,	···	· · · · · · · · · · · · · · · · · · ·	\ ;;
DATE IN	SUSPEN	ISE ENGINEER Warnel LOGGED IN 7/24/04 TYPE PMX APP NO.	0920554504
<u></u>	<u></u>	ABOVE THIS LINE FOR DIVISION USE ONLY	
		NEW MEXICO OIL CONSERVATION DIVISION - Engineering Bureau - 1220 South St. Francis Drive, Santa Fe, NM 87505 2009	IVED Pm 1 20
		ADMINISTRATIVE APPLICATION CHECKI IST	11 1 20
 т			
		WHICH REQUIRE PROCESSING AT THE DIVISION LEVEL IN SANTA FE	S AND REGULATIONS
	[NSL-Non-Sta [DHC-Dow [PC-Po [EOR-Qua	ndard Location] [NSP-Non-Standard Proration Unit] [SD-Simultaneous D nhole Commingling] [CTB-Lease Commingling] [PLC-Pool/Lease Cor ool Commingling] [OLS - Off-Lease Storage] [OLM-Off-Lease Measure [WFX-Waterflood Expansion] [PMX-Pressure Maintenance Expansion] [SWD-Salt Water Disposal] [IPI-Injection Pressure Increase] lified Enhanced Oil Recovery Certification] [PPR-Positive Production F	edication] nmingling] ement] Response]
[1]	TYPE OF AI	PPLICATION - Check Those Which Apply for [A]	1
	[A]	Location - Spacing Unit - Simultaneous Dedication	217817
	Check	Cone Only for [B] or [C]	.2
	[B]	Commingling - Storage - Measurement DHC CTB PLC PC OLS OLM	omx 164
	[C]	Injection - Disposal - Pressure Increase - Enhanced Oil Recovery	RM14 615 7
	[D]	Other: Specify	P
[2]	NOTIFICAT [A]	ION REQUIRED TO: - Check Those Which Apply, or \Box Does Not Apply Working, Royalty or Overriding Royalty Interest Owners	
	[B]	Offset Operators, Leaseholders or Surface Owner	
	[C]	Application is One Which Requires Published Legal Notice	
	[D]	Notification and/or Concurrent Approval by BLM or SLO U.S. Bureau of Land Management - Commissioner of Public Lands, State Land Office	
	[E]	For all of the above, Proof of Notification or Publication is Attached,	and/or,
	[F]	Waivers are Attached	
[3]	SUBMIT AC	CURATE AND COMPLETE INFORMATION REQUIRED TO PROC ATION INDICATED ABOVE.	CESS THE TYPE

[4] **CERTIFICATION:** I hereby certify that the information submitted with this application for administrative approval is **accurate** and **complete** to the best of my knowledge. I also understand that **no action** will be taken on this application until the required information and notifications are submitted to the Division.

Note: Statement must be completed by an individual with managerial and/or supervisory capacity.

JALYN N. FISKE Jalyn N. Eske <u>REGULATORY SPECIALIST</u> 7/6/69 Print or Type Name Signature Jalyn. fiske @ conocophillips.com e-mail Address

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

APPLICATION FOR AUTHORIZATION TO INJECT

I.	PURPOSE: X Secondary Recovery Pressure Maintenance Disposal Storage Application qualifies for administrative approval? Yes No
II.	OPERATOR: CONOCOPHILLIPS COMPANY
	ADDRESS: 3300 N. "A" ST. BLDG. 6, MIDLAND, TX 79705
	CONTACT PARTY: JALYN N. FISKE (433) PHONE: 688-6813
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project? X Yes If yes, give the Division order number authorizing the project: $\frac{PM \times 164}{PM \times 164}$
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
VII.	Attach data on the proposed operation, including: SEE PROCEDURE
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	NAME: JALYN N. FISKE TITLE: REGULATORY SPECIALIST
	SIGNATURE: Jalyn N. Loke DATE: 7/6/09
*	E-MAIL ADDRESS:

Side 1 INJECTIO	N WELL DATA SHEET			
OPERATOR: CONOCOPHILIPS COMPANY				
WELL NAME & NUMBER: MOA UNIT 386				
WELL LOCATION: 1921' FNL \$ 1995' FWL	יק" JNIT LETTER	24 SECTION	TI75 TOWNSHIP	RANGE
WELLBORE SCHEMATIC		WELL CO	NSTRUCTION DATA	-
		Surface C	hasing SEE PRO	± CE≯∪RE
	Hole Size:		Casing Size:	
	Cemented with:	SX.	or	ft ³
	Top of Cement:		Method Determined:	
	•	Intermediate	e Casing	
	Hole Size:		Casing Size:	
	Cemented with:	SX.	or	ft ³
	Top of Cement:		Method Determined:	
		Production	Casing	
	Hole Size.		Casino Size	
	Cemented with:	SX.	or	ft ³
	Top of Cement:		Method Determined:	
	Total Depth:			
		<u>Injection I</u>	<u>nterval</u>	
	4102	feet	to 4290'	
	(Pe	erforated or Open Ho	ole; indicate which)	
	(Pi	erforated or Open Ho	ole; indicate which)	

INJECTION WELL DATA SHEET

Tubing Size: 23/8" Lining N	Material:
Type of Packer: WEATHERFORD 1-X PACKER (51)	12 17#2)
Packer Setting Depth: 3650	
Other Type of Tubing/Casing Seal (if applicable):	
Additional Dat	<u>tta</u>
1. Is this a new well drilled for injection?	Yes X No

If no, for what purpose was the well originally drilled? INJECTION

- 2. Name of the Injection Formation: GRAYBURG. SAN-ANDRES
- 3. Name of Field or Pool (if applicable): SAME
- 4 intervals and give plugging detail, i.e. sacks of cement or plug(s) used. <u>NO</u> Has the well ever been perforated in any other zone(s)? List all such perforated
- $\dot{\mathbf{v}}$ injection zone in this area: Give the name and depths of any oil or gas zones underlying or overlying the proposed

	TOP METHOD	3229 TOP OF LINEH	NA	NA	NA		NA POD TOP OF LINE	3332 TUP UP LINEP	3263 TOD OF LINEE	3203 TUP UP LINET	3221 TOP OF LINEE	NA	NA	3195 TOP OF LINER	NA	NA	NA	800 SURVEY	4595 TOP OF LINEF	NA	NA	3110 TOP OF LINEF	2148 TOP OF LINEF	3318 TOP OF LINEF	NA	NA	3369 TOP OF LINEF	3379 TOP OF LINEF	NA	NA	NA	NA	NA	NA	AN	NA	3645 TOD OF LINED	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN AN	L/MI							
LINER	MENT CEMENT	150	NA	NA	NA	NA	A CO	VIN NCL	150	DC1	125	NA	AN	200	NA	NA	AN	325	110	NA	NA	350	125	135	NA	AN	240	135	AN	AN	AN	NA	AN	AN AN	AN	NA	AN	NA	NA	NA	AN	AN	ADD ADD	NA	VN	141											
	DEPTH SKS CE	4078	NA	NA	NA	NA	AN 1001	1004 NIA	A157	VIN /CI +	AN1	NA	AN	3970	NA	NA	NA	3647	5578	NA	NA	4050	3780	4055	NA	NA	4136	4059	NA	NA	AN	NA	NA	AN	AN AN	NA	AN	NA	NA	NA	NA	AN	A1 AB	NA	DN	141											
	E SET	N	NA	NA	NA	AN	NA NA	NIN		NIA	N	NA	AN	N	NA	NA	NA	N		NA	NA	-		N	NA	NA	N	N	NA	AN	AN	NA	AN	AN	AN	NA	NA	NA	NA	NA	NA	AN	INI NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	AN NA	DN N		
	D SIZ	5-1/2	NA	NA	NA	NA	NA	VIN	CITY	Z/I-C	C11-2	NA	AN	5-1/2	NA	NA	NA	4-1/2	VI Z	NA	NA	5-112	4 IN	5-1/2	WN NA	NA	5-1/2	5-1/2	NA	NA	NA	NA	AN	AN NA	VN	NA	NA	NA	NA	NA	NA	AN	7 5/B	NA	NA	NA	NA	NA	NA	VN NA	NA	NA	NA	AN	DN N	C.P.I	
	TOP METHO	1950 EST	2000 EST	3500 EST	1710 TEMP	E CIRC	JASU LEMP	2000 EST	2000 FCT	E CIRC	2000 EST	1100 CALC	3377 TEMP	2147 SURVEY	500 CALC	1600 CALC	2000 EST	2000 EST	E CIRC	1720 EST	2000 EST	NR	2200 EST	2500 EST	VN UNKNOV	1850 EST	2000 SURVEY	1800 EST	1800 SURVEY	2670 SURVEY	2400 SURVEY	2900 SURVEY	2100 EST	2100 EST	2450 FST	2100 FST	2231 SURVEY	2100 SURVEY	2200 EST	3500 SURVEY	2126 EST	2540 EST		F CIRC	E CIRC	466 UNKNOV	E CIRC	E CIRC									
DUCTION	EMENT CEMEN	150	100	300	310	200 SURFAC		300	100	325 SLIPFAC	100	175	65	100	300	300	150	150	2300 SURFAC	150	1285	360 NR	375	150	150 UNKNOV	110	240	350	350	250	300	250	096	300	300	420	300	300	300	400	300	300	SUSU CLIPEAC	2300 SURFAC	2900 SURFAC	2870 SURFAC	2295 SURFAC	525 SURFAC	1350 SURFAC	2145	650 SURFAC	1030 SURFAC	950 SUKFAU		1100 SURFAC		
PRO	T DEPTH SKS C	3560	3552	3842	3741	4075	C4/01	2702	3487	2725	3479	3631	4020	3447	3784	3660	3539	3405	4740	3670	3561	3600	3565	3550	3528	3653	3698	3676	3721	4080	4145	4145	0114	0014	4130	4025	4185	4080	4147	4080	4120	4100	2514	4150	4150	4150	4150	4020	4166	4300	4350	5982	6004	7005	7007	1771	
	D SIZE SE	7 IN	7 IN	5-1/2 IN	7 IN	4"	NI Z/L-C	IICI F W	NI Z	"C11-7	NI Z	4-112"	4-112"	7 IN	4-112"	4-1/2"	7 IN	7 IN	9-5/8 IN	6-5/8 IN	NI Z	7 IN	7 IN	VI Z	NI Z	5-1/2 IN	VI Z	7 IN	5 1/2 IN	5 1/2 IN	5-1/2 IN	NI Z/L G	NI ZIL 5	NI Z/I C	NI CIT S	5 1/2 IN	5 1/2 IN	5-1/2 IN	5 1/2 IN	5 1/2 IN	5 1/2 IN	NI Z/L G	NI 7/1 C	8 5/8 IN	8 5/8 IN	8 5/8 IN	8 5/8 IN	8-5/8 IN	7 IN	NI Z	5 1/2 IN	5 1/2 IN	/ IN	NI 7/L C	5 117 IN	0.112	
	METHO	NA	NA	EST (NA	TEMP	LEMP	AN DIN	ND	TEMP	NA	CALC	TEMP	NA	TEMP	CALC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	CIRC	NA	NA	NA	AN	NA	NA	NN NN	AN	NA	NA	NA	NA	NA	NA	AN	AN AN	NA	NA	NA	NA	CIRC	NA	CIRC	CIRC	CIRC	CIRC	CIPC	CIRC	~	
DIATE	ENT CEMENT TOP	NA	NA	830 2000	NA	150 2400	200 3391	AN ND	NA	100	NA ZELO	100 2830	100 2192	NA	100 2500	150 2540	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	50 SURFACE	NA	NA	NA	NA	NA	AN NA	Y N	DN N	NA	AN	NA	NA	NA	NA	124 SURFACE	NA	945 SURFACE	580 SURFACE	750 SURFACE	600 SUKFALE	IN SURFACE	AND SLIRFACE								
INTERME	EPTH SKS CEME	NA	NA	3594	887 NA	3551	4105	3560	NA	3488	NA	3493	3492	NA	3505	3541	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	939	NA	NA	NA	NA	NA	AN	VIN	AN AN	NA	NA	NA	NA	NA	NA	AN	AN	NA	NA	NA	NA	2150 1	NA	2000	3652 2	2202	2208	NN PC1C	2110	2117	
	SET D	NA	NA				VIV	TZ.	NA		NA			NA			NA	NA	NA	NA	NA	AN	NA	NA	NA	NA		NA	NA	NA	NA	AN	AN	VIN	AN AN	NA	AN	NA	NA	NA	NA	z	NA	7	6		MIN	YN									
	HOD SIZE	OWN NA	NA	NI Z	8-5/8 IN	5-1/2"	AI BIC-D .	WN NAAO	NA		AN NWO		1	DWN NA	-L	1	NA	OWN NA	NA	NA	NA	NA	NA	OWN NA	OWN NA	NA	8-5/8 IN	NA	NA	NA	VEY NA	AN	AN	VN VN	AN	NA	NA	NA	NA	NA	NA	AN	AN	AN	NA	NA	NA	10-3/41	NA	11 3/4	8-5/8 IN	8 5/8 IN	VIV NIV	R 5/8 IN	8 5/8 IN		
	OP MET	UNK	CIRC	CIRC	CIRC	CIRC	CIRC	CIRC	FST	S30 TEM	UNK	CIRC	CIRC	UNK	CIRC	CIRC	540 EST	UNK	CIRC	CIRC	CIRC	NA	CIRC	UNK	UNK	CIRC	CIRC	EST	CIRC	CIRC	28 SUR	CIRC	JAID		CIRC	CIRC	CIRC	CIRC	CIRC	CIRC	CIRC	CIRC	CIRC	CIRC	U L L L	CIRC	CIRC		0								
ACE	AENT CEMENT T	UNKOWN	50 SURFACE	15 SURFACE	50 SURFACE	23 SURFACE	ED LINKOWN	SU SURFACE	50 SURFACE	50 2011 201	50 UNKOWN	75 SURFACE	50 SURFACE	50 UNKOWN	50 SURFACE	100 SURFACE	50	50 UNKOWN	350 SURFACE	25 SURFACE	16 SURFACE	NA	32 SURFACE	N UNKOWN	50 UNKOWN	22 SURFACE	50 SURFACE	50 SURFACE	680 SURFACE	500 SURFACE	300	350 SUKFACE	325 SURFACE	275 CLIDEACE	375 SURFACE	375 SURFACE	400 SURFACE	400 SURFACE	500 SURFACE	425 SURFACE	450 SURFACE	400 SURFACE	755 SURFACE	455 SURFACE	460 SURFACE	675 SURFACE	651 SURFACE	625 SURFACE	520 SURFACE	680 SURFACE	850 SURFACE	325 SURFACE	EAD SURFACE	1000 SURFACE	700 SURFACE		
SURF	T DEPTH SKS CEI	889 UNKOWI	888	40	95	20	050	985	066	1006	920	873	910	903	1010	1922	880	912	444	794	21	20 NA	40	880 UNKOWI	770	60	59	973	846	628	748	/80	001	740	150	750	825	700	006	770	800	184	749	750	750	750	762	810	603	785	960	308	113 DEE	600 A2A	642	4	
	SIZE SE	8 1/4 IN	8 5/8 IN	12 1/2 IN	10-3/4 IN	12-1/2"	INI DI DI DI	5_5/R"	8 1/4 IN	8 5/8 IN	8-5/8 IN	8 1/4 IN	8 1/4 IN	8-5/8 IN	8 1/4 IN	8-5/8"	8-5/8 IN	8 5/8 IN	13-3/8 IN	10 IN	12 1/2 IN	12 1/2 IN	12-3/4 IN	8-5/8 IN	8 5/8 IN	10-3/4 IN	10-3/4 IN	8-5/8 IN	NI 8/5 8	NI 8/5 8	8-5/8 IN	NI Q/C Q	NI 0/2 0	NI 0/C 0	8 5/8 IN	8 5/8 IN	8 5/8 IN	8-5/8 IN	8 5/8 IN	8 5/8 IN	8 5/8 IN	NI Q/C Q	16 IN	13 3/8 IN	13 3/8 IN	13 3/8 IN	13 3/8 IN	16 IN	17-1/2 IN	17-1/2 IN	13 3/8 IN	13 3/8 IN	13 3/8 IN	VI 9/2 21	13 3/8 IN		
	OTAGE EM	660 FWL	1980 FWL	660 FWL	1347 FWL	660 FWL	SED EEI	SED FEL	1980 FWI	660 FWI	1980 FWL	660 FWL	1980 FWL	660 FWL	1980 FEL	1980 FEL	1980 FEL	660 FEL	1830 FEL	660 FEL	660 FEL	660 FEL	1980 FEL	1980 FEL	1980 FWL	2590 FWL	2595 FWL	140 FEL	1325 FWL	200 FWL	1310 FEL	JVV1 CZ	1705 EEI	1245 EVAI	2615 FFI	25 FWL	1345 FWL	1295 FWL	2615 FWL	1295 FWL	25 FEL	1/80 FEL	660 FFI	899 FEL	891 FEL	432 FEL	425 FEL	1580 FEL	1295 FWL	1310 FEL	1995 FWL	330 FWL	LAVI UCOL	DAD FWI	480 FFI		
	GE DOTAG N/S FO	660 FSL	660 FSL	1980 FSL	1395 FSL	660 FNL	LINI PCC	1980 FNI	1980 FSI	1980 FSI	660 FNL	660 FNL	1980 FNL	1980 FNL	1980 FSL	660 FNL	1980 FNL	1980 FNL	1980 FSL	1980 FNL	1980 FSL	660 FSL	1980 FSL	660 FSL	660 FSL	25 FSL	2580 FNL	2615 FSL	25 FSL	1250 FNL	2590 FSL	JNT CLOS	1040 LOL	2615 ENI	1295 FNI	1295 FNL	1345 FSL	65 FNL	1345 FSL	1295 FNL	1395 FSL	DEAE ENI	2600 FNI	2371 FNL	2449 FSL	2442 FSL	2365 FNL	1220 FNL	1395 FNL	1225 FSL	1921 FNL	2310 FSL	100 LOC	1500 FSI	2310 FNL		

DOTAG	660	660	1305	099	554	660	1980	1980	660	660	1980	1980	1980	1980	1980	1980	1980	660	1980	660	25	2580	2615	1250	2590	2013	125	2615	1295	1345	65	1345	1295	1980	2615 1	2371	2449	2442	12362	1395 1	1225	23101	066	1295 1	2310 1	¢		5					
RANGE	32E	32E	32E	32E	32E	32E	32E	32E 37E	32E	32E	32E	32E	32F	32E	32E	32E	32E	32E	32E	32E 37E	32E	32E	32E 37F	32E	32E	32E 37F	32E	32E	32E	32E	32E	32E	32E 32F	32E	32E	32F	32E	32E	32E 37F	32E	32E	32E 37F	32E	32E	32E		C	0					
C TWP	21 17S	21 17S	2/1 1/5	28 17S	28 17S	29 17S	29 17S	29 1/5	29 17S	29 17S	29 17S	29 17S	S11 67	29 17S	30 17S	20 17S	20 175	20 17S	20 17S	20 175	20 175	29 17S	30 1/S	28 17S	20 175	S/1 1/5	20 17S	29 17S	24 1/S	29 17S	29 17S	SU 175	20 17S	20 175	S/1 07	20 17S	20 17S	S/1 67	21 17S	28 17S	20 17S			T									
TUS SE																																															2	1 20	5				
PTH ST/	4018 ACT	1062 ACT	TOA CTI	4071 ACT	747 ACT	3759 PA	3810 ACT	3964 ACT	3747 PA	3716 ACT	3789 PA	3779 PA	SUAU AU I	3782 PA	3757 PA	8965 PA	3721 ACT	3760 ACT	3723 PA	SI 44 AUI	4048 ACT	4136 PA	1100 ACT	4080 ACT	4145 PA	1145 PA	1130 ACT	4130 ACT	1083 PA	1185 PA	4080 PA	4150 ACT	1120 ACT	4100 ACT	4125 ACT	A1 DC I t	1150 PA	1150 PA	827 ACT	1160 ACT	1300 ACT	1350 AUT	5010 ACT	1445 ACT	027 ACT		10	1 N	3				
LE TD DE	40	40	41 74 74 74 74 74 74 74 74 74 74 74 74 74	808	46 10	39	40	40	40	40	40	40	140	40	40	59 13	8 8	39	39	40	69	88	63	1002	71	10/	12	71	71	12	72	71	1 12	72	72	83	80	81	84	87	87	1 00	00	90 90	080				1NO				
PUD DA	5/12/19	9/30/19	81/15/1 8/20/10	11/18/19	11/16/19	3/21/19	6/8/19	12/10/19	7/6/19	8/4/19	8/13/19	10/8/19	3/19/19	2/24/19	8/2/19	3/13/19	12/7/19	7/29/19	10/28/19	91/1/9	8/10/19	8/1/19	6/10/19	4/11/19	1/1/19	3/8/19	3/4/19	2/13/19	3/27/19	5/8/19	1/15/19	7/21/19	61/2/19	4/13/19	7/30/19	8/1/19	12/21/19	1/14/19	12/19/19	2/14/19	8/27/19	0417112	9/24/20	10/16/20	3/16/20								
/ELL# S	93	92	10	114	113	112	154	160	110	109	12)	158	111	(155)	159	303	66 66	94	65	47	96	156	734	252	256	262	269	270	277	293	288	294	287	308	319	360	361	362	365Y	369	372	385	- vo	394	33			1					
LEASE NAME W	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MCA UNIT	MC FEDERAL	MC FEDERAL	MCA UNIT	BC FEDERAL								
API	30025006080000	30025006090000	30025006100000	30025007330001	30025007510001	30025007520000	30025007530000	30025007540000	30025007580000	30025007590000	30025007600000	30025007610000	30025007670001	30025007680000	30025007840000	30025080530000	30025080620000	30025080630000	30025080640000	30U25080650000	30025127550001	30025127560003	300257275206720001	30025234820000	30025235090002	30025236600000	30025237060000	30025237070000	30025237330000	30025237670000	30025237780001	30025237970000	30025238070000	30025240760000	30025242130000	30025270630001	30025270640000	30025270650000	3002527076000	30025298530000	30025299560000	3002531100000	30025349730000	30025379310000	30025387140000								

Proposed P: H Wellbore

MCA No. 290

MCA 9-660'FSL + 1980 FWL 20-17-32 100'emt elev 3957 Mud 858" set @ cint. 760 W/ 50 313 Cont retriner 700', squeeze hules @ 750' Squeeze below retainen w/300 ses (circ cont Mud - cement retainer @ 2700; spiceze below w/ 600 shs 108 cmt 5 Collarsed 41/2" @ 7.800 $\int f dx dx$ -TOP of 2318" they @ +1-2900' 7" 20" SETCO 3528 W 150 5~, R. 4.12" AD-1 PHI @3620 41/2" 9.5 # set @ 3685 W/300 Sts TOC 800' Stot 3799-3845 Stor: 3964-4022 TB 4077

Proposed PEA wellbore

State

PDB 9/24/85

MCA 361 P3A

MC4 155 P3A 1980'FAL & 1980 FEL Sec 29 TITS B32E

Roposed PCA vellore

MCA 157 197A EVPTION 3933 (GL) WDEL COMPLETO 11-21-88 ZERO 10' AGL 29 - 87/01 - 7 plug + rom 330 Sin summer piles - norm 150+ Joins to wrawing 100 retween T'x + 12 Longie 6 % - 20" @ 910 w/ 50 m TOD SALT = 950 1950'-910 BASE SALT = 1915 25 5x. smr plug - ram 13000-3300 - CENTERT LETAINER & ZECO' Sik - we can't acrow retained (in initial 4-MAGNUM GT LINEZ HANGER (3378 (TOL) SAZ. TOL 44 998% CM 7"-20" 555 @ 2492 y 100 w (10(2200) [211170 641 FG Wher & + 3759 - 3749" BLBZ & 3682 pulled 4' pure of 4/2 csq from 3910' (place 38815 cmr) 1-3, 7-4 3765 (3-2116 x-0rals & 271, - Clase 61, 1000 STG5 4377E Squeezeo_4/12 line of 70sec cmt from 3510'-3763' 14 peets, 3155-80' IJSPF OPEN HOLE SHOT Section from 11th perfs: 2030'-70' 17th perks : 3925 - Br 3748 - 3790 9th perfs . 4000 - 4009 1/2"-9.5" J-55@4012 -1/1254; DV tool @ 3700 -/6030 (TOC @ 3000') 104 59 2% FG LINEZ @ 4020' - 1 60 m.

MCA 188 PAA 15 FNL , 1296 FWL H STRES PINTE Sec. 29, 4-15, 2-37E المت وعن أتهاند <u>c</u>e LEA CS., NEW MARINE Sinculation 115 as of comment with 74' and 46 the 8% - 20" 1-+0 8 700 w/ 400 sk crt 51: ywyo @ 2063 w 150 se om (restro 6 000 pag) H r'oc *46* [? Top SALT : BZO' BASE SALT : / BIG IMT Slug from 133BOL SUR AME -Adus & 3380' (= 500 sx) Cement plug from 3480' - 4030' (± 8052) Pealurmors 3682 - 3704, 3802 - 3822, 3828 - 3832 3894 - 3898, 3900 - 3905, 3989 3584 3992-3998 (JSPF) 10 43 80

PROCEDURE

1. MI well service unit. NU BOPE w/ stripper head. Pump 35 bbl 10# brine down tbg (capacity to bottom perforation: 23.5 bbl). Un-set PKR. Circ annulus w/ 75 bbl 10# brine (2-3/8" x 5-1/2", 17# annular capacity: 64.8 bbl). POOH.

If deemed necessary, circulate well w/ 13 ppg kill mud

The following is a WellView-sourced summary of current downhole configuration:

		Depth	(RKB)	
		(KB - G	L: 18 ft.)	
		top	<u>btm</u>	
	13-3/8", 54.5#, K-55 csg	18	960	Cmt w/ 250 sx. Circ 180 sx.
	8-5/8", 32#, K-55 csg	18	3652	DVT @ 2976. ECP @ 3103
				1st Stg: cmt w/ 380 sx. Circ 80 sx.
				2nd Stg: cmt w/ 2200 sx. Circ 190 sx.
	5-1/2", 17#, K-55 csg	18	4350	DVT @ 3363. 1st Stg: circ 76 sx.
				2nd Stg: circ 78 sx.
116 jts	2-3/8", 4.7#, J-55 IPC tbg	18	3643	
1	Weatherford 1-X PKR (5-1/2, 17#)	3643	3650	PKR run w/o on-off tool
	Completion Intervals:			
	Grayburg-6	3760	3798	
	San Andres-7	3862	3892	
		3926	3936	
		3954	3968	
	San Andres-9	4018	4026	
		4032	4056	
	PBD (top)/TD (btm)	4295	4350	

- PU 2-7/8", 6.5#, J-55 workstring. RIH w/ 4-1/2" bit & 6: 3-1/2" DC (5-1/2", 17# csg ID: 4.892 in.; drift ID: 4.767 in.). RU reverse unit. CO to PBD @ 4295. Condition well w/ 10# brine. POOH.
- 3. RU Schlumberger. Install lubricator & pack-off.

.

Perforate following San Andres intervals @ 3 spf – 60 degree phasing w/ 3-1/2" PowerJet Omega (EHD: 0.44 in. penetration: 44.2"):

		ATT THE R. L.		
	Interval	feet	perforations	
Grayburg	3755-3758	3	9	re-perf
Grayburg	3772-3776	4	12	re-perf
Grayburg	3784-3808	24	72	re-perf
Upr SA7	3856-3890	34	102	re-perf
Upr SA9	4020-4024	4	12	re-perf
Upr SA9	4032-4058	26	78	re-perf
Lwr SA9	4102-4108	6	18	
Lwr SA9	4146-4162	16	48	
Lwr SA9	4167-4173	6	18	
Lwr SA9	4182-4196	14	42	
Lwr SA9	4220-4236	18	54	
Lwr SA9	4246-4262	16	48	
Lwr SA9	4280-4290	<u>10</u>	<u>30</u>	
	TOTAL	181	543	

Casing collars @:

<u>Collars</u>	Comment
3618	
3661	
3703.5	
3746.5	
3788	Existing perforated interval; possible bad collar signature
3831	
3873	Existing perforated interval; possible bad collar signature
3916	
3959.5	Existing perforated interval; possible bad collar signature
4003	
4043	
4086	·
4127.5	
4170	
4213.5	
4256.5	Logger PBD (03.08.91): 4294

Ð

RD Schlumberger.

 RIH w/ 2-7/8" tbg w/ PKR & RBP. Test tbg below slips @ 5000# (2-7/8", 6.5#, J-55 burst: 7260# @100%). Acidize the following perforated intervals @ 5+ BPM (single pump truck). Anticipated treating pressure: 2500-3000#:

PKR Depth	RBP Depth	Perforation Interval	15% HCI: gal	10# Flush: bbl	
4270	4292	4280-4290	500	50	Lwr SA9
4240	4270	4246-4262	800	50	Lwr SA9
4210	4240	4220-4236	800	50	Lwr SA9
4178	4210	4182-4196	700	50	Lwr SA9
4120	4178	4146-4162 & 4167-4173	1100	50	Lwr SA9
4080	4120	4102-4108	300	50	Lwr SA9
3980	4080	4020-4024 & 4032-4058	3000	50	Upr SA9: re-perf
3820	3910	3856-3890	1700	50	Upr SA7: re-perf
3720	3820	3755-58, 3772-76 & 3784-3808	1500	50	Grayburg: re-perf
		TOTAL	10400	450	

Note: Due to historical injection, casing interval between 3643 (current injection PKR depth: 3643-3650) and 4056 (base of current gross completion interval: 3760-4056), may not provide suitable PKR (RBP) seats.

POOH & LD 2-7/8" workstring, PKR & RBP.

5. RIH w/ following:

	RKB	
	(KB-GL: 18 ft.)	
2-3/8", 4.7#, J-55 IPC (TK99) tbg	3634	
On-Off Tool w/ 1.71" profile nipple	3634	
5-1/2", 17# PKR	3635	5-1/2" csg collars: 3618 est & 3661

Install 3500# pump-out plug in bottom of PKR. Set PKR @ 3635 (Note: previous PKR set depth 3643). Release from on-off tool. Circ 2-3/8" x 5-1/2", 17# annulus w/ PKR fluid (annular capacity: 65 bbl). Engage on-off tool. Test annulus @ 500# for 30 min.

Pressure test tbg @ 2500#. Pressure tbg to 3500# to shear pump-out plug. Note pumpout pressure. Return well to injection.

	Maximum	Internal pres	ssure: psi	Internal Diar	neter: in,	Capa	icity
	100%	85%	80%	Nominal	Drift	bbl/ft.	gal/ft.
2-3/8", 4.7#, J-55 tbg	7700	6545	6160	1.995	1.901	0.00387	0.1624
5-1/2", 17#, J-55 csg	5320	4522	4256	4.892	4.767	0.0232	0.9764
2-7/8", 6.5#, J-55 tbg	7260	6171	5808	2.441	2.347	0.00579	0.2431
2-3/8", 4.7# x 5-1/2", 17#						0.0178	0.7463
2-7/8", 6.5# x 5-1/2", 17#						0.0152	0.6392

PROPOSAL

The proposed workover consists of pulling MCA 386 for the purpose of perforating the Lower San Andres-9 over the gross interval: 4102-4290 (-146/-334 RMSL) to increase injection/disposal capacity. The additional injection capacity is required to accommodate the additional water production associated with the current 25-well development drilling program. The Grayburg-San Andres section in MCA 386 was drilled w/ a 17.1 ppg mud followed by a modest acid stimulation limited to treating rates less than 2 BPM...the relatively acid insoluble Grayburg sands were limited to a treating pressure of 1900# resulting in a treating rate of 1-1/2 BPM. The well has not been frac-treated. Due to the potential formation damage resulting from possible mud losses as suggested by the open-hole caliper log, the proposed Lower San Andres-9 intervals will be perforated w/ deep penetrating charges.

WELL HISTORY

MCA 386 (surface location: 1921 FNL & 1995 FWL, 29F-17S-32E) was drilled in January 1991 to a TD of 4350 ft. (-394 RMSL) as a replacement well to injection well MCA 157, abandoned in June 1990. The surface location of MCA 386 is located 59 ft. N & 15 ft. E....60.9 ft. N14.3 E....of the surface location of MCA 157 (surface location: 1980 FNL & 1980 FWL, 29F-17S-32E). The San Andres intervals in MCA 386 were encountered at:

	<u>RKB</u>	RMSL
San Andres-7	3822	134
San Andres-8	3977	-21
Upr San Andres-9	3991	-35
Lwr San Andres-9 (9M)	4096	-140
PBD	4295	-339

During drilling MCA 386, a water flow was encountered at 3190 ft. Reported 30 min. SIDP was 500# w/ a standing column of 10# brine indicating a required kill weight of 13 ppg. During SI, it was reported that a surface water flow developed at the MCA 157 P&A marker. The water flow in MCA 386 was controlled w/ a 13.5 ppg mud. The water flow continued at the MCA 157 surface location at 6 BPH. Prior to the resumption of drilling, the 13.5 ppg mud was displaced w/ 10# brine and the well drilled in an under-balanced condition to the 8-5/8" casing point @ 3653 w/ reported flow checks at: 3349 (53.5 BPH) & 3650 (55 BPH). An 8-5/8" casing string w/ ECP @ 3106 and DVT @ 2976 was run and cemented to surface. It was reported that upon setting the ECP, the water flow stopped in MCA 386. Following cementing the 8-5/8" casing, the surface water flow at MCA 157 stopped. On drilling out the 8-5/8", 5 ft. of formation was drilled and a LOT conducted (17.5 ppg). Prior to resumption of drilling, the hole was displaced w/ 17# mud in anticipation of encountering high pressure. MCA 386 was drilled in an over-balanced condition to TD. The following is a brief drilling summary:

Date		MW:ppg
01.07.91	MI & RU. Spud well	9.3
01.08.91	TD 966. Prep to run csg.	10.2
01.09.91	TD 966. Run 13-3/8", 54.5#, K-55 @ 960. Cmt w/ 850 sx. Circ 180 sx.	
01.10.91	Drlg 2035	10.1
01.11.91	Drlg 2750	10.1
01.12.91	Drlg 3190. Took kick @ 3190. SIDPP: 500#. SICP: 700#	10.1
	NOTE: Reported water flow out of ground @ MCA 157 P&A marker	
01.13.91	Depth 3190. Condition well w/ 13.5 ppg kill mud. Well dead.	
	NOTE: Reported 6 BPH flow (9.9 ppg) out of ground @ MCA 157 P&A marker	
01.14.91	Drlg 3282 w/ 9.7 ppg brine w/ 3" to 4" water flow.	9.7
	NOTE: Ran temp survey (log recorded MW: 13 ppg). Circ out 13.5 ppg kill mud w/ 10 ppg brine.	
01.15.91	Drlg 3557. Flow check @ 3349: 53.5 BPH	9.9
01.16.91	TD 3653. Flow check @ 3650: 55 BPH. Run 8-5/8", 32#, K-55 @ 3652. DVT @ 2976. ECP @ 3103	9.9
	Crnt 1st Stg: 380 sx. Circ 80 sx.	
	NOTE: Water flow stopped when ECP was set.	
01.17.91	Cmt 2nd Stg: 2200 sx. Circ 196 sx.	
	NOTE: Water flow @ MCA 157 stopped after cementing 8-5/8" csg.	
01.18.91	Drlg 3840. Drl out csg shoe & 5 ft formation. LOT: 17.1 ppg @ 3658. Load hole w/ 17 ppg mud	16.7+
01.19.91	Drlg 4135	17+
01.20.91	TD 4350	17.1+
01.21.91	TD 4350. Run OH logs (log recorded MW: 17.1 ppg)	17.1
01.22.91	TD 4350. run 5-1/2", 17#, K-55 @ 4350 w/ DVT @ 3363	
	Cmt 1st Stg: 225 sx.	
	Cmt 2nd Stg: 425 sx. Circ 78 sx.	

The following is a well file-sourced summary of the initial completion and post-completion well work. The Grayburg-San Andres section in MCA 386 was drilled w/ a 17.1 ppg mud followed by a modest acid stimulation limited to treating rates less than 2 BPM...the relatively acid insoluble Grayburg sands were limited to a treating pressure of 1900# resulting in a treating rate of 1-1/2 BPM. Due to the proximity of MCA 386 to the abandoned MCA 157, the completion intervals in MCA 386 have not been prop-frac treated. Based on the following initial completion summary, it is questionable as to the necessity of drilling the section below the 8-5/8" csg shoe to TD w/ 17.1 ppg mud.

Date	
03.12.91	Perforate SA9 @ 2 spf: 4018-4026 & 4032-4056
	SA7 @ 2 spf: 3862-3892, 3926-3936 & 3954-3968
	RIH w/ tbg, PKR & RBP. Set RBP @ 4100. Set PKR @ 4006. Acd SA9 gross interval: 4018-4056
	w/ 30 bbl 15% HCI. AIR:1.75 BPM. AIP: 2000#. Flush w/ 20 BPW @ 1.5 BPM - 1850#. ISIP: 1650#.
	Flow back wellwell gassy. Pump 16 bbl 9# brine. Well on vac. Re-set RBP: 4000. Re-set PKR: 3914.
03.13.91	Acid SA7 gross interval: 3926-3968 w/ 25 bbl 15% HCI. AIR: 2 BPM. AIP: 2950#. Flush w/ 18 BPW @ 2 BPM -2750#.
	ISIP: 1750#. Open well: instant bleed-off to pit w/ small flow. Re-set RBP: 3914. Re-Set PKR: 3822.
	Re-set RBP: 3914. Re-set PKR: 3822. Attempt to pump-in SA7: 3862-3892 @ 4000#. Spot 3 bbl 15% HCI.
	Attempt to pump-in @ 4000#. POOH w/ PKR. Prep to re-perf.

03.14.91	Re-perf SA7: 3862-3892 @ 1 spf. RIH w/ PKR @ 3729. Acd SA7: 3862-3892 w/ 37 bbi 15% HCI. AIR: 2 BPM.
	AIP: 2000#. Flow back well. Rec acd wtr & CO2. Kill well w/ 13 ppg mud. Re-Set RBP: 3822. Circ out 13 ppg mud.
03.15.91	Circ well clean. Test RBP: 800#. Spot 3 bbl 15% HCI. POOH w/ PKR. Perforate Grayburg @ 2 spf: 3760-3777 & 3784-3798.
	RIH w/ tbg & PKR. Set PKR @ 3729. Could not pump-in @1900#. SI 40 mins w/ 1900# SITP. Establish PIR: 0.75-1 BPM @ 1900#.
	Acd Grayburg: 3760-3798 w/ 30 bbl 15% HCI. AIR: 1-1.25 BPM @ max. allowable surface treating prs: 1900#.
	Flush w/ 18 bbl brine wtr. ISIP: 1750#. Prep to run injection equipment.
03.18.91	Open PKR by-pass. Circ well w/13# kill mud. POOH w/ tbg, PKR & RBP. RIH w/ 2-3/8" tbg w/ on-off tool & PKR w/ 1.71" profile in PKR
	Set PKR @ 3707. Circ out 13# kill mud w/ PKR fluid. Test annulus 30 min. @ 500#. Test tbg & on-off tool @ 2000#.
	ND BOP. NU well.
03.19.91	Retrieve tbg plug. <u>Flow well to pit. Flow 20 bbl & died</u> . SI. Prep to run BHP survey.
03.20.91-04.20.91	Lay CO2 injection line
04.11.91-04.18.91	168 hr SI BHP @ 3706 ft. Start BHP: 846# (04.11.01). End BHP: 985# (04.18.01168 hrs SI)building ARO 0.3 psi/hr. BHT: 85F
04.20.91	Place on CO2 injection @ reported rate: 120 MCFPD @ 2150#
Post-Completion	
05.30.91	RIH w/ 1-1/4" CT. Hydro-blast perforated intervals4 times. Recovered drilling mud in returns.
05.31.91	Acd down CT w/ 83 bbl 15% HCI. Flush w/ 16 BFW. AIR: 0.5 to 0.75 BPM @ 1850#.

The following is a summary of the injection surveys:

Date	<u>04.10.91</u>	<u>10.21.91</u>	<u>12.07.91</u>
Injectant	CO2	CO2	CO2
Injection Prs: psi	2150	2100	2500
Injection Rate			
CO2: MSCFPD	420	445	1155
Water equivalent: BPD	152	161	418
PBD	4295	4295	4295
Logger TD	4273	4271	4258
Fill	22	24	37
Completion Zone	Inject	ion Profile: Pe	ercent
Grayburg-6 (perforated gross interval: 3760-3798)	27	23	15
Upr SA7 (perforated gross interval: 3862-3892)	9	0	8
Lwr SA7 (perforated gross interval: 3926-3968)	7	18	77
Upr SA9 (perforated gross interval: 4018-4056)	<u>57</u>	<u>59</u>	<u>0</u>
TOTAL	100	100	100

Note: survey of 04.10.91, recovered drilling mud on tools.

MCA 386 was on CO2 injection at a rate of approximately 400 MCFPD from April 1991 to September 1993 when CO2 injection was terminated.

The well was return to water injection in January 2003 w/ injection occurring on an intermittent basis. Current injection is approximately 100-200 BWIPD.

CONOCOPHILLIPS COMPANY MCA UNIT 386 GRAYBURG SAN ANDRES 30025311000000

The anticipated high pressure that prompted the drilling of the 5-1/2" casing section in MCA 386 w/ 17 ppg drilling mud was based on the abandonment of MCA 157 which required 16.8 ppg to control CO2. MCA 157, located 59 ft. S & 15 ft. W of the surface location of MCA 386, was abandoned in June 1990 following unsuccessful efforts to modify the existing CO2 injection profile. An injection profile survey of 10.31.89 in MCA 157 indicated a major upward channel from the Grayburg perforated gross interval: 3748-3778 to 3720 w/ possible channeling up to 3520.... (MCA 157 was drilled in 1940 w/ 7", 20# casing set @ 3492; Cmt w/ 100 sx.). MCA 157 had a history of collapse casing intervals prompting the running of a 4" string and later a 2-7/8" FG liner:

Date	MCA 157 (formerly Carper Drilling Co. Simon 3-N
08.1940	8-5/8", 28# csg @ 910. Cmt w/ 50 sx.
	7", 20# csg @ 3492. Cmt w/ 100 sx.
	TD: 3789 (RGL). Nitro-shot 5" OH interval: 3725-3755 (Grbg-6) w/ 140 qts.
11.1945	Deepen well from base of Grbg (top of SA) @ 3789 RGL (+145 RMSL) to 4031 (-97 RMSL)SA9.
	on bailing test, recovered 6 gallons water/minute (144 BWPD).
	PB OH from 4031 (-97 RMSL) to 4021 (-87 RMSL). Test. Recovered no waterpossible SA9 water contact @ -87 RMSL
05.01.63	MCA Unitization: Carper Drilling Co. Simon 3-N re-named MCA 157
03.1967	Convert MCA 157 to WIW
05.1967	7" csg collapse interval: 3372-3413. Swage csg. Run 4-1/2", 9.5# csg to 4012 w/ DVT @ 3700. Cmt w/ 72 sx
04.1988	4-1/2" csg collapse interval: 3820-3868. Mill out. Run 2-7/8" FG liner: 3378-4020. Cmt w/ 90 sx.
01.1989	Convert to CO2 injection
03.30.89	Run injection survey: 86% losses out Grayburg perforation interval: 3755-3780 w/ major channeling to 3720 possible channeling to 3450
10.31.89	Run injection survey: 89% losses out Grayburg perforation interval: 3755-3780 w/ major channeling to 3720 possible channeling to 3520
02.1990	Convert from CO2 injection to water injection in preparation for step-rate test followed by injection profile modification.
04.04.90	Run step rate test. Formation Parting Prs: 3758# @ 3860 ft., equiv to: 18.7 ppg, gradient: 0.974 psi/ft.
04.16.90	SI
06.1990	Attempt to CO well. Kill SI well w/ 16.8 ppg mud. Drld out of 2-7/8" liner: 3749-3759(1945 shot-hole interval: 3725-3755)
	Lost dyna dril motor & bit. RIH w/ workstring. Twisted-off. Left x-over subs & blade bit in well. TOF: 3765. Junked hole.
07.1990	P&Aprep to drill replacement well, MCA 386 (drilled 01.1991)

ConocoPhillips

Schematic - Current

MCA 386W

Most Recent Job Category	Job	Primary Job Type	Secondary Job Type	Actual Start Date	End Date
WELL INTER	VENTION	REPAIR DOWNHOLE		8/14/2006	8/18/2006
ftKB (MD)		vvent	Schema	tic - Actual	
18				- 1-1 Casing Joints 20 19 124 18	·····································
40 960				- 2-1, Casing Joints, 13 3/8, 12.615,	18, 942.0
3,103	, . [- 3-1, Tubing, 2 3/8, 1.995, 0, 3,643.0)
3,103 3,104				– 3-1, Casing Joints, 8 5/8, 7.921, 18, – 3-2, DV Tool, 8 5/8, 3,103, 1,0	3,085.4
3,113				- 3-3, ECP (packer), 8 5/8, 3,104, 8.6	,
3,363				– 4-1, Casing Joints, 5 1/2, 4.892, 18, – 4-2, DV Tool, 5 1/2, 4.892, 3 363, 1	* 3,345.0 • 0
3,608				- 3-4, Casing Joints, 8 5/8, 7.921, 3,1	13, 495.0
3,609				- 3-5, Float Collar, 8 5/8, 3,608, 1.0	· · · · · · · · · · · · · · · · · · ·
3,631					. ,
3,634					
3,651				– 3-2, Packer, 5 172, 3,643, 7.0 – 3-6, Casing Joints, 8 5/8, 7.921, 3,6	i09, 42.0
3,652				-3-7, Float Shoe, 8 5/8, 3,651, 1.0	
3,758				• • • • • • • • • • • • • • • • • • •	
3,760 3,772				- Perforated, 3,760-3,777, 3/19/1991	
3,776					
3,777 3,784				n	
3,798				- Perforated, 3,784-3,798, 3/19/1991	·····
3,808					
3,862				- Re-perforated, 3,862-3,892, 3/19/19	91
3,890				- Fellolated, 3,002-3,692, 3/19/1991	
3,926				- Derferend 2 026 2 026 2/10/1001	
3,936 3,954				renorated, 3,320-3,330, 3/13/1331	
3,968				- Perforated, 3,954-3,968, 3/19/1991	
4,018 4,020				· · · · · · · · · · · · · · · · · · ·	
4,020				- Perforated, 4,018-4,026, 3/19/1991	· · · ·
4,026					
4,056				- Perforated, 4,032-4,056, 3/19/1991	
4,058					
4,108				····· ··· · ······· ···· ···· · ····	
4,146 4 162					
4,167					
4,173 4 182				· · ·	· · · · ·
4,196					
4,220	· · ·				
4,246	•			· ·	
4,262	,				
4,290				•	
4,295	••• • • • • • • • •			- 13 Cacing Jointo E 1/3 4 803 0 0	
4,303				- 4-3, Casing Joints, 5 1/2, 4,892, 3,30 - 4-4, Float Collar, 5 1/2, 4,303, 1.0	J4, JJJ.U
4,349				- 4-5, Casing Joints, 5 1/2, 4.892, 4,30	04, 45.0
4,300	-			- 4-0, SHUE, 5 1/2, 4,349, 1.0	••••••
			Page 1/1		Report Printed: 1/23/2009

Champion Technologies

Customer: Conoco Phillips Attention: Dennis Ross

CC:

Calcium

Barium

Sulfate

Chloride

Resistivity

Strontium Sodium(calc.)

Magnesium

Target Name: MCA 238

Water Analysis(mg/L)

Bicarbonate Alkalinity

Sample Date: 04/13/2009

128

34

89

52

424

Test Date: 04/14/2009

ata(mg/L)	Physical Pr	operties		
	Ionic Streng	th(calc.	C	0.02
	pH(calc.)			
0	Temperature	(°F)		70
	Pressure(psi	a)	2	200
ata	Density	_		
vity		Dew	, Poin	
ved Solids(Mg/L)		Lea	d	
ess(CaCO3 Eq Mg/	459	Zinc	;	
SI & PTB Results				
Scale Typ	e	SI	F	этв
	ata(mg/L) 0 ata vity ved Solids(Mg/L) ess(CaCO3 Eq Mg/ SI & PTB Results Scale Typ	ata(mg/L) Physical Prilonic Streng Inic Streng pH(calc.) 0 Temperature Pressure(psi Density vity Density vity Si & PTB Results Scale Type Scale Type	Physical Properties Ionic Strength(calc.) 0 Temperature(°F) Pressure(psia) Density vity ved Solids(Mg/L) SI & PTB Results Scale Type	Physical Properties Ionic Strength(calc. 0 0 Temperature(°F) Pressure(psia) 2 ata Density vity ved Solids(Mg/L) Ess(CaCO3 Eq Mg/ SI & PTB Results Scale Type

Calcite Calculation Information

Calculation Method	Value
CO2 in Brine(mg/L)	

Remarks:

Scale Type	SI	PTB
Calcite (Calcium Carbonate)		
Gypsum (Calcium Sulfate)	-2.47	
Hemihydrate (Calcium Sulfate)	-2.17	
Anhydrite (Calcium Sulfate)	-2.86	
Barite (Barium Sulfate)		
Celestite (Strontium Sulfate)		

Address:

Water Analysis Report

Lease: MCA Formation: Salesman: Corey Hodnett

Sample Point: MCA 238 .

4/14/2009