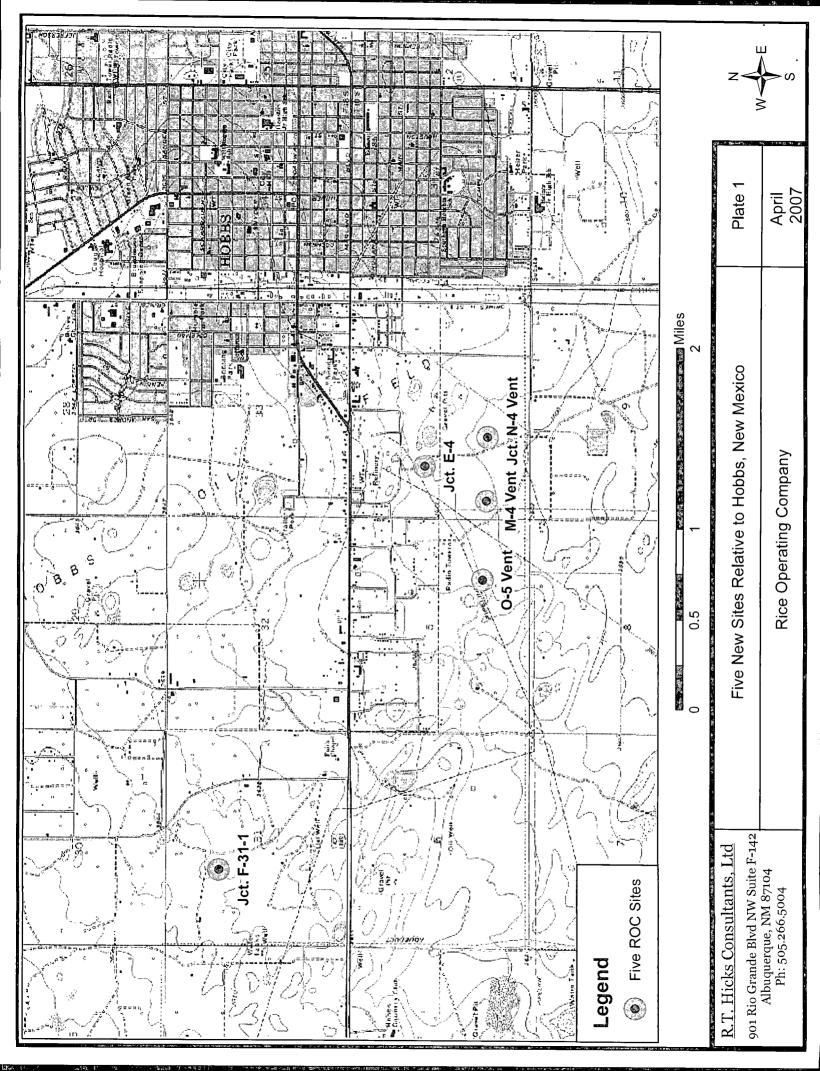
Rice Operating Company (ROC) is the service provider (agent) for the Hobbs Saltwater Disposal System and has no ownership of any portion of pipeline, well, or facility. A consortium of oil producers who own the Hobbs System (System Partners); provide all operating capital on a percentage ownership/usage basis. Major projects require System Partner authorization for expenditures (AFE) approval and work begins as funds are received. The Hobbs SWD System has been abandoned. April 13, 2007 Page 2

For all environmental projects, ROC will choose a path forward that:

- 1. Protects public health.
- 2. Provides the greatest net environmental benefit.
- 3. Complies with NMOCD Rules.
- 4. Is supported by good science.

The last criteria employed when evaluating any proposed remedy or investigative work is confirming that there is a reasonable relationship between the benefits created by the proposed remedy or assessment and the economic and social costs.

Each site shall have three submissions or a combination of:


- 1. This Investigation and Characterization Pan (ICP), which is a proposal for data gathering, and site characterization and assessment (this submission).
- 2. Upon evaluation of the data and results from the ICP, a recommended remedy will be submitted in a Corrective Action Plan (CAP).
- 3. Finally, after implementing the remedy, a closure report with final documentation will be submitted.

If you have any questions or comments regarding this ICP, please contact Kristin Pope of Rice Operating Company as she has reviewed and approved this submission.

Sincerely, R.T. Hicks Consultants, Ltd.

Randall T. Hicks Principal

Copy: Rice Operating Company

April 12, 2007 Page 3

Appendix A

Rice Operating Company

QUALITY PROCEDURE - 03

Sampling and Testing Protocol - Chloride Titration Using .282 Normal Silver Nitrate Solution

1.0 Purpose

This procedure is to be used to determine the concentration of chloride in soil.

2.0 Scope

This procedure is to be used as the standard field measurement for soil chloride concentrations.

3.0 Sample Collection and Preparation

3.1 Collect at least 80 grams of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite san1ple for soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).

3.2 The soil sample(s) shall be immediately inserted into a one-quart or large polyethylene freezer bag. Care should be taken to insure that no cross-contamination occurs between the soil sample and the collection tools or sample processing equipment.

3.3 The sealed sample bag should be massaged to break up any clods.

4.0 Sample Preparation

4.1 Tare a clean glass vial having a minimum 40 ml capacity. Add at least 10 grams of the soil sample and record the weight.

4.2 Add at least 10 grams of reverse osmosis water to the soil sample and shake for 20 seconds.

4.3 Allow the sample to set for a period of 5 minutes or until the separation of soil and water.

4.4 Carefully pour the free liquid extract from the sample through a paper filter into a clean plastic cup if necessary.

5.0 Titration Procedure

5.1 Using a graduated pipette, remove 10 m1 extract and dispense into a clean plastic cup.

5.2 Add 2-3 drops potassium chromate (K₂CrO₄) to mixture.

5.3 If the sample contains any sulfides (hydrogen or iron sulfides are common to oilfield soil samples) add 2-3 drops of hydrogen peroxide (H_2O_2) to mixture.

5.4 Using a 10 ml pipette, carefully add 0.282 normal silver nitrate (one drop at a time) to the sample while constantly agitating it. Stop adding silver nitrate when the solution begins to change from yellow to red. Be consistent with endpoint recognition.

5.5 Record the ml of silver nitrate used.

6.0 Calculation

To obtain the chloride concentration, insert measured data into the following formula:

<u>0.282 x 35,450 x ml AgNO3</u>	х	grams of water in mixture
ml water extract		grams of soil in mixture

Using Step 5.0, determine the chloride concentration of the RO water used to mix with the soil sample. Record this concentration and subtract it from the formula results to find the net chloride in the soil sample.

Record all results on the delineation form.

Rice Operating Company

QUALITY PROCEDURE -07

Sampling and Testing Protocol for VOC in Soil

1.0 Purpose

This procedure is to be used to determine the concentrations of Volatile Organic Compounds in soils.

2.0 Scope

This procedure is to be used as the standard field measurement for soil VOC concentrations. It is not to be used as a substitute for full spectrographic speciation of organic compounds.

3.0 Procedure

3.1 Sample Collection and Preparation

3.1.1 Collect at least 500 g. of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample of soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).

3.1.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag and sealed. When sealed, the bag should contain a nearly equal space between the soil sample and trapped air. Record the sample name and the time that the sample was collected on the Field Analytical Report Form.

3.1.3 The sealed samples shall be allowed to set for a minimum of five minutes at a temperature of between 10-15 Celsius, (59-77° F). The sample temperatures may be adjusted by cooling the sample in ice, or by heating the sample within a generally controlled environment such as the inside of a vehicle. The samples should not be placed directly on heated surfaces or placed in direct heat sources such as lamps or heater vents.

3.1.4 The sealed sample bag should be massaged to break up any clods, and to provide the soil sample with as much exposed surface area as practically possible.

3.2 Sampling Procedure

3.2.1 The instrument to be used in conducting VOC concentration testing shall be an Environmental Instruments 13471 OVM / Datalogger or a similar protype instrument. (Device will be identified on VOC Field Test Report Form.) Prior to use, the instrument shall be zeroed-out in accordance with the appropriate maintenance and calibration procedure April 12, 2007 Page 6

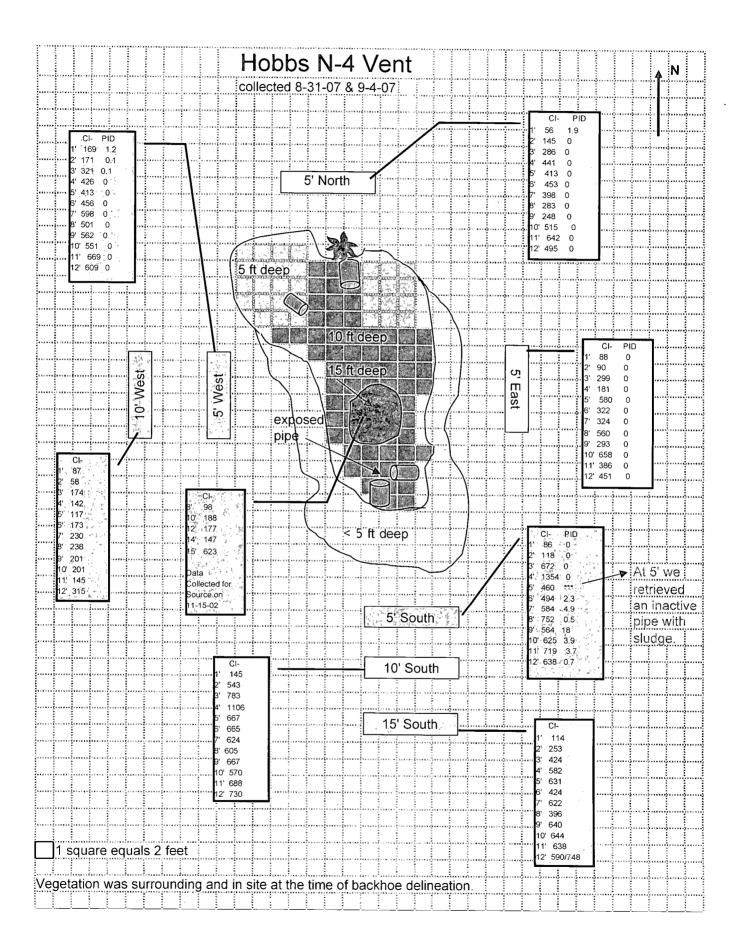
outlined in the instrument operation manual. The PID device will be calibrated each day it's used.

3.2.2 Carefully open one end of the collection bag and insert the probe tip into the bag taking care that the probe tip not touch the soil sample or the sidewalls of the bag.

3.2.3 Set the instrument to retain the highest result reading value. Record the reading onto the Field Test Report Form.

3.2.4 If the instrument provides a reading exceeding 100 ppm, proceed to conduct BTEX Speciation in accordance with QP-O2 and QP-O6. If the reading is 100 ppm or less, NMOCDBTEX guideline has been met and no further testing fur BTEX is necessary. File the Field Test Report Form in the project file.

4.0 Clean-up


After testing, the soil samples shall be returned to the sampling location, and the bags collected for off-site disposal, IN NO CASE SHALL THE SAME BAG BE USED TWICE. EACH SAMPLE CONTAINER MUST BE DISCARDED AFTER EACH USE.

ATTACHMENT B

٠

.

Summary of Trench Assessment (Horizontal Delineation) Conducted by ROC in August and September 2007

PHONE (325) 673-7001 · 2111 BEECHWOOD · ABILENE, TX 79603

PHONE (505) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

ANALYTICAL RESULTS FOR RICE OPERATING CO. ATTN: KRISTIN FARRIS-POPE 122 W. TAYLOR ST. HOBBS, NM 88240 FAX TO: (505) 397-1471

Receiving Date: 09/04/07 Reporting Date: 09/06/07 Project Owner: NOT GIVEN Project Name: HOBBS N-4 VENT Project Location: HOBBS N-4 VENT

LAB NUMBER SAMPLE ID

Analysis Date: 09/06/07 Sampling Date: 08/31/07 & 09/04/07 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: NF Analyzed By: KS

> CI (mg/Kg)

H13234-1	5' TRENCH NORTH @ 12 BGS	512
H13234-2	15' TRENCH SOUTH @ 12 BGS	960
H13234-3	5' TRENCH EAST @ 12 BGS	576
H13234-4	10' TRENCH WEST @ 12 BGS	320
		1
• • • • • • • • • • • • • • • • • • •		:
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Quality Contr		500
Quality Contr True Value C		500
· ····		
True Value C % Recovery		500

Note: Analyses performed on 1:4 w:v aqueous extracts.

Bista Suproto

09106107

H13234 RICE

PLEASE NOTE: Liability and Damages. Cardina's hability and client's exclusive remedy for any claim tarising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thiny (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

ARDINAL LABORATORIES 101 East Marland, Hobbs, NM 88240 2111 Beechwood, Abilene, TX 79603

(505) 393-2326 Company Name: 0	¥ \	FAX (325)673-7020	ANALYSIS REQUEST	Γ
K citra	Pole Compart			
Address: 122 W. Teylor.		Company:		
city: HJLJ	State: Nか Zip: よらとり	Attn:		
Phone #: 343 - 4174	Fax#: 397-1471	Address:		
Project #:	Project Owner:	City:		
Project Name: Hohl, N-4	t vert	State: Zip:		
Project Location: Holy J N - Y		Phone #:		
Sampler Name: 120,26,200		Fax #:		
	MATRIX	PRESERV SAMPLING		
	RS RS		261~	
Lab I.D. Sample I.D.) 90 849(JUIATNOC AWGNUO5 ITAWJT2A			
4101 11 11+15 1-42TENH	2 17 LC . (G # EF W		9.11.6.4 X	Τ
115, 210,000	Q 12 44 1 6 1	10-4-8	× 1.37 × 1.	
			11:00.m +	
traith	Puri 9	X 6-4-2 2:	2:14 ex X	
PLEASE NOTE: Liapuity and Damages. Cardinat's liabuity and clients exclusive formedy for any claim arsing mobile Analyses. All claims including mose for negligence and any other cause whatsoever snall be deemed waived unless	LEASE NOTE: Libolity and Damages. Cardinat's listuity and clients acclusive formedy for any claim ansing whether based in contract or text, shall be united to be amount paid by the client for the native sections. All cleans including those for negligence and any other cause whatsoever shall be aved unlists made in writing and teceved by Cardinal writin 30 days after completion of the applicable of the app	I i i i i i i i i i i i i i i i i i i i	the cluent for the mplicable mplicity of the applicable]
carrico, iti no oven snak cateria te tabia to uccuma oi ifitiatas of successors ansing out of related to the perfort	arres. In roovent and Cartes to start or undamne or consequents andages, antumny month, instanto, post or set of rest or undamne runned of gent, to substants, filluars of successors ansing out of or related to the performance of services hereunder or Caterial, regardless of whether such claim is based upon any of the above started reasons of unit-whether	ons, loss or use, or loss or promis incurred by ceant, i laim is based upon any of the above stated reasons num		ſ
Lare Weizaheine			rione result: U res U No Augurrione #: Fax Result: X Yes D No Addi Fax #:	
ished	Received BY:	W.A.	REMARKS: Emili Perults	
	Time:		Kpape @ rire sud. com	
	Sample Condition Cool Intact	dition CHECKED BY: ct (Initia)\$)	Lueinheimer @ rice sud. com	
Sampler - UPS - Bus - Other:				

† Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476

-

.

ATTACHMENT C Lithology Logs from Soil Borings (Vertical Delineation) Conducted by ROC and RTH in February 2008

.

•

				LITHC	LOG		S (SOIL	BORING)	
R T Hick	S		MONIT	OR WEL	I NO ·	SB-1		TOTAL DEPTH: 30 Ft	
Consulta	nte I td	1	mortin			Hobbs SWD N-4 Vent			
Consulta	ints Liu	1	SURFAC		ATION:	3.604	USGS N		
						Harrison & Cooper, Inc.			
P O Box 7624	l.					Air-Rotar		LOCATION: T-19-S, R-38-E, Sec. 4 (N)	
Midland, TX			INSTALLATION DATE:						
(432) 528-387						Between south 5' - 10' trench			
(102) 020 001	-							orth, Long. 103° 9' 19.3" West (Hand-Held GPS)	
	Lithology		SAMP	LE DATA	(PPM)			LITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE	
		TYPE		% REC	PID	CI (Fld)		SORTING, ROUNDING, CONSOL., DIST. DEATURES	
	<u> </u>	excav	1		0	86		CALICHE, Light brown, with some silt, soft.	
A Second	<u> </u>	excav	2		0	118			
		excav	3		0	672			
1.1.1.1.1.1.1	±	excav	4		0	1,354			
1946. 1. 1. 1.	<u> </u>	excav	5			460	5	Inactive pipe (filled with sludge) recovered	
	<u>ب</u>	excav	6		2.3	494	_		
and the state	\ <u>+</u>	excav	7		4.9	584			
	<u> </u>	excav	8		0.5	752			
	<u>~_</u>	excav	9		18	564			
	<u>→</u> →	excav	10		3.9	625	10		
	<u> </u>	spoon	10-12	10%	5.2	589			
1.2		excav	11		3.7	719		SILTY SAND, Light brown, fine to very fine grain, poorly -sorted,	
		excav	12	-	0.7	638		angular.	
Ë .									
NO N	조승규왕						15		
BENTONITE		spoon	15-17	60%	4.4	539			
iii ii							ļ		
A							<u> </u>	CALICHE, Light gray, hard.	
							<u> </u>	4	
				<u> </u>			20		
	çar ix caryes	spoon	20-22	70%	3.5	225		SAND, Light brown, fine grain, well sorted, angular, with few thin-	
								bedded sandstone layers	
1.1.1								-	
							25	4	
	288 M.H.		25-27	70%	3.4	173	- 10	4	
1.1.1		spoon	25-27	70%	3.4	1/3		4	
and all an enter								4	
1000	10-0-04, 2000 11-1-142 - 142							Saturated formation at 27 to 28 feet	
1.00							30		
TD = 30 Feet	<u></u>	1		J	I	_l	<u> </u>	4	
1D - SU Feel									

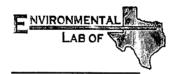
.

				LITHO	LOG		G (SOIL	BORING)
R T Hick	S		MONIT	OR WEL	L NO.:	SB-2		TOTAL DEPTH: 27 Ft
Consulta	nte I té	1	mortin				WD N-4 V	
Consulta	ms La	•	SURFAC	E ELEVA		3,604 (USGS Map)		
			(CONTRA	CTOR:	Harrison & Cooper, Inc.		, Inc. STATE: New Mexico
P O Box 7624			DRILI	LING ME	THOD:	Air-Rotary		LOCATION: T-19-S, R-38-E, Sec. 4 (N)
Midland, TX 7		INSTALLATION DATE:					FIELD REP .: Dale Littlejohn	
(432) 528-3878					Center of source area		rea FILE NAME: \Hobbs SWD\N-4 Lithlogs	
Lithology		COMMENTS:		Lat. 32º 41' 7.2" North, Long.		orth, Long. 103º 9' 19.5" West (Hand-Held GPS)		
	SAMPLE DATA (PPM)				<u>ITHOLOGIC DESCRIPTION: LITHOLOGY, COLOR, GRAIN SIZE</u>			
		TYPE	DEPTH	% REC	PID	CI (Fld)		SORTING, ROUNDING, CONSOL., DIST. DEATURES
								No Cuttings; pit contained broken to massive caliche with light
PCV	PVC casing from surface to 6 feet						P	prown silt.
а. 	5 fe		l					
6-in ch	2 Å C						<u>-</u>	
φ	σĔ						5	
	<u> </u>						┝───┤	
							¹	CALICHE AND SILT, gray to brown (fill).
		excav	8			98		
		excav	10			188	10	
	- <u>-</u>	excav	10			100		CALICHE, Gray to white (hard) with interbedded silt.
1.11		excav	12			177	ľ	CALICITE, Gray to write (riard) with interbedded sit.
Ë	- <u>-</u>	chou i	12			,		
NO		excav	14			147		
BENTONITE	- <u>-</u>	excav	15			623	15	
		spoon	15-17	100%	1.1	150		SAND, Light gravish brown, very fine grain. Poorly-sorted, with some
1.1.1.1	ree ditt							caliche.
11.1.1.1	90 (1901), A.M.					1		SAND, Brown, fine grain, well-sorted, sub angular.
								-
8 M 1	ang						20	
		spoon	20-22	100%	0.4	150		
			}					
a share that							. 25	
1.10		spoon	25-27	100%	0.5	219		Lab Data: <u>Chloride</u> <u>BTEX</u> <u>Benz</u> <u>Naphthalene</u>
0.850988						L		(mg/kg) 9 <0.006 ND ND
TD = 27 Feet								Moist formation at 27 feet.

ATTACHMENT D Laboratory Reports and Chain-of-Custody Documentation

.

Analytical Report 298150


for

Rice Operating Co.

Project Manager: Kristin Pope

Hobbs SWD N-4 Vent Hobbs SWD System

28-FEB-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

28-FEB-08

Project Manager: Kristin Pope Rice Operating Co. 122 West Taylor Hobbs, NM 88240

Reference: XENCO Report No: 298150 Hobbs SWD N-4 Vent Project Address: T19S, R38E, Sec 4, Unit Letter N

Kristin Pope:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 298150. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 298150 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 298150

Rice Operating Co., Hobbs, NM

Hobbs SWD N-4 Vent

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SB-2	S	Feb-21-08 11:05	25 - 27 ft	298150-001

Certificate of Analysis Summary 298150 Rice Operating Co., Hobbs, NM

Project Name: Hobbs SWD N-4 Vent

Project Id: Hobbs SWD Systen Contact: Kristin Pope Project Location: T19S, R38E, Sec 4,	1		Date Received in Lab: Report Date: Project Manager:	Feb-22-08 10:20 am 28-FEB-08 Brent Barron, II
	Lab Id:	298150-001		
Analysis Requested	Field Id:	SB-2		
· ·	Depth:	25-27 ft		
	Matrix:	SOIL		
	Sampled:	Feb-21-08 11:05		
Anions by EPA 300/300.1	Extracted:			
Amons by ETA 300/300.1	Analyzed:	Feb-23-08 10:52		
	Units/RL:	mg/kg RL		
Chloride		9.03 5.26		
BTEX by SW 8260B	Extracted:	Feb-26-08 10:15		
DIEA by SW 0200D	Analyzed:	Feb-26-08 11:28		
	Units/RL:	mg/kg RL		
Benzene		ND 0.0053		
Toluene		0.0058 0.0053		
Ethylbenzene		ND 0.0053		
m,p-Xylenes		ND 0.0105		
o-Xylene		ND 0.0053		
Naphthalene		ND 0.053		
Total BTEX		0.0058		
Total Xylenes		ND		
Percent Moisture	Extracted:			
	Analyzed:	Feb-23-08 17:00		
	Units/RL:	% RL		
Percent Moisture		4.9		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Brent Barron

Odessa Laboratory Director

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

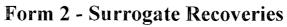
DI. . . .

r

Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647 (281) 589-0	692 (281) 589-0695
9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0	300 (214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238 (210) 509-3	334 (210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619 (813) 620-2	000 (813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014 (305) 823-8	500 (305) 823-8555
6017 Financial Dr., Norcross, GA 30071 (770) 449-8	800 (770) 449-5477

Form 2 - Surrogate Recoveries

Project Name: Hobbs SWD N-4 Vent


Lab Batch #: 715658 Sample: 298150-0	01 / SMP Ba	atch: 1 Mat	rix: Soil		
Units: mg/kg	SI	JRROGATE R	ECOVERY S	STUDY	
BTEX by SW 8260B	Amount Found [A]	True Amount B	Recovery %R [D]	Control Limits %R	Flags
Analytes	0.0550	0.0500		74.101	
4-Bromofluorobenzene	0.0550	0.0500	110	74-121 80-120	
Dibromofluoromethane	0.0464	0.0500	93	<u> </u>	
	0.0469	0.0500	94	80-120	
Toluene-D8	0.0530	0.0500	106	81-117	
Lab Batch #: 715658 Sample: 298150-0			rix: Soil		
Units: mg/kg	SU	JRROGATE R	ECOVERY S		
BTEX by SW 8260B Analytes	Amount Found [A]	True Amount {B}	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	0.0502	0.0500	100	74-121	
Dibromofluoromethane	0.0527	0.0500	105	80-120	
1,2-Dichloroethane-D4	0.0493	0.0500	99	80-120	
Toluene-D8	0.0511	0.0500	102	81-117	
Lab Batch #: 715658 Sample: 298150-(001 SD / MSD Ba	atch:] Mat	rix: Soil	·	
Lab Batch #: 715658 Sample: 298150-(Units: mg/kg		atch: []] Mat JRROGATE R	rix: Soil RECOVERY :	STUDY	<u></u>
Units: mg/kg BTEX by SW 8260B				STUDY Control Limits %R	Flags
Units: mg/kg BTEX by SW 8260B Analytes	Amount Found [A]	JRROGATE R True Amount B	RECOVERY : Recovery %R [D]	Control Limits %R	Flags
Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene	Amount Found	JRROGATE R True Amount	RECOVERY S Recovery %R	Control Limits	Flags
Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane	Amount Found [A] 0.0535	JRROGATE R True Amount B 0.0500	RECOVERY S Recovery %R [D] 107	Control Limits %R 74-121	Flags
Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane	Amount Found [A] 0.0535 0.0500	JRROGATE R True Amount B 0.0500 0.0500	RECOVERY S Recovery %R [D] 107 100	Control Limits %R 74-121 80-120	Flags
Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	Amount Found [A] 0.0535 0.0500 0.0467 0.0521	JRROGATE R True Amount [B] 0.0500 0.0500 0.0500 0.0500	Recovery %R [D] 107 100 93 104 104	Control Limits %R 74-121 80-120 80-120	Flags
Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-D4	Amount Found [A] 0.0535 0.0500 0.0467 0.0521	JRROGATE R True Amount [B] 0.0500 0.0500 0.0500 0.0500	Recovery %R [D] 107 100 93 104 rix:	Control Limits %R 74-121 80-120 80-120 81-117	Flags
Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 Lab Batch #: 715658 Sample: 505131-1 Units: mg/kg BTEX by SW 8260B	Amount Found [A] 0.0535 0.0500 0.0467 0.0521	JRROGATE R True Amount B 0.0500 0.0500 0.0500 0.0500 atch: 1 Mat	RECOVERY : Recovery %R [D] 107 100 93 104 rix: Solid RECOVERY : %R	Control Limits %R 74-121 80-120 80-120 81-117	Flags
Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 Lab Batch #: 715658 Sample: 505131- Units: mg/kg BTEX by SW 8260B Analytes	Amount Found [A] 0.0535 0.0500 0.0467 0.0521 I-BKS / BKS BKS St Amount Found [A]	JRROGATE R True Amount B 0.0500	RECOVERY : Recovery %R [D] 107 100 93 104 rix: Solid RECOVERY %R [D]	Control Limits %R 74-121 80-120 80-120 81-117 STUDY Control Limits %R	
Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 Lab Batch #: 715658 Sample: 505131-1 Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene	Amount Found [A] 0.0535 0.0500 0.0467 0.0521	JRROGATE R True Amount B 0.0500 0.0500 0.0500 0.0500 atch: 1 Mat URROGATE R True Amount B 0.0500 0.0500	RECOVERY : Recovery %R [D] 107 100 93 104 rix: Solid RECOVERY : %R [D] 99	Control Limits %R 74-121 80-120 80-120 81-117 STUDY Control Limits %R 74-121	
Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 Lab Batch #: 715658 Sample: 505131-1 Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane	Amount Found [A] 0.0535 0.0500 0.0467 0.0521	JRROGATE R Amount B 0.0500 0.0500 0.0500 0.0500 atch: 1 Mat URROGATE R Amount B 0.0500 0.0500 0.0500 0.0500	Recovery %R [D] 107 100 93 104 rix: Solid Recovery %R [D] 99 104	Control Limits %R 74-121 80-120 80-120 81-117 STUDY Control Limits %R 74-121 80-120	
Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 Lab Batch #: 715658 Sample: 505131-1 Units: mg/kg BTEX by SW 8260B Analytes 4-Bromofluorobenzene	Amount Found [A] 0.0535 0.0500 0.0467 0.0521	JRROGATE R True Amount B 0.0500 0.0500 0.0500 0.0500 atch: 1 Mat URROGATE R True Amount B 0.0500 0.0500	RECOVERY : Recovery %R [D] 107 100 93 104 rix: Solid RECOVERY : %R [D] 99	Control Limits %R 74-121 80-120 80-120 81-117 STUDY Control Limits %R 74-121	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Hobbs SWD N-4 Vent

Work Order #: 298150

Project ID: Hobbs SWD System

Lab Batch #: 715658 Sample: 505131-1 Units: mg/kg		tch: 1 Mat	rix: Solid	STUDV	
BTEX by SW 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R D	Control Limits %R	Flags
4-Bromofluorobenzene	0.0538	0.0500	108	74-121	
Dibromofluoromethane	0.0519	0.0500	104	80-120	
1,2-Dichloroethane-D4	0.0496	0.0500	99	80-120	
Toluene-D8	0.0507	0.0500	101	81-117	İ

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Blank Spike Recovery

17

Project Name: Hobbs SWD N-4 Vent

Work Order #: 298150			Project ID: Hobbs SWD Syste			System	
Lab Batch #: 715658 Date Analyzed: 02/26/2008		mple: 505131- Dared: 02/26/20			x: Solid st: WEW		
Reporting Units: mg/kg		itch #: 1		BLANK SPH	KE REC	OVERY S	TUDY
BTEX by SW 8260B Analytes		Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Benzene		ND	0.0500	0.0496	99	66-142	
Toluene		ND	0.0500	0.0517	103	59-139	
Ethylbenzene		ND	0.0500	0.0507	101	75-125	
m,p-Xylenes		ND	0.1000	0.1003	100	75-125	
o-Xylenc		ND	0.0500	0.0497	99	75-125	
Lab Batch #: 715578 Date Analyzed: 02/23/2008	Sample: 715578-1-BKS Date Prepared: 02/23/2008				x: Solid st: IRO		
Reporting Units: mg/kg	Ba	itch #: 1	BLANK /I	BLANK SPII	KE REC	OVERY S	TUDY
Anions by EPA 300/300.1 Analytes		Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Chloride		ND	10.0	9.95	100	75-125	

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes.

Form 3 - MS Recoveries

nelao

and a second

Project Name: Hobbs SWD N-4 Vent

Work Order #: 298150 Lab Batch #: 715578 Date Analyzed: 02/23/2008	Date Prepared:	02/23/2008		oject ID: Analyst:	Hobbs SW	D System
QC- Sample ID: 298134-001 S	Batch #:	1		Matrix:	Soil	
Reporting Units: mg/kg	MAT	RIX / MA	TRIX SPIKE	RECOV	ERY STU	DY
Inorganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes	[A]			ויין	70 R	
Chloride	987	210	1120	63	75-125	x

Matrix Spike Percent Recovery $[D] = 100^{(C-A)/B}$ Relative Percent Difference $[E] = 200^{(C-A)/(C+B)}$ All Results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

.

Project Name: Hobbs SWD N-4 Vent

Date Analyzed: 02/26/2008 Work Order #: 298150 Lab Batch 1D: 715658

Matrix: Soil -

Project 1D: Hobbs SWD System

WEW Batch #: Analyst:

QC- Sample ID: 298150-001 S

Date Prepared: 02/26/2008

Flag %RPD Control Limits 25 25 25 25 25 Control Limits %R 75-125 75-125 59-139 75-125 66-142 MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY RPD % 9 ŝ 2 ŝ Spiked Dup. %R [G] 102 101 100 96 97 Spiked Sample Result [F] Duplicate 0.2555 0.2680 0.5300 0.2564 0.2761 Spike Added 0.2655 0.5311 0.2655 0.2655 0.2655 Ξ Spi ked Sample n%R 100 102 103 104 102 Spiked Sample Result 0.2682 0.5345 0.2619 0.2761 0.2732 Ū Spike Added [B] 0.2629 0.2629 0.2629 0.5258 0.2629 Parent Sample Result 0.0058 4 £ Ð Ð Ð BTEX by SW 8260B Analytes **Reporting Units:** mg/kg Ethylbenzene m,p-Xyłenes o-Xylene Benzene Toluene

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Project Name: Hobbs SWD N-4 Vent

Work Order #: 298150

Lab Batch #: 715578				Project I	D: Hobbs SV	WD System
Date Analyzed: 02/23/2008	Date Prep	ared: 02/2	3/2008	Analy	st: IRO	
QC- Sample ID: 298134-001 D	Ba	tch #: l		Matr	ix: Soil	
Reporting Units: mg/kg	Γ	SAMPLE	'SAMPLE	DUPLIC	ATE REC	OVERY
Anions by EPA 300/300.1	P	arent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte	·		[B]			
Chloride		987	991	0	20	
Lab Batch #: 715411				<u> </u>		··
Date Analyzed: 02/23/2008	Date Prep	oared: 02/2	3/2008	Analy	st: WRU	
QC- Sample ID: 298133-001 D	Ba	tch #: 1		Matr	ix: Sludge	
Reporting Units: %	-	SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture	F	arent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte			[B]			
Percent Moisture		45.6	45.7	0	20	

•

Environmenta	ntal Lab of Texas		
12600 West I-20 East Odessa, Texas 79765	Phone: 432-563-1800 Fax: 432-563-1713	CHI	CHAIN OF CUSTOD
Project Manager: Kristin Farris	ristin Farris		Project Name
Company Name <u>F</u>	company Name Rice Operating Company		Project #
Company Address: 122 West Taylor	22 West Taylor		Project Locatior
City/State/Zip: H	city/state/zip: Hobbs, New Mexico 88240		ROC Billing Cod
Telephone No: 505-393-9174	05-393-9174	Fax No: 505-397-1471	
Email results to: d	to: dale@rthicksconsult.com, Lweinheimer@riceswd.com,and kpope@riceswd.com	:om,and kpope@riceswd.com	
Sampler Signature:	Oal hoven		

Email	Email results to:		kscons	sult.com	, Lweinhe	dale@rthicksconsult.com, Lweinheimer@riceswd.com,and kpope@riceswd.com	d.com,an	g K P	bec		SWC	8	ε					┢		
Sampler 5	Sampler Signature:	3	عگ		NUCLEW	Autor Martin														ľ
													1	ſ				-+	ł	⊢¦
										٩	Preservative	Zativ	9		ŀ	Matrix	×	-		
(yino əzu dsi) # 8A.J	GIS CODE	LIELD CODE		Sample Depth	(Vino slios)	bəlqms2 əfsQ	bəlqme2 əmiT	No. of Containers	90)	1004		POS ² H HO ^e N	anaN	Other (Specify)	Valer	ə6pnıs	lios	Officer (specify):	(M2108 A93) 080/080	Cations (Ca, Mg, Va. K) Anions (CI SOA CO3 HCO31
278150				Begin (ft)	End (ft)															
-01		SB-2		25.0	27.0	2/21/08	1105		X							-	×			
					 															<u> </u>
					 .													-		
			1					-				<u> </u>	<u> </u>				<u> </u>		┣───	
								-												
					 							 								
Special Instruction																				L, T, S
Relinquished by:	2at	ttlente	2/20	^{Date} 2/22/0ビ	Time [0., W	Received by:									Date	e		Ti	Time	T
Relinquished by:				Date	Time	Received by ELOT:		- mo	ر					بے	Date L·LL·UU	°. C		Time [U: 20	Time U`. ĈŬ	
																			1	

#1 Temperature of container occier.			······································
#2 Shipping container in good condition?	Kes	No	
#3 Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present
#4 Custody Seals intact on sample bottles/ container?	Yes	No	Not Present
#5 Chain of Custody present?	Yes	No	
#6 Sample instructions complete of Chain of Custody?	res	No	
#7 Chain of Custody signed when relinquished/ received?	Ves	No	
#8 Chain of Custody agrees with sample label(s)?	Yes	No	He written on Cont./ Did
#9 Container label(s) legible and intact?	Yes	No	Not Applicable>
#10 Sample matrix/ properties agree with Chain of Custody?	Yes	No	
#11 Containers supplied by ELOT?	Yes	No	
#12 Samples in proper container/ bottle?	Yes	No	See Below
#13 Samples properly preserved?	YES	No	See Below
#14 Sample bottles intact?	Yes	No	
#15 Preservations documented on Chain of Custody?	Yes)	No	
#16 Containers documented on Chain of Custody?	Yes	No	
#17 Sufficient sample amount for indicated test(s)?	Yes	No	See Below
#18 All samples received within sufficient hold time?	Yes	No	See Below
#19 Subcontract of sample(s)?	Yes	No	<not applicable<="" td=""></not>
#20 VOC samples have zero headspace?	Tes	No	Not Applicable

•

Variance Documentation

Contact:	 Contacted by:	Date/ Time:
Regarding:		
Corrective Action Taken:		
Check all that Apply:	e attached e-mail/ fax ent understands and would like to proceed with ana poling process had begun shortly after sampling eve	

ATTACHMENT E Summary Description of the Vadose Zone Screening Tool Model

•

.

R. T. HICKS CONSULTANTS, LTD. ATTACHMENT E

901 Rio Grande Blvd NW & Suite F-142 & Albuquerque, NM 87104 & 505.266.5004 & Fax: 505.266-0745

Summary Description of the Vadose Zone Screening Tool Model

The screening tool predicts the impact to ground water from a surface release of brine. The tool uses the HYDRUS-1D model to simulate gravity-driven vertical water flow through the vadose zone. The calculated chloride flux to ground water is the input to a simple ground water mixing model. The output of the mixing model is a predicted chloride concentration in ground water down gradient of the affected area as would be observed in a monitoring or supply well at or near the location.

HYDRUS-1D numerically solves the Richard's equation for water flow and the Fickian-based advection-dispersion equation for heat and solute transportation. The HYDRUS-1D flow equation includes a sink term (a term used to specify water leaving the system) to account for transpiration by plants. The solute transport equation considers advective, dispersive transport in the liquid phase, diffusion in the gaseous phase, nonlinear and non-equilibrium sorption, linear equilibrium reactions between the liquid and gaseous phases, zero-order production, and first-order degradation.

The ground water mixing model uses the chloride flux from the vadose zone to ground water provided by HYDRUS-1D and instantaneously mixes this chloride and water with the ground water flux of chloride plus water that enters the mixing cell beneath the subject site. We refer the reader to API Publication 4734, Modeling Study of Produced Water Release Scenarios (Hendrickx and others, 2005) which describes the techniques employed in the screening model.

HYDRUS 1-D INPUTS

Climate – Weather data used in calculation of the initial condition and the predictive modeling was from the Pearl, New Mexico weather station, located approximately 15 miles west of the city of Hobbs, New Mexico. This station has an excellent database of daily weather conditions that are used in the HYDRUS-1D model (e.g. precipitation, temperature, wind speed, etc.). Although the weather on a given day in Roswell, New Mexico may be different from Midland, Texas, the climate in the Permian Basin of New Mexico and Texas is similar. The weather data spans the 46. 5 year period from July, 1946 to December, 1992,

HYDRUS-1D can also employ a uniform yearly infiltration rate that will obviously smooth the temporal variations that may be caused by a strong El Nino event during a week in July or August. Because the daily atmospheric data are of high quality for Pearl, we have elected to allow the screening tool to predict the deep percolation rate and the resultant variable flux to ground water using actual (non-smoothed data). This choice results in higher predicted peak chloride concentrations in ground water due to temporally variable high fluxes from the vadose zone than would be predicted by an averaged infiltration rate. Where depth to ground water is greater than 30 feet in this climate, using the uniform annual infiltration rate may provide more realistic results. However using daily weather data is conservative of ground water quality as it overestimates any impact.

Initial Soil Moisture - Because soils are relatively dry in this climate and vadose zone hydraulic conductivity varies with moisture content, it is important that simulations start with representative soil moisture content. In the absence of site-specific data, the

Attachment E Page 2

.

calculation of soil moisture content begins with using professional judgment as an initial input and then running sufficient years of weather data through the model to establish a "steady state" moisture content. For simulations in the Permian Basin, only minimal changes in the HYDRUS-1D soil moisture content profile occurred after year 15 of the initial condition calculation, therefore, 46.5 years (1 cycle of the weather data) was considered sufficient to establish an initial moisture condition for the screening tool.

Input for a Distant Well – In addition to predicting the chloride concentration for a monitoring well located adjacent to the spill area, the screening tool allows for a prediction of a second well located at a specified distance from the spill in the down gradient direction. This can be utilized to determine the potential threat to an actual water well or a compliance monitoring well located down gradient from the release site.

Background Chloride Concentration in Aquifer – If an actual measured chloride concentration from a near-by well is not available then a background concentration of no less than 50 mg/L generally reflects regional conditions.

Aquifer Porosity – If an actual measured value is not available, a conservative estimate of 0.25 to 0.30 is generally acceptable.

Groundwater Table Depth – Published information on depth to ground water is readily available in the Permian Basin if no site specific data is available.

Aquifer Thickness - The thickness of the mixing zone is an important variable in the model. In the Ogallala Aquifer, which is the water table aquifer throughout much of the Permian Basin of Texas and New Mexico, several case studies show that chloride is distributed throughout the upper 20-50 feet saturated zone down gradient of a release site. At some sites, the nature of the release could cause brine to behave as a dense non-aqueous phase liquid, which could concentrate chloride in the lowermost 10-feet of a thin aquifer. In the absence of site-specific hydrogeologic data, use of the screen length of nearby supply wells is a reasonable choice for the aquifer thickness (mixing zone) input to the model.

Slope of the Water Table – If actual hydraulic gradient data from a nearby site or published information is not available then the slope of the water table is assumed to be approximately parallel to the topography.

Hydraulic Conductivity – If a measured hydraulic conductivity of the saturated zone at the release site is not available then a published value from Freeze and Cherry (1979) or Musharrafieh and Chudnoff (1999) is an acceptable choice.

Groundwater Flux – This is a calculated value based on the aquifer thickness, slope of the water table, and the hydraulic conductivity.

Chloride Load –This input parameter is very important. An estimate of the chloride load (weight/area) can be calculated from the analyses of soil boring samples recovered at the source area of the site multiplied by the bulk moisture and the vertical thickness interval of each sample. The result is the chloride load for the vadose zone profile, from the surface to the ground water depth.

The Hydrus 1-D screening tool model initial condition assumes that the release was a single, instantaneous event that saturated the upper half meter of the vadose zone with produced water, like a pipeline rupture. The chloride concentration of the produced water is set such

Attachment E Page 3

that the mass of chloride within the volume of produced water matches the chloride mass calculated from the soil samples. In order to apply the screening tool to a historic spill or other release event, the user must match the vadose zone chloride profile observed in the field to a vadose zone profile generated by the model. In most cases, the user can identify a match between the field data and a generated profile that is several years after time zero of the model. If the screening tool cannot generate an acceptable profile match, a site-specific HYDRUS-1D model with input data that provides a better match than the drop-down menu choices allowed for the screening tool.

Max. Length of the Spill in the Direction of GW Flow - If the exact direction of ground water flow is not known, this value is taken as the maximum dimension of the site.

Plant Uptake Trigger – The screening tool allows for an adjustment to be made in the natural infiltration rate based on the likelihood of vegetation being re-established at the site. Brine spills will often kill vegetation and sites without vegetation allow a higher infiltration rate than sites with vegetation. Over time, the salinity of a relatively porous soil, such as medium-grained sand, will decrease and vegetation will return. The screening tool permits vegetation to return to a spill site when the chloride concentration decreases by to 10% or 1% of the initial concentration. For most sites, vegetation will return when chloride concentrations in soil are 500 mg/kg or less.

Surface Layer and Soil Profile - The screening tool allows for several conservative surface and sub-surface soil types to be utilized based on conditions observed during the installation of soil borings at the site. The texture of the surface layer (the upper meter of the unsaturated zone) is very important. Fine-grained surface soils will prevent infiltration – which is good for the protection of ground water after a surface spill but hinders the natural flushing of salt from the root zone. Coarse-grained soils, such as sand, allow infiltration but natural re-vegetation of such a site can occur after several years, rather than decades for a fine-grained soil.

The screening tool cannot simulate placement of imported fine-grained soil onto a site, which is a common engineered remedy to enhance re-vegetation and to protect ground water by lowering natural infiltration.

Screening Tool (HYDRUS 1-D) OUTPUT CHARTS

The screening tool generates two types of charts. One presents the predicted constituent property profiles in the vadose zone (Quantity 1) and the second predicts ground water quality (Quantity 2) in a down gradient well.

The vadose zone profile chart can display the following constituent properties:

- water content,
- chloride concentration in the soil-water, and
- chloride concentrations of the soil using colored lines to represent future years.

Chloride concentrations in the soil are useful for calibrating the chloride load of the model to actual conditions determined by characterization samples.

As described in API Publication 4734, the ground water mixing model takes the background chloride concentration in ground water multiplied by the ground water flux to calculate the total mass of ground water chloride entering the ground water mixing cell, which lies below

Attachment E Page 4

.

.

or down gradient from the release site. The chloride and water flux from HYDRUS-1D is added to the ground water chloride mass and flux to create a final chloride concentration in ground water at a hypothetical monitoring well located at the down gradient edge of the mixing cell (the edge of the release site) or another down gradient location of the users choosing. In addition to the predicted future ground water concentration, the predicted water and chloride flux can also be displayed.

Note: Presently, R T Hicks Consultants Ltd. has not been given the authority to display the actual output charts from this version of the HYDRUS-1D tool as it is still in development for internet use. Therefore the graph which depicts future ground water chloride concentrations has been reproduced in the body of the report using the simulation data to demonstrate the modeling results.