HINKLE, HENSLEY, SHANOR & MARTIN, L.L.P.

ATTORNEYS AT LAW 218 MONTEZUMA SANTA FB, NEW MEXICO 87501 505-982-4554 (FAX) 505-982-8623

RECEIVED , 2000 APR 15 PM 3 09

WRITER: Gary W. Larson, Partner glarson@hinklelawfirm.com

April 15, 2008

HAND DELIVERY

Florene Davidson Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, NM 87505

Case 14/28

Re: Cano Petro of New Mexico, Inc. Application for Authorization to Inject

Dear Florene:

On behalf of Cano Petro of New Mexico, Inc. ("Cano"), I am enclosing the following documents:

- 1. The original and one (1) copy of Cano's Application for Authorization to Inject for purposes of its proposed waterflood project in Chaves County; and
- 2. A proposed publication notice of the hearing on Cano's application.

Cano requests that this matter be placed on the May 15, 2008 Examiner Docket.

Thank you for your assistance.

Very truly yours,

auon

Gary W. Larson

GWL:jr Enclosures

> PO BOX 10 ROSWELL, NEW MEXICO 88202 (505) 622-651() FAX (505) 623-9332

PO BOX 3580 MIDLAND. TEXAS 79702 (432) 683-4691 FAX (432) 683-6518 PO BOX 2068 SANTA FE, NEW MEXICO 87504 (505) 982-4554 FAX (505) 982-8623 919 CONGRESS, SUITE 1150 AUSTIN, TEXAS 78701 (512) 476-7137 FAX (512) 476-7146

CANO PETRO OF NEW MEXICO, INC.

Burnett Plaza · 801 Cherry Street Suite 3200, Unit 25 Fort Worth, TX 76102

Phone (US) - 817.698.0900

Fax - 817.698.0796

2008 APR 17

PM

<u>ه....</u> و

ហា

 \leq

m

 \bigcirc

April 14, 2008

Certified Mail/Return Receipt Requested

Ms. Forine Davidson New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

Case 14/28

RE: Application for Waterflood Permit in Cato Unit, Chaves County, New Mexico

Dear Ms. Davidson:

Enclosed is a copy of an application for a waterflood permit filed with the New Mexico Oil Conservation Division by Cano Petro of New Mexico, Inc. ("Cano Petro"), regarding the following lands in Chaves County, New Mexico:

<u>Surface</u> S/2 of SW/4, SW/4 of SE/4, Section 2, T8S - R30E, All of Section 11, T8S - R30E, W/2 of W/2, Section 12, T8S - R30E, W/2 of W/2, Section 13, T8S - R30E, All of Section 14, T8S - R30E,

Subsurface SW/4, W/2 of SE/4, Section 278S - R30E, SE/4 of NW/4, S/2 of NE/4, NE/4 of SE/4, Section 2, T8S - R30E, W/2 of E/2, Section 12, T8S - R30E, W/2 of E/2, SE/4 of SW/4, Section 13, T8S - R30E, NW/4 of Section 24, T8S - R30E,

Cano Petro, the operator of the Cato Unit, plans to waterflood the northeastern portion of the Cato Unit beginning in late-May 2008 as part of the secondary recovery effort.

The application is set for hearing on Thursday, May 15, 2008, at 8:15 a.m. at the Division's offices at 1220 South St. Francis Drive, Santa Fe, New Mexico 87505.

April 14, 2008 Page 2

As an interest owner in the affected lands, you are required to notify (in writing) the Division, and the undersigned, by Thursday, May 8, 2008, if you intend to participate in the hearing. Failure to appear at the hearing will preclude you from contesting the matter at a later date.

Contact Alex Azizi at (817) 698-0900 if you have any questions.

Sincerely,

Patrick M. McKinney Vice-President of Operations

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

Oll Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

APPLICATION FOR AUTHORIZATION TO INJECT

	AT LICATION FOR AUTHORIZATION TO INJECT
I.	PURPOSE: X Secondary Recovery Pressure Maintenance Disposal Storage Application qualifies for administrative approval? Yes X No
II.	OPERATOR: Cano Petro of New Mexico, Inc.
	ADDRESS: 801 Cherry St Unit 25, Ste. 3200; Fort Worth, TX 76102
	CONTACT PARTY: Alex AziziPHONE: (817)698-0900
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project? X Yes No If yes, give the Division order number authorizing the project: R-9029
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review. attached
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail. attached
VII.	Attach data on the proposed operation, including: attached
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval. previously submitted
IX.	Describe the proposed stimulation program, if any. injection wells will be acidized, producers be fracture stimulated
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken. no such wells
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water. not applicable
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form. attached
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	NAME: Keith B. Masters, P.E
	SIGNATURE: Litt/HL_CE. DATE: 08/15/08
*	E-MAIL ADDRESS: <u>k_b_masters@mastersconsultingllc.com</u> If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal: Case 9739

DISTRIBUTION: Original and one copy to Santa Fe with one copy to the appropriate District Office

A CONTRACTOR AND A STREET AND A CONTRACT OF A CONTRACT.

111. V	WELL DATA	a starge F	needer (1949) in needer 1949 A	n station and s	landon – 19 A anglaich an 1944		÷
A.	The following wa	ell data must be sub rm and shall include	mitted for each injection well ca e:	overed by this application			.11
	(1) Lease name;	Well No.; Location	by Section, Township and Ran	ge; and footage location v	within the section.		
	(2) Each casing determined.	string used with its :	size, setting depth, sacks of cem	ent used, hole size, top of		such top was	: :
	(3) A description	of the tubing to be	used including its size, lining n	naterial, and setting depth	•geno esta transf	ang tana ang di	V.
	(4) The name, m	odel, and setting de	pth of the packer used or a desc	ription of any other seal s	system or assembly	used.	
	Division District Applicants for se	Offices have suppl veral identical wells	ies of Well Data Sheets which r s may submit a "typical data she	nay be used or which may et" rather than submitting	y be used as model the data for each	s for this purpose well.	/
B.	The following n	nust be submitted fo	r each injection well covered by s need be shown only when dif	this application. All iter	ms must be addres	sed for the initial	ed.
	(1) The name of	the injection format	ion and, if applicable, the field	or pool name.	ori je tradição e st	l wonana shanaf	1.17
	(2) The injection	interval and wheth	er it is perforated or open-hole.		en en ander ander angelen. Generalieren anderen angelen an		
	(3) State if the w	ell was drilled for in	njection or, if not, the original p				
	(4) Give the dep	ths of any other peri	forated intervals and detail on the	e sacks of cement or brid	lee plugs used to se	eal off such	
			of the next higher and next lowe				
XIV.	PROOF OF NO	IICE	a de regeler fall altangangan sa sa Pangangan sepanan hatangan sa sa	de la contra de la c	e. And the date	anteral de de	역가기
	All applicants m	ust furnish proof the	at a copy of the application has well is to be located and to each	been furnished, by certific a leasehold operator withi	ed or registered ma	il, to the owner o the well location	»f
	 copy of the legal advertisement m 	advertisement white advertisement white a second se	Iministrative approval, a proof of the county is the count	of publication must be sul in which the well is locate	bmitted. Such pro a. The contents o	of shall consist of f such	11
			er, and contact party for the app				
	(2) The intended Township, a	purpose of the inje nd Range location o	ction well; with the exact location for the state of the	on of single wells or the S	international description Section, Engine de la constalatate recourt description		.HV
	(3) The formation	n name and depth v	with expected maximum injection	n rates and pressures; and	I, et al a transformer	and stands for t	<i>1</i>
	(4) A notation th St. Francis Dr., S	at interested parties Santa Fe, New Mexi	must file objections or requests ico 87505, within 15 days.	for hearing with the Oil	Conservation Divi	sion, 1220 South	71.1 1
	NO ACTIO SUBMITTE		N ON THE APPLICATION UN		DF NOTICE HAS		
NOT from	ICE: Surface own the date this appli	ers or offset operato cation was mailed to	아이가 아이가 한 것 같은 것 같은 것 같은 것 같이 있었다.	quests for hearing of adm	ann a shannar Ann an annar	ebedde opfit	ays

a a substantia da anti-arrente anti-arrente a substantia da anti-arrente da anti-arrente da anti-arrente da ant Desenvolta da anti-arrente da anti-arrente da anti-arrente da anti-arrente da anti-arrente da anti-arrente da an

ATTACHMENT TO FORM C-108

Cano Petro of New Mexico, Inc. Cato San Andres Unit

Item III - Proposed Injection Wells

Wells with existing Injection Authority

CSAU # 21 CSAU # 23 CSAU # 51 CSAU # 81

Wells to be converted to injection

CSAU # 6 CSAU # 7 CSAU # 19 CSAU # 20 CSAU # 25 CSAU # 28 CSAU # 29 CSAU # 48 CSAU # 49 CSAU # 52 CSAU # 53 CSAU # 55 CSAU # 56 CSAU # 57 CSAU # 77 CSAU # 80 CSAU # 82 CSAU # 83 CSAU # 84 CSAU # 85 CSAU # 86 CSAU # 87 CSAU # 88 CSAU # 109 CSAU # 110 CSAU # 111 CSAU # 112 CSAU # 113 CSAU # 114 CSAU # 115 CSAU # 116 CSAU # 117 CSAU # 118

ATTACHMENT TO FORM C-108, continued

Cano Petro of New Mexico, Inc. Cato San Andres Unit

Wells to be drilled as injection wells

CSAU # 50R CSAU # 507 CSAU # 521 CSAU # 533 CSAU # 5377 CSAU # 822 CSAU # 824 CSAU # 824 CSAU # 826 CSAU # 827 CSAU # 854 CSAU # 878 CSAU # 879 ATTACHMENT TO FORM C-108 Cano Petro of New Mexico, Inc. Cato San Andres Unit

.

WELLBORE SCHEMATICS PROPOSED INJECTION WELLS WELLS TO BE CONVERTED TO INJECTION

- 1

Plugging	Date		0/61/67/71			4/16/1975				12/12/2006																																													
Total Depth	(#)		3670	3608		3608			3680	3602		3594	2750	3960			3650	3654			. 3674		2020	0000	3660	3645	•		3600	3670		3660	T	3694		3618	3560	3530	3531	3600	3558	3700	3557	3618	3650	3650	3700	3650	3700	3800	3700	3630	3651	3751	Ħ
	ons 		3614	3572	-	3564			3654	3568		3543	2220	3600			3490	35201			3560		2600		3544	3518			3559	3604		3619		3571		3600	3524	3477	3380	3488	3515	3515	3437	3546	3561	3564	3569	3557	3583	3607	3570	3600	3658	3714	
	Perforations		3544			3555			3528	3452		3433	1010	3416			3444	3474			3511		2524	+7CC	3497	3477			3436	3503		3572		3531		3555	3414	3370	3364	3392	3406	3425	3393	3439	3465	3472	3496	3459	3484	3568	3528	3524	35361	3584	
Completion	Date	-100 la 00	9/23/1966	10/18/1967		3/28/1968			12/21/1966	11/15/1966		1/8/1967	11/15/1066	00CT /CT /7T			8/2/1967	1/8/1966			12/18/1967		0301/11/1	00CT /hT /T	2/1/1967	7/28/1967			2/1/1967	7/21/1967		3/2/1967		6/12/1967		5/27/1969	11/1/1966	11/24/1966	7/15/1967	1/13/1967	7/5/1967	5/16/1967	1/14/1967	9/26/1967	7/13/1967	6/6/1967	5/23/1967	6/26/1967	6/20/196/	4/22/1967	8/5/1967	3/27/1967	//12/196/ 8/13/1967	9/9/1967	
TOC	Method	-	calc	calc		calc			calc	calc		calc	2	circ			calc	calc			calc		calc.	2172	calc	calc			calc	calc		calc		calc		calc	calc	calc	calc	TS	calc	15	calc	calc	TS	TS	12	TS Tc	calc	calc	calc	calc	calc	calc	
0.20	100	0000	1181	2779		2363			365	287		279	135	<u>,</u>			2367	339			2431		7352	222	345	2402		100	285	2427		345		2451		2168	1980	215	2288	1940	2315	2200	237	2375	2100	2300	2400	2100	2300	T-			2454		
l ₹ ŭ	(xs)	100	600	200		300			800	800		800	- UUB	1150		1	300	800			300		UUE	2	800	300		000	800	300		800		300		350	200	800	300	500	300	350	800	300	275	350	350	275	350	600	300	800	300	300	
Casing B h	(H)	2610	3667	3608		3606			3680	3602		3594	3750	3960			3610	3654			3674		3596		3660	3645			3600	3670		3660		3694		3618	3587	3530	3531	3558	3558	3695	3552	3618	3650	3650	3696	3648	3631	3800	3700	3630	1698	3751	
Pro Casing Weight	(ppf)	LL C	5.6	9.5		9.5			9.5	9.5		9.5	9	17.0			9.5	9.5			9.5		л × 1	;	9.5	9.5		L C	9.5	9.5		9.5		9.5		9.5	0.7	9.5	9.5	9.5	9.5	9.5 9.5	9.5	9.5	9.5	9.5	9.5	9.5	6.5 9.5	9.5	9.5	9.5	0.5 2.6	9.5	
Casing Size	(u)	100	4.500	4.500		4.500			4.500	4.500		4.500	4 500	5.5001			4.500	4.500			4.500		4 500		4.500	4.500			4.500	4.500		4.500		4.500		4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	
Hole Size	(u)	C 2FA	7.875	7.875		7.875			7 875	7.875	-	7.875	7 875	7.875			7.875	7.875			7.875		7 875		7.875	7.875			7.875	7.875		7.875		7.875		7.875	7.875	7.875	7.875	7.875	7.875	8 875	7.875	7.875	7.875	7.875	7.875	7.875	7.875	7.875	7.875	· 7.875	7.875	7.875	
18	Method		0 circ			0 calc			0 circ	0 circ		0 circ	0 circ	T-			0 circ	0 circ			0 circ		0 circ		0 circ	0 circ			0 ctrc	0 calc		0 circ		0 circ		0 circ	1					0 circ	1				Τ.	0 circ		0 circ			0 circ		
t t	(sx) 100	000	200	200		175			300	300		750	300	400			250	300			250		250		300	260		000	300	250	-	300		250		250	300	300	250	300	250	300	300	250	300	300	300	200	250	300	250	300	250	250	
asing B	(II)		432	332		212			458	465		450	456	565			254	454			286		295		470	295			450	285		460		284		290	514	460	250	519	270	452	450	319	282	457	450	275	320	447	287	457	290	279	F
1 +	(ppf) (1	0.00	24.0	20.0		20.0		_	24.0	24.0		24.0	10 10	24.0			24.0	24.0			20.0		0.40	2	24.0	24.0			24.0	24.0		24.0		24.0		24.0	28.0	24.0	24.0	28.0	24.0	24.0	24.0	24.0	20.0	24.0	24.0	20.0	24.0	24.0	24.0	24.0	24.0	24.0	
Casing Size	(ui)	000 5	8.625	8.625		8.625			8.625	8.625		8.625	8 625	8.625			8.625	8.625			8.625		8 675	24212	8.625	8.625			8.625	8.625		8.625		8.625		8.625	8.625	8.625	8.625	8.625	8.625 6.25	8 675	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	
	(ii)	3400	12.500	12.500		11.000		-	12.250	12.250		12.250	12 250	12.250		-	12.250	12.250			12.250		12 250		11.000	12.250		1 000	11.000	12.250		11.000		12.250		11.000	12.250	11.000	12.250	12.250	11.250	12 250	12.250	12.250	12.250	12.250	12.250	12.250	12.250	12.250	12.250	12.250	12.250	12.250	
	Current Well Name	CSAU # 562	CSAU # 82	CSAU # 83	CSAU # 575		CSAU # 590	CSAU # 597	CSAU#81	CSAU # 79	CSAU # 879	CSAU # 78	CSAU # 878	CSAU # 571	CSAU # 586	CSAU # 585	CSAU # 86 CSAU # 572	CSAU # 85	CSAU # 573	CSAU # 587	CSAU # 84	CSAU # 574	CSAU # 366	CSAU # 596	CSAU # 112	CSAU # 111	CSAU # 594	CSAU # 595	CSAU # 110 CSAU # 593	CSAU # 117	CSAU # 600	CSAU # 116	C5AU # 602	CSAU # 115	CSAU # 603	CSAU # 114	CSAU # 76	CSAU # 75	CSAU # 90	CSAU # 89	CSAU # 88	CSAU # 109	CSAU # 107	CSAU # 120	CSAU # 119	CSAU # 118	CSAU # 127	C5AU # 126	CSAU # 133	CSAU # 130	CSAU # 129	CSAU # 128	CSAU # 134	CSAU # 132	CSAU # 401
	l		4 J	# 2																			2 # 10	2 H ID	al#1				1	†.				\uparrow		al#4	╈	╞					al#1	ral#3			Ť					ral#3	ral#5	ral # 2	
	Original Well Name	CSAU # 562	Coll-Federal # 1	Smith Federal # 2	CSAU # 575	Federal 13 # 1	CSAU # 590	CSAU # 597	Wasley # 3	Wasley # /	CSAU # 879	Wasley # 4	CSAU # 878	CSAU # 571	CSAU # 586	CSAU # 585	Wasley # 6	Waslev # 5	CSAU # 573	CSAU # 587	Wasley # 8	CSAU # 574	C5AU # 588	CSAI1 # 596	Cato "C" Feder	Cato "B" Federal # 6	CSAU # 594	CSAU # 595	Cato "B" Feder	Cato "B" Federal # 4	CSAU # 600	Cato "B" Federal # 2	CSAU # 601	Cato "C" Federal # 2	CSAU # 603	Cato "C" Federal # 4	Baskett "E" #]	Crosbv "D" # 1	Crosby "D" # 2	Cato # 3	Baskett "E" # 2	Harris, L.C. # 1	Cato "A" Federal # 1	Cato "A" Federal #	Harris, L.C. # 8	Harris, L.C. # 3	Harris, L.C. # 2	Harris, L.C. # 6	Harris, L.C. # 5 ICato "D" Federal #	Cato "D" Federal # 1	Cato "B" Federal # 7	Cato "B" Federal # 3	Cato "B" Federal # 5	Cato "D" Federal # 2	CSAU # 401
	Original Operator	Cano Petro of New Mexico, Inc.	southwest Production Corp. Max Coll	Jack L. McClellan	Cano Petro of New Mexico, Inc.	L. Brown, Jr.	Cano Petro of New Mexico, Inc.	Cano Petro of New Mexico, Inc.	Pan American Petroleum Corp.	Pan American Petroleum Corp.	Cano Petro of New Mexico, Inc.	Pan American Petroleum Corp.	Cano Petro of New Mexico, Inc.	n American requirem too p. no Petro of New Mexico, Inc.	Cano Petro of New Mexico, Inc.	no Petro of New Mexico, Inc.	n American Petroleum Corp.	Pan American Petroleum Corn	Cano Petro of New Mexico, Inc.	Cano Petro of New Mexico, Inc.	Pan American Petroleum Corp.	Cano Petro of New Mexico, Inc.	Cano Petro of New Mexico, Inc.	no Petro of New Mexico, Inc	Pan American Petroleum Corp.	n American Petroleum Corp.	ino Petro of New Mexico, Inc.	no Petro of New Mexico, Inc.	Pan American Petroleum Corp.	cano Petro of New Iviexico, Inc. Pan American Petroleum Corp.	Cano Petro of New Mexico, Inc.	Pan American Petroleum Corp.	Cano Petro of New Mexico, Inc.	Pan American Petroleum Corp.	Cano Petro of New Mexico, Inc.	Pan American Petroleum Corp.	Pan American Petroleum Corp. Ilnion Tever Betroleum Co	Pan American Petroleum Corp.	Pan American Petroleum Corp.	Union Texas Petroleum Co.	Pan American Petroleum Corp.	Sinclair Oil & Gas Co.	Pan American Petroleum Corp	in American Petroleum Corp.	Sinclair Oil & Gas Co.	nclair Oil & Gas Co.	nclair Oil & Gas Co.	Sinclair Oil & Gas Co.	Sinctair Oil & Gas Co. Pan American Detroloum Corn	Pan American Petroleum Corp.	Pan American Petroleum Corp.	an American Petroleum Corp.	Pan American Petroleum Corp. Pan American Petroleum Corp.	Pan American Petroleum Corp.	ano Petro of New Mexico, Inc.
		FF	FWL 201	-		FWL H.I	H		+	FWL Pai			FWL Ca	1				FFI Pa	-	F	FEL	EEL				FWL	FWL		FWL	FWL	FWL	FWL	FWL	FEL		_	FEL Pa		FWL	FEL	EL		FWL	FWL	FEL	FEL	E	╈	린표	1 E	FWL	FWL		ц Ш	L L
	Location		330		130		332			1980			629		1305		_	1980					1293		_		1348	_		164 660			7618	_	-		1080	_	_			1060				660			660	1980		r – –	1980	1980	066
			3301 FNI		····	2504 FNL			660 FNL	660 FNL			658 FNL	1340 FNI	-	1	-	1080 ENI		1		- 1	2471 FNL		1.	1980 F5L				1464 FSL 660 FSL	114 FSL		146 FSL		-	-	660 FNL	POOL FNI	1	1980 FNL		1980 FSL	1980 FSI		660 FSL	660 FSL	_		1980 FNL				1980 FNL		1980 FNL
	Unit	W				ц Ц Ц		Σ				0								-	H	Ŧ				×	<u> </u>	×		_ ¥	Σ	z	zz	20	0	4	V a			5	Ŧ				0	4	A		H				 		H
	Section	\Box		13 1	13 1	13 13	13 1			14	14		14	14	14	14	14	7 1		14		14	14	# V	14	14	14	14	14	14	14		14			14	15	2 ¥	15	15	15	15	1:	15	15	15	22		22			23	23		23
	Suffix	28013	10525	20144		20219			10572	10540		10581	29032	19007	29025	29026	20109	105881	28016	29024	20174	28017	11000	TTTAT	20016	20115			20015	20094		20031		20081		20292	10532	10562	20088	10563	06002	20068	20008	20137	20103	20077	20071	20083	20082	20058	20016	20045	20096	20129	

للاسب حرجی

Plugging Date	8/28/1969					1/29/1975			1/17/2007				1/17/700/																					12/19/2006		****				12/27/2006			9/30/1983										1/4/2007							12/21/1994			
Total Depth (ft)	3662	3492	3498	3540	3863	3589	3935	3956	3460	3600	3498	3850	3440	3452	3548	3700	3620	3480	3600	3600	3600	3515	3600	ADEE	3571		3532	3650	4006	3618	2810	20CC		3605		3642		3668	4020	3650	4010		3700	3561	4062	4030	3523	3990	3940	3960	3600	3960	3544			3665	4080			3706			3714
ŝ	3536	3451	3462	3507	3802	3532	3830	3598	3432	3384	3439	3424	3400	10022	3414	3444	3470	3440	3400	3416	3464	3480	3482	2402	3542		3477	34491	3763	3465	3540	3814		3575		3598		3628	9740	3610	3918		3548	38//	3820	3832	3523	3900	3586	3610	3557	3476	01025	2000	† 	3634	3684			3595			3578
Perforations	3468	3344	3345	3371	3450	3412	3398		3315	╡	_		3252	1020	3300			_			_			_	3426		3383	3368	3406	3379	3440	3475		3456		3488		3514	0/66	3494	3550		3469	3014	3426	3458	3419	3596	3410	3408	3478	3434	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3020		3520	3520			3550		2226	3536
Completion Date	11/27/1966	12/15/1968	11/20/1966	2/8/1967		5/4/1967			9/30/1966	12/10/1966	10/31/1967	7901/1/2	1961/1/71	11/22/1967	7/31/1966	7/14/1966	8/10/1966	12/27/1966	3/9/2001	11/22/1966	12/19/1966	9/6/1966	9967/17/11	0007 /77 /07	12/8/1967		5/16/1967	12/9/1966		9/11/1966	2201/01/0	ADOCT INT IO		9/17/1966		6/22/1969		11/1//1966		12/27/1966			8/31/1966	6/18/1966	anor lat la		12/25/1966				12/1/1966	10/11/10/04	9951/17/01			6/5/1969				1/22/1967		- 10/1007	1/20/1967
TOC Method	calc	calc	calc	calc	circ	calc	CBL	CBL	calc	calc	calc	calc	calc	Calc	calc	całc	TS	calc	calc	calc	TS	calc	1) rate	calc	calc		calc	TS	circ	51	Calc	calc		calc		calc		Calc		calc	CBL		TS		calc	calc	calc	CBL	calc	CBL	IS	CBL	calc			calc	calc			calc		-	calc
0.20 1.18 TOC	347	1854	1/9	268	0	319	50	660	145	1717	22551	7107	105				2010					200			2328		1046	2200	0	2420	247) 		290		2192		555		_	270			272						5						2215			Ŧ	391			399
Amount Cement (sx)	800	300	1150	009	1150	600	1150	1150	800	450	300	000	2002	300	800	800	650	800	649	450	500	800	000	1150	300		600	200	1150	300	000	1150		800		350		1150	ACTT	800	1150		400	14501 800	1150	1150	800	1150	1150	1150	500	1150	1150	2017		350	1150			800		000	800
Production Casing Setting t Depth (ft)	3662	3489	3494 3860	3537	3863	3588	3935	3956	3460	3582	3498	0000	3440	3453	3548	3700	3614	3480	3600	3596	3588	3515	3576	4075	3571		3532	3636	3992	3615	1012	4081		3605		3642		36681	0704	3650	4010		3700	3561	4048	4020	3419	3989	3940	3947	3596	5950	4003	2		3665	4080			3706		1170	3714
Produ Casing Weight (ppf)	9.5	15.5	17.0	15.5	17.0	15.5	17.0	15.5	9.5	9.5	9.5	9.5	9.0 2.0	9.5	9.5	9.5	9.5	9.5	15.5	9.5	9.5	9.5	0.0	17.0	9.5		9.5	9.5	17.0	12.6	11.0	17.0		9.5		9.5		12.7		9.5	15.5		17.0	9.5	15.5	17.0	14.0	17.0	17.0	17.0	0.5	0./T	17.0			9.5	17.0			9.5			9.5
Casing (Size V (in)	4.500	5.500	5 500	5.500	5.500	5.500	5.500	5.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	4.500	5.500	4.500	4.500	4.500	4.500	5 500	4.500		4.500	4.500	5.500	4.500	002 1	5.500		4.500		4.500		4.500	00000	4.500	5.500		4.500 F EOO	4.500	5.500	5.500	5.500	5.500	5.500	5.500	4.500	002 4	1002 2		\vdash	4.500	5.500			4.500		* 500	4.500
e e (7.875	7.875	2/8/	7.875	7.875	7.875	7.875	7.875	7.875	7.875	7.875	2/8/	27.8.7	7.875	7.875	7.875	6.750	7.875	7.875	7.875	7.875	7.875	27.8 7	7.875	7.875		7.875	7.875	7.875	0./50	2787	7.875		7.875		7.875		2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2	17/0-	7.875	7.875	-	6.750 7 075	7.875			7.875	7.875	7.875	/.8/5	C/8./	2/0/	7.875	F			7.875		-	7.875		7 875	1 12/8/
							_			_		+						_			_	-													_		+					_																	-			+	
0.20 1.18 TOC 0C Method	0 circ			0 circ			0 circ	0 circ	0 circ	0 circ	0 circ		_					0 circ	-0 circ			0 circ					0 calc	0 circ	0 circ				-	0 circ	_	0 circ				0 circ	0 circ		0 circ	_		0 circ	0 circ	0 circ	0 circ				0 circ	-		0 circ	0 circ			0 circ		n A	0 JCITC
1	300	8	350	25	350	25	50	50	200	8	20	300	2 0	20	300	300	300		37	300	0			202	250		300	0	0	2 0		350		300		250	2	350	2	300	20		350		350	00	0	0	0	0		2 9	350			250	00		+	300			
sing Amount Cernent (sx)											_			. -				_	_		_								_		+				-															+		,										31	1 1
Surface Casing Setting Depth (ft)	457		_	427			_	_	454			700		-	, 465	_				507	-		454	-	290		461		_		+			453		320		520	-	457				511	\square		_		+	-	-					296				460		48	40
Casing Weight (ppf)		_	24.0	24.0		24.0	_	_	\downarrow		24.0	24.0		24.0				_		28.0		24.0	24.0	24.0	20.0		24.0	28.0	24.0	0.42	24.0	24.0		24.0		24.0	0.40	24.0		24.0	24.0		24.0			24.0	24.0		_	+		-	1			24.0	24.0			24.0		24.0	N:#3
Casing Size (in)	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	329.8	20.0	8 675	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625		8.625	8.625	8.625	275.9	8 675	8.625		8.625		8.625	0 676	8.625	2	8.625	8.625		C29.8	8.625	8.625	8.625	8.625	8.625	8.625	579.8	202 0	0.025	8.625			8.625	8.625			8.625		2 675	1070.8
Hole Size (in)	12.250	11.000	12.250	11.000	12.250	11.000	12.250	12.250	12.250	12.250	11 000	12 250	12.250	12.250	11.000	12.250	12.250	12.250	12.250	12.250	057.21	12.250	12.250	12.250	12.250		12.250	12.250	12.250	12.250	11.000	12.250		12.250		12.250	12 250	12.250		12.250	12.250		12.250	12.250	12.250	12.250	12.250	12.250	12.250	057.71	12 250	17 250	12.250			12.250	12.250			11.000		17 250	Inc7'7T
Current Well Name		SAU # 5	CSAU # 504	SAU # 6	SAU # 505		SAU # 506	CSAU # 507	CSAU#4	5AU#9	CSAU#8	CSAU # 13	SAU # 17	SAU # 31	CSAU # 30	SAU # 29	SAU # 48	SAU # 47	SAU # 334	SAU # 46	C5AU # 59	CSAU # 58	SAU # 23	CSAU # 519	CSAU # 22	SAU # 822	CSAU # 21	SAU # 20	SAU # 516	SAU # 20	SAIL# 27	SAU # 518	CSAU # 827	SAU # 26	SAU # 826	SAU # 25	5AU # 52U	SAIL# 535	SAU # 536	SAU # 50	CSAU # 534	SAU # 50R	CCALL# 533	CSAU # 49	SAU # 532	CSAU # 531	CSAU # 56	SAU # 545	SAU # 544	5AU # 558	2AU # 550		SAU # 546	SAU # 560	SAU # 854	CSAU # 53	SAU # 547	24U # 54R	CSAU # 521	SAU # 24	SAU # 824	CSAU # 537	1 1 7c # NYC
	#1)		_						+-	t							+						-																																	‡ 2 0			
Original Well Name	(O "B" Federal	Cato-State # 4	CSAU # 504	o-State # 2	CSAU # 505	Cato-State # 3	CSAU # 506	U # 507	Crosby "B" # 1	Crosby "3" # 1	Crosby B" # 2	ABKO Federal # 3	Oueen # 1	Queen # 3	ABKO Federal # 2	(O Federal #	o, J.E. # 1	kett "C" # 2	vU # 334	sby # 1	sby # 2	Baskett "C" # 1	Baskett "D" # 2	CSAU # 519	kett "D" # 6	CSAU # 822	Baskett "B" # 2	kett # 3	10 # 516	Kett # 2	kett "B" # 1	U # 518	CSAU # 827	Baskett "D" # 1	CSAU # 826	Baskett "D" # 8	U # 520	Nett D #4	U # 536	kett "D" # 5	CSAU # 534	CSAU # 50R	kett # 1	Baskett # 1	CSAU # 532	CSAU # 531	Baskett # 2	U # 545	CSAU # 544	10 # 558	Kett # 4	Vat "D" # 2	NU# 546	CSAU # 560	CSAU # 854	Baskett "D" # 7	CSAU # 547	CSAU # 548	CSAU # 521	Fischer Federal #	\U # 824	CSAU # 537 Fischer Federal #	cher regerant
	ABKO			Cat	CS/	Cat	CS	CS	23				T	T		ABI	Cat	Bas	CS	CL	5		Bas	CS	Bas	CS/	Bas	Bas	100		Bac	CS			1	1	1	┢	t	T		Ť		-	CS	CS	Bas	CS	CS CS	╈	+	╎	╎	╞				Ť	100	Fis	CS/		
Operator	oleum Corp.		Mexico. Inc.		Mexico, Inc.		Mexico, Inc.	Mexico, Inc.	oleum Corp.	eum co.	oleum corp.	oleum Corn	Pan American Petroleum Corp.	oleum Corp.	oleum Corp.	oleum Corp.	eum Co.	oleum Corp.	Corp.	eum Co.	eum co.	oleum Lorp.	oleum Corn.	Mexico, Inc.	oleum Corp.	Mexico, Inc.	oleum Corp.	eum Co.	Mexico, Inc.	Mavico Inc	oleum Corn		Mexico, Inc.	oleum Corp.	Mexico, Inc.	oleum Corp.	Mexico, Inc.	Mexico Inc	Mexico, Inc.	oleum Corp.	Cano Petro of New Mexico, Inc.	Mexico, Inc.	eum Co. Mavico Inc	oleum Corp.	Mexico, Inc.	Mexico, Inc.	oleum Corp.	Mexico, Inc.	Mexico, Inc.	Mexico, Inc.	Mavico Inc	Nexico, IIIC.	Mexico. Inc.	Cano Petro of New Mexico, Inc.	Mexico, Inc.	oleum Corp.	Mexico, Inc.	Mexico, Inc.	Mexico, Inc.	oleum Corp.	Mexico, Inc.	Cano Petro of New Mexico, Inc. Pan American Petroleum Corn	oleum corp.
Original Opera	Pan American Petroleum	MWJ Producing Co	Cano Petro of New Mexic	MWJ Producing Co.	Petro of New	MWJ Producing Co.	Petro of New	Cano Petro of New Mexi	Pan American Petroleum	Union Lexas Petroleum	merican Petro	merican Petro	merican Petro	merican Petro	Pan American Petroleum C	merican Petro	Texas Petrol	merican Petro	Jew Mexico C	Union Texas Petroleum Co.	exas Petrol	Pan American Petroleum Corp.	merican Petro	Cano Petro of New Mexico, Inc	Pan American Petroleum	Cano Petro of New Mexico, Inc	Pan American Petroleum C	Texas Petrol	Petro of New	Conori lexas Petroleumi co.	Pan American Petroleum	Cano Petro of New Mexi	Cano Petro of New Mexi	merican Petro	Petro of New	merican Petro	Petro of New	Petro of New	Petro of New	merican Petro	Petro of New	Petro of New	Patro of New	Pan American Petroleum	Cano Petro of New Mex	Petro of New	Pan American Petroleum Corp.	Petro of New	Cano Petro of New Mexico, Inc.	Terro of New	Capo Detro of New May	marinan Datr	Petro of New	Petro of New	Petro of New	Pan American Petroleum	Cano Petro of New Mexi	Cano Petro of New Mexico, Inc.	Cano Petro of New Mexico, Inc	Pan American Petroleum	Petro of New	Petro of New	merican reux
	$\left + \right $	+		+-				_				1						+			-	+		\vdash	F													T					1		Η.		-		-	1		1					-		Ŧ.	+			-
ю		_	20 FWL		-	1980 FE			1000 FEL			1980 FFI				660 FEL	660 FE		1362 FEL			1980 FEL				1922 FEL		660 FW	20 PWI	12901 FWI	1980 FWI	2490 FWL	2037 FWI					1796 FF	10 FEL			_	1930 FWL		T 7	25 FWI	_	1312 FW					2562 FEL				_	DI FEI	6301 FWI	660 FWL	720 FW	658 FWL	ponllrw
Location		_	I FSL		FSL	_	_	ESL				_						_		ESL -	_	E E		-										P FNL					_		1 FSL		ESI L				0 FSL	ESL	FSL			E E	ESL 1	1	D FSL				_	D FNL	ENL	D FSL	11-1-1-1
	660	1650	20	660	2(660	20	710	1980	660	099	000	660	1980	1980	198(1980	1980	1338	198(660	660	660	1296	660	659	660	660	127	1375	1980	1380	1980	180	1982	1650	1365	7538	2570	1980	257	1980	1980	1980	2545	2603	660	1205	130	1077	13/		1220	120		33(1137	CT1	536	1980	198(1930	
Section Unit	Ψ.	2	2 M	2 N	2 N	2 0	20	5	- c		2 0		1	101	10 6	10 H	10 1	- 2	10 J			10		11 A	11 B	11 B	11 C	11 D		1 1		II II	11 F	11 6	H G	H H	= - :		1	11 1	1				11 L	11 L	11 M	11 1					0 1 1	11 0	11 0		11 11 11		12 0		12 E	12 L	
API Suffix Se	10535	10626	27971	20001	27980	20059	27981	28022	10519	1053/	20013	20173	10501	20170	10483	10473	10484	10578	21166	10538	105/0	10507	10523	27989	20171	29028	20069	10504	2/9/3	CYOLC	10491	27963	29030	10514	29029	20294	10530	27983	2022	10580	27961	29021	7485	10455	27964	27974	10579	27984	27986	10102	10001	10528	27987	28012	29031	20293	27988	+		20012		20009	1 120007
su s			<u> </u>																							Ļ																																1]

ATTACHMENT TO FORM C-108 Cano Petro of New Mexico, Inc. Cato San Andres Unit

	×
_	
۹.	.
-	-
٩.	- 2
	10

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #6

660' FSL, 1980' FWL

Ν 2

8S 30E

CURRENT WELL CONSTRUCTION

11

. 24

427

225

Surface

Circulated

8 5/8

X

Total Depth (ft):

PBTD (ft):

3540

3519

Production Casing
Casing Size (in):

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3519
Amount Cement (sx):	900
Top of Cement (ft):	Surface
TOC Method:	Circulation

PROPOSED WELL CONSTRUCTION

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3271

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations. (3) Well originally completed as a produce \boldsymbol{r}
- and will converted to injection service.
- (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

Perforations

Top (ft):	3371
Bottom (ft):	3507

Production Casing

Hole Size (in):	7 7/8
Casing Size (in);	5 1/2
Casing Weight (ppf):	15.5
Setting Depth (ft):	3537
Amount Cement (sx):	600
Top of Cement (ft):	268
TOC Method:	Calculated

Surface Casing Hole Size (in):

Casing Size (in):

Casing Weight (ppf):

Amount Cement (sx):

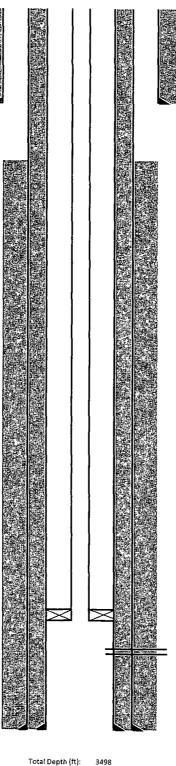
Top of Cement (ft):

TOC Method:

Setting Depth (ft):

Operator: Well Name: Well Location: Calls Unit Section Township Range Cano Petro of New Mexico, Inc. CSAU #7

660' FSL, 660' FWL


M

2

p [.]85 30E

CURRENT WELL CONSTRUCTION

PROPOSED WELL CONSTRUCTION

Casing Size (in):	3 1/2
Casing Weight (ppf);	7.7
Setting Depth (ft):	3476
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3245

<u>Notes</u>

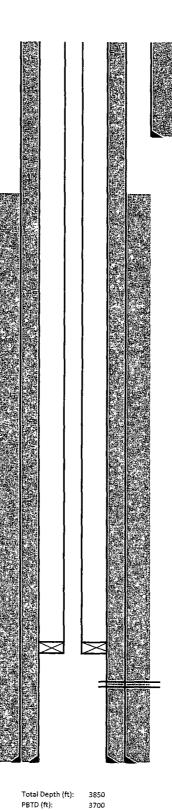
- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service.
- (4) No abandoned perforated intervals.(5) No other known productive intervals in area.

Total Depth (ft): 3498 PBTD (ft): 3476

Hole Size (in):	12 1/4
Casing Size (in):	9 5/8
Casing Weight (ppf):	36
Setting Depth (ft):	412
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

Top (ft):	3345
Bottom (ft):	3462

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3494
Amount Cement (sx):	800
Top of Cement (ft):	179
TOC Method:	Calculated


Operator: Well Name: Well Location: Calls Unit Section Township Range Cano Petro of New Mexico, Inc. CSAU #19

660' FNL, 660' FEL

A 10

8S 30E

PROPOSED WELL CONSTRUCTION

Production Casing

 Casing Size (in):
 3 1/2

 Casing Weight (ppf):
 7.7

 Setting Depth (ft):
 3700

 Amount Cement (sx):
 300

 Top of Cement (ft):
 Surface

 TOC Method:
 Circulation

<u>Tubing</u>

2 1/16
3.25
Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3208

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service. (4) Perforations 3720-55 below CIBP @ 3700'.
- (5) No other known productive intervals in area.

Top (ft):	
Bottom (ft):	

3308 3424

Production Casing

Perforations

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3850
Amount Cement (sx):	800
Top of Cement (ft):	535
TOC Method:	Calculated

CURRENT WELL CONSTRUCTION

Surface Casing

Hole Size (in):	11
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	467
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #20

660' FNL, 660' FWL

D

11 -85 30E

CURRENT WELL CONSTRUCTION

Х

Total Depth (ft):

PBTD (ft):

3650

3605

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3605
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

<u>Packer</u>

Model:	Baker AD-1
Setting Depth (ft):	3349

- (1) Injection interval is San Andres. (2) Injection will be through perforations.
- (3) Well originally completed as a produce:
- and will converted to injection service.
- (4) No abandoned perforated intervals. (5) No other known productive intervals in area.

Per

Bottom (ft):

3368 3449

Production Casing

Hole Size (in):	77/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3636
Amount Cement (sx):	500
Top of Cement (ft):	2200
TOC Method:	T.S.

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	28
Setting Depth (ft):	515
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

forations	

forations	
Top (ft):	
Rottom (ft)	

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #25

1650' FNL, 990' FEL

Н

11

- **8**S 30E

CURRENT WELL CONSTRUCTION

PROPOSED WELL CONSTRUCTION

\times \sim

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3638
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3388

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a produce: and will converted to injection service.
- (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

Total Depth (ft): 3642 PBTD (ft): 3638

Hole Síze (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	320
Amount Cement (sx):	250
Top of Cement (ft):	Surface
TOC Method:	Circulated

Perforations

Top (ft): 3488 Bottom (ft): 3598

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3642
Amount Cement (sx):	350
Top of Cement (ft):	2192
TOC Method:	Calculated

Operator: Well Name: Well Location: Calls Unit Section Township Range Cano Petro of New Mexico, Inc. CSAU #28

1980' FNL, 660' FWL

E

11 `8S

30E

p.

CURRENT WELL CONSTRUCTION

Č. ながあ \times \geq

PROPOSED WELL CONSTRUCTION

Production (Casing
--------------	--------

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3515
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3279

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service. (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

 Total Depth (ft):
 3618

 PBTD (ft):
 3515

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	501
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

Perforations

Top (ft):	3379
Bottom (ft):	3465
	5405

Hole Size (in):	63/4
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3615
Amount Cement (sx):	300
Top of Cement (ft):	2420
TOC Method:	T.S.

Operator: Well Name: Well Location: Calls Unit Section Township Range Cano Petro of New Mexico, Inc. CSAU #29

1980' FNL, 660' FEL

н

10

> [']8S 30F

CURRENT WELL CONSTRUCTION

12 1/4

8 5/8

24

452

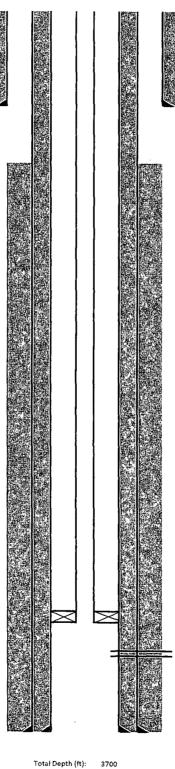
300

Surface

Circulated

Surface Casing Hole Size (in):

Casing Size (in):


Casing Weight (ppf):

Amount Cement (sx):

Top of Cement (ft):

TOC Method:

Setting Depth (ft):

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3470
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

2 1/16
3.25
Seal-tite

<u>Packer</u>

Model:	Baker AD-1
Setting Depth (ft):	3244

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer and will converted to injection service.
- (4) Perforations 3488-3574 squeezed with 100 sx.
- (5) No other known productive intervals in area.

PBTD (ft): 3470

Perforations	
Top (ft):	3344
Bottom (ft):	3444

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3700
Amount Cement (sx):	800
Top of Cement (ft):	385
TOC Method:	Calculated

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #48

1980' FSL, 660' FEL

÷. 10

85

30E

CURRENT WELL CONSTRUCTION

Х

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf);	7.7
Setting Depth (ft):	3575
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

PROPOSED WELL CONSTRUCTION

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3286

- (1) Injection interval is San Andres,
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service.
- (4) No abandoned perforated intervals. (5) No other known productive intervals in area.

Total Depth (ft): 3620 PBTD (ft): 3575

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	512
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

Perforations

Top (ft):	3386
Bottom (ft):	3470

Hole Size (in):	6 3/4
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3614
Amount Cement (sx):	650
Top of Cement (ft):	2010
TOC Method:	T.S.

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #49

1980' FSL, 660' FWL

ι

11 85

30E

CURRENT WELL CONSTRUCTION

	建設			L.
			Į –	L
	統領			
	影響			
				Ł
				1
				ſ
	1 新	1		L
	E BA			1
				ſ
				L
				ł.
				L
	经表			L
新社学				
	1498			
		i		
1000	医线			
				1
5.85.32				Ł
		1		
10.00	1. A. A.			
)
14.12	New Y			
	22.2			
	1 a a a a a a a a a a a a a a a a a a a			
		i		
新教授				
	123		1	
	認知	1		
194				
	武福		l i	
	100			
。調整成				
			i	
	100 A			
	國黨			
	観想			
100 20	時間			
之意通				
2. 2.20.34.1	Per 47			

 \approx

Total Depth (ft):

PBTD (ft):

3561

3551

PROPOSED WELL CONSTRUCTION

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3551
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

<u>Packer</u>

Model:	Baker AD-1
Setting Depth (ft):	3396

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service.
- (4) No abandoned perforated intervals. (5) No other known productive intervals in area.

Perforations

Top (ft):	3496
Bottom (ft):	3536

Production Casing

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3561
Amount Cement (sx):	800
Top of Cement (ft):	246
TOC Method:	Calculated

Surface Casing Hole

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	511
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #52

660' FSL, 660' FWL

м

12

`8S 30E

PROPOSED WELL CONSTRUCTION

黀 \geq

Total Depth (ft):

PBTD (ft):

3714

3588

Production Casing Casing Size (in)

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3588
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3436

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service.
- (4) Perforations 3605-51 squeezed with 150 sx.
- (5) No other known productive intervals in area.

Perforations

Top (ft):	3536
Bottom (ft):	3578

Production Casing

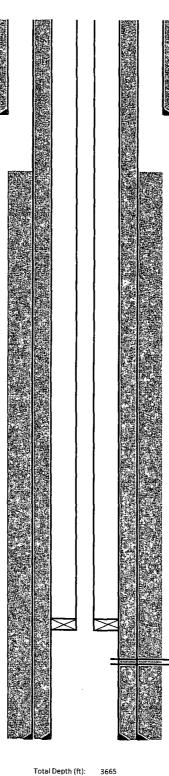
Hole Size (in):	77/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3714
Amount Cement (sx):	800
Top of Cement (ft):	399
TOC Method:	Calculated

CURRENT WELL CONSTRUCTION

Surface Casing Hole Size (in): 12 1/4 8 5/8 Casing Size (in): Casing Weight (ppf): 24 Setting Depth (ft): 483 Amount Cement (sx): 300 Top of Cement (ft): Surface TOC Method: Circulated

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #53


330' FSL, 990' FEL

Ρ

11

`8S 30E

CURRENT WELL CONSTRUCTION

Casing Size (in): 3 1/2 Casing Weight (ppf): 7.7 Setting Depth (ft): 3644 Amount Cement (sx): 300 Top of Cement (ft): Surface TOC Method: Circulation

PROPOSED WELL CONSTRUCTION

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

<u>Packer</u>

Model:	Baker AD-1
Setting Depth (ft):	3420

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service.
- (4) No abandoned perforated intervals. (5) No other known productive intervals in area.

Total Depth (ft): PBTD (ft): 3644

Surface Casing

12 1/4
8 5/8
24
296
250
Surface
Circulated

Perforations

Top (ft): 3520 Bottom (ft): 3634

Hole Size (in):	77/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3665
Amount Cement (sx):	350
Top of Cement (ft):	2215
TOC Method:	Calculated

Operator: Well Name: Well Location: Calls Unit Section Township Range Cano Petro of New Mexico, Inc. CSAU #55

660' FSL, 1980' FWL

N

11 - '8S

30E

CURRENT WELL CONSTRUCTION

 \ge \geq

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3562
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3378

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.(3) Well originally completed as a producer
- and will converted to injection service.
- (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

 Total Depth (ft):
 3600

 PBTD (ft):
 3562

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	28
Setting Depth (ft):	511
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

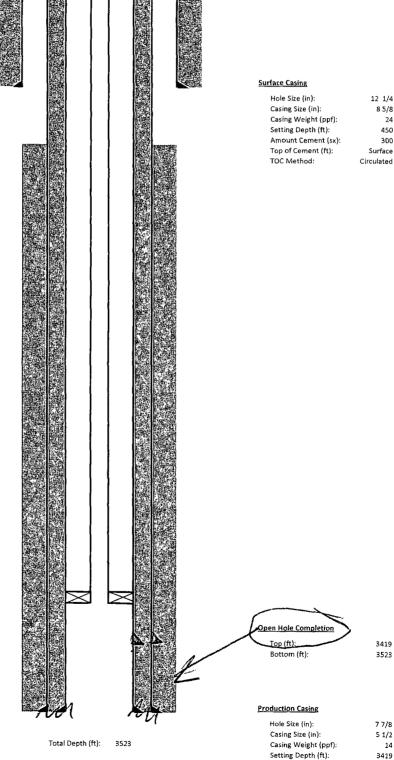
Perforations

Top (ft):	3478
Bottom (ft):	3557

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3596
Amount Cement (sx):	500
Top of Cement (ft):	2141
TOC Method:	T.S.

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #56


660' FSL, 660' FWL

М

11 **8**5

30E

CURRENT WELL CONSTRUCTION

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3523
Amount Cement (sx):	1000
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	, 3319
Bertorations	
Top (ft): 🔍	3419
Bottom (ft):	3523

Notes

- (1) Injection interval is San Andres.
- (2) Injection will be through perform (3) Well originally completed as a producer
- and will converted to injection service.
- (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

lole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
etting Depth (ft):	450
Amount Cement (sx):	300
op of Cement (ft):	Surface
OC Method:	Circulated

Amount Cement (sx):

Top of Cement (ft):

TOC Method:

800

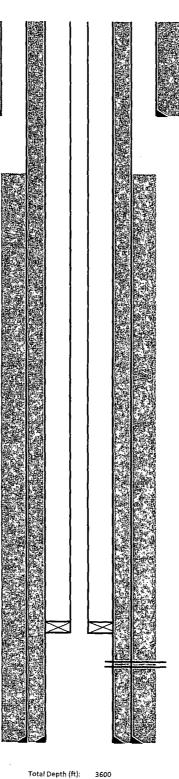
Surface

Calculated

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #57

660' FSL, 660' FEL


P 10

85 30E

10 85

CURRENT WELL CONSTRUCTION

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3563
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

<u>Packer</u>

Model:	Baker AD-1
Setting Depth (ft):	3309

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service.
- (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

PBTD (ft): 3563

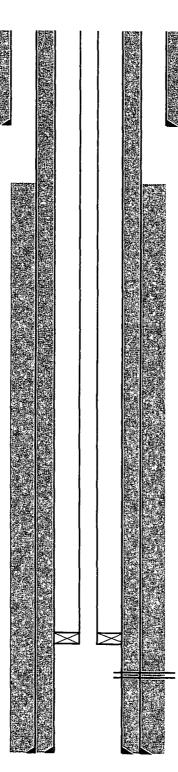
Surface Casing	
Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	28
Setting Depth (ft):	507
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

Perforations

Top (ft):	3409
Bottom (ft):	3482

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3596
Amount Cement (sx):	500
Top of Cement (ft):	1900
TOC Method:	T.S.

Operator: Well Name: Well Location: Calls Unit Section Township Range Cano Petro of New Mexico, Inc. CSAU #77


660' FNL, 660' FEL

A

15

. 85 30E

CURRENT WELL CONSTRUCTION

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3530
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3314

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.(3) Well originally completed as a producer
- and will converted to injection service.
- (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

Total Depth (ft): 3560 PBTD (ft): 3530

Surface Casing	
Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	460
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Calculated

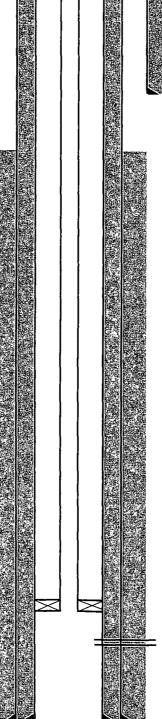
Perforations

Top (ft):	3414
Bottom (ft):	3524

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3560
Amount Cement (sx):	800
Top of Cement (ft):	245
TOC Method:	Calculated

Operator: Well Name: Well Location: Calls Unit Section Township Range Cano Petro of New Mexico, Inc. CSAU #80

660' FNL, 1980' FEL


В

14

[.]85

30E

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3649
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3394

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a produce:
- and will converted to injection service. (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

CURRENT WELL CONSTRUCTION

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	253
Amount Cement (sx):	250
Top of Cement (ft):	Surface
TOC Method:	Circulated

Perforations

Top (ft):	3494
Bottom (ft):	3612

Production Casing

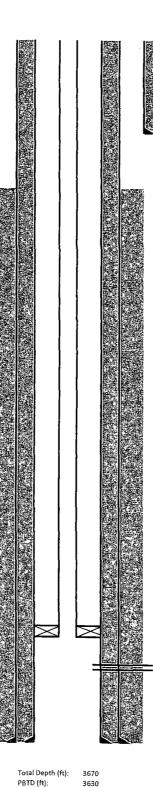
Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3670
Amount Cement (sx):	300
Top of Cement (ft):	2427
TOC Method:	Calculated

we we

Total Depth (ft): 3670 PBTD (ft): 3649

Operator: Well Name: Well Location: Calls Unit Section Township Range Cano Petro of New Mexico, Inc. CSAU #82

330' FNL, 330' FWL


D

13 85

, 63 30E

t –

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3630
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-).
Setting Depth (ft):	3444

Perforations

 Top (ft):
 3544

 Bottom (ft):
 3614

CURRENT WELL CONSTRUCTION

12 1/2

8 5/8

24

432

200

Surface Circulated

<u>Surface Casing</u> Hole Size (in):

Casing Size (in):

Casing Weight (ppf):

Amount Cement (sx):

Setting Depth (ft):

Top of Cement (ft): TOC Method:

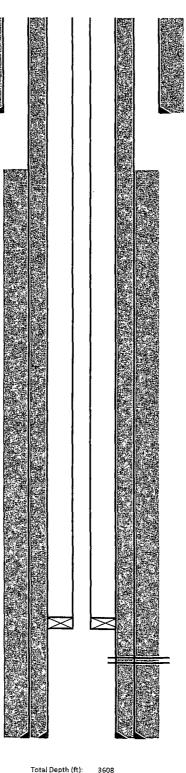
7 7/8
4 1/2
9.5
3667
600
1181
Calculated

Notes	
-------	--

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service. (4) Perforations 3544-3620 squeezed with 150 sx
- and subsequently reperforated. (5) No other known productive intervals in area.

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #83


1980' FNL, 660' FWL

Е

13 85 30E

CURRENT WELL CONSTRUCTION

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3589
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

<u>Packer</u>

	D-1. ND 1
Model:	Baker AD-1
Setting Depth (ft):	3438

Notes

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service. (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

Total Depth (ft): PBTD (ft): 3589

Surface Casing Hole Casi Casi Sett

Hole Size (in):	12 1/2
Casing Size (in):	8 5/8
Casing Weight (ppf):	20
Setting Depth (ft):	332
Amount Cement (sx):	200
Top of Cement (ft):	Surface
TOC Method:	Calculated

Perforations

Top (ft):	3538
Bottom (ft):	3572

Hole Size (in):	77/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3608
Amount Cement (sx):	200
Top of Cement (ft):	2779
TOC Method:	Calculated

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #84

1980' FNL, 660' FEL

Н

14 `85

30E

CURRENT WELL CONSTRUCTION

 \sim \sim

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3655
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

<u>Packer</u>

Model:	Baker AD-1
Setting Depth (ft):	3411

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service. (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.
- Total Depth (ft): 3674 PBTD (ft): 3655

Perforations

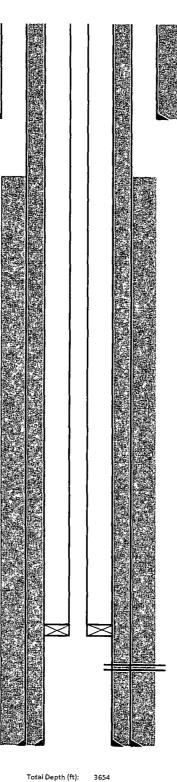
Top (ft):	3511
Bottom (ft):	3560

Production Casing

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3674
Amount Cement (sx):	300
Top of Cement (ft):	2431
TOC Method:	Calculated

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	20
Setting Depth (ft):	286
Amount Cement (sx):	250
Top of Cement (ft):	Surface
TOC Method:	Circulated


Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #85

1980' FNL, 1980' FEL

G 14 85 30E

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3542
Amount Cement (sx):	350
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3374

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer and will converted to injection service.
- (4) Perforations 3553-3601 squeezed with 258 sx.
- (5) No other known productive intervals in area.

Total Depth (ft): PBTD (ft): 3542

Perforations

Top (ft):	3474
Bottom (ft):	3520

Production Casing

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3654
Amount Cement (sx):	800
Top of Cement (ft):	339
TOC Method:	Calculated

CURRENT WELL CONSTRUCTION

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	454
Amount Cement (sx);	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

Operator: Well Name: Well Location: Calls Unit Section Township Range Cano Petro of New Mexico, Inc. CSAU #86

1980' FNL, 1980' FWL

F

14 0 85

30E

CURRENT WELL CONSTRUCTION

12 1/4

8 5/8

24

254

250

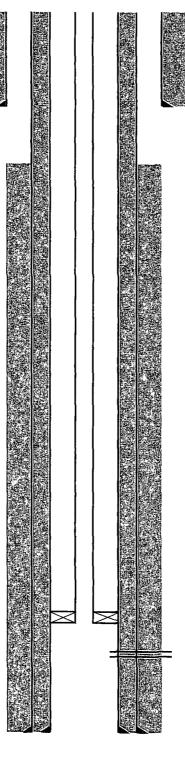
Surface

Circulated

Surface Casing Hole Size (in):

Casing Size (in):

Casing Weight (ppf):


Amount Cement (sx):

Top of Cement (ft):

TOC Method:

Setting Depth (ft):

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3590
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulatior

<u>Tubing</u>

Tubing Size (in):	2 1/1€
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

<u>Packer</u>

Model:	Baker AD-1
Setting Depth (ft):	3344

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer and will converted to injection service.
- (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

Total Depth (ft): 3650 PBTD (ft): 3590 <u>Perforations</u>

Top (ft):	3444
Bottom (ft):	3490

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3610
Amount Cement (sx):	300
Top of Cement (ft):	2367
TOC Method:	Calculated

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #87

1980' FNL, 660' FWL

Ε

30E

14 **´**8S

PROPOSED WELL CONSTRUCTION

 \sim

Total Depth (ft):

PBTD (ft):

3750

3645

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3645
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3331

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service. (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

CURRENT WELL CONSTRUCTION

Surface Casing

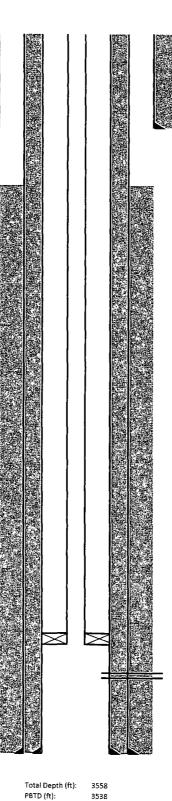
Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	456
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

Perforations

Top (ft):	3431
Bottom (ft):	3555

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3750
Amount Cement (sx):	800
Top of Cement (ft):	435
TOC Method:	Calculated

Operator: Well Name: Well Location: Calls Unit Section Township Range Cano Petro of New Mexico, Inc. CSAU #88


1980' FNL, 660' FEL

H 15

15 '85

30E

PROPOSED WELL CONSTRUCTION

Production Casing
Casing Size (in):

Casing Weight (ppf): 7.7 Setting Depth (ft): 3538 Amount Cement (sx): 300 Top of Cement (ft): Surface TOC Method: Circulation

3 1/2

<u>Tubing</u>

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

<u>Packer</u>

Model:	Baker AD-1
Setting Depth (ft):	3306

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service. (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

Perforations

Top (ft):	3406
Bottom (ft):	3515

Production Casing

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3558
Amount Cement (sx):	300
Top of Cement (ft):	2315
TOC Method:	Calculated

CURRENT WELL CONSTRUCTION

Surface Casing

Hole Size (in):	11 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	270
Amount Cement (sx):	250
Top of Cement (ft):	Surface
TOC Method:	Calculated

Operator: Well Name: Well Location: Calls Unit Section Township Range Cano Petro of New Mexico, Inc. CSAU #109

1980' FSL, 660' FEL

1

15

85 30E

CURRENT WELL CONSTRUCTION

 \times

Total Depth (ft):

PBTD (ft):

3700

3666

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3666
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3325

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service. (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

Perforations

Top (ft):	3425
Bottom (ft):	3515

Production Casing

Hole Size (in):	63/4
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3695
Amount Cement (sx):	350
Top of Cement (ft):	2200
TOC Method:	T.S.

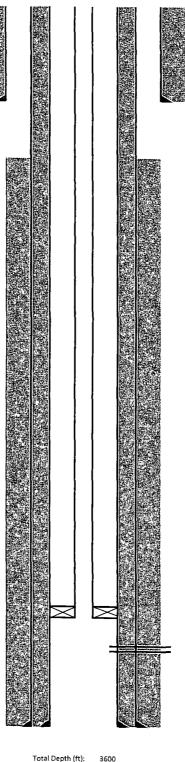
Surface Casing

Hole Size (in):	11
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	452
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

Operator: Well Name: Well Location: Calls Unit Section Township

Cano Petro of New Mexico, Inc. CSAU #110

1980' FSL, 660' FWL


L

14 . 85 30E

Range

CURRENT WELL CONSTRUCTION

PROPOSED	WELL	CONST	RUCTI	DN

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	357€
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

<u>Packer</u>

Model:	Baker AD-1
Setting Depth (ft):	3500

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service.
- (4) No abandoned perforated intervals. (5) No other known productive intervals in area.
- Total Depth (ft): PBTD (ft): 3576

Surface Casing

Hole Size (in):	11
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	450
Amount Cement (sx);	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

Perforations

Top (ft):	3436
Bottom (ft):	3559

Hole Size (in):	77/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3600
Amount Cement (sx):	800
Top of Cement (ft):	285
TOC Method:	Calculated

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #111

1980' FSL, 1980' FWL

K

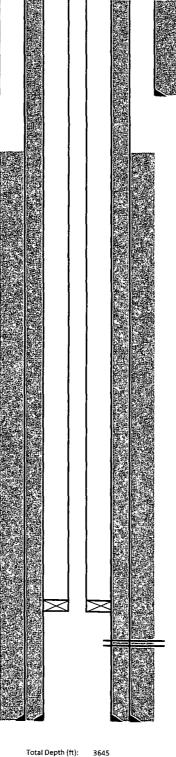
14 *`*8S

30E

CURRENT WELL CONSTRUCTION

12 1/4

8 5/8


24

295

260

Surface

Circulated

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3625
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

PROPOSED WELL CONSTRUCTION

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3377

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service. (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

Total Depth (ft): PBTD (ft): 3625 **Perforations**

Top (ft):	3477
Bottom (ft):	3518

Production Casing

Hole Size (in):	77/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3645
Amount Cement (sx):	300
Top of Cement (ft):	2402
TOC Method:	Calculated

Surface Casing Hole Size (in):

Casing Size (in):

Casing Weight (ppf):

Amount Cement (sx):

Setting Depth (ft):

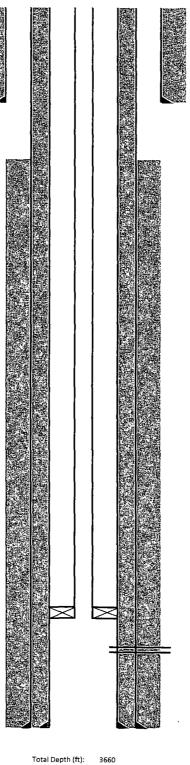
Top of Cement (ft):

TOC Method:

Operator: Well Name: Well Location: Calls Unit Section

Cano Petro of New Mexico, Inc. CSAU #112

1980' FSL, 1980' FEL


Township Range

1

14 85

30E

CURRENT WELL CONSTRUCTION

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3570
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3397

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a produce-
- and will converted to injection service.
- (4) Perforations 3580-3628 squeezed with 150 sx.
- (5) No other known productive intervals in area.

Total Depth (ft): PBTD (ft): 3570

Surface Casing

Hole Size (in):	11
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	470
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

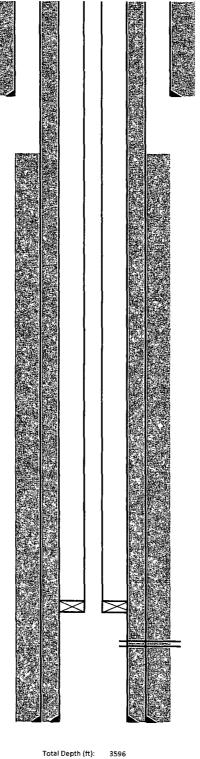
Perforations

Top (ft):	3497
Bottom (ft):	3544

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3660
Amount Cement (sx):	800
Top of Cement (ft):	345
TOC Method:	Calculated

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #113


1980' FSL, 660' FEL

1 14

85

30E

CURRENT WELL CONSTRUCTION

Surface Casing Hole Size (in):

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	295
Amount Cement (sx):	250
Top of Cement (ft):	Surface
TOC Method:	Circulated

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3591
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

PROPOSED WELL CONSTRUCTION

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Baker AD-1
3424

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service.
- (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

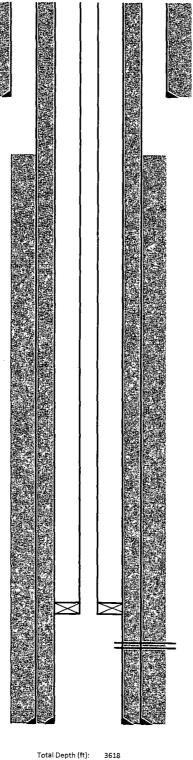
Total Depth (ft): PBTD (ft): 3591

Perforations

Top (ft):	3524
Bottom (ft):	3580

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3596
Amount Cement (sx):	300
Top of Cement (ft):	2353
TOC Method:	Calculated

Operator: Well Name: Well Location: Calls Unit Section Township Range Cano Petro of New Mexico, Inc. CSAU #114


660' FSL, 660' FEL

Р 14

85

30E

CURRENT WELL CONSTRUCTION

Production Casing Casing Size (in):

Casing Weight (ppf):

Amount Cement (sx): Top of Cement (ft):

Setting Depth (ft):

TOC Method:

Tubing Size (in):

Tubing Weight (ppf):

Setting Depth (ft):

Tubing

Packer Model:

Lining:

3 1/2

3614

300 Surface

Circulation

2 1/16

Seal-tite

Baker AD-1

3455

3.25

7.7

- <u>Notes</u>
- Injection interval is San Andres.
 Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service.

PROPOSED WELL CONSTRUCTION

- (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

PBTD (ft): 3614

Surface Casing

Hole Size (in):	11
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	290
Amount Cement (sx):	250
Top of Cement (ft):	Surface
TOC Method:	Circulated

Perforations

Top (ft): 3555 Bottom (ft): 3600

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3618
Amount Cement (sx):	350
Top of Cement (ft):	2168
TOC Method:	Calculated

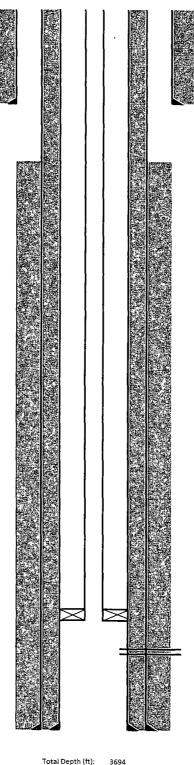
Operator: Well Name: Well Location: Calls Unit Section Township Range Cano Petro of New Mexico, Inc. CSAU #115

660' FSL, 1980' FEL

0

30E

14 85


CURRENT WELL CONSTRUCTION

.

Surface Casing

12 1/4
8 5/8
24
284
250
Surface
Circulated

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3621
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3431

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer
- and will converted to injection service.
- (4) No abandoned perforated intervals.(5) No other known productive intervals in area.

 Total Depth (ft):
 3694

 PBTD (ft):
 3621

Perforations

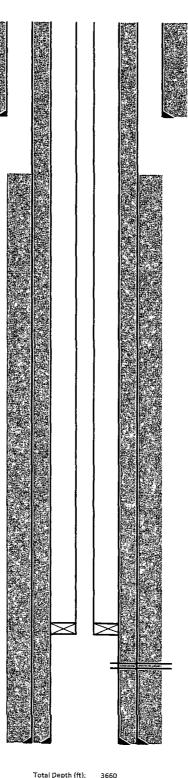
Top (ft):	3531
Bottom (ft):	3571

Hole Size (in):	77/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3694
Amount Cement (sx):	300
Top of Cement (ft):	2451
TOC Method:	Calculated

14

85

30E


Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #116

660' FSL, 1980' FWL

Ν

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3635
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

<u>- ucuur</u>	
Model:	Baker AD-1
Setting Depth (ft):	3472

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as a producer and will converted to injection service.
- (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

Total Depth (ft): PBTD (ft): 3635

Surface Casing	
Hole Size (in):	11
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	460
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

Perforations

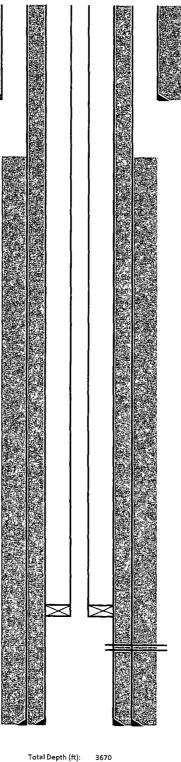
Top (ft):	3572
Bottom (ft):	3619

Production Casing

Hole Size (in):	77/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3660
Amount Cement (sx):	800
Top of Cement (ft):	345
TOC Method:	Calculated

CURRENT WELL CONSTRUCTION

Operator: Well Name: Well Location: Calls Unit Section Township Range


Cano Petro of New Mexico, Inc. CSAU #117

660' FSL, 660' FWL

м

14 85 30E

CURRENT WELL CONSTRUCTION

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3642
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

<u>Packer</u>

Model:	Baker AD-1
Setting Depth (ft):	3403

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations. (3) Well originally completed as a produce:
- and will converted to injection service.
- (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

Total Depth (ft): PBTD (ft): 3642

Surface Casing

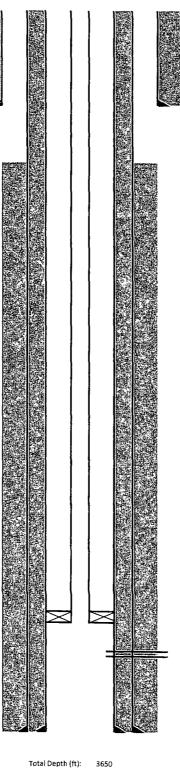
Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	285
Amount Cement (sx):	250
Top of Cement (ft):	Surface
TOC Method:	Calculated

Perforations

Top (ft):	3503
Bottom (ft):	3604

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3670
Amount Cement (sx):	300
Top of Cement (ft):	2427
TOC Method:	Calculated

Operator: Well Name: Well Location: Calls Unit Section Township Range


Cano Petro of New Mexico, Inc. CSAU #118

660' FSL, 660' FEL

Ρ

15 **8**5

30E

PROPOSED WELL CONSTRUCTION

Production Casing

Casing Size (in):	3 1/2
Casing Weight (ppf):	7.7
Setting Depth (ft):	3611
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulation

Tubing

Tubing Size (in):	2 1/16
Tubing Weight (ppf):	3.25
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3372

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations. (3) Well originally completed as a producer
- and will converted to injection service.
- (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

Total Depth (ft): PBTD (ft): 3611

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	457
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

Perforations

Top (ft):	3472
Bottom (ft):	3564

Production Casing

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3650
Amount Cement (sx):	350
Top of Cement (ft):	2300
TOC Method:	T .S.

CURRENT WELL CONSTRUCTION

ATTACHMENT TO FORM C-108 Cano Petro of New Mexico, Inc. Cato San Andres Unit

WELLBORE SCHEMATICS

PROPOSED INJECTION WELLS WELLS TO BE DRILLED AS INJECTION WELLS

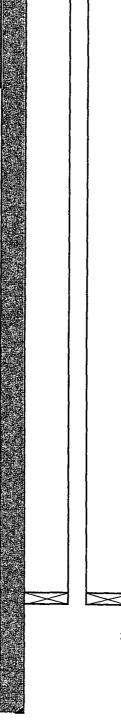
85

30E

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #50R

1980' FSL, 1922' FEL


ı 11

PROPOSED WELL CONSTRUCTION

Surface Casing

•

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	500
Amount Cement (sx):	350
Top of Cement (ft):	Surface
TOC Method:	Circulated

Total Depth (ft): 4000

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as an injector.
- (4) No abandoned perforated intervals. (5) No other known productive intervals in area.

<u>Tubing</u>

Tubing Size (in):	
Tubing Weight (ppf):	
Lining:	

Packer

Model: Baker AD-1 Setting Depth (ft): 3200 **Perforations** Top (ft): 3300 Bottom (ft): 3950 🖊

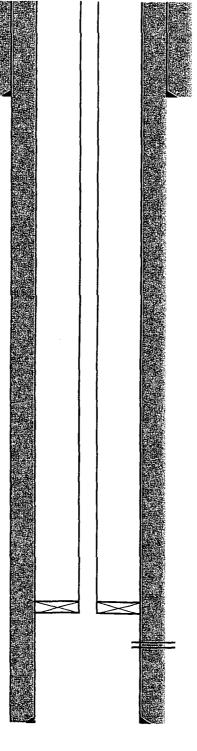
2 3/8 4.7 Seal-tite

Production Casing

Hole Size (in):	7 7/8
Casing Size (in):	5 1/2
Casing Weight (ppf);	17
Setting Depth (ft):	4000
Amount Cement (sx):	1150
Top of Cement (ft):	0
TOC Method:	Circulated

CURRENT WELL CONSTRUCTION

Operator: Well Name: Well Location: Calls Unit Section Township Range


Cano Petro of New Mexico, Inc. CSAU #507

710' FSL, 1980' FEL

0 72

85 30E

CURRENT WELL CONSTRUCTION

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	515
Amount Cement (sx):	350
Top of Cement (ft):	Surface
TOC Method:	Circulated

Tubing

.

Tubing Size (in): 2 3/8 Tubing Weight (ppf): 4.7 Lining: Seal-tite

PROPOSED WELL CONSTRUCTION

<u>Packer</u>

Model: Baker AD-1 Setting Depth (ft):

3342

Notes

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as an injector.
- (4) No abandoned perforated intervals. (5) No other known productive intervals in area.

Total Depth (ft): 3956

Perforations

Top (ft):	3442
Bottom (ft):	3598

Hole Size (in):	7 7/8
Casing Size (in):	5 1/2
Casing Weight (ppf):	15.5
Setting Depth (ft):	3956
Amount Cement (sx):	1150
Top of Cement (ft):	660
TOC Method:	CBL

Operator: Well Name: Well Location: Calls Unit Section Township

Range

Cano Petro of New Mexico, Inc. CSAU #521

536' FNL, 630' FWL

D

17 8S

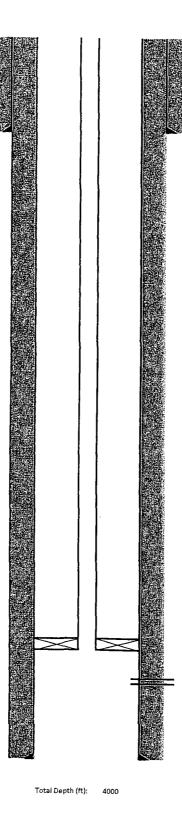
30E

PROPOSED WELL CONSTRUCTION

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	500
Amount Cement (sx):	350
Top of Cement (ft):	Surface
TOC Method:	Circulated

Tubing	


Tubing Size (in):	2 3/8
Tubing Weight (ppf):	4.7
Lining:	Seal-tite

<u>Packer</u>

Model:	Baker AD-1
Setting Depth (ft):	3200
Perforations	
Top (ft):	3300
Bottom (ft):	3950

Production Casing

Hole Size (in):	7 7/8
Casing Size (in):	5 1/2
Casing Weight (ppf):	17
Setting Depth (ft);	4000
Amount Cement (sx):	1150
Top of Cement (ft):	0
TOC Method:	Circulated

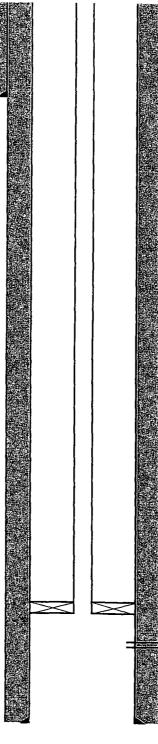
CURRENT WELL CONSTRUCTION

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as an injector.
- (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #533


1980' FSL, 1930' FWL

к []11 85

30E

PROPOSED WELL CONSTRUCTION

•

Total Depth (ft): 4005

Tubing

Tubing Size (in):	2 3/8
Tubing Weight (ppf):	4.7
Lining:	Seal-tite

Packer

Model: Setting Depth (ft):

Baker AD-1 3514

<u>Notes</u>

- Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as an injector.(4) No abandoned perforated intervals.
- (5) No other known productive intervals in a rea.

CURRENT WELL CONSTRUCTION

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	525
Amount Cement (sx):	350
Top of Cement (ft):	Surface
TOC Method:	Circulated

Perforations

Top (ft):	3614
Bottom (ft):	3877

Hole Size (in):	7 7/8
Casing Size (in):	5 1/2
Casing Weight (ppf):	17
Setting Depth (ft):	4005
Amount Cement (sx):	1450
Top of Cement (ft):	225
TOC Method:	CBL

Operator: . Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #537

1930' FSL, 658' FWL

L

12 85

30E

PROPOSED WELL CONSTRUCTION

Surface Casing

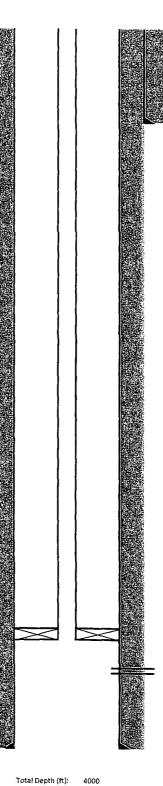
•

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	500
Amount Cement (sx):	350
Top of Cement (ft):	Surface
TOC Method:	Circulated

Tubing

Tubing Size (in):	2 3/8
Tubing Weight (ppf):	4.7
Lining:	Seal-tite

<u>Packer</u>


Model:	Baker AD-1
Setting Depth (ft):	3200

<u>Perforations</u>

Top (ft):	3300
Bottom (ft):	3950

Production Casing

Hole Size (in):	7 7/8
Casing Size (in):	5 1/2
Casing Weight (ppf):	17
Setting Depth (ft):	4000
Amount Cement (sx):	1150
Top of Cement (ft):	0
TOC Method:	Circulated

CURRENT WELL CONSTRUCTION

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as an injector. (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

В

-11

85

Operator: Well Name; Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #822

659' FNL, 1922' FEL

PROPOSED WELL CONSTRUCTION

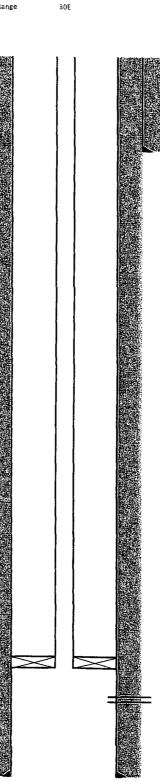
Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	500
Amount Cement (sx):	350
Top of Cement (ft):	Surface
TOC Method:	Circulated

Tubing Size (in): Tubing Weight (ppf):
Lining:
Packer

Tubing

Model:	Baker AD-1
Setting Depth (ft):	3200
Perforations	
Top (ft):	3300
Bottom (ft):	3950


2 3/8

4.7 Seal-tite

Bottom (ft):

Production Casing

Hole Size (in):	7 7 /0
	7 7/8
Casing Size (in):	5 1/2
Casing Weight (ppf):	17
Setting Depth (ft):	4000
Amount Cement (sx):	1150
Top of Cement (ft):	0
TOC Method:	Circulated

Total Depth (ft): 4000

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as an injector. (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

CURRENT WELL CONSTRUCTION

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #824

1980' FNL, 720' FWL

E 1:2 85

30E

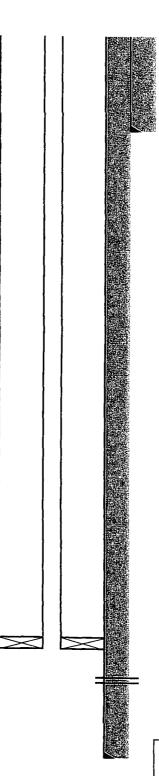
PROPOSED WELL CONSTRUCTION

Surface Casing

.

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	500
Amount Cement (sx):	350
Top of Cement (ft):	Surface
TOC Method:	Circulated

Tubing


Tubing Size (in):	2 3/8
Tubing Weight (ppf):	4.7
Lining:	Seal-tite

Packer

Modei:	Baker AD-1
Setting Depth (ft):	3200
Perforations	
Top (ft):	3300
Bottom (ft):	3950

Production Casing

Hole Size (in):	7 7/8
Casing Size (in):	5 1/2
Casing Weight (ppf):	17
Setting Depth (ft):	4000
Amount Cement (sx):	1150
Top of Cement (ft):	0
TOC Method:	Circulated

Total Depth (ft): 4000

<u>Notes</u>

- Injection interval is San Andres.
 Injection will be through perforations.
 Well originally completed as an injector.
 No abandoned perforated intervals.
 No other known productive intervals in area.

CURRENT WELL CONSTRUCTION

G

11

Operator: Well Name: Well Location: Calls Unit Section Township

Range

Cano Petro of New Mexico, Inc. CSAU #826

1982' FNL, 1954' FEL

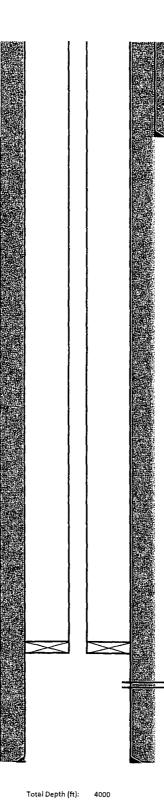
85 30E

PROPOSED WELL CONSTRUCTION

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	500
Amount Cement (sx):	350
Top of Cement (ft):	Surface
TOC Method:	Circulated

Tubing
Tubing Size (in):


Tubing Size (in):	2 3/8
Tubing Weight (ppf):	4.7
Lining:	Seal-tite

<u>Packer</u>

Model:	Baker AD-1
Setting Depth (ft):	3200
Perforations	
Top (ft):	3300
Bottom (ft):	3950

Production Casing

Hole Size (in):	7 7/8
Casing Size (in):	5 1/2
Casing Weight (ppf):	17
Setting Depth (ft):	4000
Amount Cement (sx):	1150
Top of Cement (ft):	0
TOC Method:	Circulated

CURRENT WELL CONSTRUCTION

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as an injector.
- (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

-11

85

30E

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #827

1980' FNL, 2037' FWL F

PROPOSED WELL CONSTRUCTION

Surface Casing

Tubing

<u>Packer</u> Model:

Perforations

.

Top (ft):

Bottom (ft):

Production Casing

Hole Size (in):

Casing Size (in):

TOC Method:

Casing Weight (ppf):

Amount Cement (sx):

Setting Depth (ft):

Lining:

Tubing Size (in):

Setting Depth (ft):

Tubing Weight (ppf):

.

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	500
Amount Cement (sx):	350
Top of Cement (ft):	Surface
TOC Method:	Circulated

Т	otal Depth (ft): 4000	

CURRENT WELL CONSTRUCTION

_

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as an injector.
- (4) No abandoned perforated intervals. (5) No other known productive intervals in area.

Top of Cement (ft): Circulated

2 3/8

Seal-tite

Baker AD-1

3200

3300

3950

7 7/8

5 1/2

4000

1150

0

17

4.7

Operator: Well Name: Well Location: Calls Unit Section Township Range

Cano Petro of New Mexico, Inc. CSAU #854

660' FSL, 1924' FEL

0 :11

85 30E

PROPOSED WELL CONSTRUCTION

Surface Casing

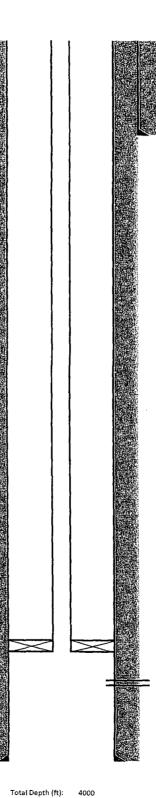
,

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	500
Amount Cement (sx);	350
Top of Cement (ft):	Surface
TOC Method:	Circulated

Tubing

Tubing Size (in):	2 3/8
Tubing Weight (ppf):	4.7
Lining:	Seal-tite

<u>Packer</u>


Model:	Baker AD-1
Setting Depth (ft):	3200

Perforations

Top (ft):	3300
Bottom (ft):	3950

Production Casing

77/8
5 1/2
17
4000
1150
0
Circulated

CURRENT WELL CONSTRUCTION

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as an injector. (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

14 85

30E

Operator: Well Name: Well Location: Calls Unit Section Township Range

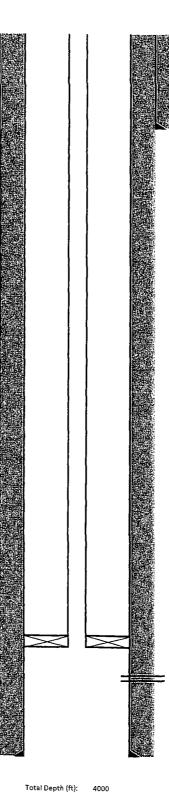
Cano Petro of New Mexico, Inc. CSAU #878

658' FNL, 659' FWL D

PROPOSED WELL CONSTRUCTION

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	500
Amount Cement (sx):	350
Top of Cement (ft):	Surface
TOC Method:	Circulated


Tubing Size (in):	2 3/8
Tubing Weight (ppf):	4.7
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3200
Perforations	
Top (ft):	3300
Bottom (ft):	3950

Production Casing

Hole Size (in):
Casing Size (in):
Casing Weight (ppf):
Setting Depth (ft):
Amount Cement (sx):
Top of Cement (ft):
TOC Method:

CURRENT WELL CONSTRUCTION

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as an injector.
- (4) No abandoned perforated intervals. (5) No other known productive intervals in area.

1150 0 Circulated

7 7/8

. 5 1/2

17

4000

Operator:
Well Name:
Well Location:
Calls
Unit
Section
Township
Range

Cano Petro of New Mexico, Inc. CSAU #879

660' FNL, 2040' FWL

85

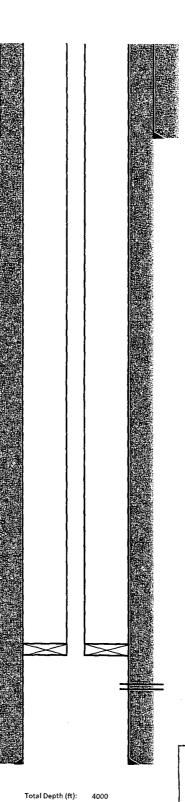
14 30E

с

PROPOSED WELL CONSTRUCTION

Surface Casing

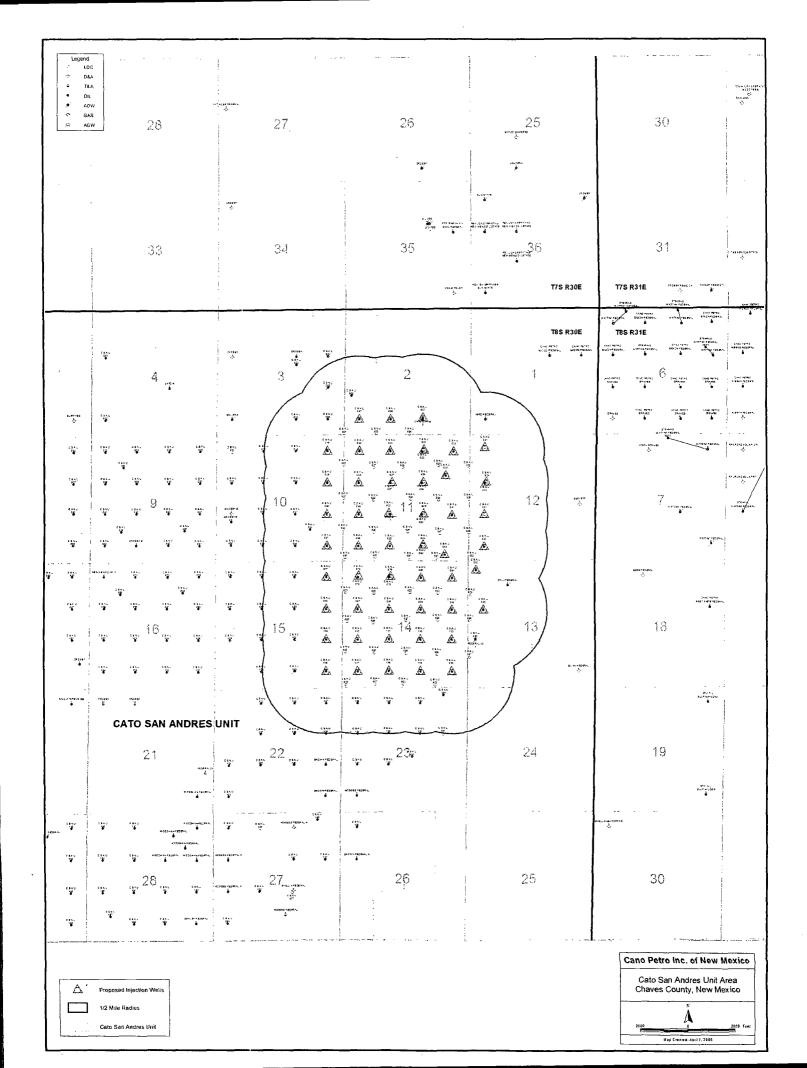
12 1/4
8 5/8
24
500
350
Surface
Circulated


Tubing Size (in):	2 3/8
Tubing Weight (ppf):	4.7
Lining:	Seal-tite

Packer

Model:	Baker AD-1
Setting Depth (ft):	3200
Perforations	
Top (ft):	3300
Bottom (ft):	3950

Production Casing


Hole Size (in):	77/8
Casing Size (in):	5 1/2
Casing Weight (ppf):	17
Setting Depth (ft):	4000
Amount Cement (sx):	1150
Top of Cement (ft):	0
TOC Method:	Circulated

<u>Notes</u>

- (1) Injection interval is San Andres.
- (2) Injection will be through perforations.
- (3) Well originally completed as an injector.
- (4) No abandoned perforated intervals.
- (5) No other known productive intervals in area.

CURRENT WELL CONSTRUCTION

ATTACHMENT TO FORM C-108 Cano Petro of New Mexico, Inc. Cato San Andres Unit

t

WELLBORE SCHEMATICS

۰,

PLUGGED WELLS IN AREA OF REVIEW

Operator:	Pan Ameri
Well Name:	АВКО "В"
Well Location:	
Calls	660' FSL, 6
Unit	м
Section	1
Township	. 85
Range	30E

rican Petroleum Corp. ' Federal # 1

660' FWL

Total Depth (ft): 3662

ORIGINAL WELL CONSTRUCTION

61.5

Casin Casin Setti

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	457
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

25 sx plug @ 1357'

٠

.

shot and pulled 4 1/2" casing @ 1357'

PLUGGING DETAILS

10 sx cmt plug @ surface

cmt plug 400' - 500'

cmt plug 3330' - 3550'

CICR @ 3555' squeezed w/ 150 sx capped w/ 5' cmt

Perforations Top (ft):

Top (ft): Bottom (ft):	3468 3536
Top (ft):	3569
Bottom (ft):	3614

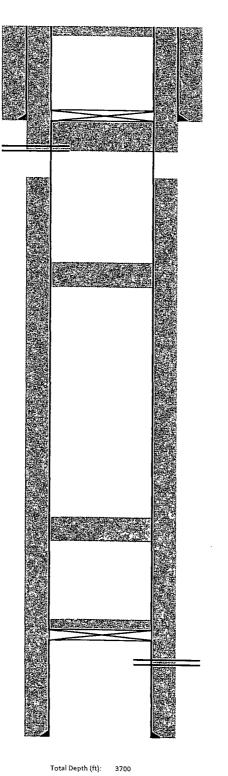
Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3662
Amount Cement (sx):	800
Top of Cement (ft):	Unknown
TOC Method:	

Operator:	Union Texas Petroleum Corp.
Well Name:	Baskett # 1
Well Location:	
Calls	1980' FSL, 1980' FWL
Unit	К
Section	11
Township	.,85
Range	30E

PLUG DETAILS

10 sx cmt plug at surface

•


*

CICR @ 505' perforations @ 509' cmt circulated to surface

cmt plug 1050' - 1150'

cmt plug 2350' - 2450'

CIBP @ 3400' capped w/ 35' cmt

ORIGINAL WELL CONSTRUCTION

Setti Amou

Surface Casing

Hole Size (in):

8 5/8
24
510
300
Surface
Circulated

12 1/4

Perforations

Top (ft): Bottom (ft):

Production Casing

Hole Size (in);	63/4
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3700
Amount Cement (sx):	400
Top of Cement (ft):	2330
TOC Method:	T.S.

3469

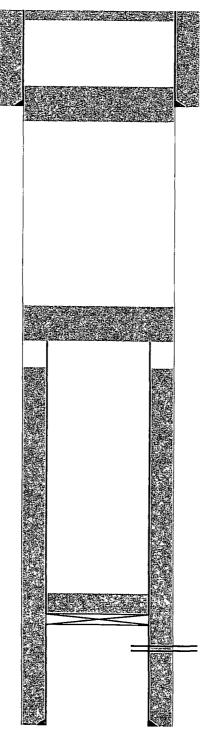
3548

Operator:	MWJ Producing Co.
Well Name:	Cato-State # 3
Well Location:	
Calls	660' FSL, 1980' FEL
Unit	0
Section	2
Township	85
Range	30E

PLUGGING DETAILS

10 sx cmt plug @ surface

.


.

80 sx cmt plug @ 471'

100 sx plug @ 1998'

shot and pulled 5 1/2" casing @ 1998'

CIBP @ 3360' capped w/ 35' cmt.

ORIGINAL WELL CONSTRUCTION

11

Circulated

Surface Casing Hole Size (in):

Casing Size (in): Casing Welght (ppf): Setting Depth (ft): Amount Cement (sx): Top of Cement (ft):

TOC Method:

Perforations

Top (ft): Bottom (ft):

Production Casing

Hole Size (in):	7 7/8
Casing Size (in):	5 1/2
Casing Weight (ppf):	15.5
Setting Depth (ft):	3588
Amount Cement (sx):	600
Top of Cement (ft):	Unknown
TOC Method:	

Total Depth (ft): 3589

3412

3532

Southwest Production Corp. Coll Federal # 2
988' FNL, 1656' FWL
с
13
85
30E

PLUGGING DETAILS

10 sx cmt plug @ surface

25 sx cmt plug @ 727'

25 sx cmt plug @ 1100'

.

.

ORIGINAL WELL CONSTRUCTION

Surface Casing

Hole Size (in):	9 7/8
Casing Size (in):	7
Casing Weight (ppf):	23
Setting Depth (ft):	727
Amount Cement (sx):	200
Top of Cement (ft):	Surface
TOC Method:	Circulated

cmt plug 1650' - 1750'

100 sx cmt plug @ 2400'

shot and pulled 4 1/2" casing @ 2400'

cmt plug 3550' - 3573'

Total Depth (ft): 3610

Production Casing		
Hole Size (in):	6 1/4	
Casing Size (in):	4 1/2	
Casing Weight (ppf):	9.5	
Setting Depth (ft):	3610	
Amount Cement (sx):	100	
Top of Cement (ft):	2690	

3555 3573

Calculated

Perforations Top (ft): Bottom (ft):

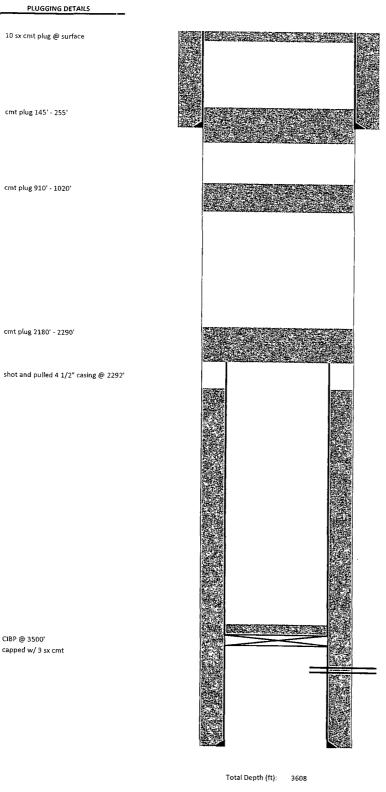
TOC Method:

Operator:	H.L. Bro
Well Name:	Federal
Well Location:	
Calls	1980' FS
Unit	L
Section	13
Township	85
Range	30E

own, Jr. | 13 # 1 SL, 330' FWL

PLUGGING DETAILS

10 sx cmt plug @ surface


cmt plug 145' - 255'

cmt plug 910' - 1020'

cmt plug 2180' - 2290'

.

•

ORIGINAL WELL CONSTRUCTION

Surface Casing

Hole Size (in):	11
Casing Size (in):	8 5/8
Casing Weight (ppf):	20
Setting Depth (ft):	212
Amount Cement (sx):	175
Top of Cement (ft):	Surface
TOC Method:	Calculated

CIBP @ 3500' capped w/ 3 sx cmt

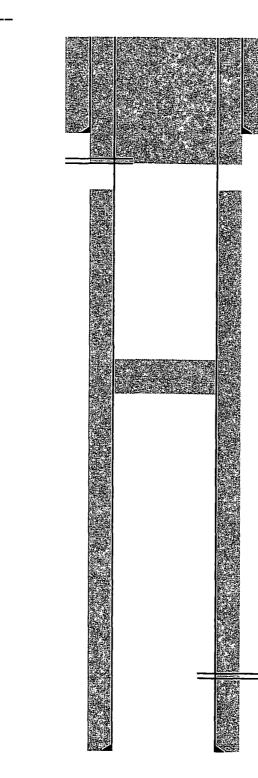
Perforations

Top (ft): Bottom (ft):

3555 3564

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3606
Amount Cement (sx):	300
Top of Cement (ft):	2363
TOC Method:	Calculated

Operator:	United Heritage New Mexico Corp.
Well Name:	CSAU # 4
Well Location:	
Calls	1980' FSL, 660' FEL
Unit	1
Section	3
Township	·85
Range	30E


PLUG DETAILS

cmt plug surface - 50'

perforations @ 494' circulated cmt to surface (tagged @ 50')

•

.

ORIGINAL WELL CONSTRUCTION

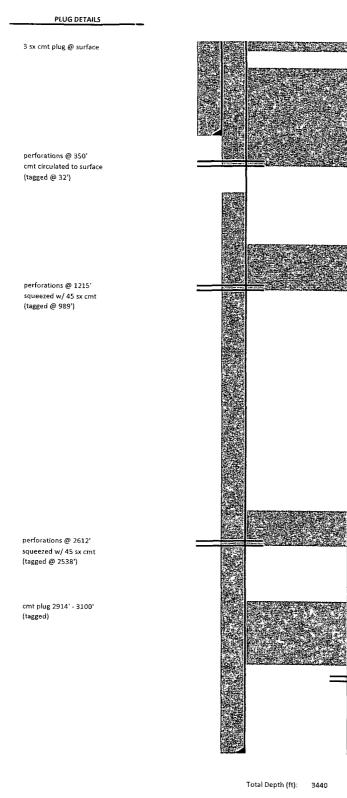
Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	454
Amount Cement (sx):	200
Top of Cement (ft):	Surface
TOC Method:	Circulated

cmt plug 1425' - 1525'

Perforations

Top (ft): Bottom (ft):


3315 3432

Production Casing

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3460
Amount Cement (sx):	800
Top of Cement (ft):	Unknown
TOC Method:	

Total Depth (ft): 3460

Operator:	United Heritage New Mexico Corp.
Well Name:	CSAU # 18
Well Location:	
Calls	660' FNL, 1980' FEL
Unit	В
Section	10
Township	-8S
Range	30E

.

•

ORIGINAL WELL CONSTRUCTION

Surface Casing

12 1/4
8 5/8
24
298
250
Surface
Circulated

Perforations

Top (ft): Bottom (ft): 3292 3400

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3440
Amount Cement (sx):	300
Top of Cement (ft):	Unknown
TOC Method:	

Ope	rator:	Kelt Oil & Gas
Wel	Name:	CSAU # 24
Wel	Location:	
Ca	lls	1980' FNL, 660' FWL
U	nit	E
Se	ction	12
To	wnship	85
Ra	ange	30E

PLUG DETAILS

cmt plug surface - 50'

cmt plug 410' - 510'

•

,

が設 - States

ORIGINAL WELL CONSTRUCTION

Surface Casing

Hole Size (in):	11
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	460
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

cmt plug 1400' - 1500'

cmt plug 3350' - 3450'

C1BP @ 3450'

CICR @ 3610' squeezed w/ 150 sx cmt

Perforations

Top (ft):	3550
Bottom (ft):	3595
T = - (f _1)	
Top (ft):	3630
Bottom (ft):	3676

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3706
Amount Cement (sx):	800
Top of Cement (ft):	391
TOC Method:	Calculated

Operator:	1
Well Name:	(
Well Location:	
Calls	:
Unit	(
Section	:
Township	
Range	1

United Heritage New Mexico Corp. CSAU # 26

180'	FNL,	1980'	FEL	
	,			

秋日初

Total Depth (ft): 3605

G 11

,8S 30E

ORIGINAL WELL CONSTRUCTION

squeezed w/ 60 sx cmt 1011

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	453
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

Perforations

Top (ft): Bottom (ft): 3456 3575

Production Casing

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3605
Amount Cement (sx):	800
Top of Cement (ft):	290
TOC Method:	Calculated

PLUG DETAILS

cmt plug surface - 60'

perforations @ 503'

(tagged @ 394')

•

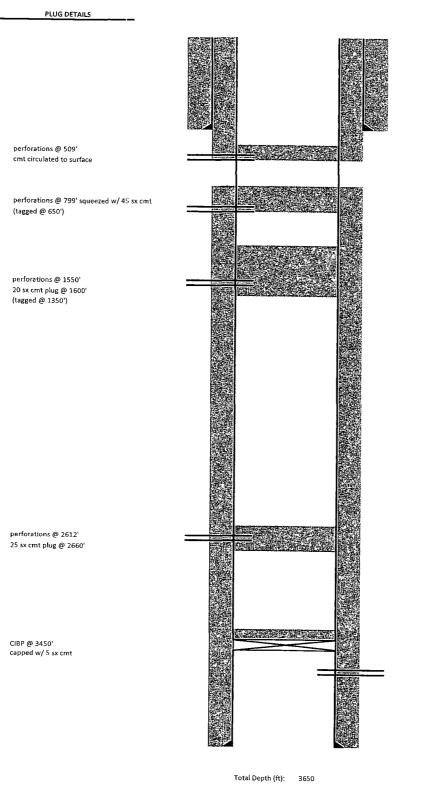
.

perforations @ 1506' squeezed w/ 45 sx cmt (tagged @ 1385')

perforations @ 2612' squeezed w/ 45 sx cmt (tagged @ 2456')

cmt plug 3020' - 3381'

Operator:
Well Name:
Well Location:
Calls
Unit
Section
Township
Range


.

.

United Heritage New Mexico Corp. CSAU # 50

1980' FSL, 1980' FEL

) 11 85 30E

ORIGINAL WELL CONSTRUCTION

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	457
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

|--|

Top (ft): Bottom (ft): 3494 3610

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3650
Amount Cement (sx):	800
Top of Cement (ft):	Unknown
TOC Method:	

itage New Mexico Corp.
980' FEL

PLUG DETAILS perforations @ 509' cmt circulated to surface perforations @ 1415' squeezed w/ 45 sx cmt (tagged @ 1293') APPROX D

ORIGINAL WELL CONSTRUCTION

Surface Casing

Hole Size (in):	12 1/4
Casing Size (in):	8 5/8
Casing Weight (ppf):	24
Setting Depth (ft):	458
Amount Cement (sx):	300
Top of Cement (ft):	Surface
TOC Method:	Circulated

Perforations

Total Depth (ft): 3644

Top (ft): 3500 Bottom (ft): 3610

Production Casing

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3644
Amount Cement (sx):	800
Top of Cement (ft):	Unknown
TOC Method:	

perforations @ 2615' 25 sx cmt plug @ 2615 (tagged @ 2330')

.

.

25 sx cmt plug @ 3450' (tagged @ 3202')

Operator: Well Name: Well Location:	UHC New Mexico Corp. CSAU # 79
Calls	660' FNL, 1980' FWL
Unit	С
Section	14
Township	.,85
Range	30E

ORIGINAL WELL CONSTRUCTION

Surface Casing

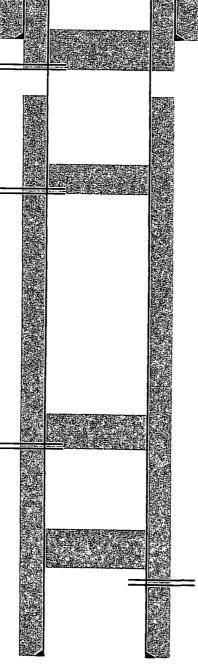
12 1/4
8 5/8
24
465
300
Surface
Circulated

perforations @ 1365' squeezed w/ 45 sx cmt (tagged @ 1260')

PLUG DETAILS

perforations @ 60' cmt circulated to surface

perforations @ 515' cmt circulated to surface (fell back)


(tagged @ 412')

.

-

perforations @ 2612' squeezed w/ 45 sx cmt (tagged @ 2507')

cmt plug 3280' - 3400' (tagged)

Total Depth (ft): 3602

Perforations

Top (ft): 3452 Bottom (ft): 3568

Hole Size (in):	7 7/8
Casing Size (in):	4 1/2
Casing Weight (ppf):	9.5
Setting Depth (ft):	3602
Amount Cement (sx):	800
Top of Cement (ft):	Unknown
TOC Method:	

a

Item VII – data on the proposed operation

- 1. The proposed average daily rate of injection is 500 STBD per well. The proposed maximum daily rate of injection is 1,000 STBD per well.
- 2. The system will be closed.
- 3. The shallowest perforation in an existing well that will be utilized for injection is at 3,308'. The proposed average injection pressure is 500 psi. The proposed maximum injection pressure is 650 psi.
- 4. Current plans are to reinject produced water. Should utilization of make-up water may become necessary, appropriate compatibility testing will be conducted.
- 5. Not Applicable.

Proposed Legal Notice for Publication

Case No. <u>14128</u>: Application of Cano Petro of New Mexico, Inc. for waterflood project, Chaves County, New Mexico. Cano Petro of New Mexico, Inc. for waterflood project, Chaves 3200, Fort Worth, Texas, 76102, seeks an order approving a waterflood permit for secondary recovery in the Cato Unit, Chaves County, New Mexico. A hearing on the matter has been scheduled before an Examiner on May 15, 2008 at 8:15 a.m. at the Division's offices at 1220 South St. Francis Drive, Santa Fe, New Mexico 87505.

The following lands in Chaves County are affected by the application:

Surface

~4

S/2 of SW/4, SW/4 of SE/4, Section 2, T8S - R30E, All of Section 11, T8S - R30E, W/2 of W/2, Section 12, T8S - R30E, W/2 of W/2, Section 13, T8S - R30E, All of Section 14, T8S - R30E,

Subsurface

SW/4, W/2 of SE/4, Section 1, T8S - R30E, SE/4 of NW/4, S/2 of NE/4, NE/4 of SE/4, Section 2, T8S - R30E, W/2 of E/2, Section 12, T8S - R30E, W/2 of E/2, SE/4 of SW/4, Section 13, T8S - R30E, NW/4 of Section 24, T8S - R30E,

The Cato Unit is located approximately 2.65 miles northeast of Elida, New Mexico.

The proposed maximum daily rate of injection in the San Andreas Formation is 1,000 STBD per well and the maximum injection pressure is 650 psi. The shallowest perforation in an existing well that will be utilized for injection is 3,308'.

All affected persons have a right to enter an appearance and participate in the case. If an affected person wishes to participate in the case, notification of such must be provided, in writing, to Cano Petro of New Mexico and the New Mexico Oil Conservation Division no later than 5:00 p.m. (MT) on May 8, 2008. Affected persons failing to appear at the hearing are precluded from contesting the matter at a later date.

Questions to Cano Petro should be directed to Alex Azizi at (817) 698-0900.