GW-002

1st Semi-ANNUAL REPORT

DATE: 2009

RECEIVED 2009 JUN 5 PM 1 14

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 303-595-3331 303-605-2226 FAX

June 2, 2009

Mr. Leonard Lowe Environmental Bureau Chief New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe. NM 87505

RE: 1st 2009 Semi Annual Groundwater Monitoring Report

Former DCP Lee Gas Plant (GW-002)

Unit N Section 30, Township 17 South, Range 35 East

Dear Mr. Lowe:

DCP Midstream, LP (DCP) is pleased to submit for your review one copy of the 1st 2009 Semi Annual Groundwater Monitoring Report for the Former DCP Lee Gas Plant located in Lea County, New Mexico (Unit N Section 30, Township 17 South, Range 35 East).

Groundwater monitoring activities were completed March 11, 2009. The data indicate that the dissolved phase hydrocarbon plume continues to attenuate to below NM WQCC groundwater standards before reaching the down-gradient boundary wells. The next groundwater monitoring event is scheduled for the second half of 2009.

If you have any questions regarding the report, please call at 303-605-1695 or e-mail me CECole@dcpmidstream.com.

Sincerely,

DCP Midstream, LP

Chandler E Cole.

Senior Environmental Specialist

handler F. Lole

Enclosure

cc: Larry Johnson – OCD District Office, Hobbs

Environmental Files

May 26, 2009

RECEIVED

Mr. Chandler Cole DCP Midstream, LP 370 Seventeenth Street, Suite 2500 Denver, Colorado 80202 2009 JUN 5 PM 1 14

Subject: Summary of First 2009 Semiannual Groundwater Monitoring Event at the

Former Lee Gas Plant, Lea County, New Mexico (GW-002) Unit N, Section 30, Township 17 South, Range 35 East

Dear Steve:

This letter summarizes the activities completed and data generated for the first 2009 semiannual monitoring event at the DCP Midstream Former Lee Gas Plant in Lea County, New Mexico. An update of the remediation activities is also provided.

BACKGROUND

The facility is located in New Mexico Oil Conservation Division (OCD) designated Unit N, Section 30, Township 17 South, Range 35 East (Figure 1). The coordinates are 32.800 degrees north 103.495 degrees west.

The facility was formerly used for gas processing and compression. The components associated with these operations were removed or demolished in 2003. The only remaining site structures are the former office and some warehouse buildings

The current well locations are shown on Figure 2. Construction information is included in Table 1.

Wells MW-5, MW-6, MW-8 and MW-15 all contain free-phase hydrocarbons (FPH). The automatic FPH collection systems installed in wells MW-6 and MW-15 are inspected weekly. System operations are verified and the FPH removal volumes are measured. The FPH holding containers, all in secondary containment, are emptied as they approach capacity. The FPH in wells MW-5 and MW-8 is manually removed weekly using bailers. The FPH is also stored in drums for periodic collection and removal.

SUMMARY OF MONITORING ACTIVITIES

The first semiannual 2009 monitoring event was completed on March 11, 2009. The activities included measuring fluid depths in all wells and the sampling of six wells.

Free Phase Hydrocarbon Distribution and Groundwater Fluctuation And Flow

The March 2009 fluid measurement data are tabulated on Table 2. FPH recovery was not completed the week prior to sampling so the fluids could equilibrate for accurate measurement. Wells MW-6 and MW-15 cannot be gauged because of the active FPH systems. The FPH thickness in MW-5 and MW-8 is graph verses time in Figure 3. The thickness values decreased in both wells between November 2007 and March 2009. These decreases are believed to be related to the weekly FPH removal program.

Hydrographs for select wells located throughout the study area are included on Figure 4. The hydrographs indicate that the water table continues to decline at an historic rate. The water table is now at the lowest elevation measured since the start of the project.

The water-table elevations for the wells containing free product were adjusted using the following formula:

$$GWE_{corr} = MGWE + (PT*PD)$$
: where

- MGWE is the actual measured groundwater elevation;
- PT is the measured free-phase hydrocarbon thickness; and
- PD is the free phase hydrocarbon density assumed 0.76

A water-table contour map based upon the March 2009 corrected values as generated by the program Surfer® using the kriging option is included as Figure 5. The plot indicates that groundwater flow maintained its historic primary direction toward the south-southwest.

Groundwater Sampling

Six monitoring wells were purged and sampled using the standard protocols for this site. Wells MW-11, MW-12, MW-13, MW-19 and MW-20 are down gradient boundary wells. These wells are monitored for evidence of dissolved phase hydrocarbon plume expansion. Well MW-21 is an affected well that is checked semiannually for dissolved phase hydrocarbon fluctuations.

The wells were pumped until a minimum of three casing volumes of water were removed and the field parameters temperature, pH and conductivity had stabilized. The well purging form is attached. The affected purge water was disposed of at the DPC Linam Ranch facility.

Unfiltered samples were collected following purging using dedicated bailers. All samples were placed in an ice-filled chest immediately upon collection and shipped via Federal Express to AccuTest laboratory using standard chain-of-custody protocols. The samples were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) using EPA Method SW846 8260.

Mr. Chandler Cole May 26, 2009 Page 3

A field duplicate was collected from MW-21 and a matrix spike, matrix spike duplicate was collected from MW-12 to evaluate quality control. Evaluation of the quality control data indicated that:

- The cooler temperature was acceptable upon login at laboratory;
- The method blanks all within control limits;
- The blank spikes all within control limits;
- All individual surrogates within their control limits;
- The BTEX values the primary sample and the field duplicate were identical; and
- The matrix spike and matrix spike data were all within their respective control limits, and the two sets of data agreed within acceptable relative percentage difference limits..

The above evaluations verify that the data are suitable for groundwater monitoring evaluation.

Dissolved Phase BTEX Distribution And Attenuation

The laboratory analyses for the sampling episode are summarized in Table 3. The New Mexico Water Quality Control Commission (NMWQCC) groundwater standards are included at the top of the table. A summary of the historical groundwater monitoring data is attached. The laboratory report is also attached.

The benzene concentrations are posted for the sampled wells in Figure 6. None of the BTEX constituents were detected in the down-gradient monitoring wells MW-11, MW-13, MW-19 and MW-20. Moreover, an additional 200 feet of land provides an additional buffer between the property boundary and these wells as shown on Figure 2.

The benzene concentrations are plotted verses time in Figure 7. The concentration measured in March 2009 was substantially lower than the September 2008 value; however, the well has exhibited seasonal concentration fluctuations since 2006.

FREE PHASE HYDROCARBON REMOVAL

Active FPH recovery continues in MW-6 and MW-15. Approximate 10 gallons per month have been recovered from MW-6 since September 2005. The production rate in MW-15 increased substantially in April 2007 and it currently averages approximately 25 gallons per month.

Manual FPH removal is completed on a weekly basis in MW-5 and MW-8. FPH removal rates have averaged approximately 7.5 and 9.5 gallons per month respectively over the past 4 months.

Mr. Chandler Cole May 26, 2009 Page 4

CONCLUSIONS

The data collected during the March 2009 monitoring event demonstrates that the dissolved phase hydrocarbons continue to attenuate to below the NMWQCC groundwater standards before reaching the down-gradient boundary wells. The FPH thickness in all four wells continues to be sufficient to warrant ongoing removal. FPH removal will continue.

The next monitoring episode is scheduled for the second half of 2009. Water samples will be collected from all wells that do not contain FPH.

Do not hesitate to contact me if you have any questions or comments on this report or any other aspects of the projects.

Sincerely,

AMERICAN ENVIRONMENTAL CONSULTING, LLC

Michael H. Stewart, PE

Muhael H. Stewart

Principal Engineer

MHS/tbm

attachments

TABLES

Table 1 – Summary of Well Construction Information

	TD CC '	1 m . 1 .
*** **	Top of Casing	Total
Well	Elevation	Depth
<u>M</u> W-1	3,979.25	100.83
<u>M</u> W-2	3,980.50	106.72
<u>M</u> W-3	3,980.27	108.84
MW-4	3,980.16	103.60
MW-5**	3,979.82	112.64
<u>M</u> W-6*	3,981.79	113.20
<u>M</u> W-7	3,978.45	111.70
MW-8**	3,979.96	110.82
MW-9	3,980.17	116.95
MW-10	3,979.66	117.50
MW-11	3,978.50	117.98
MW-12	3,978.82	117.35
<u>M</u> W-13	3,980.52	117.28
MW-14	3,982.23	118.56
MW-15*	3,981.70	122.70
MW-16	3,980.80	122.97
MW-17	3,981.80	124.12
MW-18	3,983.10	125.50
MW-19	3,980.80	126.56
MW-20	3,983.30	128.21
MW-21	NA	123.59
MW-22	NA	148.68
MW-23	NA	NA

Note: all units in feet.

NA: Information not available

MW-23 cannot be accessed because of inoperative down-hole equipment.

^{*} Active free phase hydrocarbon recovery systems present

^{**} Manual free phase hydrocarbon recovery weekly using bailers

Table 2 - Summary of March 2009 Gauging Data

Well	Depth to Water	Depth to Free Phase Hydrocarbons	Groundwater Elevation
MW-3	107.47		3872.80
MW-5	107.74	105.70	3873.63
MW-7	106.46		3871.99
MW-8	110.80	106.82	3872.18
MW-9	107.89		3872.28
MW-10	107.71		3871.95
MW-11	106.88		3871.62
MW-12	107.33		3871.49
MW-13	109.15		3871.37
MW-14	110.48		3871.75
MW-16	106.52		3874.28
MW-17	108.92		3872.88
MW-18	110.30		3872.80
MW-19	110.15		3870.65
MW-20	112.79		3870.51
MW-21	108.94		NA
MW-22	108.69		NA

Notes:

1) Units are feet

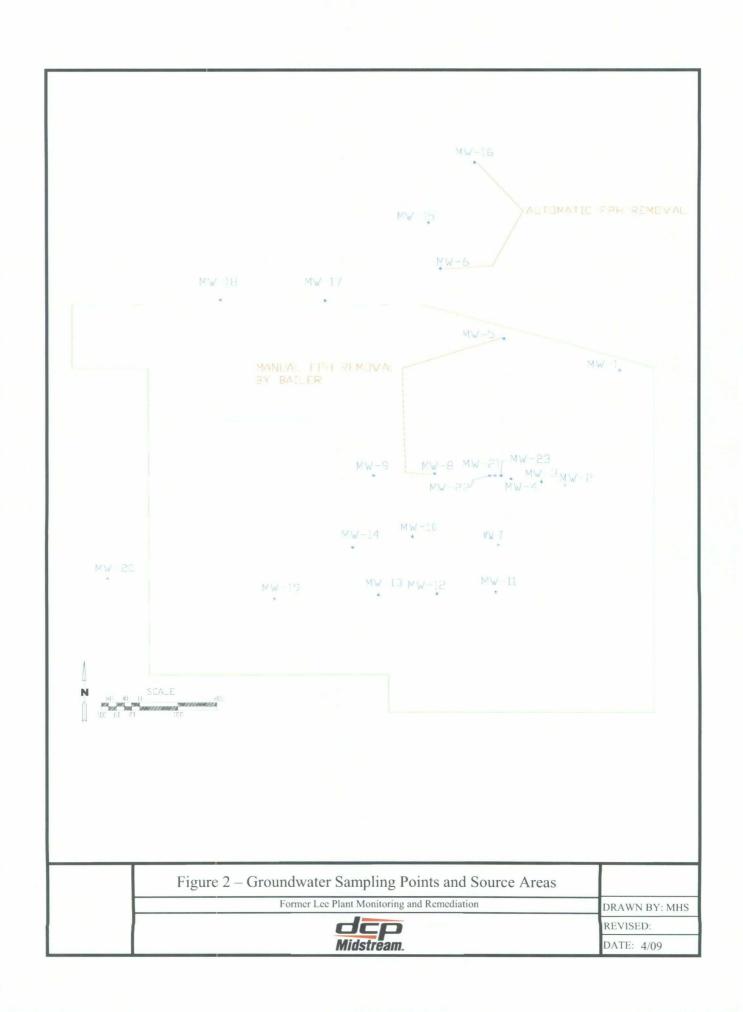
2) NA: no measured casing elevation

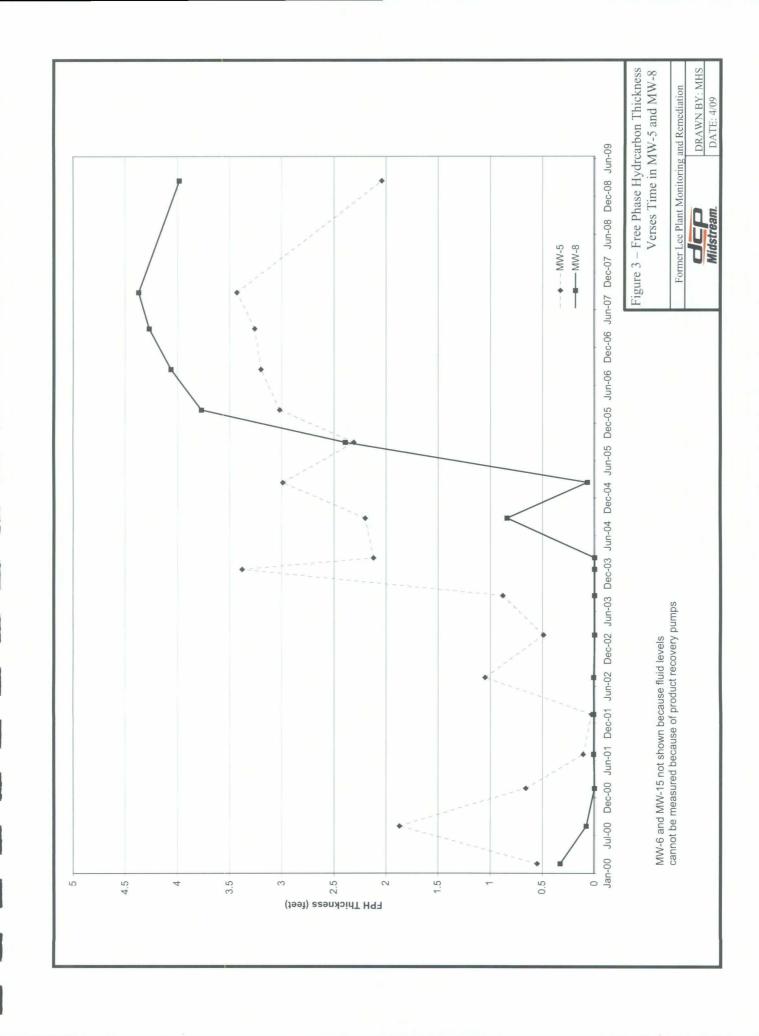
Table 3 - Summary of March 2009 Sampling Results

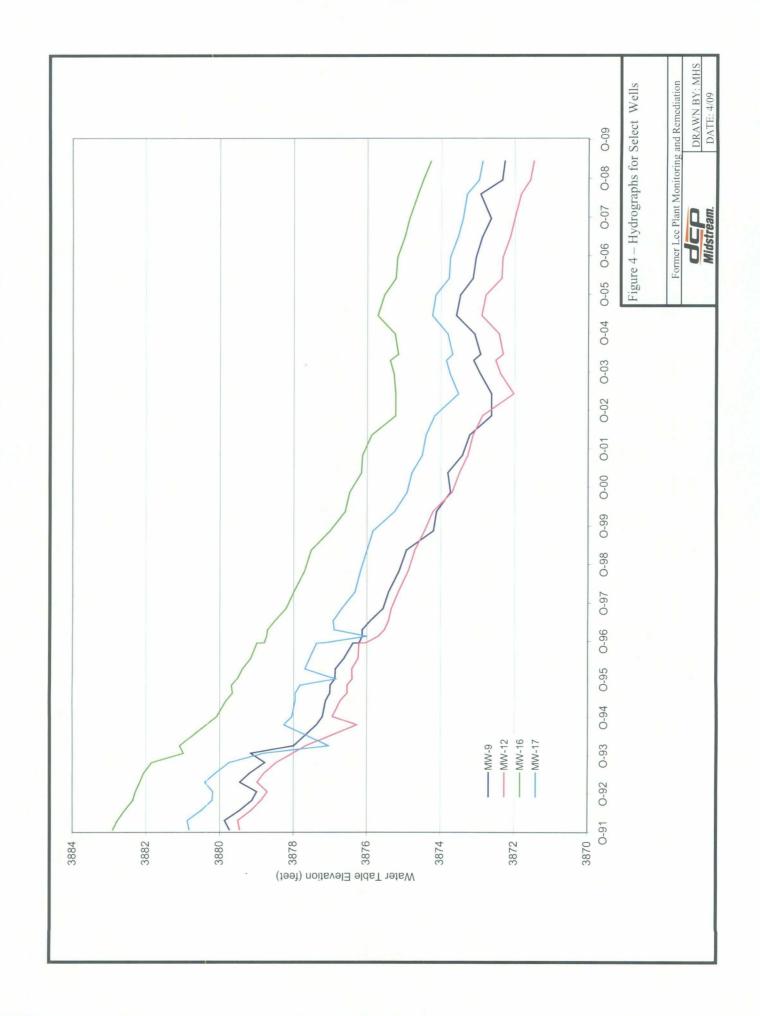
		- 1		Xylene
	Benzene	Toluene	Ethylbenzene	(total)
NMWQCC	0.01	0.75	0.75	0.62
MW-11	< 0.002	< 0.002	< 0.002	< 0.006
MW-12	< 0.002	< 0.002	< 0.002	< 0.006
MW-13	< 0.002	< 0.002	< 0.002	< 0.006
MW-19	< 0.002	< 0.002	< 0.002	< 0.006
MW-20	< 0.002	< 0.002	< 0.002	< 0.006
MW-21	0.216	< 0.002	0.0018J	< 0.006
MW-21 DUP	0.216	< 0.002	0.0018J	< 0.006
TRIP BLANK	< 0.002	< 0.002	< 0.002	< 0.006

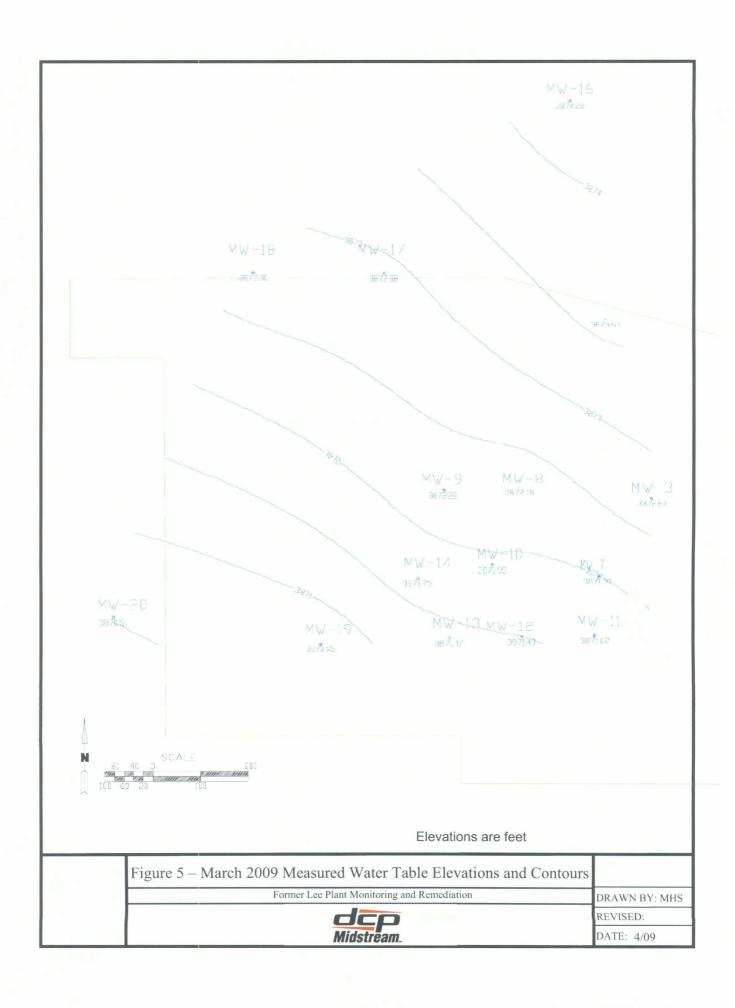
Notes:

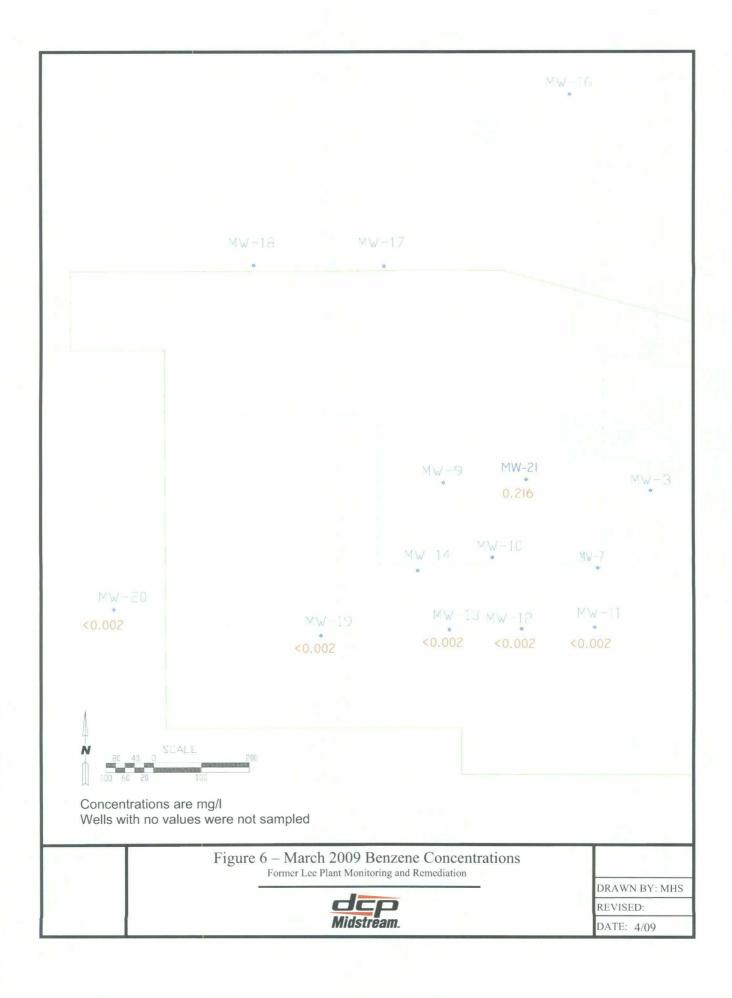

l) All units mg/l

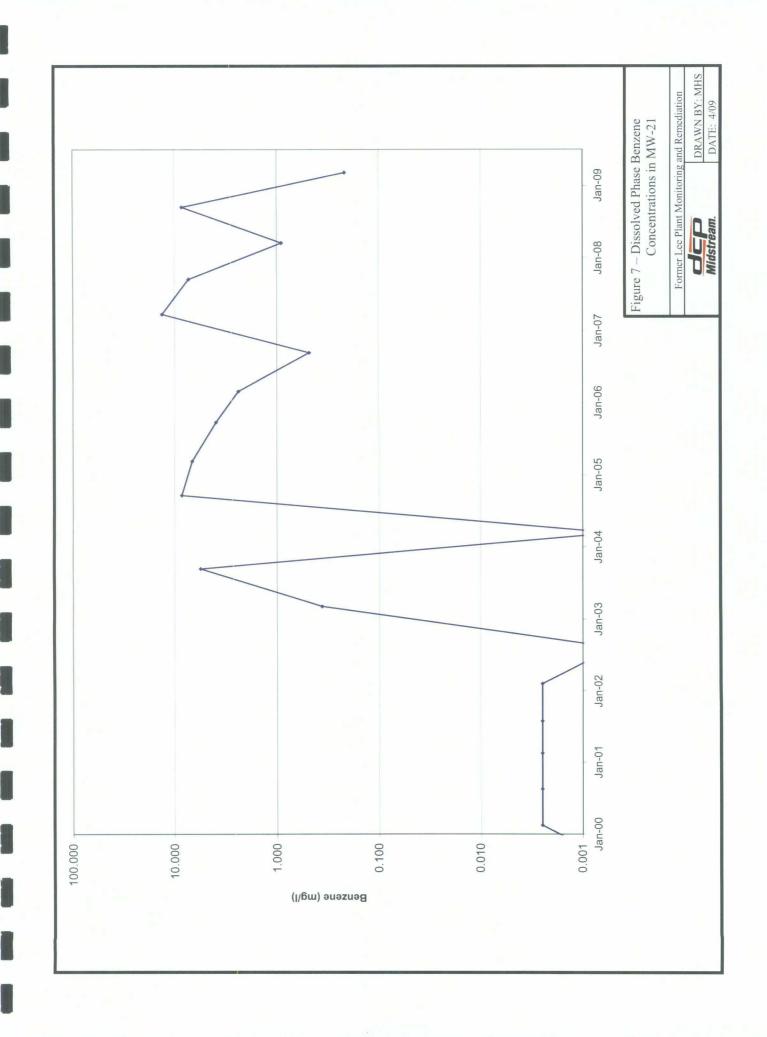

2) NMWQCC: New Mexico Water Quality Control Commission groundwater standards.


3) Bolded cells exceed the applicable NMWQCC standards


4) J: estimated value, concentration between the method detection limit and the method reporting limit


FIGURES





ATTACHMENT

Historical Groundwater Monitoring Data

Summary of Lee Plant Benzene Groundwater Concentrations

MW-22									·					0.170		ļ	0.007	0.005		<0.001			<0.001	_	<0.001		<0.001	
AW-21 N														37 (0.517 (0.078		V	0.042		> 260.0		0.001		0.010	
MW-19 MW-20 MW-21							0.080	<0.001		0.220		<0.001	0.001	0.217	0.018	0.004	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-19							<0.001			0.014				0.015	0.011	0.003	<0.001	0.005	<0.001	0.079	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-18							<0.001			0.023				0.011		<0.001		0.057		<0.001		<0.001		<0.001		<0.001		<0.001
							0.008													0.062				<0.001				
MW-16							0.004			0.42				1.19				3.82				3.53					0.724	
MW-14					<0.001	<0.002					0.043	0.019	0.013			·									2.22			
MW-13					0.016	0.002	0.001	<0.001		<0.001	0.084	0.028	0.013	0.015	0.029	0.002	<0.001	0.007	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-12 MW-13 MW-14 MW-16 MW-17				0.001	0.120	<0.002	0.004	<0.001	<0.001	0.018	0.064	0.067	0.030	0.011	<0.002	0.003	<0.001	0.004	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
				0.001		<0.002	0.002	100'0>	0.002	0.031	0.078	0.001	0.001	0.016	<0.002	0.004	<0.001	0.002	<0.001	100'0>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-10 MW-11				1.3	86.0	6.7								0.004				4.16				3.66				2.98		
MM-9				900.0	0.007	0.16	0.002	<0.001	<0.001	0.31	3.0	5.9	2.2	0.673				0.495				5.86				0.327		
MW-7		6.1				3.2				0.001				0.040				0.003				0.083				1.14		
MW-3	0.069	(<0.001		0				61	6)	6)	61									25	16	1.0	10				9	
Date	03/01/90	03/28/90	06/22/90	06/01/80	02/13/91	06/26/91	10/11/01	01/23/92	04/28/92	07/30/92	10/21/92	01/20/93	04/15/93	07/20/93	86/97/01	76/90/10	05/03/94	07/26/94	10/12/94	03/16/95	06/24/95	08/10/95	10/10/95	01/16/96	04/25/96	08/27/96	11/20/96	01/21/97

All units mg/l
Blank cells, wells either not installed or not sampled
Data from 1990 to 2003 compiled from historical sources; duplicate samples after 2003 averaged
"J" (estimated) modifiers not included

Summary of Lee Plant Benzene Groundwater Concentrations (continued)

MW-3	MW-7	6-WW	MW-10	MW-11	MW-10 MW-11 MW-12	MW-13	MW-14 MW-16 MW-17	MW-16	MW-17	MW-18	MW-19	MW-20	MW-18 MW-19 MW-20 MW-21 MW-22	MW-22
				<0.001	<0.001	<0.001	3.79				<0.001	<0.001	3.51	
	1.39	0.138	4.71	<0.001	<0.001	<0.001	3.42	0.891	0.002	<0.001	<0.001	<0.001	33	0.002
ı				<0.001	<0.001	<0.001					<0.001	<0.005	11	
0.002	1.63	0.892	1.5	<0.001	<0.001	<0.001	0.002	1.95	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
1				<0.001	<0.001	<0.001					<0.005	<0.005	<0.001	
<0.001	1.5	13.6	1.01	<0.001	<0.001	<0.001	0.024	0.454	0.028	<0.005	<0.001	<0.001	<0.001	<0.005
1				0.001	0.338	<0.001					<0.005	<0.005	<0.005	
<0.005	0.036	2.92	3.70	<0.001	<0.005	<0.001	0.284	9/0.0	0.037	<0.005	<0.001	<0.005	<0.005	<0.005
<0.005				<0.005	<0.005	<0.005					<0.005	<0.005	<0.005	
<0.005	900.0	4.88	3.43	<0.001	<0.001	<0.001	1.94	0.018	0.148	<0.005	<0.001	<0.001	<0.005	<0.001
<0.001				<0.001	0.001	<0.001					<0.001	<0.005	<0.005	
1	0.026	1.57	7.99	<0.001	<0.001	0.003	<0.001	0.016	0.015	<0.001	<0.001	<0.005	<0.001	<0.001
I				<0.001	<0.001	<0.001					<0.001	<0.001	0.362	
-7	0.008	8.67	2.42	<0.005	900.0	0.002	0.002	0.081	0.01	<0.001	<0.001	<0.001	5.58	<0.005
<0.001				<0.001	<0.001	<0.001					<0.001	<0.001	<0.001	
1 -	<0.002	2.42	0.0219	<0.002	<0.002	<0.002	<0.002	0.012	<0.002	<0.002	<0.002	<0.022	8.5	0.0067
				<0.002	<0.002	<0.002					<0.002	<0.002	6.72	
<0.002	0.001J	3.43	0.0032	<0.002	<0.002	<0.002	0.0017J	0.016	0.0018J	<0.002	<0.002	<0.002	3.91	<0.002
				<0.002	<0.002	<0.002					<0.002	<0.002	2.36	
	0.741	10.9	0.0025	<0.002	<0.002	<0.002	0.139	0.204	<0.002	<0.002	<0.002	<0.002	0.481	0.0111
				<0.002	<0.002	<0.002					<0.002	<0.002	13.2	
l	0.864	22.6	3.67	<0.002	<0.002	0.00092J	0.003	0.0309	0.0118	<0.002	0.001	<0.002	7.23	0.00057
				<0.002	<0.002	<0.002					<0.002	<0.002	0.8595	
1	0.0762	9.25	15.9	<0.002	0.0169	<0.002	<0.002	0.166	0.0012 J	<0.002	<0.002	<0.002	8.42	<0.002
					<0.002									
				<0.002	<0.002	<0.002					<0.002	<0.002	0.216	
l							į							

All units mg/l
Blank cells, wells either not installed or not sampled
Data from 1990 to 2003 compiled from historical sources; duplicate samples after 2003 averaged
"J" (estimated) modifiers not included

Summary of Lee Plant Toluene Groundwater Concentrations

Date MW-3	7-3 MW-7	6-WW	MW-10	MW-11	MW-10 MW-11 MW-12 MW-13 MW-14 MW-16 MW-17 MW-18 MW-19 MW-20 MW-21 MW-22	MW-13	MW-14	MW-16	MW-17	MW-18	MW-19	MW-20	MW-21	MW-22
03/01/90 0.002)2													
03/28/90 0.002	0.36												-	
06/22/90 0.006	9(
08/10/80		0.001	0.05	0.002	0.001									
02/13/91		0.001	0.015		0.001	0.003	<0.001							
06/26/91	1.4	0.056	0.42	<0.002	0.002	<0.002	<0.002							
10/17/91		0.003		0.002	0.003	0.001		0.002	0.002	0.001	0.001			
01/23/92		0.003		<0.001	<0.001	<0.001						<0.001		
04/28/92		0.001		< 0.001	<0.001									
07/30/92	<0.001	0.004		0.007	0.004	<0.001		0.077		0.006	0.004	0.076		
10/21/92		0.28		0.13	0.13	0.15	0.099							
01/20/93		0.004		<0.001	0.001	<0.001	<0.001					<0.001		
04/15/93		0.011		<0.001	<0.001	<0.001	0.003					<0.001		
07/20/93			0.57	0.314	<0.002	0.034		0.157		0.029	0.036	0.102	5	0.065
10/26/93				<0.002	<0.002	0.03					0.012	0.014	_	
01/06/94	1			900.0	0.004	0.003				0.002	0.003	0.005		
05/03/94				<0.001	0.002	<0.001					<0.001	<0.001	0.052	0.002
07/26/94			0.002	<0.01	0.21	0.001		1.66		0.008	<0.001	<0.001	0.051	0.001
10/12/94				0.002	<0.001	<0.001					<0.001	<0.001		
03/16/95				0.002	0.003	0.003			0.02	0.002	0.028	900.0	<0.001	<0.001
06/24/95				0.001	<0.001	<0.001					0.004	<0.001		
08/10/95	0.001	<0.025	0.033	<0.001	<0.001	<0.001		0.54		<0.001	<0.001	<0.001		
10/10/95				<0.001	<0.001	<0.001					<0.001	<0.001	<0.001	<0.001
96/91/10				<0.001	<0.001	<0.001			<0.001	<0.001	<0.001	<0.001		
04/25/96					<0.001	<0.001	<0.01				<0.001	<0.001	<0.001	<0.001
08/22/96	<0.01	<0.001	90.0	<0.001	<0.001	<0.001		0.166		<0.001	<0.001	<0.001		
11/20/96				<0.001	<0.001	<0.001					<0.001	<0.001	<0.001	<0.001
01/21/97				<0.001	<0.001	<0.001				< 0.001	<0.001	<0.001		
1														

Blank cells, wells either not installed or not sampled Data from 1990 to 2003 compiled from historical sources; duplicate samples after 2003 averaged "J" (estimated) modifiers not included

Summary of Lee Plant Toluene Groundwater Concentrations (continued)

N-22		0.001		900.0		<0.005		<0.005		<0.001		<0.001		<0.005		<0.002	<0.002	<0.002	0.00062	0.0228	0.0059	0.00067		<0.002		
MV		ö				9	-	-								0>					-	-		8		_
MW-2	<0.025	0.31	<0.1	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001	<0.001	<0.005	<0.05	0.14	<0.002	<0.002	<0.002	0.0023	<0.002	<0.002	<0.002	0.281		
MW-20	<0.001	<0.001	< 0.005	<0.001	<0.005	<0.001	<0.005	<0.005	<0.005	<0.001	<0.005	< 0.005	<0.001	<0.001	<0.001	<0.022	< 0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	0.00061J	<0.002		
MW-19	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.005	<0.001	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002		<0.002		<0.002		<0.002		<0.002		
MW-18		<0.001		<0.001		<0.005		<0.005		<0.005		<0.001		<0.001		<0.002		<0.002		<0.002		<0.002		<0.002		
MW-17		<0.001		<0.001		0.002		<0.005		<0.005		<0.001		<0.001		<0.002		<0.002		0.0035		0.0014		<0.002		
MW-10 MW-11 MW-12 MW-13 MW-14 MW-16 MW-17 MW-18 MW-19 MW-20 MW-21 MW-22		0.216		0.304		0.053		0.003		<0.005		<0.001		<0.001		<0.002								<0.002	-	
MW-14	<0.025	<0.05		<0.001		<0.001		<0.001		<0.005		<0.001		<0.001		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.0005J	<0.002		
MW-13	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.000651 0.0005	<0.002		
MW-12	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
MW-111	 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.002		<0.002		<0.002		<0.002		<0.002		
MW-10		<0.05		0.011		<0.01		<0.005		<0.05		<0.05	-	<0.1		<0.002		<0.002		<0.002		<0.002		0.0148		1
6-MM		<0.025		<0.01		0.25		<0.005		<0.1		<0.005		<0.1		0.0131								0.0442		
MW-7		0.078		<0.01		0.016		0.014		<0.005		<0.005		<0.001		0.0017								0.0014 J		
MW-3				<0.001		<0.001		<0.005	<0.005	<0.005	<0.001	-			<0.001			<0.002								
Date	04/17/97	08/12/97	01/20/98	08/02/98	02/15/99	08/18/99	02/16/00	08/16/00 <0.005	02/16/01	08/01/01 <0.005	02/11/02 <0.00	08/13/02	03/09/03	09/16/03	03/15/04	09/23/04	03/14/05	09/26/05 <0.002	03/05/06	09/20/06	03/28/07	09/20/07	03/20/08	09/11/08	11/10/08	

All units mg/l
Blank cells, wells either not installed or not sampled
Data from 1990 to 2003 compiled from historical sources; duplicate samples after 2003 averaged
"J" (estimated) modifiers not included

Summary of Lee Plant Ethylbenzene Groundwater Concentrations

Date M	1W-3	MW-3 MW-7 MW		-9 MW-10 MW-11	1 1	MW-12	MW-13	MW-12 MW-13 MW-14 MW-16 MW-17	MW-16	MW-17	MW-18	MW-19	MW-18 MW-19 MW-20 MW-21 MW-22	MW-21	MW-22
_															
	0.001												_+		
03/28/90	<0.001								ļ				-		
06/22/90	0.00														
08/10/90			0.001	0.034	0.003	0.001									
02/13/91			0.005	910.0		0.004	0.019	<0.001							
16/97/90		0.023	0.003	0.084	<0.002	<0.002	<0.002<0.002	<0.002							
10/11/01			0.002		<0.001	<0.001	<0.001	,	<0.001	<0.001	<0.001	<0.001 0.003	0.003		
01/23/92			0.005		<0.001	<0.001	<0.001						< 0.001		
04/28/92			<0.001		<0.001	<0.001									
07/30/92		<0.001	0.01		0.002	0.001	<0.001		0.008		0.002	0.002	900'0		
10/21/92			0.11		0.022		0.026	0.019							
01/20/93			0.022		<0.001	<0.001	<0.001	< 0.001					<0.001		
04/15/93			0.02		< 0.001	<0.001	< 0.001	0.003					< 0.001		
07/20/93		< 0.001	0.029	<0.002	< 0.002	<0.002	<0.002		0.03		<0.002	<0.002	0.011	<2	0.036
10/26/93					< 0.002	<0.002	<0.002					<0.002	<0.002		
01/06/94					< 0.001	< 0.001	<0.001				<0.001	< 0.001	0.003		
05/03/94					0.001	0.001	<0.001					<0.001	< 0.001	<0.001	< 0.001
07/26/94		0.001	<0.01	0.23	< 0.001	< 0.001	<0.001		0.12		0.007	<0.001	< 0.001	<0.001	< 0.001
10/12/94					< 0.001	<0.001	<0.001					<0.001	<0.001		
03/16/95					<0.001	<0.001	< 0.001			0.004	1 < 0.001	0.005	< 0.001	<0.001	<0.001
06/24/95					<0.001	<0.001	<0.001					0.002	<0.001		
08/10/95		0.002 <0.	<0.025	<0.025	<0.001	< 0.001	< 0.001		0.137		<0.001	<0.001	< 0.001		
10/10/95					<0.001	<0.001	< 0.001					<0.001	<0.001	<0.001	< 0.001
96/91/10					< 0.001	< 0.001	< 0.001			<0.001	<0.001	<0.001	< 0.001		
04/22/96						<0.001	<0.001	0.049				<0.001	< 0.001	< 0.001	<0.001
08/27/96		<0.01	<0.001	<0.025	<0.001	<0.001	< 0.001		0.035		<0.001	<0.001	<0.001		
11/20/96					<0.001	<0.001	<0.001					<0.001	<0.001	<0.001	<0.001
01/21/97					<0.001	<0.001	<0.001				<0.001	<0.001	<0.001		
100	11-				-										

Blank cells, wells either not installed or not sampled
Data from 1990 to 2003 compiled from historical sources; duplicate samples after 2003 averaged
"J" (estimated) modifiers not included

Summary of Lee Plant Ethylbenzene Groundwater Concentrations (continued)

Date MW-3	MW-3 MW-7 MW	6-WW	-9 MW-10 MW-11	1	MW-12	MW-13	MW-12 MW-13 MW-14 MW-16 MW-17	MW-16		MW-18	MW-19	MW-20	MW-18 MW-19 MW-20 MW-21 MW-22	MW-22
04/17/97				<0.001	<0.001	<0.001	0.05				<0.001	<0.001	<0.025	
08/12/97 0.042	0.042 < 0.025 < 0.	<0.001	<0.05	< 0.001	<0.001	< 0.001	<0.05	0.042	<0.001	<0.001	<0.001	<0.001	0.73	<0.001
01/20/98				<0.001	< 0.001	<0.001					<0.001	<0.005	<0.1	
08/02/98 0.007	7 <0.01	<0.01	0.013	<0.001	<0.001	< 0.001	<0.001	0.046	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
02/15/99				<0.001	<0.001	<0.001					< 0.005	<0.005	<0.001	
08/18/99 <0.001	0.02	0	05<0.01	<0.001	<0.001	<0.001	<0.001 < 0.005	<0.005	<0.001	< 0.005	<0.001	<0.001	<0.001	<0.005
02/16/00				<0.001	<0.001	<0.001					< 0.005	<0.005	<0.005	
08/16/00 <0.005	5 <0.01	Ŏ.)24<0.005	<0.001	<0.005<0.001	<0.001	<0.001	0.001	<0.005	<0.005	<0.001	<0.005	<0.005	<0.005
02/16/01 <0.005	16			<0.005	<0.005	<0.005							<0.005	
08/01/01 <0.005	5 < 0.005	<0.1	<0.05	<0.001	<0.001	<0.001	0.006	< 0.005	<0.005	<0.005	<0.001	0.002	<0.005<0.001	<0.001
02/11/02 <0.001				<0.001	<0.001	<0.001					< 0.001	<0.005	<0.005	
08/13/02	<0.005	0.013	<0.05	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.001
03/09/03				<0.001	< 0.001	<0.001					<0.001	<0.001	0.018	
60/91/60	0.001	0.146	<0.1	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.153	<0.005
03/15/04 <0.00				<0.001	<0.001	< 0.001					<0.001	<0.001	0.0981	
09/23/04	0.0012	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.022	<0.002	<0.002
03/14/05					<0.002	<0.002	<0.002					<0.002	<0.002	0.171
09/26/05 <0.002			0.0542	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	0.0868
03/02/06					<0.002	<0.002	<0.002					<0.002	<0.002	0.0691
90/02/60			<0.002	<0.002	<0.002	<0.002	<0.002		0.0097	<0.002	<0.002	<0.002	<0.002	<0.002
03/28/07					<0.002	<0.002	<0.002					<0.002	<0.002	0.839
09/20/07			0.27	0.00124	<0.002 <0.002	<0.002	<0.002		0.00053J	<0.002	<0.002	<0.002	<0.002	0.462J
03/20/08					<0.002	<0.002	<0.002					<0.002	<0.002	
80/11/60	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.0024	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
11/10/08					<0.002									
03/11/09				<0.002	<0.002	<0.002					<0.002	<0.002 <0.002	0.0018J	

All units mg/l
Blank cells, wells either not installed or not sampled
Data from 1990 to 2003 compiled from historical sources; duplicate samples after 2003 averaged
"J" (estimated) modifiers not included

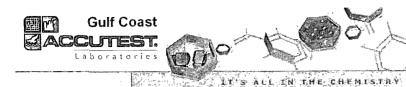
Summary of Lee Plant Total Xylenes Groundwater Concentrations

Date MW-3	MW-3 MW-7	MW-9	MW-10	MW-11	MW-12	MW-13	MW-10 MW-11 MW-12 MW-13 MW-14 MW-16 MW-17 MW-18 MW-19 MW-20 MW-21 MW-22	MW-16	MW-17	MW-18	MW-19	MW-20	MW-21	MW-22
000000000000000000000000000000000000000														
03/01/90 0.001														
03/28/90 <0.001														
06/27/90 <0.003	3													
08/10/80		0.002	0.016	900.0	0.003									
02/13/91		0.002	<0.005		0.001	0.005	<0.001							
16/92/90	0.13	0.004	0.039	<0.003	<0.003	<0.003	<0.003							
10/17/91		<0.001		<0.001	<0.001	<0.001		<0.001	<0.001	< 0.001	<0.001	0.003		
01/23/92		<0.001		<0.001	<0.001	<0.001						<0.001		
04/28/92		<0.001		<0.001	<0.001									
07/30/92	<0.001	0.003		0.001	0.001	<0.001		0.008		0.001	0.001	900.0		
10/21/92		0.12		0.051	0.056	0.062	0.045							
01/20/93		0.011		0.001	<0.001	<0.001	0.001					<0.001		
04/15/93		0.04		0.001	<0.001	<0.001	0.006					0.002		
07/20/93	1.27	690.0		0.012	0.012	0.013		0.048		0.012	0.014	0.034	9>	0.048
10/26/93				<0.006	<0.006	0.01					<0.006	<0.006		
01/06/94				0.004	<0.003	<0.003				<0.003	<0.003	0.01		
05/03/94				0.004	0.004	<0.003					<0.003	<0.003	<0.003	0.007
07/26/94	0.005	<0.03	98.0	<0.003	<0.003	<0.003		<0.3		<0.003	<0.003	<0.003	0.011	<0.003
10/12/94				<0.003	<0.003	<0.001					<0.003	<0.003		
03/16/95				0.003	0.004	<0.003			0.01	<0.003	0.011	900.0	<0.003	<0.003
06/24/95				<0.003	<0.003	0.003					0.003	0.003		
08/10/95	<0.003	<0.075	<0.075	<0.003	<0.003	<0.003		0.378		< 0.003	<0.003	<0.003		
10/10/95				<0.001	<0.001	<0.001					<0.001	<0.001	<0.001	<0.001
96/91/10				< 0.001	<0.001	<0.001			<0.001	<0.001	<0.001	<0.001		
04/25/96					<0.001	<0.001	<0.01				<0.001	<0.001	<0.001	<0.001
08/27/96	<0.01	<0.001	<0.025	<0.001	<0.001	<0.001		0.021		<0.001	<0.001	<0.001		
11/20/96				<0.001	<0.001	<0.001					<0.001	<0.001	<0.001	<0.001
01/21/97				<0.001	<0.001	<0.001				<0.001	<0.001	<0.001		

Blank cells, wells either not installed or not sampled
Data from 1990 to 2003 compiled from historical sources; duplicate samples after 2003 averaged
"J" (estimated) modifiers not included

Summary of Lee Plant Total Xylenes Groundwater Concentrations (continued)

	 					<u> </u>								- ,			-							- 1	-	
MW-22		<0.001		<0.001		<0.005		<0.005		<0.001		< 0.001		<0.005	ı	<0.006	0.285	0.109	0.113	0.0339	0.883	0.321		<0.006		
MW-21	<0.025	6.0	<0.1	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.001	0.01	0.148	0.142	0.197	<0.006	<0.006	<0.006	<0.006	<0.006	< 0.006	<0.006	0.318		<0.006
MW-20	<0.001	<0.001	<0.005	<0.001	<0.005	<0.001	<0.005	<0.005	<0.005	0.002	<0.005	<0.005	<0.001	<0.001	<0.001	<0.066	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	1	<0.006
MW-19	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.005	<0.001	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.006		<0.006		<0.006		<0.006		<0.006		<0.006
MW-18	-	<0.001		<0.001		<0.005		<0.005		<0.005		<0.001		<0.001		<0.006		<0.006		<0.006		<0.006		<0.006		
MW-17		<0.001		<0.001		<0.001		<0.005		<0.005		<0.001		<0.001		<0.006		<0.006		0.0078		0.0018J		<0.006		
MW-10 MW-11 MW-12 MW-13 MW-14 MW-16 MW-17 MW-18 MW-19 MW-20 MW-21 MW-22		0.081		0.129		0.034		0.003		<0.005		<0.001		0.002		<0.006								<0.006 0.0036 J		
MW-14	<0.025	<0.05		<0.001		<0.001		<0.001		<0.005		<0.001		<0.001		>0.006	<0.006	<0.006	<0.006	<0.006	<0.006	>0.006	<0.006	<0.006		
MW-13	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	>0.006	<0.006	<0.006	<0.006	<0.006	<0.006	>0.006	<0.006	<0.006		<0.006
MW-12	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.005	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006
MW-11	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.001	<0.001	<0.001	<0.005	<0.001	<0.006		>0.006		<0.006		<0.006		<0.006		<0.006
MW-10		<0.05		800.0		<0.01		<0.005		<0.05		<0.05		<0.1		>0.006		0.0094		0.025		0.0834		900'0>		
6-MM		<0.001		<0.01		0.073		<0.005		<0.1		<0.005		<0.1		0.0027								0.0023 J		
		<0.025		<0.01		0.016		0.01		<0.005		<0.005		<0.001		<0.006								0.0027 J		
MW-3 MW-7		0.061		<0.001		<0.001		<0.005	<0.005	<0.005	<0.001				<0.001			<0.006								
Date	04/11/97	08/12/97	01/20/98	08/02/98 <0.001	05/12/99	08/18/99 <0.001	02/16/00	08/16/00 <0.005	02/16/01 <0.005	08/01/01 <0.005	02/11/02 <0.001	08/13/02	03/06/03	06/16/03	03/15/04 < 0.00	09/23/04	03/14/05	09/26/05 < 0.006	03/05/06	90/07/60	03/28/07	09/20/02	03/20/08	80/11/60	11/10/08	03/11/09


All units mg/l
Blank cells, wells either not installed or not sampled
Data from 1990 to 2003 compiled from historical sources; duplicate samples after 2003 averaged
"J" (estimated) modifiers not included

ATTACHMENT

Field Sampling Data and Analytical Laboratory Report

Arc Er	Arc Environmental	 menta						FIELD	MEASUR	EMENT (FIELD MEASUREMENT and OBSERVATION LOG	ATION LC	9
P. O. Box 1772 ~ Lovington, NM 88260 (575) 631-9310	772 ~ Lovingtor (575) 631-9310	gton, NM 8		PROJECT N	PROJECT NAME: DCP Midstream	Midstream		PROJECT L PROJECT A	OCATION: L	OCP Midstre 112	PROJECT LOCATION: DCP Midstream Lee Plant PROJECT NUMBER: F-112	ŀ	Date Sampled: 3-11-2009
PROJECT MANAGER: Michael H. Stewart, P.E., C.P.G.	R: Michael H	Stewart, P.	E, C.P.G.			FIELD TECHNICIAN:		Rozanne Jok	Rozanne Johnson - Arc Environmental	Environmen	tal		Notes: Water was disposed of at Linam Ranch skim tank.
WELL#/SAMPLE LOCATION	TOTAL WELL DEPTH (feet)	TOTAL WELL DEPTH TO DEPTH (feet)	HEIGHT WATER COLUMN (feet)	WELL FACTOR 2"=.16 4"=.65 5"=1.02	CALC. WELL VOLUME (gallons)	NUMBER OF WELL VOLUMES PURGED	TOTAL PURGED (gallons)	Temp (°C)	Hd .	Cond. (ms/cm)	ı	Time	SAMPLE CHARACTERISTICS (odor, color, sheen)
Monitor Well #3	108.84	107.47						Gauge Only	γļι				
Monitor Well #5		107.74						Gauge Only	ıly			deo	Depth to Product 105.70
Monitor Well #7	111.67	106.46						Gauge Only	λ _l ι λ				
Monitor Well #8		110.80						Gauge Only	ylı			Dep	Depth to;Product :106.82
Monitor Well #9	116.92	107.89						Gauge Only	λįι			;	
Monitor Well #10	117.41	107.71						Gauge Only	γlı				
Monitor Well #11	117.98	106.88	11.10	0.65	7.2	8	25	17.2	7.46	1.07		14:15 No Odor	dor
Monitor Well #12	117.35	107.33	10.02	0.65	6.5	3	20	17.3	7.42	1.20		13:10 No (13:10 No Odor, Collected MS/MSD
Monitor Well #13	117.27	109.15	8.12	0.65	5.3	က	20	17.4	6.89	1.28		12:05 No Odor	dor
Monitor Well #14	118.36	110.48						Gauge Only	γlι				
Monitor Well #16	122.74	106.52						Gauge Only	γlι				
Monitor Well #17	124.12	108.92						Gauge Only	λĮ				
Monitor Well #18	125.42	110.30						Gauge Only	Λį				
Monitor Well #19	126.56	110.15	16.41	0.65	10.7	8	35	17.2	6.87	1.32		11:10 No Odor	dor
Monitor Well #20	128.22	112.79	15.43	0.65	10.0	3	35	17.2	7.10	0.95		10:20 No Odor	dor
Monitor Well #21	123.70	108.94	14.76	0.16	2.4	8	8	17.4	6.98	0.98		15:15 Stro	15:15 Strong Odor, Sheen, Duplicate Sample Taken
Monitor Well #22	148.62	108.69						Gauge Only	ıly				

Ì

04/21/09

Technical Report for

DCP Midstream, LLC

AECCOLI: Duke-Lee Plant, Lea County, NM

Accutest Job Number: T26000

Sampling Date: 03/11/09

Report to:

American Environmental Consulting

mstewart@aecdenver.com

ATTN: Mike Stewart

Total number of pages in report: 20

nelac

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Paul Canevaro Laboratory Director

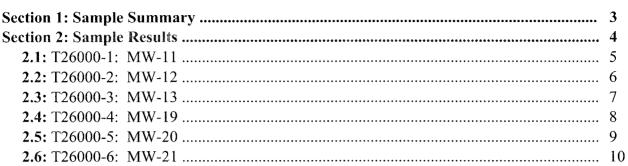
Paul K Canevaro

Client Service contact: William Reeves 713-271-4700

Certifications: TX (T104704220-06-TX) AR (88-0756) FL (E87628) KS (E-10366) LA (85695/04004) OK (9103) UT(7132714700)

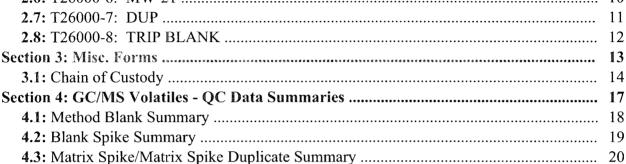
This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Gulf Coast • 10165 Harwin Drive • Suite 150 • Houston, TX 77036 • tel: 713-271-4700 • fax: 713-271-4770 • http://www.accutest.com



Sections:

Table of Contents



Sample Summary

DCP Midstream, LLC

Job No:

T26000

AECCOLI: Duke-Lee Plant, Lea County, NM

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
T26000-1	03/11/09	14:15 RJ	03/13/09	AQ	Ground Water	MW-11
T26000-2	03/11/09	13:10 RJ	03/13/09	AQ	Ground Water	MW-12
T26000-2D	03/11/09	13:10 RJ	03/13/09	AQ	Water Dup/MSD	MW-12 MSD
T26000-2S	03/11/09	13:10 RJ	03/13/09	AQ	Water Matrix Spike	MW-12 MS
T26000-3	03/11/09	12:05 RJ	03/13/09	AQ	Ground Water	MW-13
T26000-4	03/11/09	11:10 RJ	03/13/09	AQ	Ground Water	MW-19
T26000-5	03/11/09	10:20 RJ	03/13/09	AQ	Ground Water	MW-20
T26000-6	03/11/09	15:15 RJ	03/13/09	AQ	Ground Water	MW-21
T26000-7	03/11/09	13:10 RJ	03/13/09	AQ	Ground Water	DUP
T26000-8	03/11/09	00:00 RJ	03/13/09	AQ	Trip Blank Water	TRIP BLANK

Sample Results		

Report of Analysis

Gulf Coast ACCUTEST.

Gulf Coast

Report of Analysis

By

RR

Page 1 of 1

Client Sample ID: MW-11

Lab Sample ID:

T26000-1

Date Sampled: Date Received:

03/11/09

Matrix: Method: AQ - Ground Water SW846 8260B

03/13/09

Project:

AECCOLI: Duke-Lee Plant, Lea County, NM

Percent Solids:

n/a

File ID F014733.D DF 1

Analyzed 03/15/09

Prep Date n/a

Prep Batch

Analytical Batch

n/a VF3319

Run #1 Run #2

Purge Volume

Run #1

5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q

71-43-2	Benzene	ND	0.0020	0.00046 mg/l
108-88-3	Toluene	ND	0.0020	0.00048 mg/l
100-41-4	Ethylbenzene	[:] ND	0.0020	0.00045 mg/l
1330-20-7	Xylene (total)	ND	0.0060	0.0014 mg/l

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits

1868-53-7	Dibromofluoromethane	108%	79-122%
17060-07-0	1,2-Dichloroethane-D4	112%	75-121%
2037-26-5	Toluene-D8	109%	87-119%
460-00-4	4-Bromofluorobenzene	113%	80-133%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

By

RR

Page 1 of 1

Client Sample ID: MW-12

Lab Sample ID:

T26000-2

AQ - Ground Water

DF

1

Date Sampled: Date Received:

Da

Received: 03/13/09

Matrix: Method:

SW846 8260B

Percent Solids: n/a

Project:

AECCOLI: Duke-Lee Plant, Lea County, NM

Analyzed

03/15/09

Prep Date

Prep Batch n/a

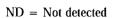
03/11/09

Analytical Batch VF3319

Run #1 Run #2

Purge Volume

File ID


F014734.D

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	0.0020	0.00046	_	
108-88-3	Toluene	ND	0.0020	0.00048	mg/l	
100-41-4	Ethylbenzene	ND	0.0020	0.00045	mg/l	
1330-20-7	Xylene (total)	ND	0.0060	0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	107%	:	79-12	22%	
17060-07-0	1,2-Dichloroethane-D4	111%		75-12	21%	
2037-26-5	Toluene-D8	106%		87-11	9%	
460-00-4	4-Bromofluorobenzene	110%		80-13	3%	

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

By

RR

Client Sample ID: MW-13

File ID

F014739.D

Lab Sample ID: Matrix:

T26000-3

AQ - Ground Water SW846 8260B

DF

1

Date Sampled:

n/a

03/11/09 Date Received: 03/13/09

Method: Project:

AECCOLI: Duke-Lee Plant, Lea County, NM

Analyzed

03/15/09

Percent Solids: n/a

Prep Date Prep Batch Analytical Batch n/a VF3319

Run #1 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	107% 111% 106% 110%		79-12 75-12 87-11 80-13	1% 9%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Ву

RR

Page 1 of 1

Client Sample ID: MW-19

Lab Sample ID:

T26000-4

Date Sampled: 03/11/09 Date Received: 03/13/09

Prep Date

n/a

Matrix: Method: AQ - Ground Water SW846 8260B

DF

1

Percent Solids: n/a

Project:

AECCOLI: Duke-Lee Plant, Lea County, NM

Analyzed

03/15/09

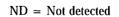
Prep Batch

n/a

Analytical Batch VF3319

Run #1 Run #2

Purge Volume


Run #1 Run #2 5.0 ml

File ID

F014740.D

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ŇD	0.0020	0.00046	mg/l	
108-88-3	Toluene	ND	0.0020	0.00048		
100-41-4	Ethylbenzene	ND	0.0020	0.00045		
1330-20-7	Xylene (total)	ND	0.0060	0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	104%		79-12	22%	
17060-07-0	1,2-Dichloroethane-D4	111%		75-12	21%	
2037-26-5	Toluene-D8	103%		87-11	9%	
460-00-4	4-Bromofluorobenzene	106%		80-13	3%	

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

By

RR

Page 1 of 1

Client Sample ID: MW-20

Lab Sample ID: Matrix:

T26000-5

AQ - Ground Water SW846 8260B

DF

Date Sampled: Date Received:

Prep Date

n/a

03/13/09

Method:

Percent Solids: n/a

Project:

AECCOLI: Duke-Lee Plant, Lea County, NM

Analyzed

03/15/09

Prep Batch n/a

03/11/09

Analytical Batch VF3319

Run #1 Run #2

Purge Volume

File ID

F014741.D

Run #1 Run #2 5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	106% 110% 106% 111%	÷	79-12 75-12 87-11 80-13	21% .9%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: MW-21

Lab Sample ID:

T26000-6

Date Sampled: 03/11/09 Date Received:

Matrix: Method: AQ - Ground Water SW846 8260B

Percent Solids: n/a

03/13/09

Project:

AECCOLI: Duke-Lee Plant, Lea County, NM

File ID DF Analyzed Ву Prep Date Prep Batch Analytical Batch F014742.D 03/15/09 RR VF3319 Run #1 n/a n/a 1 10 03/15/09 VF3319 Run #2 F014743.D RR n/a n/a

Purge Volume

Run #1 5.0 ml Run #2

5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	0.216 ^a ND 0.0018 ND	0.020 0.0020 0.0020 0.0060	0.0046 0.00048 0.00045 0.0014	O	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	111% 108% 110% 116%	107% 105% 108% 113%	79-17 75-17 87-1 80-13	21% 19%	

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: DUP

Lab Sample ID:

T26000-7

Date Sampled: 03/11/09 Date Received: 03/13/09

Matrix: Method: AQ - Ground Water SW846 8260B

Percent Solids: n/a

Project:

AECCOLI: Duke-Lee Plant, Lea County, NM

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	F014744.D	1	03/15/09	RR	n/a	n/a	VF3319
Run #2	F014745.D	10	03/15/09	RR	n/a	n/a	VF3319

Purge Volume Run #1 5.0 ml 5.0 ml Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	0.216 ^a ND 0.0018 ND	0.020 0.0020 0.0020 0.0060	0.0046 0.00048 0.00045 0.0014		J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	107% 108% 105% 109%	107% 110% 106% 111%	79-13 75-13 87-1 80-13	21% 19%	

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TRIP BLANK

File ID

F014738.D

Lab Sample ID:

T26000-8

DF

1

Date Sampled: Date Received:

03/11/09

Matrix: Method: AQ - Trip Blank Water SW846 8260B

Percent Solids:

n/a

03/13/09

Project:

AECCOLI: Duke-Lee Plant, Lea County, NM

03/15/09

n/a

Run #1

Analyzed Prep Date By

RR

Prep Batch n/a

Analytical Batch VF3319

Run #2

Purge Volume

Run #1

5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	105% 109% 105% 109%	:	79-12 75-12 87-11 80-13	21% 19%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

,	
	_

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

	ڊ	J
	-	٨
	-	
10	S	ઠ

	CUTEST, Laboratories	ton TV 7	7026	712 27	1 47	00 £-		712	271	. 45	70		<u> </u>	Tracking #			i	order Contro	ol #		
10102 H	larwin, Suite 150 - Hous	ton, IA /	/030 -	713-27	1-4/	UU 12	ıx:	/13	-2/1	L-4/	/0		Accuted	it Quota #			Aceute	d Job#	T2	10	20
			(- 1 () ()					of the said	e de de de de de de					CHAIN S					3250	es en	A. Land A. 25% (60)
Client Ompany Name	Reporting Information	1、光型-34446.8	Project Na		rojact In	formation	on j	Bit C	N. K.	(430)	17.5	2.2	95(H)()	CONSTRUCTOR		Requ	estod A	nalyses	2750	T	Matrix Codes DW - Drinking Water
CP Midstream				dstream L	ee														- 1		GW - Ground Water
oject Contact	E-Mail		Bill to					involc	e Altn.				1	1		-				i '	WW - Westowator
tephen Weathers	SWWeathers@dcpmic	Istream.com	Same													1			ľ		50 - Sof
dress			Address																		SL - Sludge
0 Seventeenth St	reet, Suite 2500 State	Žip	CIE.				State				ZI	_		1 1 1					-		OI - OI
y enver	CO	80202	City				аши	•			21	P							- 1		LIQ - Liquid SOL - Other Solid
one No.		ax No.	Phone No.				_			Fa	x No.		1				1				JUNE SUID
3-605-1718			1]]]]	}	1	1	1	Ì) !	
fiblers's Name	(575)63	19310	Client Pur	chase Order	#								1 8				1				
COZANNE	Johnson (3,300												BTEX 8260B								
ccutest	Field ID / Point of Collection		Collectio	n		Ϊ				eserv	ed bo		1 🖁	1 1	- 1			1 1		!	
ample#	Field ID / Folia of Collection	م ا	ate	Time	Matrix	# of bottles	ā	HO	8 8	8	MECH	No.	1 6	1				1 1	l	. !	LAB USE ONLY
1	MW-11	3-1		14:15	GW	ス	Х	\top		Ī		T	X				1		\top	\Box	-
2	MW-12	3-1	1-09	1340	GW	3	X	_	 	\sqcap	T	1	Х			1	1		\top	\vdash	
3	MW-13	3-1	-09	12:05	GW	3	χ		t	Ħ	T	1	Х			1	1		一		
4	MW-19	3~11	-09	USID	GW	3	X		╅			T	×		\dashv	1	1		\top	$\vdash \vdash$	
5	MW-20	3-1	-09	Inian	GW	3	X	\top	+	\Box		Ť	х	1	\neg	1	1		_	_	
7.	MW-21	3-1	+/YG	KIS	GW	3	X	\dashv	\top	П	1	T	x		\dashv	1				\vdash	_
2 1001/11	MW 21 MS/MSD	3-0	-00	12/10	GW	ĥ	X.		十	Ħ	_	Ť	х	1 1 1		T	†		\top	\vdash	
7	DUP	3-1	1-09	nn 100	GW	3	Y	\top	\top	П	\dashv	T	×	 	\dashv	+			\dashv	1	
8	Trip Blank	— 		00 ,0 0	WTB		^	\top	T	П	\top	t	×		\dashv		+		\dashv	+	
-6							+-	_	十	╁┼	+-	+	\vdash	 			-	-	+	+	
Serger Turn	around Time (Business days)	2000	-1500	7.5	Data	Deliverab	le Info	rmatio	n =	بــــــــــــــــــــــــــــــــــــــ							ommenta	/ Remarks		is a	.254
10 Pay STA	NDARD Approve	d By:/ Ditte:		Comm	nercial "	A-		TRRE	2-13												
X 7 Pay				X Coma	nercial "	B"		EDD	Forma	t		_		ļ							
4 Pay RUS				<u> </u>	ced Tler			Othe	'												
3 Pay EME				Full D	ata Paci	cage															
2 Pay EME				١ ـ										1							
Other				l		= Resu = Resu		-	-400												
	tical data available via Lablink			"	v.oiei D	- nesu		J. OI H.	ಀೣಀ					1							
3 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SAMPLE CUS	TODY MUST BE C	OCUMENT			ME SAMP	LES	MANG				CLUB	ING CO				T			9.5.	
Bell (utoper of Samples	-/->	Date Time:	0000	Received By	. /				Reli	nquish	ed By:			Date Ti	Te:		Receive	d By:			
17 50	<i>41-</i>	Date Time:	-2009	1				_	2								2				
Circlinquished by:	V	Date fime:		Received By	•				Roll	nquish	ed By:			Date Ti	ne:		Receive	a sy:			
Relinquished by:		Date Time:		Received By		1		-	Cue	tody \$4	eal#	-		Preserved when	e applicabl		14		On Ice	Goole	r Temp.
	FENER	3.13		1 1 .	-h"	h		-	1-24	, •					priprint print						. 2_

T26000: Chain of Custody Page 1 of 3

SAMPLE INSPECTION FORM

Accutest Job Number: 72 666	O Client: DCP Midstream D	ate/Time Received: 3 (3 05 09 00
# of Coolers Received:	_Thermometer #:	rature Adjustment Factor:
Cooler Temps: #1: 1-2 #2:	#3: #4: #5: #	·6: #7: #8:
Method of Delivery:	UPS Accutest Courier Greyhound D	Delivery Other
Airbill Numbers:	86704797908	3.
	SAMPLE INFORMATION Sample containers received broken VOC vials have headspace Sample labels missing or illegible ID on COC does not match label(s) D/T on COC does not match label(s) Sample/Bottles revd but no analysis on COC Sample listed on COC, but not received Bottles missing for requested analysis Insufficient volume for analysis Sample received improperly preserved	
TECHNICIAN SIGNATURE/DATE:	rangue 3.13.09 NG VERIFIED BY: GHC 3.13.	
	· · · CORRECTIVE ACTIONS	<u>s</u>
Client Representative Notified:		Date:
By Accutest Representative:		Via: Phone Email
i/vnwalker/orm\samplemanagement		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

T26000: Chain of Custody

Page 2 of 3

<u>ت</u> س

3.1 (S)

SΔ	MP	I F	RF	CE	IРТ	LOG

OB #:		T26000			DATEITING	MEGLIACO					•
LIENT:	·	DCP Midstream				INITIALS:		/	1		
COOLER#	SAMPLEID	FIELD ID	DATE		MATRIX	VOL	BOTTLE#	LOCATION	PRESERV		РН
1	1	mw-Il	3.11-05	1415	90	You	1-3	VR	1 0 3 4 5 6 7 8 1 2 3 4	<2	>
	2	rw-12		1316		1	1-07		5 6 7 8	<2	. *
	3	mu-13		1205			1-3		5 6 7 B.	<2	>
	4	mw-19	1	100					1 2 3 4	<2	·
	5	mw-20		1020					1 Ø 3 4 5 8 7 8	<2	>
	6	mw-21	J	1515					1 C2 3. 4 5 6 7 8	<2	
	7	DUP	3.11.0	H					1 Q 3 4 5 6 7 8	<2	,
V	8	Trip Blank	_		DI	, \	1.2		1 (2) 3 4 5 8 7 8	<2	
			<u> </u>						1 2 3 4 5 6 7 8	<2	
		17 3.13.05							1 2 3 4 5 6 7 8	*2	
									1 2 3 4 5 6 7 8	<2	
			t						1 2 3 4 5 6 7 8	<2	
		and the second s							1 2 3 4 5 6 7 8	<2	:
		The same of the sa	1 . 1						1 2 3 4 5 8 7 8	<2	:
·	The second second								1 2 3 4 5 5 7 B	<2	, >
	an a company of the c								1 2 3 4 5 6 7 8	<2	,
		the second secon							1 2 3 4 5 5 7 8	<2	,
	·				-				1 2 3 4 5 6 7 8	<2	,
	<u> </u>	· · · · · · · · · · · · · · · · · · ·							1 2 3 4 5 6 7 8	<2	,
									1 2 3 4	<2	;
									5 6 7 8 1 2 3 4 5 6 7 8	<2	٠,
		·		\		-	1		1 2 3 5 6 7 8	<2	,

T26000: Chain of Custody Page 3 of 3

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number: T26000

Account:

DUKE DCP Midstream, LLC

Project:

AECCOLI: Duke-Lee Plant, Lea County, NM

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF3319-MB	F014731.D	1	03/15/09	RR	n/a	n/a	VF3319

Page 1 of 1

The QC reported here applies to the following samples:

Method: SW846 8260B

T26000-1, T26000-2, T26000-3, T26000-4, T26000-5, T26000-6, T26000-7, T26000-8

CAS No.	Compound	Result	Result RL		Units Q	
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	2.0 2.0 2.0 6.0	0.46 0.45 0.48 1.4	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries		Limi	ts		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	110% 114% 111% 114%	114% 75-121% 111% 87-119%			

Blank Spike Summary Job Number: T26000

Account:

DUKE DCP Midstream, LLC

Project:

AECCOLI: Duke-Lee Plant, Lea County, NM

Sample VF3319-BS File ID DF F014729.D 1

Analyzed 03/15/09

Ву RR Prep Date n/a

n/a

Prep Batch

Analytical Batch

Page 1 of 1

VF3319

The QC reported here applies to the following samples:

Method: SW846 8260B

T26000-1, T26000-2, T26000-3, T26000-4, T26000-5, T26000-6, T26000-7, T26000-8

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits	
71-43-2	Benzene	25	24.3	97	76-118	
100-41-4	Ethylbenzene	25	24.2	97	75-112	
108-88-3	Toluene	25	23.7	95	77-114	
1330-20-7	Xylene (total)	75	72.9	97	75-111	
CAS No.	Surrogate Recoveries	BSP	Liı	nits		
1868-53-7	Dibromofluoromethane	105%	79-	122%		
17060-07-0	1,2-Dichloroethane-D4	106%	75-	121%		
2037-26-5	Toluene-D8	108%	87-	119%		
460-00-4	4-Bromofluorobenzene	108%	80-133%			

Matrix Spike/Matrix Spike Duplicate Summary Job Number: T26000

Page 1 of 1

Account:

DUKE DCP Midstream, LLC

Project:

AECCOLI: Duke-Lee Plant, Lea County, NM

Sample File ID DF Analyzed By Prep Date Prep Batch Analytical Bat T26000-2MS F014735.D 1 03/15/09 RR n/a n/a VF3319 T26000-2MSD F014736.D 1 03/15/09 RR n/a n/a VF3319 T26000-2 F014734.D 1 03/15/09 RR n/a n/a VF3319
--

The QC reported here applies to the following samples:

Method: SW846 8260B

T26000-1, T26000-2, T26000-3, T26000-4, T26000-5, T26000-6, T26000-7, T26000-8

CAS No.	Compound	T26000-2 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	25	24.9	100	23.9	96	4	76-118/16
100-41-4	Ethylbenzene	ND	25	24.5	98	23.4	94	5	75-112/12
108-88-3	Toluene	ND	25	23.8	95	22.9	92	4	77-114/12
1330-20-7	Xylene (total)	ND	75	73.5	98	70.2	94	5	75-111/12
CAS No.	Surrogate Recoveries	MS	MSD	T20	5000-2	Limits			
1868-53-7	Dibromofluoromethane	105%	111%	107	7%	79-1229	6		
17060-07-0	1,2-Dichloroethane-D4	111%	120%	111	.%	75-1219	6		
2037-26-5	Toluene-D8	104%	109%	106	5 %	87-1199	6		
460-00-4	4-Bromofluorobenzene	102%	105%	110)%	80-1339	6		

