GW - ___032_

REPORT

Facility-wide GW Monitoring Plan

DATE: May 2009

Chavez, Carl J, EMNRD

From:	Van Horn, Kristen, NMENV
Sent:	Wednesday, March 10, 2010 8:23 AM
То:	eriege@giant.com
Cc:	Kieling, John, NMENV; Cobrain, Dave, NMENV; Monzeglio, Hope, NMENV; Chavez, Carl J, EMNRD; Rajen, Gaurav; Martinez, Cynthia, NMENV
Subject: Attachments:	New Monitoring Wells OW-50 and OW-52 Installation Report WRG10-001_NOD.pdf

Attached is the Notice of Disapproval for the New Monitoring Wells (OW-50 and OW-52) Installation Report and Initial Sampling Results. The hard copy will be mailed.

Kristen Van Horn NMED Hazardous Waste Bureau 2905 Rodeo Park Drive East Building 1 Santa Fe, NM 87505 Phone: 505-476-6046

BILL RICHARDSON Governor

DIANE DENISH Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.nmenv.state.nm.us

RON CURRY Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

March 10, 2010

Mr. Ed Riege Environmental Manager Western Refining, Southwest Inc., Gallup Refinery Route 3, Box 7 Gallup, New Mexico 87301

RE: NOTICE OF DISAPPROVAL NEW MONITORING WELLS (OW-50 AND OW-52) INSTALLATION REPORT AND INITIAL SAMPLING RESULTS: GALLUP REFINERY WESTERN REFINING COMPANY, SOUTHWEST, INC., GALLUP REFINERY EPA ID # NMD000333211 HWB-WRG-10-001

Dear Mr. Riege:

The New Mexico Environment Department (NMED) received the *New Monitoring Wells (OW-50 and OW-52) Installation Report and Initial Sampling Results: Gallup Refinery* (Report), dated December 30, 2009, submitted on behalf of Western Refining Company, Southwest Inc., Gallup Refinery (the Permittee). NMED has reviewed the Report and hereby issues this Notice of Disapproval (NOD). The Permittee must revise the Report to address the following comments.

Comment 1

In the "Well Locations, Installation and Construction Details" section, page 8, paragraph 3, the Permittee states that "[d]uring drilling, cutting soils were tested with a photo-ionization detector (PID). There were non-detectable levels in all soils other than at the location of OW-50, at which location soils from 35-55 feet depth were found to give a vapor concentration of 1 ppm. As groundwater occurs at 53 feet it is possible that the PID was detecting methane from the decomposition of organic matter. The analytical results do not show any hydrocarbons, VOCs, or SVOCs in groundwater. Given the low levels of hydrocarbons detected by the PID, soils were

Ed Riege Gallup Refinery March 10, 2010 Page 2

disposed of on-site." This is not the proper procedure for the disposal of drill cuttings. Generally, soil samples (either from the soil cutting or soil samples) are collected for analytical analysis in order to determine the disposal pathway of the investigation derived waste. Field screening is not an acceptable method to determine the proper disposal pathway for drill cuttings. In the future, the Permittee must propose methods and procedures for the disposition of drill cuttings for NMED approval. In the revised Report, the Permittee must provide more details, such as the type (e.g., make, model, and amp voltage) of the PID used, and descriptions of where the soils were disposed of on-site (i.e., returned to borehole, land applied), and whether any drill cuttings samples were submitted for laboratory analyses.

Comment 2

In the "Well Locations, Installation and Construction Details" section, page 8, paragraph 4, the Permittee states "[f]or both the completed wells the casing is made of Schedule 40 PVC of 2 inches diameter. The backfill is expansive grout, the seal is bentonite, and the filter pack is 10/20 silica sand." The Permittee does not provide detail in the text to explain the methods and procedures used to drill the wells. The Permittee must revise the Report to include details, such as whether drilling fluids were used, the groundwater level encountered, the borehole diameter, the placement and thickness of the filter pack, and the surface completion of the well. The Permittees may reference the well diagrams located in Appendix 2 (Report from AMEC on drilling logs and well construction details) for this information.

Comment 3

The Permittee presents the surface elevation and coordinates of the wells, but does not describe how the elevations were surveyed. In the revised Report, the Permittee must describe how the monitoring wells were surveyed (e.g., methods and equipment used and benchmark reference point). Additionally, the Permittee provides the coordinates of the wells, but does not give the coordinate system that the coordinates are based on. The Permittee must provide this information in the revised Report.

Comment 4

In the "Sampling Activities and Results" section, page 11, paragraph 1, the Permittee states "[g]roundwater sample collection was conducted on November 17, 2009, by AMEC personnel. Table 1 describes the analytical tests specified by the NMED/HWB. The field notes and logs are provided in Appendix 3. Purged groundwater was assumed clean and disposed at the well site by AMEC personnel. In the future, Western Refining will ensure that purged groundwater is disposed in the refinery's wastewater treatment system if it is of unknown quality." In the future, the Permittee must adhere to the methods and procedures for the characterization and disposition of purge water. The Permittee may propose to dispose of purge water (or any investigation derived waste water) upstream of the API separator in the process wastewater sewer system or propose to sample for analytical analysis to determine the disposition of the water.

Ed Riege Gallup Refinery March 10, 2010 Page 3

Comment 5

The Permittee does not discuss the development of the monitoring wells. In the revised Report, the Permittee must discuss in detail the development of the wells (e.g., the wells were pumped, bailed, or surged and the type of instruments used to measure water quality; the procedures used to measure the pH, temperature, and specific conductivity). The Permittee may reference Appendix 3 (Field investigation notes) for this information.

The Permittee must address all comments contained in this letter and submit the revised Report to NMED and OCD on or before May 10, 2010. As part of the response letter that accompanies the revised Report, the Permittee must include a letter that details where all revisions have been made to the Report and that cross-references NMED's numbered comments. In addition, the Permittees must submit a redline-strikeout version that includes all changes and edits to the Report (electronic copy) with the response to this NOD.

If you have questions regarding this NOD please contact Kristen Van Horn of my staff at 505-476-6046.

Sincerely,

James P. Bearzi Chief Hazardous Waste Bureau

cc: J. Kieling, NMED HWB D. Cobrain NMED HWB H. Monzeglio NMED HWB K. Van Horn NMED HWB C. Chavez, OCD R. Gaurav, Gallup File: Reading File and WRG 2010 File HWB-WRG-10-001

GALLUP

RECEIVED 2009 SEP 28 PM 2 14 WNR

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

September 25, 2009

John E. Kieling, Program Manager, Permits Management Program, Hazardous Waste Bureau, 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico, 87505-6303

Re: Requirement to Install Monitoring Wells Western Refining Southwest Inc., Gallup refinery NMED ID # NMD000333211 HWB-GRCC-MISC

Dear Mr. Kieling:

It is a pleasure to submit our response to your letters of May 28, 2009 and August 14, 2009, regarding installation of monitoring wells.

We plan to install two monitoring wells, as described in your Figure 1 attachment to your letter of May 28, 2009. Our tentative dates for installation are in the week of October 5-9, 2009. We will confirm an exact date as soon as the drilling sub-contractor provides us with a firm date for execution.

The specifications for the installation of monitoring wells will follow those described in paragraphs numbered a-f in your letter of May 28, 2009. We will submit a well installation report by December 31, 2009. Subsequently, we will add these wells to our Facility Wide Groundwater Monitoring Plan currently under review by the NMED. We will test for parameters and with a sampling frequency that we will propose and have approved by the NMED based on our initial set of monitoring data to be described in our well installation report.

John Kieling NMED/HWB September 25, 2009 Page 2

Please do not hesitate to contact Gaurav Rajen of our staff with further questions at 505-722-0227 if we can provide you with any further clarifications.

Sincerely,

Ed Riege

cc: Hope Monzeglio, Environmental Specialist, Hazardous Waste Bureau
 2905 Rodeo Park Drive East, Building 1, Santa Fe, New Mexico, 87505-6303
 Carl J. Chavez, CHMM, NM Energy, Minerals & Natural Resources Department,
 Oil Conservation Division, Environmental Bureau, 1220 South St. Francis Drive,
 Santa Fe, NM 87505
 /File

Chavez, Carl J, EMNRD

From:	Rajen, Gaurav [Gaurav.Rajen@wnr.com]
Sent:	Tuesday, August 11, 2009 2:00 PM
То:	Monzeglio, Hope, NMENV; Chavez, Carl J, EMNRD
Cc:	Riege, Ed
Subject:	Sampling results for NAPIS wells
Attachments:	Copy of NAPIS 1ST QTR 2009 RESAMPLING.xls; March 2009.pdf; May 2009.pdf; June 2009.pdf; NAPIS WELL LOGS 6-09.xls

Dear Hope:

It is a pleasure to send on to you our sampling results for the NAPIS wells. We sampled these wells in February and again in March as some of our required tests had not been conducted in February.

We again sampled in May. Although we did sample NAPIS-1, NAPIS-2 and KA-3, we were unable to get to NAPIS-3 as construction work was ongoing on a buried pipeline in the area. We were able to sample this well in June.

All of the data from these events are attached, as are the sampler's field notes, well logs, and data (such as pH, conductivity, etc.) collected in the field.

With my best regards,

Raj

This inbound email has been scanned by the MessageLabs Email Security System.

WESTERN REFINING - GALLUP REFINERY WELL SAMPLING DATA - 1st QTR 2009

WELL #	NAPIS 1 (KA-1R)	NAPIS 2 (KA-2R)	NAPIS 3 (KA-3R)	KA-3
PURGE DATE	3/23/2009	3/23/2009	3/23/2009	3/23/2009
PURGE TIME	1050 HRS	1100 HRS	1115 HRS	1130 HRS
LIQUID DEPTH	8.92	9.35	9.93	9.23
DEPTH TO BTM	14	14.5	30.7	25
DIFFERENCE	5.08	5.15	20.77	15.77
1WVA = 0.163	0.82804	0.83945	3.38551	2.57051
3WVA'S	2.48412	2.51835	10.15653	7.71153
TEMP (DEG F)	58.7	62.1	62.6	74.6
Ph	7.2	6.96	8.15	7.08
COND	875us	1.65mS	2.47mS	1.228mS
DO	74.01	56.1	63.7	46.5
SAL	.450ppt	.891ppt	1.299 ppt	0.609ppt
TDS	439	N/A	1.235	6.2
NAPIS 1	Sample Day 3/24/2009	Sample Time 1400 HRS		

Weather: Clear, slight breeze. Temp 60- 65 Deg. On 3/23/09 started bailing with new bailer at 1050 hrs. First bail clear no apparent odor. 3 well volumes = 2.48 gals. Bailed approximately 2.1 gals.

Took sample on 3/24/09 at 1400 hours for the following paramaters. 8021B, 8015B GRO/DRO, 8310, RCRA 8 metals, General Chem (ph, Cations, Anions, conductivity)

NAPIS 2	Sample Day 3/24/2009	Sample Time 1415 HRS
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	01.671.6000	

Weather: Clear day, windy conditions. Temp 60-65 Deg. On 3/23/09 started bailing at 1100 hrs. Bailer was decontaminated with Alconox/water mixture and rinsed with distilled water before use. First bail water has a slight yellowish tint, no apparent odor. 3 well volumes = 2.51 gals. Bailed approximately 2.2 gals.

Took sample on 3/24/09 at 1415 hours for the following paramaters. 8021B, 8015B GRO/DRO, 8310, RCRA 8 metals, General Chem (ph, Cations, Anions, conductivity)

	Sample Day	Sample Time
NAPIS 3	Sample Day	Gample mille
	3/25/2009	0745 HRS

Weather: Clear day. Temp 60-65 Deg. On 3/23/09 started bailing at 1115 hrs. Bailer was decontaminated with Alconox/water mixture and rinsed with distilled water before use. First bail water is clear in color, no apparent odor. 3 well volumes = 10.15 gals. Bailed only 7.5 gals of water, level low. Water was clear at start but turned cloudy at end of bailing due to water level being low and disturbance of sediment.

Alvin Dorsey took sample on 3/25/09 at 0745 hours for the following paramaters. 8021B, 8015B GRO/DRO, 8310, RCRA 8 metals, General Chem (ph, Cations, Anions, conductivity)

and a second		
	Sample Dav	Sample lime
KA-3		e en al pro-cranes
	0/05/0000	
S. States	3/25/2009	0815 HRS

Weather: Windy, snowy day. Temp 30-20 Deg. On 3/23/09 started bailing at 1130 hrs. Bailer was decontaminated with Alconox/water mixture and rinsed with distilled water before use. First bail water has a slight yellowish tint, no apparent odor. 3 well volumes = 7.71 gals. Bailed 7 gals of water. Water was clear at start but turned murky at end of bailing due to water level being low and disturbance of sediment.

Alvin Dorsey took sample on 3/25/09 at 0815 hours for the following paramaters. 8021B, 8015B GRO/DRO, 8310, RCRA 8 metals, General Chem (ph, Cations, Anions, conductivity)

NOTES:

Samples labeled & sealed; Stored in environmental refrigerator until shipment date of 3/25/09.

Samples packed in ice and shipped UPS Red to Hall Labs on 3/25/09.

SAMPLER NAME/TITLE: Cheryl Johnson

& Alvin Dorsey:

Environmental specialists

WESTERN REFINING - GALLUP REFINERY WELL SAMPLING DATA - 2nd QTR 2009

WELL #	NAPIS 1 (KA-1R)	NAPIS 2 (KA-2R)	NAPIS 3 (KA-3R)	KA-3
PURGE DATE			6/15/2009	
PURGE TIME			0925 HRS	
LIQUID DEPTH			. 8.59	
DEPTH TO BTM			30.7	
DIFFERENCE			22.11	
1WVA = 0.163			3.60393	
3WVA'S			10.81179	
TEMP (DEG F)			67.5	
Ph			7.92	
COND			2.55mS	
DO			53.40%	
SAL			1.324 ppt	
TDS			1.274 ppm	
NAPIS 1	Sample Day	Sample Time		

NAPIS 2	Sample Day	Sample Time	

Weather: Clear day. Temp 65- 70 Deg. On 5/28/09 unable to get to this well. Repair work being d well.

KA-3	Sample Day	Sample 0930 I	Time HRS

NOTES:

Samples labeled, sealed, completed COC. Packed in cooler and shipped off UPS Red to Hall Labs

SAMPLER NAME/TITLE: Cheryl Johnson

Environmental speciali

one on a line near the

6/15/09.

.

st

WESTERN REFINING - GALLUP REFINERY WELL SAMPLING DATA - 2nd QTR 2009

WELL #	NAPIS 1 (KA-1R)	NAPIS 2 (KA-2R)	NAPIS 3 (KA-3R)	KA-3
PURGE DATE	5/28/2009	5/28/2009	6/15/2009	5/28/2009
PURGE TIME	0758 HRS	0829 HRS	0925 HRS	0901 HRS
LIQUID DEPTH	8.67	9.22	8.59	9.12
DEPTH TO BTM	14	14.5	30.7	25
DIFFERENCE	5.33	5.28	22.11	15.88
1WVA = 0.163	0.86879	0.86064	3.60393	2.58844
3WVA'S	2.60637	2.58192	10.81179	7.76532
TEMP (DEG F)	61.1	73.2	67.5	80.8
Ph	6.95	7.15	7.92	6.98
COND	1.081mS	1.124mS	2.55mS	1.168mS
DO	39.00%	16.76%	53.40%	32.20%
SAL	.548ppt	.555 ppt	1.324 ppt	.576 ppt
TDS	539 ppm	566 ppm	1.274 ppm	589 ppm
NADIS 1	Sample Day	Sample Time		
INAFIO I	5/28/2009	0805 HBS		

Weather: Clear, slight breeze. Temp 65- 70 Deg. 3 well volumes = 2.6 gals. On 5/28/09 started be 0758 hrs. First bail water clear to slightly cloudy, no apparent odor. Bailed approximately 2.5 gals. cloudy on last bail possibly due to low water level from bailing.

Took sample on 5/28/09 at 0805 hours for the following paramaters. 8021B, 8015B GRO/DRO, 831(General Chem (ph, Cations, Anions, conductivity). Samples labeled and placed in cooler with ice.

NAPIS 2 Sample Day	Sample Time
5/28/2009	0840 HRS

Weather: Clear day, slight breeze. Temp 65-70 Deg. 3 well volumes = 2.58 Gals. On 5/28/09 star New bailer used for the purging of well and same bailer used for the sample. First bail water has a sl apparent odor. Bailed approximately 2.5 gals. Water turned slightly cloudy on last bail possibly due bailing.

Took sample on 5/28/09 at 0840 hours for the following paramaters. 8021B, 8015B GRO/DRO, 831 General Chem (ph, Cations, Anions, conductivity). Samples labeled and placed in cooler with ice.

NAPIS 3	Sample Day	Sample Time
	5/28/2009	NUTDUNE

Weather: Clear day. Temp 65-70 Deg. On 5/28/09 unable to get to this well. Repair work being d well.

КА-З	Sample Day	Sample 7	lime
	5/28/2009	0930 H	RS

Weather: Clear day, slight breeze. Temp65- 70 Deg. 3 well volumes = 7.76 gals. On 5/28/09 start New bailer used for the purging of well and same bailer used for the sample. First bail water is slight odor. Bailed approximately 7.5 gals of water. Water still cloudy at end of bailing.

Took sample on 5/28/09 at 0930 hours for the followiung parameters. 80/21B, 8015B GRO/DRO, 83 Chem (ph, Cations, Anions, Conductivity). Samples labeled and placed in cooler with ice.

NOTES:

Samples labeled, sealed, completed COC. Packed in cooler and shipped off UPS Red to Hall Labs

SAMPLER NAME/TITLE: Cheryl Johnson

Environmental speciali

iling with new bailer at Water turned slighly

), RCRA 8 metals,

ted bailing at 0829 hrs. ight yellowish tint, no 9 to low water level from

10, RCRA 8 metals,

one on a line near the

R ALL

ed bailing at 0901 hrs. ty cloudy, no apparent

10 RCRA 8 Metals, Gen

5/28/09.

st

COVER LETTER

Tuesday, April 21, 2009

Gaurav Rajen Western Refining Southwest, Gallup Rt. 3 Box 7 Gallup, NM 87301

TEL: (505) 722-3833 FAX (505) 722-0210

RE: 2009 1st QTR

Dear Gaurav Rajen:

Order No.: 0903415

Hall Environmental Analysis Laboratory, Inc. received 4 sample(s) on 3/26/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT:	Western Refining Sout	hwest, Gallup		Client	Sample ID:	NAPIS-1	
Lab Order:	0903415	· •		Colle	ction Date:	3/24/2009 2	2:00:00 PM
Project:	2009 1st OTR			Dat	Donoined.	2/26/2000	
	2009 13: QIK			Date	e Acceiveu: Motsiy.		,
Lab ID:	0903415-01				141211111.		
Analyses	·	Result	PQL	Qual U	Inits	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE						Analyst: SCC
Diesel Range O	rganics (DRO)	ND	1.0	m	ıg/L	1	3/30/2009
Motor Oil Range	e Organics (MRO)	ND	5.0	rr	ig/L	1	3/30/2009
Surr: DNOP		116	58-140	%	REC	1	3/30/2009
EPA METHOD	8015B: GASOLINE RANG	SE .					Analyst: DAM
Gasoline Range	Organics (GRO)	ND	0.050	n	ng/L	1	3/31/2009 4:32:48 PM
Surr: BFB		87.5	59.9-122	%	REC	1	3/31/2009 4:32:48 PM
							Analyst DAM
Methyl tert-butyl	ovzib. VOLATILES	ND	25	·	nli	4	3/31/2000 A-32-AR DM
Benzene		ND	2.0	н Ч	g/L n/l	1	3/31/2008 4.32.40 FM
Toluone		1.0	1.0	μ.	9/L ~/l	1	2/31/2009 4.32.40 FW
Ethylbenzene		ND	1.0	ц ц		,	3/31/2000 4:32:40 FW
Zulones Total		· ND	20	н. Н	9/C a/l	1	3/31/2009 4:32:40 FW
1 2 4-Trimethylk	0007000	ND	2.0	ц. ц	9/L. 0/I	1	3/31/2009 4.32.40 FM
1.3.5.Trimethylk		ND	1.0	ju; Lu	9/L a/l	1	3/31/2009 4.32.48 PM
Surr: 4-Brom	ofluorobenzene	92.3	65.9-130	р %	SREC	1	3/31/2009 4:32:48 PM
EPA METHOD	8310: PAHS						Analyst: DMG
Naphthalene		ND	2.0	μ	g/L	1	4/3/2009 5:45:00 PM
1-Methylnaphtha	alene	ND	2.0	, p	g/L	1	4/3/2009 5:45:00 PM
2-Methylnaphtha	alene	ND	2.0	μ	g/L	1	4/3/2009 5:45:00 PM
Acenaphthylene		ND	2.5	hi	g/L	. 1	4/3/2009 5:45:00 PM
Acenaphthene		ND	5.0	μ	g/L.	1 .	4/3/2009 5:45:00 PM
Fluorene		ND	0.80	μ	g/L	1	4/3/2009 5:45:00 PM
Phenanthrene		ND	0.60	hi	g/L	1	4/3/2009 5:45:00 PM
Anthracene		ND	0.60	μ	g/L	1	4/3/2009 5:45:00 PM
Fluoranthene		ND	0.30	μ	g/L	1	4/3/2009 5:45:00 PM
Pyrene		ND	0.30	hi	g/L	1	4/3/2009 5:45:00 PM
Benz(a)anthrace	ene	ND	0.070	hi	g/L	1	4/3/2009 5:45:00 PM
Chrysene		ND	0.20	μ	g/L	1	4/3/2009 5:45:00 PM
Benzo(b)fluoran	thene	ND	0.10	μ	g/L	1	4/3/2009 5:45:00 PM
Benzo(k)fluoran	thene	ND	0.070	hi	g/L	1	4/3/2009 5:45:00 PM
Benzo(a)pyrene	· .	ND	0.070	hi	g/L	1	4/3/2009 5:45:00 PM
Dibenz(a,h)anth	racene	ND	0.070	hi	g/L	1	4/3/2009 5:45:00 PM
Benzo(g,h,i)peŋ	lene	ND	0.080	μ	g/L	1	4/3/2009 5:45:00 PM
Indeno(1,2,3-cd))pyrene	ND	0.080	h	g/L	1	4/3/2009 5:45:00 PM
Surr: Benzo(e	e)pyrene	66.4	44.8-104	%	REC	· 1	4/3/2009 5:45:00 PM
EPA METHOD	300.0: ANIONS						Analyst: IC
Fluoride		0.69	0.10	m	g/L	1	3/26/2009 11:31:28 PM
Chloride		120	1.0	m	ıg/L	10	3/26/2009 11:48:53 PM
Qualifiers:	Value exceeds Maximum C	ontaminant Level		В	Analyte dete	cted in the asso	ciated Method Blank
E	E Estimated value			. Н	Holding time	es for preparation	on or analysis exceeded
j	Analyte detected below qua	ntitation limits		MCI	. Maximum C	ontaminant Lev	vel

Date: 21-Apr-09

1

ND Not Detected at the Reporting Limit

S

Spike recovery outside accepted recovery limits

.

RL Reporting Limit

Page 1 of 8

CLIENT:	Western Refining Sou	thwest, Gallup		Clier	it Sample ID:	NAPIS-1	
Lab Order:	0903415			Co	llection Date:	3/24/2009	2:00:00 PM
Project:	2009 1st QTR			Da	ate Received:	3/26/2009	
Lab ID:	0903415-01				Matrix:	AQUEOU	S
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS	•			·····		Analyst: IC
Nitrate (As N)+	Nitrite (As N)	ND	1.0		mg/L	5	4/19/2009 5:57:43 AM
Phosphorus, O	rthophosphate (As P)	ND	0.50		mg/L	1	3/26/2009 11:31:28 PM
Sulfate		38	0.50		mg/L	1	3/26/2009 11:31:28 PM
EPA METHOD	7470: MERCURY						Analyst: SNV
Mercury		ND	0.00020		mg/L	1	4/6/2009 5:29:17 PM
EPA 6010B: TC	OTAL RECOVERABLE M	IETALS					Analyst: NMO
Arsenic		ND	0.020		mg/L	¹ 1	4/6/2009 11:53:56 AM
Barium		0.10	0.020		mg/L	1	4/6/2009 11:53:56 AM
Cadmium		ND	0.0020		mg/L	1	4/6/2009 11:53:56 AM
Calcium		67	1.0		mg/L	1	4/6/2009 11:53:56 AM
Chromium		ND	0.0060		mg/L	1	4/6/2009 11:53:56 AM
Lead		ND	0.0050	• •	mg/L	1	4/6/2009 11:53:56 AM
Magnesium		12	1.0		mg/L	- 1	4/6/2009 11:53:56 AM
Potassium		ND	1.0		mg/L	1	4/6/2009 11:53:56 AM
Selenium		ND	0.25		mg/L	5	4/8/2009 8:27:38 AM
Silver		ND	0.0050		mg/L	1	4/6/2009 11:53:56 AM
Sodium		340	10		mg/L	10	4/6/2009 12:43:06 PM
EPA 120.1: SPI				•			Analyst: NSB
Specific Conduc	ctance	2000	0.010		µmhos/cm	1.	3/27/2009
SM4500-H+B: F	2 H						Analyst: NSB
рН		7.69	0.1		pH units	1	3/28/2009

-

Date: 21-Apr-09

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Estimated value	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	MCL	Maximum Contaminant Level
	ND	Not Detected at the Reporting Limit	RL	Reporting Limit
	S	Spike recovery outside accepted recovery limits		Page 2 of 8

CLIENT:	Western Refining Sc	outhwest, Gallu	р	t Sample ID	ID: NAPIS-2			
Lab Order:	0903415			Col	lection Date	: 3/24/200	9 2:15:00 PM	
Project:	2009 1st QTR			Da	ite Received	: 3/26/200	9	
Lab ID:	0903415-02				Matrix	: AQUEOU	JS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
	8015B DIESEL RANG					بدا وتباريها المراجعينية	Analyst: SCC	
Diesel Range (Ornanics (DRO)	43	1.0		ma/L	1	3/30/2009	
Motor Oil Rang	te Organics (MRO)	5.1	5.0		ma/L	1	3/30/2009	
Surr: DNOP	je engemee (inite)	118	58-140		%REC	1	3/30/2009	
		NGE					Analyst: DAM	
		0.37	0.050		ma/l	1	A/2/2000 11:34:12 AM	
Gasume nang	e organics (GRO)	0.37	ED 0 432			1	4/2/2009 11:34:12 AM	
Sult: BFB		101	59.9-122		MEG	I	4/2/2009 11:34:12 AW	
EPA METHOD	8021B: VOLATILES						Analyst: DAM	
Methyl tert-buty	yl ether (MTBE)	90	25		µg/L	10	3/31/2009 5:03:20 PM	
Benzene		19	1.0		µg/L	1	4/2/2009 11:34:12 AM	
Toluene		1.1	1.0		µg/L	1	4/2/2009 11:34:12 AM	
Ethylbenzene		8.1	1.0		µg/L	1	4/2/2009 11:34:12 AM	
Xvlenes, Total		ND	2.0		µg/L	1	4/2/2009 11:34:12 AM	
1.2.4-Trimethyl	lbenzene	2.0	1.0		µg/L	1	4/2/2009 11:34:12 AM	
1.3.5-Trimethyl	lbenzene	ND	1.0		µg/L	1	4/2/2009 11:34:12 AM	
Surr: 4-Brom	nofiuorobenzene	91.9	65.9-130		%REC	1	4/2/2009 11:34:12 AM	
	8310- DAHS						Analyst: DMG	
Nephtheleno	OSTUL PARIS	ND	4.0			. 1	4/3/2009 6:05:00 PM	
1 Mathylaanbti	alene		4.0		ug/i	1	4/3/2009 6:05:00 PM	
2 Mothylnapht			4.0		µg/L ug/l	1	4/3/2009 6:05:00 PM	
2-weinyinaphu			4.0 5.0		µg/L	1	4/3/2009 6:05:00 PM	
Acenaphinyten	e	ND	10		µg/L	1	4/3/2009 6:05:00 PM	
Acenaphthene		ND	10		µg/L		4/3/2009 6:05:00 PM	
Fluorene			1.0		µg/L	1	4/3/2009 6:05:00 PM	
Anthropono		ND	1.2		µg/L	4	4/3/2009 6:05:00 PM	
Anthracene			0.60		µg/L	1	4/3/2009 8:05:00 PM	
Fluoranthene		ND	0.00		µy/c	1	4/3/2009 6:05:00 PM	
Pyrene Dana(a) and hard		ND	0.00		µy/L	1	4/3/2009 8:05:00 PM	
Benz(a)anthrac	sene	ND	0.14		µg/L	1	4/3/2009 6:05:00 PM	
Chrysene			0.40		µg/L	1	4/3/2009 6:05:00 PM	
Benzo(b)fluora	ninene		0.20		µg/L	1	4/3/2009 6:05:00 PM	
Benzo(k)nuora	ninene	ND	0.14		µg/L	1	4/3/2009 8:05:00 PM	
Benzo(a)pyren	e	ND	0.14		hður Höld	1	4/3/2009 6:05:00 PM	
Dipenz(a,n)ant	nracene	ND	- 0.14		µg/L ug/l	1	4/3/2009 0.00:00 PW	
Benzo(g,n,i)pel	ryiene	ND	0.10		µg/L	1	4/3/2009 6:05:00 PM	
Indeno(1,2,3-co	ajpyrene		U.16		hân Nibeo	- 1 	4/3/2009 0:05:00 PM	
Surr: Benzol	(e)pyrene	64.6	44.8-104		WREC	ï	4/3/2009 6:05:00 PM	
EPA METHOD	300.0: ANIONS						Analyst: IC	
Fluoride		1.5	0.10		mg/L	1	3/27/2009 12:06:17 AM	
Chloride		240	1.0		mg/L	10	3/27/2009 12:23:43 AM	
Qualifiers:	 Value exceeds Maximum E Estimated value 	n Contaminant Lev	el	i	B Analyte deH Holding tit	tected in the as nes for prepar	ssociated Method Blank ation or analysis exceeded	
	I Analyte detected below of	uantitation limits		М	CL Maximum	Contaminant]	Level	

Date: 21-Apr-09

Spike recovery outside accepted recovery limits S

ND Not Detected at the Reporting Limit

Page 3 of 8

3

RL Reporting Limit

CLIENT:	Western Refining So	outhwest, Gallup		Client Sample ID:	NAPIS-2	
Lab Order:	0903415		2	Collection Date:	3/24/200	9 2:15:00 PM
Project:	2009 1st OTR			Date Received	3/26/200	9
Lab ID:	0903415-02			Matrix	AQUEO	US
Analyses	1	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 3	00.0: ANIONS					Analyst: IC
Nitrate (As N)+N	itrite (As N)	ND	1.0	mg/L	5	4/19/2009 6:32:33 AM
Phosphorus, Ort	hophosphate (As P)	ND	0.50	mg/L	1	3/27/2009 12:06:17 AM
Sulfate		23	0.50	mg/L	1	3/27/2009 12:06:17 AM
EPA METHOD 7	470: MERCURY					Analyst: SNV
Mercury		ND	0.00020	mg/L	1	4/6/2009 5:31:02 PM
EPA 6010B: TO	TAL RECOVERABLE	METALS				Analvst: NMO
Arsenic		ND	0.020	mg/L	1	4/6/2009 11:58:19 AM
Barium		0.76	0.020	mg/L	1	4/6/2009 11:58:19 AM
Cadmium		ND	0.0020	mg/L	1	4/6/2009 11:58:19 AM
Calcium		53	1.0	mg/L	<u> </u>	4/6/2009 11:58:19 AM
Chromium		. ND	0.0060	mg/L	1	4/6/2009 11:58:19 AM
Lead		ND	0.0050	mg/L	1	4/6/2009 11:58:19 AM
Magnesium		10	1.0	mg/L	1	4/6/2009 11:58:19 AM
Potassium		ND	1.0	mg/L	1	4/6/2009 11:58:19 AM
Selenium		ND	0.25	mg/L	5	4/8/2009 8:30:48 AM
Silver		ND	0.0050	mg/L	1	4/6/2009 11:58:19 AM
Sodium		280	10	mg/L	10	4/6/2009 12:45:52 PM
EPA 120.1: SPE	CIFIC CONDUCTANCE	=				Analyst: NSB
Specific Conduct	ance	1800	0.010	µmhos/cm	1	3/27/2009
SM4500-H+B: PI	H					Analyst: NSB
pН		7.47	0.1	pH units	1	3/28/2009

Date: 21-Apr-09

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Estimated value	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	MCL	Maximum Contaminant Level
	ND	Not Detected at the Reporting Limit	RL	Reporting Limit
	S	Spike recovery outside accepted recovery limits		Page 4 of 8

4

CLIENT:	Western Refining Sou	thwest, Gallup)	Clier	it Sample ID:	KA-3	0.15.00 ANA
Ductors	2000 1-+ OTD			0.0	nection Date:	3/23/2009	0.115:00 AM
Project:	2009 Ist Q1K			D	ate Received:	3/26/2005	10
Lab ID:	0903415-03	· · · · · · · · · · · · · · · · · · ·			Matrix;	AQUEUL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHO	D 8015B: DIESEL RANGE				Construction of the second state of the	ورجيكا كنفك استحدادتها	Analyst: SCC
Diesel Range	Organics (DRO)	ND	1.0		mg/L	1	3/30/2009
Motor Oil Rar	ige Organics (MRO)	ND	5.0		mg/L	1	3/30/2009
Surr: DNO	P '	113	58-140		%REC	1	3/30/2009
	D 8015B: GASOLINE RAN	GE					Analyst: DAM
Gasoline Ran	ge Organics (GRO)	0.18	0.050		mg/L	1	3/31/2009 5:33:56 PM
Surr: BFB		86.1	<u>59.9-122</u>		%REC	1	3/31/2009 5:33:56 PM
EPA METHO	0 8021B: VOI ATILES						Analyst: DAM
Methvi tert-bu	tvl ether (MTBE)	110	25		ua/L	10	4/2/2009 2:07:02 PM
Benzene	.,	ND	1.0		µa/L.	1	3/31/2009 5:33:56 PM
Toluene		ND	1.0		uo/L	1	3/31/2009 5:33:56 PM
Ethylbenzene		ND	1.0		µg/L	1	3/31/2009 5:33:56 PM
Xylenes, Tota	1	ND	2.0		μg/L	1	3/31/2009 5:33:56 PM
1,2,4-Trimeth	ylbenzene	ND	1.0		μg/L	1	3/31/2009 5:33:56 PM
1,3,5-Trimeth	ylbenzene	ND	1.0		µg/L	1	3/31/2009 5:33:56 PM
Surr: 4-Bro	mofluorobenzene	89.4	65.9-130		%REC	1	3/31/2009 5:33:56 PM
EPA METHO	0 8310: PAHS						Analyst: DMG
Naphthalene		ND	2.0		µg/L	1	4/3/2009 6:25:00 PM
1-Methylnaph	thalene	ND	2.0		µg/L	1	4/3/2009 6:25:00 PM
2-Methylnaph	thalene	ND	2.0		µg/L	1	4/3/2009 6:25:00 PM
Acenaphthyle	ne	ND	2.5		µg/L	1	4/3/2009 6:25:00 PM
Acenaphthen	8	ND	5.0		µg/L	<u>,</u> 1	4/3/2009 6:25:00 PM
Fluorene		ND	0.80		µg/L	1	4/3/2009 6:25:00 PM
Phenanthrene	9	ND	0.60		µg/L	1	4/3/2009 6:25:00 PM
Anthracene		ND	0.60		µg/L	1	4/3/2009 6:25:00 PM
Fluoranthene		ND	0.30		µg/L	1	4/3/2009 6:25:00 PM
Pyrene		ND	0.30		hð\r	1	4/3/2009 6:25:00 PM
Benz(a)anthra	icene	ND	0.070		µg/L	· 1	4/3/2009 6:25:00 PM
Chrysene		ND	0.20		µg/L	1	4/3/2009 6:25:00 PM
Benzo(b)fluor	anthene	ND	0.10		µg/L	1	4/3/2009 6:25:00 PM
Benzo(k)fluor	anthene	ND	0.070		µg/L	1	4/3/2009 6:25:00 PM
Benzo(a)pyre	ne	ND	0.070		µg/L	1	4/3/2009 6:25:00 PM
Dibenz(a,h)an	thracene	ND	0.070		µg/L	1	4/3/2009 6:25:00 PM
Benzo(g,h,i)p	erylene	ND	0.080		µg/L	1	4/3/2009 6:25:00 PM
indeno(1,2,3- Surr: Benzo	cd)pyrene o(e)pyrene	ND 57.2	0.080 44.8-104		µg/L %REC	1	4/3/2009 6:25:00 PM 4/3/2009 6:25:00 PM
oun oonze		01.12	11.0 101			'	- <i>MOLEGEO C.EG.CO</i> 1 M
EPA METHO	0 300.0: ANIONS						Analyst: IC
Fluoride		1.5	0.10		mg/L	1	3/26/2009 10:56:39 PM
Chloride		340	1.0		mg/L	10	3/26/2009 11:14:04 PM
Qualifiers:	* Value exceeds Maximum (Contaminant Leve	l		B Analyte dete	cted in the as	sociated Method Blank
	E Estimated value				H Holding time	es for prepara	tion or analysis exceeded
	J Analyte detected below qu	antitation limits		М	CL Maximum C	ontaminant L	evel
	ND Not Detected at the Report	ing Limit		F	L Reporting Li	mit	

Date: 21-Apr-09

Spike recovery outside accepted recovery limits

S

Page 5 of 8

5

CLIENT:	Western Refining So	outhwest, Gallup		Client Sample II): KA-3	
Lab Order:	0903415			Collection Dat	e: 3/25/2009	9 8:15:00 AM
Project:	2009 1st QTR			Date Receive	1: 3/26/2009)
Lab ID:	0903415-03			Matri	: AQUEOU	JS
Analyses	·	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS			••••••••••••••••••••••••••••••••••••••		Analyst: IC
Nitrogen, Nitrite	: (As N)	ND	1.0	mg/L	10	3/26/2009 11:14:04 PM
Nitrogen, Nitrat	e (As N)	0.90	0.10	mg/L	1	3/26/2009 10:56:39 PM
Phosphorus, Or	rthophosphate (As P)	ND	0.50	mg/L	1	3/26/2009 10:56:39 PM
Sulfate		76	0.50	mg/L	1	3/26/2009 10:56:39 PM
EPA METHOD	7470: MERCURY					Analyst: SNV
Mercury		ND	0.00020	mg/L	1	4/6/2009 5:32:49 PM
EPA 6010B: TC		METALS				Analyst: NMO
Arsenic		ND	0.020	mg/L	1	4/8/2009 8:56:41 AM
Barium		0.22	0.020	mg/L	1	4/8/2009 8:56:41 AM
Cadmium		ND	0.0020	mg/L	1	4/8/2009 8:56:41 AM
Calcium		67	1.0	mg/L	1	4/8/2009 8:56:41 AM
Chromium		ND	0.0060	mg/L	1	4/8/2009 8:56:41 AM
Lead		0.0055	0.0050	mg/L	1	4/8/2009 8:56:41 AM
Magnesium		10	1.0	mg/L	1	4/8/2009 8:56:41 AM
Potassium		ND	1.0	mg/L	1	4/8/2009 8:56:41 AM
Selenium		ND	0.050	mg/L	1	4/11/2009 4:23:03 PM
Silver		ND	0.0050	mg/L	1	4/8/2009 8:56:41 AM
Sodium		360	10	mg/L	10	4/8/2009 12:01:26 PM
EPA 120.1: SPE	ECIFIC CONDUCTANC	E				Analyst: NSB
Specific Conduc	stance	2400	0.010	µmhos/cm	1	3/27/2009
SM4500-H+B: F	Ч					Analyst: NSB
рH		7.64	0.1	pH units	1	3/28/2009

Date: 21-Apr-09

 Qualifiers:
 *
 Value exceeds Maximum Contaminant Level
 B
 Analyte detected

 E
 Estimated value
 H
 Holding times f

 J
 Analyte detected below quantitation limits
 MCL
 Maximum Cont

ND Not Detected at the Reporting Limit

- ${\bf S}$ Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 6 of 8

CLIENT:	Western Refi	ning Southwest, Gallup		Client S	Sample ID:	NAPIS-3	
Lab Order	: 0903415			Colle	ction Date:	3/25/2009	7:45:00 AM
Project:	2009 1st QTI	ર		Date	Received:	3/26/2009)
Lab ID:	0903415-04				Matrix:	AQUEOU	JS
Analyses		Result	PQL	Qual U	nits	ĐF	Date Analyzed
EPA METH	OD 8015B: DIESEL	RANGE				مد انبو همه به نقار است ا م	Analyst: SCC
Diesel Ran	ge Organics (DRO)	ND	1.0	m	g/L	1	3/30/2009
Motor Oil R	ange Organics (MRO)	ND	5.0	m	g/L	i	3/30/2009
Surr: DN	OP	118	58-140	%	REC	1	3/30/2009
EPA METH	OD 8015B: GASOLI	NE RANGE					Analyst: DAM
Gasoline R	ange Organics (GRO)	ND	0.050	m	g/L	4	3/31/2009 6:04:30 PM
Surr: BF	3	90.7	59.9-122	%	REC	1	3/31/2009 6:04:30 PM
		I ES					Analyst: DAM
Methvi tert-	butylether (MTRF)	ND	25		n/l	*1	3/31/2009 6-04-30 PM
Renzene		ND	1.0	P\$	9/1 1/1	1 -1	3/31/2009 6:04:30 PM
Toluene		ND	1.0	μί 1	y ⊷ 1/}	, 1.	3/31/2009 6:04:00 PM
Fihvihenze	ne -		1.0	P\$,,	4 4	3/31/2009 6:04:30 PM
Xvlenes, To	ntal	ND	2.0	P2 11	ar⊷ n/l	4	3/31/2009 6:04:30 PM
1 2 4-Trime	thvibenzene	ND	1.0	24 110	yr⊏ 1/1	. ' 4	3/31/2009 6-04-30 PM
135-Trime	thylbenzene	ND	1.0	94 	s/⊑ s/l	، با	3/31/2009 0:04:30 PM
Surr: 4-B	romofluorobenzene	98.9	65.9 - 130	%	REC	4	3/31/2009 6:04:30 PM
	00 8310 PAHS						Analyst: DMG
Nanhihalen	D CONTRACTO	ND	20	1.10	1/1	4	4/3/2000 6:46:00 PM
1-Methvina	o hthalene	ND	2.0	24 110	ı,/L 1/I	4	4/3/2009 6:46:00 PM
2-Methylna	ohthalene	ND	2.0	24 11	,, ⊢ ∧/l	· •	4/3/2000 6:46:00 PM
Acenanhthy	lene	ND	2.5	P2	n∕⊷ n/i	•	4/3/2009 8:48:00 PM
Acenaphthe	ane	ND	5.0	P8 UC	,~ _ 1/1	4	4/3/2009 6:46:00 PM
Fluorene		ND	0.80	2~ (r/1	4	4/3/2009 6:46:00 PM
Phenanthre	ne	ND	0.60	P8 U0	, 1/L	4	4/3/2009 6:46:00 PM
Anthracene		ND	0.60		1/	4.	4/3/2009 6:46:00 PM
Fluoranther	IE .	ND	0.30	μΩ	1/L	1	4/3/2009 6:46:00 PM
Pyrene		ND	0.30	μ	/L	1	4/3/2009 6:46:00 PM
Benz(a)antl	racene	ND	0.070	μg	, /L	1	4/3/2009 6:46:00 PM
Chrysene		ND	0.20	μg	I/L	1	4/3/2009 6:46:00 PM
Benzo(b)flu	oranthene	ND	0.10	μg	I/L	4	4/3/2009 6:46:00 PM
Benzo(k)flu	oranthene	ND	0.070	μg	/L	•1	4/3/2009 6:46:00 PM
Benzo(a)py	rene	ND	0.070	μ	μ /L .	1	4/3/2009 6:46:00 PM
Dibenz(a,h)	anthracene	ND	0.070	μg	I/L	4	4/3/2009 6:46:00 PM
Benzo(g,h,i)perylene	ND	0.080	μg	ı/L	4	4/3/2009 6:46:00 PM
Indeno(1,2,	3-cd)pyrene	ND	0.080	94	/L	1	4/3/2009 6:46:00 PM
Surr: Ber	zo(e)pyrene	57.4	44.8-10 4	%	REC	4	4/3/2009 6:46:00 PM
	OD 300.0: ANIONS						Analyst: IC
Fluoride		0.43	0.10	m	g/L	1	3/26/2009 10:21:50 PM
Chloride		1200	5.0	m	g/L	150	4/19/2009 7:07:22 AM
Qualifiers:	* Value exceeds N	faximum Contaminant Level		В	Analyte dete	cted in the as	sociated Method Blank
	E Estimated value			Н	Holding tim	es for prepara	tion or analysis exceeded
	J Analyte detected	below quantitation limits		MCL	Maximum C	Contaminant L	evel
	ND Not Detected at	the Reporting Limit		RL	Reporting L	imit	Dogo 7 o
	S Spike recovery c	outside accepted recovery limi	ts				rage / 0

Date: 21-Apr-09

CLIENT:	Western Refining Sc	uthwest, Gallur)	Client Sample I	D: NAPIS-3	
Lab Order:	0903415			Collection Da	te: 3/25/2009	9 7:45:00 AM
Project:	2009 1st OTR			Date Receive	d+ 3/26/2009)
Lab ID:	0903415-04			Matr	ix: AQUEOU	JS
Analyses	······	Result	POL	Oual Units	DF	Date Analyzed
				Z		Analysta
Nitrogon Nitrito	JULU: ANIONS	ND	10	mail	10	Analyst. 10
Nitrogen, Nitrat	(AS N)	14	0.10	_ mg/∟	10	3/26/2009 10:39.14 PM
Phosphorus Or	thophosphate (Ar D)	14 ND	0.10	mg/L	1	3/26/2009 10:21:50 PM
Sulfate		340	5.0	mg/L	10	3/26/2009 10:39:14 PM
EPA METHOD	7470: MERCURY					Analyst: SNV
Mercury	· ·	ND	0,00020	mg/L	1	4/6/2009 5:34:36 PM
EPA 6010B: TC	TAL RECOVERABLE	METALS				Analyst: NMO
Arsenic		ND	0.020	mg/L	1	4/8/2009 9:01:13 AM
Barium		0.13	0.020	mg/L	1	4/8/2009 9:01:13 AM
Cadmium		ND	0.0020	mg/L	1	4/8/2009 9:01:13 AM
Calcium		47	1.0	mg/L	1	4/8/2009 9:01:13 AM
Chromium		ND	0.0060	mg/L	1	4/8/2009 9:01:13 AM
Lead		ND	0.0050	mg/L	1	4/8/2009 9:01:13 AM
Magnesium		6.5	1.0	mg/L	1	4/8/2009 9:01:13 AM
Potassium		3.9	1.0	mg/L	1	4/8/2009 9:01:13 AM
Selenium		ND	0.050	mg/L	1	4/11/2009 4:28:15 PM
Silver		ND	0.0050	mg/L	1	4/8/2009 9:01:13 AM
Sodium		880	10	mg/L	10	4/8/2009 12:04:08 PM
EPA 120.1: SPI	ECIFIC CONDUCTANCI	2				Analyst: NSB
Specific Conduc	ctance	5200	0.010	µmhos/cm	1	3/27/2009
SM4500-H+B: F	РΗ					Analyst: NSB
рН		8.11	0.1	pH units	1	3/28/2009

Date: 21-Apr-09

Qualifiers: ٠ Value exceeds Maximum Contaminant Level В Analyte detected in the associated Method Blank E Estimated value Holding times for preparation or analysis exceeded H J Analyte detected below quantitation limits MCL Maximum Contaminant Level ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

S

RL Reporting Limit

8

Page 8 of 8

QA/QC SUMMARY REPORT

Client:Western ReProject:2009 1st Q'	fining South FR	west, Gallu	р				Worl	Order: 0903415
Analyte	Result	Units	PQL	. %Rec	LowLimit	HighLimit	%rpd rf	PDLimit Qual
Method: EPA Method 300.0: A	nlons							
Sample ID: MB		MBLK			Batch II	D: R32985	Analysis Date:	3/26/2009 11:20:19 AN
Fluoride	ND	. mg/L	0.10			•		
Chloride	ND	mg/L	0.10					
Nitrogen, Nitrite (As N)	ND	mg/L	0.10					
Nitrogen, Nitrate (As N)	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As	P) ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50		—			
Sample ID: MB		MBLK			Batch II	D: R3298 6	Analysis Date:	3/27/2009 1:15:57 AM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10		,			
Nitrogen, Nitrité (As N)	ND	mg/L	0.10					
Nitrogen, Nitrate (As N)	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As	P) ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: MB-2		MBLK			Batch II	D: R32985	Analysis Date:	3/27/2009 9:58:09 AM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrogen, Nitrite (As N)	ND	mg/L	0.10					
Nitrogen, Nitrate (As N)	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As I	P) ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: MB		MBLK			Batch II	D: R33317	Analysis Date:	4/18/2009 7:13:34 PM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrogen, Nitrite (As N)	ND	mg/L	0.10					
Nitrogen, Nitrate (As N)	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As I	P) ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					·
Sample ID: LCS		LCS			Batch II	D: R3298 6	Analysis Date:	3/26/2009 11:37:43 AM
Fluoride	0.5332	mg/L	0.10	107	90	110		
Chloride	5.231	mg/L	0.10	105	90	110		
Nitrogen, Nitrite (As N)	0.9374	mg/L	0.10	93.7	90	110		
Nitrogen, Nitrate (As N)	2.670	mg/L	0.10	107	90	110		
Nitrate (As N)+Nitrite (As N)	3.608	mg/L	0.20	103	90	110	· .	
Phosphorus, Orthophosphate (As I	P) 5.417	mg/L	0.50	108	90	110		
Sulfate	10.67	mg/L	0.50	107	90	110		
Sample ID: LCS		LCS			Batch IC	D: R3298 6	Analysis Date:	3/27/2009 1:33:22 AM
Fluoride	0.5740	mg/L	0.10	115	90	110		S
Chloride	5.344	mg/L	0.10	107	90	110		
Nitrogen, Nitrite (As N)	1.151	mg/L	0.10	115	90	110		S

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 1

0903415

Page 2

Work Order:

QA/QC SUMMARY REPORT

Client:	Western Refining Southwest, Gallup
Project:	2009 1st QTR

Project:

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD F	RPDLimit Qual
Method: EPA Method 300.0: Ani	ons					· · · · · · · · · · · · · · · · · · ·		
Sample ID: LCS		LCS			Batch ID	D: R32985	Analysis Date	: 3/27/2009 1:33:22 AN
Nitrogen, Nitrate (As N)	2.605	mg/L	0.10	104	90	110		
Nitrate (As N)+Nitrite (As N)	3.757	mg/L	0.20	107	90	110		
Phosphorus, Orthophosphate (As P)	5.545	mg/L	0.50	111	90	110		S
Sulfate	10.89	mg/L	0.50	109	90	110		
Sample ID: LCS-2		LCS			Batch ID): R32985	Analysis Date	: 3/27/2009 10:15:34 AN
Fluoride	0.5105	mg/L	0.10	102	90	110		
Chloride	5.202	mg/L	0.10	104	90	110		
Nitrogen, Nitrite (As N)	1.136	mg/L	0.10	114	90	110		S
Nitrogen, Nitrate (As N)	2.555	mg/L	0.10	102	90	110		
Nitrate (As N)+Nitrite (As N)	3.690	mg/L	0.20	105	90	110		
Phosphorus, Orthophosphate (As P)	5.363	mg/L	0.50	107	90	110		
Sulfate	10.50	mg/L	0.50	105	90	110		
Sample ID: LCS		LCS		•	Batch IC): R33317	Analysis Date	: 4/18/2009 7:30:59 PM
Fluoride	0.5255	ma/L	0.10	105	90	110		
Chloride	5.284	mo/L	0.10	106	90	110		
Nitrogen, Nitrite (As N)	0.9148	ma/L	0.10	91.5	90	110		
Nitrogen, Nitrate (As N)	2.736	ma/L	0.10	109	90	110		
Nitrate (As N)+Nitrite (As N)	3.651	ma/L	0.20	104	90	110		
Phosphorus, Orthophosphate (As P)	5.280	ma/L	0.50	106	90	110		
Sulfate	10.39	mg/L	0.50	104	90	110		
Sample ID: MB-18665	sel Kange	MBLK			Batch ID): 18665	Analysis Date	: 3/30/2009
Diesel Pange Organics (DRO)	ND	ma/l	1.0					
Meter Oil Reage Organics (MRO)		mg/L	5.0					
Sample ID: 1 CS-18665		100	5.0		Batch IC	-	Analysis Data	3/30/2000
Sample ID. ECO-10005		200			Daton IL	. 10005	Analysis Date	. 5/50/2009
Diesel Range Organics (DRO)	6.364	mg/L	1.0	127	74 -	157		
Sample ID: LCSD-18665		LCSD			Batch ID): 18665	Analysis Date	3/30/2009
Diesel Range Organics (DRO)	5.941	mg/L	1.0	119	74	157	6.88	23
Method: EPA Method 8015B: Gas	soline Ran	ge			•			
Sample ID: 5ML RB		MBLK			Batch ID	R33032	Analysis Date	3/31/2009 8:24:28 AM
Gasoline Range Organics (GRO)	ND	ma/l	0.050					
Sample ID: 5MI RB		MBI K			Batch ID	P 833070	Analysis Date	4/2/2009 8:00:37 AM
			0.050		Baton iB		, analycle bace	
Gasoline Range Organics (GRO)	NU	mg/L	0.050		D-4-1-ID		A-alusia Data	0/04/0000 0:05.40 DM
Sample ID: 2.50G GRO LCS		LCS			Batch ID	R33032	Analysis Date	3/31/2009 6:35:10 PM
Gasoline Range Organics (GRO)	0.5046	mg/L	0.050	101	80	115		
Sample ID: 2.5UG GRO LCS		LCS			Batch ID	R33070	Analysis Date	4/3/2009 3:19:09 AM
Gasoline Range Organics (GRO)	0.5306	mg/L	0.050	106	80	115		
Sample ID: 2.5UG GRO LCSD		LCSD			Batch ID	R33070	Analysis Date	4/3/2009 3:49:28 AM
Gasoline Range Organics (CRO)	0 4966	ma/l	0.050	99.3	80	115	8.62	8 30
Sussime range Sigamos (SIVO)	9.4000	mg/L	0.000	00.0		10	0.02	0.00

Qualifiers:

Ε Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Western Refining Southwest, Gallup **Client:**

Project: 2009 1st Q	TR						v	Vork Order	: 0903415
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8021B:	Volatiles	·	A						
Sample ID: 0903415-01A MSD		MSD			Batch	ID: R33032	Analysis D	ate: 4/1/	2009 4:50:28 AM
Methyl tert-butyl ether (MTBE)	22.74	μg/L	2.5	111	51.2	138	2.83	28	
Benzene	20.74	μg/L	1.0	103	85.9	113	4.08	27	
Toluene	21.82	µg/L	1.0	104	86.4	113	7.06	19	
Ethylbenzene .	20.38	µg/L	1.0	102	83.5	118	6.24	10	
Xylenes, Total	60.46	µg/L	2.0	101	83.4	122	5.45	13	
1,2,4-Trimethylbenzene	20.45	μg/L	1.0	102	83.5	115	6.52	21	
1,3,5-Trimethylbenzene	19.31	∙µg/L	1.0	96.6	85.2	113	6.17	10	
Sample ID: 5ML RB		MBLK			Batch I	D: R33032	Analysis D	ate: 3/31/	2009 8:24:28 AM
Methyl tert-butyl ether (MTBE)	ND	µg/L	2.5						
Benzene	ND	µg/L	1.0						
Toluene	ND	· µg/L	1.0						
Ethylbenzene	ND	µg/L	1.0						
Xylenes, Total	ND	µg/L	2.0						
1,2,4-Trimethylbenzene	NÐ	µg/L	1.0			•			
1,3,5-Trimethylbenzene	ND	µg/L	1.0						
Sample ID: 100NG BTEX LCS		LCS			Batch	D: R33032	Analysis D	ate: 3/31/	2009 7:05:44 PM
Methyl tert-butyl ether (MTBE)	21.76	μg/L	2.5	109	51.2	138			
Benzene	20.44	µg/L	1.0	102	85.9	113			
Toluen s	21.64	µg/L	1.0	108	86.4	113			
Ethylbenzene	20.91	µg/L	1.0	105	83.5	118			
Xylenes, Total	62,94	µg/L	2.0	105	83.4	122			
1,2,4-Trimethylbenzene	20.51	µg/L	1.0	103	83.5	115			
1,3,5-Trimethylbenzene	20.58	µg/L	1.0	102	85.2	113			
Sample ID: 0903415-01A MS		MS			Batch I	D: R33032	Analysis D	ate: 4/1/	2009 4:19:46 AM
Methyl tert-butyl ether (MTBE)	23.39	ua/L	2.5	115	51.2	138			
Benzene	21.60	ug/L	1.0	107	85.9	113			
Toluene	23.42	μg/L	1.0	112	86.4	113			
Ethylbenzene	21.69	µg/L	1.0	108	83.5	118			
Xylenes, Total	63.85	µg/L	2.0	106	83.4	122			
1,2,4-Trimethylbenzene	21.83	µg/L	1.0	109	83.5	115			
1,3,5-Trimethylbenzene	20.54	µg/L	1.0	103	85.2	113			

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

Holding times for preparation or analysis exceeded Н

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits Page 3

4

Page 4

Project: 200 Analyte Method: EPA Method Sample ID: MB-18692 Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	9 1st QTR Result 1 8310: PAHs ND	Units MBLK	PQL	%Rec	LowLimit	High	l imit	Work	Order: 0903415
Analyte Method: EPA Method Sample ID: MB-18692 Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	Result I 8310: PAHs ND	Units 	PQL	%Rec	LowLimit	High	l imit		
Method: EPA Method Sample ID: MB-18692 Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	1 8310: PAHs ND	MBLK				· · · · ·			DLimit Qual
Sample ID: MB-18692 Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	ND	MBLK							
Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	ND				Batch	ID:	18692	Analysis Date:	4/3/2009 12:11:00 PM
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene		µg/L	2.0						
2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	ND	µg/L	2.0						
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	ND	µg/L	2.0						
Acenaphthene Fluorene Phenanthrene Anthracene	ND	µg/L	2.5						
Fluorene Phenanthrene Anthracene	ND	µg/L	5.0					•	
Phenanthrene Anthracene	ND .	µg/L	0.80						
Anthracene	ND	µg/L	0.60						
	ND	µg/L	0.60						
Fluoranthene	ND	µg/L ⊺	0.30						
Pyrene	ND	µg/L	0.30						
Benz(a)anthracene	ND	µg/L	0.070						
Chrysene	ND	µg/L	0.20						
Benzo(b)fluoranthene	ND	µg/L	0.10						
Benzo(k)fluoranthene	ND	µg/L	0.070						
Benzo(a)pyrene	ND	µg/L	0.070						,
Dibenz(a,h)anthracene	ND	µg/L	0.070						
Benzo(g,h,i)perylene	ND	µg/L	0.080						
Indeno(1,2,3-cd)pyrene	ND	µg/L	0.080						
Sample ID: LCS-18692		LCS			Batch I	ID:	18692	Analysis Date:	4/3/2009 12:31:00 PM
Naphthalene	53.74	µg/L	2.0	67.2	31.5	90.7	,		
1-Methylnaphthalene	59.57	µg/L	2.0	74.3	32.5	93.3	3		
2-Methylnaphthalene	53.93	µg/L	2.0	67.4	32.8	89.6	3		
Acenaphthylene	60.98	μg/L	2.5	76.0	37.8	92.4	ŀ		
Acenaphthene	63.42	µg/L	5.0	79.3	38.6	93.9)		
Fluorene	4.710	µg/L	0.80	58.7	38	95.5	;		
Phenanthrene	2.990	µg/L	0.60	68.9	32.9	107			
Anthracene	2.880	µg/L	0.60	71.6	35.2	98.3			
Fluoranthene	5.800	µg/L	0.30	72.3	36.4	104			х -
Pyrene	5.050	µg/L	0.30	63.0	37.1	102			1
Benz(a)anthracene	0.6300	µg/L	0.070	78.6	33.7	101			
Chrysene	3.000	μg/L	0.20	74.6	35.2	96.1			
Benzo(b)fluoranthene	0.7600	µg/L	0.10	75.8	33.6	94,2			
Benzo(k)fluoranthene	0.4000	µg/L	0.070	80.0	25.4	110			
Benzo(a)pyrene	0.3600	μg/L	0.070	71.7	26.9	102			
Dibenz(a,h)anthracene	0.7600	µg/L	0.070	75.8	40.7	92.1			
Benzo(g,h,i)perylene	0.7500	µg/L	0.080	70.0	24.3	109			
Indeno(1,2,3-cd)pyrene	1.530	µg/L	0.080	76.3	42.6	99.9	1		
Method: EPA Method	7470: Mercury							·····	
Sample ID: MB-18742	•	MBLK			Batch I	D:	18742	Analysis Date:	4/6/2009 4:49:48 PM
Mercury	ND	ma/l	0.00020					-	
Sample ID: 1 CS-18742		108	V.V VVLV		Retch I	Ð٠	18742	Anaiveie Date:	A/6/2009 A-61-33 DM
	0.007404		0.00000	40.4		<u>.</u> .		, maryors Date.	
wercury	0.005181	mg/L	0.00020	104	80	120			

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

0903415

Work Order:

QA/QC SUMMARY REPORT

Client:	Western Refining Southwest, Gallup
Project:	2009 1st QTR

2009 1st QTR

Analyte	Result	Units	PQL	%Rec	LowLimit	High	Limit	%RPD	RPDI	.imit Qual	
Method: EPA 6010B: Total Rea	coverable Me	tals									
Sample ID: 0903415-04DMSD		MSD			Batch	ID:	18724	Analysis [Date:	4/8/2009 9:09:4	7 AM
Arsenic	0.5299	mg/L	0.020	106	75	125	5	1.65	20		
Barium	0.5860	mg/L	0.010	91.6	75	128	5	1.95	20		
Cadmium	0.4713	mg/L	0.0020	94.3	75	128	5	0.671	20		
Calcium	93.51	mg/L	0.50	93.3	75	125	5	3.59	20		
Chromium	0.4795	mg/L	0.0060	95.3	75	125	5	1.18	20		
Lead	0.4857	mg/L	0.0050	96.2	75	125	5	0.458	20		
Magnesium	53.12	mg/L	0.50	93.3	75	125	5	3.04	20		
Potassium	53.27	mg/L	1.0	98.8	75	125	5	2.79	20		
Silver	0.4767	mg/L	0.0050	95.2	75	125	5	2.37	20		
Sample ID: MBLK-18664		MBLK			Batch	ID:	18664	Analysis [Date:	4/6/2009 9:48:0	2 AM
Arsenic	ND	mg/L	0.020								
Barlum	ND	mg/L	0.010								
Cadmium	ND	mg/L	0.0020								
Calcium	ND	mg/L	0.50								
Chromium	ND	mg/L	0.0060								
Lead	0.01354	mg/L	0.0050							В	
Magnesium	ND	mg/L	0.50								
Potassium	ND	mg/L	1.0						•		
Selenium	ND	mg/L	0.050								
Silver	ND	mg/L	0.0050								
Sodium	ND	mg/L	0.50								
Sample ID: MB-18724		MBLK			Batch	ID:	18724	Analysis [Date:	4/8/2009 8:34:0	3 AM
Arsenic	ND	mg/L	0.020								
Barium	ND	mg/L.	0.010								
Cadmium	ND	mg/L	0.0020								
Calcium	ND	mg/L	0.50								
Chromium	ND	mg/L	0.0060								
Lead	ND	mg/L	0.0050								
Magnesium	ND	mg/L	0.50								
Potassium	ND	mg/L	1.0								
Selenium	ND	mg/L	0.050								
Silver	ND	mg/L	0.0050								
Sodium Sample ID: LCS-18664	ND	mg/L LCS	0.50		Batch	ID:	18664	Analysis E	Date:	4/6/2009 9:51:10	3 AM
Arsonic	0 5031	mo/l	0.020	101	80	120	•				
Barium	0.4865	ma/l	0.010	97.3	80	120	}				
Cadmium	0.4949	ma/L	0.0020	99.0	80	120					
Calcium	50.36	ma/L	0.50	101	80	120					
Chromium	0.4955	ma/1.	0.0060	99.1	80	120)				
Lead	0.4870	mg/L	0.0050	94.7	80	120)			в	
Maonesium	50.90	mg/L	0.50	102	80	120]			-	
Potassium	54.93	mg/L	1.0	110	80	120)				
Selenium	0.4940	mg/L	0.050	98.8	80	120	ļ.				
	0.10-10		0.000			120					

Qualifiers:

Е Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits Page 5

QA/QC SUMMARY REPORT

Client: Western	Refining South	west, Gallı	ıp					Want- 4	Oudaw 0000416
									Draer: 0903415
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Method: EPA 6010B: Total	Recoverable M	etals		/					
Sample ID: LCS-18664		LCS			Batch i	D: 18664	Analysis E	Date:	4/6/2009 9:51:16 At
Silver	0.4909	mg/L	0.0050	98.2	80	120			
Sodium	54.90	mg/L	0.50	110	80	120			
Sample ID: LCS-18724		LCS			Batch I	D: 18724	Analysis E	Date:	4/8/2009 8:36:30 AM
Arsenic	0.5519	ma/L	0.020	110	80	120			
Barium	0.5002	ma/L	0.010	100	80	120			
Cadmium	0.5107	ma/L	0.0020	102	80	120			
Calcium	50.14	ma/L	0.50	100	80	120			
Chromium	0.5241	ma/L	0.0060	105	80	120			
Lead	0.5378	mg/L	0.0050	108	80	120			
Magnesium	48.11	ma/L	0.50	96.2	80	120			
Potassium	50.32	mg/L	1.0	101	80	120			
Selenium	0.5100	mg/L	0.050	102	80	120			
Silver	0.5056	mg/L	0.0050	101	80	120			
Sodium	50.16	mg/L	0.50	100	80	120			
Sample ID: LCS-18664		LCSD			Batch I	D: 18664	Analysis D)ate:	4/6/2009 9:54:43 AN
Arsenic	0.4943	ma/L	0.020	98.9	80	120	1.76	20	
Barium	0.4935	ma/L	0.010	98.7	80	120	1.43	20	
Cadmium	0.4938	mo/L	0.0020	98.8	80	120	0.215	20	
Calcium	49.66	ma/L	0.50	99.3	80	120	1.40	20	
Chromium	0.4958	ma/L	0.0060	99.2	80	120	0.0708	20	
Lead	0.4893	ma/L	0.0050	95.2	80	120	0.485	20	В
Magnesium	50,23	mg/L	0.50	100	80	120	1.32	20	
Potassium	54.00	mg/L	1.0	108	80	120	1.71	20	
Selenium	0.4947	mg/L	0.050	98.9	80	120	0.133	20	
Silver	0.4960	mg/L	0.0050	99.2	80	120	1.03	20	
Sodium	53.75	mg/L	0.50	108	80	120	2.11	20	
Sample ID: 0903415-04DMS		MS			Batch I	D: 18724	Analysis D	ate:	4/8/2009 9:05:25 AN
Arsenic	0.5387	mg/L	0.020	108	75	125			
Barium	0.5975	ma/L	0.010	93.9	75	125			
Cadmium	0.4745	mg/L	0.0020	94.9	75	125			
Calcium	96.93	mg/L	0.50	100	75	125			
Chromlum	0.4852	mg/L	0.0060	96.5	75	125			
Lead	0.4879	mg/L	0.0050	96.7	75	125			
Magnesium	54.76	mg/L	0.50	96.5	75	125			
Potassium	54.77	mg/L	1.0	102	75	125			
Silver	0.4881	mg/L	0.0050	97.4	75	125			

Qualifiers:

- E Estimated value
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 6

Sample	Receipt Checklist
Client Name WESTERN REFINING GALLU	Date Received: 3/26/2009
Work Order Number 0903415	Received by: ARS
Checklist completed by:	326 6 Sample ID labels checked by: US
Matrix: Carrier name:	FedEx
Shipping container/cooler in good condition?	Yes 🗹 No 🗌 Not Present 🗍
Custody seals intact on shipping container/cooler?	Yes 🗹 No 🗆 Not Present 🗋 Not Shipped 🔲
Custody seals intact on sample bottles?	
Chain of custody present?	Yes ☑ 3/40 No 🗆
Chain of custody signed when relinquished and received?	Yes 🗹 No 🗌
Chain of custody agrees with sample labels?	Yes 🗹 No 🗔
Samples in proper container/bottle?	Yes 🗹 No 🗔
Sample containers intact?	Yes 🗹 No 🗌
Sufficient sample volume for indicated test?	Yes 🗹 No 🗌
All samples received within holding time?	Yes 🗹 No 🗔
Water - VOA vials have zero headspace? No VOA vials subr	mitted 🗌 Yes 🗹 No 💭
Water - Preservation labels on bottle and cap match?	Yes 🗹 No 🗋 N/A 🛄
Water - pH acceptable upon receipt?	Yes 🗹 No 🗔 N/A 🗔
Container/Temp Blank temperature?	3° <6° C Acceptable
COMMENTS	If given sufficient time to cool.
Client contacted Date contacted:	Person contacted
Contacted by: Regarding:	
Comments:	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Corrective Action	
	· · · · · · · · · · · · · · · · · · ·

	. ≻							(N ro) Y)	ir Bupples	∀													6	
IAL	S S														-									Sro	1 All	e
	Ē		•						,							•								- Jo	8 (I) 1)
Σ	R		7105	27	•				<u> </u>	17	DUDE	2	 	ļ		X	X	\times					\ge	5,0		
Z	BO	ШQ	VM 8	5-410	šť.				(A		-im92) 072	8	<u> </u>	[16		
R C C C C C	5	ntal.c	ue, h	5-34	dues		;			()		8												Ρŀ		
I	S IN	umer	nerqi	505	s Re	()	S PCB's	280	8/8	səpi		8												nsi		
Ź	: IS	Ivirol	ıbnqı	Fax	lysis	(°C	004'20	10°	۷ [٬] ۴C	DN'I	D, F) snoin	∀												210		
لى لىر	\ <u>\</u>	aller	Υ.	10	Ana		<u> </u>	$\frac{\mathcal{O}}{\mathcal{O}}$	/ : 	elet	CRA 8'Me	ы 		$ $ \times							\times			Q		
	Ş	w.ĥ	ШZ	3975				(H∀∢	d no	910 (PNA)	8			\times							X		1		
Ī	A	3	/kins	345-		•		()	170	g po	DB (Methc	3	 		·									en	·	
	, r		Нам	505-:		(100		ו) 	81			<u>+</u>	<u> </u>							. ~				N S	l	
			1901	Tel. (· .	(I98 (Kuu		978 	191(191	א אר		<u>비</u>								X				ې پې ډي	•	
			4	•		a	い 365) 	Hd	1 +	BE									<u> </u>						ř-	
						2	-CO8) 8	אושי ו	工 + [1333]	ы В Ш	TIM + XHT	비×	 						\times					ъ Т		
÷ .				1								2												۳ ل	ae ae	
		·													-				2	2	7	2	~	н с	\ ⊨	
•		—)						5														2.1	G	Date	Date	
		4E					_	8							\backslash									9		
•	hsh I	6)				5	5		5		ŢŻ						7			<u> </u>				3-	
	~	5			~		Ř	2	ŝ	10	erva		1	ĝ	प्र	2 L	3	202	5	5	03	20	ne		d .	
line.			•	2 . 2	てい	ler:	\varkappa			erati	Pres	1¥	Ľ	H	Ž	ДX Д	Ha	3	L.	I	ΗN	20	20			
L pri	ard	т Эше С	•	5	, π,	anag	.+	5		emp	er	- N		η	۶Ľ	9	3	S.	ł	-+	Jr C		١W	\sum	5	
Arou	tand	ž č	3	₩ < उ	\sim	ct M	\bigcirc	ler:	S.		itaine e and	D D	14 N	RN	Jmb	, א ע	g	2	0 Å	10 F	$\mathcal{O}\mathcal{O}$		20		a by	
ľ Ś	I⊠≺	ζ, ^{Igi}	ן ל	roje		roje(amp) D I C	dute	Con	-<	22	Й Г	+	Ŵ	้ญ	Ñ	7-5	2	Ņ	7	5	ecel	ecei K	
	-74							്ഗ	0	N)		- <u> ^'</u>	က	_ *					10)	(0)			-	R R	<u> </u>	
ام							latior	I	1		st IC															
<u>S</u>			1		\sim		Valid				due		 _						2							
Še	হা	F	7	で	S	3	Full				Яe				\square				.0		$\overline{\ }$			_ 1		
	5	2	검	Ľ	$\tilde{\sigma}$	$\left \mathcal{V} \right $	3 4 (i				ple	d					\neg	`	PIS			$\overline{\ }$		\mathcal{N}		
<u>b</u>	Ē	2 g	3	\otimes	Å	J 2	Leve				Sarr	JAI	·						Æ							
ist	Ž	Ę.	2	≦	5 S	r					•/	12							2					ied by	ked by	
ij٢	5	ŬĬ;	た	2	Σ	N					atrix	1 OI	-											nquish	nquish	
Ģ	5	\$	-	0	5	J					Ň	A B	b			-								Relir	Reir	
hain	200	XULLI	Hudies	<u>w</u>	ŝ	Fax#:	ackage: Jard	s	(Type)		Time	1400	· ·						ly is					Time:	Time:	
С Г		\bigcirc	ĥ	0 D	one #	ail or	/QC F	Other	EDD		ate	50							09						2	
l	5			\neg	Ч	eu	۶X					्रेप							hc					Dat	Dat	

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com wkins NE - Albuquerque, NM 87109 -345-3975 Fax 505-345-4107 -345-3975 Fax 505-345-4107	TPH (Method 418.1) EDB (Method 504.1) EDB (Method 504.1) RCRA 8 Metals Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Bobl (YOA) S260B (VOA) S270 (Semi-VOA) COCA (人のい) COCA (人のい)					
4901 Hé Tel. 50%	BTEX + MTBE + TPH (Gas only) TPH Method 8015B (Gas/Diesel)					larks:
	BTEX + MTBE + TMB's (8021)		\times			Е Хе С
en OHR	SOM E RO	~~~	<i>w v</i>	$i \omega \omega$	m m m m	Date Time 09 9.25 Date Time
ne: ⊿rus PIS	and Contraction Type	tast toot	HC /	4ND3 Done	Jone psút	3 24
Turn-Around T A Standard Project Name: 2009 Project #: NA	Project Manage Sampler: C Sample employee	1-500ml	3-VOA	1-200ml 1	1-500ml + 1-500ml +	Received by:
stody Record Refining Definen DM 81301 DM 81301	ゴみみ () つう () □ Level 4 (Full Validation) Sample Request ID	NAPIS-2	KA-3			d by: A by:
of-Cu	Matrix	2 june				Relinquisher Relinquisher
Hain-	r Fax#: -{ Package: dard (Type)	SIHI IdiS	0815			Time: V200 Time:
Client: C	email o OA/QC F C Stan Date Date	P01468	3-25-09			Date: Date: Date:

		_							(N -	(۲ ه) SƏ	Air Bubbl	′[<u> </u>		
1	٩Ľ				2 4 *															-							
													<u> </u>		<u> </u>									_			
	ME	2	7109	7				ļ	M7	Y	5-	U20)					×	$\overline{\times}$	\times								}.
		Ę	IM 87	-410	ţ				()	10/	-jule	92) 0728															
(₽ 2	ital.o	re, N	-345	sənb					() 	40/	v) 80928												 			
İ	5,		nerqu	505	s Rec		S'BOC	851	1 808	səp		eq 1808														.'	
	Ż Ż	Jvirol	ibnqŗ	Fax	ılýsis	(*C)S'*O	3 ^{°°} (ON"⁵	ON'		l) anoinA	'														
l		haller	4	S	Ana				(1)		teM				\times												
1	A A A A	Ţ.ww	۳ ۳	-397					ידי 							\times				_							
	ĪĀ	≥	wkins	-345					(1.8	15 P		эм) нч і															
			1 Hay	505	·	(195	s/Die	e9)	891	081	poy	PH Me									}	_					
			490	Tel.		(ʎ ʃL	10 565) H	IGT ·	+ 38	ITM	+ XƏT8													arks:		
						(1208)	s,g	MT ·	+ 36	IТМ	+ X3T8	X												Seme		H H
								Τ																		η	
												. W)) E	
													4	5	Ч	C	/								r= 0	Ĩ	
		t P	2					15															1		Date	Date	
-	ا_ پ	É	Ž	1.					3																		Ē
	Sush			C	\wedge		5		2		6	ative			~0	()	Ø	<i>ب</i> ار	. ر	\mathbf{r}					16	q	
6	. 🖸	12					2)[Serva	ト	¥	50	on	nor	<u>a</u> S	ND	,					N	5	1
Lin .	_	<u>.</u>	-	D G	7	ager:	Θ	6	X	e lei		Pre			H	5	\prec	H	H						\sim	\mathbf{L}	
puno	darc			÷.	2	Mana	, ń					ner nd #	Р	¢	M		Jun	JM	re					(
n-An	Star		5 :	ject		ject	\bigcirc	-	nple(ontai pe ai	NO	ND	R	1	ß) Q	500					, (pe v	ived 1	
1 1 1	\geq			2		Pro			Sar	S.		ŭ <u>}</u>	(Ó)	Ġ	V)	1	1.5								Rect	Rea	
								1			{	Q															
pro				<	\sim	2	ונקסוו	ווחמו				lest															
<u> </u>	Q	†21,			Ŋ	0	e// II:					kequ	5		\square										Λ		
Ř	1.5	36		2	X	\sim	ų v	5 5 F				le F	\mathbb{S}								Ì				\mathcal{A}		
^d	κĒ	IZ X	걼	Ĭ	``	00	0,0					amp	9 D														
stc	þ	Q_{12}	4		3	Ĕ	 C	נ ן			ļ	٥	2												2, ^č	β	1
ວິ	5	ar	2	Q	Ĕ	N						trix	Sa0						~						luishe	uishe	
-ţō	12	32	5	3	Ñ	5						Ma	Haw 1	>											Relind	Reling	
in-	3	a l		8	5	ŧ	age:	_	(əc	1			5		_										2) 	
;ha	3	0	k	R	#	r Fax	Pack		چ ا			Ê	04												Time 11 M	Time	
U	ient:	alling			Jone	nail o	Adc.					Date	25-09												ř ř	jej l	
	Ū	Ž			亡	e	ð)	1 · [l	ᆔ	1 K							ļ					la Z	Dai	

COVER LETTER

Wednesday, June 17, 2009

Gaurav Rajen Western Refining Southwest, Gallup Rt. 3 Box 7 Gallup, NM 87301

TEL: (505) 722-3833 FAX (505) 722-0210

RE: 2009 2nd Quarter NAPIS

Dear Gaurav Rajen:

Order No.: 0905544

Hall Environmental Analysis Laboratory, Inc. received 4 sample(s) on 5/29/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Busidess Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

Date: 17-Jun-09

CLIENT:Western Refining Southwest, GallupProject:2009 2nd Quarter NAPISLab Order:0905544

CASE NARRATIVE

Analytical Comments for METHOD 8021BTEX/ 8015GRO SAMPLE NAPIS-2: necessary dilution; due to surfactants present in sample.

Analytical Comments for METHOD 300_W, ALL SAMPLES: reporting NO3 and PO4 outside of EPA holdtime. Preserved values inconsistent with unpreserved values.

CLIENT:	Western Refining Sout	hwest, Gallup		Clier	it Sample ID:	NAPIS-1	
Lab Order:	0905544			Co	llection Date:	5/28/2009	8:05:00 AM
Project:	2009 2nd Quarter NAP	IS		D	ate Received:	5/29/2009)
Lab ID:	0905544-01	·			Matrix:	AQUEOU	JS
Analyses	· · · · · · · · · · · · · · · · · · ·	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8	015B: DIESEL RANGE		<u> </u>			,	Analyst: SCC
Diesel Range Org	anics (DRO)	ND	1.0		mg/L	1	6/2/2009
Motor Oil Range	Organics (MRO)	ND	5.0		mg/L	1	6/2/2009
Surr: DNOP		114	58-140	·	%REC	1	6/2/2009
EPA METHOD 80	15B: GASOLINE RANG	E					Analyst: DAM
Gasoline Range (Organics (GRO)	ND	0.050		mg/L	1	6/5/2009 11:27:27 PM
Surr: BFB		81.1	59.9-122		%REC	1	6/5/2009 11:27:27 PM
EPA METHOD 80	21B: VOLATILES						Analyst: DAM
Methyl tert-butyl e	ther (MTBE)	ND	2.5		µg/L	1	6/5/2009 11:27:27 PM
Benzene	``	ND	1.0		μg/L	1	6/5/2009 11:27:27 PM
Toluene		ND	1.0		µg/L.	1	6/5/2009 11:27:27 PM
Ethvibenzene		ND	1.0		ug/L	1	6/5/2009 11:27:27 PM
Xvlenes, Total		ND	2.0		ua/L	1	6/5/2009 11:27:27 PM
1.2.4-Trimethylbe	nzene	ND	1.0		µg/L	1	6/5/2009 11:27:27 PM
1.3.5-Trimethylbe	nzene	ND	1.0		µg/L	1	6/5/2009 11:27:27 PM
Surr: 4-Bromof	uorobenzene	86.1	65.9-130		%REC	1	6/5/2009 11:27:27 PM
EPA METHOD 83	310: PAHS						Analyst: JMP
Naphthalene		ND	2.0		µg/L	1	6/11/2009 10:23:13 PM
1-Methvinaphthale	ene	ND	2.0		µg/L	1	6/11/2009 10:23:13 PM
2-Methylnaphthale	ene	ND	2.0		µg/L	1	· 6/11/2009 10:23:13 PM
Acenaphihviene		ND	2.5		µg/L	1	6/11/2009 10:23:13 PM
Acenaphthene		ND	5.0		µg/L	1	6/11/2009 10:23:13 PM
Fluorene		ND	0.80		μg/L	1	6/11/2009 10:23:13 PM
Phenanthrene		ND	0.60		ua/L	1	6/11/2009 10:23:13 PM
Anthracene		ND	0.60		ug/L	1	6/11/2009 10:23:13 PM
Fluoranthene		ND	0.30		ug/L	1	6/11/2009 10:23:13 PM
Pyrene		ND	0.30		µg/L	1	6/11/2009 10:23:13 PM
Benz(a)anthracen	0	ND	0.070		μg/L	1	6/11/2009 10:23:13 PM
Chrysene		ND	0.20		µg/L	1	6/11/2009 10:23:13 PM
Benzo(b)fluoranth	ene-	ND	0.10		μg/L	1	6/11/2009 10:23:13 PM
Benzo(k)fluoranth	ene	ND	0.070		µg/L	1	6/11/2009 10:23:13 PM
Benzo(a)pyrene		ND	0.070		µg/L	1	6/11/2009 10:23:13 PM
Dibenz(a,h)anthra	cene	ND	0.070		µg/L	1	6/11/2009 10:23:13 PM
Benzo(g,h,i)peryle	ne	ND	0.080		µg/L	1	6/11/2009 10:23:13 PM
Indeno(1,2,3-cd)p	yrene	ND	0.080		µg/L	1	6/11/2009 10:23:13 PM
Surr: Benzo(e)p	byrene	55.4	44.8-104		%REC	1	6/11/2009 10:23:13 PM
EPA METHOD 30	0.0: ANIONS						Analyst: TAF
Fluoride		1.2	0.10		mg/L	1	6/9/2009 10:17:40 AM
Chloride		150	1.0		mg/L	10	6/9/2009 10:35:04 AM
Qualifiers: * E J	Value exceeds Maximum Co Estimated value Analyte detected below quan	ntaminant Level		l I M	B Analyte detected H Holding time CL Maximum C	cted in the as: s for preparation ontaminant L	sociated Method Blank tion or analysis exceeded evel

Date: 17-Jun-09

2

ND Not Detected at the Reporting Limit

S

Spike recovery outside accepted recovery limits

RL Reporting Limit

Page 1 of 7

CLIENT:	Western Refining So	uthwest, Gallup		Clier	nt Sample (D:	NAPIS-1		
Lab Order:	0905544	-		Co	llection Date:	5/28/2009 8	:05:00 AM	
Project:	2009 2nd Ouarter NA	PIS		D	ate Received:	5/29/2009		
Lab ID:	0905544-01			2	Matrix:	AQLIEOUS		
Analyses	· · ·	Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	300.0: ANIONS					ويتي أي ويترك	Analyst: TAF	
Nitrogen, Nitrate	e (As N)	0.31	0.10	н	mg/L	1	6/9/2009 10:17:40 AM	
Phosphorus, Or	thophosphate (As P)	ND	0.50	н	mg/I_	1	6/9/2009 10:17:40 AM	
Sulfate		71	5.0		mg/L	10	6/9/2009 10:35:04 AM	
EPA METHOD	7470: MERCURY						Analyst: MMS	
Mercury		ND	0.00020		mg/L	1	6/3/2009 3:15:12 PM	
EPA 6010B; TO	TAL RECOVERABLE	NETALS					Analyst: TES	
Arsenic	· · · · · · · · · · · · · · · · · · ·	ND	0.020		mg/L	1	6/5/2009 3:55:58 PM	
Barium		0.091	0.020		mg/L	1	6/5/2009-3:55:58 PM	
Cadmium		ND	0.0020		mg/L	1	6/5/2009 3:55:58 PM	
Calcium		57	1.0		mg/L	1	6/5/2009 3:55:58 PM	
Chromium		ND	0.0060		mg/L	1	6/5/2009 3:55:58 PM	
Lead		ND	0.0050		mg/L	1	6/5/2009 3:55:58 PM	
Magnesium		11	1.0		mg/L	1	6/5/2009 3:55:58 PM	
Potassium		ND	1.0		mg/L	1	6/5/2009 3:55:58 PM	
Selenium		ND	0.050		mg/L	· 1	6/5/2009 3:55:58 PM	
Silver		ND	0.0050		mg/L	1	6/5/2009 3:55:58 PM	
Sodium		390	5.0		mg/L	E,	6/9/2009 2:02:56 PM	
EPA 120.1: SPE							Analyst: BDH	
Specific Conduc	stance	1900	0.010		µmhos/cm	1	6/1/2009	
SM4500-H+B: F	PH .						Analyst: BDH	
pH		7.82	0.1		pH units	1	5/29/2009	

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Estimated value	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	MCL	Maximum Contaminant Level
	ND	Not Detected at the Reporting Limit	RL	Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 17-Jun-09

Page 2 of 7

CLIENT: Lab Order: Project: Lab ID:	Western Refining Sou 0905544 2009 2nd Quarter NA 0905544-02	ithwest, Gallup PIS)	Clien Col Da	it Sample ID: llection Date: ate Received: Matrix:	NAPIS-2 5/28/2009 5/29/2009 AQUEOU	9 8:40:00 AM) JS
Analyses	Ŷ	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE						Analyst: SCC
Diesel Range C	Organics (DRO)	3.4	1.0		mg/L	1	6/2/2009
Motor Oil Rang	e Organics (MRO)	ND	5.0		mg/L	1	6/2/2009
Surr: DNOP		113	58-140		%REC	1	6/2/2009
EPA METHOD	8015B: GASOLINE RAN	GE					Analyst: DAM
Gasoline Range	e Organics (GRO)	0.53	0.25		mg/L	5	6/6/2009 8:44:44 PM
Surr: BFB		86.4	59.9-122		%REC	5	6/6/2009 8:44:44 PM
EPA METHOD	8021B: VOLATILES						Analyst: DAM
Methyl tert-buty	l ether (MTBE)	130	25		μg/L	10	6/6/2009 12:28:39 AM
Benzene		28	5.0		µg/L	5	6/6/2009 8:44:44 PM
Toluene		ND	5.0		µg/L	5	6/6/2009 8:44:44 PM
Ethylbenzene		5.3	5.0		µg/L	5	6/6/2009 8:44:44 PM
Xylenes, Total		ND	10		µg/L	5	6/6/2009 8:44:44 PM
1,2,4-Trimethyll	penzene	ND	5.0		µg/L	5	6/6/2009 8:44:44 PM
1,3,5-Trimethyll	benzene	ND	5.0		µg/L	5	6/6/2009 8:44:44 PM
Surr: 4-Brom	ofluorobenzene	94.9	65.9-130		%REC	5	6/6/2009 8:44:44 PM
EPA METHOD	8310: PAHS						Analyst: JMP
Naphthalene		30	2.0		µg/L	1	6/11/2009 10:43:29 PM
1-Methylnaphth	alene	4.2	2.0		µg/L	1	6/11/2009 10:43:29 PM
2-Methylnaphth	alene	2.3	2.0		µg/L	1	6/11/2009 10:43:29 PM
Acenaphthylene	•	ND	2.5		µg/L	1	6/11/2009 10:43:29 PM
Acenaphthene		NÐ	5.0		µg/L	1	6/11/2009 10:43:29 PM
Fluorene		ND	0.80		µg/L	1	6/11/2009 10:43:29 PM
Phenanthrene		ND	0.60		µg/L	1	6/11/2009 10:43:29 PM
Anthracene		ND	0.60		µg/L	1	6/11/2009 10:43:29 PM
Fluoranthene		ND	0.30		µg/L	1	6/11/2009 10:43:29 PM
Pyrene		ND	0.30		µg/L	1、	6/11/2009 10:43:29 PM
Benz(a)anthrac	ene	ND	0.070		µg/L	1	6/11/2009 10:43:29 PM
Chrysene		ND	0.20		µg/L	1	6/11/2009 10:43:29 PM
Benzo(b)fluoran	thene	ND	. 0,10		µg/L	1	6/11/2009 10:43:29 PM
Benzo(k)fluoran	thene	ND	0.070		µg/L	1	6/11/2009 10:43:29 PM
Benzo(a)pyrene)	ND	0.070		µg/L	1	6/11/2009 10:43:29 PM
Dibenz(a,h)anth	racene	ND	0.070		µg/L	1	6/11/2009 10:43:29 PM
Benzo(g,h,i)per	ylene	ND .	0.080		µg/L	1	6/11/2009 10:43:29 PM
Indeno(1,2,3-cd)pyrene	ND	0.080		µg/L	1	6/11/2009 10:43:29 PM
Surr: Benzo(e	a)pyrene	83.5	44.8-104		%REC	1	6/11/2009 10:43:29 PM
EPA METHOD	300.0: ANIONS						Analyst: RAGS
Fluoride		1.7	0.10		mg/L	1	6/9/2009 8:24:42 PM
Chloride		210	2.0		mg/L	20	6/9/2009 8:42:06 PM
Qualificrs:	 Value exceeds Maximum (E Estimated value Analyte detected below quarter 	Contaminant Leve	1	I I M	 Analyte detect Holding time CL Maximum Comparison 	cted in the as s for prepara ontaminant L	sociated Method Blank tion or analysis exceeded evel

Date: 17-Jun-09

Spike recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

S

Page 3 of 7

RL Reporting Limit

CLIENT:	Western Refining Sou	uthwest, Gallup		Clier	it Sample ID	NAPIS-2		
Lab Order:	0905544			Co	llection Date	: 5/28/2009	8:40:00 AM	
Project:	2009 2nd Quarter NA	PIS		D	ate Received	: 5/29/2:009		
Lab ID:	0905544-02			Matrix: AQUI3OUS				
Analyses		Result	PQL	Qual	Units	DIF	Date Analyzed	
EPA METHOD	300.0: ANIONS						Analyst: RAGS	
Nitrogen, Nitrat	e (As N)	0.16	0.10	н	mg/L	1	6/9/2009 8:24:42 PM	
Phosphorus, O	rthophosphate (As P)	ND	0.50	н	mg/L	1	6/9/2009 8:24:42 PM	
Sulfate	· · · · · ·	22	0.50		mg/L	1	6/9/2009 8:24:42 PM	
EPA METHOD	7470: MERCURY						Analyst: MMS	
Mercury		ND	0.00020		mg/L	1	6/3/2009 3:17:00 PM	
EPA 60108: TO	OTAL RECOVERABLE N	NETALS					Analyst: TES	
Arsenic	· · · · · · · · · · · · · · · · · · ·	ND	0.020		mg/L	1	6/5/2009 4:00:15 PM	
Barium		0.65	0.020		mg/L	1	6/5/2009 4:00:15 PM	
Cadmium		ND	0.0020		mg/L	1	6/5/2009 4:00:15 PM	
Calcium		51	1.0		mg/L	1	6/5/2009 4:00:15 PM	
Chromium		ND	0.0060		mg/L	1	6/5/2009 4:00:15 PM	
Lead		ND	0.0050		mg/L	1	6/5/2009 4:00:15 PM	
Magnesium		9.9	1.0		mg/L	1	6/5/2009 4:00:15 PM	
Potassium		ND	1.0		mg/L	1	6/5/2009 4:00:15 PM	
Selenium		ND	0.050		mg/L	1	6/5/2009 4:00:15 PM	
Silver		ND	0.0050		mg/L	1	6/5/2009 4:00:15 PM	
Sodium		290	5.0		mg/L	5	6/9/2009 2:05:43 PM	
EPA 120.1: SP							Analyst: NSB	
Specific Condu	ctance	1400	0.010		µmhos/cm	1	6/10/2009	
SM4500-H+B: 1	РН						Analyst: NSB	
рН		7.51	0.1	н	pH units	1	6/10/2009	

Date: 17-Jun-09

Qualifiers: Value exceeds Maximum Contaminant Level В Analyte detected in the associated Method Blank * Н Holding times for preparation or analysis exceeded Е Estimated value J Analyte detected below quantitation limits MCL Maximum Contaminant Level RL Reporting Limit ND Not Detected at the Reporting Limit Page 4 of 7 Spike recovery outside accepted recovery limits S

CLIENT: Lab Order:	Western Refining So 0905544	uthwest, Gallup		Clien Co	it Sample ID: llection Date:	KA-3 5/28/2009	9 9:30:00 AM
Project:	2009 2nd Quarter NA	APIS		D	ate Received:	5/29/200	9
Lab ID:	0905544-03				Matrix:	AQUEO	US
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE						Analyst: SCC
Diesel Range O	rganics (DRO)	ND	1.0		mg/L	1	6/2/2009
Motor Oil Range	e Organics (MRO)	ND	5.0		mg/L	1	6/2/2009
Surr: DNOP		118	58-140		%REC	1	6/2/2009
EPA METHOD	8015B: GASOLINE RAN	IGE					Analyst: DAM
Gasoline Range	Organics (GRO)	0.32	0.050		mg/L	1	6/6/2009 9:15:13 PM
Surr: BFB		95.3	59.9-122		%REC	1	6/6/2009 9:15:13 PM
EPA METHOD	8021B: VOLATILES						Analyst: DAM
Methyl tert-butyl	ether (MTBE)	130	25		µg/L	10	6/6/2009 12:59:05 AM
Benzene		3.3	1.0		µg/L	1	6/6/2009 9:15:13 PM
Toluene		1.2	1.0		µg/L	1	6/6/2009 9:15:13 PM
Ethylbenzene		ND	1.0		µg/L	1	6/6/2009 9:15:13 PM
Xylenes, Total		ND	2.0		µg/L	1	6/6/2009 9:15:13 PM
1,2,4-Trimethylb	enzene	1.1	1.0		µg/L	1	6/6/2009 9:15:13 PM
1,3,5-Trimethylb	enzene	ND	1.0		µg/L	1	6/6/2009 9:15:13 PM
Surr: 4-Bromo	ofluorobenzene	97.4	65.9 - 130		%REC	1	6/6/2009 9:15:13 PM
	3310: PAHS						Analyst: JMP
Naphthalene		47	2.0		µg/L	1	6/11/2009 11:03:43 PM
1-Methylnaphtha	alene	ND	2.0		µg/L	1	6/11/2009 11:03:43 PM
2-Methyinaphtha	alene	ND	2.0		µg/L	1	6/11/2009 11:03:43 PM
Acenaphthylene		ND	2.5		µg/L	1	6/11/2009 11:03:43 PM
Acenaphthene		ND	5.0		µg/L	1	6/11/2009 11:03:43 PM
Fluorene		ND	0.80		µg/L	1.	6/11/2009 11:03:43 PM
Phenanthrene		ND	0.60		µg/L	1	6/11/2009 11:03:43 PM
Anthracene		ND	0.60		µg/L	1 .	6/11/2009 11:03:43 PM
Fluoranthene		ND	0.30		μg/L	1	6/11/2009 11:03:43 PM
Pyrene		ND	0.30		µg/L	1	6/11/2009 11:03:43 PM
Benz(a)anthrace	ine	ND	0.070		μg/L	1	6/11/2009 11:03:43 PM
Chrysene		ND	0.20		µg/L	1	6/11/2009 11:03:43 PM
Benzo(b)fluorant	thene	• ND	0.10		µg/L	1	6/11/2009 11:03:43 PM
Benzo(k)fluorant	lhene	ND	0.070		µg/L	1	6/11/2009 11:03:43 PM
Benzo(a)pyrene		ND	0.070		µg/L	1	6/11/2009 11:03:43 PM
Dibenz(a,h)anthi	racene	ND	0.070		μg/L	1	6/11/2009 11:03:43 PM
Benzo(g,h,i)pery	lene	NÐ	0.080		μg/L	1	6/11/2009 11:03:43 PM
Indeno(1,2,3-cd)	pyrene	ND	0.080		µg/L	1	6/11/2009 11:03:43 PM
Surr: Benzo(e)pyrene	64.6	44.8-104		%REC	1	6/11/2009 11:03:43 PM
EPA METHOD 3	300.0: ANIONS						Analyst: RAGS
Fluoride		1.6	0.10		mg/L	1 .	6/9/2009 9:16:55 PM
Chloride		260	2.0		mg/L	20	6/9/2009 9:34:21 PM
Chloride Qualifiers: * E J	Value exceeds Maximum Estimated value Analyte detected below qu	260 Contaminant Level antitation limits	2.0	E F M	mg/L 3 Analyte detec 1 Holding time CL Maximum Co	20 ted in the as s for prepara ontaminant L	6/9/2009 9:34:21 P sociated Method Blank tion or analysis exceeded

Date: 17-Jun-09

S Spike recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

Page 5 of 7

RL Reporting Limit

CLIENT:	Western Refining So	uthwest, Gallup		Clier	nt Sample ID	: KA-3	
Lab Order:	0905544			Со	llection Date	: 5/28/2009 9):30:00 AM
Project:	2009 2nd Quarter NA	PIS		D	ate Received	: 5/29/2009	
Lab ID:	0905544-03				Matrix	: AQUEOUS	•
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS					و پروباغش وروویو پرواندوی	Analyst: RAGS
Nitrogen, Nitrate	e (As N)	0.22	0.10	н	mg/L	1	6/9/2009 9:16:55 PM
Phosphorus, Or	thophosphate (As P)	ND	0.50	н	mg/L	1	6/9/2009 9:16:55 PM
Sulfate		66	10		mg/L	20	6/9/2009 9:34:21 PM
EPA METHOD	7470: MERCURY						Analyst: MMS
Mercury		ND	0.00020		mg/L	1	6/3/2009 3:18:47 PM
EPA 6010B: TC		METALS					Analyst: TES
Arsenic	,	ND	0.020		mg/L	1	6/5/2009 4:04:12 PM
Barium		0.29	0.020		mg/L	1	6/5/2009 4:04:12 PM
Cadmium		ND	0.0020		mg/L	1	6/5/2009 4:04:12 PM
Calcium		71	1.0		mg/L	1	6/5/2009 4:04:12 PM
Chromium		ND	0.0060		mg/L	1	6/5/2009 4:04:12 PM
Lead		ND	0.0050		mg/L	1	6/5/2009 4:04:12 PM
Magnesium		11	1.0		mg/L	1	6/5/2009 4:04:12 PM
Potassium		NĎ	1.0		mg/L	1	6/5/2009 4:04:12 PM
Selenium		ND	0.050		mg/L	. 1	6/5/2009 4:04:12 PM
Silver		ND	0.0050		mg/L	1	6/5/2009 4:04:12 PM
Sodium		330	5.0		mg/L	5	6/9/2009 2:08:32 PM
EPA 120.1: SPI	ECIFIC CONDUCTANCI	E					Analyst: BDH
Specific Conduc	ctance	1700	0.010		µmhos/cm	1	5/29/2009
SM4500-H+B: I	PH						Analyst: BDH
на		7.71	0.1		pH units	1	5/29/2009

Date: 17-Jun-09

Value exceeds Maximum Contaminant Level В Analyte detected in the associated Method Blank Qualifiers: * Н Holding times for preparation or analysis exceeded Ε Estimated value J Analyte detected below quantitation limits MCL Maximum Contaminant Level RL Reporting Limit Not Detected at the Reporting Limit ND Spike recovery outside accepted recovery limits S

Page 6 of 7

CLIENT: Lab Order: Project: Lab ID:	F: Western Refining Southwest, GallupClient Sample IIder:0905544Collection Date2009 2nd Quarter NAPISDate Receive0905544-04Matri		nt Sample ID: Nection Date: ate Received: Matrix:	Trip Blank 5/29/2009 AQUEOUS			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	BO15B: GASOLINE RANG	ЭЕ	,				Analyst: DAM
Gasoline Range	Organics (GRO)	ND	0.050		mg/L	1	6/6/2009 1:29:39 AM
Surr: BFB	:	83.8	59.9-122		%REC	1	6/6/2009 1:29:39 AM
EPA METHOD	8021B: VOLATILES						Analyst: DAM
Methyl tert-butyl	ether (MTBE)	ND	2.5		µg/L	1	6/6/2009 1:29:39 AM
Benzene	-	ND	1.0		µg/L	1	6/6/2009 1:29:39 AM
Toluene		ND	1.0		µg/L	1	6/6/2009 1:29:39 AM
Ethylbenzene		ND	1.0		µg/L	[.] 1	6/6/2009 1:29:39 AM
Xylenes, Total		ND	2.0		µg/L	1	6/6/2009 1:29:39 AM
1,2,4-Trimethylb	enzene	ND	1.0		µg/L	1	6/6/2009 1:29:39 AM
1,3,5-Trimethylb	enzene	ND	1.0		µg/L	1	6/6/2009 1:29:39 AM
Surr: 4-Bromo	ofluorobenzene	90.5	65.9-130		%REC	1	6/6/2009 1:29:39 AM

Date: 17-Jun-09

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Estimated value	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	MCL	Maximum Contaminant Level
	ND	Not Detected at the Reporting Limit	RL	Reporting Limit
	S	Spike recovery outside accepted recovery limits		Page

Page 7 of 7

Date: 17-Jun-09

QA/QC SUMMARY REPORT

Client: Project:	2009 2nd Qua	rter NAPI	S					Wor	k Order: 0905544
Analyte		Result	Units	PQL	%Rec	LowLimit H	HighLimit	%RPD RI	PDLimit Qual
Method: EPA M	ethod 300.0: Anio	ons				Detable		Anishada Data	0/0/0000 44.07.40 AM
Sample ID: 09055	44-01DMSD		WSD			Batch ID	E R34017	Analysis Date:	6/9/2009 11:27:18 AW
Fluoride		1.692	mg/L	0.10	92.9	75.3	117	0.480	20
Nitrogen, Nitrate (A	3 N)	2.835	mg/L	0.10	101	82.4	109	4.49	20
Phosphorus, Orthog Sample ID: MB	nosphate (As P)	4.989	mg/L MBLK	0.50	99.8	74.5 Batch ID	116 R34017	3.36 Analysis Date:	20 6/9/2009 9:08:02 AM
Fluoride		ND	mg/L	0.10					
Chloride		ND	mg/L	0.10					
Nitrogen, Nitrate (As	s N)	ND	mg/L	0.10					
Phosphorus, Orthog	hosphate (As P)	ND	mg/L	0.50					
Sulfate		ND	mg/L	0.50					
Sample ID: MB-2			MBLK			Batch ID	R34017	Analysis Date:	6/9/2009 8:44:27 PM
Fluoride		ND	mg/L	0.10					
Chloride		ND	mg/L	0.10					
Nitrogen, Nitrate (As	3 N)	ND	mg/L	0.10					
Phosphorus, Orthop	hosphate (As P)	ND	mg/L	0.50					
Sulfate		ND	mg/L	0.50			,		
Sample ID: MB			MBLK			Batch ID	R34021	Analysis Date:	6/9/2009 9:58:01 AM
Fluoride		ND	mg/L	0.10					
Chloride		ND	mg/L	0.10					•
Nitrogen, Nitrate (As	3 N)	ND	mg/L	0.10					
Phosphorus, Orthop	hosphate (As P)	ND	mg/L	0.50					
Sulfate		ND	mg/L	0.50					
Sample ID: MB			MBLK			Batch ID	: R34036	Analysis Date:	6/10/2009 6:34:04 AM
Fluoride		ND	mg/L	0.10					
Chloride		ND	mg/L	0.10					
Nitrogen, Nitrate (As	3 N)	ND	mg/L	0.10					
Phosphorus, Orthop	hosphate (As P)	ND	mg/L	0.50					
Sulfate		ND	mg/L	0.50		Batab ID	D24047	Analysia Data:	6/0/2000 0.26-26 AM
Sample ID: LCS		0.5005	LUS	0.40	404		K34017	Analysis Date.	0/9/2009 9:25.26 AW
Chlanide		0.5035	mg/L	0.10	101	90	110		
Mitrogen Nitrate (A)		4.037	mg/L	0.10	90.7	90	110		
Bhorphorus, Orthor	i N) boonbato (An D)	2.440	mg/L	0.10	97.0 07.1	90	110		
Sulfate	inospilate (As F)	9.000	mg/L	0.50	97.1	90	110		
Sample ID: LCS-2		5.700	LCS	0.00	37.0	Batch ID	: R34017	Analysis Date:	6/9/2009 9:01:51 PM
Fluoride		0.5140	ma/L	0.10	103	90	110		·
Chloride	•	4.830	mg/L	0,10	96.6	90	110		
Nitrogen, Nitrate (As	s N)	2.457	mg/L	0.10	98.3	90	110		
Phosphorus, Orthop	hosphate (As P)	4.849	mg/L	0.50	97.0	90	110		
Sulfate		9.785	mg/L	0.50	97.9	90	110		
Sample ID: LCS			LCS			Batch ID	R34021	Analysis Date:	6/9/2009 10:15:26 AM
l=luoride		0.4765	mg/L	0.10	95.3	90	110		
Chloride		4.816	mg/L	0.10	96.3	90	110		

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Client:Western RefirProject:2009 2nd Qua	ning South arter NAP	west, Gallup S					Wo	rk Order: 0905544
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD F	PDLimit Qual
Method: EPA Method 300.0: Ani	ons							
Sample ID: LCS		LCS			Batch	ID: R3402 1	Analysis Date	: 6/9/2009 10:15:26 AM
Nitrogen, Nitrate (As N)	2.496	mg/L	0.10	99.8	-90	110		
Phosphorus, Orthophosphate (As P)	4.682	mg/L	0.50	93.6	90	- 110	_	
Sulfate	9.763	mg/L	0.50	97.6	90	110		
Sample ID: LCS		LCS			Batch	ID: R34036	Analysis Date	: 6/10/2009 6:51:28 AM
Fluoride	0.4943	mg/L	0.10	98.9	90	110		
Chloride	4.799	mg/L	0.10	96.0	90	110		
Nitrogen, Nitrate (As N)	2.507	mg/L	0.10	100	90 ,	110		
Phosphorus, Orthophosphate (As P)	4.862	mg/L	0.50	97.2	90	110		
Sulfate	9.795	.mg/L	0.50	97.9	90	110	A solute Date	0/0/0000 44-00-54 484
Sample ID: 0905544-01DMS		MS			Batch	D: R34017	Analysis Date	6/9/2009 11:09:54 AM
Fluoride	1.684	mg/L	0.10	91.2	75.3	117		
Nitrogen, Nitrate (As N)	2.711	mg/L	0.10	96.2	82.4	109		
Phosphorus, Orthophosphate (As P)	4.824	mg/L	0.50	96.5	74.5	116		
Method: EPA Method 8015B: Die	sel Range							
Sample (D: MB-19231	-	MBLK			Batch 1	D: 19231	Analysis Date:	6/2/2009
Diesel Range Organics (DRO)	ND	ma/L	1.0					
Motor Oil Range Organics (MRO)	ND	mg/L	5.0					
Sample ID: LCS-19231		LCS			Batch I	D: 19231	Analysis Date:	6/2/2009
Diesel Range Organics (DRO)	6.666	ma/L	1.0	133	74	157		
Sample ID: LCSD-19231		LCSD			Batch	D: 19231	Analysis Date:	6/2/2009
Diesel Range Organics (DRO)	6.644	mg/L	1.0	133	74	157	0.335	23
Method: EPA Method 8015B: Gas	soline Ran	Qe						
Sample ID: 5ML RB		MBLK			Batch I	D: R33978	Analysis Date:	6/5/2009 8:52:07 AM
Gasoline Range Organics (GRO)	ND	mg/L	0.050					
Sample ID: 2.5UG GRO LCS		LCS			Batch I	D: R33978	Analysis Date:	6/6/2009 12:38:53 PM
Gasoline Range Organics (GRO)	0.5664	mg/L	0.050	113	80	115		
Sample ID: 2.5UG GRO LCSD		LCSD			Batch I	D: R33978	Analysis Date:	6/6/2009 1:09:14 PM
Gasoline Range Organics (GRO)	0.5490	mg/L	0.050	110	80	115	3.12	8.39

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Client:

Project:

Western Refining Southwest, Gallup 2009 2nd Quarter NAPIS

Work Order: 0905544

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%ŔPD	RPDI	.imit Qual
Method: EPA Method 8021B: Vo	latiles				Datah	ID: 000070	Analysis Da		-
Sample ID: 5ML RB		MBLK			Batch	ID: R33978	Analysis Da	(8;	6/5/2009 8:52:07 AM
Methyl tert-butyl ether (MTBE)	ND	µg/L	2.5						
Benzene	ND	µg/L	1.0						
Toluene	ND	µg/L	1.0						
Ethylbenzene	ND	µg/L	1.0						· .
Xylenes, Total	ND	µg/L	2.0						•
1,2,4-Trimethylbenzene	ND	µg/L	1.0						
1,3,5-Trimethylbenzene	ND	µg/L	1.0						
Sample ID: 100NG BTEX LCS		LCS			Batch	ID: R33978	Analysis Da	te:	6/5/2009 7:23:20 PM
Methyl tert-butyl ether (MTBE)	18.36	µg/L	2.5	91.8	51.2	138			
Benzene	19.32	µg/L	1.0	96.6	85.9	113			
Toluene	19.52	µg/L	1.0	97.6	86.4	113			
Ethylbenzene	19.52	µg/L	1.0	97.6	83.5	118			
Xylenes, Total	59.44	µg/L	2.0	99.1	83.4	122			
1,2,4-Trimethylbenzene	20.87	µg/L	1.0	104	83.5	115	•		
1,3,5-Trimethylbenzene	19.57	µg/L	1.0	97. 9	85.2	113			
Sample ID: 100NG BTEX LCSD		LCSD			Batch	ID: R33978	Analysis Da	te:	6/5/2009 7:53:53 PM
Methyl tert-butyl ether (MTBE)	19.06	µg/L	2.5	95.3	51.2	138	3.72	28	
Benzene	19.61	µg/L	1.0	98.0	85.9	113	1.49	27	
Toluene	19.70	µg/L	1.0	98.5	86.4	113	0.918	19	
Ethylbenzene	19.64	µg/L	1.0	98.2	83.5	118	0,613	10	
Xylenes, Total	59.29	µg/L	2.0	98.8	83.4	122	0.253	13	
1,2,4-Trimethylbenzene	20.32	µg/L	1.0	102	83.5	115	2,71	21	
1,3,5-Trimethylbenzene	19.46	µg/Ĺ	1.0	97.3	85.2	113	0.594	10	
Nethod: EPA Method 7470: Merc	ury								
Sample ID: MB-19251	-	MBLK			Batch	ID: 19251	Analysis Da	te:	6/3/2009 2:48:07 PM
Mercury	ND	mg/L	0.00020						
Sample ID: LCS-19251		LČS			Batch	ID: 19251	Analysis Da	te:	6/3/2009 2:49:56 PM
Mercury	0.004931	ma/L	0.00020	98.6	80	120			
Sample ID: LCS-19251		LCSD			Batch	ID: 19251	Analysis Da	te:	6/3/2009 2:51:45 PM
Mercury	0.004947	mg/L	0.00020	98.9	80	120	0.335	0	

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Client: Project:	Western Refining So 2009 2nd Quarter NA	uthwest, Gallu APIS	ъ					Work	Order: 0905544
Analyte	Resul	t Units	PQL	%Rec	LowLimit	HighLi	mit	%RPD RPD	DLimit Qual
Method: EPA	6010B: Total Recoverable	Metals		· · ·					
Sample ID: MB	-19242	MBLK			Batch	1D: 1	9242	Analysis Date:	6/5/2009 2:43:07 PM
Arsenic	ND	mg/∟	0.020						
Barium	ND	mg/L	0.010						
Cadmium	· ND	mg/L	0,0020						,
Calcium	ND	mg/L	0.50	÷					
Chromium	ND	mg/L	0.0060					·	
Lead	ND	mg/L	0.0050						
Magnesium	ND	mg/L	0.50						
Potassium	ND	mg/L	1.0						
Selenium	ND	mg/L	0.050	•					
Silver	ND	mg/L	0.0050						
Sodium	ND	mg/L	0.50						
Sample ID: LC	S-19242	LCS			Batch	ID: 1	9242	Analysis Date:	6/5/2009 2:46:20 PM
Arsenic	0.4901	mg/L	0.020	98.0	80	120		. •	
Barium	0.4583	s mg/L	0.010	91.7	80	120			
Cadmium	0.4703	mg/L	0.0020	94.1	80	120			
Calcium	49.57	mg/L	0.50	99.1	. 80	120			
Chromium	0.4595	i mg/L	0.0060	91.9	80	120			
Lead	0.4750) mg/L	0.0050	95.0	80	120			
Magnesium	49.91	mg/L	0.50	99.8	80	120			
Potassium	53.49	mg/L	1.0	107	80	120			
Selenium	0.4778	mg/L	0.050	95.6	80	120			
Silver	0.5023	mg/L	0.0050	100	80	120			,
Sodium	53.05	mg/L	0.50	106	80	120			

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

	Sample	e Receipt C	necklist		
Client Name WESTERN REFINING GALLU	ı.		Date Receive	ed:	5/29/2009
Work Order Number 0905544			Received by Sample ID I	y: A\RS	as
Checklist completed by	the	S/2 Date	29/09		Initials
Matrix:	Carrier name	<u>UPS</u>			
Shipping container/cooler in good condition?		Yes 🗹	No 🗔	Not Present	
Custody seals intact on shipping container/cool	er?	Yes 🗹	No 🗔	Not Present	Not Shipped
Custody seals intact on sample bottles?		Yes 🗹	No 🗍	N/A	
Chain of custody present?		Yes 🗹	No 🗔		
Chain of custody signed when relinquished and	received?	Yes 🗹	Νο		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗔		
Samples in proper container/bottle?		Yes 🗹	No 🗋		
Sample containers intact?		Yes 🗹	No 🗖		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗔		
All samples received within holding time?		Yes 🗹	No 🗌		Number of preserved
Water - VOA vials have zero headspace?	No VOA vials sub	mitted	Yes 🗹		potiles checked for pH:
Water - Preservation labels on bottle and cap m	atch?	Yes 🗹	No 🗔	N/A []	
Water - pH acceptable upon receipt?		Yes 🔽	No 🗔	N/A	<2 >12 unless noted
Container/Temp Blank temperature?		1.5°	<6° C Acceptal	ble	<i></i>
COMMENTS:			If given sufficier	it time to cool.	
	· · · · · · · · · · · · · · · · · · ·		· • • • • • • •		
		۰.			
Client contacted	Date contacted:		Per	son contacted	
Contacted by:	Regarding:				
Comments:				•	
				,	
Corrective Action					

	ENTAL 24TORY		2					01 N	<u>ر (</u>	L Bubbles	2													OH Cond.	
	ΣÖ	m 874	4107					(A.C	<u>، با</u>	-ime2) 072	<u>/</u> 8	╉	-			\sim				<u> </u>	$\left[- \right]$) (51	
		al.co	345-	uest					(\	OV) 8092	:8	1-	╈							<u> </u>			╞──	101	E.
		ment	505-	Req		PCB's	280	8 / S	əpi	oitee9 18()8													Æ	Dry Dry
	ZÏS	viron	Fax	ysis	(*C	PO4,5C	10 ⁵ '	0 ³ '۷	N'I	О,Я) anoir	A			14				а. 1						5	X
l	l L L	allen [,]		Anal	-			S	lete	CRA 8 Me	<u>ਬ</u>			\geq							\times			101	ğ
	Į	ч. Ч. М. П.	3975				()	HAq	01	AN9) 018	.8	-		4	\ge						ļ	$ $ \times		Fg	d d
	ĪŠ	kine -	345-				()	204	; po	DB (Metho			\downarrow											<u> </u>	ģ
			505-		(195	:9IU/26	າ) ຄ) ຄ	811					+									–		u au	Ô
		4901	Tel.		ر آران	10 SBD)	На	<u> </u>	38	$\frac{1}{1}$ H H H H H	8	- 2	×											Cisi Y	SB
					9	r 208) e	MB.	L +	BE	TEX + MT		$\frac{1}{2}$	┽	-					\times	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		<u> </u>		Sema C	М М
,	l	10										<u> </u>			_										$\overline{1}$
		42 NAPIS					CON							T	1	1	1		2 -	2	2-	-2	1	Date Time	Date
d Time:	d 🗆 Rush	Dud C			ager:	Rajen	J. 10MM		perature e	Preservative Type	- H		5	HN03	None	None	Hasoy	HU03	FC	HCI	HUD3	A None	Done		
Turn-Around	Standar	Froject Nam	Project #:		Project Man	Ó	Sampler:	On Ice.	Sample Yea	Container Type and #	ANINA	DUND		1-SOOM1	11 - Amber	<u>8</u> 9	1-las	1,500	B.YOA	B VOA	1-500ml	I L Ambe	1-500ml	Received by:	Received by:
istody Record	Lefinin cy	let new t	Um 81301	<u> 33 - 3 833</u>	<u> 732-0310</u>	Level 4 (Full Validation)				Sample Request ID	1-2104(1							/	NAPIS-2					by the second seco	d by:
-of-Cu	en (2000	WP.	<u>7-50</u>	isos:					Matrix	H.D	5											-	Relinquishe	Relinquishe
Chain	Wes	$\frac{2\alpha l}{g \text{ Addres}}$	<u>)</u> a[]	# #	or Fax#:	: Package ndard	ler	D (Type)		Time	NONF		*						1840					Time:	Time:
	Client	Mailin	M	Phone	email	o A o C	D Oth		}	Date	-tsct>							Ļ ļ	5/28/09					Date: Date:	Date:

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	PCB's (18021) (18021)	255 + TMB's 355 + TPH ((18015B (Ga d 418.1) 37 PAH) 1003, NO2, F 1315 1315 1315 1315 1315 1315 132 132 132 132 132 132 132 132 132 132	RTEX + MTI BTEX + MTI BTEX + MTI TPH Method TPH (Method B310 (PNA d R310 (PNA d R310 (PNA d R310 (PNA d R310 (PNA d R310 (Semi- CCC) Semi- CCC)					X	X					Remarks: Con ChaM: Cations, Anions, PH	sols B: 6 Rolpho extended.
Turn-Around Tirne: Standard Rush Project Name: DMP DMA DMA DIADIC	Project #	Project Manager. Rajen	sampler: CJOMNSON Onlice: Kesenoon Sampe Hetapo Annie (M	Container Preservative Type and # Type	It isone thas up -2	-500 HND3 -2	3- VDA HCI -3	3-VOA HC -3	1-500 HND3 -7	1-LAmb None -3	-500 Dane 3	1.135 Haso4 3	1-500 HNR3 3		received by: Date Time	teceived by: Date Time
Chain-of-Custody Record	Phone #: 505 May 201 +	email or Fax#: 505 723 0310 QA/QC Package:	Dother Dother	Date Time Matrix Sample Request ID	5/28/10 1840 Had WAPIS-2		5/28/09/090 KA-3							ANDIG AND	Date: Time: Relinguished by:	Date: Time: Relinquished by:

COVER LETTER

Thursday, July 02, 2009

Gaurav Rajen Western Refining Southwest, Gallup Rt. 3 Box 7 Gallup, NM 87301

TEL: (505) 722-3833 FAX (505) 722-0210

RE: 2009 2nd QTR NAPIS

Dear Gaurav Rajen:

Order No.: 0906335

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 6/17/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely, 1 de

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

		IS		Col Da	llection Date: ate Received: Matrive	6/15/2:009 6/17/2:009	9 10:15:00 AM 9 18
Lab ID: Analyses	0906333-01	Result	POL	Oual	Units	DF	Date Analyzed
EDA METUOD		·····	- L				Analyst: SCC
EPA WE INUD O	nonia (DRO)	ND	10		mall	4	Rippipono
Motor Oil Bongo		ND	1.0		mg/L	1	6/22/2009
Surr: DNOP	Organics (MRO)	123	58-140		%REC	1	6/22/2009
EPA METHOD 8	0158: GASOLINE RAN	IGE					Analyst: NSB
Gasoline Range	Organics (GRO)	ND	0.050		mg/L	1	6/20/2009 10:54:50 AM
Surr: BFB		77.5	59.9-122		%REC	1	6/20/2009 10:54:50 AM
EPA METHOD 8	021B: VOLATILES						Analyst: NSB
Methyl tert-butyl	ether (MTBE)	ND	2.5		µg/L	1 1	6/20/2009 10:54:50 AM
Benzene		ND	1.0		µg/L	1	6/20/2009 10:54:50 AM
Toluenø		ND	1.0		µg/L	1	6/20/2009 10:54:50 AM
Ethylbenzene		ND	1.0		µg/L	1	6/20/2009 10:54:50 AM
Xylenes, Total		ND	2.0		µg/L	1	6/20/2009 10:54:50 AM
1,2,4-Trimethylbe	enzene	ND	1.0	•	µg/L	1	6/20/2009 10:54:50 AM
1,3,5-Trimethylbe	enzene	ND	1.0		µg/L	1	6/20/2009 10:54:50 AM
Surr: 4-Bromo	fluorobenzene	85.7	65. 9- 130		%REC	1	6/20/2009 10:54:50 AM
EPA METHOD 8	310: PAHS						Analyst: JMP
Naphthalene		ND	2.0		µg/L	1	6/29/2009 6:45:47 PM
1-Methylnaphthai	lene	ND	2.0		µg/L	1	6/29/2009 6:45:47 PM
2-Methylnaphtha	lene	ND	2.0		µg/L	1	6/29/2009 6:45:47 PM
Acenaphthylene		ND	2.5		µg/L	1	6/29/2009 6:45:47 PM
Acenaphthene		NÐ	5.0		µg/L	1	6/29/2009 6:45:47 PM
Fluorene		ND	0.80		µg/L	1	6/29/2009 6:45:47 PM
Phonanthrene		ND	0.60		µg/L	1	6/29/2009 6:45:47 PM
Anthracene		ND	0.00		µg/L	ĩ	6/29/2009 6:45:47 PM
Pluorantnene			0.30		µg/L	1	6/29/2009 6:45:47 PM
Pyrene			0.30		µg/L	1	6/29/2009 6:45:47 PW
Christine	ii¢	ND	0.070		րց/ե կց/ե	1	6/20/2009 0.45.47 PW
Benzo(b)fluorant	hene	ND	0.20		µg/L ug/l	1	6/20/2009 0.45.47 PM
Benzo(k)fluoranti	hene	ND	0.070		µg/L	1	6/29/2009 6:45:47 PM
Benzo(a)pyrene		ND	0.070		µg/L µg/l	1	6/29/2009 6:45:47 PM
Dihenz(a b)anthr	acene	ND	0.070		ua/i	1	6/29/2009 6:45:47 PM
Benzo(a h i)pervl	ene	ND	0.080		µg/L	1	6/29/2009 6:45:47 PM
indeno(1.2.3-cd)r	ovrene	ND	0.080		μ σ/ ί.	1	6/29/2009 6:45:47 PM
Surr: Benzo(e)	pyrene	45.4	28.3-111		%REC	1	6/29/2009 6:45:47 PM
EPA METHOD 3	00.0: ANIONS						Analyst: RAGS
Fluoride	-	0.46	0.10		mg/L	1	6/25/2009 11:24:38 PM
Chloride		1200	10		mg/L	100	6/26/2009 12:39:46 PM
Qualifiers: * E	Value exceeds Maximum Estimated value	Contaminant Level			B Analyte dete H Holding time	cted in the as is for prepara	sociated Method Blank tion or analysis exceeded

Date: 02-Jul-09

Spike recovery outside accepted recovery limits

ND Not Detected at the Reporting Limit

S

Page.1 of 2

RL Reporting Limit

CLIENT: Lab Order: Project: Lab ID:	Western Refining So 0906335 2009 2nd QTR NAI 0906335-01		Clien Co D	nt Sample ID llection Date ate Received Matrix	: NAPIS-3 : 6/15/2009 : 6/17/2009 : AQUEOU	9 10:15:00 AM 9 JS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS						Analyst: RAGS
Nitrate (As N)+I	Nitrite (As N)	18	4.0		mg/L	20	6/26/2009 12:57:11 PM
Phosphorus, Or	rthophosphate (As P)	ND	0.50	н	mg/L	1 ·	6/25/2009 11:24:38 PM
Sulfate		330	10		mg/L	20	6/25/2009 11:42:03 PM
EPA 120.1: SP		E					Analyst: DAM
Specific Condu	ctance	4200	0.010		µmhos/cm	1	6/19/2009
SM4500-H+B: I	РН				-		Analyst: DAM
рН		8.23	0.1		pH units	1	6/19/2009

Date: 02-Jul-09

Qualifiers:

* Value exceeds Maximum Contaminant Level

- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Environm Science	iental Corp.					12065 Lebanon Rd. Mt. Juliet, TN 371 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859 Tax I.D. 62-081428 Est. 1970	22 3 39
Anne Thorne Hall Environmental An 4901 Hawkins NE Albuquerque, NM 87109	alysis Laborat	REPORT	OF ANALYSIS		June 26, 200	99	
Date Received : J Description :	June 18, 2009				ESC Sample #	f : 1.408295-01	
Sample ID : N	IAPIS-3				Project # :	0906335	
Collected By : Collection Date : 0	6/15/09 10:15						
Parameter		Result	Det. Limit	Units	Method	Date	Dil.
Mercury		BDL	0.00020	mg/1.	74703	06/19/09	1
Arsenic Barium Cadmium Calcium Chromium Lead Magnesium Potassium Selenium Silver Sodium		BDL 0.14 BDL 49. BDL BDL 6.8 4.2 BDL BDL BDL 840	$\begin{array}{c} 0.020\\ 0.0050\\ 0.0050\\ 0.50\\ 0.010\\ 0.0050\\ 0.10\\ 0.50\\ 0.020\\ 0.010\\ 0.50\\ 0.010\\ 0.50\\ \end{array}$	mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	60103 60103 60108 60108 60108 60108 60108 60108 60108 60108 60108	06/25/09 06/25/09 06/25/09 06/25/09 06/25/09 06/25/09 06/25/09 06/25/09 06/25/09 06/25/09	1 1 1 1 1 1 1 1 1 1 1 1

BDL - Below Detection Limit Det. Limit - Practical Quantitation Limit(PQL) Note: The reported analytical results relate only to the sample submitted. This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 06/26/09 12:34 Printed: 06/26/09 12:34

3

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

聚 ENVIRONMENTAL SCIENCE CORP.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

June 26, 2009

Est. 1970

Hall Environmental Analysis Laboratory Anne Thorne 4901 Hawkins NE

Albuquergue, NM 87109

Quality Assurance Report Level II

L408295

(SMALX4XX)BDXXXXX												
Analyte	Units	MS Res	Ref Res	TV TV	& Rec	Limit	Rer Samp	Batch				
		287.HI.3014	an sa	NEAL STATE	124	75-125	L4082174563	WG427956				
Chromium Chromium Zachumnanaviaustasiai anavannaviaustasiai	mg/1 mg/1	0.994	0.00	1.13	88.0	75-125	L408277-06	WG427956				
YERMAANAANAANAANAANAANAANAANAANAANAANAANAAN	mg/1 mg/1	123.	116.	11.3	61.9*	75-125	1408277-06	WG427956				
		u wiģiģi	XXXXXXXXX	<u>sz</u> ątijsz	WAQZHQEWN		E-111002//19064	MG427956				
Sodium	mg/1 mg/1	27.2	16.3	11.3	96.5	75-125	1.408277-06	WG427956				
		17 MARI	Ax solved	(6) I Eate	I							
Analyte	Units	MSD	Ref	Rec	Limit	RPD Lin	nit Ref Samp	Batch				
GINTER STREET	Э.	/**050 02 2	A GI PAZZ Z	<i>Marin</i> a k	6.70 312 02	8788-28 <i>98 (112</i>)	13-31-4082-27-16	WG427240				
Arsenic	mg/1 \$\$\$77334	1.03	1.01 9	1.2	75-125	1.96 20	L408277-06	WG427956				
un ann an ann ann ann ann ann ann ann an	mg/1	1.04	1.01	572555222355 12.0	75-125	2.91 20	L408277-06	WG427956				
Calcium Schulesasteristics and a second statements	mg/l	204. WARKEN	282. 1	41.593*	75-125	0.707 20	L408277-06	WG427956				
lead	mg/1	1.03	1.00	1.2	75-125	2.95 20	1.408277-06	WG427956				
fagnesium អូមើលនេះសមានអាចសម្តែលអូមិនអាចសម្តាលអូមិនអាចអាចអ្នកអ្នកស្រីស្រាយសមារ	mg/l	126.	123. 8	8.5	75-125	2.41 20	L408277-06	WG427956				
Expandiounality of the second s	w d\牙 影響	0.955	0.933 8	4.5	75-125	2.33 20	L408277-06	WG427956				
Silver Solumet States and States and States	mg/1 M9241-A	0.135	0.154 1 12/1 2	1.628+ 3/3253/1	75 -125 (78-126)	13.1 20 012:7820	L408277-06	WG427956				

Batch number /Run number / Sample number cross reference

WG427240: R788395: L408295-01 WG427956: R794626: L408295-01

* Calculations are performed prior to rounding of reported values .
 * Performance of this Analyte is outside of established criteria.
 For additional information, please see Attachment A 'List of Analytes with Q: Qualifie::s.'

Page 1

QA/QC SUMMARY REPORT

Client: Western Refir	ning South	west, Gallu	,					
Project: 2009 2nd QT	R NAPIS						Work	Order: 0906335
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RP	DLimit Qual
Method: EPA Method 300.0: Ani	ons							
Sample ID: MB		MBLK			Batch	ID: R34247	Analysis Date:	6/25/2009 6:52:14 AM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10		•			
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	' ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50			2		
Sample ID: MB		MBLK			Batch	ID: R34272	Analysis Date:	6/26/2009 8:53:28 AM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: MB2		MBLK			Batch	ID: R34272	Analysis Date:	6/27/2009 5:46:59 AM
Fluoride	ND	ma/L	0.10					
Chloride	ND	ma/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	ma/L	0.50					
Sample ID: LCS		LCS			Batch	ID: R34247	Analysis Date:	6/25/2009 7:09:38 AM
Eluoride	0 5127	ma/l	0.10	103	90	110	-	
Chloride	4 953	mg/L	0.10	99.1	90	110		
Nitrate (As N)+Nitrite (As N)	3.496	mall	0.10	00.1	90	110		
Phosphorus Orthophosphate (As P)	5.025	mg/L	0.50	101	90	110	4	
Sulfate	9 953	mg/L	0.50	99.5	90	110		
Sample ID: LCS	0.000	LCS	0.00	00.0	Batch	ID: R34272	Analysis Date:	6/26/2009 9:10:52 AM
Fluoride	0.5035	ma/i	0 10	101	90	110	•	
Chloride	4 834	ma/l	0.10	96.7	90	110		'
Nitrate (As N)+Nitrite (As N)	3.400	ma/i	0.20	97.1	90	110		
Phosphorus Orthonhosphate (As P)	4 824	ma/l	0.50	98.5	90	110		
Sulfate	9 754	mg/L	0.50	97.5	90	110		
Sample 1D: LCS2	0.704	LCS	0.00		Batch	ID: R34272	Analysis Date:	6/27/2009 6:04:24 AM
- Eluoride	0 4872	ma/l	0.10	974	90	110	-	
Chloride	4 831	mo/l	0.10	96.6	90	110		
Nitrate (As N)+Nitrite (As N)	3.403	ma/l	0.10	97 2	90	110		
Phosphorus, Orthophosphate (As P)	4.852	ma/l	0.50	97.0	90	110		
Sulfate	9.656	mg/L	0.50	96.6	90	110		
		v				-		

Qualifiers:

- E Estimated value
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Client: Wes Project: 2009	tern Refining South 2nd QTR NAPIS	west, Gallur)		·		Work	Order: 0906335
Analyte	Result	Units	PQL	%Rec	LowLimit H	ighLimit	%RPD RP	DLimit Qual
Nethod: EPA Method & Sample ID: MB-19416	8015B: Diesel Range	MBLK	· .		Batch ID:	19416	Analysis Date:	6/22/2009
Diesel Range Organics (Di Niotor Oil Range Organics Sample ID: LCS-19416	RO) ND . (MRO) ND	mg/L mg/L LCS	1.0 5.0		Batch ID:	19416	Analysis Date:	6/22/2009
Diesel Range Organics (Di Sample ID: LCSD-19416	RO) 5.286	mg/L LCSD	.1.0	106	74 Batch ID:	157 19416	Analysis Date:	6/22/2009
Diesel Range Organics (Di	RO) 5.124	mg/L	1.0	102	74	157	3.12	23
Method: EPA Method & Sample ID: 5ML RB	3015B: Gasoline Rar	nge MBLK			Batch ID:	R34172	Analysis Date:	6/19/2009 9:36:06 AM
Gasoline Range Organics Sample ID: 2.5UG GRO	(GRO) ND L CS	mg/L LCS	0.050		Batch ID:	R34172	Analysis Date:	6/20/2009 5:19:49 AM
Gasoline Range Organics	(GRO) 0.5442	mg/L	0.050	109	80	115		

Qualifiers:

- E Estimated value
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Client:WProject:20	estern Refining South 09 2nd QTR NAPIS	west, Gallup					Worl	• Order: 0906335
Analyte	Result	Units	PQL	%Rec	LowLimit H	lighLimit	%RPD RF	PDLimit Qual
Method: EPA Metho	d 8021B: Volatiles							· ·
Sample ID: 5ML RB		MBLK			Batch ID	: R34172	Analysis Date:	6/19/2009 9:36:06 AM
Methyl tert-butyl ether (f	MTBE) ND	µg/L	2.5					
Benzene	ND	µg/L	1.0					
Toluene	ND	µg/L	1.0					
Ethylbenzene	ND	µg/L	1.0					
Xylenes, Total	ND	µg/L	2.0					
1,2,4-Trimethylbenzene	ND	µg/L	1.0					
1,3,5-Trimethylbenzene	ND	µg/L	1.0					
Sample ID: B 41		MBLK			Batch ID:	R34172	Analysis Date:	6/20/2009 7:21:32 AM
Methyl tert-butyl ether (N	MTBE) ND	µg/L	2,5					
Benzene	ND	ug/L	1.0		•			
Toluene	ND	ug/L	1.0					,
Ethylbenzene	ND	µg/L	1.0		*			
Xylenes, Total	ND	µg/L	2.0					
1,2,4-Trimethylbenzene	ND	µg/L	1.0					
1,3,5-Trimethylbenzene	ND	µg/L	1.0					
Sample ID: 100NG BT	EX LCS	LCS			Batch ID:	R34172	Analysis Date:	6/19/2009 8:42:30 PM
Methyl tert-butyl ether (N	ATBE) 23.37	ua/L	2.5	117	51.2	138		
Benzene	23.42	ua/L	1.0	117	85.9	113		S
Toluene	22.19	ua/L	1.0	111	86.4	113		
Ethylbenzene	21.26	ua/L	1.0	106	83.5	118		v .
Xvlenes, Total	62.13	ug/L	2.0	104	83.4	122		
1,2,4-Trimethylbenzene	19.01	µg/L	1.0	95.0	83.5	115		
1.3.5-Trimethylbenzene	18.78	ug/L	1.0	93.9	85.2	113		
Sample ID: 100NG GF	RO LCS-II	LCS			Batch ID:	R34172	Analysis Date:	6/20/2009 6:51:05 AM
Methyl tert-butyl ether (N	ATBE) 22.18	ua/L	2.5	55.0	51.2	138		
Benzene	23.07	ua/L	1.0	114	85.9	113		S
Toluene	22.40	ug/L	1.0	110	86.4	113		
Ethylbenzene	21.38	μg/L	1.0	106	83.5	118		
Xylenes, Total	62.50	.υ μg/L	2.0	104	83.4	122		
1,2,4-Trimethylbenzene	19.21	µg/L	1.0	94.3	83.5	115		,
1,3,5-Trimethylbenzene	19.01	µg/L	1.0	94.2	85.2	113		

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

8

Page 3

 \mathbf{p}

Client: V	Vestern Refining South	west, Gallu	р							
Project: 2	009 2nd QTR NAPIS						۲	Nork C	Order:	0906335
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDL	_imit Q	ual
Method: EPA Meth	od 8310: PAHs						······			
Sample ID: MB-1940	17	MBLK.			Batch I	D: 1940	7 Analysis E)ate:	6/29/200	9 3:44:09 PM
Naphthalene	ND	µg/L	2.0							
1-Methylnaphthalene	ND	µg/L	2.0							
2-Methylnaphthalene	ND	µg/L	2.0							
Acenaphthylene	ND	µg/L	2.5							
Acenaphthene	ND	µg/L	5.0							
Fluorene	ND	µg/L	0.80							
Phenanthrene	ND	µg/L	0.60					•		
Anthracene	ND	µg/L	0.60							
Fluoranthene	ND	µg/L	0.30					ſ		
Pyrene	ND	μg/L	0.30							
Benz(a)anthracene	ND	µg/L	0.070							
Chrysene	ND	µg/L	0.20							
Benzo(b)fluoranthene	ND	µg/L	0.10							
Benzo(k)fluoranthene	ND	µg/L	0.070							
Benzo(a)pyrene	ND	µg/L	0.070					•		
Dibenz(a,h)anthracene	ND	µg/Լ	0.070							
Benzo(g,h,i)perylene	ND	µg/L	0.080							
Indeno(1,2,3-cd)pyrene	ND ND	μg/L	0.080							
Sample ID: LCS-194	07	LCS			Batch I	D: 1940	7 Analysis D)ate:	6/30/200	9 6:07:49 PM
Naphthalene	. 27.21	μg/L	2.0	34.0	20.5	109				
1-Methylnaphthalene	. 30.10	μg/L	2.0	37.5	23.1	'i16				
2-Methylnaphthalene	30.24	μg/L	2.0	37.8	19.5	112				
Acenaphthylene	37.81	µg/L	2.5	47.1	27.5	119				
Acenaphthene	37.59	μg/L	5.0	47.0	31	117				
Fluorene	2.960	µg/L	0.80	36.9	17.1	109				
Phenanthrene	1.900	µg/L	0,60	47.3	25.5	112				
Anthracene	2.110	µg/L	0.60	52.5	25.8	119				
Fluoranthene	4.290	µg/L	0.30	53.5	27.2	122				
Pyrene	3.350	µg/L	0.30	41.8	24.1	118				
Benz(a)anthracene	0.4200	µg/L	0.070	52.4	31.1	125				
Chrysene	2.120	µg/L	0.20	52.7	32.8	119				
Benzo(b)fluoranthene	0.6700	µg/L	0.10	66.9	24.4	117				
Benzo(k)fluoranthene	0.2800	µg/L	0.070	56.0	28.4	132				
Benzo(a)pyrene	0.2600	µg/L	0.070	51.8	32.4	119				
Dibenz(a,h)anthracene	0.5500	µg/L	0.070	54.9	33.9	120				
Benzo(g,h,i)perylene	0.5100	µg/L	0.080	51.0	35.2	113				
Indeno(1,2,3-cd)pyrene	9 1.240	µg/L	0.080	61.9	33.6	115				
Sample ID: LCSD-19	407	LCSD			Batch I	D: 1940	7 Analysis D	ate:	6/29/200	19 4:24:33 PM
Naphthalene	27.75	µg/L	2.0	34.7	20.5	109	1.97	32.1		
f-Methylnaphthalene	30.78	µg/L	2.0	38.4	23.1	116	2.23	32.7		
2-Methylnaphthalene	30.92	µg/L	2.0	38.7	19.5	112	2.22	34		
Acenaphthylene	38.19	µg/L	2.5	47.6	27.5	119	1.00	38.8		
Acenaphthene	37.81	µg/L	5.0	47.3	31	117	0.584	38.6		
Fluorene	3.340	µg/L	0.80	41.6	17.1	109	12.1	29.3		

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Client: Project: Western Refining Southwest, Gallup 2009 2nd OTR NAPIS

Project: 2009	2nd QTR NAPIS				·			Work C	Order:	0906335
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDI	_imit	Qual
Method: EPA Method &	3310: PAHs				(p				·	'
Sample ID: LCSD-19407		LCSD			Batch	ID: 19407	Analysis I	Date:	6/29/2	009 4:24:33 PM
Phenanthrene	2.020	µg/L	0.60	50.2	25.5	112	6.12	25		
Anthracene	2.140	µg/L	0.60	53.2	25.8	119	1.41	23.9		
Fluoranthene	4.410	µg/L	0.30	55.0	27.2	122	2.76	15.7		
Pyrene	3.390	µg/L	0.30	42.3	24.1	118	1.19	15.3		
Benz(a)anthracene	0.4100	µg/L	0.070	51.1	31.1	125	2.41	19		
Chrysene	2.010	µg/L	0:20	50.0	32.8	119	5.33	16.6		
Benzo(b)fluoranthene	0.5700	µg/L	0.10	56.9	24.4	117	16.1	21.7		
Benzo(k)fluoranthene	0.2900	µg/L	0.070	58.0	28.4	132	3.51	19.4		
Benzo(a)pyrene	0.2500	µg/L	0.070	49.8	32.4	119	3.92	16.7		
Dibenz(a,h)anthracene	0.5500	µg/L	0.070	54.9	33.9	120	ວ່	17.3		
Benzo(g,h,i)perylene	0.5200	µg/L	0.080	52.0	35.2	113	1.94	18		
Indeno(1,2,3-cd)pyrene	1.260	µg/L	0.080	62.9	33.6	115	1.60	17.7		

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

10

	Sample	Rece	ipt Ch	ecklist		
Client Name WESTERN REFINING GALLU				Date Received	d:	6/17/2009
Work Order Number 0906335				Received by	: ARS	<i>.</i>
Checklist completed by:			U Date	A Sample ID la	ibels checked by	y: <u>(5 /5</u> Initiale
Matrix:	Carrier name:	<u>UPS</u>				
Shipping container/cooler in good condition?		Yes		No 🗔	Not Present	
Custody seals intact on shipping container/cooler?		Yes	\checkmark	No 🗔	Not Present	Not Shipped
Custody seals intact on sample bottles?		Yes		No 🗌	N/A	
Chain of custody present?		Yes		No 🗌		
Chain of custody signed when relinquished and rec	eived?	Yes	\checkmark	No 🗔		
Chain of custody agrees with sample labels?		Yes		No 🗖		
Samples in proper container/bottle?		Yes		No 🗔		·
Sample containers intact?		Yes	\checkmark	No 🗔		
Sufficient sample volume for indicated test?		Yes				
All samples received within holding time?		Yes		No 🗔		Number of preserved
Water - VOA vials have zero headspace?	No VOA vials subr	nitted		Yes 🗹	No []	bottles checked for pH:
Water - Preservation labels on bottle and cap match	h?	Yes		No 🗀	N/A 🗋	3-2
Water - pH acceptable upon receipt?		Yes		No 🗆	N/A 🗋	<2 >12 unless noted
Container/Temp Blank temperature?		14.3	2°	<6° C Acceptab	le	Delow.
COMMENTS:				If given sufficien	t time to cool.	
					= = = = =	
Client contacted Da	te contacted:			Pere	son contacted	
Contacted by Re	garding:					
Comments:						
						1.9 /
Corrective Action						

 HALL ENVIRONMENTAL HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquergue, NM 87109 	Tel. 505-345-3975 Fax 505-345-4107	 ATMB's (8021) + TMB's (8021) + TPH (Gas only) 15B (Gas/Diesel) 18.1) 04.1) 04.1) AN <	BTEX + MTBE BTEX + MTBE BTEX + MTBE TPH Method 80 TPH (Method 4 EDB (Method 5 8310 (PUA or F 8310 (PUA or F 8310 (PUA or F 8081 Pesticides 8081 Piesticides 8081 Piesticides									Remarks: Gen Chem! Cations, Anions	BOISB-GROLORD extended
Turn-Around Time: V Standard D Rush Project Name: 2009 2nd DHR N PPIS	Project #: NAP 15 - 3	Project Manager G. Rayen Sampler: <u>CDMNSON</u>	Type and # Type	3 VOA HCI /	5-VOH HCI /	1-200 MDNe 1	1-500 HUD3 1	1-500 None 1	- 100 - 11 COI-1		C	Teceived by Date Time	Received by: Date 1 Time 1
Chain-of-Custody Record Client: Wostern Definition Gallup Definition Mailing Address: D1 3 BOX T	Phone #: SOS-132 - 3833	email or Fax#: SDS- 700 - 00 1 U 0A/0C Package: Standard	Date Time Matrix Sample Request ID	OKIN LOS Had NO ROIS-3								12/09 1008 MM	Date: Time: Relinquished by:

Chavez, Carl J, EMNRD

From:	Rajen, Gaurav [Gaurav.Rajen@wnr.com]
Sent:	Monday, August 10, 2009 7:47 AM
То:	Monzeglio, Hope, NMENV; Chavez, Carl J, EMNRD
Cc:	Riege, Ed
Subject:	Latest sampling results for BW wells at Gallup Refinery
Attachments:	BW wells July 2009.pdf

Dear Hope and Carl:

It is a pleasure to write and share with you our latest sampling results for our BW wells.

You will notice that for one our wells, BW-3B, Bis(2-ethylhexyl) phthalate had a hit of 0.01 ppm; however, as all other semi-volatiles and volatiles are Non-detect (for all wells) and the detection limit for this analyte was also 0.01ppm we feel that this result is probably a laboratory artifact. We will stay alert to see if this result reappears in our next round of sampling.

Best regards,

Raj

This inbound email has been scanned by the MessageLabs Email Security System.

BILL RICHARDSON Governor

DIANE DENISH Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.nmenv.state.nm.us

RON CURRY Secretary

JON GOLDSTEIN Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

August 11, 2009

Mr. Ed Riege Environmental Superintendent Western Refining, Southwest Inc., Gallup Refinery Route 3 Box 7 Gallup, New Mexico 87301 Beck Larsen Environmental Engineer Western Refining, Southwest Inc., Gallup Refinery Route 3 Box 7 Gallup, New Mexico 87301

SUBJECT: REQUEST FOR CONTAINED-IN DETERMINATION REGARDING CONTAMINATED SOIL REMOVED FROM THE JUNE 10, 2009 API OVERFLOW WESTERN REFINING, SOUTHWEST INC., GALLUP REFINERY EPA ID NO. NMD000333211 HWB-GRCC-MISC

Dear Messrs Riege and Larsen:

The New Mexico Environment Department (NMED) has received Western Refining Southwest Inc., Gallup Refinery's (the Permittee) letter titled *Request For "Contained-In" Determination For Petroleum Contaminated Soils Resulting From API Separator Overflow On June 10, 2009*, dated June 22, 2009. The Permittee is requesting a "contained-in" determination for petroleum contaminated soils excavated in the vicinity of the API separator. The contaminated soil was generated in an overflow at the API separator; therefore, the excavated soil is potentially characteristic for Benzene (D018) and carries the hazardous waste listings for K051 API separator sludge, and F037/F038 primary and secondary oil/water/separation sludge. Mr. Ed Riege Gallup Refinery August 11, 2009 Page 2 of 2

Refinery representatives collected one composite sample from the excavated soil for characterization purposes. NMED cannot make a determination based on one composite sample. The Permittee must collect two undisturbed discrete soil samples from at least 0.5 foot beneath the surface of the stockpiled soil from the most apparently contaminated soils. The discrete soil samples must be collected using a Shelby tube/Encore Sampler or other comparable device to minimize the loss of volatiles. The discrete soil samples must be analyzed for TCLP volatiles, flashpoint, and gasoline range organics (GRO) using EPA Method 8015 modified. Upon receipt of the analytical data, NMED will then make a determination as to the status of the excavated soils. In addition, the Permittee must explain to NMED how the composite sample was collected. Depending on how the composite sample was collected, additional sampling may be required. An explanation of the composite sampling and the proposed sampling must be submitted to NMED on or before August 21, 2009. Emailed correspondence is acceptable in this case.

If you have questions please contact Hope Monzeglio of my staff at 505-428-2545.

Sincerely,

John E. Kieling

Program Manager Permits Management Program Hazardous Waste Bureau

GRCC-MISC

cc: D. Cobrain, NMED HWB H. Monzeglio, NMED HWB C. Chavez, NMEMNRD OCD File: Reading GRCC 2009

COVER LETTER

Tuesday, July 28, 2009

Gaurav Rajen Western Refining Southwest, Gallup Rt. 3 Box 7 Gallup, NM 87301

TEL: (505) 722-3833 FAX (505) 722-0210

RE: 2009 Annual BW Sampling

Dear Gaurav Rajen:

Order No.: 0907192

Hall Environmental Analysis Laboratory, Inc. received 7 sample(s) on 7/10/2009 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

Date: 2δ'-Jul-09

CLIENT:Western Refining Southwest, GallupProject:2009 Annual BW SamplingLab Order:0907192

CASE NARRATIVE

Analytical Comments for METHOD 8260_W, SAMPLE 0907192-04a: pH=5.0

Page 1 of 1

Lab Order: 09/152 Contection Date: 1/0/2009 Lab ID: 0907192-01 Matrix: AQUEOUS Analyses Result PQL Qual Units DF Date Analyzed Analyses Result PQL Qual Units DF Date Analyzed EPA METHOD 7470: MERCURY ND 0.00020 mg/L 1 7/17/2009 517.41 Anaenic ND 0.0220 mg/L 1 7/19/2009 917.51 Barlum ND 0.0220 mg/L 1 7/19/2009 917.51 Cadmiun ND 0.0200 mg/L 1 7/19/2009 917.51 Cadmiun ND 0.0260 mg/L 1 7/19/200 917.51 Cadmiun ND 0.0050 mg/L 1 7/19/200 917.51 Chronium ND 0.0050 mg/L 1 7/19/200 917.51 Lead ND 0.0050 mg/L 1 7/19/200 917.51 Menagesium ND 0.0050	CLIENT:	Western Refining S	Southwest, Gallup		Clier	it Sample I	D: BW-1C	·45·00 AM
Project: 2009 Annual BW Sampling Date Received: 7/10/2009 Lab ID: 0907192-01 Matrix: AQUEOUS Analyses Result PQL Qual Units DF Date Analyse: Analyses Result PQL Qual Units DF Date Analyse: Analyses ND 0.00020 mg/L 1 7/17/2009 517.511 Barlum ND 0.0220 mg/L 1 7/19/2009 917.511 Cadmium ND 0.0020 mg/L 1 7/19/2009 917.511 Copper ND 0.0060 mg/L 1 7/19/2009 917.511 Copper ND 0.0050 mg/L 1 7/19/2009 917.511 Magnesium ND 0.0050 mg/L 1 7/19/2009 917.511 Magnesium ND 0.0050 mg/L 1 7/19/2009 917.511 Magnesium ND 1.0 mg/L 1 7/19/2009 917.511 Magnesium ND 0.0050 <td< th=""><th>Lab Order:</th><th colspan="4">ap Order: 0907192</th><th>nection Da</th><th>ite: 7/0/2009 11</th><th>.45.00 AM</th></td<>	Lab Order:	ap Order: 0907192				nection Da	ite: 7/0/2009 11	.45.00 AM
Lab ID: 0907192-01 Matrix: AQUEOUS Analyses Result PQL Qual Units DF Date Analysed Analyses Result PQL Qual Units DF Date Analysed Marcury ND 0.00020 mg/L 1 7/19/2009 e17:11 Barlum ND 0.0200 mg/L 1 7/19/2009 e17:11 Cadmium ND 0.0200 mg/L 1 7/19/2009 e17:11 Cadmium ND 0.0020 mg/L 1 7/19/2009 e17:11 Copper ND 0.0060 mg/L 1 7/19/2009 e17:11 Idead ND 0.0050 mg/L 1 7/19/2009 e17:11 Magnessum ND 1.0 mg/L	Project: 2009 Annual BW Sampling				D	ate Receivo	ed: 7/10/2009	
Analyses Result PQL Qual Units DF Date Analyse EPA METHOD 7470: MERCURY ND 0.00020 mg/L 1 7/17/2009 51:405 Ansenic ND 0.0020 mg/L 1 7/17/2009 51:405 Arsenic ND 0.020 mg/L 1 7/19/2009 51:711 Barlum ND 0.020 mg/L 1 7/19/2009 51:711 Chromium ND 0.020 mg/L 1 7/19/2009 51:711 Chromium ND 0.0050 mg/L 1 7/19/2009 91:711 Chromium ND 0.0050 mg/L 1 7/19/200 91:711 Lead ND 0.0050 mg/L 1 7/19/200 91:711 Mengaesiam ND 1.0 mg/L 1 7/19/200 91:711 Mengaesiam ND 1.0 mg/L 1 7/19/200 91:711 Mengaesiam ND 0.0050 mg/L 1 7/19/200 91:711 Stentium ND	Lab ID:	0907192-01				Matr	ix: AQUEOUS	
EPA METHOD 7470: MERCURY ND 0.00020 mg/L 1 7/17/2009 51:4:05 EPA 6010B: TOTAL RECOVERABLE METALS Analyst: Analyst: Analyst: Arsenic ND 0.020 mg/L 1 7/19/2009 91:7:11 Cadmium ND 0.020 mg/L 1 7/19/2009 91:7:11 Cadmium ND 0.0050 mg/L 1 7/19/2009 91:7:11 Copper ND 0.0050 mg/L 1 7/19/2009 91:7:11 Lead ND 0.0050 mg/L 1 7/19/2009 91:7:11 Magnesium ND 0.0050 mg/L 1 7/19/2009 91:7:11 Magnesium ND 1.0 mg/L 1 7/19/2009 91:7:11 Magnesium ND 1.0 mg/L 1 7/19/2009 91:7:11 Steinim ND 1.0 mg/L 1 7/19/2009 91:7:11 Steinim ND 0.0027 0.0020 mg/L 1 7/19/2009 91:7:11 Steinim ND	Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
Mercury ND 0.00020 mg/L 1 7/17/2009 5:14:05 EPA 6010B: TOTAL RECOVERABLE METALS Analyst: Analyst: Analyst: Arsenic ND 0.020 mg/L 1 7/19/2009 9:17:11 Barium ND 0.0020 mg/L 1 7/19/2009 9:17:11 Corper ND 0.0050 mg/L 1 7/19/2009 9:17:11 Corper ND 0.0050 mg/L 1 7/19/2009 9:17:11 Lead ND 0.0050 mg/L 1 7/19/2009 9:17:11 Mangaesiam ND 1.0 mg/L 1 7/19/2009 9:17:11 Mangaesiam ND 1.0 mg/L 1 7/19/2009 9:17:11 Stearum ND 0.0050 mg/L </td <td>EPA METHOD</td> <td>7470: MERCURY</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Analyst: MMS</td>	EPA METHOD	7470: MERCURY						Analyst: MMS
EPA 6010B: TOTAL RECOVERABLE METALS Analyst: Arsenic ND 0.020 mg/L 1 7/19/2009 917:11 Bartum ND 0.020 mg/L 1 7/19/2009 917:11 Cadmium ND 0.0060 mg/L 1 7/19/2009 917:11 Chornium ND 0.0060 mg/L 1 7/19/2009 917:11 Copper ND 0.0050 mg/L 1 7/19/2009 917:11 Iron ND 0.0050 mg/L 1 7/19/2009 917:11 Manganesa 0.0027 0.0020 mg/L 1 7/19/2009 91:7:11 Manganesa 0.0027 0.0020 mg/L 1 7/19/2009 91:7:11 Sternium ND 0.050 mg/L 1 7/19/2009 91:7:11 Sternium ND 0.050 mg/L 1 7/19/2009 91:7:11 Zinc ND 0.0050 mg/L 1 7/19/2009 91:7:11 Zinc ND 0.0050 mg/L 1 7/19/2009 91:7:11	Mercury		ND	0.00020		mg/L	1	7/17/2009 5:14:05 PM
Arsenic ND 0.020 mg/L 1 7/19/2009 9:17:11 Barium ND 0.020 mg/L 1 7/19/2009 9:17:11 Cadmium ND 0.0060 mg/L 1 7/19/2009 9:17:11 Chromium ND 0.0060 mg/L 1 7/19/2009 9:17:11 Copper ND 0.0050 mg/L 1 7/19/2009 9:17:11 Lead ND 0.0050 mg/L 1 7/19/2009 9:17:11 Manganesa 0.0027 0.0020 mg/L 1 7/19/2009 9:17:11 Manganesa 0.0027 0.0020 mg/L 1 7/19/2009 9:17:11 Steinum ND 0.0050 mg/L 1 7/19/2009 9:17:11 Steinum ND 0.0050 mg/L 1 7/19/2009 9:17:11 Steinum ND 0.0050 mg/L 1 7/19/2009 9:17:11 Zinc ND 0.0050 mg/L 1 7/19/2009 9:17:11 Zinc ND 0.0050 <td>EPA 6010B: TO</td> <td>OTAL RECOVERABLE</td> <td>METALS</td> <td></td> <td></td> <td></td> <td></td> <td>Analyst: SNV</td>	EPA 6010B: TO	OTAL RECOVERABLE	METALS					Analyst: SNV
Barlum ND 0.020 mg/L 1 7/19/2009 9:17:11 Cardmium ND 0.0060 mg/L 1 7/19/2009 9:17:11 Chromium ND 0.0060 mg/L 1 7/19/2009 9:17:11 Copper ND 0.0050 mg/L 1 7/19/2009 9:17:11 Iron ND 0.0050 mg/L 1 7/19/2009 9:17:11 Magnesium ND 1.0 mg/L 1 7/19/2009 9:17:11 Potassium ND 1.0 mg/L 1 7/19/2009 9:17:11 Potassium ND 0.0050 mg/L 1 7/19/2009 9:17:11 Potassium ND 0.050 mg/L 1 7/19/2009 9:17:11 Steerium ND 0.050 mg/L 1 7/19/2009 9:17:11 Potassium ND 0.050 mg/L 1 7/19/2009 9:17:11 Zince ND 0.050 mg/L 1 7/19/2009 9:17:11 Zince ND 0.050	Arsenic		ND	0.020		mg/L	1	7/19/2009 9:17:11 PM
Cadmium ND 0.0020 mg/L 1 7/19/2009 9:17:11 Corper ND 0.0060 mg/L 1 7/19/2009 9:17:11 tron ND 0.0050 mg/L 1 7/19/2009 9:17:11 Hanganese ND 0.0050 mg/L 1 7/19/2009 9:17:11 Magnesium ND 1.0 mg/L 1 7/19/2009 9:17:11 Magnesium ND 1.0 mg/L 1 7/19/2009 9:17:11 Selentum ND 0.0027 0.0020 mg/L 1 7/19/2009 9:17:11 Selentum ND 0.050 mg/L 1 7/19/2009 9:17:11 Silver ND 0.050 mg/L 1 7/19/2009 9:17:11 Zine ND 0.050 mg/L 1 7/19/2009 9:17:11 Zine ND 0.050 mg/L 1 7/19/2009 9:17:11 Zine ND 0.050 mg/L 1 7/19/2009 Admaphthylene ND 0 <td>Barium</td> <td></td> <td>ND</td> <td>0.020</td> <td></td> <td>mg/L</td> <td>1</td> <td>7/19/2009 9:17:11 PM</td>	Barium		ND	0.020		mg/L	1	7/19/2009 9:17:11 PM
Chromium ND 0.0060 mg/L 1 7/19/2009 91:17:11 Copper ND 0.0060 mg/L 1 7/19/2009 91:71:11 Iron ND 0.0050 mg/L 1 7/19/2009 91:71:11 Magnesium ND 1.0 mg/L 1 7/19/2009 91:71:11 Mangesium ND 1.0 mg/L 1 7/19/2009 91:71:11 Potassium ND 1.0 mg/L 1 7/19/2009 91:71:11 Selentium ND 0.0050 mg/L 1 7/19/2009 91:71:11 Selentium ND 0.050 mg/L 1 7/19/2009 91:71:11 Silver ND 0.050	Cadmium		ND	0.0020		mg/L	1	7/19/2009 9:17:11 PM
Copper ND 0.0060 mg/L 1 7/19/2009 9:17:11 Iron ND 0.050 mg/L 1 7/19/2009 9:17:11 Magnesium ND 1.0 mg/L 1 7/19/2009 9:17:11 Magnesium ND 1.0 mg/L 1 7/19/2009 9:17:11 Potassium ND 0.0020 mg/L 1 7/19/2009 9:17:11 Selenium ND 0.0050 mg/L 1 7/19/2009 9:17:11 Zinc ND 10 µg/	Chromium		ND	0.0060		mg/L	1	7/19/2009 9:17:11 PM
Iron ND 0.050 mg/L 1 7/19/2009 9:17:11 Lead ND 0.0050 mg/L 1 7/19/2009 9:17:11 Magnesium ND 1.0 mg/L 1 7/19/2009 9:17:11 Magnesium ND 1.0 mg/L 1 7/19/2009 9:17:11 Selenium ND 0.0050 mg/L 1 7/19/2009 9:17:11 Selenium ND 0.050 mg/L 1 7/19/2009 9:17:11 Selenium ND 0.050 mg/L 1 7/19/2009 9:17:11 Selenium ND 0.050 mg/L 1 7/19/2009 9:17:11 Silver ND 0.050 mg/L 1 7/15/2009 Accenaphthylene ND 10 µg/L<	Copper		ND	0.0060		mg/L	1	7/19/2009 9:17:11 PM
Lead ND 0.0050 mg/L 1 7/19/2009 9:17:11 Magnesium ND 1.0 mg/L 1 7/19/2009 9:17:11 Magnese 0.0027 0.0020 mg/L 1 7/19/2009 9:17:11 Potassium ND 0.050 mg/L 1 7/19/2009 9:17:11 Selenium ND 0.050 mg/L 1 7/19/2009 9:17:11 Silver ND 0.050 mg/L 1 7/19/2009 9:17:11 Zinco ND 0.050 mg/L 1 7/15/2009 Antracene ND 10 µg/L	Iron		ND	0.050		mg/L	1	7/19/2009 9:17:11 PM
Magnesium ND 1.0 mg/L 1 7/19/2009 9:17:11 Magnesse 0.0027 0.0020 mg/L 1 7/19/2009 9:17:11 Potassium ND 1.0 mg/L 1 7/19/2009 9:17:11 Selenium ND 0.050 mg/L 1 7/19/2009 9:17:11 Selenium ND 0.050 mg/L 1 7/19/2009 9:17:11 Zino ND 0.050 mg/L 1 7/15/2009 Acenaphthene ND 10 µg/L 1 7/15/2009 Antiracene ND 10 µg/L 1	Lead		ND	0.0050		mg/L	1	7/19/2009 9:17:11 PM
Manganese 0.0027 0.0020 mg/L 1 7/19/2009 9:17:11 Potassium ND 1.0 mg/L 1 7/19/2009 9:17:11 Selenium ND 0.050 mg/L 1 7/19/2009 9:17:11 Silver ND 0.0050 mg/L 1 7/19/2009 9:17:11 Zinc ND 0.050 mg/L 1 7/19/2009 9:17:11 Antiracene ND 10 µg/L 1 7/15/2009 Anthracene ND 10 µg/L 1 7/15/2009 Benzo(a)prene ND 10 µg/L	Magnesium		ND	1.0		mg/L	1	7/19/2009 9:17:11 PM
Potassium ND 1.0 mg/L 1 7/19/2009 9:17:11 Selenium ND 0.050 mg/L 1 7/19/2009 9:17:11 Silver ND 0.050 mg/L 1 7/19/2009 9:17:11 Zinc ND 0.050 mg/L 1 7/19/2009 9:17:11 EPA METHOD 8270C: SEMIVOLATILES Acenaphthene ND 10 µg/L 1 7/15/2009 Acenaphthylene ND 10 µg/L 1 7/15/2009 Antina ND 10 µg/L 1 7/15/2009 Anthracene ND 10 µg/L 1 7/15/2009 Anthracene ND 10 µg/L 1 7/15/2009 Benzo(a)pyrene ND 10 µg/L 1 7/15/2009 Benzo(b)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo(c)pyrene ND 10 µg/L 1 7/15/2009 Benzo(c)pyrene ND 10	Manganese		0.0027	0.0020		mg/L	1	7/19/2009 9:17:11 PM
Setenium ND 0.050 mg/L 1 7/19/2009 9:17:11 Silver ND 0.0050 mg/L 1 7/19/2009 9:17:11 Zine ND 0.050 mg/L 1 7/19/2009 9:17:11 Zine ND 0.050 mg/L 1 7/19/2009 9:17:11 EPA METHOD 8270C: SEMIVOLATILES Acenaphthene ND 10 µg/L 1 7/15/2009 Acenaphthylene ND 10 µg/L 1 7/15/2009 Anthracene ND 10 µg/L 1 7/15/2009 Anthracene ND 10 µg/L 1 7/15/2009 Benze(a)anthracene ND 10 µg/L 1 7/15/2009 Benze(b)fluoranthene ND <td>Potassium</td> <td></td> <td>ŃD</td> <td>1.0</td> <td></td> <td>mg/L</td> <td>1</td> <td>7/19/2009 9:17:11 PM</td>	Potassium		ŃD	1.0		mg/L	1	7/19/2009 9:17:11 PM
Silver ND 0.0050 mg/L 1 7/19/2009 9:17:11 Zinc ND 0.050 mg/L 1 7/19/2009 9:17:11 Zinc ND 0.050 mg/L 1 7/19/2009 9:17:11 EPA METHOD 8270C: SEMIVOLATILES	Selenium		ND	0.050		mg/L	1	7/19/2009 9:17:11 PM
Zino ND 0.050 mg/L 1 7/19/2009 9:17:11 EPA METHOD 8270C: SEMIVOLATILES Acenaphthene ND 10 µg/L 1 7/15/2009 Acenaphthene ND 10 µg/L 1 7/15/2009 Acenaphthylene ND 10 µg/L 1 7/15/2009 Antine ND 10 µg/L 1 7/15/2009 Antinacene ND 10 µg/L 1 7/15/2009 Actobenzene ND 10 µg/L 1 7/15/2009 Benzo(a)pyrene ND 10 µg/L 1 7/15/2009 Benzo(b)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo(k)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo (k)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo (k)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo (k)fluoranthene ND <td< td=""><td>Silver</td><td></td><td>ND</td><td>0.0050</td><td></td><td>mg/L</td><td>1</td><td>7/19/2009 9:17:11 PM</td></td<>	Silver		ND	0.0050		mg/L	1	7/19/2009 9:17:11 PM
EPA METHOD 8270C: SEMIVOLATILES Analyst Acenaphthene ND 10 µg/L 1 7/15/2009 Acenaphthylene ND 10 µg/L 1 7/15/2009 Anlline ND 10 µg/L 1 7/15/2009 Anthracene ND 10 µg/L 1 7/15/2009 Acobenzene ND 10 µg/L 1 7/15/2009 Benzo(a)pyrene ND 10 µg/L 1 7/15/2009 Benzo(b)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo(c)fluoranthene ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 <	Zinc		ND	0.050		mg/L	1	7/19/2009 9:17:11 PM
Acenaphthene ND 10 µg/L 1 7/15/2009 Acenaphthylene ND 10 µg/L 1 7/15/2009 Aniline ND 10 µg/L 1 7/15/2009 Anthracene ND 10 µg/L 1 7/15/2009 Actoberzene ND 10 µg/L 1 7/15/2009 Azobenzene ND 10 µg/L 1 7/15/2009 Benzo(a)pyrene ND 10 µg/L 1 7/15/2009 Benzo(a),hjperylene ND 10 µg/L 1 7/15/2009 Benzo(a),hjperylene ND 10 µg/L 1 7/15/2009 Benzo(a),hjperylene ND 10 µg/L 1 7/15/2009 Benzo(a,hjhperylene ND 10 µg/L 1 7/15/2009 Benzo(a,hjhperylene ND 10 µg/L 1 7/15/2009 Benzo(a,hjhperylene ND 10 µg/L 1		8270C' SEMIVOLATI	FS					Anályst: JDC
Accnaphthylene ND 10 µg/L 1 7/15/2009 Aniline ND 10 µg/L 1 7/15/2009 Aniline ND 10 µg/L 1 7/15/2009 Anthracene ND 10 µg/L 1 7/15/2009 Azobenzene ND 10 µg/L 1 7/15/2009 Benz(a)anthracene ND 10 µg/L 1 7/15/2009 Benzo(a)pyrene ND 10 µg/L 1 7/15/2009 Benzo(b)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo(c)(filuoranthene ND 10 µg/L 1 7/15/2009 Benzo(c Acid ND 20 µg/L 1 7/15/2009 Benzo(c Acid ND 10 µg/L 1 7/15/2009 Benzo(c Acid ND 10 µg/L 1 7/15/2009 Bis(2-chloroethyl)ether ND 10 µg/L 1 7/15	Acenanhthene		ND	10		uo/L	1	7/15/2009
Aniline ND 10 µg/L 1 7/15/2009 Anthracene ND 10 µg/L 1 7/15/2009 Azobenzene ND 10 µg/L 1 7/15/2009 Benz(a)anthracene ND 10 µg/L 1 7/15/2009 Benzo(a)pyrene ND 10 µg/L 1 7/15/2009 Benzo(b)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo(b)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo(b)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo(k)fluoranthene ND 10 µg/L 1 7/15/2009 Benzol (k)fluoranthene ND 10 µg/L 1 7/15/2009 Benzol (k)fluoranthene ND 10 µg/L 1 7/15/2009 Benzol (k)fluoranthene ND 10 µg/L 1 7/15/2009 Benzol (cholo ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10	Acenanhthylen	a	ND	10		ra/-	1	7/15/2009
Anthracene ND 10 µg/L 1 7/15/2009 Arbitracene ND 10 µg/L 1 7/15/2009 Benz(a)anthracene ND 10 µg/L 1 7/15/2009 Benzo(a)pyrene ND 10 µg/L 1 7/15/2009 Benzo(a)pyrene ND 10 µg/L 1 7/15/2009 Benzo(b)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo(g,h,i)perylene ND 10 µg/L 1 7/15/2009 Benzo(g,h,i)perylene ND 10 µg/L 1 7/15/2009 Benzo(acid ND 20 µg/L 1 7/15/2009 Benzo(acid ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methalate ND		•	ND	10		ua/l	1	7/15/2009
Azobenzene ND 10 µg/L 1 7/15/2009 Benz(a)anthracene ND 10 µg/L 1 7/15/2009 Benzo(a)pyrene ND 10 µg/L 1 7/15/2009 Benzo(a)pyrene ND 10 µg/L 1 7/15/2009 Benzo(a)pyrene ND 10 µg/L 1 7/15/2009 Benzo(g,h,i)perylene ND 10 µg/L 1 7/15/2009 Benzo(x)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo(z acid ND 20 µg/L 1 7/15/2009 Benzolc acid ND 10 µg/L 1 7/15/2009 Benzolc acid ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroeshylphenyl ether ND	Anthracana		ND	10		uo/l	1	7/15/2009
ND ND ND ND Part Part Part Benz(a)anthracene ND 10 µg/L 1 7/15/2009 Benzo(a)pyrene ND 10 µg/L 1 7/15/2009 Benzo(b)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo(g,h,i)perylene ND 10 µg/L 1 7/15/2009 Benzo(x)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo(x)fluoranthene ND 10 µg/L 1 7/15/2009 Benzolc acid ND 20 µg/L 1 7/15/2009 Benzolc acid ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane <td>Azobenzene</td> <td></td> <td>ND</td> <td>10</td> <td></td> <td>ug/l</td> <td>1</td> <td>7/15/2009</td>	Azobenzene		ND	10		ug/l	1	7/15/2009
Benzo(a)pyrene ND 10 µg/L 1 7/15/2009 Benzo(a)pyrene ND 10 µg/L 1 7/15/2009 Benzo(b)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo(g,h,i)perylene ND 10 µg/L 1 7/15/2009 Benzo(acid ND 10 µg/L 1 7/15/2009 Benzolc acid ND 20 µg/L 1 7/15/2009 Benzolc acid ND 10 µg/L 1 7/15/2009 Benzolc acid ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroethyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-chlorosporpoyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-chlorosporpoyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-chlorosphenyl phenyl ether ND <t< td=""><td>Renz(a)anthrac</td><td>ono</td><td>ND</td><td>10</td><td></td><td>ма/)</td><td>1</td><td>7/15/2009</td></t<>	Renz(a)anthrac	ono	ND	10		ма/)	1	7/15/2009
Benzo(b)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo(g,h,l)perylene ND 10 µg/L 1 7/15/2009 Benzo(k)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo(k)fluoranthene ND 10 µg/L 1 7/15/2009 Benzolc acid ND 20 µg/L 1 7/15/2009 Benzol acid ND 10 µg/L 1 7/15/2009 Benzyl alcohol ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroisopropyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-chloroethyl)phthalate ND 10 µg/L 1 7/15/2009 Bityl benzyl phthalate ND 10 µg/L 1 7/15/2009 Garbazole ND	Benzo(a)pyrene		ND	10		μ 9/ Ε μα/ί	1	7/15/2009
Benzo(g),h(i)perviene ND 10 µg/L 1 7/15/2009 Benzo(g,h,i)perviene ND 10 µg/L 1 7/15/2009 Benzo(k)fluoranthene ND 10 µg/L 1 7/15/2009 Benzo(c acid ND 20 µg/L 1 7/15/2009 Benzol c acid ND 10 µg/L 1 7/15/2009 Benzyl alcohol ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroethyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-chloroisopropyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-chloroisopropyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-chloroisopropyl)ether ND 10 µg/L 1 7/15/2009 Garbazole	Benzo(b)fluoror	thene	ND	10		µ9/⊑ µ0/i	1	7/15/2009
Benzol(s), i, i)bryterie ND ND ND IO µg/L I I/16/2009 Benzolc acid ND 20 µg/L 1 7/15/2009 Benzol (k)fluoranthene ND 10 µg/L 1 7/15/2009 Benzyl alcohol ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroethyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-chlorosopropyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-ethylhexyl)phthalate ND 10 µg/L 1 7/15/2009 Bis(2-ethylhexyl)phthalate ND 10 µg/L 1 7/15/2009 Bis(2-ethylhexyl)phthalate ND 10 µg/L 1 7/15/2009 Garbazole ND 10 µg/L 1 7/15/2009 4-Chloroaniline ND 10 µg/L 1 7/15/2009	Benzo(d)huolai Benzo(d hi)ner	viene	ND	10		10/ł	1	7/15/2009
Benzoic acid ND 10 µg/L 1 7/15/2009 Benzoic acid ND 20 µg/L 1 7/15/2009 Benzyl alcohol ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroethyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-chloroisopropyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-ethylhexyl)phthalate ND 10 µg/L 1 7/15/2009 Bis(2-ethylhexyl)phthalate ND 10 µg/L 1 7/15/2009 Bis(2-ethylhexyl)phthalate ND 10 µg/L 1 7/15/2009 Garbazole ND 10 µg/L 1 7/15/2009 4-Chloro-3-methylphenol ND 10 µg/L 1 7/15/2009 4-Chloroaniline ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND	Benzo(k)fluorer	ylene		10		ug/t	1	7/15/2000
Benzyl alcohol ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroethyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-chloroisopropyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-ethylhexyl)phthalate ND 10 µg/L 1 7/15/2009 4-Bromophenyl phenyl ether ND 10 µg/L 1 7/15/2009 Butyl benzyl phthalate ND 10 µg/L 1 7/15/2009 Carbazole ND 10 µg/L 1 7/15/2009 4-Chloro-3-methylphenol ND 10 µg/L 1 7/15/2009 4-Chloroaniline ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 2-Chlorophenol	Benzo(k)nuolan Benzois poid	unene		20		µg/L ug/l	1	7/15/2009
Benzyrations ND ND ND ID µg/L I I/16/2009 Bis(2-chloroethoxy)methane ND 10 µg/L 1 7/15/2009 Bis(2-chloroethyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-chloroisopropyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-ethylhexyl)phthalate ND 10 µg/L 1 7/15/2009 4-Bromophenyl phenyl ether ND 10 µg/L 1 7/15/2009 Butyl benzyl phthalate ND 10 µg/L 1 7/15/2009 Carbazole ND 10 µg/L 1 7/15/2009 4-Chloro-3-methylphenol ND 10 µg/L 1 7/15/2009 4-Chloroaniline ND 10 µg/L 1 7/15/2009 2-Chloronaphthalene ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 4	Benzul alashal		ND	10		µg/⊏ ug/l	1	7/15/2009
Bis(2-chloroethyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-chloroisopropyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-chloroisopropyl)ether ND 10 µg/L 1 7/15/2009 Bis(2-ethylhexyl)phthalate ND 10 µg/L 1 7/15/2009 4-Bromophenyl phenyl ether ND 10 µg/L 1 7/15/2009 Butyl benzyl phthalate ND 10 µg/L 1 7/15/2009 Carbazole ND 10 µg/L 1 7/15/2009 4-Chloro-3-methylphenol ND 10 µg/L 1 7/15/2009 2-Chloroaniline ND 10 µg/L 1 7/15/2009 2-Chloronaphthalene ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol <	Benzyi alconol Bia/2 oblaroothi	nu/mothene	ND	10		µg/L ug/l	1	7/15/2009
Bis(2-chlorotectry)jether ND 10 µg/L 1 7/15/2009 Bis(2-ethylhexyl)phthalate ND 10 µg/L 1 7/15/2009 4-Bromophenyl phenyl ether ND 10 µg/L 1 7/15/2009 Butyl benzyl phthalate ND 10 µg/L 1 7/15/2009 Carbazole ND 10 µg/L 1 7/15/2009 4-Chloro-3-methylphenol ND 10 µg/L 1 7/15/2009 4-Chloroaniline ND 10 µg/L 1 7/15/2009 2-Chloroaniphthalene ND 10 µg/L 1 7/15/2009 2-Chloroaphthalene ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND <t< td=""><td>Bis(2-chlorooth</td><td>ullothor</td><td></td><td>10</td><td></td><td>pgr⊑ ua/l</td><td>1</td><td>7/15/2009</td></t<>	Bis(2-chlorooth	ullothor		10		pgr⊑ ua/l	1	7/15/2009
Bis(2-child) isophopylytetter ND ND 10 µg/L 1 7/15/2009 4-Bromophenyl phenyl ether ND 10 µg/L 1 7/15/2009 Butyl benzyl phthalate ND 10 µg/L 1 7/15/2009 Carbazole ND 10 µg/L 1 7/15/2009 4-Chloro-3-methylphenol ND 10 µg/L 1 7/15/2009 4-Chloroaniline ND 10 µg/L 1 7/15/2009 2-Chloronaphthalene ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenyl phenyl ether ND 10 µg/L 1 7/15/2009	Bis(2-chloroinor	yrjetiler Srepul)ofbor		10		µg/⊏ ua/l	1	7/15/2009
Bis(2-ethylnexyl)phthalate ND 10 µg/L 1 7/15/2009 4-Bromophenyl phenyl ether ND 10 µg/L 1 7/15/2009 Butyl benzyl phthalate ND 10 µg/L 1 7/15/2009 Carbazole ND 10 µg/L 1 7/15/2009 4-Chloro-3-methylphenol ND 10 µg/L 1 7/15/2009 4-Chloroaniline ND 10 µg/L 1 7/15/2009 2-Chloronaphthalene ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009	Bis(2-Chioroisop	Nabéhalata		10		µg/⊂ ug/l	1	7/15/2000
4-Shinophenyl energy energy ND 10 µg/L 1 7/15/2009 Butyl benzyl phthalate ND 10 µg/L 1 7/15/2009 Carbazole ND 10 µg/L 1 7/15/2009 4-Chloro-3-methylphenol ND 10 µg/L 1 7/15/2009 2-Chloronaphthalene ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009	A Bromenhond	oboovil other		10		µg/L µg/l	1	7/15/2009
Butyl beirzyr prinnate ND ND 10 µg/L 1 7/15/2009 Carbazole ND 10 µg/L 1 7/15/2009 4-Chloroaniline ND 10 µg/L 1 7/15/2009 2-Chloronaphthalene ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009	4-bromophenyl	prierry etner	ND	10		µg/⊑ ug/l	1	7/15/2000
4-Chloro-3-methylphenol ND 10 µg/L 1 7/15/2009 4-Chloroaniline ND 10 µg/L 1 7/15/2009 2-Chloronaphthalene ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009	Carbozolo	maidle		10		ug/l	1	7/15/2009
4-Chloroaniline ND 10 µg/L 1 7/15/2009 2-Chloronaphthalene ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenol ND 10 µg/L 1 7/15/2009	A Chiero 2 moti	hvinhenol		10		н а /Г	1	7/15/2009
4-Chloropaphthalene ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenyl phenyl ether ND 10 µg/L 1 7/15/2009		ауривної		10		н9/L Па/I	1	7/15/2009
2-Chlorophenol ND 10 µg/L 1 7/15/2009 2-Chlorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenyl phenyl ether ND 10 µg/L 1 7/15/2009				10		49/C	1	7/15/2009
2-Gniorophenol ND 10 µg/L 1 7/15/2009 4-Chlorophenyl phenyl ether ND 10 µg/L 1 7/15/2009	∠-Unioronaphth	alene	ND	10		μg/L μα/Ι	 *	7/15/2008
	2-Uniorophenol	nhenvi ether		10		μg/L μg/L	1	7/15/2009
		Prioriti ottor						

H Holding times for preparation or analysis exceeded

Date: 28-Jul-09

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Estimated value

Ε

S Spike recovery outside accepted recovery limits

MCL Maximum Contaminant Level RL Reporting Limit

Page 1 of 26

2

Project:	2009 Annual BW Samp	Annual BW Sampling			Date Received: 7/10/2009						
Lab ID:	Matrix: AQUEOUS										
Analyses		Result	PQL	Qual	Units	D)F	Date Analyzed				
EPA METHOD 8270C: SEMIVOLATILES		· · · · · · · · · · · · · · · · · · ·					Analyst: JDC				
Chrysene		ND	10		µg/L	1	7/15/2009				
Di-n-butyl pht	halate	ND	10	•	µg/L	1	7/15/2009				
Di-n-octyl phti	halate	ND	10		µg/L	1	7/15/2009				
Dibenz(a,h)ar	nthracene	ND	10		µg/L	1	7/15/2009				
Dibenzofuran		ND	10		µg/L	1	7/15/2009				
1,2-Dichlorob	enzene	ND	10		µg/L	1	7/15/2009				
1,3-Dichlorob	enzene	ND	10		µg/L	1	7/15/2009				
1,4-Dichlorob	enzene	ND	10		µg/L	1	7/15/2009				
3,31-Dichlorob	penzidine	ND	10		µg/L	1	7/15/2009				
Diethyl phthal	ate	ND	10		µg/L	1	7/15/2009				
Dimethyl phth	alate	ND	10		µg/L	1	7/15/2009				
2,4-Dichloropl	henol	ND	20		µg/L	1	7/15/2009				
2,4-Dimethylp	phenol	ND	10		µg/L	1	7/15/2009				
4,6-Dinitro-2-r	methylphenol	ND	20		µg/L	1	7/15/2009				
2,4-Dinitrophe	anol	ND	20		µg/L '	1	7/15/2009				
2,4-Dinitrotolu	iene	ND	10		µg/L	1	7/15/2009				
2,6-Dinitrotolu	iene	ND	10		µg/L	1	7/15/2009				
Fluoranthene		ND	10		µg/L	1	7/15/2009				
Fluorene		ND	10		µg/L	1	7/15/2009				
Hexachiorobe	nzene	ND	10		µg/L	1	7/15/2009				
Hexachlorobu	tadione	ND	10		µg/L	1	7/15/2009				
Hexachlorocy	clopentadiene	ND	. 10		µg/L	1	7/15/2009				
Hexachloroeth	nane	ND	10	1	µg/L	1	7/15/2009				
Indeno(1,2,3-c	cd)pyrene	ND	10		µg/L	1	7/15/2009				
Isophorone		ND	10		µg/L	1	7/15/2009				
2-Methylnapht	thalene	ND	10		µg/L	1	7/15/2009				
2-Methylphend	ol	ND	10		µg/L	1	7/15/2009				
3+4-Methylphe	enol	ND	10		µg/L	1	7/15/2009				
N-Nitrosodi-n-	propylamine	NÐ	10	1	µg/L	1	7/15/2009				
N-Nitrosodime	ethylamine	ND	10	1	µg/L	1	7/15/2009				
N-Nitrosodiphe	enylamine	ND	10	1	µg/L	1	7/15/2009				
Naphthalene		ND	10	1	µg/L	1	7/15/2009				
2-Nitroaniline		NÐ	10	1	µg/L ,	1	7/15/2009				
3-Nitroaniline		ND	10	1	µg/L	1	7/15/2009				
4-Nitroaniline		ND	10	1	µg/L	1	7/15/2009				
Nitrobenzene		ND	10	1	µg/L	1	7/15/2009				
2-Nitrophenol		ND	10	l	µg/L	1	7/15/2009				
4-Nitrophenol		ND	10	I	µg/L	1	7/15/2009				
Pentachloroph	nenol	ND	20	ł	µg/L	1	7/15/2009				
Phenanthrene		ND	10	1	µg/L	1	7/15/2009				
Phenol		ND	10	1	µg/L	1	7/15/2009				
Pyrene		ND	10	I	µg/L	. 1	7/15/2009				

0907192

Western Refining Southwest, Gallup

CLIENT:

Lab Order:

Date: 28-Jul-09

Collection Date: 7/6/2009 11:45:00 AM

Client Sample ID: BW-1C

Qualifiers: * Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparetion or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 2 of 26
CLIENT:	Western Refining South	west, Gallup		Clien	t Sample ID:	BW-1C		
Lab Order:	rder: 0907192		Collection Date:		7/6/2009 11:45:00 AM			
Project: 2009 Annual BW Sam		ling		D٤	te Received:	7/10/2009		
Lab ID:	0907192-01	-			Matrix:	AQUEOU	S	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	8270C: SEMIVOLATILES						Analyst: JDC	
Pyridine		ND	10		µg/L	1	7/15/2009	
1,2,4-Trichlorob	enzene	ND	10		µg/L	. 1	7/15/2009	
2,4,5-Trichlorop	henol	ND	10		µg/L	1	7/15/2009	
2,4,6-Trichlorop	henol	ND	10 ⁻		µg/L	1	7/15/2009	
Surr: 2,4,6-Tr	ibromophenol	76.5	16.6-150		%REC	1	7/15/2009	
Surr: 2-Fluore	obiphenyi	67.6	19.6-134		%REC	· 1	7/15/2009	
Surr: 2-Fluore	ophenol	55.0	9.54-113		%REC	1	7/15/2009	
Surr: 4-Terph	enyl-d14	75.9	22.7-145		%REC	, 1	7/15/2009	
Surr: Nitrober	nzene-d5	75.2	14.6-134		%REC	1	7/15/2009	
Surr: Phenol-	d5	39.2	10.7-80.3		%REC	1	7/15/2009	
	8260B: VOLATILES						Analyst: HL	
Benzene		ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
Toluene		ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
Ethylbenzene		ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
Methyl tert-butyl	ether (MTBE)	ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
1,2,4-Trimethylb	enzene	ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
1,3,5-Trimethylb	enzene	ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
1,2-Dichloroetha	ane (EDC)	ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
1,2-Dibromoetha	ane (EDB)	ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
Naphthalene		ND	2.0		µg/L	1	7/13/2009 11:07:19 PM	
1-Methylnaphtha	alene	ND	4.0		µg/L	1	7/13/2009 11:07:19 PM	
2-Methylnaphtha	alene	ND	4.0		µg/L	1	7/13/2009 11:07:19 PM	
Acetone		ND	10		μg/L	1	7/13/2009 11:07:19 PM	
Bromobenzene		ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
Bromodichlorom	ethane	ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
Bromoform		ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
Bromomethane		ND	1.0		ua/L	1	7/13/2009 11:07:19 PM	
2-Butanone		ND	10		μg/L	1	7/13/2009 11:07:19 PM	
Carbon disulfide		ND	10		μg/L	1	7/13/2009 11:07:19 PM	
Carbon Tetrachi	oride	ND	1.0		ua/L	1	7/13/2009 11:07:19 PM	
Chlorobenzene		ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
Chloroethane		ND	2.0		μg/L	1	7/13/2009 11:07:19 PM	
Chloroform		ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
Chloromethane		ND	1.0		 μg/L	1	7/13/2009 11:07:19 PM	
2-Chlorotoluene		ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
4-Chlorotoluene		ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
cis-1,2-DCE		ND	1.0		µg/L	1	7/13/2009 11:07:19 PM	
cis-1,3-Dichloron	propene	ND	1.0		μg/L	1	7/13/2009 11:07:19 PM	
1.2-Dibromo-3-c	hloropropane	ND	2.0		µg/L	1	7/13/2009 11:07:19 PM	
Dibromochlorom	ethane	ND	1.0		ua/L	1	7/13/2009 11:07:19 PM	
Dibromomethan	8	ND	10		uo/l.	1	7/13/2009 11:07:19 PM	

Qualifiers: * Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

 ${\bf B} \quad \ \ {\rm Analyte\ detected\ in\ the\ associated\ Method\ Blank}$

Date: 28-Jul-09

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 3 of 26

CLIENT:	Western Refining Southwest, Gallup	
Lab Order:	0907192	
Project:	2009 Annual BW Sampling	
Lab ID:	0907192-01	

Date: 28-Jul-09

Client Sample ID: BW-1C Collection Date: 7/6/2009 11:45:00 AM Date Received: 7/10/2009 Matrix: AQUEOUS

Analyses	Result	PQL	Qual U	nits	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: HL
1,2-Dichlorobenzene	ND	1.0)ų	g/L	1	7/13/2009 11:07:19 PM
1,3-Dichlorobenzene	ND	1.0	hč	g/L	1	7/13/2009 11:07:19 PM
1,4-Dichlorobenzene	ND	1.0	μ	g/L	1	7/13/2009 11:07:19 PM
Dichlorodifluoromethane	ND	1.0	μç	g/L	1	7/13/2009 11:07:19 PM
1,1-Dichloroethane	ND	1.0	μç	g/L	1	7/13/2009 11:07:19 PM
1,1-Dichloroethene	ND	1.0	μ	g/L.	1	7/13/2009 11:07:19 PM
1,2-Dichloropropane	ND	1.0	ц	g/L	1	7/13/2009 11:07:19 PM
1,3-Dichloropropane	ND	1.0	μç	g/L	1	7/13/2009 11:07:19 PM
2,2-Dichloropropane	ND	2.0	μ	g/L	1	7/13/2009 11:07:19 PM
1,1-Dichloropropene	ND	1.0	hõ	g/L.	1	7/13/2009 11:07:19 PM
Hexachiorobutadiene	ND	1.0	'n	g/L	1	7/13/2009 11:07:19 PM
2-Hexanone	ND	10	μ	g/L	1	7/13/2009 11:07:19 PM
lsopropylbenzene	ND	1.0	μç	g/L	1	7/13/2009 11:07:19 PM
4-Isopropyltoluene	ND	1.0	μ	g/L	1	7/13/2009 11:07:19 PM
4-Methyl-2-pentanone	ND	10	μ	g/L	1	7/13/2009 11:07:19 PM
Methylene Chloride	ND	3.0	μç	g/L	1	7/13/2009 11:07:19 PM
n-Butylbenzene	ND	1.0	μ	g/L	1	7/13/2009 11:07:19 PM
n-Propylbenzene	ND	1.0	μ	g/L	1	7/13/2009 11:07:19 PM
sec-Butylbenzene	ND	1.0	μ	g/L	1	7/13/2009 11:07:19 PM
Styrene	ND	1.0	μ	g/L	1	7/13/2009 11:07:19 PM
tert-Butylbenzene	ND	1.0	μ	g/L	1	7/13/2009 11:07:19 PM
1,1,1,2-Tetrachloroethane	ND	1.0	μ	g/L	1	7/13/2009 11:07:19 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μç	g/L	1	7/13/2009 11:07:19 PM
Tetrachloroethene (PCE)	ND	1.0	μç	g/L	1	7/13/2009 11:07:19 PM
trans-1,2-DCE	ND	1.0	μg	g/L	1	7/13/2009 11:07:19 PM
trans-1,3-Dichloropropene	NÐ	1.0	μç	3/L	1	7/13/2009 11:07:19 PM
1,2,3-Trichlorobenzene	ND	1.0	μç	g/L	1	7/13/2009 11:07:19 PM
1,2,4-Trichlorobenzene	ND	1.0	þq	g/L	1	7/13/2009 11:07:19 PM
1,1,1-Trichloroethane	ND	1.0	μς	g/L	1	7/13/2009 11:07:19 PM
1,1,2-Trichloroethane	ND	1.0	μο	g/L	1	7/13/2009 11:07:19 PM
Trichloroethene (TCE)	ND	1.0	βų	J∕L	1	7/13/2009 11:07:19 PM
Trichlorofluoromethane	ND	1.0	рц	g/L	1,	7/13/2009 11:07:19 PM
1,2,3-Trichloropropane	ND	2.0	hč	3/L	1	7/13/2009 11:07:19 PM
Vinyl chloride	ND	1.0	þç	g/L	1 .	7/13/2009 11:07:19 PM
Xylenes, Total	ND	1.5	μg	J/L	1	7/13/2009 11:07:19 PM
Surr: 1,2-Dichloroethane-d4	108	68.1-123	%	REC	1	7/13/2009 11:07:19 PM
Surr: 4-Bromofluorobenzene	105	53.2-145	%	REC	1	7/13/2009 11:07:19 PM
Surr: Dibromofluoromethane	118	68.5-119	%	REC	1	7/13/2009 11:07:19 PM
Surr: Toluene-d8	114	64-131	%	REC	1	7/13/2009 11:07:19 PM

Value exceeds Maximum Contaminant Level

E Estimated value

Qualifiers:

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 4 of 26

CLIENT: Western Refining Southwest, Gallup Clie				Clier	Client Sample ID: BW-2B			
Lab Order:	0907192			Co	llection Date:	7/6/2009	1:42:00 PM	
Project: 2009 Annual BW		Sampling		Date Received:		7/10/2009		
Lab ID:	0907192-02	1 0		Matrix:		AQUEOUS		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	7470: MERCURY						Analyst: MMS	
Mercury	74,0, MEROOR,	ND ·	0.00020		mg/L	1	7/17/2009 5:15:56 PM	
EPA 6010B: TO	OTAL RECOVERABLE	METALS					Analyst: SNV	
Arsenic		ND	0.020		mg/L	1	7/19/2009 9:34:13 PM	
Barium		0.099	0.020		mg/L	1	7/19/2009 9:34:13 PM	
Cadmium		ND	0.0020		mg/L	1	7/19/2009 9:34:13 PM	
Chromium		ND	0.0060		mg/L	1	7/19/2009 9:34:13 PM	
Copper		ND	0.0060		mg/L	1	7/19/2009 9:34:13 PM	
Iron		1.8	0.25		mg/L	5	7/19/2009 10:27:24 PM	
Lead		ND	0.0050		mg/L	1	7/19/2009 9:34:13 PM	
Magnesium		4.1	1.0		mg/L	1	7/19/2009 9:34:13 PM	
Manganese		0.47	0.0020		mg/L	1	7/19/2009 9:34:13 PM	
Potassium		1.8	1.0		mg/L	1	7/19/2009 9:34:13 PM	
Selenium		ND	0.050		ma/L	1	7/19/2009 9:34:13 PM	
Silver		ND	0.0050		ma/L	1	7/19/2009 9:34:13 PM	
Zinc		ND	0.050		mg/L	1	7/19/2009 9:34:13 PM	
EPA METHOD	8270C: SEMIVOLATILE	8					Analyst: JDC	
Acenaphthene		ND	10		ua/L	1	7/15/2009	
Acenaphthylene	9	ND	10		ua/L	1	7/15/2009	
Aniline	•	ND	10		ua/l	1	7/15/2009	
Anthracene		ND	10		ua/l	1	7/15/2009	
Azohenzene		ND	10		µg/=	1	7/15/2009	
Benz(a)anthrac	ono	ND	10		µg/L	1	7/15/2009	
Benzo(a)nyrena		ND	10		µg/L	1	7/15/2009	
Bonzo(b)fluoroo	, uhono	ND	10		µg/C	1	7/15/2009	
Benzo(d h i)pon	ulano		10		49/L	1	7/15/2009	
Benzo(k)fluoren	ylene	ND	10		häve	1	7/15/2009	
Benzo(k)nuoran	imene	ND	10		µg/L	1	7/15/2009	
Benzuic auto		ND	20		μg/L μg/l	1	7/10/2009	
Benzyi alconol Bia/2 ablara sta		ND	10		µg/L	1	7/15/2009	
Bis(2-chioroetho	oxy)methane	ND	10		µg/L ug/l	1	7/10/2009	
Bis(2-chloroeth)	yijetner Alfrediter	ND	10		µy/L	1	7/15/2009	
Bis(2-chioroisop	propyi)ether	ND	10		µg/L	1	7/15/2009	
Bis(2-ethylhexy)phthalate	NU	10		µg/L	1	7/15/2009	
4-Bromophenyl	phenyl ether	UN	10		µg/L	1	7/15/2009	
Butyl benzyl phi	inalate	ND	10		µg/L	1	7/15/2009	
Carbazole	· · · · · · · · · · · · ·	ND	10		µg/L	1	7/15/2009	
4-Chloro-3-meth	nyiphenol	ND	10		hð\r "	1	//15/2009	
4-Chloroaniline		ND	10		µg/L	1	7/15/2009	
2-Chloronaphth	alene	ND	10		µg/L	1	7/15/2009	
2-Chlorophenol		ND	10		µg/L	1	7/15/2009	
4-Chlorophenyl	phenyl ether	ND	10		µg/L	1	7/15/2009	
Qualifiers:	 Value exceeds Maximum 	Contaminant Level			B Analyte dete	cted in the as	sociated Method Blank	
I	E Estimated value	•]	H Holding time	es for prepara	tion or analysis exceeded	

Date: 28-Jul-09

Analyte detected below quantitation limits J

Not Detected at the Reporting Limit ND

Spike recovery outside accepted recovery limits S

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 5 of 26

Project:	2009 Annual BW Samp	ling		Date Received	1: 7/10/2009)
Lab ID:	0907192-02			Matrix	K: AQUEOL	JS
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHO	D 8270C: SEMIVOLATILES			ورجعت مستكثر ببني بسنية المستع		Analyst: JDC
Chrysene		ND	10	µg/L	1	7/15/2009
DI-n-butyl pht	halate	ND	10	µg/L	1	7/15/2009
Di-n-octyl pht	halate	ND	10	µg/L	1	7/15/2009
Dibenz(a,h)ar	thracene	ND	10	μg/L	1	7/15/2009
Dibenzofuran		ND	10	µg/L	1	7/15/2009
1,2-Dichlorob	enzene	ND	10	μg/L	1	7/15/2009
1,3-Dichlorobe	enzene	ND	10	µg/L	1	7/15/2009
1,4-Dichlorob	enzene	ND	10	µg/L	1	7/15/2009
3,3'-Dichlorob	enzidine	ND	10	µg/L	1	7/15/2009
Diethyl phthal	ate	ND -	10	µg/L	1	7/15/2009
Dimethyl phth	alate	ND	· 10	µg/L	1	7/15/2009
2,4-Dichloropl	henol	ND	20	μg/L	1	7/15/2009
2,4-Dimethylp	henol	ND	10	µg/L	1 *	7/15/2009
4,6-Dinitro-2-r	nethylphenol	ND	20	µg/L	1	7/15/2009
2,4-Dinitrophe	enol	ND	20	µg/L	1	7/15/2009
2,4-Dinitrotolu	iene	ND	10	µg/L	1	7/15/2009
2,6-Dinitrotolu	iene	ND	10	µg/L	1	7/15/2009
Fluoranthene		ND	10	μg/L	1	7/15/2009
Fluorene		ND	10	µg/L	1 .	7/15/2009
Hexachlorobe	nzene	ND	10	µg/L	1	7/15/2009
Hexachlorobu	tadiene	ND	10	ug/L	1	7/15/2009
Hexachlorocy	clopentadiene	ND	10	µg/L	1	7/15/2009
Hexachloroeth	nane -	ND	10	µg/L	1	7/15/2009
indeno(1.2.3-c	cd)pvrene	ND	10	µg/L	1	7/15/2009
Isophorone		ND	10	ua/L	1	7/15/2009
2-Methylnaphi	thalene	ND	10	µa/L	1	7/15/2009
2-Methylphen	ol	ND	10	µg/L	1	7/15/2009
3+4-Methylph	enol	ND	10	µg/L	1	7/15/2009
N-Nitrosodi-n-	propylamine	ND	10	ug/L	1	7/15/2009
N-Nitrosodime	ethylamine	ND	10	µg/L	1	7/15/2009
N-Nitrosodiph	enylamine	ND	10	µg/L	1	7/15/2009
Naphthalene	•	ND	10	µg/L	1	7/15/2009
2-Nitroaniline		ND	10	µg/L	1	7/15/2009
3-Nitroaniline		ND	10	µg/L	1	7/15/2009
4-Nitroaniline		ND	10	µg/L	1	7/15/2009
Nitrobenzene		ND	10	μg/L	1	7/15/2009
2-Nitrophenol		ND	10	µg/L	1	7/15/2009
4-Nitrophenol		ND	10	µg/L	. 1.	7/15/2009
Pentachloroph	nenol	ND	20	µg/L	1	7/15/2009
Phenanthrene		ND	10	µg/L	1	7/15/2009
Phenol		ND 🕔	10	μα/L	1	7/15/2009
Pyrene		ND	10	µg/L	1	7/15/2009
-	·					

0907192

Western Refining Southwest, Gallup

CLIENT:

Lab Order:

Date: 28-Jul-09

Client Sample ID: BW-2B Collection Date: 7/6/2009 1:42:00 PM noncion 7/10/2000

Qualifiers: * Value exceeds Maximum Contaminant Level

> Ε Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 6 of 26

CLIENT:	Western Refining South	Southwest, Gallup Client Sample ID: BW-2B							
Lab Order:	0907192	0907192				1:42:00 PM			
Project.	2009 Annual BW Samn	0 Annual RW Sampling			7/10/2000	3			
Lah ID.	0907192-02			Matrix:	AQUEOL	JS			
		Decult	POI	Qual Unite	DF	Date Analyzed			
Analyses		Result				Date Analyzeu			
EPA METHOD	8270C: SEMIVOLATILES					Analyst: JDC			
Pyridine		ND	10	µg/L	1	7/15/2009			
1,2,4-Trichlorob	enzenê	ND	. 10	µg/L	1	7/15/2009			
2,4,5-Trichlorop	henol	ND	10	hð\r	1	7/15/2009			
2,4,6-Trichlorop	henol	ND	10	µg/L	1	7/15/2009			
Surr: 2,4,6-Tr	ibromophenol	81.6	16.6-150	%REC	1	7/15/2009			
Surr: 2-Fluoro	biphenyl	77.3	19.6-134	%REC	1	7/15/2009			
Surr: 2-Fluoro	phenoi	52.2	9.54-113	%REC	1 .	7/15/2009			
Surr: 4-Terph	enyl-d14	76.9	22.7-145	%REC	1	7/15/2009			
Surr: Nitrober	nzene-d5	80.7	14.6-134	%REC	1	7/15/2009			
Surr: Phenol-	d5	35.8	10.7-80.3	%REC	1	7/15/2009			
	8260B: VOLATILES					Analyst: HL			
Benzene		ND	1.0	.µg/L	1	7/13/2009 11:36:27 PM			
Toluene		ND	1.0	µg/L	1	7/13/2009 11:36:27 PM			
Ethylbenzene		ND	1.0	µg/L	1	7/13/2009 11:36:27 PM			
Methyl tert-butyl	ether (MTBE)	ND	1.0	µg/L	1	7/13/2009 11:36:27 PM			
1,2,4-Trimethylb	enzene	ND	1.0	μg/L	1	7/13/2009 11:36:27 PM			
1,3,5-Trimethylb	enzene	ND	1.0	µg/L	1	7/13/2009 11:36:27 PM			
1,2-Dichloroetha	ane (EDC)	ND	· 1.0	µg/L	1	7/13/2009 11:36:27 PM			
1,2-Dibromoetha	ane (EDB)	ND	1.0	μg/L	1	7/13/2009 11:36:27 PM			
Naphthalene	. ,	ND	2.0	μg/L	1	7/13/2009 11:36:27 PM			
1-Methvinaphtha	alene	ND	4.0	μg/L	1	7/13/2009 11:36:27 PM			
2-Methvinaphtha	alene	ND	4.0	µg/L	1	7/13/2009 11:36:27 PM			
Acetone		ND	10	μg/L	1	7/13/2009 11:36:27 PM			
Bromobenzene		ND	1.0	uo/L	1	7/13/2009 11:36:27 PM			
Bromodichlorom	nethane	ND	1.0	ua/L	1	7/13/2009 11:36:27 PM			
Bromoform		ND	1.0	ug/L	1	7/13/2009 11:36:27 PM			
Bromomethane		ND	1.0	ua/L	1	7/13/2009 11:36:27 PM			
2-Butanone		ND	10	ug/L	1	7/13/2009 11:36:27 PM			
Carbon disulfide		ND	10	ug/L	1	7/13/2009 11:36:27 PM			
Carbon Tetrachi	oride	ND	1.0	μg/L	1	7/13/2009 11:36:27 PM			
Chlorobenzene		ND	1.0	µg/L	1	7/13/2009 11:36:27 PM			
Chloroethane		ND	2.0	µg/L	1	7/13/2009 11:36:27 PM			
Chloroform		ND	1.0	ug/L	1	7/13/2009 11:36:27 PM			
Chloromethane		ND	1.0	µg/L	1	7/13/2009 11:36:27 PM			
2-Chlorotoluene		ND	1.0	µg/L	1	7/13/2009 11:36:27 PM			
4-Chlorotoluene		ND	1.0	ug/L	1	7/13/2009 11:36:27 PM			
cis-1 2-DCF		ND	1.0	ua/L	1	7/13/2009 11:36:27 PM			
cis-1 3-Dichloror	oropene	ND	1.0	ua/L	1	7/13/2009 11:36:27 PM			
1.2-Dibromo-3-0	hloropropane	ND	2.0	ua/L	1	7/13/2009 11:36:27 PM			
Dibromochlorom	nethane	ND	1.0	ua/L	1.	7/13/2009 11:36:27 PM			
Dibromomethan	A	ND	10	un/l	1	7/13/2009 11:36:27 PM			

Qualifiers: Value exceeds Maximum Contaminant Level *

Ε Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

В Analyte detected in the associated Method Blank

Date: 28-Jul-09

Holding times for preparation or analysis exceeded Н

MCL Maximum Contaminant Level

RL Reporting Limit

Page 7 of 26

Lab ID: 0907192-02	Matrix: AQUEOUS								
Analyses	Result	PQL	Qual Un	its	DF	Date Analyzed			
EPA METHOD 8260B: VOLATILES					أسترجعه متصاريك	Analyst: HL			
1,2-Dichlorobenzene	ND	1.0	μg/l	L	· 1	7/13/2009 11:36:27 PM			
1,3-Dichlorobenzene	ND	1.0	µg/l	L.	1	7/13/2009 11:36:27 PM			
1,4-Dichlorobenzene	ND	1.0	µg/l	L	1	7/13/2009 11:36:27 PM			
Dichlorodifluoromethane	ND	1.0	µg/l	L	1	7/13/2009 11:36:27 PM			
1,1-Dichloroethane	ND	1.0	µg/l	L	1	7/13/2009 11:36:27 PM			
1,1-Dichloroethene	ND	1.0	µg/l	L	1	7/13/2009 11:36:27 PM			
1,2-Dichloropropane	ND	1.0	µg/l	L	1	7/13/2009 11:36:27 PM			
1.3-Dichloropropane	ND	1,0	μg/l	L	1	7/13/2009 11:36:27 PM			
2,2-Dichloropropane	ND	2.0	μg/l	L	1 '	7/13/2009 11:36:27 PM			
1,1-Dichloropropene	ND	1.0	μg/t	L	1	7/13/2009 11:36:27 PM			
Hexachlorobutadiene	ND	1.0	µg/l	L	1	7/13/2009 11:36:27 PM			
2-Hexanone	ND	10	μg/ι	L	1	7/13/2009 11:36:27 PM			
Isopropylbenzene	ND	1.0	µg/l	L	, 1	7/13/2009 11:36:27 PM			
4-Isopropyltoluene	ND	1.0	µg/ł	L	1	7/13/2009 11:36:27 PM			
4-Methyl-2-pentanone	ND	10	μg/L	L	1	7/13/2009 11:36:27 PM			
Methylene Chloride	ND	3.0	µg/L	L	1	7/13/2009 11:36:27 PM			
n-Butylbenzene	ND	1.0	µg/L	L	1	7/13/2009 11:36:27 PM			
n-Propylbenzene	NÐ	1.0	µg/L	L	1	7/13/2009 11:36:27 PM			
sec-Butylbenzene	ND	1.0	µg/t	<u>L</u>	1	7/13/2009 11:36:27 PM			
Styrene	ND	1.0	µg/l	L	1	7/13/2009 11:36:27 PM			
tert-Butylbanzene	ND	1.0	µg/L	Ļ	1	7/13/2009 11:36:27 PM			
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	Ļ	1	7/13/2009 11:36:27 PM			
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	L	1	7/13/2009 11:36:27 PM			
Tetrachloroethene (PCE)	ND	1.0	µg/L	-	1	7/13/2009 11:36:27 PM			
trans-1,2-DCE	ND	1.0	µg/L	_	1	7/13/2009 11:36:27 PM			
trans-1,3-Dichloropropene	ND	1.0	μg/L	L	1	7/13/2009 11:36:27 PM			
1,2,3-Trichlorobenzene	ND	1.0	µg/L	L.	1	7/13/2009 11:36:27 PM			
1,2,4-Trichlorobenzene	ND	1.0	µg/L	L	1 .	7/13/2009 11:36:27 PM			
1,1,1-Trichloroethane	ND	1.0	μg/L	_	1	7/13/2009 11:36:27 PM			
1,1,2-Trichloroethane	ND	1.0	µg/L	_	1	7/13/2009 11:36:27 PM			
Trichloroethene (TCE)	ND	1.0	µg/L	-	1	7/13/2009 11:36:27 PM			
Trichlorofluoromethane	ND	1.0	µg/L	-	1	7/13/2009 11:36:27 PM			
1,2,3-Trichloropropane	ND	2.0	µg/L	-	1,	7/13/2009 11:36:27 PM			
Vinyl chloride	ND	1.0	µg/Ł	-	1	7/13/2009 11:36:27 PM			
Xylenes, Total	ND	1.5	μg/L	-	1	7/13/2009 11:36:27 PM			
Surr: 1,2-Dichloroethane-d4	110	68.1 -1 23	%R	EC	1	7/13/2009 11:36:27 PM			
Surr: 4-Bromofluorobenzene	107	53.2-145	%RI	EC	1	7/13/2009 11:36:27 PM			
Surr: Dibromofluoromethane	112	68.5-119	%RI	EC	1	7/13/2009 11:36:27 PM			
Surr: Toluene-d8	104	64-13 1	%RI	EC	1	7/13/2009 11:36:27 PM			

2009 Annual BW Sampling

0907192

Western Refining Southwest, Gallup

CLIENT:

Project:

Lab Order:

Date: 28-Jul-09

Collection Date: 7/6/2009 1:42:00 PM

Client Sample ID: BW-2B

Date Received: 7/10/2009

Estimated value Analyte detected below quantitation limits

Value exceeds Maximum Contaminant Level

ND Not Detected at the Reporting Limit S

Qualifiers:

*

Ε

l

- Spike recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for proparation or analysis exceeded Η
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 8 of 26

CLIENT:	Western Refining So	ng Southwest, Gallup Client Sample ID: BW-2A						
Lab Order:	0907192			Collection Date:	7/6/2009	7/6/2009 3:01:00 PM		
Project:	2009 Annual BW Sar	npling		Date Received:	7/10/2009)		
Lab ID:	0907192-03			Matrix:	AQUEOU	JS		
Analyses		Result	PQL	Qual Units	DF	Date Analyzed		
PA METHOD 7	470: MERCURY			· · · · · · · · · · · · · · · · · · ·		Analyst: MMS		
Mercury		ND	0.00020	mg/L	1	7/17/2009 5:21:30 PM		
EPA 6010B: TO	TAL RECOVERABLE N	METALS				Analyst: SNV		
Arsenic		ND	0.020	mg/L	1	7/19/2009 9:38:11 PM		
Barium		0.15	0.020	mg/L	1	7/19/2009 9:38:11 PM		
Cadmium		ND	0.0020	mg/L	1	7/19/2009 9:38:11 PM		
Chromium		ND	0.0060	mg/L	1	7/19/2009 9:38:11 PM		
Copper		ND	0.0060	mg/L	1	7/19/2009 9:38:11 PM		
Iron		0.50	0.050	mg/L	1	7/19/2009 9:38:11 PM		
Lead		ND	0.0050	mg/L	1	7/19/2009 9:38:11 PM		
Magnesium		3.4	1.0	mg/L	1	7/19/2009 9:38:11 PM		
Manganese		0.15	0.0020	mg/L	1	7/19/2009 9:38:11 PM		
Potassium		ND	1.0	mg/L	1	7/19/2009 9:38:11 PM		
Selenium		ND	0.050	mg/L	1	7/19/2009 9:38:11 PM		
Silver		ND	0.0050	mg/L	1	7/19/2009 9:38:11 PM		
Zinc		ND	0.050	mg/L	1	7/19/2009 9:38:11 PM		
PA METHOD 8	270C: SEMIVOLATILE	S				Analyst: JDC		
Acenaphthene		ND	10	µg/L	1	7/15/2009		
Acenaphthylene		ND	10	µg/L	1	7/15/2009		
Aniline		ND	10	μα/L	1	7/15/2009		
Anthracene		ND	10	ug/L	1	7/15/2009		
Azobenzene		ND	10	uo/L	1	7/15/2009		
Benz(a)anthrace	ne	ND	10	ug/L	1	7/15/2009		
Benzo(a)pvrene	· · · ·	ND	10	ug/L	1	7/15/2009		
Benzo(b)fluorant	hene	ND	10	ua/L	1	7/15/2009		
Benzo(a,h,i)pervi	lene	ND	10	ua/L	1	7/15/2009		
Benzo(k)fluoranti	hene	ND	10	1-9/- 1/0/1	1	7/15/2009		
Benzoic acid		ND	20	ug/L	1	7/15/2009		
Benzyl alcohol		ND	10	µg/L	1	7/15/2009		
Bis(2-chloroetho)	xy)methane	ND	. 10	μα/L	1	7/15/2009		
Bis(2-chloroethyl)ether	ND	10	μg/L	1	7/15/2009		
Bis(2-chloroisopr	opyl)ether	ND	10	μg/L	1	7/15/2009		
Bis(2-ethylhexyl)	phthalate	ND	10	ua/L	1	7/15/2009		
4-Bromophenvl p	henvi ether	ND	10	ug/L	1	7/15/2009		
Butyl benzyl phth	alate	ND	10	µg/L	1	7/15/2009		
Carbazole		ND	10	μg/L	1	7/15/2009		
4-Chloro-3-methy	/lphenol	ND	10	µg/L	1	7/15/2009		
A-Chiorogniling	,,	ND	10	ug/L	1	7/15/2009		
	lawa	ND	10	ua/L	1	7/15/2009		
2-Chloronaohthal	lene			r.a	•			
2-Chlorophenol	lene	ND	10	ua/L	1	7/15/2009		

Date: 28-Jul-09

Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded

H Holding times for preparation of MCL Maximum Contaminant Level

RL Reporting Limit

Page 9 of 26

10

Ε

J

ND

S

Estimated value

Analyte detected below quantitation limits

Spike recovery outside accepted recovery limits

Not Detected at the Reporting Limit

Page

Lab Order: 0907192				Collection Date: 7/6/2009 3:01:00 PM						
Project:	2009 Annual BW Sa	mpling		Date Received:	7/10/2009					
Lab ID:	0907192-03			Matrix:	AQUEOU	JS				
Analyses		Result	PQL	Qual Units	DF	Date Analyzed				
EPA METHOD	8270C: SEMIVOLATILE	S				Analyst: JDC				
Chrysene		ND	10	µg/L	1	7/15/2009				
Di-n-butyl phth	alate	ND	10	µg/L	1	7/15/2009				
Di-n-octyl phth	alate	ND	10	µg/L	1	7/15/2009				
Dibenz(a,h)ant	hracene	ND	10	µg/L	1	7/15/2009				
Dibenzofuran	-	ND	10	μg/L	- 1	7/15/2009				
1,2-Dichlorobei	nzene	ND	10	μg/L	1	7/15/2009				
1,3-Dichlorober	nzene	ND	10	µg/L	1	7/15/2009				
1,4-Dichlorober	nzene	ND	10	μg/L	1	7/15/2009				
3,3'-Dichlorobe	enzidine	ND	10	μg/L	1	7/15/2009				
Diethyl phthala	te	ND	[.] 10	µg/L	1	7/15/2009				
Dimethyl phtha	late	ND	10	µg/L	1	7/15/2009				
2,4-Dichlorophe	enol	ND	20	µg/L	1	7/15/2009				
2,4-Dimethylph	enol	. ND	10	μg/L	1	7/15/2009				
4,6-Dinitro-2-m	ethylphenøl	ND	20	µg/L	1	7/15/2009				
2,4-Dinitrophen	nol	ND	20	µg/L	1	7/15/2009				
2,4-Dinitrotolue	ne	ND	10	µg/L	1	7/15/2009				
2,6-Dinitrotolue	ne	ND	. 10	μg/L	1	7/15/2009				
Fluoranthene		ND	10	μg/L	1	7/15/2009				
Fluorene		ND	10	μg/L	1	7/15/2009				
Hexachloroben	zene	ND	10	µg/L	1	7/15/2009				
Hexachiorobuta	adiene	ND	10	µg/L	1	7/15/2009				
Hexachlorocycl	lopentadiene	ND	10	µg/L	1	7/15/2009				
Hexachloroetha	ane	ND	10	µg/L	1	7/15/2009				
Indeno(1,2,3-co	d)pyrene	ND	10	µg/L	1	7/15/2009				
Isophorone		ND	10	μg/L	1	7/15/2009				
2-Methylnaphth	alene	ND	10	µg/L	1	7/15/2009				
2-Methylphenol	l	ND	10	µg/L	1	7/15/2009				
3+4-Methylpher	nol	ND	10	µg/L	1	7/15/2009				
N-Nitrosodi-n-p	ropylamine	ND	10	µg/L	1	7/15/2009				
N-Nitrosodimet	hylamine	ND	10	µg/L	1	7/15/2009				
N-Nitrosodipher	nylamine	ND	10	µg/L	1	7/15/2009				
Naphthalene		ND	10	µg/L	1	7/15/2009				
2-Nitroaniline		ND	10	μg/L	1	7/15/2009				
3-Nitroaniline		ND	10	µg/L	1	7/15/2009				
4-Nitroaniline		ND	10	µg/L	1	7/15/2009				
Nitrobenzene		ND	10	μg/L	1	7/15/2009				
2-Nitrophenol		ND	10	µg/L	1	7/15/2009				
4-Nitrophenol		ND	10	μg/L	1	7/15/2009				
Pentachlorophe	enol	ND	20	μg/L	1	7/15/2009				
Phenanthrene		ND	10	µg/L	1	7/15/2009				
Phenol		ND	10	µg/L	1	7/15/2009				
Pyrene		ND	10	µg/L	1	7/15/2009				

Western Refining Southwest, Gallup

CLIENT:

Date: 28-Jul-09

Client Sample ID: BW-2A

Qualifiers: * Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 10 of 26

CLIENT:	Western Refining South	uthwest, Gallup			nt Sample ID:	BW-2A		
Lab Order:	0907192			Co	llection Date:	7/6/2009 3:01:00 PM		
Project: 2009 Annual BW		npling			ate Received:	7/10/2009		
Lab ID:	0907192-03				Matrix:	AQUEOL	JS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD 8	270C: SEMIVOLATILES			عيمية البين والمو			Analyst: JDC	
Pyridine	,	ND	10		µg/L	1	7/15/2009	
1,2,4-Trichlorobe	nzene	ND	10		µg/L	1	7/15/2009	
2,4,5-Trichloroph	enol	ND	10		µg/L	1	7/15/2009	
2,4,6-Trichloroph	enol	ND	10		µg/L	1	7/15/2009	
Surr: 2,4,6-Trit	promophenol	58.1	16.6-150		%REC	1	7/15/2009	
Surr: 2-Fluorot	piphenyl	41 .1	19.6-134		%REC	1	7/15/2009	
Surr: 2-Fluorop	phenol	27.5	9.54-113		%REC	1	7/15/2009	
Surr: 4-Terphe	nyl-d14	54.0	22.7-145		%REC	1	7/15/2009	
Surr: Nitrobenz	zene-d5	41 .1	14.6-134		%REC	1	7/15/2009	
Surr: Phenol-d	5	18.9	10.7-80.3		%REC	1	7/15/2009	
EPA METHOD 8	260B: VOLATILES						Analyst: HL	
Benzene		ND	1.0	•	µg/L	1	7/14/2009 12:05:24 AM	
Toluene		ND	1.0		μg/L	1	7/14/2009 12:05:24 AM	
Ethylbenzene		ND	1.0		µg/L	1	7/14/2009 12:05:24 AM	
Methyl tert-butyl e	ather (MTBE)	. ND	1.0		μg/L	1	7/14/2009 12:05:24 AM	
1.2.4-Trimethvibe	nzene	ND	1.0		μα/L	1	7/14/2009 12:05:24 AM	
1.3.5-Trimethvibe	nzene	ND	1.0		ùg/L	1	7/14/2009 12:05:24 AM	
1.2-Dichloroethar	ne (EDC)	ND	1.0		ug/L	1	7/14/2009 12:05:24 AM	
1.2-Dibromoethar	ne (EDB)	∧ ND	1.0		ua/L	1	7/14/2009 12:05:24 AM	
Naphthalene		ND	2.0		µa/L	1	7/14/2009 12:05:24 AM	
1-Methvinaphthal	ene	ND	4.0		µg/L	1	7/14/2009 12:05:24 AM	
2-Methylnaphthal	ene	ND	4.0		µg/L	1	7/14/2009 12:05:24 AM	
Acetone		ND	10		μg/L	1	7/14/2009 12:05:24 AM	
Bromobenzene		ND	1.0		μg/L.	1	7/14/2009 12:05:24 AM	
Bromodichiorome	thane	ND	1.0		µg/L	1	7/14/2009 12:05:24 AM	
Bromoform		ND	1.0		µg/L	1	7/14/2009 12:05:24 AM	
Bromomethane		ND	1.0		ua/L	1	7/14/2009 12:05:24 AM	
2-Butanone		ND	10		μg/L	1	7/14/2009 12:05:24 AM	
Carbon disulfide		ND	10		µg/L	1	7/14/2009 12:05:24 AM	
Carbon Tetrachlo	ride	ND	1.0		μg/L	1	7/14/2009 12:05:24 AM	
Chlorobenzene		ND	1.0		µg/L	1	7/14/2009 12:05:24 AM	
Chloroethane		ND	2.0		µg/L	1	7/14/2009 12:05:24 AM	
Chloroform		ND	1.0		µg/L	1	7/14/2009 12:05:24 AM	
Chloromethane		ND	1.0		µg/L	1	7/14/2009 12:05:24 AM	
2-Chlorotoluene		ND	1.0		µg/L	1	7/14/2009 12:05:24 AM	
4-Chiorotoluene		ND	1.0		µg/L	1	7/14/2009 12:05:24 AM	
cis-1,2-DCE		ND	1.0		μg/L	1	7/14/2009 12:05:24 AM	
cis-1,3-Dichloropr	opene	ND	1.0		µg/L	1	7/14/2009 12:05:24 AM	
1,2-Dibromo-3-ch	loropropane	ND	2.0		µg/L	1	7/14/2009 12:05:24 AM	
Dibromochlorome	thane	ND	1.0		µg/L	1	7/14/2009 12:05:24 AM	
	· · · ·							

Date: 28-Jul-09

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 11 of 26

Lab ID: 0907192-03	Matrix: AQUEOUS							
Analyses	Result	PQL	Qual U	nits	Dŀ	Date Analyzed		
EPA METHOD 8260B: VOLATILES				an a	ويستعمل فتكفي يستعمر	Analyst: HL		
1,2-Dichlorobenzene	ND	1.0	μg	/L.	1	7/14/2009 12:05:24 AM		
1,3-Dichlorobenzene	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
1,4-Dichlorobenzene	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
Dichlorodifluoromethane	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
1,1-Dichloroethane	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
1,1-Dichloroethene	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
1,2-Dichloropropane	ND	1.0	μĝ	/L	1	7/14/2009 12:05:24 AM		
1,3-Dichloropropane	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
2,2-Dichloropropane	ND	2.0	μg	/L	1	7/14/2009 12:05:24 AM		
1,1-Dichloropropene	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
Hexachlorobutadiene	ND	1.0	μġ	/L	1	7/14/2009 12:05:24 AM		
2-Hexanone	ND	10	μg,	/L	1	7/14/2009 12:05:24 AM		
Isopropylbenzene	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
4-Isopropyitoluene	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
4-Methyl-2-pentanone	ND	10	μg	/L	1	7/14/2009 12:05:24 AM		
Methylene Chloride	ND	3.0	μg	/L	1	7/14/2009 12:05:24 AM		
n-Butylbenzerie	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
n-Propylbenzene	ND	1.0	·μg	/L	1	7/14/2009 12:05:24 AM		
sec-Butylbenzene	ND	1.0	μġ	/L	1	7/14/2009 12:05:24 AM		
Styrene	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
tert-Butylbenzene	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
1,1,1,2-Tetrachloroethane	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
1,1,2,2-Tetrachloroethane	ND	2.0	μg	/L	1	7/14/2009 12:05:24 AM		
Tetrachloroethene (PCE)	ND	1.0	μg	/L.	1	7/14/2009 12:05:24 AM		
trans-1,2-DCE	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
trans-1,3-Dichloropropene	ND	1.0	μg	/∟	1	7/14/2009 12:05:24 AM		
1,2,3-Trichlorobenzene	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
1,2,4-Trichlorobenzene	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
1,1,1-Trichloroethane	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
1,1,2-Trichloroethane	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
Trichloroethene (TCE)	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
Trichlorofluoromethane	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
1,2,3-Trichloropropane	ND	2.0	μg	/L	1	7/14/2009 12:05:24 AM		
Viny) chloride	ND	1.0	μg	/L	1	7/14/2009 12:05:24 AM		
Xylenes, Total	ND	1.5	hð	/L	1	7/14/2009 12:05:24 AM		
Surr: 1,2-Dichloroethane-d4	110	68.1-123	%F	REC	1	7/14/2009 12:05:24 AM		
Surr: 4-Bromofluorobenzene	105	53.2-145	%F	REC	1	7/14/2009 12:05:24 AM		
Surr: Dibromofluoromethane	109	68.5-119	%F	REC	1	7/14/2009 12:05:24 AM		
Surr: Toluene-d8	106	64-131	%F	REC	1	7/14/2009 12:05:24 AM		

2009 Annual BW Sampling

0907192

Western Refining Southwest, Gallup

Date: 28-Jul-09

Client Sample ID: BW-2A Collection Date: 7/6/2009 3:01:00 PM Date Received: 7/10/2009 Matrix: AQUEOUS

Qualifiers:

CLIENT:

Project:

Lab Order:

E Estimated value

*

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 12 of 26

Lab Order:	0907192			Co	7/6/2009 12:20:00 PM					
Project:	2009 Annual BW Sam	2009 Annual BW Sampling				Date Received: 7/10/2009				
Lab ID:	0907192-04			_	Matrix	: AQUEOU	IS			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed			
EPA METHOD	8260B: VOLATILES						Analyst: HL			
Benzene		ND	1.0		ua/L	1	7/14/2009 12:34:29 AM			
Toluene		ND	1.0		ua/L	1	7/14/2009 12:34:29 AM			
Ethylbenzene		ND	1.0		ua/L	1	7/14/2009 12:34:29 AM			
Methyl tert-buty	l ether (MTBE)	ND	1.0		ua/L	1	7/14/2009 12:34:29 AM			
1.2.4-Trimethvil	benzene	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
1.3.5-Trimethvll	benzene	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
1.2-Dichloroeth	ane (EDC)	ND	1.0		ug/L	1	7/14/2009 12:34:29 AM			
1.2-Dibromoeth	ane (EDB)	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
Naphthalene		ND	2.0		µg/L	1	7/14/2009 12:34:29 AM			
1-Methylnaphth	alene	ND	4.0		µg/L	1	7/14/2009 12:34:29 AM			
2-Methylnaphth	alene	ND	4.0	•	µg/L	1	7/14/2009 12:34:29 AM			
Acetone		ND	10		µg/L	1	7/14/2009 12:34:29 AM			
Bromobenzene		ND	1.0		μg/L	1	7/14/2009 12:34:29 AM			
Bromodichloron	nethane	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
Bromoform		ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
Bromomethane		ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
2-Butanone		ND	10		µg/L	1	7/14/2009 12:34:29 AM			
Carbon disulfide	9	ND	10		µg/L	1	7/14/2009 12:34:29 AM			
Carbon Tetrach	loride	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
Chlorobenzene		ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
Chloroethane		ND	2.0		µg/L	1	7/14/2009 12:34:29 AM			
Chloroform		ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
Chloromethane		ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
2-Chlorotoluene	•	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
4-Chlorotoluene	•	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
cls-1,2-DCE		ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
cis-1,3-Dichloro	propene	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
1,2-Dibromo-3-0	chloropropane	ND	2.0		μg/L	1	7/14/2009 12:34:29 AM			
Dibromochloron	nethane	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
Dibromomethar	10	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
1,2-Dichloroben	zene	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
1,3-Dichloroben	zene	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
1,4-Dichloroben	zene	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
Dichlorodifluoro	methane	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
1,1-Dichloroetha	ane	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
1,1-Dichloroethe	ene	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
1,2-Dichloroprop	pane	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
1,3-Dichloroproj	pane	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
2,2-Dichloroproj	pane	ND	2.0		µg/L	1	7/14/2009 12:34:29 AM			
1,1-Dichloropro	pene	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
Hexachlorobuta	diene	ND	1.0		µg/L	1	7/14/2009 12:34:29 AM			
2-Hexanone		ND	10		µg/L	1	7/14/2009 12:34:29 AM			

Western Refining Southwest, Gallup

CLIENT:

Date: 28-Jul-09

Client Sample ID: Field Blank

E Estimated value

Qualifiers:

*

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 13 of 26

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0907192
Project:	2009 Annual BW Sampling
Lab ID:	0907192-04

Date: 28-Jul-09

Client Sample ID: Field Blank Collection Date: 7/6/2009 12:20:00 PM Date Received: 7/10/2009 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: HL
Isopropylbanzane	ND	1.0	µg/L	1	7/14/2009 12:34:29 AM
4-Isopropyltoluene	ND	1.0	µg/L	1	7/14/2009 12:34:29 AM
4-Methyl-2-pentanone	ND	10	µg/L	1	7/14/2009 12:34:29 AM
Methylene Chloride	ND	3.0	µg/L	1	7/14/2009 12:34:29 AM
n-Butylbenzene	ND	1.0	µg/L	1 1	7/14/2009 12:34:29 AM
n-Propylbenzene	ND	1.0	μg/L	4	7/14/2009 12:34:29 AM
sec-Butylbenzene	ND	1.0	μg/L	1	7/14/2009 12:34:29 AM
Styrene	ND	1.0	μg/L	4	7/14/2009 12:34:29 AM
tert-Butyibanzene	ND	1.0	µg/L	1	7/14/2009 12:34:29 AM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	7/14/2009 12:34:29 AM
1,1,2,2-Tetrachloroethane	ND	· 2.0	µg/L	4	7/14/2009 12:34:29 AM
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	7/14/2009 12:34:29 AM
trans-1,2-DCE	ND	1.0	μg/L	1	7/14/2009 12:34:29 AM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	7/14/2009 12:34:29 AM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	7/14/2009 12:34:29 AM
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	7/14/2009 12:34:29 AM
1,1,1-Trichloroethane	ND	1.0	μg/L	. 1	7/14/2009 12:34:29 AM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	7/14/2009 12:34:29 AM
Trichioroethene (TCE)	ND	1.0	µg/L	4	7/14/2009 12:34:29 AM
Trichlorofluoromethane	ND	1.0	µg/L	1	7/14/2009 12:34:29 AM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	7/14/2009 12:34:29 AM
Vinyl chloride	ND	1.0	µg/L	1	7/14/2009 12:34:29 AM
Xylenes, Total	ND	1.5	µg/L	1 .	7/14/2009 12:34:29 AM
Surr: 1,2-Dichloroethane-d4	112	68.1-123	%REC	1	7/14/2009 12:34:29 AM
Surr: 4-Bromofluorobenzene	107	53.2-145	%REC	1	7/14/2009 12:34:29 AM
Surr: Dibromofluoromethane	106	68.5-119	%REC	1	7/14/2009 12:34:29 AM
Surr: Toluene-d8	107	64-131	%REC	1	7/14/2009 12:34:29 AM

Qualifiers:

*

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 14 of 26

Lab Order: 0907192			Collection Date: 7/6/2009 12:31:00 PM					
Project: 2009 Annual BW Sampling		mpling		Date Received	: 7/10/200	7/10/2009		
Lab ID:	0907192-05			Matrix	: AQUEOU	JS		
Analyses	, , ,	Result	PQL	Qual Units	DF	Date Analyzed		
EPA METHOD	7470: MERCURY			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Analyst: MMS		
Mercury	````	ND	0.00020	mg/L	, 1	7/17/2009 5:23:20 PM		
EPA 6010B: TO	OTAL RECOVERABLE	METALS				Analyst: SNV		
Arsenic		ND	0.020	mg/L	1	7/19/2009 9:42:20 PM		
Barium		0.078	0.020	mg/L	1	7/19/2009 9:42:20 PM		
Cadmium		NÐ	0.0020	mg/L	1	7/19/2009 9:42:20 PM		
Chromium		ND	0.0060	mg/L	1 .	7/19/2009 9:42:20 PM		
Copper		ND	0.0060	mg/L	1	7/19/2009 9:42:20 PM		
Iron		0.85	0.050	mg/L	1	7/19/2009 9:42:20 PM		
Lead		ND	0.0050	mg/L	1	7/19/2009 9:42:20 PM		
Magnesium		1.5	1.0	mg/L	1	7/19/2009 9:42:20 PM		
Manganese		0.20	0.0020	mg/L	1	7/19/2009 9:42:20 PM		
Potassium		1.1	1.0	mg/L	1	7/19/2009 9:42:20 PM		
Selenium		ND	0.050	mg/L	1	7/19/2009 9:42:20 PM		
Silver		ND	0.0050	mg/L	1	7/19/2009 9:42:20 PM		
Zinc		ND	0.050	mg/L	1	7/19/2009 9:42:20 PM		
EPA METHOD	8270C: SEMIVOLATILE	S				Analyst: JDC		
Acenaphthene		ND	10	µg/L	1	7/15/2009		
Acenaphthylen	0	ND	10	µg/L	1	7/15/2009		
Aniline		ND	10	µg/L	1	7/15/2009		
Anthracene		ND	10	μg/L	1	7/15/2009		
Azobenzene		ND	10	ua/L	1	7/15/2009		
Benz(a)anthrac	ene	ND	10	ua/L	1	7/15/2009		
Benzo(a)pyrene	3	ND	10	ua/L	1	7/15/2009		
Benzo(b)fluorar	nthene	ND	10	ua/L	1	7/15/2009		
Benzo(a,h.i)per	viene	ND	10	ua/L	1	7/15/2009		
Benzo(k)fluorar	nthene	ND	10	ua/L	1	7/15/2009		
Benzoic acid		ND	20	ug/L	1	7/15/2009		
Benzvl alcohol		ND	10	ua/L	1	7/15/2009		
Bis(2-chloroeth	oxv)methane	ND	10	ua/L	1	7/15/2009		
Bis(2-chloroeth)	vi)ether	ND	-10	ua/L	1	7/15/2009		
Bis(2-chloroisor	propyl)ether	ND	10	µa/l_	1	7/15/2009		
Bis(2-ethylbery	i)phthalate	ND	10	µg/L	1	7/15/2009		
4-Bromophenvi	phenyl ether	ND	10	µag/⊶	1	7/15/2009		
Butyl henzyl ohi	thalate	ND	10		1	7/15/2009		
Carbazole		ND	10	ua/l	, 1	7/15/2009		
4-Chloro-3-meti	hvinhenol		10	ra/h	1	7/15/2009		
4-Chloroaniline		ND	10	uo/l	1	7/15/2009		
2-Chloronanhih	alene		10	2'84 110/l	1	7/15/2009		
2-Chlorophonol			10	HALF HALF	1	7/16/2000		
	shanul other		10	pyre	1	7/15/2000		
Qualitiers:	 value exceeds Maximum 	Contaminant Leve	3	B Analyte de	ected in the as	sociated Method Blank		

Western Refining Southwest, Gallup

CLIENT:

Date: 28-Jul-09

Client Sample ID: BW-2C

NDNot Detected at the Reporting LimitSSpike recovery outside accepted recovery limits

Analyte detected below quantitation limits

Е

J

Estimated value

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 15 of 26

Project: 2009 Annual BW Sampling		Date Received: 7/10/2009					
Lab ID: 0907192-05			Matrix	: AQUEOU	AQUEOUS		
Analyses	Result	PQL	Qual Units	DF	Date Analyzed		
EPA METHOD 8270C: SEMIVOLATILES			۵۰۰۰ (۵ <u>۰ و در اور اور اور اور اور اور اور اور اور او</u>		Analyst: JDC		
Chrysene	ND	10	µg/L	1	7/15/2009		
Di-n-butyi phthalate	ND	10	µg/L	· 1	7/15/2009		
Di-n-octyl phthalate	ND	10	µg/L	1	7/15/2009		
Dibenz(a,h)anthracene	ND	10	µg/L	1	7/15/2009		
Dibenzofuran	ND	10	μg/L	1	7/15/2009		
1,2-Dichlorobenzene	ND	10	μg/L.	1	7/15/2009		
1,3-Dichlorobenzene	ND	10	µg/L	1	7/15/2009		
1,4-Dichlorobenzene	ND	10	µg/L	1	7/15/2009		
3,31-Dichlorobenzidine	ND -	10	µg/L	1	7/15/2009		
Diethyl phthalate	ND	10	µg/L	1	7/15/2009		
Dimethyl phthalate	ND	10	µg/L	1	7/15/2009		
2,4-Dichlorophenol	ND	20	μg/L	1	7/15/2009		
2,4-Dimethylphenol	ND	10	µg/L	1	7/15/2009		
4,6-Dinitro-2-methylphenol	ND	20	µg/L	1	7/15/2009		
2,4-Dinitrophenol	ND	20	µg/L	1	7/15/2009		
2,4-Dinitrotoluene	ND	10	µg/L	1	7/15/2009		
2,6-Dinitrotoluene	ND	10	μg/L	1	7/15/2009		
Fluoranthene	ND	10	µg/L	1	7/15/2009		
Fluorene	ND	10	µg/L	1	7/15/2009		
Hexachlorobenzene	ND	10	µg/L	. 1	7/15/2009		
Hexachlorobutadiene	ND	10	µg/L	1	7/15/2009		
Hexachlorocyclopentadiene	ND	10	µg/L	1	7/15/2009		
Hexachloroethane	ND	10	μg/L	. 1	7/15/2009		
Indeno(1,2,3-cd)pyrene	ND	10	µg/L	1	7/15/2009		
Isophorone	ND	10	µg/L	1	7/15/2009		
2-Methylnaphthalene	ND	10	µg/L	1	7/15/2009		
2-Methylphenol	ND	10	μg/L	1	7/15/2009		
3+4-Methylphenol	ND	10	µg/L	1	7/15/2009		
N-Nitrosodi-n-propylamine	ND	10	µg/L	1	7/15/2009		
N-Nitrosodimetnylamine	ND	10	µg/L	1	7/16/2009		
N-Nitrosodiphenylamine	ND	10	µg/L	1	7/15/2009		
	ND	10	µg/L	1	7/15/2009		
	UN ND	10	µg/L	1	7/15/2009		
	ND	10	μg/L	1	7715/2009		
4-Nitrobonzone		10	µg/L	1	7/15/2009		
2 Nitraphanal		10	µg/L	1	7/15/2009		
2-Initiophenol		10	µg/L	1	7/15/2009		
4-ivicophenol Bantachlorophenol	עוא תוא	20	µg/L	1	7/10/2008		
Penachtorophenor		20	μg/L μα/t	1	7/15/2009		
Phonol		10	µg/L	1	7/15/2009		
Purene		10	μg/L 	4	7/15/2009		
Гуюне	NU	10	µg/L	1	11 1012009		

0907192

Western Refining Southwest, Gallup

CLIENT:

Lab Order:

Date: 28-Jul-09

Client Sample ID: BW-2C Collection Date: 7/6/2009 12:31:00 PM

Qualifiers: Value exceeds Maximum Contaminant Level *

> Ε Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Н Holding times for proparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 16 of 26

CLIENT:	Western Refining Sou	thwest, Gallup		Clien	it Sample ID:	BW-2C	
Lab Order:	0907192			Co	llection Date:	7/6/2009	12:31:00 PM
Project:	2009 Annual BW San	npling		Date Received: 7/10/2009) •
Lab ID:	0907192-05				Matrix:	AQUEOU	JS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8270C: SEMIVOLATILE	S					Analyst: JDC
Pyridine		ND	10		µg/L	1	7/15/2009
1,2,4-Trichlorob	enzene	ND	10		µg/L	1	7/15/2009
2,4,5-Trichlorop	henol	ND	10		µg/L	1	7/15/2009
2,4,6-Trichlorop	henol	ND	. 10		µg/L	1	7/15/2009
Surr: 2,4,6-Ti	ribromophenol	58.1	16.6-150		%REC	1	7/15/2009
Surr: 2-Fluore	obiphenyi	52.6	19.6-134		%REC	1	7/15/2009
Surr: 2-Fluor	ophenol	35.2	9.54-113		%REC	1	7/15/2009
Surr: 4-Terph	ienyl-d14	52.0	22.7-145		%REC	1	7/15/2009
Surr: Nitrober	nzene-d5	51. 1	14.6-134		%REC	1	7/15/2009
Surr: Phenol-	d5	26.2	10.7-80.3		%REC	1	7/15/2009
EPA METHOD	8260B: VOLATILES						Analyst: HL
Benzene		ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
Toluene		ND	1.0		μg/L	· 1	7/14/2009 1:03:47 AM
Ethylbenzene		ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
Methyl tert-buty	l ethør (MTBE)	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
1,2,4-Trimethylt	oenzene	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
1,3,5-Trimethylt	oenzene.	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
1,2-Dichloroetha	ane (EDC)	ND	1.0		μg/L	1	7/14/2009 1:03:47 AM
1,2-Dibromoeth	ane (EDB)	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
Naphthalene		ND	2.0		µg/L	1	7/14/2009 1:03:47 AM
1-Methylnaphth:	alene	ND	4.0		µg/L	1	7/14/2009 1:03:47 AM
2-Methylnaphth	alene	ND	4.0		µg/L	1	7/14/2009 1:03:47 AM
Acetone		ND	10		µg/L	1	7/14/2009 1:03:47 AM
Bromobenzene		ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
Bromodichlorom	nethane	NÐ	1.0		µg/L	1	7/14/2009 1:03:47 AM
Bromoform		ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
Bromomethane		ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
2-Butanone		ND	10		µg/L	1	7/14/2009 1:03:47 AM
Carbon disulfide	•	ND	10		µg/L	1	7/14/2009 1:03:47 AM
Carbon Tetrach	loride	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
Chlorobenzene		ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
Chloroethane		ND	2.0		µg/L	1	7/14/2009 1:03:47 AM
Chloroform		ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
Chloromethane		ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
2-Chlorotoluene		ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
4-Chlorotoluene		ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
cis-1,2-DCE		ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
cis-1,3-Dichloro	propene	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
1,2-Dibromo-3-c	chloropropane	ND	2.0		µg/L	1	7/14/2009 1:03:47 AM
Dibromochloren	nethane	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
Dibromomethan	e	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM

Date: 28-Jul-09

Qualifiers: * Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 17 of 26

Lab Order: 0907192 Collection Date: 7/6/2009 12:31:00 PM Project: 2009 Annual BW Sampling Date Received: 7/10/2009	
Project: 2009 Annual BW Sampling Date Received: 7/10/2009	
Lab ID: 0907192-05 Matrix: AQUEOUS	

Date: 28-Jul-09

Hall Environmental Analysis Laboratory, Inc.

Analyses	Result	PQL	Quai	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					······	Analyst: HL
1,2-Dichlorobenzene	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
1,3-Dichlorobenzene	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
1,4-Dichlorobenzene	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
Dichlorodifiuoromethane	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
1,1-Dichloroethane	ND	1.0		µg/L	1 .	7/14/2009 1:03:47 AM
1,1-Dichloroethene	ND	1.0	•	µg/L	1	7/14/2009 1:03:47 AM
1,2-Dichloropropane	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
1,3-Dichloropropane	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
2,2-Dichloropropane	ND	2.0		µg/L	1	7/14/2009 1:03:47 AM
1,1-Dichloropropene	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
Hexachlorobutadiene	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
2-Hexanone	ND	10		µg/L	1	7/14/2009 1:03:47 AM
Isopropylbenzene	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
4-isopropyltoluene	ND	1.0		µg/L	i	7/14/2009 1:03:47 AM
4-Methyl-2-pentanone	ND	10		µg/L	1	7/14/2009 1:03:47 AM
Methylene Chloride	ND	3.0		µg/L	\$	7/14/2009 1:03:47 AM
n-Butylbenzene	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
n-Propylbenzene	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
sec-Butylbenzene	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
Styrene	ND	1.0		µg/L	4 .	7/14/2009 1:03:47 AM
tert-Butylbenzene	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
1,1,1,2-Tetrachloroethane	ND	. 1.0		µg/L	4	7/14/2009 1:03:47 AM
1,1,2,2-Tetrachloroethane	ND	2.0		µg/L	4	7/14/2009 1:03:47 AM
Tetrachloroethene (PCE)	ND	1.0		µg/L	4	7/14/2009 1:03:47 AM
trans-1,2-DCE	ND	1.0		µg/L	. 4	7/14/2009 1:03:47 AM
trans-1,3-Dichloropropene	ND	1.0		µg/L	4	7/14/2009 1:03:47 AM
1,2,3-Trichlorobenzene	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
1,2,4-Trichlorobenzene	ND	1.0		μg/L	1	7/14/2009 1:03:47 AM
1,1,1-Trichloroethane	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
1,1,2-Trichloroethane	ND	1.0		µg/L	11	7/14/2009 1:03:47 AM
Trichloroethene (TCE)	ND	1.0		µg/L	1	7/14/2009 1:03:47 AM
Trichlorofluoromethane	ND	1.0		µg/L	1 [,]	7/14/2009 1:03:47 AM
1,2,3-Trichloropropane	ND	2.0		µg/L	1	7/14/2009 1:03:47 AM
Vinyl chloride	ND	1.0		µg/L	4	7/14/2009 1:03:47 AM
Xylenes, Total	ND	1.5		μg/L	1	7/14/2009 1:03:47 AM
Surr: 1,2-Dichloroethane-d4	113	68.1-123		%REC	4 .	7/14/2009 1:03:47 AM
Surr: 4-Bromofluorobenzene	105	53.2-145		%REC	'1	7/14/2009 1:03:47 AM
Surr: Dibromofluoromethane	122	68.5-119	S	%REC	1	7/14/2009 1:03:47 AM
Surr: Toluene-d8	104	64-131		%REC	1	7/14/2009 1:03:47 AM

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Estimated value	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	MCL	Maximum Contaminant Level
	ND	Not Detected at the Reporting Limit	RL	Reporting Limit

Spike recovery outside accepted recovery limits S

RL Reporting Limit

Page 18 of 26

CLIENT:	Western Refining Southwest, Gallup
Lab Order:	0907192
Project:	2009 Annual BW Sampling
Lab ID:	0907192-06

Date: 28-Jul-09

Client Sample ID: BW-3B Collection Date: 7/6/2009 2:21:00 PM Date Received: 7/10/2009 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 7470: MERCURY					Analyst: MMS
Mercury	ND	0.00020	mg/L	1	7/17/2009 5:25:04 PM
EPA 6010B: TOTAL RECOVERABLE	EMETALS				Analyst: SNV
Arsenic	ND	0.020	mg/L	1	7/19/2009 9:46:27 PM
Barium	0.098	0.020	mg/L	1	7/19/2009 9:46:27 PM
Cadmium	ND	0.0020	mg/L	· 1	7/19/2009 9:46:27 PM
Chromium	ND	0.0060	mg/L	1	7/19/2009 9:46:27 PM
Copper	ND	0.0060	mg/L	1	7/19/2009 9:46:27 PM
Iron	0.62	0.050	mg/L	1	7/19/2009 9:46:27 PM
Lead	ND	0.0050	mg/L	1	7/19/2009 9:46:27 PM
Magnesium	2.6	1.0	mg/L	1	7/19/2009 9:46:27 PM
Manganese	0.11	0.0020	mg/L	1	7/19/2009 9:46:27 PM
Potassium	ND	1.0	. mg/L	1	7/19/2009 9:46:27 PM
Selenium	ND	0.050	mg/L	1	7/19/2009 9:46:27 PM
Silver	ND	0.0050	mg/L	1	7/19/2009 9:46:27 PM
Zinc	ND	0.050	mg/L	1	7/19/2009 9:46:27 PM
EPA METHOD 8270C: SEMIVOLATIL	.E\$				Analyst: JDC
Acenaphthene	ND	10	µg/L	1	7/15/2009
Acenaphthylene	ND	10	µg/L	1	7/15/2009
Aniline	ND	10	μg/L	1	7/15/2009
Anthracene	ND	10	μg/L	1	7/15/2009
Azobenzene	ND	10	µg/L	1	7/15/2009
Benz(a)anthracene	ND	10	µg/L	1	7/15/2009
Benzo(a)pyrene	ND	10	µg/L	1	7/15/2009
Benzo(b)fluoranthene	ND	10	µg/L	1	7/15/2009
Benzo(g,h,i)perylene	ND	10	µg/L	1	7/15/2009
Benzo(k)fluoranthene	ND	10	µg/L	1	7/15/2009
Benzoic acid	ND	20	µg/L	1	7/15/2009
Benzyl alcohol	ND	10	µg/L	1	7/15/2009
Bis(2-chloroethoxy)methane	ND	10	µg/L	1	7/15/2009
Bis(2-chloroethyl)ether	ND	10	µg/L	1	7/15/2009
Bis(2-chloroisopropyl)ether	ND	10	µg/L	1	7/15/2009
Bis(2-ethylhexyl)phthalate	10	10	µg/L	1	7/15/2009
4-Bromophenyl phenyl ether	ND	10	µg/L	1	7/15/2009
Butyl benzyl phthalate	ND	10	µg/L	1	7/15/2009
Carbazole	ND	10	µg/L	1	7/15/2009
4-Chloro-3-methylphenol	ND	10	µg/L	1	7/15/2009
4-Chloroaniline	ND	10	µg/L	1	7/15/2009
2-Chloronaphthalene	ND	10	µg/Ł	1	7/15/2009
2-Chlorophenol	ND	10	µg/L	1	7/15/2009
4-Chlorophenyl phenyl ether	ND	10	µg/L	1	7/15/2009

Qualifiers: Value exceeds Maximum Contaminant Level *

> Estimated value Ε

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

в Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

MCL Maximum Contaminant Level RL

Reporting Limit

Page 19 of 26

Hall	Environmental	Analysis	Laboratory.	Inc.

2009 Annual BW Sampling

0907192

0907192-06

Western Refining Southwest, Gallup

Client Sample ID: BW-3B Collection Date: 7/6//2009 2:21:00 PM Date Received: 7/10/2009

Lab ID:

CLIENT:

Project:

Lab Order:

Received: 7/10/2009 Matrix: AQUEOUS

Date: 28-Jul-09

Analyses	Result	PQL	Qual Unit	s DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILE	S				Analyst: JDC
Chrysene	ND	10	µg/L	1	7/15/2009
Di-n-butyl phthalate	ND	10	μg/L	1	7/15/2009
Di-n-octyl phthaiate	ND	10	µg/L	1	7/15/2009
Dibenz(a,h)anthracene	ND	10	µg/L	1	7/15/2009
Dibenzofuran	ND	10	µg/L	1 .	7/15/2009
1,2-Dichlorobenzene	ND	10	µg/L	1	7/15/2009
1,3-Dichlorobenzene	ND	10	μg/L	1	7/15/2009
1,4-Dichlorobenzene	ND	10	µg/L	1	7/15/2009
3,3'-Dichlorobenzidine	ND	10	µg/L	1	7/15/2009
Diethyl phthalate	NÐ	10	µg/L	î	7/15/2009
Dimethyl phthalate	ND	10	µg/L	1	7/15/2009
2,4-Dichlorophenol	ND	20	µg/L	1	7/15/2009
2,4-Dimethylphenol	ND	10	µg/L	-	7/15/2009
4,6-Dinitro-2-methylphenol	ND	20.	µg/L	1	7/15/2009
2,4-Dinitrophenol	ND	20	hð\r	1	7/15/2009
2,4-Dinitrotoluene	ND	10	µg/L	1	7/15/2009
2,6-Dinitrotoluene	ND	10	µg/L	1	7/15/2009
Fluoranthene	ND	10	µg/L	1	7/15/2009
Fluorene	ND	10	µg/L	1	7/15/2009
Hexachlorobenzene	ND	10	µg/L	1	7/15/2009
Hexachlorobutadiene	ND	10	µg/L	4	7/15/2009
Hexachlorocyclopentadiene	ND	10	µg/L	1	7/15/2009
Hexachloroethane	ND	10	µg/L	. 1	7/15/2009
Indeno(1,2,3-cd)pyrene	ND	10	µg/L	1	7/15/2009
Isophorone	ND	10	µg/L	4	7/15/2009
2-Methylnaphthalene	ND	10	µg/L	4	7/15/2009
2-Methylphenol	ND	10	µg/L	4	7/15/2009
3+4-Methylphenol	ND	10	µg/L	4	7/15/2009
N-Nitrosodi-n-propylamine	ND	10	µg/L	4	7/15/2009
N-Nitrosodimethylamine	ND	10	µg/L	4	7/15/2009
N-Nitrosodiphenylamine	ND	10	µg/L	1	7/15/2009
Naphthalene	ND	10	µg/L	1	7/15/2009
2-Nitroaniline	ND	10	µg/L	·1	7/15/2009
3-Nitroaniline	ND	10	µg/L	1	7/15/2009
4-Nitroaniline	ND	10	µg/L	1	7/15/2009
Nitrobenzene	ND	10	μg/L	1	7/15/2009
2-Nitrophenol	ND	10	µg/L	.1	7/15/2009
4-Nitrophenol	ND	10	µg/L	1	7/15/2009
Pentachlorophenol	ND	20	µg/L	4 - E	7/15/2009
Phenanthrene	ND	10	µg/L	"	7/15/2009
Phenol	ND	10	µg/L	'	7/15/2009
Pyrene	ND	10	µg/L	1	7/15/2009

Qualifiers: * Value exceeds Maximum Contaminant Level

Estimated value

Ε

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

MCL Maximum Contaminant Level

RL Reporting Limit

Page 20 of 26

CLIENT:	Western Refining South	west, Gallup		Clien	t Sample ID:	BW-3B	
Lab Order:	0907192			Col	lection Date:	7/6/2009 2::	21:00 PM
Project:	2009 Annual BW Sampl	ing		De	ate Received :	7/10/2009	
Lab ID:	0907192-06			2.	Matrix:	AQUEOUS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 82	270C' SEMIVOLATILES						Analyst: JDC
Pyridine		ND	10		uo/L	1	7/15/2009
1.2.4-Trichloroben	izen o	ND	10		ua/L	1	7/15/2009
2,4,5-Trichlorophe	nol	ND	10		ua/L	1	7/15/2009
2,4,6-Trichlorophe	nol	ND	10		ug/L	1	7/15/2009
Surr: 2,4,6-Trib	romophenol	61.9	16.6-150	•	%REC	1	7/15/2009
Surr: 2-Fluorobi	phenyl	46.1	19.6-134		%REC	1	7/15/2009
Surr: 2-Fluoropi	henol	23.2	9.54-113		%REC	1	7/15/2009
Surr: 4-Terphen	iyl-d14	56.4	22.7-145		%REC	1	7/15/2009
Surr: Nitrobenze	ene-d5	36.3	14.6-134		%REC	1	7/15/2009
Surr: Phenol-d5	i	18.0	10.7-80.3		%REC	1	7/15/2009
EPA METHOD 82	60B: VOLATILES						Analyst: HL
Benzene		ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
Toluene		ND	1.0		μg/L	1	7/14/2009 1:32:43 AM
Ethylbenzene		ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
Methyl tert-butyl et	ther (MTBE)	ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
1,2,4-Trimethylber	zene	ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
1,3,5-Trimethylber	zene	ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
1,2-Dichloroethane	e (EDC)	ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
1,2-Dibromoethan	e (EDB)	ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
Naphthalene		ND	2.0		µg/L	1	7/14/2009 1:32:43 AM
1-Methylnaphthale	ne	ND	4.0		µg/L	1	7/14/2009 1:32:43 AM
2-Methyinaphthale	ne	ND	4.0		µg/L	1	7/14/2009 1:32:43 AM
Acetone		ND	10		µg/L	1	7/14/2009 1:32:43 AM
Bromobenzene		ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
Bromodichloromet	hane	ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
Bromoform		ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
Bromomethane		ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
2-Butanone		ND	10		µg/L	1	7/14/2009 1:32:43 AM
Carbon disulfide		ND	10		µg/L	1	7/14/2009 1:32:43 AM
Carbon Tetrachlori	de	ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
Chlorobenzene		ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
Chloroethane		ND	2.0		µg/L	1	7/14/2009 1:32:43 AM
Chloroform		ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
Chloromethane		ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
2-Chlorotoluene		ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
4-Chlorotoluene		ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
cis-1,2-DCE		ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
cis-1,3-Dichloropro	pene	ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
1,2-Dibromo-3-chlo	propropane	ND	2.0		µg/L	1	7/14/2009 1:32:43 AM
Dibromochlorometi	hane	ND	1.0		µg/L	1	7/14/2009 1:32:43 AM
Dibromomethane		ND	1.0		µg/L	1	7/14/2009 1:32:43 AM

E Estimated valueJ Analyte detected below quantitation limits

Qualifiers:

*

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level

B Analyte detected in the associated Method BlankH Holding times for preparation or analysis exceeded

Date: 28-Jul-09

MCL Maximum Contaminant Level

RL Reporting Limit

Page 21 of 26

	Hall	Envi	ironmer	ital 🛛	Analysis	: Lal	borato	ry,	Inc.
--	------	------	---------	--------	----------	-------	--------	-----	------

CLIENT: Western Refining Southwest, Gallup Lab Order: 0907192 **Project:** 2009 Annual BW Sampling Lab ID: 0907192-06

Date: 28-Jul-09

Client Sample ID: BW-3B Collection Date: 7/6/2009 2:21:00 PM Date Received: 7/10/2009 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: HL
1,2-Dichlorobenzene	ND	1.0	μg/L	1	7/14/2009 1:32:43 AM
1,3-Dichlorobenzene	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
1,4-Dichlorobenzene	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
Dichlorodifluoromethane	ND	1.0	μg/L	1	7/14/2009 1:32:43 AM
1,1-Dichloroethane	ND	1.0	µg/L	· 1	7/14/2009 1:32:43 AM
1,1-Dichloroethene	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
1,2-Dichloropropane	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
1,3-Dichloropropane	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
2,2-Dichloropropane	ND	2.0	µg/L	· 1	7/14/2009 1:32:43 AM
1,1-Dichloropropene	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
Hexachlorobutadiene	. ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
2-Hexanone	ND	10	µg/L	1	7/14/2009 1:32:43 AM
Isopropylbenzene	ND	1.0	µg/L	· 1	7/14/2009 1:32:43 AM
4-Isopropyltoluene	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
4-Methyl-2-pentanone	ND	10	µg/L	1	7/14/2009 1:32:43 AM
Methylene Chloride	ND	3.0	µg/L	1	7/14/2009 1:32:43 AM
n-Butylbenzene	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
n-Propylbenzene	ND	1.0	μg/L	1	7/14/2009 1:32:43 AM
sec-Butylbenzene	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
Styrene	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
tert-Butylbanzene	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	7/14/2009 1:32:43 AM
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
trans-1,2-DCE	ND	1.0	μg/L	1	7/14/2009 1:32:43 AM
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	7/14/2009 1:32:43 AM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	7/14/2009 1:32:43 AM
1,1,1-Trichloroethane	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
1,1,2-Trichloroethane	ND	· 1.0	µg/L	1	7/14/2009 1:32:43 AM
Trichloroethene (TCE)	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
Trichlorofluoromethane	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
1,2,3-Trichloropropane	ND	2.0	μg/L	1	7/14/2009 1:32:43 AM
Vinyl chloride	ND	1.0	µg/L	1	7/14/2009 1:32:43 AM
Xylenes, Total	ND	1.5	µg/L	1	7/14/2009 1:32:43 AM
Surr: 1,2-Dichloroethane-d4	111	68.1-123	%REC	1	7/14/2009 1:32:43 AM
Surr: 4-Bromofluorobenzene	101	53.2-145	%REC	1	7/14/2009 1:32:43 AM
Surr: Dibromofluoromethane	116	68.5-119	%REC	1	7/14/2009 1:32:43 AM
Surr: Toluene-d8	101	64-131	%REC	1	7/14/2009 1:32:43 AM

Qualifiers:

*

- Value exceeds Maximum Contaminant Level E Estimated value
- Analyte detected below quantitation limits J
- Not Detected at the Reporting Limit ND
- Spike recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 22 of 26

CLIENT:	Western Refining So	uthwest, Gallup		Clier	it Sample ID:	BW-3C				
Lab Order:	0907192			Co	llection Date:	ion Date: 7/6/2009 3:40:00 PM				
Project:	2009 Annual BW Sa	mpling		D	ate Received:	7/10/2009				
Lab ID:	0907192-07			Matrix:		AQUEOUS				
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed			
EPA METHOD	7470: MERCURY						Analyst: MMS			
Mercury		ND	0.00020		mg/L	1	7/17/2009 5:26:48 PM			
EPA 6010B: TO		METALS			•		Analyst: SNV			
Arsenic		ND	0.020		mg/L	1	7/19/2009 9:50:49 PM			
Barium		0.054	0.020		mg/L	1	7/19/2009 9:50:49 PM			
Cadmium		ND	0.0020		mg/L	1	7/19/2009 9:50:49 PM			
Chromium		ND	0.0060		mg/L	1	7/19/2009 9:50:49 PM			
Copper		ND	0.0060		mg/L	1	7/19/2009 9:50:49 PM			
iron		0.19	0.050		mg/L	1	7/19/2009 9:50:49 PM			
Lead		ND	0.0050		mg/L	1	7/19/2009 9:50:49 PM			
Magnesium		ND	1.0		mg/L	1	7/19/2009 9:50:49 PM			
Manganese		0.020	0.0020		mg/L	1	7/19/2009 9:50:49 PM			
Potassium		ND	1.0		mg/L	1	7/19/2009 9:50:49 PM			
Selenium		ND	0.050		mg/L	1	7/19/2009 9:50:49 PM			
Silver	• .	ND	0.0050		mg/L	1	7/19/2009 9:50:49 PM			
Zinc		ND	0.050		mg/L	1	7/19/2009 9:50:49 PM			
EPA METHOD 8	3270C: SEMIVOLATILE	s					Analyst: JDC			
Acenaphthene		ND	10		ug/L	1	7/15/2009			
Acenaphthylene		ND	10		ug/L	1	7/15/2009			
Aniline		ND	10		µg/L	1	7/15/2009			
Anthracene		ND	10		µg/L	1	7/15/2009			
Azobenzene		ND	10		ug/L	1	7/15/2009			
Benz(a)anthrace	ne	ND	10		µg/L	1	7/15/2009			
Benzo(a)pyrené		ND	10		ug/L	1	7/15/2009			
Benzo(b)fluorant	hene	ND	10		ug/L	1	7/15/2009			
Benzo(a,h,i)perv	lene	ND	10		ua/L	1	7/15/2009			
Benzo(k)fluorant	hene	ND	10		ua/L	1	7/15/2009			
Benzoic acid		ND	20		µg/L	1	7/15/2009			
Benzyl alcohol		ND	10		ua/L	1	7/15/2009			
Bis(2-chloroetho	xy)methane	ND	10		µg/L	1	7/15/2009			
Bis(2-chloroethy)	l)ether	ND	10		µg/L	1	7/15/2009			
Bis(2-chloroisopr	ropyl)ether	ND	10		ug/L	1	7/15/2009			
Bis(2-ethylhexyl)	phthalate	ND	10		µg/L	1	7/15/2009			
4-Bromophenyl p	ohenyl ether	ND	10		ug/L	1	7/15/2009			
Butyl benzyl ohth	nalate	ND	10		ua/L	1	7/15/2009			
Carbazole		ND	10		µg/L	1	7/15/2009			
4-Chloro-3-methy	viphenol	ND	10		uo/L	1	7/15/2009			
4-Chloroaniline	, , , , , , , , , ,	ND	10		ua/L	1	7/15/2009			
2-Chloronanhtha	lene	ND	10		ua/L	1	7/15/2009			
2-Chlorophenol		ND	10		ua/L	1	7/15/2009			
4-Chlorophenyl p	ohenyl ether	ND	10		μg/L	1	7/15/2009			
Qualifiara *	Value evogede Mavimum	Contaminant Level		1	P Analista data	tod in the accord	inted Mathed Diaula			

Qualifiers:

Ε Estimated value

Analyte detected below quantitation limits J

Not Detected at the Reporting Limit ND

Spike recovery outside accepted recovery limits S

в tected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 23 of 26

24

Date: 28-Jul-09 Client Sample ID: BW-3C

CLIENT:	Western Refining Southwest, Gallup	Client Sample ID:	BW-3C
Lab Order:	0907192	Collection Date:	7/6/2009 3:40:00 PM
Project:	2009 Annual BW Sampling	Date Received:	7/10/2009
Lab ID:	0907192-07	Matrix:	AQUEOUS

Result **PQL** Qual Units DF **Date Analyzed** Analyses Analyst: JDC EPA METHOD 8270C: SEMIVOLATILES ND 10 µg/L 1 7/15/2009 Chrysene 1 7/15/2009 10 Di-n-butyl phthalate ND µg/L ND 10 µg/L 1 7/15/2009 Di-n-octyl phthalate ND 10 µg/L 1 7/15/2009 Dibenz(a,h)anthracene 1 7/15/2009 ND 10 µg/L Dibenzofuran 1 7/15/2009 ND 10 µg/L 1,2-Dichlorobenzene 10 1 7/15/2009 1,3-Dichlorobenzene ND µg/L 4 7/15/2009 ND 10 µg/L 1,4-Dichlorobenzene ND 10 µg/L 1 7/15/2009 3.3'-Dichlorobenzidine 4 7/15/2009 Diethyl phthalate ND 10 µg/L **Dimethyl phthalate** ND 10 µg/L 4 7/15/2009 ND 20 µg/L 4 7/15/2009 2,4-Dichlorophenol ND 10 µg/L 1 7/15/2009 2,4-Dimethylphenol ND 20 μ<mark>g</mark>/L 1 7/15/2009 4,6-Dinitro-2-methylphenol ND 20 µg/L ·ł 7/15/2009 2,4-Dinitrophenol ND 10 µg/L 1 7/15/2009 2,4-Dinitrotoluene 2,6-Dinitrotoluene ND 10 μg/Ł 1 7/15/2009 7/15/2009 ND 10 µg/L 4 Fluorantherie 7/15/2009 Fluorene ND 10 μg/L 1 Hexachlorobenzene ND 10 µg/L 1 7/15/2009 ND 10 µg/L ٠í 7/15/2009 Hexachlorobutadiene ND 10 1 7/15/2009 Hexachiorocyclopentadiene µg/L 7/15/2009 ND 10 μg/L 1 Hexachloroethane ND 10 μg/L 1 7/15/2009 Indeno(1,2,3-cd)pyrene ND 10 1 7/15/2009 µg/L Isophorone 7/15/2009 2-Methylnaphthalene ND 10 µg/L 1 7/15/2009 2-Methylphenol NÐ 10 µg/L 1 7/15/2009 ND 10 µg/L 3+4-Methylphenol 1 ND 10 µg/L 7/15/2009 N-Nitrosodi-n-propylamine í ND 10 7/15/2009 N-Nitrosodimethylamine µg/L 1 7/15/2009 N-Nitrosodiphenylamine ND 10 µg/L 1 ND 10 7/15/2009 Naphthalene µg/L 1 ND 7/15/2009 10 μ<mark>g/L</mark> 2-Nitroaniline 1 ND 10 µg/L 7/15/2009 **3-Nitroaniline** 1 ND 10 µg/L 1 7/15/2009 4-Nitroaniline ND 10 µg/L 1 7/15/2009 Nitrobenzene ND 10 µg/L 1 7/15/2009 2-Nitrophenol ND 10 µg/L 7/15/2009 4-Nitrophenol 1 20 7/15/2009 ND µg/L 1 Pentachlorophenol ND 10 7/15/2009 µg/L Phenanthrene 1

Qualifiers: * Value exceeds Maximum Contaminant Level

E Estimated value

Phenol

Pyrene

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

ND

ND

B Analyte detected in the associated Method Blank

1

1

Date: 28-Jul-09

H Holding times for preparation or analysis exceeded

7/15/2009 7/15/2009

MCL Maximum Contaminant Level

RL Reporting Limit

µg/L

µg/L

Page 24 of 26

25

10

CLIENT: Western Refining South	west, Gallup		Client Sample ID:	BW-3C	
Lab Order: 0907192	-		Collection Date:	7/6/2009 3:4	40:00 PM
Project: 2009 Annual BW Samp	ling		Date Received	7/10/2009	
Lob ID: 0007102.07	0		Matrix	AOUEOUS	
Lab ID: 0907192-07					
Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8270C: SEMIVOLATILES					Analyst: JDC
Pyridine	ND	10	μg/L	1	7/15/2009
1,2,4-Trichlorobenzene	ND	10	µg/L	1	7/15/2009
2,4,5-Trichlorophenol	ND	10	µg/L	1	7/15/2009
2,4,6-Trichlorophenol	ND	10	µg/L	1	7/15/2009
Surr: 2,4,6-Tribromophenol	79.6	16.6-150	%REC	1	7/15/2009
Surr: 2-Fluorobiphenyl	66.8	19.6-134	%REC	1	7/15/2009
Surr: 2-Fluorophenol	45.9	9.54-113	%REC	1	7/15/2009
Surr: 4-Terphenyl-d14	65.6	22.7-145	%REC	1	7/15/2009
Surr: Nitrobenzene-d5	67.1	14.6-134	%REC	1	7/15/2009
Surr: Phenol-d5	33.5	10.7-80.3	%REC	1	7/15/2009
EPA METHOD 8260B: VOLATILES					Analyst: HL
Benzene	ND	1.0	µg/L	1	7/14/2009 2:02:11 AM
Toluene	ND	1.0	µg/L	1	7/14/2009 2:02:11 AM
Ethylbenzene	ND	1.0	µg/L	.1	7/14/2009 2:02:11 AM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	7/14/2009 2:02:11 AM
1.2.4-Trimethylbenzene	ND	1.0	ua/L	1	7/14/2009 2:02:11 AM
1.3.5-Trimethylbenzene	ND	1.0	ug/L	1	7/14/2009 2:02:11 AM
1.2-Dichloroethane (EDC)	ND	1.0	ua/L	1	7/14/2009 2:02:11 AM
1.2-Dipromoethane (EDB)	ND	1.0	ua/L	1	7/14/2009 2:02:11 AM
Naphthalene	ND	2.0	uo/I.	1	7/14/2009 2:02:11 AM
1-Methvinaphthalene	ND	4.0	. ua/L	1	7/14/2009 2:02:11 AM
2-Methvinaphthalene	ND	4.0	ua/L	1	7/14/2009 2:02:11 AM
Acetone	ND	10	ua/l	1	7/14/2009 2:02:11 AM
Bromobenzene	ND	1.0	ua/i	1	7/14/2009 2:02:11 AM
Bromodichlorometbane	ND	1.0	ug/t	1	7/14/2009 2:02:11 AM
Bromoform	ND	1.0	µg/L	1	7/14/2009 2:02:11 AM
Bromomethane	ND	1.0	ug/l	1	7/14/2009 2:02:11 AM
2-Butanone	ND	10	ug/L	1	7/14/2009 2:02:11 AM
Carbon disulfide	ND	10	ug/l	1	7/14/2009 2:02:11 AM
Carbon Tetrachloride	ND	1.0	1-9/L	1	7/14/2009 2:02:11 AM
Chlorobenzene	ND	1.0	uo/l	1	7/14/2009 2:02:11 AM
Chloroethane	ND	20	µg/= µg/l	1	7/14/2009 2:02:11 AM
Chloroform	ND	1.0	µg/1	1	7/14/2009 2:02:11 AM
Chloromethane	ND	10	10/	1	7/14/2009 2:02:11 AM
2-Chlorotoluene	ND	1.0	µg/c	1	7/14/2009 2:02:11 AM
4-Chlorotoluene	ND .	1.0	ua/l	1	7/14/2000 2:02:11 AM
cis-1 2-DCF		1.0	va/	, 1	7/14/2009 2·02·11 AM
cis-1 3-Dichloropropene	ND	1.0	на/I	1	7/14/2008 2:02:11 AW
1.2-Dibromo-3-chloronzonane		ע.י חיכ	₩97⊏ 0.0/1	1	7/14/2008 2:02:11 200
Dibromochloromethane		2.U 4.D		1	7/14/2000 2:02:11 MIVI
Dibromomethane		1.0		1 1	7/14/2008 2.02.11 ANI
		i.u		I	1114/2009 2.02:11 AW

Date: 28-Jul-09

Qualifiers: * Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 25 of 26

Project: 2009 Annual BW Sa	ampling	Img Date Received: 7/10/2009									
Lab ID: 0907192-07				ÚS							
Analyses	Result	PQL	Qual Uni	its DF	Date Analyzed						
EPA METHOD 8260B: VOLATILES					Analyst: HL						
1,2-Dichlorobenzene	ND	1.0	µg/L	_ 1	7/14/2009 2:02:11 AM						
1,3-Dichlorobenzene	ND	1.0	μg/L	- 1	7/14/2009 2:02:11 AM						
1,4-Dichlorobenzene	ND	1.0	µg/L	- 1	7/14/2009 2:02:11 AM						
Dichlorodifluoromethane	ND	1.0	µg/L	- 1	7/14/2009 2:02:11 AM						
1,1-Dichloroethane	ND	1.0	µg/l	- 1	7/14/2009 2:02:11 AM						
1,1-Dichloroethene	ND	1.0	µg/l	- 1	7/14/2009 2:02:11 AM						
1,2-Dichloropropane	ND	1.0	μg/L	. 1	7/14/2009 2:02:11 AM						
1,3-Dichloropropane	ND	1.0	µg/L	- 1	7/14/2009 2:02:11 AM						
2,2-Dichloropropane	ND	2.0	μg/L	- 1	7/14/2009 2:02:11 AM						
1,1-Dichloropropene	ND	1.0	µg/l	1	7/14/2009 2:02:11 AM						
Hexachlorobutadiene	ND	1.0	µg/ł	1	7/14/2009 2:02:11 AM						
2-Hexanone	ND	10	µg/L	- 1	7/14/2009 2:02:11 AM						
Isopropylbenzene	ND	1.0	µg/l	- 1	7/14/2009 2:02:11 AM						
4-isopropyitoluene	ND	1.0	µg/i	_ 1	7/14/2009 2:02:11 AM						
4-Methyl-2-pentanone	ND	10	µg/L	- 1	7/14/2009 2:02:11 AM						
Methylene Chloride	ND	3.0	µg/L	- 1	7/14/2009 2:02:11 AM						
n-Butylbenzene	ND	1.0	μg/L	- 1	7/14/2009 2:02:11 AM						
n-Propylbenzene	ND	1.0	µg/L	- · 1	7/14/2009 2:02:11 AM						
sec-Butylbenzene	ND	1.0	µg/l	_ 1	7/14/2009 2:02:11 AM						
Styrene	ND	1.0	μg/ί	_ 1	7/14/2009 2:02:11 AM						
tert-Butylbenzene	ND	1.0	µg/L	- 1	7/14/2009 2:02:11 AM						
1,1,1,2-Tetrachloroethane	ND	1.0	µg/l	- 1	7/14/2009 2:02:11 AM						
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	- 1	7/14/2009 2:02:11 AM						
Tetrachloroethene (PCE)	ND	1.0	µg/l	<u> </u>	7/14/2009 2:02:11 AM						
trans-1,2-DCE	ND	1.0	µg/l	L 1	7/14/2009 2:02:11 AM						
trans-1,3-Dichloropropene	ND	1.0	μg/l	L 1	7/14/2009 2:02:11 AM						
1,2,3-Trichlorobenzene	ND	1.0	µg/l	- 1	7/14/2009 2:02:11 AM						
1,2,4-Trichlorobenzene	ND	1.0	µg/i	L 1	7/14/2009 2:02:11 AM						
1,1,1-Trichloroethane	ND	1.0	hâ/l	- 1	7/14/2009 2:02:11 AM						
1,1,2-Trichloroethane	ND	1.0	µg/l	- 1	7/14/2009 2:02:11 AM						
Trichloroethene (TCE)	ND	1.0	μ g /ι	- 1	7/14/2009 2:02:11 AM						
Trichlorofluoromethane	ND	1.0	µg/l	- 1	7/14/2009 2:02:11 AM						
1,2,3-Trichloropropane	ND	2.0	µg/l	. 1	7/14/2009 2:02:11 AM						
Vinyi chloride	ND	1.0	µg/l	- 1	7/14/2009 2:02:11 AM						
Xylenes, Total	ND	1.5	µg/L	- 1	7/14/2009 2:02:11 AM						
Surr: 1,2-Dichloroethane-d4	113	68.1-123	%R	EC 1	7/14/2009 2:02:11 AM						
Surr: 4-Bromofluorobenzene	106	53. 2-145	%R	EC 1	7/14/2009 2:02:11 AM						
Surr: Dibromofluoromethane	116	68.5-119	%R	EC 1	7/14/2009 2:02:11 AM						
Surr: Toluene-d8	110	64-131	%R	EC 1	7/14/2009 2:02:11 AM						

0907192

Western Refining Southwest, Gallup

.....

CLIENT:

Lab Order:

Date: 28-Jul-09

Collection Date: 7/6/2009 3:40:00 PM

Client Sample ID: BW-3C

Estimated value Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Qualifiers:

*

Е

J

S Spike recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 26 of 26

LABORATORY ANALYTICAL REPORT

Cilent: Site Name:	Hall Environmental 0907192						Report D	late: 07/24/09
Lab ID: Client Sample ID: Matrix:	C09070529-001 BW-1C Aqueous						Collection E DateRecei	Date: 07/08/09 11:45 ved: 07/14/09
Analyses.		Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
METALS - TOTAL Uranium		0.002	mg/L		0.001		SW6020	07/22/08 23:36 / sml
Lab ID: Client Sample ID: Matrix:	C09070529-002 BW-2B Aqueous					(Collection D DateRecel	ate: 07/06/09 13:42 ved: 07/14/09
Analyses		Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
METALS - TOTAL Uranium		0.013	mg/Ļ		0.001		SW6020	07/22/09 23:46 / sml
Lab ID: Cilent Sample ID: Matrix:	C09070529-003 BW-2A Aqueous					(Collection D DateRecei	ate: 07/08/09 15:01 ved: 07/14/09
Analyses		Result	Units	Qualifiers	RL.	MCL/ QCL	Method	Analysis Date / By
METALS - TOTAL Uranium		ND	mg/L		0.001		SW6020	07/22/09 23:51 / sml
Lab ID: Client Sample ID: Matrix:	C09070529-004 BW-2C Aqueous					(Collection D DateReceiv	ate: 07/06/09 12:31 ved: 07/14/09
Analyses		Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
METALS - TOTAL Uranium		0.005	mg/L		0.001		SW6020	07/22/09 23:56 / sml

ReportRL - Analyte reporting limit.Definitions:QCL - Quality control limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

LABORATORY ANALYTICAL REPORT

Client: Site Name:	Hall Environmental 0907192						Report D	ate: 07/24/09
Lab ID: Client Sample ID; Matrix:	C09070529-005 BW-3B Aqueous		·····			(Collection D DateRecely	ate: 07/06/09 14:21 /ed: 07/14/09
Analyses		Result	Units	Qualifiers	RL	MCL/ QCL	Method)	Analysis Date / By
METALS - TOTAL Uranium		ND	mg/L		0.001		SVV602D	07/23/09 00:21 / sml
Lab ID: Client Sample ID; Matrix:	C09070529-006 BW-3C Aqueous	Atoma contra ana				(Collection D DateReceiv	ate: 07/06/09 15:40 /ed: 07/14/09
Analyses		Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
METALS - TOTAL Uranium		0.001	mg/L		0.001		SV/6020	07/23/09 00:26 / sml

ReportRL - Analyte reporting limit.Definitions:QCL - Quality control limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888,235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

QA/QC Summary Report

Client: Hall Environmental

Project: 0907192

Report Date: 07/24/09 Work Order: C09070529

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6020								Bat	ch: 23079
Sample ID: MB-23079 Uranium	Method Blank ND	mg/L	5E-05		Run: ICPM	S4-C_0907228		07/22	2/09 23:22
Sample ID: LCS3-23079 Uranlum	Laboratory Co 0,508	ntrol Sample mg/L	ə 0.00030	102	Run: ICPM 85	S4-C_0907228 115		07/22	2/09 23:27
Sample ID: C09070577-003CMS3 Uranium	Sample Matrix 0.557	Spike mg/L	0.00030	109	Run: ICPM 75	S4-C_090722B 125		07/23	8/09 01:44
Sample ID: C09070577-003CMSD3 Uranium	Sampie Matrix 0.567	Spike Dupli mg/L	cate 0.00030	111	Run: ICPM 75	S4-C_0907228 125	1.7	07/23 _20	3/09 01:49

Qualifiers: RL - Analyte reporting limit.

•

ND - Not detected at the reporting limit.

QA/QC SUMMARY REPORT

Analyte Result Units PQL %Rec LowLimit HighLimit %RPD RPDLimit Qual Method: EPA Method 22700: Semivolaties MBLX Batch ID: 19689 Analysis Date: 7/15/2 Ananaphthylene ND µµL 10 Analysis Date: 7/15/2 Ananaphthylene ND µµL 10 Analysis Date: 7/15/2 Anthracene ND µµL 10 Analysis Date: 7/15/2 Anthracene ND µµL 10 Batch ID: 19689 Analysis Date: 7/15/2 Benzole/Infuroantene ND µµL 10 Batch ID: 19689 Analysis Date: 7/15/2 Benzole/Infuroantene ND µµL 10 Batch ID: 19679 10 10 Benzole/Infuroantene ND µµL 10 Batch ID: 19679 10 10 Batch Interlineation ND µµL 10 Batch ID: 1972 10 10 10 Batch ID: 1982 ND µµL 10 10 10 10 10 Calcohoneshylphthalte ND µµL 10 10 10 10 10 Calcohoneshylphthalte ND µµL 10 10<	Client: Wester Project: 2009	rn Refining South Annual BW Samp	west, Gallup ling	>		-		י	Work Order:	0907192
Nethod: EPA Method 82700; Semivolatiles Sample ID: mb-19589 MBLX Batch ID: 19569 Anelysis Date: 7/15/2 Acenaphthylen ND µg/L 10 Analita ND µg/L 10 Antifacere ND µg/L 10 Acenaphthylen ND µg/L 10 Acenaphthylen ND µg/L 10 Baz(antifactoria) ND µg/L 10 Benzo(sh)fuorantione ND µg/L 10 Benzo(sh)fuorantione ND µg/L 10 Benzo(sh)fuorantione ND µg/L 10 Actionosinyfuorantione ND µg/L 10 Benzo(sh)fuorantione </th <th>Analyte</th> <th>Result</th> <th>Ünits</th> <th>PQL</th> <th>%Rec</th> <th>LowLimit</th> <th>HighLimit</th> <th>%RPD</th> <th>RPDLimit</th> <th>Qual</th>	Analyte	Result	Ünits	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sample ID: mb-19689 MBLK Batch ID: 19689 Anelysis Date: 7/16/2 AcanaphtNene ND µg/L 10 Anline ND µg/L 10 Anline ND µg/L 10 Anline ND µg/L 10 Anline ND µg/L 10 AcanaphtNycen ND µg/L 10 Benz(a)nytracene ND µg/L 10 Benz(a)nytracene ND µg/L 10 Benzo(a)nytracene ND µg/L 10 Benzo(a)nytracene ND µg/L 10 Benzo(a)nytracenthere ND µg/L 10 Benzo(a)nytracenthere ND µg/L 10 Benzo(a)nothere ND µg/L 10 Benzo(a)nothere ND µg/L 10 Benzo(a)nothere ND µg/L 10 Benzo(a)nothere ND µg/L 10 Cathoroshonthere ND µg/L 10 Benzo(a)nothere ND µg/L 10 Benzo(a)nothere	Method: EPA Method 82	270C: Semivolatiles	3							
Aceanaphtheme ND µgL 10 Acenaphthylene ND µgL 10 Anthracene ND µgL 10 Anthracene ND µgL 10 Anthracene ND µgL 10 Benzo(hytrene ND µgL 10 Benzo(hytrenethere ND µgL 10 Achtorabenzopapythere ND µgL 10 Achtorabenzopapythythatale ND µgL 10	Sample ID: mb-19589		MBLK			Batch	ID: 19589	Analysis I	Date:	7/15/2009
Aceraphthylene ND µg/L 10 Anitracene ND µg/L 10 Acthracene ND µg/L 10 Accentratene ND µg/L 10 Benzold()pytene ND µg/L 10 Benzold()pytene ND µg/L 10 Benzold()pytene ND µg/L 10 Benzold()fuoranthene ND µg/L 10 Benzold()fuoranthene ND µg/L 20 Benzold alcohol ND µg/L 10 Cathoroshiphenol ND µg/L 10 Cathoroshiphenol ND µg/L 10	Acenaphthene	ND .	ua/L	10						
Aniline ND µµL 10 Anthracene ND µµL 10 Acbenzene ND µµL 10 Benzo(b)pyren ND µµL 10 Benzo(b)pyrene ND µµL 10 Benzo(b)fyrene ND µµL 10 Benzo(b)fyren ND µµL 10 Benzo(b)fyren ND µµL 10 Benzo(b)fyren/en/en ND µµL 10 Benzo(b)forcen/pyren/en ND µµL 10 Benzo(b)forcen/pyren/en ND µµL 10 Bin(2-chloreelnopyren/lenre ND µµL 10 Bin(2-chloreelnopyren/lenre ND µµL 10 Chloroeelnop/lenvil/entriate ND µµL 10 Chloroeelnop/lenvil/e	Acenaphthylene	ND	ua/L	10						
Anthrasene ND µg/L 10 Azobenzere ND µg/L 10 Benz(a)anthracene ND µg/L 10 Benz(b)(tranthracene ND µg/L 10 Benzo(b)(tranthracene ND µg/L 10 Benzo(b,1)(toranthrac ND µg/L 10 Benzo(b,1)(toranthrac ND µg/L 10 Benzo(b,1)(toranthrac ND µg/L 10 Benzo(b,1)(toranthrac ND µg/L 10 Benzo(b)(toranthrac ND µg/L 10 Benzo(b)(toranthrac ND µg/L 10 Bin(2-chorolscopy)(phern ND µg/L 10 Bin(2-chorolscopy)(phern) ND µg/L 10 Carbazole ND µg/L 10 Carbazole ND µg/L 10 Carbazole ND µg/L 10 Chorosphyliphenyl ether ND µg/L 10 Din-ocity phinshalate ND	Aniline	ND	µg/L	10		•		•		
Azbentzene ND pg/L 10 Genz(gia)anthracene ND µg/L 10 Benzo(gi)prene ND µg/L 10 Benzo(gi)fuoranthene ND µg/L 10 Bit(2-chlorothoxy)methrane ND µg/L 10 Bit(2-chlorothoxy)pathra ND µg/L 10 Bit(2-chlorothoxy)pathrate ND µg/L 10 Bit(2-chlorothoxy)pathrate ND µg/L 10 Bit(2-chlorothoxy)pathrate ND µg/L 10 Actionorphenyl pathrate ND µg/L 10 4-Chlorothoxenthitele ND µg/L 10 2-Chlorothophenol ND µg/L 10 2-Chlorothophenol ND µg/L 10	Anthracene	ND	ua/L	10						
Senz(q)enthracene ND pg/L 10 Benzo(g)/prese ND µg/L 10 Benzo(g)//prese ND µg/L 10 Benzo(g)//prese ND µg/L 10 Benzo(g)///prese ND µg/L 10 Benzols aloho ND µg/L 10 Benzols aloho ND µg/L 10 Bit(2-chlorekny/methane ND µg/L 10 Bit(2-chlorekny/methane ND µg/L 10 Bit(2-chlorekny/methane ND µg/L 10 Bit(2-chlorekny/methane ND µg/L 10 Alsomophenyl phenyl ether ND µg/L 10 Carbozole ND µg/L 10 Chlorophenol ND µg/L 10<	Azobenzene	ND	ua/L	10						
Benzo(s)pyrene ND µg/L 10 Benzo(s)/locranthene ND µg/L 10 Bin(2-chlorothoxy)mathane ND µg/L 10 Chlorothoximation ND µg/L 10 Chlorothomation ND µg/L 10 Chlorothomatione ND µg/L 10 Chlorothomatione ND µg/L 10 Chlorothomatione ND µg/L 10	Benz(a)anthracene	ND	ug/L	10						
Benzo(b)furanthene ND µg/L 10 Bin(2-chlorosity)inefhane ND µg/L 10 Bin(2-chlorosity)inefhante ND µg/L 10 Bin(2-chlorosity)inefhante ND µg/L 10 Calica-chirosity phenyl either ND µg/L 10 Chlorosity phenyl either ND µg/L 10 Chlorosithy phenyl either ND µg/L 10 Din-butyl phthalate ND µg/L	Benzo(a)pyrene	ND	uo/L	10						
Benzo(g,h.)perylene ND µg/L 10 Benzo(g,h.)perylene ND µg/L 10 Benzo(a, alionathow) ND µg/L 10 Benzo(a, alionathow) ND µg/L 10 Bin(2-chloridehy) ND µg/L 10 Alformophenyl phenyl atter ND µg/L 10 4-Chloro-3-methylphenol ND µg/L 10 2-Chlorophenyl phenyl atter ND µg/L 10 2-Chlorophenyl phenyl atter ND µg/L 10 2-Chlorophenyl phenyl atter ND µg/L 10 Di-n-otyl phthalate ND µg/L 10 Di-notyl phthalate ND µg/L 10	Benzo(b)fluoranthene	ND	ug/L	10						
Benzol(d)/uoranthene ND µg/L 10 Benzol cald ND µg/L 20 Benzol cald ND µg/L 10 Bia(2-chloroethoxy)methane ND µg/L 10 4-Bromophenyl phenyl ather ND µg/L 10 4-Bromophenyl phenyl ather ND µg/L 10 4-Chlorosathine ND µg/L 10 4-Chlorosathine ND µg/L 10 2-Chlorophenol ND µg/L 10 2-Chlorophenyl phenyl ather ND µg/L 10 Din-butyl phthalate ND µg/L 10 Din-butyl phthalate ND µg/L 10 1.2-Oichlorobenzene ND µg/L 10	Benzo(a,h,i)perviene	ND	uo/L	10						
Benzola acid ND µg/L 20 Benzyl alcohol ND µg/L 10 Bid(2-chloroboxy)mstance ND µg/L 10 Bid(2-chloroboxy)mstance ND µg/L 10 Bid(2-chloroby)pstance ND µg/L 10 Bid(2-chloroby)pstance ND µg/L 10 Bid(2-chloroby)pstance ND µg/L 10 Carbazole ND µg/L 10 Chlorophenol ND µg/L 10 Chlorophenol ND µg/L 10 Din-nocity hinhialte ND µg/L 10 Din-nocity hinhialte ND µg/L 10 Distry iphthialte ND µg/L 10 <td>Benzo(k)fluoranthene</td> <td>ND</td> <td>r-s/− µa/L</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Benzo(k)fluoranthene	ND	r-s/− µa/L	10						
Benzyl alcohol ND µg/L 10 Bir(2-chloroshoxy)methane ND µg/L 10 Bir(2-chloroshoxy)pethane ND µg/L 10 Carbazole ND µg/L 10 4-Chloro-amethylphenol ND µg/L 10 2-Chlorophenyl phenyl ather ND µg/L 10 2-Chlorophenol ND µg/L 10 2-Chlorophenol ND µg/L 10 Di-nottyl phthalate ND µg/L 10 Di-nottyl phthalate ND µg/L 10 Dienzofran ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 <t< td=""><td>Benzoic acid</td><td>ND</td><td>μο/L</td><td>20</td><td>. •</td><td></td><td></td><td></td><td></td><td></td></t<>	Benzoic acid	ND	μο/L	20	. •					
Bit Description ND µg/L 10 Bit C-chlorosthylylether ND µg/L 10 Bit Bit Description ND µg/L 10 Bit Bit Description ND µg/L 10 Bit Bit Description ND µg/L 10 4-Bromophenyl phenyl ather ND µg/L 10 Cartazole ND µg/L 10 4-Chioro-3-methylphenol ND µg/L 10 Cartazole ND µg/L 10 2-Chiorophthalene ND µg/L 10 Cartazole ND µg/L 10 2-Chiorophthalene ND µg/L 10 Description Cartazole Description ND µg/L 10 2-Chiorophenol ND µg/L 10 Description	Benzvi alcohol	ND	ua/L	10						
Bit Description ND µg/L 10 Bit Bit Description ND µg/L 10 Bit Abromohenvi phenyi ather ND µg/L 10 Bit Description ND µg/L 10 Bit Description ND µg/L 10 Carbazole ND µg/L 10 4-Chioro-S-nethylphenol ND µg/L 10 4-Chioro-S-nethylphenol ND µg/L 10 4-Chioro-S-nethylphenol ND µg/L 10 2-Chioronaphthalane ND µg/L 10 2-Chiorophenol ND µg/L 10 Di-no-totyl phthalate ND µg/L 10 Di-no-totyl phthalate ND µg/L 10 Dienzofuran ND µg/L 10 J.2-Dichorobenzene ND µg/L 10 J.3-Dichorobenzene ND µg/L 10 J.4-Dichorobenzene ND	Bis(2-chloroethoxy)methane	ND	ug/L	10						
Sint 2-absolution (spropy) et al. ND µg/L 10 Bis(2-ethrolization (spropy) et al. ND µg/L 10 Bis(2-ethrolization (spropy) et al. ND µg/L 10 4-Bromophenyl phenyl ether ND µg/L 10 Carbazole ND µg/L 10 4-Chioroalline ND µg/L 10 2-Chioroaphthalene ND µg/L 10 2-Chioroaphthalene ND µg/L 10 2-Chioroaphthalene ND µg/L 10 2-Chioroaphthalene ND µg/L 10 Chrysene ND µg/L 10 Di-n-otyl phthalate ND µg/L 10 Dienzet/uran ND µg/L 10 Dienzet/uran ND µg/L 10 1,2-Dichlorobenzene ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 1,4-Dichlorobenzene ND µg/L 10 2,4-Dimityl phthalate ND µg/L 10 Dimityl phthalate	Bis(2-chloroethyl)ether	ND	ug/t.	10						
Bil/2-ethylhesylphihalde ND µg/L 10 44Bronophenyl phenyl ather ND µg/L 10 Bulyl benzyl phthalate ND µg/L 10 Carbazole ND µg/L 10 4-Chioro-3-methylphenol ND µg/L 10 4-Chioro-3-methylphenol ND µg/L 10 2-Chiorophenol ND µg/L 10 Di-n-botly lphthalate ND µg/L 10 Di-n-botly lphthalate ND µg/L 10 Dibenzofran ND µg/L 10 1,2-Dichlorobenzene ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 3.3-Dichlorobenzene ND µg/L 10 Dimithyl phthalate ND µg/L 10 Dimithyl phthalate ND	Bis(2-chloroisopropyl)ether	ND	μα/L	10						
ABromophenyl phenyl ather ND µg/L 10 Butyl berzyl phthalate ND µg/L 10 Carbazole ND µg/L 10 4-Chioro-Smethylphenol ND µg/L 10 4-Chioro-Smethylphenol ND µg/L 10 4-Chioro-anithylphenol ND µg/L 10 2-Chiorophenol ND µg/L 10 2-Chiorophenol ND µg/L 10 2-Chiorophenol ND µg/L 10 2-Chiorophenol ND µg/L 10 Chiorophenyl phenyl ather ND µg/L 10 Di-n-cityl phthalate ND µg/L 10 Di-n-cityl phthalate ND µg/L 10 Dibenzofuran ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 Distript phthalate ND µg/L 10 Dimstryl phthalate ND µg/L 10 2,4-Dinkhylphenol ND <	Bis(2-ethvlhexvl)obthalate	ND	uo/)	10						
Buthylensylphenol ND µg/L 10 Carbazole ND µg/L 10 4-Chicro-3-methylphenol ND µg/L 10 4-Chicro-3-methylphenol ND µg/L 10 2-Chicronaphthalane ND µg/L 10 2-Chicrophenol ND µg/L 10 Di-n-outyl phthalate ND µg/L 10 Dien-ocityl phthalate ND µg/L 10 Dienzofuran ND µg/L 10 1,3-Dichorobenzane ND µg/L 10 1,3-Dichorobenzaline ND µg/L 10 1,4-Dichorobenzaline ND µg/L 10 2,4-Dichorophenol ND µg/L 10 2,4-Dichorophenol ND <	4-Bromophenyl phenyl ather		10/l	10						-
Day Letter ND µg/L 10 4-Chloro-3-methylphenol ND µg/L 10 4-Chloroaniline ND µg/L 10 2-Chlorophenol ND µg/L 10 Di-n-bulyl phthalate ND µg/L 10 Di-n-bulyl phthalate ND µg/L 10 Dibenz(a,h)anthracene ND µg/L 10 Dibenzofuran ND µg/L 10 1,2-Dichlorobenzene ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 1,4-Dichlorobenzene ND µg/L 10 1,4-Dichlorobenzene ND µg/L 10 2,4-Dinithor2-methylphenol ND µg/L 10 2,4-Dinithor2-methylphenol ND µg/L 10 2,4-Dinitrophenol ND µg/L <td>Butyl benzyl onthalate</td> <td>ND</td> <td>μο/l</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Butyl benzyl onthalate	ND	μο/l	10						
4-Chioro-amethylphenol ND µg/L 10 4-Chioro-amethylphenol ND µg/L 10 2-Chiorophenol ND µg/L 10 2-Chiorophenol ND µg/L 10 2-Chiorophenol ND µg/L 10 2-Chiorophenol ND µg/L 10 Chrosophenol ND µg/L 10 Din-buly iphthalate ND µg/L 10 Din-buly iphthalate ND µg/L 10 Diban2(a, h)anthracone ND µg/L 10 Diban2(a, h)anthracone ND µg/L 10 1,2-Dichorobenzene ND µg/L 10 1,3-Dichorobenzene ND µg/L 10 1,4-Dichorobenzene ND µg/L 10 1,4-Dichorobenzene ND µg/L 10 1,4-Dichorobenzene ND µg/L 10 2,4-Dimethylphenol ND µg/L 10 2,4-Dinitro-2-methylphenol ND µg/L 20 2,4-Dinitro-2-methylphenol ND	Carbazole	ND	ug/L	10						
A-Chioroantiline ND µg/L 10 2-Chioronaphthalene ND µg/L 10 2-Chiorophenol ND µg/L 10 4-Chiorophenol ND µg/L 10 4-Chiorophenol ND µg/L 10 Chiorophenol ND µg/L 10 Di-n-butyl phthalate ND µg/L 10 Di-n-octyl phthalate ND µg/L 10 Dibenzofuran ND µg/L 10 1/2-Dichlorobenzene ND µg/L 10 1/2-Dichlorobenzene ND µg/L 10 1/2-Dichlorobenzene ND µg/L 10 3/3-Dichlorobenzene ND µg/L 10 Ji-tolitorobenzene ND µg/L 10 Diethyl phthalate ND µg/L 10 Diethyl phthalate ND µg/L 10 2,4-Dichlorophenol ND µg/L 20 2,4-Dinitroblene ND µg/L 20 2,4-Dinitorophenol ND µg/L 10	4-Chioro-3-methvinhenol	ND	uo/L	10						
2-Chioronaphthalene ND µg/L 10 2-Chioronaphthalene ND µg/L 10 4-Chiorophenyi phenyi ether ND µg/L 10 Chrosene ND µg/L 10 Din-butyi phthalate ND µg/L 10 Din-butyi phthalate ND µg/L 10 Dibenz(a,h)anthracene ND µg/L 10 Dibenz(a,h)anthracene ND µg/L 10 1,2-Dichlorobenzene ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 1,4-Dichlorobenzene ND µg/L 10 Dithyi phthalate ND µg/L 10 Dimethyi phthalate ND µg/L 10 2,4-Dichlorophenol ND µg/L 20 2,4-Dinitrophenol ND µg/L 20 2,4-Dinitrophenol ND µg/L 10 Fluoranthene ND <	4-Chioroanilina	ND	µg/L	10						
Chirosoftaphanol ND µg/L 10 4-Chirosoftaphanol ND µg/L 10 4-Chirosoftaphanol ND µg/L 10 Chirosoftaphanol ND µg/L 10 Din-bulyi phthalate ND µg/L 10 Din-octyl phthalate ND µg/L 10 Dibenz(a, h)anthracene ND µg/L 10 Dibenzofuran ND µg/L 10 1,2-Dichlorobenzene ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 3,3-Dichlorobenzidine ND µg/L 10 3,3-Dichlorobenzidine ND µg/L 10 Disthyl phthalate ND µg/L 10 Disthyl phthalate ND µg/L 10 2,4-Dinchlorophenol ND µg/L 10 4,6-Dinitro-2-methylphenol ND µg/L 20 2,4-Dinitrobluene ND µg/L 10 Fluoranthene	2-Chloronanhthalene	ND	µg/⊏ µg/l	10						
A Chlorophenyl phenyl ether ND µg/L 10 Chrysene ND µg/L 10 Di-n-butyl phthalate ND µg/L 10 Di-n-butyl phthalate ND µg/L 10 Dien-club phthalate ND µg/L 10 Dibenz(a,h)anthracene ND µg/L 10 Dibenzofuran ND µg/L 10 1,2-Dichlorobenzene ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 1,4-Dichlorobenzene ND µg/L 10 Direthyl phthalate ND µg/L 10 Direthyl phtholate ND µg/L 10 2,4-Dinthorphenol ND µg/L 20 2,4-Dinitrofluene ND µg/L 20 2,4-Dinitrofluene ND µg/L 20 2,4-Dinitrofluene ND µg/L 20 2,4-Dinitrofluene ND µg/L 10 Fluoranthene ND µg/L <td>2-Chlorophenol</td> <td>ND</td> <td>P9/► Da/l</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2-Chlorophenol	ND	P9/► Da/l	10						
Homopheny provided by p	4-Chlorophenyl phenyl ether		pg/L	10						
Din-Duty phthalate ND µg/L 10 Din-Duty phthalate ND µg/L 10 Dibenz(a,h) anthracene ND µg/L 10 Dibenz(a,h) anthracene ND µg/L 10 Dibenz(a,h) anthracene ND µg/L 10 1,2-Dichlorobenzene ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 3,3-Dichlorobenzene ND µg/L 10 3,3-Dichlorobenzene ND µg/L 10 Diethyl phthalate ND µg/L 10 Diethyl phthalate ND µg/L 10 Diethyl phthalate ND µg/L 10 Dimethyl phthalate ND µg/L 10 2,4-Dichlorophenol ND µg/L 20 2,4-Dinitrooluene ND µg/L 10 2,4-Dinitrooluene ND µg/L 10 2,6-Dinitrooluene ND µg/L 10 2,6-Dinitrooluene ND µg/L 10 Fluorene ND µg	Chrysene	ND	µg/L	10						
Din-octy pg/L 10 Dibenz(a,h)anthracene ND µg/L 10 Dibenz(a,h)anthracene ND µg/L 10 Dibenz(a,h)anthracene ND µg/L 10 1,2-Dichlorobenzene ND µg/L 10 1,2-Dichlorobenzene ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 3,3'-Dichlorobenzene ND µg/L 10 Disthyl phthalate ND µg/L 10 Disthyl phthalate ND µg/L 10 2,4-Dichlorophenol ND µg/L 10 2,4-Dinitro-Phenol ND µg/L 20 2,4-Dinitrophenol ND µg/L 20 2,4-Dinitrophenol ND µg/L 20 2,4-Dinitrophenol ND µg/L 10 2,6-Dinitrotoluene ND µg/L 10 2,6-Dinitrotoluene ND µg/L 10 Fluoranthene ND µg/L 10 Fluorene ND µg/L 10 <td>Di-n-hutvi nhthalata</td> <td></td> <td>µg/L</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Di-n-hutvi nhthalata		µg/L	10						
Dihenz(a,h)anthracene ND µg/L 10 Dibenz(a,h)anthracene ND µg/L 10 1,2-Dichlorobenzene ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 1,4-Dichlorobenzene ND µg/L 10 3,3'-Dichlorobenzene ND µg/L 10 3,3'-Dichlorobenzidine ND µg/L 10 Dientyl phthalate ND µg/L 10 Dimethyl phthalate ND µg/L 10 2,4-Dichlorophenol ND µg/L 20 2,4-Dinitro2-methylphenol ND µg/L 20 2,4-Dinitrobuene ND µg/L 10 2,6-Dinitrotoluene ND µg/L 10 2,6-Dinitrotoluene ND µg/L 10 Fluorene ND µg/L 10 Fluorene ND µg/L 10 Fluorene ND µg/L 10 Hexachlorobenzene ND µg/L 10 Huorene ND µg/L 10 </td <td>Di-n-baly) philialate</td> <td>ND</td> <td>μg/L μg/l</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Di-n-baly) philialate	ND	μg/L μg/l	10						
Disbenzofuran ND µg/L 10 1,2-Dichlorobenzene ND µg/L 10 1,3-Dichlorobenzene ND µg/L 10 1,4-Dichlorobenzene ND µg/L 10 3,3'-Dichlorobenzene ND µg/L 10 3,3'-Dichlorobenzene ND µg/L 10 Diethyl phthalate ND µg/L 10 Dimethyl phthalate ND µg/L 10 2,4-Dichlorophenol ND µg/L 20 2,4-Dinitro-2-methylphenol ND µg/L 20 2,4-Dinitrotoluene ND µg/L 20 2,4-Dinitrotoluene ND µg/L 10 4,6-Dinitrotoluene ND µg/L 10 2,4-Dinitrotoluene ND µg/L 10 Fluorenthene ND µg/L 10 Fluorene ND µg/L 10 Hexachlorobenzene ND µg/L 10 Hexachlorobenzene ND µg/L 10 <td>Dibenz(a h)anthracene</td> <td>ND</td> <td>µg/L ug/l</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Dibenz(a h)anthracene	ND	µg/L ug/l	10						
InstructionInstructionInstruction1,2-DichlorobenzeneND $\mu g/L$ 101,3-DichlorobenzeneND $\mu g/L$ 103,3'-DichlorobenzidineND $\mu g/L$ 103,3'-DichlorobenzidineND $\mu g/L$ 10Diethyl phthalateND $\mu g/L$ 102,4-DichlorophenolND $\mu g/L$ 202,4-Dinitro-2-methylphenolND $\mu g/L$ 202,4-Dinitro-2-methylphenolND $\mu g/L$ 202,4-DinitrotolueneND $\mu g/L$ 202,4-DinitrotolueneND $\mu g/L$ 10FluorantheneND $\mu g/L$ 10FluoreneND $\mu g/L$ <td>Dibenzofuran</td> <td>ND</td> <td>ug/L</td> <td>10</td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td>	Dibenzofuran	ND	ug/L	10				,		
1,3-DichlorobenzeneND $\mu g/L$ 101,4-DichlorobenzeneND $\mu g/L$ 103,3'-DichlorobenzidineND $\mu g/L$ 10Diethyl phthalateND $\mu g/L$ 10Dimethyl phthalateND $\mu g/L$ 102,4-DichlorophenolND $\mu g/L$ 202,4-DichlorophenolND $\mu g/L$ 202,4-Dinitro-2-methylphenolND $\mu g/L$ 202,4-DinitrobenolND $\mu g/L$ 202,4-DinitrobenolND $\mu g/L$ 202,4-DinitrobueneND $\mu g/L$ 102,6-DinitrotolueneND $\mu g/L$ 10FluorantheneND $\mu g/L$ 10FluorantheneND $\mu g/L$ 10FluorantheneND $\mu g/L$ 10ChuellfiersND $\mu g/L$ 10	1 2-Dichlorohenzene	ND	ua/l	10						
1,4-DichlorobenzeneND $\mu g/L$ 103,3'-DichlorobenzidineND $\mu g/L$ 10Diethyl phthalateND $\mu g/L$ 10Dimethyl phthalateND $\mu g/L$ 102,4-DichlorophenolND $\mu g/L$ 202,4-DichlorophenolND $\mu g/L$ 104,6-Dinitro-2-methylphenolND $\mu g/L$ 202,4-DinitrobleneND $\mu g/L$ 202,4-DinitrobleneND $\mu g/L$ 202,4-DinitrobleneND $\mu g/L$ 202,4-DinitrobleneND $\mu g/L$ 10FluorantheneND $\mu g/L$ 10FluorantheneND $\mu g/L$ 10FluoreneND $\mu g/L$ 10FluoreneND $\mu g/L$ 10HexachlorobenzeneND $\mu g/L$ 10Chalifiers:ND $\mu g/L$ 10	1 3-Dichlorobenzene	ND	ua/L	10				-		
3.3'-Dichlorobenzidine ND µg/L 10 Diethyl phthalate ND µg/L 10 Dimethyl phthalate ND µg/L 10 2,4-Dichlorophenol ND µg/L 20 2,4-Dimethylphenol ND µg/L 20 2,4-Dinitro-2-methylphenol ND µg/L 20 2,4-Dinitrobuene ND µg/L 10 Fluoranthene ND µg/L 10 Fluorene ND µg/L 10 Hexachlorobenzene ND µg/L 10	1.4-Dichlorobenzene	ND	μg/L	10						
Distryl phthalateNDµg/L10Dimethyl phthalateNDµg/L102,4-DichlorophenolNDµg/L202,4-DimethylphenolNDµg/L104,6-Dinitro-2-methylphenolNDµg/L202,4-DinitrophenolNDµg/L202,4-DinitrotolueneNDµg/L202,4-DinitrotolueneNDµg/L102,6-DinitrotolueneNDµg/L10FluorantheneNDµg/L10FluoreneNDµg/L10HexachlorobenzeneNDµg/L10	3.3'-Dichlorobenzidine	ND	ug/L	10						
Dimethyl phthalateNDµg/L102,4-DichlorophenolNDµg/L202,4-DimethylphenolNDµg/L104,6-Dinitro-2-methylphenolNDµg/L202,4-DinitrophenolNDµg/L202,4-DinitrotolueneNDµg/L102,6-DinitrotolueneNDµg/L10FluorantheneNDµg/L10FluoreneNDµg/L10HexachlorobenzeneNDµg/L10	Diethyl ohthalate	ND	ug/L	10						
2,4-Dichlorophenol ND µg/L 20 2,4-Dimethylphenol ND µg/L 10 4,6-Dinitro-2-methylphenol ND µg/L 20 2,4-Dinitrophenol ND µg/L 20 2,4-Dinitrophenol ND µg/L 20 2,4-Dinitrophenol ND µg/L 20 2,4-Dinitrotoluene ND µg/L 10 2,6-Dinitrotoluene ND µg/L 10 Fluoranthene ND µg/L 10 Fluorene ND µg/L 10 Hexachlorobenzene ND µg/L 10	Dimethyl phthalate	ND	ug/L	10						
2,4-Dimethylphenol ND µg/L 10 4,6-Dinitro-2-methylphenol ND µg/L 20 2,4-Dinitrophenol ND µg/L 20 2,4-Dinitrotoluene ND µg/L 10 2,6-Dinitrotoluene ND µg/L 10 2,6-Dinitrotoluene ND µg/L 10 Fluoranthene ND µg/L 10 Fluorene ND µg/L 10 Hexachlorobenzene ND µg/L 10	2.4-Dichlorophenol	ND	ua/L	20			÷			
4,6-Dinitro-2-methylphenol ND µg/L 20 2,4-Dinitrophenol ND µg/L 20 2,4-Dinitrotoluene ND µg/L 10 2,6-Dinitrotoluene ND µg/L 10 2,6-Dinitrotoluene ND µg/L 10 Fluoranthene ND µg/L 10 Fluorene ND µg/L 10 Hexachlorobenzene ND µg/L 10	2.4-Dimethylphenol	ND	ug/L	10						
2,4-DinitrophenolND $\mu g/L$ 202,4-DinitrotolueneND $\mu g/L$ 102,6-DinitrotolueneND $\mu g/L$ 10FluorantheneND $\mu g/L$ 10FluoreneND $\mu g/L$ 10HexachlorobenzeneND $\mu g/L$ 10	4.6-Dinitro-2-methylphenol	ND	ua/L	20						
2,4-DinitrotolueneND $\mu g/L$ 102,6-DinitrotolueneND $\mu g/L$ 10FluorantheneND $\mu g/L$ 10FluoreneND $\mu g/L$ 10HexachlorobenzeneND $\mu g/L$ 10	2.4-Dinitrophenol	ND	ua/L	20						
2,6-Dinitrotoluene ND µg/L 10 Fluoranthene ND µg/L 10 Fluorene ND µg/L 10 Hexachlorobenzene ND µg/L 10	2.4-Dinitrotoluene	ND	μg/L	10						
Fluoranthene ND µg/L 10 Fluorene ND µg/L 10 Hexachlorobenzene ND µg/L 10	2.6-Dinitrotoluene	ND	ua/L	10						
Fluorene ND µg/L 10 Hexachlorobenzene ND µg/L 10	Fluoranthene	ND	ua/L	10						
Hexachlorobenzene ND µg/L 10	Fluorene	ND	uo/l	10						
Chalifiers	Hexachlorobenzene	ND	va/⊑ ua/L	10						
Civalifiere			ra, -					4		
	Oualifiers:		•••••							······

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 1

Page 2

QA/QC SUMMARY REPORT

Client: Western I Project: 2009 Ann	Refining South	west, Gallup						,	Work Order	. 0907192
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLi	imit	%RPD	RPDLimit	Qual
Method EPA Method 82700	: Semivolatiles									· · · · · · · · · · · · · · · · · · ·
Sample ID: mb-19589		MBLK			Batch	ID:	19589	Analysis [Date:	7/15/2009
Hoxachlotohutadiene	ND	ug/I	10					•		
Hexachiorocyclonentadiene	ND	µg/L	10							
Hevechloroethane	ND	µg/L µg/l	10							
Indeno(1.2.3-cd)pyrene		pg/c ug/k	10							
Isophorone	ND	ру <i>г.</i> 110/1	10							
2-Methylnanhthalene	ND	P9/E	10							
2-Methylobenol	ND	H8/C	10							
3+4-Methylphenol	ND	49/E	10							
N-Nitrosodi-n-propylamine	ND	μ α/ Ι	10							
N-Nitrosodimethylamine	ND	µ9/⊑ ⊔0/1	10							
N-Nitrosodinhenviamine	ND	н <u>в</u> /с	10							
Nanhthalene	ND	µ9/L µ0/l	10							
2-Nitroaniline	ND	µg/c ua/t	10							
2-Nitroaniline	ND	P8/E	10							
A-Nitroaniline	ND	10/l	10					,		
Nitrobenzene	ND	pg/L	10							
2-Nitrophenol	ND	μg/L μα/Ι	10							
		μ 9/ Ε	10							
Pentachlorophenol		µg/L ug/l	20							
Phananthrene	ND	pg/L	10							
Phanol	ND	pg/L	10							
Burono		µg/L	10							
Pyridine		µg/L	10							
	ND	µg/L	10							
2.4.5 Trichletenhanel	ND ND	µg/L	10							
2,4,5-Trichlesenhanel	ND	µg/L	10							
	ND	μg/L	10		Datab	10.		A b i - F		7/4 5/0000
Sample ID: ICS-19589		LUS			Batch	1 D : 1	19069	Analysis L	Jale	//15/2009
Acenaphthene	53.54	hð\r	10	53.5	33.2	88.1				
4-Chloro-3-methylphenol	109.0	µg/L	10	54.5	26.5	101				
2-Chlorophenol	92.30	µg/L	10	46.2	27.5	88.7				
1,4-Dichlorobenzene	43.48	µg/L	10	43.5	27.2	74.1				
2,4-Dinitrotoluene	58.54	µg/L	10	58.5	32.6	107				
N-Nitrosodi-n-propylamine	56.04	µg/L	10	56.0	27.1	96.3				
4-Nitrophenoi	54.76	µg/L	10	27.4	6.78	74.7				
Pentachlorophenol	101.1	µg/L	20	50.5	14.8	113				
Phenol	55.80	µg/L	10	27.9	17	53.4				
Pyrene	59.02	µg/L	10	59.0	27	96.3				
1,2,4-Trichlorobenzene	50.20	µg/L	10	50.2	30	77.9				
Sample ID: Icsd-19589		LCSD			Batch	ID: 1	19589	Analysis E	Date:	7/15/2009
Acenaphthene	61.14	µg/L	10	61.1	33.2	88.1		13.3	30.5	
4-Chloro-3-methylphenol	121.4	µg/L	10	60.7	26.5	101		10.8	28.6	
2-Chlorophenol	115.3	µg/L	10	57.7	27.5	88.7		22.2	107	
1,4-Dichlorobenzene	56.88	µg/L	10	56.9	27.2	74.1		26.7	62.1	
2.4-Dinitrotoluene	67.02	µg/L	10	67.0	32.6	107		13.5	14.7	
· ····································		• • • · ·								

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client: Project:	Western R 2009 Annu	efining Southv al BW Sampl	vest, Gallu ing	р				·	Work C	Order:	0907192
Analyte		Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDI	_imit (Jual
Method: EPA M	ethod 8270C:	Semivolatiles	1000			Retab	D: 40500				7/15/0000
sample in: icso-	19989		LUSD			Datch	10. 19909	Analysis L	Jale.		7715/2008
N-Nitrosodi-n-propy	lamine	67.18	µg/L	10	67.2	27.1	96.3	18,1	30.3		
4-Nitrophenol		45.28	µg/L	10	22.6	6.78	74.7	19.0	36.3	i	
Pentachiorophenol		107.8	µg/iL	20	53.9	14.8	113	6.45	49		
Phenol		69.14	μg/L	. 10	34.6	17	53.4	21.4	52.4	· · · .	
Pyrene		66.28	µg/L	10	66.3	27	96.3	11.6	16.3	i i	
1,2,4-Trichlorobenz	ene	61.66	µg/L	10	61.7	30	77.9	20.5	36.4		
Method: EPA M	ethod 7470: N	flercury									
Sample ID: MBLH	(-19626		MBLK			Batch	D: 19626	Analysis [Date:	7/17/20	09 5:01:24 PM
Mercury		ND	mg/L	0.00020							
Sample ID: LCS1	-19626		LCS			Batch	D: 19626	Analysis E	Date:	7/17/20	09 5:03:12 PM
Mercury		0.005110	mg/L	0.00020	102	80	120				
Sample ID: LCS1	-19626		LĈS			Batch	D: 19626	Analysis E	Date:	7/17/20	09 5:44:44 PM
Mercury		0.004754	mg/L	0.00020	94.6	80	120				

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 3

Page 4

QA/QC SUMMARY REPORT

Western Refining Southwest, Gallup **Client: Project:** 2009 Annual BW Sampling Work Order: 0907192 Units PQL %Rec LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result EPA 6010B: Total Recoverable Metals Method: Analysis Date: 7/19/2009 8:45:14 PM Batch ID: 19607 MBLK Sample ID: MB-19607 Arsenic 0.02216 mg/L 0.020 ND 0.010 mg/L Barium Cadmium ND mg/L 0.0020 Chromium ND mg/L 0.0060 Copper ND mg/L 0.0060 Iron ND mg/L 0.050 0.0050 ND Lead mg/L Magnesium ND mg/L 0.50 ND 0.0020 Manganese mg/L Potassium ND mg/L 1.0 ND 0.050 Selenium mg/L Silver ND mg/L 0.0050 Zinc ND mg/L 0.020 7/19/2009 8:48:20 PM Batch ID: 19607 Analysis Date: Sample ID: LCS-19607 LCS В 0.5052 mg/L 0.020 96.6 80 120 Arsenic 99.0 80 120 0.010 Barium 0.4950 mg/L 98.6 80 120 Cadmium 0.4931 mg/L 0.0020 80 120 0.4985 0.0060 99.7 Chromium mg/L 120 0.0060 103 80 Copper 0.5151 mg/L 80 120 0.050 109 Iron 0.5426 mg/L 120 Lead 0.4878 mg/L 0.0050 97.6 80 0.50 98.8 80 120 Magnesium 49.42 mg/L 0.0020 99.1 80 120 Manganese 0.4953 mg/L 106 80 120 1.0 52.83 mg/L Potassium 120 Selenium 0.4429 ma/L 0.050 88.6 80 Silver 0.0050 99.7 80 120 0.4992 mg/L Zinc 80 120 0.4824 mg/L 0.020 96.0 Batch ID: Analysis Date: 7/19/2009 8:51:39 PM LCS 19607 Sample ID: LCS-19607 0 в 2.79 80 120 0.020 93.8 Arsenic 0.4913 ma/L 0.669 0 98.3 80 120 Barium 0.4917 mg/L 0.010 0.346 0 80 120 Cadmium 0.4914 mg/L 0.0020 98.3 99.4 80 120 0.298 0 Chromium 0.4971 mg/L 0.0060 0 80 120 0.542 0.0060 102 Copper 0.5123 mg/L 0 0.050 107 80 120 0.948 Iron 0.5375 ma/L 0.0050 95.6 80 120 2.05 0 Lead 0.4779 mg/L 80 120 0.0517 0 49.39 mg/L 0.50 98.7 Magnesium 80 120 0.825 0 0.4912 mg/L 0.0020 98.2 Manganese 80 120 0.154 0 105 1.0 Potassium 52.75 mg/L 0 0.050 94.3 80 120 6.29 Selenium 0.4716 mg/L 98.7 80 120 0.986 0 Silver 0.0050 0.4943 mg/L 0.847 0 0.020 95.1 80 120 Zinc 0.4783 mg/L

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits.

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:WesteProject:2009 A	rn Refining South Annual BW Samp	west, Galluj ling)				,	Work Order	: 0907192
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Method: EPA Method 82	60B: VOLATILES						·····		······································
Sample ID: 5ml rb		MBLK			Batch	ID: R34506	Analysis I	Date: 7/13/	2009 8:57:08 AM
Benzene	ND	· µg/L	1.0						
Toluene	ND	µg/L	1.0						
Ethylbenzene	ND	μg/L	1.0						
Methyl tert-butyl ether (MTBI	E) ND	µg/L	1.0						
1,2,4-Trimethylbenzene	ND	µg/L	1.0						
1,3,5-Trimethylbenzene	ND	µg/L	1.0						
1,2-Dichloroethane (EDC)	ND	µg/L	1.0						
1,2-Dibromoethane (EDB)	ND	µg/L	1.0						
Naphthalene	ND	µg/L	2.0						
1-Methylnaphthalene	ND	µg/L	4.0						
2-Methylnaphthalene	ND	µg/L	4.0						
Acetone	ND	µg/L	10						
Bromobenzene	ND	µg/L	1.0						
Bromodichloromethane	ND	µg/L	1.0						
Bromoform	ND	μg/L	1.0						
Bromomethane	ND	ug/L	1.0						
2-Butanone	ND	uo/L	10						
Carbon disulfide	ND	ua/L	10						
Carbon Tetrachloride	ND	ua/L	1.0						
Chlorobenzene	ND	ua/L	1.0						
Chioroethane	ND	ua/L	2.0						
Chloroform	ND	ua/L	1.0						
Chloromethane	ND	ug/l	10						
2-Chlorotoluene	ND	ua/L	1.0						
A-Chlorotoluene	ND	29/L	1.0						
cis-1 2-DCE	ND	μg/L	1.0						
dis 1.3 Dichloropropopo	ND	µg/L	1.0						
1.2 Dibromo 3 chloropropana		µg/L	2.0						
Dibromochloromothono		µg/c ug/l	2.0						
Dibromocnibiometinane	ND	ug/l	1.0						
12 Dishiorohenzana		µg/L	1.0						
1.3-Dichlorobenzene		µg/L Ug/l	1.0						
1 A-Dichlorobenzene		µg/t ug/i	1.0						
Dichlorodifluoromethane	ND	µg/L	1.0						
1 1-Dichloroethane	ND	µg/L	1.0						
1 1-Dichloroethene	ND	µg/L .	1.0						
1.2-Dichloropropapa	ND	pg/c ug/l	1.0						
1.3.Dichloropropane	ND	µg/c ug/l	1.0						
2.2-Dichloropropane		ру:с uo/l	20						
1 1-Dichloropropeno		HQ/F	10						
Heveoblorobutediene		H8/F	10						
		µg/L ug/l	1.0						
2-1 IGXAIIUIIG		µg/L	10						
		µg/L	1.0						
ιουρισμγποιαστια	NU	Р 8/г	1.0						

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 1

Page 2

QA/QC SUMMARY REPORT

Client: Western R	tefining South	west, Gallup	,					
Project: 2009 Ann	ual BW Samp	ling					Wor	k Order: 0907192
	-							
Analyte	Result	Units	PQL	%Rec	LowLimit Hi	ghLimit	%RPD R	PDLimit Qual
Method: EPA Method 8260B	: VOLATILES							
Sample ID: 5ml rb		MBLK			Batch ID:	R34506	Analysis Date:	7/13/2009 8:57:08 AM
4-Methyl-2-pentanone	ND	uali	10					
Methylene Chloride	ND	ug/L	3.0					
n-Butylbenzene	ND	ua/L	1.0					
n-Propylbenzene	ND	ua/L	1.0					
sec-Butvibenzene	ND	µg/L	1.0					
Styrene	ND	µg/L	1.0					
tert-Butvibenzene	ND	ug/L	1.0					
1.1.1.2-Tetrachloroethane	ND	ug/L	1.0					•
1.1.2.2-Tetrachloroethane	ND	ua/L	2.0					
Tetrachloroethene (PCE)	ND	ug/L	1.0					
trans-1.2-DCE	ND	ug/L	1.0					
trans-1,3-Dichloropropene	ND	ug/L	1.0					
1.2.3-Trichloropenzene	ND	ug/L	1.0					н. Н
1.2.4-Trichlorobenzene	ND	ug/L	1.0					
1.1.1-Trichloroethane	ND	ua/L	1.0					
1.1.2-Trichloroethane	ND	ug/L	1.0					
Trichloroethene (TCE)	ND	uo/L	1.0					
Trichlorofluoromethane	ND	uo/I.	1.0					
1 2 3-Trichloropropage	ND	ug/L	20					
Vinyl chloride	ND	ud/l	1.0					
Xvienes Total	ND	µg/=	1.5					
Sample ID: b5		MBLK			Batch ID:	R34506	Analysis Date:	7/13/2009 10:38:20 PM
Benzene	ND	ua/L	1.0					
Toluene	ND	ug/L	1.0					
Fthylhenzene	ND	uo/I	1.0					
Methyl tert-butyl ether (MTBE)	ND	ug/L	1.0					
1 2 4-Trimelhylbenzene	ND	ug/l	10					
1.3.5-Trimethylbenzene	ND	µg/1.	1.0					
1 2-Dichloroethane (EDC)	ND	µg/L	1.0					
1 2-Dibromoethane (EDB)	ND	µg/C	10					
Naphthalene	ND	ug/L	20					
1-Methylnaphthalene	ND	μg/L	4.0					
2-Methylnaphthalene	ND	ug/L	4.0					
Acetone	ND	uo/L	10					
Bromobenzene	ND	ua/L	1.0					
Bromodichloromethane	ND	ug/L	1.0					
Bromoform	ND	ua/L	1.0					
Bromomethane	ND	ua/L	1.0					
2-Butanone	ND	ug/L	10					
Carbon disulfide	ND	ua/L	10					
Carbon Tetrachloride	ND	ua/L	1.0					4
Chlorobenzene	ND	ua/L	1.0					
Chloroethane	ND	ua/l	20					
Chloroform	ND	µs/⊏ ua/l	10					
		rə, -					· · · · · · · · · · · · · · · · · · ·	n

Qualifiers: E Estimated

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:	Western Refining Southwest, Gallup
Project:	2009 Annual BW Sampling
Analista	Popult Unite

Work Order: 0907192

Analyte	Result	Units	PQL	%Rec	LowLimit Hi	ighLimit	%RPD RF	PDLimit Qual
Method: EPA Method 8260B:	VOLATILES							· · ·
Sample ID: b5		MBLK			Batch ID:	R34506	Analysis Date:	7/13/2009 10:38:20 PM
Chloromethane	ND	µg/L	1.0		•			
2-Chlorotoluene	ND	µg/Ł	1.0					
4-Chlorotoluene	ND	µg/L	1.0				·	
cis-1,2-DCE	ND	µg/L	1.0					
cis-1,3-Dichloropropene	ND	µg/L	1.0					
1,2-Dibromo-3-chloropropane	ND	µg/L	2.0					
Dibromochloromethane	ND	µg/L	1.0					
Dibromomethane	ND	µg/L	1.0					
1,2-Dichlorobenzene	ND	µg/L	1.0					
1,3-Dichlorobenzene	ND	ug/L	1.0					
1,4-Dichlorobenzene	ND	µg/L	1.0					
Dichlorodifluoromethane	ND	ua/L	1.0		4			
1.1-Dichloroethane	ND	ug/i	1.0					
1.1-Dichloroethene	ND	ua/L	1.0					
1 2-Dichloropropane	ND	µg/4	1.0					
1 3-Dichloropropane	ND	P9/C	1.0					
2 2-Dichloropropane		μg/L μg/l	20					
1 1-Dichloropropane		μg/L μg/l	1.0					
Hevachiorobutodiano	ND	µg/L	1.0					
2.Hevenee	ND	µg/c µg/l	10					
Isonropylbonzene	ND	μg/L	10					
d leonropylteluono		µg/L	1.0					
4-Methyl 2 paptopapa	ND	µg/L	1.0					
4-memyr-z-pentanone		µg/L	10				•	
	ND	µg/L	3.0					
	ND	µg/L	1.0					
n-Propylbenzene	ND	µg/L	1.0					
sec-Butybenzene	ND	µg/L	1.0					
Styrene	ND	µg/L	1.0					
tert-Butylbenzene	ND	µg/L	1.0					
1,1,1,2-Tetrachloroethane	ND	µg/L	1.0					
1,1,2,2-Tetrachloroethane	ND	µg/L	2.0					
Tetrachloroethene (PCE)	ND	µg/L	1.0					
trans-1,2-DCE	ND	hâ\r	1.0					
trans-1,3-Dichloropropene	ND	ha\r	1.0					
1,2,3-Trichlorobenzene	ND	µg/L	1.0					
1,2,4-Trichlorobenzene	ND	µg/L	1.0					
1,1,1-Trichloroethane	ND	µg/L	1.0					
1,1,2-Trichloroethane	ND	hð/L	1.0					
Trichloroethene (TCE)	ND	µg/L	1.0					
Trichlorofluoromethane	ND	µg/L	1.0					
1,2,3-Trichloropropane	ND	µg/L	2.0				1	
Vinyl chloride	ND	µg/L	1.0					
Xylenes, Total	ND	µg/L	1.5					
Sample ID: 100ng Ics		LCS			Batch ID:	R34506	Analysis Date:	7/13/2009 9:55:08 AM

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Project:	2009 Annual BW Samp	west, Gallu ling	p				Work	Order: 0907192
Analyte	Result	Units	PQL	%Rec	LowLimit I	-lighLimit	%RPD RP	DLimit Qual
Method: EPA Meth	hod 8260B: VOLATILES			£				
Sample ID: 100ng lo	C S	LCS			Batch ID	: R34506	Analysis Date:	7/13/2009 9:55:08 AM
Benzene	19.87	µg/L	1.0	99.3	76.7	114		
Toluene	20.12	µg/L	1.0	101	78.4	117		
Chlorobenzene	18.87	µg/L	1.0	94.4	80.7	127		
1,1-Dichloroethene	23.44	μg/L	1.0	117	80.2	128		
Trichloroethene (TCE)	20.86	µg/L	1.0	104	77.4	115		
Sample ID: 100ng Id	cs_b	LCS			 Batch ID 	R34506	Analysis Date:	7/13/2009 10:09:18 PM
Benzene	20,49	µg/L	1.0	102	76.7	114		
Toluene	19.19	µg/L	1.0	96.0	78.4	117		
Chlorobenzene	18.79	µg/L	1.0	94.0	80.7	127		
1,1-Dichloroethene	23.18	µg/L	1.0	. 116	80.2	128		
Trichloroethene (TCE)) 20.60	µg/L	1.0	103	77,4	115		

Qualifiers:

- E Estimated value
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 4

Samp	le Rece	eipt C	hecklist											
Client Name WESTERN REFINING GALLU			Date Receive	id:	7/10/2009									
Work Order Number 0907192			Received by	: TLS	· /									
			Sample ID I	abels checked b	y:									
Checklist completed by:		Date	10109											
Matrix: Carrier name	e <u>UPS</u>				·									
Shipping container/cooler in good condition?	Yes		No 🗔	Not Present										
Custody seals intact on shipping container/cooler?	Yes		No 🗔	Not Prosent	Not Shipped									
Custody seals intact on sample bottles?	Yes		No	N/A										
Chain of custody present?	Yes	V	No 🗔		· .									
Chain of custody signed when relinquished and received?	Yes		No 🗌											
Chain of custody agrees with sample labels?	Yes		No 🗔											
Samples in proper container/bottle?	Yes		No 🗔											
Sample containers intact?	Yes		No 🗔											
Sufficient sample volume for indicated test?	Yes		No 🗔											
All samples received within holding time?	Yes		No 🗔		Number of preserved									
Water - VOA vials have zero headspace? No VOA vials su	bmitted		Yes 🗹		bottles checked for pH:									
Water - Preservation labels on bottle and cap match?	Yes		No 🗖	N/A 🗋	12									
Water - pH acceptable upon receipt?	Yes		No 🗔	N/A []	52 >12 unless noted									
Container/Temp Blank temperature?	2.	1°	<6° C Acceptet	ole _	> Delow.									
COMMENTS:			If given sufficien	t time to cool.										
·														
Client contacted Data contacted			Der	ion contacted										
			T 010	Son comacted										
Contacted by: Regarding:														
Comments:			· · · · · · · · · · · · · · · · · · ·											
r														
			·	· · · · · · · · · · · · · · · · · · ·										
			<u></u>											
Corrective Action														
	··· ··· ······························													
(N	Air Bubbles (Y or													
--	---------------------	-------------------	--------------	-------------------------	---------------	------------	------------------	-------------------------	----------	----------------------	-------------	----------	---------------------	--------
	FON DOD (M			X	_		Х			\ge				
	(AOV-ime2) 0728		\times			X			\times			_		
LLA C ue, nal. A C	(AOV) B 0828	$\mathbf{\Sigma}$			\times			X						
	8081 Pesticides /											<u> </u>		
	SIBJOIN O AVION				<u>-</u>									·
	AS 10 (PNA 01 PS								-			·		
	EDB (Method 504													
(1) A A A	B14 borteM) H9T								-					
	TPH Method 801								\neg	\neg		+		
TPH (Gas only)	+ 38TM + X3T8											+	arks:	i i
(1208) s'BMT	+ 38TM + X3T8			 								1	Rem	
-25-												1		
101		-	~ -)	2	N	2	3	M	~~	-		NS SS	ime
Di Sai		1	ł	١	١	1	1	1	1	$\left[1 \right]$	7			-
													Date	Date
						~	_							
T S S T	e ative		Jue	$\overline{\mathbb{D}}$	5	X	\mathfrak{V}^2	C	ne	37) lic	
a la la	Typ	下	Q	HC	土	Ø	HK	H	G	2			- T u	
					\sim		ľ			ند ا لیه ا				
	and #	M	qu	Jw C)S	Q W	DM	Jun	4	Dwg			$\sum_{\mathbf{A}}$	R I
mple () olicit () ol	Sonta Ype a	5	- A	201	F	£	Sa	- HC	¢,	ŝ)	beived
		3	11	D.	ω	1	Ś	3	2	â			Rec	Rec
	9								Ì	+	×₹		٦	
5 JA EQ2 =	nest				\mathcal{O}					+	ala			
	Sequ	J			6			$\overline{\mathbb{C}}$		ļ	ъ4			
R E S S S S	ple F	1-			1			-		ļ	J J		\backslash	
DE DE AR	ami	DĽ.			.4	•		3		Ī	F			
	о О	(m			P			(2)			<u>f</u> II			sd by:
SE ST ST N	frrix	Q											Hising	quishe
	Ma Ma	E								-	-		Relin C	Relin
	me pe)	Q			्रम			0			0		8	
		1			<u>E</u>			2			12		Ъ Ю	Time
Othe Othe	Date	6	\mathbf{N}		60			60		2151	163		B is	:e:
		1/10	,		آهر			7/6	.	۲	7/1/2		14	D

.

. .

In-of-Custody Record Turn-Around Time: Standard Topolocity Standard Topolocity Dot Hull Duble: Standard Topolocity Standard Topolocity <td< th=""><th>Hall ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Tel. 505-345-3975 Fax 505-345-4107</th><th>TBE + TPH (Gas only) od 8015B (Gas/Diesel) od 504.1) od 504.1) hetals ci, NO₃, NO₂, PO₄, SO₄) cides / 8082 PCB's MA MA MA MA MA MA MA MA MA MA MA MA MA</th><th>M + XJTB TPH Metho TPH (Metho BDB (Metho BDB (Metho BDB (PDB BDB (PDB (PDB BDB (PDB (PDB (PDB (PDB (PDB (PDB (PDB (</th><th></th><th></th><th></th><th></th><th>× ×</th><th>marks:</th></td<>	Hall ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Tel. 505-345-3975 Fax 505-345-4107	TBE + TPH (Gas only) od 8015B (Gas/Diesel) od 504.1) od 504.1) hetals ci, NO ₃ , NO ₂ , PO ₄ , SO ₄) cides / 8082 PCB's MA MA MA MA MA MA MA MA MA MA MA MA MA	M + XJTB TPH Metho TPH (Metho BDB (Metho BDB (Metho BDB (PDB BDB (PDB (PDB BDB (PDB (PDB (PDB (PDB (PDB (PDB (PDB (× ×	marks:
	-of-Custody Record Turn-Around Time: Jern Lething Weandard Rush Mulling Reproved Project Name: Mulling NOM SN3D1 Project # Mulling NOM SN3D1 Project # Mulli	SOS 13 2010 Project Manager:	Matrix Sample Request ID Container Preservative EE + + Type ETE Type 0 71/2/2000 BFE	Had BW-aC 3-40ml Hell -5	3-500M HVD3 5	9- JUCY JULY COCOMO	2 DW-3C B-40M1 HON3 -4	1 - 1 Amb None - 7 3-500ml HND3 - 7	Relinquished by: Received by: Date Time Ren Relinquished by: Date Time Received by: Date Time

GALLUP REFINERY

RECEIVED 2009 May 21 Pm 1 21

May 11, 2009

James Bearzi, Chief New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, BLDG 1 Santa Fe NM 87505

Re: Facility Wide Groundwater Monitoring Work Plan, Western Refining Company Southwest, Inc., EPA ID# NMD000333211, HWB-GRCC-09-001

Dear Mr. Bearzi:

The purpose of this letter is to submit our Facility Wide Groundwater Monitoring Plan as required in your letter dated February 9, 2009.

Many thanks to Ms. Hope Monzeglio of your staff, who was kind enough to share her thoughts, give us direction and share a similar plan developed for the Fort Wingate Army Depot.

If you have any questions, or if we can be of further service to you, please do not hesitate to call Dr. Gaurav Rajen at (505) 722-0227, or myself at (505) 722-0217.

Sincerely,

Ed Riege Environmental Manager

Cc: Hope Monzeglio, HWB/NMED Brad Jones, OCD Mark Turri, Western Refining Ann Allen, Western Refining Gaurav Rajen, Western Refining

Facility-wide Groundwater Monitoring Plan: Gallup Refinery

Western Refining Gallup, New Mexico

May 2009

RECEIVED 2009 MAY 21 PM 1 21

Facility-wide Groundwater Monitoring Plan Gallup Refinery

Western Refining Gallup, New Mexico

May 2009

Prepared by:

Gaurav Rajen, Ph.D.

Environmental Engineer

Reviewed by:

Ed Riege, M.P.H.

Environmental Manager

Executive Summary

This Site-Wide Groundwater Monitoring Plan (Plan) has been prepared in response to requirements stated in a letter from the New Mexico Environment Department's Hazardous Waste Bureau dated February 9, 2009 (see Appendix A.)

This Plan has been prepared to collect data that will be used to characterize the nature and extent of potential impacts to groundwater at the Gallup Refinery owned by Western Refining ("Gallup Refinery" or "Facility"). The monitoring plan is also designed to make the facility quickly aware of any levels of contaminants that exceed compliance standards.

This Plan divides the Facility into two areas for periodic monitoring: the East Side and the West Side. The East Side includes the Refinery Complex, recovery wells from which free products have been principally removed, but continue to be recovered in small quantities, and the North-East set of observation wells and monitoring wells. The West Side includes a cluster of wells in and around the wastewater treatment system, boundary wells, shallow monitoring wells in and around land treatment areas, and produced water wells. This plan also includes sampling requirements for aeration lagoons, influents, and evaporation ponds located in the West Side. Designated wells and sample points in these two areas will be monitored on an annual, semi-annual, quarterly, monthly, and weekly basis following the procedures presented in this Plan.

Gallup Refinery will periodically review facility-wide monitoring data, and assess the monitoring program presented in this Plan. Revisions to the Plan, as necessary, will then be presented for agency review and approval. These revisions may include, but not be limited to, a reduction or change in monitoring locations, monitoring frequency, and/or target chemicals to be analyzed.

We have created a monitoring Plan with quality assurance practices and controls as well as standard procedures for sampling, and a schedule of activities to monitor groundwater at select locations of the Gallup Refinery. The persons responsible for the implementation and oversight of this plan are:

Refinery Manager

• Mark Turri Environmental Manager

- Ed Riege Environmental Engineer
 - Gaurav Rajen

Environmental Technicians

- Cheryl Johnson
- Alvin Dorsey

Table of Contents

Section	o n	Title	Page
Execu	utive Su	mmary	3
1.0		Introduction	5
	1.1	Facility Ownership and Operation	5
2.0		Background	8
	2.1	Historical and current site uses	
	2.2	Potential receptors	
	2.3	Type and characteristics of the waste and contaminants and known and possible sources	any
	2.4	Summary of contaminant releases that could contribute to groundwater contamination	
3.0		Site conditions	16
	3.1	Current site topography and location of natural and manmade structures	
	3.2	Drainages	
	3.3	Vegetation types	
	3.4	Erosion features	
	3.5	Current site uses	
	3.6	Subsurface conditions	
		3.6.1 Soil types and associations	
		3.6.2 Stratigraphy	
		3.6.3 Presence and flow direction of groundwater	
4.0		Investigations methods	23
5.0		Monitoring and sampling program	36
Appe	ndix A		
Appe	ndix B		
Appe	ndix C		
Appe	ndix D		
	1		

Appendix E

LIST OF FIGURES

Figure 1	Regional map showing the location of the Gallup Refinery (red star along Interstate-40, 20 miles east of the	
	City of Gallup)	8
Figure 2	Topographic Map of the Gallup Refinery Site - USGS	
	Topographical Map - Gallup Quadrangle (Revised 1980)	9
Figure 3	Regional scale: Flow lines and major surface water bodies.	
-	North is towards the top of the page. (EPA Enviromapper-	
	http://map24.epa.gov/EMR/?ZoomToWatershed=15020006	15
Figure 4	Localized scale: Flow lines and major surface water bodies	
	North is towards the top of the page. The pond to the east	
	is Jon Myers' Livestock Pond. (EPA Enviromapper –	
	http://map24.epa.gov/EMR/?ZoomToWatershed=15020006)	16
Figure 5	Generalized relationship of soils in the Gallup Refinery area:	18
_	from NRCS/USDA Soil Survey of McKinley County.	
Figure 6	Map of groundwater flow	22
0	1 6	
Figure 7	Locations of wells	22

LIST OF TABLES

Table 1	Wells that will have groundwater elevation monitored and frequency of such monitoring	24
Table 2	Target analytes for various EPA methods	29
Table 3	Summary of sampling locations, frequencies, and tests required	37

LIST OF ACRONYMS

BMP	Best Management Practices
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
EPA	Environmental Protection Agency
GPM	Gallons per minute
HWB	Hazardous Waste Bureau
MTBE	Methyl Tert Butyl Ether
NAPIS	New American Petroleum Institute Separator
NMED	New Mexico Environment Department

Oil Conservation Division
Physical protective equipment
Volatile Organic Compounds
Semi-volatile Organic Compounds
Solid Waste Management Unit
Storm Water Pollution Prevention program
Wastewater treatment plant

1.0 Introduction

This Facility-Wide Groundwater Monitoring Plan (Plan) has been prepared for the implementation of a groundwater monitoring program at the Gallup Refinery to assess the nature and extent of potential impacts to groundwater from historic refinery operations, as well as become quickly aware of any levels of contaminants found in groundwater that exceed compliance standards.

The Plan follows the requirements of the February 9, 2009 letter issued by the New Mexico Environment Department's Hazardous Waste Bureau (NMED/HWB) and includes the following information (a copy of this letter is provided in Appendix A):

Executive Summary Tale of Contents Background Historical site uses Potential receptors Type and characteristics of the waste and contaminants and any known and possible sources Summary of contaminant releases that could contribute to groundwater contamination Site conditions Current site topography and location of natural and manmade structures Drainages Vegetation types **Erosion features** Current site uses Subsurface conditions Soil types and associations Stratigraphy Presence and flow direction of groundwater Scope of Activities Sampling Locations and Procedures Groundwater monitoring schedule

1.1. Facility Ownership and Operation

This Plan pertains to the Western Refining Southwest Inc. Gallup Refinery located at Exit 39 on Interstate I-40. This refinery is known as the Gallup Refinery and is located at Jamestown New Mexico, approximately 17 miles east of Gallup. Figure 1 shows the regional location of the Gallup Refinery.

The owner is:

Western Refining 123 W. Mills Avenue (parent corporation)

El Paso, TX 79901 Operator: Western Refining Southwest Inc (postal address) Route 3, Box 7 Gallup, New Mexico 87301 Western Refining Southwest Inc (physical address) I-40, Exit 39 Jamestown, New Mexico 87347

SIC code 2911 (petroleum refining) applies to the Gallup Refinery.

The following regulatory identification and permit governs the Gallup Refinery:

- U.S. EPA ID Number NMD000333211
- OCD Discharge Permit No. GW-032

The facility status is corrective action/compliance. Annual and quarterly groundwater sampling is conducted at the facility to evaluate present contamination.

The refinery is situated on an 810 acre irregular shaped tract of land that is substantially located within the lower one quarter of Section 28 and throughout Section 33 of Township 15 North, Range 15 West of the New Mexico Prime Meridian. A small component of the property lies within the northeastern one quarter of Section 4 of Township 14 North, Range 15 West. Figure 2 is a topographic map showing the general layout of the refinery in comparison to the local topography.

Figure 1: Regional map showing the location of the Gallup Refinery (red star along Interstate-40, 20 miles east of the City of Gallup).

Figure 2: Topographic Map of the Gallup Refinery Site - USGS Topographical Map - Gallup Quadrangle (Revised 1980)

9

2.0 Background Information

2.1 Historical and current site uses

The Gallup Refinery is located within a rural and sparsely populated section of McKinley County in Jamestown New Mexico. The setting is a high desert plain on the western slope of the continental divide. The nearest population centers are the Pilot (formerly Giant) Travel Center refueling plaza, the Interstate 40 highway corridor, and a small cluster of residential homes located on the south side of Interstate 40 approximately 2 miles southwest of the refinery (Jamestown). The surrounding land is comprised primarily of public lands and is used for cattle and sheep grazing at a density of less than six cattle or 30 sheep per section. Except for the City of Gallup, McKinley County is a predominantly rural area, as are the adjoining portions of neighboring counties.

Historically, this area has been populated by Native Americans, as it is even today with the contemporary Navajo Nation and the Pueblo of Zuni located in the region. The area has always been a crossroads for East to West and North to South trade routes; and many modern highways in the area, such as Interstate-40, trace routes established well over a thousand years ago. Irrigated agriculture in the area also dates back to several thousands of years, and continues to this day. There are remnants of an irrigation ditch in the northcentral portion of the site which attests to farming having occurred on the site.

Since the arrival of the Spanish in 1540, grazing of livestock became another major land use. In the early 1900s, highly intensive livestock grazing occurred in this region that led to severe degradation of the land.

Along with irrigated farming and livestock, artisan work has been a mainstay of the local economy and continues till current times. In 1880, coal mining began to be a major land use in the region; and in 1881 the railroad arrived. The railroad carried Indian made goods for sale across the nation. Today, a railroad line runs just north of the facility, and a rail spur brings railroad cars into the north-east end of the facility to deliver crude oil, ethanol and other feedstocks.

From the early 1900s to the 1940s extensive logging occurred in the region, especially thirty miles to the south-west of the facility in the Zuni Mountains. This aggravated the forming of arroyos from erosion, and impacted the local watersheds.

From the 1950s to the early 1980s, uranium mining was a major extractive industry in the region with a large number of mines located in the general area of the facility, with the nearest mines being around 20 miles distant towards the east. No historical mining has ever occurred on the facility. It is important to note that impacts have occurred to groundwater in the area from the mining and processing of uranium ore.

Today, built in the 1950s, and refurbished and expanded over time, a petroleum refinery is located on a man-made terrace towards the central and southern portions of the facility.

The refinery primarily receives crude oil via two 6 inch diameter pipelines; Bisti Pipeline comes down from the Four Corners Area and enters the refinery property from the north and Hospah Pipeline comes in from the northeast and is an interconnection with a main interstate pipeline. In addition, the refinery also receives natural gasoline feedstocks via a 4-inch diameter pipeline that comes in from the west along the Interstate 40 corridor from the Conoco gas plant. Crude oil and other products also arrive at the site via railroad cars. These feedstocks are then stored in tanks until refined into products. The refinery has an overall capacity to process up to 23,000 barrels per day of crude oil and additional natural gasoline feedstocks.

The refinery incorporates various processing units that convert crude oil and natural gasoline into finished products. These units are briefly described as follows.

- The <u>crude distillation unit</u> separates crude oil into various fractions; including gas, naphtha, light oil, heavy oil, and residuals.
- The <u>fluidized catalytic cracking unit (FCCU)</u> dissociates (cracks) long-chain hydrocarbon molecules into smaller molecules, and essentially converts heavier oils into naphtha and lighter oils.
- The <u>alkylation unit</u> combines specific types of hydrocarbon molecules into a high octane gasoline blending component.
- The <u>reforming unit</u> breaks up and reforms low octane naphtha molecules to form high octane naphtha.
- The <u>hydrotreating unit</u> removes undesirable sulfur and nitrogen compounds from intermediate feedstocks, and also saturates the feedstocks with hydrogen to make diesel fuel.
- Additional <u>treater units</u> later also remove impurities from various intermediate and blending feedstocks in order to produce finished products that comply with sales specifications.
- The <u>isomerization unit</u> converts low octane hydrocarbon molecules into high octane molecules.
- A set of <u>acid gas treating</u> and <u>sulfur recovery units</u> convert and recover various sulfur compounds from other processing units and then produce either Ammonium Thiosulfate or a solid elemental sulfur byproduct.

As a result of these processing steps, the refinery produces a wide range of petroleum products including propane, butane, unleaded gasoline, diesel, kerosene, and residual fuel. In addition to the aforementioned processing units, various other equipment and systems support the operation of the refinery and are briefly described as follows.

Storage tanks are used throughout the refinery to hold and store crude oil, natural gasoline, intermediate feedstocks, finished products, chemicals, and water. These tanks are all located aboveground and range in size from 80,000 barrels to less than a 1,000 barrels. A grouping of tanks is commonly referred to as a "tank farm" such as the hot oil "tank farm".

Pumps, valves, and piping systems are used throughout the refinery to transfer various liquids among storage tanks and processing units.

A railroad spur track and a railcar loading rack are used to transfer feed-stocks and products from refinery storage tanks into and out of railcars.

Several tank truck loading racks are used at the refinery to load out finished products and also may receive crude oil, other feedstocks, additives, and chemicals.

A pipeline from the refinery carries diesel fuel to the Pilot (formerly Giant) Travel Center. Gasoline is delivered to the Pilot Center via tanker truck.

A firefighting training facility is used to conduct employee firefighting training. Waste water from the facility, when training is conducted, is pumped into a tank which is then pumped out by a vacuum truck. The vacuum truck pumps the oily water into a process sewer leading to the New API Separator (NAPIS).

The process wastewater system is a network of curbing, paving, catch basins, and underground piping that collects waste water effluent from various processing areas within the refinery and then conveys this wastewater to the NAPIS.

The NAPIS is a two compartment oil water separator. Oil is separated from water based on the principle that, given a quiet surface, oil will float to the water surface where it can be skimmed off. The skimmed slop oil is passed to a collection chamber where it is pumped back into the refinery process. The clarified water is piped to the top of dual stripping columns where benzene is removed. The stripped water flows into the first aeration lagoon. Sludge sinks to the bottom of the NAPIS which is periodically vacuumed out by a vacuum truck and disposed as hazardous waste at an approved landfill or recycled and reused in refineries that have this allowable exemption under RCRA.

At the stripping columns, ambient air is blown upwards through the falling cascade of clarified wastewater as it passes through distillation column packing. Countercurrent desorption of benzene from the water occurs due to the high volume of air passing over the relatively large surface area provided by the packing. The desorbed benzene is absorbed into the air stream and vented to the atmosphere. Effluent from the stripper columns gravity flows through piping into the first aeration lagoon.

At the aeration basins, the treated wastewater is mixed with air in order to oxidize any remaining organic constituents and increase the dissolved oxygen concentration available in the water for growth of bacteria and other microbial organisms. The microbes degrade

hydrocarbons into carbon dioxide and water. Three 15-hp mechanical aerators provide aeration in the first aeration lagoon with two 15-hp aerators providing aeration in the second lagoon. Effluent from the second aeration lagoon flows onward into the first of several evaporation ponds of various sizes.

At the evaporation ponds, wastewater is converted into vapor via solar and mechanical wind-effect evaporation. No wastewater is discharged from the refinery to surface waters of the state because all of the waste water evaporates. Therefore, the refinery is not required to have a NPDES discharge permit for discharge of treated process water. However, the Gallup refinery does have a NPDES permit for storm water discharge.

The storm water system is a network of valves, gates, berms, embankments, culverts, trenches, ditches, natural arroyos, and retention ponds that collect, convey, control, treat, and release storm water that falls within or passes through refinery property. Storm water that falls within the processing areas is considered equivalent to process wastewater and is sent through the NAPIS, benzene strippers and wastewater treatment system for retention in evaporation ponds. Strom water that falls on undeveloped land is allowed to leave the property. Storm water discharge from the refinery is very infrequent due to the arid desert-like nature of the surrounding geographical area. The Gallup Refinery maintains a storm water pollution prevention plan (SWPPP) that includes Best Management Practices (BMPs) for effective storm water pollution prevention. The refinery has constructed several new berms in various areas and improved outfalls to minimize the possibility of contaminated runoff leaving the refinery property.

2.2 Potential receptors

Potential receptors at the facility also include those that may arise from future land uses. Currently, these include on-site workers, nearby residents, wildlife, and livestock.¹ The major route to exposure of humans would be from contaminants reaching a drinking water well. Other routes could be from showering, cooking, etc. with contaminated groundwater, raising crops and vegetables with contaminated groundwater, or getting exposed to or fishing in surface water that has commingled with shallow groundwater. Exposure can also occur through contact with soils and/or plants that have become contaminated themselves through contact with contaminated groundwater. However, drinking water wells remain the primary route of exposure

At this time, the nearest drinking water wells are located on-site at the south-west areas of the facility, at depths of approximately 3000 feet. These are operated by the facility to provide drinking water to nearby refinery-owned houses, to the refinery itself, and to the Pilot Travel Center. This system of deep wells also provides the refinery's process water. These wells are monitored and no contaminants have been detected in the deep aquifer that these wells are screened within.

¹ Note: There is extensive and regular patrolling by security personnel of the facility which operates 24hours – therefore, we can discount the possibility of an inadvertent or deliberate intruder becoming exposed to contamination in groundwater that has reached the surface in some form.

Other than the on-site wells, there are no drinking water wells within a 4-mile radius of the site. The nearest drinking water wells that could be used by off-site residents are located to the north-west of the site at a distance slightly greater than 4-miles located within the Navajo community of Iyanbito (shown on the USGS Topographical Map -Gallup Ouadrangle (Revised 1980).) These wells are north-west of the South Fork of the Puerco River which heads towards the south-east from immediately north of the facility. As the shallowest groundwater will generally flow in the direction of surface water flow, any shallow groundwater contamination that left the facility either now or in the future would tend towards the south-east after leaving the facility and away from the community of Iyanbito. "Flowing Well" is a well marked on the USGS Ouadrangle map approximately 2-miles north-west from the facility. The Flowing Well is likely a livestock watering well as it does not have any houses adjacent to it. However, residents of the area are known to use livestock water for human consumption if their houses do not have running water - such consumption is decreasing as increasingly residents in the area are getting connected to drinking water systems provided by local governments. The Flowing Well, too, is north of and across the South Fork of the Puerco River - shallow groundwater is unlikely to ever reach this well as it will tend towards the south-east along with the South Fork of the Puerco River. The Cibola National Forest lies in the south-east direction and there are no wells or residents in this protected area. Boundary monitoring wells along the south-west to north-west perimeter of the facility have not shown any evidence of contaminants having left the facility in shallow groundwater.

Artesian conditions at some locations of the site lead to the possibility of groundwater emerging onto the surface and thus being able to affect wildlife. No surface water on the site is used for human consumption or primary contact, such as immersion, or secondary contact, such as recreation. The man-made ponds on the site are routinely monitored and are a part of this Plan. Therefore, if they are in contact with shallow groundwater that has exhibited elevated levels of contaminants, the Plan will detect any commingling of groundwater and surface waters.

Fluctuating groundwater elevations can smear contaminants into subsurface soil and rocks, and there is a possibility that plant roots could reach such contaminated soils and bio-concentrate contaminants creating another route of exposure to potential receptors, such as birds and animals that eat the plants. No food crops are currently grown on the site.

In the future, if the land use became residential, and there were on-site residents, there would be increased potential to impact humans through a variety of uses of water from shallow groundwater wells (drinking, showering, etc.), produce grown in gardens that might be exposed to shallow groundwater, and construction activities that might reach shallow groundwater. However, if there is contamination, the site will remain zoned for industrial use even after the closure of the facility. In effect, the site will remain in perpetuity designated for industrial purposes. Therefore, while there is contamination at the site, future on-site residents are not a possibility.

2.3 Type and characteristics of the waste and contaminants and any known and possible sources

The types of waste likely include – volatile and semi-volatile organic compounds, primarily hydrocarbons, but could include various other industrial chemicals such as solvents; acids; spent caustic solutions; and heavy metals present in spent chemicals and wastewater. These wastes could be in the form of wastewater, spent chemicals destined for off-site shipping and disposal packed in drums, sludge, and dry solids. Dry wastes could stem from wind-blown metallic powders used as catalysts, and regular municipal solid wastes stored in covered containers destined for municipal landfills.

Most of the wastes and contaminants that could possibly reach groundwater have the characteristic that they would biodegrade and naturally attenuate. However, any heavy metals present in dirt and sludge could possibly leach into groundwater and would not attenuate. There is a possibility also that certain long-lived chemicals would not biodegrade, or, if they did, it would be at a very slow pace.

Possible sources include leaks from buried pipes, tanks, surface spills, and historical dumping of wastes in remote areas of the site.

All above-ground large tanks have leak detection or equivalent systems, such as radar gauges. Pumps that could leak hydrocarbons are within containment areas, and all tanks are also within berms to contain spills. The NAPIS has double walls and a leak detection system. This situation did not exist in the past. So, past spills and leaks could be a source of groundwater contamination.

Similarly, surface impoundments can serve as a source of groundwater contamination. In the past, liquids from the Railroad Rack lagoon in the north-east end of the facility were allowed to discharge into a field and drain into the ground and evaporate – this led to subsurface soil contamination that is currently in the process of being cleaned up. Such disposal of wastewater into open fields is not practiced at the Gallup Refinery.

There are fourteen Sold Waste Management Units (SWMU) identified at the Gallup Refinery, and one closed Land Treatment Area. These are – RCRA Regulated Units

Land Farm 1

SWMUs

- SWMU 1 Aeration Basin
- SWMU 3 Empty Container Storage Area
- SWMU 4 Old Burn Pit
- SWMU 5 Landfill Areas
- SWMU 6 Tank Farm
- SWMU 7 Fire Training Area
- SWMU 8 Railroad Rack Lagoon, ditch & fan area
- SWMU 9 Drainage Ditch Near Inactive Landfarm
- SWMU 10 Sludge Pits

- SWMU 11 Secondary Oil Skimmer
- SWMU 12 Contact Wastewater Collection System 5
- SWMU 13 Drainage Ditch between N & S Evaporation Ponds
- SWMU 14 API Separator

Existing groundwater monitoring wells effectively surround all these SWMUs.

2.4 Summary of contaminant releases that could contribute to groundwater contamination

Spills and leaks are known to have occurred on the site in various locations. Although most hydrocarbons are rapidly picked up for recovery, some of the liquids present in a spill enter the subsurface. With precipitation, there is a possibility that some of the contaminants could leach out and reach groundwater.

Separate Phase Hydrocarbons (SPH) floating on shallow groundwater have been found at the north-east end of the facility, and a system of recovery wells has stopped migration of the SPH and recovered almost all such SPH. Recovery through hand-bailing is still underway, with the volumes recovered dropping substantially every year. Trace levels of Benzene have also been found in wells in this area, possibly linked to this spilled material.

A small tank that held Methyl Tert Butyl Ether (MTBE) has leaked and created a plume of MTBE in the shallow groundwater at the north-east end of the refinery. This tank is no longer in service and has been removed. MTBE has not been used at the refinery since April 2006.

A unit at the south-west end of the facility that is used to recover oil and recycle this oil back into the process has also – through leakage and spills – caused some MTBE and hydrocarbon contamination in shallow groundwater. This unit is known as the New American Petroleum Institute Separator (NAPIS) and has up-gradient and down-gradient shallow monitoring wells around it.

There has always been the possibility that the wastewater treatment system of the facility based on aeration lagoons and evaporation ponds may have leaked contaminants into shallow groundwater. However, contaminants have not been found at any substantial levels in groundwater monitoring wells that have been placed next to and around these lagoons and ponds (the GWM series of wells). There is clay in the soil that serves as a natural liner and this clay has clearly prevented any such releases. The first aeration lagoon, known as AL-1, has received wastewater with benzene at levels greater than 0.5 ppm – either through ineffective treatment farther upstream in the process, or through overflows – making these liquids a hazardous waste; however the aeration process and biological action within this lagoon has brought the benzene levels to well below 0.5 ppm and of the order of 0.1 ppm and less.

Using a contaminant transport model developed by the US Environmental Protection Agency, called CHEMFLO, that models the transport of contaminants through unsaturated soils, we have estimated that benzene could not travel more than a few feet into the subsurface under a pond with about 3 feet of standing water even with a very high concentration of benzene. With benzene levels of 0.1 ppm the levels of benzene that could migrate into the subsurface drop off to negligible levels within a few feet even after many years have elapsed.

The fact remains, however, that the facility's aeration lagoons and ponds could be a possible source of groundwater contamination and this possibility is considered in this Plan.

3.0 Site Conditions

The Gallup Refinery is located within a rural and sparsely populated section of McKinley County. It is situated in the high desert plain on the western flank of the continental divide approximately 17 miles east of Gallup. The surrounding land is comprised primarily of public lands and is used for cattle and sheep grazing at low densities².

3.1 Current site topography and location of natural and manmade structures

Local topography consists of a gradually inclined down-slope from high ground in the southeast to a lowland fluvial plain in the northwest. The highest point on refinery property is located at the southeast corner boundary (elevation approximately 7,040 feet) and the lowest point is located at the northwest corner boundary (elevation approximately 6,860 feet). The refinery processing facility is located on a flat man-made terrace at an elevation of approximately 6,950 feet.

3.2 Drainages

Surface water in this region consists of the man-made evaporation ponds and aeration basins located within the refinery, a livestock watering pond (Jon Myer's Pond) located east of the refinery, two small unnamed spring fed ponds located south of the refinery, and the South Fork of the Puerco River and its tributary arroyos. The various ponds and basins typically contain water consistently throughout the year. The South Fork of the Puerco River and its tributaries are intermittent and generally contain water only during, and immediately after, the occurrence of precipitation.

² See, for example, the web site of McKinley County at <u>http://www.co.mckinley.nm.us/</u>

Figure 3: Regional scale: Flow lines and major surface water bodies (from: EPA Enviromapper - <u>http://map24.epa.gov/EMR/?ZoomToWatershed=15020006</u>) North is towards the top of the page.

Figure 4: Localized scale: Flow lines and major surface water bodies (from: EPA Enviromapper - <u>http://map24.epa.gov/EMR/?ZoomToWatershed=15020006</u>) North is towards the top of the page. The pond to the east is Jon Myers' Livestock Pond.

3.3 Vegetation types

Surface vegetation consists of native xerophytic vegetation including grasses, shrubs, small junipers, and some prickly pear cacti. Average rainfall at the refinery is less than 7 inches per year, although it can vary to slightly higher levels elsewhere in the county depending on elevation.

On alluvial fans on valley sides and drainage ways, the existing vegetation is usually alkali sacaton, western wheatgrass, Indian ricegrass, blue grama, bottlebrush squirreltail, broom snakeweed, fourwing saltbush, threeawn, winterfat, mat muhly and spike muhly. On fan remnants on valley sides we usually find blue grama, western wheatgrass, Indian ricegrass, big sagebrush, galleta, bottlebrush squirreltail, fourwing saltbrush, needleandthread, oneseed juniper, sand dropseed, spineless horsebrush, rabbitbrush, and twoneedle pinyon.

3.4 Erosion features

The impacts of historic overgrazing are visible at the north-side of the facility, in the form of arroyos that formed when surface run-off cut through the ground and washed away

soils that were not able to hold water with their ground cover lost to overgrazing. Now that the facility is fenced and no livestock grazing occurs on the site, vegetation has recovered in these areas. With the facility helping to bring back vegetation in its undeveloped areas the formation and deepening of erosion features on its land has reduced.

3.5 Subsurface conditions3.5.1 Soil types and associations

Most of the soils found at the surface in the locations where wells are located consist of the Mentmore-Gish complex.³ These soils occur in alluvial fans on valley sides and fan remnants on valley sides. The parent material for these soils is slope and fan alluvium derived from sandstone and shale. These are well drained soils with moderately slow (0.2 in/hr) to slow permeability (0.06 in/hr). In this association, the Gish and similar soils make up about 45 percent, the Mentmore and similar soils 35 percent, and minor components 20 percent. These minor components are - Berryhill and similar soils 10 percent, and Anodize and similar soils 10 percent. The typical profile for these soils is -0 to 2 inches fine sandy loam, 2-72 inches various kinds of clay loam.

Figure 5: Generalized relationship of soils in the Gallup Refinery area: from NRCS/USDA Soil Survey of McKinley County.

³ Soil Survey of McKinley County Area, New Mexico, McKinley County and Parts of Cibola and San Juan Counties, Natural Resources Conservation Service (NRCS), US Department of Agriculture, available at - <u>http://soildatamart.nrcs.usda.gov/Manuscripts/NM692/0/McKinley.Area%20NM.pdf</u>

Drill logs for various wells are provided in Appendix B. From these well logs we can infer that the soils in the subsurface are generally composed of clays starting at the immediate subsurface, interbedded with narrow sand and silt layers. At about 100 to 150 feet, layers of mudstone, sandstone (from the Chinle formation, Petrified Forest group) and siltstone start to appear.

3.5.2 Stratigraphy

The 810 acre refinery property site is located on a layered geologic formation. Surface soils generally consist of fluvial and alluvial deposits; primarily clay and silt with minor inter-bedded sand layers. Below this surface layer is the Chinle Formation, which consists of low permeability claystones and siltstones that comprise the shales of this formation. As such, the Chinle Formation effectively serves as an aquiclude. Inter-bedded within the Chinle Formation is the Sonsela Sandstone bed, which represents the uppermost potential aquifer in the region.

The Sonsela Sandstone bed lies within and parallels the dip of the Chinle Formation. As such, its high point is located southeast of the refinery and it slopes downward to the northwest as it passes under the refinery. Due to the confinement of the Chinle Formation aquiclude, the Sonsela Sandstone bed acts as a water-bearing reservoir and is artesian at its lower extremis. Artesian conditions exist through much of the central and western portions of the refinery property.

3.5.3 Presence and flow direction of groundwater

Groundwater flow within the Chinle Formation is extremely slow and typically averages less than 10^{-10} centimeters per second (less than 0.01 feet per year). Groundwater flow within the surface soil layer above the Chinle Formation is highly variable due to the presence of complex and irregular stratigraphy; including sand stringers, cobble beds, and dense clay layers. As such, hydraulic conductivity may range from less than 10^{-2} centimeters per second in the gravelly sands immediately overlying the Chinle Formation up to 10^{-8} centimeters per second in the clay soil layers located near the surface.

Shallow groundwater located under refinery property generally flows along the upper contact of the Chinle Formation. The prevailing flow direction is from the southeast and toward the northwest; however, a subsurface ridge has been identified and is thought to deflect some flow in a northeasterly direction in the vicinity of the refinery tank farm.

Figure 6 provides a map of groundwater flow in the vicinity of the facility.

4.0 Investigation Methods

The purpose of this section is to describe the types of activities that will be conducted and the methods that will be used as part of this Plan. This section borrows liberally from the Plan produced by the Bloomfield Refinery of Western Refining and approved by the NMED/HWB. (Appendix C provides more detailed information on sampling procedures.)

4.1 Groundwater elevation surveys

Ground water elevation data will be collected from the wells listed in Table 1. As directed by NMED HWB, ground water elevation data will be collected on a quarterly or an annual basis. Groundwater levels and SPH thickness measurements (from the RW series of wells) will be collected on a quarterly or an annual basis to monitor groundwater elevation fluctuations over time.

The frequency for collection of groundwater elevation data may be adjusted based on review of data collected during the initial four quarters. Measurement data and the date and time of each measurement will be recorded on a site monitoring data sheet. The depth to groundwater and SPH thickness levels will be measured to the nearest 0.01 ft. The depth to groundwater and SPH thickness will be recorded relative to the surveyed well casing rim or other surveyed datum. A corrected water table elevation will be provided in wells containing SPH by adding 0.8 times the measured SPH thickness to the calculated water table elevation. Water level and SPH thickness measurements will be collected using an oil/water interface probe. Groundwater and SPH levels will be measured in all wells within 48 hours of the start of groundwater sampling activities. All automated and manual extraction of SPH and water from recovery wells, observation wells, and collection wells will be discontinued for 48 hours prior to the measurement of water and SPH levels.

4.2 Groundwater sampling

All monitoring wells scheduled for sampling during a groundwater sampling event will be sampled within 15 working days of the start of the monitoring and sampling event. Data collected in 2008 in accordance with the procedures, frequencies, and analyses described in this Plan are presented in Appendix D.

4.2.1 Well Purging

Each monitoring well will be purged by removing groundwater prior to sampling in order to ensure that formation water is being sampled. Total purge volume will be determined by monitoring groundwater pH, and specific conductance, dissolved oxygen (DO) concentrations, oxidation-reduction potential (ORP), and temperature after every two gallons or each well volume, whichever is less, has been purged from the well. Field parameters will be measured using a YSI 63 pH/Conductivity hand-held instrument or equivalent.

Table 1: Wells that will have groundwater elevation monitored and frequency of such monitoring

Well ID	Frequency of monitoring
	groundwater elevation
BW-1A	Annual
BW-1B	Annual
BW-1C	Annual
BW-2A	Annual
BW-2B	Annual
BW-2C	Annual
BW-3A	Annual
BW-3B	Annual
BW-3C	Annual
OW-1	Quarterly
OW-10	Quarterly
OW-11	Annual
OW-12	Annual
OW-13	Annual
OW-14	Annual
OW-29	Annual
OW-30	Annual
MW-1	Annual
MW-4	Annual
MW-5	Annual
RW-1	Quarterly (including SPH)
RW-2	Quarterly (including SPH)
RW-5	Quarterly (including SPH)
RW-6	Quarterly (including SPH)
SMW-2	Annual
SMW-4	Annual
SMW-6	Annual
GWM-1	Quarterly
GWM-2	Quarterly
GWM-3	Quarterly
NAPIS-1	Quarterly
NAPIS-2	Quarterly
NAPIS-3	Quarterly
КА-3	Quarterly

Purging will continue, as needed, until the field parameter readings stabilize to within ten percent between readings for three consecutive measurements. Once the readings are within 10%, purging will stop and the well is ready for sample collection. The volume of groundwater purged, the instruments used, and the readings obtained at each interval will be recorded on the field-monitoring log. Well purging and sampling will be performed using disposable bailers and/or appropriate sampling pumps.

4.2.2 Groundwater Sample Collection

Groundwater samples will be obtained from each well within 24 hours of the completion of well purging. Sample collection methods will be documented in the field monitoring reports. The samples will be transferred to the appropriate, clean, laboratory-prepared containers provided by the analytical laboratory. Sample handling and chain-of-custody procedures are described in Section 4.2.3. Decontamination procedures for reusable water sampling equipment are described in Section 4.2.4.

All purged groundwater and decontamination water will be disposed in the refinery wastewater treatment system upstream of the API Separator. The procedures for disposable materials are described in Section 4.2.6.

Groundwater samples intended for metals analysis will be submitted to the laboratory as total metals samples. Groundwater samples obtained for dissolved metals analysis will be filtered using disposable filters with a 0.45 micrometers mesh size.

4.2.3. Sample Handling

At a minimum, the following procedures will be used when collecting samples:

- Neoprene, nitrile, or other protective gloves will be worn when collecting samples. New disposable gloves will be used to collect each sample.
- All samples collected for chemical analysis will be transferred into clean sample containers supplied by the analytical laboratory. The sample container will be clearly marked. Sample container volumes and preservation methods will be in accordance with the most recent standard EPA and industry accepted practices for use by accredited analytical laboratories. Sufficient sample volume will be obtained for the laboratory to complete the method-specific QC analyses on a laboratory-batch basis.
- Sample labels and documentation will be completed for each sample.

Immediately after the samples are collected, they will be stored in a cooler with ice or other appropriate storage method until they are delivered to the analytical laboratory. Standard chain-of-custody procedures, as described in Section 4.3 of this Plan, will be followed for all samples collected. All samples will be submitted to the laboratory to allow the laboratory to conduct the analyses within the method holding times. At a minimum, all samples will be submitted to the laboratory within 48 hours after their collection.

The following shipping procedures will be performed during each sampling event:

- Individual sample containers will be packed to prevent breakage and transported in a sealed cooler with ice or other suitable coolant or other EPA or industry-wide accepted method. The drainage hole at the bottom of the cooler will be sealed and secured in case of sample container leakage. Temperature blanks will be included with each shipping container.
- Each cooler or other container will be delivered directly to the analytical laboratory.
- Glass bottles will be separated in the shipping container by cushioning material to prevent breakage.
- Plastic containers will be protected from possible puncture during shipping using cushioning material.
- The chain-of-custody form and sample request form will be shipped inside the sealed storage container to be delivered to the laboratory.
- Chain-of-custody seals will be used to seal the sample-shipping container in conformance with EPA protocol.
- Signed and dated chain-of-custody seals will be applied to each cooler prior to transport of samples from the site.

4.2.4 Decontamination Procedures

The objective of the decontamination procedures is to minimize the potential for crosscontamination

The majority of field equipment used for groundwater sampling will be disposable and, therefore, not require decontamination. In order to prevent cross-contamination, field equipment that comes into contact with water or soil will be decontaminated between each sampling location. The decontamination procedure will consist of washing the equipment with a non-phosphate detergent solution (examples include FantastikTM, Liqui-Nox®), followed by two rinses of distilled water and air dried.

Decontamination water and rinsate will be contained and disposed of the same way as purge water, as described in Section 4.2.8. Decontamination procedures and the cleaning agents used will be documented in the daily field log.

4.2.5. Field Equipment Calibration Procedures

Field equipment requiring calibration will be calibrated to known standards, in accordance with the manufacturers' recommended schedules and procedures. Calibration checks will be conducted daily and the instruments will be recalibrated if necessary. Calibration measurements will be recorded in the daily field logs.

If field equipment becomes inoperable, its use will be discontinued until the necessary repairs are made. A properly calibrated replacement instrument will be used in the interim. Instrumentation used during sampling events will be recorded in the daily field logs.

4.2.6. Collection and Management of Investigation Derived Waste

Investigation derived waste (IDW) generated during each groundwater sampling event may include purge water, decontamination water, excess sample material, and disposable sampling equipment. All water generated during sampling and decontamination activities will be temporarily stored in labeled 55-gallon drums until disposed in the refinery wastewater treatment system upstream of the API separator. All other solid waste generated during sampling activities (including sampling gloves, tubing, etc) will be disposed of with the Refinery's general municipal waste.

4.2.7 Collection of surface water samples

At the ponds, samples may be collected at multiple sites and at multiple depths, or simply a grab sample at the pond edge. This will be noted in the field notebooks. For outfalls, a grab sample will be collected at the pipe end, and recorded.

The number of sampling sites and the depths where samples will be collected will be dictated by study objectives and the physical, chemical, and biological characteristics of the water body.

Thief-type samplers usually will be used to collect pond samples if required at various depths.

- Samples must be collected at a known depth.
- Sample integrity must be maintained to the degree possible while samples are being brought to the surface for further processing.

Be sure that the field effort is adequately staffed and equipped. Check QC requirements before departing—QC samples require additional equipment and supplies.

More details of these steps are provided in Appendix C.

Step 1. Prepare for sampling of inorganic and organic analytes. Upon arrival at the field site, set out safety equipment such as traffic cones and signs (if required). Park vehicle so as to prevent sample contamination from emissions. Assemble equipment and set up a clean work space.

Organic compounds. Select equipment with fluorocarbon polymer, glass, or metal components if components will directly contact samples to be analyzed for organic compounds. **Do not use plastics other than fluorocarbon polymers**.

Inorganic constituents. Select equipment with components made of fluorocarbon polymer or other relatively inert and uncolored plastics or glass if components will directly contact samples to be analyzed for inorganic constituents. **Do not use metal or rubber components for trace-element sampling.**

Microbiological analyses. Collect microbiological samples using equipment and techniques as mandated by the laboratory.

Step 2. Locate sampling site.

- Locate the first sampling point and maintain a sampling platform position at the site.
- Record depth to bottom.

Step 3. Select sampling depths.

- Make field measurements (such as specific electrical conductance, pH, temperature, and dissolved oxygen) in situ to obtain a vertical profile of field-measurement variation.
- Measure light penetration (if applicable).
- Select and record sampling depth(s) based on study objectives and the variation in field measurements for the vertical.

Step 4. Collect samples. Field rinse sampling equipment first. Collect samples by using the procedures listed in Appendix C.

Step 5. Process samples. Details are provided in Appendix C.

Step 6. Clean equipment.

Collect a field blank, if required, after sampling equipment has been cleaned at the sampling site. Place the cleaned sampler into a plastic bag and seal for transport to the next site.

4.3. Analytical Methods

Groundwater and surface water samples collected during the monitoring events will be analyzed for one or more of the following constituents:

- volatile organic compounds (VOCs) by EPA Method 8260B and EPA Method 8021B;
- semi-volatile organic compounds (SVOCs) by EPA Method 8270C;
- metals analysis (total and dissolved) by EPA Method 6010, except mercury which will be analyzed by EPA Method 7470.
- total petroleum hydrocarbons (TPH) gasoline range organics (GRO) by EPA Method 8015B;TPH – diesel range organics (DRO) by EPA Method 8015B;
- specific conductance by EPA Method 120.1 or field measurement; and
- anions by EPA Method 300.0.

In addition, for various locations the list of metals is modified to either be the Skinner list of the NM Water Quality Control Commission list. Table 2 provides a summary of target analytes for each EPA analytical method.

Table 2: Target analytes for various EPA methods

EPA Method	Target Analytes
8260B	VOCs – method list
8270	Semi-VOCs – method list
8015B TPH-GRO	Gasoline Range Organics
8015B TPH-DRO	Diesel Range Organics
	Motor Range Organics
7470 Total recoverable	Arsenic, Barium, Cadmium, Chromium, Lead, Mercury,
Metals	Selenium. Silver
7470 Dissolved Metals	Arsenic, barium, Cadmium, Calcium, Chromium, Copper,
	Iron, lead, Magnesium, Manganese, Mercury, Potassium,
	Selenium, Silver, Sodium, Uranium, Zinc
300.0	Fluoride, Chloride, Bromide, Nitrogen,, Nitrite (as N),
	Nitrogen (Nitrate as N), Phosphorous, Orthophosphate (as
	P), Sulfate
120.1	Specific Conductance

4.4. Documentation of Field Activities

4.4.1. General

Daily field activities, including observations and field procedures, will be recorded using indelible ink on field sampling forms. The original field forms will be maintained at Gallup Refinery. Completed forms will be maintained in a bound and sequentially numbered field file for reference during field activities. The daily record of field activities will include the following information:

- Well ID
- Date
- Start and finish sampling time
- Field team members, including visitors
- Weather conditions
- Daily activities and times conducted
- Observations
- Record of samples collected with sample designations
- Photo log (if needed)
- Field monitoring data, including health and safety monitoring (if needed)
- Equipment used and calibration records, if appropriate
- List of additional data sheets and maps completed
- An inventory of the waste generated and the method of storage or disposal
- Signature of personnel completing the field record

4.4.2. Sample Custody

All samples collected for analysis will be recorded in the field report or data sheets. Chain-of-custody forms will be completed at the end of each sampling day, prior to the transfer of samples off site, and will accompany the samples during shipment to the laboratory. A signed and dated custody seal will be affixed to the lid of the shipping container. Upon receipt of the samples at the laboratory, the custody seals will be broken, the chain-of-custody form will be signed as received by the laboratory, and the conditions of the samples will be recorded on the form. The original chain-of-custody form will remain with the laboratory. Gallup Refinery will maintain copies of all chain –of-custody forms generated as part of sampling activities. Copies of the chain-of-custody records will be included with all draft and final laboratory reports submitted to NMED and OCD.

4.5. Quality Assurance Procedures

Contract analytical laboratories will maintain internal quality assurance programs in accordance with EPA and industry accepted practices and procedures. At a minimum, the laboratories will use a combination of standards, blanks, surrogates, duplicates, matrix spike/matrix spike duplicates (MS/MSD), blank spike/blank spike duplicates (BS/BSD), and laboratory control samples to demonstrate analytical QA/QC. The laboratories will establish control limits for individual chemicals or groups of chemicals based on the long-term performance of the test methods. In addition, the laboratories will establish internal QA/QC that meets EPA's laboratory certification requirements. The specific procedures to be completed are identified in the following sections.

4.5.1. Equipment Calibration Procedures and Frequency

The laboratory's equipment calibration procedures, calibration frequency, and calibration standards will be in accordance with the EPA test methodology requirements and documented in the laboratory's quality assurance and SOP manuals. All instruments and equipment used by the laboratory will be operated, calibrated, and maintained according to manufacturers' guidelines and recommendations. Operation, calibration, and maintenance will be performed by personnel who have been properly trained in these procedures. A routine schedule and record of instrument calibration and maintenance will be kept on file at the laboratory.

4.5.2. Field QA/QC Samples

Field duplicates, field blanks, equipment rinsate blanks, and trip blanks will be obtained for quality assurance during sampling activities. The samples will be handled as described in Section 4.2.3.

Field duplicate water samples will be obtained at a frequency of ten percent of the total number of samples submitted for analysis. At a minimum, one duplicate sample per sampling event will be obtained.

Field blanks will be obtained at a minimum frequency of one per day. Field blanks will be generated by filling sample containers in the field with de-ionized water and

submitting the samples, along with the groundwater samples, to the analytical laboratory for the appropriate analyses.

Equipment rinsate blanks will be obtained for chemical analysis at the rate of one per sampling day when using disposable sampling equipment. For sampling equipment that is used at more than one location (e.g., sampling pumps), an equipment rinsate blank will be collected at a frequency of 10 percent, or a minimum of one per sampling day. Rinsate samples will be generated by rinsing de-ionized water through unused or decontaminated sampling equipment. The rinsate sample then will be placed in the appropriate sample container and submitted with the groundwater samples to the analytical laboratory for the appropriate analyses.

Trip blanks will accompany laboratory sample bottles and shipping and storage containers intended for VOC analyses. Trip blanks will consist of a sample of analyte free de-ionized water prepared by the laboratory and placed in an appropriate sample container. The trip blank will be prepared by the analytical laboratory prior to the sampling event and will be kept with the shipping containers and placed with other water samples obtained from the site each day. Trip blanks will be analyzed at a frequency of one for each shipping container of samples.

4.5.3. Laboratory QA/QC Samples

Analytical procedures will be evaluated by analyzing reagent or method blanks, surrogates, matrix spike/matrix spike duplicates (MS/MSDs), blank spike/blank spike duplicates (BS/BSDs) and/or laboratory duplicates, as appropriate for each method. The laboratory QA/QC samples and frequency of analysis to be completed will be documented in the cited EPA or other test methodologies. At a minimum, the laboratory will analyze laboratory blanks, MS/MSDs, BS/BSDs and laboratory duplicates at a frequency of one in twenty for all batch runs requiring EPA test methods and a frequency of one in ten for non-EPA test methods. Laboratory batch QA/QC samples will be project specific.

4.5.4. Laboratory Deliverables

The analytical data package will be prepared in accordance with EPA-established Level II analytical support protocol. As stated in the Order, the following will be included in the analytical laboratory reports:

- Transmittal letter, including information about the receipt of samples, the testing methodology performed, any deviations from the required procedures, any problems encountered in the analysis of the samples, any data quality exceptions, and any corrective actions taken by the laboratory relative to the quality of the data contained in the report;
- Sample analytical results, including sampling date; date of sample extraction or preparation; date of sample analysis; dilution factors and test method identification; water sample results in consistent units (milligrams per liter or

micrograms per liter (μ g/L)); and detection limits for undetected analytes. Results will be reported for all field samples, including field duplicates and blanks, submitted for analysis;

- Method blank results, including reporting limits for undetected analytes;
- Surrogate recovery results and corresponding control limits for samples and method blanks (organic analyses only);
- MS/MSD and/or BS/BSD spike concentrations, percent recoveries, relative percent differences (RPDs), and corresponding control limits;
- Laboratory duplicate results for inorganic analyses, including relative percent differences and corresponding control limits;
- Sample chain-of-custody documentation;
- Holding times and conditions;
- Conformance with required analytical protocol(s);
- Instrument calibration;
- Blanks;
- Detection/quantitation limits;
- Recoveries of surrogates and/or matrix spikes (MS/MSDs);
- Variability for duplicate analyses;
- Completeness;
- Data report formats;

Data deliverables provided by the laboratory that include analysis of organic compounds will also include the following:

- A cover letter referencing the procedure used and discussing any analytical problems, deviations, and modifications, including signature from authority representative certifying to the quality and authenticity of data as reported;
- A report of sample collection, extraction, and analysis dates, including sample holding conditions,
- Tabulated results for samples in units as specified, including data qualification in conformance with EPA protocol, and definition of data descriptor codes;
- Reconstructed ion chromatograms for gas chromatograph/mass spectrometry (GC/MS) analyses for each sample and standard calibration;
- Selected ion chromatograms and mass spectra of detected target analytes (GCMS) for each sample and calibration with associated library/reference spectra;
- Gas Chromatograph/electron capture device (GC/ECD and/or gas chromatograph/flame ionization detector (GC/FID) chromatograms for each sample and standard calibration;
- Raw data quantification reports for each sample and calibrations, including areas and retention times for analytes, surrogates, and internal standards;
- A calibration data summary reporting calibration range used and a measure of linearity,
- Final extract volumes (and dilutions required), sample size, wet-to-dry weight ratios, and instrument practical detection/quantitation limit for each analyte,

- Analyte concentrations with reporting units identified, including data qualification in conformance with the contract laboratory program Statement of Work (SOW) (include definition of data descriptor codes),
- Quantification of analytes in all blank analyses, as well as identification of method blank associated with each sample,
- Recovery assessments and a replicate sample summary, including all surrogate spike recovery data with spike levels/concentrations for each sample and all MS/MSD results (recoveries and spike amounts), and
- Report of tentatively identified compounds with comparison of mass spectra to library/reference spectra.

Data deliverables provided by the laboratory that include analysis of inorganic compounds will include the following:

- A cover letter referencing the procedure used and discussing any analytical problems, deviations, and modifications; including signature from authority representative certifying to the quality and authenticity of data as reported,
- Report of sample collection, digestion, and analysis dates, with sample holding conditions,
- Tabulated results for samples in units as specified, including data qualification in conformance with the contract laboratory program (CLP) statement of work (including definition of data descriptor codes),
- Results of all method QA/QC checks, including inductively coupled plasma (ICP) Interference Check Sample and ICP serial dilution results,
- Tabulation of instrument and method practical detection/quantitation limits,
- Raw data quantification report for each sample,
- A calibration data summary reporting calibration range used and a measure of linearity, where appropriate,
- Final digestate volumes (and dilutions required), sample size, and wet-to-dry weight ratios,
- Quantification of analytes in all blank analyses, as well as identification of method blank associated with each sample, and
- Recovery assessments and a replicate sample summary, including post-digestate spike analysis; all MS data (including spike concentrations) for each sample, if accomplished; all MS results (recoveries and spike amounts); and laboratory control sample analytical results).

Gallup Refinery will present summary tables of these data in the formats suggested in the NMED/HWB letter of February 9 as an Appendix to the Periodic Groundwater Monitoring Report. The raw analytical data, including calibration curves, instrument calibration data, data calculation work sheets, and other laboratory support data for groundwater monitoring samples, will be compiled and kept on file locally at Gallup Refinery for reference. The data will be available to NMED upon request.

4.5.5. Review of Field and Laboratory QA/QC Data

The sample data, field, and laboratory QA/QC results will be evaluated for acceptability with respect to the data quality objectives (DQOs). Each group of samples will be compared with the DQOs and evaluated using data validation guidelines contained in EPA guidance documents: Guidance Document for the Assessment of RCRA Environmental Data Quality, National Functional Guidelines for Organic Data Review, and Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses, and the most recent version of SW-846, and industry-accepted QA/QC methods and procedures.

The laboratory will notify the Gallup Refinery Project Manager of data quality exceptions within one business day of identifying the data quality exception in order to allow for sample re-analysis, if possible. The Gallup Refinery Project Manager will contact NMED within one business day of receipt of laboratory notification of data quality exceptions in order to discuss the implementations and determine whether the data will still be considered acceptable, or if sample re-analysis or re-sampling is necessary. Following NMED notification, Gallup Refinery will submit written documentation summarizing discussions with NMED regarding the data quality exceptions identified. The memorandum will be submitted to NMED by fax or electronic mail within two business days of the conclusion of the data quality discussion.

4.5.6. Blanks, Field Duplicates, Reporting Limits and Holding Times

4.5.6.1. Blanks

The analytical results of field blanks and field rinsate blanks will be reviewed to evaluate the adequacy of the equipment decontamination procedures and the possibility of crosscontamination caused by decontamination of sampling equipment. The analytical results of trip blanks will be reviewed to evaluate the possibility for contamination resulting from the laboratory-prepared sample containers or the sample transport containers. The analytical results of laboratory blanks will be reviewed to evaluate the possibility of contamination caused by the analytical procedures. If contaminants are detected in field or laboratory blanks, the sample data will be qualified, as appropriate.

4.5.6.2. Field Duplicates

Field duplicates will consist of two samples either split from the same sample device or collected sequentially. Field duplicate samples will be collected at a minimum frequency of ten percent of the total number of samples submitted for analysis. Relative percent differences for field duplicates will be calculated. The analytical DQO for precision will be used for water duplicates.

4.5.6.3. Method Reporting Limits

Method reporting limits for sample analyses will be established at the lowest level practicable for the method and analyte concentrations and will not exceed groundwater or surface water cleanup standards and screening levels. Detection limits that exceed established standards or screening levels and are reported as "not detected" will be considered data quality exceptions and an explanation for the exceedance and its acceptability for use will be provided.
4.5.6.4. Holding Times

The sampling, extraction, and analysis dates will be reviewed to confirm that extraction and analyses were completed within the recommended holding times, as specified by EPA protocol. Appropriate data qualifiers will be noted if holding times were exceeded.

4.5.7. Representativeness and Comparability

4.5.7.1. Representativeness

Representativeness is a qualitative parameter related to the degree to which the sample data represent the relevant specific characteristics of the media sampled. Procedures will be implemented to assure representative samples are collected and analyzed, such as repeated measurements of the same parameter at the same location over several distinct sampling events. Any procedures or variations that may affect the collection or analysis of representative samples will be noted and the data will be qualified.

4.5.7.2. Comparability

Comparability is a qualitative parameter related to whether similar sample data can be compared. To assure comparability, analytical results will be reported in appropriate units for comparison with other data (past studies, comparable sites, screening levels, and cleanup standards), and standard collection and analytical procedures will be implemented. Any procedure or variation that may affect comparability will be noted and the data will be qualified.

4.5.8. Laboratory Reporting, Documentation, Data Reduction, and Corrective Action

Upon receipt of each laboratory data package, data will be evaluated against the criteria outlined in the previous sections. Any deviation from the established criteria will be noted and the data will be qualified. A full review and discussion of analytical data QA/QC and all data qualifiers will be submitted as appendices or attachments to the groundwater monitoring reports. Data validation procedures for all samples will include checking the following, when appropriate:

- Holding times
- Detection limits
- Field equipment rinsate blanks
- Field blanks
- Field Duplicates
- Trip blanks
- Reagent blanks
- Laboratory duplicates
- Laboratory blanks
- Laboratory matrix spikes
- Laboratory matrix spike duplicates
- Laboratory blank spikes
- Laboratory blank spike duplicates

• Surrogate recoveries

If significant quality assurance problems are encountered, appropriate corrective action will be implemented. All corrective action will be reported and the corrected data will be qualified.

5.0 Monitoring and Sampling Program

The primary objective of groundwater monitoring is to provide data which will be used to assess groundwater quality at and near the Facility. Groundwater elevation data will also be collected to evaluate groundwater flow conditions. The groundwater monitoring program for the Facility will consist of sample collection and analysis from a series of monitoring wells, recovery wells, outfalls, and pond locations.

The monitoring network is divided into two investigation areas (East Side and West Side). The sampling frequency, analyses and target analytes will vary for each investigation area and well/outfall/pond location. The combined data from these investigation areas will be used to establish background groundwater quality, assess groundwater quality beneath and immediately down-gradient of the Facility, and evaluate local groundwater flow conditions.

Samples will not be collected from monitoring wells that have measurable SPH. For wells that are purged dry, samples will be collected if recharge volume is sufficient for sample collection within 24 hours. Wells not sampled due to insufficient recharge will be documented in the field log.

A summary of the Facility-Wide Monitoring Plan is provided in Table 3.

Information regarding the construction details of all monitoring wells, including total well depth, screen interval, and top-of-casing elevation, is provided in Table E.1 in Appendix E.

The following sections outline the monitoring program for each investigation area.

5.1. East Side5.1.1. Sampling Locations

The location of the East Side monitoring and recovery wells are shown in Figure 7.

These wells are – <u>Recovery wells</u>

- RW-1
- RW-2
- RW-5
- RW-6

Monitoring wells

- OW-29
- OW-30
- OW-13
- OW-14

5.1.2. Sampling Frequency and Analyses

On a quarterly basis, groundwater samples will be collected from each of the OW wells in the East Side and analyzed for the following chemical constituents:

- VOAs (EPA method 8260B)
- BTEX plus MTBE (EPA method 8021B)

SAMPLING REQUIREMENTS PER NMED/HWB REQUESTS

LOCATION	FREQUENCY	TEST METHOD
	Quarterly	
Pond I		Gen Chem., VOC, WQCC Metals, BOD, COD, E-coli Bacteria)
Pond 2		Same as above
Pond 3		Same as above
Pond 4		Same as above
Pond S		Same as above
Pond 6		Same as above
Pond 7		Same as above
Pond 8		Same as above
Al-2 to EP-1		8260, 8015B include C6-C10, C10-C36, RCRA 8 Metals total
Pilot Effluent		VOC/DRO Extended. GRO, BOD, COD, WQCC METALS
NAPIS Effluent		GEN CHEM, VOC, SVOC (PHENOL). DRO Extended GRO, WQCC
AL-1 Inlet		BOD COD PHENOL
AL-2 Inlet	Monthly until 4/08	Same as above
EP-1 Inlet	start quarterly (or more frequently)	Same as above
	monthly until	
Evap. Pond 1	12/08 then change to qtrly	VOC, BOD, COD, CI, DRO/GRO, MTBE, Ph. PHENOL
NAPIS 1		8021B (BTEX/MTBE), 8310 (Semi-VOCs), 8015B (DRO extended, GRO), RCRA metals, and GEN CHEM
NAPIS 2		8021B (BTEX/MTBE), 8310 (Semi-VOCs). 8015B (DRO extended, GRO). RCRA metals, and GEN CHEM
NAPIS-3		8021B (BTEX/MTBE), 8310 (Semi-VOCs), 8015B (DRO extended, GRO). RCRA metals, and GEN CHEM
КА-3		8021B (BTEX/MTBE), 8310 (Semi-VOCs), 8015B (DRO extended. GRO), RCRA metals, and GEN CHEM
NAPIS 2ndary Containment		8021, 8015B EXTENDED. METALS WOCC TOTALS
OW-13		VOAs (8260B), BTEX + MTBE (8021B)
OW-14 (HIGH-BENZENE)		VOAs (8260B), BTEX + MTBE (8021B)
OW-29		VOAs (8260B). BTEX + MTBE (8021B)
1		L STATES STATES A

OW-30		VOAs (8260B), BTEX + MTBE (8021B)
Pond 1 Inlet (EPI-IN)	Semi-Annual	GenChem, VOC, SVOC Including Phenol, DRO extended/GRO, WQCC Metals
2		Gen Chem
	ANNUAL	
BW-1A		Gen Chem, VOC, SVOC, MTBE, WQCC Metals
BW-1B		Same as above
BW-1C		Same as above
BW-2A		Same as above
BW-2B		Same as above
BW-2C		Same as above
BW-3A		Same as above
BW-3B		Same as above
BW-3C		Same as above
MW-1		Gen Chem / RCRA List Constituents
MW-4		Gen Chem / RCRA List Constituents. Modified skinner list metals & organics.
MW-5		Gen Chem / RCRA List Constituents. Modified skinner list metals & organics.
OW-11		Gen Chem, VOC, SVOC, MTBE, WQCC Metals
OW-12		VOC/MTBE
	ANNUAL	
SMW-2		Gen Chem / RCRA List Constituents. Modified skinner list metals & organics.
SMW-4		Gen Chem / RCRA List Constituents. Modified skinner list metals & organics.
EP2-INLET		VOC/MTBE, DRO extended/GRO, BOD, COD, TDS
GWM-1 HIGH-BENZENE		Gen Chem, VOC, SVOC, MTBE, WQCC Metals
PW-2	Every 3 yrs starting with 2008	VOC, SVOC, WQCC METALS, CYANIDE, NITRATES
PW-3	Every 3 yrs starting with 2008	Same as above
PW-4	Every 3 yrs starting with 2007	Same as above

5.2. West Side 5.2.1. Sampling Locations

The locations of wells on the West Side are shown in Figure 7.

The following wells, outfalls, and ponds will be sampled within the West Side area: (Note: these outfalls are from one section of the wastewater treatment system to another – they do not discharge to any location outside the facility.)

Monitoring wells

- NAPIS 1
- NAPIS 2
- NAPIS 3
- KA-3
- GWM-1
- SMW-2
- SMW-4
- MW-1
- MW-4
- MW-5
- OW-11
- OW-12
- BW-1A
- BW-1B
- BW-1C
- BW-2A
- BW-2B
- BW-2C
- BW-3A
- BW-2A
- BW-3A
- PW-2
- PW-3
- PW-4

<u>Outfalls</u>

- AL1 Inlet
- AL2 Inlet
- EP1 Inlet
- AL2 to EP-1
- Pilot Travel Center effluent
- NAPIS effluent
- Boiler water Inlet to EP-2

<u>Ponds</u>

- EP1 Inlet
- EP2 Inlet
- Pond 1
- Pond 2
- Pond 3
- Pond 4
- Pond 5
- Pond 6
- Pond 7
- Pond 8

5.2.2. Sampling Frequency and Analyses

The number of sampling locations on the West Side is much larger than on the East Side. A variety of types of samples are collected, some from wells, some from outfalls, and some from ponds. The frequencies are monthly, quarterly, semi-annually, and annually. All of these frequencies and analyses required are described in Table 3 and not repeated in this section.

5.3. Monitoring Program Revisions

Upon review of the analytical results from the monitoring events under this Plan, historic facility-wide monitoring data, available soil boring data, and other related information Western Refining will assess the monitoring program presented in this Plan. Revisions to the Plan, as necessary, will then be presented for agency review and approval. These revisions may include, but not be limited to, a reduction or change in monitoring locations, monitoring frequency, and/or target analytes.

Appendix A

Letter from NMED/HWB February 9

BILL RECHARDSON Göverne

DIANE DENISH Lieumani Covernor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive Enst, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030

BON CURRY Secretary

KON COLDSTEIN Deputy Sciencery

CERTIFUED MAIL - RETORN RECEIPT REQUESTED

February 9, 2009

Mr. Ed Riege Environmental Superintendent Western Refining, Southwest Inc., Gallup Refinery Route 3, Box 7 Gallup, New Mexico 87301

RE: FACILITY WIDE GROUNDWATER MONITORING WORK PLAN WESTERN REFINING COMPANY, SOUTHWEST, INC., GALLUP REFINERY EPA ID # NMD000333211 HWB-GRCC-09-001

Dear Mr. Rjege:

The New Mexico Environment Department (NMED) requires Western Refining Company, Southwest Inc., Gallup Refinery (Permittee) to submit a Facility Wide Groundwater Monitoring Plan (Monitoring Plan). The purpose of this Monitoring Plan is to characterize the nature and extent of groundwater containination at, and migrating from the facility and provide one plan that contains all groundwater monitoring activities that will satisfy both NMED and the New Mexico Energy Minetals and Natural Resource Department Oil Conservation Division (OCD) requirements. The Monitoring Plan must be revised on an annual basis to accommodate monitoring changes at the facility and to alleviate the need to update NMED and OCD permits.

Currently, the groundwater monitoring requirements are established in the OCD Discharge Plan dated August 23, 2007, specifically items 16 (the Sampling Schedule Resulting from historical New API Separator Spills), 19, 20 (A & B), and 23.

Ed Rioge Gallup Refinery February 9, 2009 Page 2

The Permittee must use Attachanent i of this letter as a ganeral guide for preparing the Monitoring Plan. The Monitoring Plan must include, but is not limited to the following:

- n. A general description of the hydrogeologic system beneath the facility.
- b. A section or table to include, but not limited to, a description of all existing monitoring wells, recovery wells, and any other required sampling locations specifying their exact location, date the wells were installed including ground elevation, top of casing elevation, well casing stick up length, well depth, well casing diameter, acreated interval, screen length, and stratigraphic unit(s) intersected by the well screen.
- c. The initial submittal must include a section or appendix that includes all well construction diagrams.
- d. A facility map showing all monitoring well locations. This map must be revised as necessary to reflect any well additions and well abandonments that occur during the year.
- e. The current groundwater monitoring/sampling requirements found in the OCD Discharge Plan (items 16 (the Sampling Schedule Resulting from historical New API Separator Spills), 19, 20 (A & B), and 25).
- f. The sampling requirements must include the proposed frequency of sampling, sampling methodology, field water quality parameters to be measured, and chemical multifield methods.
- g. A description of all sampling methods and procedures that will be applied during each monisoring event.
- Identification of all field instruments proposed for use as well as calibration procedures.

The Permittee must continue to submit their Annual Groundwater Monitoring Report to NMED and the OCD by September 1 of each subsequent year to include the specified items found in the OCD Discharge Permit and describe all groundwater monitoring activities. The monual updates to this Monitoring Plan must be submitted by April 1 of each year beginning in 2010, so that any changes will be implemented prior to the groundwater monitoring summaries provided in the Annual Groundwater Monitoring Report. Ed Riege Gallup Refinery February 9, 2009 Page 3

Once this Monitoring Plan is approved, this plan will include and replace the requirements of the OCD Discharge Plan. The information gathered per the Monitoring Plan will then be included in the Annual Groundwater Monitoring Report. The Annual Groundwater Monitoring Report is considered a Periodic Monitoring Report for the purpose of compliances with NMED requirements and the OCD Discharge Plan items 20 (A and B) and 25. Attachment 2 provides general guidance for the preparation of Periodic Monitoring Reports.

The Permittee must submit the Monitoring Plan to NMED and the OCD on or before May 11, 2009. If you have questions regarding this latter please contact Hope Monzeglio of my staff at 505-476-6045.

Sincerely,

6 2 John E. Kieling

Program Manager Permits Management Program Hazardous Waste Bureau

cc: D. Cobrain NMED HWB H. Monzegtin, NMED HWB W. Price, OCD B. Jones, OCD G. Rajen, Gallup File: Reading File and GRCC 2009 File HWB-GRCC-09-001

ATTACHMENT 1 GENERAL GUIDE FOR COMPOSING THE MONITORING PLAN

- An Executive Summary (Abstract) must be included to provide a brief summary of the purpose and scope of the Monitoring Plan. This section must include the facility name and portions of the facility including any areas of concern (AOCs), Solid Waste Management Units (SWMUs) or other locations that the Monitoring Plan will be addressing.
 - A Table of Contents must be included that lists all text sections, subsections, tables, figures, and appendices or attachments included in the Monitoring Plas.
 - An introduction must be included in the Monitoring Plan to include general information on the current facility and a brief description of the purpose of the proposed groundwater monitoring and the types of activities that will be conducted.
 - A Background acction must be added that briefly describes relevant general background information, including historian site uses, potential receptors, the type and characteristics of the waste or contaminants and any known and possible source(s), and a summary of the history of contaminant releases which could be contributing to groundwater contamination.
 - The Permittee must include a Site Conditions section to provide a detailed description of carrent site topography and locations of natural features and manmade structures. This section must include a description of drainages, vegetation types, erosional features, and current site uses, in addition to, descriptions of features located in surrounding sites (i.e. SWMUs, AOCs) that may have an impact on the subject site regarding recharge sediment transport, surface water runoff, or contaminant fate and transport. A description of subsurface conditions subsurface investigations, including but not limited to soil types and associations, stratigraphy, and the presence and flow direction of groundwater.
 - A Scope of Activities section must include a list of all anticipated activities to be performed during the facility-wide groundwater monitoring sampling system.
- A section must be included that provides a description of all anticipated locations to be sampled and methods for conducting the activities furing the facility wide groundwater inonitoring events. This section must include, but is not limited to, descriptions of: sampling methods, sample handling procedures, procedures for collecting field water quality measurements, any field equipment and calibration procedures, water level measurement, purging activities, and decontamination procedures. This section must also address investigation Derived Waste (IDW).
- The Permittee must include a Schedule section that proposes a schedule for the groundwater monitoring.
- · Tables, Figures, and Appendices must be included.

Appendix B

Well Logs (Note: All well logs will be submitted by June 30, 2009)

·

Appendix C: Gallup Field Sampling Collection and Handling Procedures

Field Data Collection

All facility monitoring wells and recovery wells are gauged as required through the year. Gallup does not have any recovery well pumps that need to be shut off and removed prior to water elevation measurements.

All water/product levels are measured to an accuracy of the nearest 0.01 foot using an electrical Conductivity based meter. After determining water levels, well volumes are calculated using the appropriate conversion factors for a given well based ion its internal diameter, etc.

Generally, at least three well volumes are purged from each well prior to sampling. Wells that don't have sufficient recovery to obtain 3 well volumes are pumped until loss of suction then sampled.

Electrical Conductivity (E.C.), pH, and temperature are monitored during purging using a meter. The wells are considered satisfactorily purged when the pH, E.C., and temperatures values did not vary by more than 10 percent for at least three measurements.

Well elevations can be found in Appendix E.

Purged well water from wells that have shown prior contamination is collected in fifty five gallon drums. The water is treated in the refinery's waste water treatment system. Purged water from historically non-contaminated wells is drained onto the ground.

Sampling Equipment at Gallup

The following sampling equipment is maintained at Gallup and used by the sampling personnel:

- Heron Instruments 100 ft. DipperT electric water depth tape complying with US GGG-T-106E, EEC Class II.
- Pall Corporation Acro 50A 0.45 micron disposable filter used with 60 ml. disposable syringe for filtering water in the field.
- YSI 63 pH/Conductivity meter, calibrated with a one-point, two-point, or three-point calibration procedure using pH standards of 7, 4 and 10.
- Grundfos 2-inch pumps with Grundfos 115-volt AC-to-Dc converter.

Groundwater Elevation

All water/product levels are measured using DipperT electric water depth tape. The technician records separate phase hydrocarbon (SPH), depth to water (DTW), and total well depth using the tape. Wash probe on DipperT electric water depth tape first with non-phosphate soap water then with deionized or distilled water before lowering into the well casing. Recovery wells with free product are checked using a reel gauge with water and hydrocarbon finding paste.

Water Quality/Groundwater Sampling

Water quality parameters are measured using a meter. Electrical Conductivity, pH, and temperature are monitored during purging.

Field Procedure for Purging Monitor Wells

In order to assure that the sample collected is representative of actual aquifer conditions, it is necessary to purge the well of stagnant water in the casing. This is accomplished by pumping three casing volumes of water from the well or until it is bailed dry, whichever occurs first. If a well can be pumped dry, it requires only that sufficient time elapse for an adequate volume of water to accumulate for the sampling event.

The casing volume is calculated according to the following formula:

One casing volume = $L \times F$ where

L = Length of water column = total depth - depth to water

F = gallons water per foot of well, based on the well casing diameter

F is provided on the *Well Volume Sheet* for the monitoring wells at Gallup provided at the end of this appendix.

The volume to be purged from each well is determined as follows:

Purge volume = casing volume x = 3

Document the following information:

- a. The amount of water purged from each well.
- b. Weather conditions (dry or wet).
- c. Depth to Water (DTW).
- d. Purge date.
- e. Purge time.

Well Evacuation

Before sample collection can begin, the water collected from each monitoring well must be fresh aquifer water. Well evacuation replaces stagnant well water with fresh aquifer water. The water level in the well, total depth of well and thickness of floating product (if any) will be measured using the DipperT electric water depth tape. A transparent bailer will be used to check for the presence and measure the thickness of floating product. If product is present, a ground water sample is typically not obtained.

Recovery wells are evacuated by use of an air driven pump. Wells MW-1, MW-2, MW-4, MW-5, BW-1C, BW-2A, BW-2B, BW-3B, and SMW-4 are each equipped with a dedicated electrical pump. The remaining wells are purged using a portable Grundfos pump.

In low yielding wells, the standing water will be removed until the well is essentially dry. The water level in the well will be allowed to recover until a sufficient volume is present to obtain a sample.

The first sample should be tested for pH, temperature, and specific Conductivity. Samples should then be collected and containerized in the order of the parameter's volatilization sensitivity (see *Order of Collection* below). The well should be retested for pH, temperature and specific Conductivity after sampling as a measure of purging efficiency and as a check on the stability of the water samples over time. All well evacuation information should be recorded in a log book.

Hand Bailing

Hand bailing is used to remove free product from recovery wells, and for wells NAPIS-1, NAPIS-2, NPIS-3 and KA-3. Hand bailing is performed by lowering a TeflonTM bailer slowly into the well, allowing water to enter the bailer, and lifting the bailer out of the well. The bailer is positioned just below the top of the standing water in the well, so that the bailed product is removed from the top of the water column.

Pumping

An electric pump is used to remove water from all wells other than recovery wells with free product in them. Wells MW-1, MW-2, MW-4, MW-5, BW-1C, BW-2A, BW-2B, BW-3B, and SMW-4 are each equipped with a dedicated electrical pump. The other wells, except for recovery wells, are pumped using a portable 2-inch Grundfos pump. During sample collection, a maximum flow rate of 100 milliliters/minute should be used. The actual flow rate should be measured using a graduated container and timed using a stop watch or a watch with a second hand. This rate can change as the water level in the well drops. The flow rate can be determined by:

Flow rate (gpm) = volume collected (gallons) \times 60 seconds per minute Time to fill container (seconds)

50

Bottle Filling Procedure

If the well was not bailed dry and the water level is recovering to provide sufficient water to fill all the sample bottles, then samples should be collected immediately. If the well was completely evacuated and/or recovery is slow, wait for a sufficient volume of water to recover in the well to fill all of the sample bottles before beginning to collect samples. Do not overfill the bottles as this will dilute the preservative. When filling VOA and TOX containers, slowly fill the container until the meniscus is just above the lip of the container. Place the cap on the container and tighten. Check for air bubbles by inverting the container and tapping gently. There should be no headspace (air) in the container. If headspace is present, the sample should be discarded and the container refilled (add sufficient preservative if required by sample test).

Do not touch the inside of bottle caps or the inside of the containers. If a cap is accidentally dropped, it should be rinsed with de-ionized or distilled water followed by a rinse with the sample prior to being placed on the container. Record in the field notes whether this happens.

Filled containers should be placed on ice in the coolers immediately upon collection. Replace well cap and lock the cap.

Order of Collection

Samples should be collected in the order listed below:

Parameter	Bottle Type
Volatile Organics Teflon TM	VOA vials with septa cap of
TOX H2SO4	Pint amber glass with septa cap,
TOC, Phenols, Nitrate, Ammonia	Quart glass jar, H2SO4
Extractable Organics	Quart glass jar with Teflon TM cap
Chloride and Sulfate	Quart plastic, no preservative
Cyanide	Quart glass, NaOH
Radionuclides	Quart plastic, HNO3
Metals*	Pint plastic

* Prefiltration bottle for dissolved metals which is subsequently filtered and transferred to a pint plastic bottle with HNO3.

Filtration

Ground water samples are filtered prior to *dissolved metals* analysis. For dissolved metals, sample water is poured into a jar and then extracted with a syringe. The syringe is then used to force the sample water through a 0.45 micron pore filter paper filter into the proper sample bottle to collect dissolved metals samples. Filtration must be performed within two hours of sample collection. Pour the filtrate into a sample bottle containing HNO3 preservative.

For samples destined for *total metals* analysis, do not filter the sample, and preserve with HNO3 to pH <2 in the field.

Gallup sampling personnel carry a cell phone when gathering groundwater and other water samples. While sampling procedures are generally well known and the appropriate sample bottles are ordered to match each sampling event, occasional questions do arise from unforeseen circumstances which may develop during sampling. At such times, sampling personnel contact Hall Environmental Analytical Laboratory to verify that sampling is correctly performed.

General Well Sampling and Sample Handling Procedures

For safety protection and sampling purity, rubber gloves are worn and changed between each activity.

Prepare for sampling event by making out sample bottle labels and have bottles separated into plastic bags for each well to be sampled and placed in an ice chest ready to take into the field.

Bring along a note book and sample log.

Starting with well MW-1, document weather conditions, sample date and time.

Fill in label with location, date, time, analysis, preservative, and your name.

Start sampling by adjusting converter speed for each well.

Affix sample label and fill bottle according to lab instructions. For samples intended for VOC analysis, use bottles with septa lids, fill bottle to neck and add final amount of water with cap to form meniscus. Turn bottles upside down to examine for bubbles. If bubbles show repeat previous sentence. If no bubbles show, secure lids and pack in bubble wrap and place in cooler until sampling is completed.

Decontaminate equipment that is not dedicated for use in a particular well. Decontaminate by first washing with a non-phosphate soapy water mixture then triple rinse with distilled or deionized water.

Refrigerate completed samples until shipping to lab. Be sure to check holding times and arrange the appropriate shipping.

Equipment Calibration Procedures

YSI 63 pH/Conductivity meter Conductivity Calibration: none equired

pH Calibration:

1. Reading pH 7 buffer, push and hold button to enter calibration mode – then set reading to 7.0

2. Using pH 4 or 10 buffer, follow instruction to continue on to a two-point or a three point calibration – essentially setting the slope.

Guidelines for Sampling at Ponds

At the ponds, samples may be collected at multiple sites and at multiple depths, or simply a grab sample at the pond edge. This will be noted in the field notebooks.

The number of sampling sites and the depths where samples will be collected will be dictated by study objectives and the physical, chemical, and biological characteristics of the water body.

Thief-type samplers usually will be used to collect pond samples if required at various depths.

- Samples must be collected at a known depth.
- Sample integrity must be maintained to the degree possible while samples are being brought to the surface for further processing.

Be sure that the field effort is adequately staffed and equipped. Check QC requirements before departing—QC samples require additional equipment and supplies.

Step 1. Prepare for sampling of inorganic and organic analytes. Upon arrival at the field site, set out safety equipment such as traffic cones and signs (if required). Park vehicle so as to prevent sample contamination from emissions. Assemble equipment and set up a clean work space.

Organic compounds. Select equipment with fluorocarbon polymer, glass, or metal components if components will directly contact samples to be analyzed for organic compounds. **Do not use plastics other than fluorocarbon polymers.**

Inorganic constituents. Select equipment with components made of fluorocarbon polymer or other relatively inert and uncolored plastics or glass if components will directly contact samples to be analyzed for inorganic constituents. **Do not use metal or rubber components for trace-element sampling.**

Microbiological analyses. Collect microbiological samples using equipment and techniques as mandated by the laboratory.

Step 2. Locate sampling site.

- Locate the first sampling point and maintain a sampling platform position at the site.
- Record depth to bottom.

Step 3. Select sampling depths.

- Make field measurements (such as specific electrical conductance, pH, temperature, and dissolved oxygen) in situ to obtain a vertical profile of field-measurement variation.
- Measure light penetration (if applicable).
- Select and record sampling depth(s) based on study objectives and the variation in field measurements for the vertical.

Step 4. Collect samples. Field rinse sampling equipment first. Collect samples by using the procedures listed below under Step 4A for a thief-type sampler and under Step 4B for a pump sampler.

- **Thief-type sampler.** The instructions listed below are for samplers that operate with an open/close mechanism. If the sampler operates as a point-source bailer, follow steps (a) and (c) through (g) below. Pulling the bailer up will trigger the upper check valve to seal off the sample from the water overlying the targeted depth.
 - a. Lower opened sampler to the desired depth while minimizing disturbance of the water column.
 - \circ b. Isolate the sample by activating the mechanism that closes the sampler.
 - c. Raise the sampler from the water body.
 - d. Dispense sample to sample bottle or compositing/splitting device.
 - If using a bailer, drain sample through the bottom-emptying device.

If sample compositing and (or) splitting is required, ensure that all particulates in the sampler are transferred with the sample by swirling the sample gently to keep particulates suspended and pouring the sample quickly into the churn or cone splitter.

- e. Repeat steps a through d if more sample is needed from the same depth for that vertical section.
- Repeat steps a through e for each depth to be sampled in that vertical section. If a second sample from a different depth or vertical section will be composited, either

(1) clean and field rinse the splitter after processing the first sample and before collecting the second sample, or (2) use another clean splitter. g. Move to the next site if another vertical section will be sampled. Repeat steps a through f.

Step 5. Process samples. Follow the general sample handling procedures outlined in the previous section.

Step 6. Clean equipment. If the sampler will not be reused during a field trip, rinse the sampler components with deionized water (DIW) before they dry and place them in a plastic bag for transporting back to the office laboratory to be cleaned. If the sampler will be reused during the field trip, rinse the components with DIW while still wet from sampling and then field-clean while at the sampling site using the pre-scribed procedures. Reassemble the sampler.

Collect a field blank, if required, after sampling equipment has been cleaned at the sampling site. Place the cleaned sampler into a plastic bag and seal for transport to the next site.

Appendix D Data from 2008

TABLE D.1

EPA METHOD 8260B VOLATILES. Levels of contaminants in Potable Water Wells – all units of concentrations are in mg/l. (For wells not sampled in 2007, data is presented from previous years.)

	Year ⁴	Date Sampled	Benzene	Toluene	Ethylbenzene	Xylene	MTBE
PW-2	2004	12-9-2004	< 0.001	< 0.001	< 0.001	< 0.0015	-
PW-4	2004	8-4-2004	< 0.001	< 0.001	< 0.001	< 0.0015	-
PW-3	2006	10-27-2006	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2007	Sampling activities were primarily conducted from December 27-31, 2007 (Sampling of this well was completed on 1-1-2008 because of inclement weather.)	<0.001	<0.001	<0.001	<0.0015	<0.001
PW-2	2008	9/12/2008	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
PW-3	2008	8/21/08	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
PW-4	2008	9/12/2008	<0.001	< 0.001	< 0.001	< 0.0015	< 0.001
EPA MCLS			0.005	1	0.7	10.0	
Residential Risk Based Screening Levels for Tap Water (12ug/L)			0.01	0.75	0.75	0.62	0.012 (Residential tap water Std)

TABLE D.2

EPA METHOD 300.0 ANIONS, 6010B RECOVERABLE METALS, 8260B VOLATILES, 8270C SEMI VOLATILES.

Levels of all contaminants in Potable Well # 2, 3 and 4 found at least above Levels of Detection in 2008- all units of concentrations are in mg/l. (Note: Contaminants not presented were not detected. For a complete list of contaminants analyzed, see Section 5.0.)

	Ba	Fe	Рь	Mn	U	Zn	Cyanide	Nitrate as N	Phenols
PW-2	0.013	0.07	< 0.005	< 0.002	.00161	< 0.02	< 0.01	<1.0	< 0.001
PW-3	< 0.02	<.05	< 0.005	< 0.002	.00063	< 0.05	< 0.004	.13	< 0.001
PW-4	0.013	0.11	< 0.005	< 0.005	.0014	< 0.02	<0.01	<1.0	< 0.001
EPA MCLS	2.0	0.3		0.3			0.2	10	
NMWQS	1.0			0.2	.03	10	0.2		.005

⁴ No potable wells were sampled in 2005.

EPA METHOD 300.0 ANIONS, EPA 120.1 SPECIFIC CONDUCTANCE, SM4500-H+B: pH. Level of contaminants in Boundary and Observation wells. (All units are in mg/l, except for pH and Specific Conductivity)

	Date Sampled	Fluoride	Chloride	Nitrate + Nitrite as N	Bromide	Phosphorous Orthophosph ate (as P)	Sulfate	рН	Specific Conductance (umhos/cm)
OW-11	8/14/08	2.2	90	.75	.29	<.0.5	940	8.39	2600
	12/27/07								
	10/24/06	2.5	86			<.0.5	1100	8.4	3100
BW-1C	7/31/08	2.4	35	<1.0	<0.10	<0.5	260	8.68	1400
	12/31/07	2.6	35	<1.0		<0.5	270	8.5	1400
	10/27/06	2.7	36	<0.5		<0.5		8.39	1400
BW-2A	7/30/08	1.1	40	<1.0	.43	0.75	7.3	7.87	1400
	12/31/07	1.3	42	<1.0		0.70	7.7	7.76	1400
	10/27/06	1.3	39	<0.5		0.64	7.5	8.27	1400
BW-2B	7/30/08	1.6	30	<1.0	1.1	<.0.5	150	7.76	2200
<u>۱</u>	12/31/07	1.8	30	<1.0		<0.5	150	7.77	2400
	10/27/06	1.9	31	<0.5		<0.5	140	8.1	1400
BW-2C	7/30/08	1.9	44	<1.0	.14	<0.5	270	8.83	1400
	12/31/07	2.3	45	<1.0		<0.5	290	8.73	1400
	10/27/06	2.4	42	<0.5		<0.5	270	8.52	1300
BW-3B	7/31/08	1.4	34	<1.0	.42	1.1	55	7.95	1500
	12/31/07	1.6	35	<1.0		1.1	51	7.93	1600
	10/27/06	1.7	33	<0.5		1.1	250	8.5	1600
BW-3C	8/1/08	1.5	34	<2.0	<1.0	<5.0	240	8.63	1500
	12/31/07	1.8	38	<1.0		<0.5	300	8.59	1500
	10/27/06	1.9	37	< 0.5		<0.5	280	8.39	1400
EPA <u>MCLS</u>		4.0	250	10 Nitrate 1 Nitrite			250	6 - 9	
NMWQS		1.6	250 (domestic water)	10			600	6 - 9	

TABLE D.4EPA METHOD 6010B TOTAL RECOVERABLE METALS.

Levels detected in Boundary Wells (Note: Only data for detected contaminants are presented. For a complete list of all metals analyzed see Section 5.0. All units are in mg/l.)

	Date Sampled	Ba	Ca	Cr	Fe	Mg	Mn	К	Na	Zn	U
OW-11	8/14/08	< 0.01	11		<.0.05	1.3	.015	1.8	640		.249
	12/27/07	< 0.01	11		<.0.05	1.3	.016	1.6	690		.22
	10/28/06	<0.02	12		<.0.05	1.4					
BW-1C	7/31/08	.016	3.0		<.0.05	.62	.013	<1.0	310		.00115
	12/31/07	0.023	3.6		< 0.05	0.74	0.01	<1.0	360		<0.1
	10/28/06	< 0.02	3.4		< 0.05	<1.0					
BW-2A	7/30/08	0.14	8.6		0.37	3.2	0.14	<1.0	320		<.001
	12/31/07	0.18	11		0.7	3.9	0.22	<1/0	380		<0.1
	10/28/06	0.15	10		< 0.05						
BW-2B	7/30/08	0.041	13		.064	3.0	0.16	<1.0	570		.0115
	12/31/07	0.07	16		0.62	3.6	0.29	1.6	640		<0.1
	10/28/06	0.071	23		< 0.05						
BW-2C	7/30/08	0.13	24		1.3	2.0	.43	1.1	300		.00728
	12/31/07	0.026	2.9		0.16	0.68	0.024	<1.0	340		<0.1
	10/28/06	0.031	5.6		< 0.05	<1.0					
BW-3B	7/31/08	0.11	8.3		0.43	2.6	0.12	<1.0	370		<.001
	12/31/07	0.099	9.0		0.64	2.9	0.13	<1.0	430		<0.1
	10/28/06	0.11	9.0		< 0.05						
BW-3C	8/1/08	.27	28	.0078	3.0	2.2	0.41	1.6	350	.032	.00251
	12/31/07	0.068	4.2		0.14	0.81	0.015	1.1	360		<0.1
	10/28/06	0.029	6.0		< 0.05						
EPA MCLS		2.0		0.1	0.3		0.3				0.03
NMWQS		1.0		.05	1.0		0.2			10.0	.03

58

EPA METHOD 8260B VOLATILES: Levels of contaminants found in the Boundary and Observation Wells – all units of concentrations are in mg/l

	Year	Date Sampled	Benzene	Toluene	Ethylbenzene	Xylene	МТВЕ
OW-11	2008	8/14/08	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2007	12/27/07	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10/24/06	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
BW-1C	2008	7/31/2008	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2007	12/31/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10/27/2006	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
BW-2A	2008	7/30/2008	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2007	12/31/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10/27/2006	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
BW-2B	2008	7/30/08	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2007	12/31/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10/27/2006	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
BW-2C	2008	7/30/2008	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2007	12/31/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10/27/2006	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
BW-3B	2008	7/31/2008	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2007	12/31/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10/27/2006	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
BW-3C	2008	8/1/2008	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2007	12/31/2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10/27/2006	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
EPA MCLS			0.005	1.0	0.7	10.0	
Residential Risk Based Screening Levels for Tap Water (12ug/L)			0.01	0.75	0.75	0.62	0.012 (residential tap water std)

EPA METHOD 8260B VOLATILES, EPA METHOD 8021B SEMI VOLATILES: Levels in Observation Wells and Monitoring Well (GWM-1) – all units of concentrations are in mg/l. Quarterly Sampling of OW-13, 14, 29 & 30 began Fourth Quarter 2008.

	Year	Date Sampled	Benzene	Toluene	Ethylbenzene	Xylene	MTBE
OW#12	2008	8/19/08	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2007	12-27-2007	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2006	10-27-2006	< 0.001	< 0.001	< 0.001	< 0.001	< 0.0025
OW#13 **	2008	11/13/08	< 0.001	< 0.001	< 0.001	< 0.0015	0.0016
	2008	8/19/08	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001
	2007	12-27-2007	< 0.001	< 0.001	< 0.001	< 0.0015	0.0013
	2006	10-27-2006	< 0.001	< 0.001	< 0.001	< 0.001	< 0.0025
OW#14 *	2008	11/12/08	0.0082	< 0.001	< 0.001	< 0.002	0.91
	2008	8/21/08	.0035	< 0.001	< 0.001	< 0.0015	1.3
	2007	1-1-2008	0.014	< 0.001	< 0.001	< 0.0015	0.92
	2006	12-28-2006	0.0042	< 0.001	0.0025	< 0.003	0.18
	2006	10-27-2006	0.0034	< 0.001	< 0.001	< 0.003	0.016
	2005	9-27-2005	0.017	0.0022	0.0023	0.0014	0.077
OW#29 **	2008	11/14/08	< 0.001	< 0.001	< 0.001	< 0.0015	0.015
	2008	8/19/08	< 0.001	<0.001	< 0.001	< 0.0015	.0092
	2007	12-28-2007	< 0.001	< 0.001	< 0.001	< 0.0015	0.0043
	2006	10-27-2006	< 0.001	< 0.001	< 0.001	< 0.003	< 0.0025
	2005	9-27-2005	< 0.001	< 0.001	< 0.001	< 0.0005	< 0.0025
OW#30 *	2008	11/12/08	< 0.001	< 0.001	< 0.001	< 0.002	0.88
	2008	8/20/08	< 0.001	< 0.001	< 0.001	< 0.0015	1.1
	2007	12-28-2007	< 0.001	< 0.001	< 0.001	< 0.0015	0.29
	2006	10-27-2006	< 0.001	< 0.001	<0.001	< 0.003	< 0.0025
	2005	9-27-2005	< 0.001	< 0.001	<0.001	< 0.0005	0.018
GWM-1	2008	7/10/08	.011	.0021	.0039	.019	0.12
	2007	5-24-2007	0.016	< 0.001	< 0.001	< 0.0015	0.23
	2006	10-27-2006	0.012	< 0.001	<0.001	< 0.0015	0.16
EPA MCLS			0.005	1.0	0.7	10.0	
Residential Risk Based Screen Levels for Tap Water (12ug/L)			0.01	0.75	0.75	0.62	0.012 (Residential tap water Std.)

* Method EPA 8021B Semi-Volatiles used for Fourth Quarter Analysis.

** Method EPA 8260B Volatiles used for Fourth Quarter Analysis.

EPA METHOD 8260B VOLATILES: Levels of All Contaminants in Ground Monitoring and Boundary Wells found at least above Levels of Detection in 2008- all units of concentrations are in mg/l (Note: Contaminants not presented were not detected.) Quarterly sampling began Fourth Quarter 2008 for OW-14, 29, 30

	DATE SAMPLED	GWM- 1	OW-13	OW-14	OW-29	OW-30	SMW-2	Provisional - EPA MCLs/ATSDR Screening level/Health Advisory Level -	NMWQS
ACETONE	8/14/08						00753		
	11/13/08		< 0.01	< 0.01	< 0.01	< 0.01	.00755		
1,2,4 TRIMETHYLBENZENE	7/10/08	0.0046						0.005	
	11/14/08	ł	< 0.001	< 0.001	< 0.001	<0.001		0.003	
	8/21/08			0.012					0.03
	11/13/08	·	< 0.004	0.016	< 0.004	< 0.04			0.05
	<u>8/21/08</u>			0.0016				0.005	
130FROFTEBEINZEINE	11/13/08		< 0.001	0.0015	< 0.001	< 0.001		0.003	
	8/21/08			0.002				0.005	
Sec-BUTYLBENZENE	11/13/08		< 0.001	0.0025	< 0.001	< 0.001		0.003	
1,2-DICHLOROETHANE	8/21/08							0.005	01
(EDC)	11/13/08		< 0.001	0.0018	0.001	.0013]	0.003	.01

TABLE D.8

EPA METHOD 8270C SEMI VOLATILES:

Levels of All Contaminants in Ground Monitoring and Boundary Wells found at least above Levels of Detection in 2008- all units of concentrations are in mg/l (Note: Contaminants not presented were not detected.)

	GWM-1	OW-14	MW-4	SMW-2	SMW-4	Provisional - EPA MCLs/ATSDR Screening level/Health Advisory Level -	NMWQS
BIS(2-ETHYLHEXL) PHTHALATE			.000679				
DIETHYL PHTHALATE				.000057	.0005		
2,4- DIMETHYLPHENOL	0.028					0.71	
1,4-DIOXANE				.0136			
PHENOL	0.0046				.00113		.005

TABLE D.9:EPA METHOD 300.0 ANIONS and 120.1 SPECIFIC CONDUCTANCE, pH:

Levels in Monitoring Wells (All units are in mg/l, except for pH and Specific Conductivity)

	Date Sampled	Fluoride	Chloride	Nitrate + Nitrite as N	Bromide	Phosphorous Orthophospha te (as P)	Sulfate	рН	Specific Conductance (umhos/cm)
GWM-1	7/10/08	1.7	1800	<2.0		<0.5	110	6.92	7400
	5/24/07	1.9	1800	<2.0		<0.5	120	6.8	8100
	10/26/06	2.0	3700	<2.0		<2.5	120	6.87	
MW-1	8/4/08	.81	51	<1.0		<0.5	160	8.95	1100
	12/29/07	0.69	53	<1.0		<0.5	170	8.89	1100
	10/26/06	0.84	46	<0.5		<0.5	150	8.98	
MW-4	8/5/08	.37	17	<1.0		<0.5	160	8.63	1200
	12/29/07	0.42	17	<1.0		<0.5	160	8.63	1200
MW-5	8/13/08	0.85	63	<1.0	.15	<0.5	180	9.02	1200
	12/29/07								
SMW-2	8/14/08	.36	2000	<1.0	3.1	<0.5	1600	7.25	8700
	1/1/08								
SMW-4	8/14/08	1.1	52	.11	.15	<0.5	150	8.63	1200
	12/29/07	1.4	60	<1.0		<0.5	160	8.34	1300
EPA MCLS	- s.r. vati	4.0		10 Nitrate 1 Nitrite				6 - 9	
NMWQS		1.6	250 (drinking water)	10			600	6 - 9	

Note: Wells MW-4, MW-5, SMW-2 and SMW-4 were not sampled in 2006.

EPA 6010B TOTAL RECOVERABLE METALS. Levels detected in Monitoring Wells (Note: Only data for detected contaminants are presented. All units are in mg/l.)

Well No.	Date Sampled	As	Ba	Ca	Cr	Mg	Mn	Ni	К	Na
GWM-1	7/10/08	0.070	0.45	350	<.0060	81	3.6	-	3.3	1400
	5/24/07	0.081	0.44	360	< 0.006	87	-	< 0.01	3.7	1300
	10/26/06	0.077	0.53	380	< 0.006	93	-	< 0.01	4.2	1400
MW-1	8/4/08	< 0.02	<.0.02	1.7	<0.006	<1.0	-	<0.01	<1.0	260
	12/29/07	0.020	< 0.02	3.2	< 0.006	<1.0	0.018	-	<1.0	230
	10/26/06	< 0.02			< 0.006			< 0.01		
MW-4	8/5/08	< 0.02	< 0.02	1.8	<0.0060	<1.0	-	< 0.01	<1.0	280
	12/29/07	< 0.02	0.021	1.9	<0.006	<1.0	0.0052	< 0.01	<1.0	320
MW-5	8/13/08	< 0.02	< 0.02	1.4	<0.006	<1.0	-	< 0.01	<1.0	260
	12/29/07	< 0.02	< 0.02	1.4	< 0.006	<1.0	0.0045	-	<1.0	290
SMW-2	8/14/08	< 0.02	< 0.02	200	.0092	64	-	.017	<1.0	1900
	1/1/08	< 0.02	< 0.02	200	0.055	69		0.026	1.1	2200
SMW-4	8/14/08	< 0.02	<0.02	3.0	<0.006	61.0	-	-	<1.0	280
	12/29/07	< 0.02	0.024	4.6	< 0.006	1.2	-	< 0.01	<1.0	340
EPA MCLS		0.01	2.0				0.3			
NMWQS		0.1	1.0		.05		0.2			

Well No.	Date Sampled	Cu	Fe	Pb	Co	V	Zn
GWM-1	7/10/08	.014	14	.010	-	-	-
MW-1	8/4/08	-	-	< 0.005	-	-	-
MW-4	8/5/08	-	-	< 0.005	-	-	-
MW-5	8/13/08	-	-	< 0.005	-	-	-
SMW-2	8/14/08	-	-	< 0.005	-	-	.11
SMW-4	8/14/08	-	-	<0.005	.017	0.053	-
EPA MCLS		1.3		0			
NMWQS		1.0	1.0	.05			10.0

Note: Wells MW-4, MW-5, SMW-2 and SMW-4 were not sampled in 2006. Analyses for dissolved metals were not conducted in 2006

EPA METHOD 8260B VOLATILES, EPA METHOD 8015B DRO/GRO.

Levels in Monitoring Wells – all units of concentrations are in mg/l. (Only Well SMW-2 has contaminants above the level of non-detection: MTBE at 0.0099 significantly below regulatory standards, and Gasoline Range Organics at 0.69 mg/l. All other wells have non-detectable levels of contaminants.)

	Year	Date Sampled	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	DRO	GRO
MW-1	2008	8/4/08	< 0.005	<0.005	< 0.005	< 0.005	-	<1.0	< 0.05
	2007	12/29/07	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001	<1.0	< 0.05
	2006	10/26/06	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.0015	<1.0	< 0.05
MW-4	2008	8/5/08	<0.005	<0.005	<0.005	< 0.005	-	<1.0	< 0.05
	2007	12/29/07	< 0.001	< 0.001	< 0.001	< 0.0015	<0.001	<1.0	< 0.05
	2005	10/12/05	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.0015	<1.0	< 0.05
MW-5	2008	8/13/08	< 0.005	< 0.005	< 0.005	-	-	<1.0	< 0.05
	2007	12/29/07	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.001	<1.0	< 0.05
	2005	10/12/05	< 0.001	< 0.001	< 0.001	< 0.0015	< 0.0015	<1.0	< 0.05
SMW-2	2008	8/14/08	< 0.005	< 0.005	< 0.005	-	-	<1.0	.36
	2007	1/1/08	< 0.001	< 0.001	< 0.001	< 0.0015	0.0099	<1.0	0.69
	2005	10/12/05	< 0.001	< 0.001	<0.001	< 0.0015	<0.0015	<1.0	< 0.05
SMW-4	2008	8/14/08	< 0.005	< 0.005	<0.005	-	-	<1.0	<0.05
	2007	12/29/07	< 0.001	<0.001	< 0.001	<0.0015	<0.001	<1.0	< 0.05
	2005	10/12/05	< 0.001	<0.001	<0.001	< 0.0015	< 0.0015	<1.0	<0.05
EPA MCLS			0.005	1	0.7	10.0			
Residential Risk Based Screen Levels for Tap Water (12ug/L)			0.01	0.75	0.75	0.62	0.012		

EPA METHOD 8260B VOLATILES. Levels of contaminants in inlets to Evaporation Ponds 1 and 2 and from within Ponds 1 through 8 – all units of concentrations are in mg/l.

	Date Sampled	Benzene	Toluene	Ethylbenzene	Xylene	мтве
	12/2/08	.0083	0.089	0.033	0.26	< 0.005
Dond 1	9/9/08	.0033	.0058	.0026	.02	<.001
	6/17/08	<.001	.0056	.0016	.012	<.001
	3/11/08	0.19	0.47	.0087	0.54	.0059
	12/2/08	.0018	0.02	.0072	.057	<.001
Dond 7	9/9/08	<.001	.0011	<.001	.0044	<.001
1 Uliu 2	6/17/08	<.005	<.005	<.005	<.0075	<.005
	3/11/08	.0038	.011	.0021	.014	<.001
	12/2/08	.0011	.012	.0043	.034	<.001
Dond 2	9/9/08	<.010	<.010	<.010	<.015	<.010
ronu 5	6/17/08	<.001	<.001	<.001	<.0015	<.001
	3/11/08	<.001	.0019	<.001	.004	<.001
	12/2/08	<.001	.008	.0029	.022	<.001
Dand 4	9/9/08	<.010	<.010	<.010	<.015	<.010
rona 4	6/17/08	<.001	<.001	<.001	<.0015	<.001
	3/11/08	<.001	<.001	<.001	.002	<.001
	12/2/08	<.001	.0026	.0010	.0072	<.001
Dand 5	9/9/08	<.010	<.010	<.010	<.015	<.010
ronu 5	6/17/08	<.001	<.001	<.001	<.0015	<.001
	3/11/08	<.001	<.001	<.001	<.0015	<.001
	12/2/08	<.001	<.001	<.001	<.0015	<.001
Dond 6	9/9/08	<.010	<.010	<.010	<.015	<.010
	6/17/08	<.001	<.001	<.001	<.0015	<.001
	3/11/08	<.001	<.001	<.001	<.0015	<.001
	12/2/08	<.001	<.001	<.001	<.0015	<.001
Dond 7	9/9/08	<.010	<.010	<.010	<.015	<.010
ronu /	6/17/08	<.001	<.001	<.001	<.0015	<.001
	3/11/08	<.001	<.001	<.001	<.0015	<.001
	12/2/08	<.001	<.001	<.001	<.0015	<.001
Dond 9	9/9/08	<.010	<.010	<.010	<.015	<.010
Γυπαιο	6/17/08	<.001	<.001	<.001	<.0015	<.001
	3/11/08	<.001	<.001	<.001	<.0015	<.001
EPA MCLS		0.005	1	0.7	10.0	
Residential Risk Based Screening Levels for Tap Water (12ug/L)		0.01	0.75	0.75	0.62	0.012 (Residential Tap water Std.)

EPA METHOD 300.0 ANIONS, EPA 120.1 SPECIFIC CONDUCTANCE, EPA 410.1 COD, EPA 405.1 BOD, SM4500-H+B: PH Levels of All Contaminants in Evaporation Ponds 1 through 8 found at least above Levels of Detection in 2008- all units of concentrations are in mg/l.

	DATE	рН	Specific Conductance (umhos/cm)	COD	BOD	E-Coli (cfu/100ml)	Fluoride	Chloride	NITROGEN Nitrite (as N) Nitrate (as N)	Phosphorus Orthophosphate (asP)	Sulfate
	12/2/08	7.76	4400				110	360	<1.0	7.2	780
POND 1	9/9/08	7.82	4500	3000	299	58	99	150	<1.0	<5.0	7700
	6/17/08	7.57	4600	1230	327		120	120	<1.0	15	1100
	3/11/08	3.81	4900	965	556	Absent	560	540	<5.0	<25	980
	12/2/08	7.80	8500				37	1800	<2.0	<2.0	1000
POND 2	9/9/08	7.97	10000	2500	122	300	48	2800	<1.0	<1.0	960
TOND 2	6/17/08	7.90	11000	790	110		63	2900	<4.0	<5.0	1300
	3/11/08	6.81	8400	871	.71	Absent	63	2200	<5.0	<25	970
	12/2/08	7.86	8500				26	1800	<2.0	<10	980
DOND 3	9/9/08	7.94	10000	950	73.0	310	51	2800	<1.0	<1.0	1100
FUNDS	6/17/08	7.91	13000	691	96.9		44	3700	<4.0	<5.0	1400
	3/11/08	7.86	9800	871	323	Present	41	2700	<5.0	<5.0	1000
	12/2/08	7.89	9100				27	2000	<2.0	<2.0	1000
POND 4	6/17/08	7.90	11000	850	68.0	54.5	49	2900	<1.0	<1.0	1100
TONDA	6/17/08	7.94	15000	110	103		34	4500	<4.0	<5.0	1500
	3/11/08	8.06	10000	663	275	Present	32	2800	<5.0	<5.0	1000
1	12/2/08	7.82	14000				29	2900	<4.0	<10	1200_
POND 5	9/9/08	7.93	10000	667	59.0	54.5	33	3000	<1.0	<1.0	890
	6/7/08	7.86	17000	578	<128		26	5400	<10	<5.0	1800
	3/11/08	7.82	10000	506	178	Present	41	2900	<5.0	<5.0	1100
	12/2/08	7.70	19000				28	5500	<4.0	<10	7600
POND 6	9/9/08	7.83	16000	949	47.0	90.9	26	4900	<4.0	<5.0	1900
	6/17/08	7.64	25000	723	<128		29	6600	<10	<5.0	2600
	3/11/08	7.7	13000	847	126	Present	35	4100	<5.0	<5.0	1600
	12/2/08	7.55	140000				35	42000	<40	<10	8300
POND 7	9/9/08	7.52	110000	3330	47.8	27.9	25	38000	<40	<5.0	8500
	6/17/08	7.34	180000	4340	17.7		29	64000	<100	<5.0	15000
	3/11/08	7.61	68000	2118	15.7	Absent	22	22000	<5.0	<5.0	5600
1	12/2/08	7.39	170000				31	46000	<40	<25	8600
POND 8	9/9/08	7.75	51000	3080	<16.0	102	26	17000	<20	<5.0	3400
	6/17/08	6.28	420000	16100	8.2		94	160000	<200	<5.0	20000
	3/11/08	7.47	94000	1770	17.4	Absent	25	3000	<5.0	<5.0	6100
EPA MCLS		6-9				5%	4.0				
NMWQS							1.6	250 (Domestic Water)	10 Nitrate 1 Nitrite		600

EPA METHOD 7470 MERCURY, 6010B TOTAL RECOVERABLE METALS. Levels of all contaminants in Evaporations Ponds 1 through 8 found at least above levels of detection in 2008. All units of concentrations are in mg/l. (Contaminants not presented were not detected.)

											1			
	DATE	Hg	Ba	Ca	Cr	Cu	Fe	Pb	Mg	Min	К	Na	U	Zn
													í	
	12/2/08													
POND 1	9/9/08	<.0002	0.76	45	<.006	<.006		<.005	14	0.22	62	460	<.001	0.12
101021	6/17/08	.00035	0.10	57	.0085	.010	4.9	.0052	15	0.14	96	540	<.10	0.88
	3/11/08	<.0002	.029	18	.061	<.006	55		17	0.80	_36	910	< 0.50	1.8
	12/2/08													
POND 2	9/9/08	<.0002	0.10	340	<.006	<.006		<.0005	84	0.21	_52	1900	<.00207	.086
	6/17/08	<.0002	.066	290	<.006	<.006	1.4	<0005	78	0.14	_110	2200	< 0.10	0.31
	3/11/08	<.0002	.022	81	<.006	<.006	5.4		55	0.28	_88	1700	<0.10	0.12
	12/2/08													
POND 3	9/9/08	<.0002	0.11	340	<.006	<.006		<.005	87	0.21	54	2000	.00237	.047
TONDS	6/17/08	<.0002	.061	320	<.006	<.006	0.73	<.005	97	0.15	_140	2700	<0.10	0.14
	3/11/08	<.0002	.037	170	<.006	<0006	1.4		71	0.23	93	2000	<0.10	.045
	12/2/08													
POND 4	9/9/08	<.0005	0.13	320	<.006	<.006		<.005	87	0.23	54	2000	.00187	.021
I OND 4	6/17/08	<.0002	.065	340	<.030	<.030	0.42	<.025	130	0.19	160	3000	<0.50	<0.10
	3/11/08	<.0002	.045	230	<.006	<.006	0.73		80	0.21	_94	2000	<0.10	.034
	12/2/08												-	
POND 5	9/9/08	<.0002	0.14	220	<.006	<.006		<.005	82	0.17	_70	2000	.00142	<.020
I OND 5	6/17/08	<.0002	0.074	390	<.030	<.030	<.25	<.025	150	0.44	190	3600	< 0.50	<0.10
	3/11/08	<.0002	.059	290	<.006	<.006	0.64		80	0.28	83	1900	<0.10	0.029
	12/2/08													
POND 6	9/9/08	<.0002	0.11	330	<.006	<.006		<.005	130	0.46	130	3300	.00125	<.020
101120	6/17/08	<.0002	.093	460	<.030	<.030	<.025	<.025	170	1.1	_190	4600	<0.50	<0.10
	3/11/08	<.0002	.073	300	<.030	<.030	1.3		100	0.52	110	2800	<0.50	<0.10
	12/2/08													
POND 7	9/9/08	<.0002	0.11	730	<.006	<.006		<.050	960	5.8	_1100	28000	.00103	<.020
	6/17/08	<.0002	< 0.20	1400	<0.12	< 0.12	< 0.25	< 0.10	1400	8.1	1800	49000	<2.0	<0.40
	3/11/08	<.0002	.074	690	<.030	<.030	0.69		490	3.2	590	13000	< 0.50	< 0.10
	12/2/08													
POND 8	9/9/08	<.0002	0.12	530	<.030	<.030		<.025	420	2.4	800	9500	00148	< 0.10
I OND G	6/17/08	<.0008	<0.50	1100	< 0.30	< 0.30	< 0.50	<0.25	8800	82	12000	99000	<5.0	<1.0
	3/11/08	<.0002	<0.10	590	<.060	<.060	1.4		760	5.8	1100	20000	<1.0	<0.20
EPA MCLS			2.0		0.1									0.29
NMWQS			1.0		.05					.02				

12-2-08 4TH QUARTER 6010B analysis not run.

EPA METHOD 8260B VOLATILES. Levels of contaminants in inlets to Evaporation Ponds 1 and 2 and from within Ponds 1 through 8 – all units of concentrations are in mg/l.

.

	POND 1 (MG/L)	1	POND 2 MG/L	POND 3 (MG/L)	POND 4 (MG/L)	POND 5 MG/L	POND 6 (MG/L)	POND 7 (MG/L)	POND 8 (MG/L)	Provisional- EPA MCLs/ATSD R Screening level/Health Advisory Level	NMWQS
124	12/2/08	0.13	.028	.018	.013	.048	.001	.0013	<.001	_	
TRIMETHYL	9/9/08	.027	.0064	<.01	<.01	<.01	<.01	<.01	<.01		
BENZENE	6/17/08	.017	.015	.002	<.001	<.001	<.001	.0012	.0011		
	3/11/08	0.38	.012	.0043	.0028	.0015	.002	<.001		ļ	L
1,3,5	12/2/08	.046	.0097	.0065	.0048	.019	<.001	<.001	<.001	_	
TRIMETHYL	9/9/08	.0095	.0021	<.01	<.01	<.01	<.01	<.01	<.01	-	
DEINZEINE	6/1//08	.0044	<.005	<.001	<.001	<.001	<.001	<.001	<.001	_	
	3/11/08	0.11	.0032	.001	0075	0025	<.001	<.001	<.001		
NAPHTHA	9/9/08	033	0064	< 02	< 02	< 02	< 02	< 02	< 02	-	
LENE	6/17/08	031	014	003	< 002	< 002	<.002	<.002	<.002	-	0.03
	3/11.0/	0.2	.020	.0087	.0066	.0037	.004	<.002	<.001		}
	12/2/08	.140	.037	.024	.014	.0061	<.004	<.004	<.004		
	9/9/0/	.062	.016	<.04	<.04	<.04	<.04	<.04	<.04		0.03
LENE	6/17/08	.072	.033	.015	<.004	<.004	<.004	<.004	<.004		0.03
	3/11/08	0.28	.034	.020	.015	.011	.015	<.004	<.004		
2-METHYL	12/2/08	.220	.053	.035	.021	.0089	<.004	<.004	<.004		
NAPHTHAL	9/9/08	.088	.023	<.04	<.04	<.04	<.04	<.04	<.04	_	0.03
ENE	6/17/08	0.3	.050	.023	<.004	<.004	<.004	<.004	<.004	-1	0.00
	3/11/08	0.39	.049	.028	.022	.017	.020	<.004	<.004		<u> </u>
	12/2/08	1.0	.65	.6/	.60	.20	<.01	.017	<.01		
ACETONE	6/17/08	1.0	.30	.11	050	0.1	< 0.1	- 0.1	12	-	J
	3/11/08	1.0	1.7	920	80	19	64	034	024	1	
	12/2/08	094	072	064	043	016	< 01	< 01	< 01		<u>†</u>
2-	9/9/08	.15	.035	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	
BUTANONE	6/17/08	.19	.080	.018	<.01	<.01	<.01	<.01	.014	-1	
	3/11/08	.16	.12	.064	.042	.023	.032	<.01	<.01		
	12/2/08	<.05	.026	.028	.034	.015	<.01	<.01	<.01		
CARBON	9/9/08	.039	.025	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
DISULFIDE	6/17/08	.011	<.05	.010	.050	.033	<.01	<.01	<.01	4	
	3/11/08	<.05	.018	.045	.063	.097	.040	<.01	<.01		+
METHANE	6/17/08								.0013		
METHANE	12/2/08	0081	0018	0011	001	< 001	< 001	< 001	< 001	1	†
ISOPROPYL	9/9/08	.0011	<.001	<.01	<.001	<.01	<.01	<.01	<.01	0.005	
BENZENE	6/17/08	<.001	<.005	<.001	<.001	<.001	<.001	<.001	<.001	0.005	
	3/11/08	.01	<.001	< .001	<.001	<.001	<.001	<.001	<.001		
	12/2/08	.0072	.0015	<.001	<.001	<.001	<.001	<.001	<.001		
4-ISOPROPYL	9/9/08	.0020	<.001	<.01	<.001	<.01	<.01	<.01	<.01	4	
TOLUENE	6/17/08	<.001	<.005	<.001	<.001	<.001	<.001	<.001	<.001	-	
	3/11/08	.0052	<.001	<.001	<.001	<.001	<.001	<.001	<.001		
N-BUTYI	0/0/08	0087	.0041	.0024	< 01		< 01	< 01	<.001	-	
BENZENE	6/17/08	0055	009	< 001	< 001	< 001	< 001	< 001	< 001	-	
	3/11/08	.046	.0014	<.001	<.001	<.001	<.001	<.001	<.001	-	
	12/2/08	.015	.0030	.0019	.0018	<.001	<.001	<.001	<.001	<u> </u>	1
N-PROPYL	9/9/08	.0029	<.001	<.01	<.01	<.01	<.01	<.01	<.01	1	
BENZENE	6/17/08	.0015	<.005	<.001	<.001	<.001	<.001	<.001	<.001]	
	3/11/08	.036	<.001	<.001	<.001	<.001	< 001	<.001	<.001		
	12/2/08	.0064	<.001	<.001	.001	<.001	<.001	<.001	<.001		
SEC-BUTYL	9/9/08	.0024	<.001	<.01	<.01	<.01	<.01	<.01	<.01	0.005	
BENZENE	6/17/08	<.001	<.005	<.001	<.001	<.001	<.001	<.001	<.001		
L	3/11/08	0086	<.001	<.001	<.001	<.001	<.001	<.001	<.001		

EPA METHOD 8260B VOLATILES. Levels of contaminants in inlets to Evaporation Ponds 1 and 2. All units of concentrations are in mg/l.

	Date Sampled	Benzene	Toluene	Ethylbenzene	Xylene	МТВЕ
Evaporation Pond 1 Inlet	8/21/08	.023	.028	<.005	.029	<.005
Evaporation Pond 2 Inlet	8/21/08	<.01	.026	.014	.010	<.0.01

TABLE D.17

EPA METHOD 300.0 ANIONS, EPA 120.1 SPECIFIC CONDUCTANCE, EPA 410.1 COD, EPA 405.1 BOD, SM4500-H+B: PH. Levels of all contaminants in inlets to Evaporation Ponds 1 and 2. All units of concentrations are in mg/l.

	DATE	рН	Specific Conductance (umhos/cm)	COD	BOD	E-Coli (cfu/100ml)	Fluoride	Chloride	NITROGEN Nitrite (as N) Nitrate (as N)	Phosphorus Orthophosphate (asP)	Sulfate
EP 1 INLET	8/21/08	7.9	4400				32	150	<1.0	<5.0	1300
EP 2 INLET	8/21/08			1540	345						

TABLE D.18

EPA METHOD 8260B VOLATILES. Levels of all contaminants in inlets to Evaporation Ponds 1 and 2. All units of concentrations are in mg/l. Contaminants not presented were not detected.

	DATE	Hg	Ba	Ca	Cr	Cu	Fe	Pb	Mg	Mn	к	Na	U	Zn
EP-1 INLET	8/21/08		0.92	77	<.006	<.0063			17	.13	32	420		.29
EP-2 INLET	8/21/08				<.006	<.006								

TABLE D.19EPA METHOD 8260B VOLATILES.

Levels of all contaminants in Inlets to Evaporation Ponds 1 and 2 found at least above Levels of Detection in 2008 - all units of concentrations are in mg/l (Note: Contaminants not presented were not detected.)

	Evaporation Pond 1 Inlet Concentration Levels (mg/l)	Evaporation Pond 2 Inlet Concentration Levels (mg/l)	Provisional - EPA MCLs/ATSDR Screening level/Health Advisory Level -	NMWQS
1,2,4 TRIMETHYLBENZENE	.027	.0064	0.005	
1,3,5 TRIMETHYLBENZENE	.0095	.0021		
NAPTHALENE	.033	.0064		0.03
I-METHYLNAPHTHALENE	.062	.016		0.03
2-METHYLNAPHTHALENE	.088	.023		0.03
ACETONE	1.6	0.36		
2-BUTANONE	0.15	0.035		
CARBON DISULFIDE	.039	.025		
ISOPROPYLBENZENE	.0011		0.005	
4-ISOPROPYLTOLUENE	.002			
N-BUTYLBENZENE	.0087	.0025		
N-PROPYLBENZENE	.0029			
SEC-BUTYLBENZENE	.0024		0.005	

TABLE D.20EPA METHOD 8260B VOLATILES.

Quarterly Sampling Requirements: Levels of All Contaminants in AL-2 to EP-1, Pilot Effluent and NAPIS Effluent and EP-1. All units of concentrations are in mg/l (Note: Contaminants not presented were not detected.)

	Date Sampled	Benzene	Toluene	Ethylbenzene	Xylene	MTBE
AL-2 TO EP-1	3/11/08	.19	.46	0.099	0.68	<0.01
	6/17/08	<0.02	< 0.02	<0.02	< 0.03	<002
	9/9/08	<0.02	< 0.02	<0.02	<0.03	< 0.02
	12/2/08	0.012	0.085	0.028	0.21	<0.005
PILOT EFFLUENT	3/11/08	<0.001	.0015	<0.001	<0.0015	<0.001
	6/17/08	<0.001	0.0062	<0.001	<0.0015	<0.001
	9/9/08	<0.005	< 0.005	<0.005	<0.005	<0.0075
	12/2/08	<0.001	< 0.001	<0.001	<0.001	<0.001
NAPIS EFFLUENT	3/10/08	0.47	0.73	0.150	0.970	< 0.05
	6/17/08	0.84	1.5	0.14	0.89	<0.1
	9/9/08	0.36	0.39	.028	0.2	< 0.02
	12/2/08	1.4	3.3	0.36	1.9	< 0.05
EP-1	3/11/08	0.19	0.44	0.079	0.48	0.0058
	6/17/08	<0.01	0.012	<0.01	0.024	<0.01
	9/9/08	<0.01	< 0.01	<0.01	0.018	<0.01
	12/2/08	0.007	0.081	0.030	0.23	<0.005
EPA MCLS		0.005	1	0.7	10.0	
Residential Risk Based Screening Levels for Tap Water (12ug/L.)		0.01	0.75	0.75	0.62	0.012 (Residential Tap water Std.)
TABLE D.21: EPA METHOD 8260B VOLATILES. Quarterly Sampling Requirements. Levels of All Contaminants in AL-2 to EP-1, Pilot Effluent and NAPIS Effluent and EP-1. All units of concentrations are in mg/l (Note: Contaminants not presented were not detected.)

	AL-2 TC (MG/L)) EP-1	PILOT EFFLUENT MG/L	NAPIS EFFLUENT (MG/L)	EP-1 (MG/L)	Provisional-EPA MCLs/ATSDR Screening level/Health Advisory Level	NMWQS
	3/10/08	0.60	< 0.001	0.590	0.3		
1,2,4	6/17/08	0.039	< 0.001	0.26	0.033		
TRIMETHYLBENZENE	9/9/08	<0.02	< 0.005	0.053	0.04		}
	12/208	0.12	< 0.001	0.4	0.11		
125	3/10/08	0.170	< 0.001	0.170	0.09		
1,3,5 TRIMETHYLBENZENE	6/17/08	< 0.02	< 0.001	<0.1	<0.01		
	9/9/08	<0.02	< 0.005	< 0.02	<0.01		
	12/2/08	0.041	<0.001	0.1	0.037		
	3/10/08	0.330	<0.002	0.200	0.17		
NAPHTHALENE	6/17/08	0.051	<0.002	0.29	0.053		0.03
	9/9/08	<0.04	<0.010	0.087	0.067		
	12/2/08	0.078	<0.002	0.43	0.072		
1-	3/10/08	0.340	<0.004	0.250	0.19		
METHYLNAPHTHA	6/1//08	0.18	<0.004	0.4	0.087		0.03
LENE	9/9/08	0.08	<0.02	0.08	0.24		
	2/10/08	0.19	<0.004	0.29	0.14		
2-	5/10/08	0.520	<0.004	0.380	0.29	-	
METHYLNAPHTHA	0/1//08	0.20	<0.004	<0.4	0.15		0.03
LENE	12/2/08	0.08	<0.02	0.46	0.33		
	3/10/08	0.28	0.004	0.500	0.22		
	6/17/08	3.8	0.490	17.0	1.2		
ACETONE	9/9/08	22	0.078	17.0	1.0		
	12/2/08	19	0.058	47	1.7		
	3/10/08	0.480	<0.01	<0.5	0.17		
	6/17/08	0.350	0.010	2.5	0.32		
2-BUTANONE	9/9/08	<0.2	<0.05	1.9	0.21		
	12/2/08	0.095	< 0.001	<0.5	0.10		
	3/11/08	< 0.01	0.0069	< 0.05	< 0.005		
000 0000000	6/17/08	< 0.02	0.0044	< 0.1	< 0.01		
CHLOROFORM	9/9/08	< 0.02	< 0.005	<0.02	< 0.01		
	12/2/08	< 0.005	< 0.001	< 0.05	< 0.005		
	3/10/08	0.012	< 0.001	< 0.05	.0079		
	6/17/08	< 0.02	< 0.001	<0.1	<0.01	0.005	
ISOPKOPTLBENZENE	9/9/08	< 0.02	< 0.005	< 0.02	<0.01	0.005	
	12/2/08	0.0066	< 0.001	< 0.05	0.0073]	
	3/10/08	0.015	< 0.001	< 0.05	< 0.005		
4-	6/17/08	< 0.02	< 0.001	<0.1	< 0.01		
ISOPROPYLTOLUENE	9/9/08	<0.02	<0.005	<0.02	<0.01		
<u> </u>	12/2/08	0.0067	<0.001	<0.05	0.0055		
	3/10/08	0.055	<0.001	<0.05	< 0.005	-	
N-BUTYLBENZENE	6/17/08	<0.02	<0.001	<0.1	<0.01	4	
	9/9/08	<0.02	<0.005	<0.02	<0.011	-	
	12/2/08	<0.005	<0.001	<0.05	0.0019		
	3/10/08	0.045	<0.001	<0.05	0.027		
N-PROPYLBENZENE	6/1//08	<0.02	<0.001	<0.1	<0.01		
	9/9/08	<0.02	<0.003	<0.02	0.0013	-	
— ————	3/11/00	<0.013		<0.05	0.0015		
SEC-	6/17/08	<0.01	<0.001	<0.03	<0.005		
BUTYLBENZENE	9/0/08	<0.02	<0.01	<0.02	<0.01	0.005	
SOTTODENCENC	12/2/08	<0.02	<0.00	<0.02	<0.01	-	
— —————	3/11/08	<0.01	<0.001	<0.05	<0.01		
1-4	6/17/08	<0.01	0.0018	<0.03	<0.01	1	1
DICHLORABENZENE	9/9/08	<0.02	<0.05	<0.02	<0.01	-	
	12/2/08	<0.02	<0.00	<0.02	<0.01	•	
	1.2,2,00	1				J	1

TABLE D.22

EPA METHOD 8260B VOLATILES, EPA METHOD 8015B DRO/GRO. Quarterly Levels in Al-2 to EP-1, Pilot Effluent, NAPIS Effluent, and EP-1. All units of concentrations are in mg/l.

	DATE	DRO	GRO	Hg	As	Ba	Cd	Са	Cr	Cu
AI-2 to EP-1	3/10/08	24	1.7	< 0.0002	< 0.20	0.017	< 0.002		0.1	< 0.006
	6/17/08	140	1.4	0.00076	< 0.02	0.14	< 0.002		0.013	0.015
	9/9/08	44	<5.0	< 0.0002	< 0.02	0.069	< 0.002		0.0072	< 0.006
	12/2/08	160	<5.0	0.00048	< 0.02	0.20	< 0.005		< 0.01	< 0.02
PILOT	3/11/08	12	<0.05	< 0.0002	< 0.02	0.022	< 0.002		< 0.006	0.018
EFFLUENT	6/17/08	5.4	0.078	< 0.0002	< 0.02	0.019	< 0.002		< 0.006	0.012
	9/9/08	6.3	<1.0	< 0.0002	< 0.02	0.017	< 0.002		< 0.006	0.021
	12/2/08	10	<0.5	< 0.0002	< 0.02	0.021	<0.005	220	< 0.01	0.040
NAPIS EFFLUENT	3/10/08	290	11	0.00028	<0.2	0.32	< 0.002	120	0.019	0.053
	6/17/08	44	11	< 0.0002	< 0.02	0.081	< 0.002	50	< 0.006	< 0.006
	9/9/08	35	<10	< 0.0002	< 0.02	0.062	< 0.002	42	< 0.006	< 0.006
	12/2/08	68	20	0.00026	< 0.02	0.11	< 0.005		< 0.01	< 0.02
ÉP-1	3/11/08	32	1.9							
	6/17/08	140	2.7							
	9/9/08	140	<20							
	12/2/08	120	<5.0							
EPA MCLS					0.01	2.0			0.1	1.3
NMWQS					0.1	1.0			.05	1.0

	DATE	Fe	Pb	Mg	Mn	К	Se	Ag	Na	U	Zn
Al-2 to EP-1	3/10/08	110	< 0.005		1.4		< 0.05	< 0.005		1.9	1.9
	6/17/08	9.0	0.0057		0.13		< 0.05	< 0.005	-	.00071	1.6
	9/9/08	2.5	< 0.005		0.13		< 0.05	< 0.005	_	< 0.001	0.19
	12/2/08	6.8	< 0.005		0.40		0.034	<0.01			0.59
PILOT	3/11/08	0.35	< 0.005		0.092		<0.5	< 0.005		<0.1	0.055
EFFLUENT	6/17/08	0.44	< 0.005		0.1	[< 0.05	< 0.005	-	.0009	0.043
	9/9/08	0.49	< 0.005		0.085		<0.05	<0.005		< 0.001	0.057
	12/2/08	0.36	< 0.005	51	0.086	31	< 0.02	< 0.01	260		0.068
NAPIS	3/10/08	10	0.013	28	0.2	22	< 0.5	<0.005	550	<0.1	1.3
EFFLUENT	6/17/08	1.1	< 0.005	12	0.057	13	<0.05	<0.005	320	< 0.00063	0.19
	9/9/08	0.073	< 0.005	9.0	0.057	7.7	0.052	<0.005	200	< 0.001	< 0.02
	12/2/08	1.8	< 0.005		0.17		< 0.02	< 0.01			0.23
EPA MCLS		0.3	0		0.3					0.03	
NMWQS		1.0	.05		0.2					0.03	10.0

TABLE D.23 EPA METHOD 300.0 ANIONS, EPA 120.1 SPECIFIC CONDUCTANCE, EPA 410.1 COD, EPA 405.1 BOD, SM4500-H+B: PH.

EPA 405.1 BOD, SM4500-H+B: PH. Quarterly Sampling Requirements for Pilot Effluent and NAPIS Effluent, EP-1 and Boiler Water to EP-2. All units of concentrations are in mg/l.

	Date Sampled	рН	Specific Conductance (umhos/cm)	COD	BOD	Fluoride	Chloride	Nitrogen Nitrite (as N)	Nitrogen Nitrate (as N)	Phosphorus Orthophosp hate (as P)	Sulfate
	3/10/08	1		1	1	69	480	<5.0	< 5.0	<25	570
NAPIS	6/17/08	9.07	4600			19	93	<1.0	3.4	37	630
EFFLUENT	9/9/08	9.44	3300			11	78	1.8		14	440
_	12/2/08	8.63	2200			12	160	<1.0	1.2	<5.0	510
	3/11/08			824	618						
PILOT	6/17/08			699	399						
EFFLUENT	9/9/08			795	375						
_				336	642						
	3/11/08	3.81		965	510		500				
ED 1	6/17/08	7.43		2650	294						
CT-1	9/9/08	7.93		1360	262		170				
	12/2/08	7.62		840	231		350				
Boiler Water to EP-2	6/17/08	7.90	6500			1.3	67	<1.0	<0.10	<0.50	2600
EPA MCLs		6-9				4.0	1	1	10		250
NMWQS		6-9				1.6	250 Domestic Water	10	10		600

TABLE D.24

EPA METHOD 8270C SEMIVOLATILES. Quarterly Sampling Requirements. Levels of All Contaminants in NAPIS Effluent and EP-1. All units of concentrations are in mg/l (Note: Contaminants not presented were not detected.)

	NAPIS (MG/L)	EFFLUENT	EP-1 MG/L	Provisional-EPA MCLs/ATSDR Screening level/Health Advisory Level	NMWQS
	DATE	RESULTS	RESULTS		
2.4	3/10/08		0.1		
2,4-	6/17/08	0.15	0.13		
DIMETRICEROL	9/9/08	0.49	0.2		
	12/208	0.12	0.087		
	3/10/08	0.071			
CADD 4701 F	6/17/08				
CARBAZULE	9/9/08				
	12/2/08	T		1	
	3/10/08	0.12			_
CHRVSENE	6/17/08				
CHICIBENE	9/9/08		_		
	12/2/08				
	3/10/08	0.093			
FLUORENE	6/17/08				
TEOORENE	9/9/08				
	12/2/08				
2	3/10/08	0.59			
2- ΜΕΤΗVI ΝΔΡΗΤΗΔ	6/17/08	0.5			
LENE	9/9/08	0.063			
	12/2/08		_		
	3/10/08	0.15	0.88		
2-METHYLPHENOL	6/17/08	4.9	0.37		
2 METHTER NEROE	9/9/08	7.4	0.45		
	12/2/08	0.62	0.55		
	3/10/08	0.17	1.3		
3+4-	6/17/08	8.5	0.40		
METHYLPHENOL	9/9/08	13	0.6		
	12/2/08	3.2	0.86		
	3/11/08	0.44			
PHENANTHRENE	6/17/08	0.16			
	9/9/08				
	12/2/08		_		ļ
	3/10/08	0.19	0.45	4	
PHENOL	6/17/08	17	1.2		.005
	9/9/08	25	1.3	4	
	12/2/08	6.8	15		
	3/10/08	0.15	-	_	
PYRENE	6/1//08		-	-	
	9/9/08			-	
	12/2/08		-		
	3/10/08	0.4	-	-	
ANILINE	0/1//08	2.1		-	
	9/9/08	2.1	-		
	2/10/08	<u> </u>			·
	5/10/08	0.24		-	
NAPHTHALENE	0/1//08	0.24		-	0.03
	12/2/08	0.070		-	
	12/2/00	1	1	1	1

TABLE D.25

EPA METHOD 8015B GRO/DRO, EPA METHOD 300.0 ANIONS, EPA 120:1 SPECIFIC CONDUCTANCE, SM4500-H+B: PH. Levels of all contaminants found in NAPIS Wells 1, 2, 3 (Formerly tagged as KA-1R, KA-2R, KA-3R), AND KA-3. All units of concentrations are in mg/l.)

	DATE	рН	Specific Conductance (umhos/cm)	GRO	DRO	Fluoride	Chloride	Nitrate + Nitrite as N	Phosphorus Orthophosphate (as P)	Sulfate
	4/11/08	7.26	2000	<0.05	<1.0	0.79	170	0.55 <0.10	<0.50	80
NAPIS 1	7/9/08	7.27	1900	< 0.05	<1.0	1.4	180	<1.0	<0.50	98
(KA-1R)	9/30/08			< 0.05	<1.0					
	11/10/08	7.30	1900	<0.05	<1.0	0.73	160	1.6 <0.10	<0.50	63
NADIS 2	4/11/08	7.0	2100	2.2	1.5	0.92	360	<0.10 <1.0	<0.50	42
$(\mathbf{V}\mathbf{A} 2\mathbf{D})$	7/9/08	7.18	2000	0.74	2.4	1.1	270	<1.0	< 0.50	33
(KA-2K)	9/30/08			0.45	3.9					
	11/10/08	7.21	1600	0.59	4.0	1.4	200	<0.1	<0.50	32
	7/9/08	8.29	4200	< 0.05	<1.0	0.46	1100	9.1	<0.50	270
NAPIS 3	9/30/08	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
(KA-3R)	11/10/08	8.05	4300	<0.05	<1.0	1.1	1100	2.6 <1.0	<0.50	310
KA-3	11/10/08	7.34	2700	0.15	<1.0	0.46	590	11 2.0	<0.50	140
EPA MCLS		6-9				4.0		0.2	10	
NMWQS						1.6	250 (Domestic Water)	10 Nitrate 1 Nitrite		600

Note: NAPIS 1 & NAPIS 2 - began sampling in second quarter 2008.

NAPIS 3 – began sampling third quarter 2008.

KA3 – Began sampling Fourth Quarter 2008.

TABLE D.26 EPA METHOD 8021B, VOLATILES, EPA 6010B TOTAL RECOVERABLE METALS, EPA METHOD 8310: PAHS.. Levels of all contaminants found in NAPIS Wells 1, 2, 3 (Formerly tagged as KA-1R, KA-2R, KA-3R), AND KA-3. EPA Method 8310 – PAHS showed only one hit in the Fourth Quarter in NAPIS 2 (KA-2R) for Fluorene .00099mg/l. All units of concentrations are in mg/l.)

	DATE	BENZENE	TOLUENE	ETHYL BENZENE	XYLENE	мтве	Ba	Ca	Pb	Mg	K	Na	Fluorene
	4/11/08	< 0.001	< 0.001	< 0.001	< 0.002	< 0.0025		72		13	1.5	370	
NAPIS 1	7/9/08	<0.001	<0.001	< 0.001	< 0.002	< 0.0025		70		12	2.1	430	
(KA-1R)	9/30/08	<0.001	<0.001	<0.001	< 0.002	*	*	*	*	*	*	*	
	11/10/08	< 0.001	<0.001	< 0.001	< 0.002	< 0.0025	0.13	78		14	1.2	390	
	4/11/08	0.91	0.019	0.051	0.12	0.32		110		19	1.3	380	_
NAPIS 2	7/9/08	0.013	< 0.001	0.011	0.0056	0.2		70		13	<0.001	360	
(KA-2R)	9/30/08	0.016	< 0.001	0.0016	0.0041	*	*	*	*	*	*	*	*
	11/10/08	0.025	< 0.001	0.011	< 0.002	0.18	0.42	50	.0065	9.7		330	.00099
	7/9/08	<0.001	<0.001	< 0.001	< 0.002	< 0.0025		65		7.8	4.1	910	
NAPIS 3 (KA-3R)	9/30/08	*	*	*	*	*	*	*	*	*	*	*	*
(111 011)	11/10/08	< 0.001	< 0.001	< 0.001	< 0.002	< 0.0025	0.13	41		6.6	4.4	960	
КА-3	11/10/08	< 0.001	<0.001	< 0.001	<0.002	0.13	0.20	65	.0095	11	1.8	570	
EPA MCLS		0.005	1	0.7	10.0		20		0				
Residential Risk Based Screening Levels for Tap Water (12ug/L)		0.01	0.75	0.75	0.62	0.012 (Residenti al Tap Water Std)	1.0		.05				

*Third Quarter 2008 - Not analyzed for MTBE, or EPA 6010B. NAPIS 3 Well not sampled – not enough water in well for testing after purging.

Appendix E:

Groundwater elevations and well descriptions

APPENDIX E: TABLE E.1: WELL DATA 2008 SUMMARY TABLE

Well ID Number	Measurement date	A Well Casing Rim Elevations (ft)	Well Casing Bottom Elevations (ft)	Total Well Depth (ft)	Depth to SPH (ft)	B SPH Thickness (ff)	C Depth to Water	D = A-C Groundwater Elevation (ft)	= 0.8B + D Corrected Water Table Elevation (ft)
BW-IA	7/30/2008	6,876.73	6,836.73	40.00	NA	NA	DRY	DRY	NA
BW-1B	7/30/2008	6,876.91	6,811.71	67.55	NA	NA	DRY	DRY SA	NA
BW-IC	7/30/2008	6,876.75	6,719.75	157.00	NA	NA	6.84	6,869.91	NA
BW-2A	7/30/2008	6,874.72	6,809.22	65.50	NA	NA	31.97	6,842.75	NA
BW-2B	7/30/2008	6,874.58	6,784.08	90.50	NA	NA	27.91	6,846.67	NA
BW-2C	7/30/2008	6,875.40	6,724.40	151.00	NA	NA	20.64	6,854.76	NA
BW-3A	7/30/2008	6,878.22	6,828.22	52.60	NA	NA	DRY	DRY	NA
BW-3B	7/31/2008	6,878.79	6,803.79	75.00	NA	NA	32.73	6,846.06	NA
BW-3C	7/31/2008	6,878.08	6,723.08	155.00	NA	NA	8.08	6,870.00	NA
0W-1	2/18/2008	6,868.00	6,773.96	94.04	NA	NA	1.75	6,866.25	NA
0W-1	5/21/2008	6,868.00	6,773.96	94.04	NA	NA	1.75	6,866.25	NA
0W-1	9/15/2008	6,868.00	6,773.96	94.04	NA	NA	1.78	6,866.22	NA
0W-1	11/3/2008	6,868.00	6,773.96	94.04	NA	NA	2.78	6,865.22	NA
0M-10	2/18/2008	6,872.00	6,804.00	68.00	NA	NA	1.25	6,870.75	NA
0M-10	5/21/2008	6,872.00	6,804.00	68.00	NA	NA	1.61	6,870.39	NA
0M-10	9/10/2008	6,872.00	6,804.00	68.00	NA	NA	1.59	6,870.41	NA
OW-10	11/3/2008	6,872.00	6,804.00	68.00	NA	NA	2.04	6,869.96	NA
0W-11	8/14/2008	6,923.89	6,857.27	66.62	NA	NA	20.91	6,902.98	NA
OW-12	8/18/2008	6,940.43	6,795.43	145*	NA	NA	49.05	6,891.38	NA
0W-13	8/18/2008	6,920.12	6,820.12	100.00	NA	NA	24.41	6,895.71	NA
OW-14	8/21/2008	6,926.64	6,881.64	45.00	NA	NA	27.13	6,899.51	NA
0W-29	8/19/2008	6,913.50	6,864.50	49.00	NA	NA	21.95	6,891.55	NA
OW-30	8/20/2008	6,921.60	6,873.20	48.40	NA	NA	26.34	6,895.26	NA
I-WM	8/4/2008	6,878.52	6,746.50	132.02	NA	NA	7.28	6,871.24	NA
MW-4	8/4/2008	6,882.54	6,760.40	122.14	NA	NA	7.95	6,874.59	NA
MW-5	8/14/2008	6,883.32	6,750.30	133.02	NA	NA	11.37	6,871.95	NA
RW-1	2/18/2008	6,943.50			30.18	4.59	34.77	6,908.73	6912.402
(OW-27)	5/21/2008	6,943.50			30.40	4.17	34.57	6,908.93	6912.266
	9/12/2008	6,943.50			30.03	4.56	34.59	6,908.91	6912.558
	11/3/2008	6,943.50			30.02	4.61	34.63	6,908.87	6912.558
RW-2	2/18/2008	6,927.20				NA	28.16	6,899.04	N/A
(OW-28)	5/21/2008	6,927.20				NA	27.22	6,899.98	N/A
	9/12/2008	6,927.20				NA	27.03	6,900.17	N/A
	11/3/2008	6,927.20				NA	27.10	6,900.10	N/A
RW-5	2/18/2008	6,942.50	6,902.50	40.00	33.1875	0.7604	33.9479	6,908.55	6909.16042

	ę	5	1

- 5		T	,		2		<u> </u>		21	· · · ·	<u> </u>	101			-	r –	<u> </u>	<u> </u>		_		r –		_	101	-	T •	T	—	r —		-	_	_
	= 0.8B + D Corrected Water Table Elevation (ft)	6909.516	6909.834	6911.192	6938.9792	6939.36	6939.712	6940.094	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	V/N	N/A	N/A	N/A	N/A	z	z	z	Z	Z	Z	z	z	Z	z
	D = A - C Groundwater Elevation (ft)	6,908.66	6,909.65	6,910.16	6,938.25	6,938.48	6,939.48	6,939.91	6,858.55	6,852.97	6,880.71	6,892.74	6,893.18	6,892.41	6,892.10	6,894.72	NA	NA	NA	NA.	NA NA	AN NA	NA	NA	6,909.85	6,909.45	6,909.60	6,908.44	6,908.31	6,908.04	6,902.33	6,907.59	6,908.60	6,908.16
	C Depth to Water	33.84	32.85	32.34	34.354	34.12	33.12	32.69	25.89	29.57		19.91	19.47	20.24	20.55	18.45	DRY	DRY	DRY	<u>DRY</u>	DRY 🛛	סוא 🖉	📎 DRY	DRY	8.58	8.98	8.83	8.83	8.96	9.23	14.98	9.72	8.71	9.01
	B SPH Thickness (ft)	1.07	0.23	1.29	0.9165	1.1	0.29	0.23	NA	NA		NA	AN	AN	NA	NA	NA	AN	NA	NA	NA	NA	NA	NA	AN	NA	AN	NA	NA	NA	NA	NA	AN	AN
	Depth to SPH (ft)	32.77	32.62	31.05	33.4375	33.02	32.83	32.46	NA	NA		AA	NA	NA	NA	NA	NA	AN	NA	NA	NA	NA	NA	AN	NA	NA	NA	AN	AN	NA	NA	NA	AA	NA
)	Total Well Depth (ft)	40.00	40.00	40.00	38.80	38.80	38.80	38.80	57.34	122.14	73.11	23.70	23.70	23.70	23.70	18.97	18.97	18.97	18.97	18.97	17.94	17.94	17.94	17.94	14.00	14.00	14.00	14.50	14.50	14.50	30.70	30.70	30.70	25.00
	Well Casing Bottom Elevations (ft)	6,902.50	6,902.50	6,902.50	6,933.80	6,933.80	6,933.80	6,933.80	6,827.10	6,760.40	6,807.60	6,888.95	6,888.95	6,888.95	6,888.95	6,896.97	6,896.97	6,896.97	6,896.97	6,896.97	6,896.15	6,896.15	6,896.15	6,896.15	6,904.40	6,904.40	6,904.40	6,902.80	6,902.80	6,902.80	6,886.60	6,886.60	6,886.60	6,892.40
	A Well Casing Rim Elevations (ft)	6,942.50	6,942.50	6,942.50	6,972.60	6,972.60	6,972.60	6,972.60	6,884.44	6,882.54	6,880.71	6,912.65	6,912.65	6,912.65	6,912.65	6,913.17	6,913.17	6,913.17	6,913.17	6,913.17	6,912.65	6,912.65	6,912.65	6,912.65	6,918.43	6,918.43	6,918.43	6,917.27	6,917.27	6,917.27	6,917.31	6,917.31	6,917.31	6,917.17
	Measurement date	5/21/2008	9/10/2008	11/3/2008	2/18/2008	5/21/2008	9/10/2008	11/3/2008	8/14/2008	8/13/2008		2/18/2008	5/21/2008	9/10/2008	11/3/2008	2/18/2008	3/17/2008	5/21/2008	9/10/2008	11/3/2008	2/18/2008	5/21/2008	9/10/2008	11/3/2008	4/11/2008	7/11/2008	11/4/2008	4/11/2008	7/11/2008	11/4/2008	4/11/2008	7/11/2008	11/4/2008	11/4/2008
	Well ID Number				RW-6				SMW-2	SMW-4	SMW-6	GWM-1				GWM-2					GWM-3			(1) LEASE OF CONSISTENCY OF CONSISTENCE CONSISTENCY OF CONSISTE	NAPIS 1(KA-1R)			NAPIS 2 (KA-2R)			NAPIS 3 (KA-3R)			KA-3

NAPIS 1(KA-1R), NAPIS 2 (KA-2R), NAPIS 3 (KA-3R): NAPIS wells installed on 3/15/08. Quarterly monitoring began third quarter of 2008. KA-3: Began sampling 4th Quarter 2008.

SPH = Separate Phase Hydrocarbons

NA = If no SPH was detected then this is shown on the table as NA (not applicable)

Corrected water table elevations are only provided if SPH was detected. *OW-12: Annual inspection revealed well depth measurement to be 126 feet instead of 145 feet as listed.

WELL CLOSURES

WELL ID NUMBER	YEAR CLOSED
OW-2	2004
OW-3	2004
OW-7	2004
OW-9	2004
OW-24	2004
SMW-1	2004
SMW-3	2004
SMW-5	2004

