ŧ

State of New Mexico **Energy Minerals and Natural Resources**

Oil Conservation Division

Submit 2 Copies to appropriate District Office in accordance

1RP-1156

District IV 1220 S. St. Fran	icis Dr., Santa	a Fe, NM 87505		1220 Se	South	St. Franc	is Dr. 05	W	ith Rule 116 side	on back of form				
			Dala	oso Notific		and C_{c}	rractiva A	otion						
			Nen		ation		FOD	CUOI				1.0		
Nome of C		Diaina Dina	ing I D			Contact	Denial Prava			al Report/	K Fina	il Report		
Address	ompany	3705 F Hw	$\frac{\text{me, LP}}{\sqrt{158}}$	idland TX 797	06 7	Telephone No. (432) 557-5865								
Facility Na		Zia Grizzell	4" Idled	Line		Facility Tyr	$\frac{10. (452) 557-5}{10. (452) 557-5}$	005						
<u> </u>			- Julea			uonney xyp								
Surface Ow	mer Apache	Corporation		Mineral C	Owner	er Lease No.								
				LOCA	TION	OF RE	LEASE							
Unit LetterSectionTownshipRangeFeet from theNortP822S37E					North/:	South Line	Feet from the	East/	West Line	County Lea				
<u>-</u>	- I	L	L	atitude N 32° 2	4' 10.7"	' Longitudo	w 103° 10' 3	8.7"				<u> </u>		
				NAT	URE	OF REL	EASE							
Type of Rele	ease Sou	r Crude Oil				Volume of	Release 40 bbls	3	Volume F	Recovered	30 bbls			
Source of Re	elease 4"	steel idled lin	e			Date and I	lour of Occurrenc	ce	Date and	Hour of Dis	scovery			
XX7 X 1*		<u>.</u>				09/05/200	5 10:30		09/05/20	05 11:00				
was immedi	ate NOTICE (Jiven?	Yes [equired	Garv Wink	wnom?		nit attention		د م			
D W/h 0	C					Dete end I	00/05/200	15 16		<u>Kon o p i</u>		·····		
By whom? Was a Water	Camille Rea	vnoias	·			If YES V	Jume Impacting 1	JS 145			-			
Wus a Waler	course read		Yes 🗵	No		DEC 0.4 2008								
If a Wataraa	una mar las	mantad Dagan	h a Euller	±						· · · · · · · · · · · · · · · · · · ·				
Describe Car Recent pipel being idled a content is <1	use of Probl ine work ca at time of rel 0 ppm. Lin	em and Reme used a collar t lease, the pres le depth is app	dial Actio o break or sure of the roximatel	n Taken.* 1 the idled Zia Gr e line was 0 lbs ar y 2.5' at the relea	izzell 4" id had no se source	steel pipeling throughput e.	e. Line was cut ar on the pipeline. T	nd capp The grav	ed to mitiga ity of the c	tte the release rude oil is 3	se. Due to th 7.1 @ 65°.	ie line H ₂ S		
Describe Ard Please see th	ea Affected le attached E	and Cleanup A	Action Ta	ken. * . nary and Site Clo	sure Req	uest for deta	ils of remedial act	tivities of	conducted for	or site closu	ıre.			
I hereby cert regulations a public health should their or the enviro federal, state	ify that the ill operators or the envi operations h onment. In a c, or local la	information g are required t ronment. The have failed to addition, NMC ws and/or regr	ven above o report a acceptan adequately OCD accept adetions.	e is true and comp nd/or file certain n ce of a C-141 repo v investigate and n otance of a C-141	blete to the release no ort by the remediate report do	ne best of my otifications a NMOCD m e contaminat oes not reliev	knowledge and u nd perform correc arked as "Final R ton that pose a thr e the operator of	indersta ctive act Report" of reat to g respons	nd that purs ions for rele loes not reli round water ibility for c	suant to NM eases which eve the ope t, surface wa ompliance v	OCD rules a may endang rator of liabi ater, human h with any othe	nd ger lity health pr		
							OIL CON	SERV	ATION	DIVISIO	DN			
Signature:	Dant	Reat	-				0	Ľ	- Ohur	500				
Printed Nam	e: Daniel I	Bryant				Approved by	District Supervis	PONM	ENTAL I	ENGINEE	R			
Title: Envir	ronmental R	/C Specialist			/	Approval Da	te: 12.04.1	08	Expiration	Date: 🚞				
E-mail Addr	ess: dmbry	ant@paalp.co	n		(Conditions o	f Approval:			Attached				
Date: 12	14/08		Phone	: (432) 557-5865								-		

* Attach Additional Sheets If Necessary

Basin Environmental Service Technologies, LLC

2800 Plains Highway P. O. Box 301 Lovington, New Mexico 88260 cjbryant@basin-consulting.com Office: (505) 396-2378 Fax: (505) 396-1429

ŵ **Effective Solutions**

REMEDIATION SUMMARY

AND

SITE CLOSURE REQUEST

PLAINS MARKETING, L.P. (231735) Zia Grizzell 4-Inch Idled Line Lea County, New Mexico Plains SRS # 2005-00210 UNIT P (SE/SE), Section 8, Township 22 South, Range 37 East Latitude 32°, 24', 10.7" North, Longitude 103°, 10', 38.7" West NMOCD Reference # 1RP-1156

Prepared For:

Plains Marketing, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002

DEC 04 2008

JEI ENEL

Prepared By: Basin Environmental Service Technologies, LLC

HUBBSUC

November 2008

Camil

Project Manager

TABLE OF CONTENTS

.

INTRODUCTION AND BACKGROUND INFORMATION	.1
NMOCD SITE CLASSIFICATION	1
SUMMARY OF FIELD ACTIVITIES	2
SITE CLOSURE REQUEST	4
LIMITATIONS	4
DISTRIBUTION	5

FIGURES

Figure 1 – Site Location Map Figure 2 – Site Map Figure 3 – Sample Location Map Figure 4 – Water Well Location Map

TABLES

Table 1 - Concentrations of BTEX, TPH and Chlorides in Soil

APPENDICES

Appendix A - Laboratory Reports Appendix B – Soil Boring Log Appendix C - Photographs Appendix D - Release Notification and Corrective Action (Form C-141)

INTRODUCTION AND BACKGROUND INFORMATION

Basin Environmental Service Technologies, LLC (Basin), on behalf of Plains Marketing, L.P. (Plains), has prepared this Remediation Summary and Site Closure Request for the release site known as the Zia Grizzell 4-Inch Idled Pipeline (SRS# 2005-210). The site is located in Unit Letter P (SE ¼ SE ¼), Section 8, Township 22 South, Range 37 East, in Lea County, New Mexico. The property is owned by the Apache Corporation. The site latitude is 32° 24' 10.7" North, and the longitude is 103° 10' 38.7" West. The Site Location and Site Map are provided as Figure 1 and Figure 2, respectively. The Release Notification and Corrective Action (NMOCD Form C-141) indicated approximately forty (40) barrels of crude oil was released from the Plains pipeline and thirty (30) barrels were recovered during the initial response activities. The Release Notification and Corrective Action is provided as Appendix D.

On September 5, 2005, Basin, on behalf of Plains responded to a pipeline release located on the Zia Grizzell 4-Inch Idled Pipeline. Plains operations personnel mitigated the crude oil release by installing a temporary clamp on the pipeline. Following initial response activities the line was cold cut and capped under the direction of Plains operations personnel. The impacted soil excavated during initial response activities was stockpiled on a 6-mil poly liner adjacent to the excavation. The initial visually stained area covered an area measuring approximately 45 feet long by 24 feet wide.

NMOCD SITE CLASSIFICATION

A search of the New Mexico Office of the State Engineer (NMOSE) water well database indicated depth to groundwater information was unavailable for Section 8, Township 22 South and Range 37 East. The NMOSE database indicated the depth to groundwater was approximately 90 feet below ground surface (bgs) in Section 9 of the same township and range. The depth to groundwater at the Zia Grizzell 4-Inch release site results in a score of ten (10) points being assigned to the site, based on the NMOCD depth to groundwater criteria.

The water well database, maintained by the NMOSE indicated there are two (2) water wells located in Section 9, less than 1,000 feet from the release site. The water wells are located approximately 462 feet to the east and 522 feet to the northeast of the release site (Water Well Location Map is provided as Figure 4). Based on the NMOCD ranking system twenty (20) points will be assigned to the site as a result of the criteria.

There are no surface water bodies within 1,000 feet of the release site. Based on the NMOCD ranking system zero (0) points will be assigned to the site as a result of the criteria.

Based on this data, the site has an NMOCD Ranking Score of >19, The NMOCD Guidelines for the Remediation of Leaks, Spills and Releases (NMOCD, 1993) sets the remediation levels at:

Benzene:	10 mg/Kg (ppm)
BTEX:	50 mg/Kg (ppm)
TPH:	100 mg/Kg (ppm)

SUMMARY OF FIELD ACTIVITIES

On September 5, 2005, Basin mobilized to the Zia Grizzell 4-Inch Idled Pipeline release site to begin excavation activities. Impacted soil excavated from the release point and flow path was stockpiled on a 6-mil poly liner adjacent to the excavation. The excavation activities resulted in an excavation measuring approximately 45 feet long by 24 feet wide and ranged in depth from eight (8) to ten (10) feet bgs.

On September 13, 2005, four (4) soil samples (West S/W, South S/W, East S/W and North S/W) were collected from the excavation sidewalls at approximately five (5) feet bgs and two (2) soil samples (FLR South and FLR North) were collected from the floor of the excavation at approximately eight (8) and ten (10) feet bgs, respectively. The soil samples were analyzed for concentrations of benzene, toluene, ethyl-benzene and xylene (BTEX) using method EPA 8021b and total petroleum hydrocarbons (TPH) using method SW-8015 modified. A summary of the analytical results are included in Table 1, Concentrations of BTEX, TPH and Chlorides in Soil. The soil sample locations are depicted in Figure 3, Sample Location Map. Laboratory analytical results are included in Appendix A.

The laboratory analytical results indicated benzene concentrations were below the method detection limit (MDL) of 0.025 mg/Kg for all of the submitted soil samples. Laboratory analytical results indicated BTEX constituent concentrations ranged from 0.0268 mg/Kg for soil sample North S/W to 0.869 mg/Kg for soil sample FLR South. The laboratory analytical results indicated the TPH concentrations ranged from 75.4 mg/Kg for soil sample South S/W to 8,304 mg/Kg for soil sample FLR North.

Soil sample FLR South was analyzed for concentrations of chloride using method EPA 300. The analytical result indicated the chloride concentration was 38.2 mg/Kg.

A stockpile soil sample (STCKPL) was collected and submitted to the laboratory for analysis. The analytical results indicated soil sample STCKPL exhibited a benzene concentration of 2.25 mg/Kg, a BTEX concentration of 133.25 mg/Kg and a TPH concentration of 25,380 mg/Kg.

On November 23, 2005, a soil boring (SB-1) was advanced at the release point to determine the vertical extent of the crude oil impacted soil. A map depicting the soil boring location is provided as Figure 3 and the soil boring log is provided as Appendix B. The soil boring was advanced on the floor of the excavation at approximately seven (7) feet bgs. The soil boring was advanced to a total depth of 45 feet bgs and was terminated due to a loss of air circulation. Soil samples were collected at five (5) foot drilling intervals. Each soil sample was field screened using a Photo-Ionization Detector (PID) and selected soil samples were analyzed for BTEX and TPH concentrations. Laboratory analytical results indicated benzene concentrations ranged from below the MDL of 0.025 mg/Kg for soil samples SB-1 25', SB-1 35' and SB-1 45' to 0.105 mg/Kg for soil sample SB-1 15'. The analytical results indicated BTEX concentrations ranged from soil sample SB-1 15'. The laboratory analytical results indicated the TPH concentrations ranged from soil sample SB-1 15'. The laboratory analytical results indicated the TPH concentrations ranged from soil sample SB-1 15'. The laboratory analytical results indicated the TPH concentrations ranged from soil sample SB-1 15'. The laboratory analytical results indicated the TPH concentrations ranged from soil sample SB-1 15'. The laboratory analytical results indicated the TPH concentrations ranged from soil sample SB-1 45' to 3,381 mg/Kg for soil sample SB-1 25'.

On January 4, 2007, the NMOCD Hobbs District Office approved the Zia Grizzell 4-Inch Idled Pipeline *Preliminary Site Investigation Report and Remediation Closure Plan*, dated December 20, 2006.

In March 2007, Basin conducted additional excavation activities at the release site. Pursuant to the NMOCD approved work plan, the excavation was completed to an approximate depth of fifteen (15) feet bgs. The impacted soil excavated during the remediation activities was stockpiled adjacent to the excavation pending transportation to an NMOCD approved landfarm.

On April 17, 2007, six (6) soil samples (N/W 13', S/W 13', NE/W 13', NW/W 13', SW/W 13' and SE/W 13') were collected from the sidewalls of the excavation and two (2) soil samples (EXCV FLR N 15' and EXCV FLR S 15') were collected from the excavation floor. The soil samples were analyzed for concentrations of BTEX using method EPA 8021b and TPH using method SW-8015 modified. The analytical results indicated benzene concentrations ranged from below the MDL of 0.025 mg/Kg for soil samples N/W 13', S/W 13', NE/W 13, NW/W 13', SW/W 13' and SE/W 13' to 0.114 mg/Kg for soil sample EXCV FLR N 15'. The analytical results indicated BTEX concentrations ranged from below the MDL of 0.025 mg/Kg for soil sample from below the MDL of 0.025 mg/Kg for soil sample EXCV FLR N 15'. The analytical results indicated TPH concentrations ranged from below the MDL of 10 mg/Kg in soil samples NW/W 13', SW/W 13' and SE/W 13' to 31,530 mg/Kg for soil sample EXCV FLR N 15'.

Based on analytical results, additional excavation was required along the north and south sidewalls. On December 10, 2007 Basin, resumed excavation activities at the site. The floor of the excavation was excavated to an approximate depth of 15 to 17 feet bgs. The final dimensions of the excavation were approximately 144 feet in length and 65 feet in width and ranging in depth from approximately 15 to 17 feet bgs.

On December 18, 2007, three (3) soil samples (N/W 9', S/W 9' and EXCV FLR N 15') were collected from the excavation and submitted to the laboratory for analysis. The soil samples were analyzed for concentrations of BTEX using method EPA 8021b and TPH using method SW-8015 modified. The analytical results indicated benzene concentrations were below the appropriate laboratory MDL. BTEX concentrations ranged from 0.0348 mg/Kg for soil sample N/W9' to 0.415 mg/Kg for soil sample EXCV FLR N 15' and TPH concentrations ranged from below the laboratory MDL of 1.0 mg/Kg for soil samples N/W 9' and S/W 9 to 1,483 mg/Kg for soil sample EXCV FLR N 15' was erroneously labeled in the field and represents a sample collected at 17' bgs.

On January 3, 2008 the NMOCD Hobbs District Office granted approval to conduct backfilling activities at the release site.

On February 1, 2008, a 20-mil poly liner was installed in the base of the excavation to inhibit vertical migration of the contaminants left in place below the cap and allow for natural attenuation of the contaminants left in-situ. To ensure the integrity of the liner a six (6) inch layer of cushion sand was installed above and below the liner. Site photographs are provided as Appendix C. Based on the analytical results of the stockpiled soil, approximately 2,604 cy of

impacted soil was transported to Lea Station Landfarm (GW-351) and non-impacted backfill material was purchased from the landowner. Following the installation of the liner, the excavation was backfilled with the non-impacted soil and contoured to fit the surrounding topography. In October 2008, the remediation site was seeded with vegetation suitable to the landowner.

SITE CLOSURE REQUEST

Based on the analytical results of confirmation soil samples collected from the floor and sidewalls of the excavation, Basin recommends Plains provide the NMOCD Hobbs District Office a copy of this Remediation Summary and Site Closure Request and request the NMOCD grant site closure to the Zia Grizzell 4-Inch Idled Pipeline release site.

LIMITATIONS

Basin Environmental Service Technologies, LLC has prepared this Remediation Summary and Site Closure Request to the best of its ability. No other warranty, expressed or implied, is made or intended.

Basin Environmental Service Technologies, LLC has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Basin Environmental Service Technologies, LLC has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Basin Environmental Service Technologies, LLC has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin Environmental Service Technologies, LLC also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains Marketing, L.P. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC and/or Plains Marketing, L.P.

DISTRIBUTION:

- Copy 1: Larry Johnson New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (District 1) 1625 French Drive Hobbs, New Mexico 88240 larry.johnson@nm.state.us
- Copy 2: Jeff Dann Plains Marketing, L.P. 333 Clay Street, Suite 1600 Houston, Texas 77002 jpdann@paalp.com
- Copy 3: Daniel Bryant Plains Marketing, L.P. 3705 E. Highway 158 Midland, Texas 79706 dmbryant@paalp.com
- Copy 4: Camille Bryant Basin Environmental Consulting P.O. Box 381 Lovington, New Mexico 88260 cjbryant@basin-consulting.com

Figures

Table

٠

.

#

.

.

•

TABLE 1

Concentrations of BTEX, TPH and Chlorides in Soil

PLAINS MARKETING L.P. ZIA GRIZZELL 4" IDLED LINE LEA COUNTY, NEW MEXICO SRS: 2005-00210 NMOCD Ref # 1RP-1156

					METHOD: EPA SW 846-8021B, 5030						D: 8015M	TOTAL	EPA 300.0
SAMPLE	SAMPLE	SAMPLE	SOIL	BENZENE	TOLUEN	ETHYL-	M,P-	0-	TOTAL	GRO	DRO	трн	
LOCATION	DEPTH	DATE	STATUS		E	BENZENE	XYLENE	XYLENE	BTEX	C ₆ -C ₁₂	C ₁₂ -C ₃₅	C ₆ -C ₃₅	(ma/Ka)
				(iiig/rtg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(ma/Ka)	(mg/Kg)	(ing/kg)
West S/W	5' bgs	09/13/05	Excavated	<0.025	0.213	0.140	0.386	0.105	0.844	187	122	140.7	-
South S/W	5' bgs	09/13/05	Excavated	<0.025	<0.025	<0.025	0.0457	<0.025	0.0457	<10	75.4	75.4	-
East S/W	5' bgs	09/13/05	Excavated	<0.025	<0.025	0.0431	0.106	0.0295	0.1786	11.8	144	155.8	-
North S/W	5' bgs	09/13/05	Excavated	<0.025	<0.025	<0.025	0.0268	<0.025	0.0268	11.2	230	241.2	-
FLR South	8' bgs	09/13/05	Excavated	<0.025	0.054	0.203	0.447	0.165	0.869	143	1,360	1,503	38.2
FLR North	10' bgs	09/13/05	Excavated	<0.025	<0.025	0.057	0.165	0.0435	0.266	604	7,700	8,304	-
STCKPL	N/A	09/13/05	Stockpile	2.25	26.8	39.1	46.8	18.3	133.25	6,580	18,800	25,380	-
The states	p Dry	الم المعالي والتي ال	14 · 21	12 金花皮长	and the second	and and a state of the state	24 元之事	CAT CA		The state of	No. of the second	Wei and the	14 A. A. A. A.
SB-1 15'	21' bgs	11/23/05	In-Situ	0.105	0.776	0.639	2.44	0.580	4.54	558	2,530	3,088	-
SB-1 25'	31' bgs	11/23/05	In-Situ	<0.025	0.248	0.427	1.57	0.438	2.683	371	3,010	3,381	-
SB-1 35'	41' bgs	11/23.05	In-Situ	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10	223	233	-
SB-1 45'	51' bgs	11/23/05	In-Situ	<0 025	<0.025	<0.025	<0.025	<0.025	<0 025	<10	34.1	34 .1	-
		8	心線 小	1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	St. 8	and the second s	989 (G. 19		And the set	4	1. A. C. A. C.		
N/W 13'	13' bgs	04/17/07	Excavated	<0.025	<0.025	<0.025	0.0334	<0.025	0.0334	<50	313 1	313.1	-
S/W 13'	13' bgs	04/17/07	Excavated	<0.025	<0.025	0 0574	0.0662	<0.025	0.1236	159	2,361	2,520	-
NE/W 13'	13' bgs	04/17/07	In-Situ	<0.025	<0.025	<0.025	<0 025	<0.025	<0.025	41	12.3	53 3	-
NW/W 13'	13' bgs	04/17/07	In-Situ	<0.025	<0.025	<0.025	<0 025	<0.025	<0.025	<10	<10	<10	-
SW/W 13'	13' bgs	04/17/07	In-Situ	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10	<10	<10	-
SE/W 13'	13' bgs	04/17/07	In-Situ	<0.025	<0.025	<0.025	<0.025	<0.025	<0 025	<10	<10	<10	-
EXCV FLR N 15'	15' bgs	04/17/07	Excavated	0 114	1 56	6.64	19.9	1.09	29.304	3,700	27,830	31,530	-
EXCV FLR S 15'	15' bgs	04/17/07	Excavated	<0.100	1.20	4.83	5.30	1.53	12.86	1,240	4,687	5,927	-
新 , 新生产之间。1987		a a cara	11 E		St 18 1933	to a start of the		and a constant of the second s				·清清之子, 至 15	
N/W 9'	9' bgs	12/18/07	In-Situ	<0.010	<0.010	<0.010	0.0	348	0.0348	<1 00	<50.0	<50.0	-
S/W 9'	9' bgs	12/18/07	In-Situ	<0.010	<0.010	<0.010	0.0	404	0.040	<1.00	<50.0	<50.0	-
EXCV FLR N 15'	17' bgs	12/18/07	In-Situ	<0.050	<0.050	<0.050	0.4	415	0.415	153	1,330	1,483	-
1111-12-1-1-1-1	ales 3 the	IN COST	Str. Brit - Star	4	1. 381 200	All A Sta		等 一方子 第二	S. Sind 12 S	E Miles	and the second	2. The star	Ref &
NMOCD Criteria				10			T	otal BTEX	50			100	

Appendix A Laboratory Reports

,

.

.

.

Analytical Report

Prepared for:

Camille Reynolds Plains All American EH & S 1301 S. County Road 1150 Midland, TX 79706-4476

Project: Zia Grizzell 4" Idled Line Project Number: EMS: 2005-00210 Location: Lea County, NM

Lab Order Number: 5116013

Report Date: 09/22/05

.

Plains All American EH & S	Project	Zia Grizzell 4" Idled Line	Fax (432) 687-4914
1301 S County Road 1150	Project Number	EMS 2005-00210	Reported:
Midland TX, 79706-4476	Project Manager	Camille Reynolds	09/22/05 08 30
		the second s	

ANALYTICAL REPORT FOR SAMPLES

5

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
West S/W	5116013-01	Soil	09/13/05 14 30	09/16/05 13 50
South S/W	5116013-02	Soil	09/13/05 14·45	09/16/05 13 50
East S/W	5116013-03	Soil	09/13/05 14 55	09/16/05 13 50
North S/W	5116013-04	Soil	09/13/05 15 15	09/16/05 13.50
FLR South	5116013-05	Soil	09/13/05 15 30	09/16/05 13 50
FLR North	5116013-06	Soil	09/13/05 15.45	09/16/05 13 50
STCKPL	5116013-07	Soil	09/13/05 16 00	09/16/05 13 50

L

Plains All American EH & S	Project Zia Grizzell 4" Idled Line	Fax (432) 687-4914
1301 S County Road 1150	Project Number EMS 2005-00210	Reported:
Midland TX, 79706-4476	Project Manager. Camille Reynolds	09/22/05 08:30

Organics by GC

Environmental Lab of Texas

	P	Reporting	1 1			_			
	Kesult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
West S/W (5116013-01) Soil									
Benzene	J [0.0219]	0 0250	mg/kg dry	25	EI51903	09/19/05	09/19/05	EPA 8021B	
Toluene	0.213	0 0250		"		"	"	"	
Ethylbenzene	0.140	0 0250	"	н		"	"	**	
Xylene (p/m)	0.386	0 0250	"	"	"	"	n	**	
Xylene (o)	0.105	0 0250	"	n	"	w	11	"	
Surrogate: a,a,a-Trifluorotoluene		81.8%	80-1	20	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		88.8 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	18.7	10.0	mg/kg dry	1	EI51901	09/19/05	09/20/05	EPA 8015M	
Diesel Range Organics >C12-C35	122	10.0	"	"		"	"		
Total Hydrocarbon C6-C35	141	10.0	N	"	н	ŧ	"	11	
Surrogate: 1-Chlorooctane		103 %	70-1	30	n	n	"	"	
Surrogate: 1-Chlorooctadecane		102 %	70-1	30	"	"	"	"	
South S/W (5116013-02) Soil									
Benzene	ND	0 0250	mg/kg dry	25	E151903	09/19/05	09/19/05	EPA 8021B	
Toluene	J [0.0222]	0.0250	"	**		"	"	"	
Ethylbenzene	ND	0.0250	"	**		"	м	"	
Xylene (p/m)	0.0457	0.0250	"		**	"		"	
Xylene (o)	ND	0 0250			n	"	"	"	
Surrogate: a,a,a-Trifluorotoluene		82.8 %	80-	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.7 %	80	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EI51901	09/19/05	09/20/05	EPA 8015M	
Diesel Range Organics >C12-C35	75.4	10.0	"	"	11	"	"	"	
Total Hydrocarbon C6-C35	75.4	10 0		*	"	"	"	N	
Surrogate: 1-Chlorooctane		102 %	70	130	"	"	"	"	
Surrogate · I-Chlorooctadecane		111%	70-	130	"	"	"	"	
East S/W (5116013-03) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51903	09/19/05	09/19/05	EPA 8021B	
Toluene	J [0.0228]	0 0250	н					n	
Ethylbenzene	0.0431	0 0250	н			•	n	"	
Xylene (p/m)	0.106	0.0250					"	*	
Xylene (0)	0.0295	0 0250	**	"	"	"	11	н	
Surrogate: a,a,a-Trifluorotoluene		93.0 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		88.2 %	80-	120	"	"	n	"	
Gasoline Range Organics C6-C12	11.8	10 0	mg/kg dry	I	EI51901	09/19/05	09/20/05	EPA 8015M	
Diesel Range Organics >C12-C35	144	10 0	"	"	"		*	n	
Total Hydrocarbon C6-C35	156	10.0		"	"		"		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 11

Plains All American EH & S Project: Zia Grizzell 4" Idled Line								Fax (432)	Fax (432) 687-4914	
1301 S County Road 1150		Project N	lumber: EM	IS 2005-0	0210			Reported:		
Midland TX, 79706-4476		Project M	anager Car	nille Reyno	olds			09/22/05	5 08 30	
		0	rganics b	y GC						
		Environ	mental L	ab of Te	exas					
		Reporting				·				
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
East S/W (5116013-03) Soil										
Surrogate: 1-Chlorooctane		<u>96.2 %</u>	70-1	30	E151901	09/19/05	09/20/05	EPA 8015M		
Surrogate: 1-Chlorooctadecane		106 %	70-1	30	"	"	n	"		
North S/W (5116013-04) Soil										
Benzene	ND	0 0250	mg/kg dry	25	EI51903	09/19/05	09/19/05	EPA 8021B		
Toluene	ND	0 0250	"	**	*	"	"	н		
Ethylbenzene	ND	0 0250		"	*	н	*	н		
Xylene (p/m)	0.0268	0 0250	"		н	н	19			
Xylene (o)	ND	0 0250	"	"	"	"	11	**		
Surrogate · a,a,a-Trifluorotoluene		82.7 %	80-1	20	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		87.7 %	80-1	20	"	"	n	"		
Gasoline Range Organics C6-C12	11.2	10 0	mg/kg dry	1	E151901	09/19/05	09/20/05	EPA 8015M		
Diesel Range Organics >C12-C35	230	10 0	"			"	"	"		
Total Hydrocarbon C6-C35	241	10 0	"	"	"	**	"	"		
Surrogate: 1-Chlorooctane		99.2 %	70-1	30	"	ν	"	**		
Surrogate: 1-Chlorooctadecane		110 %	70-1	30	"	"	"	"		
FLR South (5116013-05) Soil										
Benzene	ND	0.0250	mg/kg dry	25	EI51903	09/19/05	09/19/05	EPA 8021B		
Toluene	0.0540	0 0250	"	"			n	"		
Ethylbenzene	0.203	0 0250	"	N		**	"	9		
Xylene (p/m)	0.447	0 0250	"	۳	•		"	11		
Xylene (o)	0.165	0 0250	"	H	*	11	н	п		
Surrogate: a,a,a-Trifluorotoluene		86.9 %	80-1	20	"	"	"	"		
Surrogate 4-Bromofluorobenzene		94.7 %	80-1	120	"	**	"	n		
Gasoline Range Organics C6-C12	143	50 0	mg/kg dry	5	EI51901	09/19/05	09/20/05	EPA 8015M		
Diesel Range Organics >C12-C35	1360	50 0	н		**			"		
Total Hydrocarbon C6-C35	1500	50.0	н	"	*	n	н	"		
Surrogate: 1-Chlorooctane		16.0 %	70-1	130	"	"	"	"	S-06	
Surrogate 1-Chlorooctadecane		204%	70-1	130	"	"	"	"	S-06	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

	Plains All American EH & S	Project	Zia Grizzell 4" Idled Line	Fax. (432) 687-4914
ĺ	1301 S County Road 1150	Project Number	EMS 2005-00210	Reported:
l	Midland TX, 79706-4476	Project Manager	Camille Reynolds	09/22/05 08 30

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Anałyzed	Method	Notes
FLR North (5116013-06) Soil						<u> </u>			
Benzene	ND	0.0250	mg/kg dry	25	E151903	09/19/05	09/20/05	EPA 8021B	
Toluene	ND	0 0250	ST		17			н	
Ethylbenzene	0.0507	0 0250		н		"	*	u u	
Xylene (p/m)	0.165	0.0250		"		"	и	"	
Xylene (0)	0.0435	0 0250	"	"		n	**		
Surrogate: a,a,a-Trifluorotoluene		92.3 %	80-	120	"	"	"	"	
Surrogate 4-Bromofluorobenzene		80.3 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	604	50.0	mg/kg dry	5	EI51901	09/19/05	09/20/05	EPA 8015M	
Diesel Range Organics >C12-C35	7700	50 0	*	"		"		"	
Total Hydrocarbon C6-C35	8300	50 0	"	"	**	"	"		
Surrogate 1-Chlorooctane		21.8%	70-	130	"	"	"	"	S-06
Surrogate: 1-Chlorooctadecane		27.6 %	70-	130	"	"	"	"	S-06
STCKPL (5116013-07) Soil									
Benzene	2.25	0 200	mg/kg dry	200	E152006	09/20/05	09/20/05	EPA 8021B	
Toluene	26.8	0 200	*		*	"	"	*	
Ethylbenzene	39.1	0 200	. "	"	n	"	"	**	
Xylene (p/m)	46.8	0 200		"		н	17		
Xylene (0)	18.3	0 200	**	м	u.	17	n	••	
Surrogate a,a,a-Trifluorotoluene		157 %	80-	120	"	"	"	"	S-04
Surrogate: 4-Bromofluorobenzene		89.6 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	6580	100	mg/kg dry	10	EI51901	09/19/05	09/20/05	EPA 8015M	
Diesel Range Organics >C12-C35	18800	100		"			"		
Total Hydrocarbon C6-C35	25400	100			"	"	17	и	
Surrogate: 1-Chlorooctane		23.8 %	70-	130	"	"	"	11	S-06
Surrogate, 1-Chlorooctadecane		13.4%	70-	130	"	"	"	"	S-06

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
West S/W (5116013-01) Soil									
% Moisture	2.5	0 1	%	1	EI52002	09/20/05	09/20/05	% calculation	<u></u>
South S/W (5116013-02) Soil									
% Moisture	1.7	0.1	%	1	EI52002	09/20/05	09/20/05	% calculation	
East S/W (5116013-03) Soil		_							
% Moisture	2.8	0.1	%	1	EI52002	09/20/05	09/20/05	% calculation	
North S/W (5116013-04) Soil		_							
% Moisture	6.2	0.1	%	1	EI52002	09/20/05	09/20/05	% calculation	
FLR South (5116013-05) Soil									
Chloride	38.2	5 00	mg/kg	10	EI52102	09/19/05	09/21/05	EPA 300.0	
% Moisture	1.4	0.1	%	1	EI52002	09/20/05	09/20/05	% calculation	
FLR North (5116013-06) Soil									
% Moisture	3.3	0.1	%	1	E152002	09/20/05	09/20/05	% calculation	
STCKPL (5116013-07) Soil									
% Moisture	5.3	01	%	1	E152002	09/20/05	09/20/05	% calculation	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Plains All American EH & S	Project	Zia Grizzell 4" Idled Line	Fax (432)687-4914
1301 S County Road 1150	Project Number:	EMS 2005-00210	Reported:
Midland TX, 79706-4476	Project Manager.	Camille Reynolds	09/22/05 08 30

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source	,	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	t %REC	Limits	RPD	Limit	Notes
Batch EI51901 - Solvent Extraction (GC)	<u> </u>									
Blank (EI51901-BLK1)				Prepared	09/19/05	Analyzed [.]	09/20/05			
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet							,
Diesel Range Organics >C12-C35	ND	10 0	"							
Total Hydrocarbon C6-C35	ND	10 0	"							
Surrogate. 1-Chlorooctane	411		mg/kg	50 0		82.2	70-130			
Surrogate [•] 1-Chlorooctadecane	379		**	50 0		75.8	70-130			
LCS (EI51901-BS1)				Prepared	09/19/05	Analyzed.	09/20/05			
Gasoline Range Organics C6-C12	452	10 0	mg/kg wet	500		90,4	75-125			
Diesel Range Organics >C12-C35	440	10 0		500		88 0	75-125			
Total Hydrocarbon C6-C35	892	10 0	**	1000		89 2	75-125			
Surrogate 1-Chlorooctane	52 1		mg/kg	50 0		104	70-130			
Surrogate. 1-Chlorooctadecane	45.1		"	50 0		90.2	70-130			
Calibration Check (EI51901-CCV1)				Prepared	09/19/05	Analyzed.	09/20/05			
Gasoline Range Organics C6-C12	433		mg/kg	500		86 6	80-120			
Diesel Range Organics >C12-C35	422		и	500		84 4	80-120			
Total Hydrocarbon C6-C35	855		ч	1000		85 5	80-120			
Surrogate 1-Chlorooctane	546		"	50.0		109	0-200			
Surrogate 1-Chlorooctadecane	478		"	50.0		95 6	0-200			
Matrix Spike (EI51901-MS1)	So	urce: 5116012-	01	Prepared.	09/19/05	Analyzed	09/20/05			
Gasoline Range Organics C6-C12	448	10 0	mg/kg dry	513	42 6	79 0	75-125			
Diesel Range Organics >C12-C35	1200	10,0	v	513	607	116	75-125			
Total Hydrocarbon C6-C35	1650	10 0		1030	650	97 1	75-125			
Surrogate 1-Chlorooctane	59 2		mg/kg	50 0		118	70-130			
Surrogate 1-Chlorooctadecane	61 2		"	50.0		122	70-130			
Matrix Spike Dup (EI51901-MSD1)	So	urce: 5116012-	·01	Prepared	09/19/05	Analyzed	09/20/05			
Gasoline Range Organics C6-C12	510	10 0	mg/kg dry	513	42.6	91.1	75-125	12 9	20	
Diesel Range Organics >C12-C35	1180	10 0	"	513	607	112	75-125	1.68	20	
Total Hydrocarbon C6-C35	1690	10 0	"	1030	650	101	75-125	2 40	20	
Surrogate 1-Chlorooctane	59 4		mg/kg	50 0		119	70-130			
Surrogate: 1-Chlorooctadecane	612		"	50 0		122	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

1301 S County Road 1150 Midland TX, 79706-4476	Project Number EMS ² 2005-00210 Project Manager Camille Reynolds							Reported: 09/22/05 08 30		
		manias k-								·····
	U.	Environr	nental L	ab of Te	xas					
A nalyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI51903 - EPA 5030C (GC)										
Blank (EI51903-BLK1)				Prepared &	z Analyzed	09/19/05				<u> </u>
Benzene	ND	0 0250	mg/kg wet						Charles de la la	
Toluene	ND	0 0250	14							
Ethylbenzene	ND	0.0250	м							
Xylene (p/m)	ND	0 0250	**							
Xylene (0)	ND	0 0250	"							
Surrogate a,a,a-Trifluorotoluene	80.8		ug/kg	100		808	80-120			
Surrogate 4-Bromofluorobenzene	869		"	100		86 9	80-120			
LCS (EI51903-BS1)				Prepared &	k Analyzed	09/19/05				
Benzene	83 8		ug/kg	100		83 8	80-120			<u>_</u>
Toluene	91.1		**	100		91 1	80-120			
Ethylbenzene	105		н	100		105	80-120			
Xylene (p/m)	199		*	200		99 5	80-120			
Xylene (o)	104		"	100		104	80-120			
Surrogate a,a,a-Trifluorotoluene	92.1		"	100		92 1	80-120			
Surrogate 4-Bromofluorobenzene	99 4		"	100		99.4	80-120			
Calibration Check (EI51903-CCV1)				Prepared (09/19/05 A	nalyzed. 09	9/20/05			
Benzene	100		ug/kg	100		100	80-120			
Toluene	101		"	100		101	80-120			
Ethylbenzene	103		*	100		103	80-120			
Xylene (p/m)	209		"	200		104	80-120			
Xylene (o)	107		11	100		107	80-120			
Surrogate a,a,a-Trifluorotoluene	95.3		"	100		95 3	0-200			
Surrogate 4-Bromofluorobenzene	116		"	100		116	0-200			
Matrix Spike (E151903-MS1)	Sou	rce: 5115013	-04	Prepared (09/19/05 A	nalyzed. 09	9/20/05			
Benzene	894		ug/kg	100	ND	89.4	80-120			
Toluene	92 2		"	100	ND	92 2	80-120			
Ethylbenzene	95 1		**	100	ND	95.1	80-120			
Xylene (p/m)	189			200	ND	94 5	80-120			
Xylene (0)	88.7			100	ND	88 7	80-120			
Surrogate a,a,a-Trifluorotoluene	91.4		"	100		914	80-120			
Surrogate 4-Bromofluorobenzene	119		"	100		119	80-120			

Project Zia Grizzell 4" Idled Line

Environmental Lab of Texas

Plains All American EH & S

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Fax. (432) 687-4914

Plains All American EH & S	Project	Zıa Grızzell 4" Idled Lir	re Fax (432) 687-4914
1301 S. County Road 1150	Project Number	EMS 2005-00210	Reported:
Midland TX, 79706-4476	Project Manager	Camille Reynolds	09/22/05 08 30

Organics by GC - Quality Control

Environmental Lab of Texas

-										
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EI51903 - EPA 5030C (GC)

Matrix Spike Dup (EI51903-MSD1)	Source: 5	I15013-04	Prepared ()9/19/05	Analyzed: 09	9/20/05			
Benzene	96 0	ug/kg	100	ND	96 0	80-120	7 12	20	
Toluene	98 0	**	100	ND	98 0	80-120	6 10	20	
Ethylbenzene	86 0	**	100	ND	86 0	80-120	10 0	20	
Xylene (p/m)	166	*	200	ND	83 0	80-120	13 0	20	
Xylene (o)	818		100	ND	81.8	80-120	8 09	20	
Surrogate a,a,a-Trifluorotoluene	101	"	100		101	80-120			
Surrogate 4-Bromofluorobenzene	<i>89 2</i>	"	100		89 2	80-120			

Batch EI52006 - EPA 5030C (GC)

Blank (E152006-BLK1)				Prepared & Ana	alyzed. 09/20/05		
Benzene	ND	0 0250	mg/kg wet				
Toluene	ND	0 0250	."				
Ethylbenzene	ND	0 0250	"				
Xylene (p/m)	ND	0.0250					
Xylene (o)	ND	0 0250					
Surrogate a,a,a-Trifluorotoluene	94 2		ug/kg	100	942	80-120	
Surrogate 4-Bromofluorobenzene	95 6		n	100	95 6	80-120	
LCS (E152006-BS1)				Prepared & Ana	alyzed 09/20/05		
Benzene	102	1	ug/kg	100	102	80-120	
Toluene	103		"	100	103	80-120	
Ethylbenzene	94 7			100	94.7	80-120	
Xylene (p/m)	187		**	200	93 5	80-120	
Xylene (0)	83.7		н	100	83 7	80-120	
Surrogate a,a,a-Trifluorotoluene	102		"	100	102	80-120	
Surrogate. 4-Bromofluorobenzene	106		"	100	106	80-120	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

Plains All American EH & S	Project	Zia Grizzell 4" Idled Line	Fax. (432) 687-4914
1301 S County Road 1150	Project Number.	EMS 2005-00210	Reported:
Midland TX, 79706-4476	Project Manager:	Camille Reynolds	09/22/05 08.30

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	E152006 -	EPA	5030C	(GC)
-------	-----------	-----	-------	------

					-					
Calibration Check (EI52006-CCV1)				Prepared &	& Analyzed	09/20/05				
Benzene	100		ug/kg	100		100	80-120			
Toluene	101		"	100		101	80-120			
Ethylbenzene	103			100		103	80-120			
Xylene (p/m)	209		"	200		104	80-120			
Xylene (0)	107		"	100		107	80-120			
Surrogate a,a,a-Trifluorotoluene	95 3		"	100		95 3	0-200			
Surrogate 4-Bromofluorobenzene	116		"	100		116	0-200			
Matrix Spike (EI52006-MS1)	Sour	ce: 5119028	-02	Prepared &	& Analyzed.	09/20/05				
Benzene	2.36	0.0250	mg/kg dry	2.52	ND	93.7	80-120			
Toluene	2.43	0 0250		2 52	0 0243	95 5	80-120			
Ethylbenzene	2 27	0 0250	"	2.52	ND	90 1	80-120			
Xylene (p/m)	4 40	0 0250	"	5 04	0 0440	86 4	80-120			
Xylene (o)	2.08	0 0250	н	2.52	ND	82 5	80-120			
Surrogate a,a,a-Trifluorotoluene	94.5		ug/kg	100		945	80-120			
Surrogate 4-Bromofluorobenzene	95.8		"	100		958	80-120			
Matrix Spike Dup (El52006-MSD1)	Sour	ce: 5119028	-02	Prepared &	& Analyzed [.]	09/20/05				
Benzene	2 43	0 0250	mg/kg dry	2.52	ND	96 4	80-120	2 84	20	
Toluene	2.49	0.0250	"	2.52	0 0243	97 8	80-120	2 38	20	
Ethylbenzene	2 33	0 0250	۳	2 52	ND	92 5	80-120	2 63	20	
Xylene (p/m)	4.51	0.0250	"	5 04	0 0440	88 6	80-120	2 51	20	
Xylene (o)	2 12	0 0250	"	2 52	ND	84 1	80-120	1.92	20	
Surrogate a,a,a-Trifluorotoluene	95 5		ug/kg	100		95 5	80-120			

,,

100

976

.

Surrogate 4-Bromofluorobenzene

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

976

80-120

Plains All American EH & S	Project Zia Grizzell 4" Idled Line	Fax (432) 687-4914
1301 S County Road 1150	Project Number. EMS 2005-00210	Reported:
Midland TX, 79706-4476	Project Manager: Camille Reynolds	09/22/05 08 30

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Smke	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch E152002 - General Preparation (Prep)			•							
Blank (EI52002-BLK1)				Prepared &	k Analyzed:	09/20/05				
% Solids	100		%							
Duplicate (EI52002-DUP1)	So	urce: 5116003-0)1	Prepared &	2 Analyzed	09/20/05				
% Solids	96.4		%		96 8			0 414	20	
Duplicate (EI52002-DUP2)	So	urce: 5116011-(02	Prepared &	2 Analyzed	09/20/05				
% Solids	99.1		%		98 8			0 303	20	
Duplicate (EI52002-DUP3)	So	urce: 5116015-1	11	Prepared &	z Analyzed.	09/20/05				
% Solids	98.7		%		98 6			0 101	20	
Batch E152102 - Water Extraction										
Blank (EI52102-BLK1)				Prepared (09/19/05 A	nalyzed (09/21/05			
Chloride	ND	0 500	mg/kg							
LCS (E152102-BS1)				Prepared (09/19/05 A	nalyzed [.] (09/21/05			
Chlonde	8 74		mg/L	10 0		87.4	80-120			
Calibration Check (EI52102-CCV1)				Prepared (09/19/05 A	nalyzed: (09/21/05			
Chloride	8.44		mg/L	10 0		84 4	80-120			
Duplicate (EI52102-DUP1)	So	urce: 5116013-(05	Prepared (09/19/05 A	nalyzed (09/21/05			
Chlonde	38.9	5.00	mg/kg		38 2			1.82	20	

Plains All American EH & S	Project	Zia Grizzell 4" Idled Line	Fax (432)687-4914
1301 S County Road 1150	Project Number	EMS: 2005-00210	Reported:
Mıdland TX, 79706-4476	Project Manager	Camille Reynolds	09/22/05 08 30

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
J	Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag)
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Raland K Junis

9/22/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

Environmental Lab of Texas I, Ltd.

12600 West I-20 East	Phone: 915-563-1800											СНА	IN C	OF C	UST	ODY	RE	COR	D A	ND ,	ANA	LYS	is R	EQU	IEST	~		
QQ9592, TEARS 75763	Pax: 910-503-1113																1	ZI	A	.6	R	12	26	ŢU.	r m			
Project Manager:	REN DUITON	n											P	roje	set N	sme		£			<u>.</u> E	2	<u></u>	~~~~	ĩ.,		 	
Company Name	BASIN ENV. SV	SV.												1	Proje	ect #	Ľ	1	15	<u>></u>	2	Ø	<u>ø :</u>	5-1	Ø	Ø.	21	Ø
Company Address:	P. O. BOX 301													Pre	oject	Loc	: 7	E F	1	C	ou	N	<u>7</u> Y,	N	M		~~~	
City/State/Zip:	LOVINGTON, NM	8826	ø												F	PO fi	: <u>P</u>	F	A/	14	<u>}_</u>	£	:¥/	₩Ø.	6	ž		
Telephone No:	505 44122124		Fax No:	5	φS	5/3	59	6 -	1 4	12	9									D.	B	R	YA	IN	T			
Sampler Signature	Kon Ditto	3				æ																						
mettining million and	THE OPEN										<u> </u>			F			TOL D	3		naly.	ze F	or:					7	
							un (The la			يحصفهم			لي ورون ال	1		Ţ	DTAL		1		X			F	-			
Sec. S. M. S. S. S. S. S. S. S.		1	1	T	\vdash		ası ^q	ervativ	e T	\neg		Mat		-	1005			1g Se							3		1	<u> </u>
		2005													<u>60</u>			Ad 2						K	3		chedi	
		3	pe	ners										ľ			0	od o			8				Ĩ.		2.e.S	
		ampte	amp	Conta						pectfy				Decify)		l C	P/CE	5 Ag 8		lles	18/50			am	NZE I		AT	d TAT
		ate S	mes	0.0		ç	5	HO S	2	her (5	ž	agbi	-	her (a	4.418	one (C	R/ES	lais A	atiles	nvolat	EX 800		R.M.	al Gan	RL0		EH 1	ndar
LAB # (lab use only)	FIELD CODE		F	Ż	10	Î	ž	ŽÍ	Ž	ð	ž	ā	ŝ	ō		A	R R	Ň	ŝ	1 S	Б.	<u>B</u>	ž	<u>۽</u>	4	+	- <u>te</u>	15
WES	<u>r siw</u>	13 SEP	1450	1	X				+	$\left \cdot \right $			¥┞	+	X -	+	+-	╞			X	\vdash	\rightarrow	\rightarrow	+	╋	+	X
South School South	+ NW	+	1445	╋╋	$\left + \right $				┝			\dashv	╫	╉	╢╴	+	┿	+	\vdash	<u>}</u>	$\left + \right $	\vdash	\rightarrow	-+	╉	╉	+	┽┽┦
EAST WART	- SfW		1515	┼┼╴				-+-	╋			\dashv	╈	╉	╫╌	+	+	\vdash	┢─	1-	┝┼┥	$\left \right $	\rightarrow	+	╋	+	+	╫┤
-15 EIP	SAUTH	++	1530	++					╋			-+	╉╋	╉	╫╴	+	+	\uparrow	<u> </u>	\mathbf{I}		<u> </u>	\rightarrow	1,	đ	+	+	+++
-60 FLR	NORTH	+ +	1545	╈	H				T			1	\ddagger	1	\parallel	\uparrow	╈	t	\square			\square	+	1	1	+	1	Π
-ON STCK	PL		1600		Ļ				T				1	1	1	T	T	T								T	T	T
																Ţ						\Box						
				ļ					<u> </u>			_	_	4	-	\downarrow	<u> </u>	<u> </u>	_	 		\square		_	4	4		_
Constant Instant Constant				<u> </u>																				Ц,	Ļ		Ļ	
ອງອວາສາ ເກຣເຕນະນິດທຣາ																T	mpe	e co Fratu	nai re Ú	ipon	Rec	eipt:		U	2 °.	N	5.	j.
Rslinguished by:	Date Time	Received by:								<u> </u>	Da	te	Т	T	mə	14	ibori	story	/ Có	ŚĊŊ MÍ	ents	ii. S	•		- <i>*</i> ,	- 2		
(Dirth)	1181-200- 125																.* 		• •	·. ·	·			• •		• •		
Relinquished by:	Date Time	Received by El	.OT:	· .		·····	~~~			1	/ Da	ite	+	Ti	me			••• •		•	~	•	-		; ·	•	•	
		1 / ac	a 10	0.0		C. A.	Start P	·	, . , .	19	lu	169	í	(3)	.50	1			- '	• .		· · .		、			-, , , -, ,	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u></u>				Ť																*******				~~~~			A

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	Plains		
Date/Time:	<u>a/16/05</u>	(:45	*******
Order #:	ST16013	1999, and a little supervised at	
Initials:	Cla.		

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	1.0 C
Shipping container/cooler in good condition?	Yesi	No	
Custody Seals intact on shipping container/cooler?	Yes	No	Not present
Custody Seals intact on sample bottles?	(Feije	No	Not present
Chain of custody present?	YES.	No	
Sample Instructions complete on Chain of Custody?	VES	No	
Chain of Custody signed when relinquished and received?	YES	No	
Chain of custody agrees with sample label(s)	YES	No	
Container labels legible and intact?	(es)	No	
Sample Matrix and properties same as on chain of custody?	Xes	No	
Samples in proper container/bottle?	KES	No	
Samples properly preserved?	Xes	No	
Sample bottles intact?	Yes	No	
Preservations documented on Chain of Custody?	(Tas	No	
Containers documented on Chain of Custody?	(B)	No	
Sufficient sample amount for indicated test?	Yes	No	
All samples received within sufficient hold time?	Yes	No	
VOC samples have zero headspace?	Yes	No	Not Appiicable

Other observations:

Contact Person: Regarding:	Variance Documentation: _ Date/Time:	Contacted by:
Corrective Action Taken:	<u>, , , , , , , , , , , , , , , , , , , </u>	*****
######################################		
, 	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	*****
		۵۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰
Malalala Managan Managan Sana Sana Sana Sana Sana Sana San		

Analytical Report

Prepared for:

Daniel Bryant Plains All American EH & S 1301 S. County Road 1150 Midland, TX 79706-4476

Project: Zia Grizzell 4" Idled Line Project Number: EMS: 2005-00210 Location: Lea County, NM

Lab Order Number: 5K28002

Report Date: 12/01/05

Plains All American EH & S	Project [.]	Zia Grizzell 4" Idled Line	Fax (432) 687-4914
1301 S County Road 1150	Project Number	EMS: 2005-00210	Reported:
Midland TX, 79706-4476	Project Manager	Daniel Bryant	12/01/05 16 06

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1 15'	5K28002-01	Soil	11/23/05 08 55	11/23/05 16 00
SB-1 25'	5K28002-02	Soil	11/23/05 09.04	11/23/05 16 00
SB-1 35'	5K28002-03	Soil	11/23/05 09.15	11/23/05 16.00
SB-1 45'	5K28002-04	Soil	11/23/05 09 27	11/23/05 16 00

Plains All American EH & S	Project	Zia Grizzell 4" Idled Line	Fax ⁻ (432) 687-4914
1301 S County Road 1150	Project Number	EMS 2005-00210	Reported:
Midland TX, 79706-4476	Project Manager	Daniel Bryant	12/01/05 16 06

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 15' (5K28002-01) Soil									
Benzene	0.105	0 0250	mg/kg dry	25	EK52901	11/29/05	11/29/05	EPA 8021B	
Toluene	0.776	0 0250			"	n		"	
Ethylbenzene	0.639	0 0250	*			"	11	**	
Xylene (p/m)	2.44	0 0250	"			**	м	11	
Xylene (o)	0.580	0 0250	17	"	"	"	11	H	
Surrogate a,a,a-Trifluorotoluene		166 %	80-1	20	"	"	"	"	S-0.
Surrogate: 4-Bromofluorobenzene		189 %	80-1	20	"	"	"	"	S-01
Gasoline Range Organics C6-C12	558	10 0	mg/kg dry	1	EK52804	11/28/05	12/01/05	EPA 8015M	
Diesel Range Organics >C12-C35	2530	10.0	н	•	n	"	"	51	
Total Hydrocarbon C6-C35	3090	10.0	17	"	n		H	tt	
Surrogate: 1-Chlorooctane		112 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		121 %	70-1	30	"	"	"	"	
SB-1 25' (5K28002-02) Soil									
Benzene	J [0.0115]	0 0250	mg/kg dry	25	EK52901	11/29/05	11/29/05	EPA 8021B	
Toluene	0.248	0 0250	"	19		**		۳	
Ethylbenzene	0.427	0 0250	-	н	n	**		"	
Xylene (p/m)	1.57	0 0250	N	11		"	н	"	
Xylene (0)	0.438	0 0250	"	"	"	"	"	**	
Surrogate: a,a,a-Trifluorotoluene		108 %	80-1	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		173 %	80-1	120	"	"	"	"	S-0-
Gasoline Range Organics C6-C12	371	10 0	mg/kg dry	1	EK 52804	11/28/05	12/01/05	EPA 8015M	
Diesel Range Organics >C12-C35	3010	10 0	"	"	м	"	"	"	
Total Hydrocarbon C6-C35	3380	10.0	"	"	"	0	11	"	
Surrogate: 1-Chlorooctane		119%	70-1	130	"	"	"	"	
Surrogate 1-Chlorooctadecane		130 %	70-1	130	"	"	"	"	
SB-1 35' (5K28002-03) Soil								<u> </u>	
Benzene	ND	0.0250	mg/kg dry	25	EK 52901	11/29/05	11/29/05	EPA 8021B	
Toluene	ND	0 0250		n	н	н	14	"	
Ethylbenzene	ND	0 0250			*	**	u	*	
Xylene (p/m)	ND	0 0250	*	н			н	10	
Xylene (o)	ND	0 0250	"	"	"	"	"	"	
Surrogate a,a,a-Trifluorotoluene		100 %	80-	120	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		88.8 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	J [5.54]	10.0	mg/kg dry	1	EK52804	11/28/05	12/01/05	EPA 8015M	
Diesel Range Organics >C12-C35	223	10 0	**	"	"	"	"	н	
Total Hydrocarbon C6-C35	223	10 0		**	"	*	*	n	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely,

with written approval of Environmental Lab of Texas.

Plains All American EH & S			Project Zia	Grızzell 4'	' Idled Line			Fax (432)	687-4914
1301 S County Road 1150		Project N	umber EMS	5 2005-0	0210			Repo	ted:
Midland TX, 79706-4476		Project M	anager Dan	iel Bryant				12/01/05	5 16 [.] 06
		Oı	ganics by	GC					
		Environ	mental La	ıb of Te	exas				
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 35' (5K28002-03) Soil									
Surrogate: 1-Chlorooctane		105 %	70-1.	30	EK52804	11/28/05	12/01/05	EPA 8015M	
Surrogate [•] 1-Chlorooctadecane		105 %	70-12	30	"	"	"	"	
SB-1 45' (5K28002-04) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EK52901	11/29/05	11/29/05	EPA 8021B	
Toluene	ND	0.0250	n	"	n	n	*		
Ethylbenzene	ND	0 0250	"	"	'n	н	**	"	
Xylene (p/m)	ND	0 0250	"	"	*	"	"	н	
Xylene (0)	ND	0 0250	"	"	•	"	"	м	
Surrogate: a,a,a-Trifluorotoluene		96.5 %	80-12	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	80-12	20	1,	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	I	EK52804	11/28/05	12/01/05	EPA 8015M	
Diesel Range Organics >C12-C35	34.1	10 0	"	и		"	м	"	
Total Hydrocarbon C6-C35	34.1	10 0	11	n	n	"	H	u .	
Surrogate: 1-Chlorooctane		112 %	70-1.	30	"	17	"	"	
Surrogate 1-Chlorooctadecane		114%	70-1.	30	**	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Plains All American EH & S	Project	Zıa Grızzell 4" Idled Line	Fax (432)687-4914
1301 S County Road 1150	Project Number	EMS 2005-00210	Reported:
Midland TX, 79706-4476	Project Manager	Daniel Bryant	12/01/05 16.06

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 15' (5K28002-01) Soil	-								
% Moisture	4.2	0 1	%	I	EK52902	11/28/05	11/29/05	% calculation	
SB-1 25' (5K28002-02) Soil	-								
% Moisture	6.1	0 1	%	1	EK 52902	11/28/05	11/29/05	% calculation	
SB-1 35' (5K28002-03) Soil		_							
% Moisture	6.6	0 1	%	1	EK52902	11/28/05	11/29/05	% calculation	
SB-1 45' (5K28002-04) Soil									
% Moisture	2.6	0.1	%	1	EK 52902	11/28/05	11/29/05	% calculation	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

1301 S County Road 1150 Midland TX, 79706-4476	Project Number. EMS 2005-00210 Project Manager Daniel Bryant								Reported: 12/01/05 16 06		
Organics by GC - Quality Control Environmental Lab of Texas											
Reporting Spike Source %RFC									RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	C Limits	RPD	Limit	Notes	
Batch EK52804 - Solvent Extraction (GC)											
Blank (EK52804-BLK1)	Prepared 11/28/05 Analyzed 12/01/05										
Gasoline Range Organics C6-C12	ND	10 0	mg/kg wet								
Diesel Range Organics >C12-C35	ND	10.0	"								
Total Hydrocarbon C6-C35	ND	10 0	"								
Surrogate 1-Chlorooctane	38 6		mg/kg	50 0		77 2	70-130				
Surrogate 1-Chlorooctadecane	35.0		"	50 0		70 0	70-130				
LCS (EK52804-BS1)				Prepared	11/28/05	Analyzed	12/01/05				
Gasoline Range Organics C6-C12	516	10 0	mg/kg wet	500		103	75-125				
Diesel Range Organics >C12-C35	591	10 0	"	500		118	75-125				
Total Hydrocarbon C6-C35	1110	10 0	"	1000		111	75-125				
Surrogate 1-Chlorooctane	62 5		mg/kg	50.0		125	70-130				
Surrogate 1-Chlorooctadecane	51.2		"	50.0		102	70-130				
Calibration Check (EK52804-CCV1)				Prepared [.]	11/28/05	Analyzed	12/01/05				
Gasoline Range Organics C6-C12	410		mg/kg	500		82 0	80-120				
Diesel Range Organics >C12-C35	556		"	500		111	80-120				
Total Hydrocarbon C6-C35	966		"	1000		96 6	80-120				
Surrogate I-Chlorooctane	56.8		"	50 0		114	70-130				
Surrogate. 1-Chlorooctadecane	55 8		n	50 0		112	70-130				
Matrix Spike (EK52804-MS1)	Source: 5K28003-11		Prepared 11/28/05 Analyzed: 12/01/05								
Gasoline Range Organics C6-C12	504	10 0	mg/kg dry	510	ND	98.8	75-125				
Diesel Range Organics >C12-C35	608	10 0	"	510	ND	119	75-125				
Total Hydrocarbon C6-C35	1110	10 0	"	1020	ND	109	75-125				
Surrogate 1-Chlorooctane	62 8		mg/kg	50 0		126	70-130				
Surrogate 1-Chlorooctadecane	58 3		"	50 0		117	70-130				
Matrix Spike Dup (EK52804-MSD1)	Sour	ce: 5K2800.	3-11	Prepared:	11/28/05	Analyzed	12/01/05				
Gasoline Range Organics C6-C12	535	10 0	mg/kg dry	510	ND	105	75-125	5 97	20		
Diesel Range Organics >C12-C35	619	10 0		510	ND	121	75-125	1.79	20		
Total Hydrocarbon C6-C35	1150	10.0	"	1020	ND	113	75-125	3 54	20		
Surrogate 1-Chlorooctane	599		mg/kg	50 0		120	70-130				

Project Zia Grizzell 4" Idled Line

Environmental Lab of Texas

Surrogate 1-Chlorooctadecane

Plains All American EH & S

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

120

70-130

"

500

598

Fax (432) 687-4914
1301 \$ County Road 1150 Midland TX, 79706-4476		Project Ni Project Ma	umber EM	S 2005-002 nel Bryant	210				Веро 12/01/0	orted: 15 16 06
						- <u></u> .				
	U	ganics by Environn	nental L	uanty Co ab of Tex	as as					
<u> </u>	<u></u>	Reporting		Snike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK52901 - EPA 5030C (GC)										
Blank (EK52901-BLK1)				Prepared &	Analyzed	11/29/05				
Benzene	ND	0 0250	mg/kg wet							
Toluene	ND	0 0250								
Ethylbenzene	ND	0 0250	"							
Xylene (p/m)	ND	0 0250								•
Xylene (o)	ND	0 0250	"							
Surrogate: a,a,a-Trifluorotoluene	418		ug/kg	40 0		104	80-120			
Surrogate. 4-Bromofluorobenzene	35.6		"	40 0		89 0	80-120			
LCS (EK52901-BS1)				Prepared &	: Analyzed	11/29/05				
Benzene	0 0435	0 00100	mg/kg wet	0 0500		870	80-120			
Toluene	0 0526	0 00100		0 0500		105	80-120			
Ethylbenzene	0 0550	0 00100	н	0 0500		110	80-120			
Xylene (p/m)	0 103	0 00100		0 100		103	80-120			
Xylene (o)	0 0545	0 00100		0 0500		109	80-120			
Surrogate a,a,a-Trifluorotoluene	45.5		ug/kg	40 0		114	80-120			
Surrogate. 4-Bromofluorobenzene	42 4		"	40 0		106	80-120			
Calibration Check (EK52901-CCV1)				Prepared &	Analyzed	11/29/05				
Benzene	42 7		ug/kg	50 0		85 4	80-120			
Toluene	50 3		"	50 0		101	80-120			
Ethylbenzene	49 7		*	50 0		994	80-120			
Xylene (p/m)	93 8			100		93 8	80-120			
Xylene (0)	49 4			50 0		98 8	80-120			
Surrogate. a,a,a-Trifluorotoluene	44.2		"	40 0		110	80-120			
Surrogate 4-Bromofluorobenzene	32 9		"	40 0		82.2	80-120			
Matrix Spike (EK52901-MS1)	Sou	rce: 5K2801	1-01	Prepared &	2 Analyzed	. 11/29/05				
Benzene	0 0458	0 00100	mg/kg dry	0 0526	ND	87.1	80-120			
Toluene	0 0559	0.00100	"	0 0526	ND	106	80-120			
Ethylbenzene	0.0593	0 00100		0 0526	ND	113	80-120			
Xylene (p/m)	0 11 1	0 00100	"	0 105	ND	106	80-120			
Xylene (o)	0 0589	0 00100	"	0 0526	ND	112	80-120			
Surrogate a,a,a-Trifluorotoluene	47 7		ug/kg	40 0		119	80-120			
Surrogate 4-Bromofluorobenzene	46 7		"	40 0		117	80-120			

Project Zia Grizzell 4" Idled Line

Environmental Lab of Texas

Plains All American EH & S

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

Fax (432) 687-4914

Plains All American EH & S	Project	Zia Grizzell 4" Idled Line	Fax (432)687-4914
1301 S. County Road 1150	Project Number	EMS 2005-00210	Reported:
Midland TX, 79706-4476	Project Manager	Daniel Bryant	12/01/05 16:06

Organics by GC - Quality Control

Environmental Lab of Texas

										1
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EK52901 - EPA 5030C (GC)

Matrix Spike Dup (EK52901-MSD1)	Sou	rce: 5K28011	1-01	Prepared &	Analyzed	11/29/05			
Benzene	0 0463	0 00100	mg/kg dry	0 0526	ND	88.0	80-120	1 03	20
Toluene	0 0559	0 00100	"	0 0526	ND	106	80-120	0 00	20
Ethylbenzene	0 0587	0 00100	*	0.0526	ND	112	80-120	0 889	20
Xylene (p/m)	0 1 1 0	0.00100	"	0.105	ND	105	80-120	0.948	20
Xylene (0)	0 0583	0.00100	"	0 0526	ND	111	80-120	0 897	20
Surrogate. a,a,a-Trifluorotoluene	46 3		ug/kg	40.0		116	80-120		
Surrogate 4-Bromofluorobenzene	42 3		"	40.0		106	80-120		

Plains All American EH & S	Project	Zia Grizzell 4" Idled Line	Fax (432) 687-4914								
1301 S. County Road 1150	Project Number	EMS 2005-00210	Reported:								
Midland TX, 79706-4476	Project Manager	Daniel Bryant	12/01/05 16 06								
G	General Chemistry Parameters by EPA / Standard Methods - Quality Control Environmental Lab of Texas										

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EK52902 - General Preparation (Prep)										
Blank (EK52902-BLK1)				Prepared. 1	1/28/05 A	nalyzed I	1/29/05			
% Solids	100		%							
Duplicate (EK52902-DUP1)	Sourc	e: 5K28001-0)1	Prepared: 1	1/28/05 A	nalyzed 1	1/29/05			
% Solids	97 2		%		96 7			0.516	20	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

Plains All American EH & S	Project	Zia Grizzell 4" Idled Line	Fax (432)687-4914
1301 S County Road 1150	Project Number	EMS. 2005-00210	Reported:
Midland TX, 79706-4476	Project Manager	Daniel Bryant	12/01/05 16 06

Notes and Definitions

- S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect
- J Detected but below the Reporting Limit, therefore, result is an estimated concentration (CLP J-Flag)
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Raland K Junt

12/1/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

Report Approved By:

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

1001

,

Environmental 12600 West I-20 East Odessa, Texas 79763	Lab of Texas Phone: 915-563-1800 Fax: 915-563-1713	, Ltd.								СН	iain (OF C	USTO	DDY.	REC	ORE) An	id af	VAL	Y\$/5	REC	QUES	ìT		
Project Manager:K	EN DUTTON										!	Proje	et Na	ime:	Z	IF	1	61	RI	<u>2</u> 2	EL.	<u>k</u>			_
Company NameBA	SIN ENV. SYC.											1	Proje	ct 朱	E	M	<u> </u>	2	ØQ	15	- 9	రథ:	21	¢_	_
Company Address: <u>P. C</u>	Box 301											Pro	oject	Loc:	1.4	ÉĤ	,	Co	<u>UR</u>	177		UМ	!		
City/State/Zip: 101	ENGTON, NM 8826	ø											₽	0#:	P	174	1	<u>}</u>	B	RY	AA	JT			
Telephone No: (50)	1441-2124		Fax No	5	<u>85)</u> 3	69-	- 20	129									\$								
Sampler Signature:	Len Ditte	5		~		_											-								
												F		T	CLP		Ал	alyze	For		T		<u> </u>	7	
						Pres	arvati	ve		Ma	ritix	-		TO	TAL:		7	13	3						
LAB # (lab use only) $G = \frac{SB-1}{SB-1}$ $G = \frac{SB-1}{SB-1}$ $G = \frac{SB-1}{SB-1}$ $G = \frac{SB-1}{SB-1}$	FIELD CODE 15' 25' 35' 45'	2 4 9 5 page pag	родише Ф. 255 Ф. 9 Ф. 4 Ф. 9 15 Ф. 9 27 Ф. 9 27	H H H No. of Containers	X X X HNO	HCI.	NaCH	Nore	Cathor (Specify)	Siudge	X X 861	Other (specify).	X X X 11PH: 4101 00154 1005 1	Anions (Cl, SOA, CO3, HCO3)	SARIESPICEC	Metals: As Ag Ba Cd Cr Pb Hg	Volatiles	Serravolstiles		N.O.R.M.	Total Garrand			BUCH TAT (Pre-Schedul	
				+	╏─┼╴	╈┤			╉	+	┝─┼	╈	╉				╡	+	+	+-	╋	┝─┼		+	•
						\prod	1										_		T	T		\square	4	T	
				+	┠╌┠╴	┾╌┤	\rightarrow	╶┼╼┧		+	┝─┼	+	+-	+			\rightarrow		+	╇	+	┝╌┼	-+-	╇	~
Special instructions:	Date Time	Received by:	· · · · · · · · · · · · · · · · · · ·		۸ <u>۱</u>	<u> </u>		 	l	Date	•t- 	-I Tu	 me	Sar Ten Lat	nple nper nper	Con ature tory	taine Up Con Con	ars Ini on Re nmen	tact7 ceip its:	 }. 	- t	0.	-1 _N	Č	
Relinquished by	23.10.1951699 Date Time	Received by El	ui le	25	y.	 // -			11/:	Dete 2.3/.C	5	Th 16	me LOC		(20	(4	. J. I		œ	Ís	-	-		

Environmental Lab of Texas Variance / Corrective Action Report - Sample Log-In

Client:	Plains	
Date/Time:	11/7.3/05 16:00	
Order #:	5K28002	
Initials:	Cir	

Sample Receipt Checklist

Temperature ci container/cooler?	Yes	No	0.5 C
Shipping container/cooler in good condition?	Ves 1	No	
Custody Seals intact on shipping container/cooler?	(26 I	No	Not present
Custody Seals intact on sample bottles?	Yes	No I	Not present
Chain of custody present?	Yes	No	
Sample Instructions complete on Chain of Custody?	Yes	No	
Chain of Custody signed when relinguished and received?	Yes 1	No	
Chain of custody agrees with sample label(s)	Yes	No	
Container labels legible and intact?	Yes !	Na	
Sample Matrix and properties same as on chain of custody?	Yes	No	
Samples in procer container/bottle?	1 Yes	No	
Samples properly preserved?	Yes	No	
Sample bottles intact?	1 169	No	,
Preservations documented on Chain of Custody?	1 Hes	No i	
Containers documented on Chain of Custody?	Ves	No I	
Sufficient sample amount for indicated test?	Ves	No	
All samples received within sufficient hold time?	1 Kres	No	
VOC samples have zero headspace?	Nàs	No	Not Applicable

Other observations:

Contact Person:	Variance Documentation: Date/Time:	_ Contacted by:
Regarding:		
Corrective Action Taken:		
•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

A Xenco Laboratories Company

Analytical Report

Prepared for:

Daniel Bryant Plains All American EH & S 1301 S. County Road 1150 Midland, TX 79706-4476

Project: Zia Grizzell 4" Idled Line Project Number: EMS: 2005-00210 Location: Lea County, NM

Lab Order Number: 7D20009

Report Date: 04/26/07

Plains All American EH & S	Project	Zia Grizzell 4" Idled Line	Fax ⁻ (432) 687-4914
1301 S County Road 1150	Project Number	EMS 2005-00210	
Midland TX, 79706-4476	roject Manager	Daniel Bryant	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
N/W 13'	7D20009-01	Soil	04/17/07 14 00	04-20-2007 13 00
S/W 13'	7D20009-02	Soil	04/17/07 14 15	04-20-2007 13 00
NE/W 13'	7D20009-03	Soil	04/17/07 14 30	04-20-2007 13 00
NW/W 13'	7D20009-04	Soil	04/17/07 14 45	04-20-2007 13 00
SW/W 13'	7D20009-05	Soil	04/17/07 15 00	04-20-2007 13 00
SE/W 13'	7D20009-06	Soil	04/17/07 15.15	04-20-2007 13 00
EXCV FLR N 15'	7D20009-07	Soil	04/17/07 15 30	04-20-2007 13 00
EXCV FLR S 15'	7D20009-08	Soil	04/17/07 15 45	04-20-2007 13 00

Project Zia Grizzell 4" Idled Line Project Number EMS 2005-00210 Project Manager Daniel Bryant

1

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prenared	Analyzed	Method	Notes
N/W 13' (7D20009-01) Soil		Divint		Diation	Datell	riepaieu	Analyzeu	MCHOU	in oles
Benzene	ND	0 0250	mg/kg dry	25	ED72008	04/23/07	04/24/07	EPA 8021B	
Toluene	ND	0 0250	"		"	"		п	
Ethylbenzene	ND	0.0250				"	*	"	
Xvlene (p/m)	0.0334	0 0250	**	н	0			в	
Xylene (o)	ND	0 0250		*	11	"		n	
Surrogate: a a a-Trifluorotoluene		121 %	75-1.	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		114 %	75-1.	25	n	"	"	"	
Carbon Ranges C6-C12	J [18.2]	50 0	mg/kg dry	5	ED72306	04/23/07	04/24/07	EPA 8015M	J
Carbon Ranges C12-C28	223	50 0				"	и		
Carbon Ranges C28-C35	90.1	50 ổ	11	**		"		*	
Total Hydrocarbons	313	50 0		17	"	"	"	89	
Surrogate: 1-Chlorooctane		15.1 %	70-1.	30	"	"	"	"	S-06
Surrogate: 1-Chlorooctadecane		17.8 %	70-1.	30	n	"	"	"	S-06
S/W 13' (7D20009-02) Soil									
Benzene	ND	0 0250	mg/kg dry	25	ED72008	04/23/07	04/24/07	EPA 8021B	
Toluene	J [0.0130]	0 0250		**		"	"	*	J
Ethylbenzene	0.0574	0 0250			"	"	17	**	
Xylene (p/m)	0.0662	0.0250	*1			"	11	45	
Xylene (0)	ND	0 0250	**	н	"	м	"	**	
Surrogate: a,a,a-Trifluorotoluene		117 %	75-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		107 %	75-1.	25	"	"	"	"	
Carbon Ranges C6-C12	159	50 0	mg/kg dry	5	ED72306	04/23/07	04/24/07	EPA 8015M	
Carbon Ranges C12-C28	2130	50.0			**	"	M	"	
Carbon Ranges C28-C35	231	50 0	"		"	n	"		
Total Hydrocarbons	2520	50 0	"	"	"	"	"	n	
Surrogate: 1-Chlorooctane		15.4 %	70-1.	30	"	"	"	"	S-06
Surrogate: 1-Chlorooctadecane		18.6%	70-1	30	"	"	"	11	S-06
NE/W 13' (7D20009-03) Soil				_					
Benzene	ND	0 00200	mg/kg dry	2	ED72406	04/24/07	04/24/07	EPA 8021B	
Toluene	ND	0 00200	11	17	"	"	"	19	
Ethylbenzene	ND	0 00200	11	**	"	"	"	17	
Xylene (p/m)	ND	0 00200	н	"	н	"	и	17	
Xylene (o)	ND	0.00200	11	**	и	н	н	11	
Surrogate: a,a,a-Trifluorotoluene		99 4 %	75-1	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99 6 %	75-1	25	"	"	"	"	
Carbon Ranges C6-C12	41.0	10.0	mg/kg dry	1	ED72306	04/23/07	04/24/07	EPA 8015M	
Environmental Lab of Texas			The res	ults in this r	report apply to	the samples an	alyzed in accord	ance with the samples	

A Xenco Laboratories Company

received in the laboratory This analytical report must be reproduced in its entirety,

with written approval of Environmental Lab of Texas

٠.

Plains All American EH & S 1301 S. County Road 1150		Project N	Project Zia	Grizzell 4'	' Idled Line			Fax [•] (432)	687-4914
Midland TX, 79706-4476		Project N Project M	anager Da	niel Bryant	0				
		- <u> </u>	ragnice b						
Planes All American BH & S D01 S. Courty Road 1150 (Maland TX, 79706-4476) Project Mammér Project Mammér EMS: 2005-00210 Fax: (432) 6874-6914 D01 Beynet Maland TX, 79706-4476 Project Mammér EMS: 2005-00210 EMS: 2005-00210 Fax: (432) 6874-6914 Baland TX, 79706-4476 Project Mammér EMS: 2005-00210 Baland Project Mammér EMS: 2005-00210 Balan Project Mammér EMS: 2005-00210 Analyzed Marked Market Project Mammér EMS: 2005-00210 Market Project Mammér EMS: 2005-00210 Analyzed Market Project Mammér Project Mammér Project Market Project Market Project Mammér EMS: 2005-00210 Balan Project Market Project Market P									
Plans All American GH & S LD1 S Courry Road 1180 Project Number Project Namer EMRS 2005-00210 Fac: (432) 687-4914 Midland TX, 19706-4476 Project Namer EMRS 2005-00210 Fac: (432) 687-4914 Midland TX, 19706-4476 Organics by CC Environmental Lab of Texas Image Call and Call an									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
NE/W 13' (7D20009-03) Soil									
Carbon Ranges C12-C28	12.3	10.0	mg/kg dry	1	ED72306	04/23/07	04/24/07	EPA 8015M	
Carbon Ranges C28-C35	ND	10.0	"		и	n		ef	
Total Hydrocarbons	53.4	10.0	"	"	н	H	"	н	
Surrogate: 1-Chlorooctane		77.6 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		92.8 %	70-1	130	"	"	"	"	
NW/W 13' (7D20009-04) Soil									
Benzene	ND	0 00200	mg/kg dry	2	ED72406	04/24/07	04/24/07	EPA 8021B	
Toluene	ND	0 00200		"		н	N	0	
Ethylbenzene	ND	0 00200	"	"	*	H	n		
Xylene (p/m)	ND	0 00200	"	"	.,	**	н		
Xylene (o)	ND	0 00200	"	"		**	н	"	
Surrogate: a,a,a-Trifluorotoluene		107 %	75-1	125	"	",	"	"	
Surrogate 4-Bromofluorobenzene		104 %	75-1	125	"	"	"	"	
Carbon Ranges C6-C12	ND	10 0	mg/kg dry	i	ED72306	04/23/07	04/24/07	EPA 8015M	
Carbon Ranges C12-C28	J [9.17]	10 0	0	"	*	"	"	"	J
Carbon Ranges C28-C35	ND	10 0	"	"	"	**		"	
Total Hydrocarbons	ND	10 0	*	"	n			"	
Surrogate: 1-Chlorooctane		71.4%	70-1	130	11	"	"	"	
Surrogate: 1-Chlorooctadecane		83.0 %	70-1	130	**	n	"	"	
SW/W 13' (7D20009-05) Soil									
Benzene	ND	0 00200	mg/kg dry	2	ED72406	04/24/07	04/24/07	EPA 8021B	
Toluene	ND	0 00200	"					"	
Ethylbenzene	ND	0 00200	*			"	"	-	
Xylene (p/m)	ND	0 00200		"	"		"		
Xylene (o)	ND	0 00200	"		"	*	"	п	
Surrogate: a,a,a-Trifluorotoluene		102 %	75-1	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	75-1	125	"	"	п	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	i	ED72306	04/23/07	04/25/07	EPA 8015M	
Carbon Ranges C12-C28	ND	10 0	"	"	"	н		"	
Carbon Ranges C28-C35	ND	10 0	"		"		н		
Total Hydrocarbons	ND	10 0	"	"	"	*	N	"	
Surrogate: 1-Chlorooctane		77.8 %	70-1	130	"	"	"	n	
Surrogate: 1-Chlorooctadecane		90.2 %	70-1	130	"	n	"	"	

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas.

Plains All American EH & S	Project	Zia Grizzell 4" Idled Line	Fax. (432) 687-4914
1301 S County Road 1150	Project Number	EMS 2005-00210	
Midland TX, 79706-4476	Project Manager	Daniel Bryant	

Organics by GC

Environmental Lab of Texas

Analyte	Recult	Reporting	Unite	D.1 -	D : 1	Dava	A		
SE/W 13' (7D20009-06) Soil				Dilution	Batch	Prepared	Analyzed	Method	Notes
Benzene	ND	0.00200	mg/kg drv	2	ED72406	04/24/07	04/24/07	EPA 8021B	
Toluene	ND	0.00200	"		"	11	м		
Ethylbenzene	ND	0.00200		н	"	"		п	
Xylene (p/m)	ND	0 00200	u	**	14			**	
Xvlene (o)	ND	0.00200		"	н	н	"	**	
Surrogate: a a a-Trifluorotoluene		109 %	75-	125	"	"	"	"	
Surrogate: 4,Bromofluorohensene		107 %	75-	125	"	"	"	"	
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	ED72306	04/23/07	04/25/07	EPA 8015M	
Carbon Ranges C12-C28	ND	10 0		"			"		
Carbon Ranges C28-C35	ND	10.0				*	м	u	
Total Hydrocarbons	ND	10 0	"			۳		н	
Surroyate: 1-Chlorooctane		78.4%	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		91.0%	70-1	130	"	"	"	"	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
EXCV FLR N 15' (7D20009-07) Soil									
Benzene	0.114	0.0500	mg/kg dry	50	ED72406	04/24/07	04/24/07	EPA 8021B	
Toluene	1.56	0.0500	"	"	"	*	**	**	
Ethylbenzene	6.64	0 0500	"	"				"	
Xylene (p/m)	19.9	0 0500	n	"	"	"	и	*1	
Xylene (0)	1.09	0 0500	"		"	"	"		
Surrogate. a,a,a-Trifluorotoluene		151 %	75-	125	"	n	"	"	S-04
Surrogate: 4-Bromofluorobenzene		176 %	75-	125	n	"	n	"	S-04
Carbon Ranges C6-C12	3700	100	mg/kg dry	10	ED72306	04/23/07	04/25/07	EPA 8015M	
Carbon Ranges C12-C28	23500	100	H	н	u.	"	"	"	
Carbon Ranges C28-C35	4330	100	"		"	"	н		
Total Hydrocarbons	31500	100	н		"	"	"		
Surrogate: 1-Chlorooctane		19.5 %	70-	130	"	"	"	"	S-06
Surrogate: 1-Chlorooctadecane		12.6 %	70-	130	"	"	"	"	S-06
EXCV FLR S 15' (7D20009-08) Sail									
Benzene	J [0.0399]	0 100	mg/kg drv	100	FD72406	04/24/07	04/24/07	EPA 8021B	j
Toluene	1.20	0 100	С - Э - Э н		"	*	н	"	
Ethylbenzene	4.83	0 100		*		"			
Xvlene (p/m)	5.30	0 100	**	н		*	"	v	
Xylene (p)	1.53	0.100	"	*		9	"		
Surrogate: a a Trifluorotolyene		127 %	75-	125	"	<i>n</i>	"	,,	S-04
Surrogate 4-Bromofluorohen-ene		154 %	7.5-	125	"	"	"	"	5-04
Carbon Ranges C6-C12	1240	50 0	mg/kg dry	5	ED72306	04/23/07	04/25/07	EPA 8015M	2.01
Environmental Lab of Texas			The re	sults in this	report apply to	the samples an	alyzed in accord	ance with the sample.	\$
A Xenco Laboratories Company			receive with w	ed in the lab	oratory This c val of Environ	nnalytical repor mental Lab of T	t must be reprod 'exas.	uced in its entirety,	

Page 4 of 12

Plains All American EH & S	Project. Zia Grizzell 4" Idled Line	Fax (432)687-4914
1301 S County Road 1150	Project Number EMS 2005-00210	
Mıdland TX, 79706-4476	Project Manager Daniel Bryant	

Organics by GC

Environmental Lab of Texas

A nalyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
EXCV FLR S 15' (7D20009-08) Soil									
Carbon Ranges C12-C28	3790	50 0	mg/kg dry	5	ED72306	04/23/07	04/25/07	EPA 8015M	
Carbon Ranges C28-C35	897	50 0	۳	•	"	м	"	*1	
Total Hydrocarbons	5930	50 0	"		"	и	n	"	
Surrogate: 1-Chlorooctane		19.3 %	70-1.	30	"	"	"	"	S-06
Surrogate: 1-Chlorooctadecane		142%	70-1.	30	"	"	"	"	S-06

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
N/W 13' (7D20009-01) Soil									
% Moisture	8.4	01	%	1	ED72101	04/20/07	04/20/07	% calculation	
S/W 13' (7D20009-02) Soil								<u></u>	
% Moisture	9.6	01	%	1	ED72101	04/20/07	04/20/07	% calculation	
NE/W 13' (7D20009-03) Soil				······			<u> </u>		
% Moisture	3.1	01	%	1	ED72101	04/20/07	04/20/07	% calculation	
NW/W 13' (7D20009-04) Soil									
% Moisture	3.9	0.1	%	1	ED72101	04/20/07	04/20/07	% calculation	
SW/W 13' (7D20009-05) Soil			1						
% Moisture	7.2	0.1	%	1	ED72101	04/20/07	04/20/07	% calculation	
SE/W 13' (7D20009-06) Soil			1						
% Moisture	5.1	01	%	1	ED72101	04/20/07	04/20/07	% calculation	
EXCV FLR N 15' (7D20009-07) Soil			,						
% Moisture	7.5	01	%	1	ED72101	04/20/07	04/20/07	% calculation	
EXCV FLR S 15' (7D20009-08) Soil									
% Moisture	12.4	0 1	%	1	ED72101	04/20/07	04/20/07	% calculation	
			, ,						
			ı						
			: ,						
			I						
			i.						
			I						
			;						
			,						
Environmental Lab of Texas			The r recei	esults in this wed in the lab	re port apply t oratory This	o the samples at analytical repor	nalyzed in accord it must be reprod	lance with the samp uced in its entirety,	les
A Xenco Laboratories Company			. with	written appro	val of Enviroi	nmental Lab of T	Texas		Page 6 of 12
1260	00 West I-20 Ea	st - Odessa, Te	exas 7970	5 - (432) 5	63-1800 -	Fax (432) 56	3-1713		

:

Plains All American EH & S	Project.	Zia Grizzell 4" Idłed Line	Fax (432)687-4914
1301 S County Road 1150	Project Number	EMS 2005-00210	
Midland TX, 79706-4476	Project Manager	Daniel Bryant	

ł

Organics by GC - Quality Control

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED72008 - EPA 5030C (GC)			1							
Blank (ED72008-BLK1)			1	Prenared	04/20/07	Analyzed	04/23/07			
Benzene	ND	0 00100	mg/kg wet				= 2, 0,			
Toluene	ND	0 001 00								
Ethylbenzene	ND	0 00100	, ,,							
Xylene (p/m)	ND	0.00100	. "				×			
Xylene (o)	ND	0 00100	. "							
Surrogate a,a,a-Trifluorotoluene	530		ug/kg	50 0		106	75-125		,	
Surrogate 4-Bromofluorobenzene	50 6			50 0		101	75-125			
LCS (ED72008-BS1)			1	Prepared.	. 04/20/07	Analyzed [.]	04/23/07			
Benzene	0 0535	0.00100	mg/kg wet	0.0500		107	80-120			
Toluene	0 0539	0,00100	H	0 0500		108	80-120			
Ethylbenzene	0 0572	0 00100		0.0500		114	80-120			
Xylene (p/m)	0 106	0.00100	*	0 100		106	80-120			
Xylene (o)	0 0580	0.00100		0 0500		116	80-120			
Surrogate a,a,a-Trifluorotoluene	53.1		ug/kg	50 0		106	75-125			
Surrogate 4-Bromofluorobenzene	53 1		, "	50 0		106	75-125			
Calibration Check (ED72008-CCV1)			i	Prepared	04/20/07	Analyzed	04/24/07			
Benzene	54 3		ug/kg	50 0		109	80-120			
Toluene	54.9		; •	50 0		110	80-120			
Ethylbenzene	58 2		ʻ .	50.0		116	80-120			
Xylene (p/m)	105		.	100		105	80-120			
Xylene (o)	58 8		•	50.0		118	80-120			
Surrogate [•] a,a,a-Trifluorotoluene	49 8		, "	50.0		99 6	75-125			
Surrogale 4-Bromofluorobenzene	52.4) <i>1</i>	50.0		105	75-125			
Matrix Spike (ED72008-MS1)	Sou	irce: 7D20008	-02	Prepared	04/20/07	Analyzed	04/24/07			
Benzene	0 0985	0.00200	mg/kg dry	0 106	ND	92 9	80-120			
Toluene	0 0926	0 00200	1 "	0 106	ND	874	80-120			
Ethylbenzene	0 0880	0 00200	1) 	0 106	ND	83 0	80-120			
Xylene (p/m)	0 171	0 00200	1	0 211	ND	810	80-120			
	0 0918	0 00200		0 106	ND	86 6	80-120			
Surrogate a,a,a-Trifluorotoluene	39.4		ug/kg	50 0		78 8	75-125			
surrogan +-promojiuorobenzene	58.5			50.0		76.6	75-125			
			1							
			4 4							
			÷							
-Burnian and Finds			1 1 1							
Environmental Lab of Texas			The res	ults in this r d in the labo	eport apply to	o the sampl	es analyzed in a a a a a a a a a a a a a a a a a a	ccordance w	uth the sample	25
A Xenco Laboratories Company			with wr	utten approv	al of Environ	mental Lab	of Texas	_г н оцисеа In	us emirely,	
· -			1							Page 7 of 12
		o		<pre>////////////////////////////////////</pre>						
12600	West I-20 Fast	Odessa Te	vas 79705	- (432) 56	53-1800 - 1	Fax (432)	563-1713			

ł

	1		
Plains All American EH & S	Project	Zia Grizzell 4" Idled Line	Fax (432) 687-4914
1301 S County Road 1150	Project Number	EMS: 2005-00210	
Midland TX, 79706-4476	Project Manager	Daniel Bryant	

ì

Organics by GC - Quality Control

Environmental Lab of Texas

A 1	D (Reporting	<u>.</u>	Spike	Source	o/===	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED72008 - EPA 5030C (GC)										
Matrix Spike Dup (ED72008-MSD1)	Sou	rce: 7D20008	-02	Prepared. ()4/20/07 Ar	nalyzed 04	/24/07			
Benzene	0 0966	0 00200	mg/kg dry	0 106	ND	91 1	80-120	1 96	20	
Toluene	0 0909	0 00200	"	0 106	ND	85.8	80-120	1 85	20	
Ethylbenzene	0 0932	0.00200	, 19 ,	0 106	ND	87 9	80-120	5 73	20	
Xylene (p/m)	0 174	0 00200	1 "	0 211	ND	82 5	80-120	1.83	20	
Xylene (0)	0.0913	0 00200	. "	0.106	ND	86 1	80-120	0 579	20	
Surrogate [•] a,a,a-Trifluorotoluene	40 8		ug/kg	50.0		816	75-125			
Surrogate. 4-Bromofluorobenzene	40 0		i "	50 0		80 0	75-125			
Batch ED72306 - Solvent Extraction (GC)			:							
Blank (ED72306-BLK1)				Prepared ()4/23/07 Ar	nalyzed 04	/24/07			
Carbon Ranges C6-C12	ND	10 0	mg/kg wet							
Carbon Ranges C12-C28	ND	10 0	; "							
Carbon Ranges C28-C35	ND	10 0								
Total Hydrocarbons	ND	10 0	1 11							
Surrogate 1-Chlorooctane	43 7		mg/kg	50.0		874	70-130			
Surrogate 1-Chlorooctadecane	543		"	50 0		109	70-130			
LCS (ED72306-BS1)				Prepared ()4/23/07 At	nalyzed 04	/24/07			
Carbon Ranges C6-C12	552	10 0	mg/kg wet	500		110	75-125			
Carbon Ranges C12-C28	417	10 0	, n	500		83 4	75-125			
Carbon Ranges C28-C35	ND	10 0		0 00			75-125			
Total Hydrocarbons	969	10 0		1000		96 9	75-125			
Surrogate 1-Chlorooctane	50 0		mg/kg	50 0		100	70-130			÷
Surrogate I-Chlorooctadecane	46 4		"	50 0		928	70-130			
Calibration Check (ED72306-CCV1)			ł	Prepared (04/23/07 Ai	nalyzed. 04	/25/07			
Carbon Ranges C6-C12	288		mg/kg	250		115	80-120			
Carbon Ranges C12-C28	259		"	250		104	80-120			
Total Hydrocarbons	547			500		109	80-120			
Surrogate. I-Chlorooctane	52 0		1 11	50 0		104	70-130			
Surrogate 1-Chlorooctadecane	59 4		"	50 0		119	70-130			

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas.

Plains All American EH & S	Project Zia Grizzell 4" Idled Line	Fax (432) 687-4914
1301 S County Road 1150	Project Number EMS 2005-00210	
Midland TX, 79706-4476	Project Manager Daniel Bryant	

Organics by GC - Quality Control

Environmental Lab of Texas

	-	Reporting	8	Spike	Source		%REC	_	RPD	_
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED72306 - Solvent Extraction (GC)			; ;							
Matrix Spike (ED72306-MS1)	Sour	-ce: 7D20015	5-04	Prepared ()4/23/07 Ai	nalyzed 04	/25/07			
Carbon Ranges C6-C12	588	10 0	mg/kg dry	537	ND	109	75-125			
Carbon Ranges C12-C28	538	10 0		537	ND	100	75-125			
Carbon Ranges C28-C35	ND	10 0		0 00	ND		75-125			
Total Hydrocarbons	1130	10 0		1070	ND	106	75-125			
Surrogate 1-Chlorooctane	56 8		mg/kg	50 0		114	70-130			
Surrogate [,] 1-Chlorooctadecane	46.8		, <i>"</i>	50 0		936	70-130	1		
Matrix Spike Dup (ED72306-MSD1)	Sour	·ce: 7D20015	-04 .	Prepared ()4/23/07 A1	nalyzed 04	/25/07			
Carbon Ranges C6-C12	621	10 0	mg/kg dry	537	ND	116	75-125	6 22	20	
Carbon Ranges C12-C28	524	10 0	1 H	537	ND	97.6	75-125	2 43	20	
Carbon Ranges C28-C35	ND	10.0		0.00	ND		75-125		20	
Total Hydrocarbons	1150	10 0		1070	ND	107	75-125	0.939	20	
Surrogate. 1-Chlorooctane	50.7	<u>4 - 1411</u>	mg/kg	50 0		101	70-130			
Surrogate: 1-Chlorooctadecane	52.7		, "	50.0		105	70-130			
Batch ED72406 - EPA 5030C (GC)		<u> 1000-000-000</u>	I							
Blank (ED72406-BLK1)			:	Prepared &	? Analyzed	04/24/07				
Benzene	ND	0 00100	mg/kg wet		`					
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0 001 00	n							
Xylene (p/m)	ND	0 00100	**							
Xylene (o)	ND	0.00100	′н							
Surrogate a,a,a-Trifluorotoluene	58 2	÷=	'ug/kg	50 0		116	75-125			
Surrogate 4-Bromofluorobenzene	60 0		"	50 0		120	75-125			
LCS (ED72406-BS1)			I	Prepared ()4/24/07 Ai	nalyzed 04	/25/07			
Benzene	0 0556	0 00100	mg/kg wet	0.0500			80-120			
Toluene	0 0588	0 00100	"	0.0500		118	80-120			
Ethylbenzene	0.0597	0 00100	· ••	0 0500		119	80-120			
Xylene (p/m)	0115	0 00100		0 100		115	80-120			
Xylene (o)	0.0593	0 00100		0 0500		119	80-120			
Surrogate a,a,a-Trifluorotoluene	596		ug/kg	50 0		119	75-125			
Surrogate 4-Bromofluorobenzene	58 4		100	50 0		117	75-125			
			I							
			I							
			;							
)							
			1							
Burry manufacture and the second			1							

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

ł

Plains All American EH & S	Project Zia Grizzell 4" Idled Line	Fax (432) 687-4914
1301 S County Road 1150	Project Number EMS 2005-00210	
Midland TX, 79706-4476	Project Manager Daniel Bryant	·

;;

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting	4	Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch ED72406 - EPA 5030C (GC)	·····	<u> </u>								
Calibration Check (ED72406-CCV1)			Ì	Prepared	04/24/07 A	nalyzed: 04	/25/07			
Benzene	53 2		ug/kg	50 0		106	80-120		_	
Foluene	54 4		11	50 0		109	80-120			
Ethylbenzene	55 6		47	50 0		111	80-120			
Kylene (p/m)	106		**	100		106	80-120			
Kylene (0)	57 5		"	50 0		115	80-120			
Surrogate a,a,a-Trifluorotoluene	541		"	50 0		108	75-125			
Surrogate 4-Bromofluorobenzene	546		. "	50 0		109	75-125			
Matrix Spike (ED72406-MS1)	Sou	rce: 7D20009)-03	Prepared	04/24/07 A	nalyzed 04	/25/07			
Benzene	0 102	0 00200	mg/kg dry	0 103	ND	99 0	80-120			
Foluene	0,110	0.00200		0.103	ND	107	80-120			
Ethylbenzene	0 107	0 00200	"	0 103	ND	104	80-120			
Xylene (p/m)	0 208	0.00200		0 206	ND	101	80-120			
Xylene (o)	0.113	0 00200		0.103	ND	110	80-120			
Surrogate a a a-Trifluorotoluene	50.4		ug/kg	50.0		101	75-125			
Surrogate 4-Bromofluorobenzene	52.6		'," ' "	50.0		105	75-125			
Matrix Spike Dup (ED72406-MSD1)	Sou	rce: 7D20009	9-03	Prepared	04/24/07 A	nalyzed 04	1/25/07			
Benzene	0 0977	0.00200	mg/kg dry	0 103	ND	94 9	80-120	4 23	20	
Toluene	0 103	0 00200	"	0 103	ND	100	80-120	6 76	20	
Ethylbenzene	0 108	0 00200		0 103	ND	105	80-120	0 957	20	
Xvlene (p/m)	0 201	0 00200	(n	0 206	ND	976	80-120	3 42	20	
Xylene (o)	0 109	0.00200	. "	0 103	ND	106	80-120	3 70	20	
Surroyate a a a-Truluorotoluene	49.5		ug/kg	50 0		99.0	75-125			
Surrogate 4. Bromofluorobenzene	51.5		- 8 - 8	50 0		103	75-125			
Surrogate Dromojiuorosenzene	010									
			,							
			1							
			1							
			1							
			1							
			:							
			:							
			1							
-Environmental Lak Com				te and		the second	ana hura da se		with the came	

A Xenco Laboratories Company

received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

ł

Plains All American EH & S		Proje	ct Zi	ia Grızzell 4" I	dled Line				Fax. (432)	687-4914
1301 S. County Road 1150		Project Numb	er El	MS. 2005-002	210					
Midland TX, 79706-4476		Project Manag	er D	aniel Bryant					the in-	
General Chemis	stry Pa	rameters by E	PA /	' Standard	Method	ls - Qual	lity Cont	trol		
		Environme	ital l	Lab of Tex	kas –					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ED72101 - General Preparation (Pren)							<u> </u>			
Blank (ED72101-BLK1)				Prepared &	: Analyzed	04/20/07				
% Solids	100		%	1						
Duplicate (ED72101-DUP1)	So	ource: 7D19008-01		Prepared &	: Analyzed	04/20/07				
% Solids	96 8	 /	%		96.5			0.310	20	
Duplicate (ED72101-DUP2)	So	ource: 7D19008-21		Prepared &	Analyzed:	04/20/07				wa
% Solids	86 7		%		88,0			1 49	20	
Duplicate (ED72101-DUP3)	Sa	ource: 7D20007-01		Prepared &	Analyzed	04/20/07				
% Solids	89 2	:	%		89 1			0112	20	
		1	I.							
		;								
		l								
		,	I.							
		!	ļ							
		i								
		:								
		I								
		1								
		1								
		i								
		-	i.							
		1								
		!								
		1								
Environmental Lab of Texas			The r	results in this rep	port apply to	the samples	analyzed in a	ccordance	with the sample	les
A Xenco Laboratories Company			rece. with	wea in the labor written approva	atory This a il of Environi	manytical rep mental Lab oj	ori musi be ri f Texas	eproauced i	n us entirely,	Dog 11 Cr
		5							ł	rage 11 of 1
12600 West	t I-20 Eas	st - Odessa, Texas	s 79 70)5 - (432) 563	3 -18 00 - F	⁷ ax (432) 5	63-1713			

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect
J	Detected but below the Reporting Limit, therefore, result is an estimated concentration (CLP J-Flag)
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Buron $K \Rightarrow$

Date: 4/26/2007

Brent Barron, Laboratory Director/Corp. Technical Director Celey D. Keene, Org. Tech Director Raland K. Tuttle, Laboratory Consultant James Mathis, QA/QC Officer Jeanne Mc Murrey, Inorg. Tech Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

A Xenco Laboratories Company

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

									12) Od	600 less	We sa, 1	st I- ſexa	-20 is 7	East 976:	t 5							P	hoi Fax	ne 4	132-9 132-9	563-1 563-	1800 1713	i			
	Project Manager:	Ken Dutton			PAGE 01 O	F 02											Pr	ojec	t Nai	me:	ZIA	GF	RIZ	ZEL	L					****	***
	Company Name	Basin Environmental Ser	vice T	echnol	ogles, LLC													Pi	ojec	:t#:_	200)5-0	02 ⁻	10							
	Company Address:	P. O. Box 301																Proj	oct L	.oc:	Lea	Cou	unty	, NM	I						
	City/State/Zip:	Lovington, NM 88260																	PC	-)#:	PA/	A - D). Bi	yant	:						
	Telephone No:	(505) 441-2124			44 - Lai Anna ann an Anna an An	Fax No		(50)5) 3	96-	1429)	••••••		*****		Repo	nt Fo	rmat	- : [X	Star	ndar	d	ſ	 ۱т Г	RP			PDE	S
	Sampler Signature.	Ban Auto	10	5		e-mail		kd	Jutt	on	@t	bas	ine	env.	.co	—— m								-							
Hab Loog					******					7/2022					1211-QA				******				An	alyze	For		****	nkournedu		Ţ,	1
ORDER	# 70200	~a.									in ca tri			Con	t n l m		Mateix	F	·····			LP.				x				8. 72 hc	;
			T	I				<u> </u>	<u>۲</u>	eser T	T		T	T	lan			8015E	28				Hg Se		0000	7070				24	
.AB # (iab use only)	L8 Fiel	D CODE	3eginning Depth	Ending Depth	Date Sampled	Time Sampled	letd Filtered	otal # of Containers	kce	HNO3	HCI	H ₂ SO ₄	NaOH	Na2S203	None	Other (Specify)	DW = Drinking Water SL = Sti DW = Groundwater S = Soil MP = Non-Potable Specify C	TPH: 418.1 (8015M)	FPH. TX 1005 TX 10	Cations (Ca, Mg, Na, K)	Anions (CI, SO4, Alkalinity)	SAR / ESP / CEC	Metals. As Ag Ba Cd Cr Pb	Volaties	Semivolatiles	d LX autitaiousuus eren 201	N.O.R.M.	anarahan yang bergeri dan sebagai dan ang ing mang bergeri dan sebagai dan sebagai dan sebagai dan sebagai dan Baharahan dan sebagai dan se	an an United Controls and the start of the state of the	RUSH TAT (Pre-Schedule)	tandard TAT 4 DAY
10	N/	/W 13'	<u> </u>	<u> </u>	17-Apr-07	1400	<u>u</u>	1	f_{x}	F	\dagger	+	\uparrow				SOIL			Ť		Ť		Ť		x	+=	$\uparrow \uparrow$	\neg	Ť	1)
02	S/	/W 13'	İ	1	17-Apr-07	1415		1	x	\square	\uparrow	t	1				SOIL	X	T							x	1	\mathbf{T}	1	T	1,
03	NE	W 13'			17-Apr-07	1430		1	X	Γ	Ι	T					SOIL	X						T		x	T			Τ	7,
04	NW	//W 13'			17-Apr-07	1445		1	x								SOIL	X								x	Τ			Ι	>
. 65	SN	//W 13'			17-Apr-07	1500		1	x			Γ					SOIL	X)	x					>
66	SE	/W 13'			17-Apr-07	1515		1	X								SOIL	X								x)
67	EXCV	FLR N 15'		ļ	17-Apr-07	1530		1	x	L			ļ		L		SOIL	X								x					<u></u>
08	EXCV	FLR S 15'	ļ		17-Apr-07	1545		1	X	<u> </u>					L		SOIL	X								x					>
60	W 8"	P/L S 15'	ļ	ļ	17-Apr-07	1600		1	X	ļ	4	Ļ		L	ļ		SOIL	н	DLD	FO	<u>R F</u>	os	SIE	BLE	AN	ALY	SIS	\square		⊥	
10	W 8"	P/L N 15'	<u> </u>	L	17-Apr-07	1615		1	X					L	L		SOIL	Н	DLD	FO	RF	os	SIE	BLE	AN	ALY	SIS			\bot	
Reinquist Reinquist	nstructions:	Date 26APR Ø? Date	499 1	me 5 gó mé	Received by:	Dack	<u>م</u>	x	d						4	Da Da	te te	Tim P:01 Tim		Lab San VO(Lab Cus San	oral ple Cs F tody tody ple by S by C	tory Cor rec on ci y sea y sea Har Samp Couri	Contain of F ontais c als c als c oler/ ier?	inme leads liner(on co on co liellye Client	nts: ntac space ntain oler(red UPS	i? ier(s) s) D		Fedi	Conserver u	N N N N N N N N N N N N N N N N N N N	Star
zysel	e Wekine	4:2007	1:00))	Receiver by Etc	In	<u>~</u>		2				alanda araba		4	-24	2-07	- 1 m 2 0(0 0	Ten	iper	atur	r d e Ù	i G pon F	Rece	ipt:		1	.5	°C)

Ì

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

12600 West I-20 East Odessa, Texas 79765 Phone: 432-563-1800 Fax: 432-563-1713

	Project Manager:	Ken Dutton			PAGE 02 O	F 02						ant indexed.						Pr	ojec	t Nai	ne:	ZIA	G	RIZ	ZEL	L		100000-00-0040	****			*****
	Company Name	Basin Environmental Ser	vice T	chnol	ogies, LLC														Pr	ojec	t#:	20()5-0	002	10							
	Company Address:	P. O. Box 301	****															ş	roje	ect I.	oc:	Lea	Co	unty	, NN	1						
	City/State/Zip:	Lovington, NM 88260						*****	****								PO #: PAA - D. Bryant										****					
	Telephone No	(505) 441-2124				Fax No:		(50	5) 3	96-1	429						R	epor	t Fo	rmal	:	X	Star	ndar	d	[] TF	RP			VPDE	ES
	Sampler Signature:	Ken Dill	15			e-mail:		kd	lutt	on(<u>@b</u>	asi	ne	nv.c	con	1			gaussian			(Paperson and	-		6790)-010040	****		NT MARCE STREET				
(lab use o	niv)																		-		www.ed	T	LP:	Ar	alyze	3 For	: 	T		T	┥,	
ODDED	4.								-	ociaciónica	onone					-						TOT	AL:			\square	<u> </u>				Ĩ	
ORDER	#: 	<u></u>	r	T	1				Pr	eser T	/atio		# Of	Cont	ainei	rs	Ma g G	iinx 5 E	0158	.0				g Se		Volue	3			i	2	{ -
																	005	k ŭ	°	100		ity)		H Q d		2	3				1	۲
(Xlu			£					53									ನ ಸ್ಕ	Spec	015M	Ê	la, h)	Ikalin		۵ R		C	5				Pehod	4 DV
290			Dep	th	pelo	bied		laine								3	Wate	ble ble	ĕ	05	N.B	A, A	ы Е С	88.0		UC V2	100	1			10.01	N I
a p c	,		อีย	Dep	ame	fweg	pau	US Col								bed		Potta	18.1	X 10	8	C) S(0/ dg	649		solline					15	1 2
1) * 5			inni	ling	ate S	neS	F Itte	1# 0		ő		್ದೆ	£	S ₂ O	2) je		Lov.	4	1 7) suo)) SNG	3/E	als: A	aties	ACK N	3 5	RM			F	, pq
Ţ	FIELC	D CODE	308	Enc	å	۲,	Field	Tota	кс Кс	Ŧ	Э Н	Ť	Ž	eN.	ĝ	ີ	à	Å Å	Ē	đ	ð	Anii	SA	Mei	3	3 2					Ē	Sta
. 11	FLR E	4" P/L 15'			17-Apr-07	1630		1	X								SC	DIL	н		FO	RF	os	SIE	3LE	AN	ALY	SIS			\bot	
				1					Γ						Τ	Τ			Γ						Τ	Т	Т	Т	Π			
. /	****	***************************************		1					ĺ						T	T			Γ				Ī		T	T	Τ		Π	Т	Т	T
				1					ſ						T	T			Γ								T	1	Π	T	Т	Т
		###==;;; ==;;;==;=; =; ;; ;; ;; ;; ;; ;; ;;	İ	†					F							T			T							1	T	1		T	T	T
				<u> </u>					h						1	\uparrow			\mathbf{T}							-	1	1	\mathbf{H}	T,	T	1
		*******	 	<u> </u>					┢──						T	+			┢								+	+		\Box	\uparrow	1
				<u> </u>					t						+	+	*******		\mathbf{t}	 					+	-	+	+	+-1	一十	+	+
	·····	944	 	 					┢──						+	+			┢─						-+	-+-	╈	+	++	 +	+	+
Special I	nstructions:		L	J	L	L	L	L	1	I	L	L	L	L					1	1	Lat	bora	tory	Có	mme	ents:			لىــــــــــــــــــــــــــــــــــــ	i <u> </u>	i	<u> </u>
																					Sar	nple	Co	ntair	iers'	Intac	0		n gra Try (t	Ø	Ň	and an
Relieudel	sed by	Date	т	me	Received by:									T		Date	e	- <u>T</u>	Tim	e	VO Läh	Cs F	ree on o	of t	tead	space (s)	87 27 - 7	د آمد ب	1	Ê	- N	
2	Dato				Luida	Dank -	15-1	Å	1					1	4.	20	0	7 9	7:00	2	Cus	stod	y se	als	on co	Intair	ier(s))		Ø	N	, , , , , , , , , , , , , , , , , , ,
Relinquist	ned by:	Date	1091	ime C	Received by:	Malle	vu	7							-	Dat	0	<u></u>	Tim	ð	Sar	npla	Ha	nd C	elive	ered	P[2.57	· .,	Ø.	n N	1
	-					1								ļ								by S by C	Sami	pier/ ier?	Clien	t Rep UPS	, ? D	н	For	ι Ex	i N Lone	l Star
Relinquisi	ned by	, Date	T	me	Received by EL	OT:									, 1	Dat	e	+	Tim	0	.	• y •	21	0	20	219:	35			1		~~~·
Serie	Flockad	4.2001	1:0	ν O	HAT	tU]			-						4.	-2.0	>-0	1 1	:@(<u> </u>	ier	nper	atur		pon I		ipt:		l	2)* 	С.

Variance/ Corrective Action Report- Sample Log-In

Client:	Basin Env. Srus. Tech.
Date/ Time	4-20-07 1:00
.ab ID # [.]	702009
nitials	al

;

Sample Receipt Checklist

	ł			Clie	nt Initials
‡ 1	Temperature of container/ cooler?	(es)	No	1.5 °C	
72	Shipping container in good condition?	Tes	No		
¥3	Custody Seals intact on shipping container/ cooler?	Ves	No	Not Present	
<i>4</i> 4	Custody Seals intact on sample bottles/ container?	(E)	No	Not Present	
¥5	Chain of Custody present?	Yes	No		
# 6	Sample instructions complete of Chain of Custody?	(es)	No		
4 7	Chain of Custody signed when relinquished/ received?	res	No		
# 8	Chain of Custody agrees with sample label(s)?	res	No	ID written on Cont./ Lid	
#9	Container label(s) legible and intact?	(es)	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	(res)	No		
#11	Containers supplied by ELOT?	res	No		
#12	Samples in proper container/ bottle?	res	No	See Below	
#13	Samples properly preserved?	res	No	See Below	
#14	Sample bottles intact?	Tes	No		
#15	Preservations documented on Chain of Custody?	(es)	No		
#16	Containers documented on Chain of Custody?	(es)	No		
#17	Sufficient sample amount for indicated test(s)?	Tes	No	See Below	
#18	All samples received within sufficient hold time?	Tes	No	See Below	
#19	Subcontract of sample(s)?	Yes	No	Not Applicable	
#20	VOC samples have zero headspace?	(es)	No	Not Applicable	

Variance Documentation

Contact:	Contacted	by:	Date/ Time:	
Regarding.				
Corrective Action Taken:	,			
	t 			
Check all that Apply:	See attached	e-mail/ fax		annan an tao amin'ny faritr'i Anna an an an an an an an an an an an an
	Cooling proce	ss had begun shortly after sam	pling event	

.

6701 Aberdeen Avenue, Surte 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 6015 Harris Parkway, Suite 110

Lubbock, Texas 79424 El Paso, Texas 79922 Midland, Texas 79703 Ft. Worth, Texas 76132 E-Mail, lab@traceanalysis.com

800+378+1296 888•588•3443

806 • 794 • 1296 TAX 806 • 794 • 1298 915•585•3443 FAX 915 • 585 • 4944 432+689+6301 FAX 432 • 689 • 6313 817+201+5260

Analytical and Quality Control Report

Ken Dutton **Basin Environmental Service Tech LLC** P.O. Box 301 Lovington, NM, 88260

Project Location: Lea County, NM **Project Name:** Zia Grizzell 4 Project Number: SRS: 2005-00210 Report Date: December 20, 2007

Work Order: 7121928

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
145838	N/W 9'	soil	2007-12-18	15:30	2007-12-19
145839	S/W 9'	soil	2007-12-18	15:45	2007-12-19
145840	EXCV FLR N 15'	soil	2007-12-18	16:00	2007-12-19

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 9 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

Standard Flags

 ${\bf B}$ - The sample contains less than ten times the concentration found in the method blank.

Analytical Report

v	BIEA		Analytical M	lethod:	5 8021B		Prep Me	thod: 3	5 5035
QC Batch:	44021		Date Analyze	ed: 2	2007-12-19		Analyzed	By: 1	DC
Prep Batch:	37925		Sample Prep	aration: 2	2007-12-19		Prepared	By: 1	DC
			RL						
Parameter	Fl	ag	Result		Units		Dilution		\mathbf{RL}
Benzene			< 0.0100		mg/Kg		1	Ĩ	0.0100
Toluene			< 0.0100		mg/Kg		1		0.0100
Ethylbenzene	е		< 0.0100		mg/Kg		1		0.0100
Xylene	E	}	0.0348		mg/Kg		1		0.0100
						Spike	Percent	\mathbf{Re}	covery
Surrogate		Flag	Result	Units	Dilution	Amount	t Recovery	\mathbf{L}	imits
Trifluorotolu	ene (TFT)		1.03	mg/Kg	1	1.00	103	70	- 130
4-Bromofluor	robenzene (4-BFB)	0.918	mg/Kg	1	1.00	92	70	- 130
Sample: 14	5838 - N/W 9'								
Analysis:	TPH DRO		Analytical	Method:	Mod. 8015E	3	Prep M	lethod:	N/A
Analysis: QC Batch:	TPH DRO 44020		Analytical Date Anal	Method: yzed:	Mod. 8015E 2007-12-19	3	Prep M Analyz	fethod: ed By:	N/A LD
Analysis: QC Batch: Prep Batch:	TPH DRO 44020 37916		Analytical Date Anal Sample Pr	Method: yzed: eparation:	Mod. 8015E 2007-12-19 2007-12-19	3	Prep M Analyz Prepar	fethod: ed By: ed By:	N/A LD LD
Analysis: QC Batch: Prep Batch:	TPH DRO 44020 37916		Analytical Date Analy Sample Pr RL	Method: yzed: eparation:	Mod. 8015E 2007-12-19 2007-12-19	3	Prep M Analyz Prepar	dethod: ed By: ed By:	N/A LD LD
Analysis: QC Batch: Prep Batch: Parameter	TPH DRO 44020 37916 Flag	ţ	Analytical Date Anal Sample Pr RL Result	Method: yzed: eparation:	Mod. 8015E 2007-12-19 2007-12-19 Units	3	Prep M Analyz Prepar Dilution	dethod: ed By: ed By:	N/A LD LD RL
Analysis: QC Batch: Prep Batch: Parameter DRO	TPH DRO 44020 37916 Fla _f	5	Analytical Date Analy Sample Pr RL Result <50.0	Method: yzed: eparation:	Mod. 8015F 2007-12-19 2007-12-19 Units mg/Kg	3	Prep M Analyz Prepar Dilution 1	fethod: ed By: ed By:	N/A LD LD RL 50.0
Analysis: QC Batch: Prep Batch: Parameter DRO	TPH DRO 44020 37916 Flag	<u>,</u>	Analytical Date Analy Sample Pr RL Result <50.0	Method: yzed: eparation:	Mod. 8015E 2007-12-19 2007-12-19 Units mg/Kg	3 Spike	Prep M Analyz Prepar Dilution 1 Percent	Aethod: eed By: red By: Reco	N/A LD LD RL 50.0
Analysis: QC Batch: Prep Batch: Parameter DRO Surrogate	TPH DRO 44020 37916 Flag	g Result	Analytical Date Analy Sample Pr RL Result <50.0 Units	Method: yzed: eparation: Dilu	Mod. 8015F 2007-12-19 2007-12-19 Units mg/Kg	3 Spike mount	Prep M Analyz Prepar Dilution 1 Percent Recovery	Aethod: eed By: red By: Reco Lir	N/A LD LD RL 50.0 overy nits

Sample: 145838 - N/W 9'

Analysis:	TPH GRO		Analytical	Method:	S 8015B		Prep Meth	od: S 5035
QC Batch:	44022		Date Anal	yzed:	2007-12-19		Analyzed I	By: DC
Prep Batch:	37925		Sample Pr	eparation:	2007-12-19		Prepared E	By: DC
			\mathbf{RL}					
Parameter	Flag		Result		Units	Di	ilution	\mathbf{RL}
GRO			<1.00		mg/Kg		1	1.00
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolue	ene (TFT)		0.994	mg/Kg	1	1.00	99	70 - 130
4-Bromofluor	obenzene (4-BFB)		0.898	mg/Kg	1	1.00	90	70 - 130

Sample: 145839 - S/W 9'

Analysis:	BTEX			Analytical N	fethod:	S 8021B		Prep Meth	od: S 5035
QC Batch:	44021]	Date Analyz	ed:	2007 - 12 - 19		Analyzed 1	Зу: DC
Prep Batch:	37925			Sample Prep	aration:	2007-12-19		Prepared I	By: DC
				\mathbf{RL}					
Parameter		Flag		Result		Units	Di	lution	\mathbf{RL}
Benzene			······································	< 0.0100		mg/Kg		1	0.0100
Toluene				< 0.0100		mg/Kg		1	0.0100
Ethylbenzene				< 0.0100		mg/Kg		1	0.0100
Xylene	·····	<i>B</i>		0.0404		mg/Kg		1	0.0100
							Spike	Percent	Recovery
Surrogate			Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolue	ene (TFT)			1.03	mg/K	g 1	1.00	103	70 - 130
4-Bromofluor	obenzene (4-B	FB)		0.915	mg/K	g 1	1.00	92	70 - 130

Sample: 145839 - S/W 9'

Analysis: QC Batch: Prep Batch:	nalysis: TPH DRO C Batch: 44020 ep Batch: 37916		TPH DROAnalytical Method:4020Date Analyzed:7916Sample Preparation:			15B 19 19	Prep Anal Prepa	N/A LD LD	
Parameter]	Flag	RL Result		Units	i	Dilution		RL
DRO			<50.0		mg/Kg		1		50.0
Surrogate	Flag	Result	Units	Diluti	o <u>n</u>	Spike Amount	Percent Recovery	Reco Lin	overy nits
n-Triacontane	9	108	mg/Kg	1	_	100	108	17.3 -	169.6

Sample: 145839 - S/W 9'

Analysis: QC Batch: Prep Batch:	TPH GRO 44022 37925		Analytical Date Analy Sample Pr	Method: yzed: eparation:	S 8015B 2007-12-19 2007-12-19		Prep Meth Analyzed I Prepared F	od: S 5035 By: DC By: DC
			\mathbf{RL}					
Parameter	Flag		Result		Units	D	ilution	\mathbf{RL}
GRO			<1.00		mg/Kg		1	1.00
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolu	ene (TFT)		0.991	mg/Kg	1	1.00	99	70 - 130
4-Bromofluor	obenzene (4-BFB)		0.897	mg/Kg	1	1.00	90	70 - 130

Sample: 145840 - EXCV FLR N 15'

Analysis:	BTEX		A	Analytical M	lethod:	S 8021B		Prep Meth	od: S	5035 C
QC Batch:	44021		1	Jate Analyz	ed:	2007-12-19		Analyzed I	3y: L	
Prep Batch:	37925			sample Prep	aration:	2007-12-19		Prepared E	sy: L	л.
				\mathbf{RL}						
Parameter	F	lag		Result		Units		Dilution		\mathbf{RL}
Benzene				< 0.0500		mg/Kg		5	0).0100
Toluene				< 0.0500		mg/Kg		5	0).0100
Ethylbenzene				< 0.0500		mg/Kg		5	0).0100
Xylene			1	0.415		mg/Kg		5	0).0100
							Spike	Percent	Rec	covery
Surrogate]	Flag	Result	Units	Dilution	Amount	Recovery	Li	mits
Trifluorotolue	ene (TFT)			5.05	mg/K	g 5	5.00	101	70	- 130
4-Bromofluor	obenzene (4-BF)	B)		4.76	mg/K	g 5	5.00	95	70	- 130

Sample: 145840 - EXCV FLR N 15'

Analysis: QC Batch: Prep Batch:	TPH DRO 44020 37916		Analytical M Date Analyz Sample Prep	fethod: M ed: 20 paration: 20	od. 8015B 007-12-19 007-12-19	Prep Anal Prep	Method: N/A yzed By: LD ared By: LD
Parameter]	Flag	RL Result		Units	Dilution	RL
DRO		· · · · · · · · · · · · · · · · · · ·	1330		mg/Kg	1	50.0
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontan	e 1	240	mg/Kg	1	100	240	17.3 - 169.6

Sample: 145840 - EXCV FLR N 15'

Analysis: QC Batch: Prep Batch:	TPH GRO 44022 37925		Analytical Date Anal Sample Pr	Method: yzed: reparation:	S 8015B 2007-12-19 2007-12-19		Prep Meth Analyzed I Prepared I	od: S 5035 By: DC By: DC
Parameter	Flag		RL Result		Units	D	ilution	RL
GRO			153		mg/Kg		5	1.00
Surrogate		Flag	\mathbf{Result}	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolue	ene (TFT)		4.98	mg/Kg	5	5.00	100	70 - 130
4-Bromofluor	obenzene (4-BFB)		5.36	mg/Kg	5	5.00	107	70 - 130

¹High surrogate recovery due to peak interference.

Method Blank (1)	QC Batch: 44020					
QC Batch: 44020 Prep Batch: 37916		Date Analyzed QC Preparatio	l: 2007-12-19 on: 2007-12-19))	Analy Prepa	zed By: LD red By: LD
			MDL			
Parameter	Flag]	Result	Ur	its	RL
DRO			<13.4	mg	/Kg	50
Surrogate	Flag Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane	137	mg/Kg	1	100	137	32.9 - 156.1
Method Blank (1) QC Batch: 44021	QC Batch: 44021	Date Analyzed	l: 2007-12-19)	Analy	zed By: DC
Prep Batch: 37925		QC Preparatio	on: 2007-12-19)	Prepa	red By: DC
			MDL			
Parameter	Flag		Result	U	nits	\mathbf{RL}
Benzene		<	< 0.00300	me	g/Kg	0.01
Toluene		<	<0.00300	mg	g/Kg	0.01
Ethylbenzene		<	<0.00400	mg	g/Kg	0.01
Xylene			0.0275	me	g/Kg	0.01
				Spike	Percent	Recovery
Surrogate	Flag	Result U	Jnits Dilu	tion Amoun	t Recovery	Limits
Trifluorotoluene (TF	T)	1.03 m	g/Kg 🛛	1.00	103	70 - 130
4-Bromofluorobenzen	ne (4-BFB)	0.921 m	g/Kg	1 1.00	92	70 - 130
Method Blank (1) QC Batch: 44022 Prep Batch: 37925	QC Batch: 44022	Date Analyzed QC Preparatio	l: 2007-12-19 on: 2007-12-19 MDI	9 9	Analy Prepa	zed By: DC red By: DC
Parameter	Flag]	Result	Uı	nits	\mathbf{RL}
GRO	<u>_</u>		0.682	mg	/Kg	1
Surrorata	Plag	Regult I	Inite Dil.	Spike	Percent	Recovery
Trifuorotoluono (TE	r tag	$\frac{\text{nesure}}{1.05}$	$\frac{1}{\alpha/K\alpha}$	1 1 1 1 1	105	70 120
4-Bromofluorobenzer	$\pm i$	0.919 m	0/10 0/Ko	1 100	92	70 - 130
- Dromondorobelizei.		0.313 11	5/ **5	<u> </u>		10 100

Laboratory Control Spike (LCS-1)

QC Batch:	44020	Date Analyzed:	2007-12-19	Analyzed By:	LD
Prep Batch:	37916	QC Preparation:	2007-12-19	Prepared By:	LD

Report Date: December SRS: 2005-00210	er 20, 2007			Worl Z	c Order: 71 Zia Grizzell	21928 4]	Page Num Lea C	ber: 6 of 9 ounty, NM
P			5	TT T	D:1	Spike	Matri	x		Rec.
Param		Resu	lt	Units	Dil.	Amount	Resu	t R	ec.	Limit
DRO		210	l	mg/Kg	I	250	<13.4	4 8	<u> </u>	9.1 - 142.3
Percent recovery is base	ed on the sp	oike result.	RPD is	based o	n the spike	and spike d	uplicate r	esult.		
		LCSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPI	D Limit
DRO		210	mg/Kg	<u>, 1</u>	250	<13.4	84 4	<u>49.1 - 14</u>	2.3 0	20
Percent recovery is base	ed on the sp	oike result.	RPD is	based of	n the spike	and spike d	uplicate r	esult.		
	LCS	LCSD				Spike	LCS	LC	CSD	Rec.
Surrogate	Result	Result	;	Units	Dil.	Amount	Rec.	R	lec.	Limit
n-Triacontane	89.3	89.6	n	ng/Kg	1	100	89		90	49 - 133.2
QC Batch: 44021 Prep Batch: 37925		,	Date A QC Pr	nalyzed: eparation	2007-12 n: 2007-12	-19 -19			Analyzed Prepared	By: DC By: DC
		LC	S			Spike	Ma	trix		Rec.
Param		Resu	ılt	Units	Dil.	Amount	Res	ult	Rec.	Limit
Benzene		1.02	2	mg/Kg	1	1.00	<0.0	0300	102	70 - 130
Toluene		1.0	2	mg/Kg	1	1.00	<0.0	0300	102	70 - 130
Ethylbenzene		1.03	3	mg/Kg	1	1.00	<0.0	0400	103	70 - 130
Aylene		3.10	J	mg/Kg		3.00	0.0	215	103	70 - 130
Percent recovery is base	ed on the sp	oike result.	RPD is	based of	n the spike	and spike d	uplicate r	esult.		
		LCSD			Spike	Matrix		Rec		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limi	it RPI	D Limit
Benzene		0.996	mg/K	g 1	1.00	< 0.0030	0 100	70 - 1	30 2	
Toluene		0.994	mg/K	g 1	1.00	< 0.0030	0 99	70 - 1	30 3	
Ethylbenzene		1.00	mg/K	g l	1.00	<0.0040	0 100	70 - 1	30 3	
Xylene		3.02	mg/K	g I	3.00	0.0275	101	<u>70 - 1</u>	.30 3	
r ercent recovery is base	eu on the sp	nke resuit.		o based 0	п иле зряке	and spike d	upneate f	court.		
C 1			5 I	LCSD	TT 14	ן די ויכר	opike	LCS	LCSD	Rec.
Surrogate		Kesu		$\frac{104}{104}$	Units	$\frac{DII.}{1}$	nount	Hec.	<u>nec.</u>	
1 Bromofluorobongona	(4 BFB)	1.04	t A (1.04	mg/Kg	1	1.00	104	03	70 - 130 70 - 130
4-DIOMONUOIODENZENE	(4-01-0)	0.92		5.520	<u> </u>		1.00			10 - 100
Laboratory Control	Spike (LC	S-1)								
QC Batch: 44022			Date A	nalyzed:	2007-12	-19			Analyzed	By: DC
Prep Batch: 37925			QC Pr	eparatio	n: 2007-12	2-19			Prepared	By: DC
		τc	c			Collec	1.4-	+ 11 - 1		Pag
Param		LC Reg	.)+ 	Unite	וית	Spike Amount	NIA Ro	X. 	Bec	nec. Limit
		2 A 8	3	ma/Ka	<u>1</u>	10.0		0118	86	70 - 130
		0.0	<u>v</u>	mg/ ng	1	10.0	<u> </u>	0110		10 - 100

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		LCSD			Spike	Matr	ix	F	Rec.		
Param		Result	Units	Dil.	Amount	Resu	lt Rec	. L	imit	RPD	
GRO		8.77	mg/K	g 1	10.0	< 0.01	.18 88	70	- 130	2	
Percent recov	very is based on th	ne spike result	RPD is	based of	n the spike	and spike	duplicate	e result.	•		
		LC	S L	CSD			Spike	LCS	LC	SD	
Surrogate		Res	ult R	esult	Units	Dil.	Amount	Rec.	. R	ec.	
Trifluorotolue	ene (TFT)	1.1	5	1.14	mg/Kg	1	1.00	115	1	14	
4-Bromofluor	cobenzene (4-BFB) 0.9	54 0	.939	mg/Kg		1.00	95	9	4	
Matrix Spil	ke (MS-1) Sp	iked Sample: 1	45838								
QC Batch:	44020		Date A	.nalyzed:	2007-12-	-19			Ana	lyzed H	By
Prep Batch:	37916		QC Pr	eparation	n: 2007-12-	-19			Pre	pared E	Зÿ
Danam		M	5	TT 14 -	D:'	Spike	Mat	rix	D.]
Param DBO		Rest 20	11t 8 r	Units	DII. 1	Amoun	$\sim 1^{\circ}$		Rec.	20	1 0
Dansant name	un is beend on 41	20			1	200		J.4 14	00	30.	. 2
Percent recov	ery is based on th	le spike result.	RPD IS	based of	i the spike a	and spike	duplicate	e result.			
P		MSD	TT T .	D .1	Spike	Matrix	'n	Re	ec.	DDD	
Param		Result	Units	Dil.	Amount	Result	Rec.	Lir	nit	RPD)
		- 158	mg/Kg	1	250	<13.4	03	30.2 -	201.4	21	
Surrogate	M Res	IS MS sult Resu	D ılt	Units	Dil	Spil Amo	ke Int	MS Rec.	MSI Rec) 	
n Trisconton	<u> </u>	10)	m m / IV m		10/)	104	109	•	
n-Triacontan	e 10	04 102	2	mg/Kg	1	100)	104	102	2	
n-Triacontan Matrix Spil	e 10 ke (MS-1) Spi	04 102 iked Sample: 1	2 45844	mg/Kg	1	100)	104	102	<u>}</u>	
n-Triacontane Matrix Spil	e 10 ke (MS-1) Spi 44021	04 102 iked Sample: 1	2 45844 Date A	mg/Kg	2007-12-	-19)	104	102 Ana	lvzed F	3
n-Triacontand Matrix Spil QC Batch: Prep Batch:	e 16 ke (MS-1) Sp 44021 37925	04 10: iked Sample: 1	2 45844 Date A QC Pre	mg/Kg nalyzed: eparation	2007-12- : 2007-12-	-19 -19)	104	102 Ana Prep	lyzed E bared B	3y 3y
n-Triacontance Matrix Spil QC Batch: Prep Batch:	e 10 ke (MS-1) Spi 44021 37925	04 103	2 45844 Date A QC Pre	mg/Kg nalyzed: eparatior	2007-12- :: 2007-12-	100 -19 -19)	104	102 Ana Prep	lyzed E bared B	33 3y
n-Triacontand Matrix Spił QC Batch: Prep Batch:	e 10 ke (MS-1) Spi 44021 37925	04 102 iked Sample: 1 M	45844 Date A QC Pre	mg/Kg nalyzed: eparatior	2007-12- :: 2007-12-	10(-19 -19 Spike) M	104	102 Ana Prep	lyzed E bared B	3y 3y
n-Triacontane Matrix Spil QC Batch: Prep Batch: Param	e 10 ke (MS-1) Spi 44021 37925	04 103 iked Sample: 1 Ma Res	2 45844 Date A QC Pre S ult	mg/Kg nalyzed: eparation Units	2007-12- : 2007-12- Dil.	100 -19 -19 Spike Amoun) M t R	104 fatrix esult	102 Ana Prep Re	lyzed E bared B c.	3y 3y
n-Triacontand Matrix Spil QC Batch: Prep Batch: Param Benzene Taluona	e 16 ke (MS-1) Spi 44021 37925	04 103 iked Sample: 1 Ma Res 1.0	2 45844 Date A QC Pre S ult 9 1	mg/Kg nalyzed: eparation Units ng/Kg	1 2007-12- :: 2007-12- Dil. 1	100 -19 -19 Amoun 1.00) t R <0	fatrix esult .00300	102 Ana Prep Re 10	lyzed E bared B c. 9	3y 3y
n-Triacontand Matrix Spil QC Batch: Prep Batch: Prep Batch: Param Benzene Toluene Ethylbenzene	e 16 ke (MS-1) Sp 44021 37925	04 103 iked Sample: 1 M Res 1.0 1.1	2 45844 Date A QC Pre S ult 9 1 1 1 3	mg/Kg nalyzed: eparation Units ng/Kg ng/Kg	1 2007-12- : 2007-12- Dil. 1 1	-19 -19 Spike <u>Amoun</u> 1.00 1.00) t R <0 <0	atrix esult .00300 .00300	102 Ana Prep Re 10 11	yzed E pared B c. 9 1	33 3y
n-Triacontand Matrix Spil QC Batch: Prep Batch: Prep Batch: Param Benzene Toluene Ethylbenzene Xylene	e 16 ke (MS-1) Sp 44021 37925	04 102 iked Sample: 1 Ma Res 1.0 1.1 1.1 3.4	2 45844 Date A QC Pre S ult 9 1 1 1 3 1	mg/Kg nalyzed: eparation Units ng/Kg ng/Kg ng/Kg ng/Kg	1 2007-12- 1: 2007-12- Dil. 1 1 1 1 1	-19 -19 -19 Amoun 1.00 1.00 1.00 3.00) t R <0 <0 <0 <0 0 0	atrix esult .00300 .00400 0298	102 Ana Prep 10 11 11	yzed E pared B c. 9 1 3 3	33 33 3 3 3 3 3 3
n-Triacontand Matrix Spil QC Batch: Prep Batch: Prep Batch: Param Benzene Toluene Ethylbenzene Xylene Percent recov	e 16 ke (MS-1) Sp 44021 37925 e rery is based on th	04 105 iked Sample: 1 Mr Ress 1.0 1.1 1.1 3.4 ne spike result.	2 45844 Date A QC Pre S ult 9 1 1 1 3 1 1 1 RPD is	mg/Kg nalyzed: eparation Units ng/Kg ng/Kg ng/Kg ng/Kg based on	1 2007-12- 2007-12- Dil. 1 1 1 1 1 1 1 1 1 1	-19 -19 -19 Amoun 1.00 1.00 3.00 and spike) t R <0 <0 <0 0. duplicate	atrix esult .00300 .00400 0298 2 result.	102 Ana Prep Re 10 11 11 11	yzed E pared B c. 9 1 3 3 3	3y
n-Triacontand Matrix Spil QC Batch: Prep Batch: Prep Batch: Param Benzene Toluene Ethylbenzene Xylene Percent recov	e 16 ke (MS-1) Spi 44021 37925 e rery is based on th	04 103 iked Sample: 1 iked Sample: 1 MSD	2 45844 QC Pre S ult 9 1 1 1 3 1 1 1 RPD is	mg/Kg nalyzed: eparation Units ng/Kg ng/Kg ng/Kg ng/Kg based on	1 2007-12- 2007-12- Dil. 1 1 1 1 1 1 1 1 1 5 pike	-19 -19 -19 -100 1.00 1.00 3.00 and spike Matr.	$\frac{M}{t - R} < 0 < 0 < 0 < 0 \\ 0 \\ duplicate \\ ix$	(atrix esult .00300 .00300 .00400 0298 e result.	102 Ana Prep 10 11 11 11 11	lyzed E bared B c. 9 1 3 3	333
n-Triacontand Matrix Spil QC Batch: Prep Batch: Prep Batch: Perzene Toluene Ethylbenzene Xylene Percent recov Param	e 16 ke (MS-1) Spi 44021 37925 e rery is based on th	04 103 iked Sample: 1 iked Sample: 1 MSD Result	2 45844 Date A QC Pre S ult 9 1 1 1 1 RPD is Units	mg/Kg nalyzed: eparation ng/Kg ng/Kg ng/Kg ng/Kg based on Dil.	2007-12- 2007-12- Dil. 1 1 1 1 1 1 1 1 Spike Amount	100 -19 -19 5 Spike Amoun 1.00 1.00 1.00 3.00 and spike Matr Resu) t R <0 <0 <0 duplicate ix lt Rec	(atrix esult .00300 .00300 .00400 0298 e result. F :. L	102 Ana Prep Re 10 11 11 11 11 	lyzed E pared B sc. 99 1 3 3 RPD	33 35
n-Triacontand Matrix Spil QC Batch: Prep Batch: Prep Batch: Perzene Toluene Ethylbenzene Xylene Percent recov Param Benzene	e 16 ke (MS-1) Spi 44021 37925 e rery is based on th	04 102 iked Sample: 1 Mr Ress 1.0 1.1 1.1 3.4 ne spike result. MSD Result 1.25	2 45844 Date A QC Pre S ult 9 1 1 1 3 1 1 1 RPD is <u>Units</u> mg/Kg	mg/Kg nalyzed: eparation ng/Kg ng/Kg ng/Kg based on Dil. 1	1 2007-12- 2007-12- Dil. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 -19 -19 -19 1.00 1.00 1.00 3.00 and spike Matr. Resu <0.003) t R <0 <0 0. duplicate ix t Rec 300 125	(atrix esult .00300 .00400 0298 e result. E L 5 70	102 Ana Prep Re 10 11 11 11 11 11 2 Rec. imit - 130	e bared E ec. 99 1 3 3 3 RPD 14	33
n-Triacontand Matrix Spil QC Batch: Prep Batch: Prep Batch: Param Benzene Toluene Ethylbenzene Xylene Percent recov Param Benzene Toluene	e 11 ke (MS-1) Sp 44021 37925	04 102 iked Sample: 1 M Res 1.0 1.1 1.1 3.4 ne spike result. MSD Result 1.25 1.26	2 45844 Date A QC Pre S ult 9 1 1 1 RPD is mg/Kg mg/Kg	mg/Kg nalyzed: eparation mg/Kg ng/Kg ng/Kg based on Dil. 1 1	1 2007-12- 2007-12- Dil. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-19 -19 -19 Amoun 1.00 1.00 1.00 3.00 and spike Matr Resu <0.003 <0.003) t R <0 <0 <0 duplicate ix lt Rec 300 125 300 126	atrix esult .00300 .00400 0298 e result. E. L 5 70 5 70	102 Ana Prep Rec 10 11 11 11 11 11 11 11 11 11 11 11 11	e bared B ared B 20 1 3 3 8 PD 14 13	333 3y
n-Triacontand Matrix Spil QC Batch: Prep Batch: Prep Batch: Percent Ethylbenzene Xylene Percent recov Param Benzene Toluene Ethylbenzene	e 16 ke (MS-1) Sp 44021 37925 e very is based on th	04 102 iked Sample: 1 Ma Res 1.0 1.1 1.1 3.4 ne spike result. MSD Result 1.25 1.26 1.30 2.00	2 45844 Date A QC Pre S ult 9 1 1 1 RPD is mg/Kg mg/Kg mg/Kg	mg/Kg nalyzed: eparation Units ng/Kg ng/Kg ng/Kg based on Dil. 1 1	1 2007-12- 2007-12- Dil. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-19 -19 -19 Amoun 1.00 1.00 1.00 3.00 and spike Matr Resu <0.003 <0.004) t R <0 <0 <0 0 duplicate ix lt Rec 300 128 300 126 00 130	atrix esult .00300 .00300 .00400 0298 e result. F c. L 5 70 5 70 5 70 0 70	102 Ana Prep 10 11 11 11 11 11 11	2 byzed E bared B c. 9 1 3 3 8 PD 14 13 14	33y

SRS: 2005-00210		Wor	k Order: 712 Zia Grizzell	21928 4			Page Num Lea Co	ber: 8 of 9 ounty, NM
Surrogate	MS Result	MSD Result	Units	Dil.	Spike Amount	MS Rec.	MSD Rec.	Rec. Limit
Trifluorotoluene (TFT)	1.03	1.02	mg/Kg	1	1	103	102	70 - 130
4-Bromofluorobenzene (4-BFB)	0.916	0.923	mg/Kg	1	1	92	92	70 - 130
Matrix Spike (MS-1) Spiked	Sample: 145838	3						
QC Batch: 44022 Prep Batch: 37925	Dat QC	e Analyzed Preparatio	: 2007-12- on: 2007-12-	-19 -19			Analyzed Prepared	By: DC By: DC
Param	${f MS}$ Result	Units	Dil.	Spil Amo	ke M unt R	latrix .esult	Rec.	Rec. Limit
GRO	8.11	mg/Kg	1	10.	0 <0	0.0118	81	70 - 130
Percent recovery is based on the spi	ke result. RPI) is based of	on the spike a	and spil	e duplicate	result.		
	MSD		Spike	Mat	rix	Rec		RPD
Param	Result Ur	its Dil.	. Amount	Res	ult Rec	. Lim	it RPI	D Limit
GRO	8.15 mg	/Kg 1	10.0	<0.0	118 82	70 - 1	.30 0	
	1 1/ DDT	N * . 1 1						
Percent recovery is based on the spi	ke result. RPL) is based of	on the spike a	and spir	e duplicate	result.		
Percent recovery is based on the spi	MS	MSD	on the spike a	and spir	Spike	MS	MSD	Rec.
Percent recovery is based on the spin Surrogate	MS Result	MSD Result	Units	Dil.	Spike Amount	MS Rec.	MSD Rec.	Rec.
Percent recovery is based on the spi Surrogate Trifluorotoluene (TFT) 4-Bromofluorohenzene (4-BFB)	MS MS Result 0.987 0.933	MSD Result 0.975 0.934	Units mg/Kg	Dil.	Spike Amount 1	MS Rec. 99	MSD Rec. 98 93	Rec. Limit 70 - 130 70 - 130
Percent recovery is based on the spi Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)	ke result. RP1 MS Result 0.987 0.933	MSD Result 0.975 0.934	Units mg/Kg mg/Kg	Dil. 1 1	Spike Amount 1 1	99 93	MSD Rec. 98 93	Rec. Limit 70 - 130 70 - 130
Percent recovery is based on the spi Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Standard (ICV-1)	ke result. RP1 MS Result 0.987 0.933	MSD Result 0.975 0.934	Units mg/Kg mg/Kg	Dil. 1 1	Spike Amount 1 1	MS <u>Rec.</u> 99 93	MSD Rec. 98 93	Rec. Limit 70 - 130 70 - 130
Percent recovery is based on the spi Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Standard (ICV-1) QC Batch: 44020	ke result. RP1 MS Result 0.987 0.933 Dat	MSD Result 0.975 0.934 e Analyzed	Units mg/Kg mg/Kg : 2007-12-1	Dil. 1 1 9	Spike Amount 1 1	MS Rec. 99 93	MSD Rec. 98 93 Analyzed	Rec. Limit 70 - 130 70 - 130 By: LD
Percent recovery is based on the spi Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Standard (ICV-1) QC Batch: 44020	ke result. RP1 MS Result 0.987 0.933 Dat	MSD Result 0.975 0.934 e Analyzed	Units mg/Kg mg/Kg l: 2007-12-1 ICVs	Dil. 1 1 9 ICV	Spike Amount 1 1	MS Rec. 99 93	MSD Rec. 98 93 Analyzed	Rec. Limit 70 - 130 70 - 130 By: LD
Percent recovery is based on the spin Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Standard (ICV-1) QC Batch: 44020	ke result. RP1 MS Result 0.987 0.933 Dat ICVs True	MSD Result 0.975 0.934 e Analyzed	Units mg/Kg mg/Kg : 2007-12-1 ICVs Found	Dil. 1 1 9 ICV Perce	Spike Amount 1 1	MS Rec. 99 93 Percent Recovery	MSD Rec. 98 93 Analyzed	Rec. Limit 70 - 130 70 - 130 By: LD Date
Percent recovery is based on the spin Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Standard (ICV-1) QC Batch: 44020 Param Flag Units	ke result. RP1 MS Result 0.987 0.933 Dat ICVs True Conc	MSD Result 0.975 0.934 e Analyzed	Units mg/Kg mg/Kg : 2007-12-1 ICVs Found Conc.	Dil. 1 1 9 ICV Perce Recov	Spike Amount 1 1 s ent ery	Percent Rec. 99 93 Percent Recover Limits	MSD Rec. 98 93 Analyzed	Rec. Limit 70 - 130 70 - 130 By: LD Date Analyzed
Percent recovery is based on the spin Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Standard (ICV-1) QC Batch: 44020 Param Flag Units DRO mg/Ka	MS Result 0.987 0.933 Dat ICVs True Conc 5 250	MSD Result 0.975 0.934 e Analyzed	Units mg/Kg mg/Kg : 2007-12-1 ICVs Found Conc. 226	Dil. 1 1 9 ICV Perce Recov 90	Spike Amount 1 1 s ent ery	Percent Recovery Limits 85 - 115	MSD Rec. 98 93 Analyzed	Rec. Limit 70 - 130 70 - 130 By: LD Date Analyzed 2007-12-19
Percent recovery is based on the spin Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Standard (ICV-1) QC Batch: 44020 Param Flag Units DRO mg/Ka Standard (CCV-1)	ke result. RP1 MS Result 0.987 0.933 Dat ICVs True Conc 3 250	MSD Result 0.975 0.934 e Analyzed	Units mg/Kg mg/Kg 2007-12-1 ICVs Found Conc. 226	Dil. 1 1 9 ICV Perce Recov 90	Spike Amount 1 1	Percent Rec. 99 93 Percent Recovery Limits 85 - 115	MSD Rec. 98 93 Analyzed	Rec. Limit 70 - 130 70 - 130 By: LD Date Analyzed 2007-12-19
Percent recovery is based on the spin Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Standard (ICV-1) QC Batch: 44020 Param Flag Units DRO mg/Kg Standard (CCV-1) QC Batch: 44020	Ke result. RP1 MS Result 0.987 0.933 Dat ICVs True Conc g 250	MSD Result 0.975 0.934 e Analyzed	Units mg/Kg mg/Kg 2007-12-1 ICVs Found Conc. 226	Dil. 1 1 9 ICV Perce Recov 90 9	Spike Amount 1 1	Percent Rec. 99 93 Percent Recovery Limits 85 - 115	MSD Rec. 98 93 Analyzed	Rec. Limit 70 - 130 70 - 130 By: LD Date Analyzed 2007-12-19 By: LD
Percent recovery is based on the spin Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Standard (ICV-1) QC Batch: 44020 Param Flag Units DRO mg/Ka Standard (CCV-1) QC Batch: 44020	Ke result. RP1 MS Result 0.987 0.933 Dat ICV3 True Conc 3 250 Dat	e Analyzed s C	Units mg/Kg mg/Kg 2007-12-1 ICVs Found Conc. 226	Dil. 1 1 9 ICV Perce Recov 90 9 CCV	Spike Amount 1 1 5 s ent ery	Percent Rec. 99 93 Percent Recovery Limits 85 - 115	MSD Rec. 98 93 Analyzed	Rec. Limit 70 - 130 70 - 130 By: LD Date Analyzed 2007-12-19 By: LD
Percent recovery is based on the spin Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Standard (ICV-1) QC Batch: 44020 Param Flag Units DRO mg/Ka Standard (CCV-1) QC Batch: 44020	MS Result 0.987 0.933 Dat ICVs True Conc 3 250 Dat CCV True	MSD Result 0.975 0.934 e Analyzed s F c. () e Analyzed s F	Units mg/Kg mg/Kg 2007-12-1 ICVs Found Conc. 226 : 2007-12-1 CCVs Found	Dil. 1 1 9 ICV Perce Recov 90 9 CCV Perce	Spike Amount 1 1 s ent ery	Percent Recovery Limits Percent Recovery	MSD Rec. 98 93 Analyzed	Rec. Limit 70 - 130 70 - 130 By: LD Date Analyzed 2007-12-19 By: LD Date Date
Percent recovery is based on the spin Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Standard (ICV-1) QC Batch: 44020 Param Flag Units DRO mg/Kg Standard (CCV-1) QC Batch: 44020 Param Flag Units	MS Result 0.987 0.933 Dat ICVs True Conc g 250 Dat CCV True Conc	MSD Result 0.975 0.934 e Analyzed s H c Analyzed s F c F c F	Units mg/Kg mg/Kg 2007-12-1 ICVs Found Conc. 226 : 2007-12-1 CCVs Found Conc.	Dil. 1 1 9 ICV Perce Recov 90 9 CCV Perce Recov	Spike Amount 1 1 s ent ery s ent ery.	Percent Recovery Limits Percent Recovery Limits	MSD Rec. 98 93 Analyzed	Rec. Limit 70 - 130 70 - 130 By: LD Date Analyzed By: LD Date Analyzed

QC Batch: 44021

Date Analyzed: 2007-12-19

Analyzed By: DC

Param	Flag	Units	ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Benzene		mg/Kg	0.100	0.108	108	85 - 115	2007-12-19
Toluene		mg/Kg	0.100	0.106	106	85 - 115	2007-12-19
Ethylbenzene		mg/Kg	0.100	0.107	107	85 - 115	2007-12-19
Xylene		mg/Kg	0.300	0.324	108	85 - 115	2007-12-19

Standard (CCV-1)

QC Batch: 4402	1		Date Analyz	ed: 2007-12-1	19	Anal	yzed By: DC
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.104	104	85 - 115	2007-12-19
Toluene		mg/Kg	0.100	0.103	103	85 - 115	2007 - 12 - 19
Ethylbenzene		mg/Kg	0.100	0.104	104	85 - 115	2007 - 12 - 19
Xylene		mg/Kg	0.300	0.312	104	85 - 115	2007-12-19

Standard (ICV-1)

QC Batch:	44022		Date Ana	alyzed: 2007-1	2-19	Anal	yzed By: DC
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	1.05	105	85 - 115	2007-12-19

Standard (CCV-1)

QC Batch:	44022		Date Ana	Analyzed By: DC					
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date		
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed		
GRO		mg/Kg	1.00	1.02	102	85 - 115	2007-12-19		

TRACE ANALYSIS, INC.

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

									500 Mic)2 B dian	asir d, T	o Sti exa	reet, s 79	Sui 703	te A	l						F	Phoi Fax	ne: 4	432- 432-	689-6 689-f	i301 i313	ł			
	Project Manager:	Ken Dutton	•	·	PAGE 01	OF 01										<u> </u>	₽	roje	ct N	ame:	<u>Z1/</u>	G	RIZ	ZEL	<u>L 4'</u>	1					<u> </u>
	Company Name	Basin Environmenta	al Service Te	chnol	ogies, LLC											_		ł	roje	ct#:	SR	S:	200	5-0	021	0				·	
	Company Address:	P. O. Box 301		••••••••••••••••••••••••••••••••••••••														Pro	ject	Loc:	Lea	ı Co	unty	, NN	A	<u> </u>					
	City/State/Zip:	Lovington, NM 8826	0																F	'O #:	INV	00	ET	0 PL	AIN	S MA	RKE	TING	;		
	Telephone No:	(505) 441-2124				Fax No:		(50	5) 3	96-1	429						Repo	ort F	orm	at:	X	Sta	ndar	rd		π []			ПN	PDE	3
	Sampler Signature:	Low 2	Jutta)		e-mail:		kd	utt	on(@b	asi	ner	οv.c	om			-								_			_		
lab use	only)																	F			T	CLP:	Ап	alyz	e Foi	л. Т		7		- [2	
ORDER	R #:							1	Pr	eser	vatio	n &	# of (onta	ainers		Matrix		0	1	то	TAL:			4					48, 72 h	
ib use only)			ıg Depth	Jepth	mpled	ampled	ned	Containers 4 OZ							acify)	Ing water SL=Sludg	Indwater 5= Soll/Sol	otaole specify utri	1005 TX 1006	a, Mg, Na, K)	SO4, Atkalinity)	/ CEC	Ag Ba Cd Cr Pb Hg S		les	18/503000 B1 EX 826		🛪 EPA 300.0		VT (Pre-Schedule) 24,	TAT
LAB # (la	FIEL	D CODE	Beginnin	Ending [Date Sa	Time Sa	Field Scree	Total #. of C	ke	+NO3	HCI	H ₂ SO ₄	NaOH	Na ₂ S ₂ O ₃	None Other (Sp	DW-Drink!	CW = Grou			Cations (C	Anions (CI,	SAR / ESP	Metals As	Volatiles	Semivolati	BTEX 8021 RCI	N.O.R.M.	Chloride		RUSH TA	Standard
<u>45838</u>	N	I/W 9'			18-Dec-07	1530		1	х			_	_	_			SOIL		<u>(</u>	_						×_	\bot	\square			X
834	S	S/W 9'			18-Dec-07	1545		1	X			_	-+	_		╞	SOIL	-	<u>(</u>	+-				\dashv		<u>×</u>	+	+		╇	X
840	EXCV	FLR N 15'			18-Dec-07	1600		1	×				-+	-+-	+	╋	SOIL	+	4	+				\rightarrow	-+	¥	+	╆╌┥	+	+-	₽Å
													+	-+-	+	╈		╉	╋					\dashv	╋	+-	╋	+	+-	+	┢
																T		╈												T	Γ
												_															\Box				
		·····							_		-		\rightarrow	_		╀		-	_	_	┣				+		+-	\downarrow		╇	
												-+	+	+	-	╉		╀	╋				$\left - \right $	-+	-+		┿	╋┥	+	╋	┝
Special I	Instructions: EMAIL RESULTS:	kdutton@basinen	iv.com & c	jreyn	olds@paalp.o	com	أسيبي			I	<u> </u>					_				Lai Sa	bora mple	tory Co	Coi ntair	mme ners	ents: Intac			<u> </u>	<u> </u>	N N	1
lelinguist Lelinguist	hed by: Dutton hed by:	1920- Dat	e Tin <u>Ø7 (290</u> e Tin	ne D	Received by:	K.B.	20 0	Ľ	22	X	s{	?			2 <i>K</i>	ate	7	7:0 7:0 TI	me C me	Lai Cu Cu Sa	stod stod mple by	on c y se y se Ha Sam	or r als c als c als c nd D pier/	inea inea on co on co olive Chen	spac (s) intair ioler(ered it Rep	er(s) (s) (s)		ξ	- ADOD	ZZZZ Z	
Relingulişt Taxılda	hed by	red Stall?		ne 30	Received by Tra	ce;; ())ale	9-07	TI	me	Te	npe	ratu	re U	pon l	Rece	ים pt.	ור 	red 3.	Ex Lo	one S "C	(ar
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~														12	ko.	58	,	al	2	عد	100	- 7	nu	N.W	~4			1	Sy-

# Appendix B Soil Boring Log

.

Dept	h	Soil Column	PID Reading	Petroleum Odor	Petroleum Stain	Soil Description	Plains Mar Zia Grizzell 4- Lea County, SF/SF S8	keting, L. P. Inch Idled Line New Mexico T22S_R37E
Excave	ation Floor 10	feet bgs					SRS: 20	05-00210
	5		1310 ppm	Heavy	Heavy	Backfill, Dry	Soil E TD. 4	oring Completion Data
	10		1127 ppm	Heavy	Heavy	Caliche Layer, Dry	Install Ba Se	ed 23 November 2005 Isin Environmental rvice Technologies J Samples selected
	15		364 ppm	Heavy	Moderate	Sand (SP) White-Brown, Very Fi Grained, Well Sorted, imbedded caliche. Dry	ne Soil Bori W/	l for analysis ng Completion Data
	20		163 ppm	Heavy	Heavy	Sand (SP) Red-Brown, Very Fin Grained, Well Sorted, Dry	e	14 bags of hydrated Bentonite Plug, Surface to 45' bgs
	25		137 ppm	Heavy	Heavy			
	30		84.4 ppm	Heavy	Heavy			
	35		18.7 ppm	Moderate	Moderate			
	40		10.5 ppm	Moderate	Moderate			
	45 то		10.1 ppm	Moderate	Moderate		TITLE Appendix B Zia Grizzell 4-Inch Idled Line	DESCRIPTION Soil Boring 1
							DRAWN BY	DATE December 20, 2006

# Appendix C Photographs



Completed excavation at the Zia Grizzell 4-Inch Idled Pipeline Release Site



Installation of the synthetic liner at the Zia Grizzell 4-Inch Idled Pipeline Release Site


Backfilling activities at the Zia Grizzell 4-Inch Idled Pipeline Release Site



Zia Grizzell 4-Inch Idled Pipeline Release Site upon completion of backfilling activities

## Appendix D Release Notification and Corrective Action (Form C-141)

District 1 1625 N. French Dr., Hobbs, NM 88240 <u>District II</u> 1301 W. Grand Avenue, Artesia, NM 88210 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fc. NM 87505

ì

1

## State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

Release Notification and Corrective Action		
	OPERATOR	🛛 Initial Report 📋 Final Report
Name of Company Plains Pipeline, LP	Contact Daniel Bryant	
Address P.O. Box 3119 - Midland, Tx 79702	Telephone No. (432) 557-5865	
Facility Name Zia Grizzell 4" Idled Line Facility Type Pipeline		
Surface Owner Apache Corporation Mineral Owner		Lease No.
I OCATION OF BELEASE		
LUCATION OF RELEASE		
P 8 22S 37E	Peer nom the 12	lea
∽ ≤ ′ Latitude N 32° 24' 10.7" Longitude W 103° 10' 38.7"		
NATURE OF RELEASE		
Type of Release Sour Crude Oil	Volume of Release 40 bbis	Volume Recovered 30 bbls
Source of Release 4" steel idled line	Date and Hour of Occurrence	Date and Hour of Discovery
Was Immediate Notice Given?	109/05/2005 10:30	09/05/2005 11:00
Yes No Not Required	Gary Wink	4
By Whom? Camille Reynolds	Date and Hour 09/05/2005 14	4:50
Was a Watercourse Reached?	If YES, Volume Impacting the W	vatercourse: 51
L Yes 🛛 No		
If a Watercourse was Impacted, Describe Fully.*		
<b>Ä.</b>		
Describe Cause of Problem and Remedial Action Taken.*		
being idled at time of release, the pressure of the line was 0 lbs and had no throughput on the pineline. The gravity of the crude oil is 37.1 (6) 65° 11.8		
content is <10 ppm. Line depth is approximately 2.5' at the release source.		
Describe Area Affected and Cleanup Action Taken.*		
Visible staining from the pipeline release measured 45' X 24' yielding 1,080 ft ² . Impacted soil will be remediated ner NMOCD guidelines		
- The second second second second second second second second second second second second second second second		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and		
regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger		
public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that area a threat to around write and remediate to a should their operations have failed to adequately investigate and remediate contamination that area a threat to around write and the should their operations have failed to adequately investigate and remediate contamination that area a threat to around write and the should their operations have failed to adequately investigate and remediate contamination that area a threat to around write and the should the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be added at the should be		
or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other		
federal, state, or local laws and/or regulations.	*	
	<u>OIL CONSER</u>	<b>RVATION DIVISION</b>
Signature: De-1756-3	The streng that	
	Approved by District Supervisor-	
Printed Name: Daniel Bryant		TH Jolson
Title: Environmental R/C Specialist	Approval Date: 12.21.06	Expiration Date: 3.21.06
E-mail Address: dmbryant@paaln.com	Conditions of Approval:	
Date: 9/9/05 Phone: (432) 557-5865		Attached
Attach Additional Sheets If Necessary		
dal Utt APACIOR 3555 0008 1 11H 11C/2		
14 MARA 10 10 10 10 10 10 10 10 10 10 10 10 10		
Unadente apparte to Dara - and		
upplication - prACOG35550265		