
AP - 66

ANNUAL MONITORING REPORT

YEAR(S): 2008

CERTIFIED MAIL RETURN RECIEPT NO. 7099 3400 0017 1737 1834 23 FT 1 11

February 20, 2009

Mr. Brad Jones New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87504

RE: 2008 ANNUAL GROUNDWATER MONITORING REPORT EME JCT. N-5 SITE (AP-66)

T20S, R37E, SECTION 5, UNIT LETTER N LEA COUNTY, NEW MEXICO

Mr. Jones:

On behalf of Rice Operating Company (ROC), Trident Environmental takes this opportunity to submit the 2008 Annual Monitoring Well Report for the Jct. N-5 Site (AP-66) located in the Eunice-Monument-Eumont (EME) Salt Water Disposal (SWD) System.

ROC is in the process of obtaining BLM approval for site access to begin pump operations; therefore, it is necessary that we request an extension for the submission of the report documenting "the results of the delineation" (60 days of pumping) "to the OCD within 90 days" of the OCD's January 8th email (attached). We will keep NMOCD updated and notify when BLM approval is granted and begin pumping within 30 days of BLM approval.

ROC is the service provider (agent) for the EME SWD System and has no ownership of any portion of pipeline, well, or facility. The EME SWD System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis.

Thank you for your consideration concerning this annual summary of groundwater monitoring information and request for extension. If you have any questions, do not hesitate to contact me at (432) 638-8740 or Hack Conder at (575) 393-9174.

Sincerely.

Gilbert J. Van Deventer, PG, REM

cc: HC, MB

enclosures: maps, table, graphs, laboratory analytical reports, email communication

From: Hansen, Edward J., EMNRD [mailto:edwardj.hansen@state.nm.us]

Sent: Thursday, January 08, 2009 9:40 AM

To: Hack Conder

Cc: Price, Wayne, EMNRD; Johnson, Larry, EMNRD; Gil Van Deventer

Subject: Request for Closure of the Amended Stage 2 Abatement Plan (AP-66) further delineation

RE: Request for Closure of the Amended Stage 2 Abatement Plan (AP-66) further

Delineation for the Rice Operating Company's

EME SWD Jct. N-5 Site

Unit Letter N, Section 5, T20S, R37E, Lea County, New Mexico

Dear Mr. Conder:

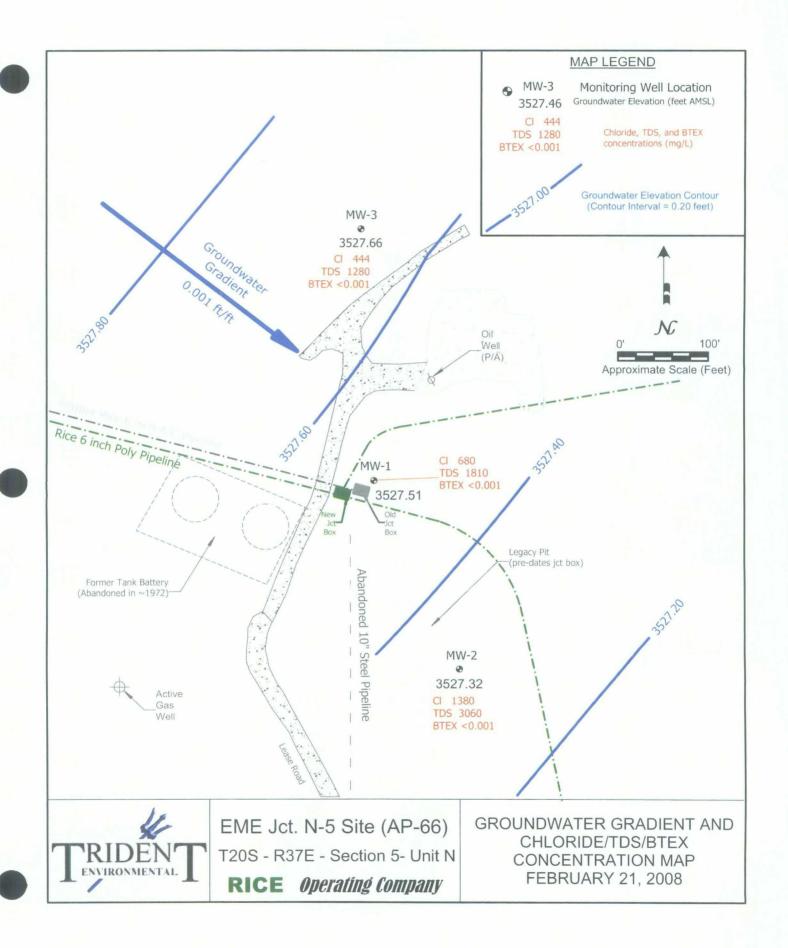
The New Mexico Oil Conservation Division (OCD) has received the Request for Closure of the Amended Stage 2 Abatement Plan (AP-66) for the EME Jct. N-5 Site, dated July 16, 2008, and has conducted a review of the Plan. The Request, submitted for the above-referenced site, indicates that Rice Operating Company (ROC) has not met the requirements of OCD Part 30 (formerly, Rule 19) for termination. Therefore, the OCD hereby cannot approve the Request for Closure for above-referenced site, dated July 16, 2008, in accordance with 19.15.30 NMAC. The OCD recommends that ROC perform short-term (at least 60 days) aggressive pumping at groundwater monitoring well MW-2 at the site to further delineate the release.

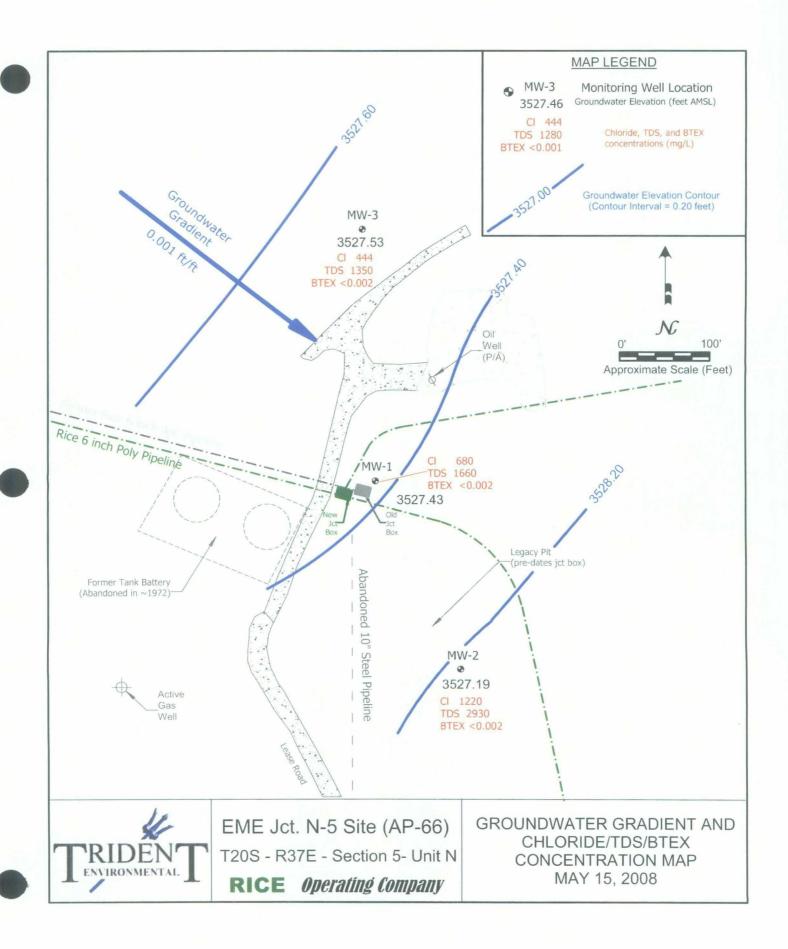
Please submit a report with the results of the delineation to the OCD within 90 days for review.

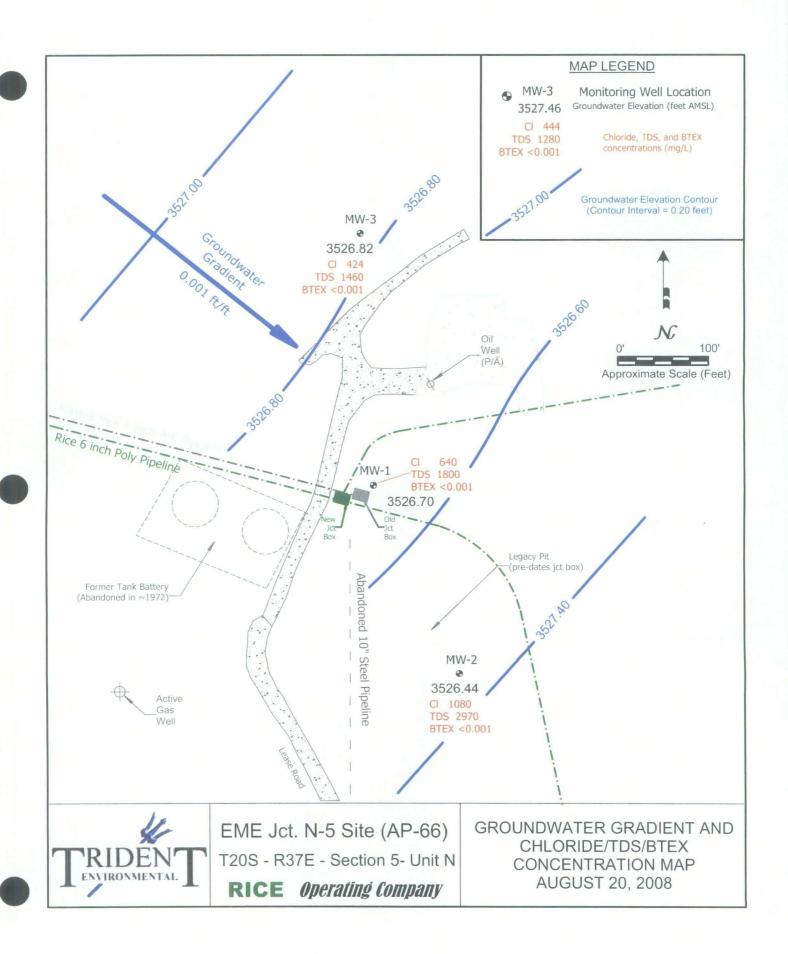
ROC must continue to perform groundwater monitoring at the site.

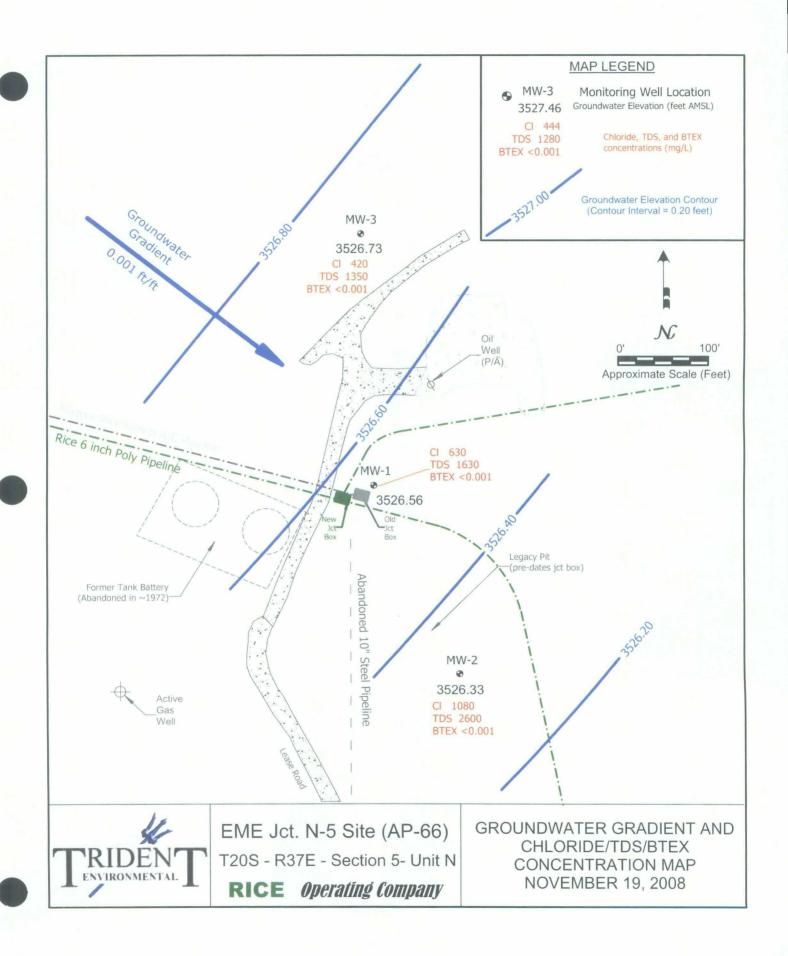
If you have any questions regarding this matter, please contact me at 505-476-3489.

Edward J. Hansen Hydrologist Environmental Bureau


Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.


ATTACHMENT A


Site Maps


Table

Graphs

Chloride, TDS, and Groundwater Elevation Values Versus Time

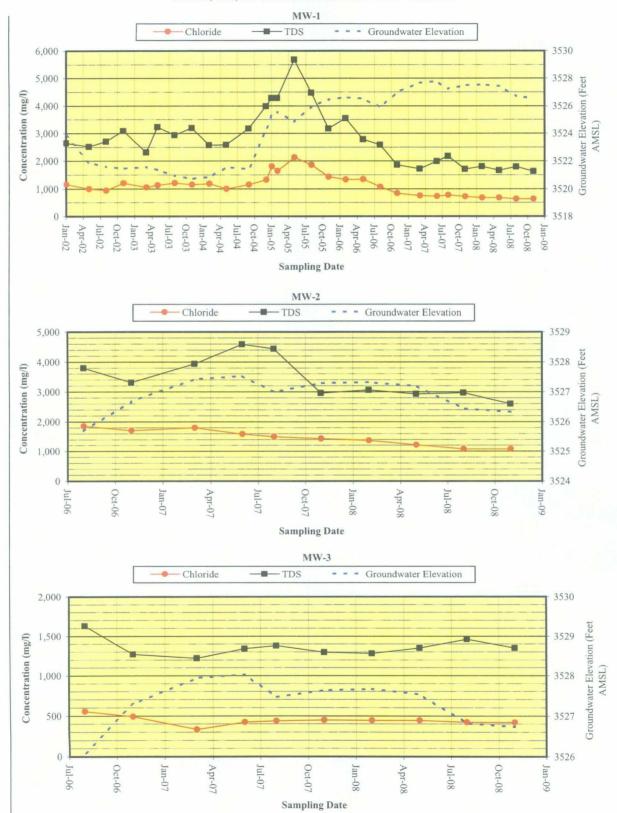


Table 1
Summary of Groundwater Sampling Results

			immary of Gr	oundwater S	ampling F	Results			
Monitoring	Sample	Depth to	Water Table	Chloride	TDS	Benzene	Toluene	Ethylbenzene	Xylene
Well	Date	Groundwater (feet BTOC)	Elevation (feet AMSL)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	01/10/02	35.50	3523.85	1,160	2,652	<0.002	< 0.002	<0.006	< 0.006
	05/13/02	37.47	3523.88	993	2,520	< 0.001	0.002	0.003	0.009
	08/12/02	37.75	3521.60	939	2,700	<0.001	< 0.001	<0.001	0.001
	11/04/02	37.90	3521.45	1,200	3,083	<0.002	< 0.002	<0.002	< 0.006
	03/14/03	37.78	3521.57	1,050	2,310	<0.001	0.002	0.002	0.011
	05/29/03	38.00	3521.35	1,130	3,230	<0.001	0.002	0.004	0.011
	08/22/03	38.42	3520.93	1,200	2,930		0.001		0.01
	11/20/03	38.63	3520.72	1,150	3,200	<0.001	0.002	0.003	0.012
	02/20/04	38.50	3520.85	1,180	2,575	<0.002	< 0.002	<0.002	< 0.006
	05/26/04	37.80	3521.55	1,000	2,583	<0.002	0.005	0.005	0.010
	09/02/04	37.94	3521.33	1,150	3,170	<0.001	0.003	0.002	0.003
	12/21/04	35.12	3524.23	1,330	3,990	< 0.001	< 0.001	<0.001	<0.001
	01/26/05	34.03	3525.32	1,810	4,280	< 0.001	< 0.001	0.001	0.001
	02/08/05	33.79	3525.56	1,640	4,280	<0.001	< 0.001	0.002	0.001
MW-1	05/02/05	34.50	3524.85	2,140	5,680	<0.001	< 0.001	0.002	0.001
	08/11/05	33.39	3525.96	1,860	4,480	<0.001	< 0.001	<0.001	< 0.002
	11/28/05	32.90	3526.45	1,430	3,180	<0.001	< 0.001	<0.001	<0.001
	02/21/06	32.72	3526.63	1,340	3,550	<0.001	< 0.001	<0.001	<0.001
	05/17/06	32.83	3526.52	1,350	2,780	<0.001	< 0.001	<0.001	<0.001
	08/21/06	33.45	3525.90	1,070	2,580	<0.001	0.001	0.001	0.004
	11/07/06	32.35	3527.00	841	1,860	0.001	< 0.001	0.001	0.004
	03/06/07	31.67	3527.68	757	1,720	<0.002	0.001	0.001	< 0.001
	06/07/07	31.57	3527.08	731	1,990	<0.001	0.001	0.001	<0.001
	08/27/07	32.12	3527.78	780	2,183	<0.001	< 0.001	<0.001	<0.006
	11/09/07	31.84	3527.23	724	1,707	< 0.002	< 0.002	< 0.002	< 0.003
	02/21/08	31.81	3527.54	680	1,810	< 0.001	< 0.001	< 0.001	< 0.003
	05/15/08	31.92	3527.43	680	1,660	<0.001	< 0.001	<0.002	< 0.006
	08/20/08	32.65	3526.70	640	1,800	< 0.002	< 0.002	< 0.002	< 0.003
	11/19/08	32.79	3526.56	630	1,630	< 0.001	< 0.001	<0.001	< 0.003
	08/21/06	33.04	3525.70		3,800	<0.001	< 0.001	<0.001	<0.003
ł	11/07/06	32.06	3525.70	1,860 1,710	3,310	<0.001	< 0.001	<0.001	< 0.001
	03/06/07	31.32	3520.08	1,800	3,940	<0.001	< 0.001	<0.001	< 0.001
	06/07/07	31.32	3527.42	1,590	4,590	<0.001	< 0.001	<0.001	<0.001
}	08/27/07	31.75	3526.99	1,500	4,441	<0.001	<0.001	<0.001	<0.006
MW-2	11/09/07	31.75	3527.29	1,440	2,962	< 0.002	< 0.002	< 0.002	< 0.000
1	02/21/08	31.43	3527.32	1,380	3,060	< 0.001	< 0.001	< 0.001	< 0.003
	05/15/08	31.55	3527.32	1,220	2,930	<0.001	< 0.001	<0.001	< 0.006
	08/20/08	32.30	3526.44	1,080	2,970	< 0.002	< 0.002	< 0.002	< 0.003
	11/19/08	32.41	3526.33	1,080	2,600	< 0.001	< 0.001	<0.001	< 0.003
	08/21/06	31.86	3526.10	553	1,630	<0.001	< 0.001	<0.001	<0.003
	11/07/06	30.68	3527.28	491	1,030	<0.001	< 0.001	<0.001	<0.001
	03/06/07	30.03	3527.28	333	1,270	<0.001	< 0.001	<0.001	< 0.001
	06/07/07	29.93	3528.03	425	1,340	<0.001	< 0.001	<0.001	< 0.001
1	08/27/07	30.50	3527.46	440	1,340	<0.001	<0.001	<0.001	< 0.001
MW-3	11/09/07	30.33	3527.40	448	1,296	< 0.002	< 0.002	< 0.002	< 0.003
ļ	02/21/08	30.33	3527.66	448		< 0.001	< 0.001	< 0.001	
	05/15/08	i			1,280) }	< 0.003
- 1	08/20/08	30.43 31.14	3527.53 3526.82	444 424	1,350 1,460	<0.002	<0.002	<0.002	
		21.14	ı 3320.82 l	424	1.460	< 0.001	< 0.001	< 0.001	< 0.003
	11/19/08	31.23	3526.73	420	1,350	< 0.001	< 0.001	< 0.001	< 0.003

ATTACHMENT B

Laboratory Analytical Reports

And

Chain of Custody Documentation

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: KRISTIN FARRIS-POPE 122 W. TAYLOR STREET

HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 02/22/08
Reporting Date: 02/29/08
Project Number: NOT GIVEN

Project Name: EME JUNCTION N-5

Project Location: T20S-R37E-SEC5 N~LEA COUNTY, NM

Sampling Date: 02/21/08 Sample Type: WATER

Sample Condition: COOL & INTACT

Sample Received By: ML Analyzed By: HM/KS

•	Ņa	Ca	Mg	K	Conductivity-	T-Alkalinity
LAB NUMBER SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(uS/cm)	(mgCaCO ₃ /L)
ANALYSIS DATE:	02/28/08	02/28/08	02/28/08	02/27/08	02/26/08	02/26/08
H14310-1 MONITOR WELL #1	327	202	56.5	7.43	2,840	356
H14310-2 MONITOR WELL #2	577	359	98.8	6.73	4,870	328
H14310-3 MONITOR WELL #3	273	144	43.6	4.95	2,160	368
Quality Control	NR	50.6	50.8	3.25	1,428	NR
True Value QC	NR	50.0	50.0	3.00	1,413	NR
% Recovery	NR	101	102	108	101	NR
Relative Percent Difference	NR	< 0.1	1.6	4.4	0.8	NR
METHODS:	SM3	3500-Ca-D	3500-Mg E	8049	120.1	310.1
•	CF	SO ₄	CO_3	HCO ₃	рН	TDS
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS DATE:	02/27/08	02/28/08	02/26/08	02/26/08	02/26/08	02/26/08
H14310-1 MONITOR WELL #1	680	138	0	434	6.89	1,810
H14310-2 MONITOR WELL #2	1,380	284	0	400	6.83	3,060
H14310-3 MONITOR WELL #3	444	139	0	449	6.99	1,280
Quality Control	490	24.9	NR NR	1000	7.05	NR
True Value QC	500	25.0	NR	1000	7.00	NR
% Recovery	98.0	99.5	NR	100	101	NR!
Relative Percent Difference	2.0	8.2	NR	1.2	0.1	NR)
METHODS:	SM4500-CI-B	375.4	310.1	310.1	150.1	160.1

Chemist Chemist

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: KRISTIN FARRIS-POPE

122 W. TAYLOR STREET

HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 02/22/08 Reporting Date: 02/26/08

Project Number: NOT GIVEN

Project Name: EME JUNCTION N-5

Project Location: T20S-R37E-SEC5 N ~ LEA COUNTY, NM

Sampling Date: 02/21/08 Sample Type: WATER

Sample Condition: COOL & INTACT

Sample Received By: ML

Analyzed By: AB

			•	ETHYL	TOTAL
		BENZENE	TOLUENE	BENZENE	XYLENES
LAB NO.	SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)

ANALYSIS DATE	02/25/08	02/25/08	02/25/08	02/25/08
H14310-1 MONITOR WELL #1	< 0.001	<0.001	<0.001	<0.003
H14310-2 MONITOR WELL #2	< 0.001	<0.001	<0.001	<0.003
H14310-3 MONITOR WELL #3	<0.001	<0.001	<0.001	<0.003
``````````````````````````````````````				
Quality Control	0.092	0.083	0.086	0.248
True Value QC	0.100	0.100	0.100	0.300
% Recovery	92.1	83.2	86.1	82.5
Relative Percent Difference	0.9	1.0	1.8	1.7

METHOD: EPA SW-846 8021B

st

Sampler - UPS - Bus - Other)	Notice alpolar 1410	Date: Time:	Rozanne Johnson / 2/22/08 /0:00		9				~ 3 Monitor Well #3	-2 Monitor Well #2	H14310-1 Monitor Well #1	LAB# FIELD CODE		Project Location: T20S-R37E-Sec5 N ~ Lea County - New Mexico	EME Junction N-5	) 393-9174	122 W Taylor Street ~ Hobbs, New Mexico 88240  Phone #:  F	Address: (Street, City, Zip)	Kristin Farris-Pope, Project Scientist	RICE Operating Company  Project Manager:	Company, Name:		101 East Marland - Hobbs, New Mexico 86240
Sample Condition CHECKED BY:  Yes Ves (Initials)  No No No	Selbut 21.	Received By (\text{VLabora}bry Staff)	(0:01 80/cc/c 0/1/100)	Received by: 0_// Date: Time:					G 3 X 2 1 2-21 8:45	G 3 X 2 1 2-21 9:40	G 3 X 2 2 1 2 2-21 10:45	(G)rab or (C)omp  # CONTAINERS  WATER  SOIL  AIR  SLUDGE  HCL (2 40ml VOA)  HNO ₃ NaHSO ₄ H ₂ SO ₄ ICE (1-1Liter HDPE)  NONE  DATE (2008)  TIME	MATRIX PRESERVATIVE SAMPLING	Sampler Signáture:		(575)397-1471	(575) 393-9174 (575)397-1471	Phone#:	122 W Taylor Street ~ Hobbs, New Mexico 88240	RICE Operating Company  Address: (Street, City, Zip)	BILL TO Company: PO#	al Laboratories, life.	
<u>lweinheimer@riceswd.com</u> rozanne@yalornet.com	Email Results to: kpope@riceswd.com		Fax Results Yes No Additional Fax Number:	Phone Results Yes No					×	x	×	MTBE 8021B/602 BTEX 8021B/602 TPH 418.1/TX1005 PAH 8270C Total Metals Ag As TCLP Metals Ag As TCLP Volatiles TCLP Semi Volatiles TCLP Pesticides RCI GC/MS Vol. 8260B GC/MS Vol. 8260B PCB's 8082/608 Pesticides 8081A/6 BOD, TSS, pH Moisture Content Cations (Ca, Mg, N Anions (Cl, SO4, C Total Dissolved So Chlorides Tum Around Time	Ba Cd 6 Ba Cd 6 S M624 8270C/ 608 Ga, K) O3, H0	Cr Pb S Cr Pb :	Se Hg		3/200.	7		(Circle or Specify Method No.)		LAB Order ID #	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST



ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: KRISTIN FARRIS-POPE 122 W. TAYLOR STREET

HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 05/19/08 Reporting Date: 05/27/08 Project Number: NOT GIVEN

Project Name: EME JUNCTION N-5

Project Location: T20S-R37E-SEC5 N~LEA COUNTY, NM

Sampling Date: 05/15/08 Sample Type: WATER

Sample Condition: COOL & INTACT

Sample Received By: NF Analyzed By: HM/KS

	Na	Ca	Mg	K	Conductivity	T-Alkalinity
LAB NUMBER SAMPLE ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(uS/cm)	(mgCaCO ₃ /L)
ANALYSIS DATE:	05/27/08	05/22/08	05/23/08	05/23/08	05/21/08	05/21/08
H14834-1 MONITOR WELL #1	315	208	56	5.52	2,800	360
H14834-2 MONITOR WELL #2	541	345	68	7.82	4,510	332
H14834-3 MONITOR WELL #3	268	156	36	5.25	2,130	372
Quality Control	NR	52.1	51.0	2.91	1,409	NR
True Value QC	NR	50.0	50.0	3.00	1,413	NR
% Recovery	NR	104	102	97.0	99.7	NR
Relative Percent Difference	NR	< 0.1	4.8	3.0	0.8	NR
THODS:	SM3	3500-Ca-D	3500-Mg E	8049	120.1	310.1
	Ci	SO ₄	CO₃	HCO ₃	рН	TDS

		Ci	SO ₄	$CO_3$	HCO ₃	pН	TDS
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS E	DATE:	05/21/08	05/27/08	05/21/08	05/21/08	05/21/08	05/22/08
H14834-1	MONITOR WELL #1	680	120	0	439	6.93	1,660
H14834-2	MONITOR WELL #2	1,220	268	0	405	6.88	2,930
H14834-3	MONITOR WELL #3	444	125	0	454	7.02	1,350
Quality Cont	rol	500	59.9	NR	976	7.07	NR
True Value C	QC ·	500	60.0	NR	1000	7.00	NR
% Recovery		100	99.8	NR	97.6	101	NR
<del>-</del>	cent Difference	< 0.1	0.9	NR	< 0.1	0.7	NR
METHODS:		SM4500-CI-B	375.4	310.1	310.1	150.1	160.1

Blist Suprobo

05128108



ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: KRISTIN FARRIS-POPE

122 W. TAYLOR ST. HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 05/19/08

Reporting Date: 05/23/08

Project Number: NOT GIVEN

Project Name: EME JUNCTION N-5

Project Location: T20S-R37E-SEC5 N ~ LEA CO., NM

Sampling Date: 05/15/08

Sample Type: WATER

Sample Condition: COOL & INTACT

Sample Received By: NF

Analyzed By: CK

			ETHYL	TOTAL
LAB NUMBER SAMPLE ID	BENZENE	TOLUENE	BENZENE	XYLENES
	(mg/L)	(mg/L)	(mg/L)	(mg/L)

ANALYSIS D	DATE	05/20/08	05/20/08	05/20/08	05/20/08
H14834-1	MONITOR WELL #1	<0.002	<0.002	<0.002	<0.006
H14834-2	MONITOR WELL #2	<0.002	<0.002	<0.002	<0.006
H14834-3	MONITOR WELL #3	<0.002	<0.002	<0.002	<0.006
·					
					·
	<del></del>				<del> </del>
Quality Conti	rol	0.092	0.094	0.110	0.340
True Value C	QC .	0.100	0.100	0.100	0.300
% Recovery		92.1	93.6	110	113
Relative Per	cent Difference	4.0	4.5	2.8	0.9

METHOD: EPA SW-846 8260B

Chemist

Successive Co.	Delivered By:		₹N	<b>~</b> /	Relification by:							-3	-2	1-4834-1	( LAB USE )	LAB#		T20S-R37E-Sec5	riojaci ≠.	(575) 393-9174	Phone #:	Address: (	Kristin Farris-Pope,	RICE Ope Project Manager:	Company Name:	Tel (575) 393-2326 Fax (575) 393-2476	101 East Marland - Hobbs, New
	(Circle One)				Date: Time:									Monitor Well #1		FIELD CODE		7E-Sec5 N ~ Lea County - New Mexico	EME Junction N-5		122 W Taylor Street ~ HODOS, New Mexico 60240	(Street, City, Zip)	rris-Pope, Project Scientist	RICE Operating Company		993-2326 <b>Cardinal</b> 393-2476	)
ſ	Sampl		Recei	,	Received							G	ြ	ဝ	(G)rab or	(C)omp		exico		(575	Fax #					<b>11.1</b>	5
	Sample Condition		Received By:	ξ,	ved by:			1				ယ	ယ	ယ	# CONT/	AINERS				(575)397-1471	7017	/576	122 W	조증	BILL TO	,	
t	K S E			<u> </u>	. <u>;</u>			1	$\perp$	$\pm$	$\vdash$	×	×	×	WATER		Π			1471	,, 00	Phone#:	122 W Taylor Street ~ Hobbs, New Mexico 88240	Address:	0	Laboratories	2
	Yes		(Laboratory Staff)	<u>t</u> -	$\searrow$										SOIL	4	] }	Samp			9	Phone#:	or Stre	Address:	Company:		7
-	X intact		tory s		,					$\bot$	<u> </u>				AIR SLUDGE		MATRIX	sampler signature			Ī	7 <u>4</u>	et ~ H	ssing	any:		
ŀ			inam.	1	ŀ		$\vdash$	$\dashv$	$\dashv$	+	╁	┝	$\vdash$	-	SLUDGE		1	) Spanu					lobbs,	g		a U	•
-[			ļ	γ, '	ĺ					上		2	2	2	HCL (2 40)	nl VOA)	7		1 /				New	pan		U	
	급 우		Date:	/191	Date:			$\perp$	_	_		ļ	_	_	HNO ₃		METHOD	COZATI	$\Gamma$	İ			Mexic				•
	CHECKE!			08	œ.	$\dashv$		$\dashv$	-	╁	╁┈	-	┢	┢	NaHSO ₄ H ₂ SO ₄	<del></del>	METHOD				ı		o 882	Street,		Ù,	2
	CHECKED BY:		Time:		=			7	十		$\dagger$	_	-	-	ICE (1-1Lit	er HDPE)	Jŏ ₹		1	1	13	(57)	6	Street, City, Zip)	PO#		=
ľ	1		ğ	11.40	Time:										NONE		<u> </u>		1		9	ス ス ン		Zip)	*	ПС	5
			ľ	OAR								5-15	5-15	5-15	DATE (20	08)	SAMPLI	rozarine@valornet.com				-ax#: ′575\307_147				•	
1			+	2								10:50	11:40	12:30	TIME		LING	om		1		471					
ı			낆	Fax	밁			7	1	T	†	٩	٦	٦	MTBE 80:	21B/602	<u> </u>		<b>L</b>								
		E M	REMARKS:	Fax Results	Phone Results							×	×	×	BTEX 802	21B/602								•			
		Email Results to:	တ္တ	ults	esul	_		_	$\bot$	$\bot$	╂		<u> </u>	_	TPH 418.		5 / TX1	005 Ex	tended	(C35	i)			-			유
1		sults	1		S			$\dashv$	+	+	╁╴			┢	PAH 8270		Ba Cd	Cr Pb	Se Hg	6010	B/20	0.7		•		_	₽
-		<u>5</u>							1	#					TCLP Met	als Ag As										AB (	힊
	6  ₹	6		Yes	Yes			_	士	$\pm$	$\perp$				TCLP Vola		es.							(Circle or Specify Method No.)	ANA	LAB Order ID#	CHAIN-OF-CUSTODY
İ	lweinheimer@riceswd.com rozanne@valornet.com	kpope@riceswd.com						$\Box$	I	T	$\Box$				TCLP Pes	ticides								<u>ပ</u>	ANALYSIS	<b>□</b> #	STC
	eim 1e@	@ 		o N	o	$\dashv$			-	+	+-	<u> </u>	-	1	RCI	1 0000	100 1							oeciń	Sis		ğ
l	er@ valc	wsex		٨			$\vdash \vdash$	$\dashv$	+	+	+	-	$\vdash$	╁	GC/MS Vo			/625						. Met	R		<u>₽</u>
	rice	/d.c		dition			$\vdash$	$\dashv$	+	+	$\dagger$	$\vdash$		1	PCB's 80									- pod	REQUEST		AND ANALYSIS
	swd.	JII.		nal Fa	·										Pesticides		808							. <u>N</u>	TS		Ž
	<u>n</u> (100)			Σ. Χ			$\vdash$	_	-	-	+	-	-	$\vdash$	BOD, TSS									-			Į Š
	)			Additional Fax Number:		$\vdash$	$\vdash \vdash$	$\dashv$	+	+	+-	-	$\vdash$	+	Moisture (	Jontent								-			
				ā					土		T	×	×	×	Cations (0									•			ည်
T							$\vdash \downarrow$		+	+-	+	×	×	×	Anions (C			CO3)						-			REQUEST
						-	$\vdash \vdash$	$\dashv$	-	+	+	×	×	×	Total Diss		маѕ							•			
- [			- 1			-	$\vdash$	$\dashv$	$\dashv$	+	+-	-	┼	$\vdash$	Turn Arou												•



ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: HACK CONDER

122 W. TAYLOR STREET HOBBS, NM 88240

FAX TO: (575) 397-1471

Receiving Date: 08/21/08
Reporting Date: 08/27/08

Project Number: NOT GIVEN
Project Name: EME JUNCTION N-5

Project Location: T20S-R37E-SEC5 N ~ LEA COUNTY, NM

Sampling Date: 08/20/08 Sample Type: WATER

Sample Condition: COOL & INTACT

Sample Received By: ML Analyzed By: HM/TR

LAB NUMBE	ER SAMPLE ID	Na (mg/L)	Ca (mg/L)	Mg (mg/L)	K (mg/L)	Conductivity (u S/cm)	T-Alkalinity (mgCaCO ₃ /L)
ANALYSIS I	DATE:	08/26/08	08/26/08	08/26/08	08/26/08	08/25/08	08/25/08
H15790-1	MONITOR WELL #1	299	192	63.2	5.3	2,450	360
H15790-2	MONITOR WELL #2	452	309	82.6	7.4	3,890	332
H15790-3	MONITOR WELL #3	233	156	46.2	4.2	1,880	376
		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	or on the second				
<b>Quality Cont</b>	rol	NR	52.1	48.6	3.04	1,412	NR
True Value (	C	NR	50.0	50.0	3.00	1,413	NR
% Recovery	######################################	NR	104	97.2	101	99.9	NR
the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	cent Difference	NR	8.0	1.0	1.3	1.5	NR
METHODS:		SM	3500-Ca-D	3500-Mg E	8049	120.1	310.1

		CI	SO₄	CO ₃	HCO ₃	рН	TDS
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS E	DATE:	08/25/08	08/26/08	08/25/08	08/25/08	08/25/08	08/25/08
H15790-1	MONITOR WELL #1	640	130	0	439	6.99	1,800
H15790-2	MONITOR WELL #2	1,080	242	0	405	6.87	2,970
H15790-3	MONITOR WELL #3	424	113	0	459	6.97	1,460
Quality Cont	rol	510	45.1	NR	976	7.00	NR
True Value (	QC .	500	<b>4</b> 0. <b>0</b>	NR	1000	7.00	NR
% Recovery		102	113	NR	97.6	100	NR
Relative Per	cent Difference	< 0.1	2.7	NR	2.5	0.7	NR
METHODS:		SM4500-CI-B	375.4	310.1	310.1	150.1	160.1

the I Majore



ANALYTICAL RESULTS FOR RICE OPERATING COMPANY

ATTN: HACK CONDER

**122 W. TAYLOR HOBBS, NM 88240** 

FAX TO: (575) 397-1471

Receiving Date: 08/21/08

Reporting Date: 08/25/08

Project Number: NOT GIVEN

Project Name: EME JUNCTION N-5

Project Location: T20S-R37E-SEC5N ~ LEA CO., NM

Sampling Date: 08/20/08

Sample Type: WATER

Sample Condition: COOL & INTACT

Sample Received By: ML

Analyzed By: ZL

LAB NUMBER	R SAMPLE ID	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL BÉNZENE (mg/L)	TOTAL XYLENES (mg/L)
ANALYSIS DA	ATE	08/22/08	08/22/08	08/22/08	08/22/08
H15790-1	MONITOR WELL #1	<0.001	<0.001	< 0.001	< 0.003
H15790-2	MONITOR WELL #2	<0.001	<0.001	<0.001	< 0.003
H15790-3	MONITOR WELL #3	<0.001	<0.001	<0.001	<0.003
Quality Contro	)	0.050	0.048	0.050	0.155
True Value Q	0	0.050	0.050	0.050	0.150
% Recovery	and to control to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	100	96.0	100	103
Relative Perce	ent Difference	0.2	3.4	0.9	1.3

METHOD: EPA SW-846 8021B

TEXAS NELAP CERTIFICATION T104704398-08-TX FOR BENZENE, TOLUENE, ETHYL BENZENE, AND TOTAL XYLENES.

Chemist

**UEST** 

Furn Around Time ~ 24 Hours Cylouges Total Dissolved Solids × × Anions (CI, SO4, CO3, HCO3) × × Cations (Ca, Mg, Na, K) Additional Fax Number: CHAIN-OF-CUSTODY AND ANALYSIS R Moisture Content Hq ,88T ,008 ANALYSIS REQUEST Circle or Specify Method No. PCB's 8082/608 BC/MS Semi. Vol. 6270C/625 3C/W2 A91 8S608/624 ş BCI LAB Order ID # TCLP Pesticides TCLP Semi Volatiles ,es , es LCLP Volatiles LCLP Metals Ag As Ba Cd Cr Pb Se Hg Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 PAH 8270C Phone Results Fax Results REMARKS: TPH 418.1/TX1005 / TX1005 Extended (C35) BTEX 8021B/602 × 80218/602 **BBTN** 10:40 SAMPLING 9:50 8-20 11:30 LIWE (575)397-1471 Rozanne Johnson (575)631-9310 rozanne@valornet.com 8-20 8.20 (800S) **BTAG** Cardinal Laboratories, Inc. Street, City, Zip) NONE Time: PRESERVATIVE Fax# CE (t-tillerHOPE) 121 W Taylor Street - Hobbs, New Mexico 88240 METHOD OS2H OSHEN RICE Operating Company HCL (2 401HI VOA) a ผ Sampler Signal **STADGE** MATERIX BILL TO Company: (575) 393-9174 Phone#: AIR TIOS (575)397-1471 **ABTAW** × Received by # CONTAINERS T20S-R37E-Sec5 N ~ Lea County - New Mexico (G)rab or (C)omp Ø Q O EME Junction N-5 vi Š 122 W Taylor Street - Hobbs, New Mexico 88240 FIELD CODE Time: Project Name W. 31.21.5 RICE Operating Company Monitor Well #2 Monitor Well #3 Monitor Well #1 (Street, City, Zip, Hobbs, New Tet (575) 393-2326 Fax (575) 393-2476 (575) 393-9174 Hack Conder Ozanne Johnson elinquished by company Name: oject Manager olect Location LAB USE 101 East Mai LAB# ONLY ddress: # euou roject #

weinheimer@riceswd.com rozanne@valomet.com aconder@riceswd.com

Email Results to:

CHECKED BY

Sample Condition

(Circle One)

Delivered By:

Received By: (Laboratory Staff

Date:

elinquished by

(slegiul)

Yes

Yes Š

ş

Sampler - UPS - Bus - Other;



ANALYTICAL RESULTS FOR RICE OPERATING COMPANY

ATTN: HACK CONDER 122 W. TAYLOR STREET

HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 11/24/08
Reporting Date: 12/02/08

Project Number: NOT GIVEN

Project Name: EME JUNCTION N-5

Project Location: T20S-R37E-SEC5 N ~ LEA CO., NM

Sampling Date: 11/19/08 Sample Type: WATER

Sample Condition: COOL & INTACT

Sample Received By: CK. Analyzed By: HM/TR

LAB NUMBE	R SAMPLEID	Na (mg/L)	Ca (mg/L)	Mg (mg/L)	K (mg/L)	Conductivity (u S/cm)	T-Alkalinity (mgCaCO ₃ /L)
ANALYSIS E	PATE:	12/01/08	12/01/08	12/01/08	12/01/08	11/25/08	11/25/08
H16412-1	MONITOR WELL #1	372	116	60.8	6.4	2,390	372
H16412-2	MONITOR WELL #2	552	224	77.8	8.9	3,650	320
H16412-3	MONITOR WELL #3	288	89.8	49.6	6.4	1,870	352
Quality Cont	rol	NR	48.1	51.0	3.02	1,434	NR
True Value C	ic .	NR	50.0	50.0	3.00	1,413	NR
% Recovery		NR	96.2	102	101	101	NR
Relative Per	cent Difference	NR NR	<0.1	4.8	1.3	0.3	NR
METHODS:	Notation thanks and distinct the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of t	SM3	500-Ca-D	3500-Mg E	8049	120.1	310.1

		CI	$SO_4$	CO3	HCO ₃	рH	TDS
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)
ANALYSIS E	DATE:	11/25/08	11/26/08	11/25/08	11/25/08	11/25/08	11/25/08
H16412-1	MONITOR WELL #1	<b>6</b> 30	93.1	0	454	7.62	1,630
H16412-2	MONITOR WELL #2	1,080	240	0	390	7.44	2,600
H16412-3	MONITOR WELL #3	420	114	0	429	7.56	1,350
						·	. The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the
Quality Cont	rol .	500	43.8	NR	1013	7.02	NR
True Value C	Name and No. 1 of 1 of 1 of 1 of 1 of 1 of 1 of 1	500	40.0	NR	1000	7.00	NR
% Recovery		100	110	NR	101	100	NR
Relative Per	cent Difference	<0.1	4.9	NR	1.3	<0.1	NR
METHODS:		SM4500-CI-B	375.4	310.1	310.1	150.1	160.1

Chemist

Date

PLEASE NOTE: Liability and Damages. Cardinal's habity and client's exclusive remedy for any compound onsing, whether based in contract or text is shall be limited to the amount could by client for analysis, all claims, splighing thate for needingence and any other cause whatsoever shall be deemed waived unless made in violing and received by Cardinal within thirty (30) days after completion of the applicable service in hot-line shall Cardinal be liable for indicated or consequential damages, including, winned limitation, business interruptions, loss of not or loss of profits incurred by chorning published and attaines or successors arising out of or related to the performance of services hereupt in this with written approved of Cardinal Enhancement.



ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: HACK CONDER 122 W. TAYLOR

HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 11/24/08

Reporting Date: 12/01/08

Project Number: NOT GIVEN

Project Name: EME JUNCTION N-5

Project Location: T20S-R37E-SEC5 N~ LEA CO., NM

Sampling Date: 11/19/08 Sample Type: WATER

Sample Condition: COOL & INTACT

Sample Received By: CK

Analyzed By: ZL

LAB NUMBER	R SAMPLE ID	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL BENZENE (mg/L)	TOTAL XYLENES (mg/L)
H16412-2 MONITOR WELL #2	11/26/08	11/26/08	11/26/08	11/26/08	
H16412-1	MONITOR WELL #1	0.001	0.002	0.002	0.004
H16412-2	MONITOR WELL #2	< 0.001	< 0.001	< 0.001	<0.003
H16412-3	MONITOR WELL #3	<0.001	<0.001	<0.001	<0.003
Quality Contro		0.048	0.049	0.047	0.147
True Value QC	THE SECOND THE SECOND COMMENT OF THE PROPERTY OF THE SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECON	0.050	0.050	0.050	0.150
% Recovery		96.0	98.0	94.0	98.0
Relative Perce	ent Difference	3.6	3.6	1.8	24

METHOD: EPA SW-846 8021B

TEXAS NELAP CERTIFICATION T104704398-08-TX FOR BENZENE, TOLUENE, ETHYL BENZENE, AND TOTAL XYLENES.

	•	·
11. 1	$\chi^{\prime}$ .	
1 (16 0 6 1 4 1 1	 <u> </u>	
Chemist	 Date	

Page of 1

Tum Around Time ~ 24 Hours Total Dissolved Solids × CHAIN-OF-CUSTODY AND ANALYSIS REQUEST × Anions (CI, SO4, CO3, HCO3) Cations (Ca, Mg, Na, K) Additional Fax Number Moisture Content wembeinerkernesswd.com Hq ,22T,008 rgzanne(@yalomet.com heomder@riceswd.com Pesticides 8081A/608 Circle or Specify Method No.) ANALYSIS REQUEST PCB's 8082/608 2C/W2 Semi: Vol. 8270C/625 CC/W2 A91 8260B/624 ŝ BCI LAB Order ID # TCLP Pesticides TCLP Semi Volatiles es es TCLP Volatiles TCLP Metals Ag As Ba Cd Cr Pb Se Hg Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 Email Results to: PAH 8270C Phone Results ax Results REMARKS: TPH 418.1/TX1005 / TX1005 Extended (C35) BTEX 8021B/602 × × MTBE 8021B/602 9:20 SAMPLING 8:40 11-19 10:15 **JMIT** (575)397-1471 Rozanne Johnson (575)531-9310 rozanne@valornet.com 11-19 11-19 (800S) STAC Cardinal Laboratories, Inc. (Street, City, Zip) NONE PRESERVATIVE снескер ву CE (1-11/let HDPE) Mary Mary 22 W Taylor Street ~ Hobbs, New Mexico 88240 METHOD (Initials). *OS^zH OSHEN Date: Date: FONH RICE Operating Company HCL (2 40ml VOA) 2 ev C4 Sampler Signature (Láboratory Staff) SCUDGE MATRIX (575) 393-9174 ۶۱∀ Address. Yes TIOS ŝ (575)397-1471 **MATER** × × Sample Condition Received By: Received by # CONTAINERS 3 m Yes g T20S-R37E-Sec5 N ~ Lea County - New Mexico (G)rab or (C)omp Ö Ö G EME Junction N-5 122 W Taylor Street ~ Hobbs, New Mexico 88240 FIELD CODE Time: - Bus - Other: Project Name RICE Operating Company Date: Monitor Well #2 Monitor Well #3 Date Monitor Well #1 (Street, City, Zip) (Circle One) 101 East Madand - Hobbs, New Maxico 88240 Tel (575) 393-2326 Fax (575) 393-2476 SUD 🦠 (575) 393-9174 Hack Conder Rozanne Johnson Relinguished by Relinquished by: ompany Name: olect Manager 1-212017 roject Location LAB USE Delivered By: LAB # ONLY Sampler Address: # auou oject #

ATTACHMENT C

Well Sampling Data Forms

CLIENT:	RICE Op	erating Cor	npany	WELL ID: Monitor Well #1
SYSTEM:	EME			DATE: February 21, 2008
SITE LOCATION:	Junction	N-5		SAMPLER: Rozanne Johnson
PURGING METHOD:	:	☐ Hand Ba	ailed 🗹	Pump, Type: Purge Pump
SAMPLING METHOD	):	✓ Disposa	ble Bailer[	Direct from Discharge Hose Other:
				•
,				•
DISPOSAL METHOD	OF PURG	E WATER:	On-sit	e Drum 🔲 Drums 🔯 SWD Disposal Facility
TOTAL DEPTH OF V	VELL:	40.10	Feet	
DEPTH TO WATER: HEIGHT OF WATER	COLUMN:	31.81 8.29	Feet Feet	2 In. Well Diameter
WELL VOLUME:		Gal.	. 1 001	5 Gallons purged prior to sampling
	TEAD			
TIME	TEMP. °C	COND. mS/cm	рΗ	PHYSICAL APPEARANCE AND REMARKS
10:45	18.5	2.84	6.79	Septic Odor / Gray in Color / Heavy Sheen
10.43	10.5	2.04	0.75	Samples Collected
				BTEX (2-40ml VOA)
				Major Ions/TDS (1-1000ml Plastic)
· · · · · · · · · · · · · · · · · · ·				IMAJOR TOTAL (1-1000ttil Flastic)
			<u> </u>	<u> </u>
OOMMENTO:				
COMMENTS:		4.4.	11	
				ivity, and temperature measurements.
Delivered samples to	Cardinal La	ab in Hobbs,	, New Mexi	co for BTEX, Major Ions, and TDS analysis.
	<del></del>			
	· · · · · · · · · · · · · · · · · · ·		·	
<u> </u>				

CLIENT:	RICE Op	erating Coi	mpany	WELL ID: Monitor Well #1			
SYSTEM:	EME	•.		DATE: May 15, 2008			
SITE LOCATION: Junction N-5				SAMPLER: Rozanne Johnson			
PURGING METHOD	:	☐ Hand B	ailed ☑	Pump, Type: Purge Pump			
SAMPLING METHO	D:	Disposa	able Bailer[	Direct from Discharge Hose Other:			
DISPOSAL METHOD	OF PURG	E WATER:	On-sit	te Drum 🔲 Drums 🔃 SWD Disposal Facility			
TOTAL DEPTH OF V DEPTH TO WATER: HEIGHT OF WATER WELL VOLUME:	COLUMN:	40.10 31.92 8.18 Gal.	Feet Feet Feet	In. Well Diameter 5 Gallons purged prior to sampling			
TIME	TEMP. °C	COND. mS/cm	рН	PHYSICAL APPEARANCE AND REMARKS			
			<u> </u>				
12:30	19.1	2.80	6.89	Septic Odor / Gray in Color / Heavy Sheen			
			ļ	Samples Collected			
				BTEX (2-40ml VOA)			
				Major Ions/TDS (1-1000ml Plastic)			
		<u></u>	<u> </u>				
COMMENTS:	·						
Myron Model 6P insti	rument used	d to obtain p	H, conduct	ivity, and temperature measurements.			
Delivered samples to	Cardinal L	ab in Hobbs	, New Mex	ico for BTEX, Major Ions, and TDS analysis.			
				· ·			
· · · · · · · · · · · · · · · · · · ·							

CLIENT: RICE Operating Company			прапу	WELL ID:	Monitor Well #1
SYSTEM:	EME			DATE:	August 20, 2008
SITE LOCATION:	Junction	N-5		SAMPLER:	Rozanne Johnson
				•	
PURGING METHOD	:	☐ Hand B	aileḍ ☑	Pump, Type:	Purge Pump
SAMPLING METHO	D:	☑ Disposa	able Bailer	Direct from Disch	narge Hose Other:
	•			•	·
DISPOSAL METHOL	OF PURG	SE WATER:	☐ On-si	te Drum 🔲 Drums	SWD Disposal Facility
TOTAL DEPTH OF W	VELL:	40.10	Feet		·
DEPTH TO WATER:		32.65	Feet	÷	
HEIGHT OF WATER WELL VOLUME:		7.45 Gal.	Feet	2	In. Well Diameter Gallons purged prior to sampling
TIME	TEMP. °C	COND. mS/cm	pН	PHYS	SICAL APPEARANCE AND REMARKS
		·			
11:30	20.2	2.53	6.98	Septic Odor / Gra	y in Color / Heavy Sheen
				Samples Collected	d
				BTEX (2-40ml VO	PA)
				Major lons/TDS (1	I-1000ml Plastic)
	,	·-			
COMMENTS:					
Myron Model 6P inst	rument used	d to obtain p	H, conduct	ivity, and temperature	measurements.
Delivered samples to	Cardinal L	ab in Hobbs,	New Mexi	co for BTEX, Major Ior	ns, and TDS analysis.
		-			
				· · · · · · · · · · · · · · · · · · ·	

CLIENT:	RICE Op	erating Co	mpany	WELL ID: Monitor VVeil #1
SYSTEM: EME				DATE: November 19, 2008
SITE LOCATION: Junction N-5				SAMPLER: Rozanne Johnson
PURGING METHOD	• .		aìled ☑	Pump, Type: Purge Pump
SAMPLING METHOL	<b>o</b> :	✓ Disposa	able Bailer	Direct from Discharge Hose Other:
			J	
DISPOSAL METHOD	OF PURG	E WATER:	On-si	te Drum 🗌 Drums 🔃 SWD Disposal Facility
TOTAL DEPTH OF V DEPTH TO WATER: HEIGHT OF WATER WELL VOLUME:	COLUMN:	40.10 32.79 7.31 Gal.	Feet Feet Feet	2 In. Well Diameter5 Gallons purged prior to sampling
TIME	TEMP. °C	COND. mS/cm	рН	PHYSICAL APPEARANCE AND REMARKS
10:15	18.8	2.94	7.58	Septic Odor / Gray in Color / Heavy Sheen
				Samples Collected
		ļ 	ļ	BTEX (2-40ml VOA)
				Major lons/TDS (1-1000ml Plastic)
			<u> </u>	
COMMENTS:			<u></u>	
				ivity, and temperature measurements.
Delivered samples to	Cardinal La	ab in Hobbs	, New Mex	ico for BTEX, Major Ions, and TDS analysis.
	<u> </u>			
<u> </u>				
			<u>.</u>	
		<del> </del>		

CLIENT:	CLIENT: RICE Operating Company				Monitor Well #2
SYSTEM:	EME			DATE:	February 21, 2008
SITE LOCATION:	Junction	N-5		SAMPLER:	Rozanne Johnson
•					
PURGING METHOD:		☐ Hand Ba	ailed 🗹	Pump, Typ <u>e:</u>	Purge Pump
SAMPLING METHOD	<b>D</b> :	Disposa	ıble Bailer[	Direct from Disch	narge Hose  Other:
DISPOSAL METHOD	OF PURG	E WATER:	On-sit	e Drum 🔲 Drums	SWD Disposal Facility
TOTAL DEPTH OF V	VELL:	44.10	Feet		
DEPTH TO WATER: HEIGHT OF WATER	COLUMN:	31.42 12.68	Feet Feet	2	In. Well Diameter
WELL VOLUME:	2.0	Gal.	•	8	Gallons purged prior to sampling
TIME	TEMP.	COND. mS/cm	pΗ	PHYS	SICAL APPEARANCE AND REMARKS
			•		
9:40	18.6	4.95	6.78	Sand to Clear with	n Slight Odor
				Samples Collecte	d
				BTEX (2-40ml VC	9A)
				Major Ions/TDS (*	1-1000ml Plastic)
COMMENTS:					
Myron Model 6P instr	ument used	d to obtain p	H, conduct	vity, and temperature	measurements.
Delivered samples to	Cardinal La	ab in Hobbs,	New Mexi	co for BTEX, Major lo	ns, and TDS analysis.
	· · ·		<del></del>		
					· · · · · · · · · · · · · · · · · · ·

CLIENT:	RICE Op	erating Con	прапу	WELL ID: Monitor Well #2			
SYSTEM:	EME			DATE: May 15, 2008			
SITE LOCATION:	Junction	N-5		SAMPLER: Rozanne Johnson			
				•			
PURGING METHOD	1	☐ Hand Ba	ailed 🗹	Pump, Type: Purge Pump			
SAMPLING METHOD:   Disposable Bailer Direct from Discharge Hose Direct from Discharge Hose Direct from Discharge Hose Direct from Discharge Hose Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direct from Direc							
DICDOCAL METHOD	OF DUDG	E MATER.		to Daving CI Daving CI CIMD Diseased Facility			
DISPOSAL METHO	OF PURG	E WATER:	Un-si	te Drum 🔲 Drums 🔃 SWD Disposal Facility			
TOTAL DEPTH OF VIDEPTH TO WATER:		44.10 31.55	Feet Feet				
HEIGHT OF WATER			Feet	2 In. Well Diameter			
WELL VOLUME:	2.0	Gal.	•	8 Gallons purged prior to sampling			
	TEMP.	COND.		T			
TIME	°C	mS/cm	pН	PHYSICAL APPEARANCE AND REMARKS			
				Sand to Clear with Slight Odor			
11:40	18.8	4.56	6.72				
				Samples Collected			
				BTEX (2-40ml VOA)			
				Major Ions/TDS (1-1000ml Plastic)			
	•						
COMMENTS:							
	rument used	d to obtain p	H, conduct	ivity, and temperature measurements.			
Delivered samples to	Cardinal La	ab in Hobbs,	New Mexi	ico for BTEX, Major Ions, and TDS analysis.			

CLIENT.	THOL OP	retuing Col	трину	VVELLID. IVIOITILOI VVEII #2	
SYSTEM: EME				DATE: August 20, 2008	
SITE LOCATION: Junction N-5				SAMPLER: Rozanne Johnson	
PURGING METHOD	:	☐ Hand B	ailed 🗹	Pump, Type: Purge Pump	
SAMPLING METHO	D:	✓ Disposa	able Bailer[	☐ Direct from Discharge Hose ☐ Other:	_
DISPOSAL METHOD	OF PURG	SE WATER:	☐ On-si	te Drum 🔲 Drums 🖳 SWD Disposal Facility	
TOTAL DEPTH OF V		44.10	Feet		•
DEPTH TO WATER: HEIGHT OF WATER		32.30 11.80	Feet Feet	2 In. Well Diameter	
WELL VOLUME:	1.9	Gal.	-	8 Gallons purged prior to sampling	
TIME	TEMP.	COND. mS/cm	рН	PHYSICAL APPEARANCE AND REMARKS	
10:40	20.0	3.96	6.85	Sand to Clear with Slight Odor	
				Samples Collected	
				BTEX (2-40ml VOA)	
-				Major Ions/TDS (1-1000ml Plastic)	
COMMENTS:					
Myron Model 6P inst	rument use	d to obtain p	H, conduct	ivity, and temperature measurements.	
Delivered samples to	Cardinal L	ab in Hobbs	, New Mexi	co for BTEX, Major lons, and TDS analysis.	
		<del></del>			
<del></del>		<del></del>			

•

CLIENT: RICE Operating Company				WELL ID: Monitor Well #3		
SYSTEM: EME				DATE: February 21, 2008		
SITE LOCATION: Junction N-5				SAMPLER: Rozanne Johnson		
•						
PURGING METHOD: ☐ Hand Bailed ☑			ailed 🗹	Pump, Type: Purge Pump		
SAMPLING METHOD:   Disposable Barrier			able Bailer[	☐ Direct from Discharge Hose ☐ Other:		
DISBOSAL METHOR		E MATED:	☐ On sit	te Drum 🔲 Drums 🔲 SWD Disposal Facility		
				le Dium 🔲 Diums 📋 3000 Disposal Facility		
TOTAL DEPTH OF V		<u>43.15</u> 30.30	Feet Feet			
HEIGHT OF WATER COLUMN: 12.85 Feet			•	2 In. Well Diameter		
WELL VOLUME:	2.1	Gal.		8 Gallons purged prior to sampling		
TIME	TEMP.	COND.	рН	PHYSICAL APPEARANCE AND REMARKS		
	°C	mS/cm	pri	THOO LEATER WAS EXAMINED AND METALLIAN WAS		
8:45	18.7	2.29	7.01	Sand to Clear with No Odor		
				Samples Collected		
				BTEX (2-40ml VOA)		
				Major lons/TDS (1-1000ml Plastic)		
COMMENTS:						
Myron Model 6P inst	rument used	d to obtain p	H, conduct	ivity, and temperature measurements.		
Delivered samples to	Cardinal La	ab in Hobbs,	New Mexi	co for BTEX, Major Ions, and TDS analysis.		

CLIEN1:	RICE Op	erating Cor	npany	WELL ID:	Monitor vveil #3	
SYSTEM: EME				DATE:	May 15, 2008	
SITE LOCATION: Junction N-5				SAMPLER:	Rozanne Johnson	
•				•		
PURGING METHOD: Hand Bailed . F				Pump, Type:	Purge Pump	
SAMPLING METHOD:   Disposable Bailer Direct from Discharge Hose Direct from Discharge Hose Direct from Discharge Hose Direct from Direct from Discharge Hose						
DISPOSAL METHOD	OF PURG	E WATER:	☐ On-sit	e Drum 🔲 Drums	SWD Disposal Facility	
TOTAL DEPTH OF V	VELL:	43.15	Feet			
DEPTH TO WATER:		30.43	Feet			
HEIGHT OF WATER COLUMN: 12.72 Feet WELL VOLUME: 2.0 Gal.				2	In. Well Diameter Gallons purged prior to sampling	
TIME	TEMP. °C	COND. mS/cm	pН	PHYS	SICAL APPEARANCE AND REMARKS	
· 10:50	18.8	2.23	7.01	Sand to Clear with	n No Odor	
				Samples Collected	d	
				BTEX (2-40ml VO	A)	
				Major Ions/TDS (1	-1000ml Plastic)	
COMMENTS:						
Myron Model 6P instr	rument used	d to obtain p	H, conduct	vity, and temperature	measurements.	
Delivered samples to	Cardinal La	ab in Hobbs,	New Mexi	co for BTEX, Major lor	ns, and TDS analysis.	
<del></del>						

CLIENT: MOE Operating Company			mpany	WELL ID: MOUNTOL AAGII #2		
SYSTEM: EME				DATE: August 20, 2008		
SITE LOCATION: Junction N-5				SAMPLER: Rozanne Johnson		
PURGING METHOD: Hand Bailed .				Pump, Type: Purge Pump		
SAMPLING METHOD:   Disposable Bailer				☐ Direct from Discharge Hose ☐ Other:		
DISPOSAL METHO	D OF PURG	SE WATER:	☐ On-si	te Drum   Drums   SWD Disposal Facility		
TOTAL DEPTH OF		43.15	Feet			
DEPTH TO WATER: 31.14 Feet HEIGHT OF WATER COLUMN: 12.01 Feet			_Feet Feet	2 In. Well Diameter		
WELL VOLUME: 1.9 Gal. 8 Gallons purged prior to sampling						
TIME	TEMP.	COND. mS/cm	рН	PHYSICAL APPEARANCE AND REMARKS		
9:50	20.1	1.94	6.95	Sand to Clear with No Odor		
				Samples Collected		
				BTEX (2-40ml VOA)		
				Major lons/TDS (1-1000ml Plastic)		
COMMENTS:						
Myron Model 6P ins	trument use	d to obtain p	H, conduct	ivity, and temperature measurements.		
Delivered samples t	o Cardinal L	ab in Hobbs	, New Mex	ico for BTEX, Major lons, and TDS analysis.		
<del></del>						
			<del></del>	<del></del>		
			<u></u>			

CLIENT: RICE Operating Company			прапу	WELL ID: 1	Monitor Well #3
SYSTEM: EME				DATE:	November 19, 2008
SITE LOCATION: Junction N-5				SAMPLER:	Rozanne Johnson
•					
PURGING METHOD	:	☐ Hand B	ailed 🗹	Pump, Type:	Purge Pump
SAMPLING METHOL	D:	☑ Disposa	able Bailer[	Direct from Discha	arge Hose Other:
	•				
DISPOSAL METHOE	OF PURG	E WATER:	☐ On-sit	e Drum 🔲 Drums	SWD Disposal Facility
TOTAL DEPTH OF V		43.15	Feet		
DEPTH TO WATER: 31.23 Feet HEIGHT OF WATER COLUMN: 11.92 Feet			Feet Feet	2.	In. Well Diameter
WELL VOLUME:		Gal.			Gallons purged prior to sampling
TIME	TEMP.	COND. mS/cm	pН	PHYSI	CAL APPEARANCE AND REMARKS
			<u> </u>		
8:40	18.3	2.17	7.52	Sand to Clear with	No Odor
				Samples Collected	I
[				BTEX (2-40ml VO	A)
				Major lons/TDS (1	-1000ml Plastic)
			<u></u>		· · · · · · · · · · · · · · · · · · ·
					•
COMMENTS:					
Myron Model 6P inst	rument used	d to obtain p	H, conduct	ivity, and temperature r	neasurements.
Delivered samples to	Cardinal La	ab in Hobbs	, New Mexi	co for BTEX, Major Ion	s, and TDS analysis.
	·				
					· · · · · · · · · · · · · · · · · · ·