GW - 032

MONITORING REPORTS 1/2

Chavez, Carl J, EMNRD

From:	Rajen, Gaurav [Gaurav.Rajen@wnr.com]
Sent:	Tuesday, September 09, 2008 10:13 AM
То:	Monzeglio, Hope, NMENV; Chavez, Carl J, EMNRD
Cc:	Riege, Ed; Johnson, Cheryl; Dorsey, Alvin
Subject:	Recent Findings in our 2008 Groundwater Monitoring Events
Attachments	: 0808012.pdf; Tables for Hope and Carl 9-8-08-manganese.doc

Carl Chavez Oil Conservation Division 1220 S. Saint Francis Santa Fe, NM 87505

Hope Monzeglio New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, BLDG 1 Santa Fe NM 87505

RE: Recent Findings in our 2008 Groundwater Monitoring Events

Dear Hope and Carl:

It is a pleasure to write to you. Many thanks for your help, support and keen oversight.

This e-mail is to comply with the Western Refining Gallup Refinery (GW-032) Discharge Permit requirement 20.B.2.

During review of the ongoing 2008 groundwater monitoring events, I discovered that levels of manganese in two of our down-gradient groundwater monitoring wells had exceeded the NM WQCC Standards of 0.2 mg/L (this is a drinking water standard) – 0.43 mg/L of manganese in BW-2C and 0.41 mg/L of manganese in BW-3C. These wells and others are listed in the attached Table, along with data from previous years. These wells (BW-2C and BW-3C) had not exceeded WQCC standards for manganese in the previous year.

Wells BW-2A and BW-2B that had exceeded the standard for manganese in 2007 did have elevated levels of manganese again in 2008 but are now below the standard.

Also, as in previous years, Fluoride levels were high in some of these wells, but no new contamination over the standards was discovered related to Fluorides. Levels of Fluorides in BW-3A and BW-3C have fallen below the standard as compared to 2007.

A copy of the laboratory analytical results is also attached.

All sampling events and results are not completed as yet for 2008. We will keep you informed as new findings are interpreted by us.

Many thanks,

Sincerely,

Raj

This inbound email has been scanned by the MessageLabs Email Security System.

COVER LETTER

Wednesday, August 27, 2008

Ed Riege Western Refining Southwest, Gallup Rt. 3 Box 7 Gallup, NM 87301

TEL: (505) 722-3833 FAX (505) 722-0210

RE: 2008 Annual Groundwater Event

Order No.: 0808012

Dear Ed Riege:

Hall Environmental Analysis Laboratory, Inc. received 7 sample(s) on 8/1/2008 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

والمغرق المح

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT:	Western Refining Sou	thwest, Gallup		Client Sample ID	: BW-1C	
Lab Order: 0808012				Collection Date	: 7/31/2008	8:30:00 AM
Project:	2008 Annual Groundy	water Event		Date Received	: 8/1/2008	
Lab ID:	0808012-01				AQUEOL	JS
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS			······································		Analyst: SLE
Fluoride		2.4	0.10	mg/L	1	8/1/2008 9:47:26 PM
Chloride		35	0.10	mg/L	1	8/1/2008 9:47:26 PM
Bromide		ND	0.10	mg/L	1	8/1/2008 9:47:26 PM
Nitrate (As N)+N	litrite (As N)	ND	1.0	mg/L	5	8/4/2008 1:10:49 PM
	hophosphate (As P)	ND	0.50	mg/L	-	8/1/2008 9:47:26 PM
Sulfate		260	5.0	mg/L	10	8/1/2008 10:04:51 PM
						Amelyety Oth
	470: MERCURY		0.00000		4	Analyst: SN
Mercury		ND	0.00020	mg/L	1	8/8/2008 3:28:48 PM
EPA 6010B: TO	TAL RECOVERABLE M	ETALS				Analyst: TES
Arsenic		ND	0.020	mg/L	1	8/8/2008 1:52:22 PM
Barium		0.016	0.010	mg/L	1	8/8/2008 1:52:22 PM
Cadmium		ND	0.0020	mg/L	1	8/8/2008 1:52:22 PM
Calcium		3.0	0.50	mg/L	1	8/8/2008 1:52:22 PM
Chromium		ND	0.0060	mg/L	1	8/8/2008 1:52:22 PM
Copper		ND	0.0060	mg/L	1	8/8/2008 1:52:22 PM
Iron		ND	0.050	mg/L	1	8/8/2008 1:52:22 PM
Lead		ND	0.0050	mg/L	1	8/8/2008 1:52:22 PM
Magnesium		0.62	0.50	mg/L	1	8/8/2008 1:52:22 PM
Manganese		0.013	0.0020	r mg/L	1	8/8/2008 1:52:22 PM
Potassium		ND	1.0	mg/L	1	8/8/2008 1:52:22 PM
Selenium		ND	0.050	mg/L	1	8/8/2008 1:52:22 PM
Silver		ND	0.0050	mg/L	1	8/8/2008 1:52:22 PM
Sodium		310	2.5	mg/L	5	8/8/2008 4:09:59 PM
Zinc		ND	0.020	mg/L	1	8/8/2008 1:52:22 PM
	270C: SEMIVOLATILES	2				Analyst: JDC
	ZIUG, SEIMAULATILLE	, ND	10	uali	1	8/6/2008
Acenaphthene Acenaphthylene		ND	10	μg/L μg/L	י 1	8/6/2008
Acenaphtnyiene		ND	10	μg/L μg/L	1	8/6/2008
Anthracene		ND	10	µց/∟	1	8/6/2008
Anthracene Azobenzene		ND	10	μg/L	1	8/6/2008
Benz(a)anthrace	né	ND	10	μg/L	1	8/6/2008
Benzo(a)pyrene		ND	10	μg/L	1	8/6/2008
Benzo(b)fluorant	hene	ND	10	μg/L	1	8/6/2008
Benzo(g,h,i)peryl		ND	10	μg/L	1	8/6/2008
Benzo(g,n,i)peryl Benzo(k)fluoranti		ND	10	μg/L	1	8/6/2008
Benzolc acid		ND	20	μg/L	1	8/6/2008
		ND	20 10	μg/L	1	8/6/2008
Benzyl alcohol Bis/2 obloroothou	wheelpene	ND	10	րց/է	י 1	8/6/2008
Bis(2-chloroetho)		ND	10		1	8/6/2008
Bis(2-chloroethy)		UND 	10	µg/L	I	
Qualifiers: *	Value exceeds Maximum C			,		ociated Method Blank
E	Value above quantitation ra	-				ion or analysis exceeded
J	Analyte detected below qua	intitation limits		MCL Maximum (Contaminant Le	evel

Date: 27-Aug-08

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

S

RL Reporting Limit

Page 1 of 32

Date: 27-Aug-08

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0808012
Project:	2008 Annual Groundwater Event
Lab ID:	0808012-01

-

Client Sample ID: BW-1C Collection Date: 7/31/2008 8:30:00 AM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES	<u></u>		· · · ·		Analyst: JDC
Bis(2-chloroisopropyl)ether	ND	<u> </u>	µg/L	1	8/6/2008
Bis(2-ethylhexyl)phthalate	ND	10	µg/L	1	8/6/2008
4-Bromophenyl phenyl ether	ND	10	µg/L	1	8/6/2008
Butyl benzyl phthalate	ND	10	µg/L	1	8/6/2008
Carbazole	ND	10	µg/L	1	8/6/2008
4-Chloro-3-methylphenol	ND	10	µg/L	1	8/6/2008
4-Chloroaniline	ND	10	µg/L	1	8/6/2008
2-Chloronaphthalene	ND	10	µg/L	1	8/6/2008
2-Chlorophenol	ND	10	μg/L	1	8/6/2008
4-Chiorophenyl phenyl ether	ND	10	µg/L	1	8/6/2008
Chrysene	ND ·	10	µg/L	1	8/6/2008
Di-n-butyl phthalate	ND	10	µg/L	1	8/6/2008
Di-n-octyl phthalate	ND	10	µg/L	1	8/6/2008
Dibenz(a,h)anthracene	ND	10	µg/L	1	8/6/2008
Dibenzofuran	ND	10	µg/L	1	8/6/2008
1,2-Dichlorobenzene	ND	10	μg/L	1	8/6/2008
1,3-Dichlorobenzene	ND	· 10	μg/L	1	8/6/2008
1,4-Dichlorobenzene	ND	10	μg/L	1	8/6/2008
3,3'-Dichlorobenzidine	ND	10	μg/L	1	8/6/2008
Diethyl phthalate	ND	10	μg/L	1	8/6/2008
Dimethyl phthalate	ND	10	µg/L	1	8/6/2008
2,4-Dichlorophenol	ND	20	µg/L	1	8/6/2008
2,4-Dimethylphenol	ND	10	μg/L	1	8/6/2008
4,6-Dinitro-2-methylphenol	ND	20	µg/L	1	8/6/2008
2,4-Dinitrophenol	ND	20	µg/L	1	8/6/2008
2,4-Dinitrotoluene	ND	10	μg/L	1	8/6/2008
2,6-Dinitrotoluene	ND	10	μg/L	1	8/6/2008
Fluoranthene	ND	10	µg/L	1	8/6/2008
Fluorene	ND	10	µg/L	1	8/6/2008
Hexachlorobenzene	ND	10	μg/L	1	8/6/2008
Hexachlorobutadiene	ND	10	µg/L	1	8/6/2008
Hexachlorocyclopentadiene	ND	10	μg/L	1	8/6/2008
Hexachloroethane	ND	10	μg/L	1	8/6/2008
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	8/6/2008
Isophorone	ND	10	μg/L	1	8/6/2008
2-Methylnaphthalene	ND	10	μg/L	1	8/6/2008
2-Methylphenol	ND	10	μg/L	1	8/6/2008
2-Methylphenol 3+4-Methylphenol	ND	10	µg/L	1	8/6/2008
N-Nitrosodi-n-propylamine	ND	10		1	8/6/2008
			µg/L		
N-Nitrosodimethylamine	ND	10	μg/L	1	8/6/2008
N-Nitrosodiphenylamine	ND	10	µg/L	1	8/6/2008
Naphthalene	ND	10	µg/L	1	8/6/2008

Qualifiers: * Value exceeds Maximum Contaminant Level

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

E Value above quantitation range

J Analyte detected below quantitation limits

Date: 27-Aug-08

CLIENT: Western Refining Southwest, Gallup Lab Order: 0808012 **Project:** 2008 Annual Groundwater Event Lab ID: 0808012-01

Client Sample ID: BW-1C Collection Date: 7/31/2008 8:30:00 AM Date Received: 8/1/2008

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES					Analyst: JD
2-Nitroaniline	ND	10	µg/L	1	8/6/2008
3-Nitroaniline	ND	10	µg/L	1	8/6/2008
4-Nitroaniline	ND	10	µg/L	1	8/6/2008
Nitrobenzene	ND	10	µg/L	1	8/6/2008
2-Nitrophenol	ND	10	μg/L	1	8/6/2008
4-Nitrophenol	ND	10	µg/L	1	8/6/2008
Pentachiorophenol	ND	20	µg/L	1	8/6/2008
Phenanthrene	ND	10	µg/L	1	8/6/2008
. Phenol	ND	10	µg/L	1	8/6/2008
Pyrene	ND	10	μg/L	1	8/6/2008
Pyridine	ND	10	µg/L	1	8/6/2008
1,2,4-Trichlorobenzene	ND	10	µg/L	1	8/6/2008
2,4,5-Trichlorophenol	ND	10	µg/L	1	8/6/2008
2,4,6-Trichlorophenol	ND	10	µg/L	1	8/6/2008
Surr: 2,4,6-Tribromophenol	53.6	16.6-150	%REC	1	8/6/2008
Surr: 2-Fluorobiphenyl	55.5	19.6-134	%REC	1	8/6/2008
Surr: 2-Fluorophenol	42.8	9.54-113	%REC	1	8/6/2008
Surr: 4-Terphenyl-d14	64.6	22.7-145	%REC	1	8/6/2008
Surr: Nitrobenzene-d5	47.8	14.6-134	%REC	1	8/6/2008
Surr: Phenol-d5	28.2	10.7-80.3	%REC	1	8/6/2008
EPA METHOD 8260B: VOLATILES					Analyst: HL
Benzene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
Toluene	ND	1.0	μg/L	1	8/5/2008 3:37:29 AM
Ethylbenzene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/5/2008 3:37:29 AM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	8/5/2008 3:37:29 AM
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
Naphthalene	ND	2.0	µg/L	1	8/5/2008 3:37:29 AM
1-Methylnaphthalene	ND	4.0	µg/L	1	8/5/2008 3:37:29 AM
2-Methylnaphthalene	ND	4.0	µg/L	1	8/5/2008 3:37:29 AM
Acetone	ND	10	μg/L	1	8/5/2008 3:37:29 AM
Bromobenzene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
Bromodichloromethane	ND	1,0	µg/L	1	8/5/2008 3:37:29 AM
Bromoform	ND	1.0	μg/L	1	8/5/2008 3:37:29 AM
Bromomethane	• ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
2-Butanone	ND	10	µg/L	1	8/5/2008 3:37:29 AM
Carbon disulfide	ND	10	μg/L	1	8/5/2008 3:37:29 AM
Carbon Tetrachloride	ND	1.0	μg/L	1	8/5/2008 3:37:29 AM
Chlorobenzene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM

Ε Value above quantitation range

Analyte detected below quantitation limits J

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

Holding times for preparation or analysis exceeded Н

MCL Maximum Contaminant Level

RL Reporting Limit

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0808012
Project:	2008 Annual Groundwater Event
Lab ID:	0808012-01

Date: 27-Aug-08

Client Sample ID: BW-1C Collection Date: 7/31/2008 8:30:00 AM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES	·····				Analyst: HL
Chloroethane	ND	2.0	µg/L	1	8/5/2008 3:37:29 AM
Chloroform	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
Chloromethane	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
2-Chlorotoluene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
4-Chlorotoluene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
cis-1,2-DCE	ND	1.0	μg/L	1	8/5/2008 3:37:29 AM
cis-1,3-Dichloropropene	ND	1.0	µg/L`	1	8/5/2008 3:37:29 AM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	8/5/2008 3:37:29 AM
Dibromochloromethane	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
Dibromomethane	ND	1.0	μg/L	1	8/5/2008 3:37:29 AM
1,2-Dichlorobenzene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
1,3-Dichlorobenzene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
1,4-Dichlorobenzene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
Dichlorodifluoromethane	ND	1. 0	µg/L	1	8/5/2008 3:37:29 AM
1,1-Dichloroethane	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
1,1-Dichloroethene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	8/5/2008 3:37:29 AM
1,3-Dichloropropane	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
2,2-Dichloropropane	ND	2.0	µg/L	1	8/5/2008 3:37:29 AM
1,1-Dichloropropene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
Hexachlorobutadiene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
2-Hexanone	ND	10	μg/L	1	8/5/2008 3:37:29 AM
Isopropylbenzene	ND	1.0	µg/L	1 -	8/5/2008 3:37:29 AM
4-isopropyltoluene	ND	1.0	μg/L	1	8/5/2008 3:37:29 AM
4-Methyl-2-pentanone	ND	10	µg/L	1	8/5/2008 3:37:29 AM
Methylene Chloride	ND	3.0	μg/L	1	8/5/2008 3:37:29 AM
n-Butylbenzene	ND	1.0	μ g/L	1	8/5/2008 3:37:29 AM
n-Propylbenzene	ND	1.0	μg/L	1	8/5/2008 3:37:29 AM
sec-Butylbenzene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
Styrene	ND	1.0	μg/L	1	8/5/2008 3:37:29 AM
tert-Butylbenzene	ND	1.0	µg/L *	1	8/5/2008 3:37:29 AM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1 .	8/5/2008 3:37:29 AM
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
trans-1,2-DCE	ND	1.0	μg/L	. 1	8/5/2008 3:37:29 AM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/5/2008 3:37:29 AM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
Trichloroethene (TCE)	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
Trichlorofluoromethane	ND	1.0	μg/L	1	8/5/2008 3:37:29 AM

Qualifiers: Value exceeds Maximum Contaminant Level *

> Е Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

		· · · · · · · · · · · · · · · · · · ·
CLIENT:	Western Refining Southwest, Gallup	Client Sample ID: BW-1C
Lab Order:	0808012	Collection Date: 7/31/2008 8:30:00 AM
Project:	2008 Annual Groundwater Event	Date Received: 8/1/2008
Lab ID: 🧹	0808012-01	Matrix: AQUEOUS

Date: 27-Aug-08

	•		•		
Analyses	Result	PQL Qua	l Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES			· · · · · · · · · · · · · · · · · · ·		Analyst: HL
1,2,3-Trichloropropane	ND	2.0	µg/L	[.] 1	8/5/2008 3:37:29 AM
Vinyl chloride	ND	1.0	µg/L	1	8/5/2008 3:37:29 AM
Xylenes, Total	ND	1.5	µg/L	1	8/5/2008 3:37:29 AM
Surr: 1,2-Dichloroethane-d4	97.4	68 1-123	%REC	1	8/5/2008 3:37:29 AM
Surr: 4-Bromofluorobenzene	98.9	53.2-145	%REC	1	8/5/2008 3:37:29 AM
Surr: Dibromofluoromethane	99,7	68.5-119	%REC	1	8/5/2008 3:37:29 AM
Surr: Toluene-d8	95.2	64-131	%REC	1	8/5/2008 3:37:29 AM
EPA 120.1: SPECIFIC CONDUCTANCE					Analyst: KMS
Specific Conductance	1400	0.010	µmhos/cm	. 1	8/4/2008
SM4500-H+B: PH					Analyst: KMS
рН	8.68	0.1	pH units	1	8/4/2008

Qualifiers:

*

Value exceeds Maximum Contaminant Level

E Value above quantitation range

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

CLIENT:	Western Refining Southy	vest, Gallup		Clie	nt Sample ID:	BW-2A			
Lab Order:	0808012		Collection Date: 7			7/30/2008	7/30/2008 9:00:00 AM		
Project:	2008 Annual Groundwat	er Event		D	ate Received:	8/1/2008	·		
Lab ID:	0808012-02				Matrix:	AQUEOU	S		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD	300.0: ANIONS						Analyst: SLI		
Fluoride		1.1	0.10		mg/L	1	8/1/2008 10:22:16 PM		
Chloride		40	0.10		mg/L	1	8/1/2008 10:22:16 PM		
Bromide		0.43	0.10		mg/L	1	8/1/2008 10:22:16 PM		
Nitrate (As N)+N	litrite (As N)	ND	1.0		mg/L	5	8/4/2008 1:28:13 PM		
Phosphorus, Or	thophosphate (As P)	0.75	0.50	н	mg/L	1	8/1/2008 10:22:16 PM		
Sulfate		7.3	0.50		mg/L	1	8/1/2008 10:22:16 PM		
	7470: MERCURY						Analyst: SN		
Mercury		ND	0.00020		mg/L	1	8/8/2008 3:30:38 PM		
- - PA 6010B• TO	TAL RECOVERABLE MET	ALS					Analyst: TES		
Arsenic		ND	0.020		mg/L	1	8/8/2008 1:56:35 PM		
Barium		0.14	0.010		mg/L	1	8/8/2008 1:56:35 PM		
Cadmium		ND	0.0020		mg/L	1	8/8/2008 1:56:35 PM		
Calcium		8.6	0.0020		-	1 ·	8/8/2008 1:56:35 PM		
Chromium		ND	0.0060		mg/L	1			
Copper		ND	0.0060		mg/L mg/l	1	8/8/2008 1:56:35 PM		
Iron		0.37	0.0000		mg/L mg/l		8/8/2008 1:56:35 PM		
Lead		ND	0.0050		mg/L mg/l	1	8/8/2008 1:56:35 PM		
		3.2	0.50		mg/L	1	8/8/2008 1:56:35 PM		
Magnesium					mg/L mg/l	1	8/8/2008 1:56:35 PM		
Manganese		0.14	0.0020		mg/L	1	8/8/2008 1:56:35 PM		
Potassium		ND	1.0		mg/L	1	8/8/2008 1:56:35 PM		
Selenium		ND	0.050		mg/L	1	8/8/2008 1:56:35 PM		
Silver		ND	0.0050		mg/L	1	8/8/2008 1:56:35 PM		
Sodium Zinc		320 ND	2.5 0.020		mg/L mg/L	5 1	8/8/2008 4:12:44 PM 8/8/2008 1:56:35 PM		
						·			
	270C: SEMIVOLATILES						Analyst: JDC		
Acenaphthene		ND	10		µg/L	1	8/6/2008		
Acenaphthylene		ND	10		µg/L	1	8/6/2008		
Aniline		ND	10		µg/L	1	8/6/2008		
Anthracene		ND	10		µg/L	1	8/6/2008		
Azobenzene		ND	10		µg/L	1	8/6/2008		
Benz(a)anthrace	10	ND	10		µg/L	1	8/6/2008		
Benzo(a)pyrene		ND	10		µg/L	1	8/6/2008		
Benzo(b)fluoranti		ND	10		µg/L	1	8/6/2008		
Benzo(g,h,i)peryl		ND	10		µg/L	1	8/6/2008		
Benzo(k)fluoranth	nene	ND	10		µg/L	1	8/6/2008		
Benzoic acid		ND	20		µg/L	1	8/6/2008		
Benzyl alcohol		ND	10		µg/L	1	8/6/2008		
Bis(2-chloroethox		ND	10		µg/L	1	8/6/2008		
Bis(2-chloroethyl)	ether	ND	10		µg/L	1	8/6/2008		
Qualifiers: *	Value exceeds Maximum Conta	minant Level		Ē	Analyte detect	ted in the assoc	iated Method Blank		
E	Value above quantitation range			H	I Holding times	for preparation	n or analysis exceeded		
J	Analyte detected below quantita			M	CL Maximum Co	ntaminant Lev	el		
NET	Not Detected at the Deporting I	inait		n.	Demonstrue Line	- ta			

Date: 27-Aug-08

NDNot Detected at the Reporting LimitSSpike recovery outside accepted recovery limits

Page 6 of 32

•

6

RL Reporting Limit

Date: 27-Aug-08

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0808012
Project:	2008 Annual Groundwater Event
Lab ID:	0808012-02

Client Sample ID: BW-2A Collection Date: 7/30/2008 9:00:00 AM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL (Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES		· · · · · · · · · · · · · · · · · · ·			Analyst: JDC
Bis(2-chloroisopropyl)ether	ND	10	µg/L	1	8/6/2008
Bis(2-ethylhexyl)phthalate	ND	10	µg/L	1	8/6/2008
4-Bromophenyl phenyl ether	ND	10	µg/L	1	8/6/2008
Butyl benzyl phthalate	ND	1 0	µg/L	1	8/6/2008
Carbazole	ND	10	µg/L	1	8/6/2008
4-Chloro-3-methylphenol	ND	10	µg/L	1	8/6/2008
4-Chloroaniline	ND	10	µg/L	[.] 1	8/6/2008
2-Chloronaphthalene	ND	10	µg/L	1	8/6/2008
2-Chlorophenol	ND	10	µg/L	1	8/6/2008
4-Chlorophenyl phenyl ether	ND	10	μg/L	1	8/6/2008
Chrysene	ND	10	µg/L	1	8/6/2008
Di-n-butyl phthalate	ND	10	µg/L	1	8/6/2008
Di-n-octyl phthalate	ND	10	µg/L	1	8/6/2008
Dibenz(a,h)anthracene	ND	10	µg/L	1	8/6/2008
Dibenzofuran	ND	10	µg/L	1	8/6/2008
1,2-Dichlorobenzene	ND	-10	μg/L	1	8/6/2008
1,3-Dichlorobenzene	ND	10	μg/L	1	8/6/2008
1,4-Dichlorobenzene	ND	10	μg/L	1	8/6/2008
3,3'-Dichlorobenzidine	ND	10	μg/L	1	8/6/2008
Diethyl phthalate	ND	10	μg/L	1	8/6/2008
Dimethyl phthalate	ND	10	μg/L	1	8/6/2008
2,4-Dichlorophenol	ND	20	µg/L	1	8/6/2008
2,4-Dimethylphenol	ND	10	μg/L	1	8/6/2008
4,6-Dinitro-2-methylphenol	ND	20	μg/L	1	8/6/2008
2,4-Dinitrophenol	ND	20	µg/L	1	8/6/2008
2,4-Dinitrotoluene	ND	10	µg/L	1	8/6/2008
2,6-Dinitrotoluene	ND	10	μg/L	1	8/6/2008
Fluoranthene	ND	10	µg/L	1	8/6/2008
Fluorene	ND	10	μg/L	1	8/6/2008
Hexachlorobenzene	ND	10	µg/L	1	8/6/2008
Hexachlorobutadiene	ND	10	μg/L	1	8/6/2008
Hexachlorocyclopentadiene	ND	10	μg/L	1	8/6/2008
Hexachloroethane	ND	10	µg/L	1	8/6/2008
Indeno(1,2,3-cd)pyrene	ND	10	µg/L	1	8/6/2008
Isophorone	ND	10	µg/L	1	8/6/2008
2-Methylnaphthalene	ND	10	μg/L	1	8/6/2008
2-Methylphenol	ND	10	μg/L	1	8/6/2008
3+4-Methylphenol	ND	10	μg/L	1	8/6/2008
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	8/6/2008
N-Nitrosodimethylamine	ND	10	μg/L	1	8/6/2008
N-Nitrosodiphenylamine	ND	10	μg/L	1	8/6/2008
Naphthalene	ND	10	μg/L	1	8/6/2008

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 7 of 32

Date: 27-Aug-08

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0808012
Project:	2008 Annual Groundwater Event
Lab ID:	0808012-02

Ξ

Client Sample ID: BW-2A Collection Date: 7/30/2008 9:00:00 AM Date Received: 8/1/2008 Matrix: AQUEOUS

ND ND ND ND ND ND ND ND	10 10 10 10 10 20 10	μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1	Analyst: JDC 8/6/2008 8/6/2008 8/6/2008 8/6/2008
ND ND ND ND ND ND	10 10 10 10 10 20	μg/L μg/L μg/L μg/L μg/L	1 1 1 1	8/6/2008 8/6/2008 8/6/2008
ND ND ND ND ND	10 10 10 10 20	μg/L μg/L μg/L	1 1 1	8/6/2008 8/6/2008
ND ND ND ND	10 10 10 20	μg/L μg/L μg/L	1 1	8/6/2008
ND ND ND ND	10 10 20	μg/L μg/L	1	
ND ND ND	10 20	µg/L		0.00.0000
ND ND	20		-	8/6/2008
ND			1	8/6/2008
	10	µg/L	1	8/6/2008
ND		μg/L	1	8/6/2008
	10	µg/L	1	8/6/2008
ND	10	μg/L	1	8/6/2008
ND	10	μg/L	1	8/6/2008
ND	10	µg/L	1	8/6/2008
ND	10		1	8/6/2008
ND	10		1	8/6/2008
59.7	16.6-150	%REC	1	8/6/2008
68.8	19.6-134	%REC	1	8/6/2008
50.7	9.54-113		1	8/6/2008
67.9	22.7-145		1	8/6/2008
	14.6-134		1	8/6/2008
35.3	10.7-80.3	%REC	1	8/6/2008
				Analyst: HL
ND	1.0	ug/L	1	8/5/2008 4:06:13 AM
ND			1	8/5/2008 4:06:13 AM
ND			1	8/5/2008 4:06:13 AM
ND			1	8/5/2008 4:06:13 AM
			1	8/5/2008 4:06:13 AM
				8/5/2008 4:06:13 AM
				8/5/2008 4:06:13 AM
				8/5/2008 4:06:13 AM
				8/5/2008 4:06:13 AM
				8/5/2008 4:06:13 AM
				8/5/2008 4:06:13 AM
				8/5/2008 4:06:13 AM
				8/5/2008 4:06:13 AM
				8/5/2008 4:06:13 AM
				8/5/2008 4:06:13 AM
				8/5/2008 4:06:13 AM
				8/5/2008 4:06:13 AM
				8/5/2008 4:06:13 AM
				8/5/2008 4:06:13 AM
				8/5/2008 4:06:13 AM
	ND ND 59.7 68.8 50.7 67.9 60.8 35.3 ND ND	ND 10 ND 10 ND 10 ND 10 59.7 16.6-150 68.8 19.6-134 50.7 9.54-113 67.9 22.7-145 60.8 14.6-134 35.3 10.7-80.3 ND 1.0 ND 4.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 10 ND <td>ND 10 μg/L ND 10 μg/L ND 10 μg/L ND 10 μg/L ND 10 μg/L S9.7 16.6-150 %REC 68.8 19.6-134 %REC 50.7 9.54-113 %REC 67.9 22.7-145 %REC 60.8 14.6-134 %REC 35.3 10.7-80.3 %REC ND 1.0 µg/L ND</td> <td>ND 10 μg/L 1 ND 10 μg/L 1 ND 10 μg/L 1 ND 10 μg/L 1 ND 10 μg/L 1 S9.7 16.6-150 %REC 1 68.8 19.6-134 %REC 1 50.7 9.54-113 %REC 1 67.9 22.7-145 %REC 1 60.8 14.6-134 %REC 1 35.3 10.7-80.3 %REC 1 ND 1.0 μg/L 1<</td>	ND 10 μg/L S9.7 16.6-150 %REC 68.8 19.6-134 %REC 50.7 9.54-113 %REC 67.9 22.7-145 %REC 60.8 14.6-134 %REC 35.3 10.7-80.3 %REC ND 1.0 µg/L ND	ND 10 μg/L 1 S9.7 16.6-150 %REC 1 68.8 19.6-134 %REC 1 50.7 9.54-113 %REC 1 67.9 22.7-145 %REC 1 60.8 14.6-134 %REC 1 35.3 10.7-80.3 %REC 1 ND 1.0 μg/L 1<

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 27-Aug-08

CLIENT:Western Refining Southwest, GallupLab Order:0808012Project:2008 Annual Groundwater EventLab ID:0808012-02

Client Sample ID: BW-2A Collection Date: 7/30/2008 9:00:00 AM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Uni	ts DF	Date Analyzed
EPA METHOD 8260B: VOLATILES			**************************************		Analyst: HL
Chloroethane	ND	2.0	µg/L	1	8/5/2008 4:06:13 AM
Chloroform	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
Chloromethane	ND	1.0	µg/L	1 -	8/5/2008 4:06:13 AM
2-Chlorotoluene	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
4-Chlorotoluene	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
cis-1,2-DCE	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	· 1	8/5/2008 4:06:13 AM
Dibromochloromethane	ND	1.0	μg/L	1	8/5/2008 4:06:13 AM
Dibromomethane	ND	1.0	μg/L	1	8/5/2008 4:06:13 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	8/5/2008 4:06:13 AM
1,3-Dichlorobenzene	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/5/2008 4:06:13 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	8/5/2008 4:06:13 AM
1,1-Dichloroethane	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
1,1-Dichloroethene	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	8/5/2008 4:06:13 AM
1,3-Dichloropropane	ND	1.0	μ g/L	1	8/5/2008 4:06:13 AM
2,2-Dichloropropane	ND	2.0	µg/L	1	8/5/2008 4:06:13 AM
1,1-Dichloropropene	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
Hexachlorobutadiene	ND	1.0	μg/L	· 1	8/5/2008 4:06:13 AM
2-Hexanone	ND	10	μg/L	1	8/5/2008 4:06:13 AM
Isopropylbenzene	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
4-isopropyitoluene	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
4-Methyl-2-pentanone	ND	10	µg/L	1	8/5/2008 4:06:13 AM
Methylene Chloride	ND	3.0	μg/L	1	8/5/2008 4:06:13 AM
n-Butylbenzene	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
n-Propylbenzene	ND	1.0	μg/L	1	8/5/2008 4:06:13 AM
sec-Butylbenzene	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
Styrene	ND	1.0	μg/L	1.	8/5/2008 4:06:13 AM
tert-Butylbenzene	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	8/5/2008 4:06:13 AM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/5/2008 4:06:13 AM
trans-1,2-DCE	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
trans-1,3-Dichloropropene	ND	1.0	µg/L	· 1	8/5/2008 4:06:13 AM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM
1,1,1-Trichloroethane	ND	1.0	µg/L	. 1	8/5/2008 4:06:13 AM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/5/2008 4:06:13 AM
Trichloroethene (TCE)	ND	1.0	µg/L	1 ·	8/5/2008 4:06:13 AM
Trichlorofluoromethane	ND	1.0	µg/L	1	8/5/2008 4:06:13 AM

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

		_
CLIENT:	Western Refining Southwest, Gallup	
Lab Order:	0808012	
Project:	2008 Annual Groundwater Event	

Date: 27-Aug-08

1

Client Sample ID: BW-2A

Collection Date: 7/30/2008 9:00:00 AM Date Received: 8/1/2008 Lab ID: 0808012-02 Matrix: AQUEOUS Result Analyses PQL Qual Units DF **Date Analyzed** EPA METHOD 8260B: VOLATILES Analyst: HL 1,2,3-Trichloropropane ND 2.0 1 8/5/2008 4:06:13 AM µg/L Vinyl chloride ND 1.0 8/5/2008 4:06:13 AM µg/L 1 Xylenes, Total ND 1.5 µg/L 1 8/5/2008 4:06:13 AM Surr: 1,2-Dichloroethane-d4 97.1 68.1-123 %REC 1 8/5/2008 4:06:13 AM Surr: 4-Bromofluorobenzene 105 53.2-145 %REC 1 8/5/2008 4:06:13 AM Surr: Dibromofluoromethane 68.5-119 98.8 %REC 1 8/5/2008 4:06:13 AM Surr: Toluene-d8 95.6 64-131 %REC 1 8/5/2008 4:06:13 AM **EPA 120.1: SPECIFIC CONDUCTANCE** Analyst: KMS Specific Conductance 1400 0.010 µmhos/cm 1 8/4/2008 SM4500-H+B: PH Analyst: KMS 7.87 0.1 pH units 8/4/2008

ρН

Qualifiers:

* Value exceeds Maximum Contaminant Level

- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL **Reporting Limit**

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0808012
Project:	2008 Annual Groundwater Event
Lab ID:	0808012-03

Date: 27-Aug-08

Client Sample ID: BW-2B Collection Date: 7/30/2008 10:30:00 AM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: SLE
Fluoride	1.6	0.10		m g/L.	1	8/1/2008 11:49:19 PM
Chloride	30	0.10		mg/L	1	8/1/2008 11:49:19 PM
Bromide	1.1	0.10		mg/L	1	8/1/2008 11:49:19 PM
Nitrate (As N)+NItrite (As N)	ND	1.0		mg/L	5	8/4/2008 1:45:38 PM
Phosphorus, Orthophosphate (As P)	ND	0.50	н	mg/L	1	8/1/2008 11:49:19 PM
Sulfate	150	5.0		mg/L	10	8/2/2008 12:06:44 AM
EPA METHOD 7470: MERCURY						Analyst: SN
Mercury	ND	0.00020		mg/L	1	8/8/2008 3:32:28 PM
EPA 6010B: TOTAL RECOVERABLE	/IETALS					Analyst: TES
Arsenic	ND	0.020		mg/L	1	8/12/2008 11:06:57 AM
Barium	0.041	0.010		mg/L	1	8/12/2008 11:06:57 AN
Cadmium	ND	0.0020		mg/L	1	8/12/2008 11:06:57 AN
Calcium	13	0.50		mg/L	1	8/12/2008 11:06:57 AM
Chromium	ND	0.0060		mg/L	1	8/12/2008 11:06:57 AN
Copper	ND	0.0060		mg/L	1	8/12/2008 11:06:57 AN
lron	0.064	0.050		mg/L	, 1	8/12/2008 11:06:57 AM
Lead	ND	0.0050		mg/L	1	8/12/2008 11:06:57 AM
Magnesium	3.0	0.50		mg/L	1	8/12/2008 11:06:57 AN
Manganese	0.16	0.0020		mg/L	1	8/12/2008 11:06:57 AN
Potassium	ND	1.0		mg/L	1	8/12/2008 11:06:57 AM
Selenium	ND	0.050		mg/L	1	8/12/2008 11:06:57 AM
Silver	ND	0.0050		mg/L	1	8/12/2008 11:06:57 AM
Sodium	570	5.0		mg/L	10	8/12/2008 2:00:43 PM
Zinc	ND	0.020		mg/L	1	8/12/2008 11:06:57 AN
EPA METHOD 8270C: SEMIVOLATILE	S					Analyst: JDC
Acenaphthene	ND	10		µg/L	1	8/6/2008
Acenaphthylene	ND	10		μg/L	1	8/6/2008
Aniline	ND	10		µg/L	1	8/6/2008
Anthracene	ND	10		µg/L	1	8/6/2008
Azobanzene	ND	10		µg/L	1	8/6/2008
Benz(a)anthracene	ND	10		µg/L	1	8/6/2008
Benzo(a)pyrene	ND	10		µg/L	· 1	8/6/2008
Benzo(b)fluoranthene	ND	10		µg/L	1	8/6/2008
Benzo(g,h,i)perylene	ND	10		μg/L	1	8/6/2008
Benzo(k)fluoranthene	ND	10		µg/L	1	8/6/2008
Benzoic acid	ND	20		μg/L	1	8/6/2008
Benzyl alcohol	ND	10		µg/L	1	8/6/2008
Bis(2-chloroethoxy)methane	ND	10		μg/L	1	8/6/2008
Bis(2-chloroethyl)ether	ND	10		μg/L	1	8/6/2008
Qualifiers: * Value exceeds Maximum E Value above quantitation J Analyte detected below qu	range	1]	H Holding ti		sociated Method Blank tion or analysis exceeded

- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits S

RL Reporting Limit

Date: 27-Aug-08

Analyses	Result	POL Qual Units	DF	Date Analyzed
Lab ID:	0808012-03	Matrix:	AQUEOU	S
Project:	2008 Annual Groundwater Event	Date Received:	8/1/2008	
Lab Order:	0808012	Collection Date:	7/30/2008	10:30:00 AM
CLIENT:	Western Refining Southwest, Gallup	Client Sample ID:	BW-2B	

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES	<u></u>				Analyst: JDC
Bis(2-chlorolsopropyl)ether	ND	10	µg/L	1	8/6/2008
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	8/6/2008
4-Bromophenyl phenyl ether	ND	10	µg/L	1	8/6/2008
Butyl benzyl phthalate	ND	10	µg/L	1	8/6/2008
Carbazole	ND	10	µg/L	1	8/6/2008
4-Chloro-3-methylphenol	ND	10	µg/L	1	8/6/2008
4-Chloroaniline	ND	10	µg/L	1	8/6/2008
2-Chloronaphthalene	ND	10	µg/L	1	8/6/2008
2-Chlorophenol	ND	10	µg/L	1	8/6/2008
4-Chlorophenyl phenyl ether	ND	10	µg/L	1	8/6/2008
Chrysene	ND	10	µg/L	[`] 1	8/6/2008
Di-n-butyl phthalate	ND	10	. µg/L	1	8/6/2008
Di-n-octyl phthalate	ND	10	µg/L	1	8/6/2008
Dibenz(a,h)anthracene	ND	10	µg/L	1	8/6/2008
Dibenzofuran	ND	10	µg/L	1	8/6/2008
1,2-Dichlorobenzene	ND	10	μg/L	1	8/6/2008
1,3-Dichlorobenzene	ND	10	μg/L	1	8/6/2008
1,4-Dichlorobenzene	ND	10	µg/L	1	8/6/2008
3,3'-Dichlorobenzidine	ND	10	μg/L	1	8/6/2008
Diethyl phthalate	ND	10	µg/L	1	8/6/2008
Dimethyl phthalate	ND	10	μg/L	1	8/6/2008
2,4-Dichlorophenol	ND	20	µg/L	1	8/6/2008
2,4-Dimethylphenol	ND	10	μg/L	1	8/6/2008
4,6-Dinitro-2-methylphenol	ŅD	20	µg/L	1	8/6/2008
2,4-Dinitrophenol	ND	20	μg/L	1	8/6/2008
2,4-Dinitrotoluene	ND	10	µg/L	1	8/6/2008
2,6-Dinitrotoluene	ND	10	µg/L	. 1	8/6/2008
Fluoranthene	ND	10	μg/L	1	8/6/2008
Fluorene	ND	10	μg/L	1	8/6/2008
Hexachlorobenzene	ND	10	µg/L	1	8/6/2008
Hexachlorobutadiene	ND	10	µg/L	1	8/6/2008
Hexachlorocyclopentadiene	ND	10	μg/L	1	8/6/2008
Hexachloroethane	ND	10	µg/L	1	8/6/2008
Indeno(1,2,3-cd)pyrene	ND	10	µg/L	1	8/6/2008
Isophorone	ND	10	µg/L	1	8/6/2008
2-Methyinaphthalene	ND	10	µg/L	1	8/6/2008
2-Methylphenol	ND	10	μg/L	1	8/6/2008
3+4-Methylphenol	ND	10	µg/L	1	8/6/2008
N-Nitrosodi-n-propylamine	ND	10	µg/L	1	8/6/2008
N-Nitrosodimethylamine	ND	10	µg/L	1	8/6/2008
N-Nitrosodiphenylamine	ND	10	µg/L	1	8/6/2008
Naphthalene	ND	10	µg/L	1	8/6/2008

12

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Value exceeds Maximum Contaminant Level

Date: 27-Aug-08

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0808012
Project:	2008 Annual Groundwater Event
Lab ID:	0808012-03

Client Sample ID: BW-2B Collection Date: 7/30/2008 10:30:00 AM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Unit	s DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES				······································	Analyst: JDC
2-Nitroaniline	ND	10	µg/L	· 1	8/6/2008
3-Nitroaniline	ND	10	µg/L	1	8/6/2008
4-Nitroaniline	ND	10	µg/L	1	8/6/2008
Nitrobenzene	ND	10	µg/L	1	8/6/2008
2-Nitrophenol	ND	10	µg/L	1	8/6/2008
4-Nitrophenol	ND ·	10	µg/L	· 1	8/6/2008
Pentachlorophenol	ND	20	µg/L	1	8/6/2008
Phenanthrene	ND	10	μ g/L	1	8/6/2008
Phenol	ND	10	µg/L	1	8/6/2008
Pyrene	ND	10	µg/L	1	8/6/2008
Pyridine	ND	10	μg/L	1	8/6/2008
1,2,4-Trichlorobenzene	ND	. 10	µg/L	1	8/6/2008
2,4,5-Trichlorophenol	ND	10	µg/L	1	8/6/2008
2,4,6-Trichlorophenol	ND	10	µg/L	1	8/6/2008
Surr: 2,4,6-Tribromophenol	55.8	16.6-150	%REC	C 1	8/6/2008
Surr: 2-Fluorobiphenyl	61.7	19.6-134	%REC	C 1	8/6/2008
Surr: 2-Fluorophenol	45.2	9.54-113	%REC	C 1	8/6/2008
Surr: 4-Terphenyl-d14	63.1	22.7-145	%REC	C 1	8/6/2008
Surr: Nitrobenzene-d5	58.9	14.6-134	%REC) 1	8/6/2008
Surr: Phenol-d5	29.9	10.7-80.3	%REC	C 1	8/6/2008
PA METHOD 8260B: VOLATILES					Analyst: HL
Benzene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
Toluene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
Ethylbenzene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	8/5/2008 4:34:55 AM
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
Naphthalene	ND	2.0	μ g/L	1	8/5/2008 4:34:55 AM
1-Methylnaphthalene	ND	4.0	μg/L	1	8/5/2008 4:34:55 AM
2-Methylnaphthalene	ND	4.0	µg/L	1	8/5/2008 4:34:55 AM
Acetone	ND	10	µg/L	1	8/5/2008 4:34:55 AM
Bromobenzene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
Bromodichloromethane	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
Bromoform	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
Bromomethane	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
2-Butanone	ND	10	µg/L	1	8/5/2008 4:34:55 AM
Carbon disulfide	ND	10	µg/L	1	8/5/2008 4:34:55 AM
Carbon Tetrachloride	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
Chlorobenzene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM

- Value above quantitation range Е
- Analyte detected below quantitation limits J
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits S

Holding times for preparation or analysis exceeded Η

MCL Maximum Contaminant Level RL Reporting Limit

Page 13 of 32

Date: 27-Aug-08

CLIENT:Western Refining Southwest, GallupLab Order:0808012Project:2008 Annual Groundwater EventLab ID:0808012-03

Client Sample ID: BW-2B Collection Date: 7/30/2008 10:30:00 AM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: HL
Chloroethane	ND	2.0	µg/L	1	8/5/2008 4:34:55 AM
Chloroform	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
Chloromethane	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
2-Chlorotoluene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
4-Chlorotoluene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
cis-1,2-DCE	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
cis-1,3-Dichloropropene	ND	1.0	µg/L	[°] 1	8/5/2008 4:34:55 AM
1,2-Dibromo-3-chloropropane	ND .	2.0	μg/L	1	8/5/2008 4:34:55 AM
Dibromochloromethane	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
Dibromomethane	ND	1.0	µg/L	. 1	8/5/2008 4:34:55 AM
1,2-Dichlorobenzene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
1,3-Dichlorobenzene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/5/2008 4:34:55 AM
Dichlorodifluoromethane	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
1,1-Dichloroethane	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
1,1-Dichloroethene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
1,2-Dichloropropane	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
1,3-Dichloropropane	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
2,2-Dichloropropane	ND	2.0	µg/L	1	8/5/2008 4:34:55 AM
1,1-Dichloropropene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
Hexachlorobutadiene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
2-Hexanone	NÐ	10	μg/L	1	8/5/2008 4:34:55 AM
Isopropylbenzene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
4-Isopropyitoluene	ND	1.0	μg/L	1	8/5/2008 4:34:55 AM
4-Methyl-2-pentanone	ND	10	µg/L	1	8/5/2008 4:34:55 AM
Methylene Chloride	ND	3.0	µg/L	1	8/5/2008 4:34:55 AM
n-Butylbenzene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
n-Propylbenzene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
sec-Butylbenzene	ND	1.0	μg/L	1	8/5/2008 4:34:55 AM
Styrene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
tert-Butylbenzene	ND	1.0	μg/L	1	8/5/2008 4:34:55 AM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1.	8/5/2008 4:34:55 AM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/5/2008 4:34:55 AM
trans-1,2-DCE	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/5/2008 4:34:55 AM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/5/2008 4:34:55 AM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
Trichloroethene (TCE)	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
Trichlorofluoromethane	ND	1.0	⊭s⊢ μg/L	1	8/5/2008 4:34:55 AM

Qualifiers:

*

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Value exceeds Maximum Contaminant Level

E Value above quantitation range

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0808012
Project:	2008 Annual Groundwater Event
Lab ID:	0808012-03

Date: 27-Aug-08

Client Sample ID: BW-2B Collection Date: 7/30/2008 10:30:00 AM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES		·····			Analyst: HL
1,2,3-Trichloropropane	ND	2.0	µg/L	1 -	8/5/2008 4:34:55 AM
Vinyl chloride	ND	1.0	µg/L	1	8/5/2008 4:34:55 AM
Xylenes, Total	ND	1.5	µg/L	1	8/5/2008 4:34:55 AM
Surr: 1,2-Dichloroethane-d4	96.5	68.1-123	%REC	1	8/5/2008 4:34:55 AM
Surr: 4-Bromofluorobenzene	102	53.2-145	%REC	1	8/5/2008 4:34:55 AM
Surr: Dibromofluoromethane	100	68.5-119	%REC	1	8/5/2008 4:34:55 AM
Surr: Toluene-d8	96.9	64-131	%REC	1	8/5/2008 4:34:55 AM
EPA 120.1: SPECIFIC CONDUCTANCE					Analyst: KMS
Specific Conductance	2200	0.010	µmhos/cm	1	8/4/2008
SM4500-H+B: PH					Analyst: KMS
pH	7.76	0.1	pH units	1	8/4/2008

Qualifiers:

*

Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 15 of 32

CLIENT: Western Refining S		Refining Southwest, Gallup Client Sample				: BW-2C		
Lab Order:	0808012		Collection Date: 7/		7/30/2008	7/30/2008 2:45:00 PM		
Project: 2008 Annual Grou		vater Event		D	ate Received:	8/1/2008		
Lab ID:	0808012-04			_		AQUEOU	ſS	
Analyses	· ·	Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD 3	00.0: ANIONS	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	Analyst: SLI	
Fluoride		1.9	0.10		mg/L	1	8/2/2008 12:41:33 AM	
Chloride		44	1.0		mg/L	10	8/2/2008 12:58:58 AM	
Bromide		0.14	0.10		mg/L	1	8/2/2008 12:41:33 AM	
Nitrate (As N)+Ni	trite (As N)	ND	1.0		mg/L	5	8/4/2008 2:03:03 PM	
Phosphorus, Orth	iophosphate (As P)	ND	0.50	н	mg/L	1	8/2/2008 12:41:33 AM	
Sulfate		270	5.0		mg/L	10	8/2/2008 12:58:58 AM	
	470: MERCURY			•			Analyst: SN	
Mercury		ND	0.00020		mg/L	1	8/8/2008 3:34:12 PM	
EPA 6010B: TOT	AL RECOVERABLE MI	ETALS					Analyst: TES	
Arsenic		ND	0.020		mg/L	1	8/8/2008 2:00:45 PM	
Barium		0.13	0.010		mg/L	1	8/8/2008 2:00:45 PM	
Cadmium		ND	0.0020		mg/L	1	8/8/2008 2:00:45 PM	
Calcium		24	0.50		mg/L	1	8/8/2008 2:00:45 PM	
Chromium		ND	0.0060		mg/L	1	8/8/2008 2:00:45 PM	
Copper		ND	0.0060		mg/L	1	8/8/2008 2:00:45 PM	
Iron		1.3	0.25		mg/L	5	8/8/2008 4:15:15 PM	
Lead		ND	0.0050		mg/L	1	8/8/2008 2:00:45 PM	
Magnesium		2.0	0.50		mg/L	1	8/8/2008 2:00:45 PM	
Manganese		0.43	0.0020		mg/L	1	8/8/2008 2:00:45 PM	
Potassium		1.1	1.0		mg/L	1	8/8/2008 2:00:45 PM	
Selenium		ND	0.050		mg/L	1	8/8/2008 2:00:45 PM	
Silver		ND	0.0050		mg/L	1	8/8/2008 2:00:45 PM	
Sodium		300	2.5		mg/L	5	8/8/2008 4:15:15 PM	
Zinc		ND	0.020		mg/L	1	8/8/2008 2:00:45 PM	
PA METHOD 82	70C: SEMIVOLATILES						Analyst: JDC	
Acenaphthene		ND	50		µg/L	1	8/6/2008	
Acenaphthylene		ND	50		µg/L	1	8/6/2008	
Aniline		ND	50		µg/L	1	8/6/2008	
Anthracene		ND	50		µg/L	1	8/6/2008	
Azobenzene		ND	50		μg/L	1	8/6/2008	
Benz(a)anthracene	9	ND	50		µg/L	1	8/6/2008	
Benzo(a)pyrene		ND	50		µg/L	1	8/6/2008	
Benzo(b)fluoranthe	ene	ND	50		µg/L ·	1	8/6/2008	
Benzo(g,h,i)peryle		ND	50		μg/L	1	8/6/2008	
Benzo(k)fluoranthe		ND	50		μg/L	1	8/6/2008	
Benzoic acid		ND	100		μg/L	1	8/6/2008	
Benzyl alcohol		ND	50		μg/L	1	8/6/2008	
Bis(2-chloroethoxy)methane	ND	50		μg/L	1	8/6/2008	
	ther	ND	50		µg/L	1	8/6/2008	

Date: 27-Aug-08

 ND
 Not Detected at the Reporting Limit

 S
 Spike recovery outside accepted recovery limits

J Analyte detected below quantitation limits

De

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 27-Aug-08

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0808012
Project:	2008 Annual Groundwater Event
Lab ID:	0808012-04

Client Sample ID: BW-2C Collection Date: 7/30/2008 2:45:00 PM Date Received: 8/1/2008 Matrix: AQUEOUS

.

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILE	S	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		Analyst: JDC
Bis(2-chloroisopropyl)ether	ND	50	µg/L	1	8/6/2008
Bis(2-ethylhexyl)phthalate	ND	50	μg/L	1	8/6/2008
4-Bromophenyl phenyl ether	ND	50	µg/L	1	8/6/2008
Butyl benzyl phthalate	ND	50	µg/L	1	8/6/2008
Carbazole	ND	50	µg/L	1	8/6/2008
4-Chloro-3-methyiphenol	ND	50	µg/L	1	8/6/2008
4-Chloroaniline	ND	50	µg/L	1	8/6/2008
2-Chloronaphthalene	ND	50	μg/L	1	8/6/2008
2-Chlorophenol	ND	50	µg/L	1	8/6/2008
4-Chlorophenyl phenyl ether	ND	50	µg/L	1	8/6/2008
Chrysene	ND	50	µg/L	1	8/6/2008
Di-n-butyl phthalate	ND	50	µg/L	1	8/6/2008
Di-n-octyl phthalate	ND	50	µg/L	1	8/6/2008
Dibenz(a,h)anthracene	ND	50	µg/L	1	8/6/2008
Dibenzofuran	ND	50	µg/L	1	8/6/2008
1,2-Dichlorobenzene	ND	50	µg/L	1	8/6/2008
1,3-Dichlorobenzene	ND	50	µg/L	1	8/6/2008
1,4-Dichlorobenzene	ND	50	µg/L	· 1	8/6/2008
3,3'-Dichlorobenzidine	ND	50	µg/L	1	8/6/2008
Diethyl phthalate	ND	50	µg/L	1	8/6/2008
Dimethyl phthalate	ND	50	μg/L	1	8/6/2008
2,4-Dichlorophenol	ND	100	µg/L	1	8/6/2008
2,4-Dimethylphenol	ND	50	µg/L	1	8/6/2008
4,6-Dinitro-2-methylphenol	ND	100	μg/L	1	8/6/2008
2,4-Dinitrophenol	ND	100	µg/L	1	8/6/2008
2,4-Dinitrotoluene	ND	50	μg/L	1	8/6/2008
2,6-Dinitrotoluene	ND	50	µg/L	1	8/6/2008
Fluoranthene	ND	50	µg/L	1	8/6/2008
Fluorene	ND	50	μg/L	1	8/6/2008
Hexachlorobenzene	ND	50	µg/L	1	8/6/2008
Hexachlorobutadiene	ND	50	μg/L	1	8/6/2008
Hexachlorocyclopentadiene	ND	50	µg/L	1	8/6/2008
Hexachloroethane	ND	50	μg/L	1	8/6/2008
Indeno(1,2,3-cd)pyrene	ND	50	μg/L	1	8/6/2008
Isophorone	ND	50	µg/L	1	8/6/2008
2-Methylnaphthalene	ND	50	µg/L	1	8/6/2008
2-Methylphenol	ND	50	μg/L	1	8/6/2008
3+4-Methylphenol	ND	50	μg/L	1	8/6/2008
N-Nitrosodi-n-propylamine	ND	50	μg/L	1	8/6/2008
N-Nitrosodimethylamine	ND	50	μg/L	1	8/6/2008
N-Nitrosodiphenylamine	ND	50	µg/L	1	8/6/2008
Naphthalene	ND	50	µg/L	1	8/6/2008

Qualifiers: * Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Date: 27-Aug-08

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0808012
Project:	2008 Annual Groundwater Event
Lab ID:	0808012-04

Client Sample ID: BW-2C Collection Date: 7/30/2008 2:45:00 PM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES					Analyst: JE
2-Nitroaniline	ND	50	µg/L	1	8/6/2008
3-Nitroaniline	ND	. 50	µg/L	1	8/6/2008
4-Nitroaniline	ND	50	μg/L	1	8/6/2008
Nitrobenzene	ND	50	µg/L	1	8/6/2008
2-Nitrophenol	ND	50	µg/L	1	8/6/2008
4-Nitrophenol	ND	50	μ g/L	1	8/6/2008
Pentachlorophenol	ND	100	µg/L	1	8/6/2008
Phenanthrene	ND	50	μg/L	1	8/6/2008
Phenol	ND	50	µg/L	1	8/6/2008
Pyrene	ND	50	µg/L	1	8/6/2008
Pyridine	ND	50	µg/L	1	8/6/2008
1,2,4-Trichlorobenzene	ND	50	µg/L	1	8/6/2008
2,4,5-Trichlorophenol	ND	50	µg/L	1	8/6/2008
2,4,6-Trichlorophenol	ND	50	µg/L	1	8/6/2008
Surr: 2,4,6-Tribromophenol	68.4	16.6-150	%REC	1	8/6/2008
Surr: 2-Fluorobiphenyl	76.6	19.6-134	%REC	1	8/6/2008
Surr: 2-Fluorophenol	58.9	9.54-113	%REC	1	8/6/2008
Surr: 4-Terphenyl-d14	69.2	22.7-145	%REC	1	8/6/2008
Surr: Nitrobenzene-d5	68.3	14.6-134	%REC	1	8/6/2008
Surr: Phenol-d5	40.5	10.7-80.3	%REC	1	8/6/2008
PA METHOD 8260B: VOLATILES					Analyst: HL
Benzene	ND	1.0	µg/L	1	8/5/2008 5:03:37 AM
Toluene	ND	1.0	µg/L	1	8/5/2008 5:03:37 AM
Ethylbenzene	ND	1.0	µg/L	1	8/5/2008 5:03:37 AM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	8/5/2008 5:03:37 AM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	8/5/2008 5:03:37 AM
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	8/5/2008 5:03:37 AM
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	8/5/2008 5:03:37 AM
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	8/5/2008 5:03:37 AM
Naphthalene	ND	2.0	µg/L	1	8/5/2008 5:03:37 AM
	ND	4.0	µg/L	1	8/5/2008 5:03:37 AM
1-Methylnaphthalene					
-	ND	4.0	µg/L	1	8/5/2008 5:03:37 AM
1-Methylnaphthalene	ND	10	μg/L	1 1	8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM
1-Methylnaphthalene 2-Methylnaphthalene		10 1.0			8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM
1-Methylnaphthalene 2-Methylnaphthalene Acetone	ND	10	μg/L	1	8/5/2008 5:03:37 AM
1-Methylnaphthalene 2-Methylnaphthalene Acetone Bromobenzene	ND ND	10 1.0	μg/L μg/L	1	8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM
1-Methylnaphthalene 2-Methylnaphthalene Acetone Bromobenzene Bromodichloromethane	ND ND ND	10 1.0 1.0	μg/L μg/L μg/L	1 1 1	8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM
1-Methylnaphthalene 2-Methylnaphthalene Acetone Bromobenzene Bromodichloromethane Bromoform	ND ND ND ND	10 1.0 1.0 1.0	μg/L μg/L μg/L μg/L	1 1 1 1	8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM
1-Methylnaphthalene 2-Methylnaphthalene Acetone Bromobenzene Bromodichloromethane Bromoform Bromomethane	ND ND ND ND	10 1.0 1.0 1.0 1.0	μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1	8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM
1-Methylnaphthalene 2-Methylnaphthalene Acetone Bromobenzene Bromodichloromethane Bromoform Bromomethane 2-Butanone	ND ND ND ND ND	10 1.0 1.0 1.0 1.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1	8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM 8/5/2008 5:03:37 AM

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits MCL Maximum Contaminant Level

RL Reporting Limit

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0808012
Project:	2008 Annual Groundwater Event
Lab ID:	0808012-04

Date: 27-Aug-08

Client Sample ID: BW-2C Collection Date: 7/30/2008 2:45:00 PM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: HL
Chloroethane	ND	2.0		µg/L	1	8/5/2008 5:03:37 AM
Chloroform	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
Chloromethane	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
2-Chlorotoluene	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
4-Chlorotoluene	ND	1.0		µg/L.	1	8/5/2008 5:03:37 AM
cis-1,2-DCE	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
1,2-Dibromo-3-chloropropane	ND	2.0		µg/L	1	8/5/2008 5:03:37 AM
Dibromochloromethane	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
Dibromomethane	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
1,2-Dichlorobenzene	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
1,3-Dichlorobenzene	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
1,4-Dichlorobenzene	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
Dichlorodifluoromethane	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
1,1-Dichloroethane	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
1,1-Dichloroethene	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
1,2-Dichloropropane	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
1,3-Dichloropropane	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
2,2-Dichloropropane	ND	2.0		µg/L	1	8/5/2008 5:03:37 AM
1,1-Dichloropropene	ND	1.0		µg/L	` 1	8/5/2008 5:03:37 AM
Hexachlorobutadiene	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
2-Hexanone	ND	10		µg/L	1	8/5/2008 5:03:37 AM
Isopropylbenzene	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
4-Isopropyltoluene	ND	1.0		μg/L	1	8/5/2008 5:03:37 AM
4-Methyl-2-pentanone	ND	10		µg/L	1	8/5/2008 5:03:37 AM
Methylene Chloride	ND	3.0		μg/L	1	8/5/2008 5:03:37 AM
n-Butylbenzene	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
n-Propylbenzene	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
sec-Butylbenzene	ND	1.0		μg/L	1	8/5/2008 5:03:37 AM
Styrene	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
tert-Butylbenzene	ND	1.0	1	µg/L	1	8/5/2008 5:03:37 AM
1,1,1,2-Tetrachloroethane	ND	1.0		µg/L	. 1	8/5/2008 5:03:37 AM
1,1,2,2-Tetrachloroethane	ND	2.0	I	µg/L	1	8/5/2008 5:03:37 AM
Tetrachloroethene (PCE)	ND	1.0	I	µg/L	1	8/5/2008 5:03:37 AM
trans-1,2-DCE	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
1,2,3-Trichlorobenzene	ND	1.0		µg/L	. 1	8/5/2008 5:03:37 AM
1,2,4-Trichlorobenzene	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
1,1,1-Trichloroethane	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
1,1,2-Trichloroethane	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
Trichloroethene (TCE)	ND	1.0		µg/L	1	8/5/2008 5:03:37 AM
Trichlorofluoromethane	ND	1.0	ł	µg/L	1	8/5/2008 5:03:37 AM

Qualifiers: * Value exceeds Maximum Contaminant Level

Е Value above quantitation range

Analyte detected below quantitation limits J

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level RL Reporting Limit

Page 19 of 32

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

EPA 120.1: SPECIFIC CONDUCTANCE

Surr: Toluene-d8

Specific Conductance

SM4500-H+B: PH

pН

. .

Date: 27-Aug-08

1

1

1

1

1

1

8/5/2008 5:03:37 AM

8/5/2008 5:03:37 AM

8/5/2008 5:03:37 AM

8/5/2008 5:03:37 AM

8/4/2008

8/4/2008

Analyst: KMS

Analyst: KMS

CLIENT:	Western Refining Southwest, Gallup			Clier	nt Sample I	D: BW-2C	BW-2C		
Lab Order:0808012Project:2008 Annual Groundwater EventLab ID:0808012-04		Collection Date Date Received			te: 7/30/200	: 7/30/2008 2:45:00 PM			
					ed: 8/1/2008	8/1/2008			
					Matr	ix: AQUEO	US		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD	8260B: VOLATILES	······································					Analyst: HL		
1,2,3-Trichlorop	propane	ND	2.0		µg/L	1	8/5/2008 5:03:37 AM		
Vinyl chloride		ND	1.0		µg/L	1	8/5/2008 5:03:37 AM		
Xylenes, Total		ND	1.5		µg/L	1	8/5/2008 5:03:37 AM		

68.1-123

53.2-145

68.5-119

64-131

0.010

0.1

%REC

%REC

%REC

%REC

µmhos/cm

pH units

96.3

102

100

90.9

1400

8.83

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 20 of 32

CLIENT:	western Kenning St	Junwest, Ganup		Chent Sample 1D	DW-3D	
Lab Order:	0808012			Collection Date:	7/31/200	8 1:50:00 PM
Project:	2008 Annual Ground	lwater Event		Date Received:	8/1/2008	
Lab ID:	0808012-05			Matrix	AQUEOU	US
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHO	DD 300.0: ANIONS			· · · · · · · · · · · · · · · · · · ·		Analyst: SLB
Fluoride		1.4	0.10	mg/L	1	8/2/2008 1:33:47 AM
Chloride		34	0.10	mg/L	1	8/2/2008 1:33:47 AM
Bromide		0.42	0.10	mg/L	1	8/2/2008 1:33:47 AM
Nitrate (As N	N)+Nitrite (As N)	ND	1.0	mg/L	5	8/4/2008 2:20:28 PM
Phosphorus	, Orthophosphate (As P)	1.1	0.50	mg/L	. 1	8/2/2008 1:33:47 AM
Sulfate		55	0.50	mg/L	1	8/2/2008 1:33:47 AM
PA METHO	DD 7470: MERCURY					Analyst: SNV
Mercury		ND	0.00020	mg/L	1	8/8/2008 3:35:55 PM
PA 6010B:	TOTAL RECOVERABLE	METALS				Analyst: TES
Arsenic		ND	0.020	mg/L	1	8/8/2008 2:06:19 PM
Barium		0.11	0.010	mg/L	1	8/8/2008 2:06:19 PM
Cadmium		ND	0.0020	mg/L	1	8/8/2008 2:06:19 PM
Calcium		8.3	0.50	mg/L	1	8/8/2008 2:06:19 PM
Chromium		ND	0.0060	mg/L	1	8/8/2008 2:06:19 PM
Copper	• .	ND	0.0060	mg/L	1	8/8/2008 2:06:19 PM
Iron		0.43	0.050	mg/L	1	8/8/2008 2:06:19 PM
Lead		ND	0.0050	mg/L	1	8/8/2008 2:06:19 PM
Magnesium		2.6	0.50	mg/L	1	8/8/2008 2:06:19 PM
Manganese		0.12	0.0020	, -	1	8/8/2008 2:06:19 PM
Potassium		ND	0.0020	mg/L	1	
		ND	0.050	mg/L	1	8/8/2008 2:06:19 PM
Selenium Silver		ND	0.050	mg/L		8/8/2008 2:06:19 PM
-				mg/L	1 5	8/8/2008 2:06:19 PM
Sodium Zinc		370 ND	2.5 0.020	mg/L mg/L	5	8/8/2008 4:17:46 PM 8/8/2008 2:06:19 PM
				-		
	D 8270C: SEMIVOLATILE	S ND	10	110/1	4	Analyst: JDC 8/6/2008
Acenaphthe		ND	10	µg/L	1 ∡	
Acenaphthyl	ene			μg/L	1	8/6/2008
Aniline		ND	10	µg/L	1	8/6/2008
Anthracene		ND	10	µg/L	1	8/6/2008 8/6/2008
Azobenzene		ND	10	µg/L	.1	8/6/2008
Benz(a)anth		ND	10	µg/L	1	8/6/2008
Benzo(a)pyro		ND	10	μg/L	1	8/6/2008
Benzo(b)fluo		ND	10	µg/L	1	8/6/2008
Benzo(g,h,i)		ND	10	µg/L	1	8/6/2008
Benzo(k)fluo		ND	10	µg/L	1	8/6/2008
Benzoic acid		ND	20	µg/L	1	8/6/2008
Benzyl alcoh		ND	10	µg/L	1	8/6/2008
Bis(2-chloroe Bis(2-chloroe	ethoxy)methane ethyl)ether	ND ND	10 10	μg/L μg/L	1 1	8/6/2008 8/6/2008
· · · · · · · · · · · · · · · · · · ·	 * Value exceeds Maximum 				·	sociated Method Blank
Qualifiers:				•		tion or analysis exceeded
	E Value above quantitation			-	contaminant L	•
	J Analyte detected below qu			RL Reporting L		~~~~
	ND Not Detected at the Repor		•	KE Keporing E		Page 21 of

Western Refining Southwest, Gallup

=

CLIENT:

Date: 27-Aug-08

Client Sample ID: BW-3B

Spike recovery outside accepted recovery limits

S

Page 21 of 32

Date: 27-Aug-08

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0808012
Project:	2008 Annual Groundwater Event
Lab ID:	0808012-05

-

Client Sample ID: BW-3B Collection Date: 7/31/2008 1:50:00 PM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATI	LES				Analyst: JDC
Bis(2-chloroisopropyl)ether	ND	10	µg/L	1	8/6/2008
Bis(2-ethylhexyl)phthalate	ND	10	µg/L	1	8/6/2008
4-Bromophenyl phenyl ether	ND	10	µg/L	1	8/6/2008
Butyl benzyl phthalate	ND	10	µg/L	1	8/6/2008
Carbazole	ND	10	µg/L	1	8/6/2008
4-Chloro-3-methylphenol	ND	10	µg/L	1	8/6/2008
4-Chloroaniline	ND	10	µg/L	1	8/6/2008
2-Chloronaphthalene	ND	10	μg/L	1	8/6/2008
2-Chlorophenol	ND	10	µg/L	1	8/6/2008
4-Chlorophenyl phenyl ether	ND	10	µg/L	1	8/6/2008
Chrysene	ND	10	μg/L	1	8/6/2008
Di-n-butyl phthalate	ND	10	µg/L	1	8/6/2008
Di-n-octyl phthalate	ND	10	µg/L	1	8/6/2008
Dibenz(a,h)anthracene	ND	10	µg/L	1	8/6/2008
Dibenzofuran	ND	10	μg/L	1	8/6/2008
1,2-Dichlorobenzene	ND	10	µg/L	1	8/6/2008
1,3-Dichlorobenzene	ND	10	μg/L	1	8/6/2008
1,4-Dichlorobenzene	ND	10	µg/L	1	8/6/2008
3,3'-Dichlorobenzidine	ND	10	µg/L	1	8/6/2008
Diethyl phthalate	ND	10	μg/L	1	8/6/2008
Dimethyl phthalate	ND	10	μg/L	1	8/6/2008
2,4-Dichlorophenol	ND	20	µg/L	1	8/6/2008
2,4-Dimethylphenol	ND	10	μg/L	1	8/6/2008
4,6-Dinitro-2-methylphenol	ND	20	µg/L	1	8/6/2008
2,4-Dinitrophenol	ND	20	⊢a-− µg/L	1	8/6/2008
2,4-Dinitrotoluene	ND	10	µg/L	1	8/6/2008
2,6-Dinitrotoluene	ND	10	µg/L	1	8/6/2008
Fluoranthene	ND	10	µg/L	1	8/6/2008
Fluorene	ND	10	μg/L	1	8/6/2008
Hexachlorobenzene	ND	10	μg/L	1	8/6/2008
Hexachlorobutadi ene	ND	10	µg/L	1	8/6/2008
Hexachlorocyclopentadiene	ND	10	μg/L	1	8/6/2008
Hexachloroethane	ND	10	μg/L	1	8/6/2008
ndeno(1,2,3-cd)pyrene	ND .	10	μg/L	1	8/6/2008
sophorone	ND	10	μg/L	1	8/6/2008
2-Methylnaphthalene	ND	10	μg/L	1	8/6/2008
2-Methylphenol	ND	10	µg/L	1	8/6/2008
3+4-Methylphenol	ND	10	µg/L	1	8/6/2008
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	8/6/2008
N-Nitrosodimethylamine	ND	10	µg/L	1	8/6/2008
N-Nitrosodiphenylamine	ND	10	µg/L	1	8/6/2008
Naphthalene	ND	10	μg/L	1	8/6/2008

Qualifiers:

*

- Value above quantitation range Analyte detected below quantitation limits
- J ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- MCL Maximum Contaminant Level
- RL Reporting Limit

Value exceeds Maximum Contaminant Level E

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0808012
Project:	2008 Annual Groundwater Event
Lab ID:	0808012-05

Date: 27-Aug-08

Client Sample ID: BW-3B Collection Date: 7/31/2008 1:50:00 PM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC
2-Nitroaniline	ND	10		µg/L	1	8/6/2008
3-Nitroaniline	ND	10		µg/L	1	8/6/2008
4-Nitroaniline	ND	10		µg/L	1	8/6/2008
Nitrobenzene	ND	10		µg/L	1	8/6/2008
2-Nitrophenol	ND	10		µg/L	1	8/6/2008
4-Nitrophenol	ND	10		µg/L	1	8/6/2008
Pentachlorophenol	ND	20		µg/L	1	8/6/2008
Phenanthrene	ND	10		µg/L	1	8/6/2008
Phenol	ND	10		µg/L	1	8/6/2008
Pyrene	ND	10		µg/L	1	8/6/2008
Pyridine	ND	10		µg/L	1	8/6/2008
1,2,4-Trichlorobenzene	ND	10		µg/L	1	8/6/2008
2,4,5-Trichlorophenol	ND	10		µg/L	1	8/6/2008
2,4,6-Trichlorophenol	ND	10		µg/L	1	8/6/2008
Surr: 2,4,6-Tribromophenol	64.2	16.6-150		%REC	1	8/6/2008
Surr: 2-Fluorobiphenyl	70.7	19.6-134		%REC	1	8/6/2008
Surr: 2-Fluorophenol	51.8	9.54-113		%REC	1	8/6/2008
Surr: 4-Terphenyl-d14	70.3	22.7-145		%REC	1	8/6/2008
Surr: Nitrobenzene-d5	63.6	14.6-134		%REC	1	8/6/2008
Surr: Phenol-d5	33.7	10.7-80.3		%REC	1	8/6/2008
EPA METHOD 8260B: VOLATILES						Analyst: HL
Benzene	ND	1.0		µg/L	1	8/5/2008 5:32:20 AM
Toluene	ND	1.0		µg/L	1	8/5/2008 5:32:20 AM
Ethylbenzene	ND	1.0		μg/L	1	8/5/2008 5:32:20 AM
Methyl tert-butyl ether (MTBE)	NĎ	1.0		μg/L	1	8/5/2008 5:32:20 AM
1,2,4-Trimethylbenzene	ND	1.0		µg/L	1	8/5/2008 5:32:20 AM
1,3,5-Trimethylbenzene	ND	/ 1.0		µg/L	1	8/5/2008 5:32:20 AM
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	8/5/2008 5:32:20 AM
1,2-Dibromoethane (EDB)	ND	1.0		µg/L	1	8/5/2008 5:32:20 AM
Naphthalene	ND	2.0		µg/L	1	8/5/2008 5:32:20 AM
1-Methylnaphthalene	ND	4.0		µg/L	1	8/5/2008 5:32:20 AM
2-Methylnaphthalene	ND	4.0		µg/L	1	8/5/2008 5:32:20 AM
Acetone	ND	10		μg/L	1	8/5/2008 5:32:20 AM
	ND	1.0		µg/L	1	8/5/2008 5:32:20 AM
Bromobenzene		1.0		µg/L	1	8/5/2008 5:32:20 AM
Bromobenzene Bromodichloromethane	ND			ro' -	r r	
Bromodichloromethane	ND ND			uo/i	1	8/5/2008 5 32 20 AM
Bromodichloromethane Bromoform	ND	1.0		µg/L µg/l	1	8/5/2008 5:32:20 AM 8/5/2008 5:32:20 AM
Bromodichloromethane Bromoform Bromomethane	ND ND	1.0 1 .0		µg/L	1	8/5/2008 5:32:20 AM
Bromodichloromethane Bromoform Bromomethane 2-Butanone	ND ND ND	1.0 1.0 10		μg/L μg/L	1 1	8/5/2008 5:32:20 AM 8/5/2008 5:32:20 AM
Bromodichloromethane Bromoform Bromomethane	ND ND	1.0 1 .0		µg/L	1	8/5/2008 5:32:20 AM

Qualifiers: * Value exceeds Maximum Contaminant Level

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 23 of 32

E Value above quantitation range

Date: 27-Aug-08

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0808012
Project:	2008 Annual Groundwater Event
Lab ID:	0808012-05

Client Sample ID: BW-3B Collection Date: 7/31/2008 1:50:00 PM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Un	its DF	Date Analyzed
EPA METHOD 8260B: VOLATILES	······································	······			Analyst: HL
Chloroethane	ND	2.0	μg/ł	L 1	8/5/2008 5:32:20 AM
Chloroform	ND	1.0	μg/l	L 1	8/5/2008 5:32:20 AM
Chloromethane	ND	1.0	µg/l	L. 1	8/5/2008 5:32:20 AM
2-Chlorotoluene	ND	1.0	µg/l	L 1	8/5/2008 5:32:20 AM
4-Chlorotoluene	ND	1.0	µg/l	<u> </u>	8/5/2008 5:32:20 AM
cis-1,2-DCE	ND	1.0	µg/l		8/5/2008 5:32:20 AM
cis-1,3-Dichloropropene	ND	1.0	μ g /l	_ 1	8/5/2008 5:32:20 AM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/l	_ 1	8/5/2008 5:32:20 AM
Dibromochloromethane	ND	. 1.0	µg/l	_ 1	8/5/2008 5:32:20 AM
Dibromomethane	ND	1.0	µg/I	. 1	8/5/2008 5:32:20 AM
1,2-Dichlorobenzene	ND	1.0	µg/l	. 1	8/5/2008 5:32:20 AM
1,3-Dichlorobenzene	ND	1.0	µg/l	- 1	8/5/2008 5:32:20 AM
1,4-Dichlorobenzene	ND	1.0	µg/l		8/5/2008 5:32:20 AM
Dichlorodifluoromethane	ND	1.0	µg/l		8/5/2008 5:32:20 AM
1,1-Dichloroethane	ND	1.0	µg/l		8/5/2008 5:32:20 AM
1,1-Dichloroethene	ND	1.0	μg/l		8/5/2008 5:32:20 AM
1,2-Dichloropropane	ND	1.0	μg/l		8/5/2008 5:32:20 AM
1,3-Dichloropropane	ND	1.0	µg/l		8/5/2008 5:32:20 AM
2,2-Dichloropropane	ND	2.0	µg/l		8/5/2008 5:32:20 AM
1,1-Dichloropropene	ND	1.0	μg/l		8/5/2008 5:32:20 AM
Hexachlorobutadiene	ND	1.0	μg/l		8/5/2008 5:32:20 AM
2-Hexanone	ND	10	μg/ł		8/5/2008 5:32:20 AM
Isopropylbenzene	ND	1.0	µg/l		8/5/2008 5:32:20 AM
4-Isopropyltoluene	ND	1.0	µg/L		8/5/2008 5:32:20 AM
4-Methyl-2-pentanone	ND	10	µg/L		8/5/2008 5:32:20 AM
Methylene Chloride	ND	3.0	μg/L		8/5/2008 5:32:20 AM
n-Butylbenzene	ND	1.0	µg/L		8/5/2008 5:32:20 AM
n-Propylbenzene	ND	1.0	µg/L		8/5/2008 5:32:20 AM
sec-Butylbenzene	ND	1.0	µg/L		8/5/2008 5:32:20 AM
Styrene	ND	1.0	µg/L		8/5/2008 5:32:20 AM
tert-Butylbenzene	ND	1.0	µg/L		8/5/2008 5:32:20 AM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L		8/5/2008 5:32:20 AM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L		8/5/2008 5:32:20 AM
Tetrachloroethene (PCE)	ND	1.0	µg/L		8/5/2008 5:32:20 AM
trans-1,2-DCE	ND	1.0	μg/L		8/5/2008 5:32:20 AM
trans-1,3-Dichloropropene	ND	1.0	µg/L		8/5/2008 5:32:20 AM
1,2,3-Trichlorobenzene	ND	1.0	µg/L		8/5/2008 5:32:20 AM
1,2,4-Trichlorobenzene	ND	1.0	µg/L		8/5/2008 5:32:20 AM
1,1,1-Trichloroethane	ND	1.0	µg/L		8/5/2008 5:32:20 AM
1,1,2-Trichloroethane	ND	1.0	μg/L		8/5/2008 5:32:20 AM
Trichloroethene (TCE)	NÐ	1.0	μg/L		8/5/2008 5:32:20 AM
Trichlorofluoromethane	ND	1.0	μg/L		8/5/2008 5:32:20 AM

Qualifiers:

*

J

ND

S

Not Detected at the Reporting Limit

Analyte detected below quantitation limits

Spike recovery outside accepted recovery limits

- Analyte detected in the associated Method Blank в
- Н Holding times for preparation or analysis exceeded MCL Maximum Contaminant Level
- RL Reporting Limit

Value exceeds Maximum Contaminant Level Е Value above quantitation range

Project: Lab ID:	2008 Annual Groundwa 0808012-05	ater Event	Date Received: 8/1/2008 Matrix: AQUEOUS					
Analyses	· · · · · · · · · · · · · · · · · · ·	Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHO	D 8260B: VOLATILES				······		Analyst: HL	
1,2,3-Trichlor	opropane	ND	2.0		µg/L	1	8/5/2008 5:32:20 AM	
Vinyl chloride	-	ND	1.0		µg/L	1	8/5/2008 5:32:20 AM	
Xylenes, Tota	l	ND	1.5		µg/L	1	8/5/2008 5:32:20 AM	
Surr: 1,2-D	ichloroethane-d4	98.4	68.1-123		%REC	1	8/5/2008 5:32:20 AM	
Surr: 4-Bro	mofluorobenzene	103	53.2-14 5		%REC	1	8/5/2008 5:32:20 AM	
Surr: Dibro	mofluoromethane	98.1	68.5-119		%REC	1	8/5/2008 5:32:20 AM	
Surr: Tolue	ene-d8	91.6	64-131		%REC	1	8/5/2008 5:32:20 AM	
EPA 120.1: S	PECIFIC CONDUCTANCE						Analyst: KMS	
Specific Cond	luctance	1500	0.010		µmhos/cm	1	8/4/2008	
SM4500-H+B	: PH						Analyst: KMS	
рН		7.95	0.1		pH units	1	8/4/2008	

0808012

Western Refining Southwest, Gallup

CLIENT:

Lab Order:

Date: 27-Aug-08

Collection Date: 7/31/2008 1:50:00 PM

Client Sample ID: BW-3B

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	MCL	Maximum Contaminant Level
	ND	Not Detected at the Reporting Limit	RL	Reporting Limit

Spike recovery outside accepted recovery limits

S

25

Page 25 of 32

CLIENT:	Western Refining Southw	est, Gallup		Client	Sample ID:	BW-3C	
Lab Order:	0808012			Colle	ction Date:	8/1/2008 8:0	00:00 AM
Project:	2008 Annual Groundwate	r Event		Date	e Received:	8/1/2008	
Lab ID:	0808012-06				Matrix:	AQUEOUS	
Analyses		Result	PQL	Qual U	Inits	DF	Date Analyzed
EPA METHOD 3	00.0: ANIONS						Analyst: SLI
Fluoride		1.5	1.0	m	ıg/L	10	8/2/2008 2:43:25 AM
Chloride		34	1.0	m	ig/L	10	8/2/2008 2:43:25 AM
Bromide		ND	1.0	'n	ıg/L	10	8/2/2008 2:43:25 AM
Nitrate (As N)+Nit	rite (As N)	ND	2.0	m	ig/L	10	8/7/2008 9:23:20 PM
Phosphorus, Orth	ophosphate (As P)	ND	5.0	m	ig/L	10	8/2/2008 2:43:25 AM
Sulfate		240	5.0	n	ig/L	10	8/2/2008 2:43:25 AM
	170: MERCURY						Analyst: SN
Mercury		ND	0.00020	m	lg/L	1	8/8/2008 3:37:40 PM
-							
	AL RECOVERABLE META					_	Analyst: TES
Arsenic		ND	0.020		g/L		8/8/2008 2:10:30 PM
Barium		0.27	0.010		g/L		8/8/2008 2:10:30 PM
Cadmium		ND	0.0020		g/L		8/8/2008 2:10:30 PM
Calcium		28	0.50		g/L		8/8/2008 2:10:30 PM
Chromium		0.0078	0.0060		g/L		8/8/2008 2:10:30 PM
Copper		ND	0.0060		g/L		8/8/2008 2:10:30 PM
Iron		3.0	0.25		g/L		8/8/2008 4:20:18 PM
Lead		ND	0.0050		g/L		8/8/2008 2:10:30 PM
Magnesium		2.2	0.50		g/L		8/8/2008 2:10:30 PM
Manganese		0.41	0.0020		g/L		8/8/2008 2:10:30 PM
Potassium		1.6	1.0		g/L		8/8/2008 2:10:30 PM
Selenium		ND	0.050		g/L		8/8/2008 2:10:30 PM
Silver		ND	0.0050		g/L		8/8/2008 2:10:30 PM
Sodium		350	2.5		g/L		8/8/2008 4:20:18 PM
Zinc		0.032	0.020	m	g/L	1	8/8/2008 2:10:30 PM
PA METHOD 82	70C: SEMIVOLATILES						Analyst: JD0
Acenaphthene		ND	50	μ	<u></u> γ/L	1	8/6/2008
Acenaphthylene		ND	50		g/L	1	8/6/2008
Aniline		ND	50	βų	}/L_	1	8/6/2008
Anthracene		ND	50	μç	J∕L	1	8/6/2008
Azobenzene		ND	50	μç	J∕L	1	8/6/2008
Benz(a)anthracen	9	ND	50	μ	j/L	1	8/6/2008
Benzo(a)pyrene		ND	50	ին	J∕L	1	8/6/2008
Benzo(b)fluoranthe	ene	ND	50	μg	J∕L	1	8/6/2008
Benzo(g,h,i)peryle	ne	ND	50	μç	¦∕L	1	8/6/2008
Benzo(k)fluoranthe	ene	ND	50		ı/L	1	8/6/2008
Benzoic acid		ND	100	μç	ı/L	1	8/6/2008
Benzyl alcohol		ND	50	μg	ı/L	1	8/6/2008
Bis(2-chioroethoxy)methane	ND	50	μç	I/L	1	8/6/2008
Bis(2-chloroethyl)e	ther	ND	50	ից	μ/L ·	1	8/6/2008
Qualifiers: *	Value exceeds Maximum Conta	minant Level		В	Analyte detec	ted in the associ	iated Method Blank
E	Value above quantitation range			н			or analysis exceeded
J	Analyte detected below quantita	tion limits		MCL		ontaminant Leve	

Date: 27-Aug-08

RL Reporting Limit

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 26 of 32

Date: 27-Aug-08

CLIENT: Western Refining Southwest, Gallup 0808012 Lab Order: **Project:** 2008 Annual Groundwater Event Lab ID: 0808012-06

Client Sample ID: BW-3C Collection Date: 8/1/2008 8:00:00 AM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATIL	.ES				Analyst: JDC
Bis(2-chloroisopropyl)ether	ND	50	μg/L	1	8/6/2008
Bis(2-ethylhexyl)phthalate	ND	50	µg/L	1	8/6/2008
4-Bromophenyl phenyl ether	ND	50	μg/L	1	8/6/2008
Butyl benzyl phthalate	ND	50	µg/L	1	8/6/2008
Carbazole	ND	50	μg/L	1	8/6/2008
4-Chloro-3-methylphenol	ND	50	µg/L	1	8/6/2008
4-Chloroaniline	ND	50	μg/L	1	8/6/2008
2-Chloronaphthaiene	ND	50	μg/L	1	8/6/2008
2-Chlorophenol	ND	50	μg/L	1	8/6/2008
4-Chlorophenyl phenyl ether	ND	50	µg/L	1	8/6/2008
Chrysene	ND	50	µg/L	1	8/6/2008
Di-n-butyl phthalate	ND	50	µg/L	1	8/6/2008
Di-n-octyl phthalate	ND	50	µg/L	1	8/6/2008
Dibenz(a,h)anthracene	ND	50	µg/L	1	8/6/2008
Dibenzofuran	NÐ	50	µg/L	1	8/6/2008
1,2-Dichlorobenzene	ND	50	μg/L	1	8/6/2008
1.3-Dichlorobenzene	ND	50	μg/L	1	8/6/2008
1,4-Dichlorobenzene	ND	50	µg/L	1	8/6/2008
3,3'-Dichlorobenzidine	ND	50	μg/L	1	8/6/2008
Diethyl phthalate	ND	50	μg/L	1	8/6/2008
Dimethyl phthalate	ND	50	µg/L	1	8/6/2008
2,4-Dichlorophenol	ND	100	µg/L	1	8/6/2008
2,4-Dimethylphenol	ND	50	µg/L	1	8/6/2008
1,6-Dinitro-2-methylphenol	ND	100	µg/L	1	8/6/2008
2,4-Dinitrophenol	ND	100	µg/L	1	8/6/2008
2,4-Dinitrotoluene	ND	50	µg/L	1	8/6/2008
2,6-Dinitrotoluene	ND	50	μg/L	1	8/6/2008
Fluoranthene	ND	50	μg/L	1	8/6/2008
Fluorene	ND	50	μg/L	1	8/6/2008
Hexachlorobenzene	ND	50	μg/L	1	8/6/2008
Hexachlorobutadiene	ND	50	µg/L	1	8/6/2008
Hexachlorocyclopentadiene	ND	50	μg/L	. 1	8/6/2008
Hexachloroethane	ND	50	µg/L	1	8/6/2008
Indeno(1,2,3-cd)pyrene	ND	50	µg/L	1	8/6/2008
sophorone	ND	50	µg/L	1	8/6/2008
2-Methylnaphthalene	ND	50	µg/L	1	8/6/2008
2-Methylphenol	ND	50	·μg/L	1	8/6/2008
3+4-Methylphenol	ND	50	µg/L	1	8/6/2008
N-Nitrosodi-n-propylamine	ND	50	μg/L	1	8/6/2008
N-Nitrosodimethylamine	ND	50	μg/L	1	8/6/2008
N-Nitrosodiphenylamine	ND	50	µg/L	1	8/6/2008
Naphthalene	ND	50	μg/L	1	8/6/2008

Value exceeds Maximum Contaminant Level Qualifiers: *

- Ε Value above quantitation range
- Analyte detected below quantitation limits J
- Not Detected at the Reporting Limit ND
- Spike recovery outside accepted recovery limits S
- в Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level **Reporting Limit**

Page 27 of 32

RL

Date: 27-Aug-08

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0808012
Project:	2008 Annual Groundwater Event
Lab ID:	0808012-06

Client Sample ID: BW-3C Collection Date: 8/1/2008 8:00:00 AM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILÉS					Analyst: JD
2-Nitroaniline	ND	50	μg/L	1	8/6/2008
3-Nitroaniline	ND	50	µg/L	1	8/6/2008
4-Nitroaniline	ND	50	µg/L	1	8/6/2008
Nitrobenzene	ND	50	µg/L	1	8/6/2008
2-Nitrophenol	ND	50	µg/L	1	8/6/2008
4-Nitrophenol	ND	50	µg/L	1	8/6/2008
Pentachlorophenol	ND	100	µg/L	. 1	8/6/2008
Phenanthrene	ND	50	µg/L	1	8/6/2008
Phenol	ND	50	µg/L	1	8/6/2008
Pyrene	ND	50	µg/L	1	8/6/2008
Pyridine	ND	50	µg/L	1	8/6/2008
1,2,4-Trichlorobenzene	ND	50	µg/L	1	8/6/2008
2,4,5-Trichlorophenol	ND	50	µg/L	1	8/6/2008
2,4,6-Trichlorophenol	ND	50	µg/L	1	8/6/2008
Surr: 2,4,6-Tribromophenol	64.9	16.6-150	%REC	1	8/6/2008
Surr: 2-Fluorobiphenyl	66.0	19.6-134	%REC	1	8/6/2008
Surr: 2-Fluorophenol	48.5	9.54-113	%REC	1	8/6/2008
Surr: 4-Terphenyl-d14	64.1	22.7-145	%REC	1	8/6/2008
Surr: Nitrobenzene-d5	56.9	14.6-134	%REC	1	8/6/2008
Surr: Phenol-d5	31.8	10.7-80.3	%REC	1	8/6/2008
EPA METHOD 8260B: VOLATILES					Analyst: HL
Benzene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
Toluene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
Ethylbenzene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	· 1	8/5/2008 6:00:59 AM
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	8/5/2008 6:00:59 AM
1,2-Dichloroethane (EDC)	ND	1.0	μ g/L	1	8/5/2008 6:00:59 AM
1,2-Dibromoethane (EDB)	ND	1.0	hð\r	1	8/5/2008 6:00:59 AM
Naphthalene	ND	2.0	µg/L	1	8/5/2008 6:00:59 AM
1-Methylnaphthalene	ND	4.0	µg/L	1	8/5/2008 6:00:59 AM
2-Methylnaphthalene	ND	4.0	μg/L	1	8/5/2008 6:00:59 AM
Acetone	ND	10	µg/L	1	8/5/2008 6:00:59 AM
Bromobenzene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
Bromodichloromethane	ND	1.0	μg/L	1	8/5/2008 6:00:59 AM
Bromoform	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
Bromomethane	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
2-Butanone	ND	10	µg/L	1	8/5/2008 6:00:59 AM
Carbon disulfide	ND	10	μg/L	1	8/5/2008 6:00:59 AM
Carbon Tetrachloride	ND	1.0	µg/∟	1	8/5/2008 6:00:59 AM
Chlorobenzene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM

Ε Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

CLIENT:Western Refining Southwest, GallupLab Order:0808012Project:2008 Annual Groundwater EventLab ID:0808012-06

Date: 27-Aug-08

Client Sample ID: BW-3C Collection Date: 8/1/2008 8:00:00 AM Date Received: 8/1/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES		• • • • • • • • • • • • • • • • • • • •			Analyst: HL
Chloroethane	ND	2.0	µg/L	1	8/5/2008 6:00:59 AM
Chloroform	ND	1.0	μg/L	1	8/5/2008 6:00:59 AM
Chloromethane	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
2-Chlorotoluene	ND	1.0	µg/Ŀ	1	8/5/2008 6:00:59 AM
4-Chlorotoluene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
cis-1,2-DCE	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	8/5/2008 6:00:59 AM
Dibromochloromethane	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
Dibromomethane	ND	1. 0	µg/L	1	8/5/2008 6:00:59 AM
1,2-Dichlorobenzene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	8/5/2008 6:00:59 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/5/2008 6:00:59 AM
Dichlorodifluoromethane	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	8/5/2008 6:00:59 AM
1,1-Dichloroethene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	8/5/2008 6:00:59 AM
1,3-Dichloropropane	ND	1.0	μg/L	1	8/5/2008 6:00:59 AM
2,2-Dichloropropane	ND	2.0	µg/L	1	8/5/2008 6:00:59 AM
1,1-Dichloropropene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
Hexachlorobutadiene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
2-Hexanone	ND	10	µg/L	1	8/5/2008 6:00:59 AM
Isopropylbenzene	ND	1.0	μg/L	1	8/5/2008 6:00:59 AM
4-Isopropyltoluene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
4-Methyl-2-pentanone	ND	10	μg/L	1	8/5/2008 6:00:59 AM
Methylene Chloride	ND	3.0	μg/L	1	8/5/2008 6:00:59 AM
n-Butylbenzene	ND	1.0	μg/L	1	8/5/2008 6:00:59 AM
n-Propylbenzene	ND	1.0	μg/L	1	8/5/2008 6:00:59 AM
sec-Butylbenzene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
Styrene	ND	1.0	µg/L	· 1	8/5/2008 6:00:59 AM
tert-Butylbenzene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/ L	1	8/5/2008 6:00:59 AM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	8/5/2008 6:00:59 AM
Tetrachloroethene (PCE)	ND	1.0		1	8/5/2008 6:00:59 AM
trans-1,2-DCE	ND	1.0	µg/L	¹ 1	8/5/2008 6:00:59 AM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
1,1,1-Trichloroethane	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM
Trichloroethene (TCE)	ND	1.0	h8/L	1.	8/5/2008 6:00:59 AM
Trichlorofluoromethane	ND	1.0	µg/L	1	8/5/2008 6:00:59 AM

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Hall	Environme	ental Analy	ysis Lab	poratory,	Inc.

Date: 27-Aug-08

1

8/5/2008 6:00:59 AM

CLIENT: Lab Order: Project: Lab ID:	Western Refining So 0808012 2008 Annual Ground 0808012-06	•		Co	llection Da ate Receive	D: BW-3C te: 8/1/2008 ed: 8/1/2008 ix: AQUEOU	8/1/2008 8:00:00 AM 8/1/2008		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD	8260B: VOLATILES		·				Analyst: HL		
1,2,3-Trichlorop	ropane	ND	2.0		µg/L	1	8/5/2008 6:00:59 AM		
Vinyl chloride		ND	1.0		µg/L	1	8/5/2008 6:00:59 AM		
Xylenes, Total		ND	1.5		µg/L	1	8/5/2008 6:00:59 AM		
Surr: 1,2-Dicl	hloroethane-d4	97.1	68.1-123		%REC	1	8/5/2008 6:00:59 AM		
Surr: 4-Brom	ofluorobenzene	98.5	53.2-145		%REC	1	8/5/2008 6:00:59 AM		
Surr: Dibrom	ofluoromethane	101	68.5-119		%REC	1	8/5/2008 6:00:59 AM		

64-131

%REC

EPA 120.1: SPECIFIC CONDUCTANCE

Surr: Toluene-d8

EPA 120.1: SPECIFIC CONDUCTANCE Specific Conductance	1500	0.010	µmhos/cm	1	Analyst: KMS 8/4/2008
SM4500-H+B: PH рН	8.63	0.1	pH units	1	Analyst: KMS 8/4/2008

91.2

Qualifiers:

* Value exceeds Maximum Contaminant Level

- Е Value above quantitation range
- J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

- S Spike recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- \mathbf{H}^{\cdot} Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

CLIENT: Western Refining Southwest, Gallup Lab Order: 0808012 **Project:** 2008 Annual Groundwater Event Lab ID: 0808012-07

Date: 27-Aug-08

Client Sample ID: Trip Blank **Collection Date:** Date Received: 8/1/2008 Matrix: TRIP BLANK

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES	· · · · · · · · · · · · · · · · · · ·					Analyst: HI
Benzene	ND	1.0		µg/L	1	8/5/2008 6:29:44 AM
Toluene	ND	1.0		µg/L	1	8/5/2008 6:29:44 AM
Ethylbenzene	ND	1.0		µg/L	1	8/5/2008 6:29:44 AM
Methyl tert-butyl ether (MTBE)	ND	1.0		µg/L	- 1	8/5/2008 6:29:44 AM
1,2,4-Trimethylbenzene	ND	1.0		µg/L	1	8/5/2008 6;29:44 AM
1,3,5-Trimethylbenzene	ND	1.0		µg/L	1	8/5/2008 6:29:44 AM
1,2-Dichloroethane (EDC)	ND	1.0		µg/L	1	8/5/2008 6:29:44 AM
1,2-Dibromoethane (EDB)	ND	1.0		µg/L	1	8/5/2008 6:29:44 AM
Naphthalene	ND	2.0		µg/L	1	8/5/2008 6:29:44 AM
1-Methylnaphthalene	ND	4.0		µg/L	1 .	8/5/2008 6:29:44 AM
2-Methylnaphthalene	ND	4.0		µg/L	1	8/5/2008 6:29:44 AM
Acetone	ND	10		µg/L	1	8/5/2008 6:29:44 AM
Bromobenzene	ND	1.0		µg/L	1	8/5/2008 6:29:44 AM
Bromodichloromethane	ND	1.0		µg/L	1	8/5/2008 6:29:44 AM
Bromoform	ND	1.0		µg/L	1	8/5/2008 6:29:44 AM
Bromomethane	ND	1.0		µg/L	1	8/5/2008 6:29:44 AM
2-Butanone	ND	10		μg/L	1	8/5/2008 6:29:44 AM
Carbon disulfide	ND	10		μg/L	1	8/5/2008 6:29:44 AM
Carbon Tetrachloride	ŃD	1.0		μg/L	1	8/5/2008 6:29:44 AM
Chlorobenzene	ND	1.0		μg/L	1	8/5/2008 6:29:44 AM
Chloroethane	ND	2.0		μg/L	1	8/5/2008 6:29;44 AM
Chloroform	ND	1.0		μg/L	1	8/5/2008 6:29:44 AM
Chloromethane	ND	1.0		μg/L	1	8/5/2008 6:29:44 AM
2-Chlorotoluene	ND	1.0		μg/L	1	8/5/2008 6:29:44 AM
4-Chlorotoluene	ND	1.0		μ g/L	1	8/5/2008 6:29:44 AM
cis-1,2-DCE	ND	1.0		μg/L	1	8/5/2008 6:29:44 AM
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	8/5/2008 6:29:44 AM
1,2-Dibromo-3-chloropropane	ND	2.0		μg/L	1	8/5/2008 6:29:44 AM
Dibromochloromethane	ND	1.0		μg/L	1	8/5/2008 6:29:44 AM
Dibromomethane	ND	1.0		μg/L	1	8/5/2008 6:29:44 AM
1,2-Dichlorobenzene	ND	1.0		µg/L	· 1	8/5/2008 6:29:44 AM
1,3-Dichlorobenzene	ND	1.0		µg/L	1	8/5/2008 6:29:44 AM
1,4-Dichlorobenzene	ND	1.0		ug/L	1	8/5/2008 6:29:44 AM
Dichlorodifluoromethane	ND	1.0		ug/L	1	8/5/2008 6:29:44 AM
1.1-Dichloroethane	ND	1.0		ug/L	1	8/5/2008 6:29:44 AM
1,1-Dichloroethene	ND	1.0		ug/L	1	8/5/2008 6:29:44 AM
1,2-Dichloropropane	ND	1.0		ug/L	1	8/5/2008 6:29:44 AM
1,3-Dichloropropane	ND	1.0		ug/L	1	8/5/2008 6:29:44 AM
2,2-Dichloropropane	ND	2.0		ug/L	1	8/5/2008 6:29:44 AM
1,1-Dichloropropene	ND	1.0		ug/L	1	8/5/2008 6:29:44 AM
Hexachlorobutadiene	ND	1.0		Jg/L	1	8/5/2008 6:29:44 AM
2-Hexanone	ND	10		ug/L	1	8/5/2008 6:29:44 AM

Value exceeds Maximum Contaminant Level * Qualifiers:

Е Value above quantitation range

J Analyte detected below quantitation limits

Not Detected at the Reporting Limit ND

Spike recovery outside accepted recovery limits S

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

MCL Maximum Contaminant Level

RL Reporting Limit

Page 31 of 32

	8260B: VOLATILES		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Analyst: H	
Analyses	Re	sult	POL Oua	I Units	DF	Date Analyzed	
Lab ID:	0808012-07			Matrix:	TRIP BLA	NK	
Project:	0808012 2008 Annual Groundwater Event			Date Received:	8/1/2008		
Lab Order:			Collection Date:				
CLIENT:	Western Refining Southwest,	, Gallup	Cli	ent Sample ID:	Trip Blank	5	

Ē Isopropylbenzene ND 1.0 µg/L 8/5/2008 6:29:44 AM 1 4-Isopropyltoluene ND 1.0 µg/L 1 8/5/2008 6:29:44 AM 4-Methyl-2-pentanone µg/L ND 10 1 8/5/2008 6:29:44 AM Methylene Chloride ND 3.0 μg/L 1 8/5/2008 6:29:44 AM n-Butylbenzene ND 1.0 µg/L 1 8/5/2008 6:29:44 AM n-Propylbenzene ND 1.0 µg/L 8/5/2008 6:29:44 AM 1 sec-Butylbenzene ND 1.0 µg/L 1 8/5/2008 6:29:44 AM Styrene ND 1.0 µg/L 1 8/5/2008 6:29:44 AM tert-Butylbenzene ND 1.0 µg/L 1 8/5/2008 6:29:44 AM 1,1,1,2-Tetrachloroethane ND 1.0 µg/L 1 8/5/2008 6:29:44 AM 1,1,2,2-Tetrachloroethane ND 2.0 µg/L 1 8/5/2008 6:29:44 AM Tetrachloroethene (PCE) ND 1.0 µg/L 1 8/5/2008 6:29:44 AM trans-1.2-DCE ND 1.0 1 8/5/2008 6:29:44 AM µg/L trans-1,3-Dichloropropene ND 1.0 8/5/2008 6:29:44 AM µg/L 1 1,2,3-Trichlorobenzene ND 1.0 µg/L 1 8/5/2008 6:29:44 AM 1,2,4-Trichlorobenzene ND 1.0 µg/L 1 8/5/2008 6:29:44 AM 1,1,1-Trichloroethane ND 1.0 µg/L 1 8/5/2008 6:29:44 AM 1,1,2-Trichloroethane ND 1.0 μg/L 1 8/5/2008 6:29:44 AM Trichloroethene (TCE) ND 1.0 1 µg/L 8/5/2008 6:29:44 AM Trichlorofluoromethane ND 1.0 µg/L 1 8/5/2008 6:29:44 AM 1,2,3-Trichloropropane ND 2.0 µg/L 1 8/5/2008 6:29:44 AM Vinyl chloride ND 1.0 µg/L 1 8/5/2008 6:29:44 AM Xylenes, Total ND 1.5 µg/L 1 8/5/2008 6:29:44 AM Surr: 1,2-Dichloroethane-d4 96.4 68.1-123 %REC 1 8/5/2008 6:29:44 AM Surr: 4-Bromofluorobenzene 101 53.2-145 %REC 1 8/5/2008 6:29:44 AM Surr: Dibromofluoromethane 102 68.5-119 %REC 1 8/5/2008 6:29:44 AM Surr: Toluene-d8 90.4 64-131 %REC 1 8/5/2008 6:29:44 AM

* Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

32

Date: 27-Aug-08

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	080805040	
Address:	4901 HAWKINS NE SUITE D	Project Name:	0808012	
	ALBUQUERQUE, NM 87109			
Attn:	ANDY FREEMAN			

Analytical Results Report

Sample Number Client Sample ID	080805040-001 0808012-01E / BW-1C		ampling Date ampling Time			ate/Time Re ktraction Da		8/5/2008 8/12/2008	10:30 AM
Matrix:	Water								
Parameter		Result	Units	PQL	Analysis Date	Analyst	Meti	lod	Qualifier
Uranium	,	0.00115	mg/L	0.001	8/15/2008	DMB	EPA 6	020A	

Comments:

Certifications held by Anatek Lebs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM; ID00013; OR:ID200001-002; WA:C1320 Certifications held by Anatek Lebs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C1287

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	080805040
Address:	4901 HAWKINS NE SUITE D	Project Name:	0808012
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Sample Number Client Sample ID	080805040-002 0808012-02E / BW-2A		Sampiing Date Sampiing Time			ate/Time Rec straction Dat		
Matrix:	Water							
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Uranium		ND	mg/L	0.001	8/15/2008	DMB	EPA 6020A	

Comments:

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87693; ID:ID00013; IN:C-ID-01; KY:9D142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C1320 Certifications held by Anatek Lebs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C1287

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	080805040
Address:	4901 HAWKINS NE ȘUITE D	Project Name:	0808012
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Sample Number Client Sample ID Matrix:	080805040-003 0808012-03E / BW-2B Water		Sampling Date Sampling Time			ate/Time R xtraction D		8/5/2008 8/12/2008	10:30 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Mei	thod	Qualifier
Uranium		0.0115	mg/L	0.001	8/15/2008	DMB	EPA	6020A	

Comments:

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C1320 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2532; ID:WA00169; WA:C1287

1282 Alturas Drive · Moscow, ID 83843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anateklabs.com 504 E Sprague Ste. D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	080805040
Address:	4901 HAWKINS NE SUITE D	Project Name:	0808012
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Sample Number Client Sample ID Matrix:	080805040-004 0808012-04E / BW-2C Water		Sampling Date Sampling Time			ate/Time Re xtraction Da		10:30 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Uranium		0.00728	mg/L	0.001	8/15/2008	DMB	EPA 6020A	

Comments:

Certifications hold by Anatek Lebs ID: EPA:ID00013; A2:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C1320 Certifications hold by Anatek Lebs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C1287

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	080805040
Address:	4901 HAWKINS NE SUITE D	Project Name:	0808012
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Sample Number Client Sample ID Matrix:	080805040-005 0808012-05E / BW-3B Water		Sampling Date Sampling Time			ate/Time Rec straction Dat		/5/2008 /12/2008	10:30 AM
		Result	l Inite	POI	Analysis Data	Analyst	Motho	đ	Qualifier

Comments:

Certifications held by Anatek Labs ID: EPA:ID00013; A2:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C1320 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C1287

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	080805040
Address:	4901 HAWKINS NE SUITE D	Project Name:	0808012
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Sample Number Client Sample ID	080805040-006 0808012-06E / BW-3C		Sampling Date Sampling Time			ato/Time Red xtraction Da		8/5/2008 8/12/2008	10:30 AM
Matrix:	Water								
Parameter		Result	Units	PQL	Analysis Date	Analyst	Meti	nod	Qualifier
Uranium		0.00251	mg/L	0.001	8/15/2008	DMB	EPA 6	020A	

Authorized Signature

John. Conthe

 MCL
 EPA's Maximum Contaminant Level

 ND
 Not Detected

 PQL
 Practical Quantitation Limit

Comments:

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:80142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C1320 Certifications held by Anatek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C1287

Wednesday, August 27, 2008

Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com

Client: Address: Attn:	HALL ENVIRONMENTA 4901 HAWKINS NE SU ALBUQUERQUE, NM 8 ANDY FREEMAN	ITE D	IS LAB			:h #: ect Na	ime:	08080 08080		
	· · ·	Analytica	l Resu	lts Rep	oort					
		Qualit	y Contr	ol Data						
Lab Control Sa	Imple			····· ; ·····					· · · · · · · · · · · · · · · · · · ·	
Parameter Uranium		LCS Res 0.0473		s LCS Sp . 0.05			AR %Rec 85-115		ep Date 12/2008	Analysis Date 8/15/2008
Matrix Spike						 MS	•			
Sample Number 080805040-001	Parameter Uranium		Sample Result 0.00115	Result	Units mg/L	O.05	%Rec 94.3	AR %Rec 75-125	Prep Date 8/12/2008	Analysis Date 8/15/2008
Matrix Spike D	uplicate			· · · · · · · · · · · · · · · · · · ·				<u></u>		
Paramotor Uranium		MSD Result 0.0474	Units mg/L	MSD Spike 0.05	% Rec 92.5	%RF 1.9		PD F	Prep Date 3/12/2008	Analysis Date 8/15/2008
Method Blank	**************************************			*						
Parameter Uranium			Res		Uni mg/l		PQL 0.001		Prep Date 8/12/2008	Analysis Date 8/15/2008

Acceptable Range AR ND Not Detected **Practical Quantitation Limit** PQL RPD **Relative Percentage Difference**

Comments:

Certifications held by Anatek Lebs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; IN:C-ID-01; KY:90142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C1320 Certifications held by Anatek Lebs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C1287

Page 1 of 1

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RP	DLimit Qual
Method: EPA Method 300.0: Ani	ons			·				
Sample ID: MB		MBLK			Batch I	D: R29597	Analysis Date:	8/1/2008 9:18:48 AM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					(
Bromide	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: MB		MBLK			Batch II): R29639	Analysis Date:	8/4/2008 9:24:30 AM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Bromide	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: MB		MBLK			Batch ID): R29679	Analysis Date:	8/7/2008 10:04:22 AM
Fluoride	ND		0.10					
Chloride	ND	mg/L	0.10					
Bromide '	ND	mg/L mg/l	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L mg/L	0.10					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: LCS	ND	LCS	0.00		Batch ID	R29597	Analysis Date:	8/1/2008 9:36:13 AM
	0.5057		0.40	404			Analysis Date.	0/112000 0.30.10 AW
Chloride	0.5057 5.033	mg/L	0.10	101	90 90	110		
		mg/L	0.10	101	90	110		
Bromide	2.497	mg/L	0.10	99.9	90	110		
Nitrate (As N)+Nitrite (As N)	3.580	mg/L	0.20	102	90	110		
Phosphorus, Orthophosphate (As P)	4.861	mg/L	0.50	97.2	90	110		
Sulfate	10.09	mg/L	0.50	101	90 Detek (D	110		
Sample ID: LCS		LCS			Batch ID		Analysis Date:	8/4/2008 9:41:54 AM
luoride	0.4918	mg/L	0.10	98.4	90	110		
Chloride	4.893	mg/L	0.10	97.9	90	110		
Bromide	2.540	mg/L	0.10	102	90	110		
litrate (As N)+Nitrite (As N)	3.514	mg/L	0.20	100	90 90	110		
Phosphorus, Orthophosphate (As P) Sulfate	5.000	mg/L	0.50	100	90	110		
	10.29	mg/L	0.50	103	90 Datab ID	110		
ample ID: LCS		LCS			Batch ID		Analysis Date:	8/7/2008 10:21:47 AM
Chloride	5.038	mg/L	0.10	101	90	110		
Iromide	2.618	mg/L	0.10	105	90	110		
litrate (As N)+Nitrite (As N)	3.599	mg/L	0.20	103	90	110		
hosphorus, Orthophosphate (As P)	5.032	mg/L	0.50	101	90	110		
ulfate	10.46	mg/L	0.50	105	90	110		
ample ID: LCS-b		LCS			Batch ID	R29679	Analysis Date:	8/7/2008 7:04:05 PM
luoride	0.5291	mg/L	0.10	106	90	110		

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 1

40

.

QA/QC SUMMARY REPORT

	stern Refining South)						
Project: 200	8 Annual Groundwa	er Event						Work Order	: 0808012
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Method: EPA Method	8270C: Semivolatiles	A 40 - 2 8				· · · ·	······································		
Sample ID: mb-16674		MBLK			Batch	D: 16674	Analysis	Date:	8/6/20
Acenaphthene	ND	μg/L	10						
Acenaphthylene	ND	µg/L	10						
Aniline	ND	μ g/L	10				•		
Anthracene	ND	µg/L	10						
Azobenzene	ND	µg/L	10						
Benz(a)anthracene	ND	µg/L	10						
Benzo(a)pyrene	ND	µg/L	10						
Benzo(b)fluoranthene	ND	µg/L	10						
Benzo(g,h,i)perylene	ND	µg/L	10						
Benzo(k)fluoranthene	ND	µg/L	10						
Benzoic acid	ND	µg/L	20						
Benzyl alcohol	ND	µg/L	10						
Bis(2-chloroethoxy)metha		µg/L	10						
Bis(2-chloroethyl)ether	ND	μg/L	10						
Bis(2-chloroisopropyl)eth		μg/L	10						
Bis(2-ethylhexyl)phthalate		µg/L	10						
-Bromophenyl phenyl et		µg/L	10						
Butyl benzyl phthalate	ND	µg/L	10						
Carbazole	ND	μg/L	10						
-Chloro-3-methylphenol	ND	μg/L	10						
-Chloroaniline	ND	μg/L	10						
-Chloronaphthalene	ND	μg/L	10						
-Chlorophenol	ND	μg/L	10						
•									
-Chlorophenyl phenyl ell		µg/L	10						
Chrysene	ND	μg/L	10			,			
Di-n-butyl phthalate	ND	µg/L	10						
Pi-n-octyl phthalate	ND	µg/L	10						
Dibenz(a,h)anthracene	ND	µg/L	10						
Dibenzofuran	ND	µg/L ug/l	10						
,2-Dichlorobenzene	ND	µg/L µg/l	10						
,3-Dichlorobenzene	ND	µg/L	10						
,4-Dichlorobenzene	ND	µg/L	10						
,3'-Dichlorobenzidine	ND	µg/L	10 10						
Diethyl phthalate	ND	µg/L	10						
imethyl phthalate	ND	µg/L	10						
4-Dichlorophenol	ND	µg/L	20						
4-Dimethylphenol	ND	µg/L	10						
6-Dinitro-2-methylpheno		µg/L	20						
,4-Dinitrophenol	ND	µg/L	20						
,4-Dinitrotoluene	ND	µg/L	10						
,6-Dinitrotoluene	ND	µg/L	10						
luoranthene	ND	µg/L	10						
luorene	ND	µg/L	10						
lexachlorobenzene	ND	µg/L	10						

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R

RPD outside accepted recovery limits

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

	Refining South Inual Groundwa		•					Work Ord	ler:	0808012
Analyte	Result	Units	PQL	%Rec	LowLimi	t HighLimit	%RPD	RPDLin	nit Qu	al
Method: EPA Method 8270	IC: Semivolatiles		,							0/0/0000
Sample ID: mb-16674		MBLK			Batcl	h ID: 16674	Analysis I	Jate:		8/6/2008
Hexachlorobutadiene	ND	µg/L	10							
Hexachlorocyclopentadiene	ND	µg/L	10							
Hexachloroethane	ND	µg/L	10							
Indeno(1,2,3-cd)pyrene	ND	µg/L	10							
Isophorona	ND	µg/L	10							
2-Methylnaphthalene	ND	µg/L	10							
2-Methylphenol	ND	µg/L	10						-	
3+4-Methylphenol	ND ND	µg/L	10							
N-Nitrosodi-n-propylamine	ND	µg/L	10							
N-Nitrosodimethylamine	ND	µg/L	10							
N-Nitrosodiphenylamine	ND	µg/L	10							
Naphthalene	ND	µg/L	10							
2-Nitroaniline	ND	µg/L	10				·			
3-Nitroaniline	ND	µg/L	10							
4-Nitroaniline	ND	µg/L	10							
Nitrobenzene	ND	µg/L	10							
2-Nitrophenol	ND	µg/L	10							
4-Nitrophenol	ND	µg/L	10							
Pentachlorophenol	ND	µg/L	20							
Phenanthrene	ND	µg/L	10							
Phenol	ND	µg/L	10							
Pyrene	ND	µg/L	10							
Pyridine	ND	µg/L	10							
1,2,4-Trichlorobenzene	ND	μg/L	10							• .
2,4,5-Trichlorophenol	ND	µg/L	10							
2,4,6-Trichlorophenol	ND	µg/L	10							
Sample ID: Ics-16674		LCS			Batch	ID: 16674	Analysis [Date:		8/7/2008
Acenaphthene	55.04	µg/L	10	55.0	11	123				
4-Chloro-3-methylphenol	67.46	μg/L	10	33.7	15.4	119				
2-Chlorophenol	79.64	µg/L	10	39.8	12.2	122				
1,4-Dichlorobenzene	45.90	µg/L	10	45.9	16.9	100				
2,4-Dinitrotoluene	55.90	µg/L	10	55.9	13	138				
N-Nitrosodi-n-propylamine	59.24	μg/L	10	59.2	9.93	122				
4-Nitrophenol	42.36	µg/L	10	21.2	12.5	87.4				
Pentachlorophenol	56.14	µg/L	20	28.1	3.55	114				
Phenol	54.36	µg/L	10	27.2	7.53	73.1				
Pyrene	56.24	µg/L	10	56.2	12.6	140				
1,2,4-Trichlorobenzene	42.92	µg/∟ µg/L	10	42.9	17.4	98.7				
Sample ID: icsd-16674	42.52	LCSD	10	42.8	Batch		Analysis D)ate:		8/6/2008
Acenaphthene	62 60		10 -	62.9			•			
•	62.80	µg/L ∖ur/l	10	62.8	11 15 4	123	13.2	30.5	-	
4-Chloro-3-methylphenol	97.08	µg/L	10	48.5	15.4	119	36.0	28.6	R	•
2-Chlorophenol	113.3	µg/L	10	56.7	12.2	122	34.9	107		
1,4-Dichlorobenzene	49.90	µg/L	10	49. 9	16.9	100	8.35	62.1		
2,4-Dinitrotoluene	61.94	µg/L	10	61.9	13	138	10.3	14.7		

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 3

42

	rn Refining South Annual Groundwat	-	ıp				,	Work Or	der: 0	308012
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDLi	mit Qual	
Method: EPA Method 82	70C: Semivolatiles				, er granne					
Sample ID: Icsd-16674	•••	LCSD			Batch	ID: 16674	Analysis [Date:		8/8/2008
N-Nitrosodi-n-propylamine	67.04	µg/L	10	67.0	9.93	122	12.4	30.3		
4-Nitrophenol	68.84	µg/L	10	34.4	12.5	87.4	47.6	36.3	R	
Pentachlorophenol	89.06	µg/L	20	44.5	3.55	114	45.3	49		
Phenol	69.16	µg/L	10	34.6	7.53	73.1	24.0	52.4		
Pyrene	61.18	µg/L	10	61.2	12.6	140	8.41	16.3		;
1,2,4-Trichlorobenzene	49.38	µg/L	10	49.4	17.4	98.7	14.0	36.4		
Method: EPA Method 74	70: Mercury									1
Sample ID: MB-16721		MBLK	•		Batch	ID: 16721	Analysis E	Date:	8/8/2008 3:	01:50 PM
Mercury	ND	mg/L	0.00020							
Sample ID: LCS-16721		LCS			Batch	ID: 16721	Analysis E	Date:	8/8/2008 3:	03:33 PM
Mercury	0.004789	mg/L	0.00020	95.8	80	120				

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

43

Client: Project:	Western Refining South 2008 Annual Groundwa		F					W	ork Ordei	. 0808012
Analyte	Result	Units	PQL	%Rec	LowLimit	Hig	nLimit	%RPD	RPDLimit	Qual
	010B: Total Recoverable M									
Sample ID: MB-		MBLK			Batch	ID:	16676	Analysis Dat	e: 8/8/2	008 12:36:37 PM
Arsenic	ND	mg/L	0.020			•				
Barium	ND	mg/L	0.010							
Cadmium	ND	mg/L	0.0020							
Calcium	ND	mg/L	0.50							
Chromium	ND	mg/L	0.0060							
Copper	ND	mg/L	0.0060							
iron	ND .	mg/L	0.050							
Lead	ND	mg/L	0.0050							
Magnesium	ND	mg/L	0.50							
Manganese	ND	mg/L	0.0020							
Potassium	ND	mg/L	1.0							
Selenium	ND	mg/L	0.050							
Silver	ND	mg/L	0.0050							
Sodium	ND	mg/L	0.50							
Zinc	ND ND	mg/L	0.020			_				
Sample ID: MB-1	6714	MBLK			Batch I	D:	16714	Analysis Dat	e: 8/12/2	008 10:57;39 AN
Arsenic	ND	mg/L	0.020							
Barium	ND	mg/L	0.010							
Cadmium	ND	mg/L	0.0020							
Calcium	ND	mg/L	0.50							
Chromium	ND	mg/L	0.0060							
Copper	ND	mg/L	0.0060							
Iron	ND	mg/L	0.050							
Lead	ND	mg/L	0.0050							
Magnesium	ND	mg/L	0.50							
Manganese	ND	mg/L	0.0020							
Potassium	ND	mg/L	1.0							
Selenium	ND	mg/L	0.050							
Silver	ND	mg/L	0.0050							
Sodium	ND	mg/L	0.50							
Zinc	ND	mg/L	0.020							
Sample ID: LCS-	16676	LCS			Batch I	D:	16676	Analysis Date	e: 8/8/2	008 12:39:41 PN
Arsenic	0.4558	mg/L	0.020	91.2	80	120	2			
Barium	0.4695	mg/L	0.010	93.9	80	120	D .			
Cadmium	0.4515	mg/L	0.0020	90.3	80	120	נ			
Calcium	49.55	mg/L	0.50	99.1	80	120	D			
Chromium	0.4716	mg/L	0.0060	94.3	80	120)			
Copper	0.4909	mg/L	0.0060	98.2	80	120				
ron	0.4831	mg/L	0.050	96.6	80	120	2			
.ead	0,4437	mg/L	0.0050	88.7	80	120)			
Aagnesium	50.39	mg/L	0.50	101	80	120				
Aanganese	0.4669	mg/L	0.0020	93.4	80	120				
Potassium	54.25	mg/L	1.0	109	80	120				
Selenium	0.4214	mg/L	0.050	84.3	80	120				

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

	Refining South nual Groundwa)				Worl	Order: 0808012
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RF	DLimit Qual
Method: EPA 6010B: Total	Recoverable Me	als					······································	
Sample ID: LCS-16676		LCS			Batch	ID: 16676	Analysis Date:	8/8/2008 12:39:41 PM
Silver	0.4772	mg/L	0.0050	95.4	80	120		. 1
Sodium	53.54	mg/L	0.50	107	80	120		
Zinc	0.4601	mg/L	0.020	92.0	80	120		
Sample ID: LCS-16714		LCS			Batch	ID: 16714	Analysis Date:	8/12/2008 11:00:43 AM
Arsenic	0.5057	mg/L	0.020	101	80	120		i.
Barium	0.4650	mg/L	0.010	93.0	80	120		ł
Cadmium	0.4711	mg/L	0.0020	94.2	80	120		
Calcium	49.53	mg/L	0.50	99.1	80	120		i
Chromium	0.4722	mg/L	0.0060	94.4	80	120		
Copper	0.4766	mg/L	0.0060	95.3	80	120	·	1
Iron	0.4698	mg/L	0.050	94.0	80	120		
Lead	0.4671	mg/L	0.0050	93.4	80	120		
Magnesium	49.31	mg/L	0.50	98.6	80	120		
Manganese	0.4625	mg/L	0.0020	92.5	80	120		į.
Potassium	50.47	mg/L	1.0	101	80	120		
Selenium	0.4779	mg/L	0.050	95.6	80	120		. 1
Silver	0.4733	mg/L	0.0050	94,1	80	120		
Sodium	52.15	mg/L	0.50	104	80	120		
Zinc	0.4646	mg/L	0.020	92. 9	80	120		

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Project: 2008 Annu	al Groundwa	ter Event					Wo	rk Order: 0808012
Analyte	Result	Units	PQL	%Rec	LowLimit Hig	ghLimit	%RPD I	RPDLimit Qual
Method: EPA Method 8260B:	VOLATILES							
Sample ID: 5ml rb		MBLK			Batch ID:	R29596	Analysis Date	: 8/4/2008 8:42:06 AN
Benzene	ND	µg/L	1.0					
Toluene	ND	µg/L	1.0					
Ethyibenzene	ND	µg/L	1.0					
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0			•		
1,2,4-Trimethylbenzene	ND	µg/L	1.0					
1,3,5-Trimethylbenzene	ND	µg/L	1.0					
1,2-Dichloroethane (EDC)	ND	µg/L	1.0					
1,2-Dibromoethane (EDB)	ND	µg/L	1.0					
Naphthalene	ND	µg/L	2.0					
1-Methylnaphthalene	ND	µg/L	4.0					
2-Methylnaphthalene	NÐ	μg/L	4.0					
Acetone	ND	μg/L	10					
Bromobenzene	ND	µg/L	1.0					
Bromodichloromethane	ND	μg/L	1.0					
Bromoform	ND	μg/L	1.0					
Bromomethane	ND	µg/L	1.0					
2-Butanone	ND	μg/L	10					
Carbon disulfide	ND	µg/L	10					,
Carbon Tetrachloride	ND	μg/L	1.0					
Chlorobenzene	ND	μg/L	1.0					
Chloroethane	ND	µg/∟ µg/L	2.0					
Chloroform	ND	μg/L	1.0					
Chloromethane	ND	μg/L	1.0					
2-Chlorotoluene	ND	µg/L	1.0					
4-Chlorotoluene	ND	µg/L µg/L	1.0					
cis-1,2-DCE	ND	µg/L	1.0					
cis-1,3-Dichloropropene	ND	μg/L	1.0					
1,2-Dibromo-3-chloropropane	ND	μg/L μg/L	2.0					
Dibromochloromethane	ND							
Dibromomethane	ND	µg/L	1.0 1.0					
1,2-Dichlorobenzene	ND	µg/L µg/L	1.0					
1,3-Dichlorobenzene	ND	μg/L	1.0					
1,4-Dichlorobenzene	ND	µg/L	1.0					×
Dichlorodifluoromethane	ND	µg/L µg/L	1.0					
i,1-Dichloroethane	ND	µg/L	1.0					
I,1-Dichloroethene	ND	μg/L	1.0					
,2-Dichloropropane	ND	μg/L	1.0					
,3-Dichloropropane	ND	μg/L	1.0					
• •	ND		2.0					
2,2-Dichloropropane	ND	μg/L μg/L	1.0					
,1-Dichloropropene	ND							
lexachlorobutadiene		µg/L ug/l	1.0					
2-Hexanone	ND	μg/L.	10					
80propylbenzene	ND	µg/L	1.0					
i-isopropyltoluene	ND	µg/L	1.0					

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

46

Page 2

OA/OC SUMMARY REPORT

									Order: (
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPD	Limit Qua	l
Method: EPA Method 8260B	VOLATILES									
Sample ID: 5ml rb		MBLK			Batch	D: R29596	Analysis I	Date:	8/4/2008 8	3:42:06 Al
4-Methyl-2-pentanone	ND	µg/L	10							
Methylene Chloride	ND	µg/L	3.0							
n-Butylbenzene	ND	µg/L	1.0							
n-Propylbenzene	ND	µg/L	1.0							
sec-Butylbenzene	ND	µg/L	1.0							
Styrene	ND	µg/L	1.0						'	
iert-Bulylbenzene	ND	µg/L	1.0							
1,1,1,2-Tetrachloroethane	ND	μg/L	1.0							
1,1,2,2-Tetrachloroethane	ND	µg/L	2.0							
Tetrachloroethene (PCE)	ND	µg/L	1.0							
rans-1,2-DCE	ND	µg/L	1.0							
rans-1,3-Dichloropropene	ND	µg/L	1.0							
1,2,3-Trichlorobenzene	ND	µg/L	1.0							
1,2,4-Trichlorobenzene	ND	µg/L	1.0							
,1,1-Trichloroethane	ND	µg/L	1.0							
1,1,2-Trichloroelhane	ND	µg/L	1.0			,				
Frichloroethene (TCE)	ND	µg/L	1.0							
Frichloroflupromethane	ND	µg/L	1.0							
1,2,3-Trichloropropane	ŇD	µg/L	2.0							
/inyl chloride	ND	µg/L	1.0							
(ylenes, Total	ND	µg/L	1.5							
Sample ID: b5		MBLK			Batch II	D: R29596	Analysis D	Date:	8/4/2008 9	:23:12 PM
Benzene	ND	µg/L	1.0				•			
Toluene	ND	µg/L	1.0							
Ethylbenzene	ND	µg/L	1.0							
Aethyl tert-butyl ether (MTBE)	ND	µg/L	1.0							
,2,4-Trimethylbenzene	ND	μg/L	1.0							
,3,5-Trimethylbenzene	ND	µg/L	1.0							
,2-Dichloroethane (EDC)	ND	µg/L	1.0							
2-Dibromoethane (EDB)	ND	µg/L	1.0							
laphthaiene	ND	µg/L	2.0							
-Methylnaphthalene	ND	µg/L	4.0							
Methylnaphthalene	ND	μg/L	4.0							
cetone	ND	μg/L	10							
Bromobenzene	ND	µg/L	1.0							
romodichloromethane	ND	μg/L	1.0							
Bromoform	ND	μg/L	1.0							
romomethane	ND	µg/L	1.0							
-Butanone	ND	hâ\r hâ\r	10							
arbon disulfide	ND	µg/L	10							
arbon Tetrachloride	ND	µg/L	1.0							
hlorobenzene	ND	µg/L	1.0							
hloroethane	ND	μg/L	2.0							
Chloroform	ND	μg/L	1.0							

Analyte detected below quantitation limits J

RPD outside accepted recovery limits R

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

								4
Analyte	Result	Units	PQL	%Rec	LowLimit H	ighLimit	%RPD RP	DLimit Qual
Method: EPA Method 8260B:	VOLATILES					·		
Sample ID: b5		MBLK			Batch ID:	R29596	Analysis Date:	8/4/2008 9:23:12 PM
Chloromethane	ND	µg/L	1.0					
2-Chlorotoluene	ND	µg/L	1.0					
4-Chlorotoluene	ND	µg/L	1.0					
cis-1,2-DCE	ND	µg/L	1.0					
cis-1,3-Dichloropropene	ND	µg/L	1.0					
1,2-Dibromo-3-chloropropane	ND	µg/L	2.0					
Dibromochloromethane	ND	µg/L	1.0					
Dibromomethane	ND	µg/L	1.0					
1,2-Dichlorobenzene	ND	µg/L	1.0					
1,3-Dichlorobenzene	ND	µg/L	1.0					
1,4-Dichlorobenzene	ND	µg/L	1.0					
Dichlorodifluoromethane	ND	µg/L	1.0					
1,1-Dichloroethane	ND	μg/L	1.0					
1,1-Dichloroethene	ND	µg/L	1.0					
1,2-Dichloropropane	ND	μg/L	1.0					
1,3-Dichloropropane	ND	μg/L	1.0					
2,2 Dichloropropane	ND	µg/L	2.0					
1,1-Dichloropropene	ND	µg/L	1.0			•		
Hexachlorobutadiene	ND	μg/L	1.0				•	
2-Hexanone	ND	μg/L	10					
lsopropylbenzene	ND	μg/L	1.0					
4-Isopropyltoluene	ND	µg/L	1.0					
4-Methyl-2-pentanone	ND	µg/L	10					
Methylene Chloride	ND	μg/L	3.0					
n-Butylbenzene	ND	μg/L	1.0					
n-Propylbenzene	ND	µg/L	1.0					
sèc-Butylbenzene	ND	μg/L	1.0					
Styrene	ND	μg/L	1.0					
ert-Butylbenzene	ND	µg/L	1.0					
1,1,1,2-Tetrachloroethane	ND	µg/L	1.0					
1,1,2,2-Tetrachloroethane	ND	µg/L	2.0					
Tetrachloroethene (PCE)	ND	μg/L	1.0					
rans-1,2-DCE	ND	μg/L	1.0					
rans-1,3-Dichloropropene	ND	μg/L	1.0					
1,2,3-Trichlorobenzene	ND	µg/L	1.0					
I,2,4-Trichlorobenzene	ND	µg/L	1.0					
1,1,1-Trichloroethane	ND	µg/L	1.0					
1,1,2-Trichloroethane	ND	րց/ւ ից/Լ	1.0					
Frichloroethene (TCE)	ND	µg/L	1.0					
Frichlorofluoromethane	ND	µg/L	1.0					
1,2,3-Trichloropropane	ND	μg/L	2.0					
	ND	μg/L μg/L	2.0 1.0					
/inyl chloride (vlenes, Totsl	ND		1.0					
(ylenes, Total		µg/L	1.0					

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Client:

Western Refining Southwest, Gallup

Project: 2008 Annual Groundwater Event

Work Order: 0808012

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RPI	DLimit Qual
Method: EPA Method 8260	B: VOLATILES					<u>1</u>		
Sample ID: 100ng Ics		LCS			Batch II): R29596	Analysis Date:	8/4/2008 9:39:54 AM
Benzene	22.36	µg/L	1.0	112	86.8	120		
Toluene	18.80	µg/L	1.0	94.0	64.1	127		
Chlorobenzene	19.23	µg/L	1.0	96.1	82.4	113		
1,1-Dichloroethene	27.46	µg/L	1.0	137	86.5	132		S
Trichloroethene (TCE)	23.81	µg/L	1.0	119	77.3	123		
Sample ID: 100ng Ics		LCS			Batch ID	: R29596	Analysis Date:	8/4/2008 10:20:48 PM
Benzene	21.82	µg/L	1.0	109	86.8	120	•	
Toluene	18.43	µg/L	1.0	92.2	64.1	127		
Chlorobenzene	18.62	μg/L	1.0	93.1	82.4	113		
1,1-Dichloroethene	26.65	µg/L	1.0	133	86.5	132		S
Trichloroethene (TCE)	22.66	µg/L	1.0	113	77.3	123		

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

Sampl	le Recei	ipt Che	icklist			
Client Name WESTERN REFINING GALLU			Date Receive	ed:	8/1/2008	
Work Order Number 0808012			Received b	y: AT	al.	
		0	Sample ID	labels checked by	· · · · · · · · · · · · · · · · · · ·	
Checklist completed by:	Т	Date	///04	-	Initials	
	Ollant					
Matrix: Carrier name	e <u>Client</u>	drop-off				
Shipping container/cooler in good condition?	Yes		No 🗌	Not Present		
Custody seals intact on shipping container/cooler?	Yes [No 🗌	Not Present	Not Shipped	
Custody seals intact on sample bottles?	Yes		No 🖸	N/A [
Chain of custody present?	Yes 🛛		No 🗀			
Chain of custody signed when relinquished and received?	Yes		No 🗔			
Chain of custody agrees with sample labels?	Yes 🛛		No 🗖			
Samples in proper container/bottle?	Yes		No 🗔			
Sample containers intact?	Yes		No 🗔			
Sufficient sample volume for indicated test?	Yes		No 🗔			
All samples received within holding time?	Yes		No 🗔			
Water - VOA vials have zero headspace? No VOA vials sub	bmitted [Yes 🗹	No 🗔		
Water - Preservation labels on bottle and cap match?	Yes		No 🗔	N/A		
Water - pH acceptable upon receipt?	Yes		No 🗔	N/A 🗔		
Container/Temp Blank temperature?	3	•	<6° C Acceptai	ble		
COMMENTS:		I	f given sufficier	it time to cool.		
Different en entre et en la combracta de			Dor	on contrated		
Client contacted Date contacted:			Fei	son contacted		
Contacted by: Regarding:						
Comments:						
Corrective Action						
						_

50

					1	- भू: क			(N	or I	(۲	Air Bubbles	·									1		<u> </u>	11
	, <mark>≿</mark>	;																						1	dif.
												1 3 9 7 4	<u> </u>								_			1 2	12
		1 1 5	6			<i>™</i>	<u>r</u> q	CV	K) UN	17	<u>س</u> ميز سر	1 220m	<u> </u> <u>×</u>	X	×	7	\star	*		_	_			2	R
		í) _	871C	107						(H)	<u>_</u> >^-	ime2) 0728	X	X X	X	ドメ	X	۲			+			Ŋ.	No la construcción de la constru
	5 ĕ		MN	45-4	est	đ						OV) 80928		X	X	X	X	X X	-+	~	+			$\mathcal{O}_{\mathbf{F}}$	6
ĺ		tenta	rque,	505-345-4107	sedu		s,8(2 PC	2808	3/s		olitee9 1808	l.				-		-+		+		+	n ') }
	AALL ENVIKUNMENTAL ANALYSIS LABORATOR	www.hallenvironmental.com	Albuquerque, NM 87109	Fax 5	1.552.65	(*()S'*(04,	ron	l' ^ɛ C	N'I	O,∃) anoinA	/										+	\$	8
Ī	ũ X	llenv	- Alb	ш	Inally							9 8 AADF	<u> </u>											K	Ľ
		ed w	ЧZ	3975								AN9) 0168							_					$ \mathcal{V} $	1
	ANAL Anal	,	kins	345-3975								EDB (Wetho									\downarrow	·		5	Z'
	- -		4901 Hawkins NE	505-1		(iəs		/584				TPH Metho		 							+			$ (\mathcal{K}) $	Crion
		чл. В	4901	Tel.	24		~~~					TEX + Mothon								-+					Or I
1		• E •				j.						TM + X3TE	<u></u>							-	+			Remarks:	
	1											N. 14 14									╈		_	2	3
	1	3	Þ											N	ŋ	۲ ۲	Ŋ	9	`					Time	
		22	5			ļ			~7							•	-	J.						81	0
		Ś	\mathcal{C}						Ž	No														Date	Date
	ي	3	しか						10		ŝ	e e	<u> </u>							_				-	1
	🗆 Rush	00	in the second					e a	5		6	servativ Type													
ime:	٥	n	ler			er:	1	2	19	XYe	ratur	^o reservative Type													
nd Ti	ard	ame:	are a			anage		X	Þ		empe														747
Arou	Standard	ct Na	2	ct #:		ct W	ţ	(J	oler:	e e	Die	Container Type and #				l.								Received by	led by:
Tum-Around T	S D	Project Name:	Ers	Project #:		Project Manag			Sampler.	On Ice.	SampleTemple	Cor Type												Receiv	Received by:
<u>میں خار</u>) E		<u></u>															
p					833	0		idatic				est I		-	3	(1	<u>^-</u>			No.				1	
S C C	0	9	Υğ	1	3	02		Level 4 (Full Validation)				Sample Request ID		24	2B	30	S B	5	c	N/N					
ĸ	linen.	le.	8	30		4		4 (Fu			ľ	le R	5	1	3	١	_)								
^d	in		12	27	N	122		evel 4				amp	BW	BW	BW	BW	RW	BW	ľ	3					
stc	Red		5	5				آ				S			т т	7	-4	~~	/	ン				Å	ed by:
<u>Ö</u>	s	}	2	NN	505	505						Matrix		(1	4	ľ	٤ı				· [Relinquished by	Relinquished by:
Chain-of-Custody Record	ectern	1 mar		2	Μ	5	ł						HZ HZ		Z	1									
ain	202	200	dress	9	No.	÷	kage:	Ģ		ype).		Time	830	0%0	1030	145	355	Å						Time: /320	Time:
Chi	Ŵ	(6	jg Ad	J.	е#	ы Ч	C Pac	andar	her	E) ac			80	0		12	391.	000	_	_	_	+			
-	Client: W	V	Mailing Address:	Falling	Phone #:	email or Fax#:	QA/QC Package:	□ Standard	Other	EDD (Type)		Date	7-31-080830	12069	1		0521 8-12-2	8-1-080800						Date: Time: 9/1/00/320	Date:
		I		Ú		וש ו	Ų	-	_		I		"Th	デ			N	0,	ľ	I	I	I	1	0	• i= 1 •

	Date Sampled	Ва	Ca	Fe	Mg	Mn	K	Na	U
BW-1C	7/31/08	.016	3.0	< 0.05	.62	.013	<1.0	310	.00115
	12/31/07	0.023	3.6	< 0.05	0.74	0.01	<1.0	360	<0.1
	10/28/06	< 0.02	3.4	< 0.05	<1.0				
BW-2A	7/30/08	0.14	8.6	0.37	3.2	0.14	<1.0	320	<.001
	12/31/07	0.18	11	0.7	3.9	0.22	<1/0	380	<0.1
	10/28/06	0.15	. 10	< 0.05					
BW-2B	7/30/08	0.041	13	.064	3.0	0.16	<1.0	570	.0115
	12/31/07	0.07	16	0.62	3.6	<u>0.29</u>	1.6	640	<0.1
	10/28/06	0.071	23	< 0.05					
BW-2C	7/30/08	0.13	24	1.3	2.0	<u>0.43</u>	1.1	300	.00728
	12/31/07	0.026	2.9	0.16	0.68	0.024	<1.0	340	<0.1
	10/28/06	0.031	5.6	< 0.05	<1.0				
BW-3B	7/31/08	0.11	8.3	0.43	2.6	0.12	<1.0	370	<.001
	12/31/07	0.099	9.0	0.64	2.9	0.13	<1.0	430	<0.1
	10/28/06	0.11	9.0	< 0.05					
BW-3C	8/1/08	.27	28	3.0	2.2	<u>0.41</u>	1.6	350	.00251
· · · · ·	12/31/07	0.068	4.2	0.14	0.81	0.015	1.1	360	<0.1
	10/28/06	0.029	6.0	< 0.05					
EPA MCLs		2.0							0.03
NMWQS		1.0				0.2			

TABLE: Detected Total Recoverable Metals in Boundary Wells (Note: Only data for detected contaminants are presented. For a complete list of all metals analyzed see section 5.0. All units are in mg/l.)

Note: levels exceeding the standard are in bold and underlined.

	Year	Date Sampled	Fluoride	Chloride	Nitrate (as N) + Nitrite	Phosphorous Orthophosph ate (as P)	Sulfate	рН	Specific Conductivity microSiemens /cm
BW-1C	2008	7/31/08	2.4	35	<1.0	<0.5	260	8.68	1400
	2007	12/31/07	<u>2.4</u> <u>2.6</u>	35	<1.0	<0.5	270	8.5	1400
	2006	10/27/06	2.7	36	<0.5	<0.5	NA*	8.39	1400
BW-2A	2008	7/30/08	1.1	40	<1.0	0.75	7.3	7.87	1400
	2007	12/31/07	1.3	42	<1.0	0.70	7.7	7.76	1400
	2006	10/27/06	1.3	39	< 0.5	0.64	7.5	8.27	1400
BW-2B	2008	7/30/08	<u>1.6</u>	30	<1.0	<.0.5	150	7.76	2200
	2007	12/31/07	<u>1.8</u>	30	<1.0	<0.5	150	7.77	2400
	2006	10/27/06	1.9	31	<0.5	<0.5	140	8.1	1400
BW-2C	2008	7/30/08	1.9	44	<1.0	<50	270	8.83	1400
	2007	12/31/07	<u>2.3</u>	45	<1.0	<0.5	290	8.73	1400
	2006	10/27/06	2.4	42	< 0.5	<0.5	270	8.52	1300
BW-3B	2008	7/31/08	1.4	34	<1.0	1.1	55	7.95	1500
	2007	12/31/07	<u>1.6</u>	35	<1.0	1.1	51	7.93	1600
	2006	10/27/06	1.7	33	< 0.5	1.1	250	8.5	1600
BW-3C	2008	8/1/08	1.5	34	<2.0	<5.0	240	8.63	1500
	2007	12/31/07	<u>1.8</u>	38	<1.0	<0.5	300	8.59	1500
	2006	10/27/06	1.9	37	<0.5	<0.5	280	8.39	1400
EPA MCLs			4.0					6-9,	
NMWQS			1.6	250 (domestic water)	10		600	6.5 – 8.5	

TABLE: Anions and Select Parameters in Boundary Wells (All units are in mg/l, except for pH and Specific Conductivity)

Note: Levels over regulatory standards are in bold and underlined.

ι

August 28, 2008

Hope Monzeglio Environmental Specialist New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, BLDG 1 Santa Fe NM 87505

Carl Chavez, Environmental Engr. Oil Conservation Division 1220 S. Saint Francis Santa Fe, NM 87505

RE: 2007 Annual Groundwater Report, Discharge Permit GW-032

Dear Hope and Carl:

Western Refining – Gallup has prepared a 2007 annual ground water monitoring report according to the requirements in the OCD Discharge Permit GW-032.

If you have any questions please contact me at (505) 722-0227 or Ed Riege at (505) 722-0217.

Sincerely,

Gan Ray-

Gaurav Rajen, Environmental Engineer Western Refining - Gallup Refinery

cc: Ed Riege w/o report

OIL CONSERVATION DIVISION 2007 ANNUAL GROUNDWATER REPORT

Binder 1: Annual Groundwater Report

Western Refining – Gallup Refinery McKinley County, New Mexico

September 1, 2008

EPA ID No. NMD000333211

Discharge Permit No. GW-032

Prepared By: Gaurav Rajen, Environmental Engineer, Western Refining - Gallup Refinery

Signature. Gan Rg-, Date: 8/28/08

Certified By: Mark Turri, Refinery Manager, Western Refining – Gallup Refinery Signature: <u>Aall. Guni</u>, Date: <u><u>B</u><u>28</u><u>08</u></u>

Executive Summary

The purpose of groundwater sampling performed in 2007 at Gallup Refinery is to determine whether contamination resulting from refinery related activities has entered groundwater at the facility. In previous reports, we have described the twenty monitoring wells that are distributed within the boundaries of the refinery and the nine monitoring wells that are located along the perimeter of the facility's wastewater treatment lagoons and ponds. In 2007, three new shallow groundwater monitoring wells were established, of which two were subsequently closed as directed by the Hazardous Waste Bureau of the New Mexico Environment Department. The additional new well that remained open has not been sampled in 2007.¹

Groundwater monitoring is conducted at the Gallup Refinery located approximately 17 miles east of Gallup and approximately 1 mile north of Interstate I-40 at Exit 39. The facility is owned and operated by Western Refining Southwest, Inc. with headquarters in El Paso, Texas. U.S. Environmental Protection Agency (EPA) Permit ID No. NMD000333211 pertains to the facility.

In 2007, monitoring conducted between December 27-31, 2007 (and January 1, 2008, as inclement weather prevented completion of sampling of some wells within December 2007)) showed that in Potable Well #3 the contaminant 2-Methylnapthalene was at a level of 0.032 mg/l. This level exceeds the current NM Water Quality Control Commission standard of 0.03 mg/l for 2-Methylnapthalene.

In 2007, monitoring conducted between December 27-31, 2007 (and January 1, 2008, as inclement weather prevented completion of sampling of some wells within December 2007)) showed that Methyl Tetra-Butyl Ether (MTBE) contamination had entered the shallow perched groundwater at OW-14 and OW-30. The levels of MTBE were 0.92 mg/l in OW-14 and 0.29 mg/l in OW-30. These levels exceed the current U.S. EPA Maximum Contaminant level (MCL) of 0.20 mg/l and the current NM Water Ouality Control Commission standard of 0.1 mg/l. The monitoring in 2006 and 2005 had also shown that MTBE contamination had entered the shallow perched groundwater at OW-14 and OW-30.² The sampling in 2007, as had been found in 2006, established that the MTBE contamination was limited in extent and had not migrated significantly to other nearby wells (OW-12 had a level of non-detect, OW-13 a level of 0.0013 mg/l, and OW-29 had a level of 0.0043 mg/l). The monitoring of well OW-14 also found that Benzene was elevated. The benzene concentration in this sample was 0.014 mg/l, exceeding the NM Water Quality Control Commission standard of 0.01 mg/l and the U.S. EPA Maximum Contaminant level (MCL) of 0.005 mg/l. The highest level of Benzene in this well in 2006 was 0.0042 mg/l, but in 2005 the level was 0.017 mg/l. In 2007, Benzene was not detected in nearby wells (OW-12, OW-13, OW29 and OW-30 had no detectable levels of Benzene.) In 2007, 1-Methylnapthalene was found in the sample taken from OW 14. The level of 1-Methylnapthalene was at 0.027 mg/l, which is below the NM WQCC standard of 0.03 mg/l.

¹ In 2007, three new shallow groundwater monitoring wells (KA-1, KA-2, and KA-3) were established around the facility's New American Petroleum Institute Oil-Water Separator (NAPIS). Well logs for these new wells are attached to this document. The New Mexico Environment Department Hazardous Waste Bureau (NMED-HWB) disapproved these three wells, and three new wells were drilled in March of 2008. Of the three wells drilled in 2007, two were asked by NMED-HWB to be abandoned and one kept open. These wells have not been sampled in 2007. ² On 9/27/2005, OW-14 had MTBE levels of 0.077 mg/l, and OW-30 of <0.0025 mg/l. On 10/27/2006, OW-14 had MTBE at a level of 0.18 mg/l, and OW-30 a level of 0.018 mg/l. On 12/28/2006, OW-14 was at level of 0.18 mg/l of MTBE.

Table of Contents

Section

Title

I. Annual Groundwater Report (Binder 1)

- 1. Introduction
 - 1.1 Facility Description
 - 1.2 Background Information
 - 1.3 Site Characteristics
- 2. Scope of Activities
- 3. Regulatory Criteria
- 4. Groundwater Monitoring Results
- 5. Groundwater Chemical Analytical Data
- 6. Recommendations Based on Groundwater Testing

7. List of TablesPermit Condition 16A vi (Volume of product recovered)Well Data Summary TableWell Inspection Logs

- 8. List of Figures
 - Figure 1 Regional Map
 - Figure 2 Topographic Map
 - Figure 3 Well and Boring Locations Map
 - Figure 4 Potentiometric Elevation Map (Alluvium Chinle Group Interface Water Levels)
 - Figure 5 Annual Product Thickness Map (Separate Phase Hydrocarbon Thickness)
 - Figure 6 Sonsela Water Piezometric Surface
 - Figure 7 Groundwater Elevation Map of RW-1 and Benzene Isopleth Map in Vicinity (Permit Condition 16A iv)

Appendix A: Gallup Field Sampling Collection and Handling Procedures

II. OCD Addendum (Binder 2)

- 1. Permit Condition 17B (Temporary land farm analytical results)
- 2. Permit Condition 19A (Weekly pond inspections)
- 3. OCD Permit Condition 21:
 - a. Summary of All Major Refinery Activities or Events
 - b. Results of All Sampling and Monitoring Events
 - c. Waste and Wastewater Disposal Summary and Pond Evaporation Balance
 - d. Sump and Underground Wastewater Lines Tested
 - e. Summary of All Leaks, Spills and Releases and Corrective Actions
 - f. Summary of Discovery of New Groundwater Contamination
 - g. Summary and Copies of EPA/NMED/RCRA Activity

I. Annual Groundwater Report (Binder 1)

(

Section 1 Introduction

1.1 Facility Description

This annual groundwater report pertains to the Western Refining Southwest Inc. Gallup Refinery located at Exit 39 on Interstate I-40. This refinery is known as the Gallup Refinery and is located at Jamestown New Mexico, approximately 17 miles east of Gallup. Figure 1 shows the regional location of the Gallup Refinery.

The owner is:

	Western Refining 123 W. Mills Avenue El Paso, TX 79901	(parent corporation)
Operator:	Western Refining Southwest Inc Route 3, Box 7 Gallup, New Mexico 87301	(postal address)
	Western Refining Southwest Inc I-40, Exit 39 Jamestown, New Mexico 87347	(physical address)

SIC code 2911 (petroleum refining) applies to the Gallup Refinery.

The following regulatory identification and permit governs the Gallup Refinery:

- U.S. EPA ID Number NMD000333211
- OCD Discharge Permit No. GW-032

The facility status is corrective action/compliance. Annual and quarterly groundwater sampling is conducted at the facility to evaluate present contamination.

The refinery is situated on an 810 acre irregular shaped tract of land that is substantially located within the lower one quarter of Section 28 and throughout Section 33 of Township 15 North, Range 15 West of the New Mexico Prime Meridian. A small component of the property lies within the northeastern one quarter of Section 4 of Township 14 North, Range 15 West. Figure 2 is a topographic map showing the general layout of the refinery in comparison to the local topography.

1.2 Background Information

The Gallup Refinery is located within a rural and sparsely populated section of McKinley County in Jamestown New Mexico. The setting is a high desert plain on the western slope of the continental divide. The nearest population centers are the Pilot (formerly Giant) Travel Center refueling plaza, the Interstate 40 highway corridor, and a small cluster of residential homes located on the south side of Interstate 40 approximately 2 miles southwest of the refinery (Jamestown). The surrounding land is comprised primarily of public lands and is used for cattle and sheep grazing at a density of less than six cattle or 30 sheep per section. Except for Gallup, McKinley County is predominantly rural area, as are the adjoining portions of neighboring counties.

The refinery primarily receives crude oil via two 6 inch diameter pipelines; Bisti Pipeline comes down from the Four Corners Area and enters the refinery property from the north and Hospah Pipeline comes in from the northeast and is an interconnection with a main interstate pipeline. In addition, the refinery also receives natural gasoline feedstocks via a 4-inch diameter pipeline that comes in from the west along the Interstate 40 corridor from the Conoco gas plant. These feedstocks are then stored in tanks until refined into products. The refinery has an overall capacity to process up to 32,000 barrels per day of crude oil and natural gasoline feedstocks.

The refinery incorporates various processing units that convert crude oil and natural gasoline into finished products. These units are briefly described as follows.

- The <u>crude distillation unit</u> separates crude oil into various fractions; including gas, naphtha, light oil, heavy oil, and residuals.
- The <u>fluidized catalytic cracking unit (FCCU)</u> dissociates (cracks) long-chain hydrocarbon molecules into smaller molecules, and essentially converts heavier oils into naphtha and lighter oils.
- The <u>alkylation unit</u> combines specific types of hydrocarbon molecules into a high octane gasoline blending component.
- The <u>reforming unit</u> combines low octane naphtha molecules to form high octane naphtha.
- The <u>hydrotreating unit</u> removes undesirable sulfur and nitrogen compounds from intermediate feedstocks, and also saturates the feedstocks with hydrogen.
- The isomerization unit converts low octane hydrocarbon molecules into high octane molecules.
- The <u>treater units</u> remove impurities from various intermediate and blending feedstocks in order to produce finished products that comply with sales specifications.
- The <u>sulfur recovery unit</u> converts and recovers various sulfur compounds from other processing units and then produces a solid elemental sulfur byproduct.

As a result of these processing steps, the refinery produces a wide range of petroleum products including propane, butane, unleaded gasoline, diesel, kerosene, and residual fuel. In addition to the aforementioned processing units, various other equipment and systems support the operation of the refinery and are briefly described as follows.

Storage tanks are used throughout the refinery to hold and store crude oil, natural gasoline, intermediate feedstocks, finished products, chemicals, and water. These tanks are all located aboveground and range

in size from 80,000 barrels to less than a 1,000 barrels. A grouping of tanks is commonly referred to as a "tank farm" such as the hot oil "tank farm".

Pumps, valves, and piping systems are used throughout the refinery to transfer various liquids among storage tanks and processing units.

A railroad spur track and a railcar loading rack are used to transfer feed-stocks and products from refinery storage tanks into and out of railcars.

Several tank truck loading racks are used at the refinery to load out finished products and also may receive crude oil, other feedstocks, additives, and chemicals.

A pipeline from the refinery carries diesel fuel to the Pilot (formerly Giant) Travel Center. Gasoline is delivered to the Pilot Center via tanker truck.

A firefighting training facility is used to conduct employee firefighting training. Waste water from the facility, when training is conducted, is pumped into a tank which is then pumped out by a vacuum truck. The vacuum truck pumps the oily water into a process sewer leading to the New API Separator (NAPIS).

The process wastewater system is a network of curbing, paving, catch basins, and underground piping that collects waste water effluent from various processing areas within the refinery and then conveys this wastewater to the new API separator.

The NAPIS is a two compartment oil water separator. Oil is separated from water based on the principle that, given a quiet surface, oil will float to the water surface where it can be skimmed off. The skimmed slop oil is passed to a collection chamber where it is pumped back into the refinery process. The clarified water is piped to the top of dual stripping columns where benzene is removed. The stripped water flows into the first aeration lagoon. Sludge sinks to the bottom of the separator which is periodically vacuumed out by a vacuum truck and disposed as hazardous waste at an approved landfill or recycled and reused in refineries that have this allowable exemption under RCRA.

At the stripping columns, ambient air is blown upwards through the falling cascade of clarified wastewater as it passes through distillation column packing. Countercurrent desorption of benzene from the water occurs due to the high volume of air passing over the relatively large surface area provided by the packing. The desorbed benzene is absorbed into the air stream and vented to the atmosphere. Effluent from the stripper columns gravity flows through piping into the first aeration lagoon.

At the aeration basins, the treated wastewater is mixed with air in order to oxidize any remaining organic constituents and increase the dissolved oxygen concentration available in the water for growth of bacteria and other microbial organisms. The microbes degrade hydrocarbons into carbon dioxide and water. Three 15-hp mechanical aerators provide aeration in the first aeration lagoon with two 15-hp aerators providing aeration in the second lagoon. Effluent from the second aeration lagoon flows onward into the first of several evaporation ponds of various sizes.

At the evaporation ponds, wastewater is converted into vapor via solar and mechanical wind-effect evaporation. No wastewater is discharged from the refinery to surface waters of the state because all of the waste water evaporates. Therefore, the refinery is not required to have a NPDES discharge permit for discharge of treated process water. However, the Gallup refinery does have a NPDES permit for storm water discharge.

The storm water system is a network of valves, gates, berms, embankments, culverts, trenches, ditches, natural arroyos, and retention ponds that collect, convey, control, treat, and release storm water that falls within or passes through refinery property. Storm water discharge from the refinery is very infrequent

due to the arid desert-like nature of the surrounding geographical area. The Gallup Refinery maintains a storm water pollution prevention plan (SWPPP) that includes Best Management Practices (BMPs) for effective storm water pollution prevention. The refinery has constructed several new berms in various areas and improved outfalls (installed barrier dams equipped with gate valves) to minimize the possibility of contaminated runoff leaving the refinery property.

1.3 Site Characteristics

The Gallup Refinery is located within a rural and sparsely populated section of McKinley County. It is situated in the high desert plain on the western flank of the continental divide approximately 17 miles east of Gallup. The surrounding land is comprised primarily of public lands and is used for cattle and sheep grazing at low densities⁴. Surface vegetation consists of native xerophytic vegetation including grasses, shrubs, small junipers, and some prickly pear cacti. Average rainfall at the refinery is less than 7 inches per year, although it can vary to slightly higher levels elsewhere in the county depending on elevation.

Local topography consists of a gradually inclined down-slope from high ground in the southeast to a lowland fluvial plain in the northwest. The highest point on refinery property is located at the southeast corner boundary (elevation approximately 7,040 feet) and the lowest point is located at the northwest corner boundary (elevation approximately 6,860 feet). The refinery processing facility is located on a flat man-made terrace at an elevation of approximately 6,950 feet.

Surface water in this region consists of the man-made evaporation ponds and aeration basins located within the refinery, a livestock watering pond (Jon Myer's Pond) located east of the refinery, two small unnamed spring fed ponds located south of the refinery, and the South Fork of the Puerco River and its tributary arroyos. The various ponds and basins typically contain water consistently throughout the year. The South Fork of the Puerco River and its tributaries are intermittent and generally contain water only during, and immediately after, the occurrence of precipitation.

The 810 acre refinery property site is located on a layered geologic formation. Surface soils generally consist of fluvial and alluvial deposits; primarily clay and silt with minor inter-bedded sand layers. Below this surface layer is the Chinle Formation, which consists of low permeability claystones and siltstones that comprise the shales of this formation. As such, the Chinle Formation effectively serves as an aquiclude. Inter-bedded within the Chinle Formation is the Sonsela Sandstone bed, which represents the uppermost potential aquifer in the region.

The Sonsela Sandstone bed lies within and parallels the dip of the Chinle Formation. As such, its high point is located southeast of the refinery and it slopes downward to the northwest as it passes under the refinery. Due to the confinement of the Chinle Formation aquiclude, the Sonsela Sandstone bed acts as a water-bearing reservoir and is artesian at its lower extremis. Artesian conditions exist through much of the central and western portions of the refinery property.

Groundwater flow within the Chinle Formation is extremely slow and typically averages less than 10^{-10} centimeters per second (less than 0.01 feet per year). Groundwater flow within the surface soil layer above the Chinle Formation is highly variable due to the presence of complex and irregular stratiography: including sand stringers, cobble beds, and dense clay layers. As such, hydraulic conductivity may range from less than 10^{-2} centimeters per second in the gravelly sands immediately overlying the Chinle Formation up to 10^{-8} centimeters per second in the clay soil layers located near the surface.

Shallow groundwater located under refinery property generally flows along the upper contact of the Chinle Formation. The prevailing flow direction is from the southeast and toward the northwest: however, a subsurface ridge has been identified and is thought to deflect some flow in a northeasterly direction in the vicinity of the refinery tank farm.

⁴ See, for example, the web site of McKinley County at <u>http://www.co.mckinley.nm.us/</u>

2. Scope of Activities

The annual monitoring of the ground water monitoring wells was conducted primarily in May, and December 2007. The following table shows the dates of sampling and the parameters of analysis:

Well/ Pond	Date Sampled	Parameters of Analysis
OW-11	12-27-2007	Mercury (EPA Method 7470), Total Recoverable Metals (EPA Method 6010B), and Volatiles (EPA Method 8260B)
OW-12	12-27-2007	Volatiles (EPA Method 8260B)
OW-13	12-27-2007	Volatiles (EPA Method 8260B)
OW-14	1/1/2008 (Inclement weather prevented sampling for this well along with the other wells monitored on 12- 27-2007; 12-28-2007, 12-29-2007, and 12-31-2007)	Volatiles (EPA Method 8260B)
OW-29	12-28-2007	Volatiles (EPA Method 8260B)
OW-30	12-28-2007	Volatiles (EPA Method 8260B)
BW-1A	Not sampled - Dry	
BW-1B	Not sampled - Dry	
BW-1C	12-31-2007	Mercury (EPA Method 7470), Total Recoverable Metals (EPA Method 6010B), Dissolved metals (EPA Method 6010B), Anion (EPA Method 300), Volatiles (EPA Method 8260B), Semi- Volatiles (EPA Method 8270C) pH, Specific Conductivity
BW-2A	12-31-2007	Mercury (EPA Method 7470), Total Recoverable Metals (EPA Method 6010B), Dissolved metals (EPA Method 6010B), Anion (EPA Method 300), Volatiles (EPA Method 8260B), Semi- Volatiles (EPA Method 8270C) pH, Specific Conductivity
BW-2B	12-31-2007	Mercury (EPA Method 7470), Total Recoverable Metals (EPA Method 6010B), Dissolved metals (EPA Method 6010B), Anion (EPA Method 300), Volatiles (EPA Method 8260B), Semi- Volatiles (EPA Method 8270C) pH, Specific Conductivity
BW-2C	12-31-2007	Mercury (EPA Method 7470), Total Recoverable Metals (EPA Method 6010B), Dissolved metals (EPA Method 6010B), Anion (EPA Method 300), Volatiles (EPA Method 8260B), Semi- Volatiles (EPA Method 8270C) pH, Specific Conductivity
BW-3A	Not sampled - Dry	
BW-3B	12-31-2007	Mercury (EPA Method 7470), Total Recoverable Metals (EPA Method 6010B), Dissolved metals (EPA Method 6010B), Anion (EPA Method 300), Volatiles (EPA Method 8260B), Semi- Volatiles (EPA Method 8270C), pH, Specific Conductivity

BW-3C	12-31-2007	Mercury (EPA Method 7470), Total Recoverable Metals (EPA Method 6010B), Dissolved metals (EPA Method 6010B), Anions
		(EPA Method 300), Volatiles (EPA Method 8260B), Semi- Volatiles (EPA Method 8270C). pH, Specific Conductivity
GWM-1	5-24-2007	Mercury (EPA Method 7470). Total Recoverable Metals (EPA Method 6010B). Anions (EPA Method 300), Volatiles (EPA Method 8260B), Semi- Volatiles (EPA Method 8270C), pH, Specific Conductivity
GWM-2	Dry	
GWM-3	Dry	
MW-1	12-29-2007	Mercury (EPA Method 7470), Antimony (EPA Method 200B), Cyanide (Method SM4500CNE), Total Recoverable Metals (EPA Method 6010B), Dissolved metals (EPA Method 6010B), Diesel Range Organics (DRO, EPA Method 8015B), Gasoline Range Organics (GRO, EPA Method 8015B), Anions (EPA Method 300), Volatiles (EPA Method 8260B). Semi- Volatiles (EPA Method 8270C), pH. Specific Conductivity
MW-4	12-29-2007	Mercury (EPA Method 7470), Antimony (EPA Method 200B), Cyanide (Method SM4500CNE), Total Recoverable Metals (EPA Method 6010B), Dissolved metals (EPA Method 6010B), Diesel Range Organics (DRO, EPA Method 8015B), Gasoline Range Organics (GRO, EPA Method 8015B), Anions (EPA Method 300), Volatiles (EPA Method 8260B), Semi- Volatiles (EPA Method 8270C), pH, Specific Conductivity
MW-5	12-29-2007	Mercury (EPA Method 7470), Antimony (EPA Method 200B), Cyanide (Method SM4500CNE), Total Recoverable Metals (EPA Method 6010B), Dissolved metals (EPA Method 6010B), Diesel Range Organics (DRO, EPA Method 8015B), Gasoline Range Organics (GRO, EPA Method 8015B), Anions (EPA Method 300), Volatiles (EPA Method 8260B), Semi- Volatiles (EPA Method 8270C), pH. Specific Conductivity
SMW-2	1-1-2008 (Inclement weather prevented sampling for this well along with the other wells monitored on 12- 27-2007, 12-28-2007, 12-29-2007, and 12-31-2007)	Mercury (EPA Method 7470), Antimony (EPA Method 200B), Cyanide (Method SM4500CNE), Total Recoverable Metals (EPA Method 6010B), Dissolved metals (EPA Method 6010B), Diesel Range Organics (DRO, EPA Method 8015B), Gasoline Range Organics (GRO, EPA Method 8015B), Anions (EPA Method 300), Volatiles (EPA Method 8260B). Semi- Volatiles (EPA Method 8270C), pH.

		Specific Conductivity
SMW-4	12-29-2007	Mercury (EPA Method 7470), Antimony (EPA Method 200B), Cyanide (Method SM4500CNE), Total Recoverable Metals (EPA Method 6010B), Dissolved metals (EPA Method 6010B), Diesel Range Organics (DRO. EPA Method 8015B), Gasoline Range Organics (GRO, EPA Method 8015B), Anions (EPA Method 300), Volatiles (EPA Method 8260B). Semi- Volatiles (EPA Method 8270C). pH. Specific Conductivity
PW-3	1-1-2008 (Inclement weather prevented sampling for this well along with the other wells monitored on 12- 27-2007, 12-28-2007, 12-29-2007, and 12-31-2007)	Mercury (EPA Method 7470), Antimony (EPA Method 200B), Cyanide (Method SM4500CNE), Total Recoverable Metals (EPA Method 6010B), Dissolved metals (EPA Method 6010B), Diesel Range Organics (DRO. EPA Method 8015B), Gasoline Range Organics (GRO, EPA Method 8015B), Anions (EPA Method 300), Volatiles (EPA Method 8260B), Semi- Volatiles (EPA Method 8270C), pH. Specific Conductivity
R W-1	February, April, June, July and November 2007	Measure product layer thickness
RW-2	February, April, June, July and November 2007	Measure product layer thickness
RW-5	February, April, June, July and November 2007	Measure product layer thickness
RW-6	February, April, June, July and November 2007	Measure product layer thickness
Ponds 1 and 2 -Inlets	December 2007	Mercury (EPA Method 7470), Total Recoverable Metals (EPA Method 6010B), Anions (EPA Method 300), Volatiles (EPA Method 8260B), Semi- Volatiles (EPA Method 8270C), pH, Specific Conductivity, TDS (Not all parameters were analyzed for each inlet according to the discharge permit.)
Ponds 1 through 8	November 29 2007	Mercury (EPA Method 7470), Total Recoverable Metals (EPA Method 6010B), Anions (EPA Method 300), Volatiles (EPA Method 8260B), Semi- Volatiles (EPA Method 8270C), pH, Specific Conductivity

The results of the annual sampling event are summarized in tables provided in Section 4 (Groundwater Monitoring Events). In addition to these wells, several other effluent streams both into and within the wastewater treatment system were sampled. Examples of sampling activities in addition to the sampling of groundwater monitoring wells are provided in section 4.0. Complete details of all of these sampling activities are described in section 3b of Binder 2 attached to this report.

Groundwater Monitoring Well Installations in 2007

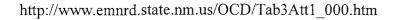
In 2007, three new shallow groundwater monitoring wells (KA-1, KA-2, and KA-3) were established around the facility's New American Petroleum Institute Oil-Water Separator (NAPIS). Well logs for these new wells are attached to this document. The New Mexico Environment Department Hazardous Waste Bureau (NMED-HWB) disapproved these three wells, and three new wells were asked to be drilled in 2008. Of the three wells drilled in 2007, two were asked by NMED-HWB to be abandoned and one kept open. These wells have not been sampled in 2007.

Ground water remediation activities are conducted at the Gallup refinery including the pumping of **4.075** gallons of product from recovery well No.1 (RW-1) in 2007.

Perimeter Search

Western Refining conducts a perimeter search of the refinery property on a bimonthly basis starting in December 2004. The inspection focuses on hydrocarbon staining or any release that could result in contamination leaving the property boundary. Western Refining has prepared an inspection checklist to be completed and signed by the environmental employee conducting the inspection. Completed inspection sheets are maintained onsite.

3. Regulatory Criteria


No site-specific groundwater risk based screening levels have been established for the Gallup refinery so the criteria that Gallup groundwater samples are compared with are the New Mexico Water Quality Control Commission Standards 20.6.2.3103 and the U. S. EPA's National Primary Drinking Water Quality Standards (MCLs) and the NMED total petroleum hydrocarbon (TPH) screening guidelines. Tables comparing the results of sampling with the standards are provided in Section 4.

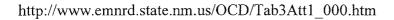
Attachment I

New Mexico Water Quality Control Commission Ground Water Standards

A. Human Health Standards - Ground water shall meet the standards of Section A and B unless otherwise provided. If more than one water contaminant affecting human health is present, the toxic pollutant criteria of WQCC Section 1-101.UU. for the combination of contaminants, or the Human Health Standard of WQCC Section 3-103.A. for each contaminant shall apply, whichever is more stringent.

Arsenic (As) 0.1 mg/l Barium (Ba) 1.0 mg/l Cadmium (Cd) 0.01 mg/l Chromium (Cr) 0.05 mg/l Cyanide (CN) 0.2 mg/l Fluoride (F) 1.6 mg/l Lead (Pb) 0.05 mg/l Total Mercury (Hg) 0.002 mg/l Nitrate (NO3 as N) 10.0 mg/l Selenium (Se) 0.05 mg/l Silver (Ag) 0.05 mg/l Uranium (U) 5.0 mg/l Radioactivity: Combined Radium-226 & Radium-228 30.0 pCi/l Benzene 0.01 mg/l Polychlorinated biphenyls (PCB's) 0.001 mg/l Toluene 0.75 mg/l Carbon Tetrachloride 0.01 mg/l 1,2-Dichloroethane (EDC) 0.01 mg/l 1,1-Dichloroethylene (1, 1-DCE) 0.005 mg/l 1, 1,2,2-tetrachloroethylene (PCE) 0.02 mg/l 1, 1,2-trichloroethylene (TCE) 0.1 mg/l ethylbenzene 0.75 mg/l total xylenes 0.62 mg/l methylene chloride 0.1 mg/l chloroform 0.1 mg/l 1, 1 -dichloroethane 0.025 mg/l ethylene dibromide (EDB) 0.0001 mg/l 1, 1, 1 -trichloroethane 0.06 mg/l 1, 1,2-trichloroethane 0.01 mg/l 1, 1,2,2-tetrachloroethane 0.01 mg/l vinvl chloride 0.001 mg/l PAH'S: total naphthalene plus monomethylnaphthalenes 0.03 mg/l benzo-a-pyrene 0.0007 mg/l

B. Other Standards for Domestic Water Supply



Chloride (Cl) 250. mg/l Copper (Cu) 1.0 mg/l Iron (Fe) 1.0 mg/l Manganese (Mn) 0.2 mg/l Phenols 0.005 mg/l Sulfate (SO4) 600. mg/l Total Dissolved Solids (TDS) 1000. mg/l Zinc (Zn) 10. mg/l pH between 6 and 9

C. Standards for Irrigation Use

Ground water shall meet the standards of subsections A, B, and C unless otherwise provided.

Aluminum (Al) 5.0 mg/l Boron (B) 0.75 mg/l Cobalt (Co) 0.05 mg/l Molybdenum (Mo) 1.0 mg/l Nickel (Ni) 0.2 mg/l

TITLE 20ENVIRONMENTAL PROTECTIONCHAPTER 6WATER QUALITYPART 4STANDARDS FOR INTERSTATE AND INTRASTATE SURFACE WATERS

20.6.4.1ISSUING AGENCY: Water Quality Control commission.[20.6.4.1 NMAC - Rp 20 NMAC 6.1.1001, 10-12-00]

20.6.4.2SCOPE: Except as otherwise provided by statute or regulation of the water quality control commission,
this part governs all surface waters of the state of New Mexico, which are subject to the New Mexico Water Quality Act,
Sections 74-6-1 through 74-6-17 NMSA 1978.[20.6.4.2 NMAC - Rp 20 NMAC 6.1.1002, 10-12-00; A, 05-23-05]

20.6.4.3STATUTORY AUTHORITY: This part is adopted by the water quality control commission pursuant to
Subsection C of Section 74-6-4 NMSA 1978.[20.6.4.3 NMAC - Rp 20 NMAC 6.1.1003, 10-12-00]

 20.6.4.4
 DURATION: Permanent.

 [20.6.4.4 NMAC - Rp 20 NMAC 6.1.1004, 10-12-00]

20.6.4.5 EFFECTIVE DATE: October 12, 2000, unless a later date is indicated in the history note at the end of a section.

[20.6.4.5 NMAC - Rp 20 NMAC 6.1.1005, 10-12-00]

20.6.4.6 OBJECTIVE:

A. The purpose of this part is to establish water quality standards that consist of the designated use or uses of surface waters of the state, the water quality criteria necessary to protect the use or uses and an antidegradation policy.

B. The state of New Mexico is required under the New Mexico Water Quality Act (Subsection C of Section 74-6-4 NMSA 1978) and the federal Clean Water Act, as amended (33 U.S.C. Section 1251 *et seq.*) to adopt water quality standards that protect the public health or welfare, enhance the quality of water and are consistent with and serve the purposes of the New Mexico Water Quality Act and the federal Clean Water Act. It is the objective of the federal Clean Water Act to restore and maintain the chemical, physical and biological integrity of the nation's waters, including those in New Mexico. This part is consistent with Section 101(a)(2) of the federal Clean Water Act, which declares that it is the national goal that wherever attainable, an interim goal of water quality that provides for the protection and propagation of fish, shellfish and wildlife and provides for recreation in and on the water be achieved by July 1, 1983. Agricultural, municipal, domestic and industrial water supply are other essential uses of New Mexico's surface water; however, water contaminants resulting from these activities will not be permitted to lower the quality of surface waters of the state below that required for protection and propagation of fish, shellfish and wildlife and provides fish, shellfish and wildlife and recreation in and on the water.

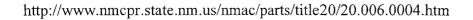
C. Pursuant to Subsection A of Section 74-6-12 NMSA 1978, this part does not grant to the water quality control commission or to any other entity the power to take away or modify property rights in water. [20.6.4.6 NMAC - Rp 20 NMAC 6.1.1006, 10-12-00; A, 05-23-05]

20.6.4.7 DEFINITIONS: Terms defined in the New Mexico Water Quality Act, but not defined in this part will have the meaning given in the Water Quality Act.

A. "Acute toxicity" means toxicity involving a stimulus severe enough to induce a response in 96 hours of exposure or less. Acute toxicity is not always measured in terms of lethality, but may include other toxic effects that occur within a short time period.

B. "Adjusted gross alpha" means the total radioactivity due to alpha particle emission as inferred from measurements on a dry sample, including radium-226, but excluding radon-222 and uranium. Also excluded are source, special nuclear and by-product material as defined by the Atomic Energy Act of 1954.

C. "Aquatic life" means any plant or animal life that uses surface water as primary habitat for at least a portion of its life cycle, but does not include avian or mammalian species.


D. "Attainable" means achievable by the imposition of effluent limits required under sections 301(b) and 306 of the Clean Water Act and implementation of cost-effective and reasonable best management practices for nonpoint source control.

"Best management practices" or "BMPs":

(1) for national pollutant discharge elimination system (NPDES) permitting purposes means schedules of activities, prohibitions of practices, maintenance procedures and other management practices to prevent or reduce the pollution of "waters of the United States;" BMPs also include treatment requirements, operating procedures and practices to control plant site runoff, spillage or leaks, sludge or waste disposal or drainage from raw material storage; or

(2) for nonpoint source pollution control purposes means methods, measures or practices selected by an agency to meet its nonpoint source control needs; BMPs include but are not limited to structural and nonstructural controls

E.

states.

and operation and maintenance procedures; BMPS can be applied before, during and after pollution-producing activities to reduce or eliminate the introduction of pollutants into receiving waters; BMPs for nonpoint source pollution control purposes shall not be mandatory except as required by state or federal law.

F. "Bioaccumulation" refers to the uptake and retention of a substance by an organism from its surrounding medium and food.

G. **"Bioaccumulation factor"** is the ratio of a substance's concentration in tissue versus its concentration in ambient water, in situations where the organism and the food chain are exposed.

H. "Biomonitoring" means the use of living organisms to test the suitability of effluents for discharge into receiving waters or to test the quality of surface waters of the state.

I. "CAS number" means an assigned number by chemical abstract service (CAS) to identify a substance. CAS numbers index information published in chemical abstracts by the American chemical society.

J. "cfs" means cubic feet per second.

K. "cfu" means colony forming units.

L. "Chronic toxicity" means toxicity involving a stimulus that lingers or continues for a relatively long period relative to the life span of an organism. Chronic effects include, but are not limited to, lethality, growth impairment, behavioral modifications, disease and reduced reproduction.

M. "Classified water of the state" means a surface water of the state, or reach of a surface water of the state, for which the commission has adopted a segment description and has designated a use or uses and applicable water quality criteria in 20.6.4.101 through 20.6.4.899 NMAC.

N. "Coldwater" in reference to an aquatic life use means a surface water of the state where the water temperature and other characteristics are suitable for the support or propagation or both of coldwater aquatic life.

O. "Commission" means the New Mexico water quality control commission.

P. "Criteria" are elements of state water quality standards, expressed as constituent concentrations, levels or narrative statements, representing a quality of water that supports a use. When criteria are met, water quality will protect the designated use.

Q. "DDT and derivatives" means 4,4'-DDT (CAS number 50293), 4,4'-DDE (CAS number 72559) and 4,4'-DDD (CAS number 72548).

R. "Department" means the New Mexico environment department.

S. "Designated management agency" means an agency as defined by 40 CFR Section 130.9(d).

T. "Designated use" means a use specified in Sections 20.6.4.101 through 20.6.4.899 NMAC for a surface water of the state whether or not it is being attained.

U. "Dissolved" means a constituent of a water sample that will pass through a 0.45-micrometer pore-size membrane filter under a pressure differential not exceeding one atmosphere. The "dissolved" fraction is also termed "filterable residue."

V. "Domestic water supply" means a surface water of the state that could be used for drinking or culinary purposes after disinfection.

W. "Escherichia coli" or "E. coli" means a bacterial species that inhabits the intestinal tract of humans and other warm-blooded animals, the presence of which indicates the potential presence of pathogenic microorganisms capable of producing disease.

X. "Ephemeral" when used to describe a surface water of the state means a water body that flows only in direct response to precipitation or snowmelt in the immediate locality; its bed is always above the water table of the adjacent region.

Y. "Existing use" means a use actually attained in a surface water of the state on or after November 28, 1975, whether or not it is a designated use.

Z. "Fecal coliform bacteria" means the portion of the coliform group of bacteria present in the gut or the feces of warmblooded animals. It generally includes organisms capable of producing gas from lactose broth in a suitable culture medium within 24 hours at 44.5 ± 0.2 °C.

AA. "Fish culture" means production of coldwater or warmwater fishes in a hatchery or rearing station.

BB. "Fish early life stages" means the egg and larval stages of development of fish ending when the fish has its full complement of fin rays and loses larval characteristics.

CC. "High quality coldwater" in reference to an aquatic life use means a perennial surface water of the state in a minimally disturbed condition with considerable aesthetic value and superior coldwater aquatic life habitat. A surface water of the state to be so categorized must have water quality, stream bed characteristics and other attributes of habitat sufficient to protect and maintain a propagating coldwater aquatic life population.

DD. "Intermittent" when used to describe a surface water of the state means a water body that contains water only at certain times of the year, such as when it receives flow from springs, melting snow or precipitation.

EE. "Interstate waters" means all surface waters of the state that cross or form a part of the border between

FF. "Intrastate waters" means all surface waters of the state that are not interstate waters.

GG. "Irrigation" means application of water to land areas to supply the water needs of beneficial plants.

HH. "LC-50" means the concentration of a substance that is lethal to 50 percent of the test organisms within a

defined time period. The length of the time period, which may vary from 24 hours to one week or more, depends on the test method selected to yield the information desired.

II. "Limited aquatic life" as a designated use, means the surface water is capable of supporting only a limited community of aquatic life. This subcategory includes surface waters that support aquatic species selectively adapted to take advantage of naturally occurring rapid environmental changes, ephemeral or intermittent water, high turbidity, fluctuating temperature, low dissolved oxygen content or unique chemical characteristics.

JJ. "Livestock watering" means the use of a surface water of the state as a supply of water for consumption by livestock.

KK. "Marginal coldwater" in reference to an aquatic life use means that natural intermittent or low flows, or other natural habitat conditions severely limit maintenance of a coldwater aquatic life population or historical data indicate that the maximum temperature in the surface water of the state may exceed 25°C (77°F).

LL. "Marginal warmwater" in reference to an aquatic life use means natural intermittent or low flow or other natural habitat conditions severely limit the ability of the surface water of the state to sustain a natural aquatic life population on a continuous annual basis; or historical data indicate that natural water temperature routinely exceeds 32.2°C (90°F).

MM. "Micrograms per liter ($\mu g/L$)" means micrograms of solute per liter of solution; equivalent to parts per billion when the specific gravity of the solution = 1.000.

NN. "Milligrams per liter (mg/L)" means milligrams of solute per liter of solution; equivalent to parts per million when the specific gravity of the solution = 1.000.

OO. "Minimum quantification level" means the minimum quantification level for a constituent determined by official published documents of the United States environmental protection agency.

PP. "Natural causes" means those causal agents that would affect water quality and the effect is not caused by human activity but is due to naturally occurring conditions.

QQ. "Nonpoint source" means any source of pollutants not regulated as a point source that degrades the quality or adversely affects the biological, chemical or physical integrity of surface waters of the state.

RR. "NTU" means nephelometric turbidity units based on a standard method using formazin polymer or its equivalent as the standard reference suspension. Nephelometric turbidity measurements expressed in units of NTU are numerically identical to the same measurements expressed in units of FTU (formazin turbidity units).

SS. "Organoleptic" means the capability to produce a detectable sensory stimulus such as odor or taste.

TT. "Playa" means a shallow closed basin lake typically found in the high plains and deserts.

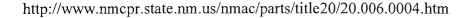
UU. "Perennial" when used to describe a surface water of the state means the water body contains water continuously throughout the year in all years; its upper surface, generally, is lower than the water table of the region adjoining the stream.

VV. "Picocurie (pCi)" means a measure of radioactivity equal to the quantity of a radioactive substance in which the rate of disintegrations is 2.22 per minute.

WW. "Point source" means any discernible, confined and discrete conveyance from which pollutants are or may be discharged into a surface water of the state, but does not include return flows from irrigated agriculture.

XX. "Practicable" means that which may be done, practiced or accomplished; that which is performable, feasible, possible.

YY. "Primary contact" means any recreational or other water use in which there is prolonged and intimate human contact with the water, such as swimming and water skiing, involving considerable risk of ingesting water in quantities sufficient to pose a significant health hazard. Primary contact also means any use of surface waters of the state for cultural, religious or ceremonial purposes in which there is intimate human contact with the water, including but not limited to ingestion or immersion, that could pose a significant health hazard.


ZZ. "Secondary contact" means any recreational or other water use in which human contact with the water may occur and in which the probability of ingesting appreciable quantities of water is minimal, such as fishing, wading, commercial and recreational boating and any limited seasonal contact.

AAA. "Segment" means a classified surface water of the state described in 20.6.4.101 through 20.6.4.899 NMAC. The water within a segment should have the same uses, similar hydrologic characteristics or flow regimes, and natural physical, chemical and biological characteristics and exhibit similar reactions to external stresses, such as the discharge of pollutants.

BBB. "Specific conductance" means conductivity adjusted to 25°C.

CCC. "State" means the state of New Mexico.

DDD. "Surface water(s) of the state" means all surface waters situated wholly or partly within or bordering upon the state, including lakes, rivers, streams (including intermittent streams), mudflats, sandflats, wetlands, sloughs, prairie potholes, wet meadows, playa lakes, reservoirs or natural ponds. Surface waters of the state also means all tributaries of such waters, including adjacent wetlands, any manmade bodies of water that were originally created in surface waters of the state or resulted in the impoundment of surface waters of the state, and any "waters of the United States" as defined under the Clean Water Act that are not included in the preceding description. Surface waters of the state does not include private waters that do not combine with other surface or subsurface water or any water under tribal regulatory jurisdiction pursuant to Section 518 of the Clean Water Act. Waste treatment systems, including treatment ponds or lagoons designed and actively

used to meet requirements of the Clean Water Act (other than cooling ponds as defined in 40 CFR Part 423.11(m) that also meet the criteria of this definition), are not surface waters of the state, unless they were originally created in surface waters of the state or resulted in the impoundment of surface waters of the state.

EEE. "TDS" means total dissolved solids, also termed "total filterable residue."

FFF. "Technology-based limitations" means the application of technology-based effluent limitations as required under Section 301(b) of the federal Clean Water Act.

GGG. "Total" means a constituent of a water sample that is analytically determined without filtration.

HHH. "Total PCBs" means the sum of all homolog, all isomer, all congener or all aroclor analyses.

III. **"Toxic pollutant**" means those pollutants, or combination of pollutants, including disease-causing agents, that after discharge and upon exposure, ingestion, inhalation or assimilation into any organism, either directly from the environment or indirectly by ingestion through food chains, will cause death, shortened life spans, disease, adverse behavioral changes, reproductive or physiological impairment or physical deformations in such organisms or their offspring.

JJJ. "Tributary" means a perennial, intermittent or ephemeral waterbody that flows into a larger waterbody, and includes a tributary of a tributary.

KKK. "Turbidity" is an expression of the optical property in water that causes incident light to be scattered or absorbed rather than transmitted in straight lines.

LLL. "Warmwater" with reference to an aquatic life use means that water temperature and other characteristics are suitable for the support or propagation or both of warmwater aquatic life.

MMM. "Water contaminant" means any substance that could alter if discharged or spilled the physical, chemical, biological or radiological qualities of water. "Water contaminant" does not mean source, special nuclear or by-product material as defined by the Atomic Energy Act of 1954, but may include all other radioactive materials, including but not limited to radium and accelerator-produced isotopes.

NNN. "Water pollutant" means a water contaminant in such quantity and of such duration as may with reasonable probability injure human health, animal or plant life or property, or to unreasonably interfere with the public welfare or the use of property.

OOO. "Water quality-based controls" means effluent limitations, as provided under Section 301(b)(1)(C) of the federal Clean Water Act, that are developed and imposed on point-source dischargers in order to protect and maintain applicable water quality standards. These controls are more stringent than the technology-based effluent limitations required under other paragraphs of Section 301(b).

PPP. "Wetlands" means those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions in New Mexico. Wetlands that are constructed outside of a surface water of the state for the purpose of providing wastewater treatment and that do not impound a surface water of the state are not included in this definition.

QQQ. "Wildlife habitat" means a surface water of the state used by plants and animals not considered as pathogens, vectors for pathogens or intermediate hosts for pathogens for humans or domesticated livestock and plants. [20.6.4.7 NMAC - Rp 20 NMAC 6.1.1007, 10-12-00; A, 7-19-01; A, 05-23-05; A, 07-17-05; A, 08-01-07]

20.6.4.8 ANTIDEGRADATION POLICY AND IMPLEMENTATION PLAN:

A. Antidegradation Policy: This antidegradation policy applies to all surface waters of the state.

(1) Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected in all surface waters of the state.

(2) Where the quality of a surface water of the state exceeds levels necessary to support the propagation of fish, shellfish, and wildlife, and recreation in and on the water, that quality shall be maintained and protected unless the commission finds, after full satisfaction of the intergovernmental coordination and public participation provisions of the state's continuing planning process, that allowing lower water quality is necessary to accommodate important economic and social development in the area in which the water is located. In allowing such degradation or lower water quality, the state shall assure water quality adequate to protect existing uses fully. Further, the state shall assure that there shall be achieved the highest statutory and regulatory requirements for all new and existing point sources and all cost-effective and reasonable BMPs for nonpoint source control. Additionally, the state shall encourage the use of watershed planning as a further means to protect surface waters of the state.

(3) No degradation shall be allowed in waters designated by the commission as outstanding national resource waters (ONRWs), except as provided in Subparagraphs (a) through (e) of this paragraph.

(a) Temporary and short-term degradation of water quality shall be allowed only when such degradation can be shown to result in restoration or maintenance of the chemical, physical or biological integrity of the ONRW and is consistent with the objectives in 20.6.4.6 NMAC and with the purposes for which the commission designated the ONRW.

(b) Temporary and short-term degradation of water quality that complies with Subparagraph (a) of this paragraph shall be limited to the shortest possible time and last no longer than 12 months, unless approved by the commission.

(c) Temporary and short-term degradation shall only be approved on a case-by-case basis by the commission, the department or a designated management agency as appropriate. Temporary and short-term degradation

resulting from applications under 20.6.4.16 NMAC shall be considered and may be approved by the commission. All other temporary and short-term degradation shall be considered and may be approved by the department or by a designated management agency pursuant to a commission-approved memorandum of agreement between the department and the designated management agency. In approving temporary and short-term degradation, the commission, the department or the designated management agency shall consider and minimize the frequency and cumulative effects of such degradation. The approval of temporary and short-term degradation shall not result in permanent degradation of water quality in the ONRW or in water quality lower than necessary to protect existing uses in the ONRW and shall not alter the essential character or special use that makes the water an ONRW.

(d) In implementing activities that may result in temporary and short-term degradation of water quality, all practical means of minimizing such temporary and short-term degradation shall be utilized.

(e) Preexisting land-use activities allowed by federal or state law prior to designation as an ONRW, and controlled by best management practices (BMPs), shall be allowed to continue so long as there are no new or increased discharges resulting from the activity after designation of the ONRW.

(4) In those cases where potential water quality impairment associated with a thermal discharge is involved, this antidegradation policy and implementing method shall be consistent with Section 316 of the federal Clean Water Act.

(5) In implementing this section, the commission through the appropriate regional offices of the United States environmental protection agency will keep the administrator advised and provided with such information concerning the surface waters of the state as he or she will need to discharge his or her responsibilities under the federal Clean Water Act.

B. Implementation Plan: The department, acting under authority delegated by the commission, implements the water quality standards, including the antidegradation policy, by describing specific methods and procedures in the continuing planning process and by establishing and maintaining controls on the discharge of pollutants to surface waters of the state. The steps summarized in the following paragraphs, which may not all be applicable in every water pollution control action, list the implementation activities of the department. These implementation activities are supplemented by detailed antidegradation review procedures developed under the state's continuing planning process. The department:

(1) obtains information pertinent to the impact of the effluent on the receiving water and advises the prospective discharger of requirements for obtaining a permit to discharge;

(2) reviews the adequacy of existing data and conducts a water quality survey of the receiving water in accordance with an annually reviewed, ranked priority list of surface waters of the state requiring total maximum daily loads pursuant to Section 303(d) of the federal Clean Water Act;

(3) assesses the probable impact of the effluent on the receiving water relative to its attainable or designated uses and numeric and narrative criteria;

(4) requires the highest and best degree of wastewater treatment practicable and commensurate with protecting and maintaining the designated uses and existing water quality of surface waters of the state;

(5) develops water quality based effluent limitations and comments on technology based effluent limitations, as appropriate, for inclusion in any federal permit issued to a discharger pursuant to Section 402 of the federal Clean Water Act;

(6) requires that these effluent limitations be included in any such permit as a condition for state certification pursuant to Section 401 of the federal Clean Water Act;

(7) coordinates its water pollution control activities with other constituent agencies of the commission, and with local, state and federal agencies, as appropriate;

(8) develops and pursues inspection and enforcement programs to ensure that dischargers comply with state regulations and standards, and complements EPA's enforcement of federal permits;

(9) ensures that the provisions for public participation required by the New Mexico Water Quality Act and the federal Clean Water Act are followed;

(10) provides continuing technical training for wastewater treatment facility operators through the utility operators training and certification programs;

(11) provides funds to assist the construction of publicly owned wastewater treatment facilities through the wastewater construction program authorized by Section 601 of the federal Clean Water Act, and through funds appropriated by the New Mexico legislature;

(12) conducts water quality surveillance of the surface waters of the state to assess the effectiveness of water pollution controls, determines whether water quality standards are being attained, and proposes amendments to improve water quality standards;

(13) encourages, in conjunction with other state agencies, implementation of the best management practices set forth in the New Mexico statewide water quality management plan and the nonpoint source management program, such implementation shall not be mandatory except as provided by federal or state law;

(14) evaluates the effectiveness of BMPs selected to prevent, reduce or abate sources of water pollutants;

(15) develops procedures for assessing use attainment as required by 20.6.4.15 NMAC and establishing sitespecific standards; and

(16) develops list of surface waters of the state not attaining designated uses, pursuant to Sections 305(b) and 303(d) of the federal Clean Water Act.

[20.6.4.8 NMAC - Rp 20 NMAC 6.1.1101, 10-12-00; A, 05-23-05; A, 08-01-07]

20.6.4.9

OUTSTANDING NATIONAL RESOURCE WATERS:

A. Procedures for nominating an ONRW: Any person may nominate a surface water of the state for designation as an ONRW by filing a petition with the commission pursuant to the *guidelines for water quality control commission regulation hearings*. A petition to classify a surface water of the state as an ONRW shall include:

(1) a map of the surface water of the state, including the location and proposed upstream and downstream boundaries;

(2) a written statement and evidence based on scientific principles in support of the nomination, including specific reference to one or more the applicable ONRW criteria listed in Subsection B of this section;

(3) water quality data including chemical, physical or biological parameters, if available, to establish a baseline condition for the proposed ONRW;

(4) a discussion of activities that might contribute to the reduction of water quality in the proposed ONRW;

(5) any additional evidence to substantiate such a designation, including a discussion of the economic impact

of the designation on the local and regional economy within the state of New Mexico and the benefit to the state; and (6) affidavit of publication of notice of the petition in a newspaper of general circulation in the affected

counties and in a newspaper of general statewide circulation.

B. Criteria for ONRWs: A surface water of the state, or a portion of a surface water of the state, may be designated as an ONRW where the commission determines that the designation is beneficial to the state of New Mexico, and:

(1) the water is a significant attribute of a state gold medal trout fishery, national or state park, national or state monument, national or state wildlife refuge or designated wilderness area, or is part of a designated wild river under the federal Wild and Scenic Rivers Act; or

(2) the water has exceptional recreational or ecological significance; or

(3) the existing water quality is equal to or better than the numeric criteria for protection of aquatic life uses, recreational uses and human health uses, and the water has not been significantly modified by human activities in a manner that substantially detracts from its value as a natural resource.

C. Pursuant to a petition filed under Subsection A of this section, the commission may classify a surface water of the state or a portion of a surface water of the state as an ONRW if the criteria set out in Subsection B of this section are met.

D. Waters classified as ONRWs: The following waters are classified as ONRWs:

(1) Rio Santa Barbara, including the west, middle and east forks from their headwaters downstream to the boundary of the Pecos Wilderness; and

(2) the waters within the United States forest service Valle Vidal special management unit including:

(a) Rio Costilla, including Comanche, La Cueva, Fernandez, Chuckwagon, Little Costilla, Holman, Gold, Grassy, LaBelle and Vidal creeks, from their headwaters downstream to the boundary of the United States forest service Valle Vidal special management unit;

(b) Middle Ponil creek, including the waters of Greenwood Canyon, from their headwaters downstream to the boundary of the Elliott S. Barker wildlife management area;

(c) Shuree lakes;

(d) North Ponil creek, including McCrystal and Seally Canyon creeks, from their headwaters

downstream to the boundary of the United States forest service Valle Vidal special management unit; and

(e) Leandro creek from its headwaters downstream to the boundary of the United States forest service Valle Vidal special management unit.

[20.6.4.9 NMAC - Rn, Subsections B, C and D of 20.6.4.8 NMAC, 05-23-05; A, 05-23-05; A, 07-17-05; A, 02-16-06]

20.6.4.10 REVIEW OF STANDARDS; NEED FOR ADDITIONAL STUDIES:

A. Section 303(c)(1) of the federal Clean Water Act requires that the state hold public hearings at least once every three years for the purpose of reviewing water quality standards and proposing, as appropriate, necessary revisions to water quality standards.

B. It is recognized that, in some cases, numeric criteria have been adopted that reflect use designations rather than existing conditions of surface waters of the state. Narrative criteria are required for many constituents because accurate data on background levels are lacking. More intensive water quality monitoring may identify surface waters of the state where existing quality is considerably better than the established criteria. When justified by sufficient data and information, the water quality criteria will be modified to protect the attainable uses.

C. It is also recognized that contributions of water contaminants by diffuse nonpoint sources of water pollution may make attainment of certain criteria difficult. Revision of these criteria may be necessary as new information is obtained on nonpoint sources and other problems unique to semi-arid regions.

[20.6.4.10 NMAC - Rp 20 NMAC 6.1.1102, 10-12-00; Rn, 20.6.4.9 NMAC, 05-23-05; A, 05-23-05]

20.6.4.11 APPLICABILITY OF WATER QUALITY STANDARDS:

A. Waters Created by Discharge: When a discharge to an otherwise ephemeral or intermittent, non-

classified surface water of the state causes a water to enter a surface water of the state with criteria that are more restrictive than the criteria listed in 20.6.4.97 or 20.6.4.98 NMAC, the more restrictive criteria shall apply at the point such a water enters the surface water of the state with the more restrictive criteria. If discharge to such otherwise ephemeral or intermittent, non-classified waters of the state ceases or is diverted elsewhere the criteria listed in 20.6.4.97 or 20.6.4.98 NMAC shall apply.

B. Critical Low Flow: The numeric standards set under Subsection F of 20.6.4.13 NMAC, 20.6.4.101 through 20.6.4.899 NMAC and 20.6.4.900 NMAC may not be attainable when streamflow is less than the critical low flow, but narrative criteria in 20.6.4.13 NMAC will continue to apply. The critical low flow of a stream at a particular site shall be:

(1) for human health criteria, the harmonic mean flow; "harmonic mean flow" is the number of daily flow measurements divided by the sum of the reciprocals of the flows; that is, it is the reciprocal of the mean of reciprocals; for ephemeral waters the calculation shall be based upon the nonzero flow intervals and modified by including a factor to adjust for the proportion of intervals with zero flow;

Harmonic Mean = $\frac{n}{\sum 1/Q}$

where n = number of flow values and Q = flow value

$$\left\| \frac{\sum_{i=1}^{Nt-No} \frac{1}{Qi}}{Nt-No} \right\|^{-1} x \left[\frac{Nt-No}{Nt} \right]$$

Modified Harmonic Mean = L

where,

and

Qi = nonzero flow Nt = total number of flow values N_0 = number of zero flow values

(2) for all other narrative and numeric criteria, the minimum average four consecutive day flow that occurs with a frequency of once in three years (4Q3); critical low-flow numeric values may be determined on an annual, a seasonal or a monthly basis, as appropriate, after due consideration of site-specific conditions.

C. Guaranteed Minimum Flow: The commission may allow the use of a contractually guaranteed minimum streamflow in lieu of a critical low flow determined under Subsection B of this section on a case-by-case basis and upon consultation with the interstate stream commission. Should drought, litigation or any other reason interrupt or interfere with minimum flows under a guaranteed minimum flow contract for a period of at least thirty consecutive days, such permission, at the sole discretion of the commission, may then be revoked. Any minimum flow specified under such revoked permission shall be superseded by a critical low flow determined under Subsection B of this section. A public notice of the request for a guaranteed minimum flow shall be published in a newspaper of general circulation by the department at least 30 days prior to scheduled action by the commission. These water quality standards do not grant to the commission or any other entity the power to create, take away or modify property rights in water.

D. Mixing Zones: A limited mixing zone, contiguous to a point source wastewater discharge, may be allowed in any stream receiving such a discharge. Mixing zones serve as regions of initial dilution that allow the application of a dilution factor in calculations of effluent limitations. Effluent limitations shall be developed that will protect the most sensitive existing, designated or attainable use of the receiving water.

E. Mixing Zone Limitations: Wastewater mixing zones, in which the numeric criteria set under Subsection F of 20.6.4.13 NMAC, 20.6.4.101 through 20.6.4.899 NMAC or 20.6.4.900 NMAC may be exceeded, shall be subject to the following limitations:

(1) Mixing zones are not allowed for discharges to publicly owned lakes, reservoirs, or playas; these effluents shall meet all applicable criteria set under Subsection F of 20.6.4.13 NMAC, 20.6.4.101 through 20.6.4.899 NMAC and 20.6.4.900 NMAC at the point of discharge.

(2) The acute numeric criteria, as set out in Paragraph (1) of Subsection I, Subsection J, and Subsection K of 20.6.4.900 NMAC, shall be attained at the point of discharge for any discharge to a surface water of the state with a designated aquatic life use.

(3) The general criteria set out in Subsections A, B, C, D, E, G, H and J of 20.6.4.13 NMAC, and the provision set out in Subsection D of 20.6.4.14 NMAC are applicable within mixing zones.

(4) The areal extent and concentration isopleths of a particular mixing zone will depend on site-specific conditions including, but not limited to, wastewater flow, receiving water critical low flow, outfall design, channel characteristics and climatic conditions and, if needed, shall be determined on a case-by-case basis. When the physical boundaries or other characteristics of a particular mixing zone must be known, the methods presented in Section 4.4.5,

"Ambient-induced mixing," in "Technical support document for water quality-based toxics control" (March 1991, EPA/505/2-90-001) shall be used.

(5) All applicable water quality criteria set under Subsection F of 20.6.4.13 NMAC, 20.6.4.101 through 20.6.4.899 NMAC and 20.6.4.900 NMAC, shall be attained at the boundaries of mixing zones. A continuous zone of passage through or around the mixing zone shall be maintained in which the water quality meets all applicable criteria and allows the migration of aquatic life presently common in surface waters of the state with no effect on their populations.

Multiple Uses: When a classified water of the state has more than a single designated use, the applicable F. numeric criteria shall be the most stringent of those established for such classified water.

Human health criteria in Subsection J of Section 20.6.4.900 NMAC shall apply to those waters with a G. designated, existing or attainable aquatic life use. When limited aquatic life is a designated use, the human health criteria shall apply only if adopted on a segment-specific basis. The human health criteria for persistent toxic pollutants, as identified in Subsection J of Section 20.6.4.900 NMAC, shall also apply to all tributaries of waters with a designated, existing or attainable aquatic life use.

Aquatic Life: Aquatic life criteria shall apply to all surface waters of the state containing an aquatic life H. community. Except when a limited aquatic life use and specific criteria have been designated on a segment-specific basis, or when otherwise provided in this part, chronic aquatic life criteria listed in Subsection J of 20.6.4.900 NMAC are applicable to all perennial surface waters of the state, and acute aquatic life criteria listed in Subsection J of 20.6.4.900 NMAC are applicable to all surface waters of the state.

Exceptions: Numeric criteria for temperature, dissolved solids, dissolved oxygen, sediment or turbidity Ĩ. adopted under the Water Quality Act do not apply when changes in temperature, dissolved solids, dissolved oxygen, sediment or turbidity in a surface water of the state are attributable to:

(1) natural causes (discharges from municipal separate storm sewers are not covered by this exception.); or

the reasonable operation of irrigation and flood control facilities that are not subject to federal or state (2) water pollution control permitting; major reconstruction of storage dams or division dams except for emergency actions necessary to protect health and safety of the public are not covered by this exception.

[20.6.4.11 NMAC - Rp 20 NMAC 6.1.1103, 10-12-00; A, 10-11-02; Rn, 20.6.4.10 NMAC, 05-23-05; A, 05-23-05]

COMPLIANCE WITH WATER QUALITY STANDARDS: The following provisions apply to 20.6.4.12 determining compliance for enforcement purposes; they do not apply for purposes of determining attainment of uses. The department has developed assessment protocols for the purpose of determining attainment of uses that are available for review from the department's surface water quality bureau.

Compliance with acute water quality criteria shall be determined from the analytical results of a single A. grab sample. Acute criteria shall not be exceeded.

Compliance with chronic water quality criteria shall be determined from the arithmetic mean of the В. analytical results of samples collected using applicable protocols. Chronic criteria shall not be exceeded more than once every three years.

C. Compliance with water quality standards for total ammonia shall be determined by performing the biomonitoring procedures set out in Subsections D and E of 20.6.4.14 NMAC, or by attainment of applicable ammonia criteria set out in Subsections K, L and M of 20.6.4.900 NMAC.

Compliance with water quality criteria for the protection of human health shall be determined from the D. analytical results of representative grab samples, as defined in the water quality management plan. Human health criteria shall not be exceeded.

The commission may establish a numeric water quality standard at a concentration that is below the Ε. minimum quantification level. In such cases, the water quality standard is enforceable at the minimum quantification level.

In determining compliance with criteria for chromium an analysis that measures both the trivalent and F. hexavalent ions shall be used. For compliance with hardness-dependent numeric criteria, hardness (as mg CaCO₃/L) shall be

G.

determined from a sample taken at the same time that the sample for the water contaminant is taken.

The hardness-dependent formulae for metals shall be valid only for hardness values of 0-400 mg/L. For H. values above 400 mg/L, the value for 400 mg/L shall apply.

The total ammonia tables shall be valid only for temperatures of 0 to 30°C and for pH values of 6.5 to I. 9.0. For temperatures below 0°C, the total ammonia criteria for 0°C shall apply; for temperatures above 30°C, the total ammonia criteria for 30°C shall apply. For pH values below 6.5, the total ammonia criteria for 6.5 shall apply; for pH values above 9.0, the total ammonia criteria for 9.0 shall apply.

J. Compliance Schedules: It shall be the policy of the commission to allow on a case-by-case basis the inclusion of a schedule of compliance in a NPDES permit issued to an existing facility. Such schedule of compliance will be for the purpose of providing a permittee with adequate time to make treatment facility modifications necessary to comply with water quality based permit limitations determined to be necessary to implement new or revised water quality standards. Compliance schedules may be included in NPDES permits at the time of permit renewal or modification and shall be written to require compliance at the earliest practicable time. Compliance schedules shall also specify milestone dates so as to measure progress towards final project completion (e.g., design completion, construction start, construction completion, date

http://www.nmcpr.state.nm.us/nmac/parts/title20/20.006.0004.htm

of compliance).

[20.6.4.12 NMAC - Rp 20 NMAC 6.1.1104, 10-12-00; A, 10-11-02; Rn, 20.6.4.11 NMAC, 05-23-05; A, 05-23-05]

GENERAL CRITERIA: General criteria are established to sustain and protect existing or attainable uses 20.6.4.13 of surface waters of the state. These general criteria apply to all surface waters of the state at all times, unless a specified criterion is provided elsewhere in this part. Surface waters of the state shall be free of any water contaminant in such quantity and of such duration as may with reasonable probability injure human health, animal or plant life or property, or unreasonably interfere with the public welfare or the use of property.

Bottom Deposits and Suspended or Settleable Solids: Α.

Surface waters of the state shall be free of water contaminants including fine sediment particles (less than (1)two millimeters in diameter), precipitates or organic or inorganic solids from other than natural causes that have settled to form layers on or fill the interstices of the natural or dominant substrate in quantities that damage or impair the normal growth, function or reproduction of aquatic life or significantly alter the physical or chemical properties of the bottom.

Suspended or settleable solids from other than natural causes shall not be present in surface waters of the (2) state in quantities that damage or impair the normal growth, function or reproduction of aquatic life or adversely affect other designated uses.

В. Floating Solids, Oil and Grease: Surface waters of the state shall be free of oils, scum, grease and other floating materials resulting from other than natural causes that would cause the formation of a visible sheen or visible deposits on the bottom or shoreline, or would damage or impair the normal growth, function or reproduction of human, animal, plant or aquatic life.

Color: Color-producing materials resulting from other than natural causes shall not create an С. aesthetically undesirable condition nor shall color impair the use of the water by desirable aquatic life presently common in surface waters of the state.

D. **Organoleptic Quality:**

Flavor of Fish: Water contaminants from other than natural causes shall be limited to concentrations that (1) will not impart unpalatable flavor to fish.

(2)Odor and Taste of Water: Water contaminants from other than natural causes shall be limited to concentrations that will not result in offensive odor or taste arising in a surface water of the state or otherwise interfere with the reasonable use of the water.

Plant Nutrients: Plant nutrients from other than natural causes shall not be present in concentrations E that will produce undesirable aquatic life or result in a dominance of nuisance species in surface waters of the state. F.

Toxic Pollutants:

(1) Except as provided in 20.6.4.16 NMAC, surface waters of the state shall be free of toxic pollutants from other than natural causes in amounts, concentrations or combinations that affect the propagation of fish or that are toxic to humans, livestock or other animals, fish or other aquatic organisms, wildlife using aquatic environments for habitation or aquatic organisms for food, or that will or can reasonably be expected to bioaccumulate in tissues of fish, shellfish and other aquatic organisms to levels that will impair the health of aquatic organisms or wildlife or result in unacceptable tastes, odors or health risks to human consumers of aquatic organisms.

(2) Pursuant to this section, the human health criteria shall be as set out in 20.6.4.900 NMAC. For a toxic pollutant for human health not listed in 20.6.4.900 NMAC, the following provisions shall be applied in accordance with 20.6.4.11, 20.6.4.12 and 20.6.4.14 NMAC.

The human health criterion shall be the recommended human health criterion for "consumption of (a) organisms only" published by the U.S. environmental protection agency pursuant to Section 304(a) of the federal Clean Water Act. In determining such criterion for a cancer-causing toxic pollutant, a cancer risk of 10⁻⁵ (one cancer per 100,000) exposed persons) shall be used.

(b) When a numeric criterion for the protection of human health has not been published by the U.S. environmental protection agency, a quantifiable criterion may be derived from data available in the U.S. environmental protection agency's Integrated Risk Information System (IRIS) using the appropriate formula specified in methodology for deriving ambient water quality criteria for the protection of human health (2000), EPA-822-B-00-004.

(3) Pursuant to this section, the chronic aquatic life standard shall be as set out in 20.6.4.900 NMAC. For a toxic pollutant for aquatic life with no chronic standard listed in 20.6.4.900 NMAC, the following provisions shall be applied in sequential order in accordance with 20.6.4.11, 20.6.4.12 and 20.6.4.14 NMAC.

The chronic aquatic life criterion shall be the "freshwater criterion continuous concentration" (a) published by the U.S. environmental protection agency pursuant to Section 304(a) of the federal Clean Water Act:

(b) If the U.S. environmental protection agency has not published a chronic aquatic life criterion, a geometric mean LC-50 value shall be calculated for the particular species, genus or group that is representative of the form of life to be preserved, using the results of toxicological studies published in scientific journals.

(i) The chronic aquatic life criterion for a toxic pollutant that does not bioaccumulate shall be 10 percent of the calculated geometric mean LC-50 value; and

(ii) The chronic aquatic life criterion for a toxic pollutant that does bioaccumulate shall be: the calculated geometric mean LC-50 adjusted by a bioaccumulation factor for the particular species, genus or group

representative of the form of life to be preserved, but when such bioaccumulation factor has not been published, the criterion shall be one percent of the calculated geometric mean LC-50 value.

(4) Pursuant to this section, the acute aquatic life criteria shall be as set out in 20.6.4.900 NMAC. For a toxic pollutant for aquatic life with no acute criterion listed in 20.6.4.900 NMAC, the acute aquatic life criterion shall be the "freshwater criterion maximum concentration" published by the U.S. environmental protection agency pursuant to Section 304(a) of the federal Clean Water Act.

(5) Within 90 days of the issuance of a final NPDES permit containing a numeric criterion selected or calculated pursuant to Paragraph 2, Paragraph 3 or Paragraph 4 of Subsection F of this section, the department shall petition the commission to adopt such criterion into these standards.

G. Radioactivity: The radioactivity of surface waters of the state shall be maintained at the lowest practical level and shall in no case exceed the criteria set forth in the New Mexico Radiation Protection Regulations, 20.3.1 and 20.3.4 NMAC.

H. Pathogens: Surface waters of the state shall be free of pathogens from other than natural sources in sufficient quantity to impair public health or the designated, existing or attainable uses of a surface water of the state.

I. Temperature: Maximum temperatures for each classified water of the state have been specified in 20.6.4.101 through 20.6.4.899 NMAC. However, the introduction of heat by other than natural causes shall not increase the temperature, as measured from above the point of introduction, by more than $2.7^{\circ}C$ (5°F) in a stream, or more than $1.7^{\circ}C$ (3° F) in a lake or reservoir. In no case will the introduction of heat be permitted when the maximum temperature specified for the reach would thereby be exceeded. These temperature criteria shall not apply to impoundments constructed offstream for the purpose of heat disposal. High water temperatures caused by unusually high ambient air temperatures are not violations of these standards.

J. Turbidity: Turbidity attributable to other than natural causes shall not reduce light transmission to the point that the normal growth, function or reproduction of aquatic life is impaired or that will cause substantial visible contrast with the natural appearance of the water. Turbidity shall not exceed 10 NTU over background turbidity when the background turbidity is 50 NTU or less, or increase more than 20 percent when the background turbidity is more than 50 NTU. Background turbidity shall be measured at a point immediately upstream of the turbidity-causing activity. However, limited-duration activities necessary to accommodate dredging, construction or other similar activities and that cause the criterion to be exceeded may be authorized provided all practicable turbidity control techniques have been applied and all appropriate permits and approvals have been obtained.

K. Total Dissolved Solids (TDS): TDS attributable to other than natural causes shall not damage or impair the normal growth, function or reproduction of animal, plant or aquatic life. TDS shall be measured by either the "calculation method" (sum of constituents) or the filterable residue method. Approved test procedures for these determinations are set forth in 20.6.4.14 NMAC.

L. Dissolved Gases: Surface waters of the state shall be free of nitrogen and other dissolved gases at levels above 110 percent saturation when this supersaturation is attributable to municipal, industrial or other discharges. [20.6.4.13 NMAC - Rp 20 NMAC 6.1.1105, 10-12-00; A, 10-11-02; Rn, 20.6.4.12 NMAC, 05-23-05; A, 05-23-05]

20.6.4.14 SAMPLING AND ANALYSIS:

A. Sampling and analytical techniques shall conform with methods described in the following references unless otherwise specified by the commission pursuant to a petition to amend these standards:

(1) "guidelines establishing test procedures for the analysis of pollutants under the Clean Water Act," 40 CFR Part 136 or any test procedure approved or accepted by EPA using procedures provided in 40 CFR Parts 136.3(d), 136.4, and 136.5;

(2) standard methods for the examination of water and wastewater, latest edition, American public health association;

(3) *methods for chemical analysis of water and waste*, and other methods published by EPA office of research and development or office of water;

(4) techniques of water resource investigations of the U.S. geological survey;

(5) annual book of ASTM standards: volumes 11.01 and 11.02, water (I) and (II), latest edition, ASTM

international;
 (6) *federal register*, latest methods published for monitoring pursuant to Resource Conservation and Recovery Act regulations;

(7) national handbook of recommended methods for water-data acquisition, latest edition, prepared cooperatively by agencies of the United States government under the sponsorship of the U.S. geological survey; or
 (8) federal register, latest methods published for monitoring pursuant to the Safe Drinking Water Act

regulations.

B. Bacteriological Surveys: The monthly geometric mean shall be used in assessing attainment of criteria when a minimum of five samples is collected in a 30-day period.

C. Sampling Procedures:

(1) Streams: Stream monitoring stations below discharges shall be located a sufficient distance downstream to ensure adequate vertical and lateral mixing.

(2) Lakes: Sampling stations in lakes shall be located at least 250 feet from a discharge.

(3) Lakes: Except for the restriction specified in Paragraph (2) of this subsection, lake sampling stations shall be located at any site where the attainment of a water quality standard is to be assessed. Water quality measurements taken at intervals in the entire water column at a sampling station shall be averaged for the epilimnion, or in the absence of an epilimnion, for the upper one-third of the water column of the lake to determine attainment of criteria, except that attainment of criteria for toxic pollutants shall be assessed during periods of complete vertical mixing, e.g., during spring or fall turnover, or by taking depth-integrated composite samples of the water column.

D. Acute toxicity of effluent to aquatic life shall be determined using the procedures specified in U.S. environmental protection agency "methods for measuring the acute toxicity of effluents to freshwater and marine organisms" (5th Ed., 2002, EPA 821-R-02-012), or latest edition thereof if adopted by EPA at 40 CFR Part 136, which is incorporated herein by reference. Acute toxicities of substances shall be determined using at least two species tested in whole effluent and a series of effluent dilutions. Acute toxicity due to discharges shall not occur within the wastewater mixing zone in any surface water of the state with an existing or designated aquatic life use.

E. Chronic toxicity of effluent or ambient surface waters of the state to aquatic life shall be determined using the procedures specified in U.S. environmental protection agency "Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms" (4th Ed., 2002, EPA 821-R-02-013), or latest edition thereof if adopted by EPA at 40 CFR Part 136, which is incorporated herein by reference. Chronic toxicities of substances shall be determined using at least two species tested in ambient surface water or whole effluent and a series of effluent dilutions. Chronic toxicity due to discharges shall not occur at the critical low flow, or any flow greater than the critical low flow, in any surface water of the state with an existing or designated aquatic life use more than once every three years. [20.6.4.14 NMAC - Rp 20 NMAC 6.1.1106, 10-12-00; Rn, 20.6.4.13 NMAC, 05-23-05, A, 05-23-05]

20.6.4.15 USE ATTAINABILITY ANALYSIS:

A. A use attainability analysis is a scientific study that shall be conducted only for the purpose of assessing the factors affecting the attainment of a use. Whenever a use attainability analysis is conducted, it shall be subject to the requirements and limitations set forth in 40 CFR Part 131, Water Quality Standards; specifically, Subsections 131.3(g), 131.10(g), 131.10(h) and 131.10(j) shall be applicable.

(1) Any person who proposes to classify, or reclassify to a designated use with less stringent criteria, a surface water of the state with designated uses that do not include the uses specified in Section 101(a)(2) of the federal Clean Water Act must conduct a use attainability analysis. Section 101(a)(2) uses are also specified in Subsection B of 20.6.4.6 NMAC.

(2) A designated use cannot be removed if it is an existing use.

(3) A use attainability analysis or an equivalent study approved by the department and the regional administrator must be conducted to remove any non-existing designated use from any classified waters of the state.

B. Physical, chemical and biological evaluations of surface waters of the state other than lakes and reservoirs for purposes of use attainability analyses or equivalent studies shall be conducted according to the procedures outlined in the *"technical support manual: waterbody surveys and assessments for conducting use attainability analyses,"* United States environmental protection agency, office of water, regulations and standards, Washington, D.C., November 1983, or latest edition thereof, which is incorporated herein by reference, or an alternative equivalent study methodology approved by the department.

C. Physical, chemical and biological evaluations of lakes and reservoirs for purposes of use attainability analyses or equivalent studies shall be conducted according to the procedures outlined in the "technical support manual: waterbody surveys and assessments for conducting use attainability analyses, volumeIII: lake systems," United States environmental protection agency, office of water, regulations and standards, Washington, D.C., November 1984, or latest edition thereof, which is incorporated herein by reference, or an alternative equivalent study methodology approved by the department.

D. A use attainability analysis or equivalent study should include:

(1) identification of existing uses of the surface water of the state to be reviewed that have existed since 1975;

(2) an evaluation of the best water quality attained in the surface water of the state to be reviewed that has existed since 1975;

(3) an analysis of appropriate factors demonstrating that attaining the designated use is not feasible because of the condition listed in 40 CFR Part 131.10(g);

(4) a physical evaluation of the surface water of the state to be reviewed to identify factors that impair attainment of designated uses and to determine which designated uses are feasible to attain in such surface water of the state;

(5) an evaluation of the water chemistry of the surface water of the state to be reviewed to identify chemical constituents that impair the designated uses that are feasible to attain in such water; and

(6) an evaluation of the aquatic and terrestrial biota utilizing the surface water of the state to determine resident species and which species could potentially exist in such water if physical and chemical factors impairing a designated use are corrected.

E. Any person may submit notice to the department stating that they intend to conduct a use attainability analysis or equivalent study. The proponent shall develop a work plan to conduct the use attainability analysis or equivalent study and shall submit the work plan to the department and the regional EPA staff for review and comment. The work plan

should identify the scope of data currently available and proposed to be gathered, the factors affecting use attainment that will be analyzed and must contain provisions for public notice and consultation with appropriate state and federal agencies. A copy of the notice and the work plan must be submitted concurrently to the commission. Upon approval of the work plan by the department, the proponent shall conduct the use attainability analysis or equivalent study in accordance with the approved work plan. The cost of such analysis or equivalent study shall be the responsibility of the proponent. Upon completion of the use attainability analysis or equivalent study, the proponent shall submit the data, findings and conclusions to the department and the commission.

F. If the department determines that the analysis or equivalent study was conducted in accordance with the approved work plan and the findings and conclusions are based upon sound scientific rationale, and demonstrates that it is not feasible to attain the designated use, the department or the proponent may request the commission to initiate rulemaking proceedings to modify the designated use for the surface water of the state that was reviewed. [20.6.4.15 NMAC - Rp 20 NMAC 6.1.1107, 10-12-00; Rn, 20.6.4.14 NMAC, 05-23-05; A, 05-23-05; A, 07-17-05]

20.6.4.16 PLANNED USE OF A PISCICIDE: The use of a piscicide registered under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), 7 U.S.C. Section 136 *et seq.*, and under the New Mexico Pesticide Control Act (NMPCA), Section 76-4-1 *et seq.* NMSA 1978 (1973) in a surface water of the state, shall not be a violation of Subsection F of 20.6.4.13 NMAC when such use has been approved by the commission under procedures provided in this section. The commission may approve the reasonable use of a piscicide under this section to further a Clean Water Act objective to restore and maintain the physical or biological integrity of surface waters of the state, including restoration of native species.

A. Any person seeking commission approval of the use of a piscicide shall file a written petition concurrently with the commission and the surface water bureau of the department. The petition shall contain, at a minimum, the following information:

(1) petitioner's name and address;

(2) identity of the piscicide and the period of time (not to exceed five years) or number of applications for which approval is requested;

(3) documentation of registration under FIFRA and NMPCA and certification that the petitioner intends to use the piscicide according to the label directions, for its intended function;

(4) target and potential non-target species in the treated waters and adjacent riparian area, including threatened or endangered species;

(5) potential environmental consequences to the treated waters and the adjacent riparian area, and protocols for limiting such impacts;

- (6) surface water of the state proposed for treatment;
- (7) results of pre-treatment survey;
- (8) evaluation of available alternatives and justification for selecting piscicide use;
- (9) post-treatment assessment monitoring protocol; and
- (10) any other information required by the commission.

B. Within thirty days of receipt of the petition, the department shall review the petition and file a

recommendation with the commission to grant, grant with conditions or deny the petition. The recommendation shall include reasons, and a copy shall be sent to the petitioner by certified mail.

C. The commission shall review the petition and the department's recommendation and shall within 90 days of receipt of the department's recommendation hold a public hearing in the locality affected by the proposed use in accordance with Adjudicatory Procedures, 20.1.3 NMAC. In addition to the public notice requirements in Adjudicatory Procedures, 20.1.3 NMAC, the petitioner shall provide written notice to:

- (1) local political subdivisions;
- (2) local water planning entities;
- (3) local conservancy and irrigation districts; and

(4) local media outlets, except that the petitioner shall only be required to publish notice in a newspaper of circulation in the locality affected by the proposed use.

D. In a hearing provided for in this Section, registration of a piscicide under FIFRA and NMPCA shall provide a rebuttable presumption that the determinations of the EPA Administrator in registering the piscicide, as outlined in 7 U.S.C. Section 136a(c)(5), are valid. For purposes of this Section the rebuttable presumptions regarding the piscicide include:

(1) Its composition is such as to warrant the proposed claims for it;

(2) Its labeling and other material submitted for registration comply with the requirements of FIFRA and NMPCA;

(3) It will perform its intended function without unreasonable adverse effects on the environment; and

(4) When used in accordance with all FIFRA label requirements it will not generally cause unreasonable adverse effects on the environment.

(5) "Unreasonable adverse effects on the environment" has the meaning provided in FIFRA, 7 U.S.C. Section 136(bb): "any unreasonable risk to man or the environment, taking into account the economic, social, and environmental costs and benefits of the use of any pesticide."

E. After a public hearing, the commission may grant the petition in whole or in part, may grant the petition subject to conditions, or may deny the petition. In granting any petition in whole or part or subject to conditions, the commission shall require the petitioner to implement post-treatment assessment monitoring and provide notice to the public in the immediate and near downstream vicinity of the application prior to and during the application. [20.6.4.16 NMAC - Rn, Paragraph (6) of Subsection F of 20.6.4.12 NMAC, 05-23-05; A, 05-23-05]

20.6.4.17 - 20.6.4.49: [RESERVED]

20.6.4.50 BASINWIDE PROVISIONS - Special provisions arising from interstate compacts, international treaties or court decrees or that otherwise apply to a basin are contained in 20.6.4.51 through 20.6.4.59 NMAC. [20.6.4.50 NMAC - N, 05-23-05]

20.6.4.51 - 20.6.4.53: [RESERVED]

20.6.4.54 COLORADO RIVER BASIN - For the tributaries of the Colorado river system, the state of New Mexico will cooperate with the Colorado river basin states and the federal government to support and implement the salinity policy and program outlined in the most current "review, water quality standards for salinity, Colorado river system" or equivalent report by the Colorado river salinity control forum.

A. Numeric criteria expressed as the flow-weighted annual average concentration for salinity are established at three points in the Colorado river basin as follows: below Hoover dam, 723 mg/L; below Parker dam, 747 mg/L; and at Imperial dam, 879 mg/L.

B. As a part of the program, objectives for New Mexico shall include the elimination of discharges of water containing solids in solution as a result of the use of water to control or convey fly ash from coal-fired electric generators, wherever practicable.

[20.6.4.54 NMAC - Rn, Paragraphs (1) through (3) of Subsection K of 20.6.4.12 NMAC, 05-23-05; A, 05-23-05]

20.6.4.55 - 20.6.4.96: [RESERVED]

20.6.4.97 EPHEMERAL WATERS - All ephemeral surface waters of the state that are not included in a classified water of the state in 20.6.4.101 through 20.6.4.899 NMAC.

A. Designated Uses: livestock watering, wildlife habitat, limited aquatic life and secondary contact.

B. Criteria:

(1) The use-specific criteria in 20.6.4.900 NMAC, with the exception of the chronic criteria for aquatic life, are applicable for the designated uses listed in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria shall not exceed 548 cfu/100 mL, no single sample shall exceed 2507 cfu/100 mL (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.97 NMAC - N, 05-23-05]

20.6.4.98 INTERMITTENT WATERS - All intermittent surface waters of the state that are not included in a classified water of the state in 20.6.4.101 through 20.6.4.899 NMAC.

A. Designated Uses: livestock watering, wildlife habitat, aquatic life and secondary contact.

B. Criteria:

(1) The use-specific criteria in 20.6.4.900 NMAC.

(2) The monthly geometric mean of E. coli bacteria shall not exceed 548 cfu/100 mL, no single sample shall exceed 2507 cfu/100 mL (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.98 NMAC - N, 05-23-05]

20.6.4.99 PERENNIAL WATERS - All perennial surface waters of the state that are not included in a classified water of the state in 20.6.4.101 through 20.6.4.899 NMAC.

A. Designated Uses: aquatic life, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) Temperature shall not exceed 34°C (93.2°F). The use-specific criteria in 20.6.4.900 NMAC are applicable to the designated uses listed in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria shall not exceed 548 cfu/100 mL, no single sample shall exceed 2507 cfu/100 mL (see Subsection B of 20.6.4.14 NMAC). [20.6.4.99 NMAC - N, 05-23-05]

20.6.4.100: [RESERVED]

20.6.4.101 RIO GRANDE BASIN - The main stem of the Rio Grande from the international boundary with Mexico upstream to one mile below Percha dam.

A. Designated Uses: irrigation, marginal warmwater aquatic life, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: pH: within the range of 6.6 to 9.0 and temperature $34^{\circ}C$ (93.2°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL (see Subsection B of 20.6.4.14 NMAC).

(3) At mean monthly flows above 350 cfs, the monthly average concentration for: TDS 2,000 mg/L or less, sulfate 500 mg/L or less and chlorides 400 mg/L or less.

C. Remarks: Sustained flow in the Rio Grande below Caballo reservoir is dependent on release from Caballo reservoir during the irrigation season; at other times of the year, there may be little or no flow. [20.6.4.101 NMAC - Rp 20 NMAC 6.1.2101, 10-12-00; A, 12-15-01; A, 05-23-05]

20.6.4.102 RIO GRANDE BASIN - The main stem of the Rio Grande from one mile below Percha dam upstream to Caballo dam.

A. Designated Uses: irrigation, livestock watering, wildlife habitat, primary contact and warmwater aquatic life.

B. Criteria:

(1) At any sampling site: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

C. Remarks: Sustained flow in the Rio Grande below Caballo reservoir is dependent on release from Caballo reservoir during the irrigation season; at other times of the year, there may be little or no flow. [20.6.4.102 NMAC - Rp 20 NMAC 6.1.2102, 10-12-00; A, 05-23-05]

20.6.4.103 RIO GRANDE BASIN - The main stem of the Rio Grande from the headwaters of Caballo reservoir upstream to Elephant Butte dam and perennial reaches of tributaries to the Rio Grande in Sierra and Socorro counties.

A. Designated Uses: fish culture, irrigation, livestock watering, wildlife habitat, marginal coldwater aquatic life, secondary contact and warmwater aquatic life.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 25°C (77°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 548 cfu/100 mL or less, single sample 2507 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

C. Remarks: Flow in this reach of the Rio Grande main stem is dependent upon release from Elephant Butte dam.

[20.6.4.103 NMAC - Rp 20 NMAC 6.1.2103, 10-12-00; A, 05-23-05]

20.6.4.104 RIO GRANDE BASIN - Caballo and Elephant Butte reservoir.

A. Designated Uses: irrigation storage, livestock watering, wildlife habitat, primary contact and warmwater aquatic life.

B. Criteria:

(1) At any sampling site: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.104 NMAC - Rp 20 NMAC 6.1.2104, 10-12-00; A, 05-23-05]

20.6.4.105 RIO GRANDE BASIN - The main stem of the Rio Grande from the headwaters of Elephant Butte reservoir upstream to Alameda bridge (Corrales bridge) and intermittent water below the perennial reaches of the Rio Puerco that enters the main stem of the Rio Grande.

A. Designated Uses: irrigation, marginal warmwater aquatic life, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The use-

specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

(3) At mean monthly flows above 100 cfs, the monthly average concentration for: TDS 1,500 mg/L or less, sulfate 500 mg/L or less and chloride 250 mg/L or less.

[20.6.4.105 NMAC - Rp 20 NMAC 6.1.2105, 10-12-00; A, 05-23-05]

20.6.4.106 RIO GRANDE BASIN - The main stem of the Rio Grande from Alameda bridge (Corrales bridge) upstream to the Angostura diversion works and intermittent water in the Jemez river below the Jemez pueblo boundary that enters the main stem of the Rio Grande.

A. Designated Uses: irrigation, marginal warmwater aquatic life, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: dissolved oxygen greater than 5.0 mg/L, pH within the range of 6.6 to 9.0 and temperature less than 32.2°C (90°F). The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

(3) At mean monthly flows above 100 cfs, the monthly average concentration for: TDS 1,500 mg/L or less, sulfate 500 mg/L or less and chloride 250 mg/L or less.

[20.6.4.106 NMAC - Rp 20 NMAC 6.1.2105.1, 10-12-00; A, 05-23-05]

20.6.4.107 RIO GRANDE BASIN - The Jemez river from the Jemez pueblo boundary upstream to Soda dam near the town of Jemez Springs and perennial reaches of Vallecito creek.

A. Designated Uses: coldwater aquatic life, primary contact, irrigation, livestock watering and wildlife

habitat.

B. Criteria:

(1) In any single sample: temperature 25°C (77°F) and pH within the range of 6.6 to 8.8. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.107 NMAC - Rp 20 NMAC 6.1.2105.5, 10-12-00; A, 05-23-05]

20.6.4.108 RIO GRANDE BASIN - Perennial reaches of the Jemez river and all its tributaries above Soda dam near the town of Jemez Springs, except Sulphur creek above its confluence with Redondo creek, and perennial reaches of the Guadalupe river and all its tributaries.

A. Designated Uses: domestic water supply, fish culture, high quality coldwater aquatic life, irrigation, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: specific conductance 400 μ mhos/cm or less, pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.108 NMAC - Rp 20 NMAC 6.1.2106, 10-12-00; A, 05-23-05]

[NOTE: The segment covered by this section was divided effective 05-23-05. The standards for the additional segment are under 20.6.4.124 NMAC.]

20.6.4.109 RIO GRANDE BASIN - Perennial reaches of Bluewater creek, Rio Moquino, Seboyeta creek, Rio Paguate, the Rio Puerco above the village of Cuba and all other perennial reaches of tributaries to the Rio Puerco including the Rio San Jose in Cibola county from the USGS gaging station at Correo upstream to Horace springs.

A. Designated Uses: coldwater aquatic life, domestic water supply, fish culture, irrigation, livestock watering, wildlife habitat and primary contact.

B. Criteria:

(1) In any single sample: pH shall be within the range of 6.6 to 8.8, temperature $20^{\circ}C$ (68°F) or less and total phosphorus (as P) 0.1 mg/L. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

B.

[20.6.4.109 NMAC - Rp 20 NMAC 6.1.2107, 10-12-00; A, 05-23-05]

20.6.4.110 RIO GRANDE BASIN - The main stem of the Rio Grande from Angostura diversion works upstream to Cochiti dam.

A. Designated Uses: irrigation, livestock watering, wildlife habitat, secondary contact, coldwater aquatic life and warmwater aquatic life.

Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 25°C (77°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.110 NMAC - Rp 20 NMAC 6.1.2108, 10-12-00; A, 05-23-05]

20.6.4.111 RIO GRANDE BASIN - Perennial reaches of Las Huertas creek.

A. Designated Uses: high quality coldwater aquatic life, irrigation, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 8.8 and temperature 25°C (77°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.111 NMAC - Rp 20 NMAC 6.1.2108.5, 10-12-00; A, 7-25-01; A, 05-23-05]

[NOTE: The segment covered by this section was divided effective 05-23-05. The standards for the additional segment are under 20.6.4.125 NMAC.]

20.6.4.112 RIO GRANDE BASIN - Cochiti reservoir.

A. Designated Uses: livestock watering, wildlife habitat, warmwater aquatic life, coldwater aquatic life and primary contact.

Criteria:

B.

B.

(I) At any sampling site: pH within the range of 6.6 to 9.0 and temperature 25°C (77°F). The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.112 NMAC - Rp 20 NMAC 6.1.2109, 10-12-00; A, 05-23-05]

20.6.4.113 RIO GRANDE BASIN - The Santa Fe river and perennial reaches of its tributaries from Cochiti reservoir upstream to the outfall of the Santa Fe wastewater treatment facility.

A. Designated Uses: irrigation, livestock watering, wildlife habitat, marginal coldwater aquatic life, secondary contact, and warmwater aquatic life.

Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0, temperature 30°C (86°F) or less and dissolved oxygen 4.0 mg/L or more. Dissolved oxygen 5.0 mg/L or more as a 24-hour average. Values used in the calculation of the 24-hour average for dissolved oxygen shall not exceed the dissolved oxygen saturation value. For a measured value above the dissolved oxygen saturation value, the dissolved oxygen saturation value will be used in calculating the 24-hour average. The dissolved oxygen saturation value shall be determined from the table set out in Subsection N of 20.6.4.900 NMAC. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 548 cfu/100 mL or less, single sample 2507 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.113 NMAC - Rp 20 NMAC 6.1.2110, 10-12-00; A, 10-11-02; A, 05-23-05]

20.6.4.114 RIO GRANDE BASIN - The main stem of the Rio Grande from the headwaters of Cochiti reservoir upstream to Rio Pueblo de Taos, Embudo creek from its mouth on the Rio Grande upstream to the junction of the Rio Pueblo and the Rio Santa Barbara, the Santa Cruz river below Santa Cruz dam, the Rio Tesuque below the Santa Fe national forest and the Pojoaque river below Nambe dam.

A. Designated Uses: irrigation, livestock watering, wildlife habitat, marginal coldwater aquatic life, primary contact and warmwater aquatic life.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 22°C (71.6°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

(3) At mean monthly flows above 100 cfs, the monthly average concentration for: TDS 500 mg/L or less, sulfate 150 mg/L or less and chloride 25 mg/L or less.

[20.6.4.114 NMAC - Rp 20 NMAC 6.1.2111, 10-12-00; A, 05-23-05]

20.6.4.115 RIO GRANDE BASIN - The perennial reaches of Rio Vallecitos and its tributaries, and perennial reaches of Rio del Oso and perennial reaches of El Rito creek above the town of El Rito.

A. Designated Uses: domestic water supply, irrigation, high quality coldwater aquatic life, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: specific conductance $300 \ \Box$ mhos/cm or less, pH within the range of 6.6 to 8.8 and temperature $20^{\circ}C (68^{\circ}F)$ or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.115 NMAC - Rp 20 NMAC 6.1.2112, 10-12-00; A, 05-23-05]

20.6.4.116 RIO GRANDE BASIN - The Rio Chama from its mouth on the Rio Grande upstream to Abiquiu reservoir, perennial reaches of the Rio Tusas, perennial reaches of the Rio Ojo Caliente, perennial reaches of Abiquiu creek and perennial reaches of El Rito creek below the town of El Rito.

A. Designated Uses: irrigation, livestock watering, wildlife habitat, coldwater aquatic life, warmwater aquatic life and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 8.8 and temperature 31°C (87.8°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 548 cfu/100 mL or less; single sample 2507 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.116 NMAC - Rp 20 NMAC 6.1.2113, 10-12-00; A, 05-23-05]

20.6.4.117 RIO GRANDE BASIN - Abiquiu reservoir.

A. Designated Uses: irrigation storage, livestock watering, wildlife habitat, primary contact, coldwater aquatic life and warmwater aquatic life.

B. Criteria:

(1) At any sampling site: pH within the range of 6.6 to 8.8 and temperature 25°C (77°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.117 NMAC - Rp 20 NMAC 6.1.2114, 10-12-00; A, 05-23-05]

20.6.4.118 RIO GRANDE BASIN - The Rio Chama from the headwaters of Abiquiu reservoir upstream to El Vado reservoir and perennial reaches of the Rio Gallina and Rio Puerco de Chama north of state highway 96.

A. Designated Uses: irrigation, livestock watering, wildlife habitat, coldwater aquatic life, warmwater aquatic life and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 8.8 and temperature 26°C (78.8°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.118 NMAC - Rp 20 NMAC 6.1.2115, 10-12-00; A, 05-23-05]

20.6.4.119 RIO GRANDE BASIN - All perennial reaches of tributaries to the Rio Chama above Abiquiu dam except the Rio Gallina and Rio Puerco de Chama north of state highway 96 and the main stem of the Rio Chama from the headwaters of El Vado reservoir upstream to the New Mexico-Colorado line.

A. Designated Uses: domestic water supply, fish culture, high quality coldwater aquatic life, irrigation,

livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: specific conductance 500 μ mhos/cm or less (1,000 μ mhos or less for Coyote creek), pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.119 NMAC - Rp 20 NMAC 6.1.2116, 10-12-00; A, 05-23-05]

20.6.4.120 RIO GRANDE BASIN - El Vado and Heron reservoirs.

A. Designated Uses: irrigation storage, livestock watering, wildlife habitat, primary contact and coldwater aquatic life.

Criteria:

B.

(1) At any sampling site: pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.120 NMAC - Rp 20 NMAC 6.1.2117, 10-12-00; A. 05-23-05]

20.6.4.121 RIO GRANDE BASIN - Perennial tributaries to the Rio Grande in Bandelier national monument and their headwaters in Sandoval county and all perennial reaches of tributaries to the Rio Grande in Santa Fe county unless included in other segments.

A. Designated Uses: domestic water supply, high quality coldwater aquatic life, irrigation, livestock watering, wildlife habitat, municipal and industrial water supply, secondary contact and primary contact.

B. Criteria:

(1) In any single sample: specific conductance 300 µmhos/cm or less, pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.121 NMAC - Rp 20 NMAC 6.1.2118, 10-12-00; A. 05-23-05]

[NOTE: The segment covered by this section was divided effective 05-23-05. The standards for the additional segments are under 20.6.4.126, 20.6.4.127 and 20.6.4.128 NMAC.]

20.6.4.122 RIO GRANDE BASIN - The main stem of the Rio Grande from Rio Pueblo de Taos upstream to the New Mexico-Colorado line, the Red river from its mouth on the Rio Grande upstream to the mouth of Placer creek, and the Rio Pueblo de Taos from its mouth on the Rio Grande upstream to the mouth of the Rio Grande del Rancho.

A. Designated Uses: coldwater aquatic life, fish culture, irrigation, livestock watering, wildlife habitat and primary contact.

Criteria:

B.

(1) In any single sample: pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.122 NMAC - Rp 20 NMAC 6.1.2119, 10-12-00; A, 05-23-05]

20.6.4.123 RIO GRANDE BASIN - Perennial reaches of the Red river upstream of the mouth of Placer creek, all perennial reaches of tributaries to the Red river, and all other perennial reaches of tributaries to the Rio Grande in Taos and Rio Arriba counties unless included in other segments.

A. Designated Uses: domestic water supply, fish culture, high quality coldwater aquatic life, irrigation, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: specific conductance 400 µmhos/cm or less (500 µmhos or less for the Rio Fernando de Taos) and pH within the range of 6.6 to 8.8, temperature 20°C (68°F) or less. For the Red river in this segment, total phosphorus (as P) less than 0.1 mg/L. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.123 NMAC - Rp 20 NMAC 6.1.2120, 10-12-00; A, 05-23-05]

[NOTE: The segment covered by this section was divided effective 05-23-05. The standards for the additional segment are under 20.6.4.129 NMAC.]

20.6.4.124 RIO GRANDE BASIN - Perennial reaches of Sulphur creek from its headwaters to its confluence with Redondo creek.

A. Designated Uses: limited aquatic life, wildlife habitat, livestock watering and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 2.0 to 9.0 and temperature 30°C (86°F) or less. The usespecific criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 548 cfu/100 mL or less, single sample 2507 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

(3) The chronic aquatic life criteria of Subsections I and J of 20.6.4.900 NMAC shall also apply. [20.6.4.124 NMAC - N, 05-23-05]

20.6.4.125 RIO GRANDE BASIN - Perennial reaches of San Pedro creek.

A. Designated Uses: coldwater aquatic life, irrigation, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 8.8 and temperature 25°C (77°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC). [20.6.4.125 NMAC - N, 05-23-05]

20.6.4.126 RIO GRANDE BASIN - Perennial portions of Cañon deValle from Los Alamos national laboratory (LANL) stream gage E256 upstream to Burning Ground spring, Sandia canyon from Sigma canyon upstream to LANL NPDES outfall 001, Pajarito canyon from Arroyo de La Delfe upstream into Starmers gulch and Starmers spring and Water canyon from Area-A canyon upstream to State Route 501.

A. Designated Uses: coldwater aquatic life, livestock watering, wildlife habitat and secondary contact.
B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 8.8 and temperature 24°C (75.2°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 548 cfu/100 mL or less; single sample 2507 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.126 NMAC - N, 05-23-05]

20.6.4.127 RIO GRANDE BASIN - Perennial portions of Los Alamos canyon upstream from Los Alamos reservoir and Los Alamos reservoir.

A. Designated Uses: coldwater aquatic life, livestock watering, wildlife habitat, irrigation and primary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.127 NMAC - N, 05-23-05]

20.6.4.128 RIO GRANDE BASIN - Ephemeral and intermittent portions of watercourses within lands managed by U.S. department of energy (DOE) within LANL, including but not limited to: Mortandad canyon, Cañada del Buey, Ancho canyon, Chaquehui canyon, Indio canyon, Fence canyon, Potrillo canyon and portions of Cañon de Valle, Los Alamos canyon, Sandia canyon, Pajarito canyon and Water canyon not specifically identified in 20.6.4.126 NMAC. (Surface waters within lands scheduled for transfer from DOE to tribal, state or local authorities are specifically excluded.)

Designated Uses: livestock watering, wildlife habitat, limited aquatic life and secondary contact.

B. Criteria:

A.

(1) The use-specific criteria in 20.6.4.900 NMAC, except the chronic criteria for aquatic life are applicable for the designated uses listed in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 548 cfu/100 mL or less; single sample 2507 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

(3) The acute total ammonia criteria set forth in Subsection K of 20.6.4.900 NMAC (salmonids absent) are applicable to this use.

[20.6.4.128 NMAC - N, 05-23-05]

20.6.4.129 RIO GRANDE BASIN - Perennial reaches of the Rio Hondo.

A. Designated Uses: domestic water supply, high quality coldwater aquatic life, irrigation, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: specific conductance 400 μ mhos/cm or less, pH within the range of 6.6 to 8.8, total phosphorous (as P) less than 0.1 mg/L and temperature 20°C (68°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC). [20.6.4.129 NMAC - N, 05-23-05]

20.6.4.130 - 20.6.4.200: [RESERVED]

20.6.4.201 PECOS RIVER BASIN - The main stem of the Pecos river from the New Mexico-Texas line upstream to the mouth of the Black river (near Loving).

A. Designated Uses: irrigation, livestock watering, wildlife habitat, secondary contact and warmwater aquatic life.

B. Criteria:

(I) In any single sample: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

(3) At all flows above 50 cfs: TDS 20,000 mg/L or less, sulfate 3,000 mg/L or less and chloride 10,000 mg/L or less.

[20.6.4.201 NMAC - Rp 20 NMAC 6.1.2201, 10-12-00; A, 05-23-05]

20.6.4.202 PECOS RIVER BASIN - The main stem of the Pecos river from the mouth of the Black river upstream to lower Tansil dam, including perennial reaches of the Black river, the Delaware river and Blue spring.

A. Designated Uses: industrial water supply, irrigation, livestock watering, wildlife habitat, secondary contact and warmwater aquatic life.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 34°C (93.2°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

(3) At all flows above 50 cfs: TDS 8,500 mg/L or less, sulfate 2,500 mg/L or less and chloride 3,500 mg/L or less.

C. Remarks: Diversion for irrigation frequently limits summer flow in this reach of the main stem Pecos river to that contributed by springs along the watercourse.

[20.6.4.202 NMAC - Rp 20 NMAC 6.1.2202, 10-12-00; A, 05-23-05]

[NOTE: The segment covered by this section was divided effective 05-23-05. The standards for the additional segment are under 20.6.4.218 NMAC.]

20.6.4.203 PECOS RIVER BASIN - The main stem of the Pecos river from lower the headwaters of Lake Carlsbad upstream to Avalon dam.

A. Designated Uses: industrial water supply, livestock watering, wildlife habitat, primary contact and warmwater aquatic life.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 34°C (93.2°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.203 NMAC - Rp 20 NMAC 6.1.2203, 10-12-00; A, 05-23-05]

[NOTE: The segment covered by this section was divided effective 05-23-05. The standards for the additional segment are under 20.6.4.219 NMAC.]

20.6.4.204 PECOS RIVER BASIN - The main stem of the Pecos river from the headwaters of Avalon reservoir upstream to Brantley dam.

A. Designated Uses: irrigation, livestock watering, wildlife habitat, secondary contact and warmwater aquatic life.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 548 cfu/100 mL or less, single sample 2880 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.204 NMAC - Rp 20 NMAC 6.1.2204, 10-12-00; A, 05-23-05]

20.6.4.205 PECOS RIVER BASIN - Brantley reservoir.

A. Designated Uses: irrigation storage, livestock watering, wildlife habitat, primary contact and warmwater aquatic life.

Criteria:

Β.

B.

(1) At any sampling site: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.205 NMAC - Rp 20 NMAC 6.1.2205, 10-12-00; A, 05-23-05]

20.6.4.206 PECOS RIVER BASIN - The main stem of the Pecos river from the headwaters of Brantley reservoir upstream to Salt creek (near Acme), perennial reaches of the Rio Peñasco downstream from state highway 24 near Dunken, perennial reaches of the Rio Hondo and its tributaries below Bonney canyon and perennial reaches of the Rio Felix.

A. Designated Uses: irrigation, livestock watering, wildlife habitat, secondary contact and warmwater aquatic life.

Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 548 cfu/100 mL or less; single sample 2507 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

(3) At all flows above 50 cfs: TDS 14,000 mg/L or less, sulfate 3,000 mg/L or less and chloride 6,000 mg/L or less.

[20.6.4.206 NMAC - Rp 20 NMAC 6.1.2206, 10-12-00; A, 05-23-05]

20.6.4.207 PECOS RIVER BASIN - The main stem of the Pecos river from Salt creek (near Acme) upstream to Sumner dam.

A. Designated Uses: irrigation, marginal warmwater aquatic life, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli 548 cfu/100 mL or less; single sample 2507 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

(3) At all flows above 50 cfs: TDS 8,000 mg/L or less, sulfate 2,500 mg/L or less and chloride 4,000 mg/L or less.

[20.6.4.207 NMAC - Rp 20 NMAC 6.1.2207, 10-12-00; A, 05-23-05]

20.6.4.208 PECOS RIVER BASIN - Perennial reaches of the Rio Peñasco and its tributaries above state highway 24 near Dunken, perennial reaches of the Rio Bonito downstream from state highway 48 (near Angus), the Rio Ruidoso downstream of the U.S. highway 70 bridge near Seeping Springs lakes, perennial reaches of the Rio Hondo upstream from Bonney canyon and perennial reaches of Agua Chiquita. A. Designated Uses: fish culture, irrigation, livestock watering, wildlife habitat, coldwater aquatic life and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 8.8, temperature 30°C (86°F) or less and total phosphorus (as P) less than 0.1 mg/L. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.208 NMAC - Rp 20 NMAC 6.1.2208, 10-12-00; A, 05-23-05]

20.6.4.209 PECOS RIVER BASIN - Perennial reaches of Eagle creek above Alto reservoir, perennial reaches of the Rio Bonito and its tributaries upstream of state highway 48 (near Angus) and perennial reaches of the Rio Ruidoso and its tributaries upstream of the U.S. highway 70 bridge near Seeping Springs lakes.

A. **Designated Uses**: domestic water supply, fish culture, high quality coldwater aquatic life, irrigation, livestock watering, wildlife habitat, municipal and industrial water supply and secondary contact.

B. Criteria:

(1) In any single sample: specific conductance 600 μ mhos/cm or less in Eagle creek, 1,100 \Box mhos or less in Bonito creek, and 1,500 μ mhos or less in the Rio Ruidoso, pH within the range of 6.6 to 8.8, total phosphorus (as P) less than 0.1 mg/L and temperature 20°C (68°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.209 NMAC - Rp 20 NMAC 6.1.2209, 10-12-00; A, 05-23-05]

20.6.4.210 PECOS RIVER BASIN - Sumner reservoir.

A. aquatic life.

B. Criteria:

(1) At any sampling site: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

Designated Uses: irrigation storage, livestock watering, wildlife habitat, primary contact and warmwater

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.210 NMAC - Rp 20 NMAC 6.1.2210, 10-12-00; A, 05-23-05]

20.6.4.211 PECOS RIVER BASIN - The main stem of the Pecos river from the headwaters of Sumner reservoir upstream to Tecolote creek.

A. Designated Uses: fish culture, irrigation, marginal warmwater aquatic life, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

(3) At all flows above 50 cfs: TDS 3,000 mg/L or less, sulfate 2,000 mg/L or less and chloride 400 mg/L or less.

[20.6.4.211 NMAC - Rp 20 NMAC 6.1.2211, 10-12-00; A, 05-23-05]

20.6.4.212 PECOS RIVER BASIN - Perennial tributaries to the main stem of the Pecos river from the headwaters of Sumner reservoir upstream to Santa Rosa dam.

A. **Designated Uses**: irrigation, coldwater aquatic life, livestock watering, wildlife habitat and primary

contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 8.8 and temperature 25°C (77°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.212 NMAC - Rp 20 NMAC 6.1.2211.1, 10-12-00; A, 05-23-05]

20.6.4.213 PECOS RIVER BASIN - McAllister lake.

A. Designated Uses: coldwater aquatic life, secondary contact, livestock watering and wildlife habitat.
B. Criteria:

(1) At any sampling site: pH within the range of 6.6 to 8.8 and temperature 25°C (77°F) or less. The use-

specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 548 cfu/100 mL or less; single sample 2507 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.213 NMAC - Rp 20 NMAC 6.1.2211.3, 10-12-00; A, 05-23-05]

20.6.4.214 PECOS RIVER BASIN - Storrie lake.

A. Designated Uses: coldwater aquatic life, warmwater aquatic life, primary contact, livestock watering, wildlife habitat, municipal water supply and irrigation storage.

Criteria:

В.

B.

B.

(1) At any sampling site: pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.214 NMAC - Rp 20 NMAC 6.1.2211.5, 10-12-00; A, 05-23-05]

20.6.4.215 PECOS RIVER BASIN - Perennial reaches of the Gallinas river and all its tributaries above the diversion for the Las Vegas municipal reservoir and perennial reaches of Tecolote creek and its perennial tributaries. A. Designated Uses: domestic water supply, high quality coldwater aquatic life, irrigation, livestock

watering, wildlife habitat, municipal and industrial water supply and secondary contact.

Criteria:

(1) In any single sample: specific conductance 300 μ mhos/cm or less except specific conductance 450 μ mhos/cm or less in Wright Canyon creek, pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.215 NMAC - Rp 20 NMAC 6.1.2212, 10-12-00; A, 05-23-05]

20.6.4.216 PECOS RIVER BASIN - The main stem of the Pecos river from Tecolote creek upstream to Cañon de Mazanita.

A. Designated Uses: irrigation, livestock watering, wildlife habitat, marginal coldwater aquatic life and primary contact.

Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 30°C (86°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less, single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

(3) At all flows above 10 cfs: TDS 250 mg/L or less, sulfate 25 mg/L or less and chloride 5 mg/L or less. [20.6.4.216 NMAC - Rp 20 NMAC 6.1.2213, 10-12-00; A, 05-23-05]

20.6.4.217 PECOS RIVER BASIN - Perennial reaches of Cow creek and all perennial reaches of its tributaries and the main stem of the Pecos river from Cañon de Manzanita upstream to its headwaters, including perennial reaches of all tributaries thereto.

A. Designated Uses: domestic water supply, fish culture, high quality coldwater aquatic life, irrigation, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: specific conductance 300 μ mhos/cm or less, pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.217 NMAC - Rp 20 NMAC 6.1.2214, 10-12-00; A, 05-23-05]

[NOTE: The segment covered by this section was divided effective 05-23-05. The standards for the additional segments are under 20.6.4.220 and 20.6.4.221 NMAC.]

A. Designated Uses: industrial water supply, livestock watering, wildlife habitat, primary contact and warmwater aquatic life.

B. Criteria:

(1) At any sampling site: pH within the range of 6.6 to 9.0 and temperature $34^{\circ}C$ (93.2°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.218 NMAC - N, 05-23-05]

20.6.4.219 PECOS RIVER BASIN - Avalon reservoir.

A. Designated Uses: irrigation storage, livestock watering, wildlife habitat, secondary contact and warmwater aquatic life.

B. Criteria:

(1) At any sampling site: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 548 cfu/100 mL or less, single sample 2507 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC). [20.6.4.219 NMAC - N, 05-23-05]

20.6.4.220 PECOS RIVER BASIN - Perennial reaches of the Gallinas river and its tributaries from its mouth upstream to the diversion for the Las Vegas municipal reservoir, except Pecos Arroyo.

A. Designated Uses: irrigation, livestock watering, wildlife habitat, marginal coldwater aquatic life and primary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 30°C (86°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section. (see Subsection B of 20.6.4.14 NMAC)

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less, single sample 410 cfu/100 mL or

less.

[20.6.4.220 NMAC - N, 05-23-05]

20.6.4.221 PECOS RIVER BASIN - Pecos Arroyo.

A. Designated Uses: livestock watering, wildlife habitat, warmwater aquatic life and secondary contact.
B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The use-

specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 548 cfu/100 mL or less, single sample 2507 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.221 NMAC - N, 05-23-05]

20.6.4.222 - 20.6.4.300: [RESERVED]

20.6.4.301 CANADIAN RIVER BASIN - The main stem of the Canadian river from the New Mexico-Texas line upstream to Ute dam, and any flow that enters the main stem from Revuelto creek.

A. Designated Uses: irrigation, marginal warmwater aquatic life, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0, temperature 32.2°C (90°F) or less and TDS 6,500 mg/L or less at flows above 25 cfs. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.301 NMAC - Rp 20 NMAC 6.1.2301, 10-12-00; A, 05-23-05]

20.6.4.302 CANADIAN RIVER BASIN - Ute reservoir.

A. Designated Uses: livestock watering, wildlife habitat, municipal and industrial water supply, primary

contact and warmwater aquatic life.

B. Criteria:

(1) At any sampling site: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.302 NMAC - Rp 20 NMAC 6.1.2302, 10-12-00; A, 05-23-05]

20.6.4.303 CANADIAN RIVER BASIN - The main stem of the Canadian river from the headwaters of Ute reservoir upstream to Conchas dam, the perennial reaches of Pajarito and Ute creeks and their perennial tributaries.

A. Designated Uses: irrigation, marginal warmwater aquatic life, livestock watering, wildlife habitat and

secondary contact. B. Cr

Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.303 NMAC - Rp 20 NMAC 6.1.2303, 10-12-00; A, 05-23-05]

20.6.4.304 CANADIAN RIVER BASIN - Conchas reservoir.

A. Designated Uses: irrigation storage, livestock watering, wildlife habitat, primary contact and warmwater aquatic life.

B. Criteria:

(1) At any sampling site: pH within the range of 6.6 to 9.0 and temperature $32.2^{\circ}C$ (90°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.304 NMAC - Rp 20 NMAC 6.1.2304, 10-12-00; A, 05-23-05]

20.6.4.305 CANADIAN RIVER BASIN - The main stem of the Canadian river from the headwaters of Conchas reservoir upstream to the New Mexico-Colorado line, perennial reaches of the Conchas river, the Mora river downstream from the USGS gaging station near Shoemaker, the Vermejo river downstream from Rail canyon and perennial reaches of Raton, Chicorica and Uña de Gato creeks.

A. Designated Uses: irrigation, marginal warmwater aquatic life, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0, temperature 32.2°C (90°F) or less and TDS 3,500 mg/L or less at flows above 10 cfs. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.305 NMAC - Rp 20 NMAC 6.1.2305, 10-12-00; A, 05-23-05]

20.6.4.306 CANADIAN RIVER BASIN - The Cimarron river downstream from state highway 21 in Cimarron to the Canadian river and all perennial reaches of tributaries to the Cimarron river downstream from state highway 21 in Cimarron.

A. Designated Uses: irrigation, warmwater aquatic life, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0, temperature 32.2°C (90°F) or less and TDS 3,500 mg/L or less at flows above 10 cfs. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.306 NMAC - Rp 20 NMAC 6.1.2305.1, 10-12-00; A, 7-19-01; A, 05-23-05]

20.6.4.307 CANADIAN RIVER BASIN - Perennial reaches of the Mora river from the USGS gaging station near Shoemaker upstream to the state highway 434 bridge in Mora, all perennial reaches of tributaries to the Mora

http://www.nmcpr.state.nm.us/nmac/parts/title20/20.006.0004.htm

river downstream from the USGS gaging station at La Cueva in San Miguel and Mora counties, perennial reaches of Ocate creek and its tributaries downstream of Ocate, and perennial reaches of Rayado creek downstream of Miami lake diversion in Colfax county.

A. Designated Uses: marginal coldwater aquatic life, warmwater aquatic life, secondary contact, irrigation, livestock watering and wildlife habitat.

B. Criteria:

(1) In any single sample: temperature 25°C (77°F) or less and pH within the range of 6.6 to 9.0. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.307 NMAC - Rp 20 NMAC 6.1.2305.3, 10-12-00; A, 05-23-05]

20.6.4.308 CANADIAN RIVER BASIN - Charette lakes.

A. Designated Uses: coldwater aquatic life, warmwater aquatic life, secondary contact, livestock watering and wildlife habitat.

B. Criteria:

(1) At any sampling site: pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 548 cfu/100 mL or less; single sample 2507 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.308 NMAC - Rp 20 NMAC 6.1.2305.5, 10-12-00; A, 05-23-05]

20.6.4.309 CANADIAN RIVER BASIN - The Mora river and perennial reaches of its tributaries upstream from the state highway 434 bridge in Mora, all perennial reaches of tributaries to the Mora river upstream from the USGS gaging station at La Cueva, perennial reaches of Coyote creek and its tributaries, the Cimarron river and its perennial tributaries above state highway 21 in Cimarron, all perennial reaches of tributaries to the Cimarron river north and northwest of highway 64, perennial reaches of Rayado creek and its tributaries above Miami lake diversion, Ocate creek and perennial reaches of its tributaries upstream of Ocate, perennial reaches of the Vermejo river upstream from Rail canyon and all other perennial reaches of tributaries to the Canadian river northwest and north of U.S. highway 64 in Colfax county unless included in other segments.

A. Designated Uses: domestic water supply, irrigation, high quality coldwater aquatic life, livestock watering, wildlife habitat, municipal and industrial water supply and secondary contact.

B. Criteria:

(1) In any single sample: specific conductance 500 µmhos/cm or less, pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.309 NMAC - Rp 20 NMAC 6.1.2306, 10-12-00; A, 7-19-01; A, 05-23-05]

[NOTE: The segment covered by this section was divided effective 05-23-05. The standards for the additional segment are under 20.6.4.310 NMAC.]

20.6.4.310 CANADIAN RIVER BASIN - Perennial reaches of Corrumpa creek and perennial reaches of tributaries of the Canadian river north of U.S. highway 54/66 and east and northeast of the Ute creek drainage.

A. Designated Uses: livestock watering, wildlife habitat, secondary contact and warmwater aquatic life.
B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 548 cfu/100 mL or less, single sample 2507 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.310 NMAC - N, 05-23-05]

20.6.4.311 - 20.6.4.400: [RESERVED]

20.6.4.401 SAN JUAN RIVER BASIN - The main stem of the San Juan river from the Navajo Nation boundary at the Hogback upstream to its confluence with the Animas river.

A. Designated Uses: municipal and industrial water supply, irrigation, livestock watering, wildlife habitat, secondary contact, marginal coldwater aquatic life and warmwater aquatic life.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.401 NMAC - Rp 20 NMAC 6.1.2401, 10-12-00; A, 05-23-05]

[NOTE: The segment covered by this section was divided effective 05-23-05. The standards for the additional segment are under 20.6.4.408 NMAC.]

20.6.4.402 SAN JUAN RIVER BASIN - La Plata river from its confluence with the San Juan river upstream to the New Mexico-Colorado line.

A. Designated Uses: irrigation, marginal warmwater aquatic life, marginal coldwater aquatic life, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.402 NMAC - Rp 20 NMAC 6.1.2402, 10-12-00; A, 05-23-05]

20.6.4.403 SAN JUAN RIVER BASIN - The Animas river from its confluence with the San Juan upstream to Estes Arroyo.

A. Designated Uses: municipal and industrial water supply, irrigation, livestock watering, wildlife habitat, marginal coldwater aquatic life, primary contact and warmwater aquatic life.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 27°C (80.6°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.403 NMAC - Rp 20 NMAC 6.1.2403, 10-12-00; A, 05-23-05]

20.6.4.404 SAN JUAN RIVER BASIN - The Animas river from Estes Arroyo upstream to the New Mexico-Colorado line.

A. Designated Uses: coldwater aquatic life, irrigation, livestock watering, wildlife habitat, municipal and industrial water supply and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 8.8, temperature $20^{\circ}C$ (68°F) or less and total phosphorus (as P) 0.1 mg/L or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.404 NMAC - Rp 20 NMAC 6.1.2404, 10-12-00; A, 05-23-05]

20.6.4.405 SAN JUAN RIVER BASIN - The main stem of the San Juan river from Canyon Largo upstream to the Navajo dam.

A. Designated Uses: high quality coldwater aquatic life, irrigation, livestock watering, wildlife habitat, municipal and industrial water supply and secondary contact.

B. Criteria:

(1) In any single sample: specific conductance 400 µmhos/cm or less, pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.405 NMAC - Rp 20 NMAC 6.1.2405, 10-12-00; A, 05-23-05]

20.6.4.406 SAN JUAN RIVER BASIN - Navajo reservoir in New Mexico.

A. Designated Uses: coldwater aquatic life, warmwater aquatic life, irrigation storage, livestock watering, wildlife habitat, municipal and industrial water storage and primary contact.

B. Criteria:

(1) At any sampling site: pH within the range of 6.6 to 8.8, temperature 20°C (68°F) or less and total phosphorus (as P) 0.1 mg/L or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.406 NMAC - Rp 20 NMAC 6.1.2406, 10-12-00; A, 05-23-05]

20.6.4.407 SAN JUAN RIVER BASIN - Perennial reaches of the Navajo and Los Pinos rivers in New Mexico.

Designated Uses: coldwater aquatic life, irrigation, livestock watering, wildlife habitat and secondary

contact. B.

A.

Criteria:

(1) In any single sample: pH within the range of 6.6 to 8.8, temperature 20°C (68°F) or less and total phosphorus (as P) 0.1 mg/L or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.407 NMAC - Rp 20 NMAC 6.1.2407, 10-12-00; A, 05-23-05]

20.6.4.408 SAN JUAN RIVER BASIN - The main stem of the San Juan river from its confluence with the Animas river upstream to its confluence with Canyon Largo.

A. Designated Uses: municipal and industrial water supply, irrigation, livestock watering, wildlife habitat, secondary contact, marginal coldwater aquatic life and warmwater aquatic life.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0, and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.408 NMAC - N, 05-23-05]

20.6.4.409 - 20.6.4.500: [RESERVED]

20.6.4.501 GILA RIVER BASIN - The main stem of the Gila river from the New Mexico-Arizona line upstream to Redrock canyon and perennial reaches of streams in Hidalgo county.

A. Designated Uses: irrigation, marginal warmwater aquatic life, livestock watering, wildlife habitat and primary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature $32.2^{\circ}C$ (90°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.501 NMAC - Rp 20 NMAC 6.1.2501, 10-12-00; A, 05-23-05]

20.6.4.502 GILA RIVER BASIN - The main stem of the Gila river from Redrock canyon upstream to the confluence of the West Fork Gila river and East Fork Gila river and perennial reaches of tributaries to the Gila river below Mogollon creek.

A. Designated Uses: industrial water supply, irrigation, livestock watering, wildlife habitat, marginal coldwater aquatic life, primary contact and warmwater aquatic life.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 28°C (82.4°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.502 NMAC - Rp 20 NMAC 6.1.2502, 10-12-00; A, 05-23-05]

20.6.4.503 GILA RIVER BASIN - All perennial tributaries to the Gila river above and including Mogollon creek.

A. Designated Uses: domestic water supply, high quality coldwater aquatic life, irrigation, livestock

watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: specific conductance 300 µmhos/cm or less for the main stem of the Gila river above Gila hot springs and 400 µmhos or less for other reaches, pH within the range of 6.6 to 8.8 and temperature 20°C (68° F) or less except 32.2°C (90°F) or less in the east fork of the Gila river and Sapillo creek below lake Roberts. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.503 NMAC - Rp 20 NMAC 6.1.2503, 10-12-00; A, 05-23-05]

20.6.4.504 GILA RIVER BASIN - Wall lake, Lake Roberts and Snow lake.

А.

Designated Uses: coldwater aquatic life, irrigation, livestock watering, wildlife habitat and secondary

contact.

B. Criteria:

(1) In any single sample: specific conductance 300 μ mhos/cm or less, pH within the range of 6.6 to 8.8 and temperature 22°C (72°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.504 NMAC - Rp 20 NMAC 6.1.2504, 10-12-00; A, 05-23-05]

[NOTE: The segment covered by this section was divided effective 05-23-05. The standards for the additional segment are under 20.6.4.806 NMAC.]

20.6.4.505 - 20.6.4.600: [RESERVED]

20.6.4.601 SAN FRANCISCO RIVER BASIN - The main stem of the San Francisco river from the New Mexico-Arizona line upstream to state highway 12 at Reserve and perennial reaches of Mule creek.

A. Designated Uses: irrigation, marginal warmwater and marginal coldwater aquatic life, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 32.2°C (90°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.601 NMAC - Rp 20 NMAC 6.1.2601, 10-12-00; A, 05-23-05]

20.6.4.602 SAN FRANCISCO RIVER BASIN - The main stem of the San Francisco river from state highway 12 at Reserve upstream to the New Mexico-Arizona line.

A. Designated Uses: coldwater aquatic life, irrigation, livestock watering, wildlife habitat and primary

contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 8.8 and temperature 25°C (77°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.602 NMAC - Rp 20 NMAC 6.1.2602, 10-12-00; A, 05-23-05]

20.6.4.603 SAN FRANCISCO RIVER BASIN - All perennial reaches of tributaries to the San Francisco river above the confluence of Whitewater creek and including Whitewater creek.

A. Designated Uses: domestic water supply, fish culture, high quality coldwater aquatic life, irrigation, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: specific conductance 400 μ mhos/cm or less, pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less except 25°C (77°F) or less in Tularosa creek. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.603 NMAC - Rp 20 NMAC 6.1.2603, 10-12-00; A, 05-23-05]

В.

20.6.4.604 - 20.6.4.700: [RESERVED]

20.6.4.701 DRY CIMARRON RIVER - Perennial portions of the Dry Cimarron river above Oak creek and perennial reaches of Oak creek.

A. Designated Uses: marginal coldwater aquatic life, warmwater aquatic life, irrigation, livestock watering, wildlife habitat and secondary contact.

Criteria:

(1) In any single sample: pH within the range of 6.6 to 8.8, temperature 25°C (77°F) or less, TDS 1,200 mg/L or less, sulfate 600 mg/L or less, and chloride 40 mg/L or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.701 NMAC - Rp 20 NMAC 6.1.2701, 10-12-00; A, 05-23-05]

[NOTE: The segment covered by this section was divided effective 05-23-05. The standards for the additional segment are under 20.6.4.702 NMAC.]

20.6.4.702 DRY CIMARRON RIVER - Perennial portions of the Dry Cimarron river below Oak creek, and perennial portions of Long canyon and Carrizozo creeks.

A. Designated Uses: warmwater aquatic life, irrigation, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 8.8, temperature 32.2°C (90°F) or less, TDS 1,200 mg/L or less, sulfate 600 mg/L or less and chloride 40 mg/L or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.702 NMAC - N, 05-23-05]

20.6.4.703 - 20.6.4.800: [RESERVED]

20.6.4.801 CLOSED BASINS - Rio Tularosa lying east of the old U.S. highway 70 bridge crossing east of Tularosa and all perennial tributaries to the Tularosa basin except Three Rivers.

A. Designated Uses: coldwater aquatic life, fish culture, irrigation, livestock watering, wildlife habitat, municipal and industrial water supply and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.801 NMAC - Rp 20 NMAC 6.1.2801, 10-12-00; A, 05-23-05]

20.6.4.802 CLOSED BASINS - Perennial reaches of Three Rivers.

A. Designated Uses: irrigation, domestic water supply, high quality coldwater aquatic life, secondary contact, livestock watering and wildlife habitat.

B. Criteria:

(1) In any single sample: specific conductance 500 µmhos/cm or less, pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.802 NMAC - Rp 20 NMAC 6.1.2802, 10-12-00; A, 05-23-05]

20.6.4.803 CLOSED BASINS - Perennial reaches of the Mimbres river downstream of the confluence with Willow Springs canyon and all perennial reaches of tributaries thereto.

A. Designated Uses: coldwater aquatic life, irrigation, livestock watering, wildlife habitat and secondary

contact. B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.803 NMAC - Rp 20 NMAC 6.1.2803, 10-12-00; A, 05-23-05]

20.6.4.804 CLOSED BASINS - Perennial reaches of the Mimbres river upstream of the confluence with Willow Springs canyon and all perennial tributaries thereto.

A. Designated Uses: irrigation, domestic water supply, high quality coldwater aquatic life, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: specific conductance 300 μ mhos or less, pH within the range of 6.6 to 8.8 and temperature 20°C (68°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 235 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.804 NMAC - Rp 20 NMAC 6.1.2804, 10-12-00; A, 05-23-05]

20.6.4.805 CLOSED BASINS - Perennial reaches of the Sacramento river (Sacramento-Salt Flat closed basin) and all perennial tributaries thereto.

A. Designated Uses: domestic and municipal water supply, livestock watering, wildlife habitat, marginal coldwater aquatic life and secondary contact.

B. Criteria:

(1) In any single sample: pH within the range of 6.6 to 9.0 and temperature 25°C (77°F) or less. The usespecific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.805 NMAC - Rp 20 NMAC 6.1.2805, 10-12-00; A, 05-23-05]

20.6.4.806 CLOSED BASINS - Bear canyon reservoir.

A. **Designated Uses:** coldwater aquatic life, irrigation, livestock watering, wildlife habitat and secondary contact.

B. Criteria:

(1) In any single sample: specific conductance 300 μ mhos/cm or less, pH within the range of 6.6 to 8.8 and temperature 22°C (72°F) or less. The use-specific numeric criteria set forth in 20.6.4.900 NMAC are applicable to the designated uses listed above in Subsection A of this section.

(2) The monthly geometric mean of E. coli bacteria 126 cfu/100 mL or less; single sample 410 cfu/100 mL or less (see Subsection B of 20.6.4.14 NMAC).

[20.6.4.806 NMAC - N, 05-23-05]

20.6.4.807 - 20.6.4.899: [RESERVED]

20.6.4.900 CRITERIA APPLICABLE TO ATTAINABLE OR DESIGNATED USES UNLESS OTHERWISE SPECIFIED IN 20.6.4.97 THROUGH 20.6.4.899 NMAC.

A. Fish Culture, Water Supply and Storage: Fish culture and municipal and industrial water supply and storage are designated uses in particular classified waters of the state where these uses are actually being realized. However, no numeric criteria apply uniquely to these uses. Water quality adequate for these uses is ensured by the general criteria and numeric criteria for bacterial quality, pH and temperature that are established for all classified waters of the state listed in 20.6.4.97 through 20.6.4.899 NMAC.

B. Domestic Water Supply: Surface waters of the state designated for use as domestic water supplies shall not contain substances in concentrations that create a lifetime cancer risk of more than one cancer per 100,000 exposed persons. Those criteria listed under domestic water supply in Subsection J of this section apply to this use.

C. Irrigation and Irrigation Storage: The following numeric criteria and those criteria listed under irrigation in Subsection J of this section apply to this use:

- (1) dissolved selenium 0.13 mg/L
- (2) dissolved selenium in presence of >500 mg/L SO₄ 0.25 mg/L

D. Primary Contact: The monthly geometric mean of E. coli bacteria of 126 cfu/100 mL and single sample of 410 cfu/100 mL, apply to this use and pH shall be within the range of 6.6 to 9.0.

E. Secondary Contact: The monthly geometric mean of E. coli bacteria of 548 cfu/100 mL and single sample of 2507 cfu/100 mL apply to this use.

F. Livestock Watering: The criteria listed in Subsection J for livestock watering apply to this use.

G. Wildlife Habitat: Wildlife habitat shall be free from any substances at concentrations that are toxic to or will adversely affect plants and animals that use these environments for feeding, drinking, habitat or propagation; can bioaccumulate; or might impair the community of animals in a watershed or the ecological integrity of surface waters of the state. The discharge of substances that bioaccumulate, in excess of levels listed in Subsection J for wildlife habitat is allowed if, and only to the extent that, the substances are present in the intake waters that are diverted and utilized prior to discharge, and then only if the discharger utilizes best available treatment technology to reduce the amount of bioaccumulating substances that are discharged. The numeric criteria listed in Subsection J for wildlife habitat apply to this use except when a site-specific or segment-specific criterion has been adopted under 20.6.4.101 through 20.6.4.899 NMAC.

H. Aquatic Life: Surface waters of the state with a designated, existing or attainable use of aquatic life shall be free from any substances at concentrations that can impair the community of plants and animals in or the ecological integrity of surface waters of the state. Except as provided in paragraph 6 below, the acute and chronic aquatic life criteria set out in subsections I and J of this section are applicable to this use. In addition, the specific criteria for aquatic life subcategories in the following paragraphs shall apply to waters classified under the respective designations

High Quality Coldwater: Dissolved oxygen 6.0 mg/L or more, temperature 20°C (68°F) or less, pH (1) within the range of 6.6 to 8.8 and specific conductance a limit varying between 300 µmhos/cm and 1,500 µmhos /cm depending on the natural background in particular surface waters of the state (the intent of this criterion is to prevent excessive increases in dissolved solids which would result in changes in community structure). The total ammonia criteria set out in Subsections K, L and M of this section and the human health criteria for pollutants listed in Subsection J of this section are applicable to this use.

(2) Coldwater: Dissolved oxygen 6.0 mg/L or more, temperature 20°C (68°F) or less and pH within the range of 6.6 to 8.8. The total ammonia criteria set out in Subsections K, L and M of this section and the human health criteria listed in Subsection J of this section are applicable to this use.

Marginal Coldwater: Dissolved oxygen than 6 mg/L or more, on a case by case basis maximum (3) temperatures may exceed 25°C (77°F) and the pH may range from 6.6 to 9.0. The total ammonia criteria set out in Subsections K, L and M of this section and the human health criteria listed in Subsection J of this section are applicable to this use.

(4) Warmwater: Dissolved oxygen 5 mg/L or more, temperature 32.2°C (90°F) or less, and pH within the range of 6.6 to 9.0. The total ammonia criteria set out in Subsections K, L and M of this section and the human health criteria listed in Subsection J of this section are applicable to this use.

Marginal Warmwater: Dissolved oxygen 5 mg/L or more, pH within the range of 6.6 to 9.0 and on a case by case basis maximum temperatures may exceed 32.2°C (90°F). The total ammonia criteria set out in Subsections K. L and M of this section and the human health criteria listed in Subsection J of this section are applicable to this use.

(6) Limited Aquatic Life: Criteria shall be developed on a segment-specific basis. The acute aquatic life criteria of Subsections I and J of this section shall apply. Chronic aquatic life criteria do not apply unless adopted on a segment specific basis.

The following schedule of equations for the determination of numeric criteria for the substances listed Ĭ. and those criteria listed in Subsection J for aquatic life shall apply to the subcategories of aquatic life identified in this section.

(1)Acute criteria:

(a)

(c)

(d)

(b)

(c)

 $0.85 e^{(1.72(\ln(hardness))-6.59)}$ dissolved silver

 $(e^{(1.0166(\ln(hardness))-3.924)})cf$ µg/L, the hardness-dependent formulae for dissolved cadmium (b) cadmium must be multiplied by a conversion factor (cf) to be expressed as dissolved values; the acute factor for cadmium is cf = 1.136672 - ((ln hardness)(0.041838))

μg/L

- 0.316 e^{(0.819(ln(hardness))+3.7256)} dissolved chromium μg/L
- 0.960 e^{(0.9422}(ln(hardness))-1.700) μg/L dissolved copper
 - $(e^{(1.273(\ln(hardness))-1.46)})cf$

 $\mu g/L$, the hardness-dependent formulae for dissolved lead (e) lead must be multiplied by a conversion factor (cf) to be expressed as dissolved values; the acute and chronic factor for lead is cf = 1.46203 - ((ln hardness)(0.145712))

- 0 998 e^{(0.8460(ln(hardness))+2.255)} dissolved nickel μg/L (f) 0.978 e^{(0.8473}(ln(hardness))+0.884) dissolved zinc (g) μg/L
- Chronic criteria: (2)
- $(e^{(0.7409(\ln(hardness))-4.719)})$ cf $\mu g/L$, the hardness-dependent formulae for (a) dissolved cadmium cadmium must be multiplied by a conversion factor (cf) to be expressed as dissolved values; the chronic factor for cadmium is cf = 1.101672 - ((ln hardness)(0.041838))
 - 0.860 e^{(0.819(ln(hardness))+0.6848)} dissolved chromium
 - μg/L 0.960 e^{(0.8545(in(hardness))-1.702)}
 - dissolved copper μg/L

 $(e^{(1.273(ln(hardness))-4.705)})$ cf μ g/L, the hardness-dependent formulae for (d) dissolved lead lead must be multiplied by a conversion factor (cf) to be expressed as dissolved values; the acute and chronic factor for lead is cf = 1.46203 - ((ln hardness)(0.145712))

- dissolved nickel (e)
- 0 997 e^{(0.846(ln(hardness))+0.0584)} μg/L

(f) dissolved zinc

$0.986 e^{(0.8473(\ln(hardness))+0.884)} \mu g/L$

J. Numeric criteria. The following table sets forth the numeric criteria adopted by the commission to protect existing, designated and attainable uses. Additional criteria that are not compatible with this table are found in Subsections A through I of this section.

Pollutant total, unless indicated	CAS Number	Domestic Water	Irrigation	Livestock Watering	Wildlife Habitat	Aquatic Life	
		Water Supply µg/L unless indicated	µg/L unless indicated	μg/L unless indicated	μg/L unless indicated	Acute μg/L	Chr µg
Aluminum, dissolved	7429-90-5		5,000			750	8
Antimony, dissolved	7440-36-0	5.6					
Arsenic, dissolved	7440-38-2	2.3	100	200		340	15
Asbestos	1332-21-4	7,000,000 fibers/L					
Barium, dissolved	7440-39-3	2,000					
Beryllium, dissolved	7440-41-7	4					
Boron, dissolved	7440-42-8		750	5,000			
Cadmium, dissolved	7440-43-9	5	10	50		see 20.6.4.900.1	se 20.6.4
Chlorine residual	7782-50-5				11	19	1.
Chromium, dissolved	18540-29- 9	100	100	1,000		see 20.6.4.900.I	se 20.6.4
Cobalt, dissolved	7440-48-4		50	1,000			
Copper, dissolved	7440-50-8	1300	200	500		see 20.6.4.900.I	se 20.6.4
Cyanide, dissolved	57-12-5	200					
Cyanide, weak acid							
dissociable	57-12-5	700			5.2	22.0	5.
Lead, dissolved	7439-92-1	50	5,000	100		see 20.6.4.900.I	se 20.6.4
Mercury	7439-97-6	2	· ·	10	0.77		
Mercury, dissolved	7439-97-6					1.4	0.7
Methymercury	22967-92- 6						
Molybdenum, dissolved	7439-98-7		1,000				
Nickel, dissolved	7440-02-0	100				see 20.6.4.900.I	se 20.6.4
Nitrate as N		10 mg/L				ļ	
Nitrite + Nitrate				132 mg/L			
Selenium, dissolved	7782-49-2	50	see 20.6.4.900.C	50			
Selenium, total recoverable	7782-49-2				5.0	20.0	5.
Silver, dissolved	7440-22-4					see 20.6.4.900.I	
Thallium, dissolved	7440-28-0	1.7				20.0. 7.700.1	
Uranium, dissolved	7440-23-0	5,000					<u> </u>
Vanadium, dissolved	7440-62-2		100	100			
	1110 02-2			100		see	

20.6.4 NMAC

Zinc, dissolved	7440-66-6	7,400	2,000	25,000		20.6.4.900.	I 20.6.4
Adjusted gross							
alpha (see]
20.6.4.900.B		15		15			
and .F)		15 pCi/L		15 pCi/L			
Radium 226 +		5		30.0			
Radium 228		5 pCi/L		pCi/L			+
Strontium 90		8 pCi/L		20.000			
Tritium		20,000 pCi/L		20,000 pCi/L			
Acenaphthene	83-32-9	670					
Acrolein	107-02-8	190					
Acrylonitrile	107-13-1	0.51					
Aldrin	309-00-2	0.00049				3.0	
			· · · <u>· · · · · · · · · · · · · · · · </u>			3.0	
Anthracene	120-12-7	8,300					
Benzene	71-43-2	22					
Benzidine	92-87-5	0.00086					+
Benzo(a)anthracene	56-55-3	0.038					
Benzo(a)pyrene	50-32-8	0.038					
Benzo(b)	205 00 0	0.020					
fluoranthene	205-99-2	0.038		_			
Benzo(k) fluoranthene	207-08-9	0.038					
	319-84-6	0.038					
alpha-BHC							
beta-BHC	319-85-7	0.091					-
Gamma-BHC (Lindane)	58-89-9	0.19				0.95	
Bis(2-chloroethyl)	38-89-9	0.19				0.95	+
ether	111-44-4	0.30					
Bis(2-		0.50				+	
chloroisopropyl)							
ether	108-60-1	1,400				1	
Bis(2-ethylhexyl)		,					
phthalate	117817	12					
Bromoform	75-25-2	43					
Butylbenzyl							
phthalate	85-68-7	1,500					
Carbon tetrachloride	56-23-5	2.3					
Chlordane	57-74-9	0.0080				2.4	0.00
Chlorobenzene	108-90-7	680					
Chlorodibromomethane	124-48-1	4.0					
Chloroform	67-66-3	57					
2-							
Chloronaphthalene	91-58-7	1,000					
2-Chlorophenol	95-57-8	81					
Chrysene	218-01-9	0.038					
4,4'-DDT and							
derivatives	_	0.0022			0.001	1.1	0.0
Dibenzo(a,h)							
anthracene	53-70-3	0.038					
Dibutyl phthalate	84-74-2	2,000					L
1,2-							
Dichlorobenzene	95-50-1	2,700					<u> </u>
1,3-						1	
Dichlorobenzene	541-73-1	320				1	1

Dichlorobenzene	106-46-7	400					
3,3'- Dichlorobenzidine	91-94-1	0.21					
Dichlorobromomethane	75-27-4	5.5					
1,2-Dichloroethane	107-06-2	3.8				+	
1,1-	107-00-2	5.0					-
Dichloroethylene	75-35-4	0.57					
2,4-Dichlorophenol	120-83-2	77					
1,2-	120 00 2						1
Dichloropropane	78-87-5	5.0					
1,3-							
Dichloropropene	542-75-6	10					
Dieldrin	60-57-1	0.00052				0.24	0.0
Diethyl phthalate	84-66-2	17,000					
Dimethyl phthalate	131-11-3	270,000					
2,4-Dimethylphenol	105-67-9	380					
2,4-Dinitrophenol	51-28-5	69					
2,4-Dinitrotoluene	121-14-2	1.1					
2,3,7,8-TCDD			1			1	_
Dioxin	1746-01-6	5.0E-08					
1,2-							
Diphenylhydrazine	122-66-7	0.36					_
alpha-Endosulfan	959-98-8	62				0.22	0.0
	33213-65-						
beta-Endosulfan	9	62				0.22	0.0
Endosulfan sulfate	1031-07-8	62					
Endrin	72-20-8	0.76				0.086	0.0
Endrin aldehyde	7421-93-4	0.29					
Ethylbenzene	100-41-4	3,100					
Fluoranthene	206-44-0	130					
Fluorene	86-73-7	1,100					
Heptachlor	76-44-8	0.00079				0.52	0.00
Heptachlor epoxide	1024-57-3	0.00039				0.52	0.00
Hexachlorobenzene	118-74-1	0.0028					
Hexachlorobutadiene	87-68-3	4.4					
Hexachlorocyclopentadiene	77-47-4	240					
Hexachloroethane	67-72-1	14					
Ideno(1,2,3-cd)							
pyrene	193-39-5	0.038	<u> </u>				
Isophorone	78-59-1	350	1				_
Methyl bromide	74-83-9	47					
2-Methyl-4,6-							
dinitrophenol	534-52-1	13		- <u> </u>			
Methylene chloride	75-09-2	46					
Nitrobenzene	98-95-3	17					
N-		0.0070	1				
Nitrosodimethylamine	62-75-9	0.0069					
N-Nitrosodi-n-	621 64 7	0.050					
propylamine	621-64-7	0.050					
N- Nitrosodinhonulamino	86 20 6	33	1				
Nitrosodiphenylamine	86-30-6				0.014		
PCBs Pertachlaranhanal	1336-36-3	0.00064			0.014	10	0.0
Pentachlorophenol	87-86-5	2.7				19	15
Phenol	108-95-2	21,000	1				

1,1,2,2-						
Tetrachloroethane	79-34-5	1.7				
Tetrachloroethylene	127-18-4	6.9				
Toluene	108-88-3	6,800				
Toxaphene	8001-35-2	0.0028			0.73	0.00
1,2-Trans- dichloroethylene	156-60-5	700				
1,2,4- Trichlorobenzene	120-82-1	260				
1,1,2- Trichloroethane	79-00-5	5.9				
Trichloroethylene	79-01-6	25				
2,4,6-						
Trichlorophenol	88-06-2	14				
Vinyl chloride	75-01-4	20				

K. Acute Criteria, Total Ammonia (mg/L as N)

pH	Salmonids Present	Salmonids Absent
6.5	32.6	48.8
6.6	31.3	46.8
6.7	29.8	44.6
6.8	28.1	42.0
6.9	26.2	39.1
7.0	24.1	36.1
7.1	22.0	32.8
7.2	19.7	29.5
7.3	17.5	26.2
7.4	15.4	23.0
7.5	13.3	19.9
7.6	11.4	17.0
7.7	9.65	14.4
7.8	8.11	12.1
7.9	6.77	10.1
8.0	5.62	8.40
8.1	4.64	6.95
8.2	3.83	5.72
8.3	3.15	4.71
8.4	2.59	3.88
8.5	2.14	3.20
8.6	1.77	2.65
8.7	1.47	2.20
8.8	1.23	1.84
8.9	1.04	1.56
9.0	0.885	1.32

L. Chronic Criteria, Total Ammonia (mg/L as N), Fish Early Life Stages Present

-11		Temperature (°C)											
pH	0	14	15	16	18	20	22	24	26	28	30		
6.5	6.67	6.67	6.46	6.06	5.33	4.68	4.12	3.62	3.18	2.80	2.46		
6.6	6.57	6.57	6.36	5.97	5.25	4.61	4.05	3.56	3.13	2.75	2.42		
6.7	6.44	6.44	6.25	5.86	5.15	4.52	3.98	3.50	3.07	2.70	2.37		
6.8	6.29	6.29	6.10	5.72	5.03	4.42	3.89	3.42	3.00	2.64	2.32		
6.9	6.12	6.12	5.93	5.56	4.89	4.30	3.78	3.32	2.92	2.57	2.25		
7.0	5.91	5.91	5.73	5.37	4.72	4.15	3.65	3.21	2.82	2.48	2.18		
											1		

http://www.nmcpr.state.nm.us/nmac/parts/title20/20.006.0004.htm

7.1	5.67	5.67	5.49	5.15	4.53	3.98	3.50	3.08	2.70	2.38	2.09
7.2	5.39	5.39	5.22	4.90	4.31	3.78	3.33	2.92	2.57	2.26	1.99
7.3	5.08	5.08	4.92	4.61	4.06	3.57	3.13	2.76	2.42	2.13	1.87
7.4	4.73	4.73	4.59	4.30	3.78	3.32	2.92	2.57	2.26	1.98	1.74
7.5	4.36	4.36	4.23	3.97	3.49	3.06	2.69	2.37	2.08	1.83	1.61
7.6	3.98	3.98	3.85	3.61	3.18	2.79	2.45	2.16	1.90	1.67	1.47
7.7	3.58	3.58	3.47	3.25	2.86	2.51	2.21	1.94	1.71	1.50	1.32
7.8	3.18	3.18	3.09	2.89	2.54	2.23	1.96	1.73	1.52	1.33	1.17
7.9	2.80	2.80	2.71	2.54	2.24	1.96	1.73	1.52	1.33	1.17	1.03
8.0	2.43	2.43	2.36	2.21	1.94	1.71	1.50	1.32	1.16	1.02	0.897
8.1	2.10	2.10	2.03	1.91	1.68	1.47	1.29	1.14	1.00	0.879	0.773
8.2	1.79	1.79	1.74	1.63	1.43	1.26	1.11	0.973	0.855	0.752	0.661
8.3	1.52	1.52	1.48	1.39	1.22	1.07	0.941	0.827	0.727	0.639	0.562
8.4	1.29	1.29	1.25	1.17	1.03	0.906	0.796	0.700	0.615	0.541	0.475
8.5	1.09	1.09	1.06	0.990	0.870	0.765	0.672	0.591	0.520	0.457	0.401
8.6	0.920	0.920	0.892	0.836	0.735	0.646	0.568	0.499	0.439	0.386	0.339
8.7	0.778	0.778	0.754	0.707	0.622	0.547	0.480	0.422	0.371	0.326	0.287
8.8	0.661	0.661	0.641	0.601	0.528	0.464	0.408	0.359	0.315	0.277	0.244
8.9	0.565	0.565	0.548	0.513	0.451	0.397	0.349	0.306	0.269	0.237	0.208
9.0	0.486	0.486	0.471	0.442	0.389	0.342	0.300	0.264	0.232	0.204	0.179

M. Chronic Criteria, Total Ammonia (mg/L as N), Fish Early Life Stages Absent

TT		· · · · · · · · · · · · · · · · · · ·		Ten	perature (°C)				
pН	0	7	8	9	10	11	12	13	14	15
6.5	10.8	10.8	10.1	9.51	8.92	8.36	7.84	7.35	6.89	6.46
6.6	10.7	10.7	9.99	9.37	8.79	8.24	7.72	7.24	6.79	6.36
6.7	10.5	10.5	9.81	9.20	8.62	8.08	7.58	7.11	6.66	6.25
6.8	10.2	10.2	9.58	8.98	8.42	7.90	7.40	6.94	6.51	6.10
6.9	9.93	9.93	9.31	8.73	8.19	7.68	7.20	6.75	6.33	5.93
7.0	9.60	9.60	9.00	8.43	7.91	7.41	6.95	6.52	6.11	5.73
7.1	9.20	9.20	8.63	8.09	7.58	7.11	6.67	6.25	5.86	5.49
7.2	8.75	8.75	8.20	7.69	7.21	6.76	6.34	5.94	5.57	5.22
7.3	8.24	8.24	7.73	7.25	6.79	6.37	5.97	5.60	5.25	4.92
7.4	7.69	7.69	7.21	6.76	6.33	5.94	5.57	5.22	4.89	4.59
7.5	7.09	7.09	6.64	6.23	5.84	5.48	5.13	4.81	4.51	4.23
7.6	6.46	6.46	6.05	5.67	5.32	4.99	4.68	4.38	4.11	3.85
7.7	5.81	5.81	5.45	5.11	4.79	4.49	4.21	3.95	3.70	3.47
7.8	5.17	5.17	4.84	4.54	4.26	3.99	3.74	3.51	3.29	3.09
7.9	4.54	4.54	4.26	3.99	3.74	3.51	3.29	3.09	2.89	2.71
8.0	3.95	3.95	3.70	3.47	3.26	3.05	2.86	2.68	2.52	2.36
8.1	3.41	3.41	3.19	2.99	2.81	2.63	2.47	2.31	2.17	2.03
8.2	2.91	2.91	2.73	2.56	2.40	2.25	2.11	1.98	1.85	1.74
8.3	2.47	2.47	2.32	2.18	2.04	1.91	1.79	1.68	1.58	1.48
8.4	2.09	2.09	1.96	1.84	1.73	1.62	1.52	1.42	1.33	1.25
8.5	1.77	1.77	1.66	1.55	1.46	1.37	1.28	1.20	1.13	1.06
8.6	1.49	1.49	1.40	1.31	1.23	1.15	1.08	1.01	0.951	0.892
8.7	1.26	1.26	1.18	1.11	1.04	0.976	0.915	0.858	0.805	0.754
8.8	1.07	1.07	1.01	0.944	0.855	0.829	0.778	0.729	0.684	0.641
8.9	0.917	0.917	0.860	0.806	0.756	0.709	0.664	0.623	0.584	0.548
9.0	0.790	0.790	0.740	0.694	0.651	0.610	0.572	0.536	0.503	0.471
						the same as	the criterio	n for fish e	arly life	Í
stages pre	esent (refer	to Subsection	on L of 20.6	.4.900 NM	AC).			<u> </u>		

N. Dissolved oxygen saturation based on temperature and elevation.

(1) Elevation 5,000 feet or less:

Elevation (feet)

20.6.4 NMAC

		0	500	1,000	1,500	2,000	2,500	3,000	3,500	4,000	4,500	5,000
	0	14.6	14.3	14.1	13.8	13.6	13.3	13.1	12.8	12.6	12.3	12.1
	1	14.2	13.9	13.7	13.4	13.2	12.9	12.7	12.5	12.2	12.0	11.8
Temperature (°C)	2	13.8	13.6	13.3	13.1	12.8	12.6	12.4	12.1	11.9	11.7	11.5
	3	13.4	13.2	13.0	12.7	12.5	12.3	12.0	11.8	11.6	11.4	11.1
	4	13.1	12.8	12.6	12.4	12.2	11.9	11.7	11.5	11.3	11.1	10.9
	5	12.7	12.5	12.3	12.1	11.8	11.6	11.4	11.2	11.0	10.8	10.6
	6	12.4	12.2	12.0	11.8	11.5	11.3	11.1	10.9	10.7	10.5	10.3
	7	12.1	11.9	11.7	11.5	11.3	11.1	10.8	10.6	10.4	10.2	10.1
	8	11.8	11.6	11.4	11.2	11.0	10.8	10.6	10.4	10.2	10.0	9.8
	9	11.5	11.3	11.1	10.9	10.7	10.5	10.3	10.1	9.9	9.8	9.6
	10	11.3	11.1	10.9	10.7	10.5	10.3	10.1	9.9	9.7	9.5	9.4
	11	11.0	10.8	10.6	10.4	10.2	10.0	9.9	9.7	9.5	9.3	9.1
	12	10.8	10.6	10.4	10.2	10.0	9.8	9.6	9.5	9.3	9.1	8.9
	13	10.5	10.3	10.1	9.9	9.8	9.6	9.4	9.2	9.1	8.9	8.7
T	14	10.3	10.1	9.9	9.7	9.6	9.4	9.2	9.0	8.9	8.7	8.5
	15	10.1	9.9	9.7	9.5	9.3	9.2	9.0	8.8	8.7	8.5	8.4
(10)	16	9.8	9.7	9.5	9.3	9.2	9.0	8.8	8.7	8.5	8.3	8.2
	17	9.6	9.5	9.3	9.1	9.0	8.8	8.6	8.5	8.3	8.2	8.0
	18	9.4	9.3	9.1	8.9	8.8	8.6	8.5	8.3	8.1	8.0	7.8
	19	9.3	9.1	8.9	8.8	8.6	8.4	8.3	8.1	8.0	7.8	7.7
	20	9.1	8.9	8.7	8.6	8.4	8.3	8.1	8.0	7.8	7.7	7.5
	21	8.9	8.7	8.6	8.4	8.3	8.1	8.0	7.8	7.7	7.5	7.4
	22	8.7	8.6	8.4	8.2	8.1	8.0	7.8	7.7	7.5	7.4	7.2
	23	8.6	8.4	8.2	8.1	7.9	7.8	7.7	7.5	7.4	7.2	7.1
	24	8.4	8.2	8.1	7.9	7.8	7.7	7.5	7.4	7.2	7.1	7.0
	25	8.2	8.1	7.9	7.8	7.7	7.5	7.4	7.2	7.1	7.0	6.8
	26	8.1	7.9	7.8	7.7	7.5	7.4	7.2	7.1	7.0	6.8	6.7
	27	7.9	7.8	7.7	7.5	7.4	7.2	7.1	7.0	6.8	6.7	6.6
	28	7.8	7.7	7.5	7.4	7.2	. 7.1	7.0	6.9	6.7	6.6	6.5
	29	7.7	7.5	7.4	7.3	7.1	7.0	6.9	6.7	6.6	6.5	6.4
	30	7.5	7.4	7.3	7.1	7.0	6.9	6.7	6.6	6.5	6.4	6.3

(2) Elevation greater than 5,000 feet:

						Elevati	on (feet)				
		5,500	6,000	6,500	7,000	7,500	8,000	8,500	9,000	9,500	10,000
	0	11.9	11.6	11.4	11.2	11.0	10.8	10.6	10.3	10.1	9.9
	1	11.5	11.3	11.1	10.9	10.7	10.5	10.3	10.1	9.9	9.7
	2	11.2	11.0	10.8	10.6	10.4	10.2	10.0	9.8	9.6	9.4
	3	10.9	10.7	10.5	10.3	10.1	9.9	9.7	9.5	9.3	9.1
	4	10.7	10.4	10.2	10.0	9.8	9.7	9.5	9.3	9.1	8.9
	5	10.4	10.2	10.0	9.8	9.6	9.4	9.2	9.0	8.9	8.7
	6	10.1	9.9	9.7	9.5	9.4	9.2	9.0	8.8	8.6	8.5
	7	9.9	9.7	9.5	9.3	9.1	8.9	8.8	8.6	8.4	8.2
	8	9.6	9.4	9.3	9.1	8.9	8.7	8.6	8.4	8.2	8.0
Temperature	9	9.4	9.2	9.0	8.9	8.7	8.5	8.3	8.2	8.0	7.8
(°C)	10	9.2	9.0	8.8	8.7	8.5	8.3	8.1	8.0	7.8	7.7
(C)	11	9.0	8.8	8.6	8.5	8.3	8.1	8.0	7.8	7.6	7.5
	12	8.8	8.6	8.4	8.3	8.1	7.9	7.8	7.6	7.5	7.3
	13	8.6	8.4	8.2	8.1	7.9	7.8	7.6	7.5	7.3	7.2
	14	8.4	8.2	8.1	7.9	7.7	7.6	7.4	7.3	7.1	7.0
	15	8.2	8.0	7.9	7.7	7.6	7.4	7.3	7.1	7.0	6.8
	16	8.0	7.9	7.7	7.6	7.4	7.3	7.1	7.0	6.8	6.7
	17	7.9	7.7	7.6	7.4	7.3	7.1	7.0	6.8	6.7	6.6
	18	7.7	7.5	7.4	7.3	7.1	7.0	6.8	6.7	6.6	6.4
	19	7.5	7.4	7.2	7.1	7.0	6.8	6.7	6.6	6.4	6.3

	20	7.4	7.2	7.1	7.0	6.8	6.7	6.6	6.4	6.3	6.2
	21	7.2	7.1	7.0	6.8	6.7	6.6	6.4	6.3	6.2	6.0
	22	7.1	7.0	6.8	6.7	6.6	6.4	6.3	6.2	6.1	5.9
	23	7.0	6.8	6.7	6.6	6.4	6.3	6.2	6.1	5.9	5.8
:	24	6.8	6.7	6.6	6.4	6.3	6.2	6.1	5.9	5.8	5.7
	25	6.7	6.6	6.5	6.3	6.2	6.1	6.0	5.8	5.7	5.6
	26	6.6	6.5	6.3	6.2	6.1	6.0	5.8	5.7	5.6	5.5
	27	6.5	6.3	6.2	6.1	6.0	5.9	5.7	5.6	5.5	5.4
	28	6.4	6.2	6.1	6.0	5.9	5.8	5.6	5.5	5.4	5.3
	29	6.2	6.1	6.0	5.9	5.8	5.7	5.5	5.4	5.3	5.2
	30	6.1	6.0	5.9	5.8	5.7	5.6	5.4	5.3	5.2	5.1

[20.6.4.900 NMAC - Rp 20 NMAC 6.1.3100, 10-12-00; A, 10-11-02; A, 05-23-05; A, 07-17-05]

20.6.4.901 PUBLICATION REFERENCES: These documents are intended as guidance and are available for public review during regular business hours at the offices of the surface water quality bureau and the New Mexico environment department public library. Copies of these documents have also been filed with the New Mexico state records center in order to provide greater access to this information.

A. American public health association. 1992. Standard methods for the examination of water and wastewater, 18th Edition. Washington, D.C. 1048 p.

B. American public health association. 1995. *Standard methods for the examination of water and wastewater, 19th Edition.* Washington, D.C. 1090 p.

C. American public health association. 1998. *Standard methods for the examination of water and wastewater, 20th Edition.* Washington, D.C. 1112 p.

D. United States geological survey. 1987. *Methods for determination of inorganic substances in water and fluvial sediments, techniques of water-resource investigations of the United States geological survey.* Washington, D.C. 80 p.

E. United States geological survey. 1987. Methods for the determination of organic substances in water and fluvial sediments, techniques of water-resource investigations of the U.S. geological survey. Washington, D.C. 80 p.

F. United States environmental protection agency. 1974. *Methods for chemical analysis of water and wastes.* National environmental research center, Cincinnati, Ohio. (EPA-625-/6-74-003). 298 p.

G. New Mexico water quality control commission. 2003. (208) state of New Mexico water quality management plan. Santa Fe, New Mexico. 85 p.

H. Colorado river basin salinity control forum. 2002. 2002 Review, water quality standards for salinity, Colorado river system. Phoenix, Arizona. 176 p.

I. United States environmental protection agency. 2002. *Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms*. Office of research and development, Washington, D.C. (5th Ed., EPA 821-R-02-012). 293 p. http://www.epa.gov/ost/WET/disk2/atx.pdf

J. United States environmental protection agency. 1989. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Environmental monitoring systems laboratory, Cincinnati, Ohio. (2nd Ed., EPA 600/4-89/001). 250 p.

K. Ambient-induced mixing, in United States environmental protection agency. 1991. *Technical support* document for water quality-based toxics control. Office of water, Washington, D.C. (EPA/505/2-90-001). 2 p.

L. United States environmental protection agency. 1983. *Technical support manual: waterbody surveys and assessments for conducting use attainability analyses*. Office of water, regulations and standards, Washington, D.C. 251 p. http://www.epa.gov/OST/library/wqstandards/uaavol123.pdf

M. United States environmental protection agency. 1984. *Technical support manual: waterbody surveys and assessments for conducting use attainability analyses, volume III: lake systems*. Office of water, regulations and standards, Washington, D.C. 208 p. http://www.epa.gov/OST/library/wqstandards/uaavol123.pdf [20.6.4.901 NMAC - Rp 20 NMAC 6.1.4000, 10-12-00; A, 05-23-05]

HISTORY of 20.6.4 NMAC:

Pre-NMAC History:

Material in the part was derived from that previously filed with the commission of public records - state records center and archives:

WQC 67-1, Water Quality Standards, filed 7-17-67, effective 8-18-67

WQC 67-1, Amendment Nos. 1-6, filed 3-21-68, effective 4-22-68

WQC 67-1, Amendment No. 7, filed 2-27-69, effective 3-30-69

WQC 67-1, Amendment No. 8, filed 7-14-69, effective 8-15-69

WQC 70-1, Water Quality Standards for Intrastate Waters and Tributaries to Interstate Streams, filed July 17, 1970;

WQC 67-1, Amendment Nos. 9 and 10, filed 2-12-71, effective 3-15-71

WQC 67-1, Amendment No. 11, filed 3-4-71, effective 4-5-71

WQC 73-1, New Mexico Water Quality Standards, filed 9-17-73, effective 10-23-73

WQC 73-1, Amendment Nos. 1 and 2, filed 10-3-75, effective 11-4-75

WQC 73-1, Amendment No. 3, filed 1-19-76, effective 2-14-76

WQC 77-2, Amended Water Quality Standards for Interstate and Intrastate Streams in New Mexico, filed 2-24-77, effective 3-11-77

WQC 77-2, Amendment No. 1, filed 3-23-78, effective 4-24-78

WQC 77-2, Amendment No. 2, filed 6-12-79, effective 7-13-79

WQCC 80-1, Water Quality Standards for Interstate and Intrastate Streams in New Mexico, filed 8-28-80, effective 9-28-80

WQCC 81-1, Water Quality Standards for Interstate and Intrastate Streams in New Mexico, filed 5-5-81, effective 6-4-81

WQCC 81-1, Amendment No. 1, filed 5-19-82, effective 6-18-82

WQCC 81-1, Amendment No. 2, filed 6-24-82, effective 7-26-82

WQCC 85-1, Water Quality Standards for Interstate and Intrastate Streams in New Mexico, filed 1-16-85, effective 2-15-85 WOCC 85-1, Amendment No. 1, filed 8-28-87, effective 9-28-87

WOCC 88-1, Water Quality Standards for Interstate and Intrastate Streams in New Mexico, filed 3-24-88, effective 4-25-88

WQCC 91-1, Water Quality Standards for Interstate and Intrastate Streams in New Mexico, filed 5-29-91, effective 6-29-91 WQCC 91-1, Amendment No. 1, filed 10-11-91, effective 11-12-91

History of the Repealed Material:

WQC 67-1, Water Quality Standards, - Superseded, 10-23-73

WQC 73-1, New Mexico Water Quality Standards, - Superseded, 3-11-77

WQC 77-2, Amended Water Quality Standards for Interstate and Intrastate Streams in New Mexico, - Superseded, 9-28-80

WQCC 80-1, Water Quality Standards for Interstate and Intrastate Streams in New Mexico, - Superseded, 6-4-81

WQCC 81-1, Water Quality Standards for Interstate and Intrastate Streams in New Mexico, - Superseded, 2-15-85

WQCC 85-1, Water Quality Standards for Interstate and Intrastate Streams in New Mexico, - Superseded, 4-25-88

WQCC 88-1, Water Quality Standards for Interstate and Intrastate Streams in New Mexico, - Superseded, 6-29-91

WQCC 91-1, Water Quality Standards for Interstate and Intrastate Streams in New Mexico, - Superseded, 1-23-95 20 NMAC 6.1, Standards for Interstate and Intrastate Streams, - Repealed, 2-23-00

20 NMAC 6.1, Standards for Interstate and Intrastate Surface Waters, - Repealed, 10-12-00

MCL's SEPA National Primary Drinking Water Standards

	Contaminant	-MCL or TT ⁴ i (mg/L) ²	Potential health effects from exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal
ંભર	Acrylamide	₩ (IIIg/E) T⊺8	Nervous system or blood problems;	Added to water during sewage/wastewater increased	zero
<u>ି</u> ତ୍ତ,	Alachlor	0.002	Eye, liver, kidney or spleen problems; anemia; increased risk of cancer	risk of cancer treatment Runoff from herbicide used on row crops	zero
R	Alpha particles	15 picocuries per Liter (pCi/L)	Increased risk of cancer	Erosion of natural deposits of certain minerals that are radioactive and may emit a form of radiation known as alpha radiation	Zero
100	Antimony	0.006	Increase in blood cholesterol; decrease in blood sugar	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	0.006
100	Arsenic	0.010 as of 1/23/06	Skin damage or problems with circulatory systems, and may have increased risk of getting cancer	Erosion of natural deposits; runoff from orchards, runoff from glass & electronics production wastes	0
100	Asbestos (fibers >10 micrometers)	7 million fibers per Liter (MFL)	Increased risk of developing benign intestinal polyps	Decay of asbestos cement in water mains; erosion of natural deposits	7 MFL
- OC	Atrazine	0.003	Cardiovascular system or reproductive problems	Runoff from herbicide used on row crops	0.003
100	Barium	2 .	Increase in blood pressure	Dischärge of drilling wastes; discharge from metal refineries; erosion of natural deposits	2
oc	Benzene	0.005	Anemia; decrease in blood platelets; increased risk of cancer	Discharge from factories; leaching from gas storage tanks and landfills	zero
00	Benzo(a)pyrene (PAHs)	0.0002	Reproductive difficulties; increased risk of cancer	Leaching from linings of water storage tanks and distribution lines	zero
	Beryllium	0.004	Intestinal lesions	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries	0.004
R	Beta particles and photon emitters	4 millirems per year	Increased risk of cancer	Decay of natural and man-made deposits of certain minerals that are radioactive and may emit forms of radiation known as photons and beta radiation	zero
DEP	Bromate	0.010	Increased risk of cancer	Byproduct of drinking water disinfection	zero
loc .	Cadmium	0.005	Kidney damage	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints	0.005
OC	Carbofuran	0.04	Problems with blood, nervous system, or reproductive system	Leaching of soil fumigant used on rice and alfalfa	0.04
00	Carbon tetrachloride	0.005	Liver problems; increased risk of cancer	Discharge from chemical plants and other industrial activities	zero
D	Chloramines (as Cl ₂)	MRDL=4.01	Eye/nose irritation; stomach discomfort, anemia	Water additive used to control microbes	MRDLG=41

LEGEND

Disinfection Byproduct

Dinsinfectant

Microorganism

1

	Contaminant	MCL or TT1 (mg/L)2	Potential health effects from exposure above the MCL	Common sources of contaminant in drinking water.	Public Health Goal
OC .	Chlordane	0.002	Liver or nervous system problems; increased risk of cancer	Residue of banned termiticide	zero
Ď	Chlorine (as Cl ₂)	MRDL=4.01	Eye/nose Irritation; stomach discomfort	Water additive used to control microbes	MRDLG=41
D	Chlorine dioxide (as CIO ₂)	MRDL=0.81	Anemia; infants & young children: nervous system effects	Water additive used to control microbes	MRDLG=0.81
IDEP:	Chlorite	1.0	Anemia; infants & young children: nervous system effects	Byproduct of drinking water disinfection	0.8
96 1	Chlorobenzene	0.1	Liver or kidney problems	Discharge from chemical and agricultural chemical factories	0.1
108	Chromium (total)	0.1	Allergic dermatitis	Discharge from steel and pulp mills; erosion of natural deposits	0.1
10C	Copper	TT7; Action Level = 1.3	Short term exposure: Gastrointestinal distress. Long term exposure: Liver or kidney damage. People with Wilson's Disease should consult their personal doctor if the amount of copper in their water exceeds the action level	Corrosion of household plumbing systems; erosion of natural deposits	1.3
IVI.	Cryptosporidium	TT3	Gastrointestinal illness (e.g., diarrhea, vomiting, cramps)	Human and animal fecal waste	zero
100	Cyanide (as free cyanide)	0.2	Nerve damage or thyroid problems	Discharge from steel/metal factories; discharge from plastic and fertilizer factories	0.2
90	2,4-D	0.07	Kidney, liver, or adrenal gland problems	Runoff from herbicide used on row crops	0.07
00	Dalapon	0.2	Minor kidney changes	Runoff from herbicide used on rights of way	0.2
0 0	1,2-Dibromo-3-chloropropa ne (DBCP)	0.0002	Reproductive difficulties; increased risk of cancer	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards	zero
OC	o-Dichlorobenzene	0.6	Liver, kidney, or circulatory system problems	Discharge from industrial chemical factories	0.6
OC .	p-Dichlorobenzene	0.075	Anemia; liver, kidney or spleen damage; changes in blood	Discharge from industrial chemical factories	0.075
OC	1,2-Dichloroethane	0.005	Increased risk of cancer	Discharge from industrial chemical factories	zero
00	1,1-Dichloroethylene	0.007	Liver problems	Discharge from industrial chemical factories	0.007
00	cis-1,2-Dichloroethylene	0.07	Liver problems	Discharge from industrial chemical factories	0.07
00	trans-1,2-Dichloroethylene	0.1	Liver problems	Discharge from industrial chemical factories	0.1
OC	Dichloromethane	0.005	Liver problems; increased risk of cancer	Discharge from drug and chemical factories	zero
OĊ-	1,2-Dichloropropane	0.005	Increased risk of cancer	Discharge from industrial chemical factories	zero
00	Di(2-ethylhexyl) adipate	0.4	Weight loss, live problems, or possible reproductive difficulties	Discharge from chemical factories	0.4
00	Di(2-ethylhexyl) phthalate	0.006	Reproductive difficulties; liver problems; increased risk of cancer	Discharge from rubber and chemical factories	zero
00	Dinoseb	0.007	Reproductive difficulties	Runoff from herbicide used on soybeans and vegetables	0.007
oc	Dioxin (2,3,7,8-TCDD)	0.00000003	Reproductive difficulties; increased risk of cancer	Emissions from waste incineration and other combustion; discharge from chemical factories	zero
00	Diquat	0.02	Cataracts	Runoff from herbicide use	0.02
OC.	Endothall	0.1	Stomach and intestinal problems	Runoff from herbicide use	0.1

LEGEND

Disinfection Byproduct

Dinsinfectant

4

2

	Contaminant	MCL or TT1 (mg/L)2	Potential health effects from exposure above the MCL	Common sources of contaminant in drinking water .	Public Health Goal
09	Endrin	0.002	Liver problems	Residue of banned insecticide	0.002
90	Epichlorohydrin	8TT	Increased cancer risk, and over a long period of time, stomach problems	Discharge from industrial chemical factories; an impurity of some water treatment chemicals	. zero
CC	Ethylbenzene	0.7	Liver or kidneys problems	Discharge from petroleum refineries	0.7
00.	Ethylene dibromide	0.00005	Problems with liver, stomach, reproductive system, or kidneys; increased risk of cancer	Discharge from petroleum refineries	zero
. IOC	Fluoride 4.0		Bone disease (pain and tenderness of the bones); Children may get mottled teeth	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories	4.0
M	Giardia lamblia	TT3 Gastrointestinal illness (e.g., diarrhea, vomiting, cramps)		Human and animal fecal waste	zero
OP.	Glyphosate	0.7	Kidney problems; reproductive difficulties	Runoff from herbicide use	0.7
DÈR	Haloacetic acids (HAA5)	0.060	Increased risk of cancer	Byproduct of drinking water disinfection	n/a6
Oe	Heptachlor	0.0004	Liver damage; increased risk of cancer	Residue of banned termiticide	zero
O	Heptachlor epoxide	0.0002	Liver damage; increased risk of cancer	Breakdown of heptachlor	zero
M	Heterotrophic plate count (HPC)	TT3	HPC has no health effects; it is an analytic method used to measure the variety of bacteria that are common in water. The lower the concentration of bacteria in drinking water, the better maintained the water system is.	HPC measures a range of bacteria that are naturally present in the environment	n/a
OC	Hexachlorobenzene	0.001	Liver or kidney problems; reproductive difficulties; increased risk of cancer	Discharge from metal refineries and agricultural chemical factories	zero
OC I	Hexachlorocyclopentadien e	0.05	Kidney or stomach problems	Discharge from chemical factories	0.05
100	Lead	TT7; Action Level = 0.015	Infants and children: Delays in physical or mental development; children could show slight deficits in attention span and learning abilities; Adults: Kidney problems; high blood pressure	Corrosion of household plumbing systems; erosion of natural deposits	zero
W.	Legionella	ŢŢ3	Legionnaire's Disease, a type of pneumonia	Found naturally in water; multiplies in heating systems	zero
. OC	Lindane	0.0002	Liver or kidney problems	Runoff/leaching from insecticide used on cattle, lumber, gardens	0.0002
ାତତ	Mercury (inorganic)	0.002	Kidney damage	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and croplands	0.002
.OCi	Methoxychlor	0.04	Reproductive difficulties	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock	0.04
IDC .	Nitrate (measured as 10 Nitrogen)		Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	10
.10C	Nitrite (measured as Nitrogen)	1	Infants below the age of six months who drink water containing nitrite in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	1

LEGEND

D Dinsinfectant

Disinfection Byproduct

Inorganic Chemical Microorganism

i

Radionuclides

	Contaminant	MCL or TT1 (mg/L)2	Potential health effects from exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal
OC.	Oxamyl (Vydate)	0.2	Slight nervous system effects	Runoff/leaching from insecticide used on apples, potatoes, and tomatoes	0.2
00	Pentachlorophenol	0.001	Liver or kidney problems; increased cancer risk	Discharge from wood preserving factories	zero
08	Picloram	0.5	Liver problems	Herbicide runoff	0.5
OC .	Polychlorinated biphenyls (PCBs)	0.0005	Skin changes; thymus gland problems; immune deficiencies; reproductive or nervous system difficulties; increased risk of cancer	Runoff from landfills; discharge of waste chemicals	zero
R	Radium 226 and Radium 228 (combined)	5 pCi/L	Increased risk of cancer	Erosion of natural deposits	zero
100	Selenium	0.05	Hair or fingernail loss; numbness in fingers or toes; circulatory problems	Discharge from petroleum refineries; erosion of natural deposits; discharge from mines	0.05
00	Simazine	0.004	Problems with blood	Herbicide runoff	0.004
. OC .	Styrene	0.1	Liver, kidney, or circulatory system problems	Discharge from rubber and plastic factories; leaching from landfills	0.1
ÔÇ.	Tetrachloroethylene	0.005	Liver problems; increased risk of cancer	Discharge from factories and dry cleaners	zero
100	Thallium	0.002	Hair loss; changes in blood; kidney, intestine, or liver problems	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories	0.0005
œ	Toluene	1	Nervous system, kidney, or liver problems	Discharge from petroleum factories	1 .
M	Total Coliforms (including fecal coliform and <i>E. coli</i>)	5.0%4	Not a health threat in itself; it is used to indicate whether other potentially harmful bacteria may be present ⁵	Coliforms are naturally present in the environment as well as feces; fecal coliforms and <i>E. coli</i> only come from human and animal fecal waste.	zero
DER	Total Trihalomethanes (TTHMs)	0.10 0.080 after 12/31/03	Liver, kidney or central nervous system problems; increased risk of cancer	Byproduct of drinking water disinfection ·	n/a6
<u>.</u>	Toxaphene	0.003	Kidney, liver, or thyroid problems; increased risk of cancer	Runoff/leaching from insecticide used on cotton and cattle	zero
OC.	2,4,5-TP (Silvex)	0.05	Liver problems	Residue of banned herbicide	0.05
00	1,2,4-Trichlorobenzene	0.07	Changes in adrenal glands	Discharge from textile finishing factories	0.07
œ.	1,1,1-Trichloroethane	0.2	Liver, nervous system, or circulatory problems	Discharge from metal degreasing sites and other factories	0.20
OC.	1,1,2-Trichloroethane	0.005	Liver, kidney, or immune system problems	Discharge from industrial chemical factories	0.003
œ.	Trichloroethylene	0.005	Liver problems; increased risk of cancer	Discharge from metal degreasing sites and other factories	zero
М	Turbidity	T13	Turbidity is a measure of the cloudiness of water. It is used to indicate water quality and filtration effectiveness (e.g., whether disease-causing organisms are present). Higher turbidity levels are often associated with higher levels of disease-causing micro-organisms such as viruses, parasites and some bacteria. These organisms can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.	Soil runoff	n/a
R	Uranium	30 ug/L as of 12/08/03	Increased risk of cancer, kidney toxicity	Erosion of natural deposits	zero

Dinsinfectant DEP 3 Disinfection Byproduct

Radionuclides

4

	1 0012010201	MCL or TT ¹ (mg/L)2	The second se	Common sources of contaminant in drinking water	Publics Health Goal
1072	Vinyl chloride	0.002	Increased risk of cancer	Leaching from PVC pipes; discharge from plastic factories	zero
	Viruses (enteric)	TT3	Gastrointestinal illness (e.g., diarrhea, vomiting, cramps)	Human and animal fecal waste	zero
ÔC	Xylenes (total)	10	Nervous system damage	Discharge from petroleum factories; discharge from chemical factories	10

NOTES

- 1 Definitions
 - Maximum Contaminant Level Goal (MCLG)--The level of a contaminant In drinking water below which there is no known or expected risk to health, MCLGs allow for a margin of safety and are non-enforceable public health goals.
 - · Maximum Contaminant Level (MCL)-The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards.
 - Maximum Residual Disinfectant Level Goal (MRDLG)—The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants
 - Maximum Residual Disinfectant Level (MRDL)—The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
 - · Treatment Technique (TT)-A required process intended to reduce the level of a contaminant in drinking water.
- 2 Units are in milligrams per liter (mg/L) unless otherwise noted. Milligrams per liter are equivalent to parts per million (ppm).
- 3 EPA's surface water treatment rules require systems using surface water or ground water under the direct influence of surface water to (1) disinfect their water, and (2) filter their water or meet criteria for avoiding filtrations to that the following contaminants are controlled at the following levels:
 - Cryptosporidium (as of 1/1/02 for systems serving >10,000 and 1/14/05 for systems serving <10,000) 99% removal.
 - · Giardia lamblia: 99.9% removal/inactivation
 - Viruses: 99.99% removal/inactivation
 - · Legionella: No limit, but EPA believes that if Giardia and viruses are removed/inactivaled, Legionella will also be controlled.
 - Turbidity: At no time can turbidity (cloudiness of waler) go above 5 nephelolometric turbidity units (NTU); systems that filler must ensure that the turbidity go no higher than 1 NTU (0.5 NTU for conventional or direct filtration) in at least 95% of the daily samples in any month. As of January 1, 2002, for systeme servicing >10,000, and January 14, 2005, for systems servicing <10,000, turbidity may never exceed 1 NTU, and must not exceed 0.3 NTÚ in 95% of daily samples in any month.
 - HPC: No more than 500 bacterial colonies per milliliter
 - Long Term 1 Enhanced Surface Water Treatment (Effective Date: January 14, 2005); Surface water systems or (GWUDI) systems serving fewer than 10,000 people must comply with the applicable Long Term 1 Enhanced Surface Water Treatment Rule provisions (e.g. turbidity standards, individual filter monitoring, Cryptospondium removal requirements, updated watershed control requirements for unfiltered systems).
- . Filter Backwash Recycling: The Filter Backwash Recycling Rule requires systems that recycle to return specific recycle flows through all processes of the system's existing conventional or direct filtration system or at an atternate location approved by the state.
- 4 No more than 5.0% samples total coliform-positive in a month. (For water systems that collect fewer than 40 routine samples per month, no more than one sample can be total coliform-positive per month.) Every sample that has total. coliform must be analyzed for either fecal coliforms or E. coli if two consecutive TC-positive samples, and one is also positive for E. coli fecal coliforms, system has an acute MCL violation.
- 5 Fecal coliform and E. colif are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Disease-causing microbes (pathogens) in these wastes can cause diarrhea, cramps, nausea, headaches, or other symptoms. These pathogens may pose a special health risk for infants, young children, and people with severely compromised immune systems.
- 6 Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants:
 - Haloacetic acids: dichloroacetic acid (zero); trichloroacetic acid (0.3 mg/L)
 - Trihalomethanes: bromodichloromethane (zero); bromoform (zero); dibromochloromethane (0.06 mg/L)
- 7 Lead and copper are regulated by a Treatment Technique that requires systems to control the corrosiveness of their water. If more than 10% of tap water samples exceed the action level, water systems must take additional steps. For copper, the action level is 1.3 mg/L, and for lead is 0.015 mg/L.
- 8 Each water system must certify, in writing, to the state (using third-party or manufacturers certification) that when it uses acrylamide and/or epichlorohydrin to treat water, the combination (or product) of dose and monomer level does not exceed the levels specified, as follows: Acrylamide = 0.05% dosed at 1 mg/L (or equivalent); Epichlorohydrin = 0.01% dosed at 20 mg/L (or equivalent).

LEGEND

Disinfection Byproduct

Dinsinfectant

Microorganism

Organic Chemical

Radionuclides

National Secondary Drinking Water Standards

National Secondary Drinking Water Standards are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to comply. However, states may choose to adopt them as enforceable standards.

Contaminant	Secondary Standard
Aluminum	0.05 to 0.2 mg/L
Chloride	250 mg/L
Color	15 (color units)
Copper	1.0 mg/L
Corrosivity	noncorrosive
Fluoride	2.0 mg/L
Foaming Agents	0.5 mg/L
Iron	0.3 mg/L
Manganese	0.05 mg/L
Ódor	3 threshold odor number
рН	6.5-8.5
Silver	0.10 mg/L
Sulfate	250 mg/L
Total Dissolved Solids	500 mg/L
Zinc	5 mg/L

Office of Water (4606M) EPA 816-F-03-016 www.epa.gov/safewater June 2003

6

4. Groundwater Monitoring Results

Results of the annual groundwater sampling are summarized in tables presented in this section. The main focus of this section is to present data from wells, as well as some limited data on sampling from surface ponds. There are numerous other effluent and surface water sampling activities also performed during the year that have been presented in Section 3b of the attached Binder 2 to this report.

In 2007, monitoring conducted between December 27-31, 2007 (and January 1, 2008, as inclement weather prevented completion of sampling of some wells within December 2007)) showed that in Potable Well #3 the contaminant 2-Methylnapthalene was at a level of 0.032 mg/l. This level exceeds the current NM Water Quality Control Commission standard of 0.03 mg/l for 2-Methylnapthalene.

In 2007, monitoring conducted between December 27-31, 2007 (and January 1, 2008, as inclement weather prevented completion of sampling of some wells within December 2007)) showed that Methyl Tetra-Butyl Ether (MTBE) contamination had entered the shallow perched groundwater at OW-14 and OW-30. The levels of MTBE were 0.92 mg/l in OW-14 and 0.29 mg/l in OW-30. These levels exceed the current U.S. EPA Maximum Contaminant level (MCL) of 0.20 mg/l and the current NM Water Quality Control Commission standard of 0.1 mg/l.. The monitoring in 2006 and 2005 had also shown that MTBE contamination had entered the shallow perched groundwater at OW-14 and OW-30.⁵ The sampling in 2007, as had been found in 2006. established that the MTBE contamination was limited in extent and had not migrated significantly to other nearby wells (OW-12 had a level of non-detect, OW-13 a level of 0.0013 mg/l, and OW-29 had a level of 0.0043 mg/l). The monitoring of well OW-14 also found that Benzene was elevated. The benzene concentration in this sample was 0.014 mg/l. exceeding the NM Water Quality Control Commission standard of 0.01 mg/l and the U.S. EPA Maximum Contaminant level (MCL) of 0.005 mg/l. The highest level of Benzene in this well in 2006 was 0.0042 mg/l, but in 2005 the level was 0.017 mg/l. In 2007, Benzene was not detected in nearby wells (OW-12, OW-13, OW29 and OW-30 had no detectable levels of Benzene.) In 2007, 2-Methylnapthalene was found in the sample taken from OW 14. The level of 2-Methylnapthalene was at 0.027 mg/l, which is below the NM WOCC standard of 0.03 mg/l.

The monitoring of the Inlet of Evaporation Pond #1 found Benzene at a level of 0.13 mg/l which exceeds the NM Water Quality Control Commission standard of 0.01 mg/l and the U.S. EPA Maximum Contaminant level (MCL) of 0.005 mg/l. The level of Benzene in the Inlet of Evaporation Pond # 1 in 2006 was less than 0.01 mg/l on 10/30/2006 and at 0.21 mg/l on 3/30/2006. The levels of Napthalene, 1-Mthylnapthalene, and 2-Methylnapthalene were also found to be elevated at 0.2, 0.25, and 0.39 mg/l respectively, and above the NM WQCC standards of 0.03 mg/l.

The monitoring of the Inlet of Evaporation Pond #2 also found Benzene at a level of 0.13 mg/l which exceeds the NM Water Quality Control Commission standard of 0.01 mg/l and the U.S. EPA Maximum Contaminant level (MCL) of 0.005 mg/l. The level of Benzene in the Inlet of Evaporation Pond # 2 on 10/27/2006 was less than 0.01 mg/l. The levels of Napthalene.

⁵ On 9/27/2005, OW-14 had MTBE levels of 0.077 mg/l, and OW-30 of <0.0025 mg/l. On 10/27/2006, OW-14 had MTBE at a level of 0.18 mg/l, and OW-30 a level of 0.018 mg/l. On 12/28/2006, OW-14 was at level of 0.18 mg/l of MTBE.

1-Mthylnapthalene, and 2-Methylnapthalene were also found to be elevated at 0.25, 0.46 and 0.75 mg/l, respectively, and above the NM WQCC standards of 0.03 mg/l.

Western Refining conducted annual sampling of GWM-1 on May 24, 2007. The benzene concentration in this sample was 0.016 mg/l, exceeding the NM Water Quality Control Commission standard of 0.01 mg/l and the U.S. EPA Maximum Contaminant level (MCL) of 0.005 mg/l. In 2006, the benzene concentration in this sample was 0.012 mg/l. In 2005. monitoring of well GWM-1 had also shown benzene in elevated concentrations (June 2005 = 0.010 mg/l and September 2005 = 0.081 mg/l) In 2007, MTBE levels were found in GWM-1, at a concentration of 0.23 mg/l, exceeding the U.S. EPA Maximum Contaminant level (MCL) of 0.20 mg/l and the NM Water Quality Control Commission standard of 0.1 mg/l.⁶ In 2006, the MTBE levels were found and reported as 0.16 mg/l, in 2005 as 0.17 mg/l and in 2004 as 0.048 mg/l.

Arsenic was found in the May 2007 analysis of water from GWM-1 at 0.081 mg/l which exceeds the NMWQS of 0.050 mg/l, and the U.S. EPA MCL of 0.01 mg/l. Arsenic was found in the December 2007 analysis of water from MW-1 at 0.02 mg/l which exceeds the U.S. EPA MCL of 0.01 mg/l.

Elevated levels of fluoride have shown up in some of the boundary wells in 2007, 2006, 2005 and 2004. Chloride was detected in elevated concentration in GWM-1 in 2007 at 1,800 mg/l (3,700 mg/l in 2006 and 2,000 mg/l in 2005).

⁶ In 2008, the MTBE results in GWM-1 are lesser and a level of 0.12 mg/l.

TABLE 1: Levels of Benzene, Toluene, Ethyl-benzene, Xylene, and MTBE in Potable Water Wells – all units of concentrations are in mg/l. (For wells not sampled in 2007, data are presented from previous years.)

	Year ⁷	Date Sampled	Benzene	Toluene	Ethyl- benzene	Xylene	MTBE
PW#2	2004	12-9-2004	< 0.001	< 0.001	< 0.001	< 0.0015	Not analyzed
PW#4	2004	8-4-2004	< 0.001	< 0.001	< 0.001	< 0.0015	Not analyzed
PW#3	2006	10-27-2006	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2007	Sampling activities were primarily conducted from December 27-31, 2007 (Sampling of this well was completed on 1-1-2008 because of inclement weather.)	<0.001	<0.001	<0.001	<0.0015	<0.001
EPA MCLs			0.005	1	0.7	10.0	0.100
NMWQS			0.01	0.75	0.75	0.62	0.200

 TABLE 2: Levels of All Contaminants in Potable Well # 3 found at least above Levels of Detection

 in 2007- all units of concentrations are in mg/l. (Note: Contaminants not presented were not

 detected. For a complete list of contaminants analyzed, see section 5.0.)

Contaminant	Concentration	EPA	NMWQS
	Levels (mg/l)	MCLs	MCLs
Barium	0.014	2.0	1.0
Iron	0.20		
Lead	0.0056	0.015	0.05
Magnesium	42		
Manganese	0.015		
Potassium	1.2		
Sodium	15		
Zinc	0.041		
2,4 Dimethylphenol	0.016		
2-Methylnaphthalene	0.032		0.03
2-Methylphenol	0.210		
3+4-Methylphenol	0.360		
Phenanthrene	0.017		
Phenols	0.8		

 $^{^{7}}$ No potable wells were sampled in 2005.

	Year	Date Sampled	Benzene	Toluene	Ethyl- benzene	Xylene	MTBE
OW#12	2007	12-27-2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10-27-2006	< 0.001	< 0.001	< 0.001	< 0.001	< 0.0025
OW#13	2007	12-27-2007	< 0.001	< 0.001	< 0.001	< 0.0015	0.0013
	2006	10-27-2006	< 0.001	< 0.001	< 0.001	< 0.001	< 0.0025
OW#14	2007	1-1-2008	<u>0.014</u>	< 0.001	< 0.001	< 0.0015	0.92
	2006	12-28-2006	0.0042	< 0.001	0.0025	< 0.003	<u>0.18</u>
	2006	10-27-2006	0.0034	< 0.001	< 0.001	< 0.003	0.016
	2005	9-27-2005	0.017	0.0022	0.0023	0.0014	0.077
OW#29	2007	12-28-2007	< 0.001	< 0.001	< 0.001	< 0.0015	0.0043
	2006	10-27-2006	< 0.001	< 0.001	< 0.001	< 0.003	< 0.0025
	2005	9-27-2005	< 0.001	< 0.001	< 0.001	< 0.0005	< 0.0025
OW#30	2007	12-28-2007	< 0.001	< 0.001	< 0.001	< 0.0015	<u>0.29</u>
	2006	10-27-2006	< 0.001	< 0.001	< 0.001	< 0.003	<0.0025
	2005	9-27-2005	< 0.001	< 0.001	< 0.001	< 0.0005	0.018
GWM-1	2007	5-24-2007	<u>0.016</u>	< 0.001	< 0.001	< 0.0015	0.23
	2006	10-27-2006	<u>0.012</u>	< 0.001	< 0.001	< 0.0015	<u>0.16</u>
EPA			0.005	1	0.7	10.0	0.100
MCLs							
NMWQS			0.01	0.75	0.75	0.62	0.200

TABLE 3: Levels of Benzene, Toluene, Ethyl-benzene, Xylene, and MTBE in Observation Wells and Monitoring Well (GWM-1) – all units of concentrations are in mg/l

Note: Levels over regulatory standards in 2007, 2006 and 2005 are high-lighted

Western Refining - Gallup Refinery, 2007 Groundwater Report

	Year	Date Sampled	Benzene	Toluene	Ethyl- benzene	Xylene	MTBE
OW-11	2007	12/27/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10/27/2006	< 0.001	< 0.001	< 0.001	<0.0015	< 0.001
BW-1C	2007	12/31/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10/27/2006	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
BW-2A	2007	12/31/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10/27/2006	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
BW-2B	2007	12/31/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10/27/2006	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
BW-2C	2007	12/31/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10/27/2006	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
BW-3B	2007	12/31/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10/27/2006	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
BW-3C	2007	12/31/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10/27/2006	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
EPA			0.005	1	0.7	10.0	0.100
MCLs							
NMWQS			0.01	0.75	0.75	0.62	0.200

TABLE 5: Levels of Benzene, Toluene, Ethyl-benzene, Xylene, and MTBE in Boundary Wells – all units of concentrations are in mg/l

TABLE 6: Levels of Benzene, Toluene, Ethyl-benzene, Xylene, MTBE, Diesel Range Organics, and Gasoline Range Organics in Monitoring Wells – all units of concentrations are in mg/l. (Only Well SMW-2 has contaminants above the level of non-detection: MTBE at 0.0099 significantly below regulatory standards, and Gasoline Range Organics at 0.69 mg/l. All other wells have non-detectable levels of contaminants. No Motor Range Organics were detected.)

	Year	Date	Benzene	Toluene	Ethyl-	Xylene	MTBE	Diesel	Gasoline
		Sampled			benzene			Range	Range
								Organics	Organics
MW-1	2007	12/29/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001	<1.0	< 0.05
_	2006	10/26/2006	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.0015	<1.0	< 0.05
MW-4	2007	12/29/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001	<1.0	< 0.05
	2005	10/12/2005	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.0015	<1.0	< 0.05
MW-5	2007	12/29/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001	<1.0	< 0.05
	2005	10/12/2005	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.0015	<1.0	< 0.05
SMW-2	2007	1/1/2008	< 0.001	< 0.001	< 0.001	< 0.0015	0.0099	<1.0	0.69
	2005	10/12/2005	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.0015	<1.0	< 0.05
SMW-4	2007	12/29/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001	<1.0	< 0.05
	2005	10/12/2005	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.0015	<1.0	< 0.05
EPA			0.005	1	0.7	10.0	0.100		
MCLs									
NMWQS			0.01	0.75	0.75	0.62	0.200		

TABLE 7: Anions and Select Parameters in Boundary Wells (All units are in mg/l, except for pH and Specific Conductivity)

	Year	Date Sampled	Fluoride	Chloride	Nitrate (as N) +	Phosphoro	Sulfate	pН	Specific Conduct-
		Sampled		2	Nitrite	us, Orthophos phate (as P)			ivity microSiem- ens/cm
OW-	2007	12/27/07	Not	Not	Not	Not	Not	Not	Not
11			analyzed:	analyzed:	analyzed:	analyzed	analyzed	analyzed:	analyzed:
	2006	10/27/06	2.5	86		< 0.5	1100	8.4	3100
BW- IC	2007	12/31/07	2.6	35	<1.0	<0.5	270	8.5	1400
	2006	10/27/06	2.7	36	< 0.5	< 0.5		8.39	1400
BW- 2A	2007	12/31/07	1.3	42	<1.0	0.70	7.7	7.76	1400
	2006	10/27/06	1.3	39	< 0.5	0.64	7.5	8.27	1400
BW- 2B	2007	12/31/07	<u>1.8</u>	30	<1.0	<0.5	150	7.77	2400
_ ****	2006	10/27/06	1.9	31	< 0.5	< 0.5	140	8.1	1400
BW- 2C	2007	12/31/07	<u>2.3</u>	45	<1.0	<0.5	290	8.73	1400
	2006	10/27/06	2.4	42	< 0.5	< 0.5	270	8.52	1300
BW- 3B	2007	12/31/07	<u>1.6</u>	35	<1.0	1.1	51	7.93	1600
	2006	10/27/06	1.7	33	< 0.5	1.1	250	8.5	1600
BW- 3C	2007	12/31/07	<u>1.8</u>	38	<1.0	<0.5	300	8.59	1500
	2006	10/27/06	1.9	37	<0.5	< 0.5	280	8.39	1400
EPA MCLs			4.0					6-9	
NMW QS			1.6	250 (domestic water)	10		600	6.5 - 8.5	

TABLE 8: Detected Total Recoverable Metals in Boundary Wells (Note: Only data for detected contaminants are presented. For a complete list of all metals analyzed see section 5.0. All units are in mg/l.)

	Year	Date	Ba	Ca	Fe	Mg	Mn	К	Na	U
		Sampled								
OW-11	2007	12/27/2007	< 0.01	11	< 0.05	1.3	0.016	1.6	690	0.22
	2006	10/28/2006	< 0.02	12	< 0.05	1.4				
BW-1C	2007	12/31/2007	0.023	3.6	< 0.05	0.74	0.01	<1.0	360	<0.1
	2006	10/28/2006	< 0.02	3.4	< 0.05	<1.0				
BW-2A	2007	12/31/2007	0.18	11	0.7	3.9	0.22	<1/0	380	<0.1
	2006	10/28/2006	0.15	10	< 0.05					
BW-2B	2007	12/31/2007	0.07	16	0.62	3.6	0.29	1.6	640	<0.1
	2006	10/28/2006	0.071	23	< 0.05					
BW-2C	2007	12/31/2007	0.026	2.9	0.16	0.68	0.024	<1.0	340	< 0.1
	2006	10/28/2006	0.031	5.6	< 0.05	<1.0				
BW-3B	2007	12/31/2007	0.099	9.0	0.64	2.9	0.13	0.1>	430	<0.1
	2006	10/28/2006	0.11	9.0	< 0.05					
BW-3C	2007	12/31/2007	0.068	4.2	0.14	0.81	0.015	1.1	360	<0.1
	2006	10/28/2006	0.029	6.0	< 0.05					
EPA			2.0							0.03
MCLs										
NMWQS			1.0							

TABLE 9: Anions and Select Parameters in Monitoring Wells (All units are in mg/l, except for pH and Specific Conductivity)

	Year	Date Sampled	Fluoride	Chloride	Nitrate (as N) + Nitrite	Phosphorous, Orthophosphate (as P)	Sulfate	рН	Specific Conductivity microSiemens /cm
GWM-1	2007	5/24/07	<u>1.9</u>	<u>1800</u>	<2.0	<0.5	120	6.8	8100
	2006	10/26/06	2.0	3700	<2.0	<2.5	120	6.87	
MW-1	2007	12/29/07	0.69	53	<1.0	<0.5	170	8.89	1100
	2006	10/26/06	0.84	46	< 0.5	< 0.5	150	8.98	
MW-4	2007	12/29/07	0.42	17	<1.0	<0.5	160	8.63	1200
MW-5	2007	12/29/07							
SMW-2	2007	1/1/08				· ·			
SMW-4	2007	12/29/07	<u>1.4</u>	60	<1.0	<0.5	160	8.34	1300
EPA			4.0					6-9	
MCLs									
NMWQS			1.6	250 (drinking water)	Nitrate - 10; Nitrite - 1		600	6.5 – 8.5	

Note: Wells MW-4, MW-5, SMW-2 and SMW-4 were not sampled in 2006. Levels over regulatory standards in 2007 are high-lighted

Western Refining - Gallup Refinery, 2007 Groundwater Report

TABLE 10: Detected Total Recoverable Metals in Monitoring Wells (Note: Only data for detected contaminants are presented. For a complete list of all metals analyzed see section 5.0. All units are in mg/l.)

Well	Year	Date	As	Ва	Ca	Cr	Mg	Mn	Ni	К	Na
No.		Sampled									
GWM-1	2007	5/24/07	<u>0.081</u>	0.44	36 0	< 0.006	87	Not analyzed	<0.01	3.7	1300
	2006	10/26/06	0.077	0.53	38 0	< 0.006	93	Not analyzed	< 0.01	4.2	1400
MW-1	2007	12/29/07	<u>0.020</u>	<0.0 2	3.2	< 0.006	<1.0	0.018	Not analyzed	<1.0	230
	2006	10/26/06	<0.0 2			< 0.006		Not analyzed	< 0.01		
MW-4	2007	12/29/07	<0.0 2	0.021	1.9	< 0.006	<1.0	0.0052	< 0.01	<1.0	320
MW-5	2007	12/29/07	<0.0 2	<0.0 2	1.4	< 0.006	<1.0	0.0045	Not analyzed	<1.0	290
SMW-2	2007	1/1/08	<0.0 2	<0.0 2	20 0	0.055	69	Not analyzed	0.026	1.1	2200
SMW-4	2007	12/29/07	<0.0 2	0.024	4.6	< 0.006	1.2	Not analyzed	< 0.01	<1.0	340
EPA MCLs			0.01	2.0			1				
NMWQ S			0.05	1.0							

Note: Wells MW-4, MW-5, SMW-2 and SMW-4 were not sampled in 2006. Levels over regulatory standards in 2007 are high-lighted

TABLE 11: Detected Dissolved Metals in Monitoring Wells (Note: Only data for detected contaminants are presented. For a complete list of all metals analyzed see section 5.0. All units are in mg/l.)

Well No.	ell No. Year Date		Calcium	Magnesium	Potassium	Sodium
		Sampled				
MW-1	2007	12/29/07	1.9	<1.0	<1.0	230
MW-4	2007	12/29/07	1.9	<1.0	<1.0	250
MW-5	2007	12/29/07	1.4	<1.0	<1.0	240
SMW-2	2007	1/1/08	190	64	1.1	1700
SMW-4	2007	12/29/07	3.6	<1.0	<1.0	250
EPA						
MCLs						
NMWQS						

Note: Analyses for dissolved metals were not conducted in 2006.

TABLE 12: Levels of Benzene, Toluene, Ethyl-benzene, Xylene, and MTBE in Inlets to Evaporation Ponds 1 and 2 and from within Ponds 1-8 – all units of concentrations are in mg/l

	Year	Date Sampled	Benzene	Toluene	Ethyl-	Xylene	МТВЕ
Evaporation Pond 1 –	2007	1/1/2008	<u>0.13</u>	0.22	benzene 0.39	0.22	0.0052
Inlet							
	2006	10/30/2006	< 0.01	< 0.01	< 0.01	0.062	< 0.015
	2006	3/30/2006	0.21	0.44	0.06	0.43	< 0.075
Evaporation	2007	1/1/2008	0.13	0.26	0.044	0.26	0.0052
Pond 2 –							
Inlet							
	2006	10/27/2006	< 0.01	0.022	< 0.01	0.045	0.018
Pond 1	2007	11/29/2007	0.064	0.23	0.048	0.31	< 0.01
Pond 2	2007	11/29/2007	0.021	0.079	0.02	0.13	< 0.01
Pond 3	2007	11/29/2007	< 0.01	0.025	< 0.01	0.038	< 0.01
Pond 4	2007	11/29/2007	< 0.01	0.011	< 0.0 }	< 0.015	< 0.01
Pond 5	2007	11/29/2007	< 0.01	< 0.01	< 0.01	< 0.015	< 0.01
Pond 6	2007	11/29/2007	< 0.01	< 0.01	< 0.01	<0.015	<0.01
Pond 7	2007	11/29/2007	< 0.01	< 0.01	< 0.01	< 0.015	< 0.01
Pond 8	2007	11/29/2007	< 0.01	< 0.01	< 0.01	< 0.015	< 0.01
EPA MCLs			0.005	1	0.7	10.0	0.100
NMWQS			0.01	0.75	0.75	0.62	0.200

TABLE 13: Levels of All Contaminants in Inlets to Evaporation Ponds 1 and 2 found at least above Levels of Detection in 2007 (sampling completed on 1/1/2008) - all units of concentrations are in mg/I (Note: Contaminants not presented were not detected. For a complete list of contaminants analyzed, see section 5.0.)

Contaminant	Evaporation Pond	Evaporation Pond	EPA	NMWQS
	1 – Inlet	2 – Inlet	MCLs	
	Concentration	Concentration		
	Levels (mg/l)	Levels (mg/l)		
Diesel Range Organics	91	150		
Gasoline Range	2.2	2.6		
Organics				
Barium	0.067	Not analyzed	2.0	1.0
Calcium	45	Not analyzed		
Chromium	0.01	Not analyzed		
Iron	4.1	Not analyzed		
Magnesium	14	Not analyzed		
Manganese	0.11	Not analyzed		
Potassium	51	Not analyzed		
Sodium	530	Not analyzed		
Zinc	0.69	Not analyzed		
2,4 Dimethylphenol	0.31	Not analyzed		
Fluorene	0.074	Not analyzed		
2-Methylnaphthalene	0.69	Not analyzed		0.03
(Semi-volatiles)				
2-Methylphenol	2.2	Not analyzed		
3+4-Methylphenol	3.5	Not analyzed		
Phenanthrene	0.21	Not analyzed		
Phenols	4.1	Not analyzed		
1,2,4	0.083	0.17		
Trimethylbenzene				
1,3,5	0.022	0.047		
Trimethylbenzene				
Napthalene	0.2	0.25		0.03
1-Methylnaphthalene	0.25	0.46		0.03
2-Methylnaphthalene	0.39	0.75		0.03
(Volatiles)				
Carbon Disulfide	0.032	0.14		
Isopropylbenzene	0.0033	0.0063		
4-Isopropyltoluene	< 0.002	0.007		
n-Butylbenzene	0.011	0.044		
n-Propylbenzene	0.0086	0.019		
seo-Butylbenzene	< 0.002	0.0071		

TABLE 14: Levels of All Contaminants in Evaporation Ponds 1 through 8 found at least aboveLevels of Detection in 2007- all units of concentrations are in mg/l (Note: Contaminants notpresented were not detected. For a complete list of contaminants analyzed, see section 5.0.)

Contaminant	Pond 1	Pond 2	Pond 3	Pond 4	Pond 5	Pond 6	Pond 7	Pond 8	EPA MCLs	NMWQS
Fluoride	<u>170</u>	73	<u>62</u>	<u>61</u>	<u>47</u>	31	51	<u>94</u>	4.0	1.6
Chloride	<u>180</u>	<u>1800</u>	2000	<u>2000</u>	<u>3000</u>	8000	<u>69000</u>	<u>200000</u>		250 (domestic water)
Nitrate (as N) Nitrite (as N)	<1.0	<10	<4.0	<4.0	<4.0	26	<100	<200		10
Phosphorous	<5.0	<0.5	<0.5	<0.5	< 0.5	<5.0	<100	<250		
Sulfate	850	1100	<u>1100</u>	1100	1300	3100	14000	28000		600
Barium	0.073	0.043	0.033	0.035	0.054	0.094	0.10	<0.5	2.0	1.0
Calcium	32	110	93	96	160	500	800	580		
Chromium	0.013	0.0071	0.0078	0.008	0.0074	< 0.006	< 0.06	< 0.3		
Copper	0.0061	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.06	< 0.3		
Magnesium	12	47	55	56	79	210	1400	11000		
Manganese	0.22	0.22	0.3	0.31	0.43	0.96	7.1	120		
Potassium	71	64	78	82	110	230	1500	16000		
Sodium	530	1400	1600	1700	2200	5500	41000	120000		
Zinc	0.51	0.16	0.094	0.092	0.084	0.028	< 0.2	<1.0		
1,2,4	0.180	0.081	0.027	0.013	< 0.01	< 0.01	< 0.01	< 0.01		
Trimethylbenzene										
1,3,5	0.048	0.021	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Trimethylbenzene	0.240	0.12	0.052	0.029	< 0.02	< 0.02	< 0.02	< 0.02		0.03
Napthalene	0.240		0.032		fr			<0.02		
Methylnaphthalene		0.22	0.099	0.062	< 0.04	< 0.04	< 0.04			0.03
2- Methylnaphthalene (Volatiles)	<u>0.580</u>	<u>0.34</u>	<u>0.16</u>	<u>0.092</u>	<0.04	<0.04	<0.04	<0.04		0.03
Acetone	0.8	1.2	0.93	0.8	0.22	<0.1	<0.1	<0.1		
2-Butanone	0.4	0.18	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Carbon Disulfide	<0.1	<0.1	0.11	0.11	<0.1	<0.1	<0.1	<0.1		
n-Butylbenzene	0.048	0.023	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
n-Propylbenzene	0.018	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
рН	8.47	7.96	7.71	7.73	7.7	7.46	7.22	5.49		
Specific Conductivity	5500	9400	9800	9800	12000	14000	180000	780000		
(microSiemens/cm)										
Chemical Oxygen Demand	878	561	463	512	488	927	4390	2200		
Biochemical Oxygen Demand	783	302	209	163	103	47.8	<64	<64		
E-Coli (CFU/100 ml	727	63.1	27`	18	<]	<	<]	<]		

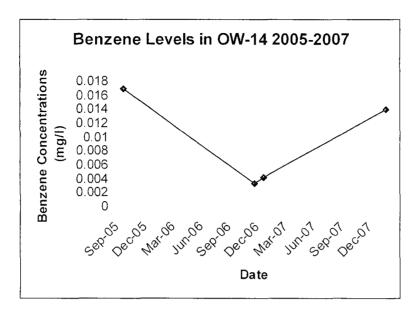


Figure 1: Benzene levels in OW-14 between 2005 and 2007

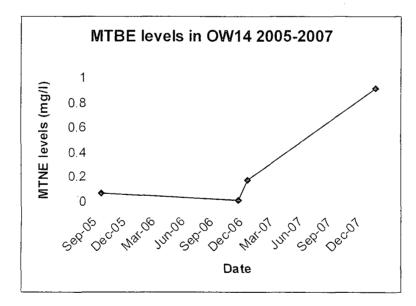


Figure 2: MTBE levels in OW-14 between 2005 and 2007

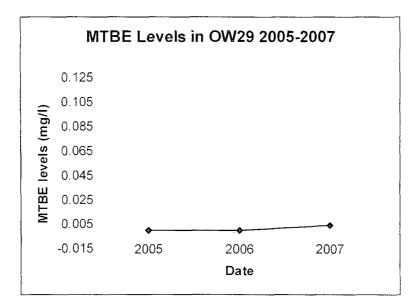


Figure 3: MTBE levels in OW-29 between 2005 and 2007

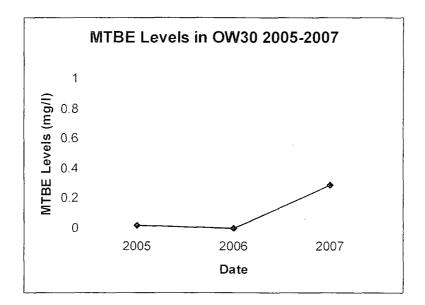


Figure 4: MTBE levels in OW-30 between 2005 and 2007

5. Groundwater Chemical Analytical Data

COVER LETTER

Tuesday, June 19, 2007

Ed Riege Giant Refining Co Rt. 3 Box 7 Gallup, NM 87301

TEL: (505) 722-3833 FAX (505) 722-0210

RE: GWM-1 Annual 2007

Dear Ed Riege:

Order No.: 0705390

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 5/25/2007 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

7 16

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001

4901 Hawkins NE & Suite D & Albuquerque, NM 87109 505.345.3975 & Fax 505.345.4107 www.hallenvironmental.com

.

CLIENT:	Giant Refining Co			C	lient Sa	mple ID:	GWM	-1
Lab Order:	0705390				Collecti	ion Date:	5/24/2	2007 9:04:00 AM
Project:	GWM-1 Annual 2007				Date F	Received:	512512	007
-					Date I	Matrix:	-	
Lab ID:	0705390-01						11.201	2000
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD :	300.0: ANIONS							Analyst: KS
Fluoride		1.9	0.10		mg/L	•	1	5/29/2007 5:45:18 PN
Chloride		1800	10		mg/L		100	6/16/2007 11:08:38 A
Nitrate (As N)+N	litrite (As N)	ND	2.0		mg/L		10	6/13/2007 9:04:06 AM
Phosphorus, Or	Ihophosphate (As P)	ND	0.50	н	mg/L		1	5/29/2007 5:45:18 PM
Sulfate		120	2.5		mg/L		5	5/29/2007 6:02:42 PM
	7470: MERCURY							Analyst: IC
Mercury		ND	0.00020		mg/L		1	5/30/2007
		TA1 6						
	TAL RECOVERABLE ME		0.000					Analyst: NN
Arsenic		0.081	0.020		mg/L		1	6/1/2007 10:39:23 AM
Barium		0.44	0.020		mg/L		1	6/1/2007 10:39:23 AN
Cadmium		ND	0.0020		mg/L		1	6/1/2007 10:39:23 AN
Calcium		360	100		mg/L		100	6/1/2007 11:45:59 AN
Chromium		ND	0.0060		mg/L		1	6/1/2007 10:39:23 AN
Lead		ND	0.0050		mg/L		1	6/1/2007 10:39:23 AN
Magnesium		87	1.0		mg/L		1	6/1/2007 10:39:23 AN
Polassium		3.7	1.0		mg/L		1	6/1/2007 10:39:23 AN
Selenium		ND	0.050		mg/L		1	6/1/2007 1:54:30 PM
Silver		ND	0.0050		mg/L		1	6/1/2007 10:39:23 AN
Sodium		1300	100		mg/L		100	6/1/2007 11:45:59 AN
EPA METHOD	8270C: SEMIVOLATILES							Analyst: BL
Acenaphthene		ND	10		µg/L		1	6/7/2007
Acenaphthylene	3	ND	10		μg/L		1	6/7/2007
Aniline		ND	20		μg/L		1	6/7/2007
Anlhracene		ND	10		µg/L		1	6/7/2007
Azobenzene		ND	10		µg/L		1	6/7/2007
Benz(a)anthrao	ene	ND	15		µg/L		1	6/7/2007
Benzo(a)pyrene	9	ND	10		µg/L		1	6/7/2007
Benzo(b)fluorar		ND	15		µg/L		1	6/7/2007
Benzo(g,h,i)per	ylene	ND	10		µg/L		1	6/7/2007
Benzo(k)fluorar		ND	10		µg/L		1	6/7/2007
Benzoic acid		ND	50		µg/L		1	6/7/2007
Benzyl alcohol		NĎ	20		µg/L		1	6/7/2007
Bis(2-chloroeth	oxy)methane	ND	10		µg/L		1	6/7/2007
Bis(2-chloroeth	•	ND	15		µg/L		1	6/7/2007
Bis(2-chloroiso		ND	15		µg/L		1	6/7/2007
Bis(2-ethylhexy		ND	15		µg/L		1	6/7/2007
4-Bromophenyl		ND	10		µg/L		1	6/7/2007
Butyl benzyl ph		ND	15		µg/L		1	6/7/2007

Analyte detected below quantitation limits J

ND Not Detected at the Reporting Limit

> Spike recovery outside accepted recovery limits 1/13 S

MCL Maximum Contaminant Level

RL Reporting Limit

Page 1 of 5

LIENT:	Giant Refining Co			Client Sample ID	: GWM	[-]
ab Order:	0705390			Collection Date	: 5/24/2	2007 9:04:00 AM
Project:	GWM-1 Annual 2007			Date Received		
-					: AQUI	
Lab ID:	0705390-01					
Analyses		Result	PQL Q	ual Units	DF	Date Analyzed
PA METHOD	8270C: SEMIVOLATILES					Analyst: BL
Carbazole		ND	10	µg/L	1	6/7/2007
4-Chloro-3-meth	iylphenol	ND	20	µg/L	1	6/7/2007
4-Chloroaniline		ND	20	µg/L	1	6/7/2007
2-Chloronaphtha	alene	ND	10	µg/L	1	6/7/2007
2-Chlorophenol		ND	10	µg/L	1	6/7/2007
4-Chlorophenyl	phenyl ether	ND	15	µg/L	1	6/7/2007
Chrysene		ND	15	µg/L	1	6/7/2007
Di-n-butyl phtha	late	ND	10	μg/L	1	6/7/2007
Di-n-octyl phtha	late	ND	15	μg/L	1	6/7/2007
Dibenz(a,h)anth	Iracene	ND	10	µg/L	1	6/7/2007
Dibenzoluran		ND	10	µg/L	1	6/7/2007
1,2-Dichloroben	Izene	NÐ	10	µg/L	1	6/7/2007
1,3-Dichloroben	izene	ND	10	µg/L	1	6/7/2007
1,4-Dichloroben	zene	ND	10	µg/L	1	6/7/2007
3,3'-Dichlorober	nzidine	ND	15	μg/L	1	6/7/2007
Diethyl phthalat		ND	10	µg/L	1	6/7/2007
Dimethyl phthal		ND	10	μg/L	1	6/7/2007
2,4-Dichlorophe		ND	10	µg/L	1	6/7/2007
2,4-Dimethylphi		ND	10	μg/L	1	6/7/2007
4,6-Dinitro-2-me		ND	50	μg/L	1	6/7/2007
2,4-Dinitrophen	• •	ND	50	µg/L	1	6/7/2007
2,4-Dinitrotolue		ND	10	µg/L	1	6/7/2007
2,6-Dinitrotolue		ND	10	µg/L	1	6/7/2007
Fluoranthene		ND	10	μg/L	1	6/7/2007
Fluorene		ND	10	μg/L	1	6/7/2007
Hexachloroben	7606	ND	10	н9/L	1	6/7/2007
Hexachlorobula		ND	10	μg/L	1	6/7/2007
Hexachlorocycl		ND	50	μg/L	1	6/7/2007
Hexachloroelha		ND	10	μg/L	1	6/7/2007
Indeno(1,2,3-cc		ND	10	μg/L	1	6/7/2007
Isophorone	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ND	10	μg/L	1	6/7/2007
2-Methylnaphth	alene	ND	10	μg/L	1	6/7/2007
2-Methylphenol		ND	15	μg/L	1	6/7/2007
3+4-Methylphe		ND	20	μg/L	1	6/7/2007
N-Nitrosodi-n-p		ND	10	µg/L	1	6/7/2007
N-Nitrosodimet	• •	ND	10	μg/L	1	6/7/2007
N-Nitrosodipher		ND	10	µg/L	1	6/7/2007
Naphthaiene	2 · · · · · · · · · · ·	ND	10	μg/L	1	6/7/2007
2-Nitroaniline		ND	50	μg/L	1	6/7/2007
3-Nitroaniline		ND	50	μg/L	1	6/7/2007
4-Nitroaniline		ND	20	µg/L	1	6/7/2007

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits 2/13

MCL Maximum Contaminant Level

RL Reporting Limit

Page 2 of 5

CLIENT:	Giant Refining Co			С	lient Sample I	D: GWN	4-1
Lab Order:	0705390				Collection Da	te: 5/24/	2007 9:04:00 AM
Project:	GWM-1 Annual 2007				Date Receive		
-	-					ix: AQU	
Lab ID:	0705390-01				[*] 4[]	IX. AQU	2003
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
PA METHO	8270C: SEMIVOLATILES	5					Analyst: Bl
Nitrobenzene		ND	10		µg/L	1	6/7/2007
2-Nitrophenol		ND	15		µg/L	1	6/7/2007
4-Nitrophenol		ND	50		µg/L	1	6/7/2007
Pentachloroph	nenol	ND	50		µg/L	1	6/7/2007
Phenanthrene	:	ND	10		μg/L	1	6/7/2007
Phenol		ND	10		µg/L	1	6/7/2007
Pyrene		ND	15		μg/L	1	6/7/2007
Pyridine		ND	30		µg/L	1	6/7/2007
1,2,4-Trichlor	obenzene	ND	10		μg/L	1	6/7/2007
2,4,5-Trichlor	ophenol	ND	10		μg/L	1	6/7/2007
2,4,6-Trichlor	ophenol	ND	15		µg/L	1	6/7/2007
Surr: 2,4,6-	Tribromophenol	78.5	16.6-150		%REC	1	6/7/2007
Surr: 2-Flue		68.6	19.6-134		%REC	1	6/7/2007
Surr: 2-Flue	· •	46.9	9.54-113		%REC	1	6/7/2007
Surr: 4-Ter	•	74.5	22.7-145		%REC	1	6/7/2007
Surr: Nitrot	· •	68.3	14.6-134		%REC	1	6/7/2007
Surr: Phen	pl-d5	38.0	10.7-80.3		%REC	1	6/7/2007
	0 8260B: VOLATILES						Analyst: Si
Benzene	D 0200B, VOLATILES	16	10		µg/L	10	6/6/2007 2:13:58 PM
Toluene		ND	10		μg/L	10	6/6/2007 2:13:58 PN
		NÐ	10		μg/L	10	6/6/2007 2:13:58 PM
Ethylbenzene		230	10		µg/∟ µg/L	10	6/6/2007 2:13:58 PM
•	ityl ether (MTBE)	230 ND	10		μg/L	10	6/6/2007 2:13:58 PM
1,2,4-Trimeth	-		10			10	6/6/2007 2:13:58 PM
1,3,5-Trimeth	•	ND			μg/L.		
1,2-Dichloroe		ND	10		µg/L	10	6/6/2007 2:13:58 PM
1.2-Dibromoe	linane (EDB)	ND	10		µg/L	10	6/6/2007 2:13:58 PN
Naphthalene		ND	20 40		µg/L	10 10	6/6/2007 2:13:58 PN 6/6/2007 2:13:58 PN
1-Methylnaph		ND			μg/L να/Ι		6/6/2007 2:13:58 PM
2-Melhylnaph	inalene	ND	40		µg/L	10	
Acelone		ND	100		µg/L	10	6/6/2007 2:13:58 PM
Bromobenzei		ND	10		µg/L va/l	10 10	6/6/2007 2:13:58 PN 6/6/2007 2:13:58 PN
Bromochloro	-	ND	10		µg/L ug/l	10	
Bromodichlor	omemane	ND	10 10		µg/L	10	6/6/2007 2:13:58 PN
Bromoform		ND			μg/L		6/6/2007 2:13:58 PM
Bromometha	UB	ND	10		µg/L	10	6/6/2007 2:13:58 PN
2-Butanone		ND	100		µg/L	10	6/6/2007 2:13:58 PN
Carbon disul		ND	100		µg/L	10	6/6/2007 2:13:58 PM
Carbon Tetra		ND	10		µg/L	10	6/6/2007 2:13:58 PN
Chlorobenze		ND	10		µg/L	10	6/6/2007 2:13:58 PN
Chloroethane	3	ND	20		µg/L	10	6/6/2007 2:13:58 PM
Qualifiers:	* Value exceeds Maximum	Contaminant Le	ve]		B Analyte dete	cted in the a	issociated Method Blank
	E Value above quantitation	range			H Holding time	s for prepa	ation or analysis exceeded
	J Analyte detected below q	-		N	ICL Maximum C	ontaminanı	Level

J Analyte detected below quantitation limits
ND Not Detected at the Reporting Limit
S Spike recovery outside accepted recovery limits
3 / 13

RL Reporting Limit

Page 3 of 5

Hall Environmental Analysis Laboratory, Inc.

Date: 19-Jun-07

Lab ID:	0705390-01		Matrix:	AQUEO	US	
Project:	GWM-1 Annual 2007		Date Received:			
Lab Order:	0705390		Collection Date:	5/24/200	7 9:04:00 AM	
CLIENT:	Giant Refining Co	C	lient Sample ID:	GWM-1		
the second s		 				·=·

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: SMP
Chloroform	ND	10	μց/Լ	10	6/6/2007 2:13:58 PM
Chloromethane	ND	10	µg/L	10	6/6/2007 2:13:58 PM
2-Chlorotoluene	ND	10	yg/L	10	6/6/2007 2:13:58 PM
4-Chlorololuene	ND	10	μg/L	10	6/6/2007 2:13:58 PM
cis-1,2-DCE	ND	10	µg/L	10	6/6/2007 2:13:58 PM
cis-1,3-Dichloropropene	ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,2-Dibromo-3-chloropropane	ND	20	µg/L	10	6/6/2007 2:13:58 PM
Dibromochloromethane	ND	10	µg/L	10	6/6/2007 2:13:58 PM
Dibromomethane	ND	10	μg/L	10	6/6/2007 2:13:58 PM
1,2-Dichlorobenzene	ND	10	μg/L	10	6/6/2007 2:13:58 PM
1,3-Dichlorobenzene	ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,4-Dichlorobenzene	ND	10	μg/L	10	6/6/2007 2:13:58 PM
Dichlorodifluoromethane	ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,1-Dichloroethane	ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,1-Dichloroethene	ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,2-Dichloropropane	ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,3-Dichloropropane	ND	10	µg/L	10	6/6/2007 2:13:58 PM
2,2-Dichloropropane	ND	20	µg/L	10	6/6/2007 2:13:58 PM
1,1-Dichloropropene	ND	10	μg/L	10	6/6/2007 2:13:58 PM
Hexachlorobuladiene	ND	10	μg/L	10	6/6/2007 2:13:58 PM
2-Hexanone	ND	100	μg/L	10	6/6/2007 2:13:58 PM
Isopropylbenzene	ND	10	μg/L	10	6/6/2007 2:13:58 PM
4-isopropyltoluene	ND	10	µg/L	10	6/6/2007 2:13:58 PM
4-Methyl-2-pentanone	ND	100	μg/L	10	6/6/2007 2:13:58 PM
Melhylene Chloride	NÐ	10	µg/L	10	6/6/2007 2:13:58 PM
n-Butylbenzene	ND	10	μg/L	10	6/6/2007 2:13:58 PM
n-Propylbenzene	ND	10	µg/L	10	6/6/2007 2:13:58 PM
sec-Bulyibenzene	ND	10	μg/L	10	6/6/2007 2:13:58 PM
Styrene	ND	10	µg/L	10	6/6/2007 2:13:58 PM
tert-Butylbenzene	ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,1,1,2-Tetrachloroethane	ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,1,2,2-Tetrachloroethane	NÐ	20	µg/L	10	6/6/2007 2:13:58 PM
Tetrachloroethene (PCE)	ND	10	µg/L	10	6/6/2007 2:13:58 PM
trans-1,2-DCE	ND	10	μg/L	10	6/6/2007 2:13:58 PM
trans-1,3-Dichloropropene	ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,2,3-Trichlorobenzene	ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,2,4-Trichlorobenzene	ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,1,1-Trichloroethane	ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,1,2-Trichloroethane	ND	10	μg/L	10	6/6/2007 2:13:58 PM
Trichlaroethene (TCE)	ND	10	µg/L	10	6/6/2007 2:13:58 PM
Trichlorofluoromethane	ND	10	μg/L	10	6/6/2007 2:13:58 PM

Qualifiers:

* Value exceeds Maximum Contaminant Level

Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits 4 / 13

MCL Maximum Contaminant Level RL Reporting Limit

В

Н

Hall Environmental Analysis Laboratory, Inc.

Date: 19-Jun-07

CLIENT: Lab Order: Project:	Giant Refining Co 0705390 GWM-1 Annual 2007			C	lient Sample ID: Collection Date: Date Received:	5/24/2 5/25/2	2007 9:04:00 AM 2007
Lab ID:	0705390-01				Matrix:	AQUI	EOUS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8260B: VOLATILES						Analyst: SMP
1,2,3-Trichlorop	propane	ND	20		µg/L	10	6/6/2007 2:13:58 PM
Vinyl chloride		ND	10		µg/L	10	6/6/2007 2:13:58 PM
Xylenes, Total		ND	15		µg/L	10	6/6/2007 2:13:58 PM
Surr: 1,2-Dic	hloroethane-d4	114	76.6-113	S	%REC	10	6/6/2007 2:13:58 PM
Surr: 4-Brom	ofluorobenzene	122	77-117	S	%REC	10	6/6/2007 2:13:58 PM
Surr: Dibrom	ofluoromelhane	113	72.3-121		%REC	10	6/6/2007 2:13:58 PM
Surr: Toluen	e-d8	108	73-113		%REC	10	6/6/2007 2:13:58 PM
EPA 120.1: SP	ECIFIC CONDUCTANCE						Analyst: LMN
Specific Condu	clance	8100	0.010		µmhos/cm	1	6/1/2007
EPA METHOD	150.1: PH						Analyst: LMN
pН		6.80	0.010		pH units	1	5/25/2007

.....

- Qualifiers: * Value exceeds Maximum Contaminant Level
 - E Value above quantitation range
 - J Analyte detected below quantitation limits
 - ND Not Detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits 5 / 13 S
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

. . .

Page 5 of 5

-5

QA/QC SUMMARY REPORT

Client:

Giant Refining Co

Project: GWM-I Annu	-						11 /- P	0.1
								Order: 0705390
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit		DLimit Qual
Method: E300		.						
Sample ID: MBLK		MBLK			Batch	ID: R23842	Analysis Date:	5/29/2007 3:43:27 PM
Fluoride	ND	mg/L	0.10				-	
Chloride	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphale (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: MBLK		MBLK			Batch	ID: R23935	Analysis Date:	6/9/2007 7:41:09 PM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: MB		MBLK			Balch	ID: R23969	Analysis Date:	6/12/2007 B:41:53 AM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfale	ND	mg/L	0.50					
ample ID: MB		MBLK			Batch	ID: R24020	Analysis Date:	6/16/2007 7:39:42 AM
luoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrate (As N)+Nitrile (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: LCS ST300-07001		LCS			Batch	ID: R23842	Analysis Dale:	5/29/2007 4:00:51 PM
Fluoride	0.4741	mg/L	0.10	94.8	90	110		
Chloride	4.787	mg/L	0.10	95.7	90	110		
Nitrate (As N)+Nitrite (As N)	3.388	mg/L	0.20	96.8	90	110		
Phosphorus, Orthophosphate (As P)	4.724	mg/L	0.50	94.5	90	110		
Sulfate	9.745	mg/L	0.50	97.4	90	110		
Sample ID: LCS ST300-07013		LCS			Baich	ID: R23935	Analysis Date:	6/9/2007 7:58:33 PM
Fluoride	0.4548	mg/L	0.10	91.0	90	110		
Chloride	4.853	mg/L	0.10	97.1	90	110		
Nitrate (As N)+Nitrite (As N)	3.472	mg/L	0.20	99.2	90	110		
Phosphorus, Orthophosphate (As P)	4.645	mg/L	0.50	92.9	90	110		
	9.827	mg/L	0.50	98.3	90 Datas	110		04000000000047 41
Sample ID: LCS ST300-07014		LCS		_	Batch		Analysis Date:	6/12/2007 8:59:17 AM
Fluoride	0.4766	mg/L	0.10	95.3	90	110		
Chloride	4.786	mg/L	0.10	95.7	90	110		
Nitrate (As N)+Nitrite (As N)	3.446	mg/L	0.20	98.5	90	110		
Phosphorus, Orthophosphale (As P)		mg/L	0.50	92.5	90	110		
Sulfale	9.518	mg/L	0.50	95.2	90 Datab	110		
Sample ID: LCS ST300-07014		LCS			Batch	ID: R24020	Analysis Date:	6/16/2007 7:57:07 AM

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

.

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

.....

ND Not Detected at the Reporting Limit

s 6/13^{scovery outside accepted recovery limits}

Page 1

.....

Client: Project:	Giant Refining GWM-1 Annu								
Analyte		Result	Units	PQL	%Rec	LowLimit I	lighLimit	%RPD	RPDLimit Qual
Method: E300								• • • • •	000000775507 M
Sample ID: LCS ST300-07014			LCS			Batch IE): R24020	Analysis Dal	e: 6/16/2007 7:57:07 AM
Fluoride		0.5700	mg/L	0.10	114	90	110		S
Chloride		4.770	mg/L	0.10	95.4	90	110		
Nitrate (As N)+Nitrite (As N)		3.399	mg/L	0.20	97.1	90	110		
Phosphorus, Orthophosphate (As P)		4.741	mg/L	0.50	94.8	90	110		
Sullale		9.834	mg/L	0.50	98.3	90	110		

QA/QC SUMMARY REPORT

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

.

ND Not Detected at the Reporting Limit

_ . _................

S considered recovery butside accepted recovery limits 7 / 13

Page 2

..

÷.,

QA/QC SUMMARY REPORT Client: Giant Refining Co **Project:** GWM-1 Annual 2007 Work Order: 0705390 POL LowLimit HighLimit %RPD Analyte Result Units %Rec RPDLimit Qual Method: SW8270C 6/7/2007 MBLK Batch ID: 13084 Analysis Date: µg/L ND 10

Sample ID: MB-13084 Acenaphthene Acenaphthylene ND 10 µg/L Aniline ND 20 µg/L Anthracene ND µg/L 10 Azobenzene ND µg/L 10 Benz(a)anthracene ND μg/L 15 Benzo(a)pyrene ND µg/L 10 Benzo(b)fluoranthene ND µg/L 15 Benzo(g,h,i)perylene µg/L 10 ND Benzo(k)fluoranthene ND µg/L 10 50 Benzoic acid ND µg/L 20 Benzyl alcohol ND µg/L 10 Bis(2-chloroethoxy)methane ND µg/L Bis(2-chloroethyl)ether ND 15 µg/L Bis(2-chloroisopropyl)elher ND 15 μg/L Bis(2-ethylhexyl)phthalate ND µg/L 15 4-Bromophenyl phenyl ether ND μg/L 10 Butyl benzyl phihalate ND µg/L 15 ND 10 rbazole μg/L -Chloro-3-methylphenol ND µg/L 20 4-Chloroaniline ND μg/L 20 2-Chloronaphthalene ND µg/L 10 2-Chlorophenol ND µg/L 10 4-Chlorophenyl phenyl ether ND µg/L 15 15 Chrysene ND µg/L Di-n-butyl phthalate ND μg/L 10 15 Di-n-octyl phlhalate ND µg/L ND 10 Dibenz(a,h)anthracene µg/L ND µg/L 10 Dibenzofuran 1,2-Dichlorobenzene ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 1,4-Dichlorobenzene ND µg/L 10 3,3'-Dichlorobenzidine ND µg/L 15 10 Diethyl phthalate ND µg/L Dimethyl phthalate ND µg/L 10 10 2.4-Dichlorophenol ND µg/L 2,4-Dimethylphenol 10 ND μg/L 50 4,6-Dinitro-2-methylphenol ND µg/L 2,4-Dinitrophenol ND µg/L 50 10 2,4-Dinitrotoluene ND µg/L 10 ND 2,6-Dinitrotoluene μg/L 10 Fluoranthene ND µg/L 10 Fluorene ND µg/L

10

S

Qualifiers:

Hexachlorobenzene

E Value above quantitation range

J Analyte detected below quantitation limits

ND

µg/L

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

....

.

ND Not Detected at the Reporting Limit

8 / 13

0000000

QA/QC SUMMARY REPORT

Client:

Giant Refining Co

Project: GWM-I A								Work Orden	•: 0705390
Analyle	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Method: SW8270C					_				
Sample ID: MB-13084		MBLK			Batch	ID: 13084	Analysis l	Date:	6/7/2001
Hexachlorobutadiene	ND	µg/L	10						
Hexachlorocyclopentadiene	ND	μο/Γ	50						
lexachloroethane	ND	µg/L	10						
ndeno(1,2,3-cd)pyrene	ND	hð\r	10						
sophorane	ND	hð\r	10						
2-Methylnaphthalene	ND	hð\r	10						
2-Methylphenol	ND	hð\r	15						
3+4-Methylphenol	ND	μg/L	20						
N-Nitrosodi-n-propylamine	ND	µg/L	10						
N-Nitrosodimethylamine	ND	μg/L	10						
N-Nitrosodiphenylamine	ND	hð\r	10						
Naphihalene	ND	µg/L	10						
2-Nitroaniline	ND	µg/L	50						
3-Nitroaniline	ND	µg/L	50						
4-Nitroaniline	ND	µg/L	20						
Nitrobenzene	ND	µg/L	10						
2-Nilrophenol	ND	µg/L	15						
4-Nitrophenol	ND	µg/L	50						
entachlorophenol	ND	μg/L	50						
Phenanthrene	ND	µg/L	10						
Phenol	ND	μg/L	10						
Pyrene	ND	hð\r	15						
Pyridine	ND	μg/L	30						
1,2,4-Trichlorobenzene	ND	µg/L	10						
2,4,5-Trichlorophenol	ND	µg/L	10						
2,4,6-Trichlorophenol	ND	μg/L	15						
Sample ID: LCS-13084		LCS			Balch	ID: 13084	Analysis	Date:	6/7/200
Acenaphthene	78.52	µg/L	10	78.5	11	123			
4-Chloro-3-meihylphenol	150.4	µg/L	20	75.2	15.4	119			
2-Chlorophenol	140.8	μg/L	10	70.4	12.2	122			
1,4-Dichlorobenzene	58,80	µg/L	10	58.8	16.9	100			
2,4-Dinitrololuene	61.22	րը/ր	10	61.2	13	138			
N-Nilrosodi-n-propylamine	68.12	µg/L	10	68.1	9.93	122			
4-Nitrophenol	65.32	µg/L	50	32.7	12.5	87.4			
Pentachlorophenol	151.8	րց/լ	50	75.9	3.55	114			
Phenol	86.48	µg/L	10	43.2	7.53	73.1			
Pyrene	82.68	µg/L	15	82.7	12.6	140			
1,2,4-Trichlorobenzene	57.80	µg/L_	10	57.8	17.4	98.7			
Sample ID: LCSD-13084		LCSD			Batch	ID: 13084	Analysis	Date:	6/7/200
Acenaphthene	75.96	µg/L	10	76.0	11	123	3.31	30.5	
4-Chloro-3-methylphenol	152.4	µg/L	20	76.2	15.4	119	1.28	28.6	
2-Chlorophenol	135.3	μg/L	10	67.6	12.2	122	4.03	107	
1,4-Dichlorobenzene	55.14	μg/L	10	55.1	16.9	100	6.42	62.1	
2,4-Dinitrololuene	63.18	μg/L	10	63.2	13	138	3.15	14.7	

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

5 contraction outside accepted recovery limits 9 / 13

Page 4

		QAV	QC SU				T				
Client: Project:	Giant Refining Co GWM-1 Annual 2007							,	Work O	rder:	0705390
Analyle	Result	Unils	PQL	%Rec	LowLimit	HighLimi	%F	RPD	RPDL	imil Q	ual
Method: SW8270)C										
Sample ID: LCSD-		LCSD			Batch	ID: 130	84 Ana	alysis C	Date:		6/7/2007
N-Nitrosodi-n-propyla	amine 63.86	µg/L	10	63.9	9.93	122	6	.46	30.3		
4-Nitrophenol	70.54	μg/L	50	35.3	12.5	87.4	7	.68	36.3		
Pentachlorophenol	153.5	μg/L	50	76.7	3.55	114	1	.10	49		
Phenol	82.98	μg/L	10	41.5	7.53	73.1	4	.13	52.4		
Pyrene	80.56	μg/L	15	80.6	12.6	140	2	.60	16.3		
1,2,4-Trichlorobenze	ene 58.54	µg/L	10	58.5	17.4	98.7	1	.27	36.4		
Method: SW7470	1										
Sample ID: MB-13	077	MBLK			Batch	ID: 130	77 Ana	alysis (Date:		5/30/200
Mercury	ND	mg/L	0.00020								
Sample ID: LCS-1	3077	LCS			Balch	ID: 130	7 7 Ana	alysis (Date:		5/30/200
Mercury	0.00504	4 mg/L	0.00020	101	8D	120					
Method: SW6010)A										
Sample ID: MB-13	076	MBLK			Batch	ID: 130	76 Ana	alysis (Date:	6/1/200)7 9:04:59 AN
Arsenic	ND	mg/L	0.020								
Barium	ND	mg/L	0.020	•							
Cadmium	ND	mg/L	0.0020								
Calcium	ND	mg/L	1.0								
Chromium	ND	mg/L	0.0060								
Lead	ND	mg/L	0.0050								
Magnesium	ND	mg/L	1.0								
Potassium	ND	mg/L	1.0								
Silver	ND	mg/L	0.0050								
Sodium	ND	mg/L	1.0								
Sample ID: LCS-1	3076	LCS			Balch	ID: 130	76 Ana	alysis (Dale:	6/1/200	07 9:08:02 A
Arsenic	0.4875	mg/L	0.020	97.5	80	120					
Barium	0.4854	mg/L	0.020	97.1	80	120					
Cadmium	0.4855	mg/L	0.0020	97.1	80	120					
Calcium	50.75	mg/L	1.0	101	80	120					
Chromium	0.4941	mg/L	0.0060	98.8	80	120					
Lead	0.4788	mg/L	0.0050	95.8	80	120					
Magnesium	51.02	mg/L	1.0	102	80	120					
Potassium	53.56	mg/L	1.0	107	80	120					
Silver	0.5020	mg/L	0.0050	100	80	120					

QA/QC SUMMARY REPORT

Sodium

- E Value above quantitation image
- J Analyte detected below quantitation limits

54.78

mg/L

1.0

.

110

80

120

· · · · · · · · · · · ·

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

....

ND Not Detected at the Reporting Limit

S 10/13 covery outside accepted recovery limits

Page 5

QA/QC SUMMARY REPORT

Client: Project: Giant Refining Co GWM-1 Annual 2007

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RP	DLimit	Qual
Method: SW8260B	••• •	~-	=							
Sample ID: 5ml rb		MBLK			Batch I	D: R23881	Analysis D	Date:	6/6/2	007 7:01:43 AI
Benzene	ND	µg/L	1.0							
Toluene	ND	μg/L	1.0							
Ethylbenzene	ND	μg/L	1.0							
Methyl tert-bulyl ether (MTBE)	ND	µg/L	1.0							
1,2,4-Trimethylbenzene	ND	µg/L	1.0							
1.3.5-Trimethylbenzene	ND	μg/L	1.0							
1,2-Dichloroelhane (EDC)	ND	μg/L	1.0							
1,2-Dibromoethane (EDB)	ND	μg/L	1.0							
Naphihalene	ND	μg/L	2.0							
1-Methylnaphthalene	ND	µg/L	4.0							
2-Methylnaphthalene	ND	μg/L	4.0							
Acetone	ND	μg/L	10							
Bromobenzene	ND	μg/L	1.0							
Bromochloromelhane	ND	μg/L	1.0							
Bromodichloromethane	ND	µg/L	1.0							
Bromoform	ND	μg/L	1.0							
Bromomethane	ND	μg/L	1.0							
2-Bulanone	ND	μg/L	10							
irbon disulfide	ND	hā/r	10							
Carbon Tetrachloride	ND	μg/L	1.0							
Chlorobenzene	ND	μg/L	1.0							
Chloroethane	ND	µg/L	2.0							
Chloroform	ND	μg/L	1.0							
Chloromethane	ND	µg/L	1.0							
2-Chlorotoluene	ND	μg/L	1.0							
4-Chlorotoluene	ND	µg/L	1.0							
cis-1,2-DCE	ND	µg/L	1.0							
cis-1,3-Dichloropropene	ND	µg/L	1.0							
1,2-Dibromo-3-chloropropane	ND	μg/L	2.0							
Dibromochloromethane	ND	µg/L	1.0							
Dibromomethane	ND	μg/L	1.0							
1,2-Dichlorobenzene	ND	µg/L	1.0							
1,3-Dichlorobenzene	ND	μg/L	1.0							
1.4-Dichlorobenzene	ND	μg/L	1.0							
Dichlorodilluoromethane	ND	μg/L	1.0							
1,1-Dichloroethane	ND	μg/L	1.0							
1,1-Dichloroethene	ND	μg/L	1.0							
1,2-Dichloropropane	ND	μg/L	1.0							
1,3-Dichloropropane	ND	μg/L	1.0							
2,2-Dichloropropane	ND	μg/L	2.0							
1,1-Dichloropropene	ND	µg/L	1.0							
Hexachlorobuladiene	ND	μg/L	1.0							
2-Hexanone	ND	μg/L	10							
Isopropylbenzene	ND	μg/L	1.0							

Qualifiers: E Value above qui

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S 11/13 S 11/13

QA/QC SUMMARY REPORT

Client: Project: Giant Refining Co GWM-1 Annual 2007

Project: GWM-1	Annual 2007						Work	Order: 0705390
Analyle	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RPI	DLimit Qual
Method: SWB260B			·····					
Sample ID: 5ml rb		MBLK			Batch II	D: R23881	Analysis Date:	6/6/2007 7:01:43 AM
4-Isopropylloluene	ND	µg/L	1.0					
4-Methyl-2-pentanone	ND	µg/L	10					
Methylene Chloride	ND	µg/L	1.0					
n-Butylbenzene	ND	µg/L	1.0					
n-Propylbenzene	ND	µg/L	1.0					
sec-Butylbenzene	ND	µg/L	1.0					
Styrene	ND	µg/Լ	1.0					
lert-Bulylbenzene	ND	µg/L	1.0					
1.1.1.2-Tetrachloroethane	ND	µg/L	1.0					
1,1,2,2-Telrachloroethane	ND	µg/L	2.0					
Tetrachloroelhene (PCE)	ND	µg/L	1.0					
trans-1,2-DCE	ND	µg/L	1.0					
trans-1,3-Dichloropropene	ND	μg/L	1.0					
1,2,3-Trichlorobenzene	ND	µg/L	1.0					
1,2,4-Trichlorobenzene	ND	μg/L	1.0					
1,1,1-Trichloroelhane	ND	µg/L	1.0					
1,1,2-Trichloroelhane	ND	μg/L	1.0					
Trichloroelhene (TCE)	ND	μg/L	1.0					
Irichlorofluoromethane	ND	µg/L_	1.0					
1,2,3-Trichloropropane	ND	μg/L	2.0					
Vinyl chloride	ND	μg/L	1.0					
Xylenes, Total	ND	µg/L	1.5					
Sample ID: 100ng lcs		LCS			Batch II	D: R23881	Analysis Date:	6/6/2007 8:59:30 AM
Benzene	20.46	μg/L	1.0	102	82.4	128		
Toluene	21.09	µg/L	1.0	105	77.2	115		
Chlorobenzene	20.48	µg/L	1.0	102	78.3	117		
1,1-Dichloroelhene	23.61	μg/L	1.0	118	90.7	132		
Trichloroethene (TCE)	19.79	μg/L	1.0	98.9	71.B	113		

- Qualifiers:
 - E Value above quantitation range
 - J Analyte detected below quantitation limits
 - R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- S 12/13 covery outside accepted recovery limits

1	Sample	Receipt Che	ecklist		
Client Name GIANTREFIN	C	\mathbf{i}	Date and Time	Received:	5/25/2007
Work Order Number 0705390			Received by	TLS	
Checklist completed by UULL		Date	51	25/07	
Matrix	Carrier name	Client drop-of	<u>ſ</u>		
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present	
Custody seals intact on shipping container/cooler?		Yes 🗋	No 🗆	Not Present	Not Shipped
Custody seals intact on sample bottles?		Yes 🗌	Na 🗹	N/A	
Chain of custody present?		Yes 🗹	No 🗔		
Chain of custody signed when relinquished and rec	ceived?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗔		
Samples in proper container/bottle?		Yes 🗹	No 🗆		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗋		
All samples received within holding time?		Yes 🗹	No 🗔		
Water - VOA vials have zero headspace?	No VOA vials subr	nitted D	Yes 🗹	No 🗌	
Water - Preservation labels on bottle and cap mate	:h?	Yes 🗹	Νο	N/A	
Water - pH acceptable upon receipt?		Yes 🗹	No 🗖	N/A	
Container/Temp Blank temperature?		5°	4° C ± 2 Accepta		
COMMENTS:			If given sufficient	time to cool.	
· · · · · · · · · · · · · · · · · · ·					
Client contacted D	ate contacted:		Pers	on conlacted	
	egarding				· · · · · · · · ·
Comments: Cedded In	1 ANUZ	s ter	accept-	able of	AT 5/25/07
	ene na tani 1 ya 1 ya ma na na kakanti 1 kakanti 1 ka			/	· · · · · · · · · · · · · · · · · · ·
Corrective Action					
·				······································	· · ·

13/13

HALLENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D Albuquerque, New Mexico 87109 Tel. 505.345.3975 Fax 505.345.4107 www.hallenvironmental.com	۲۵۹۲ (۲۹۹۹ ۲۹۵۹ ۲۹۹۹ ۲۹۹۹ ۲۹۹۹ ۲۹۹۹ ۲۹۹۹	HT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	(EX + MTBE + TMB's (8021) (EX + MTBE + TPH (Gasoline Only)			Remarks:
0A/0C Package: Std 」 Level 4] Other: Project Name: GWM・I Ann ца I 2 00 7 Project #:			1/500m1 X 1/500m1 X 1/500m1 X 1/500m1 X 2/10A 1/0A 1/0A 1/0A	Received By: (Signature) Received By: (Signature)
CHAIN-OF-CUSTODY RECORD Client: Clant Dufinincy Co. Cliniza Zufinincy Co.	1301 ant.com O	52407 Broy Hao GWM-1	A CITA IM THROTH A CITA IM A CITA IMA A	Date: Time: Relinquished By: (Signature) 5/24/07 M45 Relinquished By: (Signature) Date: Time: Relinquished By: (Signature) 5/24/07 U: 3.0 Date:

COVER LETTER

Wednesday, December 19, 2007

Jim Lieb Giant Refining Company Rt. 3 Box 7 Gallup, NM 87301

TEL: (505) 722-3833 FAX (505) 722-0210

RE: Evap. Ponds #1 through #8-4 Qtr 2007

Order No.: 0711469

Dear Jim Lieb:

Hall Environmental Analysis Laboratory, Inc. received 8 sample(s) on 11/29/2007 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT:	Giant Refining Com	oany		C	lient Sample I	D: Por	nd #1
Lab Order:	0711469				Collection Dat	te: 11/2	29/2007 8:30:00 AM
Project:	Evap. Ponds #1 throu	igh #8-4 Otr 20	07		Date Receive	d: 11/	29/2007
Lab ID:	0711469-01						UEOUS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS				······		Analyst: SMI
Fluoride		170	10		mg/L	100	11/30/2007 9:34:45 AN
Chloride		180	1.0		mg/L	10	11/29/2007 5:10:19 PM
Nitrate (As N)+!	Nitrite (As N)	ND	1.0		mg/L	5	12/8/2007 1:08:51 PM
	thophosphate (As P)	ND	5.0		mg/L	10	11/29/2007 5:10:19 PM
Sulfate		850	10		mg/L	20	11/30/2007 9:17:21 AM
							An abuda TRA
	TAL RECOVERABLE		0.020		ma (l	4	Analyst: TES
Arsenic		ND 0.072	0.020		mg/L	1	12/4/2007 3:12:16 PM
Barium		0.073	0.010		mg/L	1	12/4/2007 3:12:16 PM
Cadmium		ND	0.0020		mg/L	1	12/4/2007 3:12:16 PM
Calcium		32	0.50		mg/L	1	12/4/2007 3:12:16 PM
Chromium		0.013	0.0060		mg/L	1	12/4/2007 3:12:16 PM
Copper		0.0061	0.0060		mg/L	1	12/7/2007 12:39:51 PN
Lead		ND	0.0050		mg/L	1	12/4/2007 3:12:16 PM
Magnesium		12	0.50		mg/L	1	12/4/2007 3:12:16 PM
Manganese		0.22	0.0020		mg/L	1	12/4/2007 3:12:16 PM
Potassium		71	1.0		mg/L	1	12/4/2007 3:12:16 PM
Selenium		ND	0.050		mg/L	1	12/4/2007 3:12:16 PM
Silver		ND	0.0050		mg/L	1	12/4/2007 3:12:16 PM
Sodium		530	5.0		mg/L	10	12/7/2007 2:32:56 PM
Uranium		ND	0.10		mg/L	1	12/4/2007 3:12:16 PM
Zinc		0.51	0.020		mg/L	1	12/4/2007 3:12:16 PM
EPA METHOD 8	260B: VOLATILES						Analyst: BDH
Benzene		64	10		µg/L	10	12/7/2007 12:18:26 PM
Toluene		230	10		µg/L	10	12/7/2007 12:18:26 PM
Ethylbenzene		48	10		μg/L	10	12/7/2007 12:18:26 PM
Methyl tert-butyl	ether (MTBE)	NĎ	10		µg/L	10	12/7/2007 12:18:26 PM
1,2,4-Trimethylb		180	10		μg/L	10	12/7/2007 12:18:26 PM
1,3,5-Trimethylb		48	10		μg/L	10	12/7/2007 12:18:26 PM
1,2-Dichloroetha		ND	10		µg/L	10	12/7/2007 12:18:26 PM
1,2-Dibromoetha		ND	10		μg/L	10	12/7/2007 12:18:26 PM
Naphthalene		240	20		µg/L	10	12/7/2007 12:18:26 PM
1-Methylnaphtha	lene	360	40		µg/L	10	12/7/2007 12:18:26 PM
2-Methylnaphtha		580	· 40		μg/L	10	12/7/2007 12:18:26 PM
Acetone		800	200		µg/L	20	12/10/2007 11:10:18 AM
Bromobenzene		ND	10		μg/L	10	12/7/2007 12:18:26 PM
Bromochloromet	hane	ND	10		μg/L	10	12/7/2007 12:18:26 PM
Bromodichlorom	ethane	ND	10		µg/L	10	12/7/2007 12:18:26 PM
Bromoform		ND	10		µg/L	10	12/7/2007 12:18:26 PM
Bromomethane		ND	10		µg/L	10	12/7/2007 12:18:26 PM
2-Butanone		400	100		µg/L	10	12/7/2007 12:18:26 PM

E Value above quantitation range

·J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 19-Dec-07

CLIENT:	Giant Refining Company
Lab Order:	0711469
Project:	Evap. Ponds #1 through #8-4 Qtr 2007
Lab ID:	0711469-01

Client Sample ID: Pond #1 Collection Date: 11/29/2007 8:30:00 AM Date Received: 11/29/2007 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: BDH
Carbon disulfide	ND	100	μg/L	10	· 12/7/2007 12:18:26 PM
Carbon Tetrachloride	ND	10	µg/L	10	12/7/2007 12:18:26 PM
Chlorobenzene	ND	10	µg/L	10	1,2/7/2007 12:18:26 PM
Chloroethane	ND	20	µg/L	10	12/7/2007 12:18:26 PM
Chloroform	ND	10	μg/L	10	12/7/2007 12:18:26 PM
Chloromethane	ND	. 10	µg/L	10	12/7/2007 12:18:26 PM
2-Chlorotoluene	ND	10	µg/L	10	12/7/2007 12:18:26 PM
4-Chlorotoluene	ND	10	µg/L	10	12/7/2007 12:18:26 PM
cis-1,2-DCE	ND	10	µg/L	10	12/7/2007 12:18:26 PM
cis-1,3-Dichloropropene	ND	10	µg/L	10	12/7/2007 12:18:26 PM
1,2-Dibromo-3-chloropropane	ND	20	µg/L	10	12/7/2007 12:18:26 PM
Dibromochloromethane	ND	10	µg/L	10	12/7/2007 12:18:26 PM
Dibromomethane	ND	10	µg/L	10	12/7/2007 12:18:26 PM
1,2-Dichlorobenzene	ND	10	µg/L	10	12/7/2007 12:18:26 PM
1,3-Dichlorobenzene	ND	10	μg/L	10	12/7/2007 12:18:26 PM
1,4-Dichlorobenzene	ND	10	μg/L	10	12/7/2007 12:18:26 PM
Dichlorodifluoromethane	ND	10	μg/Ĺ	10	12/7/2007 12:18:26 PM
1,1-Dichloroethane	ND	10	μg/L	10	12/7/2007 12:18:26 PM
1,1-Dichloroethene	ND	10	µg/L	10	12/7/2007 12:18:26 PM
1,2-Dichloropropane	ND	10	µg/L	10	12/7/2007 12:18:26 PM
1,3-Dichloropropane	ND	10	µg/L	10	12/7/2007 12:18:26 PM
2,2-Dichloropropane	ND	20	µg/L	10	12/7/2007 12:18:26 PM
1,1-Dichloropropene	ND	10	μg/L	10	12/7/2007 12:18:26 PM
Hexachlorobutadiene	ND	10	µg/L	10	12/7/2007 12:18:26 PM
2-Hexanone	ND	100	µg/L	. 10	12/7/2007 12:18:26 PM
Isopropylbenzene	ND	10	⊢s·− µg/L	10	12/7/2007 12:18:26 PM
4-Isopropyitoluene	ND	10	μg/L	10	12/7/2007 12:18:26 PM
4-Methyl-2-pentanone	ND	100	µg/L	10	12/7/2007 12:18:26 PM
Methylene Chloride	ND	30	hã/r	10	12/7/2007 12:18:26 PM
n-Butylbenzene	48	10	µg/L	10	12/7/2007 12:18:26 PM
n-Propylbenzene	18	10	µg/L	10	12/7/2007 12:18:26 PM
sec-Butylbenzene	ND	10	µg/L	10	12/7/2007 12:18:26 PM
Styrene	ND	10	µg/L	10	12/7/2007 12:18:26 PM
tert-Butylbenzene	ND	10	µg/L	10	12/7/2007 12:18:26 PM
1,1,1,2-Tetrachloroethane	ND	10	μg/Ļ	. 10	12/7/2007 12:18:26 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	12/7/2007 12:18:26 PM
Tetrachloroethene (PCE)	ND	10	μg/L	10	12/7/2007 12:18:26 PM
trans-1.2-DCE	ND	10	µg/L	10	12/7/2007 12:18:26 PM
trans-1,3-Dichloropropene	ND	10	μg/L	10	12/7/2007 12:18:26 PM
1,2,3-Trichlorobenzene	ND	10	μg/L	10	12/7/2007 12:18:26 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	10	12/7/2007 12:18:26 PM
1,1,1-Trichloroethane	ND	10	μg/L	10	12/7/2007 12:18:26 PM

Qualifiers:

*

Ε Value above quantitation range

Analyte detected below quantitation limits

- J Not Detected at the Reporting Limit ND
- S

Spike recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

2

Page 2 of 24

Project:

Lab ID:

Hall Environmental Analysis Laboratory, Inc.

Evap. Ponds #1 through #8-4 Qtr 2007

Date: 19-Dec-07

CLIENT:	Giant Refining Company
Lab Order:	0711469

0711469-01

Client Sample ID:	Pond #1
Collection Date:	11/29/2007 8:30:00 AM
Date Received:	11/29/2007
Matrix:	AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES	••••					Analyst: BDH
1,1,2-Trichloroethane	ND	10		µg/L	10	12/7/2007 12:18:26 PM
Trichloroethene (TCE)	ND	10		μg/L	10	12/7/2007 12:18:26 PM
Trichlorofluoromethane	ND	10		µg/L	10	12/7/2007 12:18:26 PM
1,2,3-Trichloropropane	ND	20		μg/L	10	12/7/2007 12:18:26 PM
Vinyl chloride	ND	10		µg/Ŀ	10	12/7/2007 12:18:26 PM
Xylenes, Total	310	15		µg/L	10	12/7/2007 12:18:26 PM
Surr: 1,2-Dichloroethane-d4	98.1	68.1-123		%REC	10	12/7/2007 12:18:26 PM
Surr: 4-Bromofluorobenzene	98.6	53.2-145		%REC	10	12/7/2007 12:18:26 PM
Surr: Dibromofluoromethane	102	68.5-119		%REC	10	12/7/2007 12:18:26 PM
Surr: Toluene-d8	102	64-131		%REC	10	12/7/2007 12:18:26 PM
EPA 120.1: SPECIFIC CONDUCTANCE						Analyst: LMM
Specific Conductance	5500	0.010		µmhos/cm	1	11/30/2007
						American I Addate
SM4500-H+B: PH	0.47					Analyst: LMM
pH ,	8.47	0.1		pH units	1	11/30/2007

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 3 of 24

Date: 19-Dec-07

CLIENT:	Giant Refining Company
Lab Order:	0711469
Project:	Evap. Ponds #1 through #8-4 Qtr 2007

0711469-02

-

Lab ID:

Client Sample ID:	Pond #2
Collection Date:	11/29/2007 8:50:00 AM
Date Received:	11/29/2007
Matrix:	AQUEOUS

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: SMP
Fluoride	73	2.0	mg/L	20	11/30/2007 9:52:10 AM
Chloride	1800	10	mg/L	100	11/30/2007 10:09:35 AM
Nitrate (As N)+Nitrite (As N)	ND	10	mg/L	50	12/9/2007 9:32:57 AM
Phosphorus, Orthophosphate (As P)	ND	0.50	mg/L	1	11/29/2007 5:27:44 PM
Sulfate	1100	10	mg/L	20	11/30/2007 9:52:10 AM
EPA 6010B: TOTAL RECOVERABLE	METALS				Analyst: TES
Arsenic	ND	0,020	mg/L	1	12/4/2007 3:16:19 PM
Barium	0.043	0.010	mg/L	1	12/4/2007 3:16:19 PM
Cadmium	ND	0.0020	mg/L	1	12/4/2007 3:16:19 PM
Calcium	110	2.5	mg/L	5	12/7/2007 2:36:02 PM
Chromium	0.0071	0.0060	mg/L	1	12/4/2007 3:16:19 PM
Соррег	ND	0.0060	mg/L	1	12/7/2007 12:45:22 PM
Lead	ND	0.0050	mg/L	1	12/4/2007 3:16:19 PM
Magneslum	47	0,50	mg/L	1	12/4/2007 3:16:19 PM
Manganese	0.22	0.0020	mg/L	1	12/4/2007 3:16:19 PM
Potassium	64	1.0	mg/L	1	12/4/2007 3:16:19 PM
Selenium	ND	0.050	mg/L	1	12/4/2007 3:16:19 PM
Silver	ND	0.0050	mg/L	1	12/4/2007 3:16:19 PM
Sodium	1400	25	mg/L	50	12/7/2007 2:43:08 PM
Uranium	ND	0.10	mg/L	1	12/4/2007 3:16:19 PM
Zinc	0.16	0.020	mg/L	1	12/4/2007 3:16:19 PM
EPA METHOD 8260B: VOLATILES					Analyst: BDH
Benzene	21	10	µg/L	10	12/7/2007 12:48:56 PM
Toluene	79	10	μg/L	10	12/7/2007 12:48:56 PM
Ethylbenzene	20	10	μg/L	10	12/7/2007 12:48:56 PM
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	10	12/7/2007 12:48:56 PM
1,2,4-Trimethylbenzene	81	10	µg/L	10	12/7/2007 12:48:56 PM
1,3,5-Trimethylbenzene	21	10	µg/L	10	12/7/2007 12:48:56 PM
1,2-Dichloroethane (EDC)	ND	10	µg/L	10	12/7/2007 12:48:56 PM
1,2-Dibromoethane (EDB)	ND	10	µg/L	10	12/7/2007 12:48:56 PM
Naphthalene	120	20	μg/L	10	12/7/2007 12:48:56 PM
1-Methylnaphthalene	220	40	μg/L	10	12/7/2007 12:48:56 PM
2-Methylnaphthalene	340	40	µg/L	10	12/7/2007 12:48:56 PM
Acetone	1200	100	µg/L	10	12/7/2007 12:48:56 PM
Bromobenzene	ND	10	µg/L	10	12/7/2007 12:48:56 PM
Bromochloromethane	ND	10	µg/L	10	12/7/2007 12:48:56 PM
Bromodichloromethane	ND	10	µg/L	10	12/7/2007 12:48:56 PM
Bromoform	ND	10	μg/L	10	12/7/2007 12:48:56 PM
Bromomethane	ND	10	µg/L	10	12/7/2007 12:48:56 PM
2-Butanone	180	100	µg/L	10	12/7/2007 12:48:56 PM

- Value exceeds Maximum Contaminant Level
 Value above quantitation range
 - J Analyte detected below quantitation limits
 - ND Not Detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Date: 19-Dec-07

CLIENT:	Giant Refining Company
Lab Order:	0711469
Project:	Evap. Ponds #1 through #8-4 Qtr 2007
Lab ID:	0711469-02

Client Sample ID: Pond #2 Collection Date: 11/29/2007 8:50:00 AM Date Received: 11/29/2007 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: BDH
Carbon disulfide	ND	100	µg/L	10	12/7/2007 12:48:56 PM
Carbon Tetrachloride	ND	10	µg/L	10	12/7/2007 12:48:56 PM
Chlorobenzene	ND	· 10	μg/L	10	12/7/2007 12:48:56 PM
Chloroethane	ND	20	µg/∟	10	12/7/2007 12:48:56 PM
Chloroform	ND	10	μg/L	10	12/7/2007 12:48:56 PM
Chloromethane	ND	10	μg/L	10	12/7/2007 12:48:56 PM
2-Chlorotoluene	ND	10	µg/L	. 10	12/7/2007 12:48:56 PM
4-Chlorotoluene	ND	10	μg/L	10	12/7/2007 12:48:56 PM
cis-1,2-DCE	ND	10	µg/L	10	12/7/2007 12:48:56 PM
cis-1,3-Dichloropropene	ND	10	µg/L	10	12/7/2007 12:48:56 PM
1,2-Dibromo-3-chloropropane	ND	20	µg/L	10	12/7/2007 12:48:56 PM
Dibromochloromethane	ND	10	µg/L	10	12/7/2007 12:48:56 PM
Dibromomethane	ND	10	µg/L	10	12/7/2007 12:48:56 PM
1,2-Dichlorobenzene	ND	10	μg/L	10	12/7/2007 12:48:56 PM
1,3 ¹ Dichlorobenzene	ND	10	µg/L	10	12/7/2007 12:48:56 PM
1,4-Dichlorobenzene	ND	10	µg/L	10	12/7/2007 12:48:56 PM
Dichlorodifluoromethane	ND	10	µg/L	10	12/7/2007 12:48:56 PM
1,1-Dichloroethane	ND	10	µg/L	10	12/7/2007 12:48:56 PM
1,1-Dichloroethene	ND	10	µg/L	10	12/7/2007 12:48:56 PM
1,2-Dichloropropane	ND	10	μg/L	10	12/7/2007 12:48:56 PM
1,3-Dichloropropane	ND	10	µg/L	10	12/7/2007 12:48:56 PM
2,2-Dichloropropane	ND	20	µg/L	. 10	12/7/2007 12:48:56 PM
1,1-Dichloropropene	ND	10	μg/L	10	12/7/2007 12:48:56 PM
Hexachlorobutadiene	ND	10	· µg/L	10	12/7/2007 12:48:56 PM
2-Hexanone	ND	100	μg/L	10	12/7/2007 12:48:56 PM
Isopropylbenzene	ND	10	µg/L	10	12/7/2007 12:48:56 PM
4-Isopropyltoluene	ND	10	μg/L	10	12/7/2007 12:48:56 PM
4-Methyl-2-pentanone	ND	100	µg/L	10	12/7/2007 12:48:56 PM
Methylene Chloride	ND	30	µg/L	10	12/7/2007 12:48:56 PM
n-Butylbenzene	23	10	µg/L	10	12/7/2007 12:48:56 PM
n-Propylbenzene	ND	10	µg/L	10	12/7/2007 12:48:56 PM
sec-Butylbenzene	ND	10	μg/L	10	12/7/2007 12:48:56 PM
Styrene	ND	10	µg/L	10	12/7/2007 12:48:56 PM
tert-Butyibenzene	ND	10	µg/L	10	12/7/2007 12:48:56 PM
1,1,1,2-Tetrachloroethane	ND	10	µg/L	10	12/7/2007 12:48:56 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	12/7/2007 12:48:56 PM
Tetrachloroethene (PCE)	ND	10	μg/L	10	12/7/2007 12:48:56 PM
trans-1,2-DCE	ND	10	μg/L	10	12/7/2007 12:48:56 PM
trans-1,3-Dichloropropene	ND	10	µg/L	10	12/7/2007 12:48:56 PM
1,2,3-Trichlorobenzene	ND .	10	µg/L	10	12/7/2007 12:48:56 PM
1,2,4-Trichlorobenzene	ND	10	µg/L	10	12/7/2007 12:48:56 PM
1,1,1-Trichloroethane	ND	10	µg/L	10	12/7/2007 12:48:56 PM

5

Qualifiers:

J DM

Not Detected at the Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

S Spike recovery outside accepted recovery limits

Analyte detected below quantitation limits

Value exceeds Maximum Contaminant Level
 E Value above quantitation range

Date: 19-Dec-07

CLIENT:	Giant Refining Company
Lab Order:	0711469
Project:	Evap. Ponds #1 through #8-4 Qtr 2007
Lab ID:	0711469-02

Client Sample ID: Pond #2 Collection Date: 11/29/2007 8:50:00 AM Date Received: 11/29/2007 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: BDH
1,1,2-Trichloroethane	ND	10	µg/L	. 10	12/7/2007 12:48:56 PM
Trichloroethene (TCE)	ND	10	µg/L	10	12/7/2007 12:48:56 PM
Trichlorofluoromethane	ND	10	μg/L	10	12/7/2007 12:48:56 PM
1,2,3-Trichloropropane	ND	20	μg/L	10	12/7/2007 12:48:56 PM
Vinyl chloride	ND	10	μg/L	10	12/7/2007 12:48:56 PM
Xylenes, Total	130	15	μg/L	10	12/7/2007 12:48:56 PM
Surr: 1,2-Dichloroethane-d4	104	68.1-123	%REC	10	12/7/2007 12:48:56 PM
Surr: 4-Bromofluorobenzene	98.2	53.2-145	%REC	10	12/7/2007 12:48:56 PM
Surr. Dibromofluoromethane	97.2	68.5-119	%REC	10	12/7/2007 12:48:56 PM
Surr: Toluene-d8	111	64-131	%REC	. 10	12/7/2007 12:48:56 PM
EPA 120.1: SPECIFIC CONDUCTANCE					Analyst: LIMM
Specific Conductance	9400	0.010	µmhos/cm	1	11/30/2007
SM4500-H+B: PH					Analyst: LMM
pH •	7.96	0.1	pH units	1	11/30/2007

Qualifiers:

* Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Date: 19-Dec-07

CLIENT:	Giant Refining Company	Client Sample ID: Pond #3
Lab Order:	0711469	Collection Date: 11/29/2007 9:10:00 AM
Project:	Evap. Ponds #1 through #8-4 Qtr 2007	Date Received: 11/29/2007
Lab ID:	0711469-03	Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: SMP
Fluoride	62	2.0	mg/L	20	11/30/2007 10:26:59 AM
Chloride	2000	. 10	mg/L	100	11/30/2007 10:44:24 AN
Nitrate (As N)+Nitrite (As N)	ND	4.0	mg/L	20	12/13/2007 8:35:22 PM
Phosphorus, Orthophosphate (As P)	ND	0.50	mg/L	1	11/29/2007 6:02:32 PM
Sulfate	1100	10	mg/L	20	11/30/2007 10:26:59 AN
EPA 6010B: TOTAL RECOVERABLE	METALS				Analyst: TES
Arsenic	ND	0.020	mg/L	1	12/4/2007 5:23:28 PM
Barium	0.033	0.010	mg/L	1	12/4/2007 5:23:28 PM
Cadmium	ND	0.0020	mg/L	1	12/4/2007 5:23:28 PM
Calcium	93	0.50	mg/L	1	12/4/2007 5:23:28 PM
Chromium	0.0078	0.0060	mg/L	1	12/4/2007 5:23:28 PM
Copper	ND	0.0060	mg/L	1	12/7/2007 12:49:28 PM
Lead	ND	0.0050	mg/L	1	12/4/2007 5:23:28 PM
Magnesium	55	0.50	mg/L	1	12/4/2007 5:23:28 PM
Manganese	0.30	0.0020	mg/L	1	12/4/2007 5:23:28 PM
Potassium	78	1.0	mg/L	1	12/4/2007 5:23:28 PM
Selenium	ND	0.050	m g/L	1	12/4/2007 5:23:28 PM
Silver	ND	0.0050	mg/L	1	12/4/2007 5:23:28 PM
Sodium	1600	25		50	12/7/2007 3:53:45 PM
Uranium	ND	0.10	mg/L	1	12/4/2007 5:23:28 PM
Zinc	0.094	0.020	mg/L	1	12/4/2007 5:23:28 PM
EPA METHOD 8260B: VOLATILES					Analyst: BDH
Benzene	ND	10	µg/L	10	12/7/2007 1:19:25 PM
Toluene	25	10	μg/L	10	12/7/2007 1:19:25 PM
Ethylbenzene	ND	10	⊭s:= µg/L	10	12/7/2007 1:19:25 PM
Methyl tert-butyl ether (MTBE)	ND	10	µg/L	10	12/7/2007 1:19:25 PM
1,2,4-Trimethylbenzene	27	10	µg/L	10	12/7/2007 1:19:25 PM
1,3,5-Trimethylbenzene	ND	10	µg/L	10	12/7/2007 1:19:25 PM
1,2-Dichloroethane (EDC)	ND	10	µg/L	10	12/7/2007 1:19:25 PM
1,2-Dibromoethane (EDB)	ND	10	µg/L	10	12/7/2007 1:19:25 PM
Naphthalene	52	20	µg/L	10	12/7/2007 1:19:25 PM
1-Methylnaphthalene	99	40	μg/L	10	12/7/2007 1:19:25 PM
2-Methylnaphthalene	160	40	µg/L	10	12/7/2007 1:19:25 PM
Acetone	930	100	µg/L	10	12/7/2007 1:19:25 PM
Bromobenzene	ND	10	µg/L	10	12/7/2007 1:19:25 PM
Bromochloromethane	ND	10	µg/L	10	12/7/2007 1:19:25 PM
Bromodichloromethane	ND	10	µg/L	10	12/7/2007 1:19:25 PM
Bromoform	ND	10	μg/L	10	12/7/2007 1:19:25 PM
Bromomethane	ND	10	μg/L	10	12/7/2007 1:19:25 PM
2-Butanone	ND	100	μg/L	10	12/7/2007 1:19:25 PM

Qualifiers:

- Value above quantitation range
- J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

- Spike recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- MCL Maximum Contaminant Level

RL Reporting Limit

Value exceeds Maximum Contaminant Level * Ε

Date: 19-Dec-07

CLIENT:	Giant Refining Company
Lab Order:	0711469
Project:	Evap. Ponds #1 through #8-4 Qtr 2007
/ Lab ID:	0711469-03

1

Client Sample ID: Pond #3 Collection Date: 11/29/2007 9:10:00 AM Date Received: 11/29/2007 Matrix: AQUEOUS

Analyses	Result	PQL (Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES	······				Analyst: BDI
Carbon disulfide	110	100	µg/L	10	12/7/2007 1:19:25 PM
Carbon Tetrachloride	ND	10	µg/L	10	12/7/2007 1:19:25 PM
Chlorobenzene	ND	10	μg/L	. 10	12/7/2007 1:19:25 PM
Chloroethane	ND	20	μg/L	10	12/7/2007 1:19:25 PM
Chloroform	ND	10	µg/L	10	12/7/2007 1:19:25 PM
Chloromethane	ND	10	µg/L	10	12/7/2007 1:19:25 PM
2-Chlorotoluene	ND	10	. µg/L	10	12/7/2007 1:19:25 PM
4-Chlorotoluene	ND	10	µg/L	10	12/7/2007 1:19:25 PM
cis-1,2-DCE	ND	. 10	µg/L	10	12/7/2007 1:19:25 PM
cis-1,3-Dichloropropene	ND	10	µg/L	10	12/7/2007 1:19:25 PM
1,2-Dibromo-3-chloropropane	ND	20	µg/L	10	12/7/2007 1:19:25 PM
Dibromochloromethane	ND	10	µg/L	10	12/7/2007 1:19:25 PM
Dibromomethane	· ND	10	μg/L	10	12/7/2007 1:19:25 PM
1,2-Dichlorobenzene	ND	10	µg/L	10	12/7/2007 1:19:25 PM
1,3-Dichlorobenzene	ND	10	μg/L	10	12/7/2007 1:19:25 PM
1,4-Dichlorobenzene	ND	10	µg/L	10	12/7/2007 1:19:25 PM
Dichlorodifluoromethane	ND	10	µg/L	10	12/7/2007 1:19:25 PM
1,1-Dichloroethane	ND	10	µg/L	10	12/7/2007 1:19:25 PM
1,1-Dichloroethene	ND	10	µg/L	10	12/7/2007 1:19:25 PM
1,2-Dichloropropane	ND	10	µg/L	10	12/7/2007 1:19:25 PM
1,3-Dichloropropane	ND	10	µg/L	10	12/7/2007 1:19:25 PM
2,2-Dichloropropane	ND	20	µg/L	10	12/7/2007 1:19:25 PM
1,1-Dichloropropene	ND	10	µg/L	10	12/7/2007 1:19:25 PM
Hexachlorobutadiene	ND	10	µg/L	10	12/7/2007 1:19:25 PM
2-Hexanone	ND	100	µg/L	10	12/7/2007 1:19:25 PM
Isopropylbenzene	ND	10	μg/L	10	12/7/2007 1:19:25 PM
4-Isopropyitoluene	ND	10	µg/L	10	12/7/2007 1:19:25 PM
4-Methyl-2-pentanone	ND	100	μg/L	10	12/7/2007 1:19:25 PM
Methylene Chloride	ND	30	µg/L	10	12/7/2007 1:19:25 PM
n-Butylbenzene	ND	10	µg/L	10	12/7/2007 1:19:25 PM
n-Propylbenzene	ND	10	μg/L	10	12/7/2007 1:19:25 PM
sec-Butylbenzene	. ND	10	μg/L	10	12/7/2007 1:19:25 PM
Styrene	ND	10	μg/L	10	12/7/2007 1:19:25 PM
tert-Butylbenzene	ND	10	hð\r	10	12/7/2007 1:19:25 PM
1,1,1,2-Tetrachloroethane	ND	10	µg/L	10	12/7/2007 1:19:25 PM
1,1,2,2-Tetrachloroethane	ND	20	μg/L	10	12/7/2007 1:19:25 PM
Tetrachloroethene (PCE)	ND	10	µg/L	10	12/7/2007 1:19:25 PM
trans-1,2-DCE	ND	10	µg/L	10	12/7/2007 1:19:25 PM
trans-1,3-Dichloropropene	ND	10	µg/L	10	12/7/2007 1:19:25 PM
1,2,3-Trichlorobenzene	ND	10	µg/L	10	12/7/2007 1:19:25 PM
1,2,4-Trichlorobenzene	ND	10	µg/L	10	12/7/2007 1:19:25 PM
1,1,1-Trichloroethane	ND	10	μg/L	10	12/7/2007 1:19:25 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level
 E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

CLIENT:	Giant Refining Compan	У	•	•	lient Sample ID:		
Lab Order:	0711469				Collection Date:	11/29	/2007 9:10:00 AM
Project:	Evap. Ponds #1 through	#8-4 Qtr 20	007		Date Received:	11/29	/2007
Lab ID:	0711469-03				Matrix:	AQUI	EOUS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8260B: VOLATILES						Analyst: BDI
1,1,2-Trichloroe	thane	ND	. 10		µg/L	10	12/7/2007 1:19:25 PM
Trichloroethene	(TCE)	ND	10		µg/L	10	12/7/2007 1:19:25 PM
Trichlorofluoron	nethane	ND	10		µg/L	10	12/7/2007 1:19:25 PM
1,2,3-Trichlorop	ropane	, ND	20		µg/L	10	12/7/2007 1:19:25 PM
Vinyl chloride		ND	10		µg/L	10	12/7/2007 1:19:25 PM
Xylenes, Total		38	15		µg/L	10	12/7/2007 1:19:25 PM
Surr: 1,2-Dicl	nloroethane-d4	103	68.1-123		%REC	10	12/7/2007 1:19:25 PM
Surr: 4-Brom	ofluorobenzene	97.5	53.2-145		%REC	10	12/7/2007 1:19:25 PM
Surr: Dibrom	ofluoromethane	108	68.5-119		%REC	10	12/7/2007 1:19:25 PM
Surr: Toluene	e-d8	110	64-131		%REC	10	12/7/2007 1:19:25 PM
EPA 120.1: SPI	ECIFIC CONDUCTANCE						Analyst: LMN
Specific Conduc	stance	9800	0.010		µmhos/cm	1.	11/30/2007

0.1

pH units

7.71

рĤ

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

11/30/2007

MCL Maximum Contaminant Level

RL Reporting Limit

9

Page 9 of 24

Date: 19-Dec-07

CLIENT:	Giant Refining Company
Lab Order:	0711469
Project:	Evap. Ponds #1 through #8-4 Qtr 2007
Lab ID:	0711469-04

Client Sample ID: Pond #4 Collection Date: 11/29/2007 9:30:00 AM Date Received: 11/29/2007 Matrix: AQUEOUS

Analyses	Result	PQL	Qual U	nits	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: SIMP
Fluoride	61	2.0	m	g/L	20	11/30/2007 11:01:48 AM
Chloride	2000	10	m	g/L	100	12/3/2007 11:09:14 AM
Nitrate (As N)+Nitrite (As N)	ND	4.0	m	g/L	20	12/18/2007 7:27:09 PM
Phosphorus, Orthophosphate (As P)	ND	0.50	m	g/L	1	11/29/2007 6:37:21 PM
Sulfate	1100	10	m	g/L	20	11/30/2007 11:01:48 AN
EPA 6010B: TOTAL RECOVERABLE	METALS					Analyst: TES
Arsenic	ND	0.020	m	g/L	1	12/4/2007 5:27:20 PM
Barium	0.035	0.010	m	g/L	1	12/4/2007 5:27:20 PM
Cadmium	ND	0.0020	m	g/L	1	12/4/2007 5:27:20 PM
Calcium	96	0.50	m	g/L	1 ·	12/4/2007 5:27:20 PM
Chromium	0.0080	0.0060	m	g/L	1	12/4/2007 5:27:20 PM
Copper	ND	0.0060	m	g/L	1	12/7/2007 12:53:33 PM
Lead	ND	0.0050	m	g/L	1	12/4/2007 5:27:20 PM
Magnesium	56	0.50	m	g/L	1	12/4/2007 5:27:20 PM
Månganese	0.31	0.0020	m	g/L	1	12/4/2007 5:27:20 PM
Potassium	82	1.0	mg	g/L	1	12/4/2007 5:27:20 PM
Selenium	ND	0.050	mg	g/L	1	12/4/2007 5:27:20 PM
Silver	ND	0.0050	m	g/L	1	12/4/2007 5:27:20 PM
Sodium	1700	25	m	g/L	50	12/7/2007 3:50:40 PM
Uranium	ND	0.10	mg	g/L	1	12/4/2007 5:27:20 PM
Zinc	0.092	0.020	mį	g/L	1	12/4/2007 5:27:20 PM
EPA METHOD 8260B: VOLATILES						Analyst: BDH
Benzene	ND	10	μg	/L	10	12/7/2007 1:49:53 PM
Toluene	11	10	μg	/L	10	12/7/2007 1:49:53 PM
Ethylbenzene	ND	10	μg	/L	10	12/7/2007 1:49:53 PM
Methyl tert-butyl ether (MTBE)	ND	10	μg	/L	10	12/7/2007 1:49:53 PM
1,2,4-Trimethylbenzene	13	10	μg	/L .	10	12/7/2007 1:49:53 PM
1,3,5-Trimethylbenzene	ND	10	· µg	/L	10	12/7/2007 1:49:53 PM
1,2-Dichloroethane (EDC)	ND	10	μg	/L	10	12/7/2007 1:49:53 PM
1,2-Dibromoethane (EDB)	ND	10	μg	/L	10	12/7/2007 1:49:53 PM
Naphthalene	29	20	μg	/L	10	12/7/2007 1:49:53 PM
1-Methylnaphthalene	62	40	hð	/L	10	12/7/2007 1:49:53 PM
2-Methylnaphthalene	92	40	μg.	/L	10	12/7/2007 1:49:53 PM
Acetone	800	100	μġ	/L	10	12/7/2007 1:49:53 PM
Bromobenzene	ND	10	μg	/L	10	12/7/2007 1:49:53 PM
Bromochloromethane	ND	10	μg	/L	10	12/7/2007 1:49:53 PM
Bromodichloromethane	ND	10	μg	/L	10	12/7/2007 1:49:53 PM
Bromoform	ND	10	μgi	/L	10	12/7/2007 1:49:53 PM
Bromomethane	ND	10	μg		10	12/7/2007 1:49:53 PM
2-Butanone	ND	100	hđi	/L	10	12/7/2007 1:49:53 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level ¥ E
 - Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Date: 19-Dec-07

CLIENT:	Giant Refining Company
Lab Order:	0711469
Project:	Evap. Ponds #1 through #8-4 Qtr 2007
Lab ID:	0711469-04

Client Sample ID: Pond #4 Collection Date: 11/29/2007 9:30:00 AM Date Received: 11/29/2007 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES			······································	<u></u>	Analyst: BDH
Carbon disulfide	110	100	μg/L	10	12/7/2007 1:49:53 PM
Carbon Tetrachloride	ND	. 10	μg/L	10	12/7/2007 1:49:53 PM
Chlorobenzene	ND	10	μg/L	10	12/7/2007 1:49:53 PM
Chloroethane	ND.	20	µg/L	10	12/7/2007 1:49:53 PM
Chloroform	ND	10	µg/L .	10	12/7/2007 1:49:53 PM
Chloromethane	ND	10	μg/L	10	12/7/2007 1:49:53 PM
2-Chlorotoluene	ND	10	µg/L	10	12/7/2007 1:49:53 PM
4-Chlorotoluene	ND	10	μg/L	10	12/7/2007 1:49:53 PM
cis-1,2-DCE	ND	10	μg/L	10	12/7/2007 1:49:53 PM
cls-1,3-Dichloropropene	ND	10	μg/L	10	12/7/2007 1:49:53 PM
1,2-Dibromo-3-chloropropane	ND	20	μg/L	10	12/7/2007 1:49:53 PM
Dibromochloromethane	ND	10	μg/L	10	12/7/2007 1:49:53 PM
Dibromomethane	ND	10	μg/L	10	12/7/2007 1:49:53 PM
1,2-Dichlorobenzene	ND	10	µg/L	10	12/7/2007 1:49:53 PM
1,3-Dichlorobenzene	ND	10	μg/L	10	12/7/2007 1:49:53 PM
1,4-Dichlorobenzene	ND	10	µg/L	10	12/7/2007 1:49:53 PM
Dichlorodifluoromethane	ND	10	µg/L	10	12/7/2007 1:49:53 PM
1,1-Dichloroethane	ND	10	µg/L	10	12/7/2007 1:49:53 PM
1,1-Dichloroethene	ND	10	µg/L	10	12/7/2007 1:49:53 PM
1,2-Dichloropropane	ND	10	μg/L	10	12/7/2007 1:49:53 PM
1,3-Dichloropropane	ND	10	μg/L	10	12/7/2007 1:49:53 PM
2,2-Dichloropropane	ND	20	μg/L	10	12/7/2007 1:49:53 PM
1,1-Dichloropropene	ND	10	µg/L	10	12/7/2007 1:49:53 PM
Hexachlorobutadiene	ND	10	μg/L	10	12/7/2007 1:49:53 PM
2-Hexanone	ND	100	μg/L	10	12/7/2007 1:49:53 PM
Isopropylbenzene	ND	10	μg/L	10	12/7/2007 1:49:53 PM
4-lsopropyltoluene	ND	10	μg/L	10	12/7/2007 1:49:53 PM
4-Methyl-2-pentanone	ND	100	μg/L	10	12/7/2007 1:49:53 PM
Methylene Chloride	ND	30	μg/L	10	12/7/2007 1:49:53 PM
n-Butylbenzene	ND	10	·µg/L	10	12/7/2007 1:49:53 PM
n-Propylbenzene	ND	10	µg/L	10	12/7/2007 1:49:53 PM
sec-Bulyibenzene	ND	10	µg/L	10	12/7/2007 1:49:53 PM
Styrene	ND	10	µg/L	10	12/7/2007 1:49:53 PM
tert-Butyibenzene	ND	10	µg/L	10	12/7/2007 1:49:53 PM
1,1,1,2-Tetrachloroethane	ND	10	µg/L	10	12/7/2007 1:49:53 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	12/7/2007 1:49:53 PM
Tetrachloroethene (PCE)	ND	10	μg/L	· 10	12/7/2007 1:49:53 PM
trans-1,2-DCE	ND	10	μg/L	10	12/7/2007 1:49:53 PM
trans-1,3-Dichloropropene	ND	10	μg/L	10	12/7/2007 1:49:53 PM
1,2,3-Trichlorobenzene	ND	10	µg/L	10	12/7/2007 1:49:53 PM
1,2,4-Trichlorobenzene	ND	10	µg/L	10	12/7/2007 1:49:53 PM
1,1,1-Trichloroethane	ND	10	μg/L	10	12/7/2007 1:49:53 PM

11

Qualifiers:

- Value exceeds Maximum Contaminant Level
 E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

CLIENT: Lab Order: Project: Lab ID:	der:0711469Collection Date:Evap. Ponds #1 through #8-4 Qtr 2007Date Received		Date Received:	: 11/29/2007 9:30:00 AM			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8260B: VOLATILES		· · · · · · · · · · · · · · · · · · ·		······		Analyst: BDH
1,1,2-Trichloroe	thane	ND	10		µg/L	10	12/7/2007 1:49:53 PM
Trichloroethene	(TCE)	ND	10		µg/L	10	12/7/2007 1:49:53 PM
Trichlorofluoron	nethane	ND	10		µg/L	10	12/7/2007 1:49:53 PM
1,2,3-Trichlorop	ropane	ND	20		µg/L	10	12/7/2007 1:49:53 PM
Vinyl chloride		ND	10		µg/L	10	12/7/2007 1:49:53 PM
Xylenes, Total		ND	15		µg/L	10	12/7/2007 1:49:53 PM
	hloroethane-d4	94.6	68. 1- 123		%REC	10	12/7/2007 1:49:53 PM
Surr: 4-Brom	ofluorobenzene	102	53.2-145		%REC	10	12/7/2007 1:49:53 PM
Surr: Dibrom	ofluoromethane	99.4	68.5-119		%REC	10	12/7/2007 1:49:53 PM
Surr: Toluene	ə-d8	106	64-131		%REC	10	12/7/2007 1:49:53 PM
EPA 120.1: SPI	ECIFIC CONDUCTANCE						Analyst: LMM
Specific Conduc		9800	0.010		µmhos/cm	1	11/30/2007
SM45Q0-H+B: I	РН						Analyst: LMM

0.1

pH units

7.73

рН

Qualifiers:

* Value exceeds Maximum Contaminant Level

Hall Environmental Analysis Laboratory, Inc.

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

12

Date: 19-Dec-07

11/30/2007

CLIENT:	Giant Refining Com	pany		C	lient Sample ID:	Pond	#5
Lab Order:	0711469				Collection Date:	11/29	/2007 9:50:00 AM
Project: Evap. Ponds #1 th		rough #8-4 Qtr 2007			Date Received:	11/29	/2007
Lab ID:	0711469-05		•••		Matrix		
							· · · · · · · · · · · · · · · · · · ·
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS						Analyst: SMF
Fluoride		47	2.0		mg/L	20	11/30/2007 12:11:26 PM
Chloride		3000	10		mg/L	100	11/30/2007 12:28:51 PI
Nitrate (As N)+I	Nitrite (As N)	ND	4.0		mg/L	20	12/18/2007 9:11:35 PM
Phosphorus, Or	thophosphate (As P)	ND	0.50		mg/L	1	11/29/2007 7:12:10 PM
Sulfate		1300	10		mg/L	20	11/30/2007 12:11:26 PI
EPA 6010B: TC	TAL RECOVERABLE	METALS					Analyst: TES
Arsenic		ND	0.020		mg/L	1	12/4/2007 5:31:15 PM
Barium		0.054	0.010		mg/L	1	12/4/2007 5:31:15 PM
Cadmium		ND	0.0020		mg/L	1	12/4/2007 5:31:15 PM
Calcium		150	2.5		mg/L	5	12/7/2007 2:57:20 PM
Chromium		0.0074	0.0060		mg/L	1	12/4/2007 5:31:15 PM
		0.0074 ND	0.0060		mg/L	1	12/7/2007 12:57:39 PM
Copper Lead		ND	0.0050		mg/L	' 1	12/4/2007 5:31:15 PM
		79	0.0050		mg/L	1	12/4/2007 5:31:15 PM
Magnesium		0.43	0.0020		mg/L	1	12/4/2007 5:31:15 PM
Manganese		0.43 110	0.0020		•	5	12/7/2007 2:57:20 PM
Potassium		ND	0.050		mg/L mg/L	1	12/4/2007 5:31:15 PM
Selenium		ND	0.0050		-	1	12/4/2007 5:31:15 PM
Silver					mg/L		
Sodium		2200	25		mg/L	50	12/7/2007 3:03:13 PM
Uranium Zinc		ND 0.084	0.10 0.020		mg/L mg/L	1 1	12/4/2007 5:31:15 PM 12/4/2007 5:31:15 PM
ZIIIQ		0.004	0.020		ngrL	1	1214/2007 0.01.101 10
EPA METHOD	B260B: VOLATILES						Analyst: BDH
Benzene		ND	10		µg/L	10	12/7/2007 2:20:18 PM
Toluene		ND	10		hð\r	10	12/7/2007 2:20:18 PM
Ethylbenzene		ND	10		µg/L	10	12/7/2007 2:20:18 PM
Methyl tert-butyl	ether (MTBE)	ND	10		µg/L	10	12/7/2007 2:20:18 PM
1,2,4-Trimethylt	enzene	ND	10		µg/L	10	12/7/2007 2:20:18 PM
1,3,5-Trimethylb	enzene	ND	10		µg/L	10	12/7/2007 2:20:18 PM
1,2-Dichloroetha	ane (EDC)	ND	10		µg/L	10	12/7/2007 2:20:18 PM
1,2-Dibromoetha	ane (EDB)	ND	10		µg/L	10	12/7/2007 2:20:18 PM
Naphthalene		ND	20		µg/L	10	12/7/2007 2:20:18 PM
1-Methylnaphtha	alene	ND	40		µg/L	10	12/7/2007 2:20:18 PM
2-Methylnaphtha	alene	ND	40		µg/L	10	12/7/2007 2:20:18 PM
Acetone		220	100		µg/L	10	12/7/2007 2:20:18 PM
Bromobenzene		ND	10	1	µg/L	10	12/7/2007 2:20:18 PM
Bromochlorome	thane	ND .	10	1	µg/L	10	12/7/2007 2:20:18 PM
Bromodichlorom	ethane	ND	10		µg/L	10	12/7/2007 2:20:18 PM
Bromoform		ND	10		µg/L	10	12/7/2007 2:20:18 PM
Bromomethane		ND	10		µg/L	10	12/7/2007 2:20:18 PM
2-Butanone		ND	100		ug/L	10	12/7/2007 2:20:18 PM

Ε Value above quantitation range

Analyte detected below quantitation limits J

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S 13 H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Value exceeds Maximum Contaminant Level ¥

Date: 19-Dec-07

CLIENT:	Giant Refining Company
Lab Order:	0711469
Project:	Evap. Ponds #1 through #8-4 Qtr 2007
Lab ID:	0711469-05

Client Sample ID: Pond #5 Collection Date: 11/29/2007 9:50:00 AM Date Received: 11/29/2007 Matrix: AQUEOUS

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES	· · · · · · · · · · · · · · · · · · ·				Analyst: BDI
Carbon disulfide	ND	100	µg/L	10	12/7/2007 2:20:18 PM
Carbon Tetrachloride	ND	· 10	µg/L	10	12/7/2007 2:20:18 PM
Chlorobenzene	ND	10	µg/L	10	12/7/2007 2:20:18 PM
Chloroethane	ND	20	µg/L	10	12/7/2007 2:20:18 PM
Chloroform	ND	10	µg/L	.10	12/7/2007 2:20:18 PM
Chloromethane	ND	10	µg/L	10	12/7/2007 2:20:18 PM
2-Chlorotoluene	ND	10	µg/L	10	12/7/2007 2:20:18 PM
4-Chiorotoluene	ND	10	µg/L	10	12/7/2007 2:20:18 PM
cis-1,2-DCE	ND	10	µg/L	10	12/7/2007 2:20:18 PM
cis-1,3-Dichloropropene	ND	10	µg/L	10	12/7/2007 2:20:18 PM
1,2-Dibromo-3-chloropropane	ND	20	μg/L	10	12/7/2007 2:20:18 PM
Dibromochloromethane	ND	10	µg/L	10	12/7/2007 2:20:18 PM
Dibromomethane	ND	10	μg/L	10	12/7/2007 2:20:18 PM
1,2-Dichlorobenzene	ND	10	μg/L	10	12/7/2007 2:20:18 PM
1,3-Dichlorobenzene	ND	10	µg/L	10	12/7/2007 2:20:18 PM
1,4-Dichlorobenzene	ND	10	μg/L	10	12/7/2007 2:20:18 PM
Dichlorodifluoromethane	ND	10	μg/L	10	12/7/2007 2:20:18 PM
1,1-Dichloroethane	ND	10	μg/L	10	12/7/2007 2:20:18 PM
1,1-Dichloroethene	ND	10	μg/L	10	12/7/2007 2:20:18 PM
1,2-Dichloropropane	ND	10	μg/L	10	12/7/2007 2:20:18 PM
1,3-Dichloropropane	ND	10	μg/L	10	12/7/2007 2:20:18 PM
2,2-Dichloropropane	ND	20	. μ g/L	10	12/7/2007 2:20:18 PM
1,1-Dichloropropene	ND	10	µg/L	10	12/7/2007 2:20:18 PM
Hexachlorobutadiene	ND	10	μg/L	10	12/7/2007 2:20:18 PM
2-Hexanone	ND	100	μg/L	10	12/7/2007 2:20:18 PM
Isopropylbenzene	ND	10	µg/L	10	12/7/2007 2:20:18 PM
4-isopropyitoluene	NÐ	10	μg/L	10	12/7/2007 2:20:18 PM
4-Methyl-2-pentanone	ND	100	µg/L	10	12/7/2007 2:20:18 PM
Methylene Chloride	ND	. 30	µg/L	10	12/7/2007 2:20:18 PM
n-Butylbenzene	ND	10	µg/L	10	- 12/7/2007 2:20:18 PM
n-Propyibenzene	ND	10	µg/L	10	12/7/2007 2:20:18 PM
sec-Butylbenzene	.ND	10	µg/L	10	12/7/2007 2:20:18 PM
Styrene	ND	10	µg/L	10	12/7/2007 2:20:18 PM
tert-Butylbenzene	ND	10	μ g/L	10	12/7/2007 2:20:18 PM
1,1,1,2-Tetrachloroethane	ND	10	µg/L	10	12/7/2007 2:20:18 PM
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10	12/7/2007 2:20:18 PM
Tetrachloroethene (PCE)	ND	10	µg/L	10	12/7/2007 2:20:18 PM
trans-1,2-DCE	ND	10	µg/L	10	12/7/2007 2:20:18 PM
trans-1,3-Dichloropropene	ND	10	µg/L	10	12/7/2007 2:20:18 PM
1,2,3-Trichlorobenzene	ND	10	µg/L	10	12/7/2007 2:20:18 PM
1,2,4-Trichlorobenzene	ND	10	µg/L	10	12/7/2007 2:20:18 PM
1,1,1-Trichloroethane	ND	10	µg/L	- 10	12/7/2007 2:20:18 PM

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

14

Page 14 of 24

Date: 19-Dec-07

CLIENT:	Giant Refining Company	Client Sample ID: Pond #5
Lab Order:	0711469	Collection Date: 11/29/2007 9:50:00 AM
Project:	Evap. Ponds #1 through #8-4 Qtr 2007	Date Received: 11/29/2007
Lab ID:	0711469-05	Matrix: AQUEOUS

Analyses	Result	PQL	Qual Un	its	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: BDH
1,1,2-Trichloroethane	ND	10	μg/	ե	10	12/7/2007 2:20:18 PM
Trichloroethene (TCE)	ND	10	μg/	L	10	12/7/2007 2:20:18 PM
Trichlorofluoromethane	' ND	10	μg/	L.	10	12/7/2007 2:20:18 PM
1,2,3-Trichloropropane	ND	20	μg/	L	10	12/7/2007 2:20:18 PM
Vinyl chloride	ND	10	hđ/	L	10	12/7/2007 2:20:18 PM
Xylenes, Total	ND	15	μg/	L	10	12/7/2007 2:20:18 PM
Surr: 1,2-Dichloroethane-d4	101	68.1-123	%R	EC	10	12/7/2007 2:20:18 PM
Surr: 4-Bromofluorobenzene	102	53.2-145	%R	EC	10	12/7/2007 2:20:18 PM
Surr: Dibromofluoromethane	105	68.5-119	%R	EC	10	12/7/2007 2:20:18 PM
Surr: Toluene-d8	104	64-131	%R	EC	10	12/7/2007 2:20:18 PM
EPA 120.1: SPECIFIC CONDUCTANCE						Analyst: LMM
Specific Conductance	12000	0.010	μm	hos/cm	.1	11/30/2007
SM4500-H+B; PH						Analyst: LMM
рН	7.70	0.1	pН	units	1	11/30/2007
			-			

Qualifiers:

* Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

CLIENT:	Giant Refining Comp	any		C	lient Sample II	D: Pon	nd #6	
Lab Order:	0711469			I	Collection Dat	e: 11/2	29/2007 10:10:00 AM	
Project:	Evap. Ponds #1 throu	gh #8-4 Otr 20	07		Date Receive	a: 11/2	29/2007	
Lab ID:	0711469-06	Ç.					AQUEOUS	
Analyses		Result	POL	Qual	Units	DF	Date Analyzed	
_		Result		~~~···				
	300.0: ANIONS			•		40	Analyst: SMP	
Fluoride		31	1.0		mg/L	<u>10</u>	11/29/2007 8:39:12 PM	
Chloride		8000	50	•	mg/L	500	12/3/2007 11:26:39 AM	
Nitrate (As N)+		26	10		mg/L	50	12/9/2007 9:50:21 AM	
-	thophosphate (As P)	ND	5.0		mg/L	10	11/29/2007 8:39:12 PM	
Sulfate		3100	25		mg/L	50	11/30/2007 12:46:15 Pi	
EPA 6010B: TC	TAL RECOVERABLE N	IETALS					Analyst: TES	
Arsenic		ND	0.020		mg/L	1	12/7/2007 1:19:40 PM	
Barium		0.094	0.010		mg/L	1	12/7/2007 1:19:40 PM	
Cadmium		ND	0.0020		mg/L	1	12/7/2007 1:19:40 PM	
Calcium		500	5.0		mg/L	10	12/7/2007 3:06:15 PM	
Chromium		ND	0,0060		mg/L	1	12/7/2007 1:19:40 PM	
Copper		ND	0.0060		mg/L	1	12/7/2007 1:19:40 PM	
Lead		ND	0.0050		mg/L	1	12/7/2007 1:19:40 PM	
Magnesium		210	5.0		mg/L	10	12/7/2007 3:06:15 PM	
Manganese		0.96	0.0020		mg/L	1	12/7/2007 1:19:40 PM	
Potassium		230	10		mg/L	10	12/7/2007 3:06:15 PM	
Selenium		ND	0.050		mg/L	1	12/7/2007 1:19:40 PM	
Silver		ND	0.0050		mg/L	1	12/7/2007 1:19:40 PM	
Sodium		5500	50		mg/L	100	12/7/2007 3:47:37 PM	
Uranium		ND	0.10		mg/L	100	12/11/2007 11:32:53 AN	
Zinc		0.028	0.020		mg/L	' 1	12/7/2007 1:19:40 PM	
						•		
	B260B: VOLATILES						Analyst: BDH	
Benzene		ND	10		µg/L	10	12/7/2007 2:50:45 PM	
Toluene		ND	· 10		µg/L	10	12/7/2007 2:50:45 PM	
Ethylbenzene		ŊD	10		µg/L	10	12/7/2007 2:50:45 PM	
Methyl tert-butyl		ND	10		µg/L	10	12/7/2007 2:50:45 PM	
1,2,4-Trimethylb		ND	. 10		µg/L	10	12/7/2007 2:50:45 PM	
1,3,5-Trimethylb		ND	10		hð\r "	10	12/7/2007 2:50:45 PM	
1,2-Dichloroetha		ND .	10		µg/L	10	12/7/2007 2:50:45 PM	
1,2-Dibromoethe	ane (EDB)	ND	10		µg/L	10	12/7/2007 2:50:45 PM	
Naphthalene		ND	20		µg/L.	10	12/7/2007 2:50:45 PM	
1-Methylnaphtha		ND	40		µg/L	10	12/7/2007 2:50:45 PM	
2-Methylnaphtha	alene	ND	40		µg/L	10	12/7/2007 2:50:45 PM	
Acetone		ND	100		µg/L	10	12/7/2007 2:50:45 PM	
Bromobenzene		ND	10		µg/L	10	12/7/2007 2:50:45 PM	
Bromochlorome	thane	ND	10		µg/L	10	12/7/2007 2:50:45 PM	
Bromodichlorom	ethane	ND	10		ug/L	10	12/7/2007 2:50:45 PM	
Bromoform		ND	10	ł	ug/L	10	12/7/2007 2:50:45 PM	
Bromomethane		ND	10	}	ug/L	10	12/7/2007 2:50:45 PM	
2-Butanone		ND	100	1	ug/L	10	12/7/2007 2:50:45 PM	

Value above quantitation range Ε

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S 16 H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 19-Dec-07

CLIENT:	Giant Refining Company	Client Sample ID:	Pond #6
Lab Order:	0711469	Collection Date:	11/29/2007 10:10:00 AM
Project:	Evap. Ponds #1 through #8-4 Qtr 2007	Date Received:	11/29/2007
Lab ID:	0711469-06	Matrix:	AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES	·				Analyst: BDI
Carbon disulfide	ND	100	µg/L	10	12/7/2007 2:50:45 PM
Carbon Tetrachloride	ND	10	µg/L	10	12/7/2007 2:50:45 PM
Chlorobenzene	ND	10	μ g/L .	10	12/7/2007 2:50:45 PM
Chloroethane	ND	20	µg/L	10	12/7/2007 2:50:45 PM
Chloroform	ND	10	µg/L	10	12/7/2007 2:50:45 PM
Chloromethane	ND	10	µg/L	10	12/7/2007 2:50:45 PM
2-Chlorotoluene	ND	. 10	µg/Ľ	10	12/7/2007 2:50:45 PM
4-Chlorotoluene	ND	10	µg/L	10	12/7/2007 2:50:45 PM
cis-1,2-DCE	ND	10	µg/L	10	12/7/2007 2:50:45 PM
cis-1,3-Dichloropropene	ND	10	µg/L	. 10	12/7/2007 2:50:45 PM
1,2-Dibromo-3-chloropropane	ND	20	µg/L	10	12/7/2007 2:50:45 PM
Dibromochloromethane	ND	10	µg/L	10	12/7/2007 2:50:45 PM
Dibromomethane	ND	10	µg/L	10	12/7/2007 2:50:45 PM
1,2-Dichlorobenzene	ND	10	μg/L	10	12/7/2007 2:50:45 PM
1,3-Dichlorobenzene	ND	10	μg/L	10	12/7/2007 2:50:45 PM
1,4-Dichlorobenzene	ND	10	µg/L	10	12/7/2007 2:50:45 PM
Dichlorodifluoromethane	ND	10	µg/L	10	12/7/2007 2:50:45 PM
1,1-Dichloroethane	ND	10	µg/L	10	12/7/2007 2:50:45 PM
1,1-Dichloroethene	ND	10	µg/L	10	12/7/2007 2:50:45 PM
1,2-Dichloropropane	ND	10	µg/L	10	12/7/2007 2:50:45 PM
1,3-Dichloropropane	ND	10	μg/L	10	12/7/2007 2:50:45 PM
0.0 Dishlesserenene	ND	20	µg/L	10	12/7/2007 2:50:45 PM
1,1-Dichloropropene	ND	10	µg/L	10	12/7/2007 2:50:45 PM
Hexachlorobutadiene	ND	10	μg/L	10	12/7/2007 2:50:45 PM
2-Hexanone	ND	100	μg/L	10	12/7/2007 2:50:45 PM
Isopropylbenzene	ND	10	µg/L	10	12/7/2007 2:50:45 PM
4-Isopropyltoluene	ND	10	µg/L	10	12/7/2007 2:50:45 PM
4-Methyl-2-pentanone	ND	100	µg/L	10	12/7/2007 2:50:45 PM
Methylene Chloride	ND	30	μg/L	10	12/7/2007 2:50:45 PM
n-Butylbenzene	ND	10	μg/L	10	12/7/2007 2:50:45 PM
n-Propylbenzene	ND	10	µg/L	10	12/7/2007 2:50:45 PM
sec-Butylbenzene	ND	10	µg/L	10	12/7/2007 2:50:45 PM
Styrene	ND	10	μg/L	10	12/7/2007 2:50:45 PM
tert-Butylbenzene	ND	10	µg/L	10	12/7/2007 2:50:45 PM
1,1,1,2-Tetrachloroethane	ND	10	μg/L	10	12/7/2007 2:50:45 PM
1,1,2,2-Tetrachloroethane	ND	20	μg/L	10	12/7/2007 2:50:45 PM
Tetrachloroethene (PCE)	ND	10	µg/L	10	12/7/2007 2:50:45 PM
trans-1,2-DCE	ND	10	µg/L	10	12/7/2007 2:50:45 PM
trans-1,3-Dichloropropene	ND	10	µg/L	10	12/7/2007 2:50:45 PM
1,2,3-Trichlorobenzene	ND	10	µg/L	10	12/7/2007 2:50:45 PM
1,2,4-Trichlorobenzene	ND	10	µg/L	10	12/7/2007 2:50:45 PM
1,1,1-Trichloroethane	ND	10	μg/L	10	12/7/2007 2:50:45 PM

Qualifiers: * Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 17 of 24.

Date: 19-Dec-07.

CLIENT:	Giant Refining Company
Lab Order:	0711469
Project:	Evap. Ponds #1 through #8-4 Qtr 2007
Lab ID:	0711469-06

Client Sample ID: Pond #6 Collection Date: 11/29/2007 10:10:00 AM Date Received: 11/29/2007 Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: BDH
1,1,2-Trichloroethane	ND	10		µg/L	10	12/7/2007 2:50:45 PM
Trichloroethene (TCE)	ND	10		µg/L	10	12/7/2007 2:50:45 PM
Trichlorofluoromethane	ND	10		µg/L	10	12/7/2007 2:50:45 PM
1,2,3-Trichloropropane	ND	. 20		µg/L	10	12/7/2007 2:50;45 PM
Vinyi chloride	ND	10		µg/L	10	12/7/2007 2:50:45 PM
Xylenes, Total	ND	15		µg/L	10	12/7/2007 2:50:45 PM
Surr: 1,2-Dichloroethane-d4	96.1	68.1-123		%REC	10	12/7/2007 2:50:45 PM
Surr: 4-Bromofluorobenzene	97.8	53.2-145		%REC	10	12/7/2007 2:50:45 PM
Surr: Dibromofluoromethane	98.6	68.5-119		%REC	10	12/7/2007 2:50:45 PM
Surr: Toluene-d8	104	64-131		%REC	10	12/7/2007 2:50:45 PM
EPA 120.1: SPECIFIC CONDUCTANCE						Analyst: LMM
Specific Conductance	14000	0.010		µmhos/cm	1	11/30/2007
SM4800-H+B: PH						Analyst: LMM
pH .	7.46	0.1		pH units	. 1	11/30/2007

Qualifiers:

*	Value exceeds Maximum Contaminant Level
---	---

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Date: 19-Dec-07

CLIENT: Giant Refining Company			C	lient Sample ID:	Pond #7				
Lab Order:	0711469				-		11/29/2007 10:30:00 AM		
Project: Evap. Ponds #1 through #8-4 Qt		10h #8-4 Otr 2007			Date Received:				
		ugii #0-4 Qii 2007				11/29/2007 AQUEOUS			
Lab ID:	0711469-07						<u></u>		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD	300.0: ANIONS						Analyst: SMF		
Fluoride		51	20		mg/L	200	11/30/2007 1:21:04 PM		
Chloride		69000	200		mg/L	2000	12/3/2007 11:44:03 AM		
Nitrate (As N)+I	Nitrite (As N)	ND	100		mg/L	500	12/9/2007 12:27:04 PM		
Phosphorus, Or	thophosphate (As P)	ND	100		mg/L	200	11/30/2007 1:21:04 PM		
Sulfate	·	14000	250		mg/L	500	11/30/2007 1:38:28 PM		
EPA 6010B: TC	TAL RECOVERABLE	WETALS					Analyst: TES		
Arsenic		ND	0.20		mg/L	10	12/7/2007 3:13:25 PM		
Barium		0.10	0.10		mg/L	10	12/7/2007 3:13:25 PM		
Cadmium		ND	0.020		mg/L	10	12/7/2007 3:13:25 PM		
Calcium		800	5.0		mg/L	10	12/7/2007 3:13:25 PM		
Chromium		ND	0.060		mg/L	10	12/7/2007 3:13:25 PM		
Copper		ND	0.060		mg/L	10	12/7/2007 3:13:25 PM		
Lead		ND	0.050		mg/L	10	12/7/2007 3:13:25 PM		
Magnesium		1400	25		mg/L	50	12/7/2007 3:17:35 PM		
Manganese		7.1	0.020		mg/L	10	12/7/2007 3:13:25 PM		
Potassium		1500	50		mg/L	50	12/7/2007 3:17:35 PM		
Selenium		ND	0.50		mg/L	10	12/7/2007 3:13:25 PM		
Silver		ND	0.050		mg/L	10	12/7/2007 3:13:25 PM		
Sodium		41000	250		mg/L	500	12/7/2007 3:56:39 PM		
Uranium		ND	1.0		mg/L	10	12/11/2007 12:06:09 PM		
Zinc		ND	0.20		mg/L	10	12/7/2007 3:13:25 PM		
	8260B: VOLATILES						Analyst: BDH		
Benzene		ND	10		μg/L	10	12/7/2007 3:21:18 PM		
Toluene		ND	10		μg/L	10	12/7/2007 3:21:18 PM		
Ethylbenzene		ND	10		µg/L	10	12/7/2007 3:21:18 PM		
Methyl tert-butyl	ether (MTBE)	ND	10		µg/L	10	12/7/2007 3:21:18 PM		
1,2,4-Trimethylb		ND	10		µg/L	10	12/7/2007 3:21:18 PM		
1,3,5-Trimethylb		ND	10		µg/L	10	12/7/2007 3:21:18 PM		
1,2-Dichloroetha		ND	10			10	12/7/2007 3:21:18 PM		
1,2-Dibromoetha		ND	10			10	12/7/2007 3:21:18 PM		
Naphthalene		ND	20			10	12/7/2007 3:21:18 PM		
1-Methylnaphtha	alene	ND	40		μg/L	10	12/7/2007 3:21:18 PM		
2-Methylnaphtha		ND	. 40			10	12/7/2007 3:21:18 PM		
Acetone		ND	100			10	12/7/2007 3:21:18 PM		
Bromobenzene		ND	10			10	12/7/2007 3:21:18 PM		
Bromochlorome	thane	ND	10			10	12/7/2007 3:21:18 PM		
Bromodichlorom		ND	10			10 -	12/7/2007 3:21:18 PM		
Bromoform		ND	10			10	12/7/2007 3:21:18 PM		
Bromomethane		ND	10			10	12/7/2007 3:21:18 PM		
2-Butanone		ND	100			10	12/7/2007 3:21:18 PM		

Qualifiers: * Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 19 of 24

Date: 19-Dec-07

CLIENT:	Giant Refining Company
Lab Order:	0711469
Project:	Evap. Ponds #1 through #8-4 Qtr 2007
Lab ID:	0711469-07

Client Sample ID: Pond #7 Collection Date: 11/29/2007 10:30:00 AM Date Received: 11/29/2007 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Un	its DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: BDI
Carbon disulfide	ND	100	µg/l	L 10	12/7/2007 3:21:18 PM
Carbon Tetrachloride	ND	10	μg/l	L 10.	12/7/2007 3:21:18 PM
Chlorobenzene	ND	10	μg/l	L 10	12/7/2007 3:21:18 PM
Chloroethane	ND	20	µg/l	L 10	12/7/2007 3:21:18 PM
Chloroform	ND	10	µg/l	L 10	12/7/2007 3:21:18 PM
Chloromethane	ND	10	μg/I	L 10	12/7/2007 3:21:18 PM
2-Chlorotoluene	ND	10	µg/l	L 10	12/7/2007 3:21:18 PM
4-Chlorotoluene	ND	10	µg/l	L 10	12/7/2007 3:21:18 PM
cis-1,2-DCE	ND	10	µg/l	L 10	12/7/2007 3:21:18 PM
cis-1,3-Dichloropropene	. ND	10	µg/l	L 10	12/7/2007 3:21:18 PM
1,2-Dibromo-3-chloropropane	ND	20	µg/l	L 10	12/7/2007 3:21:18 PM
Dibromochloromethane	ND	10	µg/l	L 10	12/7/2007 3:21:18 PM
Dibromomethane	ND	10	µg/l	L 10	12/7/2007 3:21:18 PM
1,2-Dichlorobenzene	ND	10	μg/L	10	12/7/2007 3:21:18 PM
1,3-Dichlorobenzene	ND	10	µg/L	- 10	12/7/2007 3:21:18 PM
1,4-Dichlorobenzene	ND	10	µg/l	_ 10	12/7/2007 3:21:18 PM
Dichlorodifluoromethane	ND	10	µg/l	- 10	12/7/2007 3:21:18 PM
1,1-Dichloroethane	ND	10	µg/L	- 10	12/7/2007 3:21:18 PM
1,1-Dichloroethene	ND	10	μg/L	- 10	12/7/2007 3:21:18 PM
1,2-Dichloropropane	ND	10	µg/L	- 10	12/7/2007 3:21:18 PM
1,3-Dichloropropane	ND	10	μg/L	10	12/7/2007 3:21:18 PM
2,2-Dichloropropane	ND	20	µg/L	10	12/7/2007 3:21:18 PM
1,1-Dichloropropene	ND	10	µg/L	. 10	12/7/2007 3:21:18 PM
Hexachlorobutadiene	ND	10	µg/L		12/7/2007 3:21:18 PM
2-Hexanone	ND	100	µg/L		12/7/2007 3:21:18 PM
Isopropylbenzene	ND	10	µg/L		12/7/2007 3:21:18 PM
4-IsopropyItoluene	ND	10	μg/L		12/7/2007 3:21:18 PM
4-Methyl-2-pentanone	ND	100	µg/L		12/7/2007 3:21:18 PM
Methylene Chloride	ND	30	µg/L	. 10	12/7/2007 3:21:18 PM
n-Bulylbenzene	ND	10	µg/L	. 10	12/7/2007 3:21:18 PM
n-Propylbenzene	ND	10	μg/L	. 10	12/7/2007 3:21:18 PM
sec-Butylbenzene	ND	10	μg/L	. 10	12/7/2007 3:21:18 PM
Styrene	ND	10	µg/L	. 10	12/7/2007 3:21:18 PM
tert-Butylbenzene	ND	10	µg/L	10	12/7/2007 3:21:18 PM
1,1,1,2-Tetrachloroethane	ND	10	µg/L	· 10	12/7/2007 3:21:18 PM
1,1,2,2-Tetrachloroethane	ND	20	μg/L	10	12/7/2007 3:21:18 PM
Tetrachloroethene (PCE)	ND	10	µg/L		12/7/2007 3:21:18 PM
trans-1,2-DCE	ND	10	µg/L		12/7/2007 3:21:18 PM
trans-1,3-Dichloropropene	ND	10	µg/L		12/7/2007 3:21:18 PM
1,2,3-Trichlorobenzene	ND	10	µg/L		12/7/2007 3:21:18 PM
1,2,4-Trichlorobenzene	ND	10	µg/L		12/7/2007 3:21:18 PM
1,1,1-Trichloroethane	ND	. 10	μg/L		12/7/2007 3:21:18 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level
 E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Date: 19-Dec-07

CLIENT:	Giant Refining Company
Lab Order:	0711469
Project:	Evap. Ponds #1 through #8-4 Qtr 2007
Lab ID:	0711469-07

Client Sample ID: Pond #7 Collection Date: 11/29/2007 10:30:00 AM Date Received: 11/29/2007 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: BDH
1,1,2-Trichloroethane	ND	10	μg/L	10	12/7/2007 3:21:18 PM
Trichloroethene (TCE)	ND	10	μg/L	10	12/7/2007 3:21:18 PM
Trichlorofluoromethane	ND	10	µg/L	10	12/7/2007 3:21:18 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	12/7/2007 3:21:18 PM
Vinyl chloride	ND	10	μg/L	10	12/7/2007 3:21:18 PM
Xylenes, Total	ND	15	μg/L	10	12/7/2007 3:21:18 PM
Surr: 1,2-Dichloroethane-d4	101	68.1-123	%REC	10	12/7/2007 3:21:18 PM
Surr: 4-Bromofluorobenzene	109	53.2-145	%REC	10	12/7/2007 3:21:18 PM
Surr: Dibromofluoromethane	101	68.5-119	%REC	10	12/7/2007 3:21:18 PM
Surr: Toluene-d8	105	64-131	%REC	10	12/7/2007 3:21:18 PM
EPA 120.1; SPECIFIC CONDUCTANCE					Analyst: LMM
Specific Conductance	180000	0.10	µmhos/cm	10	11/30/2007
SM4500-H+B: PH					Analyst: LMM
pH +	7.22	0.1	pH units	1	11/30/2007

Qualifiers:

Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 21 of 24

CLIENT: G	iant Refining Compa	ny ·	-	, C	lient Sample I	D:	Pond #	¥8		
Lab Order: 0'	711469	ugh #8-4 Otr 2007			Collection Date:			11/29/2007 10:50:00 AM		
Project: E	vap. Ponds #1 throug				Date Received:		•			
•	711469-08						AQUE			
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed		
EPA METHOD 300.0): ANIONS	· · · · · · · · · · · · · · · · · · ·						Analyst: SMP		
Fluoride		94	50		mg/L		500	11/30/2007 2:13:17 PM		
Chloride		200000	500		mg/L		5000	12/3/2007 12:01:28 PM		
Nitrate (As N)+Nitrite	(As N)	ND	200		mg/L		1000	12/9/2007 6:15:17 PM		
Phosphorus, Orthoph		ND	250		mg/L		500	11/30/2007 2:13:17 PM		
Sulfate		28000	250		mg/L		500	11/30/2007 2:13:17 PM		
PA 6010B: TOTAL	RECOVERABLE MI	ETALS						Analyst: TES		
Arsenic		ND	1.0		mg/L		5	12/11/2007 10:20:03 AN		
Barium		ND	0.50		mg/L		5	12/11/2007 10:20:03 AM		
Cadmium		ND	0.10		mg/L		5	12/11/2007 10:20:03 AN		
Calcium		580	25		mg/L		5	12/11/2007 10:20:03 AN		
Chromium		ND	0.30		mg/L		5	12/11/2007 10:20:03 AN		
Соррег		ND	0.30		mg/L		5	12/11/2007 10:20:03 AM		
Lead		ND	0.25		mg/L		5	12/11/2007 10:20:03 AM		
Magnesium		11000	250		mg/L		50	12/11/2007 10:24:15 AN		
Manganese		120	1.0		mg/L		50	12/11/2007 10:24:15 AN		
Potassium		16000	500		mg/L		50	12/11/2007 10:24:15 AM		
Selenium		ND	2.5		mg/L		5	12/11/2007 10:20:03 AN		
Silver		ND	0.25		mg/L		5	12/11/2007 10:20:03 AN		
Sodium		120000	1000		mg/L		200	12/11/2007 3:26:30 PM		
Uranium		ND	5.0		mg/L		5	12/11/2007 10:20:03 AM		
Zinc		ND	1.0		mg/L		5	12/11/2007 10:20:03 AM		
PA METHOD 8260	B. VOLATILES							Analyst: BDH		
Benzene	B. TOLAILLO	ND	10		µg/L		10	12/7/2007 3:51:55 PM		
Toluene		ND	10		µg/L		10	12/7/2007 3:51:55 PM		
Ethylbenzene		ND	10		µg/L		10 .	12/7/2007 3:51:55 PM		
Methyl tert-butyl ether	(MTBE)	ND	10		µg/L		10	12/7/2007 3:51:55 PM		
1,2,4-Trimethylbenzer		ND	10		µg/L		10	12/7/2007 3:51:55 PM		
1,3,5-Trimethylbenzer		. ND	10		µg/L		10	12/7/2007 3:51:55 PM		
1,2-Dichloroethane (E		ND	10		µg/L		10	12/7/2007 3:51:55 PM		
1,2-Dibromoethane (E		ND	10		µg/L		10	12/7/2007 3:51:55.PM		
Naphthalene	,	ND	20		µg/L		10	12/7/2007 3:51:55 PM		
1-Methylnaphthalene		ND	40		. σ μg/L		10	12/7/2007 3:51:55 PM		
2-Methylnaphthalene		ND	40		μg/L		10	12/7/2007 3:51:55 PM		
Acetone		100	100		µg/L		10	12/7/2007 3:51:55 PM		
Bromobenzene		ND	10		μg/L		10	12/7/2007 3:51:55 PM		
Bromochloromethane		ND	10		µg/L		10	12/7/2007 3:51:55 PM		
Bromodichloromethan	e	ND	10		μg/L		10	12/7/2007 3:51:55 PM		
Bromoform		ND	10		μg/L		10	12/7/2007 3:51:55 PM		
Bromomethane		ND	10		µg/L		10	12/7/2007 3:51:55 PM		
2-Butanone	· .	ND	100		μg/L		10	12/7/2007 3:51:55 PM		
Qualifiers: * V	alue exceeds Maximum C	ontaminant Level		E	Analyte detect	ed ir	1 the asso	ociated Method Blank		
E Va	alue above quantitation ra	ıge		H	I Holding times	for	preparati	on or analysis exceeded		
	nalyte detected below quar			M	CL Maximum Co	ntam	inant Le	vel		
ND NO	ot Detected at the Reportin	ng Limit		R	L Reporting Lin	nit		Page 22 of		

Date: 19-Dec-07

S Spike recovery outside accepted recovery limits

Page 22 of 24

Date: 19-Dec-07

CLIENT:	Giant Refining Company
Lab Order:	0711469
Project:	Evap. Ponds #1 through #8-4 Qtr 2007
Lab ID:	0711469-08

Client Sample ID: Pond #8 Collection Date: 11/29/2007 10:50:00 AM Date Received: 11/29/2007 Matrix: AQUEOUS

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: BDI
Carbon disulfide	ND	100	µg/L	10	12/7/2007 3:51:55 PM
Carbon Tetrachloride	ND	10	μg/L	10	12/7/2007 3:51:55 PM
Chlorobenzene	ND	10	µg/L	10	12/7/2007 3:51:55 PM
Chloroethane	ND	20	μg/L	10	12/7/2007 3:51:55 PM
Chloroform	ND	10	μg/L	10	12/7/2007 3:51:55 PM
Chloromethane	ND	10	μg/L	10	12/7/2007 3:51:55 PM
2-Chlorotoluene	ND	10	µg/L	10	12/7/2007 3:51:55 PM
4-Chlorotoluene	ND	10	µg/L	10	12/7/2007 3:51:55 PM
cis-1,2-DCE	ND	10	µg/L	10	12/7/2007 3:51:55 PM
cis-1,3-Dichloropropene	ND	10	μg/L	10	12/7/2007 3:51:55 PM
1,2-Dibromo-3-chloropropane	ŅD	20	μg/L	10	12/7/2007 3:51:55 PM
Dibromochloromethane	ND	10	μg/L	10	12/7/2007 3:51:55 PM
Dibromomethane	ND	10	μg/L	10	12/7/2007 3:51:55 PM
1,2-Dichlorobenzene	ND	10	µg/L	10	12/7/2007 3:51:55 PM
1,3-Dichlorobenzene	ND	10	μg/L	10	12/7/2007 3:51:55 PM
1,4-Dichlorobenzene	ND	10	μg/L	10	12/7/2007 3:51:55 PM
Dichlorodifluoromethane	ND	10	µg/L	10	12/7/2007 3:51:55 PM
1,1-Dichloroethane	ND	10	μg/L	10	12/7/2007 3:51:55 PM
1,1-Dichloroethene	ND	10	ից/Լ	10	12/7/2007 3:51:55 PM
1,2-Dichloropropane	ND	10	μg/L	10	12/7/2007 3:51:55 PM
1,3-Dichloropropane	ND	10	µg/L	10	12/7/2007 3:51:55 PM
2,2-Dichloropropane	ND	20	µg/L	10	12/7/2007 3:51:55 PM
1,1-Dichloropropene	ND	10	µg/L	10	12/7/2007 3:51:55 PM
Hexachlorobutadiene	ND	10	µg/L	10	12/7/2007 3:51:55 PM
2-Hexanone	ND	100	µg/L	10	12/7/2007 3:51:55 PM
Isopropylbenzene	ND	10	µg/L	10	12/7/2007 3:51:55 PM
4-Isopropyltoluene	ND	10	µg/L	10	12/7/2007 3:51:55 PM
4-Methyl-2-pentanone	ND	100	μg/L	10	12/7/2007 3:51:55 PM
Methylene Chloride	ND	30	µg/L	10	12/7/2007 3:51:55 PM
n-Bulylbenzene	ND	10	μg/L	10	12/7/2007 3:51:55 PM
n-Propylbenzene	ND	10	µg/L	10	12/7/2007 3:51:55 PM
sec-Butylbenzene	ND	10	μg/L	10	12/7/2007 3:51:55 PM
Styrene	ND	10	μg/L	10	12/7/2007 3:51:55 PM
tert-Butylbenzene	ND	10	μg/L	10	12/7/2007 3:51:55 PM
1,1,1,2-Tetrachloroethane	ND	10	μg/L	10	12/7/2007 3:51:55 PM
1,1,2,2-Tetrachloroethane	ND	20	μg/L	10	12/7/2007 3:51:55 PM
Tetrachloroethene (PCE)	ND	10	µg/L	10	12/7/2007 3:51:55 PM
trans-1,2-DCE	ND	10	µg/L	10	12/7/2007 3:51:55 PM
trans-1,3-Dichloropropene	ND	10	μg/L	10	12/7/2007 3:51:55 PM
1,2,3-Trichlorobenzene	ND	10	μg/L	10	12/7/2007 3:51:55 PM
1,2,4-Trichlorobenzene	ND	10	μg/L	10	12/7/2007 3:51:55 PM
1,1,1-Trichloroethane	ND	10	μg/L	10	12/7/2007 3:51:55 PM

Qualifiers:

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Value exceeds Maximum Contaminant Level
 E Value above quantitation range

Date: 19-Dec-07

CLIENT:	Giant Refining Company
Lab Order:	0711469
Project:	Evap. Ponds #1 through #8-4 Qtr 2007
Lab ID:	0711469-08

Client Sample ID: Pond #8 Collection Date: 11/29/2007 10:50:00 AM Date Received: 11/29/2007 Matrix: AQUEOUS

Analyses	Result	PQL (Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES		······································			Analyst: BDH
1,1,2-Trichloroethane	ND	10	μg/L	10	12/7/2007 3:51:55 PM
Trichloroethene (TCE)	ND	10	μg/L	10	12/7/2007 3:51:55 PM
Trichlorofluoromethane	ND	10	μg/L	10	12/7/2007 3:51:55 PM
1,2,3-Trichloropropane	ND	20	µg/L	10	12/7/2007 3:51:55 PM
Vinyl chloride	ND	10	µg/L	10	12/7/2007 3:51:55 PM
Xylenes, Total	ND	15	µg/L	10	12/7/2007 3:51:55 PM
Surr: 1,2-Dichloroethane-d4	99.8	68.1-123	%REC	10	12/7/2007 3:51:55 PM
Surr: 4-Bromofluorobenzene	106	53.2-145	%REC	10	12/7/2007 3:51:55 PM
Surr: Dibromofluoromethane	102	68.5-119	%REC	10	12/7/2007 3:51:55 PM
Surr: Toluene-d8	110	64-131	%REC	10	12/7/2007 3:51:55 PM
EPA 120.1: SPECIFIC CONDUCTANCE					Analyst: LMM
Specific Conductance	780000	1.0	µmhos/cm	100	11/30/2007
SM4500-H+B: PH					Analyst: LMM
pH "	5.49	0.1	pH units	1	11/30/2007

Qualifiers:

* Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

	Explanation of codes
в	Analyte Detected in Method Blank
Ε	Result is Estimated
н	Analyzed Out of Hold Time
N	Tentatively Identified Compound
S	Subcontracted
1-9	See Footnote

STANDARD

HALL ENVIRONMENTAL atto ANDY FREEMAN 4901 HAWKINS NE, SUITE D ALBUQUERQUE NM 87109-4372

			Assalgai Analytic	cal Laboratories, inc.
	All st			of Analysis basis, unless otherwise noted (i.e Dry Weight).
0711469	RONMENTA			
07110847	HAL03	Receipt:	11-29-07	William P. Blava: President of Assaigal Analytical Laboratories, Inc.
0711469-01	ID POND#1			Collected: 11-29-07 8:30:00 By:

Matrix:	AQUEOUS									
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Dilution Factor	Detection Limit	Code	Prep Date	Run Date
07110847-0	001A	EPA 410.1	Chemical Oxygen Demand				By:	FAS		
WCOD07071		C-004	Chemical Oxygen Demand	878	mg/L	1	10		12-07-07	12-07-07
Sample:	0711469-01E PO	VD#1	C	ollected: 11-2	9-07 8:30:0	0 By:				
Matrix:	AQUEOUS									
			•			Dilution	Detection		Prep	Run
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Factor	Limit	Code	Date	Date
07110847-0	0 02A	EPA 405.1	Biochemical Oxygen Demand				By:	NJL		
BOD07145	WC.2007.3118.12	10-26-4	Blochemical Oxygen Demand	783	mg/L	1	2	1	11-30-07	12-05-07
Sample:	0711469-01F PON	ID#1	Co	ollected: 11-2	9-07 8:30:0	0 By:				
Matrix:	AQUEOUS		SI	78307						
<u> </u>						Dilution	Detection		Prep	Ruл
QC Group	Run Sequence	CAS #	Analyte	Result	Units	Factor	Limit	Code	Date	Date
07110847-0	003A	EPA 1603					By:	FAS		
EC07103	BT.2007.797.12		E. coli	727	CFU/100	91	1		11-29-07	11-30-07
					<u></u>	1				

Page 1 of 6

Client:

Project:

Order:

Sample:

STANDARD

Assaigal Analytical	Laboratories, Inc.
---------------------	--------------------

Certificate of Analysis All samples are reported on an "as received" basis, unloss otherwise noted (I.e. - Dry Weight).

					-			•			
Client:	HALL ENVIRO	NMENTAL									
Project:	0711469										
Order:	07110847 H	AL03	Receipt: 11-29-07		• •						
Sample:	0711469-02D P	0000#2		Collected: 11-	29-07 8:50:0	0 By:		· · · ·			
		UND#2				5 57.					
Matrix:	AQUEOUS										
						Dilution	Detection		Prep	Run	
QC Group	Run Sequen	ce CAS #	Analyte	Result	Units	Factor	Limit	Code	Date	Date	
07110847-0	004A	EPA 410.1	Chemical Oxygen Demand				By:	FAS			
WCOD0707			Chemical Oxygen Demand	561	mg/L	1	10		12-07-07	12-07-07	
Sample:	0711469-02E P	OND#2	D#2 Collected: 11-29-07 8:50:00 By:								
Matrix:	AQUEOUS	UND#L	•			,					
Wath.	AQUEUUS				·····						
						Dilution	Detection		Prep	Run	
QC Group	Run Sequen	ce CAS#	Analyte	Result	Units	Factor	Limit	Code	Date	Date	
07110847-0	0054	EPA 405.1	Blochemical Oxygen Demand				By:	NJL			
BOD07145	WC.2007.3118.		Biochemical Oxygen Demand	302	mg/L	1	2	1	11-30-07	12-05-07	
			,			L	L	······	, 		
Sample:	0711469-02F P	OND#2	(Collected: 11-2	29-07 8:50:0	0 By:					
Matrix:	AQUEOUS			SR8308							
	i				· · · · ··	Dilution	Detection		Dran		
Group	Run Sequenc	e CAS#	Analyte	Result	Units	Factor	Limit	Code	Prep Date	Run Date	
circup	Then bequein		Panaryte	, , , , , , , , , , , , , , , , , , ,	0.1120						
07110847-0	006A	EPA 1603		. <u>.</u>			By:	FAS			
EC07103	BT.2007.797.13		E. coli	63.1	CFU/100	9	1		11-29-07	11-30-07	
					ml]					
Sample:	0711469-03D P	OND#3	(Collected: 11-2	9-07 9:10:00) By:					
Matrix:	AQUEOUS										
				D	14.15		Detection	<u> </u>	Prep	Run	
QC Group	Run Sequenc	e CAS#	Analyte	Result	Units	Factor	Limit	Code	Date	Date	
07110847-0	007A	EPA 410.1	Chemical Oxygen Demand				By:	FAS			
WCOD07071	WC.2007.3140.		Chemical Oxygen Demand	463	mg/L	1	10		12-07-07	12-07-07	
0				Collected: 11.0	0.07.0.10.0	- D					
Sample:	0711469-03E P	OND#3	ť	Collected: 11-2	9-07 9:10:00) By:					
Matrix:	AQUEOUS										
						Dilution	Detection		Prep	Run	
QC Group	Run Sequenc	e CAS#	Analyte	Result	Units	Factor	Limit	Code	Date	Date	
07110847-0			Biochemical Oxygen Demand	000		4 1	By:	NJL	11 00 07	10.05.07	
BOD07145	WC.2007.3118.1	4 10-26-4	Blochemical Oxygen Demand	209	mg/L	1	2	1	11-30-07	12-05-07	

Assaigal Analytical Laboratories, Inc.

Certificate of Analysis All samples are reported on an "as received" basis, unless otherwise noted (i.e. - Dry Weight).

Client:	HAI	L ENVIRON	MENTAL					• •			
Project:	071	1469									
Order:	071	10847 HA	L03	Receipt: 11-29-07							
Sample:	071	1469-03F PO	ND#3		Collected: 11-2	9-07 9:10:0) By:				
Matrix:	AQ	UEOUS			SR8309						
								Detection	•	Prep	Run
QC Group	•••••	Run Sequence	CAS #	Analyte	Result	Units	Factor	Limit	Code	Date	Date
07110847-	009A		EPA 1603					By:	FAS		
EC07103		BT.2007.797.14		E. coli	27.0	CFU/100	9	1		11-29-07	11-30-07
	·	••				m	l		•		
Sample:	071	1469-04D PC	ND#4	(Collected: 11-2	9-07 9:30:00) By:				
Matrix:		UEOUS									
							Dilution	Detection		Prep	Run
QC Group		Run Sequence	CAS #	Analyte	Result	Units	Factor	Limit	Code	Date	Date
07110847-0	010A		EPA 410.1	Chemical Oxygen Demand				By:	FAS		
WCOD0707	1	WC.2007.3140.18		Chemical Oxygen Demand	512	mg/L	1	10		12-07-07	12-07-07
Sample:	071	1469-04E PO	ND#4	(Collected: 11-2	9-07 9:30:00	By:				
Matrix:	,	JEOUS									
	• •						Diluden	Detection			
GC Group		Run Sequence	CAS #	Analyte	Result	Units	Factor	Limit	Code	Prep Date	Run Date
		nun osquence	0/0 #			01110	1 40101			Date	Date
07110847-0	011A			Biochemical Oxygen Demand				By:	NJL		
BOD07145		WC.2007.3118.15	10-26-4	Biochemical Oxygen Demand	. 163	mg/L	1	2	1	11-30-07	12-05-07
Sample:	071	1469-04F PO	ND#4	. (Collected: 11-2	9-07 9:30:00	By:				
Matrix:		JEOUS		٤	SR8310						
·····				· · · · · · · · · · · · · · · · · · ·		··· · · · · · · · · · · · · · · · · ·	Dilution	Detection		Prep	Run
QC Group		Run Sequence	CAS #	Analyte	Result	Units	Factor	Limit	Code	Date	Date
		······									
07110847-0	012A	DT 0007 707 40	EPA 1603	· · · · · · · · · · · · · · · · · · ·	1 40.0			By:	FAS	44.00.07	44.00.07
EC07103		BT.2007.797.16		E. coli	18.0	CFU/100	9	1]	11-29:07	11-30-07
Sample:	071	1469-05D PO	ND#5		Collected: 11-2	9-07 9:50:00	By:				
Matrix:		IEOUS	WD#5			, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	091				
	AGC										
00 0101-		Bun Convorce	CAC #	Analida	Result	Unite		Detection	Codo		Run
QC Group		Run Sequence	CAS #	Analyte	nc2uii	Units	Factor	Limit	Code	Date	Date
07110847-0				Chemical Oxygen Demand	- <u></u>	·····		By:	FAS		
WCOD07071	1	WC.2007.3140.19	C-004	Chemical Oxygen Demand	488	mg/L	1	10		12-07-07	12-07-07

Assaigal Analytical Laboratories, Inc.

Certificate of Analysis All samples are reported on an "as received" basis, unless otherwise noted (i.e. - Dry Weight).

Client:	HAL		NMENTAL								
Project:		1469									
Order:	• • •		AL03	Receipt: 11-29-07							
				· · ·							
Sample:	071	1469-05E P	OND#5	(Collected: 11-2	29-07 9:50:0	0 By:				
Matrix:	AQ	UEOUS		·							
							Dilution	Detection		Prep	Run
QC Group		Run Sequen	ce CAS #	Analyte	Result	Units	Factor	Limit	Code	Date	Date
07110847-0)14A		EPA 405.1	Biochemical Oxygen Demand				By:	NJL		
BOD07145		WC.2007.3118		Biochemical Oxygen Demand	103	mg/L	1	2	1	11-30-07	12-05-07
Complei	074	711469-05F POND#5 Collected: 11-29-07 9:50:00 By:									
Sample:			UND#5		SR8311	3-07 3.00.00	U Dy.				
Matrix:	AG	JEOUS	<u> </u>						· · · · · · · · · · · · · · · · · · ·		
							Dilution		. .	Prep	Run
QC Group		Run Sequen	ce CAS #	Analyte	Result	Units	Factor	Limit	Code	Date	Date
07110847-0)15A		EPA 1603					By:	FAS		
EC07103		BT.2007.797.17	/	E. coli	ND	CFU/100 ml	10	1		11-29-07	11-30-07
						[<u>!</u> ! <u>!</u>]				
Sample:	071	1469-06D P	OND#6	C	Collected: 11-2	29-07 10:10:0	00 By:				
Matrix:	AQU	JEOUS							•		
							Dilution	Detection		Prep	Run
GC Group		Run Sequen	ce CAS#	Analyte	Result	Units	Factor	Limit	Code	Date	Date
07110847-0	16A		EPA 410.1	Chemical Oxygen Demand				By:	FAS		
WCOD07071		WC.2007.3140.	r	Chemical Oxygen Demand	927	mg/L	1	10		12-07-07	12-07-07
Camples	074	100 00F D	<u></u>	~	collected: 11-2	0 07 10.10.	10 84				
		1469-06E P	OND#6	(Milected. 11-2	9-07 10.10.0	00 By:				
Matrix:	AQL	IEOUS	·								
							Dilution	Detection		Prep	Run
QC Group		Run Sequenc	ce CAS#	Analyte	Result	Units	Factor	Limit	Code	Date	Date
07110847-0	17A		EPA 405.1	Blochemical Oxygen Demand				By:	NJL		
BOD07145		WC.2007.3118.	17 10-26-4	Biochemical Oxygen Demand	47.8	mg/L	1	2	1	11-30-07	12-05-07
Sample:	071	1469-06F P	OND#6	С	ollected; 11-2	9-07 10:10:0	0 By:			·····	
		IEOUS	011070		R8312						
							Dilution	Detection		Prep	Run
OC Brown		Run Sequend	* 210 a	Analyte	Recult	Linite	Factor	Limit	Code	Date	Nata
QC Group		Run Sequenc	e CAS#	Analyte	Result	Units	Factor	Limit	Code	Date	Date
QC Group 07110847-0 EC07103	18A	Run Sequend BT.2007.797.18	EPA 1603	Analyte	Result ND	Units CFU/100	Factor	Limit By:	Code FAS		Date 11-30-07

Page 4 of 6

Report Date: 12/17/2007 2:56:30 PM

STANDARD

Assaigai Analytical Laboratories, Inc.
--

Certificate of Analysis All samples are reported on an "as received" basis, unless otherwise noted (i.e. - Dry Weight).

p Run e Date
-
-
-
-
-
-
7-07 12-07-07
n Dun
p Run - e Date
0-07 12-05-07
p Run
e Date
0-07 11-30-07
o Run
Date
-07 12-07-07
-07 12-07-07
Dur
o Run Date
> Run Date

Assaigal Analytical Laboratories, inc.

Certificate of Analysis

All samples are reported on an "as received" basis, unless otherwise noted (i.e. - Dry Weight).

Client:	HALL ENV	RONN	IENTAL										
Project:	0711469												
Order:	07110847	HAL	03	Receipt:	11-29-07								
Sample:	0711469-08	BF POI	VD#8			Collected:	11-29	9-07 10:50:0	00 By:				
Matrix:	AQUEOUS					SR8314				•			
									Dilution	Detection		Prep	Run
QC Group	Run Sec	quence	CAS #		Analyte	Res	ult	Units	Factor	Limit	Code	Date	Date
07110847-0	24A		EPA 1603					,		By:	FAS		
EC07103	BT,2007.	797.21			E. coli	N	D	CFU/100	10	1		11-29-07	11-30-07
	· ·							ml					

Unless otherwise noted, all samples were received in acceptable condition and all sampling was performed by client or client representative. Sample result of ND indicates Not Detected, le result is tess than the sample specific Detection Limit. Sample specific Detection Limit is determined by multiplying the sample Dilution Factor by the listed Reporting Detection Limit, All results relate only to the items tested. Any miscellaneous workorder information or foonotes will appear below.

Analytical results are not corrected for method blank or lield blank contamination.

The Laboratory Control Spike and the Laboratory Control Spike Duplicate recoveries for the Biochemical Oxygen Demand (BOD) batch of samples, analyzed for this work order, were 116% and 120% respectively. These recoveries are above the QC acceptance limits of 84.6-115.4%, Therefore, the above BOD data may be potentially negatively biased to that extent. This should be taken into account when evaluating the data.

Client: Project: Giant Refining Company Evap. Ponds #1 through #8-4 Qtr 2007

Work Order: 0711469

Analyte	Result	Units	PQL	%Rec	LowLimit Hi	ghLimit	%RPD RF	DLimit Qual
Method: EPA Method 300.0: Anic	ons							
Sample ID: MBLK		MBLK			Batch ID:	R26303	Analysis Date:	11/30/2007 8:42:32 AN
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					•
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: MBLK		MBLK			Batch ID:	R26322	Analysis Date:	12/3/2007 10:34:25 AN
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: MBLK 112907A		MBLK			Batch ID:	R26325	Analysis Date:	11/29/2007 6:26:12 AN
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50			·		
pple ID: MBLK		MBLK			Batch ID:	R26422	Analysis Date:	12/8/2007 10:14:20 AN
nuoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50				•	
Sulfate	ND	mg/L	0.50					
Sample ID: MBLK		MBLK	•		Batch ID:	R26424	Analysis Date:	12/9/2007 8:58:08 AM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: MBLK-B		MBLK			Batch ID:	R26509	Analysis Date:	12/12/2007 2:48:24 PM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
vitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
hosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: MBLK		MBLK			Batch ID:	R26528	Analysis Date:	12/13/2007 5:47:28 AM
luoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: LCS		LCS			Batch ID:	R26303	Analysis Date:	11/30/2007 8:59:57 AM

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

S

Page 1

Date: 19-Dec-07

0711469

Work Order:

QA/QC SUMMARY REPORT

Client: Project: Giant Refining Company Evap. Ponds #1 through #8-4 Qtr 2007

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RF	PDLimit Qual
Method: EPA Method 300.0: Anio	ons							
Sample ID: LCS		LCS			Batch	ID: R26303	Analysis Date:	11/30/2007 8:59:57 AM
Fluoride	0.5036	mg/L	0.10	101	90	110		
Chloride	4.732	mg/L	0.10	94.6	90	110		
Nitrate (As N)+Nitrite (As N)	3.372	mg/L	0.20	96.3	90	110		
Phosphorus, Orthophosphate (As P)	4.790	mg/L	0.50	95.8	90	110		
Sulfate	9.653	mg/L	0.50	96.5	90	110		
Sample ID: LCS		LCS			Batch	ID: R26322	Analysis Date:	12/3/2007 2:03:20 PM
Fluoride	0.4937	mg/L	0.10	98.7	90	110		
Chloride	4.728	mg/L	0.10	94.6	90	110		
Nitrate (As N)+Nitrite (As N)	3.334	⁺ mg/L	0.20	95.3	90	110		
Phosphorus, Orthophosphate (As P)	4.739	mg/L	0.50	94.8	90	110		
Sulfate	9.740	mg/L	0.50	97.4	90	110		
Sample ID: LCS ST300-07069 1		LCS			Balch	ID: R26326	Analysis Date:	11/29/2007 1:58:51 PM
Fluoride	0.5369	mg/L	0.10	107	90	110		
Chloride	4.981	mg/L	0.10	99.6	90	110		
Nitrate (As N)+Nitrite (As N)	3.506	mg/L	0.20	100	90	110		
Phosphorus, Orthophosphate (As P)	5.022	mg/L	0.50	100	90	110		
Sulfate	10.13	mg/L	0.50	101	90	110		
pie ID: <u>_</u> LCS		LCS			Batch I	D: R26422	Analysis Date:	12/8/2007 10:31:44 AM
Fluoride	0.5389	mg/L	0.10	108	90	110		
Chloride	5.032	mg/L	0.10	101	90	110		
Nitrate (As N)+Nitrite (As N)	3.452	mg/L	0.20	98.6	90	110		·
Phosphorus, Orthophosphate (As P)	5.024	mg/L	0.50	100	90	110		
Sulfate	10.13	mg/L	0.50	101	90	110		
Sample ID: LCS		LCS			Batch I	D: R26424	Analysis Date:	12/9/2007 9:15:33 AM
Fluoride	0.5482	mg/L	0.10	110	90	110		
Chloride	5.061	mg/L	0.10	101	90	110		
Nitrate (As N)+Nitrite (As N)	3.609	mg/L	0.20	103	90	110		
Phosphorus, Orthophosphate (As P)	5.086	mg/L	0.50	102	90	110		
Sulfate	10.26	mg/L	0.50	103	90	110		
Sample ID: LCS-B		LCS			Batch I	D: R26509	Analysis Date:	12/12/2007 3:05:49 PM
Fluoride	0.5220	mg/L	0.10	104	90	110		
Chloride	4.936	mg/L	0.10	98.7	90	110		
Nitrate (As N)+Nitrite (As N)	3.436	mg/L	0.20	98.2	90	110		
Phosphorus, Orthophosphate (As P)	5.200	mg/L	0.50	104	90	110		
Sulfate	10.05	mg/L	0.50	100	90	110		
Sample ID: LCS		LCS			Batch I	D: R26528	Analysis Date:	12/13/2007 6:04:52 AM
Fluoride	0.5272	mg/L	0.10	105	90	110		
Chloride	4.947	mg/L	0.10	98.9	90	110		
Nitrate (As N)+Nitrite (As N)	3.458	mg/L	0.20	98.8	90	110		
Phosphorus, Orthophosphate (As P)	4.793	mg/L	0.50	95.9	90	110		
Sulfate	9.960	mg/L	0.50	99.6	90	110		
Sample ID: LCS 12/17/07	-	LCS			Batch II		Analysis Date:	12/18/2007 7:16:00 AM

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits 32

Client: Project:

Giant Refining Company Evap. Ponds #1 through #8-4 Qtr 2007

Work Order: 0711469

Fluoride 0.5806 mg/L 0.10 116 90 110 S Chloride 5.268 mg/L 0.10 105 90 110 S Nitrate (As N)+Nitrite (As N) 3.692 mg/L 0.20 105 90 110 Phosphorus, Orthophosphate (As P) 5.255 mg/L 0.50 105 90 110	Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RP	DLimit Qual
Fluoride 0.5806 mg/L 0.10 116 90 110 S Chloride 5.268 mg/L 0.10 105 90 110 Nitrate (As N)+Nitrite (As N) 3.692 mg/L 0.20 105 90 110 Phosphorus, Orthophosphate (As P) 5.255 mg/L 0.50 105 90 110	Method: EPA Method 300.0: Ank	ons							
Chloride 5.268 mg/L 0.10 105 90 110 Nitrate (As N)+Nitrite (As N) 3.692 mg/L 0.20 105 90 110 Phosphorus, Orthophosphate (As P) 5.255 mg/L 0.50 105 90 110	Sample ID: LCS 12/17/07		LCS			Batch	D: R26586	Analysis Date:	12/18/2007 7:16:00 AM
Nitrate (As N)+Nitrite (As N) 3.692 mg/L 0.20 105 90 110 Phosphorus, Orthophosphate (As P) 5.255 mg/L 0.50 105 90 110	Fluoride	0.5806	mg/L	0.10	116	90	110		' S
Phosphorus, Orthophosphate (As P) 5.255 mg/L 0.50 105 90 110	Chloride	5.268	mg/L	0.10	105	90	110		
	Nitrate (As N)+Nitrite (As N)	3.692	mg/L	0.20	105	90	110		
	Phosphorus, Orthophosphate (As P)	5.255	mg/L	0.50	105	90 .	110		
Sulfate 10.55 mg/L 0.50 106 90 110	Sulfate	10.55	mg/L	0.50	106	90	110		
	· · ·								

Qualifiers:

- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
 - 33

Date: 19-Dec-07

QA/QC SUMMARY REPORT

Client: Project:	Giant Refining Compare Evap. Ponds #1 through	-	007					Worl	Order: 0711469
Analyte	Result	Units	PQL	%Rec	LowLimit	Hig	hLimit	%RPD RF	DLimit Qual
Method: EPA	6010B: Total Recoverable M	etals						-, , <u>, , , , , , , , , , , , , , , , , ,</u>	
Sample ID: MB-	-14537	MBLK			Batch	ID:	14537	Analysis Date:	12/4/2007 2:43:13 P
Arsenic	ND	mg/L	0.020						
Barium	ND	mg/L	0.010						
Cadmium	ND	mg/L	0.0020						
Calcium	ND	mg/L	0.50						
Chromium	ND	mg/L	0.0060						
Lead	ND	mg/L	0.0050						
Magnesium	ND	mg/L	0.50						
Manganese	ND	mg/L	0.0020						
Potassium	ND	mg/L	1.0						
Selenium	ND	mg/L	0.050						
Silver	ND	mg/L	0.0050						
Sodium	ND	mg/L	0.50						
Uranium	ND	mg/L	0.10						
Zinc	ND	mg/L	0.020						
Sample ID: MB-		MBLK			Batch	ID:	14537	Analysis Date:	12/7/2007 12:22:59 P
Copper	ND	mg/L	0.0060	•					
Zinc	ND	mg/L	0.020						
ple ID: ₊MB-	14575	MBLK			Batch	ID:	14575	Analysis Date:	12/10/2007 5:00:51 Pl
Barium	ND	mg/L	0.010						
Cadmium	ND	mg/L	0.0020						
Calcium	ND	mg/L	0.50						
Chromium	ND	mg/L	0.0060						
Copper	ND	mg/L	0.0060						
Lead	ND	mg/L	0.0050						
Magnesium	ND	mg/L	0.50						
Manganese	ND	mg/L	0.0020						
Potassium	ND	mg/L	1.0						
Silver	ND	mg/L	0.0050						
Sodium	ND	mg/L	0.50						
Zinc	ND	mg/L	0.020						
Sample ID: LCS		LCS			Batch	ID:	14537	Analysis Date:	12/4/2007 2:46:18 PM
Arsenic	0.5153	mg/L	0.020	103	80	120		2	
Barium	0.4883	mg/L	0.010	97.7	80 [°]	120			
Cadmium	0.4914	mg/L	0.0020	98.3	80	120			
Calcium	49.74	mg/L	0.50	99.5	80	120			
Chromium	0.4930	mg/L	0.0060	98.6	80	120			
	0.4864	mg/L	0.0050	97.3	80	120			
.ead	50.03	mg/L	0.50	97.3 100	80	12(
Magnesium	0.4889	mg/L	0.0020	97.8	80	120			
Vanganese			1.0	97.6 105	80	120			
Potassium	52.72	mg/L			80	120			
Selenium	0.4904	mg/L mg/l	0.050	98.1 101					
Silver Saatiaas	0.5037	mg/L	0.0050	101	80 80	12(
edium	52.75	mg/L	0.50	105	80	120	J		

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

. 34

Client: **Project:**

Giant Refining (Company
Evap. Ponds #1	through #8-4 Qtr 2007

Work Order: 0711469

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RP	DLimit Qual
Method: EPA 6010B: Tot	al Recoverable Me	tals				······		
Sample ID: LCS-14537		LCS			Batch	ID: 14537	Analysis Date:	12/4/2007 2:46:18 PM
Uranium	0.4453	mg/L	0.10	89.1	80	120		
Zinc	0.4908	mg/L	0.020	98.2	80	120		
Sample ID: LCS-14537		LCS			Batch	ID: 14537	Analysis Date:	12/7/2007 12:25:59 PM
Copper	0.5327	mg/L	0.0060	107	80	120		
Zinc	0.4807	mg/L	0.020	96.1	80	120		
Sample ID: LCS-14575		LCS			Batch	ID: 14575	Analysis Date:	12/10/2007 5:03:55 PM
Barium	0.4876	mg/L	0.010	97.5	[·] 80	120		
Cadmium	0.4986	mg/L	0.0020	99.7	80	120		
Calcium	51.71	mg/L	0.50	103	80	120		
Chromium	0.4976	mg/L	0.0060	99.5	80	120		
Copper	0.5129	mg/L	0.0060	103	80	120		
Lead	0.4877	mg/Ĺ	0.0050	97.5	80	120		
Magnesium	52.67	mg/L	0.50	105	80	120		,
Manganese	0.4903	mg/L	0.0020	98.1	80	120		
Potassium	56.24	mg/L	1.0	112	80	120		
Silver	0.5066	mg/L	0.0050	101	80	120		
andium	54.84	mg/L	0.50	110	80	120		
i i	0.4809	mg/L	0.020	96.2	80	120		

Qualifiers:

Е Value above quantitation range

Analyte detected below quantitation limits J

R RPD outside accepted recovery limits Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

 Client:
 Giant Refining Company

 Project:
 Evap. Ponds #1 through #8-4 Qtr 2007
 Work Order:
 0711469

 Analyte
 Result
 Units
 PQL
 %Rec
 LowLimit
 %RPD
 RPDLimit
 Qual

Method: EPA Method 8260B:	VOLATILES	MBLK		Ratah IDr	R26402	Analysis Data	12/6/2007 11:33:13 AM	
Sample ID: 5mL rb				Batch ID:	N204UZ	Analysis Date:	12/0/2007 11:55:15 AW	
Benzene		hd\r	1.0					
Toluene		µg/L	1.0					
Ethylbenzene		µg/L	1.0					
Methyl tert-butyl ether (MTBE)		µg/L	1.0		•			·
1,2,4-Trimethylbenzene		µg/L	1.0				`	
1,3,5-Trimethylbenzene		µg/L	1.0				•	
1,2-Dichloroethane (EDC)		µg/L	1.0					
1,2-Dibromoethane (EDB)		µg/L	1.0					
Naphthalene		µg/L	2.0					
1-Methylnaphthalene		-µg/L	4.0					
2-Methylnaphthalene		µg/L	4.0					
Acetone		µg/L	10					
Bromobenzene		µg/L	1.0				•	
Bromochloromethane		µg/L µg/L	1.0 1.0					
Bromodichloromethane		µg/L	1.0					
Bromomethane		μg/L	1.0					
		μg/L	10					
Sarbon disulfide		μg/L	10					
Carbon Tetrachloride		µg/L	1.0					
Chlorobenzene		μg/L	1.0					
Chloroethane		µg/L	2.0					
Chloroform		µg/L	1.0					
Chloromethane		µg/L	1.0					
2-Chlorotoluene		на/L	1.0					
4-Chlorotoluene		µg/L	1.0					
cis-1,2-DCE		μg/L	1.0					
cis-1,3-Dichloropropene		µg/L	1.0					
1,2-Dibromo-3-chloropropane		µg/L	2.0			•		
Dibromochloromethane		µg/L	1.0					
Dibromomethane		µg/L	1.0					
1,2-Dichlorobenzene	ND	µg/L	1.0					
1,3-Dichlorobenzene	ND	µg/L	1.0					
1,4-Dichlorobenzene	ND I	ug/L	1.0					
Dichlorodifluoromethane		ug/L	1.0					
1,1-Dichloroethane		ug/L	1.0					
1,1-Dichloroethene		ug/L	1.0					
1,2-Dichloropropane		ug/L	1.0					
1,3-Dichloropropane		ug/L	1.0					
2,2-Dichloropropane		ug/L ·	2.0					
1,1-Dichloropropene		ug/L	1.0				•	
Hexachlorobutadiene		ug/L	1.0					
2-Hexanone		ıg/L	10					
ropylbenzene	ND I	ıg/L	1.0					•

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Client: Project: Giant Refining Company Evap. Ponds #1 through #8-4 Qtr 2007

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDLimi	Qual
Method: EPA Method 8260B:			<u> </u>	· · · · · · · · · · · · · · · · · · ·			· · ·		
Method: EPA Method 8260B: Sample ID: 5mL rb	VULATILES	MBLK			Batch I	D: R26402	Analysis D	ate: 12/6/	2007 11:33:13 AI
4-Isopropyitoluene	ND	μg/L	1.0				·		
4-Methyl-2-pentanone	ND	μg/L	1.0						
Methylene Chloride	ND	μg/L	3.0						
	ND		3.0 1.0						
n-Butylbenzene		µg/L	1.0						
n-Propylbenzene	ND ND	µg/L							
sec-Butylbenzene		µg/L	1.0						
Styrene Butilbaniana	ND	µg/L	1.0						
tert-Butylbenzene	ND	µg/L	1.0						
1,1,1,2-Tetrachloroethane	ND	µg/L	1.0						
1,1,2,2-Tetrachloroethane	ND	µg/L	2.0						
Tetrachloroethene (PCE)	ND	µg/L	1.0						
trans-1,2-DCE	ND	µg/L	1.0						
trans-1,3-Dichloropropene	ND	µg/L	1.0						
1,2,3-Trichlorobenzene	ND	µg/L	1.0						
1,2,4-Trichlorobenzene	ND	µg/L	1.0						
1,1,1-Trichloroethane	ND	µg/L	1.0						
1,1,2-Trichloroethane	ND	µg/L	1.0						
chloroethehe (TCE)	ND	µg/L	1.0						
hlorofluoromethane	ND	µg/L	1.0						
1,2,3-Trichloropropane	ND	µg/L	2.0						
Vinyl chloride	ND	µg/L	1.0					•	
Xylenes, Total	ND	µg/L	1.5						
Sample ID: 6mL rb		MBLK			Batch II	D: R26434	Analysis Da	ate: 12/7/2	2007 11:17:24 AN
Benzene	ND	µg/L	1.0						
Toluene	ND	μg/L	1.0						
Ethylbenzene	ND	µg/L	1.0						
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0						
I,2,4-Trimethylbenzene	ND	µg/L	1.0						
,3,5-Trimethylbenzene	ND	µg/L	1.0						
I,2-Dichloroethane (EDC)	ND	μg/L	1.0						
,2-Dibromoethane (EDB)	ND	µg/L	1.0						
väphthalene	ND .	μg/L	2.0						
-Methylnaphthalene	ND	μg/L	4.0						
-Methylnaphthalene	ND	μg/L	4.0						
Acetone	ND	µg/L	10						
Bromobenzene	ND	μg/L	1.0						
Bromochloromethane	ND	µg/L	1.0						
Bromodichloromethane	ND	μg/L	1.0						
bromoform	ND	μg/L	1.0						
Bromomethane	ND		1.0						
		µg/L					_		
l-Butanone	ND	μg/L ug/l	10 10				•		
Carbon disulfide	ND	µg/L	10						
Carbon Tetrachloride	ND	µg/L	1.0						
orobenzene	ND	µg/L	1.0						

- Qualifiers:
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
 - -37

0711469

Work Order:

QA/QC SUMMARY REPORT

Client:Giant Refining CompanyProject:Evap. Ponds #1 through #8-4 Qtr 2007

Analyte	Result	Units	PQL	%Rec	LowLimit . Hi	ghLimit	%RPD	RPI	DLimit	Qual
Method: EPA Method 8260B:	VOLATILES									
Sample ID: 5mL rb		MBLK			Batch ID:	R26434	Analysis D	ate:	12/7/2	007 11:17:24 AN
Chloroethane	ND	µg/L	2.0							
Chloroform	ND	µg/L	1.0							
Chloromethane	ND	μg/L	1.0							
2-Chlorotoluene	ND	µg/L	1.0							
4-Chlorotoluene	ND	µg/L	1.0							
cis-1,2-DCE	ND	μg/L	1.0							
cis-1,3-Dichloropropene	ND	µg/L	1.0							
1,2-Dibromo-3-chloropropane	ND	μg/L	2.0							
Dibromochloromethane	ND	μg/L	1.0							
Dibromomethane	ND	μg/L	1.0							
1,2-Dichlorobenzene	ND	µg/L	1.0							
1,3-Dichlorobenzene	ND	μg/L	1.0							
1,4-Dichlorobenzene	ND	µg/L	1.0							
Dichlorodifluoromethane	ND	μg/L	1,0							
1,1-Dichloroethane	ND	μg/L	1.0							
1,1-Dichloroethene	ND	μg/L	1.0				٠			
1,2-Dichloropropane	ND	µg/L	1.0							
Dichloropropane	ND	μg/L	1.0			•				
Dichloropropane	ND	µg/L	2.0							
1,1-Dichloropropene	ND	μg/L	1.0							
Hexachlorobutadiene	ND	μg/L	1.0							
2-Hexanone	ND	µg/L	1.0							
isopropylbenzene	ND	μg/L	1.0				•			
•	ND	μg/L μg/L	1.0							
4-isopropyltoluene	ND	μg/L μg/L	1.0						•	
4-Methyl-2-pentanone	ND	µg/L	3.0							
Methylene Chloride	ND	µg/L	1.0							
n-Butylbenzene	ND	μg/L	1.0							
n-Propyibenzene sec-Butylbenzene	ND /	μg/L μg/L	1.0							
Styrene	ND	μg/L	1.0							
lert-Butylbenzene	ND		1.0							
1,1,1,2-Tetrachloroethane	ND	μg/L μg/L	1.0							
	ND		2.0							
1,1,2,2-Tetrachloroethane Fetrachloroethene (PCE)	ND	µg/L	2.0 1.0							
rans-1,2-DCE	ND	µg/L µg/L	1.0							
rans-1,3-Dichloropropene	ND	μց/∟ μg/L	1.0							
1,2,3-Trichlorobenzene	ND	μg/L	1.0							
I,2,3-Trichlorobenzene	ND	µg/L µg/L	1.0							
			1.0							
1,1,1-Trichloroethane	ND	µg/L								
1,1,2-Trichloroethane	ND	µg/L	1.0							
Frichloroethene (TCE)	ND	µg/L	1.0							
Frichlorofluoromethane	ND	µg/L	1.0							
,2,3-Trichloropropane	ND	µg/L	2.0							
invi chloride	ND	µg/L	1.0							

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Client: Project: Giant Refining Company Evap. Ponds #1 through #8-4 Otr 2007

	is #1 through	-	007				Wor	k Order: 0711469
Analyte	Result	Units	PQL	%Rec	LowLimit H	ighLimit	%RPD RI	PDLimit Qual
Method: EPA Method 8260B:	VOLATILES	·						
Sample ID: 5mL rb		MBLK			Batch ID:	R26434	Analysis Date:	12/7/2007 11:17:24 AM
Xylenes, Total	ND	µg/L	1.5					
Sample ID: 5mL rb		MBLK			Batch ID:	R26460	Analysis Date:	12/10/2007 8:31:36 AM
Benzene	ND	µg/L	1.0					
Toluene	ND	µg/L	1.0					
Ethylbenzene	ND	µg/L	1.0					
Methyl tert-butyl ether (MTBE)	ND	µg/L.	1.0					
1,2,4-Trimethylbenzene	ND	µg/L	1,0					
1,3,5-Trimethylbenzene	ND	μg/L	1.0					
1,2-Dichloroethane (EDC)	ND	μg/L	1.0					
1,2-Dibromoethane (EDB)	ND	µg/L √	1.0					
Naphthalene	ND	µg/L	2.0					
1-Methylnaphthalene	ND	µg/L	4.0					
2-Methylnaphthalene	ND	µg/L	4.0					
Acetone	ND	μg/L	10					
Bromobenzene	ND .	μg/L	1.0					
Bromochloromethane	ND	µg/L	1.0					
Bromodichloromethane	ND	µg/L	1.0					
noform	ND	µg/L	1.0					
Bromomethane	ND	µg/L	1.0					
2-Butanone	ND	µg/L	10					
Carbon disulfide	ND	µg/L	10					
Carbon Tetrachloride	ND	μg/L	1.0					
Chlorobenzene	ND	μg/L	1.0					
Chloroethane	ND	μg/L μg/L	2.0					
Chloroform	ND	μg/L	1.0					
Chloromethane	ND	μg/L	1.0					
2-Chlorotoluene	ND	μαις hαις	1.0					
4-Chlorotoluene	ND	µg/L	1.0					
	ND		1.0					
cis-1,2-DCE	ND	µg/L µg/L	1,0					
cis-1,3-Dichloropropene 1,2-Dibromo-3-chloropropane	ND	μα\Γ hαγι	2.0					
Dibromochloromethane	ND	μg/L	1.0					
Dibromomethane	ND	µg/L	1.0					
1,2-Dichlorobenzene	ND	μg/L	1.0					
1,3-Dichlorobenzene	ND	µg/L	1.0					
1.4-Dichlorobenzene	ND	µg/L	1.0					
Dichlorodifluoromethane	ND	µg/L	1.0					
1,1-Dichloroethane	ND	μg/L	1.0					
1,1-Dichloroethene	ND	μg/L	1.0					
	ND	μg/L	1.0					
1,2-Dichloropropane			1.0					
1,3-Dichloropropane	ND	µg/L Va/l	2.0					
2,2-Dichloropropane	ND	µg/L						
1,1-Dichloropropene	ND	µg/L v≂/l	1.0					
achlorobutadiene	ND	µg/L	1.0					

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

39

S

QA/QC SUMMARY REPORT Client: Giant Refining Company Evap. Ponds #1 through #8-4 Qtr 2007 **Project:** Work Order: 0711469 PQL %Rec LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Units EPA Method 8260B: VOLATILES Method: Batch ID: R26460 Analysis Date: 12/10/2007 8:31:36 AM Sample ID: 5mL rb MBLK 2-Hexanone ND ug/L 10 Isopropylbenzene ND 1.0 µg/L 4-Isopropyltoluene ND µg/L 1.0 ND 10 4-Methyl-2-pentanone µg/L Methylene Chloride ND µg/L 3.0 n-Butylbenzene ND µg/L 1.0 n-Propylbenzene ND 1.0 µg/L sec-Butylbenzene ND µg/L 1.0 Styrene ND μg/L 1.0 tert-Butylbenzene ND µg/L 1.0 1,1,1,2-Tetrachloroethane ND μg/L 1.0 ND 2.0 1,1,2,2-Tetrachloroethane µg/L ND Tetrachloroethene (PCE) µg/L 1.0 trans-1,2-DCE ND µg/L 1.0 trans-1,3-Dichloropropene ND µg/L 1.0 1,2,3-Trichlorobenzene ND µg/L 1.0 1,2,4-Trichlorobenzene ND µg/L 1.0 1-Trichloroethane ND µg/L 1.0 1.2-Trichloroethane ND µg/L 1.0 Trichloroethene (TCE) ND 1.0 µg/L Trichlorofluoromethane ND 1.0 µg/L ND 2.0 1,2,3-Trichloropropane µg/L Vinyl chloride ND µg/L 1.0 Xylenes, Total ND µg/L 1.5 Sample ID: 100ng ics LCS Batch ID: R26402 Analysis Date: 12/6/2007 1:44:35 PM Benzene 19.82 µg/L 1.0 99.1 72.4 126 Toluene 20.06 µg/L 1.0 100 79.2 115 96.9 Chlorobenzene 19.39 µg/L 1.0 83.1 111 1,1-Dichloroethene 19.83 µg/L 1.0 99.2 81.4 122 76.8 64.4 118 Trichloroethene (TCE) 15.37 1.0 µg/L Batch ID: Sample ID: 100ng Ics LCS R26434 Analysis Date: 12/7/2007 10:49:10 AM Benzene 18.78 1.0 93.9 72.4 126 µg/L 20.31 1.0 102 79.2 115 Toluene µg/L 99.9 83.1 Chlorobenzene 19.97 µg/L 1.0 111 19.77 µg/L 1.0 98.8 81.4 122 1,1-Dichloroethene µg/L 15.20 1.0 76.0 64.4 118 Trichloroethene (TCE) Batch ID: Sample ID: 100ng Ics LCS R26460 Analysis Date: 12/10/2007 10:11:15 AM 94.2 Benzene 18.85 µg/L 1.0 72.4 126 96.4 79.2 115 Toluene 19.28 µg/L 1.0 Chlorobenzene 95.0 83.1 19.01 µg/L 1.0 111 19.12 µg/L 1.0 95.6 81.4 122 1,1-Dichloroethene 15.38 76.9 64.4 Trichloroethene (TCE) µg/L 1.0 118

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
 - 40

ali Environmental Analysis Laboratory	, Inc.				
	Sample Receipt Ch	ecklist			
Client Name GIANTREFIN		Date Receiv	ed:	11/29/2007	
Work Order Number 0711469)	Received b	y: TLS		
and Anna I	· //	Sample ID	labels checked by	TS Initiais	
Checklist completed by: Robbe Signatore	Oate	2710)	-	maas	
Matrix Carri	er name <u>Client drop-of</u>	ff			
	<u>onongerep o</u>	<u> </u>			
Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present]	
Custody seals intact on shipping container/cooler?	Yes 🗌	No 🗔	Not Present] Not Shipped	V
Custody seals intact on sample bottles?	Yes	No 🗀	N/A	0	
Chain of custody present?	Yes 🗹	No 🗔			
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌			
Chain of custody agrees with sample labels?	Yes 🗹	No 🗋			
Samples in proper container/bottle?	Yes 🗹	No 🗋			
Sample containers intact?	Yes 🗹	No 🗍			
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌			
samples received within holding time?	Yes 🗹	No 🗌			
Water - VOA vials have zero headspace? No VOA	vials submitted	Yes 🗹	No 🗌		
Water - Preservation labels on bottle and cap match?	Yes 🗹	No 🗌	N/A 🗌		
Water - pH acceptable upon receipt?	Yes 🗹	No 🗌	N/A 🗍		
Container/Temp Blank temperature?	3°	<6° C Acceptal			
COMMENTS:		If given sufficier	it time to cool.	•	
Client contacted Date contact	ited:	Per	son contacted		
Contacted by: Regarding				·····	
Comments:					
				• · · · · · · · · · · · · · · · ·	
·		<u>.</u>			
Corrective Action					
			· · · ·		
			······	· · · · · · · · · · · · · · · · · · ·	

HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D Albuquerque, New Mexico 87109 Tel: 505,345,3975 Fax 505.345,4107 www.hallenvironmental.com	100 -07 -07 -07 -07 -07 -07 -07 -	208 (Method 502 3310 (PVA or PA) 3310 (PVA or PA) 32608 (VOA) 32608 (VOA) 3270 (Semi-VOA) 7270		X X X X	x x x x	× × × ×	X X X X	× × ×	× × ×	X X X X X X		n Chan = Calibre anione
2 007	TPH (Gasoline Only) 16 (Gasoline Only)	HALNO HALNO BTEX + MTBE + BTEX +		-2	Ŋ	377	5	-/"		-8-		9/27 Remarks: C. C. P. H.
ad/ GC Package: Std □ Level 4 □ r: ame: E. L. P. P. Ma	Anager: Lein Lie Leine	ure: XX Preservative HND,										Repeived By: (Signature) 11/29/
YRECORD Other: Current Project Name: Current Project #:	P 7 30/ Project Manager: Z P 33 Sampler:	No.	and#1	2#Pro	ond#3	2+4 th	Pord #5	ord#6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3# pro		- in
CHAIN-OF-CUSTODY RECORD Dient: Frant Refining Company - Ciniga	Co5722	Time Matrix	0830 Waten 1	1 " 0580	0710 1 7	ŝ	0950 "> 1	1010 N F	1030 1 6	1050 1 7		Time: Relinquished By: (Signature) 1340 M. Relinquished By: (Signature) Time: Relinquished By: (Signature)
CHAIN Address:	Phone #	Fax #: Date	11-29-070830	?	Ī	2		2		2		Date: 1/-29-07 Date:

COVER LETTER

Tuesday, June 19, 2007

Ed Riege Giant Refining Co Rt. 3 Box 7 Gallup, NM 87301 TEL: (505) 722-3833

FAX (505) 722-0210

RE: GWM-1 Annual 2007

Dear Ed Riege:

Order No.: 0705390

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 5/25/2007 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

7 16 Alla

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001

4901 Hawkins NE Z Suite D & Albuquerque, NM 87109 505.345.3975 Z Fax 505.345.4107 www.hallenvironmental.com

CLIENT:	Giant Refining Co			C	lient	Sample ID:	GWM	-
Lab Order:	0705390				Colle	ction Date:	5/24/2	2007 9:04:00 AM
Project:	GWM-1 Annual 2007				Daf	e Received:	5125/2	2007
-					Dui	Matrix:		
Lab ID:	0705390-01						1.001	2000
Analyses		Result	PQL	Qual	Unit	S	DF	Date Analyzed
PA METHO	0 300.0: ANIONS							Analyst: K
Fluoride		1.9	0.10		mg/L		1	5/29/2007 5:45:18 PI
Chloride		1800	10		mg/L		100	6/16/2007 11:08:38 /
Nitrate (As N)	+Nitrite (As N)	ND	2.0		mg/L		10	6/13/2007 9:04:06 Al
Phosphorus,	Orlhophosphate (As P)	ND	0.50	Н	ոց/Լ		1	5/29/2007 5:45:18 P
Sulfate		120	2.5		mg/L		5	5/29/2007 6:02:42 PI
PA METHO	D 7470: MERCURY							Analyst: IC
Mercury		ND	0.00020		mg/L		1	5/30/2007
PA 6010B:	TOTAL RECOVERABLE M	ETALS						Analyst: N
Arsenic		0.081	0.020		mg/L		1	6/1/2007 10:39:23 A
Barium		0.44	0.020		mg/L		1	6/1/2007 10:39:23 A
Cadmium		ND	0.0020		mg/L		1	6/1/2007 10:39:23 A
Calcium		360	100		mg/L		100	6/1/2007 11:45:59 A
Chromium		ND	0.0060		mg/L		1	6/1/2007 10:39:23 A
Lead		ND	0.0050		mg/L		1	6/1/2007 10:39:23 A
Magnesium		87	1.0		mg/L		1	6/1/2007 10:39:23 A
Polassium		3.7	1.0		mg/L	-	1	6/1/2007 10:39:23 A
Selenium		ND	0.050		mg/L	-	1	6/1/2007 1:54:30 PN
Silver		ND	0.0050		mg/L	-	1	6/1/2007 10:39:23 A
Sodium		1300	100		mg/l	-	100	6/1/2007 11:45:59 A
EPA METHO	D 8270C: SEMIVOLATILES	;						Analyst: B
Acenaphther	е	ND	10		µg/L		1	6/7/2007
Acenaphthyle		ND	10		µg/L		1	6/7/2007
Aniline		ND	20		µg/L		1	6/7/2007
Anthracene		ND	10	1	µg/L		1	6/7/2007
Azobenzene		ND	10		µg/L		1	6/7/2007
Benz(a)anthr	acene	NÐ	15		µg/L		1	6/7/2007
Benzo(a)pyre	sue	ND	10		µg/L		1	6/7/2007
Benzo(b)iluo	ranthene	ND	15		µg/L		1	6/7/2007
Benzo(g,h,i)p	perylene	ND	10		µg/L		1	6/7/2007
Benzo(k)fluo	ranthene	ND	10		µg/L		1	6/7/2007
Benzoic acid		ND	50		րը/Ր		1	6/7/2007
Benzyl alcoh	la	ND	20		µg/∟		1	6/7/2007
Bis(2-chloroe	(hoxy)methane	ND	10		µg/L		1	6/7/2007
Bis(2-chloroe	thyi)elher	ND	15		µg/L		1	6/7/2007
Bis(2-chloroi	sopropyl)elher	ND	15		μg/L		1	6/7/2007
Bis(2-ethylhe	xyl)phthalale	ND	15		µg/L		1	6/7/2007
4-Bromophe	nyl phenyl ether	ND	10		μg/L		1	6/7/2007
Bulyl benzyl	phihalale	ND	15		µg/L	· · · · · · · · · · · · · · · · · · ·	1	6/7/2007
Qualifiers:	* Value exceeds Maximum (-		ssociated Method Blank
	E Value above quantitation r	-						ation or analysis exceeded
	J Analyte detected below qu	antitation limits		1	MCL I	Maximum Contr	iminant l	Level
	ND Not Detected at the Report				RL I	Reporting Limit		

S Spike recovery outside accepted recovery limits 1/13

Page 1 of 5

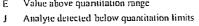
Date: 19-Jun-07

	omnentai Anaiysis							
CLIENT:	Giant Refining Co	Client Sample ID:						
Lab Order:	0705390				Collection Date:	5/24/2	2007 9:04:00 AM	
Project:	GWM-1 Annual 2007			5/25/2007				
Lab ID:	0705390-01				Matrix:	AQUI	EOUS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	8270C: SEMIVOLATILES						Analyst: BL	-
Carbazole		ND	10		μg/L	1	6/7/2007	
4-Chloro-3-met	hylphenol	ND	20		µg/L	1	6/7/2007	
4-Chloroaniline		ND	20		μg/L	1	6/7/2007	
							0 (7) (7) (7)	

PA METHOD 8270C: SEMIVOLATILES					Analyst: BL
Carbazole	ND	10	µg/L	1	6/7/2007
4-Chloro-3-methylphenol	ND	20	µg/L	1	6/7/2007
4-Chloroaniline	ND	20	μg/L	1	6/7/2007
2-Chloronaphthalene	ND	10	µg/L	1	6/7/2007
2-Chloraphenal	ND	10	μg/L	1	6/7/2007
4-Chlorophenyl phenyl ether	ND	15	µg/L	1	6/7/2007
Chrysene	ND	15	µg/L	1	6/7/2007
Di-n-butyl phthalate	ND	10	µg/∟	1	6/7/2007
Di-n-octyl phthalate	ND	15	μg/L	1	6/7/2007
Dibenz(a,h)anthracene	ND	10	µg/L	1	6/7/2007
Dibenzoluran	ND	10	µg/L	1	6/7/2007
1,2-Dichlarobenzene	ND	10	μg/L	1	6/7/2007
1,3-Dichlorobenzene	ND	10	µg/L	1	6/7/2007
1,4-Dichlorobenzene	ND	10	µg/L	1	6/7/2007
3,3'-Dichlorobenzidine	ND	15	μg/L	1	6/7/2007
Diethyl phthalate	ND	10	µg/L	1	6/7/2007
Dimelhyl phthalate	ND	10	μg/L	1	6/7/2007
2,4-Dichlorophenol	ND	10	µg/L	1	6/7/2007
2,4-Dimethylphenol	ND	10	μg/L	1	6/7/2007
4,6-Dinitro-2-methylphenol	ND	50	µg/L	1	6/7/2007
2,4-Dinitrophenol	ND	50	hð\r	1	6/7/2007
2,4-Dinitrotoluene	ND	10	µg/L	1	6/7/2007
2,6-Dinitrotoluene	ND	10	µg/L	1	6/7/2007
Fluoranihene	ND	10	µg/L	1	6/7/2007
Fluorene	ND	10	μg/L	1	6/7/2007
Hexachlorobenzene	ND	10	µg/L	1	6/7/2007
Hexachlorobutadiene	ND	10	µg/L	1	6/7/2007
Hexachlorocyclopentadiene	ND	50	µg/L	1	6/7/2007
Hexachloroelhane	ND	10	μg/L	1	6/7/2007
Indeno(1,2,3-cd)pyrene	ND	10	hð\r	1	6/7/2007
Isophorone	ND	10	µg/L	1	6/7/2007
2-Methylnaphthalene	ND	10	μg/L	1	6/7/2007
2-Methylphenol	ND	15	µg/L	1	6/7/2007
3+4-Melhylphenol	ND	20	μg/L	1	6/7/2007
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	6/7/2007
N-Nitrosodimethylamine	ND	10	μg/L	1	6/7/2007
N-Nitrosodiphenylamine	ND	10	µg/L	1	6/7/2007
Naphthalene	ND	10	μg/L	1	6/7/2007
2-Nilroaniline	ND	50	µg/L	1	6/7/2007
3-Nitroaniline	ND	50	µg/L	1	6/7/2007
4-Nitroaniline	ND	20	µg/L	1	6/7/2007
Qualifiers: * Value exceeds Maximum C			B Analyte (letected in the	associated Method Blank
E Value above quantitation ra			-		ration or analysis exceeded
J Analyte detected below qua	—		-	n Contaminaul	-
J Analyte deleted below qua			DI Demetier		· _· · · · ·

RL Reporting Limit

ND Not Detected at the Reporting Limit


S Spike recovery outside accepted recovery limits 2/13

Page 2 of 5

LIENT:	Giant Refining Co			Client Samp	le ID: GWM	-]
Lab Order:	0705390			Collection	Date: 5/24/2	2007 9:04:00 AM
Project:	GWM-1 Annual 200)7		Date Rec	eived: 5/25/2	2007
Lab ID:	0705390-01			2 410 - 10-	atrix: AQUI	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
PA METHOD	8270C: SEMIVOLATIL	ĒS			, · · · · · · · · · · · · · · · · ·	Analyst: BL
Nitrobenzene		ND	10	µg/L	1	6/7/2007
2-Nilrophenol		ND	15	µg/L	1	6/7/2007
4-Nitrophenol		ND	50	µg/L	1	6/7/2007
Pentachloroph	ienol	ND	50	μg/L	1	6/7/2007
Phenanlhrene		ND	. 10	µg/L	1	6/7/2007
Phenol		ND	. 10	μg/L	1	6/7/2007
Pyrene		ND	15	µg/L	1	6/7/2007
Pyridine		ND	30	µg/L	1	6/7/2007
1,2,4-Trichlord	benzene	ND	10	µg/L	1	6/7/2007
2,4,5-Trichlord	phenol	ND	10	µg/L	1	6/7/2007
2,4,6-Trichlord	phenol	ND	15	µg/L	1	6/7/2007
	Tribromophenol	78.5	16.6-150	%REC	1	6/7/2007
Surr: 2-Flue	probiphenyl	68.6	19.6-134	%REC	1	6/7/2007
Surr: 2-Flue	prophenol	46.9	9.54-113	%REC	1	6/7/2007
Surr: 4-Ter	phenyl-d14	74.5	22.7-145	%REC	1	6/7/2007
Surr: Nitrob	enzene-d5	68.3	14.6-134	%REC	1	6/7/2007
Surr. Phene	ol-d5	38.0	10.7-80.3	%REC	1	6/7/2007
EPA METHO	0 8260B: VOLATILES					Analyst: SM
Benzene		16	10	µg/L	10	6/6/2007 2:13:58 PM
Toluene		ND	10	μg/L	10	6/6/2007 2:13:58 PM
Ethylbenzene		ND	10	μg/L	10	6/6/2007 2:13:58 PM
-	lyl elher (MTBE)	230	10	μg/L	10	6/6/2007 2:13:58 PM
1,2,4-Trimelh	•	ND	10	μg/L	10	6/6/2007 2:13:58 PM
1.3,5-Trimeth	•	ND	10	μg/L	10	6/6/2007 2:13:58 PM
1,2-Dichloroe		ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,2-Dibromoe		ND	10	µg/L	10	6/6/2007 2:13:58 PM
Naphthalene		ND	20	μg/L	10	6/6/2007 2:13:58 PM
1-Melhylnaph	thalene	ND	40	μg/L	10	6/6/2007 2:13:58 PM
2-Melhylnaph		ND	40	μg/L	10	6/6/2007 2:13:58 PM
Acelone		ND	100	μg/L	10	6/6/2007 2:13:58 PM
Bromobenzer	ne	ND	10	μg/L	10	6/6/2007 2:13:58 PM
Bromochloror		ND	10	μg/L	10	6/6/2007 2:13:58 PM
Bromodichlor		ND	10	µg/L	10	6/6/2007 2:13:58 PM
Bromoform		ND	10	μg/L	10	6/6/2007 2:13:58 PM
Bromometha	18	ND	10	µg/L	10	6/6/2007 2:13:58 PM
2-Butanone		ND	100	μg/L	10	6/6/2007 2:13:58 PM
Carbon disulf	ide	ND	100	μg/L	10	6/6/2007 2:13:58 PM
Carbon Telra		ND	10	μg/L	10	6/6/2007 2:13:58 PM
Chlorobenzer		ND	10	μ <u>ο</u> /L	10	6/6/2007 2:13:58 PM
Chloroethane	1	ND	20	µg/L	10	6/6/2007 2:13:58 PM
Qualifiers:	 Value exceeds Maximu 	m Contaminant Lev	vel		detected in the as	ssociated Method Blank
~	 E Value above quantitation 			•		ation or analysis exceeded
	J Analyte detected below				in Contaminant I	-
	 intervention control 	1				e e la marca de la companya de la c

Date: 19-Jun-07

LIENT:	Giant Refining Co		C	lient Sample ID:	GWM	-]
ab Order:	0705390			Collection Date:	5/24/2	007 9:04:00 AM
'roject:	GWM-1 Annual 2007			Date Received:	5/25/2	007
.ab ID:	0705390-01			Matrix:	AQUI	EOUS
Analyses	<u></u>	Result	PQL Qual	Units	DF	Date Analyzed
PA METHOD	3260B: VOLATILES	<u></u>		·····		Analyst: SM
Chloroform		ND	10	µg/L	10	6/6/2007 2:13:58 PM
Chloromethane		ND	10	µg/L	10	6/6/2007 2:13:58 PM
2-Chlorotoluene		NÐ	10	µg/L	10	6/6/2007 2:13:58 PM
4-Chlorololuene		ND	10	µg/L	10	6/6/2007 2:13:58 PM
cis-1,2-DCE		ND	10	μg/L	10	6/6/2007 2:13:58 PM
cis-1,3-Dichlorop	Dropene	ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,2-Dibromo-3-c	•	ND	20	µg/L	10	6/6/2007 2:13:58 PM
Dibromochlorom		NĎ	10	μg/L	10	6/6/2007 2:13:58 PM
Dibromomethan		ND	10	μg/L	10	6/6/2007 2:13:58 PM
1,2-Dichloroben		ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,3-Dichloroben:		ND	10	μg/L	10	6/6/2007 2:13:58 PM
1.4-Dichloroben		ND	10	μg/L	10	6/6/2007 2:13:58 PM
Dichlorodifluoro		ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,1-Dichloroetha		ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,1-Dichloroethe		ND	10	µg/L	10	6/6/2007 2:13:58 PM
1,2-Dichloroprop		ND	10	μg/L	10	6/6/2007 2:13:58 PM
1,3-Dichloroprop		ND	10	μg/L	10	6/6/2007 2:13:58 PM
2,2-Dichloroprop		ND	20	hð\r	10	6/6/2007 2:13:58 PM
1,1-Dichloroprop		ND	10	μg/L	10	6/6/2007 2:13:58 PM
Hexachlorobuta		ND	10	µg/L	10	6/6/2007 2:13:58 PM
2-Hexanone		ND	100	μg/L	10	6/6/2007 2:13:58 PM
Isopropylbenzer	סר	ND	10	µg/L	10	6/6/2007 2:13:58 PM
4-isopropyltolue		ND	10	µg/L	10	6/6/2007 2:13:58 PM
4-Methyl-2-pent		ND	100	μg/L	10	6/6/2007 2:13:58 PM
Methylene Chio		ND	10	µg/L	10	6/6/2007 2:13:58 PM
n-Bulylbenzene		ND	10	μg/L	10	6/6/2007 2:13:58 PM
n-Propylbenzen		ND	10	µg/L	10	6/6/2007 2:13:58 PM
sec-Bulylbenzer		ND	10	µg/L	10	6/6/2007 2:13:58 PM
Slyrene		ND	10	μg/L	10	6/6/2007 2:13:58 PM
tert-Butylbenzer	ЪР.	ND	10	μg/L	10	6/6/2007 2:13:58 PM
1,1,1,2-Tetrach		ND	10	μg/L	10	6/6/2007 2:13:58 PM
1,1,2,2-Tetrachl		ND	20	μg/L	10	6/6/2007 2:13:58 PM
Tetrachloroethe		ND	10	μg/L	10	6/6/2007 2:13:58 PM
trans-1,2-DCE	··	ND	10	µg/L	10	6/6/2007 2:13:58 PM
trans-1,3-Dichlo	propropene	ND	10	μg/L	10	6/6/2007 2:13:58 PM
1,2,3-Trichlorob		ND	10	μg/L	10	6/6/2007 2:13:58 PM
1,2,4-Trichlorob		ND	10	μg/L	10	6/6/2007 2:13:58 PM
1,1,1-Trichloroe		ND	10	μg/L	10	6/6/2007 2:13:58 PM
1,1,2-Trichloroe		ND	10	μg/L	10	6/6/2007 2:13:58 PM
Trichloroelhene		ND	10	μg/L	10	6/6/2007 2:13:58 PM
Trichlorafluaron	•	ND	10	µg/L	10	6/6/2007 2:13:58 PM

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits 4 / 13

for prepar ng i MCL Maximum Contaminant Level

RL Reporting Limit

Page 4 of 5

Date: 19-Jun-07

CLIENT: Lab Order: Project: Lab ID:	Giant Refining Co 0705390 GWM-1 Annual 2007 0705390-01				Date Received:	5/24/2007 9:04:00 AM		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	8260B: VOLATILES		<u></u>				Analyst: SMP	
1,2,3-Trichlorop		ND	20		µg/L	10	6/6/2007 2:13:58 PM	
Vinyl chloride		ND	10		µg/L	10	6/6/2007 2:13:58 PM	
Xylenes, Total		ND	15		µg/L	10	6/6/2007 2:13:58 PM	
•	:hloroethane-d4	114	76.6-113	S	%REC	10	6/6/2007 2:13:58 PM	
	nolluorobenzene	122	77-117	S	%REC	10	6/6/2007 2:13:58 PM	
	ofluoromethane	113	72.3-121		%REC	10	6/6/2007 2:13:58 PM	
Surr: Toluen		108	73-113		%REC	10	6/6/2007 2:13:58 PM	
EPA 120 1. SE	PECIFIC CONDUCTANCE						Analyst: LMN	
Specific Condu		8100	0.010		µmhos/cm	1	6/1/2007	
EPA METHOD) 150.1: PH						Analyst: LMM	
рН		6.80	0.010)	pH units	1	5/25/2007	

Qualifiers:

.....

* Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits 5 / 13
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

• •

RL Reporting Limit

.

Page 5 of 5

.....

ł\$

QA/QC SUMMARY REPORT

Client:	Giant Refining Co
Project:	GWM-1 Annual 2007

Work Order: 0705390

· · · · · · · · · · · · · · · · · · ·	Resull	Units	PQL	%Rec	LowLimit +	lighLimit	%RPD RPI	DLimit Qual
Method: E30D				·				1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 -
Sample ID: MBLK		MBLK			Batch ID	: R23842	Analysis Date:	5/29/2007 3:43:27 PM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrale (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfale	ND	mg/L	0.50					
Sample ID: MBLK		MBLK			Batch ID	: R23935	Analysis Date:	6/9/2007 7:41:09 PM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrate (As N)+Nilrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfale	ND	mg/L	0,50					
Sample ID: MB		MBLK			Balch IC	: R23969	Analysis Date:	6/12/2007 B:41:53 AM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nilrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0,50					
Sulfate	ND	mg/L	0.50					
ample ID: MB		MBLK			Batch ID	: R24020	Analysis Date:	6/16/2007 7:39:42 AM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: LCS ST300-07001		LCS			Batch ID	: R23842	Analysis Dale:	5/29/2007 4:00:51 PN
Fluoride	0.4741	mg/L	0.10	94.8	90	110		
Chloride	4.787	mg/L	0.10	95.7	90	110		
Nitrate (As N)+Nitrite (As N)	3.388	mg/L	0.20	96.8	90	110		
Phosphorus, Orthophosphate (As P)	4.724	mg/L	0.50	94.5	90	110		
Sulfate	9.745	mg/L	0.50	97.4	90	110		
Sample ID: LCS ST300-07013		LCS			Baich IC	: R23935	Analysis Dale:	6/9/2007 7:58:33 PM
Fluoride	0.4548	mg/L	0.10	91.0	90	110		
Chloride	4.853	mg/L	0.10	97.1	90	110		
Nitrate (As N)+Nitrite (As N)	3.472	mg/L	0.20	99.2	90	110		
Phosphorus, Orthophosphate (As P)	4.645	mg/L	0.50	92.9	90	110		
Sulfate	9.827	mg/L	0.50	98.3	90	110		
Sample ID: LCS ST300-07014		LCS			Batch 10	: R23969	Analysis Date:	6/12/2007 8:59:17 AM
Fluoride	0.4766	mg/L	0.10	95.3	90	110		
Chloride	4.786	mg/L	0.10	95.7	90	110		
Nitrate (As N)+Nitrite (As N)	3.446	mg/L	0.20	98.5	90	110		
Phosphorus, Orthophosphale (As P)	4.624	mg/L	0.50	92.5	90	110		
			2.00					
Sulfate	9.518	mg/L	0.50	95.2	90	110		

- Qualifiers:
 - E Value above quantitation range
 - J Analyte detected below quantitation limits
 - R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

.. .

- ND Not Detected at the Reporting Limit
- s 6/13^{covery outside accepted recovery limits}

Page 1

Client: Project:	Gianı Refining GWM-1 Annı	-				<u> </u>		w	ork Order: 0705390
Analyte		Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDLimit Qual
Method: E300 Sample ID: LCS S	ፕግብቢ-በንስተፈ		LCS			Batch	D: R24020	Analysis Da	le: 6/16/2007 7:57:07 AM
Fluoride		0.5700	mg/L	0.10	114	90	110	· · · · · , · · · · · · · ·	S
Chloride		4.770	mg/L	0.10	95.4	90	110		
Nitrate (As N)+Nitrit	e (As N)	3.399	mg/L	0.20	97.1	90	110		
Phosphorus, Orthop	phosphale (As P)	4.741	mg/L	0.50	94.8	90	110		
Sullate		9.834	mg/L	0.50	98.3	90	110		

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S contractive recovery outside accepted recovery limits 7 / 13

Page 2

....

Work Order:

0705390

QA/QC SUMMARY REPORT

Client: Project: Giant Refining Co GWM-1 Annual 2007

Analyle	Result	Units	PQL	%Rec	LowLimit	High	Limit	%RPD	RPDLimit	Qual
Method: SW8270C									· · · · · · · · · · · · · · · · · · ·	
Sample ID: MB-13084		MBLK			Balch	ID:	13084	Analysis I	Date:	6/7/200
Acenaphthene	NÐ	µg/L	10							
Acenaphihylene	ND	µg/L	10							
Aniline	ND	µg/L	20							
Anthracene	ND	µg/L	10							
Azobenzene	ND	µg/L	10							
Benz(a)anlhracene	ND	µg/L	15							
Benzo(a)pyrene	ND	µg/L	10							
Benzo(b)fluoranthene	ND	µg/L	15							
Benzo(g.h.i)perylene	ND	μg/L	10							
Senzo(k)fluoranthene	ND	µg/L	10							
Benzoic acid	ND	µg/L	50							
Benzyl alcohol	ND	μg/L	20							
Bis(2-chloroelhoxy)methane	ND	µg/L	10							
Bis(2-chloroethyl)ether	ND	μg/L	15							
Bis(2-chloroisopropyl)elher	ND	µg/L	15							
Bis(2-ethylhexyl)phthalate	ND	µg/L	15							
4-Bromophenyl phenyl elher	ND	µg/L	10							
tyl benzyl phthalate	ND	µg/L	15							
arbazole	ND	μg/L	10							
4-Chloro-3-methylphenol	ND	րց/Ր	20							
4-Chloroaniline	ND	μg/L	20							
2-Chloronaphthalene	ND	µg/L	10							
2-Chlorophenol	ND	µg/L	10							
4-Chlorophenyl phenyl ether	ND	μg/L	15							
Chrysene	ND	µg/L.	15							
Di-n-butyl phthalate	ND	μg/L	10							
Di-n-octyl phihalate	ND	hð\r	15							
Dibenz(a,h)anthracene	ND	µg/L	10							
Dibenzofuran	ND	µg/L	10							
1,2-Dichlorobenzene	ND	րց/Լ	10							
1,3-Dichlorobenzene	ND	µg/L	10							
1,4-Dichlorobenzene	ND	µg/L	10							
3,3°-Dichlorobenzidine	ND	µg/L	15		•					
Diethyl phthalate	ND	µg/L	10							
Dimethyl phthalate	ND	µg/L	10							
2,4-Dichlorophenol	ND	րց/Ը	10							
2.4-Dimethylphenol	ND	µg/L	10							
4,6-Dinitro-2-methylphenol	ND	µg/L	50							
2,4-Dinitrophenol	ND	µg/L	50							
2,4-Dinitrotoluene	ND	µg/L	10							
2,6-Dinitrotoluene	ND	µg/L	10							
Fluoranthene	ND	µg/L	10							
Fluorene	ND	μg/L	10							
Hexachlorobenzene	ND	µg/L	10							
Qualifiers:					· · · · · ·		•			·····
E Value above quantitation π	inge		н	Holding	times for prep	aration	or analysis	s exceeded		
J Analyte detected below qua			ND	Not Dete	cled at the Re	porting	Limit			-
D DDD the states	12		c	6 - 1	same outride					Page 3

RPD outside accepted recovery limits R

S $\frac{1}{8/13}$ recovery outside accepted recovery limits

Client: Giant Refining Co

Project: GWM-1 A	Innual 2007	<u></u>						<u>ا</u>	Work Order	: 0705390
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimi	1	%RPD	RPDLimit	Qual
Method: SW8270C				· · · · · · · · · · · · · · · · · · ·	and a set of the set of the set of the					
Sample ID: MB-13084		MBLK			Batch	ID: 130	84	Analysis D	ale:	6/7/2007
Hexachlorobutadiene	ND	µg/L	10							
Hexachlorocyclopentadiene	ND	μg/L	50							
Hexachloroethane	ND	µg/L	10							
Indeno(1,2,3-cd)pyrene	ND	hð\r	10							
Isophorone	ND	µg/L	10							
2-Melhylnaphihalene	ND	µg/L	10							
2-Melhylphenol	ND	µg/L	15							
3+4-Methylphenol	ND	μg/L	20							
N-Nitrosodi-n-propylamine	ND	µg/L	10							
N-Nitrosodimethylamine	ND	µg/L	10							
N-Nitrosodiphenylamine	ND	µg/L	10							
Naphthalene	ND	µg/L	10							
2-Nitroaniline	ND	µg/L	50							
3-Nitroaniline	ND	µg/L	50							
4-Nitroaniline	ND	μg/L	20							
Nitrobenzene	ND	µg/L	10							
2-Nilrophenol	ND	μg/L	15							
Nitrophenol	ND	µg/L	50							
entachlorophenol	ND	µg/L	50							
Phenanthrene	ND	µg/L	10							
Phenol	ND	μ g /L	10							
Pyrene	ND	μg/L	15							
Pyridine	ND	μg/L	30							
1,2,4-Trichlorobenzene	ND	µg/L	10							
2,4,5-Trichlorophenol	ND	μg/L	10							
2,4,6-Trichlorophenol	ND	µg/L	15							
Sample ID: LCS-13084		LCS			Batch	ID: 130	84	Analysis [Dale:	6/7/200
Acenaphthene	78.52	µg/L	10	78.5	11	123				
4-Chloro-3-methylphenol	150.4	µg/L	20	75.2	15.4	119				
2-Chlorophenol	140.8	μg/L	10	70.4	12.2	122				
1,4-Dichlarobenzene	58.80	μg/L	10	58.8	16.9	100				
2,4-Dinitrololuene	61.22	µg/L	10	61.2	13	138				
N-Nitrosodi-n-propylamine	68.12	μg/L	10	68.1	9.93	122				
4-Nitrophenol	65.32	µg/L	50	32.7	12.5	87.4				
Pentachlorophenol	151.8	րց/լ	50	75.9	3.55	114				
Phenol	86.48	µg/L	10	43.2	7.53	73.1				
Pyrene	82.68	μg/L	15	82.7	12.6	140				
1,2,4-Trichlorobenzene	57.80	µg/L	10	57.8	17.4	98.7				
Sample ID: LCSD-13084		LCSD			Batch	ID: 13)84	Analysis (Date:	6/7/200
Acenaphthene	75.96	μg/L	10	76.0	11	123		3.31	30.5	
4-Chloro-3-methylphenol	152.4	µg/L	20	76.2	15.4	119		1.28	28.6	
2-Chlorophenol	135.3	μց/L	10	67.6	12.2	122		4.03	107	
	55.14	μg/L	10	55.1	16.9	100		6.42	62.1	
1,4-Dichlorobenzene 2,4-Dinitrotoluene Qualifiers:	63.14 63.18	μg/L	10	63.2	13	138		3.15	14.7	

Value above quantitation range

Analyte detected below quantitation limits J

RPD outside accepted recovery limits R

Holding times for preparation or analysis exceeded H ND

Not Detected at the Reporting Limit

S

9/13 covery outside accepted recovery limits

Page 4

Client:Giant ReProject:GWM-1	fining Co Annual 2007							Work O	rder: 0705390
Analyte	Result	Units	PQL	%Rec	_	HighLimil	%RPD	RPDL	imit Qual
Method: SW8270C								• —	······································
Sample ID: LCSD-13084		LCSD			Balch	ID: 13084	Analysis (Date:	6/7/2007
N-Nitrosodi-n-propylamine	63.86	µg/L	10	63.9	9.93	122	6.46	30.3	
4-Nitrophenol	70.54	µg/L	50	35.3	12.5	87.4	7.68	36.3	
Pentachlorophenol	153.5	µg/L	50	76.7	3.55	114	1.10	49	
Phenol	82.98	µg/L	10	41.5	7,53	73.1	4.13	52.4	
Pyrene	80.56	μg/L	15	80.6	12.6	140	2,60	16.3	
1,2,4-Trichlorobenzene	58.54	µg/L	10	58.5	17.4	98.7	1.27	36.4	
Method: SW7470									
Sample ID: MB-13077		MBLK			Batch	ID: 13077	Analysis (Date:	5/30/2002
Mercury	ND	mg/L	0.00020						
Sample ID: LCS-13077		LCS			Batch	ID: 13077	Analysis I	Date:	5/30/200
Mercury	0.005044	mg/L	0.00020	101	80	120			
Method: SW6010A									
Sample ID: MB-13076		MBLK			Batch	ID: 13076	Analysis I	Date:	6/1/2007 9:04:59 AM
Arsenic	ND	mg/L	0.020						
Barium	ND	mg/L	0.020						
Cadmium	ND	mg/L	0.0020						
Calcium	ND	mg/L	1.0						
Chromium	ND	mg/L	0.0060						
Lead	ND	mg/L	0.0050						
Magnesium	ND	mg/L	1.0						
Potassium	ND	mg/L	1.0						
Silver	ND	mg/L	0.0050						
Sodium	ND	mg/L	1.0						
Sample ID: LCS-13076		LCS			Balch	ID: 13076	Analysis	Dale:	6/1/2007 9:08:02 Al
Arsenic	0.4875	mg/L	0.020	97.5	80	120			
Barium	0.4854	mg/L	0.020	97.1	80	120			
Cadmium	0.4855	mg/L	0.0020	97.1	80	120			
Calcium	50.75	mg/L	1.0	101	80	120			
Chromium	0.4941	mg/L	0.0060	98.8	80	120			
Lead	0.4788	mg/L	0.0050	95.8	80	120			
Magnesium	51.02	mg/L	1.0	102	80	120			
Potassium	53.56	mg/L	1.0	107	80	120			
Silver	0.5020	mg/L	0.0050	100	80	120			
Sodium	54.78	mg/L	1.0	110	80	120			

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

· · · · · · · · · · · ·

ND Not Detected at the Reporting Limit

. . . .

S 10/13 subscovery outside accepted recovery limits

- ----

0705390

Work Order:

QA/QC SUMMARY REPORT

Client: Project: Giant Refining Co GWM-1 Annual 2007

Method: SW8250B						
Sample ID: 5ml rb		MBLK		Batch ID: R23881	Analysis Date:	6/6/2007 7:01:43 A
Benzene	ND	µg/L	1.0			
Toluene	ND	μg/L	1.0			
Ethylbenzene	ND	µg/L	1.0			
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0			
1,2,4-Trimethylbenzene	ND	µg/L	1.0			
1,3,5-Trimethylbenzene	ND	µg/L	1.0			
1,2-Dichloroelhane (EDC)	ND	µg/L	1.0			
1,2-Dibromoethane (EDB)	ND	μg/L	1.0			
Naphthalene	ND	µg/L	2.0			
I-Melhylnaphthalene	ND	μg/L	4.0			
2-Methylnaphthalene	ND	µg/L	4,0			
Acetone	ND	µg/L	10			
Bromobenzene	ND	µg/L	1.0			
Bromochloromelhane	ND	µg/L	1.0			
Bromodichloromelhane	ND	pg/L	1.0			
Bromotorm	ND	μg/L	1.0			
Bromomelhane	ND		1.0	•		
Biomomeinane	ND	µg/L	10			
arbon disulfide		µg/L	10			
	ND	µg/L	1.0			
Carbon Tetrachloride	ND	µg/L	1.0 1.0			
Chlorobenzene	ND	µg/L				
Chloroelhane	ND	µg/L	2.0			
Chloroform	ND	μg/L	1.0			
Chloromethane	ND	µg/L	1.0			
2-Chlorotoluene	ND	µg/L	1.0			
4-Chlorotoluene	ND	hðy"	1.0			
cis-1,2-DCE	ND	µg/L	1.0			
cis-1,3-Dichloropropene	ND	hð\r	1.0			
1,2-Dibromo-3-chloropropane	ND	µg/L	2.0			
Dibromochloromethane	ND	µg/L	1.0			
Dibromomethane	ND	μg/L	1.0			
1,2-Dichlorobenzene	ND	μg/L	1.0			
1,3-Dichlorobenzene	ND	µg/L	1.0			
1,4-Dichlorobenzene	ND	µg/L	1.0			
Dichlorodifluoromethane	ND	µg/L	1.0			
1,1-Dichloroethane	ND	µg/L	1.0			
1,1-Dichloroelhene	ND	hð\r	1.0			
1,2-Dichloropropane	ND	hð\r	1.0			
1,3-Dichloropropane	ND	hð\r	1.0			
2,2-Dichloropropane	ND	µg/L	2.0			
1,1-Dichloropropene	ND	hð\r	1.0			
Hexachlorobuladiene	ND	hð\r	1.0			
2-Hexanone	ND	μg/L	10			
Isopropylbenzene	ND	µg/L	1.0			
Qualifiers:				 		
E Value above quantitation ra			н	imes for preparation or analys		

Analyte detected below quantitation limits J

R RPD outside accepted recovery limits ND Not Detected at the Reporting Limit

\$ 11/13

0705390

Work Order:

QA/QC SUMMARY REPORT

Client: Project: Giant Refining Co GWM-1 Annual 2007

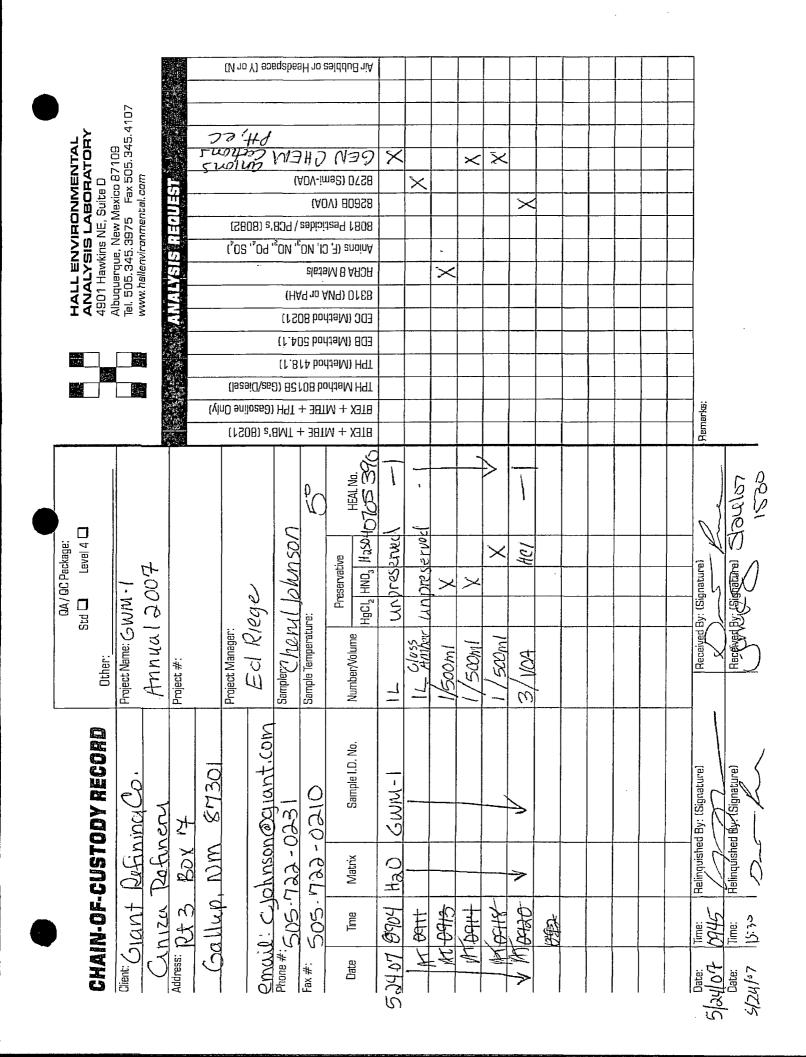
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RP[DLimit Qual
Method: SW8260B								
Sample ID: 5ml rb		MBLK			Batch I	D: R23881	Analysis Date:	6/6/2007 7:01:43 AM
4-Isopropyllaluene	ND	µg/L	1.0					
4-Methyl-2-pentanone	ND	µg/L	10					
Methylene Chloride	ND	μg/L	1.0					
n-Butylbenzene	ND	µg/L	1.0					
n-Propylbenzene	ND	μg/L	1.0					
sec-Butylbenzene	ND	μg/L	1.0					
Styrene	ND	µg/L	1.0					
tert-Butylbenzene	ND	µg/L	1.0					
1,1,1,2-Tetrachloroethane	ND	µg/L	1.0					
1,1,2,2-Telrachloroethane	ND	μg/L	2.0					
Tetrachloroelhene (PCE)	ND	µg/L	1.0					
trans-1,2-DCE	ND	µg/L	1.0					
trans-1,3-Dichloropropene	ND	µg/L	1.0					
1,2,3-Trichlorobenzene	ND	μg/L	1.0					
1,2,4-Trichlorobenzene	ND	µց/∟	1.0					
1,1,1-Trichloroethane	ND	μg/L	1.0					
1,1,2-Trichloroethane	ND	µg/L	1.0					
Trichloroethene (TCE)	ND	μg/Ľ	1.0					
Trichlorofluoromethane	ND	μg/L	1.0					
1,2,3-Trichloropropane	ND	μg/L	2.0					
Vinyl chloride	ND	µg/L	1.0					
Xylenes, Total	ND	µg/L	1.5					
Sample ID: 100ng lcs		LCS			Batch II	D: R23881	Analysis Date:	6/6/2007 8:59:30 AM
Benzene	20.46	µg/L	1.0	102	82.4	128		
Toluene	21.09	μg/L	1.0	105	77.2	115		
Chlorobenzene	20.48	μg/L	1.0	102	78.3	117		
1,1-Dichloroethene	23.61	μg/L	1.0	118	90.7	132		
Trichloroethene (TCE)	19.79	µg/L	1.0	98.9	71.B	113		

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded


.

ND Not Detected at the Reporting Limit

 $^{\rm S}$ 12/13 covery outside accepted recovery limits

<i>(</i>	Sample	Receipt Che	ecklist		
Client Name GIANTREFIN	(\mathbf{i}	Date and Time	Received:	5/25/2007
Work Order Number 0705390	·		Received by	TLS	
Checklist completed by	μ	Date	51	25/07	7
Malrix	Carrier name	Client drop-of	I		
Shipping container/cooler in good condition?		Yes 🗹	Νο	Not Present	
Custody seals intact on shipping container/coole	er?	Yes 🗌	No 🗍	Not Present	Not Shipped
Custody seals intact on sample bottles?		Yes	Νο 🗹	N/A	
Chain of custody presenl?		Yes 🗹	No 🗔		
Chain of custody signed when relinquished and	received?	Yes 🗹	No 🗍		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗔		
Samples in proper container/bottle?		Yes 🗹	No 🗔		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗆		
All samples received within holding time?		Yes 🗹	No 🗋		
Water - VOA vials have zero headspace?	No VOA vials subr	nilled	Yes 🗹	No 🗌	
Water - Preservation labels on bottle and cap m	aich?	Yes 🗹	No 🗖	N/A	
Water - pH acceptable upon receipt?		Yes 🗹	No 🗔	N/A	
Container/Temp Blank temperature?		5°	4° C ± 2 Accepta		
COMMENTS:			If given sufficient	time to cool.	
Client contacted	Date contacted:		Pers	on contacted	
Contacted by:	Regarding				
Comments: <u>Ccdded</u>	ml ANUS	3 ter	accept.	able off	/AT_5/25/07
				,	
Corrective Action					
······································				·····	
					· · · · · · · · · · · · · · · · · · ·

13/13

COVER LETTER

Monday, January 21, 2008

Jim Lieb Western Refining Southwest, Gallup Rt. 3 Box 7 Gallup, NM 87301

TEL: (505) 722-3833 FAX (505) 722-0210

RE: 2007 Annual GW Samples

Dear Jim Lieb:

Order No.: 0801006

Hall Environmental Analysis Laboratory, Inc. received 20 sample(s) on 1/2/2008 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

200

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001

49D1 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

Date: 21-Jan-08

CLIENT:	Western Refining Southwest, Gallup
Project:	2007 Annual GW Samples
Lab Order:	0801006

۶,

CASE NARRATIVE

Analytical Comments for METHOD 8015GRO_W, SAMPLE 0801006-10A: Elevated surrogate due to matrix interference. Analytical Comments for METHOD 8260_W, SAMPLE 0801006-18a: Sample had sheen. Analytical Comments for METHOD 8260 W, SAMPLE 0801006-19a: Sample had sheen.

CLIENT: Lab Order:	Western Refining Sou 0801006	uthwest, Gallup			Sample ID: ection Date:		9:15:00 AM
Project:	2007 Annual GW Sar	nnles			e Received:		
Lab ID:	0801006-01			Dut		AQUEOUS	;
Analyses	,,, _,, _	Result	PQL	Qual U	Jnits	DF	Date Analyzed
EPA METHOD 74	70: MERCURY						Analyst: SLB
Mercury .		ND	0.00020	'n	ng/L	1 .	1/3/2008 3:08:19 PM
EPA 6010B: TOT		IETALS					Analyst: TES
Arsenic	:	ND	0.020	n	ng/L	1	1/15/2008 4:43:21 PM
Barium		ND	0.010	n	ng/L	1	1/15/2008 4:43:21 PM
Cadmium		ND	0.0020	m	ng/L	1	1/15/2008 4:43:21 PM
Calcium		11	0.50	n	ng/L	1	1/15/2008 4:43:21 PM
Chromium		ND	0.0060	m	ng/L	1	1/15/2008 4:43:21 PM
Copper		ND	0.0060	. m	ıg/L	1	1/15/2008 4:43:21 PM
Iron		ND	0.050	m	ıg/L	1	1/15/2008 4:43:21 PM
Lead		ND	0.0050	m	ng/L	1	1/15/2008 4:43:21 PM
Magnesium		1.3	0.50	m	ng/L	1	1/15/2008 4:43:21 PM
Manganese		0.016	0.0020	m	ng/L	1	1/15/2008 4:43:21 PM
Potassium		1.6	1.0	m	ng/L ·	1	1/15/2008 4:43:21 PM
Selenium		ND	0.050	m	ng/L	1	1/15/2008 4:43:21 PM
Silver		ND	0.0050	m	ig/L	1	1/15/2008 4:43:21 PM
Sodium		690	5.0	m	ig/L	10	1/18/2008 6:21:32 PM
Uranium		0.22	0.10	m	ig/L	1	1/15/2008 4:43:21 PM
Zinc		ND	0.020	m	ıg/L	1	1/15/2008 4:43:21 PM
EPA METHOD 82	60B: VOLATILES			·			Analyst: BDH
Benzene		ND	1.0	hi	g/L	1	1/7/2008 3:57:39 PM
Toluene		ND	1.0	μ	g/L.	1	1/7/2008 3:57:39 PM
Ethylbenzene	·.	ND	1.0	μ	g/L	1	1/7/2008 3:57:39 PM
Methyl tert-butyl e	her (MTBE)	ND	1.0	μ	g/L	1 .	1/7/2008 3:57:39 PM
1,2,4-Trimethylber		ND	1.0	μ	g/L	1	1/7/2008 3:57:39 PM
1,3,5-Trimethylber	izene	ND	1.0	βų	g/L	1	1/7/2008 3:57:39 PM
1,2-Dichloroethane	e (EDC)	ND	1.0	μ	g/L	1	1/7/2008 3:57:39 PM
1,2-Dibromoethan	e (EDB)	ND	1.0	μ	g/L	1	1/7/2008 3:57:39 PM
Naphthalene		ND	2.0	րն	J∕L	1	1/7/2008 3:57:39 PM
1-Methylnaphthale	ne	ND	4.0	μg]/ ∟	1	1/7/2008 3:57:39 PM
2-Methylnaphthale	ne	ND	4.0	μg	J/L	1	1/7/2008 3:57:39 PM
Acetone		ND	10	μο	J/L	1	1/7/2008 3:57:39 PM
Bromobenzene		ND	1.0	þg	ı∕L	1	1/7/2008 3:57:39 PM
Bromochlorometha	ane	ND	1.0	μg	J/L	1	1/7/2008 3:57:39 PM
Bromodichloromet	hane	ND	1.0	þg	J/L.	1	1/7/2008 3:57:39 PM
Bromoform		ND	1.0	μg	ı/L	1	1/7/2008 3:57:39 PM
Bromomethane		ND	1.0	рq	/L	1	1/7/2008 3:57:39 PM
2-Butanone		ND	10	рq	•	1	1/7/2008 3:57:39 PM
Carbon disulfide		ND	10	, hð			1/7/2008 3:57:39 PM
Carbon Tetrachlori	de .	ND	1.0	hđ			1/7/2008 3:57:39 PM
Chlorobenzene		ND	1.0	μg			1/7/2008 3:57:39 PM

_

Date: 21-Jan-08

* Value exceeds Maximum Contaminant Level

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 1 of 78

-	
6.	

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-01

Date: 21-Jan-08

Client Sample ID: OW-11 Collection Date: 12/27/2007 9:15:00 AM Date Received: 1/2/2008

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLÄTILES					Analyst: BDI
Chloroethane	ND	2.0	µg/L	1	1/7/2008 3:57:39 PM
Chloroform	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
Chloromethane	ND	1.0	μg/L	1	1/7/2008 3:57:39 PM
2-Chlorotoluene	NÐ	1.0	μg/L	1	1/7/2008 3:57:39 PM
4-Chlorotoluene	ND	1.0	μ g/L	1	1/7/2008 3:57:39 PM
cis-1,2-DCE	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	1/7/2008 3:57:39 PM
Dibromochloromethane	ND	1.0	μg/L	. 1	1/7/2008 3:57:39 PM
Dibromomethane	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
1,2-Dichlorobenzene	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
1,3-Dichlorobenzene	. ND	1.0	μg/L	· 1	1/7/2008 3:57:39 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	1/7/2008 3:57:39 PM
Dichlorodifluoromethane	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
1,1-Dichloroethane	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
1,1 ¹ Dichloroethene	ND	1.0	μ g/L	1	1/7/2008 3:57:39 PM
1,2-Dichloropropane	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
1,3-Dichloropropane	ND	1.0	µg/L	1 -	1/7/2008 3:57:39 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	1/7/2008 3:57:39 PM
1,1-Dichloropropene	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
Hexachlorobutadiene	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
2-Hexanone	ND	10	µg/L	1	1/7/2008 3:57:39 PM
Isopropylbenzene	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
4-lsopropyltoluene	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	1/7/2008 3:57:39 PM
Methylene Chloride	ND	3.0	µg/L	1	1/7/2008 3:57:39 PM
n-Butylbenzene	ND	1.0	µg/ŀ_	1	1/7/2008 3:57:39 PM
n-Propylbenzene	ND	1.0	μg/L	1	1/7/2008 3:57:39 PM
sec-Butylbenzene	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
Styrene	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
tert-Butylbenzene	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	1/7/2008 3:57:39 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	1/7/2008 3:57:39 PM
trans-1,2-DCE	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	1/7/2008 3:57:39 PM
1,1,1-Trichloroethane	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
1,1,2-Trichloroethane	ND	1.0	µg/L	- 1	1/7/2008 3:57:39 PM
Trichloroethene (TCE)	ND	1.0	µg/L	1	1/7/2008 3:57:39 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	1/7/2008 3:57:39 PM

Qualifiers: *

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 2 of 78

CLIENT:	Western Refining S	Western Refining Southwest, Gallup			nt Sample II	D: OW-11	OW-11		
Lab Order:	0801006			Co	llection Dat	e: 12/27/200	12/27/2007 9:15:00 AM		
Project:	2007 Annual GW S	amples	Date Received:			d: 1/2/2008			
Lab ID:	0801006-01				Matri	x: AQUEOU	AQUEOUS		
Analyses	· · ·	Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD	8260B: VOLATILES		<u> </u>				Analyst: BDH		
1,2,3-Trichlorop	propane	ND	2.0		µg/L	1.	1/7/2008 3:57:39 PM		
Vinyl chloride		ND	1.0		µg/L	1	1/7/2008 3:57:39 PM		
Xylenes, Total		ND	1.5		µg/L	1	1/7/2008 3:57:39 PM		
Surr: 1,2-Dicl	hloroethane-d4	113	68.1-123		%REC	1	1/7/2008 3:57:39 PM		
Surr: 4-Brom	ofluorobenzene	118	53.2-145		%REC	1	1/7/2008 3:57:39 PM		
Surr: Dibrom	ofluoromethane	110	68.5-119		%REC	1	1/7/2008 3:57:39 PM		
Surr: Toluene	e-d8	114	64-131		%REC	1	1/7/2008 3:57:39 PM		

Date: 21-Jan-08

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Value above quantitation rangeJ Analyte detected below quantitation limits
- / / maryte deletied below quantitation mints
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 3 of 78

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-02

Client Sample ID: OW-12 Collection Date: 12/27/2007 11:45:00 AM Date Received: 1/2/2008

Matrix: AQUEOUS

Analyses .	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: BDH
Benzene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
Toluene	ND	1.0	μg/L	1	1/7/2008 4:25:51 PM
Ethylbenzene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	1/7/2008 4:25:51 PM
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
Naphthalene	ND	2.0	μg/L	1	1/7/2008 4:25:51 PM
1-Methylnaphthalene	ND	4.0	µg/L	1	1/7/2008 4:25:51 PM
2-Methylnaphthalene	ND	4.0	µg/L	1	1/7/2008 4:25:51 PM
Acetone	ND	10	μg/L	1	1/7/2008 4:25:51 PM
Bromobenzene	ND	1.0	µg/L	. 1	1/7/2008 4:25:51 PM
Bromochloromethane	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
Bromodichloromethane	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
Bromoform	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
Bromomethane	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
2-Butanone	ND	10	µg/L	1	1/7/2008 4:25:51 PM
Carbon disulfide	ND	10	μg/L	1	1/7/2008 4:25:51 PM
Carbon Tetrachloride	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
Chlorobenzene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
Chloroethane	ND	2.0	μg/L	1	1/7/2008 4:25:51 PM
Chloroform	NÐ	1.0	µg/L	1	1/7/2008 4:25:51 PM
Chloromethane	ND	. 1.0	µg/L	1	1/7/2008 4:25:51 PM
2-Chlorotoluene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
4-Chlorotoluene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
cis-1,2-DCE	NÐ	1.0	μg/L	1	1/7/2008 4:25:51 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	1/7/2008 4:25:51 PM
Dibromochloromethane	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
Dibromomethane	ND	1.0	μg/L	1	1/7/2008 4:25:51 PM
1,2-Dichlorobenzene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
1,3-Dichlorobenzene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
1,4-Dichlorobenzene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
Dichlorodifluoromethane	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
1,1-Dichloroethane	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
1,2-Dichloropropane	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
1,3-Dichloropropane	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	1/7/2008 4:25:51 PM
1,1-Dichloropropene	ND	1.0	μg/L	. 1	1/7/2008 4:25:51 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	1/7/2008 4:25:51 PM

Qualifiers:

*

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 4 of 78

Date: 21-Jan-08

CLIENT: Western Refining Southwest, Gallup Lab Order: 0801006 **Project:** 2007 Annual GW Samples Lab ID: 0801006-02

Client Sample ID: OW-12 Collection Date: 12/27/2007 11:45:00 AM Date Received: 1/2/2008

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES			<u></u>		Analyst: BDI
2-Hexanone	ND	10	µg/L	1	1/7/2008 4:25:51 PM
Isopropylbenzene	ND	1.0	μg/L	1	1/7/2008 4:25:51 PM
4-Isopropyltoluene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
4-Methyi-2-pentanone	ND	10	μg/L	1	1/7/2008 4:25:51 PM
Methylene Chloride	ND	3.0	µg/L	1	1/7/2008 4:25:51 PM
n-Butylbenzene	ND	1.0	μg/L	1	1/7/2008 4:25:51 PM
n-Propylbenzene	ND	1.0	·μg/L	1	1/7/2008 4:25:51 PM
sec-Butylbenzene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
Styrene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
tert-Butylbenzene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	1/7/2008 4:25:51 PM
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
trans-1,2-DCE	ND	. 1.0	µg/L	1	1/7/2008 4:25:51 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	1/7/2008 4:25:51 PM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
1,2,4 ² Trichlorobenzene	ND	1.0	μg/L	1	1/7/2008 4:25:51 PM
1,1,1-Trichloroethane	ND	1.0	΄ μg/L	1	1/7/2008 4:25:51 PM
1,1,2-Trichloroethane	ND	1.0	µg/L	1.	1/7/2008 4:25:51 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	1/7/2008 4:25:51 PM
Trichlorofluoromethane	' ND	1.0	. μg/L	1	1/7/2008 4:25:51 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	1/7/2008 4:25:51 PM
Vinyl chloride	ND	1.0	µg/L	1	1/7/2008 4:25:51 PM
Xylenes, Total	ND	1.5	µg/L	1	1/7/2008 4:25:51 PM
Surr: 1,2-Dichloroethane-d4	119	68.1-123	%REC	1	1/7/2008 4:25:51 PM
Surr: 4-Bromofluorobenzene	114	53.2-145	%REC	1	1/7/2008 4:25:51 PM
Surr: Dibromofluoromethane	112	68.5-119	%REC	1	1/7/2008 4:25:51 PM
Surr: Toluene-d8	115	64-131	%REC	1	1/7/2008 4:25:51 PM

Qualifiers:

*

Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- Analyte detected below quantitation limits J
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 5 of 78

Date: 21-Jan-08

Western Refining Southwest, Gallup **CLIENT:** Lab Order: 0801006 2007 Annual GW Samples **Project:** Lab ID: 0801006-03

Client Sample ID: OW-13 Collection Date: 12/27/2007 2:30:00 PM Date Received: 1/2/2008

Matrix: AQUEOUS

Analyses	Result	PQL (Qual Units	DF	Date Analyzed
PA METHOD 8260B: VOLATILES			· · · ·	<u></u>	Analyst: BDH
Benzene	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM
Toluene	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM
Ethylbenzene	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM
Methyl tert-butyl ether (MTBE)	1.3	1.0	· µg/L	1	1/7/2008 4:53:54 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM
Naphthalene	ND	2.0	μg/L	1	1/7/2008 4:53:54 PM
1-Methylnaphthalene	ND	4.0 ·	μg/L	1	1/7/2008 4:53:54 PM-
2-Methylnaphthalene	ND	4.0	µg/L	1	1/7/2008 4:53:54 PM
Acetone	ND	10	µg/L	1	1/7/2008 4:53:54 PM
Bromobenzene	ND	1.0	μ g/L	1	1/7/2008 4:53:54 PM
Bromochloromethane	ND	1.0 ·		1	1/7/2008 4:53:54 PM
Bromodichloromethane	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM
Bromoform	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM
Bromomethane	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM
2-Butanone	ND	10	μg/L	1	1/7/2008 4:53:54 PM
Carbon disulfide	ND	10	μg/L	1	1/7/2008 4:53:54 PM
Carbon Tetrachloride	ND	1,0	µg/L	1	1/7/2008 4:53:54 PM
Chlorobenzene	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM
Chloroethane	ND	2.0	μg/L	1	1/7/2008 4:53:54 PM
Chloroform	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM
Chloromethane	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM
2-Chlorotoluene	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM
4-Chlorotoluene	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM
cis-1,2-DCE	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	1/7/2008 4:53:54 PM
Dibromochloromethane	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM
Dibromomethane	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM
1,4-Dichlorobenzene	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM
1,2-Dichloropropane	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM
1,3-Dichloropropane	ND	.1.0	µg/L	1	1/7/2008 4:53:54 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	1/7/2008 4:53:54 PM
1,1-Dichloropropene	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM

Qualifiers:

E Value above quantitation range

*

- Analyte detected below quantitation limits J
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits S

Value exceeds Maximum Contaminant Level

- Analyte detected in the associated Method Blank В
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 6 of 78

Project:	2007 Annual GW S	amples		Date Re	e Received: 1/2/2008				
Lab ID:	0801006-03			ŋ	Matrix: AQUEO	JS			
Analyses		Result	PQL	Qual Units	DF	Date Analyzed			
EPA METHO	D 8260B: VOLATILES					Analyst: BDH			
2-Hexanone		. ND	10	µg/L_	1 .	1/7/2008 4:53:54 PM			
Isopropylbena	zene	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM			
4-Isopropyltal	luene	NÐ	1.0	΄ μg/L	`1	1/7/2008 4:53:54 PM			
4-Methyl-2-pe	entanone	ND	10	_ μg/L	1	1/7/2008 4:53:54 PM			
Methylene Ch	nloride	ND	3.0	µg/L	1	1/7/2008 4:53:54 PM			
n-Butylbenze	ne	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM			
n-Propylbenz	еле	ND	1.0	μg/L	. 1	1/7/2008 4:53:54 PM			
sec-Butylben:	zene	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM			
Styrene		ND	1.0	µg/L	1	1/7/2008 4:53:54 PM			
tert-Butylbenz	tene	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM			
1,1,1,2-Tetrac	chloroethane	ND	1.0	µg/L	· 1	1/7/2008 4:53:54 PM			
1,1,2,2-Tetrac	chloroethane	ND	2.0	µg/L	1	1/7/2008 4:53:54 PM			
Tetrachloroet	hene (PCE)	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM			
trans-1,2-DCI	3	ND	1.0	µg/L	· 1	1/7/2008 4:53:54 PM			
trans-1,3-Dich	nloropropene	ND [·]	1.0	µg/L	1	1/7/2008 4:53:54 PM			
1,2,3,Trichior	obenzene	ND	1.0	μg/L	1	1/7/2008 4:53:54 PM			
1,2,4-Trichlor	obenzene	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM			
1,1,1-Trichlor	oethane	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM			
1,1,2-Trichlor	oethane	· ND	1.0	µg/L	1	1/7/2008 4:53:54 PM			
Trichloroether	ne (TCE)	ND	1.0	μg/L	. 1	1/7/2008 4:53:54 PM			
Trichlorofluor	omethane	ND	1.0	µg/L	1	1/7/2008 4:53:54 PM			
1,2,3-Trichlor	opropane	ND	2.0	µg/L	1	1/7/2008 4:53:54 PM			
Vinyl chloride		ND	1.0	μg/L	1	1/7/2008 4:53:54 PM			
Xylenes, Tota	I	ND	1.5	µg/L	1	1/7/2008 4:53:54 PM			
Surr: 1,2-D	ichloroethane-d4	118	68.1-123	%REC	1	1/7/2008 4:53:54 PM			
Surr: 4-Bro	molluorobenzene	112	53.2-145	%REC	1	1/7/2008 4:53:54 PM			
Surr: Dibroi	mofluoromethane	1 13	68.5-119	%REC	1	1/7/2008 4:53:54 PM			
Surr: Tolue	ne-d8	113	64-131	%REC	1	1/7/2008 4:53:54 PM			

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-03

Date: 21-Jan-08

Collection Date: 12/27/2007 2:30:00 PM

Client Sample ID: OW-13

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

•	

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-04

Client Sample ID: OW-14 Collection Date: 1/1/2008 2:30:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

EPA METHOD 8260B: VOLATILES Benzene	14				
	14				Analyst: BDH
- ·	• •	5.0	μg/L	5	1/10/2008 1:56:18 PM
Toluene	ND	5.0	μg/L	5	1/10/2008 1:56:18 PM
Ethylbenzene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
Methyl tert-butyl ether (MTBE)	920	5.0	µg/L	5	1/10/2008 1:56:18 PM
1,2,4-Trimethylbenzene	ND	· 5.0	μg/L	5	1/10/2008 1:56:18 PM
1,3,5-Trimethylbenzene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
1,2-Dichloroethane (EDC)	NĎ	5.0	µg/L	5	1/10/2008 1:56:18 PM
1,2-Dibromoethane (EDB)	ND	5.0	µg/Ł	5	1/10/2008 1:56:18 PM
Naphthalene	ND	10	μg/L	5	1/10/2008 1:56:18 PM
1-Methylnaphthalene	27	20	µg/L	5	1/10/2008 1:56:18 PM
2-Methylnaphthalene	ND	20	µg/L	5	1/10/2008 1:56:18 PM
Acetone	ND	50	μg/L	5	1/10/2008 1:56:18 PM
Bromobenzene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
Bromochloromethane	ND	5.0	μg/L	5	1/10/2008 1:56:18 PM
Bromodichloromethane	. ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
Bromoform	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
Bromomethane	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
2-Butanone	ND	50	μg/L	5	1/10/2008 1:56:18 PM
Carbon disulfide	ND	50	µg/L	5	1/10/2008 1:56:18 PM
Carbon Tetrachloride	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
Chlorobenzene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
Chloroethane	ND	10	μg/L	5	1/10/2008 1:56:18 PM
Chloroform	ND	5.0	µg/L	- 5	1/10/2008 1:56:18 PM
Chloromethane	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
2-Chlorotoluene	ND	5.0	μg/L	5	1/10/2008 1:56:18 PM
4-Chlorotoluene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
cis-1,2-DCE	ND	5.0	µg/L	5 :	1/10/2008 1:56:18 PM
cis-1,3-Dichloropropene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
1,2-Dibromo-3-chloropropane	ND	10	µg/L	5	1/10/2008 1:56:18 PM
Dibromochloromethane	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
Dibromomethane	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
1,2-Dichlorobenzene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
1,3-Dichlorobenzene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	5	1/10/2008 1:56:18 PM
Dichlorodifluoromethane	ND	5.0	μg/L	5	1/10/2008 1:56:18 PM
1,1-Dichloroethane	ND	5.0	µg/L	. 5	1/10/2008 1:56:18 PM
1,1-Dichloroethene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
1,2-Dichloropropane	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
1,3-Dichloropropane	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
2,2-Dichloropropane	ND	10	µg/L	5	1/10/2008 1:56:18 PM
1,1-Dichloropropene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
Hexachlorobutadiene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL · Reporting Limit

· · · · · · · · · · · · · · · · · · ·	
CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0801006
Project:	2007 Annual GW Samples
Lab ID:	0801006-04

Date: 21-Jan-08

Client Sample ID: OW-14 Collection Date: 1/1/2008 2:30:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: BDH
2-Hexanone	ND	50	μg/L	5	1/10/2008 1:56:18 PM
Isopropylbenzene	ND	5.0	µg/L	5.	1/10/2008 1:56:18 PM
4-isopropyitoluene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
4-Methyl-2-pentanone	ND	50	µg/L	5	1/10/2008 1:56:18 PM
Methylene Chloride	ND	15	µg/L	5,	1/10/2008 1:56:18 PM
n-Butylbenzene	52	5.0	μg/L	5	1/10/2008 1:56:18 PM
n-Propylbenzene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
sec-Butylbenzene	5.7	5.0	µg/L	5	1/10/2008 1:56:18 PM
Styrene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
tert-Butylbenzene	ND	5.0	μg/L	5	1/10/2008 1:56:18 PM
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	5	1/10/2008 1:56:18 PM
1,1,2,2-Tetrachloroethane	ND	10	µg/L	5	1/10/2008 1:56:18 PM
Tetrachloroethene (PCE)	NÐ	5.0	µg/L	5	1/10/2008 1:56:18 PM
trans-1,2-DCE	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
trans-1,3-Dichloropropene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
1,2,3-Trichlorobenzene	ND	5.0	μg/L	5	1/10/2008 1:56:18 PM
1,2,4-Trichlorobenzene	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
1,1,1-Trichloroethane	ND	5.0	hð\r	5	1/10/2008 1:56:18 PM
1,1,2-Trichloroethane	ND	5.0	μg/L	5	1/10/2008 1:56:18 PM
Trichloroethene (TCE)	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
Trichlorofluoromethane	ND	5.0	µg/L	5	1/10/2008 1:56:18 PM
1,2,3-Trichloropropane	ND	10	µg/L	5	1/10/2008 1:56:18 PM
Vinyl chloride	ND	5.0	μg/L	5	1/10/2008 1:56:18 PM
Xylenes, Total	ND	7.5	µg/L	5	1/10/2008 1:56:18 PM
Surr: 1,2-Dichloroethane-d4	99.1	68.1-123	%REC	5	1/10/2008 1:56:18 PM
Surr: 4-Bromofluorobenzene	103	53.2-145	%REC	5	1/10/2008 1:56:18 PM
Surr: Dibromofluoromethane	102	68.5-119	%REC	5	1/10/2008 1:56:18 PM
Surr: Toluene-d8	100	64-131	%REC	5	1/10/2008 1:56:18 PM

Qualifiers:

¥

- Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 9 of 78

V	

Hall Environmental Analysis Laboratory, Inc.

Date: 21-Jan-08

Western Refining Southwest, Gallup **CLIENT:** Lab Order: 0801006 2007 Annual GW Samples **Project:** 0801006-05 Lab ID:

Client Sample ID: OW-29 Collection Date: 12/28/2007 12:00:00 PM Date Received: 1/2/2008

Matrix: AQUEOUS

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8260B: VOLATILES	· · · · · · · · · · · · · · · · · · ·				Analyst: BDI	
Benzene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
Toluene	ND	1.0	μg/L	1	1/7/2008 5:52:22 PM	
Ethylbenzene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
Methyl tert-butyl ether (MTBE)	4.3	1.0	µg/L	1	1/7/2008 5:52:22 PM	
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
Naphthalene	ND	2.0	µg/L	1	1/7/2008 5:52:22 PM	
1-Methylnaphthalene	ND	4.0	µg/L	1	1/7/2008 5:52:22 PM	
2-Methylnaphthalene	ND	4.0	µg/L	1	1/7/2008 5:52:22 PM	
Acetone	ND	10	µg/L	1	1/7/2008 5:52:22 PM	
Bromobenzene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
Bromochloromethane	NÐ	1.0	µg/L	1	1/7/2008 5:52:22 PM	
Bromodichloromethane	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
Bromoform	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
Bromomethane	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
2-Butanone	ND	10	µg/L	1	1/7/2008 5:52:22 PM	
Carbon disulfide	ND	10	µg/L	1	1/7/2008 5:52:22 PM	
Carbon Tetrachloride	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
Chlorobenzene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
Chloroethane	ND	2.0	µg/L	1	1/7/2008 5:52:22 PM	
Chloroform	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
Chloromethane	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
2-Chlorotoluene	ND	1.0	μg/L	1	1/7/2008 5:52:22 PM	
4-Chlorotoluene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
cis-1,2-DCE	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
cis-1,3-Dichloropropene	ND	1.0	μg/L	· 1	1/7/2008 5:52:22 PM	
1 2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	1/7/2008 5:52:22 PM	
Dibromochloromethane	ND	1.0	μg/L	1	1/7/2008 5:52:22 PM	
Dibromomethane	ND	· 1.0	µg/L	1	1/7/2008 5:52:22 PM	
1,2-Dichlorobenzene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
1,3-Dichlorobenzene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
1,4-Dichlorobenzene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
Dichlorodifluoromethane	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
1,1-Dichloroethane	ND	1.0	µg/L	ຸ 1	1/7/2008 5:52:22 PM	
1,1-Dichloroethene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
1,2-Dichloropropane	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
1,3-Dichloropropane	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
2,2-Dichloropropane	ND	2.0	µg/L	1	1/7/2008 5:52:22 PM	
1,1-Dichloropropene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	
Hexachlorobutadiene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM	

E Value above quantitation range

3 Analyte detected below quantitation limits

- Not Detected at the Reporting Limit ND
- Spike recovery outside accepted recovery limits S

Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded н

MCL Maximum Contaminant Level

RL Reporting Limit

Page 10 of 78

Lab ID: 0801006-05			Matri	x: AQUEOU	AQUEOUS			
Analyses	Result	PQL (Jual Units	DF	Date Analyzed			
EPA METHOD 8260B: VOLATILES					Analyst: BDH			
2-Hexanone	ND	10	µg/L	1	1/7/2008 5:52:22 PM			
Isopropylbenzene	ND	1.0	µg/L	1	1/7/2008 5:52;22 PM			
4-Isopropyltoluene	ND	1.0	μg/L	1	1/7/2008 5:52:22 PM			
4-Methyl-2-pentanone	ND	• 10	µg/L	1	1/7/2008 5:52:22 PM			
Methylene Chloride	ND	3.0	µg/L	1	1/7/2008 5:52:22 PM			
n-Butylbenzene	ND	1.0	μg/L	1	1/7/2008 5:52:22 PM			
n-Propylbenzene	ND	1.0	μg/L	1	1/7/2008 5:52:22 PM			
sec-Buty/benzene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM			
Styrene	ND	1.0	μg/L	1	1/7/2008 5:52:22 PM			
tert-Butylbenzene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM			
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	1/7/2008 5:52:22 PM			
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	1/7/2008 5:52:22 PM			
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	1/7/2008 5:52:22 PM			
trans-1,2-DCE	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM			
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM			
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM			
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM			
1,1,1-Trichloroethane	ND	1.0	µg/L ∙	1	1/7/2008 5:52:22 PM			
1,1,2-Trichloroethane	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM			
Trichloroethene (TCE)	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM			
Trichlorofluoromethane	ND	1.0	µg/L	1	1/7/2008 5:52:22 PM			
1,2,3-Trichloropropane	ND	2.0	µg/L	1	1/7/2008 5:52:22 PM			
Vinyl chloride	.ND	1.0	µg/L_ ·	1	1/7/2008 5:52:22 PM			
Xylenes, Total	ND	1.5	μg/L	1	1/7/2008 5:52:22 PM			
Surr: 1,2-Dichloroethane-d4	120	68.1-123	%REC	1	1/7/2008 5:52:22 PM			
Surr: 4-Bromofluorobenzene	102	53.2-145	%REC	1	1/7/2008 5:52:22 PM			
Surr: Dibromofluoromethane	113	68.5-119	%REC	1	1/7/2008 5:52:22 PM			
Surr: Toluene-d8	108	64-131	%REC	1	1/7/2008 5:52:22 PM			

2007 Annual GW Samples

0801006

Western Refining Southwest, Gallup

Date: 21-Jan-08

Collection Date: 12/28/2007 12:00:00 PM

Client Sample ID: OW-29

Date Received: 1/2/2008

Qualifiers:

CLIENT:

Project:

Lab Order:

- * Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 11 of 78

12

-

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-06

Client Sample ID: OW-30 Collection Date: 12/28/2007 2:25:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual U	nits	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: BDł
Benzene	ND	1.0	μg	/L	1.	1/7/2008 6:20:27 PM
Toluene	ND	1.0	hð		1	1/7/2008 6:20:27 PM
Ethylbenzene	ND	1.0	μg		1	1/7/2008 6:20:27 PM
Methyl tert-butyl ether (MTBE)	290	5.0	μg		5	1/10/2008 1:25:46 PM
1,2,4-Trimethylbenzene	ND	1.0	μg		1	1/7/2008 6:20:27 PM
1,3,5-Trimethylbenzene	ND	1.0	μg		1	1/7/2008 6:20:27 PM
1,2-Dichloroethane (EDC)	1.2	1.0	hđ		1	1/7/2008 6:20:27 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg		1	1/7/2008 6:20:27 PM
Naphthalene	ND	2.0	þg		1	1/7/2008 6:20:27 PM
1-Methylnaphthalene	ŃD	4.0	hđ		1	1/7/2008 6:20:27 PM
2-Methylnaphthalene	ND	4.0	- µg		1	1/7/2008 6:20:27 PM
Acetone	ND	10	μg		1	1/7/2008 6:20:27 PM
Bromobenzene	ND	1.0	μg		1	1/7/2008 6:20:27 PM
Bromochloromethane	ND	1.0	μg		1	1/7/2008 6:20:27 PM
Bromodichloromethane	ND	1.0	μg.		1	1/7/2008 6:20:27 PM
Bromoform	ND	1.0	μg,		1	1/7/2008 6:20:27 PM
Bromomethane	ND	1.0	μg		1	1/7/2008 6:20:27 PM
2-Butanone	ND	10	μg		1	1/7/2008 6:20:27 PM
Carbon disulfide	ND	10	μg		1	1/7/2008 6:20:27 PM
Carbon Tetrachloride	ND	1.0	μg		1	1/7/2008 6:20:27 PM
Chlorobenzene	ND	1.0	µg,		1	1/7/2008 6:20:27 PM
Chloroethane	ND	2.0	μg,		1	1/7/2008 6:20:27 PM
Chloroform	ND	1.0	μg/		1	1/7/2008 6:20:27 PM
Chloromethane	ND	1.0	μg		1	1/7/2008 6:20:27 PM
2-Chlorotoluene	ND	1.0	μg		1	1/7/2008 6:20:27 PM
4-Chlorotoluene	ND	1.0	μg/		1	1/7/2008 6:20:27 PM
cis-1,2-DCE	ND	1.0	μg/		1	1/7/2008 6:20:27 PM
cis-1,3-Dichloropropene	ND	1.0	μgi		1	1/7/2008 6:20:27 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/		1	1/7/2008 6:20:27 PM
Dibromochloromethane	ND	1.0	μg/		1	1/7/2008 6:20:27 PM
Dibromomethane	ND	1.0	μg/		1	1/7/2008 6:20:27 PM
1,2-Dichlorobenzene	ND	1.0	µg/		1	1/7/2008 6:20:27 PM
1,3-Dichlorobenzene	ND	1.0	μg/		1	1/7/2008 6:20:27 PM
1,4-Dichlorobenzene	ND	1.0	μg/		1	1/7/2008 6:20:27 PM
Dichlorodifluoromethane	ND	1.0	μg/		1	1/7/2008 6:20:27 PM
1,1-Dichloroethane	ND	1.0	μg/		1	1/7/2008 6:20:27 PM
1,1-Dichloroethene	ND	1.0	µg/		1	1/7/2008 6:20:27 PM
1,2-Dichloropropane	ND	1.0	μg/		1	1/7/2008 6:20:27 PM
1,3-Dichloropropane	ND	1.0	μg/		1	1/7/2008 6:20:27 PM
2,2-Dichloropropane	ND	2.0	μg/		1	1/7/2008 6:20:27 PM
1,1-Dichloropropene	ND	1.0	µg/		1	1/7/2008 6:20:27 PM
Hexachlorobutadiene	ND	1.0	µg/		1	1/7/2008 6:20:27 PM

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 12 of 78

CLIENT:	Western Refining Southwest, Gallup	Client Sample ID: OW-30	
Lab Order:	0801006	Collection Date: 12/28/2007 2	2:25:00 PM
Project:	2007 Annual GW Samples	Date Received: 1/2/2008	
Lab ID:	0801006-06	Matrix: AQUEOUS	

Hall Environmental Analysis Laboratory, Inc.

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES				<u></u>	Analyst: BDH
2-Hexanone	ND	10	µg/L	1	1/7/2008 6:20:27 PM
Isopropylbenzene	ND	1.0	μg/L	1	1/7/2008 6:20:27 PM
4-Isopropyltoluene	ND	1.0	µg/L	1	1/7/2008 6:20:27 PM
4-Methyl-2-pentanone	ND	· 10	μg/L	1	1/7/2008 6:20:27 PM
Methylene Chloride	ND	3.0	μg/L	1	1/7/2008 6:20:27 PM
n-Butylbenzene	ND	1.0	· μg/L	1	1/7/2008 6:20:27 PM
n-Propylbenzene	ND	[.] 1.0	µg/L	1	1/7/2008 6:20:27 PM
sec-Butylbenzene	ND	1.0	µg/L	1	1/7/2008 6:20:27 PM
Styrene	ND	1.0	μg/L	1	1/7/2008 6:20:27 PM
tert-Butylbenzene	ND	1.0	µg/L	1	1/7/2008 6:20:27 PM
1,1,1,2-Tetrachloroethane	ND	1.0	hâ∖r	1	1/7/2008 6:20:27 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	1/7/2008 6:20:27 PM
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	1/7/2008 6:20:27 PM
trans-1,2-DCE	ND	1.0	µg/L	1	1/7/2008 6:20:27 PM
trans-1,3-Dichloropropene	ND	· 1.0	μg/L	1	1/7/2008 6:20:27 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	1/7/2008 6:20:27 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	1/7/2008 6:20:27 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	1/7/2008 6:20:27 PM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	1/7/2008 6:20:27 PM
Trichloroethene (TCE)	ND	1.0	µg/L	1	1/7/2008 6:20:27 PM
Trichlorofluoromethane	ND	1.0	µg/L	1	1/7/2008 6:20:27 PM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	1/7/2008 6:20:27 PM
Vinyl chloride	ND	1.0	µg/L	1	1/7/2008 6:20:27 PM
Xylenes, Total	ND	1.5	µg/L	1	1/7/2008 6:20:27 PM
Surr: 1,2-Dichloroethane-d4	119	68.1-123	%REC	1	1/7/2008 6:20:27 PM
Surr: 4-Bromofluorobenzene	105	53.2-145	%REC	1	1/7/2008 6:20:27 PM
Surr: Dibromofluoromethane	112	68.5-119	%REC	1	1/7/2008 6:20:27 PM
Surr: Toluene-d8	113	64-131	%REC	1	1/7/2008 6:20:27 PM

Qualifiers:

*

Value exceeds Maximum Contaminant Level

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank

Date: 21-Jan-08

- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- Reporting Limit RL

Page 13 of 78

CLIENT: Lab Order: Project: Lab ID:	Western Refining Sour 0801006 2007 Annual GW Sam 0801006-07			Co	nt Sample ID: Nection Date: ate Received: Matrix:	12/29/200	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE		<u></u>				Analyst: SCC
Diesel Range O	rganics (DRO)	ND	1.0		mg/L	1	1/3/2008 11:41:00 AM
Motor Oil Range	e Organics (MRO)	ND	5.0		mg/L	1	1/3/2008 11:41:00 AM
Surr: DNOP		114	58-140	•	%REC	1	1/3/2008 11:41:00 AM
EPA METHOD	8015B: GASOLINE RANG	GE					Analyst: NSE
Gasoline Range	Organics (GRO)	ND	0.050		mg/L	1	1/4/2008 7:35:37 PM
Surr: BFB		102	79.2-121		%REC	1	1/4/2008 7:35:37 PM
EPA METHOD	300.0: ANIONS						Analyst: SMF
Fluoride		0.89	0.10		mg/L	1	1/3/2008 3:14:37 PM
Chloride		53	1.0		mg/L	10	1/3/2008 3:32:02 PM
Nitrate (As N)+N	litrite (As N)	ND	1.0		mg/L	5	1/3/2008 10:01:17 AM
	thophosphate (As P)	ND	0.50	н	mg/L	1	1/3/2008 3:14:37 PM
Sulfate		170	5.0		mg/L .	10	1/3/2008 3:32:02 PM
	7470: MERCURY						Analyst: SLB
Mercury		ND	0.00020		mg/L	1	1/3/2008 3:10:05 PM
	5010B: DISSOLVED MET	119					Analyst: NMC
Arsenic	DOTUD. DISSOLATD MILT	ND	0.020		mg/L	1	1/14/2008 8:41:01 AM
		ND	0.020		mg/L	1	1/14/2008 8:41:01 AM
Barium Cadmium		ND	0.0020		mg/L	1	1/14/2008 8:41:01 AM
Calcium		1.9	1.0		mg/L	1	1/14/2008 8:41:01 AM
Chromium		ND	0.0060		mg/L	1	1/14/2008 8:41:01 AM
Lead		ND	0.0050		mg/L	1	1/14/2008 8:41:01 AM
Magnesium		ND	1.0		mg/L	1	1/14/2008 8:41:01 AM
Potassium		ND	1.0		mg/L	1	1/14/2008 8:41:01 AM
Selenium		ND	0.050		mg/L	1	1/14/2008 8:41:01 AM
Silver		ND	0.0050		mg/L	1	1/14/2008 8:41:01 AM
Sođium		230	10		mg/L	10	1/14/2008 12:17:02 PM
	TAL RECOVERABLE ME	TALS					Analyst: TES
Arsenic		0.020	0.020		mg/L	1	1/12/2008 3:23:29 PM
Barium		ND	0.020		mg/L	1	1/12/2008 3:23:29 PM
Cadmium		ND	0.0020		mg/L	1	1/12/2008 3:23:29 PM
Calcium		3.2	1.0		mg/L	1	1/12/2008 3:23:29 PM
Chromium		ND	0.0060		mg/L	. 1	1/12/2008 3:23:29 PM
Copper		ND	0.0060		mg/L	1 .	1/12/2008 3:23:29 PM
iron		0.092	0.050		mg/L	1	1/12/2008 3:23:29 PM
Lead		ND	0.0050		mg/L	1	1/12/2008 3:23:29 PM
Magnesium		ND	1.0		mg/L	1	1/12/2008 3:23:29 PM
Manganese		0.018	0.0020		mg/L	1	1/12/2008 3:23:29 PM
Qualifiers: * E J	Value above quantitation ra	nge ntitation limits		H H M	Holding times CL Maximum Co	s for preparation	ciated Method Blank on or analysis exceeded yel

T,

ND Not Detected at the Reporting Limit Spike recovery outside accepted recovery limits

S

RL Reporting Limit

Page 14 of 78

Date: 21-Jan-08

•	
1	
_	

Date: 21-Jan-08

CLIENT: Western Refining Southwest, Gallup Lab Order: 0801006 Project: 2007 Annual GW Samples Lab ID: 0801006-07

Client Sample ID: MW-1 Collection Date: 12/29/2007 9:10:00 AM Date Received: 1/2/2008

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA 6010B: TOTAL RECOVERABLE ME	TALS		····	<u></u>	Analyst: TES
Potassium	ND	1.0	mg/L	1	1/12/2008 3:23:29 PM
Selenium	ND	0.050	mg/L	1	1/12/2008 3:23:29 PM
Silver	ND	0.0050	mg/L	1	1/12/2008 3:23:29 PM
Sodium	280	5.0	mg/L	5	1/15/2008 11:25:26 AM
Uranium	ND	0.10	mg/L	1	1/12/2008 3:23:29 PM
Zinc	ND	0.050	mg/L	1	1/12/2008 3:23:29 PM
PA METHOD 8270C: SEMIVOLATILES					Analyst: JDC
Acenaphthene	NĎ	10	µg/L	1	1/9/2008
Acenaphthylene	ND	10	μg/L	1	1/9/2008
Aniline	ND	10	µg/L	1	1/9/2008
Anthracene	ND	10	µg/L	1	1/9/2008
Azobenzene	ND	10	μg/L	1	1/9/2008
Benz(a)anthracene	ND	10	µg/L	1	1/9/2008
Benzo(a)pyrene	ND	10	μg/L	1	1/9/2008
Benzg(b)fluoranthene	ND	10	μg/L	1	1/9/2008
Benzo(g,h,i)perylene	ND	10	μg/L	1	1/9/2008
Benzo(k)fluoranthene	ND	10	µg/L	1	1/9/2008
Benzoic acid	ND	20	µg/L	1	1/9/2008
Benzyl alcohol	ND	10	μg/L	1	1/9/2008
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	1/9/2008
Bis(2-chloroethyl)ether	ND	10	μg/L	1	1/9/2008
Bis(2-chloroisopropyl)ether	ND	10	µg/L	1	1/9/2008
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	·1	1/9/2008
4-Bromophenyl phenyl ether	ND	10	µg/L	1	1/9/2008
Butyl benzyl phthalate	ND	10	μg/L	1	1/9/2008
Carbazole	· ND	10	μg/L	1	1/9/2008
	ND	10	μg/L	1	1/9/2008
4-Chloro-3-methylphenol	ND	10	μg/L	1	1/9/2008
4-Chloroaniline	ND	10	µg/L	. 1	1/9/2008
2-Chloronaphthalene	ND	10	μg/L	· 1	1/9/2008
2-Chlorophenol	ND	10	µg/L	1	1/9/2008
4-Chlorophenyl phenyl ether	ND	10	µg/L	1	1/9/2008
Chrysene Di-n-butyl phthalate	ND	10	μg/L	1	1/9/2008
	ND	10	μg/L	1	1/9/2008
Di-n-octyl phthalate	ND	10	μg/L	1	1/9/2008
Dibenz(a,h)anthracene	ND	10	μg/L	1	1/9/2008
Dibenzofuran	ND	10	μg/L	1	1/9/2008
1,2-Dichlorobenzene	ND	10	µg/L	1	1/9/2008
1,3-Dichlorobenzene	ND	10	μg/L	1	1/9/2008
1,4-Dichlorobenzene	ND	10	μg/L μg/L		
3,3'-Dichlorobenzidine				1	1/9/2008
Diethyl phthalate ND		• 10	µg/L	1	1/9/2008
Qualifiers: * Value exceeds Maximum Cor				ociated Method Blank	
E Value above quantitation range					ion or analysis exceeded
J Analyte detected below quant				Contaminant Le	evel
ND Not Detected at the Reporting	Limit		RL Reporting	Limit	Page 15 of

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 15 of 78

Date: 21-Jan-08

CLIENT: Western Refining Southwest, Gallup Lab Order: 0801006 **Project:** 2007 Annual GW Samples Lab ID: 0801006-07

Client Sample ID: MW-1 Collection Date: 12/29/2007 9:10:00 AM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATIL	ES			<u></u>	Analyst: JDC
Dimethyl phthalate	ND	10	µg/L	1	1/9/2008
2,4-Dichlorophenol	ND	10	µg/L	1	1/9/2008
2,4-Dimethylphenol	ND	10	μg/L	1	1/9/2008
4,6-Dinitro-2-methylphenol	ND	10	μg/L	1	1/9/2008
2,4-Dinitrophenol	ND	20	μg/L	1	1/9/2008
2,4-Dinitrotoluene	ND	10	µg/L	1	1/9/2008
2,6-Dinitrotoluene	ND	10	µg/L	1	1/9/2008
Fluoranthene	ND	10	µg/L	1	1/9/2008
Fluorene	ND	10	μg/L	1	1/9/2008
Hexachlorobenzene	ND	10	μg/L	1	1/9/2008
Hexachlorobutadiene	ND	10	µg/L	1	1/9/2008
Hexachlorocyclopentadiene	ND	10	μg/L.	1	1/9/2008
Hexachloroethane	ND	10	µg/L	1	1/9/2008
Indeno(1,2,3-cd)pyrene	ND	10	µg/L	1	1/9/2008
Isophorone	ND	10	µg/L	1	1/9/2008
2-Methylnaphthalene	ND	10	µg/L	1	1/9/2008
2-Methylphenol	ND	10	µg/L	1	1/9/2008
3+4-Methylphenol	ND	10	µg/L	1	1/9/2008
N-Nitrosodi-n-propylamine	ND	10	µg/L	1	1/9/2008
N-Nitrosodimethylamine	ND	10	μg/L	1	1/9/2008
N-Nitrosodiphenylamine	ND	10	µg/L	1	1/9/2008
Naphthalene	ND	10	µg/L	1	1/9/2008
2-Nitroaniline	ND	10	μg/L	1	1/9/2008
3-Nitroaniline	ND	10	µg/L	1	1/9/2008
4-Nitroaniline	ND	10	μg/L. ·	1	1/9/2008
Nitrobenzene	ND	10	µg/L	1	1/9/2008
2-Nitrophenol	ND	10	μg/L	1	1/9/2008
4-Nitrophenol	ND	10	µg/L	1	1/9/2008
Pentachlorophenol	- ND	10	µg/L	1	1/9/2008
Phenanthrene	ND	10	µg/L	1	1/9/2008
Phenol	ND	10	µg/L	1	1/9/2008
Pyrene	ND	10	µg/L	1	1/9/2008
Pyridine	ND	10	μg/L	1	1/9/2008
1,2,4-Trichlorobenzene	ND	10	µg/L	1	1/9/2008
2,4,5-Trichlorophenol	ND	10	µg/L	1	1/9/2008
2,4,6-Trichlorophenol	ND	10	µg/L	1	1/9/2008
Surr: 2,4,6-Tribromophenol	51.7	16.6-150	%REC	1 '	1/9/2008
Surr: 2-Fluorobiphenyl	62.6	19.6-134	%REC	1	1/9/2008
Surr: 2-Fluorophenol	40.0	9.54-113	%REC	1	1/9/2008
Surr: 4-Terphenyl-d14	89.6	22.7-145	%REC	1	1/9/2008
Surr: Nitrobenzene-d5	57.8	14.6-134	%REC	1	1/9/2008
Surr: Phenol-d5	28.6	10.7-80.3	%REC	1	1/9/2008

Qualifiers:

Value exceeds Maximum Contaminant Level Value above quantitation range E

*

Analyte detected below quantitation limits J

- Not Detected at the Reporting Limit ND
- Spike recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 16 of 78

CLIENT:	Western Refining So	uthwest, Gallup		Client Sample ID:	: MW-1	
Lab Order:	0801006			Collection Date	12/29/20	07 9:10:00 AM
Project:	2007 Annual GW Sa	mples		Date Received	1/2/2008	
Lab ID:	0801006-07	•			AQUEO	JS
		D H				
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8270C: SEMIVOLATILE	S				Analyst: JDC
EPA METHOD	8260B: VOLATILES					Analyst: BDH
Benzene		ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
Toluene		ND	1.0	μg/L	. 1	1/7/2008 6:48:28 PM
Ethylbenzene		ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
Methyl tert-butyl	ether (MTBE)	ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
1,2,4-Trimethylt		ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
1,3,5-Trimethylt		ND .	1.0	μg/L	1	1/7/2008 6:48:28 PM
1,2-Dichloroetha		ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
1,2-Dibromoeth		ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
Naphthalene		ND	2.0	μg/Ł	1	1/7/2008 6:48:28 PM
1-Methylnaphthe	alene	ND	4.0	μg/L	1	1/7/2008 6:48:28 PM
2-Methylnaphtha		ND	4.0	μg/L	1	1/7/2008 6:48:28 PM
Acetone		ND	10	µg/L	1	1/7/2008 6:48:28 PM
Bromobenzene		ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
Bromochlorome	thane	ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
Bromodichlorom		ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
Bromoform		ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
Bromomethane		ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
2-Butanone		ND	10	μg/L	1	1/7/2008 6:48:28 PM
Carbon disulfide		ND	10	μg/L	1	1/7/2008 6:48:28 PM
Carbon Tetrach		ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
Chlorobenzene		ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
Chloroethane		ND	2.0	μg/L	1	1/7/2008 6:48:28 PM
Chloroform		ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
Chloromethane		ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
2-Chlorotoluene		ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
4-Chiorotoluene		ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
cis-1,2-DCE		ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
cis-1,3-Dichlorop	vonene	ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
1,2-Dibromo-3-c		ND	2.0	μg/L	1	1/7/2008 6:48:28 PM
Dibromochlorom		ND	1.0	μg/L	, 1	1/7/2008 6:48:28 PM
Dibromomethan		ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
1,2-Dichlorobena		ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
1,3-Dichlorobena		ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
1,4-Dichlorobena		ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
Dichlorodifluoror		ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
1,1-Dichloroetha		ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
1,1-Dichloroethe		ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
1,2-Dichloroprop		ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
1,3-Dichloroprop		ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
2,2-Dichloroprop		ND	2.0	μg/L	1	1/7/2008 6:48:28 PM

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

,

MCL Maximum Contaminant Level

RL Reporting Limit

Page 17 of 78

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-07

Client Sample ID: MW-1 Collection Date: 12/29/2007 9:10:00 AM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: BDI
1,1-Dichloropropene	ND	. 1.0	µg/L	· 1	1/7/2008 6:48:28 PM
Hexachlorobutadiene	ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
2-Hexanone	ND	10	μg/L	1	1/7/2008 6:48:28 PM
isopropylbenzene	ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
4-Isopropyltoluene	ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	1/7/2008 6:48:28 PM
Methylene Chloride	ND	3.0	µg/L	. 1	1/7/2008 6:48:28 PM
n-Butylbenzene	ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
n-Propylbenzene	ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
sec-Butylbenzene	ND	1.0	μg/L	1 -	1/7/2008 6:48:28 PM
Styrene	ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
tert-Butylbenzene	ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μ g/L	1	1/7/2008 6:48:28 PM
Tetrachloroethene (PCE)	. ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
trans-1,2-DCE	ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
trans#1,3-Dichloropropene	ND	1.0	μg/Ľ	1	1/7/2008 6:48:28 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	1/7/2008 6:48:28 PM
Trichlorofluoromethane	ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	[.] 1	1/7/2008 6:48:28 PM
Vinyl chloride	ND	1.0	µg/L	1	1/7/2008 6:48:28 PM
Xylenes, Total	ND	1.5	µg/L	1	1/7/2008 6:48:28 PM
Surr: 1,2-Dichloroethane-d4	120	68.1-123	%REC	1	1/7/2008 6:48:28 PM
Surr: 4-Bromofluorobenzene	110	53.2-145	%REC	1	1/7/2008 6:48:28 PM
Surr: Dibromofluoromethane	110	68.5-119	%REC	1	1/7/2008 6:48:28 PM
Surr: Toluene-d8	117	64-131	%REC	1	1/7/2008 6:48:28 PM
PA 120.1: SPECIFIC CONDUCTANCE		·			Analyst: NSB
Specific Conductance	1100	0.010	µmhos/	cm 1	1/2/2008
SM4500-H+B: PH					Analyst: NSB
рH	8.89	0.1	pH units	3 1	1/2/2008

P

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 18 of 78

Lab Order: Project:	0801006						
Project:	0001000			Co	llection Date:	12/29/2007	4:00:00 PM
	2007 Annual GW San	nples		Da	ate Received:	1/2/2008	
Lab ID:	0801006-08				Matrix:	AQUEOUS	; ·
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
PA METHOD 8	015B: DIESEL RANGE						Analyst: SCC
Diesel Range Or	ganics (DRO)	ND	. 1.0		mg/L	. 1	1/3/2008 12:11:58 PM
-	Organics (MRO)	ND	5.0		mg/L	1	1/3/2008 12:11:58 PM
Surr: DNOP		111	58-140	*.	%REC	1	1/3/2008 12:11:58 PM
	015B: GASOLINE RAN	GE					Analyst: NSB
	Organics (GRO)	ND	0.050		mg/L	1	1/4/2008 8:35:45 PM
Surr: BFB		104	79.2-121		%REC	1	1/4/2008 8:35:45 PM
PA METHOD 3	00.0: ANIONS						Analyst: SMP
Fluoride		0.42	0.10		mg/L	1	1/3/2008 3:49:27 PM
Chloride		17	0.10		mg/L	1	1/3/2008 3:49:27 PM
Nitrate (As N)+N	itrite (As N)	ND	1.0		mg/L	5	1/3/2008 12:03:07 PM
Phosphorus, Ort	hophosphate (As P)	ND	0.50	н	mg/L	1	1/3/2008 3:49:27 PM
Sulfate		160	5.0		mg/L	10	1/3/2008 4:06:52 PM
PA METHOD 7	470: MERCURY						Analyst: SLB
Mercury		ND	0.00020		mg/L	1	1/3/2008 3:11:50 PM
PA METHOD 6	010B: DISSOLVED ME	TALS					Analyst: NMO
Arsenic		ND	0.020		mg/L	1	1/14/2008 8:45:11 AM
Barlum		ND	0.020		mg/L	1	1/14/2008 8:45:11 AM
Cadmium	,	ND	0.0020		mg/L	1	1/14/2008 8:45:11 AM
Calcium		1.9	1.0		mg/L	1	1/14/2008 8:45:11 AM
Chromium		ND	0.0060		mg/L	1	1/14/2008 8:45:11 AM
Lead		ND	0.0050		mg/L	1	1/14/2008 8:45:11 AM
Magnesium		ND	1.0		mg/L	1	1/14/2008 8:45:11 AM
Potassium		ND	1.0		mg/L	1	1/14/2008 8:45:11 AM
Selenium		ND	0.050		mg/L		1/14/2008 8:45:11 AM
Silver		ND	0.0050		mg/L	1	1/14/2008 8:45:11 AM
Sodium		250	10		mg/L	10	1/14/2008 12:20:05 PM
	TAL RECOVERABLE M						Analyst: TES
Arsenic		ND	0.020		mg/L.		1/12/2008 3:27:38 PM
Barium		0.021	0.020		mg/L	1	1/12/2008 3:27:36 PM
Cadmium		ND	0.0020		mg/L		1/12/2008 3:27:36 PM
Calcium		1.9	1.0		mg/L mg/l	1	1/12/2008 3:27:36 PM
Chromium		ND	0.0060		mg/L mg/l		1/12/2008 3:27:36 PM
Copper		ND	0.0060		mg/L mg/l		1/12/2008 3:27:36 PM
Iron		ND	0.050		mg/L		1/12/2008 3:27:36 PM
Lead		ND	0.0050		mg/L ma/l		1/12/2008 3:27:36 PM
Magnesium Manganese		ND 0.0052	1.0 0.0020		mg/L mg/L		1/12/2008 3:27:36 PM 1/12/2008 3:27:36 PM

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

RL Reporting Limit

Page 19 of 78

W Samples			MW-4 12/29/2007 4:00:00 PM		
		Date Received	: 1/2/2008	•	
		Matrix	: AQUEOU	S	
Result	PQL	Qual Units	DF	Date Analyzed	
BLE METALS	وي الله الله الله الله الله الله الله الل			Analyst: TES	
· ND	1.0	mg/L	1	1/12/2008 3:27:36 PM	
. ND	0.050	mg/L	1	1/12/2008 3:27:36 PM	
ND	0.0050	mg/L	1	1/12/2008 3:27:36 PM	
320	5.0	mg/L	5	1/15/2008 11:28:22 AN	
ND	0.10	mg/L	. 1	1/12/2008 3:27:36 PM	
ND	0.050	mg/L	1	1/12/2008 3:27:36 PM	
TILES				Analyst: JDC	
ND	10	µg/∟	1	1/9/2008	
ND	10	µg/L	1	1/9/2008	
ND	10	µg/L	1	1/9/2008	
ND	10	µg/L	1	1/9/2008	
ND	10	µg/L	1	1/9/2008	
ND	10	μg/L	1	1/9/2008	
ND	10	µg/L	1	1/9/2008	
ND	10	μg/L	1	1/9/2008	
ND	10	μg/L	1	1/9/2008	
ND	10	μg/L	1	1/9/2008	
ND	20	-	1	1/9/2008	
ND	20 10	μg/L μg/L	1	1/9/2008	
ND	10	µg/L	1	1/9/2008	
ŃD	10	μg/L	1	1/9/2008	
ND	10	µg/L	1	1/9/2008	
ND	10	μg/L	1	1/9/2008	
ND ND	10	µg/L ∙	1	1/9/2008	
ND	10		1	1/9/2008	
ND ND		μg/L.	1		
ND	. 10 10	µg/L		1/9/2008	
ND	10	µg/L	1	1/9/2008 1/9/2008	
ND	10	μg/L	1	1/9/2008	
ND	10	μg/L	1	1/9/2008	
ND	10	μg/L μg/L	1	1/9/2008	
ND	10	μg/L	1	1/9/2008	
ND	10		1		
ND	10	μg/L μg/L	1	1/9/2008 1/9/2008	
. ND	10	μg/L	1	1/9/2008	
ND .	10	µg/L	1	1/9/2008	
				1/9/2008	
				1/9/2008	
			• 1	1/9/2008	
			1	1/9/2008	
			1	1/9/2008	
į	ND ND ND ND ND mum Contaminant Level	ND 10 ND 10 ND 10 ND 10 mum Contaminant Level	ND 10 µg/L ND 10 µg/L ND 10 µg/L ND 10 µg/L mum Contaminant Level B Analyte dete	ND 10 µg/L 1 mum Contaminant Level B Analyte detected in the association of the provided of the pr	

Date: 21-Jan-08

Analyte detected below quantitation limits J

Not Detected at the Reporting Limit ND

S Spike recovery outside accepted recovery limits MCL Maximum Contaminant Level

Reporting Limit RL

Page 20 of 78

Date: 21-Jan-08

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0801006
Project:	2007 Annual GW Samples
Lab ID:	0801006-08

Client Sample ID: MW-4 Collection Date: 12/29/2007 4:00:00 PM Date Received: 1/2/2008

Matrix: AQUEOUS

Analyses	Result	PQL	Qual U	nits	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILI	ES					Analyst: JDC
Dimethyl phthalate	ND	10	្មមុទ	g/L	1	1/9/2008
2,4-Dichlorophenol	ND	10	hi	3/L	1	1/9/2008
2,4-Dimethylphenol	ND	10	. µg	g/L	1	1/9/2008
4,6-Dinitro-2-methylphenol	ND	10	μ	g/L	1	1/9/2008
2,4-Dinitrophenol	ND	20	μţ	j/L	1	1/9/2008
2,4-Dinitrotoluene	ND	10	μ	ј/L	1	1/9/2008
2,6-Dinitrotoluene	ND	. 10	μι	ı∕L	1	1/9/2008
Fluoranthene	ND	10	μ	J/L	1	1/9/2008
Fluorene	ND	10	μ	J/L	1	1/9/2008
Hexachlorobenzene	ND	10	μç	1/L	1	1/9/2008
Hexachlorobutadiene	ND	10	hõ	I/L	1	1/9/2008
Hexachlorocyclopentadiene	ND	10	μ	/L	1	1/9/2008
Hexachioroethane	ND	10	նկ	I/L	1	1/9/2008
Indeno(1,2,3-cd)pyrene	ND	10	рç		1	1/9/2008
Isophorone	ND	10	μg	I/L	1.	1/9/2008
2-Methylnaphthalene	ND	10	μ		1	1/9/2008
2-Methylphenol	ND	10	μα		1	1/9/2008
3+4-Methylphenol	ND	10	þg		1	1/9/2008
N-Nitrosodi-n-propylamine	ND	10	þg		1	1/9/2008
N-Nitrosodimethylamine	ND	10	μg		1	1/9/2008
N-Nitrosodiphenylamine	ND	10	μg		1	1/9/2008
Naphthalene	NÐ	10	94		1	1/9/2008
2-Nitroaniline	ND	10	gų		1	1/9/2008
3-Nitroaniline	ND	10	μg		1	1/9/2008
4-Nitroaniline	ND	10	μg		1	1/9/2008
Nitrobenzene	ND	10	μġ		1	1/9/2008
2-Nitrophenol	ND	10	μg		1	1/9/2008
4-Nitrophenol	ND	10	μg		1	1/9/2008
Pentachlorophenol	ND	10	μg		1	1/9/2008
Phenanthrene	ND	10	μg		1	1/9/2008
Phenol	ND	10	μg		1	1/9/2008
Pyrene	ND	10	μg		1	1/9/2008
Pyridine	ND	10	hà		1	1/9/2008
1,2,4-Trichlorobenzene	ND	10	μg		1	1/9/2008
2,4,5-Trichlorophenol	ND	10	μg		1	1/9/2008
2,4,6-Trichlorophenol	ND	10	hð		1	1/9/2008
Surr: 2,4,6-Tribromophenol	14.8	16.6- 150		REC	. 1	1/9/2008
Surr: 2-Fluorobiphenyl	72.6	19.6-134	%F	REC	1	1/9/2008
Surr: 2-Fluorophenol	48.5	9.54-113	%F	REC	1	1/9/2008
Surr: 4-Terphenyl-d14	88.7	22.7-145		REC	1	1/9/2008
Surr: Nitrobenzene-d5	69.5	14.6-134		REC	1	1/9/2008
Surr: Phenol-d5	35.8	10.7-80.3		REC	1	1/9/2008

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J . Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

CLIENT:	Western Refining Sou	thwest, Gallup		Client Sample II): MW-4	
Lab Order:	0801006			Collection Date	e: 12/29/20	07 4:00:00 PM
Project:	2007 Annual GW Sar	nples		Date Received	I: 1/2/2008	
Lab ID:	0801006-08			Matri	AQUEO	US
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8270C: SEMIVOLATILE	s				Analyst: JDC
	8260B: VOLATILES					Analyst: BDF
Benzene		ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
Toluene		ND	1.0	μg/L	1	1/7/2008 7:16:29 PM
Ethylbenzene		ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
Methyl tert-buty	ether (MTBE)	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
1,2,4-Trimethylt		ND	1.0	µg/L	1 ·	1/7/2008 7:16:29 PM
1,3,5-Trimethylk		ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
1,2-Dichloroetha		ND	1.0	μg/L	1	1/7/2008 7:16:29 PM
1,2-Dibromoeth		ND	1.0	μg/L	1	1/7/2008 7:16:29 PM
Naphthalene		ND	2.0	µg/L	1	1/7/2008 7:16:29 PM
1-Methylnaphth	alene	ND	4.0	μg/L	1	1/7/2008 7:16:29 PM
2-Methylnaphth		ND	4.0	µg/L	1	1/7/2008 7:16:29 PM
Acetone		ND	10	μg/L	1	1/7/2008 7:16:29 PM
Bromobenzene		ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
Bromochlorome	thane	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
Bromodichlorom		ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
Bromoform		ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
Bromomethane		ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
2-Butanone		ND	10	μg/L	1	1/7/2008 7:16:29 PM
Carbon disulfide	ł	ND	. 10	µg/L	1	1/7/2008 7:16:29 PM
Carbon Tetrachi	oride	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
Chlorobenzene		ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
Chloroethane		ND	2.0	µg/L	1	1/7/2008 7:16:29 PM
Chloroform		ND	1.0	μg/L	1	1/7/2008 7:16:29 PM
Chloromethane		ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
2-Chlorotoluene		ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
4-Chlorotoluene		ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
cis-1,2-DCE		ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
cis-1,3-Dichloror	propene	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
1,2-Dibromo-3-c	hloropropane	ND	2.0	μg/L	1	1/7/2008 7:16:29 PM
Dibromochlorom	ethane	NÐ	1.0	µg/L	1	1/7/2008 7:16:29 PM
Dibromomethan	e	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
1,2-Dichloroben:	zene	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
1,3-Dichlorobenz	zene	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
1,4-Dichlorobena	zene	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
Dichlorodifluoror	nethane	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
1,1-Dichloroetha	ne	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
1,1-Dichloroethe	ne	ND	1.0	μg/L	1	1/7/2008 7:16:29 PM
1,2-Dichloroprop	ane	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
1,3-Dichloroprop	ane	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
2,2-Dichloroprop	ane	NÐ	2.0	µg/L	1	1/7/2008 7:16:29 PM

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 21-Jan-08

CLIENT: Western Refining Southwest, Gallup Lab Order: 0801006 **Project:** 2007 Annual GW Samples Lab ID: 0801006-08

Client Sample ID: MW-4 Collection Date: 12/29/2007 4:00:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: BDH
1,1-Dichloropropene	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	1/7/2008 7:16:29 PM
2-Hexanone	ND	10	µg/L	1	1/7/2008 7:16:29 PM
Isopropylbenzene	ND	1.0	μg/L	1	1/7/2008 7:16:29 PM
4-Isopropyltoluene	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/7/2008 7:16:29 PM
Methylene Chloride	ND	3.0	µg/L	1	1/7/2008 7:16:29 PM
n-Butylbenzene	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
n-Propyibenzene	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
sec-Butylbenzene	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
Styrene	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
tert-Butylbenzene	ND	1.0	μg/L	1	1/7/2008 7:16:29 PM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	1/7/2008 7:16:29 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	1/7/2008 7:16:29 PM
trans-1,2-DCE	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	1/7/2008 7:16:29 PM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
1,1,1-Trichloroethane	ND	1.0	µg/L ⁺	1	1/7/2008 7:16:29 PM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	1/7/2008 7:16:29 PM
Trichlorofluoromethane	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	['] 1	1/7/2008 7:16:29 PM
Vinyl chloride	ND	1.0	µg/L	1	1/7/2008 7:16:29 PM
Xylenes, Total	ND	1.5	µg/L	1	1/7/2008 7:16:29 PM
Surr: 1,2-Dichloroethane-d4	118	68.1-123	%REC	1	1/7/2008 7:16:29 PM
Surr: 4-Bromofluorobenzene	97.4	53.2-145	%REC	1	1/7/2008 7:16:29 PM
Surr: Dibromofluoromethane	118	68.5-119	%REC	1	1/7/2008 7:16:29 PM
Surr: Toluene-d8	113	64-131	%REC	1	1/7/2008 7:16:29 PM
EPA 120.1: SPECIFIC CONDUCTANCE					Analyst: NSB
Specific Conductance	1200	0.010	µmhos/cm	1	1/2/2008
SM4500-H+B: PH					Analyst: NSB
pH	8.63	0.1	pH units	1	1/2/2008

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- Ε Value above quantitation range Analyte detected below quantitation limits
- J
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 23 of 78

CLIENT:	Western Refining Sou	thwest, Gallu	р		it Sample ID:			
Lab Order:	0801006			Co	llection Date:	12/29/200	7 12:45:00 PM	
Project:	2007 Annual GW San	nples		D	ate Received:	-		
Lab ID:	0801006-09				Matrix:	AQUEOUS		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	8015B: DIESEL RANGE				· · · · ·		Analyst: SCC	
Diesel Range C	Organics (DRO)	ND	1.0		mg/L	1	1/3/2008 12:42:51 PM	
Motor Oil Rang	e Organics (MRO)	ND	5.0		mg/L	1	1/3/2008 12:42:51 PM	
Surr: DNOP		119	58-140		%REC	1	1/3/2008 12:42:51 PM	
EPA METHOD	8015B: GASOLINE RAN	GE					Analyst: NSE	
	e Organics (GRO)	ND	0.050		mg/L	1	1/4/2008 9:05:54 PM	
Surr: BFB		101	79.2-121		%REC	1 ·	1/4/2008 9:05:54 PM	
	300.0: ANIONS						Analyst: SMF	
Fluoride		0.91	0.10		mg/L	1	1/3/2008 4:24:17 PM	
Chloride		65	1.0		mg/L	10	1/3/2008 4:41:41 PM	
Nitrate (As N)+I	Vitrite (As N)	ND	. 1.0		mg/L	5	1/3/2008 12:20:32 PM	
•	thophosphate (As P)	ND	0.50	н	mg/L	1	1/3/2008 4:24:17 PM	
Sulfate		180	5.0		mg/L	10	1/3/2008 4:4,1:41 PM	
	7470: MERCURY						Analyst: SLB	
Mercury	14/U: MERCORT	ND	0.00020		mg/L	1	1/3/2008 3:13:37 PM	
	6010B: DISSOLVED MET						Analyst: NMC	
	00106. DISSOLVED ME	ND	0.020		mg/L	1	1/14/2008 8:49:18 AM	
Arsenic		ND	0.020		mg/L	1	1/14/2008 8:49:18 AM	
Barium		ND	0.0020		mg/L	1	1/14/2008 8:49:18 AM	
Cadmium Calcium		1.4	1.0		mg/L	1	1/14/2008 8:49:18 AM	
Chromium		ND	0.0060		mg/L	1	1/14/2008 8:49:18 AM	
		ND	0.0050		mg/L	1	1/14/2008 8:49:18 AM	
Lead Magnesium		ND	1.0		mg/L	1	1/14/2008 8:49:18 AM	
Potassium		ND	1.0		mg/L	1	1/14/2008 8:49:18 AM	
Selenium		ND	0.050		mg/L	1	1/14/2008 8:49:18 AM	
Selenium Silver		ND	0.0050		mg/L	1	1/14/2008 8:49:18 AM	
Sodium		240	10		mg/L	10	1/14/2008 12:23:07 PM	
	TAL RECOVERABLE M	ETALS					Analyst: TES	
Arsenic		ND	0.020		mg/L	1	1/12/2008 3:31:44 PM	
Barium		ND	0.020		mg/L	- 1	1/12/2008 3:31:44 PM	
Cadmium		ND	0.0020		mg/L	1	1/12/2008 3:31:44 PM	
Calcium		1.5	1.0		mg/L	1	1/12/2008 3:31:44 PM	
Chromium		ND	0.0060		mg/L	1	1/12/2008 3:31:44 PM	
Copper		ND	0.0060		mg/L	1	1/12/2008 3:31:44 PM	
Iron		ND	0.050		mg/L	1	1/12/2008 3:31:44 PM	
Lead		ND	0.0050		mg/L	1	1/12/2008 3:31:44 PM	
Magnesium		ND	1.0		mg/L	1	1/12/2008 3:31:44 PM	
Manganese		0.0045	0.0020		mg/L	1	1/12/2008 3:31:44 PM	
Qualifiers: *	Value exceeds Maximum C Value above quantitation rs	· ·	1	E	•		ciated Method Blank on or analysis exceeded	

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

RL Reporting Limit

Page 24 of 78

CLIENT:	Western Refining South	west, Gallup		Client Sampl	e ID: MW-5			
Lab Order: 0801006				Collection	Date: 12/29/200	e: 12/29/2007 12:45:00 PM		
Project:	2007 Annual GW Sampl	es		Date Rece	ived: 1/2/2008			
Lab ID:	0801006-09			Ma	atrix: AQUEOU	S		
Analyses		Result	PQL	Qual Units	DF	Date Analyzed		
EPA 6010B: TC	TAL RECOVERABLE MET	ALS				Analyst: TES		
Potassium		ND	1.0	mg/L	1	1/12/2008 3:31:44 PM		
Selenium		ND	0.050	mg/L	1	1/12/2008 3:31:44 PM		
Silver		ND	0.0050	mg/L	1	1/12/2008 3:31:44 PM		
Sodium		290	5.0	mg/L	5	1/15/2008 11:31:18 AM		
Uranium		ND	0.10	mg/L	1	1/12/2008 3:31:44 PM		
Zinc	. *	ND	0.050	mg/L	· 1	1/12/2008 3:31:44 PM		
	8270C: SEMIVOLATILES					Analyst: JDC		
Acenaphthene		ND	10	μg/L	1	1/9/2008		
Acenaphthylene		ND	10	µg/L	1	1/9/2008		
Aniline		ND	10	μg/L	1	1/9/2008		
Anthracene		ND	10	µs/≃ µg/L	1	1/9/2008		
Azobenzene		ND	10	µg/L	1	1/9/2008		
Benz(a)anthrace		ND	10	µg/L	1	1/9/2008		
Benzo(a)pyrene		ND	10	µg/∟	1	1/9/2008		
Benzo(b)fluorani		· ND	10	µg/⊾	1	1/9/2008		
Benzo(g,h,i)pery		ND	10	μg/L	1	1/9/2008		
Benzo(g,fi,i)pery Benzo(k)fluorant		ND	10	μg/L	1	1/9/2008		
Benzoic acid	lielle	ND	20	μg/L	1	1/9/2008		
Benzyl alcohol		ND	10	µg/L	1	1/9/2008		
•	www.moth.co.o	ND	10	μg/L	1	1/9/2008		
Bis(2-chloroetho		ND	10	μg/L	1	1/9/2008		
Bis(2-chloroethy		ND	10	μg/L	1	1/9/2008		
Bis(2-chloroisop		ND	10	μg/L	1	1/9/2008		
Bis(2-ethylhexyl)		ND	10	• =		1/9/2008		
4-Bromophenyl p		ND		µg/L	1	1/9/2008		
Butyl benzyl pht	lalate	ND	10	µg/L				
Carbazole	- de la casa l		10	µg/L	1	1/9/2008		
4-Chloro-3-meth	yipnenoi	ND ND	10 10	µg/L	1 1	1/9/2008 1/9/2008		
4-Chloroaniline	lana			µg/L				
2-Chloronaphtha		ND ND	10 10	μg/L	1	1/9/2008 1/0/2008		
2-Chlorophenol	honvi ether	ND	10 10	µg/L µg/L	1	1/9/2008 1/9/2008		
4-Chlorophenyl p	monyi culci	ND	10	μg/L	1	1/9/2008		
Chrysene Di-n-butyl phthal	ata	ND	10	μg/L	1	1/9/2008		
Di-n-octyl phthala		ND	10	μg/L	1	1/9/2008		
Dibenz(a,h)anthr		ND	10	μg/L	1	1/9/2008		
Dibenzofuran		ND	10	µg/∟ µg/L	1	1/9/2008		
	ano	ND	10	μg/L	1	1/9/2008		
1,2-Dichlorobenz		ND	10					
1,3-Dichlorobenz		ND		µg/L	1	1/9/2008 1/0/2008		
1,4-Dichlorobenz			10 10	µg/L	1	1/9/2008		
3,3'-Dichloroben		ND	10	µg/L	1	1/9/2008		
Diethyl phthalate		ND	10	µg/L	1	1/9/2008		

Value exceeds Maximum Contaminant Level Ε Value above quantitation range

*

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits S

В Analyte detected in the associated Method Blank

Date: 21-Jan-08

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 25 of 78

Hall Environmental Analysis Laboratory, Inc.

Date: 21-Jan-08

CLIENT:	Western Refining Southwest, Gallup	Client Sample ID:	MW-5
Lab Order:	0801006	Collection Date:	12/29/2007 12:45:00 PM
Project:	2007 Annual GW Samples	Date Received:	1/2/2008
Lab ID:	0801006-09	Matrix:	AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES		<u></u>				Analyst: JD0
Dimethyl phthalate	ND	10		µg/L	1	1/9/2008
2,4-Dichlorophenol	ND	10		µg/L	1	1/9/2008
2,4-Dimethylphenol	ND	10		µg/L	1	1/9/2008
4,6-Dinitro-2-methylphenol	ND	10		µg/L	1	1/9/2008
2,4-Dinitrophenol	ND	20		µg/L	1	1/9/2008
2,4-Dinitrotoluene	ND	10		µg/L	1	1/9/2008
2,6-Dinitrotoluene	ND	10		µg/L	[`] 1	1/9/2008
Fluoranthene	ND	10		µg/L	1	1/9/2008
Fluorene	ND	10		µg/L	1	1/9/2008
Hexachlorobenzene	ND	10		μg/L	1	1/9/2008
Hexachlorobutadiene	ND	10		µg/L	1	1/9/2008
Hexachlorocyclopentadiene	ND	10		µg/L	1	1/9/2008
Hexachloroethane	ND	10		µg/L	1	1/9/2008
Indeno(1,2,3-cd)pyrene	ND	10		µg/L	1	1/9/2008
Isophorone	ND	10		µg/L	1	1/9/2008
2-Méthylnaphthalene	ND	10		µg/L	1	1/9/2008
2-Methylphenol	ND	10		µg/L	1	1/9/2008
3+4-Methylphenol	ND	10		µg/L	1	1/9/2008
N-Nitrosodi-n-propylamine	ND	10		µg/L	1	1/9/2008
N-Nitrosodimethylamine	ND	10		µg/L	1	1/9/2008
N-Nitrosodiphenylamine	ND	10		µg/L	1	1/9/2008
Naphthalene	ND	10		µg/L	1	1/9/2008
2-Nitroaniline	ND	10		µg/L	1	1/9/2008
3-Nitroaniline	ND	10		µg/L`	1	1/9/2008
4-Nitroaniline	ND	10		µg/L	· 1	1/9/2008
Nitrobenzene	ND	10		µg/L	1	1/9/2008
2-Nitrophenol	ND	· 10		µg/L	1	1/9/2008
4-Nitrophenol	ND	10		µg/L	1	1/9/2008
Pentachlorophenol	ND	10		µg/L	1	1/9/2008
Phenanthrene	ND	10		µg/L	1	1/9/2008
Phenol	ND	10		µg/L	1	1/9/2008
Pyrene	ND	10		µg/L	1	1/9/2008
Pyridine	ND	10		µg/L	1	1/9/2008
1,2,4-Trichlorobenzene	ND	10		µg/L	1	1/9/2008
2,4,5-Trichlorophenol	ND	10		µg/L	1	1/9/2008
2,4,6-Trichlorophenol	ND	10		µg/Լ	1	1/9/2008
Surr: 2,4,6-Tribromophenol	15.9	16.6-150	S	%REC	1	1/9/2008
Surr: 2-Fluorobiphenyl	83.2	19.6-134		%REC	1	1/9/2008
Surr: 2-Fluorophenol	55.2	9.54-113		%REC	1	1/9/2008
Surr: 4-Terphenyl-d14	112	22.7-145		%REC	1	1/9/2008
Surr: Nitrobenzene-d5	79.3	14.6-134		%REC	1	1/9/2008
Surr: Phenol-d5	39.4	10.7-80.3		%REC	· 1	1/9/2008

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

CLIENT: Lab Order:	Western Refining South 0801006	west, Gallup			it Sample ID: llection Date:		12-45-00 PM
	2007 Annual GW Samp	les					12.43.00 1 141
Project:	-	162		Da	ate Received:		
Lab ID:	0801006-09					AQUEOUS	· · · · · · · · · · · · · · · · · · ·
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 82	70C: SEMIVOLATILES						Analyst: JDC
EPA METHOD 82	60B: VOLATILES						Analyst: BDH
Benzene		ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
Toluene		ND	1.0		µg/L	1 ·	1/7/2008 7:44:34 PM
Ethylbenzene		ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
Methyl tert-butyl el	her (MTBE)	ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
1,2,4-Trimethylber		ND	1.0		µg/L	1 ·	1/7/2008 7:44:34 PM
1,3,5-Trimethylber	izene	ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
1,2-Dichloroethane	e (EDC)	ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
1,2-Dibromoethan		ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
Naphthalene		ND	2.0		μg/L	1	1/7/2008 7:44:34 PM
1-Methylnaphthale	ne	ND	4.0		µg/L	1	1/7/2008 7:44:34 PM
2-Methylnaphthale	ne	ND	4.0		µg/L	1	1/7/2008 7:44:34 PM
Acetone		ND	10		µg/L	<u>,</u> 1	1/7/2008 7:44:34 PM
Bromobenzene		ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
Bromochlorometha	ine	ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
Bromodichloromet	hane	ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
Bromoform		ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
Bromomethane		ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
2-Butanone		ND	10		µg/L	1	1/7/2008 7:44:34 PM
Carbon disulfide		ND	10		µg/L	1	1/7/2008 7:44:34 PM
Carbon Tetrachlori	de	ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
Chlorobenzene		ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
Chloroethane	*	ND	2.0		µg/L	1	1/7/2008 7:44:34 PM
Chloroform		ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
Chloromethane		ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
2-Chlorotoluene	,	ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
4-Chlorotoluene		ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
cis-1,2-DCE		ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
cis-1,3-Dichloropro	pene	ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
1,2-Dibromo-3-chlo		ND	2.0		µg/L	· 1	1/7/2008 7:44:34 PM
Dibromochlorometi	hane	ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
Dibromomethane		ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
1,2-Dichlorobenzer	ne	ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
1,3-Dichlorobenzer	ie	ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
1,4-Dichlorobenzer	ie .	ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
Dichlorodifluorome	thane	ND	1.0	1	µg/L	1	1/7/2008 7:44:34 PM
1,1-Dichloroethane		ND	1.0		µg/L	1	1/7/2008 7:44:34 PM
1,1-Dichloroethene		ND	1.0	ł	µg/L	1	1/7/2008 7:44:34 PM
1,2-Dichloropropan	e	ND	1.0	1	µg/L	1	1/7/2008 7:44:34 PM
1,3-Dichloropropan	e	ND	1.0	j	µg/L	1	1/7/2008 7:44:34 PM
2,2-Dichloropropan	e	ND	2.0	ļ	ug/L	1	1/7/2008 7:44:34 PM

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level RL Reporting Limit

Page 27 of 78

.

-

Hall Environmental Analysis Laboratory, Inc.

Date: 21-Jan-08

Western Refining Southwest, Gallup **CLIENT:** 0801006 Lab Order: **Project:** 2007 Annual GW Samples Lab ID: 0801006-09

Client Sample ID: MW-5 Collection Date: 12/29/2007 12:45:00 PM Date Received: 1/2/2008

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES		······································		·····	Analyst: BDI
1,1-Dichloropropene	ND	1.0	µg/L	1 .	1/7/2008 7:44:34 PM
Hexachlorobutadiene	ND	1.0	µg/L	1	1/7/2008 7:44:34 PM
2-Hexanone	ND	10	µg/L	1	1/7/2008 7:44:34 PM
Isopropylbanzene	ND	1.0	µg/L	1	1/7/2008 7:44:34 PM
4-isopropyltoluene	ND	1.0	μg/L	1	1/7/2008 7:44:34 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	1/7/2008 7:44:34 PM
Methylene Chloride	ND	3.0	µg/L	1	1/7/2008 7:44:34 PM
n-Butyibenzene	ND	1.0	µg/L	1	1/7/2008 7:44:34 PM
n-Propylbenzene	ND	1.0	µg/L	1	1/7/2008 7:44:34 PM
sec-Butylbenzene	ND	1.0	μg/Ļ	1	1/7/2008 7:44:34 PM
Styrene	ND	1.0	µg/L	1	1/7/2008 7:44:34 PM
tert-Butylbenzene	ND	1.0	μg/L	1	1/7/2008 7:44:34 PM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	1/7/2008 7:44:34 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	1/7/2008 7:44:34 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	1/7/2008 7:44:34 PM
trans-1,2-DCE	ND	1.0	μg/L	1	1/7/2008 7:44:34 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	1/7/2008 7:44:34 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	1/7/2008 7:44:34 PM
1,2,4-Trichlorobenzene	ND	1.0	hð\r	1	1/7/2008 7:44:34 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	1/7/2008 7:44:34 PM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	1/7/2008 7:44:34 PM
Trichloroethene (TCE)	ND	1.0	µg/L	1	1/7/2008 7:44:34 PM
Trichlorofluoromethane	ND	1.0	µg/L	1	1/7/2008 7:44:34 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	1/7/2008 7:44:34 PM
Vinyl chloride	ND	1.0	µg/L	1	1/7/2008 7:44:34 PM
Xylenes, Total	ND	1.5	µg/L	1	1/7/2008 7:44:34 PM
Surr: 1,2-Dichloroethane-d4	114	68.1-123	%REC	1	1/7/2008 7:44:34 PM
Surr: 4-Bromofluorobenzene	105	53.2-145	%REC	1	1/7/2008 7:44:34 PM
Surr: Dibromofluoromethane	108	68.5-119	%REC	[°] 1	1/7/2008 7:44:34 PM
Surr: Toluene-d8	112	64-131	%REC	1	1/7/2008 7:44:34 PM
EPA 120.1: SPECIFIC CONDUCTANCE					Analyst: NSB
Specific Conductance	1200	0.010	µmhos/cm	1	1/2/2008
SM4500-H+B: PH					Analyst: NSB
pH	8.93	0.1	pH units	1	1/2/2008

Qualifiers:

- * Value exceeds Maximum Contaminant Level Ε Value above quantitation range
- Analyte detected below quantitation limits J
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 28 of 78

CLIENT: Lab Order:	Western Refining So 0801006)	Co	t Sample ID: llection Date:	1/1/2008	10:30:00 AM
Project:	2007 Annual GW Sa	mples		D	ate Received:		**
Lab ID:	0801006-10				Matrix:	AQUEOU	JS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	504.1: EDB						Analyst: JAT
1,2-Dibromoeth	ane	ND	0,010		µg/L	1	1/8/2008 1:51:37 PM
Surr: 1,2,3-Tr	ichloropropane	122	54.9-135		%REC	1	1/8/2008 1:51:37 PM
EPA METHOD	BO15B: DIESEL RANGE		·				Analyst: SCC
Diesel Range O		ND	1.0		mg/L	1	1/3/2008 1:13:49 PM
	Organics (MRO)	ND	5.0		mg/L	1	1/3/2008 1:13:49 PM
Surr: DNOP		114	58-140		%REC	1	1/3/2008 1:13:49 PM
	8015B: GASOLINE RAN	IGF					Analyst: NSI
	Organics (GRO)	0.69	0.050		mg/L	1	1/7/2008 1:23:17 PM
Surr: BFB		143	79.2-121	s	%REC	1	1/7/2008 1:23:17 PM
EPA METHOD :							Analyst: SMI
	SUU.U: AINIONS	0.36	0.10		mg/L	1	1/3/2008 11:28:18 AM
Fluoride Chloride		2000	10		mg/L	100	1/9/2008 2:25:18 PM
Nitrate (As N)+N	litrita (Ag NI)	` ND	2.0		mg/L	100	1/4/2008 9:02:32 AM
	ihophosphate (As P)	ND	0.50	н	mg/L	1	1/3/2008 11:28:18 AM
Sulfate	inopinospilate (AST)	1600	50		mg/L	100	1/9/2008 2:25:18 PM
	7470: MERCURY	· ' -					Analyst: SLE
Mercury		ND	0.00020		mg/L	1	1/3/2008 3:15:24 PM
worcury		nus.	0.00020		ingr.	•	
	6010B: DISSOLVED ME						Analyst: NM
Arsenic		ND	0.020		mg/L	1	1/14/2008 11:13:08 AN
Barium		ND	0.020		mg/L	1	1/14/2008 11:13:08 AN
Cadmium		ND	0.0020		mg/L	1	1/14/2008 11:13:08 AN
Calcium		190	100		mg/L	100	1/14/2008 12:27:50 PN
Chromium		ND .	0.0060		mg/L	1	1/14/2008 11:13:08 AN
Lead		ND	0.0050		mg/L	1	1/14/2008 11:13:08 AN
Magnesium		64	1.0		mg/L	1	1/14/2008 11:13:08 AM
Potassium		1.1	1.0		mg/L	1	1/14/2008 11:13:08 AM
Selenium		ND	0.050		mg/L	1	1/14/2008 11:13:08 AM
Silver Sodium		ND 1700	0.0050 100		mg/L mg/L	1 100	1/14/2008 11:13:08 AM 1/14/2008 12:27:50 PM
							Analish TEA
	TAL RECOVERABLE N	ND	0.020		mg/L	1	Analyst: TES 1/12/2008 3:50:24 PM
Arsenic		ND	0.020		mg/L	1.	1/12/2008 3:50:24 PM
Barlum Bandlium		ND	0.020		mg/L	1	1/12/2008 3:50:24 PM
Beryllium		ND	0.0030		mg/L	1	1/12/2008 3:50:24 PM
Cadmium		200	5.0		mg/L	5	1/15/2008 11:38:30 AM
Calcium		200 0.055	0.0060		mg/L	5 1	1/12/2008 3:50:24 PM
Chromium							···· · · · · · · · · · · · · · · · · ·
Qualifiers: *			l	I H	•		ociated Method Blank
E					CL Maximum Co		ion or analysis exceeded evel
د	. maij to aveover over a gu			241.			

Hall Environmental Analysis Laboratory, Inc.

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 21-Jan-08

RL Reporting Limit

30

Page 29 of 78

CLIENT: Lab Order: Project: Lab ID:	Western Refining So 0801006 2007 Annual GW So 0801006-10	-		Co	It Sample ID: llection Date: ate Received: Matrix:	1/1/2008 10	
Analyses		Result	PQL	Qual		DF	Date Analyzed
EPA 6010B: TO	TAL RECOVERABLE	METALS	· · · · · · ·		•		Analyst: TES
Cobalt		ŇD	0.0060		mg/L	1	1/15/2008 11:34:14 AM
Lead		ND	0.0050		mg/L	1	1/12/2008 3:50:24 PM
Magnesium		69	1.0		mg/L	1	1/12/2008 3:50:24 PM
Nickel		0.026	0.010		mg/L	1	1/12/2008 3:50:24 PM
Potasslum		1.1	1.0		mg/L	1	1/12/2008 3:50:24 PM
Selenium		ND	. 0.25		mg/L	5	1/15/2008 11:38:30 AM
Silver		ND	0.0050		mg/L	1	1/12/2008 3:50:24 PM
Sodium		2200	50		mg/L	50	1/15/2008 11:44:14 AM
Vanadium		ND	0.050		mg/L	1	1/12/2008 3:50:24 PM
Zinc		ND	0.050		mg/L	1	1/12/2008 3:50:24 PM
EPA METHOD 8	260B: VOLATILES						Analyst: BDH
Benzene		ND	1.0		µg/L	1	1/7/2008 8:43:21 PM
Toluene		ND	1.0		µg/L	1	1/7/2008 8:43:21 PM
Ethylbenzene		ND	1.0		µg/L	1	1/7/2008 8:43:21 PM
Methyl tert-butyl	ether (MTBE)	9.9	1.0		µg/L	1	1/7/2008 8:43:21 PM
1,2,4-Trimethylb	enzene	ND	1.0		µg/L	1	1/7/2008 8:43:21 PM
1,3,5-Trimethylbe	enzene	ŅD	1.0		µg/L	1	1/7/2008 8:43:21 PM
1,2-Dichloroetha	ne (EDC)	ND	1.0		µg/L	1	1/7/2008 8:43:21 PM
1,2-Dibromoetha	ine (EDB)	ND	1.0		µg/L	1	1/7/2008 8:43:21 PM
Naphthalene		ND	2.0		µg/L	1	1/7/2008 8:43:21 PM
· 1-Methylnaphtha	lene	ND	4.0		µg/L	1	1/7/2008 8:43:21 PM
2-Methylnaphtha	lene .	ND	4.0		μg/L ·	1	1/7/2008 8:43:21 PM
Acetone		ND	10		µg/L	1	1/7/2008 8:43:21 PM
Bromobenzene		ND	1.0		µg/L	1	1/7/2008 8:43:21 PM
Bromochloromet	hane	ND	1.0		µg/L	1	1/7/2008 8:43:21 PM
Bromodichlorom	ethane	ND	1.0		µg/L	1	1/7/2008 8:43:21 PM
Bromoform		ND	1.0		µg/L	1	1/7/2008 8:43:21 PM
Bromomethane		ND	1.0		µg/L	1	1/7/2008 8:43:21 PM
2-Butanone		ND	10		hð\r	1	1/7/2008 8:43:21 PM
Carbon disulfide		ND	10		µg/L	1	1/7/2008 8:43:21 PM
Carbon Tetrachlo	oride .	ND	1.0		hð\r n	1	1/7/2008 8:43:21 PM
Chlorobenzene		ND	1.0		µg/L "	1	1/7/2008 8:43:21 PM
Chloroethane		ND	2.0		µg/L	1	1/7/2008 8:43:21 PM
Chloroform		ND	1.0		µg/L		1/7/2008 8:43:21 PM
Chloromethane	•	ND	1.0		µg/L ug/l	1	1/7/2008 8:43:21 PM
2-Chlorotoluene		ND	1.0		µg/L va/l		1/7/2008 8:43:21 PM
4-Chlorotoluene		ND	1.0		µg/L vg/l		1/7/2008 8:43:21 PM
cis-1,2-DCE		ND	1.0		µg/L		1/7/2008 8:43:21 PM
cis-1,3-Dichlorop	•	ND	1.0		µg/L		1/7/2008 8:43:21 PM
1,2-Dibromo-3-ch		ND	2.0		µg/L		1/7/2008 8:43:21 PM
Dibromochlorome	enane	ND	1.0		µg/L	1	1/7/2008 8:43:21 PM

Date: 21-Jan-08

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 30 of 78

Date: 21-Jan-08

CLIENT: Western Refining Southwest, Gallup Lab Order: 0801006 **Project:** 2007 Annual GW Samples Lab ID: 0801006-10

Client Sample ID: SMW-2 Collection Date: 1/1/2008 10:30:00 AM Date Received: 1/2/2008

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES			· ·	· · · · · · · · · · · · · · · · · · ·	Analyst: BDH
Dibromomethane	ND	1.0	μg/L	1	1/7/2008 8:43:21 PM
1,2-Dichlorobenzene	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
1,3-Dichlorobenzene	ND	1.0	μ g /L	1	1/7/2008 8:43:21 PM
1,4-Dichlorobenzene	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
Dichlorodifluoromethane	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	1/7/2008 8:43:21 PM
1,1-Dichloroethene	ND	1.0	μ g/L	1	1/7/2008 8:43:21 PM
1,2-Dichtoropropane	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	1/7/2008 8:43:21 PM
2,2-Dichloropropane	ND	2.0	µg/L	1	1/7/2008 8:43:21 PM
1,1-Dichloropropene	ND	1.0	µg/L	1.	1/7/2008 8:43:21 PM
Hexachlorobutadiene	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
2-Hexanone	ND	10	μg/L	1	1/7/2008 8:43:21 PM
Isopropylbenzene	ND	1.0	μg/Ľ	1	1/7/2008 8:43:21 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	1/7/2008 8:43:21 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	1/7/2008 8:43:21 PM
MetHylene Chloride	ND	3.0	µg/L	1	1/7/2008 8:43:21 PM
n-Butylbenzene	ND	1.0	μg/L	1	1/7/2008 8:43:21 PM
n-Propylbenzene	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
sec-Butylbenzene	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
Styrene	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
tert-Butylbenzene	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	1/7/2008 8:43:21 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	1/7/2008 8:43:21 PM
trans-1,2-DCE	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	1/7/2008 8:43:21 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	1/7/2008 8:43:21 PM
Trichloroethene (TCE)	ND	1.0	րց/Լ	1	1/7/2008 8:43:21 PM
Trichlorofluoromethane	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
1,2,3-Trichloropropane	ND	2.0	- µg/L	1	1/7/2008 8:43:21 PM
Vinyl chloride	ND	1.0	µg/L	1	1/7/2008 8:43:21 PM
Xylenes, Total	ND	1.5	µg/L	1	1/7/2008 8:43:21 PM
Surr: 1,2-Dichloroethane-d4	119	68.1-123	%REC	1	1/7/2008 8:43:21 PM
Surr: 4-Bromofluorobenzene	107	53.2-145	%REC	1	1/7/2008 8:43:21 PM
Surr: Dibromofluoromethane	109	68.5-119	%REC	1	1/7/2008 8:43:21 PM
Surr: Toluene-d8	114	64-131	%REC	1	1/7/2008 8:43:21 PM

EPA 120.1: SPECIFIC CONDUCTANCE

Analyst: NSB

Value exceeds Maximum Contaminant Level Qualifiers: * в Е Value above quantitation range Н Analyte detected below quantitation limits J

> Not Detected at the Reporting Limit ND

- Spike recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank
 - Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 31 of 78

Hall Envir	conmental Analysis Laboratory	, Inc. Date: 21-Jan-08
CLIENT:	Western Refining Southwest, Gallup	Client Sample ID: SMW-2
Lab Order:	0801006	Collection Date: 1/1/2008 10:30:00 AM
Project:	2007 Annual GW Samples	Date Received: 1/2/2008
Lab ID:	0801006-10	Matrix: AQUEOUS

Analyses	Result	PQL Qua	d Units	DF	Date Analyzed
EPA 120.1: SPECIFIC CONDUCTANCE					Analyst: NSB
Specific Conductance	9200	0.010	umhos/cm	1	1/2/2008
SM4500-H+B: PH					Analyst: NSB
pH	7.29	0.1	pH units	1	1/2/2008

Qualifiers:

- * Value exceeds Maximum Contaminant Level Е Value above quantitation range
- Analyte detected below quantitation limits J
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В

Date: 21-Jan-08

- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 32 of 78

CLIENT:	Western Refining South	west, Gallup		Clier	t Sample ID:	SMW-4	
Lab Order:	0801006			Co	llection Date:	12/29/2007	10:15:00 AM
Project:	2007 Annual GW Samp	oles		D	ate Received:	1/2/2008	
Lab ID:	0801006-11					AQUEOUS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHO	D 504.1: EDB				·	*******	Analyst: JAT
1,2-Dibromoe	thane	ND	0.010		µg/L	1	1/8/2008 2:09:37 PM
Surr: 1,2,3-	Trichloropropane	115	54.9-135		%REC	1	1/8/2008 2:09:37 PM
EPA METHOI	D 8015B: DIESEL RANGE						Analyst: SCC
	Organics (DRO)	ND	1.0		mg/L	1	1/3/2008 2:14:39 PM
	ge Organics (MRO)	ND	5.0		mg/L	1	1/3/2008 2:14:39 PM
Surr: DNO		121	58-140		%REC	1	1/3/2008 2:14:39 PM
	0 8015B: GASOLINE RANG	F					Analyst: NSE
	ge Organics (GRO)	ND	0.050		mg/L	1	1/5/2008 12:39:02 AM
Surr: BFB	an argument (array	99.6	79.2-121		%REC	1	1/5/2008 12:39:02 AM
	300.0: ANIONS						Analyst: SMF
Fluoride		1.4	0.10		mg/L	1	1/3/2008 4:59:06 PM
Chloride		60	1.0		mg/L	10	1/3/2008 5:51:20 PM
	+Nitrite (As N)	ND	1.0		mg/L	5	1/3/2008 12:37:56 PM
•	Orthophosphate (As P)	ND ·	0.50	н	mg/L	1	1/3/2008 4:59:06 PM
Sulfate		180	5.0		mg/L	10	1/3/2008 5:51:20 PM
	7470: MERCURY						Analyst: SLB
Mercury		. ND	0.00020		mg/L	1	1/3/2008 3:17:12 PM
EPA METHOD	0 6010B: DISSOLVED META	LS					Analyst: NMC
Arsenic		ND	0.020		mg/L	1	1/14/2008 11:18:58 AM
Barium		ND	0.020		mg/L	1	1/14/2008 11:18:58 AM
Cadmium		ND	0.0020		mg/L	1	1/14/2008 11:18:58 AM
Calcium		3.6	1.0		mg/L	1	1/14/2008 11:18:58 AM
Chromium		ND	0.0060		mg/L	1	1/14/2008 11:18:58 AM
Lead		ND	0.0050		mg/L	1	1/14/2008 11:18:58 AM
Magnesium		ND	1.0		mg/L	1	1/14/2008 11:18:58 AM
Potassium		ND	1.0		mg/L	1	1/14/2008 11:18:58 AM
Selenium		ND	0.050		mg/L	1	1/14/2008 11:18:58 AM
Silver		ND	0.0050		mg/L	1	1/14/2008 11:18:58 AM
Sodium		260	10		mg/L	10	1/14/2008 12:30:56 PM
EPA 6010B: T	OTAL RECOVERABLE MET	TALS					Analyst: TES
Arsenic		ND	0.020		mg/L	. 1	1/12/2008 3:54:44 PM
Barium		0.024	0.020		mg/L	1	1/12/2008 3:54:44 PM
Beryllium		ND	0.0030		mg/L.	1	1/12/2008 3:54:44 PM
Cadmium	· .	ND	0.0020		mg/L	1	1/12/2008 3:54:44 PM
Calcium		4.6	1.0		mg/L	1	1/12/2008 3:54:44 PM
Chromium		ND	0.0060		mg/L	1	1/12/2008 3:54:44 PM
Qualifiers:	* Value exceeds Maximum Cor			B			iated Method Blank
	E Value above quantitation rang	-		H			or analysis exceeded
	J Analyte detected below quant			MC	•	ontaminant Leve	1
1	ND Not Detected at the Reporting			R	L Reporting Lir	nit	Page 33 of
	S Spike recovery outside accept	ed recovery limit	S				i ago 55 01

Date: 21-Jan-08

CLIENT:	Western Refining S	outhwest, Gallup		Client Sample ID		· · · · · · · · · · · · · · · · · · ·
Lab Order:	0801006			Collection Date		07 10:15:00 AM
Project:	2007 Annual GW S	amples		Date Received		
Lab ID:	0801006-11	·		Matrix	: AQUEOU	JS
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA 6010B: TC	TAL RECOVERABLE	METALS		, <u>, , , , , , , , , , , , , , , , , , </u>		Analyst: TES
Cobalt		ND	0.0060	mg/L	1	1/15/2008 11:47:07 AM
Lead		ND	0.0050	mg/L	1	1/12/2008 3:54:44 PM
Magnesium		1.2	1.0	mg/L	1	1/12/2008 3:54:44 PM
Nickel		ND	0.010	mg/L	1	1/12/2008 3:54:44 PM
Potassium		ND	1.0	mg/L	1	1/12/2008 3:54:44 PM
Selenium		ND	0.050	mg/L	1	1/12/2008 3:54:44 PM
Silver		ND	0.0050	mg/L	1	1/12/2008 3:54:44 PM
Sodium		340	5.0	mg/L	5	1/15/2008 11:51:07 AM
Vanadium		ND	0.050	mg/L	1	1/12/2008 3:54:44 PM
Zinc		ND	0.050	mg/L	1	1/12/2008 3:54:44 PM
EPA METHOD 8	3260B: VOLATILES					Analyst: BDH
Benzene		ND	1.0	μg/L	1	1/7/2008 9:39:46 PM
Toluene		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
Ethylbenzene		ND	1.0	μg/L	1	1/7/2008 9:39:46 PM
Methyl tert-butyl	ether (MTBE)	ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
1,2,4-Trimethylb		ND	1.0	μg/L	1	1/7/2008 9:39:46 PM
1,3,5-Trimethylb		ND	1.0	μg/L	1	1/7/2008 9:39:46 PM
1,2-Dichloroetha		ND	1.0	μg/L	1	1/7/2008 9:39:46 PM
1,2-Dibromoetha		ND	1.0	μg/L	1	1/7/2008 9:39:46 PM
Naphthalene	(((((((((((((((((((((((((((((((((((((((ND	2.0	µg/L	1	1/7/2008 9:39:46 PM
1-Methylnaphtha	lene	ND	4.0	µg/L	1	1/7/2008 9:39:46 PM
2-Methylnaphtha		ND	4.0	μg/L	1	1/7/2008 9:39:46 PM
Acetone		ND	10	μg/L	1	1/7/2008 9:39:46 PM
Bromobenzene		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
Bromochloromet	hane	ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
Bromodichlorom		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
Bromoform	Ginano	ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
Bromomethane		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
2-Butanone		ND	10	µg/L	1	1/7/2008 9:39:46 PM
Carbon disulfide		ND	10	µg/L	1	1/7/2008 9:39:46 PM
Carbon Tetrachk	oride	. ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
Chlorobenzene		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
Chloroethane		ND	2.0	µg/L	1	1/7/2008 9:39:46 PM
Chloroform		ND	1.0	μg/L	1	1/7/2008 9:39:46 PM
Chioromethane		ND	1.0	μg/L	1	1/7/2008 9:39:46 PM
2-Chlorotoluene		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
4-Chlorotoluene		ND	1.0	μg/L	1	1/7/2008 9:39:46 PM
cis-1,2-DCE		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
cls-1,3-Dichlorop	ropene	ND	1.0	μg/L	1	1/7/2008 9:39:46 PM
1,2-Dibromo-3-cl	•	ND	2.0	µg/L	1	1/7/2008 9:39:46 PM
Dibromochlorom		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM

Date: 21-Jan-08

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 34 of 78

Project:	2007 Annual GW S	amples		Date Re	ceived: 1/2/2008	
Lab ID:	0801006-11			N	Aatrix: AQUEOU	JS
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOP	260B: VOLATILES					Analyst: BDH
Dibromomethane		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
1,2-Dichlorobenz		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
1,3-Dichlorobena		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
1,4-Dichlorobenz		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
Dichlorodifluoror		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
1,1-Dichloroetha		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
1,1-Dichloroethe		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
1,2-Dichloroprop		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
1,3-Dichloroprop		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
2,2-Dichloroprop		ND	2.0	µg/L	· 1	1/7/2008 9:39:46 PM
1,1-Dichloroprop		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
Hexachlorobutac		ND	1.0	µg/L	. 1	1/7/2008 9:39:46 PM
2-Hexanone		ND	10	µg/L	. 1	1/7/2008 9:39:46 PM
Isopropylbenzen	A	ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
4-Isopropyltoluei		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
4-Methyl-2-penta		ND	10	μg/L	1	1/7/2008 9:39:46 PM
		ND	3.0	µg/L	1	1/7/2008 9:39:46 PM
Methylene Chlor		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
n-Butylbenzerie	`	ND	1.0	μg/L	1	1/7/2008 9:39:46 PM
n-Propylbenzene		ND	1.0	μg/L	1	1/7/2008 9:39:46 PM
sec-Butylbenzen	19	ND	1.0	μg/L	1	1/7/2008 9:39:46 PM
Styrene	•	ND	1.0	μg/L	1	1/7/2008 9:39:46 PM
tert-Butylbenzen	e	ND	1.0	μg/L	1	1/7/2008 9:39:46 PM
1,1,1,2-Tetrachic		ND	2.0	µg/L	1	1/7/2008 9:39:46 PM
1,1,2,2-Tetrachlo		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
Tetrachloroether	ne (PGE)				1	1/7/2008 9:39:46 PM
trans-1,2-DCE		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
trans-1,3-Dichlor		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
1,2,3-Trichlorobe	enzene	ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
1,2,4-Trichlorobe		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
1,1,1-Trichloroet		ND	1.0	µg/L	1	1/7/2008 9:39:46 PM
1,1,2-Trichloreet		ND ND	1.0	µg/L ug/l	1	1/7/2008 9:39:46 PM
Trichloroethene		ND	1.0 1.0	μg/L μg/L	1	1/7/2008 9:39:46 PM
Trichlorofluorom					1	1/7/2008 9:39:46 PM
1,2,3-Trichloropr	opane	ND	2.0	µg/L	1 1	1/7/2008 9:39:46 PM
Vinyl chloride		ND	1.0	µg/L		1/7/2008 9:39:46 PM
Xylenes, Total	· · · · ·	ND	1.5	µg/L	1	1/7/2008 9:39:46 PM
Surr: 1,2-Dich	loroethane-d4	113	68.1-123	%REC		1/7/2008 9:39:46 PM
	ofluorobenzene	104	53.2-145	%REC		
	fluoromethane	111	68.5-119	%REC		1/7/2008 9:39:46 PM
Surr: Toluene	-d8	112	64-131	%REC	1 ·	1/7/2008 9:39:46 PM

0801006

CLIENT:

Lab Order:

Western Refining Southwest, Gallup

Date: 21-Jan-08

Collection Date: 12/29/2007 10:15:00 AM

Client Sample ID: SMW-4

EPA 120.1: SPECIFIC CONDUCTANCE

Analyst: NSB

Qualifiers: * Value exceeds Maximum Contaminant Level E Value above quantitation range

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 35 of 78

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-11

Date: 21-Jan-08

Client Sample ID: SMW-4 Collection Date: 12/29/2007 10:15:00 AM Date Received: 1/2/2008 Matrix: AQUEOUS

Result	PQL Qua	l Units	DF	Date Analyzed
				Analyst: NSB
1300	0.010	µmhos/cm	1	1/2/2008
				Analyst: NSB
8.34	0.1	pH units	1	1/2/2008
	1300	1300 0.010	1300 0.010 µmhos/cm	1300 0.010 µmhos/cm 1

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 36 of 78

CLIENT.	western Remining Sou	inwosi, Oanap			at Sampie ID.				
Lab Order:	0801006			Co	llection Date:	12/31/20	07 10:30:00 AM		
Project: 2007 Annual GW S		ples		D	Date Received:		1/2/2008		
Lab ID:	0801006-12				Matrix:	AQUEO	US		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
PA METHOD	300.0: ANIONS						Analyst: SMI		
Fluoride		2.6	0.10		mg/L	. 1	1/3/2008 6:08:44 PM		
Chloride		35	0.10		mg/L	1	1/3/2008 6:08:44 PM		
Nitrate (As N)+N	Nitrite (As N)	ND	1.0		mg/L	5	1/3/2008 12:55:20 PM		
Phosphorus, Or	thophosphate (As P)	ND	0.50	Н	mg/L	1	1/3/2008 6:08:44 PM		
Sulfate		270	5.0		mg/L	10	1/3/2008 6:26:08 PM		
PA METHOD	7470: MERCURY						Analyst: SLB		
Mercury		ND	0.00020		mg/L	1	1/3/2008 3:19:00 PM		
PA 6010B: TO	TAL RECOVERABLE M	ETALS					Analyst: TES		
Arsenic		ND	0.020		mg/L	1	1/12/2008 3:58:52 PM		
Barium		0.023	0.010		mg/L	1	1/12/2008 3:58:52 PM		
Cadmium		ND	0.0020		mg/L	1	1/12/2008 3:58:52 PM		
Calcium		3.6	0.50		mg/L	1	1/12/2008 3:58:52 PM		
Chromium		ND	0.0060		mg/L	1	1/12/2008 3:58:52 PM		
Copper		ND	0.0060		mg/L	1	1/12/2008 3:58:52 PM		
Iron		ND	0.050		mg/L	1	1/12/2008 3:58:52 PM		
Lead		ND	0.0050		mg/L	1	1/12/2008 3:58:52 PM		
Magneslum		0.74	0.50		mg/L	1	1/12/2008 3:58:52 PM		
Manganese		0.010	0.0020		mg/L	1	1/12/2008 3;58:52 PM		
Potassium		ND	1.0		mg/L	1	1/12/2008 3:58:52 PM		
Selenium		ND	0.050		mg/L	1	1/12/2008 3:58:52 PM		
Silver		ND	0.0050		mg/L	1	1/12/2008 3:58:52 PM		
Sodium		360	2.5		mg/L	5	1/15/2008 11:54:00 AM		
Uranium		ND	0.10		mg/L	1	1/12/2008 3:58:52 PM		
Zinc		ND	0.020		mg/L	1	1/12/2008 3:58:52 PM		
PA METHOD 8	3270C: SEMIVOLATILES						Analyst: JDC		
Acenaphthene		ND	10		µg/L	1	1/9/2008		
Acenaphthylene		ND	10		µg/L	1	1/9/2008		
Aniline		ND	10		µg/L	1	1/9/2008		
Anthracene		ND	10		µg/L	1	1/9/2008		
Azobenzene		ND	10		µg/L	1	1/9/2008		
Benz(a)anthrace	ne	ND	10		µg/L	1	1/9/2008		
Benzo(a)pyrene	r	ND	10		µg/L	1	1/9/2008		
Benzo(b)fluorant	hene	ND	10		h8/L	1	1/9/2008		
Benzo(g,h,i)pery		ND	10		µg/L	1	1/9/2008		
Benzo(k)fluorant		ND	10		µg/L	1	1/9/2008		
Benzoic acid		ND	20		µg/L	1	1/9/2008		
Benzyl alcohol		ND	10		µg/L	1	1/9/2008		
Bis(2-chloroetho)	xy)methane	ND	10		µg/L	1	1/9/2008		
Bis(2-chloroethy		ND	10		µg/L	1	1/9/2008		
Qualifiers: *	Value exceeds Maximum C	ontaminant Level		F	Analyte detect	ed in the ass	ociated Method Blank		
Е	Value above quantitation ra	nge		ł			ion or analysis exceeded		
J	Analyte detected below quar	-		M	CL Maximum Co.				
				'n	f Deneuting Ling	.!.			

CLIENT:

Western Refining Southwest, Gallup

Date: 21-Jan-08

Client Sample ID: BW-1C

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

RL Reporting Limit

Page 37 of 78

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-12

Client Sample ID: BW-1C Collection Date: 12/31/2007 10:30:00 AM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES					Analyst: JDC
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	1/9/2008
Bis(2-ethyihexyl)phthalate	ND	10	µg/L	1	1/9/2008
4-Bromophenyl phenyl ether	ND	10	μg/L	1	1/9/2008
Butyl benzyl phthalate	ND	10	µg/L	1	1/9/2008
Carbazole	ND	10	µg/L	1	1/9/2008
4-Chloro-3-methylphenol	ND	10	µg/L	1	1/9/2008
4-Chloroaniline	ND	10	µg/L	1	1/9/2008
2-Chloronaphthalene	ND	10	µg/L	1	1/9/2008
2-Chlorophenol	ND	10	µg/L	1	1/9/2008
4-Chlorophenyl phenyl ether	ND	10	µg/L	· 1	1/9/2008
Chrysene	ND	10	μg/L	1	1/9/2008
Di-n-butyl phthalate	ND	10	μg/L	1	1/9/2008
Di-n-octyl phthalate	ND	10	µg/L	1	1/9/2008
Dibenz(a,h)anthracene	ND	10	µg/L	1	1/9/2008
Dibenzofuran	ND	10	μg/L	1	1/9/2008
1,2-Dichlorobenzene	ND	10	μ g/L	1	1/9/2008
1,3-Dichlorobenzene	ND	10	µg/L	1	1/9/2008
1,4-Dichlorobenzene	ND	10	μg/L	1	1/9/2008
3,3'-Dichlorobenzidine	ND	10	µg/L	1	1/9/2008
Diethyl phthalate	ND	10	μg/L	1	1/9/2008
Dimethyl phthalate	ND	10	µg/L	1	1/9/2008
2,4-Dichlorophenol	ND	10	μg/L	1	1/9/2008
2,4-Dimethylphenol	ND	10	µg/L	1	1/9/2008
4,6-Dinitro-2-methylphenol	ND	10	hð\r	. ' 1	1/9/2008
2,4-Dinitrophenol	ND	20	µg/L	1	1/9/2008
2,4-Dinitrotoluene	ND	10	µg/L	1	1/9/2008
2,6-Dinitrotoluene	ND	10	μg/L	1	1/9/2008
Fluoranthene	ND	10	μg/L	1	1/9/2008
Fluorene	ND	10	µg/L	1	1/9/2008
Hexachlorobenzene	ND	10	μg/L	1	1/9/2008
Hexachlorobutadiene	ND	10	μg/L	1	1/9/2008
Hexachlorocyclopentadiene	ND	10	μg/L	1	1/9/2008
Hexachloroethane	ND	10	μg/L	1	1/9/2008
Indeno(1,2,3-cd)pyrene	ND	10	µg/L	1	1/9/2008
Isophorone	ND	10	μg/L	1	1/9/2008
2-Methylnaphthalene	ND	10	µg/L	1	1/9/2008
2-Methylphenol	ND	10	µg/L	1	1/9/2008
3+4-Methylphenol	ND	10	μg/L	1	1/9/2008
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	1/9/2008
N-Nitrosodimethylamine	ND	10	µց/∟ µց/∟	1	1/9/2008
N-Nitrosodiphenylamine	ND	10	µg/∟	1	1/9/2008
Naphthalene	ND	10	μg/L	1	1/9/2008

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 38 of 78

Date: 21-Jan-08

CLIENT: Western Refining Southwest, Gallup Lab Order: 0801006 2007 Annual GW Samples **Project:** 0801006-12 Lab ID:

Client Sample ID: BW-1C Collection Date: 12/31/2007 10:30:00 AM Date Received: 1/2/2008

Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC
2-Nitroaniline	ND	10		µg/L	1	1/9/2008
3-Nitroaniline	ND	10		µg/L	1	1/9/2008
4-Nitroanifine	ND	10		µg/L	1	1/9/2008
Nitrobenzene	ND	10		µg/L	1	1/9/2008
2-Nitrophenol	ND	10		µg/L	1	1/9/2008
4-Nitrophenol	ND	10		µg/L	1	1/9/2008
Pentachlorophenol	ND	10		µg/L	1	1/9/2008
Phenanthrene	ND	10		µg/L	1	1/9/2008
Phenol	ND	10		µg/L	1	1/9/2008
Pyrene	ND	10		µg/L	1	1/9/2008
Pyridine	ND	10		µg/L	1	1/9/2008
1,2,4-Trichlorobenzene	ND	10		µg/L	1	1/9/2008
2,4,5-Trichlorophenol	ND	10		µg/L	1	1/9/2008
2,4,6-Trichlorophenol	ND	10		µg/L	1	1/9/2008
Surr: 2,4,6-Tribromophenol	13.9	16.6-150	S	%REC	1	1/9/2008
Surr: 2-Fluorobiphenyl	89.8	19.6-134		%REC	1	1/9/2008
Surr: 2-Fluorophenol	62.1	9.54-113		%REC	1	1/9/2008
Surr: 4-Terphenyl-d14	81.8	22.7-145		%REC	1	1/9/2008.
Surr: Nitrobenzene-d5	88.1	14.6-134		%REC	1	1/9/2008
Surr: Phenol-d5	44.2	10.7-80.3		%REC	• 1	1/9/2008
EPA METHOD 8260B: VOLATILES						Analyst: BDH
Benzene	ND	1.0		µg/L	1	1/7/2008 10:08:01 PM
Toluene	ND	1.0		μg/L	1	1/7/2008 10:08:01 PM
Ethylbenzene	ND	1.0		μg/L	1	1/7/2008 10:08:01 PM
Methyl tert-butyl ether (MTBE)	ND	1.0		µg/L	1	1/7/2008 10:08:01 PM
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	1/7/2008 10:08:01 PM
1,3,5-Trimethylbenzene	ND	1.0		µg/L	1	1/7/2008 10:08:01 PM
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	1/7/2008 10:08:01 PM
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	· 1	1/7/2008 10:08:01 PM
Naphthalene	ND	2.0		μg/L	1	1/7/2008 10:08:01 PM
1-Methylnaphthalene	ND	4.0		µg/L	1	1/7/2008 10:08:01 PM
2-Methylnaphthalene	ND	4.0		µg/L	1	1/7/2008 10:08:01 PM
Acetone	ND	10		μg/L	1	1/7/2008 10:08:01 PM
Bromobenzene	ND	1.0		μg/L	1	1/7/2008 10:08:01 PM
Bromochloromethane	ND	1.0		µg/L	1	1/7/2008 10:08:01 PM
Bromodichloromethane	ND	1.0		μg/L	1	1/7/2008 10:08:01 PM
Bromoform	ND	1.0		µg/L	1	1/7/2008 10:08:01 PM
Bromomethane	ND	1.0		µg/L	1	1/7/2008 10:08:01 PM
2-Butanone	ND	10		µg/L	1	1/7/2008 10:08:01 PM
Carbon disulfide	ND	10		μg/L	1	1/7/2008 10:08:01 PM
Carbon Tetrachloride	ND	1.0		μg/L	1	1/7/2008 10:08:01 PM

Qualifiers:

Е Value above quantifation range

*

J Analyte detected below quantitation limits

- Not Detected at the Reporting Limit ND
- S Spike recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level

в Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 39 of 78

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-12

Client Sample ID: BW-1C Collection Date: 12/31/2007 10:30:00 AM Date Received: 1/2/2008

Matrix: AQUEOUS

Analyses	Result	PQL (Jual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES			**************************************		Analyst: BDI
Chlorobenzene	ND	1.0	μg/L	1	1/7/2008 10:08:01 PM
Chloroethane	ND	2.0	µg/L	1	1/7/2008 10:08:01 PM
Chloroform	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
Chloromethane	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
2-Chlorotoluene	ND	1.0	μg/L	1	1/7/2008 10:08:01 PM
4-Chlorotoluene	ND	1.0	μg/L	1	1/7/2008 10:08:01 PM
cis-1,2-DCE	ND	1.0	μg/L	1	1/7/2008 10:08:01 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	1/7/2008 10:08:01 PM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	1/7/2008 10:08:01 PM
Dibromochloromethane	ND	1.0	μg/L	1	1/7/2008 10:08:01 PM
Dibromomethane	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
1,2-Dichlorobenzene	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	1/7/2008 10:08:01 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	1/7/2008 10:08:01 PM
Dichlorodifluoromethane	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
1,1-Dichloroethane	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
1,1-Dichloroethene	ND	1.0	µg/L	[.] 1	1/7/2008 10:08:01 PM
1,2-Dichloropropane	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	1/7/2008 10:08:01 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	1/7/2008 10:08:01 PM
1,1-Dichloropropene	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
Hexachlorobutadiene	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
2-Hexanone	ND	10	μg/L	1	1/7/2008 10:08:01 PM
Isopropylbenzene	ND	1.0	μg/L	1	1/7/2008 10:08:01 PM
4-Isopropyitoluene	ND	. 1.0	μg/L	1	1/7/2008 10:08:01 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	1/7/2008 10:08:01 PM
Methylene Chloride	ND	3.0	µg/L	1	1/7/2008 10:08:01 PM
n-Bulylbenzene	ND	1.0	μg/L	[.] 1	1/7/2008 10:08:01 PM
n-Propylbenzene	ND	1.0	μg/L	1	1/7/2008 10:08:01 PM
sec-Butylbenzene	ND	1.0	μg/L	1	1/7/2008 10:08:01 PM
Styrene	ND	1.0	hð\r	1	1/7/2008 10:08:01 PM
tert-Butylbenzene	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	1/7/2008 10:08:01 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	1/7/2008 10:08:01 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	1/7/2008 10:08:01 PM
trans-1,2-DCE	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
1,1,1-Trichloroethane	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
Trichloroethene (TCE)	ND	1.0	hð\r	1	1/7/2008 10:08:01 PM

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 40 of 78

CLIENT:	west, Gallu)	Client Sample ID	BW-1C		
Lab Order:	0801006			Collection Date	: 12/31/200	07 10:30:00 AM
Project:	2007 Annual GW Samp	oles		Date Received	1/2/2008	
Lab ID:	0801006-12		•	Matrix	AQUEOU	JS
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8260B: VOLATILES					Analyst: BDH
Trichlorofluorom	nethane	ND	1.0	µg/L	1	1/7/2008 10:08:01 PM
1,2,3-Trichlorop	ropane	ND	2.0	μg/L	1	1/7/2008 10:08:01 PM
Vinyl chloride		ND	1.0	μg/L	1	1/7/2008 10:08:01 PM
Xylenes, Total		ND	1.5	μg/L	1	1/7/2008 10:08:01 PM
Surr: 1,2-Dict	nloroethane-d4	114	68.1-123	%REC	1	1/7/2008 10:08:01 PM
	ofluorobenzene	. 107	53.2-145	%REC	1.	1/7/2008 10:08:01 PM
Surr: Dibromo	ofiuoromethane	111	68.5-119	%REC	1	1/7/2008 10:08:01 PM
Surr: Toluene	-d8	113	64-131	%REC	1	1/7/2008 10:08:01 PM
EPA 120.1: SPE	CIFIC CONDUCTANCE					Analyst: NSB
Specific Conduc		1400	0.010	µmhos/cm	1	1/2/2008
SM4500-H+B: F	Я					Analyst: NSB
рН		8.50	0.1	pH units	1	1/2/2008

Date: 21-Jan-08

Qualisiers:

* Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 41 of 78

	Western Refining Sout	hwest, Gallup		Clier	it Sample ID	: BW-2A	
Lab Order:	0801006			Co	llection Date	: 12/31/2007	12:30:00 PM
Project: 2	2007 Annual GW Sam	ples		D	ate Received	: 1/2/2008	
Lab ID:	0801006-13				Matrix	: AQUEOUS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
PA METHOD 300	.0: ANIONS				·····	······································	Analyst: SMI
Fluoride		1.3	0.10		mg/L	1	1/3/2008 6:43:33 PM
Chloride		42	1.0		mg/L	10	1/3/2008 7:00:58 PM-
Nitrate (As N)+Nitrit	e (As N)	ND	1.0		mg/L	5	1/3/2008 1:12:45 PM
Phosphorus, Orthop	hosphate (As P)	0.70	0.50	н	mg/L	1	1/3/2008 6:43:33 PM
Sulfate		7.7	0.50		mg/L	1	1/3/2008 6:43:33 PM
PA METHOD 747							Analyst: SLE
Mercury	. MERCORT	ND	0.00020		mg/L	1	1/3/2008 3:26:21 PM
					-		
•	. RECOVERABLE ME				n		Analyst: TES
Arsenic		ND	0.020		mg/L		1/12/2008 4:03:01 PM
Barium		0.18	0.010		mg/L		1/12/2008 4:03:01 PM
Cadmium		ND	0.0020		mg/L		1/12/2008 4:03:01 PM
Calcium		11	0.50		mg/L	1	1/12/2008 4:03:01 PM
Chromium		ND	0.0060		mg/L		1/12/2008 4:03:01 PM
Copper		ND	0.0060		mg/L		1/12/2008 4:03:01 PM
Iron *		0.70	0.050		mg/L	1	1/12/2008 4:03:01 PM
Lead		ND	0.0050		mg/L	1	1/12/2008 4:03:01 PM
Magnesium		3.9	0.50		mg/L		1/12/2008 4:03:01 PM
Manganese		0.22	0.0020		mg/L	1.	1/12/2008 4:03:01 PM
Potassium		ND	1.0		mg/L	1	1/12/2008 4:03:01 PM
Selenium		ND	0.050		mg/L	1	1/12/2008 4:03:01 PM
Silver		ND	0.0050		mg/L	1	1/12/2008 4:03:01 PM
Sodium		380	2.5		mg/L	5	1/15/2008 11:56:55 AM
Uranium		ND	0.10		mg/L	1	1/12/2008 4:03:01 PM
Zinc		ND	0.020		mg/L	1	1/12/2008 4:03:01 PM
PA METHOD 8270	C: SEMIVOLATILES						Analyst: JDC
Acenaphthene		ND	10		µg/L	1	1/9/2008
Acenaphthylene		ND	10		μg/L	1	1/9/2008
Aniline		ND	10		µg/L	1	1/9/2008
Anthracene		ND	10		µg/L	1	1/9/2008
Azobenzene		ND	10		µg/L	1	1/9/2008
Benz(a)anthracene		ND	10		µg/L	1	1/9/2008
Benzo(a)pyrene		ND	10		µg/L	1	1/9/2008
Benzo(b)fluoranthen	e	ND	10		µg/L	1	1/9/2008
Benzo(g,h,i)perylene		ND	10		µg/L	1	1/9/2008
Benzo(k)fluoranthene)	ND	10		µg/L	1	1/9/2008
Benzoic acid		ND	20		µg/L	1 '	1/9/2008
Benzyl alcohol		ND	10		µg/L	1 '	1/9/2008
Bis(2-chloroethoxy)m	ethane	ND	10		µg/L	1 . '	1/9/2008
Bis(2-chloroethyl)eth		ND	10		µg/L	1 [·]	1/9/2008
Jualifiers: * `\	alue exceeds Maximum Co	ntaminant Level		E	Analyte deter	cted in the associ	ated Method Blank
	alue above quantitation ran			H			or analysis exceeded
	nalyte detected below quan			M		ontaminant Level	
	ot Detected at the Reporting			R			

S Spike recovery outside accepted recovery limits

Page 42 of 78

Date: 21-Jan-08

CLIENT: Western Refining Southwest, Gallup Lab Order: 0801006 **Project:** 2007 Annual GW Samples Lab ID: 0801006-13

Client Sample ID: BW-2A Collection Date: 12/31/2007 12:30:00 PM Date Received: 1/2/2008

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES			·····		Analyst: JDC
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	1/9/2008
Bis(2-ethylhexyl)phthalate	ND	10	µg/L	1	1/9/2008
4-Bromophenyl phenyl ether	ND	10	μg/L	1	1/9/2008
Butyl benzyl phthalate	ND	10	µg/L	1	1/9/2008
Carbazole	ND	10	µg/L	1	1/9/2008
4-Chloro-3-methylphenol	ND	10	µg/L	1	1/9/2008
4-Chloroaniline	ND	10	µg/L	. 1	1/9/2008
2-Chloronaphthalene	ND	10	µg/L	1	1/9/2008
2-Chlorophenol	ND	10	µg/L	1	1/9/2008
4-Chlorophenyl phenyl ether	ND	10	µg/L	1	1/9/2008
Chrysene	ND	10	μg/L	1	1/9/2008
Di-n-butyl phthalate	ND	10	µg/L	1	1/9/2008
DI-n-octyl phthalate	ND	10	µg/L	1	1/9/2008
Dibenz(a,h)anthracene	ND	10	µg/L	1	1/9/2008
Dibenzofuran	ND	10	µg/L	1	1/9/2008
1,2-Dichlorobenzene	ND	10	µg/L	1	1/9/2008
1,3-Dichlorobenzene	ND	10	µg/L	1	1/9/2008
1,4-Dichlorobenzene	ND	10	µg/L	1	1/9/2008
3,3'-Dichlorobenzidine	ND	10	µg/L	1	1/9/2008
Diethyl phthalate	ND	10	μg/L	1	1/9/2008
Dimethyl phthalate	ND	10	µg/L	1	1/9/2008
2,4-Dichlorophenol	ND	10	µg/L	1	1/9/2008
2,4-Dimethylphenol	ND	10	µg/L	1	1/9/2008
4,6-Dinitro-2-methylphenol	ND	10	μg/L	1	1/9/2008
2,4-Dinitrophenol	ND	20	μg/L	1	1/9/2008
2,4-Dinitrotoluene	ND	10	μg/L	1	1/9/2008
2,6-Dinitrotoluene	ND .	10	μg/L	1	1/9/2008
Fluoranthene	ND	10	µg/L	1	1/9/2008
Fluorene	ND	10	µg/L	1	1/9/2008
Hexachlorobenzene	ND	10	µg/L	1	1/9/2008
Hexachlorobutadiene	ND	10	μg/L	1	1/9/2008
Hexachlorocyclopentadiene	ND	10	µg/L	1	1/9/2008
Hexachloroethane	ND	10	μg/L	1	1/9/2008
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	1/9/2008
Isophorone	ND	10	µg/L	1	1/9/2008
2-Methylnaphthalene	ND	10	µg/L	1	1/9/2008
2-Methylphenol	ND	10	µg/L	1	1/9/2008
3+4-Methylphenol	ND	10	μg/L	1	1/9/2008
N-Nitrosodi-n-propyłamine	ND	10	μg/L	1	1/9/2008
N-Nitrosodimethylamine	ND	10	µg/L	1	1/9/2008
N-Nitrosodiphenylamine	ND	10	μg/L	1	1/9/2008
Naphthalene	ND	10	μg/L	1	1/9/2008

Qualifiers: * Value exceeds Maximum Contaminant Level

> Е Value above quantitation range

Analyte detected below quantitation limits J

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 43 of 78

44

L F	

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-13

Client Sample ID: BW-2A Collection Date: 12/31/2007 12:30:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILE	S		·····		Analyst: JDC
2-Nitroaniline	ND	10	μg/L	1	1/9/2008
3-Nitroaniline	ND	10	µg/L	1	1/9/2008
4-Nitroaniline	ND	10	µg/L	1	1/9/2008
Nitrobenzene	ND	10	µg/L	. 1	1/9/2008
2-Nitrophenol	ND	10	µg/L	1	1/9/2008
4-Nitrophenol	ND	10	µg/∟	1.	1/9/2008
Pentachlorophenol	ND	. 10	µg/L	1	1/9/2008
Phenanthrene	ND	10	μg/L	1	1/9/2008
Phenol	ND	10	µg/L	1	1/9/2008
Pyrene	ND	10	µg/L	1	1/9/2008
Pyridine	ND	10	μg/L	1	1/9/2008
1,2,4-Trichlorobenzene	ND	10	µg/L	1	1/9/2008
2,4,5-Trichlorophenol	ND	10	µg/L	1	1/9/2008
2,4,6-Trichlorophenol	ND	10	μg/L	. 1	1/9/2008
Surr: 2,4,6-Tribromophenol	17.3	16.6-150	%REC	1	1/9/2008
Surr: 2-Fluorobiphenyl	81.9	19.6-134	%REC	1	1/9/2008
Surt: 2-Fluorophenol	49.8	9.54-113	%REC	1	1/9/2008
Surr: 4-Terphenyl-d14	67.4	22.7-145	%REC	1	1/9/2008
Surr: Nitrobenzene-d5	77.2	14.6-134	%REC	1	1/9/2008
Surr: Phenol-d5	36.3	10.7-80.3	%REC	1	1/9/2008
EPA METHOD 8260B: VOLATILES					Analyst: BDH
Benzene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
Toluene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
Ethylbenzene	ND	1.0	μg/L	1	1/7/2008 10:36:17 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	1/7/2008 10:36:17 PM
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
Naphthalene	ND	2.0	µg/L	. 1	1/7/2008 10:36:17 PM
1-Methylnaphthalene	ND	4.0	µg/L	1	1/7/2008 10:36:17 PM
2-Methylnaphthalene	ND	4.0	µg/L	1	1/7/2008 10:36:17 PM
Acetone	ND	10	µg/L	1	1/7/2008 10:36:17 PM
Bromobenzene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
Bromochloromethane	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
Bromodichloromethane	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
Bromoform	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
Bromomethane	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
2-Butanone	ND	10	µg/L	1	1/7/2008 10:36:17 PM
Carbon disulfide	. ND	10	μg/L	1	1/7/2008 10:36:17 PM
Carbon Tetrachloride	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 44 of 78

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-13

Date: 21-Jan-08

Client Sample ID: BW-2A Collection Date: 12/31/2007 12:30:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES	···· · · · · · · · · · · · · · · · · ·		· · · · · ·		Analyst: BDH
Chlorobenzene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
Chloroethane	ND	2.0	μg/L	1	1/7/2008 10:36:17 PM
Chloroform	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
Chloromethane	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
2-Chlorotoluene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
4-Chlorotoluene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
cis-1,2-DCE	ND	1.0	μg/L	1	1/7/2008 10:36:17 PM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	1/7/2008 10:36:17 PM
Dibromochloromethane	ND	1.0	μg/L	1	1/7/2008 10:36:17 PM
Dibromomethane	ND	1.0	μg/L	1	1/7/2008 10:36:17 PM
1,2-Dichlorobenzene	ND	. 1.0	µg/L	1	1/7/2008 10:36:17 PM
1,3-Dichlorobenzene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	· 1	1/7/2008 10:36:17 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	1/7/2008 10:36:17 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	1/7/2008 10:36:17 PM
1,1-Dichloroethene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
1,2-Dichloropropane	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	1/7/2008 10:36:17 PM
2,2-Dichloropropane	· ND	2.0	μg/L	1	1/7/2008 10:36:17 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	1/7/2008 10:36:17 PM
Hexachlorobutadiene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
2-Hexanone	ND	10	μg/L	- 1	1/7/2008 10:36:17 PM
lsopropylbenzene	ND	1.0	μg/L	1	1/7/2008 10:36:17 PM
4-Isopropyitoluene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	1/7/2008 10:36:17 PM
Methylene Chloride	ND	3.0	μg/L	1	1/7/2008 10:36:17 PM
n-Butylbenzene	ND	1.0	μg/L	1	1/7/2008 10:36:17 PM
n-Propylbenzene	ND	1.0	μg/L	1	1/7/2008 10:36:17 PM
sec-Butylbenzene	ND	1.0	μg/L	1	1/7/2008 10:36:17 PM
Styrene	ND	1.0	μg/L	1.	1/7/2008 10:36:17 PM
tert-Butylbenzene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	1/7/2008 10:36:17 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	1/7/2008 10:36:17.PM
trans-1,2-DCE	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
1,2,3-Trichlorobenzene	ND	[`] 1.0	µg/L	1	1/7/2008 10:36:17 PM
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
1,1,1-Trichloroethane	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	1/7/2008 10:36:17 PM
Trichloroethene (TCE)	ND	1.0	μg/L	1	1/7/2008 10:36:17 PM

Qualifiers: * Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded MCL Maximum Contaminant Level

RL Reporting Limit

Page 45 of 78

(iii)	

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-13

Client Sample ID: BW-2A Collection Date: 12/31/2007 12:30:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES				:		Analyst: BDH
Trichlorofluoromethane	ND	1.0		µg/L	1	1/7/2008 10:36:17 PM
1,2,3-Trichloropropane	ND	2.0		µg/L	1	1/7/2008 10:36:17 PM
Vinyl chloride	ND	1.0		µg/L	1	1/7/2008 10:36:17 PM
Xylenes, Total	ND	1.5		µg/L	1	1/7/2008 10:36:17 PM
Surr: 1,2-Dichloroethane-d4	119	68.1-123		%REC	1	1/7/2008 10:36:17 PM
Surr: 4-Bromofluorobenzene	107	53.2-145		%REC	1	1/7/2008 10:36:17 PM
Surr: Dibromofluoromethane	109	68.5-119		%REC	1	1/7/2008 10:36:17 PM
Surr: Toluene-d8	114	64-131		%REC	1	1/7/2008 10:36:17 PM
EPA 120.1: SPECIFIC CONDUCTANCE						Analyst: NSB
Specific Conductance	1400	0.010		µmhos/cm	1	1/2/2008
SM4500-H+B: PH						Analyst: NSB
pH	7.76	0.1		pH units	1	1/2/2008

•

Qualifiers:

*

Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 46 of 78

CLIENT: Lab Order: Project: Lab ID:	Western Refining Sou 0801006 2007 Annual GW Sam 0801006-14	-		Co	It Sample ID: llection Date: ate Received: Matrix:	12/31/2007	
Analyses	0801000-14	Result	POL	Oual	Units	DF	Date Analyzed
	300.0: ANIONS			•			Analyst: SMF
Fluoride	500.0. ANIONS	1.8	0.10		mg/L	1	1/3/2008 7:18:23 PM
Chloride		30	0.10		mg/L	1	1/3/2008 7:18:23 PM
Nitrate (As N)+N	Nitrite (As N)	ND	1.0		mg/L	5	1/3/2008 1:30:09 PM
	thophosphate (As P)	. ND	0.50	н	mg/L	1	1/3/2008 7:18:23 PM
Sulfate		150	5.0		mg/L	10	1/3/2008 7:35:48 PM
·	•	100	0.0		ingre	10	1.002000 1.00.40 T M
PA METHOD	7470: MERCURY						Analyst: SLB
Mercury	· · · · · · · · · · · · · · · · · · ·	ND	0.00020		mg/L	1	1/3/2008 3:28:10 PM
PA 6010B: TC	TAL RECOVERABLE M	ETALS			×.		Analyst: TES
Arsenic		ND	0.020		mg/L	1	1/12/2008 4:07:09 PM
Barium		0.070	0.010		mg/L	1	1/12/2008 4:07:09 PM
Cadmium		ND	0.0020		mg/L	1	1/12/2008 4:07:09 PM
Calcium		16	0.50		mg/L	1	1/12/2008 4:07:09 PM
Chromium		ND	0.0060		mg/L	1	1/12/2008 4:07:09 PM
Copper		ND	0.0060		mg/L	1	1/12/2008 4:07:09 PM
Iron		0.62	0.050		mg/L	1	1/12/2008 4:07:09 PM
Lead		ND	0.0050		mg/L	1	1/12/2008 4:07:09 PM
Magnesium		3.6	0.50		mg/L	1	1/12/2008 4:07:09 PM
Manganese		0.29	0.0020		mg/L	1	1/12/2008 4:07:09 PM
Potassium		1.6	1.0		mg/L	1	1/12/2008 4:07:09 PM
Selenium		ND	0.050		mg/L	1	1/12/2008 4:07:09 PM
Silver		ND	0.0050		mg/L	1	1/12/2008 4:07:09 PM
Sodium		640	5.0		mg/L	10	1/15/2008 12:08:41 PM
Uranium		ND	0.10	•	mg/L	1	1/12/2008 4:07:09 PM
Zinc		ND	0.020		mg/L	1	1/12/2008 4:07:09 PM
PA METHOD 8	3270C: SEMIVOLATILES						Analyst: JDC
Acenaphthene		ND	[°] 10		µg/L	1	1/9/2008
Acenaphthylene		ND	10		µg/L	1	1/9/2008
Aniline		ND	10		µg/L	1	1/9/2008
Anthracene		ND	10		µg/L		1/9/2008
Azobenzene		ND	10		µg/L		1/9/2008
Benz(a)anthrace	ine	ND	10		µg/L		1/9/2008
Benzo(a)pyrene		ND	10		µg/L		1/9/2008
Benzo(b)fluorant		ND	10		µg/L		1/9/2008
Benzo(g,h,i)pery		ND	10		µg/L		1/9/2008
Benzo(k)fluorant	hene	ND	10		µg/L		1/9/2008
Benzoic acid		ND	20		µg/L		1/9/2008
Benzyl alcohol		ND	10		µg/L		1/9/2008
Bis(2-chloroetho		ND	. 10		µg/L		1/9/2008
Bis(2-chloroethy	l)ether	ND	10		µg/L	1 1	1/9/2008

- E Value above quantitation range Analyte detected below quantitation limits J
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits S

Н Holding times for preparation or analysis exceeded MCL Maximum Contaminant Level

RL Reporting Limit

Page 47 of 78

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-14

Client Sample ID: BW-2B Collection Date: 12/31/2007 2:00:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES	3		······································		Analyst: JDC
Bis(2-chloroisopropyl)ether	ND	10	µg/L	1	1/9/2008
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	1/9/2008
4-Bromophenyl phenyl ether	ND	10	µg/L	1	1/9/2008
Butyl benzyl phthalate	ND	10	µg/L	1	1/9/2008
Carbazole	ND	10	μg/L	1	1/9/2008
4-Chloro-3-methylphenol	ND	10	µg/L	1	1/9/2008
4-Chloroaniline	ND	· 10	µg/L	1	1/9/2008
2-Chloronaphthalene	ND	10	µg/L	1	1/9/2008
2-Chlorophenol	ND	10	µg/L	· 1	1/9/2008
4-Chlorophenyl phenyl ether	ND	10	µg/L	1	1/9/2008
Chrysene	ND	10	μ g/L	1	1/9/2008
Di-n-butyl phthalate	ND	10	µg/L	1	1/9/2008
Di-n-octyl phthalate	ND	10	μg/L	1	1/9/2008
Dibenz(a,h)anthracene	ND	10	μg/L	1	1/9/2008
Dibenzofuran	ND	10	μg/L	1	1/9/2008
1,2-Dichlorobenzene	ND	10	μ g/L	1	1/9/2008
1,3-Ďichlorobenzene	ND	· 10	µg/L	1	1/9/2008
1,4-Dichlorobenzene	ND	10	µg/L	1	1/9/2008
3,3'-Dichlorobenzidine	ND	10	µg/L	1	1/9/2008
Diethyl phthalate	ND	10	μg/L	1	1/9/2008
Dimethyl phthalate	ND	10	µg/L	1	1/9/2008
2,4-Dichlorophenol	ND	10	μg/L	1	1/9/2008
2,4-Dimethylphenol	ND	10	µg/L	1	1/9/2008
4,6-Dinitro-2-methylphenol	ND	10	µg/L	1	1/9/2008
2,4-Dinitrophenol	ND	20	µg/L	1	1/9/2008
2,4-Dinitrotoluene	ND	10	µg/L	1	1/9/2008
2,6-Dinitrotoluene	ND	10	µg/L	1	1/9/2008
Fluoranlhene	ND	· 10	µg/L	1	1/9/2008
Fluorene	ND	10	µg/L	1	1/9/2008
Hexachlorobenzene	ND	10	μg/L	1	1/9/2008
Hexachlorobutadiene	ND	10	µg/L	1	1/9/2008
Hexachlorocyclopentadiene	ND	10	µg/L	1	1/9/2008
Hexachloroethane	ND	10	µg/L	1	1/9/2008
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	1/9/2008
Isophorone	ND	10	µg/L	1	1/9/2008
2-Methylnaphthalene	ND	10	µg/L	1	1/9/2008
2-Methylphenol	ND	10	µg/L	1	1/9/2008
3+4-Methylphenol	ND	10	µg/L	1	1/9/2008
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	1/9/2008
N-Nitrosodimethylamine	ND	10	μg/L	1	1/9/2008
N-Nitrosodiphenylamine	ND	10	µg/L	1	1/9/2008
Naphthalene	ND	10	μg/L	1	1/9/2008

.

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 48 of 78

9	

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-14

Client Sample ID: BW-2B Collection Date: 12/31/2007 2:00:00 PM Date Received: 1/2/2008

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATI	LES			· · ·	Analyst: JDC
2-Nitroaniline	ND	10	µg/L	1	1/9/2008
3-Nitroaniline	ND	10	µg/L	1	1/9/2008
4-Nitroaniline	ND	10	μg/L	1	1/9/2008
Nitrobenzene	ND	10	μg/L	1	1/9/2008
2-Nitrophenol	ND	10	μg/L	1	1/9/2008
4-Nitrophenol	ND	10	µg/L	1	1/9/2008
Pentachiorophenol	ND	10	μg/L	1	1/9/2008
Phenanthrene	ND	10	μg/L	, 1	1/9/2008
Phenol	ND	10	µg/L	1	1/9/2008
Pyrene	ND	10	μg/L	1	1/9/2008
Pyrídine	ND	10	μg/L	1	1/9/2008
1,2,4-Trichlorobenzene	ND	10	µg/L	1	1/9/2008
2,4,5-Trichlorophenol	ND	10	µg/L	1	1/9/2008
2,4,6-Trichlorophenol	ND	10	µg/L	1	1/9/2008
Surr: 2,4,6-Tribromophenol	24.8	16.6-150	%REC	1	1/9/2008
Surr: 2-Fluorobiphenyl	98.8	19.6-134	%REC	1	1/9/2008
Surr: 2-Fluorophenol	63.6	9.54-113	%REC	1	1/9/2008
Surr: 4-Terphenyl-d14	87.1	22.7-145	%REC	1	1/9/2008
Surr: Nitrobenzene-d5	92.9	14.6-134	%REC	ì	1/9/2008
Surr: Phenol-d5	46.2	10.7-80.3	%REC	1	1/9/2008
PA METHOD 8260B: VOLATILES					Analyst: BDH
Benzene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
Toluene	ND	1.0	μg/L	1	1/8/2008 12:57:39 AM
Ethylbenzene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
1,2,4-Trimethylbenzene	ND	. 1.0	µg/L	1	1/8/2008 12:57:39 AM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	1/8/2008 12:57:39 AM
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
Naphthalene	ND	2.0	μg/L	1	1/8/2008 12:57:39 AM
1-Methylnaphthalene	ND	4.0	μg/L	1	1/8/2008 12:57:39 AM
2-Methylnaphthalene	ND	4.0	µg/L	1	1/8/2008 12:57:39 AM
Acetone	ND	10	µg/L	1	1/8/2008 12:57:39 AM
Bromobenzene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
Bromochloromethane	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
Bromodichloromethane	ND	1.0	μg/L	1	1/8/2008 12:57:39 AM
Bromoform	ND	1,0	µg/L	1	1/8/2008 12:57:39 AM
Bromomethane	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
2-Butanone	ND	10	µg/L	1	1/8/2008 12:57:39 AM
	ND			4	1/8/2008 12:57:39 AM
Carbon disulfide	ND	10	µg/L	1	1/0/2008 12:57:39 AM

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 49 of 78

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-14

Client Sample ID: BW-2B Collection Date: 12/31/2007 2:00:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: BD
Chlorobenzene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
Chloroethane	ND	2.0	μg/L	1	1/8/2008 12:57:39 AM
Chloroform	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
Chloromethane	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
2-Chlorotoluene	ND	1.0	μg/L	1	1/8/2008 12:57:39 AM
4-Chlorotoluene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
cis-1,2-DCE	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	1/8/2008 12:57:39 AM
Dibromochloromethane	ND	1.0	μg/L	1	1/8/2008 12:57:39 AM
Dibromomethane	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
1,2-Dichlorobenzene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
1,3-Dichlorobénzene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
1,4-Dichlorobenzene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	1/8/2008 12:57:39 AM
1,1-Dichloroethane	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
1.1-Dichloroethene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
1,2-Dichloropropane	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
1,3-Dichloropropane	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
2,2-Dichloropropane	ND	2.0	µg/L	1	1/8/2008 12:57:39 AM
1,1-Dichloropropene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
Hexachlorobutadiene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
2-Hexanone	ND	10	µg/L	1	1/8/2008 12:57:39 AM
Isopropylbenzene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
4-IsopropyItoluene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
4-Methyl-2-pentanone	ND	10	µg/L	1	1/8/2008 12:57:39 AM
Methylene Chloride	ND	3.0	µg/L	1	1/8/2008 12:57:39 AM
n-Butylbenzene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
n-Propylbenzene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
sec-Butylbenzene	ND	1.0	μg/L	1	1/8/2008 12:57:39 AM
Styrene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
tert-Butylbenzene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	1/8/2008 12:57:39 AM
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
trans-1,2-DCE	ND	1.0	μg/L	1	1/8/2008 12:57:39 AM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	1/8/2008 12:57:39 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	1/8/2008 12:57:39 AM
1,1,1-Trichloroethane	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM
1,1,2-Trichloroethane	ŇD	1.0	µg/L	1	1/8/2008 12:57:39 AM
Trichloroethene (TCE)	ND	1.0	µg/L	1	1/8/2008 12:57:39 AM

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 50 of 78

51

CLIENT:	Western Refining South	west, Gallup			it Sample ID:				
Lab Order:	0801006						12/31/2007 2:00:00 PM		
Project:	2007 Annual GW Samp	les		D	ate Received:				
Lab ID:	0801006-14	<u>.</u>			Matrix:	AQUEOUS	5		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD	8260B: VOLATILES		·				Analyst: BDH		
Trichlorofluoron	nethane	ND	1.0		µg/L	1	1/8/2008 12:57:39 AM		
1,2,3-Trichlorop	ropane	ND	2.0		μg/L	1	1/8/2008 12:57:39 AM		
Vinyl chloride		ND	1.0		µg/L	1	1/8/2008 12:57:39 AM		
Xylenes, Total		ND	1.5		µg/L	1	1/8/2008 12:57:39 AM		
Surr: 1,2-Dici	nloroethane-d4	120	68.1-123		%REC	1	1/8/2008 12:57:39 AM		
Surr: 4-Brom	ofluorobenzene	106	53.2-145		%RĖC	1	1/8/2008 12:57:39 AM		
Surr: Dibrom	ofluoromethane	112	68.5-119		%REC	1	1/8/2008 12:57:39 AM		
Surr: Toluene	ə-d8	117	64-131		%REC	1	1/8/2008 12:57:39 AM		
EPA 120.1: SPI	ECIFIC CONDUCTANCE						Analyst: NSB		
Specific Conduc	ctance	2400	0.010		µmhos/cm	1	1/2/2008		
SM4500-H+B: F	ч						Analyst: NSB		
pН		7.77	0.1		pH units	1	1/2/2008		

Qualifiers:

5

- * Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

Date: 21-Jan-08

- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 51 of 78

CLIENT:	Western Refining Southwe	est, Gallup		Clier	nt Sample ID:	BW-2C	
Lab Order:	0801006			Co	llection Date:	12/31/2007	11:00:00 AM
Project:	2007 Annual GW Samples	5		D	ate Received:	1/2/2008	
v	0801006-15			_		AQUEOUS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
PA METHOD 300	.0: ANIONS						Analyst: SM
Fluoride		2.3	0.10		mg/L	1	1/3/2008 7:53:12 PM
Chloride		45	1.0		mg/L	10	1/3/2008 8:10:37 PM
Nitrate (As N)+Nitril	e (As N)	ND	1.0		mg/L	5	1/3/2008 2:22:23 PM
Phosphorus, Orthop	phosphate (As P)	ND	0.50	н	mg/L	1	1/3/2008 7:53:12 PM
Sulfate	t	290	5.0		mg/L	10	1/3/2008 8:10:37 PM
PA METHOD 747	0: MERCURY						Analyst: SLE
Mercury		ND	0.00020		mg/L	1 .	1/3/2008 3:29:58 PM
PA 6010B: TOTA	L RECOVERABLE META	LS					Analyst: TES
Arsenic		ND	0.020		mg/L	1	1/12/2008 4:12:58 PM
Barium		0.026	0.010		mg/L		1/12/2008 4:12:58 PM
Cadmium		ND	0.0020		mg/L		1/12/2008 4:12:58 PM
Calcium		2.9	0.50		mg/L		1/12/2008 4:12:58 PM
Chromium		ND	0.0060		mg/L		1/12/2008 4:12:58 PM
Copper		ND	0.0060		mg/L		1/12/2008 4:12:58 PM
Iron		0.16	0.050		mg/L		1/12/2008 4:12:58 PM
Lead		ND	0.0050		mg/L		1/12/2008 4:12:58 PM
Magnesium		0.68	0.50		mg/L		1/12/2008 4:12:58 PM
Manganese		0.024	0.0020		mg/L		1/12/2008 4:12:58 PM
Potassium		ND	1.0		mg/L		1/12/2008 4:12:58 PM
Selenium		ND	0.050		mg/L		1/12/2008 4:12:58 PM
Silver		ND	0.0050		mg/L		1/12/2008 4:12:58 PM
Sodium		340	5.0		mg/L		1/15/2008 12:11:35 PM
Uranium		ND	0.10		mg/L		1/12/2008 4:12:58 PM
Zinc		ND	0.020		mg/L		1/12/2008 4:12:58 PM
PA METHOD 827	C: SEMIVOLATILES						Analyst: JDC
Acenaphthene		ND	10		µg/L	1	1/9/2008
Acenaphthylene		ND	10		µg/L		1/9/2008
Aniline		ND	10		µg/L		1/9/2008
Anthracene		ND	10		µg/L		1/9/2008
Azobenzene		ND	10		μg/L		1/9/2008
Benz(a)anthracene		ND	10		µg/L	1	1/9/2008
Benzo(a)pyrene		ND	10		µg/L	1 1	1/9/2008
Benzo(b)fluoranthen	e	ND	10		µg/L	1 :	1/9/2008
Benzo(g,h,i)perylene		ND	10		µg/L	1 1	1/9/2008
Benzo(k)fluoranthen		ND	10		µg/L	1 1	1/9/2008
Benzoic acid		ND	20		µg/L	1. 1	1/9/2008
Benzyl alcohol		ND	10		µg/L	1 1	/9/2008
Bis(2-chloroethoxy)n	nethane	ND	10		µg/L	1 1	1/9/2008
Bis(2-chloroethyl)eth		ND	10		µg/L	1 1	/9/2008
Qualifiers: * 1	Value exceeds Maximum Contan	ninant Level		E	Analyte detect	ed in the associa	ated Method Blank
	Value above quantitation range			Н			or analysis exceeded
	Analyte detected below quantitati	on limits		M	-	ntaminant Level	•

Date: 21-Jan-08

RL Reporting Limit

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

S

×.	

Date: 21-Jan-08

CLIENT: Western Refining Southwest, Gallup Lab Order: 0801006 **Project:** 2007 Annual GW Samples Lab ID: 0801006-15

Client Sample ID: BW-2C Collection Date: 12/31/2007 11:00:00 AM Date Received: 1/2/2008 Matrix: AQUEOUS

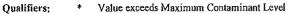
Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILE	S		· · ·		Analyst: JDC
Bis(2-chloroisopropyl)ether	ND	10	µg/L	1	1/9/2008
Bis(2-ethylhexyl)phthalate	ND	10	µg/L	1	1/9/2008
4-Bromophenyl phenyl ether	ND	10	µg/L	1	1/9/2008
Butyl benzyl phthalate	ND	10	µg/L	1	1/9/2008
Carbazole	ND	10	µg/L	1	1/9/2008
4-Chloro-3-methylphenol	ND	10	µg/L	1	1/9/2008
4-Chloroaniline	ND	10	µg/Ľ	1	1/9/2008
2-Chloronaphthalene	ND	10	µg/L	1	1/9/2008
2-Chlorophenol	ND	10	µg/L	1	1/9/2008
4-Chlorophenyl phenyl ether	ND	10	µg/L	1	1/9/2008
Chrysene	ND	10	μg/L	1	1/9/2008
Di-n-butyl phthalate	ND	10	µg/L	1	1/9/2008
Di-n-octyl phthalate	ND	10	µg/L	1	1/9/2008
Dibenz(a,h)anthracene	ND	10	µg/L	1	1/9/2008
Dibenzofuran	ND	10	μg/L	1	1/9/2008
1,2-Dichlorobenzene	ND	10	µg/L	1	1/9/2008
1,3-Dichlorobenzene	ND	10	µg/L	1	1/9/2008
1,4-Dichlorobenzene	ND	10	µg/L	1	1/9/2008
3,3'-Dichlorobenzidine	ND	10	µg/L	1	1/9/2008
Diethyl phthalate	ND	10	µg/L	1	1/9/2008
Dimethyl phthalate	ND	. 10	μg/L	1	1/9/2008
2,4-Dichlorophenol	ND	10	μg/L	· 1	1/9/2008
2,4-Dimethylphenol	ND	10	µg/L	1	1/9/2008
4,6-Dinitro-2-methylphenol	ND	10	µg/L	1	1/9/2008
2,4-Dinitrophenol	ND	20	μg/L	1	1/9/2008
2,4-Dinitrotoluene	ND	10	μg/L	1	1/9/2008
2,6-Dinitrotoluene	ND	10	µg/L	1	1/9/2008
Fluoranthene	ND	10	µg/L	1	1/9/2008
Fluorene	ND	10	µg/L	1	1/9/2008
Hexachlorobenzene	ND	10	µg/L	1	1/9/2008
Hexachlorobutadiene	ND	10	µg/L	1	1/9/2008
Hexachlorocyclopentadiene	ND	10	µg/L	1	1/9/2008
Hexachloroethane	ND	10	µg/L	1	1/9/2008
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	1/9/2008
Isophorone	ND	10	µg/L	1	1/9/2008
2-Methylnaphthalene	ND	10	μg/L	1	1/9/2008
2-Methylphenol	ND	10	μg/L	1 ·	1/9/2008
3+4-Methylphenol	ND	10	µg/L	1	1/9/2008
N-Nitrosodi-n-propylamine	ND	10	µg/L	1	1/9/2008
N-Nitrosodimethylamine	ND	10	µg/L	1	1/9/2008
N-Nitrosodiphenylamine	ND	10	µg/L	1	1/9/2008
Naphthalene	ND	10	μg/Ľ	1	1/9/2008

Value exceeds Maximum Contaminant Level Qualifiers: ٠

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Not Detected at the Reporting Limit ND
- S Spike recovery outside accepted recovery limits
- в Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level RL Reporting Limit

Page 53 of 78

E E
С


Date: 21-Jan-08

LIENT: Western Refining Southwest, Gallup Lab Order: 0801006 2007 Annual GW Samples **Project:** 0801006-15 Lab ID:

Client Sample ID: BW-2C Collection Date: 12/31/2007 11:00:00 AM Date Received: 1/2/2008

Matrix: AQUEOUS al IInita nD D. . . .

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES					Analyst: JDC
2-Nitroaniline	ND	10	µg/L	1	1/9/2008
3-Nitroaniline	ND	10	μg/L	1	1/9/2008
4-Nitroaniline	ND	10	µg/L	1	1/9/2008
Nitrobenzene	ND	10	µg/L	1	1/9/2008
2-Nitrophenol	ND	10	µg/L	1	1/9/2008
4-Nitrophenol	ND	10	µg/L	1	1/9/2008
Pentachlorophenol	ND	10	μg/L	1	1/9/2008
Phenanthrene	ND	10	µg/L	1	1/9/2008
Phenol	ND	10	μg/L	1	1/9/2008
Pyrene	ND	10	μg/L	1	1/9/2008
Pyridine	· ND	10	µg/L	1	1/9/2008
1,2,4-Trichlorobenzene	ND	10	µg/L	1	1/9/2008
2,4,5-Trichlorophenol	ND	. 10	µg/L	1	1/9/2008
2,4,6-Trichlorophenol	ND	10	µg/L	1	1/9/2008
Surr: 2,4,6-Tribromophenol	22.0	16.6-150	%REC	1	1/9/2008
Surr: 2-Fluorobiphenyl	81.5	19.6-134	%REC	1	1/9/2008
Surr: 2-Fluorophenol	49.0	9.54-113	%REC	1	1/9/2008
Surr: 4-Terphenyl-d14	85.3	22.7-145	%REC	1	1/9/2008
Surr: Nitrobenzene-d5	75.5	14.6-134	%REC	1	1/9/2008
Surr: Phenol-d5	37.3	10.7-80.3	%REC	1	1/9/2008
PA METHOD 8260B: VOLATILES					Analyst: BDH
Benzene	ND	1.0	µg/L	1	1/8/2008 1:25:50 AM
Toluene	ND .	1.0	µg/L	1	1/8/2008 1:25:50 AM
Ethylbenzene	ND	1.0	μg/L	1	1/8/2008 1:25:50 AM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	1/8/2008 1:25:50 AM
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	1/8/2008 1:25:50 AM
1,3,5-Trimethylbenzene	NÐ	1.0	µg/L	1	1/8/2008 1:25:50 AM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	1/8/2008 1:25:50 AM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	1/8/2008 1:25:50 AM
Naphthalene	ND	2.0	µg/L	1	1/8/2008 1:25:50 AM
1-Methylnaphthalene	ND	4.0	µg/L	1	1/8/2008 1:25:50 AM
2-Methylnaphthalene	ND	4.0	µg/L	1	1/8/2008 1:25:50 AM
Acetone	ND	10	μg/L	1	1/8/2008 1:25:50 AM
Bromobenzene	ND	1.0	µg/L	1	1/8/2008 1:25:50 AM
Bromochloromethane	ND	1.0	µg/L	1	1/8/2008 1:25:50 AM
Bromodichloromethane	ND	1.0	µg/L	1	1/8/2008 1:25:50 AM
Bromoform	ND	1.0	µg/L	1	1/8/2008 1:25:50 AM
Bromomethane	ND	1.0	μg/L	1	1/8/2008 1:25:50 AM
2-Butanone	ND	10	µg/L	1	1/8/2008 1:25:50 AM
Carbon disulfide	ND	10	µg/L	1	1/8/2008 1:25:50 AM
Carbon Tetrachloride	ND	1.0	µg/L	1	1/8/2008 1:25:50 AM

Value above quantitation range Е

Analyte detected below quantitation limits J

Not Detected at the Reporting Limit ND

S Spike recovery outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 54 of 78

CLIENT:	Western Refining Southwest, Gallup	Client Sample ID: BW-2C
Lab Order:	0801006	Collection Date: 12/31/2007 11:00:00 AM
Project:	2007 Annual GW Samples	Date Received: 1/2/2008
Lab ID:	0801006-15	Matrix: AQUEOUS

PQL Qual Units

Result

Hall Environmental Analysis Laboratory, Inc.

Analyses

EPA METHOD 8260B: VOLATILES Analyst: BDH 1 1/8/2008 1:25:50 AM ND. 1.0 µg/L Chlorobenzene 2.0 1 1/8/2008 1:25:50 AM ND µg/L Chloroethane 1/8/2008 1:25:50 AM ND Chloroform 1.0 µg/L 1 Chloromethane ND 1.0 µg/L 1 1/8/2008 1:25:50 AM 1/8/2008 1:25:50 AM ND 1.0 µg/L 1 2-Chlorotoluene 1 1/8/2008 1:25:50 AM 4-Chlorotoluene ND 1.0 µg/L 1/8/2008 1:25:50 AM ND 1.0 µg/L 1 cis-1,2-DCE 1 1/8/2008 1:25:50 AM ND 1.0 cis-1,3-Dichloropropene µg/L ND 2.0 1 1/8/2008 1:25:50 AM 1,2-Dibromo-3-chloropropane µg/L ND 1.0 1/8/2008 1:25:50 AM µg/L 1 Dibromochloromethane 1 1/8/2008 1:25:50 AM Dibromomethane ND 1.0 µg/L 1/8/2008 1:25:50 AM 1,2-Dichlorobenzene ND 1.0 μg/L 1 ND 1.0 1 1/8/2008 1:25:50 AM 1,3-Dichlorobenzene µg/L ND 1/8/2008 1:25:50 AM 1.4-Dichlorobenzene 1.0 µg/L 1 ND 1/8/2008 1:25:50 AM Dichlorodifluoromethane 1.0 μg/L 1 1 1/8/2008 1:25:50 AM 1,1-Dichloroethane ND 1.0 µg/L 1/8/2008 1:25:50 AM 1,1-Dichloroethene ND 1.0 µg/L 1 1/8/2008 1:25:50 AM ND 1.0 µg/L 1 1,2-Dichloropropane 1 1/8/2008 1:25:50 AM 1,3-Dichloropropane ND 1.0 µg/L 1/8/2008 1:25:50 AM ND 2.0 µg/L 1 2,2-Dichloropropane ND 1.0 µg/L 1 1/8/2008 1:25:50 AM 1.1-Dichloropropane ND 1/8/2008 1:25:50 AM 10 µg/L 1 Hexachlorobutadiene ND 10 µg/L 1 1/8/2008 1:25:50 AM 2-Hexanone ND 1.0 µg/L 1 1/8/2008 1:25:50 AM Isopropylbenzene ND 1/8/2008 1:25:50 AM 1.0 µg/L 4-Isopropyltoluene 1 ND 10 1 1/8/2008 1:25:50 AM 4-Methyl-2-pentanone µg/L ND 3.0 1/8/2008 1:25:50 AM µg/L 1 Methylene Chloride ND 1.0 µg/L 1 1/8/2008 1:25:50 AM n-Butyibenzene ND 1.0 µg/L 1 1/8/2008 1:25:50 AM n-Propylbenzene ND 1.0 µg/L 1 1/8/2008 1:25:50 AM sec-Butylbenzene ND µg/L 1/8/2008 1:25:50 AM Styrene 1.0 1 ND 1.0 µg/L 1/8/2008 1:25:50 AM 1 tert-Butvlbenzene ND 1.0 1/8/2008 1:25:50 AM µg/L 1 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane ND 2.0 µg/L 1 1/8/2008 1:25:50 AM Tetrachloroethene (PCE) ND 1.0 µg/L 1 1/8/2008 1:25:50 AM 1.0 ND μg/L 1/8/2008 1:25:50 AM 1 trans-1.2-DCE ND 1.0 µg/L 1 1/8/2008 1:25:50 AM trans-1.3-Dichloropropene ND 1.0 µg/L 1 1/8/2008 1:25:50 AM 1,2,3-Trichlorobenzene ND 1.0 µg/L 1 1/8/2008 1:25:50 AM 1,2,4-Trichlorobenzene ND 1.0 µg/L 1 1/8/2008 1:25:50 AM 1,1,1-Trichloroethane ND 1.0 µg/L 1 1/8/2008 1:25:50 AM 1,1,2-Trichloroethane 1.0 µg/L 1/8/2008 1:25:50 AM Trichloroethene (TCE) ND 1

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Date: 21-Jan-08

DF

Date Analyzed

MCL Maximum Contaminant Level

RL Reporting Limit

Page 55 of 78

56

CLIENT:	Western Refining South	west, Gallu	р	Client	t Sample ID	: BW-2C	
Lab Order:	0801006		•	Collection Date: Date Received:		12/31/2007 11:00:00 AM	
Project:	2007 Annual GW Samp	oles				: 1/2/2008	
Lab ID:	0801006-15				Matrix	: AQUEOU	JS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8260B: VOLATILES	······································			 	<u> </u>	Analyst: BDH
Trichlorofluorom	nethane	ND	1.0		µg/L	1	1/8/2008 1:25:50 AM
1,2,3-Trichlorop	ropane	ND	2.0		µg/L	1	1/8/2008 1:25:50 AM
Vinyl chloride		ND	1.0	1	µg/L	1	1/8/2008 1:25:50 AM
Xylenes, Total		ND	1.5		µg/L	1	1/8/2008 1:25:50 AM
Surr: 1,2-Dicl	hloroethane-d4	1 1 8	68.1-123		%REC	1	1/8/2008 1:25:50 AM
Surr; 4-Brom	ofluorobenzene	104	53.2-145		%REC	1	1/8/2008 1:25:50 AM
Surr: Dibrom	ofluoromethane	112	68.5-119		%REC	1	1/8/2008 1:25:50 AM
Surr: Toluene	e-d8	112	64-131	•	%REC	1	1/8/2008 1:25:50 AM
EPA 120.1: SPI							Analyst: NSB
Specific Conduc	ctance	1400	0.010	. I	umhos/cm	1	1/2/2008
SM4500-H+B: F	РΗ			•			Analyst: NSB
рH		8.73	0.1	ł	oH units	1	1/2/2008

Date: 21-Jan-08

Qualifiers:

*

- Value exceeds Maximum Contaminant Level Е Value above quantitation range
- Analyte detected below quantitation limits J
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 56 of 78

57

CLIÉNT:	Western Refining Sout	hwest, Gallup			it Sample ID:		
Lab Order:	0801006			Co	llection Date:	12/31/2007	3:15:00 PM
Project:	2007 Annual GW Sam	ples		Ď	ate Received:	1/2/2008	
Lab ID:	0801006-16				Matrix:	AQUEOUS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS						Analyst: SM
Fluoride		1.6	0.10		mg/L	- 1	1/3/2008 8:28:02 PM
Chloride		35	0.10		mg/L	1	1/3/2008 8:28:02 PM
Nitrate (As N)+N	litrite (As N)	ND	1.0		mg/L	5	1/3/2008 2:39:48 PM
Phosphorus, Or	lhophosphate (As P)	1.1	0.50	н	mg/L	1	1/3/2008 8:28:02 PM
Sulfate		51	0.50		mg/L	1	1/3/2008 8:28:02 PM
EPA METHOD	7470: MERCURY						Analyst: SLE
Mercury		ND	0.00020		mg/L	1	1/3/2008 3:31:48 PM
EPA 6010B: TO	TAL RECOVERABLE ME	TALS					Analyst: TES
Arsenic		ND	0.020		mg/L	1	1/12/2008 4:17:07 PM
Barium		0.099	0.010		mg/L	1	1/12/2008 4:17:07 PM
Cadmium		ND	0.0020		mg/L	1	1/12/2008 4:17:07 PM
Calcium		9.0	0.50		mg/L	1	1/12/2008 4:17:07 PM
Chromium		ND	0.0060		mg/L	1	1/12/2008 4:17:07 PM
Copper		ND	0.0060		mg/L	1	1/12/2008 4:17:07 PM
Iron +		0.64	0.050		mg/L	1	1/12/2008 4:17:07 PM
Lead		ND ·	0.0050		mg/L	1	1/12/2008 4:17:07 PM
Magnesium		2.9	0.50		mg/L	1	1/12/2008 4:17:07 PM
Manganese		0.13	0.0020		mg/L	1	1/12/2008 4:17:07 PM
Potassium		ND	1.0		mg/L	1	1/12/2008 4:17:07 PM
Setenium		ND	0.050		mg/L	1	1/12/2008 4:17:07 PM
Silver		ND	0.0050		mg/L	1	1/12/2008 4:17:07 PM
Sodium		430	5.0		mg/L	10	1/15/2008 12:14:29 PM
Uranium		ND	0.10		mg/L	1	1/12/2008 4:17:07 PM
Zinc		ND	0,020		mg/L	1	1/12/2008 4:17:07 PM
PA METHOD 8	270C: SEMIVOLATILES						Analyst: JDC
Acenaphthene		ND	10		µg/L	1	1/9/2008
Acenaphthylene		ND	10		µg/L		1/9/2008
Aniline		ND	10		µg/L	1	1/9/2008
Anthracene		ND	10		µg/L	1	1/9/2008
Azobenzene		ND	10		µg/L	1	1/9/2008
Benz(a)anthrace	ne	ND	10		µg/L	1	1/9/2008
Benzo(a)pyrene		ND	10		µg/L	1	1/9/2008
Benzo(b)fluorant	hene	ND	10		µg/L	1	1/9/2008
Benzo(g,h,i)peryl	ene	ND	10		µg/L	1	1/9/2008
Benzo(k)fluoranti	nene	ND	10		µg/L		1/9/2008
Benzoic acid		ND	20	I	ug/L	1	1/9/2008
Benzyl alcohol		· ND	10		µg/L	1	1/9/2008
Bis(2-chloroetho)	vy)methane	ND	10	I	µg/L	1.	1/9/2008
Bis(2-chloroethyl	lether	ND	10	1	ug/L	1 '	1/9/2008

=

Date: 21-Jan-08

ND Not Detected at the Reporting Limit S

Analyte detected below quantitation limits

Value above quantitation range

Е

J

Spike recovery outside accepted recovery limits

Page 57 of 78

.

Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

H

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-16

Client Sample ID: BW-3B Collection Date: 12/31/2007 3:15:00 PM Date Received: 1/2/2008

Matrix: AQUEOUS

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATI	LES		· · · · · · · · · · · · · · · · · · ·		Analyst: JDC
Bis(2-chloroisopropyl)ether	ND	10	µg/L	1	1/9/2008
Bis(2-ethylhexyl)phthalate	ND	10	µg/L	1	1/9/2008
4-Bromophenyl phenyl ether	ND	10	μg/L	1	1/9/2008
Butyl benzyl phthalate	ND	10	µg/L	1	1/9/2008
Carbazole	ND	10	µg/L	1	1/9/2008
4-Chloro-3-methylphenol	ND	10	µg/L	1	1/9/2008
4-Chloroaniline	ND	10	μg/L	1	1/9/2008 ~
2-Chloronaphthalene	ND	10	µg/L	1	1/9/2008
2-Chlorophenol	ND	10	µg/L	1	1/9/2008
4-Chlorophenyl phenyl ether	ND	10	µg/L	1	1/9/2008
Chrysene	ND	10	µg/L	1	1/9/2008
Di-n-butyl phthalate	ND	10	μg/L	1	1/9/2008
Di-n-octyl phthalate	ND	10	µg/L	1	1/9/2008
Dibenz(a,h)anthracene	ND	10	μg/L	1	1/9/2008
Dibenzofuran	ND	10	µg/L	1	1/9/2008
1,2-Dichlorobenzene	ND	10	μg/L	1 ·	1/9/2008
1,3-Dlchlorobenzene	ND	10	μg/L	1	1/9/2008
1,4-Dichlorobenzene	ND	10	µg/L	1	1/9/2008
3,3 ⁻ Dichlorobenzidine	ND	10	µg/L	1	1/9/2008
Diethyl phthalate	ND	10	µg/L	1	1/9/2008
Dimethyl phthalate	ND	10	µg/L	1	1/9/2008
2,4-Dichlorophenol	ND	10	µg/L	1	1/9/2008
2,4-Dimethylphenol	ND	10	µg/L	1	1/9/2008
4,6-Dinitro-2-methylphenol	ND	10	µg/L	1	1/9/2008
2,4-Dinitrophenol	ND	20	µg/L	1	1/9/2008
2,4-Dinitrotoluene	ND	10	μ g/L	1	1/9/2008
2,6-Dinitrotoluene	· ND	10	µg/L	1	1/9/2008
Fluoranthene	ND	10	µg/L	1	1/9/2008
Fluorene	ND	10	µg/L	1	1/9/2008
Hexachlorobenzene	ND	10	μg/L	1	1/9/2008
Hexachlorobutadiene	ND	10	µg/L	1	1/9/2008
Hexachlorocyclopentadiene	ND	10	μg/L	1	1/9/2008
Hexachloroethane	ND	10	μg/L	1	1/9/2008
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	1/9/2008
Isophorone	ND	10	μg/L	1	1/9/2008
2-Methyinaphthalene	ND	10	µg/L	1	1/9/2008
2-Methylphenol	ND	10	µg/L	1	1/9/2008
3+4-Methylphenol	ND	10	µg/L	1	1/9/2008
N-Nitrosodi-n-propylamine	ND	10	µg/L	1	1/9/2008
N-Nitrosodimethylamine	ND	10	μg/L	1 .	1/9/2008
N-Nitrosodiphenylamine	ND	10	µg/L	1	1/9/2008
Naphthalene	ND	10	µg/L	1	1/9/2008

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 58 of 78

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-16

Client Sample ID: BW-3B Collection Date: 12/31/2007 3:15:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES	······					Analyst: JDC
2-Nitroaniline	ND	.10		µg/L	1	1/9/2008
3-Nitroaniline	ND	10		µg/L	1	1/9/2008
4-Nitroaniline	ND	10		µg/L	1	1/9/2008
Nitrobenzene	ND	10	ł	µg/L	1	1/9/2008
2-Nitrophenol	ND	10	1	µg/L	1	1/9/2008
4-Nitrophenol	ND	10		µg/L	1	1/9/2008
Pentachlorophenol	ND	10	i	µg/L	1	1/9/2008
Phenanthrene	ND	10	1	µg/L	1	1/9/2008
Phenol	ND	10	i	µg/L	1	1/9/2008
Pyrene	ND	10	1	µg/L	.1	1/9/2008
Pyridine	ND	10	i	µg/L	1	1/9/2008
1,2,4-Trichlorobenzene	ND	10	1	µg/L	1	1/9/2008
2,4,5-Trichlorophenol	ND	10	1	µg/L	1	1/9/2008
2,4,6-Trichlorophenol	ND	10	I	µg/L	1	1/9/2008
Surr: 2,4,6-Tribromophenol	53.0	16.6-150	c,	%REC	1	1/9/2008
Surr: 2-Fluorobiphenyl	87.7	19.6-134	c	%REC	1	1/9/2008
Surr: 2-Fluorophenol	56.3	9.54-113	c	%REC	1	1/9/2008
Surr: 4-Terphenyl-d14	74.9	22,7-145	ç	%REC	1	1/9/2008
Surr: Nitrobenzene-d5	85.9	14.6-134	Ģ	%REC	1	1/9/2008
Surr: Phenol-d5	41.6	10.7-80.3	c	%REC	1	1/9/2008
EPA METHOD 8260B: VOLATILES						Analyst: BDH
Benzene	ND	1.0	ŀ	Jg/L	1	1/8/2008 1:54:05 AM
Toluene	ND	1.0	ŀ	ıg/L	1	1/8/2008 1:54:05 AM
Ethylbenzene	ND	1.0	ŀ	ıg/L	1	1/8/2008 1:54:05 AM
Methyl tert-butyl ether (MTBE)	ND	1.0	ł	ıg/L	1	1/8/2008 1:54:05 AM
1,2,4-Trimethylbenzene	ND	1.0	ł	ıg/L	: 1	1/8/2008 1:54:05 AM
1,3,5-Trimethylbenzene	ND	1.0	Ļ	ıg/L	1	1/8/2008 1:54:05 AM
1,2-Dichloroethane (EDC)	ND	1.0	Ļ	ig/L	1	1/8/2008 1:54:05 AM
1,2-Dibromoethane (EDB)	ND	1.0	۲	ıg/L	1	1/8/2008 1:54:05 AM
Naphthalene	ND	2.0	μ	ig/L	1	1/8/2008 1:54:05 AM
1-Methylnaphthalene	ND	4.0		ig/L	1	1/8/2008 1:54:05 AM
2-Methylnaphthalene	ND	4.0	μ	ig/L	1	1/8/2008 1:54:05 AM
Acetone	ND	10		ig/Ł	1	1/8/2008 1:54:05 AM
Bromobenzene	ND	1.0	μ	ig/L	1	1/8/2008 1:54:05 AM
Bromochloromethane	ND	1.0	·μ	ıg/L	1	1/8/2008 1:54:05 AM
Bromodichloromethane	ND	1.0		ıg/L	1	1/8/2008 1:54:05 AM
Bromoform	ND	1.0	μ	g/L	1	1/8/2008 1:54:05 AM
Bromomethane	ND	1.0		g/L	1	1/8/2008 1:54:05 AM
2-Bulanone	ND	10		g/L	1	1/8/2008 1:54:05 AM
Carbon disulfide	ND	10	μ	g/L	1	1/8/2008 1:54:05 AM
Carbon Tetrachloride	ND	· 1.0		g/L	1	1/8/2008 1:54:05 AM

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method BlankH Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 59 of 78

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-16

Client Sample ID: BW-3B Collection Date: 12/31/2007 3:15:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES		· · · · · · · · · · · · · · · · · · ·	-		Analyst: BDH
Chlorobenzene	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
Chloroethane	ND	2.0	μg/L	1	1/8/2008 1:54:05 AM
Chloroform	ND	1.0	μ g/L	1	1/8/2008 1:54:05 AM
Chloromethane	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
2-Chlorotoluene	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
4-Chlorotoluene	ND	1.0	μg/L	1	1/8/2008 1:54:05 AM
cls-1,2-DCE	ND	1.0	μg/L	1	1/8/2008 1:54:05 AM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	1/8/2008 1:54:05 AM
Dibromochloromethane	ND	· 1.0	µg/L	1	1/8/2008 1:54:05 AM
Dibromomethane	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
1,2-Dichlorobenzene	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
1,3-Dichlorobenzene	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
1,4-Dichlorobenzene	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
Dichlorodifluoromethane	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
1,1-Dichloroethane	ND	1.0	μg/L	1	1/8/2008 1:54:05 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	1/8/2008 1:54:05 AM
1,2-Dichloropropane	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
1,3-Dichloropropane	ND	1.0	μg/L	· 1	1/8/2008 1:54:05 AM
2,2-Dichloropropane	ND	2.0	μg/L	1	1/8/2008 1:54:05 AM
1,1-Dichloropropene	ND	1.0	μg/L	1	1/8/2008 1:54:05 AM
Hexachlorobutadiene	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
2-Hexanone	ND	10	μg/L	1	1/8/2008 1:54:05 AM
Isopropylbenzene	ND	1.0	μg/L	1	1/8/2008 1:54:05 AM
4-Isopropyltoluene	ND	1.0	μg/L	1	1/8/2008 1:54:05 AM
4-Methyl-2-pentanone	ND	10	µg/L	1	1/8/2008 1:54:05 AM
Methylene Chloride	ND	3.0	μg/L	1	1/8/2008 1:54:05 AM
n-Butylbenzene	ND	1.0	μg/L	1	1/8/2008 1:54:05 AM
n-Propylbenzene	ND	1.0	μg/L	· 1	1/8/2008 1:54:05 AM
sec-Bulylbenzene	ND	· 1.0	µg/L	1	1/8/2008 1:54:05 AM
Styrene	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
tert-Butylbenzene	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	1/8/2008 1:54:05 AM
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
trans-1,2-DCE	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
1,1,1-Trichloroethane	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	1/8/2008 1:54:05 AM
Trichloroethene (TCE)	ND	1.0	μg/L	1	1/8/2008 1:54:05 AM

Qualifiers:

E Value above quantitation range

*

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 60 of 78

(e ·	
٦		

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-16

Client Sample ID: BW-3B Collection Date: 12/31/2007 3:15:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					~	Analyst: BDH
Trichlorofluoromethane	ND	1.0		µg/L	1	1/8/2008 1:54:05 AM
1,2,3-Trichloropropane	ND	2.0		µg/L	. 1	1/8/2008 1:54:05 AM
Vinyl chloride	ND	1.0		µg/L	1	1/8/2008 1:54:05 AM
Xylenes, Total	ND	1.5		µg/L	1	1/8/2008 1:54:05 AM
Surr: 1,2-Dichloroethane-d4	117	68.1-123		%REC	1	1/8/2008 1:54:05 AM
Surr: 4-Bromofluorobenzene	106	53.2-145		%REC	1	1/8/2008 1:54:05 AM
Surr: Dibromofluoromethane	110	68.5-119		%REC	1	1/8/2008 1:54:05 AM
Surr: Toluene-d8	114	64-131		%REC	1	1/8/2008 1:54:05 AM
EPA 120.1: SPECIFIC CONDUCTANCE						Analyst: NSB
Specific Conductance	1600	0.010		µmhos/cm	1	1/2/2008
SM4500-H+B: PH						Analyst: NSB
pH	7.93	0.1		pH units	1	1/2/2008

Qualifiers:

* Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 61 of 78

CLIENT:	Western Refining Sou	thwest, Gallup			nt Sample ID:		
ab Order:	0801006			Co	llection Date:	12/31/2007	4:40:00 PM
Project:	2007 Annual GW Sam	ples		D	ate Received:	1/2/2008	
Lab ID:	0801006-17				Matrix:	AQUEOUS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
PA METHOD 3	00.0: ANIONS						Analyst: SMI
Fluoride		1.8	0.10		mg/L	1	1/3/2008 9:37:40 PM
Chloride		38	0.10		mg/L	1	1/3/2008 9:37:40 PM
Nitrate (As N)+N	itrite (As N)	ND	1.0		mg/L	5	1/3/2008 2:57:12 PM
Phosphorus, Ort	hophosphate (As P)	ND	0.50	н	mg/L	1	1/3/2008 9:37:40 PM
Sulfate		300	5.0		mg/L	10	1/3/2008 9:55:04 PM
PA METHOD 7	470: MERCURY			·			Analyst: SLB
Mercury		ND	0.00020		mg/L	1	1/3/2008 3:33:38 PM
PA 6010B: TO	TAL RECOVERABLE MI	ETALS					Analyst: TES
Arsenic		ND	0.020		mg/L	1	1/12/2008 4:21:19 PM
Barium		0.068	0.010		mg/L	1	1/12/2008 4:21:19 PM
Cadmium		ND	0.0020		mg/L		1/12/2008 4:21:19 PM
Calcium		4.2	0.50		mg/L		1/12/2008 4:21:19 PM
Chromium		ND	0.0060		mg/L		1/12/2008 4:21:19 PM
Copper		ND	0.0060		mg/L		1/12/2008 4:21:19 PM
Iron		0.14	0.050		mg/L		1/12/2008 4:21:19 PM
Lead		ND	0.0050		mg/L		1/12/2008 4:21:19 PM
Magnesium		0.81	0.50		mg/L		1/12/2008 4:21:19 PM
Manganese		0.015	0.0020		mg/L		1/12/2008 4:21:19 PM
Potassium		1,1	1.0		mg/L		1/12/2008 4:21:19 PM
Selenium		ND	0.050		mg/L		1/12/2008 4:21:19 PM
Silver		ND	0.0050		mg/L		1/12/2008 4:21:19 PM
Sodium		360	2.5		mg/L		1/15/2008 4:21:19 PM 1/15/2008 12:19:06 PM
Uranium		ND	0.10		mg/L	-	1/12/2008 4:21:19 PM
Zinc		ND	0.020		mg/L		1/12/2008 4:21:19 PM
	270C: SEMIVOLATILES						Analyst: JDC
Acenaphthene		ND	10		µg/L	1	1/9/2008
Acenaphthylene		ND	10		µg/L_		1/9/2008
Aniline		ND	10		μg/L		1/9/2008
Anthracene		ND	10		μg/L		1/9/2008
Azobenzene		ND	10		μg/L		1/9/2008
Benz(a)anthracen	e	ND	10		µg/L		1/9/2008
Benzo(a)pyrene	-	ND	10		μg/L		1/9/2008
Benzo(b)fluoranth	ene	ND	10		μg/L		1/9/2008
Benzo(g,h,i)peryle		ND	10		μg/L		1/9/2008
Benzo(k)fluoranth		ND	10		μg/L		/9/2008
Benzoic acid		ND	20		μg/L		/9/2008
Benzyl alcohol		ND	10		μg/L		/9/2008
Bis(2-chloroethox	v)methane	ND	10		μg/L		/9/2008
Bis(2-chloroethyl)		ND	10		μg/L		/9/2008
		· · · · · · · · · · · · · · · · · · ·					

Analyte detected below quantitation limits J

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits . **S**

RL Reporting Limit

Page 62 of 78

÷.	
	—
_	

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-17

Client Sample ID: BW-3C Collection Date: 12/31/2007 4:40:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES					Analyst: JDC
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	1/9/2008
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	1/9/2008
4-Bromophenyl phenyl ether	ND	10	µg/L	1	1/9/2008
Butyl benzyl phthalate	ND	10	µg/L	1	1/9/2008
Carbazole	ND	10	μg/L	1	1/9/2008
4-Chloro-3-methylphenol	ND	10	µg/L	1	1/9/2008
4-Chloroaniline	ND	10	µg/L	1	1/9/2008
2-Chloronaphthalene	ND	10	μg/Ľ	1	1/9/2008
2-Chlorophenol	ND	10	µg/L	1	1/9/2008
4-Chlorophenyl phenyl ether	ND	10	·μg/L	1	1/9/2008
Chrysene	ND	10	µg/L	1	1/9/2008
Di-n-butyl phthalate	ND	10	µg/L	1	1/9/2008
Di-n-octyl phthalate	ND	10	µg/L	1	1/9/2008
Dibenz(a,h)anthracene	ND	10	µg/L	1	1/9/2008
Dibenzofuran	ND	10	μg/L	1	1/9/2008
1,2-Dichlorobenzene	ND	. 10	µg/L	1	1/9/2008
1,3-Dichlorobenzene	ND	10	µg/L	1	1/9/2008
1,4-Dichlorobenzene	ND	10	µg/L	1	1/9/2008
3,3'-Dichlorobenzidine	ND	10	µg/L	1	1/9/2008
Diethyl phthalate	ND	10	μg/L	1	1/9/2008
Dimethyl phthalate	ND	10	µg/L	1	1/9/2008
2,4-Dichlorophenol	NÐ	10	µg/L	. 1	1/9/2008
2,4-Dimethylphenol	ND	10	µg/L	1	1/9/2008
4,6-Dinitro-2-methylphenol	ND	. 10	µg/L	1	1/9/2008
2,4-Dinitrophenol	ND	20	µg/L	1	1/9/2008
2,4-Dinitrotoluene	ND	10	μg/L	1	1/9/2008
2,6-Dinitrotoluene	ND	10	µg/Ł	1	1/9/2008
Fluoranthene	ND	10	μg/L	1	1/9/2008
Fluorene	ND	10	µg/L	1	1/9/2008
Hexachlorobenzene	ND	10	µg/L	1	1/9/2008
Hexachlorobutadiene	ND	10	µg/L	1	1/9/2008
Hexachlorocyclopentadiene	ND	10	µg/L	1	1/9/2008
Hexachloroethane	ND	10	µg/L	1	1/9/2008
Indeno(1,2,3-cd)pyrene	ND	10	µg/L	1	1/9/2008
Isophorone	ND	10	µg/L	1	1/9/2008
2-Methylnaphthalene	ND	. 10	μg/L	1	1/9/2008
2-Methylphenol	ND	10	µg/L	1	1/9/2008
3+4-Methylphenol	ND	10	µg/L	1	1/9/2008
N-Nitrosodi-n-propylamine	ND	10	µg/L	1	1/9/2008
N-Nitrosodimethylamine	ND	10	µg/L	1	1/9/2008
N-Nitrosodiphenylamine	ND	10	µg/L	1	1/9/2008
Naphthalene	ND	10	μg/L	1	1/9/2008

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 63 of 78

CLIENT:	Western Refining Sou	thwest, Gallup		Client	t Sample ID:	BW-3C		
Lab Order:	0801006			Coll	lection Date:	12/31/2007 4:40:00 PM		
Project:	2007 Annual GW San	ples		Da	te Received:	1/2/2008		
Lab ID:	0801006-17					AQUEOU	IS	
Analyses	· ·	Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	3270C: SEMIVOLATILES						Analyst: JDC	
2-Nitroaniline		ND	10		µg/L	1	1/9/2008	
3-Nitroaniline		ND	10		µg/L	1	1/9/2008	
4-Nitroaniline		ND	10		µg/L	1	1/9/2008	
Nitrobenzene		ND	10		µg/L	1	1/9/2008	
2-Nitrophenol		ND	10		µg/L	1	1/9/2008	
4-Nitrophenol		ND	10	1	µg/L	1	1/9/2008	
Pentachloropher	nol	ND	10		µg/L	1	1/9/2008	
Phenanthrene		ND	- 10		µg/L	1	1/9/2008	
Phenol		ND	10	1	µg/L	1	1/9/2008	
Pyrene		ND	10	l	µg/L	1	1/9/2008	
Pyridine		ND	10		µg/L	1	1/9/2008	
1,2,4-Trichlorob	enzene	ND	· 10	1	µg/L	1	1/9/2008	
2,4,5-Trichloroph	nenol	ND	10	1	µg/L	1	1/9/2008	
2,4,6-Trichloroph	nenol	ND	10	1	µg/L	1	1/9/2008	
Surr: 2,4,6-Tri	bromophenol	53.1	16.6-150		%REC	1	1/9/2008	
Surr: 2-Fluoro	biphenyi	87.9	19.6-134		%REC	1	1/9/2008	
Surr: 2-Fluoro	phenol	46.5	9.54-113	(%REC	1	1/9/2008	
Surr: 4-Terphe	enyl-d14	72.0	22.7-145	(%REC	1	1/9/2008	
Surr: Nitroben	zene-d5	84.1	14.6-134	c	%REC	1	1/9/2008	
Surr: Phenol-c	15	36.4	10.7-80.3	C	%REC	1	1/9/2008	
EPA METHOD 8	260B: VOLATILES						Analyst: BDH	
Benzene		ND	1.0	ı	ug/L	1	1/8/2008 2:22:21 AM	
Toluene		ND	1.0		Jg/L	1	1/8/2008 2:22:21 AM	
Ethylbenzene		ND	1.0		ug/L	1	1/8/2008 2:22:21 AM	
Methyl tert-butyl	ether (MTBE)	ND	1.0		ıg/L	1	1/8/2008 2:22:21 AM	
1,2,4-Trimethylb		ND	1.0		ug/L	1	1/8/2008 2:22:21 AM	
1,3,5-Trimethylbe		ND	1.0		Jg/L	· 1	1/8/2008 2:22:21 AM	
1,2-Dichloroetha		ND	1.0	-	.g/L	1	1/8/2008 2:22:21 AM	
1,2-Dibromoetha		ND	. 1.0		ıg/L	1	1/8/2008 2:22:21 AM	
Naphthalene	, <i>,</i>	ND	2.0		ıg/L	1	1/8/2008 2:22:21 AM	
1-Methylnaphtha	lene	ND	4.0		ig/L	1	1/8/2008 2:22:21 AM	
2-Methylnaphthal		ND	4.0		ıg/L	1	1/8/2008 2:22:21 AM	
Acetone	•	NĎ	10	H	ig/L	1	1/8/2008 2:22:21 AM	
Bromobenzene		ND	1.0	μ	ıg/L	1	1/8/2008 2:22:21 AM	
Bromochloromet	nane	ND	1.0		ig/L	1	1/8/2008 2:22:21 AM	
Bromodichlorome	ethane	ND	1.0	μ	ig/L	1	1/8/2008 2:22:21 AM	
Bromoform		ND	1.0		ig/L	1	1/8/2008 2:22:21 AM	
Bromomethane		ND	1.0		ig/L	1	1/8/2008 2:22:21 AM	
2-Butanone		ND	10		ig/L	1	1/8/2008 2:22:21 AM	
Carbon disulfide		ND	10		ig/L	1	1/8/2008 2:22:21 AM	
Carbon Tetrachlo	ride	ND	1.0		ig/L	1	1/8/2008 2:22:21 AM	

Date: 21-Jan-08

Qualifiers:

Value exceeds Maximum Contaminant Level
 E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 64 of 78

65

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-17

Date: 21-Jan-08

Client Sample ID: BW-3C Collection Date: 12/31/2007 4:40:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL 0	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES			······································		Analyst: BD
Chlorobenzene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
Chloroethane	ND	2.0	μg/L	1	1/8/2008 2:22:21 AM
Chloroform	ND	1.0	μg/L	1	1/8/2008 2:22:21 AM
Chloromethane	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
2-Chlorotoluene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
4-Chiorotoluene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
cis-1,2-DCE	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	1/8/2008 2:22:21 AM
Dibromochloromethane	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
Dibromomethane	ND	1.0	μg/L	1	1/8/2008 2:22:21 AM
1,2-Dichlorobenzene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	1/8/2008 2:22:21 AM
1,4-Dichlorobenzene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
Dichlorodifluoromethane	ND	1.0	μg/L	· 1	1/8/2008 2:22:21 AM
1,1-Dichloroethane	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
1,1-Dichloroethene	ND	1.0	μg/L	1	1/8/2008 2:22:21 AM
1,2-Dichloropropane	ND	1.0	μg/L	1	1/8/2008 2:22:21 AM
1,3-Dichloropropane	ND	1.0	μg/L	1	1/8/2008 2:22:21 AM
2,2-Dichloropropane	ND	2.0	μg/L	1	1/8/2008 2:22:21 AM
1,1-Dichloropropene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
Hexachlorobutadiene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
2-Hexanone	ND	10	µg/L	1	1/8/2008 2:22:21 AM
Isopropylbenzene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
4-Isopropyltoluene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
4-Methyl-2-pentanone	ND	10	µg/L	1	1/8/2008 2:22:21 AM
Methylene Chloride	ND	3.0	µg/L	1	1/8/2008 2:22:21 AM
n-Butylbenzene	ND	1.0	μg/L	1	1/8/2008 2:22:21 AM
n-Propylbenzene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
sec-Butylbenzene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
Styrene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
tert-Butylbenzene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	1/8/2008 2:22:21 AM
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
trans-1,2-DCE	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
1,1,1-Trichloroethane	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	1/8/2008 2:22:21 AM
Trichloroethene (TCE)	ND	1.0	μg/L	1	1/8/2008 2:22:21 AM

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 65 of 78

CLIENT:	Western Refining Southwest, Gallup		Client Sample ID:			D: BW-3C		
Lab Order:0801006Project:2007 Annual GW Samples			Co	llection Dat	te: 12/31/20	12/31/2007 4:40:00 PM 1/2/2008		
			D	ate Receive	d: 1/2/2008			
Lab ID: 0801006-17			Matrix			x: AQUEO	US	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	8260B: VOLATILES					<u></u>	Analyst: BDH	
Trichlorofluoron	nethane	ND	1.0		µg/L	1	1/8/2008 2:22:21 AM	
1,2,3-Trichlorop	propane	ND	2.0		µg/L	1	1/8/2008 2:22:21 AM	

1.0

1.5

0.1

68.1-123

53.2-145

68.5-119

µg/L

µg/L

%REC

%REC

%REC

%REC

µmhos/cm

pH units

ND

ND

116

104

110

8.59

Hall Environmental Analysis Laboratory, Inc.

Surr: Toluene-d8	116	64-131
EPA 120.1: SPECIFIC CONDUCTANCE		
Specific Conductance	1500	0.010

SM4500-H+B: PH pН

1,

Vinyl chloride

Xylenes, Total

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Qualifiers:

*

- Value exceeds Maximum Contaminant Level
- Value above quantitation range Е l
- Analyte detected below quantitation limits
- Not Detected at the Reporting Limit ND
- S Spike recovery outside accepted recovery limits
- в Analyte detected in the associated Method Blank

Date: 21-Jan-08

1

1

1

1

1

1

1

1

1/8/2008 2:22:21 AM

1/2/2008

1/2/2008

Analyst: NSB

Analyst: NSB

- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- Reporting Limit RL

CLIENT:	Western Refining South	west, Gallup		Clier	nt Sample ID:	EP-2 Inlet 1/1/2008 12:30:00 PM		
Lab Order:	0801006			Co	llection Date:			
Project:	2007 Annual GW Samp	les		D	ate Received:	1/2/2008		
Lab ID:	0801006-18				. Matrix:	AQUEOUS		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	8015B: DIESEL RANGE						Analyst: SCC	
Diesel Range O	rganics (DRO)	150	10		mg/L	10	1/4/2008 6:43:32 AM	
-	Organics (MRO)	ND	50		mg/L	10	1/4/2008 6:43:32 AM	
Surr: DNOP		0	58-140	S	%REC	10	1/4/2008 6:43:32 AM	
FPA METHOD	8015B: GASOLINE RANG	E					· Analyst: NSE	
• •	Organics (GRO)	2.6	1.0		mg/L	20	1/7/2008 2:23:45 PM	
Surr: BFB	longuinee (en ley	121	79.2-121		%REC	20	1/7/2008 2:23:45 PM	
							Analyst PDI	
	8260B: VOLATILES	400	5.0		unl	e	Analyst: BDI	
Benzene		130	5.0		µg/L ug/l	5 E	1/8/2008 3:21:02 AM	
Toluene		260	5.0		µg/L	5	1/8/2008 3:21:02 AM	
Ethylbenzene		44	5.0		µg/L	5	1/8/2008 3:21:02 AM	
Methyl tert-butyl		5.2	5.0		µg/L	5	1/8/2008 3:21:02 AM	
1,2,4-Trimethylb		170	5.0		µg/L	5	1/8/2008 3:21:02 AM	
1,3,5-Trimethylb		47	5.0		µg/L	5	1/8/2008 3:21:02 AM	
1,2-Dichloroetha	•	ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
1,2-Dibromoetha	ane (EDB)	ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
Naphthalene		250	100		µg/L	50	1/8/2008 2:11:20 PM	
1-Methylnaphtha		460	200		µg/L	50	1/8/2008 2:11:20 PM	
2-Methylnaphtha	alene	750	200		µg/L	50	1/8/2008 2:11:20 PM	
Acetone		ND	50		µg/L	5	1/8/2008 3:21:02 AM	
Bromobenzene		ND	5.0		hð\r	5	1/8/2008 3:21:02 AM	
Bromochlorome		ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
Bromodichlorom	lethane	ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
Bromoform		ND	5.0		µg/L	5	1/8/2008-3:21:02 AM	
Bromomethane		ND	5.0		µg/L		1/8/2008 3:21:02 AM	
2-Butanone		ND	50		µg/L		1/8/2008 3:21:02 AM	
Carbon disulfide		140	50		µg/L	-	1/8/2008 3:21:02 AM	
Carbon Tetrachi	oride	ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
Chlorobenzene		ND	5.0		µg/L		1/8/2008 3:21:02 AM	
Chloroethane		ND	10		µg/L		1/8/2008 3:21:02 AM	
Chloroform		ND	5.0		hð\r		1/8/2008 3:21:02 AM	
Chloromethane		ND	5.0		µg/L		1/8/2008 3:21:02 AM	
2-Chlorotoluene		ND	5.0		µg/L		1/8/2008 3:21:02 AM	
4-Chlorotoluene		ND	5.0		µg/L		1/8/2008 3:21:02 AM	
cis-1.2-DCE		ND	5.0		µg/L		1/8/2008 3:21:02 AM	
cis-1,3-Dichlorop	•	ND	5.0		µg/L		1/8/2008 3:21:02 AM	
1,2-Dibromo-3-ci	• •	ND	10		μg/L		1/8/2008 3:21:02 AM	
Dibromochlorom		ND	5.0		µg/L		1/8/2008 3:21:02 AM	
Dibromomethan		ND	5.0		µg/L		1/8/2008 3:21:02 AM	
1,2-Dichlorobenz	zene	ND	5.0		µg/L		1/8/2008 3:21:02 AM	
1,3-Dichlorobenz	zene	ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	

Date: 21-Jan-08

Qualifiers: *

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 67 of 78

68

CLIENT: Western Roming Sounwest, Ganap			Collection Date: 1/1/2008 12:30:00 PM					
Lab Order: 0801006				Co	llection Dat	e: 1/1/2008	12:30:00 PM	
Project:	2007 Annual GW Sam	nples		D	ate Receive	d: 1/2/2008		
Lab ID: 0801006-18					Matri	x: AQUEOU	JS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD 8	260B: VOLATILES						Analyst: BDH	
1,4-Dichloroben:		ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
Dichlorodifluoror	nethane	ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
1,1-Dichloroetha	ne	ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
1.1-Dichloroethe		ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
1,2-Dichloroprop	ane	ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
1,3-Dichloroprop		ND	5.0		μg/L	5	1/8/2008 3:21:02 AM	
2,2-Dichloroprop		ND	10		µg/L	5	1/8/2008 3:21:02 AM	
1,1-Dichloroprop		ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
Hexachlorobutad		ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
2-Hexanone		ND	50		μg/L	5	1/8/2008 3:21:02 AM	
Isopropylbenzen	<u>۵</u>	6.3	5.0		μg/L	5	1/8/2008 3:21:02 AM	
4-Isopropyitolue		7.0	5.0		μg/L	5	1/8/2008 3:21:02 AM	
4-Methyl-2-penta		ND	50		µg/L	5	1/8/2008 3:21:02 AM	
		ND	15		μg/L	5	1/8/2008 3:21:02 AM	
Methylene Chlor	lue	44	5.0		μg/L	5	1/8/2008 3:21:02 AM	
n-Butylbenzene		4 4 19	5.0		µg/L µg/L	5	1/8/2008 3:21:02 AM	
n-Propylbenzene			5.0			5	1/8/2008 3:21:02 AM	
sec-Butylbenzen	e	7.1 ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
Styrene		ND			µg/L		1/8/2008 3:21:02 AM	
tert-Butylbenzen		ND	5.0		µg/L	5		
1,1,1,2-Tetrachic		ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
1,1,2,2-Tetrachic		ND	10		µg/L	5	1/8/2008 3:21:02 AM	
Tetrachloroether	ne (PCE)	ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
trans-1,2-DCE		ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
trans-1,3-Dichlor	opropene	NĎ	5.0		µg/L	5	1/8/2008 3:21:02 AM	
1,2,3-Trichlorobe	nzene	ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
1,2,4-Trichlorobe	nzene	ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
1,1,1-Trichloroet	hane	ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
1,1,2-Trichloroet	hane	ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
Trichloroethene ((TCE)	ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
Trichlorofluorome	əthane	ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
1,2,3-Trichloropr	opané	ND	10		µg/L	5	1/8/2008 3:21:02 AM	
Vinyl chloride		ND	5.0		µg/L	5	1/8/2008 3:21:02 AM	
Xylenes, Total		260	7.5		µg/L	5	1/8/2008 3:21:02 AM	
Surr: 1,2-Dich	loroethane-d4	112	68.1-123		%REC	5	1/8/2008 3:21:02 AM	
Surr: 4-Bromo		109	53.2-145		%REC	5	1/8/2008 3:21:02 AM	
Surr: Dibromo	fluoromethane	110	68.5-119		%REC	5	1/8/2008 3:21:02 AM	
Surr: Toluene-	d8	106	64-131		%REC	5	1/8/2008 3:21:02 AM	
SM 2540C: TDS							Analyst: TAF	
Total Dissolved S	Solids	2200	400		mg/L	· 1	1/3/2008	

Western Refining Southwest, Gallup

Date: 21-Jan-08

Client Sample ID: EP-2 Inlet

CLIENT:

Qualifiers:

Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 68 of 78

69

CLIENT:	Western Refining Sour	thwest, Gallup			it Sample ID:		
Lab Order:	0801006				llection Date:		:30:00 AM
Project:	2007 Annual GW Sam	ples		D	ate Received:	1/2/2008	
Lab ID:	0801006-19				Matrix:	AQUEOUS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE						Analyst: SCC
Diesel Range	Organics (DRO)	91	10		mg/L	10	1/4/2008 7:10:57 AM
Motor Oil Ran	ge Organics (MRO)	ND	50		mg/L	10	1/4/2008 7:10:57 AM
Surr: DNOF)	0	58-140	S	%REC	10	1/4/2008 7:10:57 AM
ЕРА МЕТНОС	8015B: GASOLINE RANG	9E					Analyst: NSE
	ge Organics (GRO)	2.2	0.50		mg/L	10	1/7/2008 3:23:46 PM
Surr: BFB		118	79.2-121		%REC	10	1/7/2008 3:23:46 PM
	300.0: ANIONS						Analyst: SMF
Fluoride		190	10		mg/L	100	1/9/2008 2:42:43 PM
Chloride		190	0.50		mg/L	5	1/3/2008 11:10:53 AM
		ND	0.50		mg/L	5	1/3/2008 11:10:53 AM
Nitrogen, Nitra	• •	ND	2.5	н	-	5	1/3/2008 11:10:53 AM
Sulfate	Orthophosphate (As P)	730	2.5 10	11	mg/L mg/L	5 20	1/3/2008 9:26:28 AM
	7470: MERCURY	0.00000	0.00000			4	Analyst: SLB 1/3/2008 3:35:29 PM
Mercury		0.00022	0.00020		mg/L	1	173/2008 5.35.29 PW
	OTAL RECOVERABLE ME						Analyst: TES
Arsenic		ND	0.020		mg/L		1/12/2008 4:25:32 PM
Barium		0.067	0.010		mg/L	1	1/12/2008 4:25:32 PM
Cadmium		ND	0.0020		mg/L	1	1/12/2008 4:25:32 PM
Calcium		45	0.50		mg/L	1	1/12/2008 4:25:32 PM
Chromium		0.010	0.0060		mg/L	1	1/12/2008 4:25:32 PM
Copper		ND	0.0060		mg/L		1/12/2008 4:25:32 PM
Iron		4.1	0.50		mg/L	10	1/15/2008 12:27:58 PM
Lead		ND	0.0050		mg/L	1	1/12/2008 4:25:32 PM
Magnesium		14	0.50		mg/L		1/12/2008 4:25:32 PM
Manganese		0.11	0.0020		mg/L		1/12/2008 4:25:32 PM
Potassium		51	1.0		mg/L		1/12/2008 4:25:32 PM
Selenium		ND	0.050		mg/L		1/12/2008 4:25:32 PM
Silver		ND	0.0050		mg/L		1/12/2008 4:25:32 PM
Sodium		530	5.0		mg/L		1/15/2008 12:27:58 PM
Uranium		ND 0.50	0.10		mg/L		1/12/2008 4:25:32 PM
Zinc		0.59	0.020		mg/L	1	1/12/2008 4:25:32 PM
PA METHOD	8270C: SEMIVOLATILES						Analyst: JDC
		ND	50		µg/L	1	1/10/2008
Acenaphthene	e	ND	50		µg/L	1	1/10/2008
Acenaphthene Acenaphthylen		ND	50		µg/L	1	1/10/2008
Acenaphthylen		ND	50		µg/L	1	1/10/2008

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

MCL Maximum Contaminant Level

RL Reporting Limit

Page 69 of 78

Date: 21-Jan-08

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0801006
Project:	2007 Annual GW Samples
Lab ID:	0801006-19

Client Sample ID: EP-1 Inlet Collection Date: 1/1/2008 11:30:00 AM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Quại	Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES						Analyst: JDC
Benz(a)anthracene	ND	50		µg/L	1	1/10/2008
Benzo(a)pyrene	ND	50	· .	µg/L	1	1/10/2008
Benzo(b)fluoranthene	ND	50		µg/L	1	1/10/2008
Benzo(g,h,i)perylene	ND	50		µg/L	1	1/10/2008
Benzo(k)fluoranthene	ND	50		µg/L	1	1/10/2008
Benzoic acid	140	100		µg/L	1	1/10/2008
Benzyl alcohol	ND	50		µg/L	1	1/10/2008
Bis(2-chloroethoxy)methane	ND	50		µg/L	1	1/10/2008
Bis(2-chloroethyl)ether	ND	50		µg/L	1	1/10/2008
Bis(2-chloroisopropyl)ether	ND	50		µg/L	1	1/10/2008
Bis(2-ethylhexyl)phthalate	ND	50		µg/L	1	1/10/2008
4-Bromophenyl phenyl ether	ND	50		µg/L	1	1/10/2008
Butyl benzyl phthalate	ND	50		µg/L	1	1/10/2008
Carbazole	ND	50		µg/L	1	1/10/2008
4-Chloro-3-methylphenol	ND	50		µg/L		1/10/2008
4-Chloroaniline	ND	50		µg/L	1	1/10/2008
2-Chloronaphthalene	ND	50		µg/L	1	1/10/2008
2-Chlorophenol	ND	50		µg/L	1	1/10/2008
4-Chiorophenyi phenyi ether	ND	50		µg/L	1	1/10/2008
Chrysene	ND	50		µg/L	1	1/10/2008
Di-n-butyl phthalate	ND ·	50		µg/L .	1	1/10/2008
Di-n-octyl phthalate	ND	50		µg/L	· 1	1/10/2008
Dibenz(a,h)anthracene	ND	50		µg/L	1	1/10/2008
Dibenzofuran	ND	50		µg/L	1	1/10/2008
1,2-Dichlorobenzene	ND	50		µg/L	1	1/10/2008
1,3-Dichlorobenzene	ND	50		µg/L	1	1/10/2008
1,4-Dichlorobenzene	ND	50		µg/L	1	1/10/2008
3,3'-Dichlorobenzidine	ND	50		μg/L	1	1/10/2008
Diethyl phthalate	ND	50		μg/L	1	1/10/2008
Dimethyl phthalate	ND	50	1	µg/L	1	1/10/2008
2,4-Dichlorophenol	ND	50		µg/L	1	1/10/2008
2,4-Dimethylphenol	310	50	1	µg/L	1	1/10/2008
4,6-Dinitro-2-methylphenol	ND	50	1	µg/L	1	1/10/2008
2,4-Dinitrophenol	ND	100		µg/L	1	1/10/2008
2,4-Dinitrotoluene	ND	50	1	µg/L	1	1/10/2008
2,6-Dinitrotoluene	ND	50	I	µg/L	1	1/10/2008
Fluoranthene	ND	50		ug/L	1	1/10/2008
Fluorene	74	50		ug/L	1	1/10/2008
Hexachlorobenzene	ND	50		- Jg/L	1	1/10/2008
Hexachlorobutadiene	ND	50		ug/L	1	1/10/2008
Hexachlorocyclopentadiene	ND	50		ug/L ·	1	1/10/2008
Hexachloroethane	ND	50		ug/L	1	1/10/2008

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 70 of 78

	đ	-
- 4		

Date: 21-Jan-08

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0801006
Project:	2007 Annual GW Samples
Lab ID:	0801006-19

Client Sample ID: EP-1 Inlet Collection Date: 1/1/2008 11:30:00 AM Date Received: 1/2/2008 Matrix: AQUEOUS

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES	3				Analyst: JDC
Indeno(1,2,3-cd)pyrene	ND	50	µg/L	1	1/10/2008
Isophorone	• ND	50	µg/L	1	1/10/2008
2-Methylnaphthalene	690	50	µg/L	1	1/10/2008
2-Methylphenol	2200	500	µg/L	10	1/11/2008
3+4-Methylphenol	3500	500	μg/L	10	1/11/2008
N-Nitrosodi-n-propylamine	ND	50	μg/L	1	1/10/2008
N-Nitrosodimethylamine	ND	50	μg/L	1	1/10/2008
N-Nitrosodiphenylamine	ND	50	μg/L	1	1/10/2008
Naphthalene	240	50	µg/L	1	1/10/2008
2-Nitroaniline	ND	50	µg/L	1	1/10/2008
3-Nitroaniline	ND	50	µg/L	1	1/10/2008
4-Nitroaniline	ND	50	µg/L	. 1	1/10/2008
Nitrobenzene	ND	50	μg/L	1	1/10/2008
2-Nitrophenol	ND	50	µg/L	1	1/10/2008
4-Nitrophenol	ND	50	μg/L	1	1/10/2008
Pentachlorophenol	ND	50	µg/L	1	1/10/2008
Pherlanthrene	210	50	μg/L	1	1/10/2008
Phenol	4100	500	µg/L	10	1/11/2008
Pyrene	ND	50	µg/L	1	1/10/2008
Pyridine	ND	50	µg/L	1	1/10/2008
1,2,4-Trichlorobenzene	ND	50	µg/L	1	1/10/2008
2,4,5-Trichlorophenol	ND	50	µg/L	1	1/10/2008
2,4,6-Trichlorophenol	ND	50	µg/L	1	1/10/2008
Surr: 2,4,6-Tribromophenol	55.0	16.6-150	%REC	1	1/10/2008
Surr: 2-Fluorobiphenyl	76,9	19.6-134	%REC	1	1/10/2008
Surr: 2-Fluorophenol	3.49	9.54-113	S %REC	1	1/10/2008
Surr: 4-Terphenyl-d14	58.5	22.7-145	%REC	1	1/10/2008
Surr: Nitrobenzene-d5	92.8	14.6-134	%REC	1	1/10/2008
Surr: Phenol-d5	13.4	10.7-80.3	%REC	1	1/10/2008
PA METHOD 8260B: VOLATILES					Analyst: BDH
Benzene	130	50	µg/L	50	1/8/2008 2:41:47 PM
Toluene	220	50	μg/L	50	1/8/2008 2:41:47 PM
Ethylbenzene	39	2.0	µg/L	2	1/8/2008 4:19:50 AM
Methyl tert-butyl ether (MTBE)	5.3	2.0	µg/L	2	1/8/2008 4:19:50 AM
1,2,4-Trimethylbenzene	83	2.0	μġ/L	2	1/8/2008 4:19:50 AM
1,3,5-Trimethylbenzene	22	2.0	µg/L	2	1/8/2008 4:19:50 AM
1,2-Dichloroethane (EDC)	ND	2.0	μg/L	2	1/8/2008 4:19:50 AM
1,2-Dibromoethane (EDB)	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
Naphthalene	200	100	µg/L	50	1/8/2008 2:41:47 PM
1-Methylnaphthalene	250	200	µg/L	50	1/8/2008 2:41:47 PM
2-Methylnaphthalene	390	200	µg/L	50	1/8/2008 2:41:47 PM

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank .

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 71 of 78

Date: 21-Jan-08

CLIENT: Western Refining Southwest, Gallup 0801006 Lab Order: **Project:** 2007 Annual GW Samples Lab ID: 0801006-19

Client Sample ID: EP-1 Inlet Collection Date: 1/1/2008 11:30:00 AM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: BDH
Acetone	ND	20	µg/L	2	1/8/2008 4:19:50 AM
Bromobenzene	ND	2.0	µg/L ·	2	1/8/2008 4:19:50 AM
Bromochloromethane	ND	2.0	μg/L	2	1/8/2008 4:19:50 AM
Bromodichloromethane	ND	2.0	μg/L	2	1/8/2008 4:19:50 AM
Bromoform	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
Bromomethane	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
2-Butanone	ND	20	µg/L	2	1/8/2008 4:19:50 AM
Carbon disulfide	32	20	µg/L	2	1/8/2008 4:19:50 AM
Carbon Tetrachloride	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
Chlorobenzene	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
Chloroethane	ND	4.0	μg/L	2	1/8/2008 4:19:50 AM
Chloroform	ND	2.0	μġ/L	2	1/8/2008 4:19:50 AM
Chloromethane	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
2-Chlorotoluene	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
4-Chlorotoluene	ND	2.0	μg/L	2	1/8/2008 4:19:50 AM
cis-1,2-DCE	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
cis=1,3-Dichloropropene	ND	2.0	μg/L	2	1/8/2008 4:19:50 AM
1,2-Dibromo-3-chloropropane	ND	4.0	μg/L	2	1/8/2008 4:19:50 AM
Dibromochloromethane	ND	2.0	μ g/L	2	1/8/2008 4:19:50 AM
Dibromomethane	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
1,2-Dichlorobenzene	ND	2.0	μg/L	2	1/8/2008 4:19:50 AM
1,3-Dichlorobenzene	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
1,4-Dichlorobenzene	ND	2.0	μg/L	2	1/8/2008 4:19:50 AM
Dichlorodifluoromethane	ND	2.0	μg/L	2	1/8/2008 4:19:50 AM
1,1-Dichloroethane	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
1,1-Dichloroethene	ND	2.0	μg/L	2	1/8/2008 4:19:50 AM
1,2-Dichloropropane	ND	2.0	μg/L	2	1/8/2008 4:19:50 AM
1,3-Dichloropropane	ND	2.0	μg/L	2	1/8/2008 4:19:50 AM
2,2-Dichloropropane	ND	4.0	µg/L	2	1/8/2008 4:19:50 AM
1,1-Dichloropropene	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
Hexachlorobutadiene	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
2-Hexanone	ND	20	µg/L	2	1/8/2008 4:19:50 AM
Isopropyibenzene	3.3	2.0	μg/L	2	1/8/2008 4:19:50 AM
4-isopropyitoluene	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
4-Methyl-2-pentanone	ND	20	μg/L	2	1/8/2008 4:19:50 AM
Methylene Chloride	ND	6.0	µg/L	2	1/8/2008 4:19:50 AM
n-Butylbenzene	11	2.0	µg/L	2	1/8/2008 4:19:50 AM
n-Propylbenzene	8.6	2.0	µg/L	2	1/8/2008 4:19:50 AM
sec-Butylbenzene	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM .
Styrene	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
tert-Butylbenzene	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	2	1/8/2008 4:19:50 AM

Qualifiers:

*

E Value above quantitation range

Value exceeds Maximum Contaminant Level

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

В Analyte detected in the associated Method Blank

н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level RL Reporting Limit

Page 72 of 78

(2.	
1	
_	

Date: 21-Jan-08

CLIENT:Western Refining Southwest, GallupLab Order:0801006Project:2007 Annual GW SamplesLab ID:0801006-19

Client Sample ID: EP-1 Inlet Collection Date: 1/1/2008 11:30:00 AM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: BDH
1,1,2,2-Tetrachloroethane	ND	4.0	}	ug/L	2	1/8/2008 4:19:50 AM
Tetrachloroethene (PCE)	ND	2.0	ŀ	ug/L	2	1/8/2008 4:19:50 AM
trans-1,2-DCE	ND	2.0	ŀ	Jg/L	2	1/8/2008 4:19:50 AM
trans-1,3-Dichloropropene	ND	2.0	ŀ	ug/L	2	1/8/2008 4:19:50 AM
1,2,3-Trichlorobenzene	ND	2.0	ŀ	ug/L	2	1/8/2008 4:19:50 AM
1,2,4-Trichlorobenzene	ND	2.0	ł	ug/L	2	1/8/2008 4:19:50 AM
1,1,1-Trichloroethane	ND	2.0	ŀ	Jg/L	2	1/8/2008 4:19:50 AM
1,1,2-Trichloroethane	ND	2.0	ŀ	ig/L	2	1/8/2008 4:19:50 AM
Trichloroethene (TCE)	ND	2.0	. F	ıg/L	2	1/8/2008 4:19:50 AM
Trichlorofluoromethane	ND	2.0	٢	ıg/L	2	1/8/2008 4:19:50 AM
1,2,3-Trichloropropane	ND	4.0	ł	ıg/L	2	1/8/2008 4:19:50 AM
Vinyl chloride	ND	2.0	ł	ıg/L	2	1/8/2008 4:19:50 AM
Xylenes, Total	220	3.0	ł	ıg/L	2	1/8/2008 4:19:50 AM
Surr: 1,2-Dichloroethane-d4	92.7	68.1-123	9	6REC	2	1/8/2008 4:19:50 AM
Surr: 4-Bromofluorobenzene	117	53.2-145	9	6REC	2	1/8/2008 4:19:50 AM
Surr: Dibromofluoromelhane	109	68.5-119	9	6REC	2	1/8/2008 4:19:50 AM
Surr: Toluene-d8	108	64-131	9	6REC	2	1/8/2008 4:19:50 AM
EPA 120.1: SPECIFIC CONDUCTANCE						Analyst: NSB
Specific Conductance	4400	0.010	μ	imhos/cm	1	1/2/2008
SM4500-H+B: PH						Analyst: NSB
pΗ	8.46	0.1	р	H units	1	1/2/2008

Qualifiers:

*

Value exceeds Maximum Contaminant Level

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

74

Page 73 of 78

CLIENT: Lab Order: Project: Lab ID:	Western Refining Sou 0801006 2007 Annual GW San 0801006-20			Date Rec	Date: ceived:	PW-3 1/1/2008 3: 1/2/2008 AQUEOUS	
Analyses		Result	PQL	Qual Units	-	DF	Date Analyzed
EPA METHOD	300.0: ANIONS	<u></u>				****	Analyst: SM
Nitrate (As N)+N	litrite (As N)	ND	0.20	mg/L		1	1/3/2008 10:53:29 AM
EPA METHOD	7470: MERCURY						Analyst: SLE
Mercury		ND	0.00020	mg/L		1	1/3/2008 3:37:13 PM
FPA 6010B: TO	TAL RECOVERABLE M	ETALS		· · ·			Analyst: TES
Arsenic		ND	0.020	mg/L		1	1/12/2008 4:29:40 PM
Barium		0.014	0.010	mg/L		1	1/12/2008 4:29:40 PM
Cadmium		.ND	0.0020	mg/L		1	1/12/2008 4:29:40 PM
Calcium		190	5.0	mg/L		10	1/15/2008 12:30:56 PM
Chromium		ND	0.0060	mg/L		1	1/12/2008 4:29:40 PM
Copper		ND	0.0060	mg/L		1	1/12/2008 4:29:40 PM
Iron	1	0.20	0.050	mg/L		1	1/12/2008 4:29:40 PM
Lead		0.0056	0.0050	mg/L		1	1/12/2008 4:29:40 PM
Magnesium		42	0.50	mg/L		1	1/12/2008 4:29:40 PM
Manganese		0.015	0.0020	mg/L		1	1/12/2008 4:29:40 PM
Potassium		1.2	1.0	mg/L		1	1/12/2008 4:29:40 PM
Selenium		ND	0.50	mg/L		10	1/15/2008 12:30:56 PM
Silver		ND	0.0050	mg/L		1	1/12/2008 4:29:40 PM
Sodium		15	0.50	mg/L		1	1/12/2008 4:29:40 PM
Uranium		NÐ	0.10	mg/L		1	1/12/2008 4:29:40 PM
Zinc		0.041	0.020	mg/L		1	1/12/2008 4:29:40 PM
EPA METHOD 8	270C: SEMIVOLATILES	;					Analyst: JDC
Acenaphthene		ND	10	μg/L		1.	1/10/2008
Acenaphthylene		· ND	10	μg/L		1 .	1/10/2008
Aniline		ND	10	µg/L		1	1/10/2008
Anthracene		ND	10	µg/L		1	1/10/2008
Azobenzene		· ND	10	µg/L		1	1/10/2008
Benz(a)anthrace	ne	ND	10	µg/L		1	1/10/2008
Benzo(a)pyrene		ND	10	µg/L		1	1/10/2008
Benzo(b)fluorant	hene	ND	10	µg/L		1	1/10/2008
Benzo(g,h,i)pery		ND	10	μg/L		1	1/10/2008
Benzo(k)fluorant	hene	ND	10	µg/L		1	1/10/2008
Benzoic acid		ND	20	µg/L		1	1/10/2008
Benzyl alcohol	х <i>и</i>	ND	10	µg/L		1	1/10/2008
Bis(2-chloroetho	•••	ND	10	µg/L		1	1/10/2008
Bis(2-chloroethyl		ND	10	µg/L		1	1/10/2008
Bis(2-chloroisopr		ND	10	µg/L		1	1/10/2008
Bis(2-ethylhexyl)		ND	10	µg/L		1	1/10/2008
4-Bromophenyl p	alate	ND ND	10 10	μg/L μg/L			1/10/2008 1/10/2008

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Hall Envir	onmen	tal An	alysis	Labora	atory, Inc.
			- 1	~ **	~

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0801006
Project:	2007 Annual GW Samples
Lab ID:	0801006-20

Client Sample ID: PW-3 Collection Date: 1/1/2008 3:30:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLAT	TILES				Analyst: JD0
Carbazole	ND	10	µg/L	1	1/10/2008
4-Chloro-3-methylphenol	ND	10	µg/L	1	1/10/2008
4-Chloroaniline	ND	10	µg/L	1	1/10/2008
2-Chloronaphthalene	ND	10	µg/L	1	1/10/2008
2-Chlorophenol	ND	10	μg/L	1	1/10/2008
4-Chlorophenyl phenyl ether	ND	10	µg/L	. 1	1/10/2008
Chrysene	ND	10	μg/L	1	1/10/2008
Di-n-butyl phthalate	ND	10	μg/L	1	1/10/2008
Di-n-octyl phthalate	ND	10	μg/L	1	1/10/2008
Dibenz(a,h)anthracene	. ND	10	µg/L	1	1/10/2008
Dibenzofuran	ND	10	µg/L	1	1/10/2008
1,2-Dichlorobenzene	ND	10	µg/L	1	1/10/2008
1,3-Dichlorobenzene	ND	10	µg/L	1	1/10/2008
1,4-Dichlorobenzene	ND	10	µg/L	1	1/10/2008
3,3'-Dichlorobenzidine	ND	10	µg/L	1	1/10/2008
Diethyl phthalate	ND	10	μg/L	1	1/10/2008
Dimethyl phthalate	ND	10	μg/L	1	1/10/2008
2,4-Dichlorophenol	ND	10	μg/L	1	1/10/2008
2,4-Dimethylphenol	16	10	µg/L	1	1/10/2008
4,6-Dinitro-2-methylphenol	ND	10	μg/L	1	1/10/2008
2,4-Dinitrophenol	ND	20	hð\r	1	1/10/2008
2,4-Dinitrotoluene	ND	10	µg/L	1	1/10/2008
2,6-Dinitrotoluene	ND	10	µg/L	1	1/10/2008
Fluoranthene	ND	10	μg/L	1	1/10/2008
Fluorene	ND	10	μg/L	1	1/10/2008
Hexachlorobenzene	ND	10	µg/L	1	1/10/2008
Hexachlorobutadiene	ND	10	μg/L	1	1/10/2008
Hexachlorocyclopentadiene	ND	10	µg/L	1	1/10/2008
Hexachloroethane	ND	10	µg/L	1	1/10/2008
Indeno(1,2,3-cd)pyrene	ND	10	μg/L	1	1/10/2008
Isophorone	ND	10	μg/L	1	1/10/2008
2-Methylnaphthalene	32	10	µg/L	1	1/10/2008
2-Methylphenol	210	10	μg/L	1	1/10/2008
3+4-Methylphenol	360	50	μg/L	5	1/11/2008
N-Nitrosodi-n-propylamine	ND	10	μg/L	1	1/10/2008
N-Nitrosodimethylamine	ND	10	μg/L	1	1/10/2008
N-Nitrosodiphenylamine	ND	10	µg/L	1	1/10/2008
Naphthalene	ND	10	µg/L	1	1/10/2008
2-Nitroaniline	ND	10	µg/L	1	1/10/2008
3-Nitroaniline	ND	10	µg/L	1	1/10/2008
4-Nitroaniline	ND	10	μg/L	1	1/10/2008
Nitrobenzene	ND	10	μg/L	1	1/10/2008

.

Qualifiers:

Value exceeds Maximum Contaminant Level
 E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL

Reporting Limit

Page 75 of 78

Hall Environmental Ana	lysis Laboratory, II	nc.
------------------------	----------------------	-----

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0801006
Project:	2007 Annual GW Samples
Lab ID:	0801006-20

Client Sample ID: PW-3 Collection Date: 1/1/2008 3:30:00 PM: Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES					Analyst: JDC
2-Nitrophenol	ND	10	μg/L	1	1/10/2008
4-Nitrophenol	ND	10	µg/L	1	1/10/2008
Pentachlorophenol	ND	10	µg/L	1	1/10/2008
Phenanthrene	17	10	µg/L	1	1/10/2008
Pheno	800	50	μg/L	5	1/11/2008
Pyrene	ND	10	µg/L	1	1/10/2008
Pyridine	ND	10	μg/L	1	1/10/2008
1,2,4-Trichlorobenzene	ND	10	µg/L	1	1/10/2008
2,4,5-Trichlorophenol	ND	10	μg/L	1	1/10/2008
2,4,6-Trichlorophenol	ND	10	µg/L	1	1/10/2008
Surr: 2,4,6-Tribromophenol	98.0	16.6-150	%REC	1	1/10/2008
Surr: 2-Fluorobiphenyl	128	19.6-134	%REC	1	1/10/2008
Surr: 2-Fluorophenol	76.5	··· 9.54-113	%REC	1	1/10/2008
Surr: 4-Terphenyl-d14	117	22.7-145	%REC	1	1/10/2008
Surr: Nitrobenzene-d5	106	14.6-134	%REC	1	1/10/2008
Surr: Phenol-d5	64.3	10.7-80.3	%REC	1	1/10/2008
EPA METHOD 8260B: VOLATILES					Analyst: BDH
Benzene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
Toluene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
Ethylbenzene	ND	1.0	µg/L	· 1	1/8/2008 3:37:39 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	1/8/2008 3:37:39 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	1/8/2008 3:37:39 PM
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
Naphthalene	ND	2.0	µg/L	1	1/8/2008 3:37:39 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	1/8/2008 3:37:39 PM
2-Methylnaphthalene	ND	4.0	µg/L	1	1/8/2008 3:37:39 PM
Acetone	ND	10	µg/L	1	1/8/2008 3:37:39 PM
Bromobenzene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
Bromochloromethane	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
Bromodichloromethane	ND	1.0	μg/L	1	1/8/2008 3:37:39 PM
Bromoform	ND	1.0	µg/L	1	1/8/2008-3:37:39 PM
Bromomethane	ND	1.0	μg/L	1	1/8/2008 3:37:39 PM
2-Butanone	ND	10	µg/L	1	1/8/2008 3:37:39 PM
Carbon disulfide	ND	10	μg/L	1	1/8/2008 3:37:39 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	1/8/2008 3:37:39 PM
Chlorobenzene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
Chloroethane	ND	2.0	µg/L	1	1/8/2008 3:37:39 PM
Chloroform	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
Chloromethane	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM

Qualifiers:

*

- Value exceeds Maximum Contaminant Level Ε Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits S

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н MCL Maximum Contaminant Level

RL Reporting Limit

Page 76 of 78

Western Refining Southwest, Gallup **CLIENT:** 0801006 Lab Order: 2007 Annual GW Samples **Project:** 0801006-20 Lab ID:

Client Sample ID: PW-3 Collection Date: 1/1/2008 3:30:00 PM Date Received: 1/2/2008 Matrix: AQUEOUS

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES	· · · · · · · · · · · · · · · · · · ·	<u> </u>			Analyst: BD
2-Chiorotoluene	ND	1.0	μg/Ĺ	1	1/8/2008 3:37:39 PM
4-Chlorotoluene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
cis-1,2-DCE	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	1/8/2008 3:37:39 PM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	1/8/2008 3:37:39 PM
Dibromochloromethane	ND	1.0	μg/L	1 -	1/8/2008 3:37:39 PM
Dibromomethane	ND	1.0	μg/L	1	1/8/2008 3:37:39 PM
1,2-Dichlorobenzene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
1,3-Dichlorobenzene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1.	1/8/2008 3:37:39 PM
Dichlorodifluoromethane	ND	1.0	μg/L	1	1/8/2008 3:37:39 PM
1,1-Dichloroethane	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	1/8/2008 3:37:39 PM
1,2-Dichloropropane	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
1,3-Dichloropropane	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	1/8/2008 3:37:39 PM
1,1-Dichloropropene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
Hexachlorobutadiene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
2-Hexanone	ND	10	µg/L	1	1/8/2008 3:37:39 PM
Isopropylbenzene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	1/8/2008 3:37:39 PM
4-Methyl-2-pentanone	ND	10	µg/L	1	1/8/2008 3:37:39 PM
Methylene Chloride	ND	3.0	µg/L	1	1/8/2008 3:37:39 PM
n-Butylbenzene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
n-Propylbenzene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
sec-Butylbenzene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
Styrene	ND	1.0	μg/L	1	1/8/2008 3:37:39 PM
tert-Butylbenzene	ND	1.0	μg/L	1	1/8/2008 3:37:39 PM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	1/8/2008 3:37:39 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	1/8/2008 3:37:39 PM
trans-1,2-DCE	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	1/8/2008 3:37:39 PM
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
1,1,1-Trichloroethane	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
Trichloroethene (TCE)	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
Trichlorofluoromethane	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	1/8/2008 3:37:39 PM
Vinyl chloride	ND	1.0	µg/L	1	1/8/2008 3:37:39 PM
Xylenes, Total	ND	1.5	μg/L	1	1/8/2008 3:37:39 PM

Qualifiers:

Value exceeds Maximum Contaminant Level Value above quantitation range Ε

*

- J Analyte detected below quantitation limits
- Not Detected at the Reporting Limit ND
- Spike recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 77 of 78

Hall Environmental	Analysis	Laboratory	v. Inc.
man Environmental	Finalysis	Laburator	y alle

1

1

1/8/2008 3:37:39 PM

1/8/2008 3:37:39 PM

CLIENT:	T: Western Refining Southwest, Gallup			Client Sample ID: P			PW-3		
Lab Order:0801006Project:2007 Annual GW Samples		Collection Date:			te: 1/1/2008 3	1/1/2008 3:30:00 PM			
		ples	Date Received:			d: 1/2/2008	1/2/2008		
Lab ID:	0801006-20				Matr	x: AQUEOU	IS		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD	8260B: VOLATILES	······································	· · · · · · · · · · · · · · · · · · ·				Analyst: BDH		
Surr: 1,2-Dio	hloroethane-d4	110	68.1-123		%REC	1	1/8/2008 3:37:39 PM		
Surr: 4-Brom	ofluorobenzene	104	53.2-145		%REC	1	1/8/2008 3:37:39 PM		

68.5-119

64-131

%REC

%REC

99.7

114

Surr: Toluene-d8

Surr: Dibromofluoromethane

Qualifiers:

- Value exceeds Maximum Contaminant Level
 E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 78 of 78

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB		Batch #:	080104017
Address:	4901 HAWKINS NE SUITE D	•	Project Name:	0801006
	ALBUQUERQUE, NM 87109			
Attn:	ANDY FREEMAN			

Analytical Results Report

Sample Number080104017-004Client Sample ID0801006-10B / SMW-2Matrix:Water			Sampling Date Sampling Time			Date/Time Re Extraction Da		1/4/2008 1/4/2008	11:00 AM
Parameter		Result	Units	PQL	Analysis Dat	te Analyst	Me	thod	Qualifier
1,2,4-Trichloro	benzene	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
1,2-Dichlorobe	nzene	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
1,2-Diphenyi h	ydrazine	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
1,3-Dichlorobe	nzene	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
1,4-Dichlorobe	nzene	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
1-Methylnapht	halene	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
2,3,4,6-Tetract	lorophenol	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
2,3,5,6-Tetract	•	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
2,4,5-Trichloro	phenol	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
2,4,6-Trichloro	phenol	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
2,4-Dichloroph		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
2,4-Dimethylph	nenol	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
2,4-Dinitropher	างไ	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
2,4-Dinitrotolue	ene	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
2,6-Dinitrotolue	e	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
2-Chloronaphth	nalene	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
2-Chloropheno	1	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
2-Methylnaphth	nalene	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
2-Methylpheno	l	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
2-Nitroaniline		ND	ug/L	0.1	1/16/2008	EMP	EPA :	8270C	
2-Nitrophenol		ND	ug/L	0.1	1/16/2008	EMP	EPA -	8270C	
3,3'-Dichlorobe	nzidine	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
3+4-Methylphe	nol	ND	ug/L	0.1	1/16/2008	EMP	EPA a	8270C	
3-Nitroaniline		ND	ug/L	0.1	1/16/2008	EMP	EPA (8270C	
4,6-Dinitro-2-m	ethylphenol	ND	ug/L	0.1	1/16/2008	EMP	EPA a	8270C	
4-Bromophenyl	-phenylether	ND	ug/L	0.1	1/16/2008	EMP	EPA (8270C	
4-Chloro-3-met	hylphenol	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	8270C	
4-Chloroaniline		ND	ug/L	0.1	1/16/2008	EMP	EPA (8270C	
4-Chlorophenyl	-phenylether	ND	ug/L	0.1	1/16/2008	EMP .	EPA 8	3270C	
4-Nitroaniline		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	8270C	
4-Nitrophenol		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Acenaphthene		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Acenaphthylene		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Aniline		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	

Comments:

Monday, January 21, 2008

Page 1 of 6

Anatek Labs, Inc. 1282 Alluras Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anatekiabs.com 504 E Sprague Ste. D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	080104017
Address:	4901 HAWKINS NE SUITE D	Project Name:	0801006
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Sample Number Client Sample ID Matrix:	080104017-004 0801006-10B / SMW-2 Water		Sampling Date Sampling Time			Date/Time Re Extraction Da		1/4/2008 1/4/2008	11:00 AM
Parameter		Result	Units	PQL	Analysis Da	te Analyst	Mei	thod	Qualifier
Anthracene		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
Benzldine		ND	ug/L	0.1	1/16/2008	EMP		8270C	
Benzo(ghi)pery	lene	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
Benzo[a]anthra	cene	ND	ug/L	0.1	1/16/2008	ЕМР	EPA	8270C	
Benzo[a]pyrene	Ð	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	8270C	
Benzo(b)Nuorai	nthene .	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
Benzo[k]fluorar	nthene	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	8270C	
Benzyl alcohol		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	8270C	
bis(2-Chloroeth	ioxy)methane	ND	ug/L	0.1	1/16/2008	EMP	ÉPA 8	8270C	
bis(2-Chloroeth	iyi)ether	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
bis(2-chloroiso)	propyl)ether	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	•
bis(2-Ethylhexy	()phthalate	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Butylbenzylphtl	nalate	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Carbazole		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	-
Chrysene		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Dibenz[a,h]anth	nracene	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Dibenzofuran		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Diethylphthalate	Ð .	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Dimethylphthala	ate	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Di-n-butylphtha	late	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Di-n-octylphthal	late	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Fluoranthene		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Fluorene		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Hexachloroben	zene	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
Hexachlorobuta	idiene	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
Hexachlorocycl	opentadiene	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
Hexachloroetha	ne	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
Indeno[1,2,3-cd]pyrene	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
Isophorone		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
Naphthalene		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
Nitrobenzene		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
Nitrosodimethyl	amine	ND	ug/L	0.1	1/16/2008	EMP	EPA 8		
n-Nitroso-di-n-p	ropylamine	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
n-Nitrosodiphen	ylamine	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
Pentachlorophe	nol	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
Phenanthrene		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	

Comments:

Monday, January 21, 2008

Page 2 of 6

Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-8246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	080104017
Address:	4901 HAWKINS NE SUITE D	Project Name:	0801006
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Sample Number Client Sample ID Matrix:	080104017-004 0801006-10B / SMW-2 Water		Sampling Date Sampling Time			ate/Time R xtraction D		1/4/2008 1/4/2008	'11:00 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Me	thod	Qualifier
Phenol		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
Pyrene		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
Pyridine	'.	ND	ug/L	Q.1	1/16/2008	EMP	EPA	8270C	
1,4-Dioxane		14.8	ug/L	5	1/16/2008	EMP	EPA 82	70CMOD	
Benzenethiole		0.19	ug/L	0.1	1/16/2008	EMP	EPA 82	70CMOD	
Quinoline		ND	ug/L	0.1	1/16/2008	EMP	EPA 82	70CMOD	
			Surrogate	Data					
mpte Number	080104017-004								
Surrogate St	andard		Method		Per	cent Recov	ery	Control L	imits.
2,4,6-Tribrom	ophenol		EPA 8270C			100.7		10-12	-
2-Fluorobiphe	inyl		EPA 8270C			97.7		19-13	0
2-Fluorophen			EPA 8270C			91.9		21-11	0
Nitrobenzene	-d5		EPA 8270C			121.6		25-13	0
Phenol-d5			EPA 8270C			86.0		10-11	0
Terphenyl-d1	4		EPA 8270C			115.4		10-12	5
Terphenyl-d14	4		EPA 8270C	MOD		98.1		10-12	5

Comments:

Monday; January 21, 2008

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anatekiabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anatekiabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	080104017
Address:	4901 HAWKINS NE SUITE D	Project Name:	0801006
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

ample Number illent Sample ID latrix:	080104017-006 0801006-118 / SMW-4 Water		Sampling Date Sampling Time			Date/Time Re Extraction Da		1/4/2008 1/4/2008	11:00 AM
Parameter		Result	Units	PQL	Analysis Da	te Analyst	Me	thod	Qualifie
1,2,4-Trichloro	benzene	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
1,2-Dichlorobe		ND	ug/L	0.1	1/16/2008	EMP		8270C	
1,2-Diphenyl h		ND	ug/L	0.1	1/16/2008	EMP		8270C	
1,3-Dichlorobe	-	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
1,4-Dichlorobe		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
1-Methylnaphti		ND	ug/L	0.1	1/16/2008	EMP		8270C	
2,3,4,6-Tetrach		ND	ug/L	0.1	1/16/2008	EMP		8270C	
2,3,5,6-Tetrach		ND	ug/L	0.1	1/16/2008	EMP		8270C	
2,4,5-Trichloro	-	ND	ug/L	0.1	1/16/2008	EMP		8270C	
2,4,6-Trichloro	•	ND	ug/L	0.1	1/16/2008	EMP		8270C	
2,4-Dichloroph		ND	ug/L	0.1	1/16/2008	EMP		8270C	
2,4-Dimethylph		NÐ	ug/L	0.1	1/16/2008	EMP		8270C	
2,4-Dinitropher		ND	ug/L	0.1	1/16/2008	EMP		8270C	
2,4-Dinitrotolue		ND	ug/L	0.1	1/16/2008	EMP		8270C	
2,6-Dinitrotolue		ND	ug/L	0.1	1/16/2008	EMP		8270C	
2-Chloronapht		ND	ug/L	0.1	1/16/2008	EMP		8270C	
2-Chloropheno		ND	ug/L	0.1	1/16/2008	EMP		8270C	
2-Methylnaphth		ND	ug/L	0.1	1/16/2008	EMP		8270C	
2-Methylpheno		ND	ug/L	0.1	1/16/2008	EMP	EPA (8270C	
2-Nitroaniline		ND	ug/L	0.1	1/16/2008	EMP		8270C	
2-Nitrophenol		ND	ug/L	0.1	1/16/2008	EMP	EPA	B270C	
3,3'-Dichlorobe	nzidine	ND	ug/L	0.1	1/16/2008	EMP	EPA	3270C	
3+4-Methylphe	nol	ND	ug/L	0.1	1/16/2008	EMP	EPA (3270C	
3-Nitroaniline		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
4,6-Dinitro-2-m	ethylphenol	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
4-Bromophenyl	-phenylether	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
4-Chloro-3-met	hylphenol	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
4-Chloroaniline		ND	ug/L	0.1	1/16/2008	EMP	ĘPA (3270C	
4-Chlorophenyl	-phenylether	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
4-Nitroaniline		ND	ug/L.	0.1	1/16/2008	EMP	EPA 8	3270C	
4-Nitrophenol		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Acenaphthene		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Acenaphthylen	e	ND	ug/L	0.1	1/18/2008	EMP	ΕΡΑ 8	270C	
Aniline		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
Anthracene		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
Benzidine		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	2700	

Comments:

Monday, January 21, 2008

Page 4 of 6

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	080104017	•
Address:	4901 HAWKINS NE SUITE D	Project Name:	0801006	
	ALBUQUERQUE, NM 87109			
Attn:	ANDY FREEMAN			

Analytical Results Report

Sample Number080104017-006Client Sample ID0801006-11B / SMW-4Matrix:Water			Sampling Date Sampling Time			Date/Time Received Extraction Date		1/4/2008 1/4/2008	11:00 AM
Parameter		Result	Units	PQL	Analysis Da	ite Analyst	Me	thod	Qualifier
Benzo(ghl)pen	viene	NĎ	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
Benzo[a]anthra		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
Benzolalpyren		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
Benzo[b]fluora		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
Benzo[k]fluora		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
Benzyl alcohol		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
bis(2-Chloroeth		ND	ug/L	0.1	1/16/2008	EMP	EPA -	8270C	
bis(2-Chloroett		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
bis(2-chloroiso	• ·	ND	ug/L	0.1	1/16/2008	EMP		8270C	
bis(2-Ethylhex)	/l)phthalate	ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
Butylbenzylpht		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
Carbazole		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
Chrysene		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
Dibenz[a,h]anti	hracene	ND	ug/L	0.1	1/16/2008	EMP	EPA (B270C	
Dibenzofuran		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
Diethylphthalat	e	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	8270C	
Dimethylphthal	ate	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	8270C	
Di-n-butylphtha	late	ND	ug/L	0.1	1/16/2008	EMP	EPA (3270C	
Di-n-octyiphtha	•	ND	ug/L	0.1	1/16/2008	EMP	EPA (8270C	
Fluoranthene		ND	ug/L	0.1	1/16/2008	EMP	EPA (3270C	
Fluorene	•	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Hexachloroben	zene	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Hexachlorobuta	adiene	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Hexachlorocyc	lopentadiene	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Hexachloroetha	ane	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Indeno[1,2,3-co]pyrene	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Isophorone		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Naphthalene		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
Nitrobenzene		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	8270C	
Nitrosodimethy	lamine	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	3270C	
n-Nitroso-di-n-p	propylamine	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
n-Nitrosodipher	nylamin o	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
Pentachlorophe	anol .	ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
Phenanthrene		ND	ug/L	. 0.1	1/16/2008	EMP	EPA 8	270C	
Phenol		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	
Pyrene		ND	ug/L	0.1	1/16/2008	EMP	EPA 8	270C	

Comments:

Monday, January 21, 2008

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	080104017	`
Address:	4901 HAWKINS NE SUITE D	Project Name:	0801006	
	ALBUQUERQUE, NM 87109			
Attn:	ANDY FREEMAN			

Analytical Results Report

Sample Number Client Sample ID Matrix:	080104017-006 0801006-11B / SMW-4 Water		Sampling Date Sampling Time			Date/Time R Extraction D		1/4/2008 1/4/2008	11:00 AM
Parameter		Result	Units	PQL	Analysis Dat	e Analyst	Ме	thod	Qualifier
Pyridine		ND	ug/L	0.1	1/16/2008	EMP	EPA	8270C	
1,4-Dioxane		ND	ug/L	5	1/16/2008	EMP	EPA 82	70CMOD	
Benzenethiole		ND	ug/L	0.1	1/16/2008	EMP	EPA 82	70CMOD	
Quinoline		ND	ug/L	0.1	1/16/2008	EMP	EPA 8270CMOD		
			Surrogate	Data					
ample Number	080104017-006		<u></u>	·	<u> </u>			<u></u>	
Surrogate St	andard		Method		Pe	rcent Recov	ery	Control L	Imits
2,4,6-Tribrom	ophenol		EPA 8270C			84.7		10-12	23
2-Fluorobiphe	nyl		EPA 8270C			100.4		19-13	30
2-Fluorophene	ol		EPA 8270C			81.3		21-11	10
Nilrobenzene-	·d5		EPA 8270C			120.6		25-13	30

EPA 8270C

EPA 8270C

EPA 8270CMOD

75.3

124.6

108.7

Authorized Signature

Phenol-d5

Terphenyl-d14

Terphenyl-d14

John. Conthe

 MCL
 EPA's Maximum Contaminant Level

 ND
 Not Detected

 PQL
 Practical Quantitation Limit

Comments:

Monday, January 21, 2008

Page 6 of 6

10-110

10-125

10-125

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	080104018
Address:	4901 HAWKINS NE SUITE D	Project Name:	0801006
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Sample Number Client Sample ID Matrix:	080104018-001 0801006-10G / SMW-2 Water		Sampling Date Sampling Time		/1/2008 D. 0:30 AM	ate/Tim o Ro	eceived 1/4/2008	11:00 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Antimony		ND	mg/L	0.001	1/8/2008	DMB	EPA 200.8	
				·				
Sample Number Client Sample ID Matrix:	080104018-002 0801006-10H / SMW-2 Water		Sampling Date Sampling Time		11/2008 Da D:30 AM	ate/Time Re	eceived 1/4/2008	11:00 AM
Parameter -		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Dissolved Antir	mony	ND	mg/L	0.001	1/8/2008	DMB	EPA 200.8	
Sample Number Client Sample ID Matrix:	080104018-003 0801006-11G / SMW-4 Water		Sampling Date Sampling Time		2/29/2007 Da D:15 AM	ate/Time Re	ceived 1/4/2008	11:00 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	080104018
Address:	4901 HAWKINS NE SUITE D	Project Name:	0801006
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Sample Number Client Sample ID Aatrix:	080104018-004 0801006-11H / SMW-4 Water		Sampling Date Sampling Time		2/29/2007 Da 0:15 AM	ate/Time Red	eived ´	1/4/2008	11:00 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Metho	od	Qualifier
Dissolved Antii	mony	ND	mg/L	0.001	1/8/2008	DMB	EPA 20	0.8	

uthorized Signature

John. Coult

MCL EPA's Maximum Contaminant Level ND Not Detected

PQL Practical Quantitation Limit

Comments:

Wednesday, January 09, 2008

Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com

504 E Sprague Ste. D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	080104017	
Address:	4901 HAWKINS NE SUITE D	Project Name:	0801006	• •
	ALBUQUERQUE, NM 87109		•	
Attn:	ANDY FREEMAN			

Analytical Results Report

Sample Number Client Sample ID Matrix:	080104017-001 0801006-07F / MW-1 Water		Sampling Date Sampling Time		12/29/2007 D 9:10 AM	ate/Timə R	ecelved 1/4/2008	11:00 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide		ND	mg/L	0.01	1/9/2008	ETL	SM4500CNE	
	· .							
Sample Number Client Sample ID Matrix:	080104017-002 0801006-08F / MW-4 Water	· · · · · · · · · · · · · · · · · · ·	Sampling Date Sampling Time		2/29/2007 D :00 PM	ate/Time R	aceived 1/4/2008	11:00 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide		ND	mg/L	0.01	1/9/2008	ETL	SM4500CNE	
Sample Number Client Sample ID Matrix:	080104017-003 0801006-09F / MW-5 Water		Sampling Date Sampling Time		2/29/2007 Da 2:45 PM	ate/Time Re	ocelved 1/4/2008	11:00 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide		ND	mg/L	0.01	1/9/2008	ETL	SM4500CNE	
Sample Number	080104017-005		Sampling Date		1/2008 Da	ite/Time Re	ceived 1/4/2008	11:00 AM
Client Sample ID Matrix:	0801006-10F / SMW-2 Water		Sampling Time	1	0.00 AWI			
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide		0.0651	mg/L	0.01	1/9/2008	ETL	SM4500CNE	

Comments:

Monday, January 21, 2008

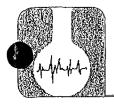
Page 1 of 2

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	080104017
Address:	4901 HAWKINS NE SUITE D	Project Name:	0801006
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Sample Number Client Sample ID Matrix:	080104017-007 0801006-11F / SMW-4 Water	,	Sampling Date Sampling Time		2/29/2007 Da 0:15 AM	ate/Time R	eceived 1/4/2008	11:00 AM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide		ND	mg/L	0.01	1/9/2008	ETL	SM4500CNE	
Sample Number	080104017-008		Sampling Date	1.	/1/2008 Da	ate/Time R	ecelved 1/4/2008	11:00 AM
Client Sample ID Matrix: ,	0801006-20E / PW-3 Water		Sampling Time	3	:30 PM			
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide	•	ND	mg/L	0.01	1/9/2008	ETL	SM4500CNE	


Authorized Signature

ohn. Conth

EPA's Maximum Contaminant Level MCL Not Detected Practical Quantitation Limit ND PQL

Comments:

Monday, January 21, 2008

ASSAIGAI ANALYTICAL LABORATORIES, INC. A WOMAN OWNED SMALL BUSINESS

4301 Masthead NE • Albuquerque, New Mexico 87109 • (505) 345-8964 • FAX (505) 345-7259

6400 Airport, Bldg. B, Sulte J • El Paso, Texas 79925 • (915) 593-6000 • FAX (915) 593-7820 127 Eastgate Drive • Los Alamos, New Mexico 87544 • (505) 662-2558

HALL ENVIRONMENTAL altn: ANDY FREEMAN 4901 HAWKINS NE, SUITE D ALBUQUERQUE NM 87109-4372

	Explanation of codes							
в	Analyte Detected in Method Blank							
E	Result is Estimated							
H	Analyzed Out of Hold Time							
N	Tentatively Identified Compound							
S	Subcontracted							
1-9	See Footnote							

STANDARD

Assaigai Analyticai Laboratories, Inc.

Certificate of Analysis

All samples are reported on an "as received" basis, unless otherwise noted (i.e. - Dry Weight).

Client:	HALL ENVI	RONMEN	ITAL.								
Project:	0801006					1.	700	2 Rai	. 1		
Drder:	08010028	HAL03		Receipt: 01-03-08	Willia	m P/Bjava: Pres		el Analytical Lab	oratories, ti	c.	
Sample:	0801006-18	C EP-2	VLET	(Collected: 01-	01-08 12:30:	00 By:				
Matrix:	AQUEOUS										
							Dilution	Detection		Prep	Run
QC Group	Run Seq	uence	CAS #	Analyte	Result	Units	Factor	Limit	Code	Date	Date
08010028-0	001A	EF	PA 410.1	Chemical Oxygen Demand				By:	NJL		
NCOD07076	WC.2008.6	6.6	C-004	Chemical Oxygen Demand	1000	mg/L	1	10		01-08-08	6 01-09-08
Sample:	0801006-181	D EP-2 IN	ILET		ollected: 01-	01-08 12:30:	00 By:				
Matrix:	AQUEOUS										
							Dilution	Detection		Prep	Run
ସିC Group	Run Sequ	lonco	CAS #	Analyte	Result	Units	Factor	Limit	Code	Date	Date
)80100 2 8-0	002A	EF	PA 405.1	Blochemical Oxygen Demand				By:	MJN		
3OD08002	WC.2008.5	8.6	10-28-4	Biochemical Oxygen Demand	798	mg/L	1	2		01-03-08	01-08-08

Unless otherwise noted, all samples were received in acceptable condition and all sampling was performed by client or client representative. Sample result of ND indicates Not Detected, is result is less than the sample specific Detection Limit. Sample specific Detection Limit is determined by multiplying the sample Dilution Factor by the listed Reporting Detection Limit. All results relate only to the liems tested. Any miscellaneous workorder information or foonotes will appear below.

Analylical results are not corrected for method blank or field blank contamination.

Hall Environmental Analysis Laboratory, Inc.

QA/QC SUMMARY REPORT

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RPD	Limit Qual
Method: EPA Method 300.0: Anio	ons							
Sample ID: 0801006-07c msd		MSD			Batch i	ID: R26784	Analysis Date:	1/3/2008 10:47:17 PN
Fluoride	1.427	mg/L	0.10	107	80	120	0 20	11 C
Phosphorus, Orthophosphate (As P)	5.286	mg/L	0.50	106	80	120	0 20	
Sample ID: 0801005-12c msd		MSD			Batch I	D: R26784	Analysis Date:	1/3/2008 11:22:06 PM
Fluoride	3.014	mg/L	0.10	85.6	80	120	0.116 20	
Phosphorus, Orthophosphate (As P)	5.333	mg/L	0.50	107	80	120	0.266 20	
Sample ID: MB		MBLK			Batch I	D: R26784	Analysis Date:	1/3/2008 6:32:34 AN
luoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10				·	
Vitrogen, Nitrate (As N)	ND	mg/L	0.10					
Jitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: MB		MBLK	0,00		Batch I	D: R26794	Analysis Date:	1/4/2008 5:18:01 AN
luoride	ND	mg/L	0.10				,	
Chloride	ND		0.10					
litrogen, Nitrate (As N)	ND	mg/L mg/L	0.10					
litrate (As N)+Nitrite (As N)	ND	mg/L	0.10		•			
hosphorus, Orthophosphate (As P)	ND	mg/L	0.20					
lifate	ND	mg/L	0.50					
ample ID: MB		MBLK	0.50		Batch I	D: R26827	Analysis Date:	1/8/2008 5:40:37 AM
			• • •		Daton	D. · NEODEI	Andiyala Date.	10/2000 0.40.07 AM
luoride	ND	mg/L	0.10					
hloride	ND	mg/L	0.10					
litrogen, Nitrate (As N)	ND	mg/L	0.10					
litrate (As N)+Nitrite (As N)	ND.	mg/L	0.20		•			
hosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
ulfate	ND	mg/L	0.50				A	
ample ID: MB		MBLK			Batch II	D: R26844	Analysis Date:	1/9/2008 3:17:32 PM
luoride	ND	mg/L	0.10					
hloride	ND	mg/L	0.10					
itrogen, Nitrate (As N)	ND	mg/L	0.10					
itrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
hosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
ulfate	ND	mg/L	0.50					
ample ID: LCS		LCS			Batch II	D: R26784	Analysis Date:	1/3/2008 8:51:38 AM
luoride	0.5463	mg/L	0.10	109	90	110		
hloride	4.906	mg/L	0.10	98.1	90	110		
itrogen, Nitrate (As N)	2.465	mg/L	0.10	98.6	90	110	•	
itrate (As N)+Nitrite (As N)	3.483	mg/L	0.20	99.5	90	110		
hosphorus, Orthophosphate (As P)	4.853	mg/L	0.50	97.1	90	110		
ulfate	9.774	mg/L	0.50	97.7	90	110		
ample ID: LCS	•	LCS			Batch IC): R26794	Analysis Date:	1/4/2008 5:35:26 AM
luoride	0.5408	mg/L	0.10	108	90	. 1 1 0		

alifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

Holding times for preparation or analysis exceeded Н ND

Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits Page 1

91

lient:

Western Refining Southwest, Gallup

Analyte	Result	Units	PQL	%Rec	f owl imit	HighLimit	%RPD RPI	DLimit Qual
				/01/00				
Method: EPA Method 300.0: Ani	ons							
Sample ID: LCS		LCS			Batch	D: R26794	Analysis Date:	1/4/2008 5:35:26 AN
Chloride	5.147	mg/L	0.10	103	90	110		
Nitrogen, Nitrate (As N)	2.574	mg/L	0.10	103	90	110		
Nitrate (As N)+Nitrite (As N)	3.602	mg/L	0.20	103	90	110		
Phosphorus, Orthophosphate (As P)	5.187	mg/L	0.50	104	90	110		
Sulfate	10.34	mg/L	0.50	103	90	110		
Sample ID: LCS		LCS			Batch	D: R26827	Analysis Date:	1/8/2008 6:28:28 AN
Fluoride	0.5250	mg/L	0.10	105	90	110		
Chloride	4.865	mg/L	0.10	97.3	90	110		
Nitrogen, Nitrate (As N)	2.476	mg/L	0.10	99.0	90	110		
Nitrate (As N)+Nitrite (As N)	3.512	mg/L	0.20	100	90	110		
Phosphorus, Orthophosphate (As P)	4.836	mg/L	0.50	96.7	90	1 10		
Sulfate	9.701	mg/L	0.50	97.0	90	1 10 .		
Sample ID: LCS		LCS			Batch I	D: R26844	Analysis Date:	1/9/2008 3:34:57 PM
Chloride	5.388	mg/L	0.10	108	90	110		
Nitrate (As N)+Nitrite (As N)	3.837	mg/L	0.20	110	90	110		
Phosphorus, Orthophosphate (As P)	5.465	mg/L	0.50	109	90	110		
Sample ID: ' 0801006-07c ms		MS	:		Batch I	D: R26784	Analysis Date:	1/3/2008 10:29:53 PM
Ettoride	1.399	mg/L	0.10	102	80	120		
osphorus, Orthophosphate (As P)	5.251	mg/L	0.50	105	80	120		
Sample ID: 0801006-12c ms		MS			Batch I		Analysis Date:	1/3/2008 11:04:42 PM
Fluoride	3.011	mg/L	0.10	84.9	80	120	-	
Phosphorus, Orthophosphate (As P)	5.319	mg/L	0.50	106	80	120		
Method: EPA Method 504.1; EDE								
Sample ID: MB-14818	,	MBLK			Batch I	D: 14818	Analysis Date:	1/8/2008 12:57:04 PM
			0.040		Daton	D. 14010	Analysis Data.	170/2000 12.07.04 F M
1,2-Dibromoethane	ND	µg/L LCS	0.010		Batch I	D. 44040	America Delas	4/0/0000 4-4F-40 DM
Sample ID: LCS-14818							Analysis Date:	1/8/2008 1:15:12 PM
1,2-Dibromoethane	0.1100	µg/L	0.010	1 10 .	70	130		
Sample ID: LCSD-14818		LCSD			Batch I	D: 14818	Analysis Date:	1/8/2008 1:33:23 PM
1,2-Dibromoethane	0.1200	µg/L	0.010	120	70	130	8.70 13.	5
Method: EPA Method 8015B: Die	sel Range							
Sample ID: MB-14780		MBLK			Batch II	D: 14780	Analysis Date:	1/3/2008 8:36:20 AM
Diesel Range Organics (DRO)	ND	mg/L	1.0				- -	•
Motor Oil Range Organics (MRO)	ND	mg/L	5.0					
Sample ID: LCS-14780		LCS	0.0		Batch II	D: 14780	Analysis Date:	1/3/2008 9:06:59 AM
	E E74		4.0	444				
Diesel Range Organics (DRO)	5.571	mg/L	1.0	111	74 Rotob II	157	Analysia Datas	1/2/2000 0.07-10 ***
Sample ID: LCSD-14780		LCSD			Batch II		Analysis Date:	1/3/2008 9:37:43 AM
Diesel Range Organics (DRO)	6.056	mg/L	1.0	121	74	157	8.33 23	

hlifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 2

Hall Environmental Analysis Laboratory, Inc.

QA/QC	SUMMARY	REPORT
-------	---------	--------

-	rn Refining South Annual GW Samp		p			Woi	rk Order: 0801006
Analyte	Result	Units	PQL	%Rec	LowLimit HighLimit	%RPD R	PDLimit Qual
	15B: Gasoline Ran	•	- <u></u>		Dutch ID Doornoo		4///2000 40.00.00 411
Sample ID: 5ML RB		MBLK			Batch ID: R26789	Analysis Date:	1/4/2008 10:03:32 AM
Gasoline Range Organics (G Sample ID: 5ML RB-B	RO) ND	mg/L <i>MBLK</i>	0.050		Batch ID: R26807	Analysis Date:	1/7/2008 10:22:44 AM
Gasoline Range Organics (G Sample ID: 2.5UG GRO LC	,	mg/L LCS	0.050		Batch ID: R26807	Analysis Date:	1/7/2008 11:53:01 AM
Gasoline Range Organics (G Sample ID: 2.5UG GRO LC	•	mg/L LCSD	0.050	88.7	80 115 Batch ID: R26807	Analysis Date:	1/7/2008 12:23:10 PM
Gasoline Range Organics (G	RO) 0.4606	mg/L	0.050	86.9	80 115	1.94	8.39

alifiers:

E Value above quantitation range

- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

lient: **Project:**

Western Refining Southwest, Gallup

2007 Annual GW Samples

Work Order: 0801006

Analyte	Result	Units	PQL	%Rec	LowLimit H	lighLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8270C	: Semivolatiles								
Sample ID: mb-14786		MBLK	•		Batch ID	: 14786	Analysis I	Date:	1/9/2008
Acenaphthene	ND	µg/L	10						
Acenaphthylene	ND	µg/L	10						
Aniline	ND	µg/L	10						
Anthracene	ND	µg/L	10						
Azobenzene	ND	µg/L	10						
Benz(a)anthracene	ND	μg/L	10				•		
Benzo(a)pyrene	ND	µg/L	10						
Benzo(b)fluoranthene	ND	μg/L	10						
Benzo(g,h,i)perylene	ND	µg/L	10						
Benzo(k)fluoranthene	ND	μg/L	10						
Benzoic acid	ND	µg/L	20						
Benzyl alcohol	ND	μg/L	10						
Bis(2-chloroethoxy)methane	ND	μg/L	10						
Bis(2-chloroethyl)ether	ND	µg/L	10						
Bis(2-chloroisopropyl)ether	ND	μg/L	10						
Bis(2-ethylhexyl)phthalate	ND	μg/L	10	-					*.
4-Bromophenyl phenyl ether	ND	μg/L	10						
Butyl benzyl phthalate	ND ·	μg/L	10			•			
rbazole	ND	μg/L	10						
	ND		10						
Chloro-3-methylphenol	ND	. μ g/L ΄ μg/L	10						
4-Chloroaniline									
2-Chloronaphthalene	ND	µg/L	10						
2-Chlorophenol	ND	µg/L	10						
4-Chlorophenyl phenyl ether	NÐ	µg/L	10						
Chrysene Die butet althought	ND	µg/L	10						
Di-n-butyl phthalate	ND	µg/L	10						
Di-n-octyl phthalate	ND	µg/L	10						
Dibenz(a,h)anthracene	ND	µg/L	10						
Dibenzofuran	ND	µg/L	10						
1,2-Dichlorobenzene	ND	µg/L	10						
1,3-Dichlorobenzene	ND	µg/L	10		•	•			
1,4-Dichlorobenzene	ND	µg/L	10						
3,3'-Dichlorobenzidine	ND	µg/L	10 10						
Diethyl phthalate	ND	µg/L	10 10						
Dimethyl phthalate	ND	µg/L	10 10					·	
2,4-Dichlorophenol	ND	µg/L	10 10						
2,4-Dimethylphenol	ND	µg/L .	10						
4,6-Dinitro-2-methylphenol	ND	µg/L	10						
2,4-Dinitrophenol	ND	µg/L	20						
2,4-Dinitrotoluene	ND	µg/L	10						
2,6-Dinitrotoluene	ND	µg/L	10						
Fluoranthene	ND	µg/L	10						
Fluorene	ND	µg/L	10						
Hexachlorobenzene	ND	µg/L	10						

alifiers:

Е Value above quantitation range

Analyte detected below quantitation limits J

R RPD outside accepted recovery limits Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit S

Spike recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

QA/QC SUMMARY REPORT

.

2	elient:
	Project:

Western Refining Southwest, Gallup

2007 Annual GW Samples

Work Order: 0801006

Analyte	Result	Units	PQL	%Rec	LowLimit	High	Limit	%RPD	RPDLimit	
Method: EPA Method 8270C	: Semivolatiles	MOLK			Batch	חו	14786	Analysis	Datar	1/9/200
Sample ID: mb-14786		MBLK			Datcii	10.	14700	Analysis	Dale.	1/9/200
Hexachlorobutadiene	ND	µg/L	10							
Hexachlorocyclopentadiene	ND	µg/L	10							
Hexachloroethane	ND	µg/L	10							
Indeno(1,2,3-cd)pyrene	ND	µg/L	10							
Isophorone	ND	µg/L	10							
2-Methylnaphthalene	ND	µg/L	10							
2-Methylphenol	ND	µg/L	10							
3+4-Methylphenol	ND	µg/L	10							
N-Nitrosodi-n-propylamine	ND	µg/L	10							
N-Nitrosodimethylamine	ND	µg/L	10							
N-Nitrosodiphenylamine	ND	µg/L	10							
Naphthalene	ND	µg/L	10							
2-Nitroaniline	ND	µg/L	10							
3-Nitroaniline	ND	µg/L	10							
4-Nitroaniline	ND	µg/L	10							
Nitrobenzene	ND	µg/L	10							
2-Nitrophenol	ND	μg/L	10							
-Nitrophenol	ND	µg/L	10							
ntachtorophenol	ND	µg/L	10							
nenanthrene	ND	µg/L	10							
Phenol	ND	µg/L	10							
^o yrene	ND	µg/L	10							
- yridine	ND	µg/L	10							
1,2,4-Trichlorobenzene	ND	µg/L	10							
2,4,5-Trichlorophenol	ND	µg/L	10							
2,4,6-Trichlorophenol	ND	µg/L	10							
Sample ID: Ics-14786		LCS			Batch I	D:	14786	Analysis I	Date:	1/9/2008
Acenaphthene	93.72	µg/L	10	93.7	11	123	1			
I-Chloro-3-methylphenol	183.7	μg/L	10	91.9	15.4	119	1			
2-Chlorophenol	151.8	μg/L	10	75.9	12.2	122				
,4-Dichlorobenzene	62.28	μg/L	10	62.3	16.9	100				
2,4-Dinitrotoluene	94.04	μg/L	10	94.0	13	138				
V-Nitrosodi-n-propylamine	78.32	μg/L	10	78.3	9.93	122				
4-Nitrophenol	127.5	µg/L	10	63.7	12.5	87.4				
Pentachlorophenol	173.0	µg/L	10	86.5	3.55	114				
Phenol	88.98	µg/L	10	44.5	7.53	73.1				
^o yrene	94.74	µg/L	-10	94.7	12.6	140				
,2,4-Trichlorobenzene	60.80	µg/L	10	60.8	17.4	98.7				
Sample ID: LCSD-14786	20.00	LCSD			Batch II		14786	Analysis E)ate:	1/9/2008
•	00.04		10	00 2				-		
Acenaphthene	88.34	µg/L	10	88.3	11	123		5.91	30.5	
I-Chloro-3-methylphenol	173.9	µg/L	10	87.0	15.4	119		5.48	28.6	
2-Chlorophenol	172.6	µg/L	10	86.3	12.2	122		12.8	107	
I,4-Dichlorobenzene	73.58	µg/L	10	73.6	16.9	100		16.6	62.1	
4-Dinitrotoluene	85.26	µg/L	10	85.3	13	138		9.79	14.7	

alifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 5

Western Refining Southwest, Gallup

lient:

	al GW Sampl			•		· · · · · · · · · · · · · · · · · · ·	V	Vork O	rder: 0801006
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDL	imit Qual
Method: EPA Method 8270C:	Semivolatiles							<u> </u>	
Sample ID: LCSD-14786		LCSD			Batch	ID: 14786	Analysis Da	ate:	1/9/2008
N-Nitrosodi-n-propylamine	89.10	µg/L	10	89.1	9.93	122	. 12.9	30.3	
4-Nitrophenol	88.32	µg/L	10	44.2	12.5	87.4	36.3	36.3	
Pentachlorophenol	144.7	µg/L	10	72.3	3.55	114	17.8	49	
Phenol	102.3	μg/L	10	51.2	7.53	73.1	13.9	52.4	
Pyrene	81.66	µg/L	10	81.7	12.6	140	14.8	16.3	
1,2,4-Trichlorobenzene	69.7 6	µg/L	10	69.8	17.4	98.7	13.7	36.4	
Method: EPA Method 7470: Method	ercury								
Sample ID: 0801006-20C MSD		MSD			Batch I	D: 14781	Analysis Da	ite:	1/3/2008 3:40:42 PM
Mercury	0.004811	mg/L	0.00020	96.2	75	125	1.01	20	
Sample ID: MB-14781		MBLK			Batch I	D: 14781	Analysis Da	ite:	1/3/2008 3:03:04 PM
Mercury	ND	mg/L	0.00020				•		
Sample ID: LCS-14781		LĈS			Batch I	D: 14781	Analysis Da	ite:	1/3/2008 3:04:49 PM
Mercury	0.005029	mg/L	0.00020	101	80	120			
Sample ID: 0801006-20C MS	0.000020	MS	0.0002.0	101	Batch I		Analysis Da	ite:	1/3/2008 3:38:57 PM
	0.004860	mg/L	0.00020	97.2	75	125	r maijoie _e		· · · · · · · · · · ·
Mercury	0.004000	ing/L	0.00020	51.4	10	12J			
Method: EPA Method 6010B: D	Dissolved Met								
mple ID: MB		MBLK			Batch I	D: R26893	Analysis Da	te:	1/14/2008 8:17:51 AM
Arsenic	ND	mg/L	0.020						
Barium	ND	mg/L	0.020						
Cadmium	ND	mg/L	0.0020						
Calcium	ND .	mg/L	1.0						
Chromium	ND	mġ/L	0.0060						
Lead	ND	mg/L	0.0050						
Magnesium	ND	mg/L	1.0						
Potassium	ND	mg/L	1.0						
Selenium	ND	mg/L	0.050						
Silver	ND	mg/L	0.0050						· · ·
Sodium	ND	mg/L LCS	1.0		Batch I	D: R26893	Analysis Da	In: 1	14 4 /2008 0-2015 4 ANA
Sample ID: LCS							Analysis Da	ιe. Ι	/14/2008 8:20:54 AM
Arsenic	0.4681	mg/L	0.020	93.6	80	120			
Barium	0.4717	mg/L	0.020	94.3	80 80	120			
Cadmium	0.4757 52.00	mg/L	0.0020	95.1 103	80 80	120 120			
Calcium	52.00 0.4795	mg/L mg/l	0.0060	95.9	80 80	120			
Chromium Lead	0.4795 0.4631	mg/L · mg/L	0.0050	95.9 92.6	80	120			
	0.463 i 51.75		1.0	92.0 102	80 80	120			
Magnesium Potassium	51.75 55.16	mg/L mg/L	1.0	102	80	120			
Potassium Selenium	0.4619		0.050	92.4	80 80	120			
Səlenium Silvər	0.4619	mg/L mg/L	0.0050	92.4 94.0	80 80	120			
Sodium	54.97	mg/L	1.0	94.0 109	80	120			
SUUIU/II	04.01	ing/L	1.0	103	00	. 120		•	

alifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 6

Client:

Western Refining Southwest, Gallup 2007 Annual GW Samples

Project:	2007 Annual	Gw Samp	nes	•					Work Order	: 0801006
Analyte		Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	A 6010B: Total Rec	overable M	etals							
Sample ID: 08	01006-17D MSD		MSD			Batch	ID: 14784	Analysis D	ate: 1/12/	2008 4:55:47 PM
Arsenic		0.5601	mg/L	0.020	112	75	125	2.22	20	
Barium		0.5957	mg/L	0.010	106	75	125	2.84	20	
Cadmium		0.5464	mg/L	0.0020	109	75	125	1.76	20	
Calcium		59.40	mg/L	0.50	110	75	125	2.33	20	
Chromium		0.5397	mg/L	0.0060	107	75	125	1.63	20	
Copper	•	0.5728	mg/L	0.0060	115	75	125	1.90	20	
Iron		0.7385	mg/L	0.050	121	75	125	3.82	20	
Lead		0.5152	mg/L	0.0050	103	75	125	2.36	20	
Magnesium		57.76	mg/L	0.50	114	75	125	2.35	20	
Manganese		0.5447	mg/L	0.0020	106	75	125	1.96	20	
Potassium		60.60	mg/L	1.0	119	75	125	3.46	20	
Selenium		0.5308	mg/L	0.050	106	75	125	0.661	20	
Silver		0.5325	mg/L	0.0050	107	75	125	2.10	20	
Uranium		0.4989	mg/L	0.10	99.8	75	125	1.27	20	
Zinc		0.5314	mg/L	0.020	105	75	125	2.34	20	
Sample ID: MB	3-14784		MBLK			Batch		Analysis D		2008 3:13:23 PM
Arsenic		ND	mg/L	0.020				•		
Barium		ND	mg/L mg/L	0.020						
		ND ·	mg/L	0.0020						
limium Calaium		ND	mg/L	0.0020						·
Calcium		ND		0.0060						
Chromium			mg/L							
Copper		ND	mg/L	0.0060						
iron		ND	mg/L	0.050						
Lead		ND	mg/L	0.0050						
Magnesium		ND	mg/L	0.50						
Manganese		ND	mg/L	0.0020						
Nickel		ND	mg/L	0.010				•		
Potassium		ND	mg/L	1.0						
Selenium		ND	mg/L	0.050						
Silver		ND	mg/L	0.0050						
Sodium		ND	mg/L	0.50						
Uranium		ND	mg/L	0.10						
Zinc		ND	mg/L	0.020		Datab II		Aught 1 D		
Sample ID: LCS	5-14784		LCS			Batch II		Analysis Da	ate: 1/12/2	008 3:16:26 PM
Arsenic		0.5270	mg/L	0.020	105	80	120			
Barium		0.5149	mg/L	0.010	103	80	120			
Cadmium		0.5300	mg/L	0.0020	106	80	120			
Calcium		52.93	mg/L	0.50	106 ·	80	120			
Chromium		0.5298	mg/L	0.0060	106	80	120			
Copper		0.5290	mg/L	0.0060	106	80	120			
ron		0.5332	mg/L	0.050	107	80	120			
_ead		0.5207	mg/L	0.0050	104	80	120			
Magnesium		54.06	mg/L	0.50	108	80	120			
Manganese		0.5153	mg/L	0.0020	103	80	120			

alifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Work Order: 0801006

Western Refining Southwest, Gallup 2007 Annual GW Samples

Project: 2007 Annua	l GW Samp	les	· .				Work	Order: 0801006
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RPI	DLimit Qual
Method: EPA 6010B: Total Red	coverable Me	tals						
Sample ID: LCS-14784		LCS			Batch	D: 14784	Analysis Date:	1/12/2008 3:16:26 PM
Nickel	0.4995	mg/L	0.010	99.9	80	120		
Potassium	57.07	mg/L	1.0	114	80	120		
Selenium	0.5506	mg/L	0.050	110	80	120		
Silver	0.5213	mg/L	0.0050	104	80	120		
Sodium	57.38	mg/L	0.50	115	80	120		
Uranium	0.4905	mg/L	0.10	98.1	80	120		•
Zinc	0.5194	mg/L	0.020	104	80	120		
Sample ID: 0801006-17D MS		MS ·			Batch I	D: 14784	Analysis Date:	1/12/2008 4:51:30 PM
Arsenic	0.5726	mg/L	0.020	115	75	125		
Barium	0.6129	mg/L	0.010	109	75	125		
Cadmium	0.5561	mg/L	0.0020	111	75	125		
Calcium	60.80	mg/L	0.50	113	75	125		
Chromium	0.5486	mg/L	0.0060	109	75	125		
Соррег	0.5837	mg/L	0.0060	117	75	125		
Iron	0.7109	mg/L	0.050	115	75	125		
Lead	0.5274	mg/L	0.0050	105	75	125		
Magnesium	59.13	mg/L	0,50	117	75	125		
Manganese	0.5555	mg/L	0.0020	108	75	125		
ssium	62.74	mg/L	1.0	123	75	125		
Serenium	0.5273	mg/L	0.050	105	75	125		
Silver	0.5438	mg/L	0.0050	109	75	125		
Uranium	0.5053	mg/L	0.10	101	75	125		
Zinc	0.5440	mg/L	0.020	107	75	125		
Method: SM 2540C: TDS		4						
Sample ID: MB-14788		MBLK			Batch II	D: 14788	Analysis Date:	1/3/2008
Total Dissolved Solids	ND	mg/L	20					• •
Sample ID: LCS-14788		LCS			Batch II	D: 14788	Analysis Date:	1/3/2008
Total Dissolved Solids	1020	mg/L	20	101	80	120		

ifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 8

0801006

Page 1

Work Order:

QA/QC SUMMARY REPORT

Client: Project:

Western Refining Southwest, Gallup 2007 Annual GW Samples

Analyte	Result	Units	PQL	%Rec	LowLimit	Hig	ghLimit	%RPD	RPDI	.imit Qual	
Method: EPA Method 8260B:	VOLATILES										
Sample ID: 0801006-07a msd		MSD			Batch	ID:	R26808	Analysis E	Date:	1/7/2008 11:32:5	0 PN
Benzene	21.99	µg/L	1.0	110	72.4	1	26	3.60	15		
Toluene	20.87	µg/L	1.0	104	79.2	. 1	15	2.75	15		
Chlorobenzene	21.00	µg/L	1.0	105	83.1	1	11	0.295	15		
1,1-Dichloroethene	24.46	µg/L	1.0	122	81.4	1	22	2.06	17.8	S	
Trichloroethene (TCE)	21.26	µg/L	1.0	106	64.4		18 .	2.06	19.8		
Sample ID: 5mL rb		MBLK			Batch	ID:	R26808	Analysis E	Date:	1/7/2008 8:54:1	9 AN
Benzene	ND .	µg/L	1.0								
Toluene	ND	μg/L	1.0								
Ethylbenzene	ND	μg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0								
1,2,4-Trimethylbenzene	ND	µg/L	1.0						•		
1,3,5-Trimethylbenzene	ND	µg/L	1.0								
1,2-Dichloroethane (EDC)	ND	µg/L	1.0		•						
1,2-Dibromoethane (EDB)	ND	µg/L	1.0		·						
Naphthalene	ND	µg/L	2.0								
1-Methylnaphthalene	ND	μg/L	4.0								
2-Methylnaphthalene	ND	μg/L	4.0								
	ND	µg/L	10		•						
mobenzene	ND	μg/L	1.0								
Bromochloromethane	ND	μg/L	1.0								
Bromodichloromethane	ND	μg/L	1.0								
Bromoform	ND	μg/L	1.0								
Bromomethane	ND	μg/L	1.0								
2-Butanone	ND	µg/L	. 10								
Carbon disulfide	ND	µg/L	10								
Carbon Tetrachloride	ND	μg/L	1.0								
Chlorobenzene	ND	µg/L	1.0								
Chloroethane	ND	μg/L	2.0								
Chloroform	ND	μg/L	1.0								
	ND		1.0								
Chloromethane 2-Chlorotoluene	ND	μg/Ĺ μg/L	1.0								
4-Chlorotoluene	ND	μg/L	1.0								
cis-1,2-DCE	ND	μg/L	1.0								
cis-1,3-Dichloropropene	ND	μg/L	1.0								
1,2-Dibromo-3-chloropropane	ND	μg/L	2.0								
Dibromochloromethane	ND	μg/L	1.0								
Dibromomethane	ND	μg/L	1.0								
1,2-Dichlorobenzene	ND	µg/∟ µg/L	1.0								
1,3-Dichlorobenzene	ND	μg/L	1.0								
1,4-Dichlorobenzene	ND	μg/L	1.0								
	ND ·	μg/L	1.0								
Dichlorodifluoromethane			1.0								
1,1-Dichloroethane	ND	µg/L									
1,1-Dichloroethene	ND	µg/L ua∕l	1.0	•							
1,2-Dichloropropane	ND	µg/L	1.0								

aalifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

ient: **Project:**

Western Refining Southwest, Gallup 2007 Annual GW Samples

Work Order: 0801006

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Method: EPA Method 8260B:	VOLATILES	· · · · ·							
Sample ID: 5mL rb		MBLK			Batch II	D: R26808	Analysis [)ate:	1/7/2008 8:54:19 AI
1,3-Dichloropropane	ND	µg/L	1.0						
2,2-Dichloropropane	ND	µg/L	2.0						
1,1-Dichloropropene	ND	µg/L	1.0						
Hexachlorobutadiene	ND	µg/L	1.0						
2-Hexanone	ND	µg/L	10						
Isopropylbenzene	ND	µg/L	1.0						
4-Isopropyltoluene	ND	µg/L	1.0						
4-Methyl-2-pentanone	.ND	µg/L	10						
Methylene Chloride	ND	µg/L	3.0						
n-Butylbenzene	ND	µg/L	1.0						
n-Propylbanzene	ND	µg/L	1.0						
sec-Butylbenzene	ND	µg/L	1.0				,		
Styrene	ND	µg/L	1.0						
ert-Butylbenzene	ND	μg/L	1.0						
1,1,1,2-Tetrachloroethane	ND	μg/L	1.0						
1,2,2-Tetrachloroethane	ND	µg/L	2.0						
Tetrachloroethene (PCE)	ND	µg/L	1.0						
rans-1,2-DCE	ND	µg/L	1.0						
s-1,3-Dichloropropene	ND	µg/L	1.0						· ·
z,3-Trichlorobenzene	ND	µg/L	1.0						
,2,4-Trichlorobenzene	ND	µg/L	1.0						
,1,1-Trichloroethane	ND	μg/L	1.0						
,1,2-Trichloroethane	ND	μg/L	1.0						
richloroethene (TCE)	ND	µg/L	1.0						
richlorofluoromethane	ND	μg/L	1.0						
,2,3-Trichloropropane	ND	µg/L	2.0						
inyl chloride	ND	μg/L	1.0						
ylenes, Total	ND	μg/L	1.5						
Sample ID: 5mL rb	ND	MBLK	1.0		Batch ID	R26826	Analysis D	ata	1/8/2008 9:58:50 AM
					Daten ib	. 1120020	Analysis D	ale.	1/0/2000 9.56.50 MW
enzene	ND	hâ\r	1.0						
oluene	ND	µg/L	1.0						
thylbenzene	ND	µg/L	1.0						
lethyl tert-butyl ether (MTBE)	ND	µg/L	1.0				·		
,2,4-Trimethylbenzene	ND	µg/L	1.0						
3,5-Trimethylbenzene	ND	µg/L	1.0						
2-Dichloroethane (EDC)	ND	µg/L	1.0						
2-Dibromoethane (EDB)	ND	µg/L	1.0						
aphthalene	ND	µg/L	2.0						
Methylnaphthalene	ND	µg/L	4.0						
Methylnaphthalene	ND	µg/L	4.0						
cetone	ND	µg/L	10			-			
romobenzene	ND	µg/L	1.0						
romochloromethane	ND	µg/L	1.0						
romodichloromethane	ND	µg/L	1.0						. <i>.</i>
Alifiers: E Value above quantitation range			Н		nes for preparati	•			

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Page 2

S

Glient: Project:

Western Refining Southwest, Gallup 2007 Annual GW Samples

Work Order: 0801006

Analyte	Result	Units	PQL	%Rec	LowLimit HighLin	nit	%RPD R	PDLimit Qual
Method: EPA Method 8260B: 1	VOLATILES							
Sample ID: 5mL rb		MBLK			Batch ID: R2	6826	Analysis Date:	1/8/2008 9:58:50 AN
Bromoform	ND	µg/L	1.0					
Bromomethane	ND	µg/L	1.0					
2-Butanone	ND	µg/L	10					
Carbon disulfide	ND	µg/L	10					
Carbon Tetrachloride	ND	µg/L	1.0					
Chlorobenzene	ND	µg/L	1.0					
Chloroethane	ND	µg/L	2.0					
Chloroform	ND	µg/L	1.0					
Chloromethane	ND	µg/L	1.0					
2-Chlorotoluene	ND	µg/L	1.0					
4-Chlorotoluene	ND	µg/L	1.0					
cis-1,2-DCE	ND	µg/L	1.0					
cis-1,3-Dichloropropene	ND	µg/L	1.0					
1,2-Dibromo-3-chloropropane	ND	µg/L	2.0					
Dibromochloromethane	ND	µg/L	1.0					
Dibromomethane	ND	µg/L	1.0					
1,2-Dichlorobenzene	ND	µg/L	1.0					
1_3-Dichlorobenzene	ND	μg/L	1.0					
Dichlorobenzene	ND	μg/L	1.0					
achlorodifluoromethane	ND	µg/L	1.0					
I,1-Dichloroethane	ND	µg/L	1.0					
1,1-Dichloroethene	ND	µg/L	1.0					
1,2-Dichloropropane	ND	µg/L	1.0					•
,3-Dichloropropane	ND	μg/L	1.0					
2,2-Dichloropropane	ND	μg/L	2.0					
i,1-Dichloropropene	ND	μg/L	1.0		•			
lexachlorobutadiene	ND	μg/L	1.0				•	
2-Hexanone	ND	µg/L	10					
sopropylbenzene	ND	µg/L	1.0					
-Isopropyltoluene	ND	μg/L	1.0					
-Methyl-2-pentanone	ND	µg/L	10					
Aethylene Chloride	ND	μg/L	3.0					
-Butylbenzene	ND	μg/L	1.0					
-Propylbenzene	ND	µg/L	1.0					
ec-Butylbenzene	ND	μg/L	1.0					
Styrene	ND	µg/L	1.0					
ert-Butylbenzene	ND	μg/L	1.0					
,1,1,2-Tetrachloroethane	ND	µg/L	1.0					
,1,2,2-Tetrachloroethane	ND	µg/L	2.0					
etrachloroethene (PCE)	ND	µg/L	1.0					
rans-1,2-DCE	ND	μg/L	1.0					
rans-1,3-Dichloropropene	ND	µg/L	1.0					
,2,3-Trichlorobenzene	ND	µg/L	1.0					
.z.o• muuuuuuenzene	עזו	MM #	1.0					

dlifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Client: Project:

Γ

Western Refining Southwest, Gallup 2007 Annual GW Samples

Work Order: 0801006

Analyte	Result	Units	PQL	%Rec	LowLimit Hig	ghLimit	%RPD RP	DLimit Qual
Wethod: EPA Method 8260B:	VOLATILES				· _ · · · ·			
Sample ID: 5mL rb		MBLK		•	Batch ID:	R26826	Analysis Date:	1/8/2008 9:58:50 AN
1,1,1-Trichloroethane	ND	µg/L	1.0					••
1,1,2-Trichloroethane	ND	µg/L	1.0					
Trichloroethene (TCE)	ND	µg/L ·	1.0					
Trichlorofluoromethane	ND	µg/L	1.0					
1,2,3-Trichloropropane	ND	µg/L	2.0					/
Vinyl chloride	ND	µg/L	1.0					
Xylenes, Total	ND	µg/L	. 1.5					
Sample ID: 5ml rb		MBLK			Batch ID:	R26863	Analysis Date:	1/10/2008 10:31:12 AM
Benzene	ND	µg/L	1.0					
Toluene	ND	µg/L	1.0					
Ethylbenzene	ND	µg/L	1.0					
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0					
1,2,4-Trimethylbenzene	ND	μg/L	1.0					
1,3,5-Trimethylbenzene	ND	µg/L	1.0					
1,2-Dichloroethane (EDC)	ND	μg/L	1.0					
,2-Dibromoethane (EDB)	ND	µg/L	1.0					
Naphthalene,	ND	µg/L	2.0					
Methylnaphthalene	ND	µg/L	4.0					
Methylnaphthalene	ND	μg/L	4.0					
Cetone	ND	µg/L	10					
Bromobenzene	ND	µg/L	1.0					
Bromochloromethane	ND	µg/L	1.0					
Bromodichloromethane	ND	µg/L	1.0					
Bromoform	ND	µg/L	1.0					
Bromomethane	ND	µg/L	1.0	,				
2-Butanone	ND	μg/L	10					
Carbon disulfide	ND	µg/L	10	×.				
Carbon Tetrachloride	ND	µg/L	1.0					
Chlorobenzene	ND	µg/L	1.0					
Chloroethane	ND	μg/L	2.0					
Chloroform	ND	µg/L	1.0					
Chloromethane	ND	µg/L	1.0					
-Chlorotoluene	ND	µg/L	1.0					
-Chlorotoluene	ND	µg/L	1.0					
is-1,2-DCE	ND	µg/L	1.0					
is-1,3-Dichloropropene	ND	µg/L	1.0					
,2-Dibromo-3-chloropropane	ND	µg/L	2.0					
ibromochloromethane	ND	μg/L	1.0					
ibromomethane	ND	µg/L	1.0					
2-Dichlorobenzene	ND	μg/L	1.0					
3-Dichlorobenzene	ND	μg/L	1.0					
,4-Dichlorobenzene	ND	µg/L	1.0					
lichlorodifluoromethane	ND	μg/L	1.0					
1-Dichloroethane	ND	µg/L	1.0					

- qualifiers:
- E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

-Client:	
Project:	

Western Refining Southwest, Gallup 2007 Annual GW Samples

Work Order: 0801006

٦

Page 5

Analyte	Result	Units	PQL	%Rec	LowLimit I	HighLimit	%RPD RF	PDLimit Qual
Method: EPA Method 8260	B: VOLATILES							•
Sample ID: 6ml rb		MBLK			Batch ID): R26863	Analysis Date:	1/10/2008 10:31:12 AM
1,1-Dichloroethene	ND	µg/L	1.0					
1,2-Dichloropropane	ND	µg/L	1.0					
1,3-Dichloropropane	ND	µg/L	1.0					
2,2-Dichloropropane	ND	μ g/L	2.0					
1,1-Dichloropropene	ND	µg/L	1.0					
Hexachlorobutadiene	ND	μg/L	1.0					
2-Hexanone	ND .	µg/L	10					
Isopropylbenzene	ND	μg/L	1.0					
4-Isopropyltoluene	ND	µg/L	1.0					
4-Methyl-2-pentanone	ND	µg/L	10					
Methylene Chloride	ND	µg/L	3.0					
n-Butylbenzene	ND	µg/L	1.0					
n-Propylbenzene	ND	hð\P	1.0					
sec-Butylbenzene	ND	µg/L	1.0					
Styrene	ND .	µg/L	1.0					
tert-Butylbenzene	ND	µg/L	1.0					
1,1,1,2-Tetrachloroethane	ND	µg/L	1.0					
1,1,2,2-Tetrachloroethane	ND	µg/∟	2.0					
trachloroethene (PCE)	ND	hð\r	1.0	·				
Trans-1,2-DCE	ND	µg/L	1.0					
trans-1,3-Dichloropropene	ND	µg/L	1.0					
1,2,3-Trichlorobenzene	ND	µg/L	1.0					
1,2,4-Trichlorobenzene	ND	hð\r	1.0					
1,1,1-Trichloroethane	ND	µg/L	1.0					
1,1,2-Trichloroethane	ND	µg/L	1.0					
Trichloroethene (TCE)	ND	µg/L	1.0					
Trichlorofluoromethane	ND	µg/L	1.0					
1,2,3-Trichloropropane	ND	µg/L	2.0					
Vinyl chloride	ND	µg/L	1.0					
Xylenes, Total	ND	µg/L	1.5					
Sample ID: 100ng Ics-b		LCS			Batch ID:	R26808	Analysis Date:	1/7/2008 12:33:47 PM
Benzene	22.83	µg/L	1.0	114	72.4	126		
Toluene	22.03	µg/L	1.0	110	79.2	115 .		
Chlorobenzene	21.50	µg/L	1.0	107	83.1	111		
1,1-Dichloroethene	25.67	µg/L	1.0	128	81.4	122		S
Trichloroethene (TCE)	22.86	µg/L	1.0	114		118		
Sample ID: 100ng Ics		LCS			Batch ID:	R26826	Analysis Date:	1/8/2008 12:13:56 PM
Benzene	20.80	µg/L	1.0	104	72.4	126		
Toluene	20.50	µg/L	1.0	102	79.2	115		
Chlorobenzene	21.12	µg/L	1.0	106	83.1	111	•	
1,1-Dichloroethene	23.99	µg/L	1.0	120	81.4	122		
Trichloroethene (TCE)	18.82	µg/L	1.0	94.1		118		
Sample ID: 100ng Ics		LCS			Batch ID:		Analysis Date:	1/10/2008 12:14:39 PM

- Qualifiers:
- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

.

H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

21.70

µg/L

lient:
Projec

Trichloroethene (TCE)

QA/QC SUMMARY REPORT

Western Refining Southwest, Gallup 2007 Annual GW Samples Project: Work Order: 0801006 %RPD RPDLimit Qual LowLimit HighLimit Analyte Result Units PQL %Rec EPA Method 8260B: VOLATILES Method: Sample ID: 100ng lcs LCS Batch ID: R26863 Analysis Date: 1/10/2008 12:14:39 PM 126 96.1 72.4 µg/L 1.0 Benzene 19.22 79.2 Toluene 18.05 µg/L 1.0 90.2 115 83.1 .111 19.27 1.0 96.4 Chlorobenzene µg/L 81.4 122 1,1-Dichloroethene 21.56 µg/L 1.0 108 Trichloroethene (TCE) 19.03 µg/L 1.0 95.2 64.4 118 Sample ID: 0801006-07a ms MS Batch ID: R26808 Analysis Date: 1/7/2008 11:04:34 PM Benzene 22.80 µg/L 1.0 114 72,4 126 21.45 μg/L 1.0 107 79.2 115 Toluene 83.1 Chlorobenzene 21.06 µg/L 1.0 105 111 24.96 µg/L 1.0 125 81.4 122 S 1,1-Dichloroethene

109

1.0

64.4

118

ualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

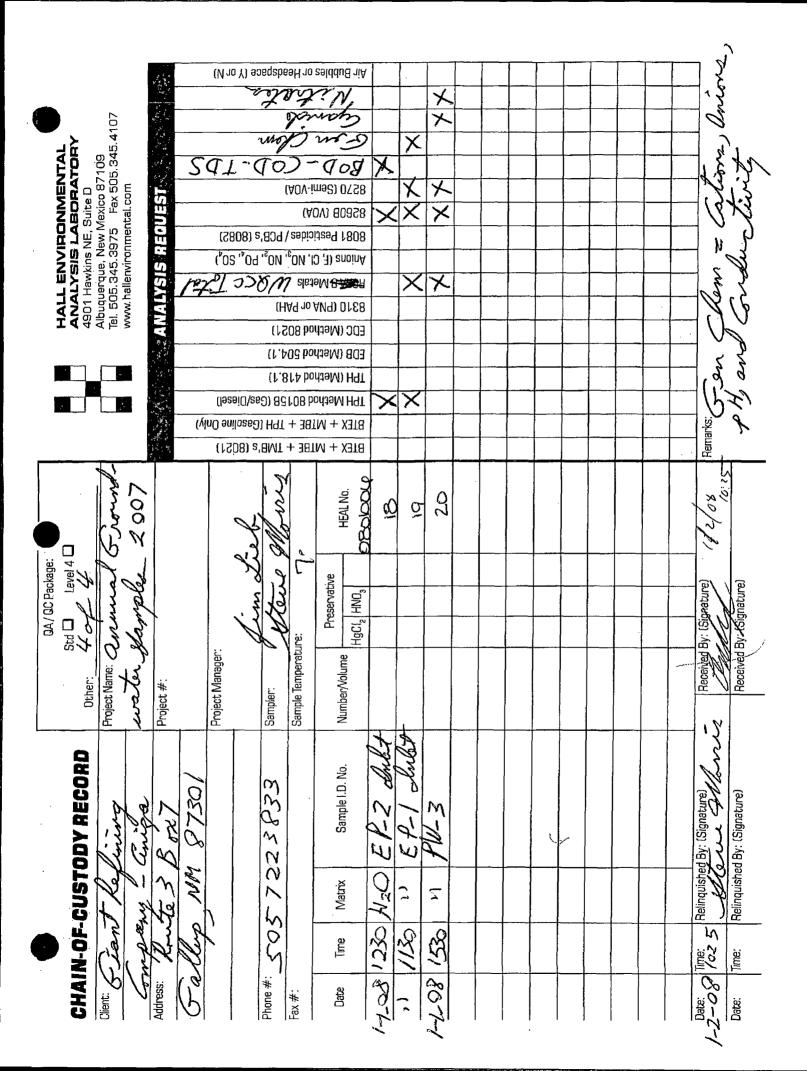
R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page б


Hall Environmental Analysis Laboratory, Inc.

	Samp	ole Receipt C	hecklist				
Client Name GIANTREFIN			Date Receiv	ved:	1/2/2008		
Work Order Number 0801006	· .		Received	by: AMF			
Checklist completed by: <u>Churce She</u>	(Day is a	12	Sample ID	labels checked by	<u>AS</u> Initials	-	
Signature	unan	Dat		-			
Matrix	Carrier ham	e <u>Client drop</u>	<u>-off</u>			. •	
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present			•
Custody seals intact on shipping container/co	oler?	Yes 🗌	No 🗌	Not Present	Not Shipped		
Custody seals intact on sample bottles?		Yes 🗌	No 🗌	N/A			
Chain of custody present?		Yes 🗹	No 🗔				
Chain of custody signed when relinquished an	nd received?	Yes 🗹	No 🗌				
Chain of custody agrees with sample labels?		Yes 🗹	No 🗔				
Samples in proper container/bottle?		Yes 🗹	No 🗌				
Sample containers intact?		Yes 🗹	No 🗌				
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌				
All samples received within holding time?		Yes 🗹	No 🗌				
Nater - VOA vials have zero headspace?	No VOA vials su	Ibmitted 🔲	Yes 🗹	No 🗌			
Water - Preservation labels on bottle and cap	match?	Yes 🗹	No 🗔	N/A 🖾			
Water - pH acceptable upon receipt?		Yes 🗹	No 🗔	N/A			
Container/Temp Blank temperature?		7°	<6° C Accepte				
COMMENTS:			If given sufficie	nt time to cool.			
							·
			•				
Client contacted	Date contacted:		Pe	, rson contacted			
· · ·							-
Contacted by	Regarding	· · ·	04.0	1 0 .	0 1		
Comments: <u>[laded]ml</u>	HNO3 to	Sample	L SMW	-2 5 BW-	2B por		-
acceptable ph As +#0,	.2-08		·				-
arrival, Can't Run	Jeonyen scimple.	Lor Ba	270, and	ens, ph, (onclucti	vity.	, Za
Corrective Action							
· · · · · · · · · · · · · · · · · · ·							<u>-</u>
			_				

	.(1	A no Y) eosqebes	aH no a	eelddug niA									 3)
HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D Albuquerque, New Mexico 87109 Tel. 505.345.3975 Fax 505.345.4107 www.hallenvironmental.com)4.1) , NO ₂ , PO ₄ , SO ₄ (H) (H2 (8082)	08 bor 100 41 100 50 100 60 100 70 100 70 100 100 100 100 100 100 100 100 100 1	TPH Metho TPH (Metho EDB (Meth EDC (Meth 8310 (PW 8310 (PW 8310 (PW 8 Mi 8 Mi 8 Mi 8 Mi 8 Mi 8 Mi 8 Mi 8 Mi	XXXX	×	*	×	×				the Sen Cless = Cations and	pH, and onductivity. See somethe checked with connection
QA/QC Package: Std _ Level 4] Other: 1 of 4 Project Name: 2007 annual Ersundurater Hample	Project # .	Sampler: Lin Lieb (8021)	Sample Temperature:	Preservative HEAL No. HgCl ₂ HNO ₃ DBO1ZOL0		2	Ŋ	t	h	e			Received By: (Signature) //2/08	Received By: (Signature)
CHAIN-OF-CUSTODY RECORD Clent: Jan Refining Intrace - Tuiga	Falling, NH 87301	Phone #: 505 722 3835	Fax#: 5057220210	Date Time Matrix Sample I.D. No.	12-22-7 9915 H20 OW- 11	" " " " " OW-12	11 1430 × 0W-13	1-1-08 1430 10 0W-14	12-23-21 1200 n OW-29	" 1425 " OW-30			1-2-08 1025 Relinquished By: (Signature)	Time: Relinquished By: (Signature)

HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D Albuquerque, New Mexico 87109 Tel. 505.345.3975 Fax 505:345.4107 www.hallenvironmental.com	۸ethod 5 0 4.1) ۸ethod 8021) ۶ Metals کی که ب کی یو م ریک (F, Cl, NO ₃ , NO ₂ , PO ₄ , SO ₄) esticides / PCB's (8082)	 K K<		×××××	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	××××			n Cham = Calione, anione,	nd creductionity
ad/ gC Package: Std □ Level 4 □ me: 2007 anur ame: 2007 anur	Project Manager: - Migler: - MTBE + TPH (Gasoline Only) - MTBE + TPH (Gasoline Only) - MTBE + TPH (Gasoline Only) - Preservative Preservative	HEAL No. BITEX + BITEX + BITEX + HEAL No.		х о		× =			Received By: (Signature) //2/08 Remarks: 5	Received By: (Signature)
CHAIN-OF-CUSTODY RECORD Other Client: Cant Reliming Project Nat Concerned - Concerned Span	allup, NM 87391 5057223833 5057223833	Date Time Matrix Sample I.D. No. Numb i2-22.a3 031.0 H, O M 1/1 - 1 I I	4 0091	1245	1030 7 SMW-	R-22-2015 " SMW-4			Date: Relinquished By: (Signature)	Date: Time: Relinquished By: (Signature)

	(V or V) 93896	eəH 10 cəlddu8 niA				The share
HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D Albuquerque, New Mexico 87109 Tel. 505.345.3975 Fax 505.345.4107 www.hallenvironmental.com	ИО ² " БО" 20")	8310 (PVA or PAI Anions (F, CI, NO ₃ , 8081 Pesticides / 82608 (VOA) 82508 (VOA) 82570 (Semi-VOA)	× 7 × × × × × ×		7× 7×	hem = letters 6 relactivity.
	(VinO ənilossa)) H91 (Gas/Diesel) (f.) (f.) (f.) (f.)	+ 38TK + MT8E + BTEX + MT8E + TPH Method 8015 TPH (Method 504 TPH (Method 504 BTPH (Method 504 TPH (Method 802				Remarks: Sen
QA/QC Package: Std _ Level 4 = Other: 3 of 4 = Project Name: Quurual Cround	Project Manager:	Sample Temperature:		1	297	Repeived By: (Signature) ((2,0%) Received By: (Signature)
CHAIN-OF-CUSTODY RECORD Client: Jent Refuring Stormany - Conting	MN N	1 Aatrix Sam	H=0 & W-1C " & & W-2A	" & W-28	" BW-38	Relinquished By: (Signature)
CHAIN-OF-C	Fhone #: 505	Fax #: SoS Date Ime	12-31-07 1030	00/1 (1	1) 1515 11 1640	12-02 1025 Re Date: Time: Re

6. Recommendations Based on Groudwater Testing

<u>OW-11</u>

A grab sample from OW-11 was taken on December 27, 2007. The sample was analyzed for Mercury (EPA Method 7470), Total Recoverable Metals (EPA Method 6010B), and Volatiles (EPA Method 8260B). No mercury was detected. No metals or volatiles were found at levels exceeding applicable MCLs, NM ground water, and NM TPH screening levels. In 2006, the general chemistry results showed that fluoride (2.5 mg/l) and sulfate (1,100 mg/l) were present at levels greater than the NMWQS for fluoride (1.6 mg/l) and sulfate (600 mg/l). However, these analyses could not be conducted in 2007, as the sample was frozen by the time it reached the analytical laboratory.

RECOMMENDATION: Western Refining will continue to test OW-11 on an annual basis for VOC, SVOC, BTEX, MTBE, Metals, and General Chemistry. It is imperative that analyses for Anions be conducted as some of these were elevated in 2006. In future, Western refining will conduct the annual groundwater sampling exercise earlier in the calendar year. (In 2008, sampling has been conducted in July and August.)

<u>OW-12</u>

OW-12 was sampled on December 27, 2007 and analyzed for Volatiles (EPA Method 8260B). The laboratory analyses showed all parameters at non-detectable levels.

RECOMMENDATION: Western Refining will continue to monitor OW-12 on an annual basis for Volatiles.

<u>OW-13</u>

OW-13 was sampled on December 27, 2007 and analyzed for Volatiles (EPA Method 8260B. The laboratory analyses showed all parameters at non-detectable levels, except for MTBE which was detected at extremely low levels.

RECOMMENDATION: Western Refining will monitor OW-13 on a quarterly basis for Volatiles. For more details see Recommendation for OW-14 and OW-30.

<u>OW-14</u>

OW-14 was sampled on 1/1/2008 and analyzed for Volatiles (EPA Method 8260B. Inclement weather prevented completion of sampling of this well within December 2007. The results showed that Methyl Tetra-Butyl Ether (MTBE) contamination had entered the shallow perched groundwater at OW-14. The levels of MTBE were 0.92 mg/l in OW-14. This level exceeds the current U.S. EPA MCL of 0.20 mg/l and the current NM Water Quality Control Commission standard of 0.1 mg/l. The monitoring in 2006 had also shown that MTBE contamination had entered the shallow perched groundwater at OW-14. The Benzene was elevated. The benzene concentration in this sample was 0.014 mg/l, exceeding the NM Water Quality Control Commission standard of 0.01 mg/l. The highest level of Benzene in this well in 2006 was 0.0042 mg/l. Benzene had shown up at levels exceeding the NMWQS in the 2004 and 2005 samplings.

The MTBE detected in OW-14 and OW-30 appears to be migrating generally to the north (downgradient), but does not appear to be threatening any receptors at this time. Because MTBE is reportedly no longer used or stored at the refinery, the MTBE source appears to have been removed and is no longer contributing MTBE to the groundwater. However, MTBE is present in these two wells above the WQCC standard. In addition, benzene is present in OW-14 above WQCC the standard. Because the source has been removed, no receptors are immediately threatened, and the MTBE concentration in OW-14 appears to be decreasing, Western Refining recommends continued monitoring of OW-14 and OW-30 to asses the trend of the contaminants and evaluates the need for a Stage 1 Abatement Plan.

RECOMMENDATION: Quarterly monitoring in OW-13, OW-14, OW-30, and OW-29 to monitor the contaminant plume and evaluate the need for abatement of the MTBE. If the source has been removed, the contaminant concentration in OW-14 should be expected to continue declining, and the concentration in OW-30 should increase slightly as the plume passes, and then also decrease. OW-29 is downgradient from OW-14 and OW-30, and can be used as a sentinel well to monitor the MTBE before it migrates off the refinery boundary. The analytical report for the groundwater sampling conducted on January 2, 2008 shows MTBE in OW-13 and OW-29, although both are below the WQCC standard. MTBE in OW-29 was at a concentration of 4.3 μ g/1, whereas the standard is 100 μ g/1. The MTBE detections in OW-13 and OW-29 may indicate a larger area of MTBE in groundwater than just the area around OW-14. And although 1-2 Dichloroethane (EDC) was below WQCC standard, it was detected in OW-14, and should be monitored since it is a compound commonly associated with gasoline.

<u>OW-29</u>

OW-29 was sampled on December 27, 2007 and analyzed for Volatiles (EPA Method 8260B. The laboratory analyses showed all parameters at non-detectable levels, except for MTBE which was detected at extremely low levels.

RECOMMENDATION: Western Refining recommends monitoring OW-29 on a quarterly basis for Volatiles. For more details see recommendation for OW-14 and OW-30.

<u>OW-30</u>

OW-30 was sampled on 1/1/2008 and analyzed for Volatiles (EPA Method 8260B. Inclement weather prevented completion of sampling of this well within December 2007. In 2007, monitoring conducted between December 27-31, 2007 (and January 1, 2008, as inclement weather prevented completion of sampling of some wells within December 2007)) showed that Methyl Tetra-Butyl Ether (MTBE) contamination had entered the shallow perched groundwater at OW-30. The level of MTBE was 0.29 mg/l in OW-30. This level exceeds the current U.S. EPA Maximum Contaminant level (MCL) of 0.20 mg/l and the current NM Water Quality Control Commission standard of 0.1 mg/l. The monitoring in 2006 had also shown that MTBE contamination had entered the shallow perched groundwater at OW-30. The sampling in 2007, as had been found in 2006, established that the MTBE contamination was limited in extent and had not migrated significantly to other nearby wells (OW-12 had a level of non-detect, OW-13 a level of 0.0013 mg/l, and OW-29 had a level of 0.0043 mg/l). OW-30 had no detectable levels of Benzene.

The MTBE detected in OW-14 and OW-30 appears to be migrating generally to the north (downgradient), but does not appear to be threatening any receptors at this time. Because MTBE is reportedly no longer used or stored at the refinery, the MTBE source appears to have been removed and is no longer contributing MTBE to the groundwater. However, MTBE is present in these two wells above the WQCC standard. In addition, benzene is present in OW-14 above WQCC the standard. Because the source has been removed, no receptors are immediately threatened, and the MTBE concentration in OW-14 appears to be decreasing, Western Refining recommends continued monitoring of OW-14 and OW-30 to asses the trend of the contaminants and evaluates the need for a Stage 1 Abatement Plan.

RECOMMENDATION: Quarterly monitoring in OW-13, OW-14, OW-30, and OW-29 to monitor the contaminant plume and evaluate the need for abatement of the MTBE. If the source has been removed, the contaminant concentration in OW-14 should be expected to continue declining, and the concentration in OW-30 should increase slightly as the plume passes, and then also decrease. OW-29 is downgradient from OW-14 and OW-30, and can be used as a sentinel well to monitor the MTBE before it migrates off the refinery boundary. The analytical report for the groundwater sampling conducted on January 2, 2008 shows MTBE in OW-13 and OW-29, although both are below the WQCC standard. MTBE in OW-29 was at a concentration of $4.3\mu g/1$, whereas the standard is $100\mu g/1$. The MTBE detections in OW-13 and OW-29 may indicate a larger area of MTBE in groundwater than just the area around OW-14.

<u>BW-1-A</u>

BW-1-A is a dry well and therefore was not sampled in 2007.

RECOMMENDATION: Giant Gallup will continue to visually inspect BW-1-A annually for any liquids. If liquids are observed, then sampling will occur. All samples will be analyzed for VOC, SVOC, BTEX, MTBE, Metals, and General Chemistry.

<u>BW-1-B</u>

BW-1-B is a dry well and therefore was not sampled in 2007.

RECOMMENDATION: Giant Gallup will continue to visually inspect BW-1-B annually for any liquids. If liquids appear, samples will be analyzed for VOC, SVOC, BTEX, MTBE, Metals, and General Chemistry.

<u>BW-1-C</u>

BW-1-C was sampled on December 31, 2007 and analyzed for VOC, SVOC, BTEX, MTBE, metals, and General Chemistry. Lab analysis showed concentrations less than (all non-detect) the NMWQS for benzene, toluene, ethylbenzene, xylene, and MTBE. However, lab results showed fluoride (2.6 mg/l) was greater than the NMWQS (1.6 mg/l).

RECOMMENDATION: Western Refining will continue to monitor BW-1-C on an annual basis for VOC, SVOC, BTEX, MTBE, Metals, and General Chemistry

BW-2-A

BW-2-A was sampled on December 31, 2007 and analyzed for VOC, SVOC, BTEX, MTBE, total recoverable metals, and General Chemistry. Lab results showed all parameters less than NMWQS.

RECOMMENDATION: Western Refining will continue to monitor BW-2-A on an annual basis for VOC, SVOC, BTEX, MTBE, Metals, and General Chemistry

<u>BW-2-B</u>

BW-2-B was sampled on December 31, 2007 and analyzed for VOC, SVOC, BTEX, MTBE, total recoverable metals, and General Chemistry. The laboratory results showed all parameters less than NMWQS, except fluoride which was greater (1.8 mg/l) than the NMWQS (1.6 mg/l).

RECOMMENDATION: Western Refining will continue to monitor BW-2-B on an annual basis for VOC, SVOC, BTEX, MTBE, Metals, and General Chemistry

<u>BW-2-C</u>

BW-2-C was sampled on December 31, 2007 and analyzed for VOC, SVOC, BTEX, MTBE, Metals, and General Chemistry. Lab results showed concentrations less than the NMWQS for all parameters except fluoride which was greater (2.3 mg/l) than the NMWQS (1.6 mg/l).

RECOMMENDATION: Western Refining will continue to monitor BW-2-C on an annual basis for VOC, SVOC, BTEX, MTBE, Metals, and General Chemistry.

<u>BW-3-A</u>

BW-3-A was dry and therefore could not be sampled.

RECOMMENDATION: Western Refining will continue to visually inspect BW-3-A for any liquids. If liquids appear, samples will be analyzed for VOC, SVOC, BTEX, MTBE, Metals, and General Chemistry.

<u>BW-3-B</u>

BW-3-B was sampled on December 31, 2007 and analyzed for VOC, SVOC, BTEX, MTBE, Metals, and General Chemistry. Lab results showed concentrations less than the NMWQS for all parameters except fluoride which was equal (1.6 mg/l) to the NMWQS (1.6 mg/l).

RECOMMENDATION: Western Refining will continue to monitor BW-3-B on an annual basis for VOC, SVOC, BTEX, MTBE, Metals, and General Chemistry

<u>BW-3-C</u>

BW-3-C was sampled on December 31, 2007 and analyzed for VOC, SVOC, BTEX, MTBE, Metals, and General Chemistry. Lab results showed concentrations less than the NMWQS for all parameters except fluoride (1.9 mg/l) which was present at greater than the NMWQS (1.6 mg/l).

RECOMMENDATION: Giant Gallup will continue to monitor BW-3-C on an annual basis for VOC, SVOC, BTEX, MTBE, Metals, and General Chemistry

<u>GWM-1</u>

Western Refining conducted annual sampling of GWM-1 on May 24, 2007. The benzene concentration in this sample was 0.016 mg/l, exceeding the NM Water Quality Control Commission standard of 0.01 mg/l and the U.S. EPA Maximum Contaminant level (MCL) of 0.005 mg/l. In 2006, the benzene concentration in this sample was 0.012 mg/l. In 2005, monitoring of well GWM-1 had also shown benzene in elevated concentrations (June 2005 = 0.010 mg/l and September 2005 = 0.081 mg/l) In 2007, MTBE levels were found in GWM-1, at a concentration of 0.23 mg/l, exceeding the U.S. EPA Maximum Contaminant level (MCL) of 0.20 mg/l and the NM Water Quality Control Commission standard of 0.1 mg/l. ⁵ In 2006, the MTBE levels were found and reported as 0.16 mg/l, in 2005 as 0.17 mg/l and in 2004 as 0.048 mg/l. Arsenic was found in the May 2007 analysis of water from GWM-1 at 0.081 mg/l which exceeds the NMWQS of 0.050 mg/l.

RECOMMENDATION: Western Refining will monitor GWM-1 on an annual basis for VOC, SVOC, BTEX, MTBE, Metals, and General Chemistry.

Pond #1 Inlet and Pond #2 Inlet

Pond #1 and Pond #2 inlets were sampled on 1/1/2008 as a carry-over from sampling conducted between December 27-31, 2007 for VOCs, Semi-VOCs and total recoverable metals. Benzene, and 2-methylnaphthalene exceeded the NMWQS; all other parameters were less than the NMWQS. In addition, these inlets were sampled on a quarterly and a monthly basis for various parameters as required by the discharge permit.

RECOMMENDATION: Western Refining will continue to monitor Pond 1 and Pond 2 inlets on a semi-annual, quarterly and monthly basis for VOCs, SVOCs and Total Recoverable Metals.

Ponds 1 through 8

Ponds 1 through 8 were sampled on 11/29/2008. For Ponds 1 and 2, the locations were a significant distance away from the inlets that were sampled as a separate activity. (TO BE COMPLETED.)

PW-2

PW-2 was not required to be sampled in 2007.

RECOMMENDATION: Western Refining will continue to monitor PW-2 according to the discharge plan for VOC, SVOC, Metals, Cyanide, and Nitrates. The next scheduled sampling will take place in 2008

<u>PW-3</u>

PW-3 was sampled in 2007. All parameters are less than the applicable NMWQS and MCLs, except for 2-Methylnapthalene which was found at 0.032 mg/l to be greater than the NMWQS of 0.03 mg/l.

RECOMMENDATION: Western Refining will monitor PW-3 according to the discharge plan. Sampling will be conducted every 3 years beginning in 2006

⁵ In 2008, the MTBE results in GWM-1 are lesser and a level of 0.12 mg/l.

Western Refining - Gallup Refinery, 2007 Groundwater Report

PW-4 was not required to be sampled in 2006.

RECOMMENDATION: Giant Gallup will continue to monitor PW-4 according to the discharge plan for VOC, SVOC, Metals, Cyanide, and Nitrates and is scheduled for sampling in 2007

OW-1 and OW-10

These wells will be visually checked on a quarterly basis starting the 4th quarter of 2004. In 2006 the wells were visually inspected on March 9, June 27, July 26, and October 13.

RECOMMENDATION: Giant Gallup will continue to visually inspect OW-1 and OW-10 for artesian flow quarterly

MW-1, MW-4, MW-5, SMW-2 AND SMW-4

MW-1 was sampled on October 26, 2006. MW-4, MW-5, SMW-2 and SMW-4 were not required to be sampled in 2006. Lab results for MW-1 showed concentrations less than the NMWQS on all parameters.

RECOMMENDATION: Giant Gallup will sample MW-1 annually. MW-4, MW-5, SMW-2 and SMW-4 will be sampled in 2007 and 2009 and biennially thereafter.

7. List of Tables

- Plots of Water Table Elevations
- Volume of Product Recovered
- Well Data Summary Table
- Well Inspection Logs

Plots of Water Table Elevations

GROUND WATER DEPTH TO WATER 2007

GROOM	JWATER		TO WATE
WELL #	DTW:		DATE:
BW-1A	DRY		12-13
BW-1B	1,7.55		1)
BW-1C	7.07		<i>b</i>
BW-2A	31.85		<u>ک</u>
BW-2B	27.64		17
BW-2C	20.22		1)
BW-3A	DRV		17
BW-3B	32.74		<i></i>
BW-3C	8.29		<u>}</u>)
OW-11	21.40		12-12-27
OW-12	49.28		11
OW-13	24.55);
OW-14	27.41		11
OW-29	22.00		, j)
OW-30	26.49		1.
MW-1	743		12-13-07
MW-4	8.1		در
MW-5	11.67		, ,
SMW-2	2592		
SMW-4	29.65		· · .
ļ			
		· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·		_

WELL PUMPING & SAMPLING LOG

		133.	_	72.74							
MW-1	MW-4	MW-5	SMW-2	SMW-4							
12-29	12-29	1Z-29	1-1	12-29							
	1330	1100	0900	0930							
7.33	8.02	12.29	26.24	29.61							
•					Ş						
\ `	1			· · · · · · · · · · · · · · · · · · ·							
	12-29	MW-1 MW-4 12-29 12-29 1330	MW-1 MW-4 MW-5 12-29 12-29 12-29 1330 1100	MW-1 MW-4 MW-5 SMW-2 12-29 12-29 12-29 1-1 1330 1100 0900	MW-1 MW-4 MW-5 SMW-2 SMW-4	MW-1 MW-4 MW-5 SMW-2 SMW-4 12-29 12-29 12-29 1-1 12-29 1330 1100 0900 0930 7.33 8.02 12.29 26.2429.61	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

			·····				 	 , <u>.</u>	.	
SAMPLE DAY			12-29							
SAMPLE TIME	0910	1600	1245	1230	1015					
OVA READING										
LIQUID DEPTH	7.33	8.02	12.29	26.24	29.61					
MP. F										
рН	9.06	8.67	56 8.84	7.50	8.46					
SP. COND.	1209	1293	1240	6620	1350					
2) TEMP. F	56	56	56	56	57					
рН			8-81							
SP. COND.	1222	12-65	122/	6570	1372					
3) TEMP. F	56	56	55	56	57					
pH	9.13	8-53	8.79	7.34	8.35			_		
SP. COND.	12/3	1253	1223	6380	1347	,				
4) TEMP. F	5.6	56	56	54	57					
рН	9.10	8.53	56 R. 87	7. 54	8-38					
SP. COND.			1228							

WELL PUMPING & SAMPLING LOG

OL L #	OW-12	OW-13	OW-14	OW29	OW-30	OW-11			
PURGE DATE	12-27	12-27	1-1	12/28	1228	12-27		 	
PURGE TIME	1030		1330		1.30	ofao			
OVA READING									
LIQUID DEPTH	49.12	24,45	27.34	21.97	210.41	,21.15			
PUMP DEPTH									
IMMISC. LAYER									
FLOW RATE									
PUMP TIME									

SAMPLE DAY				12-28	12-28	12-27			Τ	
SAMPLE TIME			1430							
OVA READING										
LIQUID DEPTH										
MP. F	57-	57	56	56	55	56		· ··· ·		
рН	8.95	8.06		12.99	7.61	8.30				
SP. COND.	12.16	1374		743	11,92	2844	1			
2) TEMP. F	56	56	56	58	55	56				
рН	9.04	7.92	:	9.12	7.20	8.26				
SP. COND.	10.02	1349		1230	1725	2840				
3) TEMP. F	56	56	56	5-6	55	56				
рН	9,09	7,86		7.17	7.08	8.32				
SP. COND.	1194	13:52	<u>}</u> :	1534	1707	2838				
4) TEMP. F	57	56	56	56	55	56				
рН	71.0	7.86		7.20	7.06	8.31				
SP. COND.	12.06	1355		1758	1732	2842				

WELL PUMPING & SAMPLING LOG

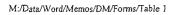
LL#	BW-1-C	BW-2-A	BW-2B	BW-2-C	BW-3-B	BW-2-C			
PURGE DATE	12-3)	12-31	12-3/	12-31	12-31	12-31	 		
PURGE TIME	0900	1200	1300	1000	12-31 1430	1545			
OVA READING	_								
LIQUID DEPTH	7.00	31.78	27.7Z	24.28	32.7/	8.28			
PUMP DEPTH							[
IMMISC. LAYER									
FLOW RATE									
PUMP TIME								 	
PUMP METHOD									
DISP. AREA								 	

SAMPLE DAY	12-31	12-31	12-31	12,31	12-31	12-31			
SAMPLE TIME			1400			1640	 		
READING									
LIQUID DEPTH	7.00	31.78	27.72	24.28	32.71	8.28			
1) TEMP. F	56	56	56	56	58	56	 		
рН	8.46	7.79	7.88	8.79	8.12	8.70			
SP. COND.	1276	1261	2250		1560	1444			
2) TEMP. F	55	56	56	56	56	.56			
рН	8.39	7.69	7.82	9.74	8.07	I í			
SP. COND.	1275	1260	22412	12.53	1550	1460			
3) TEMP. F	55		5.6		55	53			
рН	8.35		7.80		8.12	8.66			
SP. COND.	1267	1278	2260	12.45	1558	1452			
4) TEMP. F	58			56	56	56			
рН	8.42	7.63	7.76	6,73	8./0	8-61			
SP. COND.		1273		12.67	1555	1448			

/

WELL VOLUME SHEET

WELL	TOTAL	DEPTH TO	CAPACITY	ONE WELL	THREE WELL
	DEPTH	WATER	PER FOOT	VOLUME	VOLUME
MW-1	132.02		1.02		
MW-2	140.24		1.02		
MW-4	122.14		1.02		
MW-5	133.02	-	0.74		
SMW-1		-	0.163		
SMW-2	57.34		0.163	· · · · · · · · · · · · · · · · · · ·	
SMW-3	45.86		0.163		
SMW-4	72.22		0.163		
SMW-5	76.22		0.163		
SMW-6	73.11		0.163		
OW-1	94.04		0.74		
OW-2	61.0		0.74		
OW-3	66.73		0.74	· · · · · · · · ·	
OW-11	66.62		0.74		
OW-29	52.00		0.74		
OW-30	48.00	· · · · · · · · · · · · · · · · · · ·	0.74	· · · · · · · · · · · · · · · · · · ·	
OW-24	65.0		0.74		


TABLE 1

ELEVATION

WELL	CASING DIAMETER	T.O.C. *	B.O.C. *	CAPACITY PER FOOT	TOTAL DEPTH
MW-1	5	6878.52	6746.5	1.02	132.02
MW-2	5	6880.84	6740.6	1.02	140.24
MW-4	5	6882.54	6760.4	1.02	122.14
MW-5	4	6883.32	6750.3	0.74	133.02
SMW-1	2	6883.29	6834.20	0.163	
SMW-2	2	6884.44	6827.10	0.163	
SMW-3	2	6884.56	6838.70	0.163	45.86
SMW-4	2	6880.08	6807.80	0.163	72.22
SMW-5	2	6878.02	6801.80	0.163	76.22
SMW-6	2	6880.71	6807.60	0.163	73.11
OW-1	4	6868.00	6773.96	0.74	94.04
OW-2	4	6871.00	6810.00	0.74	61.0
OW-3	4	6876.00	6809.30	0.74	66.73
OW-11	4	6923.89	6857.27	0.74	66.62
OW-24	4	6880.00	6815.00	0.74	65.0

* T.O.C. - Top of Casing B.O.C. - Bottom of Casing

** Update of 1989 Sample and Analysis Plan.

Steve these are the depths for the wells BW1a - 40 BW1b - 65.2 BW1c - 157 BW2a - 65 BW2b 90.5 BW2c - 151 BW3a - 50 BW3b - 72 BW3c - 155 GWM1 - 24 Attached are the well completion diagrams and the logs. The closeouts will

be sent when completed.

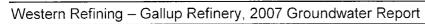
Nathan

12-27-07 0500 0W-11 DTW 21.15 3WV4 = 100.94gal 0915 Puzzd 10/gal + sompled 1030 QW-12 DTW 49.12 ft 3WV_1=212.85gel. Punged 50 gallore + lost surtion. 1145 Sompled for 82.69 0W-13 DTW 24.45 ft 3WV= 167.72 /300 OW-29 DTW 21.79 ft 3WVs = 6666 Water Isoks mucky, reddech Proged + compled 1030 1Zpo 0830 DIW 20444 Studs = 47.92 130 1425 junged + samplish 12-29-07 MW-1 DTW 7.33 \$\$ 340-381.5gal 0800 0900 Purgol 190 gallon & lost suction 0910 sampled well OVER .

0930 SMW-4 DTW 29.6/ 3WV2=20.83gal Punged Tgal + lost suction 1015 Sampled wall MW-5 DTW 12.29 & 3WUs= 268gal Purged + sampled mell 1100 1245 1330 MW-4 DTW 8:02 3WV2=349.2 12-31-07 0900 BW-1C 7.00 JepTV 3WV2=73.35 gal. Punged byallows + lost suction. 1830 Sample Well 24.28 1000 BW-2C DTW 24.28 3W /2= 61.97gal 1100 stample Usel 1200 BW-2A DTW-31.78/4 3WU2=16-24gal 1230 Puged 17get + sampled 1300 BW-2B DTW 27.72 3WU2=30.7gal Punged 18gal + lost wation 1400 Hamplet Well

1430 BU-3B DTW 32.71 SWV2=41.01gal Punged 15gal + lost suretion 1515 Sampled mult 1545 BW-3C DTV 8.28 ft 3WV2=71.74 gal Punged 16 gal + lost suction 1640 sampled well 1-1-08 0900 SMW-2 DTW 26.24ft 3WVs=11.74gal. Pungel # gal + lost suction 1030 Sampled well -1030 1330 OW-14 DTW 27.34 3WV2= 39.20 1430 Proget 40gal 2000

Volume of Product Recovered



RW-1 HYDROCARBON RECOVERY LOG 2/22/05 TO 11/26/07

3/0/2005 0830 1st. RW-1 31°11 30°4 1/4 4.5 1/4 13 3/9/2005 0830 1st. RW-1 31°11" 37'-6" 5'-7" 4 3/11 to 3/18/05 1st. RW-1 Started Pumping Well on 3/11/05 74 3/18 to 3/23/05 1st. RW-1 Continue Pumping 48 3/23 to 4/1/05 1st. RW-1 Continue Pumping 48 3/23 to 4/1/05 1st. RW-1 Pump shut down to measure well 27 4/4 TO 4/15/05 11:30 Hrs 2nd RW-1 Continue Pumping 50 4/15 to 5-5-05 12:30 Hrs 2nd RW-1 Continue Pumping 24 6/27/2005 11:30 Hrs 2nd RW-1 Continue Pumping 24 6/28/2005 1000 Hrs 2nd RW-1 33'3" 0'9 1/2" 26 6/28/2005 1030 Hrs 2nd RW-1 Continue Pumping 18 27 6/28/2005 1330 Hrs 3rd RW-1 C	ofmeasurement	<u>Time</u>	<u>Quarter</u>	<u>Well #</u>	Depth to Product (feet)	Depth to Water (feet)	Product Level Thickness (feet)	Volume of Product Bailed/ Pumped (gallons)	<u>Water</u> Gallons
	/22/2005	0830	lst.	RW-1	32'-5 1/2"	36'-6"	4'-0 1/2"	14	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3/2/2005	0745	lst.	RW-1	32'-5"	36'-5 1/4"	4'-0 1/4"	9	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3/8/2005	0830	1st.	RW-1	31'-11"	36'-4 1/4"	4'-5 1/4"	15	an a
3/18 to 3/23/05 1st. RW-1 Continue Pumping 48 3/2 to 4/1/05 1st. RW-1 Continue Pumping 62 4/1 To 4/4/05 2nd RW-1 Pump shut down to measure well 27 4/3 Co 4/4/05 1:30Hrs 2nd RW-1 Athered to a stress of the stress of	3/9/2005	0830	lst.	RW-1	31'-11"	37'-6"	5'-7"	4	
	1 to 3/18/05		lst.	RW-1	Started Pur	nping Well on	3/11/05	74	
3/23.to.41/105 1st. RW-1 Continue Pumping 62 4/1 To 4/4/05 2nd RW-1 Pump shut down to measure well 27 4/47005 11:30Hrs 2nd RW-1 Pump shut down to measure well 27 4/47005 11:00Hrs 2nd RW-1 Continue Pumping 50 4/45105 5:10.617.05 1130 Hrs 2nd RW-1 Continue Pumping 24 6/27/2005 1100 Hrs 2nd RW-1 Pump shut down to measure well 24 6/28/2005 130 Hrs 2nd RW-1 Continue Pumping 24 6/28/2005 130 Hrs 2nd RW-1 Continue Pumping 18 6/28/2005 130 Hrs 3rd RW-1 Continue Pumping 28 8/16 9/16/2005 1315 Hrs 3rd RW-1 Continue Pumping 28 12/28/2005 1330 Hrs 3rd RW-1 Start Pumping 2 2 12/28/2005 130 Hrs 4th RW-1 BalaBiled			lst.	RW-1				48	
4/1 To 4/4/05 2nd RW-1 Pump shut down to measure well 27 4/5/2005 11:30Hrs 2nd RW-1 34'9'' 38'11'' 4'2'' 4'2'' 4/4 TO 4/15/05 11:30Hrs 2nd RW-1 Continue Pumping 50 4-15 to 5:5:05 1230'Hrs 2nd RW-1 Continue Pumping 45 5:5 to 6:17:05 1130 Hrs 2nd RW-1 Continue Pumping 24 6/27/2005 1100 Hrs 2nd RW-1 Continue Pumping 18' 6/28/2005 1300 Hrs 2nd RW-1 Continue Pumping 18' 7/16 7/R/2005 1030 Hrs 3rd RW-1 Continue Pumping 28' 7/16 7/R/2005 1335 Hrs 3rd RW-1 Continue Pumping 28' 7/16 7/R/2005 1400 Hrs 4th RW-1 Start Pumping 2'-9' 1''' 12/8/2005 1400 Hrs 4th RW-1 Start Pumping 2'-3'' 12/8/2005 1430 Hrs 1st RW-1 <td< td=""><td></td><td></td><td>lst.</td><td>RW-1</td><td></td><td></td><td></td><td></td><td></td></td<>			lst.	RW-1					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
	<u> </u>	11:30Hrs							
4-15 to 5-5-05 1230 Hrs 2nd RW-1 Continue Pumping 45 5-5 to 6-17-05 1130 Hrs 2nd RW-1 Continue Pumping 24 66/27/2005 1100 Hrs 2nd RW-1 Pump shut down to necaure well 6/28/2005 66/28/2005 1100 Hrs 2nd RW-1 32'5 1/2" 33'3" 0'9 1/2" 66/28/2005 1030 Hrs 2nd RW-1 Continue Pumping 18 78/6 6/9/2005 1330 Hrs 3rd RW-1 Continue Pumping 28 28/910 9/16/2005 1135 Hrs 3rd RW-1 Start Pumping 29 1/2" 12/8/2005 1315 Hrs 4th RW-1 Start Pumping 2-9 1/2" 12/8/2005 1400 Hrs 4th RW-1 Hand Bailed 0.5 3/16/2005 1400 Hrs 1st. RW-1 Start Pumping 2-3" 3/16/2006 1430 Hrs. 1st. RW-1 Start Pumping 7 3/31/2006 1430 Hrs. 1st. RW-1 Start Pumping 7 3/31/2006 1130 Hrs. 1st. <td< td=""><td></td><td></td><td></td><td></td><td></td><td>L</td><td>L</td><td>50</td><td>in the second second</td></td<>						L	L	50	in the second second
5-5 to 6-17-05 1130 Hrs 2nd RW-1 Continue Pumping 24 6/27/2005 1400 Hrs 2nd RW-1 32 5 1/2" 33 3" 0 9 1/2" 6/28/2005 1100 Hrs 2nd RW-1 32 5 1/2" 33 3" 0 9 1/2" 6/28/2005 1030 Hrs 2nd RW-1 Continue Pumping 18 6/17/107/B/2005 1030 Hrs 3rd RW-1 Continue Pumping 28 9/510 9/16/2005 13315 Hrs Ard RW-1 Continue Pumping 29 1/2" 12/5/2005 1315 Hrs Ard RW-1 Start Pumping 2-9 1/2" 1 12/22/2005 1400 Hrs 4th RW-1 Start Pumping 2-3" 1 3/16/2006 1300 Hrs. 1st. RW-1 Start Pumping 2-3" 1 3/27/2006 1430 Hrs. 1st. RW-1 Start Pumping 7 1 3/27/2006 1130 Hrs. 2nd RW-1 Start Pumping 1							· · · · · · · · · · · · · · · · · · ·		154
6/27/2005 1400 Hrs 2nd RW-1 Pump shut down to measure well 6/28/2005 1100 Hrs 2nd RW-1 32'5' 1/2" 33'5' 0'9 1/2" 6/28/2005 1000 Hrs 2nd RW-1 Continue Pumping 16 6/28/2005 1300 Hrs 2nd RW-1 Continue Pumping 18 7/8.16 80/9/2005 1335 Hrs 3rd RW-1 Continue Pumping 28 8/9 10 9/16/2005 1315 Hrs 3rd RW-1 36'-5 1/2" 36'-6 1/2" 2'-9 1/2" 12/8/2005 1300 Hrs 4th RW-1 Start Pumping 5 31'1' 12/8/2005 1400 Hrs 4th RW-1 Start Pumping 5 3'18/2006 1300 Hrs. 1st. RW-1 Start Pumping 7 3'3'1'2'0'1' 3'13'2006 1430 Hrs. 1st. RW-1 Start Pumping 7 3'3'1'2'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'							· · · · ·		196
6/28/2005 1100 Hrs 2nd RW-1 32'5 1/2" 33'3" 0'9 1/2" 6/28/2005 2nd RW-1 Continue Pumping 18 6/7.10/7/8/2005 1030 Hrs 2nd RW-1 Continue Pumping 18 7/8 to 8/9/2005 1330 Hrs 3rd RW-1 Continue Pumping 28 2/9/10 1315 Hrs 3rd RW-1 31'-11" 34'-8 1/2" 0'-1" 8 12/20/205 1310 Hrs 4th RW-1 Start Pumping 1 1 12/22/2005 1400 Hrs 4th RW-1 Start Pumping 5 1 12/22/2005 1400 Hrs 1st. RW-1 Start Pumping 5 1 3/16/2006 130 Hrs 1st. RW-1 Start Pumping 1 1 3/23/2006 1430 Hrs 1st. RW-1 Start Pumping 7 1 3/31/2006 1130 Hrs 2rd RW-1 Stopped Pumping 1 1 4/4/2006								24	
6/28/2005 2nd RW-1 Continue Pumping 18 6/17.1o 7/8/2005 1030 Hrs 2nd RW-1 Continue Pumping 18 7/8 to 8/9/2005 1330 Hrs 3rd RW-1 Continue Pumping 28 8/9 to 9/16/2005 1335 Hrs 3rd RW-1 30'- 51/2' 0'- 1" 8 12/5/2005 1340 Hrs 4th RW-1 31'- 11" 34'- 8 1/2' 2'- 9 1/2' 12/28/2005 1400 Hrs 4th RW-1 Pulled Pump 5 12/28/2005 1400 Hrs 4th RW-1 Pulled Pump 5 12/28/2005 1430 Hrs 1st. RW-1 32'- 23/4'' 34'- 5 3/4'' 2'-3'' 3/16/2006 1300 Hrs 1st. RW-1 Start Pumping 7 3/31/2006 1130 Hrs 1st. RW-1 Storped Pumping 7 3/31/2006 1130 Hrs 2rd RW-1 32'-9''' 33'-10''' 0'-4''' 4/4/2006 1000 Hrs 2rd RW-1							the second s		
6/17 to 7/8/2005 1030 Hrs 2nd RW-1 Continue Pumping 18 7/8.6 8/9/2005 1330 Hrs 3rd RW-1 Continue Pumping 28 8/9 to 9/16/2005 1135 Hrs 3rd RW-1 36* 6 1/2" 0' - 1" 8 12/5/2005 1315 Hrs 4th RW-1 31* 14" 34* 8 1/2" 2'-9 1/2" 12/8/2005 1400 Hrs 4th RW-1 Start Pumping 5 9 12/22/2005 1530 Hrs 4th RW-1 Pulled Pump 5 9 3/16/2006 1400 Hrs 4th RW-1 Start Pumping 2'-3" 1 3/16/2006 1430 Hrs 1st. RW-1 Start Pumping 7 1 3/27/2006 1130 Hrs 1st. RW-1 Start Pumping 7 1 3/31/2006 1130 Hrs 2rd RW-1 Start Pumping 7 1 4/3/2006 1100 Hrs 2rd RW-1 Start Pumping 1 1	STREAM THE CONTRACT STREAM AND	1100 1112	the second s	<u> </u>					<u></u>
7/8 to 8/9/2005 1330 Hrs 3rd RW-1 Continue Pumping 28 8/9 to 9/16/2005 1135 Hrs 3rd RW-1 36° 5 1/2" 96° 6 1/2" 0° 1" 8 12/5/2005 1316 Hrs 4th RW-1 31° 11" 34° 8 1/2" 2° 9 1/2" 1 12/29/2005 1400 Hrs 4th RW-1 Hand Bailed 0.5 1 12/29/2005 1400 Hrs 4th RW-1 Hand Bailed 0.5 1 3/16/2006 1330 Hrs 1st RW-1 Start Pumping 2'.3" 1 3/16/2006 1430 Hrs 1st RW-1 Start Pumping 7 1 3/16/2006 1430 Hrs 1st RW-1 Start Pumping 7 1 3/16/2006 1130 Hrs 1st RW-1 Start Pumping 7 1 3/17/2006 1130 Hrs 2nd RW-1 32'-9" 33'-1" 0'-4" 6/6/2005 1300 Hrs 2nd RW-1 32'-9'	a state in the state of the second second	1030 Hre			N 10 10 10 10 10 10 10 10 10 10 10 10 10				146
29 to 9/16/2005 1135 Hrs 3rd RW-1 36' 5 1/2' 36' 6 1/2' 0' - 1'' 8 12/5/2005 1315 Hrs 4th RW-1 31'-11'' 34'-8 1/2' 2'-9 1/2'' 12/8/2005 1400 Hrs 4th RW-1 Start Pumping . 12/29/2005 1400 Hrs 4th RW-1 Hand Bailed 0.5 3/16/2006 1300 Hrs. 1st. RW-1 32'-2 3/4'' 34'-5 3/4'' 2'-3'' 3/16/2006 1430 Hrs. 1st. RW-1 Start Pumping . . 3/22/2006 1430 Hrs. 1st. RW-1 Start Pumping . . 3/31/2006 1130 Hrs. 1st. RW-1 Start Pumping . . 3/31/2006 1130 Hrs. 2nd RW-1 32'-4 3/4'' 34'-6 1/2'' 2'-1 3/4'' 6/6/2006 1300 Hrs. 2nd RW-1 32'-4 3/4'' 34'-6 1/2'' 2'-1 3/4'' 6/6/2006 1300 Hrs. 2nd RW-1 Start Pumping <td>en de la compañía de</td> <td>federation and states and see</td> <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>فقت فيستعده والمستعد والمستعد</td> <td></td>	en de la compañía de	federation and states and see					· · · · · · · · · · · · · · · · · · ·	فقت فيستعده والمستعد	
12/5/2005 1315 Hrs 4th RW-1 31'-11" 34'-8 1/2" 2'-9 1/2" 12/6/2005 1400 Hrs 4th RW-1 Start Pumping 5 12/22/2005 1530 Hrs 4th RW-1 Pulled Pump 5 3/16/2006 1300 Hrs 1st. RW-1 32'-2 3/4" 34'-5 3/4" 2'-3" 3/16/2006 1430 Hrs 1st. RW-1 Start Pumping 2'-3" 3/23/2006 1430 Hrs 1st. RW-1 Start Pumping 7 3/31/2006 1130 Hrs 1st. RW-1 Continue Pumping 7 3/31/2006 1130 Hrs 1st. RW-1 32'-9" 33'-1" 0'-4" 4/4/2006 1100 Hrs 2nd RW-1 32'-9" 33'-1" 0'-4" 6/6/2006 1500 Hrs 2nd RW-1 32'-9" 33'-1" 0'-4" 6/8/2006 1500 Hrs 2nd RW-1 Start Pumping 1 5/4" 7/31/2006 1145 Hrs 3r	[14] 14] (14) (14) (14) (14) (14) (14) (14) (14)								350
12/2/2005 1400 Hrs 4th RW-1 Start Pumping . 12/22/2005 1530 Hrs 4th RW-1 Pulled Pump 5 12/22/2005 1400 Hrs 4th RW-1 Pulled Pump 5 3/16/2006 1430 Hrs 1st. RW-1 32'-2'3'' 34'-5'3/4'' 2'-3'' 3/16/2006 1430 Hrs 1st. RW-1 Start Pumping - - 3/23/2006 1430 Hrs 1st. RW-1 Start Pumping 7 - 3/31/2006 1130 Hrs 1st. RW-1 Start Pumping 7 - 3/31/2006 1130 Hrs 2nd RW-1 32'-9'' 33'-1'' 0'-4'' 6/6/2006 1300 Hrs 2nd RW-1 32'-4''' 34'-6'1/2'' 2'-1''' 6/8/2006 1500 Hrs 2nd RW-1 32'-2''' 3'-5''' - 6/8/2006 1000 Hrs 2nd RW-1 Start Pumping 0'-5'' - 7/31/2006 1145 Hrs 3rd RW-1 Start Pumping 2'-1''' - <t< td=""><td></td><td>제가 사람을 가지 나는 가지 않는다.</td><td></td><td>and the second second</td><td></td><td>and a state of a low to see the</td><td>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</td><td>8</td><td>240</td></t<>		제가 사람을 가지 나는 가지 않는다.		and the second		and a state of a low to see the	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8	240
12/22/2005 1530 Hrs 4th RW-1 Pulled Pump 5 12/29/2005 1400 Hrs 4th RW-1 Hand Bailed 0.5 3/16/2006 1300 Hrs. 1st. RW-1 32'-2' 3/4" 3'-5' 3/4" 2'-3" 3/16/2006 1430 Hrs. 1st. RW-1 Start Pumping	A COMPACT AND A COMPACT AND A COMPACT A	a an					2'-9 1/2"		
12/29/2005 1400 Hrs 4th RW-1 Hand Bailed 0.5 3/16/2006 1300 Hrs. 1st. RW-1 32'-2 3/4" 34'-5 3/4" 2'-3" 3/16/2006 1430 Hrs. 1st. RW-1 Start Pumping 2'-3" 3/16/2006 1430 Hrs. 1st. RW-1 Start Pumping 1 3/27/2006 1430 Hrs. 1st. RW-1 Start Pumping 7 3/3/2006 1130 Hrs. 1st. RW-1 Continue Pumping 7 4/3/2006 1100 Hrs. 2nd RW-1 Stopped Pumping 1 4/4/2006 100 Hrs. 2nd RW-1 32'-9" 33'-1" 0'-4" 6/6/2006 1500 Hrs. 2nd RW-1 Start Pumping 8 1 6/2/2006 1000 Hrs. 2nd RW-1 Start Pumping 2 1 6/2/2006 1440 Hrs 3rd RW-1 Start Pumping 2 2 7/3/2/2006 14420 Hrs 3rd RW-1 <td></td> <td>No. 1994 Acres (Assessed</td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td></td> <td></td>		No. 1994 Acres (Assessed			· · · · · · · · · · · · · · · · · · ·				
316/2006 1300 Hrs. 1st. RW-1 32'-2 3/4" 34'-5 3/4" 2'-3" 3/16/2006 1430 Hrs. 1st. RW-1 Start Pumping 2'-3" 3/23/2006 1430 Hrs. 1st. RW-1 Shut Off Pump 3/23/2006 3/31/2006 1130 Hrs. 1st. RW-1 Start Pumping 7 3/31/2006 1130 Hrs. 2nd RW-1 Stopped Pumping 1 4/3/2006 1130 Hrs. 2nd RW-1 32'-4'' 34'-6''/-'' 6/6/2006 1300 Hrs. 2nd RW-1 32'-4'' 34'-6'/-'' 2'-1'' 6/8/2006 1500 Hrs. 2nd RW-1 Stopped Pumping 8 7/3'/-'' 6/8/2006 1000 Hrs. 2nd RW-1 Stopped Pumping 8 7/3'/-'' 6/8/2006 1400 Hrs. 3rd RW-1 Stopped Pumping 2 8 7/31/2006 1145 Hrs. 3rd RW-1 Start Pumping 2 8 8/3/2006 090	网络拉拉 化系统动物系统 计正式		4th		the second se		· · · · · · · · · · · · · · · · · · ·		120
3/16/2006 1430 Hrs. 1st. RW-1 Start Pumping 3/23/2006 1430 Hrs. 1st. RW-1 Shut Off Pump 3/27/2006 1530 Hrs. 1st. RW-1 Start Pumping 3/31/2006 1130 Hrs. 1st. RW-1 Continue Pumping 7 4/3/2006 1130 Hrs. 2nd RW-1 Stopped Pumping 1 4/4/2006 1100 Hrs. 2nd RW-1 32'-9" 33'-1" 0'-4" 6/6/2006 1300 Hrs. 2nd RW-1 32'-9" 33'-5 1/2" 2'-1 3/4" 6/8/2006 1500 Hrs. 2nd RW-1 Stopped Pumping 8 7/31/2006 145 Hrs. 3rd RW-1 Stopped Pumping 2 8/3/2006 1420 Hrs. 3rd RW-1 Start Pumping 2 8/3/2006 1420 Hrs. 3rd RW-1 Start Pumping 2 8/3/2006 1900 Hrs. 3rd RW-1 Start Pumping 2 8/3/2006 0900 Hr	2/29/2005	 pro-37,532,677,6 	4th	Construction of the second				0.5	4.5
3/23/2006 1430 Hrs. 1st. RW-1 Shut Off Pump 3/27/2006 1530 Hrs. 1st. RW-1 Start Pumping 7 3/31/2006 1130 Hrs. 1st. RW-1 Continue Pumping 7 4/3/2006 1130 Hrs. 2nd RW-1 Stopped Pumping 1 4/4/2006 1100 Hrs. 2nd RW-1 32'-9" 33'-1" 0'-4" 6/6/2006 1300 Hrs. 2nd RW-1 32'-4 3/4" 34'-6 1/2" 2'-1 3/4" 6/6/2006 1300 Hrs. 2nd RW-1 Start Pumping (Intermittingly) 6/2'-9'-2'-3'-3'-4' 6/6/2006 1000 Hrs. 2nd RW-1 Stopped Pumping 8 7/31/2006 1145 Hrs. 3rd RW-1 Start Pumping 2 8/3/2006 1420 Hrs. 3rd RW-1 Start Pumping 2 8/3/2006 19900 Hrs. 3rd RW-1 Start Pumping 4 8/2/2006 0900 Hrs. 3rd RW-1 Start pumping	3/16/2006	1300 Hrs.	1st.	RW-1	32'-2 3/4"	34'-5 3/4"	2'-3"		
3/27/2006 1530 Hrs. 1st. RW-1 Start Pumping 7 3/31/2006 1130 Hrs. 1st. RW-1 Stopped Pumping 7 4/3/2006 1130 Hrs. 2nd RW-1 Stopped Pumping 1 4/4/2006 1100 Hrs. 2nd RW-1 32'-9" 33'-1" 0'-4" 6/6/2006 1300 Hrs. 2nd RW-1 32'-4 3/4" 34'-6 1/2" 2'-1 3/4" 6/6/2006 1300 Hrs. 2nd RW-1 Stopped Pumping 0'-4"	3/16/2006	1430 Hrs.	1st.	RW-1	S	tart Pumping			
3/31/2006 1130 Hrs. 1st. RW-1 Continue Pumping 7 4/3/2006 1130 Hrs. 2nd RW-1 Stopped Pumping 1 4/4/2006 1100 Hrs. 2nd RW-1 32'-9" 33'-1" 0'-4" 6/6/2006 1300 Hrs. 2nd RW-1 32'-4 3/4" 34'-6 1/2" 2'-1 3/4" 6/6/2006 1500 Hrs. 2nd RW-1 Start Pumping (Intermittingly) 6/2 6/6/2006 1500 Hrs. 2nd RW-1 Start Pumping (Intermittingly) 6/2 6/8/2006 1000 Hrs. 2nd RW-1 Start Pumping 8 7/31/2006 1145 Hrs 3rd RW-1 Start Pumping 2 8/3/2006 0900 Hrs. 3rd RW-1 Start Pumping 2 8/3/2006 0900 Hrs. 3rd RW-1 Start Pumping 2 8/2/2006 0900 Hrs. 3rd RW-1 Start Pumping 4.9' 8/2/2006 0900 Hrs. 3rd RW-1 33'10" <td>3/23/2006</td> <td>1430 Hrs.</td> <td>1st.</td> <td>RW-1</td> <td>SI</td> <td>nut Off Pump</td> <td></td> <td></td> <td></td>	3/23/2006	1430 Hrs.	1st.	RW-1	SI	nut Off Pump			
4/3/2006 1130 Hrs. 2nd RW-1 Stopped Pumping 1 4/4/2006 1100 Hrs. 2nd RW-1 32'-9" 33'-1" 0'-4" 1 6/6/2006 1300 Hrs. 2nd RW-1 32'-9" 33'-1" 0'-4" 1 6/6/2006 1500 Hrs. 2nd RW-1 32'-4 3/4" 34'-6 1/2" 2'-1 3/4" 1 6/6/2006 1500 Hrs. 2nd RW-1 Start Pumping (Internittingly) 1 6/29/2006 1000 Hrs. 2nd RW-1 Stopped Pumping 8 7/31/2006 1145 Hrs 3rd RW-1 Start Pumping 2 8/8/2006 0900 Hrs. 3rd RW-1 Start Pumping 2 8/8/2006 0900 Hrs. 3rd RW-1 Start Pumping 4.9' 8/22/2006 0900 Hrs. 3rd RW-1 Start Pumping 4.9' 8/22/2006 0900 Hrs. 3rd RW-1 33'10" 33'4" 0.6" 12/21/2007 <td< td=""><td>3/27/2006</td><td>1530 Hrs.</td><td>1st.</td><td>RW-1</td><td>S</td><td>tart Pumping</td><td></td><td></td><td></td></td<>	3/27/2006	1530 Hrs.	1st.	RW-1	S	tart Pumping			
4/3/2006 1130 Hrs. 2nd RW-1 Stopped Pumping 1 4/4/2006 1100 Hrs. 2nd RW-1 32'-9" 33'-1" 0'-4" 6/6/2006 1300 Hrs. 2nd RW-1 32'-4'' 34'-6 1/2" 2'-1 3/4" 6/6/2006 1500 Hrs. 2nd RW-1 Start Pumping (Intermittingly) 6/29/2006 6/29/2006 1000 Hrs. 2nd RW-1 Stopped Pumping 8 7/31/2006 1145 Hrs 3rd RW-1 Stopped Pumping 2 8/3/2006 1420 Hrs 3rd RW-1 Start Pumping 2 8/3/2006 0900 Hrs. 3rd RW-1 Start Pumping 2 8/8/2006 0900 Hrs. 3rd RW-1 Start Pumping 2 8/8/2006 0900 Hrs. 3rd RW-1 Start Pumping 4.9' 8/2/2006 0900 Hrs. 3rd RW-1 33'4" 0.6" 11/4" 12/21/2006 1555 4th RW-1 35'2"	3/31/2006	1130 Hrs.	1st.	RW-1	Cor	tinue Pumpin	g	7	174
4/4/2006 1100 Hrs. 2nd RW-1 32'-9" 33'-1" 0'-4" 6/6/2006 1300 Hrs. 2nd RW-1 32'-4 3/4" 34'-6 1/2" 2'-1 3/4" 6/8/2006 1500 Hrs. 2nd RW-1 Start Pumping (Intermittingly) 6/2/2/2006 6/29/2006 1000 Hrs. 2nd RW-1 Start Pumping 8 7/31/2006 1145 Hrs. 3rd RW-1 Start Pumping 8 7/31/2006 1145 Hrs. 3rd RW-1 Start Pumping 2 8/3/2006 0900 Hrs. 3rd RW-1 Start Pumping 2 8/8/2006 0900 Hrs. 3rd RW-1 Start Pumping 4.9' 8/2/2006 0900 Hrs. 3rd RW-1 Start Pumping 4.9' 8/2/2006 0904 Hrs. 3rd RW-1 33'10" 33'4" 0.6" 12/21/2007 1015 1st RW-1 35'2" 36' 1'1/4" 1.5 5/2/2007 1000 2nd	4/3/2006	1130 Hrs.	2nd	RW-1				1	38
6/8/2006 1500 Hrs. 2nd RW-1 Start Pumping (Intermittingly) 6/29/2006 1000 Hrs. 2nd RW-1 Stopped Pumping 8 7/31/2006 1145 Hrs 3rd RW-1 33'-0 3/4" 33'-5 3/4" 0'-5" 7/31/2006 1145 Hrs 3rd RW-1 33'-0 3/4" 33'-5 3/4" 0'-5" 7/31/2006 1145 Hrs 3rd RW-1 Start Pumping 2 8/3/2006 1420 Hrs 3rd RW-1 Stopped Pumping 2 8/8/2006 0900 Hrs. 3rd RW-1 Start Pumping 2 8/8/2006 0900 Hrs. 3rd RW-1 Start Pumping 4.9' 8/22/2006 0900 Hrs. 3rd RW-1 33'10" 33'4" 0.6" 12/21/2006 1555 4th RW-1 35'2" 36' 1'14" 1.5 2/2//2007 1015 1st RW-1 32'5" 32'8-1/2" 2-1/2" 6/5/2007 1000 2nd <td< td=""><td>4/4/2006</td><td>1100 Hrs.</td><td>2nd</td><td>RW-1</td><td></td><td></td><td></td><td></td><td></td></td<>	4/4/2006	1100 Hrs.	2nd	RW-1					
6/29/2006 1000 Hrs. 2nd RW-1 Stopped Pumping 8 7/31/2006 1145 Hrs. 3rd RW-1 33'-0.3/4" 33'-5.3/4" 0'-5" 7/31/2006 1145 Hrs. 3rd RW-1 Start Pumping 2 8/3/2006 1420 Hrs. 3rd RW-1 Start Pumping 2 8/8/2006 0900 Hrs. 3rd RW-1 Start Pumping 2 8/8/2006 0900 Hrs. 3rd RW-1 Start Pumping 2 8/10/2006 1530 HRS 3rd RW-1 Pulled pump 4.9' 8/22/2006 0900 Hrs. 3rd RW-1 33'10" 33'4" 0.6" 12/21/2006 1555 4th RW-1 35'2" 36' 1'1/4" 1.5 2/2//2007 1015 1st RW-1 32'5" 34'6" 1'11" 0.625 5/5/2007 1000 2nd RW-1 32'5" 32'8-1/2" 2-1/2" 5'5/207 5/5/2007 1010									
7/31/2006 1145 Hrs 3rd RW-1 33'-0 3/4" 33'-5 3/4" 0'-5" 7/31/2006 1145 Hrs 3rd RW-1 Start Pumping 0'-5" 8/3/2006 1420 Hrs 3rd RW-1 Start Pumping 2 8/3/2006 0900 Hrs 3rd RW-1 Start Pumping 2 8/3/2006 0900 Hrs 3rd RW-1 Start Pumping 4 8/10/2006 1530 HRS 3rd RW-1 Start Pumping 4 8/22/2006 0900 Hrs 3rd RW-1 Pulled pump 4.9' 8/22/2006 0945 HRS 3rd RW-1 33'10" 33'4" 0.6" 12/21/2006 1555 4th RW-1 35'2" 36' 1'1/4" 1.5 2/21/2007 1015 1st RW-1 32' 5" 34' 6" 1' 1!" 0.625 6/5/2007 1000 2nd RW-1 32' 5" 32' 8-1/2" 2-1/2" 5' 5/5/2007 1010	2 . 31 H . C	and the second sec		RW-1	Start Pum	ping (Intermit	tingly)		
7/31/2006 1145 Hrs 3rd RW-1 Start Pumping 2 8/3/2006 1420 Hrs 3rd RW-1 Stopped Pumping 2 2 8/8/2006 0900 Hrs. 3rd RW-1 Start Pumping 2 2 8/8/2006 0900 Hrs. 3rd RW-1 Start pumping 2 2 8/2/2006 0900 Hrs. 3rd RW-1 Pulled pump 4.9 2 8/22/2006 0945 HRS 3rd RW-1 33'10" 33'4" 0.6" 2 2 8/22/2006 0945 HRS 3rd RW-1 35'2" 36' 1'1/4" 1.5 2/21/2007 1015 1st RW-1 35'2" 34'6" 1'1/4" 1.5 2/21/2007 1015 1st RW-1 32'5" 32'8-1/2" 2-1/2" 2 6/5/2007 1000 2nd RW-1 32'5" 32'8-1/2" 2-1/2" 2 6/5/2007 1010 Hand Bailed 0.25 2 2 2 2 2 2 2 2 2	end and <u>constitution</u> in the		<u> </u>	RW-1				8	365
8/3/2006 1420 Hrs 3rd RW-1 Stopped Pumping 2 8/8/2006 0900 Hrs. 3rd RW-1 Start Pumping 8/10/2006 1530 HRS 3rd RW-1 Start pumping 8/10/2006 1530 HRS 3rd RW-1 Start pumping <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0'-5"</td><td></td><td></td></t<>							0'-5"		
8/8/2006 0900 Hrs. 3rd RW-1 Start Pumping . 8/10/2006 1530 HRS 3rd RW-1 Start pumping . . 8/22/2006 0900 Hrs. 3rd RW-1 Pulled pump . . . 8/22/2006 0945 HRS 3rd RW-1 33'10" 33'4" 0.6" . 12/21/2006 1555 4th RW-1 35'2" 36' 1'1/4" 1.5 2/21/2007 1015 1st RW-1 35'2" 34' 6" 1'11" 0.625 6/5/2007 1000 2nd RW-1 32' 5" 32' 8-1/2" 2-1/2" . 6/5/2007 1010 And Bailed 0.25 6/5/2007 840 Hand Bailed 0.25 6/14/2007 1040 Hand Bailed 0.125 	a dere en en stat det e				· · · · · · · · · · · · · · · · · · ·		·······		· · ·
8/10/2006 1530 HRS 3rd RW-1 Start pumping 4.9 8/22/2006 0900 Hrs. 3rd RW-1 Pulled pump 4.9 8/22/2006 0945 HRS 3rd RW-1 33'10" 33'4" 0.6" 12/21/2006 1555 4th RW-1 35'2" 36' 1'1/4" 1.5 2/21/2007 1015 1st RW-1 33'5" 34'6" 1'11" 0.625 6/5/2007 1000 2nd RW-1 32'5" 32'8-1/2" 2-1/2" 0.125 6/5/2007 1010 A Hand Bailed 0.25 0.125 0.125 6/6/2007 840 Hand Bailed 0.25 0.125	where a stranger and the						<u> </u>	2	87
8/22/2006 0900 Hrs. 3rd RW-1 Pulled pump 4.9' 8/22/2006 0945 HRS 3rd RW-1 33'10" 33'4" 0.6" 1 12/21/2006 1555 4th RW-1 35'2" 36' 1'1/4" 1.5 2/21/2007 1015 1st RW-1 35'2" 36' 1'1/4" 1.5 2/21/2007 1015 1st RW-1 33'5" 34'6" 1'11/1" 0.625 6/5/2007 1000 2nd RW-1 32' 5" 32' 8-1/2" 2-1/2" 6/5/2007 1010 Hand Bailed 0.125 6 0.125 1 6/5/2007 840 Hand Bailed 0.25 1 0.125 1 6/5/2007 840 Hand Bailed 0.25 1 0.125 1 6/13/2007 1040 Hand Bailed 0.25 1 0.125 1 7/10/2007 1008 3rd RW-1 32'5" 32' 8-1/2" 2-		, stander i Cas a da		1.1		tart Pumping	,		
8/22/2006 0945 HRS 3rd RW-1 33'10" 33'4" 0.6" 12/21/2006 1555 4th RW-1 35'2" 36' 1'1/4" 1.5 2/21/2007 1015 1st RW-1 35'2" 36' 1'1/4" 1.5 2/21/2007 1015 1st RW-1 33'5" 34'6" 1'11" 0.625 6/5/2007 1000 2nd RW-1 32'5" 32'8-1/2" 2-1/2" 6/5/2007 1010 Hand Bailed 0.125 0.25 6/5/2007 1010 Hand Bailed 0.25 0.25 <			and the second second						7. v v
12/21/2006 1555 4th RW-1 35'2" 36' 1'1/4" 1.5 2/21/2007 1015 1st RW-1 33'5" 34'6" 1'1/4" 1.5 6/5/2007 1000 2nd RW-1 32'5" 32'8-1/2" 2-1/2" 0.625 6/5/2007 1010 Hand Bailed 0.125 0.	1. The General Activity of the second s	and the second	1					4.9	373
2/21/2007 1015 1st RW-1 33'5" 34'6" 1'11" 0.625 6/5/2007 1000 2nd RW-1 32'5" 32'8-1/2" 2-1/2" 6/5/2007 1010 - Hand Bailed 0.125 6/5/2007 840 - Hand Bailed 0.25 6/6/2007 840 - Hand Bailed 0.25 6/13/2007 1400 - Hand Bailed 0.25 0.25	and the second second second second						0.6"		
6/5/2007 1000 2nd RW-1 32' 5" 32' 8-1/2" 2-1/2" 0.125 6/5/2007 1010 Hand Bailed 0.125	PREASE FROM THE MERCHAN AND A								70
6/5/2007 1010 Hand Bailed 0.125 6/6/2007 840 Hand Bailed 0.25 6/13/2007 1400 Hand Bailed 0.25 6/14/2007 1400 Hand Bailed 0.25 6/14/2007 1040 Hand Bailed 0.125 7/10/2007 1008 3rd RW-1 32'5" 32' 8-1/2" 2-1/2" 0.75 7/11/2007 '925 3rd RW-1 Hand Bailed 0.5 1 7/12/2007 1000 3RD RW-1 Hand Bailed 0.25 1	No. 10 Contraction of the Contra	A Charles and the second states of the	1st 1	a manager and a survey degree	111 / 111 / 111 / 1100 / 1000 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 111 / 1		1' 11"	0.625	53.5
6/6/2007 840 Hand Bailed 0.25 0 6/13/2007 1400 Hand Bailed 0.25 0 6/14/2007 1040 Hand Bailed 0.125 0 6/14/2007 1040 Hand Bailed 0.125 0 7/10/2007 1008 3rd RW-1 32's" 32'.8-1/2" 2-1/2" 0.75 7/11/2007 '925 3rd RW-1 Hand Bailed 0.5 1 7/12/2007 1000 3RD RW-1 Hand Bailed 0.25 1	A DEPARTMENT OF A DEPARTMENTA DEPARTMENT OF A DEPARTMENTA DEPARTA DEPARTA DEPARTA DEPARTA DEPARTA DEPARTA DEPARTA DEPARTA DEPARTA	AND ALL AND	2nd	RW-1	32' 5"	32' 8-1/2"	2-1/2"		
6/13/2007 1400 Hand Bailed 0.25 6/14/2007 1040 Hand Bailed 0.125 7/10/2007 1008 3rd RW-1 32'5" 32'8-1/2" 0.75 7/11/2007 925 3rd RW-1 Hand Bailed 0.5 1005 7/12/2007 1000 3RD RW-1 Hand Bailed 0.5 1005	6/5/2007.	1010			Hand Bailed			0.125	9.
6/13/2007 1400 Image: Mark Stress of the st	6/6/2007	840						0.25	11
6/14/2007 1040 Hand Bailed 0.125 7/10/2007 1008 3rd RW-1 32'5" 32'.8-1/2" 2-1/2" 0.75 7/11/2007 '925 3rd RW-1 Hand Bailed 0.5 0.5 7/123/2007 '1000 3RD RW-1 Hand Bailed 0.25 3	6/13/2007	1400					2×12.2	0.25	12
7/10/2007 1008 3rd RW-1 32'5" 32'.8-1/2" 2-1/2" 0.75 7/11/2007 '925 3rd RW-1 Hand Bailed 0.5 0.5 7/23/2007 1000 3RD RW-1 Hand Bailed 0.25 3	6/14/2007	1040						Development of the Construction of Orlowing rough	8
7/11/2007 925 3rd RW-1 Hand Bailed 0.5 7/123/2007 1000 3RD RW-1 Hand Bailed 0.25 -	and the second second second second second second second		3rd		of her dealers the thirt of the set of the set of	32' 8-1/2"	2-1/2"	and the second	18
7/23/2007 1000 3RD RW-1 Hand Bailed 0.25	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Print Contract States and States	an the state of the second second	10.000 CD-0-000417 MS2 2.212	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				12.5
	COMPANY TO THE WALL COMPANY POLY AND THE VALUE AND	a succession and a succession of the second	1. The Lander Adapt The PARSA	- Se exception Superior of the Store of V				(1) 如果的公司的公司的资源和保证的资源的资源的公司的	5.5
	The set of	Service and the service of the servi	17月22日の1月1日の1月1日日	The stand of the second second	A CONTRACTOR OF A CONTRACT OF A CONTRACTACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT	2010 1/01	2615 2101	the state of the second state of the second state of the	3.5
Total Gallons 459.975				<u>talia na 2005.</u>		the birs thereby the state on the base of all these	and the state of the state of the state	the the state of the second second second	2484

Well Data Summary Table

2

Vell Data Summary Table - REVISED 2007 Annual Groundwater Discharge Report Giant Refining - Ciniza Refinery August 2008 by Gaurav Rajen

	Measurement	A Well Casing Rim Elevations	Well Casing Bottom Elevations	Total Well Depth	Depth to SPH (ft)*	B SPH Thickness	C. Depth to Water	D = A - C Groundwater Elevation	≝ 0.88 + D Corrected Water Table Elevation
Well ID Number	Date	(ft)	(ft)	(tj)		(II)		(ft)	(11)
BW-1A	13-Dec-07	6,876.73	6,836.73	40.00	na	na	dry	dry.	na
BW-1B	13-Dec-07	6,876.91	6,811.71	67.55	eu	na	67.55	6,809.36	na
BW-1C	13-Dec-07	6,876.75	6,719.75	157.00	na	na	7.07	6,869.68	na
BW-2A	13-Dec-07	6.874.72	6,809.22	65.50	na	na	31.85	6,842.87	na
BW-2B	13-Dec-07	6,874,58	6,784.08	90.50	na	Bu	27.64	6,846.94	na
BW-2C	13-Dec-07	6,875.40	6,724.40	151.00	na	na	20.22	6,855,18	Па
BW-3A	13-Dec-07	6,878.22	6,828.22	52.60	na	na	dry	dry	na
BW-3B	13-Dec-07	6,878.79	6,803.79	75.00	вr	na	32.74	6,846.05	na
BW-3C	13-Dec-07	6,878.08	6,723.08	155.00	na	na	8.29	6,869.79	na
<u>0W-1</u>	9-Mar-06	6,868.00	6.773.96	94.04	ВП	na	0.00	6,868.00	na
OW-1	27-Jun-06	6,868.00	6,773.96	94.04	Па	na	0.40	6,867.60	па
0W-1	26-Jul-06	6,868.00	6,773.96	94.04	na	na	0.83	6,867.17	па
OW-1	13-Oct-06	6,868.00	6,773.96	94.04	na	Ца	0.25	6,867.75	na
OW-10	9-Mar-06	6,872.00	6,804.00	68.00	eu	na	2.70	6,869.30	na
OW-10	27-Jun-06	6,872.00	6,804.00	68.00	na	na	3.43	6,868.57	na
OW-10	26-Jul-06	6,872.00	6,804.00	68.00	na	na	3.95	6,868.05	na
OW-10	13-Oct-06	6,872.00	6,804.00	68.00	en L	na	2.90	6,869.10	na
OW-11	12-Dec-07	6,923.89	6,857.27	66.62	вп	eu	21.40	6,902.49	na
OW-12	12-Dec-07	6,940.43	6,795.43	145.00	na	na	49.28	6,891.15	na
OW-13	12-Dec-07	6,920.12	6,820.12	100.00	na	na	24.55	6,895.57	na
OW-14	12-Dec-07	6,926.64	6,881.64	45.00	na	ВП	27.41	6,899.23	na
OW-29	12-Dec-07	6,913.50	6,864.50	49.00	na	na	22.00	6891.5	na
OW-30	12-Dec-07	6,921.60	6,873.20	48.4	na	na	26,49	6,895.11	ВП
MW-1	13-Dec-07	6,878.52	6,746.50	1 132.02	na	na	7.43	6,871.09	na
MW-4	13-Dec-07	6,882.54	6,760.40	122.14	na	na	8.10	6,874,44	na
MW-5	13-Dec-07	6,883.32	6,750.30	133.02	na	na	11.67	6,871.65	BC
RW-1	21-Feb-07	A			33.42	1.08	34.50	6,909.00	6909.864
(OW-27)	5-Jun-07	6 043 50			32.48	0.24	32.71	6,910.79	6910.982
	31-Jul-07				32.48	0.24	32.71	6,910.79	6910.982
	11/26/12007				30.76	5.58	36.45	6,907.05	6911.514
RW-2	8-Feb-07				na	0	27.90	6,899.30	6899.3
(OW-28)	30-Apr-07	6 977 20			na	0	27.98	6,899.22	6899.22
_	10-Jul-07	22: 122 22			na	0	28.23	6,898.97	6898.97
	26-Nov-07				na	0	28,23	6,898.97	6898.97

Vell ID Number	Measurement Date	Mell: Casing Rim Elevations (ft)	well Casing Bottom Elevations (ft)	Total Well Depth (ft)	Depth to SPH (fi):	B SPH Thickness (ft)	C Depth to Water (ft)	D = A - C Groundwater Elevation (ft)	Corrected V
RW-5	16-Mar-06				32.58	1.08	33.00	6,909.50	6910.364
	June 1,2006				32.79	0.75	33.17	6,909.33	6909.93
	26-Jul-06	6,942.50	40.00		32.90	0.33	33.31	6,909,19	6909.454
	16-Oct-06				32.73	1.08	33.42	6,909.08	6909.944
RW-6	17-Mar-06				32.67	1.38	33.75	6,938.85	6939.954
	June 7,2006	_			32.92	1.19	34.04	6,938.56	6939.512
	26-Jul-06	6,972.60	38.80		33.00	0.85	34.12	6,938.48	6939.16
100 No. 100 No. 201 No. 100 No.	16-Oct-06				33.71	1.19	34.64	6,937.96	6938.912
SMW-2	13-Dec-07	6,884.44	6,827.10	57.34	na	na	25.92	6.858.52	
SMW-4	13-Dec-07	6,882.54	6,760.40	122.14	na	ВП	29.65	6,852.89	na
SMW-6	not sampled	6,880.71	6,807.60	73.11	na	na	not sampled	not sampled	na
GWM-1	9-Mar-06	6,912.65	6,888.95	23.7	na	Па	20.25	6892.4	
	26-May-06	6,912.65	6,888.95	23.7	na	na	20.16	6892.49	na
	26-Jul-06	6,912.65	6,888.95	23.7	na	na	20.72	6891.93	Па
	13-Oct-06	6,912.65	6,888.95	23.7	na	na	20.61	6892.04	na
GWM-2	9-Mar-06	6,913.17	6,896.97	18.97	na	na	DRY	DRY	DRY
	26-May-06	6,913.17	6,896.97	18.97	na	na	DRY	DRY	DRY
	26-Jul-06	6,913.17	6,896.97	18.97	na	กล	DRY	DRY	DRY
	13-Oct-06	6,913.17	6,896.97	18.97	na	na	DRY	DRY	DRY
GWM-3	.9-Mar-06	6,912.65	6,896.15	17.94	na	na	DRY	DRY	DRY
	26-May-06	6,912.65	6,896.15	17.94	na	na	DRY	DRY	DRY
	26-Jul-06	6,912.65	6,896.15	17.94	na	na	DRY	DRY	DRY
	13-Oct-06	6,912.65	6,896.15	17.94	na	na	DRY	DRY	DRY
*SPH = Separate Phase Hydrocarbons *Corrected water table elevations are only provided if SPH was detected. are 1 ft no SPH was detected than this is shown on the table as na (not applicable) Water was not Observed in GWM-2 and GWM-3 in 2006	Hydrocarbons elevations are only p icted then this is sho I in GWM-2, and GW	provided if SPH was c wn on the table as $n\epsilon$ ML-3 in 2006	áatected. ≯ (not applicable).						

ï

Well Closures Well 1D No. 0W-3 0W-3 0W-3 0W-3 0W-3 SMW-1 SMW-1 SMW-5 SMW-5

Well Inspection Logs

Permit Requirement: GW-032

Condition Permit ID # : OCD Sect. 9, Item 4

Monitoring Required:

2007 Quarterly measurement of product layer thickness and bailing of product.

Equipment Identification: RW-1, RW-2, RW-5, RW-6

<u>Date of</u> measurement	Time	<u>Quarter</u>	<u>Well #</u>	<u>Depth to Product</u> (feet)	<u>Depth to Water</u> (feet)	<u>Product Level</u> <u>Thickness</u> <u>(feet)</u>	<u>Volume of Product</u> <u>Bailed (gallons)</u>				
2/21/2007	1015 hrs	lst	RW-1	33'5"	34'6"	1'1"	0.75				
2/8/2007	1430 hrs	lst	RW-2	No Product	-28'1"	0	0				
2/13/2007	0900 hrs	lst	RW-5	32'2"	33'95"	1'.75"	3/8				
2/21/2007	0950 hrs	lst	RW-6	33'31/2"	34'6"	1' 2-1/2"	3/4				
6/5/2007	0840 hrs	2nd	RW-1	32'5"	32'-8-1/2"	2-1/2"	0.75				
4/30/2007	1140 hrs	2nd	RW-2	No Product	28'1"	0	· 0				
4/30/2007	1120 hrs	2nd	RW-5	33'0"	33'10"	10"	2.1/2 "				
4/30/2007	1125 hrs	2nd	RW-6	34'7"	34'5"	2"	1/4				
7/31/2007	1050 hrs	3rd	RW-1	32'5"	32'-8-1/2"	2-1/2"	Ι"				
7/10/2007	0950 hrs	3rd	RW-2	No Product	27'6"	0	0				
7/10/2007	1015 hrs	3rd	RW-5	33' 1-1/4"	33'11"	9-3/4"	2-1/2"				
7/10/2007	1008 hrs	3rd	RW-6	33' 3-1/2"	34'7"	1'-3-1/2"	6-7/8"				
11/26/2007	1050 hrs	4th	RW-1	30' 9-1/8"	36' 5-3/8"	5' 7-1/4"	1"				
11/26/2007	0950 hrs	4th	RW-2	No Product	27' 7-3/4"	0	0				
11/26/2007	0800 hrs	4th	RW-5	33' 1/8"	33' 10-11/16"	. 9-9/16"	1-3/4"				
11/28/2007	810	4th	RW-6	33' 3"	34' 5-5/8"	1' 1-5/8"	4 1/2"				
Name and Title	of person who pe	rformed n	ame and Title of person who performed measurement:								

Cheryl Johnson (Environmental Specialist)

Signature:

Permit Requirement:GW-032Condition Permit ID # :OCD Sect. 9, Item 4

Equipment Identification:

Monitoring Required:

RW-1, RW-2, RW-5, RW-6

Quarterly measurement of product layer thickness and bailing of product.

<u>Date of</u> <u>measurement</u>	Time	<u>Quarter</u>	<u>Well #</u>	<u>Depth to Product</u> (feet)	<u>Depth to Water</u> <u>(feet)</u>	Product Level <u>Thickness</u> <u>(feet)</u>	<u>Volume of Product</u> <u>Bailed (gallons)</u>
11/26/2007	1050	4th	RW-1	30' 9-1/8"	36' 5-3/8"	5' 7-1/4"	1"
11/26/2007	0950 hrs	4th	RW-2	No Product	27' 7-3/4"	0	0
11/28/2007	0800 hrs	4th	RW-5	33' 1/8"	33' 10-11/16"	9-9/16"	1-3/4"
11/28/2007	0810 hrs	4th	RW-6	33' 3"	34' 5-5/8"	1' 1-5/8"	4.5"
Name and Title	of person who pe	erformed n	neasurem	ent:			

Cheryl Johnson (Environmental Specialist)

Signature:

Permit Requirement:GW-032Condition Permit ID # :OCD Sect. 9, Item 4Monitoring Required:Quarterly measurement of product layer thickness and bailing of product.Equipment Identification:RW-1, RW-2, RW-5, RW-6

<u>Date of</u> measurement	Time	<u>Quarter</u>	<u>Well #</u>	<u>Depth to Product</u> (feet)	<u>Depth to Water</u> (feet)	<u>Product Level</u> <u>Thickness</u> <u>(feet)</u>	<u>Volume of Product</u> <u>Bailed (gallons)</u>
7/31/2007	1050	3rd	RW-1	32'5"	32'-8-1/2"	2-1/2"	1"
7/10/2007	950	3rd	RW-2	No Product	27'6"	0	0
7/10/2007	1015	3rd	RW-5	33' 1-1/4"	33'11"	9-3/4"	2-1/2"
7/10/2007	1008	3rd	RW-6	33' 3-1/2"	34'7"	1'-3-1/2"	6-7/8"
	of person who pe (Environmental			ent:			

Signature:

Permit Requirement:

GW-032

Condition Permit ID # :

Monitoring Required:

Equipment Identification:

RW-1, RW-2, RW-5, RW-6

Quarterly measurement of product layer thickness and bailing of product.

OCD Sect. 9, Item 4

<u>Date of</u> measurement	Time	Quarter	<u>Well #</u>	Depth to Product (feet)	<u>Depth to Water</u> (feet)	<u>Product Level</u> <u>Thickness</u> <u>(feet)</u>	<u>Volume of Product</u> <u>Bailed (gallons)</u>
6/5/2007	0840 hrs	2nd	RW-1	32'5"	32'-8-1/2"	2-1/2"	0.75
4/30/2007	1140 hrs	2nd	RW-2	No Product	28'1"	0	0
4/30/2007	1120 hrs	2nd	RW-5	33'0"	33'10"	10"	2 1/2
4/30/2007	1125 hrs	2nd	RW-6	34'7"	34'5"	2"	1/4

Name and Title of person who performed measurement: Cheryl Johnson (Environmental Specialist)

Signature:

Permit Requirement:

GW-032

Condition Permit ID # :

OCD Sect. 9, Item 4

Monitoring Required:

Equipment Identification:

RW-1, RW-2, RW-5, RW-6

Quarterly measurement of product layer thickness and bailing of product.

<u>Date of</u> <u>measurement</u>	<u>. Time</u>	<u>Quarter</u>	<u>Well #</u>	Depth to Product (feet)	Depth to Water (feet)	Product Level <u>Thickness</u> <u>(feet)</u>	<u>Volume of Product</u> <u>Bailed (gallons)</u>
2/21/2007	1015 hrs	1st	RW-1	33'5"	34'6"	1'1"	0.75
2/8/2007	1430 hrs	1st	RW-2	No Product	28'1"	0	0
2/13/2007	900hrs	1st	RW-5	32'2"	33'95"	1'.75"	3/8
2/21/2007	0950 hrs	1st	RW-6	33'31/2"	34'6"	1' 2-1/2"	3/4
	of person who pe			ent:		,	

Cheryl Johnson (Environmental Specialist)

Signature

CC: Ed Riege

Permit Requirement:

OCD, Section 9, Item 4

Monitoring Requirement:

Check well OW-1 for artesian flow condition

Date	Time	Quarter	Depth to Water (feet)	Comments
2/2/2007	1430 hrs	l st	2"	to top of plastic casing
4/30/2007	1010	2nd	Full	to top of plastic casing
7/10/2007	915	3rd	1' 9-1/2"	to top of plastic casing
11/26/2007	1402	4th	1' 7.94"	to top of plastic casing

Signature:

Permit Requirement:

OCD, Section 9, Item 4

Monitoring Requirement:

Check well OW-1 for artesian flow condition

11/26/2007			Depth to Water (feet)	
11/26/2007	1402	4th	1' 7.94"	to top of plastic casing

Signature:

Permit Requirement:

OCD, Section 9, Item 4

Monitoring Requirement:

Check well OW-1 for artesian flow condition

Date	Time	Quarter	Depth to Water (feet)	Comments
7/10/2007	915	3rd	1' 9-1/2"	to top of plastic casing
				······································
Name & Title of perso	n who performed mea	asurement:	Cheryl Johnson, En	vironmental Specialist

Signature:

Permit Requirement:

OCD, Section 9, Item 4

Monitoring Requirement:

Check well OW-1 for artesian flow condition Quarterly

Date	Time	Quarter	Depth to Water (feet)	Comments
4/30/2007	1010	2nd	Full	Casing Full of Water
Name & Title of perso	n who performed mea	surement:	Cheryl Johnson, En	vironmental Specialist

Signature: ____

Permit Requirement:

OCD, Section 9, Item 4

Monitoring Requirement:

Check well OW-1 for artesian flow condition

Date	Time	Quarter	Depth to Water (feet)	Comments
2/2/2007	1430 hrs	1 st	2"	to top of plastic casing
Name & Title of perso	n who performed mea	surement:	Cheryl Johnson, En	vironmental Specialist

Signature:

File: (S:)\env-share\Wells OW-1,OW-10 GWM-1 Form

Permit Requirement:

OCD, Section 9, Item 4

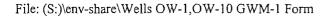
Monitoring Requirement:

Quarterly water level on OW-10

Date	Time	Quarter	Depth to Water (feet)	Comments
1/29/2007	1335	lst	2'71/2"	To top of plastic casing
4/30/2007	1000	2nd	2' 1"	To top of plastic casing
7/10/2007	906	3rd	3' 1-1/2"	To top of plastic casing
11/26/2007	1347	4th	2' 9.45"	To top of plastic casing

Signature:__

Permit Requirement:


OCD, Section 9, Item 4

Monitoring Requirement:

Quarterly water level on OW-10

Date	Time	Quarter	Depth to Water (feet)	Comments
11/26/2007	1347	4th	2' 9.45"	To top of plastic casing
ame & Title of person	n who performed m	easurement:	Cheryl Johnson, Env	vironmental Specialist

Signature:

Permit Requirement:

OCD, Section 9, Item 4

Monitoring Requirement:

Quarterly water level on OW-10

Date	Time	Quarter	Depth to Water (feet)	Comments
7/10/2007	906	3rd	3' 1-1/2"	To top of plastic casing
Name & Title of perso	n who performed me	asurement:	I Cheryl Johnson, En	vironmental Specialist

Signature:

Permit Requirement:

OCD, Section 9, Item 4

Monitoring Requirement:

Quarterly water level on OW-10

Date	Time	Quarter	Depth to Water (feet)	Comments
4/30/2007	1000	2nd	2'- 1"	Top of Plastic Casing
Name & Title of persor	who performed me	easurement:	Chervl Johnson, En	vironmental Specialist
	r and performed in	asuromont.	energr sounson, En	inominontal opeoianst

Signature:

Permit Requirement:

OCD, Section 9, Item 4

Monitoring Requirement:

Quarterly water level on OW-10

Date	Time	Quarter	Depth to Water (feet)	Comments
1/29/2007	1335	1 st	· 2'71/2"	To top of plastic casing
		-		
		· · ·		
Name & Title of perso	n who performed me	asurement:	Cheryl Johnson, En	vironmental Specialist

Signature:

CC: Ed Riege

File: (S:)\env-share\Wells OW-1,OW-10 GWM-1 Form

Permit Requirement:

OCD, Section 9, Item 4

Monitoring Requirement:

Quarterly water level on GWM-1

Date	Time	Quarter	Depth to Water (feet)	Comments
2/8/2007	1105 hrs	1st	20' 2-1/2"	To top of plastic Casing.
4/30/2007	1037	2nd	20' 2-1/2"	To top of plastic Casing.
7/10/2007	932	3rd	20' 7-1/2"	To top of plastic Casing.
9/14/2007	1500	*	20.82"	To top of plastic Casing.
11/26/2007	1414	4th	20'.56"	To top of plastic Casing.
5/24/2007	900	2nd		Collected annual water samples
Name & Title of perso	on who performed mea	surement: (Cheryl Johnson / En	vironmental Specialist

* Requested another gauge check per Hope M. = NMED

Signature:

Permit Requirement:

OCD, Section 9, Item 4

Monitoring Requirement:

Quarterly water level on GWM-1

Date	Time	Quarter	Depth to Water (feet)	Comments
11/26/2007	1414	4th	20' 56"	To top of plastic Casing.
5/24/2007	900	2nd		Collected annual water samples

Signature:

Permit Requirement:

OCD, Section 9, Item 4

Monitoring Requirement:

Quarterly water level on GWM-1

Date	Time	Quarter	Depth to Water (feet)	Comments
7/10/2007	932	3rd	20' 7-1/2"	To top of plastic Casing.
<u></u>			· · ·	
5/24/2007	900	2nd		Collected annual water samples

Signature:___

N,

Permit Requirement:

OCD, Section 9, Item 4

Monitoring Requirement:

Quarterly water level on GWM-1

Date	Time	Quarter	Depth to Water (feet)	Comments
4/30/2007	1037	2nd	20'-1-1/2"	Top of plastic casing
	······			
5/24/2007	9:00am	Collect	Annual Wa	ter Samples

Signature:

File: (S:)\env-share\Wells OW-1,OW-10 GWM-1 Form

Permit Requirement:

OCD, Section 9, Item 4

Monitoring Requirement:

Quarterly water level on GWM-1

Date	Time	Quarter	Depth to Water (feet)	Comments
2/8/2007	1105 hrs	1 st	20' 2-1/2"	To top of plastic Casing.
				· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·		
0.0011	1		Cheryl Johnson / Envir	

Signature:

Permit Requirement:

OCD, Section 9, Item 3

Monitoring Requirement:

Date	Time	Quarter	Depth to bottom (feet)	Comments (Dry?)
2/8/2007	1100 hrs	l st	18 97'	DRY: (To top of plastic casing)
4/30/2007	1045	2nd	18 9.7	DRY: (To top of plastic casing)
7/10/2007	935	3rd	18 9.7	DRY: (To top of plastic casing)
11/26/2007	1409	4th	18 9.7	DRY: (To top of plastic casing)
Name & Title of perso	n who performed me	asurement: (Cheryl Johnson / En	vironmental Specialist

Signature:__

Permit Requirement:

OCD, Section 9, Item 3

Monitoring Requirement:

Date	Time	Quarter	Depth to bottom (feet)	Comments (Dry?)
11/26/2007	1409	4th	18 9.7	DRY: (To top of plastic casing)
Name & Title of perso	n who performed mea	surement: (Cheryl Johnson / En	vironmental Specialist
		,		· · · · · · · · · · · · · · · · · · ·

Signature:

Permit Requirement:

OCD, Section 9, Item 3

Monitoring Requirement:

Date	Time	Quarter	Depth to bottom (feet)	Comments (Dry?)			
7/10/2007	935	3rd	18 9.7	DRY: (To top of plastic casing)			
Name & Title of perso	Name & Title of person who performed measurement: Cheryl Johnson / Environmental Specialist						

Signature: ____

Permit Requirement:

OCD, Section 9, Item 3

Monitoring Requirement:

Date	Time	Quarter	Depth to Bottom (feet)	Comments (Dry?)
4/30/2007	1045	2nd	18 9.7	Dry
•				
Name & Title of perso	n who performed mea	 isurement: (Cheryl Johnson / En	vironmental Specialist
-				-

Signature: 6 _____

Permit Requirement:

OCD, Section 9, Item 3

Monitoring Requirement:

Date	Time	Quarter	Depth to bottom (feet)	Comments (Dry?)
2/8/2007	1100 hrs	lst	18 97	DRY: (To top of plastic casing)
		· č		
Name & Title of perso	n who performed mea	isurement: (L Cheryl Johnson / En	l vironmental Specialist

Signature

Permit Requirement:

OCD, Section 9, Item 3

Monitoring Requirement:

Quarterly Start 2007

Date	Time	Quarter	Depth to bottom (feet)	Comments (Dry?)
2/8/2007	1100 hrs	1st	18 97	DRY: (To top of plastic casing)
4/30/2007	1048	2nd	17 [.] 94	DRY: (To top of plastic casing)
7/10/2007	926	3rd	17'94	DRY: (To top of plastic casing)
11/26/2007	1419	4th	17'94	DRY: (To top of plastic casing)

med measurement: Chery Environmental

Signature:

Permit Requirement:

OCD, Section 9, Item 3

Monitoring Requirement:

Date	Time	Quarter	Depth to bottom (feet)	Comments (Dry?)
11/26/2007	1419	4th	17'94	DRY: (To top of plastic casing)
Name & Title of perso	n who performed mea	isurement: (Cheryl Johnson / En	vironmental Specialist

Signature:

Permit Requirement:

OCD, Section 9, Item 3

Monitoring Requirement:

Date	Time	Quarter	Depth to bottom (feet)	Comments (Dry?)		
7/10/2007	926	3rd	17'94	DRY: (To top of plastic casing)		
Name & Title of perso	Name & Title of person who performed measurement: Cheryl Johnson / Environmental Specialist					

Signature:

Permit Requirement:

OCD, Section 9, Item 3

Monitoring Requirement:

Date	Time	Quarter	Depth to bottom (feet)	Comments (Dry?)	
4/30/2007	1048	2nd	17.9'- 4	Dry	
Vame & Title of person who performed measurement: Cheryl Johnson / Environmental Specialist					

Signature:__

Permit Requirement:

OCD, Section 9, Item 3

Monitoring Requirement:

Date	Time	Quarter	Depth to bottom (feet)	Comments (Dry?)
2/8/2007	1011 hrs	1 st	17' 94"	DRY: (To top of plastic casing)
<u></u>				
		<u> </u>		
Name & Title of perso	n who performed me	asurement: (Cheryl Johnson / En	vironmental Specialist

Signature:

8. List of Figures

- Figure 1 Regional Map
- Figure 2 Topographic Map of the Refinery Site
- Figure 3 Well Locations, Z-02-180
- Figure 4 Alluvium/Chinle Group Interface Water Piezometric Surface, Z-02-181
- Figure 5, SPH (Separate Phase Hydrocarbon Thickness) Map, Z-02-182
- Figure 6 Sonsela Water Piezometric Surface, Z-02-183
- Figure 7 Isopleth of 0.005ppm Benzene, Z-02-184

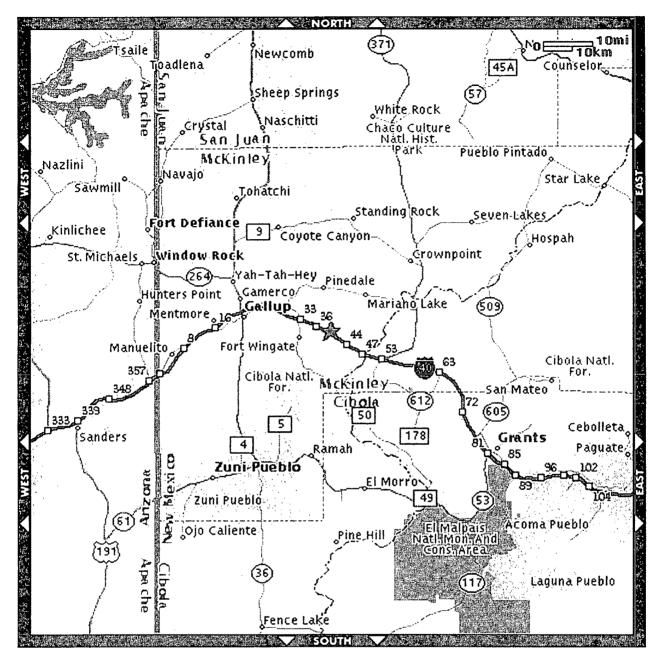
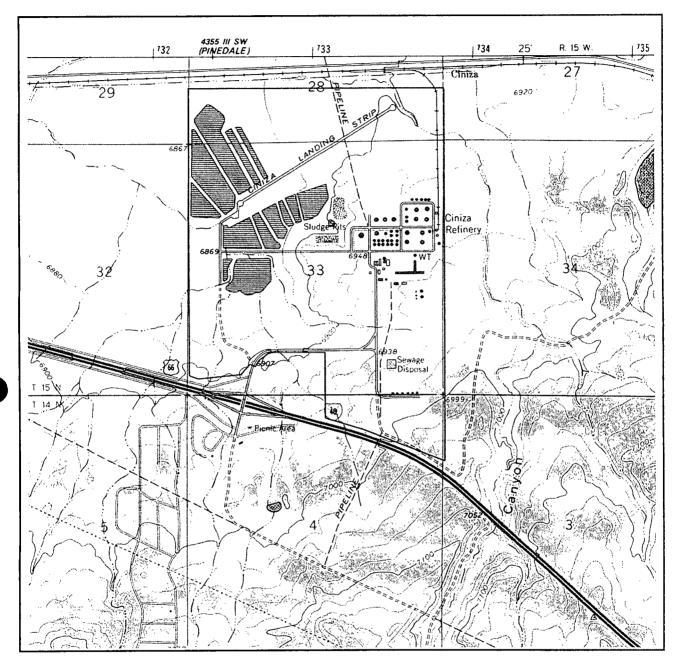
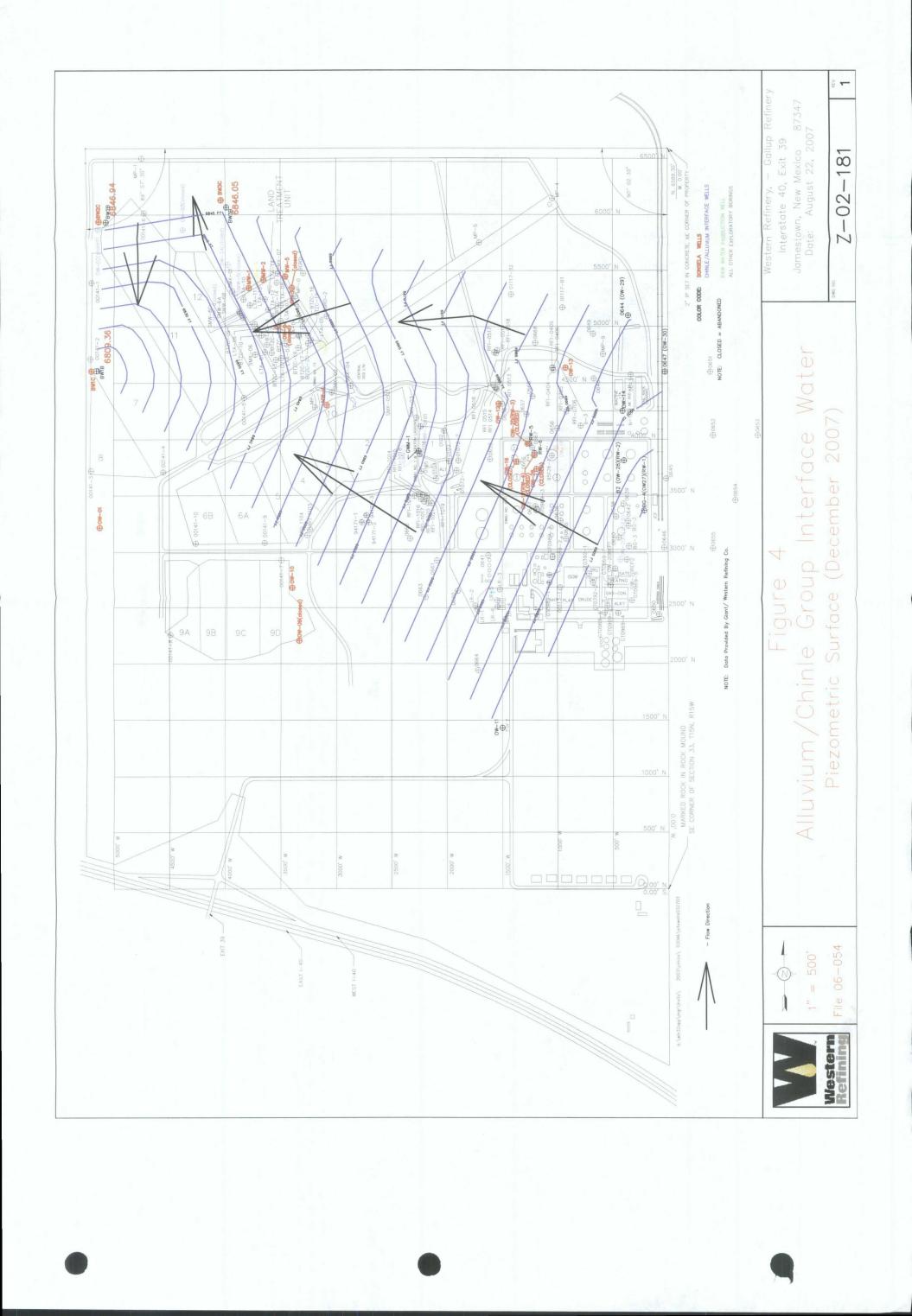
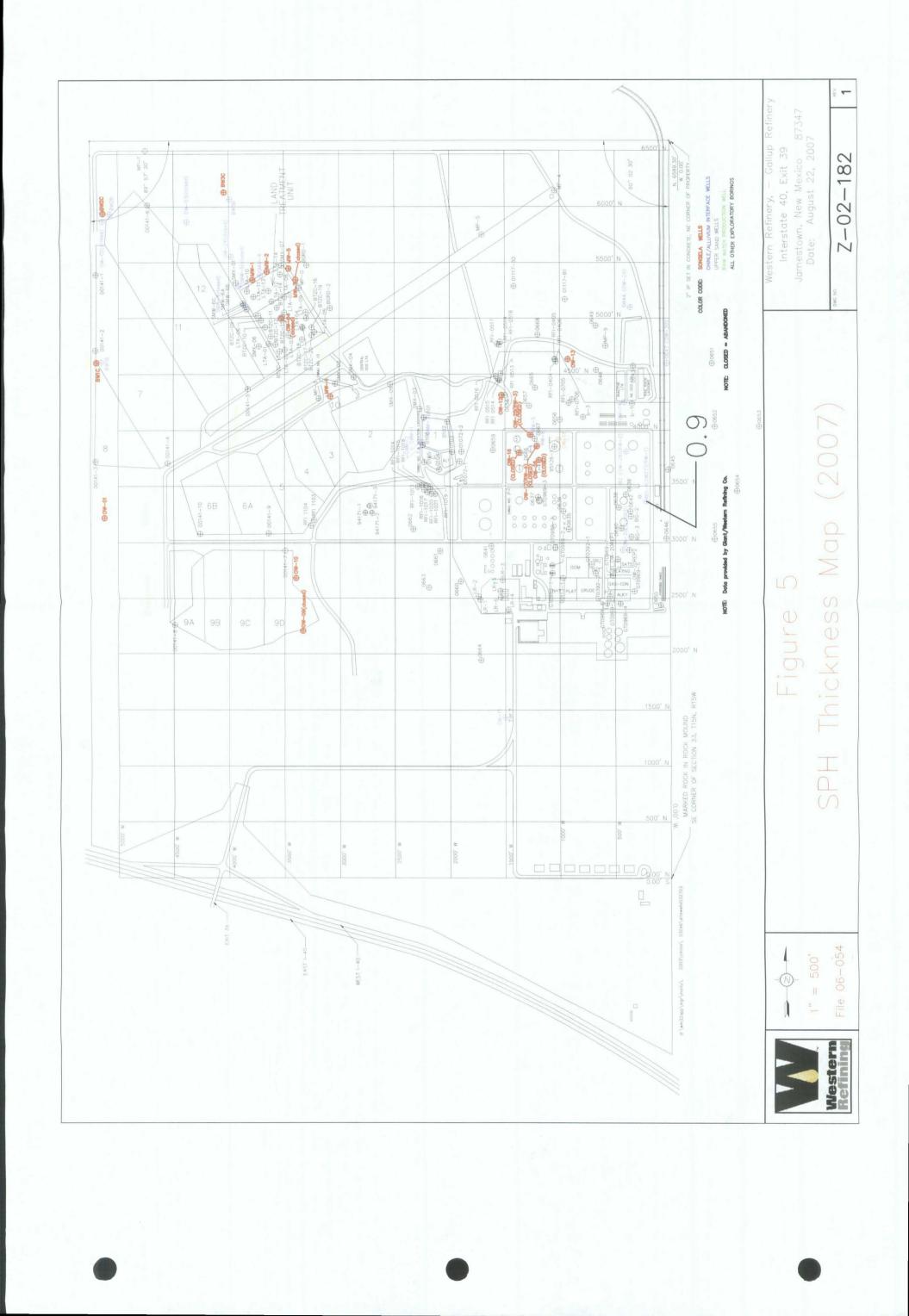



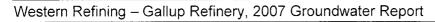

Figure 1 Regional Map

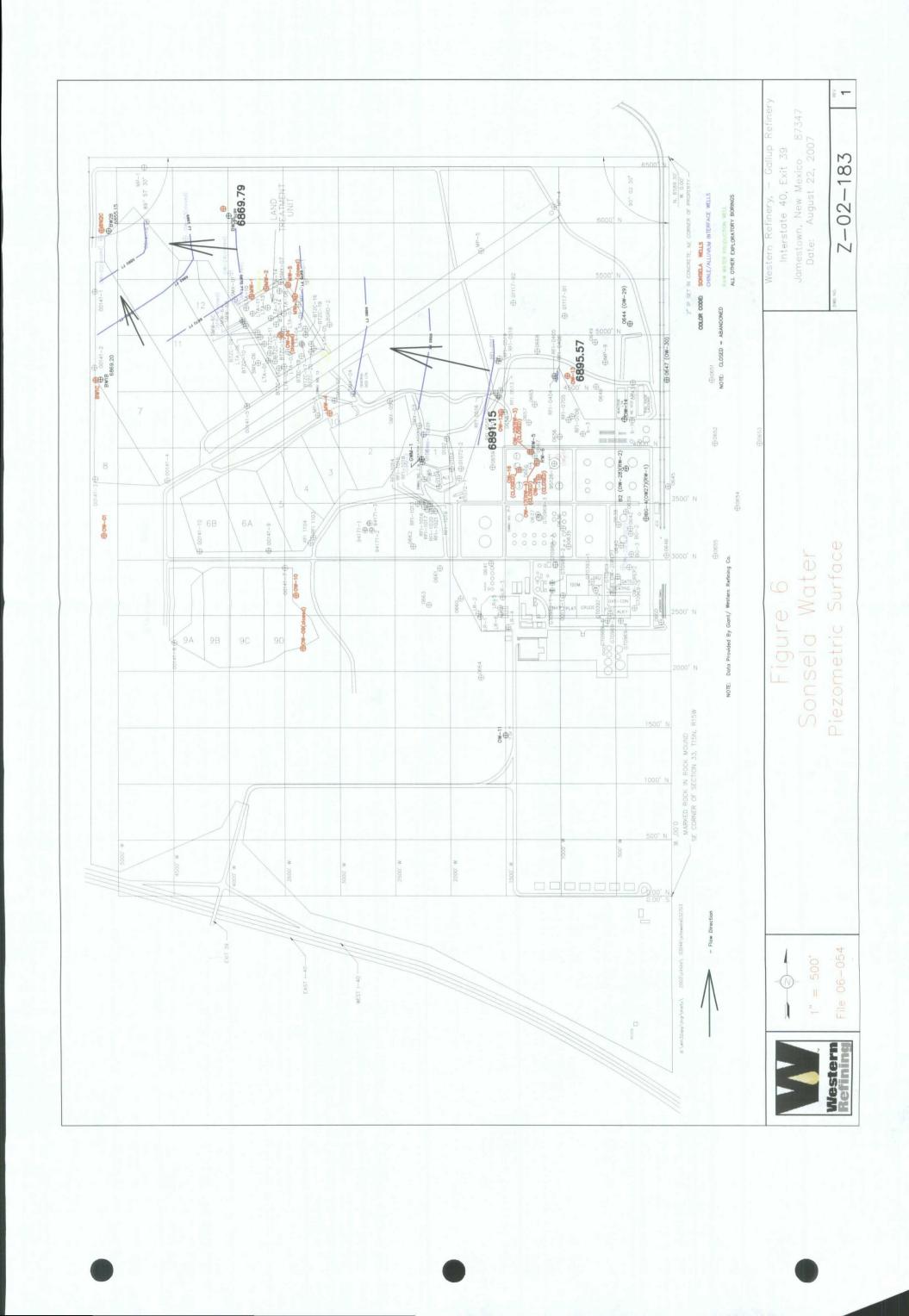

Locality Map USGS Topographical Map - Gallup Quadrangle (Revised 1980)

Well and Boring Locations Map



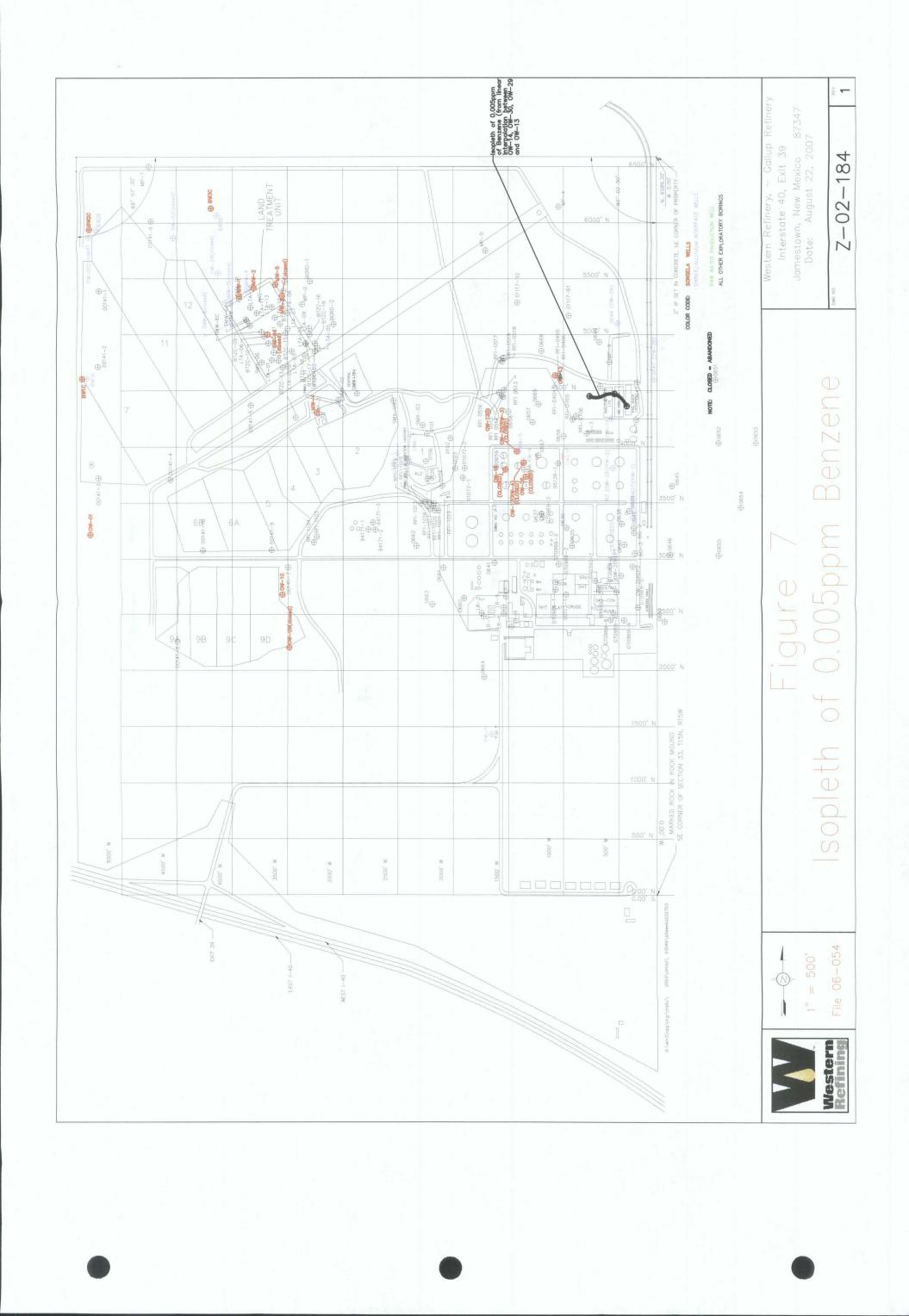
Potentiometric Elevation Map (Alluvium – Chinle Group Interface Water Levels)


Western Refining – Gallup Refinery, 2007 Groundwater Report



Annual Product Thickness Map (Separate Phase Hydrocarbon Thickness)

Sonsela Water Piezometric Surface



Groundwater Elevation Map of RW-1 and Benzene Isopleth Map in Vicinity

Western Refining – Gallup Refinery, 2007 Groundwater Report

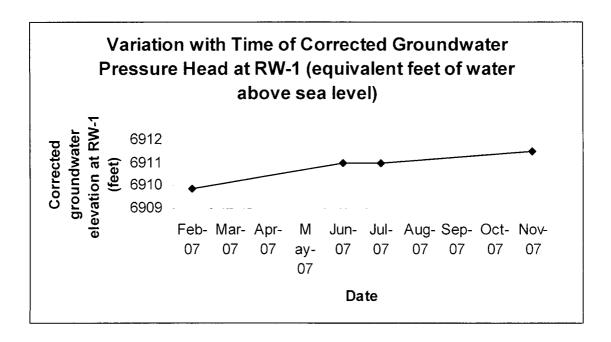


Figure 8: Variation with Time of Corrected Groundwater pressure head at RW-1 (measured height of water column plus equivalent height in terms of feet of water of the hydrocarbon column – provided in units of feet above sea level)

Appendix A: Gallup Field Sampling Collection and Handling Procedures

Field Data Collection

All facility monitoring wells and recovery wells were gauged in January, March, May, June, July, and October of 2007. Gallup does not have any recovery well pumps that need to be shut off and removed prior to water elevation measurements.

All water/product levels are measured to an accuracy of the nearest 0.01 foot using an electrical Conductivity based meter. After determining water levels, well volumes are calculated using the conversion factors listed (under the heading *Capacity gallons per foot*) in Table 1 in Section 7.

Generally, at least three well volumes are purged from each well prior to sampling. Wells that don't have sufficient recovery to obtain 3 well volumes are pumped until loss of suction then sampled.

Electrical Conductivity (E.C.), pH, and temperature are monitored during purging using a meter. The wells are considered satisfactorily purged when the pH, E.C., and temperatures values did not vary by more than 10 percent for at least three measurements.

Filed data and well elevations can be found in Section 8 – Well Data Summary Table.

Purged well water from wells that have shown prior contamination is collected in fifty five gallon drums. The water is treated in the refinery's waste water treatment system. Purged water from historically non-contaminated wells is drained onto the ground.

Sampling Equipment at Gallup

The following sampling equipment is maintained at Gallup and used by the sampling personnel:

- Heron Instruments 100 ft. DipperT electric water depth tape complying with US GGG-T-106E, EEC Class II.
- Pall Corporation Acro 50A 0.45 micron disposable filter used with 60 ml. disposable syringe for filtering water in the field.
- Myron L Company Model DCH4 pH 4 & 10 for gain, and Hach NaCl 1990 Micro-siemens for conductivity calibration.
- Grundfos 2-inch pumps with Grundfos 115-volt AC-to-Dc converter.

Groundwater Elevation

All water/product levels are measured using DipperT electric water depth tape. The technician records separate phase hydrocarbon (SPH), depth to water (DTW), and total well depth using the tape. Wash probe on DipperT electric water depth tape first with non-phosphate soap water then with deionized or distilled water before lowering into the well casing. Recovery wells with free product are checked using a reel gauge with water and hydrocarbon finding paste.

Water Quality/Groundwater Sampling

Water quality parameters are measured using a meter. Electrical Conductivity, pH, and temperature are monitored during purging.

Field Procedure for Purging Monitor Wells

In order to assure that the sample collected is representative of actual aquifer conditions, it is necessary to purge the well of stagnant water in the casing. This is accomplished by pumping three casing volumes of water from the well or until it is bailed dry, whichever occurs first. If a well can be pumped dry, it requires only that sufficient time elapse for an adequate volume of water to accumulate for the sampling event.

The casing volume is calculated according to the following formula:

One casing volume = $L \times F$ where

L = Length of water column = total depth - depth to water

F = gallons water per foot of well, based on the well casing diameter

F is provided on the *Well Volume Sheet* for the monitoring wells at Gallup provided at the end of this appendix.

The volume to be purged from each well is determined as follows:

Purge volume = casing volume x = 3

Document the following information:

- a. The amount of water purged from each well.
- b. Weather conditions (dry or wet).
- c. Depth to Water (DTW).
- d. Purge date.
- e. Purge time.

Well Evacuation

Before sample collection can begin, the water collected from each monitoring well must be fresh aquifer water. Well evacuation replaces stagnant well water with fresh aquifer water. The water level in the well, total depth of well and thickness of floating product (if any) will be measured using the DipperT electric water depth tape. A transparent bailer will be used to check for the presence and measure the thickness of floating product. If product is present, a ground water sample is typically not obtained.

Recovery wells are evacuated by use of an air driven pump. Wells MW-1, MW-2, MW-4, MW-5. BW-1C, BW-2A, BW-2B, BW-3B, and SMW-4 are each equipped with a dedicated electrical pump. The remaining wells were purged using a portable Grundfos pump in 2006.

In low yielding wells, the standing water will be removed until the well is essentially dry. The water level in the well will be allowed to recover until a sufficient volume is present to obtain a sample.

The first sample should be tested for pH, temperature, and specific Conductivity. Samples should then be collected and containerized in the order of the parameter's volatilization sensitivity (see *Order of Collection* below). The well should be retested for pH, temperature and specific Conductivity after sampling as a measure of purging efficiency and as a check on the stability of the water samples over time. All well evacuation information should be recorded in a log book.

Western Refining - Gallup Refinery, 2007 Groundwater Report

Hand Bailing

Hand bailing is only used to remove free product from recovery wells. Hand bailing is performed by lowering a TeflonTM bailer slowly into the well, allowing water to enter the bailer, and lifting the bailer out of the well. The bailer is positioned just below the top of the standing water in the well, so that the bailed product is removed from the top of the water column.

Pumping

An electric pump is used to remove water from all wells other than recovery wells with free product in them. Wells MW-1, MW-2, MW-4, MW-5, BW-1C, BW-2A, BW-2B, BW-3B, and SMW-4 are each equipped with a dedicated electrical pump. The other wells, except for recovery wells, are pumped using a portable 2-inch Grundfos pump. During sample collection, a maximum flow rate of 100 milliliters/minute should be used. The actual flow rate should be measured using a graduated container and timed using a stop watch or a watch with a second hand. This rate can change as the water level in the well drops. The flow rate can be determined by:

Flow rate (gpm) = volume collected (gallons) x 60 seconds per minute Time to fill container (seconds)

Bottle Filling Procedure

If the well was not bailed dry and the water level is recovering to provide sufficient water to fill all the sample bottles, then samples should be collected immediately. If the well was completely evacuated and/or recovery is slow, wait for a sufficient volume of water to recover in the well to fill all of the sample bottles before beginning to collect samples. Do not overfill the bottles as this will dilute the preservative. When filling VOA and TOX containers, slowly fill the container until the meniscus is just above the lip of the container. Place the cap on the container and tighten. Check for air bubbles by inverting the container and tapping gently. There should be no headspace (air) in the container. If headspace is present, the sample should be discarded and the container refilled (add sufficient preservative if required by sample test).

Do not touch the inside of bottle caps or the inside of the containers. If a cap is accidentally dropped, it should be rinsed with de-ionized or distilled water followed by a rinse with the sample prior to being placed on the container. Record in the field notes whether this happens.

Filled containers should be placed on ice in the coolers immediately upon collection. Replace well cap and lock the cap.

Order of Collection

Samples should be collected in the order listed below:

Parameter	Bottle Type
Volatile Organics	VOA vials with septa cap of Teflon TM
TOX	Pint amber glass with septa cap, H2SO4
TOC, Phenols, Nitrate, Ammonia	Quart glass jar, H2SO4
Extractable Organics	Quart glass jar with Teflon TM cap

Chloride and Sulfate	Quart plastic, no preservative
Cyanide	Quart glass, NaOH
Radionuclides	Quart plastic, HNO3
Metals*	Pint plastic

* Prefiltration bottle for dissolved metals which is subsequently filtered and transferred to a pint Plastic with HNO3.

Filtration

Ground water samples are filtered prior to *dissolved metals* analysis. For dissolved metals, sample water is poured into a jar and then extracted with a syringe. The syringe is then used to force the sample water through a 0.45 micron pore filter paper filter into the proper sample bottle to collect dissolved metals samples. Filtration must be performed within two hours of sample collection. Pour the filtrate into a sample bottle containing HNO3 preservative.

For samples destined for *total metals* analysis, do not filter the sample, and preserve with HNO3 to pH < 2 in the field.

Gallup sampling personnel carry a cell phone when gathering groundwater and other water samples. While sampling procedures are generally well known and the appropriate sample bottles are ordered to match each sampling event, occasional questions do arise from unforeseen circumstances which may develop during sampling. At such times, sampling personnel contact Hall Environmental Analytical Laboratory to verify that sampling is correctly performed.

General Well Sampling and Sample Handling Procedures

For safety protection and sampling purity, rubber gloves are worn and changed between each activity.

Prepare for sampling event by making out sample bottle labels and have bottles separated into plastic bags for each well to be sampled and place in ice chest ready to take into the field.

Bring along a note book and sample log.

Starting with well MW-1, document weather conditions, sample date and time.

Fill in label with location, date, time, analysis, preservative, and your name.

Start sampling by adjusting converter speed for each well.

Affix sample label and fill bottle according to lab instructions. For samples intended for VOC analysis, use bottles with septa lids, fill bottle to neck and add final amount of water with cap to form meniscus. Turn bottles upside down to examine for bubbles. If bubbles show repeat previous sentence. If no bubbles show, secure lids and pack in bubble wrap and place in cooler until sampling is completed.

Decontaminate equipment that is not dedicated for use in a particular well. Decontaminate by first washing with a non-phosphate soapy water mixture then triple rinse with distilled or deionized water.

Refrigerate completed samples until shipping to lab. Be sure to check holding times and arrange the appropriate shipping.

Equipment Calibration Procedures

Myron L Digital PH and Conductivity Meter: Conductivity Calibration:

- 1. Select 20 mS (micro Siemens) range. Remove bottom cover of instrument.
- 2. Rinse the cell cup three times with 442-15,000 standard solution and refill.
- 3. Press and hold the black button on instrument.
- 4. Adjust the calibration control the reading is correct. Discard the used solution.

pH Calibration:

- 1. Using pH 7 buffer, adjust "zero" control to read 7.00
- 2. Using pH 4 or 10 buffer, adjust "gain" control to read 4.00 or 10.00