AP - 96

STAGE 1 & 2 WORKPLANS

DATE: 8-18-08

RECEIVED

2008 AUG 22 PM 2 55

August 18, 2008

Mr. Edward Hansen New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe. New Mexico 87505

Plains Marketing, L.P. Lovington Gathering WTI Release Site Re:

Stage 1 and Stage 2 Abatement Plan

NMOCD Reference # 1RP-838

UL-H (SE14 of the NE14) of Section 6, T17S, R37E

Lea County, New Mexico

Dear Mr. Hansen:

Plains Marketing, L.P. (Plains), is pleased to submit the attached Stage 1 and Stage 2 Abatement Plan, dated August 2008, for the Lovington Gathering WTI release site located in Section 6 of Township 17 South, Range 37 East of Lea County, New Mexico. This Stage 1 and Stage 2 Abatement Plan details activities conducted to date and anticipated future activities to be conducted for the abatement of the site.

If you have any questions or require further information, please contact me at (575) 441-0965.

Sincerely,

Camille Bryant

Remediation Coordinator

Plains Marketing, L. P.

Enclosure

CC: Larry Johnson, NMOCD Hobbs Office

amille Byant

AP-96

A.

Basin Environmental Service Technologies,

LLC

P. O. Box 301 Lovington, New Mexico 88260 cstanley@basinenv.com Office: (505) 396-2378 Fa

Fax: (505) 396-1429

Stage 1 and Stage 2 Abatement Plan

PLAINS MARKETING, L.P. (231735)

Lovington Gathering WTI

Lea County, New Mexico

Plains SRS # 2006-142

UNIT H (SE/NE), Section 6, Township 17 South, Range 37 East

Latitude 32°, 51, 56.0" North, Longitude 103°, 17, 07.2" West

NMOCD Reference # 1RP-838

Prepared For:

Plains Marketing, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002

Prepared By:
Basin Environmental Service Technologies, LLC
P. O. Box 301
Lovington, New Mexico 88260

August 2008

Curt D. Stanley

Basin Environmental Service Technologies, LLC

TABLE OF CONTENTS

1.0	TAITED	ODUCTION AND SITE BACKGROUND	1
2.0		MARY OF FIELD ACTIVITIES	
3.0		LOGY / HYDROGEOLOGY	
3.0			
	3.1	Area Geology / Hydrogeology	
	3.2	Site Geology / Hydrology	
	3.3	New Mexico Oil Conservation Division Soil Ranking Criteria	
	3.4	Distribution of Hydrocarbons in the Unsaturated Zone	
4.0	3.5	Distribution of Hydrocarbons in the Saturated Zone	
4.0		TEMENT OPTIONS	
	4.1	Soil Abatement Options	
- 0	4.2	Groundwater Abatement Options	
5.0		DULE OF ABATEMENT ACTIVITIES	
6.0		TORING PROGRAM	
7.0		MARY AND CONCLUSIONS	
8.0	QA/Q	C PROCEDURES	
	8.1	Soil Sampling	
	8.2	Groundwater Sampling	16
	8.3	Decontamination of Equipment	16
	8.4	Laboratory Protocol	16
9.0	LIMIT	TATIONS	16
10.0	DISTI	RIBUTION	18
_	_		
FIGUR			
_		e Location Map	
_		e Map with Cross Section Index	
_		rth – South Stratagraphic Cross Section	
_		st – East Stratagraphic Cross Section	
_		posed Excavation Map	
Figure	6 – Inf	erred Groundwater Gradient Map	
Figure	7 – Gro	oundwater Concentration Map	
TABLE	7.0		
		centrations of BTEX and TPH GRO/DRO in Soil	
		undwater Elevation Data	
rable 3	– Con	centrations of BTEX in Groundwater	
APPEN	DICES	S	
Append	lix A –	Soil Boring and Monitor Well Completion Logs	
Append	lix B –	Laboratory Reports	
Append	lix C –	Release Notification and Corrective Action (Form C-141)	

1.0 INTRODUCTION AND BACKGROUND INFORMATION

Basin Environmental Service Technologies, LLC (Basin), on behalf of Plains Marketing, L.P., (Plains), has prepared this Stage 1 and Stage 2 Abatement Plan. This report is intended to be viewed as a complete document with text, figures, tables, and appendices. The contents of this report are intended to fulfill requirements promulgated in 19 New Mexico Administrative Code (NMAC) 15.A.19.E (3) and 19.E (4) and 20.6.2.4106 (C) and (D) and NMOCD guidance document *Guidelines for Remediation of Leaks, Spills, and Releases*, August 1993.

The Lovington Gathering WTI release site is located in Unit H (SE/NE), Section 6, Township 17 South, Range 37 East, in Lea County, New Mexico. A topographic Site Location Map and a Site Map are provided as Figures 1 and 2, respectively. The site latitude is 32°, 51°, 56.0° North and the site longitude is 103°, 17°, 07.2° West. The site is located in a pipeline right-of-way, in a pasture utilized for cattle grazing. On April 21, 2006, Basin responded to the pipeline release on behalf of Plains and during initial response activities the crude oil release was contained and clamped under the direction of Plains operations personnel. The excavated soil was stockpiled on a 6-ml poly-liner adjacent to the excavation, pending final disposition. The release occurred as a result of internal pipeline corrosion. The Lovington Gathering WTI right-of-way is located on property owned by Mr. Robert Rice.

The initial visible surface stain measured approximately 30 feet long by 27 feet wide. An estimated twelve (12) barrels of crude oil was released from the Lovington Gathering WTI pipeline and eight (8) barrels was recovered during initial response activities, resulting in a net loss of 4 barrels of crude oil. The Release Notification and Corrective Action (Form C-141) is provided as Appendix C.

2.0 SUMMARY OF FIELD ACTIVITIES

On April 21, 2006, Basin responded to the Lovington Gathering Pipeline to contain and clamp the crude oil pipeline. These activities were under the direction of Plains operations personnel. During initial response activities, an area approximately 30 feet long by 27 feet wide and 5 to 6 feet in depth was excavated. The excavated soil was placed on a 6-mil poly liner adjacent to the excavation pending final disposition. Approximately 200 cubic yards (cy) of impacted soil was stockpiled adjacent to the excavation during the initial response activities.

On April 24, 2006, an initial site assessment was conducted to evaluate the site status. A total of eleven (11) soil samples were collected from the sidewalls and floor of the initial excavation. The soil samples were field screened using a Photo Ionization Detector (PID). The results of the field screening indicated Volatile Organic Compounds (VOC's) most likely exceeded the NMOCD regulatory guidelines of 100 parts per million (ppm).

On April 28, 2006, five (5) delineation trenches were excavated at the release point, west cross gradient, east cross gradient and in down gradient positions with regard to the

release point, to evaluate the extent of crude oil impact. Soil samples were collected and field screened using a PID, the field screening results indicated VOC's exceeded the NMOCD regulatory standard in soil samples collected from the release point and from the east cross gradient delineation trenches and were below the NMOCD regulatory standard in the three (3) remaining delineation trenches. Based on the results of the field screening activities, delineation of the site utilizing soil borings appeared to be warranted.

On July 18, 2006, vertical and horizontal delineation of the crude oil impacted site was commenced using an air rotary drilling rig. A total of eleven (11) soil borings were advanced at the site, including the release point, up gradient, down gradient and cross gradient positions with regard to the release point to evaluate the full extent of crude oil impact. The eleven (11) soil borings were advanced to depths ranging from approximately 30 to 75 feet below ground surface (bgs). Soil samples were collected at five (5) foot drilling intervals. A total of 74 soil samples were submitted for laboratory analysis and were analyzed for constituent concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX) and total petroleum hydrocarbons - gasoline range organics/diesel range organics (TPH-GRO/DRO). The laboratory analytical results indicated constituent concentrations of BTEX were not detected above the laboratory method detection limit (MDL) of 0.025 mg/Kg for 47 soil samples while the remaining 27 soil samples exhibited detectable concentrations of BTEX below NMOCD regulatory standard. Laboratory analytical results indicated constituent concentrations of TPH-GRO/DRO were not detected above the MDL of 10 mg/Kg for 23 soil samples while four (4) soils samples exhibited detectable TPH-GRO/DRO concentrations below the NMOCD regulatory standard of 100 mg/Kg. Laboratory analytical results indicated the remaining 47 soil samples exhibited TPH-GRO/DRO concentrations exceeding the NMOCD regulatory standard of 100 mg/Kg. A summary of Concentrations of BTEX, TPH and Chlorides is provided as Table 1. Soil Boring and Monitor Well Logs are provided as Appendix A and laboratory analytical results are provided as Appendix B.

On September 11-12, 2006, three (3) groundwater monitor wells (MW-1, MW-2 and MW-3) were installed to evaluate the potential hydrocarbon impact to groundwater. Monitor well MW-1 was located up gradient of the release point and monitor wells MW-2 and MW-3 were located down gradient of the release point. The three (3) groundwater monitor wells were installed to a total depth of 88 bgs. Soil samples were collected at five (5) foot drilling intervals and field screened using a PID. Based on the results of field screening, thirty (30) soil samples were submitted for laboratory analysis of constituent concentrations of BTEX and TPH-GRO/DRO. The laboratory analytical results indicated constituent concentrations of BTEX were not detected above the MDL of 0.025 mg/Kg for 29 of the soil samples while the remaining soil sample exhibited detectable concentrations of BTEX below the NMOCD regulatory standard. The laboratory analytical results indicated constituent concentrations of TPH-GRO/DRO were not detected above the MDL of 10 mg/Kg for 27 soil samples. The remaining three (3) soil samples reported one (1) soil sample was below the NMOCD regulatory standard of 100 mg/Kg and two (2) soil samples exceeded the NMOCD regulatory standard. Soil samples MW-3 55' and MW-3 75' exhibited TPH-GRO/DRO concentrations of 2,076 mg/Kg and 121 mg/Kg, respectively.

On October 4-5, 2006, the three (3) groundwater monitor wells (MW-1, MW-2 and MW-3) were developed, purged and sampled. The groundwater samples were analyzed for constituent concentrations of BTEX. Laboratory results indicated constituent concentrations of BTEX were not detected above the MDL of 0.002 mg/Kg for monitor well MW-1; however, monitor wells MW-2 and MW-3 exhibited detectable concentrations of BTEX above the NMOCD regulatory standard.

On November 22 and 27-28, 2006, four (4) additional groundwater monitor wells (MW-4 through MW-7) were installed and consisted of two (2) monitor wells in cross gradient positions and two (2) monitor wells in down gradient positions to further evaluate the impact to groundwater. The four (4) additional groundwater monitor wells were installed to a depth of approximately 90 feet bgs and soil samples were collected at five (5) foot drilling intervals. Based on field screening using a PID, a total of 40 soil samples were submitted for analysis of constituent concentrations of BTEX and TPH-GRO/DRO. The laboratory analytical results indicated constituent concentrations of BTEX and TPH-GRO/DRO were not detected above the respective MDL for the 40 submitted soil samples.

A review of the existing data for this site indicates the following:

- The soil column consists of limited topsoil at the surface to approximately six (6) inches to four (4) feet below ground surface (bgs), underlain by a caliche layer ranging from six (6) to twenty (20) feet in thickness, underlain by white to brown, very fine grained, well sorted sand.
- Groundwater at the site occurs at depths varying between approximately 74 to 76 feet bgs.
- The groundwater gradient, as measured during quarterly groundwater monitoring events, is approximately 0.0014 feet / foot to the south southeast (4th quarter 2007 groundwater elevation data).
- Dissolved phase hydrocarbon constituents are present in the groundwater at concentrations exceeding the NMOCD regulatory standard in monitor wells MW-2, MW-3 and MW-7.
- Soil impacted above the NMOCD regulatory standard for TPH GRO/DRO is limited to soil samples collected from soil borings SB-2 (five foot bgs soil sample only), SB-3, SB-4, SB-5, SB-6, and SB-10. Monitor well MW-3 exhibited an isolated TPH concentration above the NMOCD regulatory standard in the vadose zone (soil sample MW-3 55'). Soil samples collected and analyzed during the installation of monitor wells MW-3 and MW-8 indicated TPH concentrations exceeding the NMOCD regulatory standard (121 mg/Kg and 101 mg/Kg, respectively) were present in the capillary fringe zone of these monitor wells.

3.0 GEOLOGY / HYDROGEOLOGY

3.1 Area Geology / Hydrogeology

The site is located approximately seven (7) miles south of the City of Lovington, New Mexico. This location places the site in the Southern High Plains physiographic feature. The average surface elevation ranges from 3,500 to 4,400 feet above mean sea level with the average surface topography sloping to the south and southeast at approximately ten (10) to fifteen (15) feet per mile. The groundwater gradient in the region appears to reflect the topography with a similar slope to the south and southeast with some local variations.

The site is located on the Kimbrough – Lea Complex soils within the Kimbrough soil series. This soil complex consists of Kimbrough gravelly loam, Lea loam and inclusions of Stegall and Arvana soils, in some areas Kimbrough and Lea soils are equally distributed. The generally dominant Kimbrough soil consists of nearly level and gently sloping, gravelly and loamy soils that are very shallow to moderately deep over indurated caliche. The soil permeability is moderate and runoff is slow to medium. The soil water intake is moderate and the available water holding capacity is one (1) to two (2) inches. Soil erosion is a slight hazard in areas dominated by this soil type. This soil type is too shallow to be suitable for crops and is generally utilized for range and wildlife. This soil complex is a source of crushed caliche for the construction industry.

Data collected by the United States Weather Bureau indicates that the average annual precipitation in the site vicinity is approximately twelve (12) to fifteen (15) inches per annum. This rainfall generally occurs primarily as thunderstorm events between the months of June and October. Infiltration and evaporation rates are generally high resulting in limited surface flow from these events.

3.2 Site Geology/Hydrology

The site surface consists of a light brown, loamy topsoil ranging from six (6) inches to four (4) feet in thickness (topsoil was reportedly absent at the monitor well MW-8 location). Typically, underlying this surface unit is a white caliche layer. The caliche layer exhibited varying thicknesses ranging from six (6) to twenty (20) feet. The caliche layer was reportedly encountered from twenty (20) to thirty (30) feet bgs at the monitor well MW-8 location. Typically, underlying this caliche layer, a white to brown, very fine grained, well sorted sand was detected to total depth of the monitor wells. North – South and West – East stratagraphic cross-sections are included as Figures 3 and 4, respectively. A cross-section index is included on Figure 2. Please reference Appendix A for soil boring and monitor well completion logs.

3.3 New Mexico Oil Conservation Division Soil Ranking Criteria

As described in Section 3A of the Guidelines for Remediation of Leaks, Spills and Releases (NMOCD, 1993), the following characteristics are used to determine the site soil ranking criteria, which influences the site-specific cleanup standards applicable for this site. The depth to groundwater on-site is approximately 75 feet bgs. Onsite drilling activities indicate the soil is impacted to groundwater in the vicinity of the release point, the distance between groundwater and the deepest extent of impact results in 20 points being assigned to the Lovington Gathering WTI release site as a result of this criterion.

The water well database, maintained by the New Mexico Office of the State Engineer (NMOSE), was accessed to determine the location and type of nearby registered water wells in the area. The database indicated there is one (1) water well less than 1000 feet from the release, resulting in 20 points being assigned to this site as a result of this criterion.

There are no surface water bodies located within 1,000 feet of the site. Based on the NMOCD ranking system no points will be assigned to the site as a result of the criterion. The Guidelines indicate the Lovington Gathering WTI release site has a ranking score of 40. Based on this score, the soil remediation levels for a site with a ranking score of >19 points are as follows:

- Benzene 10 mg/Kg (ppm)
- BTEX 50 mg/Kg (ppm)
- TPH 100 mg/Kg (ppm)

3.4 Distribution of Hydrocarbons in the Unsaturated Zone

The initial visible surface stain measured approximately 30 feet long by 27 feet wide. Following the initial excavation activities, field screening using a PID indicated elevated concentrations of Volatile Organic Compounds (VOC's) remained in the sidewalls and floor of the excavation. Approximately 200 cy of impacted soil was excavated and stockpiled on a 6-ml poly-liner adjacent to the excavation, pending final disposition.

On April 24, 2006, eleven (11) soil samples were collected from the sidewalls and floor of the excavation ranging in depth from approximately one (1) to four (4) feet bgs. The soil samples were field screened using a PID, the results of the field screening indicated VOC's exceeded the NMOCD regulatory standard of 100 ppm.

On April 28, 2006, five (5) delineation trenches were excavated at the release point, west cross gradient, east cross gradient and down gradient positions with regard to the release point, to evaluate the extent of crude oil impact. Soil samples were collected at depths ranging from approximately 5 to 19 feet bgs and field screened with a PID. The PID results indicated VOC's exceeded the NMOCD regulatory standard at the release point and east cross gradient delineation trenches and were below the NMOCD regulatory standard for the remaining three (3) delineation trenches.

On July 18-24, 2006, eleven (11) soil borings were advanced utilizing an air rotary drill rig operated by Straub Corporation, Stanton, Texas, to evaluate the vertical and horizontal extent of crude oil impact at the up gradient, down gradient and cross gradient positions of the excavation. The eleven (11) soil borings were advanced to depths ranging from approximately 30 to 75 feet bgs. Subsurface soil samples were collected at 5 foot drilling intervals and field screened with a PID. No visual observations of free phase hydrocarbons were encountered during the advancement of the soil borings. Selected soil samples were analyzed for constituent concentrations of BTEX and TPH-GRO/DRO.

Soil Boring SB-1, as depicted on the Site Map, (Figure 2), was advanced at surface level in the up gradient position approximately six (6) feet north of the north sidewall of the excavation. The soil boring was advanced to a depth of approximately 30 feet bgs. Soil samples collected at 5, 10, 20 and 30 feet bgs sample depths were submitted for laboratory analysis. Laboratory analytical results indicated BTEX and TPH-GRO/DRO constituent concentrations were not detected above the MDL of 10 mg/Kg BTEX and 100 mg/Kg TPH, respectively for the four (4) soil samples.

Soil Boring SB-2 was advanced at surface level in the west cross gradient position approximately six (6) feet from the west ramp of the excavation. The soil boring was advanced to a depth of approximately 30 feet bgs. Soil samples collected at 5, 10, 20 and 30 feet bgs sample depths were submitted for laboratory analysis. Laboratory analytical results indicated BTEX constituent concentrations were not detected above the MDL for the 10, 20 and 30 feet bgs soil samples. However, the 5 feet bgs soil sample exhibited detectable concentrations of BTEX below NMOCD regulatory standard. Laboratory analytical results indicated constituent concentrations of TPH-GRO/DRO were not detected above the MDL for the 10, 20 and 30 feet bgs soil samples. However, laboratory results indicated the 5 feet bgs soil sample exceeded the NMOCD regulatory TPH standard at 442 mg/Kg.

Soil Boring SB-3 was advanced at surface level at the release point approximately six (6) feet south of the excavation. The soil boring was advanced to a depth of approximately 75 feet bgs. Soil samples collected at 5, 10, 15, 20, 25, 35, 45, 55, 65 and 75 feet bgs sample depths were submitted for laboratory analysis. Laboratory analytical results indicated constituent concentrations BTEX were not detected above the MDL for the 5, 25, 35, 45, 55 and 65 feet bgs soil samples and the 10, 15, 20, and 75 feet bgs soil samples exhibited detectable BTEX concentrations below the NMOCD regulatory standard. Laboratory analytical results indicated constituent concentrations of TPH-GRO/DRO exceeded the NMOCD regulatory standard for the 5, 10, 15, 20, 35, 45, 55 and 65 feet bgs soil samples at 1,060 mg/Kg, 2,429 mg/Kg, 2,121 mg/Kg, 2,165 mg/Kg, 170 mg/Kg, 410 mg/Kg, 805 mg/Kg and 556 mg/Kg, respectively. Laboratory analytical results indicated the 25 and 75 feet bgs soil samples exhibited detectable concentrations of TPH-GRO/DRO, however, the two (2) soil samples were below NMOCD regulatory standard at 77 mg/Kg and 41 mg/Kg, respectively.

Soil Boring SB-4 was advanced at surface level in the east cross gradient position approximately six (6) feet from the excavation. The soil boring was advanced to a depth

of approximately 75 feet bgs. Soil samples collected at 5, 10, 15, 20, 25, 35, 45, 55, 65 and 75 feet bgs sample depths were submitted for laboratory analysis. Laboratory analytical results indicated constituent concentrations of BTEX were not detected above the MDL for the 5, 35, 45, 55, 65 and 75 feet bgs soil samples and the 10, 15, 20 and 25 feet bgs soil samples exhibited detectable BTEX concentrations below the NMOCD regulatory standard. Laboratory analytical results indicated constituent concentrations of TPH-GRO/DRO exceeded NMOCD regulatory standards for the 5, 10, 15, 20, 25, 35, 45, 55 65 and 75 feet bgs soils samples at 271 mg/Kg, 935 mg/Kg, 1,489 mg/Kg, 1,125 mg/Kg, 1,558 mg/Kg, 1,090 mg/Kg, 1,010 mg/Kg, 1,722 mg/Kg, 1,255 mg/Kg and 281 mg/Kg, respectively.

Soil Boring SB-5 was advanced at surface level in the east cross gradient position approximately 30 feet from the excavation. The soil boring was advanced to a depth of approximately 75 feet bgs. Soil samples collected at 5, 10, 15, 20, 25, 35, 45, 55, 65 and 75 feet bgs sample depths were submitted for laboratory analysis. Laboratory analytical results indicated constituent concentrations of BTEX were not detected above the MDL for the 5, 45, 65 and 75 feet bgs soil samples and the 10, 15, 20, 25, 35 and 55 feet bgs soil samples exhibited detectable BTEX concentrations below NMOCD regulatory standards. Laboratory analytical results indicated constituent concentrations of TPH-GRO/DRO exceeded the NMOCD regulatory standard for the 5, 10, 15, 20, 25, 35, 45, 55, and 65 feet bgs soil samples at 682 mg/Kg, 2,415 mg/Kg, 3,027 mg/Kg, 2,491 mg/Kg, 1,932 mg/Kg, 1,257 mg/Kg, 1,541 mg/Kg, 2,086 mg/Kg and 727 mg/Kg, respectively. Laboratory analytical results indicated the 75 feet bgs soil sample exhibited detectable concentrations of TPH-GRO/DRO below the NMOCD regulatory standard at 99 mg/Kg.

Soil Boring SB-6 was advanced at surface level in the east cross gradient position approximately 60 feet from the excavation. The soil boring was advanced to a depth of approximately 75 feet bgs. Soil samples collected at 5, 10, 15, 20, 25, 35, 45, 55, 65 and 75 feet bgs sample depths were submitted for laboratory analysis. Laboratory analytical results indicated constituent concentrations of BTEX were not detected above the MDL for the 10, 20, 25, 35, 45, 55, 65 and 75 feet bgs soil samples and the 5 and 15 feet bgs soil samples exhibited detectable BTEX concentrations below the NMOCD regulatory standard. Laboratory analytical results indicated constituent concentrations of TPH-GRO/DRO exceeded the NMOCD regulatory standard for the 5, 10, 15, 20, 25, 35, 45, 55, and 65 feet bgs soil samples at 1,540 mg/Kg, 2,507 mg/Kg, 1,443 mg/Kg, 949 mg/Kg, 714 mg/Kg, 194 mg/Kg, 649 mg/Kg, 1,316 mg/Kg and 811 mg/Kg, respectively. Laboratory analytical results indicated the 75 feet bgs soil sample exhibited detectable concentrations of TPH-GRO/DRO below the NMOCD regulatory standard at 16 mg/Kg.

Soil Boring SB-7 was advanced at surface level in the east cross gradient position approximately 85 feet from the excavation. The soil boring was advanced to a depth of approximately 30 feet bgs. Soil samples collected at 5, 10, 20 and 30 feet bgs sample depths were submitted for laboratory analysis. Laboratory analytical results indicated BTEX and TPH-GRO/DRO constituent concentrations were not detected above the respective MDL's for the four (4) soil samples.

Soil Boring SB-8 was advanced at surface level in the south down gradient position approximately 25 feet from the excavation. The soil boring was advanced to a depth of approximately 30 feet bgs. Soil samples collected at 5, 10, 20 and 30 feet bgs sample depths were submitted for laboratory analysis. Laboratory analytical results indicated BTEX and TPH-GRO/DRO constituent concentrations were not detected above the respective MDL's for the four (4) soil samples.

Soil Boring SB-9 was advanced at surface level in the northeast up gradient position approximately 75 feet from the excavation. The soil boring was advanced to a depth of approximately 30 feet bgs. Soil samples collected at 5, 10, 20 and 30 feet bgs sample depths were submitted for laboratory analysis. Laboratory results indicated BTEX and TPH-GRO/DRO constituent concentrations were not detected above the respective MDL's for the four (4) soil samples.

Soil Boring SB-10 was advanced at surface level in the southeast down gradient position approximately 70 feet from the excavation. The soil boring was advanced to a depth of approximately 75 feet bgs. Soil samples collected at 5, 10, 15, 20, 25, 35, 45, 55, 65 and 75 feet bgs sample depths were submitted for laboratory analysis. Laboratory analytical results indicated constituent concentrations of BTEX were not detected above the MDL for the 75 feet bgs soil sample and the 5, 10, 15, 20, 25, 35, 45, 55 and 65 feet bgs soil samples exhibited detectable BTEX concentrations below the NMOCD regulatory standard. Laboratory analytical results indicated constituent concentrations of TPH-GRO/DRO exceeded the NMOCD regulatory standard for the 5, 10, 15, 20, 25, 35, 45, 55, 65 and 75 feet bgs soil samples at 883 mg/Kg, 3,690 mg/Kg, 4,220 mg/Kg, 4,267 mg/Kg, 3,842 mg/Kg, 847 mg/Kg, 708 mg/Kg, 1,128 mg/Kg, 3,048 mg/Kg and 170 mg/Kg, respectively. Soil sample SB-10 20' was submitted for analysis of chloride concentrations utilizing method E 300, the analytical results indicated chlorides concentration were 73.9 mg/Kg in this soil sample.

Soil Boring 11 was advanced at surface level in the southeast down gradient position approximately 115 feet from the excavation. The soil boring was advanced to a depth of approximately 30 feet bgs. Soil samples collected at 5, 10, 20 and 30 feet bgs sample depths were submitted for laboratory analysis. Laboratory analytical results indicated BTEX and TPH-GRO/DRO constituent concentrations were not detected above the respective MDL's for the four (4) soil samples.

On October 11, 2006, monitor well MW-1 was installed in an up gradient position approximately 60 feet from the excavation utilizing an air rotary drill rig operated by Straub Corporation, Stanton, Texas, to evaluate the potential impact to the groundwater. Subsurface soil samples were collected at 5 foot drilling intervals and field screened with a PID. The selected soil samples were analyzed for constituent concentrations of BTEX and TPH-GRO/DRO. Soil samples collected at 5, 10, 15, 20, 25, 35, 45, 55, 65 and 75 feet bgs were submitted for laboratory analysis. Laboratory analytical results of the ten (10) selected subsurface soil samples indicated constituent concentrations of BTEX and TPH-GRO/DRO were not detected above the MDL's.

On October 11, 2006, monitor well MW-2 was installed in a down gradient position approximately 60 feet from the excavation. Soil samples collected at 5, 10, 15, 20, 25, 35, 45, 55, 65 and 75 feet bgs were submitted for laboratory analysis. Laboratory analytical results of the ten (10) selected subsurface soil samples indicated constituent concentrations of BTEX and TPH-GRO/DRO were not detected above the MDL's.

On October 12, 2006, monitor well MW-3 was installed in a down gradient position, approximately 115 feet from the excavation. Soil samples collected at 5, 10, 15, 20, 25, 35, 45, 55, 65 and 75 feet bgs were submitted for laboratory analysis. Laboratory results indicated constituent concentrations of BTEX were not detected above the MDL for the 5, 10, 15, 20, 25, 35, 45, 65 and 75 feet bgs soil samples and the 55 feet bgs soil sample exhibited detectable BTEX concentrations below the NMOCD regulatory standard. Laboratory analytical results indicated constituent concentrations of TPH-GRO/DRO were not detected above the MDL for the 5, 10, 15, 20, 25, 35 and 45 feet bgs soil samples. Laboratory analytical results indicated the 65 feet bgs soil sample exhibited detectable concentrations of TPH-GR/DRO below the NMOCD regulatory standard at 61 mg/Kg and the 55 and 75 feet bgs soil samples exceeded the NMOCD regulatory standard at 2,076 mg/Kg and 121 mg/Kg, respectively.

On November 22, 2006, monitor well MW-4 was installed in an up and cross gradient position approximately 120 feet west of the release point. Soil samples collected at 5, 10, 15, 20, 25, 35, 45, 55, 65 and 75 feet bgs were submitted for laboratory analysis. Laboratory analytical results of the ten (10) selected subsurface soil samples indicated constituent concentrations of BTEX and TPH-GRO/DRO were not detected above the MDL's.

On November 27, 2006, monitor well MW-5 was installed in an up and cross gradient position approximately 190 feet east of the release point. Soil samples collected at 5, 10, 15, 20, 25, 35, 45, 55, 65 and 75 feet bgs were submitted for laboratory analysis. Laboratory analytical results of the ten (10) selected subsurface soil samples indicated constituent concentrations of BTEX and TPH-GRO/DRO were not detected above the MDL's.

On November 27, 2006, monitor well MW-6 was installed in a down gradient position approximately 190 feet southeast of the release point. Soil samples collected at 5, 10, 15, 20, 25, 35, 45, 55, 65 and 75 feet bgs were submitted for laboratory analysis. Laboratory analytical results of the ten (10) selected subsurface soil samples indicated constituent concentrations of BTEX and TPH-GRO/DRO were not detected above the MDL's.

On November 28, 2006, monitor well MW-7 was installed in a down gradient position approximately 260 feet southeast of the release point. Soil samples collected at 5, 10, 15, 20, 25, 35, 45, 55, 65 and 75 feet bgs were submitted for laboratory analysis. Laboratory analytical results of the ten (10) selected subsurface soil samples indicated constituent concentrations of BTEX and TPH-GRO/DRO were not detected above the MDL's.

On February 7, 2006, monitor well MW-8 was installed in a down gradient position approximately 380 feet southeast of the release point. Soil samples collected at 10, 25, 50, and 75 feet bgs were submitted for laboratory analysis. Laboratory results indicated constituent concentrations of BTEX were not detected above the MDL for four (4) selected soil samples. Laboratory analytical results indicated constituent concentrations of TPH-GRO/DRO were not detected above the MDL for the 10 and 25 feet bgs soil samples. Laboratory analytical results indicated the 50 feet bgs soil sample exhibited detectable concentrations of TPH-GRO/DRO below the NMOCD regulatory standard at 14 mg/Kg and the 75 feet bgs soil samples exceeded the NMOCD regulatory standard at 101 mg/Kg.

On August 13, 2007, monitor well MW-9 was installed in a down gradient position approximately 390 feet southeast of the release point. Soil samples collected at 5, 15, 25, 45, 65, 70, and 75 feet bgs were submitted for laboratory analysis. Laboratory analytical results of the seven (7) selected subsurface soil samples indicated constituent concentrations of BTEX and TPH-GRO/DRO were not detected above the MDL's.

The distribution of hydrocarbons in the unsaturated zone has been estimated by utilizing the following techniques:

- Visual and olfactory observations of the subsurface samples and;
- Review of the soil sample analytical laboratory results.

Hydrocarbon impacted soil, above the NMOCD regulatory standard, was identified in soil samples collected from soil borings SB-2 (five foot bgs soil sample only), SB-3, SB-4 SB-5, SB-6 and SB-10. Monitor well MW-3 exhibited an isolated TPH-GRO/DRO concentration above the NMOCD regulatory standard in the vadose zone (soil sample MW-3 55'). Soil samples collected and analyzed during the installation of monitor wells MW-3 and MW-8 indicated TPH-GRO/DRO concentrations exceeded the NMOCD regulatory standard (121 mg/Kg and 101 mg/Kg, respectively) were present in the capillary fringe zone of the monitor wells.

3.5 Distribution of Hydrocarbons in the Saturated Zone

Groundwater was encountered at depths ranging from 74 to 76 feet bgs in the monitor wells during drilling activities. No evidence of phase-separated hydrocarbons (PSH) was detected during drilling or groundwater sampling activities. Groundwater Elevation Data is provided as Table 2.

The laboratory analytical results of quarterly groundwater sampling events indicates dissolved phase benzene is present in concentrations exceeding the NMOCD regulatory standard in monitor wells MW-2, MW-3 and MW-7 only. Monitor wells MW-2, MW-3 and MW-7 do not exhibit toluene, ethyl-benzene or xylene in concentrations exceeding the NMOCD regulatory standard.

Monitor wells MW-1, MW-4 through MW-6, MW-8 and MW-9 do not exhibit BTEX constituent concentrations exceeding the NMOCD regulatory standard. A table summarizing the Concentrations of BTEX in Groundwater is provided as Table 3.

4.0 ABATEMENT OPTIONS

4.1 Soil Abatement Options

Hydrocarbon impacted soil, above the NMOCD regulatory standard, was identified in soil samples collected from soil borings SB-2 (five foot bgs soil sample only), SB-3, SB-4 SB-5, SB-6 and SB-10. Monitor well MW-3 exhibited an isolated TPH-GRO/DRO concentration above the NMOCD regulatory standard in the vadose zone (soil sample MW-3 55'). Soil samples collected and analyzed during the installation of monitor wells MW-3 and MW-8 indicated TPH-GRO/DRO concentrations exceeded the NMOCD regulatory standard (121 mg/Kg and 101 mg/Kg, respectively) were present in the capillary fringe zone of the monitor wells. Please reference Table 2, for Concentrations of BTEX, TPH-GRO/DRO and Chlorides in Soil, Figure 2 for the locations of the soil borings and monitor well and Appendix B for laboratory analytical results.

Due to the depth of hydrocarbon impact below and adjacent to the release point, Plains proposes a risk-based partial excavation of the hydrocarbon impacted soil and installation of an impervious liner on the floor of the excavation. The excavation of hydrocarbon impacted soil to the groundwater interface (approximately 74 feet bgs) would be cost prohibitive and impractical given the numerous oil and gas and transportation facilities (Railroad and NM Highway 18) in close proximity to the release site.

Plains proposes to excavate the hydrocarbon impact soil to a depth of fifteen (15) feet bgs and stockpile the soil on-site pending final disposition of the soil. The volume of excavated soil will be approximately 5,660 cy. The proposed area of excavation is approximately defined by soil borings SB-2, SB-4, SB-5, SB-6, SB-10 and SB-3. Please reference Figure 5 for a Proposed Excavation Map. The excavation activities will be field evaluated utilizing visual, olfactory observations and PID technologies. The sidewalls of the excavation will be sampled at 50 foot linear intervals utilizing standard sampling protocol and submitted for confirmatory BTEX and TPH-GRO/DRO analysis. When confirmation analytical results indicate the sidewalls of the excavation are below the NMOCD regulatory standard, based on allowable concentrations as discussed in Section 3.3 of this Stage 1 and Stage 2 Abatement Plan, the excavation will cease. Following excavation to a depth of 15 feet bgs and with NMOCD approval, the floor of the excavation will be covered with a six-inch layer of non-impacted sand and a twentymillimeter thick liner manufactured for this purpose, and covered with a six-inch layer of non-impacted cushioning sand. The sand layers are designed to act as a protective barrier from sharp objects in the excavation. Monitor wells located within the excavation will be fitted with a protective boot to maintain the impervious qualities of the liner.

The liner is an engineering control designed to shed moisture to the edges of the liner and away from any impacted soil below the liner, limiting the potential for leaching of

contaminants to the groundwater. With NMOCD approval, the hydrocarbon impacted stockpiles will be blended on- site. Following blending activities one (1) stockpile soil sample will be collected for each 500 cy of soil. When the laboratory analytical results indicate stockpile TPH concentrations are below 1,000 mg/Kg, Plains proposes to place the remediated soil in the excavation, on top of the liner to a depth of two (2) feet bgs. The remediated backfill soil will be placed in the excavation in eighteen (18) inch lifts and compacted to minimize slumping. The upper two (2) feet of soil will be non-impacted soil locally purchased. Any stockpiled soil remaining on-site will be transported to the Plains Lea Station Landfarm located near Monument, New Mexico, for remediation. Following the backfilling of the excavation, the surface will be restored to as near original grade as practical and vegetation acceptable to the landowner will be established.

4.2 Groundwater Abatement Options

On November 30, 2007, the site monitor wells were gauged during the scheduled fourth quarter 2007 sampling events. The collected fourth quarter groundwater gauging data was plotted and an inferred groundwater gradient map was constructed. The data indicates the site groundwater gradient is approximately 0.0014 feet/foot to the south-southeast. Please reference Table 2 for Groundwater Elevation Data and Figure 6 for the fourth quarter 2007 Inferred Groundwater Gradient Map.

The release site is currently impacted by dissolved phase BTEX constituents in three of the on-site monitor wells (MW-2, MW-3 and MW-7). Currently, the three monitor wells are gauged on a weekly frequency and sampled on a quarterly schedule. Please reference the fourth quarter 2007 Groundwater Concentration Map provided as Figure 7 and BTEX concentrations in Groundwater provided in Table 3

Currently, the analytical results indicate the dissolved phase BTEX plume appears to be stable and horizontally delineated and no additional monitor well installations are anticipated at this time.

An accurate estimate of the hydraulic properties of the dissolved phase impacted aquifer will require completion of a 24-hour steady state draw down test. Analysis of the data gathered from aquifer testing will enable reliable estimates of transmissive and storage properties needed as modeling parameters used to design and test groundwater treatment alternatives at the site. In order to assess the effectiveness of potential bioremediation alternatives at the site, sampling and analysis of the indigenous microbe colonies present in both the unsaturated and saturated zones will also be conducted.

Upon completion of the aquifer testing, abatement of the impacted on-site groundwater is technically feasible utilizing the following technologies:

- Monitored Natural Attenuation / Long Term Groundwater Monitoring
- Groundwater Pump and Treat System
- Air Sparging

Monitored Natural Attenuation / Long Term Groundwater Monitoring technology (NA/LT) relies on naturally occurring processes such as dispersion, diffusion, sorption and degradation (either biodegradation or abiotic processes such as hydrolysis), volatilization and dilution to control plume movement and destruction of dissolved phase hydrocarbons in the groundwater. Volatilization and diffusion are relatively unimportant in most non-clay groundwater systems; therefore, the main attenuation processes active are dispersion, sorption, degradation and dilution. Dispersion is subsurface mixing due to groundwater movement and aquifer heterogeneities. Vertical dispersion is not common at sites impacted with light non-aqueous phase liquids such as crude oil so this component may also be disregarded. Sorption is a nondestructive process in which hydrocarbon compounds are sorbed to the aguifer matrix, represented by a retardation factor. Sorption operates as an attenuation process by effectively reducing the mass available to the dissolved phase plume. Biodegradation involves chemical transformation of the hydrocarbon constituents into mineralized end products, for instance CO₂, H₂O and salts, by living organisms. Occasionally, metabolic activity does change the chemical form of the hydrocarbon constituents but does not conclude with mineralization; this is referred to as biotransformation. Of particular importance in this pathway of attenuation is the determination of whether the impacted area is controlled by either anaerobic or aerobic conditions. Aerobic conditions exist under relatively oxygen rich environments resulting in compounds being formed through the reaction of available oxygen and dissolved phase hydrocarbons transforming into H₂O. Anaerobic conditions are relatively oxygen poor environments and result in transformations into nitrate, ferric iron, sulfate and carbon dioxide products. Dilution is mixing of the plume with groundwater flowing through the effected area. It becomes an important process in natural attenuation when the impacted groundwater enters a zone where significant surface recharge enters the impacted aguifer. Geochemical indicators and concentration migration rate calculations will be utilized to determine if dissolved phase hydrocarbons are susceptible to natural attenuation on a sitespecific basis. NA/LT technologies can be combined with passive groundwater remediation technologies, such as Isoc ® technology, which are designed to enhance natural attenuation of impacted groundwater.

Pump and Treat technology employs groundwater withdrawal, combined with an air stripping system to remove dissolved BTEX constituents from the groundwater. Hydraulic conductivity values expected from the loose, unconsolidated sands found in the area should support a relatively expanded range of groundwater withdrawal rates. As the project matures, withdrawal rates are varied in response to shifting contaminant of concern concentration foci in an effort to maximize system utilization. The primary exclusion factors concerning this type of treatment technology are the extended length of system operation time required to achieve site cleanup goals and the large quantities of effluent produced requiring off-site disposal or injection back into the aquifer materials. Aerated effluent water could be injected back into the formation in up gradient locations to enhance aquifer-flushing action. The injected water would also carry oxygen to the subsurface, promoting biodegradation.

Air Sparging remediates the groundwater by stripping or volatilizing the BTEX constituents from the dissolved phase and increases in-situ biodegradation by the addition

of oxygen to the impacted groundwater. As BTEX constituents are liberated from the aqueous phase and enter the gas phase, they migrate to the capillary fringe and subsequently the vadose zone. This treatment technique effectively removes BTEX constituents from the saturated and vadose zones and also restricts continued plume migration. A long-term groundwater monitoring program would be conducted to confirm plume stabilization and to monitor dissolved phase BTEX constituents. A single injection well pilot test is conducted to test the applicability of this remedial technology. A skid mounted compressor as well as vadose zone monitor wells are utilized for pilot testing purposes. The following in-situ parameters are monitored during pilot testing: soil gas concentrations of BTEX constituents, soil gas pressure and groundwater level measurements. The following in-situ parameters are monitored after the air injection ceases: dissolved phase BTEX concentration, dissolved oxygen levels, temperature, and Redox potential/pH. Installations of injection wells across areas of effected groundwater are conducted incrementally to optimize the well field configuration. The 2-inch, schedule 40 PVC injection wells penetrate the saturated zone with approximately 5 feet of fully immersed 0.020-inch slotted pipe. Air compressors are utilized to generate the required air pressure for injection purposes. On the surface, the wells are piped to an activated carbon filtering system for effluent gas treatment prior to atmospheric discharge. A moisture knock out pot is installed down line of the effluent piping manifold to prevent moisture from entering the carbon treatment unit. Air Sparging generally consists of a compressor, pressure regulator, pressure gauges, flow meters, vacuum blower, and component isolation ball valves. In-situ system operating parameters which are monitored during system operation include: soil gas concentrations of BTEX constituents, injection well pressure and flow rate, weekly oxygen, carbon dioxide, nitrogen and methane concentrations and the pulsing frequency. Data derived from pilot testing is utilized to design the final system configuration.

5.0 SCHEDULE OF ABATEMENT ACTIVITIES

Plains is prepared to conduct the soil abatement activities, as outlined above, immediately following approval of this Stage 1 and Stage 2 Abatement Plan. Aquifer testing will determine which of the outlined groundwater abatement alternatives is most effective at the Lovington Gathering WTI release site. After aquifer testing is completed and evaluated, Plains will submit a Modified Stage 2 Abatement Plan to address dissolved phase issues at the site.

6.0 MONITORING PROGRAM

All site monitor wells are gauged and sampled on a quarterly basis. Each well is monitored for the presence of PSH and depth to groundwater. All groundwater monitor wells, with the exception of those registering a presence of PSH greater than 0.01 foot thick, are purged and sampled for dissolved phase BTEX constituents. Groundwater sampling methodology is described in Section 8.2, Groundwater Sampling of this Stage 1 and Stage 2 Abatement Plan. Monitor wells with PSH are gauged and pumped down by hand bailing or with an electronic pump on a site-specific schedule. The quarterly

groundwater monitoring data is compiled and summarized in an Annual Monitoring Report, which is submitted to the NMOCD on April 1st of each year.

7.0 SUMMARY AND CONCLUSIONS

Due to the depth of hydrocarbon impact below and adjacent to the release point, Plains proposes a risk-based partial excavation of the hydrocarbon impacted soil and installation of an impervious liner on the floor of the excavation as detailed in Section 4.1 of this Stage 1 and Stage Abatement Plan. The excavation of the hydrocarbon impacted soil to the groundwater interface (approximately 74 feet bgs) would be cost prohibitive and impractical given the numerous oil and gas and transportation facilities (railroad and NM Highway 18) in close proximity to the release site.

Currently, nine (9) monitor wells are located on site and three (3) monitor wells exhibit dissolved phase BTEX constituent concentrations in excess of the NMOCD regulatory standard. The laboratory analytical results indicate the dissolved phase BTEX plume appears to be stable and horizontally delineated and no additional monitor well installations are anticipated at this time.

Aquifer testing will be conducted and evaluated to determine the most effective groundwater abatement option available at the Lovington Gathering WTI release site. Following the completion and evaluation of the data Plains will submit a Modified Stage 2 Abatement Plan to address dissolved phase issues at the site. The release site will be monitored and sampled on a quarterly schedule and an Annual Monitoring Report will be submitted to the NMOCD by April 1st of each year.

8.0 QA/QC PROCEDURES

8.1 Soil Sampling

Samples of subsurface soils are obtained utilizing a split spoon sampler. Representative soil samples are divided into two separate portions using clean, disposable gloves and clean sampling tools. One portion of the soil sample is placed in a disposable sample bag. The bag is labeled and sealed for headspace analysis using a PID calibrated to a 100-ppm isobutylene standard. Each sample is allowed to volatilize for approximately thirty minutes at ambient temperature prior to conducting the analysis.

The other portion of the soil sample is placed in a sterile glass container equipped with a Teflon-lined lid furnished by the analytical laboratory. The container is filled to capacity to limit the amount of headspace present. Each container is labeled and placed on ice in an insulated cooler. Upon selection of samples for analysis, the cooler is sealed for shipment to the laboratory. Proper chain-of-custody documentation is maintained throughout the sampling process.

Soil samples are delivered to a certified laboratory for BTEX, and TPH-GRO/DRO analyses using the methods described below. Soil and ground water samples are analyzed within fourteen days following the collection date.

- BTEX concentrations in accordance with EPA SW 846 Method 8021B, 5030,
- TPH concentrations in accordance with EPA SW 846 Method 8015M GRO/DRO.

8.2 Groundwater Sampling

After purging the wells, groundwater samples are collected with a disposable Teflon sampler and polyethylene line by personnel wearing clean, disposable gloves.

Groundwater samples collected for BTEX analysis are placed in 40 ml glass VOA vials equipped with Teflon lined caps, which are provided by the analytical laboratory. The vials are filled to a positive meniscus, sealed, and visually checked to ensure the absence of air bubbles.

The filled containers are labeled and placed on ice in an insulated cooler. The cooler is sealed for transportation to the analytical laboratory. Proper chain-of-custody documentation is maintained throughout the sampling process.

The groundwater samples are analyzed as follows:

• BTEX concentrations in accordance with EPA Method 8021B, 5030

8.3 Decontamination of Equipment

Cleaning of drilling equipment is the responsibility of the drilling company. In general, the cleaning procedures consists of using high-pressure steam to wash the drilling and sampling equipment prior to drilling and prior to starting each boring. Prior to use, the sampling equipment is cleaned with Liqui-Nox® detergent and rinsed with distilled water.

8.4 Laboratory Protocol

The laboratory is responsible for proper QA/QC procedures after signing the chain-of-custody form. These procedures are either transmitted with the laboratory reports or are on file at the laboratory.

9.0 LIMITATIONS

Basin Environmental Service Technologies, LLC has prepared this Stage 1 and Stage 2 Abatement Plan to the best of its ability. No other warranty, expressed or implied, is made or intended.

Basin Environmental Service Technologies, LLC has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Basin Environmental Service Technologies, LLC has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Basin Environmental Service Technologies, LLC has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin Environmental Service Technologies, LLC also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC and/or Plains.

Figures

Basin Environmental Services

Checked By: CDS

Scale: See Scale Bar

Date: June 11, 2008

Prep By: CDS

		_
North - South Stratigraphic Cross Section A - A'	Lovington Gathering WTI (1RP-838) Lea County, New Mexico	Plains Marketing, L.P.

Lovington Gathering WTI (1RP-386) Lea County, New Mexico Plains Marketing, L.P. West - East Stratigraphic Cross Section B - B'

Basin Environmental Services

ed By: CDS	ar
Check	Scale: See Scale B
Prep By: CDS	Date: June 11, 2008

Tables

TABLE 1

CONCENTRATIONS OF BTEX, TPH GRO/DRO AND CHLORIDES IN SOIL

						,						
SAMPLE LOCATION	DEPTH (below ground surface)	SAMPLE DATE	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	M,P- XYLENE (mg/Kg)	O-XYLENE (mg/Kg)	TOTAL BTEX (mg/Kg)	GRO (mg/Kg)	DRO (mg/Kg)	TOTAL TPH (mg/Kg)	CHLORIDES (mg/Kg)
	5' bgs	90/81//0	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
	10' bgs	02/18/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
	20' bgs	02/18/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
	30' bgs	07/18/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Burney State Control		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	AND PARTY SE			The state of the state of		を含めた
	5' bgs	90/81//0	<0.025	<0.025	<0.025	90.0	<0.025	<0.025	27.3	414.7	442	
	10' bgs	04/18/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025 .	<10.0	<10.0	<10.0	
	20' bgs	02/18/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
	30' bgs	90/81//0	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
					***			1			10.00	
	5' bgs	90/61/20	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	43.6	1021	1065	
	10' bgs	90/61/20	<0.025	<0.025	0.174	0.232	0.052	0.458	225	2204	2429	
	15' bgs	90/61/20	<0.025	<0.025	0.044	0.093	0:030	0.167	152	6961	2121	
	20' bgs	07/19/06	<0.025	<0.025	0.036	0.063	<0.025	0.099	153	2012	2165	
	25' bgs	01/19/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	76.9	77	
	35' bgs	90/61/20	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	170.2	170	
	45' bgs	90/61/20	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	409.8	410	
	55' bgs	90/61//0	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	804.9	805	
	65' bgs	90/61/20	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	15	540.8	929	
	75' bgs	90/61/20	<0.025	<0.025	<0.025	0.036	<0.025	0.036	<10.0	40.7	41	
1.大学的		The Same	QV-758.12	1. 6 DAKES	新りのはなないと	14 Jan 19 19 19 19 19 19 19 19 19 19 19 19 19				W 400 500	1. N. A. W. W.	1966 S 34.3
	5' bgs	90/61//0	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	270.5	271	
	10' bgs	02/16//0	<0.025	0.029	0.164	0.552	0.132	0.877	9.86	836.2	935	
	15' bgs	02/11/06	<0.025	<0.025	990:0	091'0	0.082	0.308	133	1356	1489	
	20' bgs	02/19/06	<0.025	0.068	0.112	0.257	690.0	0.506	101	1024	1125	
	25' bgs	90/61/20	<0.025	<0.025	<0.025	0.026	<0.025	0.026	62.9	1492	1558	
	35' bgs	90/61//0	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	46.4	1043.1	1090	
	45' bgs	02/19/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	29.5	6.086	1010	
	55' bgs	90/61/20	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	80.5	1641	1722	
	65' bgs	02/19/06	<0.025	<0.025	<0.025	0.025	<0.025	0.025	99	1199	1255	
	75' bgs	02/19/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	281.3	281	
September 1	The same of the sa		1. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2000 8885	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Market Care		THE WAY	The state of the s	1.44	STATE OF THE	
	5' bgs	90/61//0	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	18.3	664	682	
	10' bgs	02/19/06	<0.025	0.116	0.730	0.884	0.447	2.177	322	2093	2415	
	15' bgs	90/61//0	<0.025	0.186	0.744	2.12	1.01	4.06	450	2577	3027	
	20' bgs	02/19/06	<0.025	0.135	0.479	1.01	0.633	2.257	343	2148	2491	
	25' bgs	90/61/20	<0.025	260.0	0.263	0.519	0.326	1.205	266	9991	1932	
	35' bgs	02/11/06	<0.025	<0.025	<0.025	0.044	<0.025	0.044	8.09	1196	1257	

CONCENTRATIONS OF BTEX, TPH GRO/DRO AND CHLORIDES IN SOIL

	CAMBIE			ME	METHOD: EPA SW 846-8021B, 5030	846-8021B, 503	0		METHOD: 8015M	D: 8015M		E 300
SAMPLE LOCATION	DEPTH (below ground surface)	SAMPLE DATE	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	M,P- XYLENE (mg/Kg)	O-XYLENE (mg/Kg)	TOTAL BTEX (mg/Kg)	GRO (mg/Kg)	DRO (mg/Kg)	TOTAL TPH (mg/Kg)	CHLORIDES (mg/Kg)
SB-5 45'	45' bgs	01/19/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	71.4	1470	1541	
SB-5 55'	55' bgs	90/61//0	<0.025	<0.025	<0.025	0.026	<0.025	0.026	135	1951	2086	
SB-5 65'	65' bgs	01/19/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	29.9	697.3	727	
SB-5 75'	75' bgs	02/19/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	10.4	88.5	66	
		The state of the s	THE STREET TO	The state of the s	Section of the Section	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10000000000000000000000000000000000000	The second second			
SB-6 5'	5' bgs	07/20/06	<0.025	<0.025	<0.025	0.029	<0.025	0.029	78.8	1461	1540	
SB-6 10'	· 10' bgs	07/20/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	158	2349	2507	
SB-6 15'	15' bgs	07/20/06	<0.025	<0.025	<0.025	0.030	<0.025	0.03	81.5	1361	1443	
SB-6 20'	20' bgs	07/20/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	23.1	926	949	
SB-6 25'	25' bgs	07/20/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	713.9	714	
SB-6 35'	35' bgs	90/07/20	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	193.7	194	
SB-6 45'	45' bgs	01/20/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	649.2	649	
SB-6 55'	55' bgs	02/20/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	24.8	1291	1316	
SB-6 65'	65' bgs	90/07/20	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	12.4	798.1	811	
SB-6 75'	75' bgs	01/20/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	15.5	91	
。被选为"40000mg 100000000000000000000000000000000		時代のは				() () () () () () () () () ()				1000		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
SB-7 5'	5' bgs	07/20/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
SB-7 10'	10' bgs	07/20/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
SB-7 20'	20' bgs	01/20/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
		02/20/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
一年の大学の大学の大学の大学の大学	***	The State of the S	医乳头外外外	104000000000000000000000000000000000000	100 CO 17 TO 1	不知為其亦			3300 W. S.	March Sall Mark	· 大大 爱多·	
SB-8 5'	5' bgs	01/20/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
SB-8 10'	10° bgs	01/20/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
SB-8 20'	20' bgs	01/20/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
SB-8 30'	30' bgs	02/20/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Control of the second	7 12 18 18 18 18 18 18 18 18 18 18 18 18 18	16 18 18 18 18 18 18 18 18 18 18 18 18 18			But To the		1000年	and the second	A 10 10 10 10 10 10 10 10 10 10 10 10 10	
SB-9 5'	5' bgs	07/24/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
SB-9 10'	10' bgs	07/24/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
SB-9 20'	20' bgs	07/24/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
SB-9 30'	30' bgs	07/24/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
	14 1 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			を というできる	10 10 10 10 10 10 10 10 10 10 10 10 10 1		S. 18 18 18 18	100			French Mary
SB-10 5'	5' bgs	07/24/06	<0.025	0.047	0.134	0.190	920.0	0.447	66.1	817	883	
SB-10 10'	10' bgs	07/24/06	0.251	1.62	10.4	10.2	2.42	24.891	777	2913	3690	
SB-10 15'	15' bgs	07/24/06	0.142	2.04	5.13	7.77	3.96	19.042	746	3474	4220	
SB-10 20'	20' bgs	07/24/06	0.152	3.46	6.54	10.4	5.82	26.372	812	3455	4267	73.9
SB-10 25'	25' bgs	07/24/06	0.063	1.47	3.44	6.18	3.16	14.313	740	3102	3842	
SB-10 35'	35' bgs	07/24/06	<0.025	0.252	0.557	1.05	0.455	2.314	87	760.3	847	
SB-10 45'	45' bgs	07/24/06	<0.025	0.029	0.067	0.114	0.059	0.269	44.3	663.6	708	

Page 3 of 5

TABLE 1

CONCENTRATIONS OF BTEX, TPH GRO/DRO AND CHLORIDES IN SOIL

	CAMDIE			MET	METHOD: EPA SW 846-8021B, 5030	146-8021B, 503	0		METHO	METHOD: 8015M		E 300
SAMPLE LOCATION	DEPTH (below ground surface)	SAMPLE DATE	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	M,P- XYLENE (mg/Kg)	O-XYLENE (mg/Kg)	TOTAL BTEX (mg/Kg)	GRO (mg/Kg)	DRO (mg/Kg)	TOTAL TPH (mg/Kg)	CHLORIDES (mg/Kg)
SB-10 55'	55' bgs	07/24/06	<0.025	0.260	0.493	0.789	0.418	1.96	121	1007.3	1128	
SB-10 65'	es, pgs	90/47/20	0.033	0.822	1.74	3.12	1.53	7.245	453	2595	3048	
SB-10 75'	75' bgs	01/24/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	12.9	157.5	170	
	1. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	大大 一年 大大	13000000000000000000000000000000000000			
	5' bgs	07/24/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
SB-11 10'	10' bgs	07/24/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
SB-11 20'	20' bgs	07/24/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	· 0.01>	<10.0	<10.0	
SB-11 30'	30' bgs	07/24/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
8 2		N. 10.8 (N. 100)			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	第1783年,夏	The state of the state of		The second of the second	1986 P.M.	TO THE PARTY	A AND THE
MW-1 5'	5' bgs	90/11/60	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-1 10'	10' bgs	90/11/60	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
	15' bgs	09/11/60	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-1 20'	20' bgs	90/11/60	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-1 25'	25' bgs	09/11/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-1 35'	35' bgs	09/11/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-1 45'	45' bgs	90/11/60	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-1 55'	55' bgs	90/11/60	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
	65' bgs	90/11/60	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-1 75'	75' bgs	90/11/60	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
		STATE OF THE	San			· 在 K 、 M			J. 18 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A CARLES	
MW-2 5'	5' bgs	90/11/60	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-2 10'	10' bgs	90/11/60	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-2 15'	15' bgs	09/11/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-2 20'	20' bgs	09/11/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-2 25'	25' bgs	09/11/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-2 35'	35' bgs	09/11/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-2 45'	45' bgs	09/11/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-2 55	55' bgs	09/11/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-2 65	65' bgs	09/11/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-2 75'	75' bgs	09/11/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
	がないのない		アンクション	San State of the san of	조리 안 '오랫폼'	第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	S. British S. S.	1981 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sale Sale	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Frank Calle
MW-3 5'	5' bgs	09/12/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-3 10'	10' bgs	09/12/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-3 15'	15' bgs	09/17/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-3 20'	20' bgs	09/12/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-3 25'	25' bgs	09/12/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-3 35'	35' bgs	09/12/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-3 45'	45' bgs	09/17/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	

	SAMPLE	•		MEI	METHOD: EPA SW 846-8021B, 5030	346-8021B, 503(METHOD: 8015M): 8015M		E 300
SAMPLE LOCATION	DEPTH (below ground surface)	SAMPLE DATE	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	M,P. XYLENE (mg/Kg)	O-XYLENE (mg/Kg)	TOTAL BTEX (mg/Kg)	GRO (mg/Kg)	DRO (mg/Kg)	TOTAL TPH (mg/Kg)	CHLORIDES (mg/Kg)
MW-3 55'	55' bgs	09/12/06	<0.025	0.032	0.039	0.641	0.310	1.022	249	1827	2076	ų.
MW-3 65'	es, pgs	09/17/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	61.3	61	:
MW-3 75'	75' bgs	09/17/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	121	121	
第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	19 · 19 · 19 · 19 · 19 · 19 · 19 · 19 ·	State of the state of	ANT TO SEE THE PERSON OF THE P			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		The state of the s				
MW-4 5'	Saq ,S	11/22/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-4 10'	10' bgs	11/22/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	:
MW-4 15'	15' bgs	11/22/06	< 0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10:0	
MW-4 20'	20' bgs	11/22/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-4 25'	25' bgs	11/22/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-4 35'	35' bgs	11/22/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-4 45'	45' bgs	11/22/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-4 55'	55' bgs	11/22/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-4 65'	65' bgs	11/22/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-4 75'	75' bgs	11/22/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
ないのはないないないまとう	14.34 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							事業では			0.5.5.5 S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MW-5 5'	5' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-5 10'	10' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-5 15'	15' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-5 20'	20' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-5 25'	25' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-5 35'	35' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-5 45'	45' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-5 55'	55' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-5 65'	65' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-5 75'	75' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	BANCE STATE OF			となる。大人	国际上海 国	17. 19. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	新文(1) 41 16 15 15 15 15 15 15 15 15 15 15 15 15 15		178 T 8 T 8 T 8 T 8 T 8 T 8 T 8 T 8 T 8 T	30.00 CB	1 3 Target 17	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MW-6 5'	5' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-6 10'	10' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-6 15'	15' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-6 20'	20' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-6 25'	25' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-6 35'	35' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-6 45'	45' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	0.01>	
MW-6 55'	55' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-6 65'	65' bgs	11/27/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-6 75'	75' bgs	11/28/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
				18.8	198	S 55.8			1. W. W. W. W.	医乳蛋素溶剂	1. 12 4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The figure of the
MW-7 5'	5' bgs	11/28/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	

CONCENTRATIONS OF BTEX, TPH GRO/DRO AND CHLORIDES IN SOIL

PLAINS MARKETING, L.P.
LOVINGTON GATHERING WTI
LEA COUNTY, NEW MEXICO
SRS: 2006-142
NMOCD REFERENCE #1RP-838

TABLE 1

TABLE 1

CONCENTRATIONS OF BTEX, TPH GRO/DRO AND CHLORIDES IN SOIL

	CAMPLE			ME	METHOD: EPA SW 846-8021B, 5030	846-8021B, 503	0		METHOD: 8015M): 8015M		E 300
SAMPLE LOCATION	DEPTH (below ground surface)	SAMPLE DATE	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	M,P- XYLENE (mg/Kg)	O-XYLENE (mg/Kg)	TOTAL BTEX (mg/Kg)	GRO (mg/Kg)	DRO (mg/Kg)	TOTAL TPH (mg/Kg)	CHLORIDES (mg/Kg)
	10' bgs	11/28/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-7 15'	15' bgs	11/28/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-7 20'	20' bgs	11/28/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-7 25'	25' bgs	11/28/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-7 35'	35' bgs	11/28/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-7 45'	45' bgs	11/28/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-7 55'	55' bgs	11/28/06	<0.025	<0.025	<0.025	<0.025	.<0.025	<0.025	0.01>	<10.0	0.01>	
MW-7 65'	65' bgs	11/28/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
MW-7 75'	75' bgs	11/28/06	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
					神景がある。	STATE OF STA	1000			医多种含物学	The work	100
	10' bgs	02/01/07	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
	25' bgs	02/07/07	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	
	50' bgs	02/07/07	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	14	14	
	75' bgs	02/07/07	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	101	101	
				ないできる。								
	SJ pgs	08/13/07	<0.002	<0.002	<0.002	<0.004	<0.002	<0.004	<10.0	<10.0	<10.0	
	15' bgs	08/13/07	<0.002	<0.002	<0.002	<0.004	<0.002	<0.004	<10.0	<10.0	<10.0	
	25' bgs	08/13/07	<0.002	<0.002	<0.002	<0.004	<0.002	<0.004	<10.0	<10.0	<10.0	
	45' bgs	08/13/07	<0.002	<0.002	<0.002	<0.004	<0.002	<0.004	<10.0	<10.0	<10.0	
	65' bgs	08/13/07	<0.002	<0.002	<0.002	<0.004	<0.002	<0.004	<10.0	<10.0	<10.0	
	70' bgs	08/13/07	<0.002	<0.002	<0.002	<0.004	<0.002	<0.004	<10.0	<10.0	<10.0	
	75' bgs	08/13/07	<0.002	<0.002	<0.002	<0.004	<0.002	<0.004	<10.0	<10.0	<10.0	

TABLE 2

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. LOVINGTON GATHERING WTI LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2006-142

	0110 11	U\	,00-17£
NMOCI	REF N	IO: 1I	RP-838

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-1	10/05/06	3,806.60	-	78.00	0.00	3,728.60
	12/28/06	3,806.60	-	78.00	0.00	3,728.60
	03/16/07	3,806.60		79.50	0.00	3,727.10
	05/31/07	3,806.60	-	78.97	0.00	3,727.63
	09/25/07	3,806.60	-	80.16	0.00	3,726.44
	11/30/07	3,806.60	-	79.94	0.00	3,726.66
	2002 A 100				in all it should	
MW-2	10/05/06	3,806.31	-	77.94	0.00	3,728.37
	12/28/06	3,806.31	-	77.94	0.00	3,728.37
	03/16/07	3,806.31	-	79.13	0.00	3,727.18
	05/31/07	3,806.31	-	78.82	0.00	3,727.49
	09/25/07	3,806.31	-	80.13	0.00	3,726.18
	11/30/07	3,806.31	-	79.88	0.00	3,726.43
San San San	经验的 数据					
MW-3	10/05/06	3,806.19	-	77.85	0.00	3,728.34
	12/28/06	3,806.19	-	77.85	0.00	3,728.34
	03/16/07	3,806.19	-	79.13	0.00	3,727.06
	05/31/07	3,806.19	-	. 78.73	0.00	3,727.46
	09/25/07	3,806.19	-	80.03	0.00	3,726.16
	11/30/07	3,806.19	-	79.77	0.00	3,726.42
En Hyby			XYS HOYEM			
MW-4	12/28/06	3,806.67	1	78.73	0.00	3,727.94
	03/16/07	3,806.67	-	79.17	0.00	3,727.50
	05/30/07	3,806.67	-	79.09	0.00	3,727.58
·	09/25/07	3,806.67		80.35	0.00	3,726.32
	11/30/07	3,806.67	-	80.09	0.00	3,726.58
不要的你		4575744	多数的概器			
MW-5	12/28/06	3,806.30	-	78.23	0.00	3,728.07
	03/16/07	3,806.30	-	78.79	0.00	3,727.51
	05/30/07	3,806.30		78.71	0.00	3,727.59
	09/25/07	3,806.30	*	79.89	0.00	3,726.41
	11/30/07	3,806.30	_	79.61	0.00	3,726.69
MW-6	12/28/06	3,806.08	-	78.42	0.00	3,727.66
	03/16/07	3,806.08	<u>-</u>	79.20	0.00	3,726.88

TABLE 2

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. LOVINGTON GATHERING WTI LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2006-142

NMOCD REF NO: 1RP-838

MW-6	05/20/07	2 000 00		70.75	0.00	2 727 22
IVIVV-6	05/30/07	3,806.08	-	78.75	0.00	3,727.33
	09/25/07	3,806.08	-	80.10	0.00	3,725.98
	11/30/07	3,806.08	-	79.73	0.00	3,726.35
			N. PARAMAN			ACTUAL CHARLES
MW-7	12/28/06	3,806.05	-	78.40	0.00	3,727.65
	03/16/07	3,806.05	-	79.35	0.00	3,726.70
	05/31/07	3,806.05	-	78.71	0.00	3,727.34
	09/25/07	3,806.05	-	80.09	0.00	3,725.96
	11/30/07	3,806.05	-	79.80	0.00	3,726.25
				78.7		
MW-8	03/16/07	3,805.89	-	78.78	0.00	3,727.11
	05/31/07	3,805.89	-	78.64	0.00	3,727.25
	09/25/07	3,805.89	-	80.03	0.00	3,725.86
i	11/30/07	3,805.89	-	79.70	0.00	3,726.19
		のかないのである。				
MW-9	09/25/07	3,806.02	-	80.38	0.00	3,725.64
	11/30/07	3,806.02	-	79.89	0.00	3,726.13
				144.5×	NOTE YOUR TO	YME ALL TO THE

TABLE 3

CONCENTRATIONS OF BTEX IN GROUNDWATER

PLAINS MARKETING, L.P. LOVINGTON GATHERING WTI LEA COUNTY, NEW MEXICO PLAINS SRS NO. 2006-142 NMOCD REF NO: 1RP-838

			METHODS:	EPA SW 8	46-8021B, 50	30
SAMPLE LOCATION	SAMPLE DATE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL- BENZENE (mg/L)	M,P- XYLENES (mg/L)	O-XYLENES (mg/L)
MW-1	10/05/06	<0.001	<0.001	<0.001	<0.001	<0.001
	12/28/06	<0.001	<0.001	<0.001	0.002	<0.001
	03/16/07	<0.001	<0.001	<0.001	<0.001	<0.001
	05/31/07	<0.001	<0.001	<0.001	<0.001	<0.001
	09/25/07	<0.001	<0.001	<0.001	<0.002	<0.001
	11/30/07	<0.001	<0.002	<0.001	<0.002	<0.001
	03/11/08	<0.001	<0.002	<0.001	<0.002	<0.001
	MANAGE T			120 T. F.Y. 17		MANAGE N
MW-2	10/05/06	0.01	<0.001	<0.001	<0.001	<0.001
	12/28/06	0.161	<0.001	<0.001	0.024	<0.001
	03/16/07	0.154	<0.001	<0.001	0.015	<0.001
	05/31/07	0.005	<0.001	<0.001	<0.001	<0.001
	09/25/07	0.050	<0.001	<0.001	0.003	<0.001
	11/30/07	0.928	<0.001	<0.005	0.036	<0.005
	03/11/08	0.0955	<0.002	<0.001	0.0032	<0.001
				TAPEZEDAY:	NAME OF STREET	
MW-3	10/05/06	6.6	<0.001	<0.001	0.072	<0.001
	12/28/06	1.02	<0.001	0.005	0.028	<0.001
	03/16/07	1.48	<0.001	0.013	0.034	<0.001
	05/31/07	1.66	0.010	0.034	0.029	0.012
	09/25/07	0.494	0.023	0.020	0.014	0.007
	11/30/07	5.93	0.027	0.273	0.141	0.074
	03/11/08	1.159	0.1073	0.1775	0.0662	0.1393
CONTRACTOR	李明 李明 李明	SAME SEC		というないなど		MARKET ET
MW-4	12/28/06	<0.001	<0.001	<0.001	<0.001	<0.001
" "-	03/16/07	<0.001	<0.001	<0.001	<0.001	<0.001
•	05/30/07	<0.001	0.001	<0.001	<0.001	<0.001
	09/25/07	<0.001	0.001	<0.001	<0.002	<0.001
	11/30/07	<0.001	<0.002	<0.001	<0.002	<0.001
	03/11/08	<0.001	<0.002	<0.001	<0.002	<0.001
	CASE WILLIAM			は大いな性が		
MW-5	12/28/06	<0.001	<0.001	<0.001	<0.001	<0.001
	03/16/07	<0.001	<0.001	<0.001	<0.001	<0.001
	05/30/07	<0.001	<0.001	<0.001	<0.001	<0.001
	09/25/07	<0.001	<0.001	<0.001	<0.002	<0.001
	11/30/07	<0.001	<0.002	<0.001	<0.002	<0.001
	03/11/08	<0.001	<0.002	<0.001	<0.002	<0.001
		Maria Cara	The state of the s			
MW-6	12/28/06	<0.001	<0.001	<0.001	<0.001	<0.001
	03/16/07	<0.001	<0.001	<0.001	<0.001	<0.001

TABLE 3

CONCENTRATIONS OF BTEX IN GROUNDWATER

PLAINS MARKETING, L.P. LOVINGTON GATHERING WTI LEA COUNTY, NEW MEXICO PLAINS SRS NO. 2006-142 NMOCD REF NO: 1RP-838

•			METHODS.	EDA CIA/O	46 9004B E0	20	
0.4451.5	0.4.451.5		METHODS:	46-8021B, 5030			
SAMPLE LOCATION	SAMPLE DATE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL- BENZENE (mg/L)	M,P- XYLENES (mg/L)	O-XYLENES (mg/L)	
MW-6	05/30/07	<0.001	<0.001	<0.001	<0.001	<0.001	
	09/25/07	<0.001	<0.001	<0.001	<0.002	<0.001	
	11/30/07	<0.001	<0.002	<0.001	<0.002	<0.001	
	03/11/08	<0.001	<0.002	<0.001	<0.002	<0.001	
					AVANT SEN		
MW-7	12/28/06	0.047	<0.001	<0.001	0.001	<0.001	
	03/16/07	0.047	<0.001	<0.001	0.015	<0.001	
	05/31/07	0.039	<0.001	<0.001	0.005	<0.001	
	09/25/07	0.037	<0.001	<0.001	0.030	<0.001	
	11/30/07	0.026	<0.002	<0.001	0.022	<0.001	
•	03/11/08	0.0437	<0.002	<0.001	0.015	<0.001	
学习验约 第						MAR WARR	
MW-8	03/16/07	<0.001	<0.001	<0.001	<0.001	<0.001	
	05/31/07	<0.001	<0.001	<0.001	<0.001	<0.001	
	09/25/07	<0.001	<0.001	<0.001	<0.002	<0.001	
	11/30/07	<0.001	<0.002	<0.001	<0.002	<0.001	
	03/11/08	<0.001	<0.002	<0.001	<0.002	<0.001	
			B 15-45-8		3867,-366		
MW-9	09/25/07	<0.001	<0.001	<0.001	<0.002	<0.001	
	11/30/07	<0.001	<0.002	<0.001	<0.002	<0.001	
	03/11/08	<0.001	<0.002	<0.001	<0.002	<0.001	
	等は高され	会对平位是 34		\$4.00 Per 1971		13 1 537 (351)	
NMOCD CRIT		0.01	0.75	0.75		62	

Appendices

Appendix A
Soil Boring and Monitor Well
Completion Logs

Soil Description 2.5 - 13' - Caliche Petroleum Petroleum None None None None Stain None None None None Odor Reading (1.0) 0.1 0.1 Columns Depth (feet)

Soil Boring SB-1

July 18, 2006

30 Ft 30 Ft

Thickness of Bentonite Seal

Depth of Exploratory Boring

Ground Water Elevation_ Depth to Groundwater

Soil Boring Details

13 - 25' - Sand, white to brown, very fine grained, well sorted, dry

25 - 30' - Sand, red to brown, very fine grained, well sorted, dry

Indicates samples selected for Laboratory Analysis. Indicates the groundwater level measured on _

Head-space reading in ppm obtained with a photo-ionization detector.

Notes:

- 1.) The soil boring was advanced on date using air rotary drilling
- 2.) The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- 3.) The depths indicated are referenced from below ground surface. (bgs)

Lovington Gathering WTI Lea County, New Mexico Plains Marketing, L.P. **Boring Log Details** Soil Boring SB-1

Basin Environmental Services

Prep By: CDS

Checked By: CDS

Date: June 11, 2008

Head-space reading in ppm obtained with a photo-ionization detector. Indicates samples selected for Laboratory Analysis. Indicates the groundwater level measured on Indicates the PSH level measured on July 18, 2006 Soil Boring Details 30 Ft 30 Ft Depth of Exploratory Boring __ Thickness of Bentonite Seal Ground Water Elevation_ Depth to Groundwater Date Drilled 14 - 30' - Sand, red to brown, very fine grained, well sorted, dry Soil Boring SB-2 Soil Description 1.5 - 14' - Caliche Petroleum Petroleum None None None Stain None None None Odor Reading PID 2.8 0.1 0.3 0.1 Columns Depth (feet)

Notes:

- 1.) The soil boring was advanced on date using air rotary drilling
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- 3.) The depths indicated are referenced from below ground surface. (bgs)

Boring Log Details
Soil Boring SB-2
Lovington Gathering WTI Lea County, New Mexico
Plains Marketing, L.P.

Basin Environmental Services

Prep By: CDS

Checked By: CDS

Date: June 11, 2008

Basin Environmental Services Head-space reading in ppm obtained with a photo-ionization detector. The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual. Indicates the groundwater level measured on July 19, 2006 3.) The depths indicated are referenced from below ground surface. (bgs) Checked By: CDS Indicates samples selected for Laboratory Analysis 1.) The soil boring was advanced on date using air rotary drilling Indicates the PSH level measured on Soil Boring Details July 19, 2006 73.5 Ft 75 Ft Date: June 11, 2008 Depth of Exploratory Boring _ Prep By: CDS Thickness of Bentonite Seal Ground Water Elevation Depth to Groundwater Date Drilled_ Notes: 25 -75' - Sand, red to brown, very fine grained, Soil Boring SB-3 17.5 - 25' - Sand, white to brown, very fine Soil Description grained, well sorted, dry Lovington Gathering WTI Lea County, New Mexico 2.5 - 17.5' - Caliche well sorted, dry Plains Marketing, L.P. **Boring Log Details** Soil Boring SB-3 Petroleum Petroleum Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate None Slight Slight None None None None None None None None Stain Slight Odor Reading (1,496) (1,072) 56.3 (18.6) 111 878 B 247 296 14.6 290 127 148 274 375 135 Columns Depth (feet)

Basin Environmental Services Head-space reading in ppm obtained with a photo-ionization detector. 2.) The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual. July 19, 2006 3.) The depths indicated are referenced from below ground surface. (bgs) Checked By: CDS Indicates samples selected for Laboratory Analysis. 1.) The soil boring was advanced on date using air rotary drilling Indicates the groundwater level measured on Indicates the PSH level measured on July 19, 2006 Soil Boring Details 75 Ft Date: June 11, 2008 Prep By: CDS Thickness of Bentonite Seal_ Depth of Exploratory Boring Ground Water Elevation Depth to Groundwater . Date Drilled Notes: 25 -75' - Sand, red to brown, very fine grained, Soil Boring SB-4 19 - 25' - Sand, white to brown, very fine Soil Description grained, well sorted, dry Lovington Gathering WTI Lea County, New Mexico 2.5 - 19' - Caliche well sorted, dry Plains Marketing, L.P. **Boring Log Details** Soil Boring SB-4 Petroleum Petroleum Heavy None Stain None None Heavy Heavy Slight Odor Reading (43.6) ,164 748) PID 731 965 466 446 922 516 83.6 602 489 964 691 Columns (feet)

Basin Environmental Services Head-space reading in ppm obtained with a photo-ionization detector. The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual. Indicates the groundwater level measured on July 19, 2006 3.) The depths indicated are referenced from below ground surface. (bgs) Checked By: CDS Indicates samples selected for Laboratory Analysis. 1.) The soil boring was advanced on date using air rotary drilling Indicates the PSH level measured on Soil Boring Details July 19, 2006 75 Ft 74 Ft Date: June 11, 2008 Depth of Exploratory Boring _ Prep By: CDS Thickness of Bentonite Seal_ Ground Water Elevation Depth to Groundwater Date Drilled Notes: 45 -75' - Sand, red to brown, very fine grained, Soil Boring SB-5 13.5 - 45' - Sand, white to brown, very fine Soil Description grained, well sorted, dry Lovington Gathering WTI Lea County, New Mexico 2.5 - 13.5' - Caliche well sorted, dry Plains Marketing, L.P. **Boring Log Details** Soil Boring SB-5 Petroleum Petroleum Slight None Stain None None Moderate Moderate Moderate Moderate Moderate Moderate Heavy Slight Slight Slight Slight Slight Slight Slight Odor Reading (1,017) 738 (13.6) 798 PID 69.7 995 451 281 175 370 42.4 647 259 505 395 2 Columns Depth (feet)

Basin Environmental Services Head-space reading in ppm obtained with a photo-ionization detector. The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual. Indicates the groundwater level measured on July 20, 2006 3.) The depths indicated are referenced from below ground surface. (bgs) Indicates samples selected for Laboratory Analysis. 1.) The soil boring was advanced on date using air rotary drilling Indicates the PSH level measured on July 20, 2006 Soil Boring Details 75 Ft 74 Ft Depth of Exploratory Boring __ Thickness of Bentonite Seal Ground Water Elevation Depth to Groundwater Date Drilled Notes: 35 -75' - Sand, red to brown, very fine grained, Soil Boring SB-6 14 - 35' - Sand, white to brown, very fine grained, well sorted, dry Soil Description Lovington Gathering WTI Lea County, New Mexico 2 - 14' - Caliche well sorted, dry **Boring Log Details** Soil Boring SB-6 Petroleum Petroleum Moderate Moderate None Stain Moderate Moderate Moderate Moderate Moderate Moderate Heavy Heavy None None None None None Odor Reading 97.1 759) 458 973 521 351 46.6 444 237 (27.2) 94.7 36.6 212 390 394 1 Columns (feet)

Checked By: CDS

Date: June 11, 2008

Prep By: CDS

Petroleum Petroleum Stain None Odor Reading 2.8 PID 2.5 1.5 3.9 5.1 4.4 Columns Depth (feet)

Soil Boring SB-7

Soil Description

2 - 14' - Caliche

14 - 25' - Sand, white to brown, very fine grained, well sorted, dry

25 - 30' - Sand, red to brown, very fine grained, well sorted, dry

Soil Boring Details

July 20, 2006 30 Ft Thickness of Bentonite Seal, Depth of Exploratory Boring Ground Water Elevation Depth to Groundwater Date Drilled

- Indicates the PSH level measured on
- Indicates the groundwater level measured on
- Indicates samples selected for Laboratory Analysis. PID

Head-space reading in ppm obtained with a photo-ionization detector.

Notes:

- 1.) The soil boring was advanced on date using air rotary drilling
- 2.) The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- 3.) The depths indicated are referenced from below ground surface. (bgs)

Lovington Gathering WTI Lea County, New Mexico Plains Marketing, L.P. **Boring Log Details** Soil Boring SB-7

Basin Environmental Services

Prep By: CDS

Checked By: CDS Date: June 11, 2008

Head-space reading in ppm obtained with a photo-ionization detector. Indicates samples selected for Laboratory Analysis. Indicates the groundwater level measured on ___ Indicates the PSH level measured on July 20, 2006 Soil Boring Details 30 Ft 30 Ft Thickness of Bentonite Seal____ Depth of Exploratory Boring ____ Ground Water Elevation___ Depth to Groundwater Date Drilled_ () 문 25 - 30' - Sand, red to brown, very fine grained, well sorted, dry Soil Boring SB-8 14 - 25' - Sand, white to brown, very fine grained, well sorted, dry Soil Description 2.5 - 14' - Caliche Petroleum Petroleum None None None None None None Stain None None None None None None Ogo Columns Reading (1:0) PD (e./ (6) (3) 6 9.0 Depth (feet)

Notes:

- 1.) The soil boring was advanced on date using air rotary drilling
- 2.) The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- 3.) The depths indicated are referenced from below ground surface. (bgs)

Lovington Gathering WTI Lea County, New Mexico Plains Marketing, L.P. **Boring Log Details** Soil Boring SB-8

Services
nmental
Enviro
Basin

Prep By: CDS

Checked By: CDS

Date: June 11, 2008

Petroleum Petroleum None None None None None None Stain None None None None None None Odor Reading 3.9 7.9 9.3 9.0 9.1 Columns Depth (feet)

Soil Boring SB-8

Soil Description

2.5 - 14' - Caliche

14 - 25' - Sand, white to brown, very fine grained, well sorted, dry

25 - 30' - Sand, red to brown, very fine grained, well sorted, dry

Soil Boring Details

July 20, 2006 30 Ft 30 Ft Depth of Exploratory Boring _ Thickness of Bentonite Seal Ground Water Elevation_ Depth to Groundwater Date Drilled

Indicates the PSH level measured on

Indicates the groundwater level measured on

Indicates samples selected for Laboratory Analysis.

Head-space reading in ppm obtained with a photo-ionization detector. PID

Notes:

- 1.) The soil boring was advanced on date using air rotary drilling
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- 3.) The depths indicated are referenced from below ground surface. (bgs)

Lovington Gathering WTI Lea County, New Mexico Plains Marketing, L.P. **Boring Log Details** Soil Boring SB-8

Basin Environmental Services

Prep By: CDS

Checked By: CDS

Date: June 11, 2008

Soil Description 2.5 - 9' - Caliche well sorted, dry Petroleum Petroleum None None None None None Stain None None None None None None None Odor Reading PID 5.9 5.4 5.1 5.8 7.2 5.9 Columns Depth (feet)

Soil Boring SB-9

July 20, 2006 30 Ft 30 Ft Thickness of Bentonite Seal_ Depth of Exploratory Boring Ground Water Elevation Depth to Groundwater Date Drilled

Soil Boring Details

9 - 30' - Sand, white to brown, very fine grained,

O	
measured	
level	
PSH	
the	
Indicates	
1	

- Indicates samples selected for Laboratory Analysis. Indicates the groundwater level measured on _
- Head-space reading in ppm obtained with a photo-ionization detector.

Notes:

- 1.) The soil boring was advanced on date using air rotary drilling
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- 3.) The depths indicated are referenced from below ground surface. (bgs)

Lovington Gathering WTI Lea County, New Mexico Plains Marketing, L.P. **Boring Log Details** Soil Boring SB-9

Basin Environmental Services

Checked By: CDS Date: June 11, 2008 Prep By: CDS

Basin Environmental Services Head-space reading in ppm obtained with a photo-ionization detector. The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual. Indicates the groundwater level measured on July 24, 2006 3.) The depths indicated are referenced from below ground surface. (bgs) Checked By: CDS Indicates samples selected for Laboratory Analysis. 1.) The soil boring was advanced on date using air rotary drilling Indicates the PSH level measured on July 24, 2006 Soil Boring Details 75 Ft 74 Ft Date: June 11, 2008 Depth of Exploratory Boring __ Prep By: CDS Thickness of Bentonite Seal_ Ground Water Elevation Depth to Groundwater Date Drilled Notes: 25 -75' - Sand, red to brown, very fine grained, Soil Boring SB-10 14 - 25' - Sand, white to brown, very fine Soil Description grained, well sorted, dry Lovington Gathering WTI Lea County, New Mexico 4 - 12' - Caliche well sorted, dry Plains Marketing, L.P. **Boring Log Details** Soil Boring SB-10 Petroleum Petroleum Moderate None Stain Moderate Heavy Heavy Heavy Heavy None Odor Reading (1,409) 293 (1,369) ,396) 338 669 54.6 723 PID 528 588 88.8 066 495 564 633 Columns (feet)

9 - 30' - Sand, white to brown, very fine grained, 2.5 - 9' - Caliche well sorted, dry Petroleum Petroleum None None None None None None Stain None None None None None None Odor Reading PID 4.4 5.6 5.5 5.6 4.2 Columns Depth (feet)

Soil Boring SB-11

Soil Description

Soil Boring Details

July 24, 2006 30 Ft 30 Ft Depth of Exploratory Boring _ Thickness of Bentonite Seal_ Ground Water Elevation Depth to Groundwater Date Drilled

- Indicates the PSH level measured on
- Indicates the groundwater level measured on
- Indicates samples selected for Laboratory Analysis.

Head-space reading in ppm obtained with a photo-ionization detector.

Notes:

- 1.) The soil boring was advanced on date using air rotary drilling
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- 3.) The depths indicated are referenced from below ground surface. (bgs)

Lovington Gathering WTI Lea County, New Mexico Plains Marketing, L.P. **Boring Log Details** Soil Boring SB-11

Basin Environmental Services

Prep By: CDS

Checked By: CDS

Date: June 11, 2008

Monitor Well Details Monitor Well MW-1 Lovington Gathering WTI Lea County, New Mexico Plains Marketing, L.P.

Basin Environmental Services

Che	
Prep By: CDS	Date: June 11, 2008

Date: June 11, 2008

Head-space reading in ppm obtained with a photo-ionization detector.

- 3. The well is protected with a locked stick up steel cover and a compression cap.

Basin Environmental Services

Checked By: CDS Date: June 11, 2008 Prep By: CDS

Lovington Gathering WTI Lea County, New Mexico

Checked By: CDS Date: June 11, 2008 Prep By: CDS

Date: June 11, 2008

Date: June 11, 2008

Checked By: CDS

Date: June 11, 2008

Prep By: CDS

Basin Environmental Services

Date: June 11, 2008

Appendix B Laboratory Reports Appendix C
Release Notification and Corrective Action
(Form C-141)

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Lovington Gathering WTI
Project Number: SRS: 2006-142
Location: Lea County, NM

Lab Order Number: 6G20010

Report Date: 07/28/06

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1 5'	6G20010-01	Soil	2006-07-18 14:41	2006-07-20 15:20
SB-1 10'	6G20010-02	Soil	2006-07-18 14:46	2006-07-20 15:20
SB-1 20'	6G20010-03	Soil	2006-07-18 14:52	2006-07-20 15:20
SB-1 30'	6G20010-04	Soil	2006-07-18 14:59	2006-07-20 15:20
SB-2 5'	6G20010-05	Soil	2006-07-18 15:23	2006-07-20 15:20
SB-2 10'	6G20010-06	Soil	2006-07-18 15:26	2006-07-20 15:20
SB-2 20'	6G20010-07	. Soil	2006-07-18 15:32	2006-07-20 15:20
SB-2 30'	6G20010-08	Soil	2006-07-18 15:42	2006-07-20 15:20

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Organics by GC

Environmental Lab of Texas

		EllAlloni							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 5' (6G20010-01) Soil				•					
Benzene	ND	0.0250	mg/kg dry	25	EG62407	07/24/06	07/24/06	EPA 8021B	
Toluene	ND	0.0250	**		11	"	"	**	
Ethylbenzene	ND	0.0250	н		**	"	"	**	
Xylene (p/m)	ND	0.0250	19		n		"	TF.	
Xylene (o)	ND	0.0250	W.	н	*	n	"		
Surrogate: a.a.a-Trifluorotoluene		96.5 %	80-12	20 .	"	"	"	#	
Surrogate: 4-Bromofluorobenzene		82.0 %	80-12	20	"	"	"	"	
Total Hydrocarbon nC6-nC35	ND	10.0	mg/kg dry	1	EG62602	07/25/06	07/26/06	EPA 8015M	J
Carbon Ranges C6-C12	ND	10.0	"		н	u	н	u	
Carbon Ranges C12-C28	ND	· 10.0	19	н	n	n	н	u	
Carbon Ranges C28-C35	ND	10.0	**	•	•	u	"	и	
Surrogate: 1-Chlorooctane		102 %	70-13	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		85.8 %	70-13		n	"	"	n	
SB-1 10' (6G20010-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62407	07/24/06	07/24/06	EPA 8021B	
Toluene	ND	0.0250	н	**	"	**	"	g.	
Ethylbenzene	ND	0.0250	n	**	11	ø	0	n	
Xylene (p/m)	ND	0.0250	n	**	"	ef		Ħ	
Xylene (o)	ND	0.0250	n	"	u .	**	H	**	
Surrogate: a,a,a-Trifluorotoluene		99.0 %	80-12	20	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.8 %	80-12	20	"	"	"	"	
Total Hydrocarbon nC6-nC35	ND	10.0	mg/kg dry	I	EG62602	07/25/06	07/26/06	EPA 8015M	J
Carbon Ranges C6-C12	ND	10.0	н	"	"	**	,,	n	
Carbon Ranges C12-C28	ND	10.0	н	"	"	н		•	
Carbon Ranges C28-C35	ND	10.0	n	٠,		n	,,	**	
Surrogate: 1-Chlorooctane		102 %	70-13	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		87.0 %	70-13	30	"	. "	"	n	
SB-1 20' (6G20010-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62407	07/24/06	07/24/06	EPA 8021B	
Toluene	ND	0.0250	"		"	,	н	**	
Ethylbenzene	ND	0.0250	n	,	u .	9	n	**	
Xylene (p/m)	ND	0.0250		n	"	•	n		
Xylene (o)	ND	0.0250	н	n	"		**		
Surrogate: a,a,a-Trifluorotoluene		99.5 %	80-12	20	"	п	n	n	
Surrogate: 4-Bromofluorobenzene		95.2 %	80-12		"	"	и	. "	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 20' (6G20010-03) Soil									•
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1 .	EG62604	07/26/06	07/26/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"		"	и	н	**	
Carbon Ranges C28-C35	ND	10.0	n	**	n	н	н	w·	
Surrogate: 1-Chlorooctane		108 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		101 %	70-1	30	"	"	"	"	
SB-1 30' (6G20010-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62408	07/24/06	07/24/06	EPA 8021B	
Toluene	ND	0.0250	н	"	н	и	н	"	
Ethylbenzene	ND	0.0250	н	н	н	н	н	"	
Xylene (p/m)	ND	0.0250	n	н	н	"	н	н	
Xylene (o)	ND	0.0250	н	"	н	н	н	*	
Surrogate: a,a,a-Trifluorotoluene		114%	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.0 %	80-1	20	"	"	"	"	
Total Hydrocarbon nC6-nC35	ND	10.0	mg/kg dry	1	EG62604	07/26/06	07/26/06	EPA 8015M	J
Carbon Ranges C6-C12	ND	10.0	11	н	н	"	н	н	
Carbon Ranges C12-C28	ND	10.0	11	"	н	**	н	11	
Carbon Ranges C28-C35	ND	10.0	11	19	+	**	*	R	
Surrogate: 1-Chlorooctane		117%	70-1	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		108 %	70-1	30 .	"	"	"	n	
SB-2 5' (6G20010-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62408	07/24/06	07/24/06	EPA 8021B	
Toluene	J [0.0179]	0.0250		"	"	н	H	**	J
Ethylbenzene	J [0.0171]	0.0250		n	11	11	**	•	J
Xylene (p/m)	0.0655	0.0250	**		**	"	•	**	
Xylene (o)	ND	0.0250		* .	**	H	11	**	
Surrogate: a,a,a-Trifluorotoluene		104 %	80-1	20	"	"	,,	"	
Surrogate: 4-Bromofluorobenzene		90.0 %	80-1	20	"	"	"	"	
Total Hydrocarbon nC6-nC35	442	10.0	mg/kg dry	1	EG62604	07/26/06	07/26/06	EPA 8015M	J
Carbon Ranges C6-C12	27.3	10.0	n	"	11	"	**	•	
Carbon Ranges C12-C28	375	10.0	н	"	н	"	**	n .	
Carbon Ranges C28-C35	39.7	10.0			*	н	н	п	
Surrogate: 1-Chlorooctane		117 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		115 %	70-1	30	"	"	"	"	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

	Environmental Lab of Texas										
Analyte	Result	Reporting Limit	Units	Dilection	Darah	D1		Marthod	Note		
SB-2 10' (6G20010-06) Soil			Cints	Dilution	Batch	Prepared	Analyzed	Method	Note		
	ND	0.0250	mg/kg dry	25	EC(2109	07/24/06	02/24/06	EPA 8021B			
Benzene Toluene	ND	0.0250	nig/kg ury	25	EG62408	07/24/06	07/24/06	EFA 8021B			
Ethylbenzene	ND	0.0250	"	,,	11	,,	,	н			
•	ND	0.0230	"	•		**	**	9			
Xylene (p/m) Xylene (o)	ND ND	0.0250	н	"		,,		"			
	ND	83.5 %	90.1	20		"	"				
Surrogate: a,a,a-Trifluorotoluene			80-12 80-12		,,		,,	,,			
Surrogate: 4-Bromofluorobenzene	ND	80.0 %						EPA 8015M			
Total Hydrocarbon nC6-nC35	ND	10.0	mg/kg dry	1 .	EG62604	07/26/06	07/26/06	ELY BOLDIN			
Carbon Ranges C6-C12	ND	10.0	,	,,				,,			
Carbon Ranges C12-C28	ND	10.0			*	**	,				
Carbon Ranges C28-C35	ND	10.0									
Surrogate: 1-Chlorooctane		118 %	70-1.		"	"	"	"			
Surrogate: 1-Chlorooctadecane		112 %	70-1.	30	"	"	"	n			
SB-2 20' (6G20010-07) Soil											
Benzene	ND	0.0250	mg/kg dry	25	EG62408	07/24/06	07/24/06	EPA 8021B			
Toluene	ND	0.0250	10	D.	"	n	"	er.			
Ethylbenzene	ND	0.0250	н	**	"	n	п	n			
Xylene (p/m)	J [0.0226]	0.0250	19	н	н	**	**	o.			
Xylene (o)	ND	0.0250	н	"	"	н	0	e			
Surrogate: a,a,a-Trifluorotoluene		97.8 %	80-12	20	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		91.2 %	80-12	20	n	"	"	"			
Total Hydrocarbon nC6-nC35	ND	10.0	mg/kg dry	1	EG62604	07/26/06	07/26/06	EPA 8015M			
Carbon Ranges C6-C12	ND	10.0	"	n	n	n	n	м			
Carbon Ranges C12-C28	ND	. 10.0	n	17	re .	*1		**			
Carbon Ranges C28-C35	ND	10.0	•	*1	н		"	**			
Surrogate: 1-Chlorooctane		119%	70-13	30	,,	n	n	11			
Surrogate: 1-Chlorooctadecane		112 %	70-13		"	"	"	n			
SB-2 30' (6G20010-08) Soil											
Benzene	ND	0.0250	mg/kg dry	25	EG62408	07/24/06	07/24/06	EPA 8021B			
Toluene	ND	0.0250			"	"	"				
Ethylbenzene	ND	0.0250	н	"			tt.	н			
Xylene (p/m)	ND	0.0250	**	**	,,		"	и			
Xylene (o)	ND	0.0250	*1		н	**	н	u			
Surrogate: a,a,a-Trifluorotoluene		87.8 %	80-12	20	,,	"	"	"			
Surrogate: 4-Bromofluorobenzene		82.5 %	80-12		"	"	"	n			
Total Hydrocarbon nC6-nC35	ND		mg/kg dry	1	EG62604	07/26/06	07/26/06	EPA 8015M			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

		Reporting	eporting				<u>-</u>		
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-2 30' (6G20010-08) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62604	07/26/06	07/26/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	*	"	"	п	**	"	
Carbon Ranges C28-C35	ND	10.0	n		**	•	"	н	
Surrogate: 1-Chlorooctane		116%	70-13	9	n	n	"	"	
Surrogate: 1-Chlorooctadecane		111%	70-13	9	"	n	n	n	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 5' (6G20010-01) Soil			· · · ·						
% Moisture	5.3	. 0.1	%	1	EG62111	07/21/06	07/21/06	% calculation	
SB-1 10' (6G20010-02) Soil									
% Moisture	2.7	0.1	%	1	EG62111	07/21/06	07/21/06	% calculation	
SB-1 20' (6G20010-03) Soil									
% Moisture	5.6	. 0.1	%	1	EG62111	07/21/06	07/21/06	% calculation	
SB-1 30' (6G20010-04) Soil						_			
% Moisture	3.2	0.1	%	1 .	EG62111	07/21/06	07/21/06	% calculation	
SB-2 5' (6G20010-05) Soil								_	
% Moisture	2.1	0.1	%	1	EG62111	07/21/06	07/21/06	% calculation	
SB-2 10' (6G20010-06) Soil									
% Moisture	4.7	0.1	%	1	EG62111	07/21/06	07/21/06	% calculation	
SB-2 20' (6G20010-07) Soil									
% Moisture	6.8	0.1	%	ı	EG62111	07/21/06	07/21/06	% calculation	
SB-2 30' (6G20010-08) Soil									
% Moisture	5.0	0.1	%	1	EG62111	07/21/06	07/21/06	% calculation	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC	n	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62407 - EPA 5030C (GC)		-								
Blank (EG62407-BLK1)		Prepared &	Analyzed:							
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	н							
Xylene (p/m)	ND	0.0250	a							
Xylene (o)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	41.3		ug/kg	40.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	35.2		"	40.0		88.0	80-120			
LCS (EG62407-BS1)		Prepared & Analyzed: 07/24/06								
Benzene	1.33	0.0250	mg/kg wet	1.25 .		106	80-120		-	
Toluene	1.32	0.0250		1.25		106	80-120			
Ethylbenzene	1.20	0.0250		1.25		96.0	80-120			
Xylene (p/m)	2.85	0.0250	19	2.50		114	80-120			
Xylene (o)	1.37	0.0250	11	1.25		110	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.3		ug/kg	40.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	38.8		"	40.0		97.0	80-120			
Calibration Check (EG62407-CCV1)	Prepared & Analyzed: 07/24/06									
Benzene	49.4		ug/kg	50.0		98.8	80-120			
l'oluene	53.1		**	50.0		106	80-120			
Ethylbenzene	50.8		u	50.0		102	80-120			
Xylene (p/m)	109		*	100		109	80-120			
Xylene (o)	53.6		**	50.0		107	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.8		"	40.0		99.5	80-120			
Surrogate: 4-Bromofluorobenzene	37.5		"	40.0		93.8	80-120			
Matrix Spike (EG62407-MS1)	Sou	urce: 6G20004-01		Prepared & Analyzed: 07/24/06						
Benzene	1.66	0.0250	mg/kg dry	1.59	ND	104	80-120			
Toluene	1.73	0.0250	"	1.59	ND	109	80-120			
Ethylbenzene	1.62	.0.0250	*	1.59	ND	102	80-120			
Xylene (p/m)	3.62	0.0250	н	3.18	ND	114	80-120			
Xylene (o)	1.77	0.0250	**	1.59	ND	111	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.1		ug/kg	40.0		97.8	80-120			
Surrogate: 4-Bromofluorobenzene	41.2		"	40.0		103	80-120			

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG62407 - EPA 5030C (GC)			····							
Matrix Spike Dup (EG62407-MSD1)	Sou	ırce: 6G20004	4-01	Prepared &	& Analyzed:	07/24/06				
Benzene	1.69	0.0250	mg/kg dry	1.59	ND	106	80-120	1.90	20	
Toluene	1.68	0.0250	**	1.59	ND	106	80-120	2.79	20	
Ethylbenzene	1.68	0.0250	11	1.59	ND	106	80-120	3,85	20	
Xylene (p/m)	3.66	0.0250	**	3,18	ND	115	80-120	0.873	20	
Xylene (o)	1.75	0.0250	ч	1.59	ND	110	80-120	0.905	20	
Surrogate: a,a,a-Trifluorotoluene	37.6		ug/kg	40.0		94.0	80-120			
Surrogate: 4-Bromofluorobenzene	40.5		"	40.0		101	80-120			
Batch EG62408 - EPA 5030C (GC)		•								
Blank (EG62408-BLK1)				Prepared &	& Analyzed	07/24/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	**							
Ethylbenzene	ND	0.0250								
Xylene (p/m)	ND	0.0250	,							
Xylene (o)	ND	.0,0250	"							
Surrogate: a,a,a-Trifluorotoluene	38.9		ug/kg	40.0		97.2	80-120			
Surrogate: 4-Bromofluorobenzene	35.3		"	40.0		88.2	80-120			
LCS (EG62408-BS1)				Prepared &	& Analyzed	07/24/06				
Benzene	1.31	0.0250	mg/kg wet	1.25		105	80-120			
Гoluene	1.30	0.0250		1.25		104	80-120			
Ethylbenzene	1.24	0.0250	"	1.25		99.2	80-120			
Kylene (p/m)	2.78	0.0250	"	2.50		111	80-120			
(ylene (o)	1,36	0.0250	"	1.25		109	80-120			
urrogate: a,a,a-Trifluorotoluene	37.7		ug/kg	40.0		94.2	80-120			

40.0

38.7

Surrogate: 4-Bromofluorobenzene

96.8

80-120

Plains All American EH & S

Project: Lovington Gathering WTI

Fax: (432) 687-4914

1301 S. County Road 1150 Midland TX, 79706-4476 Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level.	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62408 - EPA 5030C (GC)										
Calibration Check (EG62408-CCV1)				Prepared: (07/24/06 A	nalyzed: 07	7/25/06			
Benzene	52.5		ug/kg	50.0		105	80-120			
Toluene	51.2		**	50.0		102	80-120			
Ethylbenzene	48.9		19	50.0		97.8	80-120			
Xylene (p/m)	106		*	100		106	80-120			
Xylene (o)	52.8		17	50.0		106	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.8		u	40.0		97.0	80-120			
Surrogate: 4-Bromofluorobenzene	38.5		"	40.0		96.2	80-120			
Matrix Spike (EG62408-MS1)	Sou	rce: 6 G2 0013	3-01	Prepared: (07/24/06 A	nalyzed: 07	7/25/06			
Benzene	1,46	0.0250	mg/kg dry	1.40	ND	104	80-120			
Toluene	1.45	0.0250	"	1.40	ND	104	80-120			
Ethylbenzene	1.42	0.0250		1.40	ND	101	80-120			
Xylene (p/m)	3.14	0.0250		2.80	ND	112	80-120			
Xylene (o)	1.51	0.0250	*	1.40	ND	108	80-120			
Surrogate: a,a,a-Trifluorotoluene	36.6		ug/kg	40.0		91.5	80-120			
Surrogate: 4-Bromofluorobenzene	38.0		"	40.0		95.0	80-120			
Matrix Spike Dup (EG62408-MSD1)	Sou	rce: 6G20013	3-01	Prepared: (07/24/06 A	nalyzed: 07	7/25/06			
Benzene	1.53	0.0250	mg/kg dry	1.40	ND	109	80-120	4.69	20	
Toluene	1.53	0.0250	**	1.40	ND	109	80-120	4.69	20	
Ethylbenzene	1.48	0.0250	"	1.40	ND	106	80-120	4.83	20	
Xylene (p/m)	3.33	0.0250	"	2.80	ND	119	80-120	6.06	20	
Xylene (o)	1.62	0.0250	"	1.40	ND	116	80-120	7.14	20	
Surrogate: a,a,a-Trifluorotoluene	38.2		ug/kg	40.0		95.5	80-120			
Surrogate: 4-Bromofluorobenzene	40.4	•	"	40.0		101	80-120			
Batch EG62602 - Solvent Extraction (GC)										
Blank (EG62602-BLK1)				Prepared: (07/25/06 A	nalyzed: 07	7/26/06			
Total Hydrocarbon nC6-nC35	ND	10.0	mg/kg wet							
Carbon Ranges C6-C12	ND	10.0	17							
Carbon Ranges C12-C28	ND	10.0	**							
Carbon Ranges C28-C35	ND	. 10.0	44							
Surrogate: 1-Chlorooctane	46.0		mg/kg	50.0		92.0	70-130			
Surrogate: 1-Chlorooctadecane	37.2		"	50.0		74.4	70-130			

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

l	D 14	Reporting	I Inda	Spike	Source	0/ DEC	%REC	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KPD	Limit	ivotes
Batch EG62602 - Solvent Extraction (GC)				•						
LCS (EG62602-BS1)				Prepared: (07/25/06 A	nalyzed: 07	//26/06			
Total Hydrocarbon nC6-nC35	1020	10.0	mg/kg wet	1000		102	75-125			
Carbon Ranges C6-C12	492	10.0	"	500		98.4	75-125			
Carbon Ranges C12-C28	529	10.0	"	500		106	75-125			
Carbon Ranges C28-C35	ND	10.0	**	0.00			75-125			
Surrogate: 1-Chlorooctane	57.4		mg/kg	50.0		115	70-130	•		
Surrogate: 1-Chlorooctadecane	41.2		"	50.0		82.4	70-130			
Calibration Check (EG62602-CCV1)				Prepared: (07/25/06 A	nalyzed: 07	//26/06			
Total Hydrocarbon nC6-nC35	501		mg/kg wet	500		100	80-120			
Carbon Ranges C6-C12	208		"	250		83.2	80-120			
Carbon Ranges C12-C28	293		"	250		117	80-120			
Surrogate: 1-Chlorooctane	59.7		mg/kg	50.0		119	70-130			
Surrogate: 1-Chlorooctadecane	56.1		"	50.0		112	70-130			
Matrix Spike (EG62602-MS1)	Sou	rce: 6G20009	9-01	Prepared: (07/25/06 A	nalyzed: 07	1/26/06			
Total Hydrocarbon nC6-nC35	996	10.0	mg/kg dry	1030	ND	96.7	75-125			
Carbon Ranges C6-C12	476	10.0	11	515	ND	92.4	75-125			
Carbon Ranges C12-C28	520	10.0	"	515	ND	101	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125			
Surrogate: 1-Chlorooctane	57.9		mg/kg	50.0		116	70-130			
Surrogate: 1-Chlorooctadecane	58.1		"	50.0		116	70-130			
Matrix Spike Dup (EG62602-MSD1)	Sou	rce: 6G20009	9-01	Prepared: 0	07/25/06 A	nalyzed: 07	1/26/06			
Total Hydrocarbon nC6-nC35	1010	10.0	mg/kg dry	1030	ND	98.1	75-125	1.40	20	J.,
Carbon Ranges C6-C12	481	10.0	"	515	ND	93.4	75-125	1.04	20	
Carbon Ranges C12-C28	528	10.0	**	515	ND	103	75-125	1.53	20	
Carbon Ranges C28-C35	ND	10,0	11	0.00	ND		75-125		20	
Surrogate: 1-Chlorooctane	57.3		mg/kg	50.0		115	70-130			
Surrogate: 1-Chlorooctadecane	57.3		"	50.0		115	70-130			

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62604 - Solvent Extraction (GC)										
Blank (EG62604-BLK1)				Prepared &	k Analyzed	07/26/06				
Total Hydrocarbon nC6-nC35	ND	10.0	mg/kg wet							
Carbon Ranges C6-C12	ND	10.0	u							
Carbon Ranges C12-C28	ND	10.0	ıı .							
Carbon Ranges C28-C35	ND	10.0	н							
Surrogate: 1-Chlorooctane	51.6		mg/kg	50.0		103	70-130			
Surrogate: 1-Chlorooctadecane	45.2		"	50.0		90.4	70-130			
LCS (EG62604-BS1)				Prepared &	k Analyzed	07/26/06				
Total Hydrocarbon nC6-nC35	968	10.0	mg/kg wet	1000		96.8	75-125			
Carbon Ranges C6-C12	512	10.0	11	500		102	75-125			
Carbon Ranges C12-C28	457	10.0	"	500		91.4	75-125			
Carbon Ranges C28-C35	ND	10.0	n	0.00			75-125			
Surrogate: 1-Chlorooctane	56.7		mg/kg	50.0		113	70-130			
Surrogate: 1-Chlorooctadecane	48.6		"	50.0		97.2	70-130			
Calibration Check (EG62604-CCV1)				Prepared &	k Analyzed	07/26/06				
Total Hydrocarbon nC6-nC35	469		mg/kg	500		93.8	80-120			
Carbon Ranges C6-C12	248		"	250		99.2	80-120			
Carbon Ranges C12-C28	220		"	250		88.0	80-120			
Surrogate: 1-Chlorooctane	59.4		"	50.0		119	70-130			
Surrogate: 1-Chlorooctadecane	62.4		"	50.0		125	70-130			
Matrix Spike (EG62604-MS1)	Sou	rce: 6G20010	0-03	Prepared &	k Analyzed	07/26/06				
Total Hydrocarbon nC6-nC35	1050	10.0	mg/kg dry	1060	ND	99.1	75-125			
Carbon Ranges C6-C12	569	10.0	**	530	ND	107	75-125			
Carbon Ranges C12-C28	482	10.0	**	530	ND	90.9	75-125			
Carbon Ranges C28-C35	ND	10.0	**	0.00	ND		75-125			
Surrogate: 1-Chlorooctane	60.1		mg/kg	50.0		120	70-130			
Surrogate: 1-Chlorooctadecane	55.4		n	50.0		111	70-130			

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD ·	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EG62604 - Solvent Extraction (GC)

Matrix Spike Dup (EG62604-MSD1)	Sourc	e: 6G20010	0-03	Prepared &	Analyzed	07/26/06				
Total Hydrocarbon nC6-nC35	1060	10.0	mg/kg dry	1060	ND	100	75-125	0.948	20	J
Carbon Ranges C6-C12	565	10.0	11	530	ND	107	75-125	0.705	20	
Carbon Ranges C12-C28	495	10.0	"	530	ND	93.4	75-125	2.66	20	
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125		20	
Surrogate: 1-Chlorooctane	56.5		mg/kg	50.0		113	70-130			
Surrogate: 1-Chlorooctadecane	55.5		"	50.0		111	70-130			

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	j
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EG62111 - General Preparation (Pre	Ratch	EG62111	- General Preparation	(Pren)
--	-------	---------	-----------------------	--------

Blank (EG62111-BLK1)			Prepared: 07/20/06 Analyzed: 07/21/0)6	
% Solids	100	%			
Duplicate (EG62111-DUP1)	Source: 60	G20001-01	Prepared: 07/20/06 Analyzed: 07/21/0	06	
% Solids	95.9	%	95.9	0.00	20
Duplicate (EG62111-DUP2)	Source: 60	G20003-15	Prepared & Analyzed: 07/21/06		
% Solids	88.0	%	87.5	0.570	20
Duplicate (EG62111-DUP3)	Source: 60	20014-09	Prepared & Analyzed: 07/21/06		
% Solids	86.7	%	86.7	0.00	20
Duplicate (EG62111-DUP4)	Source: 60	20013-04	Prepared & Analyzed: 07/21/06		
% Solids	93.6	%	93.6	0.00	20

Plains All American EH & S
Project: Lovington Gathering WTI
Fax: (432) 687-4914

1301 S. County Road 1150
Project Number: SRS: 2006-142
Midland TX, 79706-4476
Project Manager: Camille Reynolds

Notes and Definitions

DET Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

	Kaland KJulia		
Report Approved By:	100000000	Date:	7/28/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Duplicate

Dup

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

				ļ	SES	Ī	end	9, 72	PS (Pre-Schodule) 24, 4 TAT IPTET	×	×	×	×	×	~	×	×	+	z	zzzi	N Lone Star	ပ္	
					□ NPDES	ľ													1.3		Ē		
				į			<u> </u>										\dashv		80	වන එ	ğΩę		
,	=			}			-			-	<u> </u>	H		-	_		\dashv	_	-		ir.	$\widetilde{\omega}$	
-	Project Name: Lovington Gathering WTI	ŀ	ĺ		☐ TRRP		\vdash		M,8.0.M	\vdash	-	-				-		+	1		Ę		
3	L L					1	_		RCI	+				1			\dashv	+	ૂે;	VOCs Free of Headspace? Custody seals on container(s) Custody seals on coder(s)	٠. ـ	μ̈́	
2	the	강	Σ	힁		ŀ	<u>ξ</u> ,	٠, ١	BTEX 8021B/5030 or BTEX 826	1	×	×	×	$\overline{\mathbf{x}}$	×	×	×	_	E E	spac ntair der(5 % ₹	. ece	
•	õ	7-9	ξ.	Ş	70	ļ	Analyze For	┪	səlifislaviməS	1									els –	989		<u> </u>	
5	Į,	SRS: 2006-142	Project Loc: Lea County, NM	PO#: PAA/C. Reynolds	Standard	ŀ	E		volatiles										Laboratory Comments: Sample Containers Intact?	VOCs Free of Headspace? Custody seals on container Custody seals on coder(s)	by Sampler/effett Rep. by Courier?	Temperature Upon Receipt:	
	Ž	Ö	O O	¥	Sta	1		_	Metala: Ya Ya Ba Cd Cr Pb Hg S] 5 3 ,	8 8 9	Same Council	rattur	
	의	잃	اٿ	a	×	- 1	TOTAL		SAR / ESP / CEC	_							_	_		Stod	2 2 2	mpe	
	al III e	# 5	ខ្ទ	#	÷	- 1		<u>'</u>	Anions (Cl, SO4, CO3, HCO3)	-				_	_		_	\perp	S.E.	<u> ₹₫₫₿</u>	7	<u>P</u>	
	ž	Project#:	ject	ш.	Report Format:			H	Cations (Ca, Mg, Na, K)	-	L		J			-				ime /	1/2	Time 0,7	
	roje	u.	Pro		£ E	L		+	TPH: 418.1 8015M 1005 100	×	×	×	×	×	×	×	×	_	┥	1 6	≱ ₌	Time 3,20	
	۵.				ebo	1		Matrix	GW = Groundwater S=SolvSolid	1 ⊒!	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL				} —		
					œ			ž	DAA=Duinking Vacior SL=Sludge	တြ	Š	တိ	လိ	ŏ	တိ	Š	S			" L	<u> </u>	੍ਹਿਲ੍ਹ	
		- 1	- 1		ļ			F	Ogner (Specify)						_		\dashv		1	<u>a</u>		Date 25/05/0	
_		1				티		Preservation & # of Containers	anoM										1	18	3		
3		İ	i		i	Σ)		Sorte	EO5252AN												3		
2					ľ	ভ		ъ *	HOPN														
				į		<u>S</u>		Pion &	'OS ² H			<u> </u>							1		Ì		
i			l	1	429	ä		Serva	10H					\dashv	_	_	_	\dashv	-		اد		
				ŀ	36-1	ů		e E	нио ³	1	}			-	_			_	4	3	4	.	
)					5) 3	븳		L	(×	X	×	×	긔	×	×	×		-	م	\$	+	
				- 1	뗈	꾋			No. of Containers	7	1	7	_	_	~		_			1		10	P
		CC			Fax No: (505) 396-1429	e-mail: kdutton@basinenv.com			belqms2 emiT	1441	1446	1452	1459	1523	1526	1532	1542			A Son		(eg)	
		echnologies, LLC							Date Sampled	18-Jul-06	18-Jul-08	18-Jul-06	18~Jul-06	18-Jul-06	18-Jul-06	18-Jul-06	18~Jul-06			Received by:	Received by:	Received by ELOT.	
		e Tec							rl∮qeQ gribn∃	ù	10.	20,	30,	ú	10.	20,	30.			Time 240	ime ime		
		Servic				13			diqaQ poinnige8	0	5.	15'	25'	0,	5,	15'	25'			- T	1	<i>₹ 1/2</i>	
	tton	Basin Environmental Service To	ox 301	Lovington, NM 88260	11-2124	N Dill												:		Date Date	Date	Date Date	0.
	er. Ken Dutton	•	ess: P. O. Box 301	Lovingt	(505) 441-2124	ture:		2 2 2 2	FIELD CODE	SB-1 5	3B-1 10'	SB-1 20'	SB-1 30'	SB-2 5'	SB-2 10'	SB-2 20.	SB-2 30')	Booch	
	Project Manager:	Сотрапу Nате	Company Address:	City/State/Zip:	Telephane Na:	Sampler Signature:	V	9											Special Instructions:	ed by:	ed by.	ied by:	
							(lab use only)	ORDER #:	LAB # (lab use only)	9	42	63	र्व	ঞ্চ	0,0	5	30		Special	Relinglyshed by	Relinquished by.	Relinquished by	

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Checklist			
1	T		<u>lniti</u>
		(,5)	
7			
		Not Present	
 			
			
		 	
		Not Applicable	
			
	+·	 	
	 	See Below	
			
			
	·		'
	+- 	See Below	
		See Below	
Yes	. No	Not Applicable	
nentation			
	_	Date/ Time:	
· ·			
			1
المالة			
snortly atter	sampling	event	
	Yes	Yes No	Yes No (5°C) Yes No Not Present Yes No See Below Yes No No See Below Yes No Not Applicable

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Lovington Gathering WTI
Project Number: SRS: 2006-142
Location: Lea County, NM

Lab Order Number: 6G24009

Report Date: 08/01/06

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-3 5'	6G24009-01	Soil	2006-07-19 09:26	2006-07-24 13:35
SB-3 10'	6G24009-02	Soil	2006-07-19 09:30	2006-07-24 13:35
SB-3 15'	6G24009-03	Soil	2006-07-19 09:34	2006-07-24 13:35
SB-3 20'	6G24009-04	Soil	2006-07-19 09:39	2006-07-24 13:35
SB-3 25'	6G24009-05	Soil	2006-07-19 09:41	2006-07-24 13:35
SB-3 35'	6G24009-06	Soil	2006-07-19 10:06	2006-07-24 13:35
SB-3 45'	6G24009-07	Soil	2006-07-19 10:10	2006-07-24 13:35
SB-3 55'	6G24009-08	Soil	2006-07-19 10:22	2006-07-24 13:35
SB-3 65'	6G24009-09	Soil	2006-07-19 10:30	2006-07-24 13:35
SB-3 75'	6G24009-10	Soil	2006-07-19 10:42	2006-07-24 13:35
SB-4 5'	6G24009-11	Soil	2006-07-19 11:41	2006-07-24 13:35
SB-4 10'	6G24009-12	Soil	2006-07-19 11:44	2006-07-24 13:35
SB-4 15'	6G24009-13	Soil	2006-07-19 11:50	2006-07-24 13:35
SB-4 20'	6G24009-14	Soil	2006-07-19 11:52	2006-07-24 13:35
SB-4 25'	6G24009-15	· Soil	2006-07-19 11:55	2006-07-24 13:35
SB-4 35'	6G24009-16	Soil	2006-07-19 13:35	2006-07-24 13:35
SB-4 45'	6G24009-17	Soil·	2006-07-19 13:39	2006-07-24 13:35
SB-4 55'	6G24009-18	Soil	2006-07-19 14:20	2006-07-24 13:35
SB-4 65'	6G24009-19	Soil	2006-07-19 14:26	2006-07-24 13:35
SB-4 75'	6G24009-20	Soil	2006-07-19 14:33	2006-07-24 13:35
SB-5 5'	6G24009-21	Soil	2006-07-19 16:00	2006-07-24 13:35
SB-5 10'	6G24009-22	Soil	2006-07-19 16:02	2006-07-24 13:35
SB-5 15'	6G24009-23	Soil	2006-07-19 16:05	2006-07-24 13:35
SB-5 20'	6G24009-24	Soil	2006-07-19 16:08	2006-07-24 13:35
SB-5 25'	6G24009-25	Soil	2006-07-19 16:10	2006-07-24 13:35
SB-5 35'	6G24009-26	Soil	2006-07-19 16:16	2006-07-24 13:35
SB-5 45'	6G24009-27	Soil	2006-07-19 16:20	2006-07-24 13:35
SB-5 55'	6G24009-28	Soil	2006-07-19 16:24	2006-07-24 13:35
SB-5 65'	· 6G24009-29	Soil	2006-07-19 16:30	2006-07-24 13:35
SB-5 75'	6G24009-30	Soil	2006-07-19 16:38	2006-07-24 13:35
SB-6 5'	6G24009-31	Soil	2006-07-20 10:44	2006-07-24 13:35
SB-6 10'	6G24009-32	Soil	2006-07-20 10:48	2006-07-24 13:35
SB-6 15'	6G24009-33	Soil	2006-07-20 10:50	2006-07-24 13:35
SB-6 20'	6G24009-34	Soil	2006-07-20 10:54	2006-07-24 13:35
	•			

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
<u> </u>	<u>_</u>		·	
SB-6 25	6G24009-35	Soil	2006-07-20 10:56	2006-07-24 13:35
SB-6 35'	6G24009-36	Soil	2006-07-20 11:10	2006-07-24 13:35
SB-6 45'	6G24009-37	Soil	2006-07-20 11:14	2006-07-24 13:35
SB-6 55'	6G24009-38	Soil	2006-07-20 11:57	2006-07-24 13:35
SB-6 65'	6G24009-39	Soil	2006-07-20 12:04	2006-07-24 13:35
SB-6 75'	6G24009-40	Soil	2006-07-20 12:12	2006-07-24 13:35
SB-7 5'	6G24009-41	Soil	2006-07-20 14:14	2006-07-24 13:35
SB-7 10'	6G24009-42	Soil	2006-07-20 14:18	2006-07-24 13:35
SB-7 20'	6G24009-43	Soil	2006-07-20 14:25	2006-07-24 13:35
SB-7 30'	6G24009-44	Soil	2006-07-20 14:30	2006-07-24 13:35
SB-8 5'	6G24009-45	Soil	2006-07-20 15:07	2006-07-24 13:35
SB-8 10'	6G24009-46	Soil	2006-07-20 15:15	2006-07-24 13:35
SB-8 20'	6G24009-47	Soil	2006-07-20 15:25	2006-07-24 13:35
SB-8 30'	6G24009-48	Soil	2006-07-20 15:35	2006-07-24 13:35

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-3 5' (6G24009-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	ND	0.0250	"	н	"	n	Ħ	н	
Ethylbenzene	ND	0.0250	•	н	"	n	W	**	
Xylene (p/m)	ND	0.0250	"	,	*	n	н	n	
Xylene (o)	ND	0.0250		,	Ħ	H	"	*1	
Surrogate: a,a,a-Trifluorotoluene		85.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.0 %	80-1	20	"	"	"	"	
Total Hydrocarbon nC6-nC35	1060	. 10.0	mg/kg dry	1	EG62615	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C6-C12	43.6	10.0	11	,	•	H		**	
Carbon Ranges C12-C28	853	10.0	"	"	н	н	н	n	
Carbon Ranges C28-C35	168	10.0		" .	и	и	н	"	
Surrogate: 1-Chlorooctane		97.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		136 %	70-1	30	"	"	"	"	S-0
SB-3 10' (6G24009-02) Soil		-							
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	J [0.0233]	0.0250	н	n	19	n	n	11	
Ethylbenzene	0.174	0.0250	н		*	"	"	16	
Xylene (p/m)	0.232	0.0250	"	"	"	н	н	•	
Xylene (o)	0.0523	0.0250	**		**	n	n	**	
Surrogate: a.a.a-Trifluorotoluene		85.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	80-1	20	"	"	"	"	
Total Hydrocarbon nC6-nC35	2430	10.0	mg/kg dry	1	EG62615	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C6-C12	225	10.0	*	• .	**	**	"	11	
Carbon Ranges C12-C28	1990	10.0	"		11	н	н	11	
Carbon Ranges C28-C35	214	10.0	n	н	**	"	н	**	
Surrogate: 1-Chlorooctane		108 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		140 %	70-1	30	"	n	"	"	S-0
SB-3 15' (6G24009-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	J [0.0178]	0.0250	11	"	Ω	**	17	н	
Ethylbenzene	0.0442	0.0250		,,	н	9	**	te .	
Xylene (p/m)	0.0931	0.0250	,	*	н	Ħ	н	**	
Xylene (o)	0.0306	0.0250	H	п		н	**	μ	
Surrogate: a,a,a-Trifluorotoluene		83.5 %	80-1.	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.8 %	80-1	20	"	rr ·	"	n	
Carbon Ranges C6-C12	152	10.0	mg/kg dry	1	EG62716	07/27/06	07/27/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-3 15' (6G24009-03) Soil			 			<u> </u>			
Carbon Ranges C12-C28	1780	10.0	mg/kg dry	ì	EG62716	07/27/06	07/27/06	EPA 8015M	
Carbon Ranges C28-C35	179	10.0	*	**	11	17	н	11	
Total Hydrocarbons	2110	. 10.0	**	**		"	н	"	
Surrogate: 1-Chlorooctane		105 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		172 %	70-1	30	н	"	"	n	S-04
SB-3 20' (6G24009-04) Soil				•					
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	J [0.0139]	0.0250	**		"	n	и	п	J
Ethylbenzene	0.0361	0.0250	**	**	"	н	n	n	
Xylene (p/m)	0.0639	0.0250		**	•	,	n	**	
Xylene (o)	J [0.0209]	0.0250	17	p	n	н	н	11	J
Surrogate: a,a,a-Trifluorotoluene		89.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.0 %	80-1	20	"	"	" ,	"	
Carbon Ranges C6-C12	153	10.0	mg/kg dry	1	EG62716	07/27/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	1830	10.0	**	"	įŧ.	н	n	и	
Carbon Ranges C28-C35	182	10.0	"	,,	IT.	*	**	н	
Total Hydrocarbons	2160	10.0	н		11	11	н	11	
Surrogate: 1-Chlorooctane		105 %	70-1	30 .	"	"	"	"	
Surrogate: 1-Chlorooctadecane		173 %	70-1	30	"	u	"	"	S-04
SB-3 25' (6G24009-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	ND	0.0250	u	м	*1	17	**	**	
Ethylbenzene	ND	0.0250	u	н	н		н	W.	
Xylene (p/m)	ND	0.0250	n	н ,	н	11	41	**	
Xylene (o)	ND	0.0250	"	H	н	**	**	**	
Surrogate: a.a.a-Trifluorotoluene		91.5 %	80-1	20	" .	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.0 %	80-1	20	"	"	"	,,	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62716	07/27/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	76.9	10.0	н	**	**	n	н	**	
Carbon Ranges C28-C35	J [2.49]	10.0	н	* .	D.	п	"	н	J
Total Hydrocarbons	76.9	10.0	**	**	11	н	,,	**	
Surrogate: 1-Chlorooctane		101 %	70-1	30	H	"	,,	"	
Surrogate: 1-Chlorooctadecane		128 %	70-1	30	"	"	"	"	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

		LIIVII OII	mentai L	40 UI 1					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-3 35' (6G24009-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	ND	0.0250		"	n		"		
Ethylbenzene	ND	0.0250		"	**	"	w	**	
Xylene (p/m)	ND	0.0250	n	•	**		•	#	
Xylene (o)	ND	0.0250	"	**	u	н	**	•	
Surrogate: a,a,a-Trifluorotoluene		85.5 %	80-1	20	,,	n	,,	"	
Surrogate: 4-Bromofluorobenzene		90.0 %	80-1	20	"	"	n	"	
Carbon Ranges C6-C12	J [6.25]	10.0	mg/kg dry	1	EG62716	07/27/06	07/27/06	EPA 8015M	J
Carbon Ranges C12-C28	154	10.0	н	•	*1	п	b	н	
Carbon Ranges C28-C35	16.2	10.0	н			ø	ø	н	
Total Hydrocarbons	170	10.0	*	,	"	u	ø	n	
Surrogate: 1-Chlorooctane		93.4 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		129 %	70-1	30	"	"	"	"	
SB-3 45' (6G24009-07) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	ND	0.0250	P		ø	,,		17	
Ethylbenzene	ND	0.0250	TP	. "	ø	"	н	81	
Xylene (p/m)	ND	0.0250	Ħ		"	н	*	н	
Xylene (o)	ND	0.0250	**	u	н	,	"	н	
Surrogate: a,a,a-Trifluorotoluene		85.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.2 %	80-1	20	"	"	"	rr .	
Carbon Ranges C6-C12	J [2.54]	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	J
Carbon Ranges C12-C28	371	10.0	"	. "	**	**	**	н	
Carbon Ranges C28-C35	38.8	10.0	**		*	**	**	н	
Total Hydrocarbons	410	10.0	H			"	н	*	
Surrogate: 1-Chlorooctane		99.4 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		103 %	70-1	30	n	"	"	n	
SB-3 55' (6G24009-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	ND	0.0250	**	**	H	в	н	**	
Ethylbenzene	ND	0.0250	**	"	**	17	51	n	
Xylene (p/m)	ND	0.0250	**	۰,	*	"	"	"	
Xylene (o)	ND	0.0250	v		w	"	"	н	
Surrogate: a,a,a-Trifluorotoluene		83.0 %	80-1.	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.2 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	J [9.73]	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	J

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

		Denortie							*****
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-3 55' (6G24009-08) Soil				*					
Carbon Ranges C12-C28	719	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C28-C35	85.9	10.0	*1	н	u	*	u		
Total Hydrocarbons	805	10.0	11	н .	11	**	11		
Surrogate: 1-Chlorooctane		96.0 %	70-	130	"	H	"	"	
Surrogate: 1-Chlorooctadecane		109 %	70-	130	"	"	"	"	
SB-3 65' (6G24009-09) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	ND	0.0250	**	۳.	н	u	н	n	
Ethylbenzene	ND	0.0250	**	"	н	n		n	
Xylene (p/m)	ND	0.0250	**	"	H	"	10	**	
Xylene (o)	ND	0.0250	**		"	"	11	,	
Surrogate: a,a,a-Trifluorotoluene		90.8 %	80-1	120	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.2 %	80-	120	"	"	"	"	
Carbon Ranges C6-C12	15.0	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	492	10.0	11		н	**	"	11	
Carbon Ranges C28-C35	48.8	10.0	*1	17	*	**	**	11	
Total Hydrocarbons	556	10.0	**	"		11	•	"	
Surrogate: 1-Chlorooctane		94.0 %	70-	130	"	n	"	"	
Surrogate: 1-Chlorooctadecane		99.0 %	70-1	130	"	n	"	"	
SB-3 75' (6G24009-10) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	ND	0.0250	н	**	**	n	**	н .	
Ethylbenzene	ND	0.0250	**	u	**	**	"	н	
Xylene (p/m)	0.0361	0.0250	н	**	o	и	н	"	
Xylene (o)	ND	0.0250	**	"	#	"	u	**	
Surrogate: a.a.a-Trifluorotoluene		90.2 %	80-1	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.5 %	80-1	120	"	"	"	"	
Carbon Ranges C6-C12	J [2.28]	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	J
Carbon Ranges C12-C28	40.7	10.0	"		,		*	н	
Carbon Ranges C28-C35	ND	10.0	n	n		11	**	,,	
Total Hydrocarbons	40.7	10.0	н	**	"	**	н	,	
Surrogate: 1-Chlorooctane		93.2 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		89.8 %	70-1	130	"	n	"	"	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

Ameliato	P 14	Reporting	11		_				
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
SB-4 5' (6G24009-11) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	ND	0.0250	"	"	"	**	**	"	
Ethylbenzene	ND	0.0250	"	**	"	**	"	"	
Xylene (p/m)	ND	0.0250	"	* .	**	ff	10	11	
Xylene (o)	ND	0.0250	н	"	11	H	н	n	
Surrogate: a,a,a-Trifluorotoluene		91.0 %	80-1	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		89.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	J [4.97]	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	239	10.0	H	н	**	11	**	*	
Carbon Ranges C28-C35	31.5	10.0	**		**	"	w	*	
Total Hydrocarbons	270	10.0	10	н .	"	**	**	•	
Surrogate: 1-Chlorooctane		92.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		89.4 %	70-1	30	"	"	"	"	
SB-4 10' (6G24009-12) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	0.0290	0.0250	n	۳ .	**	**	н	*	
Ethylbenzene	0.164	0.0250	*		•	**	n	4r	
Xylene (p/m)	0.552	0.0250	n	**		"	n	Tr.	
Xylene (o)	0.132	0.0250	"	n	н	"	n	41	
Surrogate: a,a,a-Trifluorotoluene		96.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	98.6	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	786	10.0	"	н ,	,,	**	11		
Carbon Ranges C28-C35	50.2	10.0		н	н	u	n	н	
Total Hydrocarbons	935	10.0	*	н	н			**	
Surrogate: 1-Chlorooctane		100 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		93.4 %	70-1	30	"	"	"	"	
SB-4 15' (6G24009-13) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	J [0.0204]	0.0250	н	"	*	н	"	н	
Ethylbenzene	0.0668	0.0250	"		,	11	*	н	
Xylene (p/m)	0.160	0.0250	"		**	11	"	**	
Xylene (0)	0.0826	0.0250	"	п	"			н	
Surrogate: a,a,a-Trifluorotoluene		95.2 %	80-1	20	"	n	" .	"	
Surrogate: 4-Bromofluorobenzene		111%	80-1	20	n	,,	, ,	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Organics by GC **Environmental Lab of Texas**

	ь .	Reporting	T. F. Co.						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-4 15' (6G24009-13) Soil									
Carbon Ranges C12-C28	1220	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C28-C35	136	10.0	н	"	**		н	W.	
Total Hydrocarbons	1490	10.0	н	"	*1	n			
Surrogate: 1-Chlorooctane		100 %	70-1	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		109 %	70-1	30	"	"	"	n	
SB-4 20' (6G24009-14) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	0.0689	0.0250	**	"	"	n	п	11	
Ethylbenzene	0.112	0.0250	"	**		n	11	11	
Xylene (p/m)	0.257	0.0250	**	*	**	н	u	49	
Xylene (o)	0.0697	0.0250		٠.	11	"		11	
Surrogate: a,a,a-Trifluorotoluene		87.0 %	80-1	20	,,	"	"	"	
Surrogate: 4-Bromofluorobenzene		107 %	80-1	20	"	n	"	"	
Carbon Ranges C6-C12	101	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	932	10.0	"	**	"	"	н	н	
Carbon Ranges C28-C35	92.0	10.0		**	"	•	*	н	
Total Hydrocarbons	1120	10.0	"	"	**	"	"	,	
Surrogate: 1-Chlorooctane		106 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		111%	70-1	30	"	"	n	"	
SB-4 25' (6G24009-15) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	ND	0.0250	11	10		"	9	н	
Ethylbenzene	ND	0.0250	H		"	n	31	н	
Xylene (p/m)	0.0265	0.0250	11	"	"	"	**	r	
Xylene (o)	ND	0.0250	11	"	"	"	н	n	
Surrogate: a,a,a-Trifluorotoluene		85.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.5 %	80-1	20	"	"	"	#	
Carbon Ranges C6-C12	65.9	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	1320	10.0	H	"	"	n	**	11	
Carbon Ranges C28-C35	172	10.0	"		,,	н	**	•	
Total Hydrocarbons	1560	10.0	"	**	**		**	**	
Surrogate: 1-Chlorooctane		95.4 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		95.8 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-4 35' (6G24009-16) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	ND	0.0250	"	11	"	"	н	н	
Ethylbenzene	ND	0.0250	"	17	11	"	н	"	
Xylene (p/m)	ND	0.0250	n	**	**	•	"	19	
Xylene (o)	ND	0.0250	"	**	"	**	"	"	
Surrogate: a,a,a-Trifluorotoluene		96.5 %	80-1	20	n	n	"	n	
Surrogate: 4-Bromofluorobenzene		92.5 %	80-1	20 .	"	"	"	"	
Carbon Ranges C6-C12	46.4	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	954	10.0	"	**	11	"	**	19	
Carbon Ranges C28-C35	89.1	10.0	*	"	**	•	"	17	
Total Hydrocarbons	1090	10.0	n	**	**	"	**	**	
Surrogate: 1-Chlorooctane		85.2 %	70-1	30	"	n	,,	,,	
Surrogate: 1-Chlorooctadecane		104 %	70-1	30	"	"		"	
SB-4 45' (6G24009-17) Soil				•					
Benzene	ND	0.0250	mg/kg dry	25	EG62607	07/26/06	07/26/06	EPA 8021B	
Toluene	ND	0.0250	"		"	n	v	n	
Ethylbenzene	ND	0.0250	*	*	"	,,	"	19	
Xylene (p/m)	ND	0.0250	19	н	н	17	н	**	
Xylene (o)	ND	0.0250	v	"	н	"	ii	n	
Surrogate: a,a,a-Trifluorotoluene		91.2 %	80-1	20	"	,,	"	"	***
Surrogate: 4-Bromofluorobenzene	•	90.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	29.5	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	883	10.0	"	"		,		н	
Carbon Ranges C28-C35	97.9	10.0	**	"	"	**	**	"	
Total Hydrocarbons	1010	10.0	*	н	"	н	**		
Surrogate: 1-Chlorooctane		92.0 %	70-1	30	"	"	"	v	
Surrogate: 1-Chlorooctadecane		103 %	70-1	30	"	"	"	"	
SB-4 55' (6G24009-18) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62702	07/27/06	07/27/06	EPA 8021B	
Toluene	ND	0.0250	•	"	**	"	н	н	
Ethylbenzene	ND	0.0250	н	n	er	,,	"	н	
Xylene (p/m)	ND	0.0250	н	,	**	n	"	**	
Xylene (o)	ND	0.0250	п		н	n	**	u.	
Surrogate: a,a,a-Trifluorotoluene		80.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		80.5 %	80-1		"	"	"	"	
Carbon Ranges C6-C12	80.5	10.0	mg/kg dry					EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Da e	D . 1	ъ .		M-d - 4	Maria
	Kesuit	. Fitult	Onts	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4 55' (6G24009-18) Soil									
Carbon Ranges C12-C28	1440	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C28-C35	201	10.0	1+	н ,	н	*	н	*	
Total Hydrocarbons	1720	10.0	H	н	#	н	11	v	
Surrogate: 1-Chlorooctane		94.4 %	70-13	20	"	"	"	"	
Surrogate: 1-Chlorooctadecane		98.8 %	70-13	<i>30</i>	"	"	"	"	
SB-4 65' (6G24009-19) Soil		•							
Benzene	ND	0.0250	mg/kg dry	25	EG62702	07/27/06	07/27/06	EPA 8021B	
Toluene	ND	0.0250	n		**	*	н	"	
Ethylbenzene	ND	0.0250	n		**	H	н	**	
Xylene (p/m)	0.0251	0.0250		,	н	*	н	м	
Xylene (o)	ND	0.0250	**	н	н	,	н	**	
Surrogate: a,a,a-Trifluorotoluene		92.2 %	80-12	20	"	"	"	п	
Surrogate: 4-Bromofluorobenzene		93.8 %	80-12	0	"	"	n	"	
Carbon Ranges C6-C12	56.0	10.0	mg/kg dry	1 .	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	1070	10.0	"			"	,,	v	
Carbon Ranges C28-C35	129	10.0	**	н	н		**	n	
Total Hydrocarbons	1260	10.0	19	н	**	n		я	
Surrogate: 1-Chlorooctane		98.0 %	70-13	0	"	"	"	n	
Surrogate: 1-Chlorooctadecane		118%	70-13	80	"	"	"	"	
SB-4 75' (6G24009-20) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62702	07/27/06	07/27/06	EPA 8021B	
Toluene	ND	0.0250	ч	**	n	н	**	н	
Ethylbenzene	ND	0.0250	н	**	"	"	н	***	
Xylene (p/m)	ND	0.0250	•	n		н	н	**	
Xylene (o)	ND	0.0250	**	"	11	н	**	n	
Surrogate: a,a,a-Trifluorotoluene		95.8 %	80-12	0 .	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		88.8 %	80-12	0	,,	"	"	n .	
Carbon Ranges C6-C12	J [7.69]	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	253	10.0	н	н	*		**		
Carbon Ranges C28-C35	28.3	· 10.0	"	n	"	**	**	,,	
Total Hydrocarbons	281	10.0	u	"	**	"	*	н	
Surrogate: 1-Chlorooctane		96.2 %	70-13	0	"	"	"	"	
Surrogate: 1-Chlorooctadecane		95.2 %	70-13	0 .	"	"	"	"	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

	<u> </u>	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-5 5' (6G24009-21) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62702	07/27/06	07/27/06	EPA 8021B	
Toluene	ND	0.0250	"	w	"	"	n	**	
Ethylbenzene	ND	0.0250	"	w	*	"	н	**	
Xylene (p/m)	ND	0.0250	н	,	w	n	n	**	
Xylene (o)	ND	0.0250	*	*	"	"	"	O.	
Surrogate: a,a,a-Trifluorotoluene		89.5 %	80-1	20	"	n	n	n	•
Surrogate: 4-Bromofluorobenzene		81.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	18.3	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	536	10.0	н	**	47	n	"	9	
Carbon Ranges C28-C35	128	10.0	"		st.	"	n	w	
Total Hydrocarbons	682	10.0	"	"	11	n	5te		
Surrogate: 1-Chlorooctane		90.0 %	70-1	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		87.8 %	70-1	30	"	"	n	n	
SB-5 10' (6G24009-22) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62702	07/27/06	07/27/06	EPA 8021B	
Toluene	0.116	0.0250			**	,,		11	
Ethylbenzene	0.730	0.0250	n		,,	н	н	· ·	
Xylene (p/m)	0.884	0.0250	11		*	u	н	н	
Xylene (o)	0.447	0.0250	"	*	u	**	н	n	
Surrogate: a,a,a-Trifluorotoluene		106%	80-1	20	"	n	"	n n	
Surrogate: 4-Bromofluorobenzene		133 %	80-1	20	,,	"	"	"	S-0-
Carbon Ranges C6-C12	322	10.0	mg/kg dry	1 .	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	1880	10.0	•	,	,,	"	*	н	
Carbon Ranges C28-C35	213	10.0	**		0	"	#	н	
Total Hydrocarbons	2420	10.0	**	"	*	**	н	•	
Surrogate: 1-Chlorooctane		117 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		100 %	70-1	30	n	"	"	"	
SB-5 15' (6G24009-23) Soil				•					
Benzene	J [0.00904]	0.0250	mg/kg dry	25	EG62702	07/27/06	07/27/06	EPA 8021B	
Гоluene	0.186	0.0250	н	**	н	11	"	u	
Ethylbenzene	0.744	0.0250	**	Ħ	н	н	н	н	
Xylene (p/m)	2.12	0.0250	n	*1		*	н	u	
Xylene (o)	1.01	0.0250	"	н		10	0	п	
Surrogate: a,a,a-Trifluorotoluene		117 %	80-1	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		120 %	80-1	20	n	"	n	n	
Carbon Ranges C6-C12	450	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-5 15' (6G24009-23) Soil		277711		Distribution	Daten	Fiepared	Analyzed	Method	Notes
Carbon Ranges C12-C28	2300	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C28-C35	277	. 10.0	H H		EG02014	"	11/27/00	"	
Total Hydrocarbons	3030	10.0		**	п	н		н	
Surrogate: 1-Chlorooctane		108 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		106 %	70-1		"	"	"	"	
SB-5 20' (6G24009-24) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62702	07/27/06	07/27/06	EPA 8021B	
Toluene	0.135	0.0250	"	**	u	"	н	н	
Ethylbenzene	0.479	0.0250	н	"	**	,,	*	14	
Xylene (p/m)	1.01	0.0250	,	**	11	н	n	11	
Xylene (o)	0.633	0.0250	н	,	"	н	a	**	
Surrogate: a,a,a-Trifluorotoluene		107 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		124 %	80-1	20	"	"	n	"	S-0-
Carbon Ranges C6-C12	343	. 10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	1910	10.0	0	"	п	11	n	W	
Carbon Ranges C28-C35	238	10.0	H	•	"	n	n	*	
Total Hydrocarbons	2490	10.0	n	" ,	**	п	н	11	
Surrogate: 1-Chlorooctane		101 %	70-1	30	"	"	"	n .	
Surrogate: 1-Chlorooctadecane		96.4%	70-1	30	n	"	n	"	
SB-5 25' (6G24009-25) Soil				·					
Benzene	J [0.00831]	0.0250	mg/kg dry	25	EG62702	07/27/06	07/27/06	EPA 8021B	
Toluene	0.0979	0.0250	"		"	"	*	n	
Ethylbenzene	0.263	0.0250	n	, ,	"	n	н	"	
Xylene (p/m)	0.519	0.0250	,,	,,	"	*	,	"	
Xylene (o)	0.326	0.0250	"	н	н	"	11	**	
Surrogate: a,a,a-Trifluorotoluene		103 %	80-1	20 .	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		108 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	266	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	1480	10.0	n	".	**	н	"	"	
Carbon Ranges C28-C35	186	10.0	"	"	"	н	"	n	
Total Hydrocarbons	1930	10.0	,,	н		u	*	er .	
Surrogate: 1-Chlorooctane		102 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		99.6 %	70-1	30	"	n .	,,	n	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 12 of 39

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

		_							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-5 35' (6G24009-26) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/27/06	EPA 8021B	<u> </u>
Toluene	ND	0.0250	"	н	•	Ħ	"	**	
Ethylbenzene	J [0.0155]	0.0250	n	**	"	"	"	w	
Xylene (p/m)	0.0449	0.0250		н	н	"	n	**	
Xylene (o)	ND	0.0250	"	"	0	11	v	•	
Surrogate: a,a,a-Trifluorotoluene		87.8 %	80- i	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.2 %	80-1	120	"	"	"	"	
Carbon Ranges C6-C12	60.8	10.0	mg/kg dry	1	EG62614	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	1050	10.0	0		ч	н	n	it	
Carbon Ranges C28-C35	146	10.0	,,			н	н	Ħ	
Total Hydrocarbons	1260	10.0	"		•	n	n	H.	
Surrogate: 1-Chlorooctane		98.2 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		115 %	70-1		"	"		"	
SB-5 45' (6G24009-27) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/27/06	EPA 8021B	
Γoluene	ND	0.0250	н	**	n	n	р	n	
Ethylbenzene	ND	0.0250	n	**	μ	"	v	n	
Xylene (p/m)	ND	0.0250	n	•	11	н	н	и	
Xylene (o)	ND	0.0250	n		u		11	tr	
Surrogate: a,a,a-Trifluorotoluene		98.2 %	80-1	20	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		91.2 %	80-1	20	"	"	n	"	
Carbon Ranges C6-C12	71.4	10.0	mg/kg dry	1	EG62716	07/27/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	1320	10.0	**		н	11	n	"	
Carbon Ranges C28-C35	150	10.0	"	,,		ч	n	н	
Fotal Hydrocarbons	1540	10.0		,		**	н	11	
Surrogate: I-Chlorooctane		121 %	70-1	30	"	"	"	n .	
Surrogate: 1-Chlorooctadecane		195 %	70-1	30	u	"	"	"	S-0-
SB-5 55' (6G24009-28) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/27/06	EPA 8021B	
Toluene	ND	0.0250	"	**	"	"	и	**	
Ethylbenzene	ND	0.0250	19	н .	11	tr	н	н	
Xylene (p/m)	0.0263	0.0250	17	n	**	**	"	11	
Kylene (o)	ND	0.0250	**	H		H	н	H	
Surrogate: a.a,a-Trifluorotoluene		81.5 %	80-1	20	"	"	н	"	
Surrogate: 4-Bromofluorobenzene		94.8 %	80-1	20	"	"	"	n	
Carbon Ranges C6-C12	135	10.0	mg/kg dry	1	EG62716	07/27/06	07/27/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 13 of 39

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

		Reporting	11 ()						
Analyte	Result	. Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-5 55' (6G24009-28) Soil									
Carbon Ranges C12-C28	1770	10.0	mg/kg dry	1	EG62716	07/27/06	07/27/06	EPA 8015M	
Carbon Ranges C28-C35	181	10.0	*	,	"	"	н	Ħ	
Total Hydrocarbons	2090	10.0	,	н		"	н	**	
Surrogate: 1-Chlorooctane		122 %	70-1.	30	"	"	"	n .	
Surrogate: 1-Chlorooctadecane		204 %	70-1.	30	n	"	"	u	S-0-
SB-5 65' (6G24009-29) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/27/06	EPA 8021B	
Toluene	ND	0.0250	"	**		**	"	n	
Ethylbenzene	ND	0.0250	"	**	"	**	**	*	
Xylene (p/m)	ND	0.0250	"		**	**	v	D	
Xylene (o)	ND	0.0250	*	11		11	**	и	
Surrogate: a,a,a-Trifluorotoluene		82.0 %	80-1.	20	u	"	"	"	
Surrogate: 4-Bromofluorobenzene		85.5 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	29.9	10.0	mg/kg dry	1	EG62716	07/27/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	625	10.0	**		н	n	"	"	
Carbon Ranges C28-C35	72.3	10.0	**			п	п	**	
Total Hydrocarbons	727	10.0	11	11	*1	n	"	*	
Surrogate: 1-Chlorooctane		112 %	70-1.	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		167 %	70-1.	30	"	"	"	n	S-04
SB-5 75' (6G24009-30) Soil				•					
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/27/06	EPA 8021B	
Toluene	ND	0.0250	н	11	H	**	н	u	
Ethylbenzene	ND	0.0250		**	19	**	н	11	
Xylene (p/m)	ND	0.0250	**		,,	"	n	49	
Xylene (o)	ND	0.0250	"	11	11	"	*	**	
Surrogate: a.a,a-Trifluorotoluene		81.2 %	80-1.	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		81.2 %	80-1.	20	"	"	"	n	
Carbon Ranges C6-C12	10.4	10.0	mg/kg dry	1	EG62716	07/27/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	88.5	10.0	11	н	*	n	**	ie.	
Carbon Ranges C28-C35	J [4.74]	10.0	"	н	"	"	ч	**	J
Total Hydrocarbons	98.9	10.0	*	н	n	•	**	11	
Surrogate: 1-Chlorooctane		94.4 %	70-1.	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		86.8 %	70-1.	30	"	<i>n</i>	"	n	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 14 of 39

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

		- ·							-
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-6 5' (6G24009-31) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/28/06	EPA 8021B	
Toluene	ND	0.0250	11	"	H	10	R	n	
Ethylbenzene	ND	0.0250	**		•	*	**	u.	
Xylene (p/m)	0.0291	0.0250	11	"	•			97	
Xylene (o)	ND	0.0250	**		н	u		19	
Surrogate: a.a.a-Trifluorotoluene		85.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.2 %	80-1	20	"	"	"	n	
Carbon Ranges C6-C12	78.8	10.0	mg/kg dry	1	EG62716	07/27/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	1270	10.0	"	9	н	u	"	**	
Carbon Ranges C28-C35	191	10.0	"	,	•	19	н	49	
Total Hydrocarbons	1540	10.0	н	5t		11		41	
Surrogate: 1-Chlorooctane		122 %	70-1	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		169 %	70-1	30	"	"	"	n	S-04
SB-6 10' (6G24009-32) Soil									
Benzene	ND	0.0250	mg/kg dry	25 .	EG62805	07/27/06	07/28/06	EPA 8021B	
Toluene	ND	0.0250	н	**	19			H	
Ethylbenzene	ND	0.0250	*	*	"	,,	*	н	
Kylene (p/m)	J [0.0211]	0.0250	,	n	9	11	w	II.	J
Xylene (o)	ND	0.0250			11	"	я	**	
Surrogate: a,a,a-Trifluorotoluene		92.5 %	80-1	20	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		88.2 %	80-1	20	"	n		"	
Carbon Ranges C6-C12	158	10.0	mg/kg dry	1 .	EG62716	07/27/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	2130	10.0	н	17		n	н	н	
Carbon Ranges C28-C35	219	10.0	**	**	R	н	"	н	
Total Hydrocarbons	2510	10.0	n	**	11	н	11	н	
Surrogate: 1-Chlorooctane		123 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		210 %	70-1	30	"	"	"	"	S-04
SB-6 15' (6G24009-33) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/28/06	EPA 8021B	
Foluene	J [0.0118]	0.0250	*	**	#	н	n	**	J
Ethylbenzene	ND	0.0250	"	•		10		**	
Xylene (p/m)	0.0306	0.0250		**	"	**		*	
Kylene (o)	ND	0.0250		п	н		н	n .	
Surrogate: a,a,a-Trifluorotoluene		82.0 %	80-1	20 .	,,	"	,,	"	
Surrogate: 4-Bromofluorobenzene		84.5 %	80-1	20	n	"	"	"	
Carbon Ranges C6-C12	81.5	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-6 15' (6G24009-33) Soil									
Carbon Ranges C12-C28	1210	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C28-C35	151	10.0	"	"		н	н	11	
Total Hydrocarbons	1440	10.0	n		**	n	н	11	
Surrogate: 1-Chlorooctane		101 %	70-1	130	"	"	"	n	
Surrogate: 1-Chlorooctadecane		117 %	70-1	130	"	"	n	"	
SB-6 20' (6G24009-34) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/28/06	EPA 8021B	
Toluene	ND	0.0250	n	н	n	м	**	n	
Ethylbenzene	ND	0.0250	H	"	"		н	•	
Xylene (p/m)	ND	0.0250	*	٠.	н	H	н	n	
Xylene (o)	ND	0.0250	n	н			*	н	
Surrogate: a,a,a-Trifluorotoluene		86.8 %	80-1	20	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		85.5 %	80-1	20	"	"	n	"	
Carbon Ranges C6-C12	23.1	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	822	10.0	**	•	"	v	11	"	
Carbon Ranges C28-C35	104	10.0	11	,		•	"	"	
Total Hydrocarbons	949	10.0	11	,	н	**		н	
Surrogate: 1-Chlorooctane		99.6 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		112 %	70-1	30	"	"	n	"	
SB-6 25 (6G24009-35) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/28/06	EPA 8021B	-
Toluene	ND	0.0250	u	" .	н	н	n	н	
Ethylbenzene	ND	0.0250		**	н	н	H	n	
Xylene (p/m)	ND	0.0250	н	**	*	н	ņ	"	
Xylene (o)	ND	0.0250	*	11	"	**	•	11	
Surrogate: a,a,a-Trifluorotoluene		81.0 %	80-1	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		81.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	J [9.06]	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	J
Carbon Ranges C12-C28	640	10.0	ø	н .	n	**	"	n	
Carbon Ranges C28-C35	73.9	10.0	0	*	u	*	**	n .	
Total Hydrocarbons	714	10.0	**	**	n	"	11		
Surrogate: 1-Chlorooctane		100 %	70-1	30	"	"	n	"	
Surrogate: 1-Chlorooctadecane		110 %	70-1	30	"	"	"	,,	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	D34	Datel	Dean4	A mel	Mathad	X I#4-
SB-6 35' (6G24009-36) Soil	Vesuit	Lintt	Onits	Dilution	Batch	Prepared	Analyzed	Method	Not
									<u> </u>
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/28/06	EPA 8021B	
Toluene	ND	0.0250	.,			"			
Ethylbenzene	ND	0.0250		•	•	"	"		
Xylene (p/m)	ND	0.0250	"	н	n	H	н	,	
Xylene (o)	ND	0.0250	"	н	"		"	н	
Surrogate: a,a,a-Trifluorotoluene		84.0 %	80-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.5 %	80-1	20	"	"	"	**	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	174	10.0	**	н	"	н	н	н	
Carbon Ranges C28-C35	19.7	10.0	**	*	**	**	н		
Total Hydrocarbons	194	10.0	"		ıı	**	n	u	
Surrogate: 1-Chlorooctane		98.0 %	70-1	30	n	n	"	"	
Surrogate: 1-Chlorooctadecane		97.4 %	70-1	30	"	"	#	tt .	
SB-6 45' (6G24009-37) Soil				_					
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/28/06	EPA 8021B	
Toluene	ND	0.0250	•	n	н	н	*	*	
Ethylbenzene	ND	0.0250	•	a	н	*	"	н	
Xylene (p/m)	ND	0.0250	и	n .	10	#	**	11	
Xylene (o)	ND	0.0250	н	*	**	**	17		
Surrogate: a,a,a-Trifluorotoluene		86.5 %	80-1	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		87.0 %	80-1	20	"	,,	"	"	
Carbon Ranges C6-C12	J [2.62]	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	574	10.0		"		"	**	0	
Carbon Ranges C28-C35	75.2	10.0	"	"		"	н	н	
Total Hydrocarbons	649	10.0		,		"	*	II.	
Surrogate: 1-Chlorooctane		102 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		110%	70-1	30	"	"	"	"	
SB-6 55' (6G24009-38) Soil		•							
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/28/06	EPA 8021B	
Toluene	ND	0.0250	¥f		н	"	н	w	
Ethylbenzene	ND	0.0250	11		**	"	,	u	
Xylene (p/m)	ND	0.0250	**	•	1*	**	"	н	
Xylene (o)	ND	0.0250	•	**	W.	17	"	и	
Surrogate: a,a,a-Trifluorotoluene		87.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	24.8	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-6 55' (6G24009-38) Soil									
Carbon Ranges C12-C28	1130	10.0	mg/kg dry	1 .	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C28-C35	161	10.0		"		"	"	Tr.	
Total Hydrocarbons	1320	10.0	п		"	•	"	*	
Surrogate: I-Chlorooctane		104 %	70-1	30	n	"	"	"	,
Surrogate: 1-Chlorooctadecane		Ì27 %	70-1	30	"	"	" .	"	
SB-6 65' (6G24009-39) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/28/06	EPA 8021B	
Toluene	ND	0.0250	n	"	**	н	n	**	
Ethylbenzene	ND	0.0250	n	*	•	**	•	11	
Xylene (p/m)	ND	0.0250	**	**	n	н	,,	u	
Xylene (o)	ND	0.0250	n	**	0	**	q	**	
Surrogate: a,a,a-Trifluorotoluene		95.0 %	80-1	20	,,	. "	"	n n	
Surrogate: 4-Bromofluorobenzene		89.8 %	80-1	20 .	"	"	"	"	
Carbon Ranges C6-C12	12.4	10.0	mg/kg dry	ı	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	719	10.0	н	,	n	19	17	н	
Carbon Ranges C28-C35	79.1	10.0	17		"	"		н	
Total Hydrocarbons	810	10.0	**	**	n	11	0		
Surrogate: 1-Chlorooctane		98.0 %	70-1	30	н	"	"	"	
Surrogate: 1-Chlorooctadecane		111 %	70-1	30	"	"	"	"	
SB-6 75' (6G24009-40) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/28/06	EPA 8021B	
Toluene	ND	0.0250	"	"	11	N	*	n	
Ethylbenzene	ND	0.0250	"	"	**	н	11	**	
Xylene (p/m)	ND	0.0250	n		11	**	•	н	,
Xylene (o)	ND	0.0250	n		**	*	**	*	
Surrogate: a,a,a-Trifluorotoluene		96.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.0 %	80-1	20	"	n	"	"	
Carbon Ranges C6-C12	J [1.68]	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	15.5	10.0	н	**	**	н	w	п	
Carbon Ranges C28-C35	ND	10.0	•	"	n	"	"	ij	
Total Hydrocarbons	15.5	10.0		н	н	**		,	
Surrogate: 1-Chlorooctane		96.6 %	70-1	30	,,	#	n	"	
Surrogate: 1-Chlorooctadecane		94.2 %	70-1	30	"	"	"	n	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the lahoratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Organics by GC

Environmental Lab of Texas

		Environ							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-7 5' (6G24009-41) Soil				Dilaton	Baten	Trepared	7thay zea		71000
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/28/06	EPA 8021B	
Toluene	ND ND	0.0250	g/ g	.,	LG02803	"	"	"	
Ethylbenzene	ND ND	0.0250	**		**	**	"	,,	
Xylene (p/m)	ND	0.0250	**		**	"	9	11	
Xylene (o)	ND	0.0250	w		н		H	**	
Surrogate: a,a,a-Trifluorotoluene		94.8 %	80-12	20	"		"	"	
Surrogate: 4-Bromofluorobenzene		85.5 %	80-12		"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	ī	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	J [1.71]	10.0				,,			J
Carbon Ranges C28-C35	ND	10.0	*		"	и	н	"	
Total Hydrocarbons	ND	10.0	*	#	*	u		· ·	
Surrogate: 1-Chlorooctane		95.4 %	70-1.	30	"	,,	,,	n	
Surrogate: 1-Chlorooctadecane		94.2 %	70-1.		,,	,,	"	"	
SB-7 10' (6G24009-42) Soil	·								
· · · · · · · · · · · · · · · · · · ·	115	0.0250		25 .	DO(2005	05/05/06	07/20/07	CDA 8031D	
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/28/06	EPA 8021B	
Toluene	ND	0.0250							
Ethylbenzene Vistoria (2/22)	ND	0.0250	,,						
Xylene (p/m)	ND	0.0250	н		,,			n	
Xylene (o)	ND	0.0250		•	"	"	,,	11	
Surrogate: a,a,a-Trifluorotoluene		88.2 %	80-12						
Surrogate: 4-Bromofluorobenzene	MD	92.2 %	80-12	•	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	,			,,		n	
Carbon Ranges C28-C35	ND	10.0			"	". "	,,	**	
Total Hydrocarbons	ND	• 10.0							
Surrogate: 1-Chlorooctane		98.2 %	70-1.		"	"	"	"	
Surrogate: 1-Chlorooctadecane		95.0 %	70-13		"	"	"	"	
SB-7 20' (6G24009-43) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/28/06	EPA 8021B	
Toluene	ND	0.0250	**	"	н	п	"		
Ethylbenzene	ND	0.0250	**	n	19	11	н	**	
Xylene (p/m)	ND	0.0250	17	"	II.	"	"	**	
Xylene (o)	ND	0.0250	11	u	0	,,	u u	н	
Surrogate: a,a,a-Trifluorotoluene		95.8 %	80-12	20	n	"	n	η	
Surrogate: 4-Bromofluorobenzene		92.0 %	80-12	20	"	"	n	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

.	р. т.	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-7 20' (6G24009-43) Soil									
Carbon Ranges C12-C28	ND	. 10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	н	**	11	+1	"	
Total Hydrocarbons	ND	10.0	"	н	ri .	n	n	51	
Surrogate: 1-Chlorooctane		98.4 %	70-1	30 .	"	"	u	n	
Surrogate: 1-Chlorooctadecane		95.2 %	70-1	30	"	n	"	n	
SB-7 30' (6G24009-44) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/28/06	EPA 8021B	
Toluene	ND	0.0250	"	"	н	n	н	n	
Ethylbenzene	ND	0.0250	п	*	н	u u	*	n .	
Xylene (p/m)	ND	0.0250	Ħ	н ,	"	"	*1	Ω	
Xylene (o)	ND	0.0250	н		n	Ħ	Ħ	"	
Surrogate: a,a,a-Trifluorotoluene		109 %	80-1	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		101 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**		n	,,	**	n	
Carbon Ranges C28-C35	ND	10.0	**		н	и	н	*	
Total Hydrocarbons	ND	10.0	"	•	9	н	н	"	
Surrogate: 1-Chlorooctane		106 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		103 %	70-1	30	n	"	n	n	
SB-8 5' (6G24009-45) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62805	07/27/06	07/28/06	EPA 8021B	
Toluene	ND	0.0250	н	, ,	*	н	*	"	
Ethylbenzene	ND	0.0250	17	11	"	"	"	H	
Xylene (p/m)	ND	0.0250	11	41	11	"	*	"	
Xylene (o)	ND	0.0250	11	**	**	в	**	н	
Surrogate: a,a,a-Trifluorotoluene		112 %	80-1	20	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	11	**	*	н	49	
Carbon Ranges C28-C35	ND	0.01	**	н	tt.	**	н	"	
Total Hydrocarbons	ND	10.0	,,	"	**	**	•		
Surrogate: 1-Chlorooctane		101 %	70-1		"	"	"	"	
Surrogate: 1-Chlorooctadecane		98.6 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 20 of 39

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

		Denomic-							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-8 10' (6G24009-46) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62806	07/28/06	07/31/06	EPA 8021B	
Toluene	ND	0.0250	n	**		**	н	"	
Ethylbenzene	ND	0.0250	н	••	**	**	**	**	
Xylene (p/m)	ND	0.0250	**	**	**	"	*	*	
Xylene (o)	ND	0.0250	н	11	**	**	и	**	
Surrogate: a,a,a-Trifluorotoluene		98.0 %	80-1	120	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.2 %	80-1	120	"	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	**	11	н	ıı	n	
Carbon Ranges C28-C35	ND	10.0	"	**	**		н	11	
Total Hydrocarbons	ND	10.0	и	**	11	н	11	**	
Surrogate: 1-Chlorooctane		108 %	70-1	130	п	"	n	п	
Surrogate: 1-Chlorooctadecane		105 %	70-1	130	"	"	"	n	
SB-8 20' (6G24009-47) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62806	07/28/06	07/31/06	EPA 8021B	
Toluene	ND	0.0250	**	н	v	н	**	•	
Ethylbenzene	ND	0.0250	"	**	**	н	u	н	
Xylene (p/m)	ND	0.0250				н	**	e	
Xylene (o)	ND	0.0250	**	н	**	**	и	н	
Surrogate: a,a,a-Trifluorotoluene		87.0 %	80-1	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.0 %	80-1	120	"	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	*		n	п	н	
Carbon Ranges C28-C35	ND	10.0	11	н .	"	n	н	и	
Total Hydrocarbons	ND	10.0	19	н		"		н	
Surrogate: 1-Chlorooctane		96.6 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		93.2 %	70-1	30	"	"	"	"	
SB-8 30' (6G24009-48) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62806	07/28/06	07/31/06	EPA 8021B	
Toluene	ND	0.0250	n		#		**	"	
Ethylbenzene	ND	0.0250		n	п	*	,	**	
Xylene (p/m)	ND	0.0250	"	•	Ħ	n	*	н	
Xylene (o)	ND	0.0250	"	"	•	n	"	u	
		93.2 %	80-1	20	n	,,	,,	n	
Surrogate: 4-Bromofluorobenzene		81.0 %	80-1	20	n	"	"	n	
Carbon Ranges C6-C12	ND		mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	
-									

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-8 30' (6G24009-48) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	11	"	n	•	н	н	
Total Hydrocarbons	ND	10.0	н	"	*	n	**	u	
Surrogate: 1-Chlorooctane		98.6 %	70-1	30	"	"	n	n	
Surrogate: 1-Chlorooctadecane		95.0 %	70-1.	30	"	"	n	n	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-3 5' (6G24009-01) Soil									
% Moisture	6.3	0.1	%	1 .	EG62509	07/24/06	07/25/06	% calculation	
SB-3 10' (6G24009-02) Soil									
% Moisture	4.2	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-3 15' (6G24009-03) Soil									
% Moisture	6.6	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-3 20' (6G24009-04) Soil									
% Moisture	7.3	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-3 25' (6G24009-05) Soil									
% Moisture	6.2	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-3 35' (6G24009-06) Soil				٠					
% Moisture	5.4	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-3 45' (6G24009-07) Soil									
% Moisture	5.7	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-3 55' (6G24009-08) Soil									
% Moisture	3.9	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	·
SB-3 65' (6G24009-09) Soil									
% Moisture	5.6	. 0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-3 75' (6G24009-10) Soil									
% Moisture	5.1	0.1	%	1 .	EG62509	07/24/06	07/25/06	% calculation	
SB-4 5' (6G24009-11) Soil						· · · · · · · · · · · · · · · · · · ·			
% Moisture	5.2	. 0.1	%	t	EG62509	07/24/06	07/25/06	% calculation	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4 10' (6G24009-12) Soil							-		
% Moisture	8.9	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-4 15' (6G24009-13) Soil									
% Moisture	11.9	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-4 20' (6G24009-14) Soil									
% Moisture	9.2	- 0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-4 25' (6G24009-15) Soil									
% Moisture	7.9	0.1	%	1 '	EG62509	07/24/06	07/25/06	% calculation	
SB-4 35' (6G24009-16) Soil									
% Moisture	4.8	. 0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-4 45' (6G24009-17) Soil						ė			
% Moisture	4.7	0.1	%	1 .	EG62509	07/24/06	07/25/06	% calculation	
SB-4 55' (6G24009-18) Soil									
% Moisture	4.3	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-4 65' (6G24009-19) Soil									
% Moisture	3.6	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-4 75' (6G24009-20) Soil									
% Moisture	3.8	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-5 5' (6G24009-21) Soil									
% Moisture	4.1	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-5 10' (6G24009-22) Soil				٠					
% Moisture	7.0	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-5 15' (6G24009-23) Soil						-			
% Moisture	11.1	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	·
SB-5 20' (6G24009-24) Soil		•							
% Moisture	6. 7	0.1	%	t	EG62509	07/24/06	07/25/06	% calculation	
SB-5 25' (6G24009-25) Soil				•					
% Moisture	7.0	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-5 35' (6G24009-26) Soil									
% Moisture	4.2	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-5 45' (6G24009-27) Soil									
% Moisture	3.3	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-5 55' (6G24009-28) Soil		•							
% Moisture	3.5	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-5 65' (6G24009-29) Soil									
% Moisture	3.5	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-5 75' (6G24009-30) Soil									
% Moisture	6.6	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-6 5' (6G24009-31) Soil									
% Moisture	2.9	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-6 10' (6G24009-32) Soil									
% Moisture	5.2	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-6 15' (6G24009-33) Soil									
% Moisture	7.8	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

		Reporting							- 10
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-6 20' (6G24009-34) Soil									
% Moisture	7.3	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-6 25 (6G24009-35) Soil									
% Moisture	4.7	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-6 35' (6G24009-36) Soil				,					
% Moisture	4.2	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-6 45' (6G24009-37) Soil									
% Moisture	3.3	. 0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-6 55' (6G24009-38) Soil									
% Moisture	4.3	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-6 65' (6G24009-39) Soil									
% Moisture	4.0	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-6 75' (6G24009-40) Soil									
% Moisture	6.9	0.1	%	1 .	EG62509	07/24/06	07/25/06	% calculation	
SB-7 5' (6G24009-41) Soil									
% Moisture	1.9	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-7 10' (6G24009-42) Soil									
% Moisture	6.8	0.1	%	1 .	EG62509	07/24/06	07/25/06	% calculation	
SB-7 20' (6G24009-43) Soil									
% Moisture	6.1	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-7 30' (6G24009-44) Soil									
% Moisture	2.7	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

General Chemistry Parameters by EPA:/ Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-8 5' (6G24009-45) Soil									
% Moisture	2.7	0.1	%	1 .	EG62509	07/24/06	07/25/06	% calculation	
SB-8 10' (6G24009-46) Soil									
% Moisture	3.5	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-8 20' (6G24009-47) Soil		•							
% Moisture	4.9	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	
SB-8 30' (6G24009-48) Soil									
% Moisture	5.0	0.1	%	1	EG62509	07/24/06	07/25/06	% calculation	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62607 - EPA 5030C (GC)										
Blank (EG62607-BLK1)				Prepared &	k Analyzed:	07/26/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	**							
Ethylbenzene	ND	0.0250	**							
Xylene (p/m)	ND	0.0250	**							
Xylene (o)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	37.8		ug/kg	40.0		94.5	80-120			
Surrogate: 4-Bromofluorobenzene	36.9		"	40.0		92.2	80-120			
LCS (EG62607-BS1)				Prepared &	k Analyzed:	07/26/06				
Benzene	1.33	0.0250	mg/kg wet	1.25		106	80-120			
Toluene	1.35	0.0250	"	1.25		108	80-120			
Ethylbenzene	1,23	0,0250	,,	1.25		98.4	80-120			
Xylene (p/m)	2.86	0.0250	"	2.50		114	80-120			
Xylene (o)	1.38	.0.0250	0	1.25		110	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.9		ug/kg	40.0		99.8	80-120			
Surrogate: 4-Bromofluorobenzene	40.7		"	40.0		102	80-120			
Calibration Check (EG62607-CCV1)				Prepared: (07/26/06 A	nalyzed: 07	7/27/06			
Benzene	54.0		ug/kg	50.0		108	80-120			
Toluene	53.0			50.0		106	80-120			
Ethylbenzene	50.7		•	50.0		101	80-120			
Xylene (p/m)	108	-	"	100		108	80-120			
Xylene (o)	54.6			50.0		109	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.7		"	40.0		99.2	80-120			
Surrogate: 4-Bromofluorohenzene	37.8		"	40.0		94.5	80-120			
Matrix Spike (EG62607-MS1)	Sou	rce: 6G24009	0-05	Prepared: 0)7/26/06 A	nalyzed: 07	//27/06			
Benzene	1.44	0.0250	mg/kg dry	1.33	ND	108	80-120			
Foluene	1.42	0.0250	11	1.33	ND	107	80-120			
Ethylbenzene	1.39	0.0250	u	1.33	ND	105	80-120			
Xylene (p/m)	3.02	0.0250	**	2.67	ND	113	80-120			
Xylene (o)	1.44	0.0250	**	1.33	ND	108	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.1		ug/kg	40.0		87.8	80-120			
Surrogate: 4-Bromofluorobenzene	35.0		"	40.0		87.5	80-120			

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike,	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62607 - EPA 5030C (GC)										
Matrix Spike Dup (EG62607-MSD1)	Sour	ce: 6G24009	9-05	Prepared: (07/26/06 Ai	nalyzed: 07	//27/06			
Benzene	1,21	0.0250	mg/kg dry	1,33	ND	91.0	80-120	17.1	20	
Toluene	1.25	0.0250		1,33	ND	94.0	80-120	12.9	20	
Ethylbenzene	1.45	0.0250	n	1.33	ND	109	80-120	3.74	20	
Xylene (p/m)	2.64	0.0250	н	2.67	ND	98.9	80-120	13.3	20	
Xylene (o)	1.24	0.0250	н	1,33	ND	93.2	80-120	14.7	20	
Surrogate: a,a,a-Trifluorotoluene	33.4		ug/kg	40.0		83.5	80-120			
Surrogate: 4-Bromofluorobenzene	33.8		"	40.0		84.5	80-120			
Batch EG62614 - Solvent Extraction (GC)		•								
Blank (EG62614-BLK1)				Prepared: (07/26/06 Ai	nalyzed: 07	//27/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	**							
Carbon Ranges C28-C35	ND	10.0	ir							
Total Hydrocarbons	ND	10.0	11							
Surrogate: 1-Chlorooctane	52.6		mg/kg	50.0		105	70-130			
Surrogate: 1-Chlorooctadecane	51.7		n	50.0		103	70-130			
LCS (EG62614-BS1)				Prepared: (07/26/06 Aı	nalyzed: 07	//27/06			
Carbon Ranges C6-C12	526	10.0	mg/kg wet	500		105	75-125			
Carbon Ranges C12-C28	449	10.0	*	500		89.8	75-125			
Carbon Ranges C28-C35	ND	10.0	17	0.00			75-125			
Total Hydrocarbons	975	10.0	•	1000		97.5	75-125			
Surrogate: 1-Chlorooctane	58.3		mg/kg	50.0		117	70-130			
Surrogate: 1-Chlorooctadecane	53.1		"	50.0		106	70-130			
Calibration Check (EG62614-CCV1)				Prepared: (07/26/06 Aı	nalyzed: 07	//27/06			
Carbon Ranges C6-C12	257		mg/kg	250 .		103	80-120			
Carbon Ranges C12-C28	237			250		94.8	80-120			
Total Hydrocarbons	494		**	500		98.8	80-120			
Surrogate: 1-Chlorooctane	62.7		"	50.0		125	70-130			

62.7

Surrogate: 1-Chlorooctadecane

125

70-130

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG62614 - Solvent Extraction (GC)										
Matrix Spike (EG62614-MS1)	Sou	rce: 6G2400	9-10	Prepared: (07/26/06 A	nalyzed: 07	7/27/06			
Carbon Ranges C6-C12	518	10.0	mg/kg dry	527	2.28	97.9	75-125			
Carbon Ranges C12-C28	481	. 10.0	*	527	40.7	83.5	75-125			
Carbon Ranges C28-C35	ND	10.0	**	0,00	ND		75-125			
Total Hydrocarbons	999	10.0	•	1050	40.7	91.3	75-125			
Surrogate: 1-Chlorooctane	53.8		mg/kg	50.0		108	70-130			
Surrogate: 1-Chlorooctadecane	48.8		"	50.0		97.6	70-130			
Matrix Spike Dup (EG62614-MSD1)	Sou	rce: 6G2400	9-10	Prepared: (07/26/06 A	nalyzed: 07	1/27/06			
Carbon Ranges C6-C12	528	10.0	mg/kg dry	527	2.28	99.8	75-125	1.91	20	
Carbon Ranges C12-C28	483	. 10.0	**	527	40.7	83.9	75-125	0.415	20	
Carbon Ranges C28-C35	ND	10.0	n	0.00	ND		75-125		20	
Total Hydrocarbons	1010	10.0	*	1050	40.7	92.3	75-125	1.10	20	
Surrogate: 1-Chlorooctane	53.8		mg/kg	50.0		108	70-130			
Surrogate: 1-Chlorooctadecane	48.3		n	50.0		96.6	70-130			
Batch EG62615 - Solvent Extraction (GC)										
Blank (EG62615-BLK1)				Prepared: (07/26/06 A	nalyzed: 07	/27/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0								
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbons	ND	10.0		•						
Surrogate: 1-Chlorooctane	49.1		mg/kg	50.0		98.2	70-130	 -		
Surrogate: 1-Chlorooctadecane	43.4		"	50.0		86.8	70-130			
LCS (EG62615-BS1)				Prepared: 0	07/26/06 At	nalyzed: 07	/27/06			
Carbon Ranges C6-C12	522	10.0	mg/kg wet	500		104	75-125	-		
Carbon Ranges C12-C28	566	10.0		500		113	75-125			
Carbon Ranges C28-C35	ND	10.0	41	0.00			75-125			
Total Hydrocarbons	1090	10.0	н	1000		109	75-125			
Surrogate: 1-Chlorooctane	61.6		mg/kg	50.0		123	70-130			
Surrogate: 1-Chlorooctadecane	47.8		"	50.0		95.6	70-130			

Plains All American EH & S 1301 S. County Road 1150 Project: Lovington Gathering WTI

Fax: (432) 687-4914

Midland TX, 79706-4476

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Limit	Onto	Level	Kesuit	MILL	- Linnis	η D	Simil	.10103
Batch EG62615 - Solvent Extraction (GC)										:
Calibration Check (EG62615-CCV1)				Prepared: (07/26/06 A	nalyzed: 07	//27/06			
Carbon Ranges C6-C12	212		mg/kg	250		84.8	80-120			
Carbon Ranges C12-C28	257		n	250		103	80-120			
Total Hydrocarbons	470		"	500		94.0	80-120			
Surrogate: 1-Chlorooctane	60.4		"	50.0		121	70-130			
Surrogate: 1-Chlorooctadecane	56.4		n	50.0		113	70-130			
Matrix Spike (EG62615-MS1)	Sou	rce: 6G24006	5-03	Prepared: (07/26/06 A	nalyzed: 07	//27/06			
Carbon Ranges C6-C12	503	10.0	mg/kg dry	518	8.54	95.5	75-125			
Carbon Ranges C12-C28	604	10.0	**	518	80.0	101	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125			
Total Hydrocarbons	1110	10.0	**	1040	80.0	99.0	75-125			
Surrogate: 1-Chlorooctane	63.1		mg/kg	50.0		126	70-130			
Surrogate: 1-Chlorooctadecane	64.8		"	50.0		130	70-130			
Matrix Spike Dup (EG62615-MSD1)	Sou	rce: 6G24006	5-03	Prepared: (07/26/06 A	nalyzed: 07	//27/06			
Carbon Ranges C6-C12	499	10.0	mg/kg dry	518	8.54	94.7	75-125	0.798	20	
Carbon Ranges C12-C28	604	10.0	**	518	80.0	101	75-125	0.00	20	
Carbon Ranges C28-C35	ND	10.0	**	0.00	ND		75-125		20	
Total Hydrocarbons	1100	10.0	"	1040	80.0	98.1	75-125	0.905	20	
Surrogate: 1-Chlorooctane	61.5		mg/kg	50.0		123	70-130			
Surrogate: 1-Chlorooctadecane	64.3		"	50.0		129	70-130			
Batch EG62616 - Solvent Extraction (GC)										
Blank (EG62616-BLK1)				Prepared: (07/26/06 A	nalyzed: 07	1/28/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	. 10.0								
Total Hydrocarbons	ND	10.0								
Surrogate: 1-Chlorooctane	56.8		mg/kg	50.0		114	70-130			
Surrogate: 1-Chlorooctadecane	56.0		"	50.0		112	70-130			

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Troject Manager, Samuel Co.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62616 - Solvent Extraction (GC)										
LCS (EG62616-BS1)				Prepared: (07/26/06 A	nalyzed: 07	//27/06			
Carbon Ranges C6-C12	532	10.0	mg/kg wet	500		106	75-125			
Carbon Ranges C12-C28	443	10.0	и	500		88.6	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00			75-125			
Total Hydrocarbons	975	10.0	**	1000		97.5	75-125			
Surrogate: 1-Chlorooctane	59.5		mg/kg	50.0		119	70-130			
Surrogate: 1-Chlorooctadecane	53.7	•	"	50.0		107	70-130			
Calibration Check (EG62616-CCV1)				Prepared: (07/26/06 A	nalyzed: 07	7/28/06			
Carbon Ranges C6-C12	282		mg/kg	250		113	80-120			
Carbon Ranges C12-C28	249		0	250		99.6	80-120			
Total Hydrocarbons	531		n	500		106	80-120			
Surrogate: 1-Chlorooctane	62.4		"	50.0		125	70-130			
Surrogate: 1-Chlorooctadecane	64.3		"	50.0		129	70-130			
Matrix Spike (EG62616-MS1)	Sou	rce: 6G24009	9-42	Prepared: (07/26/06 Aı	nalyzed: 07	//27/06			
Carbon Ranges C6-C12	554	10.0	mg/kg dry	536	ND	103	75-125			
Carbon Ranges C12-C28	524	10.0		536	ND	97.8	75-125			
Carbon Ranges C28-C35	ND	10.0	н	0.00	ND		75-125			
Total Hydrocarbons	1080	10.0	н	1070	ND	101	75-125			
Surrogate: 1-Chlorooctane	59.4		mg/kg	50.0		119	70-130			
Surrogate: 1-Chloroociadecane	54.0		"	50.0		108	70-130			
Matrix Spike Dup (EG62616-MSD1)	Sou	rce: 6G24009	9-42	Prepared: (07/26/06 Aı	nalyzed: 07	//28/06			
Carbon Ranges C6-C12	555	10.0	mg/kg dry	536	ND	104	75-125	0.180	20	
Carbon Ranges C12-C28	512	10.0	"	536	ND	95.5	75-125	2.32	20	
Carbon Ranges C28-C35	ND	10.0		0.00	ND		75-125		20	
Total Hydrocarbons	1070	10.0	**	1070	ND	100	75-125	0.930	20	
Surrogate: 1-Chlorooctane	56.0		mg/kg	50.0		112	70-130			
Surrogate: 1-Chlorooctadecane	52.2		"	50.0		104	70-130			

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

		Reporting		Spike	Source		%REC		RPD	· · · · · · · · · · · · · · · · · · ·
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62702 - EPA 5030C (GC)										
Blank (EG62702-BLK1)				Prepared &	Analyzed:	07/27/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	н							
Ethylbenzene	ND	0.0250	11							
Xylene (p/m)	ND	0.0250	11							
Xylene (o)	ND	0.0250	11							
Surrogate: a,a,a-Trifluorotoluene	40.6		ug/kg	40.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	37.7		"	40.0		94.2	80-120			
LCS (EG62702-BS1)				Prepared &	Analyzed:	07/27/06				
Benzene	1.20	0.0250	mg/kg wet	1,25		96.0	80-120			
Toluene	1.19	0.0250	п	1.25		95.2	80-120			
Ethylbenzene	1,05	0.0250	"	1.25		84.0	80-120			
Xylene (p/m)	2.52	0.0250	н	2.50		101	80-120			
Xylene (o)	1.26	0.0250	r	1.25		101	80-120			
Surrogate: a,a,a-Trifluorotoluene	36.2		ug/kg	40.0		90.5	80-120			
Surrogate: 4-Bromofluorobenzene	37.5	•	"	40.0		93.8	80-120			
Calibration Check (EG62702-CCV1)				Prepared &	ż Analyzed:	07/27/06				
Benzene	53.2		ug/kg	50.0		106	80-120			
Toluene	51.5		н	50.0		103	80-120			
Ethylbenzene	52.9		**	50.0		106	80-120			
Xylene (p/m)	106		н	100		106	80-120			
Xylene (o)	52.8		н	50.0		106	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.6	· · · · · · · · · · · · · · · · · · ·	"	40.0		94.0	80-120			
Surrogate: 4-Bromofluorobenzene	36.8		"	40.0		92.0	80-120			
Matrix Spike (EG62702-MS1)	Sou	rce: 6G2700	1-02	Prepared &	z Analyzed:	07/27/06				
Benzene	1.44	0.0250	mg/kg dry	1.38	ND	104	80-120			
Toluene	1.43	0.0250	"	1.38	ND	104	80-120			
Ethylbenzene	1.34	0.0250	n	1.38	ND	97.1	80-120			
Xylene (p/m)	3.03	0.0250		2.75	ND	110	80-120			
Xylene (o)	1.47	0.0250	9	1.38	ND	107	80-120			
Surrogate: a,a,a-Trifluorotoluene	42.0		ug/kg	40.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	36.4		"	40.0		91.0	80-120			

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142

Fax: (432) 687-4914

Project Manager: Camille Reynolds

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62702 - EPA 5030C (GC)										
Matrix Spike Dup (EG62702-MSD1)	Sou	rce: 6G2700	1-02	Prepared &	& Analyzed:	07/27/06				
Benzene	1.39	0.0250	mg/kg dry	1,38	ND	101	80-120	2.93	20	
Γoluene	1,38	0.0250	10	1.38	ND	100	80-120	3.92	20	
Ethylbenzene	1.36	0.0250	"	1.38	ND	98.6	80-120	1.53	20	
Xylene (p/m)	2.97	0.0250	"	2.75	ND	801	80-120	1.83	20	
Xylene (o)	1.47	0.0250	H	1.38 .	ND	107	80-120	0.00	20	
Surrogate: a,a,a-Trifluorotoluene	36.0		ug/kg	40.0		90.0	80-120			
Surrogate: 4-Bromofluorobenzene	38.6		"	40.0		96.5	80-120			
Batch EG62716 - Solvent Extraction (GC)										
Blank (EG62716-BLK1)				Prepared &	k Analyzed:	07/27/06	•			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	i ₇	•						
Total Hydrocarbons	ND	10.0	н							
Surrogate: 1-Chlorooctane	46.2		mg/kg	50.0		92.4	70-130			
Surrogate: 1-Chlorooctadecane	42.1		"	50.0		84.2	70-130			
LCS (EG62716-BS1)				Prepared &	& Analyzed:	07/27/06				
Carbon Ranges C6-C12	500	10.0	mg/kg wet	500		100	75-125			
Carbon Ranges C12-C28	555	10.0	*	500		111	75-125			
Carbon Ranges C28-C35	ND	10.0	i*	0.00			75-125			
Fotal Hydrocarbons	1050	10.0	1+	1000		105	75-125			
Surrogate: 1-Chlorooctane	60.3		mg/kg	50.0		121	70-130			
Surrogate: 1-Chlorooctadecane	47.8		"	50.0		95.6	70-130			
Calibration Check (EG62716-CCV1)				Prepared: (07/27/06 A	nalyzed: 07	7/28/06			
Carbon Ranges C6-C12	206		mg/kg	250		82.4	80-120			
Carbon Ranges C12-C28	260		17	250		104	80-120			
Total Hydrocarbons	466		**	500		93.2	80-120			
Surrogate: 1-Chlorooctane	61.0		"	50.0		122	70-130			

51.6

Surrogate: 1-Chlorooctadecane

103

70-130

50.0

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG62716 - Solvent Extraction (GC)			_							
Matrix Spike (EG62716-MS1)	Sou	rce: 6G26001	1-18	Prepared: (07/27/06 A	nalyzed: 07	7/28/06	•		
Carbon Ranges C6-C12	583	10.0	mg/kg dry	522	ND	112	75-125			
Carbon Ranges C12-C28	591	10,0	"	522	ND	113	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125			
Total Hydrocarbons	1170	10.0	**	1040	ND	112	75-125			
Surrogate: 1-Chlorooctane	59.7		mg/kg	50.0		119	70-130			
Surrogate: 1-Chlorooctadecane	52.7		"	50.0		105	70-130			
Matrix Spike Dup (EG62716-MSD1)	Sou	rce: 6G2600	I-18	Prepared: (07/27/06 A	nalyzed: 07	1/28/06			
Carbon Ranges C6-C12	556	10,0	mg/kg dry	522	ND	107	75-125	4.74	20	
Carbon Ranges C12-C28	548	10.0	"	522	ND	105	75-125	7.55	20	
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125		20	
Total Hydrocarbons	1100	10.0	"	1040	ND	106	75-125	6.17	20	
Surrogate: 1-Chlorooctane	63.6		mg/kg	50.0		127	70-130			-
Surrogate: 1-Chlorooctadecane	51.2		"	50.0		102	70-130			
Batch EG62805 - EPA 5030C (GC)	•			•						
Blank (EG62805-BLK1)				Prepared &	k Analyzed:	07/27/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	"							
Xylene (p/m)	ND	0.0250	. "							
Xylene (o)	ND	0.0250	n							
Surrogate: a,a,a-Trifluorotoluene	36.4		ug/kg	40.0		91.0	80-120			
Surrogate: 4-Bromofluorobenzene	32.6		"	40.0		81.5	80-120			
LCS (EG62805-BS1)				Prepared &	k Analyzed:	07/27/06				
Benzene	1.24	0.0250	mg/kg wet	1.25		99.2	80-120			
Toluene	1.25	0.0250	"	1.25		100	80-120			
Ethylbenzene	1.19	0.0250	"	1.25		95.2	80-120			
Xylene (p/m)	2.67	0.0250	u	2.50 .		107	80-120			
Xylene (o)	1.34	0.0250	**	1.25		107	80-120			
Surrogate: a,a,a-Trifhorotoluene	39.3		ug/kg	40.0		98.2	80-120			
Surrogate: 4-Bromofluorobenzene	38.1		" ,	40.0		95.2	80-120			

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG62805 - EPA 5030C (GC)										
Calibration Check (EG62805-CCV1)				Prepared: ()7/27/06 A	nalyzed: 07	7/28/06			
Benzene	44.1		ug/kg	50.0		88.2	80-120			
Toluene	45.7			50.0		91.4	80-120			
Ethylbenzene	45.3		"	50.0		90.6	80-120			
Xylene (p/m)	93.5			100		93.5	80-120			
Xylene (o)	46.2		н	50.0		92.4	80-120			
Surrogate: a,a,a-Trifluorotoluene	32.3		"	40.0		80.8	80-120			
Surrogate: 4-Bromofluorobenzene	32.5		"	40.0		81.2	80-120			
Matrix Spike (EG62805-MS1)	Sou	rce: 6G24009)- 4 5	Prepared: ()7/27/06 A	nalyzed: 07	7/28/06			
Benzene	1.24	0.0250	mg/kg dry	1.28	ND	96.9	80-120			
Toluene	1.40	0.0250	н	1.28	ND	109	80-120			
Ethylbenzene	1.26	0.0250		1.28	ND	98.4	80-120			
Xylene (p/m)	3.06	0.0250	н	2.57	ND	119	80-120			
Xylene (o)	1.38	0.0250	н	1.28	ND	108	80-120			
Surrogate: a,a,a-Trifluorotoluene	43.4		ug/kg	40.0		108	80-120			
Surrogate: 4-Bromofluorobenzene	42.1		"	40.0		105	80-120			
Matrix Spike Dup (EG62805-MSD1)	Sou	rce: 6G24009)-45	Prepared: ()7/27/06 A	nalyzed: 07	7/28/06			
Benzene	1.07	0.0250	mg/kg dry	1.28	ND	83.6	80-120	14.7	20	
Toluene	1.15	0.0250	11	1.28	ND	89.8	80-120	19.3	20	
Ethylbenzene	1.10	0.0250	**	1.28	ND	85.9	80-120	13.6	20	
Xylene (p/m)	2,53	0.0250	**	2.57	ND	98.4	80-120	19.0	20	
Xylene (o)	1.21	0.0250	**	1,28	ND	94.5	80-120	13.3	20	
Surrogate: a,a,a-Trifluorotoluene	32.2		ug/kg	40.0		80.5	80-120			
Surrogate: 4-Bromofluorobenzene	33.4		n	40.0		83.5	80-120			
Batch EG62806 - EPA 5030C (GC)										
Blank (EG62806-BLK1)				Prepared:)7/28/06 A	nalyzed: 07	7/31/06			
Benzene	ND	0.0250	mg/kg wet							
Гoluene	ND	0.0250	н							
Ethylbenzene	ND	0.0250								
Xylene (p/m)	ND	0.0250	"							
Xylene (o)	ND	0.0250		·						
Surrogate: a,a,a-Trifluorotoluene	36.8		ug/kg	40.0		92.0	80-120			
Surrogate: 4-Bromofluorobenzene	33.3		"	- 40.0		83.2	80-120			

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Anglista	D 1:	Reporting	I facian	Spike	Source	0/ PEC	%REC	מממ	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62806 - EPA 5030C (GC)										
LCS (EG62806-BS1)				Prepared &	: Analyzed:	07/28/06				
Benzene	1.03	0.0250	mg/kg wet	1.25		82.4	80-120			
Toluene	1.08	0.0250	н	1.25		86.4	80-120			
Ethylbenzene	1.03	0.0250	н	1.25		82.4	80-120			
Xylene (p/m)	2.36	0.0250	н	2.50		94.4	80-120			
Xylene (o)	1.15	0.0250	**	1.25		92.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	32.2	10-2	ug/kg	40.0		80.5	80-120			
Surrogate: 4-Bromofluorobenzene	34.7		"	40.0		86.8	80-120			
Calibration Check (EG62806-CCV1)				Prepared: (07/28/06 A	nalyzed: 07	7/31/06			
Benzene	0.0513		mg/kg wet	0.0500		103	80-120			
Toluene	0.0498		u	0.0500		99,6	80-120			
Ethylbenzene	0.0520			0.0500		104	80-120			
Xylene (p/m)	0.103		н	0.100		103	80-120			
Xylene (o)	0.0508		п	0.0500		102	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.0		ug/kg	40.0		92.5	80-120			
Surrogate: 4-Bromofluorobenzene	35.2		"	40.0		88.0	80-120			
Matrix Spike (EG62806-MS1)	Sou	rce: 6G2600	1-01	Prepared: ()7/28/06 A	nalyzed: 07	7/31/06			
Benzene	1.33	0.0250	mg/kg dry	1.32	ND	101	80-120			
Toluene	1.33	0.0250		1.32	ND	101	80-120			
Ethylbenzene	1.32	0.0250	41	1.32	ND	100	80-120			
Xylene (p/m)	2.89	0.0250		2.63	ND	110	80-120			
Xylene (o)	1.43	0.0250	**	1.32	ND	108	80-120			
Surrogate: a,a,a-Trifluorotoluene	34.4		ug/kg	40.0		86.0	80-120			
Surrogate: 4-Bromofluorobenzene	38.2		n	40.0		95.5	80-120			
Matrix Spike Dup (EG62806-MSD1)	Sou	rce: 6G2600	1-01	Prepared: ()7/28/06 A	nalyzed: 07	7/31/06			
Benzene	1.26	0.0250	mg/kg dry	1.32	ND	95.5	80-120	5.60	20	
Toluene	1.26	0.0250	**	1.32	ND	95.5	80-120	5.60	20	
Ethylbenzene	1.29	0.0250	**	1.32	ND	97.7	80-120	2.33	20	
Xylene (p/m)	2.79	0.0250	**	2.63	ND	106	80-120	3.70	20	
Xylene (o)	1.39	0.0250	н	1.32	ND	105	80-120	2.82	20	
Surrogate: a,a,a-Trifluorotoluene	35.5		ug/kg	40.0		88.8	80-120			
Surrogate: 4-Bromofluorobenzene	40.7		"	40.0		102	80-120			

Duplicate (EG62509-DUP4)

% Solids

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

RPD

%REC

10.7

20

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Source

Prepared: 07/24/06 Analyzed: 07/25/06

86.7

Environmental Lab of Texas

Reporting

Source: 6G24009-37

96.5

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62509 - General Preparation	(Prep)									
Blank (EG62509-BLK1)				Prepared: (7/24/06 A	nalyzed: 07	7/25/06			
% Solids	100		%							
Duplicate (EG62509-DUP1)	Source	: 6G21012-	01	Prepared: ()7/24/06 A	nalyzed: 07	7/25/06			
% Solids	95.4		%		95.7			0.314	20	
Duplicate (EG62509-DUP2)	Source	: 6G24005-	01	Prepared: ()7/24/06 A	nalyzed: 07	7/25/06			
% Solids	97.6		%		97.3			0.308	20	
Duplicate (EG62509-DUP3)	Source	: 6G24009-	17	Prepared: ()7/24/06 A	nalyzed: 07	7/25/06			
% Solids	95.1		%		95.3			0.210	20	

Project: Lovington Gathering WTI

Fax: (432) 687-4914

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

Analyte DETECTED DET

Analyte NOT DETECTED at or above the reporting limit ND

Not Reported NR

Sample results reported on a dry weight basis dry

Relative Percent Difference

Laboratory Control Spike LCS

MS Matrix Spike

Duplicate Dup

Report	Approve	d By:	

Raland KJulis

8/1/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Odessa, Texas 79765 12600 West I-20 East

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Fax: 432-563-1713 Phone: 432-563-1800

TAT brebneta Lone Star TAT HRUSchedule) 24, 48, 12 in: NPDES Temperature Upon Receipt: 5.5 Project Name: Lovington Gathering WTI M.A.O.M. TRRP Custody seals on container(s) Custody seals on cooler(s) BGI VOCs Free of Headspace? Sample Containers Intact? Sample Hand Delivered PL BTEX 8260 STEX 8021B/5030 Project #: SRS: 2006-142 PO #: PAA/ C. Reynolds Project Loc: Lea County, NM salitelovimes Standard Standard Səlijelo/ Metals: As Ag Ba Cd Cr Pb Hg Se TCLP TOTAL SAR / ESP / CEC Aniona (Cl. SO4, CO3, HCO3) Time 65th Report Format: Cations (Ca, Mg, Na, K) Tue 8001 (MS108 9001 5 гресцу Одрет SOIL SOL SOIL SOF SOIL SOIL SOIL 텷 SOIL SOIL Office (Specify) эпоУ Na₂S₂O₃ e-mail: kdutton@basinenv.com HOPN *OSEH ЮН Fax No: (505) 396-1429 1ONH 5 12 5 নি 5 No. of Containers 1010 1030 1042 900 1022 939 926 930 934 941 DelgmeS emiT 19-Jul-06 19-Jul-06 19-Jul-06 19-Jul-06 19-Jul-06 19-Jul-06 19-Jul-06 19-Jul-06 19-Jul-06 19-701-08 Date Sampled Basin Environmental Service Technologies, LLC 10, 15 201 5 55 92 75 25 35 fiqaQ քոibna ົດ Q 1 9 ξŝ 2 3 20, <u></u> ģ Š Beginning Depth ō ັດ Lovington, NM 88260 (505) 441-2124 P. O. Box 301 Ken Dutton FIELD CODE SB-3 15' SB-3 25' SB-3 55' SB-3 20' SB-35' SB-3 10' SB-3 35' SB-3 45' SB-3 65' SB-3 75' Sampler Signature: Company Address: Project Manager: Company Name Telephone No: City/State/Zip: Special Instructions (lab use only) ORDER #: AB # (lab use only) Ó

13

20121

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Fax: 432-563-1713 Phone: 432-563-1800

Odessa, Texas 79765 12600 West I-20 East

Project Name: Lovington Gathering WTI Project #: SRS: 2006-142 Basin Environmental Service Technologies, LLC

PO #: PAA/C. Reynolds

Project Loc: Lea County, NM

X Standard

☐ TRRP

NPDES

Report Format:

e-mail: kdutton@basinenv.com

Fax No: (505) 396-1429

Lovington, NM 88260

P. O. Box 301

Company Address:

Company Name

Ken Dutton

Project Manager:

(505) 441-2124

Telephone No: City/State/Zip:

0

Sampler Signature:

(lab use only) ORDER #

Analyze

Semicolaries Metale: As Ag Ba Cd Ct Pb Hg Se Anions (CI, SO4, CO3, HCO3) Mg, Na, K) 2001 (M2108 1.814 H9T SOIL SOIL S

Other (Specify)

COZSE BN HOEN *05²H HCI

нио2

1141 1144 1150

19~Inf-66

ŝ 40, 15 20, 22 35 45 52 655 75

ó

FIELD CODE

19-Jul-06 19-Jul-06

Š 10,

SB-4 10' SB-4 15' SB-4 20' SB-4 25'

No. of Containers

Time Sampled

Date Sampled

Ending Depth

Beginning Depth

(vino esu dei) # 8A

BTEX 8021B/5030

TAT brebnet2

M.A.O.M.

RCI

SUSH TAT (Pro-Schodule) 24, 48, 72 firs

× × ×

잃

1420 1426 1433

.04 50,

SB-4 55'

SB-4 75

Special Instructions:

SB-4 65

19~Jul-06

9 70

SOIL

SOIL

SOIL

1152

19-Jul-06 19~Jul-06 19Jul-06 19-Jul-08 19-Jul-06 19~Jul-06

15

20.

30,

SB-4 35 SB-4 45

1155 1335 1339

SOL

SOIL SOIL

Sample Containers Intact Laboratory Comments

Custody seals on container Custody seals on cooler(s) /OCs-Free of Headspace? Sample Hand Delivered

SOCOO

Temperature Upon Receipt:

(35

7/24/26

Received by ELOT.

 \mathcal{N}

ပွ

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

		Odessa, lekas 1910s	L	FAX: 452-363-1713	
Project Manager:	Ken Dutton		Project Name: Lovington Gathering WTI	on Gathering WTI	
Company Name	Basin Environmental Service Technologies, LLC	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Project#: SRS: 2006-142	006-142	
Company Address: P. O. Box 301	P. O. Box 301		Project Loc: Lea County, NM	ınty, NM	
City/State/Zip:	Lovington, NM 88260		PO#: PAA/C. Reynolds	Reynolds	
Telephone No:	(505) 441-2124 Fax No:	Fax No: (505) 396-1429	Report Format: X Standard	ard 📗 TRRP	☐ NPDES
Sampler Signature:	Son Helle	e-mail: kdutton@basinenv.com			

μ-			لـ	TAT brebnet2	×	×	×	×	×	×	×	×	×	×	g
-	Ļ	12.71	,BÞ	, P.O. St. (Pro-Scinedule) 74,					-	-					S S S S S S S S S S S S S S S S S S S
	┝				\vdash					\vdash				┝	
	 							\vdash		\vdash				 -	ව කිරෙන් ලිනෙක් ග
	┢				┝──			-						\vdash	8 W
	r			M.A.O.R.	 -	****				 					1 =
i.	Г			ьсі											7 ~ ~
Analyze For		×	Œ	ETEX 80218/6030 r BTEX 826	×	×	X	×	×	×	×	×	×	X	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace? Custody seals on container- Custody seals on coler(s) Sample Hand Delivered by SamplerClioff Reb. by Courter? UPS Temperature Upon Receipt
ylsi				səlibəlovime8											Pon Collection
₹				Volatiles											Te U
l	_		99	Metala: As Ag Ba Cd Cr Pb Hg 5	_	L		ļ							Free Free Sam Sam court
	TCLP	TOTAL		SAR / ESP / CEC		<u> </u>									mpe by a mpe
	-	빔		Anions (CI, SO4, CO3, HCO3)				ļ		<u> </u>	ļ				2 0 0 0 0 E
	1			Cations (Ca, Mg, Na, K)						<u> </u>	ļ				S a a a a
	L.,	Ц	90	101 2001 (M2108) 1.814 H9T	×	×	×	×	×	×	×	×	×	×	Time Time
j			ž	NP=Non-Polable Specify Other)[뉲	귲	≓	Η	릊	╡	F	Ħ	=	
			Matrix	GW # Groundwater S=SoluStaid	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	3, 3
			\dashv	Olher (Specify) DW=Drinking Water SL=Studge											# 1 mm # 2 mm +
			ters	Mone (Virent Specify)				-	H						1 2 2
			# of Containers	COZSZEN										_	1 1 2 1 2
			οţĊ	HOEN			٠			-					1
			∞ು	H ² SO,											
			Preservation	HCI				_	H						
			iese.	. HNO3											
			^	90	×	X	×	×	×	×	×	×	×	×	
				No. of Containers	-	1	1	4	-	1	1	-	1	~	
•				bəldme8 əmiT	1600	1602	1605	1608	1610	1616	1620	1624	1630	1638	1 1/2 1/2
				Date Sampled	19~Jul-06	19~Jul-06	19~Jul-06	19-Jul-06	19-Jul-06	19~Juf-06	19~Jul-06	19-Jul-06	19-Jul-06	19-Jul-06	Received by: Received by: Received by ELOT:
			Ī	Ending Depth	ī,	10,	15	20,	25.	35,	45'	55'	65,	75'	
			Ì	Beginning Depth	ō	Ω	10,	15,	20.	30,	40,	50,	60,	70′	Time Time
															Date Date
		Ž	7	ODE	īο	. 0	15'	20.	25.	35.	45'	55'	65	75	
1		71777	3	FIELD CODE	SB.5	SB-5 10'	SB-5 15	SB-5	SB-5 25	SB-5 35'	SB-5 45	SB-5 55	SB-5 65	SB-5 75	
		751	3	٠											at Mar
	, (A														Special Instructions: Reinquished by: Relinquished by:
	(lab use only)	1	OKUEK #:	(vino seu dei) # 8A.		N	10	Ó	S	٦	<u></u>	<u>بح</u>	<u>ي</u>	Ċ	Special Instruction of the second of the sec
	(Jab	į	S	Ading san del) # 84	7	17	7	17	7	3	7	13	6	4	Relia Relia

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

				ļ	NPDES		T	SIŲ ZŽ	'87 '	ks (eluberlo2-m국) TAT H2UR TAT basbrist	-	×	×	×	×	×	×	×	×	×		ZZ	, j	ပု	
į	MAT!				TRRP [M.S.O.M.													E E	in si	
:	Gathering	3-142	y, NM	ynolds			Analyze For:	×	097	RCI Semivolatiles Semivolatiles		×	×	×	×	×	×	×	×	×	iments: ers intact?	container(s)	lient Rep. 7 UPS DH	on Receipt:	
	Lovington	SRS: 2006-142	Lea Count	PO#: PAA/C, Reynolds	X Standard		Ans	TOTAL	∌\$ [[]	SAR / ESP / CEC Metals: As Ag Ba Cd C/ Pb Ho											Laboratory Comments: Sample Containers Intact? VOCs Free of Headsnace?	Custody seals on container(s) Custody seals on cooler(s)	by Sampler/Client Rep. 7 by Courier? UPS	Temperature Upon Receipt.	
;	Project Name: Lovington Gathering WT	Project#:	Project Loc: Lea County, NM	# O	Report Format:			TOT	900	TPH; 418;1 (8015M) 1005 1 Cetions (Ce, Mg, Ne, K) Anions (Cl, SO4, CO5, HCO3)	×	×	×	×	×	×	×	×	×	×	San San	Ime CC		Filme SS:	
+	Ē !	ı	-	ı	Report				Matrix	Other (Specify) Own-Drinking Water SL-Sludge Own-Drinking Water SL-Sludge	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		Date Out	Darie Control	Date 7/24/00	
						эпу.сош			of Containers	HOISN COSCSEN SINON										-		The state of the s		1/24	
					-1429	n@basine			Preservation & # of Contain	ы ² 90 ′ нсі нио⁰															
					Fax No: (505) 396-1429	е-mail: kdutton@basinenv.com		Ė		No. of Containers	1 X	1 X	1 X	1 ×	1 ×	7 ×	- ×	٦ ×	٦ ×	٠ ×		10.2.0		(20)	
		LLC			Fax	Đ E				Time Sampled	1044	1048	1050	1054	1056	1110	1114	1157	1204	1212		Lynn.	1 300	.0T.	
		hnologies,								Date Sampled	20-Jul-06	20-Jul-06	20~Jul-06	20-Jul-06	20-Jul-06	20-Jul-06	20~Jul-06	20~Jul-06	20~Jul-06	20~Jul-06		Received by:	Received by:	Received by ELOT:	
		e Tec								rbdəG galbn3	ī _o	ġ	15.	33.	25,	35.	45	55	-59	75.			3	\top	
		Servic				The				HqaO brinniga8	ō	5-	<u>.</u> 0	15.	20,	ģ	5	20.	-09	70,		Time	Time	73. Sime	
1	ugou	Basin Environmental Service Technologies, LLC	P. O. Box 301	Lovington, NM 88260	(505) 441-2124	en Au																ned Date	Date	Jake of the)
	•	•				PC		2 / V	3	FIELD CODE	SB-6 5'	SB-6 10'	SB-6 15'	SB-6 20'	SB-6 25'	SB-6 35	SB-6 45'	SB-6 55	SB-6 65	SB-6 75			31	lachrach	
o de la constanta de la consta	Project Inlanat	Company Name	Company Address:	City/State/Zip:	Telephone No:	Sampler Signature:	(Ap.	4	73												special instructions:	Nd by: (7	d by:	2	
			-	-	•	•	(lab use only)	0000	Z. C.	(vino ėsu dsi) # 8A⊥	18	12	18	200	A STORY	*	11	77	20, 20	5	Special	Reliperished by:	Relinquished by	Relinquished by	٢

Basin Environmental Service Technologies, LLC

Ken Dutton

Project Manager:

Company Name

Lovington, NM 88260

City/State/Zip:

Company Address: P. O. Box 301

(505) 441-2124

Telephone No:

Sampler Signature:

Odessa, Texas 79765 12600 West I-20 East

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Phone: 432-563-1800 Fax: 432-563-1713

Project Name: Lovington Gathering WTI

Project #: SRS: 2006-142

Project Loc: Lea County, NW

PO #: PAA/ C. Reynolds

J Standard

Fax No: (505) 396-1429

☐ TRRP Report Format:

NPDES

e-mall: kdutton@basinenv.com

				 		·	_	r==	ı —	~		_					e e	
_			-	Standard TAT bhabrats					닏	딜				닏				ig.
_	s.i	4 7.L	'81	AS (elubedase-mq) TAT HZUR	[[Ш	Ш	Ш	Ш	Ш			- 2	2 Z	zz:	N Lone Star
																		N 6
	L														.6	€ €	(SOC)	전 (1)
																		ñ
																1.2	ar inga Ngjar	٠.
l				N.O.R.M.													(G)	품
ä				RCI											Ş	i de	ner(s)	_ <u></u>
Analyze For:		7	0	BTEX 80218/5030 or BTEX 826			[5]	া	\Box	D		\Box			Laboratory Comments	Sample Containers Infact of VOCs Free of Headspace?	Custody seals on container(s)	Sample Hand Delivered by Sampler/Chlent Rep by Couner?
alyz				Semivolatiles											Ě	each	8 6	
An				Volatiles	\Box		\Box	П	П		П		\Box	П	Ö	E E	0.5	0 5 %
		Ī	95	Metals: As Ag Ba Cd Cr Pb Hg 3				m		一					2	5 8	Sea	Han Surie
	á	41.	-	SAR / ESP / CEC		H	H	H	H			\exists	\vdash		rat	والم	og og	npte Hand.(by Sampten by Couner?
	TOLP	TOTAL	⊢	Anione (Cl. 804, CO3, HCO3)	H	H		m	H	置		H		H	abc	<u> </u>	tsn.	Ĕ
l		ľ	H	Cations (Ca, Mg, Na, K)	H		H	₩	묽	片	1	금	_		<u> </u>	<u> </u>	K) <u>,</u>
	l			001 2001 (Matos).814.H9T	<u> </u>	片	\ <u>\</u>	H	片	片	물	거	#				E P	<u> </u>
<u> </u>	<u> </u>		31			الشيا	L.).		ين		<u> </u>			<u> </u>			6	3 ₌
ı			ţĽ		اٰڃ	븣	1	⊒	불	글	늴	=	닆	<u></u>			├	<u> </u>
1			Matrix	GW = Groundwater 8=Soil/Solid	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	108			1	2
			Ļ	DW-Drinking Water St.=Studge		_	<u> </u>	<u> </u>		(U auri				<u></u>			Date //	3 48
			ŕs	Other (Specify)														2
			of Containers	enold													<u></u>	3 3
			Ç	cOs2SsM													\	7,
			44:	HOSM														
		i	S uo	H ⁵ 2O ⁴														
			Preservation	HÇI														
			rese	c _{ONH}														
			<u>a</u> _	106	ন		<u></u>	n	N	ন		<u>ادا</u>		$\overline{\Box}$			5	3
			_	No. of Containers	4-	_	-	-	_	-	T		لتنتيا	<u> </u>			د ا	3
ļ				aroniotoo ot	•	_	ļ.,		<u> </u>	<u> </u>		•					-0	1
						_	١.,		_	١,		٠,					3	Ž.
				Time Sampled	1414	1418	1425	1430	1507	1515	1525	1535					7	3
				·		-	٦	_	~	~	1	4					1	
ı							<u> </u>	<u> </u>										
					90-	90-1	90-	<u> </u>	90-	90-1	90-1	90-1					i 1	<u> </u>
				Date Sampled	3			╡	JE.	3	Jul	3					173	64-4
					20-Ju	20-Ju	20-Ju	20-Ju	20-Ju	20-Ju	20-Ju	20-Ju					Receive	1 8
								<u> </u>				_		_			<u>«</u>	X eceives
1				Ending Depth	(c)	10	20.	30,	ĵ.	10,	2	30					J. 9	٦,
1					-												Time	Į <u>.</u>
				Beginning Depth	힉	Īο	15,	25'	ò	ý	15	25.					1	7
			į										~				-	
١.		6															Date /	Oate Date
																	b C	کیات
																	6	`
	1				- 1					1			1					1
		~		FIELD CODE	ດ໌	ъ		ò	١	ö	<u>.</u>	اہ					Ì	
N		0	- : - :	8	7-	7	7 2	7	φ	8	8 2	₩						}
۱ ۱		ζ.	3		SB-7	SB-7 10'	SB-7 20'	SB-7 30'	SB-85	SB-8 10	SB-8 20	SB-8 30			i		}	1
- 1		7	Ź	₩		"	رن .	ייט		0,	"	"	•					
		Ţ	7	_	ı	i				Ì	l	ı						<u> </u>
		٠	K	ر I					Į		ļ	l			ij		'3	1
ļ			ं								Į		ł		tion	į		Ŕ
1	~				- }	 	-	_		ļ		ſ	1		J'C		χ̈́	1
	É	į i	# ~					_	_		_				inst		15	<u>15</u>
	(lab use only)		ORDER #:	LAB # (lab use only)		4	2	-	74	ای	\vdash				Special instructions:		Relinguished by	Relinquished by
	ag		8	(1900 000 40) # 80	D	1	3	各	A	40	12	3		- 4]	Spec	ļ		ell l
į	=	:	•		N Í	, [١,١	1 1	· *. [1.1	1	- 5			V)	- 1	LE.	H.F.

Temperature Upon Receipt:

Time 1.36

10/22/01

-x000) Justy)

Variance/ Corrective Action Report- Sample Log-In

lient: Plans					
le/ Time:	35				
ab ID#: 6474009	7		•		
als:					
				• ,	
_	Sample Receipt	Checklist			
Temperature of container/ coole		Yes	No	26	° C
2 Shipping container in good con-			No	3.5	
Custody Seals intact on shippin		Yes	No	Not Present	
Custody Seals intact on sample	* · · · · · · · · · · · · · · · · · · ·	Yes	No	Not Present	
Chain of Custody present?	Domes, cornainers	Yes	No	Not i resent	
Sample instructions complete of	of Chain of Custody?	yes .	No	<u> </u>	
,) Fes	No		
Chain of Custody signed when Chain of Custody agrees with s		Ves	No	ID written on Cont.	/ Lid
Container label(s) legible and in		Xes	No	Not Applicable	· · · · · · · · · · · · · · · · · · ·
Sample matrix/ properties agre		X-es .	No		
11 Containers supplied by ELOT?		Yes	No		
Samples in proper container/ b	· · · · · · · · · · · · · · · · · · ·	Ves	No	See Below	
Samples properly preserved?		Yes	No	See Below	
14 Sample bottles intact?		Ves.	No		
15 Preservations documented on	Chain of Custody?	Yes)	No		
Containers documetned on Ch	ain of Custody?	Yes	No		
7 Sufficient sample amount for in	ndicated test(s)?	Yes	No	See Below	
18 All samples received within suf	ficient hold time?	Ves Ves	No	See Below	
VOC samples have zero heads	space?	Yes)	No	Not Applicable	3
	Variance Docur	nentation			
htact:	Contacted by:			Date/ Time:	
			-	Date: Fine.	
garding:					
	·				
rrective Action Taken:					
			•		•
· · · · · · · · · · · · · · · · · · ·					
Shook all that Analis	Coolettached c				
	See attached e-mail/ fax		القائدة أمسست		
	Client understands and would				
1 1	Cooling process had begun s	ыопіу апег s	sampling	event	

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Lovington Gathering WTI
Project Number: SRS: 2006-142
Location: Lea County, NM

Lab Order Number: 6G26001

Report Date: 08/02/06

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-9 5'	6G26001-01	Soil	2006-07-24 10:43	2006-07-26 07:40
SB-9 10'	6G26001-02	Soil	2006-07-24 10:45	2006-07-26 07:40
SB-9 20'	6G26001-03	Soil	2006-07-24 10:52	2006-07-26 07:40
SB-9 30'	6G26001-04	Soil	2006-07-24 11:00	2006-07-26 07:40
SB-10 5'	6G26001-05	Soil	2006-07-24 11:26	2006-07-26 07:40
SB-10 10'	6G26001-06	Soil	2006-07-24 11:30	2006-07-26 07:40
SB-10 15'	6G26001-07	Soil	2006-07-24 11:33	2006-07-26 07:40
SB-10 20'	6G26001-08	Soil	2006-07-24 11:38	2006-07-26 07:40
SB-10 25'	6G26001-09	Soil	2006-07-24 11:39	2006-07-26 07:40
SB-10 35'	6G26001-10	Soil	2006-07-24 12:03	2006-07-26 07:40
SB-10 45'	6G26001-11	Soil	2006-07-24 12:07	2006-07-26 07:40
SB-10 55'	6G26001-12	Soil	2006-07-24 12:24	2006-07-26 07:40
SB-10 65'	6G26001-13	Soil	2006-07-24 12:30	2006-07-26 07:40
SB-10 75'	6G26001-14	Soil	2006-07-24 12:33	2006-07-26 07:40
SB-11 5'	6G26001-15	Soil	2006-07-24 15:18	2006-07-26 07:40
SB-11 10'	6G26001-16	Soil	2006-07-24 15:24	2006-07-26 07:40
SB-11 20'	6G26001-17	Soil	2006-07-24 15:29	2006-07-26 07:40
SB-11 30'	6G26001-18	Soil	2006-07-24 15:35	2006-07-26 07:40

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Organics by GC

Environmental Lab of Texas

- 1/- 1/- 1/- 1/- 1/- 1/- 1/- 1/- 1/- 1/									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
SB-9 5' (6G26001-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62806	07/28/06	07/31/06	EPA 8021B	
Toluene	ND	0.0250	н	"	**	"	ч	"	
Ethylbenzene	ND	0.0250	H	"	*1	"	**	. "	
Xylene (p/m)	ND	0.0250	**	u	**	"	Ħ	**	
Xylene (o)	ND	0.0250		"1	**	"	ч	n	
Surrogate: a,a,a-Trifluorotoluene		95.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62616	07/26/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0		"	"	,	n	н	
Carbon Ranges C28-C35	ND	10.0	11	•	**	H	**	*	
Total Hydrocarbons	ND	10.0	**	"	"	,	н	н	
Surrogate: 1-Chlorooctane		98.6 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		96.0 %	70-1	30	"	"	"	"	
SB-9 10' (6G26001-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62806	07/28/06	07/31/06	EPA 8021B	
Toluene	ND	0.0250	11	h	"	"	"	n	
Ethylbenzene	ND	0.0250	**	н		"		"	
Xylenc (p/m)	ND	0.0250	"	н	"	"	"	,1	
Xylene (o)	ND	0.0250		н		"	н	н	
Surrogate: a.a,a-Trifluorotoluene		85.8 %	80-1	20	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		92.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62716	07/27/06	07/27/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н	1+		"		11	
Carbon Ranges C28-C35	ND	10.0	"	۳ .		**		"	
Total Hydrocarbons	ND	10.0	,,	"				n	
Surrogate: 1-Chlorooctane		94.2 %	70-1	30	n	"	"	n	
Surrogate: 1-Chlorooctadecane		128 %	70-1	30	"	"	"	и	
SB-9 20' (6G26001-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62806	07/28/06	07/31/06	EPA 8021B	
Toluene	ND	0.0250	IP.		н	"	H	17	
Ethylbenzene	ND	0.0250	11			**	н	•	
Xylene (p/m)	ND	0.0250	"	,	и	**	*	· ·	
Xylene (o)	ND	0.0250	•	11	.,		"	**	
Surrogate: a,a,a-Trifluorotoluene		90.8 %	80-1	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		81.0 %	80-1		"	"	<i>n</i>	<i>n</i>	
Carbon Ranges C6-C12	ND	10.0		1 .	EG62716	07/27/06	07/28/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-9 20' (6G26001-03) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EG62716	07/27/06	07/28/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	**	н	u	"	te.	11	
Total Hydrocarbons	ND	10.0	*	н		11	и	9	
Surrogate: 1-Chlorooctane		93.0 %	70-1	30	"	"	n	"	<u> </u>
Surrogate: 1-Chlorooctadecane		88.2 %	70-1	30	"	"	n	tt	
SB-9 30' (6G26001-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62806	07/28/06	07/31/06	EPA 8021B	
Toluene	ND	0.0250	н	"	n	н		"	
Ethylbenzene	ND	0.0250	r	"	"	H	IP.	"	
Xylene (p/m)	ND	0.0250	н	•	**	17	**	**	
Xylene (o)	ND	0.0250	H	Ħ	**	**	н	н	
Surrogate: a,a,a-Trifluorotoluene		84.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.8 %	80-1	20	"	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EG62716	07/27/06	07/28/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	**	H	н		10	
Carbon Ranges C28-C35	ND	10.0	"		10	**	н	11	
Total Hydrocarbons	ND	10.0	н	19	10	•	n	**	
Surrogate: 1-Chlorooctane		90.6 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		84.0 %	70-1	30	n	"	"	"	
SB-10 5' (6G26001-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG62806	07/28/06	07/31/06	EPA 8021B	
Toluene	0.0470	0.0250	"	If .	n	**	и		
Ethylbenzene	0.134	0.0250	"	4	н	н	u	P	
Xylene (p/m)	0.190	0.0250	"	17	"	**	n	11	
Xylene (o)	0.0760	0.0250	н	"	"	н		u	
Surrogate: a,a,a-Trifluorotoluene		84.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	66.1	10.0	mg/kg đry	1	EG62716	07/27/06	07/28/06	EPA 8015M	
Carbon Ranges C12-C28	704	10.0	n		11		н	**	
Carbon Ranges C28-C35	113	10.0	п	*	11	n	"	**	
Total Hydrocarbons	883	10.0	н	n .	+1	н	"	,,	
Surrogate: 1-Chlorooctane		92.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		, 89.0 %	70-1	30	"	"	,,	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Anglyta	D ogle	Reporting	Linita						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-10 10' (6G26001-06) Soil	, · · · · ·								
Benzene 	0.251	0.0250	mg/kg dry	25	EG62806	07/28/06	07/31/06	EPA 8021B	
Toluene	1.62	0.0250		* .	n	**	n	"	
Ethylbenzene	10.4	0.0250	"	н	n	н	n	,	
Xylene (p/m)	10.2	0.0250	**	"	н	"	IF	,	
Xylene (o)	2.42	0.0250		w		n	,	**	
Surrogate: a,a,a-Trifluorotoluene		725 %	80-1		"	"	"	n.	S-0-
Surrogate: 4-Bromofluorobenzene		177 %	80-1	20	"	"	"	"	S-0
Carbon Ranges C6-C12	777	10.0	mg/kg dry	1	EG62716	07/27/06	07/28/06	EPA 8015M	
Carbon Ranges C12-C28	2680	10.0	"		n	*	*	"	
Carbon Ranges C28-C35	233	10.0	**	11	н	H	#		
Total Hydrocarbons	3690	10.0	н	#	9				
Surrogate: 1-Chlorooctane		119%	70-1	30	"	"	,,	"	
Surrogate: 1-Chlorooctadecane		121 %	70-1	30	"	"	"	n	
SB-10 15' (6G26001-07) Soil			10.						
Benzene	0.142	0.0250	mg/kg dry	25	EG62806	07/28/06	07/31/06	EPA 8021B	
Foluene	2.04	0.0250	**	н	•	н	п	v	
Ethylbenzene	5.13	0.0250	4	11	•	19	н	**	
Kylene (p/m)	7.77	0.0250		**	n	e	*	"	
Xylene (0)	3.96	0.0250	11	н	"			n	
Surrogate: a,a,a-Trifluorotoluene		155 %	80-1	20	"	"	"	,,	S-0
Surrogate: 4-Bromofluorobenzene		167 %	80-1	20 -	n	"	n	"	8-0
Carbon Ranges C6-C12	746	10.0	mg/kg dry	1	EG62716	07/27/06	07/28/06	EPA 8015M	
Carbon Ranges C12-C28	3220	10.0	n	**	*	n	11	31	
Carbon Ranges C28-C35	254	10.0		•	**		"	19	
Total Hydrocarbons	4220	10.0	"	*	н	"			
Surrogate: 1-Chlorooctane		131 %	70-1	30	"	"	"	"	S-0-
Surrogate: 1-Chlorooctadecane		144 %	70-1	30	н	"	"	"	S-0-
SB-10 20' (6G26001-08) Soil									
Benzene	0.152	0.0250	mg/kg dry	25	EG62806	07/28/06	07/31/06	EPA 8021B	
Toluene	3.46	0.0250	"	**	"	n	n	"	
Ethylbenzene	6.54	0.0250		"	н	n	H	19	
Kylene (p/m)	10.4	0.0250	н		11	u	"	н	
Xylene (o)	5.82	0.0250	R		"	*	"	ti .	
Surrogate: a,a,a-Trifluorotoluene		160 %	80-1	20	"	"	"	n	S-0
Surrogate: 4-Bromofluorobenzene		167 %	80-1	20	**	n	ы	D	S-0-
Carbon Ranges C6-C12	812	10.0		1	EG62717	07/27/06	07/28/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

				ab 01 10					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-10 20' (6G26001-08) Soil									
Carbon Ranges C12-C28	3160	10.0	mg/kg dry	1	EG62717	07/27/06	07/28/06	EPA 8015M	
Carbon Ranges C28-C35	295	10.0	17	10	**	**	n	17	
Total Hydrocarbons	4270	10.0	17	11	P	я	н	п	
Surrogate: 1-Chlorooctane		162 %	70-1	30	"	"	"	"	S-0
Surrogate: 1-Chlorooctadecane		244 %	70-1	30	"	"	"	"	S-0
SB-10 25' (6G26001-09) Soil									
Benzene	0.0634	0.0250	mg/kg dry	25	EG63119	07/31/06	07/31/06	EPA 8021B	
Toluene	1.47	0.0250	н	**	**	11	n	**	
Ethylbenzene	3.44	0.0250	**		**	n	n	**	
Xylene (p/m)	6.18	0.0250	**	11	10	31	н	n.	
Xylene (o)	3.16	0.0250	"	"		"	"	**	
Surrogate: a,a,a-Trifluorotoluene		125 %	80-1.	20	"	n	n	"	S-0-
Surrogate: 4-Bromofluorobenzene		117 %	80-1.	20	"	n	u,	"	
Carbon Ranges C6-C12	740	10.0	mg/kg dry	1	EG62717	07/27/06	07/28/06	EPA 8015M	
Carbon Ranges C12-C28	2850	10.0	u		o	"	н	n	
Carbon Ranges C28-C35	252	10.0	"			"	н	**	
Total Hydrocarbons	3840	10.0			"	n	н	t*	
Surrogate: 1-Chlorooctane		163 %	70-1.	30	n	n	"	"	S-0-
Surrogate: 1-Chlorooctadecane		238 %	70-1.	30	"	v	"	"	S-0-
SB-10 35' (6G26001-10) Soil									
Benzene	J [0.0116]	0.0250	mg/kg dry	25	EG63119	07/31/06	07/31/06	EPA 8021B	,
Toluene	0.252	0.0250	n	**	**	**	n	н	
Ethylbenzene	0.557	0.0250	n	**	11	*	"	•	
Xylene (p/m)	1.05	0.0250	н	"	**	10	"	•	
Xylene (o)	0.455	0.0250	*	"		**	н		
Surrogate: a,a,a-Trifluorotoluene		97.8 %	80-1.	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		85.5 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	87.0	10.0	mg/kg dry	1 .	EG62717	07/27/06	07/28/06	EPA 8015M	
Carbon Ranges C12-C28	676	10.0	le .	"	"	· •	**	н	
Carbon Ranges C28-C35	84.3	10.0	11	"	"	"	н	11	•
Total Hydrocarbons	847	10.0	**	"	н	u u	n	ч	
Surrogate: 1-Chlorooctane		104 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		99.2 %	70-1.	30	,,	"	"	"	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

-		Environ	mentai L	ab 01 10					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-10 45' (6G26001-11) Soil			·	Dittuoil	Bateti	Tropared	/ may zed	momou	110103
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	07/31/06	EPA 8021B	
Toluene	0.0298	0.0250		**	**	"	n	11	
Ethylbenzene	0.0677	0.0250	17	u	41	"	n		
Xylene (p/m)	0.114	0.0250	"	**	н	H	"	и	
Xylene (o)	0.0591	0.0250	**			н	н		
Surrogate: a,a,a-Trifluorotoluene		87.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.2 %	80-1	20	"	"	"	n	
Carbon Ranges C6-C12	44.3	10.0	mg/kg dry	1	EG62717	07/27/06	07/28/06	EPA 8015M	
Carbon Ranges C12-C28	601	10.0	u u	n			H	NT.	
Carbon Ranges C28-C35	62.6	10.0	"	,,	u	ч	n	11	
Total Hydrocarbons	708	10.0	**		"	и	n	**	
Surrogate: 1-Chlorooctane		109 %	70-1	30 .	"	"	"	"	
Surrogate: 1-Chlorooctadecane		106 %	70-1	30	"	"	"	"	
SB-10 55' (6G26001-12) Soil									
Benzene	J [0.0151]	0.0250	mg/kg dry	25	EG63119	07/31/06	07/31/06	EPA 8021B	J
Toluene	0.260	0.0250	**	10	H	**	"	"	
Ethylbenzene	0.493	0.0250		11	Ħ	#	**	11	
Xylene (p/m)	0.789	0.0250	н	**	9	н	n.	п	
Xylene (o)	0.418	0.0250	11		**	н	,	11	
Surrogate: a,a,a-Trifluorotoluene		96.2 %	80-1	20	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		90.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	121	10.0	mg/kg dry	1	EG62717	07/27/06	07/28/06	EPA 8015M	
Carbon Ranges C12-C28	908	10.0	п	**	n	н	,,	n.	
Carbon Ranges C28-C35	99.3	10.0	n	* .	Ħ	16	п	w	
Total Hydrocarbons	1130	10.0	н	*			"	**	
Surrogate: 1-Chlorooctane		102 %	70-1	30	n	"	"	n	
Surrogate: 1-Chlorooctadecane		98.4 %	70-1	30	"	"	n	tt	
SB-10 65' (6G26001-13) Soil									
Benzene	0.0335	0.0250	mg/kg dry	25	EG63119	07/31/06	07/31/06	EPA 8021B	_
Toluene	0.822	0.0250	tr.	n	н			н	
Ethylbenzene	1.74	0.0250	#	ij	**	P	**	**	
Xylene (p/m)	3.12	0.0250	н	ij	**	*	ü	**	
Xylene (o)	1.53	0.0250	н	"		.,	"	,,	
Surrogate: a,a,a-Trifluorotoluene		106 %	80-1.	20	"	"	n	n	
Surrogate: 4-Bromofluorobenzene		102 %	80-1.	20	"	"	n	"	
Carbon Ranges C6-C12	453	10.0	mg/kg dry	1 ,	EG62717	07/27/06	07/28/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-10 65' (6G26001-13) Soil								·	
Carbon Ranges C12-C28	2380	10.0	mg/kg dry	1	EG62717	07/27/06	07/28/06	EPA 8015M	
Carbon Ranges C28-C35	215	10.0	н	**	**	n	n	"	
Total Hydrocarbons	3050	10.0	н	**	н	н	n	н	
Surrogate: 1-Chlorooctane		115 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		122 %	70-1	30	"	"	"	"	
SB-10 75' (6G26001-14) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	07/31/06	EPA 8021B	
Toluene	ND	0.0250	11	**	R	"	"	10	
Ethylbenzene	ND	0.0250	"		R	п	"	41	
Xylene (p/m)	ND	0.0250		**	•	н	**	н	
Xylene (o)	ND	0.0250	н	**	,,	н	"	п	
Surrogate: a,a,a-Trifluorotoluene		87.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	12.9	10.0	mg/kg dry	1	EG62717	07/27/06	07/28/06	EPA 8015M	
Carbon Ranges C12-C28	146	10.0	17	H		*1	0	e	
Carbon Ranges C28-C35	11.5	10.0	11	11	и	**	,,	N	
Total Hydrocarbons	170	10.0	11	**	**	n	11	rt.	
Surrogate: 1-Chlorooctane		94.8 %	70-1	30	н	"	"	"	
Surrogate: 1-Chlorooctadecane		87.4 %	70-1	30	"	"	n	"	
SB-11 5' (6G26001-15) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EG63119	07/31/06	07/31/06	EPA 8021B	
Toluene	ND	0.0250	"	31	"	"	n	н	
Ethylbenzene	ND	0.0250	"	44	"	н	**		
Xylene (p/m)	ND	0.0250	n		"	u u	*1	D.	
Xylene (o)	ND	0.0250	н		н	19	*		
Surrogate: a,a,a-Trifluorotoluene		86.0 %	80-1	20	,,	"	"	n	
Surrogate: 4-Bromofluorobenzene		82.0 %	80-1	20	n	"	"	"	
Carbon Ranges C6-C12	ND	. 10.0	mg/kg dry	1	EG62717	07/27/06	07/28/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	*	"	"	н	10	**	
Carbon Ranges C28-C35	ND	10.0	*	#	"	u	**	н	
Total Hydrocarbons	ND	10.0	n		**	n	"	n	
Surrogate: 1-Chloroociane		96.0 %	70-1	30	n	"	"	n	
Surrogate: 1-Chlorooctadecane		87.8 %	70-1	30	"	"	"	"	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

	Environ	mentai L	ad of Le	exas				
Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note

ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
ND	0.0250	н	•	**	ч	н	"	
ND	0.0250	"	e	"	u	"	н	
ND	0.0250	н	"	"	н	n	н	
ND	0.0250	n	"	н	н	n	н	
	84.0 %	80-1	20	"	"	"	"	
	89.2 %	80-1	20	"	"	"	"	
ND	10.0	mg/kg dry	1	EG62717	07/27/06	07/28/06	EPA 8015M	
ND	10.0	"	*	*	**	ņ	If	
ND	10.0	11	**	n	**	м	14	
ND	10.0	,,	*	n	н	**	"	
	94.0 %	70-1	30	11	"	n	ıı .	
	85.4 %	70-1	30	n	"	"	n	
ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
ND	0.0250	**			"	н	"	
ND	0.0250	**	"	**			и	
ND	0.0250	**	"	#		**	"	
ND	0.0250	н	н	**	**	**	"	
	89.8 %	80-1.	20	"	n n	"	"	
	80.8 %	80-1	20	"	n	"	"	
ND	10.0	mg/kg dry	1	EG62717	07/27/06	07/28/06	EPA 8015M	
ND	10.0	"	**	11	н	**	n	
ND	10.0	n	"	11	"	,,	"	
ND	10.0	n	"	"	"	"	"	
	91.8 %	70-1.	30	n	"	п	"	
	83.8 %	70-1.	30	"	"	"	"	
	٠							
ND	0.0250	mg/kg dry	25	EG63119	07/31/06	08/01/06	EPA 8021B	
ND	0.0250		н		и	"	"	
ND	0.0250	17	н	n	п	II .	W.	
ND	0.0250	**	n	17	н	**	н	
ND	0.0250	n	n	**	*	**	"	
	82.5 %	80-1	20	,,	"	"	"	
	82.8 %	80-12	20	"	"	"	"	
ND		mg/kg dry						
· · · · · · · · · · · · · · · · ·	ND N	Result Company	Result Limit Units	Result Limit Units Dilution	ND	Result	Result	Result

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-11 30' (6G26001-18) Soil						-			
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EG62716	07/27/06	07/28/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	**	**	**	"	"	12	
Total Hydrocarbons	ND	10.0	11	**	"	11	н	**	
Surrogate: 1-Chlorooctane		90.8 %	70-13	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		86.2 %	70-13	80	"	"	"	"	

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-9 5' (6G26001-01) Soil						- 10			
% Moisture	5.0	0.1	%	1	EG62701	07/26/06	07/27/06	% calculation	
SB-9 10' (6G26001-02) Soil									
% Moisture	10.2	0.1	%	1	EG62701	07/26/06	07/27/06	% calculation	
SB-9 20' (6G26001-03) Soil									
% Moisture	8.2	0.1	%	1	EG62701	07/26/06	07/27/06	% calculation	
SB-9 30' (6G26001-04) Soil									
% Moisture	21.9	0.1	%	1	EG62701	07/26/06	07/27/06	% calculation	
SB-10 5' (6G26001-05) Soil									
% Moisture	2.3	0.1	%	1	EG62701	07/26/06	07/27/06	% calculation	
SB-10 10' (6G26001-06) Soil									
% Moisture	7.1	0.1	%	i	EG62701	07/26/06	07/27/06	% calculation	
SB-10 15' (6G26001-07) Soil									
% Moisture	5.5	0.1	%	1	EG62701	07/26/06	07/27/06	% calculation	
SB-10 20' (6G26001-08) Soil									
Chloride	73.9	5.00	mg/kg	10	EH60105	07/31/06	07/31/06	EPA 300.0	
% Moisture	9.3	0.1	% .	1	EG62701	07/26/06	07/27/06	% calculation	
SB-10 25' (6G26001-09) Soil						<u> </u>			
% Moisture	4.7	0.1	%	1	EG62701	07/26/06	07/27/06	% calculation	
SB-10 35' (6G26001-10) Soil									
% Moisture	29.3	0.1	%	1	EG62701	07/26/06	07/27/06	% calculation	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-10 45' (6G26001-11) Soil									
% Moisture	26.0	0.1	%	1	EG62701	07/26/06	07/27/06	% calculation	
SB-10 55' (6G26001-12) Soil									
% Moisture	28.5	0.1	%	1	EG62701	07/26/06	07/27/06	% calculation	
SB-10 65' (6G26001-13) Soil									
% Moisture	7.2	0.1	%	i	EG62701	07/26/06	07/27/06	% calculation	_
SB-10 75' (6G26001-14) Soil									
% Moisture	6.4	0.1	%	1	EG62701	07/26/06	07/27/06	% calculation	
SB-11 5' (6G26001-15) Soil									
% Moisture	3.1	0.1	%	1	EG62701	07/26/06	07/27/06	% calculation	
SB-11 10' (6G26001-16) Soil									
% Moisture	5.0	0.1	%	1	EG62701	07/26/06	07/27/06	% calculation	
SB-11 20' (6G26001-17) Soil									
% Moisture	8.1	0.1	%	1 .	EG62701	07/26/06	07/27/06	% calculation	
SB-11 30' (6G26001-18) Soil									
% Moisture	4.2	0.1	%	1	EG62701	07/26/06	07/27/06	% calculation	

Project: Lovington Gathering WTI

Spike

250

500

50.0

50.0

536

536

0.00

1070

50.0

50.0

99.6

106

125

129

103

97.8

101

119

108

Prepared: 07/26/06 Analyzed: 07/27/06

ND

ND

ND

ND

80-120

80-120

70-130

70-130

75-125

75-125

75-125

75-125

70-130

70-130

Source

%REC

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

RPD

Organics by GC - Quality Control Environmental Lab of Texas

Reporting

249

531

62.4

64.3

554

524

ND

1080

59.4

54.0

Source: 6G24009-42

10.0

10.0

10.0

10.0

mg/kg dry

mg/kg

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62616 - Solvent Extraction (GC))							- 44		
Blank (EG62616-BLK1)				Prepared: (07/26/06 A	nalyzed: 07	7/28/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							-
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	11							
Total Hydrocarbons	ND	10.0	**							
Surrogate: 1-Chlorooctane	56.8		mg/kg	50.0		114	70-130			
Surrogate: 1-Chlorooctadecane	56.0		"	50.0		112	70-130			
LCS (EG62616-BS1)				Prepared: (07/26/06 A	nalyzed: 07	7/27/06			
Carbon Ranges C6-C12	532	10.0	mg/kg wet	500		106	75-125			
Carbon Ranges C12-C28	443	10.0	"	500		88.6	75-125			
Carbon Ranges C28-C35	ND	10.0	n.	0.00			75-125			
Total Hydrocarbons	975	10.0	n	1000		97.5	75-125			
Surrogate: 1-Chlorooctane	59.5		mg/kg	50.0		119	70-130			
Surrogate: 1-Chlorooctadecane	53.7		"	50.0		107	70-130			
Calibration Check (EG62616-CCV1)				Prepared: (07/26/06 A	nalyzed: 07	7/28/06			
Carbon Ranges C6-C12	282		mg/kg	250		113	80-120			

Carbon Ranges C12-C28

Surrogate: 1-Chlorooctane

Carbon Ranges C6-C12

Carbon Ranges C12-C28

Carbon Ranges C28-C35

Surrogate: 1-Chlorooctadecane

Total Hydrocarbons
Surrogate: 1-Chlorooctane

Surrogate: 1-Chlorooctadecane

Matrix Spike (EG62616-MS1)

Total Hydrocarbons

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG62616 - Solvent Extraction (GC)						•				
Matrix Spike Dup (EG62616-MSD1)	Sou	rce: 6G24009	9-42	Prepared:	07/26/06 A	nalyzed: 07	//28/06			
Carbon Ranges C6-C12	555	10.0	mg/kg dry	536	ND	104	75-125	0.180	20	
Carbon Ranges C12-C28	512	10.0	**	536	ND	95.5	75-125	2.32	20	
Carbon Ranges C28-C35	ND	10.0	**	0.00	ND		75-125		20	
Total Hydrocarbons	1070	10.0	17	1070	ND	100	75-125	0.930	20	
Surrogate: 1-Chlorooctane	56.0		mg/kg	50.0		112	70-130			
Surrogate: 1-Chlorooctadecane	52.2		"	50.0		104	70-130	•		
Batch EG62716 - Solvent Extraction (GC)										
Blank (EG62716-BLK1)				Prepared &	& Analyzed:	07/27/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	**							
Carbon Ranges C28-C35	ND	10.0								
Total Hydrocarbons	ND	10.0	**							
Surrogate: 1-Chlorooctane	46.2	***************************************	mg/kg	50.0		92.4	70-130			
Surrogate: 1-Chlorooctadecane	42.1		"	50.0		84.2	70-130			
LCS (EG62716-BS1)				Prepared &	& Analyzed:	07/27/06				
Carbon Ranges C6-C12	500	10.0	mg/kg wet	500		100	75-125			•
Carbon Ranges C12-C28	555	10.0	•	500		111	75-125			
Carbon Ranges C28-C35	ND	10.0	н	0.00			75-125			
Total Hydrocarbons	1050	10.0	н	1000		105	75-125			
Surrogate: 1-Chlorooctane	60.3		mg/kg	50.0		121	70-130			
Surrogate: 1-Chlorooctadecane	47.8		"	50.0		95.6	70-130			
Calibration Check (EG62716-CCV1)				Prepared:	07/27/06 A	nalyzed: 07	//28/06			
Carbon Ranges C6-C12	206		mg/kg	250		82.4	80-120		-	
Carbon Ranges C12-C28	260		0	250		104	80-120			
Total Hydrocarbons	466		"	500		93.2	80-120			
Surrogate: 1-Chlorooctane	61.0		"	50.0		122	70-130			

51.6

Surrogate: 1-Chloroociadecane

103

70-130

50.0

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62716 - Solvent Extraction (GC	C)									
Matrix Spike (EG62716-MS1)	Source	e: 6G26001	1-18	Prepared: (07/27/06 Aı	nalyzed: 07	/28/06			
Carbon Ranges C6-C12	583	10.0	mg/kg dry	522	ND	112	75-125			
Carbon Ranges C12-C28	591	10.0	*	522	ND	113	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125			
Total Hydrocarbons	1170	10.0	•	1040	ND	112	75-125			
Surrogate: 1-Chlorooctane	59.7		mg/kg	50.0		119	70-130			
Surrogate: 1-Chlorooctadecane	52.7		"	50.0		105	70-130			
Matrix Spike Dup (EG62716-MSD1)	Sourc	e: 6G26001	I-18	Prepared: (07/27/06 Ai	nałyzed: 07	/28/06			
Carbon Ranges C6-C12	556	10.0	mg/kg dry	522	ND	107	75-125	4.74	20	
Carbon Ranges C12-C28	548	10.0	ı,	522	ND	105	75-125	7.55	20	
Carbon Ranges C28-C35	ND	10,0	n	0.00	ND		75-125		20	
Total Hydrocarbons	1100	10.0	"	1040	ND	106	75-125	6.17	20	
Surrogate: 1-Chlorooctane	63.6		mg/kg	50.0		127	70-130			
Surrogate: 1-Chlorooctadecane	51.2		"	50.0		102	70-130			
Batch EG62717 - Solvent Extraction (GC	C)									
Blank (EG62717-BLK1)				Prepared: (07/27/06 Aı	nalyzed: 07	/28/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet		-					
Carbon Ranges C12-C28	ND	10.0	н							
Carbon Ranges C28-C35	ND	10.0	н							
Total Hydrocarbons	ND	10.0	"							
Surrogate: 1-Chlorooctane	47.7		mg/kg	50.0		95.4	70-130			
Surrogate: 1-Chlorooctadecane	44.4		"	50.0		88.8	70-130			
LCS (EG62717-BS1)				Prepared: (07/27/06 At	nalyzed: 07	/28/06			
Carbon Ranges C6-C12	507	10.0	mg/kg wet	500		101	75-125	•		
	570	10.0	**	500		114	75-125			
Carbon Ranges C12-C28	370									
	ND	10.0	**	0.00			75-125			
Carbon Ranges C12-C28 Carbon Ranges C28-C35 Fotal Hydrocarbons		10.0 10.0	н	0.00 1000		108	75-125 75-125			
Carbon Ranges C28-C35	ND					108				

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

	_	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62717 - Solvent Extraction (GC)										
Calibration Check (EG62717-CCV1)				Prepared: (07/27/06 A	nalyzed: 07	7/28/06			
Carbon Ranges C6-C12	207		mg/kg	250		82.8	80-120			
Carbon Ranges C12-C28	291		н	250		116	80-120			
Total Hydrocarbons	498		н	500		99.6	80-120			
Surrogate: 1-Chlorooctane	64.5		"	50.0		129	70-130			
Surrogate: 1-Chlorooctadecane	64.6		"	50.0		129	70-130			
Matrix Spike (EG62717-MS1)	Sou	rce: 6G26001	1-17	Prepared: (07/27/06 A	nalyzed: 07	7/28/06			
Carbon Ranges C6-C12	497	10.0	mg/kg dry	544	ND	91.4	75-125			
Carbon Ranges C12-C28	510	10.0		544	ND	93.8	75-125			
Carbon Ranges C28-C35	ND	10.0	н	0.00	ND		75-125			
Total Hydrocarbons	1010	10.0	,	1090	ND	92.7	75-125			
Surrogate: 1-Chlorooctane	52.3		mg/kg	50.0		105	70-130			
Surrogate: 1-Chlorooctadecane	40.8		"	50.0		81.6	70-130			
Matrix Spike Dup (EG62717-MSD1)	Sou	rce: 6G26001	I- 1 7	Prepared: (07/27/06 A	nalyzed: 07	7/28/06			
Carbon Ranges C6-C12	517	10.0	mg/kg dry	544	ND	95.0	75-125	3.94	20	
Carbon Ranges C12-C28	545	10.0	n	544	ND	100	75-125	6.64	20	
Carbon Ranges C28-C35	ND	10.0		0.00	ND		75-125		20	
Total Hydrocarbons	1060	10.0	н	1090	ND	97.2	75-125	4.83	20	
Surrogate: 1-Chlorooctane	60.0		mg/kg	50.0	· · · · · · · · · · · · · · · · · · ·	120	70-130			
Surrogate: 1-Chlorooctadecane	47.4		"	50.0		94.8	70-130			
Batch EG62806 - EPA 5030C (GC)										
Blank (EG62806-BLK1)			_	Prepared: (07/28/06 A	nalyzed: 07	7/31/06			
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	н							
Ethylbenzene	ND	0.0250	,							
Xylene (p/m)	NĐ	0.0250	n							
Xylene (o)	ND	0.0250	н							
Surrogate: a,a,a-Trifluorotoluene	36.8		ug/kg	40.0		92.0	80-120			
Surrogate: 4-Bromofluorobenzene	33.3		"	40.0		83.2	80-120			

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Analogo	F .	Reporting	** *	Spike	Source	0/5==	%REC	nes	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62806 - EPA 5030C (GC)										
LCS (EG62806-BS1)				Prepared &	Analyzed:	07/28/06				
Benzene	1.03	0.0250	mg/kg wet	1.25		82.4	80-120			
Toluene	1.08	0.0250	"	1,25		86.4	80-120			
Ethylbenzene	1.03	0.0250	**	1.25		82.4	80-120			
Xylene (p/m)	2.36	0.0250	"	2.50		94.4	80-120			
Xylene (o)	1.15	0.0250	**	1.25		92.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	32.2		ug/kg	40.0		80.5	80-120			
Surrogate: 4-Bromofluorobenzene	34.7		"	40.0		86.8	80-120			
Calibration Check (EG62806-CCV1)				Prepared: ()7/28/06 A	nalyzed: 07	7/31/06			
Benzene	0.0513		mg/kg wet	0.0500		103	80-120			
Toluene	0.0498		м	0.0500		99.6	80-120			
Ethylbenzene	0.0520		н	0.0500		104	80-120			
Xylene (p/m)	0.103		"	0.100		103	80-120			
Xylene (o)	0.0508			0.0500		102	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.0		ug/kg	40.0		92.5	80-120			
Surrogate: 4-Bromofluorobenzene	35.2		"	40.0		88.0	80-120			
Matrix Spike (EG62806-MS1)	Sou	rce: 6G26001	1-01	Prepared: (07/28/06 A	nalyzed: 07	7/31/06			
Benzene	1.33	0.0250	mg/kg dry	1.32	ND	101	80-120			
Toluene	1.33	0.0250	"	1.32	ND	101	80-120			
Ethylbenzene	1.32	0.0250	"	1.32	ND	100	80-120			
Xylene (p/m)	2.89	0.0250	n	2.63	ND	110	80-120			
Xylene (o)	1.43	0.0250	**	1.32	ND	108	80-120			
Surrogate: a,a,a-Trifluorotoluene	34.4		ug/kg	40.0		86.0	80-120			
Surrogate: 4-Bromofluorobenzene	38.2		"	40.0		95.5	80-120			
Matrix Spike Dup (EG62806-MSD1)	Sou	rce: 6G26001	1-01	Prepared: ()7/28/06 A	nalyzed: 07	7/31/06	,		
Benzene	1.26	0.0250	mg/kg dry	1.32	ND	95.5	80-120	5.60	20	
Toluene	1.26	0.0250	**	1.32	ND	95.5	80-120	5.60	20	
Ethylbenzene	1.29	0.0250	ч	1.32	ND	97.7	80-120	2,33	20	
Xylene (p/m)	2.79	0.0250	"	2.63	ND	106	80-120	3.70	20	
Xylene (o)	1.39	0.0250	**	1.32	ND	105	80-120	2.82	20	
Surrogate: a,a,a-Trifluorotoluene	35.5		ug/kg	40.0		88.8	80-120			
Surrogate: 4-Bromofluorobenzene	40.7		"	40.0		102	80-120			

Project: Lovington Gathering WTI

Spike

Source

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

RPD

%REC

Organics by GC - Quality Control

Environmental Lab of Texas

Reporting

		Keporang		Spike	Source		/OKEC		KID	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG63119 - EPA 5030C (GC)										
Blank (EG63119-BLK1)				Prepared &	z Analyzed	: 07/31/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	*1							
Ethylbenzene	ND	0.0250	**							
Xylene (p/m)	ND	0.0250	н							
Xylene (o)	ND	0.0250	**							
Surrogate: a,a,a-Trifluorotoluene	37.5	1-1-1-1-1	ug/kg	40.0		93.8	80-120			
Surrogate: 4-Bromofluorobenzene	33.3		"	40.0		83.2	80-120			
LCS (EG63119-BS1)				Prepared &	. Analyzed	: 07/31/06				
Benzene	1.27	0.0250	mg/kg wet	1.25		102	80-120			
Toluene	1.26	0.0250	n	1.25		101	80-120			
Ethylbenzene	1.23	0.0250	**	1.25		98.4	80-120			
Xylene (p/m)	2.74	0.0250		2.50		110	80-120			
Xylene (o)	1.37	0.0250		1.25		110	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.5		ug/kg	40.0		98.8	80-120			
Surrogate: 4-Bromofluorobenzene	38.1		"	40.0		95.2	80-120			
Calibration Check (EG63119-CCV1)				Prepared: ()7/31/06 A	nalyzed: 0	8/01/06			
Benzene	51.5		ug/kg	50.0		103	80-120			
Toluene	49.9		"	50:0		99.8	80-120			
Ethylbenzene	51.7		"	50.0		103	80-120			
Xylene (p/m)	103		n	100		103	80-120			
Xylene (o)	50.8		**	50.0		102	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.7		"	40.0		89.2	80-120			
Surrogate: 4-Bromofluorobenzene	33.7		n	40.0		84.2	80-120			
Matrix Spike (EG63119-MS1)	Sou	rce: 6G28008	8-01	Prepared: ()7/31/06 A	nalyzed: 08	8/01/06			
Benzene	1.51	0.0250	mg/kg dry	1.40	ND	108	80-120			
Toluene	1.52	0.0250	**	1.40	ND	109	80-120			
Ethylbenzene	1.47	0.0250	*	1.40	ND	105	80-120			
Xylene (p/m)	3.25	0.0250	н	2.81	ND	116	80-120			
Xylene (o)	1.58	0.0250	н	1.40	ND	113	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.5		ug/kg	40.0		96,2	80-120			
Surrogate: 4-Bromofluorobenzene	40.9		"	40.0		102	80-120			

Project: Lovington Gathering WTI

Spike

Source

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

RPD

%REC

Organics by GC - Quality Control

Environmental Lab of Texas

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG63119 - EPA 5030C (GC)										
Matrix Spike Dup (EG63119-MSD1)	Sour	ce: 6G28008	3-01	Prepared: (07/31/06 A	nalyzed: 08	3/01/06			
Benzene	1,43	0.0250	mg/kg dry	1.40	ND	102	80-120	5.71	20	
Toluene	1,41	0.0250	**	1.40	ND	101	80-120	7.62	20	
Ethylbenzene	1.35	0.0250	**	1.40	ND	96.4	80-120	8.54	20	
Xylene (p/m)	3.00	0.0250	0	2.81	ND	107	80-120	8.07	20	
Xylene (o)	1.49	0.0250	**	1.40	ND	106	80-120	6.39	20	
Surrogate: a,a,a-Trifluorotoluene	40.4		ug/kg	40.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	39.2		n	40.0		98.0	80-120			

Plains All American EH & S

1301 S. County Road 1150 Midland TX, 79706-4476 Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG62701 - General Preparation (Prep)										
Blank (EG62701-BLK1)				Prepared: (07/26/06 A	nalyzed: 07	7/27/06			
% Solids	100		%							
Duplicate (EG62701-DUP1)	Sou	rce: 6G26001-	-01	Prepared: (07/26/06 A	nalyzed: 07	7/27/06			
% Solids	95.0		%		95.0			0.00	20	
Duplicate (EG62701-DUP2)	Sou	ce: 6G26004-	-02	Prepared: (07/26/06 A	nalyzed: 07	7/27/06			
% Solids	95.4		%		96,2			0,835	20	
Batch EH60105 - Water Extraction										
Blank (EH60105-BLK1)				Prepared 8	& Analyzed	: 07/31/06				
Chloride	ND	0.500	mg/kg							
LCS (EH60105-BS1)				Prepared &	& Analyzed	: 07/31/06				
Chloride	9.92	0.500	mg/kg	10.0		99.2	80-120			
Calibration Check (EH60105-CCV1)				Prepared &	& Analyzed	: 07/31/06				
Chloride	11.9		mg/kg	10.0		119	80-120			
Duplicate (EH60105-DUPI)	Sou	ce: 6G28007-	-01	Prepared &	& Analyzed	: 07/31/06				
Chloride	103	10.0	mg/kg		91.9			11.4	20	
Duplicate (EH60105-DUP2)	Sour	rce: 6G31003-	-01	Prepared &	k Analyzed	: 07/31/06				
Chloride	356	25,0	mg/kg		387			8.34	20	
Matrix Spike (EH60105-MS1)	Soui	ce: 6G28007-	01	Prepared &	& Analyzed	: 07/31/06				
Chloride	300	10.0	mg/kg	200	91.9	104	80-120			

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142

Fax: (432) 687-4914

Project Manager: Camille Reynolds

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH60105 - Water Extraction

Matrix Spike (EH60105-MS2)	Source	e: 6G31003-	01	Prepared &	Analyzed:	07/31/06			
Chloride	907	25.0	mg/kg	500	387	104	80-120		

Plains All American EH & SProject:Lovington Gathering WTIFax: (432) 687-49141301 S. County Road 1150Project Number:SRS: 2006-142Midland TX, 79706-4476Project Manager:Camille Reynolds

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect. Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag). Analyte DETECTED DET Analyte NOT DETECTED at or above the reporting limit NR Not Reported Sample results reported on a dry weight basis dry RPD Relative Percent Difference LCS Laboratory Control Spike MS Matrix Spike Duplicate

	Kaland KJuls		
Report Approved By:	Radan Ciro	Date:	8/2/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Savies mestal test of the xea

4.23

Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

CHAIN SECUSION RECEIPTING MINISTERIES HEADEST DAILS AL

Project Name: Lovington Gathering WT!

TAT bisbrist NPOES RUST (BA , AS (elubadub-er9) TAT HZUP TRRP M,9,0,V Sustody seals on container(s) by Sampler/Client Rep. ? by Courier? UPS I Temperature Upon Receipt VOCs Free of Headspace? Sample Containers Intact? BCI PO#: PAA/C. Reynolds Project Loc: Lea County, NM _aboratory Comments: Added Mastor Sample Hand Delivered Project#: SRS: 2006-142 BLEX 8051B/2030 OF BLEX 8560 × × × × × × × X Standard Metals: As Ag Ba Cd Cr Pb Hg Se TCLP: PVB / ESb / CEC TOTAL Anions (Cl.) \$04, CO3, HCO3) Report Format: Ohsc Cations (Ca, Mg, Na, K) 57 TPH: 418.1 8015M 11005 × × × SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL S 7/26/06 7/25/06 OW#Drinking Water St#Shudge Olher (Specify) e-mail: kdutton@basinenv.com anoM OZBZBN HOBM *os*H нсі Fax No: (505) 396-1429 ⁶ОNН 901 × × × × × × × No. of Containers 4 oz gid 52 1045 1138 1203 1043 1100 1130 1133 1052 1126 1139 belgme2 emiT Some March Basin Environmental Service Technologies, LLC 24-Jul-06 24-Jul-06 24~Juf-06 24~Jul-06 24~Jul-06 24~Jul-06 24~Jul-06 24-Jul-06 24~Jul-06 24-Jul-06 Date Sampled 124B 19 35 202 è 15 25 30 20, guqjud Debth is 'n 52 Š 9 2 30. 23 20, Beginning Depth ò io in Ö S/4/06 Lovington, NM 88260 7/24/56 (505) 441-2124 P. O. Box 301 Ken Dutton Sampler Signature: FIELD CODE SB-9 20' SB-10 10 SB-10 15' SB-10 5' SB-10 20' SB-10 25' SB-10 35 SB-9 10' SB-9 30' 662601 Company Address: Project Manager: Company Name Telephone No: City/State/Zip: Special Instructions: ((ab use only) ORDER #: 90 ò 63 00 3 -67 50 8 9 (Nuo asn del) # 8A

myitanım ental esto certexen

12600 West I-20 East Odessa, Texas 79765

CHA

Pho Fa

Phone: 432-563-1800 Fax: 432-563-1713

YSIS TEST

		٠,		S			011.7	. '0	TAT brebnet2	$\hat{}$	$\widehat{}$	$\widehat{}$	$\widehat{-}$	$\widehat{}$	$\stackrel{\frown}{}$	귀	$\widehat{}$		-			Star .	ပ္	1
	ŀ			☐ NPDES		H	524 6	Z EU	. , AS (əfubədəcə-enq) TAT HZUЯ			-			\dashv				-	22	z z :	FedEx Lone Star		١
				Z			 					\dashv	\dashv	\dashv	\dashv		-+	-+	┦,	C 45	188	с 8. <i>С\с</i>	\sim	
	1			_			\vdash						_					+	┪ :	७७	00		1	١
E				α.											_				7					1
5	- 1			TRRP					M.S.O.N					ヿ	\dashv	\neg			7		(S	톰		
i			100			١			I)DE						\neg				ᆌ	5 6	(S)	6	ap Ti	1
重	弁	돌	흥			9 Fo	Ι×	0	STEX 802/B/5030 pr BTEX 826	×	×	×	×	×	×	×	×		- st	Intac	o agi	red IRe	360	1
Project Name: Lovington Gathering WTI	2006-142	Project Loc: Lea County, NM	PO#: PAA/C. Reynolds	10		Analyze For			selijalovime2				\neg	ヿ	\neg				Laboratory Comments:	Sample Containers Intact?	Custody seals on container(s) Custody seals on cooler(s)	Sample Hand Delivered by Sampler/Client Rep: ? by Courier?	Temperature Upon Receipt:	1
힐	잃	Ę	ď	X Standard		An		T	SelilisloV					\neg	\neg				ୗୢ୕ଌ	ifain of H	o sis		ີ ຄ	1
Ę.	ö	ၓၟ	Ş	Star				ə	Metals: As Ag Ba Cd Cr Pb Hg 5										200	Ö	S S	amp Souri	atur	1
희	SRS:	Fe	PA	×			TCLP: OTAL:	1	SAR / ESP / CEC						\neg				ora Ea	apple 2	() () () () () () ()	ට ය කිනිසු	per	
ë,	#.	ပ္ထဲ	#			ĺ	TOTAL	Г	Anions (Cl, SO4, CO3, HCO3)										ם	San	33	San	Ţen	
Nan	Project #:	ᇴ	5	nat:		l		Г	Cations (Ca. Mg, Na, K)											, , ,	, ,	۵.	3	,]
ect	F.	ō e		Fort				9	301 2001 M310B 1,814 H9T	×	×	×	×	×	×	×	×				Time /	7 <u>1</u> 2	Time 7:00	
Proj		₫.		Report Format:		_	-	Ĺ	NP=Non-Polable Specify Other				,	,	_,	,					[` <u>`</u>	7.	1. 2	
				Rep				Matnx	GW = Groundwater S=Soil/Solid	SOIL	SOIL	SOIL	SOIL	SOL	SOIL	SOIL	SOIL					v	1	7
		•		_				2	DW-Drinking water SL-Sledge	"	S	05	"	ိ	ျိ	ိ	0,				g ~	Z ate	₽ ~	ا
	- 1							Γ	Other (Specify)												Oate T	\ <u> </u> 2	Date (27/0)	
	1				E			Preservation & # of Containers	нопе										7		1	7	12	1
	1				ŏ			뒫	CO _S S _S N										7					1
					É			jo #	HOSN															
		i			Sin			ε E	os-H														40	Φ
	-			33	S			Z atí	нсі														1-3	١
				4	් ශි	1		Jese	°ONH														13	I
	ļ			390	£			ı	90)	×	X	X	X	×	×	×	×					1	1 -3	ı
				505)	ᇴ			53	No. of Containers 4ux gle	1	1	1	_	_	-	-	-		7			ł	<u>_</u>	,
			i	<i>≅</i> ,	₹.	ij			14			\vdash	-	-	ᅱ			╌┼╴					- ×	
	- 1			Fax No: (505) 396-1429	e-mail: kdutton@basinenv.com					7	4	8	n	∞	4	9	25				17	_	1 1	Ί
				LL.	Φ				Time Sampled	1207	1224	1230	1233	1518	1524	1529	1535				,		13	
-	ပ														İ						1	\bigcap	<u>-</u> }	,
	긔			1)	ę	2	တ	(D			10	ري				14		d by ELOT:	l
	jes	- 1								9-1	0-1	-	즼	킼	킼	킼	킼				à	12	हैं है	١
	욁	ľ							Date Sampled	24~Jul-08	24~Juf-06	24~Jul-06	24-Jul-06	24~Jul-06	24-Jul-06	24~Jul-06	24~Jul-06				Received by	Recaived by	Received by ELOT:	
	echnologies, LLC									7	5	7	15	7	2	7	7				18 Y-	Rec	A Rec	•
- 1	2								Ending Depth	45.	55'	65'	75'	ũ	9	20,	30.					Time / 2	0	1
	9								West stripes	4	ı.c	9			_	7					Time 7	ille i	Time 7	l
i	Basin Environmental Service T				١.,				Beginning Depth	.0	50,	60,	9.	ъ	io	5	25				7		Time	
	Š		0		N	1				\vdash		\dashv	\dashv	\dashv	_		\dashv		-					- 1
	it.		Lovington, NM 88260		ß]		-					ē √	Date	Date 7 /2, /	į
	휠		∞ >	4	A	Ì									l						Date	7 2	Date 7 / 27.	
حا	.፬		Z	(505) 441-2124	/ [1															Į į	<u>}</u>		4
Ken Dutton	흾	ŏ	힐	7																	`	Y		l
<u>o</u>	<u>:</u>	<u>"</u>	ing	5	79	1			DE	įΩ	55	55	.5	ŝ	≥	Ş	ĕ		1					1
è	Bas	٠ <u>,</u>	ရ	20	1 /	\langle		\bigcirc	5	10,	0	9	₽	7	=	=	=						ŀ	
•	-,	— ₁	-1	-1	ä	17		Ŏ.	FIELD CODE	SB-10 45	SB-10 55'	SB-10 65'	SB-10 75	SB-11	SB-11 10'	SB-11 20	SB-11 30				1			
ē	<u>a</u>	res			atur.			૭		"	(2)	"	9	-	"	~	"		1				1.	-
Project Manager:	Company Name	Company Address: P. O. Box 301	City/State/Zip:	Telephane No:	Sampler Signature:	,	[7					1			ł					1 *	3	1-4	k
≥	Į l	ıny,	ate/	aue	S S		(Ž						ļ	-				SUS:			3	1,3	T
ect	тра	тра	//St	qdə	gk	-		y					ł						İşi		x/)		1
Pro	Ō	Ö	C <u>i</u>	ě	Sar		훋	#					l						İ		B9	18	9 pg	4
							ab use only)	INDER #: (0(2/2/00)	(Vino esu dei) # 8AJ		-,1			,			2.5		pecial Instructions		nduished for	elinquished by	elinquished by	1
							ព្រួ	쥰	LAB # (lab use only)	1. 3	7	(0	71	5	3	7	9	4	96		圖》	/J.	ella bulla	

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	Plains P/L				
ate/ Time:	07-26-06 @ 0740				
Lab ID # :	6G 26001				
nitials:	JMM .				
_	Sample Receipt	Checklist			
<u> </u>					nt Initials
	iture of container/ cooler?	Yes	No	-1.O °C	
·	container in good condition?	(Yes)	No		
#3 Custody	Seals intact on shipping container/ cooler?	(Yes)	No	Not Present	
	Seals intact on sample bottles/ container?	(res)	No	Not Present	
	Custody present?	(Yes)	No		
#6 Sample i	nstructions complete of Chain of Custody?	Yes	No		;
	Custody signed when relinquished/ received?	(Yes)	No		
	Custody agrees with sample label(s)?	(Yes)	No	ID written on Cont./ Lid	
	r label(s) legible and intact?	Yes	No	Not Applicable	
10 Sample	matrix/ properties agree with Chain of Custody?	Yes	No		
#11 Containe	ers supplied by ELOT?	Yes	No		
#12 Samples	s in proper container/ bottle?	(Yes)	No	See Below	
13 Samples	s properly preserved?	(Yes)	No	See Below	
14 Sample	bottles intact?	(Yes)	No		
#15 Preserva	ations documented on Chain of Custody?	Yes	No		
16 Containe	ers documetned on Chain of Custody?	₹ Pes	No		
17 Sufficier	nt sample amount for indicated test(s)?	(Yes)	No	See Below	
#18 All samp	oles received within sufficient hold time?	(es)	No	See Below	
19 VOC sai	mples have zero headspace?	(Yes)	No	Not Applicable	
ı	Variance Docui	nentation			
contact:	Contacted by:			Date/ Time:	·
•					
Regarding:					
Corrective Ac	For Tokon	-			
)	ion raken.				
D					
			······	***************************************	
Check all that	Apply: See attached e-mail/ fax Client understands and woul Cooling process had begun s	•		•	
-	cooling process had begun s	shortly after \$	ашриид	CVCIIL	

Jeanne McMurrey

From:

"Ken Dutton" <kdutton@basinenv.com>

To: Sent: "Jeanne" <jeanne@elabtexas.com> Friday, July 28, 2006 9:18 AM

Sent: Subject:

Lovington Gathering WTI Soil Samples

Jeanne,

Please run a chloride analysis (EPA 300.0) on the SB-10 20' soil sample.

thxs

Ken

This message has been scanned for viruses and dangerous content by Basin Broadband, and is believed to be clean.

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Lovington Gathering WTI
Project Number: SRS: 2006-142
Location: Lea County, NM

Lab Order Number: 6115017

Report Date: 09/21/06

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1 5'	6115017-01	Soil	09/11/06 09:59	09-15-2006 13:35
MW-1 10'	6115017-02	Soil	09/11/06 10:03	09-15-2006 13:35
MW-1 15'	6115017-03	Soil	09/11/06 10:08	09-15-2006 13:35
MW-1 20'	6115017-04	Soil	09/11/06 10:13	09-15-2006 13:35
MW-1 25'	6115017-05	Soit	09/11/06 10:14	09-15-2006 13:35
MW-1 35'	6115017-06	Soil	09/11/06 10:24	09-15-2006 13:35
MW-1 45'	6115017-07	Soil	09/11/06 10:29	09-15-2006 13:35
MW-1 55'	6115017-08	Soil	09/11/06 10:34	09-15-2006 13:35
MW-1 65'	6115017-09	Soil	09/11/06 10:41	09-15-2006 13:35
MW-1 75'	6115017-10	Soil	09/11/06 10:45	09-15-2006 13:35
MW-2 5'	6115017-11	Soil	09/11/06 14:30	09-15-2006 13:35
MW-2 10'	6115017-12	Soil	09/11/06 14:42	09-15-2006 13:35
MW-2 15'	6115017-13	Soil	09/11/06 14:53	09-15-2006 13:35
MW-2 20'	6115017-14	Soil	09/11/06 14:54	09-15-2006 13:35
MW-2 25'	6115017-15	Soil	09/11/06 14:56	09-15-2006 13:35
MW-2 35'	6115017-16	Soil	09/11/06 15:01	09-15-2006 13:35
MW-2 45'	6115017-17	Soil	09/11/06 15:05	09-15-2006 13:35
MW-2 55'	6115017-18	Soil	09/11/06 15:12	09-15-2006 13:35
MW-2 65'	6115017-19	Soil	09/11/06 15:19	09-15-2006 13:35
MW-2 75'	6115017-20	Soil	09/12/06 10:15	09-15-2006 13:35
MW-3 5'	6115017-21	Soil	09/12/06 13:17	09-15-2006 13:35
MW-3 10'	6115017-22	Soil	09/12/06 13:22	09-15-2006 13:35
MW-3 15'	6115017-23	Soil .	09/12/06 13:24	09-15-2006 13:35
MW-3 20'	6115017-24	Soil	09/12/06 13:29	09-15-2006 13:35
MW-3 25'	6115017-25	Soil	09/12/06 13:31	09-15-2006 13:35
MW-3 35'	6115017-26	Soil	09/12/06 13:38	09-15-2006 13:35
MW-3 45'	6115017-27	Soil	09/12/06 13:42	09-15-2006 13:35
MW-3 55'	6115017-28	Soil	09/12/06 13:49	09-15-2006 13:35
MW-3 65'	6115017-29	Soil	09/12/06 13:55	09-15-2006 13:35
MW-3 75'	6115017-30	Soil	09/12/06 13:58	09-15-2006 13:35

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

				au 01 16					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
MW-1 5' (6115017-01) Soil				Diluton	Daten	Tiepaicu	, may zou	1-1-11100	
Benzene	ND	0.0250	mg/kg dry	25	E161509	09/15/06	09/15/06	EPA 8021B	
Toluene	ND	0.0250	"	n		*	"	n	
Ethylbenzene	ND	0.0250	**	**		"		n	
Xylene (p/m)	ND	0.0250	11	и .		11	,,	**	
Xylene (o)	ND	0.0250	"	**	n	**	n		
Surrogate: a,a,a-Trifluorotoluene		95.5 %	80-1	20	"	n	"	n	
Surrogate: 4-Bromofluorobenzene		87.0 %	80-1	20	"	n	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	E161508	09/15/06	09/19/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	**		11	,,	**	
Carbon Ranges C28-C35	ND	10.0	•	11	n	**	"	н	
Total Hydrocarbons	ND	10.0	"			n	"	**	
Surrogate: 1-Chlorooctane		73.6 %	70-1	30	"	n	"	ıı .	
Surrogate: 1-Chlorooctadecane		94.6 %	70-1	30	"	n	,,	"	
MW-1 10' (6115017-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	E161509	09/15/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250	"	* .	"	"	07/10/00	"	
Ethylbenzene	ND ND	0.0250	n		q	**	11	н	
Xylene (p/m)	ND	0.0250	н	**	**	ч	n	11	
Xylene (o)	ND	0.0250	н	19	u	,,	"	**	
Surrogate: a,a,a-Trifluorotoluene		101 %	80-1	20	n	"	"	n .	
Surrogate: 4-Bromofluorobenzene		92.0 %	80-1		"	,,	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61508	09/15/06	09/19/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"		H	,,	n		
Carbon Ranges C28-C35	ND	10.0	"	**	•	,,	,,	u	
Total Hydrocarbons	ND	10.0	**		*	"	n	If	
Surrogate: 1-Chlorooctane		73.4 %	70-1	30	,,	"	"	n .	
Surrogate: 1-Chlorooctadecane		93.8 %	70-1	30	"	<i>n</i>	"	"	
MW-1 15' (6115017-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EI61509	09/15/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250		11		н	н.	19	
Ethylbenzene	ND	0.0250	W	**	н	ı	H	**	
Xylene (p/m)	ND	0.0250	н	**	"	"	"	•	
Xylene (o)	ND	0.0250	н	"	"	"	н		
Surrogate: a,a,a-Trifluorotoluene		96.8 %	80-1	20	"	"	"	,,	
Surrogate: 4-Bromofluorobenzene		84.5 %	80-1		"	"	"	n	
Carbon Ranges C6-C12	ND	10.0		1	E161508	09/15/06	09/18/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

			illelitai La						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 15' (6115017-03) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	!	EI61508	09/15/06	09/18/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	"	"	**	**	н	
Total Hydrocarbons	ND	10.0	"	**	0	**	н	н	
Surrogate: 1-Chlorooctane		85.6 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		103 %	70-1.	30 .	n	n	"	"	
MW-1 20' (6115017-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	E161509	09/15/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250	"	"	"	**	н	н	
Ethylbenzene	ND	0.0250	н	**	**	41	н	•	
Xylene (p/m)	ND	0.0250	**	**		**	**	**	
Xylene (o)	ND	0.0250	н		**	**	н	**	
Surrogate: a,a,a-Trifluorotoluene		96.0 %	80-12	20	n	"	"	n	
Surrogate: 4-Bromofluorobenzene		82.8 %	80-12	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61508	09/15/06	09/16/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	•	•	,	"	ь	
Carbon Ranges C28-C35	ND	10.0	"	*	и	**	и	P	
Total Hydrocarbons	ND	10.0	н	"	"	"	"	10	
Surrogate: 1-Chlorooctane		112 %	70-1.	30	"	,,	"	"	
Surrogate: 1-Chlorooctadecane		118%	70-1.	30	"	"	"	"	
MW-1 25' (6115017-05) Soil		·							
Benzene	ND	0.0250	mg/kg dry	25	E161509	09/15/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250	**		**	"	n.	D.	
Ethylbenzene	ND	0.0250	11	**	"	"	,	11	
Xylene (p/m)	ND	0.0250	"	**	"	"	n	11	
Xylene (o)	ND	0.0250	n	**	**	"	It	Pe .	
Surrogate: a,a,a-Trifluorotoluene		87.0 %	80-12	20	,,	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.8 %	80-12	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61508	09/15/06	09/19/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	н		"	в	"	
Carbon Ranges C28-C35	ND	10.0	11		u	**	n	н	
Total Hydrocarbons	ND	10.0	н	11	"	**	"	11	
Surrogate: 1-Chlorooctane		76.0 %	70-12	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		97.0 %	70-13	30	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Environmental Lab of Texas

Organics by GC

Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method Notes MW-1 35' (6115017-06) Soil Benzene ND 0.0250 mg/kg dry 25 EI61509 09/15/06 09/18/06 EPA 8021B Toluene ND 0.0250 Ethylbenzene ND 0.0250 Xylene (p/m) ND 0.0250 Xylene (o) ND 0.0250 Surrogate: a,a,a-Trifluorotoluene 97.0% 80-120 Surrogate: 4-Bromofluorobenzene 81.8% 80-120 Carbon Ranges C6-C12 ND 10.0 mg/kg dry EI61508 09/15/06 09/19/06 EPA 8015M Carbon Ranges C12-C28 ND 10.0 Carbon Ranges C28-C35 ND 10.0 Total Hydrocarbons ND 10.0 Surrogate: 1-Chlorooctane 76.8 % 70-130 Surrogate: 1-Chlorooctadecane 97.0% 70-130 MW-1 45' (6115017-07) Soil Benzene ND 0.0250 mg/kg dry EI61509 09/18/06 09/18/06 EPA 8021B Toluene 0.0250 ND Ethylbenzene 0.0250 ND Xylene (p/m) 0.0250 ND Xylene (o) ND 0.0250 Surrogate: a,a,a-Trifluorotoluene 89.8 % 80-120 Surrogate: 4-Bromofluorobenzene 81.0% 80-120 Carbon Ranges C6-C12 ND 10.0 mg/kg dry 09/15/06 09/19/06 EPA 8015M Carbon Ranges C12-C28 ND 10.0 Carbon Ranges C28-C35 10.0 ND Total Hydrocarbons ND 10.0 75.4 % 70-130 Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane 95.8 % 70-130 MW-1 55' (6115017-08) Soil Benzene ND 0.0250 mg/kg dry EPA 8021B 25 EI61509 09/18/06 09/18/06 Toluene ND 0.0250 Ethylbenzene 0.0250 ND Xylene (p/m) 0.0250 ND Xylene (o) ND 0.0250

Environmental Lab of Texas

Carbon Ranges C6-C12

Surrogate: a,a,a-Trifluorotoluene Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

09/16/06

09/15/06

E161508

EPA 8015M

Fax: (432) 687-4914

80-120

80-120

90.0 %

83.8 %

10.0 mg/kg dry

ND

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1 55' (6115017-08) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	E161508	09/15/06	09/16/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	H	* .		4	н	н	
Total Hydrocarbons	ND	10.0	u	**	"	н	н	e	
Surrogate: 1-Chlorooctane		110%	70-1	30	"	"	,,	"	
Surrogate: I-Chlorooctadecane		113%	70-1	30	"	D	"	"	
MW-1 65' (6115017-09) Soil									
Benzene	ND	0.0250	mg/kg dry	25 .	E161812	09/18/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250		н	"	n	н	11	
Ethylbenzene	ND	0.0250	11	"	n.	"	H	#	
Xylene (p/m)	ND	0.0250	**			*	v	**	
Xylene (o)	ND	0.0250	**		**	*	**	**	
Surrogate: a,a,a-Trifluorotoluene		93.8 %	80-1	20	"	#	rt	"	
Surrogate: 4-Bromofluorobenzene		80.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1 .	E161508	09/15/06	09/16/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	*	н	"	11		•	
Carbon Ranges C28-C35	ND	10.0	11	"	"	n		a	
Total Hydrocarbons	ND	10.0	P	. н		11	"	**	
Surrogate: 1-Chlorooctane		101 %	70-1	30	"	n	"	"	
Surrogate: 1-Chlorooctadecane		109 %	70-1	30	"	n	"	n	
MW-1 75' (6115017-10) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EI61812	09/18/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250	"		n	n		ч	
Ethylbenzene	ND	0.0250	н		**	н	n	н	
Xylene (p/m)	ND	0.0250	"		11		u	"	
Xylene (o)	ND	0.0250	te	n	n	"	"	•	
Surrogate: a,a,a-Trifluorotoluene		82.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61508	09/15/06	09/19/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н	11	0	"	11	**	
Carbon Ranges C28-C35	ND	10.0		**	**	**	н		
Total Hydrocarbons	ND	10.0	IP .	н		н	11		
Surrogate: 1-Chlorooctane		73.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		97.0 %	70-1	30	"	"	"	n .	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
MW-2 5' (6115017-11) Soil									
Benzene	ND	0.0250	mg/kg dry	25 .	E161812	09/18/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250	•	u	**	11	**	"	
Ethylbenzene	ND	0.0250	w	,,	10	19	н	11	
Xylene (p/m)	ND	0.0250	er	19	10	11	**	"	
Xylene (o)	ND	0.0250	n	**	11	11	"	**	
Surrogate: a,a,a-Trifluorotoluene		84.5 %	80-1	20	,,	n	"	"	
Surrogate: 4-Bromofluorobenzene		83.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	E161508	09/15/06	09/16/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0		**	"	"	**	**	
Carbon Ranges C28-C35	ND	10.0	"	"	4	н	"	**	
Total Hydrocarbons	ND	. 10.0	11	**	н	*	"	"	
Surrogate: 1-Chlorooctane		106 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		107 %	70-1	30	"	"	"	"	
MW-2 10' (6115017-12) Soil				•					
Benzene	ND	0.0250	mg/kg dry	25	EI61812	09/18/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250	н	,	"	"	•	н	
Ethylbenzene	ND	0.0250	н		*1	"	**	н	
Xylene (p/m)	ND	0.0250	н	ıt	ч	"	#	•	
Xylene (o)	ND	0.0250		"	н	*	**	н	
Surrogate: a,a,a-Trifluorotoluene		99.8 %	80-1	20	,,	,,	"	n	
Surrogate: 4-Bromofluorobenzene		84.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61807	09/15/06	09/16/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	n	u	11	n	n	
Carbon Ranges C28-C35	ND	10.0	*	"	"	**	"	н	
Total Hydrocarbons	ND	10.0	•		"		"		
Surrogate: 1-Chlorooctane		107 %	70-1	30	"	,,	"	· ·	
Surrogate: 1-Chlorooctadecane		114%	70-1	30	"	"	"	"	
MW-2 15' (6115017-13) Soil									
Benzene	ND	0.0250	mg/kg dry	25	E161812	09/18/06	09/18/06	EPA 8021B	·
Toluene	ND	0.0250	"	**	•	н	ч		
Ethylbenzene	ND	0.0250	4	**	*	n	н	v	
Xylene (p/m)	ND	0.0250	"	, .	19	,,	н	n	
Xylene (o)	ND	0.0250	н	**	11	"	**		
Surrogate: a,a,a-Trifluorotoluene		83.2 %	80-1	20	,,	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry						

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

Anglete	D 1:	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-2 15' (6115017-13) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EI61807	09/15/06	09/16/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	H		н		я	11	
Total Hydrocarbons	ND	10.0	u		н	n	n	"	
Surrogate: 1-Chlorooctane		111 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		112 %	70-1	30	n	n	n	n	
MW-2 20' (6115017-14) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EI61812	09/18/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250	"		n,	н	41	R	
Ethylbenzene	ND	0.0250	н	**	e	,	11	**	
Xylene (p/m)	ND	0.0250	,,	**	•	н	**	u	
Xylene (o)	ND	0.0250	*	*1	u	н	н	н	
Surrogate: a.a.a-Trifluorotoluene		89.0 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.5 %	80-1	20	"	n	"	,,	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61807	09/15/06	09/16/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0		,	"	"	*	**	
Carbon Ranges C28-C35	ND	10.0	*1	11	17	"	*	11	
Total Hydrocarbons	ND	10.0	n	**	"	n	"	n	
Surrogate: 1-Chlorooctane		109 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		108 %	70-1	30	"	"	n	"	
MW-2 25' (6115017-15) Soil									
Benzene	ND	0.0250	mg/kg dry	25	E161812	09/18/06	09/19/06	EPA 8021B	
Toluene	ND	0.0250	п	**		11	"	n	
Ethylbenzene	ND	0.0250	н	11	"	н	"	н	
Xylene (p/m)	ND	0.0250	"	**	n	,			
Xylene (o)	ND	0.0250	п	"	"		"	n	
Surrogate: a,a,a-Trifluorotoluene		105 %	80-1	20	"	,,	"	"	
Surrogate: 4-Bromofluorobenzene		87.8 %	80-1	20	n	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	E161807	09/15/06	09/16/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	*	"	•	н	"		
Carbon Ranges C28-C35	ND	. 10.0	tr	,	*	н	н	*	
Total Hydrocarbons	ND	10.0	**	п	*	11	47	М	
Surrogate: 1-Chlorooctane		107 %	70-1	30	"	n	n	"	
Surrogate: 1-Chlorooctadecane		105 %	70-1	30 .	"	"	"	"	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-2 35' (6115017-16) Soil									
Benzene	ND	0.0250	mg/kg dry	25	E161812	09/18/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250	**	20	**	"	11		
Ethylbenzene	ND	0.0250	н	n	10	n	н	н	
Xylene (p/m)	ND	0.0250			*	н	**	и	
Xylene (o)	ND	0.0250		"		n	ü	•	
Surrogate: a,a,a-Trifluorotoluene		92.0 %	80-1	20	"	11	"	"	
Surrogate: 4-Bromofluorobenzene		83.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61807	09/15/06	09/16/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	•	u	**	**	n	
Carbon Ranges C28-C35	ND	10.0	"	n				•	
Total Hydrocarbons	ND	10.0	**		•	**	"	n	
Surrogate: 1-Chlorooctane		108 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		108 %	70-1	30	"	n	"	н	
MW-2 45' (6115017-17) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EI61812	09/18/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250	**	н .	"	17	H A	**	
Ethylbenzene	ND	0.0250	17		н	**	н	**	
Xylene (p/m)	ND	0.0250	ч	"	11	**	"	и	
Xylene (o)	ND	0.0250	Ħ	**	R	n	11		
Surrogate: a.a.a-Trifluorotoluene		89.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	E161807	09/15/06	09/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н		11	ii .	,,		
Carbon Ranges C28-C35	ND	10.0	n	н	*	11	**	**	
Total Hydrocarbons	ND	10.0	n	•	*		н	**	
Surrogate: 1-Chlorooctane		108 %	70-1	30	"	n	"	"	
Surrogate: 1-Chlorooctadecane		109 %	70-1	30	"	"	"	n	
MW-2 55' (6115017-18) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EI61812	09/18/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250		*	,,	"	"	н	
Ethylbenzene	ND	0.0250	u	**	"	**	н	17	
Xylene (p/m)	ND	0.0250	"	**		н	n	n	
Xylene (o)	ND	0.0250	n		n	n	"	"	
Surrogate: a,a,a-Trifluorotoluene		92.5 %	80-1.	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		83.5 %	80-1.		n	"	,,	n	
Carbon Ranges C6-C12	ND		mg/kg dry	1	E161807	09/15/06	09/17/06	EPA 8015M	
-							•		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

Anglyto	D anls	Reporting	l Inite						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-2 55' (6115017-18) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	E161807	09/15/06	09/17/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	u	R	**	н	11	n	
Total Hydrocarbons	ND	10.0	"	*1	**	н	н	н	
Surrogate: 1-Chlorooctane		110%	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		110 %	70-1	30	"	"	"	"	
MW-2 65' (6115017-19) Soil									
Benzene	ND	0.0250	mg/kg dry	25	E161812	09/18/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250	н	"	"	н	"	н	
Ethylbenzene	ND	0.0250	п	**	"	н	"	**	
Xylene (p/m)	ND	0.0250	11	,,	#		н	н	
Xylene (o)	ND	0.0250	11	н .		н		и	
Surrogate: a,a,a-Trifluorotoluene		97.0 %	80-1	20	"	"	"	. "	
Surrogate: 4-Bromofluorobenzene		88.8 %	80-1	20	"	n	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61807	09/15/06	09/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н	10	11	**	n	**	
Carbon Ranges C28-C35	ND	10.0	n	11	n	"	n	н	
Total Hydrocarbons	ND	10.0	n	" .	**	10	"	**	
Surrogate: 1-Chlorooctane		112 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		113 %	70-1	30	"	"	"	n .	
MW-2 75' (6115017-20) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EI61812	09/18/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250	n	"	"	,,	,,	n	
Ethylbenzene	ND	0.0250	n	, ,	и .	,,	"	н	
Xylene (p/m)	ND	0.0250		н	"	"	**	**	
Xylene (o)	ND	0.0250	"	н		"	n	н	
Surrogate: a,a,a-Trifluorotoluene		96.2 %	80-1	20	n	"	"	n.	
Surrogate: 4-Bromofluorobenzene		89.5 %	80-1	20	"	n	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	E161807	09/15/06	09/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	н		*	п	u	
Carbon Ranges C28-C35	ND	10.0	"	н .		*	"	"	
Total Hydrocarbons	ND	10.0	н	*	**	"	"	н	
Surrogate: 1-Chlorooctane		108 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		108 %	70-1	30	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-3 5' (6115017-21) Soil				Diamon	Daten	гтератец	Analyzed	POINTERIOR	1400
Benzene	ND	0.0250	mg/kg dry	25	E161812	09/18/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250	,	"	"	**		19	
Ethylbenzene	ND	0.0250				**		10	
Xylene (p/m)	ND	0.0250	"	**	,	н	н	"	
Xylene (o)	ND	0.0250	**	**	n			**	
Surrogate: a,a,a-Trifluorotoluene		90.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.2 %	80-1		"	"	,,	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	E161807	09/15/06	09/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н		11	"	**	17	
Carbon Ranges C28-C35	ND	10.0	•	"	11	н	**	**	
Total Hydrocarbons	ND	10.0	н	"	"	н	"	**	
Surrogate: 1-Chlorooctane		110%	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		109 %	70-1		"	"	"	"	
MW-3 10' (6115017-22) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EI61812	09/18/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250	•	**		**	"	n	
Ethylbenzene	ND	0.0250	"	517	"	н	"	11	
Xylene (p/m)	ND	0.0250	n		**	*	"	н	
Xylene (o)	ND	0.0250	В		"	D .	n	17	
Surrogate: a,a,a-Trifluorotoluene		94.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.0 %	80-1	20	"	#	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61807	09/15/06	09/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	w	u	н	"	н	
Carbon Ranges C28-C35	ND	10.0	н	#	IF	н	11	e	
Total Hydrocarbons	ND	10.0	**	**	e	u	**	ч	
Surrogate: 1-Chlorooctane		114%	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		109 %	70-1	30	"	"	"	"	
MW-3 15' (6115017-23) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EI61812	09/18/06	09/19/06	EPA 8021B	
Foluene	ND	0.0250	"	•	н	н .	н	**	
Ethylbenzene	ND	0.0250	•	н .	н	н	"	**	
Xylene (p/m)	ND	0.0250	*	**	"	11	"	P	
Xylene (o)	ND	0.0250	**	10	"	**	11	**	
Surrogate: a,a,a-Trifluorotoluene		93.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.2 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61807	09/15/06	09/17/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analisa	n •	Reporting							
Analyte	Result	. Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 15' (6115017-23) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	E161807	09/15/06	09/17/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	н		"	,,	"	**	
Total Hydrocarbons	ND	10.0	"	n	"	**	#	**	
Surrogate: 1-Chlorooctane		103 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		99.4 %	70-1	30	"	n	"	"	
MW-3 20' (6115017-24) Soil									
Benzene	ND	0.0250	mg/kg dry	25 ·	E161812	09/18/06	09/18/06	EPA 8021B	
Toluene	ND	0.0250	*	"	u.	n	11	11	
Ethylbenzene	ND	0.0250		"	**	н	11	"	
Xylene (p/m)	ND	0.0250	Ħ	"	11	н	**	н	
Xylene (o)	ND	0.0250	н	"	**	H	**	**	
Surrogate: a,a,a-Trifluorotoluene		105 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61807	09/15/06	09/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	u u	н	"			91	
Carbon Ranges C28-C35	ND	10.0	"			u	н	u	
Total Hydrocarbons	ND	10.0	11	11		n	"	11	
Surrogate: 1-Chlorooctane		107 %	70-1	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		103 %	70-1	30	n	"	n	n	
MW-3 25' (6115017-25) Soil									
Benzene	ND	0.0250	mg/kg dry	25	E161812	09/18/06	09/19/06	EPA 8021B	
Toluene	ND	0.0250	fr .		n	**	**	н	
Ethylbenzene	ND	0.0250	**		*	11	н	н	
Xylene (p/m)	ND	0.0250	**	.,	n	**	н	•	
Xylene (o)	ND	0.0250	**	"	**	Ħ	н	rr .	
Surrogate: a,a,a-Trifluorotoluene		92.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61807	09/15/06	09/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11		**	н	H		
Carbon Ranges C28-C35	ND	10.0	**	"	**	"	**	**	
Total Hydrocarbons	ND	10.0	n	,,	*1	"	н	,,	
Surrogate: 1-Chlorooctane		109 %	70-1	30 .	"	"	n	"	
Surrogate: 1-Chlorooctadecane		104 %	70-1	30	"	"	"	"	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

		Donomis -						······································	
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 35' (6115017-26) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EI61812	09/18/06	09/19/06	EPA 8021B	
Toluene	ND	0.0250	n	н	u .	n	44	**	
Ethylbenzene	ND	0.0250		и .	**	"	11	н	
Xylene (p/m)	ND	0.0250		"	11	н	#	н	
Xylene (o)	ND	0.0250	n			н	11	н	
Surrogate: a.a.a-Trifluorotoluene		95.8 %	80-1	20	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		83.8 %	80-1	20	"	"	<i>n</i>	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EI61807	09/15/06	09/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**		**	н	11	и	
Carbon Ranges C28-C35	ND	10.0	**		**	*	u	n	
Total Hydrocarbons	ND	10.0	#	11	P	н	11	н	
Surrogate: 1-Chlorooctane		107 %	70-1	30	"	u u	"	"	
Surrogate: 1-Chlorooctadecane		103 %	70-1	30	"	"	"	и	
MW-3 45' (6115017-27) Soil									
Benzene	ND	0.0250	mg/kg dry	25 .	EI61812	09/18/06	09/19/06	EPA 8021B	
Toluene	ND	0.0250	н	"	11	"	н	11	
Ethylbenzene	ND	0.0250		"	**	**	"	11	
Xylene (p/m)	ND	0.0250	•	н	*	"	,	11	
Xylene (o)	ND	0.0250	u	н	н	**	U	n	
Surrogate: a,a,a-Trifluorotoluene		91.0 %	80-1	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		83.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1 .	EI61807	09/15/06	09/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	*	,	"		"	
Carbon Ranges C28-C35	ND	10.0		**	н	"	,,	н	
Total Hydrocarbons	ND	10.0	"	"	11	,,	p	н	
Surrogate: 1-Chlorooctane		114%	70-1	30	"	"	,,	n	
Surrogate: 1-Chlorooctadecane		107 %	70-1	30	"	"	"	"	
MW-3 55' (6115017-28) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EI61904	09/19/06	09/19/06	EPA 8021B	
Toluene	0.0327	0.0250	n			"	W	n	
Ethylbenzene	0.0395	0.0250	**	н		н	**	n	
Xylene (p/m)	0.641	0.0250	•	**		н	**	w	
Xylene (o)	0.310	0.0250	11	**		"	•	"	
Surrogate: a,a,a-Trifluorotoluene		91.2 %	80-1	20	"	"	"	,,	
Surrogate: 4-Bromofluorobenzene		81.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	249	10.0	mg/kg dry	1	EI61807	09/15/06	09/17/06	EPA 8015M	
•									

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

Analysis	n 1	Reporting	T.L						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 55' (6115017-28) Soil									
Carbon Ranges C12-C28	1730	10.0	mg/kg dry	1	E161807	09/15/06	09/17/06	EPA 8015M	
Carbon Ranges C28-C35	97.1	10.0	"	ь	**	"	n	11	
Total Hydrocarbons	2080	10.0	"		n.	n	n	15	
Surrogate: 1-Chlorooctane		130 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		169 %	70-1	30	"	"	u	n	S-0
MW-3 65' (6115017-29) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EI61904	09/19/06	09/19/06	EPA 8021B	
Toluene	ND	0.0250	"	"	"	,	*	"	
Ethylbenzene	ND	0.0250	n	**	u		н	"	
Xylene (p/m)	ND	0.0250	n	٠.	n	11	n	"	
Xylene (o)	ND	0.0250	н	**	**	18	н	н	
Surrogate: a,a,a-Trifluorotoluene		120 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.8 %	80-1	20	"	"	,,	"	
Carbon Ranges C6-C12	J [9.01]	10.0	mg/kg dry	1	EI61807	09/15/06	09/17/06	EPA 8015M	
Carbon Ranges C12-C28	61.3	10.0	**	н	н	· ·	17	· ·	
Carbon Ranges C28-C35	J [4.59]	10.0	11		н	w	"	п	
Total Hydrocarbons	61.3	10.0	**		н	10	11	41	
Surrogate: I-Chlorooctane		109 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		110%	70-1	30	"	"	"	"	
MW-3 75' (6115017-30) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EI61904	09/19/06	09/19/06	EPA 8021B	
Toluene	ND	0.0250	н	۳ .	**	н	ч	fr	
Ethylbenzene	ND	0.0250		"	ч	н	и	н	
Xylene (p/m)	ND	0.0250	10	н	"	н	я	11	
Xylene (o)	ND	0.0250	**	п	e e	,	u	н	
Surrogate: a.a,a-Trifluorotoluene		86.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.8 %	80-1	20	,,	"	"	"	
Carbon Ranges C6-C12	J [7.28]	10.0	mg/kg dry	1	EI61807	09/15/06	09/17/06	EPA 8015M	
Carbon Ranges C12-C28	111	10.0	n		"	n	"	**	
Carbon Ranges C28-C35	10.3	10.0		**	u	п	n	н	
Total Hydrocarbons	121	10.0	н	"	"	11	н	**	
Surrogate: 1-Chlorooctane		114%	70-1	30	"	"	"	n	
Surrogate: 1-Chlorooctadecane		119%	70-1	30	"	"	,,	"	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 5' (6115017-01) Soil				· · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
% Moisture	3.3	0.1	%	I	EI61809	09/15/06	09/18/06	% calculation	
MW-1 10' (6115017-02) Soil									
% Moisture	2.2	0.1	%	1	EI61809	09/15/06	09/18/06	% calculation	
MW-1 15' (6115017-03) Soil									,
% Moisture	2.8	0.1	%	1	E161809	09/15/06	09/18/06	% calculation	
MW-1 20' (6115017-04) Soil									
% Moisture	6.6	0.1	%	1	E161809	09/15/06	09/18/06	% calculation	
MW-1 25' (6115017-05) Soil									
% Moisture	3.6	0.1	%	1	EI61809	09/15/06	09/18/06	% calculation	
MW-1 35' (6115017-06) Soil									
% Moisture	3.1	0.1	%	1	EI61809	09/15/06	09/18/06	% calculation	
MW-1 45' (6115017-07) Soil									
% Moisture	2.6	0.1	%	1	EI61809	09/15/06	09/18/06	% calculation	
MW-1 55' (6115017-08) Soil									
% Moisture	3.0	. 0.1	%	1	E161809	09/15/06	09/18/06	% calculation	
MW-1 65' (6115017-09) Soil									
% Moisture	3.7	0.1	%	1 .	E161809	09/15/06	09/18/06	% calculation	
MW-1 75' (6115017-10) Soil									
% Moisture	3.8	0.1	%	1	E161809	09/15/06	09/18/06	% calculation	
MW-2 5' (6115017-11) Soil									
% Moisture	2.5	- 0.1	%	1 .	E161809	09/15/06	09/18/06	% calculation	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-2 10' (6115017-12) Soil									
% Moisture	2.5	0.1	%	1 .	E161809	09/15/06	09/18/06	% calculation	***
MW-2 15' (6115017-13) Soil									
% Moisture	3.7	. 0.1	%	1	E161809	09/15/06	09/18/06	% calculation	
MW-2 20' (6115017-14) Soil									
% Moisture	2.5	0.1	%	1 .	E161809	09/15/06	09/18/06	% calculation	
MW-2 25' (6115017-15) Soil									
% Moisture	1.8	0.1	%	i	EI61810	09/15/06	09/18/06	% calculation	
MW-2 35' (6115017-16) Soil									
% Moisture	2.2	0.1	%	1	E161810	09/15/06	09/18/06	% calculation	
MW-2 45' (6115017-17) Soil									
% Moisture	3.2	0.1	%	1	EI61810	09/15/06	09/18/06	% calculation	
MW-2 55' (6115017-18) Soil									
% Moisture	2.2	0.1	%	1	EI61810	09/15/06	09/18/06	% calculation	
MW-2 65' (6115017-19) Soil									
% Moisture	3.9	0.1	%	1	E161810	09/15/06	09/18/06	% calculation	
MW-2 75' (6115017-20) Soil									
% Moisture	5.3	0.1	%	1	EI61810	09/15/06	09/18/06	% calculation	
MW-3 5' (6115017-21) Soil									
% Moisture	5.4	0.1	%	1	EI61810	09/15/06	09/18/06	% calculation	
MW-3 10' (6115017-22) Soil			,						
% Moisture	7.9	0.1	%	I	E161810	09/15/06	09/18/06	% calculation	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

	,	Reporting				· · · · · · · · · · · · · · · · · · ·			
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 15' (6115017-23) Soil									
% Moisture	7.4	0.1	%	1	EI61810	09/15/06	09/18/06	% calculation	
MW-3 20' (6115017-24) Soil			-						
% Moisture	6.4	0.1	%	1	E161810	09/15/06	09/18/06	% calculation	
MW-3 25' (6115017-25) Soil									-
% Moisture	2.0	0.1	%	1	E161810	09/15/06	09/18/06	% calculation	
MW-3 35' (6115017-26) Soil				•					
% Moisture	3.4	0.1	%	1	E161810	09/15/06	09/18/06	% calculation	
MW-3 45' (6115017-27) Soil									
% Moisture	3.3	0.1	%	1	EI61810	09/15/06	09/18/06	% calculation	
MW-3 55' (6115017-28) Soil									
% Moisture	4.0	0.1	%	1	E161810	09/15/06	09/18/06	% calculation	
MW-3 65' (6115017-29) Soil									
% Moisture	4.8	0.1	%	1	EI61810	09/15/06	09/18/06	% calculation	
MW-3 75' (6115017-30) Soil									
% Moisture	4.6	0.1	%	1	EI61810	09/15/06	09/18/06	% calculation	

Project: Lovington Gathering WTI

Spike

Source

%REC

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

RPD

Organics by GC - Quality Control Environmental Lab of Texas

Reporting

542

614

ND

1160

48.6

38.8

10.0

10.0

10.0

10.0

mg/kg dry

mg/kg

514

514

0.00

1030

50.0

50.0

ND

ND

ND

105

119

113

97.2

75-125

75-125

75-125

75-125

70-130

70-130

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch E161508 - Solvent Extraction (GC)										
Blank (EI61508-BLK1)		•		Prepared: (09/15/06 A	nalyzed: 09	9/16/06			
Carbon Ranges C6-C12	ND	10,0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	**							
Carbon Ranges C28-C35	ND	10.0	**							
Total Hydrocarbons	ND	10.0	**							
Surrogate: 1-Chlorooctane	48.2		mg/kg	50.0		96.4	70-130			
Surrogate: 1-Chlorooctadecane	47.0		"	50.0		94.0	70-130			
LCS (EI61508-BS1)		•		Prepared: (09/15/06 A	nalyzed: 09	9/16/06			
Carbon Ranges C6-C12	491	10.0	mg/kg wet	500		98.2	75-125			
Carbon Ranges C12-C28	434	10.0	"	500		86.8	75-125			
Carbon Ranges C28-C35	ND	10.0	17	0.00			75-125			
Total Hydrocarbons	925	10.0	11	1000		92.5	75-125			
Surrogate: 1-Chlorooctane	56.8		mg/kg	50.0		114	70-130			
Surrogate: 1-Chlorooctadecane	46.3		"	50.0		92.6	70-130			
Calibration Check (EI61508-CCV1)		•		Prepared: (09/15/06 A	nalyzed: 09	0/16/06			
Carbon Ranges C6-C12	225		mg/kg	250		90.0	80-120			
Carbon Ranges C12-C28	279		**	250		112	80-120			
Total Hydrocarbons	504		"	500		101	80-120			
Surrogate: 1-Chlorooctane	61.1		n	50.0		122	70-130			
Surrogate: 1-Chlorooctadecane	55.7		"	50.0		111	70-130			
Matrix Spike (EI61508-MS1)	Sou	rce: 6115017	-03	Prepared: (09/15/06 A	nalyzed: 09	0/18/06			

Carbon Ranges C6-C12

Carbon Ranges C12-C28

Carbon Ranges C28-C35

Surrogate: 1-Chlorooctane

Surrogate: 1-Chlorooctadecane

Total Hydrocarbons

Midland TX, 79706-4476

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch El61508 - Solvent Extraction (GC)			····							
Matrix Spike Dup (EI61508-MSD1)	Sou	rce: 6115017-	-03	Prepared: (09/15/06 A	nalyzed: 09	/18/06			
Carbon Ranges C6-C12	559	10.0	mg/kg dry	514	ND	109	75-125	3.09	20	
Carbon Ranges C12-C28	572	10.0	и	514	ND	111	75-125	7.08	20	
Carbon Ranges C28-C35	ND	10.0	н	0.00	ND		75-125		20	
Total Hydrocarbons	1130	10.0		1030	ND	110	75-125	2.62	20	
Surrogate: 1-Chlorooctane	47.0		mg/kg	50.0		94.0	70-130			
Surrogate: 1-Chlorooctadecane	50.6		"	50.0		101	70-130			
Batch EI61509 - EPA 5030C (GC)		2 11100								
Blank (E161509-BLK1)				Prepared &	& Analyzed:	09/15/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	11							
Ethylbenzene	ND	0.0250	"							
Xylene (p/m)	ND	0.0250	11							
Xylene (o)	ND	0.0250	•							
Surrogate: a,a,a-Trifluorotoluene	36.8		ug/kg	40.0		92.0	80-120			
Surrogate: 4-Bromofluorobenzene	32.7		"	40.0		81.8	80-120			
LCS (EI61509-BS1)				Prepared &	2 Analyzed:	09/15/06				
Benzene	1.36	0.0250	mg/kg wet	1.25		109	80-120		-	
Toluene	1,15	0.0250	n	1.25		92.0	80-120			
Ethylbenzene	1.21	0.0250	. "	1.25		96.8	80-120			
Xylene (p/m)	2.48	0.0250	н	2.50		99.2	80-120			
Xylene (o)	1.20	0.0250	,	1.25		96.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	34.8		ug/kg	40.0		87.0	80-120			

40.0

37.0

Surrogate: 4-Bromofluorobenzene

92.5

80-120

Midland TX, 79706-4476

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142

Project Manager: Camille Reynolds

Organics by GC - Quality Control **Environmental Lab of Texas**

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch E161509 - EPA 5030C (GC)						.,				
Calibration Check (El61509-CCV1)				Prepared:	09/15/06 A	nalyzed: 09	9/18/06			
Benzene	52.3		ug/kg	50.0		105	80-120			
Toluene	46.8		"	50.0		93.6	80-120			
Ethylbenzene	45.0		11	50.0		90.0	80-120			
Xylene (p/m)	93.1		"	100		93.1	80-120			
Xylene (o)	45.8		H	50.0		91.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.5		"	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	33.8		"	40.0		84.5	80-120			
Matrix Spike (EI61509-MS1)	Sou	rce: 6115001	-01	Prepared:	09/15/06 A	nalyzed: 09	9/18/06			
Benzene	1,43	0.0250	mg/kg dry	1.32	ND	108	80-120			
Toluene	1.22	0.0250		1.32	ND	92.4	80-120			
Ethylbenzene	1,26	0.0250	н	1.32	ND	95.5	80-120			
Xylene (p/m)	2.58	0.0250	n	2.64	ND	97.7	80-120			
Xylene (o)	1.22	0.0250		1.32	ND	92.4	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.7		ug/kg	40.0		96.8	80-120			
Surrogate: 4-Bromofluorobenzene	36.4		n	40.0		91.0	80-120			
Matrix Spike Dup (El61509-MSD1)	Sou	rce: 6115001	-01	Prepared:	09/15/06 A	nalyzed: 09	9/18/06			
Benzene	1,46	0.0250	mg/kg dry	1.32	ND	111	80-120	2.74	20	
Toluene	1.24	0.0250	н	1.32	ND	93.9	80-120	1.61	20	
Ethylbenzene	1.27	0.0250	•	1.32	ND	96.2	80-120	0.730	20	
Xylene (p/m)	2.64	0.0250	Ü	2.64	ND	100	80-120	2.33	20	
Xylene (o)	1.25	0.0250	11	1.32	ND	94.7	80-120	2.46	20	
Surrogate: a,a,a-Trifluorotoluene	39.8		ug/kg	40.0		99.5	80-120			•
Surrogate: 4-Bromofluorobenzene	38.3		"	40.0		95.8	80-120		,	
Batch EI61807 - Solvent Extraction (GC)										
Blank (E161807-BLK1)			•	Prepared:	09/15/06 A	nalyzed: 09	0/16/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"	•						
Carbon Ranges C28-C35	ND	10.0								
Total Hydrocarbons	ND	10.0	**							
Surrogate: 1-Chlorooctane	51.0	·	mg/kg	50.0		102	70-130			
Surrogate: 1-Chlorooctadecane	51.1		"	50.0		102	70-130			

Fax: (432) 687-4914

Midland TX, 79706-4476

Project: Lovington Gathering WTI

rington Cathering W

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	· Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch E161807 - Solvent Extraction (GC)										
LCS (EI61807-BS1)				Prepared: (09/15/06 A	nalyzed: 09	/16/06			
Carbon Ranges C6-C12	524	10.0	mg/kg wet	500		105	75-125			
Carbon Ranges C12-C28	454	10.0	17	500		90.8	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00			75-125			
Total Hydrocarbons	978	10.0	н	1000		97.8	75-125			
Surrogate: 1-Chlorooctane	61.2	···- ·	mg/kg	50.0		122	70-130			
Surrogate: 1-Chlorooctadecane	50.9		"	50.0		102	70-130			
Calibration Check (EI61807-CCV1)				Prepared: (09/15/06 A	nalyzed: 09	/17/06			
Carbon Ranges C6-C12	240		mg/kg	250		96.0	80-120			
Carbon Ranges C12-C28	276		н	250		110	80-120			
Total Hydrocarbons	516		н	500		103	80-120			
Surrogate: 1-Chlorooctane	62.3		"	50.0		125	70-130			
Surrogate: 1-Chlorooctadecane	54.0		"	50.0		108	70-130			
Matrix Spike (EI61807-MS1)	Sou	rce: 6115017	-14	Prepared: (09/15/06 A	nalyzed: 09	/16/06			
Carbon Ranges C6-C12	525	10.0	mg/kg dry	513	ND	102	75-125			
Carbon Ranges C12-C28	469	10.0	n	513	ND	91.4	75-125			
Carbon Ranges C28-C35	ND	10.0	н	0.00	ND		75-125			
Total Hydrocarbons	994	10.0	н	1030	ND	96.5	75-125			
Surrogate: 1-Chlorooctane	62.1		mg/kg	50.0		124	70-130	-		
Surrogate: 1-Chlorooctadecane	60.9		"	50.0		122	70-130			
Matrix Spike Dup (EI61807-MSD1)	Sou	rce: 6115017	-14	Prepared: (09/15/06 A	nalyzed: 09	0/16/06			
Carbon Ranges C6-C12	518	10.0	mg/kg dry	513 .	ND	101	75-125	1.34	20	
Carbon Ranges C12-C28	458	10.0	н	513	ND	89.3	75-125	2.37	20	
Carbon Ranges C28-C35	ND	10.0	н	0.00	ND		75-125		20	
Total Hydrocarbons	976	10.0	n	1030	ND	94.8	75-125	1.83	20	
Surrogate: 1-Chlorooctane	60.8		mg/kg	50.0		122	70-130			
Surrogate: 1-Chlorooctadecane	60.0		"	50.0		120	70-130			

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control **Environmental Lab of Texas**

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch E161812 - EPA 5030C (GC)										
Blank (EI61812-BLK1)				Prepared &	: Analyzed:	09/18/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250								
Ethylbenzene	ND	0.0250	11							
Xylene (p/m)	ND	0.0250	n							
Xylene (o)	ND	0.0250	n							
Surrogate: a,a,a-Trifluorotoluene	35.9		ug/kg	40.0		89.8	80-120			
Surrogate: 4-Bromofluorobenzene	32.7		"	40.0		81.8	80-120			
LCS (E161812-BS1)				Prepared &	. Analyzed:	09/18/06				
Benzene	1.34	0.0250	mg/kg wet	1.25		107	80-120			
Toluene	1.18	0.0250	"	1.25		94.4	80-120			
Ethylbenzene	1.01	0.0250	n	1.25		80.8	80-120			
Xylene (p/m)	2.39	0.0250	n	2.50		95.6	80-120			
Xylene (o)	1.07	0.0250	"	1.25		85.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	33.9		ug/kg	40.0		84.8	80-120			
Surrogate: 4-Bromofluorobenzene	34.1		"	40.0		85.2	80-120			
Calibration Check (El61812-CCV1)				Prepared: 0)9/18/06 A	nalyzed: 09	/19/06			
Benzene	0.0544	•	mg/kg wet	0.0500		109	80-120			
Toluene	0.0481		n	0.0500		96.2	80-120			
Ethylbenzene	0.0460		n	0.0500		92.0	80-120			
Xylene (p/m)	0.0919		*	0.100		91.9	80-120			
Xylene (o)	0.0462		"	0.0500		92.4	80-120			
Surrogate: a,a,a-Trifluorotoluene	38.8		ug/kg	40.0		97.0	80-120			
Surrogate: 4-Bromofluorobenzene	32.8		"	40.0		82.0	80-120			
Matrix Spike (E161812-MS1)	Sour	rce: 6115017-	-09	Prepared: 0)9/18/06 A	nalyzed: 09	/19/06			
Benzene	1.45	0.0250	mg/kg dry	1.30	ND	112	80-120			
Toluene	1,30	0.0250	**	1.30	ND	100	80-120			
Ethylbenzene	1.18	0.0250	*	1.30	ND	90.8	80-120			
Xylene (p/m)	2.69	0.0250	11	2.60	ND	103	80-120			

Surrogate: a,a,a-Trifluorotoluene

Surrogate: 4-Bromofluorobenzene

Xylene (o)

1.30

40.0

40.0

0.0250

ug/kg

1.23

36.5

38.0

94.6

91.2

95.0

80-120

80-120

80-120

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI61812 - EPA 5030C (GC)										
Matrix Spike Dup (EI61812-MSD1)	Sour	rce: 6115017-	-09	Prepared: (09/18/06 A	nalyzed: 09	/19/06			
Benzene	1.34	0.0250	mg/kg dry	1.30	ND	103	80-120	8.37	20	
Toluene	1.22	0.0250		1.30	ND	93.8	80-120	6.40	20	
Ethylbenzene	1,16	0.0250	u	1.30	ND	89.2	80-120	1.78	20	
Xylene (p/m)	2.52	0.0250		2.60	ND	96.9	80-120	6.10	20	
Xylene (o)	1.16	0.0250	n.	1.30	ND	89.2	80-120	5.88	20	
Surrogate: a,a,a-Trifluorotoluene	37.1		ug/kg	40.0		92.8	80-120			
Surrogate: 4-Bromofluorobenzene	35.6		"	40.0		89.0	80-120			
Batch EI61904 - EPA 5030C (GC)		•								
Blank (EI61904-BLK1)				Prepared &	& Analyzed:	09/19/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	u							
Ethylbenzene	ND	0.0250	"							
Xylene (p/m)	ND	0.0250	"							
Xylene (o)	ND	0.0250	"							
Surrogate: a,a,a-Trifluorotoluene	38.7		ug/kg	40.0		96.8	80-120			
Surrogate: 4-Bromofluorobenzene	32.4		"	40.0		81.0	80-120			
LCS (E161904-BS1)				Prepared &	k Analyzed:	09/19/06				
Benzene	1.42	0.0250	mg/kg wet	1.25		114	80-120		,	
Foluene	1.29	0.0250	"	1.25		103	80-120			
Ethylbenzene	1.19	0.0250	н	1.25		95.2	80-120			
Xylene (p/m)	2.65	0.0250	"	2.50		106	80-120			
Xylene (o)	1.22	0.0250	n	1.25		97.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	42.4		ug/kg	40.0		106	80-120			

40.0

38.7

Surrogate: 4-Bromofluorobenzene

80-120

96.8

Project: Lovington Gathering WTI

Fax: (432) 687-4914

Midland TX, 79706-4476

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI61904 - EPA 5030C (GC)										
Calibration Check (E161904-CCV1)	. = 5.			Prepared &	: Analyzed:	09/19/06				
Benzene	0.0512		mg/kg wet	0.0500		102	80-120			
Toluene	0.0454			0.0500		90.8	80-120			
Ethylbenzene	0.0450			0.0500		90.0	80-120			
Xylene (p/m)	0.0887		*	0.100		88.7	80-120			
Xylene (o)	0.0440		**	0.0500		88.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.4		ug/kg	40.0		98.5	80-120			
Surrogate: 4-Bromofluorobenzene	32.8		"	40.0		82.0	80-120			
Matrix Spike (EI61904-MS1)	Sou	rce: 6115017	-30	Prepared &	: Analyzed:	09/19/06				
Benzene	1,47	0.0250	mg/kg dry	1.31	ND	112	80-120			
Toluene	1.33	0.0250	"	1.31	ND	102	80-120			
Ethylbenzene	1.21	0.0250	н	1.31	ND	92.4	80-120			
Xylene (p/m)	2.81	0.0250	*	2.62	ND	107	80-120			
Xylene (o)	1.32	0.0250	H	1.31	ND	101	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.2		ug/kg	40.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	39.3		n	40.0		98.2	80-120			
Matrix Spike Dup (EI61904-MSD1)	Sou	rce: 6I15017	-30	Prepared &	Analyzed:	09/19/06				
Benzene	1.55	0.0250	mg/kg dry	1.31	ND	118	80-120	5.22	20	
Toluene	1.32	0.0250	**	1.31	ND	101	80-120	0.985	20	
Ethylbenzene	1.32	0.0250	"	1.31	ND	101	80-120	8.89	20	
Xylene (p/m)	2.75	0.0250	"	2.62	ND	105	80-120	1.89	20	
Xylene (o)	1.36	0.0250		1,31	ND	104	80-120	2.93	20	
Surrogate: a,a,a-Trifluorotoluene	39.9		ug/kg	40.0		99.8	80-120			
Surrogate: 4-Bromofluorobenzene	44.5		"	40.0		111	80-120			

Plains All American EH & S

Project: Lovington Gathering WTI

Fax: (432) 687-4914

0.306

20

1301 S. County Road 1150 Midland TX, 79706-4476

Project Number: SRS: 2006-142

Project Manager: Camille Reynolds

General Chemistry Parameters by EPA / Standard Methods - Quality Control **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI61809 - General Preparation (Prep)										
Blank (EI61809-BLK1)				Prepared: ()9/15/06 A	nalyzed: 09	/18/06			
% Solids	99.8		%							-
Duplicate (E161809-DUP1)	Sou	rce: 6I15010-0	1	Prepared: (09/15/06 A	nalyzed: 09	/18/06			
% Solids	93.0		%		93.5			0.536	20	
Batch EI61810 - General Preparation (Prep)										
Blank (EI61810-BLK1)				Prepared &	z Analyzed:	09/18/06				
% Solids	99.8		%	······································						
Duplicate (EI61810-DUP1)	Sou	rce: 6I15017-1	5	Prepared &	z Analyzed:	09/18/06				

97.9

Plains All American EH & S Project: Lovington Gathering WTI Fax: (432) 687-4914
1301 S. County Road 1150 Project Number: SRS: 2006-142
Midland TX, 79706-4476 Project Manager: Camille Reynolds

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect. Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag). DET Analyte DETECTED Analyte NOT DETECTED at or above the reporting limit ND NR Not Reported Sample results reported on a dry weight basis dry RPD Relative Percent Difference LCS Laboratory Control Spike MS Matrix Spike Dup Duplicate

	Kaland KJulis		
Report Approved By:	Roaderichio	Date:	9/21/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Thrus night and the form

12600 West L-20 East Odessa, Texas 79765

Phone Fax:

CHAM OF CUSTODY RECORD AND AWALYSIS REQUEST

Phone: 432-563-1800 Fax: 432-563-1713

□ NPDES Project Name: Lovington Gathering WTI TRRP PO#: PAAJC, Reynolds Project Loc: Lea County, NM Project #: SRS: 2006-142 X Standard Report Format: e-mail: kdutton@basinenv.com Fax No: (605) 396-1429 Basin Environmental Service Technologies, LLC Lovington, NM 88260 (505) 441-2124 Company Address: P. O. Box 301 Ken Dutton Sampler Signature: Project Manager: Company Name Telephone No: City/State/Zip.

	`																,	ica)	Analyze ro	5		***************************************			_	
(lab use only)															ĭ	TOLP	H	L			_	-	-		21	
+						İ		i							TOTAL	AL	-		×		_		_		121	
ORDER #:					İ	Ц	Preser	Preservation & # of Containers	, # of C	ontain	20	Matrix	ž	90		_	99	<u> </u>	08			_	_		.82	ſ
(Vino esu dsi) % EA.J	FIELD CODE	Beginning Depth	Ending Depth	Date Sampled	bəlqms2 əmiT	No. of Containers	[₹] ONH	HCI	HOBM	cOz2szeN	Other (Specify)	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid	ир=иои-ромріс Specify Онлег	TPH; 418,1 8015M 1005 10; Catons (Ca, Mg, Na, K)	Aniona (Cl, 604, CO3, HCO3)	3∀8 \ E2b \ CEC	Metals: As Ag Ba Cd Ct Pb Hg :	Semirolatiles	BTEX 8021815030 or BTEX 820	RCI	M.S.O.N	Chlorides (EPA 300.0)			AX (cluberta 2 eng) TAT HZUA	TAT bisbrist?
0	MW-1 5'	0	ะก	11-Sep-06	929	×		_				SOIL	=	×			-		<u>×</u>				_			×I
24	MW-1 10'	2	10	11-Sep-06	1003	1 X						SOIL	=	×		-	-		×			\dashv				×I
63	MW-1 15'	10	15	11-Sep-06	1008	×						SOIL	اير	×			-		<u>×</u>				-			×
1	MW-1 20'	15	20	11-Sep-06	1013	1 X						SOIL		×				}	<u>×</u>		•	\dashv	-+		\neg	×
59	MW-1 25'	20	25	11-Sep-06	1014	1 X				-		SOIL		×	\Box			_}	<u>×</u>			\dashv	-			×I
072	MW-1 35'	30,	35'	11-Sep-06	1024	1 X		_		\dashv	_	SOIL	ايـ	×			\dashv		×				-		一	×
I LA	MW-1 45'	40,	45	11-Sep-06	1029	1 X						SOIL		×					×			-				×
188	MW-1 55'	50,	55'	11-Sep-06	1034	1 X					_	SOIL	اي	×			_		×			\dashv				×
4	MW-1 65'	-09	65.	11-Sep-06	1041	١					4	SOIL	_	×				-	×			-				×
	MW-1 75"	70,	75.	11-Sep-06	1045	1 X				_	_	SOIL	اپ	~	_		\dashv		×							×
Special Instructions:															E.	orat	Laboratory Comments:	ii.	nent	·			ď	٠.		

z z z z z z

කි තව පළකුළු දී දී

> VOCs Free of Headspace? Custody seals on container(s) Custody seals on cooler(s)

Sample Containers Infact?

4.0

Temperature Upon Receipt.

2 0

Apple ELOT:

me

Date

Relinguished by:

15-01.0

1606

Date

붐

Sample Hand Delivered by Sampler/Client Rep. ? by Courier? UPS 1

10:01

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Environmentable dele

Odessa, Texas 79765 12600 West I-20 East

Phone: 432-563-1800 Fax: 432-563-1713

□ NPDES Project Name: Lovington Gathering WTI TRRP PO#: PAA/C. Reynolds Project Loc: Lea County, NM Project #: SRS: 2006-142 X Standard Report Format: e-mail: kdutton@basinenv.com Fax No: (505) 396-1429 Basin Environmental Service Technologies, LLC Lovington, NM 88260 (505) 441-2124 Company Address: P. O. Box 301 Ken Dutton Sampler Signature: Project Manager; Company Name Telephone No: City/State/Zip:

,														نــ				į	Ana	Analyze For	ö						
(lab use only)	(Aluo													L	l	ĭ	TCLP:	┝	-	H					L	81	
	ファントラー										İ			L		TOTAL	٦		-	×	_		_	_		1187	
ORDER #:						<u></u>	Pres	ervatio	Preservation & # of Containers	S	tainer		Matrix	9	L		T	ə	}-	0	_		_	_	_	. 181	
		-				-	-	匚	\vdash	F	L	T		100		(E		S 61		928					_	' V	Γ
(vino esu dei) # 연수]	FIELD CODE	ก่างดู Depth	Ending Depth	bəlqms2 əjsQ	Time Sampled	No. of Containers	HAO ³	нсі	HORN POSTH	O ₂ S ₂ O ₃	anoM	Other (Specify)	DWaDAnking Water St.=Studge GW = Groundwater SaSoNSolid	NP=Non-Pouble Specify Odior	Cations (Ca, Mg, Na, K)	Anione (Cl. 604, CO3, HCO	SAR / ESP / CEC	Metals: As Ag Ba Cd Cr Pb F	Volatiles Semivolatiles	BTEX 8021B/5030 or BTEX	RCI	.M.A.O.N	Chlorides (EPA 300.0)			(aluberto2-enq) TAT H2UR	TAT brebnst2
	MW-2 5'	0	ß	11-Sep-06	1430	1	×						SOIL	×				_	-	×					_		×
15	MW-2 10'	t)	10	11-Sep-06	1442	1	×		-				SOIL	×					<u> </u>	×			H				×
5	MW-2 15	10	15	11-Sep-06	1453	1)	×					-	SOIL	×						×				\vdash	\vdash		×
4	MW-2 20'	15	20	11-Sep-06	1454	1)	×						SOIL	×						×				\vdash			×
Q.	MW-2 25	20	25	11-Sep-06	1456	1	×						SOIL	×						×					_		×
7	MW-2 35'	30,	35.	11-Sep-06	1501	1 1	×						SOIL	X						×				$\neg \neg$			×
F	MW-2 45'	40.	45	11-Sep-06	1505	7	×		\dashv				SOIL	×	}					_ <u>~</u>				\dashv	}		×
75	MW-2 55'	20,	55,	11-Sep-06	1512	7	×		-				SOIL	~					}	<u>~</u>			\neg			_	×
1	MW-2 65'	.09	65'	11-Sep-06	1519	1	×			_			SOIL	×						×					Н	_	×
20	MW-2 75'	70.	75'	12-Sep-06	1015	1	×						SOIL	$\stackrel{\sim}{\hookrightarrow}$					-	×			\dashv	-			×
Special	Special Instructions:															Lab	orat	ory.	μö	Laboratory Comments	ij						

4.0

Temperature Upon Receipt:

Time 1.38

15/7/ju

Custody seals on container(s) Custody seals on cooler(s)

10:07

1000

Relinguished by:

VOCs Free of Headspace? Sample.Containers Intact?.

Sample Hand Delivered by Sampler/Client Rep. ? by Courier?

CHAM OF CUSTODY RECORD AND ANALYSIS REQUEST Environmental by the comments of the comments

Basin Environmental Service Technologies, LLC

Ken Dutton

Project Manager:

Company Name

Lovington, NM 88260

Company Address: P. O. Box 301

(505) 441-2124

Telephane No: City/State/Zip:

Sampler Signature:

Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

Project Name: Lovington Gathering WTI

Project #: SRS: 2006-142

Project Loc: Lea County, NM

PO #: PAA/C. Reynolds

☐ TRRP X Standard

☐ NPDES

Report Format:

TCLP e-mail: kdutton@basinenv.com

Fax No: (505) 396-1429

Calycol C	4 81	T Bb	ten farmanno es el es es en en-	×		×	×	×	×	×	<u> </u>	×	×					٠
			AS (elizibedichediale) ZA,						-						ZZ	Z 2	. Z	z
				Ш								_						
				 	\square						_		_	C	06) K)(6		È
			(Щ						_		_						
			Chlorides (EPA 300.0)		_	_			¦	_								: -
\Box			M.A.O.M						_		-4					(s)		٠
\Box	$\overline{}$	_	RCI								-			ا اور	ace ace	aine	5 0	ep
\Box	×	0.	BTEX 8021B/5030 or BTEX 626	×	×	×	_ <u>×</u>	×	×	_×	×	×	×	Laboratory Comments	Sample Containers Intact? VOCs Free of Headspace?	Custody seals on container(s)	Sample Hand Delivered	by Sampler/Client Rep.
\Box	L	┷	Semivolatiles								_			Ę.	Ter Hea	5 6	8	ğ
1015	L	\perp	eeliteloV			_								ŭ,	e Prita	Saks	E.	1
9101	Ļ		Metals: As Ag Ba Cd Cr Pb Hg 3										<u> </u>) jg	y ğ	¥.	T.	San
	TOTAL	<u>'</u>	3AR / E\$P / CEC											g i	g S	Stock	Ē	3
	2	<u> </u>	Anions (Ct. SO4, CO3, HCO3)]]]	l					۽ ٿا	8 5	35	S	_
		L	Cations (Ca, Mg, Na, K)]		00	4	6
	L	90	1911:418 1.815.M 1005 100	X	X	X	×	×	×	X	X	X	\times			emi-	0.0	Time
		×	MP=Non-Polable Specify Other		الــ		ئے			آر	ار						*	L.
		Matrix	GW = Groundwater S=Soll/Solid	SOIL	SOIL	SOIL	SOIL	SO	SOIL	SOIL	SOIL	SOIL	SOIL				3	ſ
		2	DW=Drinking Water SL≂Sludge	ြ	ြလ	တ	ြ	Ø	<i>U</i>		S	S	<i>ა</i>			Date	0	ţ
		П	Office (Specify)							-				1		ď		č
		Preservation & # of Containers	anoN	T -]		1	9	
		onta	Na ₂ S ₂ O ₃														\bigcirc)
		of C	HOBN											1		1	7	
		₩ 8	°os²H		_	_				$\neg \dashv$							ļ	
		valion	нсі							_				1				J
		88	HNO ²	 	 			\vdash		\dashv				1			9	ſ
		ď	100	×	×	×	×	×	×	$\overline{\mathbf{x}}$	$\frac{1}{x}$	×	×	1]	Ŋ	
		L	No. of Containers	-						-	-		_				၂	
			200101000 Jo Old	<u> </u>			Ľ							-		,		
			Time Sam ple d	1317	1322	1324	1329	1331	1338	1342	1349	1355	1358				200	
				1.0				_		_						`	J	[
			Dalte Sampled	12-Sep-06	12-Sep-06	12-Sep-06	12-Sep-06	12-Sep-06	12-Sep-06	12-Sep-06	12-Sep-06	12-Sep-06	12-Sep-06			Received by:	14100	nd pent
		i	Елаіпд Берін	-	10 12	15 12	20 12	25 12	—i			_		<u> </u>		Reg	7	1001
1		ĺ		-	-				35.	0. 45	0. 55,	0. 65), 75°	}		Time	8	em)
1			Beginning Depth	0	5	10	15	20	30,	40.	50.	90	70,			_	~ 1	-
													i			Date	1706	1
1																-	13	L
}	1		m 		ا ا	,	-	<u>ا</u> م		-	,	-	ĪΑ				*1	
1	×1,		<u> </u>	50	5	15	8	25	8	4	33	39	13	}		1		
,			FIELD CODE	MW-3 5	MW-3 10	MW-3 15	MW-3 20	MW-3 25	MW-3 35	MW-3 45	MW-3 55	WW-3 65	MW-3 75			}		
	•	S		E	ğ	Ž	ž	Š	Ē	Ē	差	M	Ž]		1	ļ	ĺ
	LLY.	<u>.</u>	_						, ,							Į	اد,	ļ
13	7 <u>7</u> 27	4							. !							1	1/2	
1.	コシンフ	رد		1						- [ĺ			Ö		_ ا	V.	l
1_	コジンフ					ĺ			}					ğ		1	N	ذ
l (y	ロジンプ]			Special Instructions:		Zermanished by	1	Poling inches
(lab use only)	コジンフン	#						. 7		7		-	$\overline{}$	ΙĒ		[臺/	1	£
in the	ユジフィ	ORDER #:	LAB # (Isb use only)		67	13	च्य	M	اک.	1			E			(Jan.)	/ BI	1

40

Temperature Upon Receipt:

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

lient: <u>Huns</u>				
ate/ Time: 9/15/04 1:35				
b ID#:				
<u> </u>				
tials: UA				
	ceipt Checklist			Olio and Installation
Temperature of container/ cooler? Shipping container in good condition?	Yes	No	A.D °C	Client Initials
Shipping container in good condition?	(78s	No		+
Custody Seals intact on shipping container/ cooler?	Xes	No	Not Present	+
Custody Seals intact on sample bottles/ container? Chain of Custody present?	Yes	No	Not Present	+
Chain of Custody present? Sample instructions complete of Chain of Custody?	Fes	No	TOUT TOSCIIL	+
Sample instructions complete of Chain of Custody?	ges .	No		+
Chain of Custody signed when relinquished/ received? Chain of Custody agrees with sample label(s)?	Yes	No		+
Chain of Custody agrees with sample label(s)?) Ves	No	ID written on Cont./ Lid	
Container label(s) legible and intact?	Yes	No		
Sample matrix/ properties agree with Chain of Custod	y? Yes	No	Not Applicable	+
1 Containers supplied by ELOT?	Yes	No		+
2 Samples in proper container/ bottle?	yes .	No	See Below	
3 Samples properly preserved?	žes	No	See Below	
3 Samples properly preserved? 4 Sample bottles intact?	yes.	. No	See Delow	
5 Preservations documented on Chain of Custody?	Yes	No		-
6 Containers documented on Chain of Custody?	Fes	No		
6 Containers documented on Chain of Custody? 7 Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
8 All samples received within sufficient hold time?	Yes	No	See Below	
9 VOC samples have zero headspace?	∕/es	No	Not Applicable	
			1 Not Applicable	<u> </u>
Variance De	ocumentation			
ontact: Contacted by:			Date/ Time:	
	***	•	, , , , , , , , , , , , , , , , ,	
garding:				
	-			
prective Action Taken;				
			•	
		<u> </u>		
· · · · · · · · · · · · · · · · · · ·		•		
neck all that Apply: See attached e-mail/ fax				
	•			
Client understands and v	would like to proce	eed with	analysis	
Cooling process had beg	jun shortly after s	ampling	event	

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Lovington Gathering WTI
Project Number: SRS: 2006-142
Location: Lea Co., NM

Lab Order Number: 6J06008

Report Date: 10/18/06

Plains All American EH & S

1301 S. County Road 1150 Midland TX, 79706-4476 Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-I	6J06008-01	Water	10/05/06 11:55	10-06-2006 14:00
MW-2	6J06008-02	Water	10/05/06 14:40	10-06-2006 14:00
MW-3	· 6J06008-03	Water	10/05/06 16:55	10-06-2006 14:00

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Dannous	A malauma d	Mathad	Notes
MW-1 (6J06008-01) Water	Nosuit	Dillit		Dilugon	вател	Prepared	Analyzed	Method	S-IN
TATAA-1 (0200000-01) AASTEL									3-111
Benzene	ND	0.0100	mg/L	10	EJ61608	10/17/06	10/17/06	EPA 8021B	
Toluene	ND	0.0100	**	,	11		**	**	
Ethylbenzene	ND	0.0100	11		**	"	n	**	
Xylene (p/m)	ND	0.0100	**		n	*	"	"	
Xylene (o)	ND	0.0100	**	*		"	"	#	
Surrogate: a,a,a-Trifluorotoluene		81.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.2 %	80-1	20	"	"	"	"	
MW-2 (6J06008-02) Water		•							
Benzene	0.0109	0.0100	mg/L	10	EJ61608	10/17/06	10/17/06	EPA 8021B	
Toluene	ND	0.0100	w	n .	*	11	**	**	
Ethylbenzene	ND	0.0100	0	"	н	11	*	**	
Xylene (p/m)	ND	0.0100	**		"	er e	"	17	
Xylene (o)	ND	0.0100	**	,	*	17	,,	11	
Surrogate: a,a,a-Trifluorotoluene		81.0%	80-1	120	"	n	"	n .	
Surrogate: 4-Bromofluorobenzene		80.8 %	80-1	20	"	"	"	n	
MW-3 (6J06008-03) Water				,					
Benzene	6.60	0.0250	mg/L	25	EJ61608	10/17/06	10/17/06	EPA 8021B	
Toluene	ND	0.0250		"	n	11	н	n	
Ethylbenzene	J [0.0144]	0.0250	**	н	*	•	"	н	
Xylene (p/m)	0.0723	0.0250	"	н	н	"	"	в	
Xylene (o)	J [0.00948]	0.0250	"	н		"	н		
Surrogate: a,a,a-Trifluorotoluene		95.0 %	80-1	'20 ·	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.2 %	80-1	20	"	"	"	"	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

Anglesta	D . I.	Reporting	11.7	Spike	Source	0/550	%REC	DDD	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EJ61608 - EPA 5030C (GC)										
Blank (EJ61608-BLK1)				Prepared:	10/16/06 Ar	nalyzed: 10)/17/06			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	**							
Ethylbenzene	ND	0.00100	11							
Xylene (p/m)	ND	0.00100	**							
Xylene (o)	ND	0.00100	**							
Surrogate: a,a,a-Trifluorotoluene	32.4		ug/l	40.0		81.0	80-120			
Surrogate: 4-Bromofluorobenzene	33.9		"	40.0		84.8	80-120			
LCS (EJ61608-BS1)				Prepared:	10/16/06 Ar	nalyzed: 10	/17/06			
Benzene	0.0482	0.00100	mg/L	0.0500		96.4	80-120			
Toluene	0.0428	0,00100	н	0.0500		85.6	80-120			
Ethylbenzene	0.0413	0.00100		0.0500		82.6	80-120	=		
Xylene (p/m)	0.0853	0.00100		0.100		85.3	80-120			
Xylene (o)	0.0409	0.00100	**	0.0500		81.8	80-120			
Surrogate: a,a,a-Trifluorotoluene	36.7		ug/l	40.0		91.8	80-120			
Surrogate: 4-Bromofluorobenzene	42.8		"	40.0		107	80-120			
Calibration Check (EJ61608-CCV1)		•		Prepared: 1	10/16/06 Ar	nalyzed: 10	/17/06			
Benzene	50.4		ug/l	50.0		101	80-120			
Toluene	43.5		н	50.0		87.0	80-120			
Ethylbenzene	41.4		**	50.0 .		82.8	80-120			
Xylene (p/m)	81.9		"	100		81.9	80-120			
Xylene (o)	40.3			50.0		80.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	33.7			40.0		84.2	80-120			
Surrogate: 4-Bromofluorobenzene	35.0		"	40.0		87.5	80-120		•	
Matrix Spike (EJ61608-MS1)	Sou	rce: 6J12016-0	01	Prepared: 1	10/16/06 Ar	nalyzed: 10	/17/06			
Benzene	0,0518	0.00100	mg/L	0.0500	ND	104	80-120			
Toluene	0.0462	0.00100	"	0.0500	ND	92.4	80-120			
Ethylbenzene	0.0424	0.00100	"	0.0500	ND	84.8	80-120			
Xylene (p/m)	0.0932	0.00100	н	0.100	ND	93.2	80-120			
Xylene (o)	0.0432	0.00100	**	0.0500	ND	86.4	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.6		ug/l	40.0		94.0	80-120			
Surrogate: 4-Bromofluorobenzene	39.6		"	40.0		99.0	80-120			

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

										F
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EJ61608 - EPA 5030C (GC)

Matrix Spike Dup (EJ61608-MSD1)	Sou	rce: 6J12016-	01	Prepared: 1	0/16/06 A	nałyzed: 1	0/17/06		
Benzene	0.0500	0.00100	mg/L	0.0500	ND	100	80-120	3.92	20
Toluene	0.0424	0.00100	н	0.0500	ND	84.8	80-120	8.58	20
Ethylbenzene	0.0453	0.00100	н	0.0500	ND	90.6	80-120	6.61	20
Xylene (p/m)	0.0807	0.00100	n	0.100	ND	80.7	80-120	14.4	20
Xylene (o)	0.0412	0.00100	H	0.0500	ND	82.4	80-120	4.74	20
Surrogate: a,a,a-Trifluorotoluene	33.8		ug/l	40.0		84.5	80-120		
Surrogate: 4-Bromofluorobenzene	34.7		,,	40.0 -		86.8	80-120		

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Notes and Definitions

S-INT Sample contains high levels of surfactants.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:

10/18/200

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director La Tasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Tive the tenth of

Basin Environmental Service Technologies, LLC

Ken Dutton

Project Manager:

Company Name

Lovington, NM 88260

Company Address: P. O. Box 301

(505) 441-2124

Telephone No: City/State/Zip:

Sampler Signature:

CHARTER CUSTODY RECORD AND ANALYSIS REQUEST 12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

H 10 H

Project Name: Lovington Gathering WTI

Project Loc: Lea County, NM Project #: 2006-142

PO#, PAA/C. Reynolds

X Standard

□ NPDES

Report Format:

e-mail: kdutton@basinenv.com

Fax No: (605) 396-1429

TRRP

Analyze For.

				TAT basbnet2	×	×	×		<u> </u>	Γ.	Γ	_	Ī
	21	421	'87	RUSH TAT (Pre-Schedule) 24,									l
													I
	L	_			<u>_</u>			_			L.	_	١
ļ	_					<u> </u>	!	L_	L				ļ
i	L			Chlorides (EPA 300.0)					<u> </u>	_	 	<u> </u>	
	_			.M.R.O.N				Ŀ.	<u> </u>	_	_	<u> </u>	ļ
Š	L			RCI					<u> </u>	 	<u> </u>	<u> </u>	1
2	_	×	0	BTEX 80218/5030 of BTEX 826	×	×	×	<u> </u>		├	<u> </u>	_	ļ
A large	H	H	\vdash	Volatiles · Semivolatiles				-	<u> </u>			-	۱
1	_	H	-	Metals: As Ag Ba Cd Cr Pb Hg 5				_	-		├	-	l
	ı.	زز	-	SAR / ESP / CEC	-	-			├~	-	-	-	ł
	TCLP	TOTAL	├─	Anions (CI, 504, CO3, HCO3)	<u> </u>	 	-	-	-	}—		├─	ł
1			\vdash	Cations (Ca, Mg, Na, K)			<u> </u>	-		-	-	-	ł
			90	OF 2001 Matos 1,814.H9T		-		-		-	 	┝	ł
_		_		NP≖Non-Polable Specify Other				_	-	-	_		l
			Matrix	GW = Groundwater 5=50%Solid	ĕ	<u>₹</u>	≩		Ì	ĺ	}		١
		j	×	DW-Drinleng Water SL=Studge	U	ت ا	ات ا	Ì				Ì	l
				Офек (Specify)				_	_		<u> </u>		ļ
			Le/3	anoN	_	_		_	-		\vdash	-	ł
			& # of Containers	rO _s S _s sn						_	 	 	Ì
			t of C	. HOSN					<u> </u>	_			ł
			n R.#	*OSZH		_		┪		1	_		ł
			vatio	нсі	×	×	×	_	· ·				t
			Preservation	HNO?							_		Í
			ō.	90	×	×	×	_	_	 			ł
		,	-	No. of Containers	7	2	2						Ì
			i						 	 	 	 	ŀ
				Time Sampled	1155	1440	1655	j					
				Date Sampled	5-Oct-06	5-Oct-06	5-Oct-06						
				ntage⊡ gnibn∃	N/A	N/A	N/A						
				Beginning Depth	N/A	N/A	N/A		_				ľ
			j		-2	z	~				<u> </u>		ŀ
		10000)	FIELD CODE	MW-1	MW-2	MW-3						
	(lab use only)		ORDER #:	(Vino esu dei) # 8AJ	5	70-	Ç)						

VOCs Free of Headspace? Custody seals on container(s) Custody seals on cooler(s)

Sample Hand Delivered by SamplerClient Rep by Courier? UPS

Sample Containers Intact?

Special Instructions:

GW samples may contain Bariod Quickfoam, see attached MSDS sheet for chemical contents

Ob oct 66

rquished by

Laboratory Comments:

ပွ 2,0

Temperature Upon Receipt

10.00 de 1/400

menne

Received by ELOI

S. B. ma

"Makeis

E L

Date

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

ient:	Plains P/L / Basin Env.	-			
ate/ Time:	10-06-06@1400				
ab ID#;	80000T				
vitials:	JMM				
itials:					
•	Sample Receipt	Checklist			
<u></u>		· 	- -	Client Initial	s 1
	ture of container/ cooler?	Yes	No	2.0 °C	}
	container in good condition?	(Yes)	No_		-
Custody	Seals intact on shipping container/ cooler?	(Yes)	No	Not Present	-
	Seals intact on sample bottles/ container?	Yes	No	Not Present	-
	Custody present?	(Yes)	<u>No</u>		4
	nstructions complete of Chain of Custody?	(Yes)	No		1
	Custody signed when relinquished/ received?	(Yes)	<u>No</u>		
	Custody agrees with sample label(s)?	(Yes)	No	ID written on Cont./ Lid	1
	er label(s) legible and intact?	(Yes)	<u>No</u>	Not Applicable]
	matrix/ properties agree with Chain of Custody?	(es)	No		1
	ers supplied by ELOT?	(es)	No		
	s in proper container/ bottle?	(Yes)	<u>No</u>	See Below]
3 Samples	s properly preserved?	(Yes)	<u>No</u>	See Below	
3 Samples4 Sample	bottles intact?	Yes	No		_
5 Preserva	ations documented on Chain of Custody?	(Yes)	No]
β Containe	ers documented on Chain of Custody?	(Yes)	No]
	nt sample amount for indicated test(s)?	(es)	No	See Below	
8 All samp	oles received within sufficient hold time?	Yes	No	See Below]
VOC sa	mples have zero headspace?	(Yes)	No	Not Applicable] .
	Variance Docur	nentation			
ntact:	Contacted by:			Date/ Time:	
egarding:					
I					
errective Ac	tion Taken:				
theck all that	t Apply: See attached e-mail/ fax Client understands and would Cooling process had begun s				

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Lovington Gathering WTI
Project Number: SRS: 2006-142
Location: Lea County, NM

Lab Order Number: 6L01016

Report Date: 12/07/06

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-4 5'	6L01016-01	Soil	11/22/06 08:48	12-01-2006 16:00
MW-4 10'	6L01016-02	Soil	11/22/06 08:55	12-01-2006 16:00
MW-4 15'	6L01016-03	Soil	11/22/06 09:01	12-01-2006 16:00
MW-4 20'	6L01016-04	Soil	11/22/06 09:22	12-01-2006 16:00
MW-4 25'	6L01016-05	Soil	11/22/06 09:26	12-01-2006 16:00
MW-4 35'	6L01016-06	Soil	11/22/06 09:37	12-01-2006 16:00
MW-4 45'	6L01016-07	Soil	11/22/06 09:43	12-01-2006 16:00
MW-4 55'	6L01016-08	Soil	11/22/06 09:53	12-01-2006 16:00
MW-4 65'	6L01016-09	Soil	11/22/06 10:12	12-01-2006 16:00
MW-4 75'	6L01016-10	Soil	11/22/06 10:22	12-01-2006 16:00

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-4 5' (6L01016-01) Soil									
Benzene	ND	0.0250	mg/kg dry	25 .	EL60512	12/05/06	12/05/06	EPA 8021B	
Toluene	ND	0.0250	u	n	н	**	ч	Ħ	
Ethylbenzene	ND	0.0250	n	**	н	н	"	**	
Xylene (p/m)	ND	0.0250	"	41	•	n	н	N	
Xylene (o)	ND	0.0250	*	**	*	н	н	п	
Surrogate: a.a,a-Trifluorotoluene		112 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		111%	80-1	20	"	"	"	н	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60412	12/04/06	12/04/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	n	11	"	**	**	
Carbon Ranges C28-C35	ND	10.0	*	n	"		"	и	
Total Hydrocarbons	ND	10.0	ij	16	*1	11	**		
Surrogate: 1-Chlorooctane		88.8 %	70-1	30	n	n	"	"	
Surrogate: 1-Chlorooctadecane		112 %	70-1	30	"	"	n	n	
MW-4 10' (6L01016-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60512	12/05/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250	,	,	ij	4		w	
Ethylbenzene	ND	0.0250	,	17	#	11	*	ч	
Xylene (p/m)	ND	0.0250		**	**	11	н	н	
Xylene (o)	ND	0.0250	17	**	"	**	н	•	
Surrogate: a,a,a-Trifluorotoluene		81.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.0 %	80-1	20	,,	,,	,,	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60412	12/04/06	12/04/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0			17	n	n	•	
Carbon Ranges C28-C35	ND	10.0			**	n	H	н	
Total Hydrocarbons	ND	10.0		•	11	n	11	н	
Surrogate: 1-Chlorooctane		88.2 %	70-1	30 .	"	"	n n	"	
Surrogate: 1-Chlorooctadecane		104 %	70-1	30	"	"	и .	н	
MW-4 15' (6L01016-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60512	12/05/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250	**	"	n	,,	**	11	
Ethylbenzene	ND	0.0250	"	*	•	**	n	п	
Xylene (p/m)	ND	0.0250	н		n		11	e	
Xylene (o)	ND	0.0250	"	*	н	н	u	**	
Surrogate: a,a,a-Trifluorotoluene		83.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		113%	80-1.		"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60412	12/04/06	12/04/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

Angleta	D 14	Reporting	I faire		_				
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-4 15' (6L01016-03) Soil		•							
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EL60412	12/04/06	12/04/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	"	"	н	н	n	
Total Hydrocarbons	ND	10.0		"	"	п	н	н	
Surrogate: 1-Chlorooctane		112 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		128 %	70-1	130	"	"	"	u	
MW-4 20' (6L01016-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60512	12/05/06	12/05/06	EPA 8021B	
Toluene	ND	0.0250	19	٠.	H	17	n	w	
Ethylbenzene	ND	0.0250	11	ø	19	11	н	11	
Xylene (p/m)	ND	0.0250	11	"	11	17	n	**	
Xylene (o)	ND	0.0250	11	"	**	11	ii	**	
Surrogate: a,a,a-Trifluorotoluene		118%	80-1	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		116%	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60412	12/04/06	12/04/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	17	#	н	11	н	
Carbon Ranges C28-C35	ND	10.0	н	**	**	н	11	"	
Total Hydrocarbons	ND	10.0	u	11	**	п	11	n	
Surrogate: 1-Chlorooctane		91.8 %	70-1	30	n	"	"	n	
Surrogate: 1-Chlorooctadecane		103 %	70-1	30	,,	n	"	"	
MW-4 25' (6L01016-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60512	12/05/06	12/05/06	EPA 8021B	
Toluene	ND	0.0250	11			,,	n	"	
Ethylbenzene	ND	0.0250	TT .	"	,,		н	"	
Xylene (p/m)	ND	0.0250	**		*		w	**	
Xylene (o)	ND	0.0250	н	a	**	п	"	**	
Surrogate: a.a.a-Trifluorotoluene		81.5 %	80-1	'20	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		115 %	80-1	20	."	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60412	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	м	•	11	ч		
Carbon Ranges C28-C35	ND	10.0	"	н	*	"	н	"	
Total Hydrocarbons	ND	10.0	п	11	. 11	**	"	H	
Surrogate: 1-Chlorooctane		91.4 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		103 %	70-1	30	n	"	"	"	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Organics by GC Environmental Lab of Texas

Analyte	Doorda	Reporting	1 Imir-	Dit ::					_
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
MW-4 35' (6L01016-06) Soil								*****	
Benzene	ND	0.0250	mg/kg dry	25	EL60512	12/05/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250	н	*	"	H	H	**	
Ethylbenzene	ND	0.0250	ч	н	"	11	н	16	
Xylene (p/m)	ND	0.0250	"		n	11	ij		
Xylene (o)	ND	0.0250	"	17	н	10	n	н	
Surrogate: a,a,a-Trifluorotoluene		81.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		111 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60412	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н	**	н	,	"	**	
Carbon Ranges C28-C35	ND	10.0	н	**	n	н	9	11	
Total Hydrocarbons	ND	10.0	н	**	12	н	•	11	
Surrogate: 1-Chlorooctane		88.4 %	70-1	30	n	"	n	n	
Surrogate: 1-Chlorooctadecane		98.2 %	70-1	30	n	"	n	n	
MW-4 45' (6L01016-07) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60512	12/05/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250	II.		u	p	0	W	
Ethylbenzene	ND	0.0250	17	D	"	n	n	H	
Xylene (p/m)	ND	0.0250	•	,,	н	**	11	10	
Xylene (o)	ND	0.0250	•	"	н	**	n	11	
Surrogate: a,a,a-Trifluorotoluene		81.5 %	80-1	20	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		104 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60412	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н		w	н	•	er .	
Carbon Ranges C28-C35	ND	10.0	н	н	•	*	**	**	
Total Hydrocarbons	ND	10.0	n	н	v	*	"	**	
Surrogate: 1-Chlorooctane		92.6 %	70-1	30	"	,,	"	"	
Surrogate: 1-Chlorooctadecane		103 %	70-1	30	"	n	n	"	
MW-4 55' (6L01016-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60512	12/05/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250	•	"	*1	n	"		
Ethylbenzene	ND	0.0250	•	"	н	н	н	•	
Xylene (p/m)	ND	0.0250			"	**	11	II.	
Xylene (o)	ND	0.0250	0		"	**	"	"	
Surrogate: a.a,a-Trifluorotoluene		82.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		110%	80-1		"	"	n	"	
Carbon Ranges C6-C12	ND	10.0		1	EL60412	12/04/06	12/05/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-4 55' (6L01016-08) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EL60412	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	н	н	H	н	"	
Total Hydrocarbons	ND	10.0	11	u	"	"	"	н	
Surrogate: 1-Chlorooctane		101 %	70-1	30	,,	"	"	n	
Surrogate: 1-Chlorooctadecane		111%	70-1	30	"	"	n	n	
MW-4 65' (6L01016-09) Soil		,							
Benzene	ND	0.0250	mg/kg dry	25	EL60512	12/05/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250	19	u	**	п	11	n,	
Ethylbenzene	ND	0.0250	19	"	*	n	**	n .	
Xylene (p/m)	ND	0.0250	19	n	"	"	11	n,	
Xylene (o)	ND	0.0250	**	" .	**	"	**	11	
Surrogate: a,a,a-Trifluorotoluene		80.5 %	80-1	20	"	"	n	n	
Surrogate: 4-Bromofluorobenzene		106 %	80-1	20	"	"	"	#	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60412	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C12-C28	· ND	10.0	11	11	"	н	"	н	
Carbon Ranges C28-C35	ND	10.0	•	11	,	н	11	4	
Total Hydrocarbons	ND	10.0	11	"		н	н	9	
Surrogate: 1-Chlorooctane		92.4 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		99.8 %	70-1	30	"	n	"	"	
MW-4 75' (6L01016-10) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60512	12/05/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250	*		**	*	**		
Ethylbenzene	ND	0.0250	**		P	*	н	"	
Xylene (p/m)	ND	0.0250	"	"	*	н	,,	19	
Xylene (o)	ND	0.0250	"	"	19	*	"	"	
Surrogate: a,a,a-Trifluorotoluene		80.5 %	80-1	20	n	"	"	11	
Surrogate: 4-Bromofluorobenzene		96.0 %	80-1	20	,,	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60413	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	,	"	**	н	**	"	
Carbon Ranges C28-C35	ND	10.0	н		"	н	н	"	
Total Hydrocarbons	ND	10.0	"	**		,	**		
Surrogate: 1-Chlorooctane		91.6%	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		101 %	70-1	30	"	"	"	"	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Angluta	Daguit	Reporting Limit	Unito	5 3.7	5			N. d. d.	N 1 ·
Analyte MW-4 5' (6L01016-01) Soil	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
				•		<u> </u>		O/ 1 1 :	_
% Moisture	1.0	0.1	%	ı	EL60505	12/04/06	12/05/06	% calculation	
MW-4 10' (6L01016-02) Soil									
% Moisture	0.9	. 0.1	%	l	EL60505	12/04/06	12/05/06	% calculation	
MW-4 15' (6L01016-03) Soil									
% Moisture	2.6	0.1	%	1 -	EL60505	12/04/06	12/05/06	% calculation	
MW-4 20' (6L01016-04) Soil									
% Moisture	3.5	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
MW-4 25' (6L01016-05) Soil									
% Moisture	3.2	0.1	%	1 .	EL60505	12/04/06	12/05/06	% calculation	
MW-4 35' (6L01016-06) Soil									
% Moisture	2.7	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
MW-4 45' (6L01016-07) Soil									
% Moisture	2.5	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
MW-4 55' (6L01016-08) Soil				•					
% Moisture	2.3	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
MW-4 65' (6L01016-09) Soil									
% Moisture	3.8	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
MW-4 75' (6L01016-10) Soil									
% Moisture	6.3	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	

Project: Lovington Gathering WTI

Spike

Source

%REC

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

RPD

Organics by GC - Quality Control Environmental Lab of Texas

Reporting

57.5

52.9

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL60412 - Solvent Extraction (GC)										
Blank (EL60412-BLK1)				Prepared &	z Analyzed	: 12/04/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet	,						
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	*							
Total Hydrocarbons	ND	10.0	"							
Surrogate: 1-Chlorooctane	46.0		mg/kg	50.0		92.0	70-130			
Surrogate: 1-Chlorooctadecane	53.3		"	50.0		107	70-130			
LCS (EL60412-BS1)		Prepared & Analyzed: 12/04/06								
Carbon Ranges C6-C12	440	10.0	mg/kg wet	500 ·	•	88.0	75-125			
Carbon Ranges C12-C28	424	10.0	"	500		84.8	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00			75-125			
Total Hydrocarbons	864	10.0	"	1000		86.4	75-125			
Surrogate: 1-Chlorooctane	56.9		mg/kg	50.0		114	70-130			
Surrogate: I-Chlorooctadecane	55.7		"	50.0		111	70-130			
Calibration Check (EL60412-CCV1)				Prepared:	12/04/06 A	nalyzed: 12	/05/06			
Carbon Ranges C6-C12	216		mg/kg	250		86.4	80-120			
Carbon Ranges C12-C28	246		**	250		98.4	80-120			
Total Hydrocarbons	462		**	500		92.4	80-120			
Surrogate: 1-Chlorooctane	51.7		n	50.0		103	70-130			
Surrogate: 1-Chlorooctadecane	54.9	•	"	50.0		110	70-130			
Matrix Spike (EL60412-MS1)	Source	e: 6L01011	1-01	Prepared:	12/04/06 A	nalyzed: 12	/05/06			
Carbon Ranges C6-C12	473	10.0	mg/kg dry	531	ND	89.1	75-125			
Carbon Ranges C12-C28	406	10.0	**	531	ND	76.5	75-125			
Carbon Ranges C28-C35	ND	10.0	**	0.00	ND		75-125			
Total Hydrocarbons	985	10.0	"	1060	ND	92.9	75-125			

Surrogate: 1-Chlorooctane

Surrogate: 1-Chlorooctadecane

115

106

50.0

50.0

mg/kg

70-130

70-130

Plains All American EH & S

1301 S. County Road 1150 Midland TX, 79706-4476 Project: Lovington Gathering WTI

Project Number: SRS: 2006-142

Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL60412 - Solvent Extraction (GC)										
Matrix Spike Dup (EL60412-MSD1)	Sou	rce: 6L01011	-01	Prepared:	12/04/06 A	nalyzed: 12	2/05/06			
Carbon Ranges C6-C12	481	10.0	mg/kg dry	531	ND	90,6	75-125	1.68	20	
Carbon Ranges C12-C28	415	10.0	"	531	ND	78.2	75-125	2.19	20	
Carbon Ranges C28-C35	ND	10.0	н	0.00 ·	ND		75-125		20	
Total Hydrocarbons	896	10.0	0	1060	ND	84.5	75-125	9.46	20	
Surrogate: 1-Chlorooctane	59.2		mg/kg	. 50.0		118	70-130			
Surrogate: 1-Chlorooctadecane	53.9		"	50.0		108	70-130			
Batch EL60413 - Solvent Extraction (GC)										
Blank (EL60413-BLK1)				Prepared:	12/04/06 A	nalyzed: 12	2/05/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	ч							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbons	ND	10.0	**							
Surrogate: 1-Chlorooctane	49.0		mg/kg	50.0		98.0	70-130	· · ·		
Surrogate: 1-Chlorooctadecane	52.9		"	50.0		106	70-130			
LCS (EL60413-BS1)				Prepared:	12/04/06 A	nalyzed: 12	2/05/06			
Carbon Ranges C6-C12	453	10.0	mg/kg wet	500 .		90.6	75-125			
Carbon Ranges C12-C28	416	10.0	10	500		83.2	75-125			
Carbon Ranges C28-C35	ND	10.0	**	0.00			75-125			
Total Hydrocarbons	869	10.0	**	1000		86.9	75-125			
Surrogate: 1-Chlorooctane	58.7		mg/kg	50.0		117	70-130			
Surrogate: 1-Chlorooctadecane	54.2		"	50.0		108	70-130			
Calibration Check (EL60413-CCV1)				Prepared:	12/04/06 A	nalyzed: 12	2/05/06			
Carbon Ranges C6-C12	209		mg/kg	250 .		83.6	80-120			
Carbon Ranges C12-C28	249		**	250		99.6	80-120			
Total Hydrocarbons	458		11	500		91.6	80-120			
Surrogate: 1-Chlorooctane	51.6		"	50.0		103	70-130			

51.4

Surrogate: 1-Chlorooctadecane

70-130

Plains All American EH & S

Project: Lovington Gathering WTI

1301 S. County Road 1150

Project Number: SRS: 2006-142

Midland TX, 79706-4476

Project Manager: Camille Reynolds

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL60413 - Solvent Extraction (GC)		2,7711	J	20101		701.20	23			
Matrix Spike (EL60413-MS1)		rce: 6L01016	i-10	Prepared.	12/04/06 A	nalvzed: 12	2/05/06			
Carbon Ranges C6-C12	705	10.0	mg/kg dry	640	ND	110	75-125			
Carbon Ranges C12-C28	636	10.0	"	640	ND	99.4	75-125			
Carbon Ranges C28-C35	ND	10.0	н	0.00	ND		75-125			
Total Hydrocarbons	1340	10.0	•	1280	ND	105	75-125			
Surrogate: 1-Chlorooctane	74.3		mg/kg	100		74.3	70-130			
Surrogate: 1-Chlorooctadecane	78.1		"	100		78, I	70-130			
Matrix Spike Dup (EL60413-MSD1)	Sou	rce: 6L01016	5-10	Prepared:	12/04/06 A	nalyzed: 12	2/06/06			
Carbon Ranges C6-C12	656	. 10.0	mg/kg dry	640	ND	102	75-125	7.20	20	
Carbon Ranges C12-C28	593	10.0	17	640	ND	92.7	75-125	7.00	20	
Carbon Ranges C28-C35	ND	10.0	u.	0.00	ND		75-125		20	
Total Hydrocarbons	1250	10.0	и	1280	ND	97.7	75-125	6.95	20	
Surrogate: 1-Chlorooctane	70.8		mg/kg	100		70.8	70-130			
Surrogate: 1-Chlorooctadecane	71.2		"	100		71.2	70-130			
Batch EL60512 - EPA 5030C (GC)										
Blank (EL60512-BLK1)				Prepared &	ż Analyzed:	12/05/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	**							
Ethylbenzene	ND	0.0250	n							
Xylene (p/m)	ND	0.0250	**							
Xylene (o)	ND	0.0250	#							
Surrogate: a,a,a-Trifluorotoluene	47.2		ug/kg	40.0	·	118	80-120			
Surrogate: 4-Bromofluorobenzene	44.9		,,	40.0		112	80-120			
LCS (EL60512-BS1)				Prepared &	Analyzed:	12/05/06				
Benzene	1,16	0.0250	mg/kg wet	1.25		92.8	80-120			
Toluene	1.20	0.0250	**	1.25 ·		96.0	80-120			
Ethylbenzene	1.45	0.0250	"	1.25		116	80-120			
Xylene (p/m)	2.51	0.0250		2.50		100	80-120			
Xylene (o)	1.14	0.0250	н	1.25		91.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	39.6		ug/kg	40.0		99.0	80-120			
Surrogate: 4-Bromofluorobenzene	43.4		"	40.0		108	80-120			

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL60512 - EPA 5030C (GC)										
Calibration Check (EL60512-CCV1)				Prepared &	k Analyzed	: 12/05/06			_	
Benzene	44.9		ug/kg	50.0		89.8	80-120			
Toluene	43.7		•	50.0		87.4	80-120			
Ethylbenzene	44.2	•	"	50.0		88.4	80-120			
Xylene (p/m)	85.4		**	100		85.4	80-120			
Xylene (o)	43.4		"	50.0		86.8	80-120			
Surrogate: a,a,a-Trifluorotoluene	41.7		"	40.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	34.0		"	40.0		85.0	80-120			
Matrix Spike (EL60512-MS1)	Sou	rce: 6L01016	5-01	Prepared:	12/05/06 A	malyzed: 12	2/06/06			
Benzene	1.15	0.0250	mg/kg dry	1.26	ND	91.3	80-120	-		
Toluene	1.10	0.0250	**	1.26	ND	87.3	80-120			
Ethylbenzene	1,33	0.0250	н	1.26	ND	106	80-120			
Xylene (p/m)	2,11	0.0250	**	2.53	ND	83.4	80-120			
Xylene (o)	1.02	0.0250	**	1.26	ND	81.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	33.4		ug/kg	40.0		83.5	80-120			
Surrogate: 4-Bromofluorobenzene	35.2		"	40.0		88.0	80-120			
Matrix Spike Dup (EL60512-MSD1)	Sou	rce: 6L01016	5-01	Prepared:	12/05/06 A	nalyzed: 12	2/06/06			
Benzene	1.30	0.0250	mg/kg dry	1.26	ND	103	80-120	12.0	20	
Toluene	1.29	0.0250	lt.	1.26	ND	102	80-120	15.5	20	
Ethylbenzene	1.36	0.0250	**	1.26	ND	108	80-120	1.87	20	
Xylene (p/m)	2.46	0.0250	"	2.53	ND	97.2	80-120	15.3	20	
Xylene (o)	1.23	0.0250	u	1.26	ND	97.6	80-120	18.6	20	
Surrogate: a,a,a-Trifluorotoluene	. 37.6		ug/kg	40.0		94.0	80-120			
Surrogate: 4-Bromofluorobenzene	36.9		"	40.0		92.2	80-120			

Plains All American EH & S

Project: Lovington Gathering WTI

Fax: (432) 687-4914

1301 S. County Road 1150 Midland TX, 79706-4476 Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas

	1	Reporting	Spike	Source		%REC		RPD	
Analyte	Result	Limit Units	Level	Result	%REC_	Limits	RPD	Limit	Notes
Batch EL60505 - General Preparation	(Prep)								
Blank (EL60505-BLK1)			Prepared: 1	2/04/06 A	nalyzed: 12	/05/06			
% Solids	99,8	%	•						
Duplicate (EL60505-DUP1)	Source:	6L04005-01	Prepared: 1	2/04/06 A	nalyzed: 12	/05/06			
% Solids	95.7	%		96.5			0.832	20	
Duplicate (EL60505-DUP2)	Source:	6L01019-01	Prepared: 1	2/04/06 A	nalyzed: 12	/05/06			
% Solids	94.4	%		95.0			0.634	20	
Duplicate (EL60505-DUP3)	Source:	6L01019-21	Prepared: 1	2/04/06 A	nalyzed: 12	/05/06			
% Solids	95.2	%		95,3			0.105	20	
Duplicate (EL60505-DUP4)	Source:	6L04012-11	Prepared: 1	2/04/06 A	nalyzed: 12	/05/06			
% Solids	99.7	%		99.7			0.00	20	

Plains All American EH & S 1301 S. County Road 1150

Duplicate

Midland TX, 79706-4476

Dup

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Report Approved By:	Raland	KJul
Report Approved by.		

Date: 12/7/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Fax: (432) 687-4914

Environ. Jental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUES!

12600 West I-20 East Phone: 432-563-1800 Odessa, Texas 79765 Fax: 432-563-1713

TAT brebnet2 Fedty Lone Star □ NPDES RUSH TAT (Pre-Schodule) 24, 48, 72 hrs ပ္ 200 Project Name: LovIngton Gathering WTI TRRP M.A.O.M. 품 Laboratory Comments: Sample Containers Intact? IOB Labels on container(s): Custody seats on container(s) Sustody seals on cooler(s) by Samplek Client Rep. 7
by Sautier? Temperature Con Receipt: $\dot{\Box}$ × × × ETEX 8021B/5030 or BTEX 8280 VOCs Free of Headspace? PO #: PAA - C. J. Reynolds Sample Hand Delivered Semitolatiles Project Loc: Lea County, NIM selitelo/ X Standard Project #: 2006-142 Wetals: Va Va Ba Cd Ct Pb Ha Se TCLP: Anions (Ct. SO4, Alkalinity) Cations (Ca. Mg. Na. K) Report Format: 9001 XJ 2001 XT 12/15/20 14:00 Lime Hime 13 me Marios 1.814 × × × × × **ACTUS** (Hall Matrix SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOF SOIL SOH 164.30,04 naa≃culikud aasel 2C=2inqde Orner (Specify) Preservation & # of Containers Anone kad@basinenv.com COSCBN HOeN [†]OS²H (505) 396-1429 HCI нио² Blackwar × × × × 90(× × × × × olai#, of Containers benetiff blef Fax No: e-mail: 0848 0855 0922 0926 0943 0953 1012 1022 0901 0937 Time Sampled 5 Received by ELOT Ö dinda 22-Nov-06 22-Nov-06 22-Nov-06 22-Nov-06 22-Nov-06 22-Nov-06 22-Nov-06 22-Nov-06 22-Nov-06 22-Nov-06 č Received by: Basin Environmental Service Technologies, LLC Date Sampled PAGE 25 35, Š 45 20, 75 5 55 65 Ending Depth Ġ 1636 Time Co.p Time 9 30 5 2 40 20. 20 60 Beginning Depth 0 įΩ 36NOVE Date Lovington, NM 88260 (505) 441-24124 P, O. Box 301 Ken Dutton FIELD CODE 75 MW-4 10' MW-4 15 MW-4 20' MW-4 25' MW-4 35' MW-4 45' MW-4 55 MW-4 65 MW-4 5' MW4 Company Address: Sampler Signature: Project Manager: Company Name Telephone No: City/State/Zip: Relinguished by: Special instructions: ORDER #: (lab use only (Kluo aan del) # 87

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client: Plains				
Date/ Time: 12-11-04-4-00				
ab 10#: <u>ULO 1016</u>				
nitials:				
Sample Receipt	Checklist			
			(Client Initials
1 Temperature of container/ cooler?	Yes	No	3,0 °C	
2 Shipping container in good condition?	(Yes)	No		
3 Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
4 Custody Seals intact on sample bottles/ container?	X-es	No	Not Present	
5 Chain of Custody present?	Cres	No		
6 Sample instructions complete of Chain of Custody?	Yeş	No		
7 Chain of Custody signed when relinquished/ received?) Tes	No		
8 Chain of Custody agrees with sample label(s)?)/res	No	ID written on Cont./ Lid	
9 Container label(s) legible and intact?	Yes	No	Not Applicable	
10 Sample matrix/ properties agree with Chain of Custody?	Ø es	No		
11 Containers supplied by ELOT?	Yes	No		
12 Samples in proper container/ bottle?	res	No	See Below	
13 Samples properly preserved?	(Yes)	No	See Below	
14 Sample bottles intact?	(Yes)	No		
15 Preservations documented on Chain of Custody?	(Yes)	No		
16 Containers documented on Chain of Custody?	(Yes	No		
17 Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
18 All samples received within sufficient hold time?	Yes	No	See Below	
19 Subcontract of sample(s)?	Yes	No	Not Applicable.	
20 VOC samples have zero headspace?	Yes	No	Not Applicable	
Contact: Contacted by:	mentation		Date/ Time:	
Regarding:		· — — —		
Corrective Action Taken:				
Check all that Apply: See attached e-mail/ fax				·····
Client understands and wou Cooling process had begun				

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Lovington Gathering WTI
Project Number: SRS: 2006-142
Location: Lea County, NM

Lab Order Number: 6L01019

Report Date: 12/08/06

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-5 5'	6L01019-01	Soil	11/27/06 10:07	12-01-2006 16:00
MW-5 10'	6L01019-02	Soil	11/27/06 10:15	12-01-2006 16:00
MW-5 15'	6L01019-03	Soil	11/27/06 10:21	12-01-2006 16:00
MW-5 20'	6L01019-04	Soil	11/27/06 10:30	12-01-2006 16:00
MW-5 25'	6L01019-05	Soil	11/27/06 10:35	12-01-2006 16:00
MW-5 35'	6L01019-06	Soil	11/27/06 10:42	12-01-2006 16:00
MW-5 45'	6L01019-07	Soil	11/27/06 10:52	12-01-2006 16:00
MW-5 55'	6L01019-08	Soil	11/27/06 10:55	12-01-2006 16:00
MW-5 65'	6L01019-09	Soil	11/27/06 11:04	12-01-2006 16:00
MW-5 75'	6L01019-10	Soil	11/27/06 11:11	12-01-2006 16:00
MW-6 5'	6L01019-11	Soil	11/27/06 14:21	12-01-2006 16:00
MW-6 10'	6L01019-12	Soil	11/27/06 14:26	12-01-2006 16:00
MW-6 15'	6L01019-13	Soil	11/27/06 14:30	12-01-2006 16:00
MW-6 20'	6L01019-14	Soil	11/27/06 14:36	12-01-2006 16:00
MW-6 25'	6L01019-15	Soil	11/27/06 14:40	12-01-2006 16:00
MW-6 35'	6L01019-16	Soil	11/27/06 14:48	12-01-2006 16:00
MW-6 45'	6L01019-17	Soil	11/27/06 14:52	12-01-2006 16:00
MW-6 55'	6L01019-18	Soil	11/27/06 14:59	12-01-2006 16:00
MW-6 65'	6L01019-19	Soil	11/27/06 15:20	12-01-2006 16:00
MW-6 75'	6L01019-20	Soil	11/28/06 09:00	12-01-2006 16:00
MW-7 5'	6L01019-21	Soil	11/28/06 13:50	12-01-2006 16:00
MW-7 10'	6L01019-22	Soil	11/28/06 13:55	12-01-2006 16:00
MW-7 15'	6L01019-23	Soil	11/28/06 14:00	12-01-2006 16:00
MW-7 20'	6L01019-24	Soil	11/28/06 14:04	12-01-2006 16:00
MW-7 25'	6L01019-25	Soil	11/28/06 14:07	12-01-2006 16:00
MW-7 35'	6L01019-26	Soil	11/28/06 14:15	12-01-2006 16:00
MW-7 45'	6L01019-27	Soil	11/28/06 14:23	12-01-2006 16:00
MW-7 55'	6L01019-28	Soil	11/28/06 14:30	12-01-2006 16:00
MW-7 65'	6L01019-29	Soil	11/28/06 14:39	12-01-2006 16:00
MW-7 75'	6L01019-30	Soil	11/28/06 14:45	12-01-2006 16:00

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	D3 -:	D . 1	ъ .		Made	XI
•	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-5 5' (6L01019-01) Soil								·	
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250	*	*		и	н	11	
Ethylbenzene	ND	0.0250	11	**	. "	н	**	11	
Xylene (p/m)	ND	0.0250	19	ч		n	**	17	
Xylene (o)	ND	0.0250	*	**	"	п	**	II.	
Surrogate: a,a,a-Trifluorotoluene		104 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60413	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	*	**		н	n	н	
Carbon Ranges C28-C35	ND	10.0	н	•	**		n	н	
Total Hydrocarbons	, ND	10.0	H	**		•	u	,	
Surrogate: 1-Chlorooctane		96.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		102 %	70-1	30	n	"	,,	"	
MW-5 10' (6L01019-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250	"	**	11	*		•	
Ethylbenzene	ND	0.0250		**	**			**	
Xylene (p/m)	ND	0.0250	*	n	**	н	"		
Xylene (o)	ND	0.0250		**	**	*	н		`
Surrogate: a,a,a-Trifluorotoluene		80.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		80.8 %	80-1	20	"	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60413	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"		и	н	"	**	
Carbon Ranges C28-C35	ND	10.0	"	"	11	н	,,	u u	
Total Hydrocarbons	ND	10.0	"	"	"	**	••	* 11	
Surrogate: 1-Chlorooctane		91.2 %	70-1	30	"	и	"	"	
Surrogate: 1-Chlorooctadecane		97.0 %	70-1	30	n	"	"	"	
MW-5 15' (6L01019-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250		*	11	•	"	"	
Ethylbenzene	ND	0.0250	н	н	u	· H	"	41	
Xylene (p/m)	ND	0.0250	"	**	e e		н	n	
Xylene (o)	ND	0.0250	"	**	**	•	11	*	
Surrogate: a,a,a-Trifluorotoluene	·	91.0%	80-1	20	"	"	"	<i>n</i>	
Surrogate: 4-Bromofluorobenzene		92.0 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60413	12/04/06	12/05/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-5 15' (6L01019-03) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EL60413	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	п		9	"	n	п	
Total Hydrocarbons	ND	10.0	11	•	,	**	•	н	
Surrogate: 1-Chlorooctane		86.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		92.4 %	70-1.	30	"	"	"	n	
MW-5 20' (6L01019-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250	11	**	**	"	n		
Ethylbenzene	ND	0.0250	и	**	#	н	н	u	
Xylene (p/m)	ND	0.0250	II.	,,	"	n	**	n	
Xylene (o)	ND	0.0250	11		"	,	**	"	
Surrogate: a,a,a-Trifluorotoluene		86.5 %	80-1.	20	"	"	n	*	
Surrogate: 4-Bromofluorobenzene		87.8 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60413	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	,,		"	19	*1	"	
Carbon Ranges C28-C35	ND	10.0			"	**	*1	"	
Total Hydrocarbons	ND	10.0	u		•	•	н	u u	
Surrogate: 1-Chlorooctane		80.2 %	70-1.	30	"	n	"	n	
Surrogate: 1-Chlorooctadecane		84.2 %	70-1.	30	"	"	"	"	
MW-5 25' (6L01019-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250		**		п	n	**	
Ethylbenzene	ND	0.0250	,,		ų		н	**	
Xylene (p/m)	ND	0.0250	9	н	•	u		**	
Xylene (o)	ND	0.0250	19	н	н	•	"	**	
Surrogate: a,a,a-Trifluorotoluene		107 %	80-1.	20	"	"	"	и	
Surrogate: 4-Bromofluorobenzene		80.5 %	80-1.	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60413	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	"	**	**	n	ur.	
Carbon Ranges C28-C35	ND	10.0	н	11	19	"	н	**	
Total Hydrocarbons	ND	10.0		"	u u	n	**	W	
Surrogate: 1-Chlorooctane		86.2 %	70-1.	30	"	n	"	n	
Surrogate: 1-Chlorooctadecane		89.6 %	70-1.	30	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Environ	mentai L	ab of 16	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
MW-5 35' (6L01019-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250				,,	\$ 4		
Ethylbenzene	ND	0.0250	**		"	n	4**	"	
Xylene (p/m)	ND	0.0250	#		"	н	1**	**	
Xylene (o)	ND	0.0250	P		u	"	1-	**	
Surrogate: a,a,a-Trifluorotoluene		98.2 %	80-1	20	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		86.5 %	80-1	20	"	"	ø	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60413	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"		ч	n	įs.	*	
Carbon Ranges C28-C35	ND	10.0	17		*	н	ja .	*	
Total Hydrocarbons	ND	10.0	tt.		"	n	19	*	
Surrogate: 1-Chlorooctane		91.0%	70-1	30	"	n	11	"	
Surrogate: 1-Chlorooctadecane		93.4 %	70-1	30	"	"	n	n	
MW-5 45' (6L01019-07) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/06/06	EPA 8021B	
Toluene	ND	0.0250	**		н	н	**	н	
Ethylbenzene	ND	0.0250	10	R	*	н	Þ	н	
Xylene (p/m)	ND	0.0250	**		"	н	н	11	
Xylene (o)	ND	0.0250	**	**	"	н	19	**	
Surrogate: a,a,a-Trifluorotoluene		108 %	80-1	20	"	"	it	"	
Surrogate: 4-Bromofluorobenzene		106 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60413	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	**	**		*	**	
Carbon Ranges C28-C35	ND	10.0	**	"	*	"	*	"	
Total Hydrocarbons	ND	10.0	н	"	"	**	•	r.	
Surrogate: 1-Chlorooctane		86.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		89.0 %	70-1	30	"	"	,,	#	
MW-5 55' (6L01019-08) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	0	**	,,	"	11	н	
Ethylbenzene	ND	0.0250	n	*	n		,,	н	
Xylene (p/m)	ND	0.0250	11	н	n	n	#	11	
Xylene (o)	ND	0.0250	"	11	"	"	н	U	
Surrogate: a,a.a-Trifluorotoluene		103 %	80-1	20	п	"	"	11	
Surrogate: 4-Bromofluorobenzene		101 %	80-1	20	"	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60413	12/04/06	12/05/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

				ab of it					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-5 55' (6L01019-08) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	l	EL60413	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	11	н	**	**	"	20	
Total Hydrocarbons	ND	10.0	н	н	**	**	**		
Surrogate: 1-Chlorooctane		88.4 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		90.6 %	70-1	30	,,	u	"	n	
MW-5 65' (6L01019-09) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	"	"	n	"	11	и	
Ethylbenzene	ND	0.0250	"	**	в	Ħ	*	11	
Xylene (p/m)	ND	0.0250	**	11	o	n	**	n	
Xylene (o)	ND	0.0250	"	,,	н	п	"	п	
Surrogate: a,a,a-Trifluorotoluene		103 %	80-1	20	,,	"	"	п	
Surrogate: 4-Bromofluorobenzene		105 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60413	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"		п	"	D	"	
Carbon Ranges C28-C35	ND	10.0	"	11	н	"		n	
Total Hydrocarbons	ND	10.0	u	**	"	,	"	н	
Surrogate: 1-Chlorooctane		91.0%	70-1	30	n n	"	u .	"	
Surrogate: 1-Chlorooctadecane		93.2 %	70-1	30	"	"	"	"	
MW-5 75' (6L01019-10) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/07/06	EPA 8021B	
Toluenc	ND	0.0250	"	**		17	"	•	
Ethylbenzene	ND	0.0250	**	**	v	**	. "	•	
Xylene (p/m)	ND	0.0250	*	**	и	"	"	м	
Xylene (o)	ND	0.0250	н		н	n	"	н	
Surrogate: a,a,a-Trifluorotoluene		104 %	80-1	20	"	"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	
Surrogate: 4-Bromofluorobenzene		94.0 %	80-1	20	n	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60413	12/04/06	12/05/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	10		н	**	•	ч	
Carbon Ranges C28-C35	ND	10.0	11	,	н	*1	"	**	
Total Hydrocarbons	ND	10.0	**	,,	m	+1	и		
Surrogate: 1-Chlorooctane		89.4 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		90.0 %	70-1	30	n	"	"	"	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Organics by GC

Environmental Lab of Texas

Amelia	n . t	Reporting	t twice						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-6 5' (6L01019-11) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	"	u	u	u	н	n	
Ethylbenzene	ND	0.0250	"	**	u	n	"	н	
Xylene (p/m)	ND	0.0250	н	'n	n	н	"	п	
Xylene (o)	ND	0.0250	n	11	"			п	
Surrogate: a,a,a-Trifluorotoluene		81.5 %	80-1	20	"	"	n	n	
Surrogate: 4-Bromofluorobenzene		81.8 %	80-1	20	"	"	"	"	•
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	H	"	n	H	**	•	
Carbon Ranges C28-C35	ND	10.0	н		u		"	n	
Total Hydrocarbons	ND	10.0	н	н	п .	**	н	II .	
Surrogate: 1-Chlorooctane		98.4 %	70-1	30	"	"	"	· ·	
Surrogate: 1-Chlorooctadecane		.99.0 %	70-1	30	"	"	u	"	
MW-6 10' (6L01019-12) Soil								•	
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	"	"	"	**	u	"	
Ethylbenzene	ND	0.0250	"	,,	*	**	*	•	
Xylene (p/m)	ND	0.0250	"	17		**		"	
Xylene (o)	ND	0.0250	u	17	r		н	**	
Surrogate: a,a,a-Trifluorotoluene		102 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	•	н	**	н	11	tr.	
Carbon Ranges C28-C35	ND	10.0	*	н	n		91	II.	
Total Hydrocarbons	ND	10.0	Ħ	**	и	н	11	**	
Surrogate: 1-Chlorooctane		91.4%	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		90.0 %	70-1	30	"	"	"	"	
MW-6 15' (6L01019-13) Soil						-			
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	"			• '	IF	и	
Ethylbenzene	ND	0.0250	•	"	**	,	40		
Xylene (p/m)	ND	0.0250	н	"	**	н	e	17	
Xylene (o)	ND	0.0250	**	"	**	**	н	**	
Surrogate: a,a,a-Trifluorotoluene		91.5 %	80-1	20	"	n	"	H	
Surrogate: 4-Bromofluorobenzene		81.2 %	80-1	20	"	n	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

			 						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-6 15' (6L01019-13) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	н	n	"	19	**	**	
Total Hydrocarbons	ND	10.0	н	•	**	*	и	n .	
Surrogate: 1-Chlorooctane		88.6 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		85.0 %	70-1	30	"	"	"	"	
MW-6 20' (6L01019-14) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	н	"	"	17	**	н	
Ethylbenzene	ND	0.0250	**	"	"	**	н	н	
Xylene (p/m)	ND	0.0250	11		*	"	n	н	
Xylene (o)	ND	0.0250	"	,,	"	**	н	n	
Surrogate: a.a.a-Trifluorotoluene		98.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	"	*	**	u	14	
Carbon Ranges C28-C35	ND	10.0	"	**	•	•	•	я	
Total Hydrocarbons	ND	10.0	н	"	"	н	"	n	
Surrogate: 1-Chlorooctane	•	90.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		88.4 %	70-1	30	"	"	"	"	
MW-6 25' (6L01019-15) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	,,	"	и	r.	,,	tt*	
Ethylbenzene	ND	0.0250	"	**	,,	н	n	n-	
Xylene (p/m)	ND	0.0250	IF.	"	**	"	п	n .	
Xylene (o)	ND	0.0250	*		**	н			
Surrogate: a,a,a-Trifluorotoluene		92.5 %	80-1	20	"	,,	"	"	
Surrogate: 4-Bromofluorobenzene		82.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	41		п	"	H	**	
Carbon Ranges C28-C35	ND	10.0	**		р	**	"	н	
Total Hydrocarbons	ND	10.0	•		111	"	"	u	
Surrogate: 1-Chlorooctane		92.4 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		91.2 %	70-1	30	11	"	,,	,,	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Organics by GC Environmental Lab of Texas

	Environmental Lab of Texas											
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not			
MW-6 35' (6L01019-16) Soil												
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/07/06	EPA 8021B				
Toluene	ND	0.0250	"	n	"	11	"	"				
Ethylbenzene	ND	0.0250	*	•	"	u	17	tt.				
Xylene (p/m)	ND	0.0250	"	"	11	н	*	н				
Xylene (o)	ND	0.0250	u	**	9	н	н	н				
Surrogate: a,a,a-Trifluorotoluene		95.8 %	80-1	20	н	"	"	"				
Surrogate: 4-Bromofluorobenzene		84.8 %	80-1	20	n	"	"	"				
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M				
Carbon Ranges C12-C28	ND	10.0	u	**	11	н	R	u				
Carbon Ranges C28-C35	ND	10.0	n	**	19	"	tt	"				
Total Hydrocarbons	ND	10.0	"	17	11		**	**				
Surrogate: 1-Chlorooctane		93.2 %	70-1	30	"	"	,,	n				
Surrogate: 1-Chlorooctadecane		90.8 %	70-1	30	"	"	n	n				
MW-6 45' (6L01019-17) Soil												
Benzene	ND	0.0250	mg/kg dry	25	EL60618	12/06/06	12/07/06	EPA 8021B				
Toluene	ND	0.0250	п	17	"	п	**	н				
Ethylbenzene	ND	0.0250	11	**	19	"	"	**				
Xylene (p/m)	ND	0.0250	"	**	18	u	*	н				
Xylene (o)	ND	0.0250	u	**	11	"	**	*				
Surrogate: a,a,a-Trifluorotoluene		108 %	80-1	20	"	,,	"	"				
Surrogate: 4-Bromofluorobenzene		92.5 %	80-1	20	n	"	"	"				
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M				
Carbon Ranges C12-C28	ND	10.0	"	**	n	н	"	"				
Carbon Ranges C28-C35	ND	10.0	n	**	11	н	n	n				
Total Hydrocarbons	ND	10.0		**	11	u	11	*				
Surrogate: 1-Chlorooctane		93.2 %	70-1	30	"	"	n	"				
Surrogate: 1-Chlorooctadecane		90.0 %	70-1	30	"	"	"	"				
MW-6 55' (6L01019-18) Soil												
Benzene	ND	0.0250	mg/kg dry	25	EL60701	12/06/06	12/07/06	EPA 8021B	1			
Toluene	ND	0.0250	"	н	н			н				
Ethylbenzene	ND	0.0250	"		··	u	#	11				
Xylene (p/m)	ND	0.0250	IF	*	н	11	Ħ	"				
Xylene (o)	ND	0.0250	w		•	"	II	n				
Surrogate: a,a,a-Trifluorotoluene		87.0 %	80-1	20	"	"	n	"				
Surrogate: 4-Bromofluorobenzene		100 %	80-1	20	"	"	#	"				
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M				

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-6 55' (6L01019-18) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	11		H	11	91	
Total Hydrocarbons	ND	10.0	"	n	n	n		"	
Surrogate: 1-Chlorooctane		120 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		121 %	70-1	130	"	"	"	"	
MW-6 65' (6L01019-19) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60701	12/07/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	n	н	н	н	н	н	
Ethylbenzene	ND	0.0250	"	н	н	н	n	н	
Xylene (p/m)	ND	0.0250	11	n		*		в	
Xylene (o)	ND	0.0250	"	н	"	н	Ħ	"	
Surrogate: a,a,a-Trifluorotoluene		86.0 %	80-1	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.8 %	80-1	120	"	"	"	'n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	H	10	н	4	н	
Carbon Ranges C28-C35	ND	10.0	"	H	17	"	•	п	
Total Hydrocarbons	ND	10.0	11	н	41	11	Ħ	u u	
Surrogate: 1-Chlorooctane		101 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		99.4 %	70-	130	u	"	"	"	
MW-6 75' (6L01019-20) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60701	12/07/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	"	"	"	"	19	D.	
Ethylbenzene	ND	0.0250	**	"	н	"	11	11	
Xylene (p/m)	ND	0.0250	**	11	н	**	ø	н	
Xylene (o)	ND	0.0250	"	н		Ħ	n	u.	
Surrogate: a,a,a-Trifluorotoluene		83.2 %	80-1	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.0 %	80-1	120	n	n	π	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н	**	"	"	*		
Carbon Ranges C28-C35	ND	10.0	н		9	n	"	н	
Total Hydrocarbons	ND	10.0	и	11	"	н	#	11	
Surrogate: 1-Chlorooctane		89.8 %	70-1	130	"	"	"	"	······ · · ·
Surrogate: 1-Chlorooctadecane		88.4 %	70-1	130	"	"	"	"	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-7 5' (6L01019-21) Soil				Diluion	Daltii	1 Topated	Analyzed	Wichiou	11010
Benzene	ND	0.0250	mg/kg dry	25	EL60701	12/07/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	,	11	11		"		
Ethylbenzene	ND	0.0250	"	11	**	11	н	н	
Xylene (p/m)	ND	0.0250		,,	**	"	**	н	
Xylene (o)	ND	0.0250	u	n	**	"	,	**	
Surrogate: a,a,a-Trifluorotoluene		82.8 %	80-1	20	n n	"	n	и	
Surrogate: 4-Bromofluorobenzene		90.5 %	80-1	20	"	"	"	n	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	u u	,,	н	н	**	**	
Carbon Ranges C28-C35	ND	10.0	"	**	н	н	н	**	
Total Hydrocarbons	ND	10.0	"	н	n	н	**	**	
Surrogate: 1-Chlorooctane		95.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		91.4%	70-1		,,	"	"	"	
MW-7 10' (6L01019-22) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60701	12/07/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	"	н	п	Tr.	п	н	
Ethylbenzene	ND	0.0250	"	h	n	11		•	
Xylene (p/m)	ND	0.0250	,,	*		**	n	•	
Xylene (o)	ND	0.0250	,,	н	•	**	,,	н	
Surrogate: a.a.a-Trifluorotoluene		86.8 %	80-1	20	n	n	"	n	
Surrogate: 4-Bromofluorobenzene		90.0 %	80-1		n	"	,,	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	**	19	n	"	n	n	
Carbon Ranges C28-C35	ND	10.0	п	10		"	11	u	
Total Hydrocarbons	ND	10.0	п	**	•	Ü	n	•	
Surrogate: 1-Chlorooctane		92.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		88.6 %	70-1	30	"	"	n	rr .	
MW-7 15' (6L01019-23) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60701	12/07/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	tt.		"	11		n	
Ethylbenzene	ND	0.0250	,,		11	**	"	н	
Xylene (p/m)	ND	0.0250	ч		"	**	"	14	
Xylene (o)	ND	0.0250	**	"	v		n	н	
Surrogate: a.a,a-Trifluorotoluene	·	80.2 %	80-1	20	"	,,	"	"	
Surrogate: 4-Bromofluorobenzene		90.8 %	80-1		"	"	"	п	
Carbon Ranges C6-C12	ND	10.0		i	EL60414	12/04/06	12/06/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Andre	D14	Reporting	I faire						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 15' (6L01019-23) Soil				-					
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"	11	Ħ	n	"	11	
Total Hydrocarbons	ND	10.0	**	"	Ħ	n		н	
Surrogate: 1-Chlorooctane		93.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		88.6 %	70-1	30	"	"	"	"	
MW-7 20' (6L01019-24) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60701	12/07/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	H	n			m	н	
Ethylbenzene	ND	0.0250	N	u	*1		*	"	
Xylene (p/m)	ND	0.0250	н		**	,	n	*1	
Xylene (o)	ND	0.0250	п		*1	,,	*	н	
Surrogate: a,a,a-Trifluorotoluene		82.5 %	80-1	20	п	"	"	n	
Surrogate: 4-Bromofluorobenzene		84.5 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	10	н	н	**	н		•
Carbon Ranges C28-C35	ND	10.0	**	"	**	**	**	"	
Total Hydrocarbons	ND	10.0	10		н	"	"	11	
Surrogate: 1-Chlorooctane		93.2 %	70-1	30	"	"	n	n	
Surrogate: 1-Chlorooctadecane		87.8 %	70-1	30	"	"	"	"	
MW-7 25' (6L01019-25) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60701	12/07/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	"	17	н	н	н *	**	
Ethylbenzene	ND	0.0250	**	**	*	н	н	**	
Xylene (p/m)	ND	0.0250	"	"	**	и	**	**	
Xylene (o)	ND	0.0250	n	11	**	"	"	11	
Surrogate: a.a.a-Trifluorotoluene		88.5 %	80-1	20	n	"	"	n	
Surrogate: 4-Bromofluorobenzene		85.2 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	н	н	,	"	H-	
Carbon Ranges C28-C35	ND	10.0	**	**	**		n	**	
Total Hydrocarbons	ND	10.0	**			"	и	н	
Surrogate: 1-Chlorooctane		92.4 %	70-1	30	"	"	n	n	
Surrogate: 1-Chlorooctadecane		87.6%	70-1	30	,,	"	"	,,	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

		EHVHOR	mentai L	ab or re	=X45				
Andre	D le	Reporting	* 1						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-7 35' (6L01019-26) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60701	12/07/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	**	**		11	н	н	
Ethylbenzene	ND	0.0250	**	11	**	n	**	11	
Xylene (p/m)	ND	0.0250	**	"	"	н	o	"	
Xylene (o)	ND	0.0250	•	r	**	ii.	u .	"	
Surrogate: a,a,a-Trifluorotoluene		84.0 %	80-1	20	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		95.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"	11		**	**	11	
Carbon Ranges C28-C35	ND	10.0	**	"	"	**	**	"	
Total Hydrocarbons	ND	10.0	"			17	**	n	
Surrogate: 1-Chlorooctane	-	91.4%	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		86.2 %	70-1	30	"	"	п	11	
MW-7 45' (6L01019-27) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60701	12/07/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	**	"		"		11	
Ethylbenzene	ND	0.0250	**	**	"	•	**	н	
Xylene (p/m)	ND	0.0250	н	11	**		#	n	
Xylene (o)	ND	0.0250	н	n		"	n	н	
Surrogate: a,a,a-Trifluorotoluene		81.5 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.8 %	80-1	20	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	ND	. 10.0	н	**	11	"	,,	Ħ	
Carbon Ranges C28-C35	ND	10.0	н	**	"	n	,	н	
Total Hydrocarbons	ND	10.0	H		**		"	H	
Surrogate: 1-Chloroociane		91.2 %	70-1	30	n	"	"	"	
Surrogate: 1-Chlorooctadecane		85.2 %	70-1	30	"	"	n	P	
MW-7 55' (6L01019-28) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60701	12/07/06	12/07/06	EPA 8021B	
Toluene	ND	0.0250	u	**	н	**	н	ч	
Ethylbenzene	ND	0.0250	**	**	н	"	"	D.	
Xylene (p/m)	ND	0.0250	**	**	**		11	41	
Xylene (o)	ND	0.0250	•	н			н	н	
Surrogate: a,a,a-Trifluorotoluene		87.5 %	80-1	20	"	,,	"	"	
Surrogate: 4-Bromofluorobenzene		98.5 %	80-1		"	"	,,	n	
Carbon Ranges C6-C12	ND		mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety.

with written approval of Environmental Lab of Texas.

Page 12 of 23

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 55' (6L01019-28) Soil									
Carbon Ranges C12-C28	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"			н		10	
Total Hydrocarbons	ND	10.0	н	"	,,	н	п	R	
Surrogate: 1-Chlorooctane		92.4 %	70-1	30	"	"	n	"	
Surrogate: 1-Chlorooctadecane		85.8 %	70-1	30	n	"	"	"	
MW-7 65' (6L01019-29) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60701	12/07/06	12/08/06	EPA 8021B	
Toluene	ND	0.0250	н	n	11	14	•	"	
Ethylbenzene	ND	0.0250	н		,	10	**	11	
Xylene (p/m)	ND	0.0250	н	"		11	"	11	
Xylene (o)	ND	0.0250	н	"	n		0		
Surrogate: a.a.a-Trifluorotoluene		91.5 %	80-1	20	n	"	n	"	
Surrogate: 4-Bromofluorobenzene		86.5 %	80-1	20	,,	"	<i>n</i>	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	n	**	,,		**	"	
Carbon Ranges C28-C35	ND	10.0	n	u	**	н	11	*	
Total Hydrocarbons	ND	10.0	n	"	71	н	71	**	
Surrogate: 1-Chlorooctane		93.4 %	70-1	30	n		rı .	n n	
Surrogate: 1-Chlorooctadecane		87.0 %	70-1	30	"	"	"	"	
MW-7 75' (6L01019-30) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EL60701	12/07/06	12/08/06	EPA 8021B	
Toluene	ND	0.0250	v		*		**	o	
Ethylbenzene	ND	0.0250			*	*	**	ч	
Xylene (p/m)	ND	0.0250	"	"			н	o	
Xylene (o)	ND	0.0250	"	Ħ	**	"	"	n	
Surrogate: a,a,a-Trifluorotoluene		88.2 %	80-1	20	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.8 %	80-1	20	"	,,	"	,,	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EL60414	12/04/06	12/06/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	#	**		*	,,	,	
Carbon Ranges C28-C35	ND	10.0	#	**	•	н	11	ņ	
Total Hydrocarbons	ND	10.0	41		,,	н	n	u	
Surrogate: 1-Chlorooctane		80.6 %	70-1	30	"	"	"	"	•
Surrogate: 1-Chlorooctadecane		73.8 %	70-1	30	**	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

		Environn	iciitai t	Jap VI I C	A43		_		
Analyte MW-5 5' (6L01019-01) Soil	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Anaiyzed	Method	Notes
% Moisture	5.0	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
MW-5 10' (6L01019-02) Soil									
% Moisture	1.5	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
MW-5 15' (6L01019-03) Soil									
% Moisture	1.5	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
MW-5 20' (6L01019-04) Soil									
% Moisture	1.6	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
MW-5 25' (6L01019-05) Soil									
% Moisture	3.1	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
MW-5 35' (6L01019-06) Soil									
% Moisture	3.6	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
MW-5 45' (6L01019-07) Soil									
% Moisture	4.1	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
MW-5 55' (6L01019-08) Soil									
% Moisture	3.8	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
MW-5 65' (6L01019-09) Soil									
% Moisture	3.9	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
MW-5 75' (6L01019-10) Soil		····							
% Moisture	5.3	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
MW-6 5' (6L01019-11) Soil									

% Moisture

12/04/06

EL60505

% calculation

12/05/06

3.6

0.1

%

Project: Lovington Gathering WTl

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
4.6	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
3.4	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
3.3	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
3.7	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
3.2	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
3.6	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
3.9	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
3.9	0.1	% .	1	EL60505	12/04/06	12/05/06	% calculation	
9.1	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
4.7	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
4.5	0.1	%	ì	EL60505	12/04/06	12/05/06	% calculation	
	3.4 3.3 3.7 3.2 3.6 3.9 9.1	Result Limit 4.6 0.1 3.4 0.1 3.3 0.1 3.7 0.1 3.6 0.1 3.9 0.1 9.1 0.1 4.7 0.1	Result Limit Units 4.6 0.1 % 3.4 0.1 % 3.3 0.1 % 3.7 0.1 % 3.2 0.1 % 3.6 0.1 % 3.9 0.1 % 9.1 0.1 % 4.7 0.1 %	Result Limit Units Dilution 4.6 0.1 % 1 3.4 0.1 % 1 3.3 0.1 % 1 3.7 0.1 % 1 3.2 0.1 % 1 3.6 0.1 % 1 3.9 0.1 % 1 9.1 0.1 % 1 4.7 0.1 % 1	Result Limit Units Dilution Batch 4.6 0.1 % 1 EL60505 3.4 0.1 % 1 EL60505 3.3 0.1 % 1 EL60505 3.7 0.1 % 1 EL60505 3.2 0.1 % 1 EL60505 3.6 0.1 % 1 EL60505 3.9 0.1 % 1 EL60505 9.1 0.1 % 1 EL60505 4.7 0.1 % 1 EL60505	Result Limit Units Dilution Batch Prepared 4.6 0.1 % 1 EL60505 12/04/06 3.4 0.1 % 1 EL60505 12/04/06 3.3 0.1 % 1 EL60505 12/04/06 3.7 0.1 % 1 EL60505 12/04/06 3.2 0.1 % 1 EL60505 12/04/06 3.6 0.1 % 1 EL60505 12/04/06 3.9 0.1 % 1 EL60505 12/04/06 9.1 0.1 % 1 EL60505 12/04/06 4.7 0.1 % 1 EL60505 12/04/06	Result Limit Units Dilution Batch Prepared Analyzed 4.6 0.1 % 1 EL6050S 12/04/06 12/05/06 3.4 0.1 % 1 EL6050S 12/04/06 12/05/06 3.3 0.1 % 1 EL6050S 12/04/06 12/05/06 3.7 0.1 % 1 EL6050S 12/04/06 12/05/06 3.2 0.1 % 1 EL6050S 12/04/06 12/05/06 3.6 0.1 % 1 EL6050S 12/04/06 12/05/06 3.9 0.1 % 1 EL6050S 12/04/06 12/05/06 9.1 0.1 % 1 EL6050S 12/04/06 12/05/06 4.7 0.1 % 1 EL6050S 12/04/06 12/05/06	Result

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

	Ponorti						····	
Result	Keporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
7.2	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
8.2	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
4.7	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
4.4	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
3.8	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
4.5	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
4.7	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
5.5	0.1	%	1	EL60505	12/04/06	12/05/06	% calculation	
	7.2 8.2 4.7 4.4 3.8 4.5	7.2 0.1 8.2 0.1 4.7 0.1 4.4 0.1 4.5 0.1 4.7 0.1	Result Limit Units 7.2 0.1 % 8.2 0.1 % 4.7 0.1 % 3.8 0.1 % 4.5 0.1 % 4.7 0.1 %	Result Limit Units Dilution 7.2 0.1 % 1 8.2 0.1 % 1 4.7 0.1 % 1 3.8 0.1 % 1 4.5 0.1 % 1 4.7 0.1 % 1	Result Limit Units Dilution Batch 7.2 0.1 % 1 EL60505 8.2 0.1 % 1 EL60505 4.7 0.1 % 1 EL60505 3.8 0.1 % 1 EL60505 4.5 0.1 % 1 EL60505 4.7 0.1 % 1 EL60505	Result Limit Units Dilution Batch Prepared 7.2 0.1 % 1 EL60505 12/04/06 8.2 0.1 % 1 EL60505 12/04/06 4.7 0.1 % 1 EL60505 12/04/06 3.8 0.1 % 1 EL60505 12/04/06 4.5 0.1 % 1 EL60505 12/04/06 4.7 0.1 % 1 EL60505 12/04/06	Result Limit Units Dilution Batch Prepared Analyzed 7.2 0.1 % 1 EL60505 12/04/06 12/05/06 8.2 0.1 % 1 EL60505 12/04/06 12/05/06 4.7 0.1 % 1 EL60505 12/04/06 12/05/06 3.8 0.1 % 1 EL60505 12/04/06 12/05/06 4.5 0.1 % 1 EL60505 12/04/06 12/05/06 4.7 0.1 % 1 EL60505 12/04/06 12/05/06	Result Limit Units Dilution Batch Prepared Analyzed Method 7.2 0.1 % 1 EL60505 12/04/06 12/05/06 % calculation 8.2 0.1 % 1 EL60505 12/04/06 12/05/06 % calculation 4.7 0.1 % 1 EL60505 12/04/06 12/05/06 % calculation 3.8 0.1 % 1 EL60505 12/04/06 12/05/06 % calculation 4.5 0.1 % 1 EL60505 12/04/06 12/05/06 % calculation 4.7 0.1 % 1 EL60505 12/04/06 12/05/06 % calculation

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL60413 - Solvent Extraction (GC)		2.0.11		27.71		, 41.22				
Blank (EL60413-BLK1)				Prepared:	12/04/06 Ar	nalvzed: 12	/05/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet			, 200. 12				
Carbon Ranges C12-C28	ND	10,0	"							
Carbon Ranges C28-C35	ND	10.0	и							
Total Hydrocarbons	ND	10.0	н							
Surrogate: 1-Chlorooctane	49.0		mg/kg	50.0		98.0	70-130			
Surrogate: 1-Chlorooctadecane	52.9		"	50.0		106	70-130			
LCS (EL60413-BS1)				Prepared:	12/04/06 Ar	nalyzed: 12	/05/06			
Carbon Ranges C6-C12	453	10.0	mg/kg wet	500		90.6	75-125			
Carbon Ranges C12-C28	416	10.0	*	500		83.2	75-125			
Carbon Ranges C28-C35	ND	10.0	н	0.00			75-125			
Total Hydrocarbons	869	10.0		1000		86.9	75-125			
Surrogate: 1-Chlorooctane	58.7		mg/kg	50.0		117	70-130		 -	
Surrogate: 1-Chlorooctadecane	54.2		"	50.0		108	70-130			
Calibration Check (EL60413-CCV1)				Prepared:	12/04/06 Ar	nalyzed: 12	/05/06			
Carbon Ranges C6-C12	209		mg/kg	250		83.6	80-120			
Carbon Ranges C12-C28	249		,	250		99.6	80-120			
Total Hydrocarbons	458		"	500		91.6	80-120			
Surrogate: 1-Chlorooctane	51.6		"	50.0		103	70-130			•
Surrogate: 1-Chlorooctadecane	51.4		"	50.0		103	70-130			
Matrix Spike (EL60413-MS1)	Sou	ırce: 6L01016	5-10	Prepared:	12/04/06 At	nalyzed: 12	/05/06			
Carbon Ranges C6-C12	705	10.0	mg/kg dry	640	ND	110	75-125			
Carbon Ranges C12-C28	636	10,0	и	640	ND	99.4	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125			
Total Hydrocarbons	1340	10.0	"	1280	ND	105	75-125			
Surrogate: 1-Chlorooctane	74.3		mg/kg	100		74.3	70-130			
Surrogate: 1-Chlorooctadecane	78.1		"	100		78. I	70-130			

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
***************************************	исэпи	Limit	Units	Level	Result	70KEC	LHIIIS	KrD	Liniii	Notes
Batch EL60413 - Solvent Extraction (GC)										
Matrix Spike Dup (EL60413-MSD1)	Sour	ce: 6L01016	5-10	Prepared:	12/04/06 Aı	nalyzed: 12	2/06/06			
Carbon Ranges C6-C12	656	10,0	mg/kg dry	640	ND	102	75-125	7.20	20	
Carbon Ranges C12-C28	593	10.0	"	640	ND	92.7	75-125	7.00	20	
Carbon Ranges C28-C35	ND	10.0	n	0.00	ND		75-125		20	
Total Hydrocarbons	1250	10.0	н	1280	ND	97.7	75-125	6.95	20	
Surrogate: 1-Chlorooctane	70.8		mg/kg	100		70.8	70-130			
Surrogate: 1-Chlorooctadecane	71.2		"	100		71.2	70-130			
Batch EL60414 - Solvent Extraction (GC)										
Blank (EL60414-BLK1)				Prepared:	12/04/06 Aı	nalyzed: 12	/06/06			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	*							
Carbon Ranges C28-C35	ND	10.0	•							
Total Hydrocarbons	ND	10.0	**							
Surrogate: 1-Chlorooctane	48.1		mg/kg	50.0		96.2	70-130			
Surrogate: 1-Chlorooctadecane	47.4		"	50.0		94.8	70-130			
LCS (EL60414-BS1)				Prepared:	12/04/06 At	nalyzed: 12	/06/06			
Carbon Ranges C6-C12	452	10.0	mg/kg wet	500		90,4	75-125			
Carbon Ranges C12-C28	415	10.0		500		83.0	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00			75-125			
Total Hydrocarbons	867	10.0	**	1000		86.7	75-125			
Surrogate: 1-Chlorooctane	58.3		mg/kg	50.0		117	70-130			
Surrogate: 1-Chlorooctadecane	51.0		n	50.0		102	70-130			
Calibration Check (EL60414-CCV1)				Prepared:	12/04/06 At	nalyzed: 12	/06/06			
Carbon Ranges C6-C12	226		mg/kg	250		90.4	80-120			
Carbon Ranges C12-C28	265		"	250		106	80-120			
Total Hydrocarbons	491		•	500		98.2	80-120			
Surrogate: 1-Chloroociane	52.5		"	50.0		105	70-130		· · · · · · · · · · · · · · · · · · ·	

50.0

47.5

Surrogate: 1-Chlorooctadecane

95.0

70-130

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: Lovington Gathering WTI

Fax: (432) 687-4914

Project Number: SRS: 2006-142

Project Manager: Camille Reynolds

Organics by GC - Quality Control Environmental Lab of Texas

l		Reporting		Spike	Source		%REC	_ =	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL60414 - Solvent Extraction (GC)										
Matrix Spike (EL60414-MS1)	Source	ce: 6L01019	<u>-11</u>	Prepared: 1	12/04/06 Ar	nalyzed: 12	1/06/06			
Carbon Ranges C6-C12	436	10.0	mg/kg dry	519	ND	84.0	75-125			
Carbon Ranges C12-C28	401	10.0	н	519	ND	77.3	75-125			
Carbon Ranges C28-C35	ND	10.0	п	0.00	ND		75-125			
Total Hydrocarbons	837	10.0	н	1040	ND	80.5	75-125			
Surrogate: 1-Chlorooctane	47.6		mg/kg	50.0		95.2	70-130			
Surrogate: 1-Chlorooctadecane	42.3		"	50.0		84.6	70-130			
Matrix Spike Dup (EL60414-MSD1)	Source	ce: 6L01019	-11	Prepared: 1	12/04/06 Ar	nalyzed: 12	/06/06			
Carbon Ranges C6-C12	437	10.0	mg/kg dry	519	ND	84.2	75-125	0,229	20	
Carbon Ranges C12-C28	404	10.0	"	519	ND	77.8	75-125	0.745	20	
Carbon Ranges C28-C35	ND	10.0	,,	0.00	ND		75-125		20	
Total Hydrocarbons	841	10.0	"	1040	ND	80.9	75-125	0.477	20	
Surrogate: 1-Chlorooctane	54.9		mg/kg	50.0		110	70-130			
Surrogate: 1-Chlorooctadecane	44.2		"	50.0		88.4	70-130			
Batch EL60618 - EPA 5030C (GC)										
Blank (EL60618-BLK1)				Prepared &	k Analyzed:	12/06/06				
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	**							
Ethylbenzene	ND	0.0250	и							
Xylene (p/m)	ND	0.0250	"							
Xylene (o)	ND	0.0250	u							
Surrogate: a,a,a-Trifluorotoluene	38.7		ug/kg	40.0		96.8	80-120			
Surrogate: 4-Bromofluorobenzene	35.5		"	40.0		88.8	80-120			
LCS (EL60618-BS1)		_		Prepared &	& Analyzed:	12/06/06				
Benzene	1.13	0.0250	mg/kg wet	1.25		90.4	80-120	· · · · · · · · · · · · · · · · · · ·		
Foluene	1,14	0.0250	n	1.25		91.2	80-120			
Ethylbenzene	1.23	0.0250	н	1.25		98.4	80-120			
Xylene (p/m)	2.22	0.0250	**	2.50		88.88	80-120			
Xylene (o)	1.12	0.0250	"	1.25		89.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	32.3		ug/kg	40.0		80.8	80-120			
Surrogate: 4-Bromofluorobenzene	36.2		"	40.0		90.5	80-120			

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142

Fax: (432) 687-4914

Project Manager: Camille Reynolds

Organics by GC - Quality Control **Environmental Lab of Texas**

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL60618 - EPA 5030C (GC)	·									
Calibration Check (EL60618-CCV1)				Prepared &	& Analyzed	: 12/06/06				
Benzene	54.8		ug/kg	50.0		110	80-120			
l'oluene	53.1		"	50.0		106	80-120			
Ethylbenzene	56.0		н	50.0		112	80-120			
Kýlene (p/m)	98.5		н	100		98.5	80-120			
(v) (v) (v) (v) (v) (v) (v) (v) (v) (v)	51.6		•	50.0		103	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.7		"	40.0		94.2	80-120			
urrogate: 4-Bromofluorobenzene	36.8		"	40.0		92.0	80-120			
Aatrix Spike (EL60618-MS1)	Sou	rce: 6L01018	3-03	Prepared:	12/06/06 A	nalyzed:	12/07/06			
Benzene	1.49	0.0250	mg/kg dry	1.42	ND	105	80-120			
'oluenc	1.55	0.0250	•	1.42	ND	109	80-120			
thylbenzene	1.65	0.0250	"	1,42	ND	116	80-120			
Kylene (p/m)	2.99	0.0250	"	2.85	ND	105	80-120			
(ylene (o)	1.56	0.0250	н	1.42	ND	110	80-120			
urrogate: a,a,a-Trifluorotoluene	34.1		ug/kg	40.0		85.2	80-120			
urrogate: 4-Bromofluorobenzene	47.1		,,	40.0		118	80-120			
Matrix Spike Dup (EL60618-MSD1)	Sour	rce: 6L01018	3-03	Prepared:	12/06/06 A	nalyzed:	12/07/06			
Benzene	1.53	0.0250	mg/kg dry	1.42	ND	108	80-120	2.82	20	
'oluene	1.57	0.0250	"	1.42	ND	111	80-120	1.82	20	
thylbenzene	1.68	0.0250	**	1.42	ND	118	80-120	1.71	20	
Kylene (p/m)	3.07	0.0250	19	2.85	ND	108	80-120	2.82	20	
(ylene (o)	1.58	0.0250	17	1.42	ND	111	80-120	0.905	20	
Surrogate: a,a,a-Trifluorotoluene	37.1		ug/kg	40.0		92.8	80-120			
urrogate: 4-Bromofluorohenzene	47.1		"	40.0		118	80-120			
Batch EL60701 - EPA 5030C (GC)										
Blank (EL60701-BLK1)				Prepared 8	k Analyzed	: 12/07/06				
Benzene	ND	0.0250	mg/kg wet							
oluene	ND	0.0250			*					
thylbenzene	ND	0.0250	"							
(ylene (p/m)	ND	0.0250	*							
(ylene (o)	ND	0.0250	tt.							
urrogate: a,a,a-Trifluorotoluene	33.0		ug/kg	40.0		82.5	80-120			
urrogate: 4-Bromofluorobenzene	34.0		n	40.0		85.0	80-120			

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Environmental Lab of Texas

Organics by GC - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL60701 - EPA 5030C (GC)										
LCS (EL60701-BS1)				Prepared &	k Analyzed:	12/07/06				
Benzene	1,26	0.0250	mg/kg wet	1.25		101	80-120			
Toluene	1.26	0.0250	"	1.25	•	101	80-120			
Ethylbenzene	. 1.31	0.0250	"	1.25		105	80-120			
Xylene (p/m)	2.43	0.0250	"	2.50		97.2	80-120			
Xylene (o)	1.24	0.0250	"	1.25		99.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.3		ug/kg	40.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	41.2		"	40.0		103	80-120			
Calibration Check (EL60701-CCV1)				Prepared:	12/07/06 A	nalyzed: 12	2/08/06			
Benzene	46.0		ug/kg	50.0		92.0	80-120			
Toluene	46.9		"	50.0		93.8	80-120			
Ethylbenzene	50.4		**	50.0		101	80-120			
Xylene (p/m)	91.7		"	100		91.7	80-120			
Xylene (o)	45.3		*	50.0		90.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.2		"	40.0		93.0	80-120			
Surrogate: 4-Bromofluorobenzene	35.8		"	40.0		89.5	80-120			
Matrix Spike (EL60701-MS1)	Sou	rce: 6L01019	-19	Prepared &	k Analyzed:	12/07/06				
Benzene	1.29	0.0250	mg/kg dry	1,30	ND	99.2	80-120			,
Toluene	1.30	0.0250	**	1.30	ND	100	80-120			
Ethylbenzene	1.37	0.0250	**	1,30	ND	105	80-120			
Xylene (p/m)	2.49	0.0250		2.60	ND	95.8	80-120			
Xylene (o)	1.26	0.0250	н	1.30	ND	96.9	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.7		ug/kg	40.0		89.2	80-120			
Surrogate: 4-Bromofluorobenzene	43.5		"	40.0		109	80-120			
Matrix Spike Dup (EL60701-MSD1)	Sou	rce: 6L01019	-19	Prepared:	12/07/06 A	nalyzed: 12	/08/06			
Benzene	1,21	0.0250	mg/kg dry	1.30	ND	93.1	80-120	6.34	20	
Toluene	1.26	0.0250	**	1.30	ND	96.9	80-120	3.15	20	
Ethylbenzene	1.37	0.0250	"	1.30	ND	105	80-120	0.00	20	
Xylene (p/m)	2.46	0.0250	**	2.60	ND	94.6	80-120	1.26	20	
Xylene (o)	1.23	0.0250		1.30	ND	94.6	80-120	2.40	20	
Surrogate: a,a,a-Trifluorotoluene	38.1		ug/kg	40.0		95.2	80-120			
Surrogate: 4-Bromofluorohenzene	36.4		"	40.0		91.0	80-120			

Fax: (432) 687-4914

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL60505 - General Preparation	(Prep)				Ü					
Blank (EL60505-BLK1)				Prepared:	12/04/06 A	nalyzed: 12	/05/06			
% Solids	99.8		%							
Duplicate (EL60505-DUP1)	Sou	rce: 6L04005-	01	Prepared:	12/04/06 A	nalyzed: 12	/05/06			
% Solids	95.7		%		96.5			0.832	20	
Duplicate (EL60505-DUP2)	Sou	rce: 6L01019-	01	Prepared:	12/04/06 A	nalyzed: 12	/05/06			
% Solids	94.4		%		95.0			0.634	20	
Duplicate (EL60505-DUP3)	Sou	rce: 6L01019-	21	Prepared:	12/04/06 A	nalyzed: 12	/05/06			
% Solids	95.2		%		95,3			0.105	20	
Duplicate (EL60505-DUP4)	Sou	rce: 6L04012-	11	Prepared:	12/04/06 A	nalyzed: 12	/05/06			
% Solids	99.7		%	-	99.7	·		0.00	20	

Plains All American EH & S

1301 S. County Road 1150 Midland TX, 79706-4476 Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By: Railand K Junis

Date:

12/8/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Fax: (432) 687-4914

Enviol. Jental Tab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

Lone Star NPDES ပွ SUSH TAT (Pre-Schodule) 24, 48, 72 hrs $\bar{\Box}$ FedEx 10 Project Name: Lovington Gathering WTI TRRP M.A.O.M. 占 3CI Sample Confainers Intact? Custody seals on cooler(s) cabets on container(s) Custody seals on container(s) by Sample) Client Rep. ? by Counter? UPS Temperature Opon Receipt: × × × × BTEX 80218/5030/of BTEX 8260 × VOCs Free of Headspace? PO #: PAA - C. J. Reynolds Sample Hand Delivered Laboratory Comments: Analyze Project Loc: Lea County, NM Standard Project #: 2006-142 Metais: As Ag Bs Cd Ct Pb Hg Se TCLP: TOTAL × Anions (Cl, SO4, Alkalinity) Cations (Ca. Mg, Na. K) Report Format: 9001 XJ 3001 XT Hal m/1/06 14:00 Time g E 80158 M2108 (:Haj × × × × 1.814 SOIL SOIL SOIL SOIL Matrix SOIL SOIL SOIL SOIL SOIL SOIL OM = Groundwater S=SolkSolid Jav. 30,00 AA=DUJUKIUD AASIGU SE SINGBG Other (Specify) Preservation & # of Containers anoM kad@basinenv.com CO2S26N HOeN *os*H (505) 396-1429 HCI HNO3 × × × × × 93 × × 2 Scell wood otal #. of Containers ield Fillered Fax No: 09) e-mail: 1015 1030 1035 1042 1052 1055 104 1007 1021 1111 Time Sampled JAC. 8 Received by ELOT 01 OF Landa Received by: 27-Nov-06 27-Nov-06 27-Nov-06 27-Nov-06 27-Nov-06 27-Nov-06 27-Nov-06 27-Nov-06 27-Nov-06 27-Nov-06 Received by: Basin Environmental Service Technologies, LLC Date Sampled PAGE 25' 5 35, 45 65 75 5 20. 55 Ending Depth ត្ 17te 1630 Time 5 10, 40, 90 70, 20 30 50 Beginning Depth 0 ົດ BNONGE Lovington, NM 88260 Date (505) 441-24124 Company Address: P. O. Box 301 Š Ken Dutton FIELD CODE MW-5 15 MW-5 20' MW-5 75' MW-5 10' WW-5 25' MW-5 35' WW-5 45 WW-5 55' MW-5 65' MW-5 000 Sampler Signature: Project Manager: Company Name Telephone No: City/State/Zip: 10 Special Instructions: Linde Relinquisped by: elinquished by ORDER #: d behalipmen (lab use only) $\stackrel{>}{\leftarrow}$ 7 ふん SE (Vino seu del) # 8A.

TAT brebnese

Environ. Jentar Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Odessa, Texas 79765 12600 West I-20 East

Phone: 432-563-1800 Fax: 432-563-1713

☐ NPDES RUSH TAT (Pre-Schedule) 24, 48, 12 hrs Sample Containers Intact? Project Name: Lovington Gathering WT TRRP N.O.R.M. H 3CI Custody seals on container(s Temperature Upon Receipt: Sustody seals on cooler(s) × BTEX 8021B/6030or BTEX 8260 × × × × × VOCs Free of Headspace? PO #: PAA - C. J. Reynolds by Sampley Client Rep. by Seurier? UPS Laboratory Comments: abels on container(s) Project Loc: Lea County, NM X Standard Project #: 2006-142 Metals: As Ag Ba Cd Ct Pb Hg Se 10LP. TOTAL Anions (CI, SO4, Alkalinity) Cations (Ca, Mg, Na, K) Report Format: 9001 XT 9001 XI Hq1 4.30 8.8 Time BG108 (Marob) × × Нал SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL (bu. 80,04) 17110g ow=Drinking water St=Sludge Safe Other (Specify) Preservation & # of Containers anoN kad@basinenv.com O_SS_SBN HOGN *OSZH (505) 396-1429 HOL EONH × × × × × Jan Gran otal #, of Containers benetliii blei e-mail: Fax No; 1426 1430 1436 544 1448 1452 1459 1520 0060 1421 Time Sampled 03 Received by ELO P. Keceived by: 27-Nov-06 27-Nov-06 27-Nov-06 27-Nov-06 27-Nov-06 27-Nov-06 27-Nov-06 27-Nov-06 27-Nov-06 28-Nov-06 Received by: 62 Basin Environmental Service Technologies, LLC Date Sampled PAGE 5 20. 25 35 65 72 9 55 45 1638 hiqaQ ըունում ល Contraction of the second <u>u</u> 5 3 30 20, -09 2 40, 50 Beginning Depth 0 ັດ 3 Sarvor &6 Lovington, NM 88260 ₹ \$2 (505) 441-24124 P. O. Box 301 Ken Dutton FIELD CODE MW-6 10' WW-6 15' MW-6 20' MW-6 25' MW-6 35 WW-6 45' WW-6 55' MW-6 65' MW-6 75' MW-6 5 6/0/0/0/0 Company Address: Sampler Signature: Project Manager: Company Name Telephone No: City/State/Zip: Special Instructions: elinguished by: (lab use only) ORDER #: 4 9 (Vino asu dal) # 8A.

TAT breansi2,

×

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUES!

Odessa, Texas 79765 12600 West I-20 East

Phone: 432-563-1800 Fax: 432-563-1713

FedEx Lone Star "C NPDES RUSH TAT (Pre-Schedule) 24, 48, 72 ins Sample Containers Intact? Project Name: Lovington Gathering WTI TRRP N.O.R.M. 품 всі Temperature Upon Receipt: Custody seals on cooler(s) BTEX 80218/5030 or BTEX 8250 × × × VOCs Free of Headspace? Sample. Hand Delivered by Sampler/Dient Rep. by Sourier? UPS PO #; PAA - C. J. Reynolds Analyze Project Loc: Lea County, NM X Standard Project #: 2006-142 Metals: As Ag 8a Cd Cr Pb Hg Se TCLP PVB / ESB / CEC Anions (Ci, SO4, Alkalinily) Cations (Ca. Mg. Na, K) Report Format: 9001 XT 2001 XT 34**41** Time 4:50 4:00 ille шe 89109 พระอธ × × × :Hal SOIL SOIL Matrix SOIL SOIL SOIL SOIL 잃 SOL SOIL SO 10v. 30.Ch 2/1/2/ DAY=Drinking Water &L=Studge Date Other (Specify) Preservation & # of Containers kad@basinenv.com COtSEN HOBN 'OS^zH (505) 396-1429 HCI HNO3 × × × × × × × × ~ otal #, of Containers benetiii? blei e-mail: Fax No 1355 1400 1415 1430 1445 1350 1404 1407 1423 1439 baldma2 amiT Received by ELOT: 8 Q Lande 28-Nov-06 28-Nov-06 28-Nov-06 28-Nov-06 28-Nov-06 28-Nov-06 28-Nov-06 28-Nov-06 28-Nov-06 28-Nov-06 03 Received by: Basin Environmental Service Technologies, LLC Date Sampled PAGE 75 5 20, 25 32 65 ě <u>2</u>5 55 Ending Depth 163 Ø Kill in ល E. 5 3 30 -09 70, 23 Hada Deinniga Beath \$ 50 0 ĩΩ 3 Sexual Ole Lovington, NM 8826D (505) 441-24124 P. O. Box 301 Ken Dutton 1200 FIELD CODE ហ MW-7 15 MW-7 20' MW-7 25 MW-7 35' MW-7 55' MW-7 65' MW-7 75' MW-7 45 MW-7 MW-7 Company Address: Sampler Signature: Project Manager: Company Name Telephone No: City/State/Zip: Special Instructions: Kula Relinguished by: (lab use only) ORDER #: (Nuo esu del) # 8A

TAT brisbrist2

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Dient: Plains				
Pate/ Time: 12 1 0 4 4 00				
ab ID#: 4L01019				
NV				
itials:				
Sample Recei	pt Checklist			
•	•		С	lient Initials
Temperature of container/ cooler?	Yes	No	3,0 °C	
Shipping container in good condition?	(Yes)	No		
3 Custody Seals intact on shipping container/ cooler?	(Yes)	No	Not Present	
		No	Not Present	
Custody Seals intact on sample bottles/ container? Chain of Custody present?	Yes	No		
Sample instructions complete of Chain of Custody?	Yes	No		
Chain of Custody signed when relinquished/ received?	Yes	No		
Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid	
Container label(s) legible and intact?	₹ e s	No	Not Applicable	
10 Sample matrix/ properties agree with Chain of Custody?	Øes	No		
1 Containers supplied by ELOT?	₹® S	No		
2 Samples in proper container/ bottle?	Yes	No	See Below	
13 Samples properly preserved?	(Fes)	No	See Below	
4 Sample bottles intact?	(Fes)	No		
5 Preservations documented on Chain of Custody?	Yes	No		
16 Containers documented on Chain of Custody?	(Yes	No		
7 Sufficient sample amount for indicated test(s)?	(Yes	No	See Below	
All samples received within sufficient hold time?	Yes	No	See Below	
19 Subcontract of sample(s)?	Yes	No	Not Applicable.	
O VOC samples have zero headspace?	∤ ∕€\$)	No	Not Applicable	
Variance Dod	cumentation			
ntact: Contacted by:		-	Date/ Time:	
Regarding:				
Corrective Action Taken:				
theck all that Apply: See attached e-mail/ fax Client understands and we Cooling process had begu				

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Lovington Gathering WTI
Project Number: SRS: 2006-142
Location: Lea County, NM

Lab Order Number: 6L29011

Report Date: 01/02/07

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	6L29011-01	Water	12/28/06 08:00	12-29-2006 14:00
MW-4	6L29011-02	Water	12/28/06 09:15	12-29-2006 14:00
MW-5	6L29011-03	Water	12/28/06 10:25	12-29-2006 14:00
MW-6	6L29011-04	Water	12/28/06 11:30	12-29-2006 14:00
MW-7	6L29011-05	Water	12/28/06 12:50	12-29-2006 14:00
MW-2	6L29011-06	Water	12/28/06 14:00	12-29-2006 14:00
MW-3	6L29011-07	Water	12/28/06 15:15	12-29-2006 14:00

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

A melasta	DII	Reporting	T lada						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (6L29011-01) Water									
Benzene	ND	0.00100	mg/L	ı	EL63101	12/31/06	12/31/06	EPA 8021B	
Toluene	J [0.000583]	0.00100	"		н	**	17	n	
Ethylbenzene	J [0.000454]	0.00100	H	н	n	#	19		
Xylene (p/m)	0.00222	0.00100	10	н	н	**	· ·	•	
Xylene (o)	J [0.000796]	0.00100	11	"	n	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		99.2 %	80-1.	20	"	"	"	n .	
Surrogate: 4-Bromofluorobenzene		96.0 %	80-1.	20	"	"	n	"	
MW-4 (6L29011-02) Water									
Benzene	ND	0.00100	mg/L	1	EL63101	12/31/06	01/01/07	EPA 8021B	
Toluene	ND	0.00100	н	н	n	**	**	n	
Ethylbenzene	ND	0.00100	H	н		n	tr	u	
Xylene (p/m)	ND	0.00100	,,	н		q		0	
Xylene (o)	ND	0.00100	n	11	u	*	"	н	
Surrogate: a,a,a-Trifluorotoluene		82.0 %	80-1.	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		89.0 %	80-12	20	n	"	n	n	
MW-5 (6L29011-03) Water									
Benzene	ND	0.00100	mg/L	1	EL63101	12/31/06	01/01/07	EPA 8021B	
Toluene	ND	0.00100			н	**	"	U	
Ethylbenzene	ND	0.00100	"		н	н	*	"	
Xylene (p/m)	ND	0.00100	"		**	н	"	11	
Xylene (o)	ND	0.00100	n	•	**	н	u	"	
Surrogate: a,a,a-Trifluorotoluene		89.5 %	80-12	20	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.2 %	80-12	20	**	"	n	n	
MW-6 (6L29011-04) Water									
Benzene	ND	0.00100	mg/L	1	EL63101	12/31/06	01/01/07	EPA 8021B	
Toluene	ND	0.00100	**	"	n	н	11		
Ethylbenzene	ND	0.00100	v	н	н	**	*		
Xylene (p/m)	ND	0.00100	n	H	"	4	и	*	
Xylene (o)	ND	0.00100	н		"	н	n	11	
Surrogate: a,a,a-Trifluorotoluene		90.5 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.5 %	80-12	20	"	"	"	n	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	1 Inite						N.
	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-7 (6L29011-05) Water						 			
Benzene	0.0473	0.00100	mg/L	1	EL63101	12/31/06	01/01/07	EPA 8021B	
Toluene	J [0.000357]	0.00100	**	,	u	"	**	n	
Ethylbenzene	1 [0.000202]	0.00100	н	11	ø	**	**	H .	
Xylene (p/m)	0.00130	0.00100	н	u '	"	**	н	н	
Xylene (o)	ND	0.00100	**	**	· ·	**	11	н	
Surrogate: a,a,a-Trifluorotoluene		93.5 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	80-	120	"	"	#	"	
MW-2 (6L29011-06) Water									
Benzene	0.161	0.00100	mg/L	1 ,	EL63101	12/31/06	01/01/07	EPA 8021B	
Toluene	1 [0.000389]	0.00100	"	н	и		19	0.	
Ethylbenzene	J [0.000242]	0.00100		,,	"	*	41	n	
Xylene (p/m)	0.0248	0.00100	,	"	u	11	n	el	
Xylene (o)	ND	0.00100	**	#	**	н	0	u.	
Surrogate: a,a,a-Trifluorotoluene		99.2 %	80-	120	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.5 %	80-	120	"	n	"	"	
MW-3 (6L29011-07) Water									
Benzene	1.02	0.00500	mg/L	5	EL63101	12/31/06	01/01/07	EPA 8021B	
Toluene	J [0.00339]	0.00500	"	"	u	**	**	н	
Ethylbenzene	0.00533	0.00500	н	"	"	n	n	*	
Xylene (p/m)	0.0280	0.00500	•	"		,,	*	*	
Xylene (o)	J [0.00479]	0.00500		н	"	"	**	*	
Surrogate: a,a,a-Trifluorotoluene		82.0 %	80-	120	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		91.5 %	80-	120	"	"	"	<i>n</i> .	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

	<u>.</u>	Reporting		Spike	Source	A	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL63101 - EPA 5030C (GC)						_				
Blank (EL63101-BLK1)				Prepared: 1	12/31/06 At	nalyzed: 01	/01/07			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	ь							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00100	**							
Xylene (o)	ND	0.00100	**							
Surrogate: a,a,a-Trifluorotoluene	36.1		ug/l	40.0		90.2	80-120			
Surrogate: 4-Bromofluorobenzene	37.0		n	40.0		92.5	80-120			
LCS (EL63101-BS1)				Prepared: 1	12/31/06 Ar	nalyzed: 01	/01/07			
Benzene	0.0455	0.00100	mg/L	0.0500		91.0	80-120	-		
Totuene	0.0472	0.00100	**	0.0500		94.4	80-120			
Ethylbenzene	0.0444	0.00100	*	0.0500		88.8	80-120			
Xylene (p/m)	0.0942	0.00100	**	0,100		94.2	80-120			
Xylene (o)	0.0439	0.00100	**	0.0500		87.8	80-120			
Surrogate: a,a,a-Trifluorotoluene	36.2		ug/l	40.0		90.5	80-120			
Surrogate: 4-Bromofluorobenzene	43.5		n	40.0		109	80-120			
Calibration Check (EL63101-CCV1)				Prepared: 1	12/31/06 Aı	nalyzed: 01	/01/07			
Benzene	48.2		ug/l	50.0		96.4	80-120			
Toluene	49.3			50.0		98.6	80-120			
Ethylbenzene	56.4		"	50.0		113	80-120			
Xylene (p/m)	94.8		**	100		94.8	80-120			
Xylene (o)	45.3		**	50.0		90.6	80-120			
Surrogate: a,a,a-Trifluorotoluene	37.8		"	40.0		94.5	80-120		-	
Surrogate: 4-Bromofluorobenzene	44.1		"	40.0		110	80-120			
Matrix Spike (EL63101-MS1)	Sou	ırce: 6L29005-	01	Prepared: 1	12/31/06 At	nalyzed: 01	/01/07			
Benzene	0.0470	0.00100	mg/L	0.0500	ND	94.0	80-120	-		
Toluene	0.0473	0.00100	11	0.0500	ND	94.6	80-120			
Ethylbenzene	0.0502	0.00100	"	0.0500	ND	100	80-120			
Xylene (p/m)	0.0959	0.00100	н	0.100	ND	95.9	80-120			
Kylene (o)	0.0441	0.00100	"	0.0500	ND	88.2	80-120			
Surrogate: a,a,a-Trifluorotoluene	35.7		ug/l	40.0		89.2	80-120			
Surrogate: 4-Bromofluorobenzene	42.9		"	40.0		107	80-120			

Surrogate: 4-Bromofluorobenzene

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL63101 - EPA 5030C (GC)				-						
Matrix Spike Dup (EL63101-MSD1)	Sour	rce: 6L29005-	-01	Prepared:	2/31/06 A	nalyzed: 01	/01/07			
Benzene	0.0461	0.00100	mg/L	0.0500	ND	92.2	80-120	1.93	20	
Toluene	0.0485	0.00100	n	0.0500	ND	97.0	80-120	2.51	20	
Ethylbenzene	0.0527	0.00100	•	0.0500	ND	105	80-120	4.88	20	
Xylene (p/m)	0.0978	0.00100		0.100	ND	97.8	80-120	1.96	20	
Xylene (o)	0.0458	0.00100	11	0.0500	ND	91.6	80-120	3.78	20	
Surrogate: a a a Trifluorotoluene	373		ua/l	10.0		03.2	80 120			

40.0

80-120

42.6

Plains All American EH & S

Project: Lovington Gathering WTI

Fax: (432) 687-4914

1301 S. County Road 1150 Midland TX, 79706-4476 Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

LCS Laboratory Control Spike

MS Matrix Spike

Dup Duplicate

Report Approved By:

Raland KJuth

Date:

1/2/2007

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Tab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Phone: 432-563-1800 Fax: 432-563-1713

Project Manager:	Ken Dutton PAGE 01 OF 01	01		Project Name: LOVINGTON GATHERING WTI
Company Name	Basin Environmental Service Technologies, LLC			Project #: 2006-142
Company Address: P. O. Box 301	S: P. O. Box 301	and the second		Project Loc: Lea County, NM
City/State/Zip:	Lovington, NM 88260			PO#: PAA - C. J. Reynolds
Telephone No:	(505) 441-2124	Fax No:	(505) 396-1429	Report Format: X Standard TRRP NPDE
Sampler Signature:	Land Autor	e-mail:	kad@basinenv.com	
				Analyze For:

				TAT bas	Stands	×	×	×	×	×	×	×		Γ	Γ.			83 () () <u>.</u>	
	ard	ζ <u>1</u> '	'8 7	TAT (Pre-Schedule) 24,	нгия											z z	222		, j
																		<u> </u>	
	L					Ľ.									L.	363	986	1989 1	$\mathcal{O}_{\mathbb{R}}$
				<u> </u>] ``````````		, L	
	L			.w	N.O.R.I								<u> </u>						
					вСІ				L								9	Ę	
ĕ	L	×	08	30218/5030 or BTEX 82	X3T8	×	×	×	×	×	×	×				Laboratory Comments: Sample Containers Infact? VOCs Free of Headspace?	Labels on container(s) Custody seals on container(s)) D 80 W	Temperature Upon Receipt
Analyze For:		Ш		səggə	Semiyo											Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace	Labels or container(s) Custody seals on containe	Sample Hand Delivered by Sampler/Client Rep.	Re
aly				\$	9liteloV											mm ers	Cabels of confainer(s) Custody seals on conf	<u>e</u> <u>≤</u> (. . . 6
₹	L		₽Ş	АS Ад Ва Сd Cr Pb Hg	Metals:											S = 1	als	2 9 9) •
	TCLP	TOTAL		SP/CEC	3\ <i>R</i> \8												Ses /		n a
	F	2		(Cl. SO4, Atkalinity)	<i>e</i> noinA											E S	8 8 8	10 a 2	jed
				(C8' Mâ' M8' K)	Cetions						П					S S E	通	Sa	_ Ea_
				8001 XT 8001 XT	अधा											. 1.	-		
			89	108 M2108 1.814	HdJ,											(X)	A STATES	_ime	Time 400
	~~		×	n-Potable Specify Oth	ON=dN	_		_				-					0	Ĺ	
ļ		1	Matrix	Coundwater S×Soli/Sol	CM = C	8	Ğ₹	GΨ	Λ'n	3	8	§ S					7		4
				inking Water SL - Sludg	DW-Dr						Ĺ]	Blace of	Date	Date -24-26
			ers	(Specify)	Other (23	Õ	
			Containers		Mone					L	L]	8		132
			Cor	02	S ₂ 6N														183
		ı	βOF		НО₽И			•]	1	ĺ	
			ᅄ		PSO04														
ı			Preservation		нсі	×	×	X	×	×	×	×				1			
			Ser		[©] ONH :											1			
			g.		eol	×	×	×	×	×	×	×				1	3	7	
		6		of Containers	.# lsJoT	2	~	2	2	2	2	2				1	3	{	
•				lened	Field Fil											1	`	4	(
																	1	Y	X
						0	ťΩ	ίζ.	2	õ	0	5				i	Sech my	1	
				Sampled	eπiT	0800	0915	1025	1130	1250	1400	1515				l .	Q)	7
			Ì													•			_ં ફેં
			ı			9	9	9	9	9	9	9					1. 8	3	ON ELO
			١			ec-06	90-oə	90-ce	90-oe	90-cə	90-ce	ec-06					i ya By:	g py:	
			١	Sampled	-Date	اۃ	٥	Ö	O	Ō	Ģ	å						SP (ii)	\$ \frac{1}{2}
			-			28-D	28-D	28-D	28-D	28-De	28-D	28-D		ĺ			Receive	Receive	Receive
			t				┪						\dashv						
				a Depth	ribu3	<u> </u>	_	_	_]		_						Time day 2 d	惶	Time
				ritqa O ըտin	usbad												E 6	Ξ	E 2
			ļ														2	1	<i>U</i>
			-]		l								. 19		6
ſ	:		\dashv			l	- (Į					l	ļ			Date Contract	Oate Oate	Date
	1.3					ł	- 1	.	ĺ					ı			Date Date		
	·,				Ì	Į	- 1					- 1					6	4	18
-	1.		Ç.		ш					ŀ								l	١٦
		-	-		FIELD CODE	5	4	ιņ	φ	<u>~</u>	Ņ	٠	ĺ					`	\setminus 1
	1.	7	} [•		MW-1	MW-4	MW-5	MW-6	MW-7	MW-2	MW-3	ļ	l				l	1
١,		íΥ			ᇎ	-			-		-	-					コ		🐴
		Ď.					- 1	- 1		ı	ĺ			1			<i> </i> {4		12
		2001°			1			-]		 ::	3		
		્ <i>ં</i>	,		l		ſ									ions	\mathcal{L}		JK.
[_	\sim	′ .I		- 1				Į	I	1		Į		1	rict.	\	i.	
ŀ	등	*	*							[_		nstr	~ Z	g	e d
	Se	ñ	֓֞֝֝֝֡֓֓֓֡֩֟֝֓֓֓֓֓֡֓֡֩֩֡֡֡֓֓֓֓֡֡֡֡֡֡֡֡֡֓֡֓֡֓֡֩֡֡֡֡֡֡֡	. 存款基基次的	<i>/////</i>	-	1,1	25			. 5	~		30	Š	<u> </u>	\$ \frac{1}{2}	rieish Ta	E St
1.	(lab use only	CODED #.	3	(ksp nae ouly)	EVB	9	70	603	1	50-	$ \vec{p} $	5	\$			Special Instructions:	allinguished by	Refinquished by	Relinguished by
Ŀ	=_	္င	<u>기</u>	<u>含因何思思种。</u> 随时			100			1	4	- 15		38.	1.	Ø.	&/ <u>\</u>	œ	<u> </u>
																		,	• • • • • • • • • • • • • • • • • • • •

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Sample Receip	t Checklist			-
Temperature of container/ cooler?	Yes	Nia	Client in	nitial
Shipping container in good condition?	Yes	No No	0,0	
Custody Seals intact on shipping container/ cooler?	yes)	No	Not Propert	
Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
Chain of Custody present?	Yes	No	Not Present	
Sample instructions complete of Chain of Custody?	Yes	No		
Chain of Custody signed when relinquished/ received?	(Yes)	No		
Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid	
Container label(s) legible and intact?	Yes	No	Not Applicable	
Sample matrix/ properties agree with Chain of Custody?	Yes	No	110171рысаые	
Sample matrix/ properties agree with Chain of Custody? Containers supplied by ELOT?	Yes	No		
Samples in proper container/ bottle?	Yes	No	See Below	
Samples properly preserved?	(Yes)	No	See Below	
Samples properly preserved? Sample bottles intact?	(Yes/	No		
Preservations documented on Chain of Custody?	(Yes)	No		
Containers documented on Chain of Custody?	(Yes)	No		
Containers documented on Chain of Custody? Sufficient sample amount for indicated test(s)?	(Yes)	No	See Below	
All samples received within sufficient hold time?	Yes	No	See Below	
Subcontract of sample(s)? VOC samples have zero headspace?	Yes	No	Not Applicable	
VOC samples have zero headspace?	Yes	No	Not Applicable	
tact: Contacted by:	mentation		Date/ Time:	·
rective Action Taken:	W Notes			

A Xenco Laboratories Company

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Lovington Gathering WTI

Project Number: 2006-142 Location: Lea County, NM

Lab Order Number: 7B09020

Report Date: 02/14/07

Project: Lovington Gathering WTI

Project Number: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

the state of the s				
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-8 10'	7B09020-01	Soil	02/07/07 09:50	02-09-2007 14:36
MW-8 25'	7B09020-02	Soil	02/07/07 10:03	02-09-2007 14:36
MW-8 50'	7B09020-03	Soil	02/07/07 10:23	02-09-2007 14:36
MW-8 75'	7B09020-04	Soil	02/07/07 10:36	02-09-2007 14:36

Project: Lovington Gathering WTI

Project Number: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units		n .				
	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-8 10' (7B09020-01) Soil	<u> </u>								
Benzene	ND	0.00200	mg/kg dry	2	EB71005	02/10/07	02/10/07	EPA 8021B	
Toluene	ND	0.00200	P	*	11	"	u	**	
Ethylbenzene	ND	0.00200	**	*	"	**	"	11	
Xylene (p/m)	ND	0.00200	*	" .	17	**	*	n	
Xylene (o)	ND	0.00200	11	"	11	*1	"	и	
Surrogate: a,a,a-Trifluorotoluene		80.6 %	80-1	20	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		70.0 %	80-1	20	n	"	"	"	S-0
Carbon Ranges C6-C12	ND	. 10.0	mg/kg dry	1	EB71006	02/10/07	02/13/07	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	н	**	"	11	*	v	
Carbon Ranges C28-C35	ND	10.0	n	*	**	"	**	ь	
Total Hydrocarbons	ND	10.0	*	٠.	"	*	Ħ	"	
Surrogate: 1-Chlorooctane	· · · · · · · · · · · · · · · · · · ·	90.2 %	70-1	30	"	n	n	,,	
Surrogate: 1-Chlorooctadecane		90.8 %	70-1	30	"	"	n	n	
MW-8 25' (7B09020-02) Soil									
Benzene	ND	0.00200	mg/kg dry	2	EB71005	02/10/07	02/12/07	EPA 8021B	
Toluene	ND	0.00200	н	,	**	н	**	,,	
Ethylbenzene	ND	0.00200	*		**	н	**	н	
Xylene (p/m)	ND	0.00200		n	**	17	**	н	
Xylene (o)	ND	0.00200	"	n	н	**		"	
Surrogate: a,a,a-Trifluorotoluene		93.2 %	80-1.	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		124 %	80-1.	20	,,	"	"	"	S-0
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB71006	02/10/07	02/13/07	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	*	**	"		11	11	
Carbon Ranges C28-C35	ND	10.0	н		ņ	u	**	it.	
Total Hydrocarbons	ND	10.0	н	"	u	,,	"		
Surrogate: 1-Chlorooctane		94.0 %	70-1.	30	"		,,	"	*
Surrogate: 1-Chlorooctadecane		95.2 %	70-1.		"	"	n	"	
MW-8 50' (7B09020-03) Soil									
Benzene	ND	0.00200	mg/kg dry	2 .	EB71005	02/10/07	02/12/07	EPA 8021B	
Toluene	ND	0.00200	н	**		н	n	0	
Ethylbenzene	ND	0.00200	**	"	,,	и	n	•	
Xylene (p/m)	ND	0.00200	11	n	"	и		**	
Xylene (o)	ND	0.00200	#	**	"	п	u		
Surrogate: a,a,a-Trifluorotoluene		92.0 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		136%	80-12	20	"	"	"	n	S-0
Carbon Ranges C6-C12	ND		mg/kg dry	1					

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Project: Lovington Gathering WTI

Project Number: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-8 50' (7B09020-03) Soil									
Carbon Ranges C12-C28	14.0	10.0	mg/kg dry	1	EB71006	02/10/07	02/13/07	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	**	19	"	n	*	"	
Total Hydrocarbons	14.0	. 10.0	n	**	**	III	n	n	
Surrogate: 1-Chlorooctane		112 %	70-13	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		111%	70-13	30	"	"	"	n	
MW-8 75' (7B09020-04) Soil									
Benzene	ND	0.00200	mg/kg dry	2	EB71005	02/10/07	02/12/07	EPA 8021B	
Toluene	ND	0.00200	IP		**	п	и	**	
Ethylbenzene	ND	0.00200	tt	11	"	n	u	n	
Xylene (p/m)	ND	0.00200	n	"	н	,	"	и	
Xylene (o)	ND	0.00200	n	**	•	u	н	H	
Surrogate: a,a,a-Trifluorotoluene		99.2 %	80-12	20	"	"	"	u u	
Surrogate: 4-Bromofluorobenzene		139 %	80-12	20	"	"	"	n	S-04
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EB71006	02/10/07	02/13/07	EPA 8015M	
Carbon Ranges C12-C28	71.5	. 10.0	"	u	**		•	tt.	
Carbon Ranges C28-C35	29.9	10.0	н	"	**	P	п	n	
Total Hydrocarbons	101	10.0	н	*1	#		п	н	
Surrogate: 1-Chlorooctane		106 %	70-13	30 .	"	"	"	"	
Surrogate: 1-Chlorooctadecane		108 %	70-13	30	"	"	"	н	

Project: Lovington Gathering WTI

Project Number: 2006-142

Project Manager: Camille Reynolds

Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-8 10' (7B09020-01) Soil									
% Moisture	2.2	0.1	%	1 .	EB71203	02/12/07	02/12/07	% calculation	
MW-8 25' (7B09020-02) Soil									
% Moisture	4.6	0.1	%	1	EB71203	02/12/07	02/12/07	% calculation	
MW-8 50' (7B09020-03) Soil									
% Moisture	3.4	0.1	%	1 .	EB71203	02/12/07	02/12/07	% calculation	
MW-8 75' (7B09020-04) Soil									
% Moisture	4.9	0.1	%	1	EB71203	02/12/07	02/12/07	% calculation	

Plains All American EH & S

Project: Lovington Gathering WTI

Fax: (432) 687-4914

1301 S. County Road 1150 Midland TX, 79706-4476

Project Number: 2006-142 Project Manager: Camille Reynolds

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	- Nosuit		Omta	Level		70KLC	Limits	KI D	Dinit	110103
Batch EB71005 - EPA 5030C (GC)										
Blank (EB71005-BLK1)				Prepared &	2 Analyzed	02/10/07				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00100	n							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00100	"							
Xylene (o)	ND	0.00100	17							
Surrogate: a,a,a-Trifluorotoluene	41.9		ug/kg	50.0		83.8	80-120			
Surrogate: 4-Bromofluorobenzene	40.2		"	50.0		80.4	80-120			
LCS (EB71005-BS1)				Prepared &	k Analyzed:	: 02/10/07				
Benzene	0.0522	0.00100	mg/kg wet	0.0500		104	80-120			
Toluene	0.0511	0.00100	н	0.0500		102	80-120			
Ethylbenzene	0.0475	0.00100	"	0.0500		95.0	80-120			
Xylene (p/m)	0.109	0.00100	**	0.100		109	80-120			
Xylene (o)	0.0449	0.00100	**	0.0500		89.8	80-120			
Surrogate: a,a,a-Trifluorotoluene	46.9		ug/kg	50.0		93.8	80-120			
Surrogate: 4-Bromofluorobenzene	50.5		"	50.0		101	80-120			
Calibration Check (EB71005-CCV1)				Prepared: (02/10/07 A	nalyzed: 02	/11/07			
Benzene	54.8		ug/kg	50.0		110	80-120			
Toluene	52.4		"	50.0		105	80-120			
Ethylbenzene	50.7		*	50.0		101	80-120			
Xylene (p/m)	103		**	100		103	80-120			
Xylene (o)	43.4		u	50.0		86.8	80-120			
Surrogate: a,a,a-Trifluorotoluene	46.7		n	50.0		93.4	80-120			
Surrogate: 4-Bromofluorobenzene	42.2		"	50.0		84.4	80-120			
Matrix Spike (EB71005-MS1)	Sou	rce: 7B09020	-01	Prepared: (02/10/07 A	nalyzed: 02	/11/07			
Benzene	0.114	0.00200	mg/kg dry	0.102	ND	112	80-120			
Toluene	0.115	0.00200	,,	0.102	ND	113	80-120			
Ethylbenzene	0.114	0.00200	"	0.102	ND	112	80-120			
Xylene (p/m)	0.253	0.00200	"	0.204	ND	124	80-120			

0.00200

ug/kg

0.110

43.9

58.1

Surrogate: a,a,a-Trifluorotoluene

Surrogate: 4-Bromofluorobenzene

Xylene (o)

ND

0.102

50.0

50.0

108

87.8

116

80-120

80-120

80-120

Project: Lovington Gathering WTI

Project Number: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Onits	Level	Kesuit	70KEC	Littits	Rib	Citiii	140(62
Batch EB71005 - EPA 5030C (GC)										
Matrix Spike Dup (EB71005-MSD1)	Sou	rce: 7B09020	-01	Prepared: (02/10/07 A	nalyzed: 02	2/11/07			
Benzene	0.113	0.00200	mg/kg dry	0.102	ND	111	80-120	0.897	20	
Toluene	0.110	0.00200	"	0.102	ND	108	80-120	4.52	20	
Ethylbenzene	0.111	0.00200	н	0.102,	ND	109	80-120	2.71	20	
Xylene (p/m)	0.238	0.00200	"	0.204	ND	117	80-120	5.81	20	
Xylene (o)	0.103	0.00200	"	0.102	ND	101	80-120	6.70	20	
Surrogate: a,a,a-Trifluorotoluene	45.9		ug/kg	50.0		91.8	80-120			
Surrogate: 4-Bromofluorobenzene	56.1		"	50.0		112	80-120			
Batch EB71006 - Solvent Extraction (GC)										
Blank (EB71006-BLK1)				Prepared: (02/10/07 A	nalyzed: 02	2/13/07			
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	n							
Carbon Ranges C28-C35	ND	10.0	**							
Total Hydrocarbons	ND	10.0	"							
Surrogate: 1-Chlorooctane	48.4		mg/kg	50.0		96.8	70-130			
Surrogate: 1-Chlorooctadecane	49.8		"	50.0		99.6	70-130			
LCS (EB71006-BS1)				Prepared: (02/10/07 A	nalyzed: 02	2/13/07			
Carbon Ranges C6-C12	529	10.0	mg/kg wet	500		106	75-125			
Carbon Ranges C12-C28	524	10.0	н	500		105	75-125			
Carbon Ranges C28-C35	ND	10.0	11	0.00			75-125			
Total Hydrocarbons	1050	10.0	**	1000		105	75-125			
Surrogate: 1-Chlorooctane	55.2		mg/kg	50.0		110	70-130			
Surrogate: 1-Chlorooctadecane	49.3		"	50.0		98.6	70-130			
Calibration Check (EB71006-CCV1)				Prepared: (02/10/07 A	nalyzed: 02	2/13/07			
Carbon Ranges C6-C12	216		mg/kg	250		86.4	80-120			

0.00

50.0

0.00

467

55.2

50.3

Carbon Ranges C28-C35

Surrogate: 1-Chlorooctane

Surrogate: 1-Chlorooctadecane

Total Hydrocarbons

80-120

80-120

70-130

70-130

93.4

110

101

Project: Lovington Gathering WTI

Project Number: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

		-								
		Reporting		Spike	Source		%REC		RPD	ļ
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (EB71006-MS1)	Sourc	e: 7B08015	5-01	Prepared: 0	2/10/07 A	nalyzed: 02	2/13/07			
Carbon Ranges C6-C12	660	10.0	mg/kg dry	526	ND	125	75-125			
Carbon Ranges C12-C28	625	10.0	**	526	14.8	116	75-125			
Carbon Ranges C28-C35	ND	10.0	*	0.00	ND		75-125			
Total Hydrocarbons	1280	10.0	н	1050	14.8	120	75-125			
Surrogate: 1-Chlorooctane	59.8		mg/kg	50.0		120	70-130			
Surrogate: 1-Chlorooctadecane	60.5		"	50.0		121	70-130			
Matrix Spike Dup (EB71006-MSD1)	Sourc	e: 7B08015	5-01	Prepared: 0)2/10/07 A	nalyzed: 02				
Carbon Ranges C6-C12	663	10.0	mg/kg dry	526	ND	126	75-125	0.797	20	М
Carbon Ranges C12-C28	632	10.0	**	526	14.8	117	75-125	0.858	20	
Carbon Ranges C28-C35	ND	10.0	**	0.00	ND		75-125		20	
Total Hydrocarbons	1290	10.0	" '	1050	14.8	121	75-125	0.830	20	
Surrogate: 1-Chlorooctane	62.0		mg/kg	50.0		124	70-130			
Surrogate: 1-Chlorooctadecane	61.2		"	50.0		122	70-130			

Project: Lovington Gathering WTI

Project Number: 2006-142

Project Manager: Camille Reynolds

Fax: (432) 687-4914

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EB71203 - General Preparation (Prep)

Blank (EB71203-BLK1)			Prepared & Analyzed: 02/12/07			
% Solids	100	%				
Duplicate (EB71203-DUP1)	Source: 7E	309017-01	Prepared & Analyzed: 02/12/07			
% Solids	95.9	%	95,4	0.523	20	

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: Lovington Gathering WTI

Fax: (432) 687-4914

Project Number: 2006-142

Project Manager: Camille Reynolds

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

DET Analyte DETECTED

Analyte NOT DETECTED at or above the reporting limit ND

NR Not Reported

Sample results reported on a dry weight basis dry

Relative Percent Difference

LCS Laboratory Control Spike

MSMatrix Spike

Duplicate Dup

Report Approved By:

Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant

James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Labor Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Phone: 432-563-1800 Odesea, Texas 79765 Fax: 432-563-1713

☐ NPDES Project Name: LOVINGTON GATHERING WIT TRRP PO#: PAA - C. J. Reynolds Analyze For: Project Loc: Lea County, NM X Standard Project #: 2006-142 Report Format: kad@basinenv.com (505) 396-1429 e-mail: Fax No: 5 PAGE 01 OF Basin Environmental Service Technologies, LLC Lovington, NM 88260 (505) 441-2124 Company Address: P. O. Box 301 Ken Dutton Sampler Signature: Project Manager: Company Name Telephone No: City/State/Zip:

(Vino esu del)														_				Ł		•		ŀ	ŀ	Ţ	
		137.55				-											10LP:		1	-				arq	
Capter #	していること	多次								ı			ŀ				10TA		┪	×				22	-
)	17	f	-			- {	Pres	Preservation	٥ŏ	# of Containers	utain	_	-≘.	89			98		09				91	
(tho esu del) # 8AJ	FIELD CODE	·	Beginning Depth	Ending Depth	balqms2 əisQ	Time Sampled	Field Fittered Total # of Containers	eo;	но ^э	*os*H	HOSM CO.S.SEN	None	Olher (Specify) DwDrinking Water SL.«Sludg	CW = Croundwater 5 Soilisoi	108 (M2108) 1.811 HQT 8001 XT 2001 XT HQT	Cations (Cs, Mg, Na, K)	SAR / ESP / CEC	Wetels: As Ag Ba Cd Cr Pb Hg S	səlileləV	Semivolatiles BTEX 80218/5030 or BTEX 826	всі	N.O.R.M.		RUSH TAT (Pre-Schedule) 24,	TAT brebnst
0	MW-8 10'		L	9	7-Feb-07	0950	_	×			$\vdash \vdash$		ξ	SOIL	×					×				<u> </u>	×
70	MW-8 25		20	25	7-Feb-07	1003		×					Š	SOIL	×					×					×
20	MW-8 50'		45	20	7-Feb-07	1023	1	×	L_		ļ.,		S	SOIL	×		-		-	×		-			×
ठ	MW-8 75'		70	75	7-Feb-07	1036	-	×	_		-	_	Š	SOIL	×		-		-	×		-		-	×
3				\vdash		i	_				-		L.	-	-				╁	+	_	╁		╁	
			\vdash				-		-		\vdash				╀		}-		+	+	工	+		┿	I
			-				-		-		-				-		+		┨-	-		╁	1	╁	$oxed{\Box}$
				-			-		-	L	╁-	_			-		-		+	+		┼-		╁	
N. S. S. S. S. S. S. S. S. S. S. S. S. S.				\vdash			-		-		╀				╀		+-		╀╴	╀	<u> </u>	╀╌		_	Γ
- 1988. - 1988.			-						1		-			T	╂		-		-	┼-		+-		_	L
Special Instructions:							1]	1		1	}]	1	120	Sam Po	Laboratory Comments: Sample Containers Intacto VOCs Free of Headspace?	S La S	nmei lers lers	Tact]		100] (Z) Z	
Relinguished by:	Let Cate	Date Date	Time 1 & 1 5		Received by:	Back	3	032	1	١,	}	18	2/9/07	[N	Time // // // // // // // // // // // // //	Se se se	Cabels on container(s) Custody seals on container(s) Custody seals on container(s)	conta sals o	iner(s)	(§))	ZZ	
Relinquished by:		Date	Типе	 	Received by:				ł		}	<u> </u>	Date	<u> </u>	Time	Sam	ample Hand Delivered by Sampler/Clent Rep	D Sec	es es	P Rep	Ţ		1904 1	ZZ	
Relinguished by:	Whise	Halle C	Time /// 20		Received by ELOT	ECTIVITY OF THE DESCRIPTION OF THE PROPERTY OF	3					7	Date 7 A OT		Time.	,º	Temperature	e Cr	A R	A VO		33.23			3

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

1436				
20				
Cample Descint	Ohn aldina			
Sample Receipt	Checkiist			Client Initials
cooler?	(Yes)	No	1 2.0 °(
		No		
		No	Not Present	
	Yes	No		
		No		
te of Chain of Custody?		No		
	(Yes)	No		
		No	ID written on Cont./ Lic	1
		No		
			See Below	
			 	
<u> </u>				
on Chain of Custody?				
				
			See Below	
			· · · · · · · · · · · · · · · · · · ·	
				
			Trace specious	
Variance Docum	mentation			
Contacted by:			Date/ Time:	
Oomacted by.			Date/ Time.	
	•			
			——————————————————————————————————————	
			· 	
				·
See attached e-mail/ fax				
	ld like to proc	eed with	analysis	
	•		•	
	Sample Receipt cooler? condition? pping container/ cooler? mple bottles/ container? ete of Chain of Custody? hen relinquished/ received? ith sample label(s)? hd intact? agree with Chain of Custody? OT? er/ bottle? ed? d on Chain of Custody? for indicated test(s)? h sufficient hold time? Contacted by: See attached e-mail/ fax Client understands and wou	Sample Receipt Checklist cooler? condition? pping container/ cooler? mple bottles/ container? res rete of Chain of Custody? ren relinquished/ received? res rete of Chain of Custody? res rete of Chain of Custody? res rete of Chain of Custody? res rete of Chain of Custody? res rete of Chain of Custody? res rete of Chain of Custody? res rete of Chain of Custody? res rete of Chain of Custody? res rete of Chain of Custody? res rete of Chain of Custody? res rete of Chain of Custody? res rete of Chain of Custody? res rete of Chain of Custody? res rete of Chain of Custody? res rete of Chain of Custody? res rete of Chain of Custody? res res rete of Chain of Custody? res rete of Chain of Custody? res res rete of Chain of Custody? res rete of Chain of Custody? res res rete of Chain of Custody? res rete of Chain of Custody? res res rete of Chain of Custody? res rete of Chain of Custody? res res rete of Chain of Custody? res rete of C	Sample Receipt Checklist cooler? condition? pping container/ cooler? mple bottles/ container? tes No pete of Chain of Custody? men relinquished/ received? dith sample label(s)? mod intact? des No mod intact? des No mod intact? des No mod intact? des No mod intact? des No mod intact? des No mod intact? des No mod intact? des No mod intact? des No mod intact? des No mod intact? des No mod intact? des No mod intact? des No mod intact? des No mod intact? des No mod intact? des No mod intact? des No des	Sample Receipt Checklist Sooler? Yes No 2

A Xenco Laboratories Company

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Lovington Gathering WTI
Project Number: SRS: 2006-142
Location: Lea County, NM

Lab Order Number: 7C20004

Report Date: 03/28/07

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-8	7C20004-01	Water	03/16/07 10:56	03-20-2007 11:30
MW-1	7C20004-02	Water	03/16/07 11:30	03-20-2007 11:30
MW-4	7C20004-03	Water	03/16/07 11:55	03-20-2007 11:30
MW-5	7C20004-04	Water	03/16/07 13:10	03-20-2007 11:30
MW-6	7C20004-05	Water	03/16/07 14:10	03-20-2007 11:30
MW-7	7C20004-06	Water	03/16/07 14:50	03-20-2007 11:30
MW-2	7C20004-07	Water	03/16/07 15:25	03-20-2007 11:30
MW-3	7C20004-08	Water	03/16/07 16:20	03-20-2007 11:30

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-8 (7C20004-01) Water									
Benzene	ND	0.00100	mg/L	1	EC72109	03/21/07	03/22/07	EPA 8021B	
Toluene	ND	0.00100	"	**	"	**	*1	н	
Ethylbenzene	ND	0.00100	"	*	**	n	11	**	
Xylene (p/m)	ND	0.00100	н	**	w	н	17	,	
Xylene (o)	ND	0.00100		**	*		**	N	
Surrogate: a,a,a-Trifluorotoluene		94.0 %	80-1	20	"	"	"	"	,
Surrogate: 4-Bromofluorobenzene		94.2 %	80-1	20	"	"	"	"	
MW-1 (7C20004-02) Water									
Benzene	ND	0.00100	mg/L	1	EC72601	03/26/07	03/27/07	EPA 8021B	
Toluene	ND	0.00100	•	,	"	"	**	*	
Ethylbenzene	ND	0.00100	**		"	R	19	10	
Xylene (p/m)	ND	0.00100	11	"	*	11	n .	**	
Xylene (o)	ND	0.00100	**	n .	11	н	11	п	
Surrogate: a,a,a-Trifluorotoluene		100 %	80-1	20	"	"	n	п	
Surrogate: 4-Bromofluorobenzene		87.2 %	80-1	20	"	"	n	"	
MW-4 (7C20004-03) Water									
Benzene	ND	0.00100	mg/L	1	EC72601	03/26/07	03/27/07	EPA 8021B	
Toluene	ND	0.00100	"	н	*	R .		tr	
Ethylbenzene	ND	0.00100	n		n	11	н	TT .	
Xylene (p/m)	ND	0.00100	"	"	**	**	11	н	
Xylene (o)	ND	0.00100	"	•	"	"	н	"	
Surrogate: a,a,a-Trifluorotoluene		98.6 %	80-1	20	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.6%	80-1.	20	n	n	"	n	
MW-5 (7C20004-04) Water									
Benzene	ND	0.00100	mg/L	I	EC72601	03/26/07	03/27/07	EPA 8021B	
Toluene	ND	0.00100	1+		H	41	"	**	
Ethylbenzene	ND	0.00100	**	**	r+	n	v	**	
Xylene (p/m)	ND	0.00100	"	17	10	11	и	н	
Xylene (o)	ND	0.00100	**	10	**	n	"	н	
Surrogate: a,a,a-Trifluorotoluene		97.4 %	80-1.	20	<i>"</i>	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.2 %	80-1.	20	"	"	"	"	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-6 (7C20004-05) Water									
Benzene	ND	0.00100	mg/L	1	EC72601	03/26/07	03/27/07	EPA 8021B	
Toluene	ND	0.00100	н	"	n	•	**	н	
Ethylbenzene	ND	0.00100		,,	11	•	"	н	
Xylene (p/m)	ND	0.00100	н	,,	"	н	**	n	
Xylene (o)	ND	0.00100	•	v	*1	n	"	11	
Surrogate: a,a,a-Trifluorotoluene		97.8 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.8 %	80-	120	n	"	"	"	
MW-7 (7C20004-06) Water									
Benzene	0.0479	0.00100	mg/L	1	EC72601	03/26/07	03/27/07	EPA 8021B	
Toluene	ND	0.00100	**	**	**	*	11	"	
Ethylbenzene	ND	0.00100	*	"	"	"	10	**	
Xylene (p/m)	0.0152	0.00100	**	"	11.		,,	"	
Xylene (o)	ND	0.00100	**	"	u,	"	n	**	
Surrogate: a.a.a-Trifluorotoluene		94.6 %	80-	120	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		83.8 %	80-	120	"	n	"	"	
MW-2 (7C20004-07) Water	•								
Benzene	0.154	0.00100	mg/L	1	EC72601	03/26/07	03/27/07	EPA 8021B	
Toluene	ND	0.00100	**	**	u	"	н	n	
Ethylbenzene	ND	0.00100	**	"	n	11	Ħ	**	
Xylene (p/m)	0.0102	0.00100		n	н		"	**	
Xylene (o)	ND	0.00100	**	u	*	н	**	11	
Surrogate: a,a,a-Trifluorotoluene		96.8 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		85.6%	80-	120	"	"	"	n	
MW-3 (7C20004-08) Water									
Benzene	1.48	0.0100	mg/L	10	EC72601	03/26/07	03/27/07	EPA 8021B	
Toluene	ND	0.0100	**	,,	**	*	"		
Ethylbenzene	0.0139	0.0100	**		,,	*	11	"	
Xylene (p/m)	0.0341	0.0100	"	"		и	11	,	
Xylene (o)	J [0.00252]	0.0100	11	"		Ħ	н	II,	
Surrogate: a,a,a-Trifluorotoluene		88.6 %	80-	120	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		81.4%	80-	120	"	"	"	n	

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142
Project Manager: Camille Reynolds

Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EC72109-BLK1)				Prepared: (03/21/07 Ar	nalvzed: 0	3/22/07
Benzene	ND	0.00100	mg/L	- 10pa 50. (, 200. 0	
Toluene	ND	0.00100	"				
Ethylbenzene	ND	0.00100	,,				
Xylene (p/m)	ND	0.00100	*				
Xylene (o)	ND	0.00100	"				
Surrogate: a.a.a-Trifluorotoluene	46.7		ug/l	50.0		93.4	80-120
Surrogate: 4-Bromofluorobenzene	44.5		"	50.0		89.0	80-120
LCS (EC72109-BS1)				Prepared: (03/21/07 Ar	nalyzed: 0	3/22/07
Benzene	0.0580	0.00100	mg/L	0.0500		116	80-120
Toluene	0.0596	0.00100	,,	0.0500		119	80-120
Ethylbenzene	0.0522	0.00100	•	0,0500		104	80-120
Xylene (p/m)	0.119	0.00100		0.100		119	80-120
Xylene (o)	0.0591	0.00100	41	0.0500		118	80-120
Surrogate: a,a,a-Trifluorotoluene	55.5		ug/l	50.0		111	80-120
Surrogate: 4-Bromofluorobenzene	50.6		"	50.0		101	80-120
Calibration Check (EC72109-CCV1)				Prepared: (03/21/07 Ar	nalyzed: 0	3/22/07
Benzene	56.7		ug/l	50.0		113	80-120
Toluene	55.7		"	50.0		111	80-120
Ethylbenzene	56.1		"	50.0		112	80-120
Xylene (p/m)	105		"	100		105	80-120
Xylene (o)	58.8		"	50.0		118	80-120
Surrogate: a,a,a-Trifluorotoluene	47.6		n	50.0		95.2	80-120
Surrogate: 4-Bromofluorobenzene	52.5		"	50.0		105	80-120
Matrix Spike (EC72109-MS1)	Sou	rce: 7C19010-	01	Prepared: (03/21/07 Ar	nalyzed: 0	3/22/07
Benzene	0.0563	0.00100	mg/L	0.0500	ND	113	80-120
Toluene	0.0546	0.00100	**	0.0500	ND	109	80-120
Ethylbenzene	0.0519	0.00100	**	0.0500	ND	104	80-120
Xylene (p/m)	0.102	0.00100	"	0.100	0.00101	101	80-120
Xylene (o)	0.0562	0.00100	н	0.0500	ND	112	80-120
Surrogate: a,a,a-Trifluorotoluene	46.2		ug/l	50.0		92.4	80-120
Surrogate: 4-Bromofluorobenzene	49.1		"	50.0 .		98.2	80-120

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds

Organics by GC - Quality Control

Environmental	Lab of Tex	as	
Donomina	Spiles	Course	9/DEC

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC72109 - EPA 5030C (GC)										
Matrix Spike Dup (EC72109-MSD1)	Sou	rce: 7C19010-	01	Prepared: (03/21/07 A	nalyzed: 03	3/22/07			
Benzene	0.0529	0.00100	mg/L	0.0500	ND	106	80-120	6.39	20	
Toluene	0.0520	0.00100	**	0.0500	ND	104	80-120	4.69	20	
Ethylbenzene	0.0536	0.00100	"	0.0500	ND	107	80-120	2.84	20	
Xylene (p/m)	0.0988	0.00100	**	0.100	0.00101	97.8	80-120	3.22	20	
Xylene (o)	0.0547	0.00100	"	0.0500	ND	109	80-120	2.71	20	
Surrogate: a,a,a-Trifluorotoluene	43.8		ug/l	50.0		87.6	80-120			
Surrogate: 4-Bromofluorobenzene	47.4		"	50.0		94.8	80-120			
Batch EC72601 - EPA 5030C (GC)										
Blank (EC72601-BLK1)				Prepared &	k Analyzed:	03/26/07				
Benzene	ND	0.00100	mg/L				-			
Toluene	ND	0.00100	**							
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00100	**							
Xylene (o)	ND	0.00100	**							
Surrogate: a,a,a-Trifluorotoluene	40.8		ug/l	50.0		81.6	80-120			
Surrogate: 4-Bromofluorobenzene	40.6		n	50.0		81.2	80-120			
LCS (EC72601-BS1)				Prepared &	k Analyzed:	03/26/07			_	
Benzene	0.0442	0.00100	mg/L	0.0500		88.4	80-120			
Toluene	0.0431	0.00100	"	0.0500		86.2	80-120			
Ethylbenzene	0.0419	0.00100		0.0500		83,8	80-120			
Xylene (p/m)	0.0890	0.00100	IF	0.100		89.0	80-120			
Xylene (o)	0.0450	0.00100	"	0.0500		90.0	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.5		ug/l	50.0		81.0	80-120			
Surrogate: 4-Bromofluorobenzene	43.5		"	50.0		87.0	80-120			

Fax: (432) 687-4914

Plains All American EH & S 1301 S. County Road 1150

Midland TX, 79706-4476

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142

Fax: (432) 687-4914

Project Manager: Camille Reynolds

Organics by GC - Quality Control **Environmental Lab of Texas**

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC72601 - EPA 5030C (GC)										
Calibration Check (EC72601-CCV1)				Prepared &	k Analyzed:	03/26/07				
Benzene	45.8		ug/l	50.0		91.6	80-120		_	
Toluene	44.4		*	50.0		88.8	80-120			
Ethylbenzene	45.9			50.0.		91.8	80-120			
Xylene (p/m)	89.2		"	100		89.2	80-120			
Xylene (o)	45.9		**	50.0		91.8	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.8		n	50.0		81.6	80-120			
Surrogate: 4-Bromofluorobenzene	43.9		n	50.0		87.8	80-120			
Duplicate (EC72601-DUP1)	Sou	rce: 7C23001-	·10	Prepared &	k Analyzed:	03/26/07				
Benzene	ND	0.00100	mg/L		ND				20	
Toluene	0.00353	0.00100	u		0.00330			6.73	20	
Ethylbenzene	0.000521	0.00100	"		0.000349			39.5	20	R
Xylene (p/m)	0.00502	0.00100	н		0.00430			15.5	20	
Xylene (o)	0.00123	0.00100	ы		0.000981			22.5	20	R:
Surrogate: a,a,a-Trifluorotoluene	41.0		ug/l	50.0		82.0	80-120			
Surrogate: 4-Bromofluorobenzene	42.4		n	50.0		84.8	80-120			
Matrix Spike (EC72601-MS1)	Sou	rce: 7C23001-	-10	Prepared &	ኔ Analyzed:	03/26/07				
Benzene	0.0449	0.00100	mg/L	0.0500	ND	89.8	80-120			
Toluene	0.0470	00100,0	"	0.0500	0.00330	87.4	80-120			
Ethylbenzene	0.0424	0.00100		0.0500	0.000349	84.1	80-120			
Xylene (p/m)	0.0924	0.00100		0.100	0.00430	88.1	80-120			
Xylene (ö)	0.0464	0.00100	"	0.0500	0.000981	90.8	80-120			
Surrogate: a,a,a-Trifluorotoluene	40.0		ug/l	50.0		80.0	80-120		•	
Surrogate: 4-Bromofluorobenzene	44.7		n	50.0		89.4	80-120			

Plains All American EH & S
Project: Lovington Gathering WTI
Fax: (432) 687-4914

1301 S. County Road 1150
Project Number: SRS: 2006-142
Midland TX, 79706-4476
Project Manager: Camille Reynolds

Notes and Definitions

R5	RPD is outside of historic values
R4	Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported .
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate .

	Brin Buron			
Report Approved By:	Committee and the second	Date:	3/28/2007	

Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Odessa, Texas 79765 12600 West I-20 East

Fax: 432-563-1713

Phone: 432-563-1800

TAT briebnist × × × × × × × □ NPDES one Star AUSH TAT (Pre-Schodule) 24, 48, 72 hrs ပ္ ZZZZZZ 6 0 0000 j Project Name: LOVINGTON GATHERING WTI 0 M.A.O.M. TRRP 뫂 BCI Labels on container(s) Custody seals on container(s) by Sample Volient Rep. ? by Searter? UPS Temperature Upon Receipt. BIEX 80218/6030 of BIEX 8260 × × × × × × /OCs Free of Headspace? × Sample Containers Intact? PO #: PAA - C. J. Reynolds Custody seals on cooler(s) Analyze For aboratory Comments: Sample Hand Delivered Project Loc: Lea County, NM volaties Standard Project #: 2006-142 Wetals: As Ag Ba Cd Cr Pb Hg Se TCLP: TOTAL SAR / ESP / CEC × Anions (Cl. SO4, Alkalinity) Cations (Ce. Mg, Na. K) Report Format: 0800 9001 XT 3001 XT HdI <u>%</u> 9 89108 M2108 1.814 Hall eldato9-nov=qv SE SW CN SS S S S S€ ß≪ S≷ 30 GW = Groundwater S=Soil/Soild TON HER DE DAM=Dijukjud Amma 2F=29ngds Other (Specify) auoN kad@basinenv.com CO525BM HOSN *OS*H 1001 HCI (505) 396-1429 × × × × × × × [©]ONH ce × × × × × × × Total #, of Containers 2 N N N ~ ~ 2 leid Fillered 9 e-mail: Fax No 1130 1056 1155 1310 1410 1450 1525 1620 Delgme2 amiT Sec. 9 eceived by ELOT: Q 16-Mar-07 16-Mar-07 16-Mar-07 16-Mar-07 16-Mar-07 16-Mar-07 16-Mar-07 16-Mar-07 Chr 9 Received by Basin Environmental Service Technologies, LLC Date Sampled PAGE Ending Depth 888B Time æ Beginning Depth DARK M GMBK OF Lovington, NM 88260 Date (505) 441-2124 P. O. Box 301 Ken Dutton FIELD CODE MW-8 MW-4 MW-5 MW-1 MW-6 MW-2 MW-3 MW-7 100000 JU Company Address: Sampler Signature: Project Manager: Company Name Telephone No: City/State/Zip: Special Instructions: Relinquished by: Relinquished by: ((lab use only) ORDER #: SAM 9 Ş S \leq (yino sau dei) # BAJ S Š

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In Client: e/ Time: _ab ID # : Sample Receipt Checklist **Client Initials** Temperature of container/ cooler? Yes No .0 Shipping container in good condition? res No Custody Seals intact on shipping container/ cooler? **Ves** No Not Present Custody Seals intact on sample bottles/ container? Yes No Not Present Chain of Custody present? Spe. No Sample instructions complete of Chain of Custody? Ves No Chain of Custody signed when relinquished/ received? No Yes Chain of Custody agrees with sample label(s)? Yes No ID written on Cont./ Lid Xes <u> 9</u> Container label(s) legible and intact? No Not Applicable Sample matrix/ properties agree with Chain of Custody? tes No No Containers supplied by ELOT? yes, No Samples in proper container/ bottle? YES See Below No Samples properly preserved? Yes See Below Vos No Sample bottles intact? Preservations documented on Chain of Custody? No 15 yes Containers documented on Chain of Custody? No Yes Sufficient sample amount for indicated test(s)? Yes No See Below All samples received within sufficient hold time? No See Below Yes Subcontract of sample(s)? Yes No Not Applicable VOC samples have zero headspace? Yes No Not Applicable **Variance Documentation** Contacted by: Date/ Time: arding: sective Action Taken: See attached e-mail/ fax neck all that Apply:

> Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

A Xenco Laboratories Company

Analytical Report

Prepared for:

Camille Reynolds
Plains All American EH & S
1301 S. County Road 1150
Midland, TX 79706-4476

Project: Lovington Gathering WTI
Project Number: SRS: 2006-142
Location: Lea County, NM

Lab Order Number: 7F06013

Report Date: 06/11/07

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-4	7F06013-01	Water	05/30/07 14:00	06-06-2007 12:21
MW-5	7F06013-02	Water	05/30/07 14:50	06-06-2007 12:21
MW-6	7F06013-03	Water	05/30/07 15:45	06-06-2007 12:21
MW-8	7F06013-04	Water	05/31/07 09:20	06-06-2007 12:21
MW-1	7F06013-05	Water	05/31/07 10:15	06-06-2007 12:21
MW-2	7F06013-06	Water	05/31/07 10:55	06-06-2007 12:21
MW-7	7F06013-07	Water	05/31/07 11:50	06-06-2007 12:21
MW-3	7F06013-08	Water	05/31/07 12:30	06-06-2007 12:21

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	na a s	ъ.	D :		N 4 3 4	
	Kesuli	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-4 (7F06013-01) Water							·		
Benzene	ND	0.00100	mg/L	1	EF70802	06/08/07	06/09/07	EPA 8021B	
Toluene	0.00114	0.00100	**	H	11	10	ø	*	
Ethylbenzene	ND	0.00100	**	н	11	*1	н	**	
Xylene (p/m)	ND	0.00100	н	н	н	tt.	u	**	
Xylene (o)	ND	0.00100			н	19	"	**	
Surrogate: a,a,a-Trifluorotoluene		108 %	80-12	0	"	n	"	n	
Surrogate: 4-Bromofluorobenzene		92.4 %	80-12	20	n	"	"	"	
MW-5 (7F06013-02) Water									
Benzene	ND	0.00100	mg/L	1	EF70802	06/08/07	06/09/07	EPA 8021B	
Toluene	J [0.000722]	0.00100	"	"	"	*	"	н	
Ethylbenzene	ND	0.00100	**	**	11	н	"	н	
Xylene (p/m)	ND	0.00100	11	"	H	н	"	**	
Xylene (o)	ND	0.00100	**	"	**	**	H	**	
Surrogate: a,a,a-Trifluorotoluene		109 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.6%	80-12	0	"	n	"	"	
MW-6 (7F06013-03) Water									
Benzene	ND	0.00100	mg/L	1	EF70802	06/08/07	06/11/07	EPA 8021B	
Toluene	ND	0.00100	н	"	u	u.	"	u	
Ethylbenzene	ND	0.00100	۰.	**	11	n	**	**	
Xylene (p/m)	ND	0.00100	11	**	Ħ	н	u u	*	
Xylene (o)	ND	0.00100	**	**	п	n	ii	н	
Surrogate: a,a,a-Trifluorotoluene		101 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.8 %	80-12	0	"	**	"	"	
MW-8 (7F06013-04) Water									
Benzene	ND	0.00100	mg/L	1	EF70802	06/08/07	06/09/07	EPA 8021B	
Toluene	ND	0.00100	"		н	**	н		
Ethylbenzene	ND	0.00100	**	н	n	11	н	H	
Xylene (p/m)	ND	0.00100	**	۳.	1e	17	H	**	
Xylene (o)	ND	0.00100	11	*		**	н	4	
Surrogate: a,a,a-Trifluorotoluene		110%	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.0 %	80-12	0	"	"	"	#	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
MW-1 (7F06013-05) Water									
Benzene	ND	0.00100	mg/L	1	EF70802	06/08/07	06/09/07	EPA 8021B	
Toluene	ND	0.00100	"	"	я	**	11	н	
Ethylbenzene	ND	0.00100		**	**	**	*	t t	
Xylene (p/m)	ND	0.00100	н	*	**	** .	u	н	
Xylene (o)	ND	0.00100	"	**	,	**	11	H	
Surrogate: a.a.a-Trifluorotoluene		109 %	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.2 %	80-12	9	"	"	n	"	
MW-2 (7F06013-06) Water									
Benzene	0.00546	0.00100	mg/L	ı	EF70802	06/08/07	06/09/07	EPA 8021B	
Toluene	ND	0.00100	"	"	•	n.	n	n	
Ethylbenzene	ND	0.00100	"	**	**	n	n	"	
Xylene (p/m)	ND	0.00100	"	٠.	u	"	n	P	
Xylene (o)	ND	0.00100	*	"	•	n	н	n	
Surrogate: a,a,a-Trifluorotoluene		116%	80-12)	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.0 %	80-12	9	"	"	,,	n	
MW-7 (7F06013-07) Water									
Benzene	0.0395	0.00100	mg/L	1	EF70802	06/08/07	06/09/07	EPA 8021B	
Toluene	ND	0.00100	"		"	"	"	n	
Ethylbenzene	ND	0.00100	"	"	,	v	"	н	
Xylene (p/m)	0.00534	0.00100	"	н	**	**	н	н	
Xylene (o)	ND	0.00100	n			u u	"	ij	
Surrogate: a.a.a-Trifluorotoluene		112 %	80-12	9	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		97.8 %	80-12	9	"	n	"	n	
MW-3 (7F06013-08) Water									
Benzene	1.66	0.00500	mg/L	5	EF70802	06/08/07	06/09/07	EPA 8021B	
Toluene	0.0102	0.00500	н	H	n	и	"		
Ethylbenzene	0.0348	0.00500	"	**	н	н	"	н	
Xylene (p/m)	0.0296	0.00500	н	•	n		n		
Xylene (o)	0.0122	0.00500	н	**	п	**	**	"	
Surrogate: a,a,a-Trifluorotoluene		105 %	80-12	9	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.4 %	80-12	9	"	"	"	,,	

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control Environmental Lab of Texas

	ъ. т	Reporting	** *.	Spike	Source	A/ B E C	%REC	BBB	RPD	NI - 4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF70802 - EPA 5030C (GC)										
Blank (EF70802-BLK1)				Prepared &	Analyzed	: 06/08/07				
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	w							
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00100	н							
Xylene (o)	ND	0.00100	*							
Surrogate: a,a,a-Trifluorotoluene	54.1		ug/l	50.0		108	80-120			
Surrogate: 4-Bromofluorobenzene	45.4		"	50.0		90.8	80-120			
LCS (EF70802-BS1)				Prepared &	: Analyzed:	: 06/08/07				
Benzene	0.0548	0.00100	mg/L	0.0500		110	80-120			
Toluene	0.0556	0.00100	#	0.0500		111	80-120			
Ethylbenzene	0.0543	0.00100	41	0.0500		109	80-120			
Xylene (p/m)	0.101	0.00100	"	0.100		101	80-120			
Xylene (o)	0.0569	0.00100	"	0.0500		114	80-120			
Surrogate: a,a,a-Trifluorotoluene	54.6		ug/l	50.0		109	80-120			-
Surrogate: 4-Bromofluorobenzene	51.7		"	50.0		103	80-120			
Calibration Check (EF70802-CCV1)				Prepared: ()6/08/07 A	.nalyzed: 06	/09/07			
Benzene	0.0576		mg/L	0.0500		115	80-120			
Toluene	0.0567		11	0.0500		113	80-120			
Ethylbenzene	0.0537		**	0.0500		107	80-120			
Xylene (p/m)	0.0999		**	0.100		99,9	80-120			
Xylene (o)	0.0573		*	0.0500		115	80-120			
Surrogate: a,a,a-Trifluorotoluene	57.9		ug/l	50.0		116	80-120			
Surrogate: 4-Bromofluorobenzene	53.0		"	50.0		106	80-120			
Matrix Spike (EF70802-MS1)	Sou	rce: 7F06019-	03	Prepared: ()6/08/07 A	nalyzed: 06	/09/07			
Benzene	0.0598	0.00100	mg/L	0.0500	ND	120	80-120			
Toluene	0.0593	0.00100		0.0500	ND	119	80-120			
Ethylbenzene	0.0584	0.00100	1*	0.0500	ND	117	80-120			
Xylene (p/m)	0.107	0.00100	**	0.100	ND	107	80-120			
Xylene (o)	0.0614	0.00100	II.	0.0500	ND	123	80-120			
Surrogate: a,a,a-Trifluorotoluene	58.4		ug/l	50.0		117	80-120			

Surrogate: 4-Bromofluorobenzene

80-120

56.2

Project: Lovington Gathering WTI

Project Number: SRS: 2006-142 Project Manager: Camille Reynolds Fax: (432) 687-4914

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF70802 - EPA 5030C (GC)

Matrix Spike Dup (EF70802-MSD1)	Sour	rce: 7F06019-	03	Prepared: 0	6/08/07 A	nalyzed: 0	6/09/07		
Benzene	0.0565	0.00100	mg/L	0.0500	ND	113	80-120	6.01	20
Toluene	0.0566	0.00100	n	0.0500	ND	113	80-120	5.17	20
Ethylbenzene	0.0556	0.00100		0.0500	ND	111	80-120	5.26	20
Xylene (p/m)	. 0.102	0.00100	n	0.100	ND	102	80-120	4.78	20
Xylene (o)	0.0584	0.00100	**	0.0500	ND	117	80-120	5.00	20
Surrogate: a,a,a-Trifluorotoluene	58.3		ug/l	50.0		117	80-120		
Surrogate: 4-Bromofluorobenzene	54.2		"	50.0		108	80-120		

Plains All American EH & S Project: Lovington Gathering WTI 1301 S. County Road 1150 Project Number: SRS: 2006-142 Midland TX, 79706-4476 Project Manager: Camille Reynolds

Notes and Definitions

Mi The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS). DET Analyte DETECTED Analyte NOT DETECTED at or above the reporting limit ND NR dry Sample results reported on a dry weight basis Relative Percent Difference LCS Laboratory Control Spike MS Matrix Spike Duplicate

Report Approved By:

Date:

6/11/2007

Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant

James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Dup

Fax: (432) 687-4914

Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANAL YSIS REQUEST

12600 West I-20 East Odessa, Texas 79765

Phone: 432-563-1800 Fax: 432-563-1713

NPDES Project Name: LOVINGTON GATHERING WTI ☐ TRRP PO#: PAA - C. J. Reynolds Project Loc: Lea County, NM Report Format: X Standard Project #: 2006-142 kdutton@basinenv.com (505) 396-1429 e-mail: Fax No: PAGE OI OF 01 Basin Environmental Service Technologies, LLC Lovington, NM 88260 (505) 441-2124 Company Address: P. O. Box 301 0 Project Manager: Ken Dutton Sampler Signature: Company Name Telephone No: Clty/State/Zip:

1986 1986		general Si.ii	121	'8+	AX (Pre-Schedule) AA, TAT HRUR TAT brachedule)	×	×	×	×	×	×	×	×				z z Q	zz
The Cooperation The Cooper			*********													yd	307	JC
TEOLOGY The Cook			-		······]			
18 19 19 19 19 19 19 19			×	OS		×	×	×	×	$\overline{\times}$	×	$\overline{}$	×		1	ં જે તે	er(s)	2
18 19 19 19 19 19 19 19	e Fo	-	Н												ints:	Dac		Red
18 19 19 19 19 19 19 19	zy eayz				Volaties											ead	288	Cles K
18 19 19 19 19 19 19 19	Ā			95	Matals: As Ag Ba Cd Ci Pb Hg 3										ြဲပိ	5	als c	a de la la la la la la la la la la la la la
18 19 19 19 19 19 19 19		CLP	TAL	_											15%	7. 19.	On c	T K
18 19 19 19 19 19 19 19	in the second	Γ	۲	_							_				-log	်ီဝိ	abels usto	
12060 (3) Preservation is 8 of Containing Depth				-											130	2 >	T	<u></u>
1206063 1206	discount of the last	, ,		89								`			1		E E	lime
FO6 0 (2) FIELD CODE FIELD CODE MW-4 MW-4 MW-6 MW-4 MW-4 MW-6 MW-7	Kranai 1	District.	decor	×	NP=Non-Poundle Specify Oither	-		>	>	>	>	>			1			
Fob of S S S S S S S S S S				Matr		ठ	ð	õ	ਰੋ	ð	ত	S	Ö		1			
17-06-01-3-2-3-3-4-3-3-4-3-3-3-3-3-3-3-3-3-3-3-3				Н			eneracora.					- y (1000 0 y	*******	-	+ .		Date	Date
FO6013 Poservation & MW-4 MW-4 MW-4 MW-4 MW-4 MW-4 MW-5 MW-4 MW-5 MW-4 MW-5 MW-7 MW-2 MW-3				iners			,								1	٠.		
FO6013 Poservation & MW-4 MW-4 MW-4 MW-4 MW-4 MW-4 MW-5 MW-4 MW-5 MW-4 MW-5 MW-7 MW-2 MW-3				Sorte	O ₂ S ₂ 6N													
Fob 12 12 12 13 14 14 15 15 15 15 15 15	-			7 00											-			
FD6013 FIELD CODE Beginning Depth MW-4 MW-5 MW-6 MW-6 MW-7 MW	-			ancii	7										_			
FD6013 FIELD CODE Beginning Depth MW-4 MW-5 MW-6 MW-6 MW-7 MW				serva		<u>×</u>	×	_ <u>×</u>	×	×	×	×	×		-			
FO6063 Po606 Po6	e decimando			Pre		×	- ·		×	×	×		×		-			
FO6013 Po6013 P	-		į	L.,	THE RESIDENCE OF THE PARTY OF T	472007	MARKET THE PARTY OF THE PARTY O	-	******	-	airen d	-	-		4			
1600 3 1800 3	ı							,							1			
1F06013 WW-4 MW-5 MW-6 MW-7 MW-3 MW-3 MW-3 MW-3 MW-3 MW-3 MW-3 MW-3		-			belqms2 emiT	1400	1450	1545	0820	1015	1055	1150	1230			5	uresiappidenterappe att-lag opposition of arthrope	
16060(3) 183833 MW-4 MW-6 MW-6 MW-7 MW-3 MW-3 MW-3 MW-3 MW-3 MW-3 MW-3 MW-3					beldring ets.O	30-May-07	30-May-07	30-May-07	31-May-07	31-May-07	31-May-07	31-May-07	31-May-07		-		Received by:	Received by:
16060(3) 183833 MW-5 MW-6 MW-7 MW-3 MW-3 MW-3 MW-3 MW-3 MW-3 MW-3 Date Date Date					Ending Depth		•					,			1		9 77	91
TF060(3) 283833 FIELD CODE NW-6 NW-6 NW-7 NW-7 NW-3 NW-7					deginning Depth											٠	1 3	• 5
1F06 2836	0	1														,	Date Date	Date
			5	V 100	3833 FIELD CODE	MW 4	MW-5	MW-6	8-WW	NW-1	MW-2	7-WW	MW-3		And an absolute description of the second se		- S	
S (Vino seu da) # BAJ 2 2 2 2 2 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5	•	Se only)		ORDER #: 170((Vino seu dei) # BAJ		20	S	- S	150	90	0.1	č		Special Instructions:		Relinquished by:	wished by:

Environmental Lab of Texas
Variance/ Corrective Action Report- Sample Log-In

Temperature of container/ cooler? Shipping container in good conditions Custody Seals intact on shipping coolers Custody Seals intact on sample boolers Chain of Custody present? Sample instructions complete of Clean of Custody signed when reliable Chain of Custody signed when reliable Chain of Custody agrees with same Container label(s) legible and intact of Sample matrix/ properties agree vor Containers supplied by ELOT? Samples in proper container/ bottless Sample bottles intact? Preservations documented on Chain Sufficient sample amount for indicated all samples received within sufficient Subcontract of sample(s)?	ontainer/ cooler? ottles/ container? hain of Custody? nquished/ received? ple label(s)? ct? with Chain of Custody?	Yes Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No No No No No No	Not Present Not Present Not Present ID written on Cont./ Lid Not Applicable See Below See Below	Ellent Initials
Temperature of container/ cooler? Shipping container in good condition Custody Seals intact on shipping or Custody Seals intact on sample both Chain of Custody present? Sample instructions complete of Clothain of Custody signed when reliable Chain of Custody signed when reliable Chain of Custody agrees with same Container label(s) legible and intact Container supplied by ELOT? Sample matrix/ properties agree with Containers supplied by ELOT? Samples in proper container/ bottless in proper container/ bottless intact? Preservations documented on Chain Sufficient sample amount for indicated All samples received within sufficients.	Sample Receipt on? ontainer/ cooler? ottles/ container? hain of Custody? nquished/ received? ple label(s)? ott? with Chain of Custody?	Yes Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No No No No No No No No No N	Not Present Not Present Not Present ID written on Cont./ Lid Not Applicable See Below	Client Initials
Temperature of container/ cooler? Shipping container in good condition Custody Seals intact on shipping or Custody Seals intact on sample bood Chain of Custody present? Sample instructions complete of Clothain of Custody signed when relian Chain of Custody signed when relian Chain of Custody agrees with sam Container label(s) legible and intact Containers supplied by ELOT? Samples in proper container/ bottles Samples properly preserved? Samples properly preserved? Samples bottles intact? Preservations documented on Chain Sufficient sample amount for indicated.	on? ontainer/ cooler? ottles/ container? hain of Custody? nquished/ received? ple label(s)? ott? with Chain of Custody?	Yes Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No No No No No No No No No N	Not Present Not Present Not Present ID written on Cont./ Lid Not Applicable See Below	Client Initials
Temperature of container/ cooler? Shipping container in good condition Custody Seals intact on shipping or Custody Seals intact on sample booled Chain of Custody present? Sample instructions complete of Clean of Custody signed when reliand the Chain of Custody signed when reliand the Container label(s) legible and intact Container label(s) legible and intact Containers supplied by ELOT? Sample matrix/ properties agree with Containers supplied by ELOT? Samples in proper container/ bottless in proper container/ bottless intact? Preservations documented on Chain Containers documented on Chain Sufficient sample amount for indicated All samples received within sufficients.	on? ontainer/ cooler? ottles/ container? hain of Custody? nquished/ received? ple label(s)? ott? with Chain of Custody?	Yes Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No No No No No No No No No N	Not Present Not Present Not Present ID written on Cont./ Lid Not Applicable See Below	Client Initials
Temperature of container/ cooler? Shipping container in good condition Custody Seals intact on shipping or Custody Seals intact on sample booled Chain of Custody present? Sample instructions complete of Clean of Custody signed when reliand the container label(s) legible and intact Sample matrix/ properties agree with Containers supplied by ELOT? Samples in proper container/ bottles Samples properly preserved? Sample bottles intact? Preservations documented on Chain Containers documented on Chain Sufficient sample amount for indicated.	on? ontainer/ cooler? ottles/ container? hain of Custody? nquished/ received? ple label(s)? ott? with Chain of Custody?	Yes Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No No No No No No No No No N	Not Present Not Present Not Present ID written on Cont./ Lid Not Applicable See Below	Client Initials
Shipping container in good condition Custody Seals intact on shipping or Custody Seals intact on sample both Chain of Custody present? Sample instructions complete of City Chain of Custody signed when reling Chain of Custody agrees with sam Container label(s) legible and intact Sample matrix/ properties agree with Containers supplied by ELOT? Samples in proper container/ bottles in proper container/ bottles intact? Sample bottles intact? Preservations documented on Chain Containers documented on Chain Sufficient sample amount for indicated.	on? ontainer/ cooler? ottles/ container? hain of Custody? nquished/ received? ple label(s)? ott? with Chain of Custody?	Yes Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No No No No No No No No No N	Not Present Not Present Not Present ID written on Cont./ Lid Not Applicable See Below	Client Initials
Shipping container in good condition Custody Seals intact on shipping control Custody Seals intact on sample both Chain of Custody present? Sample instructions complete of Contain of Custody signed when reliance Chain of Custody signed when reliance Chain of Custody agrees with same Container label(s) legible and intact Container sampled by ELOT? Sample matrix/ properties agree with Containers supplied by ELOT? Samples in proper container/ bottles in proper container/ bottles intact? Preservations documented on Chain Containers documented on Chain Sufficient sample amount for indicated All samples received within sufficients.	ontainer/ cooler? ottles/ container? hain of Custody? nquished/ received? ple label(s)? ct? with Chain of Custody?	Yes Yes Yes Yes Yes Yes	No No No No No No No No No No No No No N	Not Present Not Present Not Present ID written on Cont./ Lid Not Applicable See Below	Client Initials
Shipping container in good condition Custody Seals intact on shipping or Custody Seals intact on sample both Chain of Custody present? Sample instructions complete of City Chain of Custody signed when reling Chain of Custody agrees with sam Container label(s) legible and intact Sample matrix/ properties agree with Containers supplied by ELOT? Samples in proper container/ bottles in proper container/ bottles intact? Sample bottles intact? Preservations documented on Chain Containers documented on Chain Sufficient sample amount for indicated.	ontainer/ cooler? ottles/ container? hain of Custody? nquished/ received? ple label(s)? ct? with Chain of Custody?	Yes Yes Yes Yes Yes Yes	No No No No No No No No No No No No No N	Not Present Not Present ID written on Cont./ Lid Not Applicable See Below	
Shipping container in good condition Custody Seals intact on shipping or Custody Seals intact on sample both Chain of Custody present? Sample instructions complete of City Chain of Custody signed when reling Chain of Custody agrees with sam Container label(s) legible and intact Sample matrix/ properties agree with Containers supplied by ELOT? Samples in proper container/ bottles in proper container/ bottles intact? Sample bottles intact? Preservations documented on Chain Containers documented on Chain Sufficient sample amount for indicated.	ontainer/ cooler? ottles/ container? hain of Custody? nquished/ received? ple label(s)? ct? with Chain of Custody?	Yes Yes Yes Yes Yes Yes	No No No No No No No No No No No No No N	Not Present ID written on Cont./ Lid Not Applicable See Below	
Custody Seals intact on sample bo Chain of Custody present? Sample instructions complete of Cl Chain of Custody signed when relin Chain of Custody agrees with sam Container label(s) legible and intact Sample matrix/ properties agree v Containers supplied by ELOT? Samples in proper container/ bottl Samples properly preserved? Sample bottles intact? Preservations documented on Ch Containers documented on Chain Sufficient sample amount for indications.	hain of Custody? nquished/ received? ple label(s)? et? with Chain of Custody?		No No No No No No No No	Not Present ID written on Cont./ Lid Not Applicable See Below	
Chain of Custody present? Sample instructions complete of Cl Chain of Custody signed when relia Chain of Custody agrees with sam Container label(s) legible and intact Sample matrix/ properties agree v Containers supplied by ELOT? Samples in proper container/ bottl Samples properly preserved? Sample bottles intact? Preservations documented on Chain Containers documented on Chain Sufficient sample amount for indict All samples received within sufficient	hain of Custody? nquished/ received? ple label(s)? ct? with Chain of Custody?	YES YES YES	No No No No No No No No	Not Present ID written on Cont./ Lid Not Applicable See Below	
Sample instructions complete of Cl Chain of Custody signed when relir Chain of Custody agrees with sam Container label(s) legible and intact Sample matrix/ properties agree v Containers supplied by ELOT? Samples in proper container/ bottl Samples properly preserved? Sample bottles intact? Preservations documented on Ch Containers documented on Chain Sufficient sample amount for indict All samples received within sufficient	nquished/ received? ple label(s)? ct? with Chain of Custody?	YES YES YES	No No No No No No No	Not Applicable See Below	
Sample instructions complete of Cl Chain of Custody signed when relir Chain of Custody agrees with sam Container label(s) legible and intact Sample matrix/ properties agree v Containers supplied by ELOT? Samples in proper container/ bottl Samples properly preserved? Sample bottles intact? Preservations documented on Ch Containers documented on Chain Sufficient sample amount for indict All samples received within sufficient	nquished/ received? ple label(s)? ct? with Chain of Custody?		No No No No No No	Not Applicable See Below	
Chain of Custody signed when reliance Chain of Custody agrees with same Container label(s) legible and intact of Sample matrix/ properties agree with Containers supplied by ELOT? Samples in proper container/ bottles in proper container/ bottles intact? Sample bottles intact? Preservations documented on Chain Containers documented on Chain Sufficient sample amount for indicate All samples received within sufficients.	nquished/ received? ple label(s)? ct? with Chain of Custody?		No No No No No	Not Applicable See Below	
Chain of Custody agrees with sam Container label(s) legible and intact Sample matrix/ properties agree v Containers supplied by ELOT? Samples in proper container/ bottl Samples properly preserved? Sample bottles intact? Preservations documented on Chain Containers documented on Chain Sufficient sample amount for indict All samples received within sufficient	ple label(s)? ct? with Chain of Custody? le?	Yes Yes Yes Yes	No No No No No	Not Applicable See Below	
Container label(s) legible and intact O Sample matrix/ properties agree w Containers supplied by ELOT? Samples in proper container/ bottl Samples properly preserved? Sample bottles intact? Preservations documented on Ch Containers documented on Chain Sufficient sample amount for indict All samples received within sufficient	ot? vith Chain of Custody? le?	Yes Yes Yes Yes	No No No	Not Applicable See Below	
O Sample matrix/ properties agree volume 1 Containers supplied by ELOT? Samples in proper container/ bottl Samples properly preserved? Sample bottles intact? Preservations documented on Chain Containers documented on Chain Sufficient sample amount for indicate All samples received within sufficients	vith Chain of Custody? le?	Yes Yes Yes Yes	No No No	See Below	
 Containers supplied by ELOT? Samples in proper container/ bottl Samples properly preserved? Sample bottles intact? Preservations documented on Ch Containers documented on Chain Sufficient sample amount for indic All samples received within sufficient 	le?	(e)	No No		
 Samples in proper container/ bottl Samples properly preserved? Sample bottles intact? Preservations documented on Ch Containers documented on Chain Sufficient sample amount for indic All samples received within sufficient 		Yes Yes Yes	No		
 3 Samples properly preserved? 4 Sample bottles intact? 5 Preservations documented on Ch 6 Containers documented on Chain 7 Sufficient sample amount for indic 8 All samples received within sufficient 		Yes Yes			
 4 Sample bottles intact? 5 Preservations documented on Ch 6 Containers documented on Chain 7 Sufficient sample amount for indic 8 All samples received within sufficient 	ain of Custody?	Yes	ALA		4
 5 Preservations documented on Ch 6 Containers documented on Chain 7 Sufficient sample amount for indic 8 All samples received within sufficient 	ain of Custody?		140		
 6 Containers documented on Chain 7 Sufficient sample amount for indic 8 All samples received within sufficient 		Yes	No		-
7 Sufficient sample amount for indic8 All samples received within sufficient	of Custody?	Yes	No		
8 All samples received within suffici		VQ.	No	See Below	
		Yes	No	See Below	
. 3 Subcontract of Sample(S):		Yes	No	Not Applicable	
O VOC samples have zero headspa	ace?	Yes	No	Not Applicable	
ontact:	Variance Docu	mentation		Date/ Time:	
egarding:		and the second s	~~~		
			-		
prrective Action Taken;					
					New York and the second second second second second second second second second second second second second se
:					
			**************************************	Manage of the Section of the Associated Control of the Control of	***************************************

Analytical Report 288112

for

PLAINS ALL AMERICAN EH&S

Project Manager: Camille Reynolds

Lovington Gathering WTI 2006-142

23-AUG-07

12600 West I-20 East Odessa, Texas 79765

A Xenco Laboratories Company

NELAC certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

23-AUG-07

Project Manager: Camille Reynolds
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150

Midland, TX 79706

Reference: XENCO Report No: 288112

Lovington Gathering WTIProject Address: Lea County, NM

Camille Reynolds:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 288112. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 288112 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

CAO O

Respectful

Brent BarronOdessa Laboratory Director

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Sample Cross Reference 288112

PLAINS ALL AMERICAN EH&S, Midland, TX

Lovington Gathering WTI

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-9 5'	S	Aug-13-07 10:56	0 - 5 ft	288112-001
MW-9 15'	S	Aug-13-07 11:02	10 - 15 ft	288112-002
MW-9 25'	S	Aug-13-07 11:11	20 - 25 ft	288112-003
MW-9 45'	S	Aug-13-07 11:22	40 - 45 ft	288112-004
MW-9 65'	S	Aug-13-07 11:35	60 - 65 ft	288112-005
MW-9 70'	S	Aug-13-07 11:43	65 - 70 ft	288112-006
MW-9 75'	S	Aug-13-07 12:05	70 - 75 ft	288112-007

Certificate of Analysis Summary 288112 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Lovington Gathering WII

Project 1d: 2006-142

Contact: Camille Reynolds

Project Location: Lea County, NM

Date Received in Lab: Fri Aug-17-07 12:35 pm

Project Manager: Brent Barron II Report Date: 23-AUG-07

			3		Project Manager: Brent Barron, I.	srent Barron, II	
	Lab Id:	288112-001	288112-002	288112-003	288112-004	288112-005	288112-006
between Daniel	Field Id:	MW-9 5'	MW-9 15'	MW-9 25'	MW-9 45'	MW-9 65'	MW-9 70'
Anniyas Nequesieu	Depth:	0-5 ft	10-15 ք	20-25 ft	40-45 ft	60-65 ft	65-70 ft
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Aug-13-07 10:56	Aug-13-07 11:02	Aug-13-07 11:11	Aug-13-07 11:22	Aug-13-07 11:35	Aug-13-07 11:43
BTEX by EPA 8021B	Extracted:	Aug-21-07 12:12	Aug-21-07 12:12	Aug-21-07 12:12	Aug-21-07 12:12	Aug-21-07 12:12	Aug-21-07 12:12
	Analyzed:	Aug-21-07 19:27	Aug-21-07 19:48	Aug-21-07 20:09	Aug-21-07 20:30	Aug-21-07 20:50	Aug-21-07 21:11
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Benzene		ND 0.0020	ND 0.0022	ND 0.0020	ND 0.0020	ND 0.0021	ND 0.0021
Toluene		ND 0.0020	ND 0.0022	ND 0.0020	ND 0.0020	ND 0.0021	ND 0.0021
Ethylbenzene		ND 0.0020	ND 0.0022	ND 0.0020	ND 0.0020	ND 0.0021	ND 0.0021
m,p-Xylene		ND 0.0041	ND 0.0043	ND 0.0041	ND 0.0041	ND 0.0042	ND 0.0041
o-Xylene		ND 0.0020	ND 0.0022	ND 0.0020	ND 0.0020	ND 0.0021	ND 0.0021
Total Xylenes		ΩN	QN	QN	ND	QN	NO.
Total BTEX		QN	ND	QN	QN	ND	ND
Percent Moisture	Extracted:						
	Analyzed:	Aug-20-07 10:25	Aug-20-07 10:30	Aug-20-07 10:35	Aug-20-07 10:40	Aug-20-07 10:45	Aug-20-07 10:50
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		1.54 1.00	7.45 1.00	1.88 1.00	2.31 1.00	4.18 1.00	3.20 1.00
TPH by SW8015 Mod	Extracted:	Aug-20-07 09:41	Aug-20-07 09:41	Aug-20-07 09:41	Aug-20-07 09:41	Aug-20-07 09:41	Aug-20-07 09:41
	Analyzed:	Aug-20-07 18:19	Aug-20-07 18:45	Aug-20-07 19:11	Aug-20-07 19:36	Aug-20-07 20:02	Aug-20-07 20:27
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C12 Gasoline Range Hydrocarbons		ND 10.2	ND 10.8	ND 10.2	ND 10.2	ND 10.4	ND 10.3
C12-C28 Diesel Range Hydrocarbons		ND 10.2	ND 10.8	ND 10.2	ND 10.2	ND 10.4	ND 10.3
C28-C35 Oil Range Hydrocarbons		ND 10.2	ND 10.8	ND 10.2	ND 10.2	ND 10.4	ND 10.3
Total TPH		ND	ND	ND	QN	ND	QN

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XEVCO Laboratories. XEVCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presemed. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Since 1990

Brent Barron Odessa Laboratory Director

Contact: Camille Reynolds

Project 1d: 2006-142

Project Location: Lea County, NM

Certificate of Analysis Summary 288112 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Lovington Gathering WTI

Date Received in Lab: Fri Aug-17-07 12:35 pm Report Date: 23-AUG-07

Project Manager: Brent Barron, II

	Lab Id:	288112-007	
	Field Id:	MW-9 75'	
Analysis Requested	Depth:	70-75 ft	
	Matrix:	SOIL	
	Sampled:	Aug-13-07 12:05	
RTEX by FPA 8021B	Extracted:	Aug-21-07 12:12	
	Analyzed:	Aug-21-07 21:32	
	Units/RL:	mg/kg RL	
Benzene		ND 0.0021	
Toluene		ND 0.0021	
Ethylbenzene		ND 0.0021	
m,p-Xylene		ND 0.0042	
o-Xylene		ND 0.0021	
Total Xylenes		ND	
Total BTEX		ND	
Percent Moisture	Extracted:		
	Analyzed:	Aug-20-07 10:55	
	Units/RL:		
Percent Moisture		3.99 1.00	
TPH by SW8015 Mod	Extracted:	Aug-20-07 09:41	
	Analyzed:	Aug-20-07 20:53	
	Units/RL:	mg/kg RL	
C6-C12 Gasoline Range Hydrocarbons		ND 10.4	
C12-C28 Diesel Range Hydrocarbons		ND 10.4	
C28-C35 Oil Range Hydrocarbons		ND 10.4	
Total TPH	-	ND	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. It is interpretations and results expressed throughout its analytical report represent the best indigment of XEXCO Laboratories. XEXCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unters otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austín - Tampa - Miami - Latin America Since 1990

Odessa Laboratory Director

ENCO Laboratorics

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte.

 The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Phone Fax (281) 589-0692 (281) 589-0695 11381 Meadowglen Lane Suite L Houston, Tx 77082-2647 9701 Harry Hines Blvd, Dallas, TX 75220 (214) 902 0300 (214) 351-9139 5332 Blackberry Drive, Suite 104, San Antonio, TX 78238 (210) 509-3334 (201) 509-3335 (813) 620-2000 (813) 620-2033 2505 N. Falkenburg Rd., Tampa, FL 33619 (305) 823-8500 5757 NW 158th St, Miami Lakes, FL 33014 (305) 823-8555

Project Name: Lovington Gathering WTI

Work Order #: 288112

Lab Batch #: 702922

Sample: 288102-001 S / MS

Project ID: 2006-142

Unite mo/ko

Matrix: Soil Batch:

Units: mg/kg	SU	RROGATE RI	ECOVERY :	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
4-Bromofluorobenzene	0.0794	0.1000	79	80-120	*

Lab Batch #: 702922

Sample: 288102-001 SD / MSD

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		;	[D]			
4-Bromofluorobenzene	0.0869	0.1000	87	80-120		

Lab Batch #: 702922

Sample: 288112-001 / SMP

Batch:

Matrix: Soil

Units: mg/kg SURROGATE RECOVERY ST				STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits % R	Flags
Analytes			[D]		
4-Bromofluorobenzene	0.0859	0.1000	86	80-120	

Lab Batch #: 702922

Sample: 288112-002 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
4-Bromofluorobenzene	0.0709	0.1000	71	80-120	**	

Lab Batch #: 702922

Sample: 288112-003 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits % R	Flags	
4-Bromofluorobenzene	0.0837	0.1000	84	80-120		

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Order #: 288112

Project ID: 2006-142

Lab Batch #: 702922

Sample: 288112-004 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
4-Bromofluorobenzene	0.0933	0.1000	93	80-120		

Lab Batch #: 702922

Sample: 288112-005 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery % R [D]	Control Limits % R	Flags	
4-Bromofluorobenzene	0.0741	0.1000	74	80-120	**	

Lab Batch #: 702922

Sample: 288112-006 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery % R [D]	Control Limits % R	Flags	
Analytes			'-'			
4-Bromofluorobenzene	0.0772	0.1000	77	80-120	**	

Lab Batch #: 702922

Sample: 288112-007 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery % R	Control Limits %R	Flags		
Analytes			[D]				
4-Bromofluorobenzene	0.1093	0.1000	109	80-120			

Lab Batch #: 702922

Sample: 498484-1-BKS / BKS

Batch:

Matrix: Solid

Units: mg/kg	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits % R	Flags
Analytes			[D]		
4-Bromofluorobenzene	0.0543	0.0500	109	80-120	

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Work Order #: 288112

Project ID: 2006-142

Lab Batch #: 702922

Sample: 498484-1-BLK / BLK

Batch:

Matrix: Solid

Units: mg/kg SURROGATE RECOVERY STUDY True Control Amount BTEX by EPA 8021B Found Amount Recovery Limits Flags [A] [B] %R %R [D] **Analytes** 4-Bromofluorobenzene 0.0496 0.0500 99 80-120

Lab Batch #: 702698

Sample: 288112-001 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
I-Chlorooctadecane	37.3	50.0	75	70-135			
1-Chlorooctane	35.1	50.0	70	70-135			

Lab Batch #: 702698

Sample: 288112-001 S / MS

Batch:

Matrix: Soil

Units: mg/kg	SU	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes		,-,	[D]				
1-Chlorooctadecane	39.4	50.0	79	70-135			
I-Chlorooctane	44.6	50.0	89	70-135			

Lab Batch #: 702698

Sample: 288112-001 SD / MSD

Batch:

Matrix: Soil

Units: mg/kg SURROGATE REC				STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctadecane	39.4	50.0	79	70-135	
1-Chlorooctane	43.8	50.0	88	70-135	

Lab Batch #: 702698

Sample: 288112-002 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SU	IRROGATE R	RECOVERY	STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	'.	' '	[D]		
1-Chlorooctadecane	38.3	50.0	77	70-135	
1-Chlorooctane	37.1	50.0	74	70-135	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Order #: 288112

Project ID: 2006-142

Lab Batch #: 702698

Sample: 288112-003 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SU	RROGATE R	ECOVERY	STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctadecane	40.2	50.0	80	70-135	
I-Chlorooctane	39.1	50.0	78	70-135	

Lab Batch #: 702698

Sample: 288112-004 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SU	RROGATE R	ECOVERY	STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	(**)	1-1	[D]		
1-Chlorooctadecane	38.5	50.0	77	70-135	
1-Chlorooctanc	37.6	50.0	75	70-135	

Lab Batch #: 702698

Sample: 288112-005 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SU	JRROGATE R	ECOVERY	STUDY	
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery % R [D]	Control Limits %R	Flags
1-Chlorooctadecane	38.7	50.0	77	70-135	
1-Chlorooctane	38.0	50.0	76	70-135	

Lab Batch #: 702698

Sample: 288112-006 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SU	RROGATE R	ECOVERY	STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctadecane	39.4	50.0	79	70-135	
1-Chlorooctane	38.5	50.0	77	70-135	

Lab Batch #: 702698

Sample: 288112-007 / SMP

Batch:

Matrix: Soil

Units: mg/kg	SU	RROGATE RI	ECOVERY	STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctadecane	40.3	50.0	81	70-135	
1-Chlorooctane	39.3	50.0	79	70-135	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Order #: 288112

Project ID: 2006-142

Lab Batch #: 702698

Sample: 498423-1-BKS / BKS

Batch:

Matrix: Solid

Units: mg/kg	SU	RROGATE R	ECOVERY	STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctadecane	39.6	50.0	79	70-135	
1-Chlorooctane	46.3	50.0	93	70-135	

Lab Batch #: 702698

Sample: 498423-1-BLK / BLK

Batch:

Matrix: Solid

Units: mg/kg	SU	RROGATE R	RECOVERY	STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits % R	Flags
Analytes			[D]		
1-Chlorooctadecane	39.6	50.0	79	70-135	
1-Chlorooctane	38.9	50.0	78	70-135	
o-Terphenyl	ND	ND		70-135	*U

Surrogate Recovery [D] = 100 * A / B
All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Blank Spike Recovery

Project Name: Lovington Gathering WTI

Work Order #: 288112

Project ID:

2006-142

Lab Batch #: 702922

Sample: 498484-1-BKS

Matrix: Solid

Date Analyzed: 08/21/2007

Date Prepared: 08/21/2007

Analyst: SHE

Reporting Units: mg/kg	Batch #: 1	BLANK /	BLANK SP	IKE RE	COVERY	STUDY
BTEX by EPA 8021B	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike % R	Control Limits %R	Flags
Analytes		'-'	[C]	[D]	,,,,,	
Benzene	ND	0.0500	0.0351	70	70-130	
Toluene	ND	0.0500	0.0355	71	70-130	
Ethylbenzene	ND	0.0500	0.0388	78	71-129	
m,p-Xylene	ND	0.1000	0.0767	77	70-135	
o-Xylene	ND	0.0500	0.0364	73	71-133	

Lab Batch #: 702698

Sample: 498423-1-BKS

Matrix: Solid

Date Analyzed: 08/21/2007

Date Prepared: 08/20/2007

Analyst: SHE

Reporting Units: mg/kg	Batch #: 1	BLANK /	BLANK SPI	KE REC	COVERY	STUDY
TPH by SW8015 Mod Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike % R [D]	Control Limits % R	Flags
C6-C12 Gasoline Range Hydrocarbons	ND	500	581	116	70-135	
C12-C28 Diesel Range Hydrocarbons	ND	500	484	97	70-135	

Form 3 - MS/ MSD Recoveries

Project Name: Lovington Gathering WTI

Work Order # 288112

Lab Batch ID: 702922

Date Analyzed: 08/23/2007

Project ID: 2006-142

Analyst: Batch #:

QC-Sample ID: 288102-001 S **Date Prepared:** 08/21/2007

Matrix: Soil _ SHE

Reporting Units: mg/kg		/W	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	/MATR	IX SPIK	E DUPLICAT	FE REC	VERY S	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike	Spiked Sample Spiked Result Sample	Spiked Sample	Spike	Duplicate Spiked Sample Resuft IF1	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[V]	<u>B</u>	2	<u>a</u>	3		[5]				
Вепгепс	ND	0.1027	0.0739	72	0.1027	0.0724	70	3	70-130	35	
Toluene	ND	0.1027	0.0740	72	0.1027	0.0724	70	3	70-130	35	
Ethylbenzene	ND	0.1027	0.0725	71	0.1027	0.0725	71	0	71-129	35	
m,p-Xylene	ND	0.2054	0.1552	92	0.2054	0.1669	81	9	70-135	35	
o-Xylene	ND	0.1027	0.0745	73	0.1027	0.0734	71	3	71-133	35	

Date Analyzed: 08/21/2007 **Lab Batch ID:** 702698

QC-Sample ID: 288112-001 S

Matrix: Soil SHE Batch #:

Reporting Units: mg/kg

Analyst: **Date Prepared:** 08/20/2007

S. A. S. S. S. S. S. S. S. S. S. S. S. S. S.		M	A I KLA SPINE	MAIN	IN SPIR	MAIRIX SPIKE / MAIRIX SPIKE DUPLICATE RECOVERY STUDY	E KEC	VEKY	I UDX		
TDH by CW9015 Mod	Parent		Spiked Sample	Spiked		Duplicate	Spiked		Control	Control	
note crooses for it it	Sample	Spike	Result	Sample	ike	S	Dup.	RPD	Limits	Limits	Flag
	Result	Added	[]	%R	ded	Result [F]	%R	%	%R	%RPD	1
Analytes	[A]	[<u>B</u>		<u>a</u>	ᇤ	•	<u>5</u>				
C6-C12 Gasoline Range Hydrocarbons	ND	540	572	901	540	571	901	0	70-135	35	
. C12-C28 Diesel Range Hydrocarbons	ND	540	909	94	540	498	92	2	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)BRelative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Sample Duplicate Recovery

Project Name: Lovington Gathering WTI

Work Order #: 288112

Lab Batch #: 702664

08/20/2007

Project ID: 2006-142

Date Prepared:

Analyst: JLG

Date Analyzed: 08/20/2007 QC-Sample ID: 288112-001 D

Batch #:

Matrix: Soil

Reporting Units: %

SAMPLE / SAMPLE DUPLICATE RECOVERY

Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	1.54	1.95	23	20	F

Environmental Lab of Texas

☐ NPDES Aud St., ab., AS. (aluberlack-art) TAT HZUS 0 Project Name: LOVINGTON GATHERING WTI Phone: 432-563-1800 Fax: 432-563-1713 TRRP A O R.M. CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Laboratory Comments:
Sample Containers Intact?
VOCs Free of Headspace?
Labels on container(s)
Custody seals on container(s)
Custody seals on container(s) 븀 Date Time Sample Hand Delivered by Country UPS 1 17.25 Temperature Upon/Receipt. 91EX 8021B/5030 or 61EX 8560 PO#: PAA · C. J. Reynolds Project Loc: Lea County, NM Report Format: X Standard Project #: 2006-142 OBO/ dSB/ bVS SOIL SOIL SOIL SOIL SOIL SOIL kdutton@basinenv.com 12600 West I-20 East Odessa, Texas 79765 OCSUBN HOBN 'OS'H (505) 396-1429 ЮН ONI archio dans 17 HVIED ORYS TYMIA & COCKIDE Fax No: e-mail: 1102 1122 1135 # 1143 1056 1205 Time Sampled PAGE 01 OF 01 Special Instructions: email results to kdutton@basinenv.com & cjreynolds@paalp.com Received by ELQT 60 65 13-Aug-07 10 15 13-Aug-07 13-Aug-07 45 13-Aug-07 13-Aug-07 13-Aug-07 Basin Environmental Service Technologies, LLC 2 20 25 143 1787 1235 Ending Depth 20 02 6 Lovington, NM 88250 (305) 441-2124 P. O. Box 301 Ken Dutton FIELD CODE MW-9 45 MW-9 15 MW-9 65 MW-9 70' MW-9 75' MW-9 25 Speck Short w 288112 Company Address: Sampler Signature: Project Manager: Company Name Telephone No: City/State/Zip: (lab use only) ORDER #: જ 60 8 D μö

Environmental Lab of Texas

	Variance/ Corrective Action Rep	ort- Sampl	e Log-Ir	ı
Client.	Basin Env. Plains			
Datei Time:	8.17.07 12.35			
Lab ID#	288112			
Initials:	CI L			
	Sample Receipt	Chacklist		
	oumple Necolpi	01100111101		Client Initials
#1 Tempera	iture of container/ cooler?	(es)	No	Z·O °C
	container in good condition?	(Tes	No	
	Seals intact on shipping container/ cooler?	Yes	No	Not Present
	Seals intact on sample bottles/ container?	Yes	No	Not Present
	Custody present?	Yés)	No	
	instructions complete of Chain of Custody?	(85)	No	
#7 Chain of	Custody signed when relinquished/ received?	Yes)	No	
#8 Chain of	Custody agrees with sample label(s)?	Yes	No	1D written an Cont./ Lid
#9 Containe	er label(s) legible and intact?	Yes	No	Not Applicable
#10 Sample	matrix/ properties agree with Chain of Custody?	Yes	No	
#11 Contain	ers supplied by ELOT?	Yes)	No	
#12 Sample	s in proper container/ bottle?	(Yes)	No	See Below
#13 Sample	s properly preserved?	Yes)	No	See Below
#14 Sample	bottles intact?	Yes	No	
#15 Preserv	ations documented on Chain of Custody?	Yes	No	
#16 Contain	ers documented on Chain of Custody?	Yes	No	
#17 Sufficie	nt sample amount for indicated test(s)?	Yes	No	See Below
#18 All sam	ples received within sufficient hold time?	Yes	No	See Below
#19 Subcon	tract of sample(s)?	Yes	No	Mot Applicable
#20 VOC sa	imples have zero headspace?	Yes	No	Not Applicable
Contact:	Variance Docur Contacted by:	nentation		Date/ Time:
Pogardina:			•	
Regarding:				
Corrective A	ction Taken:			

See attached e-mail/ fax

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Check all that Apply:

Analytical Report 290458

for

PLAINS ALL AMERICAN EH&S

Project Manager: Camille Reynolds

Lovington Gathering WTI 2006-142

03-OCT-07

12600 West I-20 East Odessa, Texas 79765

A Xenco Laboratories Company

Texas certification numbers: Houston, TX T104704215

Florida certification numbers:
Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

03-OCT-07

Project Manager: Camille Reynolds
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150

Midland, TX 79706

Reference: XENCO Report No: 290458

Lovington Gathering WTIProject Address: Lea County, NM

Camille Reynolds:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 290458. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 290458 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron

Odessa Laboratory Director

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Sample Cross Reference 290458

PLAINS ALL AMERICAN EH&S, Midland, TX

Lovington Gathering WTI

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-9	W	Sep-25-07 10:00		290458-001
MW-4	W	Sep-25-07 10:50		290458-002
MW-5	W	Sep-25-07 11:35		290458-003
MW-6	W	Sep-25-07 12:15		290458-004
MW-8	W	Sep-25-07 13:40		290458-005
MW-1	W	Sep-25-07 14:24		290458-006
MW-2	W	Sep-25-07 15:07		290458-007
MW-7	W	Sep-25-07 15:42		290458-008
MW-3	W	Sep-25-07 16:15		290458-009

Certificate of Analysis Summary 290458 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Lovington Gathering WTI

Project Name

Contact: Camille Reynolds

Project 1d: 2006-142

Project Location: Lea County, NM

Date Received in Lab: Fri Sep-28-07 01:45 pm

Report Date: 03-OCT-07

Project Manager: Brent Barron, II

					Project Manager: Brent Barron, II	Brent Barron, 11	
	Lab Id:	290458-001	290458-002	290458-003	290458-004	290458-005	290458-006
A sectionis Downson	Field Id:	6-MM	MW-4	MW-5	MW-6	MW-8	MW-1
Anutysis Requesieu	Depth:						
	Matrix:	WATER	WATER	WATER	WATER	WATER	WATER
	Sampled:	Sep-25-07 10:00	Sep-25-07 10:50	Sep-25-07 11:35	Sep-25-07 12:15	Sep-25-07 13:40	Sep-25-07 14:24
BTEX by EPA 8021B	Extracted:	Oct-02-07 16:30	Oct-02-07 16:30	Oct-02-07 16:30	Oct-02-07 16:30	Oct-02-07 16:30	Oct-02-07 16:30
	Analyzed:	Oct-02-07 20:05	Oct-02-07 20:22	Oct-02-07 20:38	Oct-02-07 20:55	Oct-02-07 21:28	Oct-02-07 21:45
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL
Benzene		ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010
Toluene		ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	0100'0 QN	ND 0.0010
Ethylbenzene		ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010
m,p-Xylene		ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020
o-Xylene		ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010
Total Xylenes		ND	QN	QN	ND	QN	ND
Total BTEX		ND	ND	ND	ND	QN	ND

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report present the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Brent Barron Odessa Laboratory Director

Contact: Camille Reynolds Project Location: Lea County, NM

Project 1d: 2006-142

Certificate of Analysis Summary 290458 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Lovington Gathering WTI

Date Received in Lab: Fri Sep-28-07 01:45 pm Report Date: 03-OCT-07

Project Manager: Brent Barron, II

					reject manager. Diem parem, in
	Lab Id:	290458-007	290458-008	290458-009	
Acceptant Daniel	Field Id:	MW-2	MW-7	MW-3	
Anaiysis Kequesiea	Depth:				
	Matrix:	WATER	WATER	WATER	
	Sampled:	Sep-25-07 15:07	Sep-25-07 15:42	Sep-25-07 16:15	
BTEX by FPA 8021B	Extracted:	Oct-02-07 16:30	Oct-02-07 16:30	Oct-03-07 10:16	
	Analyzed:	Oct-02-07 22:01	Oct-02-07 22:18	Oct-03-07 12:43	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
Benzene		0.0503 0.0010	0.0370 0.0010	0.4943 0.0010	
Toluene		ND 0.0010	ND 0.0010	0.0239 0.0010	
Ethylbenzene	1	ND 0.0010	ND 0.0010	0.0209 0.0010	
m,p-Xylene		0.0030 0.0020	0.0306 0.0020	0.0140 0.0020	
o-Xylene		ND 0.0010	ND 0.0010	0.0071 0.0010	
Total Xylenes		0.003	0.0306	0.0211	
Total BTEX		0.0533	0.0676	0.5602	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report present the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and nakes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Since 1990

Odessa Laboratory Director

XENCO Laboratories

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Phone Fax 11381 Meadowglen Lane Suite L Houston, Tx 77082-2647 (281) 589-0692 (281) 589-0695 9701 Harry Hines Blvd, Dallas, TX 75220 (214) 902 0300 (214) 351-9139 5332 Blackberry Drive, Suite 104, San Antonio, TX 78238 (210) 509-3334 (201) 509-3335 (813) 620-2000 (813) 620-2033 2505 N. Falkenburg Rd., Tampa, FL 33619 (305) 823-8500 (305) 823-8555 5757 NW 158th St, Miami Lakes, FL 33014

Project Name: Lovington Gathering WTI

Work Order #: 290458

Project ID: 2006-142

Lab Batch #: 705584

Sample: 290458-001 / SMP

Matrix: Water Batch: 1

Units: mg/L	SÜ	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount {B}	Recovery %R	Control Limits %R	Flags
Analytes		' '	[D]		
1,4-Difluorobenzene	0.0317	0.0300	106	80-120	
4-Bromofluorobenzene	0.0261	0.0300	87	80-120	

Lab Batch #: 705584

Sample: 290458-001 S / MS

Batch:

Matrix: Water

Units: mg/L	SU	RROGATE R	RECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0296	0.0300	99	80-120	
4-Bromofluorobenzene	0.0267	0.0300	89	80-120	

Lab Batch #: 705584

Sample: 290458-001 SD / MSD

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0293	0.0300	98	80-120	
4-Bromofluorobenzene	0.0269	0.0300	90	80-120	

Lab Batch #: 705584

Sample: 290458-002 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SU.	RROGATE RI	ECOVERY :	STUDY	
BTEX by EPA 8021B	Amount ' Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0317	0.0300	106	80-120	
4-Bromofluorobenzene	0.0253	0.0300	84	80-120	

Lab Batch #: 705584

Sample: 290458-003 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0316	0.0300	105	80-120	
4-Bromofluorobenzene	0.0255	0.0300	85	80-120	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Order #: 290458

Project ID: 2006-142

Lab Batch #: 705584

Sample: 290458-004 / SMP

Batch:

Matrix: Water

Units: mg/L	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0318	0.0300	106	80-120	
4-Bromofluorobenzene	0.0257	0.0300	86	80-120	

Lab Batch #: 705584

Sample: 290458-005 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes		,	[D]		
1,4-Difluorobenzene	0.0314	0.0300	105	80-120	
4-Bromofluorobenzene	0.0260	0.0300	87	80-120	

Lab Batch #: 705584

Sample: 290458-006 / SMP

Batch: 1

1 Matrix: Water

Units: mg/L	SU	RROGATE R	RECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	11	[2]	[D]	, , , ,	
1,4-Difluorobenzene	0.0317	0.0300	106	80-120	
4-Bromofluorobenzene	0.0263	0.0300	88	80-120	

Lab Batch #: 705584

Sample: 290458-007 / SMP

SMP Bate

Batch: 1 Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0313	0.0300	104	80-120	
4-Bromofluorobenzene	0.0261	0.0300	87	80-120	

Lab Batch #: 705584

Sample: 290458-008 / SMP

Batch: 1

Matrix: Water

Units: mg/L	· SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Analytes			101		
1,4-Difluorobenzene	0.0304	0.0300	101	80-120	,
4-Bromofluorobenzene	0.0269	0.0300	90	80-120	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Order #: 290458

Project ID: 2006-142

Lab Batch #: 705584

Sample: 500015-1-BKS / BKS

Batch:

Matrix: Water

Units: mg/L	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0286	0.0300	95	80-120	
4-Bromofluorobenzene	0.0279	0.0300	93	80-120	

Lab Batch #: 705584

Sample: 500015-1-BLK / BLK

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0312	0.0300	104	80-120	
4-Bromofluorobenzene	0.0267	0.0300	89	80-120	

Lab Batch #: 705584

Sample: 500015-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0287	0.0300	96	80-120	
4-Bromofluorobenzene	0.0281	0.0300	94	80-120	

Lab Batch #: 705607

Sample: 290458-009 / SMP

Batch: 1

Matrix: Water

Units: mg/L .	SU	RROGATE R	ECOVERY :	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0254	0.0300	85	80-120	
4-Bromofluorobenzene	0.0255	0.0300	85	80-120	

Lab Batch #: 705607

Sample: 500032-1-BKS / BKS

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R {D}	Control Limits %R	Flags
1,4-Difluorobenzene	0.0294	0.0300	98	80-120	
4-Bromofluorobenzene	0.0261	0.0300	87	80-120	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Project Name: Lovington Gathering WTI

Work Order #: 290458

Lab Batch #: 705607 S

Sample: 500032-1-BLK / BLK

Project ID: 2006-142

Batch:

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0313	0.0300	104	80-120	
4-Bromofluorobenzene	0.0263	0.0300	88	80-120	

Lab Batch #: 705607

Sample: 500032-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE RE	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0292	0.0300	97	80-120	
4-Bromofluorobenzene	0.0265	0.0300	88	80-120	

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Lovington Gathering WTI

Work Order #: 290458

Analyst: SHE

Lab Batch ID: 705584

Date Prepared: 10/02/2007

Project ID: 2006-142 Date Analyzed: 10/02/2007

Sample: 500015-1-BKS

Batch #: 1

Matrix: Water

Units: mg/L		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / B	LANKS	PIKE DUPL	ICATE F	RECOVE	RY STUD	Ā	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike	Blank Spike Duplicate	Bik. Spk Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	(a)	[E]	Kesult [F]	<u>5</u>				
Benzene	QN	0.1000	0.1061	106	0.1	0.1072	107	-	70-125	25	
Toluenc	ND	0.1000	0.1047	105	0.1	0.1058	901	1	70-125	25	
Ethylbenzene	ND	0.1000	0.1047	105	0.1	0.1061	106	-	71-129	25	
m,p-Xylene	QN	0.2000	0.2099	105	0.2	0.2123	106	1	70-131	25	
o-Xylene	QN	0.1000	0.1022	102	0.1	0.1033	103	-	71-133	25	

Analyst: SHE

Date Prepared: 10/03/2007

Date Analyzed: 10/03/2007 Matrix: Water

Batch #: 1 Sample: 500032-1-BKS Lab Batch ID: 705607

Flag Limits %RPD Control 25 25 25 25 25 BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Control Limits %R 70-125 70-125 71-129 70-131 71-133 RPD % Blk. Spk Dup. (G) 95 93 16 93 93 Blank Spike Duplicate Result [F] 0.0928 0.0929 0.1860 0.0948 0.0911 Spike Added Ξ 0.1 0.1 0.2 0.1 0.1 Blank Spike %R [D] 92 8 94 92 92 0.0940 0.0924 0.0918 0.1832 Blank Spike Result [C] 0.0896 0.1000 0.2000 0.1000 0.1000 Spike Added 0.1000 <u>8</u> Sample Result $\overline{\mathbf{A}}$ Ð Ð £ S S BTEX by EPA 8021B Units: mg/L Analytes Ethylbenzene m,p-Xylene Toluene o-Xylene Benzene

Relative Percent Difference RPD = 200*[(D-F)/(D+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Lovington Gathering WTI

Work Order #: 290458

Lab Batch ID: 705584

Date Analyzed: 10/03/2007

QC-Sample ID: 290458-001 S

_ Batch #:

Matrix: Water SHE Analyst:

Project ID: 2006-142

Reporting Units: mg/L

Control Limits %RPD 25 25 25 25 25 Control Limits %R 70-125 71-133 70-125 71-129 70-131 MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY RPD Spiked Dup. %R [G] 210 26 94 16 16 Duplicate Spiked Sample Result [F] 6960'0 0.0941 0.2098 0.1814 0.0905 Spike Added 0.1000 0.2000 0.1000 0.1000 0.1000 Ξ Spiked Sample %R [D] 208 92 8 4 Spiked Sample Result 0.0935 0.0915 0.2076 0.1795 0.0897 \overline{C} Date Prepared: 10/02/2007 0.1000 0.2000 0.1000 Spike Added [B] 0.1000 0.1000 Parent Sample Result Ā N Q ND ΩN S. N O BTEX by EPA 8021B Analytes Ethylbenzene m,p-Xylene o-Xylene Benzene Toluene

Flag

×

Matrix Spike Percent Recovery [D] = 100*(C-A)BRelative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Environmental Lab of Texas

TAT brisbrisk OCOCONI V ☐ NPDES Project Name: LOVINGTON GATHERING WITH TRRP CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Temperature Upon Receipt: Sample Containers intract?
VOCs Free of Headspace?
Labels on container(s)
Custody seals on container
Custody seals on coeler(s) PO #: PAA - C. J. Reynolds Project Loc: Lea County, NM Report Format: X Standard Project #: 2006-142 SAR / ESP / CEC Sat A A 9:30 9-28-07 1:45 me § § ΘW ₹ ĕ **₹** 8 Š kdutton@basinenv.com 12500 West I-20 East Odessa, Toxas 79765 rOc2seN HOP (605) 396-1429 Fax No: e-nail: 1216 1424 1135 1340 1607 1815 5 PAGE 01 OF 01 26-Sep-07 25-Sep-07 25-Sep-07 25-Sep-07 25-Sep-07 26-Sep-07 25-Sep-07 25-Sep-07 Basin Environmental Service Technologies, LLC 1 2/2 / I ugdag Buipt 243.E 28 SED 07 Will & Well to Set Bot Lovington, NM 88250 (505) 441-2124 P. O. Box 301 Ken Dutton Sampler Signature: 8-MM ¥ AM MW-5 MW-6 MW-8 MW-1 MW-2 MW-7 MW-3 ORDER #: 2458 Company Address: Project Manager: Company Name City/State/Zip: Telephone No: Special Instructions: 90 ٥ য 3 9 প্ৰ \mathcal{B} 힉

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

	variance/ Corrective Action Re	pon- Sampi	e cog-ir	1
ient: <u>Ba</u> :	sin Plains			
ate/ Time:	9-28-07 1:45			
ab ID # :	290458			
itials:	aL			
	Sample Receipt	Checklist		
				Client Initia
Temperature of	container/ cooler?	Yes	No	2.5 °C
	er in good condition?	Yes	No	
	ntact on shipping container/ cooler?	Yes	No	Not Present
	ntact on sample bottles/ container?	Yes	No	Not Present
5 Chain of Custod		Yes	No	
	ons complete of Chain of Custody?	Yes)	No	
	ly signed when relinquished/ received?	Yes	No	
	ly agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid
	s) legible and intact?	(es)	No	Not Applicable
10 Sample matrix/	properties agree with Chain of Custody?	X(es)	No	
11 Containers sup		Yes	No	
	per container/ bottle?	Yes	No	See Below
13 Samples prope		(es	No	See Below
14 Sample bottles		Yes	No	
	documented on Chain of Custody?	Yes	No	
*****	umented on Chain of Custody?	Yes	No	
	ole amount for indicated test(s)?	Yes	No	See Below
	eived within sufficient hold time?	Yes	No	See Below
19 Subcontract of		Yes	No	Not Applicable
	have zero headspace?	Yes	No	Not Applicable
Contact.	Variance Docu	mentation		Date/ Time:
Regarding:				
Corrective Action Ta	ıken:			
Check all that Apply:	See attached e-mail/ fax			
***	Client understands and wor			•
	Cooling process had begur	shortly after	sampling	g event

Analytical Report 293980

for

PLAINS ALL AMERICAN EH&S

Project Manager: JIMMY BRYANT

Lovington Gathering WTI 2006-142

10-DEC-07

12600 West I-20 East Odessa, Texas 79765

A Xenco Laboratories Company

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

10-DEC-07

Project Manager: JIMMY BRYANT PLAINS ALL AMERICAN EH&S 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 293980

Lovington Gathering WTIProject Address: Lea County, NM

JIMMY BRYANT:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 293980. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 293980 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Sample Cross Reference 293980

PLAINS ALL AMERICAN EH&S, Midland, TX

Lovington Gathering WTI

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-9	W	Nov-30-07 09:15		293980-001
MW-4	W	Nov-30-07 10:35		293980-002
MW-5	W	Nov-30-07 11:45		293980-003
MW-6	W	Nov-30-07 12:40		293980-004
MW-8	W	Nov-30-07 15:25		293980-005
MW-1	W	Nov-30-07 11:10		293980-006
MW-2	W	Nov-30-07 13:50		293980-007
MW-7	W	Nov-30-07 14:30		293980-008
MW-3	W	Nov-30-07 15:10		293980-009

Certificate of Analysis Summary 293980 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Lovington Gathering WTI

Project N

Project 1d: 2006-142
Contact: JIMMY BRYANT
Project Location: Lea County, NM

Date Received in Lab: Tue Dec-04-07 12:45 pm

Report Date: 10-DEC-07

Tujeci Lucatium. Lea County, 1911					Project Manager: Brent Barron, II	Brent Barron, II		
	Lab Id:	293980-001	293980-002	293980-003	293980-004	293980-005	293980-006	900
And along Danished	Field Id:	MW-9	MW-4	MW-5	MW-6	MW-8	MW-1	
Anniysis Kequesieu	Depth:							
	Matrix:	WATER	WATER	WATER	WATER	WATER	WATER	~
	Sampled:	Nov-30-07 09:15	Nov-30-07 10:35	Nov-30-07 11:45	Nov-30-07 12:40	Nov-30-07 15:25	Nov-30-07 11:10	11:10
RTEX by FPA 8021B	Extracted:	Dec-05-07 11:19	Dec-05-07 11:19	Dec-05-07 11:19	Dec-05-07 11:19	Dec-05-07 11:19	Dec-05-07 11:19	61:11
	Analyzed:	Dec-05-07 19:57	Dec-05-07 20:14	Dec-05-07 20:30	Dec-05-07 20:47	Dec-05-07 21:03	Dec-05-07 21:20	21:20
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L	RL
Benzene		ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND	ND 0.0010
Toluene		ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND	0.0020
Ethylbenzene		ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	QN	0.0010
m,p-Xylencs		ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	QN	0.0020
o-Xylene		ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND 0.0010	ND	0.0010
Xylenes, Total		ND	ON	ND	ND	QN	ND	
Total BTEX		ND	ND	ND	ND	QN	ND	

This analytical report, and the entire data pushage it represents, has been made for your exclusive and confidential use. The interpretations and resting expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

Brent Barron Odessa Laboratory Director

Certificate of Analysis Summary 293980 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Lovington Gathering WTI

Contact: JIMMY BRYANT

Project 1d: 2006-142

Project Location: Lea County, NM

Date Received in Lab: Tue Dec-04-07 12:45 pm Report Date: 10-DEC-07

Project Manager: Brent Barron, II

						the same of the sa	
	Lab Id:	293980-007	293980-008	293980-009			
Laboration Description	Field Id:	MW-2	MW-7	MW-3	-	,	
Anuiyas Nequesieu	Depth:						
	Matrix:	WATER	WATER	WATER			
	Sampled:	Nov-30-07 13:50	Nov-30-07 14:30	Nov-30-07 15:10			
BTEX by FPA 8021B	Extracted:	Dec-06-07 12:45	Dec-05-07 11:19	Dec-06-07 12:45			
	Analyzed:	Dec-06-07 16:10	Dec-05-07 21:53	Dec-06-07 17:01			
	Units/RL:	mg/L RL	mg/L RL	mg/L RL			
Benzene		0.9283 0.0050	0.0264 0.0010	5.937 0.0200			
Toluene		ND 0.0100	ND 0.0020	0.2786 0.0400			
Ethylbenzene		ND 0.0050	ND 0.0010	0.2732 0.0200			
m,p-Xylenes		0.0366 0.0100	0.0221 0.0020	0.1410 0.0400			
o-Xylene		ND 0.0050	ND 0.0010	0.0740 0.0200			
Xylenes, Total		0.0366	0.0221	0.215			
Total BTEX		0.9649	0.0485	6.7038			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and respected throughout this analytical report present othe best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Since 1990

Odessa Laboratory Director

XENCO Laboratories

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(201) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555

Work Order #: 293980

Lab Batch #: 709873

Project ID: 2006-142

Sample: 293980-001 / SMP

Matrix: Water Batch: 1

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0315	0.0300	105	80-120	
4-Bromofluorobenzene	0.0246	0.0300	82	80-120	

Lab Batch #: 709873

Sample: 293980-001 S / MS

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0291	0.0300	97	80-120	
4-Bromofluorobenzene	0.0273	0.0300	91	80-120	

Lab Batch #: 709873

Sample: 293980-001 SD / MSD

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0,0291	0.0300	97	80-120	
4-Bromofluorobenzene	0.0267	0.0300	89	80-120	

Lab Batch #: 709873

Sample: 293980-002 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	RECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0318	0.0300	106	80-120	
4-Bromofluorobenzene	0.0254	0.0300	85	80-120	

Lab Batch #: 709873

Sample: 293980-003 / SMP

Batch: 1

Matrix: Water

240 2410 // .					
Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Analytes					
1,4-Difluorobenzene	0.0316	0.0300	105	80-120	
4-Bromofluorobenzene	0.0258	0.0300	86	80-120	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Work Order #: 293980

Project ID: 2006-142

Lab Batch #: 709873

Sample: 293980-004 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0316	0.0300	105	80-120	
4-Bromofluorobenzene	0.0256	0.0300	85	80-120	

Lab Batch #: 709873

Sample: 293980-005 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY:	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0318	0.0300	106	80-120	
4-Bromofluorobenzene	0.0257	0.0300	86	80-120	

Lab Batch #: 709873

Sample: 293980-006 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	RECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	[[-]		[D]	, , , ,	
1,4-Difluorobenzene	0.0317	0.0300	106	80-120	
4-Bromofluorobenzene	0.0263	0.0300	88	80-120	

Lab Batch #: 709873

Sample: 293980-008 / SMP

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	RECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	(1-1)	[2]	[D]	/41	
1,4-Difluorobenzene	0.0299	0.0300	100	80-120	
4-Bromofluorobenzene	0.0254	0.0300	85	80-120	

Lab Batch #: 709873

Sample: 502210-1-BKS / BKS

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0290	0.0300	97	80-120	
4-Bromofluorobenzene	0.0290	0.0300	97	80-120	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Work Order #: 293980

Lab Batch #: 709873

Sample: 502210-1-BLK / BLK

Batch:

Project ID: 2006-142 Matrix: Water

Units: mg/L SURROGATE RECOVERY STUDY Control Amount True BTEX by EPA 8021B Found Amount Recovery Limits Flags [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0315 0.0300 105 80-120 4-Bromofluorobenzene 0.0260 0.0300 87 80-120

Lab Batch #: 709873

Sample: 502210-1-BSD / BSD

Batch: 1 Matrix: Water

Units: mg/L	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	1 1111	[2]	[D]	/ / /	
1,4-Difluorobenzene	0.0289	0.0300	96	80-120	
4-Bromofluorobenzene	0.0283	0.0300	94	80-120	

Lab Batch #: 710056

Sample: 293896-054 S / MS

Batch:

Matrix: Water

Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0295	0.0300	98	80-120	
4-Bromofluorobenzene	0.0276	0.0300	92	80-120	

Lab Batch #: 710056

Sample: 293896-054 SD / MSD

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE R	RECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0296	0.0300	99	80-120	
4-Bromofluorobenzene	0.0280	0.0300	93	80-120	

Lab Batch #: 710056

Sample: 293980-007 / SMP

Batch: 1

Matrix: Water

Units: mg/L	. SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R {D]	Control Limits %R	Flags
Analytes			(5)		
1,4-Difluorobenzene	0.0327	0.0300	109	80-120	
4-Bromofluorobenzene	0.0263	0.0300	88	80-120	

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

Surrogate Recovery [D] = 100 * A / B

^{***} Poor recoveries due to dilution

Work Order #: 293980

Sample: 293980-009 / SMP

Project ID: 2006-142

Lab Batch #: 710056

Batch: 1 Matrix: Water

Units: mg/L	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0338	0.0300	113	80-120	
4-Bromofluorobenzene	0.0270	0.0300	90	80-120	

Lab Batch #: 710056

Sample: 502290-1-BKS / BKS

Batch:

Matrix: Water

Units: mg/L	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount {B}	Recovery %R	Control Limits %R	Flags
Analytes		. ,	[D]		
1,4-Difluorobenzene	0.0288	0.0300	96	80-120	
4-Bromofluorobenzene	0.0273	0.0300	91	80-120	

Lab Batch #: 710056

Sample: 502290-1-BLK / BLK

Batch:

Matrix: Water

Units: mg/L	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	(,	,-,	[D]		
1,4-Difluorobenzene	0.0310	0.0300	103	80-120	
4-Bromofluorobenzene	0.0261	0.0300	87	80-120	

Lab Batch #: 710056

Sample: 502290-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L	SU	RROGATE RE	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0289	0.0300	96	80-120	
4-Bromofluorobenzene	0.0273	0.0300	91	80-120	

Surrogate Recovery $\{D\} = 100 * A / B$

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Lovington Gathering WTI

Work Order #: 293980

Lab Batch ID: 709873 Analyst: SHE

Sample: 502210-1-BKS

Date Prepared: 12/05/2007

Batch #: 1

Project ID: 2006-142 **Date Analyzed:** 12/05/2007

Matrix: Water

BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Unite: mg/L

Units: mg/L		NEGA	A I DELCAMA D	T TANK ! D	CANDO	PERMINIPLIANT STATE OF THE POLICE IN STORY	CAIE		TOTE TAP	1	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Bik. Spk Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes		[<u>B</u>	[2]	[0]	亘	Result [F]	[6]				
Benzene	QN	0.1000	0.1016	102	0.1	0.0964	96	5	70-125	25	
Toluene	QN	0.1000	0.1021	102	0.1	0.0973	26	5	70-125	25	
Ethylbenzene	QN	0.1000	0.1050	105	0.1	0.1004	100	4	71-129	25	
m,p-Xylenes	QN	0.2000	0.2068	103	0.2	0.1977	66	4	70-131	25	
o-Xylene	ND	0.1000	0.1038	104	0.1	0.1000	100	4	71-133	25	

Date Prepared: 12/06/2007 Analyst: SHE

Lab Batch ID: 710056

Sample: 502290-1-BKS

Batch #: 1

Matrix: Water

Date Analyzed: 12/06/2007

Units: mg/L	:	BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / B	LANK S	PIKE DUPL	ICATE 1	RECOVE	RY STUD	Y.	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes		<u>e</u>	<u>.</u>	<u>a</u>	(E)	Result [F]	<u>5</u>				
Benzene	QN	0.1000	0.0870	87	0.1	0.0889	68	2	70-125	25	
Toluene	ΩN	0.1000	0.0872	87	1.0	0.0892	68	2	70-125	25	
Ethylbenzene	ND	0.1000	0.0907	16	0.1	0.0924	65	2	71-129	25	
m,p-Xylenes	ND	0.2000	0.1781	68	0.2	0.1813	91	2	70-131	25	
0-Xylene	QN	0.1000	0.0895	96	0.1	0.0918	92	3	71-133	25	

Relative Percent Difference RPD = 200*(D-F)/(D+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Lovington Gathering WTI

Work Order #: 293980

Lab Batch ID: 709873

Date Analyzed: 12/05/2007

Project ID: 2006-142

Matrix: Water SHE

Batch #: Analyst: QC-Sample ID: 293980-001 S Date Prepared: 12/05/2007

Flag Limits %RPD Control 25 25 25 25 25 Control Limits %R 71-133 70-125 70-125 71-129 70-131 MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY RPD 0 0 0 Spiked Dup. %R [G] 4 93 92 8 92 Spiked Sample Result [F] Duplicate 0.0925 0.1802 0.0944 0.0922 0.0917 Spike Added 0.1000 0.1000 0.1000 0.2000 0.1000 Œ Spiked Sample . D. 92 93 92 92 96 Spiked Sample Result 0.0922 0.0919 0.0917 0.0934 0.1791 $\overline{2}$ 0.1000 0.2000 Spike Added 0.1000 0.1000 0.1000 Parent Sample Result $\overline{\mathbf{A}}$ S ND 2 ΩN N D BTEX by EPA 8021B Analytes Reporting Units: mg/L Ethylbenzene m,p-Xylenes o-Xylene Toluene Benzene

QC-Sample ID: 293896-054 S Date Prepared: 12/06/2007 Date Analyzed: 12/06/2007 Lab Batch ID: 710056

SHE Analyst:

Matrix: Water

Batch #:

Reporting Units: mg/L		M	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	E/MATI	RIX SPIK	Œ DUPLICA'	TE REC	VERY S	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result Sample [C] %R	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes	<u>¥</u>	<u>B</u>		<u>a</u>	Ξ		[5]				
Benzenc	0.0054	0.1000	0.0859	81	0.1000	0980.0	18	0	70-125	25	
Toluene	QN	0.1000	0.0858	98	0.1000	0.0863	98	0	70-125	25	
Ethylbenzene	QN	0.1000	0.0892	68	0.1000	0.0900	06	1	71-129	25	
m,p-Xylenes	QN	0.2000	0.1740	87	0.2000	0.1758	88	1	70-131	25	
o-Xylene	QN	0.1000	0.0901	06	0.1000	0.0910	16	1	71-133	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)BRelative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Laboratory Comments:

Semple Continuents:

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. First of Heatsbased)

(NO. □ NPDES Project Name: LOVINGTON GATHERING WTI TRRP Phone: 432-563-1800 Fax: 432-663-1713 CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST ıżu BLEX BOSIBISOSO OLDLEX BEGS PO#: PAA.C. J. Raynolds Project Loc: Les County, Atsi Report Format: X Standard Project #: 2006-142 232145318VS Aniena (CA, SOA, Alkaininy) Cationa (Ca. Mg, Na. 19) 2.2 9001 X.1 194d.1 12 434 B.W S GW W 0 W 8 8 3 3 12 437 L kdutton@basinenv.com 12600 West I-20 East Odesso, Texas 79765 O. S.ch HORN (505) 395-1429 Labrack enertiating) to ; a table e-mail: Fax No: 1525 0915 1035 1145 1240 113 1350 1510 1430 5 PAGE 01 OF 30-Nov-07 30-Nov-07 30-Nov-07 30-Nov-07 30-Nov-07 30-Nov-07 30-Nov-07 30-Nov-07 30-Nov-07 Basin Environmental Service Technologias, LLC alded gaibs 12.4.07 8:00 Date Tone 2464 123 **Environmental Lab of Texas** Lovington, NM 88250 2800 Plains Hwy (505) 441-2124 Ken Dutton 293980 FIELD CODE MW-4 MW-6 MW-8 MW-2 WW-9 MW-6 MW-7 A CONTRACTOR OF THE CONTRACTOR Company Address: Sampler Signature: Project Manager; Company Name Telephone No: City/State/Zip: (Jap nee out)) ORDER #. (Kjuo esn gej) # Ely

TAT bushned2 × × × ×

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Cilent: Basin Enviro Maum	•	a ya ⊶		
.ab ID # : <u>2939 \$0</u>				
nitials: anWA				
Samula Banaint	Charbline			
Sample Receipt	Checkiist		Client Init	J.,)
#1 Temperature of container/ cooler?	Xe8	No.	- 3.5 °C	iais
#2 Shipping container in good condition?	Xes	No.	<u> </u>	-
#3 Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
44 Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	\dashv
75 Chain of Custody present?	CY63	No	1333.1333.1	-
6 Sample instructions complete of Chain of Custody?	₹es	No		\neg
77 Chain of Custody signed when relinquished/ received?	Yes	No.		7
78 Chain of Custody agrees with sample label(s)?	ďes	No	ID:written:on Cont./ Lld	
9 Container label(s) legible and intact?	Yes	No	Not Applicable	_
\$10 Sample matrix/ properties agree with Chain of Custody?	Yes	No		
#11 Containers supplied by ELOT?	des	No		
#12 Samples in proper container/ bottle?	468	No	See Below	
#13. Samples properly preserved?	(Yes	No	See Below	
#14 Sample bottles intact?	Yes	No		
15 Preservations documented on Chain of Custody?	(Yes)	No		7
#16 Containers documented on Chain of Custody?	Xes	No		
#17 Sufficient sample amount for Indicated test(s)?	8es	No.	See Below	
#18 All samples received within sufficient hold time?	(Yes	No	See Below	
#19 Subcontract of sample(s)?	Yes	No	Not Applicable	7
#20 VOC samples have zero headspace?	(Yes)	No	Not Applicable	
Variance Docur	mentation			
Contact: Contacted by:			Date/ Time:	
Regarding:				
				
Corrective Action Taken:				
Check all that Apply: See attached e-mail/ fax Client understands and woul			• •	

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Frencis Dr., Santo Fa, NR 87505

By Whom? Camille Reynolds Was a Watercourse Reached?

☐ Yes 🏻 No

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

1220 S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe					e, NM 875	505					side of form	
			Rel	ease Notific	catio	n and Co	rrective A	ction	R			
						OPER	ATOR		x Initia	al Report		Final Report
Name of Co	ompany Pla	ains Pipeline				Contact Car	nille Reynolds					
					Telephone No. 505-441-0965							
				Facility Type 6"Steel Pipeline								
Surface Owner Robert Rice Mineral Owner				Lease No.								
				LOCA	ATIO	N OF RE	LEASE					
Unit Letter H	Section 6	Township 17S	Range 37E	Feet from the	North	/South Line	Feet from the	East/\	West Line	County Lea		
<u> </u>		Latitud	e_32° 5	' 56.0"		Longitude	2 103° 17' 07.2	"				
				NAT	TURE	OF REL	EASE					
Type of Release Crude Oil			Volume of	Release 12 barre	ls Volume Recovered 8 barrels			s				
Source of Release 6" Steel Pipeline			Date and Hour of Occurrence			Date and Hour of Discovery						
					4-21-2006 @ 13:00 4-21-2006 @ 13:15							
Was Immedi	ate Notice (If YES, To						
J		×	Yes [] No 🔲 Not R	equired	Pat Capert	on				2223	24 2

Describe Cause of Problem and Remedial Action Taken Internal corrosion while purging the line resulted in release of sweet crude oil. The line has been purged. The line is an idle 6-inch steel gathering line. The pressure on the line was approximately 50 psi and the gravity of the sweet crude oil was 34. The sweet crude has an H₂S content of <10 ppm. The line was approximately 1.5 feet bgs at the release point.

Date and Hour 4-21-2006 @ 15:35

If YES, Volume Impacting the Watercourse.

Describe Area Affected and Cleanup Action Taken.* The impacted soil was excavated and stockpiled on plastic. Aerial extent of surface impact was approximately 1,500 ft².

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

rederar, state, or rocar raws and/or regulations.					
Signature: Camille Reimolds	OIL CONSERVATION DIVISION				
Printed Name: Camille Reynolds	Approved by District Supervisor:				
Title: Remediation Coordinator	Approval Date:	Expiration D	Pate:		
E-mail Address: cjreynolds@paalp.com	Conditions of Approval:		Attached []		

Bacility - PACOG11638437 Coulty - PACOG11638437 inri dest - NFACOG11638542 application - pPACO611639267