GW- 55

WORK PLANS

May 4, 2009

X 100 - 20 S. Carlo RECEIVED 2009 MAY 5 AM 11 53 10 M. and the second ie data Animas Environmental Services, LLC 100 - . الله - الأربي - الله - الم

1. A. A. A.

5 . S. S.

1.5

100

Animas Environmental Services, LLC

624 E. Comanche , Farmington, NM 87401 . TEL 505-564-2281 . FAX 505-324-2022 . www.animasenvironmental.com

Prepared for: Brad Jones Edward Hansen New Mexico Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

Prepared on behalf of: Thriftway Company 501 Airport Drive, Suite 100 Farmington, New Mexico 87401

Corrective Action Plan

Thriftway Refinery 626 Road 5500 Bloomfield, San Juan County New Mexico

Facility Permit: GW-55

May 4, 2009

Prepared by: Animas Environmental Services, LLC 624 E. Comanche Farmington, New Mexico 87401

Blaine A. Watroof

Blaine Watson, P.G. Sr. Project Manager

ROFESSIONAL NCENE SIDO BLAINE A. WATSON 196-001145 LINOIS

Elizabeth McNally, P.E./ NM Registration #15799

Animas Environmental Services, LLC

624 E. Comanche . Farmington, NM 87401 . TEL 505-564-2281 . Fx 505 324-2024 . www.gnimasenvironmental.com

2009 MAY 5 AM 11 53

May 4, 2009

Brad Jones New Mexico Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

RE: Submittal of Corrective Action Plan (CAP) for the Thriftway Refinery, 626 County Road 5500, Bloomfield, San Juan County, New Mexico; Permit GW-55

Dear Mr. Jones:

Enclosed please find a Corrective Action Plan (CAP) prepared by Animas Environmental Services, LLC (AES) on behalf of Thriftway Company (Thriftway) for the Thriftway Refinery, located at 626 County Road 5500, Bloomfield, San Juan County, New Mexico. If approved, Thriftway would like to schedule installation of the Phase I high vacuum Multi-Phase Extraction (MPE) wells to occur within the next 60 days.

If you have any questions about site conditions or the CAP, please contact me at (505) 564-2281.

Respectfully,

Empon Ress Kenner Ross Kennemer

Project Manager

Enclosure: Corrective Action Plan

Cc: Robert Moss Thriftway Company 501 Airport Drive, Suite 100 Farmington, New Mexico 87401

> Ed Hansen New Mexico Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

Files:2009/ThriftwayCompany/Refinery/NMOCD 050409

Animas Environmental Services, LLC

2009 JUN 2 AM 10 08

June 1, 2009

Brad Jones New Mexico Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

RE: Notification of Storage Tank Cleaning at the Thriftway Refinery, 626 County Road 5500, Bloomfield, New Mexico

Dear Mr. Jones:

On behalf of Thriftway Company (Thriftway), Animas Environmental Services, LLC (AES) is providing notification to the New Mexico Oil Conservation Division (OCD) that emptying and cleaning of four tanks (Tank #17, 18, 19 and 21) at the Former Thriftway Refinery will commence June 8, 2009. Emptying and cleaning these tanks is anticipated to take approximately one month to complete.

If you have any questions regarding the scheduled site activities, please contact me at (505) 564-2281.

Sincerely

Ross Kénnemer Project Manager

Cc: Robert Moss Thriftway Company 501 Airport Drive, Suite 100 Farmington, New Mexico 87401

> Brandon Powell New Mexico Oil Conservation Division 1000 Rio Brazos Rd. Aztec, New Mexico 87410

Bill Robertson Western Refining 111 County Road 4990 Bloomfield, New Mexico 87413

Files:2009/ThriftwayCompany/Refinery/NMOCD 060109

1.0	Introduction	. 1
2.0	Facility Identification Information	. 2
2.1	Facility Information	2
3.0	Involved Parties	2
4.0	Consultant Information	3
5.0	Background Information and Site Conditions	3
5.1 5.2	Facility Location Facility Description and Operational History	3
5.3 5.4 5.5	Sensitive Receptors Surface Waters Geology/Hydrogeology	4
6.0	Summary of Past Site Work	5
6.1 6.2	Airstripper Installation Annual Groundwater Monitoring and Sampling, 1996-2007	. 5 . 5
6. 6	2.1 Measurement of Groundwater Elevations	. 5
6.	2.3 Volatile Organics	. 6
6. 6	2.4 Polynuclear Aromatic Hydrocarbons	. 6 6
6.	2.6 Dissolved Metals, Chlorides, Carbon Dioxide, and Forms of Alkalinity	. 7
6.3 6.4	Discharge Plan GW-55 Recent Site Activities, 2008 through 2009	.7 7
6.4	4.1 Soil Test Pits, October 2008	. 7
6. 6.	4.2 Soil Boring/Monitor Well Installation, December 2008 4.3 Groundwater Monitoring and Sampling, December 2008	. 8 . 9
6.4	4.4 MPE Pilot Study Well Installation, February 2009	. 0 10
6.4	4.5 Aquifer Slug Testing, April 2009	11
7.0	Multi-Phase Extraction Pilot Study, February 2009	12
7.1	Overview	12
7.2	Pilot Study	13
7.	3.1 Vapor Concentration and Composition	13
7.	3.2 Vacuum Influence	13
7.3	3.4 Hydrocarbon Mass Removal Rates	13
7.3	3.5 Hydrocarbon Destruction/Removal Efficiencies	14
8.0	Conceptual Site Model and Corrective Action Standard	14
8.1 8.2	Conceptual Site Model Corrective Action Standard	14 15
9.0	Estimated Petroleum Hydrocarbon Contaminant Mass	16
9.1	Groundwater	16
9.2	Soils	17
9.3 40.0		IØ
10.0	Remediation Alternatives	19

Contents

.

3

10 10 10 10 Pl	 Soil Excavation and Off-Site Disposal of Source Soils Soil Vapor Extraction (SVE) with Air Sparging (AS) Multi-Phase Extraction (MPE) Remediation in Source Area Phytoremediation for Hydraulic Control and Treatment of Down-Gradient Edge of Dissolved hase Plume 	. 19 . 19 . 19 . 19
11.0	Selection of Remediation Alternatives	20
		. 20
12.0	Proposed Remediation System Installation and Operations Overview	. 21
12	2.1 Health and Safety Plan	. 22
12	2.2 Department Notification	. 23
12	2.3 Utilities Notification	. 23
12	2.4 Operations Area Surface Preparation	. 23
12	2.5 MPE Well Installation	. 23
	12.5.1 Soil Boring Installation	. 23
	12.5.2 Field Screening and Lithologic Logging	. 23
	12.5.3 MPE Well Installation, Development and Surveying	. 24
12	2.6 Equipment Decontamination	. 24
12	2.7 Drilling Waste Characterization and Disposal	. 24
	12.7.1 Waste Disposal	. 24
	12.7.2 Drilling Waste Laboratory Analyses	. 25
12	2.8 MPE Remediation System	. 25
12	2.9 Air Quality Monitoring and Sampling	. 26
12	2.10 Phytoremediation at Down-Gradient Edge of Dissolved Phase Plume	. 20
	12.10.1 Agronomic Evaluation	. 20
	12.10.2 Installation Plan	. 21
10	12.10.3 Maintenance Plan	. 20
12	12.11 Monitoring and Sampling Plan	. 29
	12.11.1 Semi-Annual Groundwaler Monitoring and Sampling Duning Active Remediation	. 29
10	12.11.2 Flytorenieulation Flogress wontoning	. 29
12	12.12 Reporting	. 29
13.0	Pronosed Schedule	. 20
10.0		. 00
14.0	CAP Amendments or Modifications	. 30
15.0	Conclusions	. 31
16.0	Certification	. 31
17.0	References	. 32

.

14 2022 1 - 4 - 5 N - 4 - 5 13. cm 19.7 47 (P.

Tables

and the second se

. A.

202.2

1

- Table 1.
 Summary of Historical Groundwater Measurement and Water Quality Data
- Table 2.Soil Volatile Organics, GRO, DRO, and MRO Analytical Results
- Table 3.
 Soil Polynuclear Aromatic Hydrocarbons Results, October 2008
- Table 4.Soil Metal Analytical Results
- Table 5.
 Summary of Recent Groundwater Measurement and Water Quality Data
- Table 6.
 Groundwater Analytical Results Volatile Organics, TPH, and Lead

Figures

- Figure 1. Topographical Site Location Map
- Figure 2. Site Vicinity Map (USGS 2005)
- Figure 3. General Site Plan
- Figure 4. Test Pit Soil Sample Locations, October 2008
- Figure 5. Soil Boring Locations and Soil Sample Results, December 2008
- Figure 6. Geological Cross Sections A-A' and B-B'
- Figure 7. Groundwater Elevation Contours, January 2009
- Figure 8. Free Product Contour Thickness Contours, January 2009
- Figure 9. Groundwater Contaminant Concentrations, December 2008
- Figure 10. MPE Pilot Study Layout and Results, February 2009
- Figure 11. Proposed MPE Remediation System and MPE Well Construction Schematic
- Figure 12. Proposed Phytoremediation Layout

Appendices

- Appendix A. Electronic Analytical Laboratory Reports
- Appendix B. Soil Boring Logs
- Appendix C. Water Sample Collection Forms
- Appendix D. Aquifer Slug Test Data
- Appendix E. MPE Pilot Study Data

Corrective Action Plan Thriftway Refinery 626 CR 5500 Bloomfield, San Juan County, New Mexico NMOCD GW-55

1.0 Introduction

Animas Environmental Services, LLC (AES) has prepared this Corrective Action Plan (CAP) on behalf of Thriftway Company (Thriftway) for the Thriftway Refinery, located at 626 County Road 5500, Bloomfield, San Juan County, New Mexico. The CAP is a partial requirement of the current Thriftway Refinery Groundwater Discharge Permit (GW-55), and as proposed in the April 2008 Work Plan, this CAP is being submitted for review and approval by the New Mexico Oil Conservation Division (NMOCD). Operations at the Thriftway Refinery resulted in the past release(s) of both refined and unrefined petroleum hydrocarbons to the site soil and groundwater.

Several remedial alternatives were evaluated as part of preparation of the CAP, including high vacuum multi-phase extraction (MPE) in the source area and phytoremediation along the down-gradient edge of the dissolved phase plume. These remedial technologies were found to be the most technically responsive and cost-effective options for the site. A topographic site location map showing the location of the facility is included as Figure 1, and Figure 2 is a site vicinity map.

Corrective Action Plan Thriftway Refinery May 4, 2009 Page 1 S. David

19. U. 20.

例にお

2.0 Facility Identification Information

2.1 Facility Information

all the second

- a) NMOCD Groundwater Discharge Permit: GW-55
- b) Facility Name: Thriftway Refinery
- c) Facility Street Address: 626 County Road 5500

City: Bloomfield Zip: 87413

County: San Juan

d) Legal Location:

SE¹/₄ SE¹/₄ Section 32 and SW¹/₄ SW¹/₄ Section 33 of Township 29 North and Range 11 West, and NW¹/₄ SE¹/₄ and NE¹/₄ SE¹/₄ Section 9 of Township 28 North and Range 11 West, New Mexico Prime Meridian; in San Juan County, New Mexico, approximately three miles south of Bloomfield, New Mexico

- e) **Describe occupancy of the facility**: Unoccupied, but some structures and equipment are present
- f) **Describe current property use**: Inactive crude oil refinery containing various petroleum refining, storage and dispensing equipment and associated structures. Ongoing removal of refinery process equipment.

3.0 Involved Parties

a) Facility Owner:	Thriftway Company 501 Airport Drive, Suite 100 Farmington, New Mexico 87401 Phone: (505) 326-5571			
b) Facility Contact:	Robert Moss Thriftway Company 501 Airport Drive, Suite 100 Farmington, New Mexico 87401 Phone: (505) 326-5571 Email: rgmoss@redmesa.com			

4.0 Consultant Information

Company Name:	Animas Environmental Services, LLC			
Contact:	Elizabeth McNally			
Title:	NM PE, Env. Engineer #15799			
Contact:	Ross Kennemer			
Title:	Sr. Project Manager/Principal			
Address:	624 E. Comanche Farmington, New Mexico 87401 Phone: (505) 564-2281 Fax: (505) 324-2022 Email: emcnally@animasenvironmental.com Email: rkennemer@animasenvironmental.com			

5.0 Background Information and Site Conditions

The Thriftway Refinery previously processed light sweet San Juan Basin crude oil but has not done so since about the mid-1990s. The facility also recently was used as a crude oil storage facility for Western Refining, formerly known as Giant Industries. Thriftway and Western are currently in the process of concluding Western's lease and tank use agreement, which includes removing the remaining stored crude oil and cleaning associated tanks and lines. The parties currently anticipate completing the tank and line cleaning during summer 2009. Most other process equipment and refinery infrastructure were removed from the facility in the late winter and spring of 2009. The remaining equipment will be sold, or removed as needed, to conduct the remediation activities.

5.1 Facility Location

The Thriftway Refinery is a small oil refinery located along County Road 5500, approximately three miles south of Bloomfield and one mile west of US Hwy 550, in San Juan County, New Mexico. The refinery is located between CR 5500 and Kutz Wash, which is north of CR 5500. The refinery is bordered on the east end by an unnamed tributary of Kutz Wash. The entire refinery process portion of property is enclosed within a chain-link fence. The general site location is shown on Figure 1 - Topographical Site Location Map and Figure 2 – Site Vicinity Map. The general site layout and infrastructure items are shown on Figure 3 - General Site Plan.

1. S. S. S.

Aller and a line of the second se

の時

S. F.2:

読まっ

يو دو در دو دو در

5.2 Facility Description and Operational History

The facility was constructed in the 1960s and was operated for the processing of light, sweet San Juan Basin crude oil until the mid 1990s. There has not been active product refining at the facility for several years. However, more recently, the facility has been used by Western Refining (formerly Giant Industries) for the storage of crude oil. Most of the facility infrastructure has recently been dismantled and the process equipment has been removed from the site.

5.3 Sensitive Receptors

The facility is located in a rural/agricultural area with some oil and gas production well pads in the vicinity. The closest residence is approximately one mile west of the facility. There are no known domestic water supply wells within a one-mile radius of the facility. No schools, day care centers, or nursing homes are located within 500 feet of the facility.

5.4 Surface Waters

Kutz Wash, an ephemeral drainage, borders the north property line and typically runs only during storm runoff or in the wet season. Kutz Wash discharges into the San Juan River (USGS Hydrologic Unit Catalog #14080101) approximately 1.5 miles northwest of the refinery. An unnamed ephemeral tributary of Kutz Wash borders the east property line and drains the areas to the southeast of the refinery. No other surface waters of measurable size are present in the site vicinity.

5.5 Geology/Hydrogeology

Bloomfield, San Juan County, New Mexico; is located along the San Juan River within the Colorado Plateau. The San Juan Basin is a structural depression containing deep Tertiary fill resting on rocks of the late Cretaceous age. The local geology consists of alluvial deposits composed of clays, silty sands, and poorly sorted sands with terrace gravels and cobbles. Strata are deposited predominantly in a flat-lying sequence in stream and river cuts throughout the plateau. Clay materials, such as clayey sands and silty clays, are common as nodules and lenses in the subsurface of this area.

The soil types within the subject area have been surveyed by the U.S. Department of Agriculture (USDA) Soil Conservation Service and are summarized in the Soil Survey Report for San Juan County, Eastern Part. Soil types for the subject area range from clay to sandy clay loam and developed soil profiles range from shallow to very deep. Slopes are level to gently sloping on floodplains and terraces. Soils are generally poorly drained. The parent material is typically alluvium derived from sandstone and shale. The soil types in the vicinity of the project area are Stumble Loamy Sand (St) and Fruitland Loam, 5 to 8 percent slopes (Fw).

Fruitland Loam soils typically consist of a surface layer of light brownish gray loam approximately 3 inches thick with a light olive brown to light gray sandy loam below that to about 60 inches below ground surface. Permeability is moderately rapid, and available water capacity is moderate.

The Stumble Loamy Sand is a deep, somewhat excessively drained soil with a surface layer that typically includes a yellowish brown loamy sand about 5 inches thick. The upper 24 inches below the surface layer is a pale brown and light yellowish brown sand and loamy sand. The lower depths, to about 81 inches below ground surface, is brownish yellow gravelly sand, gravelly loamy, sand and sand. Permeability of the Stumble soil is rapid, and available water capacity is low.

Site soils have been reported as loamy sand and light brown fine to medium grain sands. Shallow groundwater is present at the site at depths from 5 to 15 feet below ground surface (bgs). Hydraulic gradient has been measured as approximately 0.006 ft/ft in a northwesterly direction.

6.0 Summary of Past Site Work

6.1 Airstripper Installation

An airstripper was installed in the western portion of the facility in about 1992 and was used to treat groundwater recovered from an interceptor trench prior to discharge into evaporation ponds at the facility. During operation, influent and effluent water samples were collected at the airstripper on a monthly basis to calculate the hydrocarbon removal efficiency. Results of the monthly sampling events were then included within the annual reports. Due to declining removal efficiency of the airstripper, in conjunction with increasing mechanical problems, Thriftway proposed in the April 2008 Workplan to re-evaluate correction action alternatives and technologies for the site after additional site investigation and pilot study work at the site. No active remediation has been conducted at the facility since late 2007.

6.2 Annual Groundwater Monitoring and Sampling, 1996-2007

BioTech Remediation, Inc. (BioTech) conducted semi-annual groundwater monitoring and sampling at the site since 1996. Annual reports were prepared and submitted on behalf of Thriftway Company to the NMOCD. The most recent annual report, which covered 2007, was submitted to NMOCD and dated March 31, 2008.

The most recent such groundwater monitoring and sampling event was conducted by BioTech personnel in December 2007. A summary of historical groundwater measurement and water quality data are presented in Table 1. The data summarized below are taken from the 2007 Annual Report.

6.2.1 Measurement of Groundwater Elevations

Groundwater elevations recorded in December 2007 ranged from 5424.56 feet above mean sea level (amsl) in MW-20 to 5434.29 feet amsl in MW-13. Groundwater gradient was measured between MW-1 and MW-18, with a resulting magnitude of 0.007 ft/ft towards the northwest, which is consistent with historical data.

144

6.2.2 Measurement of Free Product

In December 2007, measured thicknesses of "non-aqueous phase liquid" (NAPL) or free product ranged from a sheen in MW-3 to a maximum of 1.32 feet in RW-24. Free product thickness contours for December 2007 were presented in Figure 4 of the 2007 Annual Report.

6.2.3 Volatile Organics

Groundwater samples collected as part of the December 2007 sampling event were for volatile organic compounds per EPA Method 8260B for several wells.

- Benzene concentrations were reported in excess of the New Mexico Water Quality Control Commission (WQCC) standard of 10 µg/L for MW-1, MW-2, MW-14, and RW-26. Benzene concentrations exceeding the WQCC standard (10 µg/L) ranged from 16 µg/L in MW-14 to 730 µg/L in MW-2. Benzene concentration contours for July and December 2007 were presented as Figures 5 and 6, respectively, in the 2007 Annual Report.
- Dissolved phase methyl-t-butyl ether (MTBE) was reported above the WQCC standard of 100 µg/L with 360 µg/L MTBE in MW-20. In the remaining wells that were sampled, MTBE was either below the laboratory detection limit or below applicable WQCC standards. Contours of the measured MTBE concentration for July and December 2007 were presented in Figure 7 of the 2007 Annual Report.
- Concentrations of total petroleum hydrocarbons (TPH) gasoline range organics (GRO) (C₆-C₁₀) ranged from below the laboratory detection limit in several wells up to 4.3 mg/L in MW-2. Reported TPH diesel range organics (DRO) (C₁₀-C₂₂) concentrations also ranged from below the laboratory detection limit in several wells up to 395 mg/L in MW-2.

6.2.4 Polynuclear Aromatic Hydrocarbons

Groundwater samples from MW-1, MW-2, MW-10, MW-14, MW-18, and MW-20 through MW-22 were analyzed for polynuclear aromatic hydrocarbons (PAHs) per EPA Method 8270C as part of the December 2007 sampling event. Total naphthalene, including 1- and 2-methyl naphthalene, exceeded the WQCC standard of 30 μ g/L in MW-2 with 272 μ g/L.

6.2.5 RCRA Metals

The eight standard Resource Conservation and Recovery Act (RCRA) metals were analyzed by EPA Method 6020 and 7470 for groundwater samples collected from MW-1, MW-2, MW-10, MW-14, MW-18, and MW-20 through MW-22.

- Arsenic was detected above the WQCC standard of 0.10 mg/L in MW-18 with 0.108 mg/L. All other wells sampled for arsenic were below the WQCC standard.
- The reported results for barium, cadmium, chromium, lead, selenium, silver, and mercury were either below the applicable WQCC standards or below laboratory detection limits.

6.2.6 Dissolved Metals, Chlorides, Carbon Dioxide, and Forms of Alkalinity

Groundwater samples from MW-1, MW-2, MW-10, MW-14, MW-18, and MW-20 through MW-22 were also analyzed for calcium, magnesium, potassium, sodium, bromide, chloride, fluoride, sulfate, hardness (as CaCO3), total dissolved solids (TDS), and forms of alkalinity.

- Measured TDS concentrations were above the WQCC standard of 1,000 mg/L in all wells sampled, with the highest TDS concentration reported in MW-22 (10,000 mg/L).
- Sulfate concentrations exceeded the applicable WQCC standard of 600 mg/L in all wells sampled, with the exception of MW-2 (68.4 mg/L). The highest sulfate concentration was reported in MW-22 (5,610 mg/L).
- Chloride concentrations did not exceed the WQCC standard of 250 mg/L in any of the wells sampled.
- Bicarbonate concentrations (as CaCO₃) ranged from 253 mg/L in MW-10 to 1,490 mg/L in MW-2.
- Carbonate concentrations (as CaCO₃) ranged from below the laboratory detection limit of 0.10 mg/L up to 3.1 mg/L in MW-18.
- Dissolved calcium concentrations ranged from 47.1 mg/L in MW-2 up to 450 mg/L in MW-20, and dissolved magnesium concentrations ranged from 11.0 mg/L in MW-2 up to 89.2 mg/L in MW-18.
- Dissolved potassium concentrations ranged from 2.47 mg/L in MW-2 up to 7.05 mg/L in MW-22, and dissolved sodium concentrations ranged from 438 mg/L in MW-1 up to 2,340 mg/L in MW-22.

6.3 Discharge Plan GW-55

Thriftway Company renewed the GW-55 Discharge Permit, and renewal of the permit was approved by NMOCD on June 4, 2008, and will expire on May 9, 2011.

6.4 Recent Site Activities, 2008 through 2009

6.4.1 Soil Test Pits, October 2008

In October 2008, AES and Biotech Remediation installed a grid-based network of 82 soil test pits to rapidly evaluate the approximate extent of soil and/or groundwater contamination expected to be encountered at the site and to assist in developing plans for a soil boring and monitoring well installation program.

The excavations were installed to an average depth of 10 to 12 feet below ground surface (bgs) using a backhoe. During soil test pit excavation, an AES field supervisor observed the excavated materials and described the soil/contamination conditions encountered during the excavation. In addition to visual observations, AES recorded volatile organic compounds (VOCs) with a photo-ionization detector (PID) organic vapor meter (OVM). Additionally, a select number of soil samples (approximately 10 percent of total number of test pits) were collected for laboratory analyses of VOCs per EPA Method 8260; TPH-GRO, DRO, and motor oil range organics (MRO) per EPA Method 8015B; PAHs per EPA Method 8270C; and RCRA 8 metals per EPA Method 6010B and

102.50

12.23

7471. Soil samples were analyzed at Hall Environmental Analysis Laboratory (Hall) in Albuquerque, New Mexico.

The highest soil concentrations were detected in Test Pit 49 (TP-49) with 26 mg/kg benzene, 83 mg/kg toluene, 18 mg/kg ethylbenzene, and 170 mg/kg xylene, with a total BTEX concentration of 297 mg/kg. Additionally, TP-49 had reported concentrations of 1,300 mg/kg GRO, 11,000 mg/kg DRO, and 12,000 mg/kg MRO. Soil analytical results for volatile organics and GRO, DRO, and MRO are presented in Table 2. Additional soil analytical results for PAHs and RCRA 8 metals are presented in Tables 3 and 4, respectively. The locations of the soil test pits and the laboratory analytical results for the test pit investigation are presented on Figure 4. Electronic copies of the laboratory analytical results for the soil test pit samples are provided in Appendix A.

6.4.2 Soil Boring/Monitor Well Installation, December 2008

During November and December 2008, AES installed a network of groundwater monitoring wells at the site. Drilling operations were initiated using Biotech in November, but later subcontracted to Enviro-Drill, Inc. to complete the work in early December. Monitoring wells TW-1 through TW-44 (Note that well number TW-27 was not used) were installed upon completion of soil borings (SB-1 through SB-35, SB-36A, SB-36B, and excluding SB-27). In total, 44 soil borings were completed and 43 monitoring wells were installed. The soil borings and monitoring wells were installed in a grid-based pattern of east-west rows and north-south columns, such that borings/wells were installed at grid points spaced at approximate 200 ft intervals.

Boring/well completion depths ranged from approximately 10 ft bgs to approximately 30 ft bgs. Each monitoring well was completed at the approximate boring completion depth, with well screens of 10 to 15 ft in length extending a minimum of approximately 5 ft into the encountered water column. Washed silica sand (10/20) was used for the annular sand pack (extending 1 ft to 2 ft above the screened intervals), then a 2 ft seal of hydrated bentonite chips was placed above the sand interval. Monitoring well surface completions were completed by Biotech Remediation using 4" x 4" steel stickup well protectors set in concrete surface pads. The locations of the soil borings and groundwater monitoring wells are shown on Figure 5.

In order to better characterize site lithology, each boring was continuously sampled. Soil samples were collected using split-spoon samplers (2 ft length initially, then 5 ft length later) and field analyzed for hydrocarbon vapors with a PID-OVM. Subsurface lithology was observed to consist primarily of silty sand and fine to medium grained sand overlying coarse sand. Geological cross sections (A to A' and B to B') constructed from soil boring logs are presented as Figure 6.

Soil samples were also collected from a select number of borings for laboratory analyses, including volatile organics per EPA Method 8260, TPH-GRO, DRO, and MRO per EPA Method 8015M and RCRA 8 metals per EPA Method 6010 and 7471. Soil laboratory analytical results showed the highest benzene concentrations were reported in SB-21 with 7.1 mg/kg. The highest toluene, ethylbenzene, xylene, and GRO concentrations were reported in SB-22 at 10 ft bgs, with 78 mg/kg, 56 mg/kg, 410 mg/kg, and 2,500 mg/kg, respectively. The highest DRO concentration was reported in

SB-36 with 6,300 mg/kg DRO, and the highest MRO concentration was noted in SB-32 with 1,400 mg/kg.

Soil volatile organics and TPH concentrations are presented in Table 2, and RCRA 8 metal concentrations are included in Table 4. Soil analytical results for volatiles, TPH, and lead are also presented on Figure 5. Observations of encountered lithology, PID-OVM readings, and monitor well construction details are presented on the soil boring logs located in Appendix B.

6.4.3 Groundwater Monitoring and Sampling, December 2008

Groundwater samples were collected from the newly installed monitoring well network in December 2008. Samples were not collected from wells that contained a free product phase (i.e. non-aqueous phase liquid) as measured by an electronic water level/interface probe.

Groundwater Measurements and Water Quality Data

Depth to groundwater measurements for all wells were recorded prior to sampling activities. Top of casing (TOC) elevations had been surveyed upon well completion by a New Mexico licensed Professional Surveyor. Depth to groundwater measurements varied between 3.07 ft below TOC in MW-21 down to 30.53 ft below TOC in TW-1. Groundwater elevations across the site ranged from 5423.93 ft amsl in MW-5 to 5441.05 ft amsl in TW-1. Based on groundwater elevation data, a general hydraulic gradient 0.006 ft/ft to the northwest has been estimated for the site and is consistent with historical data. Groundwater measurement data are included in Table 5, and groundwater elevations and contours are included as Figure 7.

Following water level measurement, temperature, pH, and conductivity were recorded for each well to be sampled. All data was recorded onto Water Sample Collection Forms upon collection. Groundwater temperature ranged between 8.345°C (MW-20) and 15.75°C in (TW-44). Groundwater pH measurements were recorded between 6.16 (TW-41) and 7.48 (TW-34), and conductivity ranged between 2.772 mS (TW-1) and 10.96 mS (MW-22). Depth to groundwater measurements and water quality data are presented in Table 5.

Free Product Thickness Measurements

In January 2009, measured thicknesses of free product ranged from a sheen in several wells (TW-24 and TW-36) up to 1.29 ft in TW-32. Free product was measured in a total of 20 wells during the January 2009 gauging event.

Corrected groundwater elevations (Hc) for wells with measured free product were determined using the following formula:

$$H_{c} = H_{m} + (H_{o} * (\rho_{o}/\rho_{w}))$$

where

 H_m is the measured elevation of the hydrocarbon-water interface (ft) H_o is the thickness of the hydrocarbon layer (ft) ρ_o is the hydrocarbon density of diesel/gasoline mixture, assumed to be 0.788 (g/ml) ρ_w is the water density, assumed to be 1.0 (g/ml)

> Corrective Action Plan Thriftway Refinery May 4, 2009 Page 9

「「「「「「」」

1.1.1

1

6203.

Sec. 1

Free product measurements are summarized in Table 5, and free product thickness contours for January 2009 are presented in Figure 8.

т. Т

Groundwater Analytical Results

9-1

1.100

4 Acres

Once each well was determined to be stable based on recorded water quality parameters, a groundwater sample was collected from each well with a new disposable bailer equipped with a slow release valve and transferred into appropriate sample containers, labeled accordingly, and documented on Water Sample Collection Forms. A Chain of Custody Record was then completed, and samples were transported to the analyzing laboratory in chilled and insulated coolers below 6°C. Water Sample Collection forms are included in Appendix C.

Groundwater samples collected as part of the December 2008 sampling event were analyzed for VOCs per EPA Method 8260B. A summary of the reported laboratory results for VOCs follows:

- Significant benzene concentrations were reported in TW-8 (120 µg/L), TW-37 (820 µg/L), TW-38 (140 µg/L), and TW-41 (480 µg/L).
- The highest toluene concentration was reported at 1,700 μg/L in TW-7.
- All ethylbenzene concentrations were below the WQCC standard of 750 µg/L or were below laboratory detection limits.
- Total xylene concentrations were above the WQCC standard in TW-7 (4,200 μg/L), TW-8 (950 μg/L), TW-12 (1,700 μg/L), TW-37 (1,800 μg/L) and TW-41 (4,000 μg/L).
- MTBE concentrations at or above the WQCC standard of 100 µg/L were reported in MW-20 (170 µg/L), MW-21 (100 µg/L), TW-37 (180 µg/L), TW-38 (190 µg/L), TW-42 (130 µg/L), TW-43 (1,700 µg/L), and TW-44 (330 µg/L).
- Dissolved phase total naphthalene concentrations above the WQCC were also reported in TW-7 (308 µg/L), TW-8 (92 µg/L), TW-12 (317 µg/L), TW-36 (91.9 µg/L), and TW-44 (245 µg/L).

Groundwater analytical results for volatile organics, TPH-GRO, DRO, and MRO, and for total and dissolved lead are summarized and presented in Table 6 and on Figure 9. Electronic groundwater analytical laboratory reports are included in Appendix A.

6.4.4 MPE Pilot Study Well Installation, February 2009

On February 4, 2009, AES installed one multi-phase extraction (MPE) well and three vacuum response observation wells (OW-1 through OW-3) southeast of the refinery central reformer/processing area, near the new monitoring well TW-21, in order to determine radius of vacuum influence, subsurface air movement, and product and groundwater production rates. The MPE and OW wells were installed using a Mobile B-57 truck-mounted drill rig with a hollow-stem augers and were logged from samples

collected with a standard 24-inch split spoon sampler. Pilot study well locations are presented on Figure 10.

MPE-1 was completed as a 2-inch diameter well and screened between 10 and 20 ft bgs. Observation wells OW-1 through OW-3 were installed in a radial pattern at distances of 10, 20 and 40 ft from MPE-1. Additionally, RW-25, TW-21, and RW-24, located 50, 80, and 81 ft, respectively, from MPE-1 were monitored for vacuum response. Observation wells OW-1, OW-2, and OW-3 were screened from 9 ft to 14 ft bgs. Well completion diagrams for MPE-1 and OW-1 through OW-3 are included on Figure 10.

6.4.5 Aquifer Slug Testing, April 2009

On April 28 to 29, 2009, falling head and rising head aquifer slug tests on four monitoring wells were completed to determine average aquifer hydraulic parameters across the site. Tests were conducted at TW-3, TW-18, TW-41 and TW-44. Prior to conducting the tests, the static water levels in each well were gauged and recorded.

The falling head tests were conducted by first inserting a weighted slug of concrete-filled 1.25-inch PVC, measuring 4 ft in length fully into the water column in the test well. Immediately after inserting the slug, water levels were then recorded periodically (initially at 30-second, then 1-minute intervals) until the water level in the well returned to the pre-test measured level.

Rising head tests were conducted last for each well by measuring the starting water level elevation then removing the slug and periodically (30-second, then 1-minute intervals) gauging the water level depth. Slug test data were entered into the Starpoint Software Super-Slug modeling program and analyzed using the Bouwer-Rice method. Based on the data, estimates of the aquifer parameters are as follows:

Parameter	TW-3 Falling Head	TW-3 Rising Head	TW-18 Falling Head	TW-18 Rising Head	TW-41 Falling Head	TW-41 Rising Head	TW-44 Falling Head	TW-44 Rising Head
Hydraulic Conductivity (ft/day)	434.8	167.1	12.52	6.98	260.2	20.88	6.98	0.99
Transmissivity (gal/day/ft)	19,510	7,499	468.1	261.1	9,731	781	261.1	37.37

Based upon a review of slug test data, rising head data from TW-44 is not considered to be as reliable due to the low values that were observed. Aquifer slug test data are presented in Appendix D.

200

10.00

7.0 Multi-Phase Extraction Pilot Study, February 2009

7.1 Overview

A Multi-Phase Extraction (MPE) pilot test utilizing an internal combustion engine (ICE) manufactured by Remediation Services International (RSI), Ventura, California was conducted in February 2009. The MPE unit consisted of a trailer-mounted high vacuum extraction system that utilizes a propane-fired engine and thermal oxidizer for vapor extraction and destruction of up to 35 lbs/hr at 100 standard cubic feet per minute (SCFM). Ancillary equipment used during the pilot study included a 500-gallon propane tank and an existing 20,000-gallon above ground storage tank to contain produced water and free product. The RSI unit is fully automated with vacuum and air flow controls and a data logger.

AES conducted the MPE pilot study for approximately 24 continuous hours between February 5 and 6, 2009, with vacuum extraction at MPE-1 while measuring vacuum responses at TW-21, RW-24, RW-25 and the three observation wells, OW-1 through OW-3. During the pilot study, the MPE unit was operated at an average of 2,000 revolutions per minute (RPM), which produced an applied vacuum (extraction) that ranged from 20 to 100 inches of water (in-H₂O) and an extraction flow rate of 10 to 13 SCFM from the MPE well.

7.2 Pilot Study

AES began the MPE pilot study at 10:30 a.m. on February 5, 2009. After allowing approximately 1.5 hours for unit operation to stabilize, AES began recording data at 12:00 noon with the MPE unit operating at an applied vacuum to MPE-1 of 20 in-H₂O. During the test, AES increased vacuum pressures to 40 inH₂O at the start of test hour #2 (1:00 PM on February 5), then to 90 in-H₂O at the start of test hour #6 (5:00 PM on February 5), then to 100 in-H₂O at the start of test hour #20 (7:00 AM on February 6). The vacuum pressure remained at 20 in-H₂O from test hour #20 through the remainder of the test event (concluded at 22.5 hours; 10:30 AM on February 6). During the MPE test, AES recorded hourly measurements to assist with the study evaluation. These measurements included the following:

- Extraction well flow rate (SCFM);
- Extraction well vacuum (in-H₂O);
- Energy value of extracted vapors measured in British Thermal Units per hour (BTU/Hr);
- Approximate vapor concentration measured in parts per million volume (ppmv);
- Pre-catox air temperature (°F) and post-catox air temperature (°F);
- Post-catox vapor concentration measured in parts per million (ppm);
- Wellhead vacuum (in-H₂O) at observation wells (OW-1, OW-2, OW-3; TW-21, RW-24 and RW-25);
- Volume of fluids extracted measured in gallons per hour.

Figure 10 presents the pilot study equipment layout and RSI system operations data, including system parameters monitored during the pilot study.

7.3 Pilot Study Results

The MPE pilot study was operated continuously for 24 hours at MPE-1 to evaluate the effective radius of vacuum influence. MPE pilot study results are included on Figure 10 and are further summarized in Appendix E.

7.3.1 Vapor Concentration and Composition

Extracted vapor concentrations were recorded by the Phoenix 1000 automation system, which presents real-time system operating parameters recording a "snapshot" every 30 minutes throughout the duration of the pilot study. Extracted vapor concentrations ranged from 11,200 ppmv to 19,800 ppmv. Catox temperatures ranged from 726°F to 809°F.

7.3.2 Vacuum Influence

Vacuum influence during extraction at MPE-1 was observed at all observation wells when 40 in-H₂O vacuum was applied. The maximum observed vacuum response was 3.2 in-H₂O at OW-1 (located 10 ft from MPE-1), and the minimum observed response was 0.2 in-H₂O at OW-3 (40 ft from MPE-1). When 100 in-H₂O vacuum was applied to MPE-1, maximum observed vacuum response was 7.2 in-H₂O at OW-1, and the minimum observed response was 0.2 in-H₂O at OW-1, and the minimum observed response was 0.2 in-H₂O at RW-24 at TW-21 (approximately 80 ft from MPE-1). A summary of vacuum measurements taken during the pilot study is included on Figure 10 and in Appendix E.

7.3.3 MPE Flow Rates

Groundwater and free product production and vapor flow rates were monitored and recorded during pilot study activities. A total volume of 600 gallons of groundwater was recovered during the 24 hour pilot study, which corresponds to an average groundwater production rate of 0.42 gallons per minute (gpm) from extraction well MPE-1. Additionally, 13 gallons of free product were recovered from MPE-1 during the test, which is a rate of about 0.5 gallons per hour.

Vapor extraction flow rates averaged approximately 11 SCFM. The cumulative process flow was approximately 16,736 standard cubic feet (SCF), which was processed over the 24 hour duration of the pilot study. Vapor extraction flow rates observed during the pilot study are included in Figure 10 and in Appendix E.

7.3.4 Hydrocarbon Mass Removal Rates

The total hydrocarbon mass removal observed during the 24 hour MPE pilot study was 79.73 lbs of fuel hydrocarbons recovered as vapor and 80.6 lbs of fuel hydrocarbons recovered as free product (160.33 lb/day), which equates to a mass removal rate of 6.7 pounds per hour (lb/hr) from one well. RSI operational data are presented in Appendix E.

7.3.5 Hydrocarbon Destruction/Removal Efficiencies

Destruction/removal efficiencies (DRE) for the ICE system were calculated using the following equation:

DRE =	[<u>TVH₁] – [TVH_e]</u> x 100% [TVH ₁]
Where:	 [TVH₁] = Average Concentration of Total Volatile Hydrocarbons – Influent (ppm) – 14,454 ppmv [TVH_e] = Average Concentration of Total Volatile Hydrocarbons – Effluent (ppm) – 166 ppmv
DRE =	$\frac{14,454 - 166}{14,454} \times 100\% = 98.85\%$

8.0 Conceptual Site Model and Corrective Action Standard

8.1 Conceptual Site Model

- C. 2.0

A conceptual site model (CSM) has been prepared using existing site information and data. The CSM was developed in accordance with ASTM International E-1739 Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites.

The current use of the site, which is classified as commercial/industrial land, includes a former petroleum refining operation. The current owner has no plans to change property use in the future and, if the property is eventually sold, is willing to record deed environmental use restrictions to ensure this aspect of the remediation plan exists in perpetuity. No residential homes or sensitive receptors are located within areas of dissolved phase contamination associated with this facility.

Although only very small portions of the site are covered with impervious pavement (e.g., concrete and/or asphalt), inhalation, dermal contact, or ingestion of surficial or near surface soils do not form complete exposure pathways because all soil contamination is at depths that preclude completion of these pathways (greater than 5 ft on average).

Volatilization and vapor migration of contaminants from subsurface soils do not present complete exposure pathways for indoor inhalation for either on-site or off-site buildings. Soil vapors traveling along buried utilities would have only very limited potential to impact on-site construction workers (pipeline employees); other receptors for both on-site and off-site locations would have no exposure potential related to utility corridors.

Volatilization and vapor migration of free product or contaminated groundwater also are not complete exposure pathways for indoor inhalation (on-site and off-site industrial or commercial workers) under current and future land uses; although outdoor inhalation (industrial or construction worker) could potentially be complete where work to be required in the area of free product or dissolved-phase groundwater contamination. Natural attenuation of the downgradient edge of the dissolved-phase groundwater plume appears to limit migration from the source area towards off-site receptors such as Kutz Wash. Because no groundwater contamination reaches the wash, the exposure pathway to off-site receptors is currently incomplete and should also remain incomplete under anticipated future conditions because no new releases or alterations to the flow regime are likely to occur.

Based on the above factors, the site conditions present potential exposure pathways primarily for on-site industrial or construction workers for both current and future land uses. No complete exposure pathways exist for off-site residential populations, on-site or off-site commercial workers, or off-site construction workers. Note that there are no current residential homes on-site, and future plans for the property do not include residential uses.

8.2 Corrective Action Standard

The corrective action standard for each contaminant of concern (COC) was based upon an evaluation and comparison with New Mexico Soil Screening Levels (SSLs) for industrial exposure presented within the NMED Hazardous Waste Bureau and Groundwater Quality Bureau Voluntary Remediation Program's *Technical Background Document for Development of Soil Screening Levels, Version 4.0* (2006). COCs identified for groundwater at the site include benzene, toluene, ethylbenzene, xylene, MTBE, naphthalene, all of which have been reported at concentrations greater than the applicable WQCC standards. Benzene, toluene, ethylbenzene, and xylene concentrations in soil have also been reported to exceed applicable industrial SSLs, and total BTEX and TPH concentrations exceed the NMOCD action levels of 50 mg/kg total BTEX and 100 mg/kg TPH. Therefore, these compounds are identified as COCs in the vadose zone at the site. Because the site is utilized as commercial/ industrial and will not be used as residential (currently or in the future), industrial SSLs are being proposed for soil cleanup standards, and WQCC standards are proposed for groundwater cleanup standards.

Groundwater and soil COCs, corresponding cleanup standards, the tier level used to determine the cleanup standard, and the remedial alternative intended to achieve the cleanup standard are presented below. Note that any additional COCs identified during the course of site cleanup will utilize the applicable WQCC standard for groundwater or industrial SSL for soil.

Contaminant of Concern	Proposed Groundwater Cleanup Standard (WQCC Standard) (μg/L)	Proposed Soil Cleanup Standard* (mg/kg)		
Benzene	10	25.8		
Toluene	750	252		
Ethylbenzene	750	128		
Xylene	620	82.0		
MTBE	100	NE		
Naphthalene	30	300		
Total BTEX	-	50 (NMOCD)		
ТРН	-	100 (NMOCD)		

Contaminants of Concern and Cleanup Standards for Soil and Groundwater at Former Thriftway Refinery, Bloomfield, NM

*Industrial Soil Screening Levels (SSLs) (NMED, 2006)

9.0 Estimated Petroleum Hydrocarbon Contaminant Mass

The estimated mass of petroleum hydrocarbons, based upon the most recent groundwater and soil analytical results, is approximately 1,618,061 lbs and is broken down as follows:

- Vadose zone sorbed and vapor = 261,313 lbs
- Free product floating on water (218,790 gallons) = 1,356,500 lbs
- Dissolved BTEX, MTBE, EDC, and naphthalene = 247.8 lbs

9.1 Groundwater

The estimated petroleum hydrocarbon contaminant mass in groundwater was calculated as follows:

Assumptions:

24.1. 195 1

an the

<u>د ب</u>

<u>Free Phase Product</u> 585,000 ft² NAPL Plume by 0.25 ft NAPL thickness 585,000 ft² X 0.25 ft = 146,250 ft³ Assume 20% porosity = 29,250 ft³ X 7.48 = 218,790 gallons NAPL X 6.2 lbs/gallon = **1,356,498 lbs petroleum hydrocarbons**

<u>Dissolved Phase</u> Total average BTEX, MTBE, EDC, and naphthalene concentrations in groundwater are approximately 4,800 µg/L. Area of dissolved phase plume (approximately 19 acres) = $827,640 \text{ ft}^2$

Average height of water column in groundwater monitoring wells = 5 ft (As measured in January 2009)

Volume of water within the dissolved phase plume (Assume soil porosity = 0.2)

- = $(827,640 \text{ ft}^2) \times 5 \text{ ft}$ = $4,138,200 \text{ ft}^3 \times 0.2$
- = 827,640 ft³

Convert to gallons of water within dissolved phase plume

- = $827,640 \text{ ft}^3 \text{ X } 7.48 \text{ gallons/ ft}^3$
- = 6,190,747 gallons

Convert to pounds of hydrocarbons

= (6,190,747 gallons) X (<u>8.34 pounds</u>) X (<u>4,800 parts</u>) (gallons) (1x10⁹ parts)

= 247.8 lbs petroleum hydrocarbons - dissolved phase plume

9.2 Soils

The estimated petroleum hydrocarbon contaminant mass for soils was calculated as follows:

Assumptions:

The total average TPH concentration in soil is about 3,000 mg/kg.

Approximate area of source soils/vadose zone contamination (assuming approximately 10 acres impacted)

= 435,600 ft²

Average thickness of impacted vadose zone over the entire area = 3 ft

Volume of soil within the impacted vadose zone area

- = (435,600 ft²) X 2 ft
- = 871,200 ft³

Convert to lbs of soil within the vadose zone plume (Assume density of soil is approximately 100 lbs per cubic foot)

- = 871,200 ft³ X 100 lbs/ft³
- = 87,210,000 lbs

Convert to lbs of hydrocarbons

= $(87,210,000 \text{ lbs}) \times (kg) \times (3,000 \text{ mg})$ $(1 \times 10^6 \text{ mg}) \qquad (kg)$

261,300 lbs petroleum hydrocarbons - vadose zone =

9.3 Soil Vapors

The estimated mass of petroleum hydrocarbons present within soil vapors in the vadose zone was calculated as follows:

Assumptions:

Total average TPH gasoline range organic (GRO) concentrations in soil vapors are 780 ppmv (based on average OVM/PID in soil borings within soil contamination zone).

Approximate area of source soils/vadose zone contamination (assuming approximately 10 acres impacted)

435.600 ft²

Average thickness of vapor impact in vadose zone over the entire area = 3 feet

Volume of soil within the vadose zone plume

 $(435,600 \text{ ft}^2) \times 3 \text{ ft}$ Ξ 1.310.000 ft³ Ξ

Pore volume within source soils/vadose zone contamination (Assume soil porosity = 0.2)

1,310,000 ft³ X 0.2 =

262.000 ft³ =

Convert to lbs of hydrocarbons

41 B

The at

=

= `	(262,000 ft ³) X (<u>780 µg</u>) 2	X <u>(28.317 L)</u>	X <u>(1kg)</u> X	(2.205 lb)
	(L)	(1 ft ³)	(10 ⁹ µg)	(1 kg)

12.8 lbs petroleum hydrocarbons - soil pore spaces =

10.0 Remediation Alternatives

AES considered several remedial alternatives in developing the most effective remedial strategy for the portions of the site which will be addressed first, i.e. the areas with significant free product (i.e. NAPL) thicknesses and source soils in addition to the downgradient edge of the dissolved phase plume. Remedial alternatives evaluated included: 1) excavation and off-site disposal of hydrocarbon contaminated soils within the areas of significant free product; 2) soil vapor extraction with air sparging (for areas outside of significant free product); 3) high vacuum multi-phase extraction to remove free product, soil vapors, and dissolved phase contaminants in source areas; and 4) phytoremediation for polishing of downgradient edge of dissolved phase plume and providing hydraulic control of potential plume migration.

10.1 Soil Excavation and Off-Site Disposal of Source Soils

The first remedial alternative evaluated consisted of excavating on-site source soils in conjunction with subsequent enhanced monitored natural attenuation of dissolved phase contaminants. It was estimated that approximately 120,000 cubic yards of contaminated soils would have to be removed and transported to an off-site disposal facility. Excavation and disposal of source soils would eliminate the need for further vadose zone remediation; however, remaining free product and dissolved phase contamination would still have to be addressed in the source area.

10.2 Soil Vapor Extraction (SVE) with Air Sparging (AS)

Soil vapor extraction (SVE) consists of applying a low pressure vacuum across the vadose zone while simultaneously injecting ambient air into the saturated zone to encourage volatilization of contaminants from the saturated zone into the vadose zone. The SVE vacuum rates remain low in order to prevent excessive production of water (upwelling or mounding).

10.3 Multi-Phase Extraction (MPE) Remediation in Source Area

The third remedial alternative evaluated consists of high vacuum MPE using an internal combustion engine (ICE). This remedial option would provide an effective method to remove free product, including heavier and less volatile compounds, and remediate contaminated saturated and unsaturated soils and groundwater within the source area.

10.4 Phytoremediation for Hydraulic Control and Treatment of Down-Gradient Edge of Dissolved Phase Plume

Phytoremediation is a process that uses plants to remove, transfer, stabilize, or destroy petroleum hydrocarbon or other contaminants in soil, sediment, and groundwater. The mechanisms of phytoremediation include enhanced rhizosphere biodegradation (takes place in soil or groundwater immediately surrounding plant roots), phytoextraction (also known as phytoaccumulation, the uptake of contaminants by plant roots and the

Corrective Action Plan Thriftway Refinery May 4, 2009 Page 19 19 F.

1.15

調整

Ser.

1. all the second s

ALDS NO.

1.2.9.

translocation/accumulation of contaminants into plant shoots and leaves), phytodegradation (metabolism of contaminants within plant tissues), and phytostabilization (production of chemical compounds by plants to immobilize contaminants at the interface of roots and soil) (USEPA, 1999). Phytoremediation applies to all biological, chemical, and physical processes that are influenced by plants (including the rhizosphere) and that aid in cleanup of the contaminated substances. Plants can be used in site remediation, both through the mineralization of toxic organic compounds and through the accumulation and concentration of heavy metals and other inorganic compounds from soil into aboveground shoots. Phytoremediation may be applied in situ or ex situ, to soils, sludges, sediments, other solids, or groundwater. Shallow groundwater conditions in the downgradient (i.e. dissolved phase) portion of the site in conjunction with low to moderate dissolved phase contaminant concentrations present the potential for phytoremediation applications.

11.0 Selection of Remediation Alternatives

The objectives of the remediation strategies presented in the CAP are to reduce the concentrations of petroleum hydrocarbons in soil and groundwater to meet applicable standards and to mitigate impacts associated with potentially complete exposure pathways. A feasibility analysis for site remediation was conducted to identify the most effective remedial technology or combination of technologies based upon technical feasibility, cost effectiveness, permissibility (institutional or physical constraints), the current use of the property and the current use of surrounding properties.

The remediation alternatives in the previous section were evaluated based upon the following criteria: necessary, reasonable, technically feasible, and cost effective. A summary of the evaluation of remedial technologies is presented below:

for Former Inrittway Refinery, Bloomfield, NM						
Remediation Alternative	Necessary	Reasonable	Technically Feasible	Cost Effective		
1. Excavation of On-Site Source Soils	Yes	No	N/A	N/A		
2. Soil Vapor Extraction/ Air Sparging for Areas Outside of Free Product	Yes	No	N/A	N/A		
3. MPE in Source Area to Remove Free Product, Soil Vapors, and Dissolved Phase	Yes	Yes	Yes	Yes		
4. Phytoremediation at Downgradient Dissolved Phase Edge	Yes	Yes	Yes	Yes		

Summary Remedial Technologies

Remediation Alternative 1 was not selected because it will not best adequately mitigate free product within the source area. Excavation of on-site source soils would remove petroleum contaminated soils from the vadose zone which currently provide a continued source for both soil vapor migration and for groundwater contamination. However, remaining free product will continue to serve as ongoing source for soil vapors and dissolved phase contaminants.

Remediation Alternative 2 was not selected because: 1) low vacuum pressures would not allow for removal of less volatile compounds; 2) low air sparge injection flows would not allow for partitioning of less volatile compounds; and 3) air sparge injection flows may cause plume migration towards Kutz Wash and would decrease ability to maintain hydraulic control at the site.

Remediation Alternative 3 was selected because: 1) results of the MPE pilot study showed that MPE is technically feasible and will achieve a significant radius of influence (approximately 40 feet) within the fine to medium grained sand and silty sand at the site; 2) MPE will be effective in removing soil vapors, free product and dissolved phase contaminants, where the vadose and saturated zones have been impacted by petroleum hydrocarbons; and 3) the technology can be implemented in a phased approach over the next few years.

Remediation Alternative 4 was selected because: 1) phytoremediation allows for maintaining hydraulic control of the site, ensuring that dissolved phase contaminants will not migrate further down-gradient and possibly reach Kutz Wash; and 2) phytoremediation will improve the visual aspect of the area for nearby residents and traffic on CR 5500.

12.0 Proposed Remediation System Installation and Operations Overview

Based on cost effectiveness and the ability to achieve the desired remediation standards in a reasonable time period, operation of a high vacuum MPE system is considered the most appropriate site remediation strategy. In general, the proposed system will include an ICE unit with two engines to extract soil vapors, free product, and contaminated groundwater from an eventual total of 196 extractions wells. Remediation work will be completed in 10 separate phases, with about 20 wells per phase, and each phase will require approximately four months of vacuum extraction to complete. Work will begin in the most up-gradient portion of the source area and free product plume (Phase 1) and then proceed to the down-gradient edge of the free product plume, which will be addressed in the later phases of MPE operations.

Waste streams associated with operations include soil vapor, free product, and contaminated groundwater. Approximately 98 percent of the recovered soil vapor will be used as fuel for the ICE unit or destroyed by catalytic oxidization. A small portion of the free product recovered will partition to vapor phase during processing and storage and will also be used as fuel for the ICE unit. The remainder of free product will be stored on-site and continued to be used as a partial supplemental fuel source (along with

Corrective Action Plan Thriftway Refinery May 4, 2009 Page 21 1-24 - 2 N

5-3-28

the state

Trans.

A PERSONAL PROPERTY.

語の

Contraction of the local distribution of the

propane). Groundwater extraction rates will be kept to a minimum (less than 0.5 gpm per well), and water that is produced will be evaporated within the two existing lined ponds, which are allowed under GW-55 Permit for the facility.

1. 1-

Based on the MPE pilot study results and the estimated contaminant mass to be removed, approximately 3.6 years will be required to complete the 10 remediation phases. However, it is expected that contaminant rebound will occur within some areas, and additional operation time of as much as two years may be required. Estimated remediation time (3.6 years) was estimated as follows:

Assumptions:

1

- 5 2 b

1. A total of 1,618,061 lbs of hydrocarbon mass to be removed.

°н, ,

- 2. Operate 10 extraction wells at a time (of the total number of wells from each MPE phase) from which 60 lbs of hydrocarbons will be extracted per hour.
- 3. Only 80 percent run-time will be achieved due to operations and maintenance (O&M).

Remediation Time

=

- <u>1,618,061 lbs</u> = 26,968 hours 60 lbs/hour
- = <u>26,968 hours</u> = 1,124 days 24 hours
- = <u>1,124 days</u> = 3 years 365 days
- = $3 \text{ years} + (3 \times 1.20) = 3.6 \text{ years}$

12.1 Health and Safety Plan

AES has a Health and Safety Program in place to ensure the health and safety of all AES employees. The Health and Safety Program defines safety practices and procedures to be instituted in all AES work places, as applicable. The program meets the requirements promulgated by the Occupational Safety and Health Act (OSHA). All AES personnel are appropriately trained in accordance with OSHA 40 CFR 1910.120.

AES will prepare and implement a comprehensive site-specific health and safety plan (HASP) for the installation and operation of the remediation system. All employees, subcontractors, and visitors will be required to read and sign the HASP to acknowledge their understanding of the information contained in it. The HASP will be implemented and enforced on site by the assigned Site Safety and Health Officer. During the installation phases, daily tailgate safety meetings will be held and documented and will address specific health and safety concerns or issues.

12.2 Department Notification

AES will provide the NMOCD with written notification at least seven days before initiating any major field activities, such as extraction well installations and changes in work phases, so that an NMOCD representative may be on-site to observe scheduled site activities. Additionally, AES will also provide written notification to the site owners/operators of scheduled field activities.

12.3 Utilities Notification

Prior to initiating excavation or drilling activities, AES will contact New Mexico One Call (NMOC) to locate utilities on- and off-site in the vicinity of the proposed well locations. AES will contact separately any entity not participating in New Mexico One Call to locate utilities. Scheduled site activities will commence following utility clearance.

12.4 Operations Area Surface Preparation

Prior to beginning work on each phase, the surface area within that phase will be moderately graded to facilitate the installation of the extraction wells and the movement of the mobile remediation equipment within the area during MPE operations. Site surface preparation will include leveling of soil berms and removal of any concrete surfacing or dense vegetation. During this work, extreme care will be taken not to damage existing monitoring wells.

12.5 MPE Well Installation

A total of 196 extraction wells (MPE-1 through MPE-196) will be installed during the 10 phases of MPE operations, and each phase will include 11 to 24 wells. Note that not all MPE extractions wells will be installed at once; rather, MPE wells will be installed just prior to the start of each respective MPE phase. MPE wells will be located on 60 ft centers to provide a full radius of effective influence of up to 40 ft. All MPE wells will be completed to 3 ft above grade and manifolded together with 2-inch diameter vacuum hose, which will be placed on the ground surface. Signs and temporary fence will be used in areas where occasional authorized traffic occurs, to prevent damage to the vacuum hoses. The proposed MPE system is included on Figure 11.

12.5.1 Soil Boring Installation

AES proposes to employ a New Mexico licensed driller with a Mobile B-57 rig equipped with 7.25-inch diameter hollow-stem augers for installing the MPE wells. The wells will be installed to an estimated average depth of 20 ft bgs and will include 10 ft of slotted (0.010-inch) screen and 13 ft of blank casing and riser. All drilling and site work will be conducted in accordance with AES's Standard Operating Procedures (SOPs) – Hollow Stem Auger Drilling and applicable ASTM standards.

12.5.2 Field Screening and Lithologic Logging

During MPE well installation, soils will be logged for subsurface lithology by examining the drill cuttings in order to assist in proper MPE well construction and placement. Lithologic descriptions and OVM measurements will be recorded onto soil boring logs.

Corrective Action Plan Thriftway Refinery May 4, 2009 Page 23 and a straight of

97. S. S.

12.5.3 MPE Well Installation, Development and Surveying

MPE Well Installation

All MPE wells will be constructed with Schedule 40 PVC with 10 ft of slotted (0.010-inch) screen set to intersect free product and groundwater. The annulus of the screened portion of the MPE wells will be filled with 10/20 Colorado silica sand from approximately the bottom of the well up to 2 ft above the top of the screened interval. A 2-ft thick bentonite seal will be placed on top of the sand, and the remaining annular space will be filled with cement grout to the surface (approximately 6 ft). The wells will be completed at 3 ft above grade with a steel surface riser. All well casing and screen will be delivered to the site in factory-sealed containers. The MPE wells will be constructed in accordance with AES's SOPs for Well Installation and ASTM D5092-9. MPE well construction details are illustrated on Figure 11.

MPE Well Development

Following installation, the MPE wells will be developed by a combination of surging and pumping techniques. Well development will include free product and groundwater measurements taken before and after development to provide information on free product thicknesses, groundwater elevations, and the operating parameters of the MPE system. It is estimated that approximately 25 gallons of water will be generated during the development of each MPE well. Groundwater purged from the wells will be placed in the two lined ponds for evaporation. The MPE wells will be developed in general accordance with AES's SOP - Well Installation and Development and applicable ASTM standards.

MPE Well Surveying

A New Mexico licensed surveyor will survey and tie the newly installed MPE wells to an existing USGS benchmark and to other site monitoring wells and features. Elevations will be recorded to the nearest 0.01 foot with reference to mean sea level. Survey data will be used to develop as-built drawings of the remediation system.

12.6 Equipment Decontamination

All downhole drilling equipment (i.e. augers and rods) will be cleaned with a highpressure washer between borings. All decontamination and rinse water will be collected and placed in the lined ponds for evaporation. Decontamination procedures will follow AES' SOPs for equipment decontamination.

12.7 Drilling Waste Characterization and Disposal

12.7.1 Waste Disposal

AES estimates that approximately 50 cubic yards of drill cuttings will be generated during the installation of the MPE wells. Drill cuttings are expected to be contaminated and will be placed in a 10 cubic yard trailer as they are generated. Drill cuttings will then be characterized and disposed of at the Envirotech Landfarm, located south of Bloomfield, New Mexico.

12.7.2 Drilling Waste Laboratory Analyses

A soil sample obtained from the drill cuttings will be collected and analyzed for waste profiling purposes by the fixed-base laboratory for parameters required by the disposal facility.

12.8 MPE Remediation System

The MPE remediation system has been designed based on a recent site characterization investigation and MPE pilot study. A total of 196 extraction wells, MPE-1 through MPE-196, will be utilized for remediation of the saturated and vadose zones. A drop tube connected to the vacuum extraction piping will be used to extract vapor and liquid from each remediation well. An applied vacuum at each remediation well will remove soil vapor, free product, and groundwater out of the well and to the remediation system.

The soil and groundwater remediation system has been designed to simultaneously operate up to 10 extraction wells at a time. The spacing of the remediation wells is based on a conservative estimated radius of influence (ROI) of 40 ft. Based on the results of the MPE pilot test, a well head vacuum of up to 25 in-H₂O was required to obtain an average ROI of 40 ft (0.5 in-H₂O observed at 40 ft from extraction well).

The remediation system will process approximately 100 SCFM of soil gas and ambient air at a well head vacuum of 25 in-H₂O. Approximately 98 percent of the recovered soil vapor will be used as fuel for the ICE unit or destroyed by catalytic oxidization. A small portion of the free product recovered will partition to vapor phase during processing and storage and will be used as fuel for the ICE unit. The remainder of free product will be stored on-site and continued to be used as a partial fuel source (along with propane) for the RSI unit. Groundwater extraction rates will be kept to a minimum (less than 0.5 gpm per well), and water that is produced will be evaporated within the two existing lined ponds, which are permitted under the facility discharge plan (GW-55).

The MPE system will consist of a RSI S.A.V.E. and compressive thermal oxidizer for vapor destruction. A supplemental propane fuel source, system telemetry and software, and regulator will allow for continuous operation in the event that soil vapors fall below the engine requirement of 5,000 ppm total petroleum hydrocarbons. The MPE system will also have a "Project Manager" system control and telemetry package that will allow equipment to be monitored and operated remotely via a telephone modem.

Miscellaneous engine gauges, programmed with safety shutdown procedures, will also be installed on the system. Additional equipment specifications are as follows, and complete system specifications are included in Figure 11.

Internal combustion engines: Two modified Ford 460 engines to create up to 20 in-Hg vacuum (each engine); maximum soil vapor abatement 260 scfm @ 16,000 ppmv loaded V4; maximum soil vapor abatement 100 scfm @ 16,000 ppmv unloaded V4; total BTU destruction rate 300,000 - 900,000 BTU/hr per engine; with 15 to 25 lbs/hour hydrocarbon destruction rate per engine.

14 14 14

Phoenix 1000 controller: Starts the engine running on dilution air and alternate fuel through an idle and warm-up period. After warm-up, the system slowly begins opening the valve from the MPE wells. As the valve is opening, the controller constantly adjusts all of the other valves to maintain the set rpm and to hold a near stoichiometric fuel ratio in the engine. The system continuously increases the flow from the MPE wells while decreasing the alternative fuel and dilution air inlet valves. If vapors from the MPE system are rich (i.e. high concentration of hydrocarbons), the alternate fuel valve will eventually close. The controller will close the dilution air valve if the MPE vapor stream is lean.

The MPE system design, installation, operation, maintenance, monitoring, evaluation, optimization, and reporting will be conducted in a manner consistent with established industry standards, technical guidance documents, and vendor specifications. AES has utilized the U.S. Army Corps of Engineers (USACE) Engineering and Design Manual (EM 110-0-4010) for Multi-Phase Extraction (2002) to assist in system design.

12.9 Air Quality Monitoring and Sampling

Routine air monitoring and sampling will be conducted at the inlet and outlet of the RSI unit. Upon startup, representative grab samples will be collected and analyzed for volatile organic compounds per EPA Method 8260, BTEX per EPA Method 8021B, and GRO and DRO per EPA Method 8015M in accordance with a testing plan developed in consultation with the NMED Air Quality Bureau. After startup, samples will be collected on a periodic basis for the duration of MPE operations. Grab samples from the inlet and outlet will be analyzed for TPH (GRO and DRO) and BTEX per EPA Methods 8015 and 8021, respectively. All samples will be analyzed at Hall Environmental Analysis Laboratory (Hall), in Albuquerque, New Mexico.

12.10 Phytoremediation at Down-Gradient Edge of Dissolved Phase Plume

Phytoremediation will be implemented as a plume migration barrier for down-gradient control of the groundwater contaminant plume. AES has met and consulted with the New Mexico State University (NMSU) Agricultural Science Center in Farmington regarding the use of their hybrid poplars cultivar for this application. NMSU has worked locally with the Navajo Agricultural Products Industry (NAPI) to develop local cultivars suited to the arid and high alkalinity conditions of the area. According to Dr. Mick O'Neill, superintendent of the NMSU Ag Center, beginning in 2002 NMSU researchers worked with NAPI to test 20 different poplar clones and identified a few that grew very well in this area. One clone, named OP-367, was reported to have grown to a height of 15 ft in 16 months and reached 40 ft in height by the age of four years. The NMSU Ag Center has agreed to make plant material from their research plots available for the application proposed in this CAP and NMSU staff will also be able to provide consultation regarding plant installation and maintenance.

12.10.1 Agronomic Evaluation

The performance of phytoremediation system is contingent on soil quality, which in turn depends on the physical, chemical, and biological parameters of the soil. Physical characteristics of the soil include compactness (bulk density), texture, and permeability,

and chemical parameters include fertility, salinity, and presence of phytotoxic elements or compounds. Biological factors, including plant and chemical interactions with bacteria, fungi, insects, and burrowing animals, also need to be assessed for an effective phytoremediation project.

Prior to plantings in the spring of 2010, and in consultation with NMSU, a representative number of soil samples from the area proposed for phytoremediation will be collected and analyzed for:

- available nutrients, including nitrogen, phosphorus, potassium, calcium, sulfur etc.;
- particle size distribution;
- bulk density;
- salinity;
- oxidation/reduction (redox) potential;
- microorganism(s) present for degradation;
- cation exchange capacity;
- pH; and
- organic matter content.

Results of the soil analyses may indicate that certain amendments would be beneficial to the soil before pole planting begins. One method of improving soil quality is to place composted woody material in the planting trench with the poles as they are planted. The compost will provide a nutrient source for the trees, improve the drought tolerance of the plantings, and enhance the contaminant buffering potential of the phytobarrier due to the high organic content and large surface area of the compost material.

12.10.2 Installation Plan

Based on consultation with NMSU, an initial planting of approximately 1,150 locally derived hybrid poplar poles will be installed in trenches dug along the north and west property boundaries (see 'minimum planting area', Figure 12). The poles will be 8 to 10 ft in length and will be cut from live, dormant trees one to two days prior to planting. Cut poles will be kept moist and stored in a cool area out of direct sunlight until planting. Based on the results of the initial planting, later plantings may also be conducted in the additional areas identified on Figure 12.

Planting trenches will be created using a powered trencher capable of cutting a trench to at least 7 ft bgs. Prior to trenching, AES will ensure that all utilities are located in accordance with New Mexico One Call procedures. Utility representatives will be requested to be on-site during trench installation if needed. Trenches will be installed with an interval of 6 ft between trench lines and trees will be spaced at 6-foot intervals along the trenches. The total width of plantings will be approximately 24 ft. As previously noted, wood-based compost will be added to the trench as the soil is backfilled around the poles in order to improve soil quality and drought tolerance.

Areas between the poplars will be infilled with grass species, e.g. Bermuda grass (*Cynodon sp.*), Alkali sacaton (*Sporobolus airoides*), Alkali muhly (*Muhlenbergia asperifolia*), or other suitable grasses or sedges, to aid in groundwater uptake and

CORE REAL

ジーを行

19-11-19-1 19-11-19-1

1.5

invasive species control (e.g., Saltcedar/*Tamarix ramosissima*). All planting will be undertaken during spring, preferably during the month of April, but no later than May 15th. Irrigation of all plantings will be conducted, as needed, to maintain survivability of the plantings and will include manual irrigation initially followed by installation of an automated drip irrigation system using water produced from an on-site irrigation well (to be installed).

The irrigation well will be installed by Biotech in an up-gradient portion of the site. AES proposes installing the well to a depth of approximately 60 ft bgs and intends to locate the well near test well TW-6 to the east of the entrance gate. AES will install a solar panel to power a 12-volt purge pump capable of pumping water from a depth of up to 75 feet. The pump discharge will be connected to flexible black waterline pipe that will be routed from the well location to a series of drip irrigation lines distributed throughout the planting area. The pump will be controlled with a timer so that pumping rates can be optimized for the needs of the plantings and the season.

In order to aid in monitoring the effectiveness of the phytoremediation, AES will install a series of grouped 1-inch diameter piezometers in the same trench as the poles when the poles are planted. Each piezometer group will consist of three piezometers: one in the upgradient trench, one in the middle interior trench, and one in the downgradient trench. AES anticipates installing three piezometer groups: one near the east end of the initial planting area, one near the northwest corner of the property, and one near the southwest corner of the initial planting area. The piezometers will be constructed of PVC and will consist of a 2.5 ft long slotted screen and 5 ft blank. For a distance of 2 ft on either side of a piezometer, the trench will be backfilled entirely with sand (no compost).

12.10.3 Maintenance Plan

A maintenance plan for the phytoremediation area will be developed and include inspection of groundwater, nearby surface water (if present) in Kutz Wash, meteorological, and plant monitoring equipment and the plants themselves. Maintenance of plants and cover vegetation (USEPA) will include:

- Mowing or trimming ground cover vegetation, if necessary, may greatly enhance growth of trees. Note that mowing or trimming may only be necessary when herbaceous plant competition becomes detrimental to trees;
- Fertilizing the area based on the soil monitoring results;
- Following an animal control plan to keep out deer, burrowing animals, etc.;
- Pruning and replacing trees, as necessary.
12.11 Monitoring and Sampling Plan

12.11.1 Semi-Annual Groundwater Monitoring and Sampling During Active Remediation

BioTech will conduct semi-annual groundwater monitoring and sampling to monitor site progress during operation of the MPE system. All recently installed wells will be sampled semi-annually for volatile organics per EPA Method 8260 and GRO, DRO, and MRO per EPA Method 8015M. Additionally, wells will be sampled on an annual basis for anions/cations, including calcium, magnesium, potassium, sodium, bromide, chloride, fluoride, sulfate, specific conductance, hardness (as CaCO₃), and TDS, and also for RCRA 8 metals. Groundwater monitor wells will be sampled in general accordance with the AES's SOPs - Groundwater Monitor Well Purging and Sampling, and applicable ASTM standards. All groundwater field data, including temperature, conductivity, oxidation reduction potential, DO, and pH, will be recorded onto Water Sample Collection forms.

12.11.2 Phytoremediation Progress Monitoring

AES will initially conduct monthly inspection of planted species to monitor progress. Inspections will include visual observation of indicators of plant health such as the percent survival, leaf yellowing or browning, and average height of plants per plot (measured from main stem to tip of leader). A series of agronomic samples will be collected annually within the active phytoremediation area to evaluate ongoing soil amendment/fertilizer requirements. AES intends to work with NMSU to collect the necessary samples, but proposes no less than two samples per planted acre for this purpose. In addition, the piezometer system installed within the phytoremediation area will be used to gauge water levels and collection of samples for BTEX analyses (EPA Method 8021) for semi-annual progress reporting.

12.12 Reporting

12.12.1 Remedial Progress Reports

Remedial progress reports will be prepared to provide NMOCD updates regarding the status and progress of the various remedial actions undertaken at the site. The reports will generally include the following:

- Description of all work performed for the reporting time frame;
- Results of groundwater monitoring data, including all procedures, results, and documentation;
- Site plan showing monitoring and sampling collection locations of data collected;
- Results of phytoremediation inspections and maintenance efforts;
- An evaluation and interpretation of cumulative remedial progress towards achieving intermediate performance based goals;
- An updated projection of the time frame for attaining intermediate performance goals;

- When appropriate, final remediation goals for each contaminated media;
- All goals based on contaminant statistical data trends regarding contaminant concentrations (including groundwater trends);
- An updated conceptual site model that incorporates updated periodic monitoring and sampling data;
- Analyses, evaluations, and performance-based recommendations based upon the results of the MPE system operations during the applicable monitoring period;
- Estimated time until response activities, including remediation and verification monitoring, will demonstrate that the concentration of each COC is at or below the applicable cleanup standard;
- Proposed future activities.

Subsequent Remedial Progress Reports will be prepared on a semi-annual basis and submitted to NMOCD within 45 calendar days following the end of each semi-annual reporting period (January through June and July through December of each calendar year) while the corrective action is in progress.

13.0 Proposed Schedule

Task Description	Days from CAP Submittal to NMOCD
Phase 1 MPE Well Installation	60 days
Phase 1 MPE System Startup	90 days
Semi-Annual Groundwater Monitoring	June 2009
1 st Semi-Annual Report	August 15, 2009
Phase 2 MPE Well Installation	October 2009
Phase 2 MPE System Startup	November 2009
Semi-Annual Groundwater Monitoring	December 2009
2 nd Semi-Annual Report	February 15, 2010
Phytoremediation Pole Plantings	April 2010

Initial corrective action scheduling will follow the proposed timeline:

In the event that site cleanup levels are not achieved, additional corrective action efforts at the site will be initiated in consultation with NMOCD.

14.0 CAP Amendments or Modifications

This CAP has been formulated and prepared based upon current site conditions and information. In the event that site conditions change or new site information becomes available, Thriftway Company reserves the right to submit a CAP amendment or modification for review by NMOCD to ensure that corrective action is conducted in a reasonable, necessary and cost-effective manner.

15.0 Conclusions

Based upon consideration of site-specific information and conditions, the remedial option including installation and operation of a MPE remediation system augmented with a phytoremediation-based barrier for groundwater contamination migration will promote the protection of public health, welfare and the environment, and, to the extent practicable, provides for the control, management or cleanup of regulated substances so as to allow the maximum beneficial use of the water and soil of this state; and is reasonable, necessary, cost-effective, and technically feasible.

16.0 Certification

I, the undersigned, am personally familiar with the information submitted in this Corrective Action Plan prepared on behalf of Thriftway Company for the Former Thriftway Refinery located at 626 CR 5500, Bloomfield, San Juan County, New Mexico. I attest that it is true and complete to the best of my knowledge.

for Blanc Watson Blaine Watson, P.G.

Sr. Project Manager

Ross Kennemer. Environmental Scientist, Principal

Elizabeth McNally, P.E.

Principal

Corrective Action Plan Thriftway Refinery May 4, 2009 Page 31

States States

東京

1437.50

April 1

17.0 References

- Air Force Center for Environmental Excellence (AFCEE), *Designing Monitoring Programs to Effectively Evaluate the Performance of Natural Attenuation,* (2000).
- American Petroleum Institute (API), "Evaluation of Sampling and Analytical Methods for Measuring Indicators of Intrinsic Bioremediation", *API Soil and Groundwater Research Bulletin*, No. 5 (1998).
- American Society for Testing and Materials (ASTM) International, E-1739, *Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites*, (1995).
- Animas Environmental Services, LLC (AES), "2007 Annual Report: Thriftway Company Refinery, 626 CR 5500, Bloomfield, San Juan County, New Mexico", (Farmington, New Mexico, March 31, 2008).
- Keetch, C.W. <u>Soil Survey of San Juan County, New Mexico: Eastern Part</u>, (USDA Soil Conservation Service, Bureau of Indian Affairs, and Bureau of Reclamation, New Mexico State Agricultural Experiment Station, 1980).
- New Mexico Environment Department (NMED) Hazardous Waste Bureau and Groundwater Quality Bureau Voluntary Remediation Program, *Technical Background Document for Development of Soil Screening Levels, Version 4.0* (Santa Fe, New Mexico, June, 2006).
- Norris, R.D. "In-situ Bioremediation of Soils and Groundwater Contaminated with Petroleum Hydrocarbons", *Handbook of Bioremediation (*Boca Raton, FL: CRC Press, 1994).
- O'Neill, Mick, Dan Smeal and Rick Arnold, "Hybrid Poplar Establishment Under Harsh Environmental and Edaphic Conditions" *AFTA 2005 Conference Proceedings* (New Mexico State University Department of Agronomy and Horticulture and Agricultural Science Center, 2005).
- Sutherson, Suthan S. <u>Remediation Engineering; Design Concepts</u>. (New York: CRC Lewis Publishers, 1997).
- U.S. Army Corps of Engineers (USACE). *Engineering and Design: Multi-Phase Extraction* (U.S. Army Corps of Engineers, Engineering Manual EM 1110-0-4010, 2002).
- U.S. Environmental Protection Agency (USEPA), *Phytoremediation Resource Guide* (USEPA Office of Solid Waste and Emergency Response Technology Innovation Office, June 1999).

USEPA, Evaluation of Phytoremediation for Management of Chlorinated Solvents in Soil and Groundwater (Remediation Technologies Development Forum Phytoremediation of Organics Action Team, Chlorinated Solvents Workgroup, undated). No.

ete ang

State of the

Sec. 1

1.00.23

No.

19. m

1. alto:

1

調算を

Strate State

States.

Mar H Sa

54 . P.S.

T. Nug

100 A

4 ----

A C. Same

1. a'a.,

 $\frac{1}{2} (1 - \frac{1}{2})^2$

Sec. a

kon tak

1. 2. 2. E.

E nation

			Depth to	Depth to	NAPL	Corrected	GW			Dissolved		Purge
		T.O.C.	Product	Water	Thickness	GW	Elev.		Conductivity	Oxygen	Temp.	Volume
Well ID	Date	(ft amsl)	(H)	(#)	(#)	Elev. (ft)*	(ft amsl)	Ηd	(mS)	(mg/L)	(°C)	(gallons)
MW-1	01-Feb-02	5449.08		14.78			5434.30					
MW-1	04-Feb-02	5449.08	9.17	9.18	0.01	5439.91	5439.89					
MW-1	29-Jul-02	5449.08		14.99			5434.09					No Sample
MW-1	06-Jun-03	5449.08		14.31			5434.77					No Sample
MW-1	21-Jan-04	5449.08		15.04			5434.04					No Sample
MW-1	26-May-04	5449.08		14.52			5434.56					No Sample
MW-1	29-Jul-04	5449.08		14.31			5434.77					No Sample
MW-1	03-Jan-05	5449.08		15.25			5433.83					No Sample
MW-1	08-Apr-05	5449.08		14.83			5434.25					
MW-1	19-Sep-05	5449.08		15.42			5433.66	MN	WN	MN	MN	No Sample
MW-1	03-Jan-06	5449.08		15.23			5433.85	7.40	2.593	0.34	17.30	3
MW-1	28-Jun-06	5449.08		14.85			5434.23	6.80	3.489	0.40	17.20	3
MW-1	28-Dec-06	5449.08		15.01			5434.07	7.20	6.065	0.28	13.20	3
MW-1	03-Jul-07	5449.08		15.27			5433.81	7.2	3.253	1.28	17.2	2.8
MW-1	18-Dec-07	5449.08		15.67			5433.41	7.26	4.102	0.65	15.32	0.25
MW-2	01-Feb-02	5442.65		11.91			5430.74					No Sample
MW-2	29-Jul-02	5442.65		11.97			5430.68					No Sample
MW-2	06-Jun-03	5442.65		12.57			5430.08					No Sample
MW-2	21-Jan-04	5442.65	11.94	13.00	1.06	5430.47	5428.88					No Sample
MW-2	26-May-04	5442.65	11.58	12.60	1.02	5430.84	5429.31					No Sample
MW-2	28-Jul-04	5442.65	11.75	12.73	0.98	5430.68	5429.21					No Sample
MW-2	03-Jan-05	5442.65	12.00	12.99	0.99	5430.43	5428.94					No Sample
MW-2	01-Apr-05	5442.65	12.48	11.51	0.97	5431.89	5430.43					
MW-2	19-Sep-05	5442.65	11.65	12.60	0.95	5430.79	5429.36	MN	MN	WN	MN	
MW-2	05-Jan-06	5442.65	11.78	12.70	0.92	5430.67	5429.28	7.20	2.238	0.50	15.00	
MW-2	28-Jun-06	5442.65		11.86		5430.79	5430.79	6.80	2.575	0.51	17.00	1.5
MW-2	02-Jan-07	5442.65		NN				MN	NM	MN	ΜN	
MW-2	03-Jul-07	5442.65		11.51			5431.14	7.2	3.080	0.21	15.8	2
MW-2	19-Dec-07	5442.65		12.09			5430.56	7.29	2.949	0.45	15.45	0.25

Corrective Action Plan May 4, 2009

Page 1 of 16

		T.O.C.	Depth to Product	Depth to Water	NAPL Thickness	Corrected GW	GW Elev.		Conductivity	Dissolved Oxvaen	Temp.	Purge Volume
Well ID	Date	(ft amsl)	(#)	(#)	(#)	Elev. (ft)*	(ft amsl)	Ηd	(mS)	(mg/L)	(°C)	(gallons)
MW-3	01-Feb-02	5431.43		6.03			5425.40					No Sample
MW-3	29-Jul-02	5431.43	5.30	6.73	1.43	5425.81	5423.66					No Sample
MW-3	06-Jun-03	5431.43	5.00	6.10	1.10	5426.19	5424.53					No Sample
MW-3	24-Jan-04	5431.43	5.18	6.58	1.40	5425.94	5423.83					No Sample
MW-3	26-May-04	5431.43	4.99	6.82	1.83	5426.03	5423.28					No Sample
MW-3	28-Jul-04	5431.43	4.79	5.58	0.79	5426.46	5425.27					No Sample
MW-3	03-Jan-05	5431.43	4.86	5.33	0.47	5426.47	5425.76					
MW-3	01-Apr-05	5431.43	3.67	3.67	0.00	5427.76	5427.76					
MW-3	19-Sep-05	5431.43	5.3	5.70	0.40	5426.04	5425.44					
MW-3	05-Jan-06	5431.43	5.01	5.18	0.17	5426.38	5426.13	ΝN	MN	NM	NM	No Purge
MW-3	28-Jun-06	5431.43	5.27	6.27	1.00	5425.94	5424.43	MN	NM	NM	MN	No Purge
MW-3	02-Jan-07	5431.43		4.79			5426.64	7.0	4.791	0.69	13.7	З
MW-3	19-Dec-07	5431.43		4.32			5427.11		Not Sa	mpled - Sheei	ר Present	
MW-4	02-May-01	5430.12		4.96			5425.16	6.9	1.41	2.15	64.4	5
MW-4	30-Jul-01	5430.12		5.72			5424.40	7.0	1.56	11.54	77	6
MW-4	30-Jan-02	5430.12		5.37			5424.75					Р
MW-4	25-Jul-02	5430.12		5.70			5424.42	7.3	2.54	1.34	84	Ч
MW-4	21-Nov-02	5430.12		5.17			5424.95	7.5	1.41	1.80	53.4	Ъ
MW-4	05-Jun-03	5430.12		4.97			5425.15	7.3	2.72	1.09	62	
MW-4	19-Jan-04	5430.12		5.35			5424.77	7.0	1.119	1.86	48.7	٩
MW-4	25-May-04	5430.12		5.11			5425.01	6.9	2.874	0.34	65.7	3
MW-4	27-Jul-04	5430.12		5.62			5424.50	7.4	2.71		72.1	В
MW-4	28-Dec-04	5430.12		5.16			5424.96	7.5				MP
MW-4	31-Mar-05	5430.12		4.30			5425.82	6.9	2.17	1.48	52.7	MP
MW-4	19-Sep-05	5430.12		5.30			5424.82	7.1	3.09	0.40	70.3	
MW-4	4-Jan-06	5430.12		4.91			5425.21	7.2	2.35	0.70	11.3	3
MW-4	02-Jan-07	5430.12		4.79			5425.33	MN	ΜN	NM	MN	No Sample
MW-4	19-Dec-07	5430.12		4.97			5425.15	MN	MN	NN	MN	No Sample

Page 2 of 16

Animas Environmental Services, LLC AES Tables 050209

Corrective Action Plan May 4, 2009

State of the second State of the second

17 A.L

and the second

a second

N. Strange

時代には

A CONTRACT

1. B.

ماليكينية ما ماليكينية ما

and or pre-

1.1

and an

the set

10 m

 $\frac{d}{dt} = \frac{d}{dt} \frac{d}{dt}$

A BAL

4 - La A A.

24 - 24 -

مي الارتخار

		U U F	Depth to	Depth to	NAPL Thickness	Corrected	GW Flov		Conductivity	Dissolved	Temn	Purge
Well ID	Date	(ft amsl)	(#)	(ft)	(#)	Elev. (ft)*	(ft amsl)	Ηd	(mS)	(mg/L)	(c)	(gallons)
MW-5	30-Jan-02	5428.97		5.33			5423.64					Р
MW-5	25-Jul-02	5428.97		5.73			5423.24	7.8	4.78	1.18	69	٩
MW-5	21-Nov-02	5428.97		5.43			5423.54					
MW-5	05-Jun-03	5428.97		5.02			5423.95	8.0	3.07	1.44	59.4	В
MW-5	19-Jan-04	5428.97		5.25			5423.72	7.7	1.14	2.61	47.6	Ъ
MW-5	25-May-04	5428.97		5.04			5423.93	7.5	3.21	0.45	60.4	3
MW-5	27-Jul-04	5428.97		5.43			5423.54	8.1	4.07		75.5	В
MW-5	28-Dec-04	5428.97		5.26			5423.71	8.0				MP
MW-5	31-Mar-05	5428.97		4.62			5424.35	7.3	2.77	0.39	52.7	MP
MW-5	19-Sep-05	5428.97	DRY	DRY	DRY		DRY	ΜN	MN	NM	MM	
MW-5	5-Jan-06	5428.97	DRY	ряγ	DRY		DRY	ΜN	MN	NM	NM	
MW-5	27-Jun-06	5428.97		5.43			5423.54	7.2	4.197	0.37	16	3
MW-5	28-Dec-06	5428.97		4.88			5424.09	7.3	7.927	0.54	10.4	3
MW-5	3-Jul-07	5428.97		5.07			5423.90	7.86	4.478	2.93	16.4	1.7
MW-5	18-Dec-07	5428.97				Not	Sampled - F	illed w	th Roots			
MW-5	19-Dec-08	5428.97		5.04				6.76	7.748	4.02	11.73	0.25
MW-6	3-May-01	5430.70		5.15			5425.55	7.3	1.35	5.33	54.9	5
MW-6	30-Jul-01	5430.70		5.86			5424.84	7.1	1.57	14.21	68.9	9
MW-6	30-Jan-02	5430.70		5.22			5425.48					
MW-6	25-Jul-02	5430.70		5.39			5425.31	7.2	3.26			
MW-6	21-Nov-02	5430.70		4.86			5425.84	7.5	3.24	0.86	60.8	Ъ
MW-6	5-Jun-03	5430.70		4.90			5425.80	7.5	2.64	1.02	62.6	
MW-6	19-Jan-04	5430.70		5.14			5425.56	7.6	2.235	1.64	52.2	Р
0-WM	25-May-04	5430.70		5.04			5425.66	7.1	2.882	0.31	63.3	3
MW-6	27-Jul-04	5430.70		5.14			5425.56	7.7	3.90		72.1	В
MW-6	28-Dec-04	5430.70		5.01			5425.69	7.6				MP
MW-6	31-Mar-05	5430.70		3.88			5426.82	7.2	2.42	1.24	52.7	МР
9-WM	19-Sep-05	5430.70		5.18			5425.52	7.2	3.839	0.46	70.9	

Corrective Action Plan May 4, 2009

Page 3 of 16

			Depth to	Depth to	NAPL	Corrected	GW		-	Dissolved		Purge
		T.O.C.	Product	Water	Thickness	GW	Elev.	L .	Conductivity	Oxygen	Temp.	Volume
Well ID	Date	(ft amsl)	(#)	(ft)	(#)	Elev. (ft)*	(ft ams!)	Ηd	(mS)	(mg/L)	(°C)	(gallons)
9-WW	4-Jan-06	5430.70		4.72			5425.98	7.5	2.775	1.60	11.7	ς Γ
MW-6	02-Jan-07	5430.70		4.63			5426.07	MN	WN	NM	MN	No Sample
9-WM	19-Dec-07	5430.70		4.48			5426.22	ΝN	WN	NN	MN	No Sample
					;							
7-WM	1-Feb-02	5435.28		5.32			5429.96					No Sample
7-WM	29-Jul-02	5435.28		6.11			5429.17					No Sample
MW-7	6-Jun-03	5435.28		90.6			5426.22					No Sample
7-WM	19-Jan-04	5435.28		90.6			5426.22	7.0	2.827	0.93	49.7	Р
7-WM	25-May-04	5435.28		9.14			5426.14	6.8	3.76	0.27	63.2	3
7-WM	27-Jul-04	5435.28		9.08			5426.20	7.3	5.32		72.8	В
7-WM	28-Dec-04	5435.28		9.05			5426.23	7.8				MP
7-WM	31-Mar-05	5435.28		7.67			5427.61	6.5	3.011	0.5	52	МΡ
7-WM	19-Sep-05	5435.28		9.20			5426.08	7.0	4.802	0.41	70.8	
7-WM	4-Jan-06	5435.28		8.14			5427.14	7.0	3.625	0.48	14.5	3
7-WM	02-Jan-07	5435.28		8.75			5426.53	MN	WN	NM	NM	No Sample
7-WM	19-Dec-07	5435.28		8.43			5426.85	NM	NM	MN	MN	No Sample
MW-8	30-May-01	5433.04		4.05			5428.99	7.1	1.79	4.57	53.4	5.2
MW-8	30-Jul-01	5433.04		5.86			5427.18	7.0	2.61	13.34	75.0	6
MW-8	31-Jan-02	5433.04		5.32			5427.72			0.36	73.3	Р
MW-8	26-Jul-02	5433.04		5.84			5427.20	7.3	6.49	1.24	74.2	Р
MW-8	22-Nov-02	5433.04		3.90			5429.14	6.8	3.97	0.47	55.6	ď
MW-8	5-Jun-03	5433.04		4.30			5428.74	7.0	3.38	0.75	60.3	В
MW-8		5433.04					Well No.	t Found				
MW-8	4-Jan-06	5433.04		4.04			5429.00	6.8	3.377	0.62	13.4	3
MW-8	02-Jan-07	5433.04					Well No	t Found				
MW-8	19-Dec-07	5433.04				Not	Sampled - F	illed wi	th Roots			
MW-8	19-Dec-08	5433.04				Not	Sampled - F	illed wi	th Roots			
6-MW	30-Jan-02	5436.69		NS				Wel	I not located			

Page 4 of 16

A CONTRACTOR

5. Sar. A

and the second s

13.54

「「「「

Sec. Prints

言語

No. Contraction

Corrective Action Plan

May 4, 2009

TABLE 1

20.00

12. Au

3.00 c

24 × 4 × 3

100

10 - The P

SUMMARY OF HISTORICAL GROUNDWATER MEASUREMENTS AND WATER QUALITY DATA Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico

			Depth to	Depth to	NAPL	Corrected	GW			Dissolved		Purge
		T.O.C.	Product	Water	Thickness	GW	Elev.		Conductivity	Oxygen	Temp.	Volume
Well ID	Date	(ft amsl)	(#)	(#)	(#)	Elev. (ft)*	(ft amsl)	Ηd	(mS)	(mg/L)	(°C)	(gallons)
9-WM	26-Jul-02	5436.69		NS				We	Il not located			
9-WM	21-Nov-02	5436.69		5.37			5431.32	7.5	5.8	0.91	58.3	Р
9-WW	5-Jun-03	5436.69		5.61			5431.08	7.5	4.95	0.85	63.8	Р
9-WM	19-Jan-04	5436.69		5.72			5430.97	2.3	3.23	1.71	35.1	Р
9-WM	25-May-04	5436.69		5.72			5430.97	7.5	4.86	0.65	61.5	3
6-WW	28-Jul-04	5436.69		5.95			5430.74	7.57	6.73		72	В
9-WIM	29-Dec-04	5436.69		5.47			5431.22					МΡ
6-WW	31-Mar-05	5436.69		5.38			5431.31	2	4.172	1.4	52.3	МР
6-WW	19-Sep-05	5436.69		5.73			5430.96	7.3	5.805	0.56	70.9	
0-WM	4-Jan-06	5436.69		5.26			5431.43	7.4	4.035	1.17	8	3
9-WM	02-Jan-07	5436.69		5.21			5431.48	ΜN	MN	MN	MN	No Sample
9-WM	19-Dec-07	5436.69		5.86			5430.83	MN	NN	MN	NM	No Sample
6-WW	19-Dec-08	5436.69		5.91			5430.78	6.36	6.368	6.29	9.69	Low yield
MW-10	31-Jan-02	5437.78		5.21			5432.57					Р
MW-10	26-Jul-02	5437.78		5.62			5432.16	7.4	5.51	1.37	74.4	Р
MW-10	21-Nov-02	5437.78		5.32			5432.46	7.3	4.63	0.97	59.1	Р
MW-10	5-Jun-03	5437.78		5.35			5432.43	7.6	4.62	0.98	63.3	В
MW-10	19-Jan-04	5437.78		5.29			5432.49	7.3	2.96	1.38	45.8	Р
MW-10	25-May-04	5437.78		5.19			5432.59	7.4	4.54	0.46	61.4	3
MW-10	28-Jul-04	5437.78		5.42			5432.36	8.31			69.7	В
MW-10	29-Dec-04	5437.78		5.08			5432.70					MP
MW-10	31-Mar-05	5437.78		5.00			5432.78	7.1	3.482	0.8	50.7	MP
MW-10	19-Sep-05	5437.78		5.22			5432.56	7.4	4.847	0.54	69.6	
MW-10	3-Jan-06	5437.78		4.66			5433.12	7.4	3.721	0.92	11.6	3
MW-10	28-Jun-06	5437.78		5.28			5432.50	7	5.567	0.46	18.2	3
MW-10	28-Dec-06	5437.78		4.88			5432.90	7.4	9.762	1.00	10.1	3
MW-10	3-Jul-07	5437.78		5.60			5432.18	7.5	5.638	3.29	15.83	3.5
MW-10	18-Dec-07	5437.78		5.16			5432.62	7.64	6.256	1.19	14.02	2
MW-10	19-Dec-08	5437.78		5.09			5432.69	6.73	5.439	6.27	9.79	0.25

Corrective Action Plan May 4, 2009

Page 5 of 16

TABLE 1	SUMMARY OF HISTORICAL GROUNDWATER MEASUREMENTS AND WATER QUALITY DATA	Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico
---------	---	---

			Depth to	Depth to	NAPL	Corrected	ВW			Dissolved	2 8 - 1	Purge
Well ID	Date	1.0.C. (ft amsl)	Product (ft)	(ft)	I nickness (ft)	GW Elev. (ft)*	tiev. (ft amsl)	Ηd	conauctivity (mS)	UXYgen (mg/L)	ا emp. (°C)	volume (gallons)
MW-11	31-Jan-02	5439.67		5.71			5433.96					٩
MW-11	26-Jul-02	5439.67		6.29			5433.38	7.4	5.06	1.58	69.8	۵.
MW-11	21-Nov-02	5439.67		6.01			5433.66	7.4	4.48	0.85	60.3	Ъ
MW-11	5-Jun-03	5439.67		5.94			5433.73	7.8	3.7	1.16	60.7	В
MW-11	20-Jan-04	5439.67		5.62			5434.05	7.3	0.45	3.62	44.5	Ч
MW-11	25-May-04	5439.67		5.85			5433.82	7.6	4.04	2.16	70.4	3
MW-11	28-Jul-04	5439.67		6.11			5433.56	7.78	5		65.9	В
MW-11	29-Dec-04	5439.67		5.95			5433.72				_	МР
MW-11	31-Mar-05	5439.67			Surface C	asing Damag	ed By Vanda	lls - Top	o of Casing Brok	en Off NS		
MW-11	19-Sep-05	5439.67			Surface C	asing Damag	ed By Vanda	lls - Top	o of Casing Brok	en Off NS		
MW-11	02-Jan-07	5439.67			Surface C	asing Damag	ed By Vanda	lls - Top	o of Casing Brok	en Off NS		
MW-12	31-Jan-02	5446.09		14.09			5432.00					۵.
MW-12	26-Jul-02	5446.09		14.35			5431.74	7.0	3.08	2.74	75.3	Ч
MW-12	3-Dec-02	5446.09		14.34			5431.75	6.9	4.01	1.21	54.4	Ъ
MW-12	5-Jun-03	5446.09		13.72			5432.37	1.7	5.20	0.98	64.6	Р
MW-12	20-Jan-04	5446.09	14.06	14.19	0.13	5432.00	5431.81					No Sample
MW-12	25-May-04	5446.09	13.73	13.76	0.03	5432.35	5432.31					MP
MW-12	28-Jul-04	5446.09	14.04	14.20	0.16	5432.01	5431.77					No Sample
MW-12	30-Dec-04	5446.09	14.14	14.89	0.75	5431.78	5430.65					МР
MW-12	31-Mar-05	5446.09	13.99	13.86	1.16	5433.13	5431.38		No Water	Ouality Parar	neters / F	0
MW-12	19-Sep-05	5446.09	14.15	14.85	0.70	5431.78	5430.73		No Water	Quality Parar	neters / F	с.
MW-12	05-Jan-06	5446.09	14.06	14.58	0.52	5431.91	5431.13	MN	WN	MN	NM	No Purge
MW-12	28-Jun-06	5446.09	13.94	14.12	0.18	5432.11	5431.84	ΜN	WN	MN	MN	No Purge
MW-12	02-Jan-07	5446.09	13.94	14.12	0.18	5432.11	5431.84	MN	WN	NM	MN	No Sample
MW-12	19-Dec-07	5446.09	14.21	15.05	0.84	5431.69	5430.43		Not Sa	mpled - NAPL	. Present	
										i		
MW-13	26-Jul-02	5452.12		17.54			5434.58	7.2	5.51	0.47	66	۵.
MW-13	03-Dec-02	5452.12		17.51			5434.61	7.3	3.09	0.98	51.6	٩

Corrective Action Plan May 4, 2009 語の種

Service .

ない

<u>62-10</u>

Page 6 of 16

a Ma Ma

82.124 V

a share a

لالله الله

a atta

13 F

			Depth to	Depth to	NAPL	Corrected	GW		,	Dissolved		Purge
		T.O.C.	Product	Water	Thickness	GW	Elev.		Conductivity	Oxygen	Temp.	Volume
Well ID	Date	(ft amsl)	(#)	(#)	(#)	Elev. (ft)*	(ft amsl)	РH	(mS)	(mg/L)	(°C)	(gallons)
MW-13	05-Jun-03	5452.12		17.06			5435.06	7.3	4.11	0.91	62.4	Ч
MW-13	20-Jan-04	5452.12		17.52			5434.60	7.3	2.39	1.48	48.5	Р
MW-13	25-May-04	5452.12		17.20			5434.92	7.3	4.13	0.65	63.7	3
MW-13	28-Jul-04	5452.12		17.65			5434.47	7.6	5.79		68	В
MW-13	30-Dec-04	5452.12		17.66			5434.46					MP
MW-13	31-Mar-05	5452.12		17.34			5434.78	7	3.485	0.64	57.9	MP
MW-13	19-Sep-05	5452.12		17.78			5434.34	7.3	4.929	0.26	61.8	
MW-13	03-Jan-06	5452.12		17.54			5434.58	7.4	4.309	0.34	17.9	3
MW-13	02-Jan-07	5452.12		17.38			5434.74	NM	NM	NM	MN	No Sample
MW-13	19-Dec-07	5452.12		17.83			5434.29	MN	MN	NM	MN	No Sample
MW-14	01-Feb-02	5446.93		12.22			5434.71					No Sample
MW-14	29-Jul-02	5446.93	12.39	13.29	0.90	5434.34	5432.98					No Sample
MW-14	06-Jun-03	5446.93		11.95			5434.98					No Sample
MW-14	21-Jan-04	5446.93		12.40			5434.53			i		No Sample
MW-14	25-May-04	5446.93		12.14			5434.79					No Sample
MW-14	28-Jul-04	5446.93		NS			NS					No Sample
MW-14	03-Jan-05	5446.93		12.51			5434.42					No Sample
MW-14	08-Apr-05	5446.93		12.18			5434.75					No Sample
MW-14	19-Sep-05	5446.93		12.65	-		5434.28	NM	NM	NM	MN	No Sample
MW-14	03-Jan-06	5446.93		12.40			5434.53	7.5	3.853	0.6	18	З
MW-14	28-Jun-06	5446.93		12.26			5434.67	6.6	4.340	0.54	17.2	3
MW-14	28-Dec-06	5446.93		12.21			5434.72	7.0	8.089	0.02	13.9	3
MW-14	03-Jul-07	5446.93		12.50			5434.43	7.2	3.819	1.76	16.8	2
MW-14	19-Dec-07	5446.93		12.72			5434.21	7.26	5.658	1.82	15.69	0.5
MW-15	03-May-01	5449.28		11.89			5437.39	7.3	2.21	4.2	53.8	1.4
MW-15	31-Jan-02	5449.28		12.49			5436.79					
MW-15	26-Jul-02	5449.28		12.69			5436.59	7.7	2.69	1.04	78.4	٩
MW-15	03-Dec-02	5449.28		12.69			5436.59	7.6	3.55	1.50	53.9	٩

Corrective Action Plan May 4, 2009

Page 7 of 16

TABLE 1	SUMMARY OF HISTORICAL GROUNDWATER MEASUREMENTS AND WATER QUALITY DATA	Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico
---------	---	---

			Denth to	Denth to	NAPI	Corrected	ВW			Dissolved		Purae
	•	T.O.C.	Product	Water	Thickness	GW	Elev.		Conductivity	Oxygen	Temp.	Volume
Well ID	Date	(ft amsl)	(#)	(#)	(#)	Elev. (ft)*	(ft amsl)	Hd	(mS)	(mg/L)	(°C)	(gallons)
MW-15	05-Jun-03	5449.28		12.26			5437.02	7.7	4.3	1.60	61.5	٩
MW-15	20-Jan-04	5449.28		12.71			5436.57	7.3	2.17	1.91	48.2	٩
MW-15	25-May-04	5449.28		12.49			5436.79	7.5	2.87	2.19	62.8	в
MW-15	28-Jul-04	5449.28		12.93			5436.35	7.48	4.4		60.8	В
MW-15	29-Dec-04	5449.28		12.58			5436.70					MP
MW-15	31-Mar-05	5449.28		12.31			5436.97	7.2	3.112	1.43	53.9	MP
MW-15	19-Sep-05	5449.28		12.98			5436.30	7.1	2.877	0.63	62.7	
MW-15	3-Jan-06	5449.28		12.48			5436.80	7.5	2.271	1.09	12.2	ю
MW-15	02-Jan-07	5449.28		12.34			5436.94	MN	MN	NM	WN	No Sample
MW-15	19-Dec-07	5449.28					Unable to	Open V	Vell			
MW-16	1-Feb-02	5442.63		5.78			5436.85					No Sample
MW-16	26-Jul-02	5442.63					Well De	stroyec				
MW-16	19-Dec-07	5442.63		8.84			5433.79	MN	MN	NM	MN	No Sample
MW-17	1-Feb-02	5435.20		5.78			5429.42					No Sample
MW-17	29-Jul-02	5435.20		5.96			5429.24					No Sample
MW-17	6-Jun-03	5435.20		5.62			5429.58					No Sample
MW-17	21-Jan-04	5435.20		58.3			5429.35					No Sample
MW-17	26-May-04	5435.20		5.69			5429.51					No Sample
MW-17	28-Jul-04	5435.20	5.99	6.07	0.08	5429.19	5429.07					No Sample
MW-17	03-Jan-05	5435.20		5.83			5429.37					No Sample
MW-17	31-Mar-05	5435.20		5.43			5429.77					No Sample
MW-17	19-Sep-05	5435.20		5.90			5429.30	NM	NM	NM	MN	No Sample
MW-17	05-Jan-06	5435.20		5.76			5429.44	ΜN	MN	MN	ΝM	No Sample
MW-17	27-Jun-06	5435.20		16.3			5429.29	6.6	4.548	0.03	19.8	3
MW-17	28-Dec-06	5435.20		5.64			5429.56	6.8	9.582	0.05	11.7	e
MW-17	03-Jul-07	5435.20	5.77	5.88	0.11	5429.41	5429.32	MN	MN	MN	MN	No Sample
MW-17	19-Dec-07	5435.20	5.92	6.11	0.19	5429.24	5429.09		Not Sa	mpled - NAPL	- Present	

Corrective Action Plan May 4, 2009 1. A. S. S. S.

No. And And

- Press

AND ST

書を注

調査

の語言で

ない

Page 8 of 16

1

1.2.20

and the second

JP \$171

2. 24

3 th 18. 1

270-2

			Depth to	Depth to	NAPL	Corrected	СW			Dissolved		Purge	
		T.O.C.	Product	Water	Thickness	GW	Elev.	-	Conductivity	Oxygen	Temp.	Volume	
Well ID	Date	(ft amsl)	(ft)	(#1)	(ft)	Elev. (ft)*	(ft amsl)	Ηd	(mS)	(mg/L)	(°C)	(gallons)	
MW-18	02-May-01	5428.95		4.32			5424.63	7.1	1.46	4.26	64.22	5.2	
MW-18	31-Jul-01	5428.95		4.84			5424.11	7.9	1.44	12.55	67.46	5	
MW-18	30-Jan-02	5428.95		4.61			5424.34						
MW-18	25-Jul-02	5428.95		4.79			5424.16	3.91	3.91	0.33	72.02	Ρ	
MW-18	20-Nov-02	5428.95		4.27			5424.68	2.97	1.17		58.5	Р	_
MW-18	05-Jun-03	5428.95		4.24			5424.71	7.8	3.28	0.86	62.0	В	
MW-18	19-Jan-04	5428.95		4.62			5424.33	7.7	2.58	0.56	51.1	Р	
MW-18	25-May-04	5428.95		4.28			5424.67	7.7	3.55		64.9	4	
MW-18	27-Jul-04	5428.95		5.54			5423.41	7.7	4.46		77.2	В	_
MW-18	28-Dec-04	5428.95		4.47			5424.48					MP	
MW-18	31-Mar-05	5428.95		3.57			5425.38	7.2	2.823	0.75	58.2	MP	
MW-18	19-Sep-05	5428.95		4.38			5424.57	7.3	4.223	0.62	69.0		
MW-18	4-Jan-06	5428.95		4.10			5424.85	7.6	3.206	0.48	10.4	1.5	
MW-18	27-Jun-06	5428.95		4.63			5424.32	6.9	4.169	0.35	17.0	3	
MW-18	28-Dec-06	5428.95		3.83			5425.12	7.3	9.169	1.33	10.8	3	
MW-18	3-Jul-07	5428.95		3.76			5425.19	7.45	5.295	1.68	16.9	2	
MW-18	18-Dec-07	5428.95		3.93			5425.02	7.66	6.236	1.56	13.94	1.25	
MW-19	31-Jan-02	5428.69		5.87			5422.82						
MW-19	25-Jul-02	5428.69		4.35			5424.34	7.1	5.74	1.01	74.9	٩	
MW-19	20-Nov-02	5428.69		3.75			5424.94	7.2	1.41	1.22	56.9	٦	
MW-19	5-Jun-03	5428.69		3.90			5424.79	7.3	3.51	1.34	61.0	В	
MW-19	19-Jan-04	5428.69		4.09			5424.60	7.4	0.29	2.89	46.6	Р	
MW-19	25-May-04	5428.69		3.90			5424.79	7.0	2.24	0.35	61.9	0.5	
MW-19	27-Jul-04	5428.69		4.31			5424.38	7.1	5.14		71.1	В	
MW-19	28-Dec-04	5428.69		4.04			5424.65	7.3				MP	
MW-19	31-Mar-05	5428.69		3.60			5425.09	6.9	2.091	1.5	54.7	MP	
MW-19	19-Sep-05	5428.69		3.96			5424.73	7.1	4.125	0.4	68.1		
MW-19	4-Jan-06	5428.69		3.81			5424.88	7.1	3.338	0.4	10.6	1.5	
MW-19	02-Jan-07	5428.69		3.69			5425.00	Z	MZ	ΣZ	Σz	No Sample	

Corrective Action Plan May 4, 2009

Page 9 of 16

			Depth to	Depth to	NAPL	Corrected	GW			Dissolved		Purge
Well ID	Date	T.O.C. (ft amsl)	Product (ft)	Water (ft)	Thickness (ft)	GW Elev. (ft)*	Elev. (ft amsl)	На	Conductivity (mS)	(mg/L)	Temp. (°C)	Volume (gallons)
MW-19	19-Dec-07	5428.69		3.82			5424.87	Z	WN	MN	MN	No Sample
MW-20	31-Jan-02	5430.45		6.04			5424.41					Ь
MW-20	26-Jul-02	5430.45		6.31			5424.14	7.2	2.95	1.22	79.6	Р
MW-20	20-Nov-02	5430.45		5.85			5424.60	7.1	1.9	0.30	55.0	Р
MW-20	5-Jun-03	5430.45		5.89			5424.56	7.1	3.43	1.58	58.1	
MW-20	20-Jan-04	5430.45		6.08			5424.37	7.5	0.35	3.23	51.8	۵.
MW-20	25-May-04	5430.45		5.90			5424.55	7.1	4.01	1.2	72.3	1.5
MW-20	27-Jul-04	5430.45		6.29			5424.16	7.0	5.12		66.1	в
MW-20	29-Dec-04	5430.45		6.07			5424.38					МР
MW-20	1-Apr-05	5430.45		5.69			5424.76	6.5	2.378	0.55	54.4	
MW-20	19-Sep-05	5430.45		6.02			5424.43	7.0	3.466	0.37	66.1	
MW-20	4-Jan-06	5430.45		5.85			5424.60	7.0	3.47	0.6	12.3	3
MW-20	28-Jun-06	5430.45		6.18			5424.27	6.7	4.979	0.34	17.8	e
MW-20	28-Dec-06	5430.45		5.50			5424.95	7.0	8.505	0.51	8.9	e
MW-20	2-Jul-07	5430.45		5.75			5424.70	7.0	4.841	1.32	16.09	2.6
MW-20	18-Dec-07	5430.45		5.89			5424.56	7.05	5.621	2.89	12.10	1.25
MW-20	21-Jan-09	5430.45		5.86			5424.59	6.73	5.996	3.58	8.34	0.5
MW-21	30-Jan-02	5428.62		3.41			5425.21					٩
MW-21	26-Jul-02	5428.62		4.15			5424.47					
MW-21	22-Nov-02	5428.62		3.51			5425.11	7.1	7.58	0.55	55.0	д
MW-21	5-Jun-03	5428.62		3.21			5425.41	7.2	7.79	0.95	65.4	
MW-21	20-Jan-04	5428.62		3.57			5425.05	7.4	0.31	3.40	46.7	٩
MW-21	25-May-04	5428.62		3.49			5425.13	7.2	7.56	0.49	64.5	1.5
MW-21	28-Jul-04	5428.62		4.12			5424.50	7.3	11.42		67.1	В
MW-21	29-Dec-04	5428.62		3.36			5425.26					MP
MW-21	1-Apr-05	5428.62		2.77			5425.85	6.7	5.747	0.28	50.9	
MW-21	19-Sep-05	5428.62		3.84			5424.78	7.2	8.598	0.39	67.8	
MW-21	4-Jan-06	5428.62		3.27			5425.35	7.1	6.118	0.77	11.9	3
											Ċ	dolla Action Dian

Page 10 of 16

1

開き

200

1 X X 4

調査

State String the

語言語の

May 4, 2009

SUMMARY OF HISTORICAL GROUNDWATER MEASUREMENTS AND WATER QUALITY DATA **TABLE 1**

Sec.

140

التي المراجع ا المراجع المراجع

Sec. 1

2 - 2 Th

1414

TE-S-

 $d_{\rm eff}^{\rm c} = d_{\rm eff}^{\rm c}$

ید در اور مدیر در اور

and with the

Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico

			Depth to	Depth to	NAPL	Corrected	GW			Dissolved		Purge
Well ID	Date	T.O.C. (ft amsl)	Product (ft)	Water (ft)	Thickness (ft)	GW Elev. (ft)*	Elev. (ft amsl)	Hd	Conductivity (mS)	Oxygen (mg/L)	Temp. (°C)	Volume (gallons)
MW-21	28-Jun-06	5428.62		3.81			5424.81	6.8	9.223	0.32	19.8	3
MW-21	02-Jan-07	5428.62		3.23			5425.39	6.7	9.393	0.9	8.2	3
MW-21	02-Jul-07	5428.62		3.54			5425.08	7.0	9.066	0.86	18.74	2.7
MW-21	18-Dec-07	5428.62		3.54			5425.08	7.12	8.043	0.62	12.90	3.25
MW-21	19-Dec-08	5428.62		3.43			5425.19	6.79	7.562	9.78	11.04	1.25
MW-22	2-May-01	5430.75		4.01			5426.74	6.9	2	3.57	65.1	5.2
MW-22	31-Jul-01	5430.75		5.25			5425.50	6.1	2.8	16.1	74.1	5
MW-22	31-Jan-02	5430.75		4.55			5426.20					Ρ
MW-22	26-Jul-02	5430.75		4.93			5425.82	7.3	7.9	1.24	73.0	Р
MW-22	22-Nov-02	5430.75		4.21			5426.54	7.5	6.51	0.8	54.6	Ч
MW-22	5-Jun-03	5430.75		4.15			5426.60	7.3	4.75	0.6	61.5	В
MW-22	20-Jan-04	5430.75		4.49			5426.26	7.1	4.19	0.43	46.4	Р
MW-22	25-May-04	5430.75		5.68			5425.07	7.2	6.95	0.16	63.3	1.5
MW-22	28-Jul-04	5430.75		5.29			5425.46	7.5	9.78		70.1	В
MW-22	29-Dec-04	5430.75		4.33			5426.42					МР
MW-22	1-Apr-05	5430.75		4.06			5426.69	6.9	5.531	0.34	49.6	
MW-22	19-Sep-05	5430.75		4.91			5425.84	7.2	8.496	0.28	66.8	
MW-22	4-Jan-06	5430.75		4.38			5426.37	7.3	6.476	0.04	10.3	2.5
MW-22	28-Jun-06	5430.75		4.08			5426.67	6.7	9.906	0.19	19.0	1.5
MW-22	02-Jan-07	5430.75		4.35			5426.40	7.0	12.72	3.00	7.9	
MW-22	02-Jul-07	5430.75		4.98			5425.77	7.2	10.50	0.15	18.0	+
MW-22	18-Dec-07	5430.75		4.70			5426.05	7.53	11.95	1.43	12.29	0.75
MW-22	19-Dec-08	5430.75		4.65			5426.10	6.62	10.96	5.55	9.88	0.75
MW-23	1-Feb-02	5449.34	Dry	Dry								No Sample
MW-23	29-Jul-02	5449.34	Dry	Dry								No Sample
MW-23	6-Jun-03	5449.34	Dry	Dry								No Sample
MW-23	21-Jan-04	5449.34	Dry	Dry								No Sample
MW-23	26-May-04	5449.34	Dry	Dry								No Sample

Corrective Action Plan May 4, 2009

Page 11 of 16

			Depth to	Depth to	NAPL	Corrected	GW			Dissolved	7	Purge
Well ID	Date	(ft amsl)	(#)	(ft)	(#)	Elev. (ft)*	(ft amsl)	PH	conductivity (mS)	(mg/L)	(°C)	(gallons)
MW-23	28-Jul-04	5449.34	Dry	Dry								No Sample
MW-23	03-Jan-05	5449.34	Dry	Dry								No Sample
MW-23	08-Apr-05	5449.34	Dry	Dry								No Sample
MW-23	19-Sep-05	5449.34	Dry	Dry								No Sample
MW-23	19-Dec-07	5449.34	Dry	Dry								No Sample
						-						
MW-24	01-Feb-02	5449.23		16.05			5433.18					No Sample
MW-24	29-Jul-02	5449.23		15.37			5433.86					No Sample
MW-24	21-Jan-04	5449.23		16.22			5433.01					No Sample
MW-24	26-May-04	5449.23		15.75			5433.48			<u>.</u>		No Sample
MW-24	28-Jul-04	5449.23		16.22			5433.01					No Sample
MW-24	03-Jan-05	5449.23		16.42			5432.81					No Sample
MW-24	01-Apr-05	5449.23		16.01			5433.22					
MW-24	19-Sep-05	5449.23		16.49			5432.74	NM	MN	NM	MN	No Sample
MW-24	05-Jan-06	5449.23		16.41			5432.82	MN	NM	NM	NM	No Sample
MW-24	02-Jan-07	5449.23		16.17			5433.06	MN	NM	NM	NM	No Sample
MW-24	19-Dec-07	5449.23		16.75			5432.48	MN	NM	MN	MN	No Sample
MW-25	01-Feb-02	5448.74		15.33			5433.41					No Sample
MW-25	29-Jul-02	5448.74		16.15			5432.59					No Sample
MW-25	06-Jun-03	5448.74		15.50			5433.24					No Sample
MW-25	21-Jan-04	5448.74		15.70			5433.04					No Sample
MW-25	26-May-04	5448.74		15.63			5433.11					No Sample
MW-25	28-Jul-04	5448.74		15.59			5433.15					No Sample
MW-25	03-Jan-05	5448.74		15.90			5432.84					No Sample
MW-25	31-Mar-05	5448.74		15.83			5432.91				_	No Sample
MW-25	19-Sep-05	5448.74		15.75			5432.99	ΣZ	MN	MN	ΜN	No Sample
MW-25	05-Jan-06	5448.74		15.85			5432.89	ΣZ	MN	ΜN	MN	No Sample
MW-25	02-Jan-07	5448.74		15.80			5432.94	ΜN	MN	MN	MN	No Sample
MW-25	19-Dec-07	5448.74		16.08			5432.66	MN	MN	MN	MN	No Sample

Page 12 of 16

Animas Environmental Services, LLC AES Tables 050209

です。

and a

日本語

100 m

1.00 miles

記録が

1.5 miles and

Corrective Action Plan May 4, 2009

J

1. A. W.

l

10 1 CV

Ac - 24

2,8 0 F

TABLE 1 SUMMARY OF HISTORICAL GROUNDWATER MEASUREMENTS AND WATER QUALITY DATA Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico

		T.O.C.	Depth to Product	Depth to Water	NAPL Thickness	Corrected GW	GW Elev.		Conductivity	Dissolved Oxygen	Temp.	Purge Volume
Mell ID	Date	(IT amsi)	(m)	(11)	(11)	Elev. (II)	(IT amsi)	Hd	<u>(сш)</u>	(<u>mg/r)</u>	3	(ganons)
MW-26		5447.26					DESTR	OYED				
MW-27	1-Feb-02	5449.01	Dry	Dry								
MW-27	29-Jul-02	5449.01	Dry	Dry								
MW-27	6-Jun-03	5449.01	15.40	15.93	0.53	5433.49	5432.69					No Sample
MW-27	21-Jan-04	5449.01	Dry	Dry								No Sample
MW-27	26-May-04	5449.01	Dry	Dry								No Sample
MW-27	28-Jul-04	5449.01	Dry	Dry								No Sample
MW-27	03-Jan-05	5449.01	Dry	Dry								No Sample
MW-27	08-Apr-05	5449.01	Dry	Dry								No Sample
MW-27	19-Sep-05	5449.01	Dry	Dry								No Sample
MW-27	19-Dec-07	5449.01	Dry	Dry								No Sample
MW-28	01-Feb-02	5449.07		15.95			5433.12					No Sample
MW-28	29-Jul-02	5449.07		15.97			5433.10					No Sample
MW-28	06-Jun-03	5449.07	15.77	15.8	0.03	5433.29	5433.25					No Sample
MW-28	21-Jan-04	5449.07	16.94	16.96	0.02	5432.13	5432.10					No Sample
MW-28	26-May-04	5449.07	15.56	15.96	0.40	5433.42	5432.82					No Sample
MW-28	28-Jul-04	5449.07	Dry	рвγ								No Sample
MW-28	03-Jan-05	5449.07		16.01			5433.06					No Sample
MW-28	08-Apr-05	5449.07	Dry	Dry								No Sample
MW-28	19-Sep-05	5449.07	Dry	Dry								No Sample
MW-28	05-Jan-06	5449.07	Dry	Dry								No Sample
MW-28	02-Jan-07	5449.07		16.01			5433.06	NM	NM	MN	NM	No Sample
MW-28	19-Dec-07	5449.07	16.00	16.01	0.01	5433.07	5433.05		Not Sa	mpled - NAPL	- Present	
MW-29	02-Feb-02	5447.94		15.19			5432.75					No Sample
MW-29	29-Jul-02	5447.94		15.30			5432.64					No Sample
MW-29	06-Jun-03	5447.94	15.77	15.80	0.03	5432.16	5432.12					No Sample

Animas Environmental Services, LLC AES Tables 050209

Page 13 of 16

Corrective Action Plan May 4, 2009

3 20	0 DH (0	(ft)* (ft amsl) pH 00 (49 5431.33 9 5431.33 (199 5431.32 1 0 (155 5431.85 5 1 (138 5430.92 5 1 (179 5431.13 NM 1 (179 5431.13 NM 1 (139 5431.52 NM 1	(ft) Elev. (ft)* (ft amsl) pH (i 0.77 5432.49 5431.33 0 0 1 0.18 5432.55 5431.33 0 0 1 0 1 0 0.18 5432.55 5431.33 0 0 1 0 0 0 0 0 1 0 <t< th=""><th>(ft) (ft) Elev. (ft)* (ft ams) pH (i 16.05 0.77 5432.49 5431.33 pH (i 15.09 0.18 5432.99 5432.72 pH (i 15.09 0.18 5432.99 5432.72 pH (i 15.15 0.46 5432.55 5431.85 pH (i 16.31 0.97 5432.38 5430.92 pH pH pH</th><th>(ft) (ft) <th< th=""></th<></th></t<>	(ft) (ft) Elev. (ft)* (ft ams) pH (i 16.05 0.77 5432.49 5431.33 pH (i 15.09 0.18 5432.99 5432.72 pH (i 15.09 0.18 5432.99 5432.72 pH (i 15.15 0.46 5432.55 5431.85 pH (i 16.31 0.97 5432.38 5430.92 pH pH pH	(ft) (ft) <th< th=""></th<>
33 72 92 92 NM NM	m k m m m m m m m m	.49 5431. .99 5432. .55 5431. .55 5431. .55 5431. .55 5431. .38 5430. .33 5431. .33 5431. .33 5431. .33 5431. .33 5431. .33 5431.	0.77 5432.49 5431. 0.18 5432.99 5432. 0.46 5432.55 5431. 0.97 5432.38 5430. 0.97 5432.38 5431. 0.97 5432.38 5431. 0.97 5432.39 5431. 0.83 5432.39 5431. 0.83 5432.39 5431. 0.58 5432.39 5431. 0.56 5432.39 5431. 0.56 5432.39 5431. 0.56 5432.39 5431. 0.56 5432.39 5431.	16.05 0.77 5432.49 5431. 15.09 0.18 5432.99 5432. 15.75 0.46 5432.55 5431. 16.31 0.97 5432.38 5430.	15.28 16.05 0.77 5432.49 5431. 14.91 15.09 0.18 5432.99 5432. 15.29 15.75 0.46 5432.55 5431. 15.34 16.31 0.97 5432.38 5432.
1.2.72 11.85 11.85 80.92 81.13 NM 81.52 NM	32.2 32.2		0.18 5432.99 543 0.46 5432.55 543 0.97 5432.38 543 0.37 5432.39 543 0.37 5432.39 543 0.37 5432.39 543 0.37 5432.39 543 0.38 5432.39 543 0.58 5432.39 543 0.56 5432.39 543 0.56 5432.39 543 0.56 5432.39 543 0.56 5432.39 543 0.56 5432.33 543	15.09 0.18 5432.99 542 15.75 0.46 5432.55 542 16.31 0.97 5432.38 545	14.91 15.09 0.18 5432.99 542 15.29 15.75 0.46 5432.55 542 15.34 16.31 0.97 5432.38 545
11.85 10.92 10.92 11.13 11.13 11.13 11.13 11.13 11.13	31.8 30.9 32.2		0.46 5432.55 54 0.97 5432.38 54 0.37 5432.38 54 0.37 5432.38 54 0.37 5432.39 54 0.83 5432.39 54 0.58 5432.39 54 0.58 5432.39 54 0.56 5432.39 54 0.56 5432.83 54 0.56 5432.66 54	15.75 0.46 5432.55 54 16.31 0.97 5432.38 54	15.29 15.75 0.46 5432.55 54 15.34 16.31 0.97 5432.38 54
0.92 2.23 31.13 NM 31.52 NM	430.9 <u>(</u> 432.2		0.97 5432.38 5 0.37 5432.79 5 0.83 5432.39 5 0.83 5432.39 5 0.58 5432.39 5 0.56 5432.39 5 0.056 5432.39 5 0.056 5432.39 5	16.31 0.97 5432.38 5	15.34 16.31 0.97 5432.38 5
12.23 11.13 NM 11.52 NM	432.2	79 5 39 5 39 5	0.37 5432.79 5 0.83 5432.39 5 0.83 5432.39 5 0.58 5432.39 5 0.05 5432.83 5 0.05 5432.83 5		
31.52 NM			0.83 5432.39 5 0.58 5432.39 5 0.58 5432.39 5 0.05 5432.39 5 0.05 5432.39 5 0.05 5432.39 5	15.44 0.37 5432.79 5	15.07 15.44 0.37 5432.79 5
31.52 NM	431.1	2.39 5	0.58 5432.39 5 0.05 5432.83 5 0.05 5432.83 5 0.56 5432.66 5	16.20 0.83 5432.39 5	15.37 16.20 0.83 5432.39 5
	431.5		0.05 5432.83 5 0.56 5432.66 5	16.00 0.58 5432.39 5	15.42 16.00 0.58 5432.39 5
32.75 NM	432.7	.83 5	0.56 5432.66 5	15.15 0.05 5432.83 5	15.1 15.15 0.05 5432.83 5
1.81 NM	431.8	.66 5		15.72 0.56 5432.66 5	15.16 15.72 0.56 5432.66 5
11.05	431.0	.25 5	0.80 5432.25 5	16.31 0.80 5432.25 5	15.51 16.31 0.80 5432.25 5
1.56	5431.5	1		16.17	16.17
1.95	5431.9			15.78	15.78
12.33	5432.3;			15.40	15.40
0.63	5430.6	.79	0.77 5431.79	16.54 0.77 5431.79	15.77 16.54 0.77 5431.79
12.23	5432.2;	.23	0.00 5432.23	15.50 0.00 5432.23	15.50 15.50 0.00 5432.23
0.91	5430.9	.89	0.65 5431.89	16.35 0.65 5431.89	15.70 16.35 0.65 5431.89
0.06	5430.0(.65	1.05 5431.65	16.90 1.05 5431.65	15.85 16.90 1.05 5431.65
1.89	5431.8	.07	0.12 5432.07	15.75 0.12 5432.07	15.63 15.75 0.12 5432.07
0.04 NM	5430.0	.68	1.09 5431.68	16.90 1.09 5431.68	15.81 16.90 1.09 5431.68
0.60 7 5	5430.6(.74	0.76 5431.74	16.58 0.76 5431.74	15.82 16.58 0.76 5431.74
1.63 NM	5431.6	.02	0.26 5432.02	15.91 0.26 5432.02	15.65 15.91 0.26 5432.02
1.05 NM	5431.0	.94	0.59 5431.94	16.25 0.59 5431.94	15.66 16.25 0.59 5431.94
9.57	5429.57	.56	1.32 5431.56	17.20 1.32 5431.56	15.88 17.20 1.32 5431.56
2.23	5432.20			16.45	16.45
2.13	5432.10			16.55	16.55
2.59	5432.59			16.09	16.09
1.62	5431.62	.10	0.32 5432.10	16.83 0.32 5432.10	16.51 16.83 0.32 5432.10
2.42	5432.42	.45	0.02 5432.45	16.25 0.02 5432.45	16.23 16.25 0.02 5432.45

Animas Environmental Services, LLC AES Tables 050209

Page 14 of 16

Corrective Action Plan May 4, 2009

3.49.3 Re.

御御御

State of

and the

(1,1,1,2)

TABLE 1	SUMMARY OF HISTORICAL GROUNDWATER MEASUREMENTS AND WATER QUALITY DATA	Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico
---------	---	---

			Depth to	Depth to	NAPL	Corrected	МŊ			Dissolved		Purae
		T.O.C.	Product	Water	Thickness	GW	Elev.		Conductivity	Oxygen	Temp.	Volume
Well ID	Date	(ft amsl)	(#)	(#)	(#)	Elev. (ft)*	(ft amsl)	Ηd	(mS)	(mg/L)	(°C)	(gallons)
RW-25	28-Jul-04	5448.68	16.50	16.52	0.02	5432.18	5432.15					No Sample
RW-25	03-Jan-05	5448.68	16.63	17.65	1.02	5431.82	5430.29					No Sample
RW-25	31-Mar-05	5448.68	16.27	16.7	0.43	5432.31	5431.67					No Sample
RW-25	19-Sep-05	5448.68	16.55	17.54	0.99	5431.91	5430.42	MN	WN	MN	MN	No Sample
RW-25	05-Jan-06	5448.68	16.45	17.37	0.92	5432.03	5430.64	2	3.501	0.15	14	
RW-25	02-Jan-07	5448.68	16.35	16.85	0.50	5432.22	5431.47	MN	WN	MN	MN	No Sample
RW-25	19-Dec-07	5448.68	16.62	17.82	1.20	5431.79	5429.99		Not Sé	ampled - NAPL	- Present	
RW-26	01-Feb-02	5443.98		14.65			5429.33					No Sample
RW-26	29-Jul-02	5443.98	14.11	14.11	0.88	5430.55	5429.23					No Sample
RW-26	21-Jan-04	5443.98	14.24	14.54	0.30	5429.67	5429.22					No Sample
RW-26	26-May-04	5443.98		13.85			5430.13					No Sample
RW-26	28-Jul-04	5443.98	14.24	14.29	0.05	5429.73	5429.65					No Sample
RW-26	03-Jan-05	5443.98	14.35	14.90	0.55	5429.51	5428.68					No Sample
RW-26	31-Mar-05	5443.98		14.03			5429.95					No Sample
RW-26	19-Sep-05	5443.98	14.43	14.62	0.19	5429.51	5429.22	MN	MN	WN	MN	No Sample
RW-26	05-Jan-06	5443.98	14.36	14.54	0.18	5429.58	5429.31	6.9	4.898	0.2	18.9	
RW-26	28-Jun-06	5443.98		14.08			5429.90	6.5	3.895	0.04	18.5	3
RW-26	02-Jan-07	5443.98	14.17	14.18	0.01	5429.81	5429.79	MN	MN	MN	NM	No Sample
RW-26	03-Jul-07	5443.98		14.25			5429.73	7.0	5.031	0.27	17.9	21
RW-26	19-Dec-07	5443.98	14.56	15.24	0.68	5429.27	5428.24		Not Sé	ampled - NAPL	- Present	
T-17-1	01-Feb-02	5452.41		17.60			5434.81					No Sample
T-17-1	29-Jul-02	5452.41		17.73			5434.68					No Sample
T-17-1	06-Jun-03	5452.41		17.22			5435.19					No Sample
T-17-1	21-Jan-04	5452.41		17.79			5434.62					No Sample
T-17-1	26-May-04	5452.41		17.42			5434.99					No Sample
T-17-1	29-Jul-04	5452.41		18.09			5434.32					No Sample
T-17-1	03-Jan-05	5452.41		17.96			5434.45					No Sample
T-17-1	08-Apr-05	5452.41		17.61			5434.80					No Sample

			Depth to	Depth to	NAPL	Corrected	GŴ	·.		Dissolved		Purge
		T.O.C.	Product	Water	Thickness	GW	Elev.	•	Conductivity	Oxygen	Temp.	Volume
Well ID	Date	(ft amsl)	(#)	(#)	(t t)	Elev. (ft)*	(ft amsl)	Hd	(mS)	(mg/L)	(°C)	(gallons)
T-17-1	19-Sep-05	5452.41		17.97			5434.44	MN	MN	MN	NM	No Sample
T-17-1	03-Jan-06	5452.41		17.9			5434.51	ΜN	NM	NM	NM	No Sample
T-17-1	02-Jan-07	5452.41	ЪRΥ	DRΥ			DRΥ	MN	NM	NM	MM	No Sample
T-17-1	19-Dec-07	5452.41	DRY	DRY			DRΥ	MN	MN	MN	ΜN	No Sample

NOTES: NM - Not Measured

Animas Environmental Services, LLC AES Tables 050209

Page 16 of 16

Corrective Action Plan May 4, 2009 5.4.7.9 g

er-19

3000

4 - 200 au

TABLE 2. SUMMARY OF VOC and TPH SOIL ANALYTICAL RESULTS Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico

Ĵ

ł

									_					 							-								
MRO	(mg/kg)	8015B		NE	NE	<50	60	. 69	2,700	12,000	8,300	3,500	1,700	200	<50	<50	<500	<50	220	<500	<50	<500	<500	<500	<500	<500	<500	<1000	1,100
DRO	(mg/kg)	8015B	100	NE	NE	<10	15	11	2,900	11,000	6,400	3,800	1,400	69	<10	<10	750	<10	670	2,700	<10	1,500	3,800	2,900	1,000	1,600	2,200	6,800	620
GRO	(mg/kg)	8015B		NE	NE	<5.0	<5.0	<5.0	850	1,300	570	560	580	<5.0	<5.0	<5.0	120	1,800	26	1,400	<5.0	580	500	2,500	260	490	550	1,800	<5.0
Naph- thalene	(mg/kg)	8260B	NE	300	0.0197	<0.10	<0.10	<0.10	19	12	6.2	5.6	<2.0	<0.10	<0.10	<0.10	<0.050	10	0.40	8.4	<0.050	4.5	1.9	<10	1.2	2.8	7.8	11	<0.10
MTBE	(mg/kg)	8260B	NE	NE	NE	<0.050	<0.050	<0.050	<0.50	<0.50	<0.50	<1.0	<1.0	<0.050	<0.050	<0.050	<0.25	<0.50	<0.10	<2.5	<0.050	<0.50	<0.50	<5.0	<0.25	<0.50	<2.5	<1.0	<0.050
Total Xylenes	(mg/kg)	8260B		82.0	0.103	<0.10	<0.10	<0.10	14	170	76	4.2	<2.0	<0.10	<0.10	<0.10	6.7	54	1.3	180	<0.10	65	40	410	7.6	26	<5.0	44	<0.10
Ethyl- benzene	(mg/kg)	8260B		128	1.01	<0.050	<0.050	<0.050	2.5	18	8.9	1.4	<1.0	<0.050	<0.050	<0.050	0.76	22	<0.10	21	<0.050	8.9	7.5	56	1.4	3.7	9.3	<1.0	<0.050
Toluene	(mg/kg)	8260B	50	252	1.08	<0.050	<0.050	<0.050	<0.50	83	3.2	<1.0	<1.0	<0.050	<0.050	<0.050	<0.25	<0.50	<0.10	<2.5	<0.050	7.3	12	78	0.56	<0.50	<2.5	<1.0	<0.050
Benzene	(mg/kg)	8260B		25.8	0.00100	<0.050	<0.050	<0.050	<0.50	26	13	<1.0	<1.0	<0.050	<0.050	<0.050	<0.25	<0.50	<0.10	<2.5	<0.050	<0.50	7.1	6.2	<0.25	<0.50	3.8	<1.0	<0.050
Sample Depth	(feet)	tical Method	Action Level	L - Industrial	ching DAF 1	11	10	-	5.5	11	4	10	5	20-21.5	15	18-19	15	11.5-12.5	17-18	14-15	7	13	12-14`	10-11`	4-6`	9-10`	11-12`	8-9`	4-5`
Date Sampled		Analy	NMOCD	NMED SS	SSL - GW Lea	02-Oct-08	07-Oct-08	07-Oct-08	06-Oct-08	03-Oct-08	06-Oct-08	03-Oct-08	06-Oct-08	17-Nov-08	01-Dec-08	02-Dec-08	01-Dec-08	02-Dec-08	03-Dec-08	03-Dec-08	03-Dec-08	04-Dec-08	05-Dec-08	10-Dec-08	05-Dec-08	09-Dec-08	08-Dec-08	09-Dec-08	09-Dec-08
Sample ID					NMED.	TP-1	TP-33	TP-40	TP-48	TP-49	TP-53	TP-63	TP-75	SB-1	SB-4	SB-6	SB-8	SB-10	SB-13	SB-14	SB-17	SB-20	SB-21	SB-22	SB-24	SB-25	SB-28	SB-29	SB-31

Corrective Action Plan May 4, 2009

Page 1 of 2

TABLE 2. SUMMARY OF VOC and TPH SOIL ANALYTICAL RESULTS Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico

· .		MRO	(mg/kg)	8015B		NE	NE	1,400	<50	<50	<500	<1000	<500	<50	
	-	DRO	(mg/kg)	8015B	100	NE	NE	2,900	710	<10	800	6,300	1,600	<10	
· · · · · · · · · · · · · · · · · · ·		GRO	(mg/kg)	8015B		NE	NE	410	<5.0	<5.0	<100	<100	580	<5.0	
	Naph-	thalene	(mg/kg)	8260B	NE	300	0.0197	3.2	<0.10	<0.10	<0.50	<0.50	2.7	<0.10	
•		MTBE	(mg/kg)	8260B	NE	NE	NE	<0.50	<0.050	<0.050	<0.25	<0.25	<1.0	<0.050	
	Total	Xylenes	(mg/kg)	8260B		82.0	0.103	29	<0.10	<0.10	<0.50	<0.50	56	<0.10	
,	Ethyl-	benzene	(mg/kg)	8260B	0	128	1.01	4.1	<0.050	<0.050	<0.25	<0.25	9.4	<0.050	
• •		Toluene	(mg/kg)	8260B	5	252	1.08	<0.50	<0.050	<0.050	<0.25	<0.25	<1.0	<0.050	
		Benzene	(mg/kg)	8260B		25.8	0.00100	3.4	<0.050	<0.050	<0.25	<0.25	1.1	<0.050	
•	Sample	Depth	(feet)	rtical Method	Action Level	L - Industrial	sching DAF 1	7.5-8	8-9`	13-14	11-12`	9-10`	7-8`	6	
, , , ,	Date	Sampled		Analy	NMOCD	NMED SS	SSL - GW Lei	09-Dec-08	04-Dec-08	10-Dec-08	10-Dec-08	10-Dec-08	08-Dec-08	04-Dec-08	
	Sample	≏					NMED	SB-32	SB-33	SB-34	SB-35	SB-36	SB-38	SB-43	

NOTE: NE = Not Established GRO = Gasoline Range Organics DRO = Diesel Range Organics MRO = Motor Oil Range Organics

> Animas Environmental Services, LLC AES Tables 050209

Page 2 of 2

Corrective Action Plan May 4, 2009 代書語

n an an

に勝な

3 m 4

SUMMARY OF SOIL POLYNUCLEAR AROMATIC HYDROCARBONS (PAHs), October 2008 Thriftway Refinery, 626 CR 5500, Bloomflield, New Mexico **TABLE 3**

1.1.1.K

all and a second

A. 21

17. St. 1

1.450 . 142

- 4

1

. . . .

1. 2. 2. A. C.

112

31

												_
Fluoranthene	8270C	24,400	235	<0.25	<0.25	<1.3	<1.3	<0.25	<1.3	<0.25	<0.25	
Dibenzo (a,h) anthracene	8270C	2.34	0.52	<0.20	<0.20	<1.0	<1.0	<0.20	<1.0	<0.20	<0.20	
Chrysene buy	8270C	2,310	17.4	<0.20	<0.20	<1.0	<1.0	0.26	<1.0	<0.20	<0.20	
Benzo (k) fluoranthene	8270C	234	16.8	<0.20	<0.20	<1.0	<1.0	<0.20	<1.0	<0.20	<0.20	
Benzo (g,h,l) perylene	8270C	NE	NE	<0.50	<0.50	<2.5	<2.5	<0.50	<2.5	<0.50	<0.50	
Benzo (b) fluoranthene	8270C	23.4	1.68	<0.20	<0.20	<1.0	<1.0	<0.20	<1.0	<0.20	<0.20	
Benzo (a) pyrene	8270C	2.34	0.139	<0.20	<0.20	<1.0	<1.0	<0.20	<1.0	<0.20	<0.20	
Benzo (a) anthracene	8270C	23.40	0.543	<0.20	<0.20	<1.0	<1.0	<0.20	<1.0	<0.20	<0.20	
Anthracene by bu	8270C	100,000	81.1	<0.20	<0.20	<1.0	<1.0	<0.20	<1.0	<0.20	<0.20	
Acenaphthylene	8270C	NE	NE	<0.20	<0.20	<1.0	<1.0	<0.20	<1.0	<0.20	<0.20	
Acenaphthene	8270C	33,500	2.75	<2.0	0.33	<1.0	<1.0	<0.20	<1.0	<0.20	<0.20	
Date Sampled	ical Method	- Industrial	W Leaching DAF 1	2-Oct-08	3-Oct-08	3-Oct-08	6-Oct-08	6-Oct-08	6-Oct-08	7-Oct-08	7-Oct-08	
Sample ID Sample Depth (ft)	Analyt	NMED SSL	NMED SSL - G	TP-1 @ 11	TP-63 @ 10	TP-49 @ 11	TP-48 @ 5.5	TP-75 @ 5	TP-53 @ 4	TP-40 @ 1	TP-33 @ 10	

NE- Not Established

SUMMARY OF SOIL POLYNUCLEAR AROMATIC HYDROCARBONS (PAHs), October 2008 Thriftway Refinery, 626 CR 5500, Bloomflield, New Mexico **TABLE 3**

S		•	Inde	· · ·	Υ	
Sample ID ample Depth (ft)	Date Sampled	Fluorene	no(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
_	r.	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Analyi	tical Method	8270C	8270C	8270C	8270C	8270C
NMED SSI	- Industrial	26,500	23.4	300	20,500	30,900
NMED SSL - G	W Leaching DAF 1	2.93	4.73	0.0197	23.2	18.6
TP-1 @ 11	2-Oct-08	<0.50	<0.25	<0.20	<0.20	<0.20
TP-63 @ 10	3-Oct-08	0.94	<0.25	3.9	2.0	<0.20
TP-49 @ 11	3-Oct-08	2.7	<1.3	8.0	4.0	<1.0
TP-48 @ 5.5	6-Oct-08	<2.5	<1.3	3.9	2.4	<1.0
TP-75 @ 5	6-Oct-08	1.0	<0.25	<0.20	<0.20	<0.20
TP-53 @ 4	6-Oct-08	<2.5	<1.3	7.2	1.2	<1.0
TP-40 @ 1	7-Oct-08	<0.50	<0.25	<0.20	<0.20	<0.20
TP-33 @ 10	7-Oct-08	<0.50	<0.25	<0.20	<0.20	<0.20
NE- Not Establi	shed					

Animas Environmental Services, LLC AES Tables 050209

Page 2 of 2

Corrective Action Plan May 4, 2009 100 P

本語語

の調査部

and a state

村線調

Contraction of the

	METALS
TABLE 4	ARY OF SOII
	SUMM/

1

Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico

Sample ID	Sample Date	Sample Depth (ft)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)	Mercury (mg/kg)
	Analytic	cal Methods	6010B	6010B	6010B	6010B	6010B	6010B	6010B	7471
	NMED SSLs	: - Industrial	17.7	100,000	564	NE	800	5,680	5,680	100,000
NMED S	SLs - GW Leac	shing DAF 1	0.0145	301	1.37	NE	NE	0.952	1.57	0.105
TP-1	2-Oct-08	11	1.6	140	<0.5	<2.5	<2.5	<5.0	<0.5	<0.05
TP-63	3-Oct-08	10	1.9	120	<0.5	<2.5	3.30	<5.0	<0.5	<0.05
TP-49	3-Oct-08	11	4.4	313	<0.5	10.9	26.1	<5.0	<0.5	<0.05
TP-48	6-Oct-08	5.5	2.6	158	<0.5	5.8	11.2	<5.0	<0.5	<0.05
TP-75	6-Oct-08	5	0.9	95.2	<0.5	<2.5	<2.5	<5.0	<0.5	<0.05
TP-53	6-Oct-08	4	3.0	145	<0.5	5.4	8.9	<5.0	<0.5	<0.05
TP-40	7-Oct-08	1	2.0	142	<0.5	5.2	8.0	<5.0	<0.5	<0.05
TP-33	7-Oct-08	10	1.9	158	<0.5	<2.5	3.2	<5.0	<0.5	<0.05
SB-1	17-Nov-08	20-21.5	<2.5	110	<0.10	2.3	2.5	<2.5	<0.25	<0.033
SB-4	1-Dec-08	15	<13	130	<0.50	2.2	2.8	<13	<1.3	<0.033
SB-8	1-Dec-08	15	<13	160	<0.50	3.3	3.4	<13	<1.3	<0.033
SB-10	2-Dec-08	11.5-12.5	<13	130	<0.50	3.5	3.9	<13	<1.3	<0.033
SB-6	2-Dec-08	18-19	<13	120	<0.50	5.1	6.0	<13	<1.3	<0.033
SB-14	3-Dec-08	14-15	<13	150	<0.50	2.2	3.5	<13	<1.3	<0.033
SB-17	3-Dec-08	7	<13	200	<0.50	2.0	2.9	<13	<1.3	<0.033
SB-13	3-Dec-08	17-18	<13	93	<0.50	1.6	1.4	<13	<1.3	<0.033
SB-20	4-Dec-08	13	<13	150	<0.50	6.2	5.0	<13	<1.3	<0.033
SB-21	5-Dec-08	12-14`	<13	220	<0.50	5.9	6.4	<13	<1.3	<0.033
SB-22	10-Dec-08	10-11`	<2.5	120	<0.099	3.8	6.2	<12	<0.25	<0.033
SB-24	5-Dec-08	4-6`	<13	190	<0.50	6.5	7.5	<13	<1.3	<0.033
SB-25	9-Dec-08	9-10`	<2.5	160	<0.099	1.5	2.9	<12	<0.25	<0.033
SB-28	8-Dec-08	11-12	<2.5	180	<0.099	2.0	2.5	<12	<0.25	<0.033
SB-29	9-Dec-08	8-9`	<2.5	96	<0.099	0.81	3.0	<12	<0.25	<0.033
SB-31	9-Dec-08	4-5`	<2.5	160	<0.10	1.2	2.0	<12	<0.25	<0.033

TABLE 4 SUMMARY OF SOIL METALS Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico

Sample ID	Sample Date	Sample Depth (ft)	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Lead (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)	Mercury (mg/kg)
and a state of a state	Analytic	cal Methods	6010B	6010B	6010B	6010B	6010B	6010B	6010B	7471
	NMED SSLs	- Industrial	17.7	100,000	564	NE	800	5,680	5,680	100,000
NMED S	SLs - GW Leac	ching DAF 1	0.0145	301	1.37	NE	NE	0.952	1.57	0.105
SB-32	9-Dec-08	7.5-8	<2.5	140	<0.10	1.8	2.3	<12	<0.25	<0.033
SB-33	4-Dec-08	8-9`	<13	120	<0.50	1.7	3.1	<13	<1.3	<0.033
SB-34	10-Dec-08	13-14	2.9	84	<0.10	4.4	3.0	<12	<0.25	<0.033
SB-35	10-Dec-08	11-12`	<2.5	63	<0.099	2.3	2.5	<12	<0.25	<0.033
SB-36	10-Dec-08	9-10`	<12	68	<0.50	3.5	5.6	<12	<1.2	<0.033
SB-38	8-Dec-08	7-8`	<2.5	26	<0.099	1.4	1.8	<12	<0.25	<0.033
SB-43	4-Dec-08	6	<13	100	<0.50	2.7	3.1	<13	<1.3	<0.033

Note: * = Concentrations reported are in mg/kg NA = Not Analyzed

Animas Environmental Services, LLC AES Tables 050209

Page 2 of 2

Corrective Action Plan May 4, 2009 S. TRANE

100-10

Sec. 10.

Sec. Di

200 B 18

A state

語の語言

No.

DATA **TABLE** 5 SUMMAF

* * * *

b (d)

. Andreas an

iat 13

. 46 a.

a Narginge -

1,465,4

Sec. 82

A.7. E.

_	
VTS AND WATER QUALITY	field. New Mexico
ER MEASUREMEN	3 CR 5500. Bloomf
F GROUNDWAT	av Refinerv. 626
RY OF RECEN	Thriftw

Mexico
New
Bloomfield,
R 5500,
626 CI
/ Refinery,
Thriftway

			Depth to	Depth to	NAPL	Corrected			Dissolved	l	Purge
Well ID	Date	1.0.C. (ft amsl)	Product (ft)	Water (ft)	l hickness (ft)	GW Elev. (ft)*	Ηd	Conductivity (mS)	Uxygen (mg/L)	remp. (°C)	voiume (galions)
TW-1	15-Dec-08	5471.58		27.95		5443.63	6.24	2.772	7.51*	14.64	0.25
TW-1	26-Jan-09	5471.58		30.53	0	5441.05	MN	MN	NM	MN	NM
TW-2	15-Dec-08	5469.31		28.91	0	5440.40	6.63	4.421	3.60	13.08	1.25
TW-2	26-Jan-09	5469.31		28.80	0	5440.51	MN	MN	, NM	MN	NM
TW-3	15-Dec-08	5468.14		27.99	0	5440.15	6.63	4.249	2.01	14.44	1.25
TW-3	26-Jan-09	5468.14		27.87	0	5440.27	MN	MN	NM	MN	NM
TW-4	16-Dec-08	5458.72		19.16	0	5439.56	6.67	7.258	4.09	13.40	1.25
TW-4	26-Jan-09	5458.72		MN			MN	MN	NM	MN	NM
TW-5	15-Dec-08	5465.18		25.54	0	5439.64	6.56	3.704	3.26	14.25	1.25
TW-5	26-Jan-09	5465.18		25.44	0	5439.74	MN	WN	NM	MN	NM
TW-6	15-Dec-08	5463.57		24.78	0	5438.79	6.50	4.719	0.99	14.50	1.25
TW-6	26-Jan-09	5463.57		24.67	0	5438.90	MN	NN	NM	MN	NM
TW-7	15-Dec-08	5461.17		22.25	0	5438.92	6.47	5.302	0.82	14.88	1.25
TW-7	26-Jan-09	5461.17		22.14	0	5439.03	MN	MN	NM	MN	MN
TW-8	16-Dec-08	5458.29		19.76	0	5438.53	6.42	5.575	0.51	12.78	1.25
TW-8	26-Jan-09	5458.29		19.62	0	5438.67	ΣZ	MN	WN	Σ	MN

Page 1 of 8

Animas Environmental Services, LLC AES Tables 050209

Corrective Action Plan May 4, 2009

Well ID	Date	T.O.C. (ft amsl)	Depth to Product (ft)	Depth to Water (ft)	NAPL Thickness (ft)	Corrected GW Elev. (ft)*	Ηd	Conductivity (mS)	Dissolved Oxygen (mg/L)	Temp. (°C)	Purge Volume (gallons)
6-WT	16-Dec-08	5450.61		12.20	0	5438.41	6.90	3.473	2.27	14.53	1.25
TW-9	26-Jan-09	5450.61		12.05	0	5438.56	MN	WN .	NM	MN	MN
TW-10	16-Dec-08	5450.16		12.42	0	5437.74	6.49	3.876	0.98	11.97	1.25
TW-10	26-Jan-09	5450.16		12.25	0	5437.91	MN	NN	NM	MN	ΜŊ
TW-11	16-Dec-08	5456.31		18.12	0	5438.19	6.75	6.941	1.41	14.32	1.25
TW-11	26-Jan-09	5456.31		18.02	0	5438.29	MN	ŇM	NM	NM	NM
TW-12	15-Dec-08	5460.44		22.44	0	5438.00	6.49	4.247	0.95	16.15	1.25
TW-12	26-Jan-09	5460.44	22.34	22.44	0.1	5438.08	WN .	, WN	ŇŇ	WN	MN
TW-13	16-Dec-08	5458.17	20.64	21.48	0.84	5437.34		Not Sa	mpled - NAPI	- Present	
TW-13	26-Jan-09	5458.17	20.52	21.46	0.94	5437.44	NN	NM	NM	MN	MN
TW-14	16-Dec-08	5454.24		16.82	0	5437.42		Not Sample	ed - Sheen of	NAPL pres	sent
TW-14	26-Jan-09	5454.24	16.71	17.02	0.31	5437.46	NN.	NM	NM	WN	MN
TW-15	16-Dec-08	5450.44		13.15	0.	5437.29	6.69	6.647	1.25	13.17	1.25
TW-15	26-Jan-09	5450.44		12.99	0	5437.45	NN	NM	NM	ΜN	WN
TW-16	16-Dec-08	5448.45		8.76	0	5439.69	6.71	6.593	1.64	14.90	1.25

Animas Environmental Services, LLC AES Tables 050209

Page 2 of 8

Corrective Action Plan May 4, 2009 and the

(1.1.1) (1.1.1)

Barry and

Section 2

「見きま

a state

原本地

Castle of

「あいろい

があい。

A STATE

ľ

Well ID	Date	T.O.C. (ft amsl)	Depth to Product (ft)	Depth to Water (ft)	NAPL Thickness (ft)	Corrected GW Elev. (ft)*	На	Conductivity (mS)	Dissolved Oxygen (ma/L)	Temp. (°C)	Purge Volume (gallons)	
TW-16	26-Jan-09	5448.45		11.11	0	5437.34	MN	MN	MN	MN	NN	
TW-17	16-Dec-08	5446.24		66.6	0	5436.25	6.68	6.643	1.26	14.10	1.25	
TW-17	26-Jan-09	5446.24		9.82	0	5436.42	MN	MN	NN	WN	NM	-
TW-18	16-Dec-08	5452.73		16.40	0	5436.33	6.65	5.094	0.88	16.42	1.25	
TW-18	26-Jan-09	5452.73		16.29	0	5436.44	MN	MN	NM	NM	NM	
	1											
TW-19	16-Dec-08	5458.49	22.15	22.62	0.47	5436.24		Not Sa	mpled - NAPL	Present		_
TW-19	26-Jan-09	5458.49	22.01	22.57	0.56	5436.36	WN	MN	MN	MN	NM	
TW-20	17-Dec-08	5453.74	15.14	15.86	0.72	5438.44		Not Sa	mpled - NAPL	Present		
TW-20	26-Jan-09	5453.74	17.36	18.62	1.26	5436.10	MN	MN	NN	NM	NM	
												_
TW-21	17-Dec-08	5451.85	15.42	17.19	1.77	5436.04		Not Sa	mpled - NAPL	Present		
TW-21	26-Jan-09	5451.85	16.35	16.94	0.59	5435.37	MN	MN	NM	MN	MN	
												_
TW-22	17-Dec-08	5450.19	14.75	14.76	0.01	5435.44		Not Sa	mpled - NAPL	Present		
TW-22	26-Jan-09	5450.19	14.69	15.26	0.57	5435.37	MN	MN	NM	MN	MN	
TW-23	18-Dec-08	5443.64		6.60	0	5437.04	7.09	6.727	3.77	13.65	1.25	
TW-23	26-Jan-08	5443.64		8.73	0	5434.91	MN	MN	MN	MN	MN	
												_

	Ote Dete	T.O.C. (ft amsl)	Depth to Product (ft)	Depth to Water (ff)	NAPL Thickness (#)	Corrected GW Elev. (ft)*	Ни	Conductivity (mS)	Dissolved Oxygen (ma/L)	Temp. (°C)	Purge Volume (aallons)
TW-24	17-Dec-08	5444.79	<u> </u>	10.97	0	5433.82	6.21	5.942	4.88	15.60	1.25
TW-24	26-Jan-09	5444.79	11.84	11.85	0.01	5432.95	NN	NM	MN	WN N	NM
TW-25	17-Dec-08	5448.80	14.13	14.62	0.49	5434.56		Not Se	Impled - NAPI	- Present	
TW-25	26-Jan-09	5448.80	14.05	14.41	0.36	5434.67	NN	NM	NM	MN,	NM
TW-26	17-Dec-08	5450.34	13.49	14.47	0.98	5436.63		Not Se	Impled - NAPI	- Present	
TW-26	26-Jan-09	5450.34	15.80	16.76	0.96	5434.33	MN	NM	NM	MN	NM
TW-28	17-Dec-08	5449.24	15.37	15.96	0.59	5433.74		Not Se	Impled - NAPI	- Present	
TW-28	26-Jan-09	5449.24	15.28	15.79	0.51	5433.85	MN	NM	NM	NN	NM
TW-29	17-Dec-08	5441.87	9.19	9.20	0.01	5432.68		Not Se	Impled - NAPI	- Present	
TW-29	26-Jan-09	5441.87	9.12	9.14	0.02	5432.75	ŴN	NM	NM	NM	NM
TW-30	18-Dec-08	5437.93		5.90	0	5432.03	6.46	6.328	6.25*	12.89	1.25
TW-30	26-Jan-09	5437.93	•	5.69	0	5432.24	NM	NM	NM	NM	NN
TW-31	16-Dec-08	5438.54		7.03	0	5431.51	6.37	7.298	2.97	14.00	1.25
TW-31	26-Jan-09	5438.54		6.94	0	5431.60	NM	NM	NM	MN	NM
TW-32	17-Dec-08	5441.61	7.22	8.79	1.57	5434.04		Not Se	Impled - NAPI	- Present	
TW-32	26-Jan-09	5441.61	9.02	10.31	1.29	5432.30	MN	NN	NM	MN	ŇM

Animas Environmental Services, LLC AES Tables 050209

Page 4 of 8

Corrective Action Plan May 4, 2009 The second

Strate B

State of the second

H. S. See

法基础

the state

in the state

AT CALLER

A PARTY OF

「市場」

TABLE 5 SUM

1 T. T.

10 . C

1. S. . . .

and the second

- <u>*</u> * *

. Same

 $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$

es. M.

Well ID	Date	T.O.C. (ft amsl)	Depth to Product (ft)	Depth to Water (ft)	NAPL Thickness (ft)	Corrected GW Elev. (ft)*	Ha	Conductivity (mS)	Dissolved Oxygen (mq/L)	Temp. (°C)	Purge Volume (gallons)
TW-33	17-Dec-08	5445.85	12.96	13.02	0.06	5432.88		Not Sa	Impled - NAPI	- Present	
TW-33	26-Jan-09	5445.85	12.92	13.02	0.10	5432.91	MN	NM	WN	WN	MN
TW-34	18-Dec-08	5455.80		19.82	0	5435.98	7.48	6.744	3.97	14.29	1.25
TW-34	26-Jan-09	5455.80		19.74	0	5436.06	NN .	MN	MN	WN	NN
TW-35	18-Dec-08	5449.14		15.21	0	5433.93	7.04	7.929	4.39	14.98	1.25
TW-35	26-Jan-09	5449.14		15.12	0	5434.02	MN	MN	WN	MN	NM
TW-36	18-Dec-08	5441.91		13.03	0	5428.88	6.94	7.874	3.6	15.28	1.25
TW-36	26-Jan-09	5441.91	12.94	12.97	0.03	5428.96	NN	WN S	NM	NM	NM
TW-37	17-Dec-08	5439.59		10.57	0	5429.02	6.51	4.698	3.5	14.02	1.25
TW-37	26-Jan-09	5439.59		10.47	0	5429.12	NN	NM	NM	MN	NN
TW-38	17-Dec-08	5442.11		9.55	0	5432.56	6.95	5.466	4.06	12.82	1.25
TW-38	26-Jan-09	5442.11		11.36	0	5430.75	ΝN	WN	NM	MN	NM
TW-39	18-Dec-08	5438.43	7.7	7.71	0.01	5430.73		Not Sampl∈	d - Sheen of I	NAPL Pres	sent
TW-39	26-Jan-09	5438.43		7.44	0	5430.99	MN	WN	MN	ΜN	NM
TW-40	18-Dec-08	5437.50		5.3	0	5432.20		Not Sampl∈	ed - Sheen of I	NAPL Pre	sent

Corrective Action Plan May 4, 2009

Page 5 of 8

			Depth to	Depth to	NAPL	Corrected			Dissolved		Purge
Well ID	Date	T.O.C. (ft amsl)	Product (ft)	Water (ft)	Thickness (ft)	GW Elev. (ft)*	Ηd	Conductivity (mS)	Oxygen (mg/L)	Temp. (°C)	Volume (gallons)
TW-40	26-Jan-09	5437.50		7.27	0	5430.23	NN	WN	NM.	NM	NM
TW-41	18-Dec-08	5434.77		5.85	0	5428.92	6.16	5.669	3.92	10.95	1.25
TW-41	26-Jan-09	5434.77		5.59	0	5429.18	MN	NM	NM	MN	NM ·
TW-42	16-Dec-08	5433.76		60.9	0	5427.67	6.48	6.036	1.07	12.04	1.25
TW-42	26-Jan-09	5433.76		5.97	0	5427.79	MN	NM · · ·	NM	MN	MN
TW-43	16-Dec-08	5440.42		12.19	0	5428.23	6.35	6.716	1.01	14.39	1.25
TW-43	26-Jan-09	5440.42		12.1	0	5428.32	NM	NN	NM	NM	NM
TW-44	17-Dec-08	5444.08		12.66	0	5431.42	6.71	6.494	2.75	15.75	1.25
TW-44	26-Jan-09	5444.08		14.93	0	5429.15	MN	NN	NM	NM	NM
MW-1	26-Jan-09	5449.08		15.87	0	5433.21	MN	NM	NM	MN	MN
MW-2	26-Jan-09	5442.65	2	12.09	0	5430.56	WN	MN	MN	ΜN	MN
MW-3	26-Jan-09	5431.43		4.06	, 0 ,	5427.37	MN .	WN	MN	MN	MN
MW-5	19-Dec-08	5428.97		5.04	0	5423.93	6.76	7.748	4.02	11.73	0.25
MW-8	19-Dec-08	5433.04			ROOTS	IN WELL - N	IOT SAI	MPLED (WELLH	EAD ALSO M	ISSING)	

Animas Environmental Services, LLC AES Tables 050209

Page 6 of 8

(Anter)

Sector Sector

Corrective Action Plan May 4, 2009 (Breath and に使い 6. A. State of TABLE 5

10 m m

51 Jun -

「「「」」

- فيتالسهما

C.T.Q.

للست رقدي ب

Grif Jan

+1,2,00

1 . n. m.

A House

SUMMARY OF RECENT GROUNDWATER MEASUREMENTS AND WATER QUALITY DATA Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico

Well ID	Date	T.O.C. (ft amsl)	Depth to Product (ft)	Depth to Water (ft)	NAPL Thickness (ft)	Corrected GW Elev. (ft)*	Hd	Conductivity (mS)	Dissolved Oxygen (mg/L)	Temp. (°C)	Purge Volume (gallons)
							5		ł	2 2 2	
9-WM	19-Dec-08	5436.69		5.91	0	5430.78	6.36	6.368	6.29*	9.69	LOW YIELD
0-WM	26-Jan-09	5436.69		5.74	0	5430.95	MN	MN	MN	MN	NM
MW-10	19-Dec-08	5437.78		5.09	0	5432.69	6.73	5.439	6.27*	9.79	0.25
MW-10	26-Jan-09	5437.78		4.88	0	5432.90	ΜN	MN	MN	WN	NM
MW-12	26-Jan-09	5446.09	14.14	15.17	1.03	5431.72	MN	NM	MN	MN	NM
MW-17	26-Jan-09	5435.20				COULD	NOT LC	CATE WELL			
MW-20	21-Jan-09	5430.45		5.86	0	5424.59	6.73	5.996	3.58	8.34	0.5
MW-20	26-Jan-09	5430.45		5.84	0	5424.61	MN	MN	NN	MN	MN
MW-21	19-Dec-08	5428.62		3.43	0	5425.19	6.79	7.562	9.78*	11.04	1.25
MW-21	26-Jan-09	5428.62		3.07	0	5425.55	MN	MN	MN	MN	MN
MW-22	19-Dec-08	5430.75		4.65	0	5426.1	6.62	10.96	5.55	9.88	0.75
MW-22	26-Jan-09	5430.75		4.19	0	5426.56	WN	WN	MN	MN	NM
MW-28	26-Jan-09	5449.07		16.00	0	5433.07	MN	MN	MN	ΜN	NM
MW-29	26-Jan-09	5447.94	15.49	16.11	0.62	5432.31	MN	NM	MN	MN	NM

Corrective Action Plan May 4, 2009

Page 7 of 8

		T.O.C.	Depth to Product	Depth to Water	NAPL Thickness	Corrected GW	÷	Conductivity	Dissolved Oxvaen	Temp.	Purge Volume
Well ID	Date	(ft amsl)	(#)	(#)	(#)	Elev. (ft)*	Hd	(mS)	(mg/L)	(°C)	(gallons)
RW-24	26-Jan-09	5447.73	15.88	17.08	1.20	5431.58	NM	NN	NM	WN	NM
RW-25	26-Jan-09	5448.68	16.61	17.65	1.04	5431.84	MN	NM	NM	NM	NM
RW-26	26-Jan-09	5443.98	14.54	15.01	0.47	5429.34	MN	MN	NM	WN s	NM
	A D A D A D A										

NOTES: NM - Not Measured

* Denotes erroneous DO measurement - sensor malfunction

Corrective Action Plan May 4, 2009 後に現代

a Trans

同な物理

いたけに

C. The section of

Number of

and a

a strates

の語の言

Same out

19 . C. L. S.

and the

Page 8 of 8

TABLE 6 GROUNDWATER ANALYTICALS (VOCs, TOTAL PETROLEUM HYDROCARBONS, and LEAD) Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico

							_	Total				Discolved	Total
Date Sample Benzene Toluene Ethyl- Xylene Method	Sample Benzene Toluene Ethyl- Method	Benzene Toluene Ethyl- Xylens benzene Xylens	Toluene Ethyl- Xylene benzene Xylene	Ethyl- benzene Xylens	Xylene	s	MTBE	Naph- thalene	GRO C6-C10	DRO C10-C22	МПО	Lead 6010B	Lei 601
hg/L μg/L μg/L μg/	hg/L μg/L μg/L μg/	л <i>а/</i> Г µ <i>д/</i> Г µ <i>д/</i> Г	hg/L нg/L нg/	/бп 7/бп	/ б п	7	hg/L	μ <i>g/</i> L	mg/L	mg/L	mg/L	mg/L	mg/L
NM WQCC STANDARD 10 750 750 620	STANDARD 10 750 750 620	10 750 750 620	750 750 620	750 620	620		100	30	NE	NE	NE	0.05	NE
4-Feb-02							lot Sampl∈	ed/ Free Pr	oduct				
3-Jan-06 8021/8015 19 <0.5 <0.5 <2.0	8021/8015 19 <0.5 <0.5 <2.0	19 <0.5 <0.5 <2.0	<0.5 <0.5 <2.0	<0.5 <2.0	<2.(3.3	ŇÂ	0.11	<1.0	NA	ŇÅ	NA
28-Jun-06 8021/8015 7.4 <0.5 <0.5 <2.0	8021/8015 7.4 <0.5 <0.5 <2.0	7.4 <0.5 <0.5 <2.0	<0.5 <0.5 <2.0	<0.5 <2.0	<u>ک</u> .(0	<2.5	NA	0.10	<2.5	NA	NA	NA
28-Dec-06 8021/8015 4700 2.3 110 27	8021/8015 4700 2.3 110 27	4700 2.3 110 27	2.3 110 27	110 27	27		16	AN	14	<1.0	NA	NA	NA
5-Jul-07 8021/8015 47 <0.5 <0.5 <2.0	8021/8015 47 <0.5 <0.5 <2.0	47 <0.5 <0.5 <2.0	<0.5 <0.5 <2.0	<0.5 <2.(<2.(4.6*	NA	0.13	<2.0	NA	NA	NA
18-Dec-07 8021/8015 17 <2.5 <2.5 <10	8021/8015 17 <2.5 <2.5 <10	17 <2.5 <2.5 <10	<2.5 <2.5 <10	<2.5 <10	10		<13	NA	<0.50	<2.0	NA	NA	NA
5-Jan-06 8021/8015 690 <10 360 130	8021/8015 690 <10 360 130	690 <10 360 130	<10 360 130	360 130	130	0	39	NA	13	120	NA	NA	NA
28-Jun-06 8021/8015 360 <2.5 150 45	8021/8015 360 <2.5 150 45	360 <2.5 150 45	<2.5 150 45	150 45	45		50	AN	2.9	210	NA	NA	AN
5-Jul-07 8021/8015 370 140 140 260	8021/8015 370 140 140 260	370 140 140 26(140 140 26(140 26(26(<50.0	NA	21	36.8	NA	NA	NA
19-Dec-07 8021/8015 730 13 150 78	8021/8015 730 13 150 78	730 13 150 78	13 150 78	150 78	78		67	NA	4.3	395	NA	NA	NA
5-Jan-06 8021/8015 870 <25 1300 550	8021/8015 870 <25 1300 550	870 <25 1300 550	<25 1300 550	1300 550	550	0	150	NA	110	72	NA	NA	NA
2-Jan-07 8021/8015 640 9.0 110 17	8021/8015 640 9.0 110 17	640 9.0 110 17	9.0 110 17	110 17	17	0	120	NA	3.4	3.9	NA	NA	ΝA
25-Jul-02 8021/8015 7.9 ND 0.9 0.6	8021/8015 7.9 ND 0.9 0.6	7.9 ND 0.9 0.6	ND 0.9 0.6	0.9	0.0	~	31	AN	NA	NA	NA	NA	AN
26-Nov-02 8021/8015 6.1 ND ND 1.1	8021/8015 6.1 ND ND 1.1	6.1 ND ND 1.1	ND ND 1.1	ND 1.1	1.1		18	NA	NA	NA	NA	NA	NA
5-Jun-03 8021/8015 6.6 ND ND ND	8021/8015 6.6 ND ND ND	6.6 ND ND ND	ND ND ND	ND	ND		18	NA	NA	NA	NA	NA	NA
3-Nov-03 8021/8015 2.1 ND ND ND	8021/8015 2.1 ND ND ND	2.1 ND ND ND	ND ND ND	ND	DN		17	NA	NA	NA	NA	NA	NA
19-Jan-04 8021/8015 2.2 0.6 <0.5 1.3	8021/8015 2.2 0.6 <0.5 1.3	2.2 0.6 <0.5 1.3	0.6 <0.5 1.3	<0.5 1.3	- 	5	27	NA	NA	NA	NA	NA	NA
25-May-04 8021/8015 3.9 <0.5 <0.5 1.8	8021/8015 3.9 <0.5 <0.5 1.8	3.9 <0.5 <0.5 1.8	<0.5 <0.5 1.8	<0.5 1.8	1.8		26	NA	0.20	NA	NA	NA	NA
27-Jul-04 8021/8015 2.0 <0.5 <0.5 <1.	8021/8015 2.0 <0.5 <0.5 <1.	2.0 <0.5 <0.5 <1.	<0.5 <0.5 <1.	<0.5 <1.	Ţ.	0	15	NA	0.12	NA	NA	NA	NA
28-Dec-04 8021/8015 1.5 <0.5 <0.5 <1.	8021/8015 1.5 <0.5 <0.5 <1.	1.5 <0.5 <0.5 <1.	<0.5 <0.5 <1.	<0.5 <1.	√.	0	11	AN	<0.10	NA	NA	NA	NA
19-Sep-05 8021/8015 1.2 <0.5 <0.5 <1.	8021/8015 1.2 <0.5 <0.5 <1.	1.2 <0.5 <0.5 <1.	<0.5 <0.5 <1.	<0.5 <1.	Ť	0	20	NA	0.11	NA	NA	NA	NA
4-Jan-06 8021/8015 0.7 <0.5 <0.5 <2.	8021/8015 0.7 <0.5 <0.5 <2.	0.7 <0.5 <0.5 <2.	<0.5 <0.5 <2.	<0.5 <2.	¢.	0	22	NA	<0.10	<1.0	NA	NA	AN
(VOCs, TOTAL PETROLEUM HYDROCARBONS, and LEAD) Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico **GROUNDWATER ANALYTICALS** TABLE 6

Well ID	Date	Sample Method	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Total Naph- thalene	GRO C6-C10	DRO C10-C22	МВО	Dissolved Lead 6010B	Total Lead 6010B
		· · · · · · · · · · · · · · · · · · ·	hg/L	µ <i>g/</i> L	µg/L	µg/L	µg/L	μ <i>g/Ľ</i>	mg/L	mg/L	mg/L	mg/L	mg/L
	NM WQCC	STANDARD	10	750	750	620	100	30	NE	NE	NE	0.05	NE
MW-5	30-Jan-02	8021/8015	5.1	<0.5	<0.5	<1.50	43	NA	NA	NA	NA	NA	NA
MW-5	25-Jul-02	8021/8015	4.7	QN	ΟN	QN	51	NA	NA	NA	NA	NA	NA
MW-5	26-Nov-02	8021/8015	5.1	ND	ND	DN	47	NA	NA	NA	NA	NA	NA
MW-5	5-Jun-03	8021/8015	1.5	DN	ΩN	QN	25	NA	NA	NA	NA	NA	NA
MW-5	3-Nov-03	8021/8015	QN	ND	QN	ND	26	NA	NA	NA	NA	NA	NA
MW-5	19-Jan-04	8021/8015	3.8	0.9	<0.5	1.4	44	ΝA	NA	NA	NA	NA	NA
MW-5	25-May-04	8021/8015	1.8	0.5	<0.5	<1.0	36	NA	0.14	NA	NA	NA	NA
MW-5	27-Jul-04	8021/8015	<0.5	<0.5	<0.5	<1.0	29	NA	<0.10	NA	NA	NA	NA
MW-5	28-Dec-04	8021/8015	<0.5	<0.5	<0.5	<1.0	27	NA	<0.10	NA	NA	NA	NA
MW-5	27-Jun-06	8021/8015	1.5	<0.5	<0.5	<2.0	37	NA	<0.10	<2.5	NA	NA	NA
MW-5	28-Dec-06	8021/8015	<0.5	<0.5	<0.5	<2.0	37	NA	<0.10	<1.0	NA	NA	AN
MW-5	5-Jul-07	8021/8015	2.4	<0.5	0.8	<2.0	28*	NA	0.14	<2.0	NA	NA	NA
MW-5	19-Dec-08	8260/8015	<1.0	<1.0	<1.0	<1.5	46	<10	0.066	<1.0	<5.0	<0.0050	0,0093
9-WM	30-Jan-02	8021/8015	<0.5	<0.5	<0.5	<1.5	2.5	NA	NA	NA	NA	NA	NA
MW-6	26-Jul-02	8021/8015	3.4	0.7	0.5	ND	23	NA	NA	NA	NA	NA	AN
MW-6	26-Nov-02	8021/8015	ND	ND	ND	ND	30	NA	NA	NA	NA	NA	AN
9-MM	5-Jun-03	8021/8015	0.8	ND	ΟN	ND	11	NA	NA	NA	AN	AN	AN
9-WW	3-Nov-03	8021/8015	ÚΝ	ΩN	ΠN	ΩN	30	ΝA	ΝA	ΝA	ΝA	ΝA	ΝA
MW-6	19-Jan-04	8021/8015	<0.5	0.7	<0.5	<1.0	9.2	NA	NA	NA	NA	NA	NA
9-WM	25-May-04	8021/8015	<0.5	1.0	<0.5	<1.0	28	NA	0.11	NA	NA	NA	NA
MW-6	27-Jul-04	8021/8015	0.8	<0.5	<0.5	1.1	61	NA	0.21	NA	NA	NA	NA
MW-6	28-Dec-04	8021/8015	<0.5	<0.5	<0.5	<1.0	19	NA	<0.10	NA	NA	NA	NA
9-WM	19-Sep-05	8021/8015	1.9	<0.5	0.5	<1.0	66	NA	0.22	NA	NA	NA	NA
MW-6	4-Jan-06	8021/8015	<0.5	<0.5	<0.5	<2.0	11	NA	<0.10	<1.0	AN	NA	NA

May 4, 2009 **Corrective Action Plan**

No. of Lot of Lo

朝秋福

The West

the state

100

1.2.2

中部的

No. of the second

Page 2 of 12

Animas Environmental Services,LLC AES Tables 050209 Call State **TABLE 6**

La Ray

10

the second

GROUNDWATER ANALYTICALS (VOCs, TOTAL PETROLEUM HYDROCARBONS. and LEAD)

ע רבאטן	Mexico
5	New
	omfield.
	500. Blc
	26 CR 5
	inerv. 6
	vav Ref
う))	Thrift

								、 、					
	0.00	Sample	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Total Naph-	GRO C6-C10	DRO C10-C22	MRO	Dissolved Lead	Total Lead
	Dale	Method						thalene				6010B	6010B
			hg/L	hg/L	μ <i>g/</i> L	hg/L	hg/L	μ <i>g/</i> L	mg/L	mg/L	mg/L	mg/L	mg/L
	NM WQCC	STANDARD	10	750	750	620	100	30	NE	NE	NE	0.05	NE
MW-7	19-Jan-04	8021/8015	<0.5	<0.5	<0.5	1.6	210	NA	NA	AN	AN	NA	NA
MW-7	25-May-04	8021/8015	<0.5	<0.5	<0.5	<1.0	190	NA	0.25	ŇÀ	NÀ	NA	NA
7-WM	27-Jul-04	8021/8015	<0.5	<0.5	<0.5	1.3	190	NA	0.27	NA	NA	NA	NA
MW-7	29-Dec-04	8021/8015	<0.5	<0.5	<0.5	<1.0	150	NA	0.14	NA	NA	NA	NA
7-WM	19-Sep-05	8021/8015	<0.5	<0.5	<0.5	<1.0	140	NA	0.14	NA	NA	NA	NA
MW-7	4-Jan-06	8021/8015	1.9	<0.5	1.7	2.1	120	NA	0.16	<1.0	NA	NA	NA
MW-8	30-Jan-02	8021/8015	<0.5	<0.5	<0.5	<1.5	<1.0	NA	NA	AN	NA	NA	NA
MW-8	26-Jul-02	8021/8015	QN	QN	QN	QN	1.4	NA	NA	AN	NA	NA	NA
MW-8	26-Nov-02	8021/8015	0.9	ND	QN	QN	230	NA	NA	AN	NA	NA	NA
MW-8	5-Jun-03	8021/8015	1.3	QN	QN	QN	190	NA	NA	NA	NA	NA	NA
MW-8	4-Nov-03	8021/8015	QN	QN	ND	QN	170	NA	NA	AN	NA	NA	NA
MW-8			Well	Not Found									
MW-8	4-Jan-06	8021/8015	<0.5	<0.5	<0.5	<2.0	136	NA	0.10	<1.0	NA	NA	NA
6-MM	1-30-02	8021/8015	5.5	1.6	1.7	<1.5	26	NA	NA	NA	NA	NA	NA
6-WW	11-26-02	8021/8015	ND	ΠD	ND	ND	ΟN	NA	NA	NA	NA	NA	NA
0-WW	6-05-03	8021/8015	DN	ND	DN	ND	DN	NA	NA	NA	NA	NA	NA
9-WM	11-04-03	8021/8015	QN	ΠN	ΩN	ND	ΠD	NA	NA	NA	NA	NA	NA
6-WW	19-Jan-04	8021/8015	<0.5	<0.5	<0.5	<1.0	<2.5	NA	NA	NA	NA	NA	NA
9-WM	25-May-04	8021/8015	<0.5	<0.5	<0.5	<1.0	<2.5	NA	<0.10	NA	NA	NA	NA
6-WW	28-Jul-04	8021/8015	<0.5	<0.5	<0.5	1.0	<2.5	NA	<0.10	NA	NA	NA	NA
6-WW	29-Dec-04	8021/8015	<0.5	<0.5	<0.5	<1.0	<2.5	NA	<0.10	NA	NA	NA	NA
0-WM	19-Sep-05	8021/8015	<0.5	<0.5	<0.5	<1.0	<2.5	NA	<0.10	NA	NA	NA	NA
6-WW	4-Jan-06	8021/8015	<0.5	<0.5	<0.5	<2.0	<0.5	NA	<0.10	<1.0	NA	NA	NA
6-WW	19-Dec-08	8260/8015	<1.0	<1.0	<1.0	<1.5	<1.0	<10 <10	<0.050	<1.0	<5.0	<0.0050	0.0084

Animas Environmental Services,LLC AES Tables 050209

Page 3 of 12

TABLE 6 GROUNDWATER ANALYTICALS (VOCs, TOTAL PETROLEUM HYDROCARBONS, and LEAD) Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico

Well ID	Date	Sample Method	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Total Naph- thalene	GRO C6-C10	DRO C10-C22	МРО	Dissolved Lead 6010B	Total Lead 6010B
- - - - - -		e etal e data data	µ <i>ġ/</i> Ľ	<i>μg/</i> Γ	hg/L	hg/L	hg/L	μ <i>g/</i> L	mg/L	mg/L	mg/L	mg/L	mg/L
	NM WOCC	STANDARD	10	750	750	620	100	30	NE	NE	NE	0.05	NE
MW-10	26-Jul-02	8021/8015	ND	ND	ND	ND	ΠD	NA	NA	NA	NA	NA	NA
MW-10	26-Nov-02	8021/8015	QN	QN	QN	DN	ΟN	AN	NA	NA	NA	NA	NA
MW-10	5-Jun-03	8021/8015	QN	ND	ND	ND	ΠN	NA	NA	NA	NA	NA	NA
MW-10	4-Nov-03	8021/8015	QN	DN	ND	DN	ΠN	NA	NA	NA	NA	NA	NA
MW-10	19-Jan-04	8021/8015	<0.5	<0.5	<0.5	<1.0	<2.5	NA	NA	NA	NA	NA	NA
MW-10	25-May-04	8021/8015	<0.5	<0.5	<0.5	<1.0	<2.5	AN	<0.10	NA	NA	NA	NA
MW-10	28-Jul-04	8021/8015	<0.5	<0.5	<0.5	<1.0	<2.5	NA	<0.10	NA	NA	NA	NA
MW-10	29-Dec-04	8021/8015	<0.5	1.6	0.6	3.1	<2.5	NA	<0.10	NA	NA	NA	NA
MW-10	19-Sep-05	8021/8015	<0.5	<0.5	<0.5	<1.0	<2.5	AN	<0.10	NA	NA	NA	NA
MW-10	3-Jan-06	8021/8015	<0.5	<0.5	<0.5	<2.0	<0.5	NA	<0.10	<1.0	NA	NA	NA
MW-10	28-Jun-06	8021/8015	<0.5	<0.5	<0.5	<2.0	<2.5	NA	<0.10	<2.5	NA	NA	NA
MW-10	28-Dec-06	8021/8015	<0.5	<0.5	<0.5	<2.0	<2.5	NA	<0.10	<1.0	NA	NA	NA
MW-10	3-Jul-07	8021/8015	1.6	<0.5	1.1	2.2	<2.5	NA	0.31	<2.0	NA	NA	NA
MW-10	18-Dec-07	8021/8015	0.5	<0.5	<0.5	<2.0	<2.5	NA	<0.10	<2.0	NA	NA	NA
MW-10	19-Dec-08	8260/8015	<1.0	<1.0	<1.0	<1.5	<1.0	<10	<0.050	<1.0	<5.0	<0.0050	0.0073
MW-11	30-Jan-02	8021/8015	<0.5	<0.5	<0.5	<1.5	<1.0	NA	NA	NA	NA	NA	NA
MW-11	26-Jul-02	8021/8015	ND	ΠN	ΟN	ΩN	ΠN	NA	NA	ŅĄ	ΝA	N,A	ΝA
MW-11	26-Nov-02	8021/8015	ND	0.6	ND	ND	ND	NA	NA	NA	NA	NA	NA
MW-11	5-Jun-03	8021/8015	ΠN	ND	ND	ND	ΠN	NA	NA	NA	NA	NA	NA
MW-11	4-Nov-03	8021/8015	ND	ND	ND	ΟN	QN	NA	NA	NA	NA	NA	NA
MW-11	20-Jan-04	8021/8015	<0.5	<0.5	<0.5	<1.0	<2.5	NA	NA	NA	NA	NA	NA
MW-11	25-May-04	8021/8015	<0.5	1.6	0.7	4.1	<2.5	NA	0.12	NA	NA	NA	NA
MW-11	28-Jul-04	8021/8015	<0.5	1.9	0.9	3.3	<2.5	NA	<0.10	NA	NA	NA	NA
MW-11	29-Dec-04	8021/8015	<0.5	<0.5	<0.5	<1.0	<2.5	AN	<0.10	NA	NA	NA	AN

Corrective Action Plan May 4, 2009 10.98 A

Press.

1. <u>1.5.1.8.</u>

Sec.

See. 32

大学語

194 - MA

Page 4 of 12

Animas Environmental Services,LLC AES Tables 050209 **TABLE 6**

R

1.42 C.4

8 ° . •

all the

191 H

GROUNDWATER ANALYTICALS

V V V

AD)	00
s, and LE	Vew Mexi
CARBONS	omfield. I
MHYDRO	5500. Blo
TROLEUN	v. 626 CR
OTAL PE	v Refiner
DCs, T	riftwa

			-	וושו ושווי	101 y, 020 0	ם היי הייהי, בי							
_	Date	Sample	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Total Naph- thalene	GRO C6-C10	DRO C10-C22	MRO	Dissolved Lead 6010B	Total Lead 6010B
		nomem	μg/L	μg/L	μg/L	μg/L	μ <i>g/</i> L	hg/L	mg/L	mg/L	mg/L	mg/L	mg/L
1	NM WQCC	STANDARD	10	750	750	620	100	30	NE	NE	NE	<i>0.05</i>	NE
†	30-Jan-02	8021/8015	28	1.8	54	104.6	110	ŇÀ	ŇÅ	ŇA	ŇA	NA	NA
.	26-Jul-02	8021/8015	43	1.7	59	115.1	140	NA	NA	AN	NA	NA	NA
1.	3-Dec-02	8021/8015	12	DN	24	35	120	NA	NA	NA	NA	AN	NA
	5-Jun-03	8021/8015	30	1.1	29	39	88	NA	NA	NA	ΝA	AN	NA
	20-Jan-04	8021/8015	17	<2.5	34	43	100	AN	NA	NA	NA	NA	NA
	25-May-04	8021/8015	49	2.4	46	63	62	ΝA	0.88	AN	NA	NA	NA
	30-Dec-04	8021/8015	7.0	0.7	35	74	87	NA	0.69	AN	NA	AN	NA
	5-Jan-06	8021/8015	6.4	<5.0	32	71	54	NA	<1.0	570	NA	NA	NA
—													
5	30-Jan-02	8021/8015	<0.5	<0.5	<0.5	<1.5	<1.0	NA	NA	NA	NA	NA	NA
_	26-Jul-02	8021/8015	DN	ND	an	ND	ND	NA	NA	NA	NA	NA	NA
	3-Dec-02	8021/8015	QN	DN	QN	ND	QN	ΝA	AN	NA	NA	NA	NA
	5-Jun-03	8021/8015	QN	ΟN	QN	ND	QN	AN	AN	NA	NA	NA	NA
<u> </u>	4-Nov-03	8021/8015	QN	ND	QN	ND	DN	NA	AN	NA	NA	NA	NA
	20-Jan-04	8021/8015	<0.5	<0.5	<0.5	<1.0	<2.5	NA	NA	NA	NA	NA	NA
	28-Jul-04	8021/8015	<0.5	<0.5	<0.5	<1.0	<2.5	NA	<0.10	NA	NA	NA	NA
-	30-Dec-04	8021/8015	<0.5	<0.5	<0.5	<1.0	<2.5	NA	<0.10	NA	NA	NA	NA
_	19-Sep-05	8021/8015	0.6	1.6	<0.5	<1.0	<2.5	AN	0.20	NA	NA	NA	NA
_	3-Jan-06	8021/8015	<0.5	<0.5	<0.5	<2.0	<0.5	NA	<0.10	<1.0	NA	NA	NA
	25-May-04	8021/8015	<0.5	<0.5	<0.5	<1.0	<2.5	NA	<0.10	NA	NA	NA	NA
	3-Jan-06	8021/8015	44	3.9	50	<10	12	NA	1.1	1.1	NA	NA	NA
-	28-Jun-06	8021/8015	110	<0.5	22	3.6	<2.5	NA	0.96	<2.5	NA	NA	NA
	28-Dec-06	8021/8015	160	7.9	94	7.6	<2.5	NA	1.4	<1.0	NA	NA	NA
_	5-Jul-07	8021/8015	20	4.4	17	6.1	2.7*	ΝA	0.92	<2.0	NA	٩N	AN

(VOCs, TOTAL PETROLEUM HYDROCARBONS, and LEAD) Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico **GROUNDWATER ANALYTICALS TABLE 6**

6010B Lead mg/L Total ٩Z N. ٩Z ٩Z AZ ٩Z AN ٩N ٩Z AN AN A AN A A ٩Z ٨A ΔN AN ¥ ٩V ٩N AN A Dissolved 6010B Lead mg/L 0.05 ΨZ AS AN AN ٩Z ¥ ٩Z ٩Z ٩Z AN ٨A AN A ď. N Υ ٩Z ٩Z A ٩N AN ΝA AN MRO mg/L NE AN ΔA AN AN ٩Z ¥ NA ٩V ¥ AA ٩N ٩N A ۲ A ΨN A ٩Z ٩Z ٩Z ٩Z AN C10-C22 DRO mg/L <1.0 <1.0 8.2 3.8 NE 18 A ٩Z ΝA A AN ٩Z ٩V AN ΔN Υ ΫN AN A ٩Z AN A ¥ AN C6-C10 <0.10 <0.10 <0.10 <0.10 <0.10 GRO mg/L <0.10 0.65 0.16 ٩N AN 8.5 2.0 ٩N ٩N 3.2 ٩Z ٩Z NE ΔA AN ₹Z Å A AN thalene Naph-Total µg/L ¥ ₹ A A A A AN ΔA A AN A A ¥ ¥ AN ΫŇ ΝA AN ٩Z A ٩N ΝA Ā 30 MTBE <1.0 <2.5 <2.5 <2.5 <2.5 <0.5 <2.5 <2.5 hg/L g <25 <25 100 Ð Ð ND 6.7 8 36 16 8 <u>2</u> 33 15 37 32 Xylenes .5 1.5 <1.0 <1.0 <1.0 <1.0 <1.0 <2.0 <2.0 μ*g*/Γ <4.0 √ 2 <1.0 <<u>1</u>.0 g Q **900** 150 620 g Q 1.2 0.7 g g g benzene Ethyl-<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 µg/L 120 750 g 0 N ក g g <u>8</u> g g g F 77 Toluene <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 hg/L 3.3 0.6 750 g Q g ΩN g 72 5 ND g 2 4 Benzene <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 1200 <0.5 hg/L 620 150 g 2 Q QN 0.1 6.9 2.9 2.6 16 2 10 0.7 ഹ 8021/8015 8021/8015 NIN WOCC STANDARD 8021/8015 Sample Method 19-Dec-07 25-May-04 29-Dec-04 19-Sep-05 28-Dec-06 30-Jan-02 20-Jan-04 30-Jan-02 26-Nov-02 27-Jun-06 19-Jan-04 26-Jul-02 3-Dec-02 4-Nov-03 28-Jul-04 25-Jul-02 25-May-04 5-Jun-03 3-Jan-06 5-Jan-06 5-Jun-03 3-Nov-03 27-Jul-04 Date MW-15 **MW-15** MW-18 **MW-15 MW-18** Well ID **MW-14 MW-15 WW-15 MW-15** MW-15 **MW-15 MW-15 MW-15 MW-15 MW-18** MW-18 **MW-18 MW-18 MW-18 MW-18 MW-17** MW-17 **MW-17**

Corrective Action Plan May 4, 2009 190 A.S.

t and the

T

2442

はの

14. June 2

Page 6 of 12

Animas Environmental Services, LLC AES Tables 050209

Strain and

TABLE 6

N. . .

F

State of the second

1

1

GROUNDWATER ANALYTICALS (VOCs, TOTAL PETROLEUM HYDROCARBONS, and LEAD) Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico

					Ethul.			Total	CBO	DRO		Dissolved	Total
Well ID	Date	Sample Method	Benzene	Toluene	benzene	Xylenes	MTBE	Naph- thalene	C6-C10	C10-C22	MRO	Lead 6010B	Lead 6010B
			μg/L	μ <i>g/</i> L	hg/L	µg/L	μ <i>g/</i> L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	NM WQCC	STANDARD	10	750	750	620	100	30	NE	NE	NE	0.05	NE
MW-18	28-Dec-04	8021/8015	<0.5	<0.5	<0.5	<1.0	18	AN	<0.10	NA	NA	NA	NA
MW-18	19-Sep-05	8021/8015	3.8	<0.5	<0.5	2.0	54	NA	0.23	AN	NA	NA	NA
MW-18	4-Jan-06	8021/8015	0.7	1.3	0.6	2.7	47	NA	0.10	<1.0	NA	NA	NA
MW-18	27-Jun-06	8021/8015	2.5	<0.5	<0.5	<2.0	83	NA	0.11	19	NA	AN	NA
MW-18	28-Dec-06	8021/8015	<0.5	<0.5	<0.5	<2.0	54	NA	<0.10	<1.0	NA	NA	NA
MW-18	5-Jul-07	8021/8015	2.4	1.3	1.1	3.1	32*	NA	0.36	<2.0	NA	NA	NA
MW-18	18-Dec-07	8021/8015	0.6	<0.5	<0.5	<2.0	82	NA	<0.10	<2.0	NA	NA	NA
MW-19	30-Jan-02	8021/8015	0.6	0.9	0.8	<1.5	530	NA	NA	NA	NA	NA	NA
MW-19	25-Jul-02	8021/8015	QN	QN	0.9	ND	610	NA	NA	NA	NA	NA	NA
MW-19	26-Nov-02	8021/8015	ND	QN	ND	ND	310	AN	NA	NA	NA	NA	NA
MW-19	5-Jun-03	8021/8015	3.2	ND	ND	ND	420	NA	NA	NA	NA	NA	NA
MW-19	3-Nov-03	8021/8015	ΩN	QN	QN	ND	520	NA	NA	NA	NA	NA	NA
MW-19	19-Jan-04	8021/8015	0.6	<0.5	<0.5	1.7	310	NA	NA	NA	NA	NA	NA
MW-19	25-May-04	8021/8015	<0.5	<0.5	<0.5	<1.0	180	NA	0.25	NA	NA	NA	NA
MW-19	27-Jul-04	8021/8015	<0.5	<0.5	<0.5	1.2	210	AN	0.30	NA	NA	NA	NA
MW-19	28-Dec-04	8021/8015	<0.5	0.6	<0.5	3.0	250	NA	0.40	NA	NA	NA	NA
MW-19	19-Sep-05	8021/8015	<0.5	<0.5	<0.5	2.0	120	NA	0.21	NA	NA	NA	NA
MW-19	4-Jan-06	8021/8015	<0.5	<0.5	<0.5	<2.0	260	AN	0.21	<1.0	NA	NA	NA
MW-20	30-Jan-02	8021/8015	1.6	3.7	6.3	1.2	670	NA	NA	NA	NA	NA	NA
MW-20	26-Jul-02	8021/8015	ΠN	ND	ND	ND	950	NA	NA	NA	NA	NA	NA
MW-20	26-Nov-02	8021/8015	1.6	ΠD	ND	2	350	NA	NA	NA	NA	NA	NA
MW-20	5-Jun-03	8021/8015	7	ND	7.1	7.2	630	NA	NA	NA	NA	NA	NA
MW-20	4-Nov-03	8021/8015	3.2	QN	QN	5.1	480	NA	NA	NA	NA	NA	NA
MW-20	19-Jan-04	8021/8015	2.8	<0.5	1.4	3.3	680	NA	NA	٩N	AN	AN	NA

e Metho	2 9	e le	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Total Naph- thalene	GRO C6-C10	DRO С10-С22	МНО	Dissolved Lead 6010B	Total Lead 6010B
4			µg∕L	μ <i>g/</i> Ľ	µg/L	µ <i>g/</i> L	µ <i>G</i> //L	μ <i>g/</i> L	mg/L	mg/L	mg/L	mg/L	mg/L
acc stal	1	DARD	10	750	750	620	100	30	NE	NE	NE	0.05	NE
y-04 802	1E	/8015	1.9	<0.5	3.3	7.6	400	NA	0.82	NA	NA	NA	NA
-04 802	노	/8015	2.1	<0.5	<0.5	2.3	590	NA	0.91	NA	NA	NA	NA
5-04 802	ΙÈ	/8015	2.0	<0.5	<0.5	7.2	300	NA	0.89	NA	NA	NA	NA
3-05 802	- `	/8015	<2.5	<2.5	<2.5	5.4	160	NA	1.2	NA	NA	NA	NA
-06 802	1-	/8015	<0.5	<0.5	<0.5	<2.0	400	NA	0.50	<1.0	NA	NA	NA
n-06 802	۱ <u>ټ</u> ا	/8015	0.6	<0.5	<0.5	<2.0	310	NA	0.23	3.2	NA	NA	NA
c-06 802	ا ي اً	/8015	<5.0	20	<5.0	<20	170	NA	1.6	<1.0	NA	NA	NA
07 80	12	/8015	<1.0	4.0	1.7	<4.0	180*	AN	0.34	<2.0	NA	NA	NA
5-07 80	12	/8015	<0.5	8.3	<0.5	3.6	360	NA	0.52	<2.0	ΝA	NA	NA
1-09 82	l 🛞	/8015	<1.0	<1.0	<1.0	<1.5	170	<10.	0.47	1.8	<5.0	<0.0050	0.051
n-02 80	5	/8015	<0.5	<0.5	<0.5	<1.5	44	NA	NA	NA	NA	NA	NA
-02 80	5	/8015	ND	ND	ND	ND	34	NA	NA	NA	NA	NA	NA
/-02 80	١ ۲	/8015	1.4	ND	ND	ND	34	NA	NA	NA	NA	NA	NA
-03 80	5	/8015	QN	ΠN	DN	ND	14	NA	NA	NA	NA	NA	NA
-03 80	چا ا	/8015	DN	ΠN	ΠN	ND	25	NA	NA	NA	NA	NA	NA
04 80	1 Sol	8015	<0.5	<0.5	<0.5	<1.0	<2.5	NA	NA	NA	NA	ŇA	NA
v-04 80	21	/8015	<0.5	<0.5	<u> </u>	<1.0	18	AN	0.11	NA	NA	NA	NA
-04 8(12	/8015	<0.5	<0.5	<0.5	<1.0	24	٨A	<0.10	NA	ΝA	Ϋ́Ν	ΝA
5-04 8(221	/8015	<0.5	<0.5	<0.5	<1.0	25	NA	<0.10	NA	NA	NA	NA
5-05 8(12	/8015	<0.5	<0.5	<0.5	<1.0	29	NA	<0.10	NA	NA	NA	NA
-06 8	021/	/8015	<0.5	<0.5	<0.5	<2.0	24	NA	<0.10	<1.0	NA	NA	NA
1-06 8(021,	/8015	2.9	<0.5	<0.5	<2.0	17	NA	<0.10	<2.5	ΝA	NA	NA
-07 8(021/	/8015	<0.5	<0.5	<0.5	<2.0	29	NA	<0.10	<1.0	NA	NA	NA
07 80	21/	/8015	<0.5	<0.5	<0.5	<2.0	39*	NA	<0.10	<2.0	NA	NA	NA
S-07 80	5	/8015	<0.5	<0.5	<0.5	<2.0	79	٩N	<0.10	<2.0	AN	NA	ΝA

Corrective Action Plan May 4, 2009

1000

A Branch Store

And the Party Page 8 of 12

ALC: NO

die 🕂

State of 東京 Animas Environmental Services,LLC AES Tables 050209

TABLE 6 GROUNDWATER ANALYTICALS

1.1

l

1.8

5 2 C

and and

B

4

			(VOC	ש Cs, TOTAL iftway Refii	PETROLE	ALEH ANA UM HYDR(CR 5500, B	LY IICAL DCARBO loomfield	S NS, and d, New M	LEAD) exico				
Well ID	Date	Sample Method	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Total Naph- thalene	GRO C6-C10	DRO C10-C22	МВО	Dissolved Lead 6010B	Total Lead 6010B
			hg/L	hg/L	μg/L	μg/L	µg/L	μ <i>g/</i> L	mg/L	mg/L	mg/L	mg/L	mg/L
	NM WQCC	STANDARD	10	150	750	620	100	0E	INE	NE	NE	0.05	NE
MW-21	19-Dec-08	8260/8015	<1.0	<1.0	<1.0	<1.5	100	<10	0.11	<1.0	<5.0	<0.0050	0.0067
MW-22	30-Jan-02	8021/8015	<0.5	<0.5	<0.5	<1.5	12	NA	AN	NA	NA	NA	NA
MW-22	26-Jul-02	8021/8015	ΠŊ	QN	ND	ΠN	14	٨A	AN	NA	NA	NA	NA
MW-22	26-Nov-02	8021/8015	ΠN	ΩN	ND	ΠN	14	٧N	AN	NA	NA	NA	NA
MW-22	5-Jun-03	8021/8015	ΠN	ΠN	ND	ΠN	ND	NA	NA	NA	NA	NA	NA
MW-22	4-Nov-03	8021/8015	ND	UN 2	ND	DN	11	AN	NA	NA	NA	NA	NA
MW-22	19-Jan-04	8021/8015	<0.5	<0.5	<0.5	<1.0	13	٧N	AN	NA	NA	NA	NA
MW-22	25-May-04	8021/8015	<0.5	<0.5	<0.5	<1.0	13	NA	0.11	NA	NA	NA	NA
MW-22	28-Jul-04	8021/8015	<0.5	<0.5	<0.5	<1.0	14	٧N	<0.10	NA	NA	NA	NA
MW-22	29-Dec-04	8021/8015	<0.5	<0.5	<0.5	<1.0	11	NA	<0.10	NA	NA	NA	NA
MW-22	19-Sep-05	8021/8015	<0.5	<0.5	<0.5	<1.0	11	NA	<0.10	NA	NA	NA	NA
MW-22	4-Jan-06	8021/8015	<0.5	<0.5	<0.5	<2.0	11	NA	<0.10	<1.0	NA	NA	NA
MW-22	28-Jun-06	8021/8015	<0.5	<0.5	<0.5	<2.0	8.6	NA	<0.10	<2.5	NA	NA	NA
MW-22	2-Jan-07	8021/8015	<0.5	<0.5	<0.5	<2.0	14	NA	<0.10	<1.0	NA	NA	NA
MW-22	3-Jul-07	8021/8015	<0.5	<0.5	<0.5	<2.0	13*	NA	<0.10	<2.0	NA	NA	AN
MW-22	18-Dec-07	8021/8015	<0.5	<0.5	<0.5	<2.0	17	AN	<0.10	<2.0	ΝA	AN	NA

Animas Environmental Services,LLC AES Tables 050209

Page 9 of 12

0.11

<0.025

<5.0

<1.0

<0.050

10

<u>1</u>2

<1.5 5

<1.0

<1.0

<1.0 ∧1.0

8260/8015

19-Dec-08

MW-22

ΑN

AN

٩Z

820

5.0

٩N

1400

650

82

88

1600

8021/8015

5-Jan-06

MW-24

٩N

٩N

٩Z

19

23

٩N

1500

2700

340

1700

3000

8021/8015

5-Jan-06

MW-29

٩Z

ΔA

٩Z

3.2

10 1

ΔA

450

580

140

10 5

920

8021/8015

5-Jan-06

RW-24

٩Z

٩N

AΝ

7

40

٩N

320

2600

350

1200

2500

8021/8015

5-Jan-06

RW-25

TABLE 6 GROUNDWATER ANALYTICALS (VOCs, TOTAL PETROLEUM HYDROCARBONS, and LEAD) Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico

Total Lead 6010B	mg/L	NE		NA	NA	NA		0.036	0.023		0.014	0.021	F F O O	0.014	0.020	0.032		0.011	000	0.00		0.023	0.017
Dissolved Lead 6010B	mg/L	0.05		NA	NA	NA		00000>	<0.0050			<0.0050			0.0051	0.0068	01000	0900.0>		00000	0000	000002	<0.0050
MRO	mg/L	NE		NA	NA	NA	C L	<0.c>	<5.0		0.0>	<5.0	ļ		<5.0	<5.0	(L	<5.0	C 2/	2.2	L L L L L L L L L L L L L L L L L L L	0.02	<5.0
DRO C10-C22	mg/L	NE		250	9.6	6.2	1	<1.0	<1.0		0.1>	<1.0	ic T	<1.0	<1.0	2.1		1.4	017	2.1/	C • • •	~!~	<1.0
GRO C6-C10	mg/L	NE		40	6.2	5.6		<0.05U	<0.050		0c0.0>	<0.050		NCU.U>	<0.050	15	0	0.8 0	10.050	0000		0.23	<0.050
Total Naph- thalene	µg/L	30		NA	NA	NA		<10	<10		<10	<10	· ·	~10	<10	308		92	10	2		<u>⊃</u> . V	<10 <10
MTBE	µg/L	100		62	330	66*		<1.0	<1.0	i i	0.12	<1.0		0.12	<1.0	<10		<5.0	(C. F.)	2	C	0.1 V	<1.0
Xylenes	µ <i>g/</i> L	620		1700	1000	420		<1.5	<1.5	L	¢.1>	<1.5	14 14 14	c.1>	<1.5	4,200		950	u T	2	c c	ы. Ч.Ч	<1.5
Ethyl- benzene	µ <i>g/</i> L	750		290	64	78		<1.0	<1.0	1	<1.0	<1.0 ×		< <1.0	<1.0	710		330	C		00	0.U	<1.0
Toluene	µg/L	750		130	36	27	į	<1.0	<1.0	-	<1.0	<pre>< 1.0</pre>	, T	0.1× ×	<1.0	1,700		15	C T	D. /	Č	, U. I >	<1.0
Benzene	µg/L	01	-	2100	1300	1000		<1.0	<1.0		<1.0	<1.0		0.12	<1.0	67		120		2		 -	<1.0
Sample Method		STANDARD		8021/8015	8021/8015	8021/8015		8260/8015	8260/8015.		8260/8015	8260/8015		GTU8/U928	8260/8015	8260/8015		8260/8015	0060/001E		0/00/12		8260/8015
Date		NM WACC		5-Jan-06	28-Jun-06	5-Jul-07		15-Dec-08	15-Dec-08		15-Dec-08	16-Dec-08		15-Dec-08	15-Dec-08	15-Dec-08		16-Dec-08	16 700 70	00-00-01	10 0.00	10-Dec-00	16-Dec-08
Well ID				RW-26	RW-26	RW-26		TW-1	TW-2		TW-3	TW-4		1W-5	TW-6	TW-7		TW-8	TW O	6- AA 1	TW 10	01-7	TW-11

Animas Environmental Services,LLC AES Tables 050209

Crossie.

Page 10 of 12

Corrective Action Plan May 4, 2009

GROUNDWATER ANALYTICALS (VOCs, TOTAL PETROLEUM HYDROCARBONS, and LEAD)

TABLE 6

الم المعاطرين الم المعالمين

. M.

<u>1 6. 6.</u> 144 - 816...

- 1942 - 1

* 3 + 5, m

14 2 m

6010B 0.029 0.016 0.018 0.013 0.0076 0.013 0.035 0.012 0.012 0.024 0.014 0.011 Lead 0.031 Total mg/L NE Dissolved <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 6010B Lead mg/L 0.05 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 MRO <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 mg/L NE C10-C22 <1.0 <1.0 <1.0 DRO <1.0 <1.0 1.0 1.0 mg/L 1.9 4 4 2.8 4.3 NE <u>р</u> GRO C6-C10 <0.050 <0.050 <0.050 <0.050 <0.050 0.087 0.70 mg/L 0.77 0.26 0.30 8.4 3.4 N Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico thalene Naph-<500 Total ~10 ~10 91.9 µg/Ļ -10 10 0 10 -10 2.6 ~10 0 70 0 7 7 317 0 30 MTBE <1.0 <5.0 <1.0 <1.0 <1.0 <1.0 √ <1.0 hg/L ا.9 5.6 180 100 ₽ 24 Xylenes 1,800 1,700 <<u>1</u>.5 <1.5 ≤ <1.5 1.5 <u>ר</u> י5 ר. ה <1.5 ≤1.5 µg/L 620 9 18 22 Ethyl-benzene <1.0 <<u>1</u>.0 <1.0 0. ∽ <<u>1</u>.0 1.0 µg/L 670 190 560 750 g 9 31 16 Toluene <1.0 <1 <<u>1</u>.0 0. V <u>1</u>.0 <1.0 <<u>1</u>.0 √ 0.1 0 <<u>1</u>0 <<u>1.0</u> <1.0 hg/L <50 9.2 750 33 Benzene <1.0 1.01 > √ <1.0 <1.0 <1.0 <1.0 <<u>1</u>.0 0. √ hg/L 6.9 8.9 7.5 820 10 22 NM WOCC STANDARD 8260/8015 8260/8015 8260/8015 8260/8015 8260/8015 8260/8015 8260/8015 8260/8015 8260/8015 8260/8015 8260/8015 8260/8015 8260/8015 Sample Method 17-Dec-08 16-Dec-08 18-Dec-08 18-Dec-08 15-Dec-08 16-Dec-08 16-Dec-08 18-Dec-08 17-Dec-08 18-Dec-08 18-Dec-08 16-Dec-08 16-Dec-08 Date TW-12 TW-15 TW-16 TW-18 TW-24 TW-30 TW-35 Well ID TW-23 TW-34 TW-17 TW-31 TW-36 TW-37

Animas Environmental Services,LLC AES Tables 050209

Page 11 of 12

(VOCs, TOTAL PETROLEUM HYDROCARBONS, and LEAD) Thriftway Refinery, 626 CR 5500, Bloomfield, New Mexico **GROUNDWATER ANALYTICALS TABLE 6**

Well ID	Date	Sample Method	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Total Naph- thalene	GRO C6-C10	DRO C10-C22	МВО	Dissolved Lead 6010B	Total Lead 6010B
		- - - - - - - - - - - - - - - - - - -	µg/L	µg/L	h <i>g/L</i>	µg/L	μ <i>g/</i> L	μ <i>ĝ/</i> Ĺ	mg/L	mg/L	mg/L	mg/Ļ	mg/L
	NM WQCC	STANDARD	10	750	750	620	100	30	NE	NE	NĘ	0.05	NE
										_			
TW-38	17-Dec-08	8260/8015	140	<5.0	. 36	220	190	<50	0,99	<1.0	<5.0	<0.0050	0.010
					•								
TW-41	18-Dec-08	8260/8015	480	<50	570	4,000	<50	<500	8.4	2.0	<5.0	<0.0050	0.0078
TW-42	16-Dec-08	8260/8015	<1.0	<1.0	31	<1.5	130	· <10	. 0.18	1.2	<5.0	0.0066	0.010
TW-43	16-Dec-08	8260/8015	<1.0	<1.0	31	<1.5	1,700	<10	0.80	<1.0	<5.0	<0.0050	0.016
TW-44	17-Dec-08	8260/8015	58	<5.0	69	340	330	245	2.0	1.8	<5.0	<0.0050	0.0094
	Notes:		v	Analyte not c	letected abo	ve listed met	nod limit						
			NA	Not analyzed									

Not established Not analyzed

ШN

- Micrograms per liter (ppb) μ g/L
- Milligrams per liter (ppm) mg/L
 - Gasoline range organics GRO
- Motor oil range organics Diesel range organics

DRO MRO

Animas Environmental Services, LLC AES Tables 050209

Page 12 of 12

1.112

Signa Si

Sec. 1

Corrective Action Plan May 4, 2009 ける

S:\ANIMAS 2000\2009 PROJECTS\THRIFTWAY\810 REFINERY\DRAFTING\FIGURE 1 TOPOGRAPHICAL SITE LOCATION MAP

KT OF O	Ethyl- benzene	(mg/Kg)	8260B	0	128	1.01	<0.050	<0.050	<0.050	2.5	18	8.9	1.4	<1.0	
AMIMINO	Toluene	(mg/Kg)	8260B	2	252	1.08	<0.050	<0.050	<0.050	<0.50	83	3.2	<1.0	<1.0	
	Benzene	(mg/Kg)	8260B		25.8	0.00100	<0.050	<0.050	<0.050	<0.50	26	13	<1.0	<1.0	
	Sample Depth	(feet)	cal Method	ction Level	- Industrial	hing DAF 1	11	10	-	5.5	11	4	10	5	
	Date Sampled		Analyti	NMOCD A	NMED SSL	L - GW Lead	2-Oct-08	7-Oct-08	7-Oct-08	6-Oct-08	3-Oct-08	6-Oct-08	3-Oct-08	6-Oct-08	
	Sample ID					NMED SS	TP-1	TP-33	TP-40	TP-48	TP-49	TP-53	TP-63	TP-75	

Sample ID	Date Sampled	Sample Depth	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Naphthaler
		(feet)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
	Analyt	ical Method	8260B	8260B	8260B	8260B	8260B
	NMOCD /	Action Level		5	0		NE
	NMED SSL	- Industrial	25.8	252	128	82.0	300
NMED S	SL - GW Lead	hing DAF 1	0.00100	1.08	1.01	0.103	0.0197
SB-1	17-Nov-08	20-21.5	<0.050	<0.050	<0.050	<0.10	<0.10
SB-4	1-Dec-08	15	<0.050	<0.050	<0.050	<0.10	<0.10
SB-6	2-Dec-08	18-19	<0.050	<0.050	<0.050	<0.10	<0.10
SB-8	1-Dec-08	15	<0.25	<0.25	0.76	6.7	<0.050
SB-10	2-Dec-08	11.5-12.5	<0.50	<0.50	22	54	10
SB-13	3-Dec-08	17-18	<0.10	<0.10	<0.10	1.3	0.40
SB-14	3-Dec-08	14-15	<2.5	<2.5	21	180	8.4
SB-17	3-Dec-08	7	<0.050	<0.050	<0.050	<0.10	<0.050
SB-20	4-Dec-08	13	<0.50	7.3	8.9	65	4.5
SB-21	5-Dec-08	12-14	7.1	12	7.5	40	1.9
SB-22	10-Dec-08	10-11	6.2	78	56	410	<10
SB-24	5-Dec-08	4-6	<0.25	0.56	1.4	7.6	1.2
SB-25	9-Dec-08	9-10	<0.50	<0.50	3.7	26	2.8
SB-28	8-Dec-08	11-12	3.8	<2.5	9.3	<5.0	7.8
SB-29	9-Dec-08	8-9	<1.0	<1.0	<1.0	44	11
SB-31	9-Dec-08	4-5	<0.050	<0.050	<0.050	<0.10	<0.10
SB-32	9-Dec-08	7.5-8	3.4	<0.50	4.1	29	3.2
SB-33	4-Dec-08	8-9	<0.050	<0.050	<0.050	<0.10	<0.10
SB-34	10-Dec-08	13-14	<0.050	<0.050	<0.050	<0.10	<0.10
SB-35	10-Dec-08	11-12	<0.25	<0.25	< 0.25	<0.50	<0.50
SB-36B	10-Dec-08	9-10	<0.25	<0.25	<0.25	<0.50	<0.50
SB-38	8-Dec-08	7-8	1.1	<1.0	9.4	56	2.7
SB-43	4-Dec-08	Ø	<0.050	<0.050	<0.050	<0.10	<0.10

05-02-2009 S:\Animas 2000/2009 Projects\Thrittway\810 Refinery\Soil Borings and MW Diagrams\SB-1 TW-1.bor

S:\Animas 2000\2009 Projects\Thriftway\810 Refinery\Soil Borings and MW Diagrams\SB-2 TW-2.bor

05-02-2009 S:\Animas 2000/2009 Projects\Thriftway\810 Refinery\Soil Borings and MW Diagrams\SB-5 TW-5.bor

ojects/Thriftway\810 Refinery\Soil Borings S:\Animas 2000\2009 Pr

Projects/Thriftway/810 Refinery/Soil Borings and MW Diagrams/SB-7 TW-7.bor S:\Animas 2000\2009

av/810 Ref. S:\Animas 2000\2009

	A	ES			LOG OF: SB-10/TW-10				
Anim	ias Env	vironme	ental Services, 11	<u></u>				(Page 1 of 1)	
	THF BLOOI	RIFTWAY 626 CF MFIELD,	REFINERY 5500 NEW MEXICO	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	Date Started: 12/2/08NorthingDate Completed: 12/2/08 (as TW-10)EastingHole Diameter: 7.25 in.SurveyDrilling Method: H.S.A.; CME-75LoggedSampling Method: 5' SPLIT-SPOONImage: Starter Starte			: 2065655.391 : 2672814.266 : Arrow Engineering : B. Watson	
Depth in Feet	Surf. Elev.	USCS	GRAPHIC	DESCR	IPTION	Blow Count (mdd)	Well: TV Elev.: 54	N-10 450.16 4"x4" steel stickup	
0	- 5448		SAND, silt/clay	prown, med. coarse, p and gravel, loose, dry	oorly sorted, trace (moist zone at 5')	0			
2	- 5446	SP				0		Grout	
4-	- 5444					0		-2" PVC Casing	
6	- 5442	SM	SAND, med. sti	prown, noted silty/clay ff, slightly moist, mode prown, coarse, loose, c	(gray and red bands), pratly sorted dry to slightly moist,	0	2	-Bentonite Plug	
8	- 5440	SP	clayey z	one at 9-10'		1			
10	- 5438					1.5 650			
12	- 5436	CL	Clay, gr wet, slig	ay, with sand, stiff, mo ht odor, loose, trace s	ist to saturated (at base) ilt/clay and gravel	728		- Sand Pack (10/20)	
14	- 5434	SP	Sand, g 13-14', i	ray, soft and wet, odor coarsens with depth	/sheen present at	14.6			
16						1.0			
	- 5432	SP	Sand, b odor	rown, with gravel, loos	e, wet, trace silt/clay, no	0.2			
18-						0			

ojects/Thriftway/810 Refinery/Soil Borings and MW Diagrams/SB-13 TW-13.boi mas 2000\2009 Pr

	А	ES		3		LOG OF: S	SB-14/TV	V-14		
Anim	nas Env	vironm	ental Ser	vices, LLC				((Page 1 of 1)	
	THRIFTWAY REFINERY 626 CR 5500 BLOOMFIELD, NEW MEXICO				Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/3/08 : 12/3/08 (as TW-14) : 7.25 in. : H.S.A.; CME-75 : 5' SPLIT-SPOON	Northing Easting (Survey B Logged B	Coord. Coord. Iy 3y	: 2065384.057 : 2672382.591 : Arrow Engineering : B. Watson	
Depth in Feet	Surf. Elev.	NSCS	GRAPHIC		DESCRIF	PTION	Blow Count (mdd)	Well: TV Elev.: 54	V-14 I54.24 4"x4" steel stickup	
0	- 5452 - 5450	ML		SILT, brow sorted	n, with sand, med. st	iff to soft, dry, poorly	0		Grout	
4- 	- 5448 - 5446	SM		SAND, bro and poorly	wn, with silt/clay, dry sorted, strange odor	, loose, fine grained at 4-5'	26.5		-2" PVC Casing Bentonite Plug	
-		ML		SILT, brow	n, med. stiff, dry, odd	or	45			
	- 5444	SM SP		SAND, bro SAND, bro	wn, fine grained, silt/ wn, med. coarse, loo	clay common, soft, dry ise, dry, poorly sorted	52			
-01 0-	- 5442	SM		SAND, bro and lamina	wn, fine grained, moo e visible, dry, med. s	derately sorted, silt/clay tiff	450			
	- 5440	SM		SAND, gra moist to dr	y to black, silt/clay pr y, strong odor	resent, loose, slightly	633		—Sand Pack (10/20) —2" PVC .010" Screen	
	- 5438 - 5436			SAND, gra becomes v approx. 18	y, coarse, loose, slig vet at 15.5', grades in	htly moist, strong odor, ito brownish color at	1050	_		
	- 5434	SP					1600			
20-	- 5432	MLSP	a mi na mi an mi na mi Lastricescosciences	SILT, with odor, lamir SAND, bro sorted	clay, brown, stiff, moi lated wn, coarse, wet, little	ist, trace sand, slight to no odor, poorly	30			
22-										

	А	ES	5	LOG OF: SI	B-15/T	W-15	Page 1 of 1)
Anim	THF BLOOI	RIFTWAY 626 CF MFIELD,	ental Services, LLC 7 REFINERY R 5500 NEW MEXICO	Date Started: 12/3/08Date Completed: 12/3/08 (as TW-15)Hole Diameter: 7.25 in.Drilling Method: H.S.A.; CME-75Sampling Method: 5' SPLIT-SPOON	Northin Easting Survey Logged	ng Coord. g Coord. r By d By	: 2065640.494 : 2672600.56 : Arrow Engineering : B. Watson
Depth in Feet	Surf. Elev.	USCS	GRAPHIC	DESCRIPTION	Blow Count (pmg)	Well: TW Elev.: 54	V-15 50.44 4"x4" steel stickup
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 5448 - 5446	SM	SAND, bri grained, n	own, with silt, med. stiff to soft, dry, fine noderately sorted	0		- Grout
4	- 5444	SP	SAND, bri poorly sor	own, with silt, fine to med. coarse, loose, dry ted	0		-2" PVC Casing
6 8	- 5442	ML	SILT, brov and white	wn, with sande, med. stiff, dry, clay stringers calcium? nodules	0		—Bentonite Plug
1111	- 5440	SM	SAND, br	own, med. coarse, loose, dry	0		
10 10 12	- 5438 - 5436	ML	Silt, as in zone at a	5-9', grades into green-brown contaminated oprox. 12'	0 350		— Sand Pack (10/20)
14		SP	SAND, gr with some	een-brown to dark gray, strong odor, coarse e silt, wet, loose	7		-2" PVC .010" Screen
16 18	- 5434 - 5432 - 5430	SP	SAND, br and below	own, coarse, with gravel (abundant at 18' /), loose, wet, trace silt	5		
	- 5430				0		

	А	FS		3		LOG OF:	SB-18	8/TW-18	
Anim	as En	vironme	ental Serv	vices. LLC					(Page 1 of 1)
	THF BLOO	RIFTWAY 626 CF MFIELD,	REFINERY 3 5500 NEW MEXI	co	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/3/08 : 12/3/08 (as TW-18) : 7.25 in. : H.S.A.; CME-75 : 5' SPLIT-SPOON	No Ea: Sui Lo	rthing Coord. sting Coord. rvey By gged By	: 2065587.733 : 2672386.951 : Arrow Engineering : B. Watson
Depth in Feet	Surf. Elev.	nscs	GRAPHIC		DESCRI	PTION	IIA Count dd)	Well: Elev.:	TW-18 5452.73 4"x4" steel stickup
2	- 5450 - 5448	SM		SAND, dk. poorly sorte visible	brown, with silt, mee ed, rooted, clay strin	d. stiff, slightly moist, gers and oxide stains	0		— Grout
4	- 5446						0		2" PVC Casing
6	- 5444			SAND, bro approx. 10	wn, med. coarse, loo ', poorly sorted	ose, dry, rooted to	0		-Bentonite Plug
8	- 5442						0		
10	- 5440	SP					0		
12	- 5438						0		— Sand Pack (10/20)
14	- 5436						0		2" PVC .010" Screen
16	- 5434	SM		SAND, gra poorly sort SAND, gre	y, wet, soft, silt/clay ed en-brown, coarse, w	present, strong odor, et, loose	125	50	
18	- 5432	SP		0.5-inch cla	ay stringers at 16' ar	d 18'	25	5	
20							2.	5	

S:\Animas 2000\2009 Projects\Thrittwav\810 Befinerv\Soil Borings and MW Diagrams\SB-

	А	FS		3	LOG OF: SB-19/TW-19					
Anim	nas Env	vironme	ental Serv	vices, LLC						(Page 1 of 1)
	THF	RIFTWAY 626 CF MFIELD,	REFINERY 3 5500 NEW MEXI	co	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/8/08 : 12/8/08 (as TW-19) : 7.25 in. : H.S.A.; CME-75 : 5' SPLIT-SPOON		Northin Easting Survey Logged	ig Coord. J Coord. By I By	: 2065379.256 : 2672171.849 : Arrow Engineering : B. Watson
Depth in Feet 0- 2- 4- 4- 10- 12- 112- 112- 112- 112- 112- 112-	- 5456 - 5452 - 5452 - 5452 - 5448 - 5448 - 5448 - 5448 - 5448 - 5448 - 5448 - 5448 - 5448 - 5448	SP SP ML SP ML SP	GRAPHC Image: State Stat	SAND, bro fine grained SAND, bro poorly sorte 2" thick silt 2" thick silt 2" thick silt 2" thick silt 2" thick silt SILT, brow moist SILT, brow moist SILT, gree stiff, slightl SAND, gre and gravel	Drilling Method Sampling Method DESCRII wm, with silt/clay, loo d, purplish stain spot wm, trace silt/clay, m ed ty layer at 9' ty layer at 10' ty layer at 10' ty layer at 10' ty layer at 10' ty n, with sand/clay, me visible wm, fine grained, with m, with sand, trace c nish brown to gray/bl y moist, odor like bul een-gray, loose, wet, , strong gas odor	 : H.S.A.; CME-75 : 5' SPLIT-SPOON PTION se, slightly moist to d s at 4-5' ed. coarse, loose, dry ed. stiff, slightly moist in silt, loose, dry lay, med. stiff, slightly lack, trace sand, med rnt rubber coarse, trace silt/clay	ry, /, t to	PID (ppm) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Well: T Elev.: 5	W-19 4458.49 4"x4" steel stickup Grout 2" PVC Casing Bentonite Plug - Sand Pack (10/20) - 2" PVC .010" Screen
24-	- 5432							125		

	А	ES		N.	LOG OF: SB-20/TW-20					
Anim	nas Env	vironme	ental Servi	ices. LLC						(Page 1 of 1)
	THF BLOOI	RIFTWAY 626 CF MFIELD,	REFINERY 3 5500 NEW MEXIC	O	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/4/08 : 12/4/08 (as TW-20) : 7.25 in. : H.S.A.; CME-75 : 5' SPLIT-SPOON	t E S	Northing Easting (Survey B Logged B	Coord. Coord. y 3y	: 2065199.76 : 2671970.837 : Arrow Engineering : B. Watson
Depth in Feet	Surf. Elev.	NSCS	GRAPHIC	CAND	DESCRIF	PTION	Blow Count	PID ppm)	Well: TElev.:	TW-20 5453.73 4"x4" steel stickup
2-	- 5450			SAND, bro slightly moi 0-0.5'), iron	wn, med. coarse, po ist at top to dry belov n oxides and rooting v	orly sorted, loose, v, trace gravel (at visible		0	家会来会来会来会	
4-	- 5448	SP						0	やかかないやかかかかか	— Grout
6	- 5446 - 5444			SAND, bro to loose, dr	wn, fine grained, silt/ ry, silt/clay layers visi	clay common, med. stiff ble at some points		0	いたかいたかいたかいたか	2" PVC Casing
1912-20100-20100-201001-201001-201001-201001-201001-201001-201001-201001-201001-201001-201001-201001-201001-201	- 5442	SM						0		-Bentonite Plug
	- 5440							0		
	- 5438	SM		SAND, dk. slightly moi	gray, with silt, fine g ist, strong odor	rained, med. stiff,		190		— Sand Pack (10/20)
009 Projectsvi nriniwayy	- 5436	SP		SAND, dk. loose, wet	gray, coarse, trace s	ilt/clay, trace gravel,		1560	_	
	- 5434	CL		CLAY, silty	/, green-brown, stiff,	dry	_	40		
6007-20-	- 5432	SP		SAND, bro	wn, coarse, trace silt	/clay, loose, wet		18		

C.) Animore 2000/2006 Deciented Thrittener/840 Definence/Seil Bezinene and MMV Directome/SB /

	А	ES		3	LOG OF: SB-22/TW-22				
Anim	ias Env	vironme	ental Serv	ices. LLC					(Page 1 of 1)
	THF BLOOI	RIFTWAY 626 CF MFIELD,	REFINERY 35500 NEW MEXIC	0	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/10/08 : 12/10/08 (as TW-22) : 7.25 in. : H.S.A.; CME-75 : 5' SPLIT-SPOON	Nc Ea Su Lo	orthing Coord. asting Coord. urvey By ogged By	: 2065613.726 : 2672123.867 : Arrow Engineering : B. Watson
Depth in Feet	Surf. Elev.	NSCS	GRAPHIC		DESCRI	PTION	Iq Blow Count qq)	Well: Elev. om)	TW-22 : 5450.19 4"x4" steel stickup
2-	- 5447			SILT, brow 2-3" thick s	n, sandy with clay, n and lenses at 1', 1.5	ned. stiff, slightly moist			
4-	- 5445 - 5443	ML					C		- 2" PVC Casing
6	- 5441	ML		SILT, black sand lens a	k, sandy, med. stiff, v at 8', noted odor	vith clay, slightly moist,	60	20	
	- 5439	SM		SAND, gray soft, dry	y, with silt/clay, v. fin	e grained, strong odor,	35	00	
10-	- 5437	ML		SILT, gray, interbedded SAND, gray	with sand, med. stif d black layers, strong y, with silt, fine grain	f, slightly moist, some g odor ed at top to med.	41	00	
12	- 5435			coarse at b poorly sorte	ase, loose, dry to we ed, with trace gravel	et (at 14'), strong odor,	13	150	- Sand Pack (10/20)
14	- 5433	SP					87	75	
16							5	0	
18	- 5431						3	0	
	- 5429			SAND. area	en-brown, loose, we	. coarse, poorly sorted		5	
20-		SP		no odor		, - sales, poony concu,			

S:\Animas 2000\2009

	А	ES		7	LOG OF: SB-25/TW-25				
Anim	ias Env	vironm	ental Ser	vices. LLC				(Pa	ge 1 of 1)
	THF BLOO	RIFTWAY 626 CF MFIELD,	REFINER 5500 NEW MEXI	r co	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/9/08 : 12/9/08 (as TW-25) : 7.25 in. : H.S.A.; CME-75 : 5' SPLIT-SPOON	Northing Easting C Survey B Logged E	Coord. : Coord. : y : By :	2065594.849 2671945.95 Arrow Engineering B. Watson
Depth in Feet	Surf. Elev.	NSCS	GRAPHIC		DESCRIF	PTION	Blow Count (mqq)	Well: TW-29 Elev.: 5448.	5 8 - 4"x4" steel stickup
	- 5446	ML		SILT, brow gravel, son	n, with sand and clay ne black spots	/, med. stiff, dry, trace	0		
2	- 5444	SM		SAND, bro dry SA 0-1.5', s	wn, fine-grained, with slight odor	n silt and clay, loose,	70		Grout
		ML							2" PVC Casing
	- 5442	SM		SA 1.5-2', st	strong odor ong odor		135		
6	- 5440	ML					180		Bentonite Plug
- 25 IW-25.DOL	- 5438	ML		SILT, gree odor	n-gray, dry, med. stif	f, trace sand, strong	375		
				SAND, gra gravel, loos	y-black, med. coarse se, dry, strong burnt	e, trace silt/clay and rubber odor	1650		
gs and MW	- 5436						1225		
	- 5434	SP		3-4" silt lay	er at 14', then becon	nes wet	1575		Sand Pack (10/20)
14-14-	- 5432						1750	-	2" PVC .010" Screen
				SAND, gre wet, slight	en-brown, trace silt/c odor and becomes m	lay and gravel, loose, nuch cleaner by 20'	250		
	- 5430	SP					200		
	- 5428								
20							30		

	А	ES		3		LOG OI	F: SB-	26/T	W-26	
Anim	nas Env	vironme	ental Serv	ices, LLC						(Page 1 of 1)
	THF BLOOI	RIFTWAY 626 CF MFIELD,	REFINERY 35500 NEW MEXI	, co	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/4/08 : 12/4/08 (as TW-26) : 7.25 in. : H.S.A.; CME-75 : 5' SPLIT-SPOON		Northin Easting Survey Logged	g Coord. Coord. By I By	: 2065375.9 : 2671723.832 : Arrow Engineering : B. Watson
Depth in Feet	Surf. Elev.	USCS	GRAPHIC		DESCRI	PTION	Blow Count	PID (ppm)	Well: T Elev.: {	W-26 5450.34 4"x4" steel stickup
2	- 5447 - 5445	SM		SAND, bro fine grained	wn, with silt/clay, me d and poorly sorted, a	d. stiff, slightly moist, some cobbles present		0	1235-4235-4235-4235-4235-4235-4235-	-Grout
4-	- 5443	SP		SAND, bro	wn, med. coarse poo	orly sorted, loose, dry		0	会でかってなっていた	2" PVC Casing
8- 8-	- 5441 - 5439 - 5437	ML		SILT, brow with layers	n, with sand and clay	y, med. stiff dry, rooted	t	0 0 0		-Bentonite Plug
12-	- 5435	SP		SAND, bro	wn, med. coarse, loc	ose, dry to slightly mois	st	10		— Sand Pack (10/20)
14-	- 5433	CL		SILT, gray, odor SAND, gra coarse (at	, med. stiff, slightly m ly, soft/loose, moist to depth), septic-like oc	o wet, med. coarse to		190 320	.	
18	- 5431 - 5429	SP						90		
20-								0.0		

S:Nanimas 2000/2009 Projects/Thriftwav/810 Refinerv/Soil Borings and MW Diagrams/SB-2

Anim	as Env	ironm	ental Ser	ices, LLC				(Page 1 of 1)
	THR	IFTWAY 626 CF //FIELD,	(REFINER) R 5500 NEW MEXI	CO Date Starte Date Comp Hole Diam Drilling Me Sampling N	ed : 12/9/08 oleted : 12/9/08 (as TW-32) eter : 7.25 in. thod : H.S.A.; CME-75 Method : 5' SPLIT-SPOON	Northir Easting Survey Logged	g Coord. 9 Coord. By 1 By	: 2065815.138 : 2671753.524 : Arrow Engineering : B. Watson
Depth in Feet	Surf. Elev.	USCS	GRAPHIC	DI	ESCRIPTION	Blow Count (mdd)	Well: TV Elev.: 54	V-32 441.61 4"x4" steel stickup
0	- 5438	SP		SAND, brown, with silt grained	/clay, soft, slightly moist, fine	0	1995-1995-1995-1995-1995-1995-1995-1995	Grout
2	- 5436	ML		SILT, brown, with sand (more clayey at base),	and clay, med. stiff to stiff dry to slightly moist	4		-2" PVC Casing
4	- 5434	SM		SAND, green-gray, wit odor silt/clay lens at 4.5'	h silt/clay, soft/loose, strong	400		- Bentonite Plug
6	- 5432	ML		SILT, gray, with clay, to strong odor	race sand, stiff, slightly moist,	850		
8	- 5430			SAND, gray, med. coa loose, slightly moist to silt lens at 9'	rse, strong odor, trace silt, wet (at 8.5')	725	.	-Sand Pack (10/20)
10	- 5428	SP				42		
12	- 5426					40		
14		SP		SAND, green-brown, tr common, slight odor	race silt/clay, loose, wet, gravel	10		

	Δ	FS				LOG OF:	SB-33	8/TW-33	3
Anim	as Env	vironme	ental Serv	Aces, LLC					(Page 1 of 1)
	THF	RIFTWAY 626 CF MFIELD,	REFINERY 5500 NEW MEXIO	co	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/4/08 : 12/4/08 (as TW-33) : 7.25 in. : H.S.A.; CME-75 : 5' SPLIT-SPOON	No Ea: Su Log	orthing Coord. sting Coord. rvey By gged By	: 2065587.123 : 2671539.407 : Arrow Engineering : B. Watson
Depth in Feet	Surf. Elev.	NSCS	GRAPHIC		DESCRI	PTION	IIA dd) dd)	D m)	: TW-33 :: 5445.85 4"x4" steel stickup
0	- 5443			SAND, bro cobbes, mo	wn, med. coarse, po pist at 0-1', then loos	oorly sorted, with se, dry	0		
2	- 5441	SP					0		- Grout
4	- 5439	ML		SILT, brow	n, med. stiff, with cla	ay and sand, dry	0		-Bentonite Plug
6	- 5437			SAND, blac coarse, dry	ck to gray, with silt/c to slightly moist, pc	lay, med. coarse to orly sorted, loose	32	2	
8	- 5435	SP		becomes w	vet by 13'		7!	5	
10	- 5433						88	30	- Sand Pack (10/20)
12	- 5431						40	00	2" PVC .010" Screen
- 14 - -	- 5429	ML		SILT, gray, grained wit	with sand/clay, moi h layers visible	st, med. stiff, odor, fine	27	70	
16		SP		SAND, grag sorted, stro	y, med. coarse to co ng odor and sheen	oarse, wet, loose, poorly on water	12	20	
	- 5427	SP		SAND, bro	wn, coarse, loose, w	vet, no odor		.6	

	A	ES		7		LOG OF:	SB-	37/T	W-37	7
Anim	ias Env	ironm	ental Serv	ices, LLC						(Page 1 of 1)
	THF BLOOI	RIFTWAY 626 CF MFIELD,	REFINERY 3 5500 NEW MEXIC	0	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/5/08 : 12/5/08 (as TW-37) : 7.25 in. : H.S.A.; CME-75 : 5' SPLIT-SPOON		Northin Easting Survey Logged	g Coord. Coord. By By	: 2065810.908 : 2671313.666 : Arrow Engineering : B. Watson
							ıt		Well:	TW-37
Depth in Feet	Surf. Elev.	NSCS	GRAPHIC		DESCRI	PTION	Blow Cour	PID (ppm)	Elev.	: 5439.59 4"x4" steel stickup
0	- 5437	0.0		SAND, brow with silt/clay	wn, med. coarse, pc y	oorly sorted, loose, dry,		0		
2	- 5435	58						0		— Grout
4		SM		SAND, brov	wn, med. stiff to soft	t, fine grained, silty, dry				-2" PVC Casing
	- 5433	SP		SA 0-3'				0 0		-Bentonite Plug
	- 5431			SAND, brov	wn, coarse, poorly s	orted, loose, dry				
8	- 5429	SP						0		
-								0.6		
10 -	- 5427			SAND, gree wet, some	en-gray, med. coars odor	e, poorly sorted, loose,		20.5		2" PVC .010" Screen
12	- 5425	SP						16		
- - - 14-		SP		SAND, gree odor	en-brown, loose, we	t, poorly sorted, no				
-	- 5423							7.5		
16-										

	A	LU)	X					(Page 1 of 1)
nim	as Env THF BLOOM	RIFTWAY 626 CF MFIELD,	ental Ser REFINER 3 5500 NEW MEXI	vices. LLC (CO	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/8/08 : 12/8/08 (as TW-40) : 7.25 in. : H.S.A.; CME-75 : 5' SPLIT-SPOON	Nortl East Surv Logg	hing Coord. ing Coord. ey By jed By	: 2066027.888 : 2671535.718 : Arrow Engineering : B. Watson
epth in eet	Surf. Elev.	NSCS	GRAPHIC		DESCR	PTION	Blow Count mdd)	Well: 1 Elev.: :	W-40 5437.5 4"x4" steel stickup
0	- 5434	SP		SAND (fill), fine grained	brown, with silt, tra d, poorly sorted, slig	ce clay and gravel, soft, htly moist	0		Grout
4	- 5432 - 5430	SP		SAND, bro silt/clay, mo	wn, loose, dry to sli ed. coarse, poorly s	ghtly moist, trace orted			-2" PVC Casing Bentonite Plug
6	- 5428	SM		SAND, gre with silt/cla black layer	en-gray, loose, mois y, strong odor at 9' is silty	st to wet (at 9'), coarse,	650		
8 1 1 1 1 1 1 1 1	- 5426			SAND, gre	en-gray, gravel com	nmon, coarse, loose,	775		— Sand Pack (10/20)
10	- 5424	SP		wet, strong grades to g	odor green-brown by 12.5	5	25		2" PVC .010" Scree
14	- 5422			CANE			25		
-	- 5420	SP		SAND, gre soft, wet, tr	en-brown, with silt, ace clay	tine grained, med. stiff to	14		

S.\Animas 2000/2009 Projects\Thriftway\810 Befinery\Soil Borings and MW Diagrams\S

Ē

	А	ES		3	LOG OF: SB-43/TW-43				
Anin	nas Env	vironm	ental Serv	vices, LLC					(Page 1 of 1)
	THF BLOOI	RIFTWAY 626 CF MFIELD,	REFINERY 35500 NEW MEXI	, co	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/4/08 : 12/4/08 (as TW-43) : 7.25 in. : H.S.A.; CME-75 : 5' SPLIT-SPOON	Northin Easting Survey Logged	g Coord. Coord. By By	: 2065814.165 : 2671122.211 : Arrow Engineering : B. Watson
Depth in Feet	Surf. Elev.	NSCS	GRAPHIC		DESCRI	PTION	Blow Oornt (ppm)	Well: T Elev.: 5	W-43 5440.42 4"x4" steel stickup
0-	- 5438	SM		SAND, bro slightly moi	wn, med. coarse, po ist, with cobbles	orly sorted, loose,	0	ないというとう	
2-	- 5436	SP		SILT, brow	n, with sand, stiff, dr wn, coarse, poorly s	y orted, loose, dry	0	したというたいですとい	- Grout
4-	- 5434	SP					0		-Bentonite Plug
	- 5432	ML		SILT, brow nodules, dr	n, with clay, trace sa y, stiff	and, white calcium?	0		2" PVC Casing
MW Diagrams/SB-43	- 5430	SP		SAND, bro base)	wn, poorly sorted, lo	ose, dry (to moist at	1.4		
Borings and	- 5428						0		— Sand Pack (10/20)
hriftway/810 Hetinery/so	- 5426	QP		SAND, gre sorted, loos	en-brown, coarse, si se, wet at 12'	lt/clay present, poorly	0		2" PVC .010" Screen
- 2000/2009 Projects/1	- 5424	0					0		
09 S:\Animas	- 5422	ML		SILT, sand stiff, fine gr	y, blue-gray (glaucor ained, dry	nitic?), trace clay, med.	0		
02-50									

	A	ES	5	1. Press	LOG OF:	SB-44/TW	(Page 1 of 1)
Anim	THF BLOO	AIFTWAY 626 CF MFIELD,	REFINERY 7 S500 NEW MEXICO	Date Started Date Completed Hole Diameter Drilling Method Sampling Method	: 12/4/08 : 12/4/08 (as TW-44) : 7.25 in. : H.S.A.; CME-75 : 5' SPLIT-SPOON	Northing C Easting Cc Survey By Logged By	Coord. : 2065615.516 bord. : 2671312.306 : Arrow Engineering / : B. Watson
Depth in Feet	Surf. Elev.	USCS	GRAPHIC	DESCRI	PTION	Blow Count (mdd)	Well: TW-44 Elev.: 5444.08
0	- 5441	SM	SAND, bro moist	own, with silt, fine gra	ined, loose, slightly	0	
2	- 5439	SP	SAND, bro	own, med. coarse, po	oorly sorted, loose, dry	0	State of the state
4	- 5437	ML	SILT, brov	vn, with sand, trace o	lay, med. stiff, dry	0	2" PVC Casing
6 6 8 8	- 5435	SP	SAND, bro	own, med. coarse, po	orly sorted, loose, dry	0	-Bentonite Plug
10	0100	ML	SILT, brov nodules	vn, laminated, stiff, d	ry, white calcium?	0	
	- 5431	SM	SAND, gre	een-brown, silty, fine	grained, med. stiff to	350	
12	- 5429	SP	SAND, bro slightly mo odor	own, med. coarse to bist, trace greenish-b	coarse, loose, dry to rown silt/clay, strong	150	
14	- 5427	SP	SAND, gra silt/clay, st	ay-black, slightly mois trong odor	st to wet (at 14'), trace	750	■ Sand Pack (10/20)
16	- 5425		SAND, gre clay interb	een-brown, med. coa edded at 17', 18' and	rse, with green-brown 19.5', slight odor	65	
18	- 5423	SP				3.5	

Monitor M	Vell No:	TW-1			624 F (Comanche Farmington	NM 87401
	Ten 110.		_		Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	: Thriftway #	810 Refinery			Proje	ct No.: AES 030203	
Location	: Bloomfield,	NM		_	-	Date: Dec 15,08	_
Project	: Semi-Annu	al Sampling		_	Arriva	Time: 100	-
Sampling	Technician:	NW/DW			Air	Temp: <u>22</u> °	_
Purge	/ No Purge:	NP		T. VlataT	.O.C. Ele	ev. (ff): 	×.
Initia	IDTW (ff)	21 95	Time		ven Dep	(III): <u>30 a 0</u> (taken at initial gaugin	n of all wells)
Confirm	n D.T.W. (ft):	27.95	Time:			(taken prior to purging	well)
Fina	I D.T.W. (ft):		Time:			(taken after sample co	llection)
		Water Quality	Paramet	ers - Red	corded	During Well Purging]
	Тетр	Conductivity	DO	1	ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observatior
1115	14.104	2.712	Ap 1.51	6.24	113.8	0.25	
1171							-samidas
14	╋────		l				Couleet
	<u> </u>			ļ			
	1			1			
	<u>+-</u>		·	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
				<u> </u>		l 	
	L						
							1
,,							
							<u>+</u>
	<u> </u>						· · · ·
	<u> </u>			ļ		· · ·	
Analvt	ical Param	eters (include	analysis	method	and nu	mber and type of sa	mple containers)
	hy 8260 (2 4						
	by 0200 (3 X					<u> </u>	
SRU/DRO	Dy 8015 (3 x	40mL VOA w/ H				N/ 6010 / 5001 1	
Issolved L	_ead by 6010	250mL poly w/	HNU ₃ filter	rea) Iot	al Lead t	by 6010 (500mL poly w/	MNU ₃)
	D	isposal of Purg	ed Water:				
Collec	ted Samples	s Stored on Ice	in Cooler:				
	Chain of Cu	istody Record (Completer				
			oompiete.		<u>. </u>		
		Analytical L	aboratory:	Hall Envi	ronmenta	ai Analysis Lab, Albuqu	erque, NM
Equipment	t Used Durin	ng Sampling:		Keck Wa	ter Level	, YSI Water Quality Me	ter,
			_	and New	Disposa	ble Bailer	
lotoc/Com	nments						
ioles/c.cm							
ioles/con						· · · · ·	·
lotes/con							
NOLES/COIL		<u></u>					

4. 4. 5. 5. 5. 4. 19. 5. 5.

P B

1997 - C

. . . .

7787

Monitor Well No: TW-2					624 E. Comanche, Earmington NIM 97404					
					Tel. (50	5) 564-2281 Fax (505)	324-2022			
Site:	Thriftway #	810 Refinery		-	Proje	ct No.: AES 030203				
Location:	Bloomfield,	NM	· · · · · · · · · · · · · · · · · · ·	-		Date: 12-15-08	- -			
Project:	Semi-Annua	al Sampling		-	Arrival	Time: 1255	-			
Purge /	No Purge:	NW/DW NP		- т	.O.C. Ele	remp. <u>30° r</u>	-			
Well Dia	ameter (in):	2"		- Total \	Nell Dep	th (ft): 33,11	-			
Initial	D.T.W. (ft):	28.9	Time:	1300		(taken at initial gauging	of all wells)			
Confirm	D.T.W. (ft):	28.91	Time:			(taken prior to purging	well) Vestion			
Final	D. I . VV. (TC):		Time:			(taken after sample co				
		Water Quality	Paramete	ers - Re	corded	During Well Purging	J			
	Temp Conductivity DO			ORP	PURGED VOLUME					
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations			
1308	13.08	A.421	3.60	6.63	125.5	0.25				
1314						1	Samples collected			
				1						
							<u> </u>			
							·			
						· , · · · · · · · · · · · · · · · · · ·				

Analytic	al Parame	tors (include	analysis	method	and nu	mber and type of sa	mple containers)			
ull VOCs b	y 8260 (3 x	40mL VOA w/ H								
<u>SRO/DRO b</u>	<u>y 8015 (3 x</u>	40mL VOA w/ H				C040 (500 1 1 1				
JISSOIVED Le	ead by 6010	(250mL poly W/		ed) 101	al Lead t	by 6010 (500mL poly w/	HNO ₃)			
	D	isposal of Purg	ed Water:	, <u></u>		· · · · · · · · · · · · · · · · · · ·				
	ed Samples	Stored on Ice	in Cooler:	·			- <u>-</u>			
Collect		stody Record (Complete:							
Collect	Chain of Cu		boratory:	Hall Env	ronment	al Analysis Lab, Albuqu	erque, NM			
Collect	Chain of Cu	Analytical La		14 1 14	ter Level	, YSI Water Quality Me	er			
Collect	Chain of Cu Used Durin	Analytical La		Keck wa			,			
Collect Guipment	Chain of Cu Used Durin	Analytical Lang Sampling:		and New	Disposa	ble Bailer				
Collect	Chain of Cu Used Durin	Analytical Lang Sampling:		and New	Disposa	ble Bailer				
Collect quipment lotes/Com	Chain of Cu Used Durin ments	Analytical Lang Sampling:		and New	Disposa	ble Bailer				
Collect	Chain of Cu Used Durin ments	Analytical Lang Sampling:		and New	Disposa	ble Bailer				
Collect	Chain of Cu Used Durin ments	Analytical La		and New	Disposa	ble Bailer	· · · · · · · · · · · · · · · · · · ·			
Collect	Chain of Cu Used Durin ments	Analytical La		and New	Disposa	ble Bailer				

Mau 14 - 14		T\A/ 2			604 5	Comenche Ferrierte	
Monitor W	ell NO:	1 44-9	-		024 E.	Comanche, Farmington	1917 07401 324-2022
Site	Thriftway #	810 Refinery			Proje	ct No · AES 030203	524-2022
Location:	Bloomfield,	NM		-		Date: Dec 15.05	-
Project:	Semi-Annua	al Sampling		-	Arriva	Time: 1328	-
Sampling	Technician:				Air	Temp:	-
Purge	/ No Purge:	<u>NP</u>		T Total V	.O.C. Ele	ev. (ft): .th. (ft): 3 -2-70-5	-
Initial	D.T.W. (ft):	77.98	Time:		мен рер	(taken at initial gauging	of all wells)
Confirm	D.T.W. (ft):	29,99	Time:	····-		(taken prior to purging	well)
Final	D.T.W. (ft):		Time:			(taken after sample co	llection)
	1	Water Quality	Paramete	ers - Re	corded	During Well Purging	,
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations
1337	14.44	4.249	2.01	6.63	-1.6	0.25	
1337						1	Samples colle
							p
							· · · · · · · · · · · · · · · ·
		·		<u> </u>		······································	· · · · · · · · · · · · · · · · · · ·
			-				
Analyti	cal Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)
				method			
	by 8260 (3 x	40mL VOA w/ H					
GRO/DRO	by 8015 (3 x	40mL VOA w/ F				w 6010 (500ml poly w)	
	D	isposal of Purg	ed Water:				
Collect	ted Samples	Stored on Ice	in Cooler:			<u></u>	· · · ·
	Chain of Cu	stody Record	Complete:				
		Analytical La	aboratory:	Hall Envi	ronment	al Analysis Lab, Albuqu	erque, NM
Equipment	Used Durin	g Sampling:		Keck Wa	ter Leve	I, YSI Water Quality Met	ter,
				and New	Disposa	ble Bailer	
lotes/Com	ments			· · · ·	· · · ·		
10100/0011							· · · · · · · · · · · · · · · · · · ·
	• • • •	······································					

 $\mathbb{Z}_{\mathbb{Z}}$

 $\frac{r_{0}}{r_{0}} \stackrel{\text{def}}{\longrightarrow} \frac{r_{0}}{r_{0}} \stackrel{\text{def}}{\longrightarrow} r_{0}$

 $= \frac{\pi}{2} \frac{T}{T} \frac{T}{T}$

 $= - \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n}$

Monitor Well No: TW-4				624 ⊑ 4	Comanche Farminaton	NM 87401	
					Tel (50	5) 564-2281 Fax (505)	324-2022
Site: Thr	iftway #8	310 Refinery			Proie	ct No.: AES 030203	
Location: Blog	omfield,	NM		-	•	Date: Dec 16,08	-
Project: Ser	al Sampling		_	Arrival	Time: 102-7		
Sampling Tech	nician:	NW/TW			Air	Temp: <u>35 °</u>	-
Well Diame	fer (in):	2"		Total V	.U.C. Elé Nell Den	ev. (π): th (ft): <u>20 ο 5</u>	
Initial D.T.	.W. (ft):	19.16	Time:	1029	Ten Dep	(taken at initial gauging	_ g of all wells)
Confirm D.T.	.W. (ft):		Time:			(taken prior to purging	well)
Final D.T.	.W. (ft):		Time:	<u> </u>		(taken after sample co	llection)
	<u>ا</u>	Nater Quality	Paramete	ers - Reo	corded	During Well Purging	1
T	emp	Conductivity	DO		ORP	PURGED VOLUME	
Time (d	leg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations
1036 13	.40	7.258	4.69	6.67	170.6	0.25	
1042 -			· · · · · · · · · · · ·			1	sandes wille
	-						0
				[
				 -		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	······				
			· ···	· · · · ·			
			·			· · · · · · · · · · · · · · · · · · ·	
							·····
				L			
	_		···				
Analytical	Parame	ters (include	analysis	method	and nu	mber and type of sa	umple containers)
ull VOCs by 82	260 (3 x	40mL VOA w/ H					
	015 (3 x						
issolved Lead	by 6010	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead t	ov 6010 (500mL poly w/	HNO₃)
	D	isposal of Purg	ed Water:				- 37
-	Samples	Stored on Ice	in Cooler:	<u> </u>	<u> </u>		· · · · · · · · · · · · · · · · · · ·
Collected S		stody Record (Complete				
Collected S	in of Cu	Stody Record	borotonu		ronmont	Analysia Lab Alburg	
Collected S Cha	in of Cu	Applytically	aboratory.		ronmenta	al Analysis Lab, Albuqu	
Collected S Cha	in of Cu	Analytical La		LOOK MAD	iter Level	, YSI Water Quality Me	ter.
Collected S Cha quipment Use	in of Cu d Durin	Analytical La g Sampling:	·····	Neck Wa	<u> </u>	· · · · ·	
Collected S Cha quipment Use	in of Cu d Durin	Analytical La g Sampling:		and New	Disposa	ble Bailer	
Collected S Cha quipment Use otes/Commen	in of Cu d Durin ats	Analytical La g Sampling:	· · · · · · · · · · · · · · · · · · ·	and New	Disposa	ble Bailer	
Collected S Cha quipment Use <u>otes/Commen</u>	in of Cu ed Durin <u>nts</u>	Analytical La g Sampling: _		and New	Disposa	ble Bailer	
Collected S Cha quipment Use otes/Commen	in of Cu ed Durin <u>ats</u>	Analytical La g Sampling:		and New	Disposa	ble Bailer	
Collected S Cha quipment Use otes/Commen	in of Cu ed Durin nts	Analytical La g Sampling:		and New	Disposa	ble Bailer	

MONITO	RING WE	LL SAMPLIN	G RECO	RD	Anim	as Environmenta	I Services
Monitor W	/ell No:	TW-5		×.	624 E. (Comanche, Farmington	NM 87401
					Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	Thriftway #8	810 Refinery	2		Proje	ct No.: AES 030203	
Location	Bloomfield,	NM		_		Date: 12-15-08	-
Project	Semi-Annua	al Sampling		_	Arrival	Time: <u>1405</u>	-
Sampling	Technician:	NW/DW				1emp: <u>30° F</u>	-
Woll Di	ameter (in):	2"		- Total \	Nell'Den	$\frac{1}{10}$	
Initia	D.T.W. (ft):	25 64	Time:	140	l bep	(taken at initial gauging	ı of all wells)
Confirm	D.T.W. (ft):		Time:		<u>}</u>	(taken prior to purging	well)
Final	D.T.W. (ft):	<u></u>	Time:			(taken after sample co	llection)
		Water Quality	Paramet	ers - Red	corded	During Well Purging]
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observatio
1420	1425	3.704	3.26	656	16.0	0.25	
147.6				<u> </u>		1	Sander Call
							Sampies collec
				ļ			
							· · · · · · · · · · · · · · · · · · ·
-		·				······	
a a u							
				1			
				<u> </u>	÷		· · · · · · · · · · · · · · · · · · ·
······································	ļ			<u> </u>	ļ		
Analyti	cal Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers
	by 8260 (3 v	40ml \/OA w/ H					
	by 0015 /2						
	and by 6010	40INL VOA W/ F				by 6010 (500ml poly w/	
	.cau by 6010						
	D	isposal of Purg	ed Water:			· · · · · · · · · · · · · · · · · · ·	
Collec	ted Samples	s Stored on Ice	in Cooler:				
	Chain of Cu	istody Record (Complete [.]				
			- hanster			al Analysia Lat Alt	NIN 4
			aboratory:			ai Analysis Lab, Albuqu	
Equipment	Used Durin	ig Sampling:		Keck Wa	ter Leve	I, YSI Water Quality Me	ter,
				and New	Disposa	ble Bailer	· · · · · · · · · · · · · · · · · · ·
Notes/Com	nments						
					•		

12-77-7

Sec. 2

1 - 1 - 1 - 1 - 1

Monitor Well No: TW-6					624 E. Comprehe Eermington NM 97404					
	m 140.			624 E. Comanche, Farmington NM 8/401						
Site:	Thriftway #	810 Refinery			Proie	ct No.: AES 030203				
Location:	Bloomfield,	NM		-		Date: Dec 15.08	-			
Project:	Semi-Annu	al Sampling		-	Arrival	Time: 1533	_			
Sampling T	echnician:	NW/DW		-	Air	Temp: <u>67 32°</u>	-			
Purge /	No Purge:	NP		- <u> </u>	O.C. Ele	ev. (ft):	-			
Well Dia	meter (in):	2	Timo	Iotal V	Vell Dep	th (ff): <u>33.10</u>	a of oll walls)			
Confirm	D.T.W. (II): D.T.W. (ff):	24.10	Time:	1540	<u> </u>	(taken at initial gauging (taken prior to purging	j of all wells) well)			
Final	D.T.W. (ft):	<u>A</u>	Time:			(taken after sample co	llection)			
		Water Quality	Paramete	ers - Rec	corded	During Well Purging]			
	Temp	Conductivity	DO		ORP	PURGED VOLUME				
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations			
1543	14.50	4.719	0.99	6.50	9.0	0.25				
1548						1	Servisles Coller			
						· · · · · · · · · · · · · · · · · · ·				
			<u> </u>	·						
	<u></u>									
						·				
Analytia		tara (includa	analysia	mothod	and nu	where and two of a	() mple containers)			
							imple containers)			
ull VOCs by	y 8260 (3 x	40mL VOA w/ H								
RO/DRO b	y 8015 (3 x	40mL VOA w/ H	ICI)				······································			
issolved Le	ad by 6010	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead t	by 6010 (500mL poly w/	HNO ₃)			
	D	isposal of Purg	ed Water:							
Collecte	ed Samples	Stored on Ice	in Cooler:							
, c	Chain of Cu	stody Record	Complete:							
		Analytical L	aboratory:	Hall Envi	ronment	al Analysis Lab, Albuqu	erque, NM			
quipment	Used Durin	g Sampling:		Keck Wa	ter Leve	, YSI Water Quality Me	ter,			
				and New	Disposa	ble Bailer				
- 1 10										
otes/Comr	nents	<u> </u>								

MONITC	RING WE	LL SAMPLIN	G RECO	RD	Anim	as Environmenta	I Services
Monitor W	/ell No:	TW-7		ţ(624 E. (Comanche, Farmington	NM 87401
		· · · · · · · · · · · · · · · · · · ·	-		Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	: Thriftway #	810 Refinery			Proje	ct No.: AES 030203	_
Location	Bloomfield,	NM		_		Date: $Dec 15, 08$	_
Project Sompling	Semi-Annua	Al Sampling		-	Arriva	Time: <u>14 44</u>	-
Samping Purge	/ No Purge:	NP		- т	O.C. Fle	remp. <u>_3/</u>	-
Well Di	iameter (in):	2"		Total V	Vell Dep	th (ft): 28.08	
Initia	I D.T.W. (ft):	22.25	Time:	144	8	(taken at initial gauging	g of all wells)
Confirm	D.T.W. (ft):	27.25	Time:	145	5	(taken prior to purging	well)
Fina	I D.T.W. (ft):		Time:			_(taken after sample co	llection)
		Water Quality	Paramete	ers - Red	corded	During Well Purging	1
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observatior
1458	14.88	5.302	0.82	6.47	0.8	0.25	
1503						1	Sarpers
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
- 1 0						· · · · · · · · · · · · · · · · · · ·	
						· · · · · · · · · · · · · · · · · · ·	
							,
<u> </u>							
Analyti	ical Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)
ull VOCs	by 8260 (3 x	40mL VOA w/ H	CI)			· · · · · · · · · · · · · · · · · · ·	
GRO/DRO	by 8015 (3 x	40mL VOA w/ H	ICI)				
Dissolved L	ead by 6010.	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead t	y 6010 (500mL poly w/	HNO ₃)
	D	isposal of Purg	ed Water:				
Collec	ted Samples	Stored on Ice	in Cooler [.]				
201100	Chain of Cu	etody Pocord (Complete:				
			aboratory:		ronmenta	ai Analysis Lad, Alduque	
quipment	t Used Durin	g Sampling:		Keck Wa	ter Level	, YSI Water Quality Mel	ler,
				and New	Disposa	ble Bailer	
lotes/Com	nments						
					·		

1. M.

1 . 2 . A. L

 $\sum_{n=1}^{n} \sum_{i=1}^{n-1} \sum_$

- 4 - 7 - 7 - 7

Monitor Well No: TW-8					624 E Comanaba Earmington NM 97404					
		-		Tel. (50	5) 564-2281 Fax (505) :	324-2022				
Site:	810 Refinery			Proje	ct No.: AES 030203					
Location:	Bloomfield,	NM		-		Date: Dec 16,08	-			
Project:	Semi-Annua	al Sampling		-	Arrival	Time: <u>1431</u>	-			
Sampling Purge	echnician:	<u>NW/DW</u>		- т		1emp: <u>33</u>				
Well Dia	ameter (in):	2"		- , Total \	Nell Dep	th (ft): 27.6				
Initial	D.T.W. (ft):	19.76	Time:	1433		(taken at initial gauging	of all wells)			
Confirm	D.T.W. (ft):		Time:			(taken prior to purging	well)			
Final	D.1.W. (π):		l ime:			(taken after sample co	lection)			
<u> </u>		Water Quality	Paramete	ers - Ree	corded	During Well Purging	ļ			
:	Temp Conductivity DO			ORP	PURGED VOLUME					
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations			
1233941	12.78	5.575	0.51	6.42	-258.2	0,5	· ·			
1446						0.15	samples collect			
· · · r							4			
						· ·····				
			·							
						· · · · · · · · · · · · · · · · · · ·				
Analytic	cal Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)			
ull VOCs b	y 8260 (3 x	40mL VOA w/ F	CI)							
RO/DRO	ov 8015 (3 x	40mL VOA w/ h				·				
issolved Le	ead by 6010) (250mL poly w/	HNO ₃ filter	ed) Tot	al Lead b	y 6010 (500mL poly w/	HNO ₃)			
	D	isposal of Purç	jed Water:							
Collect	ed Samples	s Stored on Ice	in Cooler:							
	Chain of Cu	ustodv Record	Complete:							
			aboratory	Hall Envi	ronment	al Analysis Lab. Albuqu	erque. NM			
		a Sampling		Keck Wa		YSI Water Quality Ma	or			
auinmont	LICON Datas	.a camhuna.		and Not		ble Bailer				
quipment	Used Durin			and new	Disposa					
quipment	Used Durir	hore -la	~ ~ 1 A	1	mand.	14				
quipment	used Durir ments <u>S</u>	trang odor	<u>- no</u>	free.	produ	et				
quipment lotes/Com	ments S	trang order za order	<u>nic</u> m	free	produe In Se	rt				
quipment	ments S	trong order za oragi	<u>~~no</u> mic m	free aternal	pro du	rt	·			
Monitor W	/ell No:	TW-9			624 E. (Comanche, Farmingtor	NM 87401			
---------------------------------------	----------------	-----------------	-------------------------	-----------	-----------	--------------------------	---------------------------------------			
			-		Tel. (50	5) 564-2281 Fax (505)	324-2022			
Site	: Thriftway #	810 Refinery	1. 1.		Próje	ct No.: AES 030203				
Location	: Bloomfield,	NM		_		Date: 12-16-08	_			
Project	: Semi-Annu	al Sampling			Arrival	Time: 126	_			
Sampling	lechnician:	NW/DW				Temp: <u>36°r</u>	_ ·			
Well D	iameter (in):	2"		- Total V	Veli Dep	th (ft):	nç Ku			
Initia	I D.T.W. (ft):	12,20	Time:	- 112	8	(taken at initial gaugin	g of all wells)			
Confirm	n D.T.W. (ft):		Time:			(taken prior to purging	well)			
Fina	I D.T.W. (ft):		Time:			(taken after sample co	ollection)			
		Water Quality	Paramet	ers - Rec	orded	During Well Purging	9			
	Temp	Conductivity	DO		ORP	PURGED VOLUME				
Time	(deg C)	(µS) (mS)	(mg/L)	pН	(mV)	(see reverse for calc.)	Notes/Observation			
1134	14.53	3.473	2.27	6,90	15,6	0.25				
1139							Samples Called			
<u>113</u> (⊢P	Contres Contect			
	<u> </u>									
<u> </u>				ļ						
· · · · · · · · · · · · · · · · · · ·										
	<u> </u>									
			-				· · · · · · · · · · · · · · · · · · ·			
Analyt	ical Parame	eters (include	analysis	method	and nu	mber and type of sa	ample containers)			
	by 8260 (3 x	40mL VOA w/ H	iCl)							
GRO/DRO	by 8015 (3 x	40ml VOA w/ H								
Dissolved L	_ead by 6010	(250mL poly w/	HNO ₃ filter	red) Tota	al Lead b	y 6010 (500mL poly w	/ HNO ₃)			
		<u> </u>		, 		<u> </u>				
	U	isposal of Purg	jed water:		•					
Collec	ted Samples	s Stored on Ice	in Cooler:		·=					
	Chain of Cu	stody Record	Complete:							
		Analytical La	aboratory:	Hall Envi	ronmenta	al Analysis Lab, Albuqu	erque, NM			
Equipment	t Used Durin	g Sampling:		Keck Wa	ter Level	, YSI Water Quality Me	ter,			
		- • •		and New	Disposa	ble Bailer				
	monte		<u> </u>				· · · · · · · · · · · · · · · · · · ·			
lotes/Ca-							<u></u>			
lotes/Con										
lotes/Con							· · · · · · · · · · · · · · · · · · ·			
lotes/Con										

•

* .

in a g

ļ

1.62

Monitor Wol		TW-10			624 = 4	Comancha Earmington	NM 87401				
HOURDE AAGE					024 E. Comanche, Farmington NM 87401 Tel. (505) 564-2281 Fax (505) 324-2022						
Site: T	hriftway #8	310 Refinery	· · · · · · · · · · · · · · · · · · ·		Proje	ct No.: AES 030203					
Location: B	lloomfield,	NM		-	-	Date: Dec 16,08	-				
Project: S	emi-Annua	al Sampling		-	Arrival	Time: 1457	-				
Sampling Te	chnician:	NW/DW			Air	Temp: <u>33°</u>	-				
Purge / r	vo Purge:	<u>NP</u> 2"		.) Totol \	.U.C. Ele Noll Don	eV. (ft): +h. (ft):					
Initial D	.T.W. (ft):	1740	Time:	- 146r	l Men Deb	(taken at initial gauging	n of all wells)				
Confirm D	.T.W. (ft):		Time:		L	(taken prior to purging	well)				
Final D	.T.W. (ft):		Time:			(taken after sample co	llection)				
	<u> </u>	Nater Quality	Paramete	ers - Red	corded	During Well Purging					
	Temp	Conductivity	DO		ORP	PURGED VOLUME					
Time	(deg C)	(µS) (mS)	(mg/L)	pН	(mV)	(see reverse for calc.)	Notes/Observations				
1501 1	1.97	3.876	0.98	6.49	-149 2	0.5					
1512						N15	Can de Collected				
						0.10	savignes cruchas				
					·						
				-							
							<u></u>				
Analytica	al Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)				
ull VOCs by	8260 (3 x -	40mL VOA w/ H	CI)								
GRO/DRO by	8015 (3 x	40mL VOA w/ H	ICI)								
issolved Lea	ad by 6010	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead I	by 6010 (500mL poly w/	HNO ₃)				
	D	isposal of Purg	ed Water:								
Collected	d Samples	Stored on Ice	in Cooler:								
C	hain of Cu	stody Record	Complete:								
		Analytical L	borstony		ropmont	at Apolysis Lob Albuqu					
			aboratory:			ai Analysis Lab, Albuqui					
quipment U	sed Durin	g Sampling:		Keck Wa	iter Leve	, YSI Water Quality Me	ier,				
a dinani ana a				and New	Disposa	ble Bailer					
	ents			<u> </u>							
lotes/Comm											
lotes/Comm											
lotes/Comm			·								
lotes/Comm											

MONITOR	ING WEI	LL SAMPLIN	G RECO	RD	Anim	as Environmenta	I Services
Monitor Wel	ll No:	TW-11	_		624 E. (Comanche, Farmington	NM 87401
			-		<u>Tel. (</u> 50	5) 564-2281 Fax (505)	324-2022
Site: 1	Thriftway #8	310 Refinery	·	_	Proje	ct No.: AES 030203	-
Location: E	Bloomfield,	NM		- '.	Arrival	Date: 2016.08	-
Sampling Te	chnician:	NWID W1	<u>, </u>	-	Air	Temp: 3/2	-
Purge / I	No Purge:	NP		- т.	O.C. Ele	ev. (ft):	-
Well Diar	meter (in):	2"		Total V	Vell Dep	th (ft): <u>26.44</u>	
Initial D).T.W. (ft):	18.12	Time:	1058		(taken at initial gauging (taken prior to purging	g of all wells)
Final D).T.W. (ft):	<u></u>	Time:	<u> </u>		(taken after sample co	wen) llection)
		Nator Quality	Paramete	ars - Rec	orded	During Well Purging	
							,
	Temp	Conductivity					
Time	(deg C)	(µS) (mS)	(mg/L)	рн	(mv)	(see reverse for calc.)	Notes/Observations
1104 1	7,32	6.941	[.4]	11.15	12.0	0.25	
110						<u> </u>	simples collec
							`!
			<u></u>				
			<u> </u>				
							·····
					/		
Analytica Full VOCs by GRO/DRO by	al Parame 8260 (3 x 4 8015 (3 x	eters (include 40mL VOA w/ H 40mL VOA w/ H	analysis CI) ICI)	method	and nu	mber and type of sa	mple containers)
Dissolved Lea	ad by 6010	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead t	oy 6010 (500mL poly w/	HNO ₃)
	Di	isposal of Purg	ed Water:				
Collecte	d Samples	Stored on Ice	in Cooler:			· · · · · · · · · · · · · · · · · · ·	
С	hain of Cu	stody Record (Complete:				
		Analvtical La	aboratory:	Hall Envi	ronmenta	al Analysis Lab. Albuqu	erque, NM
Equipment U	lsed Durin	g Sampling:	,	Keck Wa	ter Level	, YSI Water Quality Met	ler,
				and New	Disposa	ble Bailer	
lotes/Comm	ents					······································	
				<u>.</u>		······································	

1 N.# 1.

54 M.

Δ.

2 2 1

	Vell No:	TW-12			624 F (Comanche Farmingto	n NM 87401
			-		Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	: Thriftway #	810 Refinery			Proje	ct No.: AES 030203	
Location	: Bloomfield	NM	· · · · · · · · · · · · · · · · · · ·	_		Date: <u>Dec 15,08</u>	
Project Sampling	: Semi-Annu Technician		<u>.</u>	-	Arrival Air	Time: <u>4 605</u>	_
Purge	/ No Purge	: NP		- т	.0.C. Ele	ev. (ft):	
Well D	iameter (in)	2"		Total V	Vell Dep	th (ft): 27.91	
Initia	I D.T.W. (ft)	22.44	Time:	1600	T((taken at initial gaugir	ng of all wells)
Confirn	1 D. I.₩. (π) I D. T.W. (ft):	22 Con 22-4	J lime: Time:	CC Deep	[6]]	(taken prior to purging (taken after sample ci	y well) ollection)
		Wator Quality	Paramot	are Po	ordod	Quring Well Burgin	~
<u> 7</u> 1	T		Faramet	ls - Red			9
	Temp	Conductivity	DO		ORP		
Time	(deg C)	(µS) (mS)	(mg/L)	pH	(mV)	(see reverse for calc.)	Notes/Observations
1615	16.15	4.247	0.95	6.49	-47.3	0.25	
1620							Samples Colle
							\
							<u> </u>
						<u> </u>	
	L	etera (includa	analysia				
Analyt	ical Param	eters (Include	analysis	methoa		mper and type of s	ample containers)
ull VOCs	by 8260 (3 x	40mL VOA w/ H		<u></u>			
RO/DRO	by 8015 (3 :	40mL VOA w/ I					
ISSUIVED I		J (200mL poly W			ai Ledu (η ΠΝΟ ₃)
	[Disposal of Pure	ged Water:	· <u> </u>	-	······	
Collec	ted Sample	s Stored on Ice	in Cooler:				
	Chain of C	ustody Record	Complete:				
		Analytical L	aboratory:	Hall Envi	ronment	al Analysis Lab, Albuqi	uerque, NM
auinmor	t Used Duri	ng Sampling:		Keck Wa	ter Leve	, YSI Water Quality Me	eter,
Amhineu		• • • • • • • • • • • • • • • • • • •		and New	Disposa	ble Bailer	
	nments <	YONG OYA	nue S	mell			
otes/Con		()	, <u> </u>				
otes/Con							
otes/Con							
lotes/Cor							
otes/Cor							

Monitor V	Vell No:	TW-13		• .	624 F. (Comanche. Farmington	NM 87401
			-		Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	: Thriftway #	810 Refinery			Proje	ct No.: AES 030203	
Location	: Bloomfield,	NM				Date: Dec 16,02	
Project	: Semi-Annu	al Sampling			Arrival	Time: <u>0915</u>	_
Sampling	Technician:	NW/DW		· -	Air	Temp: <u>33</u> °	
Woll D	iamotor (in):	<u></u> 2"		Total V	Noll Don	ev. (II): th (ft):	2
Initia	D.T.W. (ft):	<u>~</u>	Time:		ven Dep	(taken at initial gauging	<u>s</u> o of all wells)
Confirn	n D.T.W. (ft):		Time:			(taken prior to purging	well)
Fina	I D.T.W. (ft):		Time:			(taken after sample co	llection)
		Water Quality	Paramete	rs - Red	corded	During Well Purging	J
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS), (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observatio
0932	AO = 2	0.64					
<u> </u>	Din=1	1.48					
						·····	
			· · · · ·				
<u> </u>							
	l						
			^				
		~ 7			\frown		
				$\nabla \Gamma$	$\langle \rangle$	$\left \begin{array}{c} \phi \\ \phi $	
	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	/					
	$+$ \rightarrow	ľ		\sim			1
	+					() ()	<u>├</u>
			\supset	~		ANK	
		t / t		1		$U(\Lambda U($	
		. –			,		
Analyt	ical Paramo	eters (include	analysis r	nethod	and nu	mber and type of sa	mple containers
ull VOCs	by 8260 (3 x	40mL VOA w/ H	ICI)				
GRO/DRO	by 8015 (3 x	40mL VOA w/ H	HCI)				
Dissolved I	_ead by 6010	(250mL poly w/	HNO ₃ filtere	ed) Tot	al Lead b	oy 6010 (500mL poly w/	HNO ₃)
y – y dan sang pung sa titu ng kanangkan mini kanang ng	D	isposal of Purg	jed Water:				
Collec	ted Samples	s Stored on Ice	in Cooler:				
	Chain of Cu	stody Record	- Complete:				
•		Analytical	aboratory	Hall Envi	ronmont	al Analysis Lab Album	
·	411					VOLMAL O. H. MUUUU	
quipmen	t Used Durir	ng Sampling:		Neck Wa	ter Level	, YSI water Quality Me	ier,
	••••••••••••••••••••••••••••••••••••••			and New	Disposa	ble Bailer	
lotes/Con	nments						
						· · · · · · · · · · · · · · · · · · ·	
							

r ar

2 Tester -

.

6 12 12

「日本」の時代日

1 . E.

ТЧ а

an an An agus An agus An agus

nd - Ng t - E

the second se

1. H. A.

्ष ! 452 ! • २२

ૼ૾૾ૼ૾૾૱૾ૺ

	ell No:	TW-14		624 E. Comanche, Farmington NM 87401							
					Tel. (505) 564-2281 Fax (505) 324-2022						
Site:	Thriftway #8	310 Refinery		-	Proje	ct No.: AES 030203					
Location:	Bloomfield,	NM ol Sompling		-	Arrival	Date: $12 - 16 - 08$	-				
Sampling	Technician:			-	Arriva	Time. $(3 \angle L)$ Temp: $3 H^{\theta}E$	-				
Purge	/ No Purge:	NP	· ··· ·· ··	- τ.	.O.C. Ele	ev. (ft):	•				
Well Di	ameter (in):	2"		Total V	Veli Dep	th (ft):					
Initial	D.T.W. (ft):	16.82	Time:	152	5	(taken at initial gauging	y of all wells)				
Final	D.T.W. (ft):		Time:	- .		(taken prior to purging (taken after sample co	well) llection)				
		Water Quality	Paramete	ers - Rec	orded	During Well Purging	•••••••				
	Tomp	Conductivity				PURGED VOLUME	, 				
		Conductivity		l	ORP						
Time	(deg C)	(µS) (mS)	(mg/L)	рН	_ (mV)	(see reverse for calc.)	Notes/Observations				
	$ A \setminus \bigcirc$	6									
	IVC		an	$f(\mu)$	\leq						
				Y			· · ·				
		/ r									
			$\overline{\gamma}$	$b \subset b$		\	· · · · · · · · · · · · · · · · · · ·				
		$\rightarrow \rightarrow \parallel$	-10								
						1					
<u> </u>		$f \rightarrow +$									
		K	> 5	\bigcirc	Α		· · · · · · · · · · · · · · · · · · ·				
		$\overline{1}$		\Box		<u> </u>					
Analyti	cal Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)				
ull VOCs t	oy 8260 (3 x	40mL VOA w/ H	CI)			<u></u>	<u> </u>				
RO/DRO	by 8015 (3 x	40mL VOA w/ H	ICI)								
issolved L	ead by 6010	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead b	y 6010 (500mL poly w/	HNO ₃)				
and and the second s	D	isposal of Purg	ed Water:								
Collect	ed Samples	Stored on Ice	in Cooler:								
	Chain of Cu	stody Record (Complete:	-		<u> </u>					
		Analytical la	boratory:	Hall Envi	ronment	al Analysis Lab Albuqu	arque NM				
quinmont			isoratory.	Kock Ma	tor Love	VSI Water Quality Mat					
quipment	Used Dunn	g samping: _				he Della	.er,				
an a married a	ana ana ang kana sa kata sa ka		ويتعاديه والمحمد والم	and New	Disposa	Die Baller					
otes/Com	ments				<u></u>						
				<u> </u>							
							<u></u>				

Monitor W	ell No:	TW-15			624 E. 0	Comanche, Farmington	NM 87401
		···.	-		Tel. (50	5) 564-2281 Fax (505) 3	324-2022
Site:	Thriftway #	810 Refinery	•••	, 	Proje	ct No.: AES 030203	
Location:	Bloomfield,	NM		-	A	Date: 12-16-08	-
Project: Sampling	Semi-Annua Technician:			-	Arrival Air	Time: <u>1530</u> Temp: 340F	-
Purae	/ No Purge:	NP		- т.	.O.C. Ele	ev. (ft):	-
Well Di	ameter (in):	2"		Total V	Vell Dep	th (ft): 22.20	
Initial	D.T.W. (ft):	13.15	Time:	153	2	(taken at initial gauging	g of all wells)
Confirm	D.T.W. (ft):		Time:		<u> </u>	(taken prior to purging	well) Vection
Filla	D.1. vv . (II.).		Time.				
		Water Quality	Paramete	ers - Rec	corded I	During Well Purging)
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	pH	(mV)	(see reverse for calc.)	Notes/Observation
1538	13,14	6.647	1.25	6.69	-176.5	0.23	
543						l l	Jamples Colled
<u>. </u>							
		· · · · · · · · · · · · · · · · · · ·					
					· · · ·		
						· · · · · · · · · · · · · · · · ·	
Analvti	cal Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)
-ull VOCs b	by 8260 (3 x	40mL VOA w/ H	ICI)				
GRO/DRO	by 8015 (3 x	40mL VOA w/ H					
JISSOIVED L	ead by 6010	(250mL poly w/	HNU ₃ filter	ea) Iot	al Lead b	by 6010 (500mL poly w/	HNU ₃)
	D	isposal of Purg	ed Water:				
Collect	ted Samples	s Stored on Ice	in Cooler:				
	Chain of Cu	stody Record (Complete:				
		Analytical La	aboratorv:	Hall Envi	ronmenta	al Analysis Lab. Albuque	erque, NM
auinment	Used Durin	g Sampling	· · ·	Keck Wa	ter Level	YSI Water Quality Met	er.
				and Now	Dienoea	hle Bailer	
1-4		·			Jispusa		
iotes/Com	ments		·	<u> </u>			

*

ر جاھر

2 a.e.

27 27 1

- anging-g

4 th 2 m

a de tra

- y

S. S. Art

ि <u>।</u> इ

्वन बन्द्र स्

1. 18 A

1. 2. A. A.

α 1 | |² - Ψ | - Φ | - Φ -

Monitor Well	No:	TW-16		624 E. Comanche, Farmington NM 87401						
	-			Tel. (505) 564-2281 Fax (505) 324-2022						
Site: Th	riftway #8	310 Refinery	······································		Proje	ct No.: <u>AES 030203</u>				
Location: Blo	pomfield,	NM N Sompling			م سنا دما	Date: $\underline{Dec. b, D 8}$	-			
Sampling Tec	hnician			-	Arriva Air	Temp: 24	-			
Purge / No	o Purge:	NP		- т	.O.C. Ele	ev. (ft):	-			
Well Diam	eter (in):	2"		Total \	Nell Dep	oth (ft): 15.46				
Initial D.	T.W. (ft):	8.76	Time:	122	0	(taken at initial gauging	g of all wells)			
Confirm D.	I.W. (ft):		Time:			_(taken prior to purging	well) llootion)			
Filiai D.	 (it).		i iine:							
		Nater Quality	Paramete	ers - Reo	corded	During Well Purging	,			
	Temp	Conductivity	DO		ORP	PURGED VOLUME				
Time (deg C)	(µS) (mS)	(mg/L)	pH	(mV)	(see reverse for calc.)	Notes/Observations			
1225 11	4.90	6.593	1.64	6.7	7.3	0.25				
1230 -				<u></u>		1	Samples Collected			
	t						· · · · · · · · · · · · · · · · · · ·			
			····-							
							·			
Analytical	Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)			
III VOCs by 8	260 (3 x -	40mL VOA w/ H	CI)							
RO/DRO by 8	3015 (3 x	40mL VOA w/ H	ICI)							
issolved Lead	l by 6010	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead b	oy 6010 (500mL poly w/	HNO ₃)			
	D	isposal of Purg	ed Water:				· · · · · · · · · · · · · · · · · · ·			
Collected	Samples	Stored on Ice	in Cooler:							
Cha	ain of Cu	stody Record (Complete:							
		Analytical La	boratory:	Hall Envi	ironment	al Analysis Lab, Albuqu	erque, NM			
quipment Us	ed Durin	g Sampling:		Keck Wa	ter Leve	l, YSI Water Quality Me	ler,			
				and New	Disposa	ble Bailer				
otes/Comme	nts									
			· · · · ·			<u> </u>				
							······································			

The second second

Monitor W	ell No:	TW-17		:	624 F (Comanche Farmington	NM 87401
	en no.		-		Tel. (50	5) 564-2281 Fax (505) 3	324-2022
Site:	Thriftway #	810 Refinery	ł	-	Proje	ct No.: AES 030203	
Location:	Bloomfield,	NM	·	_		Date: Dec 16,08	-
Project:	Semi-Annu	al Sampling		-	Arrival	Time: 12,50	-
	i ecnnician:			- т		Temp: <u>250</u>	-
Well Dia	ameter (in):	2"		- Total V	Vell Dep	th (ft): 17.00	
Initial	D.T.W. (ft):	9.99	Time:	1252	•	(taken at initial gauging	, g of all wells)
Confirm	D.T.W. (ft):		Time:			(taken prior to purging	well)
Final	D.T.W. (ft):		Time:			_(taken after sample col	
		Water Quality	Paramete	ers - Red	corded	During Well Purging	J
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observation
1258	14,10	6.643	1.26	6.68	-31.3	0.25	·
1303							Samples collect
							,
	<u></u>						
							······································
						·····	
					· · · · · · · · · · · · · · · · · · ·		
Analyti	cal Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)
	w 8260 (3 v						
		40/11L VOA W/ F					
JRO/DRO	by 8015 (3 x	40mL VOA w/ H	1CI)	ad) Tat		010 (E00ml polyw)	
		(250mL poly w/					
	D	isposal of Purg	jed Water:			<u></u>	
Collect	ed Samples	s Stored on Ice	in Cooler:				
	Chain of Cu	ustody Record	Complete:				
			aboratory	Hall Envi	ronment	al Analysis Lab Albuque	erque NM
				Kock M-	tor Law		
quipment	usea Durir	iy sampling:		Neck Wa	Ler Level	, TSI Water Quality Mel	
				and New	Disposa	ble Baller	
lotes/Com	ments				·		
						······	

şⁱ

. 史 - 2

a in Junk -

1. 1. a. . . .

.

19 19

्र क *

/lonitor W	ell No:	TW-18		624 E. Comanche, Farmington NM 87401							
					Tel. (505) 564-2281 Fax (505) 324-2022						
Site: Location:	Thriftway # Bloomfield	810 Refinery		-	Proje	ct No.: AES 030203	-				
Project	Semi-Annu	al Sampling	· · · · · · · · · · · · · · · · · · ·	_	Arrival	Time: 1604	-				
Sampling	Technician:	NWIDW		-	Air	Temp: <u>34</u>	-				
Purge	/ No Purge:	<u>NP</u> '		T. Totol V	O.C. Ele	v. (ft): <u>23.07</u>					
Initia	ameter (in): D.T.W. (ft):		Time:		ven Dep lø	τη (π): <i>(taken at initial gauging</i>	n of all wells)				
Confirm	D.T.W. (ft):		Time:		¥	(taken prior to purging	well)				
Final	D.T.W. (ft):		Time:			(taken after sample co	llection)				
		Water Quality	Paramete	ers - Rec	orded	During Well Purging	a a a ange d'a Calender a a suga tana a a g				
	Temp	Conductivity	DO		ORP	PURGED VOLUME					
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations				
1612	16.42	5.094	0.88	6.65	-170.9	0.25					
1615				<u> </u>		<u> </u>	Samples collected				
						· · · · · · · · · · · · · · · · · · ·					
_											
Analyti	cal Param	eters (include	analysis	method	and nu	mber and type of sa	mple containers)				
ull VOCs I	oy 8260 (3 x	40mL VOA w/ H	CI)								
RO/DRO	by 8015 (3 x	40mL VOA w/ H	ICI)								
issolved L	ead by 6010) (250mL poly w/	HNO ₃ filter	ed) Tot	al Lead t	by 6010 (500mL poly w/	HNO ₃)				
	D	isposal of Purg	ed Water:		· · · · · · · · · · · · · · · · · · ·						
Collec	ted Samples	s Stored on Ice	in Cooler:								
	Chain of Cu	ustody Record	Complete:								
		Analytical La	aboratory:	Hall Envi	ronment	al Analysis Lab, Albuqu	erque, NM				
quipment	Used Durir	ng Sampling:		Keck Wa	ter Level	, YSI Water Quality Me	ter,				
				and New	Disposa	ble Bailer					
lotes/Com	ments										

A CONTRACTOR

Monitor W	Vell No:	TW-19			624 E.	Comanche, Farmington	NM 87401
			•		Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	: Thriftway #	810 Refinery			Proje	ct No.: AES 030203	-
Location	: Bloomfield,	NM			A	Date: $D(c b, 08)$	-
r roject Sampling	Technician				Arriva ∆ir	Temp: 260	
Purge	/ No Purge:	NP		1	.O.C. Ele	ev. (ft):	-
Well D	iameter (in):	2"		Total	Well Dep	oth (ft):	
Initia	ID.T.W. (ft):		Time:			_(taken at initial gauging	of all wells)
Confirm	1 D.T.W. (ft):		Time:			_(taken prior to purging _(taken after sample co	well) llection)
			Devenuete				
<u> </u>	T	water Quality	Paramete	ers - Re	coraea		·
*!		Conductivity	DO (m: m/l)				
			(mg/L)	рн	<u> (mv)</u>	(see reverse for calc.)	INOTES/UDSERVATIO
1013	HU =	44.15					
	VW >	22.62			<u> </u>	<u>-</u>	
	<u> </u>				I		l
	<u> </u>			<u> </u>			
<u> </u>	N I	$\int $	/				
	f_{Λ}		Minl	ρ,	1		
. <u></u>		<u> </u>		<u> </u>			
	<u> </u>	<u> </u>			\mathcal{D}	/	
			-VAD		[VAA	Act-	
	<u> </u>	┝──────┤	1100	<u> </u>	Γ^{\vee}	• ~ ,	······································
				u			
		<u> </u>			<u> </u>		
Analyt	ical Param	eters (include	analysis ı	nethod	l and nu	mber and type of sa	mple containers
ull VOCs	by 8260 (3 x	40mL VOA w/ H	CI)		14	· · · · · · · · · · · · · · · · · · ·	
	by 8015 (3 v	40mL VOA w/ H	<u>/</u>			·····	
Dissolved L	_ead by 6010) (250mL poly w/	HNO ₃ filter	ed) To	tal Lead t	oy 6010 (500mL poly w/	HNO ₃)
	 	lisposal of Pura	ed Wator	en an an Antonia Anna an Tail (
Calles	tod Commiss	- Stored an las	in Cooler				·····
Collec						·····	
	Unain of Ci	ustoay Record (-ompiete:		•		
		Analytical La	aboratory:	Hall Env	uronment	ai Analysis Lab, Albuque	erque, NM
quipmen	t Used Durir	ng Sampling:		Keck Wa	ater Leve	I, YSI Water Quality Met	er,
				and Nev	v Disposa	ble Bailer	
lotes/Con	nments						
0100,001							
		the second se					
	·				<u>_</u>		

2 % 2

a. 202 -

1. 2. a

et mar e

 $P^{\prime} \frac{h^{2}}{h^{2}} q_{1}$

P et : s

1 2 " B.".

ع _____

 $\{ {\bf z}_i \}_{i \in I}$

					,					
Monitor W	ell No:	TW-20		624 E. Comanche, Farmington NM 87401						
Site	Thriftway #8	Refinery			Tel. (50	5) 564-2281 Fax (505)	324-2022			
Location	Bloomfield.	NM		-	Froje	Date: Dec 17.00	_			
Project	Semi-Annua	al Sampling		-	Arrival	Time: 1035	-			
Sampling	Technician:	BWIDN	·	-	Air	Temp: 30	_			
Purge	/ No Purge:	NP	·····	T	.O.C. Ele	v. (ft):				
Well Di	ameter (in):	2"		_ Total V	Vell Dep	th (ft):				
Initia	D.T.W. (ft):		Time:			(taken at initial gaugin	g of all wells)			
Einal	D.T.W. (II):		Time: Time:			(laken prior to purging	(Well)			
	<u> </u>		Thile.							
		Water Quality	Paramete	ers - Reo	corded	During Well Purgin	9			
	Temp	Conductivity	DO		ORP	PURGED VOLUME				
Time	(deg C)	(µS) (mS)	(mg/L)	рH	(mV)	(see reverse for calc.)	Notes/Observations			
1040	AO	15.14								
	OW	15,86								
		<u>т</u> п								
		TVRO H	V15/14	1		15 Samolo	¥			
		11001	runn			of oumpr				
-						· · · · · ·				
			· · · · ·							
		·								
Analyti	cal Parame	eters (include	analysis	method	and nu	mber and type of s	ample containers)			
ull VOCs I	oy 8260 (3 x -	40mL VOA w/ H	CI)				· · · ·			
GRO/DRO	by 8015 (3 x	40mL VOA w/ H	ICI)							
issolved L	ead by 6010	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead b	y 6010 (500mL poly w	/ HNO ₃)			
	D	isposal of Purg	ed Water:							
Collect	ed Samples	Stored on Ice	in Cooler:							
	Chain of Cu	stody Record (Complete:			······································				
		Analytical La	boratory:	Hall Envi	ronment	al Analysis I ab Albuqu	erque NM			
auipment	Used Durin	a Samplina:		Keck Wa	ter Level	YSI Water Quality Me	iter			
-1	JUUN BUIN		<u></u>	and New	Disnosa	hle Bailer				
		an an in the second			2.00034		and and the graphy process and a second s			
lotes/Com	ments									
	•									

Monitor W	/ell No:	TW-21		•	624 F. 0	Comanche. Farmington	NM 87401
					Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	: Thriftway #8	310 Refinery	- · ·		Proje	ct No.: AES 030203	
Location	: Bloomfield,	NM			-	Date: DC 17,08	
Project	: Semi-Annua	al Sampling			Arriva	Time: 100	_
Sampling	Technician:	BWIDW			Air	Temp: <u>35</u>	_
Purge	/ No Purge:	<u>NP</u>	<u> </u>	T.	O.C. Ele	ev. (ft):	
Initia		Z			ven Deb	(taken at initial gaugin	a of all wells)
Confirm	D.T.W. (ft):		Time:			(taken prior to purging	well)
Fina	I D.T.W. (ft):		Time:			(taken after sample co	llection)
		Water Quality	Paramete	rs - Rec	orded	During Well Purging	
	Tomp	Conductivity	DO				
T	(dem C)					(Notes/Observation
lime	(aeg C)	(µs) (ms)	(mg/L)	рн	(mv)	(see reverse for calc.)	INOTES/UDSERVATION
	AO	15.42					
	OW	17.19'					
						2	
		T IO. P	-the state		-	D Cana and	
		- Alt	<u> </u>	/10		VO Sumpr	
			•			Collected	
					,		
							······································
Analyt	ical Parame	eters (include	analysis r	nethod	and nu	mper and type of sa	imple containers
ull VOCs	by 8260 (3 x -	40mL VOA w/ H	CI)				
GRO/DRO	by 8015 (3 x	40mL VOA w/ H	ICI)				
Dissolved L	ead by 6010	(250mL poly w/	HNO ₃ filtere	ed) Tota	al Lead t	by 6010 (500mL poly w	/ HNO ₃)
an da ser a comercia da la la		ionoocl of D	ad Water:	1			
	D	isposal of Purg	ed water:				
Collec	ted Samples	Stored on Ice	in Cooler: _				
	Chain of Cu	istody Record (Complete:				
		Analytical La	aboratory:	Hall Envi	ronmenta	al Analysis Lab, Albuqu	erque, NM
auiomen	t Used Durin	a Samplina:	_	Keck Wa	ter Level	. YSI Water Quality Me	ter.
166-11				and New	Disposo	ble Bailer	
					Dispusa		
lotes/Con	nments			a. =			
			- <u></u>	<u> </u>			

5. A. E.

20 J. T. C.

. **3**.5

91 **6**

Monitor Mall	No	TW_22			624 5		NM 97401				
women well	1101	¥ 77- <i>6.6</i>			Tel. (505) 564-2281 Fax (505) 324-2022						
Site: Th	nriftway #8	310 Refinery			Project No.: AES 030203						
Location: Bl	oomfield,	NM		Date: $Dec 17, 08$							
Project: Se	emi-Annua	al Sampling		-	Arrival	Time: <u>1135</u>	-				
Sampling Teo	chnician:	<u>BW/DW</u>		- т		lemp:	-				
Well Diam	eter (in):	2"		- Total V	Well Dep	th (ft):	-				
Initial D.	T.W. (ft):		Time:			(taken at initial gauging	g of all wells)				
Confirm D.	T.W. (ft):		Time:			(taken prior to purging	well)				
Final D.	T.W. (ft):		Time:			(taken after sample co	llection)				
	<u>`</u>	Nater Quality	Paramete	ers - Re	corded	During Well Purging]				
	Temp	Conductivity	DO		ORP	PURGED VOLUME					
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations				
1135 1	AO	14.75									
4	UW (14.76									
		Free Prod	ict -		Na	Sample					
			<u> </u>		100	(Il ded					
			·		1	(ollegen	· · · · · · · · · · · · · · · · · · ·				
					·						
			<u>_</u>			: 					
			 =				· · · · · · · · · · · · · · · · · · ·				
					<u> </u>						
			••••								
Analytica	l Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)				
ull VOCs by 8	3260 (3 x ·	40mL VOA w/ H	CI)		, t , "Attained",						
GRO/DRO by	8015 (3 x	40mL VOA w/ H	ICI)			•	. ·				
Dissolved Lead	d by 6010	(250mL poly w/	HNO ₃ filter	ed) To	tal Lead t	by 6010 (500mL poly w/	HNO ₃)				
	D	isposal of Purg	ed Water:								
Collected	Samples	Stored on Ice	in Cooler:			·					
Ch	ain of Cu	stody Record (Complete:								
		Analytical La	aboratory:	Hall Env	ironment	al Analysis Lab, Albuqu	erque, NM				
Equipment Us	sed Durin	g Sampling:		Keck Wa	ater Leve	I, YSI Water Quality Me	ter,				
				and New	/ Disposa	ble Bailer					
lotes/Comme	ents										
· · · · · · · · · · · · · · · · · · ·				<u>,,,,,_,</u>		<u>x</u>					
		. <u></u>				,					

Monitor W	/ell No:	TW-23			624 E. 0	Comanche, Farmington	NM 87401
			-		Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	: Thriftway #	810 Refinery		_	Proje	ct No.: AES 030203	_
Location	Bloomfield,	NM		-	A	Date: $U_C 8.08$	
Project: Sompling	Semi-Annu	al Sampling		-	Arrivai Air	Time: <u>79 79 70</u>	-
Samping Purge	/ No Purge	· <u>NW I/W</u> : NP		- т.	.O.C. Ele	ev. (ft):	
Well Di	iameter (in):	2"		- Total V	Vell Dep	th (ft): 15.48	
Initia	I D.T.W. (ft):	6.60	Time:	093	5	(taken at initial gauging	g of all wells)
Confirm	n D.T.W. (ft):		Time:			(taken prior to purging	well)
Fina	I D.T.W. (ft):		Time:		· · · · · · · · · · · · · · · · · · ·	(taken after sample co	lection)
		Water Quality	Paramete	ers - Rec	corded	During Well Purging	ļ
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations
0940	13.65	6,727	3.11	1.09.	-138.4	0.25	
1945						. l	Sandos colled
	1					· · · · · · · · · · · · · · · · · · ·	
	1			<u> </u>		······································	
			· · · · · · · · · · · · · · · · · · ·				
	<u> </u>						
	· ·						
Analyti	ical Param	eters (include	analysis	method	and nu	mber and type of sa	mple containers)
	by 8260 /3 v			·	·····		
	by 0200 (3 X					<u></u>	
Jissolvod I	by 8015 (3)	(250mL vOA W/ I	101) / HNO_filter	tot (be	alleadh	w 6010 (500mL poly w/	HN(),
							11103)
	0	Disposal of Pure	ged Water:				
Collec	ted Sample	s Stored on Ice	in Cooler:				
	Chain of C	ustody Record	Complete:				
		Analytical L	aboratory:	Hall Envi	ronmenta	al Analysis Lab. Albuqu	erque. NM
Equinmon	t Used Duri	na Samplina:	.	Keck Wa	ter Level	YSI Water Quality Met	er
-daihiisii	. Oscu Dulli	ng camping.		and Now		ble Bailer	
		<u></u>	1				
1.4	nments <i>b</i>	regarie o	an	WW	K 4	na nury	
Notes/Con		0					
Notes/Con							
Notes/Com							
Notes/Com							

* 2 *

1 (2) 5 (8) 6 (3) 9 (3) 9 (3)

Ŭ.

та. 191

1. A. P.

24 e - 1 v - 1 v - 1

un^e

2 × 2

19 A.V.

je.

15° 0 .

1. 18 d. 1

Monitor Wel	l No:	TW-24	,		624 = 4	Comanche Farminaton	NM 87401
MONILOI WE	1110.				Tel. (50	5) 564-2281 Fax (505)	324-2022
Site: T	Thriftway #8	310 Refinery			Proje	ct No.: AES 030203	
Location: E	Bloomfield,	NM		-	-	Date: Dec 17,08	-
Project: S	Semi-Annua	al Sampling		-	Arrival	Time: 1239	•
Sampling Te	echnician:	BW IDW			Air	Temp: <u>35</u>	-
Purge / I Well Diar	NO Purge:	<u></u>		. I Total V	.U.C. Ele Noll Don	ev. (π): +h (#):	
Initial D).T.W. (ft):	10.97	Time:	_ 10tai 1	ren Dep	(taken at initial gauging	of all wells)
Confirm D).T.W. (ft):		Time:			(taken prior to purging	well)
Final D).T.W. (ft):		Time:			(taken after sample co	llection)
		Water Quality	Paramete	ers - Rec	orded	During Well Purging	
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations
1240 1	15.10	5.942	4.88	1.21-	64.3	0.25	
1254						- Atom /	Samole Scolle
				†			
				·			
· · · · · · · · · · · · · · · · · · ·							
							······································
		· · · · · · · · · · · · · · · · · · ·					
	أيندقن ويستد اختفا						
Analytica	al Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)
ull VOCs by	8260 (3 x	40mL VOA w/ H	CI)				
GRO/DRO by	/ 8015 (3 x	40mL VOA w/ H	ICI)				
Dissolved Lea	ad by 6010	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead I	oy 6010 (500mL poly w/	HNO ₃)
<u> </u>	D	isposal of Purg	ed Water:			·····	
Collecte	d Samples	Stored on Ice	in Cooler:				
	hain of Cu	stody Record	Complete:				
С		Analytical L	aboratory:	Hall Envi	ronment	al Analysis Lab. Albuqu	erque. NM
C	lead Durin	a Samplina:		Keck Ma	tor Lovo	L VSI Water Quality Ma	lor
C		y samping:		INCOK VVa		I, I SI WALEI QUAIILY ME	
C Equipment U	Seu Durm			and New	Disposa	ible Baller	
C Equipment U							
C Equipment U Iotes/Comm	nents						
C Equipment U Notes/Comm	nents						
C Equipment U Notes/Comm	nents						
C Equipment U Notes/Comm	nents						
C Equipment U Notes/Comm	nents						

Monitor W	/ell No:	TW-25			624 E. (Comanche, Farmington	NM 87401
			-		Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	: Thriftway #	810 Refinery		_	Proje	ct No.: AES 030203	
Location	Bloomfield,	NM		-		Date: 100 Dec 17,0	28
Project	Semi-Annu	al Sampling		_	Arriva	Time: 1115	-
Sampling	lechnician:	BW/DW		- т		1emp: <u>39</u>	-
Woll Di	/ NO Purge:	2"		Total V	.U.C. Ele Wall Dan	**. (IL). .th /ft):	-
Initia	1 D.T.W. (ff):	<u>_</u>	Time:	-	теп Бер	(taken at initial dauging	i of all wells)
Confirm	D.T.W. (ft):		Time:	<u></u>		(taken prior to purging	well)
Fina	I D.T.W. (ft):		Time:			(taken after sample col	llection)
		Water Quality	Paramete	ers - Re	corded	During Well Purging	
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	Hq	(mV)	(see reverse for calc.)	Notes/Observatio
1125	AG	14.13'	<u> </u>		1		
	()))	14 1-7'		1	1	·····	·····
	U W	17.02			<u> </u>	<u> </u>	
				}		·	
					1.		
	ļ	tree Prod	luct		No	Somply	
					<u> </u>	Collected	
					1		<u> </u>
· · · · · · · · · · · · · · · · · · ·							·····
	<u> </u>						
					· · · · · ·		
Analyti	cal Parame	eters (include	analveie	method	and nu	mber and type of sa	mple containers
	by 8260 (3 x	40mL VOA W/ H			····	·	
GRO/DRO	by 8015 (3 x	40mL VOA w/ H					
JISSOIVEd L	.ead by 6010	(250mL poly w/	HINU ₃ filter	ea) lo	tal Lead t	by 6010 (500mL poly w/	MINU ₃)
	D	isposal of Purg	ed Water:			<u> </u>	
Collec	ted Samples	Stored on Ice	in Cooler:				
	Chain of Cu	stody Record (Complete:				
		Analvtical La	aboratory:	Hall Env	ironment	al Analysis Lab. Albuque	erque. NM
auinmon	llead Durin	a Samplina	· · · · · · · · · · · · · · · · · · ·	Keck Wa	ater Level	VSI Water Quality Met	er
-derbuieu		iy vamping	_ <u></u>	and New	Dianaa	blo Rollor	
				and New	r pisposa		
notes/Con	nments						
							·
							· · · · · · · · · · · · · · · · · · ·

Г. .

+ a •

<u>_</u>

2. 9 2

्रम् इ.म.

đ

1. 2. A.

e star e star

× Statistics Statistics

and the second

			S KEUU	κυ	ADIM	as Environmenta	1 Services				
Monitor We	ll No:	IW-26			624 E. (Comanche, Farmington	NM 87401				
Site:	Thriftway #8	310 Refinerv			Project No.: AFS 030203						
Location:	Bloomfield,	NM		-	i ioje	Date: Dec 17 .0 8	-				
Project:	Semi-Annua	al Sampling		-	Arrival	Time: 1321	-				
Sampling T	echnician:	BW/DW			Air	Temp: <u>35</u>					
Purge /	No Purge:	<u>NP '</u>		T T-1-1	.O.C. Ele	v. (ft):	3				
Initial I	$\mathbf{D} \mathbf{T} \mathbf{W} (\mathbf{f} \mathbf{f})$	<u> </u>	Time	- Total	wen Dep	(n (n): (taken at initial gauging	of all wells)				
Confirm I	D.T.W. (ft):	·	Time:			(taken prior to purging	well)				
Final I	D.T.W. (ft):		Time:			(taken after sample col	lection)				
		Water Quality	Paramete	ers - Re	corded	During Well Purging					
	Temp	Conductivity	DO		ORP	PURGED VOLUME					
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations				
1330	AU	13.49'		·							
	OW	14.47'									
						· · · · · · · · · · · · · · · · · · ·					
		Free		NO	Sauph	e Callected					
		Drødyct			6						
		/									
							······································				
						· · · · · · · · · · · · · · · · · · ·					
			······								
							<u> </u>				
							·				
Analytic	al Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)				
Full VOCs by	/ 8260 (3 x	40mL VOA w/ H	CI)			····	<u></u>				
GRO/DRO b	<u>y 8015 (3 x</u>	40mL VOA w/ H									
Dissolved Le	ad by 6010	(250mL poly w/	HNO ₃ filter	ed) To	al Lead b	oy 6010 (500mL poly w/	HNO ₃)				
	D	isposal of Purg	ed Water:								
Collecte	d Samples	Stored on Ice	n Cooler:								
C	Chain of Cu	stody Record (complete:								
		Analytical La	boratory:	Hall Env	ironmenta	al Analysis Lab, Albuque	erque, NM				
Equipment I	Used Durin	g Sampling:		Keck Wa	ater Leve	, YSI Water Quality Met	er,				
				and New	/ Disposa	ble Bailer					
lotes/Com	nents										
				<u> </u>							
					(M. 1998)	· · · · · · · · · · · · · · · · · · ·					

Monitor W	ell No:	TW-27			624 E. (Comanche, Farmington	NM 87401
			-		Tel. (50	5) 564-2281 Fax (505) 3	324-2022
Site:	Thriftway #8	310 Refinery		-	Proje	ct No.: AES 030203	-
Location:	Bloomfield,	NM		-		Date:	
Project:	Semi-Annua	al Sampling		-	Arrival	Time:	
Sampling	/ No Purget	NP		- т	O.C. Ele	remp	
Well Di	ameter (in):	2"	·····	Total V	Vell Dep	th (ft):	
Initia	D.T.W. (ft):		Time:	-		(taken at initial gauging	of all wells)
Confirm	D.T.W. (ft):		Time:			(taken prior to purging	well)
Final	D.T.W. (ft):		Time:			(taken after sample col	lection)
	١	Water Quality	Paramete	ers - Rec	orded	During Well Purging	
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	pН	(mV)	(see reverse for calc.)	Notes/Observatio
			<u>۱</u>			· · · · · · · · · · · · · · · · · · ·	
	Ν	$ \langle \rangle \rangle$		$\langle \rangle$		\wedge	
· · · · · · · · · · · · · · · · · · ·				VV	\bigcirc		
		\mathcal{A}				/	
			10	AN/	J	\	
		····		\langle / \rangle			
				`			
Analyti	cal Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers
Analyti			anarysis	methou			
ull VOCs I	oy 8260 (3 x	40mL VOA w/ H	ICI)				
GRO/DRO	by 8015 (3 x	40mL VOA w/ I	HCI)				
Dissolved L	ead by 6010.	(250mL poly w	HNO ₃ filter	ed) Tot	al Lead b	by 6010 (500mL poly w/	HNO ₃)
	D	isposal of Purç	jed Water:				
Collec	ted Samples	s Stored on Ice	in Cooler:				
	Chain of Cu	stody Record	Complete:				
•		Analytical L	aboratory:	Hall Envi	ronmenta	al Analysis Lab, Albuque	erque, NM
auipment	Used Durin	g Sampling:		Keck Wa	ter Level	, YSI Water Quality Met	er,
1				and New	Disposa	ble Bailer	^
lotes/Com	ments	<u> </u>					
					<u> </u>		

1 C - 1

т — са С¹ Ф

94) 946 1

1 H T

, M

10 0 T

₽

18		T\A/ 29					
Monitor wei	I NO:	1 44-20			624 E. (Tel (50	Jomanche, Farmington 5) 564-2281 Eax (505)	NM 87401 324-2022
Site: T	hriftway #8	310 Refinery			Proje	ct No.: AES 030203	524-2022
Location: B	Bloomfield,	NM			-	Date: 12/17/0	5
Project: S	Semi-Annua	al Sampling			Arrival	Time: ((10)	-
Sampling Te	chnician:	BW/DW			Air	Temp: <u>35</u>	-
Purge / N	No Purge:	<u>NP</u>		T Vlata T	.O.C. Ele	ev. (ft):	
vven Dian	neter (In):	Z	Timo	Total	мен рер	(π) : (π) :	a of all walls)
Confirm D	.T.W. (ft):		Time:			(taken prior to purging	well)
Final D	.T.W. (ft):		Time:			(taken after sample co	llection)
		Nater Quality	Paramete	rs - Ree	corded	During Well Purging)
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS)_(mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations
1110	AO	15.37					
) N	15.96					
		Free Pu	sauch	~	No	Sunda	
			<u> </u>		1,00	C. O. t.d	
						Calledie	
						l	
·····							
				·			
Analytica	al Parame	eters (include	 analysis r	nethod	and nu	mber and type of sa	mple containers)
ull VOCs by	8260 (3 x 4	40mL VOA w/ H	CI)				
	[,] 8015 (3 x	40mL VOA w/ F	ICI)				
RO/DRO by	d by 6010	(250mL poly w/	HNO ₃ filtere	ed) Tot	al Lead b	oy 6010 (500mL poly w/	HNO ₃)
GRO/DRO by Dissolved Lea			the second se				
GRO/DRO by Dissolved Lea	Di	isposal of Purg	ed Water:			,, _,	
GRO/DRO by Dissolved Lea	Di d Samples	isposal of Purg Stored on Ice	ed Water: _ in Cooler: _				
GRO/DRO by Dissolved Lea Collected	Di Di d Samples hain of Cu	isposal of Purg Stored on Ice stody Record (ed Water: _ in Cooler: _ Complete: _				
GRO/DRO by Dissolved Lea Collected C	d Samples hain of Cu	isposal of Purg Stored on Ice stody Record (Analytical La	ed Water: _ in Cooler: _ Complete: _ iboratory: _	Hall Envi	ronmenta	al Analysis Lab, Albuqu	erque, NM
GRO/DRO by Dissolved Lea Collected Cl	Di Di d Samples hain of Cu Ised Durin	isposal of Purg Stored on Ice stody Record (Analytical La g Sampling:	ed Water: _ in Cooler: _ Complete: _ iboratory: _	Hall Envi Keck Wa	ironmenta iter Level	al Analysis Lab, Albuqu , YSI Water Quality Me	erque, NM
GRO/DRO by Dissolved Lea Collected Cl	d Samples hain of Cu lsed Durin	isposal of Purg Stored on Ice Istody Record (Analytical La g Sampling:	ed Water: in Cooler: Complete: Iboratory:	Hall Envi Keck Wa and New	ironmenta iter Level	al Analysis Lab, Albuqu , YSI Water Quality Me ble Bailer	erque, NM ter,
GRO/DRO by Dissolved Lea Collected Cl Equipment U	Di Di d Samples hain of Cu Ised Durin	isposal of Purg Stored on Ice Istody Record (Analytical La g Sampling:	ed Water: in Cooler: Complete: Iboratory:	Hall Envi Keck Wa and New	ironmenta iter Level Disposa	al Analysis Lab, Albuqu , YSI Water Quality Me ble Bailer	erque, NM ter,
GRO/DRO by Dissolved Lea Collected C Equipment U	Di Di d Samples hain of Cu lsed Durin hents	isposal of Purg Stored on Ice Istody Record (Analytical La g Sampling:	ed Water: in Cooler: Complete: aboratory:	Hall Envi Keck Wa and New	ironmenta iter Level Disposa	al Analysis Lab, Albuqu , YSI Water Quality Me ble Bailer	erque, NM ter,
GRO/DRO by Dissolved Lea Collected Cl Equipment U	Di Di d Samples hain of Cu lsed Durin hents	isposal of Purg Stored on Ice stody Record (Analytical La g Sampling:	ed Water: in Cooler: Complete: aboratory:	Hall Envi Keck Wa and New	ironmenta iter Level Disposa	al Analysis Lab, Albuqu , YSI Water Quality Me ble Bailer	erque, NM ter,
GRO/DRO by Dissolved Lea Collected C Equipment U Iotes/Comm	Di Di d Samples hain of Cu lsed Durin hents	isposal of Purg Stored on Ice Istody Record (Analytical La g Sampling:	ed Water: in Cooler: Complete: aboratory:	Hall Envi Keck Wa and New	iter Level Disposa	al Analysis Lab, Albuqu , YSI Water Quality Me ble Bailer	erque, NM ter,
GRO/DRO by Dissolved Lea Collected Cl Equipment U	Di Di d Samples hain of Cu lsed Durin hents	isposal of Purg Stored on Ice Istody Record (Analytical La g Sampling:	ed Water: in Cooler: Complete: aboratory:	Hall Envi Keck Wa and New	ironmenta iter Level Disposa	al Analysis Lab, Albuqu , YSI Water Quality Me ble Bailer	erque, NM ter,

Description Description Site: Thriftway #810 Refinery Location: Bioomfield, NM Description Description Site: Thriftway #810 Refinery Project No: AES 030203 Data Suppling Arrival Time: 1144 Conductivity Project No: AES 030203 Data Suppling Arrival Time: 1144 Conductivity Project No: AES 030203 Data Suppling Technician: Styl / D/N No: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Time: 1144 Conductivity Do ORP PURGED VOLUME Mater Quality Parameters - Recorded During Well Purging Time: (dee Col (us) (mS) (mg/L) pH Conductivity Do ORP PURGED VOLUME Free N/I< Source 1 Conductivity Do ORP PURGED VOLUME Free N/I< Source 1 Conductivity Do ORP PURGED VOLUME Free N/I< Source 1 Frece </th <th>Monitor Mell</th> <th>No</th> <th>TW-20</th> <th></th> <th>- j</th> <th>624 = 4</th> <th>Comancho Earminatan</th> <th>NM 87401</th>	Monitor Mell	No	TW-20		- j	624 = 4	Comancho Earminatan	NM 87401
Site: Thriftway #810 Refinery Project No:: AES 030203 Location: Bicomfield, NM Date: Dot Sampling Technician: Symplex: Date: Discover Sampling Technician: Symplex: Time: Time: Time: Well Diameter (in): 2" Total Well Depth (ft): Time: (ftsken at initial gauging of all wells) Confirm D.T.W. (ft): Time: (ftsken at initial gauging of all wells) (ftsken at initial gauging of all wells) Confirm D.T.W. (ft): Time: (ftsken at initial gauging of all wells) Time (dag C) (µS) (mg/L) pH (mV) (see reverse for catc.) Notes/Observat 1/50 A.O. ?, 1/2' Image: Conduction) Executed Notes/Observat 1/50 A.O. ?, 1/2' Image: Image: Notes/Observat 1/50 A.O. ?, 1/2' Image: Notes/Observat Notes/Observat 1/50 A.O. ?, 1/2' Image: Image: Notes/Observat 1/50 A.O. ?, 1/2' Image: Notes/Observat I/50 <td< td=""><td>MOTILOI WEI</td><td>NO:</td><td>100-23</td><td>-</td><td></td><td>024 E. (Tel (50</td><td>5) 564-2281 Eax (505) (</td><td>NIM 07401 324-2022</td></td<>	MOTILOI WEI	NO:	100-23	-		024 E. (Tel (50	5) 564-2281 Eax (505) (NIM 07401 324-2022
Location: Bloomfield, NM Protect: Semi-Annual Sampling Arrival Time: Intel It 4 Arrival Time: Intel Sampling Arrival Time: Intel Sampling Time (Intel DT.W. (ft): 2 Total Well Depth (ft): Sampling collection) Water Quality Parameters - Recorded During Well Purging Time (deg C) (µS) (mS) (mg/L) pH (mV) (see reverse for calc.) Notes/Observat I/50 AO ?, 19 Garden C AO	Site: T	hriftwav #	810 Refinery			Proie	ct No.: AFS 030203	
Project: Semi-Annual Sampling Arrival Time: [11]] Sampling Technician: §W / DW Air Temp: §5 Purge / No Purge: N/ T.O.C. Elev. (ft): Well Diameter (in): 2* Initial D.T.W. (ft): Time: Confirm D.T.W. (ft): Time: (taken at initial gauging of all wells) Final D.T.W. (ft): Time: (taken at initial gauging of all wells) Final D.T.W. (ft): Time: (taken after sample collection) Water Quality Parameters - Recorded During Well Purging Time (deg C) (µS) (mS) (mg/L) pH (mV) (see reverse for catc.) Notes/Observat ////////////////////////////////////	Location: B	loomfield,	NM		-		Date: Nor 17,08	• •
Sampling Technician: <u>SW</u> / <u>DW</u> Air Temp: <u>55</u> Well Diameter (in): <u>2"</u> Total Well Depth (ft): <u>State at initial gauging of all wells</u>) Initial D.T.W. (ft): <u>1"</u> Time: <u>(taken rain to purging well</u>) Final D.T.W. (ft): <u>1"</u> Time: <u>(taken rain to purging well</u>) Vater Quality Parameters - Recorded During Well Purging Water Quality Parameters - Recorded During Well Purging Time (deg C) (µS) (mS) pH (mV) (see reverse for calc.) Notes/Observat 1/5C A.O. ?. 19'	Project: S	emi-Annu	al Sampling	· · · · · · · · · · · · · · · · · · ·	-	Arrival	Time: 1149	
Purge / No Purge: NP Total Well Deimster (in): 2" Initial D.T.W. (ft): Time: (taken alt initial gauging of all wells) Confirm D.T.W. (ft): Time: (taken alt initial gauging of all wells) Final D.T.W. (ft): Time: (taken alt antital gauging of all wells) Water Quality Parameters - Recorded During Well Purging Water Quality Parameters - Recorded During Well Purging Time (taken alt as sample collection) Water Quality Parameters - Recorded During Well Purging Time (deg C) (isso firm D.T.W. (ft): DO Quality Parameters - Recorded During Well Purging Time (deg C) (isso firm D.T.W. (ft): DO Quality Parameters - Recorded During Well Purging Time: Quality Purging (deg C) (us) (mg/L) PURGED VOLUME (see reverse for calc.) Notes/Observat (1/50) A.O ?. (9' Quality Parameters Could as a sample container Quality Parameters (include analysis method and number and type of sample container Ful VOCs by 8260 (3 x 40mL VOA w/ HCl) Scoup Dot Some poly w/ HNO3 filtered) Scoup De 2015 (3 x 40mL VOA w/ HCl)	Sampling Te	chnician:	BW/PW			Air	Temp: <u>35</u>	
Initial Dr.W. (ft):	Purge / N	lo Purge:	<u>NP</u>		Totol V	O.C. Ele Vall Dan	ev. (ft): +h. (ft):	•
Confirm D.T.W. (ft): Time: (taken prior to purging well) Final D.T.W. (ft): Time: (taken after sample collection) Water Quality Parameters - Recorded During Well Purging Time (deg C) (µS) (mS) (mg/L) pH (mV) (see reverse for calc.) Notes/Observat 1/50 A.O. ?. 1?/ Image: Sample collection Notes/Observat Notes/Observat 1/50 A.O. ?. 1?/ Image: Sample collection Notes/Observat I/50 A.O. ?. 1.0 Image: Sample collection Notes/Observat Malgitiii iiiiii iiiiiiiiiiiiiiiiiiiiiiiii	Initial D	TW (ff):	Z	Time:	. Total v	ven Dep	(taken at initial gauging	of all wells)
Time:	Confirm D	.T.W. (ft):		Time:			(taken prior to purging	well)
Water Quality Parameters - Recorded During Well Purging Time Conductivity DO ORP PURGED VOLUME (deg C) (µS) (mS) (mg/L) pH (mV) (see reverse for calc.) Notes/Observat 1/50 A.O. ?.19'	Final D	.T.W. (ft):		Time:			(taken after sample col	lection)
Temp Conductivity DO ORP PURGED VOLUME 1/50 A.O. ?.19' (mV) (see reverse for calc.) Notes/Observat 1/50 A.O. ?.19'			Water Quality	Paramete	ers - Rec	orded	During Well Purging	
Time (deg C) (µS) (mg/L) pH (mV) (see reverse for calc.) Notes/Observat 1/50 A.O ?.19' Image: Second S		Temp	Conductivity	DO		ORP	PURGED VOLUME	
1/50 A0 7.19' AW 9.20' Free NO Sample Product Callected. Product Callected. Analytical Parameters (include analysis method and number and type of sample container Salo (250mL poly w/ HNO3 filtered) Total Lead by 6010 (500mL poly w/ HNO3) Disposal of Purged Water:	Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observatio
G.W. 9.20' Free No Sample Product Callected. Product Callected. Analytical Parameters (include analysis method and number and type of sample container Full VOCs by 8260 (3 x 40mL VOA w/ HCl) GRO/DRO by 8015 (3 x 40mL VOA w/ HCl) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer Iotes/Comments	1150		AO	9.19'				
Image: Second			GW	9.20'				
Free Not Somple Product Callected. Product Product. Produtt Produtt.		<u> </u>	<u> </u>					
Free N() Sample Product Callected. Product Product.				· · ·			······	
Image:			<u>r</u>				<u> </u>	
Moduct Collected. Analytical Parameters (include analysis method and number and type of sample container SRO/DRO by 8015 (3 x 40mL VOA w/ HCl) SRO/DRO by 8015 (3 x 40mL VOA w/ HCl) Disposal of Purged Water:			tree		NO	<u> </u>	mple	
Analytical Parameters (include analysis method and number and type of sample container SRO/DRO by 8260 (3 x 40mL VOA w/ HCl) SRO/DRO by 8015 (3 x 40mL VOA w/ HCl) Dissolved Lead by 6010 (250mL poly w/ HNO ₃ filtered) Total Lead by 6010 (500mL poly w/ HNO ₃ filtered) Total Lead by 6010 (500mL poly w/ HNO ₃) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer Iotes/Comments			Product				Collected.	
Analytical Parameters (include analysis method and number and type of sample container SRO/DRO by 8260 (3 x 40mL VOA w/ HCl) SRO/DRO by 8015 (3 x 40mL VOA w/ HCl) Dissolved Lead by 6010 (250mL poly w/ HNO ₃ filtered) Total Lead by 6010 (500mL poly w/ HNO ₃ filtered) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer								
Analytical Parameters (include analysis method and number and type of sample container SRO/DRO by 8260 (3 x 40mL VOA w/ HCl) SRO/DRO by 8015 (3 x 40mL VOA w/ HCl) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer								
Analytical Parameters (include analysis method and number and type of sample container Second Structure Second								
Analytical Parameters (include analysis method and number and type of sample container Full VOCs by 8260 (3 x 40mL VOA w/ HCl) GRO/DRO by 8015 (3 x 40mL VOA w/ HCl) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer								
Analytical Parameters (include analysis method and number and type of sample container Full VOCs by 8260 (3 x 40mL VOA w/ HCl) GRO/DRO by 8015 (3 x 40mL VOA w/ HCl) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer								
Analytical Parameters (include analysis method and number and type of sample container Full VOCs by 8260 (3 x 40mL VOA w/ HCl) GRO/DRO by 8015 (3 x 40mL VOA w/ HCl) Dissolved Lead by 6010 (250mL poly w/ HNO ₃ filtered) Total Lead by 6010 (500mL poly w/ HNO ₃) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer								
Analytical Parameters (include analysis method and number and type of sample container Full VOCs by 8260 (3 x 40mL VOA w/ HCl) GRO/DRO by 8015 (3 x 40mL VOA w/ HCl) Dissolved Lead by 6010 (250mL poly w/ HNO ₃ filtered) Total Lead by 6010 (500mL poly w/ HNO ₃) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer								
Analytical Parameters (include analysis method and number and type of sample container Full VOCs by 8260 (3 × 40mL VOA w/ HCl) GRO/DRO by 8015 (3 × 40mL VOA w/ HCl) Dissolved Lead by 6010 (250mL poly w/ HNO ₃ filtered) Total Lead by 6010 (500mL poly w/ HNO ₃) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer								
Full VOCs by 8260 (3 x 40mL VOA w/ HCl) GRO/DRO by 8015 (3 x 40mL VOA w/ HCl) Dissolved Lead by 6010 (250mL poly w/ HNO3 filtered) Total Lead by 6010 (500mL poly w/ HNO3) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer	Analytica	I Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers
GRO/DRO by 8015 (3 x 40mL VOA w/ HCI) Dissolved Lead by 6010 (250mL poly w/ HNO ₃ filtered) Total Lead by 6010 (500mL poly w/ HNO ₃) Disposal of Purged Water:	ull VOCs by	8260 (3 x	40mL VOA w/ H	ICI)				
Dissolved Lead by 6010 (250mL poly w/ HNO ₃ filtered) Total Lead by 6010 (500mL poly w/ HNO ₃) Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer Iotes/Comments	GRO/DRO by	8015 (3 x	40mL VOA w/ H	HCI)				
Disposal of Purged Water: Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer Iotes/Comments	Dissolved Lea	d by 6010	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead b	by 6010 (500mL poly w/	HNO ₃)
Collected Samples Stored on Ice in Cooler: Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer Notes/Comments		D	isposal of Purg	ed Water:				
Chain of Custody Record Complete: Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer Iotes/Comments	Collecter	Samples	s Stored on Ice	in Cooler:				
Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM aquipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer lotes/Comments	сі Сі	nain of Cu	istody Record (Complete:				·
Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter, and New Disposable Bailer				somplete.				
and New Disposable Bailer Iotes/Comments				aporatory:		onnenta	AI AITAIYSIS LAD, AIDUQU	
and New Disposable Bailer Iotes/Comments	Equipment U	sed Durin	g Sampling:		Keck Wa	ter Level	, YSI Water Quality Met	er,
Notes/Comments					and New	Disposa	ble Bailer	······
		ents						
	lotes/Comm							· · · ·
	lotes/Comm							
	lotes/Comm			<u> </u>	<u> </u>		<u> </u>	

 $\frac{2}{4}$

6 5 1

* ***

, n , n , n

1 A A

رد. دور ا

1997 - 1997 1997 - 1997 1997 - 1997 - 1997 1997 - 1

10 st 1

lonitor We	eli No:	TW-30			624 E. Comanche, Farmington NM 87401						
Site	Thriftway #	810 Refinery			Tel. (505) 564-2281 Fax (505) 324-2022 Project No : AFS 030203						
Location:	Bloomfield,	NM		-	i ioje	Date: Dec 18.08	•				
Project:	Semi-Annu	al Sampling	·	-	Arrival	Time: 1011	-				
ampling T	echnician:	<u>NW/DW</u>		- т		Temp: <u>38</u>	-				
Well Dia	meter (in):	2"		- Total V	Vell Dep	th (ft): 7,14					
Initial	D.T.W. (ft):	5.90	Time:		3	(taken at initial gauging	of all wells)				
Confirm Final	D.T.W. (ft):		Time: Time:			(taken prior to purging	well) lloction				
Fillal	D.1. VV . (11).		inne.								
	ويتعارفه والمحمد والم	Water Quality	Paramete	ers - Rec	orded l	During Well Purging	 				
	Temp	Conductivity	DO		ORP	PURGED VOLUME					
Time	(deg C)	(µS) (mS)	(mg/L)	pH	(mV)	(see reverse for calc.)	Notes/Observations				
1024	12.89	6.328	6.25	6.46	-66.2	D:27					
1029					·· ··	ł	samples collecte				
) 				
			·····								
						- <u></u>					
							· · · · · · · · · · · · · · · · · · ·				
Analytic	al Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)				
ill VOCs b	v 8260 (3 x	40mL VOA w/ H	CI)	<u> </u>							
	v 8015 (3 x										
ssolved Le	ad by 6010	(250mL poly w/	HNO ₃ filter	ed) Tota	al Lead b	y 6010 (500mL poly w/	HNO ₃)				
	D	isposal of Purg	ed Water:			<u> </u>	<u> </u>				
Collecte	ed Samples	s Stored on Ice	in Cooler:			<u> </u>					
(Chain of Cu	stody Record (Complete:								
		Analytical La	boratory:	Hall Envi	ronmenta	al Analysis Lab. Albuqu	eraue. NM				
nuinment	Used Durin	a Samplina:	······································	Keck Wa	ter Level	YSI Water Quality Me	er				
Jaikinent		.a		and New	Disnosa	ble Bailer					
toglCom	nonte	amille cl.	0.0 ×	Set	0						
nes/com	nents	possible sh	sen m	any	<u></u>		······································				
				·							
			·······	. <u> </u>	·						

Monitor M	/ell No:	TW-31			624 F (Comanche Farmington	NM 87401
			-		Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	: Thriftway #	810 Refinery			Proje	ct No.: AES 030203	
Location	Bloomfield,	NM		-	-	Date: Dec 6,08	-
Project	Semi-Annu	al Sampling		_	Arrival	Time: 1314	-
Sampling	Technician:	NW/DN			Air	Temp: <u>375</u>	-
Purge Wall Di	/ NO Purge: iamotor (in):	<u>NP</u>		. I Total V	Voll Don	ev. (π): th (ft):	<u>,</u>
	ID.T.W. (ft):	7.02	Time:	- 1317	ven bep	(taken at initial gauging	i of all wells)
Confirm	D.T.W. (ft):		Time:			(taken prior to purging	well)
Fina	I D.T.W. (ft):		Time:			(taken after sample col	llection)
		Water Quality	Paramete	ers - Rec	orded	During Well Purging	
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations
1323	14.00	7.298	2.91	6.37	12.9	0.25	
1378						1	sanslescolled
1000							
		<u> </u>					
	ļ						- <u></u>
	<u> </u>					······································	······································
	ļ						
<u> </u>							
			L				· · ·
Analyti	ical Param	eters (include	analysis	method	and nu	mper and type of sa	mple containers)
ull VOCs I	by 8260 (3 x	40mL VOA w/ H	ICI)				
GRO/DRO	by 8015 (3 x	40mL VOA w/ ł	-ICI)				
Dissolved L	ead by 6010) (250mL poly w/	HNO ₃ filter	ed) Tota	al Lead b	oy 6010 (500mL poly w/	HNO ₃)
	 r	isposal of Pure	ed Water				. <u></u>
Caller	tod Commis	- Stored on le-	in Coolor				
COllec	ieu sampie	s stored on ICe	m cooler:				
	Chain of C	ustody Record	Complete:			····	
		Analytical L	aboratory:	Hall Envi	ronmenta	al Analysis Lab, Albuqu	erque, NM
Equipment	t Used Durin	ng Sampling:		Keck Wa	ter Level	, YSI Water Quality Met	er,
		-		and New	Disposa	ble Bailer	
	mente		······		<u> </u>		
		<u> </u>			<u> </u>	······································	· · · · · · · · · · · · · · · · · · ·
Notes/Com				···		<u></u>	
Notes/Com							
Notes/Com						<u> </u>	
Notes/Com						· · · · · · · · · · · · · · · · · · ·	

\$ \$ K.

58 X 20

Links.

1.24

<u>۵... ۵.</u>۵.

A.A. -

9

200 e 41

1. S. L.

the first

Monitor Well	No:	TW-32			624 F (Comanche Farmington	NM 87401
					Tel. (50	5) 564-2281 Fax (505)	324-2022
Site: T	nriftway #8	310 Refinery		-	Proje	ct No.: AES 030203	
Location: BI	loomfield,	NM		-	_	Date: Dec 17,08	-
Project: Se	emi-Annua	al Sampling		-	Arrival	Time: 16 10	-
Sampling Tee	cnnician:	<u>BW/DW</u>	·	- т		1emp: <u>35</u>	-
Well Diam	eter (in):	<u>2"</u>	<u>.</u>	- Total V	Nell Den	th (ff)	
Initial D.	T.W. (ft):		Time:		ren zep	(taken at initial gauging	of all wells)
Confirm D.	T.W. (ft):		Time:			(taken prior to purging	well)
Final D.	T.W. (ft):		Time:			(taken after sample co.	llection)
		Nater Quality	Paramete	ers - Reo	corded	During Well Purging)
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations
	AU	7.2.2					
	<u> </u>	8,79	<u>_</u> ,				
6	<u></u>						
					· · · · · · · · · · · · · · · · · · ·		
		Ere.		N 50	C		
		$\overline{)}$			00	ingre	,,,,,
··		frodled				Colleded_	
····							
			,				
	·						
Analytica	l Parame	ters (include	analysis		and nu	mber and type of sa	mple containers)
Full VOCs by 8	3260 (3 x /	40mL VOA w/ H					
	8015 (3 v		<u></u>	·			
Dissolved Lea	d by 6010	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead b	by 6010 (500mL poly w/	HNO ₃)
	Di	isposal of Purg	ed Water:				
Collected	Samples	Stored on Ice	in Cooler:				
Ch	ain of Cu	stody Record (Complete:				
			boratorv:	Hall Envi	ronment	al Analysis Lab. Albuqu	erque. NM
auinment H	sed Durin	a Samplina:	······································	Keck Wa	ter Level	YSI Water Quality Ma	ter
-quipment Ut	sa puni	a cambuna.		and Now	Dienoen	he Bailer	
	ан тараан алар алар алар алар алар алар алар				Disposa		
lotes/Comme	ents				·	······································	
	<u> </u>						·
			••••••••••••••••••••••••••••••••••••••				

Mon:4 14		TW/_33		÷.	624 = 4	Comonoho Earminaton	NM 87404
	en no:	1 44-00	-		Tel (50	5) 564-2281 Fax (505)	324-2022
Site:	Thriftway #8	310 Refinery	•	· .	Proje	ct No.: AES 030203	
Location:	Bloomfield,	NM			-	Date: Dec17.08	-
Project:	Semi-Annua	al Sampling			Arrival	Time: <u>1746</u>	_
Sampling	l echnician:	<u>3W//12W</u>		т		1emp: <u>35</u>	-
Well Di	ameter (in):	2"		Total \	Nell Dep	th (ft):	
Initial	D.T.W. (ft):		Time:			(taken at initial gauging	g of all wells)
Confirm	D.T.W. (ft):		Time:			(taken prior to purging	well)
Final	D.T.W. (ft):		Time:			(taken after sample co	llection)
	1	Water Quality	Paramete	rs - Ree	corded	During Well Purging	1
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observation
1343	AO	12.96					
	ŊŴ	13.02					
	·						
		t			6	C	
		Ves	1 Na	ICF	FA	DAMOLO	[blecked
						o de 1970	
<u> </u>							
				<u></u>			
<u> </u>						·	
Analyti	cal Parame	eters (include	analysis n	nethod	and nu	mber and type of sa	mple containers)
ull VOCs t	oy 8260 (3 x -	40mL VOA w/ H	ICI)				
GRO/DRO	by 8015 (3 ×	40mL VOA w/ ł					
Dissolved L	ead by 6010	(250mL poly w/	HNO ₃ filtere	ed) Tot	al Lead b	by 6010 (500mL poly w/	HNO ₃)
	п	isposal of Purr	ed Water:			<u></u>	<u> </u>
Collect	ed Samnles	Stored on Ice	in Cooler:		<u> </u>	· · · · · · · · · · · · · · · · · · ·	
Concor	Chain of Cu	stody Pecord	Complete:				
					FORMATI	ol Apolypia Lab. Albu	
						ai Analysis Lab, Albuque	
quipment	Used Durin	g Sampling:	ł		Diana	he Deiler	er,
				and New	Uisposa		
	ments						
Notes/Com							
Notes/Com							
Notes/Com						······································	·····

الله الم الم الم الم

A Part

 $\sum_{i=1}^{n-1} \frac{1}{i} \sum_{i=1}^{n-1} \frac{1}{i} \frac{1}{i} \sum_{i=1}^{n-1} \frac{1}{i} \frac{1}{i} \sum_{i=1}^{n-1} \frac{1}{i} \sum_{i$

- 1 e -

8 10 a 2 - - -

18

24-1

Site: Thriftway #810 Refinery Project No.: AES 030203 Location: Bloomfield, NM Date: Dect % 0 % Project: Semi-Appual Sampling Arrival Time: Dect % 0 %						
Location: Bloomfield, NM Date: Dec. 8, 08 Project: Semi-Annual Sampling Arrival Time: Arrival Time:	Project No.: AES 030203					
Project: Semi-Appual Sampling Arrival Time: Arrival Time:	Date: $Drc18,08$					
rejeen een rinder europing	Arrival Time:					
Sampling Technician: Air Temp:						
Purge / No Purge: NP T.O.C. Elev. (ft):						
Initial D T W (fft): $17.0.2$ Time: 11.5 (taken at initial gauging of all wells)						
Confirm D.T.W. (ft): Time: (taken prior to purging well)						
Final D.T.W. (ft): Time: (taken after sample collection)						
Water Quality Parameters - Recorded During Well Purging						
Temp Conductivity DO ORP PURGED VOLUME						
Time (deg C) (µS) (mS) (mg/L) pH (mV) (see reverse for calc.) Notes/Obse	rvations					
1202 14, 29 6.744 3.91 7.48 183.8 0.95						
1207 Januaryon	Collect					
Analytical Parameters (include analysis method and number and type of sample conta	iners)					
ull VOCs by 8260 (3 x 40mL VOA w/ HCl)						
GRO/DRO by 8015 (3 x 40mL VOA w/ HCl)						
issolved Lead by 6010 (250mL poly w/ HNO ₃ filtered) Total Lead by 6010 (500mL poly w/ HNO ₃)						
Disposal of Purged Water:						
Collected Samples Stored on Ice in Cooler:						
Chain of Custody Record Complete:						
Analytical Laboratory: Hall Environmental Analysis Lab, Albuquerque, NM						
Equipment Used During Sampling: Keck Water Level, YSI Water Quality Meter,						
and New Disposable Bailer						
lotes/Comments						
revised: 05/23/07	<u></u>					

Monitor W	/ell No:	TW-35	_		624 E. 0	Comanche, Farmington	NM 87401
<u></u>			_		Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	: Thriftway #	810 Refinery			Proje	ct No.: AES 030203	-
Location	Bloomfield,	NM al Sampling		-	Arrival	Date: $ \mathcal{L}_{\mathcal{D}} \mathcal{D}$	-
Sampling	Technician:	krw//Dk/		-	Air	Temp: 3 9	-
Purge	/ No Purge:	NP I NP		- т	.O.C. Ele	ev. (ft): 🙎	·
Well Di	iameter (in):	2"		Total V	Nell Dep	th (ft): 🛛 😰 22.	34
Initia	I D.T.W. (ft):	5.2	Time:	1217		(taken at initial gauging	g of all wells)
Contirm	ו D.I.W. (π): דיס ד W. (π)י		_ lime:			(taken prior to purging)	Well) llection)
	1 -	Water Quality	Paramete	ers - Red	coraea		
Timo	(deg C)	Conductivity			ORP		Notos/Obsorvations
<u> </u> 712		(µS) (mS) 1 0 2 9	(mg/L) 11 29		1 cg if	(see reverse for calc.)	Notes/Observations
1220		1.14	4.7	1.01.	18/.7	0.65	
1228				1		/	Samples collec
						· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·					
	· · · · ·					<u></u>	
							- <u></u>
							ing
Analyti	ical Param	eters (include	analysis	method	and nu	mber and type of sa	mple containers)
	by 8260 (3 x	40mL VOA W/ F					
GRO/DRO	by 8015 (3 x	40mL VOA w/ I	HCI)				
		(250mL poly w		eu) 10			
	D	isposal of Pure	ged Water:		<u> </u>		
Collec	ted Samples	s Stored on Ice	in Cooler:				
	Chain of Cu	istody Record	Complete:		. <u> </u>		
		Analytical L	aboratory:	Hall Envi	ronmenta	al Analysis Lab, Albuque	erque, NM
Equipment	t Used Durin	a Samplina:	•	Keck Wa	ter Level	. YSI Water Quality Met	er.
-daile		.g eapg.		and New	Disposa	hle Bailer	
					Dioposa		
votes/Com	IMENTS						
						······	

*

1

) _____ _____

Ż

a a

24 90

t s - s k - ^{ar} s ar

Jonitor W	KING WE		G RECO	KD	Anima	as Environmenta	Il Services				
NOTINO VA	ell No:	TW-36			624 E. (Comanche, Farmington	NM 87401				
Citer	Thriffword #	210 Dofiner	ر ارد میکرد. روای میکرد کرده میکرد است.		Tel. (50	5) 564-2281 Fax (505)	324-2022				
Site:	Bloomfield	NM		-	Date: Neck ng						
Project:	Semi-Annua	al Sampling		$- \frac{\text{Date: } 12018 06}{\text{Arrival Time: } 1235}$							
Sampling	Technician:	NWIDW		Air Temp: $\mathcal{T} = \mathcal{T} = \mathcal{T}$							
Purge	/ No Purge:	NP		т	.O.C. Ele	v. (ft):	9				
Well Dia	ameter (in):	2"		Total V	Nell Dep	th (ft): <u>18 20</u>	.35				
Initial	D.T.W. (ft):	13.03	Time:	12.30	1	(taken at initial gauging	g of all wells)				
Confirm		Time:	.		(taken prior to purging	Well) llection)					
T mai	D.1.00. (IC).		Time.								
		Water Quality	Paramete	ers - Ree	corded	During Well Purging	l				
	Temp	Conductivity	DO		ORP	PURGED VOLUME					
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations				
1245	15.28	7.874	3.60	6.94	-270.7	0.25					
12,49						1	Samples collicte				
							1				
				1			·····				
						· · · · · · · · · · · · · · · · · · ·					
			•	ļ	[<u> </u>				
					[
						· · · · · · · · · · · · · · · · · · ·					
	cal Paramo	eters (include	analysis	method	and nu	mber and type of sa	mple containers)				
Analyti	cal ratating		CIV		5 · · · · · · · · · · · · · · · · · · ·						
Analytic	by 8260 (3 x	40mL VOA w/ H	01)								
Analytic	by 8260 (3 x	40mL VOA w/ H	<u>ici)</u>								
Analyticull VOCs b RO/DRO I issolved Lo	by 8260 (3 x by 8015 (3 x ead by 6010	40mL VOA w/ H 40mL VOA w/ H (250mL poly w/	ICI) HNO ₃ filter	ed) Tot	al Lead b	by 6010 (500mL poly w/	HNO ₃)				
Analytic ull VOCs b RO/DRO I issolved Lo	by 8260 (3 x by 8015 (3 x ead by 6010	40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Pure	ICI) HNO ₃ filter	red) Tot	al Lead t	oy 6010 (500mL poly w/	HNO ₃)				
Analytic ull VOCs b RO/DRO I issolved Lu	by 8260 (3 x by 8015 (3 x ead by 6010 D	40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg	ICI) HNO ₃ filter ed Water:	ed) Tot	al Lead t	oy 6010 (500mL poly w/	HNO ₃)				
Analyti ull VOCs b RO/DRO I issolved La	by 8260 (3 x by 8015 (3 x ead by 6010 D ced Samples	40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice	ICI) HNO ₃ filter ed Water: in Cooler:	ed) Tot	al Lead t	oy 6010 (500mL poly w/	HNO ₃)				
Analyti ull VOCs b RO/DRO I issolved Lu Collect	by 8260 (3 x by 8015 (3 x ead by 6010 D ced Samples Chain of Cu	40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice ustody Record (ICI) HNO ₃ filter ed Water: in Cooler: Complete:	red) Tot	al Lead t	by 6010 (500mL poly w/	HNO ₃)				
Analyti ull VOCs b RO/DRO I issolved L Collect	by 8260 (3 x by 8015 (3 x ead by 6010 D ced Samples Chain of Cu	40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice ustody Record (Analytical La	ICI) HNO ₃ filter ed Water: in Cooler: Complete: aboratory:	red) Tot	al Lead t	by 6010 (500mL poly w/	HNO ₃) erque, NM				
Analyti ull VOCs b RO/DRO I issolved L Collect quipment	by 8260 (3 x by 8015 (3 x ead by 6010 Chain of Cu Used Durin	40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice ustody Record (Analytical La ng Sampling:	ICI) HNO ₃ filter ed Water: in Cooler: Complete: aboratory:	ed) Tot Hall Env Keck Wa	ironmenta	by 6010 (500mL poly w/ al Analysis Lab, Albuqu , YSI Water Quality Me	HNO₃) erque, NM ter,				
Analyti ull VOCs b RO/DRO I vissolved L Collect quipment	by 8260 (3 x by 8015 (3 x ead by 6010 D ced Samples Chain of Cu Used Durin	40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice ustody Record (Analytical La ng Sampling:	ICI) HNO ₃ filter ed Water: in Cooler: Complete: aboratory:	red) Tot Hall Envi Keck Wa and New	ironmenta iter Level	by 6010 (500mL poly w/ al Analysis Lab, Albuqu , YSI Water Quality Me ble Bailer	HNO ₃) erque, NM ter,				
Analyti ull VOCs b RO/DRO I issolved L Collect quipment otes/Com	by 8260 (3 x by 8015 (3 x ead by 6010 D red Samples Chain of Cu Used Durin	40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice astody Record (Analytical La ng Sampling:	ICI) HNO ₃ filter ed Water: in Cooler: Complete: aboratory:	Hall Envi Keck Wa and New	ironmenta iter Level	al Analysis Lab, Albuqu , YSI Water Quality Me ble Bailer	HNO ₃) erque, NM ter,				
Analyti ull VOCs b RO/DRO I vissolved L Collect quipment otes/Com	by 8260 (3 x by 8015 (3 x ead by 6010 D ced Samples Chain of Cu Used Durin	40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice ustody Record (Analytical La ng Sampling:	ICI) HNO ₃ filter ed Water: in Cooler: Complete: aboratory:	Hall Envi Keck Wa and New	ironmenta iter Level Disposa	by 6010 (500mL poly w/ al Analysis Lab, Albuqu , YSI Water Quality Me ble Bailer	HNO3) erque, NM ter,				
Analyti ull VOCs b RO/DRO I issolved L Collect quipment otes/Com	by 8260 (3 x by 8015 (3 x ead by 6010 D ced Samples Chain of Cu Used Durin ments	40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice istody Record (Analytical La ng Sampling:	ICI) HNO ₃ filter ed Water: in Cooler: Complete: aboratory:	ed) Tot Hall Envi Keck Wa and New	ironmenta iter Level Disposa	al Analysis Lab, Albuqu , YSI Water Quality Me ble Bailer	HNO ₃) erque, NM ter,				
Analyti ull VOCs b RO/DRO I issolved L Collect quipment otes/Com	by 8260 (3 x by 8015 (3 x ead by 6010 D ced Samples Chain of Cu Used Durin ments	40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice ustody Record (Analytical La ng Sampling:	ICI) HNO ₃ filter ed Water: in Cooler: Complete: aboratory:	Hall Envi Hall Envi Keck Wa and New	ironmenta ter Level Disposa	al Analysis Lab, Albuqu , YSI Water Quality Me ble Bailer	HNO3) erque, NM ter,				
Analyti ull VOCs t RO/DRO I issolved L Collect quipment otes/Com	by 8260 (3 x by 8015 (3 x ead by 6010 D ced Samples Chain of Cu Used Durin ments	40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice istody Record (Analytical La ng Sampling:	ICI) HNO ₃ filter ed Water: in Cooler: Complete: aboratory:	ed) Tot Hall Env Keck Wa and New	ironmenta iter Level	al Analysis Lab, Albuqu , YSI Water Quality Me ble Bailer	HNO ₃) erque, NM ter,				

Monitor W	ell No:	TW- 37		2	624 E. (Comanche, Farmington	NM 87401
			_		Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	Thriftway #	810 Refinery	1		Proje	ct No.: AES 030203	
Location	Bloomfield,	NM		-		Date: 12/17/08	_
Project:	Semi-Annu	al Sampling		_	Arrival	Time: <u>1420</u>	-
Sampling Purge	/ No Purge:	NP		- т	.O.C. Ele	remp. <u>35</u>	
Well Di	ameter (in):	2"		- Total	Well Dep	th (ft):	6.5
Initia	D.T.W. (ft):	10.57	Time:			(taken at initial gauging	g of all wells)
Confirm	D.T.W. (ft):		Time:		· · · · · · · · · · · · · · · · · · ·	(taken prior to purging	well) Nection
	D.T. vv . (II).		- Time.				
	,	Water Quality	Paramete	ers - Re	corded	During Well Purging	J
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	pH	(mV)	(see reverse for calc.)	Notes/Observation
1425	14.02	4.698	3.50	6.51	-221.3	0.25	
1435		F			<u></u>	<u> </u>	Samples collecte
							······································
·						······································	
<u></u>							
				-		,,	· · · · · · · · · · · · · · · · · · ·
<u></u>	 						
<u> </u>							
<u> </u>				Ţ.		<u> </u>	
<u> </u>			. <u> </u>	<u>†</u>			· · · · · · · · · · · · · · · · · · ·
Analyti Full VOCs I GRO/DRO Dissolved L	cal Parame by 8260 (3 x by 8015 (3 x lead by 6010	eters (include 40mL VOA w/ H 40mL VOA w/ H 0 (250mL poly w/	analysis ICI) ICI) ICI)	method red) To	and nu tal Lead t	mber and type of sa	HNO ₃)
a a an	D	isposal of Purc	jed Water:				
	ted Samples	s Stored on Ice	in Cooler:				
Collect	Chain of Cu	ustody Record	Complete			······································	
Collec		Analytical I	aboratore	Hall Env	ironment	al Analysis Lab. Albuqu	
Collec		Analytical La	aboratory:			ai Anaiysis Lab, Albuqu	
Collec		0		Neck Wa	ater Level	, YSI water Quality Me	ter,
Collec	Used Durin	ng Sampling:			. D:	hts Dellas	
Collect Equipment	Used Durir	ng Sampling:		and New	/ Disposa	ble Bailer	
Collec Equipment	Used Durin	ng Sampling:	Sam	and New	Disposa	ble Bailer Mez odor	
Collect Equipment Notes/Com	: Used Durin ments ノ ル い みい	ng Sampling: Theen on Ity, dork	Sam gray	and New	Disposa	ble Bailer me odor	
Collec Equipment lotes/Com	used Durin Intents ע ד נא אני	ng Sampling: Theen the lty, derk	sam gray	and New	v Disposa	ble Bailer me odor	

· · · ·

 $\overline{(q,k)}_{ij}$

1

. Ра 1

0.8 cm

q.

 $\frac{1}{2}$

¢. ----;-;-

The start of

,γ ∰αι⁴α

Monitor Well No.		TW-38			624 F (Comanche Farmington	NM 87401			
	-				Tel. (50	5) 564-2281 Fax (505)	324-2022			
Site: Thrifty	vay #8	10 Refinery		_	Proje	ct No.: AES 030203	nin alay a sa ang ang ang ang ang ang ang ang ang an			
Location: Bloom	field, I	NM		Date: Dec 17, 08						
Sampling Techni	cian:	BIN/ DIN/		-	Air	Temp: 25	_			
Purge / No Pi	urge:	NP		т	O.C. Ele	ev. (ft):	-			
Well Diameter	(in):	2"			Vell Dep	th (ft): <u>/5,5 (</u>	·			
Confirm D.T.W	. (π): . (ft):	1.55	Time:	5 32		(taken at initial gauging (taken prior to purging	g of all wells) well)			
Final D.T.W	. (ft): _	·····	Time:			(taken after sample co	llection)			
· · · · · · · · · · · · · · · · · · ·	V	Vater Quality	Paramete	ers - Red	orded	During Well Purging]			
Ten	np	Conductivity	DO		ORP	PURGED VOLUME				
Time (deg	(C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations			
1540 129	62	5.466	4.06	6.95	-179.3	0.25				
1545							samples collec			
	·									
			·····							
						· · · · · · · · · · · · · · · · · · ·	······································			
			<u></u>							
Analytical Pa	rame	ters (include	analysis	method	and nu	mber and type of sa	mple containers)			
ull VOCs by 8260) (3 x 4	0mL VOA w/ H	CI)			······				
RO/DRO by 8015	5 (3 x 4	40mL VOA w/ H				w 6010 (500ml noly w				
SOURCE LEAU DY		sposal of Pure	ed Water:							
Collected Sar	nples	Stored on Ice	in Cooler:				······································			
Chain	of Cu	stody Record (Complete:				<u></u>			
		Analytical L	aboratory:	Hall Envi	ronment	al Analysis Lab. Albuqu	erque. NM			
quipment Used I	During	a Samplina:		Keck Wa	ter Level	, YSI Water Quality Me	ter.			
		,	····	and New	Disposa	ble Bailer				
otes/Comments	ch	ent No	no <h a<="" td=""><td>p n-</td><td></td><td></td><td></td></h>	p n-						
	<u>\</u> ^	0					····			
				•••••• <u>•</u> ••			<u>, , , , , , , , , , , , , , , , , , , </u>			

Monitor W	ell No:	TW-39			624 E. (Comanche, Farmington	NM 87401
			•		Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	Thriftway #8	810 Refinery		-	Proje	ct No.: AES 030203	
Location	Bloomfield,	NM			Arrivol	Date: $Dec 8 D8$	_
Project Sampling	Technician				Aniva	Temp: 37	-
Purge	/ No Purge:	NP		Т.	O.C. Ele	ev. (ft):	-
Well Di	ameter (in):	2"		Total V	Vell Dep	th (ft):	
Initia	D.T.W. (ft):		Time:			(taken at initial gauging	g of all wells)
Fina	D.T.W. (ff):	<u> </u>	Time:			(taken prior to purging (taken after sample co	well) llection)
	· - · · · · · · · · · · · · · · · · · ·	Water Quality	Paramete	rs - Roc	orded	During Well Purging	•
	Tamp	Conductivity					;
-	Temp				URP		
lime_		(µS) (mS)	(mg/L)	рн	(mv)	(see reverse for calc.)	Notes/Observatio
1055	R() =	1.10					
	UW=	1.11					
				····· , ,		A	
		CA	2en	- n	\mathcal{N}	Sample	
		2.				00	porta
						· · · · · · · · · · · · · · · · · · ·	
·····							
<u> </u>						····· ··· ···	
	ļ ļ					<u></u>	
Analyti	cal Parame	eters (include	analysis r	nethod	and nu	mber and type of sa	mple containers
ull VOCs I	oy 8260 (3 x 4	40mL VOA w/ H	CI)				
RO/DRO	by 8015 (3 x	40mL VOA w/ H	ICI)				
issolved L	ead by 6010	(250mL poly w/	HNO ₃ filtere	ed) Tota	al Lead b	y 6010 (500mL poly w/	HNO ₃)
	Di	isposal of Purg	ed Water:		a de la constantia de la c	an a	
Collect	ed Samples	Stored on Ice	in Cooler				<u></u>
50100	Chain of Cu	stody Becord (Completer			·	
			barete -		oproct.		
•			looratory:		onmenta	Analysis Lad, Albuqu	
quipment	Used Durin	g Sampling: _		Neck Wat	er Level	, YSI Water Quality Me	ier,
			ć	and New	Disposa	ble Bailer	
otes/Com	ments			······,	<u> </u>		

. 4

revised: 05/23/07

e e

× 4.

57

1. 2. A. A.

Ionitor W	ell No:	TW-40			624 E. (Comanche, Farmington	NM 87401				
					Tel. (50	5) 564-2281 Fax (505)	324-2022				
Site:	Thriftway #	810 Refinery			Proje	ct No.: AES 030203					
Location: Project:	Bloomfield,	NM al Sampling		12000000000000000000000000000000000000							
ampling]	Cechnician:	Nhi Dhi		$- \qquad \text{Arrivar time: } 1059$							
Purge	No Purge:	NP		T.O.C. Elev. (ft):							
Well Dia	ameter (in):	2"		Total V	Vell Dep	th (ft):					
Initial	D.I.W. (ft):	<u> </u>	Lime:	_1101		(taken at initial gauging (taken prior to purging	g of all wells) well				
Final	D.T.W. (ft):		Time:			(taken after sample co	llection)				
		Water Quality	Paramete	ers - Rec	orded	During Well Purging	······································				
	Tomp	Conductivity					, 				
T :											
lime	(deg C)	(µs) (ms)	(mg/L)	рн	(mv)	(see reverse for calc.)	Notes/Observations				
						· · · · · · · · · · · · · · · · · · ·					
						1 dott					
		Shee	Λ =	ruo s	amp	ele alle	CTCA				
	· · · · · · · · · · · · · · · · · · ·										
	<u>.</u>					· · · · · · · · · · · · · · · · · · ·					
							· · · · · · · · · · · · · · · · · · ·				
	ومرجوع فالمحمد	<u> </u>									
Analyti	cal Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)				
ull VOCs b	y 8260 (3 x	40mL VOA w/ H	CI)		•		· · · · · · · · · · · · · · · · · · ·				
RO/DRO I	by 8015 (3 x	40mL VOA w/ H	ICI)								
issolved L	ead by 6010	(250mL poly w/	HNO ₃ filter	red) Tot	al Lead b	oy 6010 (500mL poly w/	HNO ₃)				
	D	isposal of Purg	ed Water:			·····	<u></u>				
Collect	ed Samples	Stored on Ice	in Cooler:			·····	·				
	Chain of Cu	istody Record (Complete:	<u></u>							
		Analytical La	aboratory:	Hall Envi	ronmenta	al Analysis Lab, Albuqu	erque, NM				
quipment	Used Durin	g Sampling:		Keck Wa	ter Level	, YSI Water Quality Me	ter,				
				and New	Disposa	ble Bailer					
otes/Com	ments										
	<u>`</u>					· · · · · · · · · · · · · · · · · · ·					
		· · · · · · · · · · · · · · · · · · ·									

.

Monitor W	/ell No:	TW-41	_		624 E. C	Comanche, Farmington	NM 87401
			-		Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	: Thriftway #	810 Refinery		-	Projec	t No.: AES 030203	-
Location	: Bloomfield,	NM al Sampling		-	Arrival	Date: $\underline{Ncl8}, \underline{DD}$	-
Sampling	Technician	Arwil Dw/		-	Air	Тетр: 37	-
Purge	/ No Purge:	NP		- т	.O.C. Ele	v. (ft):	-
Well D	iameter (in):	2"		Total V	Nell Dep [.]	th (ft):	
Initia	I D.T.W. (ft):	5.85	Time:	1107		(taken at initial gauging	y of all wells)
Fina	1 D. Γ.Ψ. (π): I D T W. (ft):		Time:	····		(taken prior to purging (taken after sample co	well) llection)
		Water Quality	Paramete	ere - Roo	corded I	Quring Woll Burging	
	Tomp						,
Time	(deg C)		(ma/L)	На	(mV)	(see reverse for calc.)	Notes/Observations
1110	10.95	5.669	3.92	6.16	-339.4	0.25	
1115							Jan des Collect
<u> </u>							and the second
	<u> </u>						
	· · · · · · · · · · · · · · · · · · ·						
							· · · · · · · · · · · · · · · · · · ·
	1						
-							
						<u> </u>	
<u></u>							
Analyti	ical Param	eters (include	analysis	method	and nu	mber and type of sa	mple containers)
ull VOCs	by 8260 (3 x	40mL VOA w/ H	CI)				
RO/DRO	by 8015 (3 x	40mL VOA w/ H	ICI)				
Dissolved L	ead by 6010	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead b	y 6010 (500mL poly w/	HNO ₃)
		isposal of Pure	od Water		·		···
0 - 11 -	U 4 a d O c 1	Stand and	eu malei.			<u></u>	
Collec	ted Samples	s stored on Ice	m Cooler:			······	
	Chain of Cu	istody Record	Complete:				
		Analytical La	aboratory:	Hall Envi	ronmenta	I Analysis Lab, Albuque	erque, NM
quipment	t Used Durir	ig Sampling:		Keck Wa	ter Level,	YSI Water Quality Met	er,
				and New	Disposal	ole Bailer	
lotes/Con	nments <u>v</u>	otten odor	towel	<u> </u>			
		Wateris	1. blac	K	_		
	·						

Р į

,

.

зч С.

, e.,

4 7 *

	ell No:	TW-42			624 E. (Comanche. Farmington	NM 87401			
			•		Tel. (50	5) 564-2281 Fax (505)	324-2022			
Site	: Thriftway #	810 Refinery			Proje	ct No.: AES 030203	an a			
Location	Bloomfield,	NM		Date: Dec 16,08						
Project	Semi-Annu	al Sampling		Arrival Time: 33.9						
Sampling	Technician:	NW (DW		Air Temp: 35						
Purge Woll Di	/ No Purge:	<u>NP ·</u>		- I. Totol V	O.C. Ele	ev. (ft):	-			
Initia	D.T.W. (ft):	6.09	Time:	- 101211	ven Dep	(taken at initial gauging	n of all wells)			
Confirm	D.T.W. (ft):		Time:			(taken prior to purging	well)			
Fina	D.T.W. (ft):		Time:			(taken after sample co	llection)			
	an an an an an an an an an Anna an Anna	Water Quality	Paramete	ers - Rec	orded	During Well Purging				
	Temp	Conductivity	DO		ORP	PURGED VOLUME				
Time	(deg C)	(µS) (mS)	(mg/L)	pН	(mV)	(see reverse for calc.)	Notes/Observations			
1248	12.04	6.036	1.07	6.48	23.5	0.25				
1253							samplesuretad			
12/1					<u>_</u>	· · · · · · · · · · · · · · · · · · ·	Concera			
<u></u>	·		·····							
							······································			
							· ·			
Analyti	cal Parame	ters (include	analysis	method	and nu	mber and type of sa	mple containers)			
	ov 8260 (3 x	40ml VOA w/ H								
	by 8015 (3 x		<u></u>	·····						
issolved I	ead by 6010	(250mL poly w/	HNO₀ filter	ed) Tota	alleadt	ov 6010 (500ml poly w/	HNO ₂)			
A H		isposal of Purg		<u> </u>						
Collec	ted Samples	Stored on Ice	in Cooler:							
	Chain of Cu	stody Record	Complete:	<u>-</u>						
		Analytical La	aboratory:	Hall Envi	ronment	al Analysis Lab, Albuque	erque, NM			
quipment	Used Durin	g Sampling:		Keck Wa	ter Leve	I, YSI Water Quality Met	er,			
		••••		and New	Disposa	ble Bailer				
otoolCom	100 A M+A				H-alaanaa ahaa ahaa ahaa ahaa ahaa ahaa ah					
otes/Com	iments									
otes/Com	iments									
otes/Com	iments									
otes/Com	iments									

	RING WE	LL SAMPLIN	G RECO	RD	Anima	as Environmenta	I Services
Monitor W	ell No:	TW-43			624 E. C	Comanche, Farmington	NM 87401
		<u> </u>	•		Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	Thriftway #	810 Refinery			Proje	ct No.: AES 030203	
Location:	Bloomfield,	NM		-		Date: Dec 16,08	-
Project:	Semi-Annu	al Sampling	<u></u>	_	Arrival	Time: <u>140</u>	-
Sampling	lechnician:	<u>NW/DW</u>	<u></u>		Air Air	Temp: <u>34</u>	-
Woll Di	/ NO Purge:	2"		Total V	Vell Den	·V. (π): +h (#):	
Initia	D.T.W. (ft):	12.10	Time:	- 1405		(taken at initial gauging	_ g of all wells)
Confirm	D.T.W. (ft):		Time:			(taken prior to purging	well)
Final	D.T.W. (ft):		Time:			(taken after sample co	llection)
		Water Quality	Paramete	ers - Rec	orded I	During Well Purging]
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observation
1411	14.39	6.716	1.01	6.35	7.0	0.25	
1416			······································				Samples Collecte
<u> </u>	<u> </u>					· · · · · · · · · · · · · · · · · · ·	
	<u> </u>	<u> </u>		┼───┤			
	ļ	∤ ∤	,	┨────┤			
	 	├ ────┤	<u></u>	<u> </u>			
		7	_				
<u> </u>			<u> </u>	<u>†</u>			
				┟───┤			
·····							!
i							·····
					T		
Analyti	cal Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)
Analyti ⁻ ull VOCs t	cal Parame	eters (include 40mL VOA w/ H	analysis Cl)	method	and nu	mber and type of sa	mple containers)
Analyti -ull VOCs b 3RO/DRO	cal Parame by 8260 (3 x by 8015 (3 x	eters (include 40mL VOA w/ H 40mL VOA w/ H	analysis Cl) ICl)	method	and nui	mber and type of sa	mple containers)
Analyti ull VOCs b RO/DRO Dissolved L	cal Param	eters (include 40mL VOA w/ H 40mL VOA w/ H (250mL poly w/	analysis Cl) ICl) HNO ₃ filter	method ed) Tota	and nui	mber and type of sa	mple containers) HNO ₃)
Analyti -ull VOCs b 3RO/DRO Dissolved L	cal Parame by 8260 (3 x by 8015 (3 x ead by 6010	eters (include 40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg	analysis CI) ICI) HNO ₃ filter ed Water	method ed) Tota	and nui	mber and type of sa	mple containers) HNO ₃)
Analyti Full VOCs t RO/DRO Dissolved L	cal Parame by 8260 (3 x by 8015 (3 x ead by 6010 D	eters (include 40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg	analysis CI) ICI) HNO ₃ filter ed Water:	method ed) Tota	and nui	mber and type of sa	mple containers) HNO ₃)
Analyti Full VOCs t GRO/DRO Dissolved L Collect	cal Paramo by 8260 (3 x by 8015 (3 x ead by 6010 D ed Samples	eters (include 40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice	analysis Cl) ICl) HNO ₃ filter ed Water: in Cooler:	ed) Tota	and nui	mber and type of sa	mple containers) HNO ₃)
Analyti Full VOCs t RO/DRO Dissolved L Collect	cal Param by 8260 (3 x by 8015 (3 x ead by 6010 D ced Samples Chain of Cu	eters (include 40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice istody Record C	analysis CI) ICI) HNO ₃ filter ed Water: in Cooler: Complete:	method ed) Tota	and nui	mber and type of sa	mple containers) HNO ₃)
Analyti Full VOCs & GRO/DRO Dissolved L	cal Paramo by 8260 (3 x by 8015 (3 x ead by 6010 D ced Samples Chain of Cu	eters (include 40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg Stored on Ice Istody Record (Analytical La	analysis Cl) (Cl) HNO ₃ filter ed Water: in Cooler: Complete: iboratory:	red) Tota Hall Envir	and nui	mber and type of sa y 6010 (500mL poly w/ al Analysis Lab, Albuque	mple containers) HNO ₃) erque, NM
Analyti Full VOCs to RO/DRO Dissolved L Collect	cal Paramo by 8260 (3 x by 8015 (3 x ead by 6010 D ced Samples Chain of Cu Used Durin	eters (include 40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice Istody Record C Analytical La Ig Sampling:	analysis Cl) ICl) HNO ₃ filter ed Water: in Cooler: Complete: boratory:	method ed) Tota Hall Envir Keck Wat	and nui al Lead b	mber and type of sa y 6010 (500mL poly w/ al Analysis Lab, Albuque , YSI Water Quality Met	mple containers) HNO ₃) erque, NM er,
Analyti Full VOCs to BRO/DRO Dissolved L Collect	cal Paramo by 8260 (3 x by 8015 (3 x ead by 6010 D ced Samples Chain of Cu Used Durin	eters (include 40mL VOA w/ H 40mL VOA w/ H 2000 (250mL poly w/ 2000 isposal of Purg 2000 Stored on Ice 2000	analysis CI) ICI) HNO ₃ filter ed Water: in Cooler: Complete: aboratory:	red) Tota Hall Envir Keck Wat	and nui al Lead b ronmenta ter Level, Disposal	mber and type of sa y 6010 (500mL poly w/ al Analysis Lab, Albuque , YSI Water Quality Met ble Bailer	mple containers) HNO ₃) erque, NM er,
Analyti -ull VOCs I -ull VOCS	cal Paramo by 8260 (3 x by 8015 (3 x ead by 6010 D ced Samples Chain of Cu Used Durin	eters (include 40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice istody Record C Analytical La ig Sampling:	analysis Cl) (Cl) HNO ₃ filter ed Water: in Cooler: Complete: boratory:	red) Tota Hall Envir Keck Wat	and nui al Lead b ronmenta ter Level, Disposal	mber and type of sa y 6010 (500mL poly w/ al Analysis Lab, Albuque , YSI Water Quality Met ble Bailer	mple containers) HNO ₃) erque, NM er,
Analyti Full VOCs to RO/DRO Dissolved L Collect	cal Paramo by 8260 (3 x by 8015 (3 x ead by 6010 D ced Samples Chain of Cu Used Durin ments	eters (include 40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice is ustody Record C Analytical La ig Sampling:	analysis CI) ICI) HNO ₃ filter ed Water: in Cooler: Complete: Noratory:	method ed) Tota Hall Envir Keck Wat and New	and nui al Lead b onmenta ter Level, Disposal	mber and type of sa y 6010 (500mL poly w/ al Analysis Lab, Albuque , YSI Water Quality Met ble Bailer	mple containers) HNO ₃) erque, NM er,
Analyti -ull VOCs t -ull VOCs	cal Paramo by 8260 (3 x by 8015 (3 x ead by 6010 D ted Samples Chain of Cu Used Durin ments	eters (include 40mL VOA w/ H 40mL VOA w/ H 250mL poly w/ isposal of Purg s Stored on Ice istody Record (Analytical La ig Sampling:	analysis CI) (CI) HNO ₃ filter ed Water: in Cooler: Complete: aboratory:	red) Tota Hall Envir Keck Wat	and nui al Lead b ronmenta ter Level, Disposal	mber and type of sa y 6010 (500mL poly w/ al Analysis Lab, Albuque , YSI Water Quality Met ble Bailer	mple containers) HNO ₃) erque, NM er,
Analyti -ull VOCs t -ull VOCs	cal Paramo by 8260 (3 x by 8015 (3 x ead by 6010 D ted Samples Chain of Cu Used Durin ments	eters (include 40mL VOA w/ H 40mL VOA w/ H 250mL poly w/ isposal of Purg s Stored on Ice Jstody Record C Analytical La Ig Sampling:	analysis Cl) HNO ₃ filter ed Water: in Cooler: Complete: Noratory:	method ed) Tota Hall Envir Keck Wat and New	and nui al Lead b ronmenta ter Level, Disposal	mber and type of sa y 6010 (500mL poly w/ al Analysis Lab, Albuque , YSI Water Quality Met ble Bailer	mple containers) HNO ₃) erque, NM er,
Analyti Full VOCs to RO/DRO Dissolved L Collect	cal Paramo by 8260 (3 x by 8015 (3 x ead by 6010 D ted Samples Chain of Cu Used Durin	eters (include 40mL VOA w/ H 40mL VOA w/ H (250mL poly w/ isposal of Purg s Stored on Ice istody Record (Analytical La ig Sampling:	analysis CI) ICI) HNO ₃ filter ed Water: in Cooler: Complete: aboratory:	method ed) Tota Hall Envir Keck Wat and New	and nui al Lead b onmenta ter Level, Disposal	mber and type of sa y 6010 (500mL poly w/ al Analysis Lab, Albuque , YSI Water Quality Met ble Bailer	mple containers) HNO ₃) erque, NM er,

•

- 222

•4

Annitor Ma					624 5 4	Comonobo Eorminator	NIM 07404				
MOUTION AVE	1 NO.				024 E. (Tel (50	5) 564-2281 Eav (505)	1NM 87401 324-2022				
Site:	hriftwav #	B10 Refinerv			Proie	ct No.: AES 030203					
Location:	Bloomfield,	NM		-	Date: De(7.08						
Project:	Semi-Annu	al Sampling		Arrival Time: [35]							
Sampling To	echnician:	BW/DW		-	Air	Temp: 35	-				
Purge /	No Purge:	<u>NP <i>l</i></u>		T	.O.C. Ele	v. (ft):	2045				
Well Dial	$\frac{1}{1} \frac{1}{1} \frac{1}$	2"	Timo	Iotal		th (ff): <u>96,49</u>					
Confirm I).T.W. (ff):	12.66	Time:	>>		(taken at initial yauying (taken prior to purging	y Or all wells) well)				
Final D).T.W. (ft):	<u> </u>	Time:			(taken after sample co	llection)				
<u></u>		Water Quality	Paramete	ers - Re	corded	Durina Well Puraina	1				
	Temp	Conductivity	DO		ORP	PURGED VOLUME					
Timo	(dog C)	/uS) /mS)		- - -	(m)()	(and reverse for cole)	Notor/Obconvotions				
17 - 0			215		112 4	(see reverse for calc.)	Notes/Observations				
1221	5.19	6.499	~~··	6.11	- 72.	0.23					
1406							Samples collected				
· · ·											
						· · ·					
·											
				<u> </u>	<u></u> †∙−−−-	<u></u>					
		1									
Analytic	al Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)				
ull VOCs by	8260 (3 x	40mL VOA w/ H	CI)								
RO/DRO by	<u>/ 8015 (3 x</u>	40mL VOA w/ H									
issolved Le	ad by 6010	(250mL poly w/	HNO ₃ filter	ed) lo	al Lead b	by 6010 (500mL poly w/	HNO ₃)				
	D	isposal of Purg	ed Water:								
Collecte	d Samples	Stored on Ice	in Cooler:			· ····	······································				
C	hain of Cu	istody Record (Complete:			······					
		Analytical La	aboratory:	Hall Env	ironmenta	al Analysis Lab, Albuqu	erque, NM				
quipment l	lsed Durin	g Sampling:		Keck Wa	ater Level	, YSI Water Quality Me	ter,				
	فارتك الكافر ويرعيان			and New	/ Disposa	ble Bailer					
otes/Comm	nents _〔	octoberm (dor on	420							
	selfy	, green by	own	mo	lor						
	7 8	- 0									
		141 / 21		•							
-------------	---------------	---------------------	-------------------------	------------	-----------	--	--------------------------	-----			
Monitor W	/ell No:	MW-21	_		624 E. (Comanche, Farmington	NM 87401				
	The 100				Tel. (50	5) 564-2281 Fax (505)	324-2022	4			
Site	Bloomfield	NM		-	Proje	Date: Dect 9 AG	-				
Project	Semi-Annua	al Sampling		-	Arrival	Time: 0905	-				
Sampling	Technician:	NWIDW		-	Air	Temp: 28	-	1			
Purge	/ No Purge:	NP /		Т.	O.C. Ele	v. (ft):					
Well Di	iameter (in):	2"			Vell Dep	th (ft):					
Initia	D.T.W. (ft):	3.4.5	Time: (0901		(taken at initial gauging (taken prior to purging	t of all wells) well)				
Final	D.T.W. (ft):		- Time:	<u></u>		(taken after sample col	lection)	1			
		Matar Quality	Devenuet	Dec	ordod I						
		Water Quality		ers - Red				-			
Time	(deg C)			Ll	(m)()		Notos/Obconvotions				
		$(\mu 3)$ $(\Pi 3)$	$(\Pi g/L)$	рп / 10		(see reverse for calc.)	Notes/Observations				
	III.UT	1.202	1.18	10.17	-66.T	0.23					
0915	<u> </u>		<u> </u>	 	<u> </u>		samples colle	the			
]			
]			
							<u> </u>	1			
								1			
<u> </u>											
							<u> </u>				
A nalvti	iaal Darama	tere (include					male containere)				
Analyti		eters (include	analysis	methoa		mber and type of sa	mple containers)				
ull VOCs I	by 8260 (3 x	40mL VOA w/ H	ICI)								
GRO/DRO	by 8015 (3 x	40mL VOA w/ H	HCI)								
Dissolved L	ead by 6010.	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead b	y 6010 (500mL poly w/	HNO ₃)				
1	D	isposal of Purg	ged Water:								
Collec	ted Samples	Stored on Ice	in Cooler:								
	Chain of Cu	Istody Record	Complete:								
			aboratory	Hall Envi	ronmente	- A Analysis Lab Albuque	erque NM				
Equipmont		a Samplina:	y	Kock Wo	ter Lovel	VSI Water Quality Met	or				
-drubiueu	useu Durin	y sampung:	. <u></u>	and Maria	Diener	ha Bailar					
	·······			and New	sposa						
Notes/Com	ments										
<u> </u>		····									
						- <u> </u>					

** ÷

i d L d L g

 $\sum_{i=1}^{N} \frac{\mathcal{T}_{i}}{\mathcal{T}_{i}} \frac{\mathcal{T}_{i}}{\mathcal{T}_{i}}$

19. and 10.

τ,

		MININZ			624 E. Comanche, Earmington NM 97404						
	INO:	MW-D-	-		Tel. (505) 564-2281 Fax (505) 324-2022						
Site: T	hriftway #8	310 Refinery		Project No.: AES 030203							
Location: B	loomfield,	NM		Date: $Dcl 9 08$							
Project: S	emi-Annua	al Sampling	·····	_	Arriva	Time: 0930''	-				
Sampling Te	chnician:	DWINW		Air Temp: 29							
Purge / N	vo Purge:	<u>NP</u>		- I. Totol V	.O.C. Ele	ev. (ft):	1				
Initial D.	.T.W. (ft):	41.5	Time:	- M32	^y en Dep	(taken at initial gauging	n of all wells)				
Confirm D	.T.W. (ft):		Time:			(taken prior to purging	well)				
Final D.	.T.W. (ft):		Time:			(taken after sample co	llection)				
	١	Nater Quality	Paramete	ers - Red	corded	During Well Purging					
	Temp	Conductivity	DO		ORP	PURGED VOLUME					
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations				
1935 0	1.88	10.910	5.55	10,62	-75.1	0.25					
0939	· · · · · · · · · · · · · · · · · · ·					0.5	Can der Collected				
····							Sur a Di les				
				}							
						·	· · · · · · · · · · · · · · · · · · ·				
							: 				
						······					
Analytica	I Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)				
ull VOCs by 8	8260 (3 x 4	40mL VOA w/ H	CI)			······································	** <u>***********************************</u>				
GRO/DRO by	8015 (3 x	40mL VOA w/ H	ICI)								
Dissolved Lea	id by 6010	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead i	oy 6010 (500mL poly w/	HNO ₃)				
	D	isposal of Purg	ed Water:								
Collected	Samples	Stored on Ice	in Cooler:	• <u>•</u> ••••••••••••••••••••••••••••••••••	-	· · · · · · · · · · · · · · · · · · ·					
oonected						· · · · · · · · · · · · · · · · · · ·					
Ch	nain of Cu	stoay Record	omplete:								
		Analytical La	aboratory:	Hall Envi	ronment	al Analysis Lab, Albuqu	erque, NM				
quipment U	sed Durin	g Sampling:	<u> </u>	Keck Wa	ter Leve	, YSI Water Quality Me	ter,				
	in the second second			and New	Disposa	ble Bailer					
lotes/Comm	ents										
							<u></u>				
						<u></u>					
		<u></u>			der Tenn no years an en en e	energi en genergi and an	n dan menungkan secara dari bilan dan dari yang secara sebah menungkan secara sebah secara sebah secara sebah s				

MONITO	RING WE	LL SAMPLIN	G RECO	RD	Anim	as Environmenta	I Services
Monitor W	ell No:	M/4/-8			624 F	Comanche Farmington	NM 87401
	CH NU.	IVLVV O			Tel (50	5) 564-2281 Fax (505) (324-2022
Site:	Thriftway #	310 Refinery			Proje	ct No.: AES 030203	
Location:	Bloomfield,	NM		_	, -	Date: Decl9.08	-
Project:	Semi-Annu	al Sampling		_	Arriva	Time: 1000	-
Sampling	Technician:	<u></u>			Air	Temp:	-
Purge Woll Di	/ NO Purge:	<u></u> 2"		. I V fetoT	U.C. Ele Volt Don	ev. (π): 	4
Initial	D.T.W. (ft):	<u>L</u>	Time:	_ 10(a) V	ven Deb	(taken at initial gauging	of all wells)
Confirm	D.T.W. (ft):		Time:			(taken prior to purging	well)
Final	D.T.W. (ft):		Time:			(taken after sample col	llection)
	۱ 	Water Quality	Paramete	ers - Rec	orded	During Well Purging	
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observatior
	· i						
	- 1				(
	<u> </u>	0015		110	JA	mple la lected	
				ļ.			
			WEN	nega	WST	MISSING	
	· · · · · · · · · · · · · · · · · · ·						
			·······				
Analyti ull VOCs b	cal Parame	eters (include	analysis Ci)	method	and nu	mber and type of sa	mple containers)
RO/DRO	by 8015 (3 x	40mL VOA w/ H	ICI)				
issolved L	ead by 6010	(250mL poly w/	HNO ₃ filter	ed) Tota	al Lead t	oy 6010 (500mL poly w/	HNO ₃)
	D	isposal of Purg	ed Water:				
Collect	ted Samples	Stored on Ice	in Cooler:				
	Chain of Cu	stody Record (Complete:				
		Analytical La	aboratory:	Hall Envi	ronment	al Analysis Lab. Albuque	erque, NM
quipment	Used Durin	g Sampling:		Keck Wa	ter Level	, YSI Water Quality Met	
				and New	Disposa	ble Bailer	
lotes/Com	iments						
		· · · · · · · · · · · · · · · · · · ·					· ·

.

. -

ľ

496 --

Monitor We	ll No:	<u>MW-9</u>	-		624 E. (Comanche, Farmington	NM 87401
Site: Location: E Project: S	Thriftway #8 Bloomfield, Semi-Annua	310 Refinery NM al Sampling		-	Projec Arrival	5) 564-2281 Fax (505) ct No.: AES 030203 Date: $\chi_{L} 9 , 08$ Time: $ 0 0$	-
Sampling To Purge / Well Diai	echnician: No Purge: meter (in):	$\frac{NW/DW}{P}$		Total \	`Air O.C. Ele. Vell Dep	Temp: <u>30</u> ev. (ft): th (ft):	
Confirm E Final E	D.T.W. (ft): D.T.W. (ft): D.T.W. (ft):		Time: Time: Time:			(taken at initial gauging (taken prior to purging (taken after sample co	y or all wells) well) llection)
		Water Quality	Paramete	ers - Reo	corded I	During Well Purging	l
Time	Temp (deg C)	Conductivity (uS) (mS)	DO (ma/L)	nH	ORP (mV)		Notes/Observations
1014	9.69	6.368	6.29	6.36	37.0	low yield	Cara da colla
							Sar yaus co w
Analytic	al Parame	oters (include	analysis	method	and nu	mber and type of sa	mple containers)
ull VOCs by	8260 (3 x	40mL VOA w/ H					
RO/DRO by Dissolved Lea	<u>/ 8015 (3 x</u> ad by 6010	40mL VOA w/ H (250mL poly w/	HCI) HNO ₃ filter	ed) Tot	al Lead b	by 6010 (500mL poly w/	HNO ₃)
	D	isposal of Purg	ed Water:		······································		
Collecte	d Samples	Stored on Ice	in Cooler:			·	
C	hain of Cu	stody Record	Complete:		ropmont		
	Jsed Durin	a Sampling:	aboratory:	Keck Wa	iter Level	. YSI Water Quality Met	erque, INM
quipment L		· · · ·		and New	Disposa	ble Bailer	
quipment L							
quipment L lotes/Comm	nents					· · · · · · · · · · · · · · · · · · ·	
quipment L lotes/Comm	nents						
quipment L lotes/Comm	nents						

Manifest					624 E		
wonitor W	ell No:	-WW-10	<i>y</i>		oz4 E. (Tel (50	Somanche, Farmington	1NIVI 87403 324-2022
Site	Thriftway #	810 Refinery	<u> </u>	<u>. </u>	Proje	ct No.: AES 030203	
Location	Bloomfield,	NM		-		Date: Dcc 19,08	_
Project:	Semi-Annu	al Sampling		_	Arriva	Time: <u>1039</u>	-
Sampling	/ No Purge	NW / DW	<u>-</u>	- т		remp: <u></u>	-
Well Di	ameter (in):	2"		- Total V	Nell Dep	th (ft):	
Initia	I D.T.W. (ft):	5.09	Time:	- 1041		(taken at initial gauging	g of all wells)
Confirm	D.T.W. (ft):		Time:			(taken prior to purging	well)
Final	I D.T.W. (ft):		Time:			(taken after sample co	llection)
		Water Quality	Paramete	ers - Reo	corded	During Well Purging	
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	pH	(mV)	(see reverse for calc.)	Notes/Observations
10 44	9.79	5.439	6.27	6.73	-52.8	0.25	
D49				<u> </u>			samples cole
	···			<u> </u>			
		·					
			L	<u> </u>			
Analyti	cal Param	eters (include	analysis	method	and nu	mber and type of sa	mple containers)
ull VOCs I	by 8260 (3 x	40mL VOA w/ H	ICI)				
GRO/DRO	by 8015 (3 x	40mL VOA w/ ł	HCI)				
Dissolved L	ead by 6010.	(250mL poly w	HNO ₃ filter	red) Tot	al Lead I	oy 6010 (500mL poly w/	HNO ₃)
	D	isposal of Pure	ed Water:	<u>, , , , , , , , , , , , , , , , , , , </u>		yan yanan kasa ata yana yana yana yana yana yana yana	
Collect	- tod Sampla	Stored on Ice	in Cooler				
Conec							
	Chain of Cl	istoay Record	Complete:				
		Analytical L	aboratory:	Hall Envi	ronment	al Analysis Lab, Albuqu	erque, NM
quipment	Used Durir	ng Sampling:		Keck Wa	ter Leve	, YSI Water Quality Mel	er,
				and New	Disposa	ble Bailer	
lotes/Com	ments						
<u></u>			<u></u>			· · · · · · · · · · · · · · · · · · ·	
							1
						<u> </u>	

 $\xi = \frac{1}{2}$

e a an An

a start

 $\frac{1}{2} \frac{g_{1}}{g_{1}} = \frac{g_{1}}{g_{1}} + \frac{g_{2}}{g_{1}} = \frac{g_{1}}{g_{1}}$

10 4 N

 $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$

19-12

 $\frac{d_{i}d}{d_{k_{i}}}$

3.

Monitor Wel	II No:	MW-5			624 E. (Comanche, Farmington	NM 87401			
		<u> </u>		Tel. (505) 564-2281 Fax (505) 324-2022						
Site: T	hriftway #	B10 Refinery			Proje	ct No.: AES 030203	-			
Location: E	Bloomfield,	NM		-	A	Date: Jecig 08	-			
Project: Sampling Te	chnician'			-		Time: <u>1101</u>	•			
Purae / N	No Purge:	<u>NP</u>		- т	.O.C. Ele	ev. (ft):	• .			
Well Dian	neter (in):	2"		Total \	Nell Dep	th (ft):				
Initial D).T.W. (ft):	5.04	Time:	1105	-	(taken at initial gauging	of all wells)			
Confirm D).T.W. (ft):		Time:			(taken prior to purging	well) Vection			
			Tune.							
		Water Quality	Paramete	ers - Ree	corded	During Well Purging	 			
	Temp	Conductivity	DO		ORP	PURGED VOLUME				
Time	(deg C)	(μS) (mS)	(mg/L)	pH	(mV)	(see reverse for calc.)	Notes/Observations			
	1.15	1.148	4.02	hilb	-45.1	0.25				
1112							Samples colle			
				ļ						
					<u> </u>		; •			
					ļ					
			<u></u>							
							· · · · · · · · · · · · · · · · · · ·			
							· · · · · · · · · · · · · · · · · · ·			
	<u> </u>	,,								
Analytica	al Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)			
Full VOCs by	8260 (3 x	40mL VOA w/ H	CI)							
GRO/DRO by	/ 80 <u>15 (3 x</u>	40mL VOA w/ H	ICI)							
Dissolved Lea	ad by 6010	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead I	by 6010 (500mL poly w/	HNO ₃)			
	D	isposal of Purg	ed Water:							
Collected	d Samples	Stored on Ice	in Cooler:							
C	hain of Cu	stody Record	Complete:							
		Analytical La	aboratory:	Hall Envi	ronment	al Analysis Lab, Albuqu	erque, NM			
Equipment U	lsed Durin	g Sampling:		Keck Wa	ter Leve	, YSI Water Quality Me	er,			
				and New	Disposa	ble Bailer				
Notes/Comm	ents					····				
		<u></u>	<u> </u>		······					
		<u></u>	<u>.</u>							
	- (

MONITC	RING WE	LL SAMPLIN	G RECO	RD	Anim	as Environmenta	I Services
Monitor W	/ell No:		-		624 E. (Comanche, Farmington	NM 87401
0:4	The Heart H	210 Dofiner			1 el. (50	b) 564-2281 Fax (505)	324-2022
Site	Bloomfield	NM		-	roje	Date: AES 030203	-
Project	Semi-Annu	al Sampling		-	Arrival	Time:	-
Sampling	Technician:		· · · ·	-	Air	Temp:	•
Purge	/ No Purge:	NP		т.	O.C. Ele	ev. (ft):	-
Well Di	iameter (in):	2"		Total W	lell Dep	oth (ft):	
Initia	I D.T.W. (ft):		Time:			(taken at initial gauging	g of all wells)
Confirm	n D.T.W. (ft):		Time:			_(taken prior to purging	well)
Fina	i D. I.W. (ft):		I Ime:	•		_(taken atter sample co	uection)
	<u>ا</u>	Water Quality	Paramete	ers - Rec	orded	During Well Purging	l I
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observatior
		· · · · · · · · · · · · · · · · · · ·				·	
	<u> </u>	·				· · · · ·	
	╂			├			
		· · · · ·					
	┼────┤			<u>├</u>			
	<u> </u>			├────┤			
	 			└─── ┤			
	<u> </u> -						
			l				
Analyti	Ical Parame	eters (include	analysis i	method	and nu	mber and type of sa	mple containers)
ull VOCs	by 8260 (<u>3 x -</u>	40mL VOA w/ H	CI)				
RO/DRO	by 8015 (3 x	40mL VOA w/ H	ICI)				
Dissolved L	ead by 6010	(250mL poly w/	HNO ₃ filter	ed) Tota	al Lead b	oy 6010 (500mL poly w/	HNO ₃)
n allen de staden seinen an ar state	Di	isposal of Pura	ed Water:				<u>an an a</u>
Calles	tod Somoloo	Stored on les	in Coolor				
COllec	teu sampies					· · · · · · · · · · · · · · · · · · ·	
,	Chain of Cu	stody Record (Complete:			, 	
		Analytical La	aboratory:	Hall Envir	onmenta	al Analysis Lab, Albuque	erque, NM
	t Used Durin	g Sampling:	i	Keck Wat	er Level	l, YSI Water Quality Met	er,
quipment				and New	Disposa	ble Bailer	
quipment							
quipment	morte						
quipment lotes/Com	ments			· · · · · ·			
quipment	nments	····-					
equipment	nments						
iquipment	nments				· · · · · · · · · · · · · · · · · · ·		

: '

- Ser - Corres

(K) =

and Articles of A

 $\frac{1}{2} = \frac{1}{2} \frac{$

n in the second second

Part of the

,÷

onitor Wall	No				624 = 4	Comancha Earminatan	NM 87404
OUITO1 AAGU	NO				024 E. 0 Tel. (50	5) 564-2281 Fax (505)	1NIVI 8740 I 324-2022
Site: Th	hriftway #8	310 Refinery		_	Proje	ct No.: AES 030203	
ocation: Bl	oomfield,	NM		_		Date:	-
Project: Se	<u>emi-Annua</u>	al Sampling		-	Arrival	Time:	-
ampling lec	onnician:	ND				1emp:	-
Well Diam	eter (in):	<u>2"</u>		Total \	.U.C. Ele Nell Den	th (ft):	2 2 2
Initial D.	T.W. (ft):	£	Time:		исп Бер	(taken at initial gauging	of all wells)
Confirm D.	T.W. (ft):	·····	Time:	<u></u>		(taken prior to purging	well)
Final D.	T.W. (ft):		Time:	·····		(taken after sample co	llection)
	V	Nater Quality	Paramete	ers - Re	corded	During Well Purging	
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time ((deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations
				h			. · · ·
						· · · · · · · · · · · · · · · · · · ·	
					<u> </u>		5 #**## · · ·
							· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·					
						<u></u>	
		·					
							mple containers)
	5260 (3 X 4						
Solved Lead	1 by 6010	(250ml poly w/	HNO _n filter	ed) Tot	alleadt	v 6010 (500ml poly w/	
Collected	Samples	Sposal of Fuly	in Coolor:				
Conecteu	Samples						<u></u>
Ch	ain of Cu	stoay Record (
		Analytical La	aboratory:	Hall Envi	ronmenta	al Analysis Lab, Albuque	erque, NM
uipment Us	ed During	g Sampling: _		Keck Wa	iter Level	, YSI Water Quality Me	er,
	e la se son pa d'ann a			and New	Disposa	ble Bailer	
-	ents					·	· · · · ·
tes/Comme			·······			· · · ·	
tes/Comme							
tes/Comme						· · · · · · · · · · · · · · · · · · ·	
tes/Comme							

Monitor M				1	624 = 4	Comanaha Earminatan	NIM 87401
	lell NO:		-		624 E. (Tel. (50	5) 564-2281 Fax (505)	324-2022
Site	: Thriftway #	810 Refinery	<u> </u>	· · · · · · · · · · · · · · · · · · ·	Proje	ct No.: AES 030203	
Location	Bloomfield,	NM			-	Date:	_
Project	Semi-Annu	al Sampling			Arrival	Time:	-
Sampling	Technician:			-	Air	Temp:	-
Purge Woll Di	/ No Purge:	<u></u> 2"		I. Total V	Voll Don	ev. (π):	
Initia	D.T.W. (ff):	<u>∠</u>	Time:		ven Deb	(taken at initial gauging	n of all wells)
Confirm	D.T.W. (ft):	<u>, </u>	Time:			(taken prior to purging	well)
Fina	D.T.W. (ft):		Time:			(taken after sample col	llection)
		Water Quality	Paramete	rs - Rec	orded	During Well Purging	
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observatior
		· · · ·					
				·····			<u></u>
							· · ·
-							
· · · · · · · · · · · · · · · · · ·							
		1					
Analyti	cal Parame	eters (include	analysis r	nethod	and nu	mber and type of sa	mple containers)
ull VOCs b	oy 8260 (3 x -	40mL VOA w/ H	CI)				
GRO/DRO	bv 8015 (3 x	40mL VOA w/ H					
issolved L	ead by 6010	(250mL poly w/	HNO ₃ filtere	ed) Tota	al Lead b	y 6010 (500mL poly w/	HNO ₃)
	<u></u>	isposal of Purg	ed Water		<u></u>		
Collect	ted Samples	Stored on Ice	in Cooler:				
Conect				<u></u>		· · · · · · · · · · · · · · · · · · ·	······
	Unain of Cu	ISLOUY RECORD (Somplete:	–			
		Analytical La	aboratory:	Hall Envir	ronmenta	al Analysis Lab, Albuque	erque, NM
quipment	Used Durin	g Sampling: _	l	Keck Wat	ter Level	, YSI Water Quality Met	er,
			6	and New	Disposa	ble Bailer	
	ments						
otes/Com						······································	
otes/Com							
otes/Com			-				
otes/Com			-				

 $-\pi^{-\pi}$

1. J. C.

 $= \frac{1}{2} \sum_{i=1}^{n} \frac{$

the second

1.00

Annitor Wo	II No:	· •			624 E 4	Comanche Farminaton	NM 87401			
MODILUT AA6	a nu.			Tel. (505) 564-2281 Fax (505) 324-2022						
Site:	Thriftway #8	310 Refinery			Proje	ct No.: AES 030203				
Location:	Bloomfield,	NM		 -	•	Date:	-			
Project:	Semi-Annua	al Sampling		-	Arriva	Time:	-			
Sampling T	echnician:					Temp:	-			
Well Dia	meter (in):	<u>2"</u>		- Total V	Vell Den	:v. (IL): th (ft):				
Initial I	D.T.W. (ft):		Time:	-		(taken at initial gauging	of all wells)			
Confirm I	D.T.W. (ft):		Time:			(taken prior to purging	well)			
Final I	D.T.W. (ft):		Time:			(taken after sample co	lection)			
	1	Water Quality	Paramete	ers - Red	corded	During Well Purging				
	Temp	Conductivity	DO		ORP	PURGED VOLUME				
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations			
1										
						· · · ·				
						· · · · · · · · · · · · · · · · · · ·				
Analytic	al Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)			
ull VOCs by	/ 8260 (3 x /	40mL VOA w/ H	CI)							
GRO/DRO b	y 8015 (3 x	40mL VOA w/ H	ICI)							
Dissolved Le	ad by 6010	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead I	oy 6010 (500mL poly w/	HNO₃)			
	Di	isposal of Purg	ed Water:							
Collecte	ed Samples	Stored on Ice	in Cooler:							
C	Chain of Cu	stody Record (Complete:							
		Analytical La	boratory:	Hall Envi	ronment	al Analysis Lab, Albuqu	erque, NM			
quipment l	Used Durin	g Sampling:		Keck Wa	ter Leve	, YSI Water Quality Met	er,			
		-		and New	Disposa	ble Bailer				
lotes/Com	nents		مر من الكار من معرف الجيان الخامي مراجع المراجع ا	<u></u>			ی بین نام بی نام این می وران از این می می وران از ا می از این از ا			
10103/00mm		· · · · · ·	<u>. </u>							
		<u> </u>	·			. —				
		an ti Silainii - Caldinii - Miriana, yoo yo		·····						

		LE VANIFEIN					
Monitor Well	No:				624 E. (Comanche, Farmington	NM 87401
Cito: TI	vriftwov #4	R10 Pofinon		·	1 el. (50	5) 564-2287 Fax (505)	324-2022
Location: B	nitway #0	NM		-	Proje	Date: AES 030203	
Project: Se	emi-Annua	al Sampling		-	Arrival	Time:	-
Sampling Te	chnician:			-	Air	Temp:	-
Purge / N	o Purge:	NP		[т.	.O.C. Ele	ev. (ft):	-
Well Diam	eter (in):	2"			Nell Dep	th (ft):	· · · · ·
Initial D.	1.W. (ft):		Time:			(taken at initial gauging	g of all wells)
Confirm D. Final D	T.W. (IL):		Time:			(laken prior to purging	well) llection)
	1. vv . (it).		Time.	•••••			
	١	Nater Quality	Paramete	ers - Red	corded	During Well Purging	J
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observatio
						· · ·	
							·
		ļ					
· [
<u></u>	<u></u>		l		l		
Analytica	Parame	eters (include	analysis ı	nethod	and nu	mber and type of sa	mple containers
Full VOCs by 8	3260 (3 x)	40mL VOA w/ H	CI)		. :		
	P015 (2 v						
Dissolved Leav	1 by 6010	(250ml poly w/	HNO, filter	ed) Tot	alloadh	w 6010 (500mL poly w/	
	1 by 0010					y cono (coome poly w/	
	Di	isposal of Purg	ed Water:				
Collected	Samples	Stored on Ice i	in Cooler: _				
Ch	ain of Cu	stody Record 0	Complete:				
,		Analytical	- boratory:	Hall Envi	ronment	Analysis Lab Albuque	erque NM
auinmont !!-	od Duri-	a Compline		Kock M/-	tor Lovel		
quipment Us	ea Darin	y samping: _				, TOT WATER QUALITY ME	.cı ,
·	a .			and New	Disposa	Die Baller	<u> </u>
lotes/Comme	ents						

 $\frac{2\pi}{3} \frac{1}{2} \frac{1$

10 - 21 - 2

a share a

and a star

San Jer

	RING WEI		g recoi	RD	Anim	as Environmenta	I Services
Monitor We	ell No:				624 E. (Comanche, Farmington	NM 87401
Site:	Thriftway #8	R10 Refinery			Tel. (50	5) 564-2281 Fax (505)	324-2022
Location:	Bloomfield.	NM		-	Froje	Date:	-
Project:	Semi-Annua	al Sampling		-	Arrival	Time:	-
Sampling T	echnician:				Air	Temp:	-
Purge /	No Purge:	NP		Т	.O.C. Ele	ev. (ft):	-
Well Dia	meter (in):	2"	T:	. Total \	Nell Dep	th (ft):	
Confirm l			Time: Time:	<u> </u>		(taken at initial gauging (taken prior to purging	or all wells)
Final	D.T.W. (ft):		Time:		·	(taken after sample co	llection)
<u></u>		Nater Quality	Paramete	ers - Ree	corded	During Well Purging	
<u> </u>	Tomp	Conductivity					
T !	(den 0)		(
lime	(deg C)	(µS) (mS)	(mg/L)	рн	(mV)	(see reverse for calc.)	Notes/Observations
+							
†							
	·			·			
†							
							<u></u>
Analytic	al Parame	eters (include	analysis	method	and nu	mber and type of sa	mple containers)
ull VOCs by	y 8260 (3 x -	40mL VOA w/ H	CI)				······
RO/DRO b	y 8015 (3 x	40mL VOA w/ F	ICI)				
issolved Le	ad by 6010	(250mL poly w/	HNO ₃ filter	ed) Tot	al Lead b	oy 6010 (500mL poly w/	HNO ₃)
	Di	isposal of Purg	ed Water:				
Collecte	ed Samples	Stored on Ice	in Cooler:	<u>.</u>			·
C	Chain of Cu	stody Record (Complete:				
		Analytical La	aboratory:	Hall Envi	ronment	al Analysis Lab. Albuqu	eraue. NM
auinment	Used Durin	a Samplina:		Keck Wa	ter Leve	YSI Water Quality Me	ler
quipment	ooca barm	g oumping		and New	Disposa	ble Bailer	
	and a second state of the second s				2150036		ومضغف فنصال منعف فنافا ويسويو يتباعك
otes/Comr	nents	· · · · · · · · · · · · · · · · ·		, ,		· · · · · · · · · · · · · · · · · · ·	
· ···							

Monitor Well No:				624 E. Comanche, Farmington NM 87401					
			• • • • • • • • • • • • • • • • • • • •		Tel. (505) 564-2281 Fax (505) 324-2022				
Site:	Thriftway #	810 Refinery			Proje	ct No.: AES 030203			
Location:	Bloomfield,	NM		_		Date:	•		
Project:	Semi-Annu	al Sampling	·	-	Arriva	l Time:			
Sampling	lechnician:					1emp:			
Purge ال المW	ameter (in):	2"		- Total V	Nell Der	ev. (II)			
Initial	D.T.W. (ft):		Time:	-	ten bep	(taken at initial gauging	i of all wells)		
Confirm	D.T.W. (ft):		Time:			(taken prior to purging	well)		
Final	D.T.W. (ft):		Time:			(taken after sample col	lection)		
		Water Quality	Paramete	ers - Rec	corded	During Well Purging			
	Temp	Conductivity	DO		ORP	PURGED VOLUME			
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations		
				}			· · · · · · · · · · · · · · · · · · · ·		
				· · · · ·			<u></u>		
							<u> </u>		
Analyti ull VOCs t RO/DRO	cal Parame by 8260 (3 x by 8015 (3 x ead by 6010	40mL VOA w/ H 40mL VOA w/ H (250mL poly w/	analysis Cl) ICl) HNO ₂ filter	method	and nu	mber and type of sa	mple containers) 		
						.,			
~	D	isposal of Purg	ed water:						
Collect	ted Samples	Stored on Ice	in Cooler:						
	Chain of Cu	istody Record (Complete:						
		Analytical La	aboratory:	Hall Envi	ronment	al Analysis Lab, Albuque	erque, NM		
auipment	Used Durin	a Sampling:		Keck Wa	ter Level	. YSI Water Quality Met	er.		
-1	2224 Buill	J J J J J J J J J J		and New	Disposo	hle Bailer	,		
		· · · · · · · · · · · · · · · · · · ·	<u> </u>		Lishosa				
lotes/Com	ments								
						· · · · · · · · · · · · · · · · · · ·			
	· · ·								

:

l

рт |

* 1

. . .

5

-1

	ING WAEL	L UMITLIN			D Animas Environmental Services			
Monitor Wel	i No:				624 E. (Comanche, Farmington	NM 87401 324-2022	
Site: T	hriftwav #8	310 Refinerv			Proie	ct No.: AES 030203	JL7-LULL	
Location: E	Bloomfield,	NM		-	1.10,0	Date:	-	
Project: S	Semi-Annua	al Sampling		-	Arrival	Time:	-	
Sampling Te	echnician:			-	Air	Temp:	•	
Purge / I	No Purge:	NP		- <u> </u>	.O.C. Ele	v. (ft):		
well Dian	$\frac{1}{1} \frac{1}{1} \frac{1}$	2"	Timer	lotal v	vell Dep	th (ft):	r of all walla)	
Confirm D).T.W. (ff):		Time:			(taken prior to purging	well)	
Final D	.T.W. (ft):	· · · ·	Time:			(taken after sample col	llection)	
		Nater Quality	Paramete	ers - Red	corded	During Well Purging	••• ··································	
	Temp	Conductivity			ORP	PURGED VOLUME	, 	
T :						(
Time	(aeg C)	(µS) (mS)_	(mg/L)	рн	(mv)	(see reverse for calc.)	Notes/Observations	
	<u>.</u>							
Analytics	Di Parame	ters (include	analveie	method	and nu	mber and type of sa	mple containers)	
			analysis					
	8200 (3 X ·			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	,,,,,,,	
RO/DRO by	/ 8015 (3 x	40mL VOA w/ F	ICI)	ad) Tat	ol Lood P	w 6010 (500ml poly w/		
		icnocal of Pure						
	d Samples	Stored on Ica	in Cooler			·····		
Collector	u bampies						· · · · · · · · · · · · · · · · · · ·	
Collecte		istody Record	complete:					
Collecte	hain of Cu		aboratory:	Hall Envi	ironment	al Analysis Lab, Albuqu	erque, NM	
Collecte C	hain of Cu	Analytical La	-	17 1- 141 -	ter Leve	, YSI Water Quality Me	ter,	
Collecter C quipment U	hain of Cu Ised Durin	Analytical La		кеск ууа				
Collected C quipment U	hain of Cu Ised Durin	Analytical La		and New	Disposa	ble Bailer		
Collecter C quipment U	hain of Cu Ised Durin 	Analytical La g Sampling: _		and New	Disposa	ble Bailer	<u>, ,</u>	
Collected C quipment U otes/Comm	hain of Cu Ised Durin Jents	Analytical La		and New	Disposa	ble Bailer		
Collected C quipment U otes/Comm	hain of Cu Ised Durin hents	Analytical La g Sampling:		and New	Disposa	ble Bailer		
Collected C quipment U otes/Comm	hain of Cu Ised Durin ients	Analytical La		and New	Disposa	ble Bailer		
Collected C quipment U otes/Comm	hain of Cu Ised Durin hents	Analytical La		and New	Disposa	ble Bailer		

							NNA 07404
Monitor W	ell No:				624 E. (Jomanche, Farmington	NM 87401
Citer	Thriftway #	10 Definery			Tel. (50	5) 504-2281 Fax (505)	324-2022
Site:	Bloomfield			-	Pitoje	Date: $1 = 7 = 0.0203$	-
Project	Semi-Annu	al Sampling		-	Arrival	Time: 2445	-
Sampling	Technician:			-	Air	Temp: 270F	-
Purae	/ No Purge:	NP		- т	.O.C. Ele	ev. (ft):	-
Well Di	ameter (in):	2"		- Total \	Nell Dep	th (ft):	
Initial	D.T.W. (ft):		Time:	-		(taken at initial gauging	g of all wells)
Confirm	D.T.W. (ft):	5.86	Time:	048	19	(taken prior to purging	well)
Final	D.T.W. (ft):		Time:			(taken after sample co	llection)
		Water Quality	Paramete	ers - Re	corded	During Well Purging]
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observatior
0854	4.34	5.996	3.58	6.73	-108.3	0.25	
0900	~					0.25	Samples Collecte
		· · · · · · · · · · · · · · · · · · ·		1			
· · · · · · · · · · · · · · · · · · ·							
						· · · · · · · · · · · · · · · · · · ·	
· · ·							
						······································	_
		1			I		
Analyti	cal Parame	eters (include	analysis	method	and nu	mber and type of sa	imple containers
-ull VOCs b	oy 8260 (3 x	40mL VOA w/ H	CI)			·····	
GRO/DRO I	by 8015 (3 x	40mL VOA w/ H	ICI)				
Dissolved L	ead by 6010	(250mL poly w/	HNO ₃ filter	red) To	al Lead	oy 6010 (500mL poly w/	' HNO ₃)
	Di	sposal of Puro	ed Water:	0. (on-r-t	e on caph-lt	-
	21	Stored on los	n Coolor:	Y-1	<u></u>	c of asphall	
Colloct	od Samples	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		100		<u> </u>	
Collect	ed Samples	Stored on ice i		Υ.			
Collect(ed Samples Chain of Cu	stored on ice i stody Record C	complete:	Yes		·····	
Collect	ed Samples Chain of Cu	stored on ice i stody Record C Analytical La	Complete:	Y <i>च्ड</i> Hall Envi	ronmenta	al Analysis Lab, Albuque	erque, NM
Collecto (Equipment	ed Samples Chain of Cu Used Durin	stored on ice i stody Record C Analytical La g Sampling:	Complete: boratory:	Yिट्ट Hall Envi Keck Wa	ronmenta ter Level	al Analysis Lab, Albuque , YSI Water Quality Met	erque, NM er,
Collecto (Equipment	ed Samples Chain of Cu Used Durin	stored on ice i stody Record C Analytical La g Sampling:	Complete:	Y <i>ح</i> ع Hall Envi Keck Wa and New	ronmenta ter Level Disposa	al Analysis Lab, Albuque , YSI Water Quality Met ble Bailer	erque, NM er,
Collecto (Equipment	ed Samples Chain of Cu Used Durin	stored on ice i stody Record C Analytical La g Sampling:	Complete:	Y es Hall Envi Keck Wa and New	ronmenta ter Level Disposa	al Analysis Lab, Albuque , YSI Water Quality Met ble Bailer	erque, NM er,
Collecto G Equipment Notes/Com	ed Samples Chain of Cu Used Durin ments	stored on ice i stody Record C Analytical La g Sampling:	Complete:	Y es Hall Envi Keck Wa and New	ronmenta ter Level Disposa	al Analysis Lab, Albuque , YSI Water Quality Met ble Bailer	erque, NM er,
Collecto G Equipment Notes/Com	ed Samples Chain of Cu Used Durin <u>ments</u> <u>a ກຖາຂ</u>	stored on ice i stody Record C Analytical La g Sampling: 	Complete: boratory:	Yes Hall Envi Keck Wa and New	ronmenta ter Level Disposa	al Analysis Lab, Albuque , YSI Water Quality Met ble Bailer أداميا	erque, NM er,
Collecto	ed Samples Chain of Cu Used Durin <u>ments</u> <u>a ກາ ຄູໂຂ</u> ຽ	stored on ice i stody Record C Analytical La g Sampling:	Complete: boratory: 	Yes Hall Envi Keck Wa and New	ronmenta ter Level Disposa	al Analysis Lab, Albuque , YSI Water Quality Met ble Bailer tcrial	erque, NM er,

revised: 05/23/07

. . .

1.a

الي الجنوبا الجنوبا

1 vie.

. (the second

in de Sec

1970 - T.

.

>

Bouwer and Rice Automatic Parameter Estimation

Site Name: Location: Test Date: Client:	Thriftway Refinery Bloomfield, New Mexico April 28, 2009 Thriftway Company				
Well Label: Aquifer Thickness: Screen Length: Casing Radius: Effective Radius: Gravel Pack Porosity: Corrected Casing Radius: Bouwer and Rice Parameter C Radius of Influence of Test	TW-3 6. feet 12. feet 0.167 feet 0.58 feet 40. % 0.389 feet 1.182 3.205 feet				
Triał Adjusted Time Head (minutes) (feet)	Head Ratio	Hyd. Con. (feet/day)	Flow to Well (Gallons/Minute)		
1 0. 0.32	1.				
2 8.3e-002 6.e-002	0.18/5	625.9	8.605		
3 0.166 3.e-002	9.3750-002	442.5	0.0909		
5 0.332 0.	0.		0.3030		

Arithmetic Means: Hydraulic Conductivity

S.F.C. S.

30. · · · · ·

.

4 Z.4

ورد فيعيان

1.4.1

al april

51 79.

.

Transmissivity

Geometric Means: Hydraulic Conductivity Transmissivity

Sensitivity Analysis: Hydraulic Conductivity Transmissivity 500.1 feet/day 2.245e+004 gal/day/ft

492.7 feet/day 2.212e+004 gal/day/ft

581.5 feet/day 2.61e+004 gal/day/ft

Bouwer and Rice Automatic Parameter Estimation

Hising Head Site Name: Location: Test Date: Client:			Thriftway Refinery Bloomfield, New Mexico April 28, 2009 Thriftway Company				
Well Label: Aquifer Thickness: Screen Length: Casing Radius: Effective Radius: Gravel Pack Porosity: Corrected Casing Radius: Bouwer and Rice Parameter C Radius of Influence of Test			TW-3 6. feet 12. feet 0.167 feet 0.58 feet 40. % 0.389 feet 1.182 3.205 feet				
Trial	Adjusted Time (minutes)	Head (feet)	Head Ratio	Hyd. Con. (feet/day)	Flow to Well (Gallons/Minute)		
1	0.	0.13	1.		eff an a Allerianteder Anthras andre 1965 Al our for contribution andreas - available antercontaction the film		
2	8.3e-002	3.e-002	0.2308	548.2	3.769		
3	0.166	2.e-002	0.1538	349.9	1.604		
4	0.249	2.e-002	0.1538	233.3	1.069		
5	0.332	1.e-002	7.692e-002	239.8	0.5494		
6	0.415	1.e-002	7.692e-002	191.8	0.4395		
7	0.498	1.e-002	7.692e-002	159.8	0.3663		
8	0.581	-27.67	-212.8				

Arithmetic Means:

6

- 6 - 4

Hydraulic Conductivity Transmissivity

. 287.1 feet/day 1.289e+004 gal/day/ft

Geometric Means: Hydraulic Conductivity Transmissivity

262.7 feet/day 1.179e+004 gal/day/ft

Sensitivity Analysis: Calculation Error

Site Name:Thriftway RefineryLocation:Bloomfield, New MexicoTest Date:April 29, 2009Client:Thriftway CompanyWell Label:TW-18Aquifer Thickness:5. feetScreen Length:10. feetCasing Radius:0.167 feetEffective Radius:0.58 feetGravel Pack Porosity:40. %Corrected Casing Radius:0.389 feetBouwer and Rice Parameter C1.084Radius of Influence of Test2.792 feet		Thriftway Refinery Bloomfield, New Mexico April 29, 2009 Thriftway Company			
		s: osity: ŋ Radius: Parameter C ce of Test			
Trial	Adjusted Time (minutes)	Head (feet)	Head Ratio	Hyd. Con. (feet/day)	Flow to Well (Gallons/Minute)
1	0.	0.53	1.		
2	8.3e-002	0.42	0.7925	95.95	8.371
3	0.166	0.34	0.6415	91.55	6.466
4	0.249	0.26	0.4906	97.92	5.288
5	0.332	0.23	0.434	86.08	4.112
3	0.415	0.15	0.283	104.1	3.244
7	0.498	0.19	0.3585	70.52	2.783
В	0.581	0.18	0.3396	63.63	2.379
9	0.664	0.16	0.3019	61.75	2.052
10	0.747	0.15	0.283	57.85	1.802
11	0.83	0.14	0.2642	54.91	1.597
12	0.913	0.13	0.2453	52.7	1.423
13	1.913	9.e-002	0.1698	31.73	0.5932
14	2.913	6.e-002	0.1132	25.6	0.3191
15	3.913	5.e-002	9.434e-002	20.65	0.2145
16	4.913	4.e-002	7.547e-002	18.01	0.1496
17	5.913	3.e-002	5.66e-002	16.63	0.1036
18	6.913	3.e-002	5.66e-002	14.22	8.862e-002
19	7.913	2.e-002	3.774e-002	14.18	5.89e-002
20	8.913	2.e-002	3.774e-002	12.59	5.229e-002
21	9 913	2 e-002	3 774e-002	11.32	4 702e-002

Arithmetic Means:

4 13 10

2 - 1 - 4 G

1.44

n . A 45⁷⁶ a

19

. . .

с. С. М. С.

idan

Hydraulic Conductivity Transmissivity	50.09 feet/day 1874 gal/day/ft
Geometric Means: Hydraulic Conductivity Transmissivity	38.51 feet/day 1441 gal/day/ft
Sensitivity Analysis: Hydraulic Conductivity Transmissivity	71.64 feet/day 2680 gal/day/ft

5/2/2009

 \sim

Bouwer a Rising Head Site Name: Location: Test Date: Client:	nd Rice Automati	c Parameter	Estimation Thriftway Refine Bloomfield, New April 29, 2009 Thriftway Comp:	ery ∙Mexico any	
Well Label: Aquifer Thickness: Screen Length: Casing Radius: Effective Radius: Gravel Pack Porosity: Corrected Casing Radius: Bouwer and Rice Parameter C Radius of Influence of Test			TW-18 5. feet 0. feet 0.58 feet 40. % 0.389 feet 1.084 2.792 feet		
Trial	Adjusted Time (minutes)	Head (feet)	Head Ratio	Hyd. Con. (feet/day)	Flow to Well (Gallons/Minute)
1	0.	4.97	1.		
2	8.3e-002	3.52	0.7082	142.3	104.
3	0.166	1.9	0.3823	198.3	78.26
4	0.249	2.48	0.499	95.58	49.23
5	0.332	1.92	0.3863	98.07	39.11
6	0.415	1.66	0.334	90.46	31.19
7	0.498	1.42	0.2857	86.12	25.4
8	0.581	1.28	0.2575	79.93	21.25
9	0.664	1.14	0.2294	75.91	17.98
10	0.747	1.02	0.2052	72.58	15.38
11	0.83	0.95	0.1911	68.25	13.47
12	0.913	0.86	0.173	65.78	11.75
13	0.996	0.78	0.1569	63.65	10.31
14	1.079	0.72	0.1449	61.3	9.167
15	1.162	0.65	0.1308	59.93	8.092
16	1.245	0.6	0.1207	58.14	7.245
17	1.328	0.54	0.1087	57.22	6.418
18	2.328	0.46	9.256e-002	35.	3.344
19	3.328	0.38	7.646e-002	26.45	2.088
20	4.328	0.33	6.64e-002	21.45	1.47
21	5.328	0.28	5.634e-002	18.48	1.075
22	6.328	0.24	4.829e-002	16.4	0.8173
23	7.328	0.2	4.024e-002	15.01	0.6235
24	8.328	0.17	3.421e-002	13.88	0.49
25	9.328	0.15	3.018e-002	12.85	0.4003
26	10.33	0.12	2.414e-002	12.34	0.3077
27	11.33	0.11	2.213e-002	11.52	0.2631
28	12.33	9.e-002	1.811e-002	11.14	0.2082
29	13.33	8.e-002	1.61e-002	10.61	0.1762
30	14.33	7.e-002	1.408e-002	10.18	0.1481
31	15.33	5.e-002	1.006e-002	10.27	0.1067
32	16.33	5.e-002	1.006e-002	9.643	0.1001
33	17.33	5.e-002	1.006e-002	9.086	9.437e-002
34	18.33	4.e-002	8.048e-003	9.007	7.484e-002
35	19.33	4.e-002	8.048e-003	8.541	7.097e-002
36	20.33	3.e-002	6.036e-003	8.606	5.363e-002
37	21.33	3.e-002	6.036e-003	8.202	5.111e-002
38	22.33	2.e-002	4.024e-003	8.456	3.513e-002
39	23.33	2.e-002	4.024e-003	8.094	3.363e-002
40	24.33	2.e-002	4.024e-003	7.761	3.224e-002
41	25.33	-16.13	-3.245		

۹.

· •

-2

1.5 - 2

Arithmetic Means: Hydraulic Conductivity Transmissivity

42.99 feet/day 1608 gal/day/ft

26.26 feet/day 982.3 gal/day/ft

Geometric Means: Hydraulic Conductivity Transmissivity

Sensitivity Analysis:

Hydraulic Conductivity Transmissivity

. . .

د. م

1.81

85.73 feet/day 3207 gal/day/ft

.

Bouwer and Rice Automatic Parameter Estimation

Falling Head Site Name: Location: Test Date: Client:			Thriftway Refinery Bloomfield, New Mexico April 28, 2009 Thriftway Company				
Well Label: Aquifer Thickness: Screen Length: Casing Radius: Effective Radius: Gravel Pack Porosity: Corrected Casing Radius: Bouwer and Rice Parameter C Radius of Influence of Test			TW-41 5. feet 8. feet 0.167 feet 40. % 0.389 feet 1.084 2.792 feet				
Trial	Adjusted Time (minutes)	Head (feet)	Head Ratio	Hyd. Con. (feet/day)	Flow to Well (Gallons/Minute)		
1	0.	1.18	1.				
2	8.3e-002	9.e-002	7.627e-002	1061	15.87		
3	0.166	8.e-002	6.78e-002	555.	7.378		
4	0.249	5.e-002	4.237e-002	434.6	3.611		
5	0.332	4.e-002	3.39e-002	349.	2.32		
6	0.415	3.e-002	2.542e-002	302.9	1.51		
7	0.498	2.e-002	1.695e-002	280.3	0.9316		
8	0.581	1.e-002	8.475e-003	281.1	0.4671		
9 10	0.664 0.747	1.e-002 1.e-002	8.475e-003 8.475e-003	246. 218.6	0.4087 0.3633		

Arithmetic Means:

3

Ē

Hydraulic Conductivity Transmissivity

Geometric Means: Hydraulic Conductivity Transmissivity

364.9 feet/day 1.365e+004 gal/day/ft

414.3 feet/day 1.55e+004 gal/day/ft

Sensitivity Analysis: Hydraulic Conductivity Transmissivity

1003 feet/day 3.751e+004 gal/day/ft

Bouwer and Rice Automatic Parameter Estimation

Rising Head Site Name:

Site Name: Location: Test Date: Client:			Thriftway Refinery Bloomfield, New Mexico April 28, 2009 Thriftway Company					
Well Label: Aquifer Thickness: Screen Length: Casing Radius: Effective Radius:			TW-41 5. feet 8. feet 0.167 feet 0.58 feet					
Gravel Pack	Porosity:		40. %					
Corrected Ca	asing Hadius: Dice Peremotor C		0.389 teet					
Radius of Inf	luence of Test		2.792 feet					
Trial	Adjusted Time (minutes)	Head (feet)	Head Ratio	Hyd. Con. (feet/day)	Flow to Well (Gallons/Minute)			
1	0.	3.25	1.		na kanana ing penang ang ang ang ang ang ang ang ang ang			
2	8.3e-002	0.85	0.2615	553.2	78.14			
3	0.166	0.59	0.1815	351.9	34.5			
4	0.249	0.43	0.1323	278.1	19.87			
5	0.332	0.27	8.308e-002	256.5	11.51			
6	0.415	0.18	5.538e-002	238.7	7.139			
7	0.498	0.13	4.e-002	221.3	4.78			
8	0.581	0.11	3.385e-002	199.5	3.647			
9	0.664	0.1	3.077e-002	179.5	2.983			
10	0.747	9.e-002	2.769e-002	164.4	2,458			

5	0.332	0.27	8.308e-002	256.5	11.51	
6	0.415	0.18	5.538e-002	238.7	7.139	
7	0.498	0.13	4.e-002	221.3	4.78	
8	0.581	0.11	3.385e-002	199.5	3.647	
9	0.664	0.1	3.077e-002	179.5	2.983	
10	0.747	9.e-002	2.769e-002	164.4	2.458	
11	1.747	8.e-002	2.462e-002	72.59	0.965	
12	2.747	7.e-002	2.154e-002	47.83	0.5564	
13	3.747	6.e-002	1.846e-002	36.47	0.3637	
14	4.747	6.e-002	1.846e-002	28.79	0.287	
15	5.747	5.e-002	1.538e-002	24.87	0.2066	
16	6.747	5.e-002	1.538e-002	21.18	0.176	
17	7.747	4.e-002	1.231e-002	19.43	0.1292	
18	8.747	4.e-002	1.231e-002	17.21	0.1144	
19	9.747	-6.55	-2.015			

Arithmetic Means:

Hydraulic Conductivity Transmissivity

Geometric Means: Hydraulic Conductivity

Transmissivity

Sensitivity Analysis: Hydraulic Conductivity Transmissivity

159.5 feet/day 5965 gal/day/ft

92.73 feet/day 3468 gal/day/ft

430. feet/day 1.608e+004 gal/day/ft

Bouwer a Falling Head Site Name: Location: Test Date: Client:	nd Rice Automati d	c Parameter Es	timation Thriftway Refine Bloomfield, New April 28, 2009 Thriftway Comp	ery / Mexico any	
Well Label: Aquifer Thickr Screen Lengtl Casing Radiu Effective Radi Gravel Pack F Corrected Cas Bouwer and F Radius of Influ	ness: h: s: ius: Porosity: sing Radius: Rice Parameter C uence of Test		TW-44 5. feet 10. feet 0.167 feet 0.58 feet 40. % 0.389 feet 1.084 2.792 feet		
Trial	Adjusted Time (minutes)	Head (feet)	Head Ratio	Hyd. Con. (feet/day)	Flow to Well (Gallons/Minute)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0. 0.5 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	0.98 0.85 0.82 0.8 0.76 0.76 0.74 0.72 0.7 0.69 0.17 0.14 0.12 9.e-002 8.e-002 6.e-002 5.e-002 4.e-002 3.e-002 2.e-002	1. 0.8673 0.8367 0.8163 0.7959 0.7755 0.7551 0.7347 0.7143 0.7041 0.1735 0.1429 0.1224 9.184e-002 8.163e-002 6.122e-002 5.102e-002 5.102e-002 3.061e-002 2.041e-002	 9.744 6.102 3.474 2.605 2.176 1.923 1.759 1.646 1.501 6.663 6.662 6.536 6.812 6.598 6.83 6.791 6.844 7.021 7.402	1.72 1.039 0.5772 0.422 0.3435 0.2956 0.2631 0.2393 0.2152 0.2353 0.1937 0.1629 0.1273 0.1096 8.512e-002 7.053e-002 5.686e-002 4.375e-002 3.075e-002
Arithmetic M Hydraulic Cor Transmissivity Geometric M Hydraulic Cor Transmissivity Sensitivity A Hydraulic Cor	Aeans: nductivity y Means: nductivity y Analysis: nductivity	5.215 feet/day 195.1 gal/day/ft 4.452 feet/day 166.5 gal/day/ft 4.05 feet/day			

م اللوع ال

- 43 - 84 -

A.

Ľ,

1.2

, s , s , s

1. 1. 1.

1. 1. No. 1. 1.

1. 4 a 4 1

а. 1914 - 1

54) 1-24 1-1

1 the second

الارمى 1.14

الم المسلم الم

Rising Head Site Name: Location: Test Date: Client: Well Label: Aquifer Thickness: Screen Length: Casing Radius: Effective Radius: Gravel Pack Porosity: Corrected Casing Radius: Bouwer and Rice Parameter C Radius of Influence of Test			Thriftway Refinery Bloomfield, New Mexico April 28, 2009 Thriftway Company TW-44 5. feet 10. feet 0.167 feet 0.58 feet 40. % 0.389 feet 1.084 2.792 feet			
1		7.43	1.			
, >	V. 8 3e-002	7.33	0.9865	5 589	8 51	
	0.5	7.24	0.9744	1.774	2.667	
	1.	7.13	0.9596	1.411	2.09	
;	1.5	-0.33	-4.441e-002			
3	2.	7.07	0.9515	0.8501	1.248	
,	3.	7.	0.9421	0.6803	0.9892	
	4.	6.96	0.9367	0.5593	0.8085	
I	5.	6.92	0.9314	0.4869	0.6998	
0	6.	6.89	0.9273	0.4305	0.6161	
1	7.	6.85	0.9219	0.3975	0.5656	
2	8.	6.82	0.9179	0.3666	0.5193	
3	9.	6.78	0.9125	0.3482	0.4904	
4	12.	6.75	0.9085	0.2738	0.3839	
5	13.	6.71	0.9031	0.2684	0.3741	
6	14.	6.67	0.8977	0.2639	0.3656	
7	15.	6.63	0.8923	0.26	0.3581	
8	16.	6.6	0.8883	0.2535	0.3475	
9	17.	6.57	0.8843	0.2477	0.3381	
20	18.	6.52	0.8775	0.2485	0.3365	
:1	19.	6.48	0.8721	0.2465	0.3318	
:2	20.	6.45	0.8681	0.2421	0.3244	
3	21.	6.41	0.8627	0.2407	0.3205	
:4	22.	6.36	0.856	0.242	0.3197	
.5	23.	6.31	0.8493	0.2432	0.3188	
6	24.	6.27	0.8439	0.2421	0.3154	
:7	25.	6.23	0.8385	0.2412	0.3121	
28	26.	6.19	0.8331	0.2404	0.3091	
.9	27.	6.14	0.8264	0.2418	0.3084	
3U 31	20. 20	0.00	0.0100	0.2492	0.313/	
20	∠ઝ. 30	5.8∠ 5.8	0.7900	0.2002	0.3290	
2	31	5.66	0.7618	0.3005	0.3533	
34	32	5.52	0 7429	0.3179	0.3645	
35	33	5.39	0.7254	0.333	0.3728	
36	34.	5.26	0.7079	0.3478	0.38	
7	35.	5.13	0.6904	0.3623	0.3861	
8	36.	4.99	0.6716	0.3786	0.3924	
9	37.	4.862	0.6544	0.3924	0.3963	
C	38.	4.58	0.6164	0.4359	0.4147	
1	39.	4.44	0.5976	0.452	0.4168	
2	40.	4.29	0.5774	0.4701	0.4189	
.3	41.	4.15	0.5585	0.4863	0.4192	
4	42.	4.01	0.5397	0.5027	0.4187	
15	43.	3.88	0.5222	0.5172	0.4169	
16	44.	3.76	0.5061	0.5299	0.4139	
¥7	45.	3.62	0.4872	0.547	0.4113	
8	46.	3.51	0.4724	0.5581	0.4069	
9	47.	3.4	0.4576	0.5694	0.4021	
)	48.	3.27	0.4401	0.5854	0.3976	
-	49	3.2	0.4307	0.5885	0.3912	

5/2/2009

52	50.	3.09	0.4159	0.6007	0.3856	
53	51.	2.99	0.4024	0.611	0.3795	
54	52.	2.91	0.3917	0.6171	0.373	
55	53.	2.81	0.3782	0.6281	0.3666	
56	54.	2.72	0.3661	0.6371	0.3599	
57	55.	2.63	0.354	0.6464	0.3531	
58	56	2 55	0.3432	0.6538	0.3463	
59	57	2.46	0.3311	0.6639	0.3392	
60	58	2.38	0.3203	0.6719	0.3322	
61	50.	23	0.3096	0.6804	0.3251	
62	60.	2.0	0.2088	0.0004	0.3178	
62	61	2.22	0.2867	0.0000	0.3102	
64	60	2.10	0.2007	0.7012	0.0102	
65	62	1.06	0.2740	0.7107	0.0024	
60	63.	1.90	0.2030	0.7241	0.2940	
67	04. CE	1.00	0.200	0.7351	0.2071	
67	00. 66	1.0	0.2423	0.7407	0.2792	
60	00. 67	1.72	0.2315	0.759	0.2712	
09	07. CO	1.00	0.2234	0.7030	0.204	
70	68.	1.56	0.2127	0.7794	0.2000	
71	69.	1.51	0.2032	0.7906	0.248	
72	70.	1.44	0.1938	0.8025	0.24	
73	71.	1.38	0.1857	0.8117	0.2327	
74	72.	1.31	0.1763	0.8252	0.2245	
75	73.	1.26	0.1696	0.8321	0.2178	
76	74.	1.2	0.1615	0.8435	0.2102	
77	75.	1.14	0.1534	0.8556	0.2026	
78	76.	1.1	0.148	0.8605	0.1966	
79	77.	1.06	0.1427	0.8657	0.1906	
80	78.	0.99	0.1332	0.8846	0.1819	
81	79.	0.95	0.1279	0.8913	0.1759	
82	80.	0.9	0.1211	0.9033	0.1689	
83	81.	0.85	0.1144	0.9163	0.1618	
84	82.	0.81	0.109	0.9253	0.1557	
85	83.	0.77	0.1036	0.935	0.1495	
86	84.	0.73	9.825e-002	0.9456	0.1434	
87	85.	0.69	9.287e-002	0.9572	0.1372	
88	86.	0.66	8.883e-002	0.9637	0.1321	
89	87.	0.63	8.479e-002	0.971	0.1271	
90	88.	0.6	8.075e-002	0.9789	0.122	
91	89.	0.57	7.672e-002	0.9877	0.1169	
92	90.	0.54	7.268e-002	0.9972	0.1119	
93	91.	0.51	6.864e-002	1.008	0.1068	
94	92.	0.49	6.595e-002	1.012	0.103	
95	93.	0.47	6.326e-002	1.016	9.921e-002	
96	94.	0.45	6.057e-002	1.021	9.545e-002	
97	95.	0.43	5.787e-002	1.027	9.172e-002	
98	96.	0.4	5.384e-002	1.042	8.657e-002	
99	97.	0.39	5.249e-002	1.04	8.426e-002	
100	98.	0.37	4.98e-002	1.048	8.054e-002	
101	99.	0.35	4.711e-002	1.057	7.681e-002	
102	100.	0.34	4.576e-002	1.056	7.457e-002	
103	101.	0.32	4.307e-002	1.066	7.086e-002	
104	102.	0.3	4.038e-002	1.077	6.713e-002	
105	103.	0.29	3.903e-002	1.078	6.494e-002	
Arithmetic Means	S:	0 7050 (
		0.7000 reeviday 26.30 cal/dav/ft				
i ransmissivity		∠o.39 gal/day/π				

Hydraulic Conductivity Transmissivity	0.7056 feet/day 26.39 gal/day/ft		
Geometric Means: Hydraulic Conductivity Transmissivity	0.5939 feet/day 22.21 gal/day/ft		

1

. 14 g av

1.2

1.0

3°.,

11 B. 1

100 - 100 - 100 - 1

Sensitivity Analysis:Hydraulic Conductivity0.6217 feet/dayTransmissivity23.25 gal/day/ft

Remediation Service Int'l 4835 Colt Unit D Ventura CA 93003 805.644.8382 805.644.8378 FAX www.rsi-save.corr

384.7912

Report Generator Version 1.3

2/6/2009 Thriftway #810 MPE Pilot Study 1294	322 844	
Date of Report: Project Name: Unit ID:	Controller S/N: Software version:	

6.2 Ib/gallon of gasoline 120 Mole Weight of Extracted VOC 2520 Btu/Cubic Foot of Propane 1000 Btu/Cubic Foot of Natural Gas Parts/Million by Volume (PPMV) Conversion to Microg

20000 Btu/lb

Assumptions:

Parts/Million by Volume (PPMV) Conversion to Micrograms/Liter (ug/L) (PPMV/24.055)*AVG. Mole Weight=ug/L

Mass Transfer Equation to Convert to Pounds/Hour: (ug/L)*(Flow SCFM)*28.3 L/SCF*60 Minutes/Hour*2.2 lbs/Kg*(1/10^9

There are no express or implied warranties for fitness of use or any other purpose of the data contained herein See report footnotes for disclaimer details and other technical information relating to calculation procedures.

79.73 12.85 16736

Lbs. Removed/Period: Gal Removed/Period: SCF Processed/Period

2/5/2009 6:23 2/6/2009 6:58

Date Range From:

Date Range To :

Footnotes:

RSIs Innovative Approach to Estimating Btu/Hr:

1. Measure alternate fuel usage of engine prior to introduction of process flow

2. Multiply the SCFM flow rate of the alternate fuel (propane or natural gas) by the Btu value to determine energy demand on the engine at static conditions 3. The controller records a "snapshot" of the energy demand at a given RPM and engine manifold vacuum just prior to allowing the process flow to begir

4. The controller adjusts the initial baseline based on engine load or oxygen deficiency as necessar

Any drop in energy demand is assumed to be caused by the introduction of the process flow and is displayed as Estimated Btu/hr and recorded accordingly

RSIs Innovative Approach to Estimating PPMV:

1. The controller completes the Btu/hr calculation as explained above

2. The controller looks at the well flow rate (estimated or measured in SCFM)

3. The controller then computes the average PPMV using the mass transfer equation to solve for PPMV

4. If the flow rate is estimated then PPMV is subject to accuracy of estimated flow and accuracy of the Btu/hr calculation

If the flow rate is measured then this PPMV estimate will be relative to actual lab data assuming the flow measurement and the Btu calculations are correct

There are many advantages to using RSIs innovative approach in calculating how much mass was removed from a project in a given time period Our method eliminates human calculation error and prevents incorrect or non-calibrated use of field instrumentation and it is a consisten periodic measurement over time which when used properly will reduces costly laboratory analysis

- "a"

--

-16 A.

. . . .

.

e 41

-

1. **1**

1949 1949

• • •

2 4 2

2

- 29⁶ - - -

المراقعية ال

44 1970

*