BW - ____4

.

ANNUAL REPORTS

Chavez, Carl J, EMNRD

From: Sent: To: Subject: Chavez, Carl J, EMNRD Friday, February 12, 2010 4:32 PM 'gandy2@leaco.net' BW-004 and 022 Annual Reports

Larry:

The OCD is in receipt of your annual reports and will get back with you soon.

Please contact me if you have questions.

Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

Wasserhund Inc.

P.O. Box 2140 575-396-0522 FAX 575-396-0797 Lovington, New Mexico 88260

ANNUAL CLASS III WELL REPORT FOR 2015

Wasserhund Inc.

Buckeye Brine Station

OCD Permit BW-04

Expiration Date: November 08, 2018

API No. 30-025-26883 Eidson #1

Unit Letter M-Section 31-Ts 16s - R35e

April 30, 2016

Submitted By: Price LLC on behalf of Wasserhund Inc Principals Mr. Larry and Jon Gandy.

Mayo fur

Wayne Price-LLC

Larry Gandy

Jan Rordy

Jon Gandy

Bullet Point 2- Summary of Operations:

(Permit Condition 2.J.2 Annual Report: "Summary of Class III well operations for the year including a description and reason for any remedial or major work on the well with a copy of C-103.") Permit Expires November 08, 2018.

During the 2015 year there was no major remedial work on the brine well. General housekeeping was routinely performed and on-site training and inspections were conducted for awareness of the BW-04 permit conditions. (A copy of the most recent OCD approved Discharge Plan permit BW-04, Aerial photo, and inspection report is included for reference in **Appendix " A"**).

In 2013, Wasserhund Inc. installed an automated brine dispensing system, which included remote automated billing and tracking. The equipment was supplied by Flowpoint systems and Price LLC provided start-up consulting services. (*Appendix "A" shows system filling station photos.*)

Inspections revealed that the loading area concrete sump was not tested in 2014 as planned. The sump was drained in 2015 and routine maintenance was performed, by adding another coat of epoxy. A third party consultant (Price LLC) scheduled and performed a hydrostatic test and the results showed no head loss during the 24 hours.

The OCD held a Brine Well Operator's meeting, in Hobbs on September 05, 2012 to discuss permit changes. The most notable change by OCD was the removing of the annual pressure test requirement, and went to a 5-year requirement allowing the "Open-to-Formation" test, and a successful test was performed in September of 2013 (Copy attached in Appendix "D"). The next scheduled 5-year test will be due in 2018.

The brine well was drilled in 1980 and has been in operation for approximately 35 years and is sited on State Highway 08, approximately 12 miles southwest of Lovington, NM. The well is producing out of the Salado "Salt Formation" at a depth of approximately 1900-2460 feet below surface.

The brine well has been producing for a number of years and may possibly be considered approaching an "end of life" scenario due to its age. This scenario is not due to a safety aspect, i.e. collapse, since the well has produced only about one-half of normal volume compared to similar wells of age. Bullet point 10 (Brine Cavity/Subsidence Information) below discusses the safety aspects of this well in more detail.

As with most brine wells of this age, repeated required annual testing which flexes the cavern support, thus causing flexure stress cracking and the required reverse flow issue, has caused these older wells to have pre-mature down-hole problems, such as "sloughing" of the salt-anhydrite layers damaging the tubing and making re-entry virtually impossible and extremely expensive. This well had to be whip-stocked in 2008 in order to reenter after a severe down-hole problem.

A Pro-active well "Area of Review" has been conducted and will continue to ensure the safety of the well system, including cavern subsidence monitoring as required or directed by OCD. Currently, this well does not have subsidence devices installed.

A yearly cavity size calculation and evaluation of the last sonar test has been conducted to determine cavern stability and is discussed further in Bullet Point 10 below.

While this is an older well, it still has not reached its productive end of life and is deemed safe and is an extremely valuable asset for the oil and gas industry.

Bullet Point 3- Production Volumes:

(Permit condition 2.J.3 "Monthly fluid injection and brine production volume, including the cumulative total carried over each year"

Wasserhund Inc. installed a new sales metering system in 2014 and installed new flow meters to monitor both water injected and brine produced.

Monthly, Yearly and Lifetime Injection and Production Volumes:

The monthly, yearly and lifetime fresh water injection and brine production volumes are attached herein for review. The total 2015 brine production volume was 415,784 bbls and the lifetime production volume is 9,111,275 bbls.

Enclosed in *Appendix "B"* is the injection and production and a comparison chart of injected water to produced water with comments.

Bullet Point 4- "Injection Pressure Data."

(Permit condition 2.J.4 "Injection Pressure Data"

Maximum and Average Injection Pressure:

The maximum operating injection pressure is approximately 340 psig, which is approximately 35 pounds below the recommended maximum surface pressure of 380 psig, utilizing a .70 psi/ft brine well gradient, measured from the top to the casing shoe.

The average injection pressure as noted by Wasserhund Inc.'s personnel is approximately 280 psig. This reading is taken from a pressure gauge mounted on the pump outlet.

Bullet Point 5- Chemical Analysis:

(Permit condition 2.J.5 "A copy of the quarterly chemical analysis shall be included with data summary and all QA/QC information.")

Please find attached in *Appendix "C"* the latest chemical analysis and chain-of-custody of the brine and fresh water injection water samples collected during the 2015 year and analyzed by Trace Analysis in Lubbock, Texas. The sampling process and laboratory used common approved EPA methods to collect, analyze and reporting.

The injection water was collected from the fresh water tank load line that is connected directly to the fresh water storage tanks. The fresh water is supplied by a fresh-water well located just west of the site.

The brine water was collected from the brine water tank load line that is connected directly to the brine water storage tanks. This sample point is representative of the brine water at the station.

The analysis revealed the brine water is predominately sodium chloride with a high density of 1.194 specific gravity. This analysis is very representative of Salado "Salt" formation waters found in the area. During the year, it appeared the weight of the brine ranged from 1.124 SG to 1.194 SG, with a weighted averaged of 1.15 SG for the year, equating to 9.57 lbs/gal, which has been normally acceptable to Wasserhund customers.

Wasserhund routinely performs field-testing to ensure brine well quality. This testing generally shows close to 10 lb brine using the field method.

The Sodium-Chloride ratio for the year averaged .69, which is above the .648 ratio theoretical value of sodium chloride. It's not unusual for salt caverns to produced super-saturated brine waters.

Bullet Point 6- Mechanical Integrity:

(Permit condition 2.J.6 "Copy of any mechanical integrity test chart, including the type of test, i.e., duration, gauge pressure, etc;")

A Mechanical Integrity Test (MIT) was successfully ran and passed on September 09, 2013. The next scheduled MIT will occur in 2018 as approved by OCD.

Please find in *Appendix "D"* a copy of the test chart and meter calibration record.

Bullet Point 7- Deviations from Normal Production Methods:

(Permit condition 2.J.7 "Brief explanation describing deviations from normal operations.")

In 2008 two OCD permitted brine wells collapsed. As a result of those incidents, the OCD issued a temporary moratorium on new brine well permits. During the moratorium OCD facilitated a work group to determine a proper path forward for current and new brine well operations.

As a result of those proceedings, OCD issued instructions to operators to change OCD's previous requirement of injecting fresh water down the annuals and producing brine up the tubing (i.e reverse-flow); to injecting fresh water down the tubing and producing brine up the annuals, (i.e. conventional-flow).

Wasserhund Inc. has been successful in changing the flow pattern to conventional flow, and is making quality 10# brine, with occasional reverse flow for maintenance.

Bullet Point 8- Leak and Spill Reports:

(Permit condition 2.J.8 "Results of any leaks and spill reports;")

There were no reportable leaks and spills in 2015.

The loading areas are concrete with an integral concrete sump with spill containers under the hose connections, which are designed to catch de-minimis drips from hose connections. Drivers routinely suck out the spill containers, for re-cycling.

The entire facility is bermed to prevent run-on or run-off and all reportable or nonreportable spills are cleaned up pursuant to OCD rules and guidance.

Bullet Point 9- Area of Review Update Summary:

(Permit condition 2.J.9 "An Area of Review (AOR) update summary;")

An extensive AOR review was conducted for the Eidson #1 brine well, OCD permit # BW-04, located in UL M of Section 31-Ts16S-R35e. Wasserhund Inc. used OCD records and actual field verification (see **Appendix "E")** to confirm wells in the AOR.

Using OCD on-line files, a well status list and AOR plot plan was constructed (*see* **Appendix "E"**) listing all wells within adjacent quarter sections of the BW-04 location. The list shows API#, Operator well name, UL, Section, Township and Range, footages, Wells within 660 ft (i.e. critical zone) and ¼ mile, casing program status, casing/ cementing status, and corrective action required status.

This method was formulated to provide a baseline for future AOR studies. Since brine wells are limited in size, a critical AOR of 660 feet was initially established and all wells within that radius was researched in detail.

Using the current estimated diameter of the brine well @ 312 feet (R = 156 ft) up-dated for 2015, a 10:1 safety factor is applied that equates to about 1560 ft. As the brine well grows, this newly calculated critical AOR will be expanded and new wells will be added and all existing wells restudied.

The rational of behind this approach is the fact that brine wells are non-static in terms of size and configuration, and the fact that the brine well operator has only indirect control on wells drilled in close proximity.

Initially focusing on the current wells in the ¼ mile AOR, and assuming the status of these wells remain the same, may be a mistake. Therefore, a more dynamic approach is being undertaken, and each well in the critical Area of Review (AOR) will be looked at on an annual basis, or whenever any planned activity or new wells are noticed in the AOR.

In the 2015 review, there were no wells added to the list. **Appendix "E"** contains the check-off list showing the OCD wells in all adjacent quarter sections surrounding the BW-04 brine well.

There currently are three wells located within the critical 1560 ft, and ¼ miles radius of review. The critical zone wells were investigated by checking the OCD on-line well records.

The three wells located in the new critical zone, i.e. within 1560 feet, were reinvestigated by checking the OCD on-line well records. The last recorded file records for the three wells located in the critical AOR are identified as API# 30-025-25146, 30-025-35678 and 30-025-31621 and the following provides the most recent results found in the OCD public records.

The Findings are as follows:

API # 30-025-25146: In 2010, a C-103 was submitted to the OCD to P&A the well by setting plugs at the top, top of salt, bottom of salt, and place a cement plug in tubing at 5700 feet. This work was completed and C-103 filed with the OCD District I office in Hobbs and subsequently approved.

This well was properly plugged and abandoned in September of 2012 and approved by OCD. This well has been transferred to Lime Rock Resources.

<u>Conclusions</u>: The OCD records show that a subsequent P&A report was filed and approved by OCD.

Corrective Actions: Well has been P&A.

<u>API # 30-025-35678</u>: The Chesapeake St. VII #7, (Now Chevron USA) according to OCD records, is located 660 FNL & 660 FEL of UL A Section 1-Ts17s-R34e. It is shown to be located approximately 1600 ft to the SW of the BW-04 well.

In November of 2013, OCD sent Chevron USA Inc. a Letter of Violation and Shut-In Directive due to an observation of a Bradenhead issue, and required corrective actions and a Mechanical Integrity Test. In the 2014 year another Bradenhead test was conducted and witnessed by OCD.

This well has since been transferred to Lime Rock Resources and has been approved by OCD for recompletion, which would appear to have the salt zone "Salado" casing cemented. See Copy of proposed recompletion diagram in **Appendix "E"**.

<u>Conclusions:</u> OCD has approved the proposed re-completion.

<u>Corrective Actions and Recommendation</u>: If completed as proposed, this well appears to have adequate cemented casing coverage across the salt section and no corrective actions are required.

<u>API # 30-025-31621</u>: The BTA Oil Producers Vacuum 9205 JV-P Com was drilled and completed in 1992 as a gas well. The Casing strings are as follows: 13-3/8" surface casing set at 423 feet cemented with 480 sacks, circulated to the surface. 8 5/8" Intermediate casing set at 4795 cemented with 2500 sacks, circulated to the surface.

A 5-1/2" production string was set at 12,900 ft and cemented with 2100 sacks, circulated to the surface.

<u>Conclusions</u>: This well is properly cemented from top to bottom, and the salt section is adequately covered.

Corrective Actions: No Corrective actions required.

Bullet Point 10- Subsidence/Cavern Volumes/Geometric Measurements

<u>(Permit condition 2.J.10. "A summary with interpretations of MIT's, surface</u> <u>subsidence surveys, cavern volume and geometric measurements with</u> <u>conclusion(s) and recommendation(s);"</u>)

Since the use of sonar tests in other wells has not provided adequate information, the continued use of sonar may be in question until the validity of using sonar test is resolved.

The last cavern survey (2008) for this well did not provide any useful information pertaining to the size and shape of this particular cavern. An alternate method has been discussed with Jim Griswold-OCD and it was mutually decided that an estimated worst-case diameter is to be determined in order to provide maximum protection and ensure the permit conditions are being met.

The Solution Mining Research Institute (SMRI), other state agencies, OCD work-group, along with various studies conducted during the permitting of the WIPP site, has concluded that failures, such as "catastrophic collapses", have a higher probability when

the roof diameter of the cavern exceeds a certain value compared to the actual depth of the cavern.

This number is typically called D/H where "D" is the diameter of the cavity and "H" is the depth from surface to the casing shoe. Various reports seem to conclude that when a ratio of D/H reaches or exceeds .66 then the probably of collapse increases to a point that the well may be considered un-safe, thus closing procedures such as proper plugging and abandonment, and possible long term subsidence monitoring should be instituted.

The alternate method mentioned above involves calculating the maximum diameter of the cavern by using a worst-case scenario of an "*upright cone*". The volume of the cavern is calculated using the lifetime brine production volumes and using a "*rule of thumb*" conversion factor to determine the volumetric size of the cavern. The rule of thumb conversion factor was taken from the 1982 Wilson Report and equates that every barrel of brine produced will create approximately one cubic foot of cavity.

Please find attached in *Appendix "F"*, a wellbore sketch, and the calculations for the brine well, and the lifetime brine production tally of approximately 9.11 million barrels of brine produced as of December 2015. The maximum diameter was calculated to be approximately 312 feet with a corresponding D/H ratio of .148 updated for the 2015 year.

Comparing the current D/H ratio of .148 to the .66 value mentioned above, it can be concluded that the current brine well status meets and exceeds the recommended safety value by approximately five times.

Included in **Appendix "F"** is an aerial view showing the 156-foot radius superimposed around the brine well and station. The radius has increased by 2.0 feet from last year.

Permit Condition 2.B. SOLUTION CAVERN MONITORING PROGRAM:

1. Surface Subsidence Monitoring Plan: The Permittee shall submit a Surface Subsidence Monitoring Plan to OCD within 180 days of the effective data of this permit. The Surface Subsidence Monitoring Plan shall specify that the Permittee will install at least three survey monuments and shall include a proposal to monitor the elevation of the monuments at least semiannually.

The Permittee shall survey each benchmark at least semiannually to monitor for possible surface subsidence and shall tie each survey to the nearest USGS benchmark. The Permittee shall employ a licensed professional surveyor to conduct the subsidence monitoring program. The Permittee shall submit the results of all subsidence surveys to OCD within 15 days of the survey. If the monitored surface subsidence at any measuring point reaches 0.10 feet compared to its baseline elevation, then the Permittee shall suspend operation of the Class III well . If the Permittee cannot demonstrate the integrity of the cavern and well to the satisfaction of OCD, then it shall cease all brine production and submit a corrective action plan to mitigate the

subsidence.

Wasserhund Inc. hereby, submits a subsidence monitoring plan pursuant to Permit Condition 2.B. "Solution Cavern Monitoring Plan Program". A copy of the proposal is included in *Appendix "G"* for OCD review and approval.

Special Note: Wasserhund Inc. <u>request a Minor Modifications</u> that allows the results be supplied in the annual report, unless there is an exceedance as noted in the permit.

2. Solution Cavern Characterization Program: The Permittee shall submit a Solution Cavern Characterization Plan to characterize the size and shape of the solution cavern using geophysical methods within 180 days of the effective date of this permit. The Permittee shall characterize the size and shape of the solution cavern using a geophysical methods approved by OCD at least once before November 8, 2018. The Permittee shall demonstrate that at least 90% of the calculated volume of salt removed based upon injection and production volumes has been accounted for by the approved geophysical method(s) for such testing to be considered truly representative.

Solution Cavern Characterization Plan: Wasserhund Inc. hereby proposes to use a combination of calculated results as determined above, and will experiment with various geophysical methods, including actually performing an "Induced Current Method" and report these results in the next annual report.

The 'Induced Current' Method has not been successful, primarily to bad connections and low voltage used. Wasserhund will continue trying this method and others as approved by OCD. The old fashion cavern calculation continues to be the best economic method available.

Bullet Point #11- Ratio of Injected/Produced Fluids

(Permit condition 2.J.11 "A summary of the ratio of the volume of injected fluids to the volume of produced brine;")

See Bullet Point #3 and Appendix "B" for comparison chart numbers.

Special Note: **Key requests a minor modification of the permit requirement 3.K** *"The Permittee shall suspend injection if the monthly injection volume is less than 110% or greater than 120% of associated brine production. If such an event occurs, the Permittee shall notify OCD within 24 hours."*

Dear Jim Giswold-NMOCD Environmental Bureau Chief: As you know, this topic has been discussed and kicked around for a long time. The current permit requirement does not take into account many factors that can cause the variance to be under or over the requirement of 110%-120%. Every year we report this number in the annual report and while the average monthly injection for the year is normally within range, the actual monthly numbers can and are sometimes under and over. There are many reasons for this

as we have discussed, and thus the requirement to suspend operations is not based on any real parameter or trend that may be an immediate threat to the well, groundwater or the environment. The current requirement put operators in a continuous violation and interruption of operations. Notwithstanding, if you have a well that takes water without producing, or starts to pressure up, then you know you may have lost circulation or communicated to a pressure zone, then immediate action should be taken and notification to the agency. Currently the permit reads as follows:

The Permittee shall immediately suspend injection and notify the agency within 72 hours, if the Fresh Water Injection does not cause a normal immediate return of Brine Water to the surface, or if the well flows excessively for an unusual amount of time without fresh water injection after the cavern pressure has been stabilized to it's normal operating pressure, or if permittee has become aware of any out of zone injection or communication. The Permittee shall include in each annual report a summary showing the monthly variance, the average monthly variance for the year and the total accumulative variance over the life of the well. The operator shall certify and explain that any yearly variance that falls outside of the range of 20%, (Difference between the Fresh Water input and Brine Water output) will not cause harm to Fresh Water, Public Health or the Environment.

Bullet Point #12- Summary of Activities

(Permit condition 2.J.12 "A summary of all major Facility activities or events, which occurred during the year with any conclusions and recommendations;)

See Bullet Point #2 for summary.

5.B. BONDING OR FINANCIAL ASSURANCE: The Permittee shall submit an estimate of the minimum cost to properly close, plug and abandon its Class III well, conduct ground water restoration if applicable, and any post-operational monitoring as may be needed (see 20.6.2.5210B(17) NMAC) within 90 days of permit issuance (See 20.6.2.5210B(17) NMAC). The Permittee's cost estimate shall be based on third person estimates. After review, OCD will require the Permittee to submit a single well plugging bond based on the third person cost estimate.

<u>Appendix "H"</u> contains a third party closure estimate for the Wasserhund Inc. BW-04 brine well.

Bullet Point #13- Annual Certification

(Permit condition 2.J.13 "Annual Certification in accordance with Permit Condition 2.B.3. **"2.B.3. Annual Certification:** The Permittee shall certify annually that continued salt solution mining will not cause cavern collapse, surface subsidence, property damage, or otherwise threaten public health and the environment, based on geologic and engineering data.")

Operator Response: Based on all current information and actual on-site

observance, the operator of record hereby certifies that the current operations pose no threat to public health and the environment at the submission of this report. If any substantial event that, has or may cause, this current certification to change, then the operator will notify OCD and take the necessary actions to protect the public and environment.

By signing the cover sheet of Bullet Point 1 of permit condition 2.J.1, the operator herby certifies this condition of the permit.

Bullet Point 14- Groundwater Monitoring:

(Permit condition 2.J.14 "A summary of any new discoveries of ground water contamination with all leaks, spills and releases and corrective actions taken;")

The BW-04 Wasserhund Inc. Buckeye facility, currently does not have groundwater monitoring at this site. There are no planned or intentional discharges of water contaminants that may move directly or indirectly into groundwater. Any unintentional discharge, leak, spill, or drip is handled pursuant to the permit conditions.

The closure of the "out-of-service" brine storage pit was started in December of 2013 and the Wasserhund has received OCD approved in install a down-gradient Monitoring Well. The results concerning groundwater will be listed in the 2016 annual report.

Bullet Point 15- Annual Reporting

(Permit condition 2.J.15 "The Permittee shall file its Annual Report in an electronic format with a hard copy submitted to OCD's Environmental Bureau.")

The operator herby submits a PDF file on flash drive and one hard copy.

Appendix "A"

- Aerial View Plot Plan
- Site Photos-New Flowpoint Dispensing System
- 3rd Party Field Inspection Report
- Discharge Plan BW-04

Brine Well Inspection Sheet:

Permit #	BW-04			
API#	30-025-26883 Eidson #1			
Operator:	Wasserhund Inc.			
Location:	Unit Letter M-Section 31-Ts 16s – R35e	Yes	No	
1 Any reportable leaks or spills noted at time of inspection?			x	
2 Any o	observed radial cracks or any evidence of subsidence?		x	
3 Load/unload pots in place?		х		
4 Any I	New Wells IN AOR?		×	
5 Observed Injection Pressure on Well?		x	220 psig.	
⁶ Is operator experiencing any downhole issues?			x	None Noted at this time.
7 Do b	rine Tanks have secondary containment?	x		
8 Samples Collected?		x	Fresh + Brine	
9 Brine	e well Operated Normal or Reverse Flow?	Norm	al	
10 Chec	ked Sumps?	x	Holding Water n	o observed drop in 24 hours
11 Groundwater Monitor Wells on-site?			×	
12 Subsidence Monitors on-site?			x	
13 Equipment failures?			x	
Phot	os Taken:		2 see attached	
Date of Insp	ection: み/パフ//ら			
Inspector:	Wayne Price Jr. Price LLC			
Inspector Si	gnature:			

NO

Wasserhund BW-04 Well Head Pressure Gage Feb 17, 2016 Photo by Price LLC

BW-4

Wasserhund/Buckeye Eidson State #1

Permit Renewal 11/8/13

Susana Martinez Governor

David Martin Cabinet Secretary

Brett F. Woods, Ph.D. Deputy Cabinet Secretary

November 8, 2013

Larry Gandy Wasserhund, Inc. PO Box 827 Tatum, New Mexico 88267 Jami Bailey Division Director Oil Conservation Division

RE: Renewal of Discharge Permit BW-4 for the Eidson State #1 Brine Well in Unit M of Section 31, Township 16 South, Range 35 East NMPM; Lea County, New Mexico

Dear Mr. Gandy,

Pursuant to all applicable parts of the Water Quality Control Commission regulations 20.6.2 NMAC and more specifically 20.6.2.3104 thru.3999 discharge permit, and 20.6.2.5000 thru .5299 Underground Injection Control, the Oil Conservation Division hereby renews the discharge permit and authorizes operation and injection for the Wasserhund, Inc. (owner/operator) brine well BW-4 (API# 30-025-26883) at the location described above and under the conditions specified in the attached Discharge Permit Approval Conditions.

Be advised that approval of this permit does not relieve the owner/operator of responsibility should operations result in pollution of surface water, groundwater, or the environment. Nor does this permit relieve the owner/operator of any responsibility or consequences associated with subsidence or cavern failure. This permit does not relieve the owner/operator of its responsibility to comply with any other applicable governmental rules or regulations.

If you have any questions, please contact Jim Griswold of my staff at (505) 476-3465 or by email at *jim.griswold@state.nm.us*. On behalf of the Oil Conservation Division, I wish to thank you and your staff for your cooperation and patience during this renewal application review.

Respectfully,

Iami Bailey Director

JB/JG/jg Attachment – Discharge Permit Approval Conditions

cc: Michael Mariano, State Land Office

DISCHARGE PERMIT BW-4

1. GENERAL PROVISIONS:

1.A. PERMITTEE AND PERMITTED FACILITY: The Director of the Oil Conservation Division (OCD) of the Energy, Minerals and Natural Resources Department renews Discharge Permit BW-4 (Discharge Permit) to Wasserhund, Inc. (Permittee) to operate its Underground Injection Control (UIC) Class III well for the in situ extraction of salt (Eidson State #1 Brine Well - API No. 30-025-26883) located 567 feet FSL and 162 feet FWL (SW/4 SW/4, Unit Letter M) in Section 31, Township 16 South, Range 35 East, NMPM, Lea County, New Mexico at its Brine Production Facility (Facility). The Facility is located approximately 5 miles north of Buckeye, New Mexico along the west side of NM 238.

The Permittee is permitted to inject water into the subsurface salt layers and produce brine for use in the oil and gas industry. Ground water that may be affected by a spill, leak, or accidental discharge occurs at a depth of approximately 75 feet below ground surface and has a total dissolved solids concentration of approximately 500 mg/L.

1.B. SCOPE OF PERMIT: OCD has been granted the authority by statute and by delegation from the Water Quality Control Commission (WQCC) to administer the Water Quality Act (Chapter 74, Article 6 NMSA 1978) as it applies to Class III wells associated with the oil and gas industry (See Section 74-6-4, 74-6-5 NMSA 1978).

The Water Quality Act and the rules promulgated pursuant to the Act protect ground water and surface water of the State of New Mexico by providing that, unless otherwise allowed by 20.6.2 NMAC, no person shall cause or allow effluent or leachate to discharge so that it may move directly or indirectly into ground water unless such discharge is pursuant to an approved discharge plan (See 20.6.2.3104 NMAC, 20.6.2.3106 NMAC, and 20.6.2.5000 through 20.6.2.5299 NMAC).

This Discharge Permit for a Class III well is issued pursuant to the Water Quality Act and WQCC rules, 20.6.2 NMAC. This Discharge Permit does not authorize any treatment of, or onsite disposal of, any materials, product, by-product, or oil-field waste.

Pursuant to 20.6.2.5004A NMAC, the following underground injection activities are prohibited:

1. The injection of fluids into a motor vehicle waste disposal well is prohibited.

2. The injection of fluids into a large capacity cesspool is prohibited.

3. The injection of any hazardous or radioactive waste into a well is prohibited except as provided by 20.6.2.5004A(3) NMAC.

4. Class IV wells are prohibited, except for wells re-injecting treated ground water into the same formation from which it was drawn as part of a removal or remedial action.

WASSERHUND, INC. EIDSON STATE #1 BRINE WELL

5. Barrier wells, drainage wells, recharge wells, return flow wells, and motor vehicle waste disposal wells are prohibited.

This Discharge Permit does not convey any property rights of any sort nor any exclusive privilege, and does not authorize any injury to persons or property, any invasion of other private rights, or any infringement of state, federal, or local laws, rules or regulations.

The Permittee shall operate in accordance with the terms and conditions specified in this Discharge Permit to comply with the Water Quality Act and the rules issued pursuant to that Act, so that neither a hazard to public health nor undue risk to property will result (see 20.6.2.3109C NMAC); so that no discharge will cause or may cause any stream standard to be violated (see 20.6.2.3109H(2) NMAC); so that no discharge of any water contaminant will result in a hazard to public health, (see 20.6.2.3109H(3) NMAC); so that the numerical standards specified of 20.6.2.3103 NMAC are not exceeded; and, so that the technical criteria and performance standards (see 20.6.2.5000 through 20.6.2.5299 NMAC) for Class III wells are met. Pursuant to 20.6.2.5003B NMAC, the Permittee shall comply with 20.6.2.1 through 20.6.2.5299 NMAC.

The Permittee shall not allow or cause water pollution, discharge, or release of any water contaminant that exceeds the Water Quality Control Commission (WQCC) standards specified at 20.6.2.3101 NMAC and 20.6.2.3103 NMAC or 20.6.4 NMAC (Water Quality Standards for Interstate and Intrastate Streams). Pursuant to 20.6.2.5101A NMAC, the Permittee shall not inject non-hazardous fluids into ground water having 10,000 mg/l or less total dissolved solids (TDS).

The issuance of this permit does not relieve the Permittee from the responsibility of complying with the provisions of the Water Quality Act, any applicable regulations or water quality standards of the WQCC, or any applicable federal laws, regulations or standards (See Section 74-6-5 NMSA 1978).

1.C. DISCHARGE PERMIT RENEWAL: This Discharge Permit is a permit renewal that replaces the permit being renewed. Replacement of a prior permit does not relieve the Permittee of its responsibility to comply with the terms of that prior permit while that permit was in effect.

1.D. DEFINITIONS: Terms not specifically defined in this Discharge Permit shall have the same meanings as those in the Water Quality Act or the rules adopted pursuant to the Act, as the context requires.

1.E. FILING FEES AND PERMIT FEES: Pursuant to 20.6.2.3114 NMAC, every facility that submits a Discharge Permit application for initial approval or renewal shall pay the permit fees specified in Table 1 and the filing fee specified in Table 2 of 20.6.2.3114 NMAC. OCD has already received the required \$100.00 filing fee. The Permittee is now required to submit the \$1,700.00 permit fee for a Class III well. Please remit payment made payable to the Water Quality Management Fund in care of OCD at 1220 South St. Francis Drive in Santa Fe, New Mexico 87505.

EFFECTIVE DATE, EXPIRATION, RENEWAL CONDITIONS, AND 1.F.

PENALTIES FOR OPERATING WITHOUT A DISCHARGE PERMIT: This Discharge Permit becomes effective 30 days from the date that the Permittee receives this discharge permit or until the permit is terminated or expires. This Discharge Permit will expire on November 8, **2018.** The Permittee shall submit an application for renewal no later than 120 days before that expiration date, pursuant to 20.6.2.5101F NMAC. If a Permittee submits a renewal application at least 120 days before the Discharge Permit expires and is in compliance with the approved Discharge Permit, then the existing Discharge Permit will not expire until OCD has approved or disapproved the renewal application. A discharge permit continued under this provision remains fully effective and enforceable. Operating with an expired Discharge Permit may subject the Permittee to civil and/or criminal penalties (See Section 74-6-10.1 NMSA 1978 and Section 74-6-10.2 NMSA 1978).

MODIFICATIONS AND TERMINATIONS: The Permittee shall notify the OCD 1.G. Director and OCD's Environmental Bureau of any Facility expansion or process modification (See 20.6.2.3107C NMAC). The OCD Director may require the Permittee to submit a Discharge Permit modification application pursuant to 20.6.2.3109E NMAC and may modify or terminate a Discharge Permit pursuant to Sections 74-6-5(M) through (N) NMSA 1978.

1. If data submitted pursuant to any monitoring requirements specified in this Discharge Permit or other information available to the OCD Director indicate that 20.6.2 NMAC is being or may be violated, then the OCD Director may require modification or, if it is determined by the OCD Director that the modification may not be adequate, may terminate this Discharge Permit for a Class III well that was approved pursuant to the requirements of 20.6.2.5000 through 20.6.2.5299 NMAC for the following causes:

- Noncompliance by Permittee with any condition of this Discharge Permit; a.
- or,

The Permittee's failure in the discharge permit application or during the b. discharge permit review process to disclose fully all relevant facts, or Permittee's misrepresentation of any relevant facts at any time; or,

A determination that the permitted activity may cause a hazard to public c. health or undue risk to property and can only be regulated to acceptable levels by discharge permit modification or termination (See Section 75-6-6 NMSA 1978; 20.6.2.51011 NMAC; and, 20.6.2.3109E NMAC).

This Discharge Permit may also be modified or terminated for any of the 2. following causes:

Violation of any provisions of the Water Quality Act or any applicable a. regulations, standard of performance or water quality standards;

b. Violation of any applicable state or federal effluent regulations or limitations; or

c. Change in any condition that requires either a temporary or permanent reduction or elimination of the permitted discharge (See Section 75-6-5M NMSA 1978).

1.H. TRANSFER OF CLASS III WELL DISCHARGE PERMIT:

1. The transfer provisions of 20.6.2.3111 NMAC do not apply to a discharge permit for a Class III well.

2. Pursuant to 20.6.2.5101H NMAC, the Permittee may request to transfer its Class III well discharge permit if:

a. The OCD Director receives written notice 30 days prior to the transfer date; and,

b. The OCD Director does not object prior to the proposed transfer date. OCD may require modifications to the discharge permit as a condition of transfer, and may require demonstration of adequate financial responsibility.

3. The written notice required in accordance with Permit Condition 1.H.2.a shall:

a. Have been signed by the Permittee and the succeeding Permittee, and shall include an acknowledgement that the succeeding Permittee shall be responsible for compliance with the Class III well discharge permit upon taking possession of the facility; and

b. Set a specific date for transfer of the discharge permit responsibility, coverage and liability; and

c. Include information relating to the succeeding Permittee's financial responsibility required by 20.6.2.5210B(17) NMAC.

1.I. COMPLIANCE AND ENFORCEMENT: If the Permittee violates or is violating a condition of this Discharge Permit, OCD may issue a compliance order that requires compliance immediately or within a specified time period, or assess a civil penalty, or both (See Section 74-6-10 NMSA 1978). The compliance order may also include a suspension or termination of this Discharge Permit. OCD may also commence a civil action in district court for appropriate relief, including injunctive relief (See Section 74-6-10(A)(2) NMSA 1978). The Permittee may be subject to criminal penalties for discharging a water contaminant without a discharge permit or in violation of a condition of a discharge permit; making any false material statement, representation, certification or omission of material fact in a renewal application, record, report, plan or other document filed, submitted or required to be maintained under the Water Quality Act; falsifying, tampering with or rendering inaccurate any monitoring device, method or record required to be maintained under the Water Quality Act; or failing to monitor, sample or report as required by a Discharge Permit issued pursuant to a state or federal law or regulation (See Section 74-6-10.2 NMSA 1978).

2. GENERAL FACILITY OPERATIONS:

2.A. QUARTERLY MONITORING REQUIREMENTS FOR CLASS III WELLS: The

Permittee may use either or both fresh water or water from otherwise non-potable sources. Pursuant to 20.6.2.5207C, the Permittee shall provide analysis of the injected fluids at least quarterly to yield data representative of their characteristics. The Permittee shall analyze the injected fluids for the following characteristics:

- pH;
- density;
- concentration of total dissolved solids; and,
- chloride concentration.

The Permittee shall also provide analysis of the produced brine on a quarterly basis. The Permittee shall analyze the produced brine for the following characteristics:

- pH;
- density;
- concentration of total dissolved solids;
- chloride concentration; and,
- sodium concentration.

2.B. SOLUTION CAVERN MONITORING PROGRAM:

1. Surface Subsidence Monitoring Plan: The Permittee shall submit a Surface Subsidence Monitoring Plan to OCD within 180 days of the effective data of this permit. The Surface Subsidence Monitoring Plan shall specify that the Permittee will install at least three survey monuments and shall include a proposal to monitor the elevation of the monuments at least semiannually.

The Permittee shall survey each benchmark at least semiannually to monitor for possible surface subsidence and shall tie each survey to the nearest USGS benchmark. The Permittee shall employ a licensed professional surveyor to conduct the subsidence monitoring program. The Permittee shall submit the results of all subsidence surveys to OCD within 15 days of the survey. If the monitored surface subsidence at any measuring point reaches 0.10 feet compared to its baseline elevation, then the Permittee shall suspend operation of the Class III well . If the Permittee cannot demonstrate the integrity of the cavern and well to the satisfaction of OCD, then it shall cease all brine production and submit a corrective action plan to mitigate the subsidence.

2. Solution Cavern Characterization Program: The Permittee shall submit a Solution Cavern Characterization Plan to characterize the size and shape of the solution cavern using geophysical methods within 180 days of the effective date of this permit. The Permittee shall characterize the size and shape of the solution cavern using a geophysical methods approved by OCD at least once before November 8, 2018. The Permittee shall demonstrate that at least 90% of the calculated volume of salt removed based upon injection and production volumes has been accounted for by the approved geophysical method(s) for such testing to be considered truly representative.

WASSERHUND, INC. EIDSON STATE #1 BRINE WELL

a. The Permittee shall provide an estimate of the size and shape of the solution cavern at least annually, based on fluid injection and brine production data.

b. The Permit shall compare the ratio of the volume of injected fluids to the volume of produced brine monthly. If the average ratio of injected fluid to produced brine varies is less than 90% or greater than 110%, the Permittee shall report this to OCD and cease injection and production operations of its Class III well within 24 hours. The Permittee shall begin an investigation to determine the cause of this abnormal ratio within 72 hours. The Permittee shall submit to OCD a report of its investigation within 15 days of cessation of injection and production operations of its Class III well.

3. Annual Certification: The Permittee shall certify annually that continued salt solution mining will not cause cavern collapse, surface subsidence, property damage, or otherwise threaten public health and the environment, based on geologic and engineering data.

If the solution cavern is determined by either OCD or the Permittee to be potentially unstable by either direct or indirect means, then the Permittee shall cease all fluid injection and brine production within 24 hours. If the Permittee ceases operations because it or OCD has determined that the solution cavern is unstable, then it shall submit a plan to stabilize the solution cavern within 30 days. OCD may require the Permittee to implement additional subsidence monitoring and to conduct additional corrective action.

2.C. CONTINGENCY PLANS: The Permittee shall implement its proposed contingency plan(s) included in its Permit Renewal Application to cope with failure of a system(s) in the Discharge Permit.

2.D. CLOSURE: Prior to closure of the facility, the Permittee shall submit for OCD's approval, a closure plan including a completed form C-103 for plugging and abandonment of the Class III well. The Permittee shall plug and abandon its well pursuant to 20.6.2.5209 NMAC and as specified in Permit Condition 2.D.

1. **Pre-Closure Notification:** Pursuant to 20.6.2.5005A NMAC, the Permittee shall submit a pre-closure notification to OCD's Environmental Bureau at least 30 days prior to the date that it proposes to close or to discontinue operation of its Class III well. Pursuant to 20.6.2.5005B NMAC, OCD's Environmental Bureau must approve all proposed well closure activities before Permittee may implement its proposed closure plan.

2. Required Information: The Permittee shall provide OCD's Environmental Bureau with the following information:

- Name of facility;
- Address of facility;
- Name of Permittee (and owner or operator, if appropriate);
- Address of Permittee (and owner or operator, if appropriate);
- Contact person;
- Phone number;
- Number and type of well(s);

- Year of well construction;
- Well construction details;
- Type of discharge;
- Average flow (gallons per day);
- Proposed well closure activities (*e.g.*, sample fluids/sediment, appropriate disposal of remaining fluids/sediments, remove well and any contaminated soil, clean out well, install permanent plug, conversion to other type of well, ground water and vadose zone investigation, other);
- Proposed date of well closure;
- Name of Preparer; and,
- Date.

2.E. PLUGGING AND ABANDONMENT PLAN: Pursuant to 20.6.2.5209A NMAC, when the Permittee proposes to plug and abandon its Class III well, it shall submit to OCD a plugging and abandonment plan that meets the requirements of 20.6.2.3109C NMAC, 20.6.2.5101C NMAC, and 20.6.2.5005 NMAC for protection of ground water. If requested by OCD, Permittee shall submit for approval prior to closure, a revised or updated plugging and abandonment plan. The obligation to implement the plugging and abandonment plan as well as the requirements of the plan survives the termination or expiration of this Discharge Permit. The Permittee shall comply with 20.6.2.5209 NMAC.

2.F RECORD KEEPING: The Permittee shall maintain records of all inspections, surveys, investigations, *etc.*, required by this Discharge Permit at its Facility office for a minimum of five years and shall make those records available for inspection by OCD.

2.G. RELEASE REPORTING: The Permittee shall comply with the following permit conditions, pursuant to 20.6.2.1203 NMAC, if it determines that a release of oil or other water contaminant, in such quantity as may with reasonable probability injure or be detrimental to human health, animal or plant life, or property, or unreasonably interfere with the public welfare or the use of property, has occurred. The Permittee shall report unauthorized releases of water contaminants in accordance with any additional commitments made in its approved Contingency Plan. If the Permittee determines that any constituent exceeds the standards specified at 20.6.2.3103 NMAC, then it shall report a release to OCD's Environmental Bureau.

1. **Oral Notification:** As soon as possible after learning of such a discharge, but in no event more than twenty-four (24) hours thereafter, the Permittee shall notify OCD's Environmental Bureau. The Permittee shall provide the following:

- The name, address, and telephone number of the person or persons in charge of the facility, as well as of the owner and/or operator of the facility;
- The name and location of the facility;
- The date, time, location, and duration of the discharge;
- The source and cause of discharge;
- A description of the discharge, including its chemical composition;
- The estimated volume of the discharge; and,

• Any corrective or abatement actions taken to mitigate immediate damage from the discharge.

2. Written Notification: Within one week after the Permittee has discovered a discharge, the Permittee shall send written notification (may use form C-141 with attachments) to OCD's Environmental Bureau verifying the prior oral notification as to each of the foregoing items and providing any appropriate additions or corrections to the information contained in the prior oral notification.

The Permittee shall provide subsequent written reports as required by OCD's Environmental Bureau.

2.H. OTHER REQUIREMENTS:

1. Inspection and Entry: Pursuant to Section 74-6-9 NMSA 1978 and 20.6.2.3107A NMAC, the Permittee shall allow any authorized representative of the OCD Director, to:

- Upon the presentation of proper credentials, enter the premises at reasonable times;
- Inspect and copy records required by this Discharge Permit;
- Inspect any treatment works, monitoring, and analytical equipment;
- Sample any injection fluid or produced brine; and,
- Use the Permittee's monitoring systems and wells in order to collect samples.

2. Advance Notice: The Permittee shall provide OCD's Environmental Bureau and Hobbs District Office with at least five (5) working days advance notice of any environmental sampling to be performed pursuant to this Discharge Permit, or any well plugging, abandonment or decommissioning of any equipment associated with its Class III well.

3. Environmental Monitoring: The Permittee shall ensure that any environmental sampling and analytical laboratory data collected meets the standards specified in 20.6.2.3107B NMAC. The Permittee shall ensure that all environmental samples are analyzed by an accredited "National Environmental Laboratory Accreditation Conference" (NELAC) Laboratory. The Permittee shall submit data summary tables, all raw analytical data, and laboratory QA/QC.

2.I. BONDING OR FINANCIAL ASSURANCE: Pursuant to 20.6.2.5210B(17) NMAC, the Permittee shall maintain at a minimum, a single well plugging bond in the amount that it shall determine, in accordance with Permit Condition 5.B, to cover potential costs associated with plugging and abandonment of the Class III well, surface restoration, and post-operational monitoring, as may be needed. OCD may require additional financial assurance to ensure adequate funding is available to plug and abandon the well and/or for any required corrective actions.

Methods by which the Permittee shall demonstrate the ability to undertake these measures shall include submission of a surety bond or other adequate assurances, such as financial statements or other materials acceptable to the OCD Director, such as: (1) a surety bond; (2) a trust fund with a New Mexico bank in the name of the State of New Mexico, with the State as Beneficiary; (3) a

non-renewable letter of credit made out to the State of New Mexico; (4) liability insurance specifically covering the contingencies listed in this paragraph; or (5) a performance bond, generally in conjunction with another type of financial assurance. If an adequate bond is posted by the Permittee to a federal or another state agency, and this bond covers all of the measures specified above, the OCD Director shall consider this bond as satisfying the bonding requirements of Sections 20.6.2.5000 through 20.6.2.5299 NMAC wholly or in part, depending upon the extent to which such bond is adequate to ensure that the Permittee will fully perform the measures required hereinabove.

2.J. ANNUAL REPORT: The Permittee shall submit its annual report pursuant to 20.6.2.3107 NMAC to OCD's Environmental Bureau by **June 1**st of the following year. The annual report shall include the following:

- Cover sheet marked as "Annual Class III Well Report, Name of Permittee, Discharge Permit Number, API number of well(s), date of report, and person submitting report;
- Summary of Class III well operations for the year including a description and reason for any remedial or major work on the well with a copy of form C-103;
- Monthly fluid injection and brine production volume, including the cumulative total carried over each year;
- Injection pressure data;
- A copy of the quarterly chemical analyses shall be included with data summary and all QA/QC information;
- Copy of any mechanical integrity test chart, including the type of test, *i.e.*, duration, gauge pressure, etc.;
- Brief explanation describing deviations from the normal operations;
- Results of any leaks and spill reports;
- An Area of Review (AOR) update summary;
- A summary with interpretation of MITs, surface subsidence surveys, cavern volume and geometry measurements with conclusion(s) and recommendation(s);
- A summary of the ratio of the volume of injected fluids to the volume of produced brine;
- A summary of all major Facility activities or events, which occurred during the year with any conclusions and recommendations;
- Annual Certification in accordance with Permit Condition 2.B.3.
- A summary of any new discoveries of ground water contamination with all leaks, spills and releases and corrective actions taken; and,
- The Permittee shall file its Annual Report in an electronic format with a hard copy submittal to OCD's Environmental Bureau.

3. CLASS III WELL OPERATIONS:

3.A. OPERATING REQUIREMENTS: The Permittee shall comply with the operating requirements specified in 20.6.2.5206A NMAC and 20.6.2.5206A NMAC to ensure that:

1. Injection will occur through the innermost tubing string and brine production through the annulus between the casing and tubing string to promote cavern development at depth. Injection and production flow can be reversed as required to achieve optimal cavern shaping, mine salt most efficiently, and to periodically clean the tubing and annulus. Injection must only occur in the intended solution mining interval.

2. Injection between the outermost casing and the well bore is prohibited in a zone other than the authorized injection zone. If the Permittee determines that its Class III well is discharging or suspects that it is discharging fluids into a zone or zones other than the permitted injection zone specified in Permit Condition 3.B.1., then the Permittee shall within 24 hours notify OCD's Environmental Bureau and Hobbs District Office of the circumstances and action(s) taken. The Permittee shall cease operations until proper repairs are made and it has received approval from OCD to re-start injection operations.

3.B. INJECTION OPERATIONS:

1. Well Injection Pressure Limit: The Permittee shall ensure that the maximum wellhead or surface injection pressure on its Class III well shall not exceed the fracture pressure of the injection salt formation and will not cause new fractures or propagate any existing fractures of cause damage to the system.

2. Pressure Limiting Device: The Permittee shall equip and operate its Class III well or system with a pressure limiting device which shall, at all times, limit surface injection pressure to the maximum allowable pressure for its Class III well. The Permittee shall monitor the pressure-limiting device daily and shall report all pressure exceedances within 24 hours of detecting an exceedance to OCD's Environmental Bureau.

The Permittee shall take all steps necessary to ensure that the injected fluids enter only the proposed injection interval and is not permitted to escape to other formations or onto the ground surface. The Permittee shall report to OCD's Environmental Bureau within 24 hours of discovery any indication that new fractures or existing fractures have been propagated, or that damage to the well, the injection zone, or formation has occurred.

3.C. CONTINUOUS MONITORING DEVICES: The Permittee shall use continuous monitoring devices to provide a record of injection pressure, flow rate, flow volume, and pressure on the annulus between the tubing and the long string of casing.

3.D. MECHANICAL INTEGRITY FOR CLASS III WELLS:

1. Pursuant to 20.6.2.5204 NMAC, the Permittee shall demonstrate mechanical integrity for its Class III well at least once every five years or more frequently as the OCD

WASSERHUND, INC. EIDSON STATE #1 BRINE WELL

Director may require for good cause during the life of the well. The Permittee shall demonstrate mechanical integrity for its Class III well every time it performs a well workover, including when it pulls the tubing. A Class III well has mechanical integrity if there is no detectable leak in the casing or tubing which OCD considers to be significant at maximum operating temperature and pressure; and no detectable conduit for fluid movement out of the injection zone through the well bore or vertical channels adjacent to the well bore which the OCD Director considers to be significant. The Permittee shall conduct a casing Mechanical Integrity Test (MIT) from the surface to the approved injection depth to assess casing integrity. The MIT shall consist of a 30-minute test at a minimum pressure of 300 psig measured at the surface.

The Permittee shall notify OCD's Environmental Bureau 5 days prior to conducting any MIT to allow OCD the opportunity to witness the MIT.

- 2. The following criteria will determine if the Class III well has passed the MIT:
 - **a.** Passes MIT if zero bleed-off during the test;

b. Passes MIT if final test pressure is within $\pm 10\%$ of starting pressure, if approved by OCD;

c. When the MIT is not witnessed by OCD and fails, the Permittee shall notify OCD within 24 hours of the failure of the MIT.

3. Pursuant to 20.6.2.5204C NMAC, the OCD Director may consider the use by the Permittee of equivalent alternative test methods to determine mechanical integrity. The Permittee shall submit information on the proposed test and all technical data supporting its use. The OCD Director may approve the Permittee's request if it will reliably demonstrate the mechanical integrity of the well for which its use is proposed.

4. Pursuant to 20.6.2.5204D NMAC, when conducting and evaluating the MIT(s), the Permittee shall apply methods and standards generally accepted in the oil and gas industry. When the Permittee reports the results of all MIT(s) to the OCD Director, it shall include a description of the test(s), the method(s) used, and the test results.

3.E. WELL WORKOVER OPERATIONS: Pursuant to 20.6.2.5205A(5) NMAC, the Permittee shall provide notice to and shall obtain approval from OCD's District Office in Hobbs and the Environmental Bureau in Santa Fe prior to commencement of any remedial work or any other workover operations to allow OCD the opportunity to witness the operation. The Permittee shall request approval using form C-103 (Sundry Notices and Reports on Wells) with copies sent to OCD's Environmental Bureau and Hobbs District Office. Properly completed Forms C-103 and/or C-105 must be filed with OCD upon completion of workover activities and copies included in that year's Annual Report.

3.K. FLUIDS INJECTION AND BRINE PRODUCTION VOLUMES AND

PRESSURES: The Permittee shall continuously monitor the volumes of water injected and brine production . The Permittee shall submit monthly reports of its injection and production volumes on or before the 10th day of the following month. The Permittee shall suspend injection if the monthly injection volume is less than 110% or greater than 120% of associated brine production. If such an event occurs, the Permittee shall notify OCD within 24 hours.

3.L. AREA OF REVIEW (AOR): The Permittee shall report within 72 hours of discovery any new wells, conduits, or any other device that penetrates or may penetrate the injection zone within a 1-mile radius from its Class III well.

4. CLASS V WELLS: Pursuant to 20.6.2.5002B NMAC, leach fields and other waste fluids disposal systems that inject non-hazardous fluid into or above an underground source of drinking water are UIC Class V injection wells. This Discharge Permit does not authorize the use of a Class V injection well for the disposal of industrial waste. Pursuant to 20.6.2.5005 NMAC, the Permittee shall close any Class V industrial waste injection well that injects non-hazardous industrial wastes or a mixture of industrial wastes and domestic wastes (*e.g.*, septic systems, leach fields, dry wells, *etc.*) within 90 calendar days of the issuance of this Discharge Permit. The Permittee shall document the closure of any Class V wells used for the disposal of non-hazardous industrial wastes or a mixture of industrial wastes and domestic wastes other than contaminated ground water in its Annual Report. Other Class V wells, including wells used only for the injection of domestic wastes, shall be permitted by the New Mexico Environment Department.

5. SCHEDULE OF COMPLIANCE:

5.A. ANNUAL REPORT: The Permittee shall submit its annual report to OCD by June 1st of each year.

5.B. BONDING OR FINANCIAL ASSURANCE: The Permittee shall submit an estimate of the minimum cost to properly close, plug and abandon its Class III well, conduct ground water restoration if applicable, and any post-operational monitoring as may be needed (see 20.6.2.5210B(17) NMAC) within 90 days of permit issuance (See 20.6.2.5210B(17) NMAC). The Permittee's cost estimate shall be based on third person estimates. After review, OCD will require the Permittee to submit a single well plugging bond based on the third person cost estimate.

5.C. **SURFACE SUBSIDENCE MONITORING PLAN:** The Permittee shall submit the Surface Subsidence Monitoring Plan required in accordance with Permit Condition 2.B.1 within 180 days of permit issuance.

5.D. SOLUTION CAVERN CHARACTERIZATION PLAN: The Permittee shall submit the Solution Cavern Characterization Plan required in accordance with Permit Condition 2.B.2 within 180 days of permit issuance.

Appendix "B"

• Injection and Production Volumes/Comparison Charts

2015 Wasserhund Inc OCD BW-04 Annual F	Production Data				
				Plus numbers represent more fresh injected than brine produced. Neg numbers the opposite.	
	Brine-BBLS	Fre	sh-BBLS	% diff	
	C1 531 00		64 647 00	0 1994	
Jan	64,531.00		64,647.00	0.10%	
Feb	43,305.00		43,439.00	0.31%	
Mar	38,845.00		38,974.00	0.33%	
Apr	28,060.00		28,175.00	0.41%	
May	24,125.00		24,275.00	0.62%	
Jun	36,901		37,005	0.28%	
Jul	30,752		30,567	-0.60%	
Aug	23,952		24,331	1.58%	
Sept	26,863		27,020	0.58%	
Oct	33,537		33,669	0.39%	
Nov	32,346		32,461	0.36%	
Dec	31,071		31,221	0.48%	
2014 Total	414,288		415,784	0.36%	
Total Brine Water Production Carry Over fro Years Past BBLs	om 8,696,987				
				the second s	
Total Production year ending 2015	9,111,275	bbls			

Appendix "C"

- Chemical Analysis Fresh Water
- Chemical Analysis Brine Water
Summary Report

Lester Waynce Price Jr. Price LLC 312 Encantado Ridge Ct. NE Rio Rancho, NM 87124

Report Date: February 17, 2015

Work Order: 15012306

Project Location: Buckeye, NM Project Name: Brine Well

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
385130	Fresh	water	2015-01-16	15:51	2015-01-21
385131	Brine	water	2015-01-16	14:10	2015-01-21

Sample: 385130 - Fresh

Param	Flag	Result	Units	RL
Chloride	Н	338	mg/L	2.5
Dissolved Sodium	Qs	221	m mg/L	1
pH		8.03	s.u.	2
Specific Gravity		0.9918	m g/ml	
Total Dissolved Solids		806	$\mathrm{mg/L}$	2.5

Sample: 385131 - Brine

Param	Flag	Result	Units	RL
Chloride	Н	106000	mg/L	2.5
Dissolved Sodium	Qs	81300	m mg/L	1
pН		7.12	s.u.	2
Specific Gravity		1.124	g/ml	
Total Dissolved Solids		186000	m mg/L	2.5

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100

Texas 79424 Lubbock, Texas 79922 El Paso, Texas 79703 Midland. Carroliton. Texas 75006 E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

915-585-3443 FAX 915 • 585 • 4944 432-689-6301 FAX 432 • 689 • 6313 972-242 -7750

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Oklahoma ISO 17025 Kansas

Analytical and Quality Control Report

Lester Waynce Price Jr. Price LLC 312 Encantado Ridge Ct. NE Rio Rancho, NM, 87124

Report Date: February 17, 2015

Work Order: 15012306

Project Location: Buckeye, NM **Project** Name: Brine Well Brine Well-Buckeye Project Number:

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
385130	Fresh	water	2015-01-16	15:51	2015-01-21
385131	Brine	water	2015-01-16	14:10	2015-01-21

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 16 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

5.4

Dr. Blair Leftwich, Director James Taylor, Assistant Director Brian Pellam, Operations Manager

Report Contents

Case Narrative	3
Analytical Report Sample 385130 (Fresh)	4 4 5
Method Blanks QC Batch 118885 - Method Blank (1) QC Batch 118905 - Method Blank (1) QC Batch 119127 - Method Blank (1) QC Batch 119410 - Method Blank (1)	7 7 7 7 7
Duplicates QC Batch 118885 - Duplicate (1) QC Batch 118893 - Duplicate (1) QC Batch 118905 - Duplicate (1)	9 9 9 9
Laboratory Control Spikes 1 QC Batch 118905 - LCS (1) 1 QC Batch 119127 - LCS (1) 1 QC Batch 119410 - LCS (1) 1	0 .0 .0
Matrix Spikes 1 QC Batch 119127 - xMS (1) 1 QC Batch 119410 - MS (1) 1	2 2
Calibration Standards 1 QC Batch 118893 - ICV (1) 1 QC Batch 118893 - CCV (1) 1 QC Batch 119127 - ICV (1) 1 QC Batch 119127 - CCV (1) 1 QC Batch 119127 - CCV (1) 1 QC Batch 119410 - CCV (1) 1 QC Batch 119410 - CCV (2) 1	3 3 3 3 3 4
Appendix 1 Report Definitions 1 Laboratory Certifications 1 Standard Flags 1 Attachments 1	5 5 5 5 6

Case Narrative

Samples for project Brine Well were received by TraceAnalysis, Inc. on 2015-01-21 and assigned to work order 15012306. Samples for work order 15012306 were received intact at a temperature of 0.3 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	Date
Chloride (IC)	E 300.0	100982	2015-02-16 at 12:00	119410	2015-02-16 at 12:53
Na, Dissolved	S $6010C$	100546	2015-01-27 at $17:40$	119127	2015-02-06 at $09:23$
pН	SM 4500-H+	100544	2015-01-27 at $04:00$	118893	2015-01-27 at $16:44$
Specific Gravity	ASTM D1429-95	100533	2015-01-27 at $13:00$	118885	2015-01-27 at $13:10$
TDS	SM 2540C	100553	2015-01-26 at $09:00$	118905	2015-01-26 at $17:00$

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 15012306 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: February 17, 2015 Brine Well-Buckeye

Analytical Report

Sample: 385130 - Fresh

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 119410 100982		Analytical Date Analy Sample Pre	Method: yzed: eparation:	E 300.0 2015-02-16		Prep Method: Analyzed By: Prepared By:	N/A RL RL
				RI				
Parameter		Flag	Cert	Resul	t U	nits	Dilution	RL
Chloride		н	1,2,3,4,5	338	3 m	g/L	10	2.50

Sample: 385130 - Fresh

Laboratory:	Lubbock						
Analysis:	Na, Dissolved		Analytical Method:	S $6010C$		Prep Method:	S $3005A$
QC Batch:	119127		Date Analyzed:	2015-02-06		Analyzed By:	\mathbf{RR}
Prep Batch:	100546		Sample Preparation:	2015-01-27		Prepared By:	\mathbf{RR}
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Dissolved Soc	lium	Qs	2,3,4,5	221	mg/L	1	1.00

Sample: 385130 - Fresh

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock pH 118893 100544		Analytical Method Date Analyzed: Sample Preparatio	l: SM 4500- 2015-01-2 m: 2015-01-2	-H+ 27 27	Prep Method: Analyzed By: Prepared By:	N/A AT AT
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
pН			1,2,4,5	8.03	s.u.	1	2.00

Sample: 385130 - Fresh

Laboratory:	Lubbock				
Analysis:	Specific Gravity	Analytical Method:	ASTM D1429-95	Prep Method:	N/A
QC Batch:	118885	Date Analyzed:	2015-01-27	Analyzed By:	\mathbf{CF}
Prep Batch:	100533	Sample Preparation:	2015-01-27	Prepared By:	CF

Report Date: February 17, 2015 Brine Well-Buckeye		Work Order: 15012306 Brine Well			Page Number: 5 of 16 Buckeye, NM	
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Specific Gravity			0.9918	g/ml	1	0.000
Sample:385130 - FreshLaboratory:LubbockAnalysis:TDSQC Batch:118905Prep Batch:100553	A I S	nalytical Method Date Analyzed: ample Preparation	: SM 2540C 2015-01-26 n:		Prep Method: Analyzed By: Prepared By:	N/A RL RL
Parameter	Flag	Cert	RL Besult	Units	Dilution	RL.
Total Dissolved Solids	1 145	1,2,3,4,5	806	mg/L	20	$\frac{132}{2.50}$

Sample: 385131 - Brine

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 119410 100982		Analytical M Date Analyz Sample Prep	fethod: E 30 æd: 2015 paration:	0.0 -02-16	Prep Method: Analyzed By: Prepared By:	N/A RL RL
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Chloride		Н	1,2,3,4,5	106000	m mg/L	5000	2.50

Sample: 385131 - Brine

Laboratory:	Lubbock						
Analysis:	Na, Dissolved		Analytical Method:	S $6010C$		Prep Method:	S $3005A$
QC Batch:	119127		Date Analyzed:	2015-02-06		Analyzed By:	\mathbf{RR}
Prep Batch:	100546		Sample Preparation:	2015-01-27		Prepared By:	RR
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Dissolved Soc	lium	Qs	2,3,4,5	81300	$\mathrm{mg/L}$	1000	1.00

Report Date: February 17, 2015 Brine Well-Buckeye			Work C E		Page Number: 6 of 1 Buckeye, NM		
Sample: 38	5131 - Brine						
Laboratory:	Lubbock						
Analysis:	pН		Analytical Method	l: SM 4500-H	+	Prep Method:	N/A
QC Batch:	118893		Date Analyzed:	2015-01-27		Analyzed By:	AT
Prep Batch:	100544		Sample Preparatio	on: 2015-01-27		Prepared By:	AT
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
pН			1,2,4,5	7.12	s.u.	1	2.00
Sample: 38	5131 - Brine						
Laboratory:	Lubbock						
Analysis:	Specific Gravity		Analytical Meth	od: ASTM D	1429-95	Prep Method:	N/A
QC Batch:	118885		Date Analyzed:	2015-01-2	7	Analyzed By:	CF
Prep Batch:	100533		Sample Preparat	zion: $2015-01-2$	7	Prepared By:	CF
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Specific Grav	rity			1.124	g/ml	1	0.000
Sample: 38	5131 - Brine						
Laboratory:	Lubbock						
Analysis:	TDS		Analytical Metho	od: SM 2540C	1	Prep Method:	N/A
QC Batch:	118905		Date Analyzed:	2015-01-26	3	Analyzed By:	RL
Prep Batch:	100553		Sample Preparati	ion:		Prepared By:	RL
				RL			
Parameter		Fla	ag Cert	Result	Units	Dilution	RL
Total Dissolv	ed Solids		1,2,3,4,5	186000	mg/L	2000	2.50

Brine Well-Buckeye		B	Buckeye, NM			
Method B	lanks					
Method Blank (1)	QC Batch: 118885	5				
QC Batch: 118885 Prep Batch: 100533		Date Analyzed: QC Preparation	2015-01-27 : 2015-01-27		Analyzed By: Prepared By:	$_{\rm CF}^{\rm CF}$
Parameter		Flag C	Cert	MDL Result	Units	RL
Specific Gravity				0.9916	g/ml	
Method Blank (1)	QC Batch: 118905	5				
QC Batch: 118905 Prep Batch: 100553		Date Analyzed: QC Preparation	2015-01-26 : 2015-01-26		Analyzed By: Prepared By:	RL RL
Parameter		Flag	Cert	MDL Result	Units	RL
Total Dissolved Solids			1,2,3,4,5	<25.0	mg/L	2.5
Method Blank (1)	QC Batch: 119127	7				
QC Batch: 119127 Prep Batch: 100546		Date Analyzed: QC Preparation:	2015-02-06 2015-01-27		Analyzed By: Prepared By:	RR PM
Parameter		Flag (lert	MDL Result	Units	RI
Dissolved Sodium		1 1005	3.4.5	< 0.0184	mg/L	1

Work Order: 15012306

Page Number: 7 of 16

Report Date: February 17, 2015

QC Batch:	119410	Date Analyzed:	2015-02-16	Analyzed By:	RL
Prep Batch:	100982	QC Preparation:	2015-02-16	Prepared By:	RL

Report Date: February 17, 2015 Brine Well-Buckeye		Work Order: 15 Brine Wel	Page Number: 8 of 16 Buckeye, NM		
Parameter	Flog	Cort	MDL Pogult	Unite	ĐI
rarameter	Flag	Cert	nesuit	Units	nL
Chloride		1,2,3,4,5	0.767	m mg/L	2.5

Duplicates

Duplicates (1) Duplicated Sample	385269					
QC Batch: 118885	Date Analyz	zed: 2015-01	-27		Analyzed 1	By: CF
Prep Batch: 100533	QC Prepara	tion: 2015-01	-27		Prepared I	By: CF
	Duplicate	Sample				RPD
Param	Result	Result	Units	Dilution	RPD	Limit
Specific Gravity	1.074	1.072	g/ml	1	0	200

Duplicates (1) Duplicated Sample: 385269

QC Batch:	118893	Date Analyzed:	2015-01-27	Analyzed By:	AT
Prep Batch:	100544	QC Preparation:	2015-01-27	Prepared By:	AT

		Duplicate	Sample				RPD
Param		Result	Result	Units	Dilution	RPD	Limit
pH	1,2,4,5	6.79	6.78	s.u.	1	0	20

Duplicates (1) Duplicated Sample: 385130

QC Batch: Prep Batch:	$\frac{118905}{100553}$	Г С	Date Analyzed: QC Preparation:	$\begin{array}{c} 2015 \text{-} 01 \text{-} 26 \\ 2015 \text{-} 01 \text{-} 26 \end{array}$			Analyzed By: Prepared By:	RL RL
Param			Duplicate Result	Sample Besult	Units	Dilution	RPD	RPD Limit
			nesure	Ittouit	Omus	Difution		Lillin
Total Dissolv	ed Solids	1,2,3,4,5	850	806	mg/L	20	5	10

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch: 118905			Date A	nalyzed:	2015	5-01-26			An	alyzed By	y: RL
Prep Batch: 100553 QC Preparation: 2015-01-26									Pre	pared By	r: RL
				LCS			Spike	Ma	atrix		Rec.
Param	\mathbf{F}	(C F	Result	Units	Dil.	Amount	Re	esult	Rec.	Limit
Total Dissolved Solids		1,2,3	3,4,5	988	$\mathrm{mg/L}$	10	1000	<	25.0	99	90 - 110
Percent recovery is based on the s	pike re	esult. F	RPD is b	based on	the spi	ike and spi	ke duplica	te resu	lt.		
			LCSD			Spike	Matrix		Rec.		RPD
Param	F	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Total Dissolved Solids	1	,2,3,4,5	978	$\mathrm{mg/L}$	10	1000	$<\!25.0$	98	90 - 110) 1	10

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:	$\frac{119127}{100546}$		Date Analyzed: 2015-02-06 QC Preparation: 2015-01-27					Analyzed By: RR Prepared By: PM			
				LCS			Spike	Matrix		Rec.	
Param		\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	
Dissolved Soc	lium		2,3,4,5	56.0	$\mathrm{mg/L}$	1	52.5	< 0.0184	107	85 - 115	
Percent recov	ery is based on	the spike resu	ult. RPE) is based of	on the spil	ke and s	pike duplicat	e result.			

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Dissolved Sodium		2,3,4,5	57.2	$\mathrm{mg/L}$	1	52.5	< 0.0184	109	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:	119410	Date Analyzed:	2015-02-16	Analyzed By:	RL
Prep Batch:	100982	QC Preparation:	2015-02-16	Prepared By:	RL

Report Date: February 17, 2015 Brine Well-Buckeye		Work Order: 15012306 Brine Well						Page Number: 11 of 16 Buckeye, NM			
Param		F	C F	LCS Result	Units	Dil.	Spike Amount	Ma Re	atrix esult 1	Rec.	Rec. Limit
Chloride		1,2	,3,4,5	24.0	mg/L	1	25.0	0.	.767	93	90 - 110
Percent recovery is based on the s	pike	result.	RPD is b	based on	the spi	ke and spi	ke duplica	te resu	ılt.		
			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,3,4,5	23.5	$\mathrm{mg/L}$	1	25.0	0.767	91	90 - 110	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

Chloride

Matrix Spike (xMS-1)	Spike	l Sa	mple:	385041								
QC Batch: 119127 Prep Batch: 100546				Date QC I	Analyzed: Preparation	2015 n: 2015	5-02-06 5-01-27			A Pi	nalyzed i repared l	By: RR By: PM
					MS			Spike	Ma	atrix		Rec.
Param		F	י	С	Result	Units	Dil.	Amount	Re	esult	Rec.	Limit
Dissolved Sodium			2	2,3,4,5	1660	$\mathrm{mg/L}$	1	525	12	210	86	75 - 125
Percent recovery is based on	the sp	ike 1	esult	. RPD	is based or	n the spi	ike and spi	ike duplica	te resu	ılt.		
				MS	D		Spike	Matrix		Rec	•	RPD
Param		F	\mathbf{C}	Resi	ult Units	Dil.	Amount	Result	Rec.	Limi	it RP	D Limit
Dissolved Sodium	$_{\rm Qs}$	$_{\rm Qs}$	2,3,4,5	158	0 mg/L	1	525	1210	70	75 - 1	25 5	20
Matrix Spike (MS-1)	Spiked	Sam	ple: 3	86889								
QC Batch: 119410				Date	Analyzed:	201	5-02-16			А	nalvzed	Bv: RL
Prep Batch: 100982				QC I	Preparation	n: 2015	5-02-16			Р	repared	By: RL
					MS			Spike	Ma	atrix		Rec.
Param		F	1	\mathbf{C}	Result	Units	Dil.	Amount	Re	esult	Rec.	Limit
Chloride			1	,2,3,4,5	3350	mg/L	100	2500	8	812	102	80 - 120
Percent recovery is based on	the sp	ike 1	esult	. RPD	is based or	n the spi	ike and spi	ike duplica	te resu	ılt.		
				MS	D		Spike	Matrix		Rec		RPD
Param		F	\mathbf{C}	Rest	ilt Units	Dil.	Amount	Result	Rec.	Limi	it RP	D Limit

3290 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

1,2,3,4,5

mg/L

100

2500

812

99

80 - 120

2

20

Calibration Standards

Standard (ICV-1)

QC Batch:	118893	Da	te Analyzed:	2015-01-27		Analy	Analyzed By: AT		
				ICVs	ICVs	ICVs	Percent		
				True	Found	Percent	Recovery	Date	
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
pН		1,2,4,5	s.u.	7.00	7.01	100	98.6 - 101.4	2015-01-27	

Standard (CCV-1)

QC Batch:	118893		Da	te Analyzed:	2015-01-27		Analy	zed By: AT
				CCVs True	CCVs Found	CCVs Percent	Percent Becovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
pН		1,2,4,5	s.u.	7.00	7.01	100	98.6 - 101.4	2015-01-27

Standard (ICV-1)

QC Batch: 119127	Date Anal	yzed: 201	Analyz	Analyzed By: RR				
				ICVs	ICVs	ICVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Sodium		2,3,4,5	$\mathrm{mg/L}$	51.0	51.7	101	90 - 110	2015-02-06

Standard (CCV-1)

QC Batch:	119127			Date Anal	yzed: 201	5-02-06		Analyz	zed By: RR
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved So	odium		2,3,4,5	$\mathrm{mg/L}$	51.0	55.9	110	90 - 110	2015-02-06

Report Date: 1 Brine Well-Bue	February 17, 2 ckeye	015		Work Ord Brin	Page Number: 14 of 16 Buckeye, NM				
Standard (CO	CV-1)								
QC Batch: 119410			Date Analyzed: 2015-02-16				Analyzed By: RL		
				CCVs	CCVs	CCVs	Percent		
				True	Found	Percent	Recovery	Date	
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
Chloride		1,2,3,4,5	$\mathrm{mg/L}$	25.0	23.8	95	90 - 110	2015-02-16	

Standard (CCV-2)

QC Batch:	119410			Date .	Analyzed:	2015-02-16		Analy	yzed By: RL
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			1,2,3,4,5	m mg/L	25.0	23.9	96	90 - 110	2015-02-16

Work Order: 15012306 Brine Well Page Number: 15 of 16 Buckeye, NM

Appendix

Report Definitions

Name	Definition
MDL	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
\mathbf{C}	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	PJLA	L14-93	Lubbock
2	Kansas	Kansas E-10317	Lubbock
3	LELAP	LELAP-02003	Lubbock
4	NELAP	T104704219-14-10	Lubbock
5		2014-018	Lubbock

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.

Report Date: February 17, 2015 Brine Well-Buckeye Work Order: 15012306 Brine Well Page Number: 16 of 16 Buckeye, NM

F Description

U The analyte is not detected above the SDL

Attachments

The scanned attachments will follow this page. Please note, each attachment may consist of more than one page.

Summary Report

Lester Waynce Price Jr. Price LLC 312 Encantado Ridge Ct. NE Rio Rancho, NM 87124

Report Date: June 5, 2015

Work Order: 15050505

Project Location: Buckeye, NM Project Name: Buckeye Fresh & Brine Station

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
392447	Fresh	water	2015-04-27	16:30	2015-05-04
392448	Brine	water	2015-04-27	16:40	2015-05-04

Sample: 392447 - Fresh

Param	Flag	Result	Units	RL
Chloride		377	mg/L	2.5
pН		7.82	s.u.	2
Specific Gravity		0.9841	g/ml	
Total Dissolved Solids		884	$\mathrm{mg/L}$	2.5

Sample: 392448 - Brine

Param	Flag	Result	Units	RL
Chloride		185000	mg/L	2.5
Dissolved Sodium		101000	m mg/L	1
pH		6.79	s.u.	2
Specific Gravity		1.194	g/ml	
Total Dissolved Solids		269000	m mg/L	2.5

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100

Lubbock, Texas 79424 El Paso, Texas 79922 Midland, Texas 79703 Texas 75006 Carroliton.

972-242 -7750 E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

915-585-3443

432-689-6301

Certifications

NCTRCA DBE NELAP DoD LELAP WBE HUB Kansas Oklahoma ISO 17025

Analytical and Quality Control Report

Lester Waynce Price Jr. Price LLC 312 Encantado Ridge Ct. NE Rio Rancho, NM, 87124

Report Date: June 5, 2015

FAX 915 • 585 • 4944

FAX 432 • 689 • 6313

Work Order: 15050505

Project Location: Buckeye, NM Project Name: Buckeye Fresh & Brine Station Buckeye Fresh & Brine Station Project Number:

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
392447	Fresh	water	2015-04-27	16:30	2015-05-04
392448	Brine	water	2015-04-27	16:40	2015-05-04

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

TraceAnalysis, Inc. uses the attached chain of custody (COC) as the laboratory check-in documentation which includes sample receipt, temperature, sample preservation method and condition, collection date and time, testing requested, company, sampler, contacts and any special remarks.

This report consists of a total of 17 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Blain Letturch

Dr. Blair Leftwich, Director James Taylor, Assistant Director Brian Pellam, Operations Manager

Report Contents

Case Narrative	4
Analytical Report Sample 392447 (Fresh)	5 5 6
Method Blanks QC Batch 121329 - Method Blank (1)	8 8 8 8
Duplicates 1 QC Batch 121318 - Duplicate (1) 1 QC Batch 121329 - Duplicate (1) 1 QC Batch 121355 - Duplicate (1) 1	10 10 10 10
Laboratory Control Spikes 1 QC Batch 121355 - LCS (1) 1 QC Batch 121554 - LCS (1) 1 QC Batch 122047 - LCS (1) 1	L1 11 11 11
Matrix Spikes 1 QC Batch 121554 - MS (1) 1 QC Batch 122047 - MS (1) 1	L3 13 13
Calibration Standards 1 QC Batch 121318 - ICV (1) 1 QC Batch 121318 - CCV (1) 1 QC Batch 121554 - CCV (1) 1 QC Batch 121554 - CCV (2) 1 QC Batch 122047 - ICV (1) 1 QC Batch 122047 - CCV (1) 1 QC Batch 122047 - CCV (1) 1	L 4 14 14 14 14 14 15
Appendix 1 Report Definitions 1 Laboratory Certifications 1 Standard Flags 1 Attachments 1	16 16 16 16 17

Case Narrative

Samples for project Buckeye Fresh & Brine Station were received by TraceAnalysis, Inc. on 2015-05-04 and assigned to work order 15050505. Samples for work order 15050505 were received intact at a temperature of 0.3 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	Date
Chloride (IC)	E 300.0	102846	2015-05-14 at 09:30	121554	2015-05-14 at 10:32
Na, Dissolved	S $6010C$	103232	2015-06-04 at $14:09$	122047	2015-06-05 at 13:17
pН	SM 4500-H+	102649	2015-05-06 at $16:48$	121318	2015-05-06 at 16:51
Specific Gravity	ASTM D1429-95	102660	2015-05-07 at $10:00$	121329	2015-05-07 at $10:10$
TDS	SM 2540C	102686	2015-05-07 at $17:44$	121355	2015-05-07 at $17:46$

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 15050505 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Sample: 392447 - Fresh

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 121554 102846		Analytical I Date Analy Sample Pre	Method: I zed: 2 paration:	E 300.0 2015-05-14	Prep Metho Analyzed E Prepared B	od: N/A By: RL By: RL
				RL			
Parameter		Flag	Cert	Result	Unit	s Dilution	RL
Chloride			1,2,3,4,5	377	mg/l	L 10	2.50

Sample: 392447 - Fresh

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock pH 121318 102649		Analytical Method: Date Analyzed: Sample Preparation	SM 4500-H+ 2015-05-06 :		Prep Method: Analyzed By: Prepared By:	N/A HJ HJ
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
pН			1,2,4,5	7.82	s.u.	1	2.00

Sample: 392447 - Fresh

Laboratory:	Lubbock						
Analysis:	Specific Gravity		Analytical Method:	ASTM D	1429-95	Prep Method:	N/A
QC Batch:	121329		Date Analyzed:	2015-05-0	07	Analyzed By:	\mathbf{CF}
Prep Batch:	102660		Sample Preparation:	2015-05-0	17	Prepared By:	CF
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Specific Grav	ity		0	.9841	g/ml	1	0.000

Sample: 392447 - Fresh

Laboratory:	Lubbock				
Analysis:	TDS	Analytical Method:	SM 2540C	Prep Method:	N/A
QC Batch:	121355	Date Analyzed:	2015-05-07	Analyzed By:	НJ
Prep Batch:	102686	Sample Preparation:		Prepared By:	ΗJ

Report Date: June 5, 2015 Buckeye Fresh & Brine Station		Work Order: 15050505 Buckeye Fresh & Brine Station			Page Number: 6 of 17 Buckeye, NM	
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Total Dissolved Solids		1,2,3,4,5	884	$\mathrm{mg/L}$	20	2.50

Sample: 392448 - Brine

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 121554 102846		Analytical M Date Analyz Sample Prep	fethod: E 30 ed: 2015 paration:	0.0 -05-14	Prep Method: Analyzed By: Prepared By:	N/A RL RL
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Chloride			1,2,3,4,5	185000	$\mathrm{mg/L}$	5000	2.50

Sample: 392448 - Brine

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Na, Dissolved 122047 103232		Analytical Method: Date Analyzed: Sample Preparation:	S 6010C 2015-06-05 2015-06-04		Prep Method: Analyzed By: Prepared By:	S 3005A RR RR
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Dissolved Soc	lium		2,3,4,5	101000	$\mathrm{mg/L}$	1000	1.00

Sample: 392448 - Brine

рп			1,2,4,5	0.79	s.u.	1	2.00
11				6 70		1	2.00
Parameter		Flag	Cert	Result	Units	Dilution	RL
				RL			
Prep Batch:	102649		Sample Prepara	tion:		Prepared By:	HJ
QC Batch:	121318		Date Analyzed:	2015-05-0)6	Analyzed By:	HJ
Analysis:	$_{\rm pH}$		Analytical Meth	od: SM 4500	-H+	Prep Method:	N/A
Laboratory:	Lubbock						

Report Date: June Buckeye Fresh & B	t Date: June 5, 2015Work Order: 15050505ye Fresh & Brine StationBuckeye Fresh & Brine Station		Page Number: Bucker	7 of 17 ye, NM			
Sample: 392448 -	Brine						
Laboratory: Lubbock Analysis: Specific Gravity QC Batch: 121329 Prep Batch: 102660		Ar Da Sa	nalytical Method: ate Analyzed: mple Preparation	ASTM D14 2015-05-07 : 2015-05-07	29-95	Prep Method: Analyzed By: Prepared By:	N/A CF CF
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Specific Gravity				1.194	g/ml	1	0.000
Sample: 392448 -	Brine						
Laboratory: Lubb	ock						
Analysis: TDS		An	alytical Method:	SM 2540C		Prep Method:	N/A
QC Batch: 12135	5	Da	te Analyzed:	2015-05-07		Analyzed By:	нJ
Prep Batch: 10268	6	Sar	nple Preparation:			Prepared By:	HJ
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Total Dissolved Soli	ds		1,2,3,4,5	269000	mg/L	2000	2.50

Method Blanks

Method Blank (1)	QC Batch: 1213	29				
QC Batch: 121329 Prep Batch: 102660		Date Analyzed QC Preparatio	: 2015-05-07 n: 2015-05-07		Analyzed By: Prepared By:	$_{\rm CF}^{\rm CF}$
Parameter Specific Gravity		Flag	Cert	MDL Result 0.9884	Units g/ml	RL
Method Blank (1) QC Batch: 121355 Prep Batch: 102686	QC Batch: 1213	55 Date Analyzed QC Preparatic	: 2015-05-07 n: 2015-05-07		Analyzed By: Prepared By:	HJ HJ
Parameter Total Dissolved Solids		Flag	Cert 1.2.3.4.5	MDL Result <25.0	Units mg/L	RL 2.5
Method Blank (1)	QC Batch: 1215	54				

QC Batch:	121554		Date Analyzed:	2015-05-14	Analyzed By:	RL
Prep Batch:	102846		QC Preparation:	2015-05-14	Prepared By:	RL
				MDI		
				MDL		
Parameter		Flag	Cert	Result	Units	RL
Chloride			1,2,3,4,5	0.973	mg/L	2.5

Wiethou Diank (1) QC Batch: 1	122047

QC Batch:	122047	Date Analyzed:	2015-06-05	Analyzed By:	$\mathbf{R}\mathbf{R}$
Prep Batch:	103232	QC Preparation:	2015-06-04	Prepared By:	\mathbf{PM}

Report Date: June 5, 2015 Buckeye Fresh & Brine Station	Buck	Work Order: 1505 keye Fresh & Brin	Page Number: 9 of 17 Buckeye, NM		
			MDL		
Parameter	Flag	Cert	Result	Units	RL
Dissolved Sodium		2,3,4,5	< 0.0197	$\mathrm{mg/L}$	1

Duplicates

Duplicates	(1)) Duplicated	Sample:	392489
1	•	/ 1		

QC Batch:	121318		Date Ana	alyzed: 2015	-05-06		Analyzed	By: HJ
Prep Batch:	102649		QC Prepa	aration: 2015	-05-06		Prepared	By: HJ
			Duplicate	Sample				RPD
Param			Result	Result	Units	Dilution	RPD	Limit
pH		1,2,4,5	9.09	9.19	s.u.	1	1	20

Duplicates (1) Duplicated Sample: 392450

QC Batch:	121329	Date Analyzed:	2015-05-07	Analyzed By:	\mathbf{CF}
Prep Batch:	102660	QC Preparation:	2015-05-07	Prepared By:	\mathbf{CF}

	Duplicate	Sample				RPD
Param	Result	Result	Units	Dilution	RPD	Limit
Specific Gravity	1.008	1.018	g/ml	1	1	200

Duplicates (1) Duplicated Sample: 392450

QC Batch: Prep Batch:	$121355 \\ 102686$	I C	Date Analyzed: QC Preparation:	$\begin{array}{c} 2015\text{-}05\text{-}07 \\ 2015\text{-}05\text{-}07 \end{array}$			Analyzed By: Prepared By:	HJ HJ
			Duplicate	Sample				RPD
Param			Result	Result	Units	Dilution	RPD	Limit
Total Dissolv	ed Solids	1,2,3,4,5	32400	34100	mg/L	1000	5	10

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch:	121355			Date A	nalyzed:	2013	5-05-07			Aı	nalyzed B	y: HJ
Prep Batch:	102686			QC Pre	eparation	: 201	5-05-07			Pr	epared B	y: HJ
					LCS			Spike	M	atrix		Rec.
Param			F	С 1	Result	Units	Dil.	Amount	Re	esult	Rec.	Limit
Total Dissolv	ed Solids		1,2	,3,4,5	963	$\mathrm{mg/L}$	10	1000	<	25.0	96	90 - 110
Percent recov	very is based on the	spike	e result.	RPD is l	based on	the spi	ike and spi	ke duplica	ate resu	ılt.		
				LCSD			Spike	Matrix		Rec.		RPD
Param		F	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Total Dissolv	ed Solids		1,2,3,4,5	970	mg/L	10	1000	$<\!25.0$	97	90 - 11	0 1	10

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:	$\frac{121554}{102846}$	Date Analyzed: 2015-05-14 QC Preparation: 2015-05-14								By: RL By: RL
				LCS			Spike	Matrix		Rec.
Param		\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride			1,2,3,4,5	25.3	$\mathrm{mg/L}$	1	25.0	0.973	97	90 - 110
Percent recov	very is based on th	e spike rest	ılt. RPD	is based or	h the spike	and sp	ike duplicate	result.		

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,3,4,5	25.3	mg/L	1	25.0	0.973	97	90 - 110	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:	122047	Date Analyzed:	2015-06-05	Analyzed By:	$\mathbf{R}\mathbf{R}$
Prep Batch:	103232	QC Preparation:	2015-06-04	Prepared By:	\mathbf{PM}

Report Date: June 5, 2015 Buckeye Fresh & Brine Station	Work Order: 15050505 Buckeye Fresh & Brine Station						Page Number: 12 of 17 Buckeye, NM			
Param	LCS Spike F C Result Units Dil. Amou						Ma Re	atrix sult	Rec.	Rec. Limit
Dissolved Sodium		2,3,4,5	56.8	mg/L	1	52.5	<0.	0197	108	85 - 115
Percent recovery is based on the spike	e resul	t. RPD is	based of	n the sp	oike and sp	oike duplica	ite resu	ılt.		
		LCSD			Spike	Matrix		Rec.		RPD
Param F	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Dissolved Sodium _{2,3,4,5} 54.4 mg/L				1	52.5	$<\!0.0197$	104	85 - 11	5 4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

2015-05-14

Analyzed By: RL

 RPD

2

Limit

20

Matrix Spikes

121554

Matrix Spike (MS-1)

QC Batch:

Param

Dissolved Sodium

Prep Batch:	102846	QC Preparation: 2015-05-14									epared I	By: RL
					MS			Spike	М	atrix		Rec.
Param			F	С	Result	Units	Dil.	Amount	; Re	esult	Rec.	Limit
Chloride			1	,2,3,4,5	320000	mg/L	5000	125000	18	5000	108	80 - 120
Percent recov	very is based on the s	pike	e result	t. RPD	is based o	n the spi	ike and spil	ke duplica	te resu	lt.		
				MSI)		Spike	Matrix		Rec.		RPD
Param		F	С	Resu	lt Units	5 Dil.	Amount	Result	Rec.	Limit	RPI	D Limit
Chloride			1, 2, 3, 4,	5 31600	00 mg/I	5000	125000	185000	105	80 - 12	20 1	20
			-							-		

Date Analyzed:

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Spiked Sample: 392448

Matrix Spike (MS-1) Spiked Sample: 394405

QC Batch: Prep Batch:	122047 103232	Date Analyzed: 2015-06-05 QC Preparation: 2015-06-04							Analyzed By: RR Prepared By: PM			
Param		F	С	MS Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit		
Dissolved So	dium		2,3,4,5	703	$\mathrm{mg/L}$	1	525	143	107	75 - 125		
Percent recov	very is based on t	he spike resu	ılt. RPD	is based o	n the spil	ke and sp	oike duplicate	e result.				
			MS	D		Spike	Matrix	Ree	с.	RPD		

Units

mg/L

Dil.

1

Amount

525

Result

143

 $\operatorname{Rec.}$

104

Limit

75 - 125

688 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Result

 \mathbf{F}

 \mathbf{C}

2, 3, 4, 5

Calibration Standards

Standard (ICV-1)

QC Batch: 121318			Da	te Analyzed:	2015-05-06	Ô	Analy	yzed By: HJ
				ICVs	ICVs	ICVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
pН		1,2,4,5	s.u.	7.00	7.00	100	98.6 - 101.4	2015-05-06

Standard (CCV-1)

QC Batch:	2C Batch: 121318			te Analyzed:	2015-05-06	3	zed By: HJ	
				CCVs	$\rm CCVs$	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
pH		1,2,4,5	s.u.	7.00	7.05	101	98.6 - 101.4	2015-05-06

Standard (CCV-1)

QC Batch:	121554			Date .	Analyzed:	2015-05-14		Analy	vzed By: RL
					$\rm CCVs$	$\rm CCVs$	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			1,2,3,4,5	$\mathrm{mg/L}$	25.0	24.8	99	90 - 110	2015-05-14

Standard (CCV-2)

QC Batch:	121554			Date .	Analyzed:	2015-05-14		Analyzed By: RL		
					CCVs	CCVs	CCVs	Percent		
					True	Found	Percent	Recovery	Date	
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
Chloride			1,2,3,4,5	$\mathrm{mg/L}$	25.0	24.9	100	90 - 110	2015-05-14	

Report Date: June 5, 20 Buckeye Fresh & Brine 9	Report Date: June 5, 2015 Buckeye Fresh & Brine Station			ork Order: e Fresh & l	Page Number: 15 of 17 Buckeye, NM			
Standard (ICV-1)								
QC Batch: 122047			Date Anal	Analyzed By: RR				
				ICVs	ICVs	ICVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Sodium	2,3,4,5	mg/L	51.0	52.5	103	90 - 110	2015-06-05	

Standard (CCV-1)

QC Batch:	122047			Date Anal	Analyz	Analyzed By: RR				
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date	
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
Dissolved So	dium		2,3,4,5	$\mathrm{mg/L}$	51.0	50.5	99	90 - 110	2015-06-05	

Work Order: 15050505 Buckeye Fresh & Brine Station Page Number: 16 of 17 Buckeye, NM

Appendix

Report Definitions

Name	Definition
MDL	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
С	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	L-A-B	L2418	Lubbock
2	Kansas	Kansas E-10317	Lubbock
3	LELAP	LELAP-02003	Lubbock
4	NELAP	T104704219-15-11	Lubbock
5		2014-018	Lubbock

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je $\;$ Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.

Report Date: June 5, 2015 Buckeye Fresh & Brine Station Work Order: 15050505 Buckeye Fresh & Brine Station Page Number: 17 of 17 Buckeye, NM

F Description

U The analyte is not detected above the SDL

Attachments

The scanned attachments will follow this page. Please note, each attachment may consist of more than one page.

1	9		-
1	ľ		
1	Į		
1	ĺ		-
	9	2	1
			ŝ
1	ļ		
			Ì
	i	ĺ	N
			5

Pageof	6701 Aberdeen Avenue, Suite 9 5002 Basin Street, Suite A1 200 East Sunset Rd., Suite E BioAquatic Testing Imbook, Texas 7924 Nidiand, Texas 79703 El Paso, Texas 7922 2501 Mayes Rd., Ste 100 Tel (806) 794-1296 Tel (432) 689-6301 Tel (915) 585-9443 Carroliton, Texas 75006 Fax (432) 689-6313 Tel (3015) 585-9443 Tel (972) 242-7750	Phone #: 505 - 542 643 (Circle or Snecify Method No.)	NE 134 Fax#: 505 - 842-6643 1 1 1 1 1 1 1 1 1	E-mail: C 2/2 E-mail: C 2/2 CUAPUICE 33 R LOTMULI, COM 35 D/2007	P.O. 2140 Leurineton NM 88360 1 121 100 140	Project Name: Project Name: SOCKCYC PRESH & STITION 0.1624 SOCKCYC PRESH & STITION 0.1624	Sampler Signature: UPOP 8260 110 21 110 22 110 22 110 2	MATRIX PRESERVATIVE SAMPLING S602 V 602 V 93-81 1 602 V 1 <th1< th=""> <th1< th=""> <th1< th=""> <</th1<></th1<></th1<>	E S S S S S S S S S S S S S	МАКП SOIL SOIL SOIL SOIL SOIL MAK SOIL MAK MAK </th <th>X Maximum X Maximum X</th> <th>XX disuls diverse X</th> <th></th> <th></th> <th></th> <th></th> <th>Billy Bender B+C 5-1-5 4:17PM OBS 0NLY OUC # 1</th> <th>Received by: Company: Date: Time: INSTc IntetI OBSc Headspace YININA</th> <th>Received by: Company: Date: Time: INST/R3 TRRP Report Required</th> <th></th>	X Maximum X Maximum X	XX disuls diverse X					Billy Bender B+C 5-1-5 4:17PM OBS 0NLY OUC # 1	Received by: Company: Date: Time: INSTc IntetI OBSc Headspace YININA	Received by: Company: Date: Time: INST/R3 TRRP Report Required	
	reet, Suite A1 2/ xas 79703 389-6301 689-6313	Ü	2	0/200 2/002/0	Ext(C3		29 C4 29 C4 80 / _ 2 / LX	X1005 /	X 8021 / (X 8015 GR 8015 GR 8015 GR 8270 / 62 Metals Ag A Metals Ag A	HTPH TPH HAT HAG I IstoT								oc Headspace <u>Y</u>	mer	1
	TraceAnalysis, Inc 6701 Aberdeen Avenue, Suite 9 5002 Basin Street, Suite A1 200 East Sunset Rd., Suite E BioAquatic Testing TraceAnalysis.com 6701 Aberdeen Avenue, Suite 9 5002 Basin Street, Suite A1 200 East Sunset Rd., Suite E BioAquatic Testing TraceAnalysis.com Lubbook 794-1296 Fax (432) 689-6313 Tel (432) 585-4944 Tel (915) 585-4944 Tel (915) 285-3433 Impany Name: Done #: Concorn Phone #: Concorn Analysis Rguest	643	S643	mail.com	Togeds WIN	BRINE NO	1 826	SAMPLING	E 8021	amit Iatm	holos: In Side	anlo yiyam				T	COR COR	Time: INST OBS COR	Time: INST	· PODA ·
	deen Avenue, Suite .ck, Texas 79424 .ck, 1060 794-1296 (806) 794-1298 300) 378-1298	-692- 6	1-892-1	23 BLAN	-ouington N	PRACE 4 2	re: L WPJR	RVATIVE 6	3	NON ICE	X 41:	X					5-1-15 H	: Date:	: Date:	1 111.
	D# DUDDO Dudde Factor Factor<	hone #: SOS	ax#: SOS	-mail: Wapnice	J OHIG	Project Name:	ampler Signatur	PRESE	3								er Brc	Company:	Company:	
	Inc.	d	Adress: (Street, City, Zip) Rig Rawche NM & Tray Fax #: SOS - 892-6643 (Circle or Specify Method No.) 313 ENCantodo Ridge Counte NE Famili Or 1 2 2 2 2 2 2 2 2 2	E JR	C. P.O.	d \	S	MATRIX	ਤਰ 	NAMTI SOIL AIR SLUE	×	×					Billy Bende	Received by:	Received by:	1
	lysis,	Company Name: PRICE LLC Phone #: SOS - F42+ 6643 (Circle or Sherify Method No.)	aware wh	JE PRIC	NIT ON		4	s:	ЯЗИІАТИ JomA \ эп	OO #	1 25	1 1952					////s trime:	: Time:	: Time:	
20505	eAna.	C LLC	1 Rida	WAYN	SCP HU		SUC NN		ODE								ny: Date	ny: Date	ny: Date	
# 1804	LAB Order ID # LULUDOCK Factor Solution Solution	Street, City, Zip)	CSTER	abovelWAS	AN	(including state		FIELD C		FLESH	BRINE					y: Compar	v: Compar	y: Compar		
AB Order ID	S.:	ompany Name:	ddress:	ontact Person:	voice to:	roject #:	roject Location		LAB #	AB USE)	LHARES	ANX					Relinquished b	Relinquished b	Relinquished b	
Summary Report

Wayne Price Price LLC 312 Encantado Ridge Ct. NE Rio Rancho, NM 87124

Report Date: August 19, 2015

Work Order: 15081113

Project Location: Buckeye, NM Project Name: Buckeye Fresh & Brine Station

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
401720	Fresh	water	2015-07-08	16:20	2015-08-09
401721	Brine	water	2015-07-08	16:30	2015-08-09

Sample: 401720 - Fresh

Param	Flag	Result	Units	RL
Chloride	в,н	302	mg/L	2.5
Dissolved Sodium		156	m mg/L	1
pH		7.77	s.u.	2
Specific Gravity		0.9842	g/ml	
Total Dissolved Solids		804	$\mathrm{mg/L}$	2.5

Sample: 401721 - Brine

Param	Flag	Result	Units	RL
Dissolved Sodium		124000	m mg/L	1

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100

Lubbock, Texas 79424 El Paso, Texas 79922 Midland. Texas 79703 Texas 75006 Carroliton. E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

806 • 794 • 1296 FAX 806 • 794 • 1298 915-585-3443 FAX 915 • 585 • 4944 432-689-6301 FAX 432 • 689 • 6313 972-242 -7750

Certifications

WBE HUB **NCTRCA** DBE NELAP DoD LELAP Oklahoma ISO 17025 Kansas

Analytical and Quality Control Report

Wayne Price Price LLC 312 Encantado Ridge Ct. NE Rio Rancho, NM, 87124

Report Date: August 19, 2015

Work Order: 15081113

Project Location: Buckeye, NM **Project** Name: Buckeye Fresh & Brine Station Buckeye Fresh & Brine Station Project Number:

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
401720	Fresh	water	2015-07-08	16:20	2015-08-09
401721	Brine	water	2015-07-08	16:30	2015-08-09

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

TraceAnalysis, Inc. uses the attached chain of custody (COC) as the laboratory check-in documentation which includes sample receipt, temperature, sample preservation method and condition, collection date and time, testing requested, company, sampler, contacts and any special remarks.

This report consists of a total of 16 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Blain Lepturch

Dr. Blair Leftwich, Director James Taylor, Assistant Director Brian Pellam, Operations Manager

Report Contents

Case Narrative	4
Analytical Report Sample 401720 (Fresh) Sample 401721 (Brine)	5 5 6
Method Blanks QC Batch 123992 - Method Blank (1)	7 7 7 7 7
Duplicates QC Batch 123931 - Duplicate (1) QC Batch 123992 - Duplicate (1) QC Batch 124118 - Duplicate (1)	9 9 9 9
Laboratory Control Spikes 1 QC Batch 124020 - LCS (1) 1 QC Batch 124118 - LCS (1) 1 QC Batch 124129 - LCS (1) 1	. 0 10 10
Matrix Spikes 1 QC Batch 124020 - MS (1) 1 QC Batch 124129 - MS (1) 1	. 2 12 12
Calibration Standards 1 QC Batch 123931 - CCV (1) 1 QC Batch 124020 - ICV (1) 1 QC Batch 124020 - CCV (1) 1 QC Batch 124129 - CCV (1) 1 QC Batch 124129 - CCV (2) 1	. 3 13 13 13 13
Appendix 1 Report Definitions 1 Laboratory Certifications 1 Standard Flags 1 Attachments 1	. 5 15 15 15

Case Narrative

Samples for project Buckeye Fresh & Brine Station were received by TraceAnalysis, Inc. on 2015-08-09 and assigned to work order 15081113. Samples for work order 15081113 were received intact at a temperature of 31.0 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	Date
Chloride (IC)	E 300.0	104957	2015-08-17 at 11:00	124129	2015-08-17 at 12:10
Na, Dissolved	S $6010C$	104805	2015-08-12 at $14:05$	124020	2015-08-13 at $16:07$
pН	SM 4500-H+	104784	2015-08-11 at 17:18	123931	2015-08-11 at $17:19$
Specific Gravity	ASTM D1429-95	104834	2015-08-13 at $10:45$	123992	2015-08-13 at $10:50$
TDS	SM 2540C	104944	2015-08-17 at $16:36$	124118	2015-08-17 at $16:37$

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 15081113 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Sample: 401720 - Fresh

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 124129 104957		Analytical M Date Analyz Sample Prep	Method: I zed: 2 paration:	E 300.0 2015-08-17		Prep Method: Analyzed By: Prepared By:	N/A RL RL
				RL				
Parameter		Flag	Cert	Result	J	Units	Dilution	RL
Chloride		B,H	1,2,3,4,5	302	n	ng/L	10	2.50

Sample: 401720 - Fresh

d	Analytical Method: Date Analyzed: Sample Preparation:	S 6010C 2015-08-13 2015-08-12		Prep Method: Analyzed By: Prepared By:	S 3005A RR RR
Flag	Cert	Result	Units	Dilution	BL
1 145	2,3,4,5	156	mg/L	10	1.00
	d Flag	d Analytical Method: Date Analyzed: Sample Preparation: Flag Cert 2,3,4,5	d Analytical Method: S 6010C Date Analyzed: 2015-08-13 Sample Preparation: 2015-08-12 RL Flag Cert Result 2,3,4,5 156	d Analytical Method: S 6010C Date Analyzed: 2015-08-13 Sample Preparation: 2015-08-12 RL Flag Cert Result Units 2,3,4,5 156 mg/L	d Analytical Method: S 6010C Prep Method: Date Analyzed: 2015-08-13 Analyzed By: Sample Preparation: 2015-08-12 Prepared By: RL Flag Cert Result Units Dilution 2,3,4,5 156 mg/L 10

Sample: 401720 - Fresh

			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
pН		1,2,4,5	7.77	s.u.	1	2.00

Sample: 401720 - Fresh

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Specific Gravity 123992 104834		Analytical Method: Date Analyzed: Sample Preparation	ASTM I 2015-08-	D1429-95 13	Prep Method: Analyzed By: Prepared By:	N/A CF CF
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Specific Grav	ity			0.9842	g/ml	1	0.000

Report Date: August 19, 2015	Work Order: 15081113	Page Number: 6 of 16
Buckeye Fresh & Brine Station	Buckeye Fresh & Brine Station	Buckeye, NM

Sample: 401720 - Fresh

			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Total Dissolved Solids		1,2,3,4,5	804	m mg/L	20	2.50

Sample: 401721 - Brine

Laboratory: Analysis: QC Batch: Prep Batch:	boratory: Lubbock alysis: Na, Dissolved C Batch: 124020 ep Batch: 104805		Analytical Method: Date Analyzed: Sample Preparation:	S 6010C 2015-08-13 2015-08-12		Prep Method: Analyzed By: Prepared By:	S 3005A RR RR
Parameter		Flag	Cert	RL Result	Units	Dilution	RL
Dissolved Soc	lium		2,3,4,5	124000	$\mathrm{mg/L}$	1000	1.00

Method Blanks

Method Blank (1)	QC Batch: 123992					
QC Batch: 123992 Prep Batch: 104834		Date Analyzed: QC Preparation:	2015-08-13 2015-08-13		Analyzed By: Prepared By:	${ m CF} { m CF}$
Parameter Specific Gravity	Fla	g Ce	rt	MDL Result 0.9856	Units g/ml	RL
Method Blank (1)	QC Batch: 124020					
QC Batch: 124020 Prep Batch: 104805		Date Analyzed: QC Preparation:	2015-08-13 2015-08-12		Analyzed By: Prepared By:	RR PM
Parameter	Fl	ag Ce	rt	MDL Result	Units	RL
Dissolved Sodium		2,3,4	4,5	<0.0197	mg/L	1
Method Blank (1)	QC Batch: 124118					
QC Batch: 124118 Prep Batch:		Date Analy QC Prepar	yzed: ration:		Analyzed E Prepared B	By: By:
				MDL		
Parameter		Flag	Cert	Result	Units	RL
			2345	< 25.0	mg/L	2.5

Method Bla	ank (1)	QC Batch: 124129				
QC Batch:	124129		Date Analyzed:	2015-08-17	Analyzed By:	RL
Prep Batch:	104957		QC Preparation:	2015-08-17	Prepared By:	RL

Report Date: Au Buckeye Fresh &	igust 19, 2015 Brine Station		Work Order: 150 Buckeye Fresh & Bri	Page Numl Bu	per: 8 of 16 uckeye, NM	
				MDL		
Parameter		Flag	Cert	Result	Units	RL
Chloride	В	В	1,2,3,4,5	0.971	m mg/L	2.5

Duplicates

Duplicates (1) Dup	plicated Sample:	401722					
QC Batch: 123931 Prep Batch:		Da Q(ate Analyzed: C Preparation:			Analyz Prepar	ed By: ed By:
Param		Duplicate Result	Sample Result	Units	Dilution	RPD	RPD Limit
pН	1,2,4,5	8.05	8.04	s.u.	1	0	20
Duplicates (1) Du QC Batch: 123992 Prep Batch: 104834	plicated Sample:	401722 Date Ana QC Prepa	lyzed: 2015- aration: 2015-	08-13 08-13		Analyzed Prepared	By: CF By: CF

	Duplicate	Sample				RPD
Param	Result	Result	Units	Dilution	RPD	Limit
Specific Gravity	0.9743	1.000	g/ml	1	3	200

Duplicates (1) Duplicated Sample: 401720

QC Batch: Prep Batch:	124118	Date Analy QC Prepar	yzed: ation:			Analyze Prepare	d By: d By:	
Daram			Duplicate	Sample	Units	Dilution	RDD	RPD Limit
			nesun	nesun	Onits	Dilution	IU D	LIIIII
Total Dissolv	ed Solids	1,2,3,4,5	804	804	$\mathrm{mg/L}$	20	0	10

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch: 124020	Date Analyzed: 2015-08-13 Analyzed By: RR								r: RR		
Prep Batch:104805QC Preparation:2015-08-12Prepared						pared By	: PM				
				LCS			Spike	Ma	ıtrix		Rec.
Param		\mathbf{F}	С 1	Result	Units	Dil.	Amount	Re	sult	Rec.	Limit
Dissolved Sodium			2,3,4,5	51.4	$\mathrm{mg/L}$	1	50.0	<0.	0197	103 8	85 - 115
Percent recovery is based on t	he spike	result	. RPD is	based or	n the sp	pike and sp	oike duplica	ate resu	ılt.		
			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Dissolved Sodium		2,3,4,5	51.0	$\mathrm{mg/L}$	1	50.0	< 0.0197	102	85 - 11	5 1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 124118 Prep Batch:			Date An QC Prep	alyzed: paration:	Analy: Prepa	Analyzed By: Prepared By:				
Param		F	С	LCS Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit
Total Dissolve	ed Solids		1,2,3,4,5	999	mg/L	10	1000	<25.0	100	90 - 110
Percent recov	ercent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.									

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Total Dissolved Solids		1,2,3,4,5	987	$\mathrm{mg/L}$	10	1000	$<\!25.0$	99	90 - 110	1	10

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:	124129	Date Analyzed:	2015-08-17	Analyzed By:	RL
Prep Batch:	104957	QC Preparation:	2015-08-17	Prepared By:	RL

Report Date: August 19, 2015 Buckeye Fresh & Brine Station			Work Order: 15081113 Buckeye Fresh & Brine Station						Page Number: 11 of 16 Buckeye, NM			
Param		F	С	LCS Result	Units	Dil.	Spike Amount	M Re	atrix esult	Rec.	Rec. Limit	
Chloride		1	,2,3,4,5	24.9	mg/L	. 1	25.0	0	.971	96	90 - 110	
Percent recovery is based on the s	spike	result.	RPD is	s based on	the spi	ike and spi	ke duplica	te resu	ılt.			
			LCSI)		Spike	Matrix		Rec.		RPD	
Param	\mathbf{F}	\mathbf{C}	Resu	lt Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit	
Chloride		1.2.3.4.5	25.1	mg/L	1	25.0	0.971	96	90 - 110	$\overline{0 1}$	20	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

Chloride

Matrix Spike (MS-1)	Spiked Sar	nple: 4	01686								
QC Batch: 124020 Prep Batch: 104805			Date A QC Pr	Analyzed: eparation	2015 a: 2015	5-08-13 5-08-12			Ana Pre	alyzed By pared By	: RR : PM
				MS			Spike	Ma	atrix		Rec.
Param		F	C 1	Result	Units	Dil.	Amount	Re	sult	Rec.	Limit
Dissolved Sodium		2	2,3,4,5	631	mg/L	1	500	1	35	99	75 - 125
Percent recovery is based or	n the spike	result.	. RPD is	based on	the spi	ike and sp	ike duplica	te resu	lt.		
			MSD			Spike	Matrix		Rec.		RPD
Param	F	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Dissolved Sodium		2,3,4,5	620	mg/L	1	500	135	97	75 - 125	5 2	20
Matrix Spike (MS-1)	Spiked Sar	nple: 4	02139								
QC Batch: 124129			Date A	Analyzed:	201	5-08-17			An	alvzed By	: BL
Prep Batch: 104957			QC Pr	reparation	n: 2018	5-08-17			Pre	epared By	r: RL
				MS			Spike	Ma	atrix		Rec.
Param]	F	С	Result	Units	Dil.	Amount	Re	esult	Rec.	Limit
Chloride		1	,2,3,4,5	3270	$\mathrm{mg/L}$	100	2500	6	57	104 8	80 - 120
Percent recovery is based or	the spike	result.	. RPD is	based on	the spi	ike and sp	ike duplica	te resu	lt.		
			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	t Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit

100

2500

657

104

80 - 120

0

20

1,2,3,4,5 3260mg/LPercent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Calibration Standards

Standard (CCV-1)

QC Batch:	123931			Date An	alyzed:	Aı	Analyzed By:		
				CCVs	CCVs	CCVs	Percent		
				True	Found	Percent	Recovery	Date	
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
pН		1,2,4,5	s.u.	7.00	7.06	101	98.6 - 101.4	2015-08-11	

Standard (ICV-1)

QC Batch:	124020			Date Anal	yzed: 201	Analyz	Analyzed By: RR		
					ICVs	ICVs	ICVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved So	odium		2,3,4,5	$\mathrm{mg/L}$	25.5	26.1	102	90 - 110	2015-08-13

Standard (CCV-1)

QC Batch: 124020			Date Anal	Analyz	Analyzed By: RR			
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Sodium		2,3,4,5	$\mathrm{mg/L}$	25.0	23.5	94	90 - 110	2015-08-13

Standard (CCV-1)

QC Batch:	124129			Date	Analyzed:	2015-08-17		Analy	zed By: RL
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			1,2,3,4,5	$\mathrm{mg/L}$	25.0	24.5	98	90 - 110	2015-08-17

Report Date: . Buckeye Fresh	August 19, 201 & Brine Stati	.5 on	Bu	Work Orde ckeye Fresh	Page Number: 14 of 16 Buckeye, NM			
Standard (C	CV-2)							
QC Batch: 12	24129		Date 1	Analyzed:	2015-08-17		Analy	zed By: RL
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		1,2,3,4,5	$\mathrm{mg/L}$	25.0	25.1	100	90 - 110	2015-08-17

Appendix

Report Definitions

Name	Definition
MDL	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
\mathbf{C}	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	L-A-B	L2418	Lubbock
2	Kansas	Kansas E-10317	Lubbock
3	LELAP	LELAP-02003	Lubbock
4	NELAP	T104704219-15-11	Lubbock
5		2014-018	Lubbock

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je $\;$ Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.

Work Order: 15081113 Buckeye Fresh & Brine Station Page Number: 16 of 16 Buckeye, NM

F Description

U The analyte is not detected above the SDL

Attachments

The scanned attachments will follow this page. Please note, each attachment may consist of more than one page.

ORIGINAL COPY

Der" Wayne Na. Proceed ploH Turn Around Time if different from standard Wayne A BioAquatic Testing 2501 Mayes Rd., Ste 100 Carrollton, Texas 75006 Tel (972) 242-7750 TRRP Report Required Check If Special Reporting (L. W. H. H. Limits Are Needed cocopt an Hay OAC Q 2 X NU of No 202 Dry Weight Basis Required Di 55. 1110 mm fied 'SOL Na, Ca, Mg, K, EC or Specify Method test NO3 -N, NO2 -N, PO4 -P, Alkalinity '*os CI' E' ANALYSIS REQUEST Moisture Content Page Nut Hq , 2ST , DOB **TRRP Report Required** FIL Pesticides 8081 / 608 ш PCB's 8082 / 608 200 East Sunset Rd., Suite | El Paso, Texas 79922 Tel (915) 585-3443 Tel (915) 585-4944 1 (888) 588-3443 1 (888) 588-3443 Suite 5 GC/MS Semi. Vol. 8270 / 625 **REMARKS:** GC/MS /01' 8560 / 624 0 RCI 20 TCLP Pesticides 00 TCLP Semi Volatiles Circle AN N Log-in-Review TCLP Volatiles LAB USE TCLP Metals Ag As Ba Cd Cr Pb Se Hg ONLY Total Metals Ag As Ba Cd Cr Pb Se Hg 6010/200.7 5002 Basin Street, Suite A1 Midland, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313 PAH 8270 / 625 TPH 8015 GRO / DRO / TVHC 10 TPH 418.1 / TX1005 / TX1005 Ext(C35) Carrier # 0 8021 / 602 / 8260 / 624 3 **BTEX** INST 31 NST/K 0 8021 / 602 / 8260 / 624 MTBE 18/15/18/17 118115 H :30 PM OBS / COR/ OBS OBS COR ~ COR INST コビろ alyo Louindon NM 88260 505-R92-6643 Warnice 23 @ hot mail SAMPLING TIME 505-292-6643 G: 50 - interior Time: Time: BRING 0 **JTAG** ard m Suite 6701 Aberdeen Avenue, Suite Lubbock, Texas 79424 Tel (806) 794-1296 Tex (806) 794-1298 1 (800) 378-1296 1 (800) 378-1296 103/15 Date: Date: Company: // Date: PRESERVATIVE NONE 30CKEVE U Sampler Signature: ICE $\langle \sim \rangle$ METHOD Submittal of samples constitutes agreement to Terms and Conditions listed on reverse side of C. O. S HOBN Company: ompany: ^{*}OS^zH Project Name; ^EONH Phone #: ICH NGUALFax#: Dar E-mail Received by: Received by: Received by: SLUDGE MAŤRIX Dyles **FraceAnalysis**, Inc. AIA DAUDOO 00 AD SOIL **AJTAW** \times X LIDME COUNTE PLATIN email: lab@traceanalysis.com price PHESTIC (If different from above) WASSERHUND THC WANNE PRICELLE 719/154:500 InuomA \ AmuloV Time: Time: Time: # CONTAINERS NAYNG Date: Date: Date: 15081113 3 2 Z Street, City, Zip) R.iO FIELD CODE Company: Company: Company: Project Location (including state): C.NCANTADO ESTER Company Name: PRICG + V RING 2K 2 LAB Order ID # Relinquished by: Relinquished by: Relinquished by Contact Person ESTER PRICS AB USE OL 130 Invoice to: Project #: Address: ONLY R LAB # 12 m

7

1	37
a	1
0	2
C	3
2	z
5	Э
N St	
2	2
č	D
-	i.
0	Ľ
C	3

		-							ploH										<u></u>		
1			lard	onete r	nont tr	differer) în emî	T bnuo	Turn Ar	1											
	0000				-	1112	11002-1		0753 GTUX	+					-						
< .	sting Ste Ste 75																				
of	tic Te Rd. 242		W	10	201	p	13m	1055	510		X										
	Aqua ayes 972)	Ň	707	- 81	S'H	d'S	BOU	<u>lar</u>	HD	X	X										
	D1 M Tell (p	comments.		to 1'	EC	'LDS'	, Mg, К	Na, Ca						_						
	25(Ca	the second	<u>, dinile</u>	110 0-	Da	N- OF	eut v	THOU A	Noistur	-	-				-						
age	nd Ref	ŭ 🧧					ŀ	Hd 'SS.	BOD, T				_							ired	
٩		l a Z				8	809 / 18	308 səp	Pesticio										ιά.	Required	3
	N ite	R 5			0.7	0 / 0 / 7	809	/ 2808	PCB's		-							Ϋ́Α		Requesting Regulation	5
	I., Su 7992 3443 4944 443	SIS			90	9/020	0 / 007	im92	SW/OD	-	-		_					_ Ks	-	ht Ba port Speci	1
	et Rc xas 585- 585- 88-3	S L	1 .70 - 11			10	01000	0 10/1	BCI										8	P Re k If S	X
	sunse o, Te 115) (115) 315) 38) 5	NN					səl	oioiteec	TCLP F									REN		Dry V TRRI	2
	ast S Pas [el (9 ax (9 1 (88	0					olatiles	oV imač	тсгр 9												R
	о 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	6	1100		<u>no no</u>	S	volatile:	TCLP /									ш	/ NA	-	
	2	C	/:007	/nLng 6	192 0	47.7 B	J BB 2A PA PA	or sister		-								_SZ	XIN	M.	0
	A1			10100			97 <u>0 - 0</u> 52	20/022	S8 HAA	-								- B Z	Y / 1	Revie	
	970: 301 313			CHARLES COMPANY	OHC			19 GF)8 H9T									-A	ntaci _	og-in-	10
	eet, seet, s		(9	xt(C3E	002 E	۱XT /	9001X	T / 1.81	TPH 4									000			#
	n Stro I, Ten 32) 6 32) 6			-	954 1 074	3560 /	8 / 209	/ 1208	BTEX											00	arriei
	Basii Iland el (43 ax (4		18		1097	09087	2097	1008	AATM	R	E						-	v a	⊢ v ¤	L S Z	
	Mic Mic	00 0	NE	i		(NG		TIME	Sis	10							SNI NS	COB INS	COB: INS	
	ц,	3	בן אל		17	Ś	NPL			N.	5								5	Q	-
	6 9	191	95	2	2		SAA		DATE	1997	FISL ISL							Lime	lime	ime S	U
	. Suit 1424 98 98 5		10		-	d		1.13		-	1						-		_	- 00	as
	enue 1128 75 4-129 129	05	ON P	2	101	10				-	_							- " ²		11 12	L .
	n Ave Texa () 794 () 794 () 794	RÌÙ	6 1	S	2		NI O		NONE	N	~				-			- Date	Date	Date Oate	U U
	ock, (806 (806 (806) (806)	7,0	NY	3	N	i ?	RVA HOI				-				-	1.0		- 3	-	- J	0
	Tel Tel Tax	27		1	0	iatur	SEI		^h OS ² H										ž	:	of C
	6701 L	.inU) Q	A 44	lame	Sigr	PRE		[®] ONH				- e		-			- ubai	npai	弊多	ide
		# :#	1	5	oct N	pler			ICH									Cor	้อี	5 Z	ses
	_	Phor Fax 1	- E	>	roje	Sam												8			ever
	-		3			, i	X	ЗÐ	anns									in C	Ä	1 Pri	un
	e	Pi	7	10			ATR		ЯIA									jed	ed	ed I	ted
	ă	UN	N P	Z			N		SOIL									Ceiv	ceiv	See!	lis lis
	Ξ Ξ	E.	12 10	Ad	Ŧ	15		Я	TAW	X	X							a o	Re	Re	litior
	600		三世	12		-	Juno	mA \ 9	mιολ	影	扔	1		5		_		: NO			Conc
	ysis	5t	UN N	10		5				143	STE				_	-			Line (Ĩ.	pui
	V		当る	Ž		5	SAB	aniatn	# COI	4	7		1					10	-		ns a
1			3 0	, I		Company															Ten
Ø	n S	V	DŽ	2					1.1			-						Sate	Date	Jate	nt to
2		JX	A			U			20 E	1.00											amer
2	E la		13	0		.10		DE		F	10							1. 1			gree
50		US	N	17		Ate		000	-	V								any	any	any:	es a
~	e e	Lie	ヨシ	5	-	Tel Des		ELC		U								du d	duc	duo	titute
		Still F	うた	(e)	5	Rei		ш	é	X	à							02	ŭ	ŭ	cons
#		Stre	E W	abo	2	(inc			a	L	(A)			-				1. Fd			les (
9	_	ieme:	i i j	mo.		tion												210	l by	by:	amp
Drde		ž. Ú	Pers	o: int fi		00		here a	ω	0		1.0.0						- any	shec	shec	of s
AB C		ress	tact	ffere	ect #	ect		# 8	SUS	3	3							indi	inbu	inpi	nittal
		Add	Con	Invo (If di	Proj	Proj		7	P	\$2	-							Relit	Relir	Relin	Subn

Summary Report

Wayne Price Price LLC 312 Encantado Ridge Ct. NE Rio Rancho, NM 87124

Report Date: November 12, 2015

Work Order: 15102712

Project Location:Buckeye & Tatum NMProject Name:Brine Well 3rd QT. SampleProject Number:BW-4 & BW-22

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
407093	BW-22 Tatum Fresh	water	2015-10-23	13:15	2015-10-26
407094	BW-22 Tatum Brine	water	2015-10-23	13:20	2015 - 10 - 26
407095	BW-4 Buckeye Fresh	water	2015-10-23	17:55	2015-10-26
407096	BW-4 Buckeye Brine	water	2015-10-23	18:00	2015 - 10 - 26

Sample: 407093 - BW-22 Tatum Fresh

Param	Flag	Result	Units	RL
Chloride		76.6	mg/L	2.5
Density		0.978	g/ml	
pН		7.79	s.u.	2
Total Dissolved Solids		659	m mg/L	2.5

Sample: 407094 - BW-22 Tatum Brine

Param	Flag	Result	Units	RL
Chloride		18000	mg/L	2.5
Density		1.02	g/ml	
Dissolved Sodium		12500	m mg/L	1
pН		6.99	s.u.	2
Total Dissolved Solids		37000	m mg/L	2.5

Sample: 407095 - BW-4 Buckeye Fresh

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

Report Date: November 12, 2015		Work Order: 15102712	Page Number: 2 of 2		
Param	Flag	Result	Units	RL	
Chloride		280	mg/L	2.5	
Density		0.997	g/ml		
pH		7.61	s.u.	2	
Total Dissolved Solids		868	$\mathrm{mg/L}$	2.5	

Sample: 407096 - BW-4 Buckeye Brine

Param	Flag	Result	Units	RL
Chloride		176000	mg/L	2.5
Density		1.18	g/ml	
Dissolved Sodium		108000	$\mathrm{mg/L}$	1
pH		6.76	s.u.	2
Total Dissolved Solids		310000	m mg/L	2.5

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100

Lubbock, Texas 79424 El Paso, Texas 79922 Texas 79703 Midland. Texas 75006 Carroliton. E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

915-585-3443 FAX 915 • 585 • 4944 432-689-6301 FAX 432 • 689 • 6313 972-242 -7750

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Oklahoma ISO 17025 Kansas

Analytical and Quality Control Report

Wayne Price Price LLC 312 Encantado Ridge Ct. NE Rio Rancho, NM, 87124

Report Date: November 12, 2015

Work Order: 15102712

Project Location: Buckeye & Tatum NM Project Name: Brine Well 3rd QT. Sample Project Number: BW-4 & BW-22

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
407093	BW-22 Tatum Fresh	water	2015-10-23	13:15	2015-10-26
407094	BW-22 Tatum Brine	water	2015-10-23	13:20	2015 - 10 - 26
407095	BW-4 Buckeye Fresh	water	2015-10-23	17:55	2015 - 10 - 26
407096	BW-4 Buckeye Brine	water	2015-10-23	18:00	2015-10-26

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

TraceAnalysis, Inc. uses the attached chain of custody (COC) as the laboratory check-in documentation which includes sample receipt, temperature, sample preservation method and condition, collection date and time, testing requested, company, sampler, contacts and any special remarks.

This report consists of a total of 20 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Blain Lepturch

Dr. Blair Leftwich, Director James Taylor, Assistant Director Brian Pellam, Operations Manager

Report Contents

Case Narrative	4
Analytical ReportSample 407093 (BW-22 Tatum Fresh)Sample 407094 (BW-22 Tatum Brine)Sample 407095 (BW-4 Buckeye Fresh)Sample 407095 (BW-4 Buckeye Brine)	5 5 6 7 8
Method Blanks 1 QC Batch 126012 - Method Blank (1) 1 QC Batch 126018 - Method Blank (1) 1 QC Batch 126079 - Method Blank (1) 1 QC Batch 126115 - Method Blank (1) 1 QC Batch 126288 - Method Blank (1) 1	10 10 10 10 10 11
Duplicates 1 QC Batch 125907 - Duplicate (1) 1 QC Batch 126012 - Duplicate (1) 1 QC Batch 126018 - Duplicate (1) 1 QC Batch 126079 - Duplicate (1) 1 QC Batch 126079 - Duplicate (1) 1	12 12 12 12 12 12
Laboratory Control Spikes 1 QC Batch 126012 - LCS (1) 1 QC Batch 126079 - LCS (1) 1 QC Batch 126115 - LCS (1) 1 QC Batch 126288 - LCS (1) 1	14 14 14 14 15
Matrix Spikes 1 QC Batch 126115 - MS (1)	16 16 16
Calibration Standards 1 QC Batch 125907 - CCV (1) 1 QC Batch 126115 - CCV (1) 1 QC Batch 126115 - CCV (2) 1 QC Batch 126288 - ICV (1) 1 QC Batch 126288 - CCV (1) 1	L7 17 17 17 17 17
Appendix 1 Report Definitions 1 Laboratory Certifications 1 Standard Flags 1 Attachments 1	19 19 19 19 20

Case Narrative

Samples for project Brine Well 3rd QT. Sample were received by TraceAnalysis, Inc. on 2015-10-26 and assigned to work order 15102712. Samples for work order 15102712 were received intact at a temperature of 3.0 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	Date
Chloride (IC)	E 300.0	106703	2015-11-04 at 13:00	126115	2015-11-04 at 13:45
Density	ASTM D854-92	106620	2015-11-02 at $13:10$	126018	2015-11-02 at $13:15$
Na, Dissolved	S 6010C	106726	2015-11-06 at 12:43	126288	2015-11-12 at $10:10$
pН	SM 4500-H+	106519	2015-10-27 at $17:30$	125907	2015-10-27 at $17:31$
TDS	SM 2540C	106564	2015-10-29 at $12:04$	126012	2015-10-29 at $12:00$
TDS	SM 2540C	106671	2015-11-03 at $16:30$	126079	2015-11-03 at $16:31$

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 15102712 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Sample: 407093 - BW-22 Tatum Fresh

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 126115 106703		Analytical I Date Analy Sample Pre	Method: E 3 zed: 201 paration:	00.0 5-11-04	Prep Method: Analyzed By: Prepared By:	N/A RL RL
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Chloride			1,2,3,4,6	76.6	mg/L	5	2.50

Sample: 407093 - BW-22 Tatum Fresh

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Density 126018 106620		Analytical Method: Date Analyzed: Sample Preparation:	ASTM D8 2015-11-02	854-92 2	Prep Method: Analyzed By: Prepared By:	${ m N/A} { m CF} { m CF} { m CF}$
_			~	RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Density				0.978	g/ml	1	0.00

Sample: 407093 - BW-22 Tatum Fresh

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock pH 125907 106519		Analytical Method Date Analyzed: Sample Preparatio	: SM 45 2015-1 n:	00-H+ 0-27	Prep Method: Analyzed By: Prepared By:	N/A LQ LQ
Danamatan		Ela m	Cont	RL	Unita	Dilution	DI
Parameter		Flag	Cert	Result	Units	Dilution	KL
pH			1,2,4,6	7.79	s.u.	1	2.00

Sample: 407093 - BW-22 Tatum Fresh

Laboratory:	Lubbock				
Analysis:	TDS	Analytical Method:	SM 2540C	Prep Method:	N/A
QC Batch:	126012	Date Analyzed:	2015-10-29	Analyzed By:	LQ
Prep Batch:	106564	Sample Preparation:		Prepared By:	LQ

Report Date: November 12, 2015 BW-4 & BW-22	Work Order: 15102712 Brine Well 3rd QT. Sample			Page Numbe Buckeye & Ta	Page Number: 6 of 20 Buckeye & Tatum NM	
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Total Dissolved Solids		1,2,3,4,6	659	mg/L	10	2.50

Sample: 407094 - BW-22 Tatum Brine

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 126115 106703		Analytical M Date Analyz Sample Prej	Method: E zed: 20 paration:	300.0 115-11-04	Prep Method: Analyzed By: Prepared By:	N/A RL RL
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Chloride			1,2,3,4,6	18000	$\mathrm{mg/L}$	500	2.50

Sample: 407094 - BW-22 Tatum Brine

Laboratory:	Lubbock						
Analysis:	Density		Analytical Method:	ASTM D8	54-92	Prep Method:	N/A
QC Batch:	126018		Date Analyzed:	2015-11-02	2	Analyzed By:	\mathbf{CF}
Prep Batch:	106620		Sample Preparation:	:		Prepared By:	CF
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Density				1.02	g/ml	1	0.00

Sample: 407094 - BW-22 Tatum Brine

Dissolved Soc	lium		2,3,4,6	12500	m mg/L	100	1.00
Parameter		Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	106726		Sample Preparation:	2015-11-06		Prepared By:	RR
QC Batch:	126288		Date Analyzed:	2015 - 11 - 12		Analyzed By:	\mathbf{RR}
Analysis:	Na, Dissolved		Analytical Method:	S $6010C$		Prep Method:	S $3005A$
Laboratory:	Lubbock						

Report Date: November 12, 2015	Work Order: 15102712	Page Number: 7 of 20
BW-4 & BW-22	Brine Well 3rd QT. Sample	Buckeye & Tatum NM

Sample: 407094 - BW-22 Tatum Brine

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock pH 125907 106519		Analytical Method: Date Analyzed: Sample Preparation	SM 450 2015-10	00-H+)-27	Prep Method: Analyzed By: Prepared By:	N/A LQ LQ
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
pН			1,2,4,6	6.99	s.u.	1	2.00

Sample: 407094 - BW-22 Tatum Brine

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TDS 126012 106564	A E S	nalytical Metho ate Analyzed: ample Preparati	Method: SM 2540C zed: 2015-10-29 paration:		Prep Method: Analyzed By: Prepared By:	${ m N/A} { m LQ} { m LQ}$
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Total Dissolv	ed Solids		1,2,3,4,6	37000	$\mathrm{mg/L}$	1000	2.50

Sample: 407095 - BW-4 Buckeye Fresh

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 126115 106703		Analytical M Date Analyz Sample Prep	Method: zed: paration:	E 300.0 2015-11-04		Prep Method: Analyzed By: Prepared By:	N/A RL RL
				RI				
Parameter		Flag	Cert	Result	t	Units	Dilution	RL
Chloride			1,2,3,4,6	280)	mg/L	10	2.50

Sample: 407095 - BW-4 Buckeye Fresh

Laboratory:	Lubbock				
Analysis:	Density	Analytical Method:	ASTM D854-92	Prep Method:	N/A
QC Batch:	126018	Date Analyzed:	2015-11-02	Analyzed By:	CF
Prep Batch:	106620	Sample Preparation:		Prepared By:	\mathbf{CF}

continued ...

Report Date: November 12, 2015 Work Order: 15102712 Page Number: 8 of 20 BW-4 & BW-22 Brine Well 3rd QT. Sample Buckeye & Tatum NM sample 407095 continued ... \mathbf{RL} Cert Dilution Parameter Flag Result Units RL RL Parameter Flag Cert Result Units Dilution RL Density 0.997 g/ml 1 0.00 Sample: 407095 - BW-4 Buckeye Fresh Laboratory: Lubbock Analysis: $_{\rm pH}$ Analytical Method: SM 4500-H+ $\,$ Prep Method: N/A QC Batch: 125907Date Analyzed: 2015 - 10 - 27Analyzed By: LQPrep Batch: 106519 Sample Preparation: Prepared By: LQRLParameter Flag Cert Result Units Dilution RL 7.61 1,2,4,62.00 pH s.u. 1

Sample: 407095 - BW-4 Buckeye Fresh

Laboratory:	Lubbock						
Analysis:	TDS	Aı	nalytical Method	: SM 2540C		Prep Method:	N/A
QC Batch: 126012 Date Ana		ate Analyzed:	2015-10-29		Analyzed By:	LQ	
Prep Batch:	106564	Sa	mple Preparation	n:		Prepared By:	LQ
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Total Dissolv	ed Solids		1,2,3,4,6	868	mg/L	20	2.50

Sample: 407096 - BW-4 Buckeye Brine

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 126115 106703		Analyti Date A Sample	cal Method: nalyzed: Preparation:	E 300.0 2015-11-04	4	Prep Method: Analyzed By: Prepared By:	N/A RL RL
]	RL			
Parameter		Flag	Cert	Res	ult	Units	Dilution	RL
Chloride			1,2,3,4,6	1760	00	$\mathrm{mg/L}$	5000	2.50

Report Date: November 12, 2015	Work Order: 15102712	Page Number: 9 of 20
BW-4 & BW-22	Brine Well 3rd QT. Sample	Buckeye & Tatum NM

Sample: 407096 - BW-4 Buckeye Brine

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Density 126018 106620		Analytical Method: Date Analyzed: Sample Preparation:	ASTM D 2015-11-0	854-92 2	Prep Method: Analyzed By: Prepared By:	N/A CF CF
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Density				1.18	g/ml	1	0.00

Sample: 407096 - BW-4 Buckeye Brine

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Na, Dissolved 126288 106726		Analytical Method: Date Analyzed: Sample Preparation:	S 6010C 2015-11-12 2015-11-06		Prep Method: Analyzed By: Prepared By:	S 3005A RR RR
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Dissolved Soc	lium		2,3,4,6	108000	$\mathrm{mg/L}$	1000	1.00

Sample: 407096 - BW-4 Buckeye Brine

pН			1,2,4,6	6.76	s.u.	1	2.00
Parameter		Flag	Cert	Result	Units	Dilution	RL
				RL			
Prep Batch:	106519		Sample Prepara	tion:		Prepared By:	LQ
QC Batch:	125907		Date Analyzed:	2015-10-	-27	Analyzed By:	LQ
Analysis:	pН		Analytical Meth	nod: SM 4500)-H+	Prep Method:	N/A
Laboratory:	Lubbock						

Sample: 407096 - BW-4 Buckeye Brine

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TDS 126079 106671	Ana Date Sam	lytical Method e Analyzed: ple Preparatio:	: SM 2540C 2015-11-03 n:		Prep Method: Analyzed By: Prepared By:	$_{ m LQ}^{ m N/A}$
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Total Dissolv	ed Solids		1,2,3,4,6	310000	$\mathrm{mg/L}$	2000	2.50

Method Blanks

Method Blank (1)	QC Batch: 126012					
QC Batch: 126012 Prep Batch: 106564		Date Analyzed: QC Preparation:	2015-10-29 2015-10-29		Analyzed By: Prepared By:	LQ LQ
Parameter Total Dissolved Solids		Flag	Cert 1,2,3,4,6	MDL Result <25.0	Units mg/L	RL 2.5
Method Blank (1)	QC Batch: 126018					
QC Batch: 126018 Prep Batch: 106620		Date Analyzed: QC Preparation:	2015-11-02 2015-11-02		Analyzed By: Prepared By:	CF CF
Parameter	Flag	Cert		MDL Result	Units	RL
Density	0			0.988	g/ml	
Method Blank (1)	QC Batch: 126079					
QC Batch: 126079 Prep Batch: 106671		Date Analyzed: QC Preparation:	2015-11-03 2015-11-03		Analyzed By: Prepared By:	LQ LQ
Dependent		Flog	Cont	MDL	Unita	DI
Total Dissolved Solids		r iag	1,2,3,4,6	<25.0	mg/L	2.5

Method Blank (1)		QC Batch: 126115				
QC Batch:	126115		Date Analyzed:	2015-11-04	Analyzed By:	RL
Prep Batch:	106703		QC Preparation:	2015-11-04	Prepared By:	RL

Report Date: November 12, 20 BW-4 & BW-22)15 B	Work Order: 151 rine Well 3rd QT	Page Number: 11 of 20 Buckeye & Tatum NM		
Parameter	Flag	Cert	MDL Besult	Units	BL
Chloride	1 145	1,2,3,4,6	<0.323	mg/L	2.5
Method Blank (1) QC I	Batch: 126288				
QC Batch: 126288 Prep Batch: 106726	Date An QC Pre	nalyzed: 2015-1 paration: 2015-1	1-12 1-06	Analyzed By Prepared By	r: RR r: PM
Parameter Dissolved Sodium	Flag	Cert	MDL Result	Units mg/I	RL

Duplicates

Duplicates (1) Duplicated Sample: 406966											
QC Batch: 125907 Date Analyzed: 2015-10-27 Prep Batch: 106519 QC Preparation: 2015-10-27								By: LQ By: LQ			
Param			Duplicate Result	Sample Result	Units	Dilution	RPD	RPD Limit			
pH		1,2,4,6	6.95	6.79	s.u.	1	2	20			

Duplicates (1) Duplicated Sample: 407191

QC Batch:	126012	Date Analyzed:	2015-10-29	Analyzed By:	LQ
Prep Batch:	106564	QC Preparation:	2015-10-29	Prepared By:	LQ

		Duplicate	Sample				RPD
Param		Result	Result	Units	Dilution	RPD	Limit
Total Dissolved Solids	1,2,3,4,6	3320	3180	$\mathrm{mg/L}$	50	4	10

Duplicates (1) Duplicated Sample: 407096

QC Batch:	126018	Date Analyzed:	2015 - 11 - 02		Analyzed By:	CF
Prep Batch:	106620	QC Preparation	: 2015-11-02	Prepared By:	CF	
		Duplicate Sam	ple			RPD
Param		Result Res	ult Units	Dilution	RPD	Limit
Density		1.19 1.1	l8 g/ml	1	1	20

Duplicates (1) Duplicated Sample: 407287

QC Batch:	126079	Date Analyzed:	2015-11-03	Analyzed By:	LQ
Prep Batch:	106671	QC Preparation:	2015-11-03	Prepared By:	LQ

Report Date: November 12, 2018 BW-4 & BW-22	5	Work Ord Brine Well	der: 15102712 3rd QT. Sam	Page Number: 13 of 20 Buckeye & Tatum NM			
		Duplicate	Sample				RPD
Param		Result	Result	Units	Dilution	RPD	Limit
Total Dissolved Solids	1,2,3,4,6	1190	1180	mg/L	20	1	10

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch: 126012	atch: 126012 Date Analyzed: 2015-10-29 Analyzed By: LQ										
Prep Batch: 106564	Batch: 106564 QC Preparation: 2015-10-29 Prepared By:									y: LQ	
				LCS			Spike	Ma	atrix		Rec.
Param]	F	C I	Result	Units	b Dil.	Amount	Re	sult	Rec.	Limit
Total Dissolved Solids		1,2	,3,4,6	1000	mg/L	ı 10	1000	<	25.0	100	90 - 110
Percent recovery is based on	the spike	result.	RPD is l	based on	the spi	ike and spi	ke duplica	te resu	lt.		
			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Total Dissolved Solids		1,2,3,4,6	1000	$\mathrm{mg/L}$	10	1000	$<\!25.0$	100	90 - 110) 0	10
		_		_	_				_		

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:	$\frac{126079}{106671}$		Date QC 1	e Analyzed: Preparation	2015-1 n: 2015-1	1-03 1-03		A F	Analyzed Prepared	By: LQ By: LQ
Param		F	С	LCS Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit
Total Dissolv	ed Solids		1,2,3,4,6	992	$\mathrm{mg/L}$	10	1000	<25.0	99	90 - 110
Percent recov	very is based on t	he spike resu	ult. RPD	is based or	n the spike	e and sp	ike duplicate	result.		

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Total Dissolved Solids		1,2,3,4,6	992	$\mathrm{mg/L}$	10	1000	$<\!25.0$	99	90 - 110	0	10

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:	126115	Date Analyzed:	2015-11-04	Analyzed By:	RL
Prep Batch:	106703	QC Preparation:	2015-11-04	Prepared By:	RL

Report Date: November 12, 2015 BW-4 & BW-22				Work Brine W	Order: 1 ell 3rd C		Page Number: 15 of 20 Buckeye & Tatum NM				
				Dime W			Ducke	ye w 1a			
				LCS			Spike	М	atrix		Rec.
Param		F	\mathbf{C}	Result	Units	Dil.	Amount	R	esult 1	Rec.	Limit
Chloride			1,2,3,4,6	24.7	mg/I	. 1	25.0	<	0.323	99	90 - 110
Percent recovery is based on the	spike	e resu	lt. RPD	is based o	on the sp	ike and sp	ike duplica	te resi	ılt.		
			LCS	SD		Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	С	Res	ult Unit	s Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,3,	4,6 24.	.9 mg/l	L 1	25.0	< 0.323	100	90 - 110) 1	20
Laboratory Control Spike (I QC Batch: 126288 Prep Batch: 106726	LCS-	1)	Date OC 1	e Analyzed Preparatio	l: 2013	5-11-12 5-11-06			Ana Prei	lyzed By pared By	7: RR 7: PM
				LCS			Spike	Ma	atrix		Rec.
Param		F	С	Result	Units	Dil.	Amount	Re	sult	Rec.	Limit
Dissolved Sodium			2,3,4,6	53.0	mg/L	1	52.5	<0.	0197	101	85 - 115
Percent recovery is based on the	spike	e resu	lt. RPD	is based o	on the sp	ike and sp	ike duplica	te resi	ılt.		
			LCSI	D		Spike	Matrix		Rec.		RPD
Param	F	С	Resu	lt Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Dissolved Sodium		2, 3, 4,	6 53.2	mg/L	1	52.5	< 0.0197	101	85 - 115	5 0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.
$\mathbf{2}$

20

Matrix Spikes

Matrix Spike (MS-1)	piked Sam	ple: 40	07240								
QC Batch: 126115 Prep Batch: 106703			Date A QC Pr	Analyzed: reparation	2013 n: 2015	5-11-04 5-11-04			A: Pi	nalyzed E repared E	By: RL by: RL
_		_	~	MS			Spike	Ma	atrix		Rec.
Param	ŀ	1	С	Result	Units	Dil.	Amount	Re	esult	Rec.	Limit
Chloride		1,2	,3,4,6	153	mg/L	5	125	2	6.2	101	80 - 120
Percent recovery is based on	the spike 1	esult.	RPD is	based on	the spi	ike and spi	ike duplica	te resu	lt.		
			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limi	t RPD	Limit
Chloride		1,2,3,4,6	153	mg/L	5	125	26.2	101	80 - 12	20 0	20
Matrix Spike (MS-1)	piked Sam	ple: 40)7349								
QC Batch: 126288			Date A	nalvzed:	2015	5-11-12			Ar	nalvzed B	v: RR
Prep Batch: 106726			QC Pr	eparation	: 2015	5-11-06			Pr	epared B	y: PM
				MS			Spike	Ma	ntrix		Rec.
Param	F	ק	C 1	Result	Units	Dil.	Amount	$R\epsilon$	sult	Rec.	Limit
Dissolved Sodium		2,	3,4,6	874	$\mathrm{mg/L}$	1	525	3	77	95	75 - 125
Percent recovery is based on	the spike 1	esult.	RPD is	based on	the spi	ike and spi	ike duplica	te resu	lt.		
			MSD			Spike	Matrix		Rec.		RPD
Param	F	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit

Calibration Standards

Standard (CCV-1)

QC Batch: 125907			Da	te Analyzed:	2015-10-27		Analy	Analyzed By: LQ		
				$\rm CCVs$	CCVs	CCVs	Percent			
				True	Found	Percent	Recovery	Date		
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed		
pH		1,2,4,6	s.u.	7.00	7.01	100	98.6 - 101.4	2015-10-27		

Standard (CCV-1)

QC Batch:	126115			Date 4	Analyzed:	2015-11-04		Analy	yzed By: RL
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	I	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			1,2,3,4,6	$\mathrm{mg/L}$	25.0	25.1	100	90 - 110	2015-11-04

Standard (CCV-2)

QC Batch:	126115			Date .	Analyzed:	2015-11-04		Analy	zed By: RL
					CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			1,2,3,4,6	$\mathrm{mg/L}$	25.0	24.6	98	90 - 110	2015-11-04

Standard (ICV-1)

QC Batch:	126288			Analyz	Analyzed By: RR				
					ICVs	ICVs	ICVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Se	odium		2,3,4,6	$\mathrm{mg/L}$	27.5	26.8	97	90 - 110	2015-11-12

Report Date: November 1 BW-4 & BW-22	2, 2015		W Brin	Vork Order: ne Well 3rd	Page Number: 18 of 20 Buckeye & Tatum NM			
Standard (CCV-1)								
QC Batch: 126288		Date Anal	yzed: 201	Analyzed By: RR				
Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Dissolved Sodium	-0	2,3,4,6	$\mathrm{mg/L}$	27.5	27.8	101	90 - 110	2015-11-12

Page Number: 19 of 20 Buckeye & Tatum NM

Appendix

Report Definitions

Name	Definition
MDL	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
\mathbf{C}	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	L-A-B	L2418	Lubbock
2	Kansas	Kansas E-10317	Lubbock
3	LELAP	LELAP-02003	Lubbock
4	NELAP	T104704219-15-11	Lubbock
5	NELAP	T104704392-14-8	Midland
6		2015-066	Lubbock

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.

Report Date: November 12, 2015 BW-4 & BW-22

Work Order: 15102712 Brine Well 3rd QT. Sample Page Number: 20 of 20 Buckeye & Tatum NM

F Description

Qsr Surrogate recovery outside of laboratory limits.

U The analyte is not detected above the SDL

Attachments

The scanned attachments will follow this page. Please note, each attachment may consist of more than one page.

	Clark ial Blvd. 2-7561 2-4508		ard	pusta i	mont fr	lifferer	o îi emi	T bruu C	Tord Turn Arc	X	X		X	X					
_ of _	Brandon & 403 Industri Hobbs, NM Fel (575) 39 ax (575) 39	0.)					/	(419 70	HO WZO 120H.7	XXX	XXX		XXX	XX					
1	е. т.	T Dot		Ans.	510 *0d '	ЕС 10 ⁵ -И	, TDS, 3 -N, <i>N</i>	^{M[∂]' К О^{⊄'} ИС}	CI' E' 20	2	X			×	2				
Page	Testing 1., Ste 100 cas 75006 2-7750	EQUES				{	100 1 \ 608	308 s9 1q ,22	Pesticid BOD, Ta Moistura									Required luired Reporting	00
	l Mayes Re Mayes Re Collton, Te: el (972) 24	YSIS R			52	54 54	260 / 6 260 / 6	Vol. 8, im92./ 0/280	PCB's 8 GC/MS							RKS:		ight Basis Report Rec If Special F vre Needec	120
	2501 Carr	ANAL OF S					olatiles es	emi Vo	ВСІ ТСГЬ Б ІСГЬ 2							REMA		Dry We TRRP F Check I Limits A	8
	Suite E 9922 944 13	Circle		6H 9S	Cr Pb	bO 66	s s A g A	letals / olatiles								USE	Y NA	J.A.	1
	unset Rd., , Texas 7 (15) 585-34 15) 585-44 8) 588-34	=		C/0109 L	NHC		25 25 25 25 25 25 25 25 25 25 25 25 25 2	9 / 02 20 / 02	08 H9T 28 HA9 IAM INOT							LAB	Headspace	-og-in-Revie	V
5	EI Paso EI Paso Tel (9 Fax (9 1 (88			xf(C32)	002 E 954 \ 954	\ TX1	X1002 805 \ 8 \ 805 \	r208 / r208 T / r.8	BTEX 8	1						, h		Mose in	
004	A1 2		0 1151	2nc			DING		TIME	151:12	1:300	-	5:550	6:00 D		INST 4	COR INST OBS	OBSO	
0	eet, Suite / xas 79703 889-6301 589-6313	960	ALL MA	SAM			SAMP		ЭТАQ	10-23-1	=		11	H		Time:	Time:	- Chine	
44	2 Basin Str idland, Te Tel (432) 6 Fax (432) (98-9	0 616	S RU	ř		TIVE		NONE	~	~					Date:	Date:	Date:	0
	5003 M	75-3	1 ST T	21 32	::	nature:	ESERVA		HOBN H2SO4		~		X	X			ny:	:Au	of C O
	e, Suite 9 9424 296 298 96	one #: د#:	nail: DP	E lut	ject Nam	ppler Sig	R		HNO ³ HCI							Compe	Compa	Compa	erse side
	sen Avenur k, Texas 7 06) 794-12 06) 794-12 00) 378-129	Pho Pho	E-n	BRIN	Pro	Sar	rrix	ЭE	SLUDC					-		d by:	d by:	d by:	ad on ev
	01 Aberde Lubboc Tel (86 Fax (8 1 (80	1 Cop	2809		Ρ		MA	٤	NATEI SOIL	X	X		X.	X		Receive	Receive	Receive	tions liste
	67	PANPy	208	2			Juno	omA∖€	amuloV	1000	М		И	Å		Cime:	Fime:	ime:	nd Cond
2	Inc	5/0 6	NIN	ture 1	d	WN	SA:	JNIAT	# CON	1	1		-	-		- - - - - - - - - - - - 	×		Terms a
3710	is.com	UND -	FIND	SAU	(n-2)	Town		ш	Tom	HS	15	「大の	HSER	NE		10 Date	Date	Date	sement to
5100	allys ceanaly	ERHU	- PRIC	RAS	+ B	state):		LD CODI	2 TH	FRE	BRIA	BUCK	1-1	- BRI		npany:	npany:	npany:	tutes agre
#	An:	WA55	PRICE	hove)	1-4	including		E	C-198	TUM-	(+	KEYE	1		Co	COL	Co	les consti
Order ID	ace,	y Name:	Person:	o: int from a	BW	-ocation (Coobe is			374	1 F	A BW	3 BUC	1		shed by:	shed by:	shed by:	of samp
LAB (Compan	Contact	Invoice (Project #	Project I B &		LAB#	(LAB US ONLY	HOLOH.	Š	8	200g	96		Relinqui	Relinqui	Relinqui	Submitta

Summary Report

(Corrected Report)

Lester Waynce Price Jr. Price LLC 312 Encantado Ridge Ct. NE Rio Rancho, NM 87124

Project Location: Buckeye New Mexico Project Name: Brine Well

Report Corrections (Work Order 16022210)

• 3/24/16: Added Chloride, pH, TDS and Density to sample 414779.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
414778	Fresh Water	water	2016-02-17	14:25	2016-02-18
414779	Brine Water	water	2016-02-17	14:30	2016-02-18

Sample: 414778 - Fresh Water

Param	Flag	Result	Units	RL
Chloride		1820	m mg/L	2.5
Density		0.980	g/ml	
pH		7.81	s.u.	2
Total Dissolved Solids		$\boldsymbol{3240}$	m mg/L	2.5

Sample: 414779 - Brine Water

Param	Flag	Result	Units	RL
Chloride	н	149000	mg/L	2.5
Density	1	1.16	g/ml	
Dissolved Sodium		106000	mg/L	1
pH		6.91	s.u.	2
				$continued \ldots$

¹Analyzed out of hold time.

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

Report Date: March 24, 2016

 Work Order:
 16022210

Report Date: March 24, 2016		Work Order: 16022210	Page Nu	Page Number: 2 of 2		
sample 414779 continued						
Param	Flag	Result	Units	RL		
Total Dissolved Solids		263000	m mg/L	2.5		

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100

Lubbock, Texas 79424 El Paso, Texas 79922 Midland. Texas 79703 Texas 75006 Carroliton. E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

915-585-3443 FAX 915 • 585 • 4944 432-689-6301 FAX 432 • 689 • 6313 972-242 -7750

Certifications

WBE HUB **NCTRCA** DBE NELAP DoD LELAP Oklahoma ISO 17025 Kansas

Analytical and Quality Control Report

(Corrected Report)

Lester Waynce Price Jr. Price LLC 312 Encantado Ridge Ct. NE Rio Rancho, NM, 87124

Report Date: March 24, 2016

16022210 Work Order:

Project Location: Buckeye New Mexico **Project Name:** Brine Well Project Number: Brine Well

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
414778	Fresh Water	water	2016-02-17	14:25	2016-02-18
414779	Brine Water	water	2016-02-17	14:30	2016-02-18

Report Corrections (Work Order 16022210)

• 3/24/16: Added Chloride, pH, TDS and Density to sample 414779.

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

TraceAnalysis, Inc. uses the attached chain of custody (COC) as the laboratory check-in documentation which includes sample receipt, temperature, sample preservation method and condition, collection date and time, testing requested, company, sampler, contacts and any special remarks.

This report consists of a total of 20 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Blain Letturch

Dr. Blair Leftwich, Director James Taylor, Assistant Director Johnny Grindstaff, Operations Manager

Report Contents

Case Narrative	5
Analytical Report Sample 414778 (Fresh Water) Sample 414779 (Brine Water)	6 6 7
Method Blanks QC Batch 128362 - Method Blank (1) QC Batch 128394 - Method Blank (1) QC Batch 128419 - Method Blank (1) QC Batch 128463 - Method Blank (1) QC Batch 129013 - Method Blank (1) QC Batch 129044 - Method Blank (1) QC Batch 129049 - Method Blank (1)	9 9 9 9 9 10 10 10
Duplicates I QC Batch 128366 - Duplicate (1) I QC Batch 128394 - Duplicate (1) I QC Batch 128463 - Duplicate (1) I QC Batch 129013 - Duplicate (1) I QC Batch 129028 - Duplicate (1) I QC Batch 12904 - Duplicate (1) I	11 11 11 11 11 12 12
Laboratory Control Spikes 1 QC Batch 128362 - LCS (1)	 13 13 13 14 14
Matrix Spikes I QC Batch 128362 - MS (1) I QC Batch 128419 - MS (1) I QC Batch 129049 - MS (1) I	15 15 15 15
Calibration Standards I QC Batch 128362 - ICV (1) I QC Batch 128366 - CCV (1) I QC Batch 128366 - CCV (1) I QC Batch 128419 - CCV (1) I QC Batch 128419 - CCV (2) I QC Batch 129028 - CCV (1) I QC Batch 129049 - CCV (1) I QC Batch 129049 - CCV (2) I QC Batch 129049 - CCV (2) I QC Batch 129049 - CCV (2) I	 17 17 17 17 17 18 18 18
Appendix Report Definitions	19 19

Laboratory Certifications	19
Standard Flags	19
Result Comments	20
Attachments	20

Case Narrative

Samples for project Brine Well were received by TraceAnalysis, Inc. on 2016-02-18 and assigned to work order 16022210. Samples for work order 16022210 were received intact at a temperature of -0.1 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	Date
Chloride (IC)	E 300.0	108743	2016-02-23 at 10:00	128419	2016-02-23 at 10:08
Chloride (IC)	E 300.0	109290	2016-03-23 at $14:00$	129049	2016-03-23 at $15:09$
Density	ASTM D854-92	108721	2016-02-23 at $13:10$	128394	2016-02-23 at $13:15$
Density	ASTM D854-92	109263	2016-03-23 at $11:10$	129013	2016-03-23 at $11:15$
Na, Dissolved	S 6010C	108686	2016-02-22 at $12:23$	128362	2016-02-22 at $15:23$
pН	SM 4500-H+	108694	2016-02-22 at $15:00$	128366	2016-02-22 at $15:00$
pН	SM 4500-H+	109282	2016-03-23 at $12:30$	129028	2016-03-23 at $12:30$
TDS	SM 2540C	108734	2016-02-23 at $15:30$	128463	2016-02-23 at $15:30$
TDS	SM 2540C	109281	2016-03-23 at 16:30	129044	2016-03-23 at $16:30$

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 16022210 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Sample: 414778 - Fresh Water

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 128419 108743		Analytical I Date Analy Sample Pre	Method: E 30 zed: 2016 paration:	00.0 5-02-23	Prep Method: Analyzed By: Prepared By:	N/A RL RL
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Chloride			1,2,3,4,5	1820	mg/L	100	2.50

Sample: 414778 - Fresh Water

Density				0.980	g/ml	1	0.00
Parameter		Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	108721		Sample Preparation:			Prepared By:	CF
QC Batch:	128394		Date Analyzed:	2016-02-23		Analyzed By:	\mathbf{CF}
Analysis:	Density		Analytical Method:	ASTM D854	4-92	Prep Method:	N/A
Laboratory:	Lubbock						

Sample: 414778 - Fresh Water

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock pH 128366 108694		Analytical Method Date Analyzed: Sample Preparatic	l: SM 45 2016-0 on:	00-H+ 2-22	Prep Method: Analyzed By: Prepared By:	N/A LQ LQ
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
pH			1,2,4,5	7.81	s.u.	1	2.00

Sample: 414778 - Fresh Water

Laboratory:	Lubbock				
Analysis:	TDS	Analytical Method:	SM 2540C	Prep Method:	N/A
QC Batch:	128463	Date Analyzed:	2016-02-23	Analyzed By:	LQ
Prep Batch:	108734	Sample Preparation:		Prepared By:	LQ

Report Date: March 24, 2016 Brine Well		Work Orde Brine	r: 16022210 e Well	Page Numbe Buckeye Ne	Page Number: 7 of 20 Buckeye New Mexico	
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Total Dissolved Solids		1,2,3,4,5	3240	$\mathrm{mg/L}$	50	2.50

Sample: 414779 - Brine Water

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 129049 109290		Analytical 1 Date Analy: Sample Prej	Method: zed: paration:	E 300.0 2016-03-23 2016-03-23		Prep Method: Analyzed By: Prepared By:	N/A RL RL
				R	,L			
Parameter		Flag	Cert	Resu	lt	Units	Dilution	RL
Chloride		Н	1,2,3,4,5	14900	00	$\mathrm{mg/L}$	5000	2.50

Sample: 414779 - Brine Water

Laboratory:	Lubbock						
Analysis:	Density		Analytical Method:	ASTM D	854-92	Prep Method:	N/A
QC Batch:	129013		Date Analyzed:	2016-03-2	3	Analyzed By:	\mathbf{CF}
Prep Batch:	109263		Sample Preparation	:		Prepared By:	CF
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Density	1			1.16	g/ml	1	0.00

Sample: 414779 - Brine Water

Dissolved Soc	dium		2,3,4,5	106000	m mg/L	1000	1.00
Parameter		Flag	Cert	RL Result	Units	Dilution	RL
Prep Batch:	108686		Sample Preparation:	2016-02-22		Prepared By:	RR
QC Batch:	128362		Date Analyzed:	2016-02-22		Analyzed By:	\mathbf{RR}
Analysis:	Na, Dissolved		Analytical Method:	S $6010C$		Prep Method:	S $3005A$
Laboratory:	Lubbock						

Report Date Brine Well	:: March 24, 2016		Work Order Brine	:: 16022210 Well		Page Number: 8 of 20 Buckeye New Mexico		
Sample: 41	4779 - Brine Water							
Laboratory:	Lubbock							
Analysis:	pН	Analy	tical Method:	SM 4500-H+ $$		Prep Method:	N/A	
QC Batch:	129028	Date	Analyzed:	2016-03-23		Analyzed By:	LQ	
Prep Batch:	109282	Samp	le Preparation:	2016-03-23		Prepared By:	LQ	
				RL				
Parameter Flag		ıg (Cert F	Result	Units	Dilution	RL	
pH		1	,2,4,5	6.91	s.u.	1	2.00	
Sample: 41	4779 - Brine Water							
Laboratory:	Lubbock							
Analysis:	TDS	Ana	lytical Method:	SM 2540C		Prep Method:	N/A	
QC Batch:	129044	Date	e Analyzed:	2016-03-23		Analyzed By:	LQ	
Prep Batch:	109281	Sam	ple Preparation:	: 2016-03-23		Prepared By:	LQ	
				RL				
Parameter		Flag	Cert	Result	Units	Dilution	RL	
Total Dissolv	red Solids		1,2,3,4,5	263000	mg/L	2000	2.50	

Method Blank (1)	QC Batch: 128362					
QC Batch: 128362 Prep Batch: 108686		Date Analyzed: QC Preparation:	2016-02-22 2016-02-22		Analyzed By: Prepared By:	RR PM
Parameter	J	Flag Ce	rt	MDL Result	Units	RI
Dissolved Sodium		2,3,	4,5	< 0.0197	mg/L	1
Method Blank (1)	QC Batch: 128394					
QC Batch: 128394 Prep Batch: 108721		Date Analyzed: QC Preparation:	2016-02-23 2016-02-23		Analyzed By: Prepared By:	CF CF
Parameter	Flag	Cert		MDL Result	Units	RI
Density				0.988	g/ml	
Method Blank (1)	QC Batch: 128419					
QC Batch: 128419 Prep Batch: 108743		Date Analyzed: QC Preparation:	2016-02-23 2016-02-23		Analyzed By: Prepared By:	RL RL
Parameter	Flag	Cert		MDL Besult	Units	BI
Chloride	1 145	1.2.3.4.5		<0.323	mg/L	2.5

Work Order: 16022210

Brine Well

Page Number: 9 of 20

Buckeye New Mexico

Report Date: March 24, 2016

Brine Well

QC Batch:	128463	Date Analyzed:	2016-02-23	Analyzed By:	LQ
Prep Batch:	108734	QC Preparation:	2016-02-23	Prepared By:	LQ

Report Date: March 24, 2016 Brine Well		Work Order: 16022210 Brine Well			Page Number: 10 of 20 Buckeye New Mexico		
Parameter		Flag	Cert	MDL Result	Units	RL	
Total Dissolved Solids			1,2,3,4,5	<25.0	mg/L	2.5	
Method Blank (1)	QC Batch: 129013						
QC Batch: 129013 Prep Batch: 109263		Date Analyzed: QC Preparation:	2016-03-23 2016-03-23		Analyzed By: Prepared By:	$_{\rm CF}^{\rm CF}$	
Parameter	Flag	Cert		MDL Result	Units	RL	
Density				0.979	g/ml		
Method Blank (1)	QC Batch: 129044						
QC Batch: 129044 Prep Batch: 109281		Date Analyzed: QC Preparation:	2016-03-23 2016-03-23		Analyzed By: Prepared By:	$_{ m LQ}$ $_{ m LQ}$	
Parameter		Flag	Cert	MDL Result	Units	RL	
Total Dissolved Solids			1,2,3,4,5	<25.0	m mg/L	2.5	
Method Blank (1)	QC Batch: 129049						
QC Batch: 129049 Prep Batch: 109290		Date Analyzed: QC Preparation:	2016-03-23 2016-03-23		Analyzed By: Prepared By:	RL RL	
Parameter	Flag	Cert		MDL Result	Units	RL	
Unioride		1,2,3,4,5		< 0.323	mg/L	2.5	

Duplicates

Duplicates	(1) Duplica	ted Sample: 4	14780					
QC Batch: Prop. Batch:	128366		Date Ana OC Prop	alyzed: 2016-	02-22		Analyzed Propagad 1	By: LQ
i iep Dateii.	100094		QC 1 lep	aration. 2010-	02-22		i iepaied i	by. LQ
			Duplicate	Sample				RPD
Param			Result	Result	Units	Dilution	RPD	Limit
pН		1,2,4,5	7.91	7.93	s.u.	1	0	20

Duplicates (1) Duplicated Sample: 414780

QC Batch:	128394	Date Analyzed:	2016-02-23	Analyzed By:	CF
Prep Batch:	108721	QC Preparation:	2016-02-23	Prepared By:	CF

	Duplicate	Sample				RPD
Param	Result	Result	Units	Dilution	RPD	Limit
Density	0.968	0.985	g/ml	1	2	20

Duplicates (1) Duplicated Sample: 414786

QC Batch: Prep Batch:	h: 128463 Date Analyzed: ch: 108734 QC Preparation		Date Analyzed: QC Preparation:	2016-02-23 2016-02-23		Analyzed By: Prepared By:	LQ LQ	
Param			Duplicate Result	Sample Result	Units	Dilution	RPD	RPD Limit
Total Dissolv	ed Solids	1.2.3.4.5	1090	1120	mg/L	20	3	10

Duplicates (1) Duplicated Sample: 414781

QC Batch:	129013	Date Analyzed:	2016-03-23	Analyzed By:	\mathbf{CF}
Prep Batch:	109263	QC Preparation:	2016-03-23	Prepared By:	\mathbf{CF}

Report Date: March 24, 2016 Brine Well	W	Work Order: 16022210 Brine Well				Page Number: 12 of 20 Buckeye New Mexico		
	Duplicate	Sample				RPD		
Param	Result	Result	Units	Dilution	RPD	Limit		
Density ²	0.978	0.996	g/ml	1	2	20		

Duplicates	(1) Duplicat	ed Sample:	416191					
QC Batch: Prep Batch:	129028 109282		Date Ana QC Prep	alyzed: 2016- aration: 2016-	-03-23 -03-23		Analyzed By: Prepared By:	LQ LQ
Param			Duplicate Result	Sample Besult	Units	Dilution	RPD	RPD Limit
pH		1,2,4,5	7.18	7.18	s.u.	1	4	20

Duplicates (1) Duplicated Sample: 416188

QC Batch: Prep Batch:	129044 109281	I (Date Analyzed: QC Preparation:	2016-03-23 2016-03-23			Analyzed By: Prepared By:	LQ LQ
Param			Duplicate Result	Sample Result	Units	Dilution	RPD	RPD Limit
Total Dissolv	ed Solids	1,2,3,4,5	4630	4670	mg/L	50	1	10

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch: 128362 Date Analyzed: 2016-02-22 Analyzed By: RF										: RR
Prep Batch: 108686	Batch: 108686 QC Preparation: 2016-02-22 Prepa						pared By	: PM		
			LCS			Spike	Ma	trix		Rec.
Param	F	C R	Result	Units	Dil.	Amount	Re	sult	Rec.	Limit
Dissolved Sodium	2	2,3,4,5	55.1	$\mathrm{mg/L}$	1	52.5	< 0.	0197	105 8	85 - 115
Percent recovery is based on the spike	result	. RPD is	based or	n the sp	oike and sp	ike duplica	te resu	ılt.		
		LCSD			Spike	Matrix		Rec.		RPD
Param F	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Dissolved Sodium	2,3,4,5	52.7	$\mathrm{mg/L}$	1	52.5	< 0.0197	100	85 - 115	ŏ 4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:	128419 108743	Date Analyzed: 2016-02-23 QC Preparation: 2016-02-23							Analyzed Prepared	By: RL By: RL
Param		F	С	LCS Besult	Units	Dil	Spike Amount	Matrix Besult	Rec	Rec. Limit
Chloride		1	1,2,3,4,5	25.8	mg/L	1	25.0	<0.323	103	90 - 110
Percent recov	very is based on the	spike resu	ılt. RPD	is based or	n the spike	e and sp	ike duplicate	e result.		

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,3,4,5	25.7	$\mathrm{mg/L}$	1	25.0	< 0.323	103	90 - 110	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:	128463	Date Analyzed:	2016-02-23	Analyzed By:	LQ
Prep Batch:	108734	QC Preparation:	2016-02-23	Prepared By:	LQ

Report Date: March 24, 2016 Brine Well	ate: March 24, 2016 Work Order: 160 Brine Well								Page Nu Bucke	ımber: eye New	14 of 20 Mexico
				LCS			Spike	Ma	atrix		Rec.
Param		F	С	Result	Units	Dil.	Amount	Re	esult R	ec.	Limit
Total Dissolved Solids		1,	,2,3,4,5	1010	mg/L	10	1000	<	25.0 1	01	90 - 110
Percent recovery is based on the	spike	result.	RPD i	s based on	the spi	ke and spi	ke duplica	te resu	lt.		
			LCS	D		Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Resu	lt Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Total Dissolved Solids		1,2,3,4,5	1010) mg/L	10	1000	$<\!25.0$	101	90 - 110	0	10
Percent recovery is based on the	spike	result.	RPD i	s based on	the spi	ke and spi	ke duplica	te resu	lt.		
Laboratory Control Spike (I	LCS-1)									
QC Batch: 129044 Prep Batch: 109281			Date QC P	Analyzed: reparation	2016 : 2016	-03-23 -03-23			Anal Prep	yzed By ared By	y: LQ 7: LQ
				TCC			Cosileo	м			Dec
Danam		г	C	LUS	Unita	Dil	Аточит		aurix	00	nec.
Total Dissolved Solids		<u>r</u>	0	<u> </u>	$\frac{0 \text{ mts}}{\text{mg/L}}$	<u> </u>	1000		$\frac{1}{250}$ 1	$\frac{\text{ec.}}{00}$	$\frac{11111}{90 - 110}$
	•1	1,	,2,3,4,5	330	111g/12	10	1000		1	00	
Percent recovery is based on the	spike	result.	RPD 1	s based on	the spi	ke and spi	ke duplica	te resu	lt.		
			LCS	D		Spike	Matrix		Rec.		RPD
Param	F	\mathbf{C}	Resu	lt Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Total Dissolved Solids		1,2,3,4,5	1020	0 mg/L	10	1000	$<\!25.0$	102	90 - 110	2	10
Percent recovery is based on the Laboratory Control Spike (I	spike LCS-1	result.	RPD i	s based on	the spi	ke and spi	ke duplica	te resu	lt.		
QC Batch: 129049			Date	Analyzed:	2016	-03-23			Anal	vzed B	v: RL
Prep Batch: 109290			QC P	Preparation	: 2016	-03-23			Prep	ared By	y: RL
-			-	-					-		
				LCS			Spilro	м	twire		Dee
Param		F	С	Result	Unite	ווּם	Amount		auria Sult P	ec	Limit
Chloride		1	0	24.3	mg/L	1	25.0		$\frac{3010}{1323}$ (20. 27 ($\frac{111110}{90 - 110}$
Percent recovery is based on the	spike	result.	RPD i	s based on	the spi	ke and spi	ke duplica	te resu	lt.		
			LCS	D		Spike	Matrix		Rec		RPD
Param	\mathbf{F}	\mathbf{C}	Resu	lt Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride	-	1,2,3,4,5	24.2	2 mg/L	1	25.0	<0.323	97	90 - 110	0	20

24.2 Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

1,2,3,4,5

 $\mathrm{mg/L}$

Matrix Spikes

Matrix Spik	e (MS-1)	Spiked Sa	mple: 4	414212								
QC Batch: Prep Batch:	128362 108686			Date . QC P:	Analyzed: reparation	2016 : 2016	5-02-22 5-02-22			Analy Prepa	zed By: red By:	RR PM
					MS			Spike	Matriz	x		Rec.
Param			F	\mathbf{C}	Result	Units	Dil.	Amount	Result	t Re	c.	Limit
Dissolved Sod	ium			2,3,4,5	491	$\mathrm{mg/L}$	1	500	2.44	98	8 7	5 - 125
Percent recove	ery is based o	on the spike	e result	. RPD is	s based on	the spi	ike and sp	ike duplica	te result.			
				MSD			Spike	Matrix		Rec.		RPD
Param		\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec. I	Limit	RPD	Limit
Dissolved Sod	ium		2,3,4,5	500	$\mathrm{mg/L}$	1	500	2.44	100 75	- 125	2	20
Matrix Spik	e (MS-1)	Spiked Sa	mple: 4	414780	s based on	the spi	ike and sp.		tte result.			
QC Batch: Prep Batch:	128419 108743			Date QC P	Analyzed: reparation	2016 n: 2016	6-02-23 6-02-23			Analy Prepa	vzed By ared By	: RL : RL
					MS			Spike	Matri	x		Rec.
Param			F	\mathbf{C}	Result	Units	Dil.	Amount	Resul	t Re	ec.	Limit
Chloride			1	1,2,3,4,5	340	mg/L	10	250	76.6	10)5 8	0 - 120
Percent recove	ery is based o	on the spike	e result	. RPD is	s based on	the spi	ike and sp	ike duplica	te result.			
				MSE)		Spike	Matrix		Rec.		RPD

 \mathbf{F} \mathbf{C} Result RPD Param Units Dil. Amount Result Rec. Limit Limit Chloride 1,2,3,4,5333 mg/L10 25076.6102 80 - 120 220

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1)	Spiked Sample: 416184
---------------------	-----------------------

QC Batch:	129049	Date Analyzed:	2016-03-23	Analyzed By:	RL
Prep Batch:	109290	QC Preparation:	2016-03-23	Prepared By:	RL

Report Date: March 24, 2016 Brine Well		Work Order: 16022210 Brine Well						Page Number: 16 of 20 Buckeye New Mexico			
Param		F	С	MS Result	Units	Dil.	Spike Amount	M Re	atrix esult	Rec.	Rec. Limit
Chloride		1,	2,3,4,5	3570	mg/L	100	2500	1	100	99	80 - 120
Percent recovery is based on the s	spike	result.	RPD is	based on	the spi	ike and spi	ke duplica	te resu	ılt.		
			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,3,4,5	3540	mg/L	100	2500	1100	98	80 - 120) 1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Calibration Standards

Standard (ICV-1)

QC Batch:	128362			Date Anal	Analyzed By: RR				
					ICVs	ICVs	ICVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Se	odium		2,3,4,5	mg/L	26.0	24.9	96	90 - 110	2016-02-22

Standard (CCV-1)

QC Batch:	128362			Date Anal	Analyz	zed By: RR			
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Dissolved Sc	odium		2,3,4,5	$\mathrm{mg/L}$	26.0	25.3	97	90 - 110	2016-02-22

Standard (CCV-1)

QC Batch:	128366		Da	te Analyzed:	2016-02-22	2	Analy	zed By: LQ
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
pН		1,2,4,5	s.u.	7.00	7.00	100	98.6 - 101.4	2016-02-22

Standard (CCV-1)

QC Batch:	128419			Date	Analyzed:	2016-02-23		Analy	yzed By: RL
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			1,2,3,4,5	$\mathrm{mg/L}$	25.0	25.7	103	90 - 110	2016-02-23

Report Date Brine Well	: March 24, 201		Work Ord Brir	ler: 16022210 ne Well	Page Number: 18 of 20 Buckeye New Mexico			
Standard (O	CCV-2)							
QC Batch:	128419		Date	e Analyzed:	2016-02-23		Analy	vzed By: RL
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		1,2,3,4,5	mg/L	25.0	25.9	104	90 - 110	2016-02-23
Standard (O	C CV-1) 129028		Date	e Analyzed:	2016-03-23		Analy	vzed By: LQ
				CCVs True	CCVs Found	CCVs Percent	Percent	Data
Param	Flag	Cert	Units	Conc	Conc	Recovery	Limits	Analyzed
pH	1 1005	1,2,4,5	s.u.	7.00	7.03	100	98.6 - 101.4	2016-03-23
Standard (C	CCV-1)							
QC Batch:	129049		Date	e Analyzed:	2016-03-23		Analy	vzed By: RL
				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed

Standard (CCV-2)

Chloride

QC Batch:	129049			Date .	Analyzed:	2016-03-23		Analy	zed By: RL
					CCVs	CCVs	CCVs	Percent	
					True	Found	Percent	Recovery	Date
Param		Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride			1,2,3,4,5	mg/L	25.0	24.4	98	90 - 110	2016-03-23

25.0

24.4

98

90 - 110

2016-03-23

 $\mathrm{mg/L}$

 $1,\!2,\!3,\!4,\!5$

Work Order: 16022210 Brine Well Page Number: 19 of 20 Buckeye New Mexico

Appendix

Report Definitions

NameDefinitionMDLMethod Detection LimitMQLMinimum Quantitation LimitSDLSample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
\mathbf{C}	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	L-A-B	L2418	Lubbock
2	Kansas	Kansas E-10317	Lubbock
3	LELAP	LELAP-02003	Lubbock
4	NELAP	T104704219-15-11	Lubbock
5		2015-066	Lubbock

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.

Work Order: 16022210 Brine Well Page Number: 20 of 20 Buckeye New Mexico

F Description

U The analyte is not detected above the SDL

Result Comments

- 1 Analyzed out of hold time.
- 2 Analyzed out of hold time.

Attachments

The scanned attachments will follow this page. Please note, each attachment may consist of more than one page.

		1	48							ploi	1						4.	19	1-92	2-2		0.0.0	n .	4 57 8	-
	1200		8 7 8 980 -	pard	onsta r	t fron	ifferen	b ìi ən	IIT bri	urn Arou	L					~	L.V	91-	52	X	₹67 \Ui 1 ji@m+9	<u> 10</u> <u>10</u> <u>10</u>	8. 180	6 E F	
	392-7 392-7		-				2				12 Sector	4 84 8							-			_		10	5
	and. 1 Indu: (575) (575)	1		en 191	- 15 - 15	V	wije	PS	Ved	rossic	1	×		-			10			-	in discussion				142
	Hot Hot Fax		N N	×	501	L'N	J'h	USW2	ركو (Mon	>>>							55							
-+	10177	0 0.0	8	Viinilex	4IA ,9-	₽O₫	е <u>с</u> 0 ⁵ -И'	N 'N- 8	ON 't	05 '4 '10	0					N				8 - 2 50 - 12	-				-
ge	000	EST	Ĕ.		a de seña			jue	Conte	Moisture	1									_			5 ⁰ 8	pa 6	
Pa	Sting Ste ² , Ste ²	no.	-				{	309 / 1	808 s	esticide	1	-				10.00	-		5 04 0 - 10 - 10 - 10 - 10 - 10 - 10 - 10	-		15		tequin ired sportin	
	s Rd. Texa , Texa	NA S	Š.		а. С	07	0.1.01	808	9/ 280	CB's 80	1		16			_	-		102-1		1 #	esant Mile-7		asis R Requ tial Re	4
	Maye Maye oliton	SIS	80 -	1 		90	54	28 10/	76mi	SW/DE										+-	L KKS)		ght Bi Report f Spec	
	Bi 2501 Carre	ALI	กี _							SCI											IN U	1	190	y Wei RP R teck If	
		AN	ō _	73353				es es	oV ime	TCLP Pe	·		1		1. 199 1997		_		for par				í		
	ш	-	Į						səlitelo	TCLP Vo										2-5	Ш ^{ана}		(A)	X	1
	, Suit 9922 143 1944 143	Ċ	5 -	/200.7	0103 g	Cr Pb	3a Cd) s8 sł J sA pł	A gA sle A sløte	TCLP Meta		-							_		N N	z	N/X	Awa	Contraction of the local distance of the loc
	et Rd 585-3 585-3 88-34		ing the second s	12 A. 1				93	Z9 / 04	728 HA9			1.5								AB O	(7))) dspace	in-Rev	
	Suns so, Te (915) (915) 388) 5		- 100 <u>-</u>	(0	(C3			900LX	1 / L.8	108 H91					10							ture	Tea	-60-1	-
1	El Past Tel (Fax 1 (8					924	/ 0978	3 / 209	/ 120	8 XETX 8										-					
Ster 1 2.	200	1771	10.4300		1	1 624	8260	1 602 /	1208	MTBE	N.	8						19			T S R	T .	A A	F S B	
	ngên sa s	m	1.0	B.A				ING		JMIT	N: 36	1:30							,	11 - 12 A	INS COB	INS	38	INS OB CO CO	
	703 703 11	12		Mel		4		MPL		s	16.0	B			-			-			iei O	.e.	00.		
	et, Su as 79 39-63(5	5	4		BU		SP		JTA	110	3E									Tin .	<u>ا</u> ٿ	9	Ē	
	n Stre 1, Tex 32) 68 32) 68	L	0	06			R			1			-ste								4		2		
195	2 Basi Idlano Tel (4; ax (4	S	S	33		Ne	3	TIVE		NONE	~								_		Date 19	Date	107	Date	
1998) 1	5002	R	100	3		321	1:eil	THOI		HOBN	F	\vdash				+					CI		5		
19 N	e angere	N N	5	2	3.9	U.S.	gnatu	RESE		[⊅] OS ^z H			10 - 415 				- T		at a		(and	any:	4	any:	
18	uite 9	*:	5	Jor 1	1	t Nar	er Si	Ы		[©] ONH						-			815	19	of the	dmo	L	dmo	
	ue, S 7942 1296 -1298 296	hone	ax #:	-mail C		rojec	ampl			IJH	-					-	-		-		0 ~~			0	1
	Texas 794- 7794- 7794- 378-1	٩.	۳ عر			a.	S	XIX	Э	глов											šk	by:		by:	
1.000 million 1.000 million 1.000 million	erdeer oock , 1 (806 × (806 (800)		210		SO			MATF		AIA	-			_				<u>.</u>			ived	ived	100	ived	
an see	11 Abe Lubb Tel Fax	4.0	200	A	AT.		2		2	ABTAW 1102	X	X									Rece	Rece	Ma	Rece	
08.5	67(r R	0	मि	o dé		junc	mA /	amiov	ASP	ES.					- 14 - F		1					14 - 14 - 15 - 2 - 100 - 2	
		. 1	Br.	B	RA	6					-6	75	-			-	-				Time 2:30	Time		lime	-
2	C	4	EO	PR	B			SA	ANIAT	# COM.	7	7		ste de				-			. 61 9				
X		V	5 W	0																	te: 3	te:		ë	
5	con.]	, di	AN N	6		3				d	K									D' Da	Dai	1	Da	-
0	Si ysis	B	9	WA	N		2		DE		P	ATC									Ă		100		
2	I V anal	2	200	2	AA		(Uite):		000		N	3							5.		RIC	any:		any:	
	ace	8	38	16	X		ing si		IELC		Ŧ	d			Ĩ						and de	omp		duo	111
-	l III		Ar.	S	ove)	ъ	Splad	-			S	N			8						ي. ج		ľ	5	
# 	CA : lat	:e:	N.S.	L ü	m ab	YY Y	D (il				d	3R									No.	by:			
rder	mail	Nan	C	erso	o: nt fro	<	ocati	- North Sta	San Paris a	ÎN T	0								ine new	6 2000	shed M (L	hed		shea	
AB O		Ipany	310	tact F	iffere	ect #	ect L	Contract of	\B *	3 USI	ALLA	666	site.	1.4.2			and a	11 Mar 19	H - MA	n nati	sinpu	nquis		sinbu	- 111-1
) Ľ		Con	Ado	Con	Invo (If d	Pro	Pro		2	P	All										C Reli	Reli		Пал	0.4

Appendix "D"

• 2013 MIT Chart

D & L Meters & Instrument Service, Inc.

ø

Lovington, NM 88260 P.O. Box 1621 Office: (575) 396-3715 Fax: (575) 396-5812

BLOW-OUT PREVENTERS FLUID CONTAINMENT SYSTEMS

Invoice # 100177

Certification of Pressure Recorder Test:

Company:GandyUnit:2Model:8"ChartrecorderPressure Rating:1,000#

Serial #:

This Pressure Recorder was tested at midrange for accuracy and verified within +5% and -5% for 1,000# pressure element.

Issac Luna

Appendix "E"

- AOR Well Status List
- AOR Plot Plan

2015 BW-04 AOR Review-up-dated Apr 03, 2016 Well Status List

	API#	Well Name	UL Se	ectior	Ts F	Rg	Footage	Within 1/4 mi AOR * within 660 ft or Critical AOR	Casing Program Checked	Cased/Cemented across salt section	Corrective Action Required
0	<u>30-025-26883</u>	Wasserhund Eidson #1	M	<u>31</u>	16s <u>3</u>	<u>5e</u>	567 FSL & 162 FWL	NA	NA	NA	NA
1	30-025-25146	LimeRock-N Vacumm ABO #1	Ρ	36	16s 3	84e	460 FSL & 660 FEL	yes*	yes	yes	NO-P&A
1	30-025-35678	LimeRock St.VII #7	А	1	17s 3	84e	660 FNL & 660 FEL	yes*	yes	no	Re-Completion OCD Approved
1	30-025-31621	BTA Oil Producers	L	31	16s 3	5e	1980 FSL & 660 FWL	Yes*	yes	yes	NO ACTION REQUIRED

3 Total # of wells in adjacent quarter-sections 3 Total # of wells in 1/4 mile AOR 3 Total # of wells that are within 660 ft or have become within the Critical AOR of the outside radius of the brine well and casing program will be checked Annually.

Notes: * Means the well is within 660 ft or Critical AOR (1500-1600 ft) of the outside radius of the brine well and casing program will be checked annually.

Brine Well Area of R	eview (AOR) UL Plot Plan	Well API#:	30-025-26883	Note: Wells are identified by the
Operator Name:	Operator Name: Wasserhund INC		BW-04	in the well status list.
AOR Year:	2015	Location:	UL M-Sec 31-Ts16s-R35e	

e last 2 digits of the well's API#. API #'s are listed

Submit 1 Copy To Appropriate District Office	State of	f New Me	exico		Form C-103			
<u>District I</u> – (575) 393-6161 1625 N. French Dr., Hobbs, NM 88240	Energy, Mineral	s and Nati	Iral Resources	WELL API NO				
District II - (575) 748-1283 811 S. First St. Artesia NM 88210	OIL CONSER	VATION	DIVISION	30-025-35678				
<u>District III</u> – (505) 334-6178	1220 Sout	th St. Fra	ncis Dr.	5. Indicate Type of Lease				
1000 Rio Brazos Rd., Aztec, NM 87410 <u>District IV</u> – (505) 476-3460 1220 S. St. Francis Dr., Santa Fe, NM 87505	Santa I	Fe, NM 8	7505	6. State Oil & Gas Lease No. 28798				
SUNDRY NO (DO NOT USE THIS FORM FOR PROP DIFFERENT RESERVOIR. USE "APPI PROPOSALS.)	TICES AND REPORTS O OSALS TO DRILL OR TO DE LICATION FOR PERMIT" (FO	ON WELLS EPEN OR PL RM C-101) F	G BACK TO A OR SUCH	7. Lease Name North Vacuum State VII. 7)	or Unit Agreement Name Abo North Unit (form.			
	Gas well 🖾 Other	HOR	BS OCD	8. Well Numbe	r 62			
2. Name of Operator		MAR	1 8 2016	9. OGRID Num	nber			
Lime Rock Resources II-A, LP		11/~11	102010	10 Declarance	ar Wildoot			
1111 Bagby St., Ste. 4600; Houst	on, TX 77002	RE	CEIVED	North Vacuum ((Abo) (61760)			
4. Well Location	Contraction of the second							
Unit LetterA	:	e	N line and	660feet t	from theEline			
Section 1	Township 1	7S 1	Range 34E	NMPM	County Lea			
	11. Elevation (Show w	whether DR	, RKB, RT, GR, etc.	.)				
	4031 KD 403.	OL		1				
 TEMPORARILY ABANDON PULL OR ALTER CASING DOWNHOLE COMMINGLE CLOSED-LOOP SYSTEM OTHER: Recompletion 13. Describe proposed or comons of starting any proposed vertice of starting any proposed vertice of starting any proposed vertice of starting any proposed or completion or resonance of starting any proposed vertice of starting any proposed vertice of starting any proposed or completion or resonance of starting any proposed vertice of starting any proposed or comons of starting any proposed or completion or resonance of starting any proposed or completion or resonance of starting any proposed vertice of starting any proposed vertice of starting any proposed or completion or resonance of starting any proposed vertice of starting any proposed vertice of starting any proposed vertice of starting any proposed or completion or resonance of starting any proposed vertice of starting any proposed vert	 CHANGE PLANS MULTIPLE COMPL mpleted operations. (Clear vork). SEE RULE 19.15.' ecompletion. into the North Vacuum (Ar @ 12406' BP & sqz across Abo formation from ±8820'-8950' 	I v state all 7.14 NMA	COMMENCE DR CASING/CEMEN OTHER: pertinent details, an C. For Multiple Co tion, utilizing the fo	ILLING OPNS.	P AND A			
Spud Date: 4/15/16	Rig	Release D	ate:					
I hereby certify that the information	n above is true and comple	ete to the b	est of my knowledg	ge and belief.				
SIGNATURE Carlo Mi	artin TIT	LE_Carla	Martin/Regulatory	Tech DA	ATE3/17/16			
Time or print name	P	anil address			HONE.			
For State Use Only	E-n	and address	5	P	HONE:			
APPROVED BY:	and TIT	LE Pe	troleum Engine	er D	ATE 03/22/18			
Conditions of Approval (if any):								

	0	0	റ	14 E
	1 1	1	1	111
FЛ N			1.1	
	60			

	OPERATOR:	,	LEASE / WELL:	(was State	e VII. 7	1999	SURVEY: Sec 1, T17	S. R34E		1	Property No.			
		IG.	COUN	TY/STATE:			SURFACE L	OCATION:	1	100	FIELD: North Vacuum			
	COMPLETION			ounty, NM				X OUD PE		-	North Vac	uum		
DI	STRAI	GHT HOLE	Tubulars	Size	TUE	Grade	Thread	Тор	MD	SKS	TYPE	VELLHEAD	DATA	
CDEV:	deg	@ MD	DRIVE PIPE		1						WP			
@ PERFS:	deg	@ MD @ MD	SURFACE	20"	42#	H-40	STC	0,	92' 1610'	790	R	C FLANGE:		
@ PERFS:	deg	@ MD	INTERMEDIATE	8-5/8"	32#	K-55	LTC	0'	5020'	1,190	E	P THREAD:		
DRILLIN	IG / COMPLE	TION FLUID	PRODUCTION PROD TIEBACK	4-1/2"	11.6#	P-110	LTC	0,	12,732'	1,380	TUBIN	NG HANGER:	1	
LING FLUID:	ppg	•	PROD LINER						14 A. A.	100	B	TM FLANGE:	0.25	
LLING FLUID: LLING FLUID:	PPg		TUBING	2-3/8"	4.7#	N-80	8rd	0'	12400'	Contraction of	ELEV	PV PROFILE: /ATIONS:	GROUN	
PLETION FLU	JID: ppg	- 10 % See						1			RKB-D	F:	ELEVATI	
KER FLUID:	ppg	•	COILED TUBING	-	-		1.00			1000	RKB-ELE	V:	4033	
	WELLBORE	SKETCH			EQUIPME	NT DESC	RIPTION			ID	OD	DEPTH TVD	DEPT	
81	DRAWING NO	T TO SCALE	6		PROP	OSED	VELL							
-		-	-		FROF	USED	YELL			1.18			1.14	
8		6	hole in 8	-5/8" csg @ 700' - pun	nped 300 sxs d	own 4-1/2" x 8	-5/8" annulus , c	irc to surface	¥	-			-	
			11-3/4	" surface csg	@ 1610' -	cmt'd w/7	790 sxs to s	surface	1	- ////				
8		8	TOC	2 1740' (TS)	1			E yes						
			TOC	2000'	N.		200	1000	100	14				
ALC: N		areas a	I I I I I I I I I I I I I I I I I I I			1 and a	327214	17						
100				12 T	2.14		1999	1.11			1.5	12		
-			8-5/8"	intermediate	csg @ 502	20' - cmt'd	w/1190 sx	s			1.8.5			
Contraction of the local distribution of the							1.10	1	2	SCI.S.P.	1.100	14		
30.4		1				-	1		line.					
			Propos	sed Tubular Instal	lation:	E' & EOT A	-0150'	ie	-					
			Roupe	шр, та ш~8450	, SN@ ~037	5, & EUT (y~9150	-						
				199			1.56		197					
				1.000	5 (D) (1.1		1.1.1.1	1000		1.2.2		
					14.13				1.5	-				
-			DV too	1@ 8498'	1. 1. 1. 1.	18 / R. 1	123122			1.1	C. Late	e l'aler	1.8	
				14			-		1	1.1.1.1.1.1	1			
			Propos	ad parts ~8820' 8	1950'	-	1		-					
	T	-	Propos	eu peris -0020-0	1900	12.1	1	-	110					
				1.2.1.5	- 117						24.50			
		100		2017	1.11.2	1988		Sec. 2		-	199			
	All al		sqz pe	rfs @ 9600' - circ (cmt to abov	e Abo	and the second	1.5		110	18.00			
	1999		1.1	18 1.1	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			here all			1.1	198.349	100	
	A States	200	TOCO	44 475	the set	Contract of		_	_		1			
2		3	100 @	11,4/5			1.00	1					-	
1						-			The	-	1			
and a	and all his rates	NOVE IN	Propos	red CIBP @ 12,23	0' + 20' cmt	Shir	1.00		1.1.1.1					
		201 201	Atoka	perfs @ 12,280'-98	8'		132.00		1					
·		and a second									1.1			
E.F.		225				19.2	134		12.3					
256	CARGE MARCHINE	SUCCESSION OF	dump	pail 35' cmt on pk	4061	2/0" + + 1		2	in the			1		
aller a			Perma	nem packer @ 12,	,400 w/1 jt 2	-are tubin	y, a 4 50D	1						
and the second			CIBP @	0 12,469'				1				1.0110		
	CAN STREET			States 1	1.56	ALL DIN		in the	1.1			1.3.3		
Set	19915	19	Morrow	v perfs @ 12,551'-	57', 12,604'-	08', 12,612'	-18', & 12,621	'-27' (6 spf)		*				
	No Sector	2		20 bb/s 15% HCI	, 10 bbls Morro	ow blend 10% I	HCI, 70/30 Metha	nol, 3600 gal	12 182	1928	2.0.25		IS II	
				50Q CO2 Morrow	w blend	1.25	-	133		2.5.7-		1.1		
1	10	and a second	4.1/2"	production ce	a @ 12 71	32' - cmt'e	w/1380 ev	s	-	1				
题	1.3		COMME	ENTS:	3 8 12,13	Critt C	Working Inte	rest:	1	PLUG BACK	DEPTH:			
ave as		7001	API #	3	0-025-35678		Net Revenue	Interest:		TOTAL WEL	L DEPTH:			
1000 (1000)	PBTD 12,	122								DDED	APED OP	DATE		
ave de verse ve	PBTD 12,		Propert	y#						PREF	AREDOR	DATE:		

Appendix "E"

- AOR Well Status List
- AOR Plot Plan
- Lime Rock API # 30-025-35678 Proposed Re-Completion

Appendix "F"

- Wellbore Sketch, Brine Cavity Calculations with new 2015 Radius and D/H calculations.
- Aerial View showing Cavern Radius

Appendix "G"

• Solution Cavern Monitoring Plan Program

"Solution Cavern Monitoring Plan Program"

Wasserhund Inc. Buckeye Brine Station OCD Permit BW-04 API No. 30-025-26883 Eidson #1 Unit Letter M-Section 31-Ts 16s – R35e

Wasserhund Inc. hereby proposes to install a minimum of three National Geodetic Survey (NGS) survey control stations, i.e. survey monuments, around the brine well in a manner that will adequately provide vertical geodetic data to determine if any subsidence is occurring at the aforementioned well site.

A Berntsen Monument Installation Detail is included for reference. An approved Surveying/Contracting company will install the complete system.

A certified surveyed plat will be provided showing the location of the monuments and all significant features of the site.

The monuments will be laid out in a triangulation configuration around the wellhead, and located so as to pick-up any movement related to up-lift or subsidence of the anticipated areas of greatest concern.

The wellhead will also be included in the measurements, along with a known geodetic reference point outside of the possible influence of the well. While the system will focus on vertical movements, lateral movements will be visually noted and will actually impact the vertical readings.

The surveys will be performed semi-annually, evaluated and reported to the agency. All survey readings will be adjusted for and conform to the New Mexico Coordinate System.

Price LLC will conduct surveys in-house using approved level measuring instruments with a set number of readings collected by a licensed surveyor for quality control.

The data will be tabulated and a graph be maintained for each point over the life of the system.

Attached: Examples Only: Topographic Map-Vicinity Map shows Local Benchmarks-Example only USGS Map-Example only Susidence Monument Location Map- Example only. Berntsen Monument Installation Detail-Actual Data Sheets-Example Only Graphs-Example Only

11	14	-1.5010	427.9000
11	15	-2.6820	222.6000
11	16	-6.0820	384.5400
16	17	-4.3450	464.4600
17	18	-5.5910	384.1600
18	19	-2.5440	424.7600
19	20	-2.6950	398.0200
20	21	-2.8570	385.9600
21	22	-2.1030	267.9000

ADJUSTED ELEVATIONS

Station	Adjusted Elev	Standard Dev.	
L98	3434.3700	0.00000	NGS MONUMENT L98
22	3434.3700	0.00000	
1	3436.9801	0.01150	
2	3439.3987	0.01639	
3	3442.4091	0.01964	
4	3444.7482	0.02205	
5	3450.5778	0.02338	
6	3455.7212	0.02422	
7	3457.9332	0.02724	MONUMENT #1
8	3459.1092	0.02888	MONUMENT #2
9	3460.4962	0.02863	MONUMENT #3
10	3461.9212	0.02775	STATE #1 WELL
11	3460.6115	0.02450	(AVERAGE)
12	3461.9215	0.02694	STATE #1 WELL 3461.921
13	3460.4925	0.02785	MONUMENT #3 3460, 494
14	3459.1105	0.02810	MONUMENT #2 3459.110
15	3457.9295	0.02643	MONUMENT #1 3457.931
16	3454.5260	0.02425	
17	3450.1768	0.02326	
18	3444.5823	0.02181	
19	3442.0345	0.01937	
20	3439.3359	0.01595	
21	3436.4754	0.01061	

From To Elev. Diff. Residuals	~
	~
(adjusted)	
L98 1 2.6101 -0.0029	· /
1 2 2.4186 -0.0034	
2 3 3.0104 -0.0036	
3 4 2.3390 -0.0040	
4 5 5.8297 -0.0033	
5 6 5.1434 -0.0036	
6 7 2.2120 -0.0000	
6 8 3.3880 -0.0000	
6 9 4.7750 -0.0000	
6 10 6.2000 -0.0000	
6 11 4.8903 -0.0037 CT 1	
11 12 1.3100 -0.0000	
11 13 -0.1190 -0.0000	
11 14 -1.5010 -0.0000	
11 15 -2.6820 0.0000	

Appendix "H"

BW-04 Wasserhund Inc. Closure Cost Estimate.

2015 Annual Report BW-04 Wasserhund Inc. Closure Cost

CPI

Pulling Unit Rig	\$25,000	1.03	\$25,750
Halliburton Cement Job	\$8,000.00	1.03	\$8,240
Post Subsidance Monitoring 5 years	\$15,000.00	1.03	\$15,450
Tank Removal, Pad Clean-Up	\$30,000.00	1.03	\$30,900
Consulting fees	\$10,000.00	1.03	\$10,300
Total Estimate	\$88,000	1.03	\$90,640

RECEIVED OCD

Annual Brine Well Report Gandy Corporation Eidson Brine Station BW Permit #B4-04 API #30-025-26883 January 31, 2010 Larry Gandy 2. Summary:

۲

r

Fresh water injected down tubing producing brine water through casing into storage tanks.

Remedial:

See attached C-103.

3. Production Volumes:

Beginning balance	5,523,594
2009 total	331,079
Ending balance	5,854,673
	ALC: NOT THE OWNER OF THE OWNER

Maximum pressure340#Average pressure280#

- 4. Chemical Analysis: See attached.
- 5. MIT, Casing Test: Chart attached.
- 6. Deviation: None
- 7. Leaks or Spills: See attached C-141.
- 8. Groundwater Monitoring: None required.
- 9. Cavity Information: See attached.
- 10. AOR Summary: See attached.
- 11. Sign-Off Requirements: See attached.

"Don't Treat Your Soil Like Dirt!"

....

WHOLE EARTH ENVIRONMENTAL ATTN: MR. MIKE GRIFFIN 19606 SAN GABRIEL HOUSTON, TEXAS 77084 FAX: 281-646-8996

Sample Type: Water Sample Condition: Intact/ 4 deg. C Project #: None Given Project Name: Eidson Station Project Location: Norie Given

-

Y

Sampling Date: 12/04/00 Receiving Date: 12/09/00 Analysis Date: See Below

ELT#	FIELD CODE	mg/L	Chloride mg/L	Carbonate mg/L	Bicarbonate mg/L	mg/L	uS/cm	
35143 35144	Salt Water Fresh Water	3113 60.2	221563 35	<2	78	332232	164200 590	
		00.2			140	510	550	
		50 5	E218	×	· *	*	1422	
		50.0	5000	:*	*	*	1432	
		101	106	:*		*	1415	
	BLANK	<0.5	<10	<2	<2	<5	*	
	ANALYSIS DATE	12/13/00	12/12/00	12/12/00	12/12/00	12/11/00	12/12/00	

METHODS: EPA 375.4, 325.3, 310, 160.1, 120.1

C.L. CK new

Raland K. Tuttle

/2-27-00 Date

12600 West I-20 East • Odessa, Texas 79765 • (915) 563-1800 • Fax (915) 563-1713

"Don't Treat Your Soil Like Dirt!"

WHOLE EARTH ENVIRONMENTAL ATTN: MR. MIKE GRIFFIN 19606 SAN GABRIEL HOUSTON, TEXAS 77084 FAX: 281-646-8996

Sample Type: Water Sample Condition: Intact/ 4 deg. C Project #: None Given Project Name: Eidson Station Project Location: None Given

Sampling Date: 12/04/00 Receiving Date: 12/09/00 Analysis Date: 12/12/00

ELT#_	FIELD CODE	pH s.u.	Hardness mg/L	Gravity @ 60 deg F	
35143	Salt Water	6.88	42000	1.185	
35144	Fresh Water	8.42	650	1.000	

QUALITY CONTROL	7.02	*	*
TRUE VALUE	7.00	*	*
% PRECISION	100	*	*
BLANK	*	<10	*

METHODS: EPA 150.1, 130.2

Raland K. Tuttle

12-27-00 Date

12600 West I-20 East • Odessa, Texas 79765 • (915) 563-1800 • Fax (915) 563-1713

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

WHOLE EARTH ENVIRONMENTAL ATTN: MR. MIKE GRIFFIN 19606 SAN GABRIEL HOUSTON, TEXAS 77084 FAX: 281-646-8996

Sample Type: Water Sample Condition: Intact/ 4 deg. C Project #: None Given Project Name: Eidson Station Project Location: None Given

ŧ

Sampling Date: 12/04/00 Receiving Date: 12/09/00 Analysis Date: 12/12, 12/14, 12/20/00

ELT#	FIELD CODE	Ca mg/L	Mg mg/L	Fe mg/L	_Ba mg/L	
35143	Salt Water	2328	7885	1.44	<0.10	
35144	Fresh Water	34.2	9.52	0.18	<0.10	

QUALITY CONTROL	10.29	4.91	0.99	2.01
TRUE VALUE	10.00	5.00	1.00	2.00
% PRECISION	103	93	99	100
BLANK	<0.10	<0.10	< 0.03	<0.10

METHODS: SM 7000 series

l. ck Jun

Raland K

 $\frac{12-27-\alpha}{Date}$

12600 West I-20 East • Odessa, Texas 79765 • (915) 563-1800 • Fax (915) 563-1713

Relinquishe	M	Relinguish								156	196									12600 We Odessa, 1
dby	Ar	d by:								14	T.Y	Muo eati		Sampler	Tele	Cit	Compan	Сот	Projec	st 1-20 E exas 71
		2									5			Signati	phone	y/State/;	iy Addre	pany Na	t Mana	east 9763
										294	1+						55	line L	ger:	1
										Ĺ	Le)				600			とう	iM.	:
	51	-							-	400te	te				8			ole	61	Pho Fa
Date	20902									2	}	CODE			12			Ę	15))ne: 91 ax: 91
	0														2			itt	K	15-563- 15-563-
Time	30														858			5		1800
0 8		0	-	$\left - \right $		+-			$\left \cdot \right $	<u> </u>	$\left\lfloor - \right\rfloor$				v) XI		
										2-6	2-4	Date Sampled						200		
N Eq				$\left - \right $	-		+			100								RS		
È										:46	04:1	Time Sampled			۴a			FF		
N.S.						_		<u> </u>							× No:					
				┝╼┨	-+		+			2 X	Z	No. of Containers	ר	1	28					
					_		1	1		X	×	HNO, - metals	,		1.64					
							+-								16-3					
												H ₂ SO ₄			399				1	
1250 D		2	$\left - \right $	┝─┤	-+		4		$\left - \right $	\succeq	X	Other (Specify) None Water			6					
8 #	ala		\square			+	-					Sludge Sait			•	•	,	,	•	CHAII
	 	-1 +1			_		1			X	$\mathbf{\mathbf{\nabla}}$	Other (specify)	$\left \right $				Pro	т	Proje	VOFCI
0) e				\uparrow		1	[\square	TPH 418 1				Ро	ject Lo	Project	ct Nam	usrop
	Ж	apolation apolation			_							TPH 12 1005/1006	TCLP:			#	2 2	.# 		Y RECI
	" 8	Contar ature U ory Co			_		$\left \right $			0~	Υ.	Mittais: As Ay Ba Od Cr Rb Ho Se Volatiles							ic.	ORD AI
	R				$\overline{+}$	-	F		-	_		Semivolables BTEX 80218/5030	halyze i						io va	VD AN.
	<u>ک</u> ش	n și ĝ					Ŧ			$\overline{\boldsymbol{\lambda}}$	X	Chlonides Soy	^g						45	al YSIS
	Ê,	RA A								X	X	Hardness							1.1	; REQL
Sec. 10	- 2	<u>е</u> О					+			$\frac{1}{2}$	$\overline{\mathbf{x}}$	Mg, Ca, Fc, Ba							č	IES]

.

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised October 10, 2003

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

	Release Notification and Corrective Action											
	OPERATOR Initial Report Final Repo								Final Report			
Name of Co	mpany (Contact Larry Gandy										
Address F	•.0. Box	Telephone N	<u>√o. 575–39</u>	6-05	22							
Facility Nar	ne Eids	<u>son Stat</u>	e	<u> </u>		Facility Type Brine and Fresh Water Station						
Surface Ow	ner Eids	son Ranc	h	Mineral O	wner	NM			Lease N	lo. 25-26	5883	
	LOCATION OF RELEASE											
Unit Letter	Section	Township	Range	Feet from the	North	/South Line	Feet from the	East/	West Line	County		
M	31	16s	35e	567	So	outh	162	We	st	Lea		
		·	La	titude 32° 52	'23"	Longitud	le 103° 30' 1	6"		· · · ·		
			~~~		TIRE		F A S F					
Type of Rele	ase Bri	ne water		INAL	UNE	Volume of	Release 1800	bb1	Volume F	Recovered	750	bbl
Source of Re	lease Op	<u>en valve</u>				Date and I	Hour of Occurrence	ce	Date and	Hour of Dis	covery	/ 05/03/09
Was Immedi	ate Notice (	Given?				If YES, To	Whom?					9:00 am
		<u> </u>	J Yes		equirea	Mark						
By Whom?	<u>Cecil</u>	<u>Guillory</u> abed?				Date and H	Hour 05/03/0	<u>)9 1</u>	0:00 an	1		
was a water	course real		]Yes 🛛	] No		II 115, V	onume impacting		lercourse.			
If a Waterco	urse was Im	pacted. Desc	ribe Fully.	*		<u> </u>						
		<b>1</b> ,										
÷												
Describe Ca	use of Prob	lem and Rem	edial Actio	on Taken.*								
Vanda	als rem	oved loc	k and	opened val	ve o	n brine :	tank runnir	ng wa	ter dov	vn bar (	ditc	h.
Vacui	um truc	ks picke	d up f	luids and	haule	ed to SWI	D.					
										<u> </u>		
Describe Ar	Describe Area Affected and Cleanup Action Taken.*											
Bar	Bar ditches north of battery. One call made, Remediation Plan will be submitted.							a.				
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and												
regulations	all operators	are required	to report a	nd/or file certain	release	notifications	and perform corre	ective ac	ctions for re	leases which	n may	endanger
public health	n or the env	ironment. The	e acceptar	nce of a C-141 rep	ort by t remedia	the NMOCD r	narked as "Final I tion that pose a th	Report"	does not re	lieve the op	erator (	of liability
or the enviro	or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other											
federal, state, or local laws and/or regulations.												
	١	$\sim$	~				OIL CON	<u>ISER</u>	VATION	DIVISI	<u> 0N</u>	
Signature: how chancey								~				
Printed Name: Larry Gandy						Approved by	y District Supervi		th-00	en f	J.J	4.5
Thinks Hully Stilly Stilly							where an	1/01	2			
Title: See	cretary	/Treasur	er			Approval Date: 05 05 09   Expiration Date: 07/03.09				5109		
E-mail Add	E-mail Address:					Conditions of Approval: SUBMIT FINAC						
Date: 05/04/09 Phone: 575-396-0522					6-141 BY 11RP-09-5.2172							

* Attach Additional Sheets If Necessary

ł

1	SIG	-	-	Ч			-
	<b>JR</b> COM						
	TYPENE						
Ŵ	EWELL	0	U	0	0	υ	0
	IAYT ON						
5949 S	TY LA	9867 S	069 P	2354 S	9867 S	5822 S	9867 : S
5	PROPER		30			3	
	N UL				~		
126 4	DE SD	154 P	1 64.	NO2 3	)54 0	121 J	154 0
84	<b>GRID</b>	200	1471	3(	200	1899	200
2555	DEPTH C	0868	12750	12900,	8883	0	8950
	TVD	5 gr					
2.526,883	Dist	829	1,477	1,498 🖉	1,939	2,059	2,145
3.00	1990 - 19 19			Ş.		ř.	
E	Rge	E	щ	5	Ē	щ	E.
	d	34	2	35	τ¢.	, iv	ž
1 16S	Ts	5 I 6S	17S	l 16S	5 16S	5 16S	5 16S
ŝ	Sec	3	-	31	ž	Ř	ř
	L I						
Z	0CD 0		Ŧ	-	c	I	C
<i>.</i>	CD		`	T		-	.,
-2 W	EW.	:0:E	0 E	0 W	7 E	0 E	10 E
16	TG_EW	99	99	66	177	175	198
	<u> </u>						
s	NS C	ŝ	z	S	ŝ	s	S
567	SN D	460	660	1980	608	1330	460)
; ; ; ; ;	E		. I. ʻ				
	^r or	0	PERATIN	CERS	<u>e</u>	TING LP	2
CORP	OPERAT	VERGY C	FAKE OF	, PRODU	VERGY C	5 OPERA	NERGY C
GANDY		SAGE EN	CHESAP	BTA OIL	SAGE EN	ENCORE	SAGE EN
STATE	NAME	VACUU	VH 007	NI 9205 I	VACUU	E 36 ST/	VACUU
EIDSON	WELL	NORTH	STATE	VACUL	NORTH	ENCOR	NORTH
2526883	APL	2525146	2535678	2531621	2537018	1537993	2525170
3002		3002	3002	3002	3002	3002	3002

,

Lea	PROD_2 COUNTY	0 Lea	41 Lea	150 Lea	102 Lea	Lea	339 Lea
	PROD 200 TER	0	23	506	2209		5785
	PROD 2001	105	159321	55	1260		1852
	PROD 204AS	0	54350	0	560		1506
	S PROD 20AS	-	151	150	151		151
90-6661	20 AST PROD IN	2005-11	2006-05	2006-05	2006-05		2006-05
	ATER INJ 20 ATER INI						
35 E	tgeN RgeD //	34 E	34 E	35 E	34 E	34 E	34 E
S	TspD 1	S	S	S	S	S	S
16	TspN	,	17	16	,	16	16
	DUCING POC	VACUUM;AB	<b>DR_VACUUM;AT</b>	VACUUM:AB	VACUUM:AB		VACUUMAB
	ATE Formation	ABO	ATOKA-M	ABO	ABO		ABO
21-Aug-80 Active	PUD_DATE OMPL_STATU PUUG_D	Active	03-Sep-01 Active	Active	30-Mar-05 Active	Unknown	Active
40	ACRES S	80	320.31	118.33	80	320	80

(?_).



## ECHO – LOG

## **Gandy Corporation**

## Brine Well No: 04

## **Eidson Brine Station, New Mexico**

First SOCON Sonar Well Services Survey

10/21/2008

083069



### SOCON Sonar Well Services, Inc.

11133 I-45 South, Ste. E Phone (936) 441-5801 Conroe, Texas 77302 Fax (936) 539-6847

e-mail: soconusa@socon.com



Brine Well No: 04

083069

10/21/2008

**Results of the Cavern Survey** 

### By means of Echo-Sounding

In the cavern

## Brine Well No: 04

Date: 10/21/2008

083069

**Customer:** 

**Gandy Corporation** 

## Lovington, New Mexico

Responsible for the survey:

Surveyor:HL Van MetreLeadership:Mr. Dale GandyInterpreter:HL Van MetreControl:Mr. Richard Lawrence



083069

10/21/2008

## Contents

Summary of results

Brine Well No: 04

Legend

Enclosures:

Volume (diagrams and lists)

Diameter and radii (diagrams and lists)

Perspective views

Maximum plots (top view)

Horizontal sections

Maximum plot (side view)

Vertical sections



	Brine Well No: 04	083069	10/21/2008
Summa	ary of results		
<u>Well c</u>	details		
Ali d	lepths are given as:		MD
Datu	Im level for all depths:		BHF
Shoe	e of the 4-/2" - tubing:		1909.0 ft
Refe	erence depth for ECHO-	LOG:	1909.0 ft
Dep	th correction:		0.0 ft
,			
<u>Detai</u>	ls of survey equipment		
Mea	suring vehicle used:		Grey WireLine
Tool	ls used:		XN02 – R185
<u>Gene</u>	ral details		
Num	nber of runs:		1
Mea	sured horizontal sections	5:	13
Mea	sured tilted sections:		0
Low	est survey depth:		1944.0 ft



Brine Well No: 04

10/21/2008

### Maximum and minimum dimensions with ref. to the measuring axis

083069

### **Reference direction:**

**NOJO** 

## magnetic north

Determination out of 12 vertical sections derived from horizontally and tilted measured data at1 5 degree intervals:

Minimum radius:	0.0 ft
Depth:	1945.1 ft
Direction:	0°
Maximum radius:	1.8 ft
Depth:	1911.0 ft
Direction:	180°
Highest point of cavern:	1910.0 ft
Horizontal distance:	1.1 ft
Direction:	0°
Lowest point of cavern:	1945.1 ft
Horizontal distance:	0.0 ft
Direction:	0°
Lowest point in the measuring axis:	1945.1 ft

Determination out of 13 horizontal sections in the depths between 1910 feet and 1944 feet at 5 degree intervals:

1.8 ft
1911.0 ft
100°
3.3 ft
1911.0 ft
295 - 115°
10.7 Bbls

Depth range:



Brine Well No: 04

083069

10/21/2008

#### **Interpretation**

Supposing a rectilinear propagation of ultrasonic waves all recorded echo travel times were converted into distances by using the subsequent speeds of sound:

5902 feet/second in brine (measured)

In the case of recording several echoes along one trace of echo signals, the representative echo signal was selected according to the level of amplitude, transmission time, and density of measured points and the shape of the cavern.

#### Horizontal sections

13 horizontal sections at following measured depths are included as graphical plots in this report:

1910.0 ft	1911.0 ft	1912.0 ft	1914.0 ft	1916.0 ft	1918.0 ft	1920.0 ft
1925.0 ft	1930.0 ft	1935.0 ft	1940.0 ft	1942.0 ft	1944.0 ft	

The following 1 sections are constructed:

1945.0 ft

#### Tilted sections

0 sections recorded with tilted echo-transducer at following measured depths are presented in the vertical sections:

#### Vertical sections

The shape of the cavern was determined by interpretation of all horizontally and tilted measured data and is presented by 36 vertical sections in this report.



Brine Well No: 04

083069

10/21/2008

### Maximum plots (top view)

The maximum plot presents the largest extension of the cavern in a top view. The first picture shows the areas of all horizontal sections and the area resulting out of the vertical sections (hatched). The resulting total area is shown in the second picture (cross hatching) together with the largest single area.

In both pictures the total centre of gravity of the cavern is shown with its distance and its direction referring to the measuring axis.

The total centre of gravity is derived out of the envelope, which is the connection line of the largest cavern extension in every direction

### Perspective views

Several perspective drawings are included in this report to give a quick review of detailed relations.



Brine Well No: 04

083069

10/21/2008

### LEGEND

- Measured point recorded with horizontal adjusted ultrasonic transducer
- O Measured point recorded with tilted or vertical orientated ultrasonic transducer
- $\Delta$  Interpolated point derived from the vertical sections
- Connection line between two measured points in order to calculate the volume
- Assumed connection line (in areas which are not sufficiently covered by measured points)
- N Magnetic north determined with compass inside the tool (Magnetic compass in areas without tubing) (Fibre gyro compass in areas with tubing)
- (N) Assumed north direction (for sections in magnetic disturbed surroundings without fibre gyro compass)
- a Longest extension in section (Without considering of hidden leached pockets)
- **b** Longest extension in section perpendicular to a (Without considering of hidden leached pockets)
- **a/b** Ratio of longest extensions in section which are perpendicular to each other
- (xx m²) Area in actual section resulting from hidden leached pockets
- r~ Average radius
- © 021835 29.04 2002 Job number and survey date



Brine Well No: 04

083069

10/21/2008




Brine Well No: 04

083069



Brine Well No: 04 --> 60° <--



Ŧ

# SOCON Sonar Well Services, Inc.

Brine Well No: 04

083069

10/21/2008



Brine Well No: 04 --> 120° <--



Brine Well No: 04

083069

10/21/2008



Brine Well No: 04 --> 180° <--



Brine Well No: 04

083069

10/21/2008



Brine Well No: 04 --> 240° <---



Brine Well No: 04

083069

10/21/2008



Brine Well No: 04 --> 300° <--



SOCON Sonar Well Services, Inc.





_____



## Volume list

Brine Well No	o: 04		083069			10/21/2008		
Depth [ft]	Radius [ft]	Area [ft ² ]	Dept	h range [ft]	Volume [bbls]			
			from	to	partial	total		
1910.0	1.4	6	1910.0	1910.5	1	1		
1911.0	1.6	8	1910.5	1911.5	1	2		
1912.0	0.9	2	1911.5	1913.0	1	3		
1914.0	0.8	2	1913.0	1915.0	1	3		
1916.0	1.0	3	1915.0	1917.0	1	5		
1918.0	0.7	1	1917.0	1919.0	0	5		
1920.0	0.6	1	1919.0	1922.5	1	6		
1925.0	0.5	1	1922.5	1927.5	1	6		
1930.0	0.7	1	1927.5	1932.5	1	8		
1935.0	0.6	1	1932.5	1937.5	1	9		
1940.0	0.7	1	1937.5	1941.0	1	10		
1942.0	0.7	2	1941.0	1943.0	1	10		
1944.0	0.7	2	1943.0	1944.5	0	11		
1945.0	0.1	0	1944.5	1945.0	0	11		





# Table of volumes (foot by foot)

Job-No	Job-No.: 083069, Name: Brine Well No: 04, Date: 10/21/2008										
depth	volume	depth	volume	depth	volume	depth	volume	depth	volume		
[ft]	[bbls]	[ft]	[bbls]	[ft]	[bbls]	[ft]	[bbls]	[ft]	[bbls]		
1910	0	1911	1	1912	2	1913	3	1914	3		
1915	3	1916	4	1917	5	1918	5	1919	5		
1920	5	1921	5	1922	6	1923	6	1924	6		
1925	6	1926	61	1927	6)	1928	7	1929	7		
1930	71	1931	7	1932	8	1933	8	1934	8		
1935	8	1936	8	1937	91	1938	91	1939	9		
1940	9	1941	10	1942	10	1943	10	1944	11		
1945	11										

Brine Well No: 04 Report number: 083069 Date: 10/21/2008



10/21/2008

1 inch:5 ft





Signer Well Services SOCON Sonar Well Services, Inc.

Brine Well No	: 04				083069	10/21/2008		10/21/2008
Depth	Radiu	s [MIN]	Radius	s [MAX]	Diam	eter [MIN]	ſI	MAX
[ft]	[ft]	[°]	[ft]	[°]	[ft]	[°]	[ft]	[°]
1910.0	1.0	332	1.5	85	25	152 <-> 332	2.8	60 <-> 240
1911.0	1.4	2	1.8	100	3.0	37 <-> 217	3.3	115 <-> 295
1912.0	0.5	261	1.1	75	1.6	69 <-> 249	1.9	10 <-> 190
1914.0	0.4	236	1.3	110	1.2	57 <-> 237	1.9	165 <-> 345
1916.0	0.8	242	1.5	155	1.9	17 <-> 197	2.3	160 <-> 340
1918.0	0.3	166	1.0	25	1.0	143 <-> 323	1.3	25 <-> 205
1920.0	0.2	221	1.0	35	0.9	131 <-> 311	1.3	35 <-> 215
1925.0	0.5	1	0.5	0	1.0	1 <-> 181	1.0	0 <-> 180
1930.0	0.4	196	1.0	80	1.1	17 <-> 197	1.4	130 <-> 310
1935.0	0.2	251	1.2	140	0.8	38 <-> 218	1.4	140 <-> 320
1940.0	0.3	236	1.1	120	1.1	15 <-> 195	1.4	120 <-> 300
1942.0	0.3	246	1.1	130	1.1	30 <-> 210	1.5	130 <-> 310
1944.0	0.3	251	1.0	65	1.2	5 <-> 185	1.5	140 <-> 320
1945.0	0.0	250	0.1	75	0.1	68 <-> 248	0.1	150 <-> 330

### Table of radii and diameters



# Table of radii in N-E-S-W-NE-SE-SW-NW presentation

Brine Well	No: 04			1	10/21/2008				
Depth [ft]	<r> [ft]</r>	N [ft]	E [ft]	S [ft]	W [ft]	NE [ft]	SE [ft]	SW [ft]	NW [ft]
1910.0 1911 0	1.4 1.6	1.1 1 4	1.5 1 7	1.5 1.8	1.3 1.5	1.3 1.5	1.5 1.8	1.4 1.5	, 1.1 1 4
1912.0	0.9	0.7	1.1	1.1	0.5	1.0	1.1	0.7	0.5
1914.0	0.8	0.7	1.1	1.1	0.4	0.7	1.3	0.5	0.4
1918.0	0.7	0.9 0.8	1.3	0.3	0.8	1.1	0.6	0.9	0.8
1920.0	0.6	0.7	0.9	0.3	0.2	1.0	0.5	0.2	0.4
1925.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
1930.0	0.7	0.0	0.9	0.5	0.4	0.9	1.1	0.4 0.3	0.5
1940.0	0.7	0.6	1.0	0.6	0.3	0.8	1.0	0.4	0.3
1942.0	0.7	0.6	1.0	0.7	0.3	0.9	1.0	0.4	0.4
1944.0	0.7	0.6	1.0	0.7	0.4	0.9	1.0	0.4	0.4
1945.0	0.1	0.1	0.1	0.1	0.0	Ý 0.1	0.1	0.0	0.0



SOCON Sonar Well Services, Inc.



_____



#### Brine Well No: 04





#### Brine Well No: 04



Sonar Well Services

Socon

SOCON Sonar Well Services, Inc.

#### Brine Well No: 04



Sonar Well Services

Brine Well No: 04

Socon

SOCON Sonar Well Services, Inc.





#### Brine Well No: 04





#### Brine Well No: 04



socor SWS

SOCON Sonar Well Services, Inc.

#### Brine Well No: 04

## 10/21/2008

.





#### Brine Well No: 04





Brine Well No: 04

083069

10/21/2008

#### HORIZONTAL SECTIONS

Brine Well No: 04

Report No.: 083069

Utilized speed of sound: 5902 feet/second

Measuring date: 10/21/2008

Scale: 1: 50

Horizontal sections measured at following depths:

1910.0 ft	1911.0 ft	1912.0 ft	1914.0 ft	1916.0 ft	1918.0 ft	1920.0 ft
1925.0 ft	1930.0 ft	1935.0 ft	1940.0 ft	1942.0 ft	1944.0 ft	

The following 1 section is constructed:

1945.0 ft

SOCON



SOCON Sonar Well Services, Inc.





Brine Well No: 04					083069 10					1/2008
Depth: 1910	.0 ft									
[°]					Radii in	[ft]				
0	1.1	1.1	1.2	1.2	1.2	1.2	1.2	1.3	1.3	1.3
50	1.3	1.3	1.4	1.4	1.4	1.4	1.4	1.5	1.5	1.5
100	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
150	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
200	1.5	1.5	1.5	1.5	1.4	1.4	1.4	1.4	1.4	1.3
250	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
300	1.2	1.2	1.2	1.1	1.1	1.1	1.0	1.0	1.1	1.1
350	1.1	1.1								
Depth: 1911	.0 ft									
[°]					Radii in	[ft]				
0	1.4	1.4	1.4	1.4	1.4	1.4	1.5	1.5	1.5	1.5
50	1.5	1.5	1.5	1.5	1.5	1.6	1.6	1.7	1.7	1.7
100	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.7
150	1.7	1.7	1.7	1.7	1.8	1.8	1.8	1.8	1.7	1.6
200	1.6	1.6	1.6	1.5	1.5	1.5	1.5	1.5	1.5	1.5
250	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
300	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1:4
350	1.4	1.4								
Depth: 1912	.0 ft									
[°]					Radii in	[ft]				
0	0.7	0.7	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.0
50	1.0	1.0	1.0	1.0	1.0	1.1	1.1	1.1	1.1	1.1
100	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
150	1.1	1.1	1.1	1.1	1.1	1.1	1.1	<b>1</b> .1	1.1	1.0
200	1.0	1.0	0.9	0.8	0.7	0.7	0.6	0.6	0.6	0.6
250	0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
300	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.6
350	0.6	0.7								
Denth [•] 1914	0 <del>ft</del>									
[°]	.0 11				Radii in	[ft]				
., 0	0.7	0.7	07	07	0.7	07	07	07	07	07
50	0.8	0.8	0.8	0.8	0.9	0.9	1.0	11	11	1.2
100	1.2	1.2	13	13	13	13	1.3	13	13	1.2
150	1.3	1.3	1.3	1.3	12	11	11	1.0	00	0.0
200	0.8	07	07	0.6	0.6	0.5	0.5	0.4	0.3	0.5
250	0.4	0.4	0.4	0.0	0.0	0.0	0.0	0.4	0.4	0.4
300	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
350	0.6	0.6	¥. I	<b>v</b> . 1	0.1	<b>V</b> .T	0.0	0.0	0.0	0.0



Sonar Well Services SOCON Sonar Well Services, Inc.

Brine Well No: 04 08					083069 10/21/2008					
Depth: 1916	0 ft									
[°]	.0 10				Radii in	(f <del>f</del> )				
0	0.9	0.9	٨٩	0.9	n q	10	10	10	10	1 1
50	11	1 1	11	11	1.2	1.0	1.0	1.0	1.0	1.1
100	1.3	1.3	1.1	1.1	13	13	13	1.2	1.0	1.0
150	1.0	1.0	1.5	1.0	1.3	1.0	1.0	1.0	1.0	1.4
200	1.4	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.9	1.0
250	0.8	0.8	0.8	0.9	0.9	0.9	0.9	0.9	0.0	0.0
200	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
350	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.8
550	0.9	0.9								
Depth: 1918	.0 ft									
[°]					Radii in	[ft]				
0	0.8	0.8	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0
50	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9
100	0.9	0.9	0.9	0.8	0.8	0.7	0.6	0.6	0.5	0.4
150	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3
200	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
250	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4
300	0.4	0.4	0.5	0.5	0.5	0.6	0.6	0.6	0.7	0.7
350	0.7	0.8								
Denth: 1920	0 ft									
f°]	.0 11				Radii in	[f+]				
1 0	07	07	07	07	0.8	[I] 00	0 0	10	10	10
50	1.0	1.0	1.0	1.0	1.0	0.9	0.9	1.0	1.0	1.0
100	0.0	0.8	0.9	0.7	0.7	0.9	0.9	0.9	0.9	0.9
150	0.5	0.0	0.0	0.7	0.7	0.0	0.0	0.0	0.5	0.4
200	0.4	0.4	0.4	0.4	0.3	0.3	0.5	0.3	0.3	0.3
200	0.5	0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2
200	0.2	0.2	0.2	0.2	0.2	0.5	0.3	0.3	0.3	0.3
350	0.5	0.4	0.4	0.4	0.5	0.5	0.0	0.0	0.6	0.6
550	0.0	0.7								
Depth: 1925	5.0 ft									
[°]					Radii in	[ft]				
0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
50	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
100	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
150	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
200	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
250	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0
300	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
350	0.5	0.5			2.0		0.0	0.0	0.0	0.0



Brine Well No: 04					083069 10/21/200					
Dopth: 1020	0.#									
	.0 10				Padii in	(f+1				
[]	0.6	07	07	0.7		ក្រហ្ម ប្រហ្ម	0.8	0.8	0.0	0.0
50	0.0	0.7	0.7	0.7	0.7	0.0	1.0	10	1.0	1.0
100	1.0	10	0.9	0.9	0.9	0.9	0.0	0.0	1.0	0.7
160	0.7	1.0	0.9	0.9	0.9	0.9	0.9	0.0	0.0	0.7
200	0.7	0.0	0.0	0.0	0.5	0.5	0.5	0.5	0.5	0.4
200	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
200	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5
300	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0	0.0	0.0
350	0.0	0.0								
Depth: 1935	.0 ft									
[°]					Radii in	[ft]				
0	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.5	0.5
50	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.9	0.9	1.0
100	1.0	1.0	1.0	1.1	1.1	1.1	1.1	1.1	1.2	1.1
150	1.0	1.0	0.9	0.9	0.8	0.7	0.7	0.6	0.5	0.5
200	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.3
250	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
300	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3
350	0.3	0.3								
Denth: 1940	0 ft									
[°]	.0 11				Radii in	[ft]				
., 0	0.6	0.6	0.6	0.6	0.7	07	07	0.8	0.8	0.8
50	0.9	0.9	0.9	0.0	0.9	1.0	1.0	1.0	1.0	1.0
100	1.0	1.0	1.0	1.0	11	11	1.0	1.0	1.0	1.0
150	1.0	0.9	0.9	0.8	0.8	0.7	0.6	0.6	0.6	0.5
200	0.5	0.5	0.0	0.0	0.0	0.4	0.0	0.3	0.0	0.0
250	0.3	0.3	0.3	0.3	0.1	0.3	0.3	0.3	0.3	0.3
300	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4
350	0.5	0.5			0.0			0.1	0.1	0.1
Danths 1017	0.4									
	.0 N				Dediiin	r#1				
L)	0.6	0.6	0.6	07	Radii In	լով	07	0.0	0.0	0.0
U 50	0.0	0.0 0.0	0.0	0.7	0.7	0.7	0.7	U.8	U.8	0.9
50 400	0.9	0.9	0.9	1.0	1.0	1.0	1.U 1.4	1.0	1.0	1.0
100	1.0	1.0	1.0	1.U 0.0	1.U 0.0	1.0	1.1	1.0	1.0	1.0
100 -	1.0	1.0	0.9	0.0	0.0	0.7	0.7	0.0	0.0	0.5
200	0.0 0.2	0.0 0.2	0.4	0.4	U.4	0.4	0.4	0.4	0.4	0.3
200	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
300	0.3	0.3	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5
550	0.0	0.0								



SWS Songr Well Services SOCON Sonar Well Services, Inc.

Brine Well N	lo: 04			0830	069		10/21/2008			
Depth: 1944	.0 ft									
[°] Radii in [ft]										
0	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.8	0.9	0.9
50	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1:0
100	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9
150	0.9	0.9	0.8	0.8	0.7	0.7	0.7	0.6	0.6	0.6
200	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4
250	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.4
300	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5
350	0.6	0.6								



SOCON Sonar Well Services, Inc. <u>Horizontal slices 1 - 12</u>





## SOCON Sonar Well Services, Inc. <u>Horizontal slices 13 - 14</u>








SOCON Sonar Well Services, Inc. Vertical slices 7 - 12



<u>Conditions accepted by:</u> "I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment."

Gandy Corporation ______

Larry Gandy Company Representative-Printed

Company Representative-Signed

Secretary/Treasurer

Title

02/11/10

Date

## Chavez, Carl J, EMNRD

From:	Chavez, Carl J, EMNRD
Sent:	Wednesday, November 18, 2009 7:02 AM
То:	'Prather, Steve'; 'gandy2@leaco.net'; 'James Millett'; 'Clay Wilson'; 'Bob Patterson'; 'David Pyeatt'; 'garymschubert@aol.com'; 'Gary Schubert'
Cc:	Griswold, Jim, EMNRD; VonGonten, Glenn, EMNRD; Sanchez, Daniel J., EMNRD
Subject:	UIC Class III Well Annual Report Schedule for Submittal & Content REMINDER- 2010
Attachments:	Annual Reports 2010.xls

Gentlemen:

Good morning. You may recall an e-mail message from me this past Summer alerting you to the reporting provision of your current discharge permit (permit) and how the New Mexico Oil Conservation Division (OCD) is stepping up its efforts to track reporting under issued permits.

Please find attached a spreadsheet listing the dates that OCD expects to receive your Annual Reports and/or any reporting requirements from your permit. If you are an operator with limited reporting requirements based on your permit, you are welcome to follow the format and content required from more recent permit renewals issued by the OCD, which are more comprehensive and constitute a report, Any renewed permits will likely require similar content anyway.

Please plan on meeting the Annual Report submittal dates in January of 2010 as failure to submit the report will constitute a violation under the Federal Underground Injection Control (UIC) Program and reporting to the United States Environmental Protection Agency, which could result in the shut-in and/or plug and abandonment of your brine production well.

Please contact me if you have questions. Thank you in advance for your cooperation in this matter.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

CC: Brine Well File "Annual Reporting"

	<b>Annual Report Contents</b>	L. Annual Report: All operators shall submit an annual report due on January	31 of each year. The report shall include the following information:	<ol> <li>Cover sheet marked as "Annual Brine Well Report, name of operator, BW</li> </ol>	permit #, API# of well(s), date of report, and person submitting report. 2. Brief summary of brine wells operations including description and	reason for	any remedial or major work on the well. Copy of C- 103.	<ol><li>Production volumes as required above in 21.G. including a running total should</li></ol>	be carried over to each year. The maximum and average injection	pressuře.	4. A copy of the chemical analysis as required above in 21.1-1.	5. A copy of any mechanical integrity test chart, including the type of test,	i.e.	open to formation or easing test.	6. Brief explanation describing deviations from normal production	methods.	7. A copy of any leaks and spills reports.	8. If applicable, results of any groundwater monitoring.	9. Information required from cavity/subsidence 21. F. above.	10. An Area of Review (AOR) summary.	11. Sign-off requirements pursuant to WQCC Subsection G 20.6.2.5101.			·
NMOCD UIC Annual Reports 11/18/09	Annual Rpt. Due Date Submitted	01/31/10																						
	Operator	Basic Energy																						
	Permit ID	BW-2																						

01/31/10	L. Annual Report: All operators shall submit an annual report due on January 31 of each year. The report shall include the following information:
	<ol> <li>Cover sheet marked as "Annual Brine Well Report, name of operator, BW</li> </ol>
	permit #, API# of well(s), date of report, and person submitting report. 2. Brief summary of brine wells operations including description and
	reason for any remedial or major work on the well. Copy of C- 103.
	3. Production volumes as required above in 21.G. including a running total should
	be carried over to each year. The maximum and average injection
	pressure.
	4. A copy of the chemical analysis as required above in 21.1-1.
	5. A copy of any mechanical integrity test chart, including the type of test,
	i.e.
	open to formation or easing test.
	6. Brief explanation describing deviations from normal production
	methods.
	7. A copy of any leaks and spills reports.
	8. If applicable, results of any groundwater monitoring.
	9. Information required from cavity/subsidence 21.F. above.
	10. An Area of Review (AOR) summary.
	11. Sign-off requirements pursuant to WQCC Subsection G 20.6.2.5101.

Gandy Corp.

BW-4

PAB- Salty Dog BW-8

Mo. w/ Qtly Rpts.

BW-22	Gandy Corp.	01/31/10	L. Annual Report: All operators shall submit an annual report due on January 31 of
			each year. The report shall include the following information:
			<ol> <li>Cover sheet marked as "Annual Brine Well Report, name of operator, BW</li> </ol>
			permit #, API# of well(s), date of report, and person submitting report. 2. Brief summary of brine wells operations including description and reason for
			any remedial or major work on the well. Copy of C-103. 3. Production volumes as required above in 21 .G. including a running total
			should be carried over to each year. The maximum and average injection
			pressure.
			<ol> <li>A copy of the chemical analysis as required above in 21.H.</li> <li>A copy of any mechanical integrity test chart, including the type of test, i.e.</li> </ol>
			open to formation or casing test. 6. Brief explanation describing deviations from normal production methods
			7. A copy of any leaks and spills reports.
			<ol> <li>If applicable, results of any groundwater monitoring.</li> <li>Information required from cavitv/subsidence 21. F. above.</li> </ol>
			10. An Area of Review (AOR) summary. 11. Sign-off requirements pursuant to WQCC Subsection G 20.6.2.5101.
BW-25	Basic Energy	01/31/10	<ol> <li>Production/Injection Volumes/Annual Report: The volumes of fluids injected (fresh water) and produced (brine) will be recorded monthly and submitted to the OCD Santa Fe Office in an annual report due on the thirty-first (31) day of January of each year.</li> </ol>

BW-27	Mesquite	01/10/10	<ol> <li>Production/Injection Volumes: The volumes of fluids injected (fresh water) and produced</li> <li>(brine) will be recorded monthly and submitted to the OCD Sanla Fe Office in an annual report due on the first day of January of each year.</li> </ol>
BW-28	ey Ernergy Services LL	01/31/10	L. Annual Report: All operators shall submit an annual report due on January 31 of each year. The report shall include the following information:
			<ol> <li>Cover sheet marked as "Annual Brine Well Report, name of operator, BW</li> </ol>
	-		permit #, API# of well(s), date of report, and person submitting report. 2. Brief summary of brine wells operations including description and reason for
			any remedial or major work on the well. Copy of C-103. 3. Production volumes as required above in 21.G. including a running total should
			be carried over to each year. The maximum and average injection pressure.
			<ul><li>4. A copy of the chemical analysis as required above in 21. H.</li><li>5. A copy of any mechanical integrity test chart, including the type of test, i.e.</li></ul>
			open to formation or casing test. 6. Brief explanation describing deviations from normal production methods.
			<ol> <li>A copy of any leaks and spills reports.</li> <li>If applicable, results of any groundwater monitoring.</li> <li>Information required from cavity/subsidence 21. F. above.</li> </ol>
			10. An Area of Review (AOR) summary. 11. Sign-off requirements pursuant to WQCC Subsection G 20.6.2.5101.

.

L. Annual Report: All operators shall submit an annual report due on January 31 of each year. The report shall include the following information:	<ol> <li>Cover sheet marked as "Annual Brine Well Report, name of operator, BW</li> <li>permit ~, API~ of well(s), date of report, and person submitting report.</li> </ol>	<ol> <li>Brief summary of brine wells operations including description and reason for any remedial or major work on the well. Copy of C-103.</li> </ol>	<ol> <li>Production volumes as required above in 21.G. including a running total should be carried over to each vear. The maximum and average injection</li> </ol>	pressure. 4. A copy of the chemical analysis as required above in 21 .H.	5. A copy of any mechanical integrity test chart, including the type of test, i.e.	open to formation or casing test. 6. Brief explanation describing deviations from normal production methods.	<ol> <li>A copy of any leaks and spills reports.</li> <li>If applicable, results of any groundwater monitoring.</li> </ol>	9. Information required from cavity/subsidence 21 .F. above. 10. An Area of Review (AOR) summary.	11. Sign-off requirements pursuant to WQCC Subsection G 20.6.2.5 101.	<ol> <li>Production/Injection Volumes/Annual Report: The volumes of fluids injected (fresh water) and produced (brine) will be recorded monthly and submitted to the OCD Santa Fe Office in</li> </ol>	an annual report due on the thirty-first (31) day of January of each year.
01/31/10										01/31/10	
Liquid Resources										HRC- Schubert	
BW-30										BW-31	

.

## Chavez, Carl J, EMNRD

From:	Chavez, Carl J, EMNRD
Sent:	Friday, September 25, 2009 1:48 PM
То:	'Prather, Steve'; 'gandy2@leaco.net'; 'James Millett'; 'Clay Wilson'; 'Bob Patterson'; 'Blevins, Sam'; 'David Pyeatt'; 'garymschubert@aol.com'
Cc:	Sanchez, Daniel J., EMNRD; VonGonten, Glenn, EMNRD; Griswold, Jim, EMNRD; Jones, William V., EMNRD
Subject:	New Mexico Oil Conservation Division Class III Solution Mining Well Operator Notice ANNUAL REPORTS

Gentlemen:

## Re: Annual Reporting

You are receiving this message because you are currently operating a Underground Injection Control (UIC) Class III Solution Mining Well in New Mexico under an Oil Conservation Division (OCD) Discharge Permit. You may be aware of the most recent events related to OCD Class III Wells in New Mexico and can find out more by visiting the OCD's Webste at <a href="http://www.emnrd.state.nm.us/OCD/brinewells.htm">http://www.emnrd.state.nm.us/OCD/brinewells.htm</a> and OCD Brine Well Work Group Website at <a href="http://www.emnrd.state.nm.us/imaging/AEOrderFileView.aspx?appNo=pCJC0906359521">http://www.emnrd.state.nm.us/imaging/AEOrderFileView.aspx?appNo=pCJC0906359521</a>.

The OCD is writing to inform you that it will be monitoring the receipt of your "Annual Reports" under the applicable section of your OCD discharge permit. The OCD has been deficient in tracking reporting obligations in the past; however, the OCD has recently upgraded our online system to track operators who are not meeting the reporting requirements specified in OCD Discharge Permits. Please plan on submitting the report with the required information by the date required in your discharge permit.

To access your OCD Discharge Permit Online for the date of submittal and contents of the report, please go to OCD Online at <a href="http://ocdimage.emnrd.state.nm.us/imaging/AEOrderCriteria.aspx">http://ocdimage.emnrd.state.nm.us/imaging/AEOrderCriteria.aspx</a> (enter "Order Type" as BW and your "Order Number"). If you have not submitted an Annual Report (report) for your well, a historical review of your injection and production records will be required in order to provide cumulative injection and production information in this year's report.

Please contact me if you have questions or need assistance.

Thank you in advance for your cooperation in this matter.

Copy: Brine Well Files BWs 2, 4, 8, 22, 25, 27, 28, 30 & 31

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")