NM1 - <u>5</u>

CQA/CQC REPORT

Date: August 2009

NM1-5

August 2009 Project No. 520.01.01 RECEIVED

AUG 2 7 2009 Environmental Bureau ENGINEERING CERTIFICATION REPORT FOR **EVAPORATION POND 3 CONSTRUCTION**

BASIN DISOPAL, INC. BLOOMFIELD, NEW MEXICO

August 2009

SUBMITTED TO:

ENERGY, MINERALS & NATURAL RESOURCES DPEARTMENT OIL CONSERVATION DIVISION 1120 S. ST. FRANCIS DRIVE SANTA FE, NEW MEXICO 87505

PREPARED FOR:

BASIN DISPOSAL, INC. MR. JOHN VOLKERDING, PHD BLOOMFIELD, NEW MEXICO, 87413 HEN MES ENGINEER NEGIS 10984 I. KEITH GORDON NEW MEXICO P.E. NO. 90984 0 Gordon Environmental, Inc.

Consulting Engineers

August 25, 2009

Consulting Engineers

Bernalillo, New Mexico 87004

RECEIVED

AIIG 2 7 2009

Environmental Bureau Oil Conservation Division Submitted via CD-ROM Hard copy hand delivered

Mr. Edward J. Hansen Hydrologist, Environmental Bureau Oil Conservation Division NM Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

Re: Basin Disposal Inc: [OCD Permit No. 1-0005] Engineering Certification Report: Evaporation Pond 3 Construction [520.01.01]

Dear Mr. Hansen:

This submittal is provided as Engineering Certification for the construction of Evaporation Pond 3 at Basin Disposal Inc., in Bloomfield, New Mexico 87413. Specifically, this certification demonstrates that the double containment liner and leak detection system for Evaporation Pond 3 have been installed in compliance with the following applicable documents and regulatory requirements:

- Liner Construction Quality Assurance (CQA) Plan dated December 2008
- Engineering Design Plans and Project Specifications for Evaporation Pond 3 Earthwork, Liner and Leak Detection System Installation, dated April 2009.
- New Mexico Energy, Minerals and Natural Resources Department Regulations (19.15.36.1-19.15.36.20).
- Oil Conservation Division (OCD), New Mexico Energy, Minerals and Natural Resources Department correspondence dated March 8, 2009, May 1, 2009, and June 17, 2009.

The Division was notified in advance of construction, and visited the project on June 11, 2009 to review the project, and returned to inspect the new Evaporation Pond 3 on June 18, 2009 and June 29, 2009. The following Certification Report describes the activities and procedures performed during the construction of Evaporation Pond 3 in order to document compliance with the approved Engineering Design Plans, Project Specifications, and CQA Plan.

Mr. Edward J. Hansen August 25, 2009 Page 2

We appreciate the opportunity of working with you and OCD regarding the construction quality assurance for the construction of Evaporation Pond 3 at Basin Disposal Inc. Please contact us with your questions and comments regarding this Certification Report.

Very truly yours,

Gordon Environmental, Inc.

Michael R. Heinstein, P.E. CQA Officer

I. Keith Gordon, P.E. Principal

cc: Mr. John Volkerding PhD, General Manager, Basin Disposal Inc. Mr. James W. Jordan, P.E., Jordan Engineering Inc.

TABLE OF CONTENTS

1.0	INTRODUCTION	5
1.1.	Project Overview	5
1.2.	Report Organization	6
2.0	EVAPORATION POND 3 CONSTRUCTION	6
2.1.	Summary	6
2.2. 2.2. 2.2. 2.2. 2.2.	 Coordinate System Subgrade and Berm Compaction 	7 7 7
2.3. 2.3. 2.3. 2.3. 2.3.	 Geosynthetic Clay Liner Installation	8 9 9
2.4. 2.4. 2.4. 2.4. 2.4. 2.4.	 Flexible Membrane Liner Product	11 12 12
2.5. 2.5. 2.5. 2.5. 2.5.	 Geotextile Fabric Leak Detection Sump Aggregate 	16 17 18
2.6. 2.6. 2.6. 2.6. 2.6.	 Geonet Drainage Layer Product Geonet Drainage Layer Installation Geonet Drainage Layer Testing	19 19 20
2.7. 2.7. 2.7. 2.7. 2.7.	2. Flexible Membrane Liner Installation	22 22

Gordon Environmental, Inc.

i

Engineering Certification Report Basin Disposal, Inc. Evaporation Pond 3 Construction

TABLE OF CONTENTS

2.7.4.	Liner Deployment Records	26
2.8. 60-	Mil Textured Flexible Membrane Liner Panels	27
2.8.1.	Flexible Membrane Liner Product	27
2.8.2.	Flexible Membrane Liner Installation	27
2.8.3.	Flexible Membrane Liner Testing	28
2.8.4.	Liner Deployment Records	30
2.9. Ai	· Vents	31

LIST OF FIGURES

Figure 1	Evaporation Pond 3 – Site Plan
Figure 2	Evaporation Pond 3 – Subgrade Design Grades
Figure 3	Evaporation Pond 3 – Subgrade As-built Grades
Figure 4	Evaporation Pond 3 – Field Density Test Locations
Figure 5	Evaporation Pond 3 – GCL Panel Layout
Figure 6	Evaporation Pond 3 - 60-Mil Secondary Liner Panel Layout
Figure 7	Evaporation Pond 3 – Geonet Panel Layout
Figure 8	Evaporation Pond 3 – 60 Mil Primary Liner Panel Layout
Figure 9	Evaporation Pond 3 – Textured FML Panel Layout

FIELD LOG AND PHOTOGRAPHS

- 1. Daily Summary Reports
- 2. Project Photographs

APPENDICES

Appendix A Geotechnical Soils Testing

- A.1. Grain Size Analyses
- A.2. Atterberg Limits

Engineering Certification Report Basin Disposal, Inc. Evaporation Pond 3 Construction

TABLE OF CONTENTS

A.3. Moisture / Density Relationships

Appendix B Subgrade Material Testing

- B.1. Density Testing Results
- B.2. Subgrade As-built Elevations

Appendix C Material Manufacturer Certification and Conformance Testing Results

- C.1. GCL Certifications
- C.2. GCL Conformance Testing Results
- C.3. FML Certifications
- C.4. FML Conformance Testing Results
- C.5. Geonet Certifications
- C.6. Geonet Conformance Testing Results
- C.7. Geotextile Certifications
- C.8. Geotextile Conformance Testing Results

Appendix D E

- dix DEvaporation Pond 3 Liner Installation DocumentationD.1.GCL Deployment Log
- D.1. GCL Deployment Log
- D.2. Secondary FML Deployment Log
- D.3. Geotextile Deployment Log
- D.4. Geonet Deployment Log
- D.5. Primary FML Deployment Log
- D.6. Secondary Geomembrane Pre-weld Qualification Test Logs
- D.7. Secondary Geomembrane Seaming Log
- D.8. Secondary Geomembrane Seam Pressure Test Log APPENDICES CONTINUED
- D.9. Secondary Geomembrane Seam Vacuum Test and Defect-repair Log
- D.10. Secondary Geomembrane Seam Field Destructive Test Records
- D.11. Primary Geomembrane Pre-weld Qualification Test Logs

Engineering Certification Report Basin Disposal, Inc. Evaporation Pond 3 Construction

TABLE OF CONTENTS

- D.12. Primary Geomembrane Seaming Log
- D.13. Primary Geomembrane Seam Pressure Test Log
- D.14. Primary Geomembrane Seam Vacuum Test and Defect-repair Log
- D.15. Primary Geomembrane Seam Field Destructive Test Records
- D.16. Textured Liner Deployment Log
- D.17. Textured Liner Seam Vacuum Test Log
- D.18. GCL Inventory Control Log
- D.19. Geonet Inventory Control Log
- D.20. FML Inventory Control Log
- D.21. Geotextile Inventory Control Log
- D.22. Leak Detection Sump Riser Pipe Inventory Control Log

Appendix E Independent Laboratory FML Destructive Testing Results

Appendix F Leak Detection System Certifications

- F.1. Pipe Certification
- F.2. Leak Detection Sump Aggregate Gradation

iv

P:\FILES\520.01.01\CQA\CQA Report.doc

Ü

1.0 INTRODUCTION

This Certification Report describes the activities and procedures applied during the construction of Evaporation Pond 3 and the Construction Quality Assurance (CQA) activities performed. Documentation that Evaporation Pond 3 has been constructed in accordance with the approved design documents, regulatory standards, and CQA protocol is provided in this Report.

1.1. Project Overview

From May 18, 2009 through July 20, 2009, Evaporation Pond 3 was constructed at Basin Disposal Inc., (BDI) located at 200 Montana Street, Bloomfield, New Mexico 87412. Gordon Environmental, Inc. (GEI) performed the engineering design and on-site CQA activities. The primary construction activities for Evaporation Pond 3 are:

- Mass excavation
- Perimeter berm construction
- Subgrade preparation
- Installation of the Geosynthetic Clay Liner (GCL)
- Installation of the Secondary Flexible Membrane Liner (FML)
- Installation of the Leak Detection System
- Installation of the Geonet
- Installation of the Primary Flexible Membrane Liner (FML)
- Installation of the Textured panels of Flexible Membrane Liner (FML)

A GEI CQA Technician was on-site at critical junctions during mass excavation and berm construction, and on-site continually to observe, inspect, and record liner installation procedures. The purpose of the CQA work is to document that construction activities performed at Basin Disposal Inc. comply with the CQA Plan, engineering design plans, project specifications and regulatory requirements. Engineering design plans, technical specifications, field observations, and tests were used to provide quantitative criteria with which to evaluate the final product. GEI personnel were responsible for a variety of CQA activities, including:

- Reviewing surveying results to confirm subgrade elevations
- Measuring subgrade, berm, and anchor trench densities
- Observing liner storage and installation procedures
- Observing liner material seaming and testing procedures

- Observing geonet material installation and seaming
- Observing leak detection system construction
- Reviewing documentation, including laboratory and field test results
- Providing this Engineering Certification Report documenting completed construction

1.2. Report Organization

This Certification Report describes the CQA activities and procedures performed during the construction of Evaporation Pond 3 at Basin Disposal Inc. The attached figures, appendices, photographs and daily logs provide appropriate quantitative and qualitative documentation. Cross-reference to the Figures and Attachments are in **bold** type to facilitate the Division's review.

2.0 EVAPORATION POND 3 CONSTRUCTION

2.1. Summary

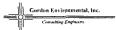
Evaporation Pond 3 is located north and immediately adjacent to the previously constructed Evaporation Pond 1, and the total project area is approximately 2.2 acres in size as shown on the site plan (**Figure 1**). Mass excavation, berm construction, and subgrade preparation were performed from May 18, 2009 to June 15, 2009. Geosynthetic Clay Liner (GCL), Secondary Flexible Membrane Liner (FML), Geonet, Leak Detection System, and Primary FML installation activities for Evaporation Pond 3 were performed from June 16, 2009 to June 24, 2009. Anchor trench backfilling/compaction; and stormwater drainage channel excavation and stormwater detention pond excavation was performed from June 25, 2009 to July 2, 2009. Bollard installation was completed on July 20, 2009.

Mass excavation, berm construction, and fine-grading of the subgrade was conducted by Foutz and Bursum Construction Co., Inc. (FAB); Southwest Liner Systems, Inc. (SWLS) performed the installation of the GCL, Secondary FML, placed the Geotextile, Geonet, and Primary FML. Conformance testing of geosynthetics was performed by SWLS, while documentation and quality assurance were performed by GEI.

2.2. Subgrade Preparation

The following sections describe the activities performed during mass excavation, berm construction, subgrade preparation, and CQA testing.

2.2.1. Clearing, Grubbing and Mass Excavation


Foutz and Bursum Construction Co., Inc. performed the mass excavation and the fine grading to Evaporation Pond design grades. A previously constructed but unused Evaporation Pond along with a large stockpile of soil was present within the footprint of Evaporation Pond 3. During pond construction, excavated soils as well as the soils from the stockpile were pre-tested and used in perimeter berm construction. The remaining soils were removed to a stockpile area located west of Evaporation Pond 2.

2.2.2. <u>Coordinate System</u>

The project area was surveyed in a grid pattern so that the locations of sample and testing points used during construction were readily discernible by the CQA Technician. The survey grid, shown on **Figures 4-9**, was established by GEI for use during construction.

2.2.3. Subgrade and Berm Compaction

During excavation, berms were built surrounding the evaporation pond using both excavated soils as well as soils from the on-site stockpile. Soils were placed in ten maximum one-foot thick lifts and were compacted to 90% of Standard Proctor Dry Density as verified by field density tests. After berm construction, mass excavation, and fine grading to the elevations shown on **Figure 3** was completed, the floor soils were compacted using a vibratory roller. The in-place density was measured at a minimum frequency of 4 tests per acre, using a Troxler® 3440 Moisture-Density Gauge, requiring 8 tests for the 2.2-acre \pm footprint and 24 tests for berm construction. A total of 15 density tests on the floor, 14 for the anchor trench, and 128 for the berms was performed (**Figure 4**), and all results passed the required specification of 90%, or higher, of the Reference Standard Proctor. The results for the Standard Proctor laboratory tests used as references are provided in **Appendix A.3**, and field compaction testing results are

tabulated in **Appendix B.1.** Maximum densities of 119.0 lb/ft³, 116.1 lb/ft³, and 111.5 lb/ft³ were used as the Reference Maximum Densities for each of three identified on-site soil types.

2.2.4. Subgrade Acceptance

Upon completion of subgrade construction, Evaporation Pond 3 was surveyed by Russell Surveying Inc., of Aztec, NM. The topography of the base grade was then verified and approved by the GEI CQA Officer prior to liner deployment. **Figure 2** shows the design grades, and **Figure 3** provides the as-built grades for the finished subgrade surface.

The GEI Site CQA Technician and the Installer's Field Installation Manager (FIM) inspected the subgrade surface prior to beginning liner installation activities. The subgrade surface was found to be in good condition and free from sticks, sharp stones, vegetation and other deleterious material. The GEI Site CQA Technician and the FIM continued to inspect the subgrade surface during liner installation in areas immediately ahead of deployment to identify and remove any large or angular particles, sharp objects, etc. The results of the inspection and the FIM's acceptance of the subgrade were annotated in the Daily Reports and Approval Forms which are included in the **Field Log and Photographs** section.

2.3. Geosynthetic Clay Liner

In accordance with project specifications, the Geosynthetic Clay Liner (GCL) was placed in direct contact with the prepared subgrade. The following sections describe the procedures and activities performed during the GCL installation, observation, and CQA testing.

2.3.1. Geosynthetic Clay Liner Product

Approximately 1,560 ft² of BENTOMAT-ST, a reinforced GCL material manufactured by CETCO of Lovell, Wyoming, was used in the construction of Evaporation Pond 3 and installed in the leak detection sump areas. All GCL rolls applied to Evaporation Pond 3 were equipped with the Winning Edge®, an upgrade to the original BENTOMAT-ST that eliminates the need for free bentonite application to the longitudinal seams. Copies of the manufacturer's quality

control test results and certifications were reviewed by the GEI CQA Officer to determine that the materials met or exceeded the minimum properties specified for all GCL used for the project. Copies of the manufacturer's quality test results and certifications are included in **Appendix C.1**. Upon arrival at the site, the rolls of GCL were stored in their original, unopened packaging until deployment on the subgrade.

2.3.2. Geosynthetic Clay Liner Installation

The guidelines stipulated in the CQA Plan, project specifications, permit drawings, engineering design drawings, and the generally accepted GCL installation procedures were strictly followed during this project. The roll of GCL was carefully transported from the storage area to Evaporation Pond 3 using a forklift equipped with extendable spreader bars. As the roll was moved, the label was removed and submitted to the Site CQA Technician for documentation in the GCL Deployment Log (**Appendix D.1**) and panel location (**Figure 5**). The labels were compared with the shipping invoice to verify that the materials received corresponded with materials subjected to manufactures quality control/manufactures quality assurance testing (**Section 2.3.3**). With the primary backing, non-woven geotextile side facing upward, each GCL roll was placed over the prepared subgrade in the leak detection sump areas as shown on the engineering drawings. GCL was not placed in standing water or deployed during rainfall.

After each roll had been deployed, adjoining rolls were positioned with a 6-inch minimum overlap on the longitudinal seams per manufacturer's guidelines and technical specifications. All longitudinal seams were equipped with the Winning Edge®. Each seam overlap was placed such that the direction of potential flow is from the top sheet to the bottom sheet creating a shingle effect. Material placement was observed by the Site CQA Technician for potential damage due to handling or installation.

2.3.3. Geosynthetic Clay Liner Testing

GCL testing included manufacturing quality control (MQC) and manufacturing quality assurance (MQA), conformance testing, construction quality control (CQC) and construction quality assurance (CQA). Each type of testing is described in the following sections.

2.3.3.1. Manufacturing Quality Control (MQC) and Manufacturing Quality Assurance (MQA)

MQC and MQA testing of the bentonite and geotextile components, as well as the finished geosynthetic clay liner, were performed by the manufacturer. Random samples were collected from each day's production and tested for uniformity, thickness, bentonite weight and tensile properties. The GCL quality control certification and GCL property values and testing frequencies are provided in **Appendix C.1**.

2.3.3.2. Conformance Testing

The Site CQA Technician verified that the FIM collected random a sample from the roll of GCL. A sample approximately two feet long was collected from the entire roll width and shipped to an independent laboratory for conformance testing. Conformance samples were collected at a frequency of at least one per 100,000 ft² of GCL installed to verify that the GCL delivered to the site met the minimum project specifications. Approximately 1,560 ft² of GCL was installed, requiring one (1) conformance sample. An independent laboratory (TRI/Environmental, Inc., Austin, Texas) tested for free swell (ASTM D 5890) and mass per unit area (ASTM D 993). The results of this testing are presented in **Appendix C.2.** Conformance test results for the sample was reviewed by the GEI CQA Officer and accepted in accordance with the project specifications. Conformance test results indicate that the installed GCL meets the project specifications.

2.3.3.3. Construction Quality Control (CQC) and Construction Quality Assurance (CQA)

The Site CQA Technician and the FIM inspected each roll of material as it arrived on-site. The material was inspected for potential damage and uniformity. Roll identification numbers were compared with those on the manufacturer certifications to verify proper delivery.

The Site CQA Technician and the FIM visually inspected all GCL for potential damage during installation. No areas of damage were observed.

2.3.4. Geosynthetic Clay Liner Deployment Records

Documentation of the GCL deployment, and CQA review of each panel, was required prior to approval and acceptance. The GCL installation was not accepted until the deployment records and manufacturer's certification reports were submitted to and approved by the GEI CQA Officer. The As-built Panel Layout for Evaporation Pond 3 GCL is included as **Figure 5**. The Daily Summary Reports and documentation of GCL placement at the leak detection sumps were recorded at the end of each construction day. Copies of the Daily Summary Reports and photographs documenting GCL placement activities are provided in the **Field Log and Photographs** section of this report.

2.4. 60-Mil Secondary Flexible Membrane Liner

The Secondary FML was installed directly above the GCL in leak detection sumps, and the subgrade in accordance with the engineering design drawings, project specifications, and the CQA plan. The following sections describe the procedures and activities performed during FML installation, observation, and CQA testing.

2.4.1. Flexible Membrane Liner Product

The Secondary FML utilized in Evaporation Pond 3 construction is 60-mil, high-density polyethylene (HDPE) smooth liner, manufactured by Poly-Flex, Inc. of Grand Prairie, Texas. Smooth liner material is specified for the floor and sidewalls of Evaporation Pond 3, with the sidewalls requiring a minimum 10 foot run-out extending onto the floor from the toe of slope. The FML was delivered on-site in rolls 23 feet wide by 500 feet long, and was staged along the western perimeter of Evaporation Pond 3 to provide easy access and to minimize handling of the material. In accordance with the CQA Plan and project specifications, material was not stacked more than two rolls high. The labels were compared with the shipping invoice to verify that the materials received corresponded with materials subjected to manufactures quality control/manufactures quality assurance testing (see Section 2.4.3). The material was also inspected for damage during off-loading and staging.

÷

2.4.2. Flexible Membrane Liner Installation

The FML installation activities were performed in accordance with the guidelines stipulated in the project CQA Plan, project specifications, the engineering design drawings, and industry standards for FML handling, placement, and testing. Each roll of FML was carefully moved from the staging area to Evaporation Pond 3 using a rubber-tired extendable forklift. FML was not placed in standing water or deployed during rainfall. Upon deployment, each roll label was removed and submitted to the Site CQA Technician, and panel location documented (see **Figure 6**).

After each FML panel had been placed, adjoining panels were positioned with a 4 to 6 inch overlap required for hot-wedge fusion welding. The overlap distance is required for proper seaming, and to allow peel and shear tests to be performed on the seams. Seams were oriented at approximately 45 degrees to the line of prevailing base grade slope. No perpendicular seams were placed on the sideslopes.

2.4.3. Flexible Membrane Liner Testing

FML testing included manufacturer's quality control (MQC) and quality assurance (MQA), conformance testing, construction quality control (CQC), CQA, and seam testing. Each type of testing is discussed in the following sections.

2.4.3.1. Manufacturer's Quality Control (MQC)

INEOS Olefins & Polymers USA LLC., performed resin testing on the raw materials used in the manufacturing of the FML. These test results and written certifications that the product delivered has been extruded from an acceptable resin are included in **Appendix C.3**.

2.4.3.2. Manufacturer's Quality Assurance (MQA)

As a part of the MQA testing, specific performance and characterization qualities were evaluated on random samples collected from the geomembrane rolls prior to their delivery to the site:

Gordon Environmental, Inc.

- Thickness (ASTM D 5199 for smooth)
- Density (ASTM D 1505)
- Tensile Properties (ASTM D 6693)
- Tear Resistance (ASTM D 1004)
- Carbon Black Content (ASTM D 1603) or (ASTM D 4218)
- Carbon Black Dispersion (ASTM D 5596)
- Puncture Resistance (ASTM D 4833)
- UV Resistance (ASTM D 5885)
- Oxidation induction time (ASTM D 3895)

Test results are included in **Appendix C.3**. These MQA results were reviewed by the GEI CQA Officer and approved for consistency with the project specifications (see Section 2.4.3.3. Conformance Testing).

2.4.3.3. Conformance Testing

The Site CQA Technician verified that the FIM collected random samples from selected rolls of the 60-mil smooth FML that were delivered to the site. A sample approximately two feet long was collected from the entire roll width and shipped to an independent laboratory (TRI/Environmental Inc., Austin, Texas) for conformance testing. Conformance samples were collected at a frequency of at least one per 100,000 ft² of liner to confirm that the FML delivered to the site conformed to the minimum requirements of the project specifications. Approximately 93,500 ft² of 60-mil smooth Secondary FML was installed requiring one (1) conformance test. The samples were sent to an independent laboratory (TRI/Environmental, Inc., Austin, Texas) and tested for qualities as outlined in the Geosynthetic Technical Specifications. Conformance test results were reviewed by the GEI CQA Officer and accepted in accordance with project specifications. The test results for the sample is included in **Appendix C.4**.

2.4.3.4. Construction Quality Control (CQC)

The quality control procedures specified in the project documents were strictly followed in order to provide a method to measure and regulate the quality of liner installation. These procedures included such activities as start-up trial welds, destructive and non-destructive seam testing, and verification that the deployment and seaming procedures were performed in accordance with project specifications.

13 213 S. Camino del Pueblo Bernalillo, New Mexico

P:\FILES\520.01.01\CQA\CQA Report.doc

Trial welds were performed at the start and midpoint of each workday; after each break in seaming of one hour or more; and after any equipment shutdown. The trial welds were a minimum of ten feet in length for fusion welders, and a minimum of three feet in length for extrusion fillet welders. One-inch-wide cutouts of the trial welds were field tested for shear and peel strength using a tensiometer. All testing was performed in the presence of the Site CQA Technician. If the results of the trial weld testing did not comply with the CQA Plan and project specifications, the welder was not permitted to continue seaming until the deficiencies were corrected and a trial weld was performed which passed the field testing requirements. Trial weld documentation is included in **Appendix D.6**.

The seam testing program for Evaporation Pond 3 included peel and shear testing on random samples cut from the installed FML, and nondestructive testing (air pressure and/or vacuum box testing) on all field seams. The seam testing program is detailed in **Section 2.4.3.6** of this report.

Both the Site CQA Technician and FIM observed placement activities to verify that the deployment and seaming procedures were performed in accordance with the CQA Plan and project specifications including subgrade inspection, seam cleaning, and precautions against potential liner damage.

2.4.3.5. Construction Quality Assurance (CQA)

The Site CQA Technician and FIM visually inspected all material for manufacturing and installation defects. No manufacturing flaws were observed in the installed FML. The Site CQA Technician inspected all seamed and non-seamed areas of the geomembrane for wrinkles, defects, holes, blisters, etc. After each panel was deployed, the Site CQA Technician and FIM walked the length of each panel and identified any suspect areas (e.g., defects or holes) by marking these areas for repair with a highly visible paint marker. All repairs are documented in the Seam Vacuum Test and Defect-repair Log

Consulting Engineers

2.4.3.6. Seam Testing

In accordance with the CQA Plan and project specifications, the field seam verification program consisted of destructive and non-destructive testing. All sampling and field-testing was performed by the installer in the presence of the Site CQA Technician. In addition to field-testing, destructive samples were sent to an independent laboratory (TRI/Environmental, Inc., Austin, Texas) for peel and shear strength testing.

A. Destructive Seam Testing

In accordance with the project specifications, a minimum of one destructive test for every 500 linear feet of welded seam was performed on the FML requiring nine tests. Nine (9) test samples (SDT-1 through SDT-9) were evaluated in accordance with the CQA Plan and project specifications. Each destructive test sample was divided into three segments. The first segment was tested in the field for peel and shear strength by the installer. The second segment was shipped to TRI/Environmental, Inc. in Austin, Texas for laboratory testing. The third sample segment was retained by the Site CQA Technician and delivered to Basin Disposal Inc. to be archived on-site. Results of the field destructive tests are provided in **Appendix D.10**. The laboratory test results are included in **Appendix E**.

B. Non-Destructive Seam Testing

Air pressure testing was performed on all double-wedge fusion welded seams except where channel intersections occurred. Where intersections occurred, the seam section was extrusion welded. Vacuum box testing was performed on all extrusion welded portions of seams and patches and where intersections occurred on double-wedge fusion-welded seams. Test results are documented on the *Geomembrane Seam – Pressure Test Log* (Appendix D.8) and the *Geomembrane Seam – Vacuum Test and Defect-repair Log* (Appendix D.9). All seams and repairs were required to pass the non-destructive testing specifications outlined in the CQA Plan and Project Specifications before being accepted.

2.4.4. Liner Deployment Records

Documentation for liner deployment and testing of each area was required prior to liner approval and acceptance. Submittals for the lined area included:

- FML Deployment Log (Appendix D.2)
- Geomembrane Pre-weld Qualification Test Record (Appendix D.6)
- Geomembrane Seaming Log (Appendix D.7)
- Geomembrane Seam Pressure Test Log (Appendix D.8)
- Geomembrane Seam Vacuum Test and Defect Repair Log (Appendix D.9)
- Geomembrane Seam Field Destructive Test Log (Appendix D.10)

The Secondary FML installation was accepted after the above-listed data were submitted to, reviewed, and approved by the GEI CQA Officer. The As-built Secondary FML Panel Layout for Evaporation Pond 3 is included as **Figure 6**. Daily Summary Reports were logged during each construction day, and photographs were taken showing the FML placement activity. The Daily Summary Reports and project photographs are provided in the **Field Log and Photographs** Section.

2.5. Leak Detection Sump Construction

The leak detection system for Evaporation Pond 3 was constructed as described in the engineering design plans, CQA Plan and project specifications. Construction activities are summarized below.

2.5.1. Leak Detection Sumps

The geotextile was aligned in the leak detection sumps prior to placement of select aggregate. The purpose of the geotextile is to provide a cushion between the aggregate and the secondary HDPE liner. Four layers of 200-Mil geonet were banded together and attached at the base of the 4" HDPE leak detection riser pipe for support and protection of the secondary liner. The perforations in the riser pipe were then covered with a wrap of geotextile and secured with several zip ties to prevent the intrusion of fines into the leak detection riser pipe. Prior to installation, all leak detection sump collection system piping was inspected to verify that identification markings, pipe construction, and perforations met project specifications. To finish,

the leak detection sumps were filled with select aggregate, and the geotextile was "enveloped". During the entire process of constructing the leak detection sumps, extreme caution was taken as to not jeopardize the integrity, alignment, and slope of the piping, or integrity of the secondary liner.

2.5.2. <u>Geotextile Fabric</u>

Approximately 2,430 ft² of $12-oz/yd^2$ geotextile fabric were installed in the Evaporation Pond 3 leak detection sumps. The geotextile fabric was delivered, stored and handled in strict accordance with the CQA Plan, project specifications, and applicable industry standards. As required by the CQA Plan and project specifications, the manufacturer (Propex) performed the following evaluations of the material prior to delivery to the site:

- Mass/Unit Area (ASTM D 5261)
- Thickness (ASTM D 5199)
- Grab Tensile Strength (ASTM D 4632)
- Puncture Strength (ASTM D 4833)
- Mullen Burst Strength (ASTM D 3786)
- Trapezoidal Tear Strength (ASTM D 4533)

Appendix C.7 provides the Geotextile Materials Certification provided by the manufacturer. Per the CQA Plan and project specifications, independent laboratory conformance test results, consisted of the following:

- Mass/Unit Area (ASTM D 5261)
- Grab Tensile Strength (ASTM D 4632)
- Puncture Strength (ASTM D 4833)
- Mullen Burst Strength (ASTM D 3786)
- Permittivity (ASTM D 4491)
- Apparent opening size (ASTM D 4751)

Appendix C.8 provides the results of laboratory testing. The results were reviewed by the GEI CQA Officer and compared with the project specifications and CQA Plan for geotextile fabric. The geotextile meets all technical specification requirements.

2.5.3. Leak Detection Sump Aggregate

Project specifications require one (1) gradation from each source of the select aggregate used. Approximately 34 cubic yards of material were used, all from a single source requiring 1 gradation analysis; a summary of the gradation test is provided below, and test results are provided in **Appendix F.2**.:

Specification	<u>Coarse Aggregate (Average)</u>
• 90-100% by weight passing the 1 ¹ / ₂ -inch sieve	100%
• 20-55% by weight passing the 1-inch sieve	48.3%
• <2% by weight passing the ³ / ₄ -inch sieve	8.2%
• <1% by weight passing the ¹ / ₂ -inch sieve (NS)	0.6%

Initial sieve analysis of the aggregate reported a 1% fines content. In communications with both the Contractor and the Site CQA Officer it was decided to wash the material and take a second sieve analysis. The material was washed using a water truck and the slightly elevated bed of a dump truck containing the aggregate. Once the sieve analysis was presented to the Site CQA Technician, the Site CQA Officer was contacted to discuss the issue of > 2% passing the $\frac{3}{4}$ -inch sieve. After reviewing the second sieve analysis, the Site CQA Officer approved this material on the condition that the leak detection riser pipe be wrapped with geotextile material, to prevent the potential intrusion of material less than $\frac{1}{2}$ -inch in size. This decision was also based on the fact that materials smaller than the pipe perforations (i.e. $\frac{1}{2}$ ") are less than 1% by weight. GEI's Site CQA Technician was on-site for the verification of this process, as documented in the **Field Log and Photographs** section of this report.

2.5.4. Leak Detection Sump Riser Pipe

The two leak detection sumps for Evaporation Pond 3 consist of inclined riser pipes that are placed along the southern berm and do not penetrate the liner system. The lowest two-feet for the pipes have been perforated using a $\frac{1}{2}$ " drill bit. This perforated area is located within the aggregate filled areas of the leak detection sumps; and the remaining pipe is solid and transverses up the southern slope and is protected with a HDPE cap. Two yellow painted bollards were

Gordon Environmental, Inc.

placed surrounding the exposed riser pipe at the top of slope for protection. Appendix F.1 provides the leak detection riser pipe material certifications.

2.6. Geonet Drainage Layer

The Geonet was installed directly above the Secondary FML in accordance with the engineering design drawings, project specifications, and CQA plan. The following sections describe the procedures and activities performed during Geonet installation, observation, and CQA testing.

2.6.1. Geonet Drainage Layer Product

The Geonet utilized in Evaporation Pond 3 construction is 200-mil, high-density polyethylene (HDPE), manufactured by Poly-Flex, Inc. of Grand Prairie, Texas. Geonet is specified for the floor and sidewalls of Evaporation Pond 3, and was delivered on-site in rolls 14 feet wide by 325 feet long. Rolls were staged along the western perimeter of Evaporation Pond 3 to provide easy access, and to minimize handling of the material. In accordance with the CQA Plan and project specifications, material was not stacked more than two rolls high. The labels were compared with the shipping invoice to verify that the materials received corresponded with materials subjected to manufactures quality control/manufactures quality assurance testing (see Section 2.6.3). The material was also inspected for damage during off-loading and staging.

2.6.2. Geonet Drainage Layer Installation

The Geonet installation activities were performed in accordance with the guidelines stipulated in the BDI CQA Plan, project specifications, the engineering design drawings, and industry standards for Geonet handling, and placement. Each roll of Geonet was carefully moved from the staging area to Evaporation Pond 3 using a rubber-tired extendable forklift. The forklift was not allowed on the Secondary FML, and the Geonet was placed by hand. Upon deployment, each role label was removed and submitted to the Site CQA Technician, and panel location documented (see **Figure 7**).

After each Geonet panel had been placed, adjoining panels were positioned with a 4 to 6 inch overlap. The overlap distance is required for proper attachment using zip ties placed at 6" and

5', longitudinally and end-to-end seams respectively. Seams were oriented at approximately 45 degrees to the line of prevailing base grade slope, and perpendicular to the side-slopes.

2.6.3. Geonet Drainage Layer Testing

Geonet testing included manufacturer's quality control (MQC) and quality assurance (MQA), conformance testing, construction quality control (CQC), CQA, and seam testing. Each type of testing is discussed in the following sections.

2.6.3.1. Manufacturer's Quality Control (MQC)

Chevron Phillips Chemical Company LP., performed resin testing on the raw materials used in the manufacturing of the Geonet. These test results and written certifications that the product delivered has been extruded from an acceptable resin are included in **Appendix C.5**.

2.6.3.2. Manufacturer's Quality Assurance (MQA)

As a part of the MQA testing, specific performance and characterization qualities were evaluated on random samples collected from the geonet rolls prior to their delivery to the site:

- Thickness (ASTM D 5199)
- Density (ASTM D 1505)
- Tensile Properties (ASTM D 7179)
- Carbon Black Content (ASTM D 1603)
- Transmissivity (ASTM D 4716)

Test results are included in **Appendix C.5**. These results were reviewed by the GEI CQA Officer; compared with the conformance testing results for consistency with the project specifications (see **Section 2.6.3.3**. Conformance Testing); and confirmed to be in compliance.

2.6.3.3. Conformance Testing

The Site CQA Technician verified that the FIM collected random samples from selected rolls of the Geonet that was delivered to the site. A sample approximately two feet long was collected from the entire roll width and shipped to an independent laboratory for conformance testing. Conformance samples were collected at a frequency of at least one per 100,000 ft² to confirm

that the Geonet delivered to the site conformed to the minimum requirements of the project specifications. Approximately 93,500 ft² of Geonet was installed requiring one (1) conformance test. The sample was sent to an independent laboratory (TRI/Environmental, Inc., Austin, Texas) and tested for Thickness (ASTM D 1777), Mass/Unit area (ASTM D 3776), Density (ASTM D 1505), Carbon Content (ASTM D 1603, mod), Melt Index (ASTM D 1238), and Wide Width Tensile (ASTM D4595, mod). Conformance test results were reviewed by the GEI CQA Officer and accepted in accordance with project specifications. The test results for the sample are included in **Appendix C.6**.

2.6.3.4. Construction Quality Control (CQC)

The quality control procedures specified in the project documents were strictly followed in order to provide a method to measure and regulate the quality of geonet installation. These procedures included such activities as proper overlap and correct tie spacing on floor and slopes.

Both the Site CQA Technician and FIM observed placement activities to verify that the deployment and seaming procedures were performed in accordance with the CQA Plan and project specifications.

2.6.3.5. Construction Quality Assurance (CQA)

The Site CQA Technician and FIM visually inspected all material for manufacturing and installation defects. No manufacturing flaws were observed in the installed Geonet. The Site CQA Technician inspected all seamed and non-seamed areas of the geonet for wrinkles, defects, etc. After each panel was deployed, the Site CQA Technician and FIM walked the length of each panel to identify any suspect areas (e.g., defects or tears) by marking these areas for repair with a highly visible paint. No suspect areas were found.

2.6.4. Geonet Deployment Records

Documentation for geonet deployment was required prior to liner approval and acceptance. Submittals for the lined area included:

• Geonet Deployment Log (Appendix D.4)

The Geonet installation was accepted after the above-listed data were submitted to, reviewed, and approved by the GEI CQA Officer. The As-built Geonet Panel Layout for Evaporation Pond 3 is included as **Figure 7**. Daily Summary Reports were logged during each construction day, and photographs were taken showing the Geonet placement activity. The Daily Summary Reports and project photographs are provided in the **Field Log and Photographs** Section.

2.7. 60-Mil Primary Flexible Membrane Liner

The Primary FML was installed directly above the Geonet in accordance with the engineering design drawings, project specifications, and CQA plan. The following sections describe the procedures and activities performed during FML installation, observation, and CQA testing.

2.7.1. Flexible Membrane Liner Product

The Primary FML utilized in Evaporation Pond 3 construction is 60-mil, high-density polyethylene (HDPE) smooth liner, manufactured by Poly-Flex, Inc. of Grand Prairie, Texas. Smooth liner material is specified for the floor and sidewalls of Evaporation Pond 3, with the sidewalls requiring a minimum 10 foot run-out extending onto the floor from the toe of slope. The FML was delivered on-site in rolls 23 feet wide by 500 feet long, was staged along the western perimeter of Evaporation Pond 3 to provide easy access and to minimize handling of the material. In accordance with the CQA Plan and project specifications, material was not stacked more than two rolls high. The labels were compared with the shipping invoice to verify that the materials received corresponded with materials subjected to manufactures quality control/manufactures quality assurance testing (see **Section 2.7.3**). The material was also inspected for damage during off-loading and staging.

2.7.2. Flexible Membrane Liner Installation

The Primary FML installation activities were performed in accordance with the guidelines stipulated in the project CQA Plan, project specifications, the engineering design drawings, and industry standards for FML handling, placement, and testing. Each roll of FML was carefully moved from the staging area to Evaporation Pond 3 using a rubber-tired extendable forklift. The forklift was not allowed on the Geonet, the Primer HDPE Liner was placed by hand. FML was

not placed in standing water or deployed during rainfall. Upon deployment, each roll label was removed and submitted to the Site CQA Technician, and panel location documented (see **Figure 8**).

After each FML panel had been placed, adjoining panels were positioned with a 4 to 6 inch overlap required for hot-wedge fusion welding. The overlap distance is required for proper seaming, and to allow peel and shear tests to be performed on the seams. Seams were oriented at approximately 45 degrees to the line of prevailing base grade slope. No perpendicular seams were placed on the sideslopes.

2.7.3. Flexible Membrane Liner Testing

FML testing included manufacturer's quality control (MQC) and quality assurance (MQA), conformance testing, construction quality control (CQC), CQA, and seam testing. Each type of testing is discussed in the following sections.

2.7.3.1 Manufacturer's Quality Control (MQC)

INEOS Olefins & Polymers USA LLC., performed resin testing on the raw materials used in the manufacturing of the FML. These test results and written certifications that the product delivered has been extruded from an acceptable resin are included in **Appendix C.3**.

2.7.3.2 Manufacturer's Quality Assurance (MQA)

As a part of the MQA testing, specific performance and characterization qualities were evaluated on random samples collected from the geomembrane rolls prior to their delivery to the site:

- Thickness (ASTM D 5199 for smooth)
- Density (ASTM D 1505)
- Tensile Properties (ASTM D 6693)
- Tear Resistance (ASTM D 1004)
- Carbon Black Content (ASTM D 1603) or (ASTM D 4218)
- Carbon Black Dispersion (ASTM D 5596)
- Puncture Resistance (ASTM D 4833)
- UV Resistance (ASTM D 5885)
- Oxidation induction time (ASTM D 3895)

Cordon Environmental, In-

Test results are included in **Appendix C.3**. These MQA results were reviewed by the GEI CQA Officer and approved for consistency with the project specifications (see Section 2.7.3.3. Conformance Testing).

2.7.3.3. Conformance Testing

The Site CQA Technician verified that the FIM collected random samples from selected rolls of the 60-mil smooth FML that were delivered to the site. A sample approximately two feet long was collected from the entire roll width and shipped to an independent laboratory (TRI/Environmental, Inc., Austin, Texas) for conformance testing. Conformance samples were collected at a frequency of at least one per 100,000 ft² of liner to confirm that the FML delivered to the site conformed to the minimum requirements of the project specifications. Approximately 93,500 ft² of 60-mil smooth Primary FML was installed requiring one (1) conformance test. The samples were sent to an independent laboratory (TRI/Environmental, Inc., Austin, Texas) and tested for qualities as outlined in the Geosynthetic Technical Specifications. Conformance test results were reviewed by the GEI CQA Officer and accepted in accordance with project specifications. The test results for the sample are included in **Appendix C.4**.

2.7.3.4. Construction Quality Control (CQC)

The quality control procedures specified in the project documents were strictly followed in order to provide a method to measure and regulate the quality of liner installation. These procedures included such activities as start-up trial welds, destructive and non-destructive seam testing, and verification that the deployment and seaming procedures were performed in accordance with project specifications.

Trial welds were performed at the start and midpoint of each workday; after each break in seaming of one hour or more; and after any equipment shutdown. The trial welds were a minimum of ten feet in length for fusion welders, and a minimum of three feet in length for extrusion fillet welders. One-inch-wide cutouts of the trial welds were field tested for shear and peel strength using a tensiometer. All testing was performed in the presence of the Site CQA Technician. If the results of the trial weld testing did not comply with the CQA Plan and project

Gordon Environmental, Inc.

specifications, the welder was not permitted to continue seaming until the deficiencies were corrected and a trial weld was performed which passed the field testing requirements. Trial weld documentation is included in **Appendix D.11**.

The seam testing program for Evaporation Pond 3 included peel and shear testing on random samples cut from the installed FML, and nondestructive testing (air pressure and/or vacuum box testing) on all field seams. The seam testing program is detailed in **Section 2.7.3.6** of this report.

Both the Site CQA Technician and FIM observed placement activities to verify that the deployment and seaming procedures were performed in accordance with the CQA Plan and project specifications including subgrade inspection, seam cleaning, and precautions against potential liner damage.

2.7.3.5. Construction Quality Assurance (CQA)

The Site CQA Technician and FIM visually inspected all material for manufacturing and installation defects. No manufacturing flaws were observed in the installed FML. The Site CQA Technician inspected all seamed and non-seamed areas of the geomembrane for wrinkles, defects, holes, blisters, etc. After each panel was deployed, the Site CQA Technician and FIM walked the length of each panel and identified any suspect areas (e.g., defects or holes) by marking these areas for repair with a highly visible paint marker. All repairs are documented in the Seam Vacuum Test and Defect-repair Log

2.7.3.6. Seam Testing

In accordance with the CQA Plan and project specifications, the field seam verification program consisted of destructive and non-destructive testing. All sampling and field-testing was performed by the installer in the presence of the Site CQA Technician. In addition to field-testing, destructive samples were sent to an independent laboratory (TRI/Environmental, Inc., Austin, Texas) for peel and shear strength testing.

Gordon Environmental. Inc.

A. Destructive Seam Testing

In accordance with the project specifications, a minimum of one destructive test for every 500 linear feet of welded seam was performed on the FML requiring nine tests. Nine (9) test samples (PDT-1 through PDT-9) were evaluated in accordance with the CQA Plan and project specifications. Each destructive test sample was divided into three segments. The first segment was tested in the field for peel and shear strength by the installer. The second segment was shipped to TRI/Environmental, Inc. in Austin, Texas for laboratory testing. The third sample segment was retained by the Site CQA Technician and delivered to Basin Disposal Inc. to be archived on-site. Results of the field destructive tests are provided in **Appendix D.15**. The laboratory test results are included in **Appendix E**.

B. Non-Destructive Seam Testing

Air pressure testing was performed on all double-wedge fusion welded seams except where channel intersections occurred. Where intersections occurred, the seam section was extrusion welded. Vacuum box testing was performed on all extrusion welded portions of seams and patches and where intersections occurred on double-wedge fusion-welded seams. Test results are documented on the *Geomembrane Seam – Pressure Test Log* (Appendix D.13) and the *Geomembrane Seam – Vacuum Test and Defect-repair Log* (Appendix D.14). All seams and repairs were required to pass the non-destructive testing specifications outlined in the CQA Plan and Project Specifications before being accepted.

2.7.4. Liner Deployment Records

Documentation for liner deployment and testing of each area was required prior to liner approval and acceptance. Submittals for the lined area included:

- Primary FML Deployment Log (Appendix D.5)
- Geomembrane Pre-weld Qualification Test Record (Appendix D.11)
- Geomembrane Seaming Log (Appendix D.12)
- Geomembrane Seam Pressure Test Log (Appendix D.13)
- Geomembrane Seam Vacuum Test and Defect Repair Log (Appendix D.14)
- Geomembrane Seam Field Destructive Test Log (Appendix D.15)

The Primary FML installation was accepted after the above-listed data were submitted to, reviewed, and approved by the GEI CQA Officer. The As-built Primary FML Panel Layout for Evaporation Pond 3 is included as **Figure 8**. Daily Summary Reports were logged during each construction day, and photographs were taken showing the FML placement activity. The Daily Summary Reports and project photographs are provided in the **Field Log and Photographs** Section.

2.8. 60-Mil Textured Flexible Membrane Liner Panels

Textured FML was installed directly above the Primary liner in accordance with the engineering design drawings, project specifications, and CQA plan. The following sections describe the procedures and activities performed during FML installation, observation, and CQA testing.

2.8.1. Flexible Membrane Liner Product

The Textured FML utilized in the cell construction is 60-mil, high-density polyethylene (HDPE), manufactured by GSE, Inc. of Houston, Texas. This liner material is used in select locations of Evaporation Pond 3 for safe walkways and additional protection from the discharge of fluids into the evaporation pond. FML was delivered on-site in rolls 22.5 feet wide by 460 feet long, and was staged along the western perimeter of Evaporation Pond 3 to provide easy access, and to minimize handling of the material. The label was compared with the shipping invoice to verify that the materials received corresponded with materials subjected to manufactures quality control/manufactures quality assurance testing (see Section 2.8.3). The material was also inspected for damage during off-loading and staging.

2.8.2. Flexible Membrane Liner Installation

Textured FML installation activities were performed in accordance with the guidelines stipulated in the project CQA Plan, project specifications, the engineering design drawings, and industry standards for FML handling, placement, and testing. Each roll of FML was carefully moved from the staging area to Evaporation Pond 3 using a rubber-tired extendable forklift. FML was not placed in standing water or deployed during rainfall. Upon deployment, each roll label was

Gordon Environmental, Inc.

removed and submitted to the Site CQA Technician, and panel location documented (see Figure 9).

2.8.3. <u>Flexible Membrane Liner Testing</u>

FML testing included manufacturer's quality control (MQC) and quality assurance (MQA), conformance testing, construction quality control (CQC), CQA, and seam testing. Each type of testing is discussed in the following sections.

2.8.3.1 Manufacturer's Quality Control (MQC)

Chevron Phillips Chemical CO LP., performed resin testing on the raw materials used in the manufacturing of the FML. These test results and written certifications that the product delivered has been extruded from an acceptable resin are included in **Appendix C.3**.

2.8.3.2 Manufacturer's Quality Assurance (MQA)

As a part of the MQA testing, specific performance and characterization qualities were evaluated on random samples collected from the geomembrane rolls prior to their delivery to the site:

- Thickness (ASTM D 5194 for textured)
- Density (ASTM D 1505)
- Tensile Properties (ASTM D 6693)
- Tear Resistance (ASTM D 1004)
- Carbon Black Content (ASTM D 1603) or (ASTM D 4218)
- Carbon Black Dispersion (ASTM D 5596)
- Puncture Resistance (ASTM D 4833)

Test results are included in **Appendix C.3**. These results were reviewed by the GEI CQA Officer and compared with the conformance testing results for consistency with the project specifications (see **Section 2.8.3.3**. Conformance Testing).

2.8.3.3. Conformance Testing

The Site CQA Technician verified that the FIM collected random samples from selected rolls of textured FML that were delivered to the site. A sample approximately two feet long was collected from the entire roll width and shipped to an independent laboratory for conformance

testing. Conformance samples were collected at a frequency of at least one per 100,000 ft² of each type of liner to confirm that the FML delivered to the site conformed to the minimum requirements of the project specifications. Approximately 5,300 ft² of 60-mil textured FML was installed requiring one (1) conformance test. The sample was sent to an independent laboratory (TRI/Environmental, Inc., Austin, Texas) and tested for the previously mentioned qualities (see $\S 2.8.3.2$). Conformance test results were reviewed by the GEI CQA Officer and accepted in accordance with project specifications. The test results for the sample is included in **Appendix C.4**.

2.8.3.4. Construction Quality Control (CQC)

The quality control procedures specified in the project documents were strictly followed in order to provide a method to measure and regulate the quality of liner installation. These procedures included such activities as start-up trial welds, non-destructive seam testing, and verification that the deployment and seaming procedures were performed in accordance with project specifications.

Trial welds were performed at the start and midpoint of each workday; after each break in seaming of one hour or more; and after any equipment shutdown. The trial welds were a minimum of three feet in length for extrusion fillet welders. One-inch-wide cutouts of the trial welds were field tested for shear and peel strength using a tensiometer. All testing was performed in the presence of the Site CQA Technician. If the results of the trial weld testing did not comply with the CQA Plan and project specifications, the welder was not permitted to continue seaming until the deficiencies were corrected and a trial weld was performed which passed the field testing requirements. Trial weld documentation is included in **Appendix D.11**.

The seam testing program for textured liner consisted of trial-weld testing and vacuum testing. The seam testing program is detailed in **Section 2.8.3.6** of this report. Both the Site CQA Technician and FIM observed placement activities to verify that the deployment and seaming procedures were performed in accordance with the CQA Plan and project specifications including seam preparation and precautions against potential liner damage.

2.8.3.5. Construction Quality Assurance (CQA)

The Site CQA Technician and FIM visually inspected all material for manufacturing and installation defects. No manufacturing flaws were observed in the installed FML. The Site CQA Technician inspected all seamed and non-seamed areas of the geomembrane for wrinkles, defects, holes, blisters, etc. After each panel was deployed, the Site CQA Technician and FIM walked the length of each panel to identify any suspect areas (e.g., defects or holes) by marking these areas for repair with a highly visible paint marker. No suspect areas were found.

2.8.3.6. Seam Testing

In accordance with the CQA Plan and project specifications, the field seam verification program consisted of non-destructive testing. All sampling and field-testing was performed by the installer in the presence of the Site CQA Technician.

A. Non-Destructive Seam Testing

Vacuum box testing was performed on all extrusion welded seams and where intersections occurred on double-wedge fusion-welded seams. Test results are documented on the *Geomembrane Seam – Vacuum Test and Defect-repair Log* (Appendix D.16). All seams and repairs were required to pass the non-destructive testing specifications outlined in the CQA Plan and Project Specifications before being accepted.

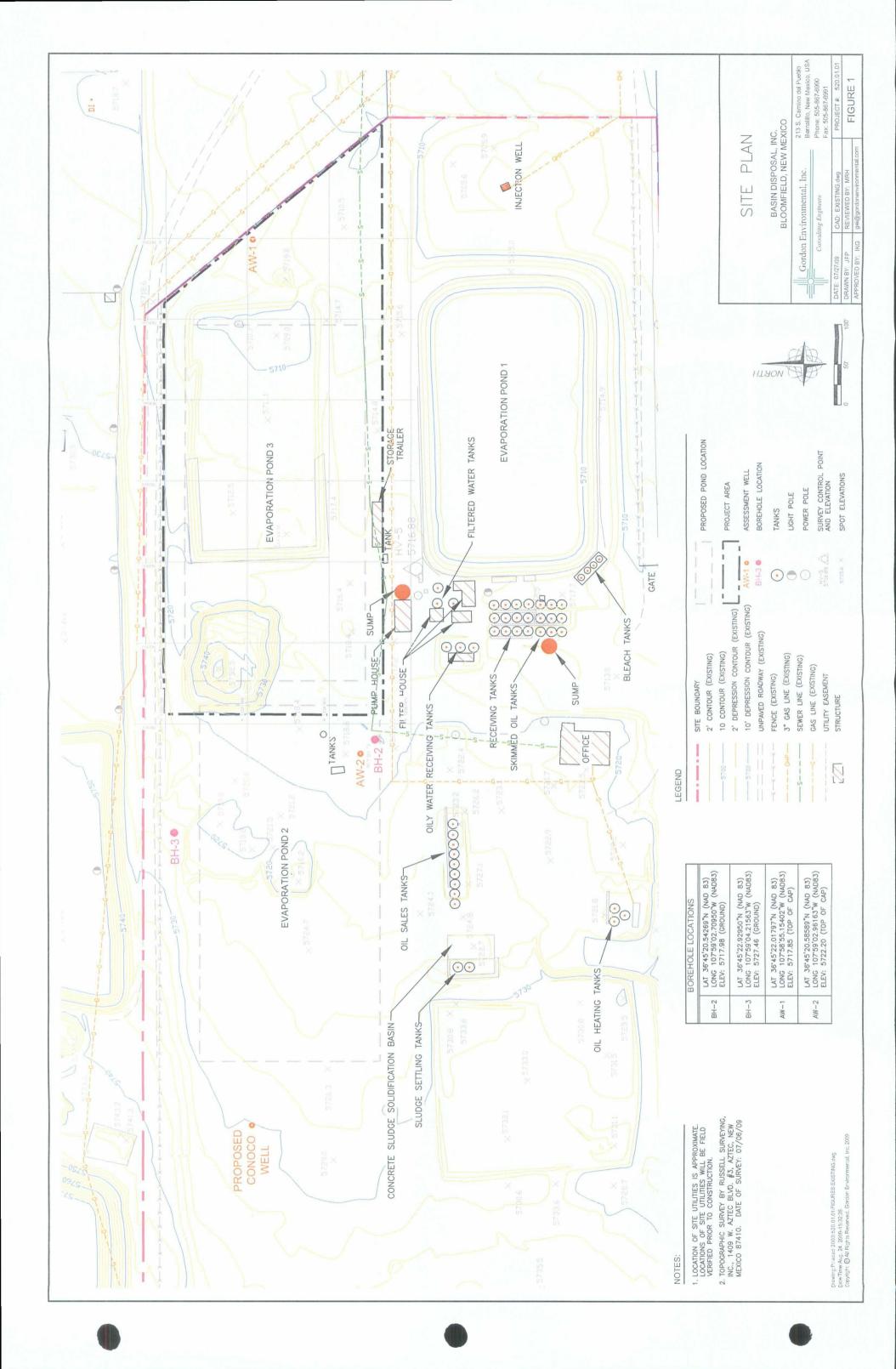
2.8.4. Liner Deployment Records

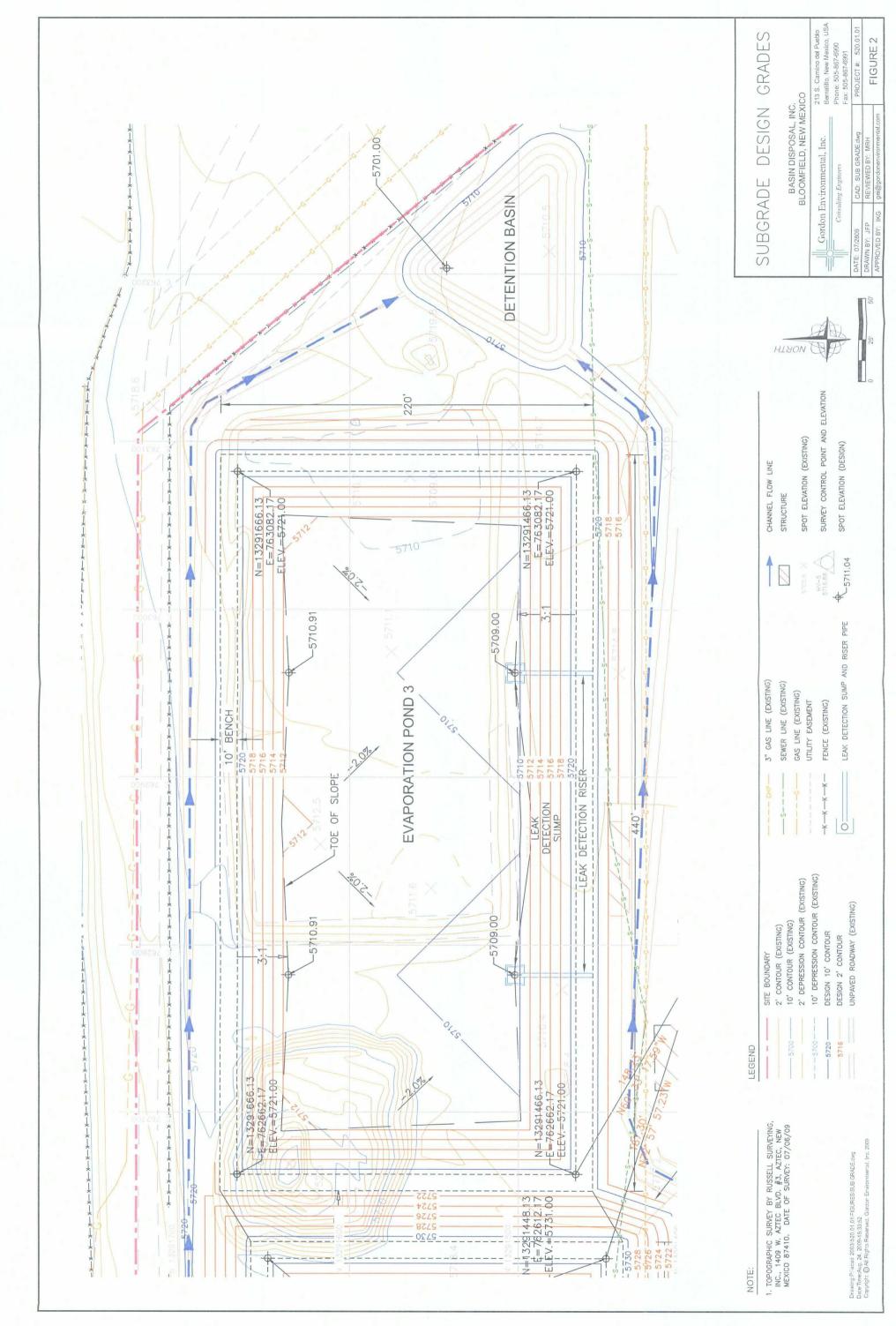
Documentation for liner deployment and testing of each area was required prior to liner approval and acceptance. Submittals for the lined area included:

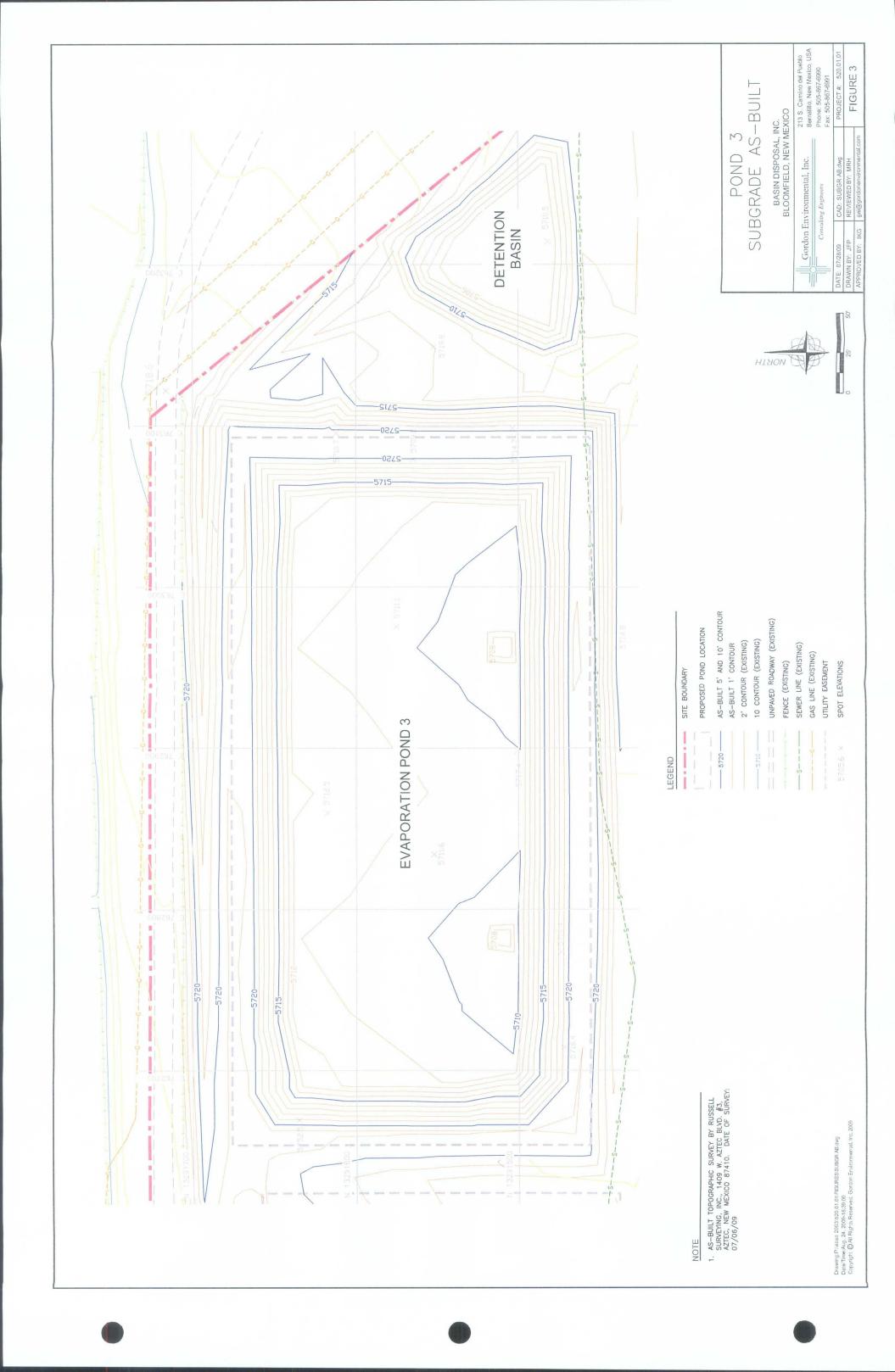
- Textured FML Deployment Log (Appendix D.16)
- Geomembrane Pre-weld Qualification Test Record (Appendix D.11)
- Geomembrane Seam Vacuum Test and Defect Repair Log (Appendix D.17)

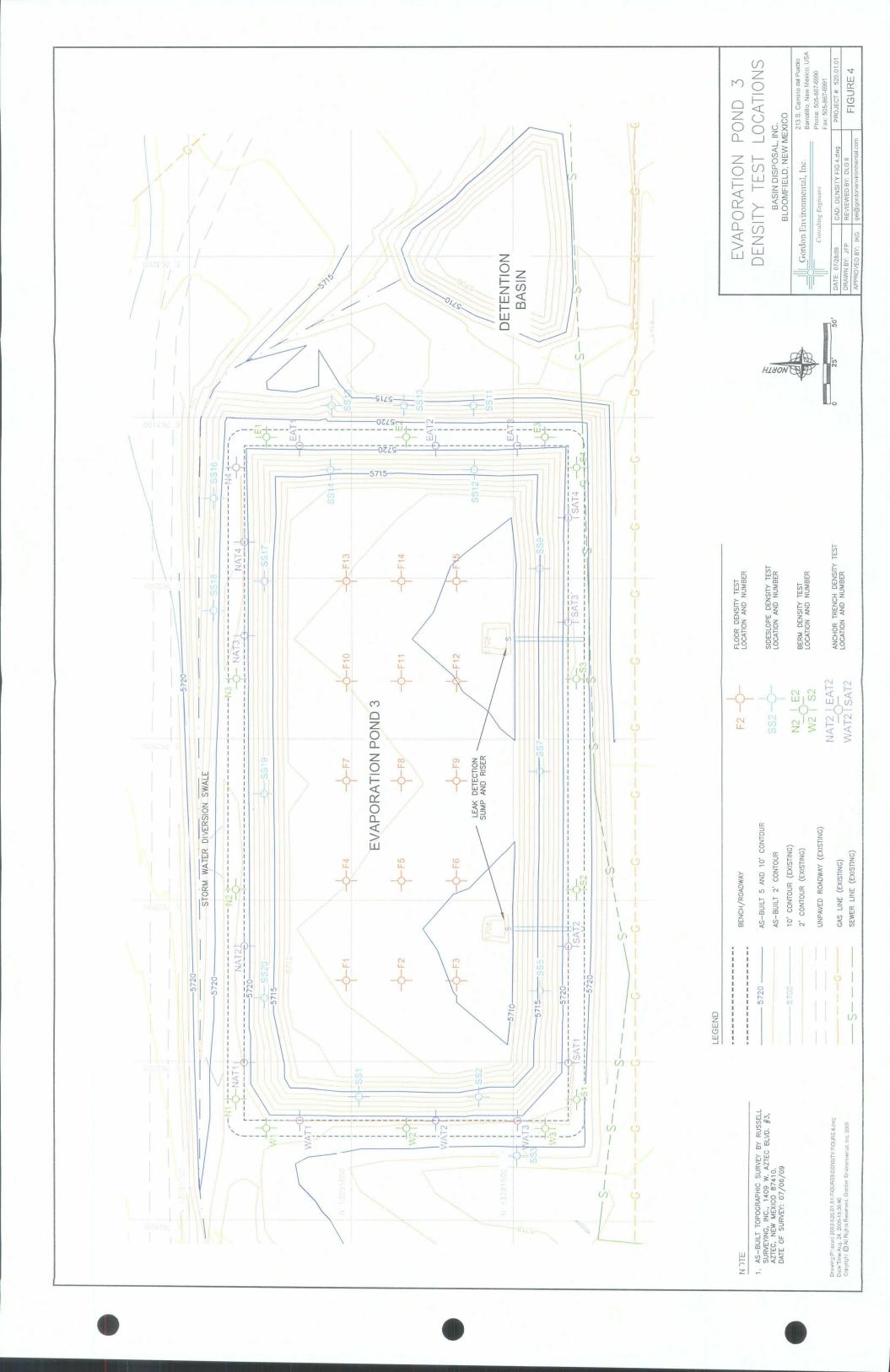
The textured FML installation was accepted after the above-listed data were submitted to, reviewed, and approved by the GEI CQA Officer. The As-built textured FML Panel Layout for Evaporation Pond 3 is included as **Figure 9**. Daily Summary Reports were logged during each

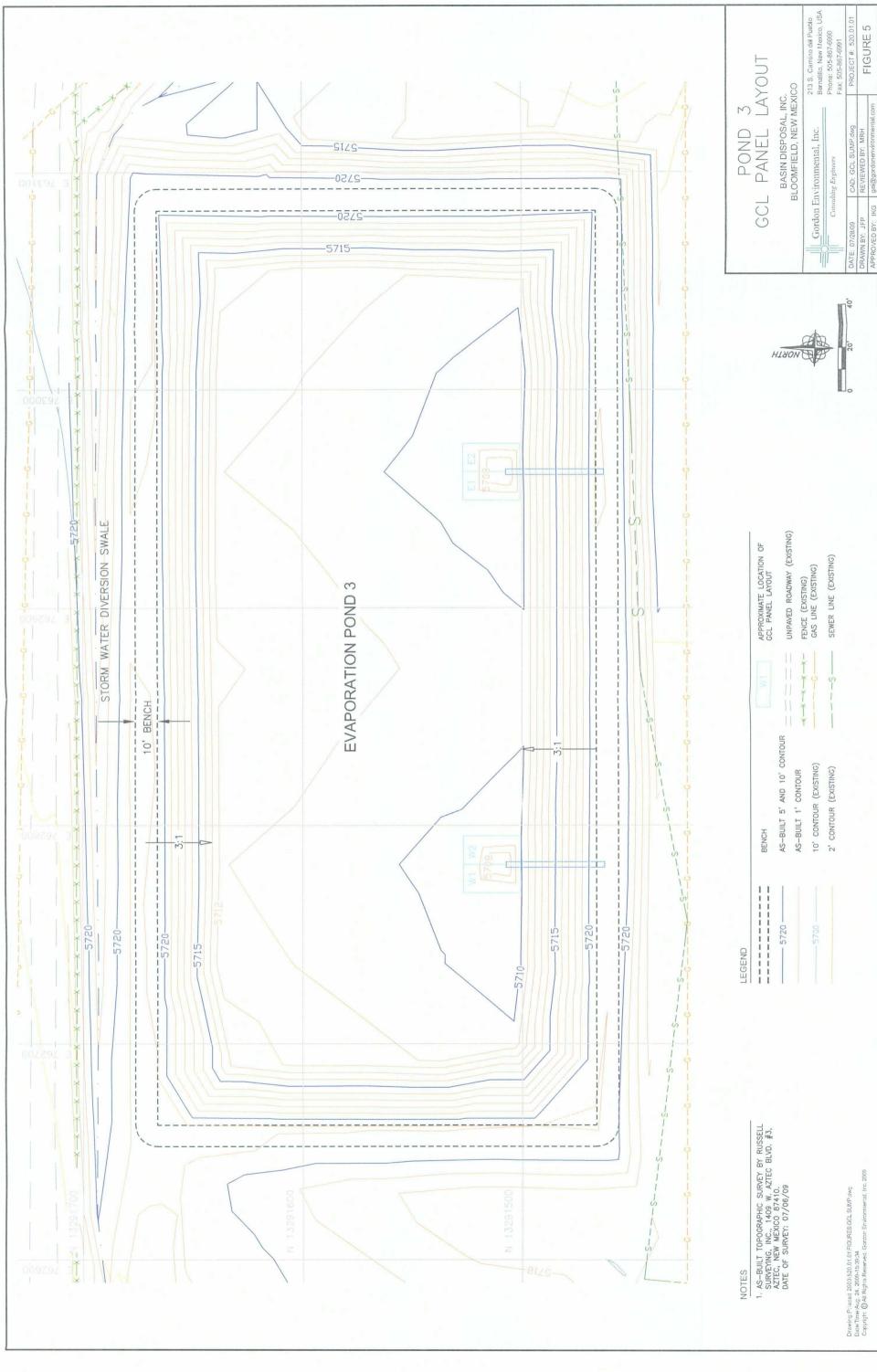
construction day, and photographs were taken showing the FML placement activity on the cell sidewalls. The Daily Summary Reports and project photographs are provided in the **Field Log and Photographs** Section.

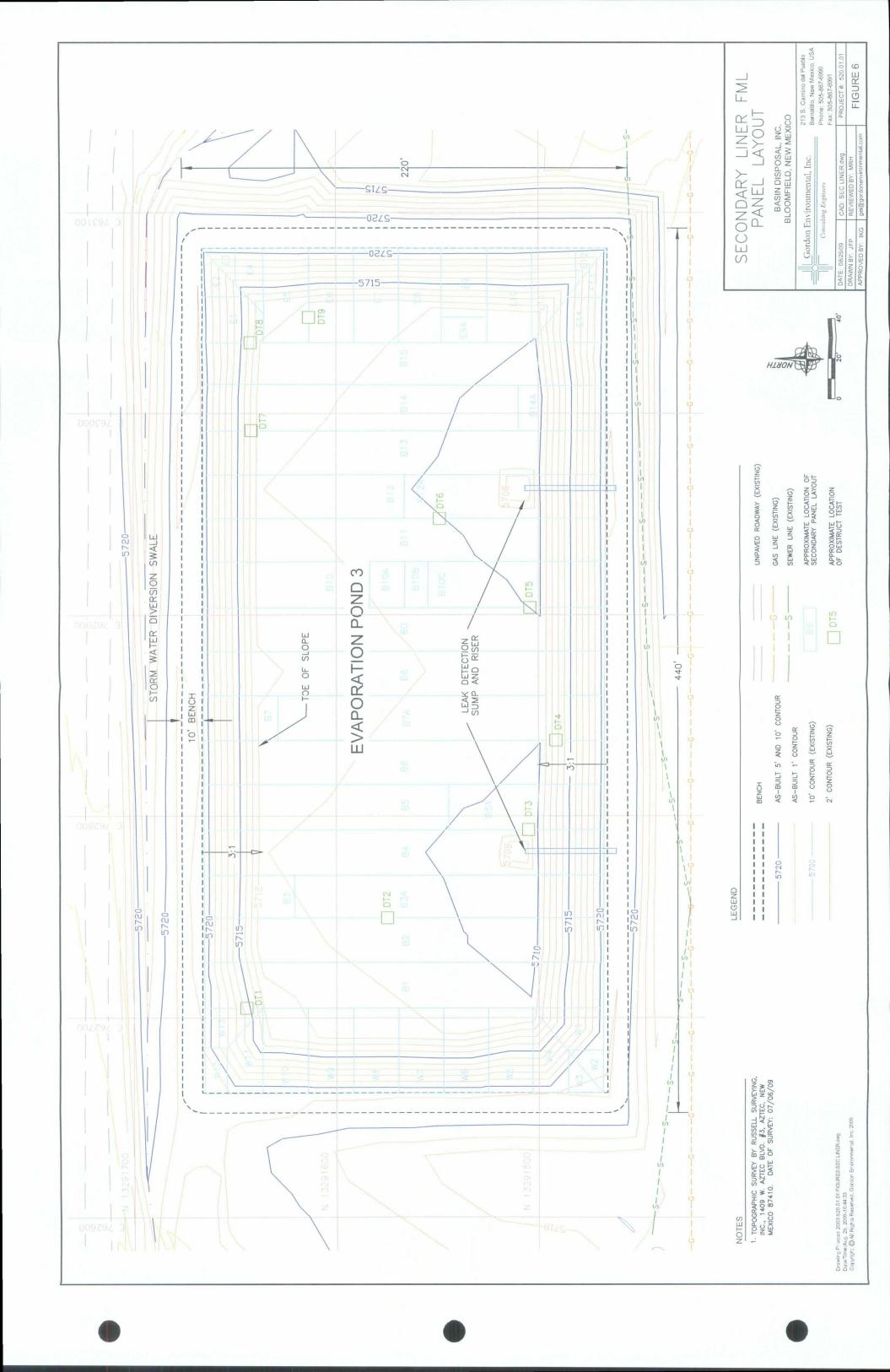

2.9. Air Vents

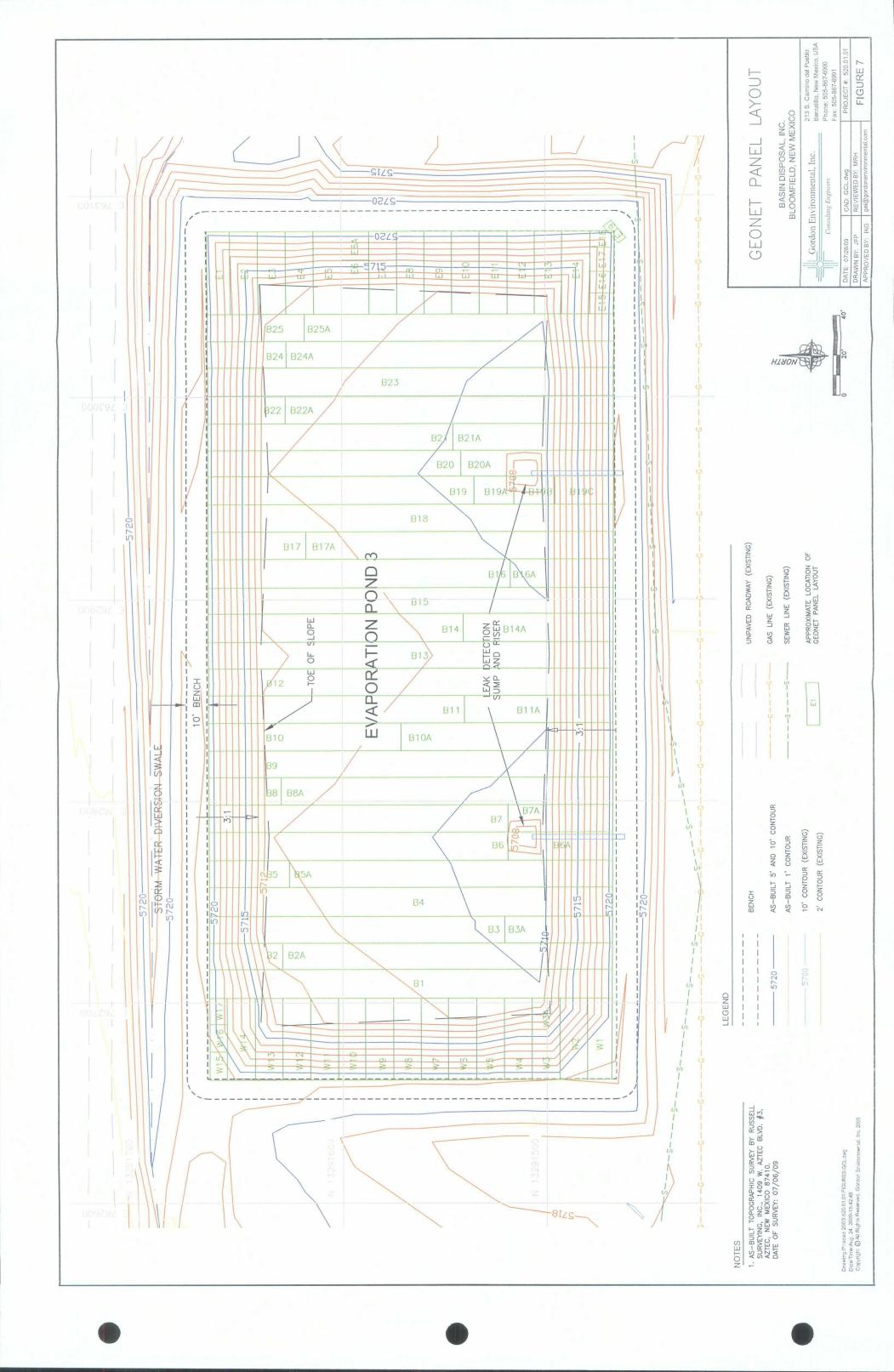

Per the engineering design drawings, project specifications, and CQA plan air vents were installed at the top of the Evaporation Pond, and are shown on **Figure 9**. The vents penetrated all three layers (i.e., secondary HDPE liner, Geonet, primary HDPE liner). The purpose of the vents is to allow any air build-up beneath the liners to vent to the atmosphere, and thereby protect the integrity of the liner system.

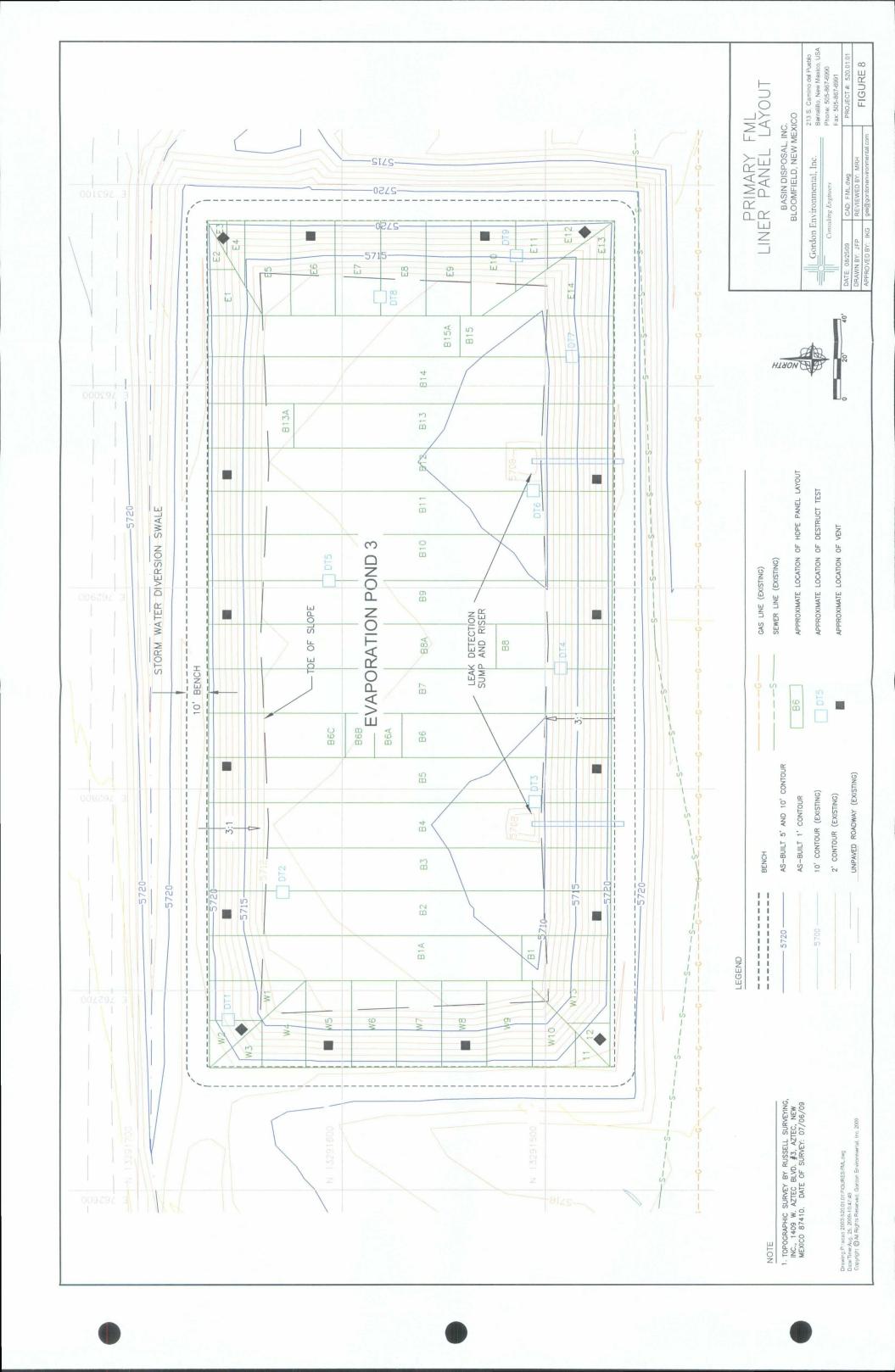

FIGURES

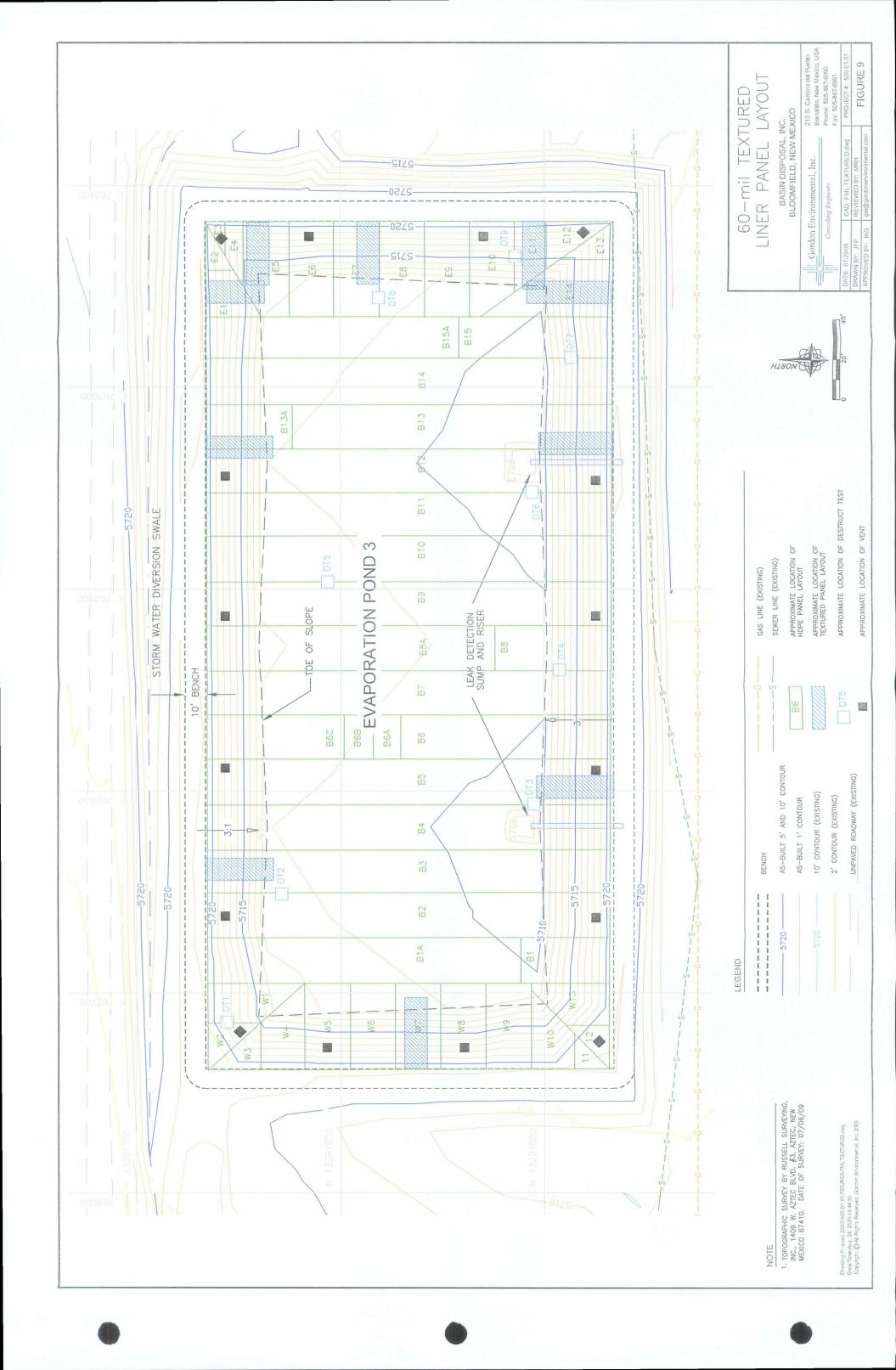

Figure 1	Evaporation Pond 3 – Site Plan
Figure 2	Evaporation Pond 3 – Subgrade Design Grades
Figure 3	Evaporation Pond 3 - Subgrade As-built Grades
Figure 4	Evaporation Pond 3 – Field Density Test Locations
Figure 5	Evaporation Pond 3 – GCL Panel Layout
Figure 6	Evaporation Pond 3 – Secondary FML Panel Layout
Figure 7	Evaporation Pond 3 – Geonet Panel Layout
Figure 8	Evaporation Pond 3 – Primary FML Panel Layout
Figure 9	Evaporation Pond 3 – Textured FML Panel Layout






1.1





FIELD LOG AND PHOTOGRAPHS

Daily Summary Reports

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	4-24-09
Project Location:	Bloomfield, New Mexico	Report No.:	1
	A.M: N/A		
Weather:	P.M.: 75°F, Clear, Windy		

Contractor(s): Gordon Environmental, Inc (GEI)

Summary of Daily Construction Progress and Inspections: Don Gray of GEI on-site to collect samples for soils analysis. Twelve 5-gallon composite samples were collected.

Summary of Problems and Resolutions: N/A

Equipment: Trucks and shovel.

Summary of Meeting Held and Attendees: Dr. John Volkerding of Basin Disposal met with Don Gray to discuss up coming pond construction and discussed site operations.

Don Gray Site CQA Technician

Marto

Mike Heinstein, P.E. GEI CQA Officer

Gordon Environmental, Inc.

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	5-13-09
Project Location:	Bloomfield, New Mexico	Report No.:	2
Weather:	A.M: 73°F, Clear, 12.7MPH West wind		
	P.M.: N/A		

Contractor(s):Gordon Environmental Inc, (GEI), Basin Disposal Inc. (BDI), Southwest Liner Systems Inc. (SWLS), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: N/A

Summary of Problems and Resolutions: N/A

Equipment: N/A

Summary of Meeting Held and Attendees: Jim Jordan and Don Gray of GEI; John Volkerding, Jimmy Barnes, and Bill Schneider of BDI; Steve Steele of FAB; and Juan Zazpe of SWLS met for a pre-construction meeting. Construction plan-sets along with Technical Specification binders were distributed to all involved. Jim Jordan asked specifically if there were any questions regarding construction. Don Gray spoke about scheduling with FAB on berm construction and density testing.

Don Gray Site CQA Technician

Munthe

Mike Heinstein, P.E. GEI CQA Officer

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	5-21-09
Project Location:	Bloomfield, New Mexico	Report No.:	3
Weather:	A.M: 66°F, Clear, Light breeze		
	P.M.: N/A		

Contractor(s):Gordon Environmental Inc, (GEI), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: FAB constructed the first one foot lift of the berm. North, South and East sides have been constructed. North and South berms are at the one foot mark on the east end only and at ground level on the west end. Seven density tests were taken; all passed the required 90% of Reference Standard Proctor (RSP) of 119.0lb/ft³.

Summary of Problems and Resolutions: Due to the distance of Basin Disposal to GEI, Keith Gordon of GEI approved 2' of berm construction at a time. Densities will be taken on the second lift and then a flat blade back hoe will dig down one foot for densities on the previous lift. This will allow for more efficient construction. GEI to return on 5-27-09.

Equipment: Blade, Dozer, two front end loaders, sheep's foot vibratory roller and trucks

Summary of Meeting Held and Attendees: Don Gray of GEI spoke with Dave York and Steve Steele of FAB on proctors, scheduling, construction, and scheduling.

Mike Heinstein, P.E. GEI CQA Officer

Don Gray Site CQA Technician

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	5-27-09
Project Location:	Bloomfield, New Mexico	Report No.:	4
TT . I	A.M: 55°F, Clear, Calm		
Weather:	P.M.: N/A		

Contractor(s):Gordon Environmental Inc, (GEI), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: GEI on-site for density testing of two feet of constructed berm. A total of 14 densities was taken on the top lift; a backhoe was used to excavate to the previous lift for an additional 14 densities. Thirteen tests passed at the 119.0 lb/ft³ with one test requiring the use of the 111.5 lb/ft³ proctor because of soil type used in construction.

Summary of Problems and Resolutions: N/A

Equipment: Blade, Dozer, two front end loaders, backhoe, sheep's foot vibratory roller and trucks

Summary of Meeting Held and Attendees: Don Gray of GEI spoke with Dave York and Steve Steele of FAB along with John Volkerding and Jimmy Barnes of Basin Disposal on construction, and scheduling.

Met the

Mike Heinstein, P.E. GEI CQA Officer

Don Gray Site CQA Technician

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	5-29-09
Project Location:	Bloomfield, New Mexico	Report No.:	5
Weather:	A.M: 72°F, Clear, Calm		
	P.M.: N/A		

Contractor(s):Gordon Environmental Inc, (GEI), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: GEI on-site for an additional 28 density tests, 14 for each lift tested. Twenty seven of the tests passed at the 119.0 lb/ft³ RSP with one requiring the use of the 116.1 lb/ft³ Proctor because of soil type used in construction.

Summary of Problems and Resolutions: N/A

Equipment: Blade, Dozer, two front end loaders, backhoe, sheep's foot vibratory roller and trucks

Summary of Meeting Held and Attendees: GEl spoke with Dave York of FAB about scheduling. GEl will return Monday 6-1-09 and stay through 6-3-9 or 6-4-09 as progress dictates.

Don Gray Site CQA Technician

Mutt

Mike Heinstein, P.E. GEI CQA Officer

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	6-1-09
Project Location:	Bloomfield, New Mexico	Report No.:	6
Weather:	A.M: 56°F, Mostly Cloudy, Light Breeze		
	P.M.: 78°F, Clear, Windy		

Contractor(s):Gordon Environmental Inc, (GEI), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: GEI on-site for 18 density tests. Seventeen of the tests passed at the 119.0 lb/ft³ RSP with one requiring the use of the 111.5 lb/ft³ proctor in the Northwest corner because of soil type used in construction.

Summary of Problems and Resolutions: N/A

Equipment: Blade, Dozer, two front end loaders, backhoe, sheep's foot vibratory roller and trucks

Summary of Meeting Held and Attendees: GEI spoke with Dave York of FAB about scheduling and construction.

Don Gray Site CQA Technician

Halta

Mike Heinstein, P.E. GEI CQA Officer

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	6-2-09
Project Location:	Bloomfield, New Mexico	Report No.:	7
Weather:	A.M: 60°F, Clear, Light Wind		
	P.M.: 82°F, Clear, Windy		

Contractor(s):Gordon Environmental Inc, (GEI), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: GEI on-site for 17 density tests. All the tests passed at the 119.0 lb/ft³ RSP.

Summary of Problems and Resolutions: N/A

Equipment: Blade, Dozer, two front end loaders, backhoe, sheep's foot vibratory roller and trucks

Summary of Meeting Held and Attendees: GEI spoke with Dave York of FAB about scheduling and construction.

Mike Heinstein, P.E. GEI CQA Officer

Don Gray Site CQA Technician

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	6-3-09
Project Location:	Bloomfield, New Mexico	Report No.:	8
Weather:	A.M: 60°F, Clear, Breezy		
	P.M.: 83°F, Clear, Light W	ind	

Contractor(s):Gordon Environmental Inc, (GEI), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: GEI on-site for 10 density tests. All the tests passed at the 119.0 lb/ft^3 RSP. Only one foot of berm left to construct; GEI will return when berms and Pond floor are ready for final density testing.

Summary of Problems and Resolutions: N/A

Equipment: Blade, Dozer, two front end loaders, backhoe, sheep's foot vibratory roller and trucks

Summary of Meeting Held and Attendees: GEl spoke with Dave York of FAB about scheduling and construction.

his the

Mike Heinstein, P.E. GEI CQA Officer

Gordon Environmental, Inc. Consulting Engineers

Don Gray Site CQA Technician

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	6-9-09
Project Location:	Bloomfield, New Mexico	Report No.:	9
Weather:	A.M: 66°F, Partly Cloudy, Light Wind		
	P.M.: N/A		

Contractor(s): Gordon Environmental Inc, (GEI), Foutz and Bursum Construction Co. Inc, (FAB) and Russell Surveying

Summary of Daily Construction Progress and Inspections: GEI on-site for 12 density tests taken on the floor of the Pond. Eleven of the tests passed at the 119.0 lb/ft³ RSP, one required the use of the 116.1 lb/ft³ RSP because of soil type used in construction.

Summary of Problems and Resolutions: Too many dirt clods were observed on the side-slopes. Dave York of FAB began dragging a metal grate along the slopes, pushing the clods to the toe of slope where they will be collected. A smooth roller is to be brought over to smooth and compact the side-slopes.

Equipment: Blade, Dozer, two front end loaders, track-hoe, and trucks

Summary of Meeting Held and Attendees: Don Gray of GEI spoke with Dave York and Steve Steele on side-slope acceptance and schedule. Steve Steele was reminded of the aggregate specifications required for the leak detection sumps, giving both verbal and the page number in the technical specifications book. Jim Jordan was consulted about OCD inspection on 6-11-09; Don Gray and Jim Jordan will be present for the inspection.

Don Gray Site CQA Technician

Hat #

Mike Heinstein, P.E. GEI CQA Officer

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	6-11-09
Project Location:	Bloomfield, New Mexico	Report No.:	10
Weather:	A.M: 67°F, Clear, Calm		
	P.M.: N/A		

Contractor(s): Gordon Environmental Inc, (GEI), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: Brad Jones and Edward Hansen of the Oil Conservation Division (OCD), Don Gray and Jim Jordan of GEI, John Volkerding and Jimmy Barnes of Basin Disposal Inc., and Dave York of FAB met to inspect construction of Evaporation Pond 3. Construction was not complete; the south slope was in the final stages of removing clods and rocks with shovels and brooms. The eastern slope was being rolled with a smooth Saki roller.

All questions regarding subgrade were answered, the OCD inspectors were pleased with progress and quality of work. It was made clear that per the regulations the OCD would like to inspect the secondary liner, leak detection sumps, and geonet installation prior to construction of the primary liner.

Summary of Problems and Resolutions: N/A Equipment: Blade, Dozer, two front end loaders, track-hoe, water trucks, and trucks

Summary of Meeting Held and Attendees: See above

After H

Mike Heinstein, P.E. GEI CQA Officer

Don Gray Site CQA Technician

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	6-15-09
Project Location:	Bloomfield, New Mexico	Report No.:	11
Weather:	A.M: 57°F, Clear, Calm		
	P.M.: 77°F, Clear, Breeze		

Contractor(s): Gordon Environmental Inc, (GEI), Southwest Liner Systems Inc. (SWLS), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: FAB still digging anchor trench. SWLS unloaded three trucks of materials and took inventory along with GEI. Anchor trench needs to be completed, at least 90%, before lining can begin. SWLS to return Tuesday 6-16-09 to begin lining of Evaporation Pond 3.

Summary of Problems and Resolutions: Aggregate did not pass the carbonate content test conducted by GEI. Steve Steele of FAB found new source of aggregate and will bring samples Tuesday 6-16-09 for approval.

Equipment: Blade, Dozer, two front end loaders, small and large track-hoe, water trucks, lining equipment, and trucks

Summary of Meeting Held and Attendees: GEI spoke with FAB and SWLS on construction of subgrade and schedule of lining activities.

Mixa Mike Heinstein, P.E.

GEI CQA Officer

Don Gray Site CQA Technician

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	6-16-09
Project Location:	Bloomfield, New Mexico	Report No.:	12
TT 7 / 1	A.M: 60°F, Clear, Calm		
Weather:	P.M.: 79°F, Clear, Calm		

Contractor(s): Gordon Environmental Inc, (GEI), Southwest Liner Systems Inc. (SWLS), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: SWLS lined up to panel 15 in Evaporation Pond 3. This includes all required GCL under leak detection sumps, seaming and patching required. Only vacuum testing lacks completion.

Summary of Problems and Resolutions: New aggregate arrived at site. While the material was of the correct composition, there were too many pieces sized under the ³/₄" spec. GEI spoke to FAB about this, a third batch of gravel is to be delivered on Wednesday 6-17-09. Material will be inspected along with the sieve analysis prior to dumping.

Equipment: Blade, Dozer, two front end loaders, small and large track-hoe, water trucks, lining equipment, and trucks

Summary of Meeting Held and Attendees: GEI spoke with SWLS and FAB throughout the day.

tunt to

Mike Heinstein, P.E. GEI CQA Officer

Gordon Environmental, Inc.

Don Gray Site CQA Technician

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	6-17-09
Project Location:	Bloomfield, New Mexico	Report No.:	13
Weather:	A.M: 59°F, Clear, Calm		
	P.M.: 82°F, Clear, Calm wi	ith occasional v	vind gusts

Contractor(s): Gordon Environmental Inc, (GEI), Southwest Liner Systems Inc. (SWLS), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: SWLS completed installation of secondary liner including all required testing and documentation. Geonet was installed up to panel B20, leaving the sumps and corresponding slopes open for leak detection construction. Aggregate was inspected in the truck prior to unloading. Material was generally acceptable, however the sieve analysis showed approximately 1% of fines contained within the load. Don Gray contacted Keith Gordon concerning this matter. Aggregate will not be accepted unless the fines are washed out. Jim Jordan suggested washing the material on-site and obtaining another sieve analysis from the cleaned material.

Aggregate was washed in the back of a dump truck with the bed tilted and gate opened approximately one half inch (Photo No. 44 in photographs section). Once the material was cleaned a sample was taken for a second (re-test) sieve analysis, which confirmed fines were no longer present above the specified standard. At that point acceptance was given on this material.

Summary of Problems and Resolutions: See above

Equipment: Blade, Dozer, two front end loaders, small and large track-hoe, water truck, lining equipment, and trucks

Summary of Meeting Held and Attendees: N/A Don Gray Site CQA Technician

Hend http: Mike Heinstein, P.E.

Mike Heinstein, P.E. GEI CQA Officer

Gordon Environmental, Inc.

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	6-18-09
Project Location:	Bloomfield, New Mexico	Report No.:	14
	A.M: 60°F, Clear, Calm		
Weather:	P.M.: 81°F, Clear, Calm		

Contractor(s): Gordon Environmental Inc, (GEI), Southwest Liner Systems Inc. (SWLS), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: SWLS completed installation of Geonet, off-site at 10:00 A.M. GEI remained on-site and worked with FAB to complete the installation of both leak detection sumps and protective soil in leak detection riser pipe trenches. Once construction was complete GEI off-site at approximately 15:30.

Summary of Problems and Resolutions: N/A

Equipment: Blade, Dozer, two front end loaders, small and large track-hoe, water truck, lining equipment, and trucks

Summary of Meeting Held and Attendees: Brandon of the Farmington OCD office inspected secondary liner and leak detection sumps construction. He took photos and relayed construction was positive, no negative comments.

Don Gray Site CQA Technician

put

Mike Heinstein, P.E. GEI CQA Officer

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	6-22-09
Project Location:	Bloomfield, New Mexico	Report No.:	15
	A.M: 59°F, Clear, Light Wind		
Weather:	P.M.: 88°F, Clear, Calm		11.1/ <u></u>

Contractor(s): Gordon Environmental Inc, (GEI), Southwest Liner Systems Inc. (SWLS), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: SWLS deployed up to panel B-8. All seaming, air testing, and patching completed up to that point.

Summary of Problems and Resolutions: N/A

Equipment: Blade, Dozer, two front end loaders, track-hoe, lining equipment, and trucks

Summary of Meeting Held and Attendees: Don Gray of GEI met with John Volkerding and David Turner of Basin Disposal on progress and scheduling.

Mut

Mike Heinstein, P.E. GEI CQA Officer

Gordon Environmental, Inc.

Don Gray Site CQA Technician

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	6-23-09
Project Location:	Bloomfield, New Mexico	Report No.:	16
TT <i>1 /</i> T	A.M: 66°F, Clear, Breeze		
Weather:	P.M.: 89°F, Scattered Clou	ds, Winds	

Contractor(s): Gordon Environmental Inc, (GEI), Southwest Liner Systems Inc. (SWLS), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: Primary liner installation complete. All seaming, testing and logging completed. Three additional panels of textured liner have been installed at locations indicated by Basin Disposal Inc (Figure 9).

Summary of Problems and Resolutions: N/A

Equipment: Blade, Dozer, two front end loaders, track-hoe, lining equipment, and trucks

Summary of Meeting Held and Attendees: GEI and SWLS met with Jimmy Barnes of Basin Disposal for the placement of textured liner panels.

Mike Heinstein, P.E.

GEI CQA Officer

Don Gray Site CQA Technician

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	6-24-09
Project Location:	Bloomfield, New Mexico	Report No.:	17
	A.M: 69°F, Clear, Light Wind		
Weather:	P.M.: 89°F, Clear, Light Wind		

Contractor(s):): Gordon Environmental Inc, (GEI), Southwest Liner Systems Inc. (SWLS), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: All additional textured panels placed, welded and vacuum tested. Pond construction complete. Mark DeCarlo of SWLS on-site for final inspection of liner, one scar found and repaired. FAB to fill and compact trenches in the morning of Thursday 6-25-09 and final compaction on the outer side slopes of the berms for final density testing. GEI to return Monday 6-29-09 for final density testing.

Summary of Problems and Resolutions: N/A

Equipment: Blade, Dozer, two front end loaders, track-hoe, lining equipment, and trucks

Summary of Meeting Held and Attendees: GEI spoke with Mark DeCarlo of SWLS, and John Volkerding and David Turner of Basin Disposal regarding completion and schedule.

Month

Mike Heinstein, P.E. GEI CQA Officer

Don Gray Site CQA Technician

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	6-29-09
Project Location:	Bloomfield, New Mexico	Report No.:	18
Weather:	A.M: 77°F, Clear, Calm		
	P.M.: 90°F, Clear, Calm		

Contractor(s):): Gordon Environmental Inc, (GEI), and Foutz and Bursum Construction Co. Inc, (FAB).

Summary of Daily Construction Progress and Inspections: A total of 24 density test was taken, 14 on the anchor trenches and an additional 10 on the outer sideslopes of the berm. 15 of the tests passed the required 90% RSP using the 119.0 lb/ft³ Proctor, seven required the use of the 116.1 lb/ft³ Proctor and two used the 111.5 lb/ft³ proctor based on the soils present and used in construction of the berm. Brandon of the Farmington office OCD was out for final liner inspection. He had no questions or negative comments.

Summary of Problems and Resolutions: N/A

Equipment: Blade, Dozer, front end loader, track-hoe, and trucks

Summary of Meeting Held and Attendees: GEI spoke with Dave York of FAB throughout the day.

Mike Heinstein, P.E. GEI CQA Officer

Don Gray Site CQA Technician

ordon Environmental, Inc.

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	7-10-09
Project Location:	Bloomfield, New Mexico	Report No.:	19
Weather:	A.M: 87°F, Clear, Calm		
	P.M.: N/A		

Contractor(s):): Gordon Environmental Inc

Summary of Daily Construction Progress and Inspections: GEI on-site for final inspection and photos. It was observed that a 4" PVC pipe was set up to discharge in the drainage channel just north of Evaporation Pond 3. Also noticed was the fact that bollards were positioned directly in front of the leak detection riser pipes. Photos were taken and concerns were addressed as noted below.

Summary of Problems and Resolutions: GEI spoke with Jimmy Barnes of Basin Disopsal Inc. regarding the placement of bollards and the discharge pipe from neighbors to the north. Discussions were also held with Steve Steele of Foutz and Bursum regarding these items. At this time it was decided that Dr. John Volkerding would be consulted on 7-13-09 regarding these matters before any changes were made.

Equipment: Truck

Summary of Meeting Held and Attendees: GEI spoke with Jimmy Barnes of Basin Disposal Inc., and Steve Steele of Foutz and Bursum regarding concerns at the site.

Mike Heinstein, P.E. GEI CQA Officer

Don Gray Site CQA Technician

Daily Summary Report

Project:	Basin Pond 3	Project No.:	520.01.01
Client:	Basin Disposal Inc.	Date:	7-28-09
Project Location:	Bloomfield, New Mexico	Report No.:	20
	A.M: 82°F, Clear, Calm		
Weather:	P.M.: N/A		

Contractor(s):): Gordon Environmental Inc., (GEI) and Basin Disposal Inc., (BDI)

Summary of Daily Construction Progress and Inspections: GEI on-site for final inspection and photos. In discussions with Dr. John Volkerding it was decided the PVC pipe was to be removed or re-routed and the bollards would be moved to their correct locations.

The 4" PVC drainage pipe of concern was removed. Bollards protecting the leak detection riser pipes have been moved and a second one added per the construction plans.

Summary of Problems and Resolutions: N/A

Equipment: Truck

Summary of Meeting Held and Attendees: GEI spoke with Dr. John Volkerding, Jimmy Barnes, and Bill Schenider of Basin Disposal Inc., regarding bollard placement and drainage pipe removal. All parties were satisfied with construction.

Don Gray Site CQA Technician

Matthe

Mike Heinstein, P.E. GEI CQA Officer

Gordon Environmental, Inc. whing Engineers

FIELD LOG AND PHOTOGRAPHS

Project Photographs

11-13-08 Site conditions prior to Pond 3 construction 1.

Collection of soil sample for analysis 4-24-09

3. 5-27-09 Pond construction

4. 5-27-09 Berm compaction during construction

5. 5-29-09 Surveying during construction

6. 6-1-09 Soil placement for additional lifts on southern berm

8. 6-2-09 Application of water for compaction of soils used in berm construction

9. 6-9-09

Density testing the sideslope of Evaporation Pond 3

10. 6-9-09 Use of a metal grate to clear dirt clods from sideslpoes

11. 6-11-09 Use of rakes, brooms and shovels to complete cleaning of sideslopes

12. 6-11-09 Rolling floor of Evaporation Pond 3

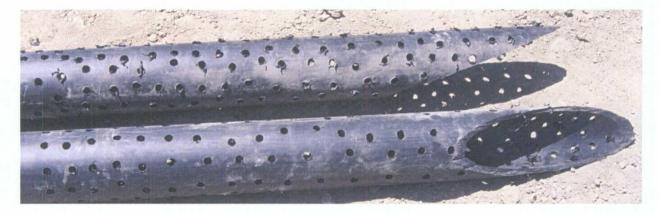
13. 6-15-09

Trench for leak detection riser pipe

14. 6-15-09 Anchor trench construction on southern berm

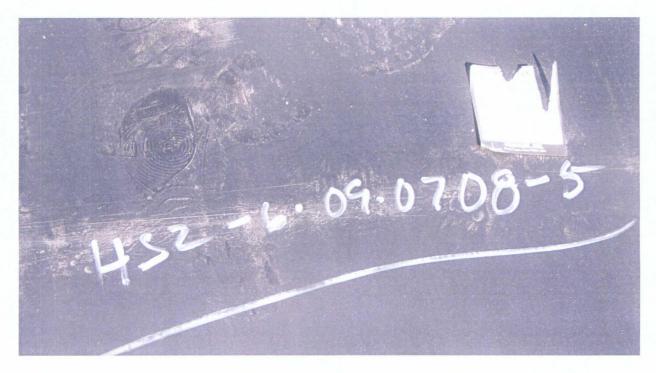
15. 6-15-09 Pond construction complete and ready for lining

16. 6-15-09 Arrival of FML material


17. 6-15-09 Unloading of FML material

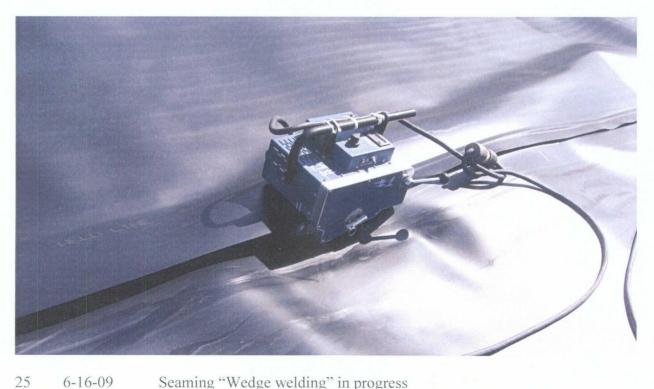
18. 6-15-09 GCL, Geotextile and Textured FML


19. 6-15-09 Leak detection riser pipes fused using thermal butt joints


20. 6-15-09 Holes drilled in leak detection riser pipes

21. 6-15-09 Installation of secondary liner

22. 6-16-09 Seaming documentation on secondary liner

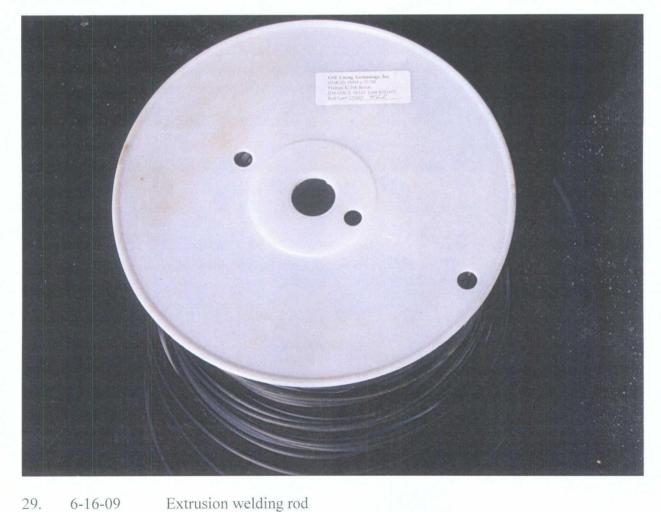


23 6-16-09 Roll number

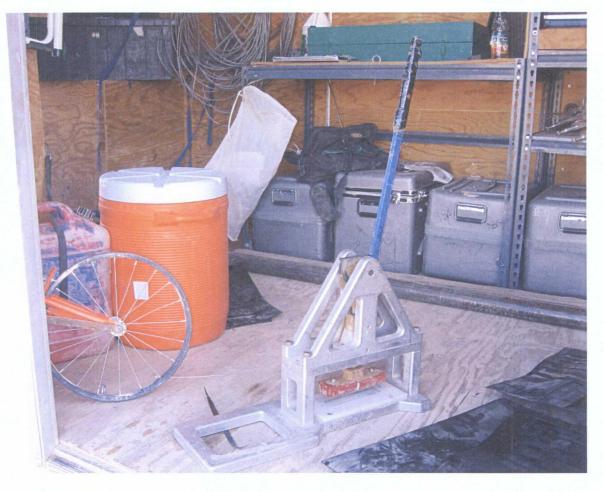
24. 6-16-09 Manufacturer roll number identification

Seaming "Wedge welding" in progress 6-16-09

26. 6-16-09 Torch used for seaming wedge welds to do air pressure tests



28. 6-16-09 Extrusion welder



Extrusion welding rod 6-16-09

GSE Lining Technology, Inc HDROD 5MM x 337M Phillips K-306 Resin ID# GOCX 58332 Lot# 8281605 Rod Lot# 121003

30. 6-16-09 Manufactures tag on extrusion welding rod

6-16-06 Punch used for cutting destructive tests and pre-weld tests

31.

32. 6-16-09 GCL placement under leak detection sumps

33. 6-16-09 Using Lyster to heat weld geotextile

34. 6-16-09 Textured panel in leak detection riser pipe trench for soil stablility

36. 6-16-09 Thermal butt fusion in progress

37. 6-16-09 End of day progress, first day of lining activities

38. 6-17-09 Geonet installation in anchor trench

39. 6-17-09 Banding of geonet panels together using zip ties

40. 6-17-09 Secondary liner Destructive Test (DT) cut and ready for patching

41. 6-17-09 "T" weld completed and vacuum tested

42. 6-17-09 Patch installed and vacuum tested

43. 6-17-09 Four geonet panels to be attached to leak detection riser pipe to protect secondary liner, and geotextile for leak detection sump construction.

44. 6-17-09 Washing aggregate for leak detection sumps

45. 6-17-09 End of day progress – Geonet placement

46. 6-18-09 Textile covering holes in leak detection riser pipe (textile pulled back to show holes underneath)

47. 6-18-09 Installation of aggregate for leak detection system, a sacrificial piece of liner used as protection for the secondary liner underneath

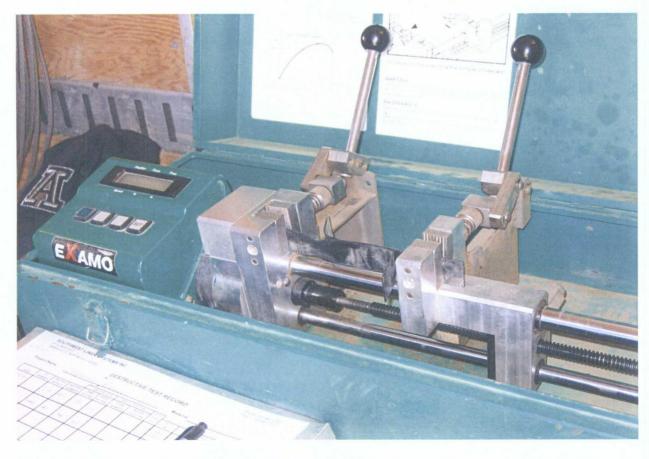
48. 6-18-09 Using flat shovels only, gravel shoveled down into leak detection sump

49. 6-18-09 Leak detection sump filled with aggregate

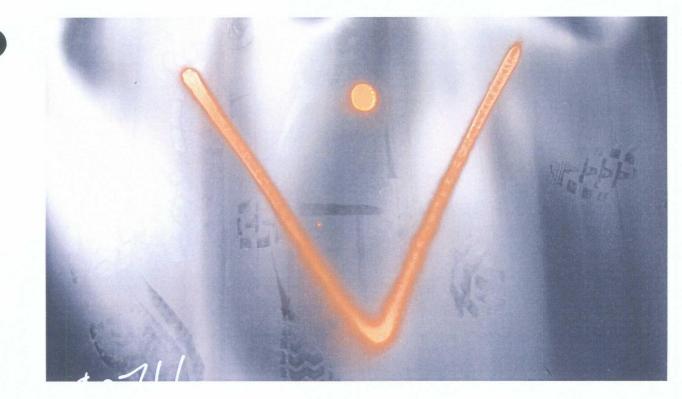
50. 6-18-09 Use of zip ties to anchor geotextile around leak detection riser pipe

51. 6-18-09 Folding over of geotextile to "burrito" the leak detection sump

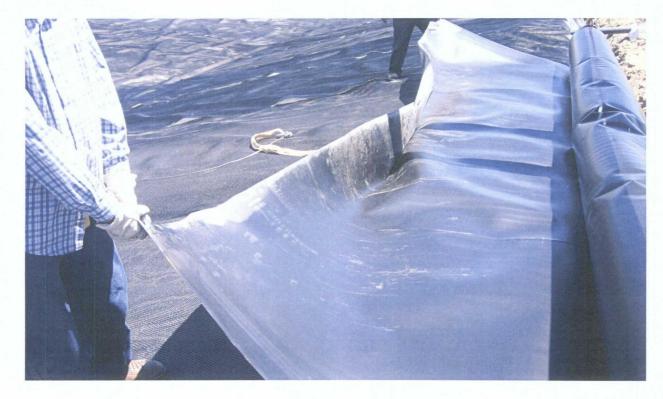
52. 6-18-09 Installation of protective soil around leak detection riser pipe


53. 6-18-09 Completed leak detection system

54. 6-22-09 Installation of geonet over leak detection sumps and riser pipes



55. 6-22-09 Installation of primary liner

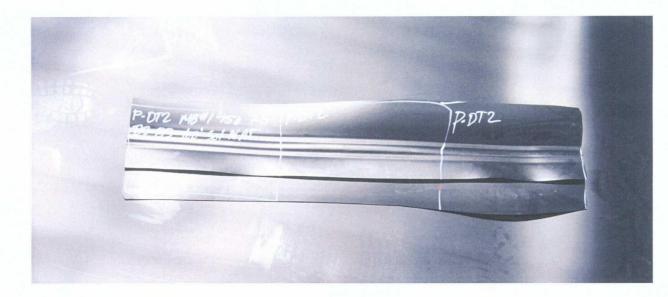


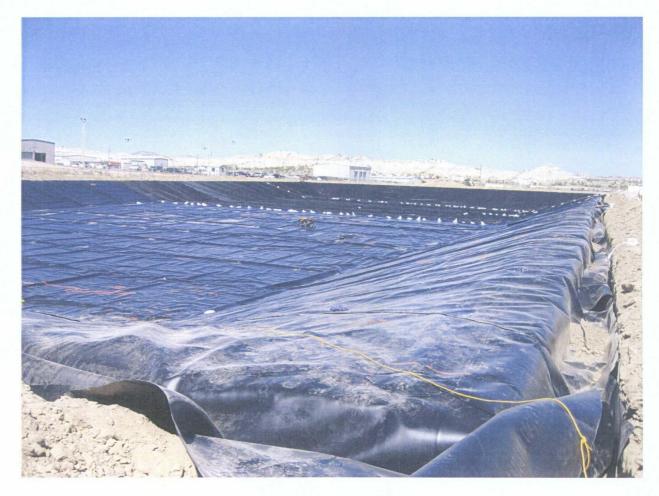
6-22-09 Tensiometer, used for pre-weld and destructive tests

56.

57. 6-22-09 Location marking for air vent installation

58. 6-22-09 Use of clamp and cable set up to pull primary liner across pond


59. 6-22-09 Using Lyster to heat tack a patch prior to extrusion welding


60. 6-22-09 Grinding a seam prior to extrusion welding

6-22-09 Destructive Test marked for removal

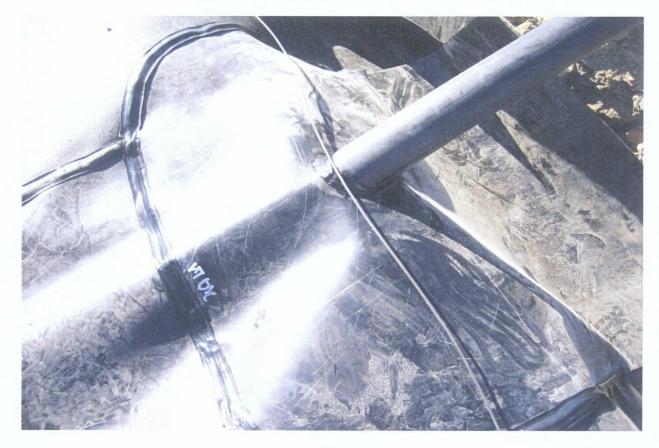
63. 6-22-09 All three panels of a destructive test

64. 6-22-09 End of day progress – Primary liner placement

65. 6-23-09 Installed vent

66. 6-23-09 Owners DT samples, both secondary (noted as DT) and primary (noted as PDT) HDPE liners

67. 6-23-09 Installation of textured liner on top of the primary liner on west slope for pond ingress and egress


68. 6-23-09 Extrusion welding of textured liner to primary liner

69. 6-24-09 Vacuum testing extrusion welds

70. 6-24-09 Leak detection riser pipe extending outward from primary liner

71. 6-24-09 Patch and pipe boot over leak detection riser pipe

72. 6-24-09 Lining activities completed

73. 6-29-09 Density testing of anchor trenches

74. 6-29-09 Completed pond

P:\FILES\520.01.01\CQA\PhotoDoc.doc

6-29-09 Excavation for east stormwater detention pond

76. 7.28-09 Completed Stormwater Detention Pond

77. 7-28-09 Completed installation of Bollards protecting leak detection riser pipes.

BASIN DISPOSAL, INC. EVAPORATION POND 3

7/12/09 Date:

Description of Materials: Subgrade

Location: Basin Disposal, Inc

Quantity/Work Accepted: Subgrade

I, the undersigned, the Construction Quality Assurance Site Technician, on behalf of Gordon Environmental, Inc. approve the materials and/or work, as described above. There is no apparent damage to said materials, nor is there undue interference with the surrounding work.

The documentation and workmanship have been completed in accordance with the specifications and terms and conditions of the Construction Quality Assurance Manual and the Permit. Acceptance of materials and work shall be subject to the exceptions detailed below.

I have evaluated and measured the work and/or material together with a contractor representative and agree that the measurements shown above are true and correct.

Exceptions:

Gordon Environmental, Inc. Representative Title

CA TECHNICIAN 7/13/09

Date

Project Administration 7-13-09

Contractor Representative

Title

Date

BASIN DISPOSAL, INC. EVAPORATION POND 3

Date:	7/12/04

Description of Materials: GCL

Location: Basin Disposal, Inc

Quantity/Work Accepted: GCL

I, the undersigned, the Construction Quality Assurance Site Technician, on behalf of Gordon Environmental, Inc. approve the materials and/or work, as described above. There is no apparent damage to said materials, nor is there undue interference with the surrounding work.

The documentation and workmanship have been completed in accordance with the specifications and terms and conditions of the Construction Quality Assurance Manual and the Permit. Acceptance of materials and work shall be subject to the exceptions detailed below.

I have evaluated and measured the work and/or material together with a contractor representative and agree that the measurements shown above are true and correct.

Exceptions:

Gordon Environmental, Inc. Representative

Contractor Representative

CQA TECHNICIAN 7/13/05

Title

Date

Repeat Administrator 7-13-09

Title

Date

BASIN DISPOSAL, INC. EVAPORATION POND 3

Date: 1/13/09

Description of Materials: Secondary Liner

Location: Basin Disposal, Inc

Quantity/Work Accepted: Secondary Liner

I, the undersigned, the Construction Quality Assurance Site Technician, on behalf of Gordon Environmental, Inc. approve the materials and/or work, as described above. There is no apparent damage to said materials, nor is there undue interference with the surrounding work.

The documentation and workmanship have been completed in accordance with the specifications and terms and conditions of the Construction Quality Assurance Manual and the Permit. Acceptance of materials and work shall be subject to the exceptions detailed below.

I have evaluated and measured the work and/or material together with a contractor representative and agree that the measurements shown above are true and correct.

Exceptions:

1104

Gordon Environmental, Inc. Representative

Project Administrator 7-13-09

Contractor Representative

Title

CA TECHNICIAN

Title

Date

7/13/05

Date

BASIN DISPOSAL, INC. EVAPORATION POND 3

Date: 7/13/09

Description of Materials: Geonet

Location: Basin Disposal, Inc

Quantity/Work Accepted: Geonet

I, the undersigned, the Construction Quality Assurance Site Technician, on behalf of Gordon Environmental, Inc. approve the materials and/or work, as described above. There is no apparent damage to said materials, nor is there undue interference with the surrounding work.

The documentation and workmanship have been completed in accordance with the specifications and terms and conditions of the Construction Quality Assurance Manual and the Permit. Acceptance of materials and work shall be subject to the exceptions detailed below.

I have evaluated and measured the work and/or material together with a contractor representative and agree that the measurements shown above are true and correct.

Exceptions:

Coray

CON TECHNICIAN

Title

7/13/39

Date

Contractor Representative

Gordon Environmental, Inc. Representative

Projet Admingstrator 7.13-09

Title

Date

APPROVAL FORM

BASIN DISPOSAL, INC. EVAPORATION POND 3

Date: 7/13/09

Description of Materials: Primary Liner

Location: Basin Disposal, Inc

Quantity/Work Accepted: Primary Liner

I, the undersigned, the Construction Quality Assurance Site Technician, on behalf of Gordon Environmental, Inc. approve the materials and/or work, as described above. There is no apparent damage to said materials, nor is there undue interference with the surrounding work.

The documentation and workmanship have been completed in accordance with the specifications and terms and conditions of the Construction Quality Assurance Manual and the Permit. Acceptance of materials and work shall be subject to the exceptions detailed below.

I have evaluated and measured the work and/or material together with a contractor representative and agree that the measurements shown above are true and correct.

Exceptions:

COA TECNNICIAN

Gordon Environmental, Inc. Representative

Contractor Representative

Title

Date

Projet Auministrator 7-13-09

Title

Date

APPROVAL FORM

BASIN DISPOSAL, INC. EVAPORATION POND 3

Date: 7/13/05

Description of Materials: Textured Liner

Location: Basin Disposal, Inc

Quantity/Work Accepted: Textured Liner

I, the undersigned, the Construction Quality Assurance Site Technician, on behalf of Gordon Environmental, Inc. approve the materials and/or work, as described above. There is no apparent damage to said materials, nor is there undue interference with the surrounding work.

The documentation and workmanship have been completed in accordance with the specifications and terms and conditions of the Construction Quality Assurance Manual and the Permit. Acceptance of materials and work shall be subject to the exceptions detailed below.

I have evaluated and measured the work and/or material together with a contractor representative and agree that the measurements shown above are true and correct.

Exceptions:_____

Al ay

COA TECHNICIAN

7/12/05 Date

Gordon Environmental, Inc. Representative

Contractor Representative

Title

Projet Aunistrator 7-13-05

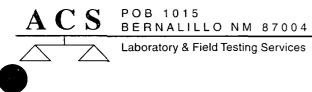
Title

Date

APPENDIX A

Subgrade Material Testing

A.1. Grain Size Analyses

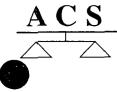


ACS POB 1015 BERNALILLO NM 87004

Laboratory & Field Testing Services

VISUAL DESCRIPTION:	Moist: Grey Gr	2-В ceen Sandy S		CLIENT	05 12 09 GORDON EI BASIN DI	NVIRONMENTAL SPOSAL
SAMPLE LOCATION: CLASSIFICATION TOTAL MOISTURE: % PASSING # 200:	Client 8.4% 61.9%	Sampled Spe USCS of Dry Wgt.	ecimens:	JOB	520.01.0 2-B 9540009	1/04
SOURCE DES		LL/PI 29/5	R VALUE N	CLASS USCS	Unit Wgt. ASTM D698	NOTE
TOTAL 12. Coarse 0.0	kg	WET WGT	FINE Grams 1005.8			Moisture (W-D)/D 209.70
Fine excess 13. C+Fe+F 0.1	, y	DRY WGT. DRY WGT.			SH	193.51 8.4%

	SIEVE SIZE	3" 75 mm	1 1/2" 38 mm	3/4" 19 mm	1/2" 12.5 mm	3/8" 9.5 mm	
Kg C	um Wgt		0.00	0.00	0.00	0.00	
	Retained	0.0%	0.0%	0.0%	0.2%	0.2%	
	Passing	100%	100%	100%	100%	100%	
	Specified						
=	SIEVE SIZE	No. 4 4.75 mm	No. 10 2.00 mm	No. 40 0.425 mm	No. 200 .075 mm	Pan	-
g	Cum Wgt	5.5	13.9	190.8	352.5	354.6	
9							
9	Retained	0.8%	1.7%	20.7%	38.1%	0.2	grar
9	Retained Passing	0.8% 99%	1.7% 98%	20.7% 79%	38.1% 61.9%	0.2	grar



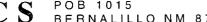
Laboratory & Field Testing Services

VISUAL DESCRIP	TION:	Moist: Grey Gre	A-1 een Sandy (CLIENT	04 28 09 GORDON EI BASIN DIS	NVIRONMENTAL SPOSAL
SAMPLE LOCATION CLASSIFICATION TOTAL MOISTUR % PASSING # 200	E:	Client 5 ML 15.4% 57.6%	Sampled Sp USCS of Dry Wgt.	ecimens:	JOB	520.01.0 A-1 9540001	1/04
SOURCE	DESIGN N	Cu/Cc	LL/PI 30/4	R VALUE N	CLASS USCS	Unit Wgt. ASTM D698	NOTE
TOTAL Coarse	19.08 0.00	Kg Kg	WET WGT	FINE Grams	_	<u>-</u>	Moisture (W-D)/D 130.54
	17.94 0.88	Kg Kg	DRY WGT. DRY WGT.		_ _AFTER WA	SH	113.15 15.4%

SIEV SIZI	i	3" '5 mm	1 1/2" 38 mm	3/4" 19 mm	1/2" 12.5 mm	3/8" 9.5 mm	
Cum W	/gt		0.00	0.00	0.00	0.00	
Retair	ned	0.0%	0.0%	0.0%	0.0%	0.0%	
Passi	ing	100%	100%	100%	100%	100%	
Speci	fied						
SIEV	_	No. 4 .75 mm	No. 10 2.00 mm	No. 40 0.425 mm	No. 200 .075 mm	Pan	Kar
Cum \	Wgt	0.1	2.4	95.5	372.1	374.4	
Retai	ned	0.0%	0.3%	10.9%	42.4%	0.0	grams
Passi	ing	100%	100%	89%	57.6%		
			1				

POB 1015 BERNALILLO NM 87004

Laboratory & Field Testing Services


505-867-6585

ACNM-NMSHTD & NICET Certified

VISUAL DESCRIPTION:	Moist: A-3 Grey Green Silty :	
SAMPLE LOCATION: CLASSIFICATION TOTAL MOISTURE: % PASSING # 200:	Client Sampled Spe USCS 7.0% of Dry Wgt. 24.6%	ecimens: PERMIT CONTRACT 520.01.01/04 JOB A-3 FILE 9540004
SOURCE DESIGN ช	Cu/Cc LL/PI	R VALUE CLASS Unit Wgt. NOTE N USCS ASTM D698

	<u> </u>			
TOTAL	17.43	Kg	FINE Grams	Moisture (W-D)/D
Coarse	0.00	Kg	WET WGT. 1024.6	158.14
Fine excess	16.25	Kg	DRY WGT. 957.6	147.80
C+Fe+F	0.96	Kg	DRY WGT. 728.2 AFTER WASH	7.0%

	SIEVE SIZE	3" 75 mm	1 1/2" 38 mm	3/4" 19 mm	1/2" 12.5 mm	3/8" 9.5 mm	-
Kg	Cum Wgt	70 1111	0.00	0.00	0.00	0.00	
U	Retained	0.0%	0.0%	0.0%	0.0%	0.0%	
	Passing	100%	100%	100%	100%	100%	
	Specified						
	SIEVE SIZE	No. 4 4.75 mm	No. 10 2.00 mm	No. 40 0.425 mm	No. 200 .075 mm	Pan	-
g	Cum Wgt	0.2	5.3	346.1	721.8	728.2	
	Retained	0.0%	0.6%	36.1%	75.4%	0.0	gran
	Passing	100%	99%	64%	24.6%		

505-867-6585 ACNM-NMSHTD & NICET Certified

VISUAL DESCRIPTION:	Moist: 8 Grey Green Sandy SILT, Trace Gravel	DATE 04 28 09 CLIENT GORDON ENVIRONMENTAL PROJECT BASIN DISPOSAL
SAMPLE LOCATION:	Client Sampled Specimens:	PERMIT
CLASSIFICATION	USCS	CONTRACT 520.01.01/04
TOTAL MOISTURE:	5.9% of Dry Wgt.	JOB 8
% PASSING # 200:	61.4%	FILE 9540007

SOURCE	DESIGN พ	Cu/Cc	LL/PI	R VALUE N	CLASS USCS	Unit Wgt. ASTM D698	NOTE	
TOTAL	16.27	Kg		FINE Grams		· · · · · · · · · · · ·]
Coarse	0.00	Kg	WET WGT.		-		(W-D)/D 197.58	
Fine excess	15.06	Kg	DRY WGT.	960.8	-		186.55	
C+Fe+F	0.96	Kg	DRY WGT.	575.3		SH	5.9%	

	SIEVE SIZE	3" 75 mm	1 1/2" 38 mm	3/4" 19 mm	1/2" 12.5 mm	3/8" 9.5 mm	
Kg (Cum Wgt		0.00	0.00	0.00	0.00	
	Retained	0.0%	0.0%	0.0%	0.0%	0.0%	
	Passing	100%	100%	100%	100%	100%	
	Specified						
	SIEVE SIZE	No. 4 4.75 mm	No. 10 2.00 mm	No. 40 0.425 mm	No. 200 .075 mm	Pan	
g	Cum Wgt	5.1	10.3	303.5	371.2	575.3	
	Retained	0.5%	1.1%	31.6%	38.6%	0.0	gra
	Passing	99%	99%	68%	61.4%		
	Specified						

									Coefficient of	Standarc	Standard Proctor	Att	Atterberg Limits	imits	
Sample				Percent	Percent Passing				Uniformitiv	Max Dry	Optimum	Liquid	Liquid Plastic	Plasticity	uscs
<u>_</u>	1/2"	3/8"	#4	#10	#40	460	#100	#200	(Ch)	Density	Moisture	Limit	Limit	Index	
1-A	100.00	100.00	99.94	97.82	72.89	58.86	45.11	22.51	5.12	111.1	15.5%	30	36	4	SC-SM
1-B	100.00	100.00	100.00	99.63	62.57	45.85	34.82	20.86	8.91						SC-SM
2-A	100.00	99.63	98.13	89.51	38.75	21.10	11.61	4.30	6.30						SW
2-B	100.00	1.	99.96	99.67	67.79	54.83	44.66	28.64	9.36	111.5	15.8%	29	24	5	SC-SM
3-A		100.00	<u>99.90</u>	99.26	52.16	24.26	10.75	8.62	4.66	116.1	14.3%				SW
3-B	100.00	100.00	100.00	99.01	66.29	44.44	29.21	12.31	5.37						SW
4	100.00	100.00	99.69	98.05	63.79	41.37	25.30	9.59	5.12					-	SW
2	100.00	100.00	100.00	99.63	63.42	40.26	24.45	9.38	5.10						SW
9	100.00	100.00	99.81	98.73	62.36	39.26	22.95	8.58	5.04						SW
7	100.00	100.00	99.91	98.73	66.60	45.15	28.78	11.71	5.16						SW
8	100.00	100.00	99.86	99.07	64.20	40.92	23.75	8.72	3.41	119.0	12.9%				SР
6	100.00	100.00	99.72	98.92	65.65	43.59	26.71	9.38	2.31						SР
Average	100.00	99.97	99.74	98.17	62.21	41.66	27.34	12.88	5.49						

Basin Disposal Summary of Soils Testing Maximum Dry Density, Grain Size, and Atterberg Limits

ш.
~
~
ш
'n
•••
c D
0
ŝ
~
LA.
<u> </u>
v
. 1
ŝ
3
<u> </u>
~
-
\cap
~
D
~
<u> </u>
~~
0
~
m
~
1
~
α
~
()
~
-
0
_
$\mathbf{\Omega}$
_
0
~
19
۰Q
<u></u>
ഗ
ш
ų.
_
-
11
~
- 1 -
Δ.

Sample # 1	SIF\/F #	SI7F mm V	WT (n)	MASS (a)	MASS (a)	retained	BASIN SOIL SAMPLES POND 3 5-4-2009	% FINER REVERSED
	F .						• • • • • •	
	1/2 IN	12.5	548.4			00.0		
	3 / 8 IN	9.6	488.7			-0.02		
	#4	4.75	459.1	459.5	0.4	0.07		9.94 72.89
	#10	2	433.3		ì	2.13		
	#40	0.425	338.1		1	24.93		
	, 100 <i>#</i>	0.25	325.9			14.03	D(60)= 0.26	•
•	#100	0.15	348.5	1		13.75		
•• • •	#200	0.075	340.6		:	22.60	D(10)= 0.05	2.51 100
	PAN		375.9	:	i T	22.51		
• • •					541.1	100.00	D(60)/D(10) = 5.12	
			SIEVE	SIFVE+SOIL	SOIL	percent		
	SIFVF #		MT (0)	MASS (0)	SS (a)	etained	BASIN SOIL SAMPLES POND 3 5-4-2009	INER REVERSED
			10	/0/ >>	<u>}</u>		10	
	1/2 IN	10 F	548.4	:		00.00		
-	3/8 IN	- G	488.6			00.00		
	V=0.00	A 75	458.9	,		00.0		
	#10 #	, °, °, °, °, °, °, °, °, °, °, °, °, °,	433.2			0.37		99.63 99.63
÷	07#	0.425	338.1	1		37.06		
	09#	0.25	325.8			16.72	D(60)= 0.39	
	#100	0.15	348.6			11.03	· · · · · · · · · · · · · · · · · · ·	
	#200	0.075	340.5	397.2	56.7	13.96	D(10)= 0.04	20.86 100
	PAN		375.9		•	20.86		
					•	100.00	D(60)/D(10)= 8.91	

	-2-A	SIEVE #	SIZE mm	WT (g)	MASS (g)	MASS (g) retained	retained	BASIN SOIL SAMPLES POND 3 5-4-2009	% FINER	REVERSED
Sample #	e		the manufacture of the						100.00	4.30
	:	1/2 IN	12.5	548.4		0	0.00		100.00	11.61
		3/8IN	9.5		490.4	1.8	0.37	server a filler way to be a set of the server of the set	99.63	21.10
		#4	4.75			:	1.50		98.13	38.75
	•	#10	2	:	I		8.62	n a a a an	89.51	89.51
		#40	0.425	338.2	582.7	24	50.77		38.75	98.13
	•	#60	0.25		•	85	17.65	D(60)= 0.81	21.10	99.63
		#100	0.15				9.49			100.00
	1	#200	0.075				7.31	D(10)= 0.13	4.30	100
• • • •		PAN		375.9		20.7	4.30	water state a submitted to be strong to a submitted of		
•	;- ! 1				:	481.6	100.00	D(60)/D(10)= 6.30	1 	
		: 	•			1			•	
	. I .	-		SIEVE	SIEVE+SOIL	SOIL pe	percent			
ample ID	2-B	SIEVE #	SIZE mm	WT (g)	MASS (g)	MASS (g) retained	tained	BASIN SOIL SAMPLES POND 3 5-4-2009	% FINER	REVERSED
Sample #	4	-		1		- II •	:	•	100.00	28.64
•		1/2 IN	12.5			0	0.00		100.00	44.66
1	1	3/8 IN	9.5	488.6	-	;	00.00		100.00	54.83
		#	4.75	:	;	0.1	0.04		99.96	67.79
		#10	0				0.29	· · ·	99.67	99.67
		#40	0.425				31.89	· · · · · · · · · · · · · · · · · · ·	67 79	96.96
	-	#60	0.25	1			12.95	D(60)= 0.31	54.83	100.00
	:	#100	0.15	348.6	•		10.18	•	44.66	100.00
	£	#200	0.075	340.5	384.4	43.9	16.02	D(10)= 0.03	28.64	100
-		PAN	•	375.9			28.64	• •		
		•	· ·		•	274.1	100.00	D(60)/D(10) = 9.36		

EIVE
S
t-2009
5-4
ŝ
ano
ď
SIN
BA
A
00
6
5
520
ES/
:\FIL
٩

ple ID 3-A	SIEVE #	SIZE mm WT (9)		MASS (g)	MASS (g) r	retained BA	BASIN SOIL SAMPLES POND 3 5-4-2009	% FINER	REVERSED
Sample # 5	:-		į.		ji			100.00	8.62
1		12.5	548.4	548.4	0	0.00	and the second second and the second se	100.00	10.75
1 9-	3/8 IN	9.2	488.6	488.6	0	1		100.00	24.26
	#	4.75	458.8	459.2	0.4	0.10	a construction of the second s	<u>99.90</u>	52.16
	#10	2	433.1	435.6	2.5	0.64		99.26	99.26
	#40	0.425	338.1	521.6	183.5	47.10		52.16	06.66
:	09#	0.25	325.8	434.5	108.7	27.90	D(60)= 0.55		100.00
•	#100	0.15	348.6	401.2	52.6	13.50	a name a company a company and and a second se	10.75	100.00
•	#200	0.075	340.6	348.9	8.3	2.13	D(10)= 0.12	12 8.62	100
	PAN		375.9	409.5	33.6	8.62	and a second of the second of	tonin - second the second to the second to	:
					389.6	100.00	D(60)/D(10)= 4.66	.66	:
	: 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · ·	the second second			:
	-		CIEV/E			nerrent	3		
	SIEVE #	SIZE mm		ı	\sim	· _	BASIN SOIL SAMPLES POND 3 5-4-2009	% FINER	REVERSED
Sample # 6					· · ·	··· :	· ·	100.00	12.31
	1/2 IN	12.5	548.4	548.4		0.00		100.00	29.21
	3/8IN	9.6	488.6	488.6	, , ·	00.0		100.00	44,44
	. +#	4.75	458.9	458.9	0	0.00	•	100.00	66.29
:	#10	2	432.9	437.3		0.99		99.01	99.01
	#40	0.425	338.2	483		32.72		66.29	100.00
	09#	0.25	325.9	422.6	96.7	21.85	D(60)= 0.37		100.00
-	#100	0.15	348.6	416	67.4	15.23			100.00
	#200	0.075	340.5	415.3	74.8	16.90	D(10)= 0.07	07 12.31	100
	PAN		375.9	430.4	54.5	12.31			
		• •			442.6	100.00	D(60)/D(10)= 5.37	.37	
				and best-channel	ooloooo tek	a oron toda	- SUA of hotocore of hotocortes	aculte.	
	Note: These	e steve analy	SIS WERE	completed on (ary samples	that were n	se sieve analysis were completed on dry samples that were not washed as reported in AUS Results	cesuits	

Sample ID 4				OIEVE+OOIL		Delicelle			
	SIEVE #	SIZE mm	WT (g)	MASS (g)	MASS (g)	retained	BASIN SOIL SAMPLES POND 3 5-4-2009	% FINER	REVERSED
Sample # 7			1					100.00	9.59
	1/2 IN	12.5	f		0	0.00		100.00	25.30
	3/8IN	9.6			:			100.00	41.37
	#	4.75		460.5			a manual a supported and a supported at a supported	69.66	63.79
	#10	2			;			98.05	98.05
	#40	0.425	i.		1			63.79	99,69
	#60	0.25	325.9		115.9	22.42	2 D(60)= 0.39	9 41.37	100.00
	#100	0.15			: 1				100.00
	#200	0.075		421.8	I	1	D(10) = 0.08	8 9.59	100
	PAN		375.9	425.5	:		计单子子 医白白白 医白白白白白白白白白白白白白白白白白白白白白白白白白白白白白白		
					517	100.00	D(60)/D(10)= 5.12	2	,
p!						: 1			
- 4			L.		;		· · · · · · · · · · · · · · · · · · ·		. i
ample ID 5	SIEVE #	SIZE mm	VT (a)	SIEVE+SUIL MASS (q)	SUIL MASS (g)	percent	BASIN SOIL SAMPLES POND 3 5-4-2009	% FINER	REVERSED
Sample # 8			F	•		•		100.00	9.38
-	1/2 IN	12.5			0	0.00		100.00	24.45
	3/8/N	9.5	:	:	0	00.0		100.00	40.26
	#4	4.75		ı				100.02	63.42
	#10	5	•	434.4	1.6			99.63	99.63
	#40	0.425	338.1		1			63.42	100.02
-	#60	0.25	325.9		:		D(60)= 0.39		100.00
	#100	0.15	348.7						100.00
	#200	0.075	340.6	402.5		15.08	B(10)= 0.08	8 9.38	100
	PAN		375.9						
					410.6	100.00	D(60)/D(10)= 5.10	0	

Sample ID	ې ن	SIEVE #	SIZE mm	WT (g)	MASS (g)	MASS (g) retained	etained	BASIN SOIL SAMPLES POND 3 5-4-2009	% FINER	REVERSED
ample #	ן הכי						:		100.00	8.58
		1/2 IN	12.5			0	0.00		100.00	22.95
		3/8 IN	9.9			0	00.00		100.00	39.26
		#4	4.75	458.8		0.7	0.19		99.81	62.36
		#10	2	432.8	:	4 1	1.09		98.73	98.73
		#40	0.425	338	:	136.9	36.36		62.36	99.81
•		#60	0.25		412.9	87	23.11	D(60)= 0.40	39.26	100.00
		#100	0.15	i	•	61.4	16.31	an dian and an and an and an and	22.95	100.00
:	•	#200	0.075	340.6	:	:	14.37	D(10)= 0.08	8.58	100
-		PAN		375.9		32.3	8.58	menter inter destatuaria de la constatuaria de la constatuaria de la constatuaria de la constatuaria de la const	-	
				1		376.5	100.00	D(60)/D(10)=: 5.04		
-	<u>1</u> .		· · · ·	······································					• •	
		-		SIEVE	SIFVE+SOIL	SOIL	percent			•
mple ID	7	SIEVE #	SIZE mm		••	S (g)		BASIN SOIL SAMPLES POND 3 5-4-2009	% FINER	REVERSED
Sample #	10	•			•		•		100.00	11.71
		1/2 IN	12.5	548.4	548.4	Ö	0.00	·	100.00	28.78
		3/8IN	9.5	488.6	488.6	0	0.00	a a de la companya de	100.00	45.15
		#4	4.75	458.8	459.2	4.0	0.09	•	99.91	66.60
		#10	2	432.8	438.3	5.5	1.19		98.73	98.73
	-	#40	0.425	337.9	486.9	149	32.13		66.60	99.91
		09#	0.25	325.9	425.4	99.5	21.45	D(60)= 0.36	45.15	100.00
		#100	0.15	348.6	424.5	75.9	16.36		28.78	100.00
		#200	0.075	340.6		79.2	17.08	D(10)= 0.07	11.71	100
		PAN		375.9		54.3	11.71	· · · · · ·		
		•		:		463.8	100.00	D(60)/D(10)= 5.16		

0

REVERSED REVERSED 8.72 23.75 40.92 64.20 99.07 99.86 100.00 9.38 26.71 43.59 65.65 98.92 98.92 98.92 98.92 98.92 98.72 100.00 9 100 % FINER % FINER 100.00 100.00 99.86 99.07 64.20 100.00 100.00 99.72 98.92 65.65 40.92 23.75 43.59 26.71 9.38 8.72 Note: These sieve analysis were completed on dry samples that were not washed as reported in ACS Results D(60)= 0.32 D(10)= 0.10 D(60)/D(10)= 3.41 D(60)= 0.22 D(10)= 0.10 D(60)/D(10) = 2.31BASIN SOIL SAMPLES POND 3 5-4-2009 BASIN SOIL SAMPLES POND 3 5-4-2009 0.00 0.14 0.79 34.87 23.28 17.17 15.03 0.00 0.28 0.28 0.81 33.27 33.27 16.88 16.88 100.00 8.72 9.38 SOIL percent MASS (g) retained SOIL percent MASS (g) retained 0 0.6 3.4 149.9 73.8 64.6 37.5 429.9 0 1.3 79.5 81.6 81.6 81.6 81.6 SIEVE+SOIL SOIL MASS (g) MASS (g) 471 SIEVE+SOIL SOIL MASS (g) MASS ł 548.4 488.6 459.5 436.2 487.9 426 548.4 488.7 460.2 422.4 405.1 413.4 436.6 494.7 429.7 428.1 422.2 420.1 1 548.4 488.6 458.9 **4**32.8 338 325.9 348.6 340.5 375.9 548.4 488.7 458.9 458.9 338 338 325.8 348.6 340.6 375.9 SIZE mm WT (g) SIZE mm WT (g) 12.5 9.5 4.75 2 0.425 0.15 2 0.425 0.25 0.15 12.5 9.5 4.75 0.075 0.075 SIEVE # SIEVE # 1/2 IN 3/8 IN 1/2IN 3/8IN #10 #60 #200 PAN #100 #10 #60 #200 PAN 1 4 4 8 11 12 δ Sample ID Sample # Sample ID Sample #

APPENDIX A

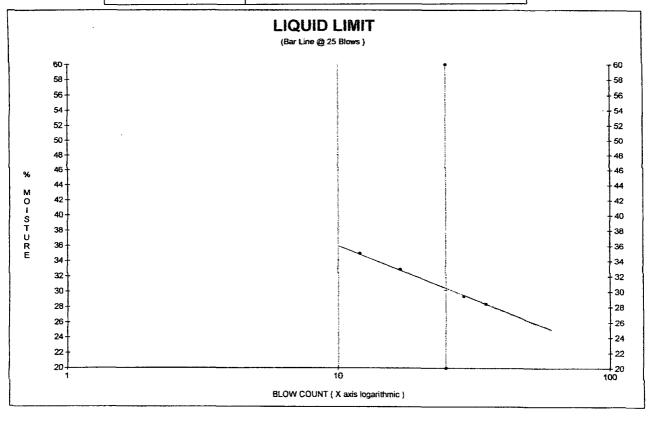
Subgrade Material Testing

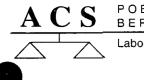
A.2. Atterberg Limits

Laboratory & Field Testing Services

DETERMINATION of LIQUID LIMITS, PLASTIC LIMITS and PLASTICITY INDEX of SOILS ASTM D 4318

VISUAL DESCRIPTION:	Moist	::	A- 2	1	
1	Grey	Green	Sandy	SILT	


DATE 04 28 09 CLIENT GORDON ENVIRONMENTAL PROJECT BASIN DISPOSAL


SAMPLE LOCATION:

Client Sampled Specimens: PERMIT CONTRACT 520.01.01/04 USCS **CLASSIFICATION:** JOB A-1 57.6% FILE 9540002

% PASSING # 200:

LIQUID LIMIT 30	PLASTIC LIMIT 26	PLASTIC INDEX
FIXED VALUES	CHARTE	ED VALUES
25 25	28.4 29.4 35 29	32.9 35.0 17 12

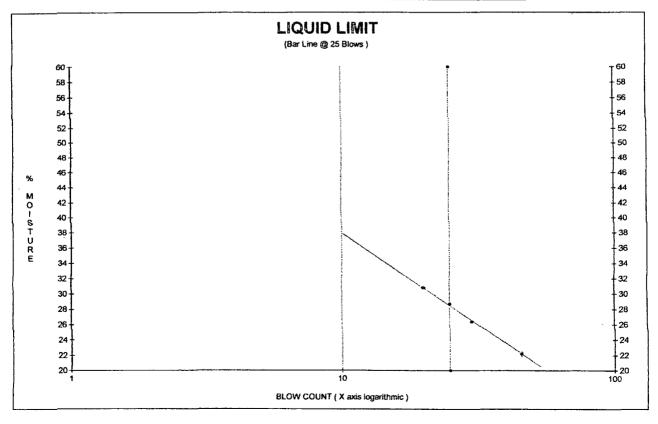
S POB 1015 BERNALILLO NM 87004

505-867-6585

Laboratory & Field Testing Services

ACNM-NMSHTD & NICET Certified

DETERMINATION of LIQUID LIMITS, PLASTIC LIMITS and PLASTICITY INDEX of SOILS ASTM D 4318


VISUAL DESCRIPTION: Moist: 2-в Grey Green Sandy SILT

DATE 04 28 09 CLIENT GORDON ENVIRONMENTAL PROJECT BASIN DISPOSAL

SAMPLE LOCATION:

	Client Sampled Speci	mens: PERMIT
CLASSIFICATION:	USCS	CONTRACT 520.01.01/04
		JOB 2-B
% PASSING # 200:		FILE 9540006

LIQUID LI 29	МІТ	PLASTIC L 24	IMIT	PLASTIC	INDEX
FIXED V	ALUES		CHARTE	D VALUES	
25	25	22.2 46	26.4 30	28.7 25	30.8 20

APPENDIX A

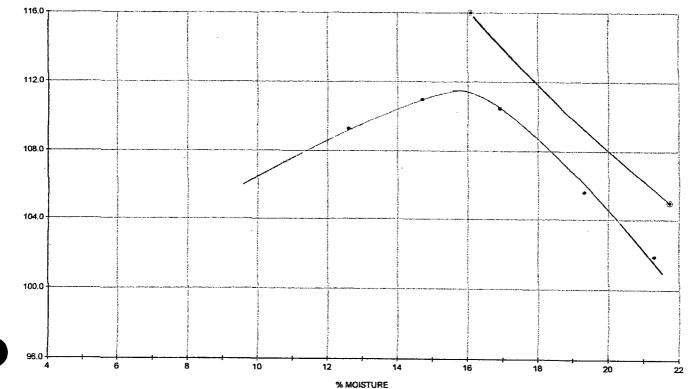
Subgrade Material Testing

A.3. Moisture / Density Relationships

CS POB 1015 BERNALILLO NM 87004

A

LBS/CU.FT


Laboratory & Field Testing Services

SUMMARY OF OPTIMUM MOISTURE / MAXIMUM DENSITY DETERMINATION

VISUAL DES	CRIPTION:	Moist: Grey Gre	2-B een Sandy S	ILT	CLIENT	05 12 09 GORDON ENV BASIN DISI	VIRONMENTAL POSAL
SAMPLE LOO	CATION:						
CLASSIFICA	TION	Client S ML	Sampled Spe USCS	cimens:		520.01.01 2-в	/04
% PASSING	# 200:	60.0%			FILE	9540010	·
MAXIMUM 111.5	DENSITY Lbs/CuFt	- · · · · · · · ·	MOISTURE	DESIGI ASTM D	NATION 698	METHOD A	
	SPECIFIC	VALUES =2.65		CHARTED	VALUES		
MOISTURE %DRY WGT DRY DENSITY LBS/CU.FT.	21.7 105.0	16.1 116.0	12.6 109.3	14.7 111.0	16.9 110.5	19.3 105.6	21.3 101.9

COMPACTION CURVE PLOTTING

POB 1015 BERNALILLO NM 87004

S

MOISTURE

%DRY WGT

DRY DENSITY

LBS/CU.FT.

ø

28.0

95.0

18.0

112.0

20.6

103.5

SUMMARY OF OPTIMUM MOISTURE / MAXIMUM DENSITY DETERMINATION

VISUAL DESCRIPTION:	Moist: A-1 Grey Green Sandy Si	ILT CLIENT	04 28 09 GORDON ENVIRONMENTAL BASIN DISPOSAL
SAMPLE LOCATION:			
	Client Sampled Spe		500 01 01 /04
CLASSIFICATION	ML USCS		520.01.01/04
% PASSING # 200:	57.6%	JOB FILE	9540003
MAXIMUM DENSITY 111.1 Lbs/CuFt	OPTIMUM MOISTURE	DESIGNATION ASTM D 698	METHOD A
SPECIFIC G	VALUES (=2.65	CHARTED VALUES	

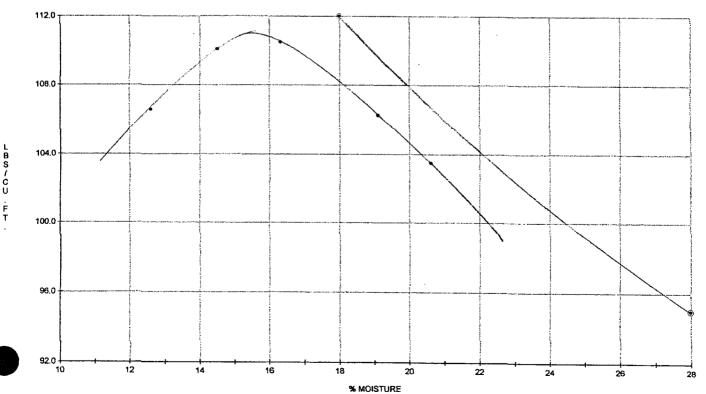
COMPACTION CURVE PLOTTING

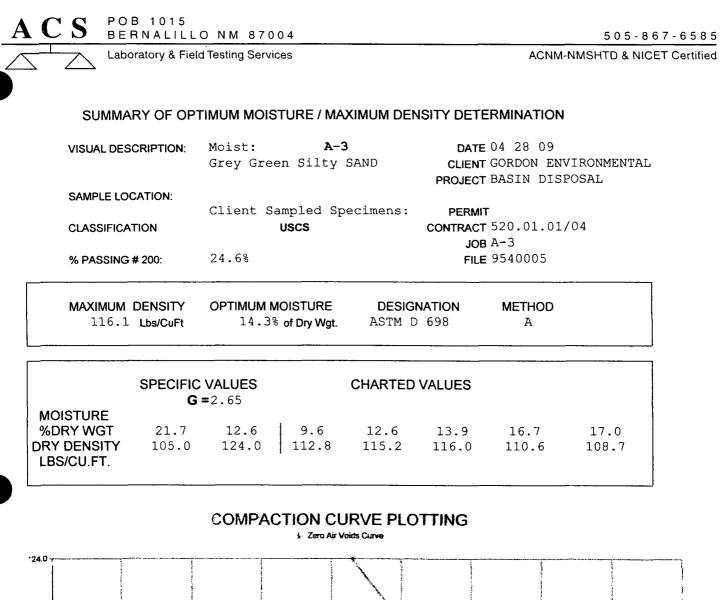
12.6

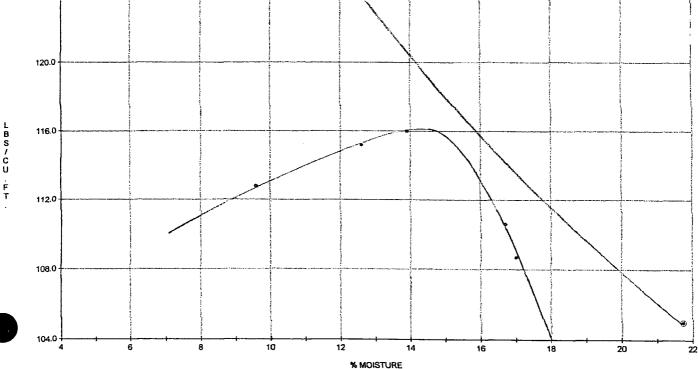
106.6

& Zero Air Voids Curve

14.5


110.1


16.3


110.5

19.1

106.3

POB 1015 BERNALILLO NM 87004

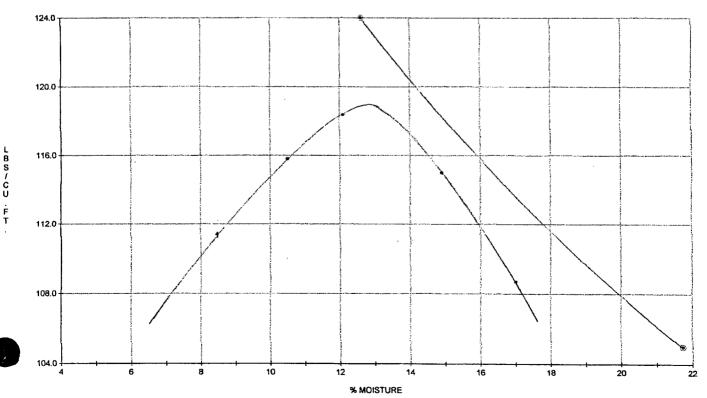
C S

9

505-867-6585

Laboratory & Field Testing Services

ACNM-NMSHTD & NICET Certified


SUMMARY OF OPTIMUM MOISTURE / MAXIMUM DENSITY DETERMINATION

VISUAL DESCRIPTION:	Moist: 8 Grey Green Sandy S Trace Gravel	DATE 04 28 09 ILT, CLIENT GORDON ENVIRONMENTAL PROJECT BASIN DISPOSAL
SAMPLE LOCATION:		
	Client Sampled Spe	cimens: PERMIT
CLASSIFICATION	USCS	CONTRACT 520.01.01/04
% PASSING # 200:	61.4%	JOB 8 FILE 9540008
MAXIMUM DENSITY 119.0 Lbs/CuFt	OPTIMUM MOISTURE	DESIGNATION METHOD ASTM D 698 A

	SPECIFIC G =	VALUES =2.65		CHARTED	VALUES		
MOISTURE %DRY WGT DRY DENSITY LBS/CU.FT.	21.7 105.0	12.6 124.0	8.5 111.4	10.5 115.8	12.1 118.4	14.9 115.0	17.0 108.7

COMPACTION CURVE PLOTTING

& Zero Air Voids Curve

APPENDIX B

Subgrade Material Testing

B.1. Density Testing Results

% MOISTURE

% RSP

DRY DENSITY (PCF)

PROCTOR USED

TEST LOCATION

DATE

5/29/2009

5/29/2009 5/29/2009

5/29/2009

5/29/2009 5/29/2009 5/29/2009 5/29/2009 5/29/2009 5/29/2009 5/29/2009 5/29/2009 5/29/2009

15.1% 12.0%

94.0% 96.2% 93.9% 93.4% 97.9% 94.2% 90.1% 90.0%

9.7% 7.2% 6.7%

97.6% 92.9% 92.9%

119.0

119.0 119.0 119.0 119.0 119.0 119.0 119.0

Z & 23 &

116.2 110.6 110.6 111.9 114.5

119.0

5/27/2009 5/27/2009 5/27/2009 5/29/2009 5/29/2009 5/29/2009 5/29/2009

	PROJECT INFORMATION	RMATION
PROJECT NAME: Basin Pond 3		PROJECT NO.: 520.01.01
CLIENT:	Basin Disposal Inc.	DATE: See Below
PROJECT LOCATION: Bloomfield, New Mexico	Bloomfield, New Mexico	PAGE NO.: 1 of 3
TESTING INSTRUMENT: Troxler® 3440		TECHNICIAN: Don Gray
REFERENCE STANDARD I	REFERENCE STANDARD PROCTOR (RSP): See below	SPECIFICATION: 90% RSP

l	L-'				Ľ.	Ľ.	Ľ.	_	<i></i>	_	<u> </u>		Ľ	Ľ.	Ľ	Ľ.,		1.	~			Ľ.		1.	•	1.	<i>"</i>	Ľ.	_	Ľ.		
TËST NUMBER	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
% MOISTURE	10.9%	7.4%	10.0%	7.9%	9.2%	12.8%	10.1%	10.7%	15.1%	12.8%	10.6%	13.3%	15.0%	15.1%	9.7%	7.7%	10.2%	6.8%	8.8%	10.1%	9.4%	10.8%	9.8%	9.0%	9.3%	11.9%	10.2%	10.1%	8.8%	8.1%	8.8%	7.8%
∳₀ RSP	95.6%	90.8%	91.2%	97.6%	100.5%	95.1%	98.0%	91.3%	91.4%	93.4%	93.7%	94.9%	91.4%	93.8%	92.3%	91.5%	98.9%	%0.06	100.8%	90.4%	80.0%	92.8%	90.4%	93.7%	94.1%	93.8%	94.6%	93.1%	96.0%	97.3%	99.4%	94.7%
DRY DENSITY (PCF)	113.8	108.0	108.5	116.2	119.6	113.2	116.6	108.7	108.8	111.1	111.5	112.9	108.8	111.6	102.9	108.9	117.7	107.1	119.9	107.6	107.1	110.4	107.6	111.5	112.0	111.6	112.6	110.8	114.2	115.8	118.3	112.7
PROCTOR USED	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	111.5	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0	119.0
TEST LOCATION	S2	S3	S4	E3	E1	N4	N3	N1	N2	N3	N4	E1	E2	E3	W1	W2	W3	S1	S2	S3	S4	L1	N2	N3	N4	E1	E2	E3	W1	W2	W3	S1
DATE	5/21/2009	5/21/2009	5/21/2009	5/21/2009	5/21/2009	5/21/2009	5/21/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009	5/27/2009
TEST NUMBER		2	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32

	0.01		20.10	10.1.01
N2	119.0	114.5	96.2%	12.0%
N3	119.0	111.8	93.9%	12.9%
N4	119.0	111.2	93.4%	12.2%
Ē1	119.0	116.5	97.9%	11.0%
E2	119.0	112.1	94.2%	10.3%
E3	119.0	107.2	90.1%	11.2%
W1	119.0	107.1	90.0%	12.2%
W2	119.0	115.0	96.6%	10.6%
W3	119.0	113.3	95.2%	11.8%
S1	119.0	109.0	91.6%	10.7%
S2	119.0	107.6	90.4%	9.1%
S3	116.1	105.3	90.7%	%0`6
S4	119.0	109.6	92.1%	11.4%
N1	119.0	113.4	95.3%	8.7%
N2	119.0	114.9	96.6%	%4.7
N3	119.0	108.1	90.8%	8.3%
N4	119.0	112.7	94.7%	8.8%
E1	119.0	115.9	97.4%	8.6%
E2	119.0	114.7	96.4%	10.1%
E3	119.0	114.7	96.4%	9.2%
W1	119.0	112.0	94.1%	10.3%
W2	119.0	116.7	98.1%	10.7%
W3	119.0	111.0	93.3%	8.1%
S1	119.0	110.9	93.2%	7.6%
S2	119.0	113.8	95.6%	8.6%
S3	119.0	110.8	93.1%	7.8%
S4	119.0	108.5	91.2%	6.7%
N1	111.5	101.5	91.0%	5.8%

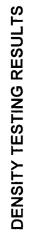
5/29/2009 5/29/2009

5/29/2009 5/29/2009 5/29/2009 5/29/2009 5/29/2009 5/29/2009 5/29/2009 5/29/2009 5/29/2009 6/1/2009 **Reviewed By:**

AN AN

Note: See Figure 4 for test locations

DENSITY TESTING RESULTS


PROJECT NO.: 520.01.01
DATE: See Below
PAGE NO.: 2 of 3
TECHNICIAN: Don Gray
SPECIFICATION: 90% RSP

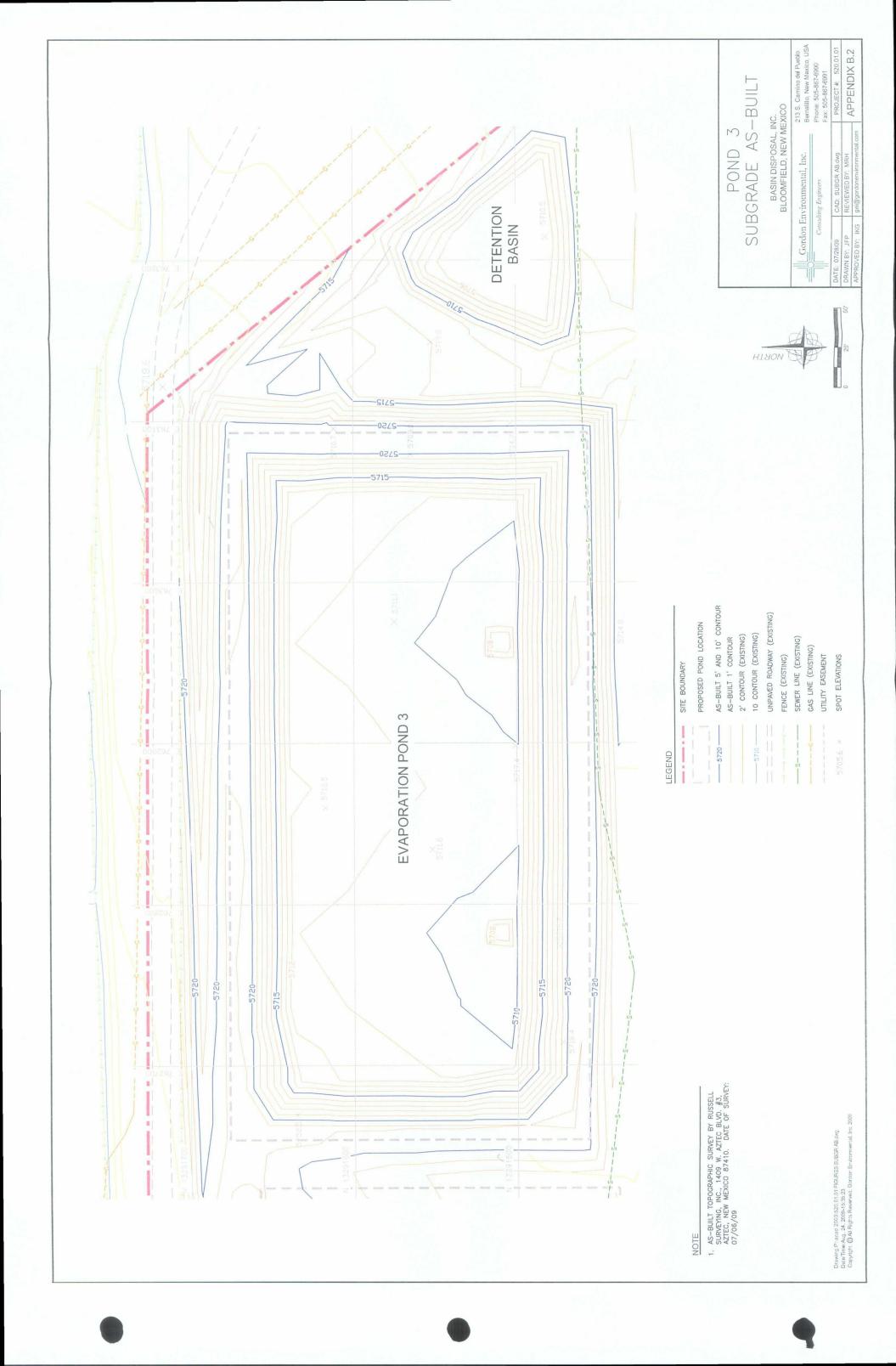
TESTPROCTORDRV DENSITY%%LOCATIONUSED(PCF)%MOISTURE	N2 119.0 110.9 93.2% 10.1%	N3 119.0 110.2 92.6% 13.8%	N4 119.0 110.6 92.9% 14.4%	E1 119.0 113.7 95.5% 11.2%	E2 119.0 113.5 95.4% 14.1%	E3 119.0 109.1 91.7% 8.9%	S1 119.0 107.1 90.0% 13.4%	S2 119.0 109.2 91.8% 9.9%	S3 119.0 109.1 91.7% 9.5%	S4 119.0 108.7 91.3% 9.8%	N1 119.0 115.6 97.1% 10.8%	N2 119.0 107.2 90.1% 8.1%	N3 119.0 109.6 92.1% 10.0%	N4 119.0 111.5 93.7% 10.6%	E1 119.0 109.1 91.7% 7.7%	E2 119.0 109.7 92.2% 8.3%	E3 119.0 109.3 91.8% 8.7%	N1 119.0 120.0 100.8% 7.0%	N2 119.0 114.5 96.2% 8.2%	N3 119.0 116.7 98.1% 8.2%	N4 119.0 114.0 95.8% 8.0%	E1 119.0 108.0 90.8% 10.4%	E2 119.0 110.5 92.9% 9.7%	E3 119.0 110.5 92.9% 12.8%	W1 119.0 118.3 99.4% 8.3%	W2 119.0 112.9 94.9% 5.9%	W3 119.0 109.6 92.1% 5.7%	S1 119.0 115.8 97.3% 9.2%	S2 119.0 114.8 96.5% 6.9%	S3 119.0 116.8 98.2% 8.0%	
TEST DATE LOC	65 6/1/2009	66 6/1/2009	67 6/1/2009	68 6/1/2009	69 6/1/2009	70 6/1/2009	71 6/1/2009	72 6/1/2009	73 6/1/2009	74 6/1/2009	75 6/1/2009	76 6/1/2009	77 6/1/2009	78 6/1/2009	79 6/1/2009	80 6/1/2009	81 6/1/2009	82 6/2/2009	83 6/2/2009	84 6/2/2009	85 6/2/2009	86 6/2/2009	87 6/2/2009	88 6/2/2009	89 6/2/2009	90 6/2/2009	91 6/2/2009	92 6/2/2009	93 6/2/2009	94 6/2/2009	0.5

	DATE	TEST	PROCTOR USED	DENSITY (PCF)	% RSP	% MOISTURE
97	6/2/2009	E2	119.0	111.5	93.7%	5.8%
98	6/2/2009	E3	119.0	114.8	96.5%	8.8%
66	6/3/2009	N4	119.0	111.9	94.0%	7.7%
100	6/3/2009	E1	119.0	115.9	97.4%	11.1%
101	6/3/2009	E2	119.0	111.6	93.8%	9.6%
102	6/3/2009	E3	119.0	116.9	98.2%	9.4%
103	6/3/2009	S4	119.0	113.6	95.5%	12.1%
104	6/3/2009	N4	119.0	111.0	93.3%	7.6%
105	6/3/2009	E1	119.0	113.0	95.0%	7.3%
106	6/3/2009	E2	119.0	110.6	92.9%	7.7%
107	6/3/2009	E3	119.0	108.5	91.2%	8.2%
108	6/3/2009	S4	119.0	110.6	92.9%	8.0%
109	6/9/2009	F1	119.0	113.3	95.2%	6.8%
110	6/9/2009	F2	119.0	109.4	91.9%	4.5%
111	6/9/2009	F3	119.0	112.8	94.8%	6.3%
112	6/9/2009	F4	119.0	116.1	97.6%	8.5%
113	6/9/2009	F5	119.0	108.5	91.2%	5.8%
114	6/9/2009	F6	119.0	107.1	90.0%	5.8%
115	6/9/2009	F7	119.0	115.6	97.1%	9.2%
116	6/9/2009	F8	119.0	109.7	92.2%	8.8%
117	6/9/2009	F9	119.0	113.9	95.7%	9.8%
118	6/9/2009	F10	119.0	108.4	91.1%	8.5%
119	6/9/2009	F11	119.0	113.8	95.6%	7.5%
120	6/9/2009	F12	119.0	115.0	96.6%	8.7%
121	6/9/2009	F13	119.0	112.4	94.5%	6.5%
122	6/9/2009	F14	119.0	111.1	93.4%	6.0%
123	6/9/2009	F15	116.1	106.8	92.0%	9.9%
124	6/9/2009	SS1	119.0	110.1	92.5%	10.4%
125	6/9/2009	SS2	119.0	110.3	92.7%	14.0%
126	6/29/2009	SS3	119.0	116.8	98.2%	7.1%
127	6/9/2009	SS4	119.0	113.2	95.1%	6.1%
128	6/11/2009	SS5	119.0	114.4	96.1%	7.9%

Note: See Figure 4 for test locations

P:\FILE? 01.01\CQA\DensityTests

	PROJECT INFO	PROJECT INFORMATION
PROJECT NAME: Basin Pond 3		PROJECT NO.: 520.01.01
CLIENT:	Basin Disposal Inc.	DATE: See Below
PROJECT LOCATION: Bloomfield, New Mexico	Bloomfield, New Mexico	PAGE NO.: 3 of 3
TESTING INSTRUMENT: Troxler® 3440	Troxler® 3440	TECHNICIAN: Don Gray
REFERENCE STANDARD I	REFERENCE STANDARD PROCTOR (RSP): See below	SPECIFICATION: 90% RSP


TEST NUMBER	DATE	TEST LOCATION	PROCTOR USED	DRY DENSITY (PCF)	% RSP	% MOISTURE	TEST NUMBER	DÀTE	TEST	PROCTOR USED	DRY DENSITY (PCF)	% RSP	% MOISTURE
129	6/29/2009	SS6	119.0	110.1	92.5%	7.1%							
130	6/11/2009	SS7	119.0	109.8	92.3%	5.9%							
131	6/29/2009	SSB	119.0	108.8	91.4%	7.8%							
132	6/11/2009	SS9	119.0	107.4	90.3%	6.4%							
133	6/29/2009	SS10	119.0	113.5	95.4%	9.9%							
134	6/29/2009	SS11	119.0	107.2	90.1%	%0'.2							
135	6/11/2009	SS12	119.0	107.7	90.5%	7.2%							
136	6/29/2009	SS13	119.0	110.7	93.0%	7.8%							
137	6/11/2009	SS14	116.1	105.0	90.4%	6.9%							
138	6/29/2009	SS15	119.0	108.3	91.0%	6.3%							
139	6/29/2009	SS16	116.1	106.6	91.8%	6.0%							
140	6/11/2009	SS17	119.0	107.7	90.5%	6.7%							
141	6/29/2009	SS18	116.1	105.7	91.0%	6.6%							
142	6/11/2009	SS19	111.5	103.6	92.9%	7.6%							
143	6/11/2009	SS20	111.5	102.8	92.2%	8.0%							
144	6/29/2009	SAT1	119.0	107.5	90.3%	14.4%							
145	6/29/2009	SAT2	119.0	108.2	90.9%	6.6%							
146	6/29/2009	SAT3	119.0	107.9	90.7%	4.4%							
147	6/29/2009	SAT4	116.1	104.6	90.1%	5.4%							
148	6/29/2009	EAT1	111.5	101.0	90.6%	7.9%							
149	6/29/2009	EAT2	119.0	106.6	89.6%	8.2%							
150	6/29/2009	EAT3	116.1	106.0	91.3%	5.6%							
151	6/29/2009	NAT1	119.0	109.9	92.4%	5.7%							
152	6/29/2009	NAT2	116.1	106.6	91.8%	5.7%							
153	6/29/2009	NAT3	111.5	100.5	90.1%	4.9%							
154	6/29/2009	NAT4	119.0	107.5	90.3%	5.4%							
155	6/29/2009	WAT1	119.0	109.3	91.8%	6.3%							
156	6/29/2009	WAT2	116.1	106.6	91.8%	7.1%							
157	6/29/2009	WAT3	119.0	110.1	92.5%	6.9%							
Note: See Figure 4 for test locations	or test locations							R	Reviewed By:			MAK	A

P:/FILES\520.01.01\CQA\DensityTests

APPENDIX B

Subgrade Material Testing

B.2. Subgrade As-Built Elevations

APPENDIX C

Material Manufacturer Certification and Conformance Testing Results

C.1. CETCO GCL Certifications

Date: 7/26/2008 Purchase Order: 6596 ORDER NUMBER: 024159808

Tom Snow The Snow Company

Albuquerque, NM 87199 snow_data@comcast.net

Jo Whom it May Concern:

Please find enclosed the MQA/MQC test data package for Geosynthetic Clay Liner shipments to The Snow Company. The shipments left our Lovell, Wyoming plant on 7/25/2008.

If you have any questions regarding this information, please contact Chris Athanassopoulos, Technical Support Engineer, at (847) 818-7945.

Sincerely, - Alexand

Roger B. Wilkerson Quality Assurance Coordinator CETCO Lovell Plant

GEOSYNTHETIC CLAY LINER MANUFACTURING QUALITY ASSURANCE DATA PACKAGE

PROJECT NAME: Torrance Co LF CUSTOMER P.O.: 6596 ORDER NUMBER: 024159808 PREPARED FOR: The Snow Company

CONTENTS:

- Daily production and needle detection certification
- GCL property specifications
- Order packing list
- GCL MQA tracking form
- GCL manufacturing quality control test data
- Bentonite clay certification
- Raw material test results

PREPARED BY: Roger B. Wilkerson Quality Assurance Coordinator CETCO P.O. Box 428 92 Hwy. 37 Lovell, WY 82431

Telephone: 800-322-1149 ext. 413 Fax: E-Mail: rwilke@cetco.com

PRODUCTION CERTIFICATION

PROJECT NAME: Torrance Co LF CUSTOMER P.O.: 6596 PREPARED FOR: The Snow Company

CETCO affirms that these products meet the physical and chemical criteria listed on the attached GCL property specification sheet.

NEEDLE REMOVAL AND DETECTION PROCEDURE

ETCO hereby affirms that all Bentomat[®] geosynthetic clay liner material manufactured ror this project is continually passed under a magnet for needle removal and then screened with a metal detection device. CETCO certifies Bentomat[®] to be essentially free of broken needles and fragments of needles that would negatively effect the performance of the final product.

- Cargles Car

Roger B. Wilkerson Quality Assurance Coordinator Colloid Environmental Technologies Co. (CETCO)

Ship Date: 7/25/2008 Order Number: 024159808 Prepared For: The Snow Company

The GCL raw materials and GCL finished product manufactured for the above-referenced order number(s) are hereby certified to achieve the properties listed in the tables below.

GCL PROPERTY SPECIFICATIONS FOR BENTOMAT ST

Test Method	Test Method Property	Test Frequency	Certified Value
ASTM D 5891	Bentonite Fluid Loss	1 per 50 Tons	18 ml Max
ASTM D 5993	Bentonite Mass/Area	40,000 sq ft (4000 sq m)	0.75 lb /sq ft (3.6 kg/sq m) Mi
ASTM D 5890	Bentonite Swell Index	I per 50 Tons	24 ml/2g Min
ASTM D 4632	GCL Grab Strength	200,000 sq ft (20,000 sq m)	90 lbs (400 N) MARV
ASTM D 6768	GCL Grab Strength	200,000 sq ft (20,000 sq m)	30 lbs/in MARV
ASTM D 6243	GCL Hydrated Internal Shear Strength	Periodic	500 psf (48 kPa) typ @ 200 ps
ASTM D 5887	GCL Hydraulic Conductivity	Weekly	5 x 10^-9 cm/ sec Max
ASTM D 5887	GCL Index Flux	Weekly	1 x 10^-8 m^3/m^2/sec Max
ASTM D 6496	GCL Peel Strength	40,000 sq ft (4000 sq m)	3.5 lbs/in Min
ASTM D 4632	GCL Peel Strength	40,000 sq ft (4000 sq m)	15 lbs (65 N) Min

FABRIC SUPPLIER REQUIREMENTS FOR BENTOMAT ST

Raw Material	test method	mass per ar	ea units
Nonwoven Cover Fabric	ASTM D 5261	6.0	oz/yd2
Bentomat ST Woven Base Fabrie	cASTM D 5261	3.2	oz/yd2
abric certifications from our rave material	unpliers are on file at	our production f	acility

RESEARCH ECXICATION RECEIVING RESERVING RESERV

CETCO's MQA laboratory is GAI-accredited (www.geosynthetic-institute.org/gai/lab.html).

Roger B. Wilkerson Quality Assurance Coordinator CETCO Lovell Plant

GCL ORDER PACKING LIST

GCL shipped for certification package number 000241598

Order #	Product	Lot Number	Roll Number	Length (ft)	Width (ft)	Square Ft	Weight (lbs)
024159808	LO-BENTOMAT ST	200829LO	00002869	150	15	2250	2590
024159808	LO-BENTOMAT ST	200829LO	00002871	150	15	2250	2560
024159808	LO-BENTOMAT ST	200829LO	00002872	150	15	2250	2555
024159808	LO-BENTOMAT ST	200829LO	00002873	150	15	2250	2565
024159808	LO-BENTOMAT ST	200829LO	00002874	150	15	2250	2550
024159808	LO-BENTOMAT ST	200829LO	00002875	150	15	2250	2545
024159808	LO-BENTOMAT ST	200829LO	00002884	150	15	2250	2575
∩24159808	LO-BENTOMAT ST	200829LO	00002893	150	15	2250	2550
024159808	LO-BENTOMAT ST	200829LO	00002896	150	15	2250	. 2570
024159808	LO-BENTOMAT ST	200829LO	00002898	150	15	2250	2580
024159808	LO-BENTOMAT ST	200829LO	00002900	150	15	2250	2590
024159808	LO-BENTOMAT ST	200829LO	00002901	150	15	2250	2550
024159808	LO-BENTOMAT ST	200829LO	00002904	150	15	2250	2555
024159808	LO-BENTOMAT ST	200829LO	00002910	150	15	2250	2570
024159808	LO-BENTOMAT ST	200829LO	00002935	150	15	2250	2570
024159808	LO-BENTOMAT ST	200829LO	00002938	150	15	2250	2570
024159808	LO-BENTOMAT ST	200829LO	00002958	150	15	2250	2595
			Totals:	2550	255	38250	43640

GCL MQA TRACKING FORM

Listing of finished and raw materials used to produce certification package number 000241598

	GCL Geotextiles			Clay		
LC	-BENTOMA	T ST	LO-N/W-WHITE-ST LO-WOVEN-ST			LO-CG 50-ST
GCL Lot #	GCL Roll #	Roll # Tested	Cap Lot #	Cap Roll # Roll # Tested	Base Roll #	Clay Lot #
200829LO	00002869	00002859	2010551894		2009928091	062808A
200829LO	00002871	00002859	2010607028		2009928091	062808A
200829LO	00002872	00002859	2010607028	м	2009928091	062808A
200829LO	00002873	00002859	2010607028		2009928091	062808A
200829LO	00002874	00002859	2010607028		2009928091	062808A
200829LO	00002875	00002859	2010607028		2009928091	062808A
200829LO	00002884	00002876	2010551900		2009960723	062808A
200829LO	00002893	00002893	2010566970		2009960723	062808B
200829LO	00002896	00002893	2010566970		2009960723	062808B
200829LO	00002898	00002893	2010607202		2009960723	062808B
200829LO	00002900	00002893	2010607202		2009960723	062808B
200829LO	00002901	00002893	2010607202		2009960723	062808B
200829LO	00002904	00002893	2010607202		2009960723	062808B
200 82 9LO	00002910	00002910	2010607205		2009941944	062808B
200829LO	00002935	00002927	2010607198		2010315956	062808C
00829LO	00002938	00002927	2010607198		2010315956	062808C
200829LO	00002958	00002944	2010607201		2010002277	062808C

GCL MANUFACTURING QUALITY CONTROL TEST DATA

The following rolls in GCL certification package number 000241598 have been tested in our production facility lab.

,

Lot # Tested	Roll # Tested	Mass Area	Grab Strength	Peel Strength
Stand	ard Test Method:	ASTM D 5993	ASTM D 6768	ASTM D 6496
Standa	ard Specification:	0.75 lb/sq ft MARV	30lbs/in MARV	3.5lbs/in Min
200829LO	00002859	0.85	44.5	8.1
200829LO	00002876	0.83	44.5	7.1
200829LO	00002893	0.85	44.5	6
200829LO	00002910	0.89	44.5	5
200829LO	00002927	0.88	44.5	4.4
200829LO	00002944	1.00	84.7	4
	Stand Standa 200829LO 200829LO 200829LO 200829LO 200829LO	Standard Test Method: Standard Test Method: Standard Specification: 200829LO 00002859 200829LO 00002876 200829LO 00002893 200829LO 00002893 200829LO 00002910 200829LO 00002927	Standard Test Method: ASTM D 5993 Standard Specification: 0.75 lb/sq ft MARV 200829LO 00002859 0.85 200829LO 00002876 0.83 200829LO 00002893 0.85 200829LO 00002893 0.85 200829LO 00002910 0.89 200829LO 00002927 0.88	Standard Specification:0.75 lb/sq ft MARV30lbs/in MARV200829LO000028590.8544.5200829LO000028760.8344.5200829LO000028930.8544.5200829LO000029100.8944.5200829LO000029270.8844.5

STM test methods and property specifications per CETCO standard unless non-standard specifications were requested. .ny non-standard property specifications requested for this order are noted on the attached GCL property specifications sheet.

BENTONITE CLAY CERTIFICATION

The Bentonite Clay used to produce package 000241598 has been tested by American Colloid Company and yeilded the following test results.

Reference	Swell	Fluid Loss
Test Method:	ASTM D 5890	ASTM D 5891
Specification:	24 ml/2g Min	18 ml Max
062808A	26.0	17.0
062808B	24.0	16.2
062808C	27.0	16.2

GEOTEXTILE TEST RESULTS FROM MATERIAL SUPPLIERS

The GCL in certification package number 000241598 was manufactured with geotextiles which were tested with the following results.

Material	Roll Number	Mass Area oz/yd2	Grab Strengtl Ibs
PPX 83TEX	2009928091	3.5	148.0
PPX 82TEX	2009941944	3.5	157.0
PPX 82TEX	2009960723	3.4	182.0
PPX 82TEX	2010002277	3.4	187.0
PPX 82TEX	2010315956	3.4	173.0

Material	Roll Number		Grab Strength Ibs
PPX 650	2010551894	7.2	70.2
PPX 650	2010551900	6.9	72.1
PPX 650	2010566970	6.7	83.5
PPX 650	2010607028	7.7	76.1
PPX 650	2010607198	7.7	71.3
PPX 650	2010607201	8.0	83.6
PPX 650	2010607202	8.0	83.6
PPX 650	2010607205	7.5	64.5

Certifications from our suppliers are on file at our production facility. An '*' or 'PT indicates supplier certifications were unavailable prior to shipping so testing was performed at a CETCO lab. · · ·

			 * ** ~ ** **	х Ф Т Т Т	5 1		
CETCO 1500 WEST SHURE D ARLINGTON HEIGHTS		600	04	ORD	DER NO: 02419 DER DATE: 7/19 P DATE:. 7/29	5/2008	
SOLD TO: 67 THE SNOW CO PO BOX 9067	MPANY,	INC.		FRT	P FROM:. CETCO TERMS:. PREP P VIA: AMER	AID & ADD	
ALBUQUERQUE			M 87199	T T M	HIP TO: 05 HE SNOW COMPAN ORRANCE COUNT AUST CALL 48 H	Y LANDFILI RS PRIOR 1	
20: 6596					EE DIRECTIONS ORIARTY		87199
					LNGTH WIDTH S		
)-BENTOMAT ST							
)-BENTOMAT ST	SFT	SF	200829LO	00002871	150.0 15.0	2250.0	2560.0
)-BENTOMAT ST	SFT	SF	200829L0	00002872	150.0 15.0	2250.0	2555.0
)-BENTOMAT ST	SFT	SF	200829LO	00002873	150.0 15.0	2250.0	2565.0
BENTOMAT ST	SFT	SF	200829LO	00002874	150.0 15.0	2250.0	2550.0
D-BENTOMAT ST	SFT	SF	200829LO	00002875	150.0 15.0	2250.0	2545.0
D-BENTOMAT ST	SFT	SF	200829LO	00002884	150.0 15.0	2250.0	2575.0
D-BENTOMAT ST	SFT	SF	200829LO	00002893	150.0 15.0	2250.0	2550.0
)-BENTOMAT ST	SFT	SF	200829LO	00002896	150.0 15.0	2250.0	2570.0
)-BENTOMAT ST	SFT	SF	200829LO	00002898	150.0 15.0	2250.0	2580.0
)-BENTOMAT ST	SFT	SF	200829LO	00002900	150.0 15.0	2250.0	2590.0
0-BENTOMATA ST	SFT	SE	20082910	··00002901	150.0 15.0	22500\	2550.0
)-BENTOMAT ST	SFT	SF	200829LO	00002904	150.0 15.0	2250.0	2555.0
)-BENTOMAT ST	SFT	SF	200829LO	00002910	150.0 15.0	2250.0	2570.0
)-BENTOMAT ST	SFT	SF	200829LO	00002935	150.0 15.0	2250.0	2570.0
)-BENTOMAT ST	SFT	SF	200829LO	00002938	150.0 15.0	2250.0	2570.0
-BENTOMAT ST	SFT	SF	200829LO	00002958	150.0 15.0	2250.0	2595.0

ORDER TOTALS.....

_____ 38250.0 43640.0

TOTAL ITEMS..... 17

APPENDIX C

Material Manufacturer Certification and Conformance Testing Results

C.2. GCL Conformance Testing Results

٠

May 28, 2009

Mail To:

Bill To:

Mr. Mark DeCarlo Southwest Liner Systems, Inc. PO Box 1972 Bernalillo, NM 87004 <= Same

email: swls.md@gmail.com

Dear Mr. DeCarlo:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

Project:	Basin Disposal
TRI Job Reference Number:	E2325-33-07
Material(s) Tested:	1 Bentofix GCL(s)
Test(s) Requested:	Mass/Unit Area (ASTM D 5993) Bentonite - Swell Index (ASTM D 5890)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

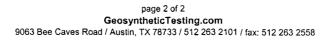
John Mallen

John M. Allen, P.E. Director Geosynthetic Services Division www.GeosyntheticTesting.com

GCL TEST RESULTS

TRI Client: Southwest Liner Systems, Inc. Project: Basin Disposal

Material: Bentofix GCL Sample Identification: No Label TRI Log #: E2325-33-07


PARAMETER	TEST R	EPLICAT		BER							MEAN	STD. DEV.
	1	2	3	4	5	6	7	8	9	10		
Bentonite - Mass/Unit Area (ASTI	VI D 5993, I	result @	0% M.C	.)								
Bentonite mass/unit area (lbs/ft ²)	0.96	0.97	1.03	0.94	1.01						0.98	0.04
Moisture Content (%)	9.1	8.9	9.1	9.2	9.1						9.1	0.1
Bentonite - Swell Index (ASTM D	5890)						<u> </u>			<u> </u>		
Water temperature at test intiation ((22 degree:	s C)										_
Swell index (mL/2g)	28										28]
Note: Bentonite sample tested is ta	aken from f	inished G	GCL prod	uct.								

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply

to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material.

TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

. .

June 8, 2009

Mail To:

Bill To:

<= Same

Mr. Mark DeCarlo Southwest Liner Systems, Inc. PO Box 1972 Bernalillo, NM 87004

email: swls.md@gmail.com

Dear Mr. DeCarlo:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

Project:	Basin Disposal
TRI Job Reference Number:	E2325-39-10
Material(s) Tested:	1 GCL(s)
Test(s) Requested:	Mass/Unit Area (ASTM D 5993) Bentonite - Swell Index (ASTM D 5890)

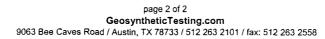
If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Jour Indur

Richard S. Lacey, P.E. Senior Engineer Geosynthetic Services Division www.Geosynthetic Lesting.com

GCL TEST RESULTS


TRI Client: Southwest Liner Systems, Inc. Project: Basin Disposal

Material: GCL Sample Identification: 2901 Retest TRI Log #: E2325-39-10

PARAMETER	TEST R	EPLICAT		BER							MEAN	STD. DEV.
	1	2	3	4	5	6	7	8	9	10		
Bentonite - Mass/Unit Area (AST	M D 5993,	result @	0% M.C	.)							i i	
Bentonite mass/unit area (lbs/ft ²)	0.80	0.99	0.92	0.85	0.82						0.88	0.08
Moisture Content (%)	92.3	67.8	74.1	73.7	89.3						79.4	10.7
Bentonite - Swell Index (ASTM D	5890)				<u> </u>						+	<u></u>
Water temperature at test intiation	(24 degree	s C)										_
Swell index (mL/2g)	26										26	
Note: Bentonite sample tested is ta	aken from f	inished G	GCL prod	luct.								
							-			_		

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

APPENDIX C

Material Manufacturer Certification and Conformance Testing Results

C.3. HDPE FML Certifications

INEOS Olefins & Polymers USA A Division of INEOS USA LLC

CERTIFICATE OF ANALYSIS

Seiling Company: INEOS Olefine & Polymers USA A Division of INEOS USA LLC 2600 South Shore Bivd. Suits 600 LEAGUE CITY, Texas 77573 United States Ship To: POLY-AMERICA LP 2000 W MARSHALL DRIVE GRAND PRAIRIE TX 75051 Contact: DEE AVERITE Aar Sold To: POLY-AMERICA LP

Delivery Doc Number/item: Print Date / Time: Sales Order Number/Dets: Customer PO Number/Date: 306901/ Shioment Date: Place of Despatch: Mode of Transport: Transport/Vehicia Number: Net Weight:

89015639/000010 12/29/2008/14:00:11 5119197/ 12/15/2008 12/29/2008 2558 AJV Polyethylene Deer Park 0007 Rail w/o rinboi AMCX004582 185,249.999 LB Page 1 of 1

Product Description: G36-10-150 PE PELLETS - BULK Betch Number; C081225L04

Characterístic	Method	Result	Unit	Specific	lions
				Xin	Max
HI 2.16 (1X)	ASTM D 1218	0.1250	g/10mn		
HI 11.6 (HLMI)	ASTM D 1236	12.80	g/lūmn	10.50	14.50
DENSITY (NATURAL)	ASTM 04883-03	0.9375	G/CNG	,0.9360	0.9390

On Decui

APPROVED BY: Quality Assurance Manager.

This certifies that the INEOS Polyethylene meets our specifications for the grade.

THIS REPORT CANNOT SE CORED OR REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN APPROVAL OF NEOR. REBULTS APPLY ONLY TO THE ITEMS TESTED. THIS DOCUMENT CONTAINS INFORMATION THAT MAY BE CONFIDENTIAL AND IS INTENDED ONLY FOR THE USE OF THE ADDRESSEE USE OF THIS INFORMATION BY ANYONE MAS IS STRUCTLY PROMISITED. IF YOU HAVE RECEIVED THIS IN EMADR. FLEASE NOTIFY US BY PHONE AT 1-100-027-5415.

INEOS Olefins & Polymers USA A Division of INEOS USA LLC

Selling Company: INEOS Olefins & Polymers USA A Division of INEOS USA LLC 2600 South Shore Bivd. Suite 500 LEAGUE CITY, Texas 77573 United States Ship Te: POLY-AMERICA LP 2000 W MARSHALL DRIVE GRAND PRAIRE TX 75051 Contect: DEE AVERITTE Fax: Sold To: POLY-AMERICA LP

CERTIFICATE OF ANALYSIS

Delivery Doc Number/Item:8901632Print Date / Time:01/02/20Seles Order Number/Date:5119192Customer PO Number/Date:306901/Shipment Dete:12/31/20Place of Despetch:2568 AJMode of Transport:0007 RailTransport/Vehicle Number:ELTX002Net Weight:186,550.

B9016326/000010 01/02/2009/11:45:06 5119192/ 12/15/2008 306901/ 12/31/2008 2566 AJV Polyethylene Dear Park 0007 Rail w/a rtnboi ELTX002366 186,550.001 LB Page 1 of 1

Product Description: G38-10-150 PE PELLETS - BULK Batch Number: C081231L03

Characteristic	Method	Result	Unit	Specific	tions
				M in	Max
HI 2.16 (1X)	ASTM D 1238	0.1180	g/lomn		
NI 21.6 (HLMI)	ASTM 0 1238	11.20	g/10mm	10.50	14.50
DENSITY (NATURAL)	ASTH D4883-03	0.9369	6/043	0.9160	0.9390

Om Decui

APPROVED BY: Quality Assurance Manager.

This certifies that the INEOS Polyethylene meets our specifications for the grade.

THIS REPORT CANNOT BE COPIED OR REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN APPROVAL OF INDOS. RESULTS APPLY ONLY TO THE INDUS TESTED. THIS DOCUMENT CONTAINS INFORMATION THAT MAY BE CONFIDENTIAL AND IS INTENDED ONLY FOR THE USE OF THE ADDRESSEE USE OF THIS INFORMATION BY ANYONE ELSE IS STRUCTLY PROHIBITED. IF YOU HAVE RECEIVED THIS IN EXCEL FLASE NOTIFY US BY FROME AT 1450-527-5419.

			OVEN AGING	D5885		%	80
			OXIDATIVE INDUCTION TIME	D3895		min.	100
			NCTL	D5397	App.	hrs	300
K, INC	Drive IS 75051		DENSILA	D1505		g/cc	0.940
POLY-FLEX, INC.	2000 W. Marshall Drive Grand Prairie, Texas 75051		DISPERSION CAR. BLK.	D5596			Cat 1or2
POLY	2000 Grand P		Break Elong @	D6693		%	200
			tensire @	D6693		ppi	228
6	ion	V	גוברם ברסאפ ©	D6693		%	12
May 11, 2009	Pre-Certification	AB/	AIETD LENRIFE @	D6693		iqq	126
×	Pre		BUNCTURE	D4833		q	108
DATE:	ORDER NO:	CERTIFIED BY:	RAAT	D1004		qı	42
H		ō	ALACK SARBON	D1603		%	2.0-3.0
SHEI		ition	THICKNESS	D5199	min/avg	mils	54/60
CERTIFICATION SHEET	PROJECT NO: 290302	TRIP NO: Pre-Certification	TEST DESCRIPTION	ASTM METHOD	(modifications)	UNITS	SPECIFICATION

TR	TRIP NO:	Pre-Certification	ation	Ū	CERTIFIED BY:		201	/								
	TESTL	TEST DESCRIPTION	THICKNESS	BLACK CARBON	ядэт	PUNCTURE	AIETD LENSIFE @	AIERD ERONG ©	TENSILE @	Break Elong @	DISPERSION CAR. BLK.	DENSITY	NCTL	OXIDATIVE INDUCTION TIME	OVEN AGING	UV BESISTANCE
	Ä	ASTM METHOD	D5199	D1603	D1004	D4833	D6693	D6693	D6693	D6693	D5596	D1505	D5397	D3895	D5885	D5885
	E	(modifications)	min/avg										App.			
		UNITS	mils	%	q	qI	ppi	%	ppi	%		g/cc	hrs	min.	%	%
	SP	SPECIFICATION	54/60	2.0-3.0	42	108	126	12	228	700	Cat 1or2	0.940	300	100	80	50
ROLL NUMBER	HBER	BLEND														
HS2-6-09	707-5	C081231L03	55 / 62	2.5	51	140	163	20	331	984	+	0.947	Pass	142	85	77
HS2-6-09	708-5	C081231L03	55 / 62	2.4	52	141	153	21	308	916	-	0.947	Pass	138	85	77
HS2-6-09	709-5	C081231L03	55 / 62	2.4	52	141	153	21	308	916	-	0.947	Pass	138	85	11
HS2-6-09	710-5	C081231L03	55 / 62	2.4	52	141	153	21	308	916	-	0.947	Pass	138	85	11
HS2-6-09	711-5	C081231L03	55 / 62	2.6	49	139	154	18	314	963	-	0.947	Pass	138	85	17
	712-5	C081231L03	54 / 62	2.6	49	139	154	18	314	963	-	0.947	Pass	138	85	77
Į –	713-5	C081231L03	55 / 62	2.6	49	139	154	18	314	963	-	0.947	Pass	138	85	17
	714-5	C081231L03		2.5	52	144	149	19	299	864		0.947	Pass	138	85	и
1	715-5	C081231L03	55 / 62	2.5	52	144	149	19	299	864		0.947	Pass	138	85	11
	716-5	C081231L03	55 / 62	2.5	52	144	149	19	299	864	-	0.947	Pass	138	85	11
HS2-6-09	717-5	C081231L03	55 / 62	2.4	50	144	156	19	309	976	-	0.947	Pass	132	85	11
HS2-6-09	718-5	C081231L03	55 / 62	2.4	50	144	156	19	309	976	-	0.947	Pass	132	85	77
	719-5	C081231L03	54 / 62	2.4	50	144	156	19	309	976	-	0.947	Pass	132	85	11
	720-5	C081231L03	55 / 62	2.6	54	142	153	21	312	912	-	0.947	Pass	132	85	11
1	721-5	C081226L04	55 / 62	2.6	54	142	153	21	312	912		0.947	Pass	132	85	77
	722-5	C081226L04	54 / 62	2.5	49	140	157	19	315	959		0.947	Pass	132	85	11
	723-5	C081226L04	55 / 62	2.5	49	140	157	19	315	959		0.947	Pass	132	85	77
l																

_			ACOID I MINCE	35		Τ	Τ	Τ				-			T				7
			UV RESISTANCE			%	20		2	17									
			OVEN AGING	D5885		%	80		85	85									
			OXIDATIVE INDUCTION TIME	D3895		min.	100		140	140									
			NCTL	D5397	App.	hrs	300		Pass	Pass									
	(, INC	Drive Is 75051	DENSILA	D1505		g/cc	0.940		0.947	0.947									
	POLY-FLEX, INC.	2000 W. Marshall Drive Grand Prairie, Texas 75051	DISPERSION CAR. BLK.	D5596			Cat 1or2		1										
	POLY	2000 Grand P	BYEAK Elong @	D6693		%	200		918	928									
:			BREAK TENSILE @	D6693		ppi	228		314	303									
	6	ion	גוברם ברסאפ @	D6693		%	12		20	19									
	May 11, 2009	Pre-Certification	גוברם LENSIרE @	D6693		ppi	126		149	155									
	Σ	Pre	PUNCTURE	D4833		qĮ	108		139	140									
	DATE:	ORDER NO: CERTIFIED BY:	RAET	D1004	_	qI	42		50	48									
	H	5	CARBON BLACK	D1603		%	2.0-3.0		2.6	2.7									
	HEI	noi	THICKNESS	D5199	min/avg	mils	54/60		54 / 62	55 / 62	1								
	CERTIFICATION SHEET	290302 Pre-Certification	TEST DESCRIPTION		(modifications)		SPECIFICATION	BLEND	C081226L04	C0812261.04 55 /									
	TIFIC	PROJECT NO:	TEST DE	ASI	Ĕ		SPE	UMBER	727-5	729-5									
	CER	PROJ						ROLL NUMBER	HS2-6-09	00-3-C2H									

)えの3の代) Material Pre-Certification List

4

Date:	5/11/2009	Material Type:	60HD
Project Number:	290302	Material Quantity:	19
Customer/Project:	SWLS / Bloomfield Basin Disp.	Completed by:	CM

#	Blend	Roll Number	Weight	Roll Description
1	C081226L04	HS2 - 6 - 09 - 0707 - 5	3,502	23' X 500' X .060HD
2	C081226L04	HS2 - 6 - 09 - 0708 - 5	3,503	23' X 500' X .060HD
3	C081226L04	HS2 - 6 - 09 - 0709 - 5	3,500	23' X 500' X .060HD
4	C081226L04	HS2 - 6 - 09 - 0710 - 5	3,498	23' X 500' X .060HD
5	C081226L04	HS2 - 6 - 09 - 0711 - 5	3,504	23' X 500' X .060HD
6	C081226L04	HS2 - 6 - 09 - 0712 - 5	3,509	23' X 500' X .060HD
7	C081226L04	HS2 - 6 - 09 - 0713 - 5	3,499	23' X 500' X .060HD
8	C081226L04	HS2 - 6 - 09 - 0714 - 5	3,505	23' X 500' X .060HD
9	C081226L04	HS2 - 6 - 09 - 0715 - 5	3,503	23' X 500' X .060HD
10	C081226L04	HS2 - 6 - 09 - 0716 - 5	3,506	23' X 500' X .060HD
11	C081226L04	HS2 - 6 - 09 - 0717 - 5	3,507	23' X 500' X .060HD
12	C081226L04	HS2 - 6 - 09 - 0718 - 5	3,503	23' X 500' X .060HD
13	C081226L04	HS2 - 6 - 09 - 0719 - 5	3,505	23' X 500' X .060HD
14	C081226L04	HS2 - 6 - 09 - 0720 - 5	3,503	23' X 500' X .060HD
15	C081226L04	HS2 - 6 - 09 - 0721 - 5	3,505	23' X 500' X .060HD
16	C081226L04	HS2 - 6 - 09 - 0722 - 5	3,500	23' X 500' X .060HD
17	C081226L04	HS2 - 6 - 09 - 0723 - 5	3,497	23' X 500' X .060HD
18	C081226L04	HS2 - 6 - 09 - 0727 - 5	3,505	23' X 500' X .060HD
19	C081226L04	HS2 - 6 - 09 - 0729 - 5	3,500	23' X 500' X .060HD

CoA Date: 01/26/2009

CPC Delivery #: 87803933

Hopper Car

PSPX001199

PO #: 46822

Mode:

Car #:

Weight: 190300 LB Ship Date: 01/26/2009

Package: BULK

Seal No: 270855

Textured LINER

Certificate of Analysis

Shipped To: CHEVRON PHILLIPS CHEM. CO LP: GSE 19103 GUNDLE ROAD WESTFIELD TX 77090 USA Recipient: UP TRACK 14732 Phouangsavanh Fax:

Product: MARLEX POLYETHYLENE K306 BULK

Lot Number: 8281601

Property	Test Method	Value	Unit
Melt Index	ASTM D1238	0.1	g/10mi
I Flow Rate	ASTM D1238	11.5	g/10mi
sity	ASTM D1505	0.936	g/cm3
Production Date		12/03/2008	

WAIVED BY TRACY BRADFORD

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP. However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Thay &

Troy Griffin Quality Systems Coordinator

For CoA questions contact Customer Service Representative at 800-231-1212

GSE Roll Allocation

Order e

56408 Sustomer Southwest Liner Systems Flood Recovery Project (Skyline)

ي المحصور

Roll#	Resin Lot	Product Code	Description	Mfg. Date	Length
103148916	8281601	HST060A000	HST060A000	2/23/2009	420
103148917	8281601	HST060A000	HST060A000	2/23/2009	420
103148918	8281601	HST060A000	HST060A000	2/23/2009	420
103148919	8281601	HST060A000	HST060A000	2/23/2009	420
103148920	8281601	HST060A000	HST060A000	2/23/2009	420
103148921	8281601	HST060A000	HST060A000	2/23/2009	420
103148922	8281601	HST060A000	HST060A000	2/23/2009	420
103148923	8281601	HST060A000	HST060A000	2/23/2009	420
103148924	8281601	HST060A000	HST060A000	2/23/2009	420
103148925	8281601	HST060A000	HST060A000	2/24/2009	420
103148926	8281601	HST060A000	HST060A000	2/24/2009	420
103148927	8281601	HST060A000	HST060A000	2/24/2009	420
103148928	8281601	HST060A000	HST060A000	2/24/2009	420
103148929	8281601	HST060A000	HST060A000	2/24/2009	420
103148930	8281601	HST060A000	HST060A000	2/24/2009	420
103148931	8281601	HST060A000	HST060A000	2/24/2009	420
103148932	8281601	HST060A000	HST060A000	2/24/2009	420
103148933	8281601	HST060A000	HST060A000	2/24/2009	420
103148934	8281601	HST060A000	HST060A000	2/24/2009	420
3148935	8281601	HST060A000	HST060A000	2/24/2009	420
-703148936	8281601	HST060A000	HST060A000	2/24/2009	420
103148937	8281601	HST060A000	HST060A000	2/24/2009	420
103148938	8281601	HST060A000	HST060A000	2/24/2009	420
103148939	8281601	HST060A000	HST060A000	2/24/2009	420
103148940	8281601	HST060A000	HST060A000	2/24/2009	420
103148941	8281601	HST060A000	HST060A000	2/24/2009	420
103148942	8281601	HST060A000	HST060A000	2/24/2009	420
103148943	8281601	HST060A000	HST060A000	2/24/2009	420
103148944	8281601	HST060A000	HST060A000	2/24/2009	420
103148945	8281601	HST060A000	HST060A000	2/24/2009	420
103148946	8281601	HST060A000	HST060A000	2/25/2009	420
103148947	8281601	HST060A000	HST060A000	2/25/2009	420
103148948	8281601	HST060A000	HST060A000	2/25/2009	420
103148949	8281601	HST060A000	HST060A000	2/25/2009	420

GSE 8.2.4-020 Rev -- 02/03

Thursday, February 26, 2009

Textured CINER

Page 1 of 2

Lining Technology, Inc	
GSB	

Project Number

Sales Order No.

TD Strength MD St

Minimum Thickness (mils)

Average Thickness (mils)

YEAS O HLSY

@ Yield

(jdd)

.48917

Roll No.

,48918

61

•.				Roll	Test	Data .	oll Tesenata Report	ţ						
		Customer Name	. Nome			Project Location	ation		Product Name	Vame	656		Report Date	
		Southwes	Southwest Liner System	stems		Acoma, NM	-		HST060A000	000	UL Reproved	0	2/26/2009	
		SEDU MIL	ASTH D638, Type IV / D6693				1001 G WLSV	1001	EERF O WLSV	SOLI D 1505	ASTH D 41187603	WES D WLSY	CRI CHI 13	un an
(D Strength	TD Strength	AfD Strength	TD Elongation	MD Elongation TD Elongation		MD Elongation	TD Tear	MD Tear	Puncture		Carbon Black	Carbon Black	Asperity Height	Asperity Height
@ Yield	@ Breat	@ Break		@ Yield		@ Break	Resistance	Resistance	Resistance	Density	Content	Disperaton	Side A	Side B
(juld)	(tdd)	(pdd)	(% 2)	S	(S)	£	(tps)	(ths)	(tps)	(K/cc)	(94)	Views in Call - Cal2	(mits)	(mils)
		2	every 4th				every tit	414	every 4th	every tth	every 4th	every 4th	every 2nd	had
149	227	238	17	19	626	624	51	54	153	0.945	2.47	10	18	
144	238	245	18	19	648	634	50	53	154	0.946	2.58	10	18	
144	238	245	18	19	648	634	50	53	154	0.946	2.58	10	18	
144	238	245	18	19	648	634	50	53	154	0.946	2.58	10	18	
144	238	245	18	19	648	634	50	53	154	0.946	2.58	10	18	
149	222	242	17	18	639	666	50	51	151	0.946	2.64	10	18	
149	222	242	17	18	639	666	50	51	151	0.946	2.64	10	18	
149	222	242	17	18	639	666	50	51	151	0.946	2.64	10	18	
149	222	242	17	18	639	666	50	51	151	0.946	2.64	1 0	18	
157	213	252	16	19	612	637	50	53	151	0.947	2.52	10	18	
157	213	252	16	19	612	637	50	53	151	0.947	2.52	10	19	
157	213	252	16	19	612	637	50	53	151	0.947	2.52	10	19	
157	213	252	16	19	612	637	50	53	151	0.947	2.52	10	19	
149	227	236	17	19	628	626	51	53	148	0.946	2.49	10	19	
149	227	236	17	19	628	626	51	53	148	0.946	2.49	10	19	
149	227	236	17	19	628	626	51	53	148	0.946	2.49	10	19	
149	227	236	17	19	628	626	51	53	148	0.946	2.49	10	19	
152	238	258	17	19	648	640	52	54	157	0.946	2.34	10	19	
152	238	258	17	19	648	640	52	54	157	0.946	2.34	10	18	
152	238	258	17	19	648	640	52	54	157	0.946	2.34	10	18	
152	238	258	17	19	648	640	52	54	157	0.946	2.34	10	16	
146	220	243	17	19	572	636	51	54	145	0.948	2.75	10	16	-7
146	220	243	17	19	572	636	51	54	145	0.948	2.75	10	17	ex
146	220	243	17	19	572	636	51	54	145	0.948	2.75	10	17	t
146	220	243	17	19	572	636	51	54	145	0.948	2.75	10	17	int
145	212	239	17	18	596	668	48	52	145	0.947	2.49	თ	17	<u>دې</u>
145	212	239	17	18	596	668	48	52	145	0.947	2.49	б	21	C

Textures CINER
 110

 110

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

> 2.75 2.49 2.49 2.49 2.49

8 8

103148942

0.947 0.947 0.947 0.947 0.946 0.946

654

809

(103148930

 6 6 9 9 9

2.56

2.56 2.56

0.946

49

Umphing Order - Packing List - Origina Not Negotiable

GSE Lining Technology, Inc. at HOUSTON, TEXAS

Shippers No. 82188

03/02/09

SO

Page 1 of 1

extured (iner
KIUREIS (INRA

Date:

Sales Order

56408

Received at Houston, Texas from GSE Lining Technology, Inc. the property described below, in apparent good order, except as noted (contents and condition of packages unknown), marked, consigned, and destined as indicated below, which said Carrier agrees to carry to the place of delivery at said destination. It is mutually agreed as to each Carrier of all or any said property, over all or any portion of said route to destination, and as to each party at any time interested in all or any of said property, that every service performed hereunder shall be subject to the rates and contract agreed to in writing by GSE Lining Technology, Inc. and Carrier. GSE Lining Technology, Inc.'s obligation to pay freight charges for the shipment is conditioned on (1) the existence of a separate written contract with the carrier transporting the freight and (2) the carrier's name appearing on this Bill of Lading, and other carriers must look solely to a party other than GSE Lining Technology, Inc. for payment.

Ship To:	Southwest Liner/Flood Recovery Project
	i-40 West take exit 102 go south
	on SP30 5 miles past SP 32 1/3 mile
	turn rite on dirt rd.
	Mike Bonner @ 505-379-9468
	Acoma NM 87034

Roll Certifications Included

Branch Plant: 1500

Shipping Instructions:

Call 24 hours before delivery

Mike Bonner @ 505-379-9468

No. QTY Kind of Package, Description of Articles, Roll # UM Project# 526103 Weight Line Shipped Special Marks and Exceptions ุ 1 EA FREIGHTSHT001 DOM. SHIPPING CHARGE Freight charges are DOMESTIC SHEET NON TAXABLE prepaid unless marked 2 SF 3.028.00 collect. 103148916 9450 HST060A000 60 mil Avg GSE HD Textured Blk, HD, 1 Side Tex, 22.5 Check box if collect 2,996.00 3 9450 SF 60 mil Avg GSE HD Textured 103148917 HST060A000 Blk, HD, 1 Side Tex, 22.5 4 103148918 9450 SF HST060A000 60 mil Avg GSE HD Textured 3,010.00 Customer P.O. Number: Blk, HD, 1 Side Tex, 22.5 5 9450 SF 3,016.00 HST060A000 60 mil Avg GSE HD Textured 103148919 SLS904 Blk, HD, 1 Side Tex, 22.5 3.046.00 6 103148921 9450 SF HST060A000 60 mil Avg GSE HD Textured If this shipment is to be delivered to consignar, Blk, HD, 1 Side Tex, 22.5 consignor shall sign the SF 3,022.00 103148926 9450 60 mil Avg GSE HD Textured HST060A000 following statement. Blk, HD, 1 Side Tex, 22.5' Carrier may decline to deliver 8 SF 3,028.00 103148927 9450 HST060A000 60 mil Avg GSE HD Textured this shipment without payment of freight and all Blk, HD, 1 Side Tex, 22.5' other lawful charges. 9 103148928 9450 SF HST060A000 60 mil Avg GSE HD Textured 3,022.00 Blk, HD, 1 Side Tex, 22.5 03148930 SF 3,036.00 10 9450 HST060A000 60 mil Avg GSE HD Textured Blk, HD, 1 Side Tex, 22.5 Signature of Consignor 103148940 9450 SF 60 mil Avg GSE HD Textured 3,016.00 11 HST060A000 Blk, HD, 1 Side Tex, 22.5' Local Verification 9450 3,020.00 12 103148941 SF HST060A000 60 mil Avg GSE HD Textured Signed: Blk, HD, 1 Side Tex, 22.5' 60 mil Avg GSE HD Textured 9450 SF 3,030.00 13 03148942 HST060A000 Blk, HD, 1 Side Tex, 22.5' SF 60 mil Avg GSE HD Textured 3,030.00 9450 14 103148943 HST060A000 Blk, HD, 1 Side Tex, 22.5 9450 SF 60 mil Avg GSE HD Textured 3,020.00 15 103148948 HST060A000 Pick Up # Blk, HD, 1 Side Tex, 22.5' 9450 SF 3.010.00 16 103148949 HST060A000 60 mil Avg GSE HD Textured Seal # Blk, HD, 1 Side Tex, 22.5' 314109 NO SOON Truckers P.O. # 141,751 45,330.00 **Total Quantity** Total Weight: Priver Requirements: Carrier Name: Driver must pre call 24 hrs prior to delivery and on Friday for Monday delivery. 2) Driver must call (281) 230-6781 when unloaded. 3) Driver must call and advise any delay in transit. Carrier Signature: _ 4) A copy of this bill of lading must accompany Freight Invoice.

Date:

	J)	

.

Roll Test Data Report

668 E Estimate Incharter Inc

Bill of Lading: 32188

Sales Ordet No.	No.	Pr	Project Number	nber	U.	Customer Nume	3KU		Projec	Project Location		đ	Product Name	me			Repart Date	Date
56408		52	526103		ŏ	Southwest Liner Systems	ner System	ري رو	Acoma, NM	WN.		Ĩ	HST060.4000			Brout	3/2/2009	600
																		Modified
	1991 IL WILSH	róni i					- [n994] / 11 ad				roat a JULST		ASTALD JALL ASTALD 1808	(STM D-1503		SOLL UNIVERSIG	CIN (MI) 13	51
	1701212	L'inner 11	Anger Straight	histo ny UN	in Sungdi	19 Surveyo – Ath Surveyor – Ath Surveyor - Ath Surveyor Ath Rayonov Ath Rayonov II. Khorganov Aih Ekvyyorov	ID Panjatica S	10 Gloriganon	S. Churanica J.	ND Eknigenow	71) [at	MO Rew	بالعاديان والمحرج	Ŭ	arter flach	-110-1101 Carbon Alach - Carbur Blonch Aqueric Herghi Ayuras Herghi	લ્લા ઉંડાયુના તેલુ	wee, Height
	Physics 1	Preday 12	2, V.e.U	B -11 ()	il Awal	ji, dr. wê	S 11.40	MM1 2 .	S Peral	Anna,	Perintanan	Residence	Kenjama	(Nevani	(entra	Digweek	5:4.1	54.4
	ومنادر	inul 1	lichty	is di	(i/kdj	(tek)	ŝ	63	∿ 0	ŝ	ilwi	isel.	Jest	ود ندرا	if.	Faus in Call - Call	(mit)	(41)(2)
Roll No.	par Sais	itai				in the main the	- 40î				eres, Adi	tet.	the group	energ de	ديدين ثالا	also vero	per úna	,
103148916	62	55	159	149	227	238	17	19	626	624	51	54	153	0.945	2.47	10	18	
103148917	62	58	154	144	238	245	18	19	648	634	50	53	154	0.946	2.58	10	18	
103148918	61	57	154	144	238	245	18	19	648	634	50	53	154	0.946	2.58	10	18	
103148919	61	58	154	144	238	245	18	6	648	634	50	53	154	0.946	2.58	10	13	
103148921	62	58	152	149	222	242	17	18	639	666	50	51	151	0.946	2.64	10	18	
103148926	61	58	161	157	213	252	16	19	612	637	50	53	151	0.947	2.52	10	19	,×**
103148927	61	58	161	157	213	252	16	19	612	637	50	53	151	0.947	2.52	10	19	
103148928	61	58	161	157	213	252	16	19	612	637	50	53	151	0.947	2.52	10	19	
103148930	61	58	156	149	227	236	11	19	628	626	51	53	148	0.946	2.45	10	19	
103148940	61	57	156	146	220	243	17	19	572	636	51	54	145	0.948	2.75	10	17	
103148941	61	57	149	145	212	239	. <i>L</i> .	18	596	668	48	52	145	0.947	2.45	6	17	
1034489424	62	53	149	145	212	239	1	18	596	668	48	52	145	0.947	2.45	6	21	
103148943	62	58	149	145	212	239	۷.	18	596	668	48	52	145	0.947	2.45	6	21	
103148948	63	58	144	137	200	230	8,	20	609	654	49	51	138	0.946	2.56	10	20	
103148949	62	57	154	150	222	231	8.	19	652	645	50	54	141	0.945	2.58	<i>б</i>	20	

(9103 Gurdle Road - Houston, Texas 77073

Page: 1 of 1

GSE-8.2.4-029 Rev - - J3/05

This test report shall not be reproduced, except in full, without written approval of the laboratory.

(della

puc

Approved By: 604:11 80 SD 76M

APPENDIX C

Material Manufacturer Certification and Conformance Testing Results

C.4. FML Conformance Testing Results

Mav	29,	2009

Mail To:		Bill To:
Mr. Mark DeCarlo Southwest Liner Systems, Inc PO Box 1972 Bernalillo, NM 87004	с.	<= Same
email: swls.md@gmail.com		
Dear Mr. DeCarlo:		
Thank you for consulting TRI/E TRI is pleased to submit this fir	•	RI) for your geosynthetics testing needs. ry testing.
Project:	Basin Disposal	
TRI Job Reference Number:	E2326-83-10	
Material(s) Tested:	2 Poly-Flex 60 mi	mooth
Test(s) Requested:	Thickness (ASTM D Density (ASTM D 1) Carbon Content (AS Carbon Dispersion Tensile (ASTM D 66 Tear Resistance (A)	505) STM D 1603 mod.) (ASTM D 5596) S93)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Matel

Dr. Mansukh Patel Sr. Laboratory Coordinator Geosynthetic Services Division www.GeosyntheticTesting.com

cc: Sam R. Allen, Vice President and Division Manager

GEOMEMBRANE TEST RESULTS

TRI Client: Southwest Liner Systems, Inc.

Project: Basin Disposal

Material: Poly-Flex 60 mil Smooth HDPE Geomembrane Sample Identification: HS2-6-09-0713-5 TRI Log #: E2326-83-10

											STD.
PARAMETER					5	6	7	8	9	10	MEAN DEV.
Thickness (ASTM D 5199)	1	2	3	4	5	0	'	0	э	10	
Thickness (mils)	61	59	57	62	65	64	62	61	64	67	62 3 57 << min
Density (ASTM D 1505)							<u> </u>				
Density (g/cm3)	0.942	0.942	0.942								0.942 0.000
Carbon Black Content (ASTM D 1603 n	nod.)										
% Carbon Black	2.59	2.59									2.59 0.00
Carbon Black Dispersion (ASTM D 559	6)										
Rating - 1st field view	1	1	1	1	1						
Rating - 2nd field view	1	1	1	1	1						ł
Tensile Properties (ASTM D 6693, 2 ipr	n strain rate)									
MD Yield Strength (ppi)	169	148	173	170	158						164 10
TD Yield Strength (ppi)	176	161	166	173	167						169 6
MD Break Strength (ppi)	298	258	311	253	291						282 25
TD Break Strength (ppi)	308	271	297	326	315						303 21
MD Yield Elongation (%)	21	20	20	23	25						22 2
TD Yield Elongation (%)	19	18	20	22	23						20 2
MD Break Elongation (%)	806	790	841	699	844						796 59
TD Break Elongation (%)	881	830	870	964	955						900 58
Tear Resistance (ASTM D 1004)											
MD Tear Strength (lbs)	53	54	54	53	53	49	52	52	51	54	53 2
TD Tear Strength (lbs)	51	48	50	49	51	51	48	50	49	50	50 1
MD Machine Direction	TD Trans	verse Dire	ction								L

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

GEOMEMBRANE TEST RESULTS

TRI Client: Southwest Liner Systems, Inc.

Project: Basin Disposal

Material: Poly-Flex 60 mil Smooth HDPE Geomembrane Sample Identification: HS2-6-09-0722-5 TRI Log #: E2326-83-10

PARAMETER	TEST RE	PLICATE	NUMBER	ł							MEAN	STD. DEV.
	1	2	3	4	5	6	7	8	9	10		
Thickness (ASTM D 5199)												
Thickness (mils)	61	61	66	60	63	65	65	60	63	62	63	2
											60	<< mir
Density (ASTM D 1505)					<u>.</u>		.					
Density (g/cm3)	0.948	0.948	0.948								0.948	0.000
Carbon Black Content (ASTM D 1603	mod.)	· · ·		· · · · ·								
% Carbon Black	2.58	2.58									2.58	0.00
Carbon Black Dispersion (ASTM D 55	96)									·		
Rating - 1st field view	2	1	1	1	1							
Rating - 2nd field view	1	1	1	1	1							
Tensile Properties (ASTM D 6693, 2 ip	om strain rate))					•					
MD Yield Strength (ppi)	159	157	159	167	173						163	7
TD Yield Strength (ppi)	163	166	169	169	173						168	4
MD Break Strength (ppi)	302	305	310	277	301						299	13
TD Break Strength (ppi)	311	334	274	284	326						306	26
MD Yield Elongation (%)	22	22	23	23	25						23	1
TD Yield Elongation (%)	20	20	22	20	22						21	1
MD Break Elongation (%)	829	850	861	760	801						820	41
TD Break Elongation (%)	896	940	798	815	921						874	64
Tear Resistance (ASTM D 1004)									··			
MD Tear Strength (lbs)	55	53	49	57	52	53	56	49	53	53	53	3
TD Tear Strength (lbs)	51	50	48	55	51	50	51	49	49	55	51	2

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

July 21, 2009

Mail To:		Bill To:
Mr. Mark DeCarlo Southwest Liner Systems, Inc PO Box 1972 Bernalillo, NM 87004		<= Same
email: swls.md@gmail.com		
Dear Mr. DeCarlo:		
Thank you for consulting TRI/Er TRI is pleased to submit this fina		 for your geosynthetics testing needs. testing.
Project:	Basin Disposal	
TRI Job Reference Number:	E2330-68-02	
Material(s) Tested:	1 Single Sided Textu	red 60 mil HDPE Geomembrane(s)
Test(s) Requested:	Thickness (ASTM D = Density (ASTM D 792 Carbon Content (AST Carbon Dispersion (A Tensile (ASTM D 669 Tear Resistance (AS	2) FM D 1603 mod.) ASTM D 5596) 93/GRI GM13)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

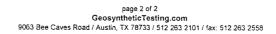
Sincerely,

Patel

Dr. Mansukh Patel Sr. Laboratory Coordinator Geosynthetic Services Division www.GeosyntheticTesting.com

cc: Sam R. Allen, Vice President and Division Manager

GEOMEMBRANE TEST RESULTS


TRI Client: Southwest Liner Systems, Inc.

Project: Basin Disposal

Material: Single Sided Textured 60 mil HDPE Geomembrane Sample Identification: 8930 TRI Log #: E2330-68-02

											STD.
PARAMETER			NUMBER								MEAN DEV.
Thickness (ASTM D 5994)	1	2	3	4	5	6	7	8	9	10	
Thickness (mils)	63	59	61	64	63	65	61	63	65	63	63 2
											59 << min
Density/Specific Gravity (ASTM D 792, M	lethod A)										
Density (g/cm3)	0.943	0.944	0.944								0.944 0.001
Density (g/ch/s)	0.545	0.944	0.544								1_0.944
Carbon Black Content (ASTM D 1603 mc	od.)										
% Carbon Black	2.59	2.63									2.61 0.03
Carbon Black Dispersion (ASTM D 5596)										
Rating - 1st field view	1	2	2	2	1						
Rating - 2nd field view	1	1	1	1	1						
Tensile Properties (ASTM D 6693, 2 ipm	strain rate)			 						
MD Yield Strength (ppi)	171	158	167	160	163						164 5
TD Yield Strength (ppi)	166	171	168	172	177						171 4
MD Break Strength (ppi)	227	217	237	148	235						213 37
TD Break Strength (ppi)	214	222	178	177	227						204 24
MD Yield Elongation (%)	19	19	19	19	19						19 0
TD Yield Elongation (%)	19	19	19	19	19						<u>19</u> 0
MD Break Elongation (%)	565	575	594	346	605						537 108
TD Break Elongation (%)	596	604	470	473	596						548 70
Tear Resistance (ASTM D 1004)											
MD Tear Strength (lbs)	56	53	56	56	58	57	58	54	55	51	55 2
TD Tear Strength (lbs)	51	58	47	55	51	59	56	52	58	53	54 4
MD Machine Direction	TD Trans	verse Dire	ction								<u> </u>

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

APPENDIX C

Material Manufacturer Certification and Conformance Testing Results

C.5. Poly-Flex Geonet Certifications

CoA Date: 10/24/2007

1 · · · ·

Certificate of Analysis

ALL WAR LIVES

Shipped To: POLY AMERICA: GP (GEO) 2000 W MARSHALL GRAND PRAIRIE TX 75051 USA Recipient: Averitte Fax;

.

. . . .

CPC Delivery #: 87516218 PO #: 273656 Weight: 206000 LB Ship Date: 10/24/2007 Package: BULK Mode: Hopper Car Car #: HCBX001617 Seal No: 471177

Product:

Marlex Polyethylene HHM 5502BN BULK

Lot Number: CWK610841

Property	Test Method	Value	Unit
Melt Index	ST-103	0.36	g/10mi
Density	ST-292	0.9544	g/cm3

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP. However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Kay F. Donaldson Quality Control Supervisor

For CoA questions contact Tom Scheirman at 832-813-4637

CoA Date: 10/24/2007

11V1 22TT

1. 1/1

Certificate of Analysis

JIL JJE ITVI

THE LALVES MILE

Shipped To: POLY AMERICA: GP (GEO) 2000 W MARSHALL GRAND PRAIRIE TX 75051 USA

1 1 1 4 1 1 1 11

Recipient: Averitte Fax: CPC Delivery #: 87516220 PO #: 273656 Weight: 204400 LB Ship Date: 10/24/2007 Package: BULK Mode: Hopper Car Car #: HCBX001668 Seal No: 471179

Product:

Marlex Polyethylene HHM 5502BN BULK

Lot Number: CWK610851

Property	Test Method	Value	Unit
Melt Index	ST-103	0.34	g/10mi
Density	ST-292	0.9548	g/cm3

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP. However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Kay F. Donaldson Quality Control Supervisor

For CoA questions contact Tom Scheirman at 832-813-4637

	CENTIFICATION SHEET	SHE	ĒŢ	DATE:	May 11, 2009	POLY-FLEX, INC.	EX, INC.
PROJ	PROJECT NO:	7	290302	ORDER NO:	Pre-Certification	Grand Prairie, Texas 75051	exas 75051
j –	TRIP NO:	Pre-C	Pre-Certification	CERTIFIED BY:	H H		
	TEST DESCRIPTION	IPTION	THICKNESS	CARBON BLACK	PEAK TENSILE STRENGTH (MD)	*TRANSMISSIVITY(MD)	DENSITY
	ASTM METHOD	ETHOD	D5199	D1603	D7179	D4716	D1505
	(modifications)	ations)	avg				
		UNITS	mils	%	lb/in	x10 ⁻³ m ² /S	g/cc
	SPECIFICATION	CATION	200	2-3	45	4	0.940
ROLL NUMBER	IBER						
GN-200-08	302-325		200	2.4	65	2.14	0.951
GN-200-08	510-325		200	2.6	69	2.40	0.957
GN-200-08	515-325		200	2.6	69		0.957
GN-200-08	517-325		200	2.6	69		0.957
GN-200-08	518-325		200	2.6	69		0.957
GN-200-08	522-325		200	2.8	64		0.957
GN-200-08	524-325		200	2.8	64		0.957
GN-200-08	525-325		200	2.6	67		0.958
GN-200-08	528-325		200	2.6	67		0.958
GN-200-08	529-325		200	2.6	67		0.958
GN-200-08	530-325		200	2.8	61	2.46	0.958
GN-200-08	531-325		200	2.8	61		0.958
GN-200-08	532-325		200	2.8	61		0.958
GN-200-08	533-325		200	2.8	61		0.958
GN-200-08	534-325		200	2.8	61		0.958
GN-200-08	535-325		200	2.8	61		0.958
			000	× C	61		0.958

*Transmissivity test is performed at gradient of 1.0, normal pressure of 10,000 psf, between metal plates for a seat time of 15 minutes.

...

• •

CENTRICATION SHET DATE: May 11, 2009 POLYFIEX, INC. FROJECT NO. 28032 ORDER NO. Prov. Mashellone TRUECT NO. 28032 ORDER NO. CERTIFICATION CERTIFICATION TRUE NO. PROJECT NO. 28032 ORDER NO. CERTIFICATION CERTIFICATION								
COLECT NO: 290302 ORDER NO: Pre-Certification Grand Fraite, Texas TRIP NO: Pre-Certification CERTIFIED BY: Cond Fraite, Texas TEST DESCRIPTION THICKNESS CARBON BLACK FEAK TENSILE TRANKINSSVITY(MD) TIST DESCRIPTION THICKNESS CARBON BLACK PREAM TENSILE TRANKINSSVITY(MD) MILICK 1 23 D1179 D4176 D4166 MILICK MILICK 243 23 D4179 D4176 D4176 MILICK MILICK MILICK 2-3 45 1 X10 ⁻¹ m ² /s D4176 MILICK MILICK 200 2-3 61 X10 ⁻¹ m ² /s D4176 ST-1255 200 2-3 61 2-44 E	CEN	FICATI	ON SHE	ET	DATE:	May 11, 2009		.EX, INC.
TRIP NO: Pre-Certification CERTIFIED BY: TEST DESCRPTION THICKNESS CARBON BLACK FEAK TENSILE TEST DESCRPTION THICKNESS CARBON BLACK FEAK TENSILE ASTIM METHOD D5139 D1003 D7179 D4716 ASTIM METHOD D5139 D1003 D7179 D4716 ASTIM METHOD D5139 D1003 D7179 D4716 ASTIM METHOD D5139 D7179 D7179 D4716 ASTIM METHOD D5139 SPECIFICATION 200 2.3 45 1 MIDER SPECIFICATION 200 2.8 61 2.44 1 2.44 S137.325 200 2.8 61 67 2.44 1 2.44 S132325 200 2.8 61 2.4 </th <th>PR(</th> <th>DJECT NO:</th> <th></th> <th>290302</th> <th>ORDER NO:</th> <th>1</th> <th>Grand Prairie,</th> <th>Texas 75051</th>	PR(DJECT NO:		290302	ORDER NO:	1	Grand Prairie,	Texas 75051
TEST DESCRIPTIONTHUCKNESSCARBON BLACKFEAK TENSILE STRENGTH (MD)TRANISMISSULTY(MD)TEST DESCRIPTIOND6199D1603D7179D4716 $ASTM METHOD05199D1603D7179D4716motifications)avgmis\kappablin\chi 10^{-1} m^2/sMotifications)avg2-3451Motifications)2002.86161ST7322002.8611^{-1}ST7322002.86154^{-1}S17322002.861244S173252002.667244S13252002.667244543252002.667244543252002.66767^{-1}543252002.66767^{-1}543262002.66767^{-1}543262002.667^{-1}543352002.667^{-1}543352002.667^{-1}543362002.667^{-1}5433752002.667^{-1}543382002.667^{-1}543382002.667^{-1}543382002.6543382002.6543382.0543382.0543382.0543382.061^{-1}2.4461^{-1$		TRIP NO:	Pre-C	Certification	CERTIFIED BY:			
		TFSTD	FSCRIPTION	THICKNESS	CARBON BLACK	PEAK TENSILE STRENGTH (MD)	*TRANSMISSIVITY(MD)	DENSITY
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		AS	TM METHOD	D5199	D1603	D7179	D4716	D1505
		<u>()</u>	odifications)	avg				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			UNITS	mils	%	lb/in	x10 ⁻³ m ² /S	g/cc
WUMBER 200 2.8 61 537.325 200 2.8 61 538.325 200 2.8 61 538.325 200 2.8 61 538.325 200 2.8 61 533.325 200 2.8 67 2.44 543.325 200 2.6 67 2.44 543.325 200 2.6 67 2.44 543.325 200 2.6 67 2.44 543.325 200 2.6 67 2.44 543.325 200 2.6 67 2.44 543.325 200 2.6 67 2.44 543.325 200 2.6 67 2.44 543.325 200 2.6 67 67 549.325 200 2.6 67 67 549.325 200 2.6 67 67 6 9 61 9 67 6 9 61 67 67 6 2.44 67 67 67 7 9 9 67 67 6 9 67 67 6 <		IdS	ECIFICATION	200	2-3	45	1	0.940
537-326 200 2.8 61 61 539-325 200 2.8 61 2.44 539-325 200 2.8 61 2.44 542-325 200 2.6 67 2.44 543-325 200 2.6 67 2.44 543-325 200 2.6 67 2.44 543-325 200 2.6 67 2.44 543-325 200 2.6 67 2.44 543-325 200 2.6 67 2.44 549-325 200 2.6 67 9.75 549-326 200 2.6 67 9.74 549-326 2.00 2.6 67 9.74 61 9.75 67 9.74 9.74 744 7 7.74 7.74 7.74 749-316 9.00 2.6 67 9.74 749-317 9.74 7.74 7.74 7.74 <td>ROLL NI</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ROLL NI							
538-325 200 2.8 61 2.00 539-325 200 2.8 61 2.44 543-325 200 2.6 67 2.44 543-325 543-325 200 2.6 67 2.44 543-325 543-325 549-325 <td>GN-200-08</td> <td>537-325</td> <td></td> <td>200</td> <td>2.8</td> <td>61</td> <td></td> <td>0.958</td>	GN-200-08	537-325		200	2.8	61		0.958
539-325 200 2.8 61 244 542-325 200 2.6 67 2.44 543-325 200 2.6 67 2.44 543-325 200 2.6 67 2.44 543-325 200 2.6 67 2.44 549-325 200 2.6 67 67 549-325 200 2.6 67 67 549-325 200 2.6 67 67 64 1 1 1 1 64 1 1 1 1 549-325 200 2.6 67 67 64 1 1 1 1 1 1 1 1 1 549-325 200 2.6 67 67 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GN-200-08	538-325		200	2.8	61		0.958
542.325 200 2.6 67 2.44 543.325 200 2.6 67 7.4 543.325 200 2.6 67 67 7.4 545.325 200 2.6 67 67 7.4 549.325 200 2.6 67 67 7.4 549.325 200 2.6 67 67 7.4 740 7.0 2.6 67 67 7.4 740 7.6 67 67 7.4 7.4 740 7.6 67 67 7.4 7.4 740 7.6 67 67 7.4 7.4 740 7.6 67 67 7.4 7.4 7.4 740 7.4 7.4 7.4 7.4 7.4 7.4 7.4 740 7.4 7.4 7.4 7.4 7.4 7.4 7.4 740 7.4 7.4 <t< td=""><td>GN-200-08</td><td>539-325</td><td></td><td>200</td><td>2.8</td><td>61</td><td></td><td>0.958</td></t<>	GN-200-08	539-325		200	2.8	61		0.958
543-325 200 2.6 67 544-325 200 2.6 67 543-325 200 2.6 67 549-325 200 2.6 67 549-325 200 2.6 67 6 7 67 67 7 7 7 7 7 7	GN-200-08	542-325		200	2.6	67	2.44	0.958
544-325 200 2.6 67 545-325 200 2.6 67 549-325 200 2.6 67 549-325 200 2.6 67 67 67 67 68 67 67 69 67 67	GN-200-08	543-325		200	2.6	67		0.958
545-325 200 2.6 67 549-325 200 2.6 67 549-315 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GN-200-08	544-325		200	2.6	67		0.958
549-325 200 2.6 67 67 67 67	GN-200-08	545-325		200	2.6	67		0.958
	GN-200-08	549-325		200	2.6	67		0.958

*Transmissivity test is performed at gradient of 1.0, normal pressure of 10,000 psf, between metal plates for a seat time of 15 minutes.

Polyflex, mc.

Date:	5/11/2009	Material Type:	GN200
Project Number:	290302	Material Quantity:	25
Customer/Project:	SWLS / Bloomfield Basin Disp.	Completed by:	CM

#	Net	Roll Number	Weight	Roll Description
1	200 MIL	GN - 200 - 08 - 0302 - 325	✓ 845	14' X 325' X Net
2	200 MIL	GN - 200 - 08 - 0510 - 325	✓ 825	14' X 325' X Net
3	200 MIL	GN - 200 - 08 - 0515 - 325	✓ 820	14' X 325' X Net
4	200 MIL	GN - 200 - 08 - 0517 - 325	820	14' X 325' X Net
5	200 MIL	GN - 200 - 08 - 0518 - 325	✓ 825	14' X 325' X Net
6	200 MIL	GN - 200 - 08 - 0522 - 325	825	14' X 325' X Net
7	200 MIL	GN - 200 - 08 - 0524 - 325	[∼] 825	14' X 325' X Net
8	200 MIL	GN - 200 - 08 - 0525 - 325	· 825	14' X 325' X Net
9	200 MIL	GN - 200 - 08 - 0528 - 325	✓ 835	14' X 325' X Net
10	200 MIL	GN - 200 - 08 - 0529 - 325	835	14' X 325' X Net
11	200 MIL	GN - 200 - 08 - 0530 - 325	✓ 810	14' X 325' X Net
12	200 MIL	GN - 200 - 08 - 0531 - 325	✓ 840	14' X 325' X Net
13	200 MIL	GN - 200 - 08 - 0532 - 325	823	14' X 325' X Net
14	200 MIL	GN - 200 - 08 - 0533 - 325	✓ 818	14' X 325' X Net
15	200 MIL	GN - 200 - 08 - 0534 - 325	820	14' X 325' X Net
16	200 MIL	GN - 200 - 08 - 0535 - 325	823	14' X 325' X Net
17	200 MIL	GN - 200 - 08 - 0536 - 325	825	14' X 325' X Net
18	200 MIL	GN - 200 - 08 - 0537 - 325	820	14' X 325' X Net
19	200 MIL	GN - 200 - 08 - 0538 - 325	820	14' X 325' X Net
20	200 MIL	GN - 200 - 08 - 0539 - 325	823	14' X 325' X Net
21	200 MIL	GN - 200 - 08 - 0542 - 325	825	14' X 325' X Net
22	200 MIL	GN - 200 - 08 - 0543 - 325	✓ 830	14' X 325' X Net
23	200 MIL	GN - 200 - 08 - 0544 - 325	✓ 825	14' X 325' X Net
24	200 MIL	GN - 200 - 08 - 0545 - 325	830	14' X 325' X Net
25	200 MIL	GN - 200 - 08 - 0549 - 325	825	14' X 325' X Net

¥

......

APPENDIX C

Material Manufacturer Certification and Conformance Testing Results

C.6. Geonet Conformance Testing Results

May 29, 2009

Mail To:

Bill To: <= Same

Mr. Mark DeCarlo Southwest Liner Systems, Inc. PO Box 1972 Bernalillo, NM 87004

email: swls.md@gmail.com

Dear Mr. DeCarlo:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

Project:	Basin Disposal
TRI Job Reference Number:	E2326-83-10
Material(s) Tested:	1 Poly-Flex GN200 Geonet(s)
Test(s) Requested:	Thickness (ASTM D 1777) - GN Mass/Unit Area (ASTM D 3776) - GN Density (ASTM D 1505) - GN Carbon Content (ASTM D 1603, mod.) - GN Melt Index (ASTM D 1238) - GN Wide Width Tensile (ASTM D4595,mod.) - GN

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Matel

Dr. Mansukh Patel Sr. Laboratory Coordinator Geosynthetic Services Division www.GeosyntheticTesting.com

cc: Sam R. Allen, Vice President and Division Manager

GEOCOMPOSITE TEST RESULTS

TRI Client: Southwest Liner Systems, Inc. Project: Basin Disposal

Material: Poly-Flex GN200 Geonet Sample Identification: GN-200-08-0530-325

PARAMETER	TEST RE	PLICATE	NUMBER								MEAN	DEV.
	1	2	3	4	5	6	7	8	9	10	<u> </u>	
Thickness (ASTM D 1777)												
Thickness (mils)	198	202	209	195	212	204	181	203	219	200	202	10
											181	<< mir
Mass/Unit Area (ASTM D 5261)								÷				
5 in diameter Circle - Mass (grams)	10.47	9.80	10.56	10.31	10.18	9.84	10.64	9.97	9.49	11.15		
Mass/unit area (lbs./sq.ft)	0.17	0.16	0.17	0.17	0.16	0.16	0.17	0.16	0.15	0.18	0.17	0.01
Density (ASTM D 1505)												
Density (g/cm3)	0.957	0.957	0.958								0.957	0.001
Carbon Black Content (ASTM D 1603, mod.)										1	
% Carbon Black	2.68	2.70									2.69	0.01
Melt Flow Index (ASTM D 1238, 190/2.16)												
Melt Flow Index (g/10 min)	0.36										0.36]
Wide Width Tensile Properties (ASTM D 45	95,mod for (GN)		Geo	net Compo	nent					-	
MD Max. Strength (ppi)	65.2	73.9	77. 9	55.2	54.9						65.4	10.5
MD Max. Strength (Ibs/ft)	783	887	934	663	659						785	126
TD Max. Strength (ppi)	23.6	23.6	31.5	24.3	26.5						25.9	3.3
TD Max. Strength (lbs/ft)	284	283	378	292	318						311	40
MD Elong. @ Max. Strength (%)	17	16	14	17	15						16] 1
TD Elong. @ Max. Strength (%)	82	63	90	73	73						76	10

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material.

TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

APPENDIX C

Material Manufacturer Certification and Conformance Testing Results

C.7. Geotextile Certifications

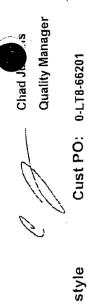
Colloid Lining Technologies

5/08/2009

BOL: 80460549 PO: 0-LT8-66201

This certificate indicates that 1291 is a nonwoven polypropylene geotextile, supplied by Propex and will meet the following Minimum Average Roll Values (MARV) when tested in accordance with the ASTM test methods listed below, unless otherwise stated. This product utilizes carbon black as a UV inhibitor.

PROPERTY	TEST METHOD	UNITS	ENGLISH	METRIC
Mass per Unit Area	ASTM D5261	oz/yd² (g/m²)	12.0	407
Thickness	ASTM D5199	mils (mm)	115	2.9
Tensile Strength	ASTM D4632	lbs (N)	320	1424
Elongation	ASTM D4632	%	50	50
Puncture	ASTM D4833	lbs (N)	210	934
Mullen Burst	ASTM D3786	psi (kPa)	620	4274
Trapezoidal Tear	ASTM D4533	lbs (N)	125	556 ·
UV Resistance (min)	ASTM D4355	%	70	70
AOS (max)	ASTM D4751	US Std. Sieve (mm)	100	0.150
Permittivity	ASTM D4491	1/sec	0.80	0.80
Permeability	ASTM D4491	cm/sec	0.290	0.290
Water Flow Rate	ASTM D4491	gpm/ft² (l/min/m²)	60.0	2445
CBR	ASTM D6241	lbs (N)	925.0	4116


Chad Judkins Quality Manager Ringgold Quality Lab

This publication should not be construed as engineering advice. While information contained in this publication is accurate to the best of our knowledge, Propex does not warrant its accuracy or completences. The ultimate customer and user of the products should assume sole responsibility for the final determination of the suitability of the information and the products for the contemplated and actual use. The only warranty made by Proper fils products is set forth in our product data sheet for the product, or such other written warranty as may be agreed by Propex and individual customers. Propex specifically disclaims all other warranties, spress or implied, including without limitation, warranties of merchantability or fitness for a particular purpose, or arising from provision of samples, a course of dealing or usage of trade.

Certificate of Analysis

BOL: 80460549 MV 1004480 1291 15ftx300ft blk GEOTEX

HU#/Rolls		Thickness	Water Flow Rate	e XMD Elong @ Break	XMD Tensite @ Break	XMD Trap Tear
Shipped	unlts	MIL	GMF	%	LB	E
	ASTM Test					
2011119492	2191716	126	88.375000	72	516.97	229.57
2011217475	2194108	185	82.000000	78	629.03	244.55

Page 2 of 2

.

Data listed above was determined in accordance with standard test methods, frequencies and procedures defined internally by plant and product type
 Rolls tested on this shipment are identified with an asterisk(*)
 HU# is handling unit and is terminology for roll number and "production order" equates to lot number.

Therefore, handling unit numbers may not be in sequential order within a production order. Propex Operating Company, LLC, 6025 Lee Hwy, Suite 425, PO Box 22788 Chattanooga TN 37422

Our enterprise resource planning system generates sequential handling unit and production

order designations independent of the manufacturing facility producing the product.

chad Jumins Quality Manager	0-LT8-66201	Puncture LB	217.29 299.15	Page 1 of 2
t đ	Cust PO: 0-LT	Permittivity 1/S	1.196750 1.115750	product type
e Celli	Cust	Permeability 2M	0.429250 0.606750	y by plant and
	style	Mullen Burst PSI	758.57 812.86	efined internal!
Sis		MD Trap Tear LB	137.60 184.09	d procedures d number. 7422
Analy	отех	MD Tensile @ Break LB	369.34 524.96	frequencies an equates to lot production tot. tion order.
ficate of Analysis	1291 15ftx300ft blk GEOTEX	a MD Elong @ Break %	84 79	ard test methods, frequencies and proce production order" equates to lot number handling unit and production oducing the product. er within a production order. O Box 22788 Chattanooga TN 37422
Certifi	1291 15ftx3	Mass/Unit Area OSY	13.37 17.16	 Data listed above was determined in accordance with standard test methods, frequencies and procedures defined internally by plant and product type Rolls tested on this shipment are identified with an asterisk(*) HU# Is handling unit and is terminology for roll number and "production order" equates to lot number. HU# is handling unit and is terminology for roll number and "production order" equates to lot number. Hu# is handling unit and is terminology for roll number and "production order" equates to lot number. Hu# handling unit and is terminology for roll number and "production order" equates to lot number. Therefore, handling unit numbers may not be in sequential order within a production order. Propex Operating Company, LLC, 6025 Lee Hwy, Suite 425, PO Box 22788 Chattanooga TN 37422
e a	MV 1004480	CBR LB	1041.0 1559.8	I in accordanc identified with ology for roll stem generatu ie manufactu ay not be in so 025 Lee Hwy,
X U	MV	AOS (mm) MM	0.15 0.13	 Data listed above was determined in accordance with stands Rolls tested on this shipment are identified with an asterisk(* HU# Is handling unit and is terminology for roll number and " Our enterprise resource planning system generates sequential order designations independent of the manufacturing facility pr Therefore, handling unit numbers may not be in sequential orde Propex Operating Company, LLC, 6025 Lee Hwy, Suite 425, P
	BOL: 80460549	units	ASTM Test 2191716 2194108	sted above w ested on this handling unit prise resourc ignations inde i, handling un perating Com
	BOL:	HU#/Rolls Shipped	2011119492 2011217475	1. Data li: 2. Rolls tr 3. HU# Is Our enter order des Therefore Propex O

APPENDIX C

Material Manufacturer Certification and Conformance Testing Results

C.8. Geotextile Conformance Testing Results

TRI / Environmental, Inc. A Texas Research International Company

May 28, 2009

Mail To:

Bill To:

Mr. Mark DeCarlo Southwest Liner Systems, Inc. PO Box 1972 Bernalillo, NM 87004 <= Same

email: swls.md@gmail.com

Dear Mr. DeCarlo:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

Project:	Basin Disposal
TRI Job Reference Number:	E2326-83-07
Material(s) Tested:	1 Nonwoven Geotextile(s)
Test(s) Requested:	Mass/Unit Area (ASTM D 5261) Grab Tensile (ASTM D 4632) Puncture Strength (ASTM D 4833) Mullen Burst (ASTM D 3786) Apparent Opening Size (ASTM D 4751) Permittivity (ASTM D 4491)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

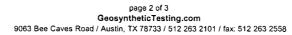
Matel

Dr. Mansukh Patel Sr. Laboratory Coordinator Geosynthetic Services Division www.GeosyntheticTesting.com

cc: Sam R. Allen, Vice President and Division Manager

GEOTEXTILE TEST RESULTS TRI Client: Southwest Liner Systems, Inc.

Project: Basin Disposal


Material: Nonwoven Geotextile Sample Identification: 7475 TRI Log #: E2326-83-07

PARAMETER	TEST RE			BER							MEAN	STD. DEV.
Mass/Unit Area (ASTM D 5261)	1	2	3	4	5	6	7	8	9	10		
5" diameter circle (grams)	6.12	5.50	6.55	5.83	5.41	7.29	6.39	5.79	5.78	6.13	6.08	0.56
Mass/Unit Area (oz/sq.yd)	14.24	12.79	15.24	13.56	12.58	16.96	14.86	13.47	13.44	14.26	14.14	1.30
Grab Tensile Properties (ASTM D	4632)											
MD - Tensile Strength (lbs)	484	431	562	459	458	551	477	495	444	453 -	481	44
TD - Tensile Strength (lbs)	550	599	474	507	533	607	499	475	562	513	532	47
MD - Elong. @ Max. Load (%)	99	97	81	104	111	107	112	100	98	114	102	10
TD - Elong. @ Max. Load (%)	111	113	163	101	110	113	127	88	105	114	115	20
Puncture Resistance (ASTM D 48	33)											
Puncture Strength (Ibs)	250	237	239	210	259	221	249	211	251	271	241	20
	258	275	235	221	226							
Mullen Burst Strength (ASTM D 3	786, modifi	ed)										
Tare (psi): 35												
Burst Strength (psi)	805	675	765	765	670	800	810	735	770	780	758	50
											Tare Not Su	btracted
Apparent Opening Size (ASTM D	4751)											
Opening Size Diameter (mm)	0.075	0.075	0.075	0.075	0.075						0.075	0.000
Sieve No.	200	200	200	200	200						200	ĺ

MD Machine Direction TD Transverse Direction

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

GEOTEXTILE TEST RESULTS TRI Client: Southwest Liner Systems, Inc. Project: Basin Disposal

Material: Nonwoven Geotextile Sample Identification: 7475 TRI Log #: E2326-83-07

PARAMETER	TEST R	EPLICAT		BER							MEAN	ST DE
	1	2	3	4	5	6	7	8	9	10		
Falling Head Permittivity (ASTM D 4	1491, 9-in	Upper S	Standpip	e; 2 in d	opening)						
Water Temp. (C):	22	1										
Correction Factor:	0.953]										
Test Speciemn No. >:	[1					2				
Thickness (mils)	137	137	137	137	137	147	147	147	147	147		
Time (s)	22.2	22.5	22.1	22.4	22.1	25.9	25.9	26.2	26.3	26.2		
Specimen Permittivity (s-1)	1.28	1.26	1.28	1.27	1.28	1.10	1.10	1.08	1.08	1.08		
Specimen Permittivity @20°C (sec-1)	1.22	1.20	1.22	1.21	1.22	1.04	1.04	1.03	1.03	1.03		
Specimen Flow rate (GPM/ft2)	91.1	89.9	91.5	90.3	91.5	78.1	78.1	77.2	76.9	77.2		
Specimen Permeability (cm/s)	0.42	0.42	0.43	0.42	0.43	0.39	0.39	0.39	0.38	0.39		
Test Speciemn No. >:	ſ		3					4				
Thickness (mils)	147	147	147	147	147	150	150	150	150	150		
Time (s)	28.7	28.4	28.5	28.4	28.8	25.0	25.0	25.0	25.0	25.0		
Permittivity (s-1)	0.99	1.00	1.00	1.00	0.99	1.13	1.13	1.13	1.13	1.13		
Specimen Permittivity @20°C (sec-1)	0.94	0.95	0.95	0.95	0.94	1.08	1.08	1.08	1.08	1.08		
Specimen Flow rate (GPM/ft2)	70.5	71.2	71.0	71.2	70.2	80.9	80.9	80.9	80.9	80.9		
Specimen Permeability (cm/s)	0.35	0.36	0.35	0.36	0.35	0.41	0.41	0.41	0.41	0.41		
			TEN	PERAT	IIPE			Por	mittivity	(e-1)	1.07	I
				RRECT					ate (GP		80.0	1
				VALUES					ability	· · · ·	0.39	

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply

to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

Evaporation Pond 3 Liner Installation Documentation

D.1. GCL Deployment Log

GCL DEPLOYMENT LOG

PROJECT NAME:	Basin Evaporation Pond 3	PROJECT NUMBER	: 520.01.01
CLIENT:	Basin Disposal Inc.	CONTRACTOR:	Sothwest Liner Sys.
PROJECT LOCATION:	Bloomfield, New Mexcio	SHEET NUMBER:	1 of 1

PANEL NUMBER	ROLL NUMBER	APPROXIMATE LENGTH (FT)	APPROXIMATE WIDTH (FT)	APPROXIMATE AREA (FT ²)	DATE INSTALLED
W1	2901	26.0	15.0	390.0	6-16-09
W2	2901	26.0	15.0	390.0	6-16-09
E1	2901	26.0	15.0	390.0	6-16-09
E2	2901	26.0	15.0	390.0	6-16-09
					· · · · · · · · · · · · · · · · · · ·
		TOTAL LINER	PLACED (FT ²):	1,560.0	

REVIEWED BY:

peped

Evaporation Pond 3 Liner Installation Documentation

D.2. Secondary FML Deployment Log

SECONDARY FML DEPLOYMENT LOG

PROJECT NAME:	Basin Evaporation Pond 3	PROJECT NUMBER: 520.01.01
CLIENT:	Basin Disposal Inc.	CONTRACTOR: Sothwest Liner Sys.
PROJECT LOCATION:	Bloomfield, New Mexcio	SHEET NUMBER: 1 of 2

PANEL NUMBER	ROLL NUMBER	APPROXIMATE LENGTH (FT)	APPROXIMATE WIDTH (FT)	APPROXIMATE AREA (FT ²)	DATE INSTALLED
W1	HS2-6-09-0708-5	59.0	22.5	1,327.5	6-16-09
W2	HS2-6-09-0708-5	0-CORNER W1	0.0	0.0	6-16-09
W3	HS2-6-09-0708-5	0-CORNER W4	0.0	0.0	6-16-09
W4	HS2-6-09-0708-5	52.0	22.5	1,170.0	6-16-09
W5	HS2-6-09-0708-5	53.0	22.5	1,192.5	6-16-09
W6	HS2-6-09-0708-5	53.0	22.5	1,192.5	6-16-09
W7	HS2-6-09-0708-5	49.0	22.5	1,102.5	6-16-09
W8	HS2-6-09-0708-5	49.0	22.5	1,102.5	6-16-09
W9	HS2-6-09-0708-5	48.0	22.5	1,080.0	6-16-09
W10	HS2-6-09-0708-5	48.0	22.5	1,080.0	6-16-09
W11	HS2-6-09-0708-5	58.0	22.5	1,305.0	6-16-09
W12	HS2-6-09-0708-5	13.0	22.5	292.5	6-16-09
W13	HS2-6-09-0708-5	0-CORNER W11	0.0	0.0	6-16-09
B1	HS2-6-09-0719-5	217.0	22.5	4,882.5	6-16-09
B2	HS2-6-09-0719-5	217.0	22.5	4,882.5	6-16-09
B3	HS2-6-09-0719-5	72.0	22.5	1,620.0	6-16-09
B3A	HS2-6-09-0709-5	151.0	22.5	3,397.5	6-16-09
B4	HS2-6-09-0709-5	218.0	22.5	4,905.0	6-16-09
B5	HS2-6-09-0709-5	134.0	22.5	3,015.0	6-16-09
B5A	HS2-6-09-0718-5	84.0	22.5	1,890.0	6-16-09
B6	HS2-6-09-0718-5	218.0	22.5	4,905.0	6-16-09
B7	HS2-6-09-0718-5	170.0	22.5	3,825.0	6-16-09
B7A	HS2-6-09-0710-5	48.0	22.5	1,080.0	6-16-09
B8	HS2-6-09-0710-5	217.0	22.5	4,882.5	6-16-09
B9	HS2-6-09-0710-5	217.0	22.5	4,882.5	6-16-09
B10	HS2-6-09-0727-5	95.0	22.5	2,137.5	6-16-09
B10A	HS2-6-09-0718-5	27.0	22.5	607.5	6-16-09
B10B	HS2-6-09-0710-5	15.0	22.5	337.5	6-16-09
B10C	HS2-6-09-0727-5	80.0	22.5	1,800.0	6-16-09
B11	HS2-6-09-0727-5	218.0	22.5	4,905.0	6-16-09
		TOTAL LINER	PLACED (FT ²):	64,800.0	

REVIEWED BY:

letter

SECONDARY FML DEPLOYMENT LOG

PROJECT NAME:	Basin Evaporation Pond 3	PROJECT NUMBER:	520.01.01	
CLIENT:	Basin Disposal Inc.	CONTRACTOR:	Sothwest Liner Sys.	
PROJECT LOCATION:	Bloomfield, New Mexcio	SHEET NUMBER:	2 of 2	

PANEL NUMBER	ROLL NUMBER	APPROXIMATE LENGTH (FT)	APPROXIMATE WIDTH (FT)	APPROXIMATE AREA (FT ²)	DATE INSTALLED
B12	HS2-6-09-0707-5	110.0	22.5	2,475.0	6-16-09
B12A	HS2-6-09-0727-5	106.0	22.5	2,385.0	6-16-09
B13	HS2-6-09-0707-5	218.0	22.5	4,905.0	6-16-09
B14	HS2-6-09-0707-5	172.0	22.5	3,870.0	6-16-09
B14A	HS2-6-09-0714-5	48.0	22.5	1,080.0	6-16-09
B15	HS2-6-09-0714-5	221.0	22.5	4,972.5	6-16-09
E1	HS2-6-09-0729-5	48.0	22.5	1,080.0	6-17-09
E2	HS2-6-09-0729-5	0-CORNER EI	0.0	0.0	6-17-09
E3	HS2-6-09-0729-5	0-CORNER E4	0.0	0.0	6-17-09
E4	HS2-6-09-0729-5	37.0	22.5	832.5	6-17-09
E5	HS2-6-09-0729-5	52.0	22.5	1,170.0	6-17-09
E6	HS2-6-09-0729-5	52.0	22.5	1,170.0	6-17-09
E7	HS2-6-09-0729-5	53.0	22.5	1,192.5	6-17-09
E8	HS2-6-09-0729-5	53.0	22.5	1,192.5	6-17-09
E9	HS2-6-09-0714-5	43.0	22.5	967.5	6-17-09
E9A	HS2-6-09-0729-5	13.0	22.5	292.5	6-17-09
E10	HS2-6-09-0714-5	56.0	22.5	1,260.0	6-17-09
E11	HS2-6-09-0714-5	55.0	22.5	1,237.5	6-17-09
E12	HS2-6-09-0714-5	0-CORNER E11	0.0	0.0	6-17-09
E13	HS2-6-09-0714-5	0-CORNER E14	0.0	0.0	6-17-09
E14	HS2-6-09-0714-5	72.0	22.5	1,620.0	6-17-09
		TOTAL LINER	PLACED (FT ²):	31,702.5	

REVIEWED BY:

Poter :

Evaporation Pond 3 Liner Installation Documentation

D.3. Geotextile Deployment Log

.

GEOTEXTILE DEPLOYMENT LOG

PROJECT NAME:	Basin Evaporation Pond 3	PROJECT NUMBER	: 520.01.01
CLIENT:	Basin Disposal Inc.	CONTRACTOR:	Sothwest Liner Sys.
PROJECT LOCATION:	Bloomfield, New Mexcio	SHEET NUMBER:	1 of 1

PANEL NUMBER	ROLL NUMBER	APPROXIMATE LENGTH (FT)	APPROXIMATE WIDTH (FT)	APPROXIMATE AREA (FT ²)	DATE INSTALLED
ES1A	7475	27.0	15.0	405.0	6-16-09
ES2A	7475	27.0	15.0	405.0	6-16-09
ES3A	7475	27.0	15.0	405.0	6-16-09
WSIA	7475	27.0	15.0	405.0	6-16-09
WS2A	7475	27.0	15.0	405.0	6-16-09
WS3A	7475	27.0	15.0	405.0	6-16-09
	L	TOTAL LINER	PLACED (FT ²):	2,430.0	

REVIEWED BY:

PRAY

Evaporation Pond 3 Liner Installation Documentation

D.4. Geonet Deployment Log

GEONET DEPLOYMENT LOG

PROJECT NAME:	Basin Evaporation Pond 3	PROJECT NUMBER:	520.01.01
CLIENT:	Basin Disposal Inc.	CONTRACTOR:	Sothwest Liner Sys.
PROJECT LOCATION:	Bloomfield, New Mexcio	SHEET NUMBER:	1 of 3

PANEL NUMBER	ROLL NUMBER	APPROXIMATE LENGTH (FT)	APPROXIMATE WIDTH (FT)	APPROXIMATE AREA (FT ²)	DATE INSTALLED
B1	GN-200-08-0522-325	216.0	14.0	3,024.0	6-16-09
W1	GN-200-08-0522-325	47.0	14.0	658.0	6-16-09
W2	GN-200-08-0522-325	47.0	14.0	658.0	6-16-09
W3	GN-200-08-0522-325	15.0	14.0	210.0	6-16-09
W3A	GN-200-08-0535-325	38.0	14.0	532.0	6-16-09
W4	GN-200-08-0535-325	48.0	14.0	672.0	6-16-09
W5	GN-200-08-0535-325	48.0	14.0	672.0	6-16-09
W6	GN-200-08-0535-325	47.0	14.0	658.0	6-16-09
W7	GN-200-08-0535-325	47.0	14.0	658.0	6-16-09
W8	GN-200-08-0535-325	47.0	14.0	658.0	6-16-09
W9	GN-200-08-0535-325	47.0	14.0	658.0	6-16-09
W10	GN-200-08-0533-325	46.0	14.0	644.0	6-16-09
W11	GN-200-08-0533-325	45.0	14.0	630.0	6-16-09
W12	GN-200-08-0533-325	44.0	14.0	616.0	6-16-09
W13	GN-200-08-0533-325	44.0	14.0	616.0	6-16-09
W14	GN-200-08-0533-325	44.0	14.0	616.0	6-16-09
W15	GN-200-08-0533-325	23.0	14.0	322.0	6-16-09
W16	GN-200-08-0533-325	23.0	14.0	322.0	6-16-09
W17	GN-200-08-0533-325	24.0	14.0	336.0	6-16-09
B2	GN-200-08-0533-325	41.0	14.0	574.0	6-16-09
B2A	GN-200-08-0542-325	178.0	14.0	2,492.0	6-16-09
В3	GN-200-08-0542-325	150.0	14.0	2,100.0	6-16-09
B3A	GN-200-08-0529-325	68.0	14.0	952.0	6-16-09
B4	GN-200-08-0529-325	212.0	14.0	2,968.0	6-16-09
В5	GN-200-08-0529-325	46.0	14.0	644.0	6-16-09
B5A	GN-200-08-0539-325	170.0	14.0	2,380.0	6-16-09
B6	GN-200-08-0539-325	156.0	14.0	2,184.0	6-16-09
B6A	GN-200-08-0510-325	62.0	14.0	868.0	6-22-09
B7	GN-200-08-0536-325	148.0	14.0	2,072.0	6-16-09
B7A	GN-200-08-0510-325	67.0	14.0	938.0	6-22-09
		TOTAL LINER	PLACED (FT ²):	31,332.0	

REVIEWED BY:

And

.

GEONET DEPLOYMENT LOG

PROJECT NAME:	Basin Evaporation Pond 3	PROJECT NUMBER	: 520.01.01
CLIENT:	Basin Disposal Inc.	CONTRACTOR:	Sothwest Liner Sys.
PROJECT LOCATION:	Bloomfield, New Mexcio	SHEET NUMBER:	2 of 3

PANEL NUMBER	ROLL NUMBER	APPROXIMATE LENGTH (FT)	APPROXIMATE WIDTH (FT)	APPROXIMATE AREA (FT ²)	DATE INSTALLED
B8A	GN-200-08-0536-325	180.0	14.0	2,520.0	6-17-09
B8	GN-200-08-0524-325	38.0	14.0	532.0	6-17-09
B9	GN-200-08-0524-325	216.0	14.0	3,024.0	6-17-09
B10	GN-200-08-0524-325	73.0	14.0	1,022.0	6-17-09
B10A	GN-200-08-0545-325	144.0	14.0	2,016.0	6-17-09
B11	GN-200-08-0545-325	184.0	14.0	2,576.0	6-17-09
BIIA	GN-200-08-0525-325	33.0	14.0	462.0	6-17-09
B12	GN-200-08-0525-325	218.0	14.0	3,052.0	6-17-09
B13	GN-200-08-0525-325	76.0	14.0	1,064.0	6-17-09
B13A	GN-200-08-0549-325	140.0	14.0	1,960.0	6-17-09
B14A	GN-200-08-0549-325	190.0	14.0	2,660.0	6-17-09
B14	GN-200-08-0544-325	27.0	14.0	378.0	6-17-09
B15	GN-200-08-0544-325	216.0	14.0	3,024.0	6-17-09
B16A	GN-200-08-0544-325	82.0	14.0	1,148.0	6-18-09
B16	GN-200-08-0530-325	136.0	14.0	1,904.0	6-18-09
B17A	GN-200-08-0530-325	161.0	14.0	2,254.0	6-18-09
B17	GN-200-08-0538-325	55.0	14.0	770.0	6-18-09
B18	GN-200-08-0538-325	217.0	14.0	3,038.0	6-18-09
B19A	GN-200-08-0538-325	56.0	14.0	784.0	6-18-09
B19	GN-200-08-0543-325	97.0	14.0	1,358.0	6-18-09
B19B	GN-200-08-0510-325	21.0	14.0	294.0	6-22-09
B19C	GN-200-08-0515-325	51.0	14.0	714.0	6-22-09
B20	GN-200-08-0543-325	149.0	14.0	2,086.0	6-18-09
B20A	GN-200-08-0515-325	68.0	14.0	952.0	6-22-09
B21A	GN-200-08-0543-325	79.0	14.0	1,106.0	6-18-09
B21	GN-200-08-0537-325	141.0	14.0	1,974.0	6-18-09
B22A	GN-200-08-0537-325	185.0	14.0	2,590.0	6-18-09
B22	GN-200-08-0532-325	35.0	14.0	490.0	6-18-09
B23	GN-200-08-0532-325	216.0	14.0	3,024.0	6-18-09
B24	GN-200-08-0532-325	78.0	14.0	1,092.0	6-18-19
		TOTAL LINER	PLACED (FT ²):	49,868.0	

REVIEWED BY:

theythe

100

GEONET DEPLOYMENT LOG

PROJECT NAME:	Basin Evaporation Pond 3	PROJECT NUMBER:	520.01.01
CLIENT:	Basin Disposal Inc.	CONTRACTOR:	Sothwest Liner Sys.
PROJECT LOCATION:	Bloomfield, New Mexcio	SHEET NUMBER:	3 of 3

PANEL NUMBER	ROLL NUMBER	APPROXIMATE LENGTH (FT)	APPROXIMATE WIDTH (FT)	APPROXIMATE AREA (FT ²)	DATE INSTALLED
B24A	GN-200-08-0531-325	141.0	14.0	1,974.0	6-18-09
B25A	GN-200-08-0531-325	188.0	14.0	2,632.0	6-18-09
B25	GN-200-08-0528-325	34.0	14.0	476.0	6-18-09
El	GN-200-08-0528-325	52.0	14.0	728.0	6-18-09
E2	GN-200-08-0528-325	52.0	14.0	728.0	6-18-09
E3	GN-200-08-0528-325	52.0	14.0	728.0	6-18-09
E4	GN-200-08-0528-325	52.0	14.0	728.0	6-18-09
E5	GN-200-08-0528-325	52.0	14.0	728.0	6-18-09
E6A	GN-200-08-0528-325	32.0	14.0	448.0	6-18-09
E6	GN-200-08-0534-325	24.0	14.0	336.0	6-18-09
E7	GN-200-08-0534-325	52.0	14.0	728.0	6-18-09
E8	GN-200-08-0534-325	53.0	14.0	742.0	6-18-09
E9	GN-200-08-0534-325	52.0	14.0	728.0	6-18-09
E10	GN-200-08-0534-325	52.0	14.0	728.0	6-18-09
E11	GN-200-08-0534-325	50.0	14.0	700.0	6-18-09
E12	GN-200-08-0534-325	49.0	14.0	686.0	6-18-09
E13	GN-200-08-0510-325	49.0	14.0	686.0	6-18-09
E14	GN-200-08-0510-325	49.0	14.0	686.0	6-18-09
E15	GN-200-08-0510-325	22.0	14.0	308.0	6-18-09
E16	GN-200-08-0510-325	23.0	14.0	322.0	6-18-09
E17	GN-200-08-0510-325	22.0	14.0	308.0	6-18-09
E18	GN-200-08-0510-325	8.0	14.0	112.0	6-18-09
E19	GN-200-08-0510-325	8.0	14.0	112.0	6-18-09
			PLACED (FT ²):	16,352.0	

REVIEWED BY:

NARE

-

Evaporation Pond 3 Liner Installation Documentation

D.5. Primary FML Deployment Log

PRIMARY FML DEPLOYMENT LOG

PROJECT NAME:	Basin Evaporation Pond 3	PROJECT NUMBER	: 520.01.01
CLIENT:	Basin Disposal Inc.	CONTRACTOR:	Sothwest Liner Sys.
PROJECT LOCATION:	Bloomfield, New Mexcio	SHEET NUMBER:	1 of 2

PANEL NUMBER	ROLL NUMBER	APPROXIMATE LENGTH (FT)	APPROXIMATE WIDTH (FT)	APPROXIMATE AREA (FT ²)	DATE INSTALLED
W 1	HS2-6-09-0723-5	52.0	22.5	1,170.0	6-22-09
W2	HS2-6-09-0723-5	0-CORNER W1	0.0	0.0	6-22-09
W3	HS2-6-09-0723-5	37.0	22.5	832.5	6-22-09
W4	HS2-6-09-0723-5	49.0	22.5	1,102.5	6-22-09
W5	HS2-6-09-0723-5	49.0	22.5	1,102.5	6-22-09
W6	HS2-6-09-0723-5	49.0	22.5	1,102.5	6-22-09
W7	HS2-6-09-0723-5	52.0	22.5	1,170.0	6-22-09
W8	HS2-6-09-0723-5	52.0	22.5	1,170.0	6-22-09
W9	HS2-6-09-0729-5	51.0	22.5	1,147.5	6-22-09
W10	HS2-6-09-0729-5	51.0	22.5	1,147.5	6-22-09
W11	HS2-6-09-0729-5	0-CORNER W10	0.0	0.0	6-22-09
W12	HS2-6-09-0729-5	0-CORNER W13	0.0	0.0	6-22-09
W13	HS2-6-09-0729-5	54.0	22.5	1,215.0	6-22-09
B1	HS2-6-09-0716-5	57.0	22.5	1,282.5	6-22-09
BIA	HS2-6-09-0723-5	63.0	22.5	1,417.5	6-22-09
B2	HS2-6-09-0716-5	221.0	22.5	4,972.5	6-22-09
B3	HS2-6-09-0716-5	218.0	22.5	4,905.0	6-22-09
B4	HS2-6-09-0722-5	218.0	22.5	4,905.0	6-22-09
B5	HS2-6-09-0722-5	218.0	22.5	4,905.0	6-22-09
B6	HS2-6-09-0720-5	128.0	22.5	2,880.0	6-22-09
B6A	HS2-6-09-0716-5	11.0	22.5	247.5	6-22-09
B6B	HS2-6-09-0729-5	10.0	22.5	225.0	6-22-09
B6C	HS2-6-09-0722-5	69.0	22.5	1,552.5	6-22-09
B7	HS2-6-09-0720-5	218.0	22.5	4,905.0	6-22-09
В8	HS2-6-09-0711-5	64.0	22.5	1,440.0	6-22-09
B8A	HS2-6-09-0720-5	155.0	22.5	3,487.5	6-22-09
B9	HS2-6-09-0711-5	218.0	22.5	4,905.0	6-23-09
B10	HS2-6-09-0711-5	218.0	22.5	4,905.0	6-23-09
B11	HS2-6-09-0713-5	218.0	22.5	4,905.0	6-23-09
B12	HS2-6-09-0713-5	218.0	22.5	4,905.0	6-23-09
		TOTAL LINER	PLACED (FT ²):	67,905.0	

REVIEWED BY:

HAR DO

PRIMARY FML DEPLOYMENT LOG

PROJECT NAME:	Basin Evaporation Pond 3	PROJECT NUMBER	520.01.01
CLIENT:	Basin Disposal Inc.	CONTRACTOR:	Sothwest Liner Sys.
PROJECT LOCATION:	Bloomfield, New Mexcio	SHEET NUMBER:	2 of 2

PANEL NUMBER	ROLL NUMBER	APPROXIMATE LENGTH (FT)	APPROXIMATE WIDTH (FT)	APPROXIMATE AREA (FT ²)	DATE INSTALLED
B13	HS2-6-09-0712-5	160.0	22.5	3,600.0	6-23-09
B13A	HS2-6-09-0713-5	58.0	22.5	1,305.0	6-23-09
B14	HS2-6-09-0712-5	218.0	22.5	4,905.0	6-23-09
B15	HS2-6-09-0712-5	100.0	22.5	2,250.0	6-23-09
B15A	HS2-6-09-0721-5	123.0	22.5	2,767.5	6-23-09
El	HS2-6-09-0721-5	64.0	22.5	1,440.0	6-23-09
E2	HS2-6-09-0721-5	0-CORNER E1	0.0	0.0	6-23-09
E3	HS2-6-09-0721-5	0-CORNER E4	0.0	0.0	6-23-09
E4	HS2-6-09-0721-5	51.0	22.5	1,147.5	6-23-09
E5	HS2-6-09-0721-5	55.0	22.5	1,237.5	6-23-09
E6	HS2-6-09-0721-5	55.0	22.5	1,237.5	6-23-09
E7	HS2-6-09-0721-5	53.0	22.5	1,192.5	6-23-09
E8	HS2-6-09-0721-5	53.0	22.5	1,192.5	6-23-09
Е9	HS2-6-09-0721-5	52.0	22.5	1,170.0	6-23-09
E10	HS2-6-09-0715-5	52.0	22.5	1,170.0	6-23-09
E11	HS2-6-09-0715-5	40.0	22.5	900.0	6-23-09
E12	HS2-6-09-0715-5	0-CORNER E11	0.0	0.0	6-23-09
E13	HS2-6-09-0715-5	0-CORNER E14	0.0	0.0	6-23-09
E14	HS2-6-09-0715-5	51.0	22.5	1,147.5	6-23-09
	L	TOTAL LINER	PLACED (FT ²):	26,662.5	

REVIEWED BY:

AND I

Evaporation Pond 3 Liner Installation Documentation

D.6. Secondary Geomembrane Pre-weld Qualification Test Logs

<u> </u>
~
Ð
<u> </u>
0
Ŷ
<u>.</u>
S
20
ö
Ľ.
_
22
نة
-
<u>≍</u>
وہ
- 2
۰.
<u> </u>
<u> </u>
2
- 24
0
2
>
_
0
_
0
0
51
2
ES\520
ш
=
÷
<u>c</u> .

GORDON ENVIRONMENTAL, INC.

			PŔ	PROJECT INFORMATI	RMATION					Id	ROJECT SPE	PROJECT SPECIFICATIONS		
PROJECT NAME:	NAME:	Basin Pond 3	Basin Pond 3 - Secondary Liner		PROJECT NUMBER:		520.01.01		NOISIIS	TEXTURED:	PEEL	06	SHEAR	120
CLIENT:		Basin Disposal Inc.	al Inc.		CONTRACTOR:		Southwest Liner Systems	r Systems	FUSION	SMOOTH:	PEEL	90	SHEAR	120
PROJECT	LOCATI	ON: Bloomfie	PROJECT LOCATION: Bloomfield, New Mexico	0	SHEET NUMBER:		1 of 1		EXTRUSION		PEEL	78	SHEAR	120
			107 - 1 Marco 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		and the second se		and a second second second second second			SMOOTH:	PEEL	78 SHEAR	SHEAR	120
DATE	TIME	бС	WELDER'S	MACHINE	WEDGE WELDS	ELDS		EXTRUSION WELDS	1 HId		FIEI	D TEST RESU	ILTS	
21.02	TIMIT	INITIALS	INITIALS	NUMBER	Temperature	Speed	Barrel Temp	Pre-Heat Temp		Test #1	Test #2	Test #3	Test #4	Test #5
									Ь	130	130	154	-	-
60-91-9	07:30	DG	MB	_	750	7.0	1	,	Ь	129	160	160	'	-
									S	661	160	221	-	-
									d	121	127	128		
6-16-09	07:37	DQ	ML	2	750	7.0	1	,	Р	130	105	163	-	•
									S	173	168	160	-	
									d	128	126	129	-	-
6-16-09	08:15	DG	KS	2	,	1	490	300	Ь	•		•		
									S	160	162	161	•	1
									Ч	131	127	130	•	
6-16-09	11:45	DG	MB		750	7.7	,	1	Ь	127	124	130	,	
									S	159	154	151	-	1
									d	011	110	114	-	
60-91-9	13:25	DG	KS	2	I	,	490	300	d	1	4	-	-	
									S	150	151	153		
									d	109	130	157	-	
60-91-9	12:55	DG	MĹ	2	750	7.0	1	ı	Ь	146	101	141	1	
									S	142	180	177	-	
									d	142	127	134	-	-
6-17-09	07:40	DC	MĹ	2	750	6.5	ı	1	Ь	145	134	135	-	-
									S	216	155	188	-	•
									Ь	105	106	112	,	
6-12-09	07:58	DG	KS	2	ı	'	490	300	Р	-	-	-	1	1
									S	154	152	153	-	
									Ь	137	157	132	-	
6-17-09	08:15	DG	MB	-	750	7.5		I	d	144	148	130	•	,
									S	161	194	187		
							-		d					
									Ь					
								-	s					
									Ы					
	_							<u></u>	d					
		3						· · · · · · · · · · · · · · · · · · ·	. S					
										DFN	DEVIEWED BV.	N X W		
										A.V.	VIEWEUDI			

GEOMEMBRANE PRE-WELD QUALIFICATION TEST LOG

Evaporation Pond 3 Liner Installation Documentation

D.7. Secondary Geomembrane Seaming Log

GORDON ENVIRONMENTAL, INC.

P:\FILES\520.01.01\CQA\Seam Log

REVIEWED BY: 4484

						o o mino o		· · · ·	-
PROJEC	CLIENT: PROJECT LOCATION:	Bloomfield, New Mexico	II Inc. Jew Mexico			CUNTRACTOR: SHEET NUMBER	JMBER:	southwest Lining Systems inc. 1 of 2	ystems inc.
DATE	PANEL #/PANEL #	APPROX. LENGTH WELDED	START TIME	SEAMER INITIALS	MACHINE #	TEMP SETTING	SPEED SETTING	DESTRUCTIVE TEST	MONITORED BY
6-16-09	B1-W1/5 to 10/13	218'	09:11	MB	1	750	7.0	SDT-1	DG
2 6-16-09	W1-W2	59'	07:45	MB	-	750	7.0	-	DG
3 6-16-09	W1/2-W3/4	70,	08:19	MB	I	750	7.0	s.	DG
4 6-16-09	W3-W4	52'	07:53	MB	1	750	7.0		DG
5 6-16-09	W4-W5	53'	07:58	MB	-	750	7.0		DG
6 6-16-09	W5-W6	53'	08:30	MB	1	750	7.0	•	DG
7 6-16-09	W6-W7	53'	08:41	MB	I	750	7.0	1	DG
8 6-16-09	W7-W8	53'	07:48	Ml	2	750	7.0		ÐQ
9 6-16-09	6M-8M	53'	08:10	Wſ	2	750	7.0	-	ÐŒ
10 6-16-09	W9-W10	53'	08:18	Mſ	2	750	7.0		DG
11 6-16-09	W10-W11	53'	08:27	Wſ	2	750	0.7	-	ÐŒ
12 6-16-09	W11-W12	12'	08:47	Wſ	2	750	0.7	•	DG
13 6-16-09	W12-W13	14'	09:15	Wſ	2	750	7.0		DG
14 6-16-09	W11/10-W13	70'	09:00	Ml	2	750	7.0	•	DG
15 6-16-09	B1-B2	218'	09:48	MB	1	750	7.0	-	DG
16 6-16-09	B2-B3/A	218'	09:38	JM	2	750	7.0	SDT-2	DG
17 6-16-09	B3-B3A	22'	09:30	JM	2	750	7.0	-	DG
18 6-16-09	B3/A-B4	218'	10:24	MB	1	750	0.7	-	DC
19 6-16-09	B4-B5/A	218'	10:30	Mſ	2	750	7.0	SDT-3	ÐŒ
20 6-16-09	B5-B5A	22'	10:26	Mť	2	750	0.7	-	ÐŒ
21 6-16-09	B5/A-B6	218'	11:05	MB	l	750	7.0	-	Ðđ
22 6-16-09	B6-B7/A	218'	13:43	Mt	2	750	7.0	SDT-4	DG
23 6-16-09	B7-B7A	22'	11:20	Wſ	2	750	7.0	-	DG
24 6-16-09	B7/A-B8	218'	12:55	BM	1	750	7.0	•	DG
25 6-16-09	B8-B9	218'	13:28	MB	1	750	7.0	-	DG
26 6-16-09	B10-B10A	22'	13:18	ML	2	750	7.0	-	DG
27 6-16-09	B10A-B10B	22'	13:23	JM	2	750	7.0	•	ÐŒ
28 6-16-09	B10B-B10C	22'	13:32	JM	2	750	7.0	-	DG
29 6-16-09	B9-B10/A/B/C	218'	13:43	JM	2	750	7.0	SDT-5	DG
30 6-16-00	D10/A/D/D11	210	14.07	5	-	040	t		() ()

GEOMEMBRANE SEAMING LOG

Basin Pond 3 - Secondary Liner Basin Disposal Inc. Bloomfield, New Mexico

T NAME:		T LOCATION:
PROJECT NAME:	CLIENT:	PROJECT

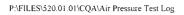
Basin Pond 3 - Secondary Liner Basin Disposal Inc. Bloomfield, New Mexico

 PROJECT NUMBER:
 520.01.01

 CONTRACTOR:
 Southwest Lining Systems Inc.

 SHEET NUMBER:
 2 of 2

DATE FANEL #PANEL # APPROX. ENTITIOL STAMER APPROX. THAP STAMER INL TEMP SPEED SETTING SPEED SETTING Destructure SETTING SPEED A Destructure APPROX THAP INL STAMER INTLAILS MACHINE # SPEED A Destructure APPROX SPEED A 6 617-09 E152-010 E152-010 E152-010 MAL 1 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 <th>L</th> <th></th>	L										
616-00 B11-B12A 218 14:47 MB 1 750 7.7 616-09 B12-B12A 228 14:15 MB 2 750 7.5 616-09 B13-B14A 218 15:15 MB 2 750 7.5 616-09 B14A-B15 218 15:15 MB 2 750 7.5 616-09 B14A-B15 218 15:10 MB 1 750 7.5 616-09 B14A-B15 218 15:20 MB 1 750 7.5 617-09 E1/5 E3/45 75 092.6 MB 1 750 7.5 617-09 E12-E3/45 53' 08:17 MB 1 750 7.5 617-09 E3-E4 53' 08:17 MB 1 750 7.5 617-09 E3-E4 53' 08:17 MB 1 750 7.5 617-09 E3-E4 53' 08:17		DATE	:	APPROX. LENGTH WELDED	START TIME	SEAMER		TEMP SETTING	SPEED SETTING	DESTRUCTIVE MONITORED TEST BY	MONITORED BY
616-06 B12-B12A 2.2 14:15 MM 2 750 7.5 616-06 B132AH13 2.18 15.17 MM 2 750 7.5 75 616-07 B13-B14A 2.28 15.20 MM 2 750 7.5 75 616-07 B14A-B15 2.18 15.20 MM 2 750 7.5 7.5 616-07 B14A-B15 2.18 15.20 MB 1 750 7.5 7.5 617-08 E1/5.0 57 09.26 MB 1 750 7.5 7.5 617-09 E1/5.2445 57 08.37 MB 1 750 7.5 7.5 617-09 E1/5.2445 57 08.37 MB 1 750 7.5 7.5 617-09 E1/5.2445 57 08.37 MB 1 750 7.5 7.5 617-09 E5-E8 53 08.37 MB		9-16-09	B11-B12/A	218'	14:47	MB	-	750	7.7	SDT-6	DG
616-09 B12/A-B13 218 14.33 M 2 750 7.5 616-09 B13.A144A 218 15.15 MB 1 750 7.5 616-09 B14A-B14A 218 15.15 MB 1 750 7.5 616-09 B14A-B15 218 10.00 MB 1 750 7.5 617-09 E1/5-105 57 092.6 MB 1 750 7.5 617-09 E1-E2 57 092.6 MB 1 750 7.5 617-09 E1-E2 57 092.0 MB 1 750 7.5 617-09 E1-E2 57 092.0 MB 1 750 7.5 617-09 E3-E46 57 083.7 MB 1 750 7.5 617-09 E3-E41 57 083.7 MB 1 750 7.5 617-09 E3-E41 57 083.7 MB		60-91-9	B12-B12A	22'	14:15	Mſ	2	750	7.5	-	DG
616-09 B13-B14/A 218 15:17 MB 1 750 7.7 8 616-09 B14AB14A 22 15:1.5 JM 22 750 75 75 75 75 6-16-09 B14AB15 218 10:00 MB 1 750 75 75 75 6-17-09 E1/50 0164/E15415 37 09:25 MB 1 750 75 75 6-17-09 E1/2-E34/5 70 09:25 MB 1 750 75 75 6-17-09 E3-E4 57 08:17 MB 1 750 75 75 6-17-09 E3-E4 57 08:17 MB 1 750 75 75 6-17-09 E5-E6 57 08:17 MB 1 750 75 75 6-17-09 E5-E6 57 08:27 MB 1 750 75 75 6-17-09 E9-E9A		60-91-9	B12/A-B13	218'	14:33	Мſ	2	750	7.5	-	DG
616-09 B14-B14A 22* 15:10 JM 2 750 75 75 616-09 B14AA-B15 218 15:20 JM 2 750 75 75 617-09 E1/5c 10/E1/4E15-B15 218 10:00 MB 1 750 75 617-09 E1/2-E3/4/5 37 09:26 MB 1 750 75 617-09 E1/2-E3/4/5 57 09:26 MB 1 750 75 617-09 E3-E6 57 09:17 MB 1 750 75 617-09 E3-E6 57 08:37 MB 1 750 75 617-09 E5-E6 53 08:37 MB 1 750 75 617-09 E5-E8 57 08:37 MB 1 750 75 617-09 E3-E8 53 08:37 MB 1 750 65 617-09 E9-E4 53		60-91-9	B13-B14/A	218'	15:17	MB	1	750	7.7	L-TUS	DG
616-06 B14AAB15 218° 15:00 MB 1 750 75 6-17-08 E1/5 to 10/E14/E15-B15 218° 10:00 MB 1 750 75 75 6-17-08 E1/2-E3/4/5 37 09:26 MB 1 750 75 75 6-17-08 E1/2-E3/4/5 37 08:17 MB 1 750 75 75 6-17-09 E3-E6 57 08:37 MB 1 750 75 75 6-17-09 E3-E6 57 08:37 MB 1 750 75 75 6-17-09 E5-E6 57 08:37 MB 1 750 75 75 6-17-09 E5-E6 57 08:37 MB 1 750 75 75 6-17-09 E8-E9/A 57 08:37 MB 1 750 65 75 6-17-09 E9-E1/114 57 08:37 MB 1		5-16-09	B14-B14A	22'	15:15	Mſ	2	750	7.5	1	DG
6-17-09 E1/5 to 10/E (AE15-B1)5 218° 10:00 MB 1 750 75 6-17-09 E1-E2 53' 09:26 MB 1 750 75 75 6-17-09 E1-E2 53' 09:26 MB 1 750 75 75 6-17-09 E3-E4 53' 08:37 MB 1 750 75 75 6-17-09 E3-E6 53' 08:37 MB 1 750 75 75 6-17-09 E5-E6 53' 08:37 MB 1 750 75 75 6-17-09 E5-E8 53' 08:37 MB 1 750 75 75 6-17-09 E9-EAA 53' 08:37 MB 1 750 75 75 6-17-09 E9-EAA 53' 08:32 JM 2 750 6.5 75 6-17-09 E9-17-14 53' 08:32 JM 2		60-91-9	B14/A-B15	218'	15:20	Mſ	2	750	7.5	-	DG
6-17-09 E1-E2 53° 09:26 MB 1 750 7.5 6-17-09 E1:2-E3:4/5 70° 09:42 MB 1 730 7.5 6-17-09 E3-E4 53° 08:17 MB 1 730 7.5 6-17-09 E3-E6 53° 08:37 MB 1 750 7.5 6-17-09 E3-E6 53° 08:37 MB 1 750 7.5 6-17-09 E3-E6 53° 08:37 MB 1 750 7.5 6-17-09 E8-E9/A 53° 08:10 JMB 1 760 6.5 6-17-09 E8-E9/A 53° 08:32 JM 2 750 6.5 6-17-09 E9-E9/A 53° 08:32 JM 2 750 6.5 6-17-09 E9-17-14 53° 08:32 JM 2 750 6.5 6-17-09 E10-E11/14 53° 08:34		5-17-09		218'	10:00	MB	I	750	7.5	SDT-8	DG
6-7-09 E1/2-E3/4/5 70° 09:42 MB 1 750 7.5 6-17-09 E3-E4 53° 08:17 MB 1 750 7.5 7.5 6-17-09 E3-E4 53° 08:37 MB 1 750 7.5 7.5 6-17-09 E3-E6 53° 08:37 MB 1 730 7.5 7.5 6-17-09 E5-E6 53° 08:37 MB 1 730 7.5 7.5 6-17-09 E5-E9 53° 08:37 MB 1 730 7.5 7.5 6-17-09 E8-E9/A 53° 08:32 MB 1 750 7.5 7.5 6-17-09 E9-E9A 53° 08:32 MB 1 7.50 7.5 7.5 6-17-09 E9-E9A 53° 08:32 MB 1 7.50 6.5 7.5 6-17-09 E1/12-E13/14 53° 08:42 M <t< th=""><th></th><td>5-17-09</td><td>E1-E2</td><td>53'</td><td>09:26</td><td>MB</td><td>1</td><td>750</td><td>7.5</td><td>-</td><td>DG</td></t<>		5-17-09	E1-E2	53'	09:26	MB	1	750	7.5	-	DG
6-17-09 E3-E4 53' 08:17 MB 1 750 7.5 7.5 6-17-09 E4-E5 53' 09:08 MB 1 750 7.5 7.5 6-17-09 E3-E6 53' 08:37 MB 1 750 7.5 7.5 6-17-09 E6-E7 53' 08:37 MB 1 750 7.5 7.5 6-17-09 E6-E7 53' 08:37 MB 1 750 7.5 7.5 6-17-09 E8-E9/A 53' 08:32 MB 1 750 7.5 7.5 6-17-09 E8-E9/A 53' 08:32 MB 1 750 6.5 7.5 6-17-09 E9/A-E10 53' 08:32 JM 2 750 6.5 7.5 6-17-09 E9/A-E10 53' 08:32 JM 2 750 6.5 7.5 6-17-09 E1/14-15' 10' 07:50		60-11-9	E1/2-E3/4/5	70,	09:42	MB	I	750	7.5	-	DG
6-17-09 E4-E5 53° 09:08 MB 1 750 7.5 6-17-09 E5-E6 53° 08:37 MB 1 750 7.5 7.5 6-17-09 E6-E7 53° 08:37 MB 1 750 7.5 7.5 6-17-09 E6-E7 53° 08:37 MB 1 750 7.5 7.5 6-17-09 E7-E8 53° 08:17 MB 1 750 6.5 7.5 6-17-09 E8-E9/A 53° 08:10 JM 2 750 6.5 7.5 6-17-09 E9-E9A 53° 08:10 JM 2 750 6.5 7.5 6-17-09 E10-E11/14 53° 08:23 JM 2 750 6.5 7.5 6-17-09 E11-12-E13/14 53° 08:04 JM 2 750 6.5 7.5 6-17-09 E11-12-E13/14 53° 08:04 JM		60-11-9	E3-E4	53'	08:17	MB	1	750	7.5	•	DG
6-17-09 E3-E6 53' 08:57 MB 1 750 7.5 6-17-09 E6-E7 53' 08:46 MB 1 750 7.5 6-17-09 E7-E8 53' 08:37 MB 1 750 7.5 6-17-09 E7-E8 53' 08:37 MB 1 750 6.5 6-17-09 E8-E9/A 53' 08:32 MB 1 750 6.5 6-17-09 E90-E9A 53' 08:32 MB 1 750 6.5 6-17-09 E10-E11/14 53' 08:42 JM 2 750 6.5 6-17-09 E10-E11/14 53' 08:23 JM 2 750 6.5 6-17-09 E11/12-E13/14 53' 08:23 JM 2 750 6.5 6-17-09 E11-E12 10' 08:04 JM 2 750 6.5 1 6-17-09 E11-E12 10'		5-17-09	E4-E5	53'	80:60	MB	1	750	7.5	-	DG
6-17-09 E6-E7 53' 08:46 MB 1 750 7.5 6-17-09 E7-E8 53' 08:37 MB 1 750 7.5 7.5 6-17-09 E8-E9/A 53' 08:37 MB 1 750 6.5 7.5 6-17-09 E9-E9A 22' 08:32 MB 1 750 6.5 7.5 6-17-09 E9/A-E10 53' 08:32 JM 2 750 6.5 7.5 6-17-09 E1/12-E13/14 53' 08:33 JM 2 750 6.5 7.5 6-17-09 E1/12-E13/14 53' 08:33 JM 2 750 6.5 7.5 6-17-09 E1/12-E13/14 14' 07:56 JM 2 750 6.5 7.5 6-17-09 E1/12-E13/14 14' 07:56 JM 2 750 6.5 750 6.5 750 6.5 750 750 750 <th></th> <td>5-17-09</td> <td>E5-E6</td> <td>53'</td> <td>08:57</td> <td>MB</td> <td>1</td> <td>750</td> <td>7.5</td> <td>6-TUS</td> <td>DG</td>		5-17-09	E5-E6	53'	08:57	MB	1	750	7.5	6-TUS	DG
6-17-00 $E7-E8$ $53'$ $08:37$ MB I 750 7.5 $6-17-09$ $E8-E9/A$ $53'$ $09:10$ JM 22 653 6.5 $6-17-09$ $E9-E9A$ $22'$ $08:32$ MB 1 750 6.5 $6-17-09$ $E9A-E10$ $53'$ $08:32$ JM 22 750 6.5 $6-17-09$ $E10-E11/14$ $53'$ $08:32$ JM 22 750 6.5 6.5 $6-17-09$ $E11/12-E13/14$ $53'$ $08:33$ JM 22 750 6.5 6.5 $6-17-09$ $E11/12-E13/14$ $14'$ $07:56$ JM 22 750 6.5 6.5 $6-17-09$ $E11-E12$ $14'$ $07:56$ JM 22 750 6.5 6.5 $6-17-09$ $E11-E12$ $14'$ $07:56$ JM 22 750 6.5 6.5 6.5		5-17-09	E6-E7	53'	08:46	MB	1	750	7.5	-	DG
6.17-09 E8-E9/A 53' 09:10 JM 2 750 65 65 6.17-09 E9-E9A 22' 08:35 JM 1 750 6.5 75 6.17-09 E9/A-E10 53' 08:45 JM 2 750 6.5 75 6.17-09 E10-E11/14 53' 08:42 JM 2 750 6.5 750 6.17-09 E11/12-E13/14 53' 08:04 JM 2 750 6.5 750 6.17-09 E11/12-E13/14 53' 08:04 JM 2 750 6.5 750 6.17-09 E11/12-E13/14 14' 07:56 JM 2 750 6.5 750 6.17-09 E13-E14 14' 07:56 JM 2 750 6.5 750 6.17-09 E13-E14 14' 07:56 JM 2 750 6.5 750 6.17-09 E13-E14 14'		5-17-09	E7-E8	53'	08:37	MB	1	750	7.5		DG
6-17-09 E9-E9A 22' 08:32 MB 1 750 7.5 6-17-09 E9/A-E10 53' 08:55 JM 2 750 6.5 6.5 6-17-09 E10-E1L/14 53' 08:25 JM 2 750 6.5 6.5 6-17-09 E11/12-E13/14 53' 08:23 JM 2 750 6.5 6.5 6-17-09 E11/12-E13/14 14' 07:56 JM 2 750 6.5 6.5 6-17-09 E11/12-E13/14 14' 07:56 JM 2 750 6.5 6.5 6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 6.5 6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 6.5 6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 6.5 6-17-09 E13-E14 14' 07:56		5-17-09	E8-E9/A	53'	09:10	Mſ	2	750	6.5	-	DG
6-17-09 E9/A-E10 53' 08:55 JM 2 750 6.5 6 6-17-09 E10-E11/14 53' 08:42 JM 2 750 6.5 6 6-17-09 E11/12-E13/14 53' 08:03 JM 2 750 6.5 6 6-17-09 E11-E12 10' 08:04 JM 2 750 6.5 6 6-17-09 E11-E12 10' 08:04 JM 2 750 6.5 6 6-17-09 E11-E12 14' 07:56 JM 2 750 6.5 6 6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 6 6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 <th></th> <td>60-11-9</td> <td>E9-E9A</td> <td>22'</td> <td>08:32</td> <td>MB</td> <td>1</td> <td>750</td> <td>7.5</td> <td>1</td> <td>DG</td>		60-11-9	E9-E9A	22'	08:32	MB	1	750	7.5	1	DG
6-17-09 E10-E11/14 53' 08:42 JM 2 750 6.5 6-17-09 E11/12-E13/14 53' 08:23 JM 2 750 6.5 6-17-09 E11/12-E13/14 53' 08:04 JM 2 750 6.5 6-17-09 E11-E12 10' 08:04 JM 2 750 6.5 6-17-09 E11-E12 10' 08:04 JM 2 750 6.5 6-17-09 E11-E12 10' 08:04 JM 2 750 6.5 6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 750 6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 750 6-17-09 F13-E14 14' 07:56 JM 2 750 6.5 750 10 <th></th> <td>5-17-09</td> <td>E9/A-E10</td> <td>53'</td> <td>08:55</td> <td>ML</td> <td>2</td> <td>750</td> <td>6.5</td> <td>•</td> <td>DG</td>		5-17-09	E9/A-E10	53'	08:55	ML	2	750	6.5	•	DG
6-17-09 E11/12-E13/14 53' 08:23 JM 2 750 6.5 6-17-09 E11-E12 10' 08:04 JM 2 750 6.5 55 6-17-09 E11-E12 14' 07:56 JM 2 750 6.5 55 6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 55 6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 55 6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 55 6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 55 6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 55 6-17-09 E13-E14 14' 12 12 12 12 12 12 12 12 12 12 12 12 12		5-17-09	E10-E11/14	53'	08:42	Mſ	2	750	6.5	-	DG
6-17-09 E11-E12 10' 08:04 JM 2 750 6.5 6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 750 E13-E14 14' 07:56 JM 2 750 6.5 1 P P P P P P P P 1 P P P P P P P P P 1 P		5-17-09	E11/12-E13/14	53'	08:23	Wſ	2	750	6.5	-	DG
6-17-09 E13-E14 14' 07:56 JM 2 750 6.5 1 1 1 1 1 1 1 1 1 1 <td< th=""><th></th><td>60-11-9</td><td>E11-E12</td><td>10,</td><td>08:04</td><td>Wſ</td><td>2</td><td>750</td><td>6.5</td><td>-</td><td>DG</td></td<>		60-11-9	E11-E12	10,	08:04	Wſ	2	750	6.5	-	DG
		60-11-9	E13-E14	14'	07:56	Mſ	2	750	6.5	-	DG
	2										
	3										
	24										
	<u>.</u>										-
	56										
	27										
	83										
	6										
	0										


Evaporation Pond 3 Liner Installation Documentation

D.8. Secondary Geomembrane Seam Pressure Test Log

		PRO.	JECT INF	ORMATIO	N			PROJECT SPECIFICATION
PROJECT	NAME: Basin Po	nd 3 - Secon	idary	PROJECT	NUMBER:	520.01.01		MIN START PSI: 30psi
	Basin Disposal Inc.			CONTRA			Lining Sys.	TEST DURATION: 5 mins
	LOCATION:	Bloomfield	, NM	SHEET N	UMBER:	1 of 1		MAX PSI DROP: 3psi
			TI	ME	PRESS	SURE	MONITORED	DASC/EAU
DATE	PANEL #/PANEL #	TESTER	START	FINISH	INITIAL	FINAL	BY	PASS/FAIL
6-16-09	W2/3-W4	GB	09:13	09:18	40	38	DG	PASS
6-16-09	W3-W4	GB	09:18	09:23	40	40	DG	PASS
6-16-09	W4-W5	GB	09:20	09:25	40	40	DG	PASS
6-16-09	W5-W6	GB	09:22	09:27	40	40	DG	PASS
6-16-09	W6-W7	GB	09:36	09:41	40	40	DG	PASS
6-16-09	W7-W8	GB	09:39	09:44	40	38	DG	PASS
6-16-09	W8-W9	GB	09:42	09:47	40	40	DG	PASS
6-16-09	W9-W10	GB	09:44	09:49	40	40	DG	PASS
6-16-09	W10-W11	GB	09:46	09:51	40	39	DG	PASS
6-16-09	W11-W12	GB	09:50	09:55	40	40	DG	PASS
6-16-09	W12-W13	GB	09:55	10:00	40	37	DG	PASS
6-16-09	W13-W10/11	GB	09:56	10:10	40	40	DG	PASS
6-16-09	B1-W13/10 to 4/1	GB	10:05	10:10	40	37	DG	PASS
6-16-09	B1-B2	GB	10:35	10:40	40	37	DG	PASS
6-16-09	B2-B3/A	GB	10:37	10:42	40	38	DG	PASS
6-16-09	B3-B3A	GB	10:23	10:28	40	40	DG	PASS
6-16-09	B3/A-B4	GB	11:11	11:16	40	38	DG	PASS
6-16-09	B4-B5/A	GB	11:16	11:21	40	40	DG	PASS
6-16-09	B4-B5A	GB	11:33	11:38	40	37	DG	PASS
6-16-09	B5-B5A	GB	11:33	11:38	40	37	DG	PASS
6-16-09	B5/A-B6	GB	11:46	11:51	40	39	DG	PASS
6-16-09	B6-B7/A	GB	12:51	12:56	40	40	DG	PASS
6-16-09	B7-B7A	GB	11:38	11:43	40	40	DG	PASS
6-16-09	B7/A-B8	GB	13:51	13:56	40	38	DG	PASS
6-16-09	B8-B9	GB	14:12	14:17	40	40	DG	PASS
6-16-09	B9-B10/A/B/C	GB	14:21	14:26	40	37	DG	PASS
6-16-09	B10-B10A	GB	13:57	14:02	40	40	DG	PASS
6-16-09	B10A-B10B	GB	14:00	14:05	40	40	DG	PASS
6-16-09	B10B-B10C	GB	14:02	14:07	40	40	ÐG	PASS
6-16-09	B10/A/B/C-B11	GB	14:48	14:53	40	37	DG	PASS
6-16-09	B11-B12/A	GB	15:17	15:22	40	39	DG	PASS
6-16-09	B12-B12A	GB	14:38	14:43	40	37	DG	PASS
6-16-09	B11-B12A	GB	15:34	15:39	40	37	DG	PASS
6-16-09	B12/A-B13	GB	15:31	15:36	40	39	DG	PASS
6-16-09	B12/A-B13	GB	15:35	15:40	40	40	DG	PASS
6-16-09	B12/A-B13	GB	15:51	15:56	40	40	DG	PASS
6-16-09	B13-B14/A	GB	16:00	16:05	40	40	DG	PASS
6-16-09	B14-B14A	GB	15:53	15:58	40	37	DG	PASS
6-16-09	B14-B15	GB	16:08	16:13	40	40	DG	PASS
6-16-09	B14/A-B15	GB	16:11	16:16	40	40	DG	PASS
6-17-09	E15-E10/E14	GB	10:25	10:30	40	40	DG	PASS
6-17-09	E14-E15	GB	09:00	09:05	40	39	DG	PASS
6-17-09	E11/12-E13/14	GB	09:04	09:09	40	37	DG	PASS
6-17-09	E11-E12	GB	09:06	09:11	40	40	DG	PASS PASS
6-17-09	E10/11-E11/14 E9/A-E10	GB	09:08	09:13	40	40	DG	PASS PASS
6-17-09	E9/A-E10 E8-E9/A	GB	09:35	09:40	40	37	DG	PASS
6-17-09	E8-E9/A E9-E9A	GB	09:36	09:41	40	40	DG	PASS
6-17-09		GB	08:48	08:53	40	38	DG	PASS PASS
6-17-09	E7-E8	GB	09:37	09:42	40	39	DG	
6-17-09	E6-E7	GB	09:40	09:45	40	38	DG	PASS
6-17-09	E5-E6	GB	09:42	09:47	40	40	DG	PASS
6-17-09	E4-E5	GB	09:59	10:04	40	38	DG	PASS
6-17-09	E3-E4	GB	10:02	10:07	40	40	DG	PASS
6-17-09	E2/1-E4/5	GB	10:06	10:11	40	37	DG	PASS
6-17-09	E1-E2	GB	10:11	10:16	40	39	DG	PASS

GEOMEMBRANE SEAM PRESSURE TEST LOG

GORDON ENVIRONMENTAL, INC.

REVIEWED BY:

Evaporation Pond 3 Liner Installation Documentation

D.9. Secondary Geomembrane Seam Vacuum Test and Defect-repair Log

GEOMEMBRANE SEAM VACUUM TEST AND DEFECT REPAIR LOG

PROJECT NAME: CLIENT: PROJECT LOCATION: Basin Pond 3 - Secondary Liner Basin Disposal Inc. Bloomfield, New Mexico PROJECT NUMBER: CONTRACTOR: SHEET NUMBER: 520.01.01 Southwest Lining Sys. 1 of 2

	REPAIR DATE	PANEL	TYPE OF REPAIR	REPAIR TECH	NUMBER OF	TESTING TECH ID	DATE ACCEPTED	COMMENTS
					LEAKS			
1	6-16-09	B3A-B4	Seam	KS	0	SS	6-16-09	
2	6-16-09	B4-B5A	Seam	KS	0	SS	6-16-09	
3	6-16-09	B1-W1-W4-W5	T	KS	0	SS	6-16-09	
4	6-16-09	W1-W2-W4	<u> </u>	KS	0	SS	6-16-09	
5	6-16-09	W2-W3-W4	T	KS	0	SS	6-16-09	· · · · · · · · · · · · · · · · · · ·
6	6-16-09	W2-W3	Patch	KS	0	SS	6-16-09	
7	6-16-09	B1-W5-W6	<u> </u>	KS	0	SS	6-16-09	
8	6-16-09	B1-W6-W7	<u> </u>	KS	0	SS	6-16-09	
9	6-16-09	B1-W7-W8	T	KS	0	SS	6-16-09	
10	6-16-09	B1-W8-W9	T	KS	0	SS	6-16-09	
11	6-16-09	B1-W9-W10	T	KS	0	SS	6-16-09	
12	6-16-09	W10-W11	Patch	KS	0	SS	6-16-09	
13	6-16-09	W10-W13-B1	<u> </u>	KS	0	SS	6-16-09	
14	6-16-09	W10-W11-W13	<u> </u>	KS	0	SS	6-16-09	
15	6-16-09	W11-W12-W13	Patch	KS	0	SS	6-16-09	
16	6-16-09	W13-B1	Patch	KS	0	SS	6-16-09	SDT-1
17	6-16-09	B2-B3A	Patch	KS	0	SS	6-16-09	SDT-2
18	6-16-09	B2-B3-B3A	<u> </u>	KS	0	SS	6-16-09	
19	6-16-09	B3-B3A-B4	<u>T</u>	KS	0	SS	6-16-09	
20	6-16-09	B4-B5A	Patch	KS	0	SS	6-16-09	SDT-3
21	6-16-09	B4-B5-B5A	<u> </u>	KS	0	SS	6-16-09	
22	6-16-09	B5-B5A-B6	Т	KS	0	SS	6-16-09	
23	6-16-09	B6-B7A	Patch	KS	0	SS	6-16-09	SDT-4
24	6-16-09	B6-B7-B7A	<u> </u>	KS	0	- <u>SS</u>	6-16-09	n m. 1
25	6-16-09	B7-B7A-B8	T	KS	0	SS	6-16-09	
26	6-16-09	B9-B10	Patch	KS	0	SS	6-16-09	
27	6-16-09	B9-B10-B10A	<u> </u>	KS	0	SS	6-16-09	
28	6-16-09	B9-B10A-B10B	<u> </u>	KS	0	SS	6-16-09	
29	6-16-09	B9-B10B-B10C	<u> </u>	KS	0	SS	6-16-09	007.6
30	6-16-09	B9-B10C	Patch	KS	0	SS	6-16-09	SDT-5
31	6-16-09 6-16-09	B10C-B11 B10B-B10C-B11	Patch T	KS	0	SS SS	6-16-09	
32	6-16-09	B10A-B10B-B11	<u> </u>	KS KS	0	<u>55</u> 	6-16-09	
33 34	6-16-09	B10-B10A-B11	T	KS KS	0	<u></u>		
35	6-16-09	B11-B12-B12A	<u> </u>	KS KS	0	<u></u>	6-16-09	
36	6-16-09	B11-B12-B12A	Patch	KS	0	SS	6-16-09	SDT-6
37		B11-B12A	Patch	KS	0	SS		501-0
38		B12A-B13	Patch	KS	0	SS	6-16-09	
39		B12-B12A-B13	Т	KS	0	SS	6-16-09	· · · · · · · · · · · · · · · · · · ·
40	6-17-09	B13-B14	Patch	KS	0	SS	6-17-09	SDT-7
41	6-17-09	B13-B14-B14A	Т	KS	0	SS	6-17-09	
42	6-17-09	B14A-B15	Patch	KS	0	SS	6-17-09	
43	6-17-09	B14-B14A-B15	Т	KS	0	SS	6-17-09	
44	6-17-09	B14-B15	Patch	KS	0	SS	6-17-09	
45		E1-E2-E4	T	KS	0	SS	6-17-09	
	0 17-07		1	110	V	55	0-17-07	

REVIEWED BY:

TAKEN-

P:\FILES\520.01.01\CQA\Vacuum Test Log

GEOMEMBRANE SEAM VACUUM TEST AND DEFECT REPAIR LOG

PROJECT NAME: CLIENT: PROJECT LOCATION: Basin Pond 3 - Secondary Liner Basin Disposal Inc. Bloomfield, New Mexico

PROJECT NUMBER: CONTRACTOR: SHEET NUMBER:

520.01.01 Southwest Lining Sys. 2 of 2

	REPAIR DATE	PANEL	TYPE OF REPAIR	REPAIR TECH	NUMBER OF LEAKS	TESTING TECH ID	DATE ACCEPTED	LOCATION
1	6-17-09	E2-E3-E4	Т	KS	0	SS	6-17-09	
2	6-17-09	E1-E5-B15	Т	KS	0	SS	6-17-09	
3	6-17-09	E1-E4-E5	Т	KS	0	SS	6-17-09	
4	6-17-09	E5-E6	Patch	KS	0	SS	6-17-09	SDT-9
5	6-17-09	B15-E5-E6	Т	KS	0	SS	6-17-09	
6	6-17-09	B15-E6-E7	Т	KS	0	SS	6-17-09	
7	6-17-09	B15-E7-E8	Т	KS	0	SS	6-17-09	
8	6-17-09	E8-E9-E9A	Т	KS	0	SS	6-17-09	
9	6-17-09	B15-E8-E9A	Т	KS	0	SS	6-17-09	
10	6-17-09	E9-E9A-E10	Т	KS	0	SS	6-17-09	
11	6-17-09	B15-E9A-E10	Т	KS	0	SS	6-17-09	
12	6-17-09	E10-E11-E14	Т	KS	0	SS	6-17-09	
13	6-17-09	B15-E10-E14	Т	KS	0	SS	6-17-09	
14	6-17-09	E14-B15	Patch	KS	0	SS	6-17-09	SDT-8
15	6-17-09	E11-E13-E14	Т	KS	0	SS	6-17-09	
16	6-17-09	E11-E12-E13	Patch	KS	0	SS	6-17-09	
17								
18								
- 19								
20								
21								
22								
23								
24								
25								
26								
27								
28								
29								
30								
31								
32								
33			-					
34								
35								
36 37								
38							<u></u>	
39				<u> </u>				
40			}					
41							<u> </u> −−− †−−	
42				<u> </u>				
43								······································
44					. <u></u>			
45								
		·	I	I				

REVIEWED BY:

Evaporation Pond 3 Liner Installation Documentation

D.10. Secondary Geomembrane Seam Field Destructive Test Records

ŕ	

FIELD DESTRUCHVE TEST RECORD

CHIMPLE Constration Constration				PROJE	PROJECT INFORMATION	ATION						PRC	PROJECT SPECIFICATIONS	CIFICATI	SNO		
	PROJECT	NAME:	Basin Pond :	Secondary Lin-	er	PROJECT NU	MBER:	520.01.01		0112	NOT	TEXTURE	ö	PEEL	96	SHEAR	120
	CLIENT:		Basin Dispos	al Inc.		CONTRACTOR	: Southwest	Liner Systems	: Inc.		NOI	SMOOTH:		PEEL	90	SHEAR	120
	PROJECT	LOCATIO	N: Bloomfield	1, New Mexico		SHEET NUME	ter:	1 of 1		EXTR	NOISI	TEXTURE		PEEL	78	SHEAR	120
									a and a second as a second			SMOOTH:		PEEL	78	SHEAR	120
			U O	WELDER'S	MACHINE	WEDGEW	/ELDS	EXTR	USIÓN			FIELD	TEST RE	SULTS			
3-1 DG MB 1 730 7.0	DATE	DT#	INITIALS	INITIALS	NUMBER	Temperature	Speed	Barrel Temp	Pre-Heat Temp	PULL	Test #1	Test #2	Test #3	Test #4	Test #5	COMME	STN
3-1 DG MB 1 730 70										Ь	121	135	136	136	143	W13-I	31
	6-16-09	S-1	DG	MB	-	750	7.0	•	1	Ь	125	130	141	139	136	28' South o	f North
										S	199	199	196	195	194	Anchor T	rench
3-2 DG JM 2 750 70 70 7 P 156 135 134 136 134 135 134 136 134 135 134 136 136 135 134 136 135 136 136 135										Р	131	135	132	135	181	B2-B3	A .
	6-16-09	S-2	DG	Mſ	7	750	7.0	1	1	Р	136	135	139	136	137	110' South c	of North
3-3 Dc M 2 730 730 731 732 734 733 734										s	189	182	187	182	181	Anchor T	rench
3.3 DG M 2 750 70 70 70 71 135 136 136 135 136										Ь	145	136	132	130	134	B4-B5	A .
	6-16-09	S-3	DQ	Mſ	2	750	7.0	1	,	Ь	141	135	134	136	138	60' North o	f South
										S	165	186	185	180	184	Anchor T	rench
3.4 DG M 2 730 70 73 131 134 126 127 S-5 DG JM 2 750 73 2 8 131 131 130 130 131 S-5 DG JM 2 750 78 7 9 131 131 129 117 S-5 DG JM 2 750 77 2 139 131 129 131 S-6 DG MB 1 750 77 2 2 12 129 127 129 129 131 S-7 DG MB 1 750 77 2 2 129 123 124 125 124 132 S-7 DG MB 1 750 7 2 123 131 131 131 131 131 131 131 131 131 131 131										Ъ	143	131	135	129	115	B6-B7	'A
	6-16-09	S-4	DG	MĹ	2	750	7.0	ı	ı	Ь	137	137	134	126	127	25' North o	f South
										s	180	180	181	180	165	Anchor T	rench
										Ь	119	138	131	129	121	B9-B10	S
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6-16-09	S-5	DG	Mľ.	2	750	7.8	ı	r	Ь	143	141	135	149	117	65' North o	f South
										S	165	171	173	174	172	Anchor T	rench
										Ь	127	139	124	125	124	BII-BI	2A
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	6-16-09	S-6	D	MB	-	750	7.7	1	•	Ь	130	129	140	152	132	75' North o	f South
3-7 DG MB 1 750 7.7 - - 1										s	171	168	168	168	168	Anchor T	rench
3.7 DG MB 1 730 7.7 • • 131 127 114 117 104 5.8 DG MB 1 750 7.5 • • 1 115 117 104 5.8 DG MB 1 750 7.5 • • 122 115 117 111 111 5.9 DG MB 1 750 7.5 • • 122 115 117 111 115 5.9 DG MB 1 750 7.5 • • 124 127 186 135 136 137 118 135 136 5.9 DG MB 1 750 7.5 • • 124 120 117 117 117 5.9 DG MB 1 750 126 126 126 126 126 126 126 126										Ь	123	133	144	136	611	B13-B	14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60-91-9	S-7	DC	MB	1	750	7.7	,	ı	Ч	131	127	114	117	104	140' North c	of South
S-8 DG MB 1 730 7.5 P 122 115 117 111 111 S-9 DG MB 1 730 7.5 P 112 124 130 114 115 S-9 DG MB 1 750 7.5 P 137 130 137 130 137 S-9 DG MB 1 750 7.5 P 124 120 117 117 117 S-9 DG MB 1 750 7.5 P 124 120 168 176 168										S	168	175	175	166	167	Anchor T	rench
S-8 DG MB 1 750 7.5 - - P 115 124 130 114 115 S-9 DG MB 1 750 7.5 - P 135 137 117 117 117 117 S-9 DG MB 1 750 7.5 - P 124 120 117 117 117 S-9 DG MB 1 750 7.5 - P 124 120 140 117 117 S P P P P P P P 126 136 136 136 S P<				<u> </u>						Ь	122	115	115	117	111	B15-E	14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6-17-09	S-8	DG	MB	-	750	7.5	•	•	Ρ	115	124	130	114	115	40' South o	f North
S-9 DG MB 1 750 7.5 - - P 137 118 135 136 S-9 DG MB 1 750 7.5 - - P 124 120 117 117 S-9 P P 176 172 168 176 168 166 168 P P P P P P 176 172 168 176 168 P P P P P P P P P 166 176 168 176 168 176 168 176 168 176 168 176 168 176 168 176 168 176 168 176 168 176 168 176 168 176 168 176 168 176 168 176 168 176 168 176 168 176 168 176 176 176 176 176 176 176 176 176 176 <										S	179	177	177	180	127	Anchor T	rench
S-9 DG MB 1 750 7.5 - - P 124 120 140 117 117 S										Р	135	137	118	135	136	ES-E	6
176 172 168 176 168 176 177 168 176 168 176 177 168 176 168 176 177 168 176 168 176 177 168 176 168 176 177 168 176 168 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176 176	6-17-09	S-9	DG	MB	1	750	7.5	•		Ρ	124	120	140	117	211	30' West o	of East
										S	176	172	168	176	168	Anchor T	rench
										Ь							
										Ь							
										S							
										Ь							
S										Р							
										s							

GORDON ENVIRONMENTAL, INC.

REVIEWED BY: MEN

P:/FiLES/520.01.01/CQA/Destructive Test Record

Evaporation Pond 3 Liner Installation Documentation

D.11. Primary Geomembrane Pre-weld Qualification Test Logs

2.
9

1.

GEOMEMBRANE PRE-WELD QUALIFICATION TEST LOG

			PR	PROJECT INFORMATIC	DRMATION					Id	ROJECT SPEC	PROJECT SPECIFICATIONS		¥.
PROJECT NAME:		Basin Pond 3	Basin Pond 3 - Primary Liner		PROJECT NUMBER:	1	250.01.01		ELEION	TEXTURED:	PEEL	06	SHEAR	120
CLIENT:		Basin Disposal Inc.	al Inc.		CONTRACTOR:		Southwest Liner Systems	Systems	rusiun	SMOOTH:	PEEL	90	SHEAR	120
PROJECT	LOCATIC	ON: Bloomfie	PROJECT LOCATION: Bloomfield, New Mexico		SHEET NUMBER:		1 of 2		FXTRUSION	_	PEEL	78	SHEAR	120
the second second second										SMOOTH:	PEEL	78	SHEAR	120
DATE	TIME	QC	WELDER'S	MACHINE	WEDGE WELDS	ELDS	EXTRUSIC	EXTRUSION WELDS	DITLI		FIEL	FIELD TEST RESULTS	ULTS	
aiva	TIME	INITIALS	INITIALS	NUMBER	Temperature	Speed	Barrel Temp	Pre-Heat Temp	LULL	Test #1	Test #2	Test #3	Test #4	Test #5
									Р	120	134	130	-	-
6-22-09	00:60	DG	Mſ	ы	750	7.5	I	,	Ρ	130	126	125	-	•
									S	149	148	151	-	-
									Ь	121	117	110	,	,
6-22-09	09:10	DC	MB		750	7.5	I	•	Р	114	117	121	-	1
									S	147	142	147	-	•
								<u> </u>	Р	130	123	130	-	ſ
6-22-09	11:47	DG	DΥ	2	I	,	495	310	Р	1	-	1	-	ſ
								<u> </u>	S	141	145	137		
									Ъ	112	115	112	-	'
6-22-09	12:45	DG	MB		750	7.9		,	Ь	117	117	110		
									S	136	137	136		,
									Ь	116	127	115	-	
6-22-09	12:55	DG	Mſ	5	750	7.9		1	Ρ	126	121	110	ı	•
									S	132	132	127	-	-
									Ρ	111	111	107	-	ı
6-23-09	07:20	DG	MB		750	7.5	ţ	·	Р	114	125	149	'	-
									S	156	152	151	'	
									Р	117	118	109	-	-
6-23-09	07:30	DG	MĹ	2	750	7.0	,		Р	137	121	135	-	
									S	151	160	157	-	
									Р	111	130	111	-	T
6-23-09	07:38	DG	DΥ	7	,	,	495	305	Ь	•	ı	•	-	I
									S	148	155	144	,	T
									Ь	101	66	100	-	I
6-23-09	11:10	DG	KS	4	1	F	495	300	Р	-	1	ı	•	I
									S	149	140	139		
									Ь	120	110	107	-	ı
6-23-09	12:40	DG	DY	7	'	,	495	300	Ρ	ı	-	-	,	I
									S	139	141	139		-
								-	Ь	112	123	116	-	1
6-23-09	12:50	Ď	MB	ŝ	•	1	495	300	Ь	'	,	1	,	I
									S	134	139	124	-	L
										ł		A1 44 14		

GORDON ENVIRONMENTAL, INC.

REVIEWED BY: CHAN

P:/FILES/520.01.01/CQA/Preweld Test Log/Primary

-
. 4 .
*
~

REVIEWED BY: CORDON ENVIRONMENTAL, INC.

	k 120	k 120		د 120		4 Test #5	-	-	-	-	-	-	-	•	-															-								
SN	SHEAR	SHEAR	SHEAR	SHEAR	SULTS	Test #4	-	1	•	•	•	-	•	-	-																							
CIFICATIO	06	90	78	78	FIELD TEST RESULTS	Test #3	120		161	111	1	147	109		150																							
PROJECT SPECIFICATIONS	PEEL	PEEL	PEEL	PEEL	FIÈ	Test #2	117	,	159	67	•	150	107	•	151																							
d	TEXTURED:	SMOOTH:	TEXTURED:	SMOOTH:		Test #1	116	1	157	106		151	106	1	147																							
		FUSION	NOISITATA		, Line	LULL	Ь	ď	s	Ь	Ь	S	Р	Ρ	s	d	Ч	s	Ь	Ρ	S	Р	Ь	s	4	Ρ	S	Ь	Ь	S	Ч	Р	S	d	Р	s	£	2
		r Systems			EXTRUSION WELDS	Barrel Temp Pre-Heat Temp		300	I		300			310	1		1	1		<u> </u>			<u>.</u>	I									L			I		
	250.01.01	Southwest Liner Systems	2 of 2		EXTRUSI	Barrel Temp		495			495	:		495																								
			~		VELDS	Speed		,			۰ 																											
RMATION	PROJECT NUMBER:	CONTRACTOR:	SHEET NUMBER:		WEDGE WELDS	Temperature		•			ı			I																								
PROJECT INFORMATION					MACHINE	NUMBER		'n			5			4									-															
PR	Basin Pond 3 - Primary Liner	1 Inc.	PROJECT LOCATION: Bloomfield, New Mexico		WELDER'S	INITIALS		MB			DY			KS																								_
	Basin Pond 3	Basin Disposal Inc.	ON: Bloomfie		δĊ	INITIALS		JZ			JZ			JZ																								•
200 8 1 1 1 1 1 1 1 1 1 1 1 1		1	LOCATI			TIME		07:28			07:36			07:42																								
	PROJECT NAME:	CLIENT:	PROJECT			DAFE		6-24-09			6-24-09			6-24-09																								~

GEOMEMBRANE PRE-WELD QUALIFICATION TEST LOG

Evaporation Pond 3 Liner Installation Documentation

D.12. Primary Geomembrane Seaming Log

GORDON ENVIRONMENTAL, INC.

P:/FILES\520.01.01\CQA\Seam Log

REVIEWED BY: ABY

CLIENT: PROJECT LOCATION: DATE PANEL 1 6-22-09 WI 3 6-22-09 WI 4 6-22-09 WI 5 6-22-09 WI 6 6-22-09 WI 7 6-22-09 WI 8 6-22-09 WI 9 6-22-09 WI 10 6-22-09 WI 11 6-22-09 WI 12 6-22-09 WI 12 6-22-09 WI	ATION: PANEL #/PANEL # W1-W2 W1-W2 W1-W2 W3-W4 W3-W4 W3-W6 W4-W7 W5-W6 W6-W7 W5-W6 W6-W7 W7-W8 W7-W8 W9-W10/13 W9-W10/13 W10/11-W12/13	Basin Disposal Inc. Bloomfield, New Mexico APPROX. START LENGTH TIME WELDED TIME V0 11:15 10:45 10:45 49' 10:35 49' 10:35 52' 10:10 52' 10:23 52' 10:23 52' 10:23 52' 10:23 52' 10:23 52' 10:23 52' 10:23 52' 10:23	lnc. w Mexico START TIME 10:45 11:15 10:57			CONTRACTOR: SHEET NUMBER	CTOR: JMBER:	Southwest Lining Systems Inc. 1 of 2	ystems Inc.
DATE J 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09		APPROX. LENGTH WELDED 12' 12' 70' 15' 49' 49' 52' 52' 52' 52'	START TIME 10:45 11:15 10:57			dMar			
DATE DATE DATE DATE DATE 6-22-09 6-22-00 6-22-		APPROX. LENGTH WELDED 12' 12' 70' 15' 49' 49' 52' 52' 52' 52' 52' 52'	START TIME 10:45 11:15 10:57			Triviti			
6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09	W1-W2 W1/2-W3/4 W3-W4 W4-W5 W6-W7 W6-W7 W7-W8 W8-W9 W8-W9 W9-W10/13 W10-W11	12' 70' 49' 49' 49' 52' 52' 52' 52' 52'	10:45 11:15 10:57	SEAMER INITIALS	MACHINE #	SETTING	SETTING SETTING	DESTRUCTIVE TEST	MONITORED BY
6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09	W1/2-W3/4 W3-W4 W3-W6 W5-W6 W6-W7 W7-W8 W8-W9 W8-W9 W9-W10/13 W10-W11 0/11-W12/13	70' 15' 49' 49' 52' 52' 52' 52' 12'	11:15 10:57	MB]	750	7.5	PDT-1	DG
6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09	W3-W4 W4-W5 W5-W6 W6-W7 W7-W8 W8-W9 W9-W10/13 W10-W11 0/11-W12/13	15' 49' 49' 49' 52' 52' 52' 52' 12'	10:57	M	2	750	7.5	•	DG
6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09	W4-W5 W5-W6 W6-W7 W7-W8 W8-W9 W9-W10/13 W10-W11 0/11-W12/13	49' 49' 49' 52' 52' 52' 12'		Mſ	2	750	7.5	-	DC
6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09	W5-W6 W6-W7 W7-W8 W8-W9 W9-W10/13 W10-W11 0/11-W12/13	49' 49' 52' 52' 52' 12'	10:33	MB	-	750	7.5		DG
6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09	W6-W7 W7-W8 W8-W9 W9-W10/13 W10-W11 0/11-W12/13	49' 52' 52' 12'	10:46	Mſ	2	750	7.5	•	DG
6-22-09 6-22-09 6-22-09 6-22-09 6-22-09 6-22-09	W7-W8 W8-W9 W9-W10/13 W10-W11 10/11-W12/13	52' 52' 52' 12'	10:35	Mſ	2	750	7.5	-	DG
6-22-09 6-22-09 6-22-09 6-22-09 6-22-09	W8-W9 W9-W10/13 W10-W11 10/11-W12/13	52' 52' 12'	10:21	JM	2	750	7.5	1	DG
6-22-09 6-22-09 6-22-09 6-22-09 6-22-09	W9-W10/13 W10-W11 10/11-W12/13	52' 12'	10:10	Mſ	2	750	7.5	-	DG
6-22-09 6-22-09 6-22-09 6-22-09	W10-W11 10/11-W12/13	12'	10:23	MB	-	750	7.5	•	DG
6-22-09 6-22-09 6-23-00	10/11-W12/13		09:55	MB	1	750	7.5	-	DG
6-22-09 6-22-09		70'	10:11	MB	1	750	7.5	-	DG
00 66 9	W12-W13	14'	10:00	Mſ	2	750	7.5	-	DG
0-77-0	W13/10 to 3/1-B1/A	218'	11:28	MB	1	750	7.5	•	DG
14 6-22-09	B1-B1A	22'	11:15	MB	1	750	7.5	•	DG
15 6-22-09	B1/A-B2	218'	10:30	MĹ	2	750	7.5	I	DG
16 6-22-09	B2-B3	218'	13:08	MB	1	750	7.9	PDT-2	DG
17 6-22-09	B3-B4	218'	13:21	JM	2	750	7.9	-	DG
18 6-22-09	B4-B5	218'	13:42	MB	1	750	7.9	PDT-3	DG
19 6-22-09 B:	B5-B6/A/B/C	218'	14:24	JM	2	750	7.8	•	DG
20 6-22-09	B6-B6A	22'	14:15	Mſ	2	750	7.9	•	DG
21 6-22-09	B6A-B6B	22'	14:05	Мl	2	750	7.9	1	DG
22 6-22-09	B6B-B6C	22'	14:00	JM	2	750	7.9	-	DG
23 6-22-09 B(B6/A/B/C-B7	218'	14:22	MB	1	750	7.9	1	DG
24 6-22-09	B7-B8/A	218'	15:05	JM	2	750	7.9	PDT-4	DG
25 6-22-09	B8-B8A	22'	15:00	JM	2	750	7.9	1	DG
26 6-23-09	B8/A-B9	218'	07:31	MB	_	750	7.5	1	DG
27 6-23-09	B9-B10	218'	07:45	Mſ	2	750	7.0	PDT-5	DG
28 6-23-09	B10-B11	218'	08:20	JM	2	750	7.0	•	DG
29 6-23-09	B11-B12	218'	08:07	MB	1	750	7.5	PDT-6	DG
30 6-23-09 E	B12-B13/A	218'	08:46	MB		750	7.5		DG

GEOMEMBRANE SEAMING LOG

GEOMEMBRANE SEAMING LOG

DESTRUCTIVE | MONITORED Southwest Lining Systems Inc. DG DQ DQ DQ ΒY DG TEST PDT-7 PDT-8 PDT-9 . ī ï . • . . ī ÷ . , 1 PROJECT NUMBER: 520.01.01 2 of 2 SETTING SPEED SHEET NUMBER: 7.5 7.0 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 CONTRACTOR: SETTING TEMP 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 750 **MACHINE #** 2 2 2 2 2 2 2 SEAMER MB Μ Σſ Μ Σſ Σ ξ Σ Basin Pond 3 - Primary Liner Bloomfield, New Mexico TIME START 08:38 06:30 10:52 09:35 09:46 09:19 11:43 10:12 10:10 08:57 11:17 11:06 10:35 10:23 10:02 10:52 10:4010:27 Basin Disposal Inc. APPROX. LENGTH WELDED 218' 218' 218' 22' 22' 15' 10, 20 52' 52' 52' 70' 70' 40' 52' 10, PANEL #/PANEL # B15/A-E14/10 to 4/1 E10/11/12-E13/14 B13/A-B14 B14-B15/A B15-B15A B13-B13A E1/2-E3/4 E14-E13 E11-E12 E9-E10 E10-E11 E8-E9 E5-E6 E4/1-E5 E7-E8 E1-E2 E3-E4 E6-E7 **PROJECT LOCATION: PROJECT NAME: CLIENT:** DATE 6-23-09 3 4 5 6 7 8 9 10 12 13 14 15 16 18 19 2 Π 17 20 21 22 23 24 25 26 27 28 29 REVIEWED BY: NACLY GORDON ENVIRONME

, INC.

30

Evaporation Pond 3 Liner Installation Documentation

D.13. Primary Geomembrane Seam Pressure Test Log

GEOMEMBRANE SEA	M PRESSURE	TEST LOG
-----------------	------------	----------

		PRO	IECT INF	<u>ORMATIO</u>	N			PROJECT SPECIFICATIO
PROJECT	NAME: Basin Po	nd 3 - Prima	iry	PROJECT	NUMBER:	520.01.01		MIN START PSI: 30psi
CLIENT:	Basin Disposal Inc.			CONTRA	CTOR:	Southwest	Lining Sys.	TEST DURATION: 5 mins
PROJECT	LOCATION:	Bloomfield		SHEET N	A 1 TH TRUTT 1 100 11 10	l of l		MAX PSI DROP: 3psi
DATE	PANEL #/PANEL #	TESTER		ME	PRESS	URE	MONITORED	PASS/FAIL
i			START	FINISH	INITIAL	FINAL	BY	
6-22-09	W1-W2	GB	13:05	13:10	40	40	DG	PASS
6-22-09	W1/2-W3/4	GB	13:02	13:07	40	40	DG	PASS
6-22-09	W3-W4	GB	12:58	13:03	40	38	DG	PASS
6-22-09	W4-W5	GB	12:54	12:59	40	39	DG	PASS PASS
6-22-09	W5-W6	GB	12:51	12:56 12:03	40 40	38 39	DG DG	PASS
6-22-09	W6-W7 W7-W8	GB GB	<u>11:58</u> 11:54	12:03	40	40	DG	PASS
6-22-09	W8-W9	GB	11:54	11:56	40	39	DG	PASS
6-22-09	W9-W10/13	GB	11:49	11:54	40	40	DG	PASS
6-22-09	W10-W11	GB	11:47	11:52	40	40	DG	PASS
6-22-09	W10/11-W12/13	GB	11:43	11:48	40	40	DG	PASS
6-22-09	W12-W13	GB	11:42	11:47	40	39	DG	PASS
6-22-09	B1-B1A	GB	13:31	13:36	40	39	DG	PASS
6-22-09	B1/A-W13/9 to 5/2/1	GB	13:21	13:26	40	40	DG	PASS
6-22-09	B1/A-B2	GB	13:24	13:29	40	38	DG	PASS
6-22-09	B2-B3	GB	13:48	13:53	40	37	DG	PASS
6-22-09	B3-B4	GB	13:54	13:59	40	39	DG	PASS
6-22-09	B4-B5	GB	14:31	14:36	40	37	DG	PASS
6-22-09	B5-B6/A/B/C	GB	15:02	15:07	40	37	DG	PASS PASS
6-22-09 6-22-09	B6-B6A B6A-B6B	GB GB	14:23	14:28 14:18	40 40	40 40	DG DG	PASS
6-22-09	B6B-B6C	GB	14:13	14:18	40	40	DG	PASS
6-22-09	B6C-B7	GB	15:28	15:33	40	40	DG	PASS
6-22-09	B6B-B7	GB	15:28	15:33	40	40	DG	PASS
6-22-09	B6A-B7	GB	15:29	15:34	40	40	DG	PASS
6-22-09	B7-B6	GB	15:45	15:50	40	37	DG	PASS ·
6-23-09	B7-B8/A	GB	07:09	07:14	40	37	DG	PASS
6-23-09	B8-B8A	GB	07:21	07:26	40	40	DG	PASS
6-23-09	B8/A-B9	GB	08:15	08:20	40	37	DG	PASS
6-23-09	B9-B10	GB	08:18	08:23	40	38	DG	PASS
6-23-09	B10-B11	GB	08:59	09:04	40	38	DG	PASS
6-23-09	B11-B12	GB	09:00	09:05	40	40	DG	PASS
6-23-09	B12-B13/A	GB	09:17	09:22	40	37	DG	PASS
6-23-09	B13-B13A B13/A-B14	GB GB	08:47 09:26	08:52 09:31	40	37 38	DG DG	PASS PASS
6-23-09 6-23-09	B13/A-B14 B14-B15/A	GB GB	10:08	10:13	40	40	DG DG	PASS
6-23-09	B15-B15A	GB	09:30	09:33	40	40	DG	PASS
6-23-09	E4-E2	GB	10:31	10:36	40	40	DG	PASS
6-23-09	E1-E2	GB	09:37	09:42	40	40	DG	PASS
6-23-09	E1-E4	GB	10:32	10:37	40	40	DG	PASS
6-23-09	E4-E5	GB	10:38	10:42	40	40	DG	PASS
6-23-09	E5-E6	GB	10:49	10:54	40	40	DG	PASS
6-23-09	E6-E7	GB	10:01	10:06	40	40	DG	PASS
6-23-09	E7-E8	GB	10:57	11:02	40	40	DG	PASS
6-23-09	E8-E9 E9-E10	GB GB	11:02 11:09	11:07 11:14	40	37 38	DG DG	PASS PASS
6-23-09 6-23-09	E10-E11	GB GB	11:09	11:14	40	40	DG DG	PASS
6-23-09	E10-E11 E2-E3	GB	10:25	10:30	40	40	DG	PASS
6-23-09	E3-E4	GB	09:52	09:57	40	40	DG	PASS
6-23-09	E11-E12	GB	11:18	11:23	40	40	DG	PASS
6-23-09	E12/11/10-E13	GB	11:21	11:26	40	40	DG	PASS
6-23-09	E13-E14	GB	11:25	11:30	40	38	DG	PASS
6-23-09	E14-E15	GB	11:33	11:38	40	39	DG	PASS
6-23-09	B15/A-E9 to 4/1	GB	12:58	13:03	40	37	DG	PASS

REVIEWED BY: Mal

Evaporation Pond 3 Liner Installation Documentation

D.14. Primary Geomembrane Seam Vacuum Test and Defect-repair Log

GEOMEMBRANE SEAM VACUUM TEST AND DEFECT REPAIR LOG

PROJECT NAME: CLIENT: **PROJECT LOCATION:**

6-6-6-6-

Basin Disposal Inc. Bloomfield, New Mexico

Basin Pond 3 - Primary Liner

CONTRACTOR:

SHEET NUMBER:

PROJECT NUMBER: 520.01.01 Southwest Lining Sys. 1 of 2

REPAIR DATE	PANEL	TYPE OF REPAIR	REPAIR TECH	NUMBER OF LEAKS	TESTING TECH ID	DATE ACCEPTED	LOCATION
6-22-09	W1-W3	Patch	DY	0	SS	6-23-09	
6-22-09	W1-W2-W3	Т	DY	0	SS	6-23-09	
6-22-09	W1-W2	Patch	DY	0	SS	6-23-09	PDT-1
6-22-09	W1-W3-W4	Т	DY	0	SS	6-23-09	
6-22-09	B1A-W1-W4	Т	DY	0	SS	6-23-09	
6-22-09	B1A-W4-W5	Т	DY	0	SS	6-23-09	
6-22-09	B1A-W5-W6	Т	DY	0	SS	6-23-09	
5-22-09	B1A-W6-W7	Т	DY	0	SS	6-23-09	
5-22-09	B1A-W7-W8	Т	DY	0	SS	6-23-09	
5-22-09	B1A-W8-W9	T	DY	0	SS	6-23-09	
5-22-09	B1-B1A-W9	Т	DY	0	SS	6-23-09	
5-22-09	B1-W9-W13	Т	DY	0	SS	6-23-09	
6-22-09	W9-W10-W13	T.	DY	0	SS	6-23-09	
5-22-09	W10-W11-W12	Т	DY	0	SS	6-23-09	
6-22-09	W10-W12-13	Т	DY	0	SS	6-23-09	
6-22-09	B1-B1A-B2	T	DY	0	SS	6-23-09	
5-23-09	B2-B3	Patch	DY	0	SS	6-23-09	PDT-2
5-23-09	B4-B5	Patch	DY	0	SS	6-23-09	PDT-3 ·
5-23-09	B6C	4 Beads	DY	0	SS	6-23-09	
5-23-09	B5-B6B-B6C	Т	DY	0	SS	6-23-09	
5-23-09	B5-B6A-B6B	Т	DY	0	SS	6-23-09	
6-23-09	B5-B6-B6A	T	DY	0	SS	6-23-09	
5-23-09	B6-B7	Bead	DY	0	SS	6-23-09	
5-23-09	B6-B6A-B7	Patch	DY	0	SS	6-23-09	
5-23-09	B6A-B6B-B7	Patch	DY	0	SS	6-23-09	
5-23-09	B6B-B6C-B7	Patch	DY	0	SS	6-23-09	
5-23-09	B7-B8-B8A	Т	DY	0	SS	6-23-09	
5-23-09	B7-B8	Patch	DY	0	SS	6-23-09	PDT-4
5-23-09	B7-B8A	Patch	DY	0	SS	6-23-09	
5-23-09	B8-B8A-B9	Т	DY	0	SS	6-23-09	
5-23-09	B9-B10	Bead	DY	0	SS	6-23-09	
5-23-09	B9-B10	Patch	DY	0	SS	6-23-09	PDT-5
5-23-09	B11-B12	Patch	DY	0	SS	6-23-09	PDT-6
5-23-09	B12-B13-B13A	T	DY	0	SS	6-23-09	
5-23-09	B13-B13A	Patch	DY	0	SS	6-23-09	
5-23-09	B13-B13A-B14	Т	DY	0	SS	6-23-09	
5-23-09	B13	Patch	DY	0	SS	6-23-09	
5-23-09	B14-B15	Patch	DY	0	SS	6-23-09	PDT-7
5-23-09	B14-B15-B15A	T	DY	0	SS	6-23-09	
5-23-09	B15A-E1-E5	T	DY	0	SS	6-23-09	
6-23-09	E1-E4-E5	Patch	DY	0	SS	6-23-09	
6-23-09	E1-E2	Patch	DY	0	SS	6-23-09	PDT-9
5-23-09	EI-E2-E4	Patch	DY	0	SS	6-23-09	
6-23-09	E2-E3-E4	Patch	DY	0	SS	6-23-09	
5-23-09	E2-E3	T	DY	0	SS	6-23-09	

REVIEWED BY:

MARY

P:\FILES\520.01.01\CQA\Vacuum Test Log

. . .*

GORDON ENVIRONMENTAL, INC.

GEOMEMBRANE SEAM VACUUM TEST AND DEFECT REPAIR LOG

PROJECT NAME: 520.01.01 Basin Pond 3 - Primary Liner **PROJECT NUMBER:** Basin Disposal Inc. Bloomfield, New Mexico Southwest Lining Sys. 2 of 2 **CLIENT:** CONTRACTOR: **PROJECT LOCATION:** SHEET NUMBER:

	REPAIR DATE	PANEL	TYPE OF REPAIR	REPAIR TECH	NUMBER OF LEAKS	TESTING TECH ID	DATE ACCEPTED	LOCATION
1	6-23-09	E6-E7-B15A	Т	DY	0	SS	6-23-09	•
2	6-23-09	E7-E8-B15A	Т	DY	0	SS	6-23-09	
3	6-23-09	E7-E8	Patch	DY	0	SS	6-23-09	PDT-8
4	6-23-09	B15-E8-E9	Т	DY	0	SS	6-23-09	
5	6-23-09	B15-E9-E10	Patch	DY	0	SS	6-23-09	
6	6-23-09	B15-E10-E14	Patch	DY	0	SS	6-23-09	
7	6-23-09	E10-E11-E14	Т	DY	0	SS	6-23-09	<u> </u>
8	6-23-09	E11-E13-E14	Т	DY	0	SS	6-23-09	
9	6-23-09	E11-E12-E13	Т	DY	0	SS	6-23-09	
10								
11								
12								
13								
14								
15								
16 17								
18								
19								
20								
21								
22								
23								
24								
25			· · · · · · · · · · · · · · · · · · ·					
26]					
27								
28								
29								
30								
31								
32								
33								
34				ļ				
35								· · · · · · · · · · · · · · · · · · ·
36								
37								
38		·	1					
39 40								· · · · · · · · · · · · · · · · · · ·
40 41								
41								
43								
44		· · · · ·						
45								
[L			

N .

REVIEWED BY:

Evaporation Pond 3 Liner Installation Documentation

D.15. Primary Geomembrane Seam Field Destructive Test Records

			PROJE	PROJECT INFORMATIO	ATION						PRO.	JECT SPE	PROJECT SPECIFICATIONS	SNO		
PROJECT NAME:	AME:	Basin Pond 3	Basin Pond 3 Primary Liner		PROJECT NUMBER:	MBER:	520.01.01		NOISH		TEXTURED		PEEL	90	SHEAR 120	0
CLIENT:		Basin Disposal Inc.	al Inc.		CONTRACTOR: Southwest Liner Systems Inc.	: Southwest I	Liner Systems	Inc.	cu 1		SMOOTH:		PEEL	90		0
PROJECT L	OCATIO	N: Bloomfield	PROJECT LOCATION: Bloomfield, New Mexico		SHEET NUMBER:	BER:	l of l		EXTRI	EXTRUSION	TEXTURED		PEEL	78		0
											SMOOTH:		PEEL	78	SHEAR 120	Q
		50	WELDER'S	MACHINE	WEDGE WELDS	VELDS	EXTRU	EXTRUSION			FIELD	FIELD TEST RESULTS	surts			
DATE	D'T #	INITIALS	INITIALS	NUMBER	Temperature	Speed	Barrel Temp	Pre-Heat Temp	PULL	Test #1	Test #2	Test #3	Test #4	Test #5	COMMENTS	s
									Р	110	129	147	120	127	W1-W2	
6-22-09	l-d	Dd	MB		750	7.9	I		d	117	116	126	119	120	15' South of North	orth .
		i					1	.	S	159	159	159	140	163	Anchor Trench	ų
									Р	119	132	124	122	121	B2-B3	
6-22-09	P-2	DG	MB		750	7.9	•		Ь	130	135	145	149	150	60' South of North	րդ
									S	160	159	164	169	164	Anchor Trench	÷
									Ь	120	141	134	127	110	B4-B5	
6-22-09	P-3	Q	MB		750	7.9	'	,	Ρ	127	137	136	119	141	150' South of North	orth
									S	171	162	152	147	168	Anchor Trench	ų
									d	150	129	141	131	134	B7-B8	
6-23-09	P-4	DC	M	6	750	7.0	,	,	Ь	127	144	152	145	146	80' South of North	orth
			_						S	173	159	170	171	170	Anchor Trench	÷
									Ь	137	124	134	135	137	B9-B10	:
6-23-09	P-5	DQ	M	2	750	7.5	'		d	132	132	136	131	127	80' North of South	uth
									S	167	161	165	162	161	Anchor Trench	મ
									d	125	135	121	120	130	B11-B12	
6-23-09	P-6	DG	MB	-	750	7.5	1	,	d	125	122	131	129	127	55' North of South	uth
									S	171	170	172	171	171	Anchor Trench	ž
									Р	144	122	123	125	125	B14-B15	
6-23-09	p.7	DQ	MB		750	7.5	•	,	_	144	145	143	143	146	30' North of South	uth
		i							S	166	167	171	169	170	Anchor Trench	я Я
									Ь	141	142	146	137	126	E7-E8	
6-23-09	P-8	DG	MB	-	750	7.5	ı	,	Ь	144	135	127	145	145	40' West of East	ist
									S	165	170	161	171	170	Anchor Trench	ج ج
									Ч	131	128	130	132	126	E1-E2	_
6-23-09	p-9	DG	MĹ	2	750	7.5	,	,	۵.	129	135	136	132	131	25' South of North	ŧŗ.
									S	170	169	171	168	171	Anchor Trench	بر بر
									Р							
									Ρ							
									S							٦
									d							
								I	Р							
									S							

REVIEWED BY: DAY

GORDON ENVIRONMENTAL, INC.

P:\FILES\520.01.01\CQA\Destructive Test Record

Evaporation Pond 3 Liner Installation Documentation

D.16. Textured FML Deployment Log

TEXTURED FML DEPLOYMENT LOG

PROJECT NAME:	Basin Evaporation Pond 3	PROJECT NUMBER	520.01.01
CLIENT:	Basin Disposal Inc.	CONTRACTOR:	Sothwest Liner Sys.
PROJECT LOCATION:	Bloomfield, New Mexcio	SHEET NUMBER:	1 of 1

PANEL NUMBER	ROLL NUMBER	APPROXIMATE LENGTH (FT)	APPROXIMATE WIDTH (FT)	APPROXIMATE AREA (FT ²)	DATE INSTALLED
S1	103148930	40.0	22.5	900.0	6-24-09
S2	103148930	40.0	11.25	450.0	6-24-09
S3	103148930	40.0	11.25	450.0	6-24-09
S4	103148930	40.0	11.25	450.0	6-23-09
, W1	103148942	40.0	11.25	450.0	6-23-09
NI	103148942	40.0	11.25	450.0	6-23-09
NI	103148942	40.0	11.25	450.0	6-23-09
N3	103148942	40.0	11.25	450.0	6-23-09
E1	103148942	40.0	11.25	450.0	6-23-09
E2	103148942	40.0	11.25	450.0	6-23-09
E3	103148942	40.0	11.25	450.0	6-23-09
		TOTAL LINER	$PLACED (ET^2)$	5,400.0	

REVIEWED BY:

they y ----

Evaporation Pond 3 Liner Installation Documentation

D.17. Textured Liner Seam Vacuum Test Log

GEOMEMBRANE SEAM VACUUM TEST AND DEFECT REPAIR LOG

PROJECT NAME: CLIENT: PROJECT LOCATION: Basin Pond 3 - Textured Liner Basin Disposal Inc. Bloomfield, New Mexico PROJECT NUMBER: CONTRACTOR: SHEET NUMBER: 520.01.01 Southwest Lining Sys. 1 of 1

	REPAIR DATE	PANEL	TYPE OF REPAIR	REPAIR TECH	NUMBER OF LEAKS	TESTING TECH ID	DATE ACCEPTED	LOCATION
1	6-24-09	S1	Seam	DY	0	SS	6-24-09	
2	6-24-09	S2	Seam	DY	0	SS	6-24-09	
3	6-24-09	S3	Seam	DY	0	SS	6-24-09	
4	6-23-09	S4	Seam	DY	0	SS	6-24-09	
5	6-23-09	W1	Seam	DY	0	SS	6-24-09	
6	6-23-09	N1	Seam	DY	0	SS	6-24-09	
7	6-23-09	N2	Seam	DY	0	SS	6-24-09	
8	6-23-09	N3	Seam	DY	0	SS	6-24-09	
9	6-23-09	E1	Seam	DY	0	SS	6-24-09	
10	6-23-09	E2	Seam	DY	0	SS	6-24-09	
11	6-23-09	E3	Seam	DY	0	SS	6-24-09	
12								
13								<u></u>
14								
15								
16								
17								
18								·····
19								
20								
21								····
22								
23				·				
24								
25								
26 27								·····
27								· · · · · · · · · · · · · · · · · · ·
20 29								·
30								
31						····= · · · · · · · · ·		
32		······································		·	·····			
33		· · · · · · · · · · · · · · · · · · ·						
34								······································
35								
36				- 				
37								
38				<u> </u>				
39								· · · · · · · · · · · · · · · · · · ·
40								
41								
42								
43								
-44								
45								
				•				· · · · · · · · · · · · · · · · · · ·

REVIEWED BY:

Raf

.

Evaporation Pond 3 Liner Installation Documentation

D.18. GCL Inventory Control Log

GCL INVENTORY CONTROL LOG

PROJECT NAME:	Basin Pond 3	PROJECT NUMBER:	520.01.01
CLIENT:	Basin Disposal Inc.	CONTRACTOR:	Southwest Liner Sys.
PROJECT LOCATION:	Bloomfield, NM	SHEET NUMBER:	1 of 1
MATERIAL TYPE:	GCL	DATE OF INVENTORY:	See Below
MATERIAL IDENTIFICATION:	Bentomat ST	INVENTORY MONITOR:	Don Gray
MATERIAL MANUFACTURER:	CETCO	UNLOADING METHOD:	Stinger

		ВАТСН	MATE	RIAL DIN	IENSIONS	MANUF.	CONFORMANCE	
	ROLL NUMBER	OR LOT NO.	LENGTH (FT)	WIDTH (FT)	WEIGHT (LBS)	QC CERT. (Y/N)	SAMPLE (Y/N)	DATE OF INVENTORY
1	00002901	200829LO	150.0	15.0	2550.0	Y	Y	6-15-09
2								
3								
4								
5								
6								
7								
8								
9 10								
11								
12								
13								
14								
15								
16							· · · · · · · · · · · · · · · · ·	
17								
18								
19								
20								
21				·· ··· ·······························				
22					·····			·····
23		<u>_</u>						
24								
25 26								
26 27	·					 		
28								· · · · · · · · · · · · · · · · · · ·
29								
30		<u>_</u>						
31								
32								
33								
34								
35								
36								
37						<u> </u>		
38								

REVIEWED BY:

sert

Evaporation Pond 3 Liner Installation Documentation

D.19. Geonet Inventory Control Log

GEONET INVENTORY CONTROL LOG

PROJECT NAME: CLIENT: **PROJECT LOCATION:**

Basin Pond 3
Basin Disposal Inc.
Bloomfield, NM

MATERIAL TYPE: MATERIAL IDENTIFICATION: MATERIAL MANUFACTURER: Poly-Flex

200 mil geonet GN-200-325

PROJECT NUMBER: CONTRACTOR: SHEET NUMBER:

520.01.01 Southwest Lining Sys. 1 of 1

DATE OF INVENTORY: **INVENTORY MONITOR: UNLOADING METHOD:**

See Below	
Don Gray	
Lift and Straps	

			MATERIAL DIMENSIONS			MANUF.	CONFORMANCE		
	ROLL NUMBER	BATCH OR LOT NO.	LENGTH (FT)	WIDTH (FT)	WEIGHT (LBS)	QC CERT. (Y/N)	SAMPLE (Y/Ň)	DATE OF INVENTORY	
1	GN-200-08-0545-325	CWK610841	325.0	14.0	830.0	Y	N	6-15-09	
2	GN-200-08-0529-325	CWK610841	325.0	14.0	835.0	Y	N	6-15-09	
3	GN-200-08-0530-325	CWK610841	325.0	14.0	810.0	Y	Y	6-15-09	
4	GN-200-08-0537-325	CWK610841	325.0	14.0	820.0	Y	N	6-15-09	
5	GN-200-08-0531-325	CWK610841	325.0	14.0	840.0	Y	N	6-15-09	
6	GN-200-08-0518-325	CWK610841	325.0	14.0	825.0	Y	N	6-15-09	
7	GN-200-08-0515-325	CWK610841	325.0	14.0	820.0	Y	N	6-15-09	
8	GN-200-08-0510-325	CWK610841	325.0	14.0	825.0	Y	N	6-15-09	
9	GN-200-08-0522-325	CWK610841	325.0	14.0	825.0	Y	N	6-15-09	
10	GN-200-08-0535-325	CWK610841	325.0	14.0	823.0	Y	N	6-15-09	
11	GN-200-08-0533-325	CWK610841	325.0	14.0	818.0	Y	N	6-15-09	
12	GN-200-08-0302-325	CWK610841	325.0	14.0	845.0	Y	N	6-15-09	
13	GN-200-08-0534-325	CWK610841	325.0	14.0	820.0	Y	N	6-15-09	
14	GN-200-08-0543-325	CWK610841	325.0	14.0	830.0	Y	N	6-15-09	
15	GN-200-08-0544-325	CWK610841	325.0	14.0	825.0	Y	N	6-15-09	
16	GN-200-08-0549-325	CWK610841	325.0	14.0	825.0	Y	N	6-15-09	
17	GN-200-08-0525-325	CWK610841	325.0	14.0	825.0	Y	N	6-15-09	
18	GN-200-08-0524-325	CWK610841	325.0	14.0	825.0	Y	N	6-15-09	
19	GN-200-08-0539-325	CWK610841	325.0	14.0	823.0	Y	N	6-15-09	
20	GN-200-08-0542-325	CWK610841	325.0	14.0	825.0	Y	N	6-15-09	
21	GN-200-08-0517-325	CWK610841	325.0	14.0	820.0	Y	N	6-15-09	
22	GN-200-08-0538-325	CWK610841	325.0	14.0	820.0	Y	N	6-15-09	
23	GN-200-08-0536-325	CWK610841	325.0	14.0	825.0	Y	N	6-15-09	
24	GN-200-08-0528-325	CWK610841	325.0	14.0	835.0	Y	N	6-15-09	
25					-				
26					 .				
27									
28									
29									
30						ļ			
31									
32									
33									
34									
35									

REVIEWED BY:

MART

Evaporation Pond 3 Liner Installation Documentation

D.20. FML Inventory Control Log

FML INVENTORY CONTROL LOG

PROJECT NAME: CLIENT: PROJECT LOCATION:

Basin Pond 3PROJECT NUMBER:Basin Disposal Inc.CONTRACTOR:Bloomfield, New MexicoSHEET NUMBER:

MATERIAL TYPE:	60 mil Smooth H
MATERIAL IDENTIFICATION:	GHS-060-0500
MATERIAL MANUFACTURER:	Poly-Flex Inc.

60 mil Smooth HDPEDATE OF INVENTORY:GHS-060-0500INVENTORY MONITOR:Poly-Flex Inc.UNLOADING METHOD:

520.01.01
Southwest Liner Sys.
1 of 1

See Below	
Don Gray	
Lift and Straps	

	· · · · · · · · · · · · · · · · · · ·		MATERIAL DIMENSIONS			MANUF.	CONFORMANCE	
	ROLL NUMBER	BLEND NO. OR LOT NO.	LENGTH (FT)	WIDTH (FT)	WEIGHT (LBS)	QC CERT. (Y/N)	SAMPLE (Y/N)	DATE INVENTORIED
1	HS2-6-09-0708-5	CO81231LO3	500.0	23.0	3503.0	Y	N	6-15-09
2	HS2-6-09-0719-5	CO81231LO3	500.0	23.0	3505.0	Y	N	6-15-09
3	HS2-6-09-0709-5	CO81231LO3	500.0	23.0	3500.0	Y	N	6-15-09
4	HS2-6-09-0710-5	CO81231LO3	500.0	23.0	3498.0	Y	N	6-15-09
5	HS2-6-09-0707-5	CO81231LO3	500.0	23.0	3502.0	Y	N	6-15-09
6	HS2-6-09-0723-5	CO81226LO4	500.0	23.0	3497.0	Y	N	6-15-09
-7	HS2-6-09-0716-5	CO81231LO3	500.0	23.0	3506.0	Ŷ	N	6-15-09
8	HS2-6-09-0720-5	CO81231LO3	500.0	23.0	3503.0	Y	N	6-15-09
9	HS2-6-09-0711-5	CO81231LO3	500.0	23.0	3504.0	Y	N	6-15-09
10	HS2-6-09-0713-5	CO81231LO3	500.0	23.0	3499.0	Y	Y	6-15-09
11	HS2-6-09-0717-5	CO81231LO3	500.0	23.0	3507.0	Y	N	6-15-09
12	HS2-6-09-0715-5	CO81231LO3	500.0	23.0	3503.0	Y	N	6-15-09
13	HS2-6-09-0721-5	CO81226LO4	500.0	23.0	3505.0	Y	N	6-15-09
14	HS2-6-09-0712-5	CO81231LO3	500.0	23.0	3509.0	Y	N	6-15-09
15	HS2-6-09-0722-5	CO81226LO4	500.0	23.0	3500.0	Y	Y	6-15-09
16	HS2-6-09-0729-5	CO81226LO4	500.0	23.0	3500.0	Y	N	6-15-09
17	HS2-6-09-0714-5	CO81231LO3	500.0	23.0	3505.0	Y	N	6-15-09
18	HS2-6-09-0727-5	CO81226LO4	500.0	23.0	3505.0	Y	N	6-15-09
19	HS2-6-09-0718-5	CO81231LO3	500.0	23.0	3503.0	Y	N	6-15-09
20	Textured							
21	1013148942	8281601	Partial	22.5	N/A	Y	N	6-15-09
22	1013148930	8281601	Partial	22.5	N/A	Y	Y	6-22-09
23								
24								
25								
26								
27								
28								
29								
30			<u> </u>					
31								
32			• ·····			<u>-</u>		
33								
34								
35								
36		ļ						
37								
38						l	···•	

REVIEWED BY:

MAR

Evaporation Pond 3 Liner Installation Documentation

D.21. Geotextile Inventory Control Log

GEOTEXTILE INVENTORY CONTROL LOG

PROJECT NAME:	Basin Pon	d 3	PROJECT NUMBER:	520.01.01	
CLIENT:	Basin Dis	posal Inc.	CONTRACTOR:	Southwest Liner Sys.	
PROJECT LOCATION:	Bloomfiel	d, New Mexico	SHEET NUMBER:	1 of 1	
MATERIAL TYPE: MATERIAL IDENTIFICA MATERIAL MANUFACT		Nonwoven Geotextile GEOTEX 1291 Propex Geosynthetics	DATE OF INVENTORY: INVENTORY MONITOR: UNLOADING METHOD:	See Below Don Gray Lift and Straps	

		MAŤE	RIAL DIN	IENSIONS	MANUF.	CONFORMANCE	
ROLL NUMBER	BATCH OR LOT NO.	LENGTH (FT)	WIDTH (FT)	WEIGHT (LBS)	QC CERT. (Y/N)	SAMPLE (Y/N)	DATE INVENTORIED
2011217475	1004480	300.0	15.0	12oz/yd^2	Y	Y	6-15-09
					<u> </u>		
					<u> </u>		
						· · · · · · · · · · · · · · · · · · ·	
					ļ		
							····· · · · · · · · · · · · · · · · ·
	<u> </u>						
	<u> </u>						
				······································			
					 		
	— <u></u>						

REVIEWED BY:

Mast

Evaporation Pond 3 Liner Installation Documentation

D.22. Leak Detection Sump Riser Pipe Inventory Control Log

LEAK DETECTION PIPE INVENTORY CONTROL LOG

PROJECT NAME:	Basin Pond 3	PROJECT NUMBER:	520.01.01
CLIENT:	Basin Disposal Inc.	CONTRACTOR:	Southwest Liner Sys.
PROJECT LOCATION:	Bloomfield, New Mexico	SHEET NUMBER:	1 of 1
MATERIAL TYPE:	SDR17 HDPE Pipe	DATE OF INVENTORY:	See Below
MATERIAL IDENTIFICATION:	Leachate Pipe and Fittings	INVENTORY MONITOR:	Don Gray
MATERIAL MANUFACTURER:	Performance Pipe	UNLOADING METHOD:	Lift and Straps

				ERIAL DI	MENSIONS	MANUF.		
	TYPÉ	QUANTITY	LENGTH (FT)	DIAM. (IN)	PIPE SDR	QC CERT. (Y/N)	TOTAL LENGTH	DATE INVENTORIED
1	Solid	6	20'	4"	SDR17	Y	120'	6-15-09
2								
3								
4								
5						+ +		
6 7						· • · · · · · · · · · · · · · · · · · ·		
8								
9								
10								
11								
12								
13								
14								
15							<u>-</u>	
16 17	- ·							
18		-						
19								
20								
21								
22	· · · · · · · · · · · ·							
23								
24								
25								
26			<u> </u>					
27 28								
28 29								
29 30						+		
31		1						
32							·····	
33								
34								
35								
36						+		
37			·					
38								

REVIEWED BY:

APPENDIX E

Independent Laboratory FML Destructive Testing Results

TRI / Environmental, Inc. *A Texas Research International Company*

	June 17, 2009			
	Mail To:		Bill To:	
	Mr. Mark DeCarlo		<= Same	
	Southwest Liner S	ystems, Inc.		
	PO Box 1972			
	Bernalillo, NM 8700	4		
	. .			
	E-mail: swls.md@gi	mail.com		
	Dear Mr. DeCarlo:			· ·
	-	-	ental, Inc. (TRI) for your geosynthetics testing needs. t for laboratory testing.	
.• .	Project :		Basin Disposal	
	TRI Job Reference	Number :	E2330-22-05	
	Material(s) Tested :		5 Heat Fusion Weld Seam(s)	. ·
	Test(s) Requested :	:	SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54)	•
•	Codes	A		
• • •	ÁD BRK	Adhesion failure (1 Break in sheeting a	away from Seam edge	
	SE	Break in sheeting a		
	AD-BRK		after some adhesion failure - partial peel	
· .	SIP		plane of the sheet (leaving the bond intact)	
	FTB NON-FTB	Film tearing bond (100% peel	(all non "AD" failures)	· · · ·

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Sennig- T. Tenney

Jennifer Tenney Project Manager Geosynthetic Services Division www.GeosyntheticTesting.com

page 1 of 4 GeosyntheticTesting.com 9063 Bee Caves Road / Austin, TX 78733 / 512 263 2101 / fax: 512 263 2558

DESTRUCTIVE SEAM QUALITY ASSURANCE TEST RESULTS TRI Client: Southwest Liner Systems, Inc. Project: Basin Disposal

Material: 60 mil HDPE

SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54) TRI Log #: E2330-22-05

				PLICATE		_	
PARAMETER		1	2	3	4	5	MEAN
Sample ID:	DT-1						(
Weld:	Heat Fusion						DealA
Peel Strength	(ppi)	155	178	149	154	153	Peel A
		<10	<10	<10	<10	<10	
Peel Incursion		SE	SE	SE	SE	SE	
Peel NSF Fail		FTB	FTB	SE FTB	FTB	FTB	
Peel Nor Fain		FID	гю	ΓID	FID	FID	Peel B
Peel Strength	(ppi)	152	159	153	153	151	154
Deel Incursion		<10	<10	<10	<10	<10	
Peel Incursion	. ,	SE	SE	SE	SE	SE	
Peel NSF Fail		FTB	FTB	FTB	FTB	FTB	
		1.0		110	110	110	Shear
Shear Strengt	h (ppi)	189	205	196	215	203	202
. –	ion @ Break (%)	>50	>50	>50	>50	>50	
eneur Elenger							
Sample ID:	DT-2				-		
Weld:	Heat Fusion						
							Peel A
Peel Strength	(ppi)	147	140	138	148	148	144
Peel Incursion	(%)	<10	<10	<10	<10	<10	
Peel Locus of	Failure Code	SE	SE	SE	SE	SE	
Peel NSF Fail	ure Code	FTB	FTB	FTB	FTB	FTB	
							Peel B
Peel Strength	(ppi)	137	136	148	143	143	141
^m ^ω Peel Incursion	(%)	<10	<10	<10	<10	<10	
Peel Incursion	Failure Code	SE	SE	SE	SE	SE	
Peel NSF Fail	ure Code	FTB	FTB	FTB	FTB	FTB	
							Shear
Shear Strengt	h (ppi)	205	199	199	196	199	200
Shear Elongat	ion @ Break (%)	>50	>50	>50	>50	>50	
Ū							

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

page 2 of 4 GeosyntheticTesting.com

9063 Bee Caves Road / Austin, TX 78733 / 512 263 2101 / fax: 512 263 2558

DESTRUCTIVE SEAM QUALITY ASSURANCE TEST RESULTS TRI Client: Southwest Liner Systems, Inc.

Project: Basin Disposal

Material: 60 mil HDPE SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54) TRI Log #: E2330-22-05

			TEST RE		NUMBER		1
PA	RAMETER	1	2	3	4	5	MEAN
	mple ID: DT-3						
We	ld: Heat Fusion						Deal A
	Peel Strength (ppi)	151	149	152	148	155	Peel A 151
۲	Peel Incursion (%)	<10	<10	<10	<10	<10	101
Side ,	Peel Locus of Failure Code	SE	SE	SE	SE	SE	
S	Peel NSF Failure Code	FTB	FTB	FTB	FTB	FTB	
							Peel B
	Peel Strength (ppi)	138	141	148	139	138	141
е В	Peel Incursion (%)	<10	<10	<10	<10	<10	
Side	Peel Locus of Failure Code	SE	SE	SE	SE	SE	
	Peel NSF Failure Code	FTB	FTB	FTB	FTB	FTB	
							Shear
	Shear Strength (ppi)	205	192	196	212	202	201
	Shear Elongation @ Break (%)	>50	>50	>50	>50	>50	
_						·····	
	mple ID: DT-4						
VVG	eld: Heat Fusion						Peel A
	Peel Strength (ppi)	157	155	149	153	154	154
∢	Peel Incursion (%)	<10	<10	<10	<10	<10 <10	104
Side A	Peel Locus of Failure Code	SE	SE	SE	SE	SE	
S	Peel NSF Failure Code	FTB	FTB	FTB	FTB	FTB	
		2				110	Peel B
	Peel Strength (ppi)	149	141	138	136	142	141
с С	Peel Incursion (%)	<10	<10	<10	<10	<10	
Side	Peel Locus of Failure Code	SE	SE	SE	SE	SE	
•••	Peel NSF Failure Code	FTB	FTB	FTB	FTB	FTB	
							Shear
	Shear Strength (ppi)	192	194	196	206	203	198
	Shear Elongation @ Break (%)	>50	>50	>50	>50	>50	

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

page 3 of 4 GeosyntheticTesting.com 9063 Bee Caves Road / Austin, TX 78733 / 512 263 2101 / fax: 512 263 2558

DESTRUCTIVE SEAM QUALITY ASSURANCE TEST RESULTS

TRI Client: Southwest Liner Systems, Inc.

Project: Basin Disposal

Material: 60 mil HDPE

SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54) TRI Log #: E2330-22-05

			TEST RE	PLICATE	NUMBER		
PARAMETER		1	2	3	4	5	MEAN
Sample ID:	DT-5						
Weld:	Heat Fusion						
							Peel A
Peel Strength	(ppi)	136	131	133	133	134	133
✓ Peel Incursion	(%)	<10	<10	<10	<10	<10	
Peel Incursion	Failure Code	SE	SE	-SE	SE	SE	· · ·
Peel NSF Failu	ure Code	FTB	FTB	FTB	FTB	FTB	
							Peel B
Peel Strength	(ppi)	161	144	148	145	150	150
Deel Incursion	(%)	<10	<10	<10	<10	<10	
Peel Incursion Peel Locus of I		SE	SE	SE	SE	SE	
Peel NSF Failu	ure Code	FTB	FTB	FTB	FTB	FTB	
							Shear
Shear Strength	n (ppi)	186	190	189	192	203	192
-	ion @ Break (%)	>50	>50	>50	>50	>50	
	C						

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

GeosyntheticTesting.com 9063 Bee Caves Road / Austin, TX 78733 / 512 263 2101 / fax: 512 263 2558

page 4 of 4

	June 18, 2009		
	Mail To:	Bill To:	
	Mr. Mark DeCarlo Southwest Liner Systems, Inc. PO Box 1972 Bernalillo, NM 87004	<= Same	
`.	E-mail: swls.md@gmail.com		••
	Dear Mr. DeCarlo:		2. 44 a
	Thank you for consulting TRI/Environm TRI is pleased to submit this final repor	ental, Inc. (TRI) for your geosynthetics testing needs. t for laboratory testing.	
	Project :	Basin Disposal	:
	TRI Job Reference Number :	E2330-24-08	
	Material(s) Tested :	4 Heat Fusion Weld Seam(s)	
	Test(s) Requested :	SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54)	
	CodesADAdhesion failure (1BRKBreak in sheeting	100% Peel) away from Seam edge	· ·

Break in sheeting away from Seam edge
Break in sheeting at edge of seam
Break in sheeting after some adhesion failure - partial peel
Separation in the plane of the sheet (leaving the bond intact)
Film tearing bond (all non "AD" failures)
100% peel

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Jennige T. Tennug

Jennifer Tenney Project Manager Geosynthetic Services Division www.GeosyntheticTesting.com

> page 1 of 3 GeosyntheticTesting.com 9063 Bee Caves Road / Austin, TX 78733 / 512 263 2101 / fax: 512 263 2558

DESTRUCTIVE SEAM QUALITY ASSURANCE TEST RESULTS TRI Client: Southwest Liner Systems, Inc.

Project: Basin Disposal

Material: 60 mil HDPE

SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54) TRI Log #: E2330-24-08

			TEST REF	PLICATE	NUMBER		
PARAMETER		1	2	3	4	5	MEAN
Sample ID:	DT-6						
Weld:	Heat Fusion						
		155	105	105	120	111	Peel A
Peel Stren		155	135	165	139	114	142
Peel Incur	• /	<10	<10	<10	<10	<10	
	s of Failure Code	SE	SE	SE	SE	SE	
Peel NSF	Failure Code	FTB	FTB	FTB	FTB	FTB	Deal D
Peel Stren	ath (nni)	143	146	140	159	142	Peel B 146
		<10	<10	<10	<10	<10	
	s of Failure Code	SE	SE	SE	SE	SE	
	Failure Code	FTB	FTB	FTB	FTB	FTB	
Feerinoi			110	110	110	110	Shear
Shear Stre	enath (ppi)	197	192	203	192	192	195
	ngation @ Break (%)	>50	>50	>50	>50	>50	المحمقين فيرجعها
	Igalion @ Dreak (70)	. 00	- 00		. 00		
Sample ID:	DT-7						
Weld:	Heat Fusion						
							Peel A
Peel Stren	gth (ppi)	145	155	138	134	149	144
Peel Incurs	sion (%)	<10	<10	<10	<10	<10	
Peel Locus	s of Failure Code	SE	SE	SE	SE	SE	
Peel NSF	Failure Code	FTB	FTB	FTB	FTB	FTB	
							Peel B
Peel Stren	gth (ppi)	130	99	120	144	123	123
α Peel Incurs	sion (%)	<10	100	<10	<10	<10	
	s of Failure Code	SE	AD	SE	SE	SE	
	Failure Code	FTB	NON-FTB	FTB	FTB	FTB	
							Shear
Shear Stre	ength (ppi)	185	191	182	189	184	186
Shear Elor	ngation @ Break (%)	>50	>50	>50	>50	>50	

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

page 2 of 3 GeosyntheticTesting.com 9063 Bee Caves Road / Austin, TX 78733 / 512 263 2101 / fax: 512 263 2558

DESTRUCTIVE SEAM QUALITY ASSURANCE TEST RESULTS TRI Client: Southwest Liner Systems, Inc.

Project: Basin Disposal

Material: 60 mil HDPE SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54) TRI Log #: E2330-24-08

			TEST RE		NUMBER		Į
PARAMETER	1	2	3	4	5	MEAN	
Sample ID: Weld:	DT-8 Heat Fusion						
Peel Strength (ppi Peel Incursion (% Peel Locus of Fail Peel NSF Failure Peel Strength (ppi Peel Incursion (% Peel Locus of Fail Peel NSF Failure Shear Strength (p Shear Elongation) ure Code Code) ure Code Code pi)	151 <10 SE FTB 137 <10 SE FTB 198 >50	144 <10 SE FTB 146 <10 SE FTB 199 >50	145 <10 SE FTB 143 <10 SE FTB 198 >50	151 <10 SE FTB 144 <10 SE FTB 208 >50	135 <10 SE FTB 146 <10 SE FTB 208 >50	Peel A 145 Peel B 143 Shear 202
Sample ID: Weld:	DT-9 Heat Fusion						
Peel Strength (pp egical Peel Incursion (% Peel Locus of Fail Peel NSF Failure) lure Code	141 <10 SE FTB	138 <10 SE FTB	139 <10 SE FTB	147 <10 SE FTB	143 <10 SE FTB	Peel A 142
Peel Strength (pp Peel Incursion (% Peel Locus of Fai Peel NSF Failure) lure Code	147 <10 SE FTB	136 <10 SE FTB	147 <10 SE FTB	159 <10 SE FTB	150 <10 SE FTB	Peel B 148 Shear
Shear Strength (p Shear Elongation		197 >50	202 >50	195 >50	196 >50	194 >50	197

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

	June 24, 2009			
	Mail To:		Bill To:	
	Mr. Mark DeCarlo Southwest Liner S PO Box 1972 Bernalillo, NM 8700	•	<= Same	·
•	•	ulting TRI/Environ	nmental, Inc. (TRI) for your geosynthetics testing needs. port for laboratory testing.	
	Project :		Basin Disposal	
	TRI Job Reference	Number :	E2330-32-01	
2 - 1 2 - 1 - 1 - 1 - 1	Material(s) Tested :		9 Heat Fusion Weld Seam(s)	•
)	Test(s) Requested	:	SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54)	
	Codes AD BRK SE AD-BRK SIP FTB NON-ETB	Break in sheetin Break in sheetin Separation in th	e (100% Peel) ng away from Seam edge ng at edge of seam ng after some adhesion failure - partial peel e plane of the sheet (leaving the bond intact) nd (all non "AD" failures)	

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Jennige T. Tennug

Jennifer Tenney Project Manager Geosynthetic Services Division www.GeosyntheticTesting.com

> page 1 of 6 GeosyntheticTesting.com 9063 Bee Caves Road / Austin, TX 78733 / 512 263 2101 / fax: 512 263 2558

DESTRUCTIVE SEAM QUALITY ASSURANCE TEST RESULTS TRI Client: Southwest Liner Systems, Inc. Project: Basin Disposal

Material: 60 mil HDPE

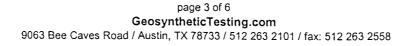
SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54) TRI Log #: E2330-32-01

PARAMETER		1	2	3	4	5	MEAN
Sample ID:	P-DT1						
Weld:	Heat Fusion						Decka
De al Otaca eth (144	161	133	132	165	Peel A 147
Peel Strength (L147
Peel Incursion	• •	<10	<10	<10	<10	<10	
		SE	SE	SE	SE	SE	
Peel NSF Failu	ire Code	FTB	FTB	FTB	FTB	FTB	Peel B
Peel Strength (nni)	156	133	155	145	136	145
m		<10	<10	<10	<10	<10	
Peel Incursion	• •	SE	SE	SE	SE	SE	
Peel NSF Failu		FTB	FTB	FTB	FTB	FTB	
Peerinor railu		FID	L I D	110	110	110	Shear
Shear Strength	(noi)	190	188	187	187	187	188
=	on @ Break (%)	>50	>50	>50	>50	>50	
Shear Liongati	UII @ Dieak (76)	-50	200	200	200	-50	
Sample ID:	P-DT2						
Weld:	Heat Fusion						
							Peel A
Peel Strength (ppi)	167	141	153	169	172	160
Peel Incursion	(%)	<10	<10	<10	<10	<10	
Peel Locus of F	Failure Code	SE	SE	SE	SE	SE	
Peel NSF Failu	ire Code	FTB	FTB	FTB	FTB	FTB	
							Peel B
Peel Strength (ppi)	137	144	149	154	142	145
m		<10	<10	<10	<10	<10	
Peel Incursion		SE	SE	SE	SE	SE	
Peel NSF Failu		FTB	FTB	FTB	FTB	FTB	
							Shear
Shear Strength	ı (ppi)	196	195	194	197	198	196
-	on @ Break (%)	>50	>50	>50	>50	>50	
	<u> </u>						

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

page 2 of 6

GeosyntheticTesting.com 9063 Bee Caves Road / Austin, TX 78733 / 512 263 2101 / fax: 512 263 2558


DESTRUCTIVE SEAM QUALITY ASSURANCE TEST RESULTS TRI Client: Southwest Liner Systems, Inc.

Project: Basin Disposal

Material: 60 mil HDPE SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54) TRI Log #: E2330-32-01

			TEST RE		NUMBER		
PARAMETER		1	2	3	4	5	MEAN
Sample ID:	P-DT3						
Weld:	Heat Fusion						
- 10		4.05	100		. – .	100	Peel A
Peel Stren	,	165	139	130	171	139	149
	. ,	<10	<10	<10	<10	<10	
	s of Failure Code	SE	SE	SE	SE	SE	
Peel NSF	Failure Code	FTB	FTB	FTB	FTB	FTB	
Deal Strap	ath (ani)	153	154	156	157	150	Peel B 154
Peel Stren	*	<10					154
Peel Incur			<10	<10	<10	<10	
	s of Failure Code Failure Code	SE FTB	SE	SE	SE	SE	
Peel NSF	Failure Code	FID	FTB	FTB	FTB	FTB	Cheer
Shear Stre	anath (nni)	192	189	188	191	194	Shear 191
		>50					191
Shear Elo	ngation @ Break (%)	>50	>50	>50	>50	>50	
Sample ID:	P-DT4					<u> </u>	
Weld:	Heat Fusion						
							Peel A
Peel Stren	ngth (ppi)	174	142	145	146	147	151
Peel Incur	sion (%)	<10	<10	<10	<10	<10	
Peel Locu	s of Failure Code	SE	SE	SE	SE	SE	
Peel NSF	Failure Code	FTB	FTB	FTB	FTB	FTB	
							Peel B
Peel Stren	ngth (ppi)	148	148	151	150	149	149
o Peel Incur	sion (%)	<10	<10	<10	<10	<10	
Peel Incur	s of Failure Code	SE	SE	SE	SE	SE	
Peel NSF	Failure Code	FTB	FTB	FTB	FTB	FTB	1
							Shear
	ength (ppi)	190	189	189	192	192	190
Shear Flo	ngation @ Break (%)	>50	>50	>50	>50	>50	

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

DESTRUCTIVE SEAM QUALITY ASSURANCE TEST RESULTS TRI Client: Southwest Liner Systems, Inc. Project: Basin Disposal

Material: 60 mil HDPE

SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54) TRI Log #: E2330-32-01

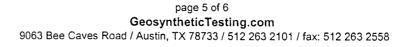
			TEST RE		NUMBER		1
PARAMETE	R	1	2	3	4	5	MEAN
Sample ID:	P-DT5						
Weld:	Heat Fusion						
							Peel A
Peel Stre	ngth (ppi)	140	137	136	135	144	138
v Peel Incu		<10	<10	≤10	<10	<10	
	us of Failure Code	SE	SE	SE	SE	SE	• •••
Peel NSF	Failure Code	FTB	FTB	FTB	FTB	FTB	
							Peel B
Peel Stre	ngth (ppi)	140	152	133	143	137	141
က် Peel Incu တွ Peel Loci		<10	<10	<10	<10	<10	
	us of Failure Code	SE	SE	SE	SE	SE	
Peel NSF	Failure Code	FTB	FTB	FTB	FTB	FTB	
							Shear
Shear St	rength (ppi)	195	197	196	198	200	197
Shear Ele	ongation @ Break (%)	>50	>50	>50	>50	>50	
Sample ID:	P-DT6						
Weld:	Heat Fusion						
							Peel A
Peel Stre	ngth (ppi)	152	148	142	134	133	142
V Peel Incu		<10	<10	<10	<10	<10	
	us of Failure Code	SE	SE	SE	SE	SE	
Peel NSF	Failure Code	FTB	FTB	FTB	FTB	FTB	
							Peel B
Peel Stre	ngth (ppi)	146	160	136	134	135	142
	rsion (%)	<10	<10	<10	<10	<10	
Peel Loci	us of Failure Code	SE	SE	SE	SE	SE	
Peel NSF	F Failure Code	FTB	FTB	FTB	FTB	FTB	
							Shear
Shear St	rength (ppi)	199	194	192	196	197	196
Shear Ele	ongation @ Break (%)	>50	>50	>50	>50	>50	

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

page 4 of 6 GeosyntheticTesting.com

9063 Bee Caves Road / Austin, TX 78733 / 512 263 2101 / fax: 512 263 2558

DESTRUCTIVE SEAM QUALITY ASSURANCE TEST RESULTS TRI Client: Southwest Liner Systems, Inc.


Project: Basin Disposal

Material: 60 mil HDPE

SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54) TRI Log #: E2330-32-01

PARAMETER	1	2	3	4	5	MEAN	
Sample ID:	P-DT7						
Weld:	Heat Fusion						
	/ ``	100	4.6.4				Peel A
Peel Strength (162	161	163	141	117	149
✓ Peel Incursion		<10	<10	<10	<10	<10	
		SE	SE	SE	SE	SE	
Peel NSF Failu	ure Code	FTB	FTB	FTB	FTB	FTB	
	(:)	140		400	400	450	Peel B
Peel Strength		142	141	139	162	150	147
Peel Incursion		<10	<10	<10	<10	<10	
		SE	SE	SE	SE	SE	
Peel NSF Failu	ure Code	FTB	FTB	FTB	FTB	FTB	
	()	400	400		(Shear
Shear Strength		193	196	191	193	194	193
Shear Elongati	ion @ Break (%)	>50	>50	>50	>50	>50	
Sample ID:	P-DT8						
Weld:	Heat Fusion						
							Peel A
Peel Strength	(ppi)	164	137	155	139	143	148
Peel Incursion	(%)	<10	<10	<10	<10	<10	
Peel Locus of	Failure Code	SE	SE	SE	SE	SE	
Peel NSF Faile	ure Code	FTB	FTB	FTB	FTB	FTB	
							Peel B
Peel Strength	(ppi)	148	153	158	140	156	151
Peel Incursion	(%)	<10	<10	<10	<10	<10	
	Failure Code	SE	SE	SE	SE	SE	
Peel NSF Fail	ure Code	FTB	FTB	FTB	FTB	FTB	
							Shear
Shear Strength	h (ppi)	192	191	193	192	196	193
Shear Elongat	ion @ Break (%)	>50	>50	>50	>50	>50	

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

DESTRUCTIVE SEAM QUALITY ASSURANCE TEST RESULTS TRI Client: Southwest Liner Systems, Inc. Project: Basin Disposal

Material: 60 mil HDPE

SAME DAY Peel and Shear (ASTM D 6392/GRI GM19/D 4437/NSF 54) TRI Log #: E2330-32-01

		TEST REPLICATE NUMBER					
PARAMETER		1	2	3	4	5	MEAN
Sample ID:	P-DT9		_				
Weld:	Heat Fusion						
							Peel A
Peel Strength (ppi)		141	141	146	141	142	142
⊄ _Φ Peel Incursion (%)		<10	<10	<10	<10	<10	
Peel Incursion (%)		SE	- SE	SE	SE	SE	
Peel NSF Failure Code		FTB	FTB	FTB	FTB	FTB	
							Peel B
Peel Strength (ppi)		142	141	143	161	140	145
Peel Incursion (%)		<10	<10	<10	<10	<10	
Peel Incursion (%) Feel Locus of Failure Code		SE	SE	SE	SE	SE	
Peel NSF Failu	ure Code	FTB	FTB	FTB	FTB	FTB	
							Shear
Shear Strength	n (ppi)	198	196	197	197	200	198
Shear Elongation @ Break (%)		>50	>50	>50	>50	>50	

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply

to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material.

TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

APPENDIX F

Leak Detection System Certifications

F.1. Pipe Certification

06/15/2009 07:47 5053410771 SECOR

PERFORMANCE PIPE PO BOX 1060 **BROWNWOOD TEXAS 76801**

June 8, 2009

DriscoPlex[®] 4100 PRODUCT QUALITY CERTIFICATION

SOLD TO CUSTOMER: SCHEELE ENGINEERING CORPORATION AKA SECOR 17321 GROESCHKE ROAD HOUSTON TX 77084 USA

SHIP TO CUSTOMER: SECOR 705 RANKIN ROAD NE ALBUQUERQUE NM 87107 USA

ATTENTION: TRISH NICHOLSON

CUSTOMER ORDER NO: 0040289 PERFORMANCE PIPE ORDER NO: 6741743 SHIPPING DATE: 1/23/09 **DELIVERY NO: 87802429** QUANTITY: 15,360' PRODUCT: 4-17-4100X40' 61

This product quality certification letter for DriscoPlex® 4100 series pipe has been prepared at your request. DriscoPlex[®] 4100 series pipe is manufactured from polycthylene resin that meets or exceeds a material designation of PE3408/3608 and a minimum cell classification of 345464C in accordance with ASTM D3350. DriscoPlex #4100 series pipe material is listed by the Plastic Pipe Institute in PPI TR-4 with a standard grade recommended hydrostatic design basis of 1600 psi at 73°F (23°C).

DriscoPlex® 4100 series pipe is manufactured in accordance with the requirements of AWWA C206-99 and ASTM F714 OR AWWA C901-02 and ASTM D3035 depending on pipe size. DriscoPlex® 4100 series meets NSF standards 14 and/or 61 requirements for potable water piping systems. This pipe is tested and certified by WQA per NSF/ANSI 61.

Sincerely,

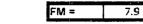
K Surst

R.B. Smith QA Supervisor

APPENDIX F

Leak Detection System Certifications

F.2. Leak Detection Sump Aggregate Gradation


GRADATION WORKSHEET ASTM C136

MATERIAL TYPE	1-1/2" Minus Rounded - Retest after field washing
SAMPLE DATE	6/17/2009
TYPE OF SAMPLE	Foutz & Bursum Field Sample
PROJECT	Basin Disposal Project

WET WEIGHT BEFORE WASH	24255.9
DRY WEIGHT BEFORE WASH	24255.9
DRY WEIGHT AFTER WASH	24255.9
ELUTRIATION	0.0

SIZE	WEIGHT RET, gms	%RET	% PASS	SPECIFICATION
6‴	0	0.0	100.0	
5″	0	0.0	100.0	
4''	. 0	0.0	100.0	
3"	0	0.0	100.0	
2-1/2"	0	0.0	100.0	
2"	0	0.0	100.0	
1-1/2"	0	0.0	100.0	
1"	12545.7	51.7	48.3	
3/4"	22269.3	91.8	8.2	
1/ 2 "	24105.8	99.4	0.6	
3/8"	24168.2	99.6	0.4	
1/4"	24168.2	99.6	0.4	
#4	24207.7	99.8	0.2	
#8	24207.7	99.8	0.2	
#10	24207.7	99.8	0.2	
#16	24207.7	99.8	0.2	
#30	24207.7	99.8	0.2	
#40	24207.7	99.8	0.2	
#50	24207.7	99.8	0.2	
#100	24207.7	99.8	0.2	
#200	24207.7	99.8	0.2	
Pan	24255.9			

MOISTURE SAMPLE WET, gms	24255.9
MOISTURE SAMPLE DRY, gms	24255.9
% MOISTURE	0.00

