GW -

WORK PLANS

NOU. 81 JUL 87

10601 Lomas NE, Suite 106 OL CONSERVATION DIV. . 02 AUG - 9 PM 1: 02 Albuquerque, NM 87112 505-237-8440

August 8, 2002

3

Mr. Roger Anderson Mr. Wavne Price New Mexico Energy Department Oil Conservation Division 1220 S Saint Francis Dr Santa Fe, NM 87505

RE: Work Plan to Determine the Extent and Source(s) of Contamination, Maljamar Gas Plant, Maljamar, New Mexico Maxim Project No. 2007216.130

Dear Messrs. Anderson and Price:

On behalf of Conoco Inc., Maxim Technologies, Inc. (Maxim) is pleased to submit this work plan to determine the extent and source(s) of impacts to groundwater at the Conoco Maljamar Gas Plant (Plant) located in Lea County, New Mexico, as stated in your letter to Conoco dated April 29, 2002.

BACKGROUND

A network of 13 monitor wells (including 4 temporary monitor wells) has been emplaced by Conoco at and near the Plant. Data collected during well boring installation indicate the presence of a saturated zone comprised of sand, the upper surface of which is located between approximately 75 to 90 feet below ground surface (bgs). The sand contains groundwater that is potentiometrically mounded and appears to be confined beneath overlying shale. The lateral extent and competency of the shale is unknown. In monitor wells to the immediate south and southwest of the Plant, the presence of hydrocarbon product has been observed on top of the groundwater column, while groundwater samples drawn from a monitor well north of the Plant contained elevated chloride and total dissolved solids (TDS) concentrations.

During the March 2002 drilling program, Maxim noted the absence of the saturated sand approximately one-third mile northwest and west of the Plant's western fence line. Hence, a western limit of the groundwater system has been delineated. To the north, east, and south of the Plant, the presence and quality of groundwater and the lateral extents and thicknesses of the fluid-bearing zone and overlying shale are all currently unknown.

Work to date has not pinpointed the location of the top of the mound nor allowed determination of the hydrocarbon or chloride sources. Maxim has developed the following work plan to fill in the data gaps listed above and further delineate the extent of contamination.

[&]quot;Providing Cost-Effective Solutions to Clients Nationwide"

Mr. Roger Anderson Mr. Wayne Price August 8, 2002 Page 2 of 5

Maxim proposes to augment the existing monitor well installation with approximately 6 to 10 additional monitor wells in the vicinity of the Plant. All well borings will be located on existing caliche pads to facilitate drill rig access. Conoco will provide an archeologist to clear all potential drilling locations prior to emplacement of temporary wells. The temporary wells will be located to the northeast, east and southeast of the Plant area and are intended to confirm and define the extent of dissolved phase hydrocarbons, chloride-rich waters, and the subsurface lateral and vertical extents of the fluid-bearing zone and the confining shale.

To meet these objectives, Maxim will:

Objective 1

Advance six borings for the purpose of installing temporary monitor wells. It should be noted that up to four additional temporary monitor wells may be installed, depending on findings from the original six well borings. Proposed locations for monitor wells are shown on Figure 1. Maxim proposes that Sites 15, 16, and 17 be placed first. Upon review of findings, Maxim will select subsequent temporary well locations by either stepping out (eastward) or stepping in (westward) from the first locations. Borings where groundwater is encountered will be completed as temporary monitor wells (discussed below).

Maxim notes that the installation of the first three temporary monitor wells will provide information needed to assess the scale of the groundwater system. In the case that the borings show dry, Maxim will step in toward existing monitor wells to the west and repeat the well boring effort in attempt to install temporary monitor wells to define the groundwater system. (On Figure 1 these locations are labeled 18A, 19A and 20A.) In this case, the northern, eastern, and southern limits of the groundwater system will be established, and Maxim will install six temporary monitor wells (Figure 1) to characterize water quality and develop stratigraphic and hydrogeologic controls.

Should groundwater be encountered at Sites 15, 16, and 17, Maxim will step out toward the east (second case) to set additional well borings (18, 19 and 20). In this second case, the position for monitor well 20 has been located at the base of the escarpment approximately three-quarter mile distant from the eastern Plant fence line to allow further investigation of chloride-enriched groundwater detected during drilling at the Well 327 site. Maxim notes that in this case the scale of the investigation will have been expanded and that monitor wells installed during this phase will be too widely spaced to allow data collected from them to be incorporated with certainty into data from the existing monitor well network. In this case, four additional intermediately spaced monitor wells may be set following consultation with Conoco. Potential locations for these four additional wells are shown on Figure 1.

Mr. Roger Anderson Mr. Wayne Price August 8, 2002 Page 3 of 5

Objective 2

The borings will be advanced with a truck-mounted air rotary drill rig, equipped for split spoon sampling. The borings will be advanced to approximately 75 feet bgs using air rotary methods and collecting shovel samples at five-foot intervals. Formations encountered will be logged according to the Unified Soil Classification System so that observations concerning soil types, lithologic changes, and the environmental condition of the soils can be noted. Upon nondetection of volatile organic compounds (VOCs) by photo-ionization detector (PID), two of the well borings will be sampled by continuous split spoon from the base of the confining shale zone through the base of the fluid-bearing sand to provide data regarding its position and thickness.

Objective 3

At each well boring, Maxim will collect soil samples and field screen samples with a PID to detect the presence of VOCs.

Objective 4

Soil cuttings generated by soil boring activities will be staged on plastic liners at the wellhead area. Upon confirmation of the absence of VOCs, cuttings will be scattered at the wellhead area. In the event VOCs are present in concentrations greater than 100 parts per million, as indicated by a PID, cuttings will be retained on plastic liners and the VOCs allowed to evaporate.

Objective 5

The monitor wells will be installed following New Mexico Oil Conservation Division (OCD) guidelines stipulated in *Guidelines For Remediation of Leaks, Spills and Releases* published August 13, 1993. Figure 1 presents the proposed locations of the monitor wells. Nine proposed locations are shown on Figure 1. An additional four wells could potentially be installed based on findings from the original six. The only deviation from the OCD guidelines will be that all wells will be considered "temporary". The use of temporary wells has been agreed upon between Conoco and the OCD.

A temporary well is defined as: following the placement of a sand pack and bentonite seal about the monitor well, no grout will be placed in the open annulus between surface and the bentonite seal. Following assessment of well data and water quality data, Conoco will meet with OCD and discuss which wells should remain for the duration of the project and what wells can be pulled, plugged and abandoned immediately (i.e., they provide redundant information relative to other wells). The wells that remain will be grouted per OCD guidelines. Mr. Roger Anderson Mr. Wayne Price August 8, 2002 Page 4 of 5

Objective 6

Following installation, wells will be developed by purging. Collected purge water from the temporary monitoring wells will be drummed and disposed of appropriately. All sampling equipment will be cleaned between each boring installation with a steam cleaner. Rinse water will be contained and disposed of per appropriate regulatory procedures.

Objective 7

Following development of the wells, groundwater samples will be collected and submitted to Severn Trent Laboratories for analysis. A groundwater sample will also be collected from Well RA-10175, located south of the Plant as well as all currently existing wells. If free product is present, the well will not be sampled. A minimum of 17 and a maximum of 24 groundwater samples (providing there is no free product), one duplicate sample, and one trip blank (for a total of 19 to 26 samples) will be analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX). Samples will also be analyzed for major ions, pH, and TDS. This analytical suite is abbreviated relative to previous sampling rounds but will provide required data as far as water quality (major cations and anions including chloride, bromide, sulfate, bicarbonate) and the presence or absence of dissolved phase hydrocarbon impacts. A down-hole conductivity probe will be utilized in the field to determine if fresh water to saline water interface exists within each monitor well completed to date at the site.

Objective 8

Following sampling, the wells will be surveyed by Basin Surveys, so that accurate water level elevations can be obtained and incorporated into the existing potentiometric surface map. Depth-to-water measurements will be taken at each well in the network following sampling.

Objective 9

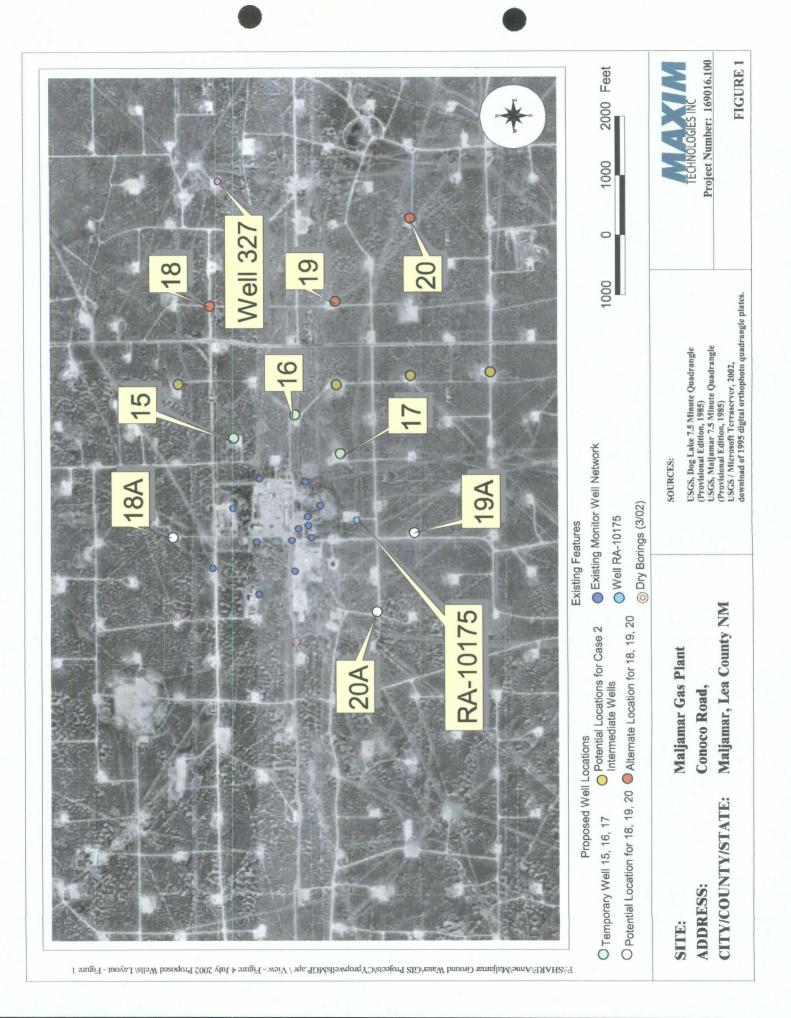
Upon receipt of laboratory results, Maxim will issue a comprehensive report on investigative results to date.

PROJECT SCHEDULE

Maxim is prepared to initiate this scope of work as soon as Conoco grants approval and a drill rig(s) is available.

Mr. Roger Anderson Mr. Wayne Price August 8, 2002 Page 5 of 5

Mr. Clyde Yancey will serve as the Project Manager and will have the authority to commit whatever resources are necessary to support the project team. It will be his responsibility to assure that the Clients needs are met in terms of scope of work and schedule. Mr. Frank Lichnovsky and Ms. Anne Stewart will perform the fieldwork under the supervision of Mr. Yancey.


If you have any questions or comments regarding this work plan, please do not hesitate to contact me.

Sincerely,

MAXIM TECHNOLOGIES, INC. ancer ١ Clyde L. Pancey, P.G. Senior Project Manager

Attachments

Copies To: Neal Goates, Conoco RT, Houston, Texas Joyce Miley, Conoco Gas & Power, Houston, Texas Suzanne Holland, Conoco EP Americas, Midland, Texas

10601 Lomas NE Suite 106 Albuquerque, NM 87112

505-237-8440

FEB 2 2 1 CONSERVATION DRASS

February 21, 2001

Mr. Wayne Price NM Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87504

RE: Proposal to Discharge Treated RO Water From the Conoco Maljamar Gas Plant to the Conoco MCA Playa Lake Project, Maljamar, Lea County, New Mexico

Dear Mr. Price:

On behalf of Conoco Inc. (Conoco), Maxim Technologies, Inc. (Maxim) is submitting this proposal to the New Mexico Oil Conservation Division (OCD) for approval to discharge treated RO water from the Maljamar Gas Plant to the nearby MCA Playa Lake Project created by Conoco. In order to facilitate OCD approval, Conoco had the treated RO water analyzed, and contacted the Carlsbad office of the U.S. Bureau of Land Management (BLM) for their input.

The treated RO water was sampled for benzene, ethylbenzene, toluene and total xylenes (purgable aromatics) by USEPA Method SW8021B, and Total Petroleum Hydrocarbons (TPH) by TPH Texas 1005 Method at SPL Laboratories. All sample results were nondetects (laboratory report is attached). The treated RO water was also analyzed for the 8 RCRA metals and major cations and anions by Cardinal Laboratories (laboratory report is attached). All laboratory results were within the New Mexico Water Quality Control Commission groundwater standards. During the initial analytical run, lead was analyzed by USEPA Method 600/239.1 rather than typical USEPA Method 600/239.2, and a value of 0.178 mg/L was obtained. Due to the immobility of lead, this result was considered very unusual. A subsequent sample was obtained and rerun with a value of <0.002 mg/L.

[&]quot;Providing Cost-Effective Solutions to Clients Nationwide"

Mr. Wayne Price February 21, 2001 Page 2 of 2

Conoco contacted the BLM Carlsbad office to inquire about any potential interplay between the National Environmental Policy Act (NEPA) and the treated RO water discharge to the playa. BLM indicated that they had no problem with the discharge, and in fact encouraged Conoco to pursue this proposal. It is their desire to maintain the playa as an aquatic habitat for various plant and animal species. BLM further indicated that they had 2001 funding to assist Conoco with control of salt cedar at the MCA Playa Lake Project.

Conoco intends to route the treated RO water to the playa via a PVC pipeline. Engineering specifications are currently being developed. The treated water will be pumped from the treated RO water holding tank to the playa at a rate of approximately 200 barrels per week.

If you should have any questions regarding this proposal, please do not hesitate to call either Mark Bishop with Conoco (505-676-3519) or myself (505-237-8440). We would appreciate your attention to this proposal at your earliest convenience.

Sincerely, MAXIM TECHNOLOGIES, INC.

lyde h. Leven

Clyde L. Yancey Sr. Project Manager/Office Manager

Attachments

Copy to:

Mr. Mark Bishop, Conoco/Natural Gas & Gas Producers, Maljamar, New Mexico Mr. John Skopak, Conoco/Remediation Technology, Houston, Texas

SHOULDER LEVEL INCLUD

RDINA LABORATORIES

PHONE (815) 873-7001 - 2111 BEECHWOOD - ABILENE, TX 79803

PHONE (506) 393-2328 . 101 E. MARLAND . HOBBS, NM 98240

ANALYTICAL RESULTS FOR CONOCO INC. NGGP ATTN: MARK BISHOP P.O. BOX 90 MALJAMAR, NM 88264 FAX TO:

Receiving Date: 02/05/01 Reporting Date: 02/08/01 Project Number: NOT GIVEN Project Name: MALJAMAR PLANT RO WATER Project Location: NOT GIVEN

LAB NUMBER

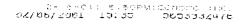
Analysis Date: 02/06/01 Sampling Date: 02/05/01 Sample Type: WASTEWATER Sample Condition: COOL AND INTACT Sample Received By: AH Analyzed By: AH

Fe

	(ppm)
TER	 0.425

1.0 mg/L

H5578-1	RO WASTEWATER	0.425
Quality Control		2.010
True Value QC		2.000
% Recovery		101
Relative Percent	Difference	0.4


SAMPLE ID

METHOD: EPA 800/4-79-020 238.1

) K

02/06/2001

PLEASE NOTE: Liability and Demagee. Cardinal's liability and client's exclusive remady for any claim ancing, whether based in convector to it, shall be limited to line, amount paid by client for analyses. All claims, including those for negligence and any other cause whatevers shall be deemed welved unless made in writing and received by Cardinal within thiny (SD) days after completion of the applicable carvice, in no event shall Cardinal be fable for incidental or consequential damagee, including, without limitation, business interruptions, loss of use, or loss of profile incurred by Client, its subsidiarias, affinition of the approximation of the performance of services hereunder by Cardinal, regardless of whether such daims to be above-wated reasons of otherwise.

CARDINAL LAD RUDDO

Receiving Date: 02/05/01

Reporting Date: 02/08/01

Project Number: NOT GIVEN

Preject Location: NOT GIVEN

Project Name: MALJAMAR PLANT RO WATER

PHONE (915) 573-7001 . 2111 BEECHWOOD . ABILENE, TX 79303

PHONE (605) 383-2328 . 101 E. MARLAND . HOB85, HM 88240

ANALYTICAL RESULTS FOR CONOCO INC. NGGP ATTN: MARK BISHOP P.O. BOX 90 MALJAMAR, NM 88264 FAX TO:

DODA HETALO

Sampling Date: 02/05/01 Sampla Type: WASTEWATER Sampla Condition: COOL AND INTACT Sample Received By: AH Analyzed By: AH

			RC	RAMETA	63	0.		
LAB NUMBER SAMPLE ID	As	Ag	Ba	Cd	Cr	Pb	Hg	Sə
`	ppm							
ANALYSIS DATE:	02/06/01	02/08/01	02/08/01	02/08/01	02/08/01	02/06/01	02/06/01	02/05/01
H5578-1 RO WASTEWATE	R <0.1	<0.1	<0.1	<0.01	<0.01	0.178	<0.02	<0.01
Quality Control	0.051	4.870	49,95	1.008	0,965	5.051	0.00587	0,197
True Value QC	0.050	5.000	50.00	1.000	1.000	5.000	0.00600	0.200
% Recovery	102	87.4	96.0	101	98.5	101	97.8	98.5
Relative Percent Difference	5.5	. 0.3	1.2	0.2	3.6	0.4	2.2	8.5
METHODS: EPA 800/4-79-020	206.2	272.1	208.1	213,1	218.1	239.1	245.1	270.2
METHODS: SW-840	7080A	7780A	7080A	7130	7190	7420	7470A	7740

EAL Chemist

02/06/200)

PLEADER OTH A Damages. Condition's liability and clarif's exclusive remedy to; any alsim stising, whether based its contract or tort, shall be univerted to the amount part by clarif or screives. All claims, including more for negligence and any other cause whatsoever shall be desried waved tuness including more provided by Cardinal within thiny (30) days star completion of the epologies and claims, including more for negligence and any other cause whatsoever shall be desried waved tuness including, without imitige and received by Cardinal within thiny (30) days star completion of the epologies useries. In no event shall Cardinal be lable for backetstal or consequential damages, including, without imitadon, business interruptions, loss of use, of the other by client. Its subsidiaries, stillshes or successory stilling out of arcetased to the performance of terricos Bestander by Cardinal, repartices of whether such claim is based upon any of the above-stated reasons or otherwise.

A CONTRACTOR OF A CONTRACTOR OF

PHONE (915) 879-7001 . 2111 BEECHWOOD . ABILENE, TX 79603

FHONE (605) 383-2326 - 101 E. MARLAND + HOBBS, NM 86240

ANALYTICAL RESULTS FOR CONOCO INC. NGGP ATTN: MARK BISHOP P.O. BOX 90 MALJAMAR, NM 88264 FAX TO:

Receiving Date: 02/05/01 Reporting Date: 02/06/01 Project Number: NOT GIVEN Project Name: MALJAMAR PLANT RO WATER Project Location: NOT GIVEN Sampling Date: 02/05/01 Sample Type: WASTEWATER Sample Condition: COOL AND INTACT Sample Received By: AH Analyzed By: AH

		Na	Ca	Mg	κ	Conductivity	T-Alkalinity
LAB NUMBE	r sample id	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mS/cm)	(mgCaCO ₃ /L)
ANALYSIS D	ATE:	02/06/01	02/05/01	02/05/11	02/05/01	02/05/01	02/05/01
H5578-1	RO WASTEWATER	48	50	11	15.78	587	182
Quality Contr	~	1.139	47	52	6.04	1489	NR
True Value C		1.000	50	50	5.00	1413	NR
% Accuracy		114	84.3	104	101	105	NR
have a second se	ent Difference	0.6	8.5		2.0	0.3	NR
METHODS		273.1	3500-Ca-D	3500-Mg E	8049	120.1	310.1
		cſ	SO₄	CO3	HCO₃	рH	TDS
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS D	ATE:	02/05/01	02/05/01	02/05/01	02/05/01	02/05/01	02/08/01
H5578-1	ROWASTEWATER	44	48	0	222	7.80	315
Quality Contr		980	53.03	NR	885	7.04	NR
True Value Q		1000	50.00	NR	1000	7.00	NR
% Accuracy		98.0	108	NR	83.5	101	NR
	ent Difference	7.2	3.0	NR	0	0	
METHODS:		SM4500-CI-B	375.4	310.1	310.1	150.1	180.1

Gayle A. Potter, Chemist

106/200)

PLEASE NOTE: Lisbility and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be linviat to the amount paid by client for analyses. All claims, including trace for negligence and any other cause whatsoaver shall be deemed waived unless made in writing and received by Cardinal which thiny (30) days after completion of the applicable sarvice. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliand Scriptical and going cut of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or conservices.

PHONE (916) 673-7001 + 2111 BEECHWOOD + ABILENE, TX 76803

上市のちゃとなるな神いで

PHONE (505) \$93-2328 . 101 E. MARLAND . HOBBS, NM 88240

ANALYTICAL RESULTS FOR CONOCO, INC. ATTN: MARK BISHOP P.O. BOX 90 MALJAMAR, NM 88264 FAX TO: (505) 678-2401

Receiving Date: 02/09/01 Reporting Date: 02/16/01 Project Number: NOT GIVEN Project Name: NOT GIVEN Project Location: NOT GIVEN Analysis Date: 02/15/01 Sampling Date: 02/09/01 Sample Type: WATER Sample Condition: COOL & INTACT Sample Received By: BC Analyzed By: AH

LAB NUMBER

SAMPLE ID

Pb (mg/L)

H5598-1	R.O. WASTEWATER	<0.002
		·
Quality Control		0.011
True Value QC		0.010
% Recovery		110
Relative Percent Diffe	rence	1.3

METHOD: EPA 600/4-79-020 239.2

h An

Chemist

02/16/2001

Date

PLEASE NOTE: Liability and Benages. Candinal's liability and client's exclusive somedy for any claim alking, whether based in contract or lort, shall be limited to the emount cald by client to; analysec. All claims, including these for indigeness and any other cause witeboorder shall be deemed wated unleas made in writing and received by Cardinal within study (30) days after completion of the applicable sorvice, in no event shall Cardinal be liable for indigental or consequential damages, including, without limitation, business interruptions, icas of use, or loss of profits incurred by client, its subsidiaries, affilia past shall cardinal be liable for indigental or consequential damages, including, without limitation, business interruptions, icas of use, or loss of profits incurred by client, its subsidiaries, affilia past states of whether such a subsidiaries of services hereuncer by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons of otherwise.

e				CHAIN-OF-CU	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST
マリ	SARDINAL LABORATORIES, II 2111 Beechwood, Abliane, TX 79603	S, iNC. 3 101 East Martand, Hobbs, NM 89240	Hobbs, NM 892		
х. Т	(915) 673-7001 Fax (915) 673-7020	1	(505) 383-2476		Page of
Compeny Name:	CONDAD IN	66P			ANALYSIS REQUEST
Project Manager,	MARK MEND		P.O. &		
Address: P	0 Box 90		Company.		
Carr. Mal	N/N	Z49: 87264	Attn:	2 2	
Phone # 52	6 6 76 3519 Fart		Addmess:	74 u(
Project &	Project Owner		CHU:		
Project Menie:	Malianar Plant R	O Water	State: Zip:		
กันใช้นี่ ในเสมิจแ	· · · · ·		Printing St.	31,31,1	
Sempler Name:			19.00	N S T	
FORLABULEORY		EATRUK	AXESS	SAMING D	
Lab I.D.	Sample I.D.		100 788	UITA ANNA	
		евои * сои	OTHER SCID/B OTHER OTHER		
1-916CH	NO Waste Water	2	ċ	3.5.11 11.7.6	
P.Long 1970 1970 and 19		All a start of the second seco	al and a second second	a publicy the dask to the first of the second se	L L L L L L L L L L L L L L L L L L L
Arresto and and and form to are about a more ably of a area Sampler Frainfillibred:	and to their for holder the economical description and the state and of a reduction to produce on a distribution by Corr (4) No.C:	bed but and before compared to a def top-door grainer, and and but (Received By:	ins, classification international		B
i Manh	alan 1			Fax Result: C Ye REMARKS:	
Relinquisting by :	10150	Received By: (Lab Stan	6	2	NT(0) INT(
Dalivered Bv: (Circle One) Sempler JUPS - Bus - Other:	(Circle One) Bus - Other:	A line to the line of the lin		BY:	, ,

† Cardinal cannot accept verbal changes. Please fax written changes to 606-393-2476.

2 - SHOT: STEOPNICONOCC - NO.

- -

(\$056762401 # 2, E

I

.

:5056762401

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 (713) 660-0901

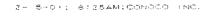
Case Narrative for:

Conoco Inc.

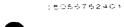
	of Analysis Number: 00990154	
Report To:	Project Name:	RO Wastewater
Conoco Inc.	Site:	Maljamar Gas Plant
Rudy Quiroz	Site Address:	
P.O. Box 90		
1001 Conoco Rd	PO Number:	
Maljamar		
NM	State:	New Maxico
88264-	State Cert. No .:	
ph: (505) 676-3503 fax: (505) 676-3533	Date Reported:	

Any data flags or quality control exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.


SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs,

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.


undia Wato West, Sonia Senior Project Manager

ŗ

9/12/00

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 (713) 660-0901

Conoco Inc.

		Cei	tificate of	Analysis Number:			
			000	090154			
Report To:	Conoco Inc. Rudy Quiroz P.O. Box 90 1001 Conoco Rd Maljamar NM			Project Name: Site: Site Address: PO Number:	RO Wastewater Maljamar Gas Plant		
	88264- ph: (505) 676-3503			<u>State:</u> State Cert. No.	New Mexico		
Fax To: Conoco Inc. Rudy Quiroz							
¢	lient Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COCID	HOLD
RO Wastewa	ater	00090154-01	Water	9/7/00 8:15:00 AM	9/8/00 10:00:00 AM	099330	

And Sonia ĺ Segior Project Manager

9/12/00

Date

Joel Grice Laboratory Director

Ted Yen Quality Assurance Officer

9/12/00 8:30:22 AM

;505%782401

(713) 660-0901

4 1.0

t#

Cilent Sample ID RO Wastewater

Collected: 9/7/00 8:15:00 A SPL Sample ID: 00090154-01

			Site	: Mai	jamar Gas Plant			
Analyses/Method	Result		Rep.Limit		Dil. Factor QUAL	Date Analyzed	Analyst	Seq. #
PURGEABLE AROMATICS				MCL	SW8021B	Units: ug	۱/L	
Benzene	ND		1	· · ·	1	09/09/00 1:05	DL	394978
Ethylbenzene	ND		1		1	09/09/00 1:05	DL	394978
Toluene	ND		1		1	09/09/00 1:05	DL	394978
Xylenes,Totai	ND		1		1	09/09/00 1:05	DL	394978
Sur: 1,4-Difluorobenzene	97.9	%	72-137		1	09/09/00 1:05	DL	394978
Surr: 4-Bromofluorobenzene	105	%	48-156		1	09/09/00 1:05	DL	394978
TPH TEXAS 1005				MCL	TX_EPH	Units: m	g/L	
C6-C10	ND		5		1	09/10/00 18:31	AM	395057
> C10-C28	ND		5		1	09/10/00 18:31	AM	395057
Total (C6-C28)	ND		5		4	09/10/00 18:31	AM	395057
Run ID/Seq #: HP_K_000910/	-395057							

Prep Method	Prep Date	Prep Initials
TX_EPH	09/08/2000 15:37	J_F

Qualifiers:

- ND/U Not Detected at the Reporting Limit
- B Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL) D - Surrogate Recovery Unreportable due to Dilution MI - Matrix Interference

9/12/00 8:30:26 AM

Quality Control Documentation

.

.

2	- 5-01; 8::	254M; CO									5880	TON LA INTERCI	HANGE C	DRIVE	# 67
				(Quality C	Contro	oi Repo	rt							
						noco I Nastew									
Analysis: Method:	TPH Texas TX_EPH	1005									kOrder: Batch ID:	000 713)90154 38		
		Meth	od Eilank				Sai	mples ir	Analytic	al Ba	tch:				
RunID: Analysis Date: Preparation Dat	HP_K_00091 09/10/2000 te: 09/08/2000	16:42	Units: Analyst: Prep By:	mg/L AM J_F M	lethod TX_	EPH		b Sampl 090154-0			<u>Client S</u> RO Was				
C6	C10-C28	nalyte		Result ND ND ND	Rep Limit 5.0 5.0 5.0										
	tal (C6-C28)		·····	Lab	poratory C				. <u></u>						
	tai (U6-C29)	RunID: Analysis Prepara	s Date:	Lab HP_K_000 09/10/200 09/08/200	0007atory C 1910A-39505 00 17:36 00 15:37	2 Un An Pri	nits: r nalyst: A	ng/L AM J_F Me		ver	Upper				
		Analysis Prepara	s Date: tíon Date: Analyte	Lab HP_K_000 09/10/200 09/08/200	0007atory C 1910A-39505 00 17:36 00 15:37	2 Un An Pro pike dded	nits: r nalyst: A ep By: J Result	ng/L AM J_F Me Perce Recov	ent Lov very Lir	ver nit	Limit				
		Analysis	s Date: tíon Date: Analyte	Lab HP_K_000 09/10/200 09/08/200	0007atory C 1910A-39505 00 17:36 00 15:37	2 Un An Pri	nits; r nalyst: A ep By: J Result 60	ng/L AM J_F Me Perce Recov	ent Lov very Lir 121	ver nit 70	Limit 130				
(<u>lo</u>		Analysis Prepara	s Date: tion Date: Analyte	Lab HP_K_000 09/10/200 09/08/200	0007atory C 1910A-39505 00 17:36 00 15:37	2 Un An Pro opike dded 50	nits: r nalyst: A ep By: J Result 60 52	ng/L AM J_F Me Perce Recov	ent Lov very Lir	ver nit	Limit				
<u>(lo</u>		Analysis Prepara > C10-C28 C6-C10	s Date: tíon Date: Analyte 3 C28}	Lab HP_K_000 09/10/200 09/08/200 e	0007atory C 1910A-39505 00 17:36 00 15:37	2 Un An Pre dded 50 50 100	aits: r nalyst: A ep By: J Result 60 52 112	ng/L AM J_F Me Recov	ent Lov very Lir 121 105	ver nit 70 70	Limit 130 130				
(<u>!o</u>		Analysis Prepara > C10-C28 C6-C10 Total (C6-C Sampl RunID Analys	s Date: tion Date: Analyte 3 C28} <u>Matrix S</u> e Spiked:	Lab HP_K_000 09/10/200 09/08/200 e 5 <u>5 5 5 5 6</u> 5 5 6 5 5 7 6 5 7 7 7 7 7 7 7 7 7 7 7 7	54-01 500 19:25	2 Un An Pro Spike (dded 50 50 50 100 100	aits: r nalyst: A ep By: J Result 60 52 112 Duplicate Jnits: Analyst:	ng/L AM J_F Me Recov	ent Lov very Lir 121 105	ver nit 70 70	Limit 130 130 130				
		Analysis Prepara > C10-C28 C6-C10 Total (C6-C Sampl RunID Analys	S Date: tion Date: Analyte C28} <u>Matrix S</u> e Spiked: : sis Date:	Lab HP_K_000 09/10/200 09/08/200 e 5 <u>5 5 5 5 6</u> 5 5 6 5 5 7 6 5 7 7 7 7 7 7 7 7 7 7 7 7	54-01 500 19:25	2 Un An Pro Spike Sol 50 50 100 50 50 100 50 50 100	Aits: r nalyst: A ep By: J Result 60 52 112 Duplicate Jults: Analyst: Prep By: MS % ecovery	ng/L AM J_F Me Recov	ent Lov /ery Lir 121 105 112	ver nit 70 70 70	Limit 130 130 130	RPD	R-PD Limit	Low Limit	High Limit
		Analysis Prepara > C10-C28 C6-C10 Total (C6-C Sampl RunID Analys	S Date: Iton Date: Analyte Analyte C28) Matrix S e Spiked: : : Sample	Lab HP_K_000 09/10/200 09/08/200 e Spike (MS Spike Added	Social Constraints Signature Signature	2 Un An Pro Spike Sol 50 50 100 50 50 100 50 50 100	Aits: r nalyst: A ep By: J Result 60 52 112 Duplicate Jults: Analyst: Prep By: MS % ecovery	ng/L AM J_F Me Recov (MSD) (MSD) J_F M MSD Spike	ent Lov /ery Lir 121 105 112 ethod TX MSD Res	ver nit 70 70 70	Limit 130 130 130 130 MSD % Recovery	RPD 0.527		Limit	Limit

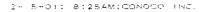
Qualifiers:

l

ł

ł

ND/U - Not Detected at the Reporting Limit


B - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

* - Recovery Outside Advisable QC Limits

D - Recovery Unreportable due to Dilution

MI - Matrix Interference

1

;5056762401

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77854 (713) 660-0901

Quality Control Report

Conoco Inc. **RO Wastewater**

Analysis: Method:	Purgeable Aromatics SW8021B				WorkOrder: 00090154 Lab Batch ID: R20333		
	Method Blank			Samples in Analytical Batch:			
RunID:	HP_U_000908A-394953	Units:	ug/L	Lab Sample ID	Client Si	ample ID	
Analysis Date:	09/08/2000 16:00	Analyst:	DL	0009C154-01E	RO Was	lewater	

Analyte	Result	Rep Limit
Benzene	ND	1.0
Ethybenzene	ND	1.0
Toluena	ND	1.0
Xylenes, Total	ND	1.0
Surr. 1,4-Cifluorobenzene	98.8	72-137
Surr: 4-Bromofluorobenzene	104.6	48-156

	ol Sample	

ug/L

RuniD:	HP_U_000908A-394951	Units:	ug/L
Analysis Date:	09/08/2000 15:11	Analyst:	DL

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	50	45	91	70	130
Ethylbenzene	50	48	96	70	130
Toluene	50	47	93	70	130
Xylenes,Total	150	143	95	70	130

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sampie Spiked:	00090123-01
RunID:	HP_U_000908A-394
Analysis Date:	09/08/2000 16:25

4955 Units: ug/L 5 Analyst: DL

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD			High Limit
Benzene	ND	20	16	79.0	20	17	85.8	8.22	21	32	164
Ethylbenzene	ND	20	17	84.1	20	19	92.0	8.94	19	52	142
Toluene	ND	20	16	82.0	20	18	89.5	8.73	20	38	159
Xylenes,Total	ND	60	51	85.0	60	55	91.7	7.55	18	53	144

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside AdvIsable QC Limits

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

B - Analyte detected in the associated Method Blank

MI - Matrix Interference

9/12/00 8:30:29 AM

2- 5-01: 2:254M:00N000 INC.

:5056762401

5 °C

Chain of Custody And Sample Receipt Checklist

+8hr Sundard Outer Interchange M 8880 M 8880 Interchange Drive, 459-Hughes Drive, Trave	Requested TAT	Ear go Mai Ear go Mai Er Kuby Coura Truc MPLE ID MPLE ID MPLE ID	
Ar Sundard 3. Relinquighed by: Sundard 3. Relinquighed by: kr	$\frac{1}{1} \frac{1}{2} \frac{1}$	55-676-3528 1 Jande N.M. 88264 TIME comp grab 8:15 Am 8:15 Am	Analysis Request & Chain of Custody Record
due 7/00 une 4/5 An	law Data	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	f Custody Record tle size pres.
500 Ambassador Caffery Parkway, Sout, LA 70583 (318) 237-4775	Special Detection Limits (specify):	TPH BTEX	SPL Workander Nac OOOQDISU Remunsted Analysis
C 9/8/00 C 9/8/00 SE3 (318) 237-4775	ng:		099330 page / of /

2- 5-01; 8:25AM;CONOCO INC.

14 B 24

ti ng

17 AN 27

1.025.5

;5056762401

97 tC •0 2- 5-0:: 8:25AM;CONOCO INC.

, ****•

The second

n vada naga n

т. В 19 11 - 11

11 11 11

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 (713) 660-0901

;5056762401

(A)

Sample Receipt Checklist

· •

,

Warkorder:	00090154		Received by:		Barrera, Nancy
Date and Time Received:	9/8/00 10:00:00 AM		Carrier name:		FedEx
Temperature:	3				
Shipping container/cocler in	good condition?	Yes 🗹	No 🗔	Not Present	
Custody seals intact on ship	pping container/cooler?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on sam	ple bottles?	Yes 🗌	No 🗔	Not Present	
Chain of custody present?		Yes 🗹	No 🗔		
Chain of custody signed whe	en relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees with	sample labels?	Yes 🗹	No 🗌		
Samples in proper container	/bottle?	Yes 🗹	No 🗌		
Sample containers intact?		Yes 🔽	No []		
Sufficient sample volume for	indicated test?	Yes 🗹	No 🗌		
All samples received within h	olding time?	Yes 🗹	No 🗌		
Container/Temp Blank temp	erature in compliance?	Yes 🗹	No 🗌		
Water - VOA vlais have zero	headspace?	Yes 🗹	No 🗔	Not Present	
Water - pH acceptable upon	recelpt?	∽es 🗹	No 🗔		

10601 Lomas NE Suite 106 Albuquerque, NM 87112

505-237-8440

September 19, 2000

Mr. Wayne Price Oil Conservation Division NM Energy, Minerals, and Natural Resources Department 2040 South Pacheco Santa Fe, NM 87505

RE: Closure Plan for Area 1/"Bermed Area," Impacted by the February 13, 2000 Fifteen (15) Barrel Condensate Release Conoco Maljamar Gas Plant, Maljamar, New Mexico

Dear Mr. Price:

This letter is intended to be an addendum to the August 11, 2000 transmittal to your office of the *Subsurface Investigation, Maljamar Gas Plant* report from Mr. John E. Skopak, Conoco Inc. The intent of this letter is to present a closure plan to be followed during final remediation of the February 13, 2000 release of 15 barrels of condensate in Area 1 ("the bermed area").

In the above referenced report of August 11, 2000, Conoco stated that they believe the rapid excavation of soil within the bermed area was very successful in recovering soil related impacts from the condensate spill. Also, we believe that our subsequent soil borings were successful in delineating the horizontal and vertical impacts from the release. However, during our soil boring installation, it became evident that historical impacts were present, unrelated to the 15-barrel release. The following plan is presented to gain closure of the 15-barrel release only. The investigation of the historical release is ongoing, and will be addressed in subsequent field investigations.

In order to prepare a plan for closure, we followed the Oil Conservation Division (OCD) *Guidelines for Remediation of Leaks, Spills and Releases* dated August 13, 1993. We classified the soils as *unsaturated contaminated soils* as defined in section III.B.2. We then applied the ranking criteria found in section IV to determine the appropriate soil remediation action levels using a risk-based approach. Following is our ranking:

- Depth to Groundwater Score: 10
- Wellhead Protection Area Score: 0 (or No)
- Distance to Surface Water Body Score: 0

Total Score of 10

Mr. Wayne Price September 19, 2000 Page 2

Based on the ranking presented above, we will use the OCD prescribed guidance for remediation action levels during cleanup of the site (section IV.2.b):

- Field headspace readings of 50 ppm to guide our cleanup of benzene and BTEX concentrations, and
- 1000 ppm analytical for the cleanup of TPH.

It is our intent to excavate any remaining soils in the bermed area between the surface and five feet below surface exhibiting soil vapor headspace readings in excess of 50 ppm. Confirmatory samples will be collected for laboratory analysis to guide our excavation, and will be presented to the OCD in our request for closure. Excavated soils will be added to the existing soil stockpile, and subsequently removed offsite to an approved disposal facility.

We believe that excavating to a depth of five feet will be adequate in recovering any impacts resultant from the 15-barrel release. At depths greater than five feet, we believe, based on the results of our ongoing investigation, that we would be influenced by the historical release currently under investigation.

Our request to the OCD for closure of the 15-barrel condensate release will present a map of all additional excavations, volumes, locations of all confirmatory headspace sampling locations, a table of analytical values of all confirmatory soil sampling results, and final disposition of the excavated soil.

If you have any questions regarding this plan, please do not hesitate to call.

Sincerely, MAXIM TECHNOLOGIES, INC.

Clyde L. Yancey Senior Project Manager

cc: Joyce M. Miley John E. Skopak Rudy R. Quiroz

Conoco Inc. P. O. Box 2197 Houston TX 77252-2197

John E. Skopak Senior Project Manager Remediation Technology Room PO3054 281-293-5584 Fax: 240-359-4098

August 11, 2000

Mr. Wayne Price Oil Conservation Division, Environmental Bureau 2040 S. Pacheco Santa Fe, New Mexico 87505

RE: Subsurface Investigation, Maljamar Gas Plant Maljamar, New Mexico

Dear Mr. Price:

Attached for your review and approval is a copy of the two phase Subsurface Investigation performed in April and June 2000 by Maxim Technologies on our Maljamar Gas Plant. This work was performed to assess the site after the excavation of soil following a 15 BBL release that occurred in a bermed area in February 2000 and to assess any impacts to soil/groundwater from any historical release(s). The second phase of this work was carried out under the requirements of Section 14 Part A of our Groundwater Discharge Plan GW-020.

Conoco strongly believes that our rapid excavation of the soil from the bermed area following the 15 barrel condensate release on February13, 2000 was very successful and did not impact groundwater. We understand that there is some near surface soil near B-4 that still needs to excavated which we plan on removing during our final clean-up and restoration of the bermed area. We request your concurrence to grant us a closure on this 15 BBL release with the knowledge that these surface soils near B-4 will be excavated.

We are also requesting your approval of our recommended plan to help define the source of the groundwater contamination near Areas 1 and 2. We feel that the recommended placement of these two wells will help in the definition of a potential source as well as facilitate the determination of the groundwater gradient.

We appreciate your timely consideration in both of these requests. If you have any questions regarding the results of our investigation or our recommended path forward, please do not hesitate to call me or Clyde Yancey at Maxim Technologies at 505-237-8440.

Sincerely,

Conses In

John E. Skopak Senior Project Manager

cc: Joyce Woodfin – Conoco NG&GP Marshall Honeyman – Conoco Maljamar Clyde Yancey – Maxim Technologies

RECEIVEL

AUG 10 2000

Remediation Technology

August 8, 2000

Mr. John E. Skopak Senior Project Manager Conoco Inc. 600 North Dairy Ashford Houston, Texas 77079-1175

Re: Subsurface Investigation Maljamar Gas Plant 1001 Conoco Road Maljamar, New Mexico Maxim Project No. 2005110

Dear Mr. Skopak:

Submitted herewith is a letter report detailing the Subsurface Investigation conducted at the abovereferenced site. The purpose of the Subsurface Investigation was to assess the potential for impacts to the subsurface underlying two bermed areas where condensate was historically stored. Specifically, this assessment consisted of drilling, collecting and describing soil samples for field screening and laboratory analysis from twelve (12) soil borings. One soil boring was converted into a groundwater monitor well from which one groundwater sample was collected for laboratory analysis.

BACKGROUND

On February 13, 2000, approximately 15 barrels of condensate were released within a bermed area approximately 75' by 50' in size (hereinafter Area 1) on the south side of the Maljamar Gas Plant. Conoco Inc. (Conoco) contacted the New Mexico Oil Conservation Division (OCD) immediately following the release. In an effort to address the impacts to soil, Conoco excavated approximately 20 cubic yards of soil from the bermed area, and stockpiled the soil on plastic sheeting with secondary containment to prevent runoff. Conoco believes that all impacted soil from the February spill was removed in the excavation of the approximately 20 cubic yards of soil. Suspect hydrocarbon impacted soils from historical release(s) were encountered during the excavation of the freshly impacted soil. Conoco determined that a subsurface investigation consisting of soil borings should be conducted to assess the vertical and horizontal impact resulting from historical releases.

[&]quot;Providing Cost-Effective Solutions to Clients Nationwide"

At Conoco's request, Maxim Technologies, Inc. (Maxim) conducted a subsurface investigation in and around Area 1, consisting of the advancement of five (5) soil borings on April 27 and 28, 2000. During this investigation phase, it was determined through field screening and analytical results that the February condensate release had been mitigated through Conoco's soil excavation efforts. However, based on analytical results generated during the first phase of the subsurface investigation, evidence of a historical release was identified within the extreme northeast portion of Area 1. A potential source for the historical release was identified as the former above-ground storage tanks (ASTs) located within a bermed area adjacent to and east of Area 1 (hereinafter Area 2). The former ASTs historically contained condensate. These ASTs are no longer utilized, and were properly cleaned and removed from the site during May of 2000.

Maxim initiated the second phase of the subsurface investigation on June 21 and 22, 2000. The purpose of this phase was two-fold:

- (1) Advance additional soil borings in and around Area 2 to determine potential horizontal and vertical impact to the subsurface from historical release(s) at this location.
- (2) Advance one soil boring to a depth of 200 feet below ground surface (bgs) or groundwater, whichever was encountered first at the request of the OCD.

The horizontal and vertical delineation of the historical release within the vadose zone underlying Areas 1 and 2 were determined in the subsurface investigation. Groundwater was encountered at approximately 72 feet bgs, sampled, and a monitor well was installed. Details and results of the subsurface investigation of both bermed areas are described below.

The investigation included a description of site soils, field screening of borings, and the collection of selected soil samples for laboratory analysis.

SOIL ASSESSMENT

On April 27 and 28, 2000, and June 21 and 22, 2000, Maxim advanced twelve soil borings (designated B-1 through B-12) around and within the vicinity of the two bermed areas previously mentioned. The soil borings were advanced with a truck-mounted air rotary drill rig that sampled with a 2-foot continuous, 2-inch diameter direct push split spoon sampler. Soil borings B-1 through B-5 were placed within or immediately outside of Area 1, while soil borings B-6 through B-12 were placed in the vicinity of Area 2. The soil boring locations are depicted in Figure 1 presented as Attachment A.

Site Soils and Hydrogeology

The soil borings generally encountered brownish-red silty sand from surface to approximately 9 feet bgs. A light pink silty sand layer (ranging from four to ten feet in thickness) was encountered in the soil borings at depths ranging from 9 to 20 feet bgs. The soil borings generally encountered well cemented sandstone to coarse gravel intermixed with the silty sand at depths ranging from 20 feet to 45 feet bgs. This cemented sandstone/gravel prevented effective sample retrieval at various intervals below 30 feet in soil borings B-2, B-8, and B-10. Soil boring B-9 was the only boring drilled deeper than 60 feet bgs (B-9 is downgradient of Areas 1 and 2, and was drilled in an unimpacted area as the groundwater test boring). Soils encountered in soil boring B-9 remained as generally described above to a depth of 55 feet bgs, where a tannish-gray silty sand was encountered. Olive-brown, tightly cemented silty sand encountered from 65 feet to 93 feet bgs in B-9.

Moisture was encountered in soil boring B-9 in a medium brown silty sand intermixed with gravel from 93 feet bgs to 97 feet bgs. Drilling operations were terminated at that point and the boring was allowed to sit for approximately 30 minutes, following which time compressed air was jetted into the boring. It was apparent by the water jetted from the boring that a saturated horizon had been encountered. Water level measurements over the next hour indicated that the water level in the open boring was rising. The boring was completed as monitor well MW-1. The well was screened from 72 feet to 92 feet bgs with 0.10-inch slot PVC screen. The following day, the water level had risen to approximately 77 feet bgs. At that time the well was developed by bailing and surging per OCD guidance, and a groundwater sample was collected for analysis.

Since moisture was not encountered until 93 bgs during drilling, and a well cemented sand overlain the saturated sand/gravel unit, it was hypothesized that a confined unit was encountered with a driving head coming off the Mescalero Ridge north of the Maljamar Gas Plant. With the exception of soil boring B-9, groundwater was not encountered in the soil borings. Soil boring logs are presented in Attachment B.

Field Screening

Field headspace analyses were conducted on-site by placing two-foot composite samples from a soil boring in re-sealable plastic bags and allowing the samples to volatilize for approximately 15 minutes per OCD guidance. The headspace area in the bag above the soil samples was then analyzed with a photo-ionization detector (PID). The PID detects petroleum hydrocarbons and

August 8, 2000

other low molecular weight organic compounds in parts per million (ppm) concentrations. PID readings ranged as follows:

- 1.1 ppm to 8.8 ppm in B-1;
- 1.4 ppm to 3,239 ppm in B-2;
- 25 ppm to 2,287 ppm in B-3;
- 12.7 ppm to 2,099 ppm in B-4;
- 10.4 ppm to 3,567 ppm in B-5;
- 0 ppm in B-6;
- 3 ppm to 26 ppm in B-7;
- 8 ppm to 829 ppm in B-8;
- 3 ppm to 17 ppm in B-9;
- 5 ppm to 1,222 ppm in B-10;
- 0 ppm to 5 ppm in B-11;
- and 3 ppm to 47 ppm in B-12.

The soil boring logs, presented in Attachment B, list all PID readings with respect to the intervals that they were detected. The PID readings were used to identify intervals where samples for analysis should be collected.

Soil Sampling and Analysis

Two soil samples were collected for analysis from each soil boring. One sample was collected from the sample interval registering the highest PID reading, and a second confirmatory "clean" sample collected from either the bottom or near the bottom of each soil boring. Additional soil samples were also collected from the 10'-12' intervals of soil borings B-4 and B-5. Following field screening, the soil samples were immediately placed into factory-cleaned 4-ounce glass sample jars with Teflon-lined lids, placed on ice, and submitted to Severn Trent Laboratories, Inc. (STL) in Earth City, Missouri (B-1 through B-5) and Austin, Texas (B-6 through B-12). The soil samples were analyzed for volatile petroleum hydrocarbons (VPH), EPA Method 8015 modified, and benzene, toluene, ethylbenzene, xylenes (BTEX), EPA method 8260B. Soil samples collected from soil boring B-4 were also analyzed for Resource Conservation and Recovery Act (RCRA) metals using EPA approved method 6010B-RCRA metals.

Table 1, on the following page, lists the analytical results of the soil samples. Laboratory analytical results, method detection limits, and chain-of-custody documentation are included in Attachment C.

August 8, 2000

TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS VPH, BTEX, and RCRA METALS

Soil Samples B-1 through B-5 Collected on April 27 & 28, 2000 Soil Samples B-6 through B-12 Collected June 21 & 22, 2000

Sample ID	VPH mg/kg	Benzene mg/kg	Toluene mg/kg	Ethyl- benzene mg/kg	Total Xylenes mg/kg	RCRA Metals mg/kg
				1		···· <u>C</u>
B-1@14'-16'	<0.1	<0.005	<0.005	< 0.005	<0.005	
B-1 @ 18'-20'	< 0.1	0.004*	<0.005	<0.005	<0.005	
B-2 @ 8'-10'	2,700	0.690*	<1.0	25.0	23.0	
B-2 @ 33'-35'	26.0	14.0	1.4	29.0	38.0	
B-3 @ 2'-4'	2,300	9.4	0.410*	26.0	34.0	
B-3 @ 33'-35'	<0.1	_0.0017*	<0.005	< 0.005	< 0.005	
B-4 @ 0'-2'	4,900	19.0	1.1*	46.0	84.0	Arsenic – 2.3 Barium – 88.9., Cadmium – <0.5 Lead – 7.7 Chromium – 12.7 Selenium - <0.5 Silver - <1.0 Mercury – 0.26
B-4 @ 10'-12'	690	0.92*	2.8	10.0	20.0	Arsenic - 1.9 Barium - 72.8 Cadmium - <0.5 Lead - 2.1 Chromium - 2.0 Selenium - <0.5 Silver - <1.0 Mercury - <0.03
B-4 @ 33'-35'	<0.1	0.028	0.0062	0.0084	0.014	Arsenic – 1.9 Barium – 144 Cadmium – <0.5 Lead – 3.3 Chromium – 4.2 Selenium - <0.5 Silver - <1.0 Mercury – <0.03
B-5 @ 6'-8'	89.0	0.002*	0.0028*	0.025	0.1	
B-5 @ 10'-12'	0.28	< 0.005	0.006	0.0032*	0.034	
B-5 @ 28'-30'	< 0.1	<0.005	<0.005	<0.005	<0.005	
B-6 @ 5'	<5	<0.005	<0.005	< 0.005	<0.005_	
B-6 @ 25'-27'	<5	<0.005	<0.005	< 0.005	< 0.005	

August 8, 2000

TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS VPH, BTEX, and RCRA METALS

Soil Samples B-1 through B-5 Collected on April 27 & 28, 2000 Soil Samples B-6 through B-12 Collected June 21 & 22, 2000

Sample: ID	VPH mg/kg	Benzene mg/kg	Toluene mg/kg	Ethyl- benzene mg/kg	Total Xylenes mg/kg	RCRA Metals mg/kg
B-7 @ 25'-27'	<5	< 0.005	<0.005	< 0.005	< 0.005	
B-7 @ 30'-32'	<5	< 0.005	<0.005	<0.005	< 0.005	
B-8 @ 5'	3,000	3.8	19	< 0.001	43	
B-8 @ 35'-37'	<5	<0.005	<0.005	<0.005	<0.005	
B-9 @ 30'-32'	<5	<0.005	<0.005	<0.005	<0.005	
<u>B-9 @ 90'</u>	<5	< 0.005	<0.005	<0.005	<0.005	*-
B-10 @ 8'-10'	210	<0.250	1.8	0.860	6.8	
B-10 @35'-37'	<5	<0.005	< 0.005	< 0.005	<0.005	
B-10 @50'-52'	<5	<0.005	<0.005	< 0.005	<0.005	
B-11 @25'-27'	<5	<0.005	<0.005	<0.005	<0.005	
B-12 @ 0-2'	<5	< 0.005	<0.005	< 0.005	<0.005	
B-12 @40'-42'	<5	< 0.005	< 0.005	< 0.005	< 0.005	

Results listed in mg/kg (parts per million; ppm).

Analyses conducted at STL, Inc. in Earth City, Missouri and Austin, Texas.

* Estimated Result. Results are less than detection limits.

-- Not Analyzed

GROUNDWATER ASSESSMENT

Groundwater was encountered at a depth of 93 feet bgs in soil boring B-9. Groundwater was not encountered in the remaining soil borings during the subsurface investigation. MW-1 was constructed on June 21, 2000 in boring B-9 of a 20 foot, 2-inch diameter, .010-inch factory slotted PVC well screen, and seventy-two feet of 2-inch diameter PVC well casing. A sand pack consisting of 20/40 silica sand was placed into the annular space between the 2-inch diameter monitor well and the 6 1/4-inch borehole. The sand pack extends from the bottom of the boring to approximately six feet above the well screen. Above the sand pack, a bentonite seal was

placed into the same annular space to approximately six feet below surface grade. The borehole was filled with concrete from surface grade to six feet bgs, and a locking manhole cover and concrete drainage pad installed at grade.

The day following well completion, the water level rose to 77 feet bgs. MW-1 was developed and sampled on June 22, 2000. A groundwater sample was obtained from the monitor well by lowering a disposable bailer into the well and transferring the sample into six 40 ml septum sealed VOA vials, and one 40 ounce jar, each with Teflon-lined lids. The containers were labeled, documented on a chain-of-custody form, placed on ice, according to EPA protocol, and submitted to Severn Trent Laboratories, Inc. (STL) in Austin, Texas. The groundwater sample was analyzed for gasoline range organics, BTEX, and total chlorides using EPA approved method 8015 modified–GRO and 8260B-BTEX.

Table 2 lists the analytical results of the groundwater sample. Laboratory analytical results, method detection limits, and chain-of-custody documentation are included in Attachment C.

TABLE 2 GROUNDWATER SAMPLE ANALYTICAL RESULTS Sample Collected on June 22, 2000							
Monitor Well ID	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	
MW-1	5.2	1.8	0.075	<0.050	<0.050	227	
Results listed in mg/L (parts per million; ppm). Analyses conducted at STL, Inc. in Austin, Texas.							

CONCLUSIONS

Based upon the preceding discussions, the following conclusions can be drawn:

- Data indicated that the soil excavation performed by Conoco most likely captured the 15 barrels of condensate released in February 2000. No additional effort is anticipated.
- All soil borings that encountered contamination within and around Areas 1 and 2 contained clean soil material prior to encountering groundwater. The deepest soil contamination was reported in soil boring B-2 at a depth of 35 feet bgs. Groundwater was not encountered in B-2. This is indicative of delineating the vertical extent of soil contamination.
- Based on the location and results of the soil-boring placement, data indicate that the horizontal extent of soil contamination has been delineated.

- August 8, 2000
- The impacts from the historical release are limited to the eastern half of Area 1 and the western half of Area 2.
- This investigation indicated that groundwater is most likely under confined conditions at 77 feet bgs. Groundwater was not encountered in B-2. Approximately 42 feet of vadose zone remains between groundwater and the base of contamination in B-2.
- Groundwater contamination was encountered southeast (most likely downgradient) of Areas 1 and 2. However, no definitive source term can be identified within Areas 1 and 2 because no contamination was tracked from surface to groundwater.

RECOMMENDATIONS

Maxim recommends that two additional groundwater-monitor wells be installed within the immediate vicinity of Areas 1 and 2. The rationale for the proposed well placement is provided below and the locations of the proposed monitor wells are shown in Figure 1.

- MW-2 is proposed to be 800 feet west of soil boring B-6. Based on available information, we believe that proposed monitor well MW-2 would be upgradient of Areas 1 and 2. If the groundwater is unimpacted, it could possibly indicate that Areas 1 and 2 are source terms. If the groundwater encountered in MW-2 is impacted, it could possibly indicate a source term other than Areas 1 and 2.
- MW-3 is proposed to be 1,600 feet west of MW-1. If MW-1 were not directly downgradient of Areas 1 and 2, MW-3 would likely cover the other potential downgradient component.
- If the two additional monitor wells are placed as proposed, the resulting monitor well configuration would facilitate determining groundwater gradient.
- All three monitor wells would be sampled for BTEX (EPA Method 8260) and gasoline range organics (EPA Method 8015B).

Maxim appreciates the opportunity to provide you with our professional consulting services. If you have any questions or comments, feel free to contact us at (505) 237-8440.

Respectfully,

MAXIM TECHNOLOGIES, INC.

Craig R. Maddox Environmental Specialist

Mind (YI. (renuele For Clyde L. Yancey, P

Senior Project Manager

ATTACHMENT A

140-400 B

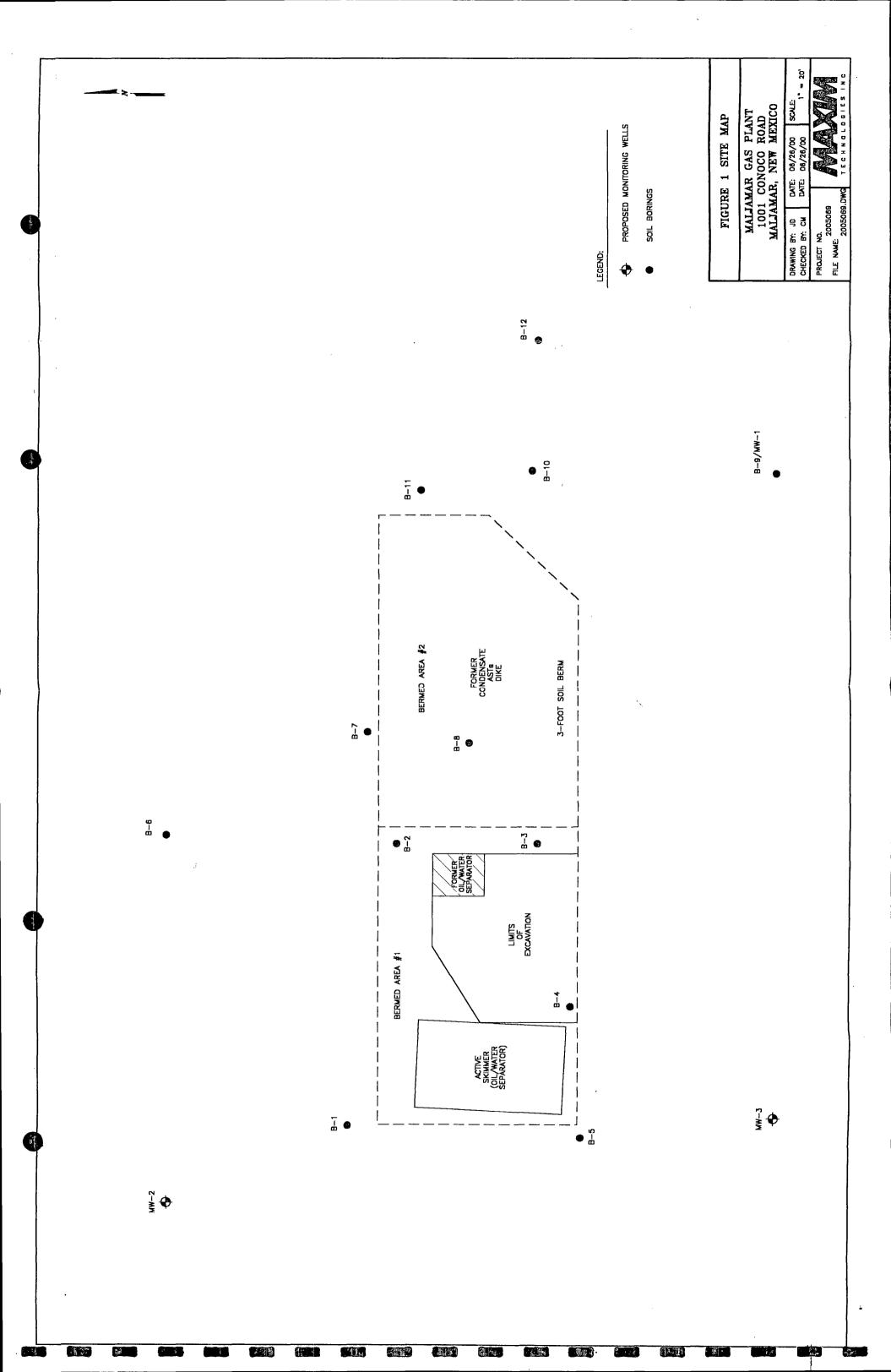
a distance

書の書

San San Sa

194 - - A

の日本町の


10-14- A.

a state

A STATE

and and and a second se

SOIL BORING LOCATIONS

ATTACHMENT B

1 page at

2 mm mm

(STR.)

6 . 10 Cal

1

a du du du di

SOIL BORING LOGS

SOIL BORING LOG

BO	RING/WELL #: B-1	CLIENT: CONO	CO, INC.					
PRO	DJECT NO.: 2005069	PROJECT: MAL	JAMAR GAS	S PLA	лт			
LO	CATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO	WATER LEVEL:	INITIAL: N/	A	24 F	IOURS: I	N/A	
TO	TAL DEPTH: 20.0'	BORE HOLE DIA	METER: 6.2	25"				
SU	RFACE ELEV:	DRILLING COMP	ANY: HAR	RISON	& COOPI	ĒR		
SCI	REEN: DIA: N/A LENGTH: N/A SIZE: N/A	DATE DRILLED:	4/27/00					
CA	SING: DIA: N/A LENGTH: N/A TYPE: N/A	DRILLER: C. HA	RRISON					
DR	ILLING METHOD(S): Air Rotary	OVERSIGHT: C	. MADDOX					
DEPTH FEET	SOIL DESCRIPTION	DESCRIPTION INTERVAL	SAMPLE INTERVAL	CORE Y N	OVM or Hnu (PPM)	GRAPHIC LOG	WELL DESIGN	DEPTH FEET
	Brownish red SILTY SAND	0.0'-11.0'			2.3			
_	-No retreival from 2.0'-4.0'				2.3			

.

.

	Brownish red SILTY SAND	0.0'-11.0		
	-No retreival from 2.0'-4.0'		2.3	
- - - - - -			1.9 1.9 1.1	
- - - - - - - - - - - - - - - - - - -	Light pink SILTY SAND	11.0-15.0	624	10
15	Brownish red SILTY SAND	15.0-20.0	5.7 5.7 8.8 8.8 3.6 3.6	2 3 3 5 5
	End of boring at 20.0' No stains or odors No groundwater encountered			
- - 25 - -				
- - - - - - - -				30-
- - - - - - - - - - - - - - - - - - -			-	35
- 40				40-
SS - DPA	VEN SPLIT SPOON HSA - HOLLOW STEM AUGER	WATER LEVEL	ВОТТОМ САР	FACTORY - SLOTTED
	SSED SHELBY TUBE CFA - CONTINUOUS FLIGHT AUGERS	및 AT COMPLETION 및 AFTER HOURS	SAND PACK	WELL CASING
CT - 5 FT	CONTINUOUS SAMPLER AD - AIR DRILLING READINGS TAKEN	SOIL SAMPLE SUBMITTED TO LAB	BENTONITE SEAL	

	SOIL BOR						
PRC LOC TOT SUF SCF CAS	RING/WELL #: B-2 DJECT NO.: 2005069 CATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO TAL DEPTH: 57.0' RFACE ELEV: REEN: DIA: N/A LENGTH: N/A SIZE: N/A SING: DIA: N/A LENGTH: N/A TYPE: N/A ULLING METHOD(S): Air Rotary	CLIENT: CONO PROJECT: MAL WATER LEVÉL: BORE HOLE DIA DRILLING COMF DATE DRILLED: DRILLER: C. HA OVERSIGHT: C	JAMAR GAS INITIAL: N/, METER: 6.2 PANY: HARF 4/27/00 MRRISON	4 25"	24 HOURS	5: N/A	
EPT'H F&ET	SOIL DESCRIPTION	DESCRIPTION	SAMPLE	CORE	OVM or GRAPH Hnu (PPM) LOG		DEP
5	Brownish red SILTY SAND -Black stains and petroleum odors at 6.0'	0.0'-11.0'			1.4 1.4 2.2 2.2 1.2 1.2 616.0 616.0 3239.0 3239.0		5
10	Light pink SILTY SAND -Stains stop at 12.0', odors remain	11.0-15.0'		States in a second	2436.0 2436.0 2208.0 2208.0 2028.0		1(
15	Brownish red SILTY SAND	15.0-25.0'			2028.0 1537.0 1537.0 1461.0 1461.0 1465.0		2
25					1565.0		2
	SANDSTONE/fairly coarse gravel	25.0-27.0'					
30	Brownish red SILTY SAND	27.0-35.0'			2631.0 2631.0 		3
35	Brownish red SILTY SAND intermixed with sandstone/gravel -From 35.0'-57.0' Silty sand sample retrieval was probably slough only. Very little retrieval.	35.0-57.0'		all and a second and	501.0 501.0		3
40							40
T - PRES C - ROC T - 5 FT	VEN SPLIT SPOON HSA - HOLLOW STEM AUGER ♀ AT CO SSED SHELBY TUBE CFA - CONTINUOUS FLIGHT AUGERS ♀ AFTER CK CORE MD - MUD CRILLING ♀ AFTER		BOTTOI	ACK	AL 2.2	FACTORY - S WELL SCREE WELL CASIN BENTONITE/C GROUT SEAL	IN G CEMEN

.

	SOIL BOR	ING LOG		·		
PRC LOC TOT SUF SCF CAS	RING/WELL #: B-2 DJECT NO.: 2005069 CATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO TAL DEPTH: 57.0' RFACE ELEV: REEN: DIA: N/A LENGTH: N/A SIZE: N/A SING: DIA: N/A LENGTH: N/A TYPE: N/A LLING METHOD(S): Air Rotary	WATER LEVE BORE HOLE D	ALJAMAR GA È: INITIAL: N/ DIAMETER: 6. MPANY: HAR D: 4/27/00 HARRISON	/A 24	HOURS: N/A PER	
DEPTH FEET	SOIL DESCRIPTION	DESCRIPTIO		CORE OVM or		VELL DE ESIGN FE
- 45	Brownish red SILTY SAND intermixed with sandstone/gravel			Y N Hnu (PPA 395.C		4
- 50	-Silty sand sample retrieval was most likely slough only. Very little retrieval.					
- 55				15.7		Į
- 60	End of boring at 57.0' No groundwater encountered					6
- 65						6
- 70						,
- 75						
- 80						٤
ST - PRES RC - ROCI CT - 5 FT	EN SPLIT SPOON HSA - HOLLOW STEM AUGER Z AT CO SEO SHELBY TUBE CFA - CONTINUOUS FLIGHT AUGERS AFTER K CORE MD - MUD DRILLING Z AFTER	ER LEVEL DMPLETION R HOURS SAMPLE ITTED TO LAB	BOTTO		WELL	DRY - SLOTT SCREEN CASING DNITE/CEMEN T SEAL

	SOIL BOR	ING LOG	U					
PRC LOC TOT SUF SCF CAS	RING/WELL #: B-3 DJECT NO.: 2005069 CATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO TAL DEPTH: 35.0' RFACE ELEV: REEN: DIA: N/A LENGTH: N/A SIZE: N/A SING: DIA: N/A LENGTH: N/A TYPE: N/A LLING METHOD(S): Air Rotary	CLIENT: CONO PROJECT: MAL WATER LEVEL: BORE HOLE DIA DRILLING COMP DATE DRILLED: DRILLER: C. HA OVERSIGHT: C	JAMAR GA INITIAL: N/ METER: 6.1 PANY: HAR 4/27/00 ARRISON	A 25"	24 ⊦	iours: I	N/A	
DEPTH FEET	SOIL DESCRIPTION	DESCRIPTION INTERVAL	SAMPLE INTERVAL	CORE Y N		GRAPHIC	WELL DESIGN	DEPTH FEET
-	Heavily stained SILTY SAND with strong odors	0.0'-11.0'		1000	1996.0		010.0.1	-
	-Light stains from 2.0'-4.0'			のないのである	1996.0 2287.0 2287.0			
- 5	-No retrieval from 4.0'-6.0'				51.0 51.0 80.0 80.0			5
	Light pink SILTY SAND	11.0-15.0'		ないたないの言語	1245.0 1245.0 528.0			
	-No significant staining at 14.0'			業価	528.0 796.0			-
- 15 -	Brownish red SILTY SAND	15.0-35.0'			796.0			15 -
20	-Intermixed with sandstone/gravel at 25.0'				313.0 313.0 38.0 38.0 25.0 25.0			20
30					55.0 55.0 55.0 55.2 5.2			30 -
35	End of boring at 35.0'				0.2			35
	No groundwater encountered							
- 40								40 -
ST - PRES RC - ROC CT - 5 FT	YEN SPLIT \$POON HSA - HOLLOW STEM AUGER SSED SHELBY TUBE CFA - CONTINUOUS FLIGHT AUGERS K CORE MD - MUD DRILLING ↓ AFTE	in no ono	BOTTO		AL	• • • • • • • • • • • • • • • • • • •	ACTORY - SI VELL SCREEN VELL CASING ENTONITE/C ROUT SEAL	4 6

.

PRC LOC TOT SUF SCF CAS	RING/WELL #: B-4 DJECT NO.: 2005069 CATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO TAL DEPTH: 35.0' RFACE ELEV: REEN: DIA: N/A LENGTH: N/A SIZE: N/A SING: DIA: N/A LENGTH: N/A TYPE: N/A LLING METHOD(S): Air Rotary	CLIENT: CONOC PROJECT: MAL WATER LEVEL: BORE HOLE DIA DRILLING COMP DATE DRILLED: DRILLER: C. HA OVERSIGHT: C.	JAMAR GAS INITIAL: N/, METER: 6.2 PANY: HARF 4/27/00 RRISON	A 25"	24 HOURS:	N/A	
EPTH EET	SOIL DESCRIPTION	DESCRIPTION INTERVAL	SAMPLE INTERVAL	CORE	OVM or GRAPHIC Hnu (PPM) LOG	WELL DESIGN	DEPT FEE
	SILTY SAND	0.0'-10.0'			2651.0		-
	-Heavily stained with odor from 0.0'-2.0'				2651.0		
	-No stains from 2.0'-4.0', moist				1832.0		
	-No retreival from 4.0'-6.0'				1832.0		
5							5
					1076.0		
					1076.0		
					1535.0	Į	
10	Light pink SILTY SAND	10.0-15.0'			1535.0	1	10
ſ	LIGHT PILIK SILTT SAND	10.0-15.0		1	2099.0		
				100	1836.0		
					1836.0		
15					1544.0	ļ	1
1.0	Brownish red SILTY SAND	15.0-35.0'			1544.0	1	
					1015.0		}
					1015.0		
					136.0		
20							20
				ante -			
					14.0	4	
25							2
				- 14 	15.7	ł	
30				10	15.7		30
				1. A.			
					12.7		
35 -				21	12.7		-3
-	End of boring at 35.0' No groundwater encountered						
					<u>├</u>		
4							
40		<u>,l</u>					4(
					F	ACTORY - S	LOTTF
	'EN SPLIT SPOON HSA - HOLLOW STEM AUGER 🛛 🗸 AT CO	R LEVEL	вотто		i v	VELL SCREE	N
- PRES	SED SHELBY TUBE CFA - CONTINUOUS FLIGHT AUGERS	ſ	SAND F	PACK	v	VELL CASING	3

f.,,

PRO LOC TO SUI SCI CAS DRI	RING/WELL #: B-5 DJECT NO.: 2005069 CATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO TAL DEPTH: 35.0' RFACE ELEV: REEN: DIA: N/A LENGTH: N/A SIZE: N/A SING: DIA: N/A LENGTH: N/A TYPE: N/A LLING METHOD(S): Air Rotary	WATER LEVEL: BORE HOLE DIA DRILLING COMP DATE DRILLED: DRILLER: C. HA OVERSIGHT: C.	JAMAR GAS PLA INITIAL: N/A METER: 6.25" PANY: HARRISON 4/28/00 RRISON MADDOX	24 HOU I & COOPER	JRS: N/A	
EPTH EET	SOIL DESCRIPTION	DESCRIPTION INTERVAL	SAMPLE CORE	Hnu (PPM) L	APHIC WELL OG DESIGN	DEPT
5	Brownish red SILTY SAND -Petroleum odors begining at 7.0'	0.0'-10.0'		140.0 140.0 40.0 1884.0 1884.0 3567.0 3567.0 298.0 298.0		5
10	Light pink SILTY SAND	10.0-12.0'		23.3 23.3		10
	Reddish brown SILTY SAND	12.0-35.0'		20.4		
15 20	-No odors at 15.0'			26.5 26.5 10.4 10.4 16.7 16.7		20
25				18.9 18.9 		25
30				14.8		30
35		· · · · · · · · · · · · · · · · · · ·		14.8		
40	End of boring at 35.0' No groundwater encountered					

RC - ROCK CORE CT - 5 FT CONTINUOUS SAMPLER AD - AIR DRILLING NR - NO READINGS TAKEN

MD - MUD DRILLING

- E AFTER HOURS

SOIL SAMPLE SUBMITTED TO LAB

SAN BENTONITE SEAL

BENTONITE/CEMENT

SOIL BOP	RING LOG
BORING/WELL #: B-6 PROJECT NO.: 2005069 LOCATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO TOTAL DEPTH: 27.0' SURFACE ELEV: SCREEN: DIA: LENGTH: SIZE: CASING: DIA: LENGTH: TYPE: DRILLING METHOD(S): Air Rotary	CLIENT: CONOCO, INC. PROJECT: MALJAMAR GAS PLANT WATER LEVEL: INITIAL: 24 HOURS: BORE HOLE DIAMETER: 6.25" DRILLING COMPANY: HARRISON & COOPER DATE DRILLED: 6/21/00 DRILLER: C. MADDOX OVERSIGHT: K. COOPER
DEPTH SOIL DESCRIPTION	DESCRIPTION SAMPLE CORE OVM or GRAPHIC WELL DEPTI
FEET SOIL DESCRIPTION Brownish red SILTY SAND - 5 - 10	INTERVAL INTERVAL Y Hnu (PPM) LOG DESIGN FEET 0.0'-15.0' 0.0 0.0 0.0 5 5 5 10 10
- 15 Light pink SILTY SAND - 20 -Intermixed with sandstone/fairly coarse gravel at 20.0'	
25 Reddish brown SILTY SAND	25.0-27.0'
- End of boring at 27.0' No stains or odors No groundwater - 30	30
- 35	35
SS - DRIVEN SPLIT SPOON HSA - HOLLOW STEM AUGER $\begin{tabular}{lllllllllllllllllllllllllllllllllll$	TER LEVEL BOTTOM CAP FACTORY - SLOTTED COMPLETION ER HOURS SAND PACK WELL CASING SAMPLE MITTED TO LAB ENTONITE SEAL GROUT SEAL

.

ŀ

BORING/WELL #: B-7 PROJECT NO.: 2005069 LOCATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO TOTAL DEPTH: 32.0' SURFACE ELEV: SCREEN: DIA: LENGTH: SIZE: CASING: DIA: LENGTH: TYPE: DRILLING METHOD(S): Air Rotary	BORE HOLE DIA	JAMAR GAS INITIAL: METER: 6.2 PANY: HARR 6/21/00 OPER	24 HOUF	IS:	
SOIL DESCRIPTION	DESCRIPTION	SAMPLE INTERVAL	CORE OVM or GRAF Y N Hnu (PPM) LO		DEP FEE
5	0.0'-15.0'		6.0 6.0 3.0		5
10 -Black stains from 9.5'-10.0'			9.0 9.0		1(
15 Light pink SILTY SAND 20	15.0-22.0'		21.0 21.0 18.0		20
25 Reddish brown SILTY SAND	22.0-32.0'		18.0 26.0 26.0		2
³⁰ -Intermixed with sandstone/fairly coarse gravel at 30.0'			8.0 8.0		30
End of boring at 32.0'			1		38
40					40

BORNGWIEL #: 8-8 CLENT: CONOCO, INC. PROJECT NO: 2005089 PROJECT NO: 2005089 DORNO: 1001 CONOCO ROAD, MALJAMAR, NEW MEUY WATER LEVEL: INITIAL: 24 HOURS: BURFACE ELEV: BORE HOLE DIAMETER: 6.25° SURFACE ELEV: DATE DRILLER: K. COOPER DATE: DIA: LENGTH: SIZE: DATE DRILLER: K. COOPER DRILLING COMPANY: HARRISON & COOPER DRILLING SCHOPEN SOLD DESCRIPTION VERSIGET C. MALDADOX PROJECT C. SOLD DESCRIPTION DATE DRILLER: K. COOPER DRILLING METHODISI: AIR Rotary DVERSIGHT C. MALDOX Black-stained SILTY SAND with strong odors 0.0°-10.0° 10 Brown-stained SILTY SAND with odors 10.0-15.0° 11 Brownish red SILTY SAND 15.0-20.0° 20 Light pink SILTY SAND 25.0-27.0° 21 Hight pink SILTY SAND 27.0-30.0° 230.0 10.0-15.0° 10.0-15.0° 24 25.0-27.0° 25.0-27.0° 25 Reddish brown SILTY SAND 25.0-27.0° 26 Reddish brown SILTY SAND 30.0-35.0° 31 T4.0 T4.0 32 T4.0 T4.0		SOIL BOR					
SOIL DESCHIPTION INTERVAL INTERVAL V N HMU (PRM) LOG DESIGN Black-stained SILTY SAND with strong odors 0.0'-10.0' 737.0	PRO LOC TO ^T SUI SCI	DJECT NO.: 2005069 CATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO TAL DEPTH: 42.0' RFACE ELEV: REEN: DIA: LENGTH: SIZE: SING: DIA: LENGTH: TYPE:	PROJECT: MAI WATER LEVEL: BORE HOLE DIA DRILLING COM DATE DRILLED: DRILLER: K. CO	LJAMAR GAS INITIAL: AMETER: 6.2 PANY: HARF : 6/21/00 DOPER	25"	24 HOURS	:
Black-stained SILTY SAND with strong odors 0.0'-10.0' 737.0 5 737.0 737.0 5 829.0 829.0 10 Brown-stained SILTY SAND with odors 10.0-15.0' 15 Brownish red SILTY SAND 15.0-20.0' 15 Brownish red SILTY SAND 15.0-20.0' 10 10.0-15.0' 10.0-15.0' 20 Light pink SILTY SAND 15.0-20.0' 21 102.0 102.0 22 Light pink SILTY SAND 20.0-25.0' 23 Reddish brown SILTY SAND (little sample retrieval) 25.0-27.0' 24 74.0 74.0 25 Reddish brown SILTY SAND (little sample retrieval) 27.0-30.0' 26 Reddish brown SILTY SAND (little retrieval) 27.0-30.0' 27.0'-42.0' 30.0-35.0' N/A 30 SANDSTONE/GRAVEL (Very little retrieval), did not screen 30.0-35.0' 35 Brownish red SILTY SAND 8.0		SOIL DESCRIPTION					
10 Brown-stained SILTY SAND with odors 10.0-15.0' 592.0 2 15 Brownish red SILTY SAND 15.0-20.0' 102.0 102.0 20 Light pink SILTY SAND 20.0-25.0' 331.0 331.0 21 Reddish brown SILTY SAND (little sample retrieval) 25.0-27.0' 74.0 74.0 20 SANDSTONE/GRAVEL (Very little retrieval), did not screen 30.0-35.0' N/A 10.0-15.0' 33 331.0 33.0 33.0 331.0 10.0-15.0' 21 SANDSTONE/GRAVEL (Very little retrieval), did not screen 30.0-35.0' N/A 10.0-15.0' 35 Jownish red SILTY SAND 35.0-40.0' 8.0 10.0-15.0' 10.0-15.0'		Black-stained SILTY SAND with strong odors				737.0 737.0 829.0	
Brownish red SILTY SAND 15.0-20.0* 102.0 20 Light pink SILTY SAND 20.0-25.0* 331.0 25 Reddish brown SILTY SAND (little sample retrieval) 25.0-27.0* 74.0 -Intermixed with sandstone/fairly coarse gravel from 27.0*30.0* 74.0 74.0 30 SANDSTONE/GRAVEL (Very little retrieval), did not screen 30.0-35.0* N/A 35	10	Brown-stained SILTY SAND with odors	10.0-15.0'		「安安市北市で	<u></u>	
Light pink SILTY SAND 20.0-25.0' 331.0 25 Reddish brown SILTY SAND (little sample retrieval) 25.0-27.0' -Intermixed with sandstone/fairly coarse gravel from 27.0'-42.0' 27.0-30.0' 30 SANDSTONE/GRAVEL (Very little retrieval), did not screen -No retrieval from 30.0'-32.0' 30.0-35.0' Brownish red SILTY SAND 35.0-40.0' 35.0-40.0'	15	Brownish red SILTY SAND	15.0-20.0'			······································	
25 Reddish brown SILTY SAND (little sample retrieval) 25.0-27.0' -Intermixed with sandstone/fairly coarse gravel from 27.0'-42.0' 27.0-30.0' 30 SANDSTONE/GRAVEL (Very little retrieval), did not screen -No retrieval from 30.0'-32.0' 30.0-35.0' Brownish red SILTY SAND 35.0-40.0'	20	Light pink SILTY SAND	20.0-25.0'				
-Intermixed with sandstone/fairly coarse gravel from 27.0'-42.0' 27.0-30.0' 30 SANDSTONE/GRAVEL (Very little retrieval), did not screen -No retrieval from 30.0'-32.0' 30.0-35.0' Brownish red SILTY SAND 35.0-40.0'	25	Reddish brown SILTY SAND (little sample retrieval)	25.0-27.0'		1. 22	74.0	
SANDSTONE/GRAVEL (Very liftle retrieval), did not screen 30.0-35.0° -No retrieval from 30.0'-32.0' Brownish red SILTY SAND 35 35.0-40.0'			27.0-30.0'				•
35 35.0-40.0'	30	-No retrieval from 30.0'-32.0'	30.0-35.0'		. V.	N/A	
SANDSTONE (very little retrieval)	35	Brownish red SILTY SAND	35.0-40.0'			8.0	
40	40	SANDSTONE (very little retrieval)					

.

RING/WELL #: B-8			0 0				
	WATER LEVEL:	INITIAL:			IOURS:		
RFACE ELEV:				& COOPI	ER		
REEN: DIA: LENGTH: SIZE:							
LLING METHOD(S): Air Rotary		-r	0005	0.0			0.00
SOIL DESCRIPTION	INTERVAL	INTERVAL	Y N	Hnu (PPM)	LOG	DESIGN	DE
SANDSTONE (very little retrieval)	40.0-42.0		Ť.	9.0		.	
End of boring at 42.0'					-		
							4
				,	-		
							5
				·	-		
							Ę
					-		
					-		
					-		6
							(
					4		
					-		
							-
					-		
							-
					-		
				<u> </u>			
					-		
	JECT NO.: 2005069 ATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO AL DEPTH: 42.0' RFACE ELEV: REEN: DIA: LENGTH: SIZE: SING: DIA: LENGTH: TYPE: LLING METHOD(S): Air Rotary SOIL DESCRIPTION	JECT NO.: 2005069 PROJECT: MA ATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO WATER LEVEL AL DEPTH: 42.0' BORE HOLE DI DFACE ELEV: DRILLING COM MEEN: DIA: LENGTH: SIZE: DATE DRILLED DIA: LENGTH: TYPE: DRILLER: K. C LLING METHOD(S): Air Rotary OVERSIGHT: (SOIL DESCRIPTION DESCRIPTION INTERVAL SANDSTONE (very little retrieval) 40.0-42.0'	JECT NO.: 2005069PROJECT: MALJAMAR GASCATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICOWATER LEVEL: INITIAL:CAL DEPTH: 42.0'BORE HOLE DIAMETER: 6.CAL DEPTH: 42.0'DRILLING COMPANY: HARDEEN: DIA: LENGTH: SIZE:DATE DRILLED: 6/21/00SING: DIA: LENGTH: TYPE:DRILLER: K. COOPERLLING METHOD(S): Air RotaryOVERSIGHT: C. MADDOXDESCRIPTIONDESCRIPTIONSAMPLE INTERVALSANDSTONE (very little retrieval)	JECT NO.: 2005069 PROJECT: MALJAMAR GAS PLAN CATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO WATER LEVEL: INITIAL: CAL DEPTH: 42.0' BORE HOLE DIAMETER: 6.25" DRILLING COMPANY: HARRISON DATE DRILLED: 6/21/00 SING: DIA: LENGTH: TYPE: DATE DRILLER: K. COOPER LLING METHOD(S): Air Rotary OVERSIGHT: C. MADDOX SOIL DESCRIPTION DESCRIPTION SANDSTONE (very little retrieval) 40.0-42.0'	JECT NO.: 2005069 PROJECT: MALJAMAR GAS PLANT CATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO WATER LEVEL: INITIAL: 24 H CAL DEPTH: 42.0' BORE HOLE DIAMETER: 6.25" DRILLING COMPANY: HARRISON & COOPI GEACE ELEV: DRILLING COMPANY: HARRISON & COOPI DATE DRILLED: 6/21/00 GEN: DIA: LENGTH: SIZE: DATE DRILLER: K. COOPER DRILLING METHOD(S): Air Rotary SOIL DESCRIPTION DESCRIPTION SAMPLE INTERVAL CORE Y N OVM or Hnu (PPM) SANDSTONE (very little retrieval) 40.0-42.0' Y 9.0	JECT NO.: 2005069PROJECT: MALJAMAR GAS PLANTCATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICOWATER LEVEL: INITIAL:24 HOURS:CAL DEPTH: 42.0'BORE HOLE DIAMETER: 6.25"BORE HOLE DIAMETER: 6.25"CAL DEPTH: 42.0'DRILLING COMPANY: HARRISON & COOPERCAL DEPTH: 42.0'DRILLING COMPANY: HARRISON & COOPERCAL DEPTH: 42.0'DRILLING COMPANY: HARRISON & COOPERCAL DEPTH: SIZE:DATE DRILLED: 6/21/00SING: DIA: LENGTH: TYPE:DRILLER: K. COOPERLLING METHOD(S): Air RotaryOVERSIGHT: C. MADDOXSOIL DESCRIPTIONDESCRIPTIONSANDSTONE (very little retrieval)40.0-42.0'	JECT NO.: 2005069PROJECT: MALJAMAR GAS PLANTCATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICOWATER LEVEL: INITIAL:24 HOURS:CAL DEPTH: 42.0'BORE HOLE DIAMETER: 6.25"BORE HOLE DIAMETER: 6.25"CAL DEPTH: 42.0'DRILLING COMPANY: HARRISON & COOPERCAL DEPTH: 42.0'DRILLING COMPANY: HARRISON & COOPERCAL DEPTH: 42.0'DRILLED: 6/21/00CORE DIA: LENGTH: SIZE:DATE DRILLED: 6/21/00SING: DIA: LENGTH: TYPE:DRILLER: K. COOPERLLING METHOD(S): Air RotaryOVERSIGHT: C. MADDOXSOIL DESCRIPTIONDESCRIPTION SAMPLE INTERVALCORE OVM or NTERVALSANDSTONE (very little retrieval)40.0-42.0'9.0

•

ł

- -*

т - : : - : :

1 - 24¹ -

,

.

UIL BORING/MONITOR WELL LO

BORING/WELL #: B-9/MW-1 PROJECT NO .: 2005069 LOCATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO TOTAL DEPTH: 97.0' SURFACE ELEV: SCREEN: DIA: 2" LENGTH: 2.0' SIZE: 0.010" CASING: DIA: 2" LENGTH: 72' TYPE: PVC DRILLING METHOD(S): Air Rotary

CLIENT: CONOCO, INC. PROJECT: MALJAMAR GAS PLANT WATER LEVEL: INITIAL: 93.0'24 HOURS: 77.0' BORE HOLE DIAMETER: 6.25" DRILLING COMPANY: HARRISON & COOPER DATE DRILLED: 6/21/00

,

DRILLER: K. COOPER

OVERSIGHT: C. MADDOX

EPTH	SOIL DESCRIPTION	DESCRIPTION INTERVAL	SAMPLE CORE	OVM or Hnu (PPM)	GRAPHIC LOG	WELL DESIGN	DEP1 FEE
5	Brownish red SILTY SAND	0.0'-10.0'		6.0 6.0 			5
10	Light pink SILTY SAND	10.0-15.0'		6.0 6.0			10
15	Brownish red SILTY SAND	15.0-25.0'		3.0 3.0			1
20				3.0 3.0			2
25	Light pink SILTY SAND intermixed with sandstone/fairly coarse gravel	25.0-30.0'		3.0 3.0			2
30	Reddish brown SILTY SAND	30.0-50.0'		17.0 17.0			3
35				15.0 15.0 7			3

RC - ROCK CORE

NR - NO READINGS TAKEN

CONTINUOUS FLIGH MD - MUD DRILLING CT - 5 FT CONTINUOUS SAMPLER AD - AIR DRILLING

SOIL SAMPLE SUBMITTED TO LAB

BENTONITE SEAL

WELL CASING

BENTONITE/CEMENT

PRC LOC TOT SUF SCF CAS DRI	RING/WELL #: B-9/MW-1 DJECT NO.: 2005069 CATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO TAL DEPTH: 97.0' RFACE ELEV: REEN: DIA: 2" LENGTH: 2.0' SIZE: 0.010" SING: DIA: 2" LENGTH: 72' TYPE: PVC LLING METHOD(S): Air Rotary	CLIENT: CONOCO, INC. PROJECT: MALJAMAR GAS PLANT WATER LEVEL: INITIAL: 93.0'24 HOURS: 77.0' BORE HOLE DIAMETER: 6.25" DRILLING COMPANY: HARRISON & COOPER DATE DRILLED: 6/21/00 DRILLER: K. COOPER OVERSIGHT: C. MADDOX DESCRIPTION SAMPLE CORE OVM or GRAPHIC WELL						
DEPTH FEET	SOIL DESCRIPTION	DESCRIPTION INTERVAL	SAMPLE	Y N	Hnu (PPM)	GRAPHIC LOG	WELL DESIGN	DEP
- 45 - 50 - 55 - 60	Reddish brown SILTY SAND -Very little sample retrieval from 40.0'-42.0' Medium brown SILTY SAND -Started describing soils from cuttings at 50.0'. Collected samples every 10.0'- for potential lab analysis. Tannish gray SILTY SAND	50.0-57.0'			5.0			5
- 65	Olive-brown SILTY SAND	64.0-93.0'						e
- 70				and the state of the second				-
- 75				大学である				
₩				and the second second second				8

BOF	RING/WELL #: B-9/MW-1	CLIENT	CONOCO,	INC.				
	DJECT NO.: 2005069		T: MALJA					
	CATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO		LEVEL: INI			OURS:	77.0	
	RFACE ELEV:		IG COMPAN			& COOP	ER	
	REEN: DIA: 2" LENGTH: 2.0' SIZE: 0.010"		RILLED: 6/					
	SING: DIA: 2" LENGTH: 72' TYPE: PVC LLING METHOD(S): Air Rotary		R: K. COOP GHT: C. M.		x			
DEPTH		DESCRIPTION	SAMPLE	CORE	OVM or	GRAPHIC	WELL	DEPT
FEET	SOIL DESCRIPTION Olive-brown SILTY SAND	INTERVAL	INTERVAL	Y N	Hnu (PPM)	LOG		FEET
-					·····			
- 85	-Intermixed with small sandstone and clayey, shaley type							85
	material							
-								
- 90								90
ΞŢ	Medium brown SILTY SAND intermixed with gravel	93.0-97.0'			·			
	-Groundwater at 93.0'	00.007.0					• · · · · · · · · · · · · · · · · · · ·	
- 95								95
-	End of boring at 97.0'			- jin	·		* * * * * * *	
-100						' (1	100
Ì								
-								
-105								105
-								
-110				}				110
110								
_								
-115								115
							1	
-								
						ļ		
-120								120
								1
	WATER I	EVEL	вотто	м сар	ļ		ACTORY - SL /ELL SCREEN	
r - Pres	EN SPLIT SPOON HSA - HOLLOW STEM AUGER ZAT COMP SED SHELBY TUBE CFA - CONTINUOUS FLIGHT AUGERS	ſ	SAND I	РАСК	ſ		ELL CASING	
C - ROCI	K CORE MD - MUD DRILLING AFTER HI CONTINUOUS SAMPLER AD - AIR DRILLING SOIL SAM	JUNS			1		ENTONITE/CI ROUT SEAL	

ļ

. 19 Messacov vstavnik odkoste zakaza odkaza zakazatele neve solate statu od sezania se se se se se se se se s

PRC LOC TOT	NING/WELL #: B-10 JECT NO.: 2005069 ATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO AL DEPTH: 52.0' RFACE ELEV:	CLIENT: CONOC PROJECT: MAL WATER LEVEL: BORE HOLE DIAL DRILLING COMP	JAMAR GAS INITIAL: METER: 6.2	25"	24 HOURS:		
SCF	EEN: DIA: LENGTH: SIZE:	DATE DRILLED:	6/21/00				
	SING: DIA: LENGTH: TYPE:	DRILLER: K. CO					
DRI	LLING METHOD(S): Air Rotary	OVERSIGHT: C.		-1	·····	· · · · · · · · · · · · · · · · · · ·	
EPTH FEET	SOIL DESCRIPTION	DESCRIPTION INTERVAL	SAMPLE INTERVAL	CORE Y N	OVM or GRAPHIC Hnu (PPM) LOG	WELL DESIGN	DEI FE
5	Brownish red SILTY SAND	0.0'-30.0'			91.0 91.0 142.0		Į
	-Odors at 8.0'			1.10	1222.0		
10				100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1222.0		1
15				Landa.	992.0 992.0		1
20	, ,				938.0 938.0	· · · · · · · · · · · · · · · · · · ·	
25	-Very little sample retrieval intermixed with sandstone/fairly coarse gravel at 25.0'-27.0'			. M	67.0 67.0		
30	SANDSTONE (very little retrieval)	30.0-35.0'			211.0 211.0	· ·	
	·						
35	Light pink SILTY SAND	35.0-40.0'			197.0		
	Brownish red SILTY SAND						
40							4

RC - ROCK CORE MD - MUD DRILLING CT - 5 FT CONTINUOUS SAMPLER AD - AIR DRILLING

NR - NO READINGS TAKEN

MD - MUD DRILLING

SOIL SAMPLE SUBMITTED TO LAB

BENTONITE SEAL

..

GROUT SEAL

PRC LOC TOT SUF SCF CAS DRI	RING/WELL #: B-10 DJECT NO.: 2005069 CATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO FAL DEPTH: 52.0' RFACE ELEV: REEN: DIA: LENGTH: SIZE: SING: DIA: LENGTH: SIZE: SING: DIA: LENGTH: TYPE: LLING METHOD(S): Air Rotary	CLIENT: CONOCO, INC. PROJECT: MALJAMAR GAS PLANT WATER LEVEL: INITIAL: 24 HOURS: BORE HOLE DIAMETER: 6.25" DRILLING COMPANY: HARRISON & COOPER DATE DRILLED: 6/21/00 DRILLER: K. COOPER OVERSIGHT: C. MADDOX					
DEPTH FEET	SOIL DESCRIPTION	DESCRIPTION INTERVAL	SAMPLE INTERVAL	CORE Y N	OVM or GRAP Hnu (PPM) LO		DE FE
- 45	SANDSTONE (very little retrieval) -Slight odors remain at 40.0'-42.0' (very little retrieval)	40.0-45.0'					4
-	-No retrieval from 45.0'-47.0'	45.0-50.0'			18.0		
- 50	Medium brown SILTY SAND	50.0-52.0'		-	5.0		
- 55	End of boring at 52.0'						Ę
- 60							e
- 65							(
- 70							
- 75							-
- 80							
SS - DRIV ST - PRES RC - ROCI	EN SPLIT SPOON HSA - HOLLOW STEM AUGER 꽃 AT CO SED SHELBY TUBE CFA - CONTINUOUS FLIGHT AUGERS 같 AFTER K CORE MD - MUD DRILLING 같 AFTER		BOTTOM	ACK		FACTORY - S WELL SCREEF WELL CASING BENTONITE/C GROUT SEAL	N G

	SOIL BOR	IN	g log						
PRC LOC TOT SUF SCF CAS	RING/WELL #: B-11 DJECT NO.: 2005069 CATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO TAL DEPTH: 32.0' RFACE ELEV: REEN: DIA: LENGTH: SIZE: SING: DIA: LENGTH: TYPE: ILLING METHOD(S): Air Rotary	PR W/ BC DF DF	ATER LEVEL: DRE HOLE DIA	LJAMAR GA: INITIAL: AMETER: 6.2 PANY: HARI : 6/22/00 DOPER	25"	24 ⊦	IOURS:		
DEPTH FEET	SOIL DESCRIPTION		DESCRIPTION INTERVAL	SAMPLE	CORE	OVM or Hnu (PPM)	GRAPHIC LOG	WELL DESIGN	DEPT
5	Brownish red SILTY SAND		0.0'-9.0'		and the fight of the second	0.0 0.0 2.0			5
10	Light pink SILTY SAND with sandstone fragments		9.0'-19.5'		「「「「」」「「」」」	2.0 2.0			10
15						2.0 2.0			1
20 25	Brownish red SILTY SAND	-	19.5-32.0'			3.0 3.0 			2
30	-Very little retrieval from 30.0'-32.0' \-\$andstone at 32.0'	Γ				5.0 2.0 2.0			3
35	End of boring at 32.0'	/							3
40									4
- DRIV - PRES - ROCH - 5 FT	VEN SPLIT SPOON HSA - HOLLOW STEM AUGER SED SHELBY TUBE CFA - CONTINUOUS FLIGHT AUGERS K CORE MD - MUD DRILLING CONTINUOUS SAMPLER AD - AIR DRILLING SOLL S SEADINGS TAKEN ■ SUBM	MPLE R HOU	TION	BOTTO SAND F	ACK	AL	w	ACTORY - SL /ELL SCREEN /ELL CASING ENTONITE/CI ROUT SEAL	

I

LOCA TOTA SURI SCRI	JECT NO.: 2005069 ATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO	DDO IFOT. MAL						
TOT. SURI SCRI	ATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO	PROJECT: MAL	JAMAR GAS	S PLAN	IT.			
SUR		CONOCO ROAD, MALJAMAR, NEW MEXICO WATER LEVEL: INITIAL: 24 HOURS:						
SCR	AL DEPTH: 42.0'	BORE HOLE DIAMETER: 6.25"						
	FACE ELEV:	DRILLING COMP	ANY: HAR	RISON	& COOPE	R		
CAS	EEN: DIA: LENGTH: SIZE:	DATE DRILLED:	6/22/00					
	ING: DIA: LENGTH: TYPE:	DRILLER: K. CO	OPER					
DRIL	LING METHOD(S): Air Rotary	OVERSIGHT: C	. MADDOX					
DEPTH FEET	SOIL DESCRIPTION	DESCRIPTION INTERVAL	SAMPLE INTERVAL	CORE Y N	OVM or Hnu (PPM)	GRAPHIC LOG	WELL DESIGN	0
	Brownish red SILTY SAND	0.0'-8.0'		1	14.0			T
	-Odd odor from 0.0'-5.0'			1999 - 1999 -	14.0			
				28				
5					5.0			
5				12.13				
				4. 4				
	Light pink SILTY SAND with sandstone fragments	8.0'-9.0'		1	3.0			
10	Brownish red SILTY SAND	9.0'-25.0'		e gañ	3.0			
				1 L -				
				40.				
				1				
				1.25				
15		1		and the second				
	-Intermixed with sandstone/fairly coarse gravel at 15.0'							
				14 A.				
20	-Very little retrieval from 20.0'-22.0'			. A				
	- very little retrieval from 20.0 -22.0			$\mathcal{F}_{\mathcal{C}}$	6.0			
					6.0	이 나는		
25 -	Light pink SILTY SAND with sandstone fragments	25.0-30.0'		194 194	5.0			
	Light places of a same with saldstone fragments	25.0-30.0		3.2	5.0 5.0			
				n'i Ann	5.0			
				E.		김귀기		
				2.1				
30 -	Brownish red SILTY SAND	30.0-35.0'			17.0			
	-Very little retrieval from 30.0'-32.0'			1.11	17.0			
	-Slight odd odor at 30.0'							
				<i>.</i> 7				
25				\$				1
35 -	Brownish red SILTY SAND (Very slight odd odor)	35.0-40.0'						
					47.0			
				•	47.0			
				\sim				
40						:		
40 -							····	L
		R LEVEL [вотто	м сар	Ę	FA	CTORY - SI	LC 1

	SOIL BOR	ING LOG					
PRC LOC TOT SUF SCF CAS	RING/WELL #: B-12 DJECT NO.: 2005069 CATION: 1001 CONOCO ROAD, MALJAMAR, NEW MEXICO TAL DEPTH: 42.0' RFACE ELEV: REEN: DIA: LENGTH: SIZE: SING: DIA: LENGTH: TYPE: LLING METHOD(S): Air Rotary	CLIENT: CONOCO, INC. PROJECT: MALJAMAR GAS PLANT WATER LEVEL: INITIAL: 24 HOURS: BORE HOLE DIAMETER: 6.25" DRILLING COMPANY: HARRISON & COOPER DATE DRILLED: 6/22/00 DRILLER: K. COOPER OVERSIGHT: C. MADDOX					
DEPTH FEET	SOIL DESCRIPTION	DESCRIPTION INTERVAL	SAMPLE INTERVAL	CORE			DEP
1621	Brownish red SILTY SAND	40.0-42.0'	INTENTAL	Y N	Hnu (PPM) LOG 		
	End of boring at 42.0'			# 1 	3.0		
45					····		4
-							
- 50							50
00							
-							
- 55							5
- 60							
. 90							6
-							
- 65							6
70							_
- 70							7
-					-		
75							7
-							
- 80							80
T - PRES C - ROCI T - 5 FT	YEN SPLIT SPOON HSA - HOLLOW STEM AUGER ♀ AT CC SED SHELBY TUBE CFA - CONTINUOUS FLIGHT AUGERS ♀ AFTEF K CORE MD - MUD DRILLING ♀ AFTEF		BOTTON	ACK		FACTORY - S WELL SCREEN WELL CASING BENTONITE/C GROUT SEAL	N G

ATTACHMENT C

1. 2 C 22

12. AU

10 T - 10 -

يالا عدوك

Sec. 6. 26

1.4.4.

The second

4.1

23. A.S. A.

LABORATORY ANALYTICAL RESULTS

Certificate of Analysis

TL Austin 14046 Summit Drive Austin, Texas 78728

Tel: 512 310 5202 Fax: 512 244 0160 www.stl-inc.com

STL Austin

ANALYTICAL REPORT

PROJECT NO. MALJAMAR, NM

Maljamar Gas Plant

Lot #: I0F260148

Clyde Yancey

Maxim Technologies, Inc. 8235 Douglas Ave Ste 700 LB44 Dallas, TX 75225

SEVERN TRENT LABORATORIES, INC.

Carla M. Butler Project Manager

July 14, 2000

American Council of Independent Laboratories International Association of Environmental Testing Laboratories STL Austin is a part of Severn Trent Laboratories, Inc.

STL-4122 (0500)

CASE NARRATIVE

I0F260148

Samples received in good condition within acceptable cooler temperature.

8260 Analysis

The following had targets reported non-detect at elevated reporting limits:

• Sample 015 due to dilutions required by high native concentration of some target compounds.

• Samples 005 and 009 because matrix required a medium level preparation. Toluene was outside control limits for the Matrix Spike/Matrix Spike Duplicate of 009, batch 0193213.

Recoveries of some compounds were outside limits for the Matrix Spike/Matrix Spike Duplicate of the non-project specific QC sample for batch 0192173.

8015B GRO Analysis

Surrogate recovery was outside control limits due to demonstrated matrix effect for samples 005 and 009.

Recoveries were outside limits for the Matrix Spike/Matrix Spike Duplicate of the non-project specific QC sample for batch 0184103.

EXECUTIVE SUMMARY - Detection Highlights

I0F260148

	PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
B-6@5	06/21/00 09:15 001				
	Percent Moisture	19.6	0.50	ક	ASTM D 2216-90
B-6@25	5'-27' 06/21/00 09:20 002				
	Percent Moisture	17.2	0.50	ક	ASTM D 2216-90
B-7@25	5'-27' 06/21/00 10:25 003				
D T C C C	Percent Moisture	11.3	0.50	8	ASTM D 2216-90
B-1631)'-32' 06/21/00 10:30 004				
	Percent Moisture	9.9	0.50	00	ASTM D 2216-90
B-8@5'	06/21/00 11:30 005				
	Gasoline Range Organics	3000000	100000	ug/kg	SW846 8015B
	Benzene	3800	1000	ug/kg	SW846 8260B
	Ethylbenzene Xylenes (total)	19000	1000	ug/kg	SW846 8260B
	Percent Moisture	43000 6.8	1000 0.50	ug/kg %	SW846 8260B ASTM D 2216-90
	Fercent Morsture	0.0	0.50	6	ASIM D 2216-90
B-8@35	-37' 06/21/00 11:35 006				
	Percent Moisture	14.9	0.50	8	ASTM D 2216-90
B-9@30	-32' 06/21/00 14:40 007				
	Percent Moisture	14.3	0.50	0- -0-	ASTM D 2216-90
B-9@90	06/21/00 14:45 008				
	Percent Moisture	17.5	0.50	8	ASTM D 2216-90
B-10@8	'-10' 06/21/00 16:20 009				
	Gasoline Range Organics	210000	5000	ug/kg	SW846 8015B
	Ethylbenzene	1800	250	ug/kg	SW846 8260B
	Toluene	860	250	ug/kg	SW846 8260B
	Xylenes (total)	6800	250	ug/kg	SW846 8260B
	Percent Moisture	10.5	0.50	0	ASTM D 2216-90

(Continued on next page)

EXECUTIVE SUMMARY - Detection Highlights

I0F260148

I

l

1

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
B-10@35'-37' 06/21/00 16:25 010				
Percent Moisture	17.1	0.50	90 70	ASTM D 2216-90
B-10@50'-52' 06/21/00 16:30 011				
Percent Moisture	17.0	0.50	૪	ASTM D 2216-90
B-11@25'-27' 06/22/00 08:30 012				
Percent Moisture	9.2	0.50	૪	ASTM D 2216-90
B-12@0'-2' 06/22/00 09:30 013				
Percent Moisture	9.2	0.50	ę,	ASTM D 2216-90
B-12@40'-42' 06/22/00 09:35 014				
Percent Moisture	17.0	0.50	ર્જ	ASTM D 2216-90
MW-1 06/22/00 11:00 015				
Gasoline Range Organics Benzene Ethylbenzene Chloride	5200 1800 75 227	500 50 50 20.0	ug/L ug/L ug/L mg/L	SW846 8015B SW846 8260B SW846 8260B MCAWW 300.0A

ANALYTICAL METHODS SUMMARY

I0F260148

PARAMETER	ANALYTICAL METHOD
Chloride Method for Determination of Water Content of Soil Volatile Organics by GC/MS Volatile Petroleum Hydrocarbons	MCAWW 300.0A ASTM D 2216-90 SW846 8260B SW846 8015B
References:	

ASTM Annual Book Of ASTM Standards.

MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

METHOD / ANALYST SUMMARY

I0F260148

ANALYTICAL METHOD	ANALYST	ANALYST
ASTM D 2216-90	Leigh Jandle	013321
MCAWW 300.0A	David A. Tocher	800002
SW846 8015B	Loan Carley	074741
SW846 8015B	Loan Carley	74741
SW846 8260B	David Yancey	014906
SW846 8260B	Sam Bivone	011612
SW846 8260B	Stuart Bosio	006487

References:

ASTM Annual Book Of ASTM Standards.

MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

I0F260148

<u>WO #</u>	SAMPLE#	CLIENT SAMPLE ID	DATE	TIME
DFALR	001	B-6@5'	06/21/00	09:15
DFAME	002	B-6@25'-27'	06/21/00	09:20
DFAMJ	003	B-7@25'-27'	06/21/00	10:25
DFAMM	004	B-7@30'-32'	06/21/00	10:30
DFAMP	005	B-8@5'	06/21/00	11:30
DFÀMT	006	B-8@35'-37"	06/21/00	11:35
DFAMV	007	B-9@30'-32'	06/21/00	14:40
DFAN0	008	B-9@90'	06/21/00	14:45
DFAN3	009	B-10@8'-10'	06/21/00	16:20
DFAN6	010	B-10@35'-37'	06/21/00	16:25
DFAN8	011	B-10@50'-52'	06/21/00	16:30
DFAN9	012	B-11@25'-27'	06/22/00	08:30
DFANK	013	B-12@0'-2'	06/22/00	09:30
DFANX	014	B-12@40'-42'	06/22/00	09:35
DFAP1	015	MW - 1	06/22/00	11:00
DFAQV	016	TRIP BLANK	06/22/00	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: B-6@5'

GC Volatiles

Lot-Sample #: IO	F260148-001 Work	Order #:	DFALR102	Matrix:	SOLID
Date Sampled: 06	5/21/00 09:15 Date	Received:	06/24/00		
Prep Date: 07	/02/00 Analy	ysis Date:	07/02/00		
Prep Batch #: 01	87300				
Dilution Factor: 1				<u>.</u>	
% Moisture: 20	Metho	od:	SW846 8015B		
			REPORTING		
PARAMETER	RESUI	<u></u>	LIMIT I	UNITS	
Gasoline Range Orga	nics ND		5000 1	ug/kg	
	DEDCT	ינידאיק	DECOVEDV		

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	80	(75 - 125)

Client Sample ID: B-6@5'

GC/MS Volatiles

 Lot-Sample #...: I0F260148-001
 Work Order #...: DFALR101
 Matrix.....: SOLID

 Date Sampled...: 06/21/00 09:15
 Date Received..: 06/24/00
 Matrix....: SOLID

 Prep Date....: 07/03/00
 Analysis Date..: 07/03/00
 Matrix.....: SOLID

 Prep Batch #...: 0192311
 Dilution Factor: 1
 Method.....: SW846 8260B

-		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	5.0	ug/kg
Ethylbenzene	ND	5.0	ug/kg
Toluene	ND	5.0	ug/kg
Xylenes (total)	ND	5.0	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	86	(42 - 183)	
Toluene-d8	94	(69 - 128)	
Dibromofluoromethane	97	(63 - 141)	
1,2-Dichloroethane-d4	93	. (58 - 141)	

Client Sample ID: B-6@25'-27'

GC Volatiles

Lot-Sample #: IOF260148-002	Work Order #:	DFAME102	Matrix SOLID
Date Sampled: 06/21/00 09:20	Date Received:	06/24/00	
Prep Date: 07/02/00	Analysis Date:	07/03/00	
Prep_Batch #: 0187300			•
Dilution Factor: 1			
% Moisture: 17	Method:	SW846 8015	B
· *		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Gasoline Range Organics	ND	5000	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Bromofluorobenzene	78	(75 - 125)	

- 10 -

Client Sample ID: B-6@25'-27'

GC/MS Volatiles

–		Work Order #:		Matrix SOLID
Date Sampled:	06/21/00 09:20	Date Received:	06/24/00	
Prep Date:	07/03/00	Analysis Date:	07/03/00	
Prep Batch #:	0192311			
Dilution Factor:	1			
<pre>% Moisture:</pre>	17	Method:	SW846 8260	B
			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Benzene		ND	5.0	ug/kg

Denie	1(1)	9.0 Q_/ 12g	
Ethylbenzene	ND	5.0 ug/kg	
Toluene	ND	5.0 ug/kg	
Xylenes (total)	ND	5.0 ug/kg	
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
SURRUGATE			
4-Bromofluorobenzene	87	(42 - 183)	
4-Bromofluorobenzene	87	(42 - 183)	
4-Bromofluorobenzene Toluene-d8	87 96	(42 - 183) (69 - 128)	

Client Sample ID: B-7@25'-27'

GC Volatiles

Lot-Sample #...: IOF260148-003 Work Order #...: DFAMJ102 Matrix..... SOLID Date Sampled...: 06/21/00 10:25 Date Received..: 06/24/00 **Prep Date....:** 07/02/00 Analysis Date..: 07/02/00 Prep Batch #...: 0187300 Dilution Factor: 1 Method....: SW846 8015B **% Moisture....:** 11 REPORTING PARAMETER RESULT LIMIT UNITS Gasoline Range Organics ND 5000 ug/kg

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	84	(75 - 125)

Client Sample ID: B-7@25'-27'

GC/MS Volatiles

Lot-Sample #:	I0F260148-003	Work Order #:	DFAMJ101	Matrix SOLID
Date Sampled:	06/21/00 10:25	Date Received:	06/24/00	
Prep Date;	07/03/00	Analysis Date:	07/03/00	
Prep Batch #:	0192311			
Dilution Factor:	1			
<pre>% Moisture:</pre>	11	Method:	SW846 8260	B
-			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Benzene		ND	5.0	ug/kg

		U (L
ND	5.0	ug/kg
ND	5.0	ug/kg
ND	5.0	ug/kg
	DECOMEDY	
PERCENT	RECOVERY	
RECOVERY	LIMITS	
87	(42 - 183)
87 96	(42 - 183 (69 - 128	•
	•)
	ND ND PERCENT	ND 5.0 ND 5.0 PERCENT RECOVERY

Client Sample ID: B-7@30'-32'

GC Volatiles

L0F260148-004	Work (Order #:	DFAMM102	Matrix: SOLID
06/21/00 10:30	Date F	Received:	06/24/00	
07/02/00	Analys	sis Date:	07/02/00	
0187300				
L				
9.9	Method	±:	SW846 8015	В
			REPORTING	
	RESULI	[LIMIT	UNITS
Janics	ND		5000	ug/kg
	PERCEN	T	RECOVERY	
	06/21/00 10:30 07/02/00 0187300 - 9.9	06/21/00 10:30 Date 1 07/02/00 Analy: 0187300 - 9.9 Method ganics ND	06/21/00 10:30 Date Received: 07/02/00 Analysis Date: 0187300	Method SW846 8015 9.9 Method REPORTING RESULT LIMIT Janics ND 5000

SURROGATERECOVERYLIMITSBromofluorobenzene82(75 - 125)

.

Client Sample ID: B-7@30'-32'

GC/MS Volatiles

-	06/21/00 10:30 07/03/00	Work Order #: Date Received: Analysis Date:	06/24/00	Matrix SOLID
Dilution Factor:	1			
<pre>% Moisture:</pre>	9.9	Method:	SW846 8260B	
			REPORTING	

PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	5.0	ug/kg
Ethylbenzene	ND	5.0	ug/kg
Toluene	ND	5.0	ug/kg
Xylenes (total)	ND	5.0	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	87	(42 - 183)	
Toluene-d8	100	(69 - 128)	
Dibromofluoromethane	95	(63 - 141)	
1,2-Dichloroethane-d4	99	(58 - 141)	

Client Sample ID: B-8@5'

GC Volatiles

Lot-Sample #: I0F260148-005 Date Sampled: 06/21/00 11:30 Prep Date: 07/01/00 Prep Batch #: 0184103 Dilution Factor: 1000		06/24/00	Matrix SOLID
<pre>% Moisture: 6.8</pre>	Method	SW846 8015	В
PARAMETER	RESULT	REPORTING LIMIT	UNITS
Gasoline Range Organics	3000000	100000	ug/kg
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Bromofluorobenzene	64 *	(75 - 125)	

NOTE (S) :

* Surrogate recovery is outside stated control limits.

Surrogates outside acceptance criteria due to demonstrated matrix effect.

Client Sample ID: B-8@5'

GC/MS Volatiles

Lot-Sample #:	I0F260148-005	Work Order #:	DFAMP101	Matrix SOLID
Date Sampled:	06/21/00 11:30	Date Received:	06/24/00	
Prep Date:	07/05/00	Analysis Date:	07/05/00	
Prep Batch #:	0193213			
Dilution Factor:	4			
<pre>% Moisture:</pre>	6.8	Method:	SW846 8260B	3
			REPORTING	
		D D OLLI M	7 3 3 4 7 5 5	INITEO

PARAMETER	RESULT	LIMIT	UNITS	
Benzene	3800	1000	ug/kg	
Ethylbenzene	19000	1000	ug/kg	
Toluene	ND	1000	ug/kg	
Xylenes (total)	43000	1000	ug/kg	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
4-Bromofluorobenzene	96	(47 - 157	7)	
Toluene-d8	115	(65 - 133	3)	
Dibromofluoromethane	80	(42 - 142)	2)	
1,2-Dichloroethane-d4	75	. (34 - 162	2)	

Client Sample ID: B-8@35'-37'

GC Volatiles

Lot-Sample #:	I0F260148-006	Work Order #:	DFAMT102	Matrix: SOLID
Date Sampled:	06/21/00 11:35	Date Received:	06/24/00	
Prep Date:	07/02/00	Analysis Date:	07/02/00	
Prep Batch #:	0187300			
Dilution Factor:	1			
<pre>% Moisture:</pre>	15	Method:	SW846 8015	3
			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Gasoline Range O	rganics	ND	5000	ug/kg

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	106	(75 - 125)

-18-

Client Sample ID: B-8@35'-37'

GC/MS Volatiles

 Lot-Sample #...: I0F260148-006
 Work Order #...: DFAMT101
 Matrix.....: SOLID

 Date Sampled...: 06/21/00 11:35
 Date Received..: 06/24/00
 Prep Date....: 07/05/00

 Prep Date....: 07/05/00
 Analysis Date..: 07/05/00
 Prep Batch #...: 0193282

 Dilution Factor: 1
 Method.....: SW846 8260B

.

PARAMETER	RESULT	REPORTING LIMIT	UNITS
Benzene	ND	5.0	ug/kg
Ethylbenzene	ND	5.0	ug/kg
Toluene	ND	5.0	ug/kg
Xylenes (total)	ND	5.0	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	96	(42 - 183)	-
Toluene-d8	93	(69 - 128)	I
Dibromofluoromethane	93	(63 - 141)	ł
1,2-Dichloroethane-d4	97	· (58 - 141)	•

Client Sample ID: B-9@30'-32'

GC Volatiles

Lot-Sample #: IOF	F260148-007 Wo	ork Order #:	DFAMV102	Matrix SOLID
Date Sampled: 06,	/21/00 14:40 Da	ate Received:	06/24/00	
Prep Date: 07/	/02/00 Ar	nalysis Date:	07/02/00	
Prep Batch #: 018	87300			
Dilution Factor: 1				
% Moisture: 14	Me	ethod:	SW846 8015B	
			REPORTING	
PARAMETER		ESULT	LIMIT	UNITS
Gasoline Range Orgar	nics NI	D	5000	ug/kg

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	79	(75 - 125)

.

.

Client Sample ID: B-9@30'-32'

GC/MS Volatiles

 Lot-Sample #...:
 I0F260148-007
 Work Order #...:
 DFAMV101
 Matrix....:
 SOLID

 Date Sampled...:
 06/21/00
 14:40
 Date Received..:
 06/24/00
 Matrix....
 SOLID

 Prep Date....:
 07/03/00
 Analysis Date..:
 07/03/00
 Matrix...
 SOLID

 Prep Batch #...:
 0192311
 Method...
 SW846 8260B
 Method.

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	5.0	ug/kg
Ethylbenzene	ND	5.0	ug/kg
Toluene	ND	5.0	ug/kg
Xylenes (total)	ND	5.0	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	88	(42 - 183)	-
Toluene-d8	97	(69 - 128)	
Dibromofluoromethane	94	(63 - 141)	
1,2-Dichloroethane-d4	107	. (58 - 141)	

١

Client Sample ID: B-9@90'

GC Volatiles

Lot-Sample #:	I0F260148-008	Work Order #:	DFAN0102	Matrix SOLID
Date Sampled:	06/21/00 14:45	Date Received:	06/24/00	
Prep Date:	07/02/00	Analysis Date:	07/02/00	
Prep Batch #:	0187300			
Dilution Factor:	1			
<pre>% Moisture:</pre>	17	Method:	SW846 80151	В
	·			
•			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Gasoline Range O:	rganics	ND	5000	ug/kg

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	77	(75 - 125)

.

.

-22-

Client Sample ID: B-9@90'

GC/MS Volatiles

Lot-Sample #: I0F260148-008 Date Sampled: 06/21/00 14:4 Prep Date: 07/03/00 Prep Batch #: 0192311 Dilution Factor: 1		06/24/00	Matrix SOLID
% Moisture: 17	Method:	SW846 8260)B
-		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	5.0	ug/kg
Ethylbenzene	ND	5.0	ug/kg
Toluene	ND	5.0	ug/kg
Xylenes (total)	ND	5.0	ug/kg

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
4-Bromofluorobenzene	85	(42 - 183)
Toluene-d8	97	(69 - 128)
Dibromofluoromethane	95	(63 - 141)
1,2-Dichloroethane-d4	98	(58 - 141)

-23-

Client Sample ID: B-10@8'-10'

GC Volatiles

Lot-Sample #: I0F260148-009 Date Sampled: 06/21/00 16:20 Prep Date: 07/01/00 Prep Batch #: 0184103 Dilution Factor: 50		06/24/00	Matrix SOLID
<pre>% Moisture: 11</pre>	Method:	SW846 8015	В
PARAMETER	RESULT	REPORTING LIMIT	UNITS
Gasoline Range Organics	210000	5000	ug/kg
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Bromofluorobenzene	142 *	(75 - 125)	

NOTE(S):

* Surrogate recovery is outside stated control limits.

Surrogates outside acceptance criteria due to demonstrated matrix effect.

Client Sample ID: B-10@8'-10'

GC/MS Volatiles

Lot-Sample #: I0F260148-009 Date Sampled: 06/21/00 16:20 Prep Date: 07/05/00 Prep Batch #: 0193213 Dilution Factor: 1		06/24/00	Matrix SOLID
<pre>% Moisture: 11</pre>	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	250	ug/kg
Ethylbenzene	1800	250	ug/kg
Toluene	860	250	ug/kg
Xylenes (total)	6800	250	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	84	(47 - 157)	
Toluene-d8	92	(65 - 133)	
Dibromofluoromethane	83	(42 - 142)	
1,2-Dichloroethane-d4	95 .	(34 - 162)	

Client Sample ID: B-10@35'-37'

GC Volatiles

Lot-Sample #: IOF260148-010 Date Sampled: 06/21/00 16:25			Matrix	SOLID
Prep Date: 07/02/00	Analysis Date:			
Prep Batch #: 0187300				
Dilution Factor: 1	,			
% Moisture: 17	Method:	SW846 8015	В	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	
Gasoline Range Organics	ND	5000	ug/kg	
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	90	(75 - 125)		

-26-

Client Sample ID: B-10@35'-37'

GC/MS Volatiles

Lot-Sample #:	I0F260148-010	Work Order #:	DFAN6101	Matrix:	SOLID
Date Sampled:	06/21/00 16:25	Date Received:	06/24/00		
Prep Date:	07/03/00	Analysis Date:	07/03/00		
Prep Batch #:	0192311				
Dilution Factor:	1				
<pre>% Moisture:</pre>	17	Method:	SW846 8260B		

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	5.0	ug/kg
Ethylbenzene	ND	5.0	ug/kg
Toluene	ND	5.0	ug/kg
Xylenes (total)	ND	5.0	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
4-Bromofluorobenzene	87	(42 - 183)	-
Toluene-d8	99	(69 - 128)	
Dibromofluoromethane	96	(63 - 141)	
1,2-Dichloroethane-d4	102 .	(58 - 141)	

•

.

Client Sample ID: B-10@50'-52'

GC Volatiles

Lot-Sample #: I0F260148-011 Date Sampled: 06/21/00 16:3 Prep Date: 07/02/00 Prep Batch #: 0187300		06/24/00	Matrix SOLID
Dilution Factor: 1 % Moisture: 17	Method	SW846 80151 REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
Gasoline Range Organics	ND	5000	ug/kg
	PERCENT	RECOVERY	

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	83	(75 - 125)

Client Sample ID: B-10@50'-52'

GC/MS Volatiles

Lot-Sample #:	IOF260148-011	Work Order #:	DFAN8101	Matrix SOLID
Date Sampled:	06/21/00 16:30	Date Received:	06/24/00	
Prep Date:	07/05/00	Analysis Date:	07/05/00	
Prep Batch #:	0193282			
Dilution Factor:	1			
<pre>% Moisture:</pre>	17	Method:	SW846 8260B	
			REPORTING	

PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	5.0	ug/kg
Ethylbenzene	ND	5.0	ug/kg
Toluene	ND	5.0	ug/kg
Xylenes (total)	ND	5.0	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
		1	,

4-Bromofluorobenzene	91	(42 - 183)
Foluene-d8	94	(69 - 128)
Dibromofluoromethane	93	(63 - 141)
l,2-Dichloroethane-d4	112	.(58 - 141)
	20	(

Client Sample ID: B-11@25'-27'

GC Volatiles

Lot-Sample #: I0F260148-012	Work Order #:	DFAN9102	Matrix: SOLID
Date Sampled: 06/22/00 08:30	Date Received:	06/24/00	
Prep Date: 07/02/00	Analysis Date:	07/02/00	
Prep Batch #: 0187300			
Dilution Factor: 1			
% Moisture: 9.2	Method:	SW846 8015	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Gasoline Range Organics	ND	5000	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Bromofluorobenzene	86	(75 - 125)	

SURROGATE	RECOVERY	LIMII
Bromofluorobenzene	86	(75 -

Client Sample ID: B-11@25'-27'

GC/MS Volatiles

Lot-Sample #:	I0F260148-012	Work Order #:	DFAN9101	Matrix SOLID
Date Sampled:	06/22/00 08:30	Date Received:	06/24/00	
Prep Date:	07/05/00	Analysis Date:	07/05/00	
Prep Batch #:	0193282			
Dilution Factor:	1			
<pre>% Moisture:</pre>	9.2	Method:	SW846 8260	В
			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Benzene		ND	5.0	ug/kg

Ethylbenzene	ND	5.0 ug/kg
Toluene	ND	5.0 ug/kg
Xylenes (total)	ND	5.0 ug/kg
	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
4-Bromofluorobenzene	96	(42 - 183)
Toluene-d8	94	(69 - 128)
Dibromofluoromethane	91	(63 - 141)
1,2-Dichloroethane-d4	96	(58 - 141)

.

Client Sample ID: B-12@0'-2'

GC Volatiles

Lot-Sample #: IOF260148-013 Date Sampled: 06/22/00 09:30 Prep Date: 07/02/00 Prep Batch #: 0187300 Dilution Factor: 1		06/24/00	Matrix SOLID
<pre>% Moisture: 9.2</pre>	Method:	SW846 8015	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Gasoline Range Organics	ND	5000	ug/kg
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
Bromofluorobenzene	78	(75 - 125)	

Client Sample ID: B-12@0'-2'

GC/MS Volatiles

Lot-Sample #: IOF260148-01: Date Sampled: 06/22/00 09: Prep Date: 07/05/00 Prep Batch #: 0193282 Dilution Factor: 1		06/24/00	Matrix SOLID
% Moisture: 9.2	Method:	SW846 8260	ЪВ ,
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	5.0	ug/kg
Ethylbenzene	ND	5.0	ug/kg
Toluene	ND	5.0	ug/kg
Xylenes (total)	ND	5.0	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	· · · ·
4-Bromofluorobenzene	115	(42 - 183)	
Toluene-d8	84	(69 - 128)	
Dibromofluoromethane	94	(63 - 141)	
1,2-Dichloroethane-d4	96 .	(58 - 141)	

3

Client Sample ID: B-12@40'-42'

GC Volatiles

Lot-Sample #: IOF260148-014 Date Sampled: 06/22/00 09:39			Matrix SOLID
Prep Date: 07/02/00			
Prep Batch #: 0187300	Analysis Date	07702700	
Dilution Factor: 1			
% Moisture: 17	Method:	SW846 8015	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Gasoline Range Organics	ND	5000	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Bromofluorobenzene	79	(75 - 125)	

.

- 34 -

, .

Client Sample ID: B-12@40'-42'

GC/MS Volatiles

Lot-Sample #:	I0F260148-014	Work Order #:	DFANX101	Matrix SOLID
Date Sampled:	06/22/00 09:35	Date Received:	06/24/00	
Prep Date:	07/05/00	Analysis Date:	07/05/00	
Prep Batch #:	0193282			
Dilution Factor:	1			
<pre>% Moisture:</pre>	17	Method:	SW846 8260B	
			REPORTING	
סאסאקידידים		PFSILT	T.TMTT	INITTO

PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	5.0	ug/kg
Ethylbenzene	ND	5.0	ug/kg
Toluene	ND	5.0	ug/kg
Xylenes (total)	ND	5.0	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	100	(42 - 183)
Toluene-d8	101	(69 - 128)
Dibromofluoromethane	102	(63 - 141)
1,2-Dichloroethane-d4	98	. (58 - 141)

.

Client Sample ID: MW-1

GC Volatiles

Lot-Sample #: I0F260148-015 Date Sampled: 06/22/00 11:00	Date Received:	06/24/00	Matrix WATER
Prep Date: 06/29/00 Prep Batch #: 0182455	Analysis Date:	06/30/00	
Dilution Factor: 5	Method	SW846 8015	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Gasoline Range Organics	5200	500	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Bromofluorobenzene	77	(75 - 125)	

Client Sample ID: MW-1

GC/MS Volatiles

Lot-Sample #:	I0F260148-015	Work Order #:	DFAP1101	Matrix:	WATER
Date Sampled:	06/22/00 11:00	Date Received:	06/24/00		
Prep Date:	07/06/00	Analysis Date:	07/06/00		
Prep Batch #:	0192173				
Dilution Factor:	50	Method:	SW846 8260B		

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	1800	50	ug/L
Ethylbenzene	75	50	ug/L
Toluene	ND	50	ug/L
Xylenes (total)	ND	50	ug/L
Methyl tert-butyl ether	ND	50	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	101	(73 - 137)
Toluene-d8	87	(78 - 124)
Dibromofluoromethane	97	(82 - 130)
1,2-Dichloroethane-d4	102 .	(84 - 135)

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #: IOF2	260148-016 Work Order #:	DFAQV101	Matrix:	WATER
Date Sampled: 06/2	Date Received:	06/24/00	. 1	
Prep Date: 06/2	29/00 Analysis Date:	06/29/00		
Prep Batch #: 0182	2174			
Dilution Factor: 1	Method:	SW846 8260B		
		REPORTING		

(84 - 135)

PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	1.0	ug/L
Ethylbenzene	ND	1.0	ug/L
Toluene	ND	1.0	ug/L
Xylenes (total)	ND	1.0	ug/L
Methyl tert-butyl ether	ND	1.0	ug/L
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	105	(73 - 13	37)
Toluene-d8	109	(78 - 12	24)
Dibromofluoromethane	119	(82 - 13	0)

111

1,2-Dichloroethane-d4

Client Sample ID: MW-1

General Chemistry

Lot-Sample #:	I0F260148-015	Work Order #: DFAP1	Matrix WATER
Date Sampled:	06/22/00 11:00	Date Received: 06/24/00	

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION - ANALYSIS DATE	PREP BATCH #
Chloride	227 Dil	20.0 ution Fact	mg/L	MCAWW 300.0A	07/10/00	0192140

QC DATA ASSOCIATION SUMMARY

I0F260148

Sample Preparation and Analysis Control Numbers

		ANALYTICAL	LEACH	PREP	
SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
001	SOLID	SW846 8015B		0187300	0187116
	SOLID	ASTM D 2216-90		0181417	0181205
	SOLID	SW846 8260B		0192311	0192153
002	SOLID	SW846 8015B		0187300	0187116
	SOLID	ASTM D 2216-90		0181417	0181205
	SOLID	SW846 8260B		0192311	0192153
003	SOLID	SW846 8015B		0187300	0187116
	SOLID	ASTM D 2216-90		0181417	0181205
	SOLID	SW846 8260B		0192311	0192153
004	SOLID	SW846 8015B		0187300	0187116
	SOLID	ASTM D 2216-90		0181417	0181205
	SOLID	SW846 8260B		0192311	0192153
005	SOLID	SW846 8015B		0184103	0184008
	SOLID	ASTM D 2216-90		0181417	0181205
	SOLID	SW846 8260B		0193213	0193075
006	SOLID	SW846 8015B		0187300	0187116
	SOLID	ASTM D 2216-90		0181417	0181205
	SOLID	SW846 8260B		0193282	0193130
007	SOLID	SW846 8015B		0187300	0187116
	SOLID	ASTM D 2216-90		0181417	0181205
	SOLID	SW846 8260B		0192311	0192153
008	SOLID	SW846 8015B		0187300	0187116
	SOLID	ASTM D 2216-90		0181417	0181205
	SOLID	SW846 8260B		0192311	0192153
009	SOLID	SW846 8015B		0184103	0184008
	SOLID	ASTM D 2216-90		0181417	0181205
	SOLID	SW846 8260B		0193213	0193075
010	SOLID	SW846 8015B		0187300	0187116
	SOLID	ASTM D 2216-90		0181417	0181205
	SOLID	SW846 8260B		0192311	0192153
011	SOLID	SW846 8015B		0187300	0187116
	SOLID	ASTM D 2216-90		0181417	0181205
	SOLID	SW846 8260B		0193282	0193130

QC DATA ASSOCIATION SUMMARY

I0F260148

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS_RUN#
012	SOLID SOLID SOLID	SW846 8015B ASTM D 2216-90 SW846 8260B		0187300 0181417 0193282	0187116 0181205 0193130
013	SOLID SOLID SOLID	SW846 8015B ASTM D 2216-90 SW846 8260B		0187300 0181417 0193282	0187116 0181205 0193130
014	SOLID SOLID SOLID	SW846 8015B ASTM D 2216-90 SW846 8260B		0187300 0181417 0193282	0187116 0181205 0193130
015	WATER WATER WATER	MCAWW 300.0A SW846 8015B SW846 8260B		0192140 0182455 0192173	0192025 0182213 0192047
016	WATER	SW846 8260B		0182174	0182053

GC/MS Volatiles

Client Lot #:	I0F260148	Work Order #.	: DFJV0101	Matrix:	WATER
MB Lot-Sample #:	I0F300000-174				
		Prep Date	: 06/29/00		
Analysis Date:	06/29/00	Prep Batch #.	: 0182174		
Dilution Factor:	1				

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
Xylenes (total)	ND	1.0	ug/L	SW846 8260B
Methyl tert-butyl ether	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
4-Bromofluorobenzene	101	(73 - 137)		
Toluene-d8	104	(78 - 1)	24)	
Dibromofluoromethane	114	(82 - 1)	30)	
1,2-Dichloroethane-d4	86	(84 - 1)	35)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

- 42 -

.

GC/MS Volatiles

Client Lot #: MB Lot-Sample #:	Work Order #:	DFXAE101	Matrix:	WATER
Analysis Date: Dilution Factor:	 Prep Date: Prep Batch #:	, ,		

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
Xylenes (total)	ND	1.0	ug/L	SW846 8260B
Methyl tert-butyl ether	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
4-Bromofluorobenzene	107	(73 - 13	37)	
Toluene-d8	90	(78 - 1)	24)	
Dibromofluoromethane	102	(82 - 1)	30)	
1,2-Dichloroethane-d4	97	. (84 - 13	35)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

- 43 -

GC/MS Volatiles

Client Lot #: I0F260148 MB Lot-Sample #: I0G100000-311	Work Order #: DFXVC101	Matrix SOLID
	Prep Date: 07/03/00	
Analysis Date: 07/03/00	Prep Batch #: 0192311	

Dilution Factor: 1

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	5.0	ug/kg	SW846 8260B
Ethylbenzene	ND	5.0	ug/kg	SW846 8260B
Toluene	ND	5.0	ug/kg	SW846 8260B
Xylenes (total)	ND	5.0	ug/kg	SW846 8260B
	PERCENT	RECOVERY	Ľ	
SURROGATE	RECOVERY	LIMITS		
4-Bromofluorobenzene	95	(42 - 18	33)	
Toluene-d8	100	(69 - 12	28)	
Dibromofluoromethane	100	(63 - 14	11)	
1,2-Dichloroethane-d4	111	(58 - 14	11)	

NOTE(S):

GC/MS Volatiles

Client Lot #: I0F260148	Work Order #: DG0TL101	Matrix SOLID
MB Lot-Sample #: IOG110000-213	3	
	Prep Date: 07/05/00	
Analysis Date: 07/05/00	Prep Batch #: 0193213	
Dilution Factor: 1		

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	250	ug/kg	SW846 8260B
Ethylbenzene	ND	250	ug/kg	SW846 8260B
Toluene	ND	250	ug/kg	SW846 8260B
Xylenes (total)	ND	250	ug/kg	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		•
4-Bromofluorobenzene	93	(47 - 1	57)	
Toluene-d8	100	(65 - 1	33)	
Dibromofluoromethane	94	(42 - 14	42)	
1,2-Dichloroethane-d4	105	(34 - 1)	62)	

NOTE(S):

GC/MS Volatiles

Client Lot #: MB Lot-Sample #:		Work	Order	#:	DG12N101	Matrix S	SOLID
Analysis Date:	07/05/00	-			07/05/00 0193282		
Dilution Factor:		ттср	Datem	π	0199202		

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	5.0	ug/kg	SW846 8260B
Ethylbenzene	ND	5.0	ug/kg	SW846 8260B
Toluene	ND	5.0	ug/kg	SW846 8260B
Xylenes (total)	ND	5.0	ug/kg	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
4-Bromofluorobenzene	100	(42 - 1)	83)	
Toluene-d8	96	(69 - 1)	28)	
Dibromofluoromethane	99	(63 - 14	41)	
1,2-Dichloroethane-d4	109	(58 - 14	41)	

NOTE(S):

GC Volatiles

Client Lot #: I0F260148 MB Lot-Sample #: I0F300000-455	Work Order #.	: DFLDW10	1	Matrix WATER
	Prep Date	: 06/29/0	0	
Analysis Date: 06/29/00 Dilution Factor: 1	Prep Batch #.	: 0182455		
		REPORTING	ł	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Gasoline Range Organics	ND	100	ug/L	SW846 8015B
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	77	(75 - 125)	

NOTE(S):

GC Volatiles

Client Lot #: I0F260148 MB Lot-Sample #: I0G020000-10	Work Order #	: DFN6210)1	Matrix SOLID
	Prep Date	: 07/01/0	00	
Analysis Date: 07/01/00 Dilution Factor: 50	Prep Batch #	: 0184103	5	
		REPORTING	3	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Gasoline Range Organics	ND	5000	ug/kg	SW846 8015B
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	103	(75 - 125	5)	

NOTE(S):

.

GC Volatiles

Client Lot #: IOF260148 MB Lot-Sample #: IOG050000-30	Work Order #.	: DFPF410)1	Matrix SOLID
	Prep Date	: 07/02/0	00	
Analysis Date: 07/02/00 Dilution Factor: 1	Prep Batch #.	: 0187300)	
		REPORTING	5	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Gasoline Range Organics	ND	5000	ug/kg	SW846 8015B
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	81	(75 - 129	5)	

NOTE(S):

General Chemistry

Client Lot #...: I0F260148

Matrix....: WATER

		REPORTING	G		PREPARATION-	PREP
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	BATCH #
Chloride		Work Order	#: DFX82101	MB Lot-Sample #:	I0G100000-140	
	ND	1.0	mg/L	MCAWW 300.0A	07/10/00	0192140
		Dilution Fact	or: 1			

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

_

GC/MS Volatiles

Client Lot #: IOF260148 LCS Lot-Sample#: IOF300000-174 Prep Date: 06/29/00 Prep Batch #: 0182174 Dilution Factor: 1	1	#: DFJV0102	
	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,1-Dichloroethene	80	(64 - 127)	SW846 8260B
Trichloroethene	117	(85 - 121)	SW846 8260B
Chlorobenzene	103	(85 - 117)	SW846 8260B
Benzene	103	(86 - 121)	SW846 8260B
Toluene	98	(81 - 121)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
4-Bromofluorobenzene		103	(73 - 137)
Toluene-d8		110	(78 - 124)
Dibromofluoromethane		124	(82 - 130)
1,2-Dichloroethane-d4		115	(84 - 135)

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

GC/MS Volatiles

Client Lot #: I0F260148	Work Order	#: DFXAE10	2 Matrix WATER
LCS Lot-Sample#: IOG100000-17	73		
Prep Date: 07/06/00	Analysis D	Date: 07/06/0	0
Prep Batch #: 0192173			
Dilution Factor: 1			
	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
1,1-Dichloroethene	107	(64 - 127)	SW846 8260B
Trichloroethene	109	(85 - 121)	SW846 8260B
Chlorobenzene	105	(85 - 117)	SW846 8260B
Benzene	101	(86 - 121)	SW846 8260B
Toluene	112	(81 - 121)	SW846 8260B
		הדטמדאיזי	DECOVEDY .

PERCENT	RECOVERY	
RECOVERY	LIMITS	
102	(73 - 137)	
88	(78 - 124)	
100	(82 - 130)	
87	(84 - 135)	
	<u>RECOVERY</u> 102 88 100	RECOVERY LIMITS 102 (73 - 137) 88 (78 - 124) 100 (82 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #:		Work Orde:	r #: DFXVC102	Matrix: SOLID
LCS Lot-Sample#:		n 1	07/02/00	
Prep Date:		Analysis J	Date: 07/03/00	
Prep Batch #:	0192311			
Dilution Factor:	1			
		PERCENT	RECOVERY	
PARAMETER		RECOVERY	LIMITS	METHOD
Benzene		110	(81 - 120)	SW846 8260B
Toluene		108	(78 - 126)	SW846 8260B
1,1-Dichloroether	ne	102	(56 - 138)	SW846 8260B
Trichloroethene		113	(75 - 121)	SW846 8260B

(83 - 118)

SW846 8260B

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
4-Bromofluorobenzene	99	(42 - 183)
Toluene-d8	95	(69 - 128)
Dibromofluoromethane	104	(63 - 141)
1,2-Dichloroethane-d4	95	(58 - 141)

107

NOTE(S):

Chlorobenzene

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #: IOF260148 LCS Lot-Sample#: IOG110000-213	Work Order #: DG0TL102 Matrix SG								
Prep Date: 07/05/00 Prep Batch #: 0193213 Dilution Factor: 1		Analysis Date: 07/05/00							
	PERCENT	RECOVERY							
PARAMETER	RECOVERY	LIMITS	METHOD						
1,1-Dichloroethene	82	(67 - 126)	SW846 8260B						
Trichloroethene	95	(66 - 116)	SW846 8260B						
Benzene	92	(78 - 113)	SW846 8260B						
Chlorobenzene	94	(82 - 117)	SW846 8260B						
Toluene	92	(80 - 119)	SW846 8260B						
		PERCENT	RECOVERY						
SURROGATE		RECOVERY	LIMITS						
4-Bromofluorobenzene		92	(47 - 157)						
Toluene-d8		96	(65 - 133)						
Dibromofluoromethane		88	(42 - 142)						
1,2-Dichloroethane-d4		97	(34 - 162)						

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #: I0F260148	Work Order	#: DG12N102	Matrix: SOLID					
LCS Lot-Sample#: I0G110000-282								
Prep Date: 07/05/00	Analysis Da	Analysis Date: 07/05/00						
Prep Batch #: 0193282								
Dilution Factor: 1								
			· ·					
	PERCENT	RECOVERY						
PARAMETER	RECOVERY	LIMITS	METHOD					
Benzene	101	(81 - 120)	SW846 8260B					
Toluene	97	(78 - 126)	SW846 8260B					
1,1-Dichloroethene	92	(56 - 138)	SW846 8260B					
Trichloroethene	109	(75 - 121)	SW846 8260B					
Chlorobenzene	100	(83 - 118)	SW846 8260B					
		PERCENT	RECOVERY					
SURROGATE		RECOVERY	LIMITS					
4-Bromofluorobenzene		97	(42 - 183)					
Toluene-d8		99	(69 - 128)					

100

108

(63 - 141)

(58 - 141)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Dibromofluoromethane

1,2-Dichloroethane-d4

GC Volatiles

Client Lot #: I0F260148 LCS Lot-Sample#: I0F300000-455		#: DFLDW102	Matrix WATER					
Prep Date: 06/29/00 Prep Batch #: 0182455 Dilution Factor: 1		Analysis Date: 06/29/00						
PARAMETER Gasoline Range Organics	PERCENT RECOVERY 97	RECOVERY <u>LIMITS</u> (80 - 120)	METHOD SW846 8015B					
SURROGATE Bromofluorobenzene		PERCENT <u>RECOVERY</u> 85	RECOVERY LIMITS (75 - 125)					

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Volatiles

Client Lot #: I0F260148	Work Order	#: DFN62102	Matrix SOLID				
LCS Lot-Sample#: I0G020000-103							
Prep Date: 07/01/00	Analysis Da	Analysis Date: 07/01/00					
Prep Batch #: 0184103							
Dilution Factor: 50							
	PERCENT	RECOVERY					
PARAMETER	RECOVERY	LIMITS	METHOD				
Gasoline Range Organics	114	(70 - 134)	SW846 8015B				
		PERCENT	RECOVERY				
SURROGATE		RECOVERY	LIMITS				
Bromofluorobenzene		108	(75 - 125)				

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results. Bold print denotes control parameters

GC Volatiles

Client Lot #: I0F260148 LCS Lot-Sample#: I0G050000-300		#: DFPF4102	Matrix SOLID
<pre>Prep Date: 07/02/00 Prep Batch #: 0187300 Dilution Factor: 1</pre>	Analysis Da		
PARAMETER Gasoline Range Organics	PERCENT RECOVERY 93	RECOVERY LIMITS (70 - 134)	METHOD SW846 8015B
SURROGATE Bromofluorobenzene		PERCENT <u>RECOVERY</u> 85	RECOVERY LIMITS (75 - 125)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results. Bold print denotes control parameters

General Chemistry

Client Lot #...: I0F260148

Matrix..... WATER

PARAMETER	PERCENT <u>RECOVERY</u>	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chloride		Work Order	#: DFX82102 LCS	Lot-Sample#: I0G100000-	-140
	92	(80 - 120)	MCAWW 300.0A	07/10/00	0192140
		Dilution Fact	tor: 1		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #:	I0F260148	Work	Order #	: I	DFALR105-	MS	Matrix	.: SOLID
MS Lot-Sample #:	I0F260148	-001		I	OFALR106-	-MSD		
Date Sampled:	06/21/00	09:15 Date	Received	1: (06/24/00			•
Prep Date:	07/03/00	Analy	ysis Date	e: (07/03/00	•		
Prep Batch #:	0192311							
Dilution Factor:	1	१ Moi	isture		20			
	I	PERCENT	RECOVE	ERY		RPD		
PARAMETER	1	RECOVERY	LIMITS	5	RPD	LIMI <u>T</u> S	METHOD	
Benzene		93	(74 -	120)			SW846 8260	В
	<u> </u>	94	(74 -	120)	1.4	(0-13)	SW846 8260	В

(76 - 126)

(76 - 126)

(69 - 122)

(69 - 122)

(50 - 130)

(50 - 130)

(78 - 121)

0.82

0.21

5.2

(0-33)

(0-15)

(0-18)

SW846 8260B

	88	(78 - 121)	2.0	(0-13)	SW846	8260
		PERCENT		RECOVERY		•
SURROGATE		RECOVERY		LIMITS	_	
4-Bromofluorobenzene		86		(42 - 183)	
		84		(42 - 183)	
Toluene-d8		97		(69 - 128)	
		101		(69 - 128)	
Dibromofluoromethane		90		(63 - 141)	
		99		(63 - 141)	
1,2-Dichloroethane-d4		91		(58 - 141)	
		105		(58 - 141)	

NOTE(S):

Toluene

1,1-Dichloroethene

Trichloroethene

Chlorobenzene

Calculations are performed before rounding to avoid round-off errors in calculated results. Bold print denotes control parameters

88 89

96

96

98

103

86

GC/MS Volatiles

Client Lot #:	I0F260148	Work Order #:	DFAN3104-MS	Matrix SOLID
MS Lot-Sample #:	I0F260148-009		DFAN3105-MSD	
Date Sampled:	06/21/00 16:20	Date Received:	06/24/00	
Prep Date:	07/05/00	Analysis Date:	07/05/00	
Prep Batch #:	0193213			
Dilution Factor:	1	<pre>% Moisture:</pre>	11	

	PERCENT	RECOVERY		RPD			
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHO	D	
1,1-Dichloroethene	79	(69 - 122)			SW846	8260B	
	80	(69 - 122)	2.3	(0-30)	SW846	8260B	
Trichloroethene	91	(50 - 130)			SW846	8260B	
	97	(50 - 130)	6.4	(0-30)	SW846	8260B	
Benzene	82	(74 - 120)			SW846	8260B	
	86	(74 - 120)	4.4	(0-30)	SW846	8260B	,
Chlorobenzene	80	(78 - 121)			SW846	8260B	
	83	(78 - 121)	3.4	(0-30)	SW846	8260B	
Toluene	65 a,MSC	(76 - 126)			SW846	8260B	
	59 a,MSC	(76 - 126)	6.0	(0-30)	SW846	8260B	
		PERCENT		RECOVERY			
SURROGATE	_	RECOVERY		LIMITS			
4-Bromofluorobenzene		83		(47 - 15	7)		
		60		(47 - 15	7)		
Toluene-d8		90		(65 - 13	3)		
		69		(65 - 13	3)		
Dibromofluoromethane		76		(42 - 14	2)		
		61		(42 - 14	2)		

81 71 (34 - 162)

(34 - 162)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

1,2-Dichloroethane-d4

a Spiked analyte recovery is outside stated control limits.

MSC The percent recovery of this analyte in the associated laboratory control sample is within control limits.

-

GC/MS Volatiles

Client Lot #:	I0F260148	Work Order #:	DFAN8104-MS	Matrix SOLID
MS Lot-Sample #:	I0F260148-011		DFAN8105-MSD	
Date Sampled:	06/21/00 16:30	Date Received:	06/24/00	
Prep Date:	07/05/00	Analysis Date:	07/05/00	
Prep Batch #:	0193282			
Dilution Factor:	1	<pre>% Moisture:</pre>	17	

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Benzene	99	(74 - 120)			SW846 8260B
	98	(74 - 120)	0.99	(0-13)	SW846 8260B
Toluene	98	(76 - 126)			SW846 8260B
	94	(76 - 126)	4.0	(0-33)	SW846 8260B
1,1-Dichloroethene	92	(69 - 122)			SW846 8260B
	96	(69 - 122)	3.4	(0-15)	SW846 8260B
Trichloroethene	102	(50 - 130)			SW846 8260B
	104	(50 - 130)	2.1	(0-18)	SW846 8260B
Chlorobenzene	97	(78 - 121)			SW846 8260B
	93	(78 - 121)	3.9	(0-13)	SW846 8260B
		PERCENT		RECOVERY	
SURROGATE		RECOVERY		LIMITS	
4-Bromofluorobenzene		96		(42 - 183)
		97		(42 - 183)
Toluene-d8		97		(69 - 128)
		97		(69 - 128)
Dibromofluoromethane		96		(63 - 141)
		95		(63 - 141)
1,2-Dichloroethane-d4		108		(58 - 141) .
		96		(58 - 141)
				-	•

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results. Bold print denotes control parameters

GC/MS Volatiles

Client Lot #: I0F26014 MS Lot-Sample #: I0F27020 Date Sampled: 06/22/00 Prep Date: 07/06/00 Prep Batch #: 0192173 Dilution Factor: 5	01-012 07:30 Date R	DE Received: 06	CX6104	L-MSD	rix WATER
	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	102	(64 - 127)			SW846 8260B
•	98	(64 - 127)	3.5	(0-20)	SW846 8260B
Trichloroethene	114	(85 - 121)			SW846 8260B
	115	(85 - 121)	0.64	(0-20)	SW846 8260B
Chlorobenzene	106	(85 - 117)			SW846 8260B
	105	(85 - 117)	0.64	(0-20)	SW846 8260B
Benzene	139 a,MSC	(86 - 121)			SW846 8260B
	136 a,MSC	(86 - 121)	0.55	(0-20)	SW846 8260B
Toluene	85	(81 - 121)			SW846 8260B
	80 a,MSC	(81 - 121)	1.5	(0-20)	SW846 8260B
				DEGOLIEDU	
SIDDOCATE		PERCENT		RECOVERY	
SURROGATE 4-Bromofluorobenzene	-	RECOVERY 93		<u>LIMITS</u> (73 - 137	<u>,</u>
4-BIOMOLIUOLODENZENE		100		(73 - 137)	
Toluene-d8		85		(78 - 124	•
		93		(78 - 124	
Dibromofluoromethane		92		(82 - 130	•
		98		(82 - 130	•
1,2-Dichloroethane-d4		97		(84 - 135)
		108		(84 - 135)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

MSC The percent recovery of this analyte in the associated laboratory control sample is within control limits.

GC/MS Volatiles

Client Lot #: I0F26014 MS Lot-Sample #: I0F22021 Date Sampled: 06/20/00 Prep Date: 06/29/00 Prep Batch #: 0182174 Dilution Factor: 1	0-016 09:31 Date Re		F5GJ105- 6/21/00		cix:	WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS		RPD LIMITS	METHOD	
1,1-Dichloroethene	76	(64 - 127)			SW846 8260B	
Trichloroethene	79 111 114	(64 - 127) (85 - 121) (85 - 121)		(0-20)	SW846 8260B SW846 8260B SW846 8260B	
Chlorobenzene	105 106	(85 - 117)		(0-20)	SW846 8260B SW846 8260B SW846 8260B	
Benzene	104	(86 - 121)	2.5	(0 20)	SW846 8260B	

(86 - 121)

(81 - 121)

(81 - 121)

0.02 (0-20)

1.8

(0-20)

SW846 8260B

SW846 8260B

SW846 8260B

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
4-Bromofluorobenzene	100	(73 - 137)
	98	(73 - 137)
Toluene-d8	109	(78 - 124)
	108	(78 - 124)
Dibromofluoromethane	117	(82 - 130)
	118	(82 - 130)
1,2-Dichloroethane-d4	119	(84 - 135)
	117	(84 - 135)

NOTE(S):

Toluene

Calculations are performed before rounding to avoid round-off errors in calculated results. Bold print denotes control parameters

104

99

97

GC Volatiles

Client Lot #:	I0F260148	Work	Order #:	DFCQF107	-MS I	Matrix SOLID
MS Lot-Sample #:	I0F270182-00	02		DFCQF108	-MSD	
Date Sampled:	06/24/00 12:	:00 Date	Received:	06/27/00		
Prep Date:	07/01/00	Analy	ysis Date:	07/01/00		
Prep Batch #:	0184103					
Dilution Factor:	200	ት Moi	isture:	0.0		
	PER	RCENT	RECOVERY		RPD	
PARAMETER	<u>REC</u>	COVERY	LIMITS	<u>RPD_</u>	LIMITS	METHOD
Gasoline Range O	rganics 154	4 a,MSC	(70 - 134)		SW846 8015B
	142	2 a,MSC	(70 - 134) 4.4	(0-30)	SW846 8015B

	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Bromofluorobenzene	118	(75 - 125)	
	84	(75 - 125)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

MSC The percent recovery of this analyte in the associated laboratory control sample is within control limits.

GC Volatiles

Client Lot #:	I0F260148	Work Order #:	DFANX104-MS	Matrix: S	SOLID
MS Lot-Sample #:	I0F260148-014		DFANX105-MSD		
Date Sampled:	06/22/00 09:35	Date Received:	06/24/00		
Prep Date:	07/02/00	Analysis Date:	07/02/00		
Prep Batch #:	0187300				
Dilution Factor:	1	<pre>% Moisture:</pre>	17	,	
·					

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD	RPD LIMITS	METHO	
Gasoline Range Organics	110	(70 - 134)			SW846	8015B
	102	(70 - 134)	6.9	(0-30)	SW846	8015B
		PERCENT		RECOVERY		
SURROGATE		RECOVERY		LIMITS		
Bromofluorobenzene		88		(75 - 125)	
	·	86		(75 - 125)	

,

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results. Bold print denotes control parameters

. .

GC Volatiles

Client Lot #:	I0F260148	Work Ord	er #:	DF4ML107-	MS	Matrix:	WATER
MS Lot-Sample #:	I0F220147-010			DF4ML108-	MSD		
Date Sampled:	06/20/00 16:05	Date Rec	eived:	06/22/00			
Prep Date:	06/29/00	Analysis	Date:	06/30/00			
Prep Batch #:	0182455						
Dilution Factor:	1						
	PERCE	NT R	ECOVERY		RPD		

PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Gasoline Range Organics	105	(80 - 120)			SW846 8015B
	95	(80 - 120)	10	(0-30)	SW846 8015B
		PERCENT		RECOVERY	
SURROGATE		RECOVERY		LIMITS	
Bromofluorobenzene		94		(75 - 12	5)
		100		(75 - 12)	5) .

NOTE(S):

ł

ľ

.

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #...: IOF260148 Date Sampled...: 06/19/00 11:05 Date Received..: 06/21/00 Matrix..... WATER

	PERCENT	RECOVERY	RPD		PREPARATION-	PREP
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD	ANALYSIS DATE	BATCH #
Chloride		WO#:	DF59N104-MS/	DF59N105-MSD M	IS Lot-Sample #: IC	F220210-001
	87	(75 - 125)		MCAWW 300.0A	07/10/00	0192140
	87	(75 - 125)	0.06 (0-20)	MCAWW 300.0A	07/10/00	0192140
		Diluti	ion Factor: 1			

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

				++ /		X -1 X X -1 X				
Chain of Custody	·	CHAIN OF CU	CUSTODY NUKBER	105	7		`			3
Record	\$8003964-001					•			25646	
OUA-4149 (1097)										
Mochaologia		Project Manager	1. A.		Date				, v	
Address Address	-	Telephone Numbe	UIJUE TAILCEY Telephone Number (Area Code)/Fax Number	< Number	0 0 Lab	VO/13/2VOV Lab Location	• •	rage	5	
8235 Douglas Ave Ste 700 LB44		(214) 369-4395	4395 / (000)		ST1	STL Austin		Ana	Analysis	1
City State Dailas TX	Zip Code 15225	Site Contact CRAIG NADDOX	XO				S S	P S P		
Project Number/Name Mallamar Gas Plant		Carrier/Waybill Number	Imber 22	00 20	94 913	σ	_	K 8 H V 2 V		
	mar Gas Plant					QUOTE: 36906	9 69	S 60 L		
Sample I.D. Number and Description	Date Time	Sample Type	Containers Volume Tvp	e No.	Preservative	Condition on Receipt/Comments	ments			
B-6 (2) 51	2160 00/12/9			GL 2	None		X	X		↓↓
1		SOLID	60aL C	~ ~	None		~ >			
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	5601 0016/9	_		61 2 GL 2	None	1 1 - 10/20		X		
B-8 (2 50 -) d	6	-	î.	GL 2	None	1.0	+	X		<u> </u>
8-6 235-371		SOLID		GL 2	None	(-zead - 24		X		·
'@	100	201.10		61 2	None		_			
B-1 (2) 90'		SOLID SOLID	6 Mal. C	CLEAR GL 2	None		XX			
2 2 2	2011 VVI (V)	_		GL 2	None		+			
7100 5	100	SOLID		GL 2	None	· · · · · · · · · · · · · · · · · · ·	++	X		
· L C - S C @ 11-8	ਨ		-	GL 2	None	· · ·		X		
	00			CT 5	None		_	X		
, Ch-, Oh (2) 1-9	5860 00/8779			CLEAR GL 2	None		Y X	X		
B-13 CM				<u>61</u> 2	None		X	X		
Instructions 8260B BTEX;	8015B GRO									ļ
Possible Hazard Identification			Sample Disposal		. :					1
On-Hazard Elammable Skin Irritant	Irritant Doison B		Beturn To Client	<u>ē</u>	Disposal By Lab	thive For	Months re	(A ree may be assessed it samples are retained longer than 3 months)	sed it samples are 3 months)	
Turn Around Time Required	9(oject S	lequirements (S)	oecify) I			• .	
Nod By / , A , A , A , A		Date	Time AG2A	1. Received By			-	Date		
2. Relinquished By		2 00	Time	2 Received By	the second secon		\$	Date 7/0		2
3. Relinquished By		Date	Time	3. Received By				Date	Time	
Comments				-					· · ·	, . .
DISTRIBUTION: WHITE - Stays with the Sample; CANARY - Returned to Client with Report; PINK - Field Copy	ANARY - Returned to Clien	nt with Report; PINK	Field Copy							.:

S

Chain of Custody	TOT # T/ BARN NINBRE / # TOF	ToF 260148 Quanterra	l'a
	197	25647	
QUA-4149 (1097)			•
<i>Çlient</i> Kaxi∎ Technologies, Inc.	Project Manager C1 yde Yancey	12000 Page 2 of	
0	ier (Area Code)/Fax Number -4395 / {000}	in Analy	altan er
State Zip	DOX		
	Carrier/Waybill N	н 8 н и с и	
Quote Number K. ORDER + - Mailawar	Cas Plant	1 9 0 9 9 0 0 9 9 0 0 9 9 0 0 0 0	
I to a Mumber and Descrition	Date Time Semicle Time Containers		
Sample I.D. Number and Description	Volume Type No. Freservaive Cor		
1-1	6VEL CLEAR GL 2		-
8-15	109 V	1-1- 10/26/00 NI	
B-15	600L -GLEAR GL 2		
B-16	SOLID 608L CLEAR GL XONE		-
E/7 I-/11W wstate			
[(<u>0</u> .]	100 1 1400		
CC19 T-MW	22200 1100 Water 60ml #Cm Clear 61 1 120A8	X	
			3
			<u> </u>
)_
Special Instructions 82601 BTEX; 8015B GR0	5B GRO		
Possible Hazard Identification	Sample Disposal Poison B Unknown Return To Client ZyDisposal By Lab	A fee may be assessed if samples are (A fee may be assessed if samples are Archive For Months retained longer than 3 months)	6
equired	OC Level Project Specific Requirements		
1/14/V	3/b0 0930	$\int \frac{Date}{6 \mathcal{D} \mathcal{A} _{hc}} \left \frac{Time}{9} \right $	80
2. Relinquished By		. 0	ł
3. Relinquished By	Date Time 3. Received By	Date Time	·
Comments			چر ا
DISTRIBUTION: WHITE - Stays with the Sample; CANARY - Returned to Client with Report; PINK	3Y - Returned to Client with Report: PINK - Field Copy		

Quanterra Incorporated 13715 Rider Trail North Earth City, Missouri 63045

314 298-8566 Telephone 314 298-8757 Fax

ANALYTICAL REPORT

÷; ;;

Q uanterra

. ...

PROJECT NO. CONOCO

Maljamar Gas Plant

Lot #: F0E010130

Clyde Yancey

Maxim Technologies, Inc. 8235 Douglas Avenue Suite 700 LB44 Dallas, TX 75225

SEVERN TRENT LABORATORIES, INC.

luw ka

Ron Martino Project Manager

May 11, 2000

LOT# F0E010130

1

Case Narrative LOT NUMBER: F0E010130

This report contains the analytical results for the 12 samples received under chain of custody by STL St. Louis on April 29, 2000. These samples are associated with your Maljamar Gas Plant project.

All applicable quality control procedures met method-specified acceptance criteria except as noted on the following page.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Observations/Nonconformances

Nonconformance F00333

Affected Samples: 8: B-5 10-12

9: B-5 28-30

Affected Methods: 8260B

Case Narrative:

Due to a line clog the 5 gram MSD did not properly purge and therefore no useable results were obtained. The MS and LCS purged fine. Therefore this batch 0129208 is being reported without a MS/MSD.

METHODS SUMMARY

F0E010130

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Inductively Coupled Plasma (ICP) Metals	SW846 6010B	SW846 3050B
Mercury in Solid Waste (Manual Cold-Vapor)	SW846 7471A	SW846 7471A
Trace Inductively Coupled Plasma (ICP) Metals	SW846 6010B	SW846 3050B
Volatile Organics by GC/MS	SW846 8260B	SW846 5030
Volatile Organics by GC/MS	SW846 B260B	SW846 5035
Volatile Petroleum Hydrocarbons	SW846 8015 MOD	SW846 5030

References:

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

· . .

SAMPLE SUMMARY

F0E010130

WO #	SAMPLE	CLIENT SAMPLE ID	DATE TIME
DCKTN	001	B-1 14-16	04/27/00 08:50
DCKX6	002	B-1 18-20	04/27/00 09:00
DCKX7	003	B-2 8-10	04/27/00 11:30
DCKXA	004	B-2 33-35	04/27/00 11:40
DCKXC	005	B-3 2-4	04/27/00 13:40
DCKXD	005	B-3 33-35	04/27/00 13:50
DCKXE	007	B-5 6-8	04/28/00 08:55
DCKXG	00B	B-5 10-12	04/28/00 09:00
DCKXH	009	B-5 28-30	04/28/00 09:05
DCKXJ	010	B-4 0-2	04/27/00 14:50
DCKXK	011	B-4 10-12	04/27/00 15:00
DCKXL	012	B-4 33-35	04/27/00 15:10

NOTE (S) :

. The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at he above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odur,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

MAXIM TECHNOLOGIES, INC.

Client Sample ID: B-1 14-16

GC/MS Volatiles

-	Work Order #: Date Received:		Matrix: SOLID
Prep Date Prep Batch #:	Analysis Date: Analysis Time:		
Dilution Factor: & Moisture:	Method:	SW846 8260B	

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	5.0	ug/kg
Ethylbenzene	ND	5.0	ug/kg
Toluene	ND	5.0	ug/kg
Xylenes (total)	ND	5.0	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	-
4-Bromofluorobenzene	78	(73 - 109)
Toluene-d8	104	(82 - 119)
Dibromofluoromethane	82	(82 - 132)
1,2-Dichloroethane-d4	88	(60 - 140)

6

.

· • • •

· · • • ·

MAXIM TECHNOLOGIES, INC.

Client Sample ID: B-1 14-16

GC Volatiles

Lot-Sample #: FOE010130-001 Date Sampled: 04/27/00 08:50 Prep Date: 05/05/00 Prep Batch #: 0128114 Dilution Factor: 1		04/29/00 05/05/00	Matrix: SOLID
<pre>% Moisture:</pre>	Method	SW846 8015	MOD
PARAMETER	RESULT	REPORTING LIMIT	UNITS
Volatile Petroleum Hydrocarbons	ND	0.10	mg/kg
SURROGATE Trifluorotoluene	PERCENT RECOVERY 87	RECOVERY LIMITS (50 - 150)	

STL ST. LOUIS

MAXIM TECHNOLOGIES, INC.

Client Sample ID: B-1 18-20

GC/MS Volatiles

Lot-Sample #: F0E010130-002 Date Sampled: 04/27/00 09:00 Prep Date: 05/08/00 Prep Batch #: 0130229 Dilution Factor: 1		04/29/00 05/08/00	Matrix SOLID
<pre>% Moisture:</pre>	Method:	SW846 82601	3.
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	4.0 J	5.0	ug/kg
Ethylbenzene	ND	5.0	ug/kg
Toluene	ND	5.0	ug/kg
Xylenes (total)	ND	5.0	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	93	(73 - 109)	
Toluene-d8	104	(82 - 119)	
Dibromofluoromethane	96	(82 - 132)	
1,2-Dichloroethane-d4	110	(60 - 140)	

NOTE(S):

J Estimated result. Result is less than RL.

LOT# F0E010130

8

- -


STL ST. LOUIS

Client Sample ID: B-1 18-20

GC Volatiles

Lot-Sample #: F0E010130-002 Date Sampled: 04/27/00 09:00 Prep Date: 05/05/00 Prep Batch #: 0128114 Dilution Factor: 1		04/29/00 05/05/00	Matrix SOLID
& Moisture:	Method:	SW846 8015	MOD
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Volatile Petroleum Hydrocarbons	ND	0.10	mg/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Trifluorotoluene	69	(50 - 150)	ν.

Client Sample ID: B-2 8-10

GC/MS Volatiles

Lot-Sample #: F0E010130.003 Date Sampled: 04/27/00 11:3 Prep Date: 05/08/00 Prep Batch #: 0130231 Dilution Pactor: 4	<pre>0 Date Received: Analysis Date:</pre>	04/29/00 05/08/00	Matrix SOLID
* Moisture:	Method:	SW846 8260	в
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	690 J	1000	ug/kg
Ethylbenzene	25000	1000	ug/kg
Toluene	ND	1000	ug/kg
Xylenes (total)	23000	1000	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	82	(73 - 109)	
Toluene-d8	97	(82 - 119)	
Dibromofluoromethane	96	(82 - 132)	
1,2-Dichloroethane-d4	95	(60 - 140)	

NOTE (S) :

J Estimated result. Result is less than RL.

. . .

4,

STL ST. LOUIS

•

MAXIM TECHNOLOGIES, INC.

. .

Client Sample ID: B-2 8-10

GC Volatiles

Lot-Sample #: F0E010130-003 Date Sampled: 04/27/00 11:30 Prep Date: 05/07/00 Prep Batch #: 0129167 Dilution Factor: 1250		04/29/00 05/07/00	Matrix SOLID
<pre>% Moisture:</pre>	Method:	SW846 8015	MOD
PARAMETER	RESULT	REPORTING LIMIT	UNITS
Volatile Petroleum Hydrocarbons	2700	120	mg/kg
SURROGATE Trifluorotoluene	PERCENT RECOVERY 83	RECOVERY LIMITS (50 - 150)	

MAXIM TECHNOLOGIES, INC.

.

Client Sample ID: B-2 33-35

GC/MS Volatiles

Lot-Sample #: F0E010130-004 Date Sampled: 04/27/00 11:40 Prep Date: 05/05/00 Prep Batch #: 0129213 Dilution Factor: 4		04/29/00 05/05/00	Matrix SOLID
<pre>% Moisture:</pre>	Method:	SW846 8260	B
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	14000	1000	ug/k g
Ethylbenzene	29000	1000	ug/kg
Toluene	1400	1000	ug/kg
Xylenes (total)	38000	1000	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	103	(73 - 109)	
Toluene-d8	118	(82 - 119)	
Dibromofluoromethane	84	(82 - 132)	
1,2-Dichloroethane-d4	88	(60 - 140)	

STL ST. LOUIS

р 128 г.

.

MAXIM TECHNOLOGIES, INC.

Client Sample ID: B-2 33-35

GC Volatiles

Lot-Sample #: F0E010130-004 Date Sampled: 04/27/00 11:40 Prep Date: 05/07/00 Prep Batch #: 0129163 Dilution Factor: 5		04/29/00 05/07/00	Matrix SOLID
* Moisture:	Method:	SW846 8015	MOD
PARAMETER	RESULT	REPORTING	UNITS
Volatile Petroleum Hydrocarbons	26	0.50	mg/kg
SURROGATE Trifluorotoluene	PERCENT RECOVERY	RECOVERY LIMITS (50 - 150)	

MAXIM TECHNOLOGIES, INC.

Client Sample ID: B-3 2-4

GC/MS Volatiles

Lot-Sample #: F0E01 Date Sampled: 04/27 Prep Date: 05/05 Prep Batch #: 01292 Dilution Factor: 4	/00 13:40 Date /00 Analy		04/29/00 05/05/00	Matrix SOLID
<pre>\$ Moisture;</pre>	Metho	d:	SW845 82608	3
			REPORTING	
PARAMETER	RESUL	T	LIMIT	UNITS
Benzene	9400		1000	ug/kg
Ethylbenzene	26000		1000	ug/kg
Toluene	410 J		1000	ug/kg
Xylenes (total)	34000		1000	ug/kg
	PERCE	NT	RECOVERY	
SURROGATE	RECOV	ERY	LIMITS	
4-Bromofluorobenzene	97		(73 - 109)	
Toluene-d8	116		(82 - 119)	
Dibromofluoromethane	79 *		(82 - 132)	
1,2-Dichloroethane-d4	105		(60 - 140)	

NOTE (S) :

2.

* Surrogate recovery is outside stated control limits.

J Estimated result. Result is less than RL.

MAXIM TECHNOLOGIES, INC.

Client Sample ID: B-3 2-4

GC/MS Volatiles

Lot-Sample #: F0E010	130-005 Work Order #	.: DCKXC202	Matrix: SOLID
Date Sampled: 04/27/	00 13:40 Date Received.	.: 04/29/00	
Prep Date: 05/08/	00 Analysis Date.	.: 05/08/00	
Prep Batch #: 013023	1 Analysis Time:	.: 20:57	
Dilution Factor: 4			
% Moisture	Method	.: SW846 8260B	
		REPORTING	

PARAMETER	RESULT	LIMIT	UNITS
Benzene	8600	1000	ug/kg
Sthylbenzene	28000	1000	ug/kg
Toluene	490 J	1000	ug/kg
Xylenes (total)	33000	1000	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	94	(73 - 109))
Toluene-d8	106	(82 - 119) · · ·
Dibromofluoromethane	77 *	(82 - 132	2)
1,2-Dichloroethane-d4	97	(60 - 140	1)

NOTB(S):

* Surrogate recovery is outside stated control limits.

J Estimated result. Result is less than RL.

STL ST. LOUIS

MAXIM TECHNOLOGIES, INC.

Client Sample ID: B-3 2-4

GC Volatiles

Lot-Sample #: F0E010130-005 Date Sampled: 04/27/00 13:40			Matrix SOLID
Prep Date: 05/05/00	Analysis Date:		
Prep Batch #: 0128115	Analysis Time:	22:07	
Dilution Factor: 1250			
<pre>% Moisture:</pre>	Method:	SW846 8015	MOD
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Volatile Petroleum	2300	120	mg/kg
Hydrocarbons			
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Trifluorotoluene	78	(50 ~ 150)	

.

MAXIM TECHNOLOGIES, INC.

Client Sample ID: B-3 33-35

GC/MS Volatiles

Lot-Sample #: F0E010130-006 Date Sampled: 04/27/00 13:50 Prep Date: 05/08/00	Date Received: Analysis Date:	04/29/00 05/08/00	Matrix SOLID
Prep Batch #: 0130229	Analysis Time:	16:37	
Dilution Factor: 1			_
<pre>% Moisture:</pre>	Method:	SW846 8260	В
•			
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	1.7 J	5.0	ug/kg
Ethylbenzene	ND	5.0	ug/kg
Toluene	ND	5.0	ug/kg
Xylenes (total)	ND	5.0	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	95	(73 - 109)	
Toluene-d8	107	(82 - 119)	
Dibromofluoromethane	112	(82 - 132)	
1,2-Dichloroethane-d4	109	(60 - 140)	

NOTB(S):

۰ ۱ J Estimated result. Result is less than RL.

STL ST. LOUIS

÷

MAXIM TECHNOLOGIES, INC.

Client Sample ID: B-3 33-35

GC Volatiles

Lot-Sample #: F0E010130-006	Work Order #:	DCKXD101	Matrix SOLID
Date Sampled: 04/27/00 13:50	Date Received:	04/29/00	
Prep Date: 05/05/00	Analysis Date:	05/05/00	
Prep Batch #: 0128114	Analysis Time:	22:43	
Dilution Factor: 1			
<pre>% Moisture:</pre>	Method:	SW846 8015	MOD
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Volatile Petroleum	ND	0.10	mg/kg
Hydrocarbons			
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Trifluorotoluene	75	(50 - 150)	

.

Client Sample ID: B-5 6-8

GC/MS Volatiles

Lot-Sample #: F0E010130-007 Date Sampled: 04/28/00 08:55 Prep Date: 05/09/00 Prep Batch #: 0132117 Dilution Factor: 1	Date Received: Analysis Date:	04/29/00 05/09/00	Matrix SOLID
* Moisture:	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	2.0 J	5.0	ug/kg
Bthylbenzene	25	5.0	ug/kg
Toluene	2.8 J	5.0	ug/kg
Xylenes (total)	100	5.0	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	96	(73 - 109)	
Toluene-d8	101	(82 - 119)	
Dibromofluoromethane	96	(82 - 132)	
1,2-Dichloroethane-d4	86	(60 - 140)	

NOTE (S) :

J Estimated result. Result is less than RL.

÷

Ì

, i

MAXIM TECHNOLOGIES, INC.

-

Client Sample ID: B-5 6-8

GC Volatiles

Lot-Sample #: F0E010130-007 Date Sampled: 04/28/00 08:55 Prep Date: 05/05/00 Prep Batch #: 0128115 Dilution Factor: 125		04/29/00 05/05/00	Matrix: SOLID
<pre>% Moisture:</pre>	Method:	SW846 8015	MOD
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Volatile Petroleum	89	12	mg/kg
Hydrocarbons			
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Trifluorotoluene	73	(50 - 150)	

.

۰.

•

Client Sample ID: B-5 10-12

GC/MS Volatiles

Lot-Sample #: F0E010130-008 Date Sampled: 04/29/00 09:00 Prep Date: 05/05/00 Prep Batch #: 0129208 Dilution Pactor: 1	Date Received:	04/29/00 05/05/00	Matrix SOLID
<pre>Moisture:</pre>	Method:	SW846 82601	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	ND	5.0	ug/kg
Bthylbenzene	3.2 J	5.0	ug/kg
Toluene	6.0	5.0	ug/kg
Xylenes (total)	34	5.0	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	84	(73 - 109)	
Toluene-d8	95	(82 - 119)	
Dibromofluoromethane	100	(82 - 132)	
1,2-Dichloroethane-d4	95	(60 - 140)	

NOTB(S):

J Estimated result. Result is less than RL.

*E

MAXIM TECHNOLOGIES, INC.

Client Sample ID: B-5 10.12

GC Volatiles

Lot-Sample #: F0E010130-008 Date Sampled: 04/28/00 09:00 Prep Date: 05/07/00 Prep Batch #: 0129163 Dilution Factor: 1		04/29/00 05/07/00	Matrix: SOLID
ł Moisture	Method:	SW846 8015	MOD
PARAMETER	RESULT	REPORTING LIMIT	UNITS
Volatile Petroleum Hydrocarbons	0.28	0.10	mg/kg
SURROGATE	PERCENT	RECOVERY	
Trifluorotoluene	61	LIMITS (50 - 150)	

.

MAXIM TECHNOLOGIES, INC.

-

Client Sample ID: B-5 28-30

GC/MS Volatiles

	04/28/00 09:05 05/05/00 0129208	Work Order #: Date Received: Analysis Date: Analysis Time:	04/29/00 05/05/00	Matrix
% Moisture:		Method:	SW846 82601	3
			REPORTING	
PARAMETER		RESULT	LIMIT	UNITS
Benzene		ND	5.0	ug/kg
Ethylbenzene		ND	5.0	ug/kg
Toluene		ND	5.0	ug/kg
Xylenes (total)		ND	5.0	ug/kg
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
4-Bromofluoroben	zene	73	(73 - 109)	
Toluene-d8		90	(82 - 119)	
Dibromofluoromet	hane	82	(82 - 132)	
1,2-Dichloroetha	ne-d4	83	(60 - 140)	

...: SOLID

Client Sample ID: B-5 28-30

GC Volatiles

Lot-Sample #: F0E010130-009 Date Sampled: 04/28/00 09:05 Prep Date: 05/05/00 Prep Batch #: 0128114 Dilution Factor: 1	Work Order #: Date Received: Analysis Date: Analysis Time:	04/29/00 05/06/00	Matrix SOLID
<pre>& Moisture:</pre>	Method:	SW846 8015	MOD
PARAMETER Volatile Petroleum Hydrocarbons	RESULT ND	REPORTING LIMIT 0.10	<u>UNITS</u> mg/kg
SURROGATE Trifluorotoluene	PERCENT Recovery 86	RECOVERY LIMITS (50 - 150)	

MAXIM TECHNOLOGIES, INC.

Client Sample ID: B-4 0-2

GC/MS Volatiles

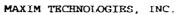
Lot-Sample #: F0E010130-010 Date Sampled: 04/27/00 14:50 Prep Date: 05/05/00 Prep Batch #: 0129213 Dilution Factor: 4		04/29/00 05/05/00	Matrix SOLID
t Moisture:	Method:	SW846 8260	В
PARAMETER	RESULT	REPORTING LIMIT	UNITS
Benzene	19000	1000	ug/kg
Ethylbenzene Toluene	41000 B 760 J	1000 1000	ug/kg ug/kg
Xylenes (total)	79000	1000	ug/kg
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	
4-Bromofluorobenzene	277 *	(73 - 109)	
Toluene-d8	114	(82 - 119)	
Dibromofluoromethane	741 *	(82 - 132)	
1,2-Dichloroethane-d4	101	(60 - 140)	

NOTE (S) :

* Surrogate recovery is outside stated control limits.

E Estimated result Result concentration exceeds the calibration range.

J Estimated result Result is less than RL.


.

. .

LOT# F0E010130

.

.

Client Sample ID: B-4 0-2

GC/MS Volatiles

Lot-Sample #: F0E010130-010 Date Sampled: 04/27/00 14:50 Prep.Date: 05/08/00 Prep Batch #: 0130231 Dilution Factor: 8		04/29/00 05/08/00	Matrix SOLID
<pre>% Moisture:</pre>	Method:	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	19000 D	2000	ug/kg
Ethylbenzene	46000 D	2000	ug/kg
Toluene	1100 J,JD	2000	ug/kg
Xylenes (total)	84000 D	2000	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	286 *	(73 - 109)	
Toluene-d8	111	(82 - 119)	
Dibromofluoromethane	80 *	(82 - 132)	
1,2-Dichloroethane-d4	101	(60 - 140)	

NOTE(S):

· Surrogate recovery is outside stated control limits.

D Result was obtained from the analysis of a dilution.

J Estimated result. Result is less than RL

Client Sample ID: B-4 0-2

GC Volatiles

Lot-Sample #: F0E010130-010 Date Sampled: 04/27/00 14:50 Prep Date: 05/07/00 Prep Batch #: 0129167 Dilution Factor: 1250		04/29/00 05/07/00	Matrix: SOLID
<pre>% Moisture:</pre>	Method		MOD
PARAMETER	RESULT	REPORTING LIMIT	UNITS
Volatile Petroleum Hydrocarbons	4900	120	mg/kg
SURROGATE Trifluorotoluene	PERCENT RECOVERY 75	RECOVERY LIMITS (50 - 150)	

;

Client Sample ID: B-4 10-12

GC/MS Volatiles

Lot-Sample #: F0E010130-011 Date Sampled: 04/27/00 15:00 Prep Date: 05/05/00		04/29/00	Matrix: SOLID
Prep Batch #: 0129213	Analysis Time	19:09	
Dilution Pactor: 4			
1 Moisture:	Method:	SW846 82608	3
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	920 J	1000	ug/kg
Ethylbenzene	10000	1000	ug/kg
Toluene	2800	1000	ug/kg
Xylenes (total)	20000	1000	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
4-Bromofluorobenzene	91 J	(73 - 109)	
Toluene-d8	98 J	(82 - 119)	
Dibromofluoromethane	72 *,J	(82 - 132)	
1,2-Dichloroethane-d4	83 J	(60 - 140)	

NOTE (S) :

J Estimated result. Result is less than RL.

* Surrogate recovery is outside stated control limits.

Client Sample ID: B-4 10 12

GC Volatiles

Lot-Sample #: F0E010130-011 Date Sampled: 04/27/00 15:00 Prep Date: 05/07/00 Prep Batch #: 0129167 Dilution Factor: 125	Work Order #: Date Received: Analysis Date: Analysis Time:	04/29/00 05/07/00	Matrix SOLID
<pre>% Moisture:</pre>	Method:	SW846 8015	MOD
PARAMETER Volatile Petroleum Hydrocarbons	RESULT 690	REPORTING LIMIT 12	UNITS mg/kg
SURROGATE Trifluorotoluene	PERCENT RECOVERY 97	RECOVERY LIMITS (50 - 150)	

Client Sample ID: B-4 33-35

GC/MS Volatiles

Lot-Sample #: F0E010130-012 Date Sampled: 04/27/00 15:1			Matrix SOLID
Prep Date: 05/08/00	Analysis Date:	05/08/00	
Prep Batch #: 0130229	Analysis Time:	17:42	
Dilution Factor: 1			
<pre>% Moisture:</pre>	Method	SW846 8260	В
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzene	28	5.0	ug/kg
Ethylbenzenc	8.4	5.0	ug/kg
Toluene	6.2	5.0	ug/kg
Xylenes (total)	14	5.0	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	

OVERY LIMITS
(73 - 109)
6 (82 - 119)
(82 - 132)
(60 - 140)

•

Client Sample ID: B-4 33-35

GC Volatiles

Lot-Sample #: F0E010130- Date Sampled: 04/27/00 1 Prep Date: 05/07/00 Prep Batch #: 0129163 Dilution Pactor: 1	5:10 Date Received Analysis Date	: 04/29/00 : 05/07/00	Matrix: SOLID
<pre>% Moisture:</pre>	Method	SW846 8015	MOD
PARAMETER Volatile Petroleum Hydrocarbons	RESULT ND	REPORTING LIMIT 0.10	UNITS mg/kg
SURROGATE Trifluorotoluene	PERCENT RECOVERY 63	RECOVERY LIMITS (50 - 150)	

Client Sample ID: B-4 0-2

TOTAL Metals

Matrix....: SOLID

Lot-Sample #...: F0E010130-010 Date Sampled...: 04/27/00 14:50 Date Received..: 04/29/00 % Moisture....:

REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0124321 Mercury 0.26 0.033 mg/kg SW846 7471A 05/04/00 DCKXJ10A Dilution Factor: 1 Analysis Time..: 17:25 Prep Batch #...: 0126225 Arsenic 2.3 1.0 mg/kg SW846 6010B 05/05-05/09/00 DCKXJ103 Dilution Factor: 1 Analysis Time..: 17:37 7.7 Lead 0.30 mg/kg SW846 6010B 05/05-05/09/00 DCKXJ104 Dilution Factor: 1 Analysis Time..: 17:37 Selenium ND0.50 mg/kg SW846 6010B 05/05-05/09/00 DCKXJ105 Dilution Factor: 1 Analysis Time..: 17:37 Silver ND 1.0 mg/kg SW846 6010B 05/05-05/09/00 DCKXJ106 Dilution Factor: 1 Analysis Time..: 17:37 Barium 88.9 20.0 mg/kg SW846 6010B 05/05-05/09/00 DCKXJ107 Dilution Factor: 1 Analysis Time..: 17:37 Cadmium ND 0.50 mg/kg SW846 6010B 05/05-05/09/00 DCKXJ108 Dilution Factor: 1 Analysis Time..: 17:37 Chromium 12.7 1.0 mg/kg 05/05-05/09/00 DCKXJ109 SW846 6010B Dilution Factor: 1 Analysis Time..: 17:37

LOT# F0E010130

33

MAXIM TECHNOLOGIES, INC.

Client Sample ID: B-4 10 12

TOTAL Metals

Matrix SOLID

Lot-Sample #...: FOE010130-011 Date Sampled...: 04/27/00 15:00 Date Received..: 04/29/00 **%** Moisture....:

REPORTING PREPARATION-WORK PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DATE ORDER # Prep Batch #...: 0124321 Mercury ND 0.033 mg/kg SW846 7471A 05/04/00 DCKXK10A Dilution Factor: 1 Analysis Time..: 17:28 Prep Batch #...: 0126225 Arsenic 1.9 1.0 mg/kg SW846 6010B 05/05-05/09/00 DCKXK103 Dilution Factor: 1 Analysis Time..: 17:55 Lead 2.1 0.30 mg/kg SW846 6010B 05/05-05/09/00 DCKXK104 Dilution Factor: 1 Analysis Time..: 17:55 Selenium ND 0.50 mg/kg SW846 6010B 05/05-05/09/00 DCKXK105 Dilution Factor: 1 Analysis Time..: 17:55 Silver ND1.0 mg/kg SW846 6010B 05/05-05/09/00 DCKXK106 Dilution Factor: 1 Analysis Time..: 17:55 Barium 72.8 20.0 mg/kg SW846 6010B 05/05-05/09/00 DCKXK107 Analysis Time..: 17:55 Dilution Factor: 1 Cadmium ND 0.50 mg/kg SW846 6010B 05/05-05/09/00 DCKXK108 Dilution Factor: 1 Analysis Time..: 17:55 Chromium 2.0 1.0 mg/kg SW846 6010B 05/05-05/09/00 DCKXK109 Dilution Factor: 1 Analysis Time..: 17:55

MAXIM TECHNOLOGIES, INC.

Client Sample ID: B-4 33-35

TOTAL Metals

Matrix....: SOLID

Lot-Sample #...: FOE010130-012 Date Sampled...: 04/27/00 15:10 Date Received..: 04/29/00 % Moisture.....:

 REPORTING
 PREPARATION WORK

 PARAMETER
 RESULT
 LIMIT
 UNITS
 METHOD
 ANALYSIS DATE
 ORDER #

 Prep Batch #...:
 0124321
 0.033
 mg/kg
 SW846
 7471A
 05/04/00
 DCKXL10A

 Dilution Factor:
 1
 Analysis Time..::
 17:30
 DCKXL10A

Prep Batch #.	: 0126225					
Arsenic	1.9	1.0	™g/kg	SW846	6010B	05/05-05/09/00 DCKXL103
		Dilution Fa	ctor: 1	Analysis	Time: 17:59	•
Lead	3.3	0.30	mg/kg	SW846	6010B	05/05-05/09/00 DCKXL104
		Dilution Fa	ctor: 1	Analysis	Time.,: 17:59	
Selenium	ND	0.50	mg/kg	SW846	6010B	05/05-05/09/00 DCKXL105
		Dilution Fa	ctor: 1	Analysis	Time: 17:59	
Barium	144	20.0	mg/kg	SW846	6010B	05/05-05/09/00 DCKXL107
		Dilution Fa	ctor; 1	Analysis	'Time: 17:59	
Cadmium	ND	0.50	mg/kg	SW846	6010B	05/05-05/09/00 DCKXL108
		Dilution Fa	ctor: l	Analysis	Time: 17:59	
Silver	ND	1.0	mg/kg	SW846	6010B	05/05-05/09/00 DCKXL106
		Dilution Fa	ctor: 1	Analysis	Time: 17:59	
Chromium	4.2	1.0	mg/kg	SW846	6010B	05/05-05/09/00 DCKXL109
		Dilution Fa	ctor: 1	Analysis	Time: 17:59	

METHOD BLANK REPORT

GC Volatiles

Client Lot #: F0E010130 MB Lot-Sample #: F0E070000-114	Work Order #.	: DCVTX101	Matrix: SOLID
Analysis Date: 05/05/00 Dilution Factor: 1	Prep Date Prep Batch #.	., .	Analysis Time: 17:55
PARAMETER Volatile Petroleum Hydrocarbons	RESULT ND	REPORTING LIMIT UNITS 0.10 mg/kg	
SURROGATE Trifluorotoluene	PERCENT RECOVERY 96	RECOVERY LIMITS (50 - 150)	

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

.

٤,

METHOD BLANK REPORT

GC Volatiles

Client Lot #: F0E010130 MB Lot-Sample #: F0E070000-119	Work Order #	.: DCVV0101	Mai	trix: SOLID
Analysis Date: 05/05/00 Dilution Pactor: 125	Prep Date Prep Batch #		An.	alysis Time: 17:55
PARAMETER Volatile Petroleum Hydrocarbons	RESULT ND	• • •	<u>UNITS</u> mg/kg	METHOD SW846 8015 MOD
SURROGATE Trifluorotoluene	PERCENT RECOVERY 96	RECOVERY LIMITS (50 - 150)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

GC Volatiles

Client Lot #: F0E010130 MB Lot-Sample #: F0E080000-167	Work Order #	.; DCW1D10	ب 1	Matrix SOLID
Analysis Date: 05/07/00	Prep Date Prep Batch #	, ,	0 2	Analysis Time: 17:48
Dilution Factor: 125	L			
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Volatile Petroleum Hydrocarbons	ND	12	mg/kg	SW846 8015 MOD
SURROGATE Trifluorotoluene	PERCENT RECOVERY 96	RECOVERY LIMITS (50 - 150)	

NOTE (S) :

,

Calculations are performed before rounding to avoid round-off errors in calculated results.

LOT# F0E010130

METHOD BLANK REPORT

GC Volatiles

Client Lot #: F0E010130 MB Lot-Sample #: F0E080000-		\$: DCW16101	Matrix: SOLID
	Prep Date	: 05/07/00	Analysis Time .: 17:48
Analysis Date: 05/07/00	Prep Batch	#: 0129163	
Dilution Factor: 1	~ ~		
·		REPORTING	
PARAMETER	RESULT	LIMIT UNI	TS METHOD
Volatile Petroleum Hydrocarbons	ND	0.10 mg/	/kg SW846 8015 MOD
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Trifluorotoluene	96	(50 - 150)	

1

NOTE(S):

а х

Calculations are performed before rounding to avoid round-off errors in calculated results.

---14

eto 1, 16.

5 15

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #: F0E010130	Work Order #: DCW6C101	Matrix SOLID
MB Lot-Sample #: F0E080000 208		
	Prep Date : 05/05/00	Analysis Time: 13:47
Analysis Date: 05/05/00	Prep Batch #: 0129208	
Dilution Factor: 1		

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	5.0	ug/kg	SW846 8260B
Ethylbenzene	ND	5.0	ug/kg	SW846 8260B
Toluene	ND	5.0	ug/kg	SW846 8260B
Xylenes (total)	ND	5.0	ug/kg	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
4-Bromofluorobenzene	92	(73 - 1)	09)	
Toluene-d8	101	(82 - 1)	19)	
Dibromofluoromethane	88	(82 - 1)	32)	
1.2-Dichloroethane-d4	80	(60 - 14	40)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LOT# F0E010130

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #: F0E010130	Work Order #: DCW6M101	Matrix: SOLID
MB Lot-Sample #: F0E080000-213	3	
	Prep Date: 05/05/00	Analysis Time: 13:47
Analysis Date: 05/05/00	Prep Batch #: 0129213	
Dilution Factor: 1		

		RÉPORTII	NG		
PARAMETER	RESULT	LIMIT	UNITS	METHOL	
Benzene	ND	250	ug/kg	SW846	8260B
Ethylbenzene	ND	250	ug/kg	SW846	8260B
Toluene	ND	250	ug/kg	SW846	8260B
Xylenes (total)	D	250	ug/kg	SW846	82603
	PERCENT	RECOVER	Y		
SURROGATE	RECOVERY	LIMITS			
4-Bromofluorobenzene	92	(73 - 1)	09)		
Toluene-dB	101	(82 - 1)	19)		
Dibromofluoromethane	88	(82 - 1)	32)		
1,2-Dichloroethane-d4	80	(60 - 14	40)		

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

.

5 M 2

1

221

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #: F0E010130	Work Order #: DCXD5101	Matrix SOLID
MB Lot-Sample #: F0E090000-229		
	Prep Date: 05/08/00	Analysis Time: 15:56
Analysis Date: 05/08/00	Prep Batch #: 0130229	
Dilution Factor: 1		

		REPORTIN	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	5.0	ug/kg	SW846 8260B
Ethylbenzene	ND	5.0	ug/kg	SW846 8260B
Toluene	ND	5.0	ug/kg	SW846 8260B
Xylenes (total)	ND	5.0	ug/kg	SW845 8260B
	PERCENT	RECOVER	ć	
SURROGATE	RECOVERY	LIMITS		
4-Bromofluorobenzene	103	(73 - 10	09)	
Toluene-d8	110	(82 - 1)	19)	
Dibromofluoromethane	97	(82 - 13	32)	
1,2-Dichloroethane-d4	86	(60 - 14	10)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #: FOE010130	Work Order #: DCXD8101	Matrix SOLID
MB Lot-Sample #: F0E090000-231		
	Prep_Date: 05/08/00	Analysis Time: 15:56
Analysis Date: 05/08/00	Prep Batch #: 0130231	
Dilution Ractor, 1		

Dilution Factor: 1

		REPORTI	NG		
PARAMETER	RESULT	LIMIT	UNITS	METHOD)
Benzene	ND	250	ug/kg	SWB46	8260B
Ethylbenzene	ND.	250	ug/kg	SW846	8260B
Toluene	ND	250	ug/kg	SW846	8260B
Xylenes (total)	ND	250	ug/kg	SW846	8260B
	PERCENT	RECOVERY	Y		
SURROGATE	RECOVERY	LIMITS			
4-Bromofluorobenzene	103	(73 - 10)	09)		
Toluene-d8	110	(82 - 1)	19)		
Dibromofluoromethane	97	(82 - 1)	32)		
1,2-Dichloroethane-d4	86	(60 - 14	40)		

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

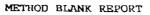
۰. .

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #: F0E010130	Work Order #: DD22P101	Matrix: SOLID
MB Lot-Sample #: F0E110000-117		
	Prep Date: 05/09/00	Analysis Time: 09:34
Analysis Date: 05/09/00	Prep Batch #: 0132117	
Dilution Pactor: 1		
	REPORTING	

PARAMETER	RESULT	LIMIT	UNITS	METHO	D
Benzene	ND	5.0	ug/kg	SW846	8260B
Ethylbenzene	ND	5,0	ug/kg	SW846	8260B
Toluene	ND	5.0	ug/kg	SW846	8260B
Xylenes (total)	ND	5.0	ug/kg	SW846	8260B
	PERCENT	RECOVER	Y		
SURROGATE	RECOVERY	LIMITS			
4-Bromofluorobenzene	96	(73 - 10	09)		
Toluene-d8	100	(82 - 1)	19)		
Dibromofluoromethane	89	(82 - 1)	32)		
1,2-Dichloroethane-d4	82	(60 - 14	40)		

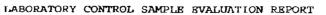

NOTE (S) :

Culculations are performed hefore rounding to avoid round-off errors in calculated results.

LOT# F0E010130

44

1000



TOTAL Metals

Client Lot #	.:: F0E01013	0		Matrix SOLID
PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
MB lot-Sample Mercury	#: F0E03000 ND	0-321 Prep Batch #. 0.033 mg/kg Dilution Factor: 1 Analysis Time: 17:08	SW846 7471A	05/04/00 DCP4H10
MB Lot-Sample Arsenic	#: F0E05000 ND	0-225 Prep Batch #. 1.0 mg/kg Dilution Factor: 1 Analysis Time: 17:17	SW846 6010B	05/05-05/09/00 DCRTM10
Lead	ND	0.30 mg/kg Dilution Factor: 1 Analysis Time: 17:17	SW846 6010B	05/05-05/09/00 DCRTM10
Selenium	ND	0.50 mg/kg Dilution Factor: 1 Analysis Time: 17:17	SW846 6010B	05/05-05/09/00 DCRTM10
Barium	ND ·	20.0 mg/kg Dilution Factor: 1 Analysis Time: 17:17	SW846 6010B	05/05-05/09/00 DCRTM100
Cadmium	ND	0.50 mg/kg Dilution Factor: 1 Analysis Time: 17:17	S₩846 6010B	05/05-05/09/00 DCRTM101
Chromium	ND	<pre>1.0 mg/kg Dilution Factor: 1 Analysis Time: 17:17</pre>	SW846 6010B	05/05-05/09/00 DCRTM10
Silver	ND	<pre>1.0 mg/kg Dilution Factor: 1 Analysis Time: 17:17</pre>	SW846 6010B	05/05-05/09/00 DCRTM10

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Volatiles

Client Lot #:	F0E010130	Work Order	: #:	DCVTX10	2-LCS	Matri	x	SOLID
LCS Lot-Sample#:	F0E070000-114			DCVTX10	3-LCSD			
Prep Date:	05/05/00	Analysis I	ate:	05/05/0	0			
<pre>Prep Batch #:</pre>	0128114	Analysis 7	ime:	18;32				
Dilution Pactor:	1							
	I	PERCENT	RECON	/ERY	F	RPD		
OBDAMEMOD		20017011						

PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD
Volatile Petroleum	125	(50 - 150)		SW846 8015 MOD
Hydrocarbons	109	(50 - 150)	14 (0-25)	SWB46 8015 MOD
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Trifluorotoluene		100	(50 - 150)	
		100	(50 - 150)	

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC Volatiles

Client Lot #: F0E010130	Work Order	#: DCVV0	102-LCS Matr	ix SOLID
LCS Lot-Sample#: F0E070000-1	15	DCVV0	103-LCSD	
Prep Date: 05/05/00	Analysis D	ate: 05/05,	/00	
Prep Batch #: 0128115	Analysis T	ime: 18:32		
Dilution Factor: 125				
	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD
Volatile Petroleum	125	(50 - 150)		SW846 8015 MOD
Hydrocarbons				
	109	(50 - 150)	14 (0-25)	SW846 8015 MOD
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Trifluorotoluene		100	(50 - 150)	
		100	(50 - 150)	

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Volatiles

Client Lot #: F0E010130 LCS Lot-Sample#: F0E080000- Prep Date: 05/07/00 Prep Batch #: 0129167 Dilution Factor: 125	167 Analysis D	#: DCW1D3 DCW1D3 Date: 05/07/ ime: 18:24	L03-LCSD	ix SOLID
PARAMETER Volatile Petroleum Hydrocarbons	PERCENT <u>RECOVERY</u> 129 123	RECOVERY LIMITS (50 - 150) (50 - 150)	RPD <u>RPD</u> LIMITS 4.6 (0-25)	METHOD SW846 8015 MOD SW846 8015 MOD
SURROGATE Trifluorotoluene		PERCENT <u>RECOVERY</u> 111 101	RECOVERY LIMITS (50 - 150) (50 - 150)	

NOTE (S):

- - - Texa

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

. . . .

LABORATORY CONTROL SAMPLE EVALUATION REPORT

-

GC Volatiles

Client Lot #: F0E010130 LCS Lot-Sample#: F0E080000.1		#: DCW161	.02-LCS Ma	trix: SOLID
Prep Bate: 05/07/00 Prep Batch #: 0129163 Dilution Factor: 1	Analysis Da	ate: 05/07/ ime: 18:24		
PARAMETER Volatile Petroleum Hydrocarbons	PERCENT <u>RECOVERY</u> 129 123	RECOVERY LIMITS (50 - 150) (50 - 150)	RPD LIMI 4.7 (0-2	SW846 8015 MOD
SURROGATE Trifluorotoluene		PERCENT <u>RECOVERY</u> 111 101	RECOVERY LIMITS (50 - 150) (50 - 150)	

NOTB(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

TOTAL Metals

Lot-Sample #...: F0E010130

Matrix....: SOLID

	PERCENT	RECOVERY	RPD		PREPARATION-	PREP-
PARAMETER	RECOVERY	LIMITS RPD	LIMITS	METHOD	ANALYSIS DATE	BATCH #
Mercury	99	(58 - 142)		SW846 7471A	05/04/00	0124321
	93	(58 - 142) 5.8	(0-20)	SW846 7471A	05/04/00	0124321
		Dilution Fac	ctor: 5			
Arsenic	108	(72 - 128)		SW846 6010B	05/05-05/09/00	0126225
	110	(72 - 128) 2.1	(0-20)	SW846 6010B	05/05-05/09/00	0126225
		Dilution Pac	stor: 1			
Lead	105	(76 - 124)		SW846 6010B	05/05-05/09/00	0126225
	107	(76 ~ 124) 2.6		SW846 6010B	05/05-05/09/00	0126225
		Dilution Fac	ctor: 1			
Selenium	101	(74 - 126)		SW846 6010B	05/05-05/09/00	0126225
	103	(74 - 126) 2.2	(0-20)	SW846 6010B	05/05-05/09/00	
		Dilution Fac	ctor: 1			
Barium	101	(77 - 122)		SW846 6010B	05/05-05/09/00	0126225
	104	(77 - 122) 2.9	(0-20)	SW846 6010B	05/05-05/09/00	0126225
		Dilution Fac	ctor: 1			
Cadmium	106	(77 - 122)		SW846 6010B	05/05-05/09/00	0126225
	110	(77 - 122) 3.9	(0-20)	SW846 6010B	05/05-05/09/00	0126225
		Dilution Fac	tor: 1			
Chromium	95	(77 - 123)		SW846 6010B	05/05-05/09/00	0126225
	97	(77 - 123) 2.9		SW846 6010B;	05/05-05/09/00	0126225
		Dilution Fac	tor: 1			
Silver	107	(75 - 126)		SW846 6010B	05/05-05/09/00	
	110	(75 - 126) 2.2		SW846 6010B	05/05-05/09/00	0126225
		Dilution Fac	tor: 1			

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE EVALUATION REPORT

٠

GC/MS Volatiles

Client Lot #: F0E010130 LCS Lot-Sample#: F0E080000-208		#: DCW6C102	2 Matrix SOLID		
Prep Date: 05/05/00		Analysis Date: 05/05/00			
Prep Batch #: 0129208	•	Analysis Time.:: 14:19			
Dilution Factor: 1		· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · ·					
	PERCENT	RECOVERY			
PARAMETER	RECOVERY	LIMITS	METHOD		
Chlorobenzene	91	(81 ~ 119)	SW846 8260B		
1,1-Dichloroethene	102	(70 - 149)	SW846 8260B		
Trichloroethene	85	(72 - 120)	SW846 8260B		
Benzene	103	(79 - 125)	SW846 8260B		
Toluene	111	(75 - 124)	SW846 8260B		
		PERCENT	RECOVERY		
SURROGATE		RECOVERY	LIMITS		
4-Bromofluorobenzene		83	(73 - 109)		
Toluene-d8		107	(82 - 119)		
Dibromofluoromethane		104	(82 - 132)		
1,2-Dichloroethane-d4		95	(60 - 140)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LOT# F0E010130

51

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #:		Work Order	#: DCW6M102	Matrix	.:	SOLID
LCS Lot-Sample#:	F0E080000-213					
Prep Date:	05/05/00	Analysis Da	ate: 05/05/00			
Prep Batch #:	0129213	Analysis T	ime: 14:19	•		
Dilution Pactor:	1					
		PERCENT	RECOVERY			
PARAMETER		RECOVERY	LIMITS	METHOD		

PARAMETER	RECOVERI	LIMITIS	METROD
Chlorobenzene	91	(81 - 119)	SW846 8260B
1,1-Dichloroethene	102	(70 - 149)	SW846 8260B
Benzene	103	(79 - 125)	SW846 8260B
Trichloroethene	85	(72 - 120)	SW846 8260B
Toluene	111	(75 - 124)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
4-Bromofluorobenzene		83	(73 - 109)
Toluene-d8		107	(82 - 119)
Dibromofluoromethane		104	(82 - 132)
1,2-Dichloroethane-d4		95	(60 - 140)
			• - ·

NOTE (S) :

. .

Calculations are performed before rounding to avoid round-off errors in calculated results.

- - -

- 17 J

. . .

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #: F0E010130 LCS Lot-Sample#: F0E090000-22		#: DCXD5102	Matrix SOLID
Prep Date: 05/08/00 Prep Batch #: 0130229 Dilution Factor: 1	Analysis Da	ate: 05/08/00 ime: 15:11	
	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Chlorobenzene	113	(81 - 119)	SW846 8260B
1,1-Dichloroethene	98	(70 - 149)	SW846 8260B
Trichloroethene	107	(72 - 120)	SW846 8260B
Benzene	114	(79 - 125)	SW846 8260B
Toluene	111	(75 - 124)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
4-Bromofluorobenzene		100	(73 - 109)
Toluene-d8		104	(82 - 119)
Dibromofluoromethane		105	(82 - 132)
1,2-Dichloroethane-d4		112	(60 - 140)

.

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

12

1.4

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #: F0E010130 LCS Lot-Sample#: F0E090000-231	Work Order	#: DCXD8102	Matrix: SOLID
Prep Date: 05/08/00	Analysis Da	te: 05/08/00	
Prep Batch #: 0130231	Analysis Time: 15:11		
Dilution Factor: 1	4		
	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Chlorobenzene	113	(81 - 119)	SW846 8260B
1,1-Dichloroethene	98	(70 - 149)	SW846 8260B
Benzene	114	(79 - 125)	SW846 8260B
Trichloroethene	107	(72 - 120)	SW846 8260B
Toluene	111	(75 - 124)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
4-Bromofluorobenzene		100	(73 - 109)
Toluene-d8		104	(82 - 119)
Dibromofluoromethane		105	(82 - 132)
1,2-Dichloroethane-d4		112	(60 - 140)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

. . .

LABORATORY CONTROL SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #:	F0E010130	Work Order	#: DD22P102	Matrix	SOLID
LCS Lot-Sample#:	F0E110000-117				
Prep Date:	05/09/00	Analysis Da	te: 05/09/00		
Prep Batch #:	0132117	Analysis Ti	me: 10:06		
Dilution Factor:	1				
		PERCENT	RECOVERY		

PARAMETER	RECOVERY	LIMITS	METHOD
Chlorobenzene	113	(81 - 119)	SW846 8260B
1,1-Dichloroethene	99	(70 - 149)	SW846 8260B
Trichloroethene	112	(72 - 120)	SW846 8260B
Benzene	117	(79 - 125)	SW846 8260B
Toluene	111	(75 - 124)	SW846 8260B
		PERCENT	RECOVERY
SURROGATE		RECOVERY	LIMITS
4-Bromofluorobenzene		98	(73 - 109)
Toluene-d8		107	(82 - 119)
Dibromofluoromethane		98	(82 - 132)
1,2-Dichloroethane-d4		106	(60 - 140)

NOTE (S) :

LOT# F0E010130

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

٠

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot # Date Sampled			Received	: 04/28/00	Matrix	: SOLID
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS RPD	RPD LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Sampl	le #: F0D28	30169-001 Prep 1	Batch #.	: 0124321		
Mercury	0.0 N	(75 - 125)		SW846 7471A	05/04/00	DCHMR10T
	0.0 N	(75 - 125) 0.0	(0-20)	SW846 7471A	05/04/00	DCHMR10U
		Dilution Fac	ctor: 1			
		Analysis Tic	ne: 17:19	•		
NOTER						

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

N Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #:	F0E010130	Work Order #:	DCKXE103-MS	Matrix:	SOLID
MS Lot-Sample #:	F0E010130-007		DCKXE104-MSD		
Date Sampled:	04/28/00 08:55	Date Received:	04/29/00		
Prep Date:	05/09/00	Analysis Date:	05/09/00		
Prep Batch #:	0132117	Analysis Time:	11:43		
Dilution Factor:	1	* Moisture:			

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Chlorobenzene	113	(81 - 119)			SW846 8260B
	111	(81 - 119)	2.1	(0-21)	SW846 8260B
1,1-Dichloroethene	110	(70 - 149)			SW846 8260B
	109	(70 - 149)	2.2	(0-22)	SW846 8260B
Trichloroethene	114	(72 - 120)			SW846 8260B
	111	(72 - 120)	3.3	(0-24)	SW846 8260B
Benzene	87	(79 - 125)			SW846 8260B
	112 p	(79 - 125)	24	(0-21)	SW846 8260B
Toluene	102	(75 - 124)			SW846 8260B
	101	(75 - 124)	1.3	(0-21)	SW846 8260B
		DEDCENT		PECOVERV	

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
4-Bromofluorobenzene	104	(73 - 109)
	103	(73 - 109)
Toluene-d8	109	(82 - 119)
	106	(82 - 119)
Dibromofluoromethane	101	(82 - 132)
	103	(82 - 132)
1,2-Dichloroethane-d4	92	(60 - 140)
	116	(60 - 140)

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

p Relative percent difference (RPD) is outside stated control limits.

1

- B 4-

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot # Date Sampled		0130 /00 14:50 Date Receiv e	d : 04/29/00	Matrix SOLID
PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMIT	S METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
MS Lot-Sampl	e #: F0E01	0130-010 Prep Batch #	: 0126225	
Arsenic	100 100	(75 - 125) (75 - 125) 0.32 (0-20 Dilution Factor: 1 Analysis Time: 17:		05/05-05/09/00 DCKXJ10C 05/05-05/09/00 DCKXJ10D
Lead	97 [.] 100	(75 - 125) (75 - 125) 2.3 (0-20 Dilution Factor: 1 Analysis Time: 17:		05/05-05/09/00 DCKXJ10E 05/05-05/09/00 DCKXJ10F
Selenium	96 96	(75 - 125) (75 - 125) 0.03 (0-20) Dilution Factor: 1 Analysis Time: 17:		05/05-05/09/00 DCKXJ10G 05/05-05/09/00 DCKXJ10H
Barium	100 108	(75 - 125) (75 - 125) 5.0 (0-20) Dilution Factor: 1 Analysis Time: 17:		05/05-05/09/00 DCKXJ10L 05/05-05/09/00 DCKXJ10M
Cadmium	100 101	(75 - 125) (75 - 125) 0.99 (0-20) Dilution Factor: 1 Analysis Time: 17:		05/05-05/09/00 DCKXJ10N 05/05-05/09/00 DCKXJ10P
Chromium	92 93	(75 - 125) (75 - 125) 0.36 (0-20) Dilution Factor: 1 Analysis Time: 17:4		05/05-05/09/00 DCKXJ10Q 05/05-05/09/00 DCKXJ10R
Silver	105 106	(75 - 125) (75 - 125) 1.2 (0-20) Dilution Factor: 1 Analysis Time: 17:4		05/05-05/09/00 DCKXJ10J 05/05-05/09/00 DCKXJ10K

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

.

MATRIX SPIKE SAMPLE EVALUATION REPORT

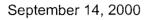
GC/MS Volatiles

Client Lot #:	F0E010130	Work Order #:	DCKXK10C-MS	Matrix:	SOLID
MS Lot-Sample #:	F0E010130-011		DCKXK10D-MSD		
Date Sampled:	04/27/00 15:00	Date Received:	04/29/00		•
Prep Date:	05/05/00	Analysis Date:	05/05/00		
Prep Batch #:	0129213	Analysis Time:	19:41		
Dilution Factor:	4	<pre>% Moisture:</pre>			

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS_	METHOD
Chlorobenzene	95	(81 - 119)			SW846 8260B
	91	(81 - 119)	3.9	(0-21)	SW846 8260B
1,1-Dichloroethene	74	(70 - 149)			SW846 8260B
	80	(70 - 149)	8.8	(0-22)	SW846 8260B
Benzene	140 a	(79 - 125)			SW846 8260B
	132 a	(79 - 125)	4.5	(0-21)	SW846 8260B
Trichloroethene	77	(72 - 120)			SW846 8260B
	76	(72 - 120)	1.2	(0-24)	SW846 8260B
Toluene	220 a	(75 - 124)			SW846 8260B
	227 a	(75 - 124)	2.3	(0-21)	SW846 8260B

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
4-Bromofluorobenzene	98	(73 - 109)
	80	(73 - 109)
Toluene-d8	110	(82 - 119)
	114	(82 - 119)
Dibromofluoromethane	84	(82 - 132)
	69 *	(82 - 132)
1,2-Dichloroethane-d4	86	(60 - 140)
	79	(60 - 140)

NOTE (S) :


Calculations are performed before rounding to avoid round-off errors in calculated results.

Build print denotes control parameters

* Surrogate recovery is outside stated control limits.

a Spiked analyte recovery is outside stated control limits.

Mr. Wayne Price Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 2040 S. Pacheco Santa Fe, NM 87505

Re: Drainage Plan for Conoco Maljamar Gas Plant

Dear Mr. Price:

Please find enclosed two (2) copies of the drainage plan prepared for the Maljamar Gas Plant as requested by your department. If you require more copies of this plan or have any questions, please contact Joyce Miley at (281) 293-4498 or Marshall Honeyman at (505) 676-3501. Thank you.

Sincerely,

Tom angen Environmental Engineer

enc.

C.	Donna Williams	OCD - Hobbs, N.M.
	Joyce M. Miley	Conoco - Houston
	Marshall Honeyman	Conoco - Maljamar
	Clyde Yancey	Maxim

"Providing Cost-Effective Solutions to Clients Nationwide"

MALJAMAR GAS PLANT STORMWATER RUNOFF PLAN

.

É.

10 - 14 - 1 10 - 14 - 1 PREPARED FOR: CONOCO INCORPORATED P.O. BOX 90 MALJAMAR, NEW MEXICO 88260

PREPARED BY: MAXIM TECHNOLOGIES 10601 LOMAS, SUITE 106 ALBUQUERQUE, NEW MEXICO 87112

SEPTEMBER 2000

1.0 INTRODUCTION

The New Mexico Energy, Minerals, and Natural Resources Department's Oil Conservation Division (OCD) requested that Conoco Inc.'s Maljamar Gas Plant (Maljamar) prepare and submit a stormwater runoff plan addressing potential stormwater issues at the Maljamar site. Maljamar is exempt from stormwater permitting under the CWA NPDES permit, and is not required to have a Stormwater Pollution Prevention Plan (SWPPP). This plan discusses Maljamar's site drainage scenario and outlines actions taken to minimize potential for contamination of and erosion by surface water runoff.

2.0 SITE DESCRIPTION

Conoco, Inc. has operated the Maljamar Gas Plant since 1960. The site is in Lea County, New Mexico, about three miles south of Maljamar off Farm Road 126. The plant processes 40 to 60 million cubic feet of natural gas per day and produces gas liquids (ethane, propane, butane, and condensate). The products are sold and transported off site by pipeline.

2.1 Facilities

Site facilities include several buildings, tanks, and uncovered equipment skids (Figure MJ2001). Major structures include:

- two compressor buildings;
- a refrigerator compressor building;
- controls building;
- maintenance shop;
- warehouse; and
- office building.

Some equipment is on unroofed skids, including:

- refrigeration equipment;
- demethanizers;
- raw product tanks;
- vapor recovery tanks;
- an LP gas tank;
- a sludge tank
- an amine skid;
- assorted control panels;
- assorted chemical storage areas.

Maxim Technologies, Inc.

2.2 Roads

يان الم الم

The site surface is composed primarily of a silty sand soil. Most of the site is accessible to light vehicles, but actual graded roadways are limited. There are no paved roads inside the fenced area controlled by Conoco.

2.3 Buildings

The buildings at Maljamar comprise less than 20 percent of the total area of the site, and as such should have minimal effect on site runoff patterns.

2.4 Containment Areas

Containment is provided for all chemical, fuel, and other reagent storage areas on site. All chemical storage drums are stored on concrete pads with curbs to control spills. The majority of the aboveground saddle tanks are mounted on curbed concrete containment slabs while some are equipped with fiberglass containment tanks. All other tanks on site are inside containment berms.

Compressor skids at Maljamar have been designed to contain engine oil spills and leaks as well as other chemicals or reagents used at the compressors.

2.5 Reagents Stored and Used on Site

Chemicals and other materials stored and used on the Maljamar plant site include the following:

- Diethanolomine;
- Methanol;
- Liquid Antifoam;
- Detergents;
- F-20 Low pH;
- Stoddard solvent;
- LCS-20;
- Emulsotron XY-409;
- Elmar 3000 engine oil;
- Elmar ashless engine oil;
- Kerosene;
- Antifreeze;
- Diesel;
- Turbine oil.

Maxim Technologies, Inc.

Į.

Please refer to the plot plan and chemical inventory (Figure MJ20001). The plot plan includes equipment location as well as location of reagent consumption on the site for each of the above mentioned chemicals.

2.6 Local Weather and Storm Information

The Maljamar site is considered semi-arid to arid, and receives about 12 to 13 inches of precipitation annually, mostly in the form of rain. The 100 year – 24 hour storm for the site is approximately 5 inches (NOAA Atlas 2, Vol. IV., U.S. Department of Commerce, National Oceanic and Atmospheric Administration).

3.0 STORMWATER DRAINAGE

The Maljamar site grades gently from northeast to southwest. The site elevation near the north property fence is 4017 feet above mean sea level (amsl). The elevation near the property fence west of the Clark Compressor building is 4004 feet amsl, resulting in an average grade across the site of approximately 1.4 percent. The steepest pitch on site is southwest of the Clark Compressor building, where the grade runs 6 percent for about 60 feet.

The soil in the Maljamar area is a silty sand with relatively high permeability. It also is somewhat non-cohesive and contains a low percentage of coarse fragments near the surface. While the soil will absorb some precipitation and pass it as interflow, high-intensity, short duration storms could produce sediment transport.

Over most of the Maljamar site, the 100 year-24 hour storm should result in manageable sheet flow, with limited tendency to produce rilling or gullies. Steeper areas near the compressor building on the northeast corner of the site and near the Clark Compressor could result in erosive action during a high intensity, short-duration storm event.

Potential for discharge of surface water runoff from Maljamar to a Water of the U.S. is limited. There are no surface water features (streams, wetlands, springs, or seeps) within one mile of the Maljamar site.

4.0 STORMWATER MANAGEMENT

Stormwater management at Maljamar is accomplished through installation and management of spill and leak containment structures at key points on the site. All chemical storage and usage points on the plant site have been equipped with containment structures. Sumps are maintained regularly. Inspection and preventive maintenance of the containment structures at Maljamar are critical to ensuring proper

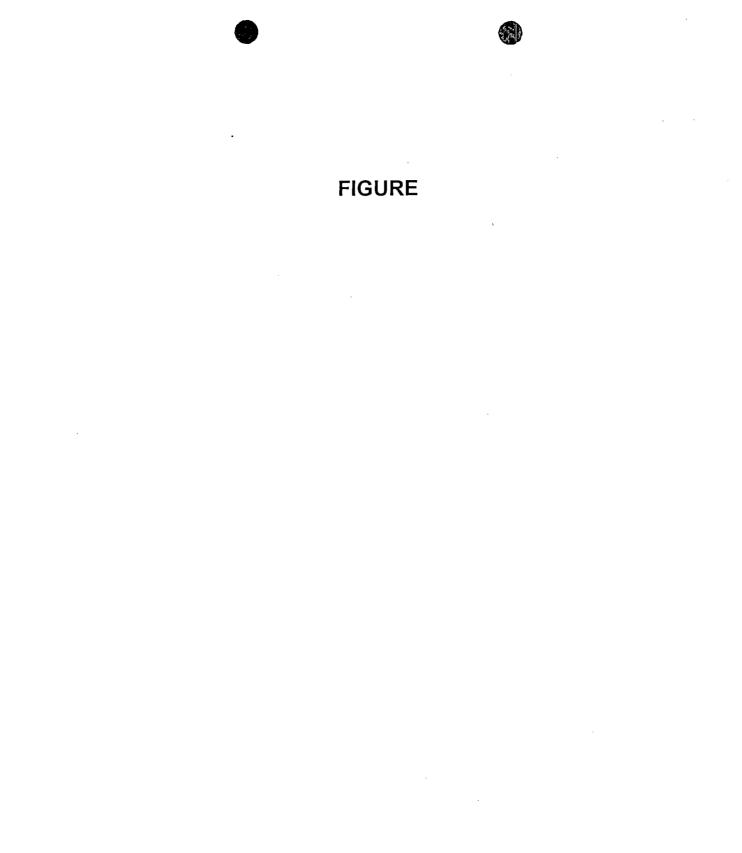
Maxim Technologies, Inc.

operation of the system. Visual inspections of the entire site are conducted at least once per shift (twice per 24 hour period). Spills are cleaned up in a timely manner using environmentally sound methods and equipment.

5.0 CONTACTS

No.

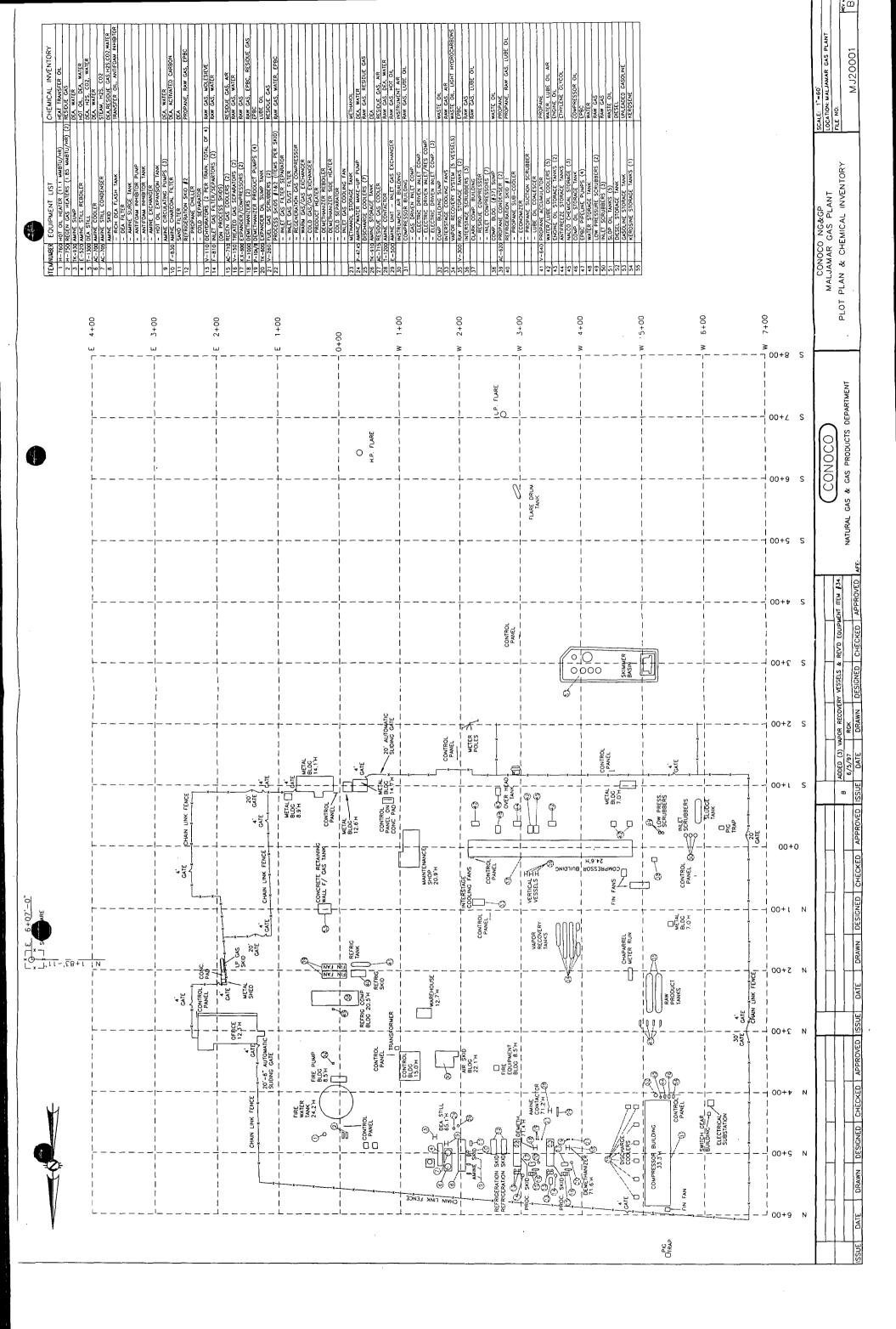
- گور میش می


.

Natural Gas & Gas Products Environmental Contact

Joyce M. Miley Environmental Consultant Conoco, Inc., Natural Gas and Gas Products Department P.O. Box 2197 – Humber 3036 Houston, Texas 777252-2197 (281) 293-4498

Site Contact


Marshall Honeyman Plant Manager Conoco Inc. Maljamar Gas Processing Plant P.O. Box 90 Maljamar, New Mexico 88264 (505) 676-3501

1.24

ter - ter

, .

11:00

朝日

2

时期间

Phil P

10 -2 -3

都用

_ ,* Y

100

: \$ £.

: . **1**4

2

Rudy Quiroz Operations Tech III Natural Gas & Gas Products

Conoco Inc. P.O. Box 90 Maljamar, NM 88264 505-676-3528

September 11, 2000

Mr. Wayne Price Oil Conservation Division Energy and Minerals Department 2040 S. Pacheo Santa Fe, NM 87505

ICP. COMSERVATION ONVISIO

RE: Engineering Plan to Modify the Skimmer Pit Area and Install Impermeable Containment Pursuant to Section 14 D. Discharge Plan GW-020 Renewal

Dear Mr. Price:

Conoco Inc. is pleased to submit this engineering plan to modify the skimmer pit area and install impermeable containment. The engineering plan is in response to the request put forth by the New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division in the Discharge Plan GW-020 Renewal document issued by OCD and dated May 18, 2000.

Enclosed is Conoco's engineering plan to modify the skimmer pit area and install impermeable containment. Included in this plan are modifications to improve the Maljamar Gas Plant handling of waste streams in the facility.

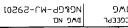
Scope of Work

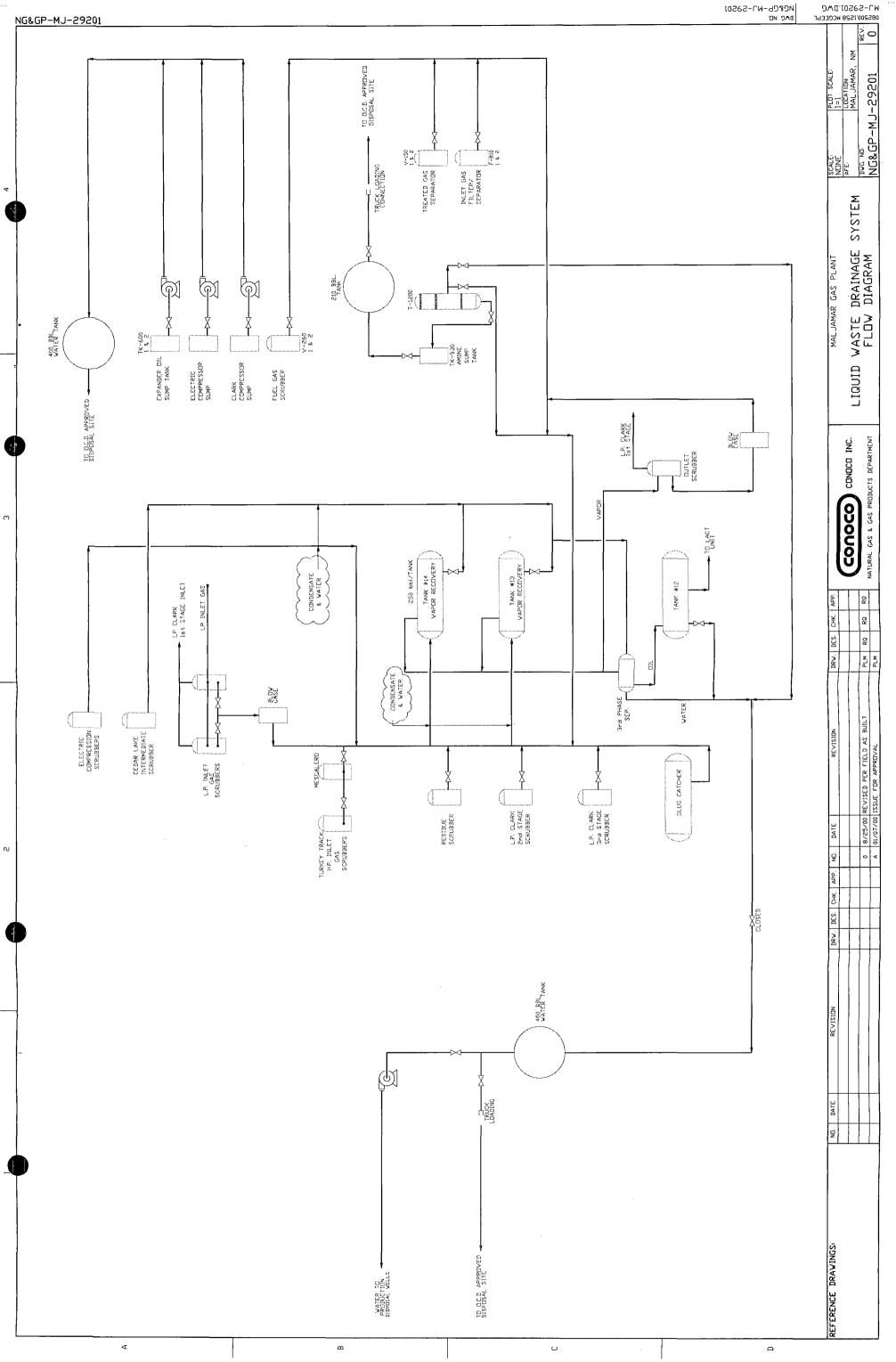
Conoco Inc. proposes the following scope of work to modify the skimmer pit area and install impermeable containment and improve Maljamar's handling of waste streams in the facility:

- 1. Maljamar Gas Plant will install a 400-barrel atmospheric tank to replace the skimmer pit. The tank will have proper impermeable containment with the ability to hold one and one third times the capacity of the tank. The tank will handle exempt water waste. The wastewater will be pumped to Conoco Production water tank for their water injection wells under normal operation with the option to truck the wastewater to an OCD approved site when the Production Department is unable to accept the wastewater. Please reference the Liquid Waste Drainage System Flow Diagram.
- 2. Maljamar Gas Plant will install a 210-barrel atmospheric tank to handle amine waste. The tank will have proper impermeable containment with the ability to hold one and one third times the capacity of the tank. This tank will handle the following waste. Drainage from Charcoal filter, Charcoal sock filter, Amine filter, Amine runoff, amine screen and acid gas flare. The contents of the tank will be disposed at an OCD approved site. Please reference the Amine Handling Diagram.

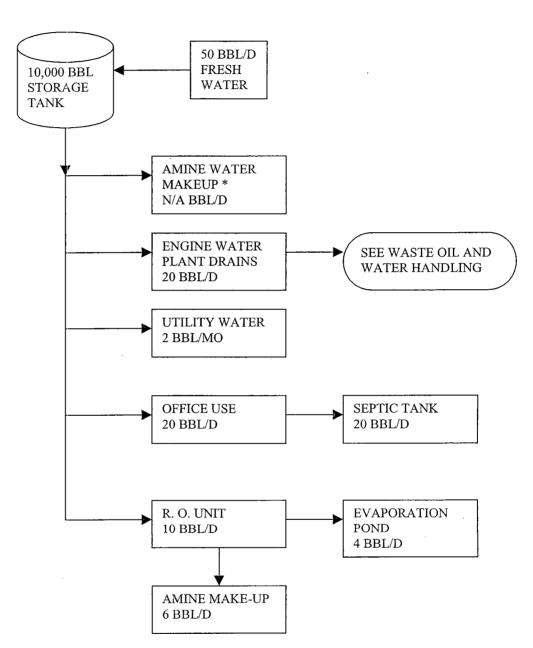
Engineering Plan to Modify the Skimmer Pit Area and Install Impermeable Containment Pursuant to Section 14 D. Discharge Plan GW-020 Renewal Page 2

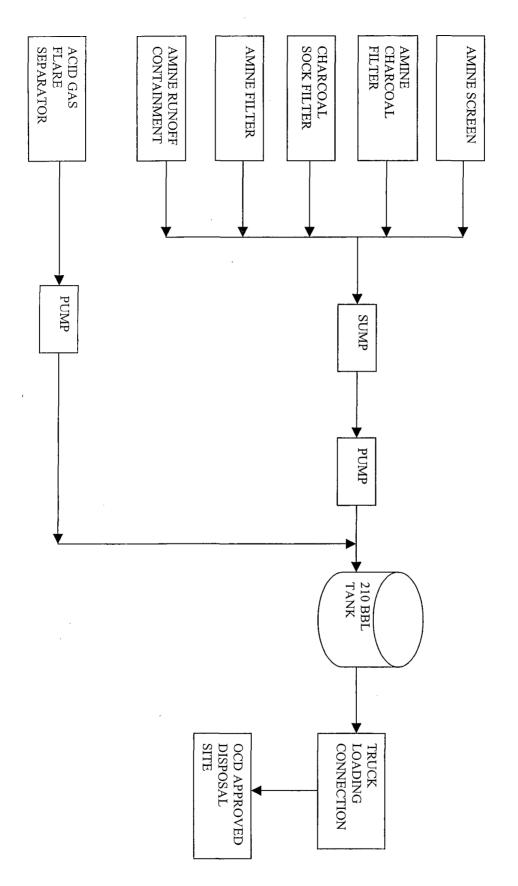
- 3. Maljamar Gas Plant will install a 400-barrel atmospheric tank to handle water and waste oil mixture. The tank will have proper impermeable containment with the ability to hold one and one third times the capacity of the tank. The tank will handle the following waste. Waste oil and water from the electric building sump, Clark compressor sumps, and refrigeration sump. These waste streams will be recycled or disposed at an OCD approved site. Please reference the Waste Oil and Water Handling Diagram.
- 4. Maljamar Gas Plant will install an evaporation pond outside the plant fence. The pond will be filled with the wastewater discharge of the reverse osmosis process. All the proper analytical work will be performed on the water and pre-approved by the OCD. Please reference the Plant Water Balance Diagram.


Conoco Inc. will commence work on this project following receipt of your approval and notification to proceed. If you have any questions or require additional information, please call me at (505) 676-3528. Thank you for your assistance.


Sincerely,

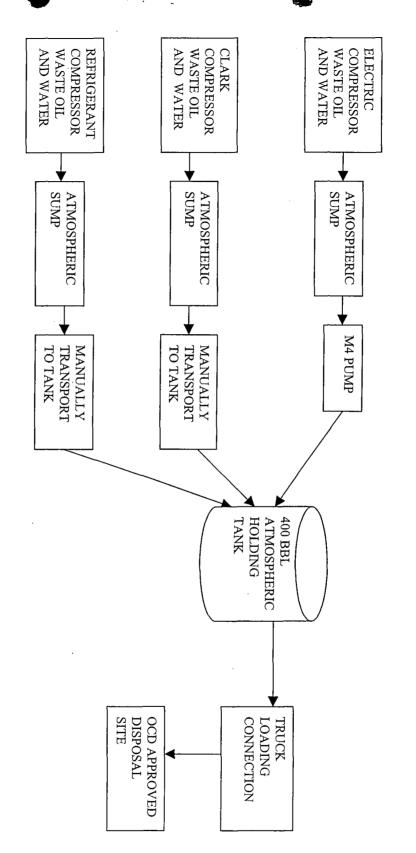
Rudy Quiroz


CC: Joyce Woodfin File: 215-5-1



PLANT WATER BALANCE MALJAMAR GAS PLANT

NG&GP FILE 870299-2


r

MALJAMAR GAS PLANT

AMINE HANDLING

٦

.

WASTE OIL AND WATER HANDLING MALJAMAR GAS PLANT 4

Rudy Quiroz Operations Tech III Natural Gas & Gas Products

Conoco Inc. P.O. Box 90 Maljamar, NM 88264 505-676-3528

July 13, 2000

Mr. Wayne Price Oil Conservation Division Energy and Minerals Department 2040 S. Pacheo Santa Fe, NM 87505

RE: Work Plan to Address Materials/Waste Stored in South Plant Area, Including an Investigation of the Vadose Zone Pursuant to Section 14 A. Discharge Plan GW-020 Renewal

Dear Mr. Price:

As a result of your inspection of the facility conducted May 9,2000 a work plan was requested to address the materials and wastes stored in the south plant storage area. This plan was to also consist of a vadose zone investigation of the same area. The Clark compressor sump pits and the underground water discharge line were to be tested to demonstrate mechanical integrity no later than July 15, 2000. The test results must be submitted to the OCD in an annual report on August 15, 2000.

Enclosed is Conoco's work plan to dispose of the waste material in the south area. A cover letter from John Skopak and Maxim Technologies work plan for the investigation of the vadose zone in the south area is also enclosed.

In accordance with New Mexico Water Quality Control Commission Regulations the following actions were performed. The Oil Conservation Division in Hobbs and Santa Fe, New Mexico were contacted on July 6, 2000. The Maljamar Gas Plant was giving its 72 hour notice that on July 11, 2000 we would be testing the underground wastewater line and inspecting the Clark sumps. The Clark sumps and discharge line were inspected July 11 and 12 with no signs of leakage or deterioration. All tests results will be enclosed in the August 15 annual report.

If you have any questions or require additional information, please call me at (505) 676-3528. Thank you for your assistance.

Sincerely,

Offiroz

CC: Joyce Woodfin File: 215-5-1

Conoco Maljamar Gas Plant Scope of Work

Conoco Inc. proposes the following scope of work to clean up the south plant storage area:

- 1. There is a combined estimated 100 cubic yards of spent molesieve and charcoal in the south area. These materials have been tested and are non-hazardous and have been pre-approved to be disposed at the Lea County Landfill. The OCD will be contacted for approval before disposal.
- 2. There is an estimated 75 cubic yard pile of soil that has been tested. The pile of soil is nonhazardous and will be disposed at the Lea County Landfill. The OCD will be contacted for approval before disposal.
- 3. There is another 75 cubic yard pile of dirt that has not been tested. This pile of dirt was derived from a recent soil excavation effort to recover an on-site condensate spill. The soil is stockpiled on plastic and bermed to prevent runoff. We are waiting for the final results of the investigation of the spill before we continue work in this area.
- 4. There is a pile of construction debris that will be removed to the landfill. The OCD will be contacted for approval before disposal.
- 5. There are thirty 55-gallon drums, six fiberglass tanks and twenty 5-gallon cans that need to be disposed. Three 55-gallon drums, four fiberglass tanks and four 5-gallon cans have liquid that will be tested. The liquid will be disposed of according to the results of the test. The empty drums and cans will be tripled rinsed and disposed. The liquid from the empty drums, tanks and cans triple rinse will be collected and tested. This liquid will be disposed of according to the test results. The OCD will be contacted for approval before disposal.
- 6. There are several meter houses and scrap metal that need to be disposed. These materials will be hauled off to a scrap metal facility. There are no hazards involved with the disposal of the meter houses or scrap metal. The OCD will be contacted for approval before disposal.

If this scope of work meets your requirements, please return a letter of approval. Contact me if you have any questions (505-676-3528).

Sincerely,

Rudy Quiroz Operations Tech III Conoco Inc. June 13, 2000

Mr. Wayne Price Oil Conservation Division, Environmental Bureau 2040 S. Pacheco Santa Fe, New Mexico 87505

RE: Work Plan to Address Materials/Waste Stored in South Storage Area, Including an Investigation of the Vadose Zone Pursuant to Section 14 A. Discharge Plan GW-020 Renewal Maljamar Gas Plant, Maljamar, New Mexico

Dear Mr. Price:

Attached for your approval is a copy of the work plan submitted to Conoco by Maxim Technologies to address materials and wastes stored in the south plant storage area of the Maljamar Gas Plant. This plan also consists of a vadose zone investigation of the same area. The subsurface investigation is part of, and being carried out under Conoco's Maljamar Gas Plant Groundwater Discharge Plan GW-020 approved on May 18, 2000 by your office. This investigation specifically addresses the requirements of Section 14 Part A.

It is our intention to initiate the scope of work within 10 working days after receiving your notice of approval. Mr. Clyde Yancey of Maxim Technologies will serve as Project Manager for the investigation while Mr. Craig Maddox of Maxim Technologies will perform the fieldwork. Mr. Rudy Quiroz will be Conoco's onsite representative. If you have any questions, please do not hesitate to call me or Clyde Yancey with Maxim Technologies at 505-281-3403

Sincerely,

John E. Skopak Senior Project Manager

CC: Joyce Woodfin – Conoco NG&GP Marshall Honeyman – Conoco Maljamar Clyde Yancey – Maxim Technologies

RECEIVED

JUL 11 2000

Remediation Technology

July 10, 2000

Mr. John E. Skopak, Senior Project Manager Conoco Inc. 600 North Dairy Ashford Houston, TX 77079-1175

RE: Maljamar Gas Plant, Maljamar, New Mexico Work Plan to Address Materials/Waste Stored in South Storage Area, Including an Investigation of the Vadose Zone Pursuant to Section 14 A., Discharge Plan GW-020 Renewal

Dear John:

Maxim Technologies Inc. (Maxim) is pleased to submit this work plan to address materials and wastes stored in the south plant storage area of the Maljamar Gas Plant, and to conduct a vadose zone investigation of the same area. This plan is in response to the request put forth by the New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division (OCD) in the Discharge Plan GW-0202 Renewal document issued by OCD and dated May 18, 2000.

Based on information provided by Conoco Inc. (Conoco) and a site visit by Maxim on June 22, 2000, the specific area of concern encompasses approximately 36,000 square feet as depicted on the attached figure. Conoco historically used this area to store surplus or out-of service equipment. At the time of the site visit, Maxim observed numerous metal meter houses, stockpiled soil and one approximate 200-gallon tank (empty). The stockpiled soil was derived from a recent soil excavation effort to recover an on-site condensate spill. The soil was stockpiled on plastic and bermed to prevent runoff onto the native soils.

During the OCD inspection of the gas plant on May 9, 2000, several 55-gallon drums were present in the area of concern. However, at the time of the Maxim inspection, the drums had been removed to appropriate on-site storage facilities. No soil staining was evident in the area of the former drum storage. In fact, no evidence of any soil staining representative of potential environmental concern was evident in the south plant storage area.

8235 Douglas Avenue, Suite 700 LB44 • Dallas, Texas • (214) 369-4395 • Fax (214) 369-4664

"Providing Cost-Effective Solutions to Clients Nationwide"

62

Mr. John E. Skopak July 10, 2000 Page 2

Scope of Work

In order to satisfy the OCD request for a vadose investigation of the south plant storage area, Maxim proposes to implement the following scope of work:

- 1. Maxim will advance ten (10) soil borings on-site and collect soil samples from the borings to establish current soil conditions with respect to any potential environmental impacts resulting from past storage activities in the south plant storage area. The borings will be advanced adjacent to or within areas of current and historical storage activity. It should be noted that depending on any contaminant distribution encountered, additional borings might be required.
- 2. The borings will be advanced with a truck-mounted drill rig. The drill rig is equipped with air rotary capabilities if refusal is encountered during split spoon sampling. Based on previous work in the area, it is anticipated that the vadose zone boring depths will likely not exceed 40 feet below ground surface.
- 3. The borings will be continuously sampled during drilling activities and logged according to the Unified Soil Classification System so that observations concerning soil types, lithologic changes, and the environmental condition of the encountered soils can be noted.
- 4. The soil samples will be field screened with a photo-ionization detector (PID) to detect the presence of volatile organic vapors.
- 5. All sampling equipment will be steam cleaned and decontaminated between each boring installation. Decontamination water will be contained and disposed of on site per appropriate regulatory procedures.
- 6. It is anticipated that one soil sample from each boring will be retained and submitted to the laboratory for analyses (more may be required depending on contaminant or lithologic heterogeneity's). The objective of the soil analytical program will be to profile any contaminant distribution with depth, and if required, provide data for determining acceptable risk based closure levels. If in the unlikely case groundwater is encountered prior to reaching unimpacted soil conditions, a soil sample will also be collected from immediately above the groundwater interface. The soil samples will be placed into 4-oz. glass sample jars, sealed with Teflon-lined lids, and placed on ice for transportation to an analytical laboratory where they will be analyzed for total petroleum hydrocarbons (TPH) (USEPA Method 8015), and benzene, toluene, ethylbenzene, and total xylenes (BTEX) (USEPA Method 8260).

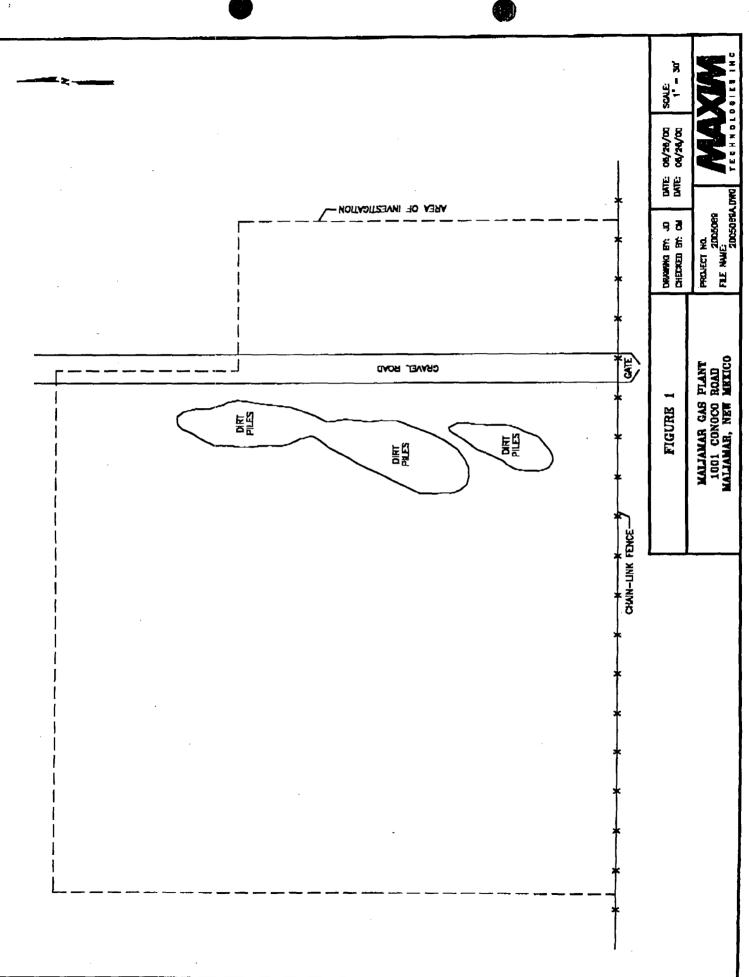
Mr. John E. Skopak July 10, 2000 Page 3

- 7. If groundwater is encountered, samples will be collected through a temporary monitor well, and analyzed by the methods defined above.
- 8. Soil cuttings generated by soil boring activities will be spread within the south plant storage area, adjacent to the borings until such time a decision is made regarding additional remediation measures, including but not limited to additional excavation or in-situ methods.

Project Schedule

Maxim is prepared to commence work on this project within tens days following receipt of your notification to proceed.

Project Approach

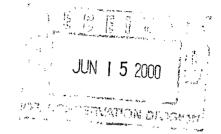

Mr. Clyde L. Yancey will serve as the Project Manager and will have the authority to commit whatever resources are necessary to support the project team. It will be his responsibility to assure that the Clients needs are met in terms of scope of work and schedule. Mr. Craig Maddox, Environmental Scientist, will perform the fieldwork.

If this Scope of Work and Cost Estimate meet with your approval, please return a signed copy of the attached Project Work Authorization Form as Maxim's authorization to proceed. Please contact Clyde Yancey (214-369-4395) if you have any questions or require additional information.

Sincerely, MAXIM TECHNOLOGIES, INC.

Clyde L. Yancey, P.G. Senior Project Manager

Copy to Ashley M. Finnan Joyce Woodfin Rudy Quiroz


JUL 13 2000 07:44 FR CONOCO, INC. 281 293 3305 TO 8-15056762401

P.05/05

John E. Skopak Senior Project Manager Remediation Technology Room PO3054 281-293-5584 Fax: 240-359-4098 **Conoco Inc.** P. O. Box 2197 Houston TX 77252-2197

June 14, 2000

Mr. Wayne Price Oil Conservation Division, Environmental Bureau 2040 S. Pacheco Santa Fe, New Mexico 87505

RE: Subsurface Investigation, Maljamar Gas Plant Maljamar, New Mexico

Dear Mr. Price:

I appreciated the opportunity to meet with you in Santa Fe last Monday, June 12, 2000, to discuss the ongoing subsurface investigation at Conoco's Maljamar Gas Plant. The subsurface investigation is part of, and being carried out under Conoco's Maljamar Gas Plant Groundwater Discharge Permit approved on May 18, 2000 by your office.

Pursuant to our referenced meeting, we are presenting you with the attached scope of work for your approval. The purpose of this scope of work is two-fold: (1) continue subsurface delineation efforts related to the horizontal impacts resulting from a historical hydrocarbon release, and (2) demonstrate that existing soil impacts do not threaten groundwater resources. The results derived from the implementation of this work plan will satisfy Section 14B of our Discharge Plan Approval Conditions and will support risk based site closure.

It is our desire to initiate the scope of work as soon as possible, in order to meet the schedule contained within the above referenced Groundwater Discharge Permit. We are planning on starting the work June 21, 2000, and would therefore appreciate your expedited review of the attached document. If you have any questions, please do not hesitate to call me or Clyde Yancey with Maxim Technologies at 214-369-4395.

Sincerely. John E. Skopak Senior Project Manager

cc: Joyce Woodfin – Conoco NG&GP Marshall Honeyman – Conoco Maljamar Clyde Yancey – Maxim Technologies JUN 14 2000 11:09 FR 🕃

June 13, 2000

Mr. John E. Skopak, Senior Project Manager Conoco Inc. 600 North Dairy Ashford Houston, TX 77079-1175

RE: Maljamar Gas Plant, Maljamar, New Mexico Work Plan for the Second Phase Subsurface Investigation Maxim Proposal Number 2000-069

Dear John:

Maxim Technologies, Inc. (Maxim) is pleased to submit this work plan to conduct the second phase subsurface investigation at the Maljamar Gas Plant located at Maljamar, New Mexico.

The second phase plan will tier off of the work performed during the initial field investigation of April 27 and 28, 2000. The purpose of the second phase is two-fold: (1) continue delineation efforts related to the horizontal impacts resulting from the historical release, and (2) demonstrate that existing soil impacts do not threaten groundwater resources. The results of the second phase investigation will be used to support in-place site closure.

Scope of Work

Based upon the information generated to date, Maxim proposes to provide the following:

1. Maxim anticipates it will advance approximately six (6) soil borings on-site and collect soil samples from the borings to establish current soil conditions with respect to potential hydrocarbon contamination. The borings will tier off of boring B-2 in the northeast corner of the "bermed" area. One boring will initially be installed thirty feet to the east and one thirty feet to the north of boring B-2. Subsequent borings will be installed based on results obtained from the first two borings. It should be noted that depending on boring results, additional borings (more than six) might be required.

8235 Douglas Ave Suite 700 LB 44 • Dallas, TX 75225 • (214) 369-4395 • (214) 369-4664 fax

"Providing Cost-Effective Solutions to Clients Nationwide"

Mr. John E. Skopak June 13, 2000 Page 2

- 2. Following delineation of the historical impacts, one boring will be drilled to a depth of 200 feet below ground surface (bgs) or to the Triassic red beds, which ever is encountered first. This boring will be drilled in an area determined to be free from hydrocarbon impacts so that drilling will not "pull down" any historical contamination. If groundwater is encountered prior to reaching a depth of 200 feet bgs, a temporary monitor well will be installed to determine if the groundwater is under perched conditions, or truly representative of an aquifer. If no groundwater is encountered at 200 feet bgs, a temporary well will be set in the 200-foot boring and left overnight to see if groundwater collects in the boring.
- 3. The borings will be advanced with a truck-mounted drill rig. The drill rig is equipped with air rotary capabilities if refusal is encountered during split spoon sampling.
- 4. The borings will be continuously sampled during drilling activities and logged according to the Unified Soil Classification System so that observations concerning soil types, lithologic changes, and the environmental condition of the encountered soil can be noted.
- 5. The soil samples will be field screened with a photo-ionization detector (PID) to detect the presence of volatile organic vapors.
- 6. All sampling equipment will be steam cleaned and decontaminated between each boring installation. Decontamination water will be contained and disposed of on site per appropriated regulatory procedures.
- 7. A minimum of two soil samples from each boring will be retained and submitted to the laboratory for analyses. The objective of the soil analytical program will be to profile the contaminant distribution with depth, and if required, provide data for determining acceptable risk based closure levels. The samples will be placed into 4-oz. Glass sample jars, sealed with Teflon-lined lids, and placed on ice for transportation to an analytical laboratory where they will be analyzed for total petroleum hydrocarbons (TPH) (USEPA Method 8015), and benzene, toluene, ethyl-benzene and total xylenes (BTEX) (USEPA Method 8260).
- 8. If groundwater is encountered in the 200-foot boring, samples will be collected through a temporary monitor will and analyzed by the methods defined above, as well as for chloride.
- 9. Soil cuttings generated by soil boring activities will be spread within the bermed area until such time a decision is made regarding additional remediation measures, including but not limited to additional excavation or in-situ methods.

JUN 14 2000 11:10 FR

Mr. John E. Skopak June 13, 2000 Page 3

Get faxes by email. Free. *Q*eFax.com то 🗰 03594098

P.04/04

Project Schedule

Maxim is prepared to commence work on this project immediately following receipt of your notification to proceed. Tentatively we are scheduled to initiate the work commencing on June 21, 2000 at the Maljamar facility.

Project Approach

Mr. Clyde L. Yancey will serve as the Project Manager and will have the authority to commit whatever resources are necessary to support the project team. It will be his responsibility to assure that Conoco's needs are met in terms of scope of work and schedule. Mr. Craig Maddox, Environmental Scientist, will perform the fieldwork.

If this scope of work meets with your approval, please return a signed copy of the attached Project Work Authorization Form as Maxim'' authorization to proceed. Please contact Clyde Yancey (214-369-4395 or 214-632-6138) if you have any questions or require additional information.

Sincerely, MAXIM TECHNOLOGIES, INC.

for Clyde L. Yancey, P.G.

Senior Project Manager

Copy to: Ashley M. Finnan Joyce Woodfin