;

.

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised October 10, 2003

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

		Dal	aga Natifi	a tio	and C	ma atima A	ation				
		Rele	ease Notific	catio			ction	—		-	-
Name of Comment	Diaina Dinai	line ID			OPERA'			Initia	al Report (\boxtimes	Final Repo
Name of Company Address			dland, Tx 7970		Contact Telephone N	Daniel Brya No. (432) 557-5					
Facility Name	Jal Tank Fa				Facility Typ	· · · · · · · · · · · · · · · · · · ·					
Surface Owner Pla	ains All Americ	an	Mineral (Jwner				Lease N	No.		
					N OF RE						
Unit Letter Section P 4	on Township 26S	Range 37E	Feet from the	North	/South Line	Feet from the	East/W	est Line	County Lea		
_	I		Latitude N32 ^o	°04'53	" Longitudo	• W 103° 10' 34	! "				
			NAT	TURE	OF REL						
	Crude Oil					Release 20 bbls			Recovered 1		
Source of Release	10" poly line				Date and F 06/27/2005	Iour of Occurrenc	ce l		Hour of Disc 05 13:40	overy	
Was Immediate Noti		Yes 🗌] No 📋 Not R	equired	If YES, To Paul Sheel	Whom?	I	00121120			3
By Whom? Daniel E					Date and H	Iour 06/27/200)5 15:35				
Was a Watercourse I		Yes 🗵	No		If YES, Vo	Iour 06/27/200 Dume Impacting (the Wate	ËĈE	IVED		
If a Watercourse was	s Impacted, Descr	ibe Fully. ³	*		_			MAY 0			
							Н	IOBBS	SOCD		
15,000 bbls per mon		/ Tunio 20/ 1	bs and the gravity	runs 42	$a = (a) = 84^{\circ}$. H ₂ S	S content is <10 p	ns Jal tar pm. Thr	oughput o	n the line is a	pprox	imately
Please refer to the Ro hereby certify that t regulations all operat public health or the e should their operation	ted and Cleanup A emediation Summ the information git tors are required t environment. The ns have failed to a	Action Tal hary and S ven above o report ar acceptanc adequately	ken.* ite Closure Reque to is true and comp nd/or file certain r ce of a C-141 repo v investigate and r	est for cl elete to ti release n ort by th remediat	osure data. ne best of my otifications a e NMOCD m e contaminati	knowledge and u nd perform correc arked as "Final R on that pose a thr	ppm. Thr inderstan tive acti- eport" do eat to gro	d that purs ons for rele pes not reli pund water	suant to NMC eases which n ieve the opera r, surface wat	DCD ru nay en ator of er, hu	iles and danger liability nan health
Please refer to the Re hereby certify that t regulations all operat public health or the e should their operation or the environment.	ted and Cleanup A emediation Summ the information git tors are required t environment. The ns have failed to a In addition, NMC	Action Tal bary and S ven above o report ar acceptanc adequately OCD accep	ken.* ite Closure Reque to is true and comp nd/or file certain r ce of a C-141 repo v investigate and r	est for cl elete to ti release n ort by th remediat	osure data. ne best of my otifications a e NMOCD m e contaminati	knowledge and u nd perform correc arked as "Final R on that pose a thr e the operator of t	nderstan ctive acti- eport" do eat to gr responsil	d that purs ons for rele bes not reli bund water bility for co	suant to NMC eases which n ieve the opera r, surface wat ompliance wi	DCD runay en ator of er, hui th any	iles and danger liability nan health
Please refer to the Re I hereby certify that t regulations all operat public health or the e should their operation or the environment. federal, state, or loca	ted and Cleanup A emediation Summ the information git tors are required t environment. The ns have failed to a In addition, NMC	Action Tal bary and S ven above o report ar acceptanc adequately OCD accep	ken.* ite Closure Reque to is true and comp nd/or file certain r ce of a C-141 repo v investigate and r	est for cl elete to th elease n ort by th remediat report d	osure data. he best of my otifications an e NMOCD m e contaminati oes not reliev	knowledge and und perform correct arked as "Final R on that pose a thr e the operator of the OIL CON	inderstan tive active eport" do eat to gro responsit SERV.	d that purs ons for rele bes not reli bund water bility for co	suant to NMC eases which n ieve the opera r, surface wat ompliance wi	DCD runay en ator of er, hui th any	iles and danger liability nan health
Please refer to the Re I hereby certify that the regulations all operate public health or the e should their operation or the environment. federal, state, or loca Signature:	ted and Cleanup A emediation Summ tors are required t environment. The ns have failed to a In addition, NMC I laws and/or regu	Action Tal bary and S ven above o report ar acceptanc adequately OCD accep	ken.* ite Closure Reque to is true and comp nd/or file certain r ce of a C-141 repo v investigate and r	est for cl elete to th elease n ort by th remediat report d	osure data. he best of my otifications an e NMOCD m e contaminati oes not reliev	knowledge and u nd perform correc arked as "Final R on that pose a thr e the operator of t	inderstan tive active eport" do eat to gro responsit SERV.	d that purs ons for rele bes not reli bund water bility for co	suant to NMC eases which n ieve the opera r, surface wat ompliance wi	DCD runay en ator of er, hui th any	iles and danger liability nan health
Please refer to the Re I hereby certify that the regulations all operate public health or the en- should their operation for the environment. federal, state, or loca Signature: De- Printed Name: Dani	ted and Cleanup A emediation Summ tors are required t nvironment. The ns have failed to a In addition, NMC I laws and/or regu	Action Tal bary and S ven above o report ar acceptanc adequately OCD accep	ken.* ite Closure Reque to is true and comp nd/or file certain r ce of a C-141 repo v investigate and r	est for cl elete to tl release n ort by th remediat report d	osure data. he best of my otifications and e NMOCD m e contaminations of the	knowledge and und perform correct arked as "Final R on that pose a thr e the operator of the OIL CON	inderstan trive active eport" do eat to gro responsit SERV.	d that purs ons for rele bes not reli bund water bility for co	suant to NMC eases which n ieve the opera r, surface wat ompliance wi DIVISIO	DCD runay en ator of er, hui th any	iles and danger liability nan health
Describe Area Affect Please refer to the Re I hereby certify that the regulations all operate public health or the end should their operation or the environment. federal, state, or loca Signature: Description Printed Name: Danie Title: Environmenta	ted and Cleanup A emediation Summ tors are required t nvironment. The ns have failed to a In addition, NMC I laws and/or regu I laws and/or regu EDELL iel Bryant al R/C Specialist	Action Tal hary and Si ven above o report ar acceptanc adequately OCD accep ilations.	ken.* ite Closure Reque to is true and comp nd/or file certain r ce of a C-141 repo v investigate and r	est for cl elete to tl release n ort by th remediat report d	osure data. he best of my otifications and e NMOCD m e contaminations of the	knowledge and u nd perform correc arked as "Final R on that pose a thr e the operator of f OIL CON District Supervis e: 4 . 29, 0	inderstan trive active eport" do eat to gro responsit SERV.	d that purs ons for rele ound water oility for co ATION	suant to NMC eases which n ieve the opera r, surface wat ompliance wi DIVISIO	DCD runay en ator of er, hui th any	iles and danger liability nan health
Please refer to the Re I hereby certify that the regulations all operation public health or the environment. Federal, state, or loca Signature: Development Printed Name: Danie Title: Environmenta E-mail Address: dml Date: 4/29/09	ted and Cleanup A emediation Summ tors are required t nvironment. The ns have failed to a In addition, NMC I laws and/or regu I laws and/or regu EDELL iel Bryant al R/C Specialist	Action Tal hary and Si ven above o report ar acceptance adequately OCD accept alations.	ken.* ite Closure Reque to is true and comp nd/or file certain r ce of a C-141 repo v investigate and r	est for cl elete to tl release n ort by th remediat report d	osure data. he best of my otifications an e NMOCD m e contaminati oes not reliev Approved by Approval Dat	knowledge and u nd perform correc arked as "Final R on that pose a thr e the operator of f OIL CON District Supervis e: 4 . 29, 0	inderstan trive active eport" do eat to gro responsit SERV.	d that purs ons for rele ound water oility for co ATION	suant to NMC eases which n ieve the opera r, surface wat ompliance wi DIVISIO	DCD runay en ator of er, hui th any	iles and danger liability nan health

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

1220 S. St. Fran	icis Dr., Sant	a Fe, NM 87503)	Sa	anta Fe	e, NM 875	05					side of form
		· · · · · · · · · · · · · · ·	Rele	ease Notifi	cation	and Co	orrective A	ction			\sim	
						OPERA	FOR	П	Initiz	al Report	\boxtimes	Final Report
Name of Co	ompany	Plains Pipel	line, LP			Contact	Daniel Bryan					
Address				lland, Tx 7970	2 7	Telephone N	No. (432) 557-5					
Facility Nat	me	Jal Tank Far	rm]	Facility Typ	e Tank Farm					
Surface Ow	ner Plains	All American /.	Joyce Willi	s Mineral (Dwner			Le	ase N	lo.		
				LOC	ATION	N OF REI	EASE					
Unit Letter	Section	Township	Range	Feet from the		South Line	Feet from the	East/West L	ine	County		
Р	32	258	37Ē							Lea		
M	33	258	37E									
			L	atitude N32° (4' 52.1'	' Longitude	• W 103° 10' 35	.1"			1	
				NAT	TURE	OF RELI	EASE					
Type of Rele		eet Crude Oil				Volume of	Release 20 bbls			Recovered 1		
Source of Re	elease 10	0" Sweet Truc	k Haul Lii	ne			lour of Occurrenc			Hour of Disc	overy	
Was Immedi	ate Notice	Given?				07/13/2005		07/1	13/20	05 15:40		
			Yes 🗌	No 🗌 Not R	equired	Larry John						
By Whom?	· · · · · · · · · · · · · · · · · · ·					Date and H		5 8:05 (left		nge)		
Was a Water	course Rea					If YES, Vo	lume Impacting t	he Watercour	se.			
			Yes 🛛					K	=C	EIVE	D	
If a Watercou	urse was Im	pacted, Descr	ibe Fully.'	ĸ				N		חחר ד ח		
								ľ	IAI I	072009		
								HC)BE	SOCD		
Describe Cou	ica of Drob	em and Reme	dial Action	- Tokon *	·							
runs 25 lbs a approximatel	nd the grav ly 2.5' at th	ity runs 42 @ e release sourc	112°. H ₂ xe.	S content is <10			e was removed fro the line is approxi					
		and Cleanup A			of for alc	aura data						
Please refer t	the Keme	culation Summ	ary and S	te Closure Reque	est for clo	sure data.						
regulations al public health should their of or the environ	ll operators or the envi operations h nment. In a	are required to ronment. The nave failed to a	o report an acceptance adequately OCD accept	d/or file certain i e of a C-141 report investigate and r	elease no ort by the emediate	otifications and NMOCD mage contaminati	knowledge and un of perform correc arked as "Final Re on that pose a three e the operator of r	tive actions for eport" does not eat to ground	or rele ot reli water	eases which r eve the opera , surface wat	nay en ator of er, hui	danger liability nan health
-	^	١					OIL CONS	SERVATI	ON	DIVISIO	N	
Signature:	Silf	Sat					f	- -	\sim			
						Approved by	District Supervise	ENGR	(k		
Printed Name	e: Daniel I	3ry/ant					•		Ľ	frence	<u> </u>	
Title: Envir	onmental R	/C Specialist			/	Approval Dat	e: 4,29,0	? Expira	tion 1	Date:		
E-mail Addre	ess: dmbrv	ant@paalp.cor	n			Conditions of	Annroval					·]
11	1		••		`	Solutions Of	Approval.			Attached		
Date: 4/2-	1/09		Phone:	(432) 557-5865						LIRP	<u>~ </u>	668

* Attach Additional Sheets If Necessary

2013

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

220 S. St. Francis Dr., Sa				Santa F	e, NM 875	~~						
		Rele	ease Noti	ificatio	n and Co	orrective A	ctio	n				
					OPERA	ГOR		🗌 Initi	al Report		Final Rep	
Name of Company	Plains Pipel	ine, LP			Contact	Daniel Brya	nt					
Address	P.O. Box 31	19 – Mic	lland, Tx 79	9702	Telephone 1	No. (432) 557-5	5865					
Facility Name	Jal Tank Far	m			Facility Type Tank Farm							
Surface Owner Plain	ns All American		Minera	al Owner				Lease 1	No.			
	_		10	CATIO	N OF REI	FASE		• • • • • •				
Unit Letter Section	n Township	Range	Feet from th		/South Line	Feet from the	East/	West Line	County			
P 32	258	37E							Lea			
		La	atitude N32	2° 04' 52.1	l" Longitudo	e W103° 10' 35	5.1"		•			
			N	ATURE	OF REL	EASE	`					
21	weet Crude Oil					Release 30 bbls			Recovered			
Source of Release	10" Truck Haul	Line			Date and F 07/25/2005	lour of Occurrent	ce		Hour of Dis 05 07:30	scovery		
Vas Immediate Notice Given?					If YES, To			1 01/25/20	05 07.50			
	\boxtimes	Yes 🗌] No 🗌 No	ot Required								
y Whom? Daniel Bryant /as a Watercourse Reached?					Date and H	lour 07/26/200	05 09:1	5 (left mes	sage)			
Vas a Watercourse Reached?					If YES, Vo	olume Impacting	the Wa	tercourse	CEIV	'ED		
f a Watercourse was	Impacted, Descri	ibe Fully.*	k					м	AY 0 7 20	ากด		
								11		103		
Describe Cause of Pro Internal corrosion cau Pressure of the line ru	sed the release of ins 25 lbs and the	f sweet cru gravity ru	n Taken.* ude oil at the I uns 42 @ 112					HC was excava		line repl		
Describe Cause of Pro nternal corrosion cau Pressure of the line ru Line depth is approxim Describe Area Affecte	ased the release of ins 25 lbs and the mately 2.5' at the ed and Cleanup A	f sweet cru gravity ru release so	n Taken.* ude oil at the l uns 42 @ 112 ource. xen.*	2°. H ₂ S con	ntent is <10 p			HC was excava	ted for pipel	line repl		
Describe Cause of Pro nternal corrosion cau Pressure of the line ru Line depth is approxin Describe Area Affecte Please refer to the Ren hereby certify that the egulations all operator bublic health or the en hould their operation or the environment. In	ed the release of ins 25 lbs and the mately 2.5' at the ed and Cleanup A mediation Summa ne information giv ors are required to avironment. The s have failed to a n addition, NMO	f sweet cru gravity ru release so Action Tak ary and Si ven above preport an acceptanc dequately CD accep	n Taken.* ude oil at the J uns 42 @ 112 ource. teen.* te Closure Re is true and co od/or file certa te of a C-141 n investigate ar	2° . H_2S conservations of H_2S conservations of H_2S conservations of H_2S constrained as a service of H_2	Iosure data.	knowledge and u nd perform correc arked as "Final R on that pose a thr e the operator of	understa ctive ac Report" reat to g	HC was excava ine is appro- tions for rel does not rel ground wate sibility for c	suant to NM eases which ieve the ope r, surface wa ompliance v	OCD ru may en rator of ater, hur vith any	les and danger liability nan health	
Describe Cause of Pro nternal corrosion cau Pressure of the line ru Line depth is approxin Describe Area Affecte Please refer to the Ren hereby certify that the egulations all operator bublic health or the en hould their operation or the environment. In ederal, state, or local	ed the release of ins 25 lbs and the mately 2.5' at the ed and Cleanup A mediation Summa ne information giv ors are required to avironment. The s have failed to a n addition, NMO	f sweet cru gravity ru release so Action Tak ary and Si ven above preport an acceptanc dequately CD accep	n Taken.* ude oil at the J uns 42 @ 112 ource. teen.* te Closure Re is true and co od/or file certa te of a C-141 n investigate ar	2° . H_2S conservations of H_2S conservations of H_2S conservations of H_2S constrained as a service of H_2	Iosure data.	knowledge and u nd perform correc arked as "Final R on that pose a thr	understa ctive ac Report" reat to g	HC was excava ine is appro- tions for rel does not rel ground wate sibility for c	suant to NM eases which ieve the ope r, surface wa ompliance v	OCD ru may en rator of ater, hur vith any	les and danger liability nan health	
Describe Cause of Pronternal corrosion cau Pressure of the line ru Line depth is approxim Describe Area Affecte Please refer to the Rem hereby certify that the egulations all operator bublic health or the em hould their operation or the environment. In ederal, state, or local	ed the release of ins 25 lbs and the mately 2.5' at the ed and Cleanup A mediation Summa ne information giv ors are required to avironment. The s have failed to a n addition, NMO laws and/or regu	f sweet cru gravity ru release so Action Tak ary and Si ven above preport an acceptanc dequately CD accep	n Taken.* ude oil at the J uns 42 @ 112 ource. teen.* te Closure Re is true and co od/or file certa te of a C-141 n investigate ar	2°. H ₂ S con equest for c complete to the set of the s	Intent is <10 p losure data. The best of my notifications an the NMOCD m te contaminati loes not reliev	knowledge and u nd perform correc arked as "Final R on that pose a thr e the operator of OIL CON	indersta ctive ac ceport" reat to g SERV	HC was excava ine is appro- nd that purs- tions for rel does not rel ground wate sibility for c	suant to NM eases which ieve the ope r, surface wa ompliance v	OCD ru may en rator of ater, hur vith any	les and danger liability nan health	
Describe Cause of Pronternal corrosion cau Pressure of the line ru Line depth is approxim Describe Area Affecte Please refer to the Rem hereby certify that the egulations all operator bublic health or the em hould their operation or the environment. In ederal, state, or local	ed the release of ins 25 lbs and the mately 2.5' at the ed and Cleanup A mediation Summa ne information giv ors are required to avironment. The s have failed to a n addition, NMO laws and/or regu	f sweet cru gravity ru release so Action Tak ary and Si ven above preport an acceptanc dequately CD accep	n Taken.* ude oil at the J uns 42 @ 112 ource. teen.* te Closure Re is true and co od/or file certa te of a C-141 n investigate ar	2°. H ₂ S con equest for c complete to the set of the s	Intent is <10 p losure data. The best of my notifications an the NMOCD m te contaminati loes not reliev	knowledge and u nd perform correc arked as "Final R on that pose a thr e the operator of <u>OIL CON</u> District Supervis	indersta trive ac ceport" respons SERV SERV	HC was excava ine is appro- nd that purs- tions for rel does not rel ground wate sibility for c	suant to NM eases which ieve the ope r, surface wa ompliance v	OCD ru may en rator of ater, hur vith any	les and danger liability nan health	
Describe Cause of Pro Internal corrosion cau Pressure of the line ru Line depth is approxin Describe Area Affecte Please refer to the Ren hereby certify that the egulations all operato bublic health or the en- should their operation or the environment. In ederal, state, or local Signature:	ased the release of ins 25 lbs and the mately 2.5' at the ed and Cleanup A mediation Summa he information give fors are required to avironment. The s have failed to a n addition, NMO laws and/or regu	f sweet cru gravity ru release so Action Tak ary and Si ven above preport an acceptanc dequately CD accep	n Taken.* ude oil at the J uns 42 @ 112 ource. teen.* te Closure Re is true and co od/or file certa te of a C-141 n investigate ar	2°. H ₂ S con equest for c complete to the set of the s	Intent is <10 p losure data. The best of my notifications an the NMOCD m te contaminati loes not reliev	knowledge and u nd perform correc arked as "Final R on that pose a thr e the operator of <u>OIL CON</u> District Supervis	Indersta trive ac ceport" respons SERV SERV	HC was excava ine is appro- nd that purs- tions for rel does not rel ground wate sibility for c	ted for pipel ximately 15 suant to NM eases which ieve the ope r, surface wa ompliance v DIVISIC	OCD ru may en rator of ater, hur vith any	les and danger liability nan health	
Describe Cause of Pro Internal corrosion cau	ised the release of ins 25 lbs and the mately 2.5' at the ed and Cleanup A mediation Summand in information gives ors are required to performent. The s have failed to a n addition, NMO laws and/or regu	f sweet cru gravity ru release so Action Tak ary and Si ven above report an acceptanc dequately CD accep lations.	n Taken.* ude oil at the J uns 42 @ 112 ource. teen.* te Closure Re is true and co od/or file certa te of a C-141 n investigate ar	2°. H ₂ S con equest for c complete to the set of the s	Intent is <10 p Iosure data. Interview data. Interview data. Interview data. Interview data. Interview data.	knowledge and u nd perform correc arked as "Final R on that pose a thr e the operator of <u>OIL CON</u> District Supervis te: 4 ,29,6	Indersta trive ac ceport" respons SERV SERV	HC was excava ine is appro- tions for rel does not rel ground wate sibility for c	ted for pipel ximately 15 suant to NM eases which ieve the ope r, surface wa ompliance v DIVISIC	OCD ru may en rator of ater, hur vith any DN	les and danger liability nan health	

Basin Environmental Consulting, LLC

2800 Plains Highway P. O. Box 381 Lovington, New Mexico 88260 cdstanley@basin-consulting.com Office: (575) 396-2378 Fax: (575) 396-1429

æ **Effective Solutions**

REMEDIATION SUMMARY AND SITE CLOSURE REQUEST

PLAINS PIPELINE, L.P. (231735) Jal Tank Farm (Plains SRS# 2005-00151) Tank 374 10" Sweet Truck Haul Line (Plains SRS# 2005-00172) Jal Tank Farm (Plains SRS# 2005-00183) Lea County, New Mexico UNIT P (SE/SE), Section 32, Township 25 South, Range 37 East Latitude 32°, 04', 52.1" North, Longitude 103°, 10', 34.8" West NMOCD File Number: 1RP-1668

Prepared For:

Plains Pipeline, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002

RECEIVED

MAY 0 7 2009 HOBBSOCD

Prepared By: Basin Environmental Consulting, LLC 2800 Plains Highway P.O. Box 381 Lovington, New Mexico 88260

March 2009

Curt D. Stanley Project Manager

TABLE OF CONTENTS

INTRODUCTION AND SITE BACKGROUND	1
NMOCD SITE CLASSIFICATION	2
SUMMARY OF FIELD ACTIVITIES	2
SITE CLOSURE REQUEST	5
LIMITATIONS	6
DISTRIBUTION	7

FIGURES

D

٩)

0

0

0

1

0

0 0 0 0 • 0 • • •

Figure 1 – Site Location Map Figure 2 – Site Map

TABLES

Table 1 - Concentrations of BTEX and TPH in Soil

APPENDICES

Appendix A – Laboratory Reports Appendix B – Soil Boring Logs Appendix C – Photographs Appendix D - Release Notification and Corrective Action (Form C-141)

0

0

0

4

0

1

1

1

()

0

1

6)

(

8

0

0

INTRODUCTION AND SITE BACKGROUND

On June 27, 2005, B&H Maintenance and Construction Company (B&H), on behalf of Plains Pipeline, L.P. (Plains) responded to a crude oil release located on the Tank 374 10" sweet truck haul line. The Jal Tank Farm release (SRS# 2005-00151) was contained by Plains operations personnel utilizing a temporary pipeline repair clamp. The Jal Tank Farm release (SRS# 2005-00151) is located within the Plains Jal Station Facility on property owned by Plains Pipeline, L.P.

On July 13, 2005, Basin Environmental Service Technologies, LLC (Basin), on behalf of Plains responded to a crude oil release located on the Tank 374 10" sweet truck haul line. The Tank 374 10" Sweet Truck Haul Line crude oil release (SRS# 2005-00172) was contained by Plains operations personnel utilizing a temporary pipeline repair clamp. Basin initiated excavation of the impacted soil and stockpiled the impacted soil adjacent to the excavation on a 6-mil poly liner.

On July 25, 2005, a crude oil release occurred from the exposed Tank 374 10" sweet truck haul line, releasing crude oil into the excavated area. The Jal Tank Farm release (SRS# 2005-00183) was contained by Plains operations personnel utilizing a temporary pipeline repair clamp. The Tank 374 10" Sweet Truck Haul Line (SRS# 2005-00172) and Jal Tank Farm (SRS# 2005-00183) are located on property owned by Mr. George Willis.

Plains requested the initial crude oil release identified as Jal Tank Farm (SRS# 2005-00151), located within the Jal Station Tank Farm and occurring on June 27, 2005, be incorporated with the remedial activities to be conducted for the subsequent releases (SRS# 2005-00172 and 2005-00183).

The combined sites are located in Unit "P" (SE¹/₄/SE¹/₄) Section 32, Township 25 South, Range 37 East, in Lea County, New Mexico. A Site Location and Site Map are provided as Figure 1 and Figure 2, respectively. The site latitude is 32°, 04', 52.1" North and site longitude is 103°, 10', 34.8" West. The site is located in a pipeline right-of-way located inside and adjacent to the Plains Jal Station. Plains Jal Station crude oil pump station is located on the Plains pipeline system and contains numerous large volume holding tanks, pumping stations and pipelines delivering crude oil to refineries. The June 27, 2005, crude oil release had a visible surface stain covering an area approximately 20 feet in length and 20 feet in width. The July 13 and 25, 2005, release had a visible surface stain covering an area approximately 115 feet in length and 26 feet in width. A combined total of approximately 70 barrels of crude oil were estimated to have been released from the three (3) crude oil pipeline releases and approximately 40 barrels were recovered.

Representatives of the NMOCD – Hobbs District Office were verbally notified of the three (3) releases on June 27, 2005, July 14, 2005 and July 26, 2005. Plains representatives completed and submitted three (3) NMOCD C-141 forms to the NMOCD, Hobbs District Office. The Notification and Corrective Action Forms (Form C-141) are provided in Appendix D.

NMOCD SOIL CLASSIFICATION

A search of the New Mexico Office of the State Engineer (NMOSE) database indicated the depth to groundwater ranged from 95 to 102 feet bgs in the section. The depth to groundwater reference map utilized by NMOCD, Hobbs District Office, indicated depth to groundwater ranging from 100 to 110 feet in the area. Drilling data from the advancement of soil boring SB-1 to a depth of approximately 100 feet below ground surface (bgs) indicated groundwater was not encountered. There are no surface water bodies or water wells within 1,000 feet of the release site. Based on analytical results of soil samples collected during the soil investigation activities conducted in September 2005 (described in the Summary of Field Activities section below), twenty (20) points are assigned to the site.

Based on this data, the site has an NMOCD Ranking Score of greater than 19, which sets the remediation levels as follows:

Benzene: 10 mg/Kg (ppm)

0

BTEX: 50 mg/Kg (ppm)

TPH: 100 mg/Kg (ppm)

SUMMARY OF FIELD ACTIVITIES

The initial excavation dimensions of the 1st crude oil release (June 27, 2005), inside Jal Tank Farm proper were approximately 20 feet in length, 20 feet in width and approximately 2 feet in depth. The initial excavation dimensions of the 2nd and 3rd crude oil releases (July 13 and 27, 2005), located adjacent to Jal Tank Farm, were approximately 115 feet in length, 26 feet in width and ranged from approximately 5 to 15 feet in depth. Approximately 1,700 cubic yards (cy) of impacted soil was stockpiled on-site as a result of the remediation activities.

In August 2005, five (5) soil samples were collected from the floor and walls of the excavation adjacent to Jal Tank Farm, ranging in depth from approximately 6 to 15 feet bgs. Field screening with a Photo Ionization Detector (PID) indicated elevated concentrations of VOCs existed on the floor and walls of the excavation. Based on the field screening data, further horizontal and vertical delineation of the crude oil release site was warranted.

On September 6 through 8, 2005, eight (8) soil borings (SB-1 through SB-8) were advanced utilizing an air rotary drill rig, to evaluate the vertical extent of crude oil impact adjacent to the release point and flow path area. Six (6) soil borings (SB-1 through SB-6) were advanced adjacent to the Jal Tank Farm and two (2) soil borings (SB-7 and SB-8) were advanced inside Jal Tank Farm. The eight (8) soil borings were advanced at surface grade and ranged in depth from approximately 20 to 100 feet bgs. Subsurface soil samples were collected at five (5) foot drilling intervals and field screened with a PID. No visual observations of free phase hydrocarbons (PSH) or groundwater were encountered during the advancement of the soil borings. The selected samples were analyzed for constituent concentrations of benzene, toluene, ethylbenzene, xylenes (BTEX) and total petroleum hydrocarbons (TPH). Laboratory

analytical reports are provided as Appendix A, soil boring logs are provided as Appendix B, and a summary of Concentrations of BTEX and TPH in Soil is provided in Table 1.

Ô

Ð

0

A

0

Ø

1

1

0

A

(

Ð

ſ

()

()

0

1

0

(]

0

6

1

Soil Boring SB-1, as depicted on the site map (Figure 2), was advanced adjacent to the July 13 and 27, 2005 (SRS # 2005-00172 and 2005-00183) release point at surface grade. The soil boring was advanced to a subsurface depth of approximately 100 feet bgs. Soil samples collected at drilling depths of 5, 15, 25, 40, 50, 60, 70, 80, 90 and 100 feet were submitted for laboratory analysis. The analytical results indicated benzene concentrations were reported below the laboratory MDL for all submitted soil boring SB-1 soil samples. The analytical results indicated constituent concentrations of BTEX were reported below the NMOCD regulatory standard for the 5, 15 and 25 foot soil samples and were not detected above the laboratory method detection limit (MDL) for the 40, 50, 60, 70, 80, 90 and 100 foot soil samples. Laboratory analytical results indicated constituent concentrations of TPH were reported below the NMOCD regulatory standard for the 5, 15, 25, 40, 70, 80, 90 and 100 feet soil samples and exceeded the NMOCD regulatory standard for the 5, 15, 25, 40, 70, 80, 90 and 100 feet soil samples at 7,560 mg/Kg, 4,760 mg/Kg, 1,320 mg/Kg, 455 mg/Kg, 279 mg/Kg, 227 mg/Kg, 227 mg/Kg, 227 mg/Kg, 118 mg/Kg and 576 mg/Kg, respectively.

Soil Boring SB-2, was advanced up gradient at surface grade adjacent to the flow path area. Soil samples were collected at five (5) foot drilling intervals and field screened using a PID. The soil boring was advanced to a subsurface depth of approximately 40 feet bgs. Soil samples were collected at drilling depths of 5, 15, 25 and 40 feet bgs were submitted for laboratory analysis. The analytical results indicated benzene concentrations were reported below the laboratory MDL for all submitted soil boring SB-2 soil samples. Laboratory analytical results indicated constituent concentrations of BTEX were reported below NMOCD regulatory standard for the 15 feet soil samples. Laboratory analytical results indicated constituent concentrations of BTEX were reported below the laboratory MDL for the 15 feet soil sample and were not detected above the laboratory MDL for the 5, 25 and 40 feet bgs soil samples. Laboratory analytical results indicated constituent concentrations of BTEX were reported below the laboratory MDL for the 15 feet soil sample and were not detected above the laboratory MDL for the 5, 25 and 40 feet bgs soil samples. Laboratory analytical results indicated constituent concentrations of BTEX analytical results indicated constituent concentrations of BTEX were reported below NMOCD regulatory standard for the 15 feet soil sample and were not detected above the laboratory MDL for the 5, 25 and 40 feet bgs soil samples. Laboratory analytical results indicated constituent concentrations of TPH were reported to exceed NMOCD regulatory standard for the 15, 25 and 40 feet bgs soil samples.

Soil Boring SB-3, was advanced up gradient at surface grade adjacent to the flow path area. Soil samples were collected at five (5) foot drilling intervals and field screened with a PID. The soil boring was advanced to a subsurface depth of approximately 60 feet bgs. Soil samples collected at depths of approximately 5, 15, 25, 40, 50 and 60 feet bgs were submitted for analysis. The analytical results indicated benzene concentrations were reported below the laboratory MDL for all submitted soil boring SB-3 soil samples, with the exception of the soil sample collected at 25 feet bgs which exhibited a benzene concentration of 0.0283 mg/Kg. Laboratory analytical results indicated constituent concentrations of BTEX were reported below the NMOCD regulatory standard for the 5, 15, 25, 40 and 50 foot soil samples and were not detected above the laboratory MDL for the 60 foot bgs soil sample. Laboratory analytical results indicated constituent concentrations of TPH were reported to exceed the NMOCD regulatory standard for the 5, 15, 25 and 40 feet bgs soil samples at 3,070 mg/Kg, 4,950 mg/Kg, 2,700 mg/Kg and 327 mg/Kg, respectively and were below the NMOCD regulatory standard for the 50 and 60 foot soil samples.

Soil Boring SB-4, was advanced up gradient at surface grade adjacent to the flow path area. Soil samples were collected at five (5) foot drilling intervals and field screened using a PID. The soil boring was advanced to a subsurface depth of approximately 25 feet bgs. Soil samples collected at depths of approximately 5, 15 and 25 feet bgs were submitted for analysis. Laboratory analytical results indicated constituent concentrations of benzene, BTEX and TPH were not detected above the laboratory MDL for the three (3) soil samples.

0

0

Ð

Ð

0

A

A

Soil Boring SB-5, was advanced up gradient at surface grade adjacent to the flow path area. Soil samples were collected at five (5) foot drilling intervals and field screened using a PID. The soil boring was advanced to a subsurface depth of approximately 25 feet bgs. Soil samples collected at depths of approximately 5, 15 and 25 feet bgs were submitted for laboratory analysis. Laboratory analytical results indicated constituent concentrations of benzene, BTEX and TPH were not detected above the laboratory MDL for the three (3) soil samples.

Soil Boring SB-6, was advanced up gradient at surface grade adjacent to the flow path area. Soil samples were collected at five (5) foot drilling intervals and field screened using a PID. The soil boring was advanced to a subsurface depth of approximately 80 feet bgs. Soil samples collected at depths of approximately 5, 15, 25, 40, 50, 60, 70 and 80 feet bgs were submitted for laboratory analysis. The analytical results indicated benzene concentrations were reported below the laboratory MDL for all submitted soil boring SB-6 soil samples, with the exception of the soil samples collected at 5 and 25 feet bgs which exhibited benzene concentrations of 0.593 mg/Kg and 0.212 mg/Kg, respectively. Laboratory analytical results indicated constituent concentrations of BTEX were reported below the laboratory MDL for the 50, 60, 70 and 80 foot bgs soil samples. Laboratory analytical results indicated constituent concentrations of TPH were reported to exceed the NMOCD regulatory standard for the 5, 15, 25, 40, 50, and 60 foot bgs soil samples at 8,800 mg/Kg, 8,170 mg/Kg, 9,380 mg/Kg, 899 mg/Kg, 376 mg/Kg and 441 mg/Kg, respectively and were reported below the NMOCD regulatory standards for the 70 and 80 foot soil samples.

Soil Boring SB-7, was advanced at surface grade inside the Jal Tank Farm adjacent to the release point of the June 27, 2005 release. Soil samples were collected at five (5) foot drilling intervals and field screened using a PID. The soil boring was advanced to a subsurface depth of approximately 60 feet bgs. Soil samples collected at depths of approximately 5, 15, 25, 40, 50 and 60 feet bgs were submitted for analysis. The analytical results indicated benzene concentrations were reported below the laboratory MDL for all submitted soil boring SB-7 soil samples, with the exception of the soil sample collected at 15 feet bgs which exhibited a benzene concentration of 0.0422 mg/Kg. Laboratory analytical results indicated constituent concentrations of BTEX were reported below the NMOCD regulatory standard for the 5, 15 and 25 foot soil samples. Laboratory analytical results indicated constituent concentrations of the NMOCD regulatory standard for the 40, 50 and 60 foot bgs soil samples. Laboratory analytical results indicated constituent concentrations of TPH were reported to exceed the NMOCD regulatory standards for the 5, 15, 25, 40, 50, and 60 foot bgs soil samples at 3,480 mg/Kg, 5,520mg/Kg, 3,980 mg/Kg, 251 mg/Kg, 123 mg/Kg and 106 mg/Kg, respectively.

Soil Boring SB-8, was advanced down gradient of the June 27, 2005 release, at surface grade inside the Jal Tank Farm and cross gradient to the release point of the 2nd and 3rd crude oil releases. Soil samples were collected at five (5) feet drilling intervals and field screened using a PID. The soil boring was advanced to a subsurface depth of approximately 40 feet bgs. Soil samples collected at depths of approximately 5, 15 25 and 40 feet bgs were submitted for analysis. Laboratory analytical results indicated constituent concentrations of benzene, BTEX and TPH were not detected above the laboratory MDL for the four (4) soil samples.

Following the advancement of the soil borings, Basin prepared a *Preliminary Site Investigation Report and Remediation / Closure Plan*, dated January 25, 2008. The Plan proposed additional excavation of the sidewalls and floors of the two (2) excavations and the installation of an impermeable twenty (20) mil polyurethane liner on the floor of the excavations. The Plan proposed blending excavated impacted soil with over-excavated non-impacted soil stockpiled on-site and backfilling the excavations with blended soil not to exceed 1,000 mg/Kg TPH. On January 30, 2008, representatives of Plains and Basin met with Mr. Chris Williams of the NMOCD – Hobbs District Office. Following the presentation of the Plan, Mr. Williams granted verbal approval of the proposed activities designed to advance the release sites toward an NMOCD approved risk-based closure.

On February 7, 2008, Basin mobilized heavy equipment and began additional excavation activities at the release sites. The final dimensions of the Jal Tank Farm release (SRS# 2005-00151) located within the Jal Tank Farm, were approximately 30 feet in width, 30 feet in length and approximately 8 feet in depth. The final dimensions of the Tank 374 10" Sweet Truck Haul Line (SRS# 2005-00172) and the subsequent Jal Tank Farm (SRS# 2005-00183) was approximately 32 feet in width, 125 feet in length and approximately 8 to 15 feet in depth. Excavated and over-excavated soil was stockpiled for future on-site blending activities. On April 3, 2008, a twenty (20) mil polyurethane liner was installed on the floor of the two (2) excavations. Photographs of the site and the polyurethane liner installation are provided as Appendix C.

On March 25, 2008, a soil sample of the blended soil was collected and submitted to the laboratory for BTEX and TPH analysis. The analytical results indicated a benzene concentration of less than the laboratory MDL of 0.001 mg/Kg, a BTEX concentration of less than the laboratory MDL of 0.002 mg/Kg and a TPH concentration of 122 mg/Kg.

The excavations were backfilled and contoured to fit the surrounding topography using the blended soil.

SITE CLOSURE REQUEST

Ð

0

0

0

0

A

❶

0

0

Limited excavation, as approved by the NMOCD – Hobbs District Office was completed. The Jal Tank Farm release (SRS# 2005-00151) is within the confines the Plains Jal Tank Farm Facility, the Tank 374 10" Sweet Truck Haul Line (SRS# 2005-00172) and the subsequent Jal Tank Farm (SRS# 2005-00183) are within and adjacent to the Jal Tank Farm Facility.

Basin recommends Plains provide the NMOCD – Hobbs District Office, a copy of this Remediation Summary and Site Closure Request and request the NMOCD grant site closure

status to the Jal Tank Farm (SRS# 2005-00151), Tank 374 10" Sweet Haul Line (SRS# 2005-00172) and the Jal Tank Farm (SRS# 2005-00183) release sites.

LIMITATIONS

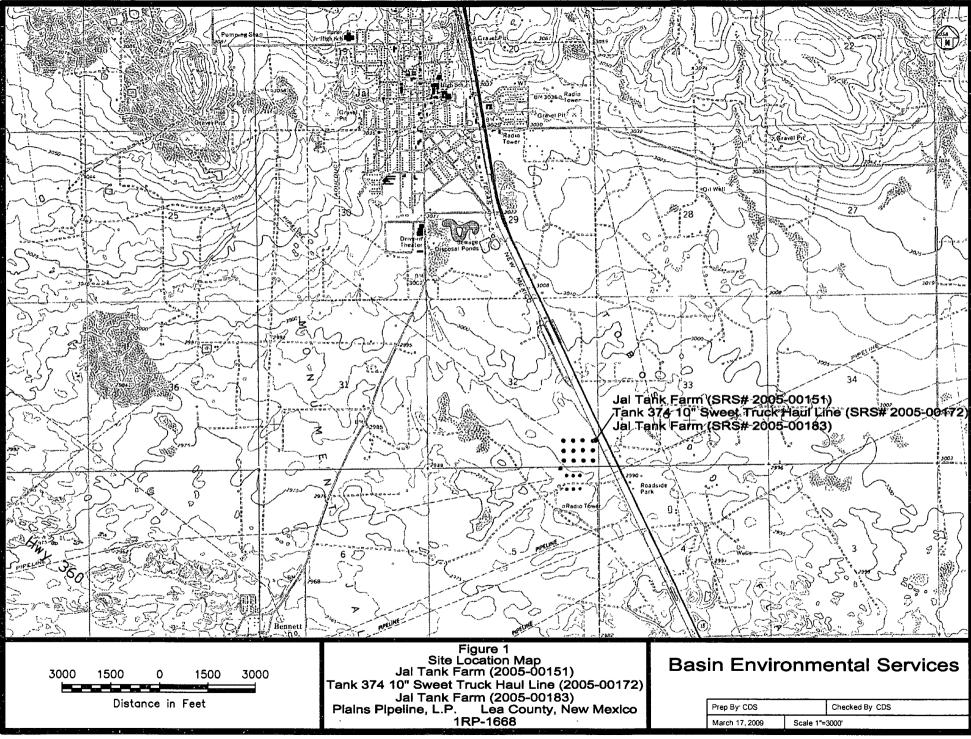
Basin Environmental Consulting, LLC, has prepared this Remediation Summary and Site Closure Request to the best of its ability. No other warranty, expressed or implied, is made or intended.

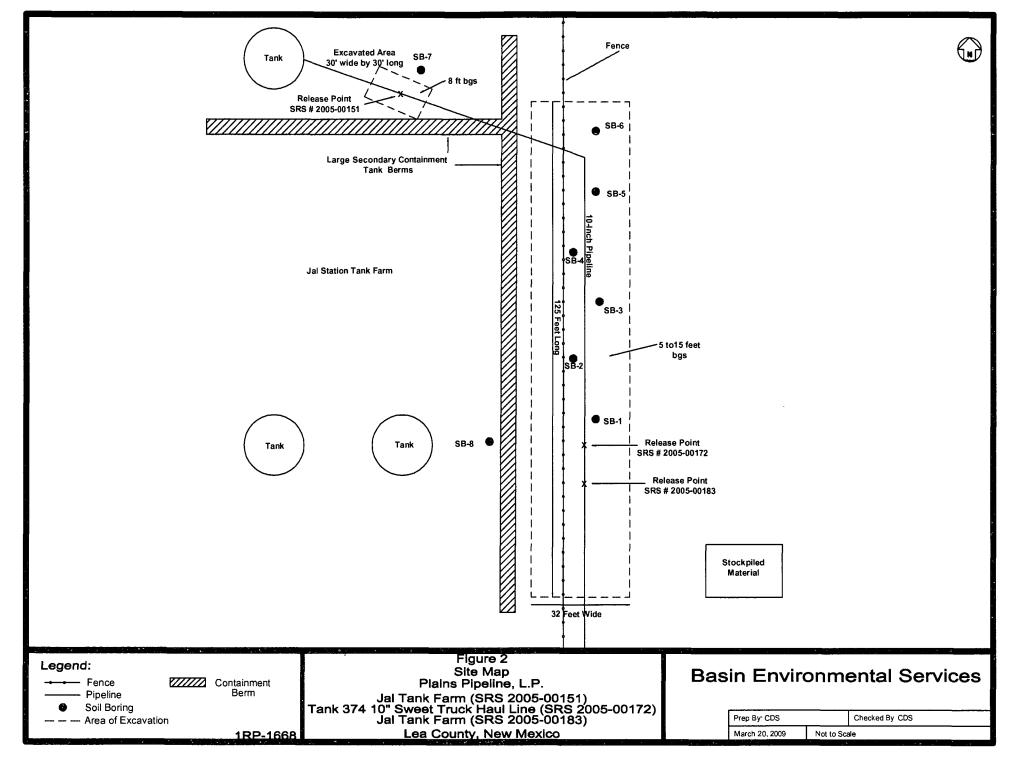
Basin Environmental Consulting, LLC, has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Basin Environmental Consulting, LLC, has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and the information provided in documents or statements is true and accurate. Basin Environmental Consulting, LLC, has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin Environmental Consulting, LLC, also notes the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains Pipeline, L.P. The information contained in this report including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Consulting, LLC, and Plains Pipeline, L.P.

DISTRIBUTION

Copy 1:	Mr. Larry Johnson New Mexico Oil Conservation Division 1625 N. French Drive Hobbs, New Mexico 88240 larry.johnson@state.nm.us
Copy 2:	Jeff Dann Plains Pipeline, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002 jpdann@paalp.com
Сору 3:	Daniel M. Bryant Plains Pipeline, L.P. 3705 E. Hwy 158 Midland, Texas 79702 dmbryant@paalp.com
Copy 4:	Basin Environmental Consulting, LLC P. O. Box 381 Lovington, New Mexico 88260 cdstanley@basin-consulting.com


Сору_____


Figures

ó

Ŏ

•

Tables

TABLE 1

CONCENTRATIONS OF BTEX AND TPH IN SOIL

PLAINS PIPELINE, L.P. JAL TANK FARM (SRS# 2005-00151) TANK 374 10" SWEET TRUCK HAUL LINE (SRS# 2005-00172) JAL TANK FARM (SRS# 2005-00183). LEA COUNTY, NEW MEXICO NMOCD REFERENCE # 1RP-1668

				MET	HOD: EPA S	W 846-8021B	, 5030		ME	THOD: 801	5M	E 300.1
SAMPLE LOCATION	SAMPLE DEPTH	SAMPLE DATE	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	M,P- XYLENES (mg/Kg)	O-XYLENE (mg/Kg)	BTEX (mg/Kg)	GRO C ₆ -C ₁₂ (mg/Kg)	DRO C ₁₂ -C ₃₅ (mg/Kg)	TOTAL TPH C ₆ -C ₃₅ (mg/Kg)	Chlorides (mg/kg)
SB-1 5'	5' bgs	09/06/05	<0.025	0.0963	0.0876	1.47	0.806	2.4599	1450	6110	7,560	-
SB-1 15'	15' bgs	09/06/05	<0.025	<0.025	<0.025	0.179	0.0484	0.2274	710	4050	4,760	-
SB-1 25'	25' bgs	09/06/05	<0.025	<0.025	<0.025	0.0283	< 0.025	0.0283	144	1180	1,320	<20
SB-1 40'	40' bgs	09/06/05	<0.025	<0.025	<0.025	<0.025	< 0.025	<0.025	14.4	441	455	-
SB-1 50'	50' bgs	09/06/05	< 0.025	<0.025	<0.025	<0.025	< 0.025	<0.025	<10.0	47	47	-
SB-1 60'	60' bgs	09/06/05	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	11.4	83.8	95.2	-
SB-1 70'	70' bgs	09/06/05	< 0.025	<0.025	<0.025	<0.025	<0.025	<0.025	16.1	263	279	-
SB-1 80'	80' bgs	09/06/05	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	227	227	-
SB-1 90'	90' bgs	09/06/05	< 0.025	<0.025	<0.025	<0.025	< 0.025	<0.025	<10.0	118	118	-
SB-1 100'	100' bgs	09/06/05	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	24.5	551	576	-
A CARLES AND A CARLES			1	and the second					TO IN LAND MAN	S. S. S. S. S.		1 Part of the
SB-2 5'	5' bgs	09/06/05	<0.025	<0.025	<0.025	< 0.025	<0.025	<0.025	<10.0	143	143	-
SB-2 15'	15' bgs	09/06/05	< 0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	-
SB-2 25'	25' bgs	09/06/05	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	-
SB-2 40'	40' bgs	09/06/05	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	-
	Marsh 1.		- 1	and the second of		State in	and the second	41347787	At the state of the	ar, in shire	1 A.M.	1. J. B. S. S.
SB-3 5'	5' bgs	09/07/05	<0.025	<0.025	0.0298	0.0591	0.029	0.1179	546	2520	3,070	-
SB-3 15'	15' bgs	09/07/05	<0.025	<0.025	0.0317	0.204	0.0469	0.2826	798	4150	4,950	-
SB-3 25'	25' bgs	09/07/05	0.0283	0.176	0.0508	0.254	0.0961	0.6052	737	1960	2,700	-
SB-3 40'	40' bgs	09/07/05	<0.025	0.0253	<0.025	0.0307	< 0.025	0.056	32.4	295	327	-
SB-3 50'	50' bgs	09/07/05	<0.025	<0.025	<0.025	0.026	<0.025	0.026	<10.0	34.7	34.7	-
SB-3 60'	60' bgs	09/07/05	< 0.025	<0.025	<0.025	< 0.025	<0.025	< 0.025	<10.0	25.6	25.6	-
			CANA SE		S. S. S. S. A.	in Martin Chiefe	State and a literate				Mar Shi	「大学」である
SB-4 5'	5' bgs	09/07/05	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	-
SB-4_15'	15' bgs	09/07/05	<0.025	<0.025	< 0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	-
SB-4 25'	25' bgs	09/07/05	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	-

TABLE 1

CONCENTRATIONS OF BTEX AND TPH IN SOIL

PLAINS PIPELINE, L.P. JAL TANK FARM (SRS# 2005-00151) TANK 374 10" SWEET TRUCK HAUL LINE (SRS# 2005-00172) JAL TANK FARM (SRS# 2005-00183) LEA COUNTY, NEW MEXICO NMOCD REFERENCE # 1RP-1668

				MET	HOD: EPA S	W 846-8021B	, 5030		ME	THOD: 801	5M	E 300.1
SAMPLE LOCATION	SAMPLE DEPTH	SAMPLE DATE	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	M,P- XYLENES (mg/Kg)	O-XYLENE (mg/Kg)	BTEX (mg/Kg)	GRO C ₆ -C ₁₂ (mg/Kg)	DRO C ₁₂ -C ₃₅ (mg/Kg)	TOTAL TPH C ₆ -C ₃₅ (mg/Kg)	Chlorides (mg/kg)
			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	And the second			and the second					
SB-5 5'	5' bgs	09/07/05	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	<10.0	<10.0	<10.0	-
SB-5 15'	15' bgs	09/07/05	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	<10.0	<10.0	<10.0	-
SB-5 25'	25' bgs	09/07/05	<0.025	<0.025	<0.025	<0.025	< 0.025	< 0.025	<10.0	<10.0	<10.0	-
and the second sec		·						2, 5 ⁴ - 1, 27 2	· · · · · · · · · · · · · · · · · · ·	1. 12. 12.		and the second s
SB-6 5'	5' bgs	09/07/05	0.593	1.26	1.16	4.82	2.63	10.463	2200	6600	8,800	-
SB-6 15'	15' bgs	09/07/05	<0.025	0.683	1.16	6.04	2.35	10.233	1900	6270	8,170	-
SB-6 25'	25' bgs	09/07/05	0.212	1.72	1.85	14.5	5.50	23.782	2510	6870	9,380	-
SB-6 40'	40' bgs	09/07/05	<0.025	0.0264	0.0281	0.236	0.0642	0.3547	97.7	801	899	-
SB-6 50'	50' bgs	09/07/05	<0.025	<0.025	<0.025	0.0333	<0.025	0.0333	34	342	376	-
SB-6 60'	60' bgs	09/07/05	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	29.6	411	441	-
SB-6 70'	70' bgs	09/07/05	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	<10.0	25.4	25.4	-
SB-6 80'	80' bgs	09/07/05	<0.025	<0.025	<0.025	< 0.025	<0.025	< 0.025	<10.0	26.1	26.1	-
制的总统输出的管理		1. 8 1. 1. 1.			C. R. C.	Martin S	and the state	and the second s		S 1. 4 . 4 . 5	and first free of the	A start and a start
SB-7 5'	5' bgs	09/08/05	<0.025	0.0766	0.0651	0.561	0.202	0.9047	925	2550	3,480	-
SB-7 15'	15' bgs	09/08/05	0.0422	0.246	0.206	2.19	0.879	3.5632	1390	4130	5,520	-
SB-7 25'	25' bgs	09/08/05	<0.025	0.127	0.107	0.793	0.306	1.333	781	3200	3,980	-
SB-7 40'	40' bgs	09/08/05	< 0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	12.6	238	251	-
SB-7 50'	50' bgs	09/08/05	<0.025	<0.025	< 0.025	<0.025	<0.025	< 0.025	<10.0	123	123	-
SB-7 60'	60' bgs	09/08/05	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	<10.0	106	106	-
	Mr. 1. 36. 564				Sala alla de		3. Nige - (*)	Alter Strange			建筑的标志	
SB-8 5'	5' bgs	09/08/05	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	<10.0	<10.0	<10.0	-
SB-8 15'	15' bgs	09/08/05	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	-
SB-8 25'	25' bgs	09/08/05	< 0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	-
SB-8 40'	40' bgs	09/08/05	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<10.0	<10.0	<10.0	-
					214月1日1月2	States States	A STAND					

TABLE 1

CONCENTRATIONS OF BTEX AND TPH IN SOIL

PLAINS PIPELINE, L.P. JAL TANK FARM (SRS# 2005-00151) TANK 374 10" SWEET TRUCK HAUL LINE (SRS# 2005-00172) JAL TANK FARM (SRS# 2005-00183) LEA COUNTY, NEW MEXICO NMOCD REFERENCE # 1RP-1668

				METHOD: EPA SW 846-8021B, 5030						METHOD: 8015M			
SAMPLE LOCATION	SAMPLE DEPTH	SAMPLE DATE	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	M,P- XYLENES (mg/Kg)	O-XYLENÈ (mg/Kg)	BTEX (mg/Kg)	GRO C ₆ -C ₁₂ (mg/Kg)	DRO C ₁₂ -C ₃₅ (mg/Kg)	TOTAL TPH C ₆ -C ₃₅ (mg/Kg)	Chlorides (mg/kg)	
Stockpile	N/A	03/25/08	<0.001	<0.002	<0.001	< 0.002	<0.001	<0.002	<15	122	122	-	
			line in the				28.	i they are			1. 12. 2. 91		

.

Appendix A Laboratory Reports

۲ 0

·

Analytical Report

Prepared for:

Daniel Bryant Plains All American EH & S 1301 S. County Road 1150 Midland, TX 79706-4476

Project: Tank 374 10" Sweet Truck Haul Line Project Number: EMS: 2005-00172 Location: Lea County, NM

Lab Order Number: 5I12001

Report Date: 09/15/05

Project Tank 374 10" Sweet Truck Haul Line Fax (432) 687-4914 Plains All American EH & S 1301 S. County Road 1150 Project Number. EMS 2005-00172 Reported: Midland TX, 79706-4476 09/15/05 12 19 Project Manager Daniel Bryant ANALYTICAL REPORT FOR SAMPLES Sample ID Laboratory ID Matrix Date Received Date Sampled SB-1 5' 5112001-01 Soil 09/06/05 10 34 09/09/05 16 55 SB-1 15' 5112001-02 Soil 09/06/05 10 40 09/09/05 16.55 SB-1 25' 5112001-03 Soil 09/06/05 10 47 09/09/05 16 55 SB-1 40' 5112001-04 Soil 09/06/05 10 57 09/09/05 16 55 SB-1 50' 5112001-05 Soil 09/06/05 11 02 09/09/05 16 55 SB-1 60' 5112001-06 Soil 09/06/05 11 06 09/09/05 16 55 SB-1 70' 5112001-07 Soil 09/06/05 11 25 09/09/05 16 55 SB-1 80' 5112001-08 Soil 09/06/05 11 58 09/09/05 16 55 SB-1 90' 5112001-09 Soil 09/06/05 12 28 09/09/05 16 55 SB-1 100' 5112001-10 Soil 09/06/05 12 50 09/09/05 16 55 SB-2 5' 5112001-11 Soil 09/06/05 15 00 09/09/05 16 55 SB-2 15' 5112001-12 Soil 09/06/05 15 09 09/09/05 16 55 SB-2 25' 5112001-13 Soil 09/06/05 15 13 09/09/05 16 55 SB-2 40' 5112001-14 Soil 09/06/05 15 22 09/09/05 16 55 SB-3 5' 5112001-15 Soil 09/07/05 09 18 09/09/05 16 55 SB-3 15' 5112001-16 Soil 09/07/05 09 25 09/09/05 16 55 SB-3 25' 5112001-17 Soil 09/07/05 09 31 09/09/05 16 55 SB-3 40' 5112001-18 09/07/05 09 41 Soil 09/09/05 16 55 SB-3 50 5112001-19 Soil 09/07/05 10 01 09/09/05 16 55 SB-3 60 5112001-20 Soil 09/07/05 10 06 09/09/05 16 55 SB-4 5' 5112001-21 Soil 09/07/05 11:12 09/09/05 16.55 SB-4 15' 5112001-22 Soil 09/07/05 11 19 09/09/05 16 55 SB-4 25' 5112001-23 Soil 09/07/05 11 27 09/09/05 16 55 SB-5 5' 5112001-24 Soil 09/07/05 13 36 09/09/05 16:55 SB-5 15 5112001-25 Soil 09/07/05 13 45 09/09/05 16 55 SB-5 25' 5112001-26 Soil 09/07/05 13 53 09/09/05 16.55 SB-6 5' 5112001-27 Soil 09/07/05 15 28 09/09/05 16 55 SB-6 15' 5112001-28 09/07/05 15 39 Soil 09/09/05 16 55 SB-6 25' 5112001-29 Soil 09/07/05 15 46 09/09/05 16 55 SB-6 40' 5112001-30 Soil 09/07/05 15.55 09/09/05 16 55 SB-6 50' 5112001-31 Soil 09/07/05 16:01 09/09/05 16:55 SB-6 60' 5112001-32 Soil 09/07/05 16 09 09/09/05 16 55 SB-6 70' 5112001-33 Soil 09/07/05 16 14 09/09/05 16 55 SB-6 80' 5112001-34 Soil 09/07/05 16 26 09/09/05 16 55

1

A

1

1

1

6

Î

0

¶ A

Page 1 of 29

	Plains All American EH & S	Project	Tank 374 10" Sweet Truck Haul Line	Fax (432) 687-4914
· .	1301 S County Road 1150	Project Number	EMS 2005-00172	Reported:
	Midland TX, 79706-4476	Project Manager	Daniel Bryant	09/15/05 12 19

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

0

❶ 1

0

9

ProjectTank 374 10" Sweet Truck Haul LineProject NumberEMS: 2005-00172Project ManagerDaniel Bryant

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 5' (5112001-01) Soil	·····								
Benzene	J [0.00822]	0 0250	mg/kg dry	25	E151212	09/12/05	09/13/05	EPA 8021B	
Toluene	0.0963	0 0250	۳	"	м		н	w	
Ethylbenzene	0.0876	0 0250	"		н		"	"	
Xylene (p/m)	1.47	0 0250		**	n	м	Ν	"	
Xylene (o)	0.806	0 0250	"	н	۳		н	"	
Surrogate: a.a,a-Trifluorotoluene		96.9 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.3 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	1450	50 0	mg/kg dry	5	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	6110	50 0	"		"	*	"	n	
Total Hydrocarbon C6-C35	7560	50 0	"		и	H	"		
Surrogate. 1-Chlorooctane		19.9 %	70-1	30	"	"	"	,,	S-06
Surrogate: 1-Chlorooctadecane		23.2 %	70-1	30	"	"	n	"	S-00
SB-1 15' (5112001-02) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51212	09/12/05	09/13/05	EPA 8021B	
Foluene	J [0.0118]	0 0250			n	н	"	"	
Ethylbenzene	J [0.0187]	0 0250	"	н		и	"	"	
Xylene (p/m)	0.179	0 0250	"	"	"		*	"	
Xylene (0)	0.0484	0 0250	н	"		"	"	n	
Surrogate [•] a.a,a-Trifluorotoluene		88.7 %	80-1	20	"	"	"	"	
Surrogate 4-Bromofluorobenzene		903%	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	710	10 0	mg/kg dry	1	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	4050	10.0	"		"	н	"	"	
Total Hydrocarbon C6-C35	4760	10 0	"	"		"	"	"	
Surrogate 1-Chlorooctane		107 %	70-1	30	"	"	"	"	
Surrogate 1-Chlorooctadecane		121 %	70-1	30	"	"	"	"	
SB-1 25' (5112001-03) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51212	09/12/05	09/12/05	EPA 8021B	
Toluene	ND	0 0250	*		н	•	"	u	
Ethylbenzene	ND	0 0250	n			"	"		
Xylene (p/m)	0.0283	0 0250		**	"		"	"	
Xylene (o)	ND	0 0250	"	н	n 	"	"	n	
Surrogate: a,a,a-Trifluorotoluene		947%	80-1	20	"	"	"	"	
Surrogate [,] 4-Bromofluorobenzene		90.9 %	80-1	20	"	**	"	"	
Gasoline Range Organics C6-C12	144	10 0	mg/kg dry	1	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	1180	10 0	н	н	"	м	"		
Total Hydrocarbon C6-C35	1320	10 0		۳	"		n	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety,

with written approval of Environmental Lab of Texas

Plains All American EH & S 1301 S County Road 1150		Project N		nk 374 10" S IS 2005-00	Sweet Truck)172	: Haul Line		Fax (432)687-4914 Reported: 09/15/05 12 19		
Midland TX, 79706-4476		Project M	anager Da	niel Bryant						
		O	rganics b	y GC						
		Environ	mental L	ab of Te	exas					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
SB-1 25' (5112001-03) Soil										
Surrogate: 1-Chlorooctane		99.8 %	70-1	130	E151215	09/12/05	09/13/05	EPA 8015M		
Surrogate 1-Chlorooctadecane		123 %	70-1	130	"	"	"	"		
SB-1 40' (5112001-04) Soil										
Benzene	ND	0.0250	mg/kg dry	25	EI51212	09/12/05	09/12/05	EPA 8021B		
Toluene	ND	0 0250	"		*	н				
Ethylbenzene	ND	0 0250	n		"	"	"			
Xylene (p/m)	ND	0.0250	н			"	"			
Xylene (o)	ND	0 0250	"	*	"	н	"	"		
Surrogate: a.a.a-Trifluorotoluene		890%	80-1	20	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		82.7 %	80-1	20	"	"	"	"		
Gasoline Range Organics C6-C12	14.4	10 0	mg/kg dry	1	EI51215	09/12/05	09/13/05	EPA 8015M		
Diesel Range Organics >C12-C35	441	10.0	Π			"	н			
Total Hydrocarbon C6-C35	455	10 0	"	"	n	н	u	"		
Surrogate: 1-Chlorooctane		90.8 %	70-1	30	"	"	"	"		
Surrogate. 1-Chlorooctadecane		121 %	70-1	30	"	"	"	"		
SB-1 50' (5112001-05) Soil										
Benzene	ND	0 0250	mg/kg dry	25	EI51212	09/12/05	09/12/05	EPA 8021B		
Toluene	ND	0 0250	н			"	"	"		
Ethylbenzene	ND	0 0250	н			"	"	"		
Xylene (p/m)	ND	0 0250	"	"		"	"			
Xylene (o)	ND	0 0250	17	"	"	н	н	**		
Surrogate a,a,a-Trifluorotoluene		94.2 %	80-1	20	"	"	"	"		
Surrogate · 4-Bromofluorobenzene		90.4 %	80-1	20	"	"	11	"		
Gasoline Range Organics C6-C12	J [8.49]	10 0	mg/kg dry	1	E151215	09/12/05	09/13/05	EPA 8015M		
Diesel Range Organics >C12-C35	47.0	10.0		"	**	"	"	н		
Fotal Hydrocarbon C6-C35	47.0	10 0	"	н	н	"		11		
Surrogate: 1-Chlorooctane		110%	70-1	30	"	17	"	"		
Surrogate [.] I-Chlorooctadecane		130 %	70-1	30	"	n	"	"		

O

0

0

0

Project:Tank 374 10" Sweet Truck Haul LineProject NumberEMS 2005-00172Project ManagerDaniel Bryant

Reported: 09/15/05 12 19

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 60' (5112001-06) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51212	09/12/05	09/12/05	EPA 8021B	
Toluene	ND	0 0250	u	н		"	"	"	
Ethylbenzene	ND	0 0250	"	n	"	11		U	
Xylene (p/m)	ND	0 0250	"		"	0	"	u	
Xylene (o)	ND	0 0250	н	11	"		н	w	
Surrogate: a,a,a-Trifluorotoluene		87.3 %	80-1	120	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		81.7%	80-1	120	"	"	"	п	
Gasoline Range Organics C6-C12	11.4	10 0	mg/kg dry	i	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	83.8	10 0	"	"		n	17	*1	
Total Hydrocarbon C6-C35	95.2	10 0			n	11	π	н	
Surrogate [·] 1-Chlorooctane		84.6 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		112 %	70-1	130	"	"	"	",	
SB-1 70' (5112001-07) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51212	09/12/05	09/12/05	EPA 8021B	
Toluene	ND	0 0250	"	"	"	N	"	**	
Ethylbenzene	ND	0 0250	"	n	0	11	"	н	
Xylene (p/m)	ND	0 0250	и	n	n	W	н	н	
Xylene (o)	ND	0 0250	"	"		*	"		
Surrogate a,a,a-Trifluorotoluene		92.4 %	80-1	120	"	"	n	11	
Surrogate. 4-Bromofluorobenzene		86.0 %	80-1	120	"	"	n	"	
Gasoline Range Organics C6-C12	16.1	10 0	mg/kg dry	1	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	263	10 0				"	"		
Total Hydrocarbon C6-C35	279	10 0	n	"		*	"	"	
Surrogate 1-Chlorooctane		94.0 %	70-1	130	"	"	"	n	
Surrogate. 1-Chlorooctadecane		121 %	70-1	30	"	"	"	"	
SB-1 80' (5112001-08) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51212	09/12/05	09/12/05	EPA 8021B	
Toluene	ND	0 0250				"	n	"	
Ethylbenzene	ND	0 0250	"	0	**	"	"	"	
Xylene (p/m)	ND	0 0250	**	*		"	н	u	
Xylene (o)	ND	0 0250	н	#	"	"	н		
Surrogate: a.a.a-Trifluorotoluene		95.7 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.0%	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	J [9.72]	10 0	mg/kg dry	ł	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	227	10 0	"	"	"			"	
Total Hydrocarbon C6-C35	227	10 0		"	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory This analytical report must be reproduced in its entirety,

with written approval of Environmental Lab of Texas

Plains All American EH & S 1301 S County Road 1150 Midland TX, 79706-4476		l Project N Project M	Fax (432)687-4914 Reported: 09/15/05 12 19						
		O	rganics b	y GC					
		Environ	-	•	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 80' (5112001-08) Soil						•	-		
Surrogate: 1-Chlorooctane		92.0 %	70-1	130	E151215	09/12/05	09/13/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		123 %	70-1		"	"	"	" "	
SB-1-90' (5112001-09) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51212	09/12/05	09/12/05	EPA 8021B	
Toluene	ND	0 0250	"		н		n	н	
Ethylbenzene	ND	0 0250			11	"	**	n	
Xylene (p/m)	ND	0 0250	н	"	"	"	"		
Xylene (0)	ND	0 0250	n		**	n	"	17	
Surrogate. a,a,a-Trifluorotoluene	l.	81.0%	80-1	20	"	"	"	"	
Surrogate 4-Bromofluorobenzene		85.4 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	J [9.46]	10 0	mg/kg dry	1	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	118	10 0	۳		"	v	"	**	
Total Hydrocarbon C6-C35	118	10 0	"	"	"		н		
Surrogate · 1-Chlorooctane		88.2 %	70-1	30	"	"	"	"	
Surrogate 1-Chlorooctadecane		120 %	70-1	30	"	"	"	IJ	
SB-1 100' (5112001-10) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51212	09/12/05	09/12/05	EPA 8021B	
Toluene	ND	0 0250	н			"	"	н	
Ethylbenzene	ND	0 0250	"		"	н		н	
Xylene (p/m)	ND	0 0250		*	"	"	"	**	
Xylene (o)	ND	0 0250	"			"	"	17	
Surrogate. a,a,a-Trifluorotoluene		86.2 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.5 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	24.5	10 0	mg/kg dry	1	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	551	10 0	17	"	"	11	"	н	
Total Hydrocarbon C6-C35	576	10 0	"	•	"	**	н		
Surrogate. I-Chlorooctane		96.2 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		129 %	70-1	30	"	"	"	"	

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

ProjectTank 374 10" Sweet Truck Haul LineProject NumberEMS 2005-00172Project ManagerDaniel Bryant

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-2 5' (5112001-11) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51212	09/12/05	09/13/05	EPA 8021B	
Toluene	ND	0 0250	"	"	"	"	"	"	
Ethylbenzene	ND	0 0250	"	"	"	"	н		
Xylene (p/m)	ND	0 0250	"	"	"	u	"	"	
Xylene (0)	ND	0 0250	n	0	"	"	н	11	
Surrogate. a,a,a-Trifluorotoluene		88.0 %	80-1	20	"	u	"	"	
Surrogate: 4-Bromofluorobenzene		82 8 %	80-1	20	"	"	0	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	ĩ	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	143	10 0	**		"	n	"	"	
Total Hydrocarbon C6-C35	143	10 0	^, "		н	н	n	н	
Surrogate: 1-Chlorooctane		900%	70-1	30	"	"	"	"	
Surrogate [,] 1-Chlorooctadecane		111 %	70-1	30	"	"	"	"	
SB-2 15' (5112001-12) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51212	09/12/05	09/12/05	EPA 8021B	
Foluene	ND	0 0250	"			"	"	"	
Ethylbenzene	ND	0 0250			"		"	"	
Xylene (p/m)	ND	0 0250	"	**	*	"	"	"	
Xylene (o)	ND	0 0250	"		"		"		
Surrogate: a,a,a-Trifluorotoluene		111%	80-1	20	"	"	"	"	
Surrogate [·] 4-Bromofluorobenzene		104 %	80-1	20	"	"	"	17	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0				м	"	••	
Total Hydrocarbon C6-C35	ND	10 0	*	**	n	"	n	Ð	
Surrogate [•] 1-Chlorooctane		80.8 %	70-1	30	"	"	"	"	
Surrogate. 1-Chlorooctadecane		106 %	70-1	30	"	"	"	"	
SB-2 25' (5112001-13) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51403	09/13/05	09/13/05	EPA 8021B	
Toluene	ND	0 0250	Ħ	u	."	н	"	••	
Ethylbenzene	ND	0.0250	*			и	u	*	
Xylene (p/m)	ND	0 0250	**	"		и	"		
Xylene (o)	ND	0 0250		17	"	"	"		
Surrogate: a.a.a-Trifluorotoluene		93.8 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.5 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	0	"	"	v	"	**	
Fotal Hydrocarbon C6-C35	ND	10 0		"		"	"	n	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples

received in the laboratory This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

1301 S County Road 1150 Midland TX, 79706-4476		Project N Project M	Fax (432)687-4914 Reported: 09/15/05 12.19						
		0	rganics b	y GC					
		Environ	-	-	xas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
5B-2 25' (5I12001-13) Soil	400 <u></u>								
Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane		85 4 % 108 %	70-1 70-1		EI51215 "	09/12/05 "	09/13/05 "	EPA 8015M "	
6B-2 40' (5I12001-14) Soil									
Senzene Foluene	ND ND	0 0250 0 0250	mg/kg dry "	25	EI51403	09/13/05 "	09/13/05	EPA 8021B	
Ethylbenzene	ND	0 0250	*			"		"	
Kylene (p/m)	ND	0 0250	н	"		"			
Kylene (o)	ND	0 0250	"	н		"	n	"	
Surrogate: a.a.a-Trifluorotoluene		98.1 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		965%	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	"	•	*	"	"		
Fotal Hydrocarbon C6-C35	ND	10 0	"	"		"	"	и	
Surrogate: 1-Chlorooctane		88.4 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		97.4 %	70-1	30	"	"	"	"	
SB-3 5' (5112001-15) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51403	09/13/05	09/13/05	EPA 8021B	
Foluene	J [0.0131]	0 0250	"	"	"	"	"	n	
Ethylbenzene	0.0298	0 0250	"	"	м	*	v	"	
Xylene (p/m)	0.0591	0 0250	"	0	н	"	19	11	
Xylene (o)	0.0290	0 0250	н	"	"	**	"	н	
Surrogate [•] a,a,a-Trifluorotoluene		91.3 %	80		<i>n</i>	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	80-1	20	"	"	"	n	
Gasoline Range Organics C6-C12	546	10 0	mg/kg dry	1	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	2520	10 0	H			"	н	"	
Fotal Hydrocarbon C6-C35	3070	10 0		"	"	n		м	
Surrogate I-Chlorooctane Surrogate I-Chlorooctadecane		101 % 116 %	70 70		"	"	"	11 11	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

ProjectTank 374 10" Sweet Truck Haul LineProject NumberEMS 2005-00172Project ManagerDaniel Bryant

Reported: 09/15/05 12 19

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-3 15' (5112001-16) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51403	09/13/05	09/13/05	EPA 8021B	
Toluene	J [0.0218]	0 0250	н	"		"	"		
Ethylbenzene	0.0317	0 0250	н	**	"	**	н	*	
Xylene (p/m)	0.204	0 0250	"	"	"		11	"	
Xylene (0)	0.0469	0 0250					"	"	
Surrogate a.a.a-Trifluorotoluene		87.3 %	80-	120	"	"	"	"	
Surrogate. 4-Bromofluorobenzene		84.5 %	80	120	"	"	"	"	
Gasoline Range Organics C6-C12	798	10 0	mg/kg dry	1	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	4150	10 0	"		••	17	"	n	
Total Hydrocarbon C6-C35	4950	10 0	н	"	**	11	n	51	
Surrogate 1-Chlorooctane		114 %	70-	130	"	"	"	"	
Surrogate 1-Chlorooctadecane		120 %	70-,	130	"	"	"	"	
SB-3 25' (5112001-17) Soil							·····		
Benzene	0.0283	0 0250	mg/kg dry	25	EI51403	09/13/05	09/13/05	EPA 8021B	
Fotuene	0.176	0 0250	11	"	"	n		17	
Ethylbenzene	0.0508	0 0250	"	"		"	"	1)	
Xylene (p/m)	0.254	0 0250	"	••	**	"	Ν	"	
Xylene (o)	0.0961	0 0250	"	**	FT	u	н	"	
Surrogate: a,a,a-Trifluorotoluene		117 %	80-1	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	80-1	120	"	"	"	"	
Gasoline Range Organics C6-C12	737	10 0	mg/kg dry	1	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	1960	10 0	"	"		"	"	*	
Total Hydrocarbon C6-C35	2700	10 0	"		18	н	"		
Surrogate: 1-Chlorooctane		116%	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		128 %	70-1	130	"	"	"	"	
SB-3 40' (5112001-18) Soil									
Benzene	ND	0 0250	mg/kg dry	25	E151403	09/13/05	09/13/05	EPA 8021B	
loluene	0.0253	0 0250	**			н	"	n	
Ethylbenzene	ND	0 0250		•	"		"		
(ylene (p/m)	0.0307	0 0250	"	"	"	"	"	н	
(ylene (o)	ND	0 0250	"	"		11		••	
Surrogate a,a,a-Trifluorotoluene		818%	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.0 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	32.4	10 0	mg/kg dry	1	EI51215	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	295	10 0	14	п	"	"	"	**	
Fotal Hydrocarbon C6-C35	327	10 0	м				"		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely,

with written approval of Environmental Lab of Texas.

Plains All American EH & S 1301 S County Road 1150			Project Tan	Fax (432)687-4914 Reported:							
Midland TX, 79706-4476		Project Number EMS 2005-00172 Project Manager Daniel Bryant									
		0	rganics by	y GC							
		Environ	mental La	ab of Te	exas						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note		
SB-3 40' (5112001-18) Soil				Direction							
Surrogate: 1-Chlorooctane		98.4 %	70-1	30	EI51215	09/12/05	09/13/05	EPA 8015M			
Surrogate: 1-Chlorooctadecane		98.4 % 127 %	70-1		E151215 "	<i>09/12/03</i> "	"	EPA OUIJM "			
SB-3 50' (5112001-19) Soil		_									
Benzene	ND	0 0250	mg/kg dry	25	EI51403	09/13/05	09/13/05	EPA 8021B			
Toluene	ND	0 0250		"	•		"				
Ethylbenzene	ND	0 0250	"		"		"	"			
Xylene (p/m)	0.0260	0 0250		**			"	"			
Xylene (o)	ND	0 0250		"	"	"	"				
Surrogate: a.a.a-Trifluorotoluene		92.4 %	80-1	20	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		94.8 %	80-1.	20	"	"	"	"			
Gasoline Range Organics C6-C12	J [6.01]	10 0	mg/kg dry	1	EI51215	09/12/05	09/13/05	EPA 8015M			
Diesel Range Organics >C12-C35	34.7	10 0	"	н	"		"	H			
Total Hydrocarbon C6-C35	34.7	10 0	"	"	"	н	"	**			
Surrogate 1-Chlorooctane		91.0 %	70-1	30	"	"	"	"			
Surrogate: 1-Chlorooctadecane		114 %	70-1.	30	"	"	"	"			
SB-3-60' (5112001-20) Soil											
Benzene	ND	0 0250	mg/kg dry	25	EI51403	09/13/05	09/13/05	EPA 8021B			
Toluene	ND	0 0250	H	**	"	"	"				
Ethylbenzene	ND	0 0250	۳	n	"	"	"	"			
Xylene (p/m)	ND	0 0250			"			**			
Xylene (o)	ND	0 0250	"	"	м		n	м			
Surrogate: a.a,a-Trifluorotoluene		890%	80-1	20	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		954%	80-1	20	"	"	"	"			
Gasoline Range Organics C6-C12	J [9.16]	10 0	mg/kg dry	1	EI51215	09/12/05	09/13/05	EPA 8015M			
Dieseł Range Organics >C12-C35	25.6	10 0		**	"	**	"	"			
Total Hydrocarbon C6-C35	25.6	10 0	м	"	"	и	n	м			
Surrogate: 1-Chlorooctane		92.4 %	70-1	30	"	"	IJ	"			
Surrogate 1-Chlorooctadecane		112 %	70-1	30	"	"	"	"			

Environmental Lab of Texas

Đ

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Plains All American EH & S 1301 S County Road 1150 Midland TX, 79706-4476 ProjectTank 374 10" Sweet Truck Haul LineProject NumberEMS2005-00172Project ManagerDaniel Bryant

Fax (432) 687-4914

Reported: 09/15/05 12 19

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4 5' (5112001-21) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51403	09/13/05	09/14/05	EPA 8021B	
Toluene	ND	0 0250	"	"	n	н	"	**	
Ethylbenzene	ND	0 0250	n		n	H	**	12	
Xylene (p/m)	ND	0.0250	N	17	n	n			
Xylene (o)	ND	0 0250	п	••	ь	"	n	19	
Surrogate: a,a,a-Trifluorotoluene		106 %	·80-1	120	11	"	"	"	
Surrogate 4-Bromofluorobenzene		88.7 %	80-1	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EI51216	09/12/05	09/13/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	"	"	"	"	н	11	
Total Hydrocarbon C6-C35	ND	10 0	10		•	Ν	۳	"	
Surrogate: 1-Chlorooctane		92.6%	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		95.6%	70-1	130	"	"	"	"	
SB-4 15' (5112001-22) Soil									
Benzene	ND	0 0250	mg/kg dry	25	E151403	09/13/05	09/14/05	EPA 8021B	
Toluene	ND	0 0250	n			"		**	
Ethylbenzene	ND	0 0250	n	"	1+	"		"	
Xylene (p/m)	ND	0.0250	"		**	۳	"	**	
Xylene (o)	ND	0 0250	"	•	•	N	"	*	
Surrogate: a,a,a-Trifluorotoluene		951%	80-1	120	"	"	"	"	
Surrogate 4-Bromofluorobenzene		83 2 %	80-1	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EI51216	09/12/05	09/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	J [8.75]	10 0	"	v	n		n	н	
Total Hydrocarbon C6-C35	ND	10 0	"		"	H	"	н	
Surrogate: 1-Chlorooctane		82 0 %	70-1	130	'n	"	"	"	
Surrogate I-Chlorooctadecane		102 %	70-1	130	"	"	"	"	
SB-4 25' (5112001-23) Soil								1-11	
Benzene	ND	0 0250	mg/kg dry	25	EI51403	09/13/05	09/14/05	EPA 8021B	
Toluene	ND	0 0250	n	н	*	۳	н		
Ethylbenzene	ND	0 0250		н	*	Ħ	п	19	
Xylene (p/m)	ND	0 0250	"		*	"	м	**	
Xylene (o)	ND	0 0250		"	19 	"	н	*	
Surrogate [•] a,a,a-Trifluorotoluene		103 %	80-1	120	n	"	"	"	
Surrogate [•] 4-Bromofluorobenzene		105 %	80-1	120	Ħ	"	"	11	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EI51216	09/12/05	09/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	*	"		"	"	"	
Total Hydrocarbon C6-C35	ND	10 0	•		•	"	n	**	

Environmental Lab of Texas

() ()

0

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety,

with written approval of Environmental Lab of Texas

Plains All American EH & S 1301 S County Road 1150 Midland TX, 79706-4476		Project N Project M	Fax (432)687-4914 Reported: 09/15/051219						
		0	rganics by	GC					
			mental La		exas				
		Reporting					<u></u>		
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
SB-4 25' (5112001-23) Soil									
Surrogate 1-Chlorooctane		80 2 %	70-13	0	EI51216	09/12/05	09/14/05	EPA 8015M	
Surrogate. 1-Chlorooctadecane		91.2 %	70-13	0	"	"	"	"	
SB-5 5' (5112001-24) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51403	09/13/05	09/14/05	EPA 8021B	
Toluene	ND	0.0250			"	"		*	
Ethylbenzene	ND	0.0250	"			"	*		
Xylene (p/m)	ND	0 0250		"		н		u.	
Xylene (o)	ND	0 0250	"	"	"	n	"	"	
Surrogate a.a.a-Trifluorotoluene		93.7 %	80-120)	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.0 %	80-12	0	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EI51216	09/12/05	09/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	n	"	*	"	9	н	
Total Hydrocarbon C6-C35	ND	10 0	"	"	н	"	"	*	
Surrogate: 1-Chlorooctane		80 8 %	70-13)	"	"	"	"	
Surrogate: 1-Chlorooctadecane		101 %	70-130)	"	"	"	"	
SB-5 15' (5112001-25) Soil									
Benzene	ND	0 0250	mg/kg dry	25	E151403	09/13/05	09/14/05	EPA 8021B	
Toluene	ND	0 0250	"		"	"		n	
Ethylbenzene	ND	0 0250	"	"	n	a	57	"	
Xylene (p/m)	ND	0 0250	n			"	v		
Xylene (o)	ND	0 0250	"		п	"		*	
Surrogate: a.a,a-Trifluorotoluene		861%	80-12	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.4 %	80-120)	"	0	"	"	
Gasoline Range Organics C6-C12	ND		mg/kg dry	1	EI51216	09/12/05	09/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	n	"	**	۳	"	H	
Total Hydrocarbon C6-C35	ND	10 0	"			"	"	"	
Surrogate: 1-Chlorooctane		82.2 %	70-13	9	"	"	n	n	
Surrogate: 1-Chlorooctadecane		91.4%	70-13	2	"	"	"	"	

Environmental Lab of Texas

.

D

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirely, with written approval of Environmental Lab of Texas

1)

0

0

0

1

Project:Tank 374 10" Sweet Truck Haul LineProject NumberEMS. 2005-00172Project ManagerDaniel Bryant

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-5 25' (5112001-26) Soil									
Benzene	ND	0 0250	mg/kg dry	25	E151403	09/13/05	09/14/05	EPA 8021B	
Toluene	ND	0 0250	"	"	"	"	"	n	
Ethylbenzene	ND	0 0250		н	"	н	"	"	
Xylene (p/m)	ND	0 0250	۳	"	"	n		**	
Xylene (o)	ND	0 0250	n		в	"	"		
Surrogate: a.a.a-Trifluorotoluene		87.6 %	80-	120	n	n	"	"	
Surrogate: 4-Bromofluorobenzene		91.6%	80	120	п	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EI51216	09/12/05	09/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	"	н	n	"	"	n	
Total Hydrocarbon C6-C35	ND	10 0		"	n	н	11	"	
Surrogate ⁻ 1-Chlorooctane		75.0 %	70-,	130	"	"	"	"	
Surrogate I-Chlorooctadecane		70 0 %	70	130	"	"	"	"	
SB-6 5' (5112001-27) Soil									
Benzene	0.593	0 0250	mg/kg dry	25	EI51403	09/13/05	09/14/05	EPA 8021B	
Toluene	1.26	0 0250	"		**	H	"	"	
Ethylbenzene	1.16	0 0250	"	"	н	н	"	n	
Xyiene (p/m)	4.82	0 0250	11	"		и	"	"	
Xylene (0)	2.63	0 0250	11	n	"	"	"	н	
Surrogate. a.a,a-Trifluorotoluene		114 %	80-	120	"	"	"	"	
Surrogate 4-Bromofluorobenzene		84.9 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	2200	10 0	mg/kg dry	1	EI51216	09/12/05	09/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	6600	10 0	"	"		"	"	"	
Total Hydrocarbon C6-C35	8800	10 0	"	п	"	ø	11	n	
Surrogate ⁻ I-Chlorooctane		111%	70-	130	"	"	"	"	
Surrogate 1-Chlorooctadecane		926%	70-	130	"	n	"	"	
SB-6 15' (5112001-28) Soil									
Benzene	J [0.0992]	0 100	mg/kg dry	. 100	EI51403	09/13/05	09/14/05	EPA 8021B	
Toluene	0.683	0 100	"	"	"	**		н	
Ethylbenzene	1.16	0 100	"		"	19	'n	"	
Xylene (p/m)	6.04	0 100	"		n	"	"	" 、	
Xylene (o)	2.35	0 100	"	"	n	n	"		
Surrogate. a,a,a-Trifluorotoluene		105 %	80	120	"	"	"	"	
Surrogate 4-Bromofluorobenzene		95.6%	80-1	120	"	"	"	11	
Gasoline Range Organics C6-C12	1900	10 0	mg/kg dry	1	EI51216	09/12/05	09/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	6270	10 0	"	"	*	"		"	
Total Hydrocarbon C6-C35	8170	10 0		۳	*	۲	н	11	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety,

with written approval of Environmental Lab of Texas

Plains All American EH & S 1301 S County Road 1150 Midland TX, 79706-4476		Project N Project M	Fax (432)687-4914 Reported: 09/15/051219						
		0	rganics l	oy GC					
		Environ	mental I	ab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-6 15' (5112001-28) Soil		_ <u></u>							
Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane		104 % 94 4 %		130 130	E151216 "	09/12/05 "	09/14/05 "	EPA 8015M "	
SB-6 25' (5112001-29) Soil									
Benzene	0.212	0 100	mg/kg dry	100	EI51403	09/13/05	09/14/05	EPA 8021B	
Toluene	1.72	0 100	n	"	"	n	9	"	
Ethylbenzene	1.85	0 100	n	"		"	n	"	
Xylene (p/m)	14.5	0 100	"	"	n	59	"		
Xylene (0)	5.50	0 100	11	"	"	**			
Surrogate: a.a.a-Trifluorotoluene		136 %	80-	120	"	"	"	"	S-0
Surrogate: 4-Bromofluorobenzene		112 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	2510	10.0	mg/kg dry	ſ	EI51216	09/12/05	09/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	6870	10 0	*	"	"	"			
Total Hydrocarbon C6-C35	9380	10 0	11	"	н	"	"	u	
Surrogate: 1-Chlorooctane		123 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		868%	70-	130	"	"	"	"	
SB-6-40' (5112001-30) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51403	09/13/05	09/14/05	EPA 8021B	
Foluene	0.0264	0 0250			"	"	U	**	
Ethylbenzene	0.0281	0 0250	н	**	"	"	н	м	
Xylene (p/m)	0.236	0 0250	н	n	"	"	"	н	
Xylene (o)	0.0642	0 0250	•	и	"	11	*	n	
Surrogate a,a,a-Trifluorotoluene		840%	80-	120	"	"	"	n	
Surrogate 4-Bromofluorobenzene		850%	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	97.7	10 0	mg/kg dry	1	E151216	09/12/05	09/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	801	10 0		"		17		*	
Total Hydrocarbon C6-C35	899	10 0	"	"	"	"	"	н	
Surrogate: 1-Chlorooctane		76.4 %	70-	130	"	"	"	"	
Surrogate [•] 1-Chlorooctadecane		89.6 %	70-	130	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

Plains All American EH & S 1301 S County Road 1150 Midland TX, 79706-4476 ProjectTank 374 10" Sweet Truck Haul LineProject NumberEMS2005-00172Project ManagerDaniel Bryant

Fax (432) 687-4914

Reported: 09/15/05 12 19

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-6 50' (5112001-31) Soil						-			
Benzene	ND	0 0250	mg/kg dry	25	E151403	09/13/05	09/14/05	EPA 8021B	
Toluene	J [0.0112]	0 0250		и			"	"	
Ethylbenzene	ND	0 0250			"		۳	**	
Xylene (p/m)	0.0333	0.0250	۳	*	н	"	u	**	
Xylene (o)	ND	0 0250			n	"	"	n	
Surrogate: a.a.a-Trifluorotoluene		951%	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.9 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	34.0	10 0	mg/kg dry	1	EI51216	09/12/05	09/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	342	10 0		"			"	**	
Total Hydrocarbon C6-C35	376	10 0	"	"	"	11	w	u	
Surrogate: 1-Chlorooctane,		73.4 %	70-	130	"	"	"	11	
Surrogate [•] 1-Chlorooctadecane		91.0 %	70-	130	"	"	"	"	
SB-6 60' (5112001-32) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51403	09/13/05	09/14/05	EPA 8021B	
Toluene	ND	0 0250		"	v		"	•	
Ethylbenzene	ND	0 0250	"	n	"	"	w	**	
Xylene (p/m)	J [0.0235]	0 0250			"	"	"	"	
Xylene (o)	ND	0 0250	"		n	"	"	. *	
Surrogate a,a,a-Trifluorotoluene		98.4 %	80-	120	"	"	"	"	
Surrogate. 4-Bromofluorobenzene		100 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	29.6	10 0	mg/kg dry	1	EI51216	09/12/05	09/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	411	10 0	п		"	"		п	
Total Hydrocarbon C6-C35	441	10 0					n		
Surrogate: 1-Chlorooctane		74.8 %	70-	130	"	"	"	"	
Surrogate 1-Chlorooctadecane		93.2 %	70-	130	"	"	"	17	
SB-6 70' (5112001-33) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51404	09/14/05	09/14/05	EPA 8021B	
Toluene	ND	0 0250	9	"		"	**		
Ethylbenzene	ND	0 0250	**	"			N	**	
Xylene (p/m)	ND	0 0250		"		"	n		
Xylene (o)	ND	0 0250	"	"	"	"	н	11	
Surrogate: a.a.a-Trifluorotoluene		98.2 %	80-	120	"	"	"	"	
Surrogate 4-Bromofluorobenzene		86.6 %	80	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EI51216	09/12/05	09/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	25.4	10 0	"		*			"	
Total Hydrocarbon C6-C35	25.4	10 0		"		"		н	

Environmental Lab of Texas

٠

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety.

with written approval of Environmental Lab of Texas

Plains All American EH & S 1301 S County Road 1150 Midland TX, 79706-4476		l Project N Project M			Fax. (432) 687-4914 Reported: 09/15/05 12 19				
		0	ganics b	y GC				· · · · · _	
		Environ	mental L	ab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-6-70' (5112001-33) Soil									
Surrogate: 1-Chlorooctane Surrogate: 1-Chlorooctadecane		72 8 % 77.8 %	70-1 70-1	-	E151216 "	09/12/05 "	09/14/05 "	EPA 8015M "	
SB-6 80' (5112001-34) Soil									
Benzene	NĎ	0 0250	mg/kg dry	25	EI51404	09/14/05	09/14/05	EPA 8021B	
Toluene	ND	0 0250	н	H		"	"		
Ethylbenzene	ND	0 0250	"		"	"	"		
Xylene (p/m)	ND	0 0250	u		"	"	11	"	
Xylene (0)	ND	0 0250	11			н		**	
Surrogate. a.a.a-Trifluorotoluene		98.2 %	80-1	20	"	"	"	"	
Surrogate. 4-Bromofluorobenzene		95.4%	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EI51216	09/12/05	09/14/05	EPA 8015M	
Diesel Range Organics >C12-C35	26.1	10 0	*	"	"	"	"		
Total Hydrocarbon C6-C35	26.1	10 0	"	"	"	"	14	v	
Surrogate: 1-Chlorooctane		73.2 %	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		75.4 %	70-1	130	"	"	"	"	

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 5' (5112001-01) Soil									
% Moisture	3.2	01	%	1	E151307	09/13/05	09/13/05	% calculation	
SB-1 15' (5112001-02) Soil									
% Moisture	3.8	01	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-1 25' (5112001-03) Soil								<u></u>	
Chloride	ND	20 0	mg/kg Wet	2	EI51419	09/14/05	09/14/05	SW 846 9253	
% Moisture	5.4	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-1 40' (5112001-04) Soil									
% Moisture	0.3	01	%	1	E151307	09/13/05	09/13/05	% calculation	
SB-1 50' (5112001-05) Soil									
% Moisture	0.5	01	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-1 60' (5112001-06) Soil		x							
% Moisture	1.0	01	%	1	EI51307	09/13/05	09/13/05	% calculation	-
SB-1 70' (5112001-07) Soil									
% Moisture	0.4	01	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-1 80' (5112001-08) Soil									
% Moisture	0.2	01	%	I	EI51307	09/13/05	09/13/05	% calculation	
SB-1 90' (5112001-09) Soil									
% Moisture	2.9	0 1	%	1	E151307	09/13/05	09/13/05	% calculation	
SB-1 100' (5112001~10) Soil									
% Moisture	0.5	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	

Environmental Lab of Texas

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-2 5' (5112001-11) Soil			01110	Dilation	Daten		Analyzeu		
% Moisture	0.2	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-2-15' (5112001-12) Soil									
% Moisture	0.6	01	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-2 25' (5112001-13) Soil									
% Moisture	0.5	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-2 40' (5112001-14) Soil									
% Moisture	0.3	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-3 5' (5112001-15) Soil									
% Moisture	0.4	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-3 15' (5112001-16) Soil									
% Moisture	0.3	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-3 25' (5112001-17) Soil									
% Moisture	1.4	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-3 40' (5112001-18) Soil									
% Moisture	1.1	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-3 50' (5112001-19) Soil									
% Moisture	0.5	0 1	%	ì	EI51307	09/13/05	09/13/05	% calculation	
SB-3 60' (5112001-20) Soil								<u> </u>	
% Moisture	0.6	01	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-4 5' (5112001-21) Soil									
% Moisture	0.2	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4 15' (5112001-22) Soil				Diadon					
% Moisture	0.4	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-4 25' (5112001-23) Soil									
% Moisture	2.3	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-5-5' (5112001-24) Soil									
% Moisture	0.8	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-5 15' (5112001-25) Soil									o .
% Moisture	7.8	0.1	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-5 25' (5112001-26) Soil									
% Moisture	8.9	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-6 5' (5112001-27) Soil									
% Moisture	9.8	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-6 15' (5112001-28) Soil									
% Moisture	5.7	0 1	%	1	E151307	09/13/05	09/13/05	% calculation	
SB-6 25' (5112001-29) Soil									
% Moisture	1.4	0 1	%	1	E151307	09/13/05	09/13/05	% calculation	
SB-6 40' (5112001-30) Soil									
% Moisture	0.9	0 1	%	1	E151307	09/13/05	09/13/05	% calculation	
SB-6 50' (5112001-31) Soil									
% Moisture	0.9	0 1	%	1	EI51307	09/13/05	09/13/05	% calculation	<u></u>
SB-6 60' (5112001-32) Soil					7				
% Moisture	1.5	01	%	1	E151307	09/13/05	09/13/05	% calculation	

Project Tank 374 10" Sweet Truck Haul Line Project Number EMS 2005-00172 Project Manager Daniel Bryant

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-6 70' (5112001-33) Soil									
% Moisture	0.6	01	%	1	EI51307	09/13/05	09/13/05	% calculation	
SB-6 80' (5112001-34) Soil									
% Moisture	2.7	01	%	1	EI51307	09/13/05	09/13/05	% calculation	

Environmental Lab of Texas

Batch EI51212 - EPA 5030C (GC) Blank (EI51212-BLK1) Benzene NE Toluene NE Toluene NE Stylene (p/m) NE Sylene (o) NE Surrogate a.a.aTrifluorotoluene 101 Surrogate a.a.aTrifluorotoluene 101 Surrogate a.a.aTrifluorotoluene 101 Surrogate a.a.aTrifluorotoluene 102 Soluene 102 Soluene 102 Soluene 102 Surrogate a.a.aTrifluorotoluene 96.3 Toluene 102 Soluene 102 Surrogate a.a.aTrifluorotoluene 91.6 Surrogate a.a.aTrifluorotoluene 91.6 Surrogate a.a.aTrifluorotoluene 91.6 Surrogate 4-Bromofluorobenzene 86.7 Calibration Check (EI51212-CCV1) 38 Senzene 83.5 Toluene 83.5	Reporting Limit 0 0250 0 0250 0 0250 0 0250	anager Da y GC - Q mental L Units mg/kg wet "	Ab of Tex Spike Level Prepared & 100 100	ontrol xas Source Result	101 87 1	%REC Limits 80-120 80-120 80-120 80-120 80-120	RPD	Repo 09/15/0: RPD Limit	
Analyte Result Batch EI51212 - EPA 5030C (GC) Blank (EI51212-BLK1) Benzene Foluene Senzene Foluene Stylbenzene Kylene (p/m) Surrogate 4-Bromofluorobenzene Sourogate 4-Bromofluorobenzene Stylbenzene Sourogate a.a.a-Trifluorotoluene Sourogate 4-Bromofluorobenzene Stylbenzene Sourogate a.a.a-Trifluorotoluene Sourogate a.a.a-Trifluorotoluene Stylbenzene Stylene (p/m) Sylene (p/m) Stylene (p/m) Stylene (p/m) Stylene (p/m) Stylene (a.a.a-Trifluorotoluene Stylene (b) Startogate 4-Bromofluorobenzene Starogate 4-Bromofluorobe	Organics b Environ Reporting Limit 0 0250 0 0250 0 0250 0 0250	y GC - Q mental L Units mg/kg wet " " " ug/kg	Puality Co ab of Tes Spike Level Prepared & 100 100 100 100 100	Source Result	09/12/05 101 87 1 .09/12/05 96 3 102 117	Limits 80-120 80-120 80-120 80-120 80-120 80-120	RPD	RPD	
Batch EI51212 - EPA 5030C (GC) Blank (EI51212-BLK1) Benzene NE Toluene NE Toluene NE Stylene (p/m) NE Sylene (o) NE Surrogate a.a.aTrifluorotoluene 101 Surrogate a.a.aTrifluorotoluene 101 Surrogate a.a.aTrifluorotoluene 101 Surrogate a.a.aTrifluorotoluene 102 Soluene 102 Soluene 102 Soluene 102 Surrogate a.a.aTrifluorotoluene 96.3 Toluene 102 Soluene 102 Surrogate a.a.aTrifluorotoluene 91.6 Surrogate a.a.aTrifluorotoluene 91.6 Surrogate a.a.aTrifluorotoluene 91.6 Surrogate 4-Bromofluorobenzene 86.7 Calibration Check (EI51212-CCV1) 38 Senzene 83.5 Toluene 83.5	Environ Reporting Limit 0 0250 0 0250 0 0250 0 0250	mental L Units mg/kg wet " " " ug/kg "	ab of Tex Spike Level Prepared & 100 100 100 100 100 100 100	Source Result	09/12/05 101 87 1 .09/12/05 96 3 102 117	Limits 80-120 80-120 80-120 80-120 80-120 80-120	RPD		Notes
Batch EI51212 - EPA 5030C (GC) Blank (EI51212-BLK1) Benzene NE Toluene NE Stylene (p/m) NE Kylene (o) NE CS (EI51212-BS1) 101 Benzene 96.3 Toluene 102 Kylene (p/m) NE CS (EI51212-BS1) 96.3 Benzene 96.3 Toluene 102 Kylene (p/m) 218 Kylene (o) 114 turrogate a.a.aTrifluorotoluene 91.6 turrogate 4Bromofluorobenzene 86.7 Calibration Check (EI51212-CCV1) 8 Benzene 83.5 Toluene 83.5	Reporting Limit 0 0250 0 0250 0 0250 0 0250	Units mg/kg wet " " " ug/kg "	Spike Level Prepared & //00 //00 Prepared & //00 100 100 100	Source Result	09/12/05 101 87 1 .09/12/05 96 3 102 117	Limits 80-120 80-120 80-120 80-120 80-120 80-120	RPD		Notes
Batch EI51212 - EPA 5030C (GC) Blank (EI51212-BLK1) Benzene NE Toluene NE Stylene (p/m) NE Kylene (o) NE CS (EI51212-BS1) 101 Benzene 96.3 Toluene 102 Kylene (p/m) NE CS (EI51212-BS1) 96.3 Benzene 96.3 Toluene 102 Kylene (p/m) 218 Kylene (o) 114 turrogate a.a.aTrifluorotoluene 91.6 turrogate 4Bromofluorobenzene 86.7 Calibration Check (EI51212-CCV1) 8 Benzene 83.5 Toluene 83.5	0 0250 0 0250 0 0250 0 0250	Units mg/kg wet " " " ug/kg "	Level Prepared & 100 100 Prepared & 100 100 100	Result	09/12/05 101 87 1 .09/12/05 96 3 102 117	Limits 80-120 80-120 80-120 80-120 80-120 80-120	RPD		Notes
Blank (EI51212-BLK1) Benzene NE Foluene NE Stylene (p/m) NE Sylene (o) NE Surrogate a.a.a-Trifluorotoluene 101 Surrogate a.a.a-Trifluorotoluene 101 Surrogate 4-Bromofluorobenzene 87.1 LCS (EI51212-BS1) 3 Benzene 96.3 Foluene 102 Stylene (o) 114 Surrogate a.a.a-Trifluorotoluene 91.6 Stylene (o) 114 Surrogate a.a.a-Trifluorotoluene 91.6 Surrogate a.a.a-Trifluorotoluene 92.6 Calibration Check (EI51212-CCV1) 33.5 Soluene 83.5 Surrogate a.a.a.a.a.a.a.a.	0 0250 0 0250 0 0250	" " ug/kg	100 100 Prepared & 100 100 100		101 87 1 . 09/12/05 96 3 102 117	80-120 80-120 80-120 80-120			
Foluene NE Ethylbenzene NE Kylene (p/m) NE Kylene (o) NE Surrogate a.a.a-Trifluorotoluene 101 Surrogate 4-Bromofluorobenzene 87.4 LCS (EI51212-BS1) 102 Benzene 96.3 Foluene 102 Stylene (o) 114 Surrogate a.a.a-Trifluorotoluene 91.6 Surrogate a.a.a-Trifluorotoluene 81.6 Surrogate a.a.a-Trifluorotoluene 81.6 Surrogate a.a.a-Trifluorotoluene 81.6 Surrogate a.a.a-Trifluorotoluene 83.5 Calibration Check (EI51212-CCV1) 33.5 Foluene 83.5 Foluene 83.5	0 0250 0 0250 0 0250	" " ug/kg	100 100 Prepared & 100 100 100		101 87 1 . 09/12/05 96 3 102 117	80-120 80-120 80-120 80-120			
Foluene NE Cithylbenzene NE Cylene (p/m) NE Sylene (o) NE Surrogate a.a.a-Trifluorotoluene 101 Surrogate 4-Bromofluorobenzene 87.4 CCS (EI51212-BS1) 2 Senzene 96.3 Foluene 102 Surrogate a.a.a-Trifluorotoluene 102 Surrogate a.a.a-Trifluorotoluene 96.3 Soluene 102 Surrogate a.a.a-Trifluorotoluene 96.3 Sylene (p/m) 218 Sylene (o) 114 Surrogate a.a.a-Trifluorotoluene 91.6 Calibration Check (EI51212-CCV1) 33.5 Soluene 83.5 Soluene 83.5	0 0250 0 0250 0 0250	" " ug/kg	100 Prepared & 100 100 100	z Analyzed.	87 1 . 09/12/05 96 3 102 117	80-120 80-120 80-120 80-120			
Ethylbenzene NE Kylene (p/m) NE Kylene (o) NE Surrogate a.a.a-Trifluorotoluene 101 Surrogate 4-Bromofluorobenzene 87.1 LCS (EI51212-BS1) 102 Benzene 96.3 Foluene 102 Ethylbenzene 117 Kylene (o) 114 Surrogate a.a.a-Trifluorotoluene 91.6 Surrogate a.a.a-Trifluorotoluene 83.5 Calibration Check (EI51212-CCV1) 33.5 Foluene 83.5 Foluene 83.5	0 0250 0 0250	" ug/kg "	100 Prepared & 100 100 100	z Analyzed.	87 1 . 09/12/05 96 3 102 117	80-120 80-120 80-120 80-120			
Kylene (p/m) NE Kylene (o) NE Surrogate a.a.a-Trifluorotoluene 101 Surrogate 4-Bromofluorobenzene 87.1 LCS (EI51212-BS1) 102 Benzene 96.3 Foluene 102 Stylene (p/m) 218 Kylene (p/m) 218 Surrogate a.a.a-Trifluorotoluene 97.6 Surrogate a.a.a-Trifluorotoluene 87.6 Surrogate a.a.a-Trifluorotoluene 87.6 Surrogate a.a.a-Trifluorotoluene 87.6 Surrogate a.a.a-Trifluorotoluene 87.6 Surrogate a.a.a-Trifluorotoluene 83.5 Calibration Check (EI51212-CCV1) 83.5 Soluene 83.5	0 0250	" ug/kg "	100 Prepared & 100 100 100	z Analyzed.	87 1 . 09/12/05 96 3 102 117	80-120 80-120 80-120 80-120			
Xylene (o) NE Surrogate a.a.a-Trifluorotoluene 101 Surrogate 4-Bromofluorobenzene 87.1 LCS (EI51212-BS1) 102 Benzene 96.3 Foluene 102 Ethylbenzene 117 Xylene (p/m) 218 Surrogate a.a.a-Trifluorotoluene 91.6 Surrogate a.a.a-Trifluorotoluene 92.6 Calibration Check (EI51212-CCV1) 83.5 Foluene 83.5	0 0250	" ug/kg "	100 Prepared & 100 100 100	z Analyzed.	87 1 . 09/12/05 96 3 102 117	80-120 80-120 80-120 80-120			
Surrogate a,a,a-Trifluorotoluene 101 Surrogate 4-Bromofluorobenzene 87.1 LCS (EI51212-BS1) 102 Benzene 96.3 Foluene 102 Ethylbenzene 117 Xylene (p/m) 218 Xylene (o) 114 Surrogate 4-Bromofluorotoluene 91.6 Surrogate 4-Bromofluorotoluene 83.5 Calibration Check (EI51212-CCV1) 83.5 Foluene 83.5		ug/kg "	100 Prepared & 100 100 100	z Analyzed.	87 1 . 09/12/05 96 3 102 117	80-120 80-120 80-120 80-120			
Surrogate 4-Bromofluorobenzene 87.1 LCS (EI51212-BS1)		"	100 Prepared & 100 100 100	z Analyzed.	87 1 . 09/12/05 96 3 102 117	80-120 80-120 80-120 80-120			
LCS (EI51212-BS1) Benzene 96.3 Foluene 102 Sthylbenzene 117 Kylene (p/m) 218 Kylene (o) 114 Surrogate a.a.a-Trifluorotoluene 91.6 Surrogate 4-Bromofluorobenzene 86.5 Calibration Check (EI51212-CCV1) Benzene 83.5 Foluene 82.6			Prepared & 100 100 100	z Analyzed.	. 09/12/05 96 3 102 117	80-120 80-120 80-120			
Benzene 96 3 Foluene 102 Sthylbenzene 117 Sylene (p/m) 218 Sylene (o) 114 Surrogate a.a.a.Trifluorotoluene 91 6 Surrogate 4-Bromofluorobenzene 86 7 Calibration Check (EI51212-CCV1) 88 Benzene 83 5 Foluene 82 6		ug/kg " "	100 100 100	z Analyzed.	96 3 102 117	80-120 80-120			
Toluene 102 Sthylbenzene 117 Stylene (p/m) 218 Sylene (o) 114 Surrogate a.a.a.Trifluorotoluene 916 Surrogate 4-Bromofluorobenzene 867 Calibration Check (EI51212-CCV1) 883 5 Senzene 83 5 Toluene 82 6		ug/kg " "	100 100		102 117	80-120 80-120			
ithylbenzene 117 Sylene (p/m) 218 Sylene (o) 114 Surrogate a.a.a.Trifluorotoluene 91 d Surrogate 4-Bromofluorobenzene 86 f Calibration Check (El51212-CCV1) 88 s Senzene 83 s Soluene 82 d			100		117	80-120			
Kylene (p/m) 218 Kylene (o) 114 Surrogate a.a.a-Trifluorotoluene 91 d Surrogate 4-Bromofluorobenzene 86 f Calibration Check (EI51212-CCV1) 3 Senzene 83 f Foluene 82 d		** **							
Sylene (o) 114 Surrogate a.a.a-Trifluorotoluene 916 Surrogate 4-Bromofluorobenzene 867 Calibration Check (EI51212-CCV1) 835 Senzene 835 Foluene 826		H T	200		100				
Surrogate a.a.a-Trifluorotoluene 91 6 Surrogate 4-Bromofluorobenzene 86 7 Calibration Check (EI51212-CCV1) Benzene 83 5 Foluene 82 6		"			109	80-120			
Surrogate 4-Bromofluorobenzene 86 7 Calibration Check (EI51212-CCV1) Benzene 83 5 Foluene 82 0			100		114	80-120			
Calibration Check (EI51212-CCV1) Benzene 83 5 Foluene 82 0		"	100		916	80-120			
Senzene 83 5 Foluene 82 0		"	100		86 7	80-120			
Foluene 82 C			Prepared ()9/12/05 A	nalyzed 09	9/13/05			
		ug/kg	100		83 5	80-120			
Sthylbenzene 88 3		"	100		82 0	80-120			
		"	100		88 3	80-120			
Xylene (p/m) 171		"	200		85 5	80-120			
Xylene (o) 91 I		н	100		91 1	80-120			
Surrogate a,a,a-Trifluoroioluene 807		"	100		80 7	0-200			
Surrogate 4-Bromofluorohenzene 80 S		"	100		80 9	0-200			
Matrix Spike (EI51212-MS1)	Source: 5112001	-12	Prepared ()9/12/05 A	nalyzed 09	9/13/05			
Benzene 2340		ug/kg	2500	ND	93 6	80-120			
Foluene 2440			2500	ND	97 6	80-120			
Ethylbenzene 2900		"	2500	ND	116	80-120			
Kylene (p/m) \$520		*	5000	ND	110	80-120			
Xylene (o) 2990 Surrogate a.a.a-Trifluorotoluene 91		"	2500	ND	120 91 3	80-120			

Ŏ

Î)

Plains All American EH & S		
1301 S County Road 1150		Pro
Midland TX, 79706-4476		Proj
	0	rgani
		Envi
		Rep
Analyte	Result	
Batch EI51212 - EPA 5030C (GC)		
Matrix Spike Dup (E151212-MSD1)	Sou	rce: 5I
Benzene	2210	
Toluene	2320	
Ethylbenzene	2710	
Xylene (p/m)	5140	
Xylene (o)	2830	
Surrogate a,a,a-Trifluorotoluene	84 1	
Surrogate 4-Bromofluorobenzene	914	
Batch EI51215 - Solvent Extraction (GC)	I	
Blank (EI51215-BLK1)		
Gasoline Range Organics C6-C12	ND	
Diesel Range Organics >C12-C35	ND	
Total Hydrocarbon C6-C35	ND	
Surrogate 1-Chlorooctane	38 2	

Reported: 09/15/05 12 19

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	,
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike Dup (EI51212-MSD1)	Source: 5	Source: 5112001-12			Prepared 09/12/05 Analyzed 09/13/05				
Benzene	2210	ug/kg	2500	ND	88 4	80-120	5 71	20	
Toluene	2320	"	2500	ND	92 8	80-120	5 04	20	
Ethylbenzene	2710	"	2500	ND	108	80-120	7 14	20	
Xylene (p/m)	5140	"	5000	ND	103	80-120	6 57	20	
Xylene (o)	2830	**	2500	ND	113	80-120	6 01	20	
Surrogate a,a,a-Trifluorotoluene	841	"	100		841	80-120			
Surrogate 4-Bromofluorobenzene	914	"	100		914	80-120			

Blank (E151215-BLK1)				Prepared & Anal	lyzed 09/12/05			
Gasoline Range Organics C6-C12	ND	10 0	mg/kg wet					
Diesel Range Organics >C12-C35	ND	10 0	"					
Total Hydrocarbon C6-C35	ND	10 0						
Surrogate 1-Chlorooctane	38 2		mg/kg	50 0	76 4	70-130		
Surrogate: 1-Chlorooctadecane	42 3		"	50 0	846	70-130		
LCS (E151215-BS1)				Prepared & Ana	lyzed. 09/12/05			
Gasoline Range Organics C6-C12	417	10 0	mg/kg wet	500	83 4	75-125		
Diesel Range Organics >C12-C35	458	10 0	"	500	91.6	75-125		
Total Hydrocarbon C6-C35	875	10 0	"	1000	87 5	75-125		
Surrogate 1-Chlorooctane	46 4		mg/kg	50 0	92.8	70-130		
Surrogate 1-Chlorooctadecane	48 2		"	50 0	96 4	70-130		
Calibration Check (EI51215-CCV1)	Prepared 09/12/05 Analyzed 09/13/05							

Cambration Check (E151215-CCVI)			Flepareu 09/12/0	JS Analyzeu 05	13/03	
Gasoline Range Organics C6-C12	426	mg/kg	500	85.2	80-120	
Diesel Range Organics >C12-C35	430	"	500	86 0	80-120	
Total Hydrocarbon C6-C35	856		1000	85 6	80-120	
Surrogate: 1-Chlorooctane	44 1	"	50 0	88 2	0-200	
Surrogate 1-Chlorooctadecane	46 6	"	50.0	932	0-200	

1

0

A

Plains All American EH & S 1301 S County Road 1150 Midland TX, 79706-4476	S County Road 1150 Project Number			ik 374 10" S IS 2005-00 niel Bryant		Haul Line			Fax (432)687-491 Reported: 09/15/05 12 19		
	Or	ganics by	/ GC - Q	uality Co	ontrol						
		Environ	nental L	ab of Te	xas						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch El51215 - Solvent Extraction (GC)											
Matrix Spike (EI51215-MS1)	Sour	ce: 5112001	-05	Prepared &	Analyzed	09/12/05					
Gasoline Range Organics C6-C12	387	10 0	mg/kg dry	503	8 49	75 3	75-125				
Diesel Range Organics >C12-C35	449	10 0	N	503	47 0	79 9	75-125				
Fotal Hydrocarbon C6-C35	836	10 0	н	1010	47 0	78 1	75-125				
Surrogate 1-Chlorooctane	418		mg/kg	50 0		836	70-130				
Surrogate 1-Chlorooctadecane	45 5		"	50 0		910	70-130				
Matrix Spike Dup (E151215-MSD1)	Source: 5112001-05			Prepared &	z Analyzed	09/12/05					
Gasoline Range Organics C6-C12	389	10 0	mg/kg dry	503	8 4 9	75.6	75-125	0 515	20		
Diesel Range Organics >C12-C35	446	10 0	"	503	470	79.3	75-125	0 670	20		
Fotal Hydrocarbon C6-C35	835	10 0	"	1010	47.0	78 0	75-125	0 120	20		
Surrogate 1-Chlorooctane	42 1		mg/kg	50 0		842	70-130				
Surrogate 1-Chlorooctadecane	44 6		"	50 0		<i>89 2</i>	70-130				
Batch EI51216 - Solvent Extraction (GC)											
Blank (EI51216-BLK1)				Prepared ()9/12/05 A	nalyzed 09	/13/05				
Gasoline Range Organics C6-C12	ND	10 0	mg/kg wet					•••			
Diesel Range Organics >C12-C35	ND	10 0									
Fotal Hydrocarbon C6-C35	ND	10 0									
Surrogate 1-Chlorooctane	39 1		mg/kg	50.0		78 2	70-130				
Surrogate 1-Chlorooctadecane	38 6		"	50 0		77.2	70-130				
LCS (E151216-BS1)				Prepared ()9/12/05 A	nalyzed 09	/13/05				
Gasoline Range Organics C6-C12	407	10 0	mg/kg wet	500		81.4	75-125				
Diesel Range Organics >C12-C35	443	10 0	*	500		88 6	75-125				
Fotal Hydrocarbon C6-C35	850	10 0	••	1000		85 0	75-125				
Surrogate 1-Chlorooctane	44 5		mg/kg	50 0		89 0	70-130				
Surrogate 1-Chlorooctadecane	42 3		n	50 0		846	70-130				

•

() () The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 23 of 29

Plains All American EH & S 1301 S County Road 1150 Midland TX, 79706-4476		Project N	e	ik 374-10" S S 2005-00 niel Bryant		Haul Line			Fax (432) Repo 09/15/03	rted:
	0	rganics by	, GC - Q	uality Co	ontrol		.			
		Environr	nental L	ab of Te	kas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI51216 - Solvent Extraction (GC)										
Calibration Check (El51216-CCV1)				Prepared (09/12/05 Ai	nalyzed 09	/14/05			
Gasoline Range Organics C6-C12	403		mg/kg	500		80 6	80-120			
Diesel Range Organics >C12-C35	468		н	500		93 6	80-120			
Total Hydrocarbon C6-C35	871		"	1000		87 1	80-120			
Surrogate 1-Chlorooctane	44 0		"	50 0		88.0	0-200			
Surrogate 1-Chlorooctadecane	519		"	50 0		104	0-200			
Matrix Spike (E151216-MS1)	Soi	Irce: 5112001-	-21	Prepared ()9/12/05 Ai	nalyzed 09	/13/05			
Gasoline Range Organics C6-C12	394	10 0	mg/kg dry	501	ND	78 6	75-125			
Diesel Range Organics >C12-C35	421	10 0		501	ND	84 0	75-125			
Fotal Hydrocarbon C6-C35	815	10 0	"	1000	ND	815	75-125			
Surrogate 1-Chlorooctane	413		mg/kg	50 0		82 6	70-130			
Surrogate 1-Chlorooctadecane	41.6		"	50 0		832	70-130			
Matrix Spike Dup (El51216-MSD1)	Sou	rce: 5112001-	-21	Prepared ()9/12/05 Ai	nalyzed 09	/13/05			
Gasoline Range Organics C6-C12	408	10 0	mg/kg dry	501	ND	814	75-125	3 49	20	
Diesel Range Organics >C12-C35	430	10 0	"	501	ND	85 8	75-125	2 12	20	
Total Hydrocarbon C6-C35	838	10 0	•	1000	ND	83 8	75-125	2 78	20	
Surrogate 1-Chlorooctane	418		mg/kg	50 0		836	70-130			
Surrogate 1-Chlorooctadecane	40 6		"	50 0		812	70-130			
Batch EI51403 - EPA 5030C (GC)										
Blank (EI51403-BLK1)				Prepared &	z Analyzed	09/13/05				
3enzene	ND	0 0250	mg/kg wet					,		
Foluene	ND	0 0250	**							
Ethylbenzene	ND	0 0250	*							
Kylene (p/m)	ND	0 0250	"							
Kylene (0)	ND	0.0250	"							
Surrogate a.a.a-Trifluorotoluene	93 7		ug/kg	100		937	80-120			
Surrogate. 4-Bromofluorobenzene	105		"	100		105	80-120			

Ō

•

Batch E151403 - EPA 5030C (GC) Prepared & Analyzed. 09 Benzene 92 2 ug/kg 100 Foluene 95 7 " 100 Ethylbenzene 107 " 100 Kylene (p/m) 202 " 200 Sylene (o) 107 " 100 Surrogate a.a.a.7rr/lluorotoluene 97 0 " 100 Surrogate 4.Bromo/lluorobenzene 95 6 " 100 Surrogate 4.Bromo/lluorobenzene 95 6 " 100 Surrogate 4.Bromo/lluorobenzene 95 6 " 100 Surrogate a.a.a.7rr/lluorotoluene 88 9 ug/kg 100 Surrogate a.a.a.7rr/lluorotoluene 94 2 " 100 ND	%REC %REC Limits		Repor 09/15/05	
Environmental Lab of Texas Reporting Analyte Reporting Result Spike Limit Source Result Batch E151403 - EPA 5030C (GC) LCS (E151403 - EPA 5030C (GC) Prepared & Analyzed, 09 Benzene 92 2 ug/kg 100 Foluene 95 7 100 Strikelytherization 107 100 Strikytherization 107 100 107 Surrogate a.a.o.Trifluoratoliuene 97 0 " 100 Surrogate a.a.o.Trifluoratoliuene 89 8 " 100 Surrogate a.a.o.Trifluoratoliuene 94 2 " 100 Surorgate a.a.o.Trifluoratoliuene 94 2				
Reporting Spike Source Analyte Result Limit Units Level Result Batch E151403 - EPA 5030C (GC) Prepared & Analyzed. 09 LCS (E151403 - BS1) Prepared & Analyzed. 09 00 Februard. 09 Benzene 92.2 ug/kg 100 Februard. 09 Foluene 95.7 * 100 Februard. 09 Stylenc (µm) 202 * 200 * Sylenc (µm) 202 * 200 * Sylenc (µm) 202 * 100 * Surrogate 0.70 * 100 * Surrogate 4.Bromofluorobenzene 97.0 * 100 Surrogate 4.Bromofluorobenzene 95.6 * 100 * Surrogate 4.Bromofluorobenzene 96.2 * 100 * Surrogate 4.Bromofluorobenzene 96.2 * 100 ND Surrogate 4.Bromofluorobenzene 9				
Analyte Result Limit Units Level Result Batch EI51403 - EPA 5030C (GC) Prepared & Analyzed. 09 Benzene 92 2 ug/kg 100 Toluene 95 7 "100 100 Stringere a.a.a.Trifluorotoluene 95 7 "100 100 Surrogate a.a.a.Trifluorotoluene 97 0 "100 100 Surrogate a.a.a.Trifluorotoluene 98 8 "100 100 Xylene (p/m) 193 200 X Anal Surrogate a.a.a.Trifluorotoluene 94 2 "100 ND Surrogate a.a.a.Trifluorotoluene				
LCS (EI51403-BS1) Prepared & Analyzed. 09 Benzene 92 2 ug/kg 100 Toluene 95 7 100 100 Ethylbenzene 107 100 Xylene (p/m) 202 200 Xylene (o) 107 100 Surrogate a.a.a-Trifluorotoluene 97 0 7 100 Surrogate a.a.a-Trifluorotoluene 97 0 7 100 Surrogate a.a.a-Trifluorotoluene 97 0 7 100 Surrogate a.a.a-Trifluorotoluene 97 0 7 100 Surrogate a.a.a-Trifluorotoluene 97 0 7 100 Surrogate a.a.a-Trifluorotoluene 97 0 7 100 Surrogate a.a.a-Trifluorotoluene 97 0 7 100 Calibration Check (EI51403-CCV1) Prepared 09/13/05 Anal Benzene 100 Surrogate a.a.a-Trifluorotoluene 101 100 Surrogate a.a.a-Trifluorotoluene 100 Surrogate a.a.a-Trifluorotoluene 100 Surrogate a.a.a-Trifluorotoluene 100 ND Surrogate a.a.a-Trifluorotoluene 94 2 7 100 ND Surro		RPD	RPD Limit	Notes
Benzene 92 2 ug/kg 100 Toluene 95 7 " 100 Ethylbenzene 107 " 100 Xylene (p/m) 202 " 200 Surrogate a.a.a-Trifluorotoluene 97 0 " 100 Surrogate a.a.a-Trifluorotoluene 97 0 " 100 Surrogate a.a.a-Trifluorotoluene 95 6 " 100 Calibration Check (E151403-CCV1) Prepared 09/13/05 Anal Benzene 88 9 ug/kg 100 Toluene Ethylbenzene 101 " 100 Toluene Styrogate a.a.a-Trifluorotoluene 94 2 " 100 Toluene Stylene (p/m) 193 " 200 Stylene (p/m) Tolu " 100 Stylene (p/m) Tolu " 100 Stylene (p/m) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 91 0 ug/kg 100 ND Sourogate a.a.a-Trifluorotoluene ND ND <td></td> <td></td> <td></td> <td></td>				
Toluene 95 7 " 100 Ethylbenzene 107 " 100 Xylene (p/m) 202 " 200 Xylene (o) 107 " 100 Surrogate a.a.a-Trifluoroioluene 97 0 " 100 Surrogate a.a.a-Trifluoroioluene 97 0 " 100 Surrogate A.Bromofluorobenzene 95 6 " 100 Calibration Check (E151403-CCV1) Prepared 09/13/05 Anal Benzene 88 9 ug/kg 100 " 100 Toluene 89 8 " 100 " " 100 Sylene (p/m) 193 200 " " 100 " " 100 " 100 Surrogate a.a.a-Trifluorotoluene 94 2 " 100 Surrogate a.a.a-Trifluorotoluene 96 2 " 100 ND	9/13/05			
Ethylbenzene 107 " 100 Xylene (p/m) 202 " 200 Xylene (o) 107 " 100 Surrogate .a,a.a-Trifluorotoluene 97.0 " 100 Surrogate .a,a.a-Trifluorotoluene 95.6 " 100 Calibration Check (E151403-CCV1) Prepared 09/13/05 Anal Benzene 88.9 ug/kg 100 Intervention Toluene 89.8 " 100 Intervention Xylene (p/m) 193 200 Intervention Intervention Surrogate .a,a.a-Trifluorotoluene 94.2 " 100 Intervention Surrogate .a,a.a-Trifluorotoluene 94.2 " 100 Intervention Surrogate .a,a.a-Trifluorotoluene 94.2 " 100 ND Surrogate .a,a.a-Trifluorotoluene 94.2 " 100 ND Surrogate .a,a.a-Trifluorotoluene 94.2 " 100 ND Toluene 91.0 ug/kg 100 ND ND Surrogate .a,a.a-Trifluorotoluene 108	92 2 80-120			
Xylene (p/m) 202 200 Xylene (o) 107 100 Surrogate a.a.a.Trifluorotoluene 970 700 Surrogate a.a.a.Trifluorotoluene 956 700 Calibration Check (EI51403-CCV1) Prepared 09/13/05 Anal Benzene 88 9 ug/kg 100 100 Toluene 89 8 100 100 100 Sylene (p/m) 193 200 100 100 Sylene (p/m) 193 200 100 100 100 Surrogate a.a.a.Trifluorotoluene 97 2 7 100	95 7 80-120			
Xylene (a) 107 " 100 Surrogate a.a.a-Trifluorotoluene 97 0 " 100 Surrogate 4-Bromofluorobenzene 95 6 " 100 Calibration Check (EIS1403-CCV1) Prepared 09/13/05 Anal Benzene 88 9 ug/kg 100 Toluene 89 8 " 100 Ethylbenzene 101 " 100 Xylene (p/m) 193 " 200 Xylene (o) 105 " 100 Surrogate a.a.a-Trifluorotoluene 94 2 " 100 Surrogate a.a.a-Trifluorotoluene 96 2 " 100 Matrix Spike (EI51403-MS1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 91 0 ug/kg 100 ND Toluene 94 2 " 100 ND Ethylbenzene 108 " 100 ND Xylene (p/m) 204 " 200 ND Xylene (o) 108 " 100 ND Surrogate .a.a.a-Trifluorotoluene 102 " 100<	107 80-120			
Xyten (0) 107 100 Surrogate a.a.d-Trifluorotoluene 97 0 " 100 Surrogate 4-Bromofluorobenzene 95 6 " 100 Calibration Check (EI51403-CCV1) Prepared 09/13/05 Anal Benzene 88 9 ug/kg 100 Toluene 89 8 " 100 Kytene (p/m) 193 " 200 Xylene (o) 105 " 100 Surrogate a.a.a-Trifluorotoluene 94 2 " 100 Surrogate 4-Bromofluorobenzene 96 2 " 100 ND Surrogate 4-Bromofluorobenzene 91 0 ug/kg 100 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND	101 80-120			
Surrogate 4.Bromofluorobenzene 95 6 " 100 Calibration Check (EI51403-CCV1) Prepared 09/13/05 Anal Benzene 88 9 ug/kg 100 Toluene 89 8 " 100 Ethylbenzene 101 " 100 Xylene (p/m) 193 " 200 Xylene (o) 105 " 100 Surrogate a,a,a-Trifluorotoluene 94 2 " 100 Surrogate a,a,a-Trifluorotoluene 96 2 " 100 Surrogate 4-Bromofluorobenzene 96 2 " 100 Matrix Spike (EI51403-MS1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 91 0 ug/kg 100 ND Toluene 94 2 " 100 ND Yylene (p/m) 204 " 100 ND Xylene (p/m) 204 " 100 ND Xylene (p/m) 204 " 100 ND Surrogate 4-Bromofluorobenzene 102 " 100 ND Surrogate 4-Bromofluorobenzene 101 </td <td>107 80-120</td> <td></td> <td></td> <td></td>	107 80-120			
Starrgate 2.5 b Prepared 09/13/05 Anal Calibration Check (EI51403-CCV1) Prepared 09/13/05 Anal Benzene 88 9 ug/kg 100 Image: Starr 100 Toluene 89 8 " 100 Image: Starr 100 Image: Sta	97.0 80-120			
Benzene 88 9 ug/kg 100 Toluene 89 8 " 100 Ethylbenzene 101 " 100 Xylene (p/m) 193 " 200 Xylene (o) 105 " 100 Surrogate a.a.a-Trifluorotoluene 94 2 " 100 Surrogate 4-Bromofluorobenzene 96 2 " 100 Matrix Spike (E151403-MS1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 91 0 ug/kg 100 ND Toluene 101 " 100 ND Toluene ND ND Ethylbenzene 108 " 100 ND ND Xylene (p/m) 204 " 200 ND Surrogate. a.a.a-Trifluorotoluene 100 ND Surrogate. a.a.a-Trifluorotoluene 100 ND ND Surrogate. 4-Bromofluorobenzene 100 ND Surrogate. 4-Bromofluorobenzene 100 ND Surrogate. 4-Bromofluorobenzene <t< td=""><td>95.6 80-120</td><td></td><td></td><td></td></t<>	95.6 80-120			
Toluene 89.8 " 100 Ethylbenzene 101 " 100 Xylene (p/m) 193 " 200 Xylene (o) 105 " 100 Surrogate a,a,a-Trifluorotoluene 94.2 " 100 Surrogate 4-Bromofluorobenzene 96.2 " 100 Matrix Spike (EI51403-MS1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 91.0 ug/kg 100 ND Toluene Toluene 94.2 " 100 ND ND Ethylbenzene 108 " 100 ND ND Xylene (p/m) 204 " 200 ND Surrogate. a,a,a-Trifluorotoluene ND ND Surrogate. A,a-Trifluorotoluene ND ND ND ND ND Surrogate. A,a-Trifluorotoluene ND ND <t< td=""><td>lyzed 09/14/05</td><td></td><td></td><td></td></t<>	lyzed 09/14/05			
Ethylbenzene 101 " 100 Xylene (p/m) 193 " 200 Xylene (o) 105 " 100 Surrogate a,a,a-Trifluorotoluene 94 2 " 100 Surrogate 4-Bromofluorobenzene 96 2 " 100 Matrix Spike (EI51403-MS1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 91 0 ug/kg 100 ND ND Toluene 94 2 " 100 ND ND Ethylbenzene 108 " 100 ND ND Xylene (p/m) 204 " 200 ND ND Xylene (o) 108 " 100 ND ND ND Surrogate .a,a,a-Trifluorotoluene 102 " 100 ND ND ND Surrogate .a,a,a-Trifluorotoluene 101 " 100 ND ND ND Surrogate .a,a,a-Trifluorotoluene 101 " 100 ND ND ND Surrogate .4-Bromofluorobenzene 101 " <td>88 9 80-120</td> <td></td> <td></td> <td></td>	88 9 80-120			
Xylene (p/m) 193 200 Xylene (o) 105 100 Surrogate a,a,a-Trifluorotoluene 94 2 " 100 Surrogate 4-Bromofluorobenzene 96 2 " 100 Matrix Spike (EI51403-MS1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 91 0 ug/kg 100 ND Toluene 94 2 100 ND Ethylbenzene 108 100 ND Ethylbenzene 100 ND Surrogate. a, a, a-Trifluorotoluene ND ND Surrogate. a, a, a-Trifluorotoluene ND ND ND ND Surrogate. 4-Bromofluorobenzene ND ND <td>898 80-120</td> <td></td> <td></td> <td></td>	898 80-120			
Xylene (o) 105 " 100 Surrogate a,a,a-Trifluorotoluene 94 2 " 100 Surrogate 4-Bromofluorobenzene 96 2 " 100 Matrix Spike (EI51403-MS1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 91 0 ug/kg 100 ND Toluene 94 2 " 100 ND Ethylbenzene 108 " 100 ND Xylene (p/m) 204 " 200 ND Surrogate a,a,a-Trifluorotoluene 100 ND Surrogate 100 ND Surrogate a,a,a-Trifluorotoluene 102 " 100 ND Surrogate a,a,a-Trifluorotoluene 101 " 100 ND Surrogate 4-Bromofluorobenzene 101	101 80-120			
Surrogate a,a,a-Trifluorotoluene 94 2 " 100 Surrogate 4-Bromofluorobenzene 96 2 " 100 Matrix Spike (E151403-MS1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 91 0 ug/kg 100 ND Toluene 94 2 " 100 ND Ethylbenzene 108 " 100 ND Xylene (p/m) 204 " 200 ND Surrogate 4-Bromofluorobenzene 100 ND ND Sylene (p/m) 204 " 200 ND Surrogate a.a.a.Trifluorotoluene 100 ND ND Surrogate 4-Bromofluorobenzene 101 " 100 ND Surrogate 4-Bromofluorobenzene 101 " 100 ND ND Surrogate 4-Bromofluorobenzene 101 " 100 ND ND Benzene 89 9 ug/kg 100	96 5 80-120			
Surrogate 4-Bromofiluorobenzene 96 2 " 100 Matrix Spike (EI51403-MS1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 91 0 ug/kg 100 ND Toluene 94 2 " 100 ND Ethylbenzene 108 " 100 ND Xylene (p/m) 204 " 200 ND Xylene (o) 108 " 100 ND Surrogate. a,a,a-Trifluorotoluene 100 ND Surrogate. a,a,a-Trifluorotoluene 101 " 100 ND Matrix Spike Dup (EI51403-MSD1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 89 9 ug/kg 100 ND Toluene Toluene 93 5 " 100 ND	105 80-120			
Matrix Spike (EI51403-MS1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 91 0 ug/kg 100 ND Toluene 94 2 " 100 ND Ethylbenzene 108 " 100 ND Xylene (p/m) 204 " 200 ND Xylene (o) 108 " 100 ND Surrogate. a.a.a-Trifluorotoluene 102 " 100 ND Surrogate 4-Bromofluorobenzene 101 " 100 ND Matrix Spike Dup (EI51403-MSD1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 89 9 ug/kg 100 ND Toluene ND	94.2 0-200		,	
Benzene 91 0 ug/kg 100 ND Toluene 94 2 " 100 ND Ethylbenzene 108 " 100 ND Xylene (p/m) 204 " 200 ND Xylene (o) 108 " 100 ND Surrogate. a.a.a-Trifluorotoluene 102 " 100 ND Surrogate 4-Bromofluorobenzene 101 " 100 Matrix Spike Dup (E151403-MSD1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 89 9 ug/kg 100 ND Toluene 93 5 " 100 ND	96 2 0-200			
Toluene 94 2 100 ND Ethylbenzene 108 100 ND Xylene (p/m) 204 200 ND Xylene (o) 108 100 ND Surrogate. a.a.a-Trifluorotoluene 102 " 100 Surrogate 4-Bromofluorobenzene 101 " 100 Matrix Spike Dup (E151403-MSD1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 89 9 ug/kg 100 ND Toluene 93 5 " 100 ND	ılyzed. 09/14/05			
Ethylbenzene 108 " 100 ND Xylene (p/m) 204 " 200 ND Xylene (o) 108 " 100 ND Surrogate. a.a.aTrifluorotoluene 102 " 100 ND Surrogate. 4-Bromofluorobenzene 101 " 100 ND Matrix Spike Dup (E151403-MSD1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 89 9 ug/kg 100 ND Toluene 93 5 " 100 ND	91.0 80-120			
Xylene (p/m) 204 " 200 ND Xylene (o) 108 " 100 ND Surrogate. a.a.aTrifluorotoluene 102 " 100 ND Surrogate. a.a.aTrifluorotoluene 101 " 100 ND Matrix Spike Dup (EI51403-MSD1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 89 9 ug/kg 100 ND Toluene 93 5 " 100 ND	94.2 80-120			
Xylene (o) 108 " 100 ND Surrogate. a.a.a-Trifluorotoluene 102 " 100 Surrogate 4-Bromofluorobenzene 101 " 100 Matrix Spike Dup (E151403-MSD1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 89.9 ug/kg 100 ND Toluene 93.5 " 100 ND	108 80-120			
Note Note Note Surrogate. a.a.aTrifluorotoluene 102 " 100 Surrogate. 4-Bromofluorobenzene 101 " 100 Matrix Spike Dup (E151403-MSD1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 89.9 ug/kg 100 ND Toluene 93.5 " 100 ND	102 80-120			
Surrogate 4.8.1-11 yran of othere 102 100 Surrogate 4-Bromofluorobenzene 101 " 100 Matrix Spike Dup (E151403-MSD1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 89.9 ug/kg 100 ND Toluene 93.5 " 100 ND	108 80-120			
Surrogale 4-Bromonitorobenzene 101 100 Matrix Spike Dup (E151403-MSD1) Source: 5112001-13 Prepared 09/13/05 Anal Benzene 89.9 ug/kg 100 ND Toluene 93.5 " 100 ND	102 80-120			
Benzene 89.9 ug/kg 100 ND Toluene 93.5 " 100 ND	101 80-120			
Toluene 93 5 " 100 ND	lyzed 09/14/05			
		1 22	20	
	89.9 80-120	0.746	20	
Ethylbenzene 106 " 100 ND	89.9 80-120 93 5 80-120	187	20	
Xylene (p/m) 201 " 200 ND		1 98	20	
Xylene (o) 106 " 100 ND	93 5 80-120	187	20	
Surrogate a.a.a-Trifluorotoluene 96.4 " 100	93 580-12010680-120			

0

.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas

Page 25 of 29

Organics by GC - Quality Control Environmental Lab of Texas Analyte Reporting Land Spike Land Source Result Source Result %AREC %APD RPD Land NP Analyte Result Umis Level Result %AREC RPD Land NO Bath E151404 - EPA 5030C (GC) Prepared & Analyzed 09/14/05 NO 0.0250 result ND ND <th>Plains All American EH & S 1301 S County Road 1150 Midland TX, 79706-4476</th> <th></th> <th>Project N</th> <th>umber EM</th> <th>ik 374 10" S S 2005-00</th> <th></th> <th>Haul Line</th> <th></th> <th></th> <th>Fax (432) Repo</th> <th>rted:</th>	Plains All American EH & S 1301 S County Road 1150 Midland TX, 79706-4476		Project N	umber EM	ik 374 10" S S 2005-00		Haul Line			Fax (432) Repo	rted:
Brivino metal Lab of Texas Analyse Regonting Lumin Spake Umins Spake Result Source Result Spake Result Source Result Spake Result Source Result Spake Result Spake Result <t< th=""><th>Midiand 1X, 79706-4476</th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th>09/13/0</th><th>5 12 19</th></t<>	Midiand 1X, 79706-4476			_						09/13/0	5 12 19
Result Reporting Limit Spike Limit Source Result %REC MR RPD Limit ND Satch E151404 - EPA 5030C (GC) Prepared & Analyzed 09/14/05 ND 0.025 mg/kg well		0			-						
Analysic Result Lumit Units Level Result %REC Lumits RPD Lumit No Batch EI51404-EPA 5030C (GC) State Prepared & Analyzed 09/14/05 <td< th=""><th></th><th></th><th>Environ</th><th>nental L</th><th>ab of Tex</th><th>kas</th><th></th><th></th><th></th><th></th><th></th></td<>			Environ	nental L	ab of Tex	kas					
Mark (£151404-BL.K1) Prepared & Analyzed $09/14/05$ Senzene ND 0 0250 mg/kg wet Voluene ND 0 0250 - Senzene ND 0 0250 - Sylene (p/m) ND 0 0250 - Sylene (p/m) ND 0 0250 - warrogate <i>a.a.a.rTrfluorotoluene</i> 93.9 ug/kg 100 93.9 80-120 warrogate <i>a.a.a.rTrfluorotoluene</i> 91.2 " 100 91.2 80-120 CS (E151404-BS1) Prepared & Analyzed.09/14/05 - - - - Senzene 90.1 ug/kg 100 90.1 80-120 Cibuene 94.0 - 100 102 80-120 warrogate <i>a.a.o.a.rTrfluorotoluene</i> 97.4 " 100 102 80-120 warrogate <i>a.a.o.a.rTrfluorotoluene</i> 97.4 " 100 103 80-120 Sylene (n/m) 103 " 100 103 80-120 Sylen	Analyte	Result		Units	-		%REC		RPD		Notes
ND 0 0250 mg/kg wet Ioluene ND 0 0250 - sihylbenszue ND 0 0250 - sylene (m) ND 0 0250 - sylene (m) ND 0 0250 - surrogate	Batch EI51404 - EPA 5030C (GC)										
ND 0 0250 * thylhorszene ND 0 0250 * Sylene (p/m) ND 0 0250 * tarrogate a.a.s. Trifluorotolazene 33.9 ug/kg 100 93.9 80.120 tarrogate a.a.s. Trifluorotolazene 91.2 * 100 91.2 80.120 Soleze * 100 90.1 80.120 CS (EIS1404-BS1) * 100 90.1 80.120 Solezene 90.1 ug/kg 100 90.1 80.120 Solezene 90.1 * 100 100 80.120 Sylene (p/m) 204 * 100 102 80.120 Sylene (p/m) 109 * 100 103 80.120 Sylene (p/m) 109 * 100 101 80.120 Sylene (p/m) 193 * 100 101 80.120 Sylene (p/m) 193 * 100 101 80.120	Blank (E151404-BLK1)				Prepared &	z Analyzed	09/14/05				
Nature ND 0 0250 " Sylene (p/m) ND 0 0250 " Sylene (p/m) ND 0 0250 " inrrogate a.a.a.Tr/fluorololene 93 9 ug/kg 100 92 9 80-120 inrrogate A.a.a.Tr/fluorololene 93 9 ug/kg 100 91 2 80-120 LCS (EIS1404-BS1) Prepared & Analyzet. 09/14/05 80-120 80-120 LSS (eIS1404-BS1) 100 90 1 80-120 Sylene (p/m) 204 " 100 80-120 Stylene (p/m) 204 " 100 80-120 Stylene (p/m) 204 " 200 103 80-120 Stylene (p/m) 103 " 100 103 80-120 Stylene (p/m) 103 " 100 103 80-120 Stylene (p/m) 103 " 100 88 9 80-120 Stylene (p/m) 193 - 200 96 5 80-120 Stylene (p/m	3enzene	ND	0 0250	mg/kg wet							
Kylen (p/m) ND 0 0250 * Sylene (o) ND 0 0250 * turrogate a.a.a.Trifluorololene 93.9 kg/g 100 93.9 80.120 turrogate a.a.a.Trifluorololene 91.2 " 100 91.2 80.120 turrogate a.a.a.Trifluorololene 91.2 " 100 91.0 80.120 CCS (ES1404-BS1) Perpared & Analyzes.09/14/05 80.120 80.120 Seazene 90.1 ug/g 100 90.1 80.120 Silybenzene 107 100 107 80.120 Sylene (p/m) 204 " 200 102 80.120 Sylene (p/m) 103 " 100 103 80.120 Sylene (p/m) 103 " 100 89.8 80.120 Salibration Check (EIS1404-CCV1) Perpared & Analyzes.0	l'oluene	ND	0 0250	•							
ND 0.0250 " Narrogate a.a.a.Trifluorotoluene 93.9 ug/kg 100 93.9 80.120 Narrogate 4-Bromofluorobenzene 91.2 " 100 91.2 80.120 LCS (EIS1404-BS1) Prepared & Analyzed .09/14/05 80.120 Sanzene 90.1 ug/kg 100 94.0 80.120 Sittylbenzene 100 94.0 " 100 94.0 80.120 Stylben (o) 90.1 ug/kg 100 90.1 80.120 Stylben (o) 90.1 90.1 80.120 80.120 Stylben (o) 109 " 100 109 80.120 Stylben (o) 109 " 100 109 80.120 Stylben (o) 109 " 100 89.8 80.120 Stylben (o) 109 103 89.7 80.120 Stylben (o/m) 193 " 100 101 80.120 Stylbine (o/m) 193 " <t< td=""><td>Ethylbenzene</td><td>ND</td><td>0 0250</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Ethylbenzene	ND	0 0250	"							
Arrogate 93 9 ug/kg 100 93 9 80.120 Surrogate 91 2 " 100 91 2 80.120 LCS (E151404-BS1) Prepared & Analyzed. 09/14/05 80.120 80.120 Sanzene 90.1 ug/kg 100 90 1 80.120 Sanzene 90.1 ug/kg 100 94 0 80.120 Sanzene 90.1 ug/kg 100 94 0 80.120 Stylene (n) 204 " 200 102 80.120 Skylene (n) 109 " 100 107 80.120 Surrogate a.a.a.Trifluorotoluene 97.4 " 100 103 80.120 Surrogate 4.Bromofluorobenzene 103 " 103 80.120 Surrogate 4.Bromofluorobenzene 103 " 100 89 80.120 Surrogate 4.Bromofluorobenzene 103 " 100 89 80.120 Surrogate 4.Bromofluorobenzene	Yylene (p/m)	ND	0 0250	"							
Nurogaie 4-Bromofluorobenzene 91.2 " 100 91.2 80-120 CS (EIS1404-BS1) Prepared & Analyzed. 09/14/05 80-120 80-120 Senzene 90.1 ug/kg 100 94.0 80-120 Foluene 94.0 " 100 94.0 80-120 Sthylbenzene 107 " 100 107 80-120 Stylene (p/m) 204 " 200 102 80-120 Sylene (p/m) 204 " 200 102 80-120 Sylene (p/m) 109 " 100 103 80-120 Sylene (p/m) 109 " 100 103 80-120 Sylene (p/m) 103 " 100 89 80-120 Calibration Check (EIS1404-CCV1) Prepared & Analyzed. 09/14/05 89 80-120 Senzene 89 ug/kg 100 89 80-120 Sylene (p/m) 193 " 200 96.5 80-120	Kylene (0)	ND	0 0250	"							
Jamma and state of the stat	Surrogate a,a,a-Trifluorotoluene	939		ug/kg	100		939	80-120			
serzene 90.1 ug/kg 100 90.1 80-120 ioluene 94.0 " 100 94.0 80-120 ithylbenzene 107 " 100 107 80-120 ithylbenzene 107 " 100 107 80-120 ithylbenzene 109 " 100 109 80-120 iurrogate a.a.a-Trifluorotoluene 97.4 " 100 97.4 80-120 iurrogate a.a.a-Trifluorotoluene 97.4 " 100 97.4 80-120 iurrogate a.a.a-Trifluorotoluene 97.4 " 100 103 80-120 iurrogate a.a.a-Trifluorotoluene 89.8 " 100 88.9 80-120 iurrogate 98.8 " 100 88.9 80-120 100 idene 89.8 " 100 101 80-120 100 101 80-120 idythenzene 101 " 100	urrogate 4-Bromofluorobenzene	912		"	100		912	80-120			
Toluene 94 0 " 100 94 0 80-120 ithylbenzene 107 " 100 107 80-120 (ylene (p/m) 204 " 200 102 80-120 iurrogate a.a.a-Trifluorotoluene 97.4 " 100 109 80-120 iurrogate a.a.a-Trifluorotoluene 97.4 " 100 97.4 80-120 iurrogate a.a.a-Trifluorotoluene 97.4 " 100 97.4 80-120 iurrogate a.a.a-Trifluorotoluene 97.4 " 100 97.4 80-120 calibration Check (EIS1404-CCV1) Prepared & Analyzed. 09/14/05 80 80 100 88 9 80-120 Selencene 88 9 ug/kg 100 88 9 80-120 101 80-120 Selence(p/m) 193 " 200 96 5 80-120 101 80-120 urrogate a.a.a-Trifluorotoluene 9/2 " 100 101 80-120 100 101 80-120 100 101 80-120 100 101 80-120 100 101 <td>LCS (EI51404-BS1)</td> <td></td> <td></td> <td></td> <td>Prepared &</td> <td>z Analyzed.</td> <td>09/14/05</td> <td></td> <td></td> <td></td> <td></td>	LCS (EI51404-BS1)				Prepared &	z Analyzed.	09/14/05				
Still IO7 " IO0 IO7 80-120 Sylene (p/m) 204 " 200 102 80-120 Sylene (o) 109 " 100 109 80-120 Surrogate a.a.a.Trifluorotoluene 97.4 " 100 103 80-120 Calibration Check (EIS1404-CCV1) Prepared & Analyzet. 09/14/05 80-120 Calibration Check (EIS1404-CCV1) Prepared & Nalyzet. 09/14/05 80 80-120 Solutione 88.9 ug/kg 100 88.9 80-120 Solutione 89.8 " 100 89.8 80-120 Solutione 101 " 100 89.8 80-120 Solutione 103 " 200 96.5 80-120 Solution (o) 105 " 100 105 80-120 Solution (a.a.a.Trifluorotoluene 94.2 " 100 96.2 0.200 Surgate a.a.a.Trifluorotoluene 96.2 " 100 96.2 0.200 Surgate a.a.a.Trifluorotoluene 96.2 " 100 ND <td>Benzene</td> <td>90.1</td> <td></td> <td>ug/kg</td> <td>100</td> <td></td> <td>90 1</td> <td>80-120</td> <td></td> <td></td> <td></td>	Benzene	90.1		ug/kg	100		90 1	80-120			
Kylene (p/m) 204 " 200 102 80-120 Kylene (o) 109 " 100 109 80-120 kurrogate a,a,a-Trifluorotoluene 97.4 " 100 77.4 80-120 kurrogate 4-Bromofluorohenzene 103 " 100 103 80-120 Calibration Check (EI51404-CCV1) Prepared & Analyzed. 09/14/05 80-120 Sanzene 88.9 ug/kg 100 88.9 80-120 Soluene 89.8 " 100 89.8 80-120 Stylene (p/m) 193 " 200 96.5 80-120 Sylene (o) 105 " 100 101 80-120 Sylene (o) 105 " 100 105 80-120 Surogate a,a,a-Trifluorotoluene 94.2 " 100 94.2 0.200 Sylene (o) 105 " 100 96.2 0.200 Surogate A-Bromofluorobenzene 96.2 " 100 ND 89.9 80-120 Soluene 89.9 ug/kg 100	Toluene	94 0			100		94 0	80-120			
Sylene (o) 109 109 109 80-120 iurrogate a,a,a-Trifluorotoluene 97.4 " 100 103 80-120 iurrogate 4-Bromofluorobenzene 103 " 100 103 80-120 Calibration Check (EI51404-CCV1) Prepared & Analyzed. 09/14/05	Ethylbenzene	107		•	100		107	80-120			
Surrogate a.a.a-Trifluorotoluene 97.4 " 100 97.4 &0.120 Calibration Check (EIS1404-CCV1) Prepared & Analyzed. 09/14/05 Senzene 88.9 ug/kg 100 88.9 80-120 Calibration Check (EIS1404-CCV1) Prepared & Analyzed. 09/14/05 88.9 80-120 Senzene 88.9 ug/kg 100 88.9 80-120 Coluene 89.8 " 100 89.8 80-120 Sthylbenzene 101 " 100 101 80-120 Stylene (p/m) 193 " 200 96.5 80-120 Stylene (o) 105 " 100 101 80-120 Stylene (o) 105 " 100 105 80-120 Stylene (o) 105 " 100 94.2 0-200 Start a.g.aTrifluorotoluene 94.2 " 100 94.2 0-200 Matrix Spike (EIS1404-MS1) Source: S113009-01 Prepared & Analyzed. 09/14/05 89.9 80-120 </td <td>(ylene (p/m)</td> <td>204</td> <td></td> <td>"</td> <td>200</td> <td></td> <td>102</td> <td>80-120</td> <td></td> <td></td> <td></td>	(ylene (p/m)	204		"	200		102	80-120			
Nurrogate 4-Bromofluorobenzene 103 " 100 103 80-120 Calibration Check (EI51404-CCV1) Prepared & Analyzed. 09/14/05 Benzene 88 9 ug/kg 100 88 9 80-120 Foluene 89 8 " 100 89 8 80-120 Sturgene (p/m) 101 " 100 101 80-120 Sylene (p/m) 193 " 200 96 5 80-120 Sylene (o) 105 " 100 101 80-120 Sylene (o) 105 " 100 105 80-120 Surrogate a.g.aTirifluorotoluene 94.2 " 100 94.2 0.200 Surrogate 4-Bromofluorobenzene 96.2 0.200 96.2 0.200 Surrogate 4-Bromofluorobenzene 96.2 0.200 96.2 0.200 Surrogate 4-Bromofluorobenzene 92.9 " 100 ND 89.9 80-120 Surrogate 4-Bromofluorobenzene 92.9 " 100 ND 92.9 80-120 Surrogate 4-Bromofluorobenzene 92.9 <th< td=""><td>Kylene (o)</td><td>109</td><td></td><td>"</td><td>100</td><td></td><td>109</td><td>80-120</td><td></td><td></td><td></td></th<>	Kylene (o)	109		"	100		109	80-120			
Calibration Check (EI51404-CCV1) Prepared & Analyzed. 09/14/05 Senzene 88 9 ug/kg 100 88 9 80-120 Coluene 89 8 " 100 89 8 80-120 Ethylbenzene 101 " 100 101 80-120 Kylene (p/m) 193 " 200 96 5 80-120 Surrogate a,a,a-Trifluorotoluene 94 2 " 100 105 80-120 Surrogate 4-Bromofluorobenzene 96 2 " 100 96 5 80-120 Surrogate 4-Bromofluorobenzene 96 2 " 100 96 2 0-200 Matrix Spike (EI51404-MS1) Source: 5113009-01 Prepared & Analyzed. 09/14/05 96 2 0-200 Senzene 89 9 ug/kg 100 ND 89 9 80-120 Soluene 92 9 " 100 ND 89 9 80-120 Sthylbenzene 104 " 100 ND 89 9 80-120 Sthylbenzene 104 <	Surrogate a,a,a-Trifluorotoluene	974		"	100		974	80-120			
Benzene 88 9 ug/kg 100 88 9 80-120 Foluene 89 8 " 100 89 8 80-120 Ethylbenzene 101 " 100 101 80-120 Kylene (p/m) 193 " 200 96 5 80-120 Kylene (o) 105 " 100 105 80-120 Surrogate a,a,a-Trifluorotoluene 94 2 " 100 105 80-120 Surrogate 4-Bromofluorobenzene 96 2 " 100 105 80-120 Matrix Spike (EI51404-MS1) Source: 5113009-01 Prepared & Analyzed. 09/14/05 96 2 0-200 Senzene 89 9 ug/kg 100 ND 89 9 80-120 'oluene 92 9 " 100 ND 89 9 80-120 'oluene 92 9 " 100 ND 92 9 80-120 'sthylbenzene 104 " 100 ND 104 80-120 'oluene 197 " 200 ND 98 5 80-120 <td< td=""><td>Surrogate 4-Bromofluorobenzene</td><td>103</td><td></td><td>"</td><td>100</td><td></td><td>103</td><td>80-120</td><td></td><td></td><td></td></td<>	Surrogate 4-Bromofluorobenzene	103		"	100		103	80-120			
Foluene 89 8 " 100 89 8 80-120 Ethylbenzene 101 " 100 101 80-120 Kylene (p/m) 193 " 200 96 5 80-120 Kylene (o) 105 " 100 105 80-120 Surrogate a,a,a-Tirfluorotoluene 94 2 " 100 96 2 0-200 Surrogate 4-Bromofluorobenzene 96 2 " 100 96 2 0-200 Matrix Spike (EI51404-MS1) Source: 5I13009-01 Prepared & Analyzed. 09/14/05 96 2 0-200 Senzene 89 9 ug/kg 100 ND 89 9 80-120 'oluene 92 9 " 100 ND 89 9 80-120 'sthylbenzene 104 " 100 ND 92 9 80-120 'sthylbenzene 197 " 200 ND 98 5 80-120	Calibration Check (EI51404-CCV1)				Prepared &	Analyzed.	09/14/05				
Solutine Sol Solution	Benzene	88 9		ug/kg	100		88 9	80-120			
kylene (p/m) 193 " 200 96 5 80-120 kylene (o) 105 " 100 105 80-120 kylene (o) 94 2 " 100 94 2 0-200 kylene (a, a, a-Trifluorotoluene 94 2 " 100 96 2 0-200 kylene (b/m) 96 2 0-200 96 2 0-200 0 96 2 0-200 Matrix Spike (E151404-MS1) Source: 5113009-01 Prepared & Analyzed. 09/14/05 96 2 0-200 Senzene 89 9 ug/kg 100 ND 89 9 80-120 'oluene 92 9 " 100 ND 92 9 80-120 'skylbenzene 104 " 100 ND 104 80-120 'glene (p/m) 197 " 200 ND 98 5 80-120	oluene	89 8		н	100		898	80-120			
Kylene (o) 105 105 " 100 105 80-120 Surrogate a,a,a-Trifluorotoluene 94.2 " 100 94.2 0-200 Surrogate 4-Bromofluorobenzene 96.2 " 100 96.2 0-200 Matrix Spike (E151404-MS1) Source: 5113009-01 Prepared & Analyzed. 09/14/05 Benzene 89.9 ug/kg 100 ND 89.9 80-120 'oluene 92.9 " 100 ND 92.9 80-120 'sthylbenzene 104 " 100 ND 104 80-120 (ylene (p/m)) 197 " 200 ND 98.5 80-120	Ethylbenzene			м	100		101	80-120			
Surrogate a,a,a-Trifluorotoluene 94.2 " 100 94.2 0-200 Surrogate 4-Bromofluorobenzene 96.2 " 100 96.2 0-200 Matrix Spike (E151404-MS1) Source: 5113009-01 Prepared & Analyzed. 09/14/05 Senzene 89.9 ug/kg 100 ND 89.9 80-120 'oluene 92.9 " 100 ND 92.9 80-120 Sthylbenzene 104 " 100 ND 104 80-120 (sylenc (p/m)) 197 " 200 ND 98.5 80-120				**							
Surrogate 4-Bromofluorobenzene 96.2 " 100 96.2 0-200 Matrix Spike (EI51404-MS1) Source: 5I13009-01 Prepared & Analyzed. 09/14/05 Senzene 89.9 ug/kg 100 ND 89.9 80-120 'oluene 92.9 " 100 ND 92.9 80-120 Sthylbenzene 104 " 100 ND 104 80-120 (ylenc (p/m)) 197 " 200 ND 98.5 80-120	Kylene (o)	105		*	100		105	80-120			
Matrix Spike (E151404-MS1) Source: 5113009-01 Prepared & Analyzed. 09/14/05 Benzene 89 9 ug/kg 100 ND 89 9 80-120 "oluene 92 9 " 100 ND 92 9 80-120 "thylbenzene 104 " 100 ND 104 80-120 Kylene (p/m) 197 " 200 ND 98 5 80-120	Surrogate a,a,a-Trifluorotoluene	942		"	100		942	0-200			
Senzene 89 9 ug/kg 100 ND 89 9 80-120 'oluene 92 9 " 100 ND 92 9 80-120 'ithylbenzene 104 " 100 ND 104 80-120 (ylene (p/m)) 197 " 200 ND 98 5 80-120	Surrogate 4-Bromofluorobenzene	96 2		"	100		96 2	0-200			
Foluene 92 9 " 100 ND 92 9 80-120 Ethylbenzene 104 " 100 ND 104 80-120 Kylenc (p/m) 197 " 200 ND 98 5 80-120	Matrix Spike (EI51404-MS1)	Sou	rce: 5113009-	-01	Prepared &	Analyzed.	09/14/05				
Stability is solution S2 / Solution S0 /	3enzene	89 9		ug/kg	100	ND	89 9	80-120			
(ylene (p/m) 197 " 200 ND 98 5 80-120	oluene	92 9		"	100	ND	92 9	80-120			
					100	ND	104	80-120			
(ylene (o) 103 " 100 ND 103 80-120											
	(ylene (o)	103			100	ND	103	80-120			
	urrogate 4-Bromofluorobenzene	914		"	100		914	80-120			

0

ē

0

0

0

09/15/05 12 19

Organics by GC - Quality Control

Environmental Lab of Texas

										1
		Reporting		Spike	Source		%REC		RPD	1
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EI51404 - EPA 5030C (GC)

Matrix Spike Dup (E151404-MSD1)	Source: 5	I13009-01	Prepared &	Analyzed	09/14/05			
Benzene	89 1	ug/kg	100	ND	89 1	80-120	0 894	20
Toluene	93 0	"	100	ND	93 0	80-120	0 108	20
Ethylbenzene	104	"	100	ND	104	80-120	0 00	20
Xylene (p/m)	197		200	ND	98 5	80-120	0 00	20
Xylene (o)	103		100	ND	103	80-120	0 00	20
Surrogate a,a,a-Trifluorotoluene	96 8	"	100		96 8	80-120		
Surrogate 4-Bromofluorobenzene	942	"	100		942	80-120		

Environmental Lab of Texas

Õ

Plains All American EH & S		Proje	_{ect} Tar	ık 374 10" Sı	weet Truck	Haul Line			Fax (432)	687-4914
1301 S County Road 1150		Project Numb		S 2005-00					Repo	rted:
Midland TX, 79706-4476		Project Manag	ger Dar	uel Bryant					09/15/0	5 12 19
General	Chemistry Para	•				ls - Qua	lity Cont	trol		
		Environme	ntal L	ab of Tey	as					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI51307 - General Preparation	(Prep)									
Blank (EI51307-BLK1)				Prepared &	Analyzed	09/13/05				
6 Solids	100		%							
Duplicate (EI51307-DUP1)	Sou	rce: 5112001-01		Prepared &	Analyzed	09/13/05				
6 Solids	96 4		%		96 8			0 4 1 4	20	
Duplicate (E151307-DUP2)	Sou	rce: 5112001-21		Prepared &	Analyzed	09/13/05				
6 Solids	99.8		%		99 8			0 00	20	
Batch EI51419 - Water Extraction										
Blank (EI51419-BLK1)				Prepared &	Analyzed	09/14/05				
Chionde	ND	20 0 mg	g/kg Wet							
Matrix Spike (EI51419-MS1)	Sou	rce: 5113009-01		Prepared &	Analyzed	09/14/05				
Chlonde	200	20 0 mg	g/kg Wet	175	106	108	80-120			
Matrix Spike Dup (E151419-MSD1)	Sou	rce: 5113009-01		Prepared &	Analyzed	09/14/05				
Chlonde	204	200 mg	g/kg Wet	175	10 6	111	80-120	1 98	20	
Reference (EI51419-SRM1)				Prepared &	Analyzed.	09/14/05				
Chlonde	5000	r	mg/kg	5000		100	80-120			

e

Ó

0

Ø

Plains All American EH & S 1301 S County Road 1150 Midland TX, 79706-4476 ProjectTank 374 10" Sweet Truck Haul LineProject NumberEMS 2005-00172Project ManagerDaniel Bryant

Fax (432) 687-4914

Reported: 09/15/05 12 19

Notes and Definitions

S-06 The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect J Detected but below the Reporting Limit, therefore, result is an estimated concentration (CLP J-Flag) Analyte DETECTED DET Analyte NOT DETECTED at or above the reporting limit ND Not Reported NR Sample results reported on a dry weight basis dry Relative Percent Difference RPD Laboratory Control Spike LCS MS Matrix Spike Duplicate Dup

Report Approved By:

Raland K Junits

9/15/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

Date:

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

SB-1 5' $06SEP$ 1034 $1 \times$ $X \times$ X SB-1 15' 1040 1 1 <th>dessa, Texas 79763</th> <th></th> <th>Phone: 915-563-1800 Fax: 915-563-1713</th> <th></th> <th>EQUES</th> <th></th> <th>E7</th>	dessa, Texas 79763		Phone: 915-563-1800 Fax: 915-563-1713																							EQUES		E7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Project Man	ager: <u>KEN</u>	DUTTON													Pr	ojec	t Nar	ne:_	11	Rue	X	HA	74	62	JIN	'E	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Company I	Name BAS	IN ENV S	'VS				.									P	ojec	t#:	E	4	Ś:	Q	'ø;	ø:	ī_¢	sø.	17
elephone No: $(505) 4441 - 2124$ Fax No: $(505) 3916 - 1429$ Her Signature: Analyze For. T <u>CL</u> TOTAL: 5	Company Add	tress: <u>7.0.</u>	Box 301														Proj	ect L	oc: _	LE	A		<u>Co</u>	'UL	vz.	K_A	IM	•
elephone No: $(505) 4441 - 2124$ Fax No: $(505) 3916 - 1429$ Her Signature: Analyze For. T <u>CL</u> TOTAL: 5	City/Stat		NATON. NM	885	260	r												PC) #:	P	Al	9/	È)	BÅ	- ŶĦ	W7	~
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					7		15	50	5)	3	96	·	14	12	9				-	,								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Complex Sign		1 Dutta)			Æ			- 1 .		£	l	-	1													
Product Product Product FIELD CODE Contrainers Sampled SB-1 12 SB-1	Sampler Sign	acure,	- Jranica														Γ					Analy	ze F	or,				ך
1 1 </td <td></td> <td>\mathbf{F}</td> <td></td> <td></td> <td></td> <td>+-</td> <td>+</td> <td>x</td> <td></td> <td></td> <td></td> <td></td> <td></td>																	\mathbf{F}				+-	+	x					
Algorithm Algorithm Algorithm Algorithm Algorithm Algorithm Algorithm Algorithm Algorithm<	· · · · · · · · · · · · · · · · · · ·			1		I	1	╀	1	Pres	iervat	tive		\square	Matr	rix T	- 19 20			ł	8					B		e e
S'B-1 5' $d6SEP$ 1634 1 x x x x S'B-1 15' 1646 1646 1647 1647 1647 S'B-1 25' 1647 1657 1657 1657 1657 SB-1 56' 1162 1166 1667 1667 1667				20	íø5				ļ								1		HCO3		Hody							hedu
S'B-1 5' $d6SEP$ 1634 1 x x x x S'B-1 15' 1646 1646 1647 1647 1647 S'B-1 25' 1647 1657 1657 1657 1657 SB-1 56' 1162 1166 1667 1667 1667						, p	Siers										13	Na, K	Ś				8			K		S e
S'B-1 5' $d6SEP$ 1634 $1 \times$ X X S'B-1 15' 1646 1 1 1 S'B-1 25' 1647 1 1 X S'B-1 46' 1647 1 X X S'B-1 46' 1657 1 X X S'B-1 56' 1162 1 1 X	1020				ade.	ample	cntail						pecify)			ectivit	00	WD.	SQ4	L CEC	8	le6	18/50					AT (P
S'B-1 5' $d6SEP$ 1634 1 x x x x S'B-1 15' 1646 1646 1647 1647 1647 S'B-1 25' 1647 1657 1657 1657 1657 SB-1 56' 1162 1166 1667 1667 1667	The				5 2 2	e S	ď		5		¥	្ត័្	er (5)	ter	務	AT (50	418.	ons (C	us (CI	1 ESF	als: Ag tites	livotati	X 802		N.W.	1 Gam		EE ES
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B # (lab use only)		ELD CODE				Ž	<u>8</u>	Ť	Ĥ	Na.	H ₂	15	ş	ŝ	3 8	Ē	Cet	Anio	SAR SAR		Ling S	818	Î	Ž		\vdash	<u> </u> §
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		and the second se	5	06	<u>SEP</u>		14	Ч¥	4							X↓_	- X	4			-+		X	$\left - \right $	\square		┝─┾	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1		┿╋	╀	+	$\left - \right $	$ \cdot $	+			-+	╀╋	╫			-	╋		╢	┫	┝╌┼	-	┝╋	
SB-1 55' 1142 SB-1 65' 1166				+		· · · · · · · · · · · · · · · · · · ·	+	╉┼		\vdash		-+-	+			+	+		-	-+	+	╋	╂	+-1	┝╌┼	- X	┢╍╋╴	
<u>SB-1 68'</u> 1106				╂	1		┼╌┼	+	+		$\left \right $		+	\square		┢┼╴	+		\vdash	┯	┯	+	╂╋╴	┢╾┥	┝─┼		\vdash	╉
╧┉┉╬╫┈┉╴┉╫╢┉┉┉┈┼╷╎╴┈┉┉┈┈┼┈┈┈┼┈┉┉┼┉┼┈╬┈┙┉┼┉╬┈╢┈╢╴╢┈╢╴╢╴╢╴╢╴╢╴╢╴╢╴╢╴╢╴╢╴╢				<u>†</u>	1		++	╂┼	+	\vdash			+				\ddagger			+	+	+			┝╼┾			-
	-ori s	B-1 7		1	1	the second s	$^{++}$	\dagger	1	\vdash		1	1			11-	†			1	+	-			\square	1	\square	T
	-08					1158	\square	T	1				1			\square	Π				T	T	Π		\square		\square	Τ
		B-1 9				1228		Π								Π	Π				Ι				\Box			
SB-1 90' 1228	57 D: - 16 S	3B-1 1	øø		4	1250		•	/								ļĻ											
	-03 -04 -05 -06 -07 -08	$\frac{5B-1}{8B-1}$ $\frac{5B-1}{8B-1}$ $\frac{5B-1}{8B-1}$ $\frac{5B-1}{8B-1}$	25' 1ø' 5ø' 7ø' ?ø'			1047 1057 1102 1106 1125 1158																				┈┿╍╍╸┿╍╍╸┿╸╸╸╋╸╸╸┥╸		
		the second s		 	 		\downarrow	\downarrow	4	┞╌┨	\vdash		+		-	↓	\parallel		$\left - \right $				μ_	\square	┝─┤		\vdash	╇
<u>SB-1 90' 1228</u>	ecial Instructions:	0-1 1	pp ⁻		4	12250		18	<u>′</u>				1	1	!		14	<u> </u>	Sam					L	ĻĻ	1		1
<u>SB-1 90'</u> <u>SB-1 100'</u> <u>1258 00</u>																			Tem	pera	turé	Upon	Rec	ceipt;	;	مىيەر . ئىرى .	л л	-
SB-1 90' 1228 SB-1 100' 1250 90' Sample Containers Intact? N Sample Containers Intact? N Stors: Sample Containers Intact? N N	Inouished by:		Date Time	Receiv	ed by:									Da	ste		Tin		Lab	orato	ory C	omn	юпа	s: ,	2	.5	ن. ب	
SB-1 90' 1228 SB-1 100' 1250 ** Nons: Sample Containers Intact? N Sample Containers Intact? N Temperature Upon Receipt: Laboratory Comments:		Anna			/	R. +								ala	1-0		30		-	4	02			: '	•			
SB-1 90' 1228 SB-1 100' 1250 Nons: 1250 1250 Nons: Sample Containers Intact? N Temperature Upon Receipt: Laboratory Comments: 2.5° Date Time Area	linguished by	a	Date Time	Bacan	ad by EL	DA-							+		چىنى <u>ت</u>	-			- '									, - ,
$\frac{SB-1}{SB-1} \frac{90'}{100'} \frac{1228}{1250} \frac{1228}{1250} \frac{1228}{1250} \frac{1228}{1250} \frac{12250}{1250} \frac{12250}{1250} \frac{1228}{1250} \frac{1228}{1250}$	indulation of		19/1/25 4:55Fu				1	5			,		ia	1	100		۲			• •	- · ·	1. 15	· •^.				.`	,

lessa, Texas 79763	5	Fax: 915-	63-1800 63-1713											Cr				-			AND						
Project Ma	inager: KE	N DUT	TON													Proje	ect Na	ime:	T. 7	AN. Ry	K E	37 	4 (Ri	10 41	کې نيدار	WE	6°7 1°
Company	Name BA	2,SIN E	VV S	VC	S												Proje	ct#:	Þ	M	di	A	'ø	đ E	5-	ø	11
	idress: P	-	301																								
					20-	7101										6.9	der:		~	$\frac{E}{D}$	10	$\frac{c}{7}$	$\overline{\mathcal{N}}$	2	R	N I VAN	$\overline{\mathcal{T}}$
City/Sta		VINGTO	N IV I	7_0	\$ 0				1								F	'O #:	-4		TŲ.		<u>Z.</u>	2.	<u>///</u>	<u></u>	
Telspho		5)441	2124			Fax No	:(5	Ø	<u>عل</u>	39	16-	1	Чá	29													
Sampler Sig;	nature:	n Dit	tton	•••••		Ma, &										r			ocurrand	-	Anak						
																Ļ			CLP		Anah	T	TT	ΓT		ТТ	
***								Г	F	⊐res∈	ervativ	e	T	М	atnx		8		TAL	8 Se		X					L
				20	ðø5	-											5 1006	603		Cr Pa Hg							RIISH TAT (Pre-Schadule
						1	s											CO3, HCO3)		SCF							400
0					Date Sampled	Sampled	Containers	l					(j)			:(Â	TPH: 418 1 8015M Cations (Ca. Mg. Na.	No.	CEC	8 B		BTEX 80218/5030					T (ph
J.V.					e Sar	e Sar	5		2		x 3		Other (Specify)	5 8		Other (specify)	TPH: 418 14 801 Cations (Ca. Ma.	Anions (CI, SO4.	SAR / ESP / CEC	Metais: As Ag Ba	Voletiles Serrivolatiles	8021		R	Total Germina		и 7 <u>0</u>
B#(lab use only)	······	FIELD CODE				Time	Ŷ	3	о́ ЧН	Ŷ	NaOH H ₂ SQ,	None	ð	Water Sludge	Soil	othe	L L L	Anion	SAR :	Metal	Volatiles Semivolal	BTEX	ß	N.O.R.M	Total		Sila
	<u>SB-2</u>	5'		Ø6;	5EP		1	Į¥						_	X		хĻ_	<u> </u>				X	_	\square		$\downarrow \downarrow$	_
-12	<u>SB-2</u>	15'				1509		₽		-		-					₽₽			-+		$\downarrow \downarrow$	$\downarrow \downarrow$	\vdash	<u> </u>	\downarrow	╋
	SB-2 da 2	25'			1	1513	╂	╂	┝╌┨	\rightarrow			┝─╋			-	╂╂─	+		-+		╫	$\left\{ - \right\}$	┝╌╋	-+-	++	
-16	<u>SB-3</u>	5		107	SEP.		+	╂╋╴	┝╌┨	-+							╂┼╍	+		┉╋	-	+	$\left - \right $	┝╼╋	-+-	┿┽	+
-16	58-3	15'				\$925	1	Ì				\mathbf{T}						+		ΓŤ	+	\dagger	1			\dagger	\uparrow
-17	SB-3	25'				\$931	<u> </u>	Π							Π							Π				П	\Box
-18	<u>SB-3</u>	40'		ļ		0941	 				_				4		↓	<u></u>				4		\square		++	
10	<u>SB-3</u>	56'	<u> </u>			1001			$\left \right $	_			\square		╫		┝┼╴	┼				╢	\square	┝╌┼		┿┿	
eclai Instructions:	20-2	6%			·	17000		! ₹				1				!				Coni						ᆉ	N.
																		Ter	nper bora	ature tory (Upor Comr	i Ree	ceipt	;		•	- '
linguished by	4	Date	Time	Receiv	ed by:						*********		[Date		T	ime	1.			- - 1111		- <u>-</u> **	2.	51		
Jen Hill	n	BRILPOS		D	<u>ní</u>	Bint							9	9/0	5		5		40	Ż	1	•	• •		· *		
Inquished by.		Date 9/9/35	Time 4:55au	1 1	ed by El		.7			-		-	ail	Date {{å⊆		4	ime CC			•	-		•	,		·· ,`	~

2600 West I-20 East desse, Texas 79763	Phone: 915-563-1890 Fax: 915-563-1713											c	HAII	V OF	cus	700								₹EQU ৴ſ_@		;; -	•
Project Manager: KE	N DUTTON			·····										Pro	ject	Nan	ne:	5 A 1 /	en En	K CK	34	4 3 1 <u>4</u>	: D <u>V 1</u>	جر <u>بر را</u>	LVEC LJI	<u>v</u> E	
- ,	SIN ENV S	ves													Pro	jeci	#:	E.	19	3:	2	Ø	<u>ø5</u>	- 4	<u>oø</u>	17	Z
Company Address: P. C														P													
	ENGTON, NH	88:	220												•	20		7	21	91	2		$\overline{Q_k}$	24	M Far		
		000			F					4 / /	~~~~	2				FΨ	· .		- /	4	Sala	<u>_</u> _					••
	5) 441-2124			Fax No:	(D		15	576		1.7	2	7															
Sampler Signature:	~ Hillin													:		11111 100		_		Ana	yzs	For:	an ing a sub-	-			1
																	TCI				N		Π	\square	T	Π	
							F	reser	vativ	8	Π	٩	viatro	(1008	T	<u></u>	-+	3	-+-	\uparrow	2					L
		04													1005 10		8		Cd Cr Pb Hg								RUSH TAT (Pre-Schedule
		200			2										ŝ	á, 5.	Anlons (CI, SO4, CO3, HCO3)		08								105.4
tor.			Date Sampled	Time Sampied	Containers						Specify)			Ϊ,	56	Cations (Ca, Mg, Na,	Š	S S	eg B		BTEX 8021 PVS030						10.2
Eller .		1	Sen	9 Sar	of Co						eds)		2	pads)	18.1	13 (Ca	Ū,	ESP	Metals. As Ag Ba	50	80211		×.	fotal Gamma			H TA
(B# (lab use only)	FIELD CODE		Date	1 Tme	No.	8	-ÓNH	HCI	108 H	Norie	Other (Water	Tion S	Other	TPH: 418.1 (8015M)	Cation	Anloris	SAR	Metals	Volatilas	BTEX 8021 PU	ŝ	N O.R M.	l'otat (RUSI
5B-4	5'	07	SEP	1112	1	X							K		X						X	Ī	\Box				Ĺ
-22 SB-4	15'			1119	\prod	Ц									Ű			\downarrow	_	\square							_
-13 SB-4	25' 5		ļ	1127	\downarrow	μ.	$ \downarrow \downarrow \downarrow$	_	<u>_</u>					1	Ш		_	\downarrow		_	Щ	∔	\square	\vdash	4	\downarrow	ļ.
5B-5	5		ļ	1336	↓	μ			_			_	╌┿┨					_		_		+	\downarrow	┝╾╁		┼╌┨	L
-25 53-5	15'		ļ	1345	₊	Ц.	\square	_	4-									\dashv	-+	-	+	+	\square	┝─┼	<u> </u>	┿┥	-
-26 SB-5	25'			1353	++-	╢		-+-	╉	┿┯┥			+			-	\rightarrow	-+	-+	-+-	$+\!\!+\!\!+$	+	\vdash	\vdash +		+	⊢
-27 SB-6	5'			1528	++-	╟			+-	╋		-+-	╉		H		+	-+	-+	+	╫	┿	╋┯┩	\vdash	+-	+	-
-28 SB-6 -29 SB-6	<u>15'</u> 25'			1546	+	╫╴	┝─┨	-	╋	+		-+-	-++	+	$\left \right $		-+	-+	+	+	╫	+	┝┤	┝╌╂	+	+	┢
-30 SB-6	401		<u> </u>	1555	+	\parallel	┼╌╂		╋	+		+	╢				-+	-	\neg	+	╢	,†	\square	┢╼╍╂		╋	ŀ
ecial Instructions:	<u> </u>		<u> </u>	12000	1.4	18	لمحمط	سلمهم		J	L£		19	<u></u>								tact?		(0.	N	ىسە ت
																	Tem	pen orat	ature oriy	e Upi Com	in Re men	eceipi ts:	с. <u>т</u> .	5-	`. n	•.	-
Inquished by	Date Time	Recei	ved by:									Date	9	T	Time		, . <u>.</u>	.'				•.•			•	(† - (<i>.</i>
Sonditta	093ED0550955	s T	p.il	Bat							9	9/0	<u>×</u>	9	:5:		, , ,	, t	107	2			•	•		• • •	
Inquished by:	Date Time	- 1.34	ved by EL	.01		• ,		-	· .		l	Dat ∕		- i.	Time		, ,	, `	<u>ب</u>	 	· • ` • •	-	r		, ··		•
D. PKL+	9/A/05 4:55	n	11110	1 IAIL		• •	•				py 9	10	2	PY.	55			lii	NP	Isl	Ś	i al	they	÷.,			

	3	Phone: 915-563 Fax: 915-563											СНА							AND							
Project Ma	anager: KEA	1 DUTTOR	V											P	ojec	t Nar	ns:	1 T.	AI RU	NK (CK	5	1 A.	n K	ø <u>k</u>	ри IN	E E	
		SIN EN		ICS.											P	ojec	t#:	Æ,	H.	5'	2	Ø	۶ç	-¢	5ø_	17	2
		D. Box 3		ł											Proj	ect L	.oc:	h	Ę Á	7 4	ÐĽ.	07	r y	x) pq		
City/St	ate/Zip: 101	IINGTON	NH	8826	I				****							PC)#:	F	A.	7 (A/	$\overline{2}$	2	Ŝ.E	YA	1 pr	1	
		1441-21		- 	Fax No:	15	ø5)3	96	-1	4	79															
Somolor Sig		Len D	atto)		e	23	<u> </u>	1.5			<u>`</u>															
Gampler old		geol Cl	1 per constant												F					Anal	yze l	For:		T	<u>}</u>	····	1
										-		-			F						X						
			T	······		T			eserv	ative			Mati		- <u>§</u>		ଛ		å F								
			F	2\$\$5											1005	Q	Anions (Cl. SO4, CO3, HCO3)		Metais: As Ag Ba Cd Cr Pb Hg								RISH TAT (Pra-Schedule
ol				plecí	pied	tainete					í.			Ś	SOLSM	Ng, Na	54 CO	ы Е С	50		2030		ĺ				(Pro-
CT12				Date Sampled	Time Sampled	No. of Containers					Spec	Water		Soil Chhar (anacifu):	TPH: 418,1 8015M 1005	Cattoris (Ca, Mg, Na, K)	(C) &	SAR / ESP / CEC	As Ag	Volatiles	GTEX 80218/5030		W	otal Ganaria			141
LAB # (lab. use only)		FIELD CODE		Date	Тлте	No, o	3	S I	NaOH	H ₂ SO	None	Watar	Sludge	Scil	TPH: 4	Cation	Anions	SAR /	Metels	Volatiles	BTEX	RCI	N.O.R.M.	Fotal G			15118
- 31	\$B-6	50'		ØZSEP		1	X	\square						X.	Į¥.						X	4	L	\square			ļ
-32	<u>\$B-6</u>	60' 70'			1659 1614	╄	┟╢┼		4			\square	\rightarrow	┠┼╴	╢							-	╞	┝╌┤	-+		+
-34	5B-6 5B-6	79 80'			1626		╂┼	+	╉	$\left - \right $		H	-+	┟┼╴	╢	╋			-+		╢	┼─	┿	┢┼┥	+		+
		<u></u>		¥	2000	8		+						8	12.								\mathbf{T}				t
· · · · · · · · · · · · · · · · · · ·						ļ			Ţ					-	_				_		_		ļ		_	-	
	·····						1 1		1												1			11			
	******				·								1		1						+	+	╀─	┝╍ᆉ			╋
		·····					┠╌┼						-+		T							+	<u>↓</u>				╞

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	Plains / Basi	n
Date/Time:	9/12/05	8:10
Order #:	ST-12.001	
Initials:	<u>ek</u>	

9

Ŏ

Sample Receipt Checklist

Temperature of container/cooler?	Yes	No	215 C
Shipping container/cooler in good condition?	Yes	No	
Custody Seals intact on shipping container/cooler?	Yes	No	Not present
Custody Seals intact on sample bottles?	Yes	No	Not present
Chain of custody present?	Yes	No	
Sample Instructions complete on Chain of Custody?	Ves	No	
Chain of Custody signed when relinquished and received?	Yes	No	
Chain of custody agrees with sample label(s)	Yeş	No	· ·
Container labels legible and intact?	Mes	No	
Sample Matrix and properties same as on chain of custody?	Ves	No	
Samples in proper container/bottle?	Kes	No	
Samples properly preserved?	des	No	
Sample bottles intact?	Xe>	No	
Preservations documented on Chain of Custody?	Yes	No	
Containers documented on Chain of Custody?	825	No	
Sufficient sample amount for indicated test?	Yes	No	
All samples received within sufficient hold time?	¥êş	No	
VOC samples have zero headspace?	(টি)	No	Not Applicable

Other observations:

Variance Documentation:

Contact Person:	Date/Time:	Contacted by:	
Regarding:			
			19-2 - 20-4 ¹ - 21 - 21 - 21 - 21 - 21 - 21 - 21 -
Corrective Action Taken:			
	▞▆₽₽₩₽₽₽₽₩₽₩ <mark>₽₽₽₽₽</mark> ₩₽₩₽₽₽₽₩₽₩₽₩₽₩₽₩₽₽₽₽₩₽₩₽₩₽₩		la di digini di fanan di Tingda da d
Profession			/

Analytical Report

Prepared for:

Daniel Bryant Plains All American EH & S 1301 S. County Road 1150 Midłand, TX 79706-4476

Project: Tank 374 10" Sweet Truck Haul Line Project Number: EMS: 2005-00172 Location: Lea County, NM

Lab Order Number: 5113010

Report Date: 09/20/05

Plains All American EH & S 1301 S County Road 1150 Midland TX, 79706-4476 ProjectTank 374 10" Sweet Truck Haul LineProject NumberEMS 2005-00172Project ManagerDaniel Bryant

Fax (432) 687-4914

Reported: 09/20/05 08 32

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-7 5'	5113010-01	Soil	09/08/05 08.48	09/13/05 15 05
SB-7 15'	5113010-02	Soil	09/08/05 08 59	09/13/05 15 05
SB-7 25'	5113010-03	Soil	09/08/05 09 06	09/13/05 15 05
SB-7 40'	5113010-04	Soil	09/08/05 09 17	09/13/05 15 05
SB-7 50'	5113010-05	Soil	09/08/05 09 25	09/13/05 15 05
SB-7 60'	5113010-06	Soil	09/08/05 09 32	09/13/05 15 05
SB-8 5'	5113010-07	Soil	09/08/05 10 15	09/13/05 15 05
SB-8 15'	5113010-08	Soil	09/08/05 10 22	09/13/05 15 05
SB-8 25'	5113010-09	Soil	09/08/05 10 28	09/13/05 15 05
SB-8 40'	5113010-10	Soil	09/08/05 10 36	09/13/05 15 05

Ø

ProjectTank 374 10" Sweet Truck Haul LineProject NumberEMS 2005-00172Project ManagerDaniel Bryant

Reported: 09/20/05 08 32

Organics by GC

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-7 5' (5113010-01) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51503	09/15/05	09/15/05	EPA 8021B	
Toluene	0.0766	0 0250		n		"		"	
Ethylbenzene	0.0651	0 0250		н			н	"	
Xylene (p/m)	0.561	0 0250	"	n	н	н	"	"	
Xylene (o)	0.202	0 0250	"	"	"		n		
Surrogate a.a.a-Trifluorotoluene		90.9 %	80-	120	"	"	"	"	
Surrogate 4-Bromofluorobenzene		94.3 %	80-	120	"	n	"	**	
Gasoline Range Organics C6-C12	925	10 0	mg/kg dry	1	E151414	09/14/05	09/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	2550	10 0	п	•			"	"	
Total Hydrocarbon C6-C35	3480	10 0	"	м	"	u	v	н	
Surrogate: 1-Chlorooctane		109 %	70-	130	"	"	"	"	
Surrogate [•] 1-Chlorooctadecane		103 %	70-	130	"	"	"	"	
SB-7 15' (5113010-02) Soil									
Benzene	0.0422	0 0250	mg/kg dry	25	EI51503	09/15/05	09/16/05	EPA 8021B	
Toluene	0.246	0 0250	H	"	•	"	"	н	
Ethylbenzene	0.206	0 0250	н	"	"	"	"	n	
Xylene (p/m)	2.19	0 0250	n	н		"	"	24	
Xylene (o)	0.879	0 0250	**	•		"	"		
Surrogate a,a,a-Trifluorotoluene		118 %	80-	120	"	"	"	"	
Surrogate 4-Bromofluorobenzene		80 2 %	80	120	"	"	"	"	
Gasoline Range Organics C6-C12	1390	10 0	mg/kg dry	1	EI51414	09/14/05	09/15/05	EPA 8015M	
Diesel Range Organics >C12-C35	4130	10 0	۳	u		"	н	0	
Total Hydrocarbon C6-C35	5520	10 0	н	n	u	н	"	н	
Surrogate: 1-Chloroociane		119%	70	130	"	"	"	"	
Surrogate 1-Chlorooctadecane		101 %	70-	130	"	"	"	"	
SB-7 25' (5113010-03) Soil									
Benzene	J [0.0150]	0 0250	mg/kg dry	25	E151503	09/15/05	09/15/05	EPA 8021B	
Toluene	0.127	0 0250	"	"	**	"	0		
Ethylbenzene	0.107	0 0250	"			"		"	
Xylene (p/m)	0.793	0 0250	u			"			
Xylene (o)	0.306	0.0250	н	11	*		11	**	
Surrogate a.a.a-Trifluorotoluene		105 %	80-	120	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.2 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	781	10 0	mg/kg dry	1	EI51414	09/14/05	09/16/05	EPA 8015M	
Diesel Range Organics >C12-C35	3200	10 0	n	"		м	н		
Total Hydrocarbon C6-C35	3980	10.0		н	н	W	n	"	

Environmental Lab of Texas

Plains All American EH & S 1301 S County Road 1150 Midland TX, 79706-4476		Project N	Project. Tai lumber EM lanager Da	18 2005-0	0172	Haul Line		Fax (432)6 Report 09/20/05	ed:
		O	rganics b	y GC					
		Environ	mental L	ab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-7 25' (5113010-03) Soil									
Surrogate: 1-Chlorooctane		103 %	70	130	EI51414	09/14/05	09/16/05	EPA 8015M	
Surrogate [.] 1-Chlorooctadecane		103 %	70-	130	"	"	"	11	
SB-7 40' (5113010-04) Soil									
Benzene	ND	0 0250	mg/kg dry	25	E151503	09/15/05	09/16/05	EPA 8021B	
Toluene	ND	0 0250			*	"	"	n	
Ethylbenzene	ND	0 0250			11	*		н	
Xyłene (p/m)	ND	0 0250	"	"	*	"	"		
Xylene (0)	ND	0 0250	9	"	"	"	w	н	
Surrogate. a.a.a-Trifluorotoluene		102 %	80-,	120	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		91.4 %	80	120	"	"	"	"	
Gasoline Range Organics C6-C12	12.6	10 0	mg/kg dry	1	EI51414	09/14/05	09/16/05	EPA 8015M	
Diesel Range Organics >C12-C35	238	10 0	н	"		н	"		
Total Hydrocarbon C6-C35	251	10 0	n	"		u	н	n	
Surrogate: 1-Chlorooctane		836%	70-	130	"	"	"	"	
Surrogate [·] 1-Chlorooctadecane		105 %	70-	130	"	"	"	"	
SB-7 50' (5113010-05) Soil									
Benzene	ND	0 0250	mg/kg dry	25	E151503	09/15/05	09/16/05	EPA 8021B	
Toluene	ND	0 0250	"	"		н	"	"	
Ethylbenzene	ND	0 0250	17	"			"		
Xylene (p/m)	ND	0 0250	"		•	н	"	51	
Xylene (o)	ND	0 0250	"	"	"	"	n	н	
Surrogate: a,a,a-Trifluorotoluene		940%	80-	120	,,	"	"	11	
Surrogate: 4-Bromofluorobenzene		84 2 %	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	J [7.93]	10 0	mg/kg dry	I	EI51414	09/14/05	09/16/05	EPA 8015M	
Diesel Range Organics >C12-C35	123	10 0	*1	"			11	u	
Total Hydrocarbon C6-C35	123	10 0	"	н	н	8	н	v	
Surrogate. 1-Chlorooctane		876%	70	130	"	"	"	"	
Surrogate [,] 1-Chlorooctadecane		99.8 %	70-	130	"	"	"	"	

đ

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

.

1

1

1

1

A

() ()

1

0

1

ProjectTank 374 10" Sweet Truck Haul LineProject NumberEMS 2005-00172Project ManagerDaniel Bryant

Reported: 09/20/05 08 32

Organics by GC

Environmental Lab of Texas

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-7 60' (5113010-06) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51503	09/15/05	09/16/05	EPA 8021B	
Toluene	ND	0 0250	"	"	,,	"	"	*	
Ethylbenzene	ND	0 0250		n	*	н	"	*	
Xylene (p/m)	ND	0 0250	18	н	•	n	н		
Xylene (o)	ND	0 0250		*1	"	n	н	u	
Surrogate. a,a,a-Trifluorotoluene		84.8 %	80-	120	"	"	"	"	
Surrogate 4-Bromofluorobenzene		87.5 %	80	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EI51414	09/14/05	09/16/05	EPA 8015M	
Diesel Range Organics >C12-C35	106	10 0	н	"	"	"	м	17	
Total Hydrocarbon C6-C35	106	10 0	н		**	"	n	"	
Surrogate: 1-Chlorooctane		87.0 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		89.8 %	70-	130	"	"	"	"	
SB-8 5' (5113010-07) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51503	09/15/05	09/16/05	EPA 8021B [,]	
Toluene	ND	0 0250		н	*	н	*	•	
Ethylbenzene	ND	0 0250		n	"	"	*	*	
Xylene (p/m)	ND	0 0250	w	"	*	*	**	**	
Xylene (o)	ND	0 0250	"	н	н		"	19	
Surrogate [•] a.a.a-Trifluorotoluene		84.3 %	80-1	120	"	"	"	"	
Surrogate [.] 4-Bromofluorobenzene		812%	80-1	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EI51414	09/14/05	09/16/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0		"	"	"	"	19	
Total Hydrocarbon C6-C35	ND	10 0		"	н	"	"		
Surrogate: 1-Chlorooctane		83.6%	70-1	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		81.4%	70-,	130	"	"	"	"	
SB-8 15' (5113010-08) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51503	09/15/05	09/16/05	EPA 8021B	
Toluene	ND	0 0250	"	н		*	*	*	
Ethylbenzene	ND	0 0250	"	"		"	"	**	
Xylene (p/m)	ND	0 0250		'n	•	17	n		
Xylene (o)	ND	0 0250	"	"	"	"	н		
Surrogate. a,a,a-Trifluorotoluene		92.1 %	80-1	120	"	"	"	**	
Surrogate 4-Bromofluorobenzene		98.5 %	80	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EI51414	09/14/05	09/16/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0				"	"		
Total Hydrocarbon C6-C35	ND	10 0		н	"	۳		n	

Environmental Lab of Texas

Plains All American EH & S 1301 S County Road 1150		Project N	· - J	nk 374 10" S AS. 2005-00		Haul Line		Fax (432)6 Report	
Midland TX, 79706-4476	_			niel Bryant				09/20/05	
		O	rganics b	oy GC					
		Environ	mental L	ab of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Ånalyzed	Method	Note
SB-8 15' (5113010-08) Soil	· · · · · · · · · · · · · · · · · · ·								
Surrogate 1-Chlorooctane		84.2 %	70-	130	EI51414	09/14/05	09/16/05	EPA 8015M	
Surrogate 1-Chlorooctadecane		82.4 %	70-	130	"	n	"	11	
SB-8-25' (5113010-09) Soil									
Benzene	ND	0 0250	mg/kg dry	25	E151503	09/15/05	09/16/05	EPA 8021B	
Toluene	ND	0 0250	"	н	*	"	"	н	
Ethylbenzene	ND	0 0250	"	н		"	u	"	
Xylene (p/m)	ND	0 0250	"		и	"	"		
Xylene (0)	ND	0 0250	"	"	"		н		
Surrogate a.a.a-Trifluorotoluene		92.5 %	80-	120	"	"	н		
Surrogate. 4-Bromofluorobenzene		886%	80-	120	"	"	"	"	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	I	EI51414	09/14/05	09/16/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	"	-				n	
Total Hydrocarbon C6-C35	ND	10 0	87	n		"	"	"	
Surrogate. 1-Chlorooctane		85.6%	70-	130	"	"	n	"	
Surrogate 1-Chlorooctadecane		86.8 %	70-	130	"	"	"	"	
SB-8 40' (5113010-10) Soil									
Benzene	ND	0 0250	mg/kg dry	25	EI51503	09/15/05	09/16/05	EPA 8021B	
Toluene	ND	0.0250	"	н	"	"		"	
Ethylbenzene	ND	0 0250	**	н		"	"	"	
Xylene (p/m)	ND	0 0250				"	"	"	
Xylene (o)	ND	0 0250		"		"	*	"	
Surrogate [•] a.a.a-Trifluorotoluene		83.6 %	80-	120	"	"	"	"	
Surrogate [•] 4-Bromofluorobenzene		88.3 %	80-	120	"	"	"	n	
Gasoline Range Organics C6-C12	ND	10 0	mg/kg dry	1	EI51414	09/14/05	09/17/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10 0	"				"	"	
Total Hydrocarbon C6-C35	ND	10 0	н	n			"	"	
Surrogate: 1-Chlorooctane		82.4 %	70-	130	"	"	"	"	
Surrogate: 1-Chlorooctadecane		840%	70-	130	"	"	"	"	

Ø

Ô

() ()

Â

Ø

0

0

Ø

General Chemistry Parameters by EPA / Standard Methods

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-7 5' (5113010-01) Soil					Daten				
% Moisture	0.6	0 1	%	1	E151420	09/14/05	09/14/05	% calculation	<u></u>
SB-7 15' (5113010-02) Soil									
% Moisture	1.1	0 1	%	1	EI51420	09/14/05	09/14/05	% calculation	
SB-7 25' (5113010-03) Soil									
% Moisture	2.0	0 1	%	1	EI51420	09/14/05	09/14/05	% calculation	
SB-7 40' (5113010-04) Soil									
% Moisture	1.9	0 1	%	1	EI51420	09/14/05	09/14/05	% calculation	-
SB-7 50' (5113010-05) Soil									
% Moisture	0.8	01	%	1	EI51420	09/14/05	09/14/05	% calculation	
SB-7 60' (5113010-06) Soil									
% Moisture	2.7	01	%	1	EI51420	09/14/05	09/14/05	% calculation	
SB-8-5' (5113010-07) Soil									
% Moisture	0.2	01	%	1	EI51420	09/14/05	09/14/05	% calculation	
SB-8 15' (5113010-08) Soil									
% Moisture	0.2	0 1	%	1	E151420	09/14/05	09/14/05	% calculation	
SB-8 25' (5113010-09) Soil									
% Moisture	0.5	01	%	1	EI51420	09/14/05	09/14/05	% calculation	
SB-8 40' (5113010-10) Soil									
% Moisture	1.0	01	%	1	EI51420	09/14/05	09/14/05	% calculation	

0

0

1

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

,~

Plains All American EH & S						ck Haul Lin	e		Fax (432)	687-4914
1301 S County Road 1150		Project N	_	IS 2005-0					Repo	
Midland TX, 79706-4476		Project Ma	anager Dai	niel Bryant					09/20/0	5 08.32
	0	rganics by Environ	-	•						
		Reporting			Source		%REC		RPD	
Analyte	Result	Limit	Units	Spike Level	Resul		Limits	RPD	Limit	Notes
Batch E151414 - Solvent Extraction (GC)			_							
Blank (EI51414-BLK1)				Prepared	09/14/05	Analyzed	09/15/05			
Gasoline Range Organics C6-C12	ND	10 0	mg/kg wet							
Diesel Range Organics >C12-C35	ND	10 0	"			· ·				
Total Hydrocarbon C6-C35	ND	10 0								
Surrogate 1-Chlorooctane	44 7		mg/kg	50 0		89 4	70-130			
Surrogate 1-Chlorooctadecane	45 2		"	50 0		90 4	70-130			
LCS (E151414-BS1)				Prepared	· 09/14/05	Analyzed	09/15/05			
Gasoline Range Organics C6-C12	412	10 0	mg/kg wet	500		82 4	75-125			
Diesel Range Organics >C12-C35	436	10 0	"	500		87 2	75-125			
Total Hydrocarbon C6-C35	848	10 0	"	1000		84 8	75-125			
Surrogate 1-Chlorooctane	50 9		mg/kg	50 0		102	70-130			
Surrogate 1-Chlorooctadecane	50 5		"	50 0		101	70-130			
Calibration Check (EI51414-CCV1)				Prepared	09/14/05	Analyzed	09/17/05			
Gasoline Range Organics C6-C12	443		mg/kg	500		88 6	80-120			
Diesel Range Organics >C12-C35	422		n	500		84 4	80-120			
Total Hydrocarbon C6-C35	865		"	1000		86 5	80-120			
Surrogate 1-Chlorooctane	519		"	50 0		104	0-200			· •
Surrogate 1-Chlorooctadecane	535		"	50 0		107	0-200			
Matrix Spike (EI51414-MS1)	Sou	irce: 5113008	-01	Prepared	09/14/05	Analyzed (09/15/05			
Gasoline Range Organics C6-C12	939	10 0	mg/kg dry	568	289	114	75-125			
Diesel Range Organics >C12-C35	1400	10 0	н	568	721	120	75-125			
Total Hydrocarbon C6-C35	2340	10 0	"	1140	1010	117	75-125			
Surrogate 1-Chlorooctane	614		mg/kg	50 0		123	70-130			
Surrogate 1-Chlorooctadecane	56 5		"	50 0		113	70-130			
Matrix Spike Dup (E151414-MSD1)		irce: 5113008	-01	Prepared	09/14/05	Analyzed (09/15/05			
Gasoline Range Organics C6-C12	914	10 0	mg/kg dry	568	289	110	75-125	2 70	20	
Diesel Range Organics >C12-C35	1400	10 0	"	568	721	120	75-125	0 00	20	
Fotal Hydrocarbon C6-C35	2310	10 0	"	1140	1010	114	75-125	1 29	20	
Surrogate 1-Chlorooctane	530		mg/kg	50 0		106	70-130			
Surrogate 1-Chlorooctadecane	542		"	50 0		108	70-130			

Plains All American EH & S 1301 S County Road 1150 Midłand TX, 79706-4476		P Project Nu Project Ma	umber EM	k 374 10" S S 2005-00 nel Bryant		Haul Line			Fax (432)687-4914 Reported: 09/20/05 08 32			
	0	rganics by Environn	_	-								
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch E151503 - EPA 5030C (GC)												
Blank (EI51503-BLK1)				Prepared &	. Analyzed	09/15/05						
Benzene	ND	0 0250	mg/kg wet	·								
Foluene	ND	0 0250	"									
Ethylbenzene	ND	0.0250	в									
Xylene (p/m)	ND	0 0250	н									
Xylene (0)	ND	0 0250	-									
Surrogate a,a,a-Trifluorotoluene	949		ug/kg	100		949	80-120					
Surrogate 4-Bromofluorobenzene	87.3		"	100		87.3	80-120					
LCS (E151503-BS1)				Prepared &	Analyzed	09/15/05						
Benzene	96 3		ug/kg	100	- Trindiy Zed	96 3	80-120					
Foluene	99.6		"	100		99 6	80-120					
Ethylbenzene	114		"	100		114	80-120					
Xylene (p/m)	215		n	200		108	80-120					
Xylene (o)	114		н	100		114	80-120					
Surrogate a,a,a-Trifluorotoluene	108		"	100		108	80-120					
Surrogate 4-Bromofluorobenzene	103		"	100		103	80-120					
	105											
Calibration Check (EI51503-CCV1))9/15/05 A	nalyzed 09						
Benzene	93 8		ug/kg	100		93 8	80-120					
Foluene	93 2			100		93 2	80-120					
Ethylbenzene	104			100		104	80-120					
Xylene (p/m)	198		"	200		99 0	80-120					
Xylene (o)	106			100		106	80-120					
Surrogate a,a,a-Frifluorotoluene	100		"	100		100	0-200					
Surrogate 4-Bromofluorohenzene	100		"	100		100	0-200					
Matrix Spike (E151503-MS1)	Sou	irce: 5113010-	10	Prepared ()9/15/05 A	nalyzed 09	9/16/05					
Benzene	82 2		ug/kg	100	ND	82 2	80-120					
Foluene	85 7		54	100	ND	85 7	80-120					
Ethylbenzene	96 1		n	100	ND	96 1	80-120					
Xylene (p/m)	185		n	200	ND	92 5	80-120					
Xylene (o)	97 9		н	100	ND	97 9	80-120					
Surrogate a,a,a-Trifluorotoluene	912		"	100		912	80-120					

.

●

a

0

1

() ()

6

Š

4

0

ProjectTank 374 10" Sweet Truck Haul LineProject NumberEMS 2005-00172Project ManagerDaniel Bryant

Reported: 09/20/05 08 32

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EI51503 - EPA 5030C (GC)

Matrix Spike Dup (EI51503-MSD1)	Source: 5	Prepared (09/15/05 A					
Benzene	892	ug/kg	100	ND	89 2	80-120	817	20
Toluene	93 8	"	100	ND	93 8	80-120	9 03	20
Ethylbenzene	108	"	100	ND	108	80-120	117	20
Xylene (p/m)	206		200	ND	103	80-120	10 7	20
Xylene (0)	ш	17	100	ND	111	80-120	12 5	20
Surrogate a,a,a-Trifluorotoluene	943	n	100		943	80-120		
Surrogate 4-Bromofluorobenzene	105	"	100		105	80-120		

Environmental Lab of Texas

Ô

Ŏ

Reported: 09/20/05 08 32

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch E151420 - General Preparation (Prep)										
Blank (EI51420-BLK1)				Prepared &	Analyzed	09/14/05				
% Solids	100		%							
Duplicate (E151420-DUP1)	Sour	ce: 5113009-01	ł	Prepared &	Analyzed	09/14/05				
% Solids	96 2		%		97 6			1 44	20	
Duplicate (E151420-DUP2)	Sour	rce: 5113010-04	l l	Prepared &	Analyzed.	09/14/05				
% Solids	98 1		%		98 1			0 00	20	
Duplicate (E151420-DUP3)	Sour	ce: 5114002-03	5	Prepared &	Analyzed	09/14/05				
% Solids	99 9		%		99 9			0 00	20	

Environmental Lab of Texas

Plains All American EH & S 1301 S County Road 1150 Midland TX, 79706-4476

Reported: 09/20/05 08 32

Notes and De	tīn	itio	ns
--------------	-----	------	----

J	Detected but below the Reporting Limit, therefore, result is an estimated concentration (CLP J-Flag)
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPÐ	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duphcate

Report Approved By:

Raland K Intel Date:

9/20/2005

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

ENVITONINIENTA 2600 Westi-20 East Odessa, Texas 79763	ILab of Texas Phone: 915-563-1800 Fax: 915-563-1713	i, Lta.									СНА	UN O													, , , }-	
Project Manager:	KEN DUTTON											P	rojec	t Na	me:	7 	A) Ru	K	, 3 K	17 	H LA	14 44	8 	SA IZA	IEE IE	
	BASIN ENV	SVCS																							72	
	PO BOX 301		-		-																					
	OVINGTON NH	88269	3											P	0#:	Ŧ	\overline{A}_{f}	7,	/	$\overline{\lambda}$	Ż	ŜŔ	YA	7N	·7	-
Telephone No:	5057441-2124		Fax No:	12	~	<u>,)</u> 2	9	2-1	41	79						- <i>f</i> -A		£.,şa			6.0					
	A. Det		144 144	~	<u>يد مح</u>	y. s.	14		LE																	
Sampler Signature:	1 jen tota				•													Ana	ilyze	Fo	r.]	
																CLP:	-	\pm	\pm	x						
		1				Pre	serv	atve		-	Mat	rix	- 18		6		Fig Se								le le	Т
in the second		2045											1005	2	HCO		8								chedi	
20		fed	fect	Containers					8				(Me) OB	19. Na, KJ	Anions (CI, SO4, CO3, HCO3)		8			020					RUSH TAT (Pre-Schedule	5
65		Sampled	Time Sampled	Conta					Speci			Acces		0.6	CI, SO	SP/O	As Ro		atiles	021B/5					TAT	Standard TAT
AB # (lab use only)	FIELD CODE	Date	Time	No. of	ice	ONH DH	HOTN	H ₅ SQ. Mode	Other	Watar	Shudgo	940T	TPH: 418 1	Cations (Ca, Mg.	urions	SAR / ESP / CEC	Metals [,] As Ag Ba	Volathes	Sermivolatikos	BTEX 8021B/5030	SCI	N.O.R.M.			HSUS	stands
-01 58-9		08 SEP	\$848	1	x		\uparrow		1			x	Tx	1			-	7		x					Ť	X
-02 SB-7			Ø859									Ц	П		1		_	\bot	Ţ				_		1	#
-03 SB-7	25		\$9\$6					╞╌┝╴	+-				╨		-	┝╍┤		_		μ		-	+-	$\left - \right $		#
-04 SB-9 -05 SB-1	- 4 <u>¢</u> - 5¢	╋╍╌┟╌╌╍	Ø917 Ø925				+	╞╌┞╴	+	┨╌┤		╂┼╴	╢	╄╌	╉──	┝╌┼	-+	╉	╉	H	-+		+-	++	+	╫
= a SB-7		++	0932	╈	+		+	++	+	┠╌┤		╫	+	┢	┼─	┝-┼	-+	+	+	\mathbf{H}	+	+	+	╆╋	╋	++
-07 SB-8			1\$15	-			1	$\uparrow \uparrow$	╈			\dagger	\dagger	1	\uparrow		1	+	1	Ħ	-	1	1	\square	T	Ť
-05 SB-8			1\$22									\prod								Π						П
-09 58-8	25'		1\$28				-		-			4	4	4-	ļ	┢╌╽			4	Щ		_	4			4
-10 SB-8	<u>4ø'</u>		1\$36		¢			ĻĻ	Ļ	Ļ					1			1		¢.	<u> </u>		1		<u> </u>	<u>ję</u>
ipecial Instructions:					Æ	2	\rightarrow		ì	45	jmr art-	л ^{-үн} 1913	%5 51.		Ter	nple npera	sture	Üõ	on R	lece	aot:	3			N	
Reliquisted by	Date Time	Received by			0	2	-	· 5-1	T	De	ate		Tim		Lal									si la	, bets	÷-5
Jan Auto	125-005-1305	+Th.	DBL						10	2 jag	po	5	120	5		. i	<i>{ ö</i> ₹	5	7 Ø.S	<u>`</u> حد	50	q1.	ະກະ	coi	bets er	
Relinquished by	Date Time	Received by El	OT: ()				 		+~	De		-+-	Tim	_	1	`.		•		• _		,		· .	.`	••
No UKAT	9/13/05/15:05	15 day	. mi	in	r.L.	· · · . NALA		. ·	9	-13	i.		/sw	<u>ç</u>	-	-	. '	`	; ·			• .•		• •		

Environmental Lab of Lexas Variance / Corrective Action Report – Sample Log-In

Client: Plains F/L							
Date/Time: 09-13-05 @ 1505							
Order #: 51 13010							
Initials: JMM							

Sample Receipt Checklist

Temperature of container/cooler?	(Yes)	No	3,0 C
Shipping container/cooler in good condition?	Yes	No	
Custody Seals intact on shipping container/cooler?	(YES)	No	Not present
Custody Seals intact on sample bottles?	Yes	No	Not present
Chain of custody present?	Yes	No	
Sample Instructions complete on Chain of Custody?	Hes,	No	
Chain of Custody signed when relinquished and received?	YES	No	
Chain of custody agrees with sample label(s)	(res)	No	
Container labels legible and intact?	(res)	No	
Sample Matrix and properties same as on chain of custody?	Ves)	No	
Samples in proper container/bottle?	(es)	No	
Samples properly preserved?	(Ves)	No	
Sample bottles intact?	(Yes)	No	
Preservations documented on Chain of Custody?	(Yes)	No	
Containers documented on Chain of Custody?	(Yes)	No	, (1997)
Sufficient sample amount for indicated test?	Ves>	No	
All samples received within sufficient hold time?	(es)	No	an a
VOC samples have zero headspace?	(Yes)	No	Not Applicable

Other observations:

Variance Documentation:

Contact Person: Regarding:	Date/Time:	Contacted by:	
			ال میں دور
Corrective Action Taken:			واخلقت بوده
·			
4			ورون النور ميرون
991-992-994-994-994-994-994-994-9 0-90-90-90-90-90-90-90-90-90-90-90-90-90			

the second se

Analytical Report 300335

for

PLAINS ALL AMERICAN EH&S

Project Manager: Daniel Bryant

Tank 374 10" Sweet Truck Haul 2005-00172

01-APR-08

E NVIRONMENTAL

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

01-APR-08

Project Manager: **Daniel Bryant PLAINS ALL AMERICAN EH&S** 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 300335 Tank 374 10" Sweet Truck Haul Project Address: Lea County, NM

Daniel Bryant:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 300335. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 300335 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Ď

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 300335

PLAINS ALL AMERICAN EH&S, Midland, TX

Tank 374 10" Sweet Truck Haul

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
Stockpile	S	Mar-25-08 14:30		300335-001

Certificate of Analysis Summary 300335 NVIRONMENTA LAS OF

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Tank 374 10" Sweet Truck Haul

Project Id: 2005-00172

Contact: Daniel Bryant

E

Project Location: Lea County, NM

Date Received in Lab: Wed Mar-26-08 09 00 am

Report Date: 01-APR-08

Project Manager: Brent Barron, Il

	Lab Id:	300335-001			
Anghoig Baguastad	Field Id:	Stockpile			
Analysis Requested	Depth:				
	Matrix:	SOIL			
	Sampled:	Mar-25-08 14·30			
BTEX by EPA 8021B	Extracted:	Mar-28-08 16 01			
	Analyzed:	Mar-28-08 22:43			
	Units/RL:	mg/kg RL			
Benzene		ND 0 0010			
Toluene		ND 0 0020			
Ethylbenzene		ND 0 0010			
m,p-Xylenes		ND 0.0020			
o-Xylene		ND 0 0010			
Xylenes, Total		ND			
Total BTEX		ND			
Percent Moisture	Extracted:				
	Analyzed:	Mar-27-08 08.17			
	Units/RL:	% RL			
Percent Moisture		2.35 1 00			
TPH By SW8015 Mod	Extracted:	Apr-01-08 11:45			
	Analyzed:	Apr-01-08 14.48			
	Units/RL:	mg/kg RL			
C6-C12 Gasoline Range Hydrocarbons		ND 15.4			
C12-C28 Diesel Range Hydrocarbons		801 15.4			
C28-C35 Oil Range Hydrocarbons		42 0 15 4			
Total TPH		122 1			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warrany to the end use of the data hereby presented Our liability is limited to the amount involved for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron Odessa Laboratory Director

Ô

000

Ō

0

Ó

Ô

0

Ø

Ò

Õ

0 Ð

Ó

0

Ð

Ø Ó

0

Ø

0 6

0

Ô

6

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

	TT	
P.S		9
	A state	

Ô

() (¢;

•

Form 2 - Surrogate Recoveries

Project Name: Tank 374 10" Sweet Truck Haul

Vork Order #: 300335		Project II	D: 2005-0017	2	
Lab Batch #: 718595 Sample: 30	0335-001 / SMP Bat	ch: 1 Matr	ix: Soil		
Units: mg/kg	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0349	0.0300	116	80-120	
4-Bromofluorobenzene	0.0304	0.0300	101	80-120	
Lab Batch #: 718595 Sample: 50	6691-1-BKS / BKS Bat	ch; Matr	ix: Solid		
Units: mg/kg		RROGATE R		STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R {D}	Control Limits %R	Flags
1,4-Difluorobenzene	0.0304	0 0300	101	80-120	
4-Bromofluorobenzene	0.0313	0 0300	104	80-120	
Lab Batch #: 718595 Sample: 50	6691-1-BLK / BLK Bat	ch: Matr	ix: Solid		
Units: mg/kg		RROGATE R		STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzenc	0.0329	0.0300	110	80-120	
4-Bromofluorobenzene	0.0338	0.0300	113	80-120	
Lab Batch #: 718595 Sample: 50	6691-1-BSD / BSD Bat	tch: 1 Matr	ix: Solid		
Units: mg/kg		RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Dıfluorobenzene	0.0308	0.0300	103	80-120	
4-Bromofluorobenzene	0.0327	0.0300	109	80-120	
Lab Batch #: 718723 Sample: 30	0335-001 / SMP Bat	tch: 1 Matr	ix: Soil		
Units: mg/kg	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctane	78.1	100	78	70-135	
o-Terphenyl	43.6	50.0	87	70-135	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

-		1000		
	\boldsymbol{r}		1	_
	۹. –			€j
ile the	19.0	in Carl	Section	1
		- -		
(Realing	disality of	والتعطي	100.0	1

Ò • 0 • Ó Ò ● Ò • 0 Ð Ô 0 0 ₽ Ø

0

0

Form 2 - Surrogate Recoveries

Project Name: Tank 374 10" Sweet Truck Haul

ork Order #: 300335 Lab Batch #: 718723	Sample: 506760-1-BKS / 1		5): 2005-0017 x: Solid	2	
Units: mg/kg	Sample: 500700-1-BKS7		RROGATE RI		STUDY	
TPH By SW Analy		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctanc		90.6	100	91	70-135	
o-Terphenyl		50.0	50.0	100	70-135	
Lab Batch #: 718723 Units: mg/kg	Sample: 506760-1-BLK /		ch: ¹ Matri RROGATE RI	x: Solid COVERY S	STUDY	
TPH By SW Analy		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
I-Chlorooctane		77.8	100	78	70-135	
o-Terphenyl		44.9	50 0	90	70-135	
Lab Batch #: 718723	Sample: 506760-1-BSD /	BSD Bat	ch: 1 Matri	x: Solid	<u> </u>	
Units: mg/kg		SU	RROGATE RI	COVERY S	STUDY	
TPH By SW Analy		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
I-Chlorooctanc		86.6	100	87	70-135	
o-Terphenyl		47.9	50.0	96	70-135	

** Surrogates outside limits; data and surrogates confirmed by reanalysis
*** Poor recoveries due to dilution
Surrogate Recovery [D] = 100 * A / B
All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: Tank 374 10" Sweet Truck Haul

Work Order #: 300335 Analyst: SHE	'n	ate Prenar	ed: 03/28/20	08					2005-00172)3/28/2008	2	
Lab Batch ID: 718595 Sample: 506691-		-	h #: 1					Matrix: S			
Units: mg/kg		BLAN	K/BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUE	PY	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes Benzenc	ND	0.1000	0.0952	95	0,1	0.1004	100	5	70-130	35	<u> </u>
Toluene	ND	0.1000	0.0932	93	0.1	0.0994	99	6	70-130	35	<u> </u>
Ethylbenzene	ND	0.1000	0.1001	100	0.1	0.1054	105	5	71-129	35	<u> </u>
m,p-Xylenes	ND	0.2000	0.1981	99	0.2	0 2085	104	5	70-135	35	<u> </u>
o-Xylene	ND	0.1000	0,1010	101	0.1	0.1061	106	5	71-133	35	
Analyst: ASA	D	ate Prepar	ed: 04/01/20	08			Date A	nalyzed: (04/01/2008		
Lab Batch ID: 718723 Sample: 506760-	I-BKS	Batc	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUE	Y	
TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1000	802	80	1000	774	77	4	70-135	35	<u> </u>
C12-C28 Diesel Range Hydrocarbons	ND	1000	805	81	1000	778	78	3	70-135	35	

Relative Percent Difference RPD = 200*|(D-F)/(D+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

đ

Sample Duplicate Recovery

Project Name: Tank 374 10" Sweet Truck Haul

Work Order #: 300335

Lab Batch #: 718254 Date Analyzed: 03/27/2008 QC- Sample ID: 300330-001 D	Date Prepared: 03. Batch #:	/27/2008	Analy	D: 2005-00 st: IRO ix: Soil	172
Reporting Units: %	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture	Parent Sampl Result [A]	e Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Percent Moisture	1.33	1.58	17	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes

	/ironmen	tal Lab of T	ex	as							We: a, T	n I-	20 E	ast	- cu	sto	DDY	RE	COF	RD A	ND		Pho	one:	S Ri 432 432	-56:	3-18	80D				
	Project Manager	Ken Dutton			PAGE 01 O	F_01										_	F	Ртоје	ect N	ame	. <u>T/</u>	NK	37	4 10	<u>o" s</u>	WE	ET	TR	JCK	HAL	UL	
	Company Name	Basin Environmental Se	rvice 1	echno	logies, LLC											_			Proj	ect #	20	05-	001	72								_
	Company Address	P Q. Box 301														_		Pro	oject	Loc	. <u>Le</u>	a Co	unt	y, N	M							
	City/State/Zip	Lovington, NM 88280														_			i	PO #	PA	<u>A - i</u>	D. B	iryar	nt/C	Rey	riol	ds				
	Telephone No	(505) 441-2124				Fax No		(50	6) 39	8-1	429					_	Rep	ort F	orm	at '	X	Sta	inda	rd			TRA	ŧ₽	٢	אף [DES	3
	Sampler Signature	They Hak	<u> </u>			e-mail		<u>kd</u>	lutto)л(Qb	ası	ner	<u>1v.(</u>	com			_													T	1
(lab Lise ORDEF	48. C. 6. 1916	States and a						,								-	Inte					CLP ITAL	E	É	ze Fr	x	Π		T	П	A 72 hes	
		.D CODE	Beginning Depth	Ending Depth	Date Sampled	Tume Sampled	Neid Fittered	fotal # of Containers			Ţ				None Other I Sherito	St.=Sudge	ŧ	n-Potable Broactly Office	TPH TY TON TO TA TO TO	ns (Ca. Mg. Na.	Anons (Cl. SO4, Alkalin4y)	SAR / ESP / CEC	Metals As Ag Ba Cd Cr Pb Hg Se	Votatules	Serravolatiles	BTEX 0021 BIS030 Pr BTEX 8260	RCI	NORM			RUSH TAT (Pre-Schedules 24, 45,	
O	Ste	ockpile			25-Mar-08	1430		1									SOIL	-+	x	T	T					x	\Box		I	L	L	x
						_										Ι		Ι										$ \rightarrow $				-
2382.N							_							-				4	_	4	\downarrow	ļ	1_			Ц	┝╌┥	┝╍╋	+	+	╞	Ļ
<u></u>				L			-					_		_		+		-+	-	┢	┢	_	┢	\vdash		\vdash		┝╌╄		╋	╁╴	╞
<u>848 8</u> 2003			\vdash				-	_		_	\square	_		-+	+	┢		-+	+	┿	+	┝	┝	⊢⊣	\vdash	┝─┤	┝─┥	┝┼	┿	+-	╂─	╀
- <u>-</u>	·····	·····	+	-			-				\vdash	-		+	+	$^{+}$		╉	+	╀	$^{+}$	\uparrow	┢	┢─┤		-1		r†	╋	+-	T	t
16															1	T		1		1	T							\Box		Ι	L	
8.8																L		_								Ц		⊢∔	_	+-	┢	-
199 []) 199 [])			<u> </u>	L					Ш					_		1_				1	Ļ	Ļ	Ļ	L	Ļ	Ц	Ц	ĻĻ	÷,	Ļ	L	Ļ
	nstructions'				<u> </u>		_													S 第€	bor XCo	ftor Fre	y Co Million I of I	inini ijiji ilear	lenn: Mile Ispa	C 412 50?	R.	RA A		516	纖	靍
	y Wahn	13/26/26	09	r C	Received by										č	Date		T	me	105	ana Ala Ala	Y 60 Ng 60 Ng 80		調査	ontal Addition		<u>また</u> あ) 仮計	enn The				編
Relinquist		Date		me	Received by:										-	Date .			ime	18	ing: by	p,ria Sam	unia (Interi	Cilini /Cilini	rerea Int Re	60 ?	1	Sr. 3	1.0	A 10. A	- 1 1	1
Relinquist	ed by	Bate	Ti	me	Received by ELQ	kee	本		3. 15 3.(.)	2	8.	<u>.</u> 2			2/2	ate 24		1.1.1.	dic.		onpe	8	ie U	pon	UP(Rec	eiți	<u> </u>	3	ġ	: بې بې : بې بې : <u>د مې د</u>	°C	ξ.

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client	Basin Env. / Plains
Date/ Time	3-26-08 9.00
Lab ID #	বিচে হবই
Initials	AL

Sample Receipt Checklist

#1	Temperature of container/ cooler?	Tes	No	30 0
#2	Shipping container in good condition?	es	No	
#3	Custody Seals intact on shipping container/ cooler?	es	No	Not Present
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present
#5	Chain of Custody present?	(es	No	
#6	Sample instructions complete of Chain of Custody?	Yes	No	
#7	Chain of Custody signed when relinquished/ received?	Yes	No	
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid
#9	Container label(s) legible and intact?	E s	No	Not Applicable
#10	Sample matnx/ properties agree with Chain of Custody?	Yes	No	
#11	Containers supplied by ELOT?	Ver	No	
#12	Samples in proper container/ bottle?	Yes	No	See Below
#13	Samples properly preserved?	(es	No	See Below
#14	Sample bottles intact?	(es	No	
#15	Preservations documented on Chain of Custody?	Yes	No	
#16	Containers documented on Chain of Custody?	Yes	No	
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below
#18	All samples received within sufficient hold time?	Yes	No	See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicable
#20	VOC samples have zero headspace?	Yes	No	Not Applicable

١

Variance Documentation

Contact

900

Æ

6

Date/ Time[.]

Regarding

Corrective Action Taken:

-

Check all that Apply.

See attached e-mail/ fax

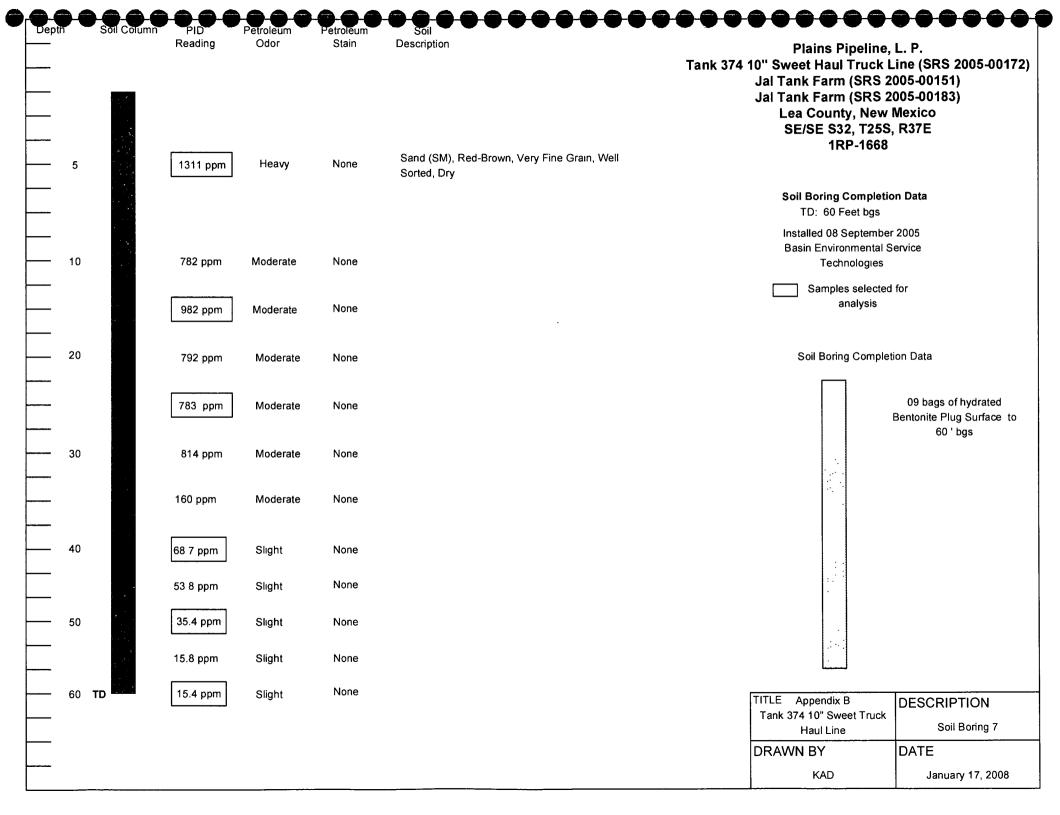
Contacted by

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

Appendix B Soil Boring Logs

ŧ

_		PID Reading	Petroleum Odor	Petroleum Stain	Soil Description	Plains Pipeline	I D I I
— 5 —	с. 1. 1.	1106 ppm	Heavy	None	Sand (SM), Red-Brown, Very Fine Grain, Well Sorted, Dry	Tank 374 10" Sweet Haul Truck Jal Tank Farm (SRS 3	Line (SRS 2005-00172 2005-00151)
10		960 ppm	Heavy	None		Jal Tank Farm (SRS 2 Lea County, New SE/SE S32, T255	v Mexico S, R37E
_		492 ppm	Heavy	None		1RP-1668	
<u> </u>		833 ppm	Heavy	None		Soil Boring Complet TD: 100 Feet bgs	
_		751 ppm	Heavy	None		ID: 100 Feet bgs Installed 06 Septembe Basin Environmental	er 2005
- 30		280 ppm	Heavy	None		Technologies	
- -		401 ppm	Heavy	None		Samples selecte analysis	d for
40		90 3 ppm	Heavy	None			·
_		56.6 ppm	Heavy	None		Soil Boring Comple	tion Data
50		63.1 ppm	Slight	None			20 bags of hydrated Bentonite Plug Surface to
_		106 ppm	Slight	None			100 ' bgs
— 60		87.7 ppm	Slight	None			
- -		160 ppm	Slight	None			
- 70		221 ppm	Slight	None			
		85.1 ppm	Slight	None			
- 80		165 ppm	Slight	None			
_		183 ppm	Slight	None			
— 90	in the second	167 ppm	Slight	None		TITLE Appendix B Tank 374 10" Sweet Truck	DESCRIPTION
_		41.8 ppm	Slight	None		Haul Line	Soil Boring 1
— 100	TD	102 ppm	Slight	None		DRAWN BY KAD	DATE January 17, 2008

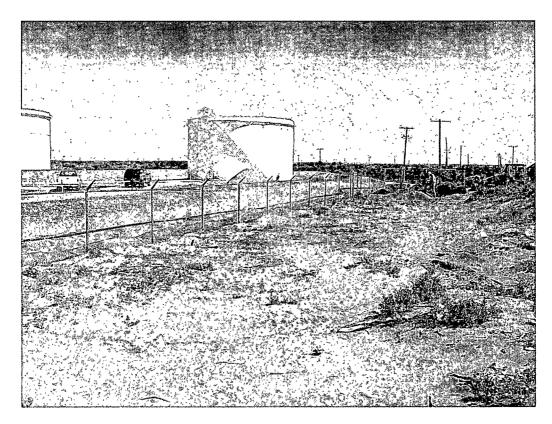

5	Soir Column	PID Reading 36.1 ppm	Petroleum Odor None	Petroleum Stain None	Soil Description Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry	Tank 374 10" Sv (SRS 2 Jal Tank Farm Jal Tank Farm	D O O O O O O O O O O
10		13.4 ppm	None	None		SE/SE S3 1R Soil Bor	y, New Mexico 2, T25S, R37E P-1668 ing Completion Data
15		6.0 ppm	None	None		Basın Envir Tec	September 2005 onmental Service hnologies es selected for analysis
20		3.8 ppm	None	None	,	Soil Boring Co	ompletion Data 6 bags of hydrated Bentonite Plug Surface to 40' bgs
25		3.1 ppm	None	None			
 30		2.8 ppm	None	None			
35		2.3 ppm	None	None	۰ آTT		DESCRIPTION
40	тр	1.7 ppm	None	None	т	Appendix B ank 374 10" Sweet Truck <u>Haul Line</u> RAWN BY KAD	Soil Boring 2 DATE January 17, 2008

	Deptn		Dil Column	PID Reading	Petroleum Odor	Petroleum Stain	Soil Contraction	Plains Pipeline, Tank 374 10" Sweet Haul Truck L Jal Tank Farm (SRS 2 Jal Tank Farm (SRS 2	ine (SRS 2005-00172) 005-00151) 005-00183)
- -		5		841 ppm	Moderate	None	Sand (SM), Red-Brown, Very Fine Grain, Well Sorted, Dry	Lea County, New SE/SE S32, T25S 1RP-1668	
								Soil Boring Completie TD: 60 Feet bgs Installed 07 Septembe	r 2005
		10		745 ppm	Moderate	None		Basin Environmental S Technologies	ervice
				910 ppm	Moderate	None		Samples selected analysis	for
		20		821 ppm	Moderate	None		Soil Boring Complet	ion Data
				630 ppm	Moderate	None			09 bags of hydrated Bentonite Plug Surface to
		30		735 ppm	Moderate	None			60 ' bgs
			•	579 ppm	Slight	None			
		40		282 ppm	Slight	None			
	<u> </u>			88.1 ppm	Slight	None			
		50		38 1 ppm	Slight	None			
				28.1 ppm	Slight	None			
		60 TD		18.9 ppm	Slight	None		TITLE Appendix B Tank 374 10" Sweet Truck Haul Line	DESCRIPTION Soil Boring 3
								DRAWN BY	DATE
								KAD	January 17, 2008

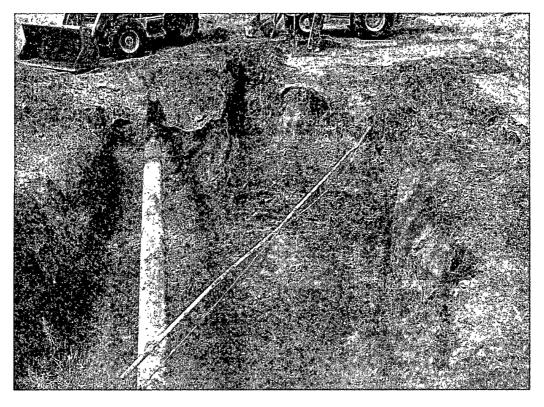
Dep		PID Reading	Petroleum Odor	Petroleum Stain	Soil Description	Tank 374 10" Sv	Pipeline, L. P. weet Haul Truck Line
	5	6.1 ppm	None	None	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry	Jal Tank Farm Jal Tank Farm Lea Coun SE/SE S3	2005-00172) n (SRS 2005-00151) n (SRS 2005-00183) ty, New Mexico 2, T25S, R37E RP-1668
	10	3.9 ppm	None	None			ng Completion Data
	15	12.9 ppm	None	None		Installed 07 Basin Enviro	Feet bgs September 2005 onmental Service anologies
	10	12.9 ppm	none	NOTE			es selected for analysis
	20	9.6 ppm	None	None		Soil Boring Co	mpletion Data 6 bags of hydrated Bentonite Plug Surface to 40' bgs
	25	9.4 ppm	None	None			
	30	8.6 ppm	None	None			
	35	7.8 ppm	None	None			
				N	Ta	Appendix B ank 374 10" Sweet Truck Haul Line	DESCRIPTION Soil Boring 4
	40	2.8 ppm	None	None		KAD	DATE January 17, 2008

Dep		Soil Column	PID Reading	Petroleum Odor	Petroleum Stain	Soil Description	Tank 374	• • • • • • • • • • • • • • • • • • •
	5		2.4 ppm	None	None	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry	Jal Tank F Jal Tank F Lea Co	arm (SRS 2005-00151) arm (SRS 2005-00183) punty, New Mexico S32, T25S, R37E 1RP-1668
	10		3.4 ppm	None	None			ing Completion Data
							Installed 07 Basin Envir	Feet bgs September 2005 onmental Service nnologies
	15		3.6 ppm	None	None			es selected for analysis
							Soil Boring Co	
	20		2.0 ppm	None	None			6 bags of hydrated Bentonite Plug Surface to 40' bgs
	25		2.1 ppm	None	None			
	30		2.1 ppm	None	None			
	35		1.6 ppm	None	None			
							TITLE Appendix B	DESCRIPTION
	40	TD	3.5 ppm	None	None		Tank 374 10" Sweet Truck Haul Line DRAWN BY	Soil Boring 5
			P. D	-			KAD	January 17, 2008

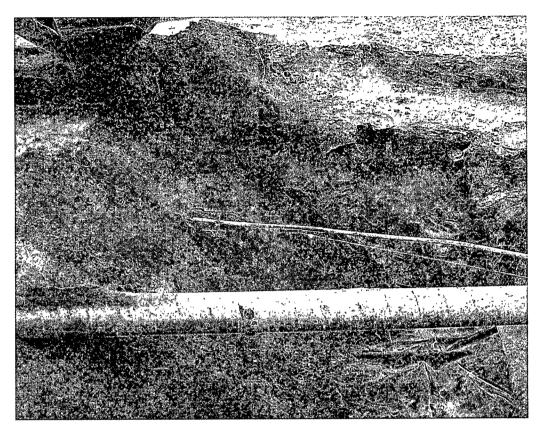
		Reading	Odor	Stain	Description	Plains Pipeline, Tank 374 10'' Sweet Haul Truck I	Line (SRS 2005-0017
— 5 —		782 ppm] Heavy	Heavy	Sand (SM), Black, Very Fine Grain, Well Sorted, Moist	Jal Tank Farm (SRS 2 Jal Tank Farm (SRS 2 Lea County, New SE/SE S32, T25S 1RP-1668	2005-00183) / Mexico S, R37E
— 10 —		675 ppm	Heavy	Heavy	Sand (SM), Dark Brown, Very Fine Grain, Well Sorted, Damp		
		810 ppm	Heavy	Moderate	Sand (SM), Brown, Very Fine Grain, Well Sorted, Damp	Soil Boring Completie TD: 80 Feet bgs	
20		736 ppm	Heavy	None	Sand (SM), Red-Brown, Very Fine Grain, Well Sorted, Damp	Installed 07 September Basin Environmental S Technologies	Service
_		989 ppm	Heavy	None		Samples selected analysis	J for
— — 30		768 ppm	Heavy	None		Soil Boring Complet	stion Data
_		1105 ppm	Heavy	None			12 bags of hydrated Bentonite Plug Surface to
— 40		115 ppm	Heavy	None			80 ' bgs
_		130 ppm	Heavy	None			
— 50		123 ppm	Heavy	None			
-		134 ppm	Heavy	None			
60		89.9 ppm	Heavy	None			
		62.7 ppm	Slight	None			
— 70		22.1 ppm	Slight	None			
- -		18 9 ppm	Slight	None		TITLE Appendix B Tank 374 10" Sweet Truck Haul Line	DESCRIPTION Soil Boring 6
	тр	42.1 ppm	None	None		DRAWN BY	DATE



Depth —	Soil Column	PID Reading	Petroleum Odor	Petroleum Stain	Soil Description	Tank 374 10" Sv	Pipeline, L. P. weet Haul Truck Lin 2005-00172)	
5		2.6 ppm	None	None	Sand (SP) Red-Brown, Very Fine Grained, Well Sorted, Dry	(SRS 2005-00172) Jal Tank Farm (SRS 2005-00 Jal Tank Farm (SRS 2005-00 Lea County, New Mexico SE/SE S32, T25S, R37E 1RP-1668		
10		2.5 ppm	None	None			ring Completion Data	
						Installed 08 Basin Envir	0 Feet bgs 3 September 2005 ronmental Service chnologies	
— 15		1.9 ppm	None	None		Samp	les selected for analysis	
						Soil Boring C	ompletion Data	
— 20 —		1.6 ppm	None	None			6 bags of hydrated Bentonite Plug Surface to 40' bgs	
— 25		1.5 ppm	None	None				
_								
30 		1.5 ppm	None	None				
— 35		0.9 ppm	None	None			J	
						TLE Appendix B ank 374 10" Sweet Truck	DESCRIPTION Soil Boring 8	
— 40 TI	D	0.8 ppm	None	None		Haul Line	DATE	

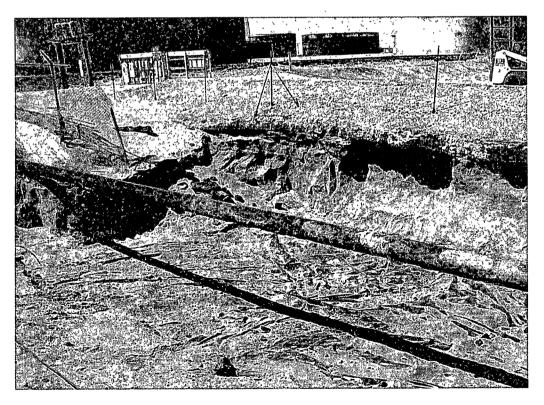

Appendix C Photographs ;

Ŏ



0

Tank 374 10" Sweet Truck Haul Line (SRS 2005-00172) release, following initial response activities



Excavation of the Jal Tank Farm (SRS 2005-00151) release prior to the liner installation

Õ

Liner installation at the Jal Tank Farm (SRS 2005-00151) release

Liner installation at the Tank 374 10" Sweet Truck Haul Line (SRS 2005-00172) release

Appendix D Release Notification and Corrective Action (Form C-141)

District 1 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV

State of New Mexico **Energy Minerals and Natural Resources**

,

Oil Conservation Division 1220 South St. Francis Dr. Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back

1220 S. St. Francis Dr., Santa Fe, NI	M 87505		Santa l	Fe, NM 87	505					side of form
	R	lelease I	Notificatio	on and C	orrective A	ction				
				OPER A	TOR	1	🛛 Initia	al Report	П	Final Report
Name of Company Plain	s Pipeline, I	LP		Contact	Daniel Brya			······		
	Box 3119 -		Tx 79702	Telephone	No. (432) 557-5	5865				
Facility Name Jal Ta	ank Farm			Facility T	pe Tank Farm					
Surface Owner Plains All A	American	_ N	Aineral Owner	•			Lease N	No.		
·			LOCATIO	N OF DI	TEASE		•••••••••••		······	
Unit Letter Section Tow	vnship Rar	nge Feet fi		th/South Line		East/W	est Line	County		
	265 37	8						Lea		
		Latitu		-	le W 103° 10' 34	t "				
T			NATUR	E OF RE		T	Volumo I	Dannungal	10 564	
Type of Release Crude Oi Source of Release 10" poly					of Release 20 bbls Hour of Occurrence			Recovered Hour of Di		
Source of Release To poly	y mie			1	05 13:30			05 13:40	sectery	
Was Immediate Notice Given?		s 🗌 No [Not Require		fo Whom? eley	<u> </u>				
By Whom? Daniel Bryant	• 		·····	Date and	Hour 06/27/200	05 15:35				
Was a Watercourse Reached?		s 🖾 No		If YES,	olume Impacting	the Wate	rcourse.			
If a Watercourse was Impacted	d Decoribe F			l						
Describe Cause of Problem an Degradation of a poly line cau until replacement. Pressure of 15,000 bbls per month. Describe Area Affected and C remediated per NMOCD guide	sed the release f the line runs	se of sweet c s 25 lbs and t	rude oil into the he gravity runs	42 @ 84°. H	I₂S content is <10 r	ppm. Thi	roughput (on the line is	аррго	kimately
I hereby certify that the inform regulations all operators are re public health or the environme should their operations have fa or the environment. In addition federal, state, or local laws and	equired to rep ent. The acce ailed to adeque on, NMOCD :	ort and/or fil eptance of a (uately investi acceptance o	e certain release C-141 report by gate and remed	e notifications the NMOCD liate contamin	and perform corre marked as "Final F ation that pose a the eve the operator of	ctive acti Report" d reat to gr 'responsi	ons for re- oes not re- ound wate bility for c	leases which lieve the oper, surface w compliance	h may c crator o /ater, hi with an	ndanger f liability ıman health
Signature: DB					OIL CON	Ľ	John-	Sem		
Printed Name: Daniel Bryant	t			Approved	by District	ONME	NTAL E	NGINEE	R	
Title: Environmental R/C Sp	ecialist				Date: 11.28.0	1		Date: Z.	-	28
E-mail Address: dmbryant@p	paalp.com			Conditions	of Approval:			Attache	d 🔲	
Date:		'hone: (432)	557-5865						~	1
* Attach Additional Sheets If	Necessary			<u> </u>	(lor	3		RP	FF / 6/8

┫

€ 0 1

525 N French Dr. Hohbe NM 88740	New Mexico		Form C-141
istrict II IOI W. Grand Avenue, Artesia, NM 88210 Energy Minerals	and Natural Resources	Ŷ.	Revised October 10, 2003
istrict III Oil Conse	rvation Division		Submit 2 Copies to appropriate District Office in accordance
istrict IV 1220 Sout	h St. Francis Dr. e, NM 87505		with Rule 116 on back side of form
Jailta I	n and Corrective A	stion	
Nelease Notificatio	OPERATOR		l Report 🔲 Final Repor
Name of Company Plains Pipeline, LP	Contact Daniel Bryan	The second s	i Keport rinai Kepor
Address P.O. Box 3119 - Midland, Tx 79702	Telephone No. (432) 557-58	865	
Facility Name Jal Tank Farm	Facility Type Tank Farm		
Surface Owner Plains All American / Joyce Willis Mineral Owner		Lease N	lo
	N OF RELEASE	East/West Line	County
P 32 25S 37E	h/South Line Feet from the	East west Line	Lea
M 33 25S 37E			
	1" Longitude W103° 10' 35.	.1"	
	COF RELEASE		10111-
Type of Release Sweet Crude Oil Source of Release 10" Sweet Truck Haul Line	Volume of Release 20 bbls Date and Hour of Occurrence		tecovered 10 bbls Hour of Discovery
Was Immediate Notice Given?	07/13/2005 15:00 If YES, To Whom?	07/13/20	05 15:40
Yes No Not Required			
By Whom? Daniel Bryant Was a Watercourse Reached?	Date and Hour 07/14/200 If YES, Volume Impacting t	5 8:05 (left mess	nge)
Yes X No	II TES, Volume Impacting of	ne watercourse.	
If a Watercourse was Impacted, Describe Fully.*			"lent
Describe Cause of Problem and Remedial Action Taken.*			
Internal corrosion caused the release of sweet crude oil at the Plains Jal runs 25 lbs and the gravity runs 42 @ 112° . H ₂ S content is <10 ppm.	tank farm. Line was removed fro Throughput on the line is approx	imately 15,000 bb	ls per month. Line depth is
approximately 2.5' at the release source.			
)			
Describe Area Affected and Cleanup Action Taken.* .			
Site is being investigated to determine extent of impact. Impacted soil will be remediated per NMOCD guidelines.	•		
		1	
I hereby certify that the information given above is true and complete to regulations all operators are required to report and/or file certain release	notifications and perform correct	tive actions for re	leases which may endanger
public health or the environment. The acceptance of a C-141 report by should their operations have failed to adequately investigate and remedi			
or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations.			
ייייטיש, אשוע טו זערם ומיז מושטו וכצוומוטוז.	OIL CON	SERVATION	DIVISION
Signature: Dail Brat		Dhu	
Printed Name: Daniel Bryant	Approved by District Subt //is	BONMENTAL	ENGINEEK
		_	
Title: Environmental R/C Specialist	Approval Date: 1(28.0	7 Expiration	Date: 2.7%-08
E-mail Address: dmbryant@paalp.com	Conditions of Approval:		Attached
Date: 7 22 5 Phone: (432) 557-5865		·	
Attach Additional Sheets If Necessary	(20	,	DD#166
	· · ·		UL

State of New Mexico Form C-141 rench Dr., Hobbs, NM 88240 **Energy Minerals and Natural Resources** Revised October 10, 2003 -W. Grand Avenue, Artesia, NM 88210 Submit 2 Copies to appropriate rict III **Oil Conservation Division** District Office in accordance 00 Rio Brazos Road, Aztec, NM 87410 1220 South St. Francis Dr. with Rule 116 on back side of form 220 S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505 **Release Notification and Corrective Action OPERATOR** Initial Report Final Report Contact Daniel Bryant Name of Company Plains Pipeline, LP P.O. Box 3119 - Midland, Tx 79702 Telephone No. (432) 557-5865 Address Facility Name Facility Type Tank Farm Jal Tank Farm Mineral Owner Lease No. Surface Owner Plains All American LOCATION OF RELEASE Unit Letter Feet from the North/South Line Feet from the East/West Line County Section Township Range Р 32 25S 37Ē Lea Latitude N32° 04' 52.1" Longitude W103° 10' 35.1" NATURE OF RELEASE Volume of Release 30 bbls Volume Recovered 20 bbls Type of Release Sweet Crude Oil Date and Hour of Discovery Source of Release 10" Truck Haul Line Date and Hour of Occurrence 07/25/2005 07:00 07/25/2005 07:30 Was Immediate Notice Given? If YES, To Whom? Yes 🗌 No 🗌 Not Required Larry Johnson By Whom? Daniel Bryant Date and Hour 07/26/2005 09:15 (left message) Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. TYes No No If a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* Internal corrosion caused the release of sweet crude oil at the Plains Jal tank farm. Release occurred while line was excavated for pipeline replacement. Pressure of the line runs 25 lbs and the gravity runs 42 @ 112°. H2S content is <10 ppm. Throughput on the line is approximately 15,000 bbls per month. Line depth is approximately 2.5' at the release source. •] ved Describe Area Affected and Cleanup Action Taken.* . Released crude oil was contained within the pipeline excavation trench. Impacted soil will be remediated per NMOCD guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION -10therson Signature: Approved by District SERAWARDNMENTAL ENGINEER Printed Name: Daniel Bryant Expiration Date: 2-29.08 Title: Environmental R/C Specialist Approval Date: 11.78.07 E-mail Address: dmbryant@paalp.com Conditions of Approval: Attached Date: 7/27 05 Phone: (432) 557-5865

Attach Additional Sheets If Necessary